diff --git a/docs/tutorials.rst b/docs/tutorials.rst index e1fcebf8c5..d317bb1e93 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -12,5 +12,6 @@ The following tutorials highlight what one can do with the ``ProgLearn`` package tutorials/label_shuffle_exp tutorials/random_class_exp tutorials/rotation_cifar - tutorials/uncertaintyforest_fig1 tutorials/uncertaintyforest_running_example + tutorials/uncertaintyforest_fig1 + tutorials/uncertaintyforest_fig2 diff --git a/docs/tutorials/functions/unc_forest_tutorials_functions.py b/docs/tutorials/functions/unc_forest_tutorials_functions.py index 65ac2a3f37..265fc64e06 100644 --- a/docs/tutorials/functions/unc_forest_tutorials_functions.py +++ b/docs/tutorials/functions/unc_forest_tutorials_functions.py @@ -15,6 +15,9 @@ from proglearn.forest import UncertaintyForest from proglearn.sims import generate_gaussian_parity +from scipy.stats import entropy, norm +from scipy.integrate import quad + def generate_data(n, mean, var): ''' Parameters @@ -157,4 +160,218 @@ def plot_fig1(algos, num_plotted_trials, X_eval): fig.tight_layout() # plt.savefig("fig1.pdf") - plt.show() \ No newline at end of file + plt.show() + +def generate_data_fig2(n, d, mu = 1): + n_1 = np.random.binomial(n, .5) # number of class 1 + mean = np.zeros(d) + mean[0] = mu + X_1 = np.random.multivariate_normal(mean, np.eye(d), n_1) + + X = np.concatenate((X_1, np.random.multivariate_normal(-mean, np.eye(d), n - n_1))) + y = np.concatenate((np.repeat(1, n_1), np.repeat(0, n - n_1))) + + return X, y + +def cart_estimate(X, y, n_trees = 300, bootstrap = True): + model = RandomForestClassifier(bootstrap = bootstrap, n_estimators =n_trees) + model.fit(X, y) + class_counts = np.zeros((X.shape[0], model.n_classes_)) + for tree_in_forest in model: + # get number of training elements in each partition + node_counts = tree_in_forest.tree_.n_node_samples + # get counts for all x (x.length array) + partition_counts = np.asarray([node_counts[x] for x in tree_in_forest.apply(X)]) + # get class probability for all x (x.length, n_classes) + class_probs = tree_in_forest.predict_proba(X) + # get elements by performing row wise multiplication + elems = np.multiply(class_probs, partition_counts[:, np.newaxis]) + # update counts for that tree + class_counts += elems + probs = class_counts/class_counts.sum(axis=1, keepdims=True) + entropies = -np.sum(np.log(probs)*probs, axis = 1) + # convert nan to 0 + entropies = np.nan_to_num(entropies) + return np.mean(entropies) + + +def true_cond_entropy(mu, base = np.exp(1)): + def func(x): + p = 0.5 * norm.pdf(x, mu, 1) + 0.5 * norm.pdf(x, -mu, 1) + return -p * np.log(p) / np.log(base) + + H_X = quad(func, -20, 20) + H_XY = 0.5*(1.0 + np.log(2 * np.pi)) / np.log(base) + H_Y = np.log(2.0) / np.log(base) + # I_XY = H_X - H_XY = H_Y - H_YX + return H_Y - H_X[0] + H_XY + + +def format_func(value, tick_number): + epsilon = 10 ** (-5) + if np.absolute(value) < epsilon: + return "0" + if np.absolute(value - 0.5) < epsilon: + return "0.5" + if np.absolute(value - 1) < epsilon: + return "1" + else: + return "" + +def estimate_ce(X, y, label): + if label == "CART": + return cart_estimate(X, y) + elif label == "IRF": + frac_eval = 0.3 + irf = CalibratedClassifierCV(base_estimator=RandomForestClassifier(n_estimators = 300), + method='isotonic', + cv = 5) + # X_train, y_train, X_eval, y_eval = split_train_eval(X, y, frac_eval) + X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=frac_eval) + irf.fit(X_train, y_train) + p = irf.predict_proba(X_eval) + return np.mean(entropy(p.T, base = np.exp(1))) + elif label == "UF": + frac_eval = 0.3 + uf = UncertaintyForest(n_estimators = 300, tree_construction_proportion = 0.4, kappa = 3.0) + # X_train, y_train, X_eval, y_eval = split_train_eval(X, y, frac_eval) + X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=frac_eval) + uf.fit(X_train,y_train) + p = uf.predict_proba(X_eval) + return np.mean(entropy(p.T, base = np.exp(1))) + else: + raise ValueError("Unrecognized Label!") + +def get_cond_entropy_vs_n(mean, d, num_trials, sample_sizes, algos): + + def worker(t): + X, y = generate_data_fig2(elem, d, mu = mean) + + ret = [] + for algo in algos: + ret.append(estimate_ce(X, y, algo['label'])) + + return tuple(ret) + + output = np.zeros((len(algos), len(sample_sizes), num_trials)) + for i, elem in enumerate(sample_sizes): + results = np.array(Parallel(n_jobs=-2)(delayed(worker)(t) for t in range(num_trials))) + for j in range(len(algos)): + output[j, i, :] = results[:, j] + + # results = [] + # for t in range(num_trials): + # # print(t) + # results.append(worker(t)) + # results = np.array(results) + # for j in range(len(algos)): + # output[j, i, :] = results[:, j] + + return output + +def get_cond_entropy_vs_mu(n, d, num_trials, mus, algos): + + def worker(t): + X, y = generate_data_fig2(n, d, mu = elem) + + ret = [] + for algo in algos: + ret.append(estimate_ce(X, y, algo['label'])) + + return tuple(ret) + + output = np.zeros((len(algos), len(mus), num_trials)) + for i, elem in enumerate(mus): + results = np.array(Parallel(n_jobs=-2)(delayed(worker)(t) for t in range(num_trials))) + for j in range(len(algos)): + output[j, i, :] = results[:, j] + + # results = [] + # for t in range(num_trials): + # # print(t) + # results.append(worker(t)) + # results = np.array(results) + # for j in range(len(algos)): + # output[j, i, :] = results[:, j] + + + # pickle.dump(mus, open('output/mus.pkl', 'wb')) + # for j, algo in enumerate(algos): + # pickle.dump(output[j], open('output/%s_by_mu_d_%d.pkl' % (algo['label'], d), 'wb')) + + return output + +def plot_cond_entropy_by_n(ax, num_plotted_trials, d, mu, algos, panel, num_trials, sample_sizes): + + results = get_cond_entropy_vs_n(mu, d, num_trials, sample_sizes, algos) + for j, algo in enumerate(algos): + result = results[j,:,:] + + # Plot the mean over trials as a solid line. + ax.plot(sample_sizes, + np.mean(result, axis = 1).flatten(), + label = algo['label'], + linewidth = 4, + color = algo['color']) + # Use transparent lines to show other trials. + for t in range(num_plotted_trials): + ax.plot(sample_sizes, + result[:, t].flatten(), + linewidth = 2, + color = algo['color'], + alpha = 0.15) + + truth = true_cond_entropy(mu) + ax.axhline(y = truth, linestyle = '-', color = "black", label = "Truth") + + ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func)) + ax.set_xlabel("Sample Size") + ax.set_ylabel("Estimated Conditional Entropy") + ax.set_title("%s) Effect Size = %.1f" % (panel, mu)) + ax.set_ylim(ymin = -0.05, ymax = 1.05) + +def plot_cond_entropy_by_mu(ax, d, n, algos, panel, num_trials, mus): + + results = get_cond_entropy_vs_mu(n, d, num_trials, mus, algos) + for j, algo in enumerate(algos): + result = results[j,:,:] + + # Plot the mean over trials as a solid line. + ax.plot(mus, + np.mean(result, axis = 1).flatten(), + label = algo['label'], + linewidth = 4, + color = algo['color']) + + truth = [true_cond_entropy(mu) for mu in mus] + ax.plot(mus, truth, label = 'Truth', linewidth = 4, color = 'black') + + ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func)) + ax.set_ylim(ymin = -.05) + ax.set_title("%s) n = %d" % (panel, n)) + ax.set_xlabel("Effect Size") + ax.set_ylabel("Estimated Conditional Entropy") + + +def plot_fig2(num_plotted_trials, d1, d2, n1, n2, effect_size, algos, num_trials, sample_sizes_d1, sample_sizes_d2, mus): + sns.set(font_scale = 3) + sns.set_style("ticks") + plt.rcParams["font.family"] = "sans-serif" + plt.rcParams['figure.figsize'] = [30, 20] + fig, axes = plt.subplots(2, 2) + + plot_cond_entropy_by_n(axes[0, 0], num_plotted_trials, d1, effect_size, algos, "A", num_trials, sample_sizes_d1) + plot_cond_entropy_by_mu(axes[0, 1], d1, n1, algos, "B", num_trials, mus) + + plot_cond_entropy_by_n(axes[1, 0], num_plotted_trials, d2, effect_size, algos, "C", num_trials, sample_sizes_d2) + plot_cond_entropy_by_mu(axes[1, 1], d2, n2, algos, "D", num_trials, mus) + + axes[0,0].legend(loc = "upper left") + + fig.text(-0.05, 0.27, 'd = %d' % d2, ha='left', va='center', fontsize = 40) + fig.text(-0.05, 0.77, 'd = %d' % d1, ha='left', va='center', fontsize = 40) + + plt.subplots_adjust(left=-1) + plt.tight_layout() + # plt.savefig("fig2.pdf", bbox_inches = "tight") + plt.show() diff --git a/docs/tutorials/uncertaintyforest_fig1.ipynb b/docs/tutorials/uncertaintyforest_fig1.ipynb index c79f3cbcb4..0f96a5f801 100644 --- a/docs/tutorials/uncertaintyforest_fig1.ipynb +++ b/docs/tutorials/uncertaintyforest_fig1.ipynb @@ -4,13 +4,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Uncertainty Forest Figure 1 Tutorial\n", - "This set of two tutorials (`uncertaintyforest_running_example.ipynb` and `uncertaintyforest_fig1.ipynb`) will explain the UncertaintyForest class. After following both tutorials, you should have the ability to run UncertaintyForest code on your own machine and generate Figure 1 from [this paper](https://arxiv.org/pdf/1907.00325.pdf). \n", + "# Analyzing the UncertaintyForest Class by Reproducing Figure 1\n", "\n", - "If you haven't seen it already, take a look at other tutorials to setup and install the progressive learning package `Installation-and-Package-Setup-Tutorial.ipynb`\n", + "This set of three tutorials (`uncertaintyforest_running_example.ipynb`,`uncertaintyforest_fig1.ipynb`, and `uncertaintyforest_fig2.ipynb`) will explain the UncertaintyForest class. After following these tutorials, you should have the ability to run UncertaintyForest on your own machine and generate Figures 1 and 2 from [this paper](https://arxiv.org/pdf/1907.00325.pdf). \n", + "\n", + "If you haven't seen it already, take a look at other tutorials to setup and install the ProgLearn package: `installation_guide.ipynb`.\n", + "\n", + "*Goal: Run the UncertaintyForest class to produce the results from Figure 1*\n", "\n", - "## Analyzing the UncertaintyForest Class by Reproducing Figure 1\n", - "### *Goal: Run the UncertaintyForest class to produce the results from Figure 1*\n", "*Note: Figure 1 refers to Figure 1 from [this paper](https://arxiv.org/pdf/1907.00325.pdf)*" ] }, @@ -18,7 +19,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### First, we'll import the necessary packages that will be required" + "## Import Required Packages" ] }, { @@ -56,7 +57,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now, we'll specify some parameters " + "## Specify Parameters" ] }, { @@ -66,9 +67,9 @@ "outputs": [], "source": [ "# The following are two sets of parameters.\n", - "# The first are those that were actually used to produce figure 1.\n", + "# The first are those that were actually used to produce Figure 1.\n", "# These take a long time to actually run since there are 6000 data points.\n", - "# Below those, you'll find some testing parameters so that you can see the results quicker.\n", + "# Below those, you'll find some testing parameters so that you can see the results more quickly.\n", "\n", "# Here are the \"Real Parameters\"\n", "#n = 6000\n", @@ -93,7 +94,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now, we'll specify which learners we'll compare. Figure 1 uses three different learners specified below." + "## Specify Learners\n", + "\n", + "Now, we'll specify which learners we'll compare. Figure 1 uses three different learners." ] }, { @@ -102,7 +105,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Algorithms used to produce figure 1\n", + "# Algorithms used to produce Figure 1\n", "algos = [\n", " {\n", " 'instance': RandomForestClassifier(n_estimators = n_estimators),\n", @@ -134,7 +137,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now, we'll run the code to obtain the results that will be displayed in Figure1" + "## Generate predicted posteriors\n", + "\n", + "Now, we'll run the code to obtain the results that will be displayed in Figure 1." ] }, { @@ -152,7 +157,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Finally, create figure 1." + "## Create Figure 1" ] }, { @@ -197,4 +202,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} +} \ No newline at end of file diff --git a/docs/tutorials/uncertaintyforest_fig2.ipynb b/docs/tutorials/uncertaintyforest_fig2.ipynb new file mode 100644 index 0000000000..d25fc27b00 --- /dev/null +++ b/docs/tutorials/uncertaintyforest_fig2.ipynb @@ -0,0 +1,246 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analyzing the UncertaintyForest Class by Reproducing Figure 2\n", + "\n", + "This set of three tutorials (`uncertaintyforest_running_example.ipynb`,`uncertaintyforest_fig1.ipynb`, and `uncertaintyforest_fig2.ipynb`) will explain the UncertaintyForest class. After following these tutorials, you should have the ability to run UncertaintyForest on your own machine and generate Figures 1 and 2 from [this paper](https://arxiv.org/pdf/1907.00325.pdf). \n", + "\n", + "If you haven't seen it already, take a look at other tutorials to setup and install the ProgLearn package: `installation_guide.ipynb`.\n", + "\n", + "*Goal: Run the UncertaintyForest class to produce the results from Figure 2*\n", + "\n", + "*Note: Figure 2 refers to Figure 2 from [this paper](https://arxiv.org/pdf/1907.00325.pdf)*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import Required Packages" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From /home/ubuntu/anaconda3/envs/tensorflow_p36/lib/python3.6/site-packages/tensorflow_core/__init__.py:1473: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.\n", + "\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.calibration import CalibratedClassifierCV\n", + "\n", + "from proglearn.forest import UncertaintyForest\n", + "from functions.unc_forest_tutorials_functions import generate_data_fig2, cart_estimate, true_cond_entropy, format_func, estimate_ce, get_cond_entropy_vs_n, get_cond_entropy_vs_mu, plot_cond_entropy_by_n, plot_cond_entropy_by_mu, plot_fig2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Specify Parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# The following are two sets of parameters.\n", + "# The first are those that were actually used to produce figure 2.\n", + "# These take a long time to actually run since there are up to 6000 data points.\n", + "# Below those, you'll find some testing parameters so that you can see the results more quickly.\n", + "\n", + "# Here are the \"Real Parameters\"\n", + "# mus = [i * 0.5 for i in range(1, 11)] \n", + "# effect_size = 1\n", + "# d1 = 1 \n", + "# d2 = 20 \n", + "# n1 = 3000 \n", + "# n2 = 6000 \n", + "# num_trials = 20 \n", + "# num_plotted_trials = 10 \n", + "# sample_sizes_d1 = range(300, 1201, 90) \n", + "# sample_sizes_d2 = range(500, 3001, 250)\n", + "\n", + "# Here are the \"Test Parameters\"\n", + "mus = [i * 0.5 for i in range(1, 3)] # range of means of the data (x-axis in right column)\n", + "effect_size = 1 # mu for left column\n", + "d1 = 1 # data dimensions = 1\n", + "d2 = 3 # data dimensions = 1, noise dimensions = 19\n", + "n1 = 100 # number of data points for top row, right column (d1)\n", + "n2 = 110 # number of data points for bottom row, right column (d2)\n", + "num_trials = 2 # number of trials to run\n", + "num_plotted_trials = 2 # the number of \"fainter\" lines to be displayed on the figure\n", + "sample_sizes_d1 = range(100, 120, 10) # range of data points for top row, left column (d1)\n", + "sample_sizes_d2 = range(100, 130, 10) # range of data points for bottom row, left column (d1)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Specify Learners\n", + "Now, we'll specify which learners we'll compare (by label). Figure 2 uses three different learners, which are further specified in the function `estimate_ce`, which returns estimates of conditional entropy for a given dataset (X, y) and type of learner." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Algorithms used to produce Figure 2\n", + "algos = [\n", + " {\n", + " 'label': 'CART',\n", + " 'title': 'CART Forest',\n", + " 'color': \"#1b9e77\",\n", + " },\n", + " {\n", + " 'label': 'IRF',\n", + " 'title': 'Isotonic Reg. Forest',\n", + " 'color': \"#fdae61\",\n", + " },\n", + " {\n", + " 'label': 'UF',\n", + " 'title': 'Uncertainty Forest',\n", + " 'color': \"#F41711\",\n", + " },\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plot Figure 2\n", + "\n", + "Finally, we'll run the code to obtain and plot the estimated conditional entropy vs. means and sample sizes (4 subplots)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: divide by zero encountered in log\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n", + "/home/ubuntu/EvaPL/ProgLearn/docs/tutorials/functions/unc_forest_tutorials_functions.py:192: RuntimeWarning: invalid value encountered in multiply\n", + " entropies = -np.sum(np.log(probs)*probs, axis = 1)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACMMAAAVgCAYAAABIDAgIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3gU5doG8HvSGyEJaaQuoQRIQk0oUqWJ9ICKyFGOco4dPVgA0YMKHkA/PRaKIuABEaVFQhAERbpCAoghtDRSSCNlU0jZZNv3x5Ihm7abZJNNuX/XxcW8szPvPEMSL+fJM88rqNVqNYiIiIiIiIiIiIiIiIiIiIiI2gETYwdARERERERERERERERERERERGQoLIYhIiIiIiIiIiIiIiIiIiIionaDxTBERERERERERERERERERERE1G6wGIaIiIiIiIiIiIiIiIiIiIiI2g0WwxARERERERERERERERERERFRu8FiGCIiIiIiIiIiIiIiIiIiIiJqN1gMQ0RERC0qKioK/v7+8Pf3x7vvvmvscJrsxIkT+Ne//oUJEyZgwIAB4r35+/vj2LFjNY6vqKjADz/8gIULF2LkyJEICgrSOqeoqMgId9GxjRs3Tvz3//HHH40dDhEREREREVG70d7yQERERNR2mBk7ACIiImobVCoVxo0bh8zMTHHf888/j8WLFzdoniFDhmDs2LE4efIk9uzZg7lz56Jv376GDhc//vgj3nrrrSbN8e2332Lo0KG1fqZSqfDmm2/ip59+0ns+qVSKBQsWIC4urklxdXR5eXmIiIjAxYsXERsbi4KCApSWlsLS0hL29vbw9PREt27dEBAQgEGDBsHf3x+CIBg7bGqi/Px8XLt2DVevXhX/zsjIED8PDQ3F2rVrWyyeiooK/PLLLzh06BASEhKQnZ0NKysruLq6YujQoZg5cyaCgoJaLB4iIiIiIqLGWLduHdavX1/vMYIgwNbWFg4ODujVqxeGDh2K6dOno0uXLjrnb6k8EDVOWVkZbt68qfWsfevWLSiVSgCAp6cnjh8/3qRrSKVSRERE4NixY7h9+zby8vLg4OAADw8PPPjgg5g5cyY8PDwaNXdGRgYOHDiAEydOICMjAwUFBejSpQu8vb0xceJETJ8+HU5OTk2Kn4iI2i4WwxAREZFezp49q1UIAwDh4eF49dVXYWLSsGZzr7zyCk6ePAmVSoU1a9Zgx44dhgy1RXz//fdahTCdOnVCr169YG1tLe6rnhR67733tAph3NzcIJFIYG5uLu4zM2tb/3tWtejIEAmS+shkMnzxxRf49ttvIZfLa3xeWlqK0tJSZGVl4dKlS9i3bx8AwNnZGXv37m10YoWMKycnB3PnzkV6erqxQxHduHEDS5YsqVHYJpPJUFBQgLi4OOzYsQNz587FsmXLYGNjY6RIiYiIiIiImk6tVqO4uBjFxcVIS0vD8ePH8emnn+Kll17CP//5T50voLSHPFB79PTTTyMyMlIsfGkOhw8fxvvvv4+CggKt/Tk5OcjJyUF0dDQ2bdqEN954A3/7298aNPeOHTvw8ccfQyaTae3PyspCVlYWLly4gI0bN+Ldd9/FlClTmnwvRETU9rSt37YQERGR0VQWFlSVlZWFM2fOYMyYMQ2aKyAgACNHjsTZs2cRFRWF33//HSNGjDBUqLUKCQmBpaVlg87p3LlznZ/t3r1b3B49ejTWr19f7/xSqRS//PKLOF60aBFefvnlBsXTkRUXF+Mf//gHLl++rLXf2toaEokEnTt3hlwuR35+PlJTU6FQKMRjcnNzUVZW1tIhk4GUl5e3qkKYmzdvYv78+SgpKRH3OTg4wM/PD+Xl5UhISEB5eTkAzX8nUlNTsXnzZq2iNyIiIiIiotZq5MiRNfYplUoUFhYiMTFRfN6RyWT45JNPkJmZqXP5I2PkgUi3lJSUZi2E2bt3L9555x2tfR4eHvDy8kJeXh5u3boFtVqNsrIyrFq1ClKpFK+88opec3/22Wf48ssvtfZJJBK4uroiKysLqampAICCggIsXrwYZWVlmDNnjmFujIiI2gwWwxAREZFO+fn5Wh0/Ro0ahTNnzgAAwsLCGlwMAwALFizA2bNnAQAbN25s9iTI2rVr4eXlZZC5ZDIZ4uPjxfHChQt1FtpcvXoVarUaAGBqaornnnvOILF0FCtWrNAqhAkICMCrr76KESNG1OimI5PJEBMTg2PHjuHIkSPIysqqd+7m7GZDhuXg4ICAgADxzwcffICcnJwWu35xcTGeffZZsRDG3Nwcy5cvx6OPPioWu+Tn5+Ozzz7Drl27AADnzp3Dhx9+WCMBSERERERE1Bpt3bq1zs9kMhkiIiLw4Ycfori4GICmc+64ceMwatSoeudt6TwQ6c/Kygq9e/cWn7V//vlnMe/XWNHR0XjvvffEsZubGz788EMMHz5c3Hfr1i288847uHTpEgBgw4YN6NOnDyZOnFjv3L/88otWIUyPHj3w0UcfISAgQNwXExODpUuXIjExEYAmr9SzZ0/069evSfdFRERtC4thiIiISKcDBw6Iy9IEBATgzTffFB+Kjx8/DqlU2uD1d0eOHAlPT0+kp6fj4sWLuHr1KgIDAw0ee3MoLCwUC1sAoGvXrjrPqdoO1tnZmV0iGuDatWs4dOiQOB45ciS+/PJLWFhY1Hq8lZUVQkJCEBISgiVLluC3336Dg4NDS4VLBubg4IDPP/8cAQEB8Pb21vrso48+atFYNm/ejDt37ojj//u//8PDDz+sdYyjoyPef/99ABALYn744QfMnz8f3bp1a7lgiYiIiIiIDMzKygqPPfYYPDw8sHDhQnH/7t27dRbDtOU8UHu1bNky+Pj4oGfPnjA1NRX3X7hwoclzf/jhh2LXXltbW+zcubPGM72fnx+2bduGxx57DDdu3ACgec4fO3ZsnXmziooKrVyAu7s7vv/++xrdnYOCgvD9999jxowZuHPnDhQKBT766CN89913Tb43IiJqO0yMHQARERG1fmFhYeJ2aGgo/P390bdvXwCAXC5HREREg+c0MTHB9OnTxfHOnTubHmgLqSwMqlQ1YVCXqsv2VO9kQvWrurwUALzzzjt1FsJUZ2pqikmTJqFLly7NERq1ADs7O0yePLlG0qyllZaW4ttvvxXHY8aMqVEIU9XSpUvFIkGFQoGvv/662WMkIiIiIiJqCSNHjoS/v784/uuvv3Se05bzQO3VpEmT0Lt3b73yWg0RFRUldnsBgBdffLHOZ3oLCwusXLlSHKempmq9EFXdoUOHcPv2bXG8bNmyOpc5d3BwwLJly8TxhQsXDFLoQ0REbQd/E0NERET1unLlCuLi4gBolgSZNm0aAE1RzPXr1wFoimX+/ve/N3juyZMn46uvvgIAHD16FCtWrIC1tbVhAjewyMhIPPXUU7V+Nn78+Br71qxZg/T0dKxfv77GZ+np6VpJo0q//fZbnUs5FRYW4uDBgzhz5gwSEhIglUqhVqvh5OSEwMBAjBs3DtOmTWtwoU1FRQUOHz6M33//HTExMcjPz0dxcTGsra3h4eGBPn364IEHHsCECRNga2srnvfkk08iKipKr/sCgJdffhmLFi1qUGyVkpKSxG1HR0eDd9cYN24c0tPTAWi+brNnz9b6/Mcff8Rbb73V6PljY2Pr/Vwmk+Gnn37C6dOncePGDUilUsjlcjg5OaFXr14YM2YMZs+e3Wp/NjqK06dPo7S0VBzPnz+/3uNtbGwQGhoqthj/7bffoFAoWAxHRERERETtQvfu3cXn3ardcOvTnHmgZcuWYf/+/QA0Oau1a9cCAG7evIl9+/bh3LlzyMrKglKphKurK0JCQjB//nzxZS8ynCNHjojblpaWePTRR+s9vl+/fggKCkJMTIx4/qxZs3TO7erqqnNJpUmTJsHFxUVcYvnIkSMICQnR6z6IiKjtY2cYIiIiqte+ffvE7bFjx8LR0REAMG3aNLFlaVxcHK5cudLgufv06QMXFxcAQElJCU6fPm2AiNufbdu2YcKECVi1ahVOnjyJtLQ0lJaWoqysDOnp6Th69CiWLl2KqVOnIjo6Wu95w8PDMWHCBCxduhQRERFISkpCQUEBFAoF7t69i9jYWISHh2PJkiUYOXIkSkpKmvEu61a5DjkAreWp2oOIiAhMnDgRb7/9No4ePYrU1FQUFxejvLwcmZmZOHXqFFauXIlJkybh5MmTxg63Qzt+/Li4bWlpqbXOeV0efPBBcbuwsBAXL15sltiIiIiIiIhaWtWuuTY2Nnqd05J5IKVSiU8//RShoaHYsWMHEhISUFxcjLKyMqSkpGDfvn2YPXt2rS8xUdNUfX4eOHBgnZ1bqho7dqy4/fvvv0Mmk9U4RiaT4Y8//hDHo0aN0vnCiZmZmdYSXlVjIyKi9o+vJRIREVGdZDIZDh8+LI5DQ0PFbScnJ4wZMwbHjh0DoCma6devX4OvMXToUPz0008AgJMnT+Khhx5qYtTNo3Pnzhg5ciQAoLy8XKutakhICCwtLbWOd3Nzg6mpqXhOdna22GHH0tKy1rdQrKystMYKhQJvv/02wsPDtfZ7enqia9euAICUlBTx7Zbk5GQ89dRT+PLLL/HAAw/Uez+rV6/G9u3ba1zfz88P9vb2KC0tRWpqqvh2V2lpKZRKpXhsUFAQLCws9LovAPDx8ak3nvpUFmABmrfNrl27hoCAgEbP11Bubm7i11EfMTExKCws1Hncf//7X2zatElrn4uLC7y8vGBubo709HSxY012djZefPFFrF69us63o6h5Va5fDtz//telX79+MDc3F5PEN27cwLBhw5otRiIiIiIiopagVCq1Xoqqq0tsbVoqD7Ry5Urs2rULgKZYp2fPnrC0tNR61lar1Vi3bh1cXFwwd+7cZomjoykoKEBmZqY4HjRokF7nDR48WNyuqKhAYmJijdxPQkICKioqGjz3oEGD8OOPPwIAMjIyUFBQAAcHB73OJSKito3FMERERFSnI0eO4O7duwA0xS+jR4/W+jw0NFQshjl06BCWL19eo6BDl/79+4tJkMjISANE3Tx69+4tLneSlpamtTTS2rVr61zeaObMmQC0l9pxdnYW56rPZ599plUIM3v2bDz//PPw9fXVOu78+fNYuXIlEhMTIZPJ8Prrr+PAgQNwdXWtdd6tW7dqFcJ4enpi8eLFmDRpUo2inoSEBBw+fBg//PCD1v4lS5Y0+r4aasCAAeL3SOW1N2zYAIlEYvBr1WbEiBEYMWKEXsceO3ZM6y2lymXFqvvhhx+0CmHGjRuHV155BX369NE67tq1a1i1ahUuX74MpVKJFStWoE+fPg1KNFLTKZVKreW6qv8M1sXS0hJubm5IS0sDoPl5IiIiIiIiauu2bNmCO3fuiOMZM2bofW5L5IFOnjyJ/Px8ODg4YNmyZZg6darWCw3nzp3D66+/jry8PADA//3f/2H69Ol6d7ihulV/7tX3+bn6cQkJCbUWw1Slb16o+nEJCQkIDg7W61wiImrbWAxDREREdQoLCxO3p0+fLi6LVGnMmDFwdHREfn4+iouL613Tty69e/cWt9PT0yGVSuHk5NS0wNuBv/76C1u2bBHHq1atwmOPPVbrscOGDcPu3bsxd+5cJCYmQiqV4ssvv8S7775b49ikpCT897//FccBAQHYsmVLnf/mPXr0wCuvvIJnn322xte/pUybNg2ffvqpuExTQkICpk6ditGjR2PcuHEYNGgQ/Pz8IAiCUeKrdPXqVbzxxhtQqVQANG81rVmzpsZx6enpWvuff/55LF68uNY5AwIC8O2332LhwoWIiopCeXk5PvnkE3z99dcGibm5impefvllLFq0qFnmNobs7GytFuAeHh56n+vh4SEWw1S+fUhERERERNSWKJVKFBYW4vr169i7dy+OHDkifjZixAjMmTNH77laIg+Un58Pe3t7/PDDD/Dz86vx+fDhw/HFF19g/vz5AIC7d+/il19+MVgn1ieffBJRUVEGmauqIUOGYMeOHQaf15Aqn38r6fv8XNlhubIrcW3Pz9X3VXZN1qV6DOnp6SyGISLqIFgMQ0RERLVKTU3VWgqo6hJJlczNzTFt2jTxQTwsLKzBiYPqb37ExcU1yzIiVTu56Hv8xo0bDR6Hvr7++muo1WoAmu4ydRXCVOrUqRNWrlwpJnL279+P119/HXZ2dlrHbd68GQqFAoCmTfDnn3+uV9KpoR1/DMnR0REffPABXnvtNfHfRKFQ4Pjx4+Jaz7a2tujbty/69++P4OBgDB8+vEVjzszMxPPPP4+ysjIAmu/rDRs21LqUzrZt21BeXg4ACA4OrrMQppKFhQVWr16NyZMnQ6FQ4PTp00hNTW3S0lPUMMXFxVrjTp066X1u1WMrC7qIiIiIiIhaK31fmnBwcMC8efPw4osvwsTERO/5WyoP9Oabb9ZaCFMpODgYAwcOxOXLlwEAly5d4rLEBlD9udfe3l6v80xNTWFjYyN2qK7t+bn6s7m+c1d/huezORFRx8FiGCIiIqpVWFiYWHjg7+9fY/mWSqGhoWIxzIULFxr8S3pnZ2edb350NAUFBThx4oQ4fuaZZ/Q6Lzg4GF5eXkhLS0NZWRn++usvjBw5UvxcoVDg559/FsehoaHw9vY2XODNaMqUKbC3t8e///1vZGRk1Pi8pKQEFy5cwIULF7BlyxbY2dlh+vTpeOGFF+Dm5tassRUXF+O5555DTk4OAE1CcNOmTXB0dKxxrEqlwoEDB8Sxvl9bb29vDB48GJGRkVCr1Th37pxBimGqfn8YUnsr1CktLdUaN6TQquqxTLgREREREVF70KlTJ8yePRuhoaG1vgRSn5bIA9nY2OhV2BISEiIWw8THxxvs+kFBQQ3+d9FHW1gyufpzb/XluOtjZWVVbzFM9Wdzfeeu/gzPZ3Mioo6DxTBERERUg1KpxP79+8Xx7Nmz6zw2ICAAvXr1QlxcHNRqNcLCwnR2uqjK1NQUdnZ2KCwsBABxvWZDCwkJadADeN++fZslDn1cvHhRXGqnS5cuWi2Edendu7fYkvbq1ataxQ7Xrl3TShw8/PDDBoq4ZYwcORJHjx7FwYMHERERgYsXL4pdbqorLi7GDz/8gAMHDuA///kPpkyZ0iwxKZVKvPbaa4iNjQWg6Za0fv16dOvWrdbj4+LixO91QRAwfPhwva/Vu3dvcT31q1evYu7cuU2MHti6dWuT5+gIqi6RBGj+u6WvqsfW9f1KRERERETUWtT10kRZWRmysrKQnp6Ou3fv4ptvvsG2bduwcOFCvPbaa3p3h2mJPFBgYKBexSju7u7idmURhiEsWbLEYHO1NdWfe83M9P81pK7n58bOXf0Zns/mREQdB4thiIiIqIazZ8/izp07ADQPltOnT6/3+NDQUHz44YcAgPDwcLz66qsNapFrZWUlJkEql5kxtLVr18LLy6tZ5ja0ysIKACgvL8fChQv1PjcuLk7clkqlWp8lJiZqjQMDAxsZofFYWFhgzpw5mDNnDkpLSxEdHY2YmBjcvHkTf/31V403ykpLS/Haa6/BwsICEyZMMHg8q1evxqlTp8TxBx98gJCQkDqPv3nzprhtZmaGRYsW6X2t1NRUcbv615aal42Njda4cpkrfVQ91tra2mAxERERERERNQddL02kp6dj69at2LlzJ1QqFTZv3gypVIrVq1frfY3mzgO5uLjodVzVZ7Tmykd1NM35/Fx9X3l5uV7P2dVj4LM5EVHHwWIYIiIiqmHfvn3i9qhRo9ClS5d6j58xYwY++eQTKBQKZGVl4cyZMxgzZoze16tcjok0CgoKxO3i4mKcPXu2UfNUf6upMtEEaJITbf3h38bGBsOHD9fqrpKYmIiwsDDs3LkTMpkMgOb7a8WKFXjggQdqJGWa4ttvv8V3330njl9++WWdbZirfm3lcrnBvrbUvKp/31R+b+mj6rG2trYGi4mIiIiIiMgYPD09sWLFCjg5OWHdunUANEttjx8/HuPHj9drjubOAzXHEkWkn+rPzw0pMtL1/Fx9X1lZmV65rerP8Hw2JyLqOFgMQ0RERFqkUilOnDghjs+fP4+hQ4fqPK9yWR9AkwRpSDEMOydoM9TbSNWTS1X/ndtrYqh79+5YsmQJZs+ejaeeekpst5yXl4ejR48iNDTUINc5efIk1q5dK46nT5+uV5eX5vraUvNydHTUGufk5Oh9btVjq89DRERERETUVj377LP49ttvxRdvtm/frncxDPNA7ZeTk5PWWN/n5+LiYq2cSW3Pz7U9m1e/Xm2ys7PrnYeIiNovFsMQERGRlgMHDkAul4vjsrKyBv8C//jx45BKpXo9kCqVShQXF4tjXV1oOoJOnTqJ2/7+/oiIiDDIvPb29uJ21X/z9qhHjx5444038NZbb4n7Ll68aJBimJs3b2Lx4sVQKpUAgODgYL3bQVf9GtjZ2eHSpUtNjqcpGrIEV0PMmDEDM2fObJa5jaFz585wdnZGbm4uACAjI0Pvc6se6+fnZ/DYiIiIiIiIjMHCwgL9+vXDmTNnAAB//vkn5HI5zM3N6z2vI+SBPvroI60lsA3F398fS5YsMfi8htStWzetsb7Pz9WXva7t+bn6voyMDPj7++ucu3oMfDYnIuo4WAxDREREWsLCwpo8h1wuR0REBP7+97/rPDYnJ0csKgA07XY7uqprW1d2NjEEV1dXcVuhUOD27dvw9vY22PytzdixY7XG1d8Eaow7d+7gueeeQ2lpKQBAIpFg/fr1enfacXZ2FreLi4shk8lgZWXV5Lgaq7HLNOkyYMCAZpnXmHr06CEWw1y7dk2vc9LT07WWxurevXuzxEZERERERGQMnTt3FrflcjkKCgq0chq16Qh5oJiYGERFRRl83oqKCoPPaWi+vr4wNzcXX7TT9/n5+vXrWuMePXrUOKZnz55a42vXruHBBx9s0Nzm5ubw9fXVKyYiImr7TIwdABEREbUe0dHRiI+PF8fffvstYmNj9f4zf/588Vx9i2pSUlK0xr169TLMzbRhAwcOFLdzc3Nx+/Ztg8xbvUAhMjKyyXOamNz/38nWtnSPnZ2d1tjU1LRJ85WVleGFF15AVlYWAMDBwQGbNm1qUHvd6l+Dv/76q0kxUcsJCQkRt9PS0pCZmanznAsXLmiN9VlyjoiIiIiIqK2oXCKpkj4vezAP1L6ZmZlh0KBB4rj6c3FdqhYP+fj4oGvXrjWO6dq1q9ZLXY2Ze/DgwU3ODxERUdvBzjBEREQk2rdvn7jt4uKi9ctffUyZMgU7d+4EAMTFxeHKlSvo169fvefcvHlT3Pb09NRraaX2LigoCA4ODmJHiX379mHx4sVNntfZ2Rl9+vTBjRs3AAC7du3CI4880qQ5q67tLZPJmjSXod26dUtrXLUzTkOpVCq8/vrr4htN5ubm2LBhAyQSSYPmcXNzQ+/evcXv+71792LYsGGNjqupmqNtc3s1adIkrFu3ThyHh4fjhRdeqPec8PBwcTsoKKjWZB4REREREVFbVFFRgStXrojjzp07ay37XJeOkAfasWOHsUMwqkmTJokvYN2+fRuXLl3C4MGD6zy+tLQUv/zyizieOHFincdOnDgR33zzDQBNkUtGRgY8PDzqPD4jI0OraGbSpEl63wcREbV97AxDREREADRdLw4fPiyOJ0+erNX1Qx+DBw+Gm5ubOK5aXFOXqokTdk3QMDMz01piavv27TXaxTbWggULxO2YmJgmJ2iqtj+WSqW4e/duk+arzalTpxq1XNS2bdu0xg888ECjY/joo4/w22+/iePVq1cjODi4UXMtXLhQ3D58+DBOnTrV6Lio5fTq1UuruO+7777TWgKpugsXLuD8+fPiuKmFZ0RERERERK3Jpk2btDrDjBkzRq/zmAdq/6ZMmQIbGxtxvGHDhnqP37ZtG4qLiwFoOhDPnj27zmNnz54t5itVKhU2btxY79wbNmyASqUCANja2uLhhx/W6x6IiKh9YDEMERERAQCOHDkiPngCwNSpUxs8hyAIWg+Vhw4d0tktpOpSPfomTjqCJ598Uuw6UlZWhqeffhonT57UeV5RURG+//57PPPMM7V+Pm3aNAQEBIjj1atXY9u2bWJioDYlJSX45ptvUFpaWuMzf39/mJubi+P//e9/OmNsqIMHD2LcuHFYtWoVrl69qvP48vJyfPjhh9i/f7+4r2vXrhg7dmyjrr97926t+1q0aBFmzJjRqLkAzdegsmWwSqXCq6++irCwMJ3LTJWVlSEiIqLepBA1TGRkJPz9/cU/VTu/1Ob1118Xt3Nzc/H666/X+nORnJyMJUuWiF9TiUTCYhgiIiIiImoXMjIysGrVKqxfv17cZ25ujueee06v85kHav+cnJzw9NNPi+Pff/8dn332Wa3HnjhxQqugZdasWejRo0edc/fs2VMrJ7N3717s3bu31mN37dql9aLeM8880y47ERERUd24TBIREREB0O7i4unpiQEDBjRqnilTpogdOYqLi3HkyBHMmjWr1mNv3LiBnJwcAICNjU2zJkGWLVsGS0vLBp0zceJEPP74480UUf3s7OywceNGzJs3D4WFhSgoKMBzzz2HoKAgjB8/Hv7+/rC3t0dFRQUKCgoQHx+P6OhoREVFQS6Xw9PTs9Z5zc3N8fnnn+PRRx9Ffn4+VCoV1qxZgz179mDKlCno27cv7O3tUVpaipSUFFy6dAmnTp1CaWlprb/Mt7W1xbhx43D06FEAmjduwsLC0KNHD61/76lTpzaqwKqSTCbDd999h++++w4SiQTBwcEICgqCq6sr7O3tIZfLkZ2djZiYGBw5ckT8vqq855UrV+q1dnltfvrpJ3HbzMwMly9f1uruosvWrVu1xiYmJli3bh0ee+wxpKeno6ysDMuXL8fWrVvx0EMPISAgAA4ODpDL5SgqKkJiYiKuXLmC8+fPo6ysrFH30Na98847OHDgQI39FRUV4vaBAwdw6NChGse88MILePHFFw0Sx7BhwzB//nxxObizZ89i5syZmD9/Pnr16oXy8nJcvHgRu3fvFrskWVhYYPXq1TAz46MXERERERG1fnU978pkMmRlZSEtLU1rvyAIeO+99+otYKjUklb2OLYAACAASURBVHkg0i08PBz//ve/a+xXKBTidnp6OoKCgmocExISIi5XVJt//vOfOH36NGJiYgAAX375JS5evIjZs2fD09MT+fn5OHbsGA4fPgylUgkA8Pb2xhtvvKEz7iVLluDixYvi9+I777yD48ePY+rUqXB1dcWdO3dw6NAhnDhxQjwnKCioQbkcIiJqH5iRJSIiIiQnJ+PixYviePLkyRAEoVFz9e/fH15eXuIDaVhYWJ3FMEeOHBG3H3roIVhbWzfqmvqouj6wvvz8/JohEv11794de/fuxUsvvYT4+HgAmqWNKhMJjeXt7Y3du3fjueeeQ1JSEgAgMTFRZ1eMuixfvhxXr15Feno6ACArKwtZWVlax/Tp06fR8ZqammqNk5OTkZycrNcyXI6Ojli7di1Gjx7d6OtXpVAocPbs2SbP4+zsjD179uDVV18Vf/YSExN1tvftqBQKhVbhS21UKlWtx1Qm1Qzl7bffRmFhoVgklZqaijVr1tR6rLW1NT766KN610YnIiIiIiJqTRryzOvt7Y13330Xo0aN0uv4lswDkW51PUdXV9sxcrm83nOsra3x1Vdf4emnn0ZcXBwATW6urvycp6cnvv76a3Tp0kVnPF26dMHXX3+Nf/zjH8jIyAAAHD9+HMePH6/1eH9/f2zatInfb0REHRCXSSIiIiKEhYVpjadMmdKk+aoulXThwgWkpqbWOEatVmt13Jg3b16Trtle+fr64scff8T777+vszhHEAT06dMHL730ks7linx9fXHgwAEsXboU7u7u9R7brVs3LF68WGu956rc3d0RERGBZcuWYfjw4XBxcWlwF576rFq1Clu2bMH8+fPRs2dPvQq1fH198dJLL+Ho0aONXh6puTk7O2PHjh349NNPERgYqPO+/Pz88Mwzz9TaIYVajqmpKT755BN8+OGH4lJmtR0zZswYhIeHY9KkSS0bIBERERERUTOwsLCAk5MTAgMDMXfuXGzatAlHjhzRuxCGeaCOx9nZGWFhYXj++efh4OBQ6zG2trZ44oknEBER0aCX0rp3746DBw9i3rx5dearHBwc8MILL2Dfvn16FdkQEVH7I6grF7InIiIiakFnz54V25MOHDgQu3btMnJEbUNmZib++usvSKVSFBUVwcLCAvb29vD19UWvXr3qTC7oEhcXh+vXryM/Px8ymQy2trbw8PBA37594eHhYeC7aJrKpYNSUlJQUFCA0tJSmJubizH36tWr1cWsD6lUij///BPZ2dkoKiqCqakp7O3t4e3tjZ49e8LFxcXYIVItrl27hvj4eGRnZ8PS0hJubm4ICQlhoo2IiIiIiKgK5oE6NrlcjosXL+L27dvIz8+Hvb09PDw8MHTo0EYva11JJpMhMjISGRkZKCoqgqOjI7y9vRESEsIli4mIOjgWwxAREZFRVK4dDABbtmzR+00iIiIiIiIiIiJqW5gHIiIiopbGZZKIiIioxd24cUNMgAQHBzMBQkRERERERETUTjEPRERERMbAYhgiIiJqcZ9//jkAwMTEBG+99ZaRoyEiIiIiIiIioubCPBAREREZA4thiIiIqEVduHABJ06cAAA8+uijCAwMNHJERERERERERETUHJgHIiIiImMR1Gq12thBEBEREREREREREREREREREREZgpmxAyDqiGQyGa5evQoXFxeYmpoaOxwiIiIiIiLqwJRKJXJychAYGAgrKytjh0OtGPMZRERERERE1FroymewGIbICK5evYr58+cbOwwiIiIiIiIi0c6dOxEcHGzsMKgVYz6DiIiIiIiIWpu68hkshiGjkkqlcHJyMnYYLc7FxQWA5gfT3d3dyNEQERERERFRR5aVlYX58+eLz6ptRUfNKRgT8xlERERERETUWujKZ7AYhoxq7NixmDhxIh5//HGEhIQYO5wWU9lK2N3dHV5eXkaOhoiIiIiIiAhtbtmbjppTMCbmM4iIiIiIiKi1qSufwWIYMqqKigocPnwYhw8fhp+fH+bOnYvQ0FB06tTJ2KERERERERERUSvGnELzKioqQlFRkda+rKwsI0VDRERERERE1DAshqFWQa1W49atW1izZg3++9//4uGHH8bcuXMxYMAAY4dGRERERERERK0YcwrNY/v27Vi/fr2xwyAiIiIiIiJqFBNjB0Ad25o1a9C/f38AmuSVWq2GTCZDeHg45s2bh1mzZmHXrl0oKSkxcqRERERERERE1Jowp9C8FixYgN9++03rz86dO40dFhEREREREZFeBLVarTZ2EERxcXHYtWsXDh48iLt374r7BUEAAFhbW2PatGl4/PHH0bdvX2OFaTBpaWkYP348fvvtN66xTUREREREREbV1p9RO1pOwZja+vcKERERERERtR+6nlHZGYZahV69emHFihU4c+YM/vOf/9R4s6u0tBR79+7FnDlz8MgjjyAsLAwymczIURMRERERERGRsTGnQERERERERETVsRiGWhUrKyvMmTMHu3fvRnh4OB5//HHY2dkBuJ/EunbtGt555x2MGjUKH3zwAeLj440cNREREREREREZG3MKRERERERERFSJxTDUavXu3Rvvvfcezpw5g1WrViEoKAjA/QTW3bt3sXPnTsyYMQNPPPEEIiIiUFFRYeSoiYiIiIiIiMjYmFMgIiIiIiIi6thYDEOtnrW1NR599FHs3bsX+/fvx9y5c2FrawtBEMQk1uXLl7F06VKMHj0aH330EdLS0owdNhEREREREREZGXMKRERERERERB0Ti2GoTenTpw/efvttvPHGG7C0tIQgCBAEQfy8oKAA//vf//DQQw9hyZIlSE9PN2K0RERERERERNRaMKdARERERERE1HGYGTsAIn0lJSWJ634XFhaK+9VqNQDAxMREfKtLqVTi4MGDOHbsGD744ANMmTLFWGETERERERERkZExp0BERERERETUsbAYhlo1uVyOX375Bbt27cLFixcB3E9UAYCZmRkmTJiAJ554Av7+/jhw4AB2796NxMREAEBpaSnefPNNeHp6on///npds6KiAjdv3kRMTAyio6Nx5coVJCcni9d9+eWXsWjRIgPfKREREREREREZkjFyCkRERERERETUOrAYhlqllJQU7N69G/v370dBQQEA7YSVm5sbHnvsMTz22GNwcXER9z/11FN46qmn8Msvv2D16tW4c+cOVCoVtm7dii+++ELndcPDw/Hvf/8bFRUVhr8pIiIiIiIiImp2xsopEBEREREREVHrwWIYajUUCgV+/fVX7N69G5GRkQC0k1WCIGDYsGF44oknMG7cOJiamtY516RJk9CjRw/MmDEDSqUSly5d0iuGgoICFsIQERERERERtTGtIadArYe6pASqxAQIDo4QPDwgmDEFSkRERERE1NHwSZCM7vbt29izZw9+/PFHSKVSANoJK3t7e8yaNQvz5s1Dt27d9J7Xz88PAQEBiI6OFt8E01fXrl3Rr18/9O/fH/3798fHH3+My5cvN2iOllRRUYG7d++iqKgIFRUVUKlUxg6JyKhMTU1hbW0NBwcH2NnZQRAEY4dERERERETNoDXmFMi4VIkJKJsxBcjL1ewwM4Pg5Q3B1xcmvhIIPhKYSCQQfCWasb29cQMmIiIiIiKiZsFiGDKqhQsX4ty5c1Cr1VrJKgDo27cv5s2bh+nTp8PKyqpR8zs7OwOA3sUhkydPxtSpU7XaJAOAubl5o67fEnJycpCfn49OnTrB1dUVVlZWMDEx4S//qcNSq9VQKpUoLi5GXl4e8vLy4OPjAxMTE2OHRkREREREBtTacgrUOij27UFeTjZuKVXwNjGBOxRQJydBnZyEWr+Sjo4w8ZFAkNwrjqlSNMOuMkRERERERG0Xn+bIqH7//XcIgiAmrSwsLPDwww/jiSeeQP/+/Vs8Hnd39xa/ZlPk5OSgqKgIfn5+MGNyhgiApv25mZkZHBwc0LlzZ2RmZiIjIwOenp4sEiMiIiIiakdaW06BWodrpmaYmFuEvHvfFz4mJggxN8UQCzMMMTdDfzNTWFR9NszPhyo/H4i+DGX1yczMIHj7wMTXV1McU1kow64yRERERERErR5/e05Gp1ar4e3tjblz5+KRRx6Bg4ODweZetWoVli9fbrD5WpOKigrk5+ezEIaoHoIgwN3dHcnJySgtLYWtra2xQyIiIiIiIgNiToGq25snFQthACBVpUJquQph5XIAgCWAAeamGGJuhhBzTYGMl2kdnUQVCqiTbkGZdKv2z52cNF1lxCIZX5j4doPge6+rjKmpge+OiIiIiIiI9MXfoJNRjR07FvPmzcPo0aObpWODk5OTwedsLe7evYtOnTqxEIZIBxMTE3Tq1AklJSUshiEiIiIiakeYU6DaBLjVv9R1OYBIuRKRcuW9EeBhIiDE3AxD7xXIDDQ3hZU+31NSKVRSKfDXnzW7ypibQ/DyFrvKmEg0HWU0XWV8IXRiVxkiIiIiIqLmxN+ik1F99dVXxg6hzSoqKoKrq6uxwyBqE+zs7JCZmcmfGSIiIiKidoQ5BarN3An9UfzCA/jfsXj8mZQHuUKl85wMlRoHyuU4cK97jLkgoJ+VBYYAmiIZC1P4mJg0rOhKLtevq4xEcr+rjI+EXWWIiIiIiIgMhMUwRG1URUUFrKysjB0GUZtgYWEBuVxu7DCIiIiIiIiomZl2G41/zrqAf070h6xCgctJUkTG5eBcbDYi43JwO7dE5xxytRqXyspxCcCXZZruMe729hji5ooQG2sMUcgxsEAKG0UTnjN1dZXx9rnfVcbXl11liIiIiIiIGojFMETNrKioCEVFRVr7srKymjyvSqWCiUkda1oTkRYTExOoVLrfBiQiIiIiIqK2TbB1BcavAnJuwCo3FsPdYjG8dwr+pdY8E6bnleB8XA7O3yuOuZiYh3J5jXKUGrKKihBRVISIe2NTU1P079sXQ3v2wBB3NwyxsUa3u0VAagpUKSlAXm7jb0Iuh/pWIpS3Emv/3KmLWCAjdpXx7aYpmOnalV1liIiIiIiIwGIYaoVu3LiBo0eP4sqVK0hOTkZhYSEqKirQqVMndOnSBYGBgQgJCcHDDz8Ma2trY4er0/bt27F+/fpmmbs51kQnao/4s0JERERE1DG0t5wCNY5gagG494fg3h8AoJaXAdJEqHNj4ZkbiznOSZgzXAIAqJArEZ0s1RTI3CuSSc4u1nkNpVKJP2Ni8GdMDL68t8/Z2RnDhg3D8Pl/x9D+/RDs6grb3Byok5OgSkmBOiUZqtQUqFNTgKZ0L5XmQSXNAy7r0VVGItHuKmPXqfHXJSIiIiIiakNYDEOtxo0bN/D+++8jOjpa3KdWq8VtqVSK/Px8JCQkIDw8HKtXr8aCBQvw/PPPw9zc3Bgh62XBggUIDQ3V2peVlYX58+cbKSIiIiIiIiKi9qW95hTIMARza8AtEIJbIABArSgXi2MscmMRYnkLIT1dsGiq5vis/FKcj8tB5L3imAsJuSir0N09Jjc3Fz/99BN++uknAJoupYGBgRg+fLimSObpf6Bnz54Q1GqoszKhTk6GKiUZ6tQUzd8pyS3XVUbSTdNVxsf3XncZdpUhIiIiIqL2hcUw1Crs3LkTa9asgVKphFqthiAIWkmrSpX7BEFAcXExNm7ciGPHjmHr1q1wdnZu6bD1Ym9vD3t7ruVMRERERERE1Bzac06BmodgZgm49oXg2hcAoFbKgfxbQG4s1LmxcDdNxCxHG8wa6gsAkCtUiEmRIjIuB+fichAZl42EzLs6r6NSqXDlyhVcuXIFmzZtAgA4Ojpi2LBh4p+hU6ejc+fOWuep7xZBlZoKdZUCGXXKve4yt1Obr6uMhYWmq4yP7/1OMr4SmEi6QfDxYVcZIiIiIiJqU1gMQ0a3Z88erFq1CsD9pUysra0xZMgQ+Pv7w8HBARYWFiguLsbt27cRHR2N+Ph4AJpEVmxsLJ588kns27cPtra2RrsPIiIiIiIiImpZzCmQIQim5oCzP+DsDwGAWqUA8pPE4hjzvAQM6u6MQd2d8cLDfQAAOYUyRMZrOsdExuUgKj4HxTKFzmvl5+fj559/xs8//6y5tiCgT58+97vHDB+OPn36wDQgEAgIrHG+WqmEOjPzXpFMcrW/UwBpXuP/ISoqoE5MgDIxofbPuzjfL5ARl16SQPD1heDOrjJERERERNS6sBiGjCojIwNr1qwBoHn4t7e3xyuvvII5c+bAysqqzvNu3ryJjz/+GGfPnoUgCEhOTsann36Kd955p6VCJyIiIiIiIiIjYk6BmotgYgZ06Ql06QnBf5qmOKYgBciNgzo3FsiLh0tnYFqwN6YFewMAlEoVrt0uwPm4+wUyN9MLdV5LrVbj+vXruH79OrZu3QpA02V46NChYnHM0KFD4eTkpInN1BSClxfg5QXTESNrzlfZVSY56X5XmdRkw3SVycuFKi8X+PNS/V1lJN20i2bYVYaIiIiIiIyAxTBkVLt370ZZWRkEQYCLiwu2b9+Obt266Tyvd+/e2LJlC9auXYtt27YBAPbu3YvFixfzTS4iIiIiIiKiDoA5BWopgokZ4NQdcOoOodfDUKuUQOFtsXMM8uJgilL0kzihn8QJz07yBwBI75YjKj5HUyATl42ouFwUllbovF5RURF+/fVX/Prrr+I+f39/sThm2LBhCAwMhGktnViETvb1d5XJyNAUyaQmQ52S0rJdZSSS+8sv+VTpKtPVA4KJSeOvTUREREREVAsWw5BRnTx5Utx+99139UpaVbVkyRJERUXh+vXrqKiowLlz5zBhwgQDR0lERERERERErQ1zCmQsgokp4CgBHCUQej4EtVoFFKZpFcegohhOnSwxeZAXJg/yAgCoVGrcTC/EuXudY87HZuN6WgHUat3XjI2NRWxsLLZv3w4AsLOzQ0hIiFgcM2zYMLi4uNQft6kpBG9vwNsbphhV43N1URFUqSlQVymQUacmQ5WcrOkqo9C9DFSdKrvKXLpYe1cZH19NV5nKYpmqSzDZ2jX+ukRERERE1GGxGIaMKiMjAwDQpUsXjB8/vsHnm5iY4JFHHsHKlSsBAOnp6QaNj6gl5Ofn49SpUzh79ixiY2MhlUpRWFgIKysrdO7cGT179sSAAQMwefJkSCSSBs395JNPIioqShyvW7cOkyZN0vv8tLS0en82zczMYGdnh65duyIwMBBTpkzB8OHDIQiC1nH+/v4NiluXNWvWYPbs2Qadk4iIiIiI2hbmFKi1EAQTwMEHcPCB0GOipjjmbsb94pjcOKC8CCYmAvp6O6CvtwMWTugFACgsqUBUfA4i43JwLk5TJJNfrLt7THFxMU6cOIETJ06I+7p37y4WxwwfPhxBQUEwNzfX/z7s7WEaGAQEBtX4rNauMslJmr9TkwGpVO/r1FBRAXVCPJQJ8bV/7uxSpUDmXlcZSTdNoYx7V3aVISIiIiKiWrEYhoxKqVRCEIQGv71VlZ+fn7itUqkMERZRiyguLsaWLVuwfft2lJaW1vhcLpfj7t27SEtLw4kTJ/Dpp59iyJAheP311zFgwACd82dkZODChQta+8LDwxtUDKOLQqFAQUEBCgoKcOPGDezduxcDBw7Exx9/DC8vL4Ndh4iIiIiIqDrmFKi1EgQTwN4LsPeC4DcearUaKM6qUhwTC8gKAACdbS0wcYAnJg7wBACo1WrEZRThfFw2zsdqimRiUvOhUuluH5OYmIjExER89913AABra2uEhIRoLa/k7u7euHtqQFeZyiIZdeq97jJN7SqTmwNVbo5+XWXEpZgkEHx82FWGiIiIiKgDYzEMGZWbmxuSk5Mhl8sbPYeiysO0q6urIcIianapqal49tlnkZSUpLW/R48ekEgkcHR0RFlZGXJychATEyMWy0RFRWHu3LnYs2cP+vfvX+81Dhw4oEm4VXH69Gnk5+fD0dGxUXHPmjULtra24lihUCA7OxuXLl1CUVERAODy5ctYsGAB9u7dCycnJwDA/Pnz6533ypUriImJAaD5OZ44cWK9x3fv3r1R8RMRERERUfvBnAK1FYIgAJ26Ap26Qug2VvOsXpKt3TmmLE881t+zM/w9O2PBgz0BAHfL5LiYkIvzsdk4H5eD83HZyC0q13ndsrIynD59GqdPnxb3SSQSreKYAQMGwMLCoun3WF9XGYUC6sxMqFOSoEq511Wm8u+W6ioj6VZlGSYJu8oQEREREXUALIYhoxowYACSkpKQkJCAioqKRj18X716Vdzu16+fIcMjahbJycl4/PHHkZ+fDwAwNzfHvHnz8Mwzz6Br1641jq+oqMD58+exefNmcckjmUym8zoHDhwQty0tLVFeXg65XI5Dhw7hb3/7W6NiX7RoUa0dX8rKyvDFF1/gm2++AaBZXumLL77Ae++9BwBYsWJFvfOuW7dOLIaRSCQ6jyciIiIiImJOgdoqQRAAOzfAzg2CZDQAQF2Se784Ji8WKMkRj+9kbY4Hg7riwSBNzkCtVuPWnbs4F5uDyHsdZKKTpVDq0T0mOTkZycnJ2LVrFwBNvmDw4MFaBTKG7vQqmJnd7yozcnSNz9WFhfe7yojFMve6y6Tdbr6uMpaWEHx8YOIjub8Ek9hVxhdClZeBiIiIiIio7WExDBnVnDlzsH//fpSUlGDPnj0N/gV9SUkJdu/eDUEQEBwcDG9v7ybHNHPmzBr7UlNTxe1du3bh2LFjWp+7urpi8+bNTb42tX/l5eX417/+JRbCODg4YPPmzfUmXS0sLDB69GiMHj0av/32G5YvX67zOtHR0WLXGVtbWzz//PP45JNPAGiKZBpbDFMXa2trLF26FOnp6Th69CgAzZJMy5cvN8gbZkRERERERNW1xpwCUWMJts6ArTME3xEAAHWpFMirsqxS8Z37xwoCurvbo7u7Pf42RtM5tbRcgUuJuTgfmyMusZRVUKbzuuXl5fjjjz/wxx9/iPu8vLy0imMGDRoEKysrA9/xfULnzjAN6gcE1cyNqBUKqDMy7i25lAx1crJ2V5l7+ZVGKS+HOj4eyvjau8oILq6aDjK+Ek1XGUm3+11l3NzZVYaIiIiIqJVjMQwZVXBwMB555BHs27cPH3/8Mby9vTFmzBi9zpXJZFi8eDEyMzNhY2MjdqBoqps3b9b7eW5uLnJzc7X23b171yDXpvZv8+bNuHHjBgDA1NRUZyFMdePHj8e+fftqLH9UXXh4uLg9ceJEPPLII/j888+hUChw5coV3Lp1C35+fo27iXo8+eSTYjFMWVkZrl+/jgEDBhj8OkRERERERK0xp0BkKIKNE2AzHIL3cACAWlYA5MbdL465m6F1vI2lGUb1dceovu6a49VqpOaU4FxcNiLvFchcTpJCrlDpvHZaWhr27duHffv2AdB0tB04cKBYHDN8+HD4+PhoOtw0M8HMDIKPD+DjU39XmeQkqFJS7hfNGKCrjDonG+qcbODihfq7yki63e8q4+PLrjJERERERK0Ei2HI6FasWAGZTIaffvoJL7zwAmbNmoW//e1v6Nu3b63Hl5SU4OjRo9iwYQMyMjLg5OSETz75BN27d2/hyIkapqysDDt27BDHCxYsaFQbbl1vK1ZUVODw4cPieMaMGXBycsKIESNw6tQpAJruMIsXL27wtXXp06eP1jg7O9vg1yAiIiIiIqrEnAJ1FIKVA+A1BILXEACAurxIuzimKE37eEGAr6sdfF3t8PhIzcswsgoF/ryVh8i4HM0SS/F5SMvV/YKXXC5HVFQUoqKi8PnnnwMA3N3dtYpjBg8eDBsbGwPftW46u8qkp2sVyFRdhgkFBY2/sD5dZSSS+wUylcsvsasMEREREVGLYTEMGdVbb70FQPOGiZOTE6RSKfbv34/9+/ejS5cu6NmzJxwcHGBubo6SkhKkpaXh1q1bUCgUUKvVEAQBffr0QUREBCIiIuq8jiAIWL16tV4xxcbGGuTeiKo7cuQICu4lWkxNTbFgwYJmuc6pU6fE67i4uGD4cM1bZDNmzBCLYSIiIvCvf/3L4G9xWVpaao3Ly8sNOj8REREREVGl1phTIGopgqU94BkMwTMYAKAuLwbyqhTHFN4GoN1V1srCDA/0dsMDvd1Q+XpMWm4Jzsfl4HxsNiIT83EpIRvlFbq7qWRlZYk/bwBgZmaG/v37ay2v5Ofn1yLdY+oimJlB8PUFfH1hOqpm1yh1QYGmq0xK8v2uMslJ97vKKGv0g9Gb2FXmQlTNrjJWVhC8fe4Vx0jud5XxlWi6yhihqIiIiIiIqD1iMQwZ1f79+7Ueiiu31Wo1cnNzkZeXV+OcyuVhKo+tuqZxfZi4ImM7f/68uD148GC4u7s3y3WqLpE0bdo0mNx722jChAmwtbVFSUkJMjIyEBUVhaFDhxr02jk5OVrjLl26GHR+IiIiIiKiSswpEN0nWNoBHoMgeAwCAKgrSu8Vx8QBebFAQQqgrrlEkpezLR5xtsUjD0gAAOVyJaKTpTgfm43ziYU4H5eLlMyaP0vVKRQKXLp0CZcuXcKGDRsAaF7QqVocExISAjs7O8PddBMJDg4wdXAA+vWv8VmNrjLJVbrLpCY3rauMTAZ1fByU8XG1x+XqpukgU9lVRtLtflcZVzd2lSEiIiIi0hOLYcjoKhNRhvysOmO+hUJU6dKlS+J2Y5ZH0kd+fr7Y/QXQdIOpZGVlhUmTJolvbYWHhxu8GObs2bPitpmZWZ2tyYmIiIiIiAyBOQWi2gkWNkDXARC6DgAAqOVlgDThfueY/GRAXbPziaW5KYb0dMGQni545d6+TGkpzsflIPJWIc4nFOLizdsok+nuBJuTk4ODBw/i4MGDAAATExMEBQVpLa/Us2fPVvkzpndXmeSk+11l7hXLNLmrTPYdqLPv6O4qI5Hc7y7j48uuMkRERERE1bAYhowqNDTU2CEQtZjMzExxu0ePHs1yjcOHD0Mul4vXqF6MMmPGDLEY5ujRfAnVtAAAIABJREFUo3j33XdhZWVlkGvn5eVh48aN4njixIlwcHAwyNxERERERETVMadApD/B3BpwC4LgFgQAUCvKqxTHxAH5twBV7csjdXWyQegwX4QO04zlChWupEgRmViEc0mliLyRjsTUDJ0xqFQqREdHIzo6Gl999RUAwMnJCUOHDhULZIYMGYLOnTsb5qabke6uMmn3ll+6101G/DsJKCxs/IX16SojkcDER3K/u0xlVxk391ZZeERERERE1FxYDENGtWbNGmOH0CH8npmIt8+FI6EwR/fBHUCPzi74z/BZGNG1e4tds7i4GArF/aRSp06dmuU6VZdIqtoVptKwYcPg6uqK7OxslJSU4Ndff8X06dMbfT2FQoHs7GycPXsWGzduFAt+fH19sXz58kbPS0REREREpAtzCkSNJ5hZAq4BEFwDAABqZQUgvQXkxmoKZKSJgEpe67nmZiYY3N0Zg7s740UAQCByCmU4f6sIkalynI+9g6iYeJSUlOqMQyqV4ueff8bPP/+siUsQ0LdvX63uMb179xaXgG4LNF1lJICvBKa1fK4uKLhXHJN8v6tMsmasTk8zSFcZVVRkzQ+tre93lfH1vd9VxlcCwduHXWWIiIiIqN1hMQxRB7Dsj/1IKso1dhitRkJhDpb9sR9n5rzRYtcsKSnRGtva2hr8GklJSbhy5QoATfKotiIXExMTTJs2Dd988w0A4MCBAw0qhhk/fny9nwuCgLFjx+K9996Dq6trA6InIiIiIiIiImMRTC0Al96AS28IANRKOZCfBOTFQp0bB+TFA8qKOs936WyF6QOtMH0gAHhCqRyAq5llOH9bjciEfJy/egux8bd0xqFWq3Ht2jVcu3YNW7ZsAQB07twZQ4cOFYtjhg4dCkdHR8PcuBFousoMAPoPqPGZWi6HOiP9fleZ5Ht/p6ZAlZwEFBU1/sJlZVDHxUIZF1t7XG7umiKZyq4ykm4wudddRnB1Y1cZIiIiImpzWAxDRNQCqhe/VC+OMYSqXWGCg4Ph4eFR63EzZ84Ui2H++OMP5OTkwMXFxSAxjBw5EmvXruXySERERERERERtmGBqDjj3Apx7QfAH1CoFUJByv3NMXjygkNV5vqmpCfp72aK/F/DccDsA3sgrHYOoLFOcv1WMyOu38f/s3Xd0nNWB/vHvHVWrWdW2+siSJTfci0QNxRQnhLokC4QSQiDF2Wyy2ZPsL1vO2TQ2nMMmQLKBEEIMhCy9ZEMJzQEsS+64qlgzkmzZVu993t8frzzSIKGRJdkj2c/nHI7nnXfmvneELFlXzzx3y/aPaRlDuKO5uZk333yTN99803vf/PnzveGY/Px8Fi1aRFDQSD0s04sJCfHfKuOqsMMyle7BdpnJaJU5dhTr2FH/rTLOgTaZDKcdlsnIxMyYMe7rioiIiIicKgrDiJwFfnbudfxw88uUNh8P9FSmhHkzZ/GjgmtO6zWjoqIIDg72bpXU2to6qeNblsWrr77qPR5pi6QT5s+fT25uLiUlJfT39/Pqq6/y5S9/eUzXufbaa73BHsuyqK2tpaSkBLfbDcDf/vY3brnlFv7whz+QkJAwgVckIiIiIiIiIlOFcQRDfDbEZ2Ny12N5+qG5ciAcUwL1JdA7+rZICRFw1dx+rpo7Ay7LpZ+FHGiLodDVTeHBoxTu2Mu+ffvHNJ8DBw5w4MABfv/73wP2usuaNWu84Zj8/HwSExMn+rKnHBMbS9Cy5bBs+bBzVm8v1uFqn4CMdzsmVwVMZC3KX6vMnGTfVplMp1plRERERCTgFIaRKa2np4fm5ma6u7uJiYkhJiYm0FOals5Lzubd678T6Gmc9ZKTk6mqqgKgrKxsUscuKiri8OHDAISGhnLllVeO+vjPf/7z3H///YDdKDPWMMyGDRtIS0vzuc+yLP7617/yL//yL7S0tFBWVsY///M/89vf/laLHSIiIiIiEjBaUxA5dYwjCOKyIC4LM+9KLMsDzVWDzTF1JdA7eituEH0simpg0WK4a3E0/N0FNIV8gaIjFltK6yncVULhliKampr8zqetrY133nmHd955x3tfTk6OT3vMkiVLCA4+c5fDTUgIxpkFzqxhrTKWZUFT02A45kSrjMs12Crj8Yz72tbRGqyjNXi2FA4/OWMGJiPTbpPJzBxslXE6MekZapURERERkVPmzP3Xv0xL/f39/OUvf+Gtt95i586dHD/u22QSEhLCwoULWb16NTfddBPp6ekBmqnIyVu5cqU3DLN79+5JHXvoFkk9PT2sXr16zM89ePAgBw4cYP78+eO6tjGGdevWERkZyZe//GUsy+KDDz7g+eef58YbbxzXmCIiIiIiIidLawoigWOMA2IzITYTk3O5HY5pOTIkHHMQevw0k3h6ie12c3kCXJ4AnJuJ5/sXUtoeQ2F5C4V7XBRuKWLPnj14xhDcKCsro6ysjCeffBKAiIgIVq1a5Q3HFBQUMHv27El49VOfMQbi4giKixtbq4yrwg7OVLonp1Xm4AH6Dx4YeW6faJVxOLO87TImaZbeaCUiIiIi46YwjEwZ77//Pv/2b//mXayyLGvYY3p6eti1axe7du3iscce4/Of/zw//OEPiYqKOt3TFTlpa9eu9YZWtm3bxrFjxyZl0aWrq4s33nhjQmO8/PLL4w7DnHDuuedyww038NxzzwHw4IMPcvXVVxMWFjahcUVERERERPzRmoLI1GKMA2amwcw0TPal9t/J1hqoHxKO6WoefRBPH47GcvKAvHS4PSMIbr6J1hnfZWtVN4X7j1BYtJXCwkLq6ur8zqmjo4NNmzaxadMm731Op9MnHLN06VJCQ0Mn+OqnnzG3yrgqBltlBrZiOm2tMk7nQGBmYAsmtcqIiIiIiB8Kw8iU8Ktf/YoHH3xwxMWqT7IsC2MMHo+Hl19+mW3btvHkk0+eNe/kkOnryiuv5L777qOpqYn+/n6eeOIJ/vmf/3nC47711lu0t9vVw+Hh4eTl5Y3peR0dHZSWlgLw6quv8k//9E8EBX1yyePkfOtb3+KVV16hp6eHo0eP8sc//pE77rhjQmOKiIiIiIiMRmsKIlOfMQZiUiAmBZN1sf33tf24b3NMZ8Pog1j90FhOdGM5FwfBxYsNnL8aK+EWDrVFUFhSS2HxdgoLC9m1axf9/f1+5+VyuXC5XPzxj38E7HWVlStX+myvlJqaOhkfgmlrTK0y1VUDWzCdCMqcxlYZb0hmcCsmtcqIiIiICCgMI1PAiy++yC9/+UvA/uHKsizS09O55JJLyMvLIz4+ntDQUNra2qisrGTHjh1s2rSJ3t5eAKqqqrjrrrt4/vnn1UAhU1pERAS33HILDz/8MABPPPEEV111Feecc85JjVNVVYVlWWRkZAC+WyStX7+en/70p2Map62tjfPOO4+uri5qa2v58MMPufDCC09qLp80e/ZsbrzxRp5++mkAfve733HzzTefle+qEhERERGRU09rCiLTkzEGomZD1GyM80I7HNNR5xuO6fDX9mJBkwvT5CIbyJ5puOWGdLjnu3REZLDN1Ubhtl0UFhayefNmjh075ndeXV1dfPjhh3z44Yfe+9LT033CMStWrNDXiyFMSAgmay6OrLnDzlmWBY2NA0EZ12CrjMs+to4cnpxWmcLNw0/OiPAJyHhbZZxOu1UmPHzc1xURERGR6UFhGAmo1tZW7rvvPsD+IXjWrFn88Ic/ZN26daM+r6Ghgfvvv58XXngBYwzl5eX87ne/42tf+9rpmLbIuH31q1/lrbfeoqSkhL6+Pr761a/yyCOPjDkQ88477/CDH/yAX/7yl2RkZHD8+HE2bx78gf9zn/vcmOcSFRXFZz7zGV5//XXA3ippomEYgLvvvptnn32W3t5ejh07xgsvvMAXv/jFCY8rIiIiIiIylNYURM4cxhiITILIJEzm+QBYHQ2+4Zh2f2EWC5orobmSCOAC4IJVqXDlDZDwL7jbwyncvscbjtmxYwd9fX1+51ZVVUVVVRXPPvssAKGhoSxfvtxne6X09HS1kIzAGAPx8QTFx8PyFcPOWz09WIerB1tlXBV4Ku3bHlcFtLWN/+KdHVgH9tN/YP/Ic0tOtsMxJ1plnFne8AyJSfr/KSIiInIGUBhGAurFF1+kqakJYwwpKSk89dRTzJkzx+/z4uPj+clPfkJGRgb//d//DcAf/vAHLVzJlBceHs4vfvEL/v7v/56mpiYaGhq4+eabueWWW7jjjjtG/Pzv6elhy5YtPPLIIxQVFfmce/XVV721v0lJSeTn55/UfK6++mpvGObtt9+mra2NqKiocb46W0pKCtdccw3PPfccAI8++ig33ngjwcH6liMiIiIiIpNHawoiZzYTEQ8ZBZiMAgCszkaoLxkMx7TW+B+k5bD936F3yAQyk5L5wp0rMd+7mc7IDHbsO+QNx2zevJkjR474HfLEOs2WLVu89yUnJ/uEY1auXMmMGTPG+9LPGiY01H+rjKsCq9KFx7sFk3tyWmVqarBqxtAq492GyYkjM1OtMiIiIiLTiH4zKQG1adMm7+3/+I//GNOi1VD33nsv7733Hjt37qSpqYldu3axdOnSyZ6myKSaO3cuf/rTn7jnnntwuVz09PTw+OOP8/jjjzNv3jycTidxcXF0dHRQW1vLnj17aG9v9z7f4XB4F1Refvll7/1XXnklQUFBJzWXCy+8kJiYGFpaWujs7OSNN97ghhtumPBrvOeee3jxxRfp7++nurqa1157jWuvvXbC44qIiIiIiJygNQWRs4uZEQdpazFpawGwulugbkg4pqXa/yCtNdBag1XxHuFAQeRsCi7O4zt/911IzKO6vt0bjiksLGTbtm309PT4HbampoYXXniBF154AYDg4GCWLl3qE5DJyspS28hJ8GmVWbFy2HmrpwerumqwVcbtsltlXC48btepa5Uxxm6VyRgIx2Q6B7diysyCxET9fxYRERGZIhSGkYA6dOgQYDdaXHDBBeMa47rrrmPnzp0AlJWVaeFKpgWn08lzzz3Ho48+ysaNG+no6ACgtLSU0tLSEZ9jjOH888/nu9/9LgsWLGD//v0cPHjQe/7qq68+6XmEhoZy+eWXe1tcXnrppUkJw2RkZPDZz36WV155BYDf/OY3fP7zn8fhcEx4bBEREREREdCagsjZzoTFQOoqTOoqAKzutoHmmANQVwLNVYA1+iDtx6D9GJbbDtelRiRyw9w8blxzPfznD+gOimbXrl0+ARm32+13bn19fWzbto1t27bx0EMPATBr1izy8/O94ZhVq1ZNuJ33bGZCQzFzs3HMzR52zrIsaGiwgzInWmVcFb6tMpafz41PY1lYR45gHTmCp/Cj4ecjIgdbZTIz7VYZ50BgJj0DExY2vuuKiIiIyElTGEYCqr6+HmMMmZmZ4x7D6XR6bzc0NEzCrEROj+joaL7zne9wxx138N577/Hhhx9y8OBBGhoaaG5uJjw8nLi4OPLy8li+fDlXXXUVqamp3ucPbYXJyMgY96Lt1Vdf7Q3DFBcXc+TIEVJSUib24rDfZfnaa6/h8Xg4dOgQr7/+OuvXr5/wuCIiIiIiIqA1BRHxZcKiIGUFJmUFAFZPO9SXDjbHNLnxG47pqIPKOqzKDwEInRHP6sQ81lyznG/d9UWInEVNTQ1btmzxhmOKi4vp6uryO7/jx4/zyiuveN845HA4WLJkiTcck5+fz7x589QqMgmMMZCQQFBCwsitMt3dWIer7bDMQJOMVTnQLuNyQfsEWmU62rH276N//76RJubbKuPM8gnNqFVGREREZHIpDCMBFRISQk9PD93d3eMeY2hVaUhIyGRMS+S0io+P5/rrr+f6668/qed9//vf5/vf//6Er5+fn+/TMDNUWlrap57zJzs7m/37R6iTHcGGDRvYsGHDuK4jIiIiIiJnJ60piMhoTGgkJC/DJC8DwOrtHBKOKYEmF1j9ow/S2QBVm7GqNtvH4TOZk5jHtcvyuPbSb0N0Mn19fezevdsbjtm8ebO3uWo0Ho+HnTt3snPnTv7nf/4HsNeIhoZj1qxZQ0xMzEQ+DDICExY2hlaZCiy3e2AbJtfpbZVxZmEyhrTLqFVGREREZFwUhpGASkhIoK2tjbKyMrq7uwkbxz/o9+zZ4zOeiIiIiIiIiJz5tKYgIifDhMyAOUswc5YAYPV1Q0PZYHNMYwV4+kYfpKsZqouwqovs47AYghJyWZGYx4ovXcs3vvF1jHFw/PhxCgsLveGY4uJi2tvb/c6xoaGB//u//+P//u//7Dkbw6JFi7zhmIKCAvLy8rQN9Snk2yqzath5q7sbq7pqICTjHmyVGdiG6ZS2yqSkDLbKZDqHhGWyICFBrTIiIiIin6AwjATUkiVLcLvddHZ28swzz3D77bef1PM7Ojp49tlnfcYTERERERERkTOf1hREZCJMcBjMWoSZtQgAq78HGsoHm2MaysHTO/og3S1wZCvWka32cWgUVsI8khLzuPrCpVx99ecwxkFfXx979uzxhmMKCwspKSnxO0fLstizZw979uzh0UcfBSA2Npa1a9d6wzFr1qwhLi5uQh8LGTsTFobJzsGRnTPsnGVZUF+Pp3JIUGYgJGNVurCOHJlYq8zhw1iHD+PZ/OHw85FR3pCMt1XGORCYSUtXq4yIiIiclRSGkYC65JJLePXVV7EsiwceeIDs7GzOP//8MT23p6eH7373uxw5cgRjDNnZ2RPaJ1xEREREREREpg+tKYjIZDJBoZC0AJO0AACrv9dui6k7aAdkGsqgv2f0QXraoGYHVs0O+zgkAithHkGJeSzNzGPpkru59957Aaivr2fLli3ecMyWLVtobW31O8+mpibeeOMN3njjDe99CxYs8NleaeHChQQFBY3vAyHjZoyBxESCEhP9t8q4XIOtMm4XHpcLOvy3B32q9jY8+/bCvr0jTcy3VcaZNdgqk+FUq4yIiIicsRSGkYC64oormDdvHmVlZXR1dXHPPffwxS9+kTvuuIP09PQRn9Pf388777zDAw88QEVFhff+b3zjG6dr2iIiIiIiIiISYFpTEJFTyQSFQGIuJOZiuBrL0weNLjscU38Q6kuhr3v0QXo74OgurKO77OPgcKyEeZjEPOIT87jqystZv349YH992r9/v097zL59I2yXM4L9+/ezf/9+Hn/8cQCio6NZs2aNNyCzdu1aEhMTx/uhkEkyplYZd8Vgq4zbdXpbZZxZg60ymZlqlREREZFpz1jWeP8FJTI5du/eze23305XVxeWZXlT6NnZ2eTl5REfH09ISAjt7e1UVVWxZ88eWltbvY+1LIurrrqKBx54IMCvZOyqq6u59NJLefvtt0lLSxvXGPv372fBggWTPDORM5f+zoiIiIiIjGwyfkYNlLNxTSGQpvPnishkszz90Fw52BxTXwK9nSc3SFAYJORgEnMhIQ/isuwQzoCmpiaKioq84ZjCwkKamprGNd958+b5tMecc845BAfrvbLThdXVNdgq4xOWsY8n1CozGmMwKamYTKd3G6bBsEwWxMerVUZEREQCxt/PqPrXrgTckiVLeOihh/jOd75Dc3MzYCfhy8vLKS8vH/b4ofkty7K44ooruO+++07bfEVERERERERkatCagogEinEEQVyWHWCZdyWW5YHmqsFwTF0J9PoJKPR3w/G9WMcHtrZxhGDFZ2MS8yAxj5nxc7n88su5/PLLAfB4PJSUlHjDMZs3b2bPnj2M5f2upaWllJaWsnHjRgAiIiJYvXq1NxxTUFDArFmzJvQxkVPHhIdjcubhyJk37JxlWVBXh6dyICjjqvBtlampmWCrTDXW4Wo8H30w/HxU1EA4xjnYKuN0DrbKhIaO77oiIiIik0BhGJkSzjvvPF555RX+67/+izfeeIO+vj6/P8RlZGTw9a9/nWuvvfY0zVJEREREREREphqtKYjIVGCMA2IzITYTk3O5HY5pOewbjulpHX0QTy/UHcCqO2AfO4Kx4ubaWzUl5mHic5g/fz7z58/nzjvvBKClpYXi4mKf7ZXq6+v9zrejo4P333+f999/33tfVlaWTzhm6dKlhISEjDKKTAXGGEhKIigpCVauHnbe2yrjGmiTqRzaLjPBVpm2Njx798DePSNNzLdVxpll/5lhh2XUKiMiIiKnmrZJkimntraWd999lx07dlBZWUlLSws9PT1ER0eTkJDAokWLvO9amK60TZLI6ae/MyIiIiIiIzuTtr45G9YUAulM+lwROd0sy4LWI1BXMhCOOQjdzSc3iAmCOCck5tntMfE5mJAZw65TVlbmE47ZvXs3/f39Jz3n8PBwVq1a5bO9UkpKykmPI1OX3SpTO8L2SwOtMkeOnLqLn2iVcTpxZAy0y2RmqlVGRERExszfz6gKw4gEgMIwIqef/s6IiIiIiIxMAQcZK32uiEwey7Kg7ZjdHFM/EI7pbDy5QU600STkYRJzISEXExox7GHt7e1s3brVZ3ul48ePj2veGRkZPuGY5cuXExYWNq6xZOqzurqwqirtcMzQVhlXhd0q09lxai7scPi2ypz4M8OJw5kFcXFqlRERERG/P6NqmyQJqNtuu817+8c//jHp6ekBnI2IiIiIiIiITBdaUxCR6cwYA9FzIHoOJusiOxzTUTuwrVKJHY7pqBt9EMsDjRXQWIFV9jpgsGamDzbHJOZiQqOIjIzkoosu4qKLLrKfZlm4XC6fcMzOnTvp6+vzO+/KykoqKyv53//9XwBCQ0NZsWKFz/ZKaWlpCiqcIUx4OGZeLo55ucPOjdgq4zoRmHFh1dSM/8IeD1Z1lb2904d/G34+OtpukMnMHGyVcdrbL5nUNLXKiIiICKAwjARYUVERxhhmz56tRSsRERERERERGTOtKYjImcQYA5GzIHIWJvMCAKyO+oFwzEBzTLu/NhcLmiuhuRKr/C37npg033BMWAzGGLKyssjKyuLmm28GoLOzk23btnnDMZs3b6ZmDGGGnp4eCgsLKSws9N6XkpLiDcfk5+ezcuVKZsyYMcooMh0ZYyBpFkFJs2DVmmHnfVplXBWDrTID4ZkJtcq0tuLZ8zHs+ZhhG4B9slXGmYUj40S7jFOtMiIiImcRhWEkoKKjo2lra9OilYiIiIiIiIicFK0piMiZzkQkQMa5mIxzAbA6G32bY9rG0LzRUg0t1ViH3rbHiE4eCMfMt/8MnwnAjBkzOP/88zn//PPtx1kW1dXVPu0x27dvp6enx+8ljxw5wvPPP8/zzz8PQHBwMMuWLfNpj3E6nQoknOHG1CozsN2St13mtLbKOL1/msxMtcqIiIicgRSGkYBKTEykra2N3t7eQE9FRERERERERKYRrSmIyNnGzIiD9HxMej4AVlcz1JcMNse0HPY/SGsNtNZgVbxnjxE1e0hzTB5mRrx9LWNIT08nPT2dm266CYDu7m527NjhDccUFhZSWVnp95J9fX1s3bqVrVu38uCDDwIwe/Zsb3NMQUEBq1atIjIychwfFZmOfFplVq8ddt7q7BxslXEPbL3kctmhmUo3dHaO/+L+WmVS0wZbZTKdg60yziyIjVWIS0REZBpRGEYCasmSJVRUVOByubAsS/+QFBEREREREZEx0ZqCiJztTPhMSF2NSV0NgNXd6huOaa4GrNEHaTsGbcewXJvsMSKTIGFIOCYy0fvQsLAwb4Dl29/+NmC3wAwNx2zdupWuri6/cz927Bgvv/wyL7/8MgBBQUEsWbLEG47Jz88nJydHX9vPUmbGDExuHo7cvGHnLMvCqj1uN8i43YPtMgPbMFlHJ9gqU1VpB3E+GOF8TIzdIJMx0CTjzPKGZkxqGiYkZPzXFhERkUmnMIwE1Pr163n55Zdpbm7mvffe4+KLLw70lERERERERERkGtCagoiILxMWDSkrMSkrAbB62n3DMU2V+A3HtNdCey1WpZ0EsGYkQGKuNxxD5CyfgEpKSgrXX389119/PQA9PT3s3r3bZ3uliooKv3Pv7+9nx44d7Nixg1//+tcAJCQk+IRj1qxZQ3R09Dg+MnImMcZgZs2GWbNHb5VxubAqXYNbME1Gq0xLC56Pd8PHu0dvlXE6fVtlMp1qlREREQkAhWEkoC666CIuvPBCNm3axI9+9CMWL15MUlJSoKclIiIiIiIiIlOc1hREREZnQiMheTkmeTkAVm8H1JcNCce4wPKMPkhnPVRtxqrabB+Hx2IN2VaJqDk+v+APDQ1l1apVrFq1ig0bNgB2C0xhYaE3HFNcXExHR4ff+dfX1/PnP/+ZP//5z/brMYbFixd7wzEFBQXk5ubicDhO/oMjZyy/rTLHj9lbLw1sweRtlXG5sI4dHf+FfVplNg0/HxODw5k12CozZCsmtcqIiIicGsayLD9RcJFTq6GhgXvuuYePP/6YOXPm8P3vf5/LL7/8jP4hprq6mksvvZS3336btLS0cY2xf/9+FixYMMkzEzlz6e+MiIiIiMjIJuNn1EA5G9cUAmk6f66IyHBWX5dvOKaxAqxhfRejC4vxbY6JTsGY0b8G9/X18fHHH/tsr1RaWjqu1xAbG+vduqmgoIA1a9YQGxs7rrFErI4OO8zidg+2yrhcg60yY9gCbFyCggZbZQYCMo6MTOxtmJwYfU6LiIiMyN/PqGqGkYB66KGHACgoKODQoUMcPXqUf/zHfyQuLo5ly5aRnp5OVFTUmOsDv/nNb57K6YqIiIiIiIjIFKE1BRGRiTHB4TB7MWb2YgCsvm5oPDQYjmkoB0/f6IN0t8DhrViHt9rHoVFYCUPCMTPThoVjgoODWb58OcuXL+drX/saAHV1dWzZssUbjtmyZQttbW1+X0NTUxOvv/46r7/+uve+BQsW+LTHLFiwgKCgoJP4yMjZykREYPLm48ibP+zcsFYZV8Vgq4zbPbFWmf5+rEo3VqUbz99GOD9zph2KOdEq43R622VMSqpaZURERD6FmmEAyzGGAAAgAElEQVQkoObPnz9sUerEp+R49s/cv3//pMzrVFMzjMjpp78zIiIiIiIjm65tH2frmkIgTdfPFREZH6u/FxoPQd1BOyDTUA79PSc3SEgEJORiEnMHwjEZGIf/YEp/fz/79u3zaY8Z79fp6Oho1q5d6w3HrF27loSEhHGNJfJpBltlXAOBmYEtmE5nq4zTickY0i6jVhkRETnDqRlGprxPy2OdbE5rPAtdIiIiIiIiIjJ9aU1BROTUMUEhdoAlMQ8DWJ4+aHQNCceUQl/36IP0dsDRnVhHd9rHweFYCfMwifMhMRdiMzGO4b+mCAoK4pxzzuGcc87h7rvvBqCxsZGioiJvOKawsJDm5ma/r6O1tZW//vWv/PWvf/Xel5ub6w3H5Ofns3jxYoKD9esSGb9RW2U8noFWGbc3LONtlXG5sI4fG/+FfVpl3h9+/kSrzIlwTGbmYKtMahpGn/ciInIG03c5CajVq1cHegoiIiIiIiIiMg1N1TWFtrY2XnzxRd544w1cLhfNzc0kJCSQnZ3N+vXrufrqqwkNDZ2Ua514F9zJuPHGG/nxj388KdcXkbOLcQRDQg4k5GDyPovl6Ycm92A4pr4U+jpHH6SvC459jHXsY/s4KAwrIWdwW6W4rBHDMQBxcXFcccUVXHHFFQB4PB4OHjzoDcds3ryZvXv3jikQWVJSQklJCX/4wx8AiIyMZPXq1d5wTH5+PrNmzRr7B0dkFMbhwMxJhjnJBK3NH3beam+3W2Uq3YOtMq6BP6sqJ9Yq09yMZ/cu2L2L/k+eCwrCpKUPBmSGtso4szAzZ47/uiIiIlOAwjASUBs3bgz0FERERERERERkGpqKawpbt27le9/7HkeOHPG5v6amhpqaGj744AOeeOIJHnjgAbKzswM0SxGRyWEcQRA/F+LnYnKvwrI80Fw1GI6pK4He9tEH6e+G43uxju+1j4NCseKzh4Rj5toNNSNwOBwsWLCABQsW8OUvfxmAlpYWioqKfLZXamho8Pta2tvbee+993jvvfe8982dO9cbjikoKGDJkiWEhIw8F5GJMJGRmPkLcMwfvsX7sFYZV4U3NGO53RNvlTmxrRMjtMrExuLIGNIm43R6QzMmNVWtMiIiMuXpO5WIiIiIiIiIiMgE7d27l7vvvpuOjg4AQkJCKCgoYNasWVRVVVFcXOxtMbj99tt57rnnmDNnzqRdPzIykmuvvdbv45YvXz5p1xQRGcoYB8Rm2lsf5Vxuh2NaqgfCMSVQdxB62kYfpL8Havdj1e63jx3BWHFz7a2aEvMgPhsTHPapT4+JieGyyy7jsssuA+xt80pLS33CMbt378bj8fh9PYcOHeLQoUM89dRTAISHh7Nq1SqfgExycvLYPjgi4zTmVpkToRb3kHaZSjd0+9nKbDRNTXiadsLunaO3yjizfFtlMp1qlRERkSlBYRgRkdPkS1/6EkVFRQB885vfZMOGDcMek5eX96nPDwoKIjo6mqSkJBYuXMi6deu4+OKLx7Sf8XiqswEuvfRSfvWrX53080RERERERM4mPT09bNiwwRuEWbRoEb/61a98wi5lZWXce++9VFVVUVtbyz/90z/x5JNPTtocYmNj+bd/+7dJG09EZKKMccDMDJiZgcleZ29f1HpkSHPMQehuGX0QTx/Ul0B9CdbBV8EEYcVlDYZjEnIwweGjzMGQm5tLbm4ut912G2BvZ7d161ZvQGbz5s3U1tb6fT1dXV188MEHfPDBB977MjIyfMIxy5YtIyzs08M6IpPNb6vMsaODrTJul90q46qwW2Vqj4//wkNbZTZ9SqtMZtZgq8yQrZjUKiMiIqeLvttIQJ2oDQ4PDyc+Pn5cYzQ0NNA1sGdmSkrKpM1NZKrp7++nqamJpqYmSktLefnll8nJyeH+++9nwYLhP+yIiIiIiIicyabSmsKf/vQnDh8+DNihlEcffZSEhASfx+Tk5PA///M/XHfddfT09FBcXMz777/PRRddNO7riohMJ8YYiEmFmFTM3EvscEzbUd/mmK7G0Qex+qGhDBrKsEr+DMaBFZs5JBwzDxMSMeoQUVFRfOYzn+Ezn/mMPaRlUVFR4dMes3PnTvr6+vy+psrKSiorK/nTn/4EQFhYGCtWrPCGY/Lz80lPTx/Tx0dkshmHA5OcAskpBOUXDDtvtbdjVbq92y553O6BbZhcWJWVk9AqswN27RjeKhMcPNgqMxCQcWRmYpxZ9nFMzPivKyIiMoTCMBJQl1xyCcYYLrjgAh555JFxjfGv//qvvPPOOxhj2Ldv3yTPUCRwLrvsMmbPnu097u/vp6Ghge3bt1NXVwfY7yy84447eOaZZ8jKyhrz2Ndeey2RkZF+Hzd//vyTn7iIiIiIiMhpMJXWFJ5++mnv7bvuumtYEOaEnJwcrrvuOu8vTf/4xz8qDCMiZy1jDEQnQ3QyJuszdjimvXawOab+IHTUjz6I5YHGCmiswCp9HTBYsRmQMBCOSZyHCY3yO4+5c+cyd+5cbr75ZgA6OjrYvn27NxyzefNmampq/L6m7u5ub9vMAw88AEBqaqpPOGblypWEh396m43I6WIiIzELFuJYsHDYuWGtMq4Kb2hmwq0yfX12O42rghE3LIuLw5ExpE3G6RxslUlJUauMiIiMmb5jyJRgWVZAny8yFd12222sXbt22P29vb1s3LiR//qv/8KyLJqamvjJT37Co48+OuaxN2zYQFpa2mROV0REREREJCACvaZQUVHBoUOHvMfXXXfdqI8fGob56KOPaG9vH9ObFUREznTGGIiaBVGzMM4LALA66oZsq1QC7f5+AW9Bkxua3FjlbwIGKyZ1sDkmMRcT5r91IiIigvPPP5/zzz/fHtWyqKqq8gnHbN++nd7eXr9jHT58mOeff57nn38egJCQEJYtW+azvVJmZqb9+kWmiDG3ypzYKsk90C4zGa0yjY14GhvH0CozdBsmp1plRERkGIVhRESmmZCQEL785S9TW1vL7373OwA2bdrE0aNHffajFxERERERkVNvy5Yt3ttZWVkkJSWN+vhzzjmHiIgIOjo66O7uZufOnZx33nmnepoiItOSiUiEjERMhv110upsHBKOOWhvszQqC1qqoaUa69Db9j3RKUPCMXmY8Jn+52EMGRkZZGRk8IUvfAGArq4uduzY4bO9UlVVld+xent7KS4upri4mF/+8pcAzJ492yccs3LlSgUlZUrz2ypztGawVcbtGtyKyeWCutrxX9inVea94efj4j4RkhncismkpmKCgsZ/bRERmXYUhpFpr7/fzgYH6R8xcpb50pe+5A3DAGzbto3PfvazAZyRiIiIiIjI9DIZawrl5eXe24sWLfL7+ODgYHJzc9m5c6f3+ZMRhunr6+ODDz5gz549NDY2Eh4eTmJiIkuXLmXRokVaNxGRM4KZEQfp+Zj0fACsrmbf5pjWw/4HaT0CrUewKt61x4ia4xuOmRE3prmEh4dTUFBAQUEB//iP/wjYLTBDwzFbt26lewwNGceOHeOll17ipZdeAuzvS0uXLvXZXik7O1vtMTItGIcDk5IKKakEFZw77LzV3oZVWenbKnNiG6ZKN/T0jP/iJ1pldm4fuVUmPQNHZqYdjvFuw5Rl3xetVhkRkTONwjAy7R0/bldjKikvZ5uUlBRmzpxJc3MzMPh3QURERERERMZmMtYUXC6X93ZycvKYnjO01bOiomLc1x7q2LFj3HXXXZ96vbvuuotbb70Vh8MxKdcTEZkKTPhMSFuDSVsDgNXdAnWlWPUDzTHN1YCf7fDajkLbUSzX+/YYkbPs7ZROhGMiEsc8n9TUVG644QZuuOEGAHp6eti1a5c3HFNYWDimr/v9/f1s376d7du386tf/QqAxMRE8vPzvQGZ1atXEx0dPea5iUwVJjLqJFplKga3YHK7J94qU3GI/opDI5+Pj8fhE5JxDhw7MSkpapUREZmGFIaRaa2kpIQDBw5gjCE1NTXQ0xE57cLCwry3x/IuExEREREREbFN1ppCU1OT93Zi4th+YTp0K6UTb3A4lY4ePcqPf/xj3n77bR566KEx/fK0paWFlpaWYeOIiExlJiwGUldiUlcCYPW02eGYuoNQfxCaKvEbjmk/Du3Hsdwf2GNEJEDCYHMMkUljbmgJDQ1l9erVrF69mm9961uA/bV0y5Yt3oBMcXExHR0dfseqq6vjtdde47XXXgPA4XCwePFin/aY3NxchR5lWhtzq4yrYrBV5sQ2TBNtlWlowNPQMHKrTEgIJi3dbpDJHGiSybSDMmqVERGZuhSGkdPmoYce+tRzlZWVo57/pK6uLtxuNx988AEejwdjDCtWrJiMaYpMG729vTQ2NnqPExISAjgbERERERGRU2cqrykM/QXm0DcsjGbo48byC9DRREVFceWVV3LBBRewcOFCkpKSCAoK4tixYxQVFfHEE09w8OBBAAoLC/n2t7/NI4884nfbpCeeeOKkPq4iIlORCY2ClOWYlOUAWL0dUD8Qjqk7CE1usDyjD9JRDx0fYVV9ZB+Hx2El5mESc+1wTNSck9q+aM6cOVxzzTVcc801gL3N3ccff+wNx2zevJmysjK/43g8Hnbv3s3u3bt55JFHAIiLi2Pt2rXecMzatWuZOXPmmOcmMtWN2irT3+/bKlM5ZAsmtxvq68Z/4d7eIa0y7w4/H5/gDcg4MgfaZTLsLZhMcrJaZUREAkRhGDltHnrooRF/KLAsi8rKSh5++OGTHtOy7BR/UFAQN91004TnKDKdFBUV0dvb6z1esmRJAGcjIiIiIiJy6kzlNYWhLZ0hISFjek5oaKj3dldX17ivPWvWLDZt2jTiNk/p6emkp6dzzTXX8J//+Z8888wzAHzwwQe8/PLLXH/99aOOffvtt3Pdddf53Hf06FFuueWWcc9XRCTQTEgEzFmKmbMUAKu3ExrKB8MxjRVgDeuE8NXVCNWFWNWF9nHYTKwh2yoRnXJS4Zjg4GCWL1/O8uXL+frXvw7YLTAntlXavHkzRUVFtLW1+R2rsbGR119/nddff91+vcawYMECbzimoKCABQsWqD1GzkgmKAiTmgapaQSde96w81Zbq90q43bZbTIul2+rzJC19pPWUI+noR52fEqrTHqGHZbJGGiScWbZwZmMDLXKiIicQgrDyGl1YqFprPePRVhYGP/xH/9Bbm7uuMcQmW46Ozu5//77vcdLliwhLy9vzM9/8MEHR1wsHWr+/PkKmYmIiIiIyJQxVdcUhra89I7xlyg9Qyr8w8PDx33t0NBQn2DNSIKDg/n3f/93Kioq2LJlCwCPPfaY3zBMTEwMMTH65YyInNlMyAyYvRgzezEAVl/3J8Ixh8DTN/og3c1wuBjrcLF9HBrl2xwTk4YxJxc+SUxM5HOf+xyf+9znAOjv72fv3r3ecExhYSEHDhzwO45lWezbt499+/bx2GOPAfbX97Vr13rDMWvXriU+Pv6k5icyHZmoaMzCRTgWLhp2zqdVxlWBVekeDM1MRqvMoXL6D5WPfH5oq4wzC5OROdAu41SrjIjIBCkMI6fN6tWrh91XXFyMMYaYmJgxLzw5HA5mzJjBrFmzWLRoEZdffjlxcXGTPd0zilW7H2vnk9BWE+ipTA1RyZhlt2KSFgR6Jielv7+f+vp6ioqK+PWvf+2tS42Pj+enP/3pSY310ksv+X3MpZdeqjCMiIiIiIhMCVN5TSEiIsJ7e2hLzGiGPm7o808Vh8PB17/+dW8YpqysjJqaGpKTk0/5tUVEphMTHAazFmJm2VuwWP29diCm7qAdkGkoh/6e0QfpaYMj27CObLOPQyKxEuYNNsfEZpx0OCYoKIglS5awZMkSvvrVrwLQ0NBAUVGRNxyzZcsWmpub/Y7V0tLCW2+9xVtvveW9Ly8vzxuOyc/PZ/HixX630xM5k4ylVcbjdmMNCcic3lYZ58AWTHZoxns7Knr81xUROQsoDCOnzcaNG4fdN3/+fMButXj00UdP95TOGtaOP0D7sUBPY+poq8Ha8QfM5ScXIDndbrvtNr+PWb16Nf/+7/9OTk7OaZiRiIiIiIhIYEzlNYWZM2d6b9fVje1dw0MfN/T5p9LKlSsJCQnxtteUl5crDCMi4ocJCrEDLIl5GMDy9NlbKZ0Ix9SXQb+fIGRvOxzdiXV0p30cPGNIOCYXYjMxjpP/VU18fDxXXnklV155JQAej4cDBw54wzGbN29m3759Y2pQO3jwIAcPHuSJJ54AIDIykjVr1njDMfn5+SQlJZ30HEXOFCYqmqBFi2HR4mHnrP5+rJqagZCMa7BVxlVht8o01I//wmNplXGeCMc41SojIvIJCsNIwE2kzljkbLZo0SJ+/vOfj2vx8u233yYtLe0UzEpEREREROT0mQprCllZWfztb38DoKZmbI2sQx+XlZV1Sub1SSEhIcTGxlJbWwtAU1PTabmuiMiZxDiCIWEeJMzD5H3ODsc0uaGuZCAcUwp9naMP0tcJx3ZjHdttHweFYSXkYBLn28GbOOe4wjEOh4OFCxeycOFC7rrrLgCam5spKiqisLDQ+19DQ4Pfsdrb23n33Xd59913vfdlZ2f7tMcsWbKEkJCQk56nyJnGBAVh0tIgLY2g884fdt5qbcFTWTnYKuNyYVUOtMtUVU5Oq8z2bcNbZUJD7VaZjEyfVhl7K6YMtcqIyFlBYRgJqLfffhuY2P7Y4p9ZfhvWriehVdskARCdjFl6a6Bn4ddll13G7Nmzvcf19fUcOnSIkpISAPbu3ctNN93Exo0bcTqdAZqliIiIiIhIYEyVNYXs7Gzv7X379vl9fF9fn/fnuk8+/1Tr6ury3p4xY8Zpu66IyJnKOIIhPhviszG5V2F5+qG5akhzTAn0dow+SH83HN+LdXyvfRwUihWfPbitUtxcu6FmHGbOnMm6detYt24dYIdIS0tLfdpjPv74Yzwej9+xysvLKS8v56mnngLs7yOrVq3yhmMKCgqYM2fOuOYpciYz0TFjbJWpwHIPtMoMbMU0oVaZnh6s8jL6y8tGPp+QOBiQyRzSLpOZiUlOwThObjs3EZGpSGEYCajU1NRAT+GsYJIWYC77caCnISfptttuY+3atcPuLyoq4nvf+x5Hjx7l+PHjbNiwgeeff57Q0NAAzFJERERERCQwpsqawtCf2yoqKqirqyMxMfFTH7937146OuxfjIaFhbFs2bJTPkeA6upqWltbvcfa7kJEZPIZRxDEOe12l3lXYFkeaK72Dcf0tI0+SH8P1O7Hqt1vHzuCseKz7a2aToRjgsPGNz9jyM3NJTc3l9tvvx2AtrY2iouLveGYzZs3j2nbv87OTv72t79529EAMjMzfcIxy5Yt05qlyCjG1Crjdg+2yrjdk9cqU1+Hp77Of6uMM+sToZlMTGTU+K8rInIaKQwjIjLNrFmzhkcffZQbb7yR7u5uSkpK+PWvf80//MM/BHpqIiIiIiIiZ52srCzmzp3LoUOHsCyLl156ia985Suf+vgXX3zRe7ugoIDIyMjTMU1eeOEF7+3IyEgWLlx4Wq4rInI2M8YBsRkQm4HJWWeHY1qPDIZj6kqgu2X0QTx9UHfQfg6ACcKKyxoMxyTkYILH35IWFRXFxRdfzMUXXwzY7TGHDh3yhmMKCwvZuXMn/f3Dfl0+jNvtxu1288wzzwB26HPlypU+2ytp63aRsTPRMQQtPgcWnzPsnNXfj3XkiB2SqXQNtsq47GPGsCXap/LXKpOYNCQgk4nJGAjKOJ2YOclqlRGRKUNhGBGRaSg3N5d7772XX/ziFwD8/ve/55Zbbhn13YciIiIiIiJyatx888386Ec/AuCxxx7j+uuvJz4+ftjjysvLfUIpN99887iv2dPTAzCmd9zv3r2bxx57zHu8fv16goO1LCgicroZ44CYNIhJw8y9FMuyoO3okHDMQehqGn0Qqx8ayqChDKvkz3Y4JjZzSDhmHiZk/FvhGWPIzs4mOzubW265BYCOjg62bdvms73S0aNH/Y7V3d3NRx99xEcffeS9Ly0tzSccs2LFioBveSgyHZmgIEx6OqSnE8QFw85bLS14Ku1WGY/L3oLJp1Wmr2/8F6+rxVNXC9u2jtwqk5Fpt8qcCMs4s+ywTEaGWmVE5LTST70yZXR1dfHmm2+ydetWysrKaG1tpbOz0/6BYAyMMfz1r389xbMUmTruvPNOnnrqKerq6ujo6OA3v/kN/+///b9AT0tEREREROS0C/Sawhe+8AUef/xxDh8+TENDA1/96ld5+OGHmT17tvcx5eXl3HvvvXR3dwOwevVqLrroohHHe/DBB3nooYcAezuod955Z9hjjh8/zq233srtt9/O+vXrfa51Qk9PDy+88AL33XcfXV1dgN0K841vfGPcr1VERCaPMQaikyE6GZP1Gfv7Vvtx3+aYzvrRB7H6ofEQNB7CKv0LYLBiM4aEY3IxoRNrIYuIiOCCCy7gggvsX7hblkVlZaVPOGbHjh30jmHLlurqap577jmee+45AEJCQli+fLnP9koZGRn2x0ZExs3EjNIq09eHVVOD5a6w22ROtMq43ZPTKlNWSn9Z6cjnfVplnL7bL6lVRkQmmcIwMiU8++yz/PznP/fZu/pkWJalfxzLWWfGjBnceeed/PznPwfsv0df+9rXRnz3oYiIiIiIyJlqKqwphIaG8uCDD3LLLbfQ2dnJxx9/zGWXXUZBQQFJSUkcPnyYLVu24PF4AEhKSvL+LDcRNTU1/OxnP+O+++4jIyODnJwcYmNjcTgc1NbWsmPHDpqbm72PDwkJ4Ze//CXJyckTvraIiEw+YwxEzYao2RjnhQBY7XWD4Zj6g9Be62cUC5rc0OTGKnsTMFgz0+xwTEIeJOZiwqInPM/MzEwyMzP54he/CNjB1O3bt/tsr1RdXe13rN7eXoqKiigqKvK2YM+ZM8cbjsnPz2fVqlVERERMaM4iMsgEBw+2ypx/4bDzVkvLQDjG5Q3JnJZWmbAwTHrGkJDMkNCMWmVEZBwUhpGAe+ihh3j44YfH/G4tERn093//9zz66KM0NTXR2dnJ448/zne/+91AT0tEREREROS0mEprCosWLeK3v/0t3/ve9zhy5Ag9PT28//77wx6Xm5vLAw88MKmBFMuycLvduN3uT31MXl4e9913HwsWLJi064qIyKlnIhMhMhGTeR4AVmeD77ZKbcf8jGBBcxU0V2GV2y1oVnSqHYpJzLNDMuEzJzzP8PBwzj33XM4991zvfdXV1T7hmG3btnkb0kZz9OhRXnzxRV588UUAgoKCWLp0qU97zNy5c/UGWZFTxMTEEHTOEjhnybBzVl8f1pEjA+GYIa0yLpfdKtPYOP4Ld3eP2ipjkmbZDTKZziHbMDkxTidm9hy1yojIMArDSEDt37+fhx9+GLDT5JZlsWzZMtasWcPs2bOV9hbxIzIykttvv937romnn36ar3zlK8ycOfEfYEVERERERKayqbimsGrVKl599VVeeOEFXn/9dSorK2lqaiI+Pp6cnBzWr1/P5z//eUJDQyd8rdTUVF555RV27NjBjh07KCsro7GxkcbGRnp7e4mKiiI5OZmlS5eybt06zjvvvEl4hSIiEmhmRjykF2DSCwCwupqgrmQwHNN6xP8grYeh9TBWxbv2GFFzIHE+JjHXDsfMiJuUuaalpXHjjTdy4403Avb2fTt37vQJyLhcLr/j9Pf3s337drZv3+793p+UlORtjikoKGD16tVERak1QuRUM8HBmIwMyMgYuVWmuRlPpXtIq8yQdpnqqgm1yli1x7Fqj8PW4pFbZTIycGQMaZVxZtmhmYxMTOTEtosTkelJYRgJqKeeespbR5yQkMAvfvELVq5cGehpiUwrX/rSl/jd735Ha2srbW1tbNy4kW9+85uBnpaIiIiIiMgpNVXXFKKiorjtttu47bbbxj3Ghg0b2LBhw6iPMcaQl5dHXl6ed4sKERE5+5jwWEhbg0lbA4DV3eIbjmnxv1URbUeh7SiW6z17jMhZdijmRHNMRMKkzDU0NJQ1a9awZs0avvWtbwH2ln9btmzxhmOKi4vp7Oz0O1ZtbS2vvvoqr776KgAOh4NzzjnHG47Jz88nNzdX7TEip5mZOXNsrTKuisFWGbd7clplSkvpLx1Dq4x3GyanfZ9aZUTOWArDSEAVFxd7b99///1TYtFKZLqJjo7m1ltv5de//jUAGzdu5M477yRSSWcRERERETmDaU1BRERkOBMWA6mrMKmrALC626B+SDimuQrws71g+3FoP47l/ps9RkTiQDjGbo4hImnSQibJyclce+21XHvttQD09vby8ccfe8Mxmzdvpry83O84Ho+HXbt2sWvXLn7zm98AEB8fz9q1a73hmDVr1qhRWySAxtQq422TcftsxXRaWmUyswZbZU5sxaRWGZFpTWEYCajjx49jjCElJYX8/PxAT0dk2rr99tt54okn6OjooKmpiaeffpq777470NMSERERERE5ZbSmICIi4p8Ji4KUFZiUFQBYPR0D4ZgSqD8ITW6wPKMP0lEHlXVYlR/axzPisBLzMAl2cwxRsyctHBMSEsKKFStYsWIF3/jGNwC7BaawsNAbjikqKqK9vd3vWA0NDfzlL3/hL3/5C2C3qi1cuNAbjikoKGD+/Pk41AghMiWYmTMJWrIUliwdds7q68M6fNgnIONxu7BcLrtVpqlp/Bf21yoza/Zgq0zGkHYZp9M+p68hIlOWwjASUEFBQYC9d6jImW7jxo1+H3Pw4MFxjR0XF8eOHTs+9XxaWtq4xxYREREREZmKtKYgIiJy8kxoBCQvwyQvA8Dq7YSGssHmmEYXWMN6E3x1NkJVIVZVoX0cNtMOxyTmQWIuRKdM6vZESUlJXH311Vx99dUA9Pf3s2fPHm84prCwcExrn5ZlsXfvXvbu3ctvf/tbAGbOnMnatWu94Zi1az4GfKoAACAASURBVNcSFxc3aXMXkclhgoMxmZmQmUnQBRcNO281NeGpdNutMi7X8FaZfj9f10ZhHT+GdfwYFBcNb5UJD8ekZwxuveR0+rbKRESM+7oiMnEKw0hAzZkzh/Lycrq7uwM9FRERERERERGZRrSmICIiMnEmZAbMPgcz+xwArL7uIeGYEmg8BB4/W5N0N8PhIqzDRfZxaDRWYu5AOCYPYlIxZvKaE4KCgli6dClLly7lnnvuAewWmC1btnjDMVu2bKGlpcXvWM3Nzbz55pu8+eab3vvmz5/vDcfk5+ezaNEibwhXRKYmExtLUGzs6K0y7grfVhm3e+KtMl1dWKUl9JeWjDyvoa0yJwIzmU77PrXKiJxyCsNIQOXn51NWVkZpaSl9fX0EB+tTUkRERERERET805qCiIjI5DPBYTBrEWbWIgCs/h5oOAR1B+2ATEM5eHpHH6SnFY5swzqyzT4OifQNx8xMn9RwDEB8fDxXXXUVV111FQAej4f9+/d7wzGFhYXs27cPy7L8jnXgwAEOHDjA73//ewCioqJYs2aNT3tMUlLSpM5fRE4dn1aZEc5bTU0D4RgXHrd7sFXG5cI6XH3qW2WcWZjMzMGwjFplRCaNVgkkoP7u7/6Op59+mo6ODv785z9zzTXXBHpKIiIiIiIiIjINaE1BRETk1DNBoZA0H5LmYwCrvxcaK6D+IFZdCdSXQn/P6IP0tkPNDqyagW3eQ2Zgxc8bDMfEZmIck9u84nA4WLRoEYsWLeIrX/kKAE1NTRQXF/sEZBobG/2O1dbWxjvvvMM777zjvS8nJ8enPWbJkiUK5opMU3arzDJYumzYOau3F+vI4YGgzECbjKsCq9L+kzE0UH0qf60ys+fYIZkMp2+7jNNpt8pM4nZ0ImcqfWeWgMrLy+Puu+/mN7/5DT/72c9YtmwZmZmZgZ6WiIiIiIiIiExxWlMQERE5/UxQCCTmQmIuJg8sTx80uQebY+pLoa9r9EF6O+HYbqxju+3j4DDfcEycE+OY/F9fxcbGsm7dOtatWwfY7TGlpaXecMzmzZvZs2cPHo/H71hlZWWUlZXx5JNPAhAREcGqVau84ZiCggJmz5496a9BRE4vExKCyXRCpnMMrTJD2mXck9Aqc+wo1rGjeIq2DD85Y4bdKjOw5ZL9ZxaOzIFWmRkzxn1dkTOJwjAScP/wD/9Ac3MzzzzzDDfddBPf+973uOaaawgJCQn01ERERERERERkCtOagoiISGAZRzDEZ0N8NiZ3PZanH5orB8IxJVBfAr0dow/S1w3H92Ad32MfB4VixecMCcdk2SGcSeZwOMjLyyMvL4877rgDgNbWVoqLi73hmMLCQurq6vyO1dHRwaZNm9i0aZP3PqfT6ROOWbp0KaGhoZP+OkQkcMbUKuOq8AZkPG7X5LTKdHZilRykv+TgyPMa2irjHNh+aaBdRq0ycjZRGEYC6gc/+IH3dlxcHI2Njfzrv/4rP/3pT1m8eDGJiYlj/sehMYaf/OQnp2qqIiIiIiIiIjKFaE1BRERk6jGOIIjLsgMs867EsjzQXA11B+zmmLoSe9uk0fT3QO0+rNp99rEjBCs+226jScyzgzdBpyZUEh0dzSWXXMIll1wCgGVZlJeX+4Rjdu3aRf8Y2h5cLhcul4s//vGPAISHh7Ny5Ury8/O9AZnU1NRT8jpEJPD8tso0Ng62yVS6B1tlXBV2q8wYWqo+zZhaZZxZg60yGU61ysgZSWEYCagXX3zRJ31ojMGyLNrb2ykqKjrp8bRwJSIiIiIiInJ20JqCiIjI1GeMA2IzIDYDk3O5HY5pOTJkW6US6PbTjuDphboDdqAGwBGMFZcFiXkD4ZgcTHDYKZq/IScnh5ycHG699VYA2tvb2bZtm8/2SseOHfM7VldXFx9++CEffvih9760tDSf9pjly5cTHh5+Sl6LiEwtJi6OoLg4WLZ82DmrtxfrcLXPtkseV8Vgq0xr6/gv7K9VZk7yYKvMQJuMIzMT48zCJM1Sq4xMKwrDSMBZlnVS938affEVERERERERObtoTUFERGR6McYBM9NgZhom+1L7e3ZrDdQPhGPqDkJX8+iDePqgvhTqS7EOvgYmCCvWOdgckzAPE3Lqmg0iIyO58MILufDCCwH73x1ut9unPWbHjh309vb6Hau6uppn/z979x0dZ3mn//99j3qvlmx12SruTZ0SQifUmACbhAUSNqSSJZvNfgN7dvkjywby2z0bkphN2BCSmMCygZhOgJheVCxbrtiSbKtYsmxZsnqX5vn98YiRBjsaYzwalet1To71zIw+um+Chf3Mpet+6imeeuopAAIDA1m3bp0rHFNcXExaWpr+rCIyz5iAAExGJmRkntQqY1kWdHZOtMq4frVDM5+6VeZoC9bRFpzlZSc/GRKCSRtvk0lPx5GeORGWSU1Tq4zMOArDiE9t2LDB10sQERERERERkVlI9xRERERmP2MMRCZBZBIm80L7Td6+1onmmLZqGDgx9RBrDDoOQsdBrNo/AwYrOn2iOSYuBxMY6tU9ZGRkkJGRwRe/+EUABgYGqKqqcmuPaW5u9jhreHiY8vJyysvL+dnPfgbAokWL3MIx+fn5hOgNZ5F5yxgDp9Eq46yvw/qoVaah/uy1ylTvZ6x6/6nX9lGrTPqkI5jG22XUKiO+oDCM+NT999/v6yWIiIiIiIiIyCykewoiIiJzjzEGwhMhPBGT8Rk7HNPf5h6O6W/zMMWCznrorMc68CpgsKJSJzXH5GKCwr26j5CQEM455xzOOecc12NNTU1u4Zht27YxPDzscVZLSwvPPPMMzzzzDAD+/v6sWbPG7XilzMxMvcksIsBEq4wjI/Ok5yzLgo6OiTaZxo+OYLKvrSPNXmyVCXULyNjHMI23yqSlY3REnHiBwjAiIiIiIiIiIiIiIiIy4xhjIGwBhC3ApJ8HgNV/wj0c03fMwxQLuhqhqxHr4Bb7kcjkieaY+FxMUKSXdwIpKSnceOON3HjjjQAMDQ2xY8cOt+OVGhoaPM4ZHR1l27ZtbNu2jY0bNwKQkJBAcXGxKxyTn59PeLh3Az8iMvsYYyA2Fr/YWFi3/qTnreFhu1WmoX5Sq4zdMOOsr4Pe3jP/4gP9WPv3MbZ/36nXtmiRHY5Jy5gIzWRk4EjPgPgFCvzJGVEYRkRERERERERERERERGYFExoLaSWYtBIArIEOaK+ZCMf0tHge0t0M3c1Yh96wZ4QvskMxC8bDMcHR3twCAEFBQRQVFVFUVMRdd90F2C0wk8MxlZWVDAwMeJzV2trK888/z/PPPw+Aw+Fg9erVbscrZWdn681kEZmSCQzEZC7Gkbn4pOdOapVx/dpwdlplWlqwWlpwlpWe/OTHW2XSMydaZVLT1Cojf5XCMCIiIiIiIiIiIiIiIjIrmZAYSCnCpBQBYA11Q9ukcEx3k+chvS3Q24JV/5Y9IyzRvTkmNNaLO5iwaNEiNmzYwIYNGwAYGRlh165dbscrHTp0yOMcp9PJjh072LFjB7/61a8AiI2NdQvHFBYWEhnp/UYcEZkbTrtVpr5uolWmsX56W2XSMyb9mq5WGVEYRkREREREREREREREROYGExQJyfmY5HwArKHe8eaY/dBWA12HAWvqIX3HoO8YVsM79ozQeLdwDKHx0/LmakBAAHl5eeTl5XHnnXcCdgtMWVmZ638VFRX09fV5nHXixAlefvllXn75ZcB+Y3vFihVuAZmlS5ficDi8uicRmZs8tsqcOGG3yTROtMk4Gxqw6uvsVhnLw/flKUzZKhMa5t4qk5ahVpl5RGEYmRYfnVuZnp7ONddcc1Zn/+hHP6KqqgpjDJs3bz6rs0VERERERETEt3RPQURERD4NExQOSesxSXaTgTXcB+21E80xnQ14DMf0t0FjG1bj+/Z1SCzW5HBMWMK0NQ8kJCRw7bXXcu211wIwOjrK3r173dpjampqPM6xLIs9e/awZ88eHnnkEQCioqIoKipyhWOKioqIiYnx6n5EZO4zxkBcHH5xcbA+76TnreFhrKbD40cvNbgfw1RfD32folWmvw9r34eM7fvwVAuzW2XSxsMxH7XKZGTgSMuA+OkJPor3KAwj02Ljxo0YYzjvvPM83rgqLCwE4JxzzuHBBx/0OLuxsZF9+/bpm5GIiIiIiIjIHKR7CiIiInI2mcAwWLQWs2gtANbIwKRwTA101oM1NvWQgRNwuBTr8HgLQXDURDgmLhciFk3bny/8/f1Zs2YNa9as4Zvf/CYA7e3tlJeXu8Ix5eXl9PT0eJzV1dXFa6+9xmuvveZ6bOnSpa5wTElJCcuXL8fPz89r+xGR+ccEBmIWL8GxeMlJz53UKlNfP9Eq01D/6VplLAvryBGsI0dwln1w8vMfb5VJz5y4Tk3DBAWd2deVaaMwjMw43d3dGGNOq9ZPREREREREROQjuqcgIiIin5QJCIGFqzELVwNgjQ7BiQMTzTEddeAcnXrIYBc0VWA1VdjXQZFYcTkTzTGRSRgzfccPxcXFceWVV3LllVcCMDY2xr59+1zhmLKyMj788BQtCaewf/9+9u/fz29/+1sAIiIiKCwsdIVjioqKiI+P99peRGR+89gqMzSE1dyEs74Oq6FhPDTTML2tMhkZE60y40cxqVVmZlAYRsTLuru76e7udnvs6NGjPlqNiIiIiIiIiIiIiIj8NcY/CBJWYBJWAGCNDcOJgxPNMScOgnNk6iFD3XCkEutIpX0dGI4Vlz0RjolKndZwjJ+fHytXrmTlypV87WtfA6Czs5OKigpXOKasrIzOzk6Ps3p6enj99dd5/fXXXY9lZ2e7wjHFxcWsWrUKf3+9BSki3meCgqZulWlvx9lYPxGUGQ/JWI31WEeOeK9VJizcdfSSSZvcLqNWmemk/xKJeNnvf/971/nmIiIiIiIiIiIiIiIyexi/QFiwDLNgGQDW2IjdFtNWbQdkThyAseGphwz3QksVVkuVfR0Q+rFwTBrGMb1HD0VHR3PZZZdx2WWXAeB0OqmpqXGFY0pLS9mzZ4/9ZrIHtbW11NbW8thjjwEQGhpKQUGBKxxTXFxMYmKiV/cjIvJxxhiIj8cvPh7W55/0vDU0hNV0eDwk02C3y3zUKtPQ8OlaZfp6cX64Fz7ce6qFYZKS7FaZ8cCMIz0Dk5Fht8rExalV5ixRGEbEy2677TY2bNjg9tjRo0e5+eabfbQiERERERERERERERE5E8YvAOJzID4HwzVYzlHoqLfDMe3V0F4Lo0NTDxnph6M7sY7utK/9g7HisjBx4+GYmAyMY3rfwnM4HCxdupSlS5fy1a9+FbBbYCoqKtyOV2pvb/c4q7+/n7fffpu3337b9VhmZqZbOGbNmjUEBgZ6bT8iIp6YoCDMkiwcS7JOes6tVaa+fqJVpqHh7LTKNDdjNTfjLH3/5Oc/3iqTkTnRKpOSqlaZT0BhGBEvi4yMJDIy0tfLEBERERERERERERGRs8w4/CEuC+KyMFyF5RyDrsaJ5pj2GhgZmHrI6CAc24N1bI997Rc43hyTA3G5EJNph3CmWUREBBdffDEXX3wxYL85fODAAdexSqWlpezatYuxsTGPs+rq6qirq+OJJ54AIDg4mLy8PFdApqSkhKSkJK/uR0TkdJ1Wq8zhxolWmYb6iVaZ+nro7zvzL366rTIZGROtMunpapU5BYVhRERERERERERERERERM4C4/CDmEw7wJJ9BZblhK7DE+GYthoY8fAm6dgwtO7Fah1/I9QRgBW7ZOJYpdjF9vFN08wYQ3Z2NtnZ2dxyyy0A9PX1UVlZ6QrHlJaW0tra6nHW4OAg77//Pu+/P9GKkJqa6haOWbduHUFqQBCRGcgEBWGysnFkZZ/0nGVZ0NZmt8p8FJQZD8lYjfVYLS3ea5UJDx8Px4y3ynwUlEnPwKSmYeZZI5fCMCIiIiIiIiIiIiIiIiJeYIwDotMhOh2TdZkdjuludg/HDPdMPcQ5Am37sdr229cOf6yYxfZRTfG5EJuF8fdNaCQsLIwLLriACy64ALDfBK6vr3c7WqmqqorR0VGPsw4fPszhw4f54x//CEBgYCDr1693hWOKi4tJTU1V64GIzGjGGFiwAL8FCyCv4KTnrcFBrKbDk1pl6iaFZho+XatMby/OvXtg755TLQyTlDzeJpM+qVXG/pXY2Dn3/VVhGBEREREREREREREREZFpYIwDolIhKhWz5BK7QaDnCLTVjIdjqmGoa+ohzlH7+KX2GqzqF8H4YcVkQHzuRDgmIGRa9vNxxhgyMzPJzMzkS1/6EgADAwNs377dFY4pLS3lyJEjHmcNDw+7jmR68MEHAUhKSnILx+Tl5RES4pu9ioicCRMcfHqtMvX1E60yDQ12q8xpfO/8qywLq7kJq7kJ5wfvnfz8x1pl/K+8Cr/C4jP/ejOAwjAiItOkqanJdbYqwOuvv05KSsppf35ubq7r402bNlFUVOT2/N13380zzzzzidf17LPPsmzZsk/8eSIiIiIiIiIiIiLy6RhjIDIZIpMxiy+03wjtPWY3x7SPh2MGOqYeYo3BiYNw4iBWzctgHFjR6RCXi4nPgbgcTGDo9GzoFEJCQjj33HM599xz7eVaFk1NTW7hmO3btzM8POxx1pEjR9i8eTObN28GwN/fn7Vr17odr5SRkTHn2g1EZH44rVaZw412OKah3v0opvp6GOg/8y/+sVaZ0V89RNAjv8P/6mvPfKaPKQwjIiIiIiIiIiIiIiIiMgMYYyBiIUQsxGReYIdj+o+PH6tUY4dj+tumHmI5oaMOOuqwDrwCGKyo1InmmPgcTGD4tOznVIwxpKamkpqayk033QTA0NAQVVVVbscrNTY2epw1OjpKZWUllZWV/OIXvwAgISHBLRyTn59PWFiYV/ckIjIdTHAwJjsHR3bOSc/ZrTLHJx2/9FGrjP2r1dLyib/e2JbXFIYREZGZZfHixZSUlJzWa2NjY728GhERERERERERERE5E8YYCEuAsARM+vkAWP3t4+GY8eaYvlYPUyzoaoSuRqyDf7EfiUxxD8cERXp5J1MLCgqiuLiY4uJivve97wF2C8zkcExlZSWDg4MeZ7W2tvLcc8/x3HPPAeDn58fq1atd80tKSsjKylJ7jIjMKXarTAJ+CxIgv/Ck509qlWmomxSaaThlq4zfxZdOx9K9RmEYmVbHjh3j2WefPauvPXbs2Kddlsics2bNGu69915fL0NEREREROSs0T0FEREREZsJjYO0czBp5wBgDXS4N8f0nsZP/3c3QXcT1qHX7RkRiyaFY3IxwdHe3MJpSUpK4vrrr+f6668HYHh4mF27drkFZA4dOuRxztjYGFVVVVRVVfHLX/4SgLi4OLdwTEFBAZGRvg0EiYh402m3ytTXY7Udx7FmHX4l5/hgpWePwjAyrWpra7nnnns8vs6yrNN+rYiIiIiIiIjMfbqnICIiInJqJiQGUosxqcUAWINd0F4z0RzT3ex5SE8L9LRg1b1lzwhLhAWTwjEhvm8YDwwMJD8/n/z8fO68807ADjeXl5e7wjEVFRX095/cbvBx7e3tvPTSS7z00kuA3aiwcuVKVzimuLiY3NxcHA6HV/ckIjITeGqVma0UhpEZR7V0IiIiIiIiInImdE9BREREBExwFCQXYJILALCGetzDMV1NgDX1kL5j0HcMq/4de0bYAoibFI4Ji/fyLk5PYmIi1157Lddeey0Ao6Oj7NmzxxWOKS0tpba21uMcy7LYvXs3u3fv5te//jUA0dHRFBUVucIxRUVFREf7vjFHREROj8IwMm0sy8MfrERERERERERETkH3FERERETOnAmKgKQ8TFIeANZwn3s4prMRz+GY49B3HKvxPXtGSBzE57jCMYQlzIhgsr+/P2vXrmXt2rV861vfAqCtrY3y8nJXOKaiooKenh6Pszo7O3n11Vd59dVXXY8tW7bMFY4pKSlh2bJl+Pn5eW0/IiJy5hSGkWnx+uuv+3oJIiIiIiIiIjIL6Z6CiIiIyNllAsNg0TrMonUAWCP90H5gUjimHizn1EMG2uFwKdbhUvs6OBorfqI5hvCFMyIcAxAfH89VV13FVVddBcDY2BgffvihKxxTVlbGvn37TmvWvn372LdvH48++igAERERFBUVucIxRUVFxMXFeW0vIiJy+hSGkWmRnJzs6yWIiIiIiIiIyCykewoiIiIi3mUCQmHhaszC1QBYo4Pu4ZiOOrDGph4y2AlN5VhN5fZ1UCTW5OaYiCSMcXh5J6fHz8+PVatWsWrVKu644w4AOjo6qKiocIVjysrK6Orq8jirp6eHLVu2sGXLFtdjOTk5rnBMcXExK1euxN9fb8mKiEw3fecVEREREREREREREREREQCMfzAkrsQkrgTAGh2CjkMT4ZgTB8E5OvWQoW5orsRqrrSvA8Ox4iaFY6JSZkw4BiAmJobLL7+cyy+/HACn00l1dbUrHFNaWsrevXtP6/jOmpoaampq2LRpEwBhYWEUFBS4wjHFxcUkJCR4dT8iIqIwjIjInLRz505+9KMfeXzdN77xDRITE6dhRSIiIiIiIiIiIiIyGxn/IFiwDLNgGQDW2Ah0HIK2ajsgc+IgjA1PPWS4F1q2Y7Vst68DQsfDMTnj4Zg0jMPPyzs5fQ6Hg2XLlrFs2TJuv/12ALq7u6moqHA1x5SWlnLixAmPs/r6+njrrbd46623XI8tXrzYrT1mzZo1BAQEeGs7IiLzksIwIvPA2HvvMnTPD7Bqa329lBnBZGcTdP9/4nfe+b5eitccOnSIQ4cOeXzdjTfeqDCMiIiIiIiIiIiIiJw24xdgB1jiczGA5RyFjvpJ4ZhaGB2aeshIPxzdgXV0h33tH4wVlz3RHBOdjnHMrLcxIyMjueSSS7jkkksAsCyLAwcOuLXH7Nq1C6fT6XHWR/fwn3jiCQCCg4PJz893hWNKSkpYtGiRV/cjIjLXzaz/ioiIVwz9v+9jHTro62XMGFZtLUP/7/uEfrDV10sREREREREREREREZnVjMMf4rIgLguTexWWcww6GybCMe21MDow9ZDRQTi2G+vYbvvaLwgrLmsiHBOTOePCMcYYsrOzyc7O5tZbbwWgt7eXyspKVzimtLSU48ePe5w1ODjIe++9x3vvved6LC0tzS0cs3btWoKCgry2HxGRuWZm/VdDRETOig0bNvDAAw/4ehkiIiIiIiIiIiIiMs8Yhx/ELobYxZicz2FZTug6PBGOaauBkb6ph4wNQeterNa99rVfIFbskknhmMV2Q80MEx4ezmc/+1k++9nPAnZ7TF1dnSscU1ZWxo4dOxgdHfU4q7GxkcbGRv7v//4PgKCgINavX+92vFJqaqo3tyMiMqspDCMyDwT9f//F0D3/hFVb4+ulzAgmO4eg+//D18sQEREREREREREREZnzjHFAdLp99FHWZXY4prtpPBxTA23VMNw79ZCxYTi+D+v4Pvva4Y8Vs9g+qik+F2KXYPxnXmuKMYbFixezePFivvzlLwPQ39/P9u3b3Y5Xamlp8ThraGjI1Tbz05/+FIDk5GSKi4tdAZn169cTEhLi1T2JiMwWCsOIzAN+551P6Ltlvl7GvOfv7/4td2Rk5LQ/d3h4eMpZIiIiIiIiIiIiIiKzgTEOiEqDqDTMkkuxLAt6jkxqjqmGoe6phzhHob0G2muwql8A44cVkzkRjonLwvgHT8+GPqHQ0FDOO+88zjvvPMBujzl8+LBbe8z27dtPel/gVJqbm/nTn/7En/70JwACAgJYu3atW3tMRkYGxhiv7klEZCbSu6kiItMkPDzc7bq/v/+0P7evz70yMjIy8qysSURERERERERERETEl4wxEJkMkcmYxRfZ4Zjeo+7NMYMdUw+xxuDEAThxAKvmJTAOrOj0SeGYbExA6PRs6BMyxpCWlkZaWho33XQTAIODg+zYscOtPebw4cMeZ42MjLB161a2bt3KL37xCwASExPdwjH5+fmEhYV5dU8iIjOBwjAiItMkPDycoKAghoaGAGhqamLFihWn9blNTU1u17GxsWd9fSIiIiIiIiIiIiIivmaMgYhFELEIk/lZOxzTd3yiOaa9Gvrbpx5iOaGjDjrqsGpfAQxWdBrEjYdj4rMxgeFTz/Ch4OBg1/FHH2lubqasrMwVjqmsrHS93zCVY8eO8dxzz/Hcc88B4Ofnx+rVq13hmJKSEpYsWaL2GBGZcxSGERGZRsuXL6eqqgqAvXv3cvnll5/W5+3du9f1cWJiInFxcV5Zn4iIiIiIiIiIiIjITGKMgfAECE/AZJwPgNXfNulYpRroa/UwxYLOBuhswDr4GmCwIpMnmmPiczBBM7uRPTk5mS984Qt84QtfAGB4eJidO3e6Ha9UV1fncc7Y2BhVVVVUVVXx3//93wDEx8e7wjclJSUUFBQQERHh1f2IiHibwjAiItOooKDAFYZ55ZVX+N73vofD4fD4eS+99JLbDBERERERERERERGR+cqExkNaPCbtXACsgY5J4Zhq+5ilKVnQ3QTdTViHXrcfiUiaFI7JxQRHeXkXn05gYCAFBQUUFBTw3e9+F4CjR49SXl7uCsds3bqV/v5+j7Pa2tp48cUXefHFFwFwOBysXLnS7XilnJyc03o/Q0RkplAYRkRkGt1000088sgjOJ1OGhoa2LRpE1/5ylem/JwtW7ZQUVHhuv7Sl77k5VWKiIiIiIiIiIiIiMweJiQGUosxqfaxQtZgl3tzTE+z5yE9R6DnCFbdm/aM8ET3cExIrDe3cFYsXLiQ6667juuuuw6A0dFRdu/e7QrHlJaWcuDAAY9znE4nu3btYteuXfzP//wPADExMRQVFbnCMYWFhURHR3t1PyIin4bCMCIi0yg1NZWbbrqJJ598EoCf/OQn9PX1cfvttxMSEuL22tHRUZ566inuv/9+12MXXngh+fn507pmERERhNRitAAAIABJREFUEREREREREZHZxARHQUohJqUQAGuoG9pqsdrHm2O6mgBr6iG9x6D3GFb9O/aMsAT7OKWPwjGh8V7exafn7+/PunXrWLduHd/+9rcBuwWmrKzMFY6pqKigt7fX46yOjg5eeeUVXnnlFcA+vmrZsmVu7THLly9Xe4yIzBgKw4iITLN77rmH/fv3s2PHDpxOJz//+c955JFHWLduHYmJifj5+dHW1kZVVRWdnZ2uz8vMzHQLxoiIiIiIiIiIiIiIiGcmKBKS8zDJeQBYw712OKatGtqrobMRj+GYvlboa8VqeM+eERoHcRPNMYQtwBjj5Z18evHx8Vx99dVcffXVAIyNjbF37163gMz+/fs9zrEsiw8//JAPP/yQRx99FIDIyEgKCwtd4Zji4mJiY2d+o46IzE0Kw4iITLPg4GA2bdrEv//7v/P0008zNjZGf38/77///ilfb4zh8ssv57777iMiImKaVysiIiIiIiIiIiIiMreYwHBIWodJWgeANdIP7ePhmLZq6GwAyzn1kP526P8A6/AH9nVwDFZ8LiY+xw7HhC+cFeEYPz8/Vq9ezerVq/n6178O2C0w5eXlrnBMeXk5XV1dHmd1d3ezZcsWtmzZ4nosJyfHFY4pKSlhxYoV+PvrLWoR8T59pxER8YGgoCB+9KMfcccdd/Dcc8+xdetW6urq6Orqwul0EhUVRUpKCgUFBVx99dXk5ub6eskiIiIiIiIiIiIiInOSCQiFhWswC9cAYI0MwImDE+GYjjqwxqYeMtgBTWVYTWX2dVAU1qRjlYhImhXhGICYmBiuuOIKrrjiCgCcTif79+93hWPKysrYu3cvluWhTQeoqamhpqaG3//+9wCEhYVRWFjodrzSggULvLofEZmfFIYRr9u4ceO0fa0777xz2r6WyNmQmpp61v69feCBB3jggQfOyiwREREREZGZQPcURERERMQXTEAIJK7EJK4EwBod+lg45hA4R6ceMtQFzVuxmrfa14Hh7s0xkSkY4/DyTs4Oh8PB8uXLWb58ObfffjsAXV1dbN261RWOKSsr48SJEx5n9fX18eabb/Lmm2+6HluyZIlbOGb16tUEBAR4bT8iMj8oDCNet3HjxmlLuurGlYiIiIiIiMjcoXsKIiIiIjITGP8gSFiOSVgOgDU2Ygdi2qrtgMyJgzA2PPWQ4V44sg3ryDb7OiAMKy57ojkmOm3WhGMAoqKiuOSSS7jkkksAsCyL2tpaVzimtLSU3bt343R6OG4KOHjwIAcPHuTxxx8HICQkhPz8fLfjlRYuXOjV/YjI3KMwjEyL06lJ+7RmS7WciIiIiIiIiJw+3VMQERERkZnG+AXYAZb4XAxgOUfto5Q+Cse0H4CxoamHjPTB0R1YR3fY1/4hk8IxORCdjnHMnrdyjTHk5OSQk5PDbbfdBkBvby9bt251O17p+PHjHmcNDAzw7rvv8u6777oeS09PdwvHrF27lsDAQK/tR0Rmv9nzHVRmrYKCAl8vQURERERERERmId1TEBEREZHZwDj8IS4b4rIxuVfb4ZjOBmirGQ/H1MLowNRDRgfg2C6sY7vsa78grLisieaYmMxZFY4BCA8P58ILL+TCCy8E7KD7oUOH3MIxO3bsYGxszOOshoYGGhoaePLJJwEICgoiLy+P4uJiV0AmJSXFq/sRkdlldn3HlFnpscce8/USRERERERERGQW0j0FEREREZmNjMMfYpdA7BJMzuewnGPQdXhSc0wNjPRPPWRsCFr3YrXuta/9ArFil0wKxyy2G2pmEWMMS5YsYcmSJdx8880A9Pf3s23bNldAprS0lKNHj3qcNTQ0xAcffMAHH3zgeiw5OdmtPWb9+vUEBwd7bT8iMrMpDCMiIiIiIiIiIiIiIiIi4iXG4QcxGRCTgcm+HMtyQleTezhmuHfqIWPDcHwf1vF99rXDHyt2iX1U00fhGP8gr+/lbAsNDeX888/n/PPPB+z2mMbGRrf2mO3btzMyMuJxVnNzM08//TRPP/00AAEBAaxbt84VjikuLiY9PV3HpIrMEwrDiIiIiIiIiIiIiIiIiIhME2McEJ0G0WmYrEvtcEzPkYlwTFsNDHVPPcQ5Cm3V9ucAGD+smMyJcExcFsZ/9rWiGGNIT08nPT2dv/mbvwFgcHCQqqoqVzimtLSUpqYmj7NGRkaoqKigoqKCn//85wAsXLjQLRyTn59PaGioV/ckIr6hMIyIiIiIiIiIiIiIiIiIiI8Y44DIFIhMwSy+GMuyoPfopHBMNQx2Tj3EGoMTB+DEAayal+xwTHT6pHBMNiYgZHo2dJYFBwdTUlJCSUmJ67GmpibKyspc4Zht27YxNDTkcdbRo0d59tlnefbZZwHw8/NjzZo1bscrLV68WO0xInOAwjAiIiIiIiIiIiIiIiIiIjOEMQYiFkHEIkzmZ+1wTF+re3PMQPvUQ6wx6DgEHYewav8MGKzotEnhmBxMYNi07McbUlJSuOGGG7jhhhsAGB4eZseOHW7HK9XX13ucMzY2xvbt29m+fTsPPfQQAAsWLKC4uNgVjikoKCA8PNyb2xERL1AYRkRERERERERERERERERkhjLGQHgihCdiMj4DgNXXNhGOaa+GvuMepljQ2QCdDVgHXgMMVlSKHY6Jy4X4HExQhLe34jWBgYEUFhZSWFjI3//93wN2C8zkcMzWrVsZGBjwOOv48eO88MILvPDCCwA4HA5WrVrldrxSTk6O2mNEZjiFYWRGsSyL3bt3s3v3bo4ePUp3dzfDw8On9bnGGH784x97eYUiIiIiIiIiMhPpnoKIiIiIzCcmLB7C4jHp5wJgDZxwP1ap95iHCRZ0HYauw1gHt9iPRCTboZj4XDskExzl5V1418KFC/n85z/P5z//eQBGRkbYvXu3KxxTWlrKwYMHPc5xOp3s3LmTnTt38vDDDwMQExPj1h5TWFhIVNTs/uclMtcoDCMzxh/+8AceffRRWlpazniGblyJiIiIiIiIzD+6pyAiIiIi850JiYXUEkxqCQDWYCe01UyEY3qOeB7S0ww9zVh1b9ozwhdOHKsUn4sJifHmFrwuICCA9evXs379er7zne8AdgtMeXm5KyBTUVFBb2+vx1kdHR38+c9/5s9//jNgB+yXL1/u1h6zbNkyHA6HV/ckIn+dwjDic8PDw9x55528++67gP2TXFP5qHLs469TFZmIiIiIiIjI/KJ7CiIiIiIip2aCoyGlEJNSCIA11O0ejulu8jyk9yj0HsWqf9ueEZbgHo4JjfPmFqbFggULuPrqq7n66qsBGBsbY+/evW7tMdXV1R7nWJbF3r172bt3L7/5zW8AiIyMpKioyBWOKSoqIjY21qv7EZEJCsOIz91333288847GGOwLIuFCxeyevVqduzYQWtrK8YYPv/5z9PX10dLSwv79+9nZGTEdaPqggsuICZmdidRRUREREREROST0z0FEREREZHTY4IiITkfk5wPgDXUC+2TwjFdh4Gpw+X0tUJfK1bDeBg9NH48HJMD8bkQumDWB839/PxYvXo1q1ev5hvf+AYAJ06coLy83BWOKS8vp7u72+Os7u5u/vKXv/CXv/zF9Vhubq4rHFNSUsKKFSvw8/Pz2n5E5jOFYcSn6urqePrpp13X3//+97njjjswxvC1r32N1tZWAO6//37Xa/r7+3n22Wf5xS9+QUdHBzU1NWzcuJHly5dP+/pFRERERERExDd0T0FERERE5MyZoHBIWo9JWg+ANdw/Ho6pgfZq6GwAyzn1kP42aGzDanzfvg6JwYrPxcTZzTGEJ876cAxAbGwsn/vc5/jc5z4HgNPpZN++fa5wTFlZGR9++KHHpkqA6upqqqur+d3vfgdAeHg4hYWFrnBMUVERCxYs8OZ2ROYNhWHEpzZv3ozT6cQYw0033cTXv/51j58TGhrKl7/8ZS677DK++tWvUltby9e//nWef/55VYuJiIiIiIiIzBO6p+Bd3d3dJ/2069GjR320GhERERHxNhMYCovWYhatBcAaGYATByaaYzrqwRqbeshABxwuwzpcZl8HRdnhmPhciM+BiKQ5EY5xOBysWLGCFStW8Hd/93cAdHV1UVFR4QrHlJWV0dHR4XFWb28vb7zxBm+88YbrsaysLFc4pri4mNWrV+Pvr7f1RT4p/a4Rn6qsrHR9fMcdd3yiz42Pj+fhhx/mqquuor29nfvuu4//+q//OttLFBEREREREZEZSPcUvOv3v/89Gzdu9PUyRERERMRHTEAIJK7CJK4CwBodmhSOqYGOQ+AcnXrIUBc0V2A1V9jXgRFY8Tnj4ZhciEzGGIeXdzI9oqKiuPTSS7n00ksBuz2mtrbWFY4pLS1lz549OJ0e2naAAwcOcODAAf7whz8Adqg/Pz/fFY4pLi5m4cKFXt2PyFygMIz41OHDhwFISkoiJSXlr75udHT0lInHpKQkNmzYwBNPPMGWLVvo7e0lPDzca+sVERERERERkZlB9xS867bbbmPDhg1ujx09epSbb77ZRysSEREREV8y/kGQsAKTsAIAa2wYThyCtmo7IHPiIDhHph4y3ANHtmEd2WZfB4S5h2OiUudMOMbhcJCbm0tubi5f+cpXAOjp6WHr1q1uxyu1tbV5nNXf388777zDO++843osIyPDrT1m7dq1BAYGems7IrOSwjDiU93d3RhjSEpKOum5gIAA18eDg4N/9YZUSUkJTzzxBCMjI1RUVHDRRRd5bb0iIiIiIiIiMjPonoJ3RUZGEhkZ6etliIiIiMgMZfwCYcFSWLAUA1hjI9BRB+3VWG010F4LY8NTDxnpg5YqrJYq+zogBCs2eyIcE52Ocfh5fS/TJSIigosuusj19w7Lsjh48KDrWKXS0lJ27tzJ2JiH46iA+vp66uvrefLJJwEICgoiLy/PFY4pKSkhOTnZq/sRmekUhhGf+uhcwFP9hFZYWJjr4+PHj//VG1eTz/Q+duzYWV6hiIiIiIiIiMxEuqcgIiIiIjJzGL8AiM+B+BxMLljOUehsmGiOaa+F0cGph4wMwLFdWMd22df+Qe7hmJgMjGPuvL1tjCErK4usrCz+9m//FrBbYCorK13hmNLS0tP6u8rQ0BAffPABH3zwgeuxlJQUt3DMunXrCA4O9tp+RGaaufPdQmalqKgojh8/Tm9v70nPxcfHuz4+dOgQmZmZp5zR1dXl+ri7u/vsL1JEREREREREZhzdUxARERERmbmMwx9il0DsEkzOlVjOMehqHA/H1EB7DYz0Tz1kdAha92C17rGv/QKxYpdMCscstkM4c0hoaCif+cxn+MxnPgPY7TENDQ1uRytVVVUxMuLhSCqgqamJp556iqeeegqAwMBA1q1b53a8UlpamusHDUTmGoVhxKfS09NpbW2lqanppOdyc3NdH7/33ntcfPHFp5wxOeEYERFx9hcpIiIiIiIiIjOO7imIiIiIiMwexuEHMZkQk4nJvgLLckJXE7Ttt5tj2mrsY5OmMjYMx/dhHd9nXzsCsGKX2G008bl28MYv0PubmUbGGDIyMsjIyOCLX/wiAAMDA1RVVbnCMaWlpTQ3N3ucNTw8THl5OeXl5fzsZz8DYNGiRW7hmLy8PEJDQ726J5HpojCM+NSKFSvYunUrnZ2dHDt2jMTERNdzxcXFriTis88+yy233MLixYvdPn/Pnj2uNCPAsmXLpmfhIiIiIiIiIuJTuqcgIiIiIjJ7GeOA6DSITsNkXWaHY7qPTDpWqQaGPLQ3Okegbb8dqAFw+GPFZEJ87ng4JgvjHzQd25lWISEhnHPOOZxzzjmux5qamtzCMdu2bWN4eNjjrJaWFp555hmeeeYZwD6Gds2aNW4BmcWLF6s9RmYlhWHEpwoKCvjd734HwDvvvMONN97oem7RokWUlJTwwQcfMDAwwBe/+EVuvfVWVq1aBUBlZSWPP/44Q0NDGGNITk5m7dq1vtiGiExh8+bN3HPPPQBs2LCBBx54wMcrEhERERGRuUD3FERERERE5g5jHBCVAlEpmCUXY1kW9LRA+3g4pq0aBrumHuIchfZaaK/Fqn4RjB9WdMZEc0xcNiYgZFr2M91SUlK48cYbXX8vGhoaYufOnW4BmYaGBo9zRkdH2bZtG9u2beOhhx4CYMGCBW7hmIKCAsLDw726H5GzQWEY8alzzz2XkJAQBgYGeOGFF9xuXAHcfffd3HDDDYyMjNDd3e36pvsRy7JcH//whz9UKlFmnKampr9ax32mNm3aRFFR0VmdKSIiIiIiMtvonoKIiIiIyNxljIHIJIhMwmReaP/5va91ojmmrRoGTkw9xBqDjoPQcRCr9s+AwYpOn2iOicvBBM7NI4GCgoIoLCyksLCQu+66C7BbYMrKylzhmMrKSgYGBjzOOn78OC+88AIvvPACAA6Hg1WrVrnCMSUlJWRnZ+vvVDLjKAwjPhUcHMw999xDXV0dxhgGBgYICZlIZObk5PDzn/+cf/iHf2BgYMDtRtVH/Pz8uPvuu7n00kunc+ki81J5eTm33norAIWFhTz22GM+XpGIiIiIiMxXuqcgIiIiIjJ/GGMgPBHCEzEZn7H/fN/f5h6O6W/zMMWCznrorMc68CpgsKJSJzXH5GKC5m7jyaJFi9iwYQMbNmwAYGRkhF27drnCMWVlZRw8eNDjHKfTyc6dO9m5cye/+tWvAIiNjaW4uNgVjiksLCQyMtKr+xHxRGEY8bmbbrppyuc/+9nP8sorr/C73/2O9957j+bmZkZHR0lISKC4uJjbbruN7OzsaVqtyCcTHh7OzTffPOVrSktLOXToEACLFy+mpKRkytcnJiaetfWJiIiIiIjMZrqnICIiIiIyPxljIGwBhC3ApJ8HgNV/wj0c03fMwxQLuhqhqxHr4Bb7kcjkieaY+FxM0NwNdAQEBJCXl0deXh7f+c53AGhtbaW8vNwVjqmoqKCvr8/jrBMnTvDyyy/z8ssvA/b/PytWrHA7Xmnp0qU4HA6v7klkMoVhZFZITEzkhz/8IT/84Q99vRSRTyQ6Opp77713ytfcfffdrjDMmjVrPL5eRERERERETp/uKYiIiIiIzA8mNBbSSjBp9g8dWwMd0F4zEY7pafE8pLsZupuxDr1hzwhfNB6OybF/DYnx5hZ8LiEhgWuuuYZrrrkGgNHRUfbu3esKx5SWllJTU+NxjmVZ7Nmzhz179vDII48AEBUVRVFRkSscU1RUREzM3P7nKb6lMIyIiIiIiIiIiIiIiIiIiMwpJiQGUoowKUUAWEPd0DYpHNPd5HlIbwv0tmDVv2XPCEtwb44JjfPiDnzP39+fNWvWsGbNGr75zW8C0N7eTnl5uSscU15eTk9Pj8dZXV1dvPbaa7z22muux5YuXeoKx5SUlLB8+XL8/Py8th+ZXxSGERERERERERERERERERGROc0ERUJyPiY5HwBrqHe8OWY/tNVA12HAmnpIXyv0tWI1vGvPCI13C8cQGm8f4TSHxcXFceWVV3LllVcCMDY2xr59+ygrK3MFZD788MPTmrV//37279/Pb3/7WwDCw8MpLCx0BWSKi4uJj4/32l5kblMYRkRkFrjllluoqKgAYNOmTRQVFdHS0sLTTz/Nm2++SUtLCx0dHeTm5vLcc88BsHnzZu655x4ANmzYwAMPPDDl1ygvL+fWW28FoLCwkMcee8z13ORZH6moqCA3N/ekOcnJybzxxhtTfi3Lsnj11VfZvHkz1dXVtLe3ExUVxapVq7jhhhu45JJLPPwTEREREREREREREREROXMmKByS1mOS1gNgDfdBe+1Ec0xnAx7DMf1t0NiG1fi+fR0SizU5HBOWMOfDMX5+fqxcuZKVK1fyta99DYDOzk4qKipc4ZiysjI6Ozs9zurt7eWNN95we58pKyvLrT1m1apV+Psr5iCe6d8SEZFZ6NVXX+Wf//mf6e3t9fVSPrHu7m5+8IMf8Pbbb7s93tbWxptvvsmbb77Jddddx/33368qPBERERERERERERERmRYmMAwWrcUsWguANTIwKRxTA531YI1NPWTgBBwuxTpcal8HR02EY+JyIWLRnA/HAERHR3PZZZdx2WWXAeB0OqmpqXELx+zZswen0+lx1oEDBzhw4IDrh7hDQ0MpKChwhWOKi4tJTEz06n5kdlIYRmaMwcFBXnvtNSorKzlw4AA9PT0MDAxgWR4Sl+OMMWzZssXLqxTxvW3btvHQQw8xOjpKXFwc+fn5REVF0draSldXl1e+5pIlS7j55ps5duyY6/dZQkICl1566UmvjY6O/qtzRkdH+e53v0tZWRmBgYHk5eWRkpLCwMAA5eXlHD9+HIDnnnuOxYsXu86fFBERERERmYruKYiIiIiIyNlmAkJg4WrMwtUAWKNDcOLARHNMRx04R6ceMtgFTRVYTXb7P0GRWHE5E80xkUkY4/DyTnzP4XCwdOlSli5dyle+8hUAenp62Lp1qyscU1paSnt7u8dZ/f39vP32224/dJ2ZmekWjlmzZg2BgYHe2o7MEgrDyIzw1FNP8R//8R/09PSc0edbljUvUpQiABs3bsTpdPKDH/yAr371q25VcMPDw175mmvWrGHNmjWUl5e7bhBnZGRw7733fqI5r776KsPDw1x44YX86Ec/IiEhwfXc0NAQ9957L88++ywADz/8MLfccgthYWFnbyMiIiIiIjLn6J6CiIiIiIhMB+MfBAkrMAkrALDGhuHEwYnmmBMHwTky9ZChbjhSiXWk0r4ODMeKy54Ix0SlzotwDEBERAQXXXQRF110EWD/3ezgwYNu4Zhdu3YxNuahjQeoq6ujrq6O//3f/wUgODiYvLw8t+OVkpKSvLofmXkUhhGf27hxIw899NBp/7SWyHw3NjbGP/7jP3LHHXec9NxMT7kODw9TWFjIQw89dNIRSEFBQfzbv/0bW7dupbm5mf7+ft566y2uuuoqH61WRERERERmOt1TEBERERERXzF+gbBgGWbBMgCssRG7Laat2g7InDgAYx5+iHm4F1qqsFqq7OuA0I+FY9IwDr+pZ8wRxhiysrLIysrilltuAaCvr4/KykpXOKa0tJTW1laPswYHB3n//fd5//33XY+lpqa6hWPWrVtHUFCQ1/YjvqcwjPjUvn37eOihhwD7G5xlWaxdu5bCwkISExMJDQ318QpFZp6FCxdy++23+3oZZ+yee+45KQjzkcDAQK688kp+/etfA7B7926FYURERERE5JR0T0FERERERGYS4xcA8TkQn4PhGiznKHTU2+GY9mpor4XRoamHjPTD0Z1YR3fa1/7BWHFZmLjxcExMBsYxf97iDwsL44ILLuCCCy4A7PaY+vp6VzimrKyMqqoqRkc9HFcFHD58mMOHD/PHP/4RsN+TWr9+vdvxSqmpqWoOnUPmz+8UmZEef/xxVx1xXFwcP/vZz8jLy/P1suakTZs28eijj/p6GTPC7bffzq233urrZZyxyy67zO1opNkkLS2N5cuXT/mayc83Nzd7e0kiIiIiIjJL6Z6CiIiIiIjMZMbhD3FZEJeF4Sos5xh0NU40x7TXwMjA1ENGB+HYHqxje+xrv0Cs2KyJ5piYTDuEM08YY8jMzCQzM5MvfelLAAwMDLB9+3a345WOHDnicdbw8DBlZWWUlZXx4IMPApCUlOQWjsnLyyMkJMSrexLvmZ3vpsqcsXXrVtfH//mf/6mbViKnYcWKFb5ewhnLzs72+JqoqCjXx729vd5cjoiIiIiIzGK6pyAiIiIiIrOJcfhBTKYdYMm+AstyQtfhiXBMWw2M9E09ZGwYjn+IdfxD+9oRgBW7ZCIcE7vYPr5pHgkJCeHcc8/l3HPPBez2mKamJrf2mG3btjE87OHIKuDIkSNs3ryZzZs3A+Dv78/atWvdAjKZmZlqj5klFIYRn2ptbcUY40rZiffceuuts7oNRSbExMT4eglnLCIiwuNrJrfenE6tnYiIiIiIzE+6pyAiIiIiIrOZMQ6ITofodEzWZXY4prvZPRwz3DP1EOcItO3HattvXzv8sWIW20c1xedCbBbGP8j7m5lBjDGkpqaSmprKjTfeCMDQ0BA7duxwa49pbGz0OGt0dJTKykoqKyvZuHEjAAkJCW7hmIKCAsLCwry6JzkzCsOIT/n5+QGQkpLi45WIzB7BwcG+XsIZU1JWRERERETOFt1TEBERERGRucQYB0SlQlQqZsklWJYFPUegrWY8HFMNQ11TD3GO2scvtddgVb8Ixg8rJgPicyfCMQHz79ifoKAgioqKKCoqcj125MgR1zFJpaWlVFZWMjg46HFWa2srzz//PM8//zxg/9101apVrnBMSUkJWVlZek9sBlAYRnxq4cKFHDx4kKGhIV8vRWTeczqdvl6CiIiIiIjIadM9BRERERERmcuMMRCZDJHJmMUX2uGY3mN2c0z7eDhmoGPqIdYYnDgIJw5i1bwMxoEVnQ5xuZj4HIjLwQSGTs+GZpikpCSuv/56rr/+egBGRkbYuXOn2/FKhw4d8jhnbGyMHTt2sGPHDn75y18CEBcXR3FxsSscU1BQQGRkpFf3IydTGEZ8qri4mAMHDlBbW8vo6Kjb8Sgi8ul80uOGent7vbkcERERERGRs0r3FEREREREZD4xxkDEQohYiMm8wA7H9B8fP1apxg7H9LdNPcRyQkcddNRhHXgFMFhRqRPNMfE5mMDwadnPTBMQEEB+fj75+fnceeedABw7dozy8nJXOKaiooL+/n6Ps9rb23nppZd46aWXAPv/u5UrV7odr5Sbm4vD4fDqnuY73SUQn7rxxht54okn6O/v56WXXuK6667z9ZJE5ozw8Ik/rHR1eajNA2pqajy+RpVuIiIiIiIyU+iegoiIiIiIzGfGGAhLgLAETPr5AFj97ePhmPHmmL5WD1Ms6GqErkasg3+xH4lMcQ/HBM3fRpPExESuvfZarr38VGHKAAAgAElEQVT2WsD+4fM9e/a4wjGlpaXU1tZ6nGNZFrt372b37t38+te/BiA6OpqioiJXOKaoqIjo6Giv7me+URhGfCo3N5c77riDhx9+mAceeIC1a9eSnp7u62WJzAlJSUmuj/fv3+/x9a+88orH1wQFBbk+HhkZObOFiYiIiIiInAW6pyAiIiIiIuLOhMZB2jmYtHMAsAY63Jtjels8D+lugu4mrEOv2zMiFk0Kx+RigudvYMPf35+1a9eydu1avvWtbwF2C0xZWZkrHFNRUUFPT4/HWZ2dnbz66qu8+uqrrseWLVvmCscUFxezfPly/Pz8vLafuU5hGPG5u+66i66uLp588kluuukm/umf/onrrruOgIAAXy9NZFbLysoiNDSU/v5+Wltb+eCDDzjnnHNO+donn3zytJphJidSW1s9pYlFRERERES8S/cURERERERE/joTEgOpxZjUYgCswS5or5lojulu9jykpwV6WrDq3rJnhCW6h2NCY724g5kvLi6Oq666iquuugqAsbEx9u3b59Yes2/fvtOatW/fPvbt28ejjz4KQEREBIWFhW4Bmbi4OK/tZa5RGEZ86p577nF9HBMTQ0dHB//6r//K/fffz8qVK4mPjycwMPC0Zhlj+PGPf+ytpYrMOv7+/lxxxRVs3rwZgH/5l3/hN7/5DZmZma7XjI2N8fjjj/OTn/yEwMBAhoeHp5yZkpJCSEgIAwMDNDc3s2vXLlavXu3VfYiIiIiIiJyK7imIiIiIiIh8MiY4CpILMMkFAFhDPZPCMTXQdRiwph7Sdwz6jmE1vGPPCFsAcZPCMWHxXt7FzObn58fKlStZuXIld9xxB2C3wJSXl7vCMeXl5XR2dnqc1dPTw+uvv87rr7/ueiw7O9sVjikpKWHlypX4+yv2cSr6pyI+9cwzz9jn2Y0zxmBZFn19fVRUVHziebpxJeLu29/+Ni+//DKDg4M0NzdzzTXXUFRURHJyMt3d3VRWVnL8+HFCQ0P5/ve/z3333TflPD8/Py6++GJefPFFAG699VbOP/98Fi1a5Kppi4qK4pvf/KbX9yYiIiIiIvOb7imIiIiIiIh8OiYoApLyMEl5AFjDfe7NMZ2NeA7HHIe+41iN79kzQuIgPscVjiEswe3vbvNRdHQ0l19+OZdffjkATqeT6upqVzimrKyMPXv2YFke/lkDtbW11NbWsmnTJgDCwsIoKChwhWOKi4tJSEjw6n5mC4VhxOf+2m/q0/nNPtl8/yYqciqpqak8+OCD3HXXXQwNDTEyMsJ7773n9pr4+Hh++tOfnvbvue9///uUl5dz/PhxBgYGeO2119yeT05OVhhGRERERESmhe4piIiIiIiInD0mMAwWrcMsWgeANdIP/z97dxoc13Xfef93esHGBtDYIZAASZAAtVg0Y4U2NZafks0oljOJyypPpFgqWfHjVGXGlqZmPPMi0rjGiTK27LFTciaqTDmaOFHiOHHmSWRFsT0eW4rk2NYWrZQoESBBElwba6PRIJZezvOiG417uxsNNLZGA99PFYLuc+8991yElImDH/7/0ZOOcMwZySYLTzI9Kp17Tvbcc6n3VUFZR1slBdq3/fdgHo9H11xzja655hp96lOfkiRFIhG99NJLmXDM888/r9HR0SXnmpqa0jPPPKNnnnkmM9bd3e0Kx7z73e/elu2ECcOgpG677bZSLwHY8j74wQ/q+9//vr75zW/qZz/7mS5fviy/36+dO3fqlltu0Sc+8Qk1NTXphRdeWNZ8O3fu1BNPPKFvfetb+tnPfqYzZ85oampK8Xh8nZ8EAAAAABawpwAAAAAA68v4a6T2gzLtByVJNj7jDseMn5ZsovAkM2Hp/Auy59M/h6qsk3VWjqntkDGedX6Sza+urk5Hjx7V0aNHJaV+yePkyZOZcMxzzz2nN954Q8nkEmEkSQMDAxoYGNC3v/1tSVJVVZV+8Rd/0dVe6aqrrlrX59kMjC32V2UArNr58+d19OhRPfXUU9q1a9eK5nj77bd1zTXXrPHKgK2LvzMAAABAfmvxPSq2B/6sAAAAAHCy8VlpfGAhHDN2SkoW+cvTFQGpyRGOqd9FOGYR0WhU//Iv/+JqrzQ0NLSiubq6ulzhmEOHDqmysnKNV7y+lvoelcowAAAAAAAAAAAAAACgKMZXKbVcI9OS+mVkm4hJ4wPSyIlUQGbslJSYKzzJXFS69IrspVdS7/01sk29Ms296XBMl4zHu85PUh4CgYBuvvlm3XzzzZJS1WNOnz7tCse89tpry+rmMDg4qMHBQX3nO9+RJFVUVOg973lPJiDzy7/8ywoGg+v5OOuOMAwAAAAAAAAAAAAAAFgV4/WnAizNB2Qk2WRcGj/jCMf0S/HZwpPErkiXX5O9/Frqva9KtqlnoXJMcLeMh5iDJBlj1N3dre7ubt15552SpOnpab388suZgMxzzz2nS5cuLTnX3Nycnn/+eT3//POSpObmZv3whz/Ue97znnV9hvXEnxIAAAAAAAAAAAAAALCmjMcnNe2XmvbLHPjXssmEFD67EI4Z7Zfi04Unic9IoWOyoWOp995K2ab9qcoxTQekhr2pEA4kSdXV1brpppt00003SUpVjzl37pyreswrr7yiubnCFXtGRkb0P//n/9Sjjz66EcteF4RhsKnNzc1pYmJCs7OzqqurU11dXamXBAAAAAAAygB7CgAAAACwuRiPV2rslhq7ZXo/ImuT0sS5hXDMSJ8Umyo8SWJWGnpLduit1HuPX7Zx30LlmMZ9hGMcjDHq6upSV1eXbr/9dknS7OysXn311Uw45rnnntO5c+dyrt23b99GL3dNEYbBppJIJPSDH/xAP/rRj/Taa69paGjIddzv9+vaa6/V4cOHdfvtt6uzs7NEKwUAAAAAAJsJewoAAAAAUF6M8UjB3anWR/t/ORWOiZxPh2P6pJET0ly08CTJmDTyjuzIO6n3Hp9sQ3eqVdN8OMZXuf4PU0YqKyt15MgRHTlyJDN24cKFTJukU6dO6d3vfrf+83/+zyVc5eoRhsGm8eyzz+q//tf/mtmsstbmnDM3N6fXX39dr7/+uv70T/9UH/3oR/X5z39egUBgo5cLAAAAAAA2CfYUAAAAAKD8GeOR6ruk+i6ZfbekvrebvOioHHNCmo0UniQZl0b7pNE+2RNPSsYr27B3IRzTtF/GV7UxD1RGdu7cqY9//OP6+Mc/XuqlrBnCMNgU/viP/1h/9Ed/lHezKpu1VsYYJZNJPfHEE3r55Zf1rW99S21tbRuwUgAAAAAAsJmwpwAAAAAAW5MxRqrbKdXtlOn+UOr7vuhld+WYmfHCk9iENHZSGjsp2/c9yXhkg7sd4ZgeGX/NxjwQNhRhGJTc448/rv/xP/6HpNR/0Ky16uzs1Ic+9CEdOHBAjY2NqqioUDQa1eDgoF599VX95Cc/USwWkySdO3dOn/70p/V3f/d3qqykxBUAAAAAANsFewoAAAAAsH0YY6Taq6Taq2T23pwKx0wNL1SOGT0hXRktPIlNSuOnpfHTsv3/R5KRDXZJTelwTHOPTAUVRLcCwjAoqcnJSX3lK1+RlPqPV2trqz7/+c/rlltuKXjd2NiYvva1r+nv//7vZYzRqVOn9M1vflP/7t/9u41YNgAAAAAAKDH2FAAAAABgezPGSIFWKdAqs+cDkiR7ZcTRVqlPmhpaYhYrhc9K4bOyp/6vJCNbt3Ohckxzr0xl3Xo/CtYBYRiU1OOPP65wOCxjjDo6OvRXf/VXam9vX/K6xsZGfelLX1JXV5e+/vWvS5L+4i/+go0rAAAAAAC2CfYUAAAAAADZTE2z1NUs0/V+SZKdHneEY06k2iwVZKXIeSlyXnbgqdRIbYcjHHNApqp+nZ8Ca4EwDErqJz/5Seb17/7u7y5r08rp3/7bf6tnnnlGr732msLhsF5//XW9+93vXutlAgAAAACATYY9BQAAAADAUkx1g9R5RKbziCTJzky4K8dMXlh6ksmL0uRF2dP/lJoj0OYOx1Q3rucjYIUIw6CkBgYGJEktLS36wAc+sKI5brvtNr322muSpJMnT7JxBQAAAADANsCeAgAAAACgWKaqXtr1Xpld75Uk2dmINNIvO5quHDNxXpItPEk0JEVDsmdSv6Rhd7RITY5wzI7mdX4KLAdhGJTU6OiojDHavXv3iufYs2dP5vXY2NgarKp8WGtTvfAAFGTtEv9oAQAAAFB22FMAAAAAAKyWqayTdt4gs/MGSZKdi6bCMSMnpNETUnhQS4ZjpoalqWHZwZ+m5qhpcoVjtKOFn+mWAGEYlJTf79fc3JxmZ2dXPMfc3Jxrvu3C4/EomUzK6/WWeinAppdMJuXxeEq9DAAAAABriD0FAAAAAMBaMxUBqeMXZDp+QZJkY1ek0XQ4ZuSEFD4r2WThSa6MSld+Lnvu56n3VQ2yzQdkmntT4ZhAO+GYDUAYBiXV1NSkaDSqkydPanZ2VpWVlUXP8eabb7rm2y4qKio0MzOjHTt2lHopwKY3NzfHxjYAAACwxbCnAAAAAABYb8ZfI7W/W6Y91VbXxqalsVML4Zjx05JNFJ5kZlw6/7zs+edT7yvrZZt7FyrH1HYQjlkHhGFQUgcPHtTZs2c1PT2tv/mbv9E999xT1PVXrlzR//7f/9s133ZRV1enSCRCGAZYhmg0qkAgUOplAAAAAFhD7CkAAAAAADaa8VdLbe+SaXuXJMnGZ7PCMQNSMl54ktkJ6cJLshdeSr2vCLgrx9TtkjF0PFgtwjAoqQ996EN68sknZa3Vww8/rH379ummm25a1rVzc3P6T//pP+nixYsyxmjfvn2r6hNebmpra3XmzBm1tLTI5+OvMrCYZDKpyclJtbW1lXopAAAAANYQewoAAAAAgFIzvkqp9VqZ1mslSTYRSwViRk6kAjJjp6TEXOFJ5qLSxZdlL76ceu/fIdvUs1A5JthFOGYF+Ak6SurDH/6wenp6dPLkSc3MzOi3f/u39Ru/8Rv6zd/8TXV2dua9JpFI6Omnn9bDDz+s06dPZ8Y/+9nPbtSyixKJRBSJRFxjly9fXvW8FRUVamho0NmzZ7V7924CMUAe1lpdvnxZFRUVqqmpKfVyAAAAAKyh7bCnAAAAAAAoL8brTwVYmg/ISLLJeKqV0nw4ZvSklJgtPElsSrr8muzl11LvfdWOcEyvFNwt4+Fnw0vhK4SS8ng8+uIXv6h77rlHMzMzSiQS+va3v61vf/vb2rdvnw4cOKDGxkb5/X5NTU3p3LlzevPNNzU5OSlrbaZ32q233qqPfOQjJX6a/B577DE98sgj6zJ3S0uLJGlgYEC1tbWqq6tTVVWVPB4PfeWwbVlrlUgkFI1GFQ6HJUldXV38nQAAAAC2mO2wpwAAAAAAKG/G45OaeqSmHpkDv5oKx4TPSiN96XBMvxSfLjxJfFoKvSEbeiP13lsp27R/oXJMw17CMXnwFUHJHTx4UI888og+97nPaWJiQlLqh9mnTp3SqVOncs631rpef/jDH9ZXvvKVDVtvse655x7ddtttrrHLly/rrrvuWpP5W1paVF9fr8nJSQ0NDWlubk7JZHJN5gbKldfrVXV1tZqamhQIBAjCAAAAAFvUVt9TAAAAAABsLcbjkxr3SY37ZHo/ImuTUnjQUTmmT4pdKTxJYlYaekt26K3Ue2+FbOM+RzimO1WhZpsjDINN4f3vf7/+4R/+Qf/9v/93/fCHP1Q8HndtUOXT1dWlz3zmM/rYxz62Qatcmbq6OtXV1a3rPSoqKtTU1KSmpqZ1vQ8AAAAAAJvNVt5TAAAAAABsbcZ4pIY9UsMemZ4Pp8IxE+fd4Zi5aOFJEnPS8Nuyw2+n3nt8so37Uq2a5sMxvsp1f5bNhjAMNo22tjb9wR/8gX7nd35H//RP/6RXX31Vg4ODikQimpubU21trZqamnTdddfp8OHDuvHGG0u9ZAAAAAAAsAmwpwAAAAAA2AqM8UjBLinYJbP/llQ4ZvLiQjhmpE+ajRSeJBmXRk6krpEk45Vt2LsQjmnaL+Or2ojHKSnCMNh0WlpadPvtt+v2228v9VIAAAAAAEAZYU8BAAAAALCVGOOR6nZJdbtkuo+mKqFGLzvCMSekmXDhSWxCGjspjZ2U7fteKhwT3O0Ix/TI+Ks35oE2EGEYAAAAAAAAAAAAAACATc4YI9VeJdVeJbP35lQ4ZmrIXTlmerTwJDYhjQ9I4wOy/T+QZGSDXY5wTK9MxY4NeZ71RBgGAAAAAAAAAAAAAACgzBhjpECbFGiT2fP/SJLs1MhCOGb0hDQ1vMQsVgqflcJnZU/+X0lG9qpDMr9wj0xl3Xo/wrohDAMAAAAAAAAAAAAAALAFmB3N0o5mmd3vlyTZ6TF3W6VoaIkZrHTpVdlAu8y7fn39F7xOCMMAAAAAAAAAAAAAAABsQaa6Ueq8UabzRkmSnQlLI30L4ZjJi/kvtIkNXOXaIwyDdffJT34y89oYo8ceeyzvsdXKnhsAAAAAAJQ39hQAAAAAAFhbpioo7XqvzK73SpLsbMQdjoleluo7Zfb9colXujqEYbDuXnzxRRljZK1N9SzLc2y18s0NAAAAAADKG3sKAAAAAACsL1NZJ+38RZmdv1jqpawpwjDYENbaFR0DAAAAAKye6/uu+df5xpZ7TrHnaxnzuE5fzvlFvnbcIO/XY0Wvl1izMTItLTJVVcLKsacAAAAAAACKRRgG6+7ee+9d0TEAAAAApbd2oYG1CTEUFUpYLLCx2DmLnr+MEMVy5lxN8GNZX4MCa0PpxGOSCMOsFHsKAAAAAABgJQjDYN2xcQUAALB9FVWNYjOFKNZpDRtWjaLAGooOhGBrcLaAWc5rFXm+69JirzWOlytcQ3aLm6XOye6Ik3f+lT9H5rXHI+Nj62U12FMAAAAAAAArwY4MAAAANqVNVY2iYHWJPOMbWY2i1CGKgtdiy1gyWJCTLCh8Tk5wYYlz1jNEsaLXWvqcdV/D0oEQk/P/FwAAAAAAAGB7IAwDAAC2HLtYsIBqFKubMzvjsOS1qwyEYGvYTtUoFqtMsZz1ut6XIESR9ZoQBQAAAAAAAIBytiFhmLvvvlsvvviiJGnnzp16+umnN+K2KAMvvfSSJKm+vl69vb0rmuPkyZMaHx+XJB0+fHjN1gZg+9oy1ShWEwihGgU2i/WsRlHqEMWKXi9jzVSjAABsE+wpIJ/p+Jw+98//n14MnVZTdUA9wVb11reqJ9imAw1t2l3bKJ/HW+plAgAAAADWGZVhNomJiQkdO3ZMx44d0xtvvKFjx45peHg4c3yrhojuvvtuGWN000036dFHH13RHA8//LCefvppGWN0/PjxNV4hUByqUeTegGoUKJlyrkaxaLUI5Q8fUI0CAABsQ+wpIJ8/f/s5PXnmDUlSaHpSx8cuuY77PV511zWrN9iWCsoEW9Xb0KY9tU2q8LJVCgAAAABbBd/hldDs7KweeOABHTt2TGfPni31cspaTgABa8ImEtL0lTzVJZyvqUZBkGKLKip8sIlCFKucs5yrURCiAAAAwEqwp7C1xJKJJY+fCId0IhxyjfuMR3vrmtUTbE2HZNrUG2xTd32zKgnJAAAAAEDZ4Tu5EpqdndU//uM/lnoZwKLs8JA0NVXqZZSfzVSNokB1iZJXoyh1iCLrNUEKAAAAACh/d199RC+GzuiZC31FXRe3SfVPDKl/Ykhy/M6axxjtqW3KBGR6gq06EGxTd32Lqn3+NV49AAAAAGCtEIbZhIwx2rt3rwYGBkq9lLIQj8clST4ff5zXmqmrl12y+kIZVKNYTsCj2PMJUQAAAABA2WNPYetpqKzRt375/9XYzJT6wiH1h4fUFx5Sf3hI/eGQQtOTRc2XtFYDkRENREb0w8GFVlpGRl21jerNVJJJhWX217eqxl+x1o8FAAAAACgS3+lvAh0dHbr++uszH+9617sUCAR04MCBUi+tLFy8eFGSFAgESrySrcfU1MjU1JR6GQAAAAAArAv2FLauxqodOtLerSPt3a7x8OwVR0BmISxz6cpEUfNbWZ2dHNXZyVH96NzbrmOdgYZ0u6W2TEimJ9iqgL9y1c8FAAAAAFgewjAltGPHDv385z9XU1NTqZdStp577jn19/fLGKPdu3eXejkAAAAAAKBMsKewPQUra3S4bY8Ot+1xjUfmZjLVYzJhmYmQzkfDRd/jXHRc56Ljevr8Cdd4x476TEBmvt3S/vpW1VdWr+aRAAAAAAB5EIYpIa/Xu62CMPfff/+ix/r6+goezzYzM6OzZ8/qnXfeyYwdPnx4VesDAAAAAACbE3sKWG91FVW6obVLN7R2ucanYrPpkMxCQKY/PKTByXFZ2aLucXFqQhenJvTshT7XeFtNXSogU5+qItPbkKok01BJtV4AAAAAWKlVhWGi0aheeOEFXbp0SdPT02ptbdXevXt18ODBtVoftpDHH39cxpiccWuthoaG9N3vfrfoOa1NbTpUVVXpjjvuWPUaAQAAAADA5sOeAkplh79Sh1o6dail0zU+HZ/TyfCw+ibc1WTOTo4qaYsLyYSuRBS6EtE/XzzpGm+pDqin3tFuqSH1uamKtl4AAAAAsJQVhWHC4bC+9rWv6cknn9TMzEzO8T179uiee+7RJz7xibwbFdi+7CKbAYuNL0dLS4u+/OUva9euXSueAwAAAAAAbG7sKWAzqfZV6Prmnbq+eadrfCYe00BkOFVFJjykvnRQ5nRkVAmbLOoew9NRDU9H9fPLA67xxsod6gm2utot9QTb1FIdYC8WAAAAANKKDsO88847+vSnP62RkZFFzzlz5ox+7/d+Tz/96U/19a9/fVULxNZx22235YzN/2ZXa2ur/tW/+lfLmscYo5qaGrW0tOi6667TkSNH5PPR8QsAAAAAgK2KPQWUiyqfX9c2dujaxg7X+FwiroHIiCsg0x8e0kBkRLFkoqh7jM1O6YXQab0QOu0ar6+oTgdk0pVkgql2S+01dYRkAAAAAGw7RX23f/r0aX3qU5/S2NiYa7yrq0s9PT3y+/0aHBzU8ePHJUlPPfWUfv/3f3/tVouy9tBDD+WMPf7445Kk3t7evMcBAAAAAADYU0C5q/D6dHVDu65uaHeNx5IJnYmMugIyfeGQTk0Ma67IkMzE3LReGjqrl4bOusZr/ZXqSQdj5kMyvcE2deyoJyQDAAAAYMtadhgmmUzq/vvvdwVhurq69OCDD+rGG290nXv69Gl94Qtf0AsvvKC//du/VV1d3dqtOI9IJKJIJLKu96irq1v359iuVlPOGAAAAAAAbF/sKaDc+T1e9aTbHTnFkwkNTo7ltFvqnxjSbCJe1D0mY7N6ZXhQrwwPusZ3+Cq0P9NuqS3dbqlVuwJBeYxn1c8GAAAAAKW07DDME088oVdffTXzvrOzU3/913+t5ubmnHP37t2rb37zm/rMZz6jZ599dt2DKo899pgeeeSRdb3Hvffeq/vuu29d77EdvfPOO6VeAgAAAAAAKEPsKWAr83m86q5vUXd9i27dfV1mPJFM6lx0XP3hUCYo0z+RCstMx2NF3WMqPqfXR87r9ZHzrvEqrz8T0HG2W+oKNMrrISQDAAAAoDwsOwzzrW99y/X+i1/8Yt4gTGZin09f/vKX9eEPf3jdwzAAAAAAAAAAsNV5PR7tqWvSnrom3dJ1bWY8aZO6EA07AjILYZlobLaoe8wkYjo2ekHHRi+4xiu9Pu2rb0mFZOpb1duQare0u7ZRPo93TZ4PAAAAANbKssIwp0+f1ptvvpl5f8MNN+h973vfktc1NjbqE5/4hL7xjW+sfIUAAAAAAAAANlS+tuSXL18u0WqwFI/xqLO2UZ21jTraeXVm3FqrS1MT6psYclWT6QuHFJmbKeoes4m4jo9d0vGxS65xv8er7rrmTAWZVEimVXtqm1ThXfbvYgIAAADAmlrWdyOvvfaa6/1HPvKRZd/gV37lV9Y9DHPffffRwggAAAAAAABYIxvRlhzrzxijjkBQHYGgbt7Zmxm31io0PelutxQO6UR4SOHZK0XdI5ZM6EQ4pBPhkGvcZzzaW9ecabl0INimnmCbuuubVUlIBgAAAMA6W9Z3HW+99Zbr/fXXX7/sG/T09KiyslKzs8WV48TWcf/992deG2P0pS99Ke+x1cqeGwAAAAAAlDf2FErnnnvu0W233eYau3z5su66664SrQhryRij9po6tdfU6QMdPZlxa61GZ6Z0IhzKBGTmwzIjM9Gi7hG3SfVPDKl/Ykg6uzDuMUZ7aptSVWSCbemPVnXXt6ja51+rRwQAAACwzS0rDDM6Oup639XVtewbeL1e7dq1S6dOnSpuZdgyHn/8cRljMu+dm0vZx1aLjSsAAAAAALYO9hRKp66uTnV1daVeBjaYMUbN1QE1Vwf0/qv2uY6NzUypLx2ScVaTCU1PFnWPpLUaiIxoIDKiHw4eX7i3jLpqG9WbriQzH5LZX9+qGn/FmjwfAAAAgO1jWWGY7P7AgUCgqJvU1tYWdT62HmutJOXdpJo/tlpruQEGAAAAAAA2B/YUgM2hsWqHjrR360h7t2t8fPaKTmYCMgthmUtXJoqa38rq7OSozk6O6kfn3nYd6ww0pNsttelA+nNPsFUBf+WqnwsAAADA1rQlmrNGIpGcwM5a47dhVi67pO5yjwEAAAAAgO2NPQVg82uorNHhtj063LbHNR6Zm8lUj8lUk5kI6Xw0XPQ9zkXHdS46rqfPn3CNd+yoV0+6goyzkkx9ZfVqHgkAAADAFrCsMEx2CCQajaqxsXHZN5mcLK5UZrEee+wxPfLII+t6j3vvvVf33Xffut5jq3rooYdWdAwAAAAAAGxv7CkA5auuoko3tHbphtYu1/hUbDYdklkIyPSHhzQ4OS6r4qo9XZya0MWpCT17oc813lZTl2q3VN+q3oY29aYryTRU1qz6uQAAAACUh2WFYUR88HcAACAASURBVJqamlzvBwcHlx2GSSQSOn/+fPErAwAAAAAAAABsKTv8lTrU0qlDLZ2u8en4nE6Gh9U34a4mc3ZyVMkiW6KFrkQUuhLRP1886RpvqQ6op751oZpMQ+pzU1Vg1c8FAAAAYHNZVhjmuuuuc70/duyYDh06tKwb9Pf3a3Z2tviVAQAAYEPZIjeY88ywJuso/rbbdd2rXsAKLinDNUvlu+5VX17ivxsrupy/zytcwCovL9X6t8PfDY9UWSvj9a/yngCw9VX7KnR9805d37zTNT4dj+l0ZDhVRSY8pL50UOZ0ZFQJmyzqHsPTUQ1PR/XzywOu8cbKHeoJtrraLfUE29RSHZAxZtXPBgAAAGDjLSsMkx18+cEPfqC77757WTf4/ve/X/yqinTffffRwghYBzaZkBJzxVyxyhtu+IVrc325rntFt+QHPSu8cYkuL9e/G6uZoBzXvAZK/ncTAIDyYq2VEonURzye/pyQEnHZeDzzOvU5dY7NOi/3fMdciYRsPC7j98tz9MPydu0r9SMDQNmq9vl1bWOHrm3scI3PJuI6HRlxBWT6w0MaiIwolkwUdY+x2Sm9EDqtF0KnXeP1FdWZYMx8UKYn2Kr2mjpCMgAAAMAmt6wwzN69e/Wud71Lb775piTp5Zdf1gsvvKD3ve99Ba8bGxvTX//1X69+lQBKYzYixansBADbVkk2d1d5z1UveaUTlOu6V3l9yde9kluW6Gu1Vkr2Q5ft+mdsBdeXfM3Fs8mkK8SheDwr/BFfCH/EY7LxrLH0Z5u+zjmHEgkpFpPNnicRl2Jx2UT6PGfAZP4eiaz5EnHZmHMt8aygSu5cNh7LmsOxto0S+LKqf/SMPHu7N+6eALANVHp9urqhXVc3tLvGY8mEzkRGXQGZvnBIpyaGNVdkSGZiblovDZ3VS0NnXeO1/kr1pIMxB9Kfe4Nt6thRT0gGAAAA2CSWFYaRpLvuukv3339/5v1/+S//RX/zN3+j5ubmvOfH43Hdf//9ikQiq18lgNLw10jGU5p784OeDZ6gXNe92tuv5P7luGapfNe96huv8vLyC4Ow8QoAK5epFjIfrIilghQ5gY1YLFP5IzvgYWMxRxhjIcxhY7GsEIcjcJIVIskEO2LugId1zjkfWElkrctZrWT+WZzrzfcsVBhbX9GoEv/0NGEYANggfo9XPcFW9QRbXePxZEKDk2M57Zb6J4Y0myguJDkZm9Urw4N6ZXjQNb7DV6H96XZLPcG2TFBmVyAoT6n22AAAAIBtatlhmI997GP627/9W7366quSpHPnzunOO+/Ugw8+qCNHjrjOPXPmjL7whS/o+eeflyTV1dURillEJBJZ1tcmHo/r/PnzeY+1tLSosrJyrZe2Zj75yU9uyH2MMXrsscc25F7bhfFVSr7N+2cLAAAA6ydTLSQdpMhU5sgOUsTjuVU/0sEPVyAjnhX+yApxuCuBLIRGUpU9ErmhkDzhEpuuKuIMe7iqlTiusa77OKqHAGvN65XnPTeUehVliz0FAGvF5/Gqu75F3fUtunX3dZnxRDKpc9Fx9YdDmaBM/0QqLDMdjxV1j6n4nF4fOa/XR9z7uFVefyag42y31BVolNdDSAYAAABYD8sOw3g8Hj300EP6xCc+ofHxcUnS2bNndc8996irq0u9vb3y+Xw6d+6c3nrrrcx1/+bf/BsNDg7qxRdfXPvVbwGPPfaYHnnkkSXPC4VCOnr0aN5jf/EXf7Fky6pSevHFF9f9t9SttfwmPAAAANZFplpIVvgiX5UOV7WQeFaVDldVkXyBjHi6PcxibWaWV1Uks7asqiKuYEj2eh3VTjLHqBaCrc7jkXw+yeeXfF7J55Px+lKvvT7J78+8Nj5faix93vw1qfPTH16v5PcvzOHzSTU75PvXvyrvoV8o9dOWLfYUAKw3r8ejPXVN2lPXpFu6rs2MJ21SF6JhR0BmISwTjRXXVnwmEdOx0Qs6NnrBNV7p9WlffUtOu6XdtY3yebxr8nwAAADAdrXsMIwk7d27V3/2Z3+m3/qt39LIyEhmfHBwUIODgznnf/CDH9QXvvAFffrTn179SlHWbBEb6fMbUItd49ygKmZeAAAArJ7NDmnMV+TI0xrG5gmQuKqFxGLKCZBkhThsdrsZZwuZrNYwdplVRTLrzQmXJNLnx93XUC0E24HfvxDoSAc/jG8+1LFwzGQFP5QOg5j5AInP/WEc882HSzIBkvlj8+dmAicLgRTjCKTIEUgxmXs75p+/X+ZZfO77+R3ze70y/CZ+2WBPAUApeIxHnbWN6qxt1NHOqzPj1lpdmppQ38SQq5pMXzikyNxMUfeYTcR1fOySjo9dco1XeLzaW9es3mCbehtSLZd6g63aU9ukCm9RW/oAAADAtlX0v5yvueYafe9739NXv/pV/eM//qNmZnL/gd/V1aVPfvKTuuuuu+Rhc2nbu/fee5c8J5FI6Dvf+Y7Gx8dlrZXX69U111yj3t5eBYNBVVRUKBqN6vz583rzzTczYSxjjG655Rb19vau92MAAAC4WGsdoZCF1jA2Ec8JhSiRcIQvsqp0OKt3OKuFzIc4CgRIFqqTLFQVcbWsyWoNY7OqirjDJYnF10u1EGwnzvCGs1qIP09QI6uqiCt8kRXiMHmqiizM4Q6XmKyAhzss4giQeH0yedaVOddxXuZZfFmhF59P8nioioFNiz0FAJuNMUYdgaA6AkHdvHPhvx/WWoWmJ93tlsIhnQgPKTx7pah7zCUTOhEO6UQ4JJ1ZGPcZj/bWNacqyDS0qbc+FZTprm9WJSEZAAAAwMXYVfwaTDQa1fPPP69Lly5penpara2t2rt3rw4ePMhGGpYtEonos5/9rF566SVVVlbqU5/6lO666y61tLTkPd9aq5/97Gd6+OGH9dZbb6mqqkoPPvigPvrRj27wylfu/PnzOnr0qJ566int2rWr1MsBAGBVrLVSMpnTLsZmBT9cwYslq3dkBzKyW8MkMsGPTCgkT1URV7WQnLW5q4osBE6ywyWJ3GeJxVLPDGx12dVCfP48gYwCVTqyqoq4qoU4qorktJtxzp1VVcRVsSRzTbriSJ5WNvkCJPL7HPfzUi0E2145f4+6HfcUSqmc/6wApWKt1chM1BWQ6UtXkhmdmVqTe3iM0Z7apkybpd50JZnu+hZV+/xrcg8AAABgs1nqe9RVxcUDgYB+6Zd+aTVTAPqd3/kdvfTSS6qvr9ejjz6qgwcPFjzfGKObbrpJN954o+6//379wz/8gx544AF1dXXp0KFDG7RqAADyc1ULcVT2yA1fOKp3zActYo4KIMsIkKRavcRzAiSucIkzQJKnqoirWkjecIm7zY2NZ91v/gPY6lytXnyLBDK8jvCFOxiyePWO3Koii7WGMXmqiriqhfizWtnkaQ1jXG1psgMkjtCI308oBEBZYE8BwGZnjFFLda1aqmv1/qv2uY6NzkTTAZkhV7uloenJou6RtFYDkRENREb0w8HjC/eWUVdto3qDrY6gTKv217eqxl+xJs8HAAAAbFbUTkRJPfvss3r66adljNH999+/5KaVk9fr1X/7b/9Nb775pgYGBvTggw/q7//+79dxtQCAYmSqhWRV9rBZwY9MBZDsAEm+UEgstnDuMlvDuM513Ns67u2qFpJVVWRhHc7AiaPiSCyrognVQrAd+P05rWFMVpDCHchwhzhcFUDSIQ6Tp6pIKqiRp6WLqxJJdsua3NYwplCAJKvNjckKtmTuR+VLANh02FMAUO6aqgJqag/oSHu3a3x89opOZgIyoUxY5tKViaLmt7I6Ozmqs5Oj+tG5t13HOgMNroBMT7BNPcFWBfyVq34uAAAAYDMgDIOSevzxxyVJ9fX1+rVf+7Wir6+oqNDtt9+uL3/5y3r77bd18uRJ7d+/f62XCQCrZp0tZJZoDbMQ6HBX9sgEQxzVO1zVQhwhDuuaM091Esc1Nk9VEcVjC9VCnIGVPFVFFM9qZeOcD9jqXK1estq3ZIU4Flq9ZLWQydMaJicYslhLF59/oVqIYw3yL9LKJhP8yKpO4qoq4giQZK1XPh/VQgAAmwZ7CgC2qobKGh1u26PDbXtc45G5mUyrpUw1mYmQzkfDRd/jXHRc56Ljevr8Cdd4x4569QTbdCAdkJmvJFNfWb2aRwIAAAA2HGEYlNTbb78tY4y6u7vl9XpXNMeBAwcyr48fP87GFbDJWWtzghQLoZCsMIUrfJFVpSNPaxibJ0DiCpekq4ostH/JCpfMV/pwtobJbm+T3crGVYkku2UN1UKwjXg87kBG3tYw2YEMd4gjE/ZIVxXJCYU4KnsYx3zzIQ7jzaoq4mxl4wqFpMMl2QESX7o1jdeb8ywmT4CEaiEAAJQWewoAtpu6iird0NqlG1q7XOPR2KxOOtstTaTCMoOT47KyRd3j4tSELk5N6NkLfa7xtpq6VAWZ+lb1NrSpN11JpqGyZtXPBQAAAKwHwjAoqVAoJCn9w/EVcl47NDS06jUBGymnWogzZJHVGsbmCZCkqndkBzLSoZA8lTqsq6pIVtuarBCHzVNVJLW2xCLrdVcVUTyR255mPowCbHVZLVpS1TtygxT5wxfpaiF5WsOYnCodWe1mHPc1WVVFCrWGMT73nPP3NtkBEmfLmqyKJlQLAQAAG409BQBICfgrdailU4daOl3jV2JzOjUxrL6JhWoyJ8ZDGoyOKVnkfztDVyIKXYnony+edI23VAfUU5+qInOgoS3deqlVTVWBVT8XAAAAsBqEYVBSlZWVmpmZ0cDAgBKJxIp+k+vEiYVSnlVVVWu5PGwgV7WQnJYuy2sNkxMgmW85kx0gScTTLV3cARJXyxpna5j5YEjWNTZPVRFXtZBY1nqz1qV4XFrFpi1QFrKrhfj9C5U+skIcriodeVvDONvN5FYVyVQAcYZLXIEOd4gjEwpZRmsYV4Bk/pgvT9sav1/yeKgWAgAAsAHYUwCAwmr8Fbq+eaeub97pGp+Ox3Q6MpyqIhMeUl86KHM6MqqELa6y7fB0VMPTUf388oBrvLFyh3qCramATH0qINMTbFNLdYDvmQEAALAhCMOgpDo7OzUxMaFIJKInn3xSH/vYx4q6fm5uTt/5zndc82Ft2ERCiSe/q8SLL7pbyOSpKrJYa5j8LWscwRDnNVQLwXaQt3pHVpAi00Imu3pHutJHVlWRVLgkqzWMs3pHVmUPk1VVZKE1jGM8XyjEWbXEce+c9jZZFU2oFgIAAID1wp4CAKxMtc+vaxs7dG1jh2t8NhHX6ciIKyDTHx7SQGREsWRxe3djs1N6IXRaL4ROu8brK6ozwZjeYGum3VJ7TR0hGQAAAKwpwjAoqaNHj+rNN9+UtVZf+tKX1N3drYMHDy7r2mQyqQceeEBnzpyRJNXU1OjGG29cx9VuL7E//iPFvvhgqZeBrcrjcQUpFipsOIIUruod2YGM/K1hTJ6qIguBE3e4xNVCxnm/rKoihVrDGOf9s58lex6qhQAAAABrij0FAFhblV6frm5o19UN7a7xWDKhM5FRV0CmLxzSqYlhzRUZkpmYm9ZLQ2f10tBZ13itv1I96WDMgeB8u6U2deyoZz8FAAAAK0IYBiV1xx136LHHHsv8Jtfdd9+t3/zN39Sdd96ptra2vNckk0n99Kc/1de//nW9/fbbkiRjjD75yU+qoqJiI5e/pSWff67US9g+/FkVPPIGMrzu4IWzSkdWVZFCrWFMnqoimbmzKnuYrOBHpmVNnlY2iwZI5teVVdGEaiEAAAAAVos9BQDYGH6PVz3BVvUEW13j8WRCg5NjOe2W+ieGNJuIF3WPydisXhke1CvDg67xHb4K7Q+2ZqrIzFeS2RUIymPYXwIAAMDiCMOgpBobG/X7v//7+g//4T8omUxqdnZWf/Inf6JHH31UPT096u3tVTAYlN/v19TUlM6fP6+33npLExMTrnkOHjyoz3zmMyV6iq3J+6sfVeKpH23wTb3KqbDhywpSuKp3ZFUBWax6R56qIq5qIa6WNblVRTIVQJYKkHizWtY415VZry83sAIAAAAAKBp7CgBQWj6PV931Lequb9Gtu6/LjCeSSZ2Ljqs/HMoEZfonUmGZ6XisqHtMxef0+sh5vT5y3jVe5fVnAjq96ZZLPcFWdQUa5eWXsAAAACDCMNgEbrnlFv3BH/yBHnjgAV25ckVS6je1+vr61NfXl3O+tVZS6je3rLU6cuSIHnnkEfn9/g1d91bn+4075bnmWiVfeTkd3nAGSJyVSOZDKM4Qiz83QJLTyiZ7Hi8lTwEAAAAARWFPAQA2H6/Hoz11TdpT16Rbuq7NjCdtUheiYUdAZiEsE43NFnWPmURMx0Yv6NjoBdd4pdenffUtOe2Wdtc2yufhl9IAAAC2E8Iw2BRuvfVWHTx4UF/5ylf01FNPKR6PZzaoFnPVVVfpt3/7t3XHHXds0Cq3F2OMvId+Qd5Dv1DqpQAAAAAAsCj2FACgPHiMR521jeqsbdTRzqsz49ZaXZqaUN/EkKuaTF84pMjcTFH3mE3EdXzsko6PXXKNV3i82lvXnKoi09CqnnQ1mT21Tarw8mMSAACArYh/5WHT6Ojo0B/+4R9qeHhYTz/9tF5//XWdOXNGkUhEsVhMO3bsUHNzs6677jq9973v1ZEjR6gkAgAAAAAA2FMAgDJmjFFHIKiOQFA37+zNjFtrFZqedLdbCod0Ijyk8OyVou4xl0zoRDikE+GQdGZh3Gc82lvXnKog09Cm3vpUUKa7vlmVhGQAAADKGv+aw6bT0tKiO+64g9/OAgAAAAAARWFPAQC2DmOM2mvq1F5Tpw909GTGrbUamYm6AjJ96UoyozNTRd0jbpPqnxhS/8SQvn/2zcy413i0u7bR0W4pVUmmu75F1T5a6wEAAJQDwjAAAAAAAAAAAKAsGGPUUl2rlupavf+qfa5jozPRdEBmyNVuaWh6sqh7JGxSA5ERDURG9MPB4wv3llFXbaN6g63qDbalKsoEW7W/vlU1/oo1eT4AAACsDcIwAAAAAAAAAACg7DVVBdTUHtCR9m7X+PjsFZ3MBGRC6g8P6UQ4pMtXIkXNb2V1dnJUZydH9aNzb7uOdQYa0uGYVBWZnnRYJuCvXPVzAQAAoHiEYQAAAAAAAAAAwJbVUFmjw217dLhtj2s8MjeTabU0X02mLxzShalw0fc4Fx3Xuei4nj5/wjXesaNePcE2HUgHZOYrydRXVq/mkQAAALAEwjDYlOLxuCYnJzUzMyNr7bKv6+joWMdVAQAAAACwwNqklIhJyXjqIxGTko73xivV75IxnlIvdVthTwEAsFx1FVW6obVLN7R2ucajsVmddLZbmkiFZQYnx2W1/P9tkaSLUxO6ODWhZy/0ucbbauqy2i2lPjdU1qz6uQAAAEAYBpvIq6++qr/7u7/Tv/zLv2hwcLCoDSsp1Sv2+PHjS58IAAAAAChL1ialZGIhcJIJosSkRNzx2hFIyT6WjMm63sfzBFqWmis9ZpNLL3pHq3Tz52UqAuv/BdrG2FMAAKylgL9Sh1o6dail0zV+JTanUxPD6ptwtFsaD2kwOqZkkf/bE7oSUehKRP988aRrvKU6oJ76VvU2tDmCMq1qquLfEgAAAMUgDIOSm5ub0wMPPKDvfe97mbFiN60AAAAAAGvPWivZhLviiTMMkh1IcR1fCKHYfMcy7/OFUhaZyyZK/SUp3tSQdP4lqfuDpV7JlsSeAgBgI9X4K3R9805d37zTNT4dj+l0ZDhVRSbdaqkvPKQzkVEllhOedRiejmp4OqqfXx5wjTdW7lBPsFUHGtpSYZl026WW6oCMMat+NgAAgK2GMAxK7t//+3+vZ599VtZaGWPYtAIAAACwrdlkIn/LneyqJIUqliTjsjlVUwrNVSCQgtWraSr1CrYs9hQAAJtBtc+vaxs7dG2ju+XebCKu05GRTEBm/vPAxIjiRYZkxman9ELotF4InXaN11dU52231F5TR0gGAABsa4RhUFI//vGP9cwzz2T+Ud7Q0KBf//Vf1+HDh9Xe3q7q6uoSrxAAAADAVmdtsnBbnexji7TnscsKnRQOsCgRk8QP88uKxyd5/ZLHn3rt8aVee32Sr1pm13tl2g+WepVbEnsKAIDNrtLr09UN7bq6od01HksmdCYymgnIzIdkTk0May5ZXCW8iblpvTR0Vi8NnXWN1/or1RNsywnKdOyoJyQDAAC2BcIwKKknnngi8/rQoUP6kz/5E9XV1ZVwRQAAAADWm7V2ybY6yzlms6unLBlgyTdXmbbe2c4ygRNH6GT+dc77+aBK7vnG41/0mHKO5Rnz+iXj5YdJJcSeAgCgXPk9XvUEW9UTbHWNx5MJDU6Oudot9YeH1D8xpNlEcRX7JmOzemV4UK8MD7rGd/gqtD/YqgNZlWR2BYLyGM+qnw0AAGCzIAyDknrjjTckScYYffWrX2XTCgAAAFgH1tpU4COnKonzfb5qJ+6KJTZfS518bXWcoZN859N6p7wYryMAUiB0kl0hJeu4yQRJ/EvPtegxrww/pEEaewoAgK3G5/Gqu75F3fUtunX3dZnxRDKpc9Fx9YdD7qDMxJCm47Gi7jEVn9PrI+f1+sh513i1z6/99a3qDbZmKsr0BFvVFWiU18O/vwAAQPkhDIOSGh8flzFG+/fvV2dnZ6mXAwAAAKwZm0ws2VZn6QomcdmCbXWy51qsRU9ctN4pJya3Akne0ImzmkluhROTEywpNFeec9PHNmv4JBXycnykBhf/UPa5S59vC86r3Hsr6xxjZNraZWpqNvRrs12wpwAA2C68Ho/21DVpT12Tbum6NjOetEldiIYzAZn+iZBOjA+pPxzSVHyuqHtMx2M6NnpBx0YvuMYrvT7tq29RryMg0xts0+7aRvk83jV5PgAAgPVAGAYlFQgEND4+rqamplIvBQAAAGXO2uTSLXfyttVxh1Ws69xC7XvyVUNxBFwIn5SXvG11stvm5A+d5FY+WeT8JQMs6XlK/EMFV8gkkZS1icKBE2UFRPKdky9ksmjQRPnnzz63XJTTWssMewoAgO3OYzzqrG1UZ22jjnZenRm31urS1IT6JoZyqslE5maKusdsIq7jY5d0fOySa7zC49XeumYdaGhLt3xKhWX21DapwsuPngAAQOnxLxKU1M6dOzU2NqZwOFzqpQAAAKBI1toCFUsKhE6yjtlCVVOWPVc81QYI5cN4l2iTk6+lTu75ZskAizNwsshx45UxZt0fOaeSSfZH3Ep2zhEUKRQQUe71zpBJ3vOy51jk3HJhzMLH/HsZ97hR7jnpD5P3/HznOudY6lyT5x5YL+wpAACQnzFGHYGgOgJB3byzNzNurVVoetIVkOkPh3QiPKTw7JWi7jGXTOhEOKQT4ZBr3Gc82lvXrN50SKa3PhWU6a5vViUhGQAAsIH4lwdK6pd+6Zd07Ngx9ff3KxqNKhAIlHpJAAAAm1bqh9yJ3LY6i1YsyRNSSTgCKPla9CzZcsf5Pl7qLwmKYTwFW+EUrmDirH7iCKQsNdei7Xm8a9Z6p3Abm0XCHkkrJaxkY+mPJUIk+UImhSqhZIdMyilgIuUPexQKmWSdWzBk4gqQOOZYViiFkAnc2FMAAKA4xhi119SpvaZOH+joyYxbazUyE80KyITUHx7S6MxUUfeI26T6J4bUPzHkGvcaj3bXNjraLaU+d9e3qNrnX5PnAwAAcCIMg5L6+Mc/rv/1v/6XotGo/uzP/kz33XdfqZcEAADgYm1yybY6ucdy2+YUrn6SL9DiDKI4jtN6p4yYrKok2aGQfK9z2+yYZbTVWXIur7/o8IldLBhSoPWN+1w5qp1YycbTwZMrC/MvFTLJE0rZWiGTfKGPPOe5wh9LhEzmr5+fb8nz3YETQiYoJ+wpAACwNowxaqmuVUt1rd5/1T7XsdGZaDogM6S+dKul/vCQhqYni7pHwiY1EBnRQGRE/2fwrYV7y6irtlG9wVb1BtPVZIKt2l/fqhp/xZo8HwAA2J4Iw6Ckmpub9Xu/93v63Oc+p2984xvq6enRrbfeWuplAQCAErI2uWRbnZwgSp4KJjaxWLBkOXM5zrfJUn9JUIyctjqLtOApUP3E5A2wLBJmyWnD45hrkdY7hdvYFAiZZM5d5PxEOngiK2sTkhKu4zY7ZOJqi7OFQyb5qpAUapWTb758rXIWPa9QtRQAa4k9BQAA1l9TVUBN7QEdae92jY/PXtHJdEBmvu1SXziky1ciRc1vZXV2clRnJ0f1o3Nvu451BhpcAZme9OuAv3LVzwUAALY+wjAouV/5lV+RJN1///36j//xP+rpp5/WnXfeqeuvv15er7fEqwMAYOuz1rrb4Cxa/aRwWx2b71j29Tmv88xlE6X+kqAYxlugFc5ibXNyzzerDLDI65eVJxVRKNQeZ9FWNsp/Ttb5mUBJQo6KJ0nJzqY/8pyfPW+5yBcMWaxVTvZ5+UImi4ZNtPj8eealVQ4AJ/YUAAAojYbKGh1u26PDbXtc45G5mUyrJWc1mQtT4aLvcS46rnPRcT11/h3XeMeO+px2S/vrW1VfWb2aRwIAAFsMYRiU1NGjRzOvPR6PrLV68skn9eSTT8rn8ykYDKqiYnmlEI0x+vGPf7xeSwUAYM2kfpieyG2rk12RpFDFkvS4XaxFT+bcRVr6ZN8L5cN4ssIgiwRF8lYwWThmXNcuNlfqvfV4JZOqdCLjTVc98UnGIzNfIaNQyGQZoZRFq6Uk08ET17GYZOfyVDdReTSRyhf2WCxkkufcRUMmOeERx+tlhVIImQAoL+wpAACw+dRVVOmG1i7d0NrlGo/GZnXS0W6pfyKkvvEhDUbHir7HxakJXZya0DMX+lzjbTV1OpCuHtPjaLvUUFmzqmcCAADliTAMSurChQuujfb519ZaxWIxDQ8PL2sj3lrLhj0AoCBrk4WrkizRcmd+zC5aNWWRubNDJ/Pnhkp4LwAAIABJREFUl8eP7CFJMosETQq0yclTwcRkhU6sM1SSCZvMz5EOncwf8/jTIRRvKnySL2SSL2ySL2SSaZkj97nONjuu+eLpj9m8X51N9Sc5b9jDk3Usz3muNjZLtbzJulehUIon+96ETABgLbGnAABA+Qj4K3WopVOHWjpd41diczo1May+iXS7pfFUy6XB6JiSRVbWDF2JKHQlop9c7HeNt1QHHO2WFtouNVUFVv1cAABg8yIMg5KzS/yDdqnjAIDNydqklEwUbKuz+LGFgIlNLHYsTxCl0Fw2WeovCYqREzop1ILH3VbHpkMkxqTPz4ROnBVNHGOZ0IkzlOJdCKQ4W+9kPi8eMsmEVObPzXd+Mn180Y5QzhBK7pENlxP0yFddJM952VVM8s21WLudJUMp7vn4ISYAbE/sKQAAUN5q/BW6vnmnrm/e6Rqfjsd0OjKcqiITHtKJ8ZD6J4Z0JjKqRJF7PMPTUQ1PR/WzS6dc442VO9QTbNWBhjb11Ldm2i61VAf4HhMAgC2AMAxK6qGHHir1EgBgy8i03smpSlIoPJLbVsfmO5Zd4SQ7dJJvLrvoT/mxGRlvwTY5qVY580ESn+SdD5P4FwIlXn8qgJIJkvhcx3Lb7MyHUDwLr+evlRYPmWSFUrLPW3K7Kn2Z8u6dJSXN5b1kXRQKmWTCHnnOy9cqJ998i7XKWfTcxaqlAACw+bCnAADA1lXt8+vaxg5d29jhGp9NxHU6MpJutxTKfB6YGFG8yJDM2OyUXgid1guh067x+orqTEDGWU2mvaaO75EBACgjhGFQUrfddluplwAAq2IzlU/ytdXJF0LJ31bHrjLAkjmG8mE8mQonqXY5/oUAyXwYJTOeVc3EESQxzhY6zgonrtCJx3WtzZy78LHQescRMJGKC5ksl1Weiij5Qygrki/skVNlRFosRLJoq5zsOfOFTJYMplDFBACAtcKeAgAA20+l16erG9p1dUO7azyWTOhMZDQTkOkPD+lEOKSBiWHNJYv7ha2JuWm9GDqjF0NnXON1FVU5AZneYJs6dtTzfT4AAJsQYRgAQFmxNlm4FU7OsfzteWyxAZbFWvSUpmEJlsnOVxORUp8zbXD8C6ERr6NCiXG+n2+vMx8wSYVVjKvlzkI1E1fAJBNscY6l2u2k5kqHT1KLXLuQybK+KJJx/bFNqECvHrd84ZBCIZOsYMiiIZNClVAWOz/fegiZAAAAAACwLfk9XvUEU0EVp3gyocHJsUy7pb5wSH3hkE5ODGs2UdwvlkXmZvTy8KBeHh50je/wVagn2JZus7QQlNkVCMpjPKt+NgAAsDKEYQAABVlrl1+VpMAxm7e6SaGWOzFlB1iUpPXOZmAzFUMyAwvvXceso6KJL6eiycLYfBudrOonzrY5mbH0e6/jmDzuSijGm267k66okjnXs65BiaJmtpn/k754kVY5rmN5znOFP5ZqeZN1r2WFUgiZAAAAAACA8uXzeNVd36Lu+hbduvu6zHgimdS56Lj6wyH1OVou9U8MaToeK+oeU/E5vTZyTq+NnHONV/v82l/fmg7JLIRlugKN8noIyQAAsN4IwwDAJpOqZJHIU6HEGRjJGstTscTmPbZEgCX7/ESM8MkGclUxSQ2kPys3ZGLlDlRkrvMshEY8ztBJnvY7mbY5Xtms0InJtNvJbaeTqXriyXpt/KngieP+JQ9QLBYycYU98pyXXcUk31yLtcopeG7ufCX/GgEAAAAAAGwzXo9He+qatKeuSbd0XZsZT9qkLkTDmUoy/RMhnRgfUn84pKl4ce2dp+MxHRu9oGOjF1zjlV6f9te35FST2V3bKJ/HuybPBwAACMNgExscHNTZs2cViUQ0Ozururo6NTY26pprrlF1dXWpl4ctxiYTS7bVWbyCSb7qJ8uZa7EWPQnRemdtuVvlFKhqkh0yyQ6mONvtZM41CxVNnFVO0u8XWudkVTzxuIMmxhlg8Tjm8vjcHyZ7zB1IMSssvVp0HKNQyMQZEMlzbk6rnHzz5QuZLBlKoYoJAAAAUthTAAAAK+ExHnXWNqqztlFHO6/OjFtrdWlqQn0TQwvVZMZD6p8YUmRupqh7zCbiemvskt4au+Qar0hXsZkPyMyHZfbUNqnCy4/zAAAoFv/riU2lv79ff/mXf6kf//jHGh8fz3uO1+vVddddpzvuuEO/+qu/qoqKig1eJdaCtclltNzJ11bHfa7NqoaykgCLEjERPlmZRUMm1vH1LBQyyamEUuDczD2MZLyyzqonJjuEMl+pJH3Mm1XFxHhlvP6FcInXWTklXd3EVQElO3wyH0zxySxR0rSoSMZ8gGN+zkIhk0Xb2Cyn5Y1zjqXb4xAyAQAAQDlgTwEAAKwXY4w6AkF1BIK6eWdvZtxaq9D0ZCYg059uuXRiPKSJuemi7jGXTOid8ct6Z/yya9xnPOqub1ZPsC1VRaY+FZTprm9WJSEZAAAWxf9KYlOIxWJ6+OGH9ed//uey1qZ+wJ7m/MGrtVbxeFxvvPGG3njjDT366KP66le/qne9612lWPaWZycvSaP9rnY8tlDoZKn2Pc5QCq13CtrQkElWpRSbr1KKyQ6a+NNhkfSYM0ziWwiKOIMjJqfSyXzYxJdnnnQIxet4nbmvR8aY4kMm2WGPQiGTrHMLhkxcARLHHMsKpRAyAQAAAFaLPQUAAFAqxhi119SpvaZOH+joyYxbazUyE11otxQO6UQ4pP7wkEZnpoq6R9wmU5VowkOuca/xaHdto3oz7ZZSn7vrW1Tt86/J8wEAUM4Iw6DkEomE7r33Xv3kJz+RtTbnB8LOTSznmDFGp0+f1p133qlHH31U73vf+zZqyduCPf+C7EvfKPUy1pQt1B4nXwAk7/s8xzJz5Dl3fqhgiCX7/pKMJ6tqiaPCyXw7Hm9u4CS7ionxLPd8Z5uddGUUR6Bl0aDGYq1yXMfynOcKfyzV8kbuOZcVSiFkAgAAAGwH7CkAAIDNyBijlupatVTX6v1X7XMdG52JpgMyQ+mQSyokMzQ9WdQ9EjapgciIBiIj+j+Dby3cW0ZdtY06kA7I9ARb1Rts1f76VtX4qYoHANg+CMOg5L72ta/p2WefzWxYVVVV6SMf+YiOHj2qAwcOqLGxURUVFYpGoxocHNSrr76qJ554QsePH5cxRnNzc/rsZz+r733ve2prayvx02wddvDnyz83pwrJEiGT7BDJ/DX5AiiLnTt/SnaIZKmQSSFef1ZwJF97HH/+gEo6uGIWaatjXO+z584TSPF484dMFqtCslirHOU/J2+rnILnLlYtBQAAAABKhz0FAABQbpqqAmpqD+hIe7drfHz2ik6mAzLzbZf6wiFdvhIpan4rq7OTozo7Oar/e+7tzLiRUWegQT3B1kxAZj4sE/BXrsmzAQCwmRCGQUkNDg7qL//yLzObVjfeeKMeeughtbe355wbDAYVDAZ18OBB3XPPPfrud7+r3/3d39Xs7Kympqb0h3/4h/rSl7600Y+wdTXslT3ziuyVmHICJlJxIZPFuFrlpNvwePxZ1U8cr/Ocb7z+rAoq2ZVQHOd7fKnAi8cn+dKfvRWSN93CJ18VksVCJgXb3jjeO0MpHk/eealiAgAAAADFY08BAABsJQ2VNTrctkeH2/a4xiNzM5lWS/3hoUy7pQtT4aLmt7IajI5pMDqmp86/4zq2c0fQFZCZryRTX1m92scCAKBkCMOgpJ544gnF43EZY3T48GE9+uij8vmW98fyYx/7mFpaWvRbv/Vbstbq+9//vr7whS+ospIE81owB35NilrZy/2uKiYmpxVPOmzim69skg6ceNPvvfPBE78jiFLhqnyyaMikULudZYVSCJng/2fvzoPkuOv7/7+6Z2Zv7aW9LFmykL3rCxmCbWxHBvy1DJiYu8IRHGzFwRwVCjC4qBCqIJWioEKAcCgcNhBcGHAhXP6ZGEIMNuYwxsYEYUcg7UqyrMPae2d2tdfsTPfvj+nu6Z5jtSPNTs/uPh9VqZ35dM9M9/eLZfkzr329AQAAAKxW7CkAAIC1oLmmTpd2bdalXZsD6ycX5nWgwLilIyfHS/6M49NxHZ+O65Hj/YH17oZmne+0x2TCMpnHbbUNZ3RPAABUAmEYhOrRRx/1Hn/84x9f8qaVa/v27XrVq16lH//4x5qfn9fvfvc7XX311eW+zDXJMCPSZa9XJJlcNGhCyAQAAADAWmLbltOUaTvjXi3fY1uSlV03DCnWmPnvK5QdewoAAGAta4rV6oWdm/TCzk2B9ZmFpA4mRtSfcMYtTWRGLh05OS7LLq3qfWhmUkMzk/rlcwOB9c76Ji8Yk/3ZpfV1TWd8XwAAlAthGITq2LFjMgxD55xzjs4999zTeo/rrrtOP/7xjyVJx48fL+flrXmGYUj8VhwAAACAFc72witLDLL4zw0EXE5jTqwRlWr4zdnlwJ4CAABAvoZYjbZ1bNS2jo2B9dnUgp6ZHFG/0yazf2JIA4lhHZ4cU9q2SvqMkdmTGpk9qUdPHAyst9c2qq/NCci0ZMcuddY38Yu1AICKIwyDUCUSCUlSd3f3ab9HV1dX3vsBAAAAAFY+Oy+wslh4xX/cH145zRBLMd6YVjNnjKsZHOkqUzJNKcIvGCwX9hQAAACWrj4a00XtG3RR+4bA+nw6pWcmR51xS0NOWGZIhxKjSpUYkhmfn9ZvB5/RbwefCay31jZkgjEtwXFLPQ3NhGQAAMuGMAxC1djYqEQicUYbTv7XNjY2luOyAAAAAABnwBslVFKQxV07gxaWxRjmIkGWU4Vbso/ZrK8e7CkAAACcudpIVBe09eiCtp7A+oKV1uHJMfXHhwJBmUOJESWtdEmfEZ+f0RNDh/XE0OHAenNNXV5Apq+1WxsaW/h7NwDgjBGGQai6uroUj8d14MABjY+Pq729veT3eOyxxwLvBwAAAAAoXd4ooSW3sJRhlFAxgTCKMj+LtbAsEmRhI311Yk8BAABg+cTMiHpbM0EVv5SV1pGp8ey4pfiQBuJDOpAY0Xw6VdJnTCbn9PuRI/r9yJHAemO0Rr2t3c6YpWxQ5uymVpmGecb3BgBYGwjDIFQvfvGL1d/fr3Q6rc9//vP6l3/5l5Jef/ToUd17772SJNM0ddllly3HZZ6RyclJTU5OBtYGBwdDuhoAAAAAq43XwuIPqSy5haWCo4S8IMsSRgw55xJiwWLWwp4CAABAtYmaEW1t6dTWlk5df87F3nrasnT05IQGnAYZt1FmIDGs2dRCSZ8xnUpqz+hR7Rk9Glivj8a8Jhl/WGZzU7siJiEZAEAQYRiE6q/+6q909913S5J2796ttrY2vf/975e5hL+0PPPMM3r3u9+t2dlZGYahK664Qm1tbct9ySW76667tGvXrrAvAwAAAEAVyWthyWtbCbOF5VSBlcWDLAa/qYkKWQt7CgAAACtFxDS1pXm9tjSv18s3X+StW7al4yfjXpOMO25pID6k6VSypM+YTS3oqbHjemrseGC9NhLVeS2deW0y56xrV9SMlOX+AAArD2EYhOpFL3qRrrnmGj3yyCOSpDvuuEOPPPKIbr75Zl1zzTV5FceWZWnv3r26//779f3vf18LC5k0sWEY+uAHP1jpy1+Sm2++WW94wxsCa4ODg7rxxhtDuiIAAAAAp6tgC0teSKUKWlgKjAqihQWrzVrYUwAAAFjpTMPUpnXt2rSuXTs2XeCt27atE9MJ9ScywZj9E9kmmcnkXEmfMZ9Oae/4Ce0dPxFYr3FabNyAjBuW2bJuvWoifEUKAKsdf9IjdJ/85Cf11re+VUeOZGZC7t+/Xx/96EclSR0dHWpvb1csFtP09LROnDih+fl5SZm/KLmbtR/+8If1/Oc/P5wbOIXm5mY1NzeHfRkAAADAmnXqFpbcwEo1tLD414oHWWhhwVq32vcUAAAAVivDMLShqVUbmlp1zcY+b922bQ3NTmXHLU0MaSAxrP0TQ0okZ0v6jKSV1r6JQe2bGAysRw1TW1s61NvanWmRackEZba2dKiWkAwArBr8iY7Qtbe366677tJtt92mPXv2eJtRtm1rZGREo6Oj3rm2s/nsnlNTU6MPf/jDtKwAAAAAq9DSWlgWGTEUWgtLsSALLSxAubGnAAAAsLoYhqGehmb1NDTrJRt6vXXbtjU6d9IbtzQQH9L+eKZNZmxuuqTPSNlWJmgTHw6sR4zMqKfeli6nTSbTJLO1pVP10VhZ7g8AUDmEYVAVzjrrLH33u9/V7t27dffdd2tgYMA7ZhfYuK6pqdENN9ygW2+9Vc973vMqeakAAAAAFlFyC0uxEUPlDLBI2VDKKVtY/OEWM/haQixAVWJPAQAAYPUzDEOd9evUWb9O2886N3BsbO6kE5AZ9gIyA/FhDc9OlfQZadvSwcSIDiZG9JMje7110zC0uandC8j0tnZ5o5fqozVluT8AQPkRhkHVME1Tb3nLW/SWt7xFhw8f1p49e/Tss89qcnJSyWRS69at0/r163XxxRfrkksuUUNDQ9iXDAAAAKwaeSGWJbewVGKU0FJbWAodNwmwAGsAewoAAABr1/q6Jq3vadKVPVsD6xPzMzrgNMD0OyGZ/viQBmcmS3p/y7Z1eGpMh6fG9ODRP3vrhgxtampTrxOM8YdlmmK1Zbk3AMDpIwyDqrRlyxZt2bIl7MsAAAAAql7BUUJLbmGp1CihUsIrjBICcGbYUwAAAIAktdU26PLuLbq8e0tgfTI5541a8rfJHJ+Ol/T+tmwdOTmuIyfH9dCxfYFjGxtbAwEZ92dzTd2Z3hYAYIkIwwAAAABAhZ16lFCYLSwFgiySL7CyeJDFcM8HAAAAAKAKNdfU6dKuzbq0a3Ng/eTCvA44I5b8bTJHTo6X/BnHp+M6Ph3XI8f7A+s9Dc3qc9pjMmGZzOO2WpoLAaDcCMMAAAAAwBIVbGHJC6mE3cJSeFQQLSwAAAAAABTXFKvVCzs36YWdmwLrMwtJHUyMqD8xrP6JIQ3Eh9QfH9azU+OyVdp/3w/OTGpwZlK/fG4gsN5Vvy4vINPX2qX1dU1nfF8AsFYRhkFF/fjHP9bo6Kgkqb29Xa9+9atP632OHj2qn//8597zV77yleru7i7LNQIAAGB1OXULS25gJcwWlkKjhIoHWWhhAbCWsKcAAACAMDTEarStY6O2dWwMrM+mFvTM5EimRWYiE5AZSAzr8OSY0rZV0mcMz05peHZKj544GFhfX9eYDci0ZMcuddY38UstAHAKhGFQMf39/br99ttl27ZM09TXv/71036vjRs36qGHHtITTzwhSdq7d6/+9V//tVyXCgAAgCqwtBaWnONV0cJSLMhCCwsAnC72FAAAAFBt6qMxXdS+QRe1bwisz6dTemZyVAPxYe13Ri0NxId0KDGqVIkhmbG5aY0NPqPfDj4TWG+tbcgEY1qCbTI9Dc3sOQCAgzAMKmbXrl2yLEuGYegd73iHrrrqqtN+L9M09dnPflavetWrNDU1pf/6r//Su971Lm3durWMVwwAAIBSldzCsmiQpYwMc4ktLP5wCy0sAFAt2FMAAADASlEbieqCth5d0Naj1/jWF6y0Dk+OqT8+pH4nJNMfH9ahxIiSVrqkz4jPz+iJocN6YuhwYL25pi4vINPX2q0NjS2EZACsOYRhUBHxeFwPP/ywDMNQc3Ozbr311jN+z46ODu3cuVNf+tKXZNu27rvvPn3oQx8qw9UCAACsPXkhlqWEV/zH/c/LJbd15ZQtLLnn08ICAKsBewoAAABYDWJmRL2tmaDKDdrmraestI5MjWfGLHltMkM6kBjRfDpV0mdMJuf0+5Ej+v3IkcB6Y7RGva3dzpilbFDm7KZWmfzyD4BVijAMKuKnP/2pUqmUDMPQ2972NjU1NZXlfXfu3Kk777xT8/Pz+tGPfsTGFQAAWHMKjhI6ZZAlp4GlxIreU8prYFlieIVRQgCAAthTAAAAwGoWNSPa2tKprS2duv6ci731tGXp6MkJDcSHtN8ZtTQQH9ZAYlizqYWSPmM6ldSe0aPaM3o0sF4fjXlNMv6wzOamdkVMQjIAVjbCMKiIPXv2eI+vvfbasr1vY2OjrrjiCv3iF7/QiRMnNDQ0pO7u7rK9PwAAwHJYdJTQUlpYlmOUUCCMcvpBFkYJAQDKjT2FcExOTmpycjKwNjg4GNLVAAAArD0R09SW5vXa0rxeL998kbdu2ZaOn4yrPz4cGLc0EB/SdCpZ0mfMphb01NhxPTV2PLBeG4nqvJbOvDaZc9a1K2pGynJ/ALDcCMOgIvbu3StJam5u1rZt205xdmmuuuoq/eIXv/A+h40rAACwXAq2sJwyyJIbXlmGEMuiIRVaWAAAKxt7CuG46667tGvXrrAvAwAAADlMw9Smde3atK5dOzZd4K3btq0T0wn1JzLBmP0T2SaZyeRcSZ8xn05p7/gJ7R0/EVivcVps3ICMG5Z5XnOHYoRkAFQZwjCoiNHRURmGoa6urrK/94YNG7zHIyMjZX9/AACwsi3awnLKx5VuYckPqQTDK7SwAADWHvYUwnHzzTfrDW94Q2BtcHBQN954Y0hXBAAAgMUYhqENTa3a0NSqazb2eeu2bWtodkoD8aFMm8zEkAYSw9o/MaREcrakz0haae2bGNS+iWBjYNQwtbWlQ72t3ZkWmZZMUGZrS4dqI3wdDSAc/OmDinBrddvb28v+3v73TCQSZX9/AAAQjsVbWPwhlcXCK5VuYTnFiCFaWAAAKBl7CuFobm5Wc3Nz2JcBAACAM2QYhnoamtXT0KyXbOj11m3b1ujcSWfEUmbkkjt2aWxuuqTPSNmWM7ZpOLAeMTKjnnpbupw2mUyTzLktnaqLxspyfwBQDGEYVEQkEtHCwoLm5kqrYVuK2dlsajUa5X/SAACEaWktLLmjhKwiQZYyMsxFgizFwi20sAAAUA3YUwAAAADKzzAMddavU2f9Om0/69zAsbG5k05AZtgLyAzEhzU8O1XSZ6RtSwcTIzqYGNFPjuz11k3D0Oamdi8g09va5Y1eqo/WlOX+AID/ykdFtLW16bnnntPExETZ39v/nm1tbWV/fwAA1gJ7qaOCih33Py+XkltYco7TwgIAwKrAngIAAABQWevrmrS+p0lX9mwNrE/Mz+hATkimPz6kwZnJkt7fsm0dnhrT4akxPXj0z966IUObmtrU6wRj/GGZplhtWe4NwNpBGAYVsX79ej333HM6duyY4vG4Wltby/beTz/9tPd4OSqTAQCoZt4ooZKCLDkNLLZV3ovKC7EsMbzCKCEAAFAAewoAAABAdWirbdDl3Vt0efeWwPpkcs5pjxlyxi1lmmSOT8dLen9bto6cHNeRk+N66Ni+wLGNja2BgIz7s7mm7kxvC8AqRRgGFfGCF7xATz/9tGzb1qOPPqobbrihbO/9q1/9SlKmzm3btm1le99KeOtb30oNMwCsabZkOz8LruceK7ZeLobvh7GEdee5kXMeAABYUVKpVNiXsCj2FAAAAIDq1lxTp0u7NuvSrs2B9ZML8zrgBGP2+8YtHTk5XvJnHJ+O6/h0XI8c7w+s9zQ0q89pj8mEZTKP22obzuieAKx8fAuPirjqqqt09913S5LuvPPOsm1c/fSnP9Xhw4dlGIb6+vr4LS4AQAXYvh9LDapUW4hlsXALAABAdWFPAQAAAFiZmmK1emHnJr2wc1NgfWYhqYOJEfUnhtU/MeQ0ygzr2alx2SXunw7OTGpwZlK/fG4gsN5Vvy4vIHN+a7fa6xrP+L4ArAyEYVARV111lVpaWjQ5Oan9+/frW9/6lnbu3HlG7zkxMaFPf/rT3vPrr7/+DK+y8u655x6dffbZYV8GAKxqtjceKHdUULGxQkVGDNllDLEERgIVGhvkjgpafJyQYZjluyYAALBmHTt2TDt27Aj7MopiTwEAAABYXRpiNdrWsVHbOjYG1mdTC3pmckT98UxIpj8+rIHEsA5Pjild4qj34dkpDc9O6dETBwPr6+saswGZlszYpb62bnXUNTG2HVhlCMOgIhoaGrRz50594QtfkCT927/9m9ra2vS6173utN4vHo/rPe95j44ePSpJam5u1tvf/vayXS8AIHz2ouEVf0hlsfDKMoRYCoZXzAJBluLr/EcVAADA0rGnAAAAAKwN9dGYLmrfoIvaNwTW59MpPTM5mjNuaUiHEqNKlRiSGZub1tjgM/rt4DOB9dbaBvW1dqm3Jdsm09fWre76deznAisUYRhUzE033aTdu3frxIkTSqfT+sd//Ec99thj+sAHPqCenp4lvYdt23rwwQf1iU98QqOjo5Iyc73f+973qrGRWjMACNvSWlh8gRX/ucvVwiJlQynFWlgKhltoYQEAAKgW7CkAAAAAa1dtJKoL2np0QVuPXuNbX7DSOjw5pv74kPqdkEx/fFiHEiNKWumSPiM+P6Mnhg7riaHDgfXmmrpAQMYdt3RWYwshGaDKEYZBxTQ2NuorX/mK3va2t2lmZka2bev+++/XAw88oJe85CXavn27LrnkEvX09Ki5uVk1NTWamppSIpHQ/v37tWfPHv33f/+3Tpw4Idu2ZRiZ36x/7Wtfy29wAcAZspc6KijveBW0sBQ7TgsLAADAqsGeAgAAAIBcMTOi3tZMUOUGbfPWU1ZaR6bGM+OW4s64pfiQDiRGNJ9OlfQZk8k5/X7kiH4/ciSw3hitUW9rd6ZNxheUObupVSa/WAlUBcIwqKjzzz9fu3bt0gc+8AFNTk5KklKplB555BE98sgjp3y97XzJahiGbNvWK17xCn3iE59YzksGgKrmjRIqKcjiri1XC4t/JNBSW1gYJQQAAIDFsacAAAAAYCmiZkRbWzq1taVT159zsbeetiwdPTmhgfiQ9jsBmYH4sAYSw5pNLZT0GdOppPaMHtWe0aOB9fpozGuS8YdlNje1K2ISkgEqiTAMKu6qq67Svffeq9tuu01PP/2092WzBOahAAAgAElEQVSnfYovY93f2rJtW9FoVLfddptuueWWSlwyAJRV3iihJbewLOMooUAYJRtIWXILC6OEAAAAUAHsKQAAAAA4XRHT1Jbm9drSvF4v33yRt27Zlo6fjHtNMu64pYH4kKZTyZI+Yza1oKfGjuupseOB9dpIVOe1dAYCMue3dmvzunZFzUhZ7g9AEGEYhOLss8/W7t279fDDD+vOO+/UH/7wh1O+xrZtrVu3Tm9605u0c+dOdXV1VeBKASDLa2Hxh1SW3MJSwVFCXpCFFhYAAACsPuwpAAAAACgn0zC1aV27Nq1r145NF3jrtm3rxHRC/Ylh9U8MeUGZgcSwJpNzJX3GfDqlveMntHf8RGC9xmmxcQMyva3dOr+1W1ua1ytGSAY4I4RhEKprr71W1157rcbHx/XEE0/o6aef1vj4uOLxuJLJpJqbm9XS0qLNmzfr8ssv18UXXyyTCjEAJchrYclrW6mCFpZCo4QKjhiihQUAAABwsacAAAAAYDkZhqENTa3a0NSqazb2eeu2bWtodiozbmkiG5DZPzGkRHK2pM9IWmntmxjUvonBwHrUMLW1pUO9rd3qbe1SX0uX+tq69bzmDtVG+IofWAr+SUFVaG9v1/XXX6/rr78+7EsBUCUKtrDkhVSqoIVlkbYVWlgAAACA5ceeAgAAAIBKMgxDPQ3N6mlo1ks29Hrrtm1rdO5kZtzSxJAGEtmxS2Nz0yV9Rsq2nLFNw4H1iJEZ9dTb0uW0yXTr/LYubW3uVF00Vpb7A1YLwjAAgLI5dQtLbmClSlpYCoZbaGEBAAAAAAAAAABLYxiGOuvXqbN+nbafdW7g2NjcSQ044RZv3FJ8WMOzUyV9Rtq2dDAxooOJEf3kyF5v3TQMbW5q9wIyva1d3uil+mhNWe4PWGkIwwAAltjCssiIoTBbWIodp4UFAAAAAAAAAABUgfV1TVrf06Qre7YG1ifmZ3QgPqz9voBMf3xIgzOTJb2/Zds6PDWmw1NjevDon711Q4Y2NbWp1wnG9LV2qa+1W+e1dqkpVluWewOqFWEYAFihSm5hKTZiqJwBFikbTDFMLb2FJf8xIRYAAAAAAAAAALCatdU26PLuLbq8e0tgfTI55wVjBuJD6neCMsen4yW9vy1bR06O68jJcT10bF/g2MbGVl+DTLf6nEaZ5pq6M70toCoQhgGACssLsSy5haWCo4ScVpUlt7A4jwmwAAAAAAAAAAAAnJnmmjpd2rVZl3ZtDqyfXJjXASck4wZkBuLDOnJyvOTPOD4d1/HpuB453h9Y72lo9oIxvU6TTG9rl9pqG87onoBKIwwDAEtUcJTQkltYKjhKyAuyLGHEEKOEAAAAAAAAAAAAVoSmWK1e2LlJL+zcFFifWUjqYGJE/Ylh9U9k22SenRqXrdK+lxqcmdTgzKR++dxAYL2rfl1eQOb81m611zWe8X0By4EwDIBV7dSjhKqghaVoYGXxIIthmOW7JgAAAAAAAAAAAKxIDbEabevYqG0dGwPrs6kFPTM5ov0Tw9lxS4lhHZ4cU9q2SvqM4dkpDc9O6dETBwPr6+saswGZli71tXWrr7VLHXVN/DI2QkUYBkBVKtjCkhdSqYIWlgKjgmhhAQAAAAAAAAAAQNjqozFd1L5BF7VvCKzPp1N6ZnJU/RND6k+445aGdCgxqlSJIZmxuWmNDT6j3w4+E1hvrW1QX2uXelsybTLnt3Wrt7Vb3fXr+K4MFUEYBkDZnLqFJTewUg0tLMXCLbSwAAAAAAAAAAAAYPWpjUR1QVuPLmjrCawvWGkdnhzT/nhm1NJAfFj98WEdSowoaaVL+oz4/IyeGDqsJ4YOB9aba+q8gIx/3NJZjS2EZFBWhGEAFGVbaSk1Ly+k4g+3VEULyyLHaWEBAAAAAAAAAAAAlixmRtTbmgmqSNu89ZSV1pGpcfXHh9XvjluKD+lAYkTz6VRJnzGZnNPvR47o9yNHAuuN0Rr1tmZGLLlBmb7WLm1sapXJL63jNBCGAVDc/KQThimBYUqG83PJLSz5jwmxAAAAAAAAAAAAAOGLmhFtbenU1pZOXX/Oxd562rJ09OREICAzEB/WQGJYs6mFkj5jOpXUntGj2jN6NLBeH415TTJuWKavtVubmtoUMQnJoDjCMACKq2mUzIiWGmQhwAIAAAAAAAAAAACsDRHT1Jbm9drSvF6v2HyRt27Zlo6fjHtNMu64pYH4kKZTyZI+Yza1oKfGjuupseOB9dpIVOe1dAYCMn2tXdq8rl1RM1KW+8PKRhgGQFFGpEaK1IR9GQAAAAAAAAAAAABWCNMwtWlduzata9eOTRd467Zt68R0Qvu9gEz259RCadMq5tMp7R0/ob3jJwLrNU6LjTtuqbe1W+e3dmtL83rFCMmsKYRhAAAAAAAAAAAAAADAsjIMQxuaWrWhqVX/7+zzvXXbtjU0O6X+iSEvIDOQGNb+iSElkrMlfUbSSmvfxKD2TQwG1qOGqa0tHept7VZva5f6WrrU19at5zV3qDZCbGI14v9XAQAAAAAAAAAAAABAKAzDUE9Ds3oamvXSjb3eum3bGp07mRm3NDGkgUS2TWZsbrqkz0jZljO2aTiwHjEyo556W7qcNplund/Wpa3NnaqLxspyfwgHYRgAAAAAAAAAAAAAAFBVDMNQZ/06ddav0/azzg0cG3NCMv5xSwPxYQ3PTpX0GWnb0sHEiA4mRvSTI3u9ddMwtLmp3QvI9LZ26fzWbp3X2qn6aE1Z7g/LizAMlt2uXbsq9lnvfe97K/ZZAAAAAABgebGnAAAAAAAoZH1dk67qadJVPVsD6xPzM3kBmf74kAZnJkt6f8u2dXhqTIenxvTg0T9764YMbWpqU29rlxeQcR83xmrLcm8oD8IwWHa7du2SYRgV+Sw2rgAAAAAAWD3YUwAAAAAAlKKttkEv7t6iF3dvCaxPJuc0EB9y2mSGvFaZ49Pxkt7flq0jJ8d15OS4Hjq2L3BsY2Oreluz45b6nKBMc03dmd4WTgNhGFSEbdslne9udOW+rti6/xgAAAAAAFg92FMAAAAAAJyp5po6Xdp1ji7tOiewfnJhXgec9hg3IDMQH9aRk+Mlf8bx6biOT8f1yPH+wHpPQ7MXjPG3ybTWNpzRPWFxhGGw7C6//PIlnTcwMKBEIiHbtmXbtgzD0Nlnn63W1lbV1NTo5MmTOn78uKanpyVlN6ouvvhi1dfXL9v1AwAAAACAcLCnAAAAAABYTk2xWr2wc5Ne2LkpsD6zkNTBxIj2e+OWMmGZZ6fGZau0X9oYnJnU4MykfvncQGC9q36dF5Dpa+1Wn/Ozva7xjO8LhGFQAd/+9rcXPW7btj7/+c/rySeflG3buvTSS/W3f/u3eulLX6rGxvx/0A8cOKAf/vCHuvvuuzUzM6Pp6Wl98pOfVF9f33LdAgAAAAAACAF7CgAAAACAMDTEarStY6O2dWwMrM+mFnQoMRIct5QY1uHJMaVtq6TPGJ6d0vDslB49cTCwvr6u0ReQ6fZGL3XUNdFsWgLCMAjdl770Jd1xxx0yDEMf+chHdNNNNy16/nnnnacPfvCDetvb3qZ3vvOd6u/v1y233KL77rtPnZ2dFbpqAAAAAAAQNvYUAAAAAACVVB+N6eL1G3Tx+g2B9fl0SocSo5mATGLYa5M5lBhVqsSQzNjctMYGn9FvB58JrLfWNqivtUu9Lc64pbZu9bZ2q7t+HSGZAgjDIFT79u3TV7/6VUnSrbfeespNK7+enh594xvf0Ktf/WqNjY3p4x//uL785S8v16UCAAAAAIAqwp4CAAAAAKBa1EaiurC9Rxe29wTWF6y0Dk+OOeOWMiOX+uPDOpQYUdJKl/QZ8fkZPTF0WE8MHQ6sN9fUeQGZvtZu9bV1q6+lS2c1tqzpkAxhGIRq9+7dsixLtbW1uvXWW0t+fWdnp97ylrfojjvu0C9/+UuNjo6qo6NjGa4UAAAAAABUE/YUAAAAAADVLmZG1NuaCapI27z1lJXWkalxJyQz7I1dOpAY0Xw6VdJnTCbn9PuRI/r9yJHAemO0Rr2t3Zk2GW/sUpc2NrXKNMxy3F5VIwyDUD3++OMyDEN9fX1qamo6rfe49NJLJUnpdFpPPvmkrr/++nJeIgAAAAAAqELsKQAAAAAAVqqoGdHWlk5tbenUq87JrqctS0dPTqg/PuQFZAbiwxpIDGs2tVDSZ0ynktozelR7Ro8G1uujMa9Jpre1W+c7Pzc1tSlirp6QDGEYhGpoaEiSVF9ff9rv4X+t+34AAAAAAGB1Y08BAAAAALDaRExTW5rXa0vzer1i80XeumVbOn4yrv74sPpz2mSmU8mSPmM2taCnxo7rqbHjgfXaSFTntXSqt7Vbr96yTa/cfNGKHrNEGAahSqczc9COHTt22u9x9Gg2yWZZ1hlfEwAAAAAAqH7sKQAAAAAA1grTMLVpXbs2rWvXjk0XeOu2bevEdMI3bin7c2phvqTPmE+ntHf8hPaOn9D/d2iP/v3qN+lNvZeW+1YqhjAMQtXT06NDhw7pxIkTevLJJ3XZZZeV/B4//OEPvcfd3d3lvDwAAAAAAFCl2FMAAAAAAKx1hmFoQ1OrNjS16v+dfb63btu2hman1D8x5AVkBhLD2j8xpERydknv/duhZwjDAKdr+/btOnTokCTp4x//uL7zne+otbV1ya+/++679fjjj0uSIpGIrrzyymW5TgAAAAAAUF3YUwAAAAAAoDDDMNTT0Kyehma9dGOvt27btkbnTjohmUxAxg3LjM1Ne+dFDFM3bNkWxqWXDWEYhOrNb36zvve97ymdTuvgwYN685vfrI9//OPavn37oq+bnJzUF7/4RX3nO9+RlPmH+RWveIXa29srcdkAAAAAACBk7CkAAAAAAFAawzDUWb9OnfXrtH3DeYFjY3Mn1R8f1uD0pC5s79EFbT0hXWV5EIZBqHp7e/XOd75TX/7yl2UYho4cOaJ3vOMdOuecc/SSl7xEfX19amtrUywW0/T0tI4dO6Y//vGP+vWvf61kMinbtiVJbW1t+qd/+qeQ7wYAAAAAAFQKewoAAAAAAJTP+romXdXTFPZllA1hGITufe97n6ampvTtb39bhmHItm0dPnxYzz77bNHX2LYtwzAkSR0dHfrP//xPdXR0VOqSAQAAAABAFWBPAQAAAAAAFGKGfQGAJH30ox/VF77wBXV2dnpr7m9o5fKv33DDDfrhD3+o3t7egucCAAAAAIDVjT0FAAAAAACQi2YYVI1XvvKV2rFjh372s5/ppz/9qf74xz/q2LFjgXPq6+t10UUX6fLLL9cb3/hGbd68OaSrBQAAAAAA1YI9BQAAAAAA4EcYBlUlGo3q+uuv1/XXXy9JSqfTSiQSWlhYUFNTkxobG0O+QgAAAAAAUI3YUwAAAAAAAC7CMKhqkUhE7e3tYV8GAAAAAABYYdhTAAAAAABg7SIMAwAAAAAAsIi0ZcmSLcvO/J9t20rbVua5cp77jhuGoY66JtVFY2HfAgAAAAAAwJpCGAYAAAAAAKxKthNO8QdZLF9oJbPue+4/R9lgy5lI2VaZ7gYAAAAAAABLRRgGVSWZTOqBBx7Qb37zG/3f//2fJiYmNDU1JUn605/+lHf+k08+6W1MXnbZZTIMo6LXCwAAAABYHvlBlpzQSgWCLC7DMGQahiKGKVOG99xdMwxDpnKeG4YihqGoGSnLNeDU2FMAAAAAAAAuwjCoGj/4wQ/0uc99ThMTE96auylVbEPqm9/8pn7+859Lkr7+9a9r+/bty3+hAAAAAIBFnTLIYgfHDqWd4Iq7nrZsScsbZIkYpkzD8IIsETP3uBt4MctyHVhe7CkAAAAAAAA/wjCoCh/72Me0e/duSSrpN/duuukmPfzwwzIMQw888AAbVwAAAABwhvxBlrRlyQ6EVqzM8QoGWdzQihtU8Z4bRsHjBFnWHvYUAAAAAABALsIwCN3XvvY1ff/735dhGLJtW+ecc45e+9rX6oILLtBXv/pVPf3000Vfe8UVV6ijo0Ojo6P69a9/XcGrBgAAAIDqY/tCK5ZtLxpkSdvZUUKWbXnPyxVkMX2hlaUGWbIhFoIsWBr2FAAAAAAAQCGEYRCqoaEhfeUrX/Gev+td79L73/9+mWZm0/N73/veoq83DEPbt2/X/fffr9HRUR05ckSbN29e1msGAAAAgOVQLMiSdsIqttfWkg20VCrIYjojhMycsIp33Mg/Biw39hQAAAAAAEAxhGEQqt27d2tubk6GYeiNb3yjbrvttpLf46KLLtL9998vSTp48CAbVwAAAAAqzvaFWNwgixtQWSzI4n9NeYIsSw2sEGTByseeAgAAAAAAKIYwDEL16KOPSsr8NtYHPvCB03qPTZs2eY+fe+65slwXAAAAgLVjKUEW77my65ZtVzTIEnFGC7nrEcOQ4XtNxDBlGEYZrgNYGdhTAAAAAAAAxRCGQaiOHj0qwzB07rnnqrOz87Teo7m52Xs8PT1drksDAAAAsALkhlIWC6xUKsjihlLcIEvEzPwkyAKUF3sKAAAAAACgGMIwCFU8HpckdXR0nPZ7pNNp77E7FxwAAABA9Ss5yGJZvuOZc8oj27xiniLIEnGOGcqGWEynsQVAZbGnAAAAAAAAiiEMg1A1NTUpkUhoZmbmtN9jdHTUe9za2lqOywIAAABwCv6wStq2ZfuCLGlntFD2uBU4XokgS8QXaDF8oRWCLMDqwZ4CAAAAAAAohjAMQtXZ2al4PK6DBw/Ktu3T2oT+wx/+4D3euHFjOS8PAAAAWJXcIEvaCaaUEmRxn5dHtnnFDbJ4IZZFgiwR03ReQ5AFWMvYUwAAAAAAAMUQhkGo/uIv/kIDAwOanp7Wr371K730pS8t6fXz8/P60Y9+JEmKxWJ60YtetByXCQAAAFSNYkGWtDNCyPaFWALHfc/LwT9KyPSFVbL/lw2sBNa81xBkAXBm2FMAAAAAAADFEIZBqHbs2KHvf//7kqTPfvazuvLKK1VTU7Pk1//7v/+7JiYmZBiGrr76atXW1i7XpQIAAABnzLItL8TiBlPckIobZEn7xg9VT5DFDLS1EGQBUA3YUwAAAAAAAMUQhkGoXvayl+miiy7Sn//8Z/X39+s973mPPvvZz55yTnc6ndYXvvAFfetb3/LW3v3udy/z1QIAAGCt8sYGKRtksXyhlWJBlrRtea9ZjiBLxBkt5AZVvOfKee5/jWmW5ToAIGzsKQAAAAAAgGIIwyB0//zP/6ybbrpJ8/Pz+s1vfqNXvvKVeuMb36i//Mu/1MzMjHfevn37NDo6qj179ui+++7Tc889JynzZcCNN96oSy65JKxbAAAAQBXLD7L4Qizees6ae94yBVkiTvNKKUGWiNPQAgDIYk8BAAAAAAAUYtjl2tUFzsDPfvYzfehDH1IymZRt24HKdfd/orlrhmHItm1dc801+o//+A9FIpGKX/fpOnbsmHbs2KGHHnpIZ599dtiXAwAAULVOGWTxBVYs21baHS3krKctW9LyBlkizgghw9e8EjyeHTUEANVopf836lrbUwjTSv/fCgAAAABg9TjVf6PSDIOqcN111+mee+7R7bffroMHDwY2q9wNK/9mlSRFIhHdcsstuu222wKbWgAAAKgO/iBL2rJkB0IrVuZ4BYMsbmjFDap4zw2j4HGCLACwMrCnAAAAAAAAchGGQdW48MIL9cADD+ihhx7SfffdpyeffFKJRCJwjm3b2rJli1760pfq5ptv1saNG0O6WgAAgNXN9oVWLNteNMiStrOjhCzb8p6XK8hi+kIrSw2yZEMsBFkAVJ5t25pLpyTZqo/WhH05awJ7CgAAAAAAwI8wDKqKYRi67rrrdN1110mSBgcHFY/HNTMzo+bmZnV0dKi1tTXkqwQAAKhuxYIsaSesYnttLdlAS6WCLKYzQsjMCat4x438YwCwnFJWWtMLSU2nkppZmNdMyn2c1PTCvKZTmZ+zqQVNp+Y1vZDUjPPTfTyTWvDOnXF+WrYt0zD0sg19uvPav1VdNBb2ra567CkAAAAAAAAXYRhUtZ6eHvX09IR9GQAAABVj+0IsbpDFDagsFmTxv6Y8QZalBlYIsgCoDNu2CwZSZlLJYEDFCa/MuIEWX0AlG15Jeq+dT6eW7Zot29bPj+/XfYf26G/6Ll+2z0Fh7CkAAAAAALB2EYYBAAAAymQpQRbvubLrlm1XNMgScUYLuesRw5Dhe03EMGUYRhmuA8BaZNu2klbaF0ZxQituc0pueCU32FIovLKQ1ExqQXaZWqsqrZ5WGAAAAAAAgIoiDINQ7dixQ5L04he/WJ/61KdO6z0+9rGP6dFHH5VhGPrZz35WzssDAABrSG4oZbHASqWCLG4oxQ2yRMzMT4IsAMolbVmBsUD+dpUZ34igmdRCzvNss8qMs+YPtaRsK+xbC12NGVFrbYNe+7xL9NrnXRL25axK7CkAAAAAAIBiCMMgVMePH5dhGBodHT3t9xgbG/PeBwAArE0lB1ksy3e8/EGWiBNWWSzIEnGOGcqGWEynsQUActm2rbl0KqdNpUB4xWliWTS84mtrmUsvhH1roTMNQw3RGjVGa9QQq1VjtEaNsRo1RGudnzVqiNWo0fe80TmvIe95dj1mRsK+tVWPPQUAAAAAAFAMYRgAAACEyh9WSdu2bF+QJe2MFsoetwLH3bBLeRQOskR8gRbDF1ohyAKgmAUr7QROcttVkt66P6AynZrXrPu4QDuL29ySCe6tbXWRmBqdYEp9NJYJoeQGUnLDK4GASzbk4gZe6iJR/vwGAAAAAABYZQjDYMWznQ1hNi8BAKg8N8iSdoIppQRZ3OflkW1ecYMsXohlkSBLxDSd1xBkAdYiy7Y0m1rwtaZkQyjTC/PO2KAi4RXvvPzwStJKh31roYsYpppi/uCJE14p2K5SqwY32JLXzuJrW4nWKGKaYd8aVhn2FAAAAAAAWJ0Iw2DFSyQSkqSGhoaQrwQAgJWlWJAl7YwQsn0hlsBx3/PyOHWQxfSFWEzD95wgC7Am2LatpJX2tay4436yz6dTvvBKIKAyn21pyTk2k0qGfWtVoSFnLFAgoOKFV4JtKu5rvPCK08TSEI2pIVarGjPCn81YEdhTAAAAAABgdSIMgxVtcnJSf/rTn2QYhjo7O8O+HAAAKsayLS/E4gZT3JCKG2RJ+8YPLVeQxVg0sOKsqcAaQRZg1UpbltemMrPgC6SkFvJGBmXGAjnjg3JCLdPOSCE3uJIq20i0las2EnXG/BQOrzQ644H8rSteeMU5L/i6WtVFozIN2lawNrGnAAAAAADA6kUYBhXzu9/9ruixRCKx6HE/27Y1NzenZ599Vvfee69mZ2dlGIYuvvjicl0qAADLym1eKSXIkrazrwkvyOI7hyALsOLZtq259IIvlJLTpuKGV3ICKnnhFV+wZSaV1Fx6IexbC51pGMGASm4Ixfc4G25xwyvZ4EpDTsglZkbCvjUgNOwpAAAAAACAUhCGQcW8/e1vL/iFmW3bevrpp3XTTTed0fu/5jWvOaPXAwBwKu7YIH+QxfKFVjLrvuf+c5YpyBJxAiuGL8QScUYNuYEV77kvyBIxaQEAVpIFK50JnbhjgHLbVXJGBOWGV2a99eBoIVvlGne2ctVFYtkRP157Sq3qozEvoNIQaFnJfe5vZ8k8r4tECQsCZcaeAgAAAAAAKAVhGKxIuV8k/vVf/7Ve9rKXhXQ1i5ucnNTk5GRgbXBwMKSrAYC1Kz/IkhNaqYIgS8RpXjF8gZXg8WxDC4DqZNmWZlML+QEVN7xSrF3FDa84QZXc8ErSSod9a6GLGmamNcUJoQQeRxcJr7jn5bWz1Ko+EiMcCKxBK2lPIUzsZwAAAAAAVjLCMKioYl8ilvLlomEYamhoUGdnp57//Ofrta99bVVvWt11113atWtX2JcBACvaKYMsdnDsUNoJrrjracuWytR+YPhCK25QJeIbH1ToOEEWoPrYtq2klQ60pPgDKTOpBV+7yrw3AmimyMgg73gqGfatVQVv3I/TlpLfruIPteS2qwRDLu7rayL85yuw1q3FPYUwsZ8BAAAAAFjJ2E1Exezbty9v7YILLpBhGLr66qt15513hnBVy+/mm2/WG97whsDa4OCgbrzxxpCuCAAqy/YCKpkAix0IrViZ48qGWCxfkMV9Xq4gi+kLrSw1yJINsRBkAcKSstKaSS04YZR5L7gy7Y0FymlZcQIu2VaWwuGVtG2FfWuhq41E84InbotKbrtKY7TGOzcbXvG9xnleF43y5yWAslurewphYj8DAAAAALCSEYZB6Mo1cqJaNTc3q7m5OezLAIDTUizIknbCKm6QJW3ZgVFClQiymM4IITMnrOIdN/KPAVhetm1rLr0QCKvM+lpX8sIrBQIqgdFCzvP5dCrsWwudaRg5AZVaXzClcEAlG17JPs++rlYN0ZiiZiTsWwOAM7La9xTCxH4GAAAAAGAlIwyDUH3qU5+SJHV3d4d8JQCw+ti+EIsbZHEDKosFWfyvKU+QZamBFYIsQCUtWOlMCMUXSJlOBcMrM76WFS/YEgivzOesJ2WXKQC3ktVHY5lAim9EkD+80hirVX20xmtdCYRXckYGua+rjURlGEbYtwYAVYU9BQAAAAAAUAxhGIQqt24XAJCxlCCL91zZdcu2KxpkiTijhdz1iGHI8L0mYph8eQucIcu2MiOCFvLH/UynkprNa1fJGRHke+5va0la6bBvLXRRw1RjrPi4H3+QxR9e8bezNEZrMsfckEskpohJgA8AKoE9BQAAAAAAUAxhGAAAyiw3lLJYYKVSQRY3lOIGWSJm5idBFqB8bNvWfDrlGwO0kNeu4gVanBYVf7vKTCo4QshtZ5lNLYR9a6EzZKghGstrV2mIFhoR5AuveG0rOeEVZ70mwn8OAQAAAAAAAMBqxO4vAAA+JQdZLMt3vPxBlogTVu4e7mMAACAASURBVFksyBJxjhnKhlhMp7EFQGEpK50Jq/jaVPICKv7witO+4m9X8b/OfW3atsK+tdDVRqJOq0rM165S6wRWfOEVX0AlG2jxNbL4XlcXifFnGgAAAAAAAABgyQjDoOrYtq0DBw5ocHBQU1NTSiaTS37t61//+mW8MgDVzh9WSdu2bF+QJe2MFsoetwLH3bBLeRQOskR8gRbDF1ohyAIUZ9u25tILXkvK9EJ+ICUYXsld94dZssfm06mwby10EcPMBlByWlb8I4IaCowMCoRXvOe1aojGFDUjYd8aAGANY08BAAAAAABIhGFQRf785z/rm9/8ph5++GHNzMyc1nuwcQWsXG6QJe0EU0oJsrjPyyPbvOIGWbwQyyJBlohpOq8hyIK1K5lOaTqV1KzTohIIqDjBlFnfeiaYMu8EVnzHAq0rC7LL0ra0stVHY4F2lbzwin98UNQ55g+veOvZUUO1kSh/XgEAVg32FAAAAAAAgB9hGFSFO+64Q1/84heVTqcX/ULbMIyix/kyBwhPsSBL2hkhZPtCLIHjvuflceogi+kLsZiG7zlBFqwhlm15I4LcQIr33NeuEgioFBgRlPt8wUqHfWuhqzEjqi/QruIGUjJjgIJtKo3RGtX7zvO3sTTGalQfjck0zLBvDQBQhPt3XduJb7p/v7UlGZLqorGQr3D1Y08BAAAAAADkIgyD0H3ve9/T5z73ucBaa2urZmdnNT8/L8MwdNZZZ2l6elpTU1PexpW7UXXWWWdV/JqB1cSyLS/E4m7cuyEVN8iS9o0fWq4gi7FoYMVZU4E1gixYxWzb1nw6FRgD5IVXnLCKP5DiBllmvPOCQZaZVObc2dRC2LcWOkOGE1ipyYZXcgIqeeGVQEAlP7zSEK1RTYS/XgNAWGw3kGJLttyAylLWnefusZzzZLshFyvvPC2hvayjfp2aa+qW78bXOPYUAAAAAABAIezWI1TxeFyf/vSnJWU2ol72spfpIx/5iM455xy94x3v0K9//WtJ0sMPPyxJmpmZ0R/+8Aft3r1b//M//yNJ6uvr02c+8xk1NTWFcxNAiNzmlVKCLGk7+5rwgiy+cwiyYJVIWelsY0pum4obUMlrU/GPBMp9XeanVbbmpJWrNhItOCLI/zwQXskZGZQ5r1YNseyoobpIjD93AGAZ5balZJ9LcoIpli+I4gZN5P09Vl6AxX+eP8CSe95SginLw5BhyBufacj5+7EMmaapOoKSy4Y9BQAAAAAAUAw7MgjVvffeq9nZWRmGocsuu0xf/vKXZZrFxwA0NDRo+/bt2r59ux577DG9733v0y9+8Qvt3LlT99xzj6JR/ieNlcH9MsAfZLF8oZXMuu+5/5xlDLJEnNFCblDFe66c5/7XLPLPLFCNbNvWbGphkXE/vpaVnJFBbkCl0Iig+XQq7FsLXcQwCwZUGqOZcIp/ZJB7XtHwirPWEI0pakbCvjUAWNEs2zplW0pwvE/xthT3vEJtKbbtHAstlJL5u63hhlNkZJ+7x4zMY9N3nqHsuuELarvnyR9wKXAewsOeAgAAAAAAKIb/ykeoHn/8ce/x7bffvuimVa6rrrpKu3bt0s6dO7V371596Utf0m233bYclwkE5AdZckIrIQRZIk7zSilBlojT0AJUs2Q6ld+m4mtZCYRXvFaW/PDK9EJSsym3oWVBdohf0lULf7NKwfCKF2rJPve3s/ifZ15XqxozwpeCALAIN2gSDKRkAySLtaV4YZVTtKXknhd2W4oXGlG2LUVFAinueXLOM3Jel/lXTP77+QMtWFvYUwAAAAAAAMUQhkGoBgYGJGXmeb/gBS8oep5t2wU3Nq+44gq9/OUv14MPPqh77rlH73vf+xSJ8NvjKO6UQRY7OHYo7QRX3PW0Vb7fdC0WZIk4I4Tczf2ImXs8O2oIqBZpy9JseiEz4ie3XcUNr+QFVObzGlr8r59JLWjBSod9a6GrMSNqcIIqjbEa1Uez7Sp5AZXcUIv7OCe8Uh+N8WcIgDXPP8YnN5zihUtUeNyPvwUlsJ7bplIlbSlegCQQOvEFT/LaTvLbUnJbUfxBldxgC/+OQaWwpwAAAAAAAIohDINQxeNxGYahLVu25B3zb0DNzc2pvr6+4Htce+21evDBBzU5OaknnnhCV1111XJdLkLmD7KkLcv7kiETWrEyxysYZHFDK25QxXtuGAWPE2RBNbBtW3PplBdWmcltVzlFeCU7HijY1jKXXgj71kJnyAi0pATCKzmtK4XaVQJBFudYQ7RGNRH+ugZgdQuES3LaTQq1pbh/5yvUluIPtsg5r1rbUvLG+BRtO1FOm4pZsC3FC6TkhVNoS8HqxZ4CAAAAAAAohm9XEKqFhcyXpw0NDXnHGhsbvcfj4+PauHFjwffwrx8/frzMV4hysX2hFf9v4BYKsqTt7Cghy7a85+X60sL0hVZMGTKd5hVvzQmrBIMuwWNAJSxYaV/wJBNI8cIouQGVgiODfIEX33tYZRrTtZLVRWKBMUGNsWAgpSFakx9eidWqIRrzhVecEUHO47pIlC8cAax4uS0o7t/JMv/mCDaoFGtLyWta8bWl2F5AJfs8PDktKMoGTXLbUjJtJ9k2FX+AJfc8f7AldwwQ/54Ayos9BQAAAAAAUAxhGIRq3bp1isfjmp6ezjvW0tLiPT569GjRjSt380vKbHCh/IoFWdJOWMX9UiNtZQMtyxNkKR5YWdo6QRYsD8u2NJdK+cb9+FtWgs+nfa0rM4HWlWB4ZSaV1Hw6FfathS5imGpywiYNsQIBFX94JbddJTe84mtdiZj8WQCgui0aLll0PWdMT4G2lEzIxco7L8wxPoYvNFKsLSVvFE+RthT3vEJtKdkxQIRSgNWAPQUAAAAAAFAMYRiE6uyzz9bExISGh4fzjp133nne4yeffFJXXnllwff44x//6D2uq6sr/0WuYRPzM5qYm1ElgiwRw/3NWjP73PeaiGHypQXOmG3bSlppZwzQQja8EgikFG5XmU5lXlMsvAL5Aim12XFBeeGVwiOCvNFCbqDFeV5jRvhnH0DoCrWgeOGSvEBKNmiSHdNTKLgSDLBUU1tKoRaUYPDEF0jxnSdfq16xVpTCY4D4cx7A6WFPAQAAAAAAFEMYBqHq6+vT008/rRMnTujkyZNqamryjr3oRS/yHv/gBz/Qzp07A8elzHzw7373u97zQnPCcfos21ImCJMfSnGDLBEz+6UHQRaUU9qyAuN93DaV6UCbynx2bFBO68p0al6zqYXMOCFfcCVlW2HfWuhqzIjXkpIbXqkv0LoSCLUUeF1DtEb10RjNSwAqItNKt3hbSnC8T/G2FPe8Qm0ptq2yjmk8HUXbUtxjpwqd+FpQcttScsf70JYCYCViTwEAAAAAABRDGAahuvzyy3XvvfdKkh577DG9/OUv945deOGFOvfcc3Xo0CENDQ3p7//+73X77bdr27ZtkqTf/e53+vSnP62RkRFJUlNTky6//PLK38Qqtr6uSe21jXwxgkXZtq25dCqvTSUvvOK2qzhNKnnhFTfY4jyfSy+c+sNXOdMwfON+avLDK7Ea1UcLh1caY7Wqj8YCI4PcEUMxMxL2rQFYBdygSX4rihMnseW0neS3pXhhlQLn5QZY/OeFF0zJBk28AMkibSn+83LbUvytKCrwfrSlAMDSsacAAAAAAACKIQyDUF199dUyTVO2besnP/lJYONKkj74wQ/qH/7hH2QYhp566inddNNNBd/HMAzdcsstqq+vr8Rlryl8EbO6LFhpr0Ult13FHfeT267ihVcCI4Oyr59JJZ0vPte2ukjMaVepVYMXTMlpV4nVqiEay4ZXclpW3Ne4z+siUf4ZBLAk/jE+RUfxqPC4H38LSmA9t02lStpSvABJIHTiC57ktZ3kt6XktqL4gyr5Y4BovQKAasWeAgAAAAAAKIYwDELV0dGh173uderv79dzzz2n2dnZwObTjh079K53vUtf+9rXZBiGbN8X7v7nr3jFK/Tud7+74tcPLBfLtpwRP+64n2zLyvTCfDbQUiS8kllbyAuvJK102LcWuqhh5rSrZEIoxcIrbpuK/7kXXnHXozWKmHxZCiAnXJLTblKoLcW2bVmyC7al+IMtcs5bCW0pueESs8B52TYV85RtKcFwCgFBAEAWewoAAAAAAKAYwjAI3ac+9alFj992223atm2bvvKVr2jv3r3eum3b2rx5s/7u7/5Of/M3f7PclwkUZNu2klba17LihFe84IovoJKa18yCP6CSDbXkhldmUsmwb60quEEUL7jiD6gUGBnU4B8X5J7ra2tpjNaoJsK/+oC1IrcFxfK1nSinQaVYW0pe04qvLcX2AirZ5+HJaUFRNmiS25aSaTvJtqn4Ayy55/mDLbljgAimAACqAXsKAAAAAACgEL4RxIpw3XXX6brrrtP4+LhOnDihVCqlrq4unXXWWWFfGlaQtGVlGlTcET9OIGV6IZlpXsltWXECLrN5oZbMMXc9ZVth31roaiPRQLNKofBKY6xG9b7WlbzwSiD0Uqu6aJTRFMAqsWi4ZNH1nDE9BdpSMiEXK++8MMf4GL7QiOmFSU4xikdGwbYU9zzJ95q8MUCEUgAAWAx7CgAAAAAArD2EYbCitLe3q729PezLwDKzbVtz6QWvISXzs0B4pWC7SjIQZvGPD5pPp8K+tdCZhpETUAmOCMoNpNRHY77wSrZdpTFWmwm2OM0tMTMS9q0BWKJCLShWkbYUf9BEOS0ouef5AyzV1JZSqAUlGDzxBVJ858kb21O8FaXQGCCCKQAAVC/2FAAAAAAAWDsIwwA4IwtWOhM6cQIpM7ntKm5YxRkDVDC8suBra3FeZ4f4G/3Voi4Syxvx44VXCrSuuOflt6xkwyt1kShf1AJVxLKtU7alBMf7FG9Lcc8r1JZi286xamxLcY+dKnTia0HJbUvJHe9DWwoAAAAAAAAAAGsbYRgABc2nU9o98Hs9NnTIC7NMe8GVTLBlZmFeSSsd9qWGLmqYmfYUL4hSm21a8QdUcsIr7uO88EqsVvWRmCImI4KASnGDJvmtKE6cxJbTdpLfluKFVQqclxtg8Z8XXjAlGzQxc9pNCrWl+M/LbUvxt6KowPvRlgIAAAAAAAAAAMJAGAZAQV966uf6/J6Hwr6MsmvMCas05AZUfG0qDXnPa711f1tLTYQ/SoFyKt6W4guXKKctRcFGFSvnPOW2qVRJW4oXIAmETnzBk7y2k/y2lNxWFH9QJX8MECE7AAAAAAAAAACw+vENLqrKiRMn9L//+786cOCAJicnNTs7K9te2peUhmHok5/85DJf4drx1OixUD+/NhLNa1dpjNaqIRor2K6SCbjEfOEV5zVeK0ut6qJRvggGSmAXaTsp1pZi27Ys2QXbUvzBFjnnrYS2lNxwiVngvGybinnKtpRgOIW2FAAAgHJiTwEAAAAAALgIw6Aq7Nu3T//6r/+qxx9/fMkbVYWwcVU+bzrvUj18bP8pzzMNQ02xWtU7Y4CKjgjKaVNxz8t97oZaomakAncJrBy2bee1nbhhEuU0qPjPs4sEUmzf690xPpbvvDP5s/jM5bSgKBs0yW1LybSdZNtU/AGW3PP8wZbcMUAEUwAAAFYu9hQAAAAAAEAuwjAI3U9+8hPdfvvtSqfTZ7RpxReZ5fWa512ii9vP0tNjz6kuElWjG3jJCa/URqL8vz3WlGJtKYuFTvxtKd6xAm0pmZCLlXdemGN8DF9oxPTCJKcYxSOjYFuKe57ke03eGCD+PAEAAMDSsacAAAAAAAAKIQyDUB05ckQf/vCHlUqlvI2nhoYGXXjhhers7FR9fX3IV7i2bW3p1NaWzrAvAyiqUAuKVaQtxR80UU4LSu552WBLdbWl5Lag+NtS8gIpRdpSirWi0JYCAACAlYY9BQAAAAAAUAxhGITqG9/4hpLJpAzDUF1dnT7ykY/o9a9/vWpqasK+NAAlsmyrSLjEFyaRf7xPcEyPvy3FPa9QW4ptO8eqsS3FPXaK0Im/BSW3LSV3vA9tKQAAAEBh7CkAAAAAAIBiCMMgVL/5zW+8x5/5zGe0Y8eOEK8GWB3coEl+K4oTJ8kZ7+NvS/HCKouOAco/L7xgSjZo4gVIDCNnTE8wkOKeJ+c8I+d1mdxJ/vvRlgIAAABUF/YUAAAAAABAMYRhEKrh4WEZhqGzzjqLTSusSsXbUnzhEuW0pSjYqGLlnKfcNpUqaUvxAiSB0El+W4qRc55/PbcVxR9UyR8DZIZ4rwAAAADCxp4CAAAAAAAohjAMQmWamS+zN2/eHPKVYLWzi7SdFGtLsW1bluyCbSn+YIuc81ZCW0puuMQscF62TcU8ZVtKMJxCWwoAAACA/5+9O4+Oqsj7P/7phCyEEMISDIYtkAfEgIhCMILisIjioIACCggqA8OjLC6BcRQVRxlkRgdZRVkUUJGRbWRg2BVhQBZlUXZCACEJBkISSMhC0r8/8uT+urMnpPt2J+/XOZ5Tt7tuVbXny03f6u+tci7mFAAAAAAAQFFIhoGpGjVqpBMnTig1NdXsocCJrFZrgdVO8pJJlG8FlZwiVkspsNKKzWopViNB5f8fmyffKij6/4kmKrAKigquplLoain2q6bk3waIxBQAAAAAVQFzCgAAAAAAoCgkw8BUnTt31okTJ3Ty5EllZGTIx8fH7CHBRo41R9dvZNknp6iQbXpKWC3Ftp6Z2/hYbLfYMZJJStiKR5ZCV0vJqyfZnFNgGyCSUgAAAADAUZhTAAAAAAAARSEZBqYaPHiwPv/8c2VkZGjp0qV65plnzB4SbPx2/ZrSsjIc0HLBVVBsV0spkJBSxGopRa2KwmopAAAAAFD5MacAAAAAAACKQjIMTBUSEqIJEybo3Xff1bRp0xQWFqbOnTubPSz8nwAvX0kqNunEdhWU/Kul5N/eh9VSAAAAAAAVhTkFAAAAAABQFJJhYLohQ4YoIyNDH3zwgUaOHKnHH39c/fv3V+vWreXh4WH28Ko0Py9v+Xl5mz0MAAAAAAAKxZwCAAAAAAAoDMkwcAnDhw9Xq1at9Mc//lHLly/X8uXL5eXlpcDAQHl5eZWqDYvFos2bNzt4pAAAAAAAwJUwpwAAAAAAAPIjGQYu4YsvvtCcOXN048YNWa1WSVJmZqZ+++23Um2rY7Va2X4HAAAAAIAqiDkFAAAAAACQH8kwMN2HH36ojz/+uMjJp7yJLAAAAAAAAFvMKQAAAAAAgMKQDANT7dy5U3PnzjUmrDw9PdWxY0e1bdtW9erVU/Xq1U0eIQAAAAAAcEXMKQAAAAAAgKKQDANTffHFF0a5WbNmmjVrlpo1a2biiAAAAAAAgDtgTgEAAAAAABTFw+wBoGo7ePCgUZ45cyaTVgAAAAAAoFSYUwAAAAAAAEUhGQamSkpKksViUVhYmJo3b272cAAAAAAAgJtgTgEAAAAAABSFZBiYqk6dOpKkunXrmjwSAAAAAADgTphTAAAAAAAARSEZBqZq3LixrFarEhMTzR4KAAAAAABwI8wpAAAAAACAopAMA1M99NBDkqTo6GhdunTJ5NEAAAAAAAB3wZwCAAAAAAAoCskwMFWfPn3UoEED5eTkaPr06WYPBwAAAAAAuAnmFAAAAAAAQFFIhoGp/P399Y9//EO+vr5avny5pk2bppycHLOHBQAAAAAAXBxzCgAAAAAAoCjVzB4AqrbY2FjdcsstmjZtml599VV98skn2rhxox5//HHdeeedCgoKkpeXV6nbu/XWWx04WgAAAAAA4CqYUwAAAAAAAEUhGQam6tq1qywWi3FstVoVExOjDz74oMxtWSwWHTlypCKHBwAAAAAAXBRzCgAAAAAAoCgkw8AlWK1WWSyWApNYAAAAAAAAxWFOAQAAAAAA5EcyDEyXN0HFRBUAAAAAACgL5hQAAAAAAEBhSIaBqbZs2WL2EAAAAAAAgBtiTgEAAAAAABSFZBiYKiQkxOwhAAAAAAAAN8ScAgAAAAAAKIqH2QMAAAAAAAAAAAAAAAAAKgrJMAAAAAAAAAAAAAAAAKg0SIYBAAAAAAAAAAAAAABApUEyDAAAAAAAAAAAAAAAACqNamYPAJXf3r177Y47dOhQ5Hs3y7ZtAAAAAADg3phTAAAAAAAA5UEyDBzu6aeflsVikSRZLBYdOXKk0PduVv62AQAAAACAe2NOAQAAAAAAlAfJMHAaq9Xqlm0DAAAAAABzMacAAAAAAADKgmQYOEVxE0tMOgEAAAAAgKIwpwAAAAAAAMqKZBg43LFjx8r1HgAAAAAAqNqYUwAAAAAAAOXhYfYAAAAAAAAAAAAAAAAAgIpCMgwAAAAAAAAAAAAAAAAqDZJhAAAAAAAAAAAAAAAAUGlUM3sAqNqGDh0qSbrjjjsUFRVVrjY+/PBD/fTTT7JYLFq0aFFFDg8AAAAAALgo5hQKunbtmlatWqUNGzbozJkzSk5OVt26ddW8eXP16tVLvXv3lre3t9nDBAAAAADA4UiGgan27Nkji8UiHx+fcrdx8uRJox0AAAAAAFA1MKdgb9++fRo/frxiY2PtXo+Li1NcXJx27NihRYsWadq0aWrevLlJowQAAAAAwDnYJgkAAAAAAABwY4cPH9aIESOMRBgvLy/df//9euKJJ9SxY0d5eOROAR4/flzDhg1TfHy8mcMFAAAAAMDhWBkGbs9qtUpSpXiKCwAAAAAAOE9lmFPIzMzUmDFjlJaWJkkKDw/XnDlzFBwcbNQ5deqURo0apV9//VUJCQmKiorS559/btaQAQAAAABwOFaGgdu7du2aJMnX19fkkQAAAAAAAHdSGeYUli1bpgsXLkiSAgMDNW/ePLtEGEkKCwvT3Llz5e3tLUnau3evtm3b5vSxAgAAAADgLCTDwK1lZmbq2LFjslgsqlu3rtnDAQAAAAAAbqKyzCl8+eWXRnn48OFFfpawsDD17dvXOF66dKnDxwYAAAAAgFnYJglOk7dvdWHS09OLfd+W1WpVenq6zp49qy+//FIpKSmyWCxq1apVRQ0VAAAAAAC4EOYUChcTE6PTp08bx7bJLoXp27evli1bJknauXOnUlNTVaNGDYeOEQAAAAAAM5AMA6fp2rVroXtwW61W7du3T926dbup9h966KGbOh8AAAAAALgm5hQKt3v3bqMcGhqqoKCgYuu3adNGfn5+SktLU0ZGhg4cOKBOnTo5epgAAAAAADgd2yTB6axWq/FfYa+V9r+88ySpc+fO6tWrlymfBwAAAAAAOAdzCvaio6ONcnh4eIn1q1WrphYtWhR6PgAAAAAAlQkrw8CpbCerbpa3t7datWql3r1768knn6ywdgEAAAAAgOthTqGgM2fOGOUGDRqU6pzg4GCjHBMTU9FDAgAAAADAJZAMA6fZsmWL3bHValX37t1lsVjUvn17vffee6Vqx8PDQ9WrV1dAQIA8PFjcCAAAAACAyo45hcIlJSUZ5Xr16pXqHNutlJKTk4usl5KSopSUFLvX4uPjyzhCAAAAAADMQTIMnCYkJKTQ161Wq3x9fYt8HwAAAAAAVG3MKRQuLS3NKPv4+JTqHNt6tufnt2jRIs2aNav8gwMAAAAAwEQkw8BUo0ePliQ1btzY5JEAAAAAAAB3wpyClJGRYZS9vLxKdY63t7dRTk9PL7LesGHD1LdvX7vX4uPjNXjw4DKOEgAAAAAA5yMZBqbKm7gCAAAAAAAoC+YU7Fd5ycrKKtU5mZmZRtnX17fIegEBAQoICCj/4AAAAAAAMJH7b44MAAAAAAAAVEF+fn5G2XaVmOLY1rM9HwAAAACAyoSVYeA2rFar1q1bpx07dighIUG1atXSPffco0cffbTU+2IDAAAAAICqp7LOKdSqVcsoX7p0qVTn2NazPR8AAAAAgMqEZBiYKj09XX/+85+Vk5Oj6tWra8qUKbJYLAXqXb16VSNHjtSBAwfsXl+3bp3mz5+vjz/+WE2bNnXSqAEAAAAAgNmYU5BCQ0O1fft2SVJcXFypzrGtFxoa6pBxAQAAAABgNrZJgqm2bdum//znP9q4caN8fHwKnbSSpDfeeEP79++X1WqVlPtEV95/Z8+e1fDhw5Wamlph47p27ZqWLFmiIUOGqHPnzmrTpo0eeOABDR8+XCtWrLDbXxsAAAAAADifq84pOFPz5s2N8pEjR0qsf+PGDZ04caLQ8wEAAAAAqExIhoGp9u7da5QffvjhQuv88ssvWr9+vTGpVatWLXXt2lX33HOPPDxyQzg2NlYff/xxhYxp37596t27t959913t3btXCQkJyszMVFxcnHbs2KHXXntNTzzxhKKjoyukPwAAAAAAUHauOKfgbB07djTKMTExJW6VdPjwYaWlpUmSfHx8dOeddzp0fAAAAAAAmIVkGJjq6NGjkqRq1aqpffv2hdZZvny5UQ4LC9PatWs1Z84cffbZZ5o1a5Y8PDxktVq1YsUK5eTk3NR4Dh8+rBEjRig2NlaS5OXlpfvvv19PPPGEOnbsaEyUHT9+XMOGDVN8fPxN9QcAAAAAAMrH1eYUzBAaGqpmzZpJyl3xZvXq1cXWX7VqlVGOjIxUjRo1HDo+AAAAAADMQjIMTBUbGyuLxaImTZqoWrVqhdbZunWrUX7xxRdVt25d47hr167q1q2bJCkxMdGYCCuPzMxMjRkzxnhCKjw8XJs3b9a8efM0efJkLV68WGvWrFGjRo0kSQkJCYqKiip3fwAAAAAAoPxcaU7BTIMGDTLKCxYsUGJiYqH1oqOjtXLlykLPAwAAAACgsiEZBqZKSkqSJNWuXbvQ98+ePavffvtNklSjRg098MADBep06dLFKJ88ebLcY1m2bJkuXLggSQoMDNS8efMUHBxsVycsLExz586Vt7e3pNwlmbdt21buPgEAAAAAQPm40pyCmQYOHKiQkBBJuUk9I0eO1MWLF+3qREdHa9SoUcrIyJAkdejQwe6zHYt5vwAAIABJREFUAwAAAABQ2RT+2AzgJHmTMHnJJfkdOHBAkmSxWBQREVHok155K7VI0pUrV8o9li+//NIoDx8+3O5pMVthYWHq27evli1bJklaunQpE0gAAAAAADiZK80pmMnb21szZ87U4MGDdf36df3888/q3r27IiMjFRQUpAsXLmj37t3GNlBBQUH6+9//bvKoAQAAAABwLFaGgal8fX0lSSkpKYW+/+OPPxrlovb/tp3MypsIK6uYmBidPn3aOO7bt2+x9W3f37lzp1JTU8vVLwAAAAAAKB9XmVNwBeHh4Zo/f75uvfVWSblbQW/btk3Lly/Xrl27jESYFi1a6LPPPlODBg3MHC4AAAAAAA5HMgxMVa9ePVmtVsXExBgTM7a2b99ulO+6665C27h27ZpRzpsIK6vdu3cb5dDQUAUFBRVbv02bNvLz85OUO1mW97QZAAAAAABwDleZU3AV7du315o1a/T666/r7rvvVlBQkLy8vHTLLbeoU6dOmjx5slasWKGwsDCzhwoAAAAAgMOxTRJMddttt+ncuXNKTU3V1q1b1b17d+O9Xbt2KS4uTpLk5+enNm3aFNrG+fPnjXJRWxuVJDo62iiHh4eXWL9atWpq0aKFkQQTHR2tTp06latvAAAAAABQdq4yp+BK/P39NXToUA0dOtTsoQAAAAAAYCpWhoGpunXrZpQnTZqkXbt2KTMzUwcPHtTEiRMl5e7t3a1bN3l6ehbaxi+//GKUmzRpUq5xnDlzxiiXdqng4OBgoxwTE1OufgEAAAAAQPm4ypwCAAAAAABwPawMA1M9/PDDmjFjhmJjY3X58mU999xzBepYLBY9++yzhZ6fk5NjLHtcrVo13XbbbeUaR1JSklGuV69eqc6x3UopOTm5yHopKSkF9i+Pj48v4wgBAAAAAIAtV5lTAAAAAAAArodkGJjK29tb77//voYPH660tDTjdYvFIqvVKkkaMWKEWrVqVej5u3bt0qVLl2SxWBQeHi5vb+9yjcO2bx8fn1KdY1vP9vz8Fi1apFmzZpVrXAAAAAAAoHCuMqcAAAAAAABcD8kwMF27du20fPlyffDBB9q+fbsyMzNltVrVpEkT/eEPf1D//v2LPPezzz6TJFmtVnXp0qXcY8jIyDDKXl5epTrHdpIsPT29yHrDhg1T37597V6Lj4/X4MGDyzhKAAAAAABgyxXmFAAAAAAAgOshGQYuoVmzZpo9e7ays7OVmJgoX19f1axZs8TzRo4cqREjRkiSWrRoUe7+bVd5ycrKKtU5mZmZRtnX17fIegEBAQoICCj32AAAAAAAQNHMnlMAAAAAAACuh2QYuBRPT08FBQWVun6HDh0qpF8/Pz+jbLtKTHFs69meDwAAAAAAnM+sOQUAAAAAAOB6PMweAOAKatWqZZQvXbpUqnNs69meDwAAAAAAAAAAAAAAzEMyDCApNDTUKMfFxZXqHNt6tucDAAAAAAAAAAAAAADzsE0SnCI2NlaS5Ovrqzp16lRo21u2bNGFCxckSUOHDi1XG82bNzfKR44cKbH+jRs3dOLEiULPBwAAAAAAFcfV5xQAAAAAAIDrIRkGTtG1a1dZLBbdd999+uSTT4qtO2XKFEm5CSYDBgwose2lS5fqv//9r6TyT1x17NjRKMfExOjSpUuqV69ekfUPHz6stLQ0SZKPj4/uvPPOcvULAAAAAACK5+pzCgAAAAAAwPWwTRKcymq1llhn0aJFWrx4sTZt2lSh7RYnNDRUzZo1M9pavXp1sfVXrVpllCMjI1WjRo2b6h8AAAAAABTPVecUAAAAAACA6yEZBvg/gwYNMsoLFixQYmJiofWio6O1cuXKQs8DAAAAAAAAAAAAAADmIhkG+D8DBw5USEiIJCkxMVEjR47UxYsX7epER0dr1KhRysjIkCR16NBBXbp0cfpYAQAAAAAAAAAAAABA4aqZPQDAVXh7e2vmzJkaPHiwrl+/rp9//lndu3dXZGSkgoKCdOHCBe3evVs5OTmSpKCgIP397383edQAAAAAAAAAAAAAAMAWyTCAjfDwcM2fP1/jx49XbGysMjMztW3btgL1WrRooWnTpqlBgwYmjBIAAAAAAAAAAAAAABSFZBggn/bt22vNmjVauXKl1q9fr3PnzikpKUl16tRRWFiYevXqpUcffVTe3t5mDxUAAAAAAAAAAAAAAORDMgxQCH9/fw0dOlRDhw41eygAAAAAAAAAAAAAAKAMPMweAAAAAAAAAAAAAAAAAFBRSIYBAAAAAAAAAAAAAABApUEyDAAAAAAAAAAAAAAAACoNkmEAAAAAAAAAAAAAAABQaZAMAwAAAAAAAAAAAAAAgEqjmtkDQNWyY8cOtWrVqsR6Vqu11HUBAAAAAEDlx5wCAAAAAAAoLZJh4HRWq7XY9y0WS6nr5q8PAAAAAAAqL+YUAAAAAABAaZAMA6cpzSRUWeqVtz4AAAAAAHAvzCkAAAAAAICyIBkGTjF69GizhwAAAAAAANwQcwoAAAAAAKCsSIaBUzBxZS87O1uSFB8fb/JIAAAAAABVXd69ad69qqthTsF1MJ8BAAAAAHAVJc1nkAwDmCAhIUGSNHjwYJNHAgAAAABAroSEBDVp0sTsYcCFMZ8BAAAAAHA1Rc1nWKxsjgw4XXp6un755RcFBQXJ09PT7OEUKT4+XoMHD9YXX3yh4OBgs4cDFIlYhTsgTuEuiFW4A+IU7sJdYjU7O1sJCQlq3bq1fH19zR4OXBjzGUDFIlbhDohTuAtiFe6AOIW7cJdYLWk+g5VhABP4+vqqffv2Zg+j1IKDg9WwYUOzhwGUiFiFOyBO4S6IVbgD4hTuwh1ilRVhUBrMZwCOQazCHRCncBfEKtwBcQp34Q6xWtx8hocTxwEAAAAAAAAAAAAAAAA4FMkwAAAAAAAAAAAAAAAAqDRIhgEAAAAAAAAAAAAAAECl4Tlp0qRJZg8CgOvy8fFRx44d5ePjY/ZQgGIRq3AHxCncBbEKd0Ccwl0Qq4A5+LcHd0Gswh0Qp3AXxCrcAXEKd1EZYtVitVqtZg8CAAAAAAAAAAAAAAAAqAhskwQAAAAAAAAAAAAAAIBKg2QYAAAAAAAAAAAAAAAAVBokwwAAAAAAAAAAAAAAAKDSqGb2AACUXWZmpo4dO6aff/5ZBw8e1KFDh3TmzBlZrVZJ0ujRozVmzJgyt3vp0iWtXLlSmzZt0oULF3T16lUFBQWpVatW6t27tx588EF5eJQth84RbcJ9uEOs/vLLL9q5c6d++uknnTp1SpcvX1ZWVpYCAgLUrFkzRURE6IknntCtt95a5nHCPbhDnBYlJydHAwYM0M8//2y81rdvX7333ns31S5ck7vF6o0bN/Tdd99pw4YNOnz4sH777TdlZWWpXr16Cg4OVrt27XTPPfcoIiJC3t7eZW4frsld4jQrK0tbt27Vxo0b9csvvyghIUEZGRmqUaOGGjRooDvuuEOPPPKI7rnnnjKPFe6homP1+vXrOnz4sF17Fy5cMN6fMmWK+vXrV66x/vrrr1q+fLm2bdumuLg4paen65ZbblGbNm3Up08f3XfffeVqF3A1165d06pVq7RhwwadOXNGycnJqlu3rpo3b65evXqpd+/eFfad4fz58+rWrVuZznniiSc0efLkCukf7s2ZsVqYX3/9VevWrdN3332n2NhYXb58WTVr1lS9evUUFhamjh07qlOnTmrUqJHDxgDX58w47dq1q933nrJgDgNmXVN//fVXrVy5Unv37tXp06eVkpIiT09P1apVSy1atFCnTp302GOPqU6dOhXeN9yPWXF68eJFffXVV9q5c6fOnTunq1evKjAwUI0aNVKPHj3Up08fYhSSHDcfV1o5OTnasGGD1qxZo2PHjikhIUE1a9ZUw4YN1b17d/Xr10/16tVzWP/FsVjz/i8AcAurV6/WG2+8oczMzCLrlOeitnnzZr3++utKSkoqsk5ERITef/993XLLLaa1Cffh6rH6zTff6MMPPyzVzbqnp6dGjBih0aNHy8vLq0zjhWtz9TgtyWeffaYpU6bYvcZEUuXkbrF66NAhvfHGGzp27FiJdZcvX642bdqUum24LneJ02PHjikqKkonT54ssW5kZKSmTp3Kd9VKpqJj9aOPPtKsWbN048aNIuuUNxlm6dKleu+995Senl5knZ49e2ry5MmqWbNmmdsHXMW+ffs0fvx4xcbGFlmnZcuWmjZtmpo3b37T/ZEMg/JydqzaysjI0Jw5c7RgwQJlZWUVW/eBBx7Qxx9/XKH9w304O05vJhlmxIgRioqKuukxwD2ZcU3NycnR9OnTNX/+/GK/v0uSv7+//vSnP2nAgAEV0jfck1l/++fNm6cZM2YUe99au3ZtvfPOO+rRo0eF9Qv346j5uNKKj49XVFSU9u7dW2SdwMBATZ48Wd27d3fIGIrDyjCAm0lKSir2glYe27Zt09ixY5WdnS1J8vPzU2RkpAIDA3X69Gnt379fkrRnzx4NHz5cX331lfz9/Z3eJtyLq8fqvn377G7Uvby8FB4eroYNG8rPz09xcXHat2+frl+/ruzsbM2dO1dnzpzRtGnTWM2oEnH1OC1ObGyspk+fXqFjh+typ1j99ttvNWbMGGOCvlq1amrTpo1xfU1KSlJ0dLSio6NFXn7l4g5xeurUKQ0dOlTJycnGa40bN1ZYWJhq166t+Ph4HT582Ei82bVrl4YMGaLly5erVq1aFfrZYJ6KjtXExMQSJ9LL46uvvtKkSZOM49q1aysiIkJ+fn46evSokXC4YcMGJScna/78+SRuwy0dPnxYI0aMUFpamqTce7PIyEjVr19fv/76q/bu3aucnBwdP35cw4YN0/LlyxUcHFxh/deoUUN9+vQpsV67du0qrE+4JzNjNT09XX/84x/1ww8/GK8FBQWpbdu2qlOnjm7cuKELFy7o6NGjSklJqZA+4Z7MiNM+ffoUm7hu6/Tp09q1a5dx/Pvf//6m+ob7MuuaOmnSJC1btsw49vHxMeYsMjIydO7cOR0+fFhS7mogb7zxhtLT0zV06NCb7hvux6w4/etf/6pFixYZx/7+/urQoYOCgoKUmJioPXv2KCUlRVeuXNHYsWM1c+ZMU5IM4BocMR9XWikpKXr22Wd1+vRp47V27dqpWbNmSkpK0q5du5SWlqakpCSNHTtWn3zyiTp37uzUMZIMA7ipvOXb27Ztq7Zt2+r99983fgwoi8TERL388svGDwz33XefPvjgA7vJ/n379mn06NG6cuWKTp48qXfeeUdTp051aptwX64cq5LUoUMHDRgwQN27d5efn5/de0lJSfrrX/+qf/3rX5Kk9evXq0OHDhoyZEiZxw/X5upxWphJkyYpLS1NAQEBatu2rbZv317mNuB+XD1Wf/zxRyMRxmKxaMiQIXrhhRdUu3btAnUvX76s9evXKzAwsMzjh2tz5Th9++23jUSYwMBAvf322+rZs6csFotRJy0tTQsWLNDs2bNltVp17tw5zZw5UxMnTizzZ4Brq6hYzdOkSRO79saOHau4uLhytXXq1Cm98847xnG/fv301ltvydfX13ht48aNGj9+vNLT0/XDDz/oo48+0tixY8s9fsAMmZmZGjNmjPEDQ3h4uObMmWP3I8KpU6c0atQo/frrr0pISFBUVJQ+//zzChtDYGCg3nzzzQprD5WT2bH64osvGokwTZs21WuvvaYuXboUqJedna39+/crJiamQvqFezErTsvy/WP8+PFGuVWrVrrttttuqm+4J7Nidffu3XaJML169dKrr75aYCXQgwcPauLEiTpx4oQk6f3331fPnj1ZMbSKMStON2/ebJcI06dPH02cONFuJdDU1FS99957+uc//6mcnBxFRUVp/fr1FZowDvdT0XMcpfH2228biTC1a9fWrFmz1L59e+P95ORkvfLKK9q+fbuys7P10ksvadOmTU6dD+bRdsDNPPTQQ9qxY4e+++47zZgxQ8OHD1f79u3L/QTgJ598omvXrknKvZmePXt2gade27dvr3/84x/G8TfffFPssvKOaBPux9VjtU2bNvriiy/0+eef69FHHy2QCCPlTopOnTrVbpnBuXPnspJBJeLqcVqUtWvXatu2bZKkV155xbT9NuE87hCrmZmZev31140VYd566y1NnDix0EQYSapbt64GDx6sRo0aleszwPW4epyeP39ee/bsMY4nT56shx56yC4RRspdfWbMmDEaNGiQ8dqaNWv4+1+JVHSsDh06VLt379bGjRv1/vvv6+mnn9Ydd9xxU6sJTp8+3VhtJiIiQn/961/tEmEk6cEHH7RL0vr000+VmJhY7j4BMyxbtsxYsTMwMFDz5s0rMIkfFhamuXPnytvbW5K0d+9e47sw4CxmxurKlSv17bffSpJatGihpUuXFpoII+Vu89y+fXv179//pvuF+3H1a2pqaqo2b95sHJdmVS5UTmbF6qpVq4zy7bffrg8++KDQBJe2bdvqk08+kY+Pj6Tcbeo2btx4U33D/ZgVp7Yrgd9///2aOnVqgS1xa9SooXfeeUcPPvigJOn69eusIF6FVfQcR2kdO3ZMa9euNY6nTZtmlwgjSbVq1dKsWbPUtGlTSbkrycybN8+h48qPZBjAzQQHBysoKKhC2srKytLy5cuN43Hjxhlf8PK79957jaWrcnJy9NVXXzmtTbgnV4/V/v37F/jDXBiLxaKXXnrJOE5ISNCRI0fKMny4MFeP08IkJydr8uTJknKXHBw4cOBNjBruwh1i9fPPPzeeQH3wwQf11FNPVch44T5cPU6PHz9ulP38/PS73/2u2DH07t3bKCclJZV66Xe4voqMVUlq1KhRhT7VlJCQoE2bNhnHUVFRBZK28vTv31/NmjWTlLuq0erVqytsHIAzfPnll0Z5+PDhqlu3bqH1wsLC1LdvX+N46dKlDh8bYMusWM3MzNTf/vY3SbmJLlOnTlWdOnVuqk1UXq5+Td24caOxwkK1atXsvm+jajErVm3vCR9++OFik9cbNGigDh06GMdnzpy5qb7hfsyI0+joaGNFIkl6+eWXi61v+/6aNWvYKrGKqug5jtJaunSp8eDYfffdp8jIyELr+fr62q0i9/XXXztkq+mikAwDVGG7d+/W1atXJeXuOVjSnoK2f9Bts/gd3SZgdlw1b97c7kn0vIxwwJaz4nTq1Km6fPmyqlWrpkmTJhX54xhQFEfFqu1SwyNGjLjJUaKqc0Sc5k28S7lPUXl6ehbbZv5VaFgZBs6ydetWI96aNWumtm3bFlvf9qlq2yQawNXFxMTY7S1vey0vjO37O3fuVGpqqsPGBtgyM1Y3bNigK1euSJI6deqk22+/vdxtoXJzh2uqbdJu586di/xhGZWbmbFqe0+Y/36vMLZ1cnJyyt0v3I9ZcXro0CGjHBQUpFatWhVbPzQ0VI0bN5aU+1DR1q1by9UvUFZWq9Uu3vr161ds/R49eqhGjRqSch/2tV252dFIhgGqsN27dxvlO++801jKrSgRERFGOT4+vtBsaEe0CbhCXNkmHGRnZ990e6h8nBGnP/zwg1asWCEpd0sG9tZGeTgiVg8dOmS8HhwcrDvuuKNCxoqqyxFx2qBBA6OcmJhY4nYyttst1a9fn6ew4TS28W/7NGpRbOP/wIEDysjIcMi4gIpmG+uhoaElPs3Ypk0bY3vbjIwMHThwwKHjA/KYGavffPONUc7bCgEojKtfU+Pi4ux++GKLpKrLzFi1vScszZbltnWYg6tazIrTS5cuGeVbb721VOfY1tu1a1e5+gXKKiYmRr/99ptxXNLchbe3t9q1a2cc2/4bczSSYYAqLDo62iiHh4eXWL9+/fp2f/Rtz3dkm4DZcXXx4kW7rRFsb5yAPI6O04yMDL311luScm9yxowZU86RoqpzRKz+9NNPBdpMTEzU7Nmz9dhjj+nuu+9Wu3bt1KNHD7366qvcnKNEjojTO+64Q/Xq1ZOUm9j64YcfFtleamqqZs+ebRyz7Recqazxb7tKQE5OjrFlHeDqyhrr1apVU4sWLQo9/2bcuHFDO3bs0Ny5czVlyhRNmzZNS5Ys0aFDh3gQApLMi1Wr1aqDBw8ax61bt5Ykbd++XWPHjtUDDzyg1q1b695779WgQYP08ccfsz1CFeYq19SifPPNN8bKGgEBAerWrZtD+4PrMjNWu3btapRXrlxZ7INpq1evNrarCQwMVK9evcrdL9yPmX/7b0ZpkryAimC7clJQUFCptmmynbtw5m/B1ZzWEwCXY/tlr7Q/7gcHByshIUGSCp1kdUSbgNlxtWrVKqMcEBBgTEABthwdp3PmzDH6mDhxovG0AVBWjojVX375xa7NXbt2KSoqyu6JFkk6d+6czp07p1WrVql79+7629/+ZiyRCdhyRJx6e3trwoQJmjBhgqTcrb1iYmI0YsQItWjRQrVr11ZcXJz27dunOXPmGNsiPvjgg2z9Bacqa/z7+PioTp06xmpHMTExPLkKt1Dea32eipo/uHjxooYPH15kf8OHD9eQIUPk4cEzhVWVWbF67tw5JScnG8d16tRRVFSU1qxZY1fv8uXLunz5sn788UctXLhQU6ZMsfvBF1WDq1xTi/Kvf/3LKD/88MMlrvyIysvMWB04cKC+/vprnThxQqmpqXriiSf07LPPqnv37mrYsKEyMjJ09uxZLV261LjW1qxZUx9++KFq1qxZ7n7hfsyKU9sVaePi4kp1jm09fl+Ds9jGWmlXMXLm9w5bJMMAVZjtShd5T8mWxLae7Q25I9sEzIyrhIQEzZs3zzju37+/qlXjzycKcmScHj9+XAsWLJAkde/enSeocFMcEavx8fFG+ddff9Xzzz+vtLQ0eXp66q677lLTpk2VmpqqvXv3GskKmzdv1vDhw7VkyRJ5eXmV9+OgknLUNfWxxx6Th4eHXn/9dWVkZGjPnj1F7lPcqFEjDRkyRMOGDbPbLhFwpPT0dKWnpxvHZYn/vGQY7qngLspzrbd94tAZsR4fH6/Jkydry5YtmjVrFj+EVVFmxWr+H8GmTJmi//znP0b7ERERql69us6cOaP9+/crOztbSUlJGj16tGbMmKHu3buXq1+4J1e+ph46dMjuCXC2SKrazIxVHx8fLVmyRGPGjNGePXt09epVzZgxQzNmzChQ18vLS926ddPLL7+sZs2albtPuCez4tR2FZrffvtNx48fV8uWLYusf/bsWZ09e9Y4TktLU2ZmJgmHcDjbfyN169Yt1TnOvpfLw695QBWWlpZmlH18fEp1jq+vb6HnO7JNwKy4ysnJ0Z///Gddu3ZNUm5m9siRI8vVFio/R8VpTk6O3nzzTWVlZcnPz08TJ068uYGiynNErNoux75t2zZJUrNmzTRz5kyFhYUZ72VlZWnOnDmaM2eOJGn//v2aNWuWXnrppbJ9CFR6jvzb37t3b917772aNm2avv766yLb6tGjh3r06EEiDJwqf+xyT4XKrDzXett6Nxvr/v7+euihh3Tffffp9ttvV1BQkDw9PXXx4kXt2bNHixYt0vHjxyVJP/zwg1588UV98skn8vT0vKl+4X7MitWrV6/aHeclwowZM0ajRo2ye1Dn+PHjGjt2rM6cOaPs7Gy99tprateuXal/nID7M/uaWhzbVWGaNm2qu+66y2F9wfWZHauBgYFavHixvvvuO02aNMnu4R5b4eHh6tWrl5o2bXpT/cE9mRWnLVu2VEhIiLFS7fTp0405tMIUtv1zamoqyTBwONsYt52PKI7tv5HU1NQKH1NRWN8TqMIyMjKMcmmfyLb9I2r7xKIj2wTMiqvp06dr+/btxvF7772nwMDAcrWFys9RcfrFF1/owIEDkqRx48aVemlOoCiOiNXr16/bHfv7+2vhwoV2iTB5/Y0bN05DhgwxXluyZEmBiX7AkX/7jxw5onHjxhmJMI0aNdIjjzyigQMHqlu3bgoMDFR6eroWLlyohx56qMiEGcARbGNfUqknMbmngjsyc/6gfv36+v777zV58mQ99NBDaty4sapXry5vb281atRIjz/+uFauXKknn3zSOGfHjh12P+ii6jArVgv7Ie2ZZ57R6NGjC6xY27JlSy1cuNDYTjc5OVmff/55ufqFe3LVOdmsrCytXbvWOH700Ucd0g/ch9mxeuPGDc2ZM0cTJkxQfHy8fHx8FBkZqSeeeEJ9+/ZVeHi4LBaLDhw4oJdeekmDBg0qsAU0Kj+z4tTDw8Num+YtW7Zo4sSJxsO6edLS0vSXv/xF69atK9BG/ntKwBFu9t+IM+OUlWGAKszHx8f48SorK6tU52RmZhrlwrL9HNEmYEZcrVixQnPnzjWOR40apS5dupS5HVQdjojT+Ph4TZs2TZLUqlUrPf300xUwUlR1jvr7b2vIkCHFJm6NGTNGX3/9tTIyMpSamqpt27bp97//fanGgqrBUX/7v//+e73wwgvKzMxUQECA3n33XfXs2dOuTkZGhubNm6dZs2YpMzNTEydOVI0aNdSrV69yfhqg9PJfT23jujjcU8Ed2ca7s+cPvL29S0w2q1atmt566y3FxMRo9+7dkqQFCxaoX79+5e4X7smsWM3/N6F69eoaPXp0kfVDQkI0aNAgzZ8/X5K0bt06jRs3rlx9w/2YeU0tzrZt23TlyhVJksVi0WOPPeaQfuA+zIzVzMxMjRo1Sv/9738lST179tSbb75ZYBuco0ePKioqSqdOndL+/fv1hz/8Qf/85z9ZbaMKMTNOn3zySX3//ffaunWrJOnrr7/W+vXrFRERYWyPu2fPHmObme7du2vz5s3G+TVq1Ch330Bp3ey/kdKuuFQRWBkGqMLynhaRSp+FZ5vRanu+I9sEnB1Xmzdv1htvvGEc9+vXjy08UCJHxOmkSZOUmpoqDw8P/eUvf2FJdlQIR//9l6Ru3boV215gYKDat29vHO/fv7/zL6JrAAAgAElEQVRU40DV4Yg4vXz5sqKiopSZmSmLxaLZs2cXSISRcm/IR48ereeff9547e233y6wAhLgCPljl3sqVGbludbb1nNGrHt4eNj9PTh16pTi4uIc3i9ci1mxmv+8iIgI1axZs9hzbL+HnzlzxkhCQOXnqtdU2xW1OnTooIYNGzqkH7gPM2N19uzZRiLMvffeqw8//LBAIoyU+0DaZ599Zmw1d/ToUS1atKjc/cL9mBmnFotF06dPV//+/Y3Xrl69qi1btmjZsmXatGmTkpOT5eXlpaioKLskQw8PD/n7+5e7b6C0bGO8tCsh2f4bcWbSFskwQBVWq1Yto1zapf4uX75c6PmObBNwZlzt2rVLL730krKzsyXlZla/++67pT4fVVdFx+nmzZv17bffSsp9IuCOO+6ogFECjrmm5t9CLv/2SIVp1qyZUf7tt99KNQ5UHY6I06+++sp4cqpTp06KiIgotr2RI0caPzglJSUZ12TAkXx9fe2eIuSeCpVZea71tvWcFet333233dLf0dHRTukXrsOsWM3/Hbt58+YlnpO/Dt+zqw5XvKYmJyfbfYfu06dPhfcB92NWrF6/fl2LFy82jseNGycPj6J/Ig0KCtLQoUON45UrV5arX7gns6+p3t7eevfdd7Vy5Uo99dRTCgsLk7+/v3x8fNSkSRM9+eSTWrFihUaMGGGX+Fq/fn1ZLJab6hsoDdsYt52PKI4Z93IS2yQBVVpoaKhOnz4tSaV+ssm2XmhoqFPaBJwVVwcOHNDzzz9vLNcWGRmpadOmsRoHSqWi4/To0aNGed++fRowYECR7Zw7d84of/fdd3Z1P/30U5bHhB1HXFObNWumbdu2Scp9gqU0T8DYxmVqamqpxoGqwxFxumvXLqPcsWPHEtvz9fVV27ZttWPHDknSzz//zFZJcIqmTZvq2LFjkkoX/xkZGUpMTDSOuaeCuwgNDdX27dslufb8gZeXlwIDA5WQkCApN0ESVYtZsWqbPC6V7gna/HX4nl11uOI1de3atcbWCdWrVy90VUZUPWbF6sGDB5WWliYpNx5L89CZ7X3j6dOnlZqayhxbFeEq19Tw8HCFh4cXW+fUqVNGuU2bNhXSL1AS2++psbGxpTrHrN+CWRkGqMJsnxY5cuRIifUTEhKMyZ/85zuyTcAZcXXs2DGNHDnSuClq166d5syZw16wKDVHxumJEyd08ODBIv+zfQLgypUrdu/lrXIE5HFErNquBGO1Wo1raXFsJ+ZZwhX5OSJObd+vXbt2qcZh+0T2tWvXSnUOcLPKGv9Hjx6V1WqVlLssNskwcBdljfUbN27oxIkThZ7vaLZLf1evXt1p/cI1mBWr/v7+atCggXFcmsSW/HVK2lYJlYcrXlNtt0jq3r07932QZF6s2t4PBgQEFLsqTJ78943cE1YdrnhNLcrBgweN8p133um0flG12SbDJCQklGoFJdt/S878N0IyDFCF2WY2HzhwwMjUL8revXuNcnBwsJo2beqUNgFHx9Xp06f13HPPGVsn3Hbbbfrkk0+csgc9Kg+uf3AXjojVe+65x+7Y9qmUouSt+iHJbpIfkBwTpz4+Pka5tE/129bjxyQ4i23828Z2Ufbs2WOU77zzTrtYB1yZbazHxMSUOIF6+PBhI+HWx8fHaZP958+f19WrV43joKAgp/QL12FmrNp+zy7NFl22dSwWi2655ZZy9w334mrX1DNnzujAgQPGMVskIY9ZsWq7FenVq1eNZPLi5L9vDAgIKFffcD+udk0tyvnz541kGE9PT/3+9793Sr9AaGio6tevbxzbzksUJjMz0+57QWlWbK4oJMMAVVhERISRkX/16lVt3ry52PqrVq0yyt26dXNam4Aj4+rChQt69tlnjX0NQ0NDtXDhQm5uUGYVHadjxozR8ePHS/Vf3759jfP69u1r9x6xjPwccU1t2LChbr/9duN469atxbaZnJysffv2GccdOnQocdyoWhwRp7feeqtRLukmXcpdBcD2CavGjRuXeA5QEX73u98Z+7xHR0fr0KFDxdbP/9Q14C5CQ0ONJwqtVqtWr15dbH3ba31kZKTTtilYuXKlUa5Ro4bddx5UDWbGao8ePYzynj17SlyVwPZ7eMuWLbkfrEJc7Zpq2/8tt9yie++9t0Lbh/syK1ZtH8JJS0vTzz//XOI5u3fvNspBQUGsDleFuNo1tSizZ882yl26dFFwcLBT+gUsFou6du1qHJf0b2Tz5s3G99iAgABFREQ4dHy2SIYBqjBvb2/179/fOJ4xY4YyMzMLrfvDDz8YeyR6eHjoySefdFqbgKPiKiEhQc8++6zi4+MlSSEhIfrss89Ut27dChw9qgquf3AXjorVp59+2ih//vnnunjxYpF1Z82apYyMDElSvXr1dN9995XpM6Dyc0ScRkZGGuXt27fbJWQVZv78+cZKABaLRZ06dSrTZwDKq379+nY/fr7//vtFPrm6YsUKYzUuPz8/nrqG2xk0aJBRXrBggRITEwutFx0dbZeUYnteWWVmZhb5NyW/Q4cOacGCBcZxr169VK1atXL3DfdlRqxK0v33368mTZpIkq5fv273o1d+sbGx+vLLL41j24cmUDWYFaf5Wa1WffPNN8Zx7969S7UlDaoOM2L19ttvt9sGd/r06cWuDnP58mUtXrzYOO7cuXO5+4Z7cpVralHWrl1rJOF4e3tr/PjxTukXyPPUU08ZD/J8//33dgmEtjIyMjRjxgzjeMCAAU69p+IbCFDFjRw50njq9vTp0xo9erRSUlLs6vz444966aWXjC+Hjz76qFq0aOHUNoGKjqvk5GQ999xzOnv2rKTc7P5PP/2U7GncFK5/cBeOiNU+ffqoZcuWknJX8njuuecKLOV+48YNzZo1y25C6fnnn2dLDxSqouO0b9++qlWrlqTcCfoXXnih0BVnMjMzNWfOHLsfm3r27KlGjRpVyOcCSmPcuHHG5NDu3bs1ceJEpaen29XZvHmz3nnnHeP42WefJakbbmfgwIEKCQmRJCUmJmrkyJEFEmqjo6M1atQoI5G2Q4cO6tKlS6HtzZw5Uy1btlTLli3tnlS09dtvv+nBBx/Up59+WmTybmZmpr766isNGzbM+LdXo0YNvfDCC+X6nHB/ZsSqJHl5eemVV14xjhcuXKiPPvpI2dnZdvVOnjyp5557TqmpqZJyH/YZMGBA2T8o3JpZcZrf3r17deHCBeOYxCzkZ0asenh42D3Es2PHDr388suFJjgcO3ZMzzzzjLE1jsVi0bPPPlv2Dwq3ZuY1dfz48dq9e7dycnIKvHft2jVNmzZNEyZMMOZCXnrpJWMlG+Bmvfrqq0as2l4387vtttv0yCOPSMqdZ3vxxRf1448/2tVJSUnRmDFjFBMTIyl3VZgRI0Y4bvCFsFhLszEeAJfy2GOPFXjt3Llzxp6E9erVU7169ezer1+/vubNm1doe999953+93//1/jD6ufnp3vvvVe1atXS6dOntX//fqNuWFiYli1bZvwwURRHtAn348qxOm7cOK1fv944joyMLPUXxi5duhT5pRbux5XjtLReffVV40mAvn376r333rup9uCa3CFWz507p4EDBxqTSZ6enrr77rvVpEkTpaWlac+ePUpISDDqP/LII/rHP/5Rik8Pd+Hqcbpp0yaNHTvWbkKpcePGuuOOO1SjRg1dvnxZ+/bts9sbPiQkRP/85z8LjBvurSJj9eLFixo5cmSB16Ojo5WVlSUpd1n2vGSsPK1bt9bkyZOLHOPSpUs1adIk47h27drq2LGj/Pz8dPToUR09etR4r2PHjlqwYIG8vLyKbA9wVYcPH9bgwYN1/fp1SblPtkZGRiooKEgXLlyw+yEgKChIX3/9td1WB7ZmzpypWbNmScq9fhe2deP58+eNLfUsFosaN26ssLAwBQYGysPDQwkJCdq/f7+Sk5ONc7y8vDR37lyeCq/inB2rtqZMmaLPPvvMOL7lllvUoUMHVa9eXWfOnNFPP/1kJMj4+flp8eLFatOmzc1+ZLghM+M0z2uvvaYVK1ZIksLDw+1WTADymBGr6enpeuaZZ+zuI318fHT33XcrJCRE2dnZOnHihA4fPmy3aswrr7xS6Pd9VH5mXVPbtGmjzMxMBQYGqnXr1goODlZOTo7i4+P1448/Gsk3Uu6DRLaJs6iaKnKOw/a3hoiICC1ZsqTIflNSUjRw4ECdPn3aeK1du3Zq1qyZkpOTtXPnTmMMnp6e+vjjj52+QjjregJu6NixY8W+f+nSJSNrOU/eEu+FeeCBBzR9+nS98cYbSkpKUlpaWqFPyXbo0EEffPBBqX60dUSbcD+uHKv5s/537dqlXbt2FTvePLVr1yYZphJx5TgFbLlDrDZu3FiLFy9WVFSUjh07puzsbO3Zs0d79uyxq+fp6alhw4YpKiqqxDbhXlw9Tnv06KE5c+Zo4sSJxjjOnTunc+fOFVq/Q4cO+vvf/04iTCVUkbGalZVVYntxcXGKi4uzey0gIKDYc5566ilZrVZNnTpV6enpunLlil0yd56ePXvq3XffJREGbis8PFzz58/X+PHjFRsbq8zMTG3btq1AvRYtWmjatGlF/sBQHlarVWfPnjVWDC1My5YtNXXqVLVq1arC+oV7MjNWX331VdWsWVMfffSRbty4oYsXL+rf//53gXpNmjTR9OnTidcqzMw4lXKTDTZs2GAcsyoMimJGrPr6+mrevHmaNGmScQ3NyMjQzp07C61fvXp1TZgwwWnb3sD1mH1NTUpK0o4dOwp9r06dOvrTn/7EVrmQVPHzcaUVEBCghQsXKioqytiOfP/+/XZJh5IUGBioyZMnOz0RRiIZBsD/efDBB3XXXXdpxYoV2rRpky5cuKBr164pKChILVu21KOPPqqePXuWaX9XR7QJEFdwB8Qp3IUjYvV//ud/tHz5cq1bt07r1q3TiRMndOnSJfn6+io4OFj33nuvBgwYoObNmzvwk6Eyqeg4/d3vfqfNmzdr7dq1+v7773XkyBFdvnxZmZmZqlGjhoKDg9W2bVv16tVLkZGRDv50QPEGDRqk++67T8uXL9d3332nuLg4paenq379+mrbtq369OljymQSUNHat2+vNWvWaOXKlVq/fr3OnTunpKQk1alTR2FhYerVq5ceffRReXt733RfISEh+uabb4xJ2lOnTunKlSu6cuWKsrKy5O/vrwYNGqht27bq0aOHOnXqVAGfEJWFM2PVlsVi0ejRo/Xwww9rxYoV2rFjh+Lj45WWlqY6dero9ttvV/fu3fXYY4+RHAnT4lTK3cbx2rVrknJX1crbPgEojBmxWrNmTX3wwQcaMWKEVq9erf379+vs2bO6du2aPD09VatWLbVo0UKRkZHq16+fateuXWF9wz2ZEadffPGFdu7cqT179uj8+fO6dOmSsrOzVa9ePYWGhqpHjx56+OGHS3zAAnCGBg0aaMmSJVq/fr3WrFmj48ePKyEhQf7+/goJCVGPHj30+OOPm/agGdskAQAAAAAAAAAAAAAAoNLgcWQAAAAAAAAAAAAAAABUGiTDAAAAAAAAAAAAAAAAoNIgGQYAAAAAAAAAAAAAAACVBskwAAAAAAAAAAAAAAAAqDRIhgEAAAAAAAAAAAAAAEClQTIMAAAAAAAAAAAAAAAAKg2SYQAAAAAAAAAAAAAAAFBpkAwDAAAAAAAAAAAAAACASoNkGAAAAAAAAAAAAAAAAFQaJMMAAAAAAAAAAAAAAACg0qhm9gAAAACA0uratasuXLggSZoyZYr69etn8ojMsXLlSv35z3+WJIWEhGjr1q0mjwgAAAAAgJLl5OTo3//+t9atW6djx44pMTFRGRkZxvurV69Wq1at7M65evWqli1bpm3btunUqVO6evWqsrKyJEk1a9bUvn37nPoZILVs2dIoL168WB07djRxNAAAFI5kGAAAgGJcvXpVa9eu1Q8//KCjR4/qypUrunbtmry9veXv76+QkBA1adJEt99+u9q1a6fWrVvL09PT7GHDxVitVv3www/atGmTfv75Z8XGxiolJUVWq1V+fn6qX7++GjZsqNtuu02tW7dWRESEAgICzB42AAAAAKAKmTlzpmbNmnVTbWzZskUNGzYs9L309HSNHDlSu3fvLnV7Z86c0TPPPKO4uLibGldVd/78eX3zzTfav3+/Tp06peTkZKWnp8vX11eBgYEKCQlR8+bNFR4errvvvlvNmjUze8gAANw0kmEAAAAKkZ2drYULF2r27Nm6fv16gfevX7+u69evKyEhQQcOHNC//vUvSVJAQIDmz5+vtm3bOnvIcFE//fST3nzzTZ08ebLQ95OTk5WcnKyTJ0/q22+/lSR5enrqmWee0YQJE5w5VAAAAAAAHGb69Ol2iTB16tRR8+bN5ePjY7zm7+9vd84rr7xilwjTuHFjhYSEGA8i1ahRw8Gjrni2SUcRERFasmSJw/pKSkrS1KlTtWrVKlmt1gLvp6amKjU1VRcuXNCePXuM12+99VZt3LhRXl5eDhsbAACORjIMAABAPllZWXrxxRe1efNmu9e9vLwUGhqqwMBASbkTCmfOnFFmZqZRJyUlRcnJyU4dL1zX2rVrNX78eGVnZ9u93qBBAzVo0EA+Pj5KSUlRXFycEhMTjfezs7N56g0AAAAAYKrOnTuX+RxfX99CX8/JydHy5cuN4/79++vtt98udnXdw4cP65dffjGOp06dqj59+pR5TFXVxYsXNXToUJ05c8budX9/fzVt2lQ1a9ZUenq6EhMTde7cObtkmdjYWOXk5Dh5xAAAVCySYQAAAPKZMWOGXSJM06ZNNW7cOHXt2rXApE5WVpaOHj2qLVu2aP369QUmGFB1nThxQhMmTDASYby9vfXcc8/pySefVIMGDQrUj42N1Y4dO7Rx40b997//Lbbtfv36qV+/fg4ZNwAAAAAAkrRgwYIKaysmJkYpKSnG8R//+McSt5k+dOiQUb711ltJhCkDq9WqcePG2c1TRUZGavTo0br77rtlsVjs6l+7dk379+/Xpk2btGHDBiUlJRXb/v9j776jorrWNoA/gCACAjYQsKAooGIXLGCNsaSpWGISazDXEnu7oiY3ognRRCRixRgLYonEgi0au1hRUZAiIqI4KL0Nvcz3B4vzzVAHmAGdPL+1stbZ5+y9zz4zk9x7Nu9+99OnT5UxbCIiIoViMAwRERGRlISEBOzZs0coW1lZwdvbGw0bNiyzvqamJrp06YIuXbpg4cKFuHXrFkxNTWtruPQO27RpE/Lz8wEUbXvk6emJvn37llvf1NQUEyZMwIQJEyASiRAeHl5bQyUiIiIiIiJSqpLBFWUtEqmoTfPmzRU+JlV28eJFBAQECGVHR0f89NNPpYJgiunp6aF///7o378/Vq1ahbNnz1YarERERPSuYzAMERERkZQrV64gLy9PKC9fvrzcQJiS1NTUYG9vr6yh0XskMzMTfn5+QnnkyJEVBsKUZGZmBjMzM2UMjYiIiIiIiKjWFS8WKVavXuV/npJuI099+n/nz58XjuvXr4+VK1eWGwhTUv369TFmzBhlDY2IiKjW8P89EBEREUmJjIyUKffo0UPh98jKysLNmzfh7++PkJAQREVFITU1FRKJBAYGBmjRogV69eoFR0dHtG3bVq4+hwwZApFIBABwdXWFo6MjCgoK8M8//+DkyZMIDw9HXFwc6tevD0tLS4wePRpjx44ttcpHLBbjzz//xD///IOIiAhkZWXB0NAQ3bt3x5dffilXQEdZY8nLy8OFCxfg6+uLZ8+eIT4+Hg0bNoS5uTmGDRuGCRMmQEdHp4qfpHwkEgmuXbuGy5cv4+HDh4iPj0dGRgYMDAzQsmVLODg4YNy4cQpdZfb69Wvk5uYKZUX/jo4dOwZnZ2cARYEzly9fLlVH+nuoqrlz52LevHkV1gkJCcG5c+dw+/ZtvH37FikpKdDV1YWRkRF69+6Nzz77DF26dKnW/YmIiIiIiOj9J/3uWpKVlVWpc/v378fx48dx/PjxUtfu3btXZpuKtuuJjY3FqVOn4Ofnh5cvXyIpKQkaGhpo2rQpunbtimHDhmHo0KFyB4kUE4vFOH36NG7duoXQ0FAkJycjKysLurq6aNGiBWxsbGBvb4/BgwdDS0tLaFfWe3p5zwX8/5xKdUjPb7Vv317uhV7ykh7z/v370bt3b5nrHh4e2LJlS7X6Lm+eQ1pqaipOnTqFGzduICIiAklJSZBIJGjcuDFsbGwwZMgQfPLJJwyiIiL6l+P/ChARERFJEYvFMmWJRKLQ/o8cOQJXV1dkZWWVeT0+Ph7x8fEICAjA7t27MX78eKxevVpm8kQesbGxWLp0Ke7duydzPjc3Fw8ePMCDBw9w9uxZ7NixA9ra2gAAf39/LFq0CPHx8aXGdOHCBVy4cAHTp0/HihUrqjSWN2/eYOHChXj06JHM+cTERCQmJuLBgwfYv38/fv31V4UHjQQGBuKHH35AcHBwqWsJCQlISEhAQEAAdu3ahdmzZ2PWrFkKua+yf0d1KTExEWvWrJFZZVYsJSUFKSkpCA8Ph5eXFz755BOsXbtWaYFORERERERERCXl5+fDw8MDe/fuRXZ2dqnrGRkZePnyJXx9fdGpUye4ubnB3Ny80n4lEgn27t2L7du3IzU1tdT11NRUpKamIjg4GEeOHJErqENZMjIyhGNVmpMAgL1792Lr1q1IS0srdU0kEkEkEuH8+fPYvn07NmzYgK5du9bBKImI6F3AYBgiIiIiKY0aNZIp37x5E8OGDVNY/1FRUTKBMIaGhmjRogX09PSQn5+PN2/eCKuECgsLceTIEcTExGDXrl1yr1TKzMyEk5MTnj17BgBo0aIFTE1NkZ2djdDQUGEbqNu3b2P58uXYvHkz7t+/DycnJ+Tk5EBNTQ3t27dH48aNkZSUhPDwcKHvPXv2oGXLlvjqq6/kHsu0adMQFRUFAGjWrBlat26N3NxcREREIDMzE0DRZIWTkxP++OMPdO/eXa6+K3Px4kUsWbJEZuJLV1cXFhYW0NHRQWJiIiIiIiCRSJCdnY1NmzZBJBJh7dq1Nb53yd+Rn58fJk2aVON+q8LW1hZt2rSRq25qaiqCgoIqrRcZGYkZM2bIrGTT1NSEhYUFDA0NIRaLER4eLmTFOX36NF68eIH9+/dDT0+veg9CRERERERE7yVjY2M4ODgAKP3eWXxemoGBASwtLYVrr169wqtXr4RrnTt3rvSeGRkZmD9/vszWxQBgbm4OIyMj5OXl4cWLF0hJSQEABAcHY+LEidi7dy+sra3L7TcvLw9Lly7F33//LXNeT08PrVu3RsOGDSEWi/HixQshEKVksEbxe7q8z2VsbFzp85anUaNGwlxMeHg4EhIS0LRp02r3V1WtWrUq8zsuj7+/P3Jyciqsk5+fj1WrVuHEiRMy583MzGBiYgIAePnypbDIKyoqClOmTMH27dvRr1+/Kj4BERGpAgbDEBEREUnp1q2bTHnt2rVo3ry5Qrd7sbOzwyeffIIBAwYIL+vSoqOjsWvXLhw5cgQAcOPGDXh5eWHKlCly9e/h4YGUlBR0794d33//PTp27ChcS05OxqpVq3Dp0iUARXtI37hxA87OzsjJycHYsWOxcOFCGBkZCW3Cw8Mxb948YRLFzc0No0ePhq6ubqVj2bp1K5KSkmBiYoIffvgBAwcOFIJ6srKycODAAfz222/Iy8tDZmYmFi9ejFOnTtU4cCI0NBSLFy8WJlIsLS2xZMkS9O/fX2ZrqNjYWLi7u+PYsWMAgD///BNdunTB+PHja3T/1q1bo1GjRkhOTgYAXLlyBZ6ennByciq1NZWyrF+/Xq56OTk5mDp1qlDW0dHBBx98UKqeWCzG7NmzhUAYQ0NDLFiwAKNHj5bJ/JKVlQVvb2+4u7sjLy8PwcHB+OGHH/Drr7/W8ImIiIiIiIjofWJvbw97e3sAwN27d2XmNXbv3l1mG2tra3z99dcAZLfasbKyKreNtO+++04IhNHQ0MC0adMwdepUmcCSwsJCXL58GWvWrEFcXBySk5OxYMECHD9+vNzMpq6urjKBMMXzDA4ODjJb8RQWFiI4OBinT58ulVG1+D29Os9VVd26dUNAQACAokCehQsXws3NTWa+R5lGjRqFUaNGyVV33759MsFLn376aZn13N3dZQJhHB0dMWvWLLRu3Vqm3p07d+Di4oLnz58jOzsbS5YswcmTJ2vt2YmI6N2hXtcDICIiInqXODg4wMzMTCjHxcVhwoQJmDp1Kg4cOICwsDAUFBRUu/+5c+fCy8sLn3/+eZmBMADQsmVLuLi4YMmSJcK5PXv2yH3flJQU2NnZYf/+/TKBMEDRyiB3d3e0bNlSODd79mzEx8fjP//5D3766adSkwOWlpbYtm2bEMQhFovxzz//yDWWpKQkNGnSBAcOHMCgQYNksts0aNAA33zzDTZs2CCci4mJwc6dO+XquzyFhYVYunSpEAjTt29f+Pj4YNCgQaUCUYyNjeHq6oqZM2cK5zZu3FhmGuWqUFdXx4QJE2TObdy4ER9++CE2btyIW7duIT09vUb3UASJRAJnZ2dhgkxdXR0bN24s9bsBgF9++UUIiGrevDn++usvfPnll6UmChs0aIAZM2Zg27ZtUFcvet04deoUAgMDlfswRERERERE9K929uxZnDlzBkBRFtPt27dj+fLlpTKsqKurY+jQofjzzz+FbClRUVE4ePBgmf3evn0b3t7eQtnBwQFHjx7FoEGDZAJhivvu3LkznJ2dhbHUhfHjxwvv5EBR5pWhQ4diyZIl8PX1RXR0dJ2NTdqVK1dkFvOMHDkSCxcuLFXv0aNH+P3334Xy2rVr4erqWioQBgD69OmDI0eOwMLCAkDR3NT27duVMHoiInrXMRiGiIiISIqWlhY2bNgALS0t4ZxEIsGdOxuA+E4AACAASURBVHewdu1ajBo1Cj169MCECROwbt06/P3331UKapAnm0qxGTNmoHnz5gCKgkSePHkiVzsNDQ389NNPMs8gTUtLC+PGjRPKeXl5MDc3x4IFC8rt08LCAr179xbKDx48kGssALB06VK0aNGi3OsfffQRhg8fLpSPHj0qbLNTHZcvX0ZERASAonTDbm5uqF+/foVtFixYIOwPnpycjNOnT1f7/sVmz55dKtWxSCSCp6cnpk+fDltbWwwfPhyLFy+Gt7c3IiMja3zPqnJ3d5eZnFuxYgWGDBlSql58fLyQPQcAfv755wq/UwAYMGAAxowZI5QPHDiggBETERERERFRbbGysqrSPz/++GOdjtfT01M4/uabbzBw4MAK65uYmGDZsmVCubz31h07dgjHRkZGcHNzg7a2dqXjqcockKJZWFjILLICijLDnj59GsuWLcPQoUPRu3dvTJ8+Hb/99htu376N/Pz8Wh1jcVbf4sVf3bt3x/r168vcJtzT0xMSiQRAUdaZkguQSmrYsCFcXFyE8vHjxyEWixU4eiIieh8wGIaIiIiohF69euHQoUNo3759mdezs7Px+PFjeHl5YcGCBbC3t8fSpUvx4sULhY5DXV0dXbt2FcryZtbo16+fTOaXskj3CwBjx44ttZqpojbFwSaVMTQ0LDe9rbTJkycLx8nJyfD395er/7JIB22MGTMGjRs3rrSNhoaGzDhv375d7fsXa9CgAfbt2wdHR0eZ1VjFJBIJoqKicObMGbi4uGDkyJEYO3Yszp07V+N7y+PEiRMyE3qTJk2S2S5J2pkzZ4QApY4dO6Jv375y3UM6GEYRnykRERERERFRWUJDQxEaGgqgKCuMvFtNf/TRR8ICmjdv3pSa24mPj8edO3eE8rRp02BgYKCgUSvXjBkzsGHDBjRq1KjM6ykpKbh16xa2bduGadOmoX///ti4cSPS0tKUPrbY2FjMmjULmZmZAIAWLVpg27ZtZS5mSklJwZUrV4Ry8TZalenVq5ewkCcrKwuPHj1SwMiJiOh9UvFfPIiIiIj+pWxsbODr64t//vkHx48fx61bt4Rtd0rKycnBqVOncO7cOSxfvrzcgIKSYmJicOfOHTx9+hQJCQnIyMhAXl6eTJ3w8HDh+O3bt3L1261bt0rrNGvWTKbcvXv3KrWRd2KkT58+0NTUrLRer169oKuri4yMDADA48ePhX3Fq0IikchkrenXr5/cba2trYVjebPwVEZXVxeurq5wcnLC4cOHcf78ecTFxZVb/8mTJ1i4cCF8fHzg5uamtAk2f39/rF69WigPGjQIK1eurLB+sep+pnFxcYiNjS2VnpqIiIiIiIjeTQ4ODlWqX7wtTV24d++ecNyhQ4dyA0BK0tLSQtu2bYVAmidPnqBNmzbC9ZKLdUaOHKmA0daeUaNGYejQoTh27BhOnTqFoKAgFBYWllk3KSkJnp6e8PHxgbu7u0yGYEXKzMzE7NmzhXkufX19eHp6lruY6f79+8KYmzRpIjPXUBlra2u8fv0aQNF3W9XfNBERvd8YDENERERUDnV1dQwfPhzDhw9Hbm4uAgMDERQUhNDQUDx+/BhRUVEy9fPz8/HTTz9BXV1dJtNJSeHh4fj5559x69YtIcWrPOTdjqlkoEtZSqbzLd4juyINGjQQjrOysuQai6WlpVz11NTUYGlpiYCAAAAo9dnK6+3bt0hJSRHKO3bswP79++Vqm5qaKhwnJSVV6/7ladeuHVavXo3Vq1cjKioKAQEBCAkJQUhICAIDA0ttC+Xn54eZM2di//795W53VV1RUVGYO3euEHjVoUMHuLm5QUNDo9w2T58+FY6vXLmCsLCwat07OTmZwTBERERERETvid27d9f1EOQm/d4aExMDJycnudvGxMQIxyXnA54/fy4cN27cGKampjUYZd3Q1dXF5MmTMXnyZKSlpSEgIABBQUEICwvDo0ePEB8fL1M/KSkJ33zzDQ4cOIAuXboodCyFhYVYunQpgoODARRl8fHw8KgwkEr6u83JyanSdyu9yEzRcz1ERPTuYzAMERERkRy0tLTQq1cv9OrVSzgXExODEydOYO/evTKBFBs2bMCHH36I5s2bl+rn6tWrmDdvXqngB3nI20aeTCyKaCMPQ0PDatWtbkpe6UAYAHj48GG1+pE38Kg6zM3NYW5uLmwhlJ2djatXr2LXrl0yGWkCAgLg5eVVpUmeyqSkpGDmzJnC52RsbIydO3dWuo+59Of6/PlzmcnAqlDm50pERERERET/XtLvrQkJCfDz86tWPyXfW6Xne5o0aVK9wb1D9PX1MXDgQAwcOFA4FxwcjCNHjsDHxwcFBQUAioJOVq1aBV9fX6ipqSns/uvXr8elS5eEsouLC/r06VNhG+nvViwWK+y7JSIi1ade1wMgIiIiel+Zmppizpw5OHXqlEwK3dzcXPj4+JSqHxsbi0WLFglBLQ0aNMDEiROxdetWnD17Fvfv30dQUBCePn0q/FMcMPG+qkpWE+m61QkWAiDsNV1TVcnYU1Pa2toYMWIEjh49WiqjkLe3t8Luk5ubi7lz5wpZd3R0dLBjxw65MrXImwmoMuWlYiYiIiIiIiKqCUW9t5acD5DeMlvRmVvfFZ06dYKLiwv27dsnkxU4PDy81DZRNXHo0CHs3btXKM+aNQuOjo6VtlPWd0tERKqPmWGIiIiIasjY2Bhr1qzBlClThHP3798vVW/v3r1CsEbDhg1x+PBhtGvXrsK+MzIyFDvYWlaV8YvFYuFYT0+vWvfT19eXKR8/fhwdO3asVl+1TV1dHc7Ozrh27RpevXoFABCJRHj79m2ZWYaqavXq1cIkloaGBtzc3OT+bBo2bIjk5GQAgLOzM6ZNm1bj8RAREREREREpSsOGDYXjIUOGYPv27QrpV3qeQXreQhXZ2trCyckJW7ZsEc7dv38fdnZ2Ne7bz88P69atE8off/wxFi5cKFdb6e/WysoKvr6+NR4PERH9OzAzDBEREZEC2NnZQUdHRyjHxcWVqnPjxg3heMqUKZUGwgDAmzdvFDPAOvL69Wu560ZHRwvHTZs2rdb9SrZLSEioVj91RUNDAw4ODjLnyvotVdXWrVtx8uRJoezs7IzBgwfL3b5Zs2bC8fv2mRIREREREZHqk35vTUxMVEq/MTExMpliVJH09kmAYuYknj17hgULFiA/Px8A0L17d/z8889yb7+krO+WiIhUH4NhiIiIiBRATU0Nurq6QllDQ6NUHZFIJBx36dKl0j4zMjIQFhammAHWkcePH8tVLykpSSYYplOnTtW6X6NGjWBubi6UHz16VK1+6lLJrDhl/Zaq4syZM/Dw8BDKkydPLrUdU2W6d+8uHL+PnykRERERERGpNun31tDQUGRnZyu837y8PDx8+LDGfUoHgbxrW/eUnJOoV69mG0wkJCRg5syZQladli1bYtu2bVXackr6O0hISJCZPyIiIqoIg2GIiIiIFCAlJUVmdYqRkVGpOsUrYOR18uRJ5OXl1XhsdSkwMFDY8qcip0+flpkAsrW1rfY9BwwYIByfOHHivfsMIyMjZcpl/Zbk9fDhQ6xYsUL4bAcPHgxnZ+cq9yP9mT548KDUGImIiIiIiIjqUr9+/aCpqQkAyM3NVdhWOp06dUKjRo2E8qFDh2rcp3RmYUUF7SiKIucksrOzMWfOHGFxmIGBATw9PdG4ceMq9dO5c2cYGhoKZR8fn2qPiYiI/l0YDENEREQk5d69e9VaYeLl5YXCwkKh3K9fv1J1pCcQ/P39K+wvISEBmzdvrvI43kW//vprhdfT09Ph6ekplO3s7NCqVatq32/q1KnCBJhIJMJvv/1W7b6qKykpCVevXq1yu8jISFy/fl0ot2/fXiYdcFVER0fj22+/RW5uLgCgY8eO2LhxY7UyzQwZMgRt2rQBABQWFuK7775774KMiIiIiIiISHU1btwYo0ePFsru7u6IiYmpcb/16tXDpEmThPL58+dx6dKlGvUp/Z4fHR2tlOwwFy5cELKxyEsikWD//v0y5/r27Vut+0skEixfvlzIGKypqYnNmzejbdu2Ve6rXr16mDZtmlDet28fQkJCqjUuIiL6d2EwDBEREZGUmzdvYsSIEfjvf/8Lf3//SickCgoKsHv3bmzbtk04p6uri08//bRU3T59+gjHBw8eRFBQUJl9xsTEYPr06UhOTq7mU7xbzp8/D3d39zI/y7S0NMyZMwfx8fHCuTlz5tTofi1atMD06dOF8q5du+Dq6lrpaqvCwkLcuXMHs2fPrjRYqTLp6emYOXMmHB0d8ddff8k1ARUUFIQZM2YIwSsAMHHixBrdPykpCQBgbGyMHTt2yGzlVRXq6upwdnYWUjnfv38fM2bMQGxsbKVtIyIi4OLigt9//71a9yYiIiIiIiKSx9y5c4UsLomJiZg0aZJcW/0mJCTA09MTS5YsKfP6lClTYGpqKpQXLVqE06dPV9hnUlISdu3aVeY16a2hU1JS8Ndff1U6xqras2cPhgwZAjc3Nzx//rzS+mlpaVi6dCnu3r0rnLOxsUHnzp2rdf9Nmzbh/PnzQnnt2rUy82JVNXnyZGFb7KysLEyfPl2uRUhpaWk4ePAgvv7662rfm4iI3l812+yPiIiISAXl5+fjxIkTOHHiBExMTGBra4suXbrAxMQEhoaGKCgoQGJiIoKDg3HhwoVS2wA5OzuXmUZ26tSpOH78OAoKCpCZmYmvvvoK48ePR79+/WBgYICkpCTcvn0bx48fR1ZWFkxMTGBpaYlr167V1qMr3EcffYRz585h+/btuHnzJhwdHdGmTRvk5uYiMDAQR44cQVxcnFB/woQJ1V51JG3RokV4+vSp8Nnt3bsXJ0+exCeffIJu3bqhadOm0NDQQFpaGqKjoxESEoKbN28iISEBAGRWHNVEcHAwVq5cCRcXF/Tq1QvdunWDhYUFGjVqBE1NTYjFYkRGRsLPzw+3bt2SCRiys7PDF198Ua37hoSEyEx26ejoYOXKlXK3/+yzzzBq1CiZcwMHDsTixYuxceNGAMCdO3cwdOhQDBs2DH369IGJiQm0tbWRkZGB2NhYhIaG4s6dO0KK5blz51brWYiIiIiIiKhuODk5VbnNF198gaFDhyphNJVr3rw5Nm/eDCcnJ+Tm5kIkEuHzzz9Hnz59MHDgQFhYWEBPTw9ZWVlISkpCeHg4Hj58iICAABQWFsLOzq7MfvX19eHu7o4pU6YgOzsbOTk5WLJkCfbt24fhw4ejffv20NXVhVgsxvPnz+Hv7w8/Pz9oa2vjm2++KdVf27ZtYWNjgydPngAAVq1aBU9PT7Ru3VrIdAsUBYDUZI4kNTUVO3fuxM6dO2FtbY0ePXqgU6dOaNasGfT09JCbm4uYmBgEBATgwoULSE1NFdrq6upi3bp11b63dLCQjo4OTp8+XWkAUbGmTZti/fr1Muf09PSwbds2fPHFF0hNTUVKSgpmzpyJzp0744MPPoCVlRX09fWRm5uLlJQUPHv2DI8fP8a9e/eQl5cHMzOzaj8LERG9vxgMQ0RERCSl5BYyb968ga+vr1x7Tevo6GDVqlUYN25cmdctLS2xYsUK/PjjjwCAnJwcHDhwAAcOHChVt3HjxtiyZUuZ194n/fv3h5WVFTZt2oTAwEAEBgaWW3fo0KH43//+p5D7qqurY+vWrXB1dYW3tzcAIDk5GV5eXvDy8lLIPSq7v7Ts7Gz4+fnBz89PrvbDhw/H+vXrq7WlUVlevHiBFy9eyF2/W7duZZ7/z3/+gyZNmmDNmjXIyclBbm5ulSa0iIiIiIiI6P0h7zustP79+ythJPKzs7ODt7c35s2bh7dv3wIoWsxx586dGvXbtWtXeHl5yWS3rWyeQ1tbu9xr69atw7Rp05CSkgIAePnyJV6+fClTpyZBRSXnE8LCwhAWFiZXWzMzM7i7u6NDhw7Vvr+0zMzMKv2WygtcsbCwwNGjR/Htt9/i2bNnAIqy7JaXeZmIiIjBMERERERS5s6di379+uHSpUu4e/cuwsLCUFBQUGEbY2NjfPTRR5g+fTqMjY0rrDtlyhQYGxtj/fr1EIlEpa5ramrigw8+wOrVq2X2kH6fzZo1C+3atcOGDRtKTewAgKGhIb799ltMmjSpVBBJTWhqauL777/HZ599hh07dsDPzw95eXnl1m/WrBns7e3xySefoFevXjW6d8uWLXH58mVcvHgRN2/eREBAANLS0ipso6WlhQEDBuDLL7+Evb19je6vTGPHjkXfvn3x+++/w9fXF+np6eXW1dHRgZ2dHUaOHIlhw4bV4iiJiIiIiIjo36pLly44e/YsDh48iIMHDyImJqbcuvXq1ROyi3z22Wdy9bt7924cOXKk3O2t1dTU0LFjx3IXSwFAhw4dcObMGRw+fBi3b99GZGQk0tPTK5y3qIpdu3bBz88PV65cgb+/f6msxmWxsrLC6NGj8eWXX1YYyFOXWrdujWPHjuHYsWPYt2+fkI22LGpqarC2tsaQIUNKZb8lIqJ/BzWJdC52IiIiIpKRmZmJiIgIvHr1ComJicjMzISGhgZ0dXVhZGQES0tLtGrVCmpqalXqt6CgAI8ePUJYWBjS0tKgr68PY2Nj2NnZQV9fX0lPUzuGDBkiBPq4urrC0dFRuPb48WNEREQgMTERurq6aNOmDezs7FCvnvJjtLOyshAQEACRSITk5GRIJBLo6urCxMQEFhYWwt7TylBYWIiXL18iKioKb968gVgsRkFBAXR0dGBgYIC2bdvC0tLynZ1sKk9BQQGCg4Px/PlzpKSkIDs7Gw0aNECzZs3Qtm1btGvXTibFMxEREREREVFti4qKwpMnT5CcnIz09HRoa2vD0NAQ5ubmsLS0hJ6eXpX7LCwsRHBwMJ49e4akpCTk5+dDT08PLVu2RKdOndC0aVMlPEn1JSUl4fnz54iOjkZqaiqysrJQv3596OrqokWLFrC2tn7nxiyPN2/e4NGjR0hKSkJaWhq0tLSgr6+P1q1bw9LSEoaGhnU9RCIiqkMMhiEiIiIihaooGIaIiIiIiIiIiIiIiEjZFJeHnoiIiIiIiIiIiIiIiIiIiIiojjEYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGWoSSQSSV0PgoiIiIiIiIiIiIiIiIiIiIhIEZgZhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhlMBiGiIiIiIiIiIiIiIiIiIiIiFQGg2GIiIiIiIiIiIiIiIiIiIiISGUwGIaIiIiIiIiIiIiIiIiIiIiIVAaDYYiIiIiIiIiIiIiIiIiIiIhIZTAYhoiIiIiIiIiIiIiIiIiIiIhUBoNhiIiIiIiIiIiIiIiIiIiIiEhl1KvrARAREdG/z+TJk3Hv3j1oa2vjzJkzaNGiRV0Pqdri4+Nx6NAh3Lp1Cy9evIBYLEZ+fj4AwNraGidPnizVJiwsDIcOHcLDhw8RExODjIwMSCQSAMCUKVOwatWqWn2Gf7tjx47B2dkZAGBmZobLly/X8YiIiIiIiIiIVMu9e/cwefJkAMDEiROxZs2aOh4RERERqToGwxAREZFc4uLi4Ofnh1u3biE8PBzJyclISUlBvXr1oK+vDxMTE3Tu3Bm9e/fGgAEDoKWlVW5fy5Ytw4QJE5CdnQ1XV1ds3bpVKWMeMmQIRCJRtdvb2dnBy8ur3OsPHz7ErFmzkJqaKnefBw4cwE8//YSCgoJqj+vfTiKR4M6dO/jnn38QFBSEmJgYpKWlQSKRQEdHB0ZGRmjRogWsra1hY2MDOzs76Ovr1/WwqYYKCgoQERGB4OBgPHnyBMHBwQgLC0N2drZQ59KlS7UaXPf8+XOcPHkSfn5+ePPmDcRiMZo1a4Y2bdpgxIgRGDlyJPT09GptPERERERERFXh4eGBLVu2lHtdU1MTWlpaMDQ0hJGREdq0aQMbGxv07t0b7dq1q9K97OzsMGjQIFy9ehV//vknPv/8c3Ts2LGmj0AKkpWVhbCwMOF9+8mTJ4iMjBTmr2qyeEiZfRdLSkqCr68vLl68iOjoaCQmJsLQ0BCmpqYYPHgwRo0aBVNT0xrdg4iI3j8MhiEiIqIKiUQibN++HcePHxcynkjLzc1FZmYm3r59i4CAAOzfvx/6+voYPXo0Zs2ahSZNmpRq06VLFwwePBiXL1/GxYsXce/ePdjZ2dXG4yhMbm4uFi5cKBMI065dOxgZGUFdvWgnylatWsm0CQsLw48//ojCwkIARZNK1tbWMDAwEOpYWFjUwugVSzroyNXVFY6Ojkq718OHD/H999/j2bNnZV5PTU1Famoqnj17hitXrgAANDQ0MG3aNCxfvlxp4yLl+u233/DHH3/IBL7Upfz8fGzZsgWenp6lAttEIhFEIhH8/Pywbds2uLq6ok+fPnU0UiIiIiIiourLy8tDXl4eMjIyIBKJEBAQgGPHjgEomgP56quvMG7cuAoXREmbP38+rl69isLCQri6ula4AIlqz/Tp03H37l2lLNxSZt/Fzp49izVr1iAlJUXmfHx8POLj4/H48WPs3LkTS5cuxaRJk5Q2DiIievcwGIaIiIjKdfbsWTg7O5f6A7SWlhbMzMzQuHFjqKmpISEhAW/evEFOTg4AIC0tDfv374ePjw98fX3RsmXLUn3PnDlTWPWxadMmHDp0SKnPYmRkBEtLyyq1sbKyKvfa1atXERsbCwBQV1fHnj17Kv2Dt4+PjxAIY2xsjKNHj8LY2LhKY/o3O3PmDJYtW1ZqAsXExAQmJiaoX78+0tLS8ObNGyQlJQnXCwoK8ObNm9oeLinQmzdv3plAGABYtWoVTpw4IZTV1NRgYWGBRo0a4fXr18LvLSYmBk5OTti5cyccHBzqarhERERERERyKfneUlBQgLS0NKSnpyMmJkZmkVRERATWrFmDffv2YcOGDejatWul/Xfq1AkODg7w8/PDvXv3cPPmTdjb2yv8OahqXr58qbRgFWX2DQBHjx7F6tWrZc6ZmpqiRYsWSExMRGRkJCQSCbKysrB27VokJSVh/vz5ShsPERG9WxgMQ0RERGXy9PSEm5sbJBKJcG7w4MGYNGkSevXqBW1tbZn6OTk5uHv3Ls6dOwdfX1/k5+cjMzMTYrG4zP67deuGrl274vHjx3j48CFu376Nvn37Ku157O3t8fPPPyusv8DAQOG4Z8+ecmV+kG4zbtw4BsJUQXh4OJYvXy5MoGhpaeHrr7/GxIkTYWJiUqp+TEwM/Pz8cOHCBdy8ebPCvh0dHZWazYYUR0NDA23btkWnTp3QqVMnvH37Frt3767VMezZs0cmEMbW1hbr1q2Dubm5cO7mzZtYsWIF4uLikJ+fjwULFsDX1xdmZma1OlYiIiIiIqKqqOj9Kjs7G8HBwTh//jyOHTuG9PR0AEBUVBS++uoreHp6ol+/fpXeY+rUqfDz8wMAbNu2jcEw7xBtbW1YW1sL79znzp3DjRs33tm+Hz9+jB9++EEoGxsbY/369TLzi5GRkVi9ejUePHgAANi6dSs6dOiADz/8sEb3JiKi9wODYYiIiKiUS5cuyQTC6Ovr47fffqtwUqN+/foYMGAABgwYgNmzZ2P9+vW4ePFihfcZP348Hj9+DADYu3evUoNhFE069Wrz5s2r3KasAA4q36ZNm4QVaBoaGvD09Kzw92JqaooJEyZgwoQJEIlECA8Pr62hkhKMHTsWEyZMQIcOHdCgQQPhfHF67tqSnJyMrVu3CuWOHTvijz/+KJUS3N7eHt7e3hg1apQQFPjbb79hw4YNtTpeIiIiIiIiRdHW1kbPnj3Rs2dPzJ8/H2vWrIGvry+Aou2U5s2bh0OHDlWaldfBwQFmZmYQiUS4f/8+njx5Ahsbm9p4BCrHihUr0KpVK7Rv3x4aGhrCeX9//3e67/Xr1wtzRbq6uvD29i6Vnbpt27bYu3cvJkyYgNDQUADAhg0bMGjQIGhqatZ4DERE9G5Tr+sBEBER0bslNjYW//3vf4VAGB0dHXh7e8u1uqdYq1atsHXrVixfvhz16pUfNcFKfAAAIABJREFUezty5EjUr18fAHDt2jW8fv26ZoOvRdKpgSt6xvLaSE8AUMUyMzOFVWNA0e+mKoFTZmZmGDx4sDKGRrXE1tYWPXr0kAmEqQve3t7C6kcAWLNmTalAmGKtWrXCnDlzhPKpU6feq//GERERERERlUdPTw+//PILvvnmG+GcWCzG999/X2lbdXV1fPrpp0LZ29tbKWMk+Q0bNgzW1tZKmatSVt/37t0Tsr0AwJw5c8rcph0oyi7s4uIilF+9eoUzZ84odDxERPRuYmYYIiIikrFnzx6ZP/auXLmy0lU95XFycqrwup6eHhwcHHDp0iVIJBKcPHkS3377bbXuVRsmT56Me/fulTp//PhxHD9+XOacmZkZLl++DCsrqzL7cnZ2hrOzs8y5MWPGVLiVk7+/Py5cuAB/f3/ExcUhLS0NDRs2hKmpKfr27YsxY8bAwsKiys/19OlT/P3337h79y5EIhGSk5MBAIaGhmjbti169uyJDz74AB07dhTa3L17F1OmTJHruaTvUx2vX79Gbm6uUO7Ro0e1+inPsWPHhDEXf28lDRkyBCKRqFr9z507F/PmzauwTkhICM6dO4fbt2/j7du3SElJga6uLoyMjNC7d2989tln6NKlS7XuT4rz999/C8ddunSp9DsZP348PDw8kJOTg8LCQly4cAFff/21sodJRERERERUKxYtWoSHDx8KQQkBAQHw8/ODg4NDhe1GjBiBHTt2AADOnz+P77//XmGLH1asWCHM0UjPs4SFhcHHx0d47y4oKICRkRFsbW3x1Vdfycx50LtP+v28fv36GD9+fIX1u3Tpgs6dOyMoKEhoP3r0aKWOkYiI6h4zwxAREZEgLS0NR44cEcrm5uYYN26cUu85cOBA4Vj6RZb+38uXLzFt2jRMmjQJ+/fvR2hoKBITE5GXl4ekpCQ8efIEu3btwqeffop169bJZKCpSEJCAubPn49Ro0Zh27ZtePDgAd6+fYucnBzk5OQgNjYWt2/fxpYtWzBmzBh4eHgo+UnLJhaLZcrFWYtUQWJiIubPn48xY8bA09MTQUFBiI+PR15eHlJSUhAeHg4vLy+MHz8eS5YsQWZmZl0P+V8rOjoaz549E8qDBg2qtI2hoSG6desmlMsKtCIiIiIiInpfaWholFrUdOjQoUrbdejQAc2aNQMAZGRk4Pr160oZHwAUFBRg06ZNGDNmDLy8vBAREQGxWIysrCy8fPkSPj4+cHR0xJYtW5Q2BlI86ffr7t27w8DAoNI20u/xN2/eRHZ2tjKGRkRE7xBmhiEiIiLBzZs3Zf7Y/vnnn0NNTU2p9+zdu7dwHB4ejpiYGJiamir1ntXVuXNnYUuU8PBwxMXFAQCMjIxKZc9p2rQpAMishvL390dOTg4AwNLSEkZGRjJtysrAExAQgFmzZiElJUU4p62tDQsLCzRs2BCpqal49uwZ8vPzUVBQAC8vL7x8+RLbt2+vcPump0+fYubMmXjz5o3MeTMzMxgbG6NevXpISEjAy5cvUVBQAKAoWKqYgYGB8GyVPVdNNWrUSKbs5+eHSZMmKfQelbG1tUWbNm3kqpuamiqsNKpIZGQkZsyYIZNxRlNTExYWFjA0NIRYLEZ4eLiQFef06dN48eIF9u/fDz09veo9CFVbSEiITFneDEU9evTA3bt3AUDYn5yIiIiIiEhV2Nvbo2XLloiOjgZQNEdQWFgIdfWK12L37t0bp0+fBgBcvXoVw4cPV8r4XFxccPjwYQBFW4G3b98e9evXh0gkEt7HJRIJPDw80KxZM3z++edKGQcpTkpKisx8lrzv5z179hSOc3Nz8fz5c3Tq1Enh4yMioncHg2GIiIhIUHILoH79+in9nubm5jAwMEBqaioA4M6dO3B0dFT6fatj+fLlwrF02l17e/tytzfavXu3cCy91c706dMrfc63b99i9uzZQiCMiYkJli5dimHDhglBOUBR8IWnpyd2794NiUSC69evw8PDA4sWLSqz3+TkZMyePVtm4sDR0REzZ86Eubm5TN3MzExcv34dPj4+MoFR1tbWwrNV9bmqqnXr1mjUqJGwfdOVK1fg6ekJJycnpexnXZb169fLVS8nJwdTp04Vyjo6Ovjggw9K1ROLxZg9e7bwuRkaGmLBggUYPXo0dHR0hHpZWVnw9vaGu7s78vLyEBwcjB9++AG//vprDZ+IqioiIkKmXPLflfJI1xOLxXj79i2aN2+uwJERERERERHVrZ49ewrBMKmpqQgPD4e1tXWFbbp27SoEwxQvIFC0q1evIjk5GYaGhlixYgU+/vhjmfmU27dvY8mSJUhMTAQA/PLLL/j0009l3svp3VPy/bx169ZytStZLyIigsEwREQqjsEwREREJJDOZtGgQQO0b9++Vu5rZWUlBOIEBQW9s8EwtW316tVCAIilpSW8vLxgaGhYqp6BgQGWLVuGVq1a4fvvvwdQFITz5ZdfwtjYuFR9V1dXmWwkP/74Y7nbYeno6GDEiBEYMWIEMjIyFPFYVaauro4JEyZg586dwrmNGzfi8OHD+Pjjj9G3b1907twZDRs2rJPxFZNIJHB2dkZAQACAonFv3LixzH3Hf/nlF0RFRQEAmjdvDm9vb7Ro0aJUvQYNGmDGjBmwtLTEzJkzUVhYiFOnTmHKlCno0qVLjcfs4eGhtFTQT58+VUq/dUX63xkNDQ25MyCVzHT1+vVrBsMQEREREZFKsbGxwYkTJ4Tyq1evKg2Gkb4uEomQlJSExo0bK3RcycnJ0NfXx6FDh9C2bdtS1/v27YvNmzfjq6++AgCkp6fjwoULGD16tELuP3ny5FILzxTBzs4OXl5eCu/3ffH69WuZsrwZpo2NjaGhoSFkQJZ+zyciItVUcZ46IiIi+ldJSkoSjo2MjGot64b0yoxnz54p5R7Hjx+HlZVVlf6pyy1NQkNDcePGDQBFW+e4u7uXGQgj7fPPP0efPn0AAHl5eUIaYGnR0dHCyisA+OKLL8oNhClJV1dX3uEr3OzZs9G5c2eZcyKRCJ6enpg+fTpsbW0xfPhwLF68GN7e3oiMjKz1Mbq7u+PMmTNCecWKFRgyZEipevHx8Th27JhQ/vnnn8sMhJE2YMAAjBkzRigfOHBAASOmqhCLxcKxrq6u3P99LBmkVVdBZURERERERMpScnvj4uy/FSmZpSM8PFyhYyq2bNmyMgNhivXq1Qvdu3cXyg8ePFDKOEhxSr5X6+vry9VOQ0NDJusP38+JiFQfM8MQERGRoHg7HqD0H3CVSTpLAldlFJEOlhg0aBAsLCzkajdmzBjcuXMHQFG63wULFshcP3funLACRlNTE3PmzFHQiJWrQYMG2LdvH9atW4cTJ06gsLBQ5rpEIkFUVBSioqKEgBQbGxvMmDEDI0eOVPr4Tpw4gR07dgjlSZMmyWyXJO3MmTPIzc0FAHTs2BF9+/aV6x5jxozBX3/9BaDou1WEVq1awcHBQSF9qbrMzEzhuH79+nK3K1mXk21ERERERKRqSgYjFGe5rUjTpk2VnqVDR0dHriwvtra2QpZXRS7S6ty5s8y2TIpiZWWl8D7fJyXfq6vyjq6trY309PQy+yEiItXDYBgiIiISFP+BHoBSXtbLIz1pUrxPs6IZGRnB0tKySm309PSUMhZ5+Pv7C8f9+vWTu510muEnT55AIpFATU1NOCednrdHjx5yb/XyLtDV1YWrqyucnJxw+PBhnD9/HnFxceXWf/LkCRYuXAgfHx+4ubnBwMBAKePy9/fH6tWrhfKgQYOwcuXKCusXq+53GxcXh9jY2DK3waqKUaNGYdSoUTXq498iPz9fOK5XT/7XqJJ1pfshIiIiIiJSBRKJRKYsPQ9RHg0NDejp6QlZZJQxH2RjYyPX/Jb0Iq3iQAlFWL58ucL6ov9X8r26Ku/o0lle+X5ORKT6GAxDREREAn19fWHyQXpLEGVr0KCBcJyTk4PCwkKoqyt2N0d7e3v8/PPPCu1TWSQSicxKJB8fH1y6dEmutjk5OcJxXl4exGKxTJYf6e2DbGxsFDDa2teuXTusXr0aq1evRlRUFAICAhASEoKQkBAEBgbKBHUBgJ+fH2bOnIn9+/crPMgrKioKc+fORV5eHgCgQ4cOcHNzq3ALnadPnwrHV65cQVhYWLXunZycXONgGJJfyf9OyatkXemUzERERERERKqgZABJZds8F9PW1haCYbKyshQ+rmbNmslVT/p9TxnjIMUq+V5d3Xd06e+diIhUE4NhiIiISGBgYCAEw0hvmaRsJVcQ/dulp6fLrE4JDg6uUV/SwTDS32uTJk2q3e+7wtzcHObm5hgzZgwAIDs7G1evXsWuXbvw5MkToV5AQAC8vLzg5OSksHunpKRg5syZwmdqbGyMnTt3QldXt9J2xZ4/f47nz59X6/6KXK1GlZOebMvOzpa7XcmJ1Mp+H0RERERERO+bklld5A2GUfZ8UG1mPabaUzIYpioBTNLv83w/JyJSfYpdck1ERETvtVatWgnHcXFxcu3xrAjSL6L169dXeFaY940iVyEVFhbKlKWzplRlT+X3hba2NkaMGIGjR49i8uTJMte8vb0Vdp/c3FzMnTsXUVFRAIomYnbs2CFXphZFfb8lv1tSrsaNGwvHmZmZcmfPio+Plyk3atRIoeMiIiIiIiKqa0FBQTJl6fmlijBLB1WH9Ps5UPq9uzxisVhmTobv50REqo+ZYYiIiEhga2uLq1evCuXHjx9j0KBBSr9vcUpcQDWyldSUdCYXANiyZQs+/PBDhfQtvRWWKmcWUVdXh7OzM65du4ZXr14BAEQiEd6+fSuzF3h1rV69Gv7+/gCK9pt2c3NDx44d5WrbsGFDIdDM2dkZ06ZNq/F4quvkyZPw9fVVSt+7d+9WSr91pW3btjLlmJgYWFpaVtouJiZGOFZXV4e5ubmih0ZERERERFSnHj58KBwbGhrK9a5UUFAgs8hAFeeDNmzYILNVsqJYWVlh+fLlCu/3fdGmTRuZsvR7d0VEIpFMueR7PhERqR4GwxAREZGgT58+MuVTp07VSjDM27dvhWMzMzOl3+9dp6OjAx0dHWRmZgIAEhISFNZ3s2bNhGCYFy9eKKzfd5GGhgYcHBxw8OBB4VxcXFyNg2G2bt2KkydPCmVnZ2cMHjxY7vbNmjUTgmEU+d1Wx6tXr+Dn51enY3hftG/fXqYcEhIi1wRvSEiIcGxmZgZtbW2Fj42IiIiIiKiuXL9+XSbIwM7ODmpqapW2i4+PR0FBgVBWxfmgoKAg3Lt3T+H9Smf9/Tdq3bo1NDU1kZeXB0D+7cWl388BoF27dgofGxERvVv+3XsQEBERkQwbGxvY2NgI5fPnz8sEqihLceYOAHL9cfnfoEePHsLxo0ePFNZvt27dhGN/f3+F7M8tPcml7P2+q0pPT0+mrKGhUaP+zpw5Aw8PD6E8efLkUtsxVaZ79+7CsSK/W1IuGxsbmX3J5Z3QLM4gBBRNChMREREREamKgoICbNu2Tebcl19+KVfbly9fypQ5H0Tyqlevnsy8mfR7d0Wk3+NbtWoFExMThY+NiIjeLcwMQ0RERDL+85//YP78+QCAvLw8ODs7448//pBrVU9JxdkvKtuDVzplbOfOnat8H1XUv39/IWPHP//8A2dnZxgaGiqk38OHDwMoSiN77dq1Gmf/kQ4QyM7OrlFfihYZGSlTNjIyqnZfDx8+xIoVK4SAn8GDB8PZ2bnK/QwYMABHjhwBADx48ACRkZF1lpp33rx5mDdvXp3c+32jra2N/v374/z58wCACxcu4LvvvqtwX/v79+8jOjpaKA8fPlzp4yQiIiIiIqotv/76KwICAoRyr1690LdvX7nahoWFCcdmZmZo3LixwsdX17y8vOp6CCpr2LBhuHv3LgAgOjoaDx48QM+ePcutn5mZiQsXLghlRW1HTkRE7zZmhiEiIiIZw4YNk9ny5datW/jf//4nk7pWHoGBgRg7dmylmWVevHiB1NRUody7d++qDVhFjRs3Tgh+ycjIgIuLi0L6HTx4MFq1aiWU165di/T09Br12axZM+G45MouRUhKSsLVq1er3C4yMhLXr18Xyu3bt5cZa1VER0fj22+/FVIRd+zYERs3bqxWppkhQ4YI+1sXFhbiu+++E1L70rtt7NixwnF6ejr27t1bbl2JRIKtW7cKZVNTU7knhYmIiIiIiN5lYrEYS5YswR9//CGc09fXx5o1a+TuIzAwUDjmXBBV1UcffSSzOEv6/bsse/fuhVgsBgCoq6vD0dFRqeMjIqJ3A4NhiIiISIaamho2bNiAli1bCueOHDmCadOmybUH7+vXr+Hs7IyJEyfK7BldnuJVHEBRsIKpqWn1Bq5i9PT0sGjRIqF85swZLF68GGlpaZW2DQwMxPLly3Hq1KlS1zQ0NLBs2TKh/Pr1a0yePFkme0V5ff79999lXuvUqZNwfPbsWYVvrZWeno6ZM2fC0dERf/31lzB5UZGgoCDMmDFDZh/tiRMn1uj+SUlJAABjY2Ps2LEDurq61epPXV0dzs7OQral+/fvY8aMGYiNja20bUREBFxcXPD7779X695U2uTJk2FlZSX8U5GBAwfC1tZWKG/duhXXrl0rs667uztu3bollOfPnw8tLS3FDJqIiIiIiKiWZWdn48GDB/jpp58waNAgnD59WrimpaUFDw8PtGvXTu7+pOeDBg4cqNCxkupr3Lgxpk+fLpRv3rwJd3f3MuteuXJFZjuv0aNHV+m3SkRE7y9uk0RERESl6Ovrw8vLC3PmzEFISAiAon11x44di27dusHe3h4WFhbC9keJiYmIiorCjRs3EBgYiMLCQrnvJZ25Y8SIEYp9ECk3b96Ek5NTldt5eHjIrDSpTRMnTkRISIiwpc6ZM2dw5coVfPTRR7C1tYWxsTE0NTWRnp6OmJgYhIaG4tatW0IQUp8+fcrsd9iwYZg+fTr27NkDAAgNDcXIkSMxYsQI2Nvbo3nz5tDQ0EBCQgJCQkJw7do1hIeHY8qUKWV+R5988gl27doFiUSC+Ph4DB06FJ06dUKjRo2grv7/sdcl9xGvquDgYKxcuRIuLi7o1asXunXrJvwONTU1IRaLERkZCT8/P9y6dUvYzggA7Ozs8MUXX1TrviEhIXj+/LlQ1tHRwcqVK+Vu/9lnn2HUqFEy5wYOHIjFixdj48aNAIA7d+5g6NChGDZsGPr06QMTExNoa2sjIyMDsbGxCA0NxZ07d4Rtn+bOnVutZ3lfiUSiMn97Jf9bM2LEiDK3dAsKClLYWFxcXPDFF18gJSUFeXl5mD17Nj7++GMMHToUhoaGeP36NY4dO4b79+8LbYYMGVLqN0BERERERPSuKTlvUlhYiPT0dKSnp+P169fIz88v1aZTp05Yv3492rdvL/d9QkNDER8fD6DoHZvBMHXrxIkT+O6770qdl/6+RSJRmVub29raymQIqs2+v/nmG1y/fl1459++fTvu378PR0dHmJmZITk5GRcvXsTZs2eFjNctW7bE0qVLy+2TiIhUC4NhiIiIqEwmJiY4ePAgXF1d8ddffyE/Px8SiQQBAQEy+0GXR0dHB9OmTRO2gylLRkYG/Pz8ABRlpFHmH4vj4uIQFxdX5XZlTfTUpjVr1sDExASbN29GYWEhMjMz4ePjAx8fnxr1u2LFCujp6WHLli2QSCTIy8vDqVOnyswmUxkrKyvMmzcPmzdvBgDk5eXh0aNHNRqfNOmAGqBoNZqfn5/w26nM8OHDsX79+mptaVSWFy9e4MWLF3LX79atW5nn//Of/6BJkyZYs2YNcnJykJubi9OnT8usrqMiEolEJstPeWpju6m2bdti69at+Pbbb5GSkoKCggL4+vrC19e3zPp9+vSBm5tbqd8xERERERHRu0be92wA6N69O8aPH49Ro0ahXr2q/alJOvPs/7F379FR13f+x1/f7zcJSQgBwlXuEG7hEggkMxMviKiotVJZqVVstT1tt9p2t7vb3e6267p22+pp6x570a61am/Lr6BWBKsuCtoimplJQi5AAiTc74hJIFcm+X6/vz8Gx04tScBMZkKej3M8J/kw8877czJe5u1rPp8bbrhBaWlpF/R89CzHcbr1nvuvPaar9+GxrJ2WlqYnnnhCn/vc57R7925JUnFxsYqLi//q48eOHasnn3xSw4YN67IfAMClgTAMAAA4r7S0NP3Xf/2XvvjFL+rpp5/Wn/70Jx09evS8jzcMQzk5Obrlllt06623Kisrq9P6GzZs0NmzZyVJV155ZdTVTAgzDEP33Xefrr/+ej3xxBPauHGjWltbz/v4wYMHy+fz6eMf/7gWL17cae2vfvWruuaaa/TTn/5Ub7311nmDP2lpaVq0aJGWLVt23lpf+cpX5PV69cILL6iyslLHjh1TS0vLBZ0SdD7jx4/XG2+8oY0bN+rtt99WWVlZl9dFpaSkaNGiRVq5cqWuuOKKj9xDrNx2220qLCzUU089pfXr16uxsfG8j01PT5fH49FNN92kpUuX9mKX+Ev5+fl66aWX9P3vf1+vvfbaXx3ajR49Wp/73Od09913E4QBAAAA0CelpqYqIyNDGRkZGjZsmHJycpSTk6P8/HxNmjTpomq6rhv1IZCLPcUVkKThw4fr97//vR5//HGtXr1aDQ0NH3rMwIED9YlPfEJf//rXlZGREYcuAQDxYrh/fn48AABAF/bt26eamhrV19eroaFBlmVp8ODBGjt2rObMmaPMzMxu17rjjjsip8w888wzCR1aSBShUEiVlZU6cOCA6uvr1dHRofT0dI0aNUpTpkxRdnb2Rf2P96amJpWWluro0aM6ffq0LMtSVlaWpkyZotmzZyslJSUGu7k4juPowIED2r9/v44dO6ampibZtq309HQNHjxYU6ZM0fTp05WamhrvVi+IbdvasWOH9uzZo4aGBrW1tSktLU0jRozQlClTNHXqVCUnJ8e7TfyFxsZGBQIBnThxQs3NzRo2bJgmT56svLy8v3plEwAAAAD0Z1u2bIlcx5SXl6fVq1fHuSNcKtrb21VSUqJDhw6pvr5emZmZGjNmjLxeb5+bEQEAegZhGAAAEBeVlZX65Cc/KSl8jcyaNWvi3BEAAAAAAABi6Ytf/KI2b94sSXrqqad01VVXxbkjAABwqeK8bgAAEBc///nPI1//wz/8Qxw7AQAAAAAAQKxVV1dHgjD5+fkEYQAAQEwRhgEAAL1u27Zt2rRpkyRpyZIlKiwsjHNHAAAAAAAAiKUf//jHkiTTNPXNb34zzt0AAIBLHWEYAADQ6374wx/KdV0NGDBA3/rWt+LdDgAAAAAAAGKouLhYb775piTpk5/8pObMmRPnjgAAwKXOcF3XjXcTQH/T1tam7du3a8SIEbIsK97tAAAAAAD6Mdu29e6772rOnDlKTU2NdztIYMwzAAAAAACJoqt5RlIcegL6ve3bt+uuu+6KdxsAAAAAAESsWrVK+fn58W4DCYx5BgAAAAAg0ZxvnkEYBnFVV1enrKyseLfR60aMGCEp/Dfm6NGj49wNAAAAAKA/O378uO66667Ie9W+or/OFOKJeQYAAAAAIFF0Nc8gDIO4Wrx4sa6//nrdcccdKigoiHc7veb9o4RHjx6tcePGxbkbAAAAAADU56696a8zhXhingEAAAAASDTnm2eYvdwHECUUCumVV17R3XffrZtvvlm/+c1v1NjYGO+2AAAAAABAgmOmAAAAAAAAzocwDBKC67rau3evHn74YV111VX65je/qfLy8ni3BQAAAAAAEhwzBQAAAAAA8JcIwyCuHn74Yc2bN09SeHjluq7a2tr04osv6s4779Stt96q1atXq7m5Oc6dAgAAAACARMJMAQAAAAAAnA9hGMTV8uXLtXr1aq1fv14rV67UoEGDJH0wxNq1a5e+/e1v66qrrtIDDzygqqqqOHcMAAAAAAASATMFAAAAAABwPoRhkBCmT5+uBx54QG+99Za+973vfeiTXS0tLXruued02223acWKFfr973+vtra2OHcNAAAAAADijZkCAAAAAAD4S4RhkFBSU1N12223ac2aNXrxxRd1xx13KCMjQ9IHQ6wdO3bo/vvv11VXXaXvfve7qqmpiXPXAAAAAAAg3pgpAAAAAACA9xGGQcKaOXOmHnzwQb311lv6zne+o7lz50r6YIDV2NioVatWadmyZVq5cqXWr1+vUCgU564BAAAAAEC8MVMAAAAAAKB/IwyDhJeWlqZPfvKTeu6557R27Vp96lOf0sCBA2UYRmSIVVZWpn/913/VokWL9IMf/ECHDx+Od9sAAAAAACDOmCkAAAAAANA/EYZBn5KTk6N///d/1z//8z9rwIABMgxDhmFE/ryhoUG//OUvdcMNN+gb3/iGjhw5EsduAQAAAABAomCmAAAAAABA/5EU7waA7tq3b1/k3u/Tp09H1l3XlSSZphn5VJdt23rppZe0ceNGffe739XHPvaxeLUNAAAAAADijJkCAAAAAAD9C2EYJLT29na99tprWr16tUpKSiR9MKiSpKSkJF133XVauXKlZsyYoXXr1mnNmjXas2ePJKmlpUX/8i//orFjx2revHlx2QMAAAAAAOh9zBQAAAAAAOi/CMMgIR04cEBr1qzR2rVr1dDQICl6YDVq1Cjdfvvtuv322zVixIjI+t133627775br732mh566CGdOHFCjuPo6aef1k9+8pNu/exQKKSdO3dq27ZtqqioUGVlpfbv3x/5+V/96lf1d3/3dz24WwAAAAAA0FPiOVMAAAAAAACJgTAMEkZHR4def/11rVmzRoFAQFL0sMowDPl8Pq1cuVJLliyRZVnnrbV06VJNnTpVy5Ytk23bKi0t7VYPL774ov7jP/5DoVDoo20GAAAAAAD0mkSYKSBxdKz9veySYpnjx8v0FsqcM1dGcnK82wIAAAAA9CLkyuHCAAAgAElEQVTCMIi7Q4cO6dlnn9ULL7yguro6SdEDq8zMTN1666268847NXny5G7XnTJlimbPnq2KiorIJ8G60tDQQBAGAAAAAIA+IpFmCkgMHetf1Nn7vhi9mD5Q5sJ8WR6vLF+hzAX5MgYOjE+DAAAAAIBeQRgGcfX5z39eRUVFcl03alglSbNmzdKdd96pW265RampqRdVf/jw4ZIkx3Eu6HmXXXaZcnNzNW/ePM2bN0+PPPKIysrKLqoHAAAAAADQ8xJ1poD4cirKP7zY0iznrT/JeetPapcky5I5d55Mr0+Wr1BWgVfGud83AAAAAODSQBgGcfX222/LMIzI0ColJUU33XSTVq5cqXnz5vV6PzfeeKNuvvnmqDvDJSmZo3QBAAAAAEgoiTZTQGKwlt+m9l8/IzU1nf9Bti2nfKuc8q3q+PnPJEnGtGmyPD6Z3kJZ3kIZEybIMIxe6hoAAAAA0NMIwyDuXNfV+PHj9alPfUorVqzQkCFDeqz2d77zHX3rW9/q9uNHjx7dYz8bAAAAAADEViLNFJAYrDlzlfZ2UPb6F2X7i+QEA3LfPdnl89yaGnXU1EirfitJMkZfFj45xlso0+uTOTNHhmXFun0AAAAAQA8hDIO4Wrx4se68804tWrQoJp+2ycrK6vGaAAAAAAAg/pgp4HzMUaNlfvFeJX/x3vA1Wvv2yg745QSKZAf8cvft7bKGe/yY7HVrZa9bG17IzJSV75HpC58cY86bL+Mir+ACAAAAAMQeYRjE1RNPPBHvFgAAAAAAQB/ETAHdYRiGjCnZMqdkS3feJUlyTp6QE/DLDoRPjnG2b5Mcp/NCZ87IfmOj7Dc2ql2SBgyQOT8vHIzx+GQVeGQMHhzz/QAAAAAAuocwDAAAAAAAAIB+wxw5SuYtn1DSLZ+QJLmNZ2SXloRPjvH75ZSVSm1tnRc5e1ZOwC8n4A9/bxgyc2bJ9BbK8vrCVytdNibGOwEAAAAAnA9hGAAAAAAAAAD9ljEoU0mLl0iLl0iS3FBITmV5OBgT9MsO+qWGhs6LuK6cqh1yqnao45dPhetOmBg+OcbrleUtlDF1Wkyu9AIAAAAAfBhhGCSc6upqbdiwQZWVldq/f79Onz6tUCikQYMGadiwYZozZ44KCgp00003KS0tLd7tdunMmTM6c+ZM1Nrx48fj1A0AAAAAAJeuS22mgPgwUlJk5Xtk5Xsk/b1cx5G7e5fs969WCvjlHjncZR334AF1HDwgPbc6vJA1TJbXFz45xuOTOTdXRnJybDcDAAAAAP0UYRgkjOrqan37299WRUVFZM113cjXdXV1qq+vV21trV588UU99NBDuueee3TvvfcqOYEHB7/+9a/12GOPxbsNAAAAAAAuWZfqTAGJwTBNGTNzZM7MUfI9n5MkOYcPh69VOheQcXft7LpQ3XuyX31Z9qsvh79PS5eZXyDL45XlK5S5IF/GwIEx3AkAAAAA9B+EYZAQVq1apYcffli2bct1XRmGETW0et/7a4ZhqKmpST/72c+0ceNGPf300xo+fHhvt90t99xzj5YvXx61dvz4cd11111x6ggAAAAAgEvHpTxTQOIyx42TOe6TSrrtk5Ikt75ednFAjr9IdtAvp6Jcam/vvEhri5y3/iTnrT+pXZIsS+bceTLPnR5jeXwyeG0CAAAAwEUhDIO4e/bZZ/Wd73xHkiL3Jqelpcnj8WjGjBkaMmSIUlJS1NTUpEOHDqmiokI1NTWSwoOsXbt26TOf+Yyef/55DUzAT89kZmYqMzMz3m0AAAAAAHDJudRnCug7jKFDlbT0RmnpjZIkt6VFTtnWcDAmUCS7uFhqbuq8iG3LKd8qp3yrOn7+s3DdadNkeXwyvYWyvIUyJkyIvNYBAAAAAOdHGAZxdfToUT388MOSwkOrzMxM/f3f/71uu+02paamnvd5O3fu1COPPKItW7bIMAzt379fjz76qO6///7eah0AAAAAAMQRMwUkMiM9XdYVV8q64kpJktvRIadqR+RqJSfgl/vuyS7ruDU16qipkVb9Nlx39GXhk2M8Ppm+Qpkzc2RYVkz3AgAAAAB9kRnvBtC/rVmzRq2trTIMQyNGjNDq1at11113dTq0kqSZM2fqqaee0mc/+1m5rivXdfXcc8+pubm5lzoHAAAAAADxxEwBfYmRlCQrd56Sv3ivUp/6ldIqq5X2TrFSHv2pku5YKWNKdrfquMePyV63VqF//1e1XbtILTnZalt5u0I/eVR2wC+3rS3GOwEAAACAvoGTYRBXf/zjHyNf/+d//qcmT558Qc//xje+oWAwqKqqKoVCIRUVFem6667r4S4BAAAAAECiYaaAvswwDBlTsmVOyZbuvEuS5Jw8ISfgP3e1kl/O9m2S43Re6MwZ2W9slP3GRrVLUkqKzLwFH1ytVOCRMXhwzPcDAAAAAImGk2EQV0ePHpUkDRs2TNdee+0FP980Ta1YsSLy/ZEjR3qsNwAAAAAAkLiYKeBSY44cpaRbPqEB33lYaa+9qfRdezVg9fNK/sevy7z8SqmLU48kSaGQnIBf7T/9kc5++lNqmTlFrUuu0tlvfkMdL74g59jR2G8EAAAAABIAJ8MgrmzblmEYF/zprT83ZcqUyNdOV5+WAQAAAAAAlwRmCrjUGYMylbR4ibR4iSTJDYXkVJbLDvgjJ8iooaHzIq4rp2qHnKod6vjlU+G6EyaGT47x+WR5C2VMnSbDMGK9HQAAAADoVYRhEFejRo3S/v371d7eftE1Ojo6Il+PHDmyJ9oCAAAAAAAJjplCbJ05c0ZnzpyJWjt+/HicuoEkGSkpsvI9svI90lf+Xq7jyN29S/b7Vyv5i+QeOdxlHffgAXUcPCA9vya8kDVMltcny+uT6fHJnJsrIzk5xrsBAAAAgNgiDIO4mj9/vvbt26fa2lqFQiGlpKRccI3t27dHvs7Nze3J9gAAAAAAQIJiphBbv/71r/XYY4/Fuw10wjBNGTNzZM7MUfI9n5MkOYcPywn6ZfuLZAeK5O7a2XWhuvdkv/qy7FdfDn+fli5zYX44IOMrlLlgoYyBGTHcCQAAAAD0PMIwiKvbbrtNa9euVXNzs5599ll9+tOfvqDnNzc3a82aNTIMQ/n5+Ro/fnyMOgUAAAAAAImEmUJs3XPPPVq+fHnU2vHjx3XXXXfFqSN0hzlunMxxK5T0NyskSW59veziQPhapUCRnIpyqavTlFpb5GzZLGfLZrVLkmXJnDtP5rnTYyyPT8bw4THfCwAAAAB8FIRhEFf5+flasWKFnn/+eT3yyCMaP368rr766m49t62tTf/4j/+oY8eOKT09XQ8++GCP9PSJT3ziQ2sHDx6MfL169Wpt3Lgx6s9HjhypX/ziFz3y8wEAAAAAQNcScaZwKcnMzFRmZma828BHZAwdqqSlN0pLb5QkuS0tcsrLwsGYQJHs4mKpuanzIrYtp3yrnPKt6vj5z8J1p04LX6vkLZTl9cmYMFGGYcR6OwAAAADQbYRhEHcPPPCA2tra9Ic//EH33Xefbr31Vn3605/WrFmz/urjm5ubtWHDBj3++OM6evSosrKy9N///d/Kzs7ukX527uz8+NhTp07p1KlTUWuNjY098rMBAAAAAED3JdpMAUh0Rnq6rMuvkHX5FZIkt6NDTtWOyNVKTsAv992TXdZxa2vUUVsjrfptuO7oy8Inx3h8Mn2FMmfmyLCsmO4FAAAAADpDGAZx9c1vflOSlJycrKysLNXV1Wnt2rVau3athg0bpmnTpmnIkCFKTk5Wc3OzDh8+rL1796qjo0Ou68owDOXk5Gj9+vVav379eX+OYRh66KGHemtbAAAAAAAgxpgpAB+dkZQkK3eerNx5Sv7Cl+S6rtz9+84FY4pkBwNy9+7pso57/JjsdWtlr1sbXsjMlJXvkekrDAdk5ufJSE2N8W4AAAAA4AOEYRBXa9eujTpC9f2vXdfVqVOn9N57733oOa7rRj32nXfe6dbP6u7gateuXd16HAAAAAAAiJ9EnCkAfZ1hGDImT5E5eYp0512SJOfkCTnBwLmrlQJytldKjtN5oTNnZL+xUfYbG9UuSSkpMvMWhIMx3kJZBR4ZgwfHfD8AAAAA+i/CMIi79wdRPflnf4k7iwEAAAAAuPQwUwBizxw5SubHlynp48skSW5To+ySYjkBv+yAX87WEqmtrfMioZCcgF9OwC/99EeSYcjMmRUOxni9Mr2FMi8b0wu7AQAAANBfEIZBXC1fvjzeLQAAAAAAgD6ImQIQH0bGICUtXiItXiJJckMhOdsqwlcrBQOyg36pvr7zIq4rp2qHnKod6vjlU+G6EyaGT47x+WR5fDKmTSeMBgAAAOCiEYZBXD388MPxbgEAAAAAAPRBzBSAxGCkpMhaWCBrYYH0Fcl1HLm7d8l+/2olf5HcI4e7rOMePKCOgwek59eEF7KGyfL6ZHnOnRwzN1dGcnKMdwMAAADgUkEYBgAAAAAAAADQIwzTlDEzR+bMHCXf/VlJknP4sJxg+FolO1Akd2d114Xq3pP96suyX305/H1ausyF+eGAjNcnc2G+jIEZsdsIAAAAgD6NMAwAAAAAAAAAIGbMceNkjluhpL9ZIUly6+tlFwflBIrCp8dUlEvt7Z0XaW2Rs2WznC2b1S5JliVz7jyZXq8sb2H4aqXhw2O+FwAAAAB9A2EYAAAAAAAAAECvMYYOVdLSG6SlN0iS3NZWOWVbZQf94YBMcVBqauq8iG3LKd8qp3yrOn7+P+G6U6eFT43x+GT5CmVMmCjDMGK9HQAAAAAJiDAMElooFNLp06d19uxZZWZmKjMzM94tAQAAAACAPoCZQv/V2Nioffv2ady4ccrKyop3O+gGIy1N1uVXyLr8CkmS29Ehp7oqHIzxF8kJ+OW+e7LLOm5tjTpqa6RVvw3XHX2ZTE/45BjTVyhzZo4My4rpXgAAAAAkBsIwSCi2bevVV1/V66+/rvLycp08Gf0mNzk5WbNmzVJBQYFuv/12jR8/Pk6dAgAAAACARMJMAZK0c+dOXXPNNTp+/LgkKTs7WwUFBfJ4PCooKFBeXp4GDhwY5y7RFSMpSdbcXFlzc5X8hS/JdV25+/fJDpw7OSbgl7t3T5d13OPHZK9/Ufb6F8MLmZmy8j0yvb5wQGZ+nozU1BjvBgAAAEA8EIZBwvjTn/6kBx54IDKscl33Q48JhUKqqKhQRUWFnn76aS1btkz333+/MjIyertdAAAAAACQIJgp4H2rVq2KBGEkac+ePdqzZ49Wr14tSTJNU3PmzIkKyMyZM0fJycnxahndYBiGjMlTZE6eIt2xUpLkvntSdsAvO1AkJxCQs71ScpzOC505I/uNjbLf2Kh2SUpJkTk/LxyM8RbKKvDIGDw45vsBAAAAEHuEYZAQfvazn+mnP/3pXx1W/SXXdWUYhhzH0bp161RaWqr//d//1ahRo3qhUwAAAAAAkEiYKeDPTZs2rdM/dxxHlZWVqqys1NNPPy1JSk1NVV5eXlRAZurUqTJNszdaxkUyRoxU0seXKenjyyRJblOjnNIS2f7wyTFOWanU2tp5kVBITjAgJxiQfvojyTBk5syS6fHJ8vlkegtlXjamF3YDAAAAoKcRhkHcrV27Vj/5yU8khT/l4bquxo8fryVLlmjGjBnKyspSSkqKmpqadPDgQZWVlWnz5s1qb2+XJB06dEif//zn9fvf/14DBgyI51YAAAAAAEAvYqaAv7Ry5UrV19frl7/8pbZv3y7btrt8Tltbm4qKilRUVBRZGzJkiPLz8yPhGI/HozFjCEUkMiNjkKyrr5F19TWSJDcUkrOtQra/SE4wIDvol+rrOy/iunKqdsip2qGOX4XDUsb4CeGTY3w+WR6fjGnTZRhGrLcDAAAA4CMiDIO4amxs1Pe//31J4aHVyJEjdf/99+v666/v9Hl1dXV65JFH9MILL8gwDO3Zs0fPPPOM7rvvvt5oGwAAAAAAxBkzBfw1SUlJ+trXvqavfe1ramlpUVlZmYqLixUMBlVcXKza2tpu1WloaNDGjRu1cePGyNqYMWOiTo/Jz8/X0KFDY7UVfERGSoqshQWyFhZIX5Fcx5Fbs/vPrlbyyz18qMs67qGD6jh0UHp+TXghK0uWxyfLe+7kmLm5MrhmCwAAAEg4hGEQV2vXrlVDQ4MMw9CYMWO0atUqjR49usvnZWVl6aGHHtKECRP0ox/9SJL0m9/8hsEVAAAAAAD9BDMFdCU9PV1XXHGFrrjiishaXV2dSkpKIuGYYDCo48ePd6ve0aNHtW7dOq1bty6yNm3atEg4pqCgQHl5eUpLS+vxveCjM0xTxoyZMmfMVPLdn5UkOUcOywn4IwEZd2d114Xq6mT/3yuy/++V8Pdp6TIX5svyeGX5CmUuzJcxMCN2GwEAAADQLYRhEFebN2+OfP3ggw92a2j15+6991798Y9/VHl5uRoaGlRRUaF58+b1dJsAAAAAACDBMFPAxcjKytLSpUu1dOlSSZLrujpy5EjU6THFxcU6c+ZMt+rV1NSopqZGq1atkhQ+mWbOnDlR1yvNmjVLSUmMYROROXaczL9ZoaS/WSFJcuvrZRcH5QSKZAf9csrLpHPXqp1Xa4ucLZvlbNmsdkmyLJlzciPXKlken4wRI2K+FwAAAADReBeGuNq7d68kacSIEbrqqqsuqsby5ctVXl4uSaqtrWVwBQAAAABAP8BMAT3BMAyNGzdO48aN0/LlyyVJjuOopqYmKiBTVlams2fPdlmvo6ND5eXlKi8v15NPPilJSktL04IFC6ICMlOmTJFhGDHdGy6cMXSokpbeIC29QZLktrbKKdsaDsYEimQXB6Wmps6L2LacijI5FWXq+Pn/hOtOnSbL45XpLZTlK5QxYSK/fwAAACDGCMMgrt577z0ZhqGJEydedI1JkyZFvq6rq+uBrgAAAAAAQKJjpoBYMU1TM2bM0IwZM/TpT39akhQKhbR9+/ao02N27Nghx3G6rNfa2qq3335bb7/9dmQtKysrcrXS+wGZCz3dCLFnpKXJuvwKWZeHr9pybVtO1Y5wMCbglxPwyz15oss6bm2NOmprpP/3v+G6o0bL9IZPjTF9hTJzZsmwrJjuBQAAAOhvCMMgrpKTkxUKhbr1yZrzCYVCUfUAAAAAAMClj5kCelNKSooWLFigBQsW6N5775UkNTU1qaysLBKQCQaD2rdvX7fq1dXVacOGDdqwYUNkbdy4cVGnxyxcuFCDBw+OyX5wcQzLkjU3V9bcXCV/4UtyXVfu/n3ngjFFsoMBuXtqu6zjnjgue/2Lste/GF4YNEhWvkemr1CWt1Dm/DwZqakx3g0AAABwaSMMg7gaNmyYmpqaVFtbq7Nnz2rAgAEXXGP79u1R9QAAAAAAwKWPmQLiLSMjQ1dddVXUNV2nTp1SSUlJVEDm5MmT3ap3+PBhHT58WC+88EJkbebMmVGnx8ybN0+phCQShmEYMiZPkTl5inTHSkmS++5J2QF/+Golv1/O9kqpqxOEGhtlv7lJ9pub1C5JKSky5+eFT47xFsryeGUQjAIAAAAuCGEYxFVubq4OHDig1tZWrV69Wvfcc88FPb+lpUXPPfdcVD0AAAAAAHDpY6aARDR8+HDdeOONuvHGGyVJruvq0KFDUdcrlZSUqLGxsVv1du7cqZ07d+q3v/2tpPAJRrm5uVEBmZycHFlcsZMwjBEjlfTxZUr6+DJJktvUKKe0RLY/fHKMs7VEam3tvEgoJCcYkBMMSI/9WDIMGTNzZHkLZfl8Mj0+mWPG9sJuAAAAgL6LMAziasmSJXrppZfkuq4effRRZWdn68orr+zWc0OhkL7+9a/r6NGjMgxD2dnZH+mecAAAAAAA0HcwU0BfYBiGJkyYoAkTJmjFihWSJMdxtGvXrqjTYyoqKqKu7Tqf9vZ2lZaWqrS0VE888YQkaeDAgVq4cGEkHFNQUKBJkybJMIyY7g3dY2QMknX1NbKuvkaS5IZCcrZVyAn4IyfIqL6+8yKuK7e6Sh3VVer41dPhuuMnyPT6ZHl9sryFMqZN53cOAAAA/BnCMIirG264QdOmTVNtba3a2tr0pS99SXfccYc++9nPavz48X/1ObZt64033tCjjz4adQ/zV77yld5qGwAAAAAAxBkzBfRVpmkqJydHOTk5kRONzp49q23btkUFZKqrq+W6bpf1mpubtXnzZm3evDmyNnz48KjTYwoKCjRy5MiY7QndZ6SkyFpYIGthgZK//HdyHUduze4/u1qpSO7hQ13WcQ8dlH3ooOznnw0vZGXJ8oTDMabXJ3PuPBnJyTHeDQAAAJC4DLc776iAGKqsrNQ999yjtrY2ua4b+QRDdna2ZsyYoaysLCUnJ6u5uVmHDh3S9u3b1djYGHms67q66aab9Oijj8Z5J913+PBhXXvttdq0aZPGjRsX73YAAAAAAP1YX36P2h9nCvHUl18rfVFjY6NKS0sj1ysFg0EdOHDgoutNnDgxKhyzcOFCDRo0qAc7Rk9xjhyWEwycu1rJL3dntXShY/y0NJkL8sMnx/gKZS7MlzEwIzYNAwAAAHHQ1XtUwjBICG+//bb+6Z/+SadPn44Mo853rOdfvmRvuOEG/fCHP1RKSkpvtNojGB4BAAAAABJFX3+P2t9mCvHU118rl4KTJ09GhWOKi4t16tSpi6plGIZycnKiAjK5ubkaMGBAD3eNj8ptaJAdDMgJ+mUHiuSUl0nt7RdWxLJkzsmV6fOFT5Dx+GSMGBGbhgEAAIBeQBgGfcaJEyf0gx/8QBs2bFBHR0eXj58wYYK+/OUv69Zbb+2F7noWwyMAAAAAQKK4FN6j9qeZQjxdCq+VS43rutq/f39UQKa0tFTNzc0XVS8lJUXz5s2LCsjMnDlTpmn2cOf4KNzWVjnlZeFgTMAvuzggNTVdcB0je+q5a5UKZXl9MiZOOm+YEAAAAEg0hGHQ57z77rt68803VVZWpoMHD+rMmTMKhUIaNGiQhg0bptmzZ6ugoECFhYXxbvWiMTwCAAAAACSKS+k9an+YKcTTpfRauZTZtq3q6uqogExlZaXaL/QkkXMGDRqkhQsXRsIxBQUFmjBhAqGJBOLatpyqHeFgzLmAjHvyxAXXMUaNlukNnxpj+gpl5sySYVkx6BgAAAD46AjDAAmI4REAAAAAIFHwHhXdxWul72pra1NFRUXU9Uo7d+686HojR46MOj2moKBAw4cP78GO8VG4riv3wH7Z/qJzVyv55e6pvfBCgwbJyvfI9BWGAzJ5C2SkpvZ8wwAAAMBF6Oo9alIcegIi7r777sjX3/ve9zR+/Pg4dgMAAAAAAPoKZgpA96Wmpsrr9crr9UbWTp8+rdLS0qiAzKFDh7pV7+TJk3r55Zf18ssvR9YmT54cFZBZsGCBMjIyenwv6JphGDImTZY5abJ0x0pJkvvuSdnBwLmTYwJytldKtt15ocZG2W9ukv3mJrVLUkqKzPl54WCMt1BWgUfGkCGx3g4AAABwUQjDIK6CwaAMw9CoUaMYWgEAAAAAgG5jpgB8NIMHD9aSJUu0ZMmSyNrx48ejrlcqLi5WXV1dt+rt27dP+/bt07PPPitJMk1Ts2bNioRjPB6P5s6dq+Tk5JjsB50zRoxU0s23KOnmWyRJblOjnNIS2YHwyTHO1hKptbXzIqGQnGBATjAgPfZjyTBkzMyR5S2U5fXJ9PpkjhnbC7sBAAAAukYYBnE1aNAgNTU1MbQCAAAAAAAXhJkC0PNGjx6tW265Rbfcci4w4brau3dvVDhm69atamlp6bKW4zjavn27tm/frmeeeUaSNGDAAM2fPz8qIDNt2jSZphnTfeHDjIxBsq6+RtbV10iS3FBIzvZKOf6i8AkyQb/UVRDKdeVWV6mjukodv3o6XHf8BJlenyyvT5bHJ2P6DBmGEevtAAAAAB9CGAZxNXz4cDU1Nam9vT3erQAAAAAAgD6EmQIQe4ZhKDs7W9nZ2brjjjskSR0dHaqqqooKyFRWVsru6sodSWfPnlUgEFAgEIisZWZmqqCgIPKXx+PR2LFjCVD0MiMlRdaCfFkL8pX85b+T6zhya3bLDp47OcZfJPdw19douYcOyj50UPbz4ROClJUly+OT5fHK9BXKnDtPBqcDAQAAoBcQhkFc5ebmat++fdq/f79c1+VNLgAAAAAA6BZmCkB8JCUlKTc3V7m5ufr85z8vSWptbVV5eXkkHFNcXKzdu3d3q96ZM2e0adMmbdq0KbI2evToqNNj8vPzlZWVFZP94K8zTFPGjJkyZ8xU8mc+K0lyjhyWEwycu1qpSO7Oasl1Oy9UVyf7/16R/X+vhL9PS5O5ID98cozXJzO/QMbAjNhuBgAAAP0SYRjE1cc+9jGtW7dOp0+f1h//+Eddc8018W4JAAAAAAD0AcwUgMSRlpamwsJCFRYWRtbq6+tVWloaFZA5cuRIt+odP35c69ev1/r16yNr2dnZUQGZvLw8paen9/hecH7m2HEyl49T0vLbJEluQ4Ps4qCcQJHsQJGc8jKpq9O6WlvlvP2WnLffUrskWZbMObkyvV5Z3sLw1UojRsR8LwAAALj0EYZBXF199dVatGiRNm/erO9+97uaM2eORvBmBwAAAAAAdIGZApDYhg4dquuuu07XXXddZO3o0aNR1ysVFxeroaGhW/X27NmjPXv26He/+50kybIszZ49OyogM3v2bCVzBU+vMYYMUdL1S6Xrl0qS3NZWOeVlsoPha5XskqDU2Nh5EduWU1Emp6JMHU8+Ea6bPTV8aozHJ8tXKGPiJE7/AgAAwAUzXLercwyB2Kqrq9OXvvQlbdu2TaNHj9a//du/aenSpTJNM96txczhw4d17bXXatOmTRo3bly82wEAAAAA9GN9+T1qf5wpxFNffq0gMbmuq9ra2qhwzNatW9XW1nZR9VJTU7VgwQIVFBREAjJTp04lSIQamZoAACAASURBVBEnrm3Lqa4KB2MCRXICfrknT1xwHWPUaJme8Mkxpq9QZs4sGZYVg44BAADQl3T1HpUwDOLqsccekySFQiGtWrVKzc3NMgxDQ4cO1fz58zV+/HhlZGR0+w3rV7/61Vi222MYHgEAAAAAEkVffY/aX2cK8dRXXyvoW9rb27Vjx45IQCYYDGrHjh2ybfui6g0ZMiQqHFNQUKAxY8b0cNfoDtd15R7YLzvgP3e1kl/untoLLzRokKx8j0yvLxyQyVsgIzW15xsGAABAQiMMg4Q2c+bMDw2l3n9JXswnNqqrq3ukr1hjeAQAAAAASBR99T1qf50pxFNffa2g72tpaVFZWVlUQGbPnj0XXW/s2LFRAZn8/HwNGTKkBztGd7nvvis76D93ckxAzvZK6UKDTykpMufNDwdjvIWyCjwy+H0CAABc8rp6j5oUh56AKOfLY11oTovjTgEAAAAA6F+YKQD9Q3p6uq644gpdccUVkbX33ntPJSUlkeuVgsGgjh8/3q16R44c0ZEjR/Tiiy9G1qZPnx51esz8+fOVlpbW43tBNGPECCXdfIuSbr5FkuQ2NcrZWirbHz45xtlaIrW2dl4kFJJTHJRTHJQe+7FkGDJm5sjy+GT5CmV6fTLHjO2F3QAAACCREIZBXBUUFMS7BQAAAAAA0AcxUwD6t2HDhumGG27QDTfcICkcgjty5EjU6TElJSU6c+ZMt+rt3r1bu3fv1qpVqyRJSUlJmjt3blRAZtasWUpKYqQeS0bGIFmLFstatFiS5La3y9lWIcdfJDsYkB30S3V1nRdxXbnVVeqorlLHr58J1x03XqavUJbXJ8vjkzF9BkFIAACASxzXJAFxwLHCAAAAAIBEwXtUdBevFfQ1juOopqYmKiBTXl6us2fPXlS99PR0LViwICogM2XKFEIVvch1HLm1NbID506OCfjlHjp44YWysmQVeGV5fTJ9hTLnzpORnNzzDQMAACBmuCYJAAAAAAAAANDvmKapGTNmaMaMGfrMZz4jSQqFQtq2bVvU9UpVVVVyHKfLei0tLdqyZYu2bNkSWcvKyooKxxQUFGj06NEx21N/Z5imjOkzZE6foeTPfFaS5Bw9Iifglx3wyw4Uyd1ZLXX1GeC6OtkbXpW94dXw92lpMhfkh0+O8fpk5hfIGJgR280AAAAgpgjDAAAAAAAAAAD6hZSUFC1cuFALFy7UvffeK0lqamrS1q1bI+GY4uJi7du3r1v16urqtGHDBm3YsCGyNn78+KiATH5+vjIzM2OyH0jmmLEyl9+mpOW3SZLchgbZxUE5gSLZQb+c8jIpFOq8SGurnLffkvP2W2qXJMuSOXuuTJ9PlrcwfLXSiBEx3wsAAAB6DmEYxNXRo0clSampqcrKyrqoGnV1dWpra5MkjRkzpsd6AwAAAAAAiYuZAoCekpGRoUWLFmnRokWRtVOnTkWdHlNcXKyTJ092q96hQ4d06NAhvfDCC5IkwzA0Y8aMqNNj5s2bp9TU1Jjsp78zhgxR0vVLpeuXSpLc1lY55WXhYIy/SHZJUGps7LyIbcupLJdTWa6OJ58I182eGj41xuOT5SuUMXESV2QBAAAkMMIwiKslS5bIMAxdddVVevLJJy+qxn/8x3/ojTfekGEYqqqq6uEOAQAAAABAImKmACCWhg8frptuukk33XSTJMl1XR08eDAqIFNSUqKmpqYua7muq507d2rnzp36zW9+I0lKTk5Wbm5uVEAmJydHlmXFdF/9kZGWJqvwclmFl0tfk1zbllNdFQ7GBP1yAn65J453WcfdU6uOPbXS//vfcN1Ro2V6vLK8hTK9PpmzZsvg9wcAAJAwCMMgIbhd3eEa4+cDAAAAAIC+iZkCgN5gGIYmTpyoiRMnasWKFZIk27a1a9euqNNjysvL1d7e3mW99vZ2lZaWqrS0VP/zP/8jSRo4cKAWLlwYCch4PB5NnDiR00d6mGFZsubMlTVnrpK/8LdyXVfuwQOy/UXnrlYKyK2t6bKOe+K47JfWyX5pXXhh0CBZ+R6Z3vDVSub8PBlpaTHeDQAAAM6HMAwAAAAAAAAAABfIsizNmjVLs2bN0j333CNJOnv2rCorK6MCMtXV1d0K3jU3N2vz5s3avHlzZG348OFRp8cUFBRo5MiRMdtTf2QYhoyJk2ROnCR96k5Jkvvuu7KD/nNXK/nlbK+UbLvzQo2Nst/cJPvNTWqXpJQUmfPmh4MxHp8sj1fGkCGx3g4AAADOIQyDPs8+9yaEI0QBAAAAAMCFYKYAoKcNGDAgElr58pe/LEk6c+aMtm7dGhWQOXDgQLfqnTp1Sq+88opeeeWVyNrEiROjTo9ZsGCBBg0aFJP99FfGiBFKuvkWJd18iyTJbW6SU1oi2x8+OcYpLZFaWzovEgrJKQ7KKQ5K+rFkGDJm5sjy+GT5CmV6vDLHjov9ZgAAAPopwjDo806ePCkpfIwoAAAAAABAdzFTANAbMjMztXjxYi1evDiydvLkyahwTDAY1HvvvdetegcOHNCBAwf03HPPSQqfbJKTkxMVkMnNzVVKSkosttMvGQMzZC1aLGvRYkmS294uZ1uFnIBfdiB8gozq6jov4rpyq6vUUV2ljl8/E647brxMX2E4IOP1yZg+g2uxAAAAeghhGPRpu3fv1s6dO2UYhsaOHRvvdgAAAAAAQB/BTAFAPI0cOVI333yzbr75ZkmS67rav39/VECmtLRUzc3NXdZyXVdVVVWqqqrSr371K0lSSkqK5s+fHzmlxuPxaMaMGTJNM5bb6jeM5GRZC/JlLchX8n1fleu6cmt2yw4UyQkEZAeK5B462GUd9/Ah2c8fkv38s+GFrCxZBV5ZXp9Mr0/m3HkyCDUBAABcFMIw6DWPPfbYef/s4MGDnf75X2pra9OBAwe0ZcsWOY4jwzC0YMGCnmgTAAAAAAAkGGYKAC51hmFo8uTJmjx5sm6//XZJ4avcqqurowIyFRUV6ujo6LJeKBRSMBhUMBiMrA0aNEj5+fmRcExBQYHGjx/PSSQ9wDAMGdNnyJw+Q/rMZyVJztEjcoJ+2X6/nKBfTnWV5LqdF6qrk73hVdkbXg1/n5Ymc0G+LI83fLVSfoGMgRmx3QwAAMAlwnDdrv7rC+gZM2fO/NAbq/dffhf7huv95yclJemFF17Q9OnTP1qTveTw4cO69tprtWnTJo0bx72wAAAAAID46QvvUZkpJIa+8FoBLnVtbW2qqKiIul5p165dF11v5MiRUdcrFRQUaNiwYT3YMd7nNjTILg6GAzKBIjnlZVIodGFFLEvm7Lkyfb4PrlYaMTI2DQMAACS4rt6jcjIMetX5slcfJZM1YMAAPfjggwytAAAAAAC4hDFTQHe4oRa5JU9KdTVSapY0dJKMoZOkIZOkwRNkWMnxbhH4SFJTU+X1euX1eiNrp0+fVmlpaVRA5vDhw92qd/LkSf3hD3/QH/7wh8jalClToq5XWrBggQYOHNjje+lvjCFDlHT9Uun6pZIkt61NTnnZuauV/LKLA1JjY+dFbFtOZbmcynJ1PPlEuG72VFker0xvoSxfoYyJkzjtBwAAQIRh0IsKCgo+tFZcXCzDMJSZmdntwZNpmkpLS9PIkSM1e/ZsLV26VEOHDu3pdgEAAAAAQIJgpoBu2/9H6URl+Ov2I1LjEbkH3w5/b1hyM8dKQyfLGDJJGjpJyhwrw2REir5t8ODBWrJkiZYsWRJZO3bsmIqLiyN/BYNB1dfXd6ve3r17tXfvXq1Zs0ZS+J+ds2fPjjo9Zu7cuUpOJlz2URipqbJ84QCLJLm2Lae6KhyMOReQcU8c77KOu6dWHXtqpd+tCtcdNVqmxyvL65PpLZQ5a7YMy4rpXgAAABIR7/TQa377299+aG3mzJmSpNzcXP3iF7/o7ZYAAAAAAEAfwEwBPcK1pdMHpdMH5epP4TUzSe7gCdEBmUGXyTDMeHYKfGSXXXaZli1bpmXLlkkKn6K1d+/eyOkxxcXFKi0tVWtra5e1HMfRtm3btG3bNj3zzDOSwifUzJ8/PyogM23aNJkmf+9cLMOyZM2ZK2vOXCV//otyXVfuwQOy/UXnrlbyy62t6bKOe+K47JfWyX5pXXghI0NWgSd8cozHJzNvgYy0tBjvBgAAIP4IwyDuPspxxgAAAAAAoP9ipoAPmbRYqt8nHS3t3uOdDql+r1S/V5FXkzVA7pCJ4SuWhkyShk6WBo7k2hH0aYZhKDs7W9nZ2brzzjslSR0dHaqqqoq6Xmnbtm2ybbvLem1tbfL7/fL7/ZG1wYMHKz8/PxKO8Xg8Gjt2bMz2dKkzDEPGxEkyJ06SPhX+nbnvviu7OBA+Ocbvl7O9Uurq99XUJPvNN2S/+YbaJSk5Web8vHAwxlsoy+OVMWRIrLcDAADQ6wjDIK42bdokKfxJAgAAAAAAgO5ipoC/xkhJl+H9itz2FqnhgFS/X27DPql+v9RyqntF7LPSe7ul93Z/EJBJTj8XkJn8QUAmLYuADPq0pKQk5ebmKjc3V1/4whckSS0tLSovL4+6XqmmpuvTSCTp9OnT2rRpU+Sfz1L4hJo/Pz0mPz9fWVlZMdlPf2CMGKGkj31cSR/7uCTJbW6SU1oiOxA+OcYpLZFaWzov0t4upzgopzgoPf6TcN2ZObK8heeuVvLJHDsu1lsBAACIOcIwiCs+GQAAAAAAAC4GMwV0xkhOl0bkSCNy9H5cxT3bKDXsPxeQ2R8+QaatoXsF21ukd6uld6s/CMikDJI7dFJUQMZIHdzDOwF6V3p6ui6//HJdfvnlkbX6+nqVlJREwjHFxcU6evRot+odO3ZM69ev1/r16yNrU6dOjQrI5OXlKT09vcf30h8YAzNkLVosa9FiSZLb3i5nW6WcQFE4IBP0S3V1XdZxd1arY2e1On4dvgbLGDdeptcXCcgY06bL4AosAADQxxCGAQAAAAAAAHDJMwYMkkbNlUbN/SAg01ovNeyXW7//XFBmnxRq6l7BUKN0Ypt0YlskIOOmDg1frzR0kjRksjRkkowBGT2+F6A3DR06VNdff72uv/76yNqRI0eiTo8pKSlRQ0P3wmW1tbWqra3V7373O0mSZVmaM2dOJBxTUFCgOXPmKCmJ/31xoYzkZFkLFspasFDJ931VruvKrdktO+iX4/fLDhTJPXSwyzru4UOyDx+S/fvnwgtDh4avVfJ4ZfkKZc6dJyMlJca7AQAA+Gj4r0kAAAAAAAAA/ZKRNlRKGyrjsjxJkuu6Uut74dNj6veFAzIN+6X21u4VbKuXjtXLPVYWWXLTh//Z6TGTwgGZ5LSe3grQq8aOHauxY8fq1ltvlSQ5jqPa2tqogExZWZna2tq6rGXbtioqKlRRUaFf/OIXkqS0tDTl5eVFAjIej0fZ2dlcTXaBDMOQMX2GzOkzpE/fI0lyjh6RE/TL9vvlBP1yqqsk1+28UH297A2vyt7wqtolKS1NZt5CWV5fOByzMF9GxqCY7wcAAOBCEIZBwmhra9Nrr72mkpIS1dbWqrGxUa2treEhRDcYhqGNGzfGuEsAAAAAAJBomCmgpxiGIaUPl9KHyxibL0lyXUdqfleq33fuBJl9UsMByQ51r2jLKanllNwjxZElN2N01PVKGjxeRtKAnt8Q0EtM09T06dM1ffp03XXXXZKk9vZ2bd++Pep6pe3bt8txnC7rtba26p133tE777wTWRs6dKjy8/OjAjKXXXZZzPZ0qTLHjJV5621KuvU2SZLb0CC7pPjc1UpFcsrLpFAX/3xrbZXzzhY572wJh2MsS+bsuTK93g+uVhoxMuZ7AQAA6AxhGCSE5557Tj/84Q/V2Nh4Uc93XZdPBQAAAAAA0A8xU0CsGYYpZYySMkbJGO+TdC4g03gsHJB5/3ql04ckp6N7RZuOS03H5R4qev+nyM0cG75iacjk8AkymeNkWMmx2BLQK5KTk5WXl6e8vDz97d/+rSSpublZZWVlUQGZPXv2dKtefX29Xn/9db3++uuRtbFjx0Zdr5Sfn68hQ4bEZD+XKmPIECVdd710XfgaLLetTU55WTgYE/DLLg5IXf071rblVJbLqSxXxy9+Hq47JVuW1yfz/XDMpMn8+xYAAPQqwjCIu8cee0yPP/54tz+tBQAAAAAAIDFTQPwYhilljpUyx8qYeKUkyXU6pDNH/iwgs186c1hyuz4FQ3LDjz1zWO6BLed+iCV38PhzAZlJ4RNkBo2RYVox2hUQewMHDtSVV16pK6+8MrL23nvvqaSkJBKOCQaDOnHiRLfqHTlyRGvXrtXatWsja9OnT486PWb+/PlKTU3t8b1cqozUVFm+Qlm+QkmSa9tydlbL8RdFAjLuieNd1nH37lHH3j3S71aF644cJdPjDV+r5C2UOWu2DIt/ngEAgNghDIO4qq6u1uOPPy4pfAyt67qaP3++PB6PRo0apfT09Dh3CAAAAAAAEhEzBSQaw0zS/2fvPoPjOs/z/3+fs7voRCNYARIAG0iCDX1hFY5NSZFpRS1xiaxYiWW5xNE/yUz8Ii+SzOSX5klmUqwkbootx3Usy7JkxZJjdVqoJEiAvQEEAQKsKETH7nn+Lw644LpwVzSWAMjrM6Px8vHufc6DQVmcc+G+yS6E7EKu9D6w4QmvY0xfx3QHmcs9QBwBLhuG/g7o75h+ti9pKiBz1YiljCVeOEdknlq4cCG/9Vu/xW/91m8BXseurq6uqO4xzc3NDA4OxlXv6NGjHD16lG9+85sA+P1+tmzZEukeU11dzcaNG/EpiBEX4/PhK92Er3QTgcefwFqL7TxFuL4Ot7GecEM99vixmHXsubOEf/wC4R+/4C1kZOCrqvY6x1QHccrKMampCd6NiIiI3EoUhpFZ9a1vfSvSjnjhwoX827/9GxUVFbN9WiIiIiIiIiIyx83VawpDQ0P88Ic/5JVXXqGjo4OBgQEWLlzI6tWr2blzJ7/9279NUlLSjByrq6uLHTt2vKvX/O7v/i5/93d/NyPHl9iMLwlyV0Pu6umATGgM+k9FB2SGz8VXMDwBl07ApRPTARl/Cja7CLKLMDlF3oiltEUaRyLzljGGFStWsGLFCh5++GEAXNfl6NGjUQGZlpYWJiYmYtYLhULs2bOHPXv28KUveSN80tLSqKioiIRjqqqqKC7WGJ94GGMwhUU4hUXw4d8DwF64QLixfqpzTANu2z4Ih69daGiI8OuvEX79NSYBAgGcrdvw1XidY3xV1ZicnERvR0RERG5iCsPIrGpqaoo8/ud//uc5cdFKREREREREROa+uXhNobm5mc997nOcOXMmar2np4eenh527drFM888w7/8y7+wevXqWTpLmW3GnwJ5JZBXMh2QmRj2usBEAjIdMHoxvoKhMbhwGC4cng7IBNKxOUVXBWSKISVHN/pl3nIch/Xr17N+/Xp+//d/H4CJiQna2toi4ZimpiYOHDgQ1+i8kZER3n77bd5+++3I2sKFC6O6x1RVVbFkyZKE7elmYvLy8O+8D//O+wCww0O4e3YTrq8j3FCPu7sZRkeuXWRyEre5Cbe5Cf7j37266zfgq6nFVxPEqQni5BckeisiIiJyE1EYRmbVuXPnMMawfPlygsHgbJ+OiIiIiIiIiMwTc+2awoEDB3jiiScYGfFu9gUCAWpra1m8eDGnT5+mqakJ13U5cuQIjz32GM8++yxLly6dseOnp6fz4IMPxnxeWVnZjB1TZo5JSofFpbC4dDogMz7ohWL6O7B97V4HmfH4xsQwOQznDsC5A9MBmeRM7NXjlXKKMMmZM74XkRslKSmJiooKKioq+MxnPgN43bn27NkTCcg0NjbS0dERV72LFy/y8ssv8/LLL0fWVq5cGRWQqaioIDNTXzexmPQMfHdsx3fHdgDs5CRuW2tkrFK4oR4uxQ782cOHCB0+ROiZ//bq5hfgBGu9gEx1DWZdCcbRmDgRERH51RSGkVl1ZS5rQYES3SIiIiIiIiISv7l0TWFiYoInn3wyEoQpLS3lP//zP6PCLsePH+fTn/40p0+f5vz58/z5n/853/zmN2fsHLKzs/mrv/qrGasns88kZ8LSLbB0Cwa8bhdjfdHjlfo6vOBLPMYHoXcftndfZMmm5kIkIFPkdZJJSp/5zYjcIBkZGdx5553ceeedkbXz58/T3NwcFZA5f/58XPU6Ozvp7OzkBz/4AeCNCFq/fn1U95itW7eSnJyckP3cLEwggK+8Al95BYFPfxZrLfb4MW+sUn094cZ6bOepmHVsdxfhH3yf8A++7y3k5OCrDuJU1+AL1uJs3oqZoVGEIiIiMv8pDCOzaunSpZw4cYLx8fHZPhURERERERERmUfm0jWF733ve3R3dwNeKOUrX/kKCxcujHrOmjVr+OIXv8hDDz3ExMQETU1NvPnmm2zfvn02TlnmIWMMpOZCai5meTkwFZAZOR89Xqm/wxudFI/RSzB6CXtmd2TJpi/2usZc6SCTtRITSJ3p7YjcMIsWLeL9738/73//+wHv66azszNqvFJzczNDQ0Mxa1lrOXToEIcOHeIb3/gG4HUC27p1a1RAZv369ZHQpvwyYwxm7Tqctevg0ccAcHvO4E51jXEb6nAPHYRYI6/6+gi/8hPCr/yESYDUVJyyishYJV9lFSZjQcL3IyIiInOTwjAyq4LBIMePH+fYsWOEQiH8fn1KioiIiIiIiEhsc+mawre//e3I48cff/yXgjBXrFmzhoceeojvfe97AHznO99RGEZ+I8YYSF8M6YsxBdUAWOvC0NmpgMxU95iBTghPxFd0+BwMn8N2NV45CnbBUsguxuQUTQVkVmB86r4g85MxhsLCQgoLC/ngBz8IQDgc5siRI1HdY/bt28fk5GTMepOTkzQ3N9Pc3Mx//dd/AV6HmoqKikg4pqqqisLCQu9rVn4lZ9lynAcfxv/gwwDYgQHCTY24DXWEG+txW/bARIzvY6OjuO/swn1n11RRB2fTFpyaGm+0Uk0Qs2hxgnciIiIic4WSBzKrPvjBD/Ltb3+bkZERXnrpJR544IHZPiURERERERERmQfmyjWF9vZ2Tp48Gfn3Qw89dM3nXx2GeeeddxgeHiY9XWNpZOYY48CCZbBgGWZlLQDWDcPlM78QkDkNNhxHRQuXe+ByD/b0O1MH8WEz872xSlcCMpn5GEeXm2V+8vl8bNy4kY0bN/IHf/AHAIyPj9Pa2hoVkDl8+LDXkSmGoaEh3nzzTd58883I2qJFi6K6x1RVVbFo0aJEbWneM1lZ+O+6G+66GwA7Noa7b+/UaKU6wk0NcPnytYu4Lm7rXtzWvYS+8iWv7qrVXueY6iC+YC2mqFghJRERkZuUfjuRWVVSUsITTzzBl770Jf7xH/+Rbdu2UVhYONunJSIiIiIiIiJz3Fy5ptDQ0BB5XFxcHPPG5ubNm0lLS2NkZITx8XH27t3LbbfdlujTlFuccXyQtcLr6MIdANjwJAx2QX8Htm8qIHP5DFg3dkEb9rrNDHRiT73lrTl+bNaKqYBMMeQUwYLlXjhHZB5KTk6OhFauGBwcZPfu3ZHxSo2NjXR2dsZV7/z58/zv//4v//u//xtZKyoqigrIVFRUkJGRMeN7uRmYlBR8NUF8NUH4//4MGw7jHj7kBWMa63Eb6rG9PTHr2JMnCJ08Ad/5lld38RKc6hp8wVqc6iBO6SaMRlyJiIjcFBSGkVn3J3/yJwwMDPDd736XD33oQ3zuc5/jgQceIBAIzPapiYiIiIiIiMgcNheuKZw4cSLyuLS0NObz/X4/69atY+/evZHXz0QYJhQKsWvXLvbv309fXx8pKSnk5eWxdetWSktL8enGnvwC4wt4HV1yijHF7wXAhsa9jjH97di+Di8gM9QLxO6EgRuCvnboa8e2v+6t+ZKw2YXTAZnsIshYrICMzFuZmZm8973v5b3vfW9k7ezZs1HhmKamJi5evBhXvY6ODjo6Ovj+978PgOM4bNiwISogs2XLFpKSNJbsFxmfD1/pJnylmwg8/gTWWmxnp9c5Zmq0kj12LGYde+4s4R+/QPjHL3gLGRn4qqq9zjE1tThl5ZjU1ATvRkRERBJBYRiZVX/xF38ReZyTk0NfXx9/+Zd/yT/8wz+wadMm8vLy4n6jb4zh7//+7xN1qiIiIiIiIiIyh8yVawodHR2Rx8uWLYvrNUuXLo08bm9vv67j/qKzZ8/y+OOP/9rjPf744zz66KM4jkII8usZfzIsXAML13BlaIidHIX+U9MdZPo7YPh8fAXDE3DxGFw8Nh2nCaRis4uiAzJpCzWmROatJUuWcN9993HfffcBYK2lo6MjarzS7t27GRkZiVnLdV0OHDjAgQMH+PrXvw5AUlIS27Zti4RjqqurWbdunb6f/wJjDKawEKewED70EQDshQuEG+sJN3idY9y2fRCOMR5uaIjw668Rfv01JgECAZyt27xgTE0QX1UNJicn4fsRERGR35zCMDKrfvjDH0b9omuMwVrL8PAwjY2N77qewjAiIiIiIiIit4a5ck2hv78/8jgvLy+u11w9SmlgYOC6jvtu9Pb28nd/93e8+uqrPPXUUyxYsCDmawYHBxkcHPylOnLrMYFUWLQeFq2fDsiMD3mhmKsDMqN98RWcHIXzh+D8oemATFIGNqcoKiBjUnWzWeYnYwzFxcUUFxfz4Q9/GPC6dx06dCiqg0xrayuhUChmvYmJCRobG6N+tmVmZlJRUREVkCkoKFCo7BeYvDz8O+/Dv3MqqDQ8jLunmXB9HeHGBtzmJhiNEVKanMRtbvKe+x//7tVdvwFfddAbrVQTxMkvSPRWRERE5DooDCOzztpf3Wb1163/OnqjLyIiIiIiInJrmQvXFK7+S//k5OS4XnP18+LpFHAtGRkZ3Hvvvdxxxx1s3LiRRYsW4fP5OHv2LI2NjTzzzDMcOXIEgPr6ev70T/+UL3/5yzHHJj3zzDM89dRTRCFwpgAAIABJREFUv9G5yc3LJGfAkk2wZNN0QGZswBuR1N/hjVfqa4eJy/EVnBiCs/vh7P5IQMamZE+FY4q8cU7ZRZjk2EEukbnI7/ezefNmNm/ezMc//nEAxsbG2Lt3b9R4pSvfr2MZHBzk9ddf5/XXX4+sLVmyJBKOufLfwoULE7Kf+cqkp+O7Yzu+O7YDYCcncdtacae6x4Qb6uFS7BFX9vAhQocPEfrG17y6+QU4wVovIFMTxKwrwahzj4iIyKxTGEZm1UMPPTTbpyAiIiIiIiIi89BcuaYwPj4eeRwIBOJ6zdXjm8bGxq772IsXL+att94iPT39l/6/FStWsGLFCh544AH+3//7f3z3u98FYNeuXfzoRz/i4Ycfvmbtxx577Jc+xr29vXz0ox+97vOVm5tJyYJl2zDLtgFTobTRS9DXge1v9wIy/R0wGWcAbKwfevdie/dGlmxa3nT3mJwiyC7EBNJmfC8iN0JKSgrBYJBgMBhZ6+/vZ/fu3VEBma6urrjqnT17lhdffJEXX3wxsrZq1aqo7jFlZWW/8mfGrcoEAvjKK/CVVxD49Gex1mKPHyPcUIfb0EC4oQ7beSpmHdvdRfgH3yf8g+97Czk5+KpqvLFKwVqczVsxcY5uFBERkZmjMIzMqn/4h3+Y7VMQERERERERkXlorlxTuLrLy+TkZFyvmZiYiDxOSUm57mMnJSVFBWt+Fb/fz1//9V/T3t5OQ0MDAE8//XTMMExmZiaZmZnXfW4ixhhIWwhpCzH5FcBUQGb43PR4pb4O6D8F4fFrF7ti5AKMXMCeaY4s2YwlkF3sdZDJLvICMv74ujSJzDXZ2dns2LGDHTt2RNZ6enqixis1NTXR1xffWLKTJ09y8uTJSCDScRxKS0ujAjKbNm2KO8x5szPGYNauw1m7Dh59DAC35wzuVNcYt7Ee9+ABiNWBrq+P8E9fJvzTl5kESE3FKavAV1ODU1OLr7IKk6FOVyIiIommMIyIiIiIiIiIiMh1Skub7kpxdZeYa7n6eVe/PlEcx+GP/uiPImGY48eP09PTw7JlyxJ+bJGrGWMgYwlkLMEU1ABgrQuXe6YCMh1eQGbgFLih+IoOnYWhs9iu+itHwWYun+4gk10EWSswPt3sl/lp2bJl3H///dx///2AFyo7ceJEVDhmz549jI6Oxqzlui5tbW20tbXx9NNPA14os6ysLDJaqbq6mjVr1uBozA8AzrLlOA8+jP9BL0RqBwYINzVOjVaqw23ZA1eFXH+l0VHcd3bhvrNrqqiDs2mz1zmmptYbrbRocYJ3IiIicutRGEZEREREREREROQ6ZWVlRR5fuHAhrtdc/byrX59IFRUVBAKBSPeaEydOKAwjc4IxDmTmQ2Y+ZuVtAFg3BINnpjvI9HfAQBfYcBwVLQx2w2A3tvPnUwfxYbMKogMymcsxji6Py/xjjGHNmjWsWbOG3/u93wMgFApx4MCBqIBMW1sb4XDsr5mxsTHq6uqoq6uLrGVlZUWFY6qqqsjPz0/YnuYTk5WF/6674a67AbBjY7j79k6NVqon3NQAg4PXLuK6uK37cFv3EfrKl7y6q1bjq57qHBOsxRQVewFCERERuW56ty8iIiIiIiIiInKdiouLefvttwFvlEU8rn5ecXFxQs7rFwUCAbKzszl//jwA/f39N+S4ItfDOH7IXgnZKzFFdwJgw5MwcBr6270OMv0dXmCGGONKvBd745j6T2E73vTWnAA2ayXkFE2PWFqwzAvniMwzfr+frVu3snXrVj7xiU8AMDIywt69e6MCMseOHYur3sDAAD/72c/42c9+Fllbvnx5VECmsrKSnJychOxnPjEpKfhqgvhqggDYcBj38KGp0UpeQMb2xn5/YE+eIHTyBHz3217dxUtwqmvwBWtxqoM4pZswPl9C9yIiInKzURhGRERERERERETkOq1evTry+ODBgzGfHwqFOHr06K98faKNjY1FHqempt6w44rMBOMLQO4qyF3FlV4JNjQG/Z3TI5b6272xSfFwJ6HvBPSdmI7T+JOxWYVTAZmpDjLpi9WdQealtLQ03vOe9/Ce97wnstbX10dzc3MkHNPY2Bh3kPPMmTP86Ec/4kc/+lFkbe3atVEBmbKyslv+54vx+fCVbsJXuonAxz+BtRbb2ekFY6ZGK9k4Qkn23FnCP36B8I9f8BYyMvBVVnmdY2pqccrKMbf4x1pERCQWhWHkhnjqqacAKCws5Ld/+7dntPbf/M3f0NLSgjGG5557bkZri4iIiIiIiMjsmuvXFGpqaiKP29vbuXDhAnl5eb/2+QcOHGBkZASA5ORktm3bdl3Hfbe6urq4fPly5N+LFi26IccVSSTjT4G8dZC3bjogMzECA6egr306IDNyMb6CoXG4eBQuHp0OyATSsNlFkFOMyS6CnCJIzVVARualnJwc7r77bu6+++7IWnd3d1T3mKamJgYGBuKqd+zYMY4dO8a3v+11M/H5fGzevDlqvFJpaSl+/617K8oYgyksxCkshA99BAB74QLhpgbC9V7nGLdtH8QaaTU0RPiN1wm/8TqTAIEAztZtXjCmJoivqgajTj0iIiJRbt13IHJDPfXUUxhjuP3222NeuKqurgbgPe95D//6r/8as3ZnZyeHDh3SL6AiIiIiIiIiN6G5fk2huLiYVatWcfLkSay1PP/885ERFb/KD3/4w8jj2tpa0tPTr/vY78bVYZ/09HQ2btx4Q44rcqOZpDRYtAEWbZgOyIwPemOSrg7IjMV3s5/JETh/EM4fnA7IJGdOBWSKpgIyxZiUrJneisgNkZ+fT35+Pg8++CAAruty/PjxqHDMnj17GB8fj1krHA6zd+9e9u7dy1e+8hXA60RWXl4eFZBZvXr1LX093+Tl4X//B/C//wMA2OFh3D3NhBvqCTfU4zY3wejItYtMTuI2N3nP/Y9/9+qWrMdXUzs9WqmgINFbERERmdMUhpE5Z3BwEGMMw8PDs30qIiIiIiIiIjKPzNY1hUceeYS//du/BeDpp5/m4YcfJjc395eed+LEiahQyiOPPHLdx5yYmAAgKSkp5nNbW1t5+umnI//euXPnLf1X+nLrMcmZsGQzLNk8HZAZ7Zsar9QO/R3Q1wETQ/EVHB+Es61wtjUSkLGpOZB91XilnCJMUsaM70Uk0RzHYd26daxbt45HH30UgMnJSfbv3x8VkNm/fz+u68asNzo6ys9//nN+/vOfR9ZycnKiwjFVVVUsW7YsYXua60x6Or47tuO7YzsAdnISd38bbkNdJCDDpdgdruyRw4SOHCb0ja95dfMLcIK1+KqD+GqCmHUlGMdJ6F5ERETmEv3WK5Jgg4ODDA4ORq319vbO0tmIiIiIiIiIyEz78Ic/zNe+9jW6u7u5dOkSn/zkJ/mP//gPlixZEnnOiRMn+PSnPx35y/qqqiq2b9/+K+t94QtfiIyHys/P57XXXvul55w7d45HH32Uxx57jJ07d0Yd64qJiQmee+45Pv/5zzM2NgZ4XWE++9nP/sZ7FpnvTGoOpOZglpUBYK31xin1X+ke0+EFZEKj8RUc7YPRPmxPS2TJpi+KDshkF2ICqTO9FZGECwQClJWVUVZWxqc+9SkAhoeHaWlpiQRkGhsbOXnyZFz1+vr6+OlPf8pPf/rTyFpBQUFUQKayspKsrFuz45IJBPCVleMrKyfw6c9ircUeP0a4sR63vp5wQx2281TMOra7i/APvk/4B9/3FnJy8FXVeGOVaoI4W7Zh4gjVioiIzFcKw4gk2DPPPBO5gCUiIiIiIiIiN5+kpCS+8IUv8NGPfpTR0VHa2tq46667qK2tZdGiRXR3d9PQ0BD5C/pFixbxT//0T7/xcXt6evjHf/xHPv/5z7Ny5UrWrFlDdnY2juNw/vx5WlpaGBiYHgUTCAT493//91v6r+9Ffh1jDKTnQXoeJr8KAGtdGDoXHZDpPwXhifiKDp+H4fPY7qYrR8FmLPW6xuQUQXYxZK3A+JMTsCORxEpPT+f222/n9ttvj6xdvHgx0jnmSkDm7NmzcdXr6uqiq6srapxgSUlJVEBm27ZtpKSkzPhe5jpjDGbtOpy16+CjHwPA7TmDe2WsUmM97sEDYO21C/X1Ef7py4R/+jKTAKmpOGUV+GpqcGpq8VVWYTIWJHw/IiIiN4rCMCIJ9thjj/HQQw9FrfX29vLRj350ls5IRERERERERGZaaWkpX/3qV/nc5z7HmTNnmJiY4M033/yl561bt45/+Zd/mdFAirWWU6dOcerUr/8r8ZKSEj7/+c+zYcOGGTuuyM3OGAcWLIUFSzEragGwbhiGeqDvqoDMwGlwQ3FUtN5rh3qwp+umDuJgFyyHnOKpgEyRF5BxdOle5p+FCxdy7733cu+99wLez6eurq6o7jHNzc1cvnw5rnpHjhzhyJEjfPOb3wTA7/ezZcuWqPFKGzduxOfzJWxPc5WzbDnOgw/jf/BhAOzAAOHmxqmATB1uyx6YiBHcGx3FfWcX7ju7poo6OJs2e51jqoP4grWYRYsTvBMREZHE0TtqkQTLzMwkMzNztk9DRERERERERBKssrKSF198keeee46XX36Zzs5O+vv7yc3NZc2aNezcuZP777+fpBkYSZCfn88LL7xAS0sLLS0tHD9+nL6+Pvr6+picnCQjI4Nly5axdetW7r77bm677bYZ2KGIGMcHmQWQWYApvAMA64ZgsPuqgEy792/rxi5oXRjsgsEu7Km3vTXHj80s8AIy2UWQUwQLlnvHFplHjDGsWLGCFStW8Du/8zsAuK7L0aNHowIye/fuZSJWcAMIhULs2bOHPXv28MUvfhHwOtSUl5dHAjLV1dUUFRV53Z5uISYrC/+Ou2HH3QDYsTHcfXunRivVEW5qgMHBaxdxXdzWfbit+wh95Ute3VWr8VVPdY6pCWKKV91yH1sREZm/FIYRERERERERERGZIRkZGXzsYx/jYx/72HXXePLJJ3nyySev+RxjDCUlJZSUlPCRj3zkuo8lIr854/ghuxCyCzHF3poNT3gdY64OyFzuBWKMMQGvy0x/B/R3TD/bl4TNWumNWMou9gIyGUu87jUi84jjOKxfv57169dHflZOTEzQ2toaNV7p4MGD2Fhjf4Dh4WHefvtt3n777cjawoULo8YrVVVVsWTJkoTtaS4yKSn4aoL4aoLw5J9iw2HskcOE6+u8gExDHbanJ2Yde/IEoZMn4Lvf9uouXoJTXYOvJohTU4tTuglzC3bmERGR+UFhGBERERERERERERGRGWR8SZC7GnJXc6WHgp0chYFOLyDT3wF9HTB8Lr6C4Qm4dBwuHZ8OyPhTsFOdY7wOMsWQlqeuDTLvJCUlUVlZSWVlJZ/5zGcAuHz5Mnv27ImEY5qamujo6Iir3sWLF3n55Zd5+eWXI2srV66M6h5TUVHBggULErGdOcn4fJiNpTgbSwl8/BNYa7GdnZFgTLihDnvsWMw69txZwj9+gfCPX/AWMjLwVVZ5nWOqgzjlFZjU1ATvRkREJD4Kw4iIiIiIiIiIiIiIJJgJpEJeCeSVTAdkJoag/xT0dUwFZNph9FJ8BUNjcOEwXDg8HZAJpGNziq4asVQMKdkKyMi8s2DBArZv38727dsja+fPn4/qHtPU1MT58+fjqtfZ2UlnZyfPPvss4HVYW79+fVRAZsuWLSQnJydkP3ONMQZTWIhTWAgf/DAA9sIFwk0NhBu8gIzb1gqh0LULDQ0RfuN1wm+8ziRAIICzdZsXjAnW4quqweTkJHw/IiIiv4rCMCIiIiIiIiIiIiIis8AkZcDiUlhcOh2QGRvwxiT1dWD72r3H44PxFZwchnMH4NyB6YBMchY2pxiTUwRXOskkZ87wTkQSb9GiRezcuZOdO3cCYK3l1KlTUQGZ3bt3MzQ0FLOWtZZDhw5x6NAhnnnmGQACgQDbtm2LjFaqrq6mpKQE3y0yBsjk5eF//wfwv/8DANjhYdyW3d5opYZ63OYmGB25dpHJSdzmJu+5//kFr27Jenw1tdOjlQoKEr0VERERQGEYEREREREREREREZE5w6RkwdKtsHQrBu+mPWN93nilvo5IUIbJ4fgKjg9A715s797Ikk1deNV4pSLILsYkpc34XkQSyRhDUVERRUVFfPCDHwQgHA5z+PDhqO4x+/btY3JyMma9ycnJSLDmioyMDCorKyPhmKqqKlauXHlLdFsy6en4br8T3+13AmAnJ3H3t+E21hNu8P7j4oWYdeyRw4SOHCb0ja95dfPzvbFKNbX4qmswJesxjpPQvYiIyK1JYRgRERERERERERERkTnKGAOpuZCai1leAUwFZEbOT3WP6YD+qQ4yofH4io5ehNGL2DO7I0s2ffFV45WKILsQ40+Z6e2IJJTP56O0tJTS0lL+4A/+AIDx8XH27dsXFZA5fPiw93UUw9DQEG+88QZvvPFGZG3RokVR45WqqqrIy8tL0I7mDhMI4Csrx1dWTuBTf4S1FnviOOGGOtz6esKN9dhTHTHr2O5uws89S/g5b2QVOTn4qmpwqoP4gkGcLdswSUmJ3YyIiNwSFIaRG+rs2bM8//zzM/rcs2fP/qanJSIiIiIiIiJznK4piIhMM8ZA+mJIX4wpqAbAWheGznodZPo7oK8d+jvBjd0RA4DhczB8DtvVcOUo2AXLogMyWSsxvkACdiSSOMnJyVRXV1NdXc1nP/tZAAYHB9m9e3ckHNPU1ERnZ2dc9c6fP89LL73ESy+9FFkrKiqKCsiUl5eTkZGRkP3MFcYYzJq1OGvWwkc/BoDbcwa3scEbq9RQh3vwAMQKHfX1Ef7py4R/+jKTACkpOGUVXjCmOoivsgqzQKPdRETk3TM2nuiryG9o/fr1cbcNvPIp+W7aDFprMcZw6NCh6zq/G62rq4sdO3bw6quvUqD5mCIiIiIiIjKL5vrvqLqmMHfM9c8VEfll1g3D5W6vg8yVgMxAF9jw9RU0PsjMv2rEUjFk5mMc/d2tzH9nz56N6h7T2NjIpUuXrquW4zhs3LgxqnvM5s2bSbrFOp7YwUHCTQ24DV7nGLdlD4zH2cHqCsfB2bQZp7oGX00tTk0QZ/GSxJywiIjMK7F+R9U7VJlzboVZmyIiIiIiIiIy83RNQUQkmnF8kLXS6+jCnQDY8CQMdk0FZNqhrwMGu4E4/m7WhmGgEwY6sbzlrTl+bNaKqzrIFMOCZRjjJGpbIgmxZMkS7rvvPu677z7AC8y2t7dHBWR2797NyMhIzFqu67J//37279/P1772NcDrULNt27aogMy6detwnJv3a8VkZuLfcTfsuBsAOzaG27rX6xxTX0e4qQEGB69dxHVxW/fhtu4j9NUve3WLV+GrmeocE6zFFK/S+0AREfklCsPIDaMmRCIiIiIiIiJyPXRNQURk5hhfwAus5BRjeC8ANjTuhVyuDsgM9cZX0A15HWf62qfjNL5kbHYhZBdhcoq846UvUkBG5hVjDKtWrWLVqlV8+MMfBiAUCnHo0KGogExrayuhUChmvfHxcRoaGmhoaIisZWZmUllZGRWQKSgouGmDHSYlBV91EF91EJ78U6zrYg8fIlxf53WOaajD9vTErGPbTxJqPwnf/bZXd9Fir3NMsBanOohTugnj1y1QEZFbnX4SyA3x6quvzvYpiIiIiIiIiMg8pGsKIiKJZ/zJsHAtLFzLlVvwdnIE+k9FB2RGLsRXMDwOF4/CxaPTAZlAKja7aCogUww5RZC68Ka96S83J7/fz+bNm9m8eTMf//jHARgdHWXfvn1R45WOHj0aV73BwUFee+01Xnvttcja0qVLo8IxVVVV5ObmJmQ/s804DmZjKc7GUgIf/wTWWuzp04Qb6nAb6gg31GOPxf5Y2vPnCL/0IuGXXvQW0jPwVVV5nWNqanHKKzCpqQnejYiIzDUKw8gNkZ+fP9unICIiIiIiIiLzkK4piIjMDhNIg0UbYNGG6YDM+BD0d0B/O7avwwvIjPXFV3ByFM4fgvOHpgMySQuwOUVRHWRMSvbMbkQkwVJTUwkGgwSDwchaf38/u3fvjgrIdHd3x1Wvt7eXF198kRdffDGytnr16qiATHl5OWlpaTO+l9lmjMGsXImzciV80OvGYy9cINzU4I1WaqjDbWuFWJ14hocIv/E64TdeZxIgEMDZstULxtR4nWlMTk7C9yMiIrNLYRgREREREREREREREYnJJGfAkk2wZNN0QGasf6p7TEdkXBITQ/EVnLgMZ9vgbFskIGNTsr1QTHaRN14puxCTvGDmNyOSQNnZ2ezYsYMdO3ZE1np6eqLGKzU2NtLf3x9XvRMnTnDixAm++93vAuDz+SgtLY3qHrNp0yYCgUBC9jObTF4e/vd/AP/7PwCAHR7Gbdk9PVqpuRlGhq9dZHISd3cz7u5m+M8veHVL1uOrmeocU1OLU1CQ6K2IiMgNpjCMiIiIiIiIiIiIiIhcF5OSDcu2YZZtA8BaC6MXowMy/R1eZ5h4jPVDTwu2pyWyZNPyIKcIkz01Xim70OtcIzKPLFu2jPvvv5/7778f8L5WTpw4ERWOaWlpYXQ09tdKOBymtbWV1tZWvvrVrwKQkpJCWVlZVEBmzZo1OI6T0H3daCY9Hd/td+K7/U4A7OQk7v423MZ6wg3ef1yMPdLNHjlM6MhhQt/4ulc3Px+nphZfdRBfTRBTsh5zk33sRERuNQrDiIiIiIiIiIiIiIjIjDDGQFoepOVh8isBsNaF4fPQ1z4VkOmA/lMQHo+v6MgFGLmA7W6OLNmMpVMBmSKvg0zWSow/ecb3I5IoxhjWrFnDmjVreOSRRwAIhUIcOHAgKiCzf/9+wuFwzHpjY2PU1dVRV1cXWcvOzqaysjISkKmurmb58uUJ29NsMIEAvrJyfGXlBD71R1hrsSeOE26ow21oINxQhz3VEbOO7e4m/NyzhJ971lvIzsZXVeMFZIJBnC3bMElJid2MiIjMKIVhREREREREREREREQkYYxxIGMJZCzBrAgCUwGZyz1THWTavYDMQCe4ofiKDvXCUC/2dP2Vo2Az8yG7CJNT5AVkMgswvptvbIzcvPx+P1u3bmXr1q088cQTAIyMjNDS0kJTU1MkIHP8+PG46vX39/Ozn/2Mn/3sZ5G15cuXR3WPqaysJCcnJyH7mQ3GGMyatThr1sJHPwaA29uDO9U1xm2owz14AKy9dqH+fsL/9wrh/3uFSYCUFJyyCnw1QZyaIL7KKsyCzITvR0RErp/CMCIiIiIiIiIiIiIickMZ40BmPmTmYwpvA8C6IRjsjg7IDHaDjd0VAywMdsFgF7Zz19RBfNisAsgungrIFMGC5RhHt0Zk/khLS+O2227jtttui6xdunSJ5ubmSDimsbGR3t7euOqdOXOG559/nueffz6ytnbt2qiATFlZGampqTO+l9niLF2G88BD+B94CAA7OEi4qQG30esc47bsgfEYnarGxnDrfo5b9/Opog5O6SYvGFNTi1MTxFm8JME7ERGRd0Pv+EREREREREREREREZNYZxw/ZhZBdiGE7ADY8AQOnob8D29fhBWQunwFidHXwXuyNY+o/he2YWnMC2OyVUx1kiiG7CBYs9cI5IvNEbm4u99xzD/fccw8A1lq6u7ujusc0NzczMDAQV71jx45x7NgxvvWtbwFeh5pNmzZFjVfauHEjfv/NcVvRZGbi33E37LgbADs+jruvxescU19HuKkBBgevXcR1cdtacdtaCX31y17d4lX4qq+MVqrFFK/yRseJiMisuDl+aomIiIiIiIiIiIiIyE3H+JIgdzXkrubKLWUbGoP+zqmAzFQHmeGz8RV0J+HSCbh0YjpO40/GZhdFB2TSF+kmtswbxhgKCgooKCjgoYe87ieu63Ls2LGogExLSwvjsTqgAKFQiL1797J3716+/GUv6JGWlkZ5eXmke0x1dTWrVt0cYQ+TnIyvOoivOghP/inWdbGHDxFuqPc6xzTUYXt6Ytax7ScJtZ+E733Hq7toMU51Db5gLU51EKd0E+YmCRSJiMwH+o4rIiIiIiIiIiIiIiLzhvGnQN46yFs3HZCZGPa6wPS1Y/s7oL8DRi7GVzA0DheOwIUj0wGZQDo2p2gqIFME2cWQmnNT3PiXW4PjOJSUlFBSUsKjjz4KwOTkJG1tbZFwTFNTEwcOHMB13Zj1RkZG2LVrF7t27Yqs5ebmRoVjqqqqWLp0acL2dKMYx8FsLMXZWErgDx/HWos9fToSjAk31GOPHY1Zx54/R/ilFwm/9KK3kJ6BU1mJr6bWG61UVo5JS0vwbkREbl0Kw4iIiIiIiIiIiIiIyLxmktJh8UZYvHE6IDM+6HWNiYxYaofx+MbGMDkM5w7AuQPTAZnkTK+DTM50BxmTkjXTWxFJmEAgQHl5OeXl5XzqU58CYHh4mD179kQFZE6ePBlXvUuXLvHKK6/wyiuvRNYKCgqixitVVFSQlTW/v06MMZiVK3FWroQPfhgAe/Ei4aYGwvV1uI31uK37IBS6dqHhIdw338B98w0mAQIBnC1bvWBMTRBfVQ0mNzfh+xERuVUoDCMiIiIiIiIiIiIiIjcdk5wJS7fA0i3TAZnRPujrwPZPjVfqa/eCL/EYH4SzrXC2NRKQsam5091jcoohuxCTlDHzmxFJkPT0dO644w7uuOOOyNqFCxdobm6OBGQaGxs5d+5cXPW6urro6uriueeei6ytX78+qoPM1q1bSUlJmfG93Ehm4UL89+7Ef+9OAOzwMG7L7unRSs3NMBLje8vkJO7uZtzdzfCfX/DqrivBF5zqHFMdxFmxItFbERG5aSkMIyIiIiIiIiIiIiIitwSTmuONO1peBoC1FkYuTHWPmQrI9J+C0Gh8BUcvweglbM+eyJJNXxwdkMlaiQmkzvxmRBIkLy+Pe++9l3vvvRfwvk5Onz4d1T2mubmZy5cvx1Xv8OHDHD58mP/fx76TAAAgAElEQVT5n/8BvA41W7ZsiRqvtGHDBnw+X8L2lGgmPR3f7Xfiu/1OAGwohLu/zRur1FhPuL4eLl6IWccePULo6BFC3/i6Vzc/H6emFl91EF9NEFOyHuM4idyKiMhNQ2EYERERERERERERERG5JRljIH0RpC/C5FcBYK0LQ2ejAzIDnRCeiK/o8DkYPoftbrxyFOyCpVMBGW+8EtkrMb6kRGxJZMYZY1i5ciUrV67kd37ndwBwXZcjR45EBWT27t3LxETsr5PJyUl2797N7t27+eIXvwh4HWoqKiqiAjJFRUXe1+g8ZPx+fNvK8G0rI/CpP8Jaiz1xnHBjPW691z3GnuqIWcd2dxN+7lnCzz3rLWRn46uq8QIyNTU4W8swSfpeIiLyqygMIyIiIiIiIiIiIiIiMsUYBxYsgwXLMCtqAbBuGC73QH87tq8D+jtg4DS4oTgqWu+1l3uwp+umDuJgM/OjAzJZBRhHt21kfnAchw0bNrBhwwY+9rGPATA+Pk5bW1skHNPU1MTBgwe9DkwxDA8P89Zbb/HWW29F1vLy8qLCMVVVVSxevDhhe0okYwxmzVqcNWvhkd8HwO3twW2oJ9zYgNtQh3tgP8T6WPX3E/6/Vwj/3ytMAqSk4JRV4KsJ4tQE8VVWYRZkJnw/IiLzgd5ViYiIiIiIiIiIiIiIXINxfJBV4AVWCu8AwIYnYbA7OiAz2A3WjV3Qul6YZuA09tTb3prjx2atmB6xlF3sBXKc+Ts6Rm4tycnJVFZWUllZGVm7fPkye/bsiQrIdHR0xFXvwoUL/OQnP+EnP/lJZK2wsDAqIFNRUcGCBQtmeis3hLN0Gc4DD+F/4CEA7OAg4eZGLyDTUIfbsgfGx69dZGwMt+7nuHU/nyrq4JRu8oIx1UGcYC3O4iUJ3omIyNykMIyIiIiIiIiIiIiIiMi7ZHwByCmCnCJMsbdmQ+NeyOXqgMzlXiB2ZwzcEPS1Q187tn1qzZeEzVrpHeNKB5mMJV73GpF5YMGCBWzfvp3t27dH1s6dO0dzc3MkINPY2MiFCxfiqnfq1ClOnTrFs896Y4OMMWzYsCEqILNlyxaSk5MTsp9EMpmZ+N93F7zvLgDs+DjuvhbCDV7nmHBTAwwMXLuI6+K2teK2tRL66pe9usWr8FVfGa0UxKxaPW/HT4mIvBsKw4iIiIiIiIiIiIiIiMwA40+GhWtg4Rqu3Gq2k6Mw0OmFXK4EZIbPxVcwPAGXjsOl49NxGn8qNrswOiCTlqeb2zJvLF68mJ07d7Jz504ArLWcOnUqqntMc3Mzw8PDMWtZazl48CAHDx7kmWeeASApKYmtW7dGwjHV1dWUlJTgOPMrRGaSk/FVex1eePJPsK6LPXKYcH2d1zmmoQ7b0xOzjm0/Saj9JHzvO17dRYtxqmumRivV4pRuwvh1y1hEbj76ziYJ99RTT92wY/3xH//xDTuWiIiIiIiIiCSWrimIiMjNwARSIa8E8kqmAzITQ9B/6qqATDuM9sVXMDQKFw7DhcPTAZmkDGx2kReQyS72/jc1Z8b3IpIIxhiKioooKiriQx/6EADhcJjDhw9HdY9pbW1lcnIyZr2JiYlIqOaKBQsWUFFRERWQWbFixbwKkRnHwWzYiLNhI4E/fBxrLfb0adxGb6xSuL4Oe+xozDr2/DnCL71I+KUXvYX0DJzKSnw1td5opfIKTFpagncjIpJ4xlobR28+keu3fv36G/Zm4tChQzfkOL+prq4uduzYwauvvkpBQcFsn46IiIiIiIjcwuby76i6pjC3zOXPFRGRm4EdG4D+DmxfO1zpIDM+eP0FU7IguxiTU+R1j8kpwiRnzszJisyCsbExWltbowIyR44c4XpvdS5evDhqvFJVVRV5eXkzfNY3lr14kXBTA+H6OtzGetzWfRAKvbsigQDOlq1eMCZYi6+qBpObm5gTFhH5DcT6HVWdYeSGuBGZq/mU3hURERERERGR+OiagoiI3CpMShYs3YpZuhWY+hk42ud1j+nv8MIxfR0wGXt0DABjA9C7F9u7N7Jk0xZC9lXjlbKLMEnqACHzQ0pKCtXV1VRXV0fWBgYG2L17d6QTTGNjI6dPn46r3rlz53jppZd46aWXImvFxcVR4Zjy8nIyMjJmfC+JYhYuxH/vTvz3To2gGh7GbdnjdY5pqMNtboaRGN9DJidxdzfj7m6G//I6NZp1JfiCU51jampxVqxI9FZERH5jCsNIwlVVVc32KYiIiIiIiIjIPKRrCiIiciszxkBaLqTlYvIrgKmAzPB56L8yXmnqv9B4fEVHLsLIReyZ3ZElm77E6xoTCcgUYvzJM70dkYTIysrife97H+973/sia729vVHhmKamJi5duhRXvfb2dtrb2/ne974HgOM4bNy4MWq80ubNmwkEAgnZz0wz6en4br8D3+13AGBDIdz9bbgNdYQb6wnX18PFCzHr2KNHCB09QugbX/fq5ufjVAe90Uo1QUzJeozjJHIrIiLvmsYkicwCtRUWERERERGRuUK/o0q89LkiIjI3WevC5d7pgExfBwx0gjt5nRUNLFg+FZAp8gIyWSsxvvlx81/kF1lraW9vjxqvtGfPHkZGRq6rXnJyMtu2bYsKyKxduxZnHoZBrLXYkye8rjH19YQb67Ed7e++UHY2vqoaLyATDOJsLcMkJc38CYuIXEVjkkRERERERERERERERG5SxjiQuRwyl2NW3gaAdUNw+Qz0dUx1kGmHgS6w4TgqWrjcDZe7sZ0/nzqID5uZDznFmOwiyCmCzHyMo9tMMvcZY1i1ahWrVq3iIx/5CAChUIiDBw9GdZBpa2sjFArFrDc+Pk5DQwMNDQ2RtaysLCorKyPjlaqrq8nPz5/z4ziNMZjVa3BWr4FHfh8At7cHt6GecGMDbkMd7oH9EKu3Qn8/4f97hfD/vcIkQEoKzrZyfMFanJogvsoqzILMhO9HRORqepciIiIiIiIiIiIiIiJyEzGOH7JWeh1diu4EwIYnYbAL+tqnAzKDZ4A4BgjYsNdtZqATy5vemuPHZq2MDsgsWOaFc0TmOL/fz5YtW9iyZQuPP/44AKOjo+zduzdqvNLRo0fjqjcwMMCrr77Kq6++GllbunRpVPeYyspKcnNzE7KfmeQsXYbzwEP4H3gIADs4SLi50QvINNTjtuyG8Rij2cbGcOvfwa1/Z6qog1O6aWq0UhAnWIuzeEmCdyIitzqFYURERERERERERERERG5yxheAnGIvvDK1ZkPj0H8K+juw/R3Q1w5DZ+Mr6Iag7yT0nZyO0/iSsdmF3oil7CLveOmL53x3DBGA1NRUamtrqa2tjaz19/fT3NwcFZDp7u6Oq15vby8vvPACL7zwQmRtzZo1Ud1jysrKSEtLm/G9zCSTmYn/fXfB++4CwI6P4+5rIdzgdY4JNzXAwMC1i7gublsrblsroae/7NUtKvaCMTW1+GqCmFWr9b1CRGaUwjAiIiIiIiIiIiIiIiK3IONPhrx1kLduOiAzOeIFZPo6sP3t0NcBIxfiKxgeh4tH4eLR6YBMIG0qIFM8HZBJzdVNb5kXsrOzueuuu7jrrrsia2fOnIkar9TU1ER/f39c9Y4fP87x48f5zne+A4DP52PTpk2RcExVVRWlpaUEAoGE7GcmmORkfNVBfNVBePJPsK6LPXKYcH0d4cZ63IY67JkzMevYjnZCHe3wPe9jQd4ifDU1+GpqcWpqcUo3Yfy6lS0i10/fQURERERERERERERERAQAE0iDRRtg0YbpgMz4ZejvmArIdHgdZMbiu/nP5AicPwTnD00HZJIWYHOKogIyJiVrhncikhjLly/ngQce4IEHHgDAWsvx48ejwjF79uxhbGwsZq1wOMy+ffvYt28fX/3qVwFISUmhvLw8KiCzZs2aORsgM46D2bARZ8NGAn/4ONZa7OnTuI31hBvqCDfUY48eiV3ownnCL/2Y8Es/9v6dnoFTWYmvphZfdRCnvAIzx7voiMjcojCMzCnWWtra2mhra6O3t5fBwUEmJibieq0xhr//+79P8BmKiIiIiIiIyFykawoiIiKJY5IXwJLNsGTzdEBmtM8br9TXAVc6yEwMxVdw4jKcbYOzbZGAjE3J8cYr5RRBdjFkF2GSM2Z8LyIzzRjD2rVrWbt2LY888ggAk5OTHDhwICogs3//fsLhcMx6Y2NjvPPOO7zzzjuRtZycHCorK6MCMsuXL0/Ynn4TxhjMypU4K1fi/90PAWAvXiTc1IDb4AVk3NZ9EApdu9DwEO6bb+C++QaTAH4/zpatXueYYC2+qhpMbm7C9yMi85ex1trYTxNJvG9+85v893//Nz09Pddd49ChQzN4RonT1dXFjh07ePXVVykoKJjt0xEREREREZFb2M3wO+qtdE1hNt0MnysiIpI41loYveh1j+lr9zrJ9HfA5Oj1F03Lu6p7TJEXkAmkzswJi9xgIyMjtLS0RAVkjh8/ft318vPzo8IxlZWVZGdnz+AZJ44dHsZt2eN1jmmsx21qgpHhd13HrCvBF5zqHFNTi7NiRQLOVkTmqli/o6ozjMy6iYkJ/viP/5i3334bmHrDfA1X2sD94vPmans4EREREREREUkMXVMQERGZO4wxXnglLQ+TXwmAtS4Mn4e+9ukOMv2nIBxf9zZGLsDIBWx3U2TJZiyNGq9E1gqMP3nmNyQyw9LS0rjtttu47bbbImuXLl2iubk5Eo5pbGykt7c3rnrd3d10d3fz/PPPR9bWrVsXFZDZtm0bqalzL0Bm0tPx3X4HvtvvAMCGQrj726ZHK9XXw8ULMevYo0cIHT1C6Btf9+rm5+NUB73RSjVBTMl6jOMkcisiMocpDCOz7m//9m956623MMZgrWXp0qVs2bKFvXv3cu7cOYwxPPjggwwPD9PT08Phw4eZnJyMXKjavn07OTk5s7wLEREREREREbnRdE1BRERkbjPGgYwlkLEEsyIITAVkLp/xOsj0d0BfOwycBjfGyJQrhnphqBd7uu7KUbCZ+d6Ipexir4NMZgHGF0jElkRmVG5uLvfccw/33HMP4IW2u7u7o7rHNDU1MTg4GFe9o0ePcvToUb71rW8B4Pf72bx5c1RAZuPGjfj9c+sWsfH78W0rw7etjMAnP4O1FnvyhDdSqaGecEM9tqM9Zh3b3U34hz8g/MMfeAvZ2fiqaryATDCIs2UbJlnhOZFbhcYkyaxqb2/nAx/4AK7rYozhz/7sz3jiiScwxvCJT3yCXbt2YYyJalU8MjLC888/zxe+8AX6+vpYvnw5Tz31FBs3bpzFnbw7aissIiIiIiIic8V8/R31Vr2mMJvm6+eKiIjMfdYNwWC310GmvwP6OmCwC6x7fQWND7JWTAVkirwOMguWYxzfDJ61yI3hui7Hjh2LCsi0tLQwPj5+XfXS0tIoLy+PhGOqqqpYtWrVnO+W6J7tjQRj3MZ63AP7wX2X3yNSUnC2leML1uJU1+CrqsYsyEzMCYtIwmlMksxpzz33XOSi1Yc+9CE++clPxnxNWloajzzyCPfccw9/+Id/yLFjx/jkJz/JCy+8QG5u7g04axERERERERGZbbqmICIicvMwjh+yCyG7kCu34214wusYc3UHmcs9QBx/423D0N8B/R3Tz/YlYbNWRI9Yyljida8RmcMcx6GkpISSkhIeffRRwBsXun///qjxSgcPHsSNIxwyMjLCrl272LVrV2QtNzc3qntMVVUVS5cuTdieroezZCnO/Q/iv/9BAOzgIOHmRtzGBsL1dbgtuyFWQGhsDLf+Hdz6d6aKOjilm6ZGKwVxaoI4S+bWvv9/9u48OO77vu//8/PdxX0tbhLESfAUb4K4rKO2aEfhqJbtxFfiOoozSWo3mXSaTH4Tz2Q6nU4n7TSZqE3sxK4nbqzYrlrHlieOL0W0LckycfKmSIIUcRA8ABDcxX3tfj+/P76LBVeihAUIEAvy9ZjhGPyA+97P17OA8P3sC++3iCyfwjCypjo6OmIf/87v/M6SHltUVMSXv/xlnn76aYaHh/kv/+W/8Jd/+ZcrvUURERERERERSUI6UxAREXmwGV8qFNRCQe1CQCY8DaHeaECm2+sgMzGYWMHILNx+E26/uRCQ8adjA9UQqMbkV3sjljKLk75DhkhqaioHDx7k4MGDfPaznwVgfHycEydOxAVkursXHy0EcPv2bX784x/z4x//OLZWUVERF5A5dOgQubnJ00XF5Obif/L98OT7AbAzM7inTxJp8TrHRNpaYGTk3Yu4Lu6Z07hnThP+u//l1a2uiQVjfI3NmM21+p4gsk4pDCNr6urVqwCUlZW9a3vdcDh81/mFZWVlfOQjH+Gb3/wmL7/8MuPj42RnZ6/afkVEREREREQkOehMQURE5OFj/OlQtB2Kti8EZGYnvC4wsQ4yPTA1nFjB8DTcugC3LiwEZFKysPnVdwRkaiA9X2+GS9LLzs7m8ccf5/HHH4+t3bp1i/b29tiftrY2BgcTC5BdvXqVq1ev8p3vfAcAYwzbt2+PhWMaGhrYt28faWlpq3I9S2XS0vDVN+KrbwT+PdZ1sRcvEGltIdJ6DLf1GPb69UXr2J5uwj3d8H//j7dQVIyvsRFfYzNOQxPO7j2Yu9xfiEjy0VeqrKnR0VGMMZSVlb3tcykpKbGPp6en3/FAqrm5mW9+85vMzc3R1tbGk08+uWr7FREREREREZHkoDMFERERATCpWVCyC0p2LQRkpke8DjKhHmyw2xuxNDOaWMG5CRg8B4PnFgIyabnYO8cr5Vdj0pKnQ4bIOykqKuLIkSMcOXIEAGstV69ejXWPaW9vp6Ojg7GxsUVrWWu5cOECFy5c4Pnnnwe8n7v37t0bF5DZsWMHPp9vVa8rEcZxMDsfwdn5CCm/+VsAuFev4rYeI9LWQqTlGLbr4uKFbg0R+f4/E/n+P3t/z8rGOXQIX4PXOcY5WIfJzFzFKxGR5VIYRtbUfJL6br+hlZWVFft4aGjoHQ+u7pzpPTAwsMI7FBEREREREZFkpDMFEREReScmPQ827IUNezF4b+IzHbyje0x0xNLcRGIFZ0bh5inszVOxJZtRALGATLXXSSY16x1LiCQDYwyVlZVUVlby0Y9+FADXdbl48WLceKVTp04xOzu7aL25uTk6Ozvp7Ozkb//2bwGvQ01dXR319fWxgExVVVVSdFdyKipwKirwf/TjANjhYSIdbbgtXkDGPXUSwuF3LzIxjvvKz3Bf+RlzAH4/zt59XjCmsQlfQxPmjvsMEVk7CsPImsrLy2NoaIjx8fG3fa6oqCj28ZUrV6ipqblrjZE75v2NjiaY7BYRERERERGRdU1nCiIiIpIoYwxkFEBGAabsIBANyEwOeQGZYI83ainU441OSsTUbZi6jb3eGVuyWSVe15j5DjJ5lZiUjJW+HJEV5TgOO3fuZOfOnTz77LMAzMzMcPr06bjxSufPn/e+bhYxPj7OK6+8wiuvvBJbKyoqiuseU19fT3Fx8apdU6JMYSH+p47AU9HOOZOTuMc7vc4xrcdwOzpg4u33G3HCYdzjnbjHO+Fvv+DV3bYdX2NTbLSSqahIijCQyMNGYRhZU1VVVQwODtLf3/+2z23fvj328c9//nMOHz581xq/+MUvYh/n5OSs/CZFREREREREJOnoTEFERETuhTEGskogqwRT3gCAtS6MD0Q7yES7x4z0QWTxDhkATAzCxCC2v23+WbA5GyBQg8mvjgZkKjC+1NW4JJEVk5aWFuvsMm9sbIzOzs5YOKa9vZ3e3t6E6t26dYsf/OAH/OAHP4itVVVVxQVkDh48uOY/k5vMTHyPPY7vsccBsOEw7rmz3mil1hYirS1wa2jROrbrIuGui4T/4Wte3bIynMZmb7RSUzNm+w6M46zqtYiIwjCyxnbt2kV7ezuhUIiBgQFKS0tjn2tqaoqlJL/73e/y6U9/ms2bN8c9/uzZs3zrW9+K/X3nzp33Z+MiIiIiIiIisqZ0piAiIiIrzRgHcjZCzkZMZTMA1o3A2PW3BGSugo0kUNHC2A0Yu4G9Gg3hGh82d5M3Vmk+IJO7CePoLTtJbjk5Obz3ve/lve99b2xtcHAwrntMe3s7t27dSqheb28vvb29sZ/JjTE88sgjceOV9u7dS2rq2oXHjN+Pb99+fPv2k/K7n8Nai73yJpHWllhAxvZ0L1rHXr9O5MVvE3nx295CXh6++kYvINPYiLPvACYtbZWvRuTho/+yypqqr6/n7//+7wF49dVX+djHPhb73MaNG2lubuYXv/gFU1NTfPKTn+Q3fuM32LNnDwAdHR184xvfYGZmBmMMmzZtYv/+/WtxGSIiIiIiIiJyn+lMQURERO4H4/ggr8Lr6EK0W0RkDkb7IdSDDUYDMmPXwbqLF7QRr9vMSB+291VvzfFj8yqiAZkayK+GnDIvnCOSxEpKSnj66ad5+umnAW/8WE9PT1xAprOzk4mJiUVrWWs5d+4c586di/2cn5qayv79++PGK23fvh1njbqqGGMwtVtwarfAr/8bANyBm7itLUTaWnBbW3DPnQV3ke8FIyNEXn6JyMsvMQeQno6z/yC+xiacxiZ89Q2YnNxVvx6RB52xiQx3E1kl09PTNDc3MzU1RUNDA88//3zc57u6uvjoRz/K3Nwc1tq3zdObf/kaY/irv/orPvCBD9y3vd+L/v5+Dh8+zNGjRykvL1/r7YiIiIiIiMhDbL3eoz6sZwprab2+VkRERO4HG57xOsaEurHBHi8gM34TWObbcL5UCFQtBGQC1ZBdooCMrDuRSITz58/HdY85ffo0c3Nzy6qXm5tLXV1dXECmoqLibT/vrxU7Nkqko90LyLQcwz3RCTMzSyviODiP7IqOVmrEaWrGKd2wOhsWWccWu0dVZxhZU+np6Xz+85+nu7sbYwxTU1NkZGTEPr9t2zb+6q/+iv/wH/4DU1NT3C275fP5+JM/+RMdWomIiIiIiIg8RHSmICIiIsnE+NOgcAsUbmH+LXk7NwWh3oUOMqEemBhKrGBkFoYvwfClhThNSgY2UB0fkMksTJoQgMjd+Hw+du/eze7du/nMZz4DeMH2U6dOxQVkLly4kFC90dFRfvrTn/LTn/40tlZaWho3Xqm+vp7CwsJVuZ7FmJxc/O87DO87DICdmcE9fZJIa6s3WqmtBUZG3r2I6+KePYN79gzhv/tfXt3qGnwNTThNTfgamzGba/W1L7IIdYaRdWFgYIC///u/5+c//znXrl0jHA5TUlJCU1MTzz77LFu3bl3rLS6JfpNKREREREREksWDfo/6oJ0prKUH/bUiIiJyP9iZcS8UM99BJtQDU8HlF0zN9sYq3RGQMRn5K7NZkftoZGSEzs7OuIDM1atXl11v8+bNceGYgwcPkpWVtYI7Xh7rutiLF4i0thBpPYbbegx7/frSCxUV42ts9AIyjc04u/dg/OqDIQ+Xxe5RFYYRWQM6PBIREREREZFkoXtUSZReKyIiIqvDTocg2IMN9XjjlYLdMDu2/ILpgYVwzHxQJi1nhXYrcv/cvHkzLhzT3t7O7du3l1XLcRx27doVF5DZs2cPKSkpK7zrpXOvXsVt88IxkZZj2K6LSy+SmYVz6BC+xmZ8jc04B+swmZkrv1mRJKIxSSIiIiIiIiIiIiIiIiJJyqQHYON+zMb9AN54x6nb0YBMtxeQCfXA3GRiBadDcPMk9ubJ2JLNLHpLQKYKk6I3yiW5bdiwgQ9+8IN88IMfBLyvjStXrsQFZDo7O5mamlq0luu6nDlzhjNnzvDVr34V8Eav7t+/PxaOqa+vZ+vWrTiOs6rX9VZORQVORQX+X/0YAPb2bSLtrbgt3lgl99RJCIffvcjkBO6rr+C++gpzAH4/zt59OA1N+Jqa8TU0YQoKVv1aRJKJwjAiIiIiIiIiIiIiIiIiScIYA5mFkFmI2VQHRAMyE4MQ6sEG5wMyvRCZSazo5C2YvIW93hFbstmlEKjBRLvHEKjC+NNW/HpEVooxhtraWmpra/nkJz8JQDgc5o033ojrHnP69Gkikcii9aanp2lpaaGlpSW2lpeXx6FDh2IBmYaGBjZt2rRq13Q3pqAA/1NH4KkjANjJSdwTx73OMa3HcDs6YGL83YuEw7jHO3GPdxL+0he9ulu3ecGYxmachiZMRYX3/UbkAaUwjIiIiIiIiIiIiIiIiEgSM8ZAdilkl2LKGwGw1oWxG9GATI8XkBnpBXeRDhLzxgdgfADbPx8EMNjcsoUOMoFqyKvA+NZ+jIzIO/H7/ezdu5e9e/fy27/92wBMTU1x8uTJWECmra2NS5cuJVRvZGSEo0ePcvTo0djaxo0b48Yr1dfXk5+fvyrXczcmMxPfo4/he/QxAGw4jHvuLG7rMSKtLURaW+DW0KJ17KUuwpe6CP/D17y6ZWVe55jGZnxNzZjtOzD3uSuOyGpSGEZERERERERERERERERknTHGgdxNkLsJU/koANYNw+j1hQ4yoR4Y6Qe7eJcMsDB6DUavYftejz6JD5tXHh+QyS3DOHqLUZJXRkYGzc3NNDc3x9aCwSCdnZ1xAZnr168nVO/GjRv80z/9E//0T/8UW9uyZUtcOObAgQNkZt6f0WPG78e3bz++fftJ+d3PYa3Fdl8h0nLMC8i0tWK7ryxax16/TuS73yHy3e94C3l5+OobcRqb8TU24uw7gElTtyhZv/RfKkka09PTvPTSS3R0dHD58mXGxsaYmpryWv8lwBjDyy+/vMq7FBEREREREZFkozMFEREREY9x/BCohEAlpvoJAGxkDkauQqjb6yAT6vECMyTws5KNeOOYQr3Ynle8NScFm1cJ+dULI5ZyNnrhHJEklZ+fz/vf/37e//73x9auXbsWG600/ycUCiVU7/Lly1y+fJlvfvObAPh8Pnbv3h03XmnXrl34/av/drwxBrO5FmdzLfz6vwHAHbiJ26T0Ls0AACAASURBVNpCpK0Ft7UF99xZcN13LzQyQuTll4i8/BJzAGlpOAcOemOVGpvwHWrA5Oau+vWIrBSFYSQpfOtb3+LP//zPGRsbW9bjrbWaaSciIiIiIiLyENKZgoiIiMi7M74UKNgMBZuZ/6nHhqch1HfHiKVumBhIrKA7B8E3IfjmQpzGn4bNq4L8moWATFaJfs6SpLZp0yY2bdrEhz/8YQBc1+XNN9+M6x5z4sQJpqenF60ViUQ4deoUp06d4itf+Qrgdag5ePBgrHtMQ0MDtbW19+XrwindgPPMh/E/412bHRsl0tHuBWRaW3BPdMJi1zUzg9tyDLflWLSog/PILq9zTEMjTlMzTumGVb4SkeVTGEbW3Be+8AW++MUvJvzbWiIiIiIiIiIioDMFERERkeUy/nQo2gZF2xYCMrOTMNILwfkOMt0wOZxYwfAMDHfBcNdCQCYlExuo9gIygWrIr4aMAgVkJGk5jsPWrVvZunUrn/rUpwCYm5vj3LlzcQGZc+fOEYksPnpsamqK119/nddffz22lp+fHxeOqa+vZ+PGjat2TfNMTi7+9x2G9x0GwM7M4J4+SaS11Rut1N4Ki3XFcV3cs2dwz54h/Hf/y6tbVe11jmlqwtfQhKndoq9xSRoKw8iaOn/+PF/84hcBr4WXtZb9+/fT0NBAaWnpfZutJyIiIiIiIiLri84URERERFaWSc2E4p1QvHMhIDMz6o1JujMgMz2SWMG5SRh6A4beWAjIpOVGAzLV0YBMDSY9b6UvRWTFpKSksH//fvbv38/v/u7vAjA5OcmJEyfiAjJvvvlmQvWCwSAvvfQSL730Umxt06ZNceOVDh06RF7e6n5dmLQ0fPWN+Oob4ff/AOu62IsXiMRGKx3DXru2aB3b20O4twf+3//xFoqK8TU24mtowmlsxtm9B3MfRkWJ3I1eebKmvvGNb8TaERcWFvI//+f/pK6ubq23JSIiIiIiIiJJTmcKq2t0dJTR0dG4tZs3b67RbkRERGStmLRcKN0DpXsWAjJTQQj2YEPdEOqBYA/MjidWcGYUBk7DwOlYQMZm5EOgGpNf441Xyq/GpGav+LWIrJTMzEweffRRHn300dja8PAwHR0dsXBMe3t7wj8/X7t2jRdffJEXX3wxtrZt27a4gMz+/ftJT09f8WuZZxwHs/MRnJ2PkPKbvwWA29/vdY1pPUaktQV78cLihW4NEfn+PxP5/j97f8/Mwjl0CF9jM77GJpyDhzD6xQW5TxSGkTXV3t4e+/gv/uIvdGglIiIiIiIiIgnRmcLq+trXvsYXvvCFtd6GiIiIJCGTkQ8Z+ZiyAwDeyMrJYQjNd4/p8QIy4anECk4FYSqIvXEitmSziuMDMoEqTErGSl+KyIopLCzkqaee4qmnngK8r4tr167FdY/p6Oh4W+D8nXR1ddHV1cXXv/51APx+P3v37o0br/TII4/g8/lW7Zqc8nKc8o/h/9WPedd0+zaRjjbcFi8g4546CeHwuxeZnMB99RXcV19hzrsQnL37cBqa8DU146tvxBQWrto1yMPNWA1VljV04MABpqenKSsr4+jRo2u9nfumv7+fw4cPc/ToUcrLy9d6OyIiIiIiIvIQW6/3qA/rmcL98k6dYT71qU+tu9eKiIiI3H/WujA+uBCQCXbDSB9EZpdZ0UD2Bq9rTH41BGogrwLjT1vBXYusLtd16erqor29PRaQOXnyJDMzM8uql5mZSV1dXVxApqamBmPM4g9eAXZyEvfEcS8Y09ZCpL0dJhLsEnUHs3UbvqZmLyDT2IypqLhv1yDr22LnGeoMI2tqPq2oAxQRERERERERWQqdKayu3NxccnNz13obIiIisk4Z40DOBsjZgKloBsC6ERi/AcE7OsiMXAV3kc4S3qO9x47fwF49Fn0SB5tTBvk10YBMtReQcfT2pyQnx3HYsWMHO3bs4NOf/jQAs7OznDlzJm680htvvIHruovWm5yc5LXXXuO1116LrRUWFlJfXx8XkCktLV2V6zGZmfgefQzfo48BYMNh3DfOeaOVWrzRStwaWrSOvdRF+FIX/MPXvLplZbFgjK+xCbNjJ8ZxVuUa5MGm/xrImtqwYQNvvvnmshOPIiIiIiIiIvJw0pmCiIiIyPpiHB/klkNuOabqcQCsG4bRa3cEZLq9v9vFgwBYF0b7YbQf2xsNAzh+bG65F5AJVEN+NeSUec8tkoRSU1Opq6ujrq6Oz372swCMj49z/PjxuIBMd3d3QvWGh4f50Y9+xI9+9KPYWmVlZVw4pq6ublWC78bvx7d3H769+0j5nc9ircV2XyHSEu0c09qC7b6yaB17/TqR736HyHe/4y3k5eGrb8RpbMLX2ISz7wAmTV2hZHEKw8iaampq4vLly1y6dIlwOIzfr5ekiIiIiIiIiCxOZwoiIiIi659x/BCogkAVpsZbs5FZr2PMnQGZsZuAXbygG/Y6zoR6Fv61LxWbV+mNWArUeAGZ7FKve41IEsrOzuaJJ57giSeeiK0NDQ3R0dERF5AZHBxMqF5fXx99fX18+9vfBsAYw44dO+ICMvv27SNthQMmxhjM5lqczbXw6/8GAHdwALe1JTpaqRX37BlYrAvOyAiRl18i8vJLzAGkpeEcOIivsRmnoRFffSNGXS3lLnRKIGvqYx/7GN/85jeZnJzk+9//Ph/60IfWeksiIiIiIiIisg7oTEFERETkwWR8qVBQCwW1mOianZuCkT4vIBPqgWAPTCQWBCAyC7cvw+3LCwEZfzo22jnG6yBTA5lFGGPeuY7IGiouLubIkSMcOXIEAGstfX19ceGYjo4OxsfHF61lreX8+fOcP3+e559/HoCUlBT27dsXF5DZsWNHbDztSnFKSnE++CH8H/Tu3+zYKJGOdq9zTEsL7olOmJ5+9yIzM7gtx3BboiPTHAfnkV3R0UpNOE3NOKUbVnTfsj4Za20CMUqR1fPcc8/x5S9/mfz8fF544QWqqqrWekurrr+/n8OHD3P06FHNNhcREREREZE1tZ7vUR/GM4W1tJ5fKyIiIvLgsbPjEOqFYE80INMNU7eXXzAly+saExuxVAPpAQVkZN2IRCJcvHgxLiBz8uRJ5ubmllUvOzuburq6WDimoaGBysrKVf2asLOzuKdPesGYthYibS0QCi25jqmq9jrHNDbia2zG1G7R1/IDaLF7VIVhZM25rst//s//mRdeeIG8vDz++I//mA996EOkpKSs9dZWjQ6PREREREREJFms53vUh/FMYS2t59eKiIiIPBzs9Ig3JinYgw12ex/PjC6/YFqeF47Jr4b5TjJpGsci68fMzAynT5+OC8icP3+e5UYEiouL47rH1NfXU1xcvMK7XmBdF3vxApG2Vm+0Uusx7LVrSy9UWISvMdo5prEZZ/cejEbtrnsKw0hS+/znPx/7+Gc/+xnBYBBjDJmZmezevZuioiJSU1MTqmWM4c/+7M9Wa6srSodHIiIiIiIikizW6z3qw3qmsJbW62tFREREHl7WWpgOeuOVgj2xoAxzE8svmlF4x3ilagjUYFIzV2S/IvfD6Ogox48fj4Vj2tvb6e3tXXa96urquHBMXV0d2dnZK7jjeG5/P27rMSKtLURaj2EvXlh6kcwsnEOH8DU04WtqxjlQh8nKWvnNyqpSGEaS2o4dO97Wkmr+JbmcVlXnz59fkX2tNh0eiYiIiIiISLJYr/eoD+uZwlpar68VERERkTtZa2FyKNo9pgdC0Q4y4ZnlF80quWO8UjUEqjD+9JXZsMh9MDg4GNc9pq2tjeHh4WXVchyHnTt3xo1X2rNnT8K/rLBU9vZtIh1tuC3HvO4xp0/BUkdD+f04e/biNDbja2rGV9+IKSxclf3KylnsHlW9f2TNvVMea6k5Lc15ExEREREREXm46ExBRERERJbKGOOFV7JKMOUNAFjrwviA10Em1APBbgj1gZvgG+oTgzAxiO1vnX8WbM7G+IBMXiXGp3GekpxKSkp4+umnefrppwHvnqqnpyeue0xnZycTE4t3VXJdl3PnznHu3Dn+9//+3wCkpqayf//+uIDMtm3bcBznnvduCgrw/9Ivwy/9srf3yUncE8eJtLV4HWTa22Fi/N2LhMO4J47jnjhO+Etf9Opu3RYbq+RrbMZUVOjecZ1RGEbW1Ec+8pG13oKIiIiIiIiIrEM6UxARERGRlWKMAzkbIWcjpvI9AFg3AmPXvA4y8wGZkX6wkQQqWhi7DmPXsX2vR5/Eh83ddMeIpRrI3YRx9HatJB9jDDU1NdTU1PCJT3wCgEgkwvnz5+MCMqdOnSIcDi9ab3Z2lra2Ntra2mJrubm5HDp0KDZeqaGhgfLy8nsOnJjMTHyPPobv0ccAsOEw7hvnvGBMyzHctlbs0OCideylLsKXuuDrz3t1N26MBWN8jU2YHTsxKxDmkdWjMUkia0BthUVERERERCRZ6B5VEqXXioiIiDzsbGQORvujI5ai45VGrwHLfLvV8UNeZXxAJmejF84RWQemp6c5depU3HilixcvLrteaWlprHvM/J/CFR5XZK3Fdl8h0hrtHNPagu2+svRCeXn4DjXgNHnhGGffAUxa2oruVd6dxiSJiIiIiIiIiIiIiIiIiNwj40vxAiv5NRjeB4ANz8BIX7SDTDcEe2D8ZmIF3TAEr0DwykKcxpeGDVRBoBqTX+09X1axAjKSlNLT02lsbKSxsTG2NjIyQkdHR6x7TFtbG/39/QnVGxgY4Hvf+x7f+973YmubN2+OG6904MABsrKylr1nYwxmcy3O5lr4tU8B4A4O4La2EGn1Ose4Z8+A6757oZERIkf/hcjRf2EOIC0N58BBfI3NOA2N+OobMbm5y96n3DuFYURERERERERERERERERElsH406BwKxRuZX64i52bhFBvfEBm8lZiBSMzMNwFw10LAZmUDGygOhqQqYH8asgovOdxMiKrIS8vj8OHD3P48OHY2o0bN+LCMe3t7QSDwYTqXblyhStXrvDCCy8A4DgOu3fvjhuvtHv3blJSUpa9Z6ekFOeDH8L/wQ8BYMdGiXR2REcrteCe6ITp6XcvMjOD23IMt+WY93djcB7ZFR2t1ITT2ISzYeOy9yhLpzCMiIiIiIiIiIiIiIiIiMgKMSmZULwTincuBGRmxryATKgbG+zxAjLTiYUBmJuCofMwdH4hIJOag82vjgvImPTASl+KyIrYuHEjzzzzDM888wzgjSq6cuVK3Hil48ePMzU1tWgt13U5ffo0p0+f5u/+7u8Ar0PNgQMHYuGY+vp6tmzZguMsr6OSycnF/94n4b1PevudncU9fdILxrS1EGlrgVDo3YtYi3vuLO65s4S/+hWvblW11zmmsRFfYzOmdotCbatIYRhJarOzs4yMjDAzM0Nubi65aiUlIiIiIiIiIgnQmYKIiIiIJBOTlgOlu6F090JAZjoU7R7TA8Fu78/seGIFZ8dg4AwMnIkFZGx6wBvhFKj2xisFqrznFUkyxhhqa2upra3l137t1wAIh8OcO3curoPMmTNniEQii9abnp7m2LFjHDt2LLaWl5cX1z2mvr6eTZs2LW+/qan4DjXgO9QA/AHWdbFdF4nMj1ZqbcFeW3wUlO3tIdzbA//v/3gLhUX4Gpu8zjENTTh79mL8inCsFP0/KUklEonwwx/+kH/5l3/h5MmTDA4Oxn0+JSWFRx55hPr6ej7+8Y9TUVGxRjsVERERERERkWSiMwURERERWW9MegA27sds3A943TKYGo4PyIR6vM4wiZgOwY0T2BsnYks2s8jrGhOIjlcKVHmda0SSjN/vZ9++fezbt4/f/u3fBmBycpKTJ0/GjVe6dOlSQvVGRkZ4+eWXefnll2NrZWVlcQGZQ4cOkZ+fv+S9GsfB7NiJs2MnKc9+BgC3v98bqxQNyNiLFxYvNHyLyA/+mcgP/tn7e2YWzqFD+Bqa8DU14xyow2RlLXl/4jHWWrv4PxNZfa+88gr/8T/+x9hh1Tu9NOdbRRljeOaZZ/jTP/1TsrOz79s+V0J/fz+HDx/m6NGjlJeXr/V2RERERERE5CH2INyjPkxnCmvpQXitiIiIiKw31rowMQTB6HilUI83bikys/yi2RuiAZlqr4NMXiXGn7ZCOxZZXcFgkI6OjriAzPXr15ddb+vWrXHdYw4cOEBGRsY979MGg0TaW3FbjhFpa8E9dRLm5pZWxO/H2bMXJxqO8TU0YQoL73lvD4rF7lEVhpGk8Dd/8zf89V//9TseVr2VMQZrLcYYysvL+frXv05paekq73Ll6PBIREREREREksV6v0d92M4U1tJ6f62IiIiIPCisdWHsRrSDTDcEe2CkD9zwMisayN0EgWpMfrUXkMktx/hSVnDXIqvn2rVrceOV2tvbGRkZWVYtn8/Hnj174gIyu3btwn+P44vs5CTuyRPRsUrHiLS3w0SCY9HuYLZuxdfYjNMYDcdUVsZ+8eNhozCMJL0XX3yRz3/+88DCgVRFRQVPPvkk27dvp6CggNTUVMbHx+nr6+PEiRO8+uqrzM3Nxf79li1b+Pa3v01a2vpIrerwSERERERERJLFer5HfRjPFNbSen6tiIiIiDzorBuG0WvxAZnRa2AjyytofJBXDoGaaECmGnLKMM69BQJE7gfXdbl8+XJcOObEiRNMT08vq15GRgYHDx6MhWPq6+upra29pxCKDYdx3ziH29ZCpOUYbmsLdmhw8Qe+hdm40esc09iMr6kZs2MnxnGWva/1RGEYSWpjY2N84AMfIBQKYYyhpKSEP/3TP+UDH/jAuz7u9u3b/MVf/AXf+c53Yt9k/uAP/oDPfe5z92Pb90yHRyIiIiIiIpIs1us96sN6prCW1utrRURERORhZSOzMHIVQj3eiKVgD4xdB5b59rCTAoHKaAeZGghUQ84GjHk43niX9W1ubo6zZ8/GBWTOnj2L67rLqldQUMChQ4fiAjIbN25c9v6stdie7mgw5hiRtlbslTeXXig3F199I050rJKz/wDmAf3lD4VhJKk9//zz/Nmf/RnGGMrKyvjGN77Bhg0bEn78l770Jf7H//gfAOTn53Ps2LHV2uqK0uGRiIiIiIiIJIv1eo/6sJ4prKX1+loRERERkQU2PA2hvmhAJtpBZmJg+QX9aV4o5s6ATFbxQzu2RdaXiYkJTpw4EQvHtLe38+abywigRJWXl8eNVzp06BB5eXnLrucODuC2tUZHK7Xgnj0DSw3vpKXh7D8QHa3UhK++EZObu+w9JZPF7lHVx0rW1Kuvvhr7+D/9p/+0pEMrgM9+9rP87Gc/4+TJk4RCIU6dOsW+fftWepsiIiIiIiIikmR0piAiIiIisnTGnw5F26BoG/NxFTs7AaFeCHZjQz0Q6oHJ4cQKhmfg1kW4dXGh30xKFja/OhqQqYZADWTkKyAjSScrK4vHHnuMxx57LLY2PDxMR0dHLCDT1tbGwEBigbH+/n76+/t58cUXY2vbt2+P6x6zf/9+0tPTE6rnlJTi/Otn8P/rZwCw42NEOtq9zjGtrbjHO2Cx0U8zM16QprXF+7sxOI/swmlsxtfgdZBxNiy/o00yUxhG1tSVK1cAKC4u5vHHH19WjY985COcPHkSgMuXL+vgSkREREREROQhoDMFeSfWWoamxslLyyDNp+NPERERkcWY1CwoeQRKHlkIyMyMel1jYiOWumFmJLGCcxMweA4Gzy0EZNJysYFqyF/oIGPSl98xQ2S1FBYW8tRTT/HUU08B3v1Ff39/3Hil9vZ2xsbGEqp38eJFLl68yD/8wz8A4Pf72bt3bywg09DQwM6dO/H5fIvWMtk5+N/7JLz3SW9vs7O4Z05FRyu1EGlrgVDo3YtYi3vuLO65s4S/+hWvbmWV1zmmqQlfQxNmy9YHIrymu0FZU8PDwxhjqKqqWnaN6urq2Me3b99egV2JiIiIiIiISLLTmYLczfXxEB//0VfoGRvGZxxqcgvZFihlW34p2wOlbAuUUpNbSKpCMiIiIiLvyqTlwoa9sGEvBi8QwHQIgj3YUHS8UrDbC74kYmYUBk7DwOlYQMZmFCx0j8mvgUAVJjV7dS5IZJmMMVRUVFBRUcGv/MqvAOC6Ll1dXXEBmRMnTjA7O7tovXA4zPHjxzl+/Dhf+tKXAK9DzcGDB+MCMtXV1YsGUkxqKr66enx19fB7f4B1XWzXRSLRYIzbcgx7rX/RPdm+XsJ9vfCtF7yFwiL8H/04qf/fn2Cy1u/XpO76ZE2lpKQwOzvLzMzMsmvc+U0lJSVlJbYlIiIiIiIiIklOZwpyN//3cgc9Y15L/4h1uTwyxOWRIX7Qezb2b/zGYXNekReSuSMoU51bSIqz+G9jioiIiDyMjDGQke+NOyo7AEQDMpO3ot1jogGZUC+EpxIrOnUbpm5jbxyPLdmskviATF4lJiVj5S9I5B44jsOOHTvYsWMHn/70pwHv/vLMmTNx45XeeOMN7+tkERMTE7z22mu89tprsbXCwsK48Ur19fWUlpa+ax3jOJgdO3F27CTl2c8A4Pb347a1EGk5RqStBXvh/OIXOHyL8Jf/BlNQQOq//8PF/32SUhhG1lRhYSHj4+NcvnyZmZkZ0tLSllzj7NmFw4zCwsKV3J6IiIiIiIiIJCmdKcjdFKYv/luLYevSFRqkKzQInImtpzg+NucWsT2/NBaU2Z5fSlVOAX6FZERERETexhgDWcWQVYzZVA+AtS6MD8QHZEb6ILJ4xwwAJgZhYhB7rW3+WbA5G6IBGW+8EoFKjC91NS5JZNlSU1Opq6ujrq6Oz33ucwCMj49z/PjxuIBMT09PQvWGh4f54Q9/yA9/+MPYWmVlZVz3mLq6OnJyct61jlNejlP+Ufy/8lEAbDBIpL3VG6vUegz31EmYm7vrY+316wntNVkpDCNrau/evfT29jI1NcULL7zAs88+u6THT05O8q1vfSuunoiIiIiIiIg8+HSmIHfzia2HuD4R4jtvnuD6xMiSHjvnRrgYGuBiaCBuPdXxUZtXHDdqaVvAC8n4HGclty8iIiKy7hnjQM5GyNmIqWgGwLoRGLsBwW5sqAdCPTByFdxwAhWt99ixG9irx6JP4mBzN8UHZPLKMY7e+pbkkp2dzRNPPMETTzwRWxsaGqKjoyMuIDM0NJRQvb6+Pvr6+vjHf/xHwAuk7dixIy4gs3fv3nf9ZRGTn4//l34ZfumXAbBTU7gnjnvBmLYWIu1tMD6OKd1Aym/+1j1c/drTdwRZU08++STf+973sNby3HPPUVtby2OPPZbQY2dnZ/mjP/ojrl+/jjGG2trae5oTLiIiIiIiIiLrh84U5G7SfH7+pO6X+ZO6X2ZsdjraAWbA+xP0gi43J0eXVHPWjXA+eJPzwZtve64tecUL45YCJWzLL6UyWyEZERERkTsZxwd55V5ghccBsJE5GL0GoW5ssMcLyIxeA+suXtC6Xphm5Cq2NzpWxvFj8yoWRiwFarxAjjr8SZIpLi7myJEjHDlyBPDGjfX19cWFYzo7OxkfH1+0lrWW8+fPc/78eb72ta8BXoeaffv2xUYrNTQ0sH37dny+u38tmIwMfO95FN97HvVqhsPYoUFMQSFmGR1Yk4nCMLKmnnrqKbZu3crly5eZnp7m3/7bf8snP/lJfvM3f5OKioq7PiYSifCTn/yE5557ju7u7tj67/3e792vbYuIiIiIiIjIGtOZgiwmJzWdupJK6koq49ZHZqa4FBrk4nxIJhqUGZgaW1L9mUiYc7dvcO72jbj1dF+KF5KJjlvaHg3JVGTn4xiFZEREREQAjC8F8qshvxpT463Z8IwXcpkPyAR7YPwmYBcv6IYh2O11n5n/Ud+Xis2rhPyaaECmGrJLve41IknCGENVVRVVVVV87GMfA7x714sXL8YFZE6dOsXcO4wzutPs7Czt7e20t7fH1rKzszl06FAsHFNfX09lZaU36uyt+/H7MRvLVu4C15Cx1ibw3UNk9Zw+fZpnn32W6elprLWxL7ra2lq2b99OQUEBKSkpTExMcPXqVc6ePcvY2Fjs31prOXLkCM8999waX8ndjY6OMjoa/xtHN2/e5FOf+hRHjx6lvLx8jXYmIiIiIiIiAv39/Rw+fHhd3qM+6GcKyWY9v1YSEZyZ5FJoMNZBZj4oMzS1+G9kJiLDn8LWvBKvi0xs5FIJm7IDCsmIiIiIvAM7NwUjfV7IJdgDoW6YSGykzF35MyBQFR+QySy6ayhAJJnMzMxw6tSpWNClra2NCxcusNy4R0lJSVz3mPr6eoqKilZ416trsXtUhWEkKbz++uv84R/+ISMjI7HDqHf6j85bX7JPPfUUf/7nf05qaur92OqS/fVf/zVf+MIX7vq5B/XwSERERERERNaP9R5weJDPFJLNen+tLFdweiIajhnkYnAhJDM8PbEi9TP9qWwNlETDMQtBmbKsPL0pIyIiInIXdnYcQr3xAZmp4PILpmZ7oZj8akygxvvfjPyV2q7IqhkdHaWzszMWjmlvb6evr2/Z9WpqamIBmV/91V+lpqZmBXe78hSGkXVjYGCA//7f/zs//vGPCYfDi/77yspK/t2/+3d8+MMfvg+7Wz51hhEREREREZFk9iAEHB7UM4Vk8yC8VlbS8PR4NBwzSFdoIBaUCc5Mrkj97JQ0tgZKoqOWSmNjlzZm5iokIyIiIvIWdnoEQj3YYLc3XinUAzOjiz3snaXnQeCO7jH51Zi03JXZrMgqGhgYiOse097ezvDw8JLrpKam8qMf/Yj3ve99q7DLlaEwjKw7Q0ND/PSnP+XEiRP09fUxOjrK7OwsOTk5FBYWsmvXLurr62lubl7rrS6bDo9EREREREQkWTxI96gPw5nCWnqQXiurxVrLrenxO0YtLQRlRmanVuQ5clPTvXFLsVFLXlCmNCNHIRkRERGRKGut1y0m2I0N9XjhmGAPzN1Dd7/MQghU8BFsgwAAIABJREFUY/JrvIBMoBqTmrkyGxZZJdZauru74wIynZ2dTE4uHuL/zGc+w1e/+tX7sMvlWewe1b8GexJ5V8XFxXz84x/n4x//+FpvRURERERERETWEZ0pyFozxlCckUNxRg6Plm2JrVtrGZwau6ODzGBs3NLo7PSSnmN0dprOoT46h+Lbn+elpnvBmDtGLW0LlFKcka2QjIiIiDx0jDGQWQCZBZhNdUA0IDMxBKH58UrRP+GZxIpODsPkMPZ6Z2zJZpV6XWNiAZkqjD9tpS9HZNmMMWzevJnNmzfziU98AoBwOMz58+fjusecPn36bZ1WGxoa1mLLK0ZhGBEREREREREREZFVZIyhNDOX0sxcHi/bGlu31nJzcpRL8x1kQgN0Rcctjc0l+KZM1MjsNO2DvbQP9satB9Iy2R4dt3RnUKYoI3tFrk1ERERkvTDGQHYJZJdgyhsBsNaFsZsLAZlgD4z0gTuXWNGJAZgYwPa3zj8LNqcsGpCp9gIyeZUYX8rKX5DIMvn9fvbs2cOePXv4rd/6LQCmp6c5efIk7e3tXLlyhX379vHss8+u8U7vjcIwIiIiIiIiIiIiImvAGMPGrDw2ZuXxxKb4kMyNyVGve0xs5JL38UR4dknPEZqZpHWgh9aBnrj1grQstuWXxI1a2h4opSA9ayUuTURERGRdMMaB3DLILcNUPgqAdcMwdh2CPdEOMt0w0g82kkBFC2PXYOwatu/16JP4sLmbIL8GE6iG/GrI3YRx9Fa9JI/09HSamppoampa662sGH2FiYiIiIiIiIiIiCQRYwxlWXmUZeXx3k3bYuvWWq5PjMR1kLkYGuBSaJDJJYZkbs9M0HKzm5ab3XHrRenZbI12ktmeX8q2gBeYyVdIRkRERB4SxvFDXqXX0aX6CQBsZA5GrkLojoDM6HXALl7QRrxuMyN9WF7x1hw/Nq8yPiCTs9EL54jIilAYRkRERERERERERGQdMMawKTvApuwAT5Zvj6271uXaeIiu0GBcUKYrNMh0JMEW/1G3pse5dXOcYzevxK0XZ2THRi1tj3aS2RYoIZCWuSLXJiIiIpLMjC8FCjZDwWZMdM2GZyDU6wVkQj0Q7IbxgcQKumEIXoHglYU4jS8NG6jyRiwFqiG/BrJKvPFOIrJkCsPIqvuN3/iN2MfGGL72ta/d9XP36q21RURERERERGR905mCSGIc41CRU0BFTgGHK3bE1l3rcnU8GB21NBgbtXRpZJCZSHhJzzE0Nc7Q1Div33gzbr00IycajIkPyuSmpq/ItYmIiIgkK+NPg6JtULRtISAzN+kFZII92GA3hHpg8lZiBSMzMNwFw10LAZmUzGhApmYhIJNRoICMSAIUhpFV19bWhjEGa+3bvjHPf+5e3a22iIiIiIiIiKxvOlMQuTeOcajKKaQqp5APVD4SW4+4Ln3jt6MdZKLdZEIDvDkytOSQzMDUGANTY7x2/XLc+obM3Ds6yMz/KSFHIRkRERF5gJmUTCjeCcU7FwIyM2NeKObOgMx0KLGCc5MwdB6Gzi8EZFJzsPnVcQEZk563wlcisv4pDCP3hbXvPC/v3T4nIiIiIiIiIg83nSmIrDyf41CTW0RNbhFPVe2KrYfdCH1jt+8YteQFZa6MDDHrRpb0HDcnR7k5Ocor1y/FrZdl5b1l1JIXkslKSVuRaxMRERFJNiYtB0r3QOmehYDMVNAbrxTsgVA3BHtgdjyxgrNjMHAGBs7EAjI2Pd8br5RfDYEaCFRj0rJX/FpE1hOFYWTV/f7v//6yPiciIiIiIiIiDzedKYjcX37Hx+a8YjbnFXOkandsPexG6BkdjnWQ6Qp6I5eujN5ibokhmesTI1yfGOFn17ri1suzA28btbQ1r4TMlNQVuTYRERGRZGIy8iEjH7PxABAN+k8Nx3ePCfZAeCqxgtNBuBHE3jgRW7KZRXd0j6n2AjIpGSt9KSJJS2EYWXU6uBIRERERERGR5dCZgkhy8Ds+tgRK2BIo4Wn2xNbn3Ajdo7foCg5EgzKDdAUH6B69Rdi6S3qO/vEQ/eMhftJ/MbZmMFRk57MtvyQuKLMlUEyGXyEZEREReXAYYyCzCDKLMJsOAWCtC+OD8R1kQr0QmU2s6OQtmLyFvdYeW7LZG+LGK5FXgfGrQ588mBSGEREREREREREREZElS3F8sZDKv75jfTYSpnt0mK7QwB0jlwboHh0msoSQjMXSN36bvvHbvHz1QmzdYKjMKWB7oCQ2aml7oJTNecVk+FNW8ApFRERE1o4xDuRsgJwNmIomIBqQGbvudZAJ9UCwG0aughtOrOj4TRi/ib16bP5ZsLmbvBFLgRqvg0xuOcann6lk/VMYRkRERERERERERERWTKrPz/b8Urbnl/LBO9ZnImGujNzyRi2FBrgYDcn0jA3jWptwfYuld2yY3rFhXrp6PrbuGENldgHbowGZbYFStueXsDm3mHSFZEREROQBYIwDueVeYKXqMQCsG4bRaxDsjnaQ6YHRfkgohGy9fzvaj+39efRJfNi8imhAptrrIJNThnF8q3RVIqtDYRhZU+3tXluuvLw8tm3btqwaly9fJhgMAlBfX79iexMRERERERGR5KUzBZH1J83nZ2fBBnYWbIhbnw7PcWV0iIvBwbigTO/YbSyJh2Rca+kZG6ZnbJgf970RW3eMoTqnMBqOWQjK1OYVkerTEbmIiIisb8bxQ6AKAlWYGm/NRma9jjHBHmyw2wvIjN2ARH62shHv34d6Fv61LzUakLljxFJ2qRfOEUlS+klf1tSnP/1pjDE89thjfOUrX1lWjeeee46f/OQnGGN44403Fn+AiIiIiIiIiKx7OlMQeXCk+1N4pKCMRwrK4tanwnO8OTLIxdBgbNRSV2iAvrHgkkMyV0ZvcWX0Fj/qOxdb9xmHmlwvJLMt3xu1tC1Qyua8IlL0m88iIiKyjhlfKhTUQkEtJrpm56ZgpC86Yqkbgj0wMZhYwcgs3H4Tbr+58FOYPx0bqIZANSa/2huxlFmMMeYdy4jcTwrDyAPBLqGNqoiIiIiIiIjIPJ0piCSvDH8Kuws3sbtwU9z6VHiWS6HBaAeZhW4yV8eDS6ofsS6XR4a4PDLED3rPxtb9xmFzXlGsg8x8UKY6t1AhGREREVm3TEoGFG2Hou0LAZnZCa8LTLAHG/1fpoYTKxiehlsX4NaFhYBMShY2v/qOgEwNpOcrICNrQmEYEREREREREREREVk3Mvyp7C0qZ29Redz6xNzMQkjmjm4y1yZCS6ofti5doUG6QoPAmdh6iuNjc25R3Kil7fmlVOUU4FdIRkRERNYhk5oFJbugZNdCQGZ6BEK93pikYDcEu2FmNLGCcxMweA4Gzy0EZNJysXeOV8qvxqTlrvzFiLyFwjCy7oXDYQD8fr2cRURERERERCRxOlMQebBkpaSxv7iC/cUVcevjczNe95hoOGY+KHNjcmRJ9efcCBdDA1wMDcStpzo+avOK40YtbQt4IRmf49zzdYmIiIjcTyY9DzbshQ17MUS7aU4Hve4xwe5YJxnmJhIrODMKN09hb56KLdmMAogFZKq9TjKpWSt/MfJQ052+rHvXr18HIDs7e413IiIiIiIiIiLric4URB4O2SlpHCyu5GBxZdz66Ow0l6LhFi8oM8jF0AADkwn+5nPUrBvhfPAm54M349bTfH625BXHOsjMh2Qqc/JxjEIyIiIisj4YYyCjADIKMGUHgWhAZnIoGpDp8QIyoR5vdFIipm7D1G3s9c7Yks0q8brGzHeQyav0RjuJLJPCMLKuHTt2jEuXLmGMoaqqaq23IyIiIiIiIiLrhM4URCQ3NZ26kirqSuK/B4zMTEU7yHghmUsjXieZgamxJdWfiYQ5d/sG527fiFtP96WwNVDCtkBJXFCmPDugkIyIiIisC8YYyCqBrBJMeQMA1rowPuAFZELdXveYkT6IzCZWdGIQJgax/W3zz4LN2eh1jcmvjgZkKjC+1NW4JHkAKQwj983nP//5d/xcV1fXu37+raanp+nt7eXChQuxtfr6+nvan4iIiIiIiIgkJ50piMj9lJeWQX1pNfWl1XHrwZlJLkVHLF0MeSOXukIDDE2NL6n+dGSOM8PXODN8LW49w58S7R5TEusisy1QwiaFZERERGQdMMaBnI2QsxFT2QyAdSMwdv0tAZmrYCMJVLTeY8euY6/+IvokPmzupviATO4mjKPYg7ydXhVy37z44oteSvAtrLUMDg7y3e9+d8k1rbUApKen84lPfOKe9ygiIiIiIiIiyUdnCiKSDPLTMmkorabhrSGZ6YloOGaQi8GFkMzw9MSS6k+F5zh1q59Tt/rj1rP8qWwJlLB9PiCTX8r2QCllWXl3/d4oIiIikiyM44O8Cq+jC48DYCNzMNoPoR5sMBqQGbsO1l28oI143WZG+rC9r3prjh+bVxENyNRAfjXklHnhHHmoKQwj99X8QVOi64koLi7mv/23/0Z5efmya4iIiIiIiIhIctOZgogkq/z0LJo2bKZpw+a49eHp8Wg4ZtAbuxQNygRnJpdUfyI8e9eQTHZKWnTckheO2RYdt7QxM1chGREREUlaxpfidXTJr8HUvA8AG57xOsYEu7GhHi8gM34TSOB+zw1DsNt7bPdPvTVfKjZQtRCQCVRDdokCMg8ZhWHkvvnIRz7ytrX53+wqKSnhPe95T0J1jDFkZmZSXFzMrl27aGpqwu/XS1lERERERETkQaUzBRFZjwrTs3nPxmzes7E2tmat5db0+B2jlhaCMiOzU0uqPz43w4mhq5wYuhq3npuazta8klgHmfluMqUZOQrJiIiISFIy/jQo3AKFW5j/acXOTUGo946ATDdM3kqsYGQWhi/B8KWFOE1KBjZQHR+QySzUz0cPMN3ty33zX//rf33b2osvvgjAtm3b7vp5ERERERERERGdKYjIg8IYQ3FGDsUZOTxatiW2bq1lcGrsjg4yg7FxS6Oz00t6jtHZaTqH+ugc6otbz0tN94Ixd4xa2hYopTgjW28CiYiISNIxKRlQvAOKdywEZGbGIdQDoW5ssMf7eCqYWMG5KRg6D0PnFwIyqdnY/Oq4gIzJyF/hK5G1ojCMrLl7aWcsIiIiIiIiIg8vnSmIyIPCGENpZi6lmbk8XrY1tm6t5ebkaCwYc2dQZnxuZknPMTI7TftgL+2DvXHrgbRMtkfHLd0ZlCnKyF6RaxMRERFZKSYtG0p3Q+nuhYDMdAiCPQvjlYLdMDuWWMHZcRg4CwNnYwEZmx5YCMfMB2XSclb8WmT1KQwja+rChQtrvQURERERERERWYd0piAiDwNjDBuz8tiYlce/2rQttm6t5cbESHTU0nxQZpBLoQEmwrNLeo7QzCStAz20DvTErRekZbEtvyRu1NL2QCkF6VkrcWkiIiIiK8KkB2DjfszG/UD0lyambkcDMt1eQCbUA3OTiRWcDsHNk9ibJ2NLNrPoLQGZKkxK5opfi6wshWFERERERERERERERNYRYwxl2QHKsgO8r3x7bN1ay7WJULSDzPwfr5PMVHhuSc9xe2aClpvdtNzsjlsvSs9mW6AkbtTStvxS8tP0hpCIiIisPWMMZBZCZiFmUx0QDchMDEKwe6GDTKgXIgl22pu8BZO3sNc7Yks2uxQCNZho9xgCVRh/2kpfjtwDhWFERERERERERERERB4AxhjKs/P/f/buPbixuz4f//M5RxdfZFny2pLtXcv2Jusl2WQJJGGzX+AbaEJJUtIhQ9uULCEwwMCQpC3MrwwbZhoIJYFCB+hkOgPpFPJLpilhgKYhCfQX0iQlJQmX3DdZO7tryVfZXuti2db1fH5/nKOjc2R7bdmSZXuf14zH0sfyOUde2ysfPXre2OPx44qet5jrmtQwmoqbo5aGjIDMYHwK6UJlIZmZdAozkyn87+RJ23qgscUYtWQPyrS6G6ty34iIiIjWSwgBeIKAJwjRcxkAQEoNmJuwj1hKhAEtv7aNpqJAKgo5+mxxL5De7lKDjK8PaO2BUJ01uEe0FgzDEBERERERERERERHtYIpQEGppQ6ilDVf2nGeua1LDSCqGwVgUx4sBmVgUQ4kpZAprfCLIMLU4h6nFOfx64k3berDJi/2+IPb5AhjwGSEZfxBeV0NV7hsRERHRegihAN7dgHc3RO87AQBSywPJcUuDzCkgOQbIwhq2KPXbJscgI88YO1EhW/fYAzLebgiFMY3NwK8y1dzRo0fNy0II3Hnnnct+bKPKt01ERERERERE2xvPKRAR1ZYiFPS27EJvyy68L3S+uV7QNERSsxiM6e0xx42RSycS0xWHZKILSUQXknh6fMi23mmEZAb8xqglo1WmhSEZIiIiqhOhOABfCPCFIHA5AEAWckBiBIifgowNA/FhPTADufoGZUEfxxQPQw4/pa8pTsjWEODvK41YaunSwzlUVQzDUM397Gc/06unDNaTS+Uf2yieuCIiIiIiIiLaOXhOgYioPlRFQb+3Hf3edry/94C5ntcKiMzN6uEYS1DmZGIaWW0tr5gumVxIYnIhiafKQjLdza22BpliSKbZ6a7KfSMiIiKqhFCdQNteoG0vin+BynwaiEeA+LAekImdAuaja9uglgNiJ4DYiVKcxuGGbO0F/P2lgExzoKp/856NGIahTSGl/qO83A9s8WMbxV8GRERERERERDsPzykQEW0dDkXF3tYO7G3twNW9F5jrea2A4eRps0FmMKaPXDqZnEGuwpDM+HwC4/MJPDk2aFvf4/GZDTLFoMy+1gCanK6q3DciIiKitRKOBqB9AGgfKAVksgtAIqyPWIoNA/FTwMLptW0wnwFODwKnB0sBGWcTpK9PD8j4+gB/H9DYxr9fK7ApYZgbb7wRzz//PABg9+7deOKJJzZjt9tKLpfDyZMnMTo6isnJSczPz6NQKKClpQVtbW04cOAAQqHQtvzmvu6669b1MSIiIiIiIiI6u/GcAhHR9uBQVJzrC+BcXwB/ggvN9ZxWwKnkDAZjUSMoM4XBWBSnkjPIS62ifYym4hhNxfHE6HFzTUCgx+PHgD9gC8qc6wug0eGs2v0jIiIiWo1wNQEd5wEd55UCMpkkYIxWMgMy6cTaNphbAKaPAdPHSgEZt9cIyPQZAZl+iIbWKt+TnYPNMHX04osv4uGHH8Yf/vAHDA0NIZfLnfH2wWAQH/rQh3DTTTfB5/Nt0lFu3F133bWujxERERERERHR2Y3nFIiItjenopohlQ9Y1rOFPE7aQjJ6UGY4eRqFCkIyEhKR1CwiqVk8PvKGuS4gEGppw35fwBy1tN8XxDmtHWhgSIaIiIg2iXB7gc6DQOfBUkBmMQbEhiHjp4D4sB6WyabWtsFMEoi+DERfNgMystEP+Pog/P36eCV/H4TLU/X7sh0xDFNHjzzyCO6///413z4ajeKf//mf8eCDD+LOO+/E5ZdfXsOjIyIiIiIiIiIiIiKqPpfqwFv8nXiLv9O2ninkcSIxbYxaKrXJhOdOQ6tgNJ6ERHjuNMJzp/FfI6+b64oQ6G3ZhQFfwBy1NGCEZNwqny4hIiKi2hONfqDRD9H9NgDG+N+F00DcGK8UOwXEw0B+cW0bXIwBizHIiRfMJdncYQ/I+HohnI3VvzNbHB/dbSFOpxOhUAh79uxBS0sLNE1DLBbDG2+8gVgsZt5uZmYGN998M/7pn/4Jf/RHf1THIyYiIiIiIiIiIiIiqg636sD5bV04v63Ltp7O53AyOY3jsSmjRSaK47EownOzkFh7SEaTEqeSMziVnMEvI8fMdVUo6PPqIZlii8yAP4i93na4GJIhIiKiGhJCAM3tQHM7xO5LAQBSakBqyh6QSUSAQnZtG52fBuanIcd+W9wLpKdTb43x9wG+fqC1B8LhrsVd2jL4KK6OFEXBRRddhCuuuAKXXnopLrjgAjidSysaNU3DM888g2984xsYGhoCAORyORw9ehSPPfYY2traNvvQiYiIiIiIiIiIiIg2RYPDifPbunF+W7dtfTGfw4nEFI7HpzAYi5pBmchcrKKQTEFqOJGYxonENB4Lv2auq0LBXm+70SBTapPp97bDqahVu39EREREVkIoQEsn0NIJ0XMYACC1ApCaAGJGQCY+DCRGAC2/hi1K/XNTE5AjvzF2okC2dAP+fiMg06cHZJSdEyHZOfdkG/rbv/1bOByr/xMoioJ3v/vdeNvb3oYbb7wRx47pifV4PI4HHngAN998c60PlYiIiIiIiIiIiIhoS2l0OHHBrt24YNdu2/pCLos3E1NGg0ypTWYkFVthS8srSA1DiSkMJabwiGXdIRTsbW3HgE8fszTg19tk+ry7GJIhIiKimhCKCnj3AN49EL3vBgBILQ8kRoH4sBGQOQUkxwCprb5BqQHJUSA5Chn+H31NcUB69+gBmT2HINoHaneHNgHDMHW0liCMlcfjwW233YaPfOQj5toTTzzBMAwRERERERERERERkaHJ6cLB9j042L7Htj6fy2AoboRkLG0yY/PxiraflxoG41MYjE8BeMVcdyoq9nrbsd8fNIMy+/1B9La0wcGQDBEREVWZUByAv08ff9Svr8lCFohHjIDMKb1BZm4SWEtrnpbXbx8fhjz138A7Pgux+5La3YEaYxhmm7n44ovR2NiIxcVFAMDo6Gidj2h1H/3oRzdlP0II3HvvvZuyLyIiIiIiIiKqPZ5TICKiamp2unFRRw8u6uixradyGb09xgjHFIMyEwuJiraf0wo4Ho/ieDxqW3erDnPc0n5fKSjT29IGVVE2fL+IiIiIioTqAnadC+w6F8JYk7lFIBHRRyzFh4HYMDA/teq25ORLZ28YJpVK4bnnnsPExAQWFxcRCATQ39+PgwcPVuv4qIyiKPB4PGYYZn5+vs5HtLrnn38eQojVb7gBUsqa74OIiIiIiIiINhfPKRAR0WbwON14e0cIb+8I2daT2TSGjHCLHpSZwvF4FNGFZEXbzxTyeD02iddjk7Z1t+rAua0dZoNMMSQTavFDEQzJEBERUXUIZyPQvh9o318KyGRTQDwMxCwNMouz9s/rfOumH2s1rSsME4/H8a1vfQsPP/ww0un0ko/39fXhpptuwoc//GGeTKiydDqNeLxU2RgIBOp4NGsn5RpqlwzF75mVPsf6PVXJdomIiIiIiIho++E5BSIiqhevqwEXB3pxcaDXth7PLGDICMYUQzKD8SimFucq2n6mkMdrsxN4bXbCtt6gOrHPF8CAL2ALyuzx+BiSISIioqoQLg8QOAAEDpQCMumEHoqZnwFaeyDaB+p5iBtWcRjmjTfewCc+8QnMzMyseJvh4WF85Stfwa9//Wt85zvf2dABkt0vfvEL5HI58/oll2z9WqJbbrll1dsUCgX86Ec/QiwWg5QSqqrivPPOw8DAAHw+H1wuF1KpFEZHR/Hqq6+a339CCLzvfe/DwMD2/kEkIiIiIiIioqV4ToGIiLYin7sJlwb7cGmwz7YeyyxYRi2VgjIz6VRF208Xcnjl9BheOT1mW29yuGwhmWJQZnezjy9MJiIiog0TDa3ANm+DsaooDHPq1Cl8/OMfx+ysvR4nFAph3759cDqdiEQiOHbsGADgV7/6Fb761a9W72jPcseOHcNdd91lXhdC4CMf+Ugdj2htVjtxlUwmcfPNN2N2dhZutxsf//jHceTIEXR0dCx7eyklnnnmGXz729/Ga6+9hqeffhpXXnkl/vRP/7QWh09EREREREREdcJzCvWTTCaRTNrHgExOTq5wayIiAgC/uwmHOvtxqLPftj6bnreEY4pBmSnMZuYr2v5CPouXZkbx0syobb3Z4cI+XxD7/ZaQjC+IruZWhmSIiIjorLXmMIymaTh69KgtCBMKhXDHHXfg8OHDttueOnUKt99+O5577jk8+OCD8Hq91TviZSz3x3m1eb3emt+Pcvl8HolEAsePH8cvfvEL/PSnP7W1wnz605/GwYMHN/WYauGLX/wifvvb36K1tRX33HPPqvdJCIF3vetdOHz4MI4ePYr//M//xG233YZQKISLLrpok46aiIiIiIiIiOqN5xRq595778Xdd99d78MgItoR2hqacbhzLw537rWtn06ncNwyZum4EZaJZRYq2v58PosXZ0bw4syIbb3F6cY+XxADvoA5ammfL4iuJi9DMkRERLTjrTkM89BDD+GFF14wr/f09OCBBx5Ae3v7ktv29/fjX//1X/HZz34WTz31VM2DKpvxx/ktt9yCW2+9tab7eOCBB/DlL3951ds5nU7ccsst+MxnPlPT49kMTz31FJ544gkIIXD06NGKwj2qquLv//7v8eqrr+LkyZO444478NOf/rSGR0tEREREREREWwXPKdTWTTfdhOuuu862Njk5iSNHjtTpiIiIdp5dDR78ny4P/k/XOeaalBIz6RQGY0aDjCUok8guVrT9uVwGf5iO4A/TEdu619WAfa0BDPj1BpkBXxAD/iCCjS0MyRAREdGOseYwzP3332+7/rWvfW3ZIIy5YYcDX//61/H+97+/5mGYs4Xb7cYNN9yAj3zkI9izZ0+9D6cqfvaznwEAWltbce2111b8+S6XC3/xF3+Br3/963j99dfx5ptv4txzz632YRIRERERERHRFsNzCrVVj5ZkIiLSW8w6GlvQ0diCd3aX/l+SUmJqcc7SIKOHZAbjUSSz6Yr2kcym8fvpCH5fFpJpdTViwBcwwzHFoExHo4chGSIiItp21hSGOXXqFF599VXz+sUXX4xDhw6t+nltbW348Ic/jO9973vrP0IyZTIZ/OxnP4OUEp/61KfOGEbaLl5//XUIIbB3716oqrqubezfv9+8fOzYMZ64IiIiIiIiIjoL8JwCERGdTYQQCDZ5EWzy4t3d+8x1KSUmF5JmMMYalEnlMhXtI5FdxG+nwvjtVNi27nM3YX8xJGMJyrQ3eqpy34iIiIhqYU2L7gZMAAAgAElEQVRhmBdffNF2/eqrr17zDq655pqah2FuvfXWmo8w2gzXXnst3v3ud5vXM5kMYrEYXn31VTzyyCN4+eWXEY/H8cMf/hAPPfQQvv3tb+Pw4cN1POKNi0ajAPQH7Otl/dypqakNHxMRERERERERbX08p0BERKSHZLqaW9HV3IrLdw+Y61JKTMwnjFFLxaDMFIbiUcznsxXtI55ZwHPRYTwXHbatt7mbMeAP2EYt7fcF0dbQXI27RkRERLQhawrDvPbaa7brF1544Zp3sG/fPrjdbmQylSWQz0Yejwcez9Ik9SWXXIKPfexj+OUvf4mjR49ifn4esVgMn/nMZ3DfffdVNBN7q3G73Uin0zh58iQKhcK6Xsl1/Phx83JDQ0M1D4+IiIiIiIiItiieUyAiIlqZEALdHh+6PT68d0+pCU1KibH5uNEgU3zTm2QW87mK9jGbmcezk6fw7OQp23p7g0cft2QZtTTgD8LvbqrKfSMiIiJaizWFYU6fPm27HgqF1rwDVVWxZ88enDhxorIjoyXe//73w+v14uMf/ziklEin0/jiF7+In//851AUpd6Hty49PT1IJBJIJpN4+OGH8cEPfrCiz89ms/jRj35k2x4RERERERER7Xw8p0BERFQ5IQT2ePzY4/Hjip63mOua1DCailtGLekhmaH4FNKFykIyM+kUZiZT+N/Jk7b1QGOLMWrJHpRpdTdW5b4RERERWa0pDJNMJm3Xl2svOZOWlpaKbk8rO3z4MK6++mo8+uijAIATJ07gf/7nf3D55ZfX+cjW54orrsCrr74KKSXuvPNO7N27d81NN5qm4bbbbsPw8DAAoKmpaduPjSIiIiIiIiKiteE5BSIioupRhIJQSxtCLW24suc8c72gaRhJxSyjlvT3byamkSnkK9rH1OIcphbn8OuJN23rwSavEYwphWT2+YLwutjaRkREROu3pjDMVpdMJpcEdqrN6/XC6/XWdB9rddVVV5lhGAB45plntm0Y5vrrr8e9995rvpLrxhtvxMc+9jHccMMNCAaDy36Opmn49a9/je985zt4/fXXAehp9o9+9KNwuVybefhEREREREREVCc8p0BERFR7qqKgz7sLfd5d+OPQ+eZ6QdMQnpsthWTiUQzFp3BiHSGZ6EIS0YUknh4fsq13NbUa4ZiAOWppwBeEx+muyn0jIiKinW1NYZjyEEgqlUJbW9uadzI3N1fZUVXo3nvvxd13313Tfdxyyy249dZba7qPtert7bVdHxkZqdORbFxbWxu++tWv4m/+5m+gaRoymQy+//3v45577sG+ffswMDAAn88Hp9OJ+fl5jI6O4rXXXkMikbBt5+DBg/jsZz9bp3tBRERERERERJuN5xSIiIjqR1UU7G1tx97WdlzVe8Bcz2sFROZmcTwexWBMH7V0PB7FycQ0slqhon1MLCQwsZDAU2ODtvXdzT5LOCZgjl5qZkiGiIiILNYUhtm1a5fteiQSWXMYplAoYHR0tPIjoxU5nU7b9Ww2W6cjqY73ve99+Md//EfcdtttWFhYAKC/UmtwcBCDg4NLbi+lBKC/cktKicsuuwx33333kq8LEREREREREe1sPKdARES0tTgUFXtbO7C3tQNX915grue1AoaTp/WQTDyKwdgUBuNRnEhMIy+1ivYxNh/H2Hwc/z123La+x2OEZHz6qKUBfxD7WgNocrL9jYiI6Gy0pjDMgQMHbNdfeeUVXHTRRWvawdDQEDKZTOVHRiuKRqO26+Vhpe3oqquuwsGDB/GNb3wDv/rVr5DP580TVCvp6urCpz/9aVx//fWbdJREREREREREtNXwnAIREdHW51BUnOsL4FxfAH+CC831nFbAqeQMBmNRIygzhcFYFCeTMyhUGJIZTcUxmorjidFSSEZAoMfjx4A/YAvKnOsLoNHBMCwREdFOtqYwTHnw5bHHHsONN964ph08+uijlR9VhW699dYtM8JoM/zmN7+xXQ+FQnU6kurq7u7Gd7/7XUxPT+OJJ57ASy+9hOHhYSSTSeRyOTQ3N6O9vR0HDhzAO97xDlx22WUQQtT7sImIiIiIiIioznhOgYiIaHtyKqoZUvmAZT1byOOkLSSjB2WGk6crCslISERSs4ikZvH4yBvmuoBAqKUN+30BY9ySHpI5p7UDDQzJEBER7QhrCsP09/fjggsuwKuvvgoA+P3vf4/nnnsOhw4dOuPnzc7O4oEHHtj4UZIpFovhRz/6kW3t8ssvr9PR1EZHRweuv/56vjqLiIiIiIiIiCrCcwpEREQ7g0t14C3+TrzF32lbzxTyOJGYNkYtldpkwnOnoa3SDGclIRGeO43w3Gn818jr5roiBHpbdmHAFzBHLQ0YIRm3uqan1IiIiGiLWPP/3EeOHMHRo0fN61/60pfw7//+72hvb1/29vl8HkePHkUymdz4Ue5AzzzzDNxuNy655JI1f04qlcJnP/tZJBIJc+3AgQO44IILzvBZRERERERERFQLUkqgUCi9SQ0oaEChAFkoAPkcRHsHhINPnBARERFVg1t14Py2Lpzf1mVbT+dzOJGYLrXIxKI4Hp9CZG4WEmsPyWhS4lRyBqeSM/hl5Ji5rgoFfV49JFNskRnwB7HX2w4XQzJERERb0pr/h/7gBz+IBx98EC+88AIAYGRkBDfccAPuuOMOXHbZZbbbDg8P4/bbb8ezzz4LAPB6vQzFlBkaGsJdd92FQ4cO4dprr8V73/veFYNFqVQKjz32GO6++25MTk6a66qq4u/+7u9Y60tERERERES0AVLTAyww3xcArRR0kZrlYwXNCL0UIOdTkOPj0MbHgPFxaBPj+vWJcWB8HMhlobzr/6Lhh/dDNDXV+24SERER7VgNDicO7OrGgV3dtvXFfBZvxi0hmXgUg7EpRFKzFW2/IDWcSEzjRGIaj4VfM9cdQkG/t91okCm1yfR72+FU1KrcNyIiIlqfNYdhFEXBXXfdhQ9/+MOIxWIAgHA4jJtuugmhUAgDAwNwOBwYGRnBa6+VHgj82Z/9GSKRCJ5//vnqH/0O8Nxzz+G5554DAHR2dqK/vx9erxculwvz8/MYGxvDiRMnkM/nbZ+nKAr+4R/+ARdddFE9DpuIiIiIiIhoyzFDLcVgi2aEV4x1qVk+VjA+rmnACpX6MpeDnJyANj4OFIMu42OQE+OQE+OApbl1JdrTTyL/0M/g/PCRat9dIiIiIlpFo8OFC9t348L23bb1hVwWQ4kpy6gl/W00Fa9o+3mpYSgxhaHEFB6xrDsVFXu97RjwBTHgL7XJ9Hl3wcGQDBER0aaoqLutv78fP/jBD/DJT34SMzMz5nokEkEkElly+/e+9724/fbb8YlPfGLjR3oWmJyctDW/rKSnpwdf/epXcfjw4U04qvrI5/OYm5tDOp3Wa6fXqLu7e/UbERERERER0ZYmrS0tZeOHoGmlUEsx6FK8Xul+NA3y9Azk5CTk+LgRcpnQAy/jo8Aa/kZfC9HQUJXt0NrwnAIRERGtpsnpwlvb9+Ct7Xts6/O5DAbjU0Y4Rg/LDMajGJuvLCST0wo4HteDNhgurbsUFXtbO/QGGV8AA349JNPbsguqolThnhEREVFRxYMMzzvvPDzyyCP45je/iZ///OdIp9NLbhMKhfDRj34UR44cgcL/vJf1gQ98AE6nE0899RReeOGFVcdIKYqCt771rfjQhz6Ea6+9Fg078ETaCy+8gJ/85Cf43e9+h0gkUtEJKwAQQuDYsWOr35CIiIiIiIg2hbS2tCw3fkhqVQm1mBQFUFT9vaoAqgrMzUEbH4ccH4M2Pgo5OgY5OgJtdAQYHQGy2erd4XLNzVA/9OdQ//SDtdsHAeA5BSIiIqqOZqcbb+vowds6emzrc9m02SQzGI/iuBGUmVhYvSnQKqsV8EZsEm/E7KFrt+rAOa0depOML2C8D6K3pY0hGSIionWqOAwDAD6fD1/72tdw9OhRPPvss5iYmMDi4iICgQD6+/tx8OBBCCHM2993331VO+Cdor29HUeOHMGRI0cgpcTw8DDC4TAmJiaQSqWQy+XQ3NyMlpYWhEIhnH/++WjaofPFs9ksbrvtNjzySKlEsNKTVkRERERERFQbUkpLmMUSaikfP6RZ2luKIZf1KoZaVBVQBKCqEGbIRdWDLsZ1mc3qQZfRUWAkAi08DDkSgYyEoUXCwCovPtkQhwPo7ITSvRuiuxuiczdEdxdEqBdq/16gIwDh80HwCYya4TkFIiIi2gwtrga8vSOEt3eEbOvJbBpDRgOMHpSZwvF4FNGFyh6DZgp5HJudwLHZCdu6W3XgXCMks98fNEMyoRY/FMHHmERERGeyrjBMkcfjwZVXXlmtYzlrCSHQ39+P/v7+eh9KXfzVX/0VnnrqKUgpIYTgSSsiIiIiIqIasIVaisGWYqilfPxQsb2lGHJZL1UFhDXAouihFtXS3mK7rr+3vsBGFgqQ4+PQwkPQImHIkTC0iB52keEw5FS0Cl+dMwgEILq6oXR260GX7t0QXUbopSMA0dgE4XYBLjfgcgFuN8Mvm4jnFIiIiKievK4GXBzoxcWBXtt6PLOAISMYUwzJDMajmFqcq2j7mUIer81O4LWykEyD6sQ+X8BskSkGZfZ4fAzJEBERGTYUhiHaqMcffxxPPvmkeaLT7/fjz//8z3HppZeis7MTjY2NdT5CIiIiIiKirUVKuczoIUsri1aA1JYZP7TRUEvZ+CFhhlyM9payUItQ1bXfn5kZaCNho80lAhkeLgVexkaBfH79x76a1laIPT0Q3UbgJRgEurqgdO2G6OyEcLtLXwOXC8LlBizhF2twp3h/pJbXv+ZSAxxu/WtFVcdzCkRERLRV+dxNuDTYh0uDfbb1WGbBMmqpFJSZSacq2n66kMMrp8fwyukx23qTw2ULyRSDMrubfUsetxIREe10DMNQXT300EPm5Ysuugjf//734fV663hEREREREREm8MMtZS3tFhCLrJgCboUAy3VDrWUjx+yhlxUtSotJ3I+BRmJ6M0u4WH9ffF6JAIszG94HytqaIDoCelv3buhdHdBdHYDgQCUjgCEx7P0cxxOwG0JvrgbIBylUyhSSkAWgEJGb9ORBaAYgNHKxkO5vYBrZ449rjeeUyAiIqLtxu9uwqHOfhzqtE8KmE3PW8IxxaDMFGYzlT1OXshn8dLMKF6aGbWtNztc2OcLYr/fEpLxBdHV3MqQDBER7VgMw1BdvfzyywD0UVHf/OY3edKKiIiIiIi2HVuopWC0gRQ023VZsIwfKo4iWu84FyH08IpSGj1khlrKxw8pSlVDLSuR2Szk2KjR7GIJuoT165g9XbN9Q1H00UWhXiihEERvn369sxMi2Al4vRC53PLtMkIATlcp+FIcc6SqkLIYQMoDWhoybQRdZH71QJKiAIpDf3O4a3O/iecUiIiIaMdoa2jG4c69ONy517Y+s5iyhWT0oMwU4pmFirY/n8/ixZkRvDgzYltvcbqxzxfEgC9gjloa8AXR2eRlSIaIiLY9hmGormKxGIQQOPfcc9HT01PvwyEiIiIiorOYOVrINn6oFHSRmuVjBc0IvWww1KKqRhOLYgZZzFDLSuOHahhqWYnUNMipqD62KBKBFh4ujTSKhCEnxjfWWLOaXe1QenuNwEsvRCgEJdQLhHohdrVDSAlkMpDZDJDN2o9lcVF/ryilMUcNbsDlhnQ6IGSh1Ogis0Bm0Wh7OcP9EQIQxZYd1bjsMC/ziYPNwXMKREREtNO1N3rQ3ujBO7vOMdeklJheTJWNWtLfEtl0Rdufy2Xwh+kI/jAdsa17XQ1mMMYalAk0tvCxLhERbRsMw1BdeTwexGIx7Nq1q96HQkREREREO4QZallh/JDULB+zjh/aaKhFMcIrqgphG0e0wvihLXYSWSYS5hgja9BFi4QhRyJAJlO7nTd7zICLCIWg9PbpwZeeEEQoBNHs0dt1MnrYRWYzQDoD5LLAVBRL/uUcDjP4Il0OwKFCOJRS04vMArlFiOwZ/s2FsARdjLCLUBl42UJ4ToGIiIjORkIIBJpaEGhqwbu6zzXXpZSILs6VjVrSL8/lKnssn8ym8bupMH43Fbatt7oaLQ0yAez3BTHgD6K9wcPHx0REtOUwDEN1tXv3bszOziIej9f7UIiIiIiIaIuR1paW8vFDmlYKtRSDLsXr66UoS8YPmaGWM40f2iYnfWU6DTkSMccY6UGXYXOkERKJ2u3c4YDY07NM0EVvesGuXbavo8zlgGwGyGQhk0nImZnlxxwBkE4nhNMBmG8KhIA50kjIHJCH/lZOCFuji63dRVFr8qWg6uE5BSIiIqISIQQ6m7zobPLi/+7eZ65LKTGxkMRQccxSLIrB+BQG41GkKgzJJLKLeD46jOejw7Z1v7sJA75AqU3GH8R+XxDtjZ5q3DUiIqJ1YRiG6urKK6/EK6+8gqGhIaRSKXg8fGBERERERLTTSGtLy3Ljh6RWg1CLJbxSHC1kjh+yhl4s44e2SahlJbJQgJyY0EMuxXaXkYg52khOTtR0/6KzS29xsQZdjOCL6OrSg0XlxyylPtYoNQeZyUJm0kvHHAH694iUgEuFcDoBhwIYjS+KOc5IAsgB5d86igIIx7IjjYTY/JFTVD08p0BERES0OiEEuptb0d3cist3D5jrUkpMzCf0BhkzKDOFoXgU8/lsRfuIZRbwXHQYz5WFZNrczRjwGw0ylpBMW0NzNe4aERHRGTEMQ3X1oQ99CP/yL/+CVCqFH/zgB7j11lvrfUhERERERLQMKaUlzGIJtZSPH9Is7S3FkMt62QIrxvih8tFDZS0tUJRtH2pZiZQSmJ1dEnTRr0cgx0aBXK52B9DaWhpjFDJCLsXRRnt6IBobz3z8mqaPOcpk9DFHmaw+5sgYTyWl8b0k84AA4HJCOFS96cXhgnC5ltuo/n6ZoEtxpFG9Ai8ynwHyacDt3bHfk/XGcwpERERE6yeEQLfHh26PD+/ds99c16SG8fmE0SBTfNObZBbzlf29MZuZx7OTp/Ds5CnbenuDR2+SMcIxxaCM391UlftGREQEMAxDddbe3o6vfOUr+PznP4/vfe972LdvH6666qp6HxYRERER0Y5lC7UUgy3FUEv5+KFie0sx5LJeqgoIxdbKIpYbPWRpadnJoZYzkfPzywZdiqONMJ+q3c7dbogeI9wS6oVitLyI3j59rbV17fcjn18afMnn9ECMLOhvmvHeoUI4VAiXA3C5AJcHwlF2ukIIM9yiB13sTS/1/F6RmTlgbgKYG4ecm9AvpyaAhdP6DVpDwLv+HwgXW0uqjecUiIiIiKpPEQr2ePzY4/Hjip63mOua1DCailtGLekhmaH4FNKFykIyM+kUZiZT+N/Jk7b1QGOLMWrJHpRpdZ85eE9ERLQchmGo7q655hoAwNGjR/G5z30OTzzxBG644QZceOGFUJep0SYiIiIiIiPUsmT0kKWVRSvowYPy8UMbDbWUjx8S1lYWsXT0EB/T28hcDnJ8DDI8bAZc9PdhaOEwcHqmdjtXFIiublvQRR9jZIReAkF9nFQFpJR6G00mDWSykNkMZHoByOf01hYtb7S9FABogNOpN7xY3sx9CmFrdIHiKLW7KPU9fSGlBizOGqGXiVLoZW4cyK4SUEpEgLHfA/2Xb87BnmV4ToGIiIhocyhCQailDaGWNlzZc565XtA0jKRillFL+vs3E9PIFPIV7WNqcQ5Ti3P49cSbtvVgk9cIxpRCMvt8QXhdDVW5b0REtDMxDEN1dcUVV5iXFUWBlBIPP/wwHn74YTgcDvh8PriWq8JehhACjz/+eK0O9axkvprT6dRPWp+Fr8wlIiIiqjUz1FLe0mIJuciCJehSDLRUO9RSPn7IGnJR1YpDEmcrKSXkVBTSGnQJD0OL6E0vcnxsY/92q2nbpbe49PZaRhrpTS9i957lRw2tUXHMkcxkgMwCZHoRSC/aAy+yAEjo30suF0SjEXpxu/S/KZQztLso9Q8uSC0PpKLA3CSQsjS9zE0Ahez6N+z2Vu8gycRzCkRERET1pyoK+ry70OfdhT8OnW+uFzQN4bnZUkgmHsVgLIoTiWlktcrG6UYXkoguJPH0+JBtvaup1QjHBMxRSwO+IDxOd1XuGxERbW8Mw1BdjY2N2QIWxctSSuRyOUxPT68pgCGlZFCjBuTMNDA/X7rucAIuJ4TTOKHtdOonuPlqOyIiIiI9KGAdPyQtLS3GdVmwjB8qjiKScn07FEIPHCil0UNmqKV8/JCiMNRSRTKZNNtcrEEXLRKGHIkA6XTtdt7UbAm4GO+LY4x6eiA8LVXZjZbLAukFPeySXoBMp4Fs2hhvVBbmcTgAtwvC1aSHXhoaIJwNtqALFD34IsTW+P6T+XRZy8u4fn1+2mixqQYBNHdA9F0OdF1UpW2SFc8pEBEREW1dqqJgb2s79ra246reA+Z6XisgPDdrGbWkt8mcTM4gV2FIZmIhgYmFBJ4aG7St7272meGYYlBmny+AZoZkiIjOKgzDUN3JVU7+r/Zxqh3hbdW//tmcXnNuvEks2G4nVbVUd+50AU6H8Z5tMkRERLT9mKOFbOOHSu0tUrN8rKAZoZcNhlpU1WhisYwWWmn8kBF0YaildmQ6DTk6Yo4xMoMuxnvE47XbucOhN7gURxn19pVGGvX0Au3tVXuMLaXeNCSLoZfMot72srgALFdnLmA87m8EGhqBxibA3QjhcNlCL1vlbwD9b5k5c5yRbbTRYqx6O1IcgKcTaOmGaOkCWrqAlm7AE4RQndXbDy2L5xSIiIiItheHouKc1g6c09qBa3CBuZ7TChhOnjYbZIpBmZOJGeRlZe2aY/NxjM3H8d9jx23rPR6/HpLxBbHfXwrJNDrW36BJRERbF8MwVFd33XVXvQ+BzkA0NUE0NQEwTiDmckAuC2RzkMZ75LKlJ4bKXwErRFmbjFMPybhcfPKGiIiIak5aW1qWGT8kNcvHrOOHNhpqUYzwSjHUstr4oS0SHDibyEIBcnLCNsZIRiLQRoy2l8nJ9X8frIEIBCF6e0uBl55es+FFdHVBOKr3p7rUjNFFWgGykDOaXhaNMUdp/TG+tsx9VRQ96NJoBF/cTUBDI4Tq0EcabaHvWyk1YOH0MqGXCSA3v/oG1srZZARduiBauvXLni6guX3LNN6cbXhOgYiIiGjncCoq9vkC2OcLAH0Xmus5rYBTyRkMxoxRS/EpDBpNMoUKQzIjqRhGUjH8avQNc01AINRSCskM+IMYaA3gXF8AjQ6G24mItjOGYaiurrvuunofAq2REEIfjeRyAc36i0KLZD4PZLP6ifRsVg/K5PJ6k0wuC+SykLCfhF7aJmOMXHLywSURERHZSWtLS/n4IU0rhVqKQZfi9fVSlCXjh8xQy5nGD22hcMDZTkoJxGLQwsNGm0sE0gi6aOEw5OiI/ti1VlpaoPT2QYR6IXpC5mU9+BLSAyZVIqU0wy7QCoDM68GXfNYIvWSATBay+HjdSkBvc2lwG8EXvekFDU1Q3A1VO8ZqkYUcMB8tG280AaQmgUK2ejtq8FtCL5amF7eXP+dbDM8pEBEREe18TkU1gyofsKxnC3mctIVk9KDMcPJ0RSEZCYnw3CzCc7P4/0ZeN9f1kEybPmbJb7TJ+II4p7UDDQzJEBFtCwzDENGGCYcDsLx6tXh6WGpaxW0yUgijPcbSJuNwsk2GiIhoB5DWlpblxg9JrQahFkt4RVX1xxPmuCFr6KUUbOGT3duDXFgoBV0iYWiRYdtII6RStdu5y6WHXEIhiFAfRCikN7uE9IYX+HxV/T6yB17yZZc1PeiSzZZCL9ls6WdHCGN8kao3m7gbIBqb9ZYXdwPgduthry1E5hb1UUZzk5Bz46WWl4VpPQxXDUIBmjuMcUadpaaXli4IZ/XCSkREREREVBsu1YG3+DvxFn+nbT1TyONEYloPx1jaZMJzp6FV0ACqh2ROIzx3Gv9lCckoQqC3ZRcGfAHsLzbJGCEZt8qnXYmIthL+ViaimhGKArjd+hvK2mRyOSMoY22TyQH5PJDNANkMyh+WSodDb5MxRi2ZbTJVrJEnIiKiM5NSWsIsllBL+fghzdLeUgy5rJctsGKMHyofPVTW0gJFYahlm5P5POTYGORI2Gh4MUYaRcJ66GV6qnY7FwKiu7s0vigU0oMuvXrwRQQ7qx7UllJbGnaRxnVNM24j9XB5Nqs/Xi4GXwAAjtLPiqMRcLuAhka94cXt1h8/u91b5udCSglkkkbopdjyYgRf0vHq7Uh1AZ5OS8uLEXppDkCofDUnEREREdFO41YdOL+tC+e3ddnWF/M5nExMl1pkYlEcj08hMjcLueTZiJVpUuJUcgankjP4ZeSYua4KBX1ePSRTbJEZ8Aex19sOF0MyRER1wd++RFQXwunUwyzF68Z7qWnGyKWyNpm8EZTJ5yEXF23bkopitMdY2mSMwMxWOdlPRES01dhCLcVgSzHUUj5+qNjeUgy5rJeq6m0MllYWsdzoIUtLC0MtO5eUEnJ6ygy3FIMuWtgIvIyPbSxEtZq2Nig9etDFHGlUbHjZvQfCCHRXky3wYgu7FJY0nkhN00ccGYEXmS8AeU3/GRLGz4hoAho8+mNrlwvC5dZDMC63Po50C5BSA+ZnykIvE0BqAsgtVG9HzmZznJFttFFTG4TYnIbJ0r9vTv93LRjBpoZWCHVr/HsQEREREZ2tGh1OHNjVjQO7um3ri/ks3oxbQjLxKAZjU4ikZivafkFqOJGYxonENB4Lv2auO4SCfm+70SBTapPp97bDqWytlk4iop2GYRjasiKRCMLhMJLJJDKZDLxeL9ra2nDeeeehsZG11TuVUBSgoUF/wzJtMtmsOXpJFi8XCmdok7GGZCxtMlusCp6IiGi9pJTLjB6ytLJoBf1J9fLxQxsNtZSPHxLWVhZhGUVkBFr4f+9ZSc1IeGgAACAASURBVM4lzTFGMjxsGWkUhhwZARarGIYo19iojzIygi6Ktd2lpweixVuT3colIRfr5eVfbSjzeeNxbkEPveQKQEEagRcVEA0QqgBU6KFvtxF8Kba9bIGmRFnIAalJI/BiGW2UmtTvf7U0tpXGGVlGG8HVsqnBOanlS4GXYvhFWyG8VUEVO1UPzykQERER0Vo0Oly4sH03LmzfbVtfyGUxlJiyjFrS30ZTlTVZ5qWGocQUhhJTeMSy7lRU7PW2Y8AXxIC/1CbT590FB0MyRERVUf8zZkQWQ0NDuO+++/D4448jFostextVVXHgwAFcf/31+MAHPgDXFnnFI9Xeim0yhYL+5EE+Z2+TyRlr+Rwk7E+0SEUx2mPK2mScTr76nIiI6sIMtazQ0gKtoP+fVwy6FFtbNvIk63KhlvLxQ9aQi6pWfTQMbW8yk4EcGzXHGJlBl0gEWmQYWOExfVWoqt7gUh50Mdpd0N5Rk8d1UsrSGCOtAMi85fKZfyYloLe7GIEXmc8DOQ3QjFA4BAQcgOIAVKE3vBhNL8VRR/X+GZTZBXvLS8oIvcxPF+/hxgkVaA5YQi9dpcuOhursY430tpfy0Et++X9nYQQBFaf+b6g4ANW5ac00xHMKRERERFQ9TU4X3tq+B29t32Nbn89lMBifsoxa0kMy4/OJiraf0wo4Htc/H8OldZeiYm9rh94g4wtgwK+HZHpbdkHlORkiooowDENbQi6Xw7e//W388Ic/1OvSLScWrSewpZTI5/N4+eWX8fLLL+Oee+7BN7/5TVxwwQX1OGzaIoSqAo2NAPRX95khGSnNFpklIRlNAzJpIJNe2ibjdAFOB9tkiIhoXaSm2ccPSUtLi3FdmqEXufFQixB6eEUpjR4yQy3l44cUhaEWqojUNMjJCdsYIxkOQxsxLk9M1LT1QnQEIEIhiN4+fXxRcYxRTy/E7t01a0QpBV6WaXdZqf3DPGj9501C0RtecnkgX4DMFSByOdvXS3/cqgBOtTTmqMGth1/qGNKWUgLpuBF6mbQ3vWQqO8F7RqobaOksBV48RtOLJwChbP7pCqnlgYIl8HKmthdFsYdejDcG6+uD5xSIiIiIaLM0O914W0cP3tbRY1ufy6ZLIRlLUGZyIVnR9rNaAW/EJvFGbNK27lYdOKe1w2yQKQZlQp42hmSIiFbAMAzVXaFQwC233IKnn34aUsolJw/lMifXi7c7deoUbrjhBtxzzz04dOjQZh0ybRNCCD3M4nIBzWUjl4ptMsboJTMokzfCMrns0jYZVdWflHC5zBYZuFyAgye9iYh2InO0kG38UKm9RWqWjxU0I/SywVCLqhpNLEagxbx+hvFDPOFBGyClBOJxPehiGWMkR8L65ZGI/pipVjwec4yRCIWg9PQaDS+9ED0hiKammu1ab/wwQi5Lml5WGSOmKHr4QejtSrIgzbYX5HJAelF/XGlhPlp0OPUxR+6Guo85kloBWJixN70YARjkF6u3I5cHMEYa6S0vRuil0V+X1hQpNSP0Ulhj24s98MK2l62F5xSIiIiIaCtocTXg4kAIFwdCtvVEZhFD8SmzQaZ4OVphSCZTyOPY7ASOzU7Y1t2qA/ta9WCMHpTRL/d4/FD4dwsRneUYhqG6+9a3voWnnnrKPGHV0NCAq6++GldccQX279+PtrY2uFwupFIpRCIRvPDCC3jooYdw7NgxCCGQzWZx880345FHHkEwGKzzvaHtwmyTaVymTSabNQIxeXubTPHJz3S6bGMC0uFcOnJpC9TYExGRJdRSPn7IWJea5WPF8UOatvFQi2KEV4qhltXGDzFYSTUiFxYgRyJm0EWLhCFHIkb4JQzMzdVu5y4XxJ4ec4yRCPWVRhqFegG/v6bf++aIG+sYI7Pt5QyBFyHMoAsU1bjs0IMvuQJELgssZCEzKf2xY2GZ9hAh9MeE5cGXOjw+lIWsHnCZGzcCL8XRRlH961EtTbuMZpdu+2gjd0v19lEBs+HH1vaSWznsVN72ojoBwd/PWx3PKRARERHRVtbqbsQlwV5cEuy1rcczC6WQTCxqtspMLVb2N3qmkMers+N4dXbctt7ocOohGV/QCMrol/d4fAzJENFZg2EYqqtIJIL77rvPPGl1+PBh3HXXXejs7FxyW5/PB5/Ph4MHD+Kmm27Cf/zHf+DLX/4yMpkM5ufn8d3vfhd33nnnZt8F2mGEEIDbrb+hrE0mn1/aJpPLAfm8pU1m3rY96XDobTJOp61NRjidm3iviIh2BmltaSkfP6RppVBLMehSvL5eimIfP1QcLbTa+CE+aUqbTObzkOPjpaCL5b2MRCCnorXbuRAQnZ36GKMevd2lGHQRvb0QnV01D3/IJe0ulstnCrUJYQm6qLamFwhjPGYmA2SyQGYeMpMFshlAyiVjNqEoetDF5QbcLn3Mkcu16b8PZDZlBl1so40WTgNLj3p9hAp4gqWgS7HlxdMJ4XBXZx/rUGp7sYZeVvgesLW9OAG1OOKIJ4S3G55TICIiIqLtyuduwqXBPlwa7LOtx9LzZjDGGpSZSacq2v5iPoeXT4/h5dNjtvUmhwv7fAEzHDPgC2K/P4jdzT6e0yKiHYdhGKqrhx56CPl8HkIIXHrppbjnnnvgWGNF+Ac/+EF0dHTgk5/8JKSUePTRR3H77bfD7a7fCVja2YTDAVi+P802GU3TQzFGi4ytTSafB/J5yEV7zbwsvlK4vE3G6WSbDBHteNLa0rLc+CFpGT1khl42GmqxhFfKQy2qNfRSCrbwBABtFVJKYGYGWmQYMhKxBF70dhc5PqY/5qgVv98Muughl77S5T09EDV+/G22e9jGGFmaXlYNvDiWtLtAqBCKWtpHoWAEXxYgs0YAJrfCeCiHY0nwZTODzlJKYDFmH22UMkIvmcpqts/I4dbHGXm6bC0vaO6AUOp3KkFKWRZ4KV5eqe1FXRp6qePxU3XxnAIRERER7TT+hmYc6uzHoc5+2/pset4SjikGZaYwm5lfYUvLW8hn8dLMKF6aGbWtNztc2OcLYr/fEpLxBdHV3MpzZES0bfEMENXVM888Y16+/fbb13zSquid73wnrr76ajz66KPIZDL47W9/i3e9613VPkyiMxLGK4GXbZMxWmSKYRmZy5XaZLIZIJtZ8hrdUpuMPmrJbJOp8OeDiKiW9CcjVxg/VN7UUgy6FMcPrZctsGKMHyofPVTW0gJF4R/stC3I1FxZ0CUMGS42vESAxYXa7byx0RhlpAddSiONjIYXr7d2+zaYAYfl2l20VcJwigIIa+ClFHpZrulD5nJ66CWT1YMv2ezKYSIj8CKMphe43frYs00gtTwwP22EXiZLTS+pCSCfqd6O3F499NLSaYRejKaXhtqOsFoLs/VnzW0vTuPfn20vZwueUyAiIiKis0VbQzMOd+7F4c69tvWZxZQtJKMHZaYQz1R2HmE+n8WLMyN4cWbEtt7idGOfTx+ztN8fNIMynU3euv/NSES0Gj6zSnU1OjoKIQR6e3txzjnnrGsbV155JR599FEAwNjY2Cq3Jtpc+nik0iuFbW0y2ezSNpl8buU2GUWxt8k4Hcb1za/gJ6KdQ0q5TEuLdfxQQf+dVT5+aCOhFlUFhGJrZRHLjR6ytLQw1ELbncxmIcdGoYX1dpfSKKMItMgwMDtbu50rCsTuPUa4pWyMUagXoiOwKT9fUmrLB13kGVo9zPugLg27GJdXCjtIKSEzGaPxJVMKviy3L0XRH1O5jIBzMfiyGV+XfAZITQJz43rLy9yEHoBJTelfp6oQQHM74CmONuoqBWBcnirtY/2WbXsp5PVmsOWw7YUMPKdARERERGe79kYP2hs9eGdX6fGwlBLTi6myUUv6WyKbrmj7c7kM/jAdwR+mI7Z1r6vBDMZYgzKBxhaewyOiLYNni6iuEokEACAYDK57G4FAYMn2iLY6oShAQ4P+BktIRkqjRSZXapMpNssUCkAmDWTSy7TJOC0jlyxtMpv0ymUiqj8z1LJCSwu0gj4GpBh0KQZaNhpqWTJ+qKypRZS1tPD3Eu1QUtMgo5O2dhcZCUMLhyFHwpATExv7eVtNe0cp6GIdYxTqhejevWljfGRxdNGyI43OcP+FsARd1FLTS3Gk0Son0swxR9msfczRcg0iDocl+OIC3A2b8vWRmTkz6FIKvUwAi6ertxPFAXiCxkij7tJ4I08nhOqq3n42oNT2Ygm9aCs08xTbXozAS7H5hW0vVMRzCkRERERESwkhEGhqQaCpBe/qPtdcl1IiujhXNmpJvzyXq6yBNJlN43dTYfxuKmxbb3U1WhpkAtjvC2LAH0R7g4chGSLadAzDUF01NzcjkUhs6IST9XObm5urcVhEdSOE0MMsrtKTFWZQplAojVzKZvU2mVxef6Inr7fKSNirD6WqAragjFNvk3E6+cCTaIuSxYCKGWyxjBkq6E8mS/Nj0gi9rDAyYi2EsIwfUswgy7JNLZbxQ0LhE5F09pHxeGmMkbXhZSQCORLRwxi10uyBUmxysQRdlFAvRE8IYhMfB0vNCLjIYqjBEoA50+8iIVZud6mg1UMfQ6kHXvTgS2blMUdOV2nMkTHWspahPCk1YHHWDLqYo43mJoBsqno7cjQagZcuiOJYo5YuoKld//29BZTaXspCLyu2vTjKQi+OLXNfaOviOQUiIiIiorUTQqCzyYvOJi/+7+595rqUEhMLSb09JmaEZOJRDMWnkKowJJPILuL56DCejw7b1v3uJgz4gvagjD+IXQ31byslop2LYRiqq0AggHg8jjfffBOzs7Noa2ureBu/+c1vbNsj2qmEqgKNjfoblmuTKRu5lMuWnjwvb5MRoqxNxhKSYWsDUVWYo4Vs44dKoRapWT5W0PQnBzcaajHHDxmBFts4IhVQxJLxQwy1EJXIdBpyJKK3uRTHGI2EIcP6ZSSTtdu50wmxp2dp0MV4j7a2TQuySinP0O6yWuBFgX2kkaPU7lJhsEFKqQeBy4MvyzXsCAG43BBG00sxXFyr33FSywOpqCX0MgGkjNBLIVu9HTW0GuOMjNFGxpgjNPi2VLBZmiOO8mtoe1EsoRdL8GUL3R/aPnhOgYiIiIho44QQ6G5uRXdzK96ze8Bcl1JifD5ha5A5boRkFvKV/e0byyzguegpPBc9ZVvf1dBsjlvSgzJ6m4y/gUF1Ito4hmGort7xjndgcHAQhUIB3/nOd3DHHXdU9PkjIyP4yU9+AgBQFAWXXHJJLQ5zQ5LJJJJlT5xMTk7W6WhoJ7K1yTSXQjIAIPN5/Ukk470ZlMkbYZlcFhLztu1JVdWfkHO5zIAMXK5NG69AtNVIa0uL0cxiHT8ki80sBc0ynqiw/h0WQy2WphZhG0e0zPghdfURIkSkt6zJ8fFS0MXyXkYikNHaPkYTnV1G2EUfY2QNvIiurk0NpEqp2RtdtLw9AHMmirJkjFEx9LLe8TVS08wxR8hmINOZlcccqar+2MTdoI85crn1xy01IHOLQGrSGG2kv8fcBDA/deaxTxURQHOHEXrpNEYbdQOeLghXU5X2UR3m942t7SW3ckCKbS9UY2fDOQUiIiIionoRQmC3x4fdHh/+aM9+c12TGsZScQzGp/Q2mXjUvLyYz1W0j9Ppefxm8iR+M3nStt7R6MG+1gAG/EF91JIxbsnv3lp/JxPR1sYwDNXVNddcg/vvvx8A8OMf/xh+vx9//dd/DWUNr+A8deoUPvOZz2BxcRFCCBw6dAh+v7/Wh1yxe++9F3fffXe9D6Nici6J7Fe/Au3ll/Rq+aYmoKkJorEZaGoCGhuNtebSx5qagMYm+/WmZojGxtLnsIFgUwmHA3CUftXb2mSy2TO2ych02rYtKYQejnE5IYxWGf167V51TVRNpdFCKzS1SK26oRZFsY8fKrawrDZ+iKEWonWTUgKnTxsBl2FoxTFGxbDL6MjK43SqobUVSm8fRE+p3UX0GoGXPT0QDQ212/cySsGF8lFG+eXbVaxWaHfZSODFPK583gy+yEwayBgjH5fjcAINbn3MkculjzlyVPfPWCklkElaQi9Gw8vcOLAYq96OFAfg6QRauo3ASzH0EoRQt17oWNpaXnKl76Pl2NpenGbrC/9Po1o7G84pEBERERFtNYpQ0NPShp6WNlzR8xZzXZMaRlNxvUEmVgrJDMWnkC5UFpKZXkxhejGF/y0LyQQaW8wxS9agTKu7sSr3jYh2FoZhqK7e/va34z3veQ+efPJJAMD3v/99PPnkk7jpppvwnve8Z0nFsaZpeO211/DQQw/hwQcfRC6n/+cphMDnP//5zT78Nbnppptw3XXX2dYmJydx5MiROh3R2mS/+hXk/98fVH/DjdbgTCNEU7MlOLNyoKYUvmmyf45lG3C5eMJ9jYQQgNutv2GFNplcrtQmk8sZ7TIZ/dXaZduTDofeJmOEY8w2mSo/WUUkpbSMFipYQiuauV4aP2QNvWzg1fu2AIswQi1lLS3W2xhBF/4+IqoNOZ+CjETszS7hUuAFC/Orb2S9Ghogenqg9Bjji3qNwEux4aW1tXb7XoFcsd0lv8o4I2GGW/Sgi73ppVq/w2RxzFE6o485ymaXDxoaoVvR4AaswZcqBm6l1ICF02bQpRR6mQByVfy+cTYZQZcuCGPEEVq6gKb2DQeJakEPTZWHXlb4/hHGuD1L4AWqc0veLzo7nA3nFIiIiIiItgtFKAi1tCHU0oYre84z1wuahpFUzGyRKQZl3kxMI1Oo7EVLU4tzmFqcw68n3rStB5u8RjDGHpJpcW3uC5OIaGvhs5RUd3feeSf+8i//EpFIBABw/PhxfOlLXwIAtLe3o62tDU6nE/Pz85iYmEAmkwGgPyFaPEn/hS98ARdccEF97sAqvF4vvF5vvQ+jYnJivDYbXlwAFhcgTxv7qea2VbUUlrGEZ2wBGqOlZqVAjS1wY97WaLjZxNEF9bRim4ym2dtk8rlSm0w+D+TzkIuLtm3Z2mSM92abDIMCZzUp5TItLfYAS2k8kaWpZSOhFlW1jBYyxg8t19KiWoIuDLUQbTqZy0GOjS4TdAlDi0SA0zO127miQHR1Q/T2QbGNMQpB9PZBdAQ2vQ1NSmlpdFmu5WWVwMuy7S7VH1VjPk7IGMHZjBGCOdOYI5fbHHNUzccGspAD5qNm0EUWRxvNTephj2pp8C8fenF7t+z/HVLLAwVL4OVMbS+KYg+9sO2Ftqidfk6BiIiIiGi7UxUFfd5d6PPuwh+HzjfXC5qG8NxsKSQTj2IwFsWJxDSyq41wLhNdSCK6kMTT40O29a6mViMcEzBHLQ34gvA43VW5b0S0tTEMQ3XX1taGe++9F5/73Ofw4osvmiejpJSYnp7GzEzpCQ9pnEwv3sblcuELX/jClm9Z2Y6ct/41Cs8/CyQS9T6UtSsUgLk5yLk5AFUO2gB6i4oZqLGMh2psApoaSyOklhkRtWSkVNk20Ni45Z9YEIoCNDTobyhrkzFaZJDTwzGyeLlQOEObjNMSknHpARy2yWw7ZqhlhZaWpaGW4u02GGpRLAEW1RjZoVraW8pbWs6SMBvRdiClhJyKQoaHyxpeIvraxPjGfkesZle7PehSHGMU6oXo3g3hctVu3yuwBV5s7S5G6OWMgZfiuDWHvelFcdSsrUMWCkA6rTfIZTP6mKNcdvkbO5z6yM1i8MXdULX/62VuUR9lNDdhb3lZmAZklb6HhAI0d+jjjFq69PFGHiMA49y6Fcxse6GzCc8pEBERERFtT6qiYG9rO/a2tuOq3gPmel4rIDw3axm1pLfJnEzOIFdhSGZiIYGJhQSeGhu0re9u9pnhmGJQZp8vgGaGZIh2FD7jSFtCV1cX/u3f/g0//vGPcf/992NoqJTclMucsHW5XPiTP/kTfOpTn0J/f/9mHupZQ33HZWh66XVob7wOLCxALiwAC/N688fCAuTCPLCwUPrY4qK5Jovri/b3SKfrfbc2JpMBMhnIWAxADcI21hFSFQRqlmu0KR8pBaezpmEb4XTqo5GK1433slAwAzLI5vSRS9kckC+9SSzYtiUVZfk2mRrfh7Od1CwBlkJBfxKxYL8uzdCLNEIvqzxBeyZCWEYLKWYTy7JNLUop6LLZjQxEtD4ykTBDLjIShhY23o+EIUdGavuYoKkZIhRaEnQxG16aPbXb9xno4YTl2l3yq4d/FGXJGKNi00utAwvmmKNMtjTmKL9MhXGxDa4YfCmOOdpgGFFKCWQSltFGk2YABun4hrZto7oATyfQ0g3R0mmGX9AcgFCdq39+nZhBKlvbS27l76nythfVWdWxWET1wnMKREREREQ7h0NRcU5rB85p7cA1KDU45rQChpOnzQaZYlDmZGIG+QpfFDM2H8fYfBz/PXbctt7j8eshGV8Q+/2lkEyjY/NfPEVEG8cwDG0ZiqLg+uuvx/XXX4/h4WG8+OKLCIfDSCaTyGazaGlpwa5du3DgwAEcPHgQTU1N9T7kHU80NEC96G1V254sFIwxSYulwIw1QLNoCdJYP77M7ZddW+6Jme1ks0ZIWcIzZxoRVR6oKR8xVRoz1bTiE12i2MxR1iYjpfz/2bvz4Eju+v7/r0/3HLr30u5qd+3dxcZrMBi+BAM25sjPJuB8ISRQCUnhYLsojlDFj+DAHyFUQap+JFSSLySAAwQTAgUULhzKBTHJl8tAuAriinHM4QObvVe7q13dx1z9+f3Rx3TP9IyukebQ80EJ9Xxm1OqRJa3U/dLr3TgkU6lIhSWpsLR8m0w267fJ0PoRiVpYEuOHqu0t1ovdV/GC0Ms6Qy3R+KHYaKFEM0usqSUKvRBqAbqZXVqSPXkiGmMUjTQ64Te9aKqFIYVamYzMJZdWAy8HDwVNL4flHDwk7drVtgv7UeCldpSRV16+qSTW6FJteMlsWlDBD50UolFHUfAlLVThOLExR8HLOsccWetJ8+djo42Clpe501JpcfkdrFR2MBhntN9veQm2NbCz45tQrPVSQi8N/g03JjbaKCu54Yijzn6OwHpwTgEAAADobVnH1RXb9+iK7Xukw1dH68VKWb+euZAYtfTo1Fn9euaCKqsMyZyYm9SJuUl96+TD0ZqR0cHhakgmbJO5fNse9Wc69w9oABCGQYc6fPiwDh8+3O7DQIsZ15WGhqWhYW3EJR1bLKY31ASBmkTDTSJQM58M4aSEcrS4sPawQCfYrBFSUWvNYDA6qqahJgrZDCYbcPpjAZ18Xsrm/LYZ15V1HZlSuXmbjOv6zTG5XNQiE750618623hLS3z8UHDberH74uOH1htqcYLwiuv6X7OJZhYnCL3Exg8RagF6kq1UZM+cqYZcjh8LRhr5o43s+JkNff9m75jf4nKwttnlkMy+fW0dqWcbtrssN87IJMcY1TS9bOa/V7ZSiYIv0ZijYiH9weEYw1xe6stLubz/b/Sa33dJmhsPAi+nq6ON5sb9j2Or9O8Mgi77ZMKWl+F9MvmR1r2PDWKtrQ+8NG17cauhF8f1Rxw5/KqPrY1zCgAAAMDWkXMzunLHXl25Y69+J7ZeqJT1xPREYtTSo1NndXT2grxVnEe3sjo2e1HHZi/qGyd+Ga07xujg0E5duWNvok3mspHd6iMkA3QEzpAB6Bkm57eFmG3bWr5va60/0mEVgZq6QM7CQnXM1OJ8YsQUI6SaMMYfIRU006ivT6avT+rrlwn+Gt2/3SfT1y/1h6/9FzM46AewRkak4RH/9ciInKFhP4yT29h6QxsPtKQ1tdhYS0sUelnd3NMEx0mOHwpbWJYbP9SloSEAa2OtlS5ejIIuydfHZU+e8Bu8NsrIiJxDh/3Ay6WxwMuhQ37rS3//xr3vZURjZ7zgxZZj2ysIvNS2uwQjjYzTnhYzWypVxxwVlhqPOZKqY47yfesec2SLC9E4IxuMONLcGWl+Qi37ScG40uCelNDLmEymrzXvY4PZqEmIthcAAAAAAFop72b01J1jeurOscT6UrmkJ2bO65HJc4mgzLHZi7KrOGfhWaujsxd0dPaCvnb8F9G6Y4wOD+8KwjHVoMxl20aVd7k0D2wmvuIAYAWMMdVwxa5dLd9/OEIqaqJZWJBdLlBT24CzGHvb2rVuHiFlrbQw77/UjJBqyaW0YISUghYbZzA+BmowCuCoP2i66e/3wzf5vH+xsL+vGsrJ98vmsv5fzYcNN+4aL1A58cBKSqjFjYdeYuOHCLUACNj5eT/gcuJ4IujiHfPbXTQ/t3HvPJ+XufSgnEv9dhdz8GAQfgmCL9u3b9z7XoFq4KXBOKOmgRenPvDi+C0v7QwlWGv9oEtt8CWtTcSY6r9VwYgj5fOr/jfEDwtP1YRegpfCdIuemSQ3Lw2PJUcbDe2ThvZ0TQNKfdtLWao0GZ8Vb3sJQy9d8lwBAAAAAOhkfZmsrtq5X1ft3J9YXyyX9Pj0OT06FYRkJs/qkalzOr6GkMwTMxN6YmZC//f4z6N11zg6PLJLR7bv8YMywcily0ZGlSMkA2wIvrKwqf793/9dExMTkqSdO3fqFa94xZr2c+LECX3729+Obr/sZS/T3r17W3KMQDuEI6TM0PCG7N8WiysK1NSPiJqPPbamASdY75URUgpGSK1ugugK5HJ+kKqvzw/Y9A34I6Si8VB+4MYMDkrBixkYlBkcrBsp5bfjBLfzeb8Nh/ALsGXZUkn29KmUoMsxecePSxPnN+6dGyOzf7/f6nIoGF8UjTI66I85avMYNWu9WMCltullme/2jpPa7tLuwEvIel51zFFhyR9zVCqm/3vsun7QJZeX8jk/BLPKVjTrVaT580HQ5bTs3HgQgBmXyostelaScsNBs8t+mSD8ouF9Uv+Ojvi4r1S17SUWemk0AsqYROAlHHXUTc8X2EycUwAAAACwUfozWT191wE9fdeBxPpiuahfTZ3XI0GLjB+UOafjcxdXtf+K9fT49Hk9Pn1e/3GsGpLJGEdPGhnViJUYxgAAIABJREFUkR17dWT7nigk86SRUWXb1DQM9ArCMNg0jz76qN75znfKWivHcfTJT35yzfs6cOCAvvWtb+knP/mJJOnnP/+5/uZv/qZVhwr0nGiE1Ab8Jb611h/1FBsRtdJAjT9mar6+CSfeklMotPyYN1Wx6L9M+38h39JWG2OkgUG/rSZqswkCNMFYqdpAjYkHauJv0z8Q20cQ0Mky1xRoJ2ut7PlzssePyR6LjzLym17s6VPrG6u2nJ075Rz0RxklxhgdPCRz4JINHzO3EonAS9TwEm43CbwYEzS8ZOrCLjKd1bJly+XqOMKg9UXlBiOswjFHuVjbS2blv/LZckGaG69veZk/2zjMsRYDo37Ty1Cs6WV4v0x+qHXvYxNU215K1daXpm0vmfrQC20vwIpxTgEAAABAO/Rncrp69ICuHk2GZBZKRT02fS5okKkGZU7OTa1q/2Xr6bHpc3ps+py+GlvPOq4uGxn1xyztqLbJHB7ZpQwhGWBFOPOGTXPHHXfI8zwZY/SGN7xB11133Zr35TiOPvCBD+i3f/u3NTs7q3/7t3/Tm9/8Zl122WUtPGIAK2GMqYYqVvm21lr/Qm74Yj2p4vnbnn+B0ysUpYU52Xk/NKP5eT84s7gku7QoLS1JS4v+7UX/tl30QzT+7cVoXYuLsoVC8PjgZbl2gE5mrT/mZH6utSGbUCaTDMfEGmpq1+oDNbEQTsrj1T/Q9tYIoBPYmZko5BIFXY4d9ddOnvC/T22U/oHUoEvU7rJBbWWrZWvbXRKBl2bjjExsjJErmUxsu7MCL1Lwb2KpJAVNL7boN7+kBp6iMUd+00sUfFnh91VbnIuCLjYYcaTZM9LCBbXsXxLjSkN7g6DLPpmw5WVoTCaTb8372EQ2/JxbUduLEwu9hMGXTMd9zgHdhnMKAAAAADrJQDanZ45eomeOXpJYnysV9Fhi1JIfkjk9v7qR0iWvokem/LfX0ep6znF12bbdfoPM9j06ssMPyRwa3iWXc+5AAmEYbIqpqSndd999MsZoZGREb3zjG9e9z9HRUd122236yEc+Imut7rnnHr3jHe9owdECWC3rxQIslXAURTXo4l/IDO6reEHoZZmLmAEjSW5GZmSbNLItWDT+2AfjSK7jbzuOjOP6264rOca/4BncJ9etu0horfUvNMYbaqJWm/lgPbg9Pyc7NyfNBcGc+dng9UI1dBMEbsLgjQpLrf9gb6ZyWZqZkZ2ZkdTioI1UHR3VH2ukSbTcxAI0UdPN4IrCN4yQQqewhYLsyRN+uOXYseRIoxPHpMnJjXvnrus3uBw6LOfgwUTQxTl4WBod7YivE2ttyhijWPBlucBLot3FjcYbmQ7+C5n4mCMVC7IF/3XDMUe5XGLMkXK5Zf/b+c1tk8E4o7DpJQi+FGdb92QyeX+c0dC+oOUlCL0M7u7o/waNVNuG4qGXUuPPw7q2l0xXPm+g03FOAQAAAEC3GMrm9azdl+pZuy9NrM8Wl/RoGJKJBWXGF2ZWtf+iV9HDk+N6eHI8sZ53M7p82+6oQSYMyhwc2klIBlsWYRhsim984xsql8syxui1r32thoZaU4F+22236c4771ShUNBXv/pVTlwB6xSFWmLNLKp4UZDFerH7KuHFIm9FoZZUYajFCcIrrisThVxSQi1R6KU1P7gZY6R83v9r+nWMkLKVin9Bs1SSikXZckkqlmSDv+7322mWpKWF4PVi8PiibDF4m2JRKizJFgoy4VipxXCEVIMxU8ViSz4ObbO05Df5yJ+t2tKwjeMkwjJpI6LSAzXVUE76mKkBRkghwXqe7PiZxBijMOhijx2VHR9f+/fIFTB79votLlHQpfra7N+/qhE5GykaJ5PW7uItM+qpbpxRdaSRMZ3/i3w05qhYrI45KjX4/p3JVscchf8+LfPf0Hplaf58TejljDR3Riq3cNRgfiQKulRHG+2T+nZ0RKhqLWx8tFE06qjB52Oi7SUbtb5063MHug3nFAAAAAB0u+Fcn56956CevedgYn26sKjHps4lRi09OnlWZxdX98dMhUpZv7h4Rr+4eCaxnnczumKbH4zxgzL+9qVDO+R0wbk1YD064+w4et5Pf/rTaPuGG25o2X4HBwf1vOc9T9/97nd15swZnT17Vnv37m3Z/oFuZeMtLbXjhyoV/6+eK7GgSxhyWSvHCV5cv6nFcfxQi1NtZfHX47c7b0TFWhnX9cMT/f3+7WA9GnlRKvrhmOC1SsXm45myOSmXlclk/dEXWf+1cZN/aW7LZWkx3mbjh2USjTbxxpu0BpzFIFhT24qzsNDdI6Q8zx8fNT8XLbU0jpDNNm2oqYZvYoGaqAGnPz1gwwipjmStlSYno6CLd/y47PGj1e2TJzY2mDY8XA23JAIvB2UuPeh/3nSIaqNGOaXpZZnvJ44TNbrE2126JfASskHTSzTmqFBoPOYom6sPvjT52rflQnW00VwQeJk9Lc2d8z/eLWGkwVFpaF8s9BIEYHKDLXofm8//3KwNvZTTg2omCOHGAi+0vQDtxzkFAAAAAL1qW75f1+w9pGv2HkqsTxUW/CaZ2KilR6fO6vziXIM9pStUyvrZxdP62cXTifX+TNYPyWzfG41aOrJ9jw4MbSckg55BGAab4uc//7kkaWRkRFdffXVL933dddfpu9/9bvR+OHGFXuH/FX3K+KHaphYvFnQJQy5r5cQDK7HRQlEzSzz0Ehs/1COhllYzxvhhllxOGqyGZKSUNpkwKFMOwjKlYl14w7qulM3K5HL+RdRsVurrlxkabvl/g2iE1AoCNWmBnOpj00M5Wlxo6fFuulJJmp6WnfbnvLa896O/3w/FpI2HSgnQhKGcuoablEYc5fN8zdawCwuyJ47LC8cYnfDbXezxY/KOHZXmVvcL5qrkcjKXHgzCLbGgy6HDcg4ekrZv76j/XlGoIHWkUZPAizGxoEvY8FJte+mk57gS1trqmKNCQbZQaBx0dJzqmKO+/LJjjmxhRpodl2ZPV1teZs9Iixda9wScjDQ0Jg2PScP7q00vQ2Mybq5176cNrFeWKqXkqKNGbS+OE4RekuGXbvt8BLYCzikAAAAA2Gq25wf03L2H9dy9hxPrk0vzQTjmnB6Z9AMyj02d08TS6s5hLpZL+p8Lp/Q/F04l1gcyOV2xfU8QjqkGZfYPbuOcCboOYRhsiomJCRljtGfPnpbve//+/dH2+fPnW75/YL0SoZba8UPB7er4IVsNvaynlSMRWAnGDy3T0iLH4QeZTdS0TSYYoZRokymXqs0+S0s1OzOymazfJhO0yvjtMrk1N4wkRkjt2LGOZ5rOep4fiokCMssFauaTj1usbbNJ7qPrR0gtLvrPPbjZ8hFSsUBN3Tio/v4GgZr6UE6yFSe4r0PG8sTZcln21CnZE+Eoo+Pyjh2NRhrZ8+c27p0bI7Nvnx9yufSQzKF4w8tBmbF9HdcEZMPwQNTuEh9v1OSzMWzUSGt3cTrv82KlbKWSHHO0VGgy5ijjf+/N90n5nJTLp45Vs9aTXbhQbXoJRhxp9oxUbGH4KtMfjTMyQcOLhvdJg7u7qnEnzbrbXtxs138MgK2EcwoAAAAA4NvRN6hrxy7TtWOXJdYvLM0lmmTCoMxkYXV/mLpQLurBiZN6cOJkYn0om9cV2/cEo5b8kMyRbXu0j5AMOlj3npVGV5mZmZEk7dy5s+X7ju9zOvgLfWAjWGvTAy2x1hbrxccPhY9bR6jFdSUTC7C4wbgINxZ0qWlpIdTS3eIhFKmmTaZcrm+TKZWkcjnWJjOf2J/NZPw2mSAcE12oTbk4u5mM40iDg9LgoDbis9WWy9VGmligJm1EVKK9JtFmkwzl9NQIqbk52bkNGiGVy8UCNfFxUP3VEVK1QZr+lFDOQH+wHmu16e9PDY5Ya6WJ83VBFy9od7GnTq6vNWs5O3ZEQZfqSKOD/vYll8oEX8+dwlqbMsaoUg3ANA28OI3bXXpgjIwtlfwxR0sFP/hSLPrfY9Nkc1Jf3m98yeX88GDtODuvLDtzKhZ6CUcbjUuVFob2+rZVxxnFRhsp3/0nI6LP10os8OKVGn8fjtpeqqGXbmwfApDEOQUAAAAAaG5X35CuGxvSdbGQjLVWF8ImmcnqqKVHps5papUhmblSQQ+cP6EHzp9IrA9n87oiGLF05Y6gTWb7Xo0NjHA+Bm1HGAabwnVdlUolLdW2GbTA4uJitJ3pwL9GR+dJhFqi0UJeIuRio9FEYehlmYuDy3Fd1Y8fqmlqMTUtLW73X1REa5lMxg+zhLeD19bz/FBMbZtMKbiIWy7Lxr5XSpI1JmiPSWmT6YEfUE0mI42MyIyMtHzf0XiURoGahQX/4x0P00Rr8zVhm5p9LAbBm25WLPphrY0eIRUGZKyVPXlyY0dv9fcHo4ySY4yi7eHWf56tl9+a0aDdpdHImJDjSCaTGnrplSaNqIWrNviy3JijfCz4EvteaUuL0sxx2drRRvPnmo+PWhUjDe6uCb3sk4b2yeQGWvQ+2staLyX00uBnMGOqgRcnK7nhiKPe+BwFkMQ5BQAAAABYPWOMRvuHNNo/pOv3XR6tW2t1fnEuCMYkgzLTxdX93jVbKui/zx/Xf58/nljflusLQjLJoMye/uGeuAaB7sBv+dgUO3bs0OnTpzU5Odnyfcf3uWMDRnmgc0UtLLFmlmjMUBBysVHoxQtCL+sItRgTGz/kREEWk2hmqR8/1GnjL9B7jOM0bpMJWmTCsIwNtysV/yJwsVAXVqhrk8lm/QvBXByQFLT39PVJfX0yav1fJ/sjpBakhdiIqCgwUxOoWQwDN4vJMVGNxkwtLPj//btZOELq4oXW7dN1ZfYf8MMttWOMDh6S2b2nI39BiwIvtUEXW16+vahBu0svBV5C1vP8AFshCL0UglF0aT8PhO1ZuXx1zFEu5+/HWqkwI80elU6fkTcXhl5OS4st/BnXyUrDY9XRRkNjfgBmaK+M295Wr1bxR0iWa16atb24seBLMOKoi0dvAVg9zikAAAAAQOsYY7RnYFh7Bob1gv1PjtattTq7OBuFY+JBmdlSYVXvY7q4pPvPHdP9544l1rfl+mMNMnuikUujfUMdeQ4W3Y0ziNgUu3bt0unTp3Xy5ElNTU1p+/btLdv3Qw89FG1vRGUyNl51tFD6+CHrxe6Ljx9aT6glamrxt01iHFHN+KGwqYVQC7qQyWb9MEt4O3htPS8IydS0yZRLjdtkHKe+TSaT7Zk2mU7hj5AakgaHNmaEVKkUhGTmE+OgkiOiYvfVPbbaYlMN38T2s54WrY00ursu6OIcOixz6SGZ/fvbPjqsEdus3aVZ44gxUbjFD7okm1569WvWlstSYUkqFKvBl3KDAFg2J+VzyTFHmYwfMlqYkGafkGbPyIs3vZTm0/e1FtlBv9lleMwPvYRNLwOjPRVIou0FQCtwTgEAAAAANp4xRmMDIxobGNGLDlwRrVtrdWZhxm+PmQxCMlNn9djUOc2tOiSzqJ+cPaqfnD2aWN+RH9CR7XuTQZkde7Wrb6gVTw1bFGEYbIpnPvOZeuihh2St1Q9+8AO9/OUvb9m+v/e970nyv0FfffXVLdvvZvijP/qj3qphDi9qWJvcjl5bf15G2uPWwgT/Z0xyWwrWYtu1awAas7YaOKvdbiRsToq/5mtuC8hI/SP+y65gyfMSjV22krxdHT9XDTfaRMtX/WsbD0k24royfXkpH7T25Pukvrz/Op/3g43zRemXj/kvHaX2302bXGvGGPn/CNb+u7cFvvbC701e0P7mNfiYGfmB1/j3KMcJ3rYolYtSpShVCv7rclEtHfDlZCQ3579k8tVtJyPpoWXfvKvY+Odu7HUqU/1cNWbrfN4CHapcLrf7EJrinAIAAAAAtI8xRvsHt2n/4Db95oEj0bq1VqfnpxMNMo8EIZmFcnFV72OysKAfn/21fnz214n1XX2DQTgmDMr4bTI7+gZb8tzQ23roKjw62XXXXafPfe5zkqQ777yzZSeuvvGNb+jo0aMyxujIkSP8FddGqFT8142CLrWhl7VIhFWkpqGW2oALgNYL25NqhV/z8YBMPCgTfr+o3ZcxftuSqQnLoDeFQYMg7LmS/9Kr+myoDcpYK5PPR++vc8UDAjW3m4r921gbHthKwpBVPPyS9qGLf78JPxflBSGXpSD0EgZfWjwyzM1KbhB2yeSq2z3ZalITeFnuc9k42tKfvwDWjXMKAAAAANB5jDE6MLRdB4a264ZLrozWPevp1NyUHp06lwjKPDZ9TouNWpwbuLA0rx+NP6EfjT+RWN/dP1QNyQSjlo5s36Pt+YGWPDf0hk6/aoAecd1112nbtm2amZnRI488ok9/+tO67bbb1rXPyclJ/e3f/m10+6abblrnUW6+u+66S5dcckm7D6Mhb/yMNL+KcQCOUx0tFI4fcvwRQ/64oeB+x0mOH+KCCNDVrLVSqVQ/cqlUbNzkYUwwYik2cimbk7JZf2wZ0GWsDZpubDDOKLHdpNFGCgJiyTFG/pgYd8uNh/HHHBWkYjDmaKnQeMxRJuuPOcr3yeaykl2SWTwvzZ6WjY82Wppq3QG6OWloTBreLxOONRreJw3tlXF671cra21stFEw5qhSbjyiy8lEo43Cl178uAC96OTJk7rxxhvbfRgNcU4BAAAAALqHYxxdOrxTlw7v1I2XPiVa96ynE3OTwailc9HYpcemz6lQWV1j6fnFOZ1fnNMPzjyeWN/bPxwEY6pBmSu279G2fH9Lnhu6C2cmsSkGBgZ022236UMf+pAk6e/+7u+0Y8cO/e7v/u6a9jc1NaW3vOUtOnHihCRpZGREr3vd61p2vPCZ4WH/Iojj+KEWNwyyxEMvDqEWYIszxki5nP8ymGz5sOWyVCxKwesoKFMOwjKloqySoTvrun4oJpeLAjLK5WSy2c19YkCNKPCSCLsEtxuFA0Jh0MXJBGGXauhlq/77aYtFqViQCkXZwpL/vaJRw1Q2J+WD7zPlGalwQWb+rOzEGT/4MndaKi22brhRbigKupjh/VEARgM7ezagZKPP7VI19OI1OAlhnJrgS3ZLfy4D2HicUwAAAACA7ucYR4eGd+nQ8C791sGrovWK5+n43MWgQSYIyUyd1a+mz686JHN2cVZnF2f1vdO/SqyPDYzEGmTClz0azvW15LmhMxGGwaa55ZZbdPfdd+vMmTOqVCr68z//c/3oRz/S29/+do2Nja1oH9Zaff3rX9f73vc+TUxMSPIvwr71rW/V4CCz4VrNDA7JDA61+zAAdDGTySTG14SXSa21/oXvtDaZSkWqVGSXlhL7suEF8VxWJmiV8W/nZJzevDiNzWdT213CwEuzMTCmGnJx3Lqml60cErDWRm0vKizJFoIQTNrH03GkfF7KGKk0JRUuyi6dl5kY91te5sajgEZLgi/9u6ThsWroJQzA5EdasfeOVA11xUMvpcaf32mhF4cGLwCbj3MKAAAAANCbXMfRk0ZG9aSRUb3s0NOi9Yrn6djsxSgcE45cenz6vIpeyh/VNTG+MKPxhRl99/RjifX9g9sSDTJhWGYom2/Jc0N7EYbBphkcHNTHPvYxvfa1r9XCwoKstfryl7+se++9Vy984Qt1/fXX6xnPeIbGxsY0MjKiXC6n2dlZTU9P65FHHtFPf/pT/cd//IfOnDkja62MMTLG6JWvfCV/wQUAXcYY41/wzvs/UKa2yZRK1TaZUilolylIxULdRXCbyfhtMkE4JmqTyfCjDpKstbGAS0Wy5dh2ZfnAS6N2F8IBkiRbqfjBl0LBH3NUCEJvaTIZWVORKU36oZfCBZnFs9LcGWl+QmHcZd0xIuNKg3uSTS/D+6ThMZlMb//lh42PNopGHTU4UWCcutALbS8AOgnnFDbfzMyMZmZmEmvj4+NtOhoAAAAAW43rOLps26gu2zaqm2IhmbJX0bHZi3pk8mw1KDN5Vk/MTKi0ypDM6flpnZ6f1ndOPZpYPzC43W+P2bFXV27fE7XJDGRzLXlu2BxcIcKmuvLKK3XHHXfo7W9/e3RCpVwu6zvf+Y6+853vLPv2NrhAZYyRtVYvfelL9b73vW8jDxkAsMkatsl4XrJNplyqtsmUy1K5LLu4mNiXdRwpaJExQatM1CbDBd6elQy8lOvHGTUNvDj1gRfHb3np1fE4a2VLJamw5I85KhaqI9FqH2etZAsypYtR6EVL52UWxmUK1Qts6/6KdPNBy8t+mSD4ouH90uBuGae3f+3x217ioZdK47aXKNRVDbwQ6ALQLTinsLk+85nP6I477mj3YQAAAABAQsZxdfm23bp82279bz09Wi95FR2duRA1yIRBmSemJ1Rebsx9jVPzUzo1P6Vvn3oksX7p0I4oGHPlDj8kc8X2PerPEJLpRL19Vhgd6brrrtOXvvQl3X777XrooYeii5G22YUpKfqrLWutMpmMbr/9dr3+9a/fjEMGAHQA4zhSX5//opo2maBFRiU/HGPD7UqlSZtMPCST8wM4tMmsW/Xf85R/1xP/1i93f+KOxvdbrxp2icYbLfOLjeOktrsQeEkXjTWLN74Ui3UfZ+t5UmFSKk7JFC/4oZfChLR0TqZSiB637tBLbjgKulRDL/uk/h1b4r/fqtpews912l4A9BDOKWyeW2+9Va961asSa+Pj47r55pvbdEQAAAAA0FjWcXXF9j26Yvse6fDV0XqxUtavZy4kRi09OnVWv565oMoqQzIn5iZ1Ym5S3zr5cLRmZHRwuBqSCdtkLt+2R/2ZbMueH1aPqz1oi0suuUR333237rvvPt1555164IEHln0ba62Gh4f1B3/wB7rtttu0Z8+eTThSAEAniy56ZDJSxpXULynWJlMuBwGZkh+ICcIyKpWl4pJUWKyPZDimGpIJAjLKZv0xTMaoaTDDvyNls0EIZLn7q090mfez3P3rPI7U+5u97w4Qa3SJh11kXIIATURjjorF5Jij2H9nWyn6Y4yWLkjFi/7L0oRUuiBjqr88rvujPDBaHW00VG16Mfmh9e65K9S3vQQhmJW2vbjZLREOArA1cU5hc4yMjGhkZKTdhwEAAAAA65JzM7pyx15duWOvfie2XqiU9cT0RGLU0qNTZ3V09oK8VZz3trI6NntRx2Yv6hsnfhmtO8bo4NBOXbljb6JN5rKR3eojJLMpCMOgrW644QbdcMMNunjxon7yk5/ooYce0sWLFzU1NaVisaiRkRFt27ZNBw8e1HOe8xw97WlPk+NwUh9A+2x668Wq7k9Za1nwonZfTcIXqcexluNc7fHViy7GO5L6JNOXkZTx/zuGIZngxYbbnpUWUt+zbDYrZTIy2WwwcikIybiMF4mkBk1M6mb1xjrvd1zJBGEXAi8rZoOQWDTmqFCUyqXq/cUFaf6ctHBetnBRJmx6KU9LGUfGqfkYr+VDblxpaCwYb7RPZni/H3oZGpPJ5Nf3BLtENNarEgu8eKXGDUeOUxd64XMewFbFOQUAAAAAwFrl3YyeunNMT905llhfKpf0xMx5PTJ5LhGUOTZ7UTb1ykE6z1odnb2go7MX9LXjv4jWHWN0eHhXEI6pBmUu2zaqvEt8o5X4aKIj7Ny5UzfddJNuuummdh8K0FHsqsIVG9EmscFtE5t+HPEbK2y9aPj+0TFWHL4wsSXjX0DuV3JNQTNGqSwVS1K5WA3JlCqSJ6lYkS1WpPmlaJfWdaVsLgjJBE0y4diluuMz6dspxxltpwZEanebEhxZ6f3Lfgyb389F+M4WjTlKBF8Kkuf59y3N+KGX+XOyCxNS8YLM0oSkRSnjSK4jJwy+OJJyawh/ZfqCkMu+YLRREHoZ3C3jbJ0wmbVeTehlubaX+Igjl7YXAGiAcwoAAAAAgFbpy2R11c79umrn/sT6Yrmkx6fP6ZGpc9GopUenzur47OSqQzJPzEzoiZkJ/d/jP4/WXePoSSO7YqOW/JDMk0Z2KUdIZk34qAFoytbOyltxK0bijhbdn7K2msBDdNc6Wy8Sm+1tvUAbtKP1IvX9Lxd4aLSf5cIVKwxfmJS3Sb1/jcfZxvBFoz1HgYJgzJItFf3ATKnoNzhYSUX5j1ExPFDZTLY6dilsk8nlZPirZGwA63nRmCMVC7JLBalUlK2UpcWL1dDL/Hlp8bxM4aLklP3QS8aVk3H8L4J+SVpDVWd+JAq6mOHqaCP1bd9SoSlrbX3gpWnbixsLvgQjjhx+VQMAAAAAAAA6RX8mq6fvOqCn7zqQWF8sF/XY1LmgQabaJnNibnJV+69YT7+aPq9fTZ/Xvx/7WbSeMY4u2zYaNciEQZnDI7uU3UJ/aLgWnGEF0JAtzEjFhXYfBtbQetGytokVBx4aHd96jzPtfbWq9SL2WFovsALGGCmf91+U/Eyz5XIQlClJxaIflCmVpHI5CM8UZTWf2J/NZPwRS9mslM1VQzJZZoViZWy5HAVfbGHJb30pzEtz56X587LzZ6X589LCeakwKZNREHpxZDKOTN6R8q6k1f7CZKTBUWnID7pUQy/7ZHKDG/BMO1t920tJ8iora3tx/W3aXgAAAAAAAIDu1J/J6Rmjl+gZo5ck1udLhSgk8+hUNSRzcm5qVfsvWy94+3OSHorWs46ry0aCkMyOPf7YpSAkkyEkI4kwDIBmjBOEBFrRarGR4Yt2tl6s5P6UxxG+AHqKyWT8sUjh7eC19bxgxJLfIpNokymXpXJZdnExsS9rjB+OSbTJ+GEZ2mS2LhuOOVoqyBYLsnMXpZnxWOhlwg++FKYk15HJ+oEXZVxpwJEZ6lv9O3Uy0tBYNegShl6GxmTcXOufZIdLtr0E4ZdKWapt0QtFbS+x0AttLwAAAAAAAMCWMJjN63/tvlT/a/elifW5eEhm8qweCUIyp+enV7X/klfRI1P+2+todT3nuLps2+5gzNKeqEnm0PAuuVvsGgNnYwE0ZHJDUm6o3YcBAF3LOE7jNpkiFKodAAAgAElEQVSgRSYMy9hSqdomUyz4I25q9ldtk8lJuVibTIYf6XqF9bxgxFFRdmlBdvqcdPFkMNronB94mT8vlRYkx/gNL0HbiwYcaWRw9YHKbL80tF8aHpMJRhxpeJ80uHvLNpZYr5IMvXjlZdpeqoEXOVnJcbfsxw4AAAAAAABAY0PZvJ61+1I9qyYkM1tcSjTIhEGZ8YWZVe2/6FX08OS4Hp4cT6zn3Ywu37Y7apAJgzIHh3b2bEiGKycAAABt4I9Hqo5ESrTJFIv1bTLlUuM2GcdJtslkM8HtHE1THcxWKtLSkuzSgjR5SnbypDR1Jgi9nJMWJvzxO5LkmkTTi7IDMu4qf0Hp217T8hIEX/LbtuznyerbXjJ+6MVkaHsBAAAAAAAA0DLDuT49e89BPXvPwcT6dGFRj02dixpkwqDM2cXZVe2/UCnrFxfP6BcXzyTW+9ysnrxtt47s2BsEZaohmW4/b8yZWwAAgA5iHEfq6/NfFAvJWBu0xsTaZMLtSkUqLEmFpZQ2mWxs5FKsTcZlZuhmssWi7Py0NHlC9uJJ2clTwZijc9LixWrjiJE/5ijjSP2OlO2TMq6Ms9JfOow0uDsKukSjjYb3yWQHNurpdYW6tpdKEIJJk9r2kun6X/4AAAAAAAAAdJdt+X5ds/eQrtl7KLE+WVjwxy3FRi09OnVW5xfnVrX/pUpJP7t4Wj+7eDqx/oxdB/SJG/5YlwztWPdzaBfCMAAAAF3AGOMHWdLaZCqVakimWPTbZEplv12m7LfKWC0k9lfXJpPL+rezWS74r4PnedLMhHTxuHTxpLzJk9LUaWnunFSoqbM0kjKOTF9GygajjjLOyj7+TlYaHgsCL/HRRntl3Ozyb9/DrPX8kUaJ0EspfcSRVG17iYdeHMJiAAAAAAAAADrXjvyAnrv3sJ6793BifXJpPgjHnNMjk9WQzIWl+VXt/38unNI//ex7+v+ufWULj3pzEYYBAADocsZ1pf5+/0U1bTJBi0xi5FKpKHleepuMMTVtMlkpQ5tMLWs92dmz0oXj1baXqTPS1LhUXqx/A8fI5N0g8OJKWWdlY46ygzWjjYKXgVEZ05tzXFfDhiOOwsBL2P6Sxjh1oRfaXgAAAAAAAAD0kh19g7p27DJdO3ZZYv3C0lwQjjmnR6fORkGZycJCgz1J/Znu/sNLwjAAAAA9yhjjj0bK5aTBakhGkmy5HARlYm0yRb9FRqWiP4ZJyaS4dV2/OSaXi1pklMvJZLv7B+JmbKUkzZ2VnfSbXuzkSWnqlOzkuP+xSpMxMpkg+JJ1VjbmqH+HP9poaCzZ9JIfIayhsO2lXH1p1vZijOS4QeDFpe0FAAAAAAAAwJa3q29Iz983pOfvuzxas9ZqYmkuNmrJD8qMz8/o6tED+n+f8f+08YjXjzAMAADAFmQyGSmTSW+TKRbT22QqFalSkV1aSuzLGhO0x9SMXMrlZJzuaC+xpQVp9ozszGnZiyekyZPS5CnZ6XNSuSKlTdgJxxxlHCnrLj/myDjS4G4/9BI1vQQBmGz/Rj69rlLf9lL2G1/S0PYCAAAAAAAAAGtijNHu/mHt7h/W9fuf3O7DaTnCMAAAAIgYY6R83n9RSptMsZhskymVpHK5cZtMJuO3yQThmKhNJrP5P4Zaa6XCtDR7Rpo9LW/6lHTRb3rR7KRs2ZMqXnrwxTEyWScKvCjj+iGYNG5OGhqThvcnRxsN7ZVx+PE7FLW9JEIv5RW0vQThFzfLqCgAAAAAAAAAQCrOxgMAAGBFojaZ8Hbw2npetU2mVE62yZTLUrksu7iY2Jc1JmiPSWmTWWerh7WeNH8+CL2ckZ09LTt1yg+9LMxL5UoQfElLvSg55ihse3FTQhe5oSjoEo02GtonDewkpFHDemWpEgu8eCXJ89If7Dh1oRcZl7YXAAAAAAAAAMCKEYYBAADAuhjHkfr6/BfVtMkELTIq+eEYG25XKlKxIBULdUUsNpOVspnUNhlrrWQrUrkoVQpScTYIvJyJxhxp+oxUKEhlTyp7fvDFS2sbUXXMUdD2oowj49SELvp3xUIv1aYXkx9p5YexJ1jr1YRelmt7ySRfaHsBAAAAAAAAALQAYRgAAAC0hB+EKPovYVglvB2smUpRsgXZ8pJUWJAtLEpLi1JhUbaw4AdkKkU/UBG+eMFtW5JMRcaRH15xHckxUrlSDb2Um4w5yjiJthdlnGrbiHGloT3S8H5paKza9DI8JpPp28wPY1eIQknraHthZBQAAAAAAAAAYKNwBhoAAKDHWWv9sEIYTinHAirxwEps3TZYb/R4VQr++1glU7PthyysH6oIXqKRRkG7S4PhRlVuGHxxpWzNmCM3Lw2PScP7Yy0v+6XB3YQzGqhveylJXmUFbS9ZyfW3aXsBAAAAAAAAAGwmzvhjw91xxx2b9r7e+ta3btr7AgCgFaxXqQ+aJEIm9et2uVBK2vryEZKOYIyRMsZvbgnXgtfWs37zS8WLXlvP+kGXjCNlY2OOcsNR0CUReunfUW2DQUIUmooCL2WpUpZso7YXtz70QqAIANBinFMAAAAAAABrwdlqbLg77rhj0y46ceIKANAqURtGpSaYUi7Ur1UKUjkMqdSvpz4+DKvYSrufatfwQy6uZLJ+w4ub80cYDe2RhvdVRxsN7ZPJD7X7cDua9SrJlpdl216qgZfwhbYXAMBm4JwCAAAAAABYC8Iw2BQ27cJKE+GJrtq3a7Qevw8A0Nv8MTqVIGSSEkxJDasUZRusN3q836aCVXNzwYsfVlEmF1urXzerfLzcHO0jq7D6tpeMH3oxGdpeAAAdg3MKAAAAAABgtTizjQ33nOc8Z0WPe+yxxzQ9PS1rray1Msbokksu0fbt25XL5TQ3N6dTp05pfn5eUvVE1dOe9jT19/dv2PEDAFbOb1OJj+ipCZqUa5pRwpE/KetN99PoQj4aczI1IZMgaFIXPqmumxU9PhZWcbJcSGqjZNtLEHrxyukPrmt7yUqOS9sLAKDjcE4BAAAAAACsBWEYbLjPfvazTe+31uof/uEfdP/998taq2c/+9n64z/+Y73oRS/S4OBg3eN/9atf6Stf+Yo+97nPaWFhQfPz8/rrv/5rHTlyZKOeAgB0vagdIj6ep3ZkT826bbDe6PGqFBpfeEcTJgiY5OtDKQ3WTcPHp6xFbSpuu58oWqTa9lITelmu7SUKvWT4fAAAdA3OKQAAAAAAgLUgDIO2+8hHPqJPfOITMsboXe96l2655Zamj3/yk5+sP/uzP9NrX/tavelNb9Kjjz6q17/+9brnnnu0e/fuTTpqAGgd61XqgyblmnaUmnW7XCglbV2rq5eHguaM+IiefEpYpbpuGqw3Dbc4GdpU0JCNRhyVV9D24tSFXvj8AgD0Os4pAAAAAACANIRh0FYPP/ywPv7xj0uS3vjGNy570ipubGxM//zP/6xXvOIVunDhgt773vfqox/96EYdKoAtyB/5U0oZ25MyyqdSkMphSKV+PfXxYVjFVtr9VLuPcZLjeWpH9tSFUnIy8ftWFG7JMjIGm8ZaT/IqNW0vJcmmhNiMkRw3CrvQ9gIA2Ko4pwAAAAAAABohDIO2uvvuu+V5nvL5vN74xjeu+u13796tP/zDP9QnPvEJ/ed//qcmJiY0Ojq6AUcKoJNYa/0ASbmmBaVpWKUo22C90eP9NhWsWm0wJRFWqV83q3y8P/KHH2HQvWyi5SUIv3gNQnG0vQAA0BDnFAAAAAAAQCNcSUJb/fjHP5YxRkeOHNHQ0NCa9vHsZz9bklSpVHT//ffrpptuauUhAlglv00lPqKnJmhSrmlGCUf+pKw33Y/12v1Uu4+TqQmZBEGTuvBJdd2s6PGxsIqT5SI9EPDbXmpDL+Vl2l6qgRfaiQAAaI5zCgAAAAAAoBHCMGirs2fPSpL6+/vXvI/424b7A1DPWhtclC3UhFJqgiaxddtgvdHjVSn47wOrZIKASb4+lNJg3TR8fMpa1KbCCBVgo1iv7I9VCwMvzdpeHCcZeqHtBQCANeGcAgAAAAAAaIQwDNqqUvEvEp08eXLN+zhx4kS07Xk0RaA7Wa9SHzQp17Sj1Kzb5UIpaetKaSNAc062ZkRPPiWsUl03Ddabhlu4CA50Db/9quQHXVbU9pIMvND2AgBA63BOAQAAAAAANEIYBm01NjamJ554QmfOnNH999+va665ZtX7+MpXvhJt7927t5WHB1QvetaN7UkZ5VMpSOUwpFK/nvr4MKxiG7QHoDHjNg6cNAidmCZNK+nhFi5aA1uVtdb/3pxoeylJjS6S1ba9uFnJuATdAADYQJxTAAAAAAAAjRCGQVtdf/31euKJJyRJ733ve/X5z39e27dvX/Hbf+5zn9OPf/xjSZLrurr22ms35DjReaKLlOWaFpSmYZWibIP1Ro/321SwOiYlWFITQKlZX1mbSnw9K+PwTxiA1qi2vcRDL5UVtL1kJTcccURwDgCAzcY5BQAAAAAA0AhXEtFWr3nNa/SFL3xBlUpFjz/+uF7zmtfove99r66//vqmbzczM6MPf/jD+vznPy9JMsbopS99qXbu3LkZh41l+BcV4yN6aoIm5ZpmlHDkT8p60/1YKqxXzck0DaWkrZtVPT7PyB8AHctaWxN4Cbcbtb249aEXgngAAHQMzikAAAAAAIBGOJuPtrriiiv0pje9SR/96EdljNHx48f1hje8QYcOHdILX/hCHTlyRDt27FA2m9X8/LxOnjypBx98UN///vdVLBb9i1qSduzYob/4i79o87PpLdZaaeJh2YlHUkIsNcGU2nWv3O7D70JGyuSTQZNE8KQmgJLJVdtUatbrHh8PttBcAGCLsF4lFnZZSdtLNgi/0PYCAEC34JwCAAAAAABohDAM2u5tb3ubZmdn9dnPflbGGFlrdfToUR07dqzh21hro+aJ0dFR/cu//ItGR0c365C3hl/fJ/vg59t9FJ2hLpAStqHkU9dNg/X0xwdhFePSpgIAa5Da9lIpN24PczL1oRfaXgAA6FqcUwAAAAAAAGk484+O8O53v1vXXHON/uqv/krnzp2TlDw5FWdjf9H98pe/XO9+97upMt4Advx/2n0IyzNucjxPXfikft00WG8cVsnSDAAAm8BaGwRYgtfh7XBbKWvhdpqw7SUIvITNL3xPBwCg93BOAQAAAAAA1CIMg47xspe9TDfeeKO++c1v6hvf+IYefPBBnTx5MvGY/v5+XXXVVXrOc56jV7/61Tp48GCbjrb3mT1Plz370FrfuiaQkhJYqVk3dev5lGBLfD3LX/IDQAeyaWGVKMwSX69dSxlftFJOpib0kpFx3FY9JQAA0AU4pwAAAAAAAOK4koyOkslkdNNNN+mmm26SJFUqFU1PT6tUKmloaEiDg4NtPsIt5PKXyAztlaaOBn9Zv9JwS96/CMnIHwDoWraueSWlkSVtbT2BFmMkGck4/rZxqttKWTNO9Hj+zQEAABLnFAAAAAAAQBVhGHQ013WpK24TY4w09gz/BQDQddY8dkjrbGlpElpptsb4IgAA0GqcUwAAAAAAYOsiDAMAANDB2jJ2yJhYaCXeypK2Vt0m0AIAAAAAAAAAADoBYRgAAIANVhdoYewQAAAAAAAAAADAhiEMg45SLBZ177336oc//KF+9rOfaXJyUrOzs5KkX/ziF3WPv//++/0xEJKuueYaLt4BADYMY4cAAAA6G+cUAAAAAABAiDAMOsa//uu/6oMf/KAmJyejtfCkVKMTUp/61Kf07W9/W5L0yU9+Utdff/3GHygAoKsxdggAAKD3cE4BAAAAAADEEYZBR3jPe96ju+++W1L1ZNVK3HLLLbrvvvtkjNG9997LiSsA2CIYOwQAAIAQ5xQAAAAAAEAtwjBou3/6p3/SF7/4RRljZK3VoUOH9MpXvlJPecpT9PGPf1wPPfRQw7d93vOep9HRUU1MTOj73//+Jh41AGC9VjZ2qCbIwtghAAAAxHBOAQAAAAAApCEMg7Y6e/asPvaxj0W33/zmN+tP//RP5Tj+BccvfOELTd/eGKPrr79eX/7ylzUxMaHjx4/r4MGDG3rMAIAkxg4BAACgHTinAAAAAAAAGiEMg7a6++67tbS0JGOMXv3qV+v2229f9T6uuuoqffnLX5YkPf7445y4AoA16JqxQ0FjC2OHAAAAwDkFAAAAAADQCGEYtNUPfvADSf5fY7397W9f0z4uvfTSaPv06dMtOS4A6Eb1Y4eatbIwdggAAADdjXMKAAAAAACgEcIwaKsTJ07IGKPLL79cu3fvXtM+RkZGou35+flWHRoAtA1jhwAAAIDlcU4BAAAAAAA0QhgGbTU1NSVJGh0dXfM+KpVKtB3OBQeAdmPsEAAAALCxOKcAAAAAAAAaIQyDthoaGtL09LQWFhbWvI+JiYloe/v27a04LACQtI6xQ9Zb3zs2ac0sjB0CAAAA4jinAAAAAAAAGiEMg7bavXu3pqam9Pjjj8tau6ZmggceeCDaPnDgQCsPD0APsNaqGmZZwdgh6wXrjB0CAAAAOhnnFAAAAAAAQCOEYdBWz3rWs/TYY49pfn5e3/ve9/SiF71oVW9fKBT01a9+VZKUzWb1G7/xGxtxmAA6QN3YoURjS7vGDqWEXBg7BAAAAGwKzikAAAAAAIBGCMOgrW688UZ98YtflCR94AMf0LXXXqtcLrfit//7v/97TU5OyhijF7zgBcrn8xt1qABagLFDAAAAAFqFcwoAAAAAAKARwjBoqxe/+MW66qqr9Mtf/lKPPvqo3vKWt+gDH/jAsnO6K5WKPvShD+nTn/50tPYnf/InG3y0AKQOHjvUIOBCoAUAAADoTZxTAAAAAAAAjRCGQdv95V/+pW655RYVCgX98Ic/1Mte9jK9+tWv1vOf/3wtLCxEj3v44Yc1MTGhn/70p7rnnnt0+vRpSZIxRjfffLOe8YxntOspAF2JsUMAAAAAuh3nFAAAAAAAQBpj7XquagKt8c1vflPveMc7VCwWZa1NXPQOP0Vr14wxstbqN3/zN/WP//iPcl130497rU6ePKkbb7xR3/rWt3TJJZe0+3DQxRg7BAAAAGC9uv131K12TqGduv1zBQAAAADQO5b7HZVmGHSEl7zkJbrrrrv0zne+U48//njiZFV4wip+skqSXNfV61//et1+++00RqCrNR07lBgxxNghAAAAAKjFOQUAAAAAAFCLMAw6xlOf+lTde++9+ta3vqV77rlH999/v6anpxOPsdbq8OHDetGLXqRbb71VBw4caNPRAvXaP3aoJtDC2CEAAAAAWwTnFAAAAAAAQBxhGHQUY4xe8pKX6CUveYkkaXx8XFNTU1pYWNDIyIhGR0e1ffv2Nh8lelnzsUMp4RbGDgEAAABbhrVWnrXyFLy2XvA6dlvV25K0Iz+gnMvpl83AOQUAAAAAABDibAw62tjYmMbGxtp9GOgyHTF2KBFcYewQAAAA0G5hkKUSBFhsLLRSsZ5/v8Lb/msbBFwqUbhl9b8v9GdyhGHahHMKAAAAAABsXZyNAdCxGDsEAAAAQPKDLJVYC4tVNbDixYIsFa8aaKl9m7UEWdI4xpFjjP8S/B7gxtbit11j1J/JteT9AgAAAAAAYOUIw6CtbrzxRknSc5/7XL3//e9f0z7e85736Ac/+IGMMfrmN7/ZysNDC3T82KGaBhdaWgAAAIDWqh8l1GTMUIP11gRZTDXEYkw11BKsu0GQpXa99m3QOTinAAAAAAAAGiEMg7Y6deqUjDGamJhY8z4uXLgQ7Qcbg7FDAAAAwNYUhlISY4NUM1qo4aghL/hdohWqgRXHOEFoxQ+suE61ocUxTvAYIxMLs7jB26C3cE4BAAAAAAA0QhgGQEO2OC8V5zZx7FCyxYWTkQAAAMDaVTwv1rRSMzZI9WOEolFDwVorgyxhYCUMsrjxtpW0UUMych0namfhdwMAAAAAAACsBmEYdL3wBC0nRzeAV64GYRg7BAAAAGyKqG2l6SihlNFDthp+aVWQJd7A4sTCKolRQ8uMH+rW39WstVoslzRTWtJscUkzxSXNxreD2822JellB6/S3zz/1XIdfjfqRJxTAAAAAACgNxGGQdebnp6WJA0MDLT5SHqP6dsmmx8m0AIAAACskI2NDPKslVXjMULh+CEbC7JUvGBEaQuEQRY3CKwYUz82yFHN7cT4oe79PcBaq4VyMTXAEoZbGm8Xou2K9dZ9LHc9dr+uHbtMv//k32jBM0OrcU4BAAAAAIDeRBgGXW1mZka/+MUvZIzR7t272304PYkgDAAAALaKurFB8sMqYetKNEbIs4kGFs960eNaFWRJtLCkjRGK344FXdxYO0u3stZqPgyyNAmt1AVdYttzpUJLgiyt4nXQsaCKcwoAAAAAAPQuwjDYNP/1X//V8L7p6emm98dZa7W0tKRjx47pS1/6khYXF2WM0dOe9rRWHSoCxUpZC+WiTKze3EhyjJHCNSn6i1Jj1NUn3QEAANC9UscGNR0zVL/emiBL85FBy6/3ZpBlpri4bIAl3J4tFYL/Ht0vYxz978NP16suf1a7D6XrcU4BAAAAAACsBmEYbJrXve51qTO4rbV66KGHdMstt6xr/7/zO7+zrrdHvQtL81osF9fwlmEwxsj/nx+SCYMz8VCNiYVqVPNXrX7kpvr4+Hq0b+a6AwAAdL14KCUaG6Sa0UJNRg21rnUjZYxQNDIo/rOqE7WwmJS36Vae9TRfKq64faXXgyySlHczGsn1aTjbp+FcX+r2SM6/3Wg773LqpRU4pwAAAAAAAFaDMzLoSrbm5Orv//7v68UvfnGbjqZ37cgPKOe6Qf27ZMMqePn/DayqFyqsVeyvaf3blcR/p8qGHaeJgjGqXqCQkdJCNyYZsImHdMJ2m+T98bft3gsbAAAAGyU+IigcGxSNGgp/XoytRaOGYrdbIz4myKkfG5Q2akjVEEu3/7znWU9zYZAlJagSNbU02Z4tFmRbNOapEzQLsmxLCa2MBPfFH5sjyNKTOKcAAAAAAEDv46wONlWjE92rOQFujNHAwIB2796tpz/96XrlK1/Z0SetZmZmNDMzk1gbHx9v09GsTl8mq75MdtVvF17wsMGp9PAih1V9qMaznn+6PRaqSd5vpZrHerF9SdV9y25k5CaUDNXEG2rqR0ZVm3FMTahmuXFTtN4AAICNFrWt1DSsJEcJJccIRUEX2ZYGWeINLE4srOI0XU+OGermn50862m2WFhRaCVsbKkNvcyVij0VZOlzsw0aV/Kp6wRZtoateE4BAAAAAACsDWeGsGkefvjhurWnPOUpMsboBS94ge688842HNXG+8xnPqM77rij3YexqUzwF7ibIR6yif/lsX8qNBmqibfZ1IZqwrcN76sGcupbb/yAzmY8u9WNmwqbceLjpmpHSjFuCgCA3lAfZEmGVrxYYCUxemiDgyyJ0ULxUUNKCbH0SJCl4nmaK6UHWWZSQitp23OlQrufRkv1Z7LJcMoqtsNwS9Zx2/001izeliSJMUktslXPKQAAAAAAgLXhjAzarnW16J3p1ltv1ate9arE2vj4uG6++eY2HVFvCRtXZKTNOF3uWa/JyKhYqEbVJpvwfsZNdf/FLgAAWqFubFAitOJFPxeEIRYvFmSpXmBvbZDFNU713/+asUGOjFwneX98HFE3q3heFExJtq8UUttXtkKQZSCTWya0kq8bORRvZxnqgSBL7dde7divSix8tpK2pNH+YY3k+trwbLaGXj+nAAAAAAAA1oYwDNrq/e9/vyRp7969bT6SjTMyMqKRkZF2HwZaxDGOtElZjsbjpmoCNuFjZbf0uKkodMO4KQDABqq7EK7qRXMvCLJEt5VyMb2FQZbahhUTC7GE/ya6sVFCJgqwVBtaulnZq2g2HlqJh1SajBmKb8+Xi+1+Gi1FkKU+yOLJquJ5iRbJKIgW3h+73QrJUJmjPpphNsxWOKcAAAAAAADWhjMyaKvaxhQAVd0ybireehNvxkkGdto/bqoauqk22Sh1ZBTjpgCgV9WPEmoyZkhWnpccNdS6IEs8kBIbG6Rq44pJWa99m25W9irLBlhmUoIu8e2FHguyDIZBltqgSqPtmqDLcDavTA8GWRKNSZsYZFnJ2K/6+7v/a7PbcE4BAAAAAAA0QhgGALDp46birTerHTcVhmrib1ttxEk241hbHTflPz48gvaPm0q03jBuCgCWtdIL5emjhrwWjtFIXvROXDh3TGyUkBO1sBjVX0zvZqsOshQX68Isi+VSu59GSw1l8xrOVkMqDbcbtLMMZ/vkOt0booiHySpt/PqMfz0mmpNWEGQJx4EBAAAAAACgNxCGAQBsuna03tS327Rm3FS8GaeTx03Fm3FM7HHxdhvGTQHYKJWahpXE2CDVjxHaqMYHxQIrYZDFrbkYXjdqKLhA7vRIGLEUBlmaNK4st72VgyzbUppahrL5rg5RNGtM6pQgS9SgpJrbBFmADTUzM6OZmZnE2vj4eJuOBgAAAACA1SEMg45jrdWvfvUrjY+Pa3Z2VsXiyuvPf+/3fm8DjwxANwqDH84mXLts3G5THQ0VhW4YN1U3borWG6Dz2JoL46mjhNIupNtq+KV9F8rrxwx1+/eXYqWcaF+pa2dJbBdS15cqvRVkGQ5aVurbV1YwZqjHgywrG/3ltehIlgmabYGvT3QOzim0zmc+8xndcccd7T4MAAAAAADWhDAMOsYvf/lLfepTn9J9992nhYWFNe2DE1cA2olxU61Ubb2phmnSQjVrHzflv233XgAFlhN+j4jaVWIXwGvbHRKjTYIgS8ULg3frFwZZ3OCCeHw0yVYZXVKolBuEVpLbaSOHwu1Cpdzup9EyRkbDuXzToEp8O62pZSib6+rv47WNSMsHz2rXNynIkhpAI8iCzsM5hda79dZb9apXvSqxNj4+rptvvrlNRwQAAAAAwMoRhkFH+J8abo8AACAASURBVMQnPqEPf/jDqlQqTf962BjT8H5OwALYarph3FT02NrAzjLjpuKtN20bN6Ug4MS4KbRB3dgg+WGV8AJ4NEbIs4kGFs960eNaFWSpHUVSN0Yofjv2NVG9mN69YYXQWoMs8dtbLcgykksPsISNLYM9FmRJ+xqNbjcIuLTmazT+9bay0V8EWdCLOKewMUZGRjQyMtLuwwAAAAAAYE0Iw6DtvvCFL+iDH/xgYm379u1aXFxUoVCQMUb79u3T/Py8ZmdnoxNX4Ymqffv2bfoxA8BWs5njpqQgJLMB46birTfdNm4q/tj4/bWBHMZNtd+qx5Zs8EXyRhfAl1/vjSDLUrm0qvaV2WKhbr2XgiyOMemjhVawvZWCLLVhs80KsiSCZGnhs6ApiSALUMU5BQAAAAAAkIYwDNpqampKf/u3fyvJPxH14he/WO9617t06NAhveENb9D3v/99SdJ9990nSVpYWNADDzygu+++W1/72tckSUeOHNH/+T//R0NDQ+15EgCAlnOM0xPjpuLNON02bioeqgnbbaL91b1t914UrxVe8A4vjMdHCUWjhZqMGmrl2JK6MULRyKB4A4sTXTw3KW/Tzay1WgoaWeLhlJkg2FK33aC1pehtfL/UZvGDLCsPrdRt5/o0mMl19edGo/FflWVak+Lhl40MstR+jdYGWZzYWjf/dwA6BecUAAAAAABAI4Rh0FZf+tKXtLi4KGOMrrnmGn30ox+V4zS+oDYwMKDrr79e119/vX70ox/pbW97m7773e/qtttu01133aVMhk9pAMDqtHPcVDWIEwvYSIkQRjeNm4qHalo9bioZwEn/7xUfEVR3ATxsBopfRA8vmsdut+pjsZa2h166SB4GWWaKiw0DLOntLIXEeqmHgiyucTSUzWtbrt8fMdQstBIfORQLugz0aJClNly28eO/Vh42c3v0axToFZxTAAAAAAAAjfBbPtrqxz/+cbT9zne+s+lJq1rXXXed7rjjDt122236+c9/ro985CO6/fbbN+IwAQBoiY4fN6WawI5VfQCnybgpa6VKywIlzcRHRKmlQZb4RXEnFlZxmq4nxwx1+0VyP8hSatrEshWDLNWQytYOsvhhFa9hkKWuWWkDgyxpX3+uMT3fmgSginMKAAAAAACgEcIwaKvHHntMkj/P+5nPfGbDx1lrU09aP+95z9Nv/dZv6etf/7ruuusuve1tb5PrbsZQDQAAOl+nj5tSTagm3oyz0nFT8WvriXaHeNtDvP1BKRfReyzIslguJUMrTQMs6dvllo17ar9MGGQJginLbqeMHOrPZLv6cyMeZAnHeTUb91UhyAKgS3BOAQAAAAAANEIYBm01NTUlY4wOHz5cd1/8BNTS0pL6+/tT93HDDTfo61//umZmZvSTn/xE11133UYd7pZS8Tx9+dcP6oHzJyQpdoHCqbmQGI56qP61fG3VfPUiRuyCh5O8IBnu143tM35xpO6v8GMjNeJ19Su5yOnGjmP5C6W99xf/ALAR2jVuSlL0vbrbWWu1UC6mBljS2lmS2wXNlJY012NBlqzj1oRW8g0DLI3aWfrc3g2yRLcbBFnCkUOtCbKo/mcrp/7nwtqfmwiyANhInFMAAAAAAACNEIZBW5VKJUn+3O5ag4OD0fbFixd14MCB1H3E10+dOtXiI9y6PvrQd/U3//21dh9Gx0qEcGrDQYoFbmpCOrVNBY0uIJnYX0gn95E+ssPE3t41acGg4G0TAaQwsOTUBYMaXeBq9tzSAkjLBZbcmvBUIlxl6o8r+njIqT+uKGBVH8iq7if9Al24Dy7SAd1hs8dNrUSjIEttmKUu6BLbnisVVNniQZaRXH/i/j4309Xfm5cNsqi2paUzgyy9EjgD0Hs4pwAAAAAAABohDIO2Gh4e1tTUlObn5+vu27ZtW7R94sSJhieuwpNfkn+CC63xX+eOtvsQOpp/0arS7sNAi5n1thOtoFVo2cenBZBiFyzTm5ecxOOTQaq0i53x5+bEAkim5rhi4apGwafU43Lqn1vKhdcokBUPS9UcW9rHfDWBrPAxQDPWWs2HQZYm7StbKciSc9y6cUGJ7SZNLL0SZJH8prx460oizKK0lpZkU4u1rQmypDXb1X4vdAmyANiCOKcAAAAAAAAaIQyDtrrkkks0OTmpc+fO1d335Cc/Odq+//77de2116bu48EHH4y2+/r6Wn+QW9QrDl+t+04+0u7DADaVlVXZ2lb9ET46iJsSGApDQ7WBoUQ4SE5dO5FJCd/Eg1TJkE5NoGgFoZ60xqS1NC+lBaxW2whVDSxV95cIPiWem1NzXPGAVfXY6wNW9YGseJtTtREq/eK+Zz3Nl4orDq2kbc+WCtHIpV6QdzM1jSx9Gs7l6xtZarbjoZe+TLbdT2PdaoMs1lpVwvCKam53UJCl7uuBIAsA/P/s3Xl4FEX+x/HPJOQgQDgDQUAIRBAjKEjALCouhwoKggteKC4iyIMc6oKru+pPH0V0F0UEEVAUXBFRLkVZRHCXFUFA5VBOCeEQEgiEECAkgWR+f8S0PclMMpnMpGcm79fz8DzdM9VVxVRfqf52lUv0KQAAAAAAAFcIhoGlWrdurZ9++kmpqak6e/asatasaXzXsWNHY3nRokX685//7PC9VDg/+Icffmist3AyTzg8Myj+Gl1Rr7F+OH6o5IMiuX6o9Psw/wWF63LytnSxPIrSF8+j+EMpI73sxgMuu5N6FX9z267CaQcc8ygoNh2B3fT/KHBML8f/F4DAk28vUH7wxDrgNyE2mwrj14KnccsKZDGmESpl1JaI0MC/xS8ofi0uI5DFWPdBIIsRdOYiCK14IItjMBiBLADgS/QpAAAAAAAAVwK/pxwBLTExUYsXL5YkbdiwQb169TK+a9u2rVq1aqX9+/fr2LFjGjZsmMaPH6927dpJkjZv3qx//OMfSk9PlyTVrFlTiYmJlf+fCFI2m01X1m+iK+s7H0q6KrOXEXxjDtIpelBXMjCooEQengQX2U2BQebgogIVBfoUn86hZB2Kgn3y7eY8ik8LUb6AoeK/UYmHls7Slydwqlgev9fN8cFoYeDU73V2/VvYg+phOlBV+NtoLhGh1co1+kowB7KUuK4UC2QtHshSeN36/ZrpDa4CWRxGYHIyUhKBLAAQOOhTAAAAAAAArgR+bzsC2nXXXaeQkBDZ7XatXLnSoeNKkh5//HE98sgjstls2r59u4YMGeI0H5vNpgcffFDVq1evjGqjiiuaviDU6orAq+wuRxFyEuTjEFBTUCKopkQglKv05QkWKiOgyq1gIZcjLbkTMFTgInCqKG3xqUbszh96V2rgFEFOcF9kaJiLQJUIp59H/xbkYg50Ca8igSzOgj19FchSOB1X8enKQlxPLWYEsxDIAgBVAX0KAAAAAADAlcDvsUdAa9CggW6//Xbt3btXR48e1fnz5x06n3r06KGHH35Ys2bNks1mc3jAYl6/6aabNHLkyEqvP4DgYbPZZJNNITarawJvsttdBAaZgpOKBwUVHyEpv6BkHnYVOKR3FRRQWuBUaSNkuArAKitYqHgezgKwzMFC5iAn57/R73nmO8nD1ShS5QoK8zBwyswcyBJdPFCljOXo8EjVDIsIqkAWIxislP3JHFzmy0CWkKIphNwMZCkaqQUAAHfQpwAAAAAAAFwJ/F5/BLxJkyaV+v1jjz2mdu3a6a233tKOHTuMz+12uy699FINHTpU99xzj6+rCQAIQAQ5Ba+i4BlJqhYS+GN1eRrIYl73htICWYqmDioKZDHWCWQBAFiIPgUAAAAAAOAMwTAICD179lTPnj2VkZGh1NRUXbx4UQ0bNlTjxo2trhoAALCAzWZTNZt/BMG4mibM2Sg4zqf7KvBSTWwKDfk9kMVmTBnkKpDFFMzy2+c2G5FjAIDgQ58CAAAAAABVD8EwCCj16tVTvXr1rK4GAAAIEuUJZCmQXQUFxaeGqqRAFqcjtRDIAgBAedCnAAAAAABA1UEwDAAAAAKK3W6XXXbZ7ZLdFJhiV+EUQy4DWZx8LnljeqHCYJRQm+tAlsLPQghkAQAAAAAAAACgEhAMAwAAUAWYA0ikwiAS+2+fF647LssUbGL+3l48v98LKExTlP63bUsrT+b8ZHfMv3j59t9r5l0lA1lCzMEsTgJZbLIpNCSEQBYAAAAAAAAAAPwUwTAAAAAuFAV8FC67H0Dy25LTtObgkpLBIE6CSYqX4SSAxMi/ePk+CyCxWmHwic2mwsCUYoEsIaYph5wFsoSYPiOQBQAAAAAAAACA4EMwDPxKamqqfvzxR+3bt09ZWVk6f/688ZCvLDabTS+99JKPawgAKIurAJLfv6ucABJzeSoRMEIASVEMSGF4iIygkKJ1GeuF39lkSv9bHg75Fd9GNlOeclw2la8S5ZdVHsErAADAOfoUAAAAAABAEYJh4Bd2796tV155RRs3bnS7o8oZOq4ABKrfgzPcmZqm6JvSRyspbwCJs/JKTn1T2lQ4BJB4FEDy2wdFQSIybUsACQAAQNnoUwAAAAAAAMURDAPLrVy5UuPHj1d+fn6FOq140AdUPd4IIDF/75BfUcKi/JyMHuKdAJLf6xVcbF4LIDEvG8Edv23nmNa0bgouIYAEAAAgeNGnAAAAAAAAnCEYBpY6dOiQnnjiCV28eNHoeIqKilLbtm0VExOj6tWrW1xDIPh4O4Dk9+XSgkEIIHFP6aOHFAZuOBlNxMXoIRUJICkqXyXKL6s8HiIAAACgctCnAAAAAAAAXCEYBpaaM2eO8vLyZLPZFBkZqaeeekr9+/dXeHi41VUDSjACPsyjg8jZ1DTGFm4Em7gXQOKqvJJT35Q+FU5VDiApTCnLAkiKpyWABAAAAKgY+hQAAAAAAIArBMPAUuvXrzeWJ0+erB49elhYG/iCuwEkRcsEkFQW58EfZQWQ/P6dk+CTYlPhqESwSVlT4ZQdQOJYHgEkAAAAQFVGnwIAAAAAAHCFYBhY6vjx47LZbGrcuDGdVn4o+0KeTueddxlAUrjsJPikigWQFK5bF0Di9HsCSAAAAAAEOfoUAAAAAACAKwTDwFIhISGSpEsvvdTimsCZrAs5On8xr4K5lB788Xuwh5NgEC8FkDh+93u9SnzvJNiEABIAAAAA8E/0KQAAAAAAAFcIhoGlmjVrpr179+rcuXNWVwVONKxeUzlhkR4FkMiUDgAAAAAAb6NPAQAAAAAAuBJidQVQtV133XWSpF9++UW5ubkW1wbFhdhCFBUWrurViv6FKbJamCJCqykitJrCQ6spLCRU1X77FxoSohBbSGGADIEwAAAAAAAfok8BAAAAAAC4QjAMLDV48GCFh4crNzdXCxYssLo6AAAAAAAgQNCnAAAAAAAAXCEYBpZq0qSJnnjiCdntdk2ZMkXr1q2zukoAAAAAACAA0KcAAAAAAABcIRgGlrvvvvs0YcIEXbhwQSNGjNAzzzyj7du3q6CgwOqqAQAAAAAAP0afAgAAAAAAcKaa1RUAJGnYsGFq27atHn74YS1atEiLFi1SWFiY6tSpo7CwMLfysNlsWr16tY9rCgAAAAAA/Al9CgAAAAAAoDiCYeAX5s+frxkzZujixYuy2+2SpLy8PB0/flw2m63M7e12u1vpAAAAAABAcKFPAQAAAAAAFEcwDCz3+uuva9asWS47n4o6sgAAAAAAAMzoUwAAAAAAAM4QDANLrV+/XjNnzjQ6rEJDQ9WlSxddddVVatCggapXr25xDQEAAAAAgD+iTwEAAAAAALhCMAwsNX/+fGO5ZcuWmj59ulq2bGlhjQAAAAAAQCCgTwEAAAAAALgSYnUFULVt27bNWJ42bRqdVgAAAAAAwC30KQAAAAAAAFcIhoGlMjMzZbPZFB8fr1atWlldHQAAAAAAECDoUwAAAAAAAK4QDANL1atXT5JUv359i2sCAAAAAAACCX0KAAAAAADAFYJhYKlLL71UdrtdGRkZVlcFAAAAAAAEEPoUAAAAAACAKwTDwFK33HKLJCk5OVknTpywuDYAAAAAACBQ0KcAAAAAAABcIRgGlurfv78aN26sgoICTZ061erqAAAAAACAAEGfAgAAAAAAcIVgGFiqZs2aeu211xQZGalFixZpypQpKigosLpaAAAAAADAz9GnAAAAAAAAXKlmdQVQtR09elSNGjXSlClT9OSTT2r27NlatWqV/vSnP+nqq69WTEyMwsLC3M7vkksu8WFtAQAAAACAv6BPAQAAAAAAuEIwDCzVvXt32Ww2Y91utyslJUWvvvpqufOy2WzauXOnN6sHAAAAAAD8FH0KAAAAAADAFYJh4BfsdrtsNluJTiwAAAAAAIDS0KcAAAAAAACKIxgGlivqoKKjCgAAAAAAlAd9CgAAAAAAwBmCYWCpNWvWWF0FAAAAAAAQgOhTAAAAAAAArhAMA0s1adLE6ioAAAAAAIAARJ8CAAAAAABwJcTqCgAAAAAAAAAAAAAAAADeQjAMAAAAAAAAAAAAAAAAggbBMAAAAAAAAAAAAAAAAAgaBMMAAAAAAAAAAAAAAAAgaFSzugIIfps3b3ZYT0xMdPldRZnzBgAAAAAAgY0+BQAAAAAA4AmCYeBz999/v2w2myTJZrNp586dTr+rqOJ5AwAAAACAwEafAgAAAAAA8ATBMKg0drs9IPMGAAAAAADWok8BAAAAAACUB8EwqBSldSzR6QQAAAAAAFyhTwEAAAAAAJQXwTDwud27d3v0HQAAAAAAqNroUwAAAAAAAJ4IsboCAAAAAAAAAAAAAAAAgLcQDAMAAAAAAAAAAAAAAICgQTAMAAAAAAAAAAAAAAAAgkY1qyuAqm3IkCGSpPbt22v8+PEe5fH666/rxx9/lM1m07x587xZPQAAAAAA4KfoUwAAAAAAAK4QDANLbdq0STabTRERER7n8csvvxj5AAAAAACAqoE+BQAAAAAA4ArBMAAAAAAAAEAQOHv2rJYuXaovv/xSBw4c0OnTp1W/fn21atVKffr0Ud++fRUeHm51NQEAAAAA8DmCYRDw7Ha7JPEWFwAAAAAAKJdg6lP4/vvvNWHCBB09etTh89TUVKWmpmrdunWaN2+epkyZolatWllUSwAAAAAAKkeI1RUAKurs2bOSpMjISItrAgAAAAAAAkmw9Cns2LFDw4cPNwJhwsLCdMMNN2jgwIHq0qWLQkIKuwD37NmjBx54QGlpaVZWFwAAAAAAn2NkGAS0vLw87d69WzabTfXr17e6OgAAAAAAIEAES59CXl6exowZo+zsbElSQkKCZsyYodjYWCPNvn37NHLkSB0+fFjp6ekaP368PvjgA6uqDAAAAACAzxEMg0pTfJhes5ycnFK/N7Pb7crJydHBgwf14YcfKisrSzabTW3btvVWVQEAAAAAgB+hT8G1hQsX6siRI5KkOnXq6O233y4R3BMfH6+ZM2dqwIABysvL0+bNm7V27Vp169bNiioDAAAAAOBzBMOg0nTv3t3pHNx2u13ff/+9evToUaH8b7nllgptDwAAAAAA/BN9Cq59+OGHxvKwYcNcjnITHx+vAQMGaOHChZKkBQsWEAwDAAAAAAhaIVZXAFWP3W43/jn7zN1/RdtJ0nXXXac+ffpY8v8BAAAAAACVgz4FRykpKdq/f7+xPmDAgFLTm79fv369zp0757O6AQAAAABgJUaGQaUyd1ZVVHh4uNq2bau+ffvq7rvv9lq+AAAAAADA/9CnUNLGjRuN5bi4OMXExJSavl27doqKilJ2drZyc3O1detWde3a1dfVBAAAAACg0hEMg0qzZs0ah3W73a6ePXvKZrOpU6dOevnll93KJyQkRNWrV1d0dLRCQhjcCAAAAACAYEefgnPJycnGckJCQpnpq1WrptatW2vr1q3G9gTDAAAAAACCEcEwqDRNmjRx+rndbldkZKTL7wEAAAAAQNVGn4JzBw4cMJYbN27s1jaxsbHGckpKirerBAAAAACAXyAYBpYaPXq0JOnSSy+1uCYAAAAAACCQ0KcgZWZmGssNGjRwaxvzVEqnT5/2ep0AAAAAAPAHBMPAUkUdVwAAAAAAAOVBn4KUnZ1tLEdERLi1jTmdefvisrKylJWV5fBZWlpaOWsIAAAAAIA1CIYBAAAAAAAAAlBubq6xHBYW5tY24eHhxnJOTo7LdPPmzdP06dM9rxwAAAAAABYiGAYBw263a8WKFVq3bp3S09NVu3ZtXXvtterXr5/bbz8BAAAAAICqJ1j7FMx1v3Dhglvb5OXlGcuRkZEu0z3wwAMaMGCAw2dpaWkaPHhwOWsJAAAAAEDlIxgGlsrJydFTTz2lgoICVa9eXZMmTZLNZiuR7syZMxoxYoS2bt3q8PmKFSv0zjvvaNasWWrRokUl1RoAAAAAAFiNPgUpKirKWDaPElMaczrz9sVFR0crOjra88oBAAAAAGChEKsrgKpt7dq1+ve//61Vq1YpIiLCaaeVJD3zzDPasmWL7Ha7pMI3uor+HTx4UMOGDdO5c+e8Vq+zZ8/qX//6l+677z5dd911ateunW688UYNGzZMixcvdniLCgAAAAAAVD5/7VOoTLVr1zaWT5w44dY25nTm7QEAAAAACCYEw8BSmzdvNpZ79+7tNM3PP/+slStXGp1atWvXVvfu3XXttdcqJKRwFz569KhmzZrllTp9//336tu3r1588UVt3rxZ6enpysvLU2pqqtatW6e//e1vGjhwoJKTk71SHgAAAAAAKD9/7FOobHFxccZyamqqW9uY05m3BwAAAAAgmBAMA0vt2rVLklStWjV16tTJaZpFixYZy/Hx8friiy80Y8YMzZ07V9OnT1dISIjsdrsWL16sgoKCCtVnx44dGj58uI4ePSpJCgsL0w033KCBAweqS5cuRkfZnj179MADDygtLa1C5QEAAAAAAM/4W5+CFVq1amUs79y5s8z0Fy9e1N69e51uDwAAAABAMCEYBpY6evSobDabmjdvrmrVqjlN8/XXXxvLjz76qOrXr2+sd+/eXT169JAkZWRkGB1hnsjLy9OYMWOUnZ0tSUpISNDq1av19ttva+LEiXr//fe1fPlyNWvWTJKUnp6u8ePHe1weAAAAAADwnD/1KVilS5cuxnJKSkqZUyXt2LHD6PeIiIjQ1Vdf7dP6AQAAAABgFYJhYKnMzExJUt26dZ1+f/DgQR0/flySVKNGDd14440l0nTr1s1Y/uWXXzyuy8KFC3XkyBFJUp06dfT2228rNjbWIU18fLxmzpyp8PBwSYVDMq9du9bjMgEAAAAAgGf8qU/BKnFxcWrZsqUkyW63a9myZaWmX7p0qbGclJSkGjVq+LR+AAAAAABYhWAYWCo3N1eSjOCS4rZu3SpJstls6ty5s9M3vYpGapGkU6dOeVyXDz/80FgeNmyYw9tiZvHx8RowYICxvmDBAo/LBAAAAAAAnvGnPgUr3XvvvcbynDlzlJGR4TRdcnKylixZ4nQ7AAAAAACCDcEwsFRkZKQkKSsry+n3P/zwg7Hsav5vc2dWUUdYeaWkpGj//v3GujnYxRnz9+vXr9e5c+c8KhcAAAAAAHjGX/oUrHbXXXepSZMmkgqnexoxYoSOHTvmkCY5OVkjR440/o+JiYkOo+IAAAAAABBsnE+oDFSSBg0a6NChQ0pJSVFBQYFCQhzjs7755htjuWPHjk7zOHv2rLFc1BFWXhs3bjSW4+LiFBMTU2r6du3aKSoqStnZ2crNzdXWrVvVtWtXj8oGAAAAAADl5y99ClYLDw/XtGnTNHjwYJ0/f14//fSTevbsqaSkJMXExOjIkSPauHGjCgoKJEkxMTH65z//aXGtAQAAAADwLUaGgaUuv/xySdK5c+f09ddfO3y3YcMGpaamSpKioqLUrl07p3n8+uuvxrKrqY3KkpycbCwnJCSUmb5atWpq3bq10+0BAAAAAIDv+Uufgj9ISEjQO++8o0suuUSSlJeXp7Vr12rRokXasGGDEQjTunVrzZ07V40bN7ayugAAAAAA+BzBMLBUjx49jOXnnntOGzZsUF5enrZt26ann35aUuHc3j169FBoaKjTPH7++WdjuXnz5h7V48CBA8ayux1CsbGxxnJKSopH5QIAAAAAAM/4S5+Cv+jUqZOWL1+uv//977rmmmsUExOjsLAwNWrUSF27dtXEiRO1ePFixcfHW11VAAAAAAB8jmmSYKnevXvrjTfe0NGjR3Xy5Ek9+OCDJdLYbDYNHTrU6fYFBQXGsMfVqlUz3gorr8zMTGO5QYMGbm1jnkrp9OnTLtNlZWWVmL88LS2tnDUEAAAAAABm/tKn4E9q1qypIUOGaMiQIVZXBQAAAAAASxEMA0uFh4dr8uTJGjZsmLKzs43PbTab7Ha7JGn48OFq27at0+03bNigEydOyGazKSEhQeHh4R7Vw1x2RESEW9uY05m3L27evHmaPn26R/UCAAAAAADO+UufAgAAAAAA8D8Ew8ByHTp00KJFi/Tqq6/qm2++UV5enux2u5o3b66HHnpIgwYNcrnt3LlzJUl2u13dunXzuA65ubnGclhYmFvbmDvJcnJyXKZ74IEHNGDAAIfP0tLSNHjw4HLWEgAAAAAAmPlDnwIAAAAAAPA/BMPAL7Rs2VJvvvmm8vPzlZGRocjISNWqVavM7UaMGKHhw4dLklq3bu1x+eZRXi5cuODWNnl5ecZyZGSky3TR0dGKjo72uG4AAAAAAMA1q/sUAAAAAACA/yEYBn4lNDRUMTExbqdPTEz0SrlRUVHGsnmUmNKY05m3BwAAAAAAlc+qPgUAAAAAAOB/QqyuAOAPateubSyfOHHCrW3M6czbAwAAAAAAAAAAAAAA6xAMA0iKi4szllNTU93axpzOvD0AAAAAAAAAAAAAALAO0yShUhw9elSSFBkZqXr16nk17zVr1ujIkSOSpCFDhniUR6tWrYzlnTt3ZjkJqQAAIABJREFUlpn+4sWL2rt3r9PtAQAAAACA9/h7nwIAAAAAAPA/BMOgUnTv3l02m03XX3+9Zs+eXWraSZMmSSoMMLnzzjvLzHvBggX69ttvJXnecdWlSxdjOSUlRSdOnFCDBg1cpt+xY4eys7MlSREREbr66qs9KhcAAAAAAJTO3/sUAAAAAACA/2GaJFQqu91eZpp58+bp/fff11dffeXVfEsTFxenli1bGnktW7as1PRLly41lpOSklSjRo0KlQ8AAAAAAErnr30KAAAAAADA/xAMA/zm3nvvNZbnzJmjjIwMp+mSk5O1ZMkSp9sBAAAAAAAAAAAAAABrEQwD/Oauu+5SkyZNJEkZGRkaMWKEjh075pAmOTlZI0eOVG5uriQpMTFR3bp1q/S6AgAAAAAAAAAAAAAA56pZXQHAX4SHh2vatGkaPHiwzp8/r59++kk9e/ZUUlKSYmJidOTIEW3cuFEFBQWSpJiYGP3zn/+0uNYAAAAAAAAAAAAAAMCMYBjAJCEhQe+8844mTJigo0ePKi8vT2vXri2RrnXr1poyZYoaN25sQS0BAAAAAAAAAAAAAIArBMMAxXTq1EnLly/XkiVLtHLlSh06dEiZmZmqV6+e4uPj1adPH/Xr10/h4eFWVxUAAAAAAAAAAAAAABRDMAzgRM2aNTVkyBANGTLE6qoAAAAAAAAAAAAAAIByCLG6AgAAAAAAAAAAAAAAAIC3EAwDAAAAAAAAAAAAAACAoEEwDAAAAAAAAAAAAAAAAIIGwTAAAAAAAAAAAAAAAAAIGgTDAAAAAAAAAAAAAAAAIGhUs7oCqFrWrVuntm3blpnObre7nRYAAAAAAAQ/+hQAAAAAAIC7CIZBpbPb7aV+b7PZ3E5bPD0AAAAAAAhe9CkAAAAAAAB3EAyDSuNOJ1R50nmaHgAAAAAABBb6FAAAAAAAQHkQDINKMXr0aKurAAAAAAAAAhB9CgAAAAAAoLwIhkGloOPKUX5+viQpLS3N4poAAAAAAKq6or9Ni/5W9Tf0KfgP+jMAAAAAAP6irP4MgmEAC6Snp0uSBg8ebHFNAAAAAAAolJ6erubNm1tdDfgx+jMAAAAAAP7GVX+Gzc7kyECly8nJ0c8//6yYmBiFhoZaXR2X0tLSNHjwYM2fP1+xsbFWVweloK0CA+0UOGirwEA7BQ7aKjDQToGDtgocgdJW+fn5Sk9P15VXXqnIyEirqwM/Rn8G4F3sqwgE7KcIFOyrCATspwgUgbKvltWfwcgwgAUiIyPVqVMnq6vhttjYWDVt2tTqasANtFVgoJ0CB20VGGinwEFbBQbaKXDQVoEjENqKEWHgDvozAN9gX0UgYD9FoGBfRSBgP0WgCIR9tbT+jJBKrAcAAAAAAAAAAAAAAADgUwTDAAAAAAAAAAAAAAAAIGgQDAMAAAAAAAAAAAAAAICgEfrcc889Z3UlAPiviIgIdenSRREREVZXBWWgrQID7RQ4aKvAQDsFDtoqMNBOgYO2Chy0FWANjj0ECvZVBAL2UwQK9lUEAvZTBIpg2FdtdrvdbnUlAAAAAAAAAAAAAAAAAG9gmiQAAAAAAAAAAAAAAAAEDYJhAAAAAAAAAAAAAAAAEDQIhgEAAAAAAAAAAAAAAEDQqGZ1BYCqKi8vT7t379ZPP/2kbdu2afv27Tpw4IDsdrskafTo0RozZky58z1x4oSWLFmir776SkeOHNGZM2cUExOjtm3bqm/fvrrpppsUElK+ODhf5OmugoICffnll1q+fLl2796t9PR01apVS02bNlXPnj11xx13qEGDBj4pWwqMdvr555+1fv16/fjjj9q3b59OnjypCxcuKDo6Wi1btlTnzp01cOBAXXLJJeWuZ2mWLFmip556qlzb/OMf/9Dtt9/u1XoU8fe2evLJJ7V06dJylb127VrFxsaWu86lycvL0/Lly7VixQolJyfr5MmTql27tlq0aKFbbrlF/fv3V82aNb1aZvHy/bWdPNmnzdasWaOmTZt6vP2vv/6qHj16lGubgQMHauLEiR6XWRpvt9X58+e1Y8cOh/yOHDlifD9p0iTdcccdHtX18OHDWrRokdauXavU1FTl5OSoUaNGateunfr376/rr7/eo3zdYfUxVVQHf26r/Px8bdmyRevXr9e2bdu0f/9+ZWRkqKCgQLVr11br1q117bXXauDAgapXr577/3E3TJs2TdOnTy/XNvPnz1enTp28Wg/J/9vp/vvv16ZNm9xOHxoaqp07d7qd3l1nz57V0qVL9eWXX+rAgQM6ffq06tevr1atWqlPnz7q27evwsPDvV5uEX9uJ0/2Z7M9e/Z4vK0kbdy4UUOGDCnXNuPGjdOoUaMqVK4r3m4rX95TV/XrFOCuyrwG+Nu9NwKL1fcrhw8f1ooVK/Tf//5XR48e1cmTJ1WrVi01aNBA8fHx6tKli7p27apmzZr5rA7wf5W5n3bv3t3hHrc8BgwYoJdfftkr9UBgsuqcevjwYS1ZskSbN2/W/v37lZWVpdDQUKOfomvXrrr99tu93k+BwGTVfnrs2DF99NFHWr9+vQ4dOqQzZ86oTp06atasmXr16qX+/fuzj0KS7567uMvqZ7mlIRgGsMCyZcv0zDPPKC8vz6v5rl69Wn//+9+VmZnp8PmRI0d05MgRrV69Wp07d9bkyZPVqFEjy/J0V1pamsaPH6/Nmzc7fH7y5EmdPHlS27Zt05w5czRx4kT17NnTq2VL/t9On332mV5//XWXf2wW/U6bN2/WzJkzNXz4cI0ePVphYWFe/f/4A39vK3/xyy+/6PHHH9fevXsdPk9PT1d6ero2b96sd999V5MnT1bHjh29Xn4wt1NYWJjq1Knjk7yt4O22euuttzR9+nRdvHjRK/mZLViwQC+//LJycnIcPj948KAOHjyozz//XDfffLMmTpyoWrVqebVsq48pyf/b6r333tM777yjEydOOP2+6Lf69ttv9eabb+rxxx/XkCFDZLPZvFK+v/D3dvIX33//vSZMmKCjR486fJ6amqrU1FStW7dO8+bN05QpU9SqVSuvlx/M7WRVh4OveLOtfH1PXdWvU4C7rL4GAO6ycl/Nzc3VjBkzNGfOHF24cMHhu4yMDGVkZGjv3r1asWKFbrzxRs2aNcur5SNwBNI5NdjuU1E+VuyrBQUFmjp1qt55550Sf6tduHBBOTk5OnbsmL755htNnz5df/3rX3XnnXd6pWwEJqvOqW+//bbeeOONEn/3Fv099+OPP2r27Nl64YUX1KtXL6+Vi8Djq+cu7rL6WW5ZCIYBLJCZmen1k9LatWs1duxY5efnS5KioqKUlJSkOnXqaP/+/dqyZYskadOmTRo2bJg++uijMt8A9EWe7srKytLQoUO1f/9+47MOHTqoZcuWyszM1IYNG5Sdna3MzEyNHTtWs2fP1nXXXeeVsov4ezt9//33Dp32YWFhSkhIUNOmTRUVFaXU1FR9//33On/+vPLz8zVz5kwdOHBAU6ZM8fpIPi1btlRSUlKZ6eLi4rxabhF/b6vikpKS1LJlyzLTRUVFef4fKObo0aP685//bDyQDgkJUefOndW0aVMdP35cGzZs0IULF3TkyBENGzZMCxYs0OWXX+618iX/b6dWrVpp8ODBbpe9bNkynTt3TpJ04403evWt6ho1aqh///5lpuvQoYPXyjTzdltlZGT45GHwRx99pOeee85Yr1u3rjp37qyoqCjt2rVLu3fvliR9+eWXOn36tN555x2vBQT6wzEl+X9brVu3ziEQJiIiQu3bt1fjxo0VERGhQ4cO6ccffzQ6nF566SWlpqbqySef9FodirRr107t27cvM50vgub8vZ2K69mzZ5m/g7fvJXbs2KHhw4crOztbUuF9TVJSkho2bKjDhw9r8+bNKigo0J49e/TAAw9o0aJFXh89zd/bqX379m5fpwoKCrRw4UIVFBRIkm677Tav1UOSGjZs6FZnW7t27bxabhFvtpUv76m5TgHusfoaYPW9NwKHlftqTk6OHn74YX333XfGZzExMbrqqqtUr149Xbx4UUeOHNGuXbuUlZXllTIRmKzYT/v371/iBSVX9u/frw0bNhjr3r5PReCw6pz63HPPaeHChcZ6RESE2rVrp6ZNmyo3N1eHDh3Sjh07JBWOBvLMM88oJyen3KNkIjhYtZ++9NJLmjdvnrFes2ZNJSYmKiYmRhkZGdq0aZOysrJ06tQpjR07VtOmTbMkyAD+wRfPXdzlD89yy0IwDGChxo0bq3379rrqqqt01VVXafLkycaD2/LIyMjQ448/bjwMvv766/Xqq6+qdu3aRprvv/9eo0eP1qlTp/TLL7/ohRde0CuvvFKpeZbH888/b5w869atq+nTpztMWXD69Gn95S9/0TfffKP8/Hw99thj+uqrr3wyMoM/t5MkJSYm6s4771TPnj1LBE9kZmbqpZde0qeffipJWrlypRITE3XfffeVu/6lueqqq/Tss896NU9P+HtbFenXr5/H08F46vHHHzcehjRr1kwzZ85UfHy88X1aWppGjRqlHTt2KDs7W2PGjNGKFSt8MpKQv7ZTUX3ccejQIc2fP99Yd6fzvDzq1KkTVMdUkebNmzvkN3bsWKWmpnqU1759+/TCCy8Y63fccYf+7//+T5GRkcZnq1at0oQJE5STk6PvvvtOb731lsaOHetx/c386ZiS/LutbDabbrzxRg0aNEjXX399iWFj09LS9Pe//13r1q2TVDiaTJcuXfTHP/7R4/o7061bN58OB+oOf24nsyFDhqhLly4VzsddeXl5GjNmjNG5lJCQoBkzZjh0IO3bt08jR47U4cOHlZ6ervHjx+uDDz7wSX38tZ26deumbt26uZV2w4YNWrBggbE+YMCAcpdXmhYtWgTddcrb99RcpwD3+MM1wF/uveHfrN5XH330USMQpkWLFvrb3/7m9L6gaIrSlJQUr5SLwGLVflqe+5cJEyYYy23btiUYt4qyal/duHGjQyBMnz599OSTT5Z4GWTbtm16+umnjREWJ0+erJtvvjkgRgaH91i1n65evdohEKZ///56+umnHUYSPXfunF5++WV9/PHHKigo0Pjx47Vy5UqvvzSEwOLt/ix3+NOzXFcIhgEscMstt+jWW29VTEyMw+eedjzOnj1bZ8+elVT4B/Gbb76piIgIhzSdOnXSa6+9pqFDh0oqHA78oYce0mWXXVZpebpr9+7d+uKLL4z1KVOmOJw8Jal27dqaPn26br/9dh04cEBZWVl6++23Hf6gqih/b6d27dqpX79+JX4bszp16uiVV15Rdna2vvrqK0nSzJkzNXjw4KCagsLf28pqX3/9tXHTEx4erlmzZpUYsjE2NlazZ8/WrbfeqszMTB06dEiffPKJ7r33Xq/VI5jaadmyZcZy3bp13X44GSi83VZDhgzRI488UuImtyIjS0ydOtUYcaFz58566aWXSpzXbrrpJp0+fVpPP/20pMIgi/vuu6/Cc+n6yzEl+X9bde3aVRMmTCi1gzM2NlZvvfWWBg8erO3bt0uSZsyY4fVgGCv5eztZbeHChcbIHHXq1NHbb7+t+vXrO6SJj4/XzJkzNWDAAOXl5Wnz5s1au3atV8+/wdRO5utUmzZtgu4hgzfbylf31FynAPf4yzUAKIuV++qSJUv0n//8R5LUunVrzZs3z+W1IjQ0VJ06dSr1uobg5e/n1HPnzmn16tXGurdfLELgsGpfXbp0qbF8xRVX6NVXX3X699lVV12l2bNn6+abb1Zubq5yc3O1atUq3X///R6XjcBj1X46depUY/mGG25w+mJnjRo19MILLygzM1OrVq3S+fPnNXXqVE2aNMnjchG4vN2f5S5/eZZblsDsLQUCXGxsbImTkqcuXLigRYsWGevjxo0r8TC4yB/+8Adj+KmCggJ99NFHlZZneSxYsEB2u11S4UgPrqbfiYyMdHjz4JNPPvHqUPT+3k6DBg1yq3PDZrPpscceM9bT09O1c+fO8lTf7/l7W1ntww8/NJbvuOMOl3OXNmjQQMOGDTPWzW+Ue0OwtJPdbtdnn31mrN92221B9xa1N9tKKnwj3ZvR3unp6cbDSEkaP368y4eRgwYNMqYly87OdnhA7Cl/OaYk/2+rBx980K2H8OHh4Q6jtvz000/KyMjwWj2s5u/tZDXzMTVs2LASnUtF4uPjHUY48efrlGRdO2VnZ2vVqlXGurdHhfEH3mwrX9xTc50C3Ocv1wCgLFbtq3l5efrHP/4hqTDQ5ZVXXqlw0CSCl7+fU1etWmWMsFCtWjX17du3UsqF/7FqX92zZ4+x3Lt371JfVGjcuLESExON9QMHDlSobAQeK/bT5ORkY0QiqXDEz9KYv1++fDlTJVZR3u7Pcpe/PMstC8EwQIDbuHGjzpw5I6lw3sCy5gU0X5TNkfi+ztNddrtdX3/9tbFe1lQyvXr1Uo0aNSQVDre1adOmCpXvK1b+ppLUqlUrh6ljiiKaUZLVbeVtZ8+edZhTvKxjyvxWzt69e3Xw4EGf1a0irGynH374QYcPHzbWb7/99grlh/L7+uuvjRvtli1bljm9lXm/Nj+c9ESwHlP+oGPHjsay3W73ynQ/8H8pKSkO8wqXFbhh/n79+vU6d+6cz+oWqMwPGUJDQ3nI4EXu3lNznQLcwzUAgcLKffXLL7/UqVOnJBWOunjFFVd4nBeCWyCcU81Bv9ddd53LB8sIblbuq0V/J0lyuK93xZymoKDA43IReKzaT4tGTJakmJgYtW3bttT0cXFxuvTSSyUVvjxqfrYG+FIgPcslGAYIcBs3bjSWr776aoWHh5eavnPnzsZyWlqa04hmX+TprpSUFB0/ftxYN0dfOxMeHq4OHToY6+a6+xMrf9Mi5rdR8/PzK5xfsPKHtvKmLVu26MKFC5KkqKgoJSQklJq+YcOGatGihbHOMVWSufMmPj5e7dq18zgveMbc/mVdJyTH9t+6datyc3M9LjtYjyl/xLWqajAfE3FxcWW+ydKuXTtFRUVJknJzc7V161af1i8Qffrpp8byddddpwYNGlhYm+Djzj011ynAPVwDECis3FfNo5LedNNNHueD4Ofv59TU1FSHB19MkVR1WbmvNm7c2Fj+5ZdfykxvThNsU8+idFbtpydOnDCWL7nkEre2MafbsGGDR+UC5RVIz3KrVVpJAHwiOTnZWC6ro1Mq7OyMiYlRenq6sb2589NXebrLHG0bExPj1tBeV1xxhdatW2eU7Y+s/E0l6dixY8rMzDTWzTf+3pCVlaUVK1Zo3759OnfunGrVqqVGjRqpU6dOiouL82pZvlYZbXXkyBF9/PHH+vXXX5WXl6c6deqoefPmSkxM9PoDK/P/p02bNqpWrexLf0JCghEswjHlKDc3VytXrjTWfTUqzMWLF7Vu3Tr9/PPPOnXqlCIjI9WgQQNdddVVSkhIUGhoqE/KDRTlbX/z25MFBQVKSUnxuBMjWI8pf2AeBlby/rXqxIkTWrZsmQ4cOKDz588rOjpaTZs2VWJiotsdDFVFcnKy9u3bp9TUVOXn56tu3bqKj49Xp06dFB0d7fWyirhzPFerVk2tW7c2OpaSk5PVtWtXr9YpkB07dsxhVBBfPWTIycnRmjVrtHv3bmVlZalGjRqKiYlRhw4d1KZNG5dTAgU6d++puU4B7vGXawD33iiLVfuq3W7Xtm3bjPUrr7xSkvTNN9/ok08+0fbt23XixAlFR0erRYsW6tatm+655x6v368hMPjLOdWVzz77zBhZIzo6Wj169PBZWfBvVu6r3bt3N4IFlixZovvuu89l/+CyZcuMfoo6deqoT58+HpWJwGTltb8i3AnyArwhkJ7lEgwDBDjz6AbuPjSKjY01HginpKRUSp7uMm/r7oOp2NhYp9v7Eyt/U0launSpsRwdHW10oHjLmjVrtGbNGqffXXnllRo7dqy6devm1TJ9pTLaavr06U4/t9ls6tWrl8aNG6f4+Hi3yi6Lp/+fIhxTjtasWWNMzxQSEuKzYJhjx45p2LBhTr+LjY3VsGHDdN9995U6t3EwK2/7R0REqF69esrIyJCkCj1kDNZjyh+Yr1WXXXaZ1+e6/eijj/TRRx85/S4pKUnjxo1zeEOhKnv++eedfh4WFqa+fftq7NixXgtW4pjyrk8//dR4yFCrVi2fPWTYvn27Ro0a5fS7uLg4jRw5Mijf9nX3nprrFOAef9lfufdGWazaVw8dOqTTp08b6/Xq1dP48eO1fPlyh3QnT57UyZMn9cMPP+jdd9/VpEmT1L17d4/KRODyl3OqK+bRC3v37l3mCL8IXlbuq3fddZc++eQT7d27V+fOndPAgQM1dOhQ9ezZU02bNlVubq4OHjyoBQsWGOfaWrVq6fXXX1etWrU8LheBx6r9tF69esayu9OHm9Px9xwqSyA9y+WvOCDAmd9MdHdECXM68x/VvszTXeay3Z031vywrCJl+5KVv2l6errefvttY33QoEFuvSHqLT///LNGjBihV155pdLKrAgr28put2vVqlUaOHCgVqxY4XE+ZhxTv/NGO5mnSEpKSlKjRo08yqci0tLSNHHiRA0dOtQIzKlKcnJylJOTY6xznQoOe/bs0ZIlS4z1e+65p1LL37BhgwYPHqy5c+dWarmB5sKFC1qyZIn69+/vteFMPTmfc0y5Zp5KoXfv3oqIiKj0OqSkpOivf/2rHn/8cWO6nmDg7j011ynAfYFwDajq994oZNW+Wvwh2KRJk4yHszExMbr11ls1cOBAderUyRjBKDMzU6NHj9bq1as9KhOBy5/Pqdu3b3d4AzwYg6bhPiv31YiICP3rX/8ypik9c+aM3njjDfXr108dO3ZUUlKS7r77bn366acKDQ1Vr1699PHHHyspKcnjMhGYrNpPzaPQHD9+XHv27Ck1/cGDB3Xw4EFjPTs7W3l5eR6VDZRHIPU9MDIMEOCys7ONZXc7uyMjI51u78s83WXe1pxnacx1PHfunMdl+5JVv2lBQYGeeuopnT17VlJhZPGIESM8ysuZJk2aqHfv3kpKStJll12munXr6sKFCzp8+LDWrl2r999/35jn8t1331WtWrVcvkXsL3zVVjabTe3bt1evXr2UmJiouLg41axZU+fOndMvv/yiFStW6JNPPlFeXp7Onz+vJ554QvXq1dO1117rtf+PJ8dURY5nX7LimDpx4oS+/fZbY90XnTc1a9bULbfcouuvv15XXHGFYmJiFBoaqmPHjmnTpk2aN2+e8UfQd999p0cffVSzZ8+uUkO3F2+7QLtO+esxZaWcnBw98cQTunjxoiSpZcuWuvPOO72Wf3x8vG655RZ17txZ8fHxio6OVk5OjlJSUrR69WrNnz9fZ8+eVX5+viZNmqS6dev6bNQnf2az2XTttdeqZ8+euvrqq9WiRQtVr15dWVlZ2rVrl5YtW6bPP/9cBQUFyszM1KhRo7Rw4cIKj2TmyfmcY8q5n3/+2WFIZF9cp+rXr6/evXura9euuvzyy9WgQQPl5+crNTVV3377rebOnatff/1VkvTFF1+oevXqmjhxotfrUdnKc0/NdQpwn9XXAO694S6r9tXiAVj//ve/JUljxozRyJEjHYIy9+zZo7Fjx+rAgQPKz8/X3/72N3Xo0MHthxMIfFafU0tjHhWmRYsW6tixo8/Kgv+zel+tU6eO3n//ff33v//Vc889p7S0NKfpEhIS1KdPH4+mWUfgs2o/bdOmjZo0aaIjR45IkqZOnaoZM2a4TP/666+X+OzcuXOMvgWfC6RnuQTDAAEuNzfXWA4LC3NrG/OF0PzWoi/zdFdFyzZv70+s+k2nTp2qb775xlh/+eWXVadOHY/yKq5nz57q379/iaGiw8PDdfnll+vyyy/XoEGDNGrUKG3ZskWS9Oabb+rWW29V8+bNvVIHX/BVWz3xxBOqW7duic9r166tTp06qVOnTvrTn/6k4cOH6+TJk7pw4YKeffZZrVixokIj+Vh5PPuSFf+vzz//3HhYX6NGDfXq1avceZSmYcOG+t///qcaNWqU+K5Zs2Zq1qyZbr/9dr3wwgvGVC/r1q3Tp59+qjvuuMOrdfFnxc/z7v5x5y/XKX89pqz0zDPPaPfu3ZIKf9PXXnvN7d+2LPfff7/GjBlT4vOwsDC1b99e7du316BBg/TQQw8ZQ+C++OKL+uMf/6jo6Giv1CFQTJ061el1ql69euratau6du2q/v3765FHHtH58+d19uxZPf/88/rXv/5VoXI5przHPHrZpZdeqmuuucar+V955ZX673//6/S827JlS7Vs2VJ/+tOfNH78eGP6zEWLFqlfv37q0qWLV+tS2cpzT811CnCflfsr994oD6v2VWcP0v785z9r9OjRJT5v06aN3n33Xd12223Kzs7W6dOn9cEHH2jcuHEelY3A46/3ABcuXNAXX3xhrPfr188n5SBwWL2vXrx4UbNmzdLcuXOVlZWliIgIdezYUU2aNFF+fr727t2rnTt3auvWrdq6davef/99TZ8+3e3RQRAcrNpPQ0JCNHz4cD333HOSpDVr1ujpp5/Wk08+qZo1axrpsrOzNXnyZKejy/vrMzIEl0B6lss0SUCAM0fSuTsMuXmYNGcRe77I010VLduKoeDdYcVvunjxYs2cOdNYHzlypLp161bufFyJjo4uc870evXqacaMGcbDgosXL/r9FBS+aitnDxiLS0hI0GuvvWasHzx4UF999ZVbdXDFyuPZl6z4f5kfMt58882qXr16ufMoTXh4uNPOeLNq1arp//7v/xweKs6ZM8er9fB3xc/z7g796S/XKX89pqwybdo0h2ldnn32WbVt29Zr+bsTANqsWTPNnDnT+MMtKytLH3/8sdfqECjcuU517dpVzz77rLG+adMmbd++vULlckx5x8WLFx0eMvhidKMaNWqUGdgRFRWlKVOQrqqPAAAgAElEQVSmKC4uzvgs0K9T5b2n5joFuM/K/ZV7b5SHVftq8WtK9erVnQbCFGnSpInuvfdeY91b0y8jMPjrPcDatWt16tQpSYWjUVbFUTjhyMp9NS8vTyNGjNAbb7yhrKws3Xzzzfr66681d+5cTZw4US+//LKWLFmipUuXGqOgbtmyRQ899BBTz1QxVu6nd999t7p3726sf/LJJ7rxxhs1atQoPfvssxo9erRuvPFGzZ8/X1LhS8tmZd3jAt4QSM9yCYYBAlxUVJSx7G4knTkq1by9L/N0l3lbd6NnzXX01wt9Zf+mq1ev1jPPPGOs33HHHXrsscfKlYe31KtXT4MHDzbWzW/V+iMr939Juvbaa5WYmGisV/T3qugxVdH/j69Udjvt3btXu3btMtatnN86JCTEYbqxffv2lZhLPpgVb7tAu0756zFlhfnz52v69OnG+pgxY7w6PVJ5xMXF6dZbbzXW/f1aZaX+/furSZMmxro3r1PuHs8cUyX973//U0ZGhiTrHzJERERo+PDhxvrGjRsDtuPYk3tqrlOA+wLhGlDV771RyKp9tfh2nTt3Vq1atUrdpkePHsbygQMHjCAEBD9/Paeap0hKTExU06ZNfVIOAoeV++qbb75pTIH+hz/8Qa+//rrTEV/atm2ruXPnGlPN7dq1S/PmzfO4XAQeK/dTm82mqVOnatCgQcZnZ86c0Zo1a7Rw4UJ99dVXOn36tMLCwjR+/HiHv/9DQkIcRpABfCWQnuUSDAMEuNq1axvLJ06ccGubkydPOt3el3m6y7ytOc/SmOtYkbJ9qTJ/0w0bNuixxx5Tfn6+pMLI4BdffNHt7X0hKSnJWD58+LBfPxCxcv8vcu211xrL+/fvr1BeHFO/q0g7LV261Fhu0qSJOnfuXK7tve2aa65xGH4wOTnZwtpUrsjISIe3K7hOBabPPvtML7zwgrF+3333lfqWa2UwX6uq0jFVXiEhIQ5vyHvzOuXu8cwxVZJ59LJOnTqpWbNmFtbG8XjKyckx5jsPJJ7eU3OdAtwXKNeAqnzvjUJW7avFRzls1apVmdsUT3P8+HGPykbg8cdz6unTp/Wf//zHWLfyxSL4D6v21fPnz+v999831seNG1fqqOcxMTEaMmSIsb5kyRKPykVgsvqcGh4erhdffFFLlizRPffco/j4eNWsWVMRERFq3ry57r77bi1evFjDhw93CHxt2LChbDZbhcoG3BFIfQ8EwwABzjwEubtvJ5nTmbf3ZZ7uatmypbF89OjRSi3blyrrN926datGjRplBJskJSVpypQpCg0NLUdtva94hH1mZqZFNSmblft/kZiYGGO5om9x+cP/xxcq8/+Vn5+vzz//3Fjv16+f5X9UhIWFOXSM+vMx5QstWrQwlt1p/9zcXGPEBKli+3WwHlOVafXq1Xrqqadkt9slFXaIPv300xbXyvFaVdWOqfIyX6cq+ltxTFVcVlaWw0MGfxh6PpDu/Zyp6D011ynAPYGyv1b1e29Yt6+a+8gk996gLZ7m3LlzHpWNwOOP59QvvvjCmDqhevXquvnmm71eBgKPVfvqtm3blJ2dLalwf2zfvn2Z2xR/EYRzatXhL+fUhIQEPffcc/riiy/0ww8/aPv27Vq1apWef/55tWnTRlLhyIVF2rVr55VygbIE0rNcgmGAAGd+42Pnzp1lpk9PT1d6errT7X2Zp7vMJ9D09HS3om7NdaxI2b5UGb/p7t27NWLECOOmvkOHDpoxY4bCw8M9qLF3FR8mzZ+HX7dy/y9y/vx5Y7miv5W5Pnv27DHebi4Nx5Sj9evXO7xN5y9vMpmPq+rVq1tYk8pX3vbftWuXEXgREhJSoZvtYD2mKsu3336rxx57TBcvXpQk9erVSy+99JLlAWaSd6e8C3bm61RFzz/lPZ4vXryovXv3Ot2+qlqxYoURtBEZGanevXtbXKOS936BdJ3yxj011ynAPYF0DajK996wbl+tWbOmGjdubKy78xC2eJqyplVC8PDHc6p5iqSePXsydQckWbevmvsFo6OjSx0VpkjdunUd1s+ePetR2Qg8/nhOdWXbtm3G8tVXX11p5aJqC6RnuQTDAAHOHJ28detWI9relc2bNxvLsbGxDm8t+jJPd8XFxalhw4bG+qZNm0pNn5eXp61btxrr5rr7E1//pvv379eDDz6o06dPS5Iuv/xyzZ49228e5pkvclFRUX79x6+V+3+RXbt2Gcvmt+890aFDB2NI7+zsbO3YsaPU9Onp6UpJSTHWq+oxZWaeeqJDhw5eaeOK+vXXX3XmzBljvaL7SaAxt7+5bV0xX0uuvvpqRUREeFx2sB5TleGHH37QI488Yjy079q1q1577TXLRy8rYr5WVbVjqry8eZ0yHxMpKSll/vG8Y8cOI0ghIiKCjh45Xqf85SFD8c5C8/29P/PWPTXXKcA9gXINqOr33rB2XzVPo+zOFF3mNDabTY0aNfK4bAQWfzunHjhwwKHP1l9eLIL1rNpXzVOZnjlzxghGL03x0eCio6M9KhuBx9/Oqa78+uuvRjBMaGiobrvttkopFwikZ7kEwwABrnPnzkaH95kzZ7R69epS0y9dutRY7tGjR6Xl6S6bzabu3bsb6+bOfWdWr15tRGRHR0erc+fOFSrfV3z5mx45ckRDhw415uWLi4vTu+++61c35+b/zzXXXGNhTcpm5f4vFc6nvGbNGmO9U6dOFcqvZs2aDp1n5vo6Yz7mLrvsMjVv3rxC5ftKZbXT2bNnHdrDXzpvzPMU16hRQ1dccYWFtal8f/zjH42RRJKTk7V9+/ZS0xd/G60igvWY8rUdO3bo4YcfNkYU6dixo958802/GL1MKnyDZ/ny5cZ6Rc+9wezAgQPasmWLsZ6YmFih/OLi4oy3Sex2e5n3fuZjLikpya3pAoLZoUOHHNrDX65T5nZq2bKl6tWrZ2Ft3OPNe2quU4B7AuUaUNXvvWHtvtqrVy9jedOmTWWOSvD1118by23atPGrviH4lr+dU83lN2rUSH/4wx+8mj8Cl1X7qnmkrezsbP30009lbrNx40ZjOSYmhtHhqhB/O6e68uabbxrL3bp1U2xsbKWUCwTSs1yCYYAAFx4erkGDBhnrb7zxhvHGdXHfffedvvnmG0mFw2/ffffdlZZnedxzzz1G5/H//vc/h5tOs9zcXL3xxhvG+p133qlq1apVuHxf8NVvmp6erqFDhyotLU2S1KRJE82dO1f169f3Yu1LKs/8qB988IHDG7H9+vXzRZW8xhdt5e7vVVBQoGeffdZ46zAsLMwrUx3ce++9xvLixYu1f/9+p+kyMjI0Z84cp9v5m8o6T3355ZfGw/vw8HD16dOnArV2LS8vz2X9i9u+fbtDO/Xp08dvz32+0rBhQ4dO4cmTJ7t8o2fx4sXG3LlRUVFeeVAcjMeULyUnJ+uhhx4yzm0JCQmaPXu2zzuRynOtevXVV3Xo0CFjvW/fvr6okt9y97fKy8vTU089ZUxzVadOHd1www0VLt98bMyZM0cZGRlO0yUnJzs8kKyqx5SZubMhJibGZw8Zzp8/r4KCArfSrlmzRp999pmx7u/3fpL376m5TgHus+IawL03PGHV/coNN9xgBCqeP3/e4aFXcUePHtWHH35orA8YMKBCZSPw+Mt9td1ud7gf7Nu3r1tT0qDqsGJfveKKK1SnTh1jferUqaWODnPy5Em9//77xvp1113ncdkITP5yTnXliy++MIJwwsPDNWHChEopFygSKM9yuQMBgsCIESOMERL279+v0aNHKysryyHNDz/8oMcee8y4wevXr59at25dqXk++eSTatOmjdq0aaP777/fZbrLL79ct956q6TCP54effRR/fDDDw5psrKyNGbMGGNI7+joaA0fPtxlnv7A27/p6dOn9eCDD+rgwYOSCh+AvPfeexWO/r3//vuNdnryySedpvnyyy915513avny5S4foJ06dUqTJk3Siy++aHyWkJAQEEP1ebutJk6cqEcffVTr169Xfn6+0zT79+/X8OHDtXLlSuOze++9V82aNXNZT3faSpK6d++uDh06SCq88Xj44YdLDK987NgxjRgxQqdOnZIkXXrppQ7BJv7IF+ep4swPGbt37+7RW3XTpk0z2skcLW12/Phx3XTTTXrvvfd07Ngxp2ny8vL00Ucf6YEHHlBOTo6kwjdTH3nkkXLXKRiMGzfOuGneuHGjnn76aeN3KbJ69Wq98MILxvrQoUNLfbBZ1Y8pXzhy5IgefPBBo8OgVatWeuedd1SrVq0K5du9e3ejraZNm+Y0zXvvvadhw4Zp9erVLh94paWlacKECXr33XeNz3r27FnlRoYZO3asnnnmGW3ZssVlZ+D27dt1zz336McffzQ+GzVqVKlT8rjTTpJ01113qUmTJpIKH86PGDGixLkwOTlZI0eOVG5urqTCEWm6devm9v8xGBV/yNCvXz+Pph1z5x59+/btuu2227Rw4ULjvFZcdna2Zs2apXHjxhmBM7GxsRoyZEi561SZfHVPzXUKcI+3rwHce8NXrNhXpcKXZP7yl78Y6++++67eeuutEn0L/9/efUdFde17AP8CgkgHBUQwoChYwBZEscSEWKJXRbHcxFgwaNREn90r6s21RUJe7B01URAjsSMae7lBRFEQFUEEwQKI4DAgfYR5f7g4b4Y6wCAl389arnX2Ofvsvc+cgzOz57f3fvLkCb755huhj8bc3Bzjx4+v+oVSg1ZXz2lJoaGhSExMFNIMzKKS6uJZVVVVlfu+ExQUhAULFpQZ4BAdHQ03NzdhaRwVFRVMnTq16hdKDVpd/p+6ePFi3Lp1q8xBKVlZWdi4cSOWLFki9OHMnz9fmMmGqKYa22+5KlJFFsYjIqVzcXEpte/58+fCuoItWrRAixYt5I6bmJhgz549ZZZ37do1zJo1S3hz1NLSQp8+faCvr4+nT5/KTZ/erl07+Pv7V/jjRW2UuXTpUiFS1dHREb6+vuXmzczMxD//+U+5UYzdu3dH27ZtkZGRgeDgYOG1UlNTw+7du9G/f/8Kr6c66vN9mjt3rlzghJOTk8IfeAYMGFDuh7JJkyYJ6/uNHj0aP/30U6k8x48fh4eHB4D3HTPt2rWDlZUV9PT0IJFI8OLFC0RERMj9+GhmZobDhw/X2lR99fleyT772tra6NixI8zMzKClpYWcnBzExsYiOjpa7gfIvn37Yvfu3VBXVy/3mhW5V8USExMxfvx44UucqqoqevXqBXNzc6SmpiI4OBgSiUS41kOHDqFjx47llldd9fk+lZSUlARnZ2fhvuzatQufffaZQufK2rp1K7Zt2wbgfYek7LTVxV6+fCks36SiooKPPvoI7dq1g4GBAVRVVZGamorw8HBkZGQI56irq2PXrl21NjJFmfeq+Ae3kuLi4oTnzszMDPr6+nLH7ezs8OOPP5bbxt9//x0rV64U0oaGhujVqxe0tLQQFRWFqKgo4VivXr2wb9++Rvc3BdTvezV27Fi5qYcHDRokt55sRVxcXNC1a9cyjzk7Owudq7Nnz8acOXNK5ZH929PU1IStrS1at24NbW1t5OfnIyEhAQ8fPhRmOQHef4nz8/NT+P+JqqjP90n22TcwMECHDh1gYmKCZs2aISsrC1FRUaVmlnB1dYWnp2dFl6zQfSoWGRmJr7/+Wm42LicnJxgbGyMxMVGuE8jY2BhHjhyRm+ZaWerzfSrpzp07+Prrr4X06dOnqxTwWUyRz+i3bt0SglrU1NTQpk0bWFtbQ09PD0VFRXj16hXCw8OF1wkAdHV1cfDgQXTo0KHKbVKEsu5VbX2mBvg+RaQoZb4HNNTP3tQwfOhnVZanpyf2798vpE1NTdGzZ080a9YMCQkJCAsLEwJktLS04OPjA3t7+5peMjVAdfmcFlu2bBmOHTsG4P3AONkZE4iK1cWzmpeXBzc3N7n+wqZNm+Ljjz+Gubk5CgsLERMTg8jISLl+2oULF5b53Y4av7r6P9Xe3h4FBQUwMDCAnZ0dWrZsKXz3vnv3rhB8A7wfMCobOEt/T8rsz2qIv+VWhPN6EtWR6OjoCo+npaUJHZfFipcXKMunn36KzZs349///jfEYjFycnJw6dKlUvl69uyJ9evXK/QjT22UqSg9PT38+uuvWLRoEe7cuQMACA8Pl/ugCrz/webHH3+stf886/N9Khm1fvPmTdy8ebPC9hYzNDRU2mhqiURSqjO/pEGDBmH16tUwMjJSSp1lqc/3SlZ2drbwTJdFQ0MD33zzDebMmaPUqeKKp/tfsGABYmJiUFRUVObzYm5ujv/93/+ttR9DGsp9AoBTp04JX3ybN2/+wT6kSaVSPHv2TBihXhZbW1t4eXnV6o9WyrxXEomk0vKSk5ORnJwst6+ymXi++uorSKVSeHl5IS8vD+np6XI/aBYbMmQI1q5dW+EPjFVVX/6mgPp9r0q+V128eLHCsmXZ2dmVGwxTVXl5eYiIiEBERESZx9XU1DBmzBh4eHhAS0tLKXWWVJ/vkyyxWIyQkJByj2tra2PevHlKn+2jc+fO2Lt3LxYvXoykpCQUFBTg+vXrpfLZ2Nhg48aNtRIIAzSc+wTIz17WuXPnagXCVEdhYSFiY2OFpX3K4ujoiHXr1lU4w11NKete1eZnar5PESmmLt8D6stnb2oY6vJZXbp0KXR1dbFz5068e/cOKSkpCAwMLJXP0tISmzdv5vP6N1bXn6vz8vJw/vx5Ic1ZYag8dfGsampqYs+ePVi5cqXwf2h+fj6Cg4PLzN+sWTMsWbKEy4n+jdX1/6lisRhBQUFlHjMyMsK//vUvpSy1Sw2fsn93UVR9+S23IgyGIWpEBg8ejB49euDYsWO4ePEiEhMTkZWVBWNjY9ja2mLkyJEYMmRIldZorY0yFWVmZgZfX1+cO3cOp0+fxuPHj5GamgodHR2Ym5tj0KBBGDNmTKloxvquLl9TZRk+fDgsLS2FN7UXL15ALBZDLBYDeP8GaGVlhR49emDEiBFo3759Hbe4epR1r5YtW4ahQ4ciLCwMDx48wKtXryAWi5GZmQl1dXUYGBjA1tYWPXv2xKhRoyqcHr8m2rdvj2PHjiEgIABnzpxBXFwcRCIRDAwMYGlpiS+++AKjR4+ulRkRalNt/U2dOnVK2B4+fHitrmNpbm6OgIAA4W8qNjYW6enpSE9Ph0QigY6ODszMzNC1a1cMGjQIffv2rbW2NDQTJkxA//79cfToUVy7dg3JycnIy8uDiYkJunbtilGjRtXah+zG+jfVWLi7u8PBwQFhYWGIiIhAcnIy0tPTIRaL0aRJE+jp6aFdu3bo0aMHRo8eLUx9+3e0adMmhIWFISwsDA8fPkRqairS09ORlZUFTU1NGBoaolOnTujduzdGjhxZa8+0g4MDTp8+jePHj+PcuXN4/vw5xGIxjIyM0K5dOwwbNgwjR46EhoZGrdTfkOTn58sFVZQ1AkiZHBwccPToUYSHh+PevXuIj48X/p4KCwuhq6sLCwsLdO/eHUOHDkW3bt1qtT0NCd+niBTzId8D+NmbaqKuPq+oqKhg9uzZGDp0KI4dO4agoCC8evUKOTk5MDIyQqdOnTBw4EC4uLgoNbiSGqa6/Fx96dIlZGVlAXg/q1bx8glEZamLZ1VXVxfr16/H9OnTcfLkSYSHh+PZs2fIysqCmpoa9PX1YWNjAycnJ7i6usLQ0FBpdVPDVBfPqZ+fH4KDg3H79m28fPkSaWlpKCwsRIsWLdCmTRsMGjQIQ4cOVXgwDVFtqu+/5XKZJCIiIiIiIiIiIiIiIiIiIiJqNOrvtANERERERERERERERERERERERFXEYBgiIiIiIiIiIiIiIiIiIiIiajQYDENEREREREREREREREREREREjQaDYYiIiIiIiIiIiIiIiIiIiIio0WAwDBERERERERERERERERERERE1GgyGISIiIiIiIiIiIiIiIiIiIqJGg8EwRERERERERERERERERERERNRoMBiGiIiIiIiIiIiIiIiIiIiIiBoNBsMQERERERERERERERERERERUaPBYBgiIiIiIiIiIiIiIiIiIiIiajQYDENEREREDYazszNsbW1ha2uL48eP13Vz6szx48eF18HZ2bmum0NEREREREREREREVK80qesGEBEREdVnb9++xZkzZxASEoKoqCikp6cjKysLGhoa0NHRgbm5OSwtLdGpUyd0794ddnZ2UFNTq+tmUz0jlUoREhKCixcv4sGDB0hKSkJmZiakUim0tLRgYmICCwsLdOjQAXZ2dnB0dISenl5dN5uIiIiIiIhIqYqKihAYGIizZ88iOjoaIpEI+fn5wvGTJ0+iY8eOcue8ffsW/v7+uH79OmJjY/H27VtIJBIAgK6uLu7cufNBr4EAW1tbYdvHxwe9evWqw9YQERGVjcEwRERERGUoLCzEr7/+iu3btyM3N7fU8dzcXOTm5iI1NRX37t3DqVOnAAB6enrYu3cvunbt+qGbTPVUWFgYfvjhBzx58qTM4xkZGcjIyMCTJ09w9epVAICamhrc3NywZMmSD9lUIiIiIiIi+hvbunUrtm3bVqMyLl++DAsLizKP5eXl4dtvv8WtW7cULi8hIQFubm5ITk6uUbv+7l6+fImAgACEh4cjNjYWGRkZyMvLg6amJgwMDGBubg5ra2t07twZH3/8Mdq2bVvXTSYiIqoxBsMQERERlSCRSDBv3jxcunRJbr+6ujratGkDAwMDAIBYLEZCQgIKCgqEPJmZmcjIyPig7aX668yZM1i8eDEKCwvl9puZmcHMzAxNmzZFZmYmkpOTIRKJhOOFhYXs6CMiIiIiIqJGZfPmzXKBMEZGRrC2tkbTpk2FfTo6OnLnLFy4UO778UcffQRzc3NhVl5tbe1abrXyyQYdOTo6wtfXt9bqEovF8PLywokTJyCVSksdz87ORnZ2NhITE3H79m1hf6tWrXDhwgWoq6vXWtuIiIhqG4NhiIiIiErYsmWLXCCMlZUV5s6dC2dnZ2hqasrllUgkiIqKwuXLl3Hu3DkkJCR84NZSfRUTE4MlS5YIgTAaGhr45ptv8OWXX8LMzKxU/qSkJAQFBeHChQu4ceNGhWW7urrC1dW1VtpNREREREREBAD9+vWr8jkl+02KFRUV4ejRo0J63LhxWLVqVYVLTUdGRuLhw4dC2svLC6NGjapym/6uUlJSMHny5FJ9VTo6OrCysoKuri7y8vIgEonw/PlzuWCZpKQkFBUVfeAWExERKReDYYiIiIhkpKWl4bfffhPStra28PPzg66ubpn51dXV0aVLF3Tp0gXz5s1DcHAwWrVq9aGaS/XYxo0b8e7dOwDvlz3y9vaGk5NTuflbtWqF8ePHY/z48UhMTERMTMyHaioRERERERFRKfv27VNaWfHx8cjMzBTSM2bMqDAQBgDu378vbLdq1YqBMFUglUoxd+5cuUAYJycnzJ49Gx9//DFUVFTk8mdlZSE8PBwXL17E+fPnIRaLKyz/8ePHtdFsIiIipWIwDBEREZGMq1evQiKRCOklS5aUGwhTkoqKCvr27VtbTaMGJCcnB0FBQUJ66NChFQbClGRubg5zc/PaaBoRERERERHRB1cyuKKsGVMrOqdly5ZKb1NjdunSJYSHhwtpV1dXrFu3rlQQTDEdHR30798f/fv3x/Lly3H27NlKg5WIiIjqOwbDEBEREcl4+vSpXLpHjx5KryM3Nxc3btxAaGgoHj16hISEBGRkZEAqlUJfXx8WFhZwcHCAq6sr2rZtq1CZzs7OSExMBAB4enrC1dUVhYWFuHjxIk6dOoWYmBi8fv0aTZs2hY2NDUaNGoUxY8aU6tjIysrCH3/8gYsXLyI2Nha5ubkwMDBA9+7dMWHCBIUCOspqi0QiwYULFxAQEIAnT54gNTUVurq6sLKywuDBgzF+/HhoaWlV8ZVUjFQqxfXr13HlyhWEhYUhNTUV2dnZ0NfXR+vWrdGvXz+MHTtWqR1rL1++REFBgZBW9nN0/PhxeHh4AHgfOHPlypVSeWTvQ1XNnj0bc+bMqTDPo0eP8Oeff+LmzZt49eoVxGIxtLW1YWJigl69emHkyJHo0qVLteonIiIiIiKixqV45tRiTZpU/vOU7DmK5Kf/d/78eWG7adOmWLZsWbmBMCU1bdoUo0ePrq2mERERfTD89EBEREQkIysrSy4tu16yMvj7+8PT0xO5ubllHk9NTUVqairCw8Oxb98+jBs3DitWrICGhkaV6klJScGiRYtw+/Ztuf0FBQW4e/cu7t69i7Nnz2LXrl3Cet6hoaGYP38+UlNTS7XpwoULuHDhAqZOnYqlS5dWqS3JycmYN28e7t27J7f/zZs3ePPmDe7evQsfHx/88ssvSg8auX//PlauXInIyMhSx9LS0pCWlobw8HDs2bMHs2bNwsyZM5VSb20/R3XpzZs3WLVqlVzHWjGxWAyxWIyYmBj4+vpi+PDhWLNmTa0FOhEREREREVH9JTuQoyRbW9tS+3x8fHDixAmcOHGi1LHbt2+XeU5Fy/WkpKTg9OnTCAoKwrNnzyASiaCmpoYWLVqga9euGDx4MAYOHKhwkEixrKwsBAYGIjg4GFFRUUhPT0dubi60tbVhYWEBOzs79O3bF5999plcf05Zg1bKuy7g/wcYVYfsYK/27dsrPOuxomTb7OPjg169eskd37p1K7Zt21atsssb9CMrIyMDp0+fxl9//YXY2FiIRCJIpVIYGRnBzs4Ozs7OGD58OIOoiIj+5vguQERERCTD0NBQLn3jxg0MHjxYaeUnJCTIBcIYGBjAwsICOjo6ePfuHZKTk4WOkaKiIvj7+yMpKQl79uxRuHMmJycH7u7uePLkCQDAwsICrVq1Ql5eHqKiooRloG7evIklS5Zgy5YtuHPnDtzd3ZGfnw8VFRW0b98eRkZGEIlEiFgR10sAAByWSURBVImJEcr+7bff0Lp1a3z99dcKt8XNzU1Yo9rY2BiWlpYoKChAbGwscnJyAACJiYlwd3fHr7/+iu7duytUdmUuXbqEhQsXIi8vT9inra0Na2traGlp4c2bN4iNjYVUKkVeXh42btyIxMRErFmzpsZ1l3yOgoKCMHHixBqXWxU9e/ZEmzZtFMqbkZGBBw8eVJrv6dOnmDZtmlznnbq6OqytrWFgYICsrCzExMQIs+IEBgYiPj4ePj4+0NHRqd6FEBEREREREVXBu3fvsHXrVuzfv1+uT6BYdnY2nj17hoCAAHTu3BkbNmyAlZVVpeVKpVLs378fO3fuREZGRqnjGRkZyMjIQGRkJPz9/RUK6qgt2dnZwnZjGqADAPv378f27duRmZlZ6lhiYiISExNx/vx57Ny5Ez///DO6du1aB60kIqL6gMEwRERERDK6desml16zZg1atmyp1OVeHB0dMXz4cHzyySdlrpH94sUL7NmzB/7+/gCAv/76C76+vpg8ebJC5W/duhVisRjdu3fHDz/8gE6dOgnH0tPTsXz5cly+fBnA+2lz//rrL3h4eCA/Px9jxozBvHnzYGJiIpwTExODOXPmCAEtGzZswKhRo6CtrV1pW7Zv3w6RSAQzMzOsXLkSAwYMEIJ6cnNzcfDgQWzevBkSiQQ5OTlYsGABTp8+XePAiaioKCxYsAD5+fkAABsbGyxcuBD9+/eXWxoqJSUFmzZtwvHjxwEAf/zxB7p06YJx48bVqH5LS0sYGhoiPT0dAHD16lV4e3vD3d39g6257eXlpVC+/Px8TJkyRUhraWnh888/L5UvKysLs2bNEgJhDAwMMHfuXIwaNUpu5pfc3Fz4+flh06ZNkEgkiIyMxMqVK/HLL7/U8IqIiIiIiIioITE1NUW/fv0AlB6EUbxflr6+PmxsbIRjz58/x/Pnz4Vj9vb2ldaZnZ2N//mf/0FQUJDcfisrK5iYmEAikSA+Ph5isRgAEBkZiS+//BL79+9Hhw4dyi1XIpFg0aJFOHfunNx+HR0dWFpaQldXF1lZWYiPjxcCUUoGaxQPWlH0ukxNTSu93vIYGhoK/TgxMTFIS0tDixYtql1eVX300Udl3uPyhIaGCn045Xn37h2WL1+OkydPyu03NzcX+teePXsmzHickJCAyZMnY+fOnejTp08Vr4CIiBoDFWljCwklIiIiqoGCggJ88cUXcjNfqKiooFevXhg0aBAcHBzQvn37agc0ZGdnKxREAgDe3t5Yv349AKBVq1a4dOlSufWWnGrX0dER+/btK3N5pYKCAgwbNgwvXrwA8H5mD4lEgm+//RYLFy4ss/y4uDiMGDEChYWFAN4HWowaNUqhtjRv3hx//PEHLCwsysx/9uxZzJ8/X0hX1A7ZssubLrioqAgjRoxAbGwsAMDJyQm7d+9G06ZNyywTeB/gs3v3bgDvO4yuXbsmLB9VXbJlFjM3N8c//vEPODk5wd7evtrTFMtONV2TkWZSqRQLFy7EmTNnAACqqqrYvn07nJ2dS+X9z3/+g8OHDwMAWrZsCT8/v3LvKQD897//xYwZM1BUVAQAOHLkiFKDyoiIiIiIiEi5Si5tU9ESRFV169YtuUE+ipQt2x5HR0f4+vpWes6CBQuE77hqampwc3PDlClT5AJLioqKcOXKFaxatQqvX78G8D5Y5sSJE+Uu87t69Wr4+fkJ6eJBN/369ZNbiqeoqAiRkZEIDAzE+fPnce3aNaVcV1X99NNP+O2334R0z549sWHDBrnBTzVR2TJJVXHgwAGsW7dOSM+cOVOun6jYL7/8gj179ghpV1dXzJw5E5aWlnL5QkJCsHr1asTFxQEAjIyMcOrUKaVdOxERNRyqdd0AIiIiovpEQ0MDP//8s1wQiVQqRUhICNasWQMXFxf06NED48ePx9q1a3Hu3Dm8fftW4fIVDYQBgGnTpqFly5YAgKSkJDx8+FCh89TU1LBu3boyA2GA99c4duxYIS2RSGBlZYW5c+eWW6a1tbVcx8bdu3cVagsALFq0qMKgiWHDhmHIkCFC+siRI8IyO9Vx5coVIRBGX18fGzZsqDAQBgDmzp0rTImcnp6OwMDAatdfbNasWaVGdyUmJsLb2xtTp05Fz549MWTIECxYsAB+fn5y63l/KJs2bRI6CQFg6dKlZQbCpKamCrPnAO871Sq6pwDwySefYPTo0UL64MGDSmgxERERERERUdnOnj0rfMdVV1fHzp07sWTJklIzrKiqqmLgwIH4448/hNlSEhIScOjQoTLLvXnzplwgTL9+/XDkyBF8+umncoEwxWXb29vDw8ND7vv2hzZu3Dioqv7/T4ChoaEYOHAgFi5ciICAAGGAVF27evWq3My2Q4cOxbx580rlu3fvHvbu3Suk16xZA09Pz1KBMADQu3dv+Pv7w9raGgAgEomwc+fOWmg9ERHVdwyGISIiIirBwcEBv//+O9q3b1/m8by8PERERMDX1xdz585F3759sWjRIsTHxyu1HaqqqnLrGt+/f1+h8/r06YPWrVtXmKfkesljxowp1YFT0TnFwSaVMTAwwIgRIyrNN2nSJGE7PT0doaGhCpVfFtmgjdGjR8PIyKjSc9TU1OTaefPmzWrXX6xZs2Y4cOAAXF1d5TqgikmlUiQkJODMmTNYvXo1hg4dijFjxuDPP/+scd2KOHnyJHbt2iWkJ06cKLdckqwzZ84IAUqdOnWCk5OTQnXIBsMo4zUlIiIiIiKiD8fW1rZK/3788cc6ba+3t7ewPX36dAwYMKDC/GZmZli8eLGQLm8Qh+x3ZxMTE2zYsEGh2WSrMiBK2aytrUvNupufn4/AwEAsXrwYAwcORK9evTB16lRs3rwZN2/exLt37z5oG4uXuC6ehbh79+7w8vISlteW5e3tjeKFLlxcXDB+/PgKy9bV1cXq1auF9IkTJ5CVlaXE1hMRUUNQ8S8eRERERH9TdnZ2CAgIwMWLF3HixAkEBweXu3Zxfn4+Tp8+jT///BNLliwpN6CgpKSkJISEhODx48dIS0tDdnY2JBKJXJ6YmBhh+9WrVwqV261bt0rzGBsby6W7d+9epXNKrntdnt69e0NdXb3SfA4ODtDW1hbW1Y6IiEDfvn0VqkOWVCqVm7WmKmtCy64NrugsPJXR1taGp6cn3N3dcfjwYZw/f16YgrksDx8+xLx583D06FFs2LAB+vr6SmlHSaGhoVixYoWQ/vTTT7Fs2bIK8xer7mv6+vVrpKSk1GjNcyIiIiIiIqKyREVFISoqCsD7WWFkl2SqyLBhw/DDDz8gPz8fycnJiI+PR5s2bYTjqampCAkJEdJubm619l1d2aZNmwZjY2N4enoiPT291HGxWIzg4GAEBwdjx44dMDIywtixYzF9+nTo6enVattSUlIwc+ZM5OTkAAAsLCywY8eOMmf2FYvFuHr1qpD+5ptvFKrDwcEBFhYWePnyJXJzc3Hv3j3069dPORdAREQNAoNhiIiIiMqhqqqKIUOGYMiQISgoKMD9+/fx4MEDREVFISIiAgkJCXL53717h3Xr1kFVVVVuppOSYmJi8NNPPyE4OFgY1aIIRZdjKhnoUpaSI5iKpwWuSLNmzYTt3NxchdpiY2OjUD4VFRXY2NggPDwcAEq9top69eoVxGKxkN61axd8fHwUOjcjI0PYFolE1aq/PO3atcOKFSuwYsUKJCQkIDw8HI8ePcKjR49w//79UstCBQUFYcaMGfDx8Sl3uavqSkhIwOzZs4XAq44dO2LDhg1QU1Mr9xzZtdyvXr2K6OjoatWdnp7OYBgiIiIiIqIGoqqBA8XL0tSF27dvC9sdO3aEoaGhQudpaGigbdu2QiDNw4cP5YJhSs5cO3ToUCW09sNxcXHBwIEDcfz4cZw+fRoPHjxAUVFRmXlFIhG8vb1x9OhRbNq0SW65bGXKycnBrFmzhEFfenp68Pb2Lndm3zt37ghtbt68udzAm8p06NABL1++BPD+3jIYhojo74XBMEREREQK0NDQgIODAxwcHIR9SUlJOHnyJPbv3y8XSPHzzz9j0KBBaNmyZalyrl27hjlz5pQKflCEoucoMhOLMs5RhIGBQbXyKjrzTEmygTAAEBYWVq1yFA08qg4rKytYWVkJSwjl5eXh2rVr2LNnj9yMNOHh4fD19YW7u7vS6haLxZgxY4bwOpmammL37t2VTt0s+7rGxcUhLi6uWvXX5utKREREREREyrVv3766boLCZAdxJCUlVem7dFJSkrBdcnCM7PdfIyMjtGrVqgatrBva2tqYNGkSJk2ahMzMTISHh+PBgweIjo7GvXv3kJqaKpdfJBJh+vTpOHjwILp06aLUthQVFWHRokWIjIwE8L4/auvWrRUGUsne2/z8/CrdW9kZl5U98ImIiOo/BsMQERERVVOrVq3w3XffYcyYMZgyZQri4+MBvA9aOXr0KGbPni2XPyUlBfPnzxeCWpo1awYXFxf0798fbdq0gYmJCZo2bSo3E8jSpUtx4sSJD3dRSlaVWU1k81YnWAiAML1uTVVlxp6a0tTUxBdffIHBgwdj3bp18PX1FY75+fkpLRimoKAAs2fPFmbd0dLSwq5duxSaqUXRmYAqU97oMyIiIiIiIqKakB3EkZaWhqCgoGqVU3IQh+zgp+bNm1evcfWInp4eBgwYgAEDBgj7IiMj4e/vj6NHj6KwsBDA+6CT5cuXIyAgACoqKkqr38vLC5cvXxbSq1evRu/evSs8R/beZmVlKe3eEhFR48dgGCIiIqIaMjU1xapVq+TWo75z506pfPv37xeCNXR1dXH48GG0a9euwrKzs7OV29gPrCrtz8rKErZ1dHSqVV/JNa1PnDiBTp06VausD01VVRUeHh64fv06nj9/DgBITEzEq1evypxlqKpWrFghTO+spqaGDRs2KPza6OrqCuuLe3h4wM3NrcbtISIiIiIiIlIWZQ3iKDk4Jj8/X9hW9jLG9UXnzp2xevVqjBgxAtOnTxdey5iYGISGhsLR0VEp9fz+++/Yv3+/kJ45cyZcXV0rPa+27i0RETV+DIYhIiIiUgJHR0doaWkJwS6vX78uleevv/4StidPnlxpIAwAJCcnK6+RdaB4XWZFvHjxQthu0aJFteoreV5aWlq1yqkrampq6NevHw4dOiTse/36dY2DYbZv345Tp04JaQ8PD3z22WcKn29sbCwEwzS015SIiIiIiIgaP11dXWHb2dkZO3fuVEq5soNuZAfxNEY9e/aEu7s7tm3bJuy7c+eOUoJhgoKCsHbtWiH9j3/8A/PmzVPoXNl7a2tri4CAgBq3h4iI/h5U67oBRERERI2BiooKtLW1hbSamlqpPImJicK2ImsuZ2dnIzo6WjkNrCMREREK5ROJRHLBMJ07d65WfYaGhrCyshLS9+7dq1Y5dankrDhlPUtVcebMGWzdulVIF68TXhXdu3cXthvia0pERERERESNm7GxsbD95s2bWik3KSlJbqaYxkh2+SSg7MFeVfXkyRPMnTsX7969A/C+j+Gnn35SePml2rq3RETU+DEYhoiIiEgJxGKx3BdyExOTUnmKv/Qr6tSpU5BIJDVuW126f/++sORPRQIDA+Wmq+3Zs2e16/zkk0+E7ZMnTza41/Dp06dy6bKeJUWFhYVh6dKlwmv72WefwcPDo8rlyL6md+/eLdVGIiIiIiIiorokO4gjKioKeXl5Si9XIpEgLCysxmXKBoHUt6V7Sg7QadKkZgtMpKWlYcaMGcKsOq1bt8aOHTuqtOSU7D1IS0uTG0xFRERUEQbDEBEREcm4fft2tb5U+/r6oqioSEj36dOnVB7ZoIbQ0NAKy0tLS8OWLVuq3I766Jdffqnw+Nu3b+Ht7S2kHR0d8dFHH1W7vilTpkBdXR3A+9l4Nm/eXO2yqkskEuHatWtVPu/p06f473//K6Tbt28vNwKqKl68eIHvv/8eBQUFAIBOnTph/fr11ZppxtnZGW3atAEAFBUV4d///neDCzIiIiIiIiKixqtPnz5CX0BBQYHSltLp3LkzDA0NhfTvv/9e4zK1tLSEbWUF7SiLMgfo5OXl4bvvvhNmStbX14e3tzeMjIyqVI69vT0MDAyE9NGjR6vdJiIi+nthMAwRERGRjBs3buCLL77Av/71L4SGhlY6QqewsBD79u3Djh07hH3a2toYMWJEqby9e/cWtg8dOoQHDx6UWWZSUhKmTp2K9PT0al5F/XL+/Hls2rSpzNcyMzMT3333HVJTU4V93333XY3qs7CwwNSpU4X0nj174OnpWWkHU1FREUJCQjBr1qxKg5Uq8/btW8yYMQOurq44duyYQuuKP3jwANOmTROCVwDgyy+/rFH9IpEIAGBqaopdu3bJLeVVFaqqqvDw8BBGr925cwfTpk1DSkpKpefGxsZi9erV2Lt3b7XqJiIiIiIiIqqMkZERRo0aJaQ3bdqEpKSkGpfbpEkTTJw4UUifP38ely9frlGZsoNeXrx4USuzw1y4cEGhvghZUqkUPj4+cvucnJyqVb9UKsWSJUuE5bPV1dWxZcsWtG3btsplNWnSBG5ubkL6wIEDePToUbXaRUREfy81m9+MiIiIqBF69+4dTp48iZMnT8LMzAw9e/ZEly5dYGZmBgMDAxQWFuLNmzeIjIzEhQsXSi0D5OHhUebImSlTpuDEiRMoLCxETk4Ovv76a4wbNw59+vSBvr4+RCIRbt68iRMnTiA3NxdmZmawsbHB9evXP9SlK92wYcPw559/YufOnbhx4wZcXV3Rpk0bFBQU4P79+/D395dbf3r8+PHV7miRNX/+fDx+/Fh47fbv349Tp05h+PDh6NatG1q0aAE1NTVkZmbixYsXePToEW7cuIG0tDQAkOtkqYnIyEgsW7YMq1evhoODA7p16wZra2sYGhpCXV0dWVlZePr0KYKCghAcHCzXAebo6IivvvqqWvU+evQIcXFxQlpLSwvLli1T+PyRI0fCxcVFbt+AAQOwYMECrF+/HgAQEhKCgQMHYvDgwejduzfMzMygqamJ7OxspKSkICoqCiEhIcKostmzZ1frWoiIiIiIiIgUMXv2bFy6dAnp6el48+YNJk6ciA0bNqBbt24VnpeWlobjx4/j8ePHwndeWZMnT8axY8eE4Jr58+dj3bp1GD58eLllikQiHDt2DNOnTy91rHPnzsK2WCzGsWPHMHbsWEUvUyG//fYbVqxYgS+//BIuLi6wtrauMH9mZiZWrVqFW7duCfvs7Oxgb29frfo3btyI8+fPC+k1a9bIDRKrqkmTJuHkyZNISEhAbm4upk6dCi8vL3z66acVnpeZmYnAwEBcunQJv/76a7XrJyKihonBMEREREQySi4hk5ycjICAAIWm19XS0sLy5cvL7cCwsbHB0qVL8eOPPwIA8vPzcfDgQRw8eLBUXiMjI2zbtq3MYw1J//79YWtri40bN+L+/fu4f/9+uXkHDhyI//znP0qpV1VVFdu3b4enpyf8/PwAAOnp6fD19YWvr69S6qisfll5eXkICgpCUFCQQucPGTIEXl5e1VrSqCzx8fGIj49XOH95HYXffvstmjdvjlWrViE/Px8FBQUIDAxEYGCgUtpJRERERERE9Ye7u3uVz/nqq68wcODAWmhN5Vq2bIktW7bA3d0dBQUFSExMxD//+U/07t0bAwYMgLW1NXR0dJCbmwuRSISYmBiEhYUhPDwcRUVFcHR0LLNcPT09bNq0CZMnT0ZeXh7y8/OxcOFCHDhwAEOGDEH79u2hra2NrKwsxMXFITQ0FEFBQdDU1CwzGKZt27aws7PDw4cPAQDLly+Ht7c3LC0thaWegPcBIDUZMJSRkYHdu3dj9+7d6NChA3r06IHOnTvD2NgYOjo6KCgoQFJSEsLDw3HhwgVkZGQI52pra2Pt2rXVrlu2n0BLS6tKfQctWrSAl5eX3D4dHR3s2LEDX331FTIyMiAWizFjxgzY29vj888/h62tLfT09FBQUACxWIwnT54gIiICt2/fhkQigbm5ebWvhYiIGi4GwxARERHJmD17Nvr06YPLly/j1q1biI6ORmFhYYXnmJqaYtiwYZg6dSpMTU0rzDt58mSYmprCy8tLWDNZlrq6Oj7//HOsWLFCbtrchmzmzJlo164dfv75Zzx79qzUcQMDA3z//feYOHFiqSCSmlBXV8cPP/yAkSNHYteuXQgKCoJEIik3v7GxMfr27Yvhw4fDwcGhRnW3bt0aV65cwaVLl3Djxg2Eh4cjMzOzwnM0NDTwySefYMKECejbt2+N6q9NY8aMgZOTE/bu3YuAgAC8ffu23LxaWlpwdHTE0KFDMXjw4A/YSiIiIiIiIqopRQd0yOrfv38ttERxjo6O8PPzw5w5c/Dq1SsA72c2DQkJqVG5Xbt2ha+vr9xSz5UN+tHU1Cz32Nq1a+Hm5gaxWAwAePbsWak+k5oEFZUcXBMdHY3o6GiFzjU3N8emTZvQsWPHatcvKycnp0rPUnmBK9bW1jhy5Ai+//57PHnyBMD7JafLW4aciIhIRVobixESERERNRI5OTmIjY3F8+fP8ebNG+Tk5EBNTQ3a2towMTGBjY0NPvroI6ioqFSp3MLCQty7dw/R0dHIzMyEnp4eTE1N4ejoCD09vVq6mg/D2dlZCPTx9PSEq6urcCwiIgKxsbF48+YNtLW10aZNGzg6OqJJk9qP0c7NzUV4eDgSExORnp4OqVQKbW1tmJmZwdraGlZWVrVWd1FREZ49e4aEhAQkJycjKysLhYWF0NLSgr6+Ptq2bQsbG5sKO8rqo8LCQkRGRiIuLg5isRh5eXlo1qwZjI2N0bZtW7Rr105uVBsRERERERHVX1u3bsW2bdtqVIaHh0eZSw/funULkydPFtKPHz+uUnscHR2rNNNrdnY2Dh06hEOHDgnLG5WlSZMmwuwiI0eOrHSQU2ZmJvbt2wd/f3+kp6eXmUdFRQWdOnXC2LFjMWHChHLLSktLw+HDh3Hz5k08ffoUb9++lRvEU7JPpSpyc3MRFBSEq1evIjQ0tNQS32WxtbXFqFGjMGHChEr7J2xtbYVtHx8f9OrVS+64bN9QVZmbm+PKlSvlHi8oKMDx48dx4MABYWnmsqioqKBDhw5wdnaGi4sLLC0tq9UeIiJquBgMQ0RERERKVVEwDBERERERERHRh5SQkICHDx8iPT0db9++haamJgwMDGBlZQUbGxvo6OhUucyioiJERkbiyZMnEIlEePfuHXR0dNC6dWt07twZLVq0qIUrqT6RSIS4uDi8ePECGRkZyM3NRdOmTaGtrQ0LCwt06NCh3rVZEcnJybh37x5EIhEyMzOhoaEBPT09WFpawsbGBgYGBnXdRCIiqkNcJomIiIiIiIiIiIiIiIgaJSsrK6XPBquqqgp7e3vY29srtdzaYmRkBCMjI/Ts2bOum6JUZmZmMDMzq+tmEBFRPaVa1w0gIiIiIiIiIiIiIiIiIiIiIlIWBsMQERERERERERERERERERERUaPBYBgiIiIiIiIiIiIiIiIiIiIiajQYDENEREREREREREREREREREREjYaKVCqV1nUjiIiIiIiIiIiIiIiIiIiIiIiUgTPDEBEREREREREREREREREREVGjwWAYIiIiIiIiIiIiIiIiIiIiImo0GAxDRERERERERERERERERERERI0Gg2GIiIiIiIiIiIiIiIiIiIiIqNFgMAwRERERERERERERERERERERNRoMhiEiIiIiIiIiIiIiIiIiIiKiRuP/AJUD19bBSpDUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_fig2(num_plotted_trials, d1, d2, n1, n2, effect_size, algos, num_trials, sample_sizes_d1, sample_sizes_d2, mus)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.2 64-bit", + "metadata": { + "interpreter": { + "hash": "11ddca5089527d17826da45cd024a0d3d3b64d2c1b5dbf54dd1c238d51a17f38" + } + }, + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/tutorials/uncertaintyforest_running_example.ipynb b/docs/tutorials/uncertaintyforest_running_example.ipynb index 5e5c350f19..d7efccff9f 100644 --- a/docs/tutorials/uncertaintyforest_running_example.ipynb +++ b/docs/tutorials/uncertaintyforest_running_example.ipynb @@ -4,20 +4,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Uncertainty Forest: How to Run Tutorial\n", - "This set of two tutorials (`uncertaintyforest_running_example.ipynb` and `uncertaintyforest_fig1.ipynb`) will explain the UncertaintyForest class. After following both tutorials, you should have the ability to run UncertaintyForest code on your own machine and generate Figure 1 from [this paper](https://arxiv.org/pdf/1907.00325.pdf). \n", + "# How to Run UncertaintyForest\n", "\n", - "If you haven't seen it already, take a look at other tutorials to setup and install the progressive learning package `Installation-and-Package-Setup-Tutorial.ipynb`\n", + "This set of three tutorials (`uncertaintyforest_running_example.ipynb`,`uncertaintyforest_fig1.ipynb`, and `uncertaintyforest_fig2.ipynb`) will explain the UncertaintyForest class. After following these tutorials, you should have the ability to run UncertaintyForest on your own machine and generate Figures 1 and 2 from [this paper](https://arxiv.org/pdf/1907.00325.pdf). \n", "\n", - "## Simply Running the Uncertainty Forest class\n", - "### *Goal: Train the UncertaintyForest classifier on some training data and produce a metric of accuracy on some test data*" + "If you haven't seen it already, take a look at other tutorials to setup and install the ProgLearn package: `installation_guide.ipynb`.\n", + "\n", + "*Goal: Train the UncertaintyForest classifier on some training data and produce a metric of accuracy on some test data*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1: First, we'll import required packages and set some parameters for the forest. " + "## Import required packages and set parameters for the forest " ] }, { @@ -54,7 +54,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2: Creating & Training our UncertaintyForest \n", + "## Create and train our UncertaintyForest \n", "First, generate our data:" ] }, @@ -140,7 +140,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3: Producing a Metric of Accuracy for Our Learner\n", + "## Produce a metric of accuracy for our learner\n", "We've now created our learner and trained it. But to actually show if what we did is effective at predicting the class labels of the data, we'll create some test data (with the same distribution as the train data) and see if we classify it correctly." ] }, @@ -213,16 +213,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## What's next? --> See a metric on the power of uncertainty forest by generating Figure 1 from [this paper](https://arxiv.org/pdf/1907.00325.pdf)\n", - "### To do this, check out `uncertaintyforest_fig1`" + "## What's next?\n", + "\n", + "See metrics on the power of UncertaintyForest by generating Figures 1 and 2 from [this paper](https://arxiv.org/pdf/1907.00325.pdf).\n", + "\n", + "To do this, check out `uncertaintyforest_fig1.ipynb` and `uncertaintyforest_fig2.ipynb`." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -246,4 +242,4 @@ }, "nbformat": 4, "nbformat_minor": 4 -} +} \ No newline at end of file diff --git a/proglearn/forest.py b/proglearn/forest.py index 6deddf4e40..3539eb87e2 100644 --- a/proglearn/forest.py +++ b/proglearn/forest.py @@ -267,6 +267,12 @@ def __init__( self.kappa = kappa self.max_depth = max_depth self.tree_construction_proportion = tree_construction_proportion + self.lf_ = LifelongClassificationForest( + default_n_estimators=self.n_estimators, + default_kappa=self.kappa, + default_max_depth=self.max_depth, + default_tree_construction_proportion=self.tree_construction_proportion, + ) def fit(self, X, y): """ @@ -286,12 +292,7 @@ def fit(self, X, y): The object itself. """ X, y = check_X_y(X, y) - return LifelongClassificationForest( - default_n_estimators=self.n_estimators, - default_kappa=self.kappa, - default_max_depth=self.max_depth, - default_tree_construction_proportion=self.tree_construction_proportion, - ).add_task(X, y, task_id=0) + return self.lf_.add_task(X, y, task_id=0) def predict_proba(self, X): """