forked from bigcode-project/starcoder.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert-hf-to-ggml.py
212 lines (182 loc) · 7.58 KB
/
convert-hf-to-ggml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Convert HF models to ggml format
#
import sys
import struct
import json
import torch
import numpy as np
import re
import os
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 2:
print("Usage: python convert-hf-to-ggml.py hf-model-name [use-f32]")
print("Example: python convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder")
print("Example: python convert-hf-to-ggml.py bigcode/starcoder")
sys.exit(1)
model_name = sys.argv[1].strip()
fname_out = "models/" + sys.argv[1].strip() + "-ggml.bin"
os.makedirs(os.path.dirname(fname_out), exist_ok=True)
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 2:
use_f16 = False
print("Loading model: ", model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16 if use_f16 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, offload_state_dict=True)
print("Model loaded: ", model_name)
#print (model)
list_vars = model.state_dict()
#print (list_vars)
encoder = tokenizer.vocab
# Add added_tokens (special tokens) to the encoder
encoder.update(tokenizer.get_added_vocab())
print(hparams)
print("Saving ggml model to: ", fname_out)
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
vocab_size = hparams["vocab_size"]
fout.write(struct.pack("i", vocab_size))
# fout.write(struct.pack("i", len(encoder)))
fout.write(struct.pack("i", hparams["n_positions"])) # n_ctx
fout.write(struct.pack("i", hparams["n_embd"]))
fout.write(struct.pack("i", hparams["n_head"]))
fout.write(struct.pack("i", hparams["n_layer"]))
fout.write(struct.pack("i", use_f16))
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
fout.write(struct.pack("i", vocab_size))
counter = 0
# sort by value
for key in sorted(encoder, key=encoder.get):
text = bytearray([byte_decoder[c] for c in key])
fout.write(struct.pack("i", len(text)))
fout.write(text)
counter += 1
# TODO: Repeat last token until vocab_size
while counter < vocab_size:
fout.write(struct.pack("i", len(text)))
fout.write(text)
counter += 1
# assert counter == config.vocab_size
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
# rename headers to keep compatibility
if name == "transformer.ln_f.weight":
name = "model/ln_f/g"
elif name == "transformer.ln_f.bias":
name = "model/ln_f/b"
elif name == "transformer.wte.weight":
name = "model/wte"
elif name == "transformer.wpe.weight":
name = "model/wpe"
elif name == "lm_head.weight":
name = "model/lm_head"
elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/ln_1/g"
elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/ln_1/b"
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/attn/c_attn/w"
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/attn/c_attn/b"
elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/attn/c_proj/w"
elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/attn/c_proj/b"
elif re.match(r"transformer.h.\d+.ln_2.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/ln_2/g"
elif re.match(r"transformer.h.\d+.ln_2.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/ln_2/b"
elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/mlp/c_fc/w"
elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/mlp/c_fc/b"
elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/mlp/c_proj/w"
elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name):
i = re.findall("\d+", name)[0]
name = f"model/h{i}/mlp/c_proj/b"
else:
print("Unrecognized variable name. %s", name)
# we don't need these
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
print(" Skipping variable: " + name)
continue
n_dims = len(data.shape);
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 0;
if use_f16:
if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype = 0
"model/h.*/attn/c_attn/w"
"model/h.*/attn/c_proj/w"
"model/h.*/mlp/c_fc/w"
"model/h.*/mlp/c_proj/w"
if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b":
print(" Duplicate K,V heads to use MHA instead of MQA")
embed_dim = hparams["n_embd"]
head_dim = embed_dim // hparams["n_head"]
# ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0)
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
if len(k.shape) == 2:
k = np.tile(k, (hparams["n_head"], 1))
v = np.tile(v, (hparams["n_head"], 1))
elif len(k.shape) == 1:
k = np.tile(k, (hparams["n_head"]))
v = np.tile(v, (hparams["n_head"]))
# concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim)
data = np.concatenate((q, k, v), axis=0)
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("")