-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_wape.py
225 lines (194 loc) · 9.3 KB
/
run_wape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding: utf-8
import os
import time
import random
import torch.optim
import numpy as np
from transformers import get_linear_schedule_with_warmup, BertTokenizer
from src.tree_models import Prediction, GenerateNode, Merge
from src.models import BertEncoderDecoderModelFroTree
from src.expressions_transfer import from_infix_to_prefix
from src.train_and_evaluate import train_tree, evaluate_tree, compute_prefix_tree_result, USE_CUDA
from src.utils import read_json, load_raw_data, load_ape_data, load_attributes, time_since
from src.pre_data import prepare_data_ape, prepare_train_batch, transfer_num
batch_size = 32
embedding_size = 128
hidden_size = 768
n_epochs = 80
learning_rate = 5e-5
weight_decay = 1e-5
beam_size = 5
seed = 42
ori_path = './data/'
prefix = '23k_processed.json'
ape_id = "data/ape_simple_id.txt"
ape_test_id = "data/ape_simple_test_id.txt"
output_dir = 'models/ape/'
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_train_test_fold(ori_path, prefix, data, pairs, attributes, ape_train_ids, ape_test_ids):
mode_train = 'train'
mode_valid = 'valid'
mode_test = 'test'
train_path = ori_path + mode_train + prefix
valid_path = ori_path + mode_valid + prefix
test_path = ori_path + mode_test + prefix
train = read_json(train_path)
train_id = [item['id'] for item in train]
valid = read_json(valid_path)
valid_id = [item['id'] for item in valid]
test = read_json(test_path)
test_id = [item['id'] for item in test]
ls = open(ape_train_ids, 'r').read().split()
ape_train_list = [str(i) for i in ls]
ls = open(ape_test_ids, 'r').read().split()
ape_test_list = [str(i) for i in ls]
train_fold = []
valid_fold = []
test_fold = []
for item,pair,attr in zip(data, pairs, attributes):
pair = list(pair)
pair.append(attr)
pair = tuple(pair)
if 'type' in item:
if item['id'] in ape_train_list:
train_fold.append(pair)
else:
valid_fold.append(pair)
else:
if item['id'] in train_id:
train_fold.append(pair)
elif item['id'] in test_id:
test_fold.append(pair)
return train_fold, test_fold, valid_fold
data = load_raw_data("data/Math_23K.json") + load_ape_data("data/Ape-clean_train.json") + load_ape_data("data/Ape-clean_test.json")
attributes = load_attributes('data/Math_23K_attributes.json') + load_attributes("data/Ape-clean_train_attributes.json") + load_attributes("data/Ape-clean_test_attributes.json")
pairs, generate_nums, copy_nums = transfer_num(data)
temp_pairs = []
for p in pairs:
temp_pairs.append((p[0], from_infix_to_prefix(p[1]), p[2], p[3], p[1]))
pairs = temp_pairs
train_fold, test_fold, valid_fold = get_train_test_fold(ori_path, prefix, data, pairs, attributes, ape_id, ape_test_id)
pairs_tested = test_fold
pairs_tested_ape = valid_fold
pairs_trained = train_fold
tokenizer = BertTokenizer.from_pretrained('models/MWP-BERT')
new_tokens = [f"#{i}" for i in range(30)]
tokenizer.add_tokens(new_tokens)
output_lang, train_pairs, test_pairs, test_ape_pairs= prepare_data_ape(pairs_trained, pairs_tested, pairs_tested_ape, generate_nums, copy_nums, tokenizer)
set_seed(seed=seed)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Initialize models
model = BertEncoderDecoderModelFroTree.from_encoder_decoder_pretrained('models/MWP-BERT', 'models/MWP-BERT', tie_encoder_decoder=True)
model.encoder.resize_token_embeddings(len(tokenizer))
model.decoder.resize_token_embeddings(len(tokenizer))
# set model's config
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.eos_token_id = tokenizer.sep_token_id
model.config.vocab_size = model.config.decoder.vocab_size
model.config.num_beams = 5
model.config.max_new_tokens = 128
model.config.early_stopping = True
# # model size
# size = 0
# for n, p in model.named_parameters():
# size += p.nelement()
# print('Total parameters: {}'.format(size))
predict = Prediction(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
input_size=len(generate_nums))
generate = GenerateNode(hidden_size=hidden_size, op_nums=output_lang.n_words - copy_nums - 1 - len(generate_nums),
embedding_size=embedding_size)
merge = Merge(hidden_size=hidden_size, embedding_size=embedding_size)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_ground_paramters = [
{'params': [p for n,p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
{'params': [p for n,p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
model_optimizer = torch.optim.AdamW(optimizer_ground_paramters, lr=learning_rate, eps=1e-8)
predict_optimizer = torch.optim.AdamW(predict.parameters(), lr=learning_rate*10, weight_decay=weight_decay)
generate_optimizer = torch.optim.AdamW(generate.parameters(), lr=learning_rate*10, weight_decay=weight_decay)
merge_optimizer = torch.optim.AdamW(merge.parameters(), lr=learning_rate*10, weight_decay=weight_decay)
model_scheduler = get_linear_schedule_with_warmup(model_optimizer, num_warmup_steps=0.1*n_epochs, num_training_steps=n_epochs)
predict_scheduler = torch.optim.lr_scheduler.StepLR(predict_optimizer, step_size=20, gamma=0.5)
generate_scheduler = torch.optim.lr_scheduler.StepLR(generate_optimizer, step_size=20, gamma=0.5)
merge_scheduler = torch.optim.lr_scheduler.StepLR(merge_optimizer, step_size=20, gamma=0.5)
# Move models to GPU
if USE_CUDA:
model.cuda()
predict.cuda()
generate.cuda()
merge.cuda()
generate_num_ids = []
for num in generate_nums:
generate_num_ids.append(output_lang.word2index[num])
for epoch in range(n_epochs):
loss_total = 0
tree_loss_total = 0
seq2seq_loss_total = 0
input_batches, input_lengths, output_batches, output_lengths, nums_batches, \
num_stack_batches, num_pos_batches, num_size_batches, num_value_batches, target_batches, input_pre_batches, input_pre_lengths, target_pre_batches, attribute_pos_batches = prepare_train_batch(train_pairs, batch_size)
print("epoch:", epoch + 1)
start = time.time()
for idx in range(len(input_lengths)):
tree_loss, seq2seq_loss, loss = train_tree(
input_batches[idx], input_lengths[idx], output_batches[idx], output_lengths[idx],
num_stack_batches[idx], num_size_batches[idx], generate_num_ids, model, predict, generate, merge,
model_optimizer, predict_optimizer, generate_optimizer, merge_optimizer, output_lang, num_pos_batches[idx],
target_batches[idx], input_pre_batches[idx], input_pre_lengths[idx], target_pre_batches[idx], attribute_pos_batches[idx], tokenizer=tokenizer)
loss_total += (loss / len(input_lengths))
tree_loss_total += (tree_loss / len(input_lengths))
seq2seq_loss_total += (seq2seq_loss / len(input_lengths))
model_scheduler.step()
predict_scheduler.step()
generate_scheduler.step()
merge_scheduler.step()
print("Total loss:", loss_total)
print("Tree loss:", tree_loss_total)
print("Seq2Seq loss:", seq2seq_loss_total)
print("training time", time_since(time.time() - start))
print("-" * 100)
if (epoch + 1) % 5 == 0 or epoch > n_epochs - 6:
value_ac = 0
equation_ac = 0
eval_total = 0
start = time.time()
for test_batch in test_pairs:
test_res = evaluate_tree(test_batch[0], test_batch[1], generate_num_ids, model, predict, generate,
merge, output_lang, test_batch[5], test_batch[7], beam_size=beam_size)
val_ac, equ_ac, _, _ = compute_prefix_tree_result(test_res, test_batch[2], output_lang, test_batch[4], test_batch[6])
if val_ac:
value_ac += 1
if equ_ac:
equation_ac += 1
eval_total += 1
print(equation_ac, value_ac, eval_total)
print("test_answer_acc_23K", float(equation_ac) / eval_total, float(value_ac) / eval_total)
print("testing time", time_since(time.time() - start))
print("-" * 120)
value_ac = 0
equation_ac = 0
eval_total = 0
start = time.time()
for test_batch in test_ape_pairs:
test_res = evaluate_tree(test_batch[0], test_batch[1], generate_num_ids, model, predict, generate,
merge, output_lang, test_batch[5], test_batch[7], beam_size=beam_size)
val_ac, equ_ac, _, _ = compute_prefix_tree_result(test_res, test_batch[2], output_lang, test_batch[4], test_batch[6])
if val_ac:
value_ac += 1
if equ_ac:
equation_ac += 1
eval_total += 1
print(equation_ac, value_ac, eval_total)
print("test_answer_acc_ape", float(equation_ac) / eval_total, float(value_ac) / eval_total)
print("testing time", time_since(time.time() - start))
print("-" * 120)
torch.save(model, output_dir+"model.pth")
torch.save(predict.state_dict(), output_dir+"predict.pth")
torch.save(generate.state_dict(), output_dir+"generate.pth")
torch.save(merge.state_dict(), output_dir+"merge.pth")
tokenizer.save_pretrained(output_dir)