-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy path037-TruncatablePrimes.py
37 lines (32 loc) · 1.08 KB
/
037-TruncatablePrimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
# Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
# NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
from functions import allprimes
primes=allprimes(750000)
rightprimes = []
for n in primes[4:]:
temp = n
n=list(str(n))
for i in range(1,len(n)):
n.pop()
n=''.join(str(i) for i in n)
if(primes.count(int(n))==0):
break
n=list(str(n))
else:
rightprimes.append(temp)
leftprimes =[]
for n in rightprimes:
temp = n
n=list(str(n))
for i in range(1,len(n)):
n.remove(n[0])
n=''.join(str(i) for i in n)
if(primes.count(int(n))==0):
break
n=list(str(n))
else:
leftprimes.append(temp)
print(sum(leftprimes))