-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
286 lines (225 loc) · 9.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import random
import torch
import torch.nn.functional as F
from datasets.data_utils import split_ssl_data
import json
from datasets.dataset import BasicDataset
from datasets.ssl_dataset import get_transform
mean, std = {}, {}
mean['cifar10'] = [0.4914, 0.4822, 0.4465]
mean['cifar100'] = [x / 255 for x in [129.3, 124.1, 112.4]]
std['cifar10'] = [0.2023, 0.1994, 0.2010]
std['cifar100'] = [x / 255 for x in [68.2, 65.4, 70.4]]
def set_global_seeds(i):
random.seed(i)
torch.manual_seed(i)
np.random.seed(i)
def set_device():
if torch.cuda.is_available():
_device = torch.device("cuda")
else:
_device = torch.device("cpu")
print(f'Current device is {_device}', flush=True)
return _device
# Adjust learning rate and for SGD Optimizer
def adjust_learning_rate(optimizer, epoch,alpha_plan):
for param_group in optimizer.param_groups:
param_group['lr']=alpha_plan[epoch]
def accuracy(logit, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
output = F.softmax(logit, dim=1)
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def hier_score(label_map,log1,log2):
'''
logics: tensor [batch_size,fine_label_size]
label_map: low_layer_label: high_layer_label
return score: list batch_size
'''
scores=[]
logics=F.softmax(log1, dim=1)
logics_2=F.softmax(log2, dim=1)
for i,logic in enumerate(logics):
true_label=torch.argmax(logic)
scores.append(float(logic[true_label]*logics_2[i][label_map[true_label]]))
return scores
import os
import time
from torch.utils.tensorboard import SummaryWriter
import logging
import yaml
def over_write_args_from_file(args, yml):
if yml == '':
return
with open(yml, 'r', encoding='utf-8') as f:
dic = yaml.load(f.read(), Loader=yaml.Loader)
for k in dic:
setattr(args, k, dic[k])
def setattr_cls_from_kwargs(cls, kwargs):
# if default values are in the cls,
# overlap the value by kwargs
for key in kwargs.keys():
if hasattr(cls, key):
print(f"{key} in {cls} is overlapped by kwargs: {getattr(cls, key)} -> {kwargs[key]}")
setattr(cls, key, kwargs[key])
def test_setattr_cls_from_kwargs():
class _test_cls:
def __init__(self):
self.a = 1
self.b = 'hello'
test_cls = _test_cls()
config = {'a': 3, 'b': 'change_hello', 'c': 5}
setattr_cls_from_kwargs(test_cls, config)
for key in config.keys():
print(f"{key}:\t {getattr(test_cls, key)}")
def net_builder(net_name, from_name: bool, net_conf=None, is_remix=False):
"""
return **class** of backbone network (not instance).
Args
net_name: 'WideResNet' or network names in torchvision.models
from_name: If True, net_buidler takes models in torch.vision models. Then, net_conf is ignored.
net_conf: When from_name is False, net_conf is the configuration of backbone network (now, only WRN is supported).
"""
if from_name:
import torchvision.models as models
model_name_list = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
if net_name not in model_name_list:
assert Exception(f"[!] Networks\' Name is wrong, check net config, \
expected: {model_name_list} \
received: {net_name}")
else:
return models.__dict__[net_name]
else:
if net_name == 'WideResNet':
import models.nets.wrn as net
builder = getattr(net, 'build_WideResNet')()
elif net_name == 'WideResNetVar':
import models.nets.wrn_var as net
builder = getattr(net, 'build_WideResNetVar')()
elif net_name == 'ResNet50':
import models.nets.resnet50 as net
builder = getattr(net, 'build_ResNet50')(is_remix)
elif net_name == 'ResNet18':
import models.nets.resnet as net
builder = getattr(net, 'build_ResNet18')()
else:
assert Exception("Not Implemented Error")
if net_name != 'ResNet50':
setattr_cls_from_kwargs(builder, net_conf)
return builder.build
def test_net_builder(net_name, from_name, net_conf=None):
builder = net_builder(net_name, from_name, net_conf)
print(f"net_name: {net_name}, from_name: {from_name}, net_conf: {net_conf}")
print(builder)
def get_logger(name, save_path=None, level='INFO'):
logger = logging.getLogger(name)
logger.setLevel(getattr(logging, level))
log_format = logging.Formatter('[%(asctime)s %(levelname)s] %(message)s')
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(log_format)
logger.addHandler(streamHandler)
if not save_path is None:
os.makedirs(save_path, exist_ok=True)
fileHandler = logging.FileHandler(os.path.join(save_path, 'log.txt'))
fileHandler.setFormatter(log_format)
logger.addHandler(fileHandler)
return logger
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_high_confidence_index(args,loader, model):
loss_s = torch.Tensor([]).cuda(args.gpu)
label_s = torch.Tensor([]).cuda(args.gpu)
index_pres = torch.Tensor([]).cuda(args.gpu)
with torch.no_grad():
model.eval() # Change model to 'eval' mode.
for images, labels, indexs in loader:
images = images.cuda(args.gpu)
labels = labels.cuda(args.gpu)
indexs = indexs.cuda(args.gpu)
logits = model(images)
outputs = F.cross_entropy(logits,labels,reduce=False)
# print("outputs:", outputs)
loss_s = torch.cat((loss_s, outputs), 0)
label_s = torch.cat((label_s, labels), 0)
index_pres = torch.cat((index_pres, indexs), 0)
if args.dataset == 'cifar10':
num_classes = 10
else:
num_classes = 100
ans = torch.Tensor([]).cuda(args.gpu)
for i in range(num_classes):
index = torch.where(label_s == i)[0]
loss_first = torch.index_select(loss_s, 0, index)
index_first = torch.index_select(index_pres, 0, index)
# print('probs_first:', loss_first)
# print(loss_first.shape,args.number_sample)
values, indices = loss_first.topk(args.number_sample, dim=0, largest=False, sorted=True)
ansnow = torch.index_select(index_first, 0, indices)
ans = torch.cat((ans, ansnow), 0)
ans = ans.to(torch.long)
# print(torch.index_select(loss_s, 0, ans))
ans = ans.cpu().numpy()
return ans
def train(args, epoch, train_loader, model, optimizer):
train_total=0
train_correct=0
criterion = torch.nn.CrossEntropyLoss()
model.train()
for i, (images, labels, indexes) in enumerate(train_loader):
batch_size = indexes.shape[0]
images =images.cuda(args.gpu)
labels =labels.cuda(args.gpu)
# Forward + Backward + Optimize
logits = model(images)
prec, _ = accuracy(logits, labels, topk=(1, 5))
train_total+=1
train_correct+=prec
loss = criterion(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc=float(train_correct)/float(train_total)
return train_acc
def get_ssl_dset(args, num_labels, index=None, include_lb_to_ulb=True,
strong_transform=None,onehot=False, data=None, targets=None):
"""
get_ssl_dset split training samples into labeled and unlabeled samples.
The labeled data is balanced samples over classes.
"""
lb_data, lb_targets, ulb_data, ulb_targets = split_ssl_data(args, data, targets,
num_labels, args.num_classes, index, include_lb_to_ulb)
# output the distribution of labeled data for remixmatch
count = [0 for _ in range(args.num_classes)]
for c in lb_targets:
count[c] += 1
dist = np.array(count, dtype=float)
dist = dist / dist.sum()
dist = dist.tolist()
out = {"distribution": dist}
output_file = r"./data_statistics/"
output_path = output_file + str(args.name) + '_' + str(num_labels) + '.json'
if not os.path.exists(output_file):
os.makedirs(output_file, exist_ok=True)
with open(output_path, 'w') as w:
json.dump(out, w)
# print(Counter(ulb_targets.tolist()))
transform = get_transform(mean[args.name], std[args.name], 32, train)
lb_dset = BasicDataset(args.alg, lb_data, lb_targets, args.num_classes,
transform, False, None, onehot)
# assert 0
ulb_dset = BasicDataset(args.alg, ulb_data, ulb_targets, args.num_classes,
transform, True, strong_transform, onehot)
# print(lb_data.shape)
# print(ulb_data.shape)
return lb_dset, ulb_dset