-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathframeIO.py
210 lines (161 loc) · 7.25 KB
/
frameIO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import generators
import cv2, os, sys, itertools, functools, h5py, random, numpy as np, xml.etree.ElementTree as ET
from natsort import natsorted
from frameset import *
from collections import defaultdict
NUMBER_OF_LABELS = 37
label_mapping = dict()
label_mapping_index = 0
def get_labels(video_file_name, num_frames):
label_file = video_file_name.replace(".avi", "-oao_aucs.xml")
return read_labels(label_file, num_frames)
def get_frames(video_file_name):
# read video
frames = []
cap = cv2.VideoCapture(video_file_name)
frame_count = int(cap.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT))
if cap.isOpened():
for i in range(0, frame_count):
# actually read a frame
returnValue, frame = cap.read()
if not returnValue:
break
frames.append(frame)
cap.release()
return frames
#return (FrameSet(framesGray, "frame-gray", "normal", labels), FrameSet(framesBGR, "frame-bgr", "normal", labels))
else:
sys.exit("Error opening video file.")
def save_to_disk_as_image(output_path, frameSets):
frameSets = transform_to_opencv_format(frameSets)
if not os.path.exists(output_path):
os.mkdir(output_path)
for frameSet in frameSets:
print "save_to_disk:", frameSet.processName, frameSet.streamName, frameSet.frames[0].shape
for i, frame in enumerate(frameSet.frames):
if frameSet.streamName.startswith("flow"):
for layer in range(0,len(frame[0][0])):
flatFrame = frame[:, :, layer]
cv2.imwrite(os.path.join(output_path, "%s_%s_%s_%s.png" % (frameSet.processName, frameSet.streamName, i, layer)), flatFrame)
else:
cv2.imwrite(os.path.join(output_path, "%s_%s_%s.png" % (frameSet.processName, frameSet.streamName, i)), frame)
def transform_to_caffe_format(frameSets):
"""
transforms the opencv format Frames x X x Y x Layers into caffe format Frames x Layers x Y x X
"""
for frameSet in frameSets:
swapped_axes = [np.swapaxes(frame, 0, 2) for frame in frameSet.frames]
frames_as_big_blob = np.array(swapped_axes)
yield frameSet.newFrames(frames_as_big_blob).withFormat("caffe")
def transform_to_opencv_format(frameSets):
"""
transforms the caffe format Frames x Layers x Y x X into open cv format Frames x X x Y x Layers
"""
for frameSet in frameSets:
if not frameSet.isInOpenCVFormat():
yield frameSet.newFrames(list(np.swapaxes(frameSet.frames, 1, 3))).withFormat("opencv")
else:
yield frameSet
def save_as_hdf5_tree(output_path, db_name, frameSets):
"""
saves frameSets as hdf5, expects the frames to be in caffe format Frames x Layers x X x Y as one big nparray
"""
f = h5py.File(os.path.join(output_path, db_name), "a")
for frameSet in frameSets:
dataset_name = "/".join([frameSet.processName, frameSet.streamName])
f.create_dataset(dataset_name + "/data", data = frameSet.frames, dtype="float32")
f.create_dataset(dataset_name + "/label", data = frameSet.labels, dtype="float32")
f.flush()
f.close()
def read_from_hdf5_tree(hdf5_file):
"""
reads frameSets from hdf5, frames are in caffe format Frames x Layers x X x Y as one big nparray
"""
f = h5py.File(hdf5_file, "r")
for processName, streams in f.items():
for streamName, dataAndLabels in streams.items():
yield FrameSet(dataAndLabels["data"].value, streamName, processName, dataAndLabels["label"].value, "caffe")
f.close()
def save_for_caffe(output_path, frameSets, DEBUG=False):
def build_db_name(output_path, frameSet, filename_counters):
db_prefix = None
if frameSet.streamName == "BGR":
db_prefix = "framesBGR_%s" % frameSet.getDbPostfix()
elif frameSet.streamName.startswith("flow"):
db_prefix = "flows_%s" % frameSet.getDbPostfix()
else:
raise NotImplementedError
db = "%s_%d.h5" % (db_prefix, filename_counters[db_prefix])
return db_prefix, os.path.join(output_path, db)
def initialize_db(h5File, frameSet):
max_shape_data = (None,) + frameSet.frames[0].shape
h5File.create_dataset("data", maxshape=max_shape_data, data=frameSet.frames, chunks=True, dtype="float32")
max_shape_label = (None, ) + frameSet.labels[0].shape
h5File.create_dataset("label", maxshape=max_shape_label, data=frameSet.labels, chunks=True, dtype="float32")
max_file_size = 1000 * 1000 * 1000 # 1 GB
filename_counters = defaultdict(int)
for frameSet in frameSets:
db_prefix, db = build_db_name(output_path, frameSet, filename_counters)
if os.path.isfile(db) and os.stat(db).st_size + frameSet.frames.nbytes > max_file_size:
filename_counters[db_prefix] += 1
db_prefix, db = build_db_name(output_path, frameSet, filename_counters)
if DEBUG:
print frameSet.processName, frameSet.streamName, db
f = h5py.File(db)
if "data" not in f:
initialize_db(f, frameSet)
else:
data = f["data"]
current_length = data.shape[0]
new_length = current_length + frameSet.frames.shape[0]
data.resize(new_length, axis=0)
data[current_length:] = frameSet.frames
label = f["label"]
label.resize(new_length, axis=0)
label[current_length:] = frameSet.labels
f.flush()
f.close()
def get_all_videos(root_dir):
# read the content of the root directory and filter all directories
directory_names = map(lambda f: os.path.join(root_dir, f), os.listdir(root_dir))
directories = filter(os.path.isdir, directory_names)
filenames = []
for directory in directories:
for parent_dir, sub_dirs, files in os.walk(directory):
# sort files
for filename in natsorted(files):
if filename.endswith("avi"):
absolute_file = os.path.join(root_dir, parent_dir, filename)
filenames.append(absolute_file)
return natsorted(filenames)
def write_labels_to_disk(root_dir):
# open ouput file
filename = os.path.join(root_dir, "labelmapping.txt")
output_file = open(filename, "w")
output_file.write("Mapping FACS label -> integer label\n")
for key in sorted(label_mapping, key=label_mapping.get):
line = '{} {}\n'.format(key, label_mapping[key])
output_file.write(line)
# close output file
output_file.close()
def read_labels(path, num_frames):
def map_label(label):
global label_mapping_index, label_mapping
mapped_label = label_mapping.get(label)
if mapped_label == None:
label_mapping[label] = label_mapping_index
mapped_label = label_mapping_index
label_mapping_index += 1
return mapped_label
# Read and parse
tree = ET.parse(path)
root = tree.getroot()
action_units = root.findall(".//ActionUnit")
labels = np.zeros([num_frames, NUMBER_OF_LABELS])
for au in action_units:
facs_code = au.get("Number")
for marker in au.findall("Marker"):
frame_number = int(marker.get("Frame")) - 1
label = map_label(facs_code)
labels[frame_number, label] = 1
return labels