-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbclustering.py
52 lines (40 loc) · 1.92 KB
/
bclustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import sys
from sentence_transformers import SentenceTransformer
from sklearn.cluster import DBSCAN
def main(csv_path, title_col, description_col):
# Load the data from CSV
df = pd.read_csv(csv_path)
# Check if the specified columns exist in the DataFrame
if title_col not in df.columns or description_col not in df.columns:
print(f"Error: Columns '{title_col}' and/or '{description_col}' not found in the CSV file.")
sys.exit(1)
# Concatenate 'title' and 'description' with tags
df['combined_text'] = '<title> ' + df[title_col].fillna('') + ' </title> <description> ' + df[description_col].fillna('') + ' </description>'
# Load the pre-trained SBERT model
model = SentenceTransformer('all-MiniLM-L12-v2')
# Generate embeddings for the 'combined_text' column
embeddings = model.encode(df['combined_text'].tolist(), convert_to_tensor=False)
# Clustering using DBSCAN
dbscan = DBSCAN(eps=0.4, min_samples=2, metric='cosine')
labels = dbscan.fit_predict(embeddings)
# Add the cluster labels to the DataFrame
df['cluster_label'] = labels
# Print the number of unique clusters
num_clusters = len(set(labels)) - (1 if -1 in labels else 0)
print(f"Number of clusters found: {num_clusters}")
# Save the DataFrame with cluster labels to a new CSV
output_path = csv_path.replace('.csv', '_clustered.csv')
df.to_csv(output_path, index=False)
print(f"Clustered data saved to: {output_path}")
if __name__ == "__main__":
# Make sure the script is called with the correct number of arguments
if len(sys.argv) != 4:
print("Usage: python script.py <path_to_csv> <title_column_name> <description_column_name>")
sys.exit(1)
# Get arguments from command line
csv_path = sys.argv[1]
title_col = sys.argv[2]
description_col = sys.argv[3]
# Run the main function
main(csv_path, title_col, description_col)