-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmetrics.py
49 lines (41 loc) · 1.93 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
def masked_softmax_cross_entropy(preds, labels, mask, multi_label=False):
"""Softmax cross-entropy loss with masking."""
print(preds)
if multi_label:
loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=preds, labels=labels)
loss = tf.reduce_mean(loss, axis=1)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
loss *= mask
return tf.reduce_mean(loss)
else:
loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
loss *= mask
return tf.reduce_mean(loss)
def masked_accuracy(preds, labels, mask, multi_label=False):
"""Accuracy with masking."""
if multi_label:
predictions = tf.where(tf.nn.sigmoid(preds) > 0.5, tf.ones(tf.shape(preds)), tf.zeros(tf.shape(preds)))
t = tf.multiply(predictions, labels)
true_positives = tf.reduce_sum(t, axis=0)
predicted_positives = tf.reduce_sum(predictions, axis=0)
possible_positives = tf.reduce_sum(labels, axis=0)
# Macro_F1 metric.
precision = true_positives / (predicted_positives + 1e-8)
recall = true_positives / (possible_positives + 1e-8)
macro_f1 = tf.reduce_mean(2 * precision * recall / (precision + recall + 1e-8))
# Micro_F1 metric.
prec = tf.reduce_sum(true_positives) / tf.reduce_sum(predicted_positives)
reca = tf.reduce_sum(true_positives) / tf.reduce_sum(possible_positives)
micro_f1 = 2 * prec * reca / (prec + reca + 1e-8)
return micro_f1 #, macro_f1
else:
correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy_all = tf.cast(correct_prediction, tf.float32)
mask = tf.cast(mask, dtype=tf.float32)
mask /= tf.reduce_mean(mask)
accuracy_all *= mask
return tf.reduce_mean(accuracy_all)