forked from tatsu-lab/stanford_alpaca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
78 lines (67 loc) · 3.15 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import collections
import re
import string
from collections import Counter
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def calculate_metric(predictions, metric_name):
if metric_name == "accuracy":
if isinstance(predictions[0].correct_candidate, list):
return np.mean([pred.predicted_candidate in pred.correct_candidate for pred in predictions])
else:
return np.mean([pred.correct_candidate == pred.predicted_candidate for pred in predictions])
elif metric_name == "em":
# For question answering
return np.mean([any([normalize_answer(ans) == normalize_answer(pred.predicted_candidate) for ans in pred.correct_candidate]) for pred in predictions])
elif metric_name == "f1":
# For question answering
f1 = []
for pred in predictions:
all_f1s = []
if pred.correct_candidate[0] == "CANNOTANSWER" or pred.correct_candidate[0] == "no answer":
f1.append(int(normalize_answer(pred.correct_candidate[0]) == normalize_answer(pred.predicted_candidate)))
else:
for ans in pred.correct_candidate:
prediction_tokens = normalize_answer(pred.predicted_candidate).split()
ground_truth_tokens = normalize_answer(ans).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
all_f1s.append(0)
else:
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
all_f1s.append((2 * precision * recall) / (precision + recall))
f1.append(max(all_f1s))
return np.mean(f1)
def f1(pred, gold):
"""
This separate F1 function is used as non-differentiable metric for SQuAD
"""
if gold[0] == "CANNOTANSWER" or gold[0] == "no answer":
return int(normalize_answer(gold[0]) == normalize_answer(pred))
else:
all_f1s = []
for ans in gold:
prediction_tokens = normalize_answer(pred).split()
ground_truth_tokens = normalize_answer(ans).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
all_f1s.append(0)
else:
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
all_f1s.append((2 * precision * recall) / (precision + recall))
return np.max(all_f1s)