-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlenet5.py
621 lines (489 loc) · 22.7 KB
/
lenet5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import argparse
import os
import shutil
import time
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.models as models
import torchvision.datasets as dsets
import numpy as np
import random
import torch._utils
try:
torch._utils._rebuild_tensor_v2
except AttributeError:
def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks):
tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride)
tensor.requires_grad = requires_grad
tensor._backward_hooks = backward_hooks
return tensor
torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch MNIST Training')
parser.add_argument('--dataset', default='MNIST', type=str, help='dataset = [MNIST]')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 100)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=500, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-load', default='', type=str, metavar='PATH',
help='path to training mask (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--lr', '--learning-rate', default=0.00085, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=125, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--steps', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--vth', default=1, type=float, metavar='Vth',
help='voltage threshold')
parser.add_argument('--leak', default=1, type=float, metavar='Leak',
help='leaky parameter')
parser.add_argument('--hz', default=5, type=int, metavar='hz',
help='scale update hz')
parser.add_argument('--seed', default=0, type=int, metavar='seed',
help='whether change the seed')
best_prec1 = 0
change = 25
tp1 = [];
tp5 = [];
ep = [];
lRate = [];
device_num = 1
device = torch.device("cuda:0")
tp1_tr = [];
tp5_tr = [];
losses_tr = [];
losses_eval = [];
sign = 1
scale1 = 1
scale2 = 1
scale3 = 1
scale4 = 1
scale5 = 1
args = parser.parse_args()
def main():
global args, best_prec1, device_num, sign
if args.seed:
seed1 = random.randint(1,100)
seed2 = random.randint(1,100)
seed3 = random.randint(1,100)
else:
seed1 = 30
seed2 = 22
seed3 = 66
batch_size = args.batch_size
print('\n'+'='*15+'settings'+'='*15)
print('lr: ', args.lr)
print('change lr point:%d'%change)
print('batchsize:',batch_size)
print('lenet adapt version')
print('random-seed = %d %d %d'%(seed1,seed2,seed3))
print('steps:{}'.format(args.steps))
print('vth:{}'.format(args.vth))
print('leak:{}'.format(args.leak))
print('scale hz:{}'.format(args.hz))
# print('rand seed: %d'%seed)
print('='*15+'settings'+'='*15+'\n')
torch.manual_seed(seed1)
torch.cuda.manual_seed(seed2)
torch.cuda.manual_seed_all(seed3)
np.random.seed(seed1)
random.seed(seed2)
model = CNNModel()
print(model)
model = torch.nn.DataParallel(model)
model.to(device)
criterion = torch.nn.MSELoss(reduction='sum')
criterion_en = torch.nn.CrossEntropyLoss()
learning_rate = args.lr
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-4)
cudnn.benchmark = False
cudnn.deterministic = True
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
'''STEP 1: LOADING DATASET'''
dataset_path = '/data/diospada/mnist-python/data'
train_data = dsets.MNIST(root=dataset_path, train=True, transform=transforms.ToTensor(), download=True)
val_data = dsets.MNIST(root=dataset_path, train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(dataset=val_data, batch_size=int(args.batch_size), shuffle=False)
print('read dataset succeed')
if args.evaluate:
validate(val_loader, model, criterion, criterion_en, time_steps=args.steps, leak=args.leak)
return
prec1_tr = 0
for epoch in range(args.start_epoch, args.epochs):
if epoch % args.hz == 0 and args.hz < args.epochs:
sign = 1
else:
sign = 0
adjust_learning_rate(optimizer, epoch)
ep.append(epoch)
start_end = time.time()
# train for one epoch
prec1_tr = train(train_loader, model, criterion, criterion_en, optimizer, epoch, time_steps=args.steps, leak=args.leak)
# evaluate on validation set
modeltest = model.module
prec1 = validate(val_loader, modeltest, criterion, criterion_en, time_steps=args.steps, leak=args.leak)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best)
time_used = time.time() - start_end
print('time used this epoch: %dmin %ds'%(time_used//60,time_used%60))
for k in range(0, args.epochs - args.start_epoch):
print('Epoch: [{0}/{1}]\t'
'LR:{2}\t'
'Prec@1 {top1:.3f} \t'
'Prec@5 {top5:.3f} '.format(
ep[k], args.epochs, lRate[k], top1=tp1[k], top5=tp5[k]))
print('best:',best_prec1)
def grad_cal(scale, IF_in):
out = scale * IF_in.gt(0).type(torch.cuda.FloatTensor)
return out
def ave(output, input):
c = input >= output
if input[c].sum() < 1e-3:
return 1
return output[c].sum()/input[c].sum()
def ave_p(output, input):
if input.sum() < 1e-3:
return 1
return output.sum()/input.sum()
def train(train_loader, model, criterion, criterion_en, optimizer, epoch, time_steps, leak):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
top1_tr = AverageMeter()
top5_tr = AverageMeter()
losses_en = AverageMeter()
# switch to train mode
model.train()
end = time.time()
start_end = end
for i, (inputdata, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
inputdata, target = inputdata.to(device), target.to(device)
labels = target.clone()
optimizer.zero_grad() # Clear gradients w.r.t. parameters
output = model(inputdata, steps=time_steps, l=leak)
targetN = output.data.clone().zero_().to(device)
targetN.scatter_(1, target.unsqueeze(1), 1)
targetN = Variable(targetN.type(torch.cuda.FloatTensor))
loss = criterion(output.cpu(), targetN.cpu())
loss_en = criterion_en(output.cpu(), labels.cpu())
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), inputdata.size(0))
top1.update(prec1.item(), inputdata.size(0))
top5.update(prec5.item(), inputdata.size(0))
prec1_tr, prec5_tr = accuracy(output.data, target, topk=(1, 5))
losses_en.update(loss_en.item(), inputdata.size(0))
top1_tr.update(prec1_tr.item(), inputdata.size(0))
top5_tr.update(prec5_tr.item(), inputdata.size(0))
loss.backward(retain_graph=False)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
time_used = end - start_end
print('train time: %dmin %ds'%(time_used//60,time_used%60))
print('Epoch: [{0}] Prec@1 {top1_tr.avg:.3f} Prec@5 {top5_tr.avg:.3f} Entropy_Loss {loss_en.avg:.4f}'
.format(epoch, top1_tr=top1_tr, top5_tr=top5_tr, loss_en=losses_en))
losses_tr.append(losses_en.avg)
tp1_tr.append(top1_tr.avg)
tp5_tr.append(top5_tr.avg)
return top1_tr.avg
def validate(val_loader, model, criterion, criterion_en, time_steps, leak):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
losses_en_eval = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (inputdata, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
input_var = inputdata.to(device)
target = target.to(device)
labels = Variable(target.to(device))
target = target.to(device)
output = model.tst(input=input_var, steps=time_steps, l=leak)
targetN = output.data.clone().zero_().to(device)
targetN.scatter_(1, target.unsqueeze(1), 1)
targetN = Variable(targetN.type(torch.cuda.FloatTensor))
loss = criterion(output.cpu(), targetN.cpu())
loss_en = criterion_en(output.cpu(), labels.cpu())
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), inputdata.size(0))
top1.update(prec1.item(), inputdata.size(0))
top5.update(prec5.item(), inputdata.size(0))
losses_en_eval.update(loss_en.item(), inputdata.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('Test: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Entropy_Loss {losses_en_eval.avg:.4f}'
.format(top1=top1, top5=top5, losses_en_eval=losses_en_eval))
tp1.append(top1.avg)
tp5.append(top5.avg)
losses_eval.append(losses_en_eval.avg)
return top1.avg
def save_checkpoint(state, is_best, filename='checkpointT1_mnist1.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_bestT1_mnist1.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr
for param_group in optimizer.param_groups:
if epoch >= change:
param_group['lr'] = 0.2 * lr
elif epoch < change:
param_group['lr'] = lr
lRate.append(param_group['lr'])
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class SpikingNN(torch.autograd.Function):
def forward(self, input):
self.save_for_backward(input)
return input.gt(0).type(torch.cuda.FloatTensor)
def backward(self, grad_output):
input, = self.saved_tensors
grad_input = grad_output.clone()
grad_input[input <= 0.0] = 0
return grad_input
def LIF_sNeuron(membrane_potential, threshold, l, i):
# check exceed membrane potential and reset
ex_membrane = nn.functional.threshold(membrane_potential, threshold, 0)
membrane_potential = membrane_potential - ex_membrane
# generate spike
out = SpikingNN()(ex_membrane)
membrane_potential = l * membrane_potential.detach() + membrane_potential - membrane_potential.detach()
return membrane_potential, out
def Pooling_sNeuron(membrane_potential, threshold, i):
# check exceed membrane potential and reset
ex_membrane = nn.functional.threshold(membrane_potential, threshold, 0)
membrane_potential = membrane_potential - ex_membrane # hard reset
# generate spike
out = SpikingNN()(ex_membrane)
return membrane_potential, out
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.cnn1 = nn.Conv2d(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2, bias=False)
self.avgpool1 = nn.AvgPool2d(kernel_size=2)
self.cnn2 = nn.Conv2d(in_channels=20, out_channels=50, kernel_size=5, stride=1, padding=2, bias=False)
self.avgpool2 = nn.AvgPool2d(kernel_size=2)
self.fc0 = nn.Linear(50*7*7, 200, bias=False)
self.fc1 = nn.Linear(200, 10, bias=False)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
variance1 = math.sqrt(2. / n)
m.weight.data.normal_(0, variance1)
m.threshold = args.vth
elif isinstance(m, nn.Linear):
size = m.weight.size()
fan_in = size[1]
variance2 = math.sqrt(2.0 / fan_in)
m.weight.data.normal_(0.0, variance2)
m.threshold = args.vth
def forward(self, inputdata, steps=100, l=1):
global scale1, scale2, scale3, scale4, scale5, sign
mem_1 = torch.zeros(inputdata.size(0), 20, 28, 28, device = inputdata.device)
mem_1s = torch.zeros(inputdata.size(0), 20, 14, 14, device =inputdata.device)
mem_2 = torch.zeros(inputdata.size(0), 50, 14, 14, device = inputdata.device)
mem_2s = torch.zeros(inputdata.size(0), 50, 7, 7, device = inputdata.device)
membrane_f0 = torch.zeros(inputdata.size(0), 200, device = inputdata.device)
Total_input = torch.zeros(inputdata.size(0), 1, 28, 28, device = inputdata.device)
Total_1_output = torch.zeros(inputdata.size(0), 20, 28, 28, device = inputdata.device)
IF_in_c1 = torch.zeros(inputdata.size(0), 20, 28, 28, device = inputdata.device)
Total_2_output = torch.zeros(inputdata.size(0), 50, 14, 14, device = inputdata.device)
IF_in_c2 = torch.zeros(inputdata.size(0), 50, 14, 14, device = inputdata.device)
Total_p1_output = torch.zeros(inputdata.size(0), 20, 14, 14, device = inputdata.device)
IF_in_p1 = torch.zeros(inputdata.size(0), 20, 14, 14, device = inputdata.device)
Total_p2_output = torch.zeros(inputdata.size(0), 50, 7, 7, device = inputdata.device)
IF_in_p2 = torch.zeros(inputdata.size(0), 50, 7, 7, device = inputdata.device)
Total_f0_output = torch.zeros(inputdata.size(0), 200, device = inputdata.device)
IF_in_f0 = torch.zeros(inputdata.size(0), 200, device = inputdata.device)
with torch.no_grad():
for i in range(steps):
# Poisson input spike generation
rand_num = torch.rand(inputdata.size(0), inputdata.size(1), inputdata.size(2), inputdata.size(3), device = inputdata.device)
Poisson_d_input = (torch.abs(inputdata)/2) > rand_num
Poisson_d_input = torch.mul(Poisson_d_input.float(), torch.sign(inputdata))
Total_input = Total_input + Poisson_d_input
# convolutional Layer
in_layer = self.cnn1(Poisson_d_input)
mem_1 = mem_1 + in_layer
mem_1, out = LIF_sNeuron(mem_1, self.cnn1.threshold, l, i)
IF_in_c1 = IF_in_c1 + in_layer
Total_1_output = Total_1_output + out
# pooling Layer
in_layer = self.avgpool1(out)
mem_1s = mem_1s + in_layer
mem_1s, out = Pooling_sNeuron(mem_1s, 0.75, i)
IF_in_p1 = IF_in_p1 + in_layer
Total_p1_output = Total_p1_output + out
# convolutional Layer
in_layer = self.cnn2(out)
mem_2 = mem_2 + in_layer
mem_2, out = LIF_sNeuron(mem_2, self.cnn2.threshold, l, i)
IF_in_c2 = IF_in_c2 + in_layer
Total_2_output = Total_2_output + out
# pooling Layer
in_layer = self.avgpool2(out)
mem_2s = mem_2s + in_layer
mem_2s, out = Pooling_sNeuron(mem_2s, 0.75, i)
IF_in_p2 = IF_in_p2 + in_layer
Total_p2_output = Total_p2_output + out
out = out.view(out.size(0), -1)
# fully-connected Layer
in_layer = self.fc0(out)
membrane_f0 = membrane_f0 + in_layer
membrane_f0, out = LIF_sNeuron(membrane_f0, self.fc0.threshold, l, i)
IF_in_f0 = IF_in_f0 + in_layer
Total_f0_output = Total_f0_output + out
if sign == 1:
scale1 = 0.6 * ave(Total_1_output, IF_in_c1) + 0.4 * scale1
scale2 = 0.6 * ave_p(Total_p1_output, IF_in_p1) + 0.4 * scale2
scale3 = 0.6 * ave(Total_2_output, IF_in_c2) + 0.4 * scale3
scale4 = 0.6 * ave_p(Total_p2_output, IF_in_p2) + 0.4 * scale4
scale5 = 0.6 * ave(Total_f0_output, IF_in_f0) + 0.4 * scale5
scale_1 = grad_cal(scale1, IF_in_c1)
scale_2 = grad_cal(scale2, IF_in_p1)
scale_3 = grad_cal(scale3, IF_in_c2)
scale_4 = grad_cal(scale4, IF_in_p2)
scale_5 = grad_cal(scale5, IF_in_f0)
with torch.enable_grad():
cnn1_in = self.cnn1(Total_input.detach())
tem = Total_1_output.detach()
out = torch.mul(cnn1_in,scale_1)
Total_1_output = out - out.detach() + tem
pool1_in = self.avgpool1(Total_1_output)
tem = Total_p1_output.detach()
out = torch.mul(pool1_in,scale_2)
Total_p1_output = out - out.detach() + tem
cnn2_in = self.cnn2(Total_p1_output)
tem = Total_2_output.detach()
out = torch.mul(cnn2_in, scale_3)
Total_2_output = out - out.detach() + tem
pool2_in = self.avgpool2(Total_2_output)
tem = Total_p2_output.detach()
out = torch.mul(pool2_in, scale_4)
Total_p2_output = out - out.detach() + tem
fc0_in = self.fc0(Total_p2_output.view(Total_p2_output.size(0),-1))
tem = Total_f0_output.detach()
out = torch.mul(fc0_in, scale_5)
Total_f0_output = out - out.detach() + tem
fc1_in = self.fc1(Total_f0_output)
return fc1_in/self.fc1.threshold/steps
def tst(self, input, steps=100, l=1):
mem_1 = torch.zeros(input.size(0), 20, 28, 28, device = input.device)
mem_1s = torch.zeros(input.size(0), 20, 14, 14, device = input.device)
mem_2 = torch.zeros(input.size(0), 50, 14, 14, device = input.device)
mem_2s = torch.zeros(input.size(0), 50, 7, 7, device = input.device)
membrane_f0 = torch.zeros(input.size(0), 200, device = input.device)
membrane_f1 = torch.zeros(input.size(0), 10, device = input.device)
for i in range(steps):
# Poisson input spike generation
rand_num = torch.rand(input.size(0), input.size(1), input.size(2), input.size(3), device =input.device)
Poisson_d_input = ((torch.abs(input)/2) > rand_num).type(torch.cuda.FloatTensor)
Poisson_d_input = torch.mul(Poisson_d_input, torch.sign(input))
# convolutional Layer
mem_1 = mem_1 + self.cnn1(Poisson_d_input)
mem_1, out = LIF_sNeuron(mem_1, self.cnn1.threshold, l, i)
# pooling Layer
mem_1s = mem_1s + self.avgpool1(out)
mem_1s, out = Pooling_sNeuron(mem_1s, 0.75, i)
# convolutional Layer
mem_2 = mem_2 + self.cnn2(out)
mem_2, out = LIF_sNeuron(mem_2, self.cnn1.threshold, l, i)
# pooling Layer
mem_2s = mem_2s + self.avgpool2(out)
mem_2s, out = Pooling_sNeuron(mem_2s, 0.75, i)
out = out.view(out.size(0), -1)
# fully-connected Layer
membrane_f0 = membrane_f0 + self.fc0(out)
membrane_f0, out = LIF_sNeuron(membrane_f0, self.fc0.threshold, l, i)
membrane_f1 = membrane_f1 + self.fc1(out)
return membrane_f1 / self.fc1.threshold / steps
if __name__ == '__main__':
main()