-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathrun_treccar.py
519 lines (407 loc) · 17.7 KB
/
run_treccar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
"""Code to train and eval a BERT passage re-ranker on the TREC CAR dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import numpy as np
import tensorflow as tf
# local modules
import metrics
import modeling
import optimization
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"data_dir",
"./data/tfrecord/",
"The input data dir. Should contain the .tfrecord files and the supporting "
"query-docids mapping files.")
flags.DEFINE_string(
"bert_config_file",
"./data/bert/pretrained_models/uncased_L-24_H-1024_A-16/bert_config.json",
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"output_dir", "./data/output",
"The output directory where the model checkpoints will be written.")
flags.DEFINE_boolean(
"trec_output", True,
"Whether to write the predictions to a TREC-formatted 'run' file..")
flags.DEFINE_string(
"init_checkpoint",
"/path_to_bert_pretrained_on_treccar/model.ckpt-1000000",
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer(
"max_seq_length", 512,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool("do_train", True, "Whether to run training.")
flags.DEFINE_bool("do_eval", True, "Whether to run eval on the dev set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 32, "Total batch size for eval.")
flags.DEFINE_float("learning_rate", 3e-6, "The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_steps", 400000,
"Total number of training steps to perform.")
flags.DEFINE_integer(
"max_dev_examples", None,
"Maximum number of dev examples to be evaluated. If None, evaluate all "
"examples in the dev set.")
flags.DEFINE_integer("num_dev_docs", 10,
"Number of docs per query in the dev files.")
flags.DEFINE_integer(
"max_test_examples", None,
"Maximum number of test examples to be evaluated. If None, evaluate all "
"examples in the test set.")
flags.DEFINE_integer("num_test_docs", 1000,
"Number of docs per query in the dev files.")
flags.DEFINE_integer(
"num_warmup_steps", 40000,
"Number of training steps to perform linear learning rate warmup.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
METRICS_MAP = ['MAP', 'RPrec', 'MRR', 'NDCG', 'MRR@10']
FAKE_DOC_ID = "00000000" # Fake doc id used to fill queries with less than num_eval_docs.
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
output_layer = model.get_pooled_output()
hidden_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
len_gt_titles = features["len_gt_titles"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, log_probs) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
scaffold_fn = None
initialized_variable_names = []
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.PREDICT:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={
"log_probs": log_probs,
"label_ids": label_ids,
"len_gt_titles": len_gt_titles,
},
scaffold_fn=scaffold_fn)
else:
raise ValueError(
"Only TRAIN and PREDICT modes are supported: %s" % (mode))
return output_spec
return model_fn
def input_fn_builder(dataset_path, seq_length, is_training,
max_eval_examples=None):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
output_buffer_size = batch_size * 1000
def extract_fn(data_record):
features = {
"query_ids": tf.FixedLenSequenceFeature(
[], tf.int64, allow_missing=True),
"doc_ids": tf.FixedLenSequenceFeature(
[], tf.int64, allow_missing=True),
"label": tf.FixedLenFeature([], tf.int64),
"len_gt_titles": tf.FixedLenFeature([], tf.int64),
}
sample = tf.parse_single_example(data_record, features)
query_ids = tf.cast(sample["query_ids"], tf.int32)
doc_ids = tf.cast(sample["doc_ids"], tf.int32)
label_ids = tf.cast(sample["label"], tf.int32)
#if "len_gt_titles" in sample:
len_gt_titles = tf.cast(sample["len_gt_titles"], tf.int32)
#else:
# len_gt_titles = tf.constant(-1, shape=[1], dtype=tf.int32)
input_ids = tf.concat((query_ids, doc_ids), 0)
query_segment_id = tf.zeros_like(query_ids)
doc_segment_id = tf.ones_like(doc_ids)
segment_ids = tf.concat((query_segment_id, doc_segment_id), 0)
input_mask = tf.ones_like(input_ids)
features = {
"input_ids": input_ids,
"segment_ids": segment_ids,
"input_mask": input_mask,
"label_ids": label_ids,
"len_gt_titles": len_gt_titles,
}
return features
dataset = tf.data.TFRecordDataset([dataset_path])
dataset = dataset.map(
extract_fn, num_parallel_calls=4).prefetch(output_buffer_size)
if is_training:
dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=1000)
else:
if max_eval_examples:
dataset = dataset.take(max_eval_examples)
dataset = dataset.padded_batch(
batch_size=batch_size,
padded_shapes={
"input_ids": [seq_length],
"segment_ids": [seq_length],
"input_mask": [seq_length],
"label_ids": [],
"len_gt_titles": [],
},
padding_values={
"input_ids": 0,
"segment_ids": 0,
"input_mask": 0,
"label_ids": 0,
"len_gt_titles": 0,
},
drop_remainder=True)
return dataset
return input_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `FLAGS.do_train` or `FLAGS.do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
tpu_cluster_resolver = None
if FLAGS.use_tpu:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
TPU_ADDRESS)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=2,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.eval_batch_size)
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", FLAGS.num_train_steps)
train_input_fn = input_fn_builder(
dataset_path=os.path.join(FLAGS.data_dir, "dataset_train.tf"),
seq_length=FLAGS.max_seq_length,
is_training=True)
estimator.train(input_fn=train_input_fn,
max_steps=FLAGS.num_train_steps)
tf.logging.info("Done Training!")
if FLAGS.do_eval:
for set_name in ["dev", "test"]:
tf.logging.info("***** Running evaluation on the {} set*****".format(
set_name))
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
max_eval_examples = None
if set_name == "dev":
num_eval_docs = FLAGS.num_dev_docs
if FLAGS.max_dev_examples:
max_eval_examples = FLAGS.max_dev_examples * FLAGS.num_dev_docs
elif set_name == "test":
num_eval_docs = FLAGS.num_test_docs
if FLAGS.max_test_examples:
max_eval_examples = FLAGS.max_test_examples * FLAGS.num_test_docs
eval_input_fn = input_fn_builder(
dataset_path=os.path.join(FLAGS.data_dir, "dataset_" + set_name + ".tf"),
seq_length=FLAGS.max_seq_length,
is_training=False,
max_eval_examples=max_eval_examples)
if FLAGS.trec_output:
trec_file = tf.gfile.Open(
os.path.join(
FLAGS.output_dir, "bert_predictions_" + set_name + ".run"), "w")
query_docids_map = []
docs_per_query = 0 # Counter of docs per query
with tf.gfile.Open(
os.path.join(FLAGS.data_dir, set_name + ".run")) as ref_file:
for line in ref_file:
query, _, doc_id, _, _, _ = line.strip().split(" ")
# We add fake docs so the number of docs per query is always
# num_eval_docs.
if len(query_docids_map) > 0:
if query != last_query:
if docs_per_query < num_eval_docs:
fake_pairs = (num_eval_docs - docs_per_query) * [
(last_query, FAKE_DOC_ID)]
query_docids_map.extend(fake_pairs)
docs_per_query = 0
query_docids_map.append((query, doc_id))
last_query = query
docs_per_query += 1
# ***IMPORTANT NOTE***
# The logging output produced by the feed queues during evaluation is very
# large (~14M lines for the dev set), which causes the tab to crash if you
# don't have enough memory on your local machine. We suppress this
# frequent logging by setting the verbosity to WARN during the evaluation
# phase.
tf.logging.set_verbosity(tf.logging.WARN)
result = estimator.predict(input_fn=eval_input_fn,
yield_single_examples=True)
start_time = time.time()
results = []
all_metrics = np.zeros(len(METRICS_MAP))
example_idx = 0
total_count = 0
for item in result:
results.append(
(item["log_probs"], item["label_ids"], item["len_gt_titles"]))
if len(results) == num_eval_docs:
log_probs, labels, len_gt_titles = zip(*results)
log_probs = np.stack(log_probs).reshape(-1, 2)
labels = np.stack(labels)
len_gt_titles = np.stack(len_gt_titles)
assert len(set(list(len_gt_titles))) == 1, (
"all ground truth lengths must be the same for a given query.")
scores = log_probs[:, 1]
pred_docs = scores.argsort()[::-1]
gt = set(list(np.where(labels > 0)[0]))
# Metrics like NDCG and MAP require the total number of relevant docs.
# The code below adds missing number of relevant docs to gt so the
# metrics are the same as if we had used all ground-truths.
# The extra_gts have all negative ids so they don't interfere with the
# predicted ids, which are all equal or greater than zero.
extra_gts = list(-(np.arange(max(0, len_gt_titles[0] - len(gt))) + 1))
gt.update(extra_gts)
all_metrics += metrics.metrics(
gt=gt, pred=pred_docs, metrics_map=METRICS_MAP)
if FLAGS.trec_output:
start_idx = example_idx * num_eval_docs
end_idx = (example_idx + 1) * num_eval_docs
queries, doc_ids = zip(*query_docids_map[start_idx:end_idx])
assert len(set(queries)) == 1, "Queries must be all the same."
query = queries[0]
rank = 1
for doc_idx in pred_docs:
doc_id = doc_ids[doc_idx]
score = scores[doc_idx]
# Skip fake docs, as they are only used to ensure that each query
# has 1000 docs.
if doc_id != FAKE_DOC_ID:
output_line = " ".join(
(query, "Q0", doc_id, str(rank), str(score), "BERT"))
trec_file.write(output_line + "\n")
rank += 1
example_idx += 1
results = []
total_count += 1
if total_count % 10000 == 0:
tf.logging.warn("Read {} examples in {} secs. Metrics so far:".format(
total_count, int(time.time() - start_time)))
tf.logging.warn(" ".join(METRICS_MAP))
tf.logging.warn(all_metrics / example_idx)
# Once the feed queues are finished, we can set the verbosity back to
# INFO.
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.trec_output:
trec_file.close()
all_metrics /= example_idx
tf.logging.info("Eval {}:".format(set_name))
tf.logging.info(" ".join(METRICS_MAP))
tf.logging.info(all_metrics)
if __name__ == "__main__":
tf.app.run()