forked from SteveMacenski/jetson_nano_detection_and_tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjetson_live_object_detection.py
91 lines (73 loc) · 2.89 KB
/
jetson_live_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tensorflow as tf
import numpy as np
import cv2
import tensorflow.contrib.tensorrt as trt
import time
import sys
import gi
gi.require_version('Gst', '1.0')
from gi.repository import Gst
from src.mipi_camera import MipiCamera
from src.object_detector import ObjectDetection
""" Jetson Live Object Detector """
class JetsonLiveObjectDetection():
def __init__(self, model, debug=False, fps = 10.):
self.debug = debug
self.camera = MipiCamera(300, 300)
self.model = model
self.rate = float(1. / fps)
self.detector = ObjectDetection('./data/' + self.model)
def _visualizeDetections(self, img, scores, boxes, classes, num_detections):
cols = img.shape[1]
rows = img.shape[0]
detections = []
for i in range(num_detections):
bbox = [float(p) for p in boxes[i]]
score = float(scores[i])
classId = int(classes[i])
if score > 0.5:
x = int(bbox[1] * cols)
y = int(bbox[0] * rows)
right = int(bbox[3] * cols)
bottom = int(bbox[2] * rows)
thickness = int(4 * score)
cv2.rectangle(img, (x, y), (right, bottom), (125,255, 21), thickness=thickness)
detections.append(self.detector.labels[str(classId)])
print ("Debug: Found objects: " + str(' '.join(detections)) + ".")
cv2.imshow('Jetson Live Detection', img)
def start(self):
print ("Starting Live object detection, may take a few minutes to initialize...")
self.camera.startStreaming()
self.detector.initializeSession()
if not self.camera.isOpened():
print ("Camera has failed to open")
exit(-1)
elif self.debug:
cv2.namedWindow("Jetson Live Detection", cv2.WINDOW_AUTOSIZE)
while True:
curr_time = time.time()
img = self.camera.getFrame()
scores, boxes, classes, num_detections = self.detector.detect(img)
if self.debug:
self._visualizeDetections(img, scores, boxes, classes, num_detections)
print ("Debug: Running at: " + str(1.0/(time.time() - curr_time)) + " Hz.")
if cv2.waitKey(1) == ord('q'):
break
# throttle to rate
capture_duration = time.time() - curr_time
sleep_time = self.rate - capture_duration
if sleep_time > 0:
time.sleep(sleep_time)
cv2.destroyAllWindows()
self.camera.__del__()
self.detector.__del__()
print ("Exiting...")
return
if __name__ == "__main__":
debug = True
model = 'ssd_mobilenet_v1_coco_trt_graph.pb'
if len(sys.argv) > 2:
debug = sys.argv[2]
model = sys.argv[1]
live_detection = JetsonLiveObjectDetection(model=model, debug=debug)
live_detection.start()