-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresidue_roberta_building.py
33 lines (26 loc) · 1.23 KB
/
residue_roberta_building.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import torch
import random
import numpy as np
from transformers import RobertaConfig, BertTokenizer
from models.ResidueRobertaModel import ResidueRobertaModel
USE_CUDA = torch.cuda.is_available()
def set_seed(seed:int):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
set_seed(42)
# Initializing a RoBERTa configuration
configuration = RobertaConfig(vocab_size=100, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu',
hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1024, type_vocab_size=2, initializer_range=0.02,
layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=1, eos_token_id=2, position_embedding_type='absoulte', use_cache=True,
classifier_dropout=None, is_decoder=False)
model = ResidueRobertaModel(configuration)
if USE_CUDA:
model.cuda()
tokenizer = BertTokenizer.from_pretrained('models/tokenizer')
if not os.path.exists('models/residue-roberta'):
os.mkdir('models/residue-roberta')
model.save_pretrained('models/residue-roberta')
tokenizer.save_pretrained('models/residue-roberta')