-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathdataloader.py
367 lines (301 loc) · 14 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import pdb
from PIL import Image
import numpy as np
import torch
import torchvision.transforms as tvf
from tools.transforms import instanciate_transformation
from tools.transforms_tools import persp_apply
RGB_mean = [0.485, 0.456, 0.406]
RGB_std = [0.229, 0.224, 0.225]
norm_RGB = tvf.Compose([tvf.ToTensor(), tvf.Normalize(mean=RGB_mean, std=RGB_std)])
class PairLoader:
""" On-the-fly jittering of pairs of image with dense pixel ground-truth correspondences.
crop: random crop applied to both images
scale: random scaling applied to img2
distort: random ditorsion applied to img2
self[idx] returns a dictionary with keys: img1, img2, aflow, mask
- img1: cropped original
- img2: distorted cropped original
- aflow: 'absolute' optical flow = (x,y) position of each pixel from img1 in img2
- mask: (binary image) valid pixels of img1
"""
def __init__(self, dataset, crop='', scale='', distort='', norm = norm_RGB,
what = 'aflow mask', idx_as_rng_seed = False):
assert hasattr(dataset, 'npairs')
assert hasattr(dataset, 'get_pair')
self.dataset = dataset
self.distort = instanciate_transformation(distort)
self.crop = instanciate_transformation(crop)
self.norm = instanciate_transformation(norm)
self.scale = instanciate_transformation(scale)
self.idx_as_rng_seed = idx_as_rng_seed # to remove randomness
self.what = what.split() if isinstance(what, str) else what
self.n_samples = 5 # number of random trials per image
def __len__(self):
assert len(self.dataset) == self.dataset.npairs, pdb.set_trace() # and not nimg
return len(self.dataset)
def __repr__(self):
fmt_str = 'PairLoader\n'
fmt_str += repr(self.dataset)
fmt_str += ' npairs: %d\n' % self.dataset.npairs
short_repr = lambda s: repr(s).strip().replace('\n',', ')[14:-1].replace(' ',' ')
fmt_str += ' Distort: %s\n' % short_repr(self.distort)
fmt_str += ' Crop: %s\n' % short_repr(self.crop)
fmt_str += ' Norm: %s\n' % short_repr(self.norm)
return fmt_str
def __getitem__(self, i):
#from time import time as now; t0 = now()
if self.idx_as_rng_seed:
import random
random.seed(i)
np.random.seed(i)
# Retrieve an image pair and their absolute flow
img_a, img_b, metadata = self.dataset.get_pair(i, self.what)
# aflow contains pixel coordinates indicating where each
# pixel from the left image ended up in the right image
# as (x,y) pairs, but its shape is (H,W,2)
aflow = np.float32(metadata['aflow'])
mask = metadata.get('mask', np.ones(aflow.shape[:2],np.uint8))
# apply transformations to the second image
img_b = {'img': img_b, 'persp':(1,0,0,0,1,0,0,0)}
if self.scale:
img_b = self.scale(img_b)
if self.distort:
img_b = self.distort(img_b)
# apply the same transformation to the flow
aflow[:] = persp_apply(img_b['persp'], aflow.reshape(-1,2)).reshape(aflow.shape)
corres = None
if 'corres' in metadata:
corres = np.float32(metadata['corres'])
corres[:,1] = persp_apply(img_b['persp'], corres[:,1])
# apply the same transformation to the homography
homography = None
if 'homography' in metadata:
homography = np.float32(metadata['homography'])
# p_b = homography * p_a
persp = np.float32(img_b['persp']+(1,)).reshape(3,3)
homography = persp @ homography
# determine crop size
img_b = img_b['img']
crop_size = self.crop({'imsize':(10000,10000)})['imsize']
output_size_a = min(img_a.size, crop_size)
output_size_b = min(img_b.size, crop_size)
img_a = np.array(img_a)
img_b = np.array(img_b)
ah,aw,p1 = img_a.shape
bh,bw,p2 = img_b.shape
assert p1 == 3
assert p2 == 3
assert aflow.shape == (ah, aw, 2)
assert mask.shape == (ah, aw)
# Let's start by computing the scale of the
# optical flow and applying a median filter:
dx = np.gradient(aflow[:,:,0])
dy = np.gradient(aflow[:,:,1])
scale = np.sqrt(np.clip(np.abs(dx[1]*dy[0] - dx[0]*dy[1]), 1e-16, 1e16))
accu2 = np.zeros((16,16), bool)
Q = lambda x, w: np.int32(16 * (x - w.start) / (w.stop - w.start))
def window1(x, size, w):
l = x - int(0.5 + size / 2)
r = l + int(0.5 + size)
if l < 0: l,r = (0, r - l)
if r > w: l,r = (l + w - r, w)
if l < 0: l,r = 0,w # larger than width
return slice(l,r)
def window(cx, cy, win_size, scale, img_shape):
return (window1(cy, win_size[1]*scale, img_shape[0]),
window1(cx, win_size[0]*scale, img_shape[1]))
n_valid_pixel = mask.sum()
sample_w = mask / (1e-16 + n_valid_pixel)
def sample_valid_pixel():
n = np.random.choice(sample_w.size, p=sample_w.ravel())
y, x = np.unravel_index(n, sample_w.shape)
return x, y
# Find suitable left and right windows
trials = 0 # take the best out of few trials
best = -np.inf, None
for _ in range(50*self.n_samples):
if trials >= self.n_samples: break # finished!
# pick a random valid point from the first image
if n_valid_pixel == 0: break
c1x, c1y = sample_valid_pixel()
# Find in which position the center of the left
# window ended up being placed in the right image
c2x, c2y = (aflow[c1y, c1x] + 0.5).astype(np.int32)
if not(0 <= c2x < bw and 0 <= c2y < bh): continue
# Get the flow scale
sigma = scale[c1y, c1x]
# Determine sampling windows
if 0.2 < sigma < 1:
win1 = window(c1x, c1y, output_size_a, 1/sigma, img_a.shape)
win2 = window(c2x, c2y, output_size_b, 1, img_b.shape)
elif 1 <= sigma < 5:
win1 = window(c1x, c1y, output_size_a, 1, img_a.shape)
win2 = window(c2x, c2y, output_size_b, sigma, img_b.shape)
else:
continue # bad scale
# compute a score based on the flow
x2,y2 = aflow[win1].reshape(-1, 2).T.astype(np.int32)
# Check the proportion of valid flow vectors
valid = (win2[1].start <= x2) & (x2 < win2[1].stop) \
& (win2[0].start <= y2) & (y2 < win2[0].stop)
score1 = (valid * mask[win1].ravel()).mean()
# check the coverage of the second window
accu2[:] = False
accu2[Q(y2[valid],win2[0]), Q(x2[valid],win2[1])] = True
score2 = accu2.mean()
# Check how many hits we got
score = min(score1, score2)
trials += 1
if score > best[0]:
best = score, win1, win2
if None in best: # counldn't find a good window
img_a = np.zeros(output_size_a[::-1]+(3,), dtype=np.uint8)
img_b = np.zeros(output_size_b[::-1]+(3,), dtype=np.uint8)
aflow = np.nan * np.ones((2,)+output_size_a[::-1], dtype=np.float32)
homography = np.nan * np.ones((3,3), dtype=np.float32)
else:
win1, win2 = best[1:]
img_a = img_a[win1]
img_b = img_b[win2]
aflow = aflow[win1] - np.float32([[[win2[1].start, win2[0].start]]])
mask = mask[win1]
aflow[~mask.view(bool)] = np.nan # mask bad pixels!
aflow = aflow.transpose(2,0,1) # --> (2,H,W)
if corres is not None:
corres[:,0] -= (win1[1].start, win1[0].start)
corres[:,1] -= (win2[1].start, win2[0].start)
if homography is not None:
trans1 = np.eye(3, dtype=np.float32)
trans1[:2,2] = (win1[1].start, win1[0].start)
trans2 = np.eye(3, dtype=np.float32)
trans2[:2,2] = (-win2[1].start, -win2[0].start)
homography = trans2 @ homography @ trans1
homography /= homography[2,2]
# rescale if necessary
if img_a.shape[:2][::-1] != output_size_a:
sx, sy = (np.float32(output_size_a)-1)/(np.float32(img_a.shape[:2][::-1])-1)
img_a = np.asarray(Image.fromarray(img_a).resize(output_size_a, Image.ANTIALIAS))
mask = np.asarray(Image.fromarray(mask).resize(output_size_a, Image.NEAREST))
afx = Image.fromarray(aflow[0]).resize(output_size_a, Image.NEAREST)
afy = Image.fromarray(aflow[1]).resize(output_size_a, Image.NEAREST)
aflow = np.stack((np.float32(afx), np.float32(afy)))
if corres is not None:
corres[:,0] *= (sx, sy)
if homography is not None:
homography = homography @ np.diag(np.float32([1/sx,1/sy,1]))
homography /= homography[2,2]
if img_b.shape[:2][::-1] != output_size_b:
sx, sy = (np.float32(output_size_b)-1)/(np.float32(img_b.shape[:2][::-1])-1)
img_b = np.asarray(Image.fromarray(img_b).resize(output_size_b, Image.ANTIALIAS))
aflow *= [[[sx]], [[sy]]]
if corres is not None:
corres[:,1] *= (sx, sy)
if homography is not None:
homography = np.diag(np.float32([sx,sy,1])) @ homography
homography /= homography[2,2]
assert aflow.dtype == np.float32, pdb.set_trace()
assert homography is None or homography.dtype == np.float32, pdb.set_trace()
if 'flow' in self.what:
H, W = img_a.shape[:2]
mgrid = np.mgrid[0:H, 0:W][::-1].astype(np.float32)
flow = aflow - mgrid
result = dict(img1=self.norm(img_a), img2=self.norm(img_b))
for what in self.what:
try: result[what] = eval(what)
except NameError: pass
return result
def threaded_loader( loader, iscuda, threads, batch_size=1, shuffle=True):
""" Get a data loader, given the dataset and some parameters.
Parameters
----------
loader : object[i] returns the i-th training example.
iscuda : bool
batch_size : int
threads : int
shuffle : int
Returns
-------
a multi-threaded pytorch loader.
"""
return torch.utils.data.DataLoader(
loader,
batch_size = batch_size,
shuffle = shuffle,
sampler = None,
num_workers = threads,
pin_memory = iscuda,
collate_fn=collate)
def collate(batch, _use_shared_memory=True):
"""Puts each data field into a tensor with outer dimension batch size.
Copied from https://github.com/pytorch in torch/utils/data/_utils/collate.py
"""
import re
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
assert elem_type.__name__ == 'ndarray'
# array of string classes and object
if re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
batch = [torch.from_numpy(b) for b in batch]
try:
return torch.stack(batch, 0)
except RuntimeError:
return batch
elif batch[0] is None:
return list(batch)
elif isinstance(batch[0], int):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], str):
return batch
elif isinstance(batch[0], dict):
return {key: collate([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], (tuple,list)):
transposed = zip(*batch)
return [collate(samples) for samples in transposed]
raise TypeError((error_msg.format(type(batch[0]))))
def tensor2img(tensor, model=None):
""" convert back a torch/numpy tensor to a PIL Image
by undoing the ToTensor() and Normalize() transforms.
"""
mean = norm_RGB.transforms[1].mean
std = norm_RGB.transforms[1].std
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
res = np.uint8(np.clip(255*((tensor.transpose(1,2,0) * std) + mean), 0, 255))
from PIL import Image
return Image.fromarray(res)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser("Tool to debug/visualize the data loader")
parser.add_argument("dataloader", type=str, help="command to create the data loader")
args = parser.parse_args()
from datasets import *
auto_pairs = lambda db: SyntheticPairDataset(db,
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.5), PixelNoise(25)')
loader = eval(args.dataloader)
print("Data loader =", loader)
from tools.viz import show_flow
for data in loader:
aflow = data['aflow']
H, W = aflow.shape[-2:]
flow = (aflow - np.mgrid[:H, :W][::-1]).transpose(1,2,0)
show_flow(tensor2img(data['img1']), tensor2img(data['img2']), flow)