-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathprocess_data.py
executable file
·788 lines (636 loc) · 28.5 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
#!/usr/bin/env python
"""Processes a video or image sequence to a nerfstudio compatible dataset."""
import json
import shutil
import subprocess
import sys
from contextlib import nullcontext
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
from typing import List, Optional, Tuple, Union
import appdirs
import numpy as np
import requests
import tyro
from rich.console import Console
from rich.progress import track
from typing_extensions import Annotated, Literal
from nerfstudio.utils import colmap_utils, install_checks
CONSOLE = Console(width=120)
class CameraModel(Enum):
"""Enum for camera types."""
OPENCV = "OPENCV"
OPENCV_FISHEYE = "OPENCV_FISHEYE"
CAMERA_MODELS = {
"perspective": CameraModel.OPENCV,
"fisheye": CameraModel.OPENCV_FISHEYE,
}
def status(msg: str, spinner: str = "bouncingBall", verbose: bool = False):
"""A context manager that does nothing is verbose is True. Otherwise it hides logs under a message.
Args:
msg: The message to log.
spinner: The spinner to use.
verbose: If True, print all logs, else hide them.
"""
if verbose:
return nullcontext()
return CONSOLE.status(msg, spinner=spinner)
def get_colmap_version(default_version=3.8) -> float:
"""Returns the version of COLMAP.
This code assumes that colmap returns a version string of the form
"COLMAP 3.8 ..." which may not be true for all versions of COLMAP.
Args:
default_version: Default version to return if COLMAP version can't be determined.
Returns:
The version of COLMAP.
"""
output = run_command("colmap", verbose=False)
assert output is not None
for line in output.split("\n"):
if line.startswith("COLMAP"):
return float(line.split(" ")[1])
CONSOLE.print(f"[bold red]Could not find COLMAP version. Using default {default_version}")
return default_version
def get_vocab_tree() -> Path:
"""Return path to vocab tree. Downloads vocab tree if it doesn't exist.
Returns:
The path to the vocab tree.
"""
vocab_tree_filename = Path(appdirs.user_data_dir("nerfstudio")) / "vocab_tree.fbow"
if not vocab_tree_filename.exists():
r = requests.get("https://demuc.de/colmap/vocab_tree_flickr100K_words32K.bin", stream=True)
vocab_tree_filename.parent.mkdir(parents=True, exist_ok=True)
with open(vocab_tree_filename, "wb") as f:
total_length = r.headers.get("content-length")
assert total_length is not None
for chunk in track(
r.iter_content(chunk_size=1024),
total=int(total_length) / 1024 + 1,
description="Downloading vocab tree...",
):
if chunk:
f.write(chunk)
f.flush()
return vocab_tree_filename
def run_command(cmd: str, verbose=False) -> Optional[str]:
"""Runs a command and returns the output.
Args:
cmd: Command to run.
verbose: If True, logs the output of the command.
Returns:
The output of the command if return_output is True, otherwise None.
"""
out = subprocess.run(cmd, capture_output=not verbose, shell=True, check=False)
if out.returncode != 0:
CONSOLE.rule("[bold red] :skull: :skull: :skull: ERROR :skull: :skull: :skull: ", style="red")
CONSOLE.print(f"[bold red]Error running command: {cmd}")
CONSOLE.rule(style="red")
CONSOLE.print(out.stderr.decode("utf-8"))
sys.exit(1)
if out.stdout is not None:
return out.stdout.decode("utf-8")
return out
def get_num_frames_in_video(video: Path) -> int:
"""Returns the number of frames in a video.
Args:
video: Path to a video.
Returns:
The number of frames in a video.
"""
cmd = f"ffprobe -v error -select_streams v:0 -count_packets \
-show_entries stream=nb_read_packets -of csv=p=0 {video}"
output = run_command(cmd)
assert output is not None
output = output.strip(" ,\t\n\r")
return int(output)
def convert_video_to_images(
video_path: Path, image_dir: Path, num_frames_target: int, verbose: bool = False
) -> List[str]:
"""Converts a video into a sequence of images.
Args:
video_path: Path to the video.
output_dir: Path to the output directory.
num_frames_target: Number of frames to extract.
verbose: If True, logs the output of the command.
Returns:
A summary of the conversion.
"""
with status(msg="Converting video to images...", spinner="bouncingBall", verbose=verbose):
# delete existing images in folder
for img in image_dir.glob("*.png"):
if verbose:
CONSOLE.log(f"Deleting {img}")
img.unlink()
num_frames = get_num_frames_in_video(video_path)
if num_frames == 0:
CONSOLE.print(f"[bold red]Error: Video has no frames: {video_path}")
sys.exit(1)
print("Number of frames in video:", num_frames)
out_filename = image_dir / "frame_%05d.png"
ffmpeg_cmd = f"ffmpeg -i {video_path}"
spacing = num_frames // num_frames_target
if spacing > 1:
ffmpeg_cmd += f" -vf 'thumbnail={spacing},setpts=N/TB' -r 1"
else:
CONSOLE.print("[bold red]Can't satify requested number of frames. Extracting all frames.")
ffmpeg_cmd += f" {out_filename}"
run_command(ffmpeg_cmd, verbose=verbose)
summary_log = []
summary_log.append(f"Starting with {num_frames} video frames")
summary_log.append(f"We extracted {len(list(image_dir.glob('*.png')))} images")
CONSOLE.log("[bold green]:tada: Done converting video to images.")
return summary_log
def convert_insta360_to_images(
video_front: Path,
video_back: Path,
image_dir: Path,
num_frames_target: int,
crop_percentage: float = 0.7,
verbose: bool = False,
) -> List[str]:
"""Converts a video into a sequence of images.
Args:
video_front: Path to the front video.
video_back: Path to the back video.
output_dir: Path to the output directory.
num_frames_target: Number of frames to extract.
verbose: If True, logs the output of the command.
Returns:
A summary of the conversion.
"""
with status(msg="Converting video to images...", spinner="bouncingBall", verbose=verbose):
# delete existing images in folder
for img in image_dir.glob("*.png"):
if verbose:
CONSOLE.log(f"Deleting {img}")
img.unlink()
num_frames_front = get_num_frames_in_video(video_front)
num_frames_back = get_num_frames_in_video(video_back)
if num_frames_front == 0:
CONSOLE.print(f"[bold red]Error: Video has no frames: {video_front}")
sys.exit(1)
if num_frames_back == 0:
CONSOLE.print(f"[bold red]Error: Video has no frames: {video_front}")
sys.exit(1)
spacing = num_frames_front // (num_frames_target // 2)
vf_cmds = []
if spacing > 1:
vf_cmds = [f"thumbnail={spacing}", "setpts=N/TB"]
else:
CONSOLE.print("[bold red]Can't satify requested number of frames. Extracting all frames.")
vf_cmds.append(f"crop=iw*({crop_percentage}):ih*({crop_percentage})")
front_vf_cmds = vf_cmds + ["transpose=2"]
back_vf_cmds = vf_cmds + ["transpose=1"]
front_ffmpeg_cmd = (
f"ffmpeg -i {video_front} -vf '{','.join(front_vf_cmds)}' -r 1 {image_dir / 'frame_%05d.png'}"
)
back_ffmpeg_cmd = (
f"ffmpeg -i {video_back} -vf '{','.join(back_vf_cmds)}' -r 1 {image_dir / 'back_frame_%05d.png'}"
)
run_command(front_ffmpeg_cmd, verbose=verbose)
run_command(back_ffmpeg_cmd, verbose=verbose)
num_extracted_front_frames = len(list(image_dir.glob("frame*.png")))
for i, img in enumerate(image_dir.glob("back_frame_*.png")):
img.rename(image_dir / f"frame_{i+1+num_extracted_front_frames:05d}.png")
summary_log = []
summary_log.append(f"Starting with {num_frames_front + num_frames_back} video frames")
summary_log.append(f"We extracted {len(list(image_dir.glob('*.png')))} images")
CONSOLE.log("[bold green]:tada: Done converting insta360 to images.")
return summary_log
def copy_images(data: Path, image_dir: Path, verbose) -> int:
"""Copy images from a directory to a new directory.
Args:
data: Path to the directory of images.
image_dir: Path to the output directory.
verbose: If True, print extra logging.
Returns:
The number of images copied.
"""
with status(msg="[bold yellow]Copying images...", spinner="bouncingBall", verbose=verbose):
allowed_exts = [".jpg", ".jpeg", ".png", ".tif", ".tiff"]
image_paths = sorted([p for p in data.glob("[!.]*") if p.suffix.lower() in allowed_exts])
# Remove original directory only if we provide a proper image folder path
if image_dir.is_dir() and len(image_paths):
shutil.rmtree(image_dir, ignore_errors=True)
image_dir.mkdir(exist_ok=True, parents=True)
# Images should be 1-indexed for the rest of the pipeline.
for idx, image_path in enumerate(image_paths):
if verbose:
CONSOLE.log(f"Copying image {idx + 1} of {len(image_paths)}...")
shutil.copy(image_path, image_dir / f"frame_{idx + 1:05d}{image_path.suffix}")
num_frames = len(image_paths)
if num_frames == 0:
CONSOLE.log("[bold red]:skull: No usable images in the data folder.")
else:
CONSOLE.log("[bold green]:tada: Done copying images.")
return num_frames
def downscale_images(image_dir: Path, num_downscales: int, verbose: bool = False) -> str:
"""Downscales the images in the directory. Uses FFMPEG.
Assumes images are named frame_00001.png, frame_00002.png, etc.
Args:
image_dir: Path to the directory containing the images.
num_downscales: Number of times to downscale the images. Downscales by 2 each time.
verbose: If True, logs the output of the command.
Returns:
Summary of downscaling.
"""
if num_downscales == 0:
return "No downscaling performed."
with status(msg="[bold yellow]Downscaling images...", spinner="growVertical", verbose=verbose):
downscale_factors = [2**i for i in range(num_downscales + 1)[1:]]
for downscale_factor in downscale_factors:
assert downscale_factor > 1
assert isinstance(downscale_factor, int)
downscale_dir = image_dir.parent / f"images_{downscale_factor}"
downscale_dir.mkdir(parents=True, exist_ok=True)
file_type = image_dir.glob("frame_*").__next__().suffix
filename = f"frame_%05d{file_type}"
ffmpeg_cmd = [
f"ffmpeg -i {image_dir / filename} ",
f"-q:v 2 -vf scale=iw/{downscale_factor}:ih/{downscale_factor} ",
f"{downscale_dir / filename}",
]
ffmpeg_cmd = " ".join(ffmpeg_cmd)
run_command(ffmpeg_cmd, verbose=verbose)
CONSOLE.log("[bold green]:tada: Done downscaling images.")
downscale_text = [f"[bold blue]{2**(i+1)}x[/bold blue]" for i in range(num_downscales)]
downscale_text = ", ".join(downscale_text[:-1]) + " and " + downscale_text[-1]
return f"We downsampled the images by {downscale_text}"
def run_colmap(
image_dir: Path,
colmap_dir: Path,
camera_model: CameraModel,
gpu: bool = True,
verbose: bool = False,
matching_method: Literal["vocab_tree", "exhaustive", "sequential"] = "vocab_tree",
) -> None:
"""Runs COLMAP on the images.
Args:
image_dir: Path to the directory containing the images.
colmap_dir: Path to the output directory.
camera_model: Camera model to use.
gpu: If True, use GPU.
verbose: If True, logs the output of the command.
"""
colmap_version = get_colmap_version()
(colmap_dir / "database.db").unlink(missing_ok=True)
# Feature extraction
feature_extractor_cmd = [
"colmap feature_extractor",
f"--database_path {colmap_dir / 'database.db'}",
f"--image_path {image_dir}",
"--ImageReader.single_camera 1",
f"--ImageReader.camera_model {camera_model.value}",
f"--SiftExtraction.use_gpu {int(gpu)}",
]
feature_extractor_cmd = " ".join(feature_extractor_cmd)
with status(msg="[bold yellow]Running COLMAP feature extractor...", spinner="moon", verbose=verbose):
run_command(feature_extractor_cmd, verbose=verbose)
CONSOLE.log("[bold green]:tada: Done extracting COLMAP features.")
# Feature matching
feature_matcher_cmd = [
f"colmap {matching_method}_matcher",
f"--database_path {colmap_dir / 'database.db'}",
f"--SiftMatching.use_gpu {int(gpu)}",
]
if matching_method == "vocab_tree":
vocab_tree_filename = get_vocab_tree()
feature_matcher_cmd.append(f"--VocabTreeMatching.vocab_tree_path {vocab_tree_filename}")
feature_matcher_cmd = " ".join(feature_matcher_cmd)
with status(msg="[bold yellow]Running COLMAP feature matcher...", spinner="runner", verbose=verbose):
run_command(feature_matcher_cmd, verbose=verbose)
CONSOLE.log("[bold green]:tada: Done matching COLMAP features.")
# Bundle adjustment
sparse_dir = colmap_dir / "sparse"
sparse_dir.mkdir(parents=True, exist_ok=True)
mapper_cmd = [
"colmap mapper",
f"--database_path {colmap_dir / 'database.db'}",
f"--image_path {image_dir}",
f"--output_path {sparse_dir}",
]
if colmap_version >= 3.7:
mapper_cmd.append("--Mapper.ba_global_function_tolerance 1e-6")
mapper_cmd = " ".join(mapper_cmd)
with status(
msg="[bold yellow]Running COLMAP bundle adjustment... (This may take a while)",
spinner="circle",
verbose=verbose,
):
run_command(mapper_cmd, verbose=verbose)
CONSOLE.log("[bold green]:tada: Done COLMAP bundle adjustment.")
with status(msg="[bold yellow]Refine intrinsics...", spinner="dqpb", verbose=verbose):
bundle_adjuster_cmd = [
"colmap bundle_adjuster",
f"--input_path {sparse_dir}/0",
f"--output_path {sparse_dir}/0",
"--BundleAdjustment.refine_principal_point 1",
]
run_command(" ".join(bundle_adjuster_cmd), verbose=verbose)
CONSOLE.log("[bold green]:tada: Done refining intrinsics.")
def colmap_to_json(cameras_path: Path, images_path: Path, output_dir: Path, camera_model: CameraModel) -> int:
"""Converts COLMAP's cameras.bin and images.bin to a JSON file.
Args:
cameras_path: Path to the cameras.bin file.
images_path: Path to the images.bin file.
output_dir: Path to the output directory.
camera_model: Camera model used.
Returns:
The number of registered images.
"""
cameras = colmap_utils.read_cameras_binary(cameras_path)
images = colmap_utils.read_images_binary(images_path)
# Only supports one camera
camera_params = cameras[1].params
frames = []
for _, im_data in images.items():
rotation = colmap_utils.qvec2rotmat(im_data.qvec)
translation = im_data.tvec.reshape(3, 1)
w2c = np.concatenate([rotation, translation], 1)
w2c = np.concatenate([w2c, np.array([[0, 0, 0, 1]])], 0)
c2w = np.linalg.inv(w2c)
# Convert from COLMAP's camera coordinate system to ours
c2w[0:3, 1:3] *= -1
c2w = c2w[np.array([1, 0, 2, 3]), :]
c2w[2, :] *= -1
name = Path(f"./images/{im_data.name}")
frame = {
"file_path": str(name),
"transform_matrix": c2w.tolist(),
}
frames.append(frame)
out = {
"fl_x": float(camera_params[0]),
"fl_y": float(camera_params[1]),
"cx": float(camera_params[2]),
"cy": float(camera_params[3]),
"w": cameras[1].width,
"h": cameras[1].height,
"camera_model": camera_model.value,
}
if camera_model == CameraModel.OPENCV:
out.update(
{
"k1": float(camera_params[4]),
"k2": float(camera_params[5]),
"p1": float(camera_params[6]),
"p2": float(camera_params[7]),
}
)
if camera_model == CameraModel.OPENCV_FISHEYE:
out.update(
{
"k1": float(camera_params[4]),
"k2": float(camera_params[5]),
"k3": float(camera_params[6]),
"k4": float(camera_params[7]),
}
)
out["frames"] = frames
with open(output_dir / "transforms.json", "w", encoding="utf-8") as f:
json.dump(out, f, indent=4)
return len(frames)
def get_insta360_filenames(data: Path) -> Tuple[Path, Path]:
"""Returns the filenames of the Insta360 videos from a single video file.
Example input name: VID_20220212_070353_00_003.insv
Args:
data: Path to a Insta360 file.
Returns:
The filenames of the Insta360 videios.
"""
if data.suffix != ".insv":
raise ValueError("The input file must be an .insv file.")
file_parts = data.stem.split("_")
stem_back = f"VID_{file_parts[1]}_{file_parts[2]}_00_{file_parts[4]}.insv"
stem_front = f"VID_{file_parts[1]}_{file_parts[2]}_10_{file_parts[4]}.insv"
filename_back = data.parent / stem_back
filename_front = data.parent / stem_front
if not filename_back.exists():
raise FileNotFoundError(f"Could not find {filename_back}")
if not filename_front.exists():
raise FileNotFoundError(f"Could not find {filename_front}")
return filename_back, filename_front
@dataclass
class ProcessImages:
"""Process images into a nerfstudio dataset.
This script does the following:
1. Scales images to a specified size.
2. Calculates the camera poses for each image using `COLMAP <https://colmap.github.io/>`_.
"""
data: Path
"""Path the data, either a video file or a directory of images."""
output_dir: Path
"""Path to the output directory."""
camera_type: Literal["perspective", "fisheye"] = "perspective"
"""Camera model to use."""
matching_method: Literal["exhaustive", "sequential", "vocab_tree"] = "vocab_tree"
"""Feature matching method to use. Vocab tree is recommended for a balance of speed and
accuracy. Exhaustive is slower but more accurate. Sequential is faster but should only be used for videos."""
num_downscales: int = 3
"""Number of times to downscale the images. Downscales by 2 each time. For example a value of 3
will downscale the images by 2x, 4x, and 8x."""
skip_colmap: bool = False
"""If True, skips COLMAP and generates transforms.json if possible."""
gpu: bool = True
"""If True, use GPU."""
verbose: bool = False
"""If True, print extra logging."""
def main(self) -> None:
"""Process images into a nerfstudio dataset."""
install_checks.check_ffmpeg_installed()
install_checks.check_colmap_installed()
self.output_dir.mkdir(parents=True, exist_ok=True)
image_dir = self.output_dir / "images"
image_dir.mkdir(parents=True, exist_ok=True)
summary_log = []
# Copy images to output directory
num_frames = copy_images(self.data, image_dir=image_dir, verbose=self.verbose)
summary_log.append(f"Starting with {num_frames} images")
# Downscale images
summary_log.append(downscale_images(image_dir, self.num_downscales, verbose=self.verbose))
# Run COLMAP
colmap_dir = self.output_dir / "colmap"
if not self.skip_colmap:
colmap_dir.mkdir(parents=True, exist_ok=True)
run_colmap(
image_dir=image_dir,
colmap_dir=colmap_dir,
camera_model=CAMERA_MODELS[self.camera_type],
gpu=self.gpu,
verbose=self.verbose,
matching_method=self.matching_method,
)
# Save transforms.json
if (colmap_dir / "sparse" / "0" / "cameras.bin").exists():
with CONSOLE.status("[bold yellow]Saving results to transforms.json", spinner="balloon"):
num_matched_frames = colmap_to_json(
cameras_path=colmap_dir / "sparse" / "0" / "cameras.bin",
images_path=colmap_dir / "sparse" / "0" / "images.bin",
output_dir=self.output_dir,
camera_model=CAMERA_MODELS[self.camera_type],
)
summary_log.append(f"Colmap matched {num_matched_frames} images")
else:
CONSOLE.log("[bold yellow]Warning: could not find existing COLMAP results. Not generating transforms.json")
CONSOLE.rule("[bold green]:tada: :tada: :tada: All DONE :tada: :tada: :tada:")
for summary in summary_log:
CONSOLE.print(summary, justify="center")
CONSOLE.rule()
@dataclass
class ProcessVideo:
"""Process videos into a nerfstudio dataset.
This script does the following:
1. Converts the video into images.
2. Scales images to a specified size.
3. Calculates the camera poses for each image using `COLMAP <https://colmap.github.io/>`_.
"""
data: Path
"""Path the data, either a video file or a directory of images."""
output_dir: Path
"""Path to the output directory."""
num_frames_target: int = 300
"""Target number of frames to use for the dataset, results may not be exact."""
camera_type: Literal["perspective", "fisheye"] = "perspective"
"""Camera model to use."""
matching_method: Literal["exhaustive", "sequential", "vocab_tree"] = "vocab_tree"
"""Feature matching method to use. Vocab tree is recommended for a balance of speed and
accuracy. Exhaustive is slower but more accurate. Sequential is faster but should only be used for videos."""
num_downscales: int = 3
"""Number of times to downscale the images. Downscales by 2 each time. For example a value of 3
will downscale the images by 2x, 4x, and 8x."""
skip_colmap: bool = False
"""If True, skips COLMAP and generates transforms.json if possible."""
gpu: bool = True
"""If True, use GPU."""
verbose: bool = False
"""If True, print extra logging."""
def main(self) -> None:
"""Process video into a nerfstudio dataset."""
install_checks.check_ffmpeg_installed()
install_checks.check_colmap_installed()
self.output_dir.mkdir(parents=True, exist_ok=True)
image_dir = self.output_dir / "images"
image_dir.mkdir(parents=True, exist_ok=True)
# Convert video to images
summary_log = convert_video_to_images(
self.data, image_dir=image_dir, num_frames_target=self.num_frames_target, verbose=self.verbose
)
# Downscale images
summary_log.append(downscale_images(image_dir, self.num_downscales, verbose=self.verbose))
# Run Colmap
colmap_dir = self.output_dir / "colmap"
if not self.skip_colmap:
colmap_dir.mkdir(parents=True, exist_ok=True)
run_colmap(
image_dir=image_dir,
colmap_dir=colmap_dir,
camera_model=CAMERA_MODELS[self.camera_type],
gpu=self.gpu,
verbose=self.verbose,
matching_method=self.matching_method,
)
# Save transforms.json
if (colmap_dir / "sparse" / "0" / "cameras.bin").exists():
with CONSOLE.status("[bold yellow]Saving results to transforms.json", spinner="balloon"):
num_matched_frames = colmap_to_json(
cameras_path=colmap_dir / "sparse" / "0" / "cameras.bin",
images_path=colmap_dir / "sparse" / "0" / "images.bin",
output_dir=self.output_dir,
camera_model=CAMERA_MODELS[self.camera_type],
)
summary_log.append(f"Colmap matched {num_matched_frames} images")
else:
CONSOLE.log("[bold yellow]Warning: could not find existing COLMAP results. Not generating transforms.json")
CONSOLE.rule("[bold green]:tada: :tada: :tada: All DONE :tada: :tada: :tada:")
for summary in summary_log:
CONSOLE.print(summary, justify="center")
CONSOLE.rule()
@dataclass
class ProcessInsta360:
"""Process Insta360 videos into a nerfstudio dataset. Currently this uses a center crop of the raw data
so data at the extreme edges of the video will be lost.
Expects data from a 2 camera Insta360, single or >2 camera models will not work.
(tested with Insta360 One X2)
This script does the following:
1. Converts the videos into images.
2. Scales images to a specified size.
3. Calculates the camera poses for each image using `COLMAP <https://colmap.github.io/>`_.
"""
data: Path
"""Path the data, It should be one of the 3 .insv files saved with each capture (Any work)."""
output_dir: Path
"""Path to the output directory."""
num_frames_target: int = 400
"""Target number of frames to use for the dataset, results may not be exact."""
matching_method: Literal["exhaustive", "sequential", "vocab_tree"] = "vocab_tree"
"""Feature matching method to use. Vocab tree is recommended for a balance of speed and
accuracy. Exhaustive is slower but more accurate. Sequential is faster but should only be used for videos."""
num_downscales: int = 3
"""Number of times to downscale the images. Downscales by 2 each time. For example a value of 3
will downscale the images by 2x, 4x, and 8x."""
skip_colmap: bool = False
"""If True, skips COLMAP and generates transforms.json if possible."""
gpu: bool = True
"""If True, use GPU."""
verbose: bool = False
"""If True, print extra logging."""
def main(self) -> None:
"""Process video into a nerfstudio dataset."""
install_checks.check_ffmpeg_installed()
install_checks.check_colmap_installed()
self.output_dir.mkdir(parents=True, exist_ok=True)
image_dir = self.output_dir / "images"
image_dir.mkdir(parents=True, exist_ok=True)
filename_back, filename_front = get_insta360_filenames(self.data)
# Convert video to images
summary_log = convert_insta360_to_images(
video_front=filename_front,
video_back=filename_back,
image_dir=image_dir,
num_frames_target=self.num_frames_target,
verbose=self.verbose,
)
# Downscale images
summary_log.append(downscale_images(image_dir, self.num_downscales, verbose=self.verbose))
# Run Colmap
colmap_dir = self.output_dir / "colmap"
if not self.skip_colmap:
colmap_dir.mkdir(parents=True, exist_ok=True)
run_colmap(
image_dir=image_dir,
colmap_dir=colmap_dir,
camera_model=CAMERA_MODELS["fisheye"],
gpu=self.gpu,
verbose=self.verbose,
matching_method=self.matching_method,
)
# Save transforms.json
if (colmap_dir / "sparse" / "0" / "cameras.bin").exists():
with CONSOLE.status("[bold yellow]Saving results to transforms.json", spinner="balloon"):
num_matched_frames = colmap_to_json(
cameras_path=colmap_dir / "sparse" / "0" / "cameras.bin",
images_path=colmap_dir / "sparse" / "0" / "images.bin",
output_dir=self.output_dir,
camera_model=CAMERA_MODELS["fisheye"],
)
summary_log.append(f"Colmap matched {num_matched_frames} images")
else:
CONSOLE.log("[bold yellow]Warning: could not find existing COLMAP results. Not generating transforms.json")
CONSOLE.rule("[bold green]:tada: :tada: :tada: All DONE :tada: :tada: :tada:")
for summary in summary_log:
CONSOLE.print(summary, justify="center")
CONSOLE.rule()
Commands = Union[
Annotated[ProcessImages, tyro.conf.subcommand(name="images")],
Annotated[ProcessVideo, tyro.conf.subcommand(name="video")],
Annotated[ProcessInsta360, tyro.conf.subcommand(name="insta360")],
]
def entrypoint():
"""Entrypoint for use with pyproject scripts."""
tyro.extras.set_accent_color("bright_yellow")
tyro.cli(Commands).main()
if __name__ == "__main__":
entrypoint()
# For sphinx docs
get_parser_fn = lambda: tyro.extras.get_parser(Commands) # type: ignore