forked from occlum/occlum
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
23 lines (18 loc) · 846 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import tensorflow as tf
mnist = tf.keras.datasets.mnist
# Load and prepare the MNIST dataset. Convert the samples from integers to floating-point numbers
(x_train, y_train), (x_test, y_test) = mnist.load_data(path='/bin/mnist.npz')
x_train, x_test = x_train / 255.0, x_test / 255.0
# Build the tf.keras.Sequential model by stacking layers. Choose an optimizer and loss function for training
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Train and evaluate model
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test, verbose=2)