-
Notifications
You must be signed in to change notification settings - Fork 99
/
Copy pathsession.rs
673 lines (595 loc) · 24 KB
/
session.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
//! Module containing session types
use std::{ffi::CString, fmt::Debug, path::Path};
#[cfg(not(target_family = "windows"))]
use std::os::unix::ffi::OsStrExt;
#[cfg(target_family = "windows")]
use std::os::windows::ffi::OsStrExt;
#[cfg(feature = "model-fetching")]
use std::env;
use ndarray::Array;
use tracing::{debug, error};
use onnxruntime_sys as sys;
use crate::{
char_p_to_string,
environment::Environment,
error::{status_to_result, NonMatchingDimensionsError, OrtError, Result},
g_ort,
memory::MemoryInfo,
tensor::{
ort_owned_tensor::{OrtOwnedTensor, OrtOwnedTensorExtractor},
OrtTensor,
},
AllocatorType, GraphOptimizationLevel, MemType, TensorElementDataType,
TypeToTensorElementDataType,
};
#[cfg(feature = "model-fetching")]
use crate::{download::AvailableOnnxModel, error::OrtDownloadError};
/// Type used to create a session using the _builder pattern_
///
/// A `SessionBuilder` is created by calling the
/// [`Environment::new_session_builder()`](../env/struct.Environment.html#method.new_session_builder)
/// method on the environment.
///
/// Once created, use the different methods to configure the session.
///
/// Once configured, use the [`SessionBuilder::with_model_from_file()`](../session/struct.SessionBuilder.html#method.with_model_from_file)
/// method to "commit" the builder configuration into a [`Session`](../session/struct.Session.html).
///
/// # Example
///
/// ```no_run
/// # use std::error::Error;
/// # use onnxruntime::{environment::Environment, LoggingLevel, GraphOptimizationLevel};
/// # fn main() -> Result<(), Box<dyn Error>> {
/// let environment = Environment::builder()
/// .with_name("test")
/// .with_log_level(LoggingLevel::Verbose)
/// .build()?;
/// let mut session = environment
/// .new_session_builder()?
/// .with_optimization_level(GraphOptimizationLevel::Basic)?
/// .with_number_threads(1)?
/// .with_model_from_file("squeezenet.onnx")?;
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct SessionBuilder {
env: Environment,
session_options_ptr: *mut sys::OrtSessionOptions,
allocator: AllocatorType,
memory_type: MemType,
}
impl Drop for SessionBuilder {
#[tracing::instrument]
fn drop(&mut self) {
debug!("Dropping the session options.");
assert_ne!(self.session_options_ptr, std::ptr::null_mut());
unsafe { g_ort().ReleaseSessionOptions.unwrap()(self.session_options_ptr) };
}
}
impl SessionBuilder {
pub(crate) fn new(env: Environment) -> Result<SessionBuilder> {
let mut session_options_ptr: *mut sys::OrtSessionOptions = std::ptr::null_mut();
let status = unsafe { g_ort().CreateSessionOptions.unwrap()(&mut session_options_ptr) };
status_to_result(status).map_err(OrtError::SessionOptions)?;
assert_eq!(status, std::ptr::null_mut());
assert_ne!(session_options_ptr, std::ptr::null_mut());
Ok(SessionBuilder {
env,
session_options_ptr,
allocator: AllocatorType::Arena,
memory_type: MemType::Default,
})
}
/// Configure the session to use a number of threads
pub fn with_number_threads(self, num_threads: i16) -> Result<SessionBuilder> {
// FIXME: Pre-built binaries use OpenMP, set env variable instead
// We use a u16 in the builder to cover the 16-bits positive values of a i32.
let num_threads = num_threads as i32;
let status =
unsafe { g_ort().SetIntraOpNumThreads.unwrap()(self.session_options_ptr, num_threads) };
status_to_result(status).map_err(OrtError::SessionOptions)?;
assert_eq!(status, std::ptr::null_mut());
Ok(self)
}
/// Set the session's optimization level
pub fn with_optimization_level(
self,
opt_level: GraphOptimizationLevel,
) -> Result<SessionBuilder> {
// Sets graph optimization level
unsafe {
g_ort().SetSessionGraphOptimizationLevel.unwrap()(
self.session_options_ptr,
opt_level.into(),
)
};
Ok(self)
}
/// Set the session's allocator
///
/// Defaults to [`AllocatorType::Arena`](../enum.AllocatorType.html#variant.Arena)
pub fn with_allocator(mut self, allocator: AllocatorType) -> Result<SessionBuilder> {
self.allocator = allocator;
Ok(self)
}
/// Set the session's memory type
///
/// Defaults to [`MemType::Default`](../enum.MemType.html#variant.Default)
pub fn with_memory_type(mut self, memory_type: MemType) -> Result<SessionBuilder> {
self.memory_type = memory_type;
Ok(self)
}
/// Download an ONNX pre-trained model from the [ONNX Model Zoo](https://github.com/onnx/models) and commit the session
#[cfg(feature = "model-fetching")]
pub fn with_model_downloaded<M>(self, model: M) -> Result<Session>
where
M: Into<AvailableOnnxModel>,
{
self.with_model_downloaded_monomorphized(model.into())
}
#[cfg(feature = "model-fetching")]
fn with_model_downloaded_monomorphized(self, model: AvailableOnnxModel) -> Result<Session> {
let download_dir = env::current_dir().map_err(OrtDownloadError::IoError)?;
let downloaded_path = model.download_to(download_dir)?;
self.with_model_from_file_monomorphized(downloaded_path.as_ref())
}
// TODO: Add all functions changing the options.
// See all OrtApi methods taking a `options: *mut OrtSessionOptions`.
/// Load an ONNX graph from a file and commit the session
pub fn with_model_from_file<P>(self, model_filepath: P) -> Result<Session>
where
P: AsRef<Path>,
{
self.with_model_from_file_monomorphized(model_filepath.as_ref())
}
fn with_model_from_file_monomorphized(self, model_filepath: &Path) -> Result<Session> {
let mut session_ptr: *mut sys::OrtSession = std::ptr::null_mut();
if !model_filepath.exists() {
return Err(OrtError::FileDoesNotExists {
filename: model_filepath.to_path_buf(),
});
}
// Build an OsString than a vector of bytes to pass to C
let model_path = std::ffi::OsString::from(model_filepath);
#[cfg(target_family = "windows")]
let model_path: Vec<u16> = model_path
.encode_wide()
.chain(std::iter::once(0)) // Make sure we have a null terminated string
.collect();
#[cfg(not(target_family = "windows"))]
let model_path: Vec<std::os::raw::c_char> = model_path
.as_bytes()
.iter()
.chain(std::iter::once(&b'\0')) // Make sure we have a null terminated string
.map(|b| *b as std::os::raw::c_char)
.collect();
let env_ptr: *const sys::OrtEnv = self.env.env_ptr();
let status = unsafe {
g_ort().CreateSession.unwrap()(
env_ptr,
model_path.as_ptr(),
self.session_options_ptr,
&mut session_ptr,
)
};
status_to_result(status).map_err(OrtError::Session)?;
assert_eq!(status, std::ptr::null_mut());
assert_ne!(session_ptr, std::ptr::null_mut());
let mut allocator_ptr: *mut sys::OrtAllocator = std::ptr::null_mut();
let status = unsafe { g_ort().GetAllocatorWithDefaultOptions.unwrap()(&mut allocator_ptr) };
status_to_result(status).map_err(OrtError::Allocator)?;
assert_eq!(status, std::ptr::null_mut());
assert_ne!(allocator_ptr, std::ptr::null_mut());
let memory_info = MemoryInfo::new(AllocatorType::Arena, MemType::Default)?;
// Extract input and output properties
let num_input_nodes = dangerous::extract_inputs_count(session_ptr)?;
let num_output_nodes = dangerous::extract_outputs_count(session_ptr)?;
let inputs = (0..num_input_nodes)
.map(|i| dangerous::extract_input(session_ptr, allocator_ptr, i))
.collect::<Result<Vec<Input>>>()?;
let outputs = (0..num_output_nodes)
.map(|i| dangerous::extract_output(session_ptr, allocator_ptr, i))
.collect::<Result<Vec<Output>>>()?;
Ok(Session {
session_ptr,
allocator_ptr,
memory_info,
inputs,
outputs,
})
}
}
/// Type storing the session information, built from an [`Environment`](environment/struct.Environment.html)
#[derive(Debug)]
pub struct Session {
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
memory_info: MemoryInfo,
/// Information about the ONNX's inputs as stored in loaded file
pub inputs: Vec<Input>,
/// Information about the ONNX's outputs as stored in loaded file
pub outputs: Vec<Output>,
}
/// Information about an ONNX's input as stored in loaded file
#[derive(Debug)]
pub struct Input {
/// Name of the input layer
pub name: String,
/// Type of the input layer's elements
pub input_type: TensorElementDataType,
/// Shape of the input layer
///
/// C API uses a i64 for the dimensions. We use an unsigned of the same range of the positive values.
pub dimensions: Vec<Option<u32>>,
}
/// Information about an ONNX's output as stored in loaded file
#[derive(Debug)]
pub struct Output {
/// Name of the output layer
pub name: String,
/// Type of the output layer's elements
pub output_type: TensorElementDataType,
/// Shape of the output layer
///
/// C API uses a i64 for the dimensions. We use an unsigned of the same range of the positive values.
pub dimensions: Vec<Option<u32>>,
}
impl Input {
/// Return an iterator over the shape elements of the input layer
///
/// Note: The member [`Input::dimensions`](struct.Input.html#structfield.dimensions)
/// stores `u32` (since ONNX uses `i64` but which cannot be negative) so the
/// iterator converts to `usize`.
pub fn dimensions(&self) -> impl Iterator<Item = Option<usize>> + '_ {
self.dimensions.iter().map(|d| d.map(|d2| d2 as usize))
}
}
impl Output {
/// Return an iterator over the shape elements of the output layer
///
/// Note: The member [`Output::dimensions`](struct.Output.html#structfield.dimensions)
/// stores `u32` (since ONNX uses `i64` but which cannot be negative) so the
/// iterator converts to `usize`.
pub fn dimensions(&self) -> impl Iterator<Item = Option<usize>> + '_ {
self.dimensions.iter().map(|d| d.map(|d2| d2 as usize))
}
}
impl Drop for Session {
#[tracing::instrument]
fn drop(&mut self) {
debug!("Dropping the session.");
unsafe { g_ort().ReleaseSession.unwrap()(self.session_ptr) };
// FIXME: There is no C function to release the allocator?
self.session_ptr = std::ptr::null_mut();
self.allocator_ptr = std::ptr::null_mut();
}
}
impl Session {
/// Run the input data through the ONNX graph, performing inference.
///
/// Note that ONNX models can have multiple inputs; a `Vec<_>` is thus
/// used for the input data here.
pub fn run<'s, 't, 'm, TIn, TOut, D>(
&'s mut self,
input_arrays: Vec<Array<TIn, D>>,
) -> Result<Vec<OrtOwnedTensor<'t, 'm, TOut, ndarray::IxDyn>>>
where
TIn: TypeToTensorElementDataType + Debug + Clone,
TOut: TypeToTensorElementDataType + Debug + Clone,
D: ndarray::Dimension,
'm: 't, // 'm outlives 't (memory info outlives tensor)
's: 'm, // 's outlives 'm (session outlives memory info)
{
self.validate_input_shapes(&input_arrays)?;
// Build arguments to Run()
let input_names: Vec<String> = self.inputs.iter().map(|input| input.name.clone()).collect();
let input_names_cstring: Vec<CString> = input_names
.iter()
.cloned()
.map(|n| CString::new(n).unwrap())
.collect();
let input_names_ptr: Vec<*const i8> = input_names_cstring
.into_iter()
.map(|n| n.into_raw() as *const i8)
.collect();
let output_names: Vec<String> = self
.outputs
.iter()
.map(|output| output.name.clone())
.collect();
let output_names_cstring: Vec<CString> = output_names
.into_iter()
.map(|n| CString::new(n).unwrap())
.collect();
let output_names_ptr: Vec<*const i8> = output_names_cstring
.iter()
.map(|n| n.as_ptr() as *const i8)
.collect();
let output_shapes: Vec<Vec<usize>> = {
let mut tmp = Vec::new();
for (idx, output) in self.outputs.iter().enumerate() {
let v: Vec<_> = output
.dimensions
.iter()
.enumerate()
.map(|(jdx, dim)| match dim {
None => input_arrays[idx].shape()[jdx],
Some(d) => *d as usize,
})
.collect();
tmp.push(v);
}
tmp
};
let memory_info_ref = &self.memory_info;
let output_tensor_extractors: Vec<OrtOwnedTensorExtractor<ndarray::IxDyn>> = output_shapes
.iter()
.map(|output_shape| {
OrtOwnedTensorExtractor::new(memory_info_ref, ndarray::IxDyn(output_shape))
})
.collect();
let mut output_tensor_extractors_ptrs: Vec<*mut sys::OrtValue> =
vec![std::ptr::null_mut(); output_tensor_extractors.len()];
// The C API expects pointers for the arrays (pointers to C-arrays)
let input_ort_tensors: Vec<OrtTensor<TIn, D>> = input_arrays
.into_iter()
.map(|input_array| OrtTensor::from_array(&self.memory_info, input_array))
.collect::<Result<Vec<OrtTensor<TIn, D>>>>()?;
let input_ort_values: Vec<*const sys::OrtValue> = input_ort_tensors
.iter()
.map(|input_array_ort| input_array_ort.c_ptr as *const sys::OrtValue)
.collect();
let run_options_ptr: *const sys::OrtRunOptions = std::ptr::null();
let status = unsafe {
g_ort().Run.unwrap()(
self.session_ptr,
run_options_ptr,
input_names_ptr.as_ptr(),
input_ort_values.as_ptr(),
input_ort_values.len() as u64, // C API expects a u64, not isize
output_names_ptr.as_ptr(),
output_names_ptr.len() as u64, // C API expects a u64, not isize
output_tensor_extractors_ptrs.as_mut_ptr(),
)
};
status_to_result(status).map_err(OrtError::Run)?;
let outputs: Result<Vec<OrtOwnedTensor<TOut, ndarray::Dim<ndarray::IxDynImpl>>>> =
output_tensor_extractors
.into_iter()
.zip(output_tensor_extractors_ptrs.into_iter())
.map(|(mut output_tensor_extractor, ptr)| {
output_tensor_extractor.tensor_ptr = ptr;
output_tensor_extractor.extract::<TOut>()
})
.collect();
// Reconvert to CString so drop impl is called and memory is freed
let _: Vec<CString> = input_names_ptr
.into_iter()
.map(|p| {
assert_ne!(p, std::ptr::null());
unsafe { CString::from_raw(p as *mut i8) }
})
.collect();
outputs
}
// pub fn tensor_from_array<'a, 'b, T, D>(&'a self, array: Array<T, D>) -> Tensor<'b, T, D>
// where
// 'a: 'b, // 'a outlives 'b
// {
// Tensor::from_array(self, array)
// }
fn validate_input_shapes<TIn, D>(&mut self, input_arrays: &[Array<TIn, D>]) -> Result<()>
where
TIn: TypeToTensorElementDataType + Debug + Clone,
D: ndarray::Dimension,
{
// ******************************************************************
// FIXME: Properly handle errors here
// Make sure all dimensions match (except dynamic ones)
// Verify length of inputs
if input_arrays.len() != self.inputs.len() {
error!(
"Non-matching number of inputs: {} (inference) vs {} (model)",
input_arrays.len(),
self.inputs.len()
);
return Err(OrtError::NonMatchingDimensions(
NonMatchingDimensionsError::InputsCount {
inference_input_count: 0,
model_input_count: 0,
inference_input: input_arrays
.iter()
.map(|input_array| input_array.shape().to_vec())
.collect(),
model_input: self
.inputs
.iter()
.map(|input| input.dimensions.clone())
.collect(),
},
));
}
// Verify length of each individual inputs
let inputs_different_length = input_arrays
.iter()
.zip(self.inputs.iter())
.any(|(l, r)| l.shape().len() != r.dimensions.len());
if inputs_different_length {
error!(
"Different input lengths: {:?} vs {:?}",
self.inputs, input_arrays
);
panic!(
"Different input lengths: {:?} vs {:?}",
self.inputs, input_arrays
);
}
// Verify shape of each individual inputs
let inputs_different_shape = input_arrays.iter().zip(self.inputs.iter()).any(|(l, r)| {
let l_shape = l.shape();
let r_shape = r.dimensions.as_slice();
l_shape.iter().zip(r_shape.iter()).any(|(l2, r2)| match r2 {
Some(r3) => *r3 as usize != *l2,
None => false, // None means dynamic size; in that case shape always match
})
});
if inputs_different_shape {
error!(
"Different input lengths: {:?} vs {:?}",
self.inputs, input_arrays
);
panic!(
"Different input lengths: {:?} vs {:?}",
self.inputs, input_arrays
);
}
Ok(())
}
}
/// This module contains dangerous functions working on raw pointers.
/// Those functions are only to be used from inside the
/// `SessionBuilder::with_model_from_file_monomorphized()` method.
mod dangerous {
use super::*;
pub(super) fn extract_inputs_count(session_ptr: *mut sys::OrtSession) -> Result<u64> {
let f = g_ort().SessionGetInputCount.unwrap();
extract_io_count(f, session_ptr)
}
pub(super) fn extract_outputs_count(session_ptr: *mut sys::OrtSession) -> Result<u64> {
let f = g_ort().SessionGetOutputCount.unwrap();
extract_io_count(f, session_ptr)
}
fn extract_io_count(
f: unsafe extern "C" fn(*const sys::OrtSession, *mut u64) -> *mut sys::OrtStatus,
session_ptr: *mut sys::OrtSession,
) -> Result<u64> {
let mut num_nodes: u64 = 0;
let status = unsafe { f(session_ptr, &mut num_nodes) };
status_to_result(status).map_err(OrtError::InOutCount)?;
assert_eq!(status, std::ptr::null_mut());
assert_ne!(num_nodes, 0);
Ok(num_nodes)
}
fn extract_input_name(
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
i: u64,
) -> Result<String> {
let f = g_ort().SessionGetInputName.unwrap();
extract_io_name(f, session_ptr, allocator_ptr, i)
}
fn extract_output_name(
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
i: u64,
) -> Result<String> {
let f = g_ort().SessionGetOutputName.unwrap();
extract_io_name(f, session_ptr, allocator_ptr, i)
}
fn extract_io_name(
f: unsafe extern "C" fn(
*const sys::OrtSession,
u64,
*mut sys::OrtAllocator,
*mut *mut i8,
) -> *mut sys::OrtStatus,
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
i: u64,
) -> Result<String> {
let mut name_bytes: *mut i8 = std::ptr::null_mut();
let status = unsafe { f(session_ptr, i, allocator_ptr, &mut name_bytes) };
status_to_result(status).map_err(OrtError::InputName)?;
assert_ne!(name_bytes, std::ptr::null_mut());
// FIXME: Is it safe to keep ownership of the memory?
let name = char_p_to_string(name_bytes)?;
Ok(name)
}
pub(super) fn extract_input(
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
i: u64,
) -> Result<Input> {
let input_name = extract_input_name(session_ptr, allocator_ptr, i)?;
let f = g_ort().SessionGetInputTypeInfo.unwrap();
let (input_type, dimensions) = extract_io(f, session_ptr, i)?;
Ok(Input {
name: input_name,
input_type,
dimensions,
})
}
pub(super) fn extract_output(
session_ptr: *mut sys::OrtSession,
allocator_ptr: *mut sys::OrtAllocator,
i: u64,
) -> Result<Output> {
let output_name = extract_output_name(session_ptr, allocator_ptr, i)?;
let f = g_ort().SessionGetOutputTypeInfo.unwrap();
let (output_type, dimensions) = extract_io(f, session_ptr, i)?;
Ok(Output {
name: output_name,
output_type,
dimensions,
})
}
fn extract_io(
f: unsafe extern "C" fn(
*const sys::OrtSession,
u64,
*mut *mut sys::OrtTypeInfo,
) -> *mut sys::OrtStatus,
session_ptr: *mut sys::OrtSession,
i: u64,
) -> Result<(TensorElementDataType, Vec<Option<u32>>)> {
let mut typeinfo_ptr: *mut sys::OrtTypeInfo = std::ptr::null_mut();
let status = unsafe { f(session_ptr, i as u64, &mut typeinfo_ptr) };
status_to_result(status).map_err(OrtError::GetTypeInfo)?;
assert_ne!(typeinfo_ptr, std::ptr::null_mut());
let mut tensor_info_ptr: *const sys::OrtTensorTypeAndShapeInfo = std::ptr::null_mut();
let status = unsafe {
g_ort().CastTypeInfoToTensorInfo.unwrap()(typeinfo_ptr, &mut tensor_info_ptr)
};
status_to_result(status).map_err(OrtError::CastTypeInfoToTensorInfo)?;
assert_ne!(tensor_info_ptr, std::ptr::null_mut());
let mut type_sys = sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
let status =
unsafe { g_ort().GetTensorElementType.unwrap()(tensor_info_ptr, &mut type_sys) };
status_to_result(status).map_err(OrtError::TensorElementType)?;
assert_ne!(
type_sys,
sys::ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED
);
// This transmute should be safe since its value is read from GetTensorElementType which we must trust.
let io_type: TensorElementDataType = unsafe { std::mem::transmute(type_sys) };
// info!("{} : type={}", i, type_);
// print input shapes/dims
let mut num_dims = 0;
let status = unsafe { g_ort().GetDimensionsCount.unwrap()(tensor_info_ptr, &mut num_dims) };
status_to_result(status).map_err(OrtError::GetDimensionsCount)?;
assert_ne!(num_dims, 0);
// info!("{} : num_dims={}", i, num_dims);
let mut node_dims: Vec<i64> = vec![0; num_dims as usize];
let status = unsafe {
g_ort().GetDimensions.unwrap()(
tensor_info_ptr,
node_dims.as_mut_ptr(), // FIXME: UB?
num_dims,
)
};
status_to_result(status).map_err(OrtError::GetDimensions)?;
// for j in 0..num_dims {
// info!("{} : dim {}={}", i, j, node_dims[j as usize]);
// }
unsafe { g_ort().ReleaseTypeInfo.unwrap()(typeinfo_ptr) };
Ok((
io_type,
node_dims
.into_iter()
.map(|d| if d == -1 { None } else { Some(d as u32) })
.collect(),
))
}
}