forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccuracy-squad.py
410 lines (343 loc) · 15.9 KB
/
accuracy-squad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections
import json
import math
import os
import random
import re
import shutil
import subprocess
import sys
import time
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "DeepLearningExamples", "TensorFlow", "LanguageModeling", "BERT"))
sys.path.insert(0, os.path.dirname(__file__))
import numpy as np
import six
import torch
import tokenization
from transformers import BertConfig, BertTokenizer, BertForQuestionAnswering
from create_squad_data import read_squad_examples, convert_examples_to_features
# To support feature cache.
import pickle
max_seq_length = 384
max_query_length = 64
doc_stride = 128
RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
dtype_map = {
"int8": np.int8,
"int16": np.int16,
"int32": np.int32,
"int64": np.int64,
"float16": np.float16,
"float32": np.float32,
"float64": np.float64
}
def get_final_text(pred_text, orig_text, do_lower_case):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heruistic between
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file, max_examples=None):
"""Write final predictions to the json file and log-odds of null if needed."""
print("Writing predictions to: %s" % (output_prediction_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit"])
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
if max_examples and example_index==max_examples: break
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min mull score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
for (feature_index, feature) in enumerate(features):
# FIX: During compliance/audit runs, we only generate a small subset of
# all entries from the dataset. As a result, sometimes dict retrieval
# fails because a key is missing.
# result = unique_id_to_result[feature.unique_id]
result = unique_id_to_result.get(feature.unique_id, None)
if result is None:
continue
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
assert len(nbest_json) >= 1
all_predictions[example.qas_id] = nbest_json[0]["text"]
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
def load_loadgen_log(log_path, eval_features, dtype=np.float32, output_transposed=False):
with open(log_path) as f:
predictions = json.load(f)
results = []
for prediction in predictions:
qsl_idx = prediction["qsl_idx"]
if output_transposed:
logits = np.frombuffer(bytes.fromhex(prediction["data"]), dtype).reshape(2, -1)
logits = np.transpose(logits)
else:
logits = np.frombuffer(bytes.fromhex(prediction["data"]), dtype).reshape(-1, 2)
# Pad logits to max_seq_length
seq_length = logits.shape[0]
start_logits = np.ones(max_seq_length) * -10000.0
end_logits = np.ones(max_seq_length) * -10000.0
start_logits[:seq_length] = logits[:, 0]
end_logits[:seq_length] = logits[:, 1]
results.append(RawResult(
unique_id=eval_features[qsl_idx].unique_id,
start_logits=start_logits.tolist(),
end_logits=end_logits.tolist()
))
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--vocab_file", default="build/data/bert_tf_v1_1_large_fp32_384_v2/vocab.txt", help="Path to vocab.txt")
parser.add_argument("--val_data", default="build/data/dev-v1.1.json", help="Path to validation data")
parser.add_argument("--log_file", default="build/logs/mlperf_log_accuracy.json", help="Path to LoadGen accuracy log")
parser.add_argument("--out_file", default="build/result/predictions.json", help="Path to output predictions file")
parser.add_argument("--features_cache_file", default="eval_features.pickle", help="Path to features' cache file")
parser.add_argument("--output_transposed", action="store_true", help="Transpose the output")
parser.add_argument("--output_dtype", default="float32", choices=dtype_map.keys(), help="Output data type")
parser.add_argument("--max_examples", type=int, help="Maximum number of examples to consider (not limited by default)")
args = parser.parse_args()
output_dtype = dtype_map[args.output_dtype]
print("Reading examples...")
eval_examples = read_squad_examples(input_file=args.val_data,
is_training=False, version_2_with_negative=False)
eval_features = []
# Load features if cached, convert from examples otherwise.
cache_path = args.features_cache_file
if os.path.exists(cache_path):
print("Loading cached features from '%s'..." % cache_path)
with open(cache_path, 'rb') as cache_file:
eval_features = pickle.load(cache_file)
else:
print("No cached features at '%s'... converting from examples..." % cache_path)
print("Creating tokenizer...")
tokenizer = BertTokenizer(args.vocab_file)
print("Converting examples to features...")
def append_feature(feature):
eval_features.append(feature)
convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=doc_stride,
max_query_length=max_query_length,
is_training=False,
output_fn=append_feature,
verbose_logging=False)
print("Caching features at '%s'..." % cache_path)
with open(cache_path, 'wb') as cache_file:
pickle.dump(eval_features, cache_file)
print("Loading LoadGen logs...")
results = load_loadgen_log(args.log_file, eval_features, output_dtype, args.output_transposed)
print("Post-processing predictions...")
write_predictions(eval_examples, eval_features, results, 20, 30, True, args.out_file, args.max_examples)
print("Evaluating predictions...")
cmd = "python3 {:}/evaluate-v1.1.py {:} {:} {}".format(os.path.dirname(__file__),
args.val_data, args.out_file, '--max_examples={}'.format(args.max_examples) if args.max_examples else '')
subprocess.check_call(cmd, shell=True)
if __name__ == "__main__":
main()