-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathprogram9_RNN.py
1451 lines (963 loc) · 39.5 KB
/
program9_RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# we use RNNs
# we have many architectures of RNNs, one-to-one, one-to-many, many-to-one, many-to-many
# for time, we use the many-to-one RNN
# we have time, s_{t-1} s_t s_{t+1}
# to understand RNNs, we unroll them
# we unroll and unfold the RNN
# we have x=input, x \in R^{n \times m}, a=hidden recurrent state, a \in R^{p \times m}
# U=weight from x to a, U \in R^{p \times m}
# W=weight from a_{t-1} to a_t, W \in R^{p \times p}
# V=weight from a to h, h=output, V in R^{k \times p}
# PyTorch
import torch
# use numpy
import numpy as np
# use PyTorch
from torch.autograd import Variable
# use matplotlib
import matplotlib.pyplot as plt
# data pre-processing
# we do data pre-processing
#with open('lyrics')
#df = pd.read_csv('/Users/dionelisnikolaos/Downloads/creditcard.csv')
with open('/Users/dionelisnikolaos/Downloads/lyrics.rtf', 'r') as file:
rawtxt = file.read()
# we use lower-case letters
rawtxt = rawtxt.lower()
# we find the unique characters
def create_map(rawtxt):
letters = list(set(rawtxt))
lettermap = dict(enumerate(letters))
return lettermap
num_to_let = create_map(rawtxt)
# we print the mapping
#print(num_to_let)
# we define the inverse mapping
let_to_num = dict(zip(num_to_let.values(), num_to_let.keys()))
def maparray(txt, mapdict):
# we now use a list
txt = list(txt)
for k, letter in enumerate(txt):
txt[k] = mapdict[letter]
txt = np.array(txt)
return txt
X = maparray(rawtxt, let_to_num)
#print(X)
# we use roll, we shift our values by one
Y = np.roll(X, -1, axis=0)
# we use LongTensor, we use discrete values, we use integers
X = torch.LongTensor(X)
# we use LongTensor, we use discrete values, we use integers
Y = torch.LongTensor(Y)
# we now finish pre-processing
def random_chunk(chunk_size):
k = np.random.randint(0, len(X)-chunk_size)
return X[k:k+chunk_size], Y[k:k+chunk_size]
print(random_chunk(5))
# we define the unique characters
nchars = len(num_to_let)
# we now define the RNN model
class rnn(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.encoder = torch.nn.Embedding(input_size, hidden_size)
self.rnn = torch.nn.RNN(hidden_size, hidden_size, n_layers,
batch_first=True)
self.decoder = torch.nn.Linear(hidden_size, output_size)
def forward(self, x, hidden):
x = self.encoder(x.view(1, -1))
# we use view, we re-shape the Tensor
output, hidden = self.rnn(x.view(1, 1, -1), hidden)
output = self.decoder(output.view(1, -1))
# the tanh activation function is used
return output, hidden
def init_hidden(self):
return Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
# we define the hyper-parameters
lr = 0.003
# epochs
no_epochs = 10
chunk_size = 100
myrnn = rnn(nchars, 100, nchars, 1)
# we use the CE cost function
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(myrnn.parameters(), lr=lr)
# we now plot the cost
costs = []
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlabel('Epoch')
ax.set_ylabel('Cost')
plt.show()
for epoch in range(no_epochs):
totcost = 0
generated = ''
# we use rounded division
for _ in range(len(X) // chunk_size):
h = myrnn.init_hidden()
cost = 0
x, y = random_chunk(chunk_size)
x, y = Variable(x), Variable(y)
for i in range(chunk_size):
# we use the k-th chunk
out, h = myrnn.forward(x[i], h)
_, outl = out.data.max(1)
#letter = num_to_let(outl[0])
letter = num_to_let[outl[0]]
generated += letter
cost += criterion(out, y[i])
optimizer.zero_grad()
cost.backward()
optimizer.step()
totcost += cost
totcost /= len(X)//chunk_size
costs.append(totcost.data[0])
ax.plot(costs, 'b')
fig.canvas.draw()
# we pause the plot so as to see the graph
plt.pause(0.001)
print('Epoch', epoch, " Avg Cost/chunk: ", totcost)
print('Generated text: ', generated[0:750], '\n')
from __future__ import absolute_import
from __future__ import print_function
#import numpy
import numpy as np
# https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# use: https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# we use: https://skymind.ai/wiki/open-datasets
# use: http://people.csail.mit.edu/yalesong/cvpr12/
from keras.datasets import mnist
((trainX, trainY), (testX, testY)) = mnist.load_data()
print(trainX.shape)
print(testX.shape)
from keras.datasets import fashion_mnist
((trainX2, trainY2), (testX2, testY2)) = fashion_mnist.load_data()
print(trainX2.shape)
print(testX2.shape)
print('')
from keras.datasets import imdb
((trainX3, trainY3), (testX3, testY3)) = imdb.load_data()
print(trainX3.shape)
print(testX3.shape)
print('')
from keras.datasets import cifar10
((trainX4, trainY4), (testX4, testY4)) = cifar10.load_data()
print(trainX4.shape)
print(testX4.shape)
from keras.datasets import cifar100
((trainX5, trainY5), (testX5, testY5)) = cifar100.load_data()
print(trainX5.shape)
print(testX5.shape)
print('')
from keras.datasets import reuters
((trainX6, trainY6), (testX6, testY6)) = reuters.load_data()
print(trainX6.shape)
print(testX6.shape)
from keras.datasets import boston_housing
((trainX7, trainY7), (testX7, testY7)) = boston_housing.load_data()
print(trainX7.shape)
print(testX7.shape)
print('')
# use: https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
# we use: https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
#from sklearn import datasets
#from sklearn import datasets2
import sklearn
#from sklearn.datasets2 import kddcup99
#import sklearn.datasets2
#import sklearn.datasets
#dataset_boston = datasets.load_boston()
#dataset_boston = datasets2.load_boston()
#dataset_kddcup99 = datasets2.load_digits()
# use .io
import scipy.io
#mat2 = scipy.io.loadmat('NATOPS6.mat')
mat2 = scipy.io.loadmat('/Users/dionelisnikolaos/Downloads/NATOPS6.mat')
# NATOPS6.mat
print(mat2)
#mat = scipy.io.loadmat('thyroid.mat')
mat = scipy.io.loadmat('/Users/dionelisnikolaos/Downloads/thyroid.mat')
# thyroid.mat
print(mat)
# usenet_recurrent3.3.data
# we use: usenet_recurrent3.3.data
# use pandas
import pandas as pd
# numpy
import numpy
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, zero_one_loss
from sklearn.model_selection import train_test_split
data_dir = "/Users/dionelisnikolaos/Downloads/"
raw_data_filename = data_dir + "usenet_recurrent3.3.data"
#raw_data_filename = "/Users/dionelisnikolaos/Downloads/usenet_recurrent3.3.data"
# raw_data_filename = "/Users/dionelisnikolaos/Downloads/usenet_recurrent3.3.data"
# use: raw_data_filename = "/Users/dionelisnikolaos/Downloads/usenet_recurrent3.3.data"
print ("Loading raw data")
raw_data = pd.read_csv(raw_data_filename, header=None)
print ("Transforming data")
# Categorize columns: "protocol", "service", "flag", "attack_type"
raw_data[1], protocols= pd.factorize(raw_data[1])
raw_data[2], services = pd.factorize(raw_data[2])
raw_data[3], flags = pd.factorize(raw_data[3])
raw_data[41], attacks = pd.factorize(raw_data[41])
# separate features (columns 1..40) and label (column 41)
features= raw_data.iloc[:,:raw_data.shape[1]-1]
labels= raw_data.iloc[:,raw_data.shape[1]-1:]
# convert them into numpy arrays
#features= numpy.array(features)
#labels= numpy.array(labels).ravel() # this becomes an 'horizontal' array
labels= labels.values.ravel() # this becomes a 'horizontal' array
# Separate data in train set and test set
df= pd.DataFrame(features)
# create training and testing vars
# Note: train_size + test_size < 1.0 means we are subsampling
# Use small numbers for slow classifiers, as KNN, Radius, SVC,...
X_train, X_test, y_train, y_test = train_test_split(df, labels, train_size=0.8, test_size=0.2)
print('')
print ("X_train, y_train:", X_train.shape, y_train.shape)
print ("X_test, y_test:", X_test.shape, y_test.shape)
print('')
print(X_train.shape)
print(y_train.shape)
print('')
print(X_train.shape)
print(X_test.shape)
print('')
import matplotlib.pyplot as plt
# we use: https://skymind.ai/wiki/open-datasets
# use: http://people.csail.mit.edu/yalesong/cvpr12/
from csv import reader
# Load a CSV file
def load_csv(filename):
file = open(filename, "r")
lines = reader(file)
dataset = list(lines)
return dataset
dataset = load_csv('/Users/dionelisnikolaos/Downloads/ann-train.data.txt')
# Load dataset
filename = '/Users/dionelisnikolaos/Downloads/ann-train.data.txt'
#print('Loaded data file {0} with {1} rows and {2} columns').format(filename, len(dataset), len(dataset[0]))
#file = open(filename, 'r')
#for line in file:
# print (line,)
text_file = open(filename, "r")
lines = text_file.read().split(' ')
#print(lines)
list_of_lists = []
with open(filename) as f:
for line in f:
inner_list = [elt.strip() for elt in line.split(' ')]
# in alternative, if you need to use the file content as numbers
# inner_list = [int(elt.strip()) for elt in line.split(',')]
list_of_lists.append(inner_list)
print(list_of_lists)
import pandas as pd
import numpy
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, zero_one_loss
from sklearn.model_selection import train_test_split
#data_dir="./datasets/KDD-CUP-99/"
#data_dir="./"
data_dir = "/Users/dionelisnikolaos/Downloads/"
raw_data_filename = data_dir + "kddcup.data"
#raw_data_filename = "/Users/dionelisnikolaos/Downloads/kddcup.data"
print ("Loading raw data")
raw_data = pd.read_csv(raw_data_filename, header=None)
print ("Transforming data")
# Categorize columns: "protocol", "service", "flag", "attack_type"
raw_data[1], protocols= pd.factorize(raw_data[1])
raw_data[2], services = pd.factorize(raw_data[2])
raw_data[3], flags = pd.factorize(raw_data[3])
raw_data[41], attacks = pd.factorize(raw_data[41])
# separate features (columns 1..40) and label (column 41)
features= raw_data.iloc[:,:raw_data.shape[1]-1]
labels= raw_data.iloc[:,raw_data.shape[1]-1:]
# convert them into numpy arrays
#features= numpy.array(features)
#labels= numpy.array(labels).ravel() # this becomes an 'horizontal' array
labels= labels.values.ravel() # this becomes a 'horizontal' array
# Separate data in train set and test set
df= pd.DataFrame(features)
# create training and testing vars
# Note: train_size + test_size < 1.0 means we are subsampling
# Use small numbers for slow classifiers, as KNN, Radius, SVC,...
X_train, X_test, y_train, y_test = train_test_split(df, labels, train_size=0.8, test_size=0.2)
print('')
print ("X_train, y_train:", X_train.shape, y_train.shape)
print ("X_test, y_test:", X_test.shape, y_test.shape)
print('')
print(X_train.shape)
print(y_train.shape)
print('')
print(X_train.shape)
print(X_test.shape)
print('')
# Training, choose model by commenting/uncommenting clf=
print ("Training model")
clf= RandomForestClassifier(n_jobs=-1, random_state=3, n_estimators=102)#, max_features=0.8, min_samples_leaf=3, n_estimators=500, min_samples_split=3, random_state=10, verbose=1)
#clf = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, presort=False)
trained_model= clf.fit(X_train, y_train)
print ("Score: ", trained_model.score(X_train, y_train))
# Predicting
print ("Predicting")
y_pred = clf.predict(X_test)
print ("Computing performance metrics")
results = confusion_matrix(y_test, y_pred)
error = zero_one_loss(y_test, y_pred)
print ("Confusion matrix:\n", results)
print ("Error: ", error)
# KDD99 Dataset
# use: https://github.com/ghuecas/kdd99ml
# https://github.com/ghuecas/kdd99ml
# we use: https://github.com/ghuecas/kdd99ml
import json
import datetime
import os
import numpy as np
# make keras deterministic
#np.random.seed(42)
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.callbacks import CallbackList, ModelCheckpoint
from keras.regularizers import l2
import os
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
#from keras.applications.inception_v3 import InceptionV3
#base_model = InceptionV3(weights='imagenet', include_top=True)
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
num_train_images = 1500
num_test_images = 100
#-------------------
# organize imports
#-------------------
import numpy as np
import os
import h5py
import glob
import cv2
# we use opencv-python
import cv2
# we use keras
from keras.preprocessing import image
#------------------------
# dataset pre-processing
#------------------------
#train_path = "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\train"
#test_path = "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test"
#train_path = "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\train"
train_path = "/Users/dionelisnikolaos/Downloads/dataset/train"
#test_path = "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test"
test_path = "/Users/dionelisnikolaos/Downloads/dataset/test"
train_labels = os.listdir(train_path)
test_labels = os.listdir(test_path)
# tunable parameters
image_size = (64, 64)
num_train_images = 1500
num_test_images = 100
num_channels = 3
# train_x dimension = {(64*64*3), 1500}
# train_y dimension = {1, 1500}
# test_x dimension = {(64*64*3), 100}
# test_y dimension = {1, 100}
train_x = np.zeros(((image_size[0]*image_size[1]*num_channels), num_train_images))
train_y = np.zeros((1, num_train_images))
test_x = np.zeros(((image_size[0]*image_size[1]*num_channels), num_test_images))
test_y = np.zeros((1, num_test_images))
#----------------
# TRAIN dataset
#----------------
count = 0
num_label = 0
for i, label in enumerate(train_labels):
cur_path = train_path + "\\" + label
for image_path in glob.glob(cur_path + "/*.jpg"):
img = image.load_img(image_path, target_size=image_size)
x = image.img_to_array(img)
x = x.flatten()
x = np.expand_dims(x, axis=0)
train_x[:,count] = x
train_y[:,count] = num_label
count += 1
num_label += 1
#--------------
# TEST dataset
#--------------
count = 0
num_label = 0
for i, label in enumerate(test_labels):
cur_path = test_path + "\\" + label
for image_path in glob.glob(cur_path + "/*.jpg"):
img = image.load_img(image_path, target_size=image_size)
x = image.img_to_array(img)
x = x.flatten()
x = np.expand_dims(x, axis=0)
test_x[:,count] = x
test_y[:,count] = num_label
count += 1
num_label += 1
#------------------
# standardization
#------------------
train_x = train_x/255.
test_x = test_x/255.
print ("train_labels : " + str(train_labels))
print ("train_x shape: " + str(train_x.shape))
print ("train_y shape: " + str(train_y.shape))
print ("test_x shape : " + str(test_x.shape))
print ("test_y shape : " + str(test_y.shape))
print('')
# train_x and test_x
print(train_x.shape)
print(test_x.shape)
# https://gogul09.github.io/software/neural-nets-logistic-regression
# use: https://gogul09.github.io/software/neural-nets-logistic-regression
#-----------------
# save using h5py
#-----------------
h5_train = h5py.File("train_x.h5", 'w')
h5_train.create_dataset("data_train", data=np.array(train_x))
h5_train.close()
h5_test = h5py.File("test_x.h5", 'w')
h5_test.create_dataset("data_test", data=np.array(test_x))
h5_test.close()
def sigmoid(z):
return (1/(1+np.exp(-z)))
def init_params(dimension):
w = np.zeros((dimension, 1))
b = 0
return w, b
def propagate(w, b, X, Y):
# num of training samples
m = X.shape[1]
# forward pass
A = sigmoid(np.dot(w.T,X) + b)
cost = (-1/m)*(np.sum(np.multiply(Y,np.log(A)) + np.multiply((1-Y),np.log(1-A))))
# back propagation
dw = (1/m)*(np.dot(X, (A-Y).T))
db = (1/m)*(np.sum(A-Y))
cost = np.squeeze(cost)
# gradient dictionary
grads = {"dw": dw, "db": db}
return grads, cost
def optimize(w, b, X, Y, epochs, lr):
costs = []
for i in range(epochs):
# calculate gradients
grads, cost = propagate(w, b, X, Y)
# get gradients
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - (lr*dw)
b = b - (lr*db)
if i % 100 == 0:
costs.append(cost)
print ("cost after %i epochs: %f" %(i, cost))
# param dict
params = {"w": w, "b": b}
# gradient dict
grads = {"dw": dw, "db": db}
return params, grads, costs
def predict(w, b, X):
m = X.shape[1]
Y_predict = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0, i] <= 0.5:
Y_predict[0, i] = 0
else:
Y_predict[0,i] = 1
return Y_predict
def predict_image(w, b, X):
Y_predict = None
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0, i] <= 0.5:
Y_predict = 0
else:
Y_predict = 1
return Y_predict
def model(X_train, Y_train, X_test, Y_test, epochs, lr):
w, b = init_params(X_train.shape[0])
params, grads, costs = optimize(w, b, X_train, Y_train, epochs, lr)
w = params["w"]
b = params["b"]
Y_predict_train = predict(w, b, X_train)
Y_predict_test = predict(w, b, X_test)
print ("train_accuracy: {} %".format(100-np.mean(np.abs(Y_predict_train - Y_train)) * 100))
print ("test_accuracy : {} %".format(100-np.mean(np.abs(Y_predict_test - Y_test)) * 100))
log_reg_model = {"costs": costs,
"Y_predict_test": Y_predict_test,
"Y_predict_train" : Y_predict_train,
"w" : w,
"b" : b,
"learning_rate" : lr,
"epochs": epochs}
return log_reg_model
# we use: https://gogul09.github.io/software/neural-nets-logistic-regression
#epochs = 100
epochs = 10
# lr, learning rate, step size
lr = 0.0003
# activate the logistic regression model
myModel = model(train_x, train_y, test_x, test_y, epochs, lr)
#test_img_paths = ["G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test\\airplane\\image_0723.jpg",
# "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test\\airplane\\image_0713.jpg",
# "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test\\bike\\image_0782.jpg",
# "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test\\bike\\image_0799.jpg",
# "G:\\workspace\\machine-intelligence\\deep-learning\\logistic-regression\\dataset\\test\\bike\\test_1.jpg"]
# https://gogul09.github.io/software/neural-nets-logistic-regression
# use: https://gogul09.github.io/software/neural-nets-logistic-regression
test_img_paths = ["/Users/dionelisnikolaos/Downloads/dataset/test/airplane/image_0763.jpg",
"/Users/dionelisnikolaos/Downloads/dataset/test/airplane/image_0753.jpg",
"/Users/dionelisnikolaos/Downloads/dataset/test/bike/image_0782.jpg",
"/Users/dionelisnikolaos/Downloads/dataset/test/bike/image_0799.jpg",
"/Users/dionelisnikolaos/Downloads/dataset/test/bike/image_0751.jpg"]
for test_img_path in test_img_paths:
img_to_show = cv2.imread(test_img_path, -1)
img = image.load_img(test_img_path, target_size=image_size)
x = image.img_to_array(img)
x = x.flatten()
x = np.expand_dims(x, axis=1)
predict = predict_image(myModel["w"], myModel["b"], x)
predict_label = ""
if predict == 0:
predict_label = "airplane"
else:
predict_label = "bike"
# display the test image and the predicted label
cv2.putText(img_to_show, predict_label, (30,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
cv2.imshow("test_image", img_to_show)
key = cv2.waitKey(0) & 0xFF
if (key == 27):
cv2.destroyAllWindows()
import keras
import keras.datasets
# use datasets
import keras.datasets
from keras.datasets import cifar10
from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
from keras.datasets import cifar100
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
from keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
from keras.datasets import fashion_mnist
((trainX, trainY), (testX, testY)) = fashion_mnist.load_data()
# set the matplotlib backend so figures can be saved in the background
import matplotlib
#matplotlib.use("Agg")
# import the necessary packages
from sklearn.metrics import classification_report
from keras.optimizers import SGD
# use Fashion-MNIST
from keras.datasets import fashion_mnist
from keras.utils import np_utils
from keras import backend as K
#from imutils import build_montages
import numpy as np
# use matplotlib
import matplotlib.pyplot as plt
#image_index = 7777
image_index = 777
# ((trainX, trainY), (testX, testY))
# (x_train, y_train), (x_test, y_test)
y_train = trainY
x_train = trainX
# ((trainX, trainY), (testX, testY))
# (x_train, y_train), (x_test, y_test)
y_test = testY
x_test = testX
print(trainX.shape)
print(trainY.shape)
print(testX.shape)
print(testY.shape)
print(y_train[image_index].shape)
print(x_train[image_index].shape)
print(y_train[image_index])
plt.imshow(x_train[image_index], cmap='Greys')
#plt.imshow(x_train[image_index])
#plt.pause(5)
plt.pause(2)
#x_train.shape
print(x_train.shape)
# Reshaping the array to 4-dims so that it can work with the Keras API
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# we define the input shape
input_shape = (28, 28, 1)
# import the necessary packages
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
# import the necessary packages
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
# import the necessary packages
from keras.layers.core import Activation
from keras.layers.core import Flatten
# use dropout
from keras.layers.core import Dropout
from keras.layers.core import Dense
from keras import backend as K
class MiniVGGNet:
@staticmethod
def build(width, height, depth, classes):
# initialize the model along with the input shape to be
# "channels last" and the channels dimension itself
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
# if we are using "channels first", update the input shape
# and channels dimension
if K.image_data_format() == "channels_first":
inputShape = (depth, height, width)
chanDim = 1
# first CONV => RELU => CONV => RELU => POOL layer set
model.add(Conv2D(32, (3, 3), padding="same",
input_shape=inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(32, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# second CONV => RELU => CONV => RELU => POOL layer set
model.add(Conv2D(64, (3, 3), padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(64, (3, 3), padding="same"))