Skip to content

Latest commit

 

History

History
219 lines (172 loc) · 7.09 KB

subsets.md

File metadata and controls

219 lines (172 loc) · 7.09 KB

Subsets - 子集

子集类问题类似Combination。

Question: (17) Subsets

Given a set of distinct integers, return all possible subsets.

Note
Elements in a subset must be in non-descending order.

The solution set must not contain duplicate subsets.

Example
If S = [1,2,3], a solution is:

[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

题解

  1. 首先对数组按升序排序
  2. 回溯法递归

Java

class Solution {
    /**
     * @param S: A set of numbers.
     * @return: A list of lists. All valid subsets.
     */
    public ArrayList<ArrayList<Integer>> subsets(ArrayList<Integer> S) {

        ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
        if (S == null || S.size() == 0) {
            return result;
        }

        ArrayList<Integer> list = new ArrayList<Integer>();
        Collections.sort(S);
        backTrack(result, list, S, 0);
        return result;
    }

    private void backTrack(ArrayList<ArrayList<Integer>> result,
        ArrayList<Integer> list, ArrayList<Integer> num, int pos) {
        result.add(new ArrayList<Integer>(list));

        for (int i = pos; i < num.size(); i++) {
            list.add(num.get(i));
            backTrack(result, list, num, i + 1);
            list.remove(list.size() - 1);
        }
    }
}

Notice: backTrack(result, list, num, i + 1);中的『i + 1』不可误写为『pos + 1』,第一次写subsets的时候在这坑了很久... :(

回溯法可用图示和函数运行的堆栈图来理解,强烈建议使用图形和递归的思想分析,以数组[1, 2, 3]进行分析。下图所示为listresult动态变化的过程,箭头向下表示list.addresult.add操作,箭头向下表示list.remove操作。

Subsets运行递归调用图

如果你不相信以上的图形化分析,还可以自己在纸上分析代码的调用关系,下面以数组[1,2]为例分析回溯法的调用栈。

  1. 首先由主函数 subsets 进入,初始化 result 为[],接着进行异常处理,随后初始化 list 为[],递归调用backTrack(), num = [1, 2]
  2. result = [], list = [], pos = 0. 调用result.add()加入[], result = [[]]。进入for循环,num.size() = 2
    • i = 0,
      1. list.add(num[0]) -> list = [1], 递归调用backTrack()前, result = [[]], list = [1], pos = 1
      2. 递归调用backTrack([[]], [1], [1, 2],1)
        • reslut.add[[1]] -> result = [[], [1]]
        • i = 1, for(i = 1 < 2)
          1. list.add(num[1]) -> list = [1, 2]
          2. 递归调用backTrack([[], [1]], [1, 2], [1, 2],2)
            • reslut.add[[1, 2]] -> result = [[], [1], [1, 2]]
            • i = 2 退出for循环,退出此次调用
          3. list.remove(2 - 1) -> list = [1]
          4. i++ -> i = 2
        • i = 2, 退出for循环,退出此次调用
      3. list.remove() -> list = []
      4. i++ -> i = 1,进入下一次循环
    • i = 1, for(i = 1 < 2)
      1. list.add(num[1]) -> list = [2]
      2. 递归调用backTrack([[], [1], [1, 2]], [2], [1, 2],2)
        • reslut.add[[2]] -> result = [[], [1], [1, 2], [2]]
        • i = 2 退出for循环,退出此次调用
      3. list.remove(1 - 1) -> list = []
      4. i++ -> i = 2
    • i = 2, 退出for循环,退出此次调用
  3. 返回结果result

C++

class Solution {
public:
    /**
     * @param S: A set of numbers.
     * @return: A list of lists. All valid subsets.
     */
    vector<vector<int> > subsets(vector<int> &nums) {
        vector<vector<int> > result;
    	if (nums.empty()) {
    	    return result;
    	}

    	vector<int> list;
    	backTrack(result, list, nums, 0);

    	return result;
    }

private:
    void backTrack(vector<vector<int> > &result, vector<int> &list, \
                   vector<int> &nums, int pos) {
        result.push_back(list);

        for (int i = pos; i != nums.size(); ++i) {
            list.push_back(nums[i]);
            backTrack(result, list, nums, i + 1);
            list.pop_back();
        }
    }
};

Unique Subsets

Question: (18) Unique Subsets

Given a list of numbers that may has duplicate numbers, return all possible subsets

Note
Each element in a subset must be in non-descending order.

The ordering between two subsets is free.

The solution set must not contain duplicate subsets.

Example
If S = [1,2,2], a solution is:

[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]

题解

此题在上一题的基础上加了有重复元素的情况,因此需要对回溯函数进行一定的剪枝,对于排列组合的模板程序,剪枝通常可以从两个地方出发,一是在返回结果result.add之前进行剪枝,另一个则是在list.add处剪枝,具体使用哪一种需要视情况而定,哪种简单就选谁。

由于此题所给数组不一定有序,故首先需要排序。有重复元素对最终结果的影响在于重复元素最多只能出现n次(重复个数为n时)。具体分析过程如下(此分析过程改编自 九章算法)。

$$[1, 2_1, 2_2]$$ 为例,若不考虑重复,组合有 $$[], [1], [1, 2_1], [1, 2_1, 2_2], [1, 2_2], [2_1], [2_1, 2_2], [2_2]$$. 其中重复的有 $$[1, 2_2], [2_2]$$. 从中我们可以看出只能从重复元素的第一个持续往下添加到列表中,而不能取第二个或之后的重复元素。参考上一题Subsets的模板,能代表「重复元素的第一个」即为 for 循环中的pos变量,i == pos时,i处所代表的变量即为某一层遍历中得「第一个元素」,因此去重时只需判断i != pos && s[i] == s[i - 1].

C++

class Solution {
public:
    /**
     * @param S: A set of numbers.
     * @return: A list of lists. All valid subsets.
     */
    vector<vector<int> > subsetsWithDup(const vector<int> &S) {
        vector<vector<int> > result;
        if (S.empty()) {
            return result;
        }

        vector<int> list;
        vector<int> source(S);
        sort(source.begin(), source.end());
        backtrack(result, list, source, 0);

        return result;
    }

private:
    void backtrack(vector<vector<int> > &ret, vector<int> &list,
              vector<int> &s, int pos) {

        ret.push_back(list);

        for (int i = pos; i != s.size(); ++i) {
            if (i != pos && s[i] == s[i - 1]) {
                continue;
            }
            list.push_back(s[i]);
            backtrack(ret, list, s, i + 1);
            list.pop_back();
        }
    }
};

Reference - 参考