-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunner.rs
1456 lines (1287 loc) · 51.7 KB
/
runner.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#[allow(unused_imports)]
use alloc::prelude::v1::*;
use core::fmt;
use core::ops;
use core::{u32, usize};
use func::{FuncInstance, FuncInstanceInternal, FuncRef};
use host::Externals;
use isa;
use memory::MemoryRef;
use memory_units::Pages;
use module::ModuleRef;
use nan_preserving_float::{F32, F64};
use parity_wasm::elements::Local;
use validation::{DEFAULT_MEMORY_INDEX, DEFAULT_TABLE_INDEX};
use value::{
ArithmeticOps, ExtendInto, Float, Integer, RuntimeValue, TransmuteInto,
TryTruncateInto, WrapInto,
};
use {Signature, Trap, TrapKind, ValueType};
/// Maximum number of entries in value stack.
pub const DEFAULT_VALUE_STACK_LIMIT: usize = (1024 * 1024) / ::core::mem::size_of::<RuntimeValue>();
// TODO: Make these parameters changeble.
pub const DEFAULT_CALL_STACK_LIMIT: usize = 64 * 1024;
/// This is a wrapper around u64 to allow us to treat runtime values as a tag-free `u64`
/// (where if the runtime value is <64 bits the upper bits are 0). This is safe, since
/// all of the possible runtime values are valid to create from 64 defined bits, so if
/// types don't line up we get a logic error (which will ideally be caught by the wasm
/// spec tests) and not undefined behaviour.
///
/// At the boundary between the interpreter and the outside world we convert to the public
/// `RuntimeValue` type, which can then be matched on. We can create a `RuntimeValue` from
/// a `RuntimeValueInternal` only when the type is statically known, which it always is
/// at these boundaries.
#[derive(Copy, Clone, Debug, PartialEq, Default)]
#[repr(transparent)]
struct RuntimeValueInternal(pub u64);
impl RuntimeValueInternal {
pub fn with_type(self, ty: ValueType) -> RuntimeValue {
match ty {
ValueType::I32 => RuntimeValue::I32(<_>::from_runtime_value_internal(self)),
ValueType::I64 => RuntimeValue::I64(<_>::from_runtime_value_internal(self)),
ValueType::F32 => RuntimeValue::F32(<_>::from_runtime_value_internal(self)),
ValueType::F64 => RuntimeValue::F64(<_>::from_runtime_value_internal(self)),
}
}
}
trait FromRuntimeValueInternal
where
Self: Sized,
{
fn from_runtime_value_internal(val: RuntimeValueInternal) -> Self;
}
macro_rules! impl_from_runtime_value_internal {
($($t:ty),*) => {
$(
impl FromRuntimeValueInternal for $t {
fn from_runtime_value_internal(
RuntimeValueInternal(val): RuntimeValueInternal,
) -> Self {
val as _
}
}
impl From<$t> for RuntimeValueInternal {
fn from(other: $t) -> Self {
RuntimeValueInternal(other as _)
}
}
)*
};
}
macro_rules! impl_from_runtime_value_internal_float {
($($t:ty),*) => {
$(
impl FromRuntimeValueInternal for $t {
fn from_runtime_value_internal(
RuntimeValueInternal(val): RuntimeValueInternal,
) -> Self {
<$t>::from_bits(val as _)
}
}
impl From<$t> for RuntimeValueInternal {
fn from(other: $t) -> Self {
RuntimeValueInternal(other.to_bits() as _)
}
}
)*
};
}
impl_from_runtime_value_internal!(i8, u8, i16, u16, i32, u32, i64, u64);
impl_from_runtime_value_internal_float!(f32, f64, F32, F64);
impl From<bool> for RuntimeValueInternal {
fn from(other: bool) -> Self {
(if other { 1 } else { 0 }).into()
}
}
impl FromRuntimeValueInternal for bool {
fn from_runtime_value_internal(RuntimeValueInternal(val): RuntimeValueInternal) -> Self {
val != 0
}
}
impl From<RuntimeValue> for RuntimeValueInternal {
fn from(other: RuntimeValue) -> Self {
match other {
RuntimeValue::I32(val) => val.into(),
RuntimeValue::I64(val) => val.into(),
RuntimeValue::F32(val) => val.into(),
RuntimeValue::F64(val) => val.into(),
}
}
}
/// Interpreter action to execute after executing instruction.
pub enum InstructionOutcome {
/// Continue with next instruction.
RunNextInstruction,
/// Branch to an instruction at the given position.
Branch(isa::Target),
/// Execute function call.
ExecuteCall(FuncRef),
/// Return from current function block.
Return(isa::DropKeep),
}
#[derive(PartialEq, Eq)]
/// Function execution state, related to pause and resume.
pub enum InterpreterState {
/// The interpreter has been created, but has not been executed.
Initialized,
/// The interpreter has started execution, and cannot be called again if it exits normally, or no Host traps happened.
Started,
/// The interpreter has been executed, and returned a Host trap. It can resume execution by providing back a return
/// value.
Resumable(Option<ValueType>),
}
impl InterpreterState {
pub fn is_resumable(&self) -> bool {
match self {
&InterpreterState::Resumable(_) => true,
_ => false,
}
}
}
/// Function run result.
enum RunResult {
/// Function has returned.
Return,
/// Function is calling other function.
NestedCall(FuncRef),
}
/// Function interpreter.
pub struct Interpreter {
value_stack: ValueStack,
call_stack: Vec<FunctionContext>,
return_type: Option<ValueType>,
state: InterpreterState,
}
impl Interpreter {
pub fn new(func: &FuncRef, args: &[RuntimeValue]) -> Result<Interpreter, Trap> {
let mut value_stack = ValueStack::with_limit(DEFAULT_VALUE_STACK_LIMIT);
for &arg in args {
let arg = arg.into();
value_stack.push(arg).map_err(
// There is not enough space for pushing initial arguments.
// Weird, but bail out anyway.
|_| Trap::from(TrapKind::StackOverflow),
)?;
}
let mut call_stack = Vec::new();
let initial_frame = FunctionContext::new(func.clone());
call_stack.push(initial_frame);
let return_type = func.signature().return_type();
Ok(Interpreter {
value_stack,
call_stack,
return_type,
state: InterpreterState::Initialized,
})
}
pub fn state(&self) -> &InterpreterState {
&self.state
}
pub fn start_execution<'a, E: Externals + 'a>(
&mut self,
externals: &'a mut E,
) -> Result<Option<RuntimeValue>, Trap> {
// Ensure that the VM has not been executed. This is checked in `FuncInvocation::start_execution`.
assert!(self.state == InterpreterState::Initialized);
self.state = InterpreterState::Started;
self.run_interpreter_loop(externals)?;
let opt_return_value = self
.return_type
.map(|vt| self.value_stack.pop().with_type(vt));
// Ensure that stack is empty after the execution. This is guaranteed by the validation properties.
assert!(self.value_stack.len() == 0);
Ok(opt_return_value)
}
pub fn resume_execution<'a, E: Externals + 'a>(
&mut self,
return_val: Option<RuntimeValue>,
externals: &'a mut E,
) -> Result<Option<RuntimeValue>, Trap> {
use core::mem::swap;
// Ensure that the VM is resumable. This is checked in `FuncInvocation::resume_execution`.
assert!(self.state.is_resumable());
let mut resumable_state = InterpreterState::Started;
swap(&mut self.state, &mut resumable_state);
if let Some(return_val) = return_val {
self.value_stack
.push(return_val.into())
.map_err(Trap::new)?;
}
self.run_interpreter_loop(externals)?;
let opt_return_value = self
.return_type
.map(|vt| self.value_stack.pop().with_type(vt));
// Ensure that stack is empty after the execution. This is guaranteed by the validation properties.
assert!(self.value_stack.len() == 0);
Ok(opt_return_value)
}
fn run_interpreter_loop<'a, E: Externals + 'a>(
&mut self,
externals: &'a mut E,
) -> Result<(), Trap> {
loop {
let mut function_context = self.call_stack.pop().expect(
"on loop entry - not empty; on loop continue - checking for emptiness; qed",
);
let function_ref = function_context.function.clone();
let function_body = function_ref
.body()
.expect(
"Host functions checked in function_return below; Internal functions always have a body; qed"
);
if !function_context.is_initialized() {
// Initialize stack frame for the function call.
function_context.initialize(&function_body.locals, &mut self.value_stack)?;
}
let function_return = self
.do_run_function(&mut function_context, &function_body.code)
.map_err(Trap::new)?;
match function_return {
RunResult::Return => {
if self.call_stack.last().is_none() {
// This was the last frame in the call stack. This means we
// are done executing.
return Ok(());
}
}
RunResult::NestedCall(nested_func) => {
if self.call_stack.len() + 1 >= DEFAULT_CALL_STACK_LIMIT {
return Err(TrapKind::StackOverflow.into());
}
match *nested_func.as_internal() {
FuncInstanceInternal::Internal { .. } => {
let nested_context = FunctionContext::new(nested_func.clone());
self.call_stack.push(function_context);
self.call_stack.push(nested_context);
}
FuncInstanceInternal::Host { ref signature, .. } => {
let args = prepare_function_args(signature, &mut self.value_stack);
// We push the function context first. If the VM is not resumable, it does no harm. If it is, we then save the context here.
self.call_stack.push(function_context);
let return_val =
match FuncInstance::invoke(&nested_func, &args, externals) {
Ok(val) => val,
Err(trap) => {
if trap.kind().is_host() {
self.state = InterpreterState::Resumable(
nested_func.signature().return_type(),
);
}
return Err(trap);
}
};
// Check if `return_val` matches the signature.
let value_ty = return_val.as_ref().map(|val| val.value_type());
let expected_ty = nested_func.signature().return_type();
if value_ty != expected_ty {
return Err(TrapKind::UnexpectedSignature.into());
}
if let Some(return_val) = return_val {
self.value_stack
.push(return_val.into())
.map_err(Trap::new)?;
}
}
}
}
}
}
}
fn do_run_function(
&mut self,
function_context: &mut FunctionContext,
instructions: &isa::Instructions,
) -> Result<RunResult, TrapKind> {
let mut iter = instructions.iterate_from(function_context.position);
loop {
let instruction = iter.next().expect(
"Ran out of instructions, this should be impossible \
since validation ensures that we either have an explicit \
return or an implicit block `end`.",
);
match self.run_instruction(function_context, &instruction)? {
InstructionOutcome::RunNextInstruction => {}
InstructionOutcome::Branch(target) => {
iter = instructions.iterate_from(target.dst_pc);
self.value_stack.drop_keep(target.drop_keep);
}
InstructionOutcome::ExecuteCall(func_ref) => {
function_context.position = iter.position();
return Ok(RunResult::NestedCall(func_ref));
}
InstructionOutcome::Return(drop_keep) => {
self.value_stack.drop_keep(drop_keep);
break;
}
}
}
Ok(RunResult::Return)
}
#[inline(always)]
fn run_instruction(
&mut self,
context: &mut FunctionContext,
instruction: &isa::Instruction,
) -> Result<InstructionOutcome, TrapKind> {
match instruction {
&isa::Instruction::Unreachable => self.run_unreachable(context),
&isa::Instruction::Br(target) => self.run_br(context, target.clone()),
&isa::Instruction::BrIfEqz(target) => self.run_br_eqz(target.clone()),
&isa::Instruction::BrIfNez(target) => self.run_br_nez(target.clone()),
&isa::Instruction::BrTable(targets) => self.run_br_table(targets),
&isa::Instruction::Return(drop_keep) => self.run_return(drop_keep),
&isa::Instruction::Call(index) => self.run_call(context, index),
&isa::Instruction::CallIndirect(index) => self.run_call_indirect(context, index),
&isa::Instruction::Drop => self.run_drop(),
&isa::Instruction::Select => self.run_select(),
&isa::Instruction::GetLocal(depth) => self.run_get_local(depth),
&isa::Instruction::SetLocal(depth) => self.run_set_local(depth),
&isa::Instruction::TeeLocal(depth) => self.run_tee_local(depth),
&isa::Instruction::GetGlobal(index) => self.run_get_global(context, index),
&isa::Instruction::SetGlobal(index) => self.run_set_global(context, index),
&isa::Instruction::I32Load(offset) => self.run_load::<i32>(context, offset),
&isa::Instruction::I64Load(offset) => self.run_load::<i64>(context, offset),
&isa::Instruction::F32Load(offset) => self.run_load::<F32>(context, offset),
&isa::Instruction::F64Load(offset) => self.run_load::<F64>(context, offset),
&isa::Instruction::I32Load8S(offset) => {
self.run_load_extend::<i8, i32>(context, offset)
}
&isa::Instruction::I32Load8U(offset) => {
self.run_load_extend::<u8, i32>(context, offset)
}
&isa::Instruction::I32Load16S(offset) => {
self.run_load_extend::<i16, i32>(context, offset)
}
&isa::Instruction::I32Load16U(offset) => {
self.run_load_extend::<u16, i32>(context, offset)
}
&isa::Instruction::I64Load8S(offset) => {
self.run_load_extend::<i8, i64>(context, offset)
}
&isa::Instruction::I64Load8U(offset) => {
self.run_load_extend::<u8, i64>(context, offset)
}
&isa::Instruction::I64Load16S(offset) => {
self.run_load_extend::<i16, i64>(context, offset)
}
&isa::Instruction::I64Load16U(offset) => {
self.run_load_extend::<u16, i64>(context, offset)
}
&isa::Instruction::I64Load32S(offset) => {
self.run_load_extend::<i32, i64>(context, offset)
}
&isa::Instruction::I64Load32U(offset) => {
self.run_load_extend::<u32, i64>(context, offset)
}
&isa::Instruction::I32Store(offset) => self.run_store::<i32>(context, offset),
&isa::Instruction::I64Store(offset) => self.run_store::<i64>(context, offset),
&isa::Instruction::F32Store(offset) => self.run_store::<F32>(context, offset),
&isa::Instruction::F64Store(offset) => self.run_store::<F64>(context, offset),
&isa::Instruction::I32Store8(offset) => self.run_store_wrap::<i32, i8>(context, offset),
&isa::Instruction::I32Store16(offset) => {
self.run_store_wrap::<i32, i16>(context, offset)
}
&isa::Instruction::I64Store8(offset) => self.run_store_wrap::<i64, i8>(context, offset),
&isa::Instruction::I64Store16(offset) => {
self.run_store_wrap::<i64, i16>(context, offset)
}
&isa::Instruction::I64Store32(offset) => {
self.run_store_wrap::<i64, i32>(context, offset)
}
&isa::Instruction::CurrentMemory => self.run_current_memory(context),
&isa::Instruction::GrowMemory => self.run_grow_memory(context),
&isa::Instruction::I32Const(val) => self.run_const(val.into()),
&isa::Instruction::I64Const(val) => self.run_const(val.into()),
&isa::Instruction::F32Const(val) => self.run_const(val.into()),
&isa::Instruction::F64Const(val) => self.run_const(val.into()),
&isa::Instruction::I32Eqz => self.run_eqz::<i32>(),
&isa::Instruction::I32Eq => self.run_eq::<i32>(),
&isa::Instruction::I32Ne => self.run_ne::<i32>(),
&isa::Instruction::I32LtS => self.run_lt::<i32>(),
&isa::Instruction::I32LtU => self.run_lt::<u32>(),
&isa::Instruction::I32GtS => self.run_gt::<i32>(),
&isa::Instruction::I32GtU => self.run_gt::<u32>(),
&isa::Instruction::I32LeS => self.run_lte::<i32>(),
&isa::Instruction::I32LeU => self.run_lte::<u32>(),
&isa::Instruction::I32GeS => self.run_gte::<i32>(),
&isa::Instruction::I32GeU => self.run_gte::<u32>(),
&isa::Instruction::I64Eqz => self.run_eqz::<i64>(),
&isa::Instruction::I64Eq => self.run_eq::<i64>(),
&isa::Instruction::I64Ne => self.run_ne::<i64>(),
&isa::Instruction::I64LtS => self.run_lt::<i64>(),
&isa::Instruction::I64LtU => self.run_lt::<u64>(),
&isa::Instruction::I64GtS => self.run_gt::<i64>(),
&isa::Instruction::I64GtU => self.run_gt::<u64>(),
&isa::Instruction::I64LeS => self.run_lte::<i64>(),
&isa::Instruction::I64LeU => self.run_lte::<u64>(),
&isa::Instruction::I64GeS => self.run_gte::<i64>(),
&isa::Instruction::I64GeU => self.run_gte::<u64>(),
&isa::Instruction::F32Eq => self.run_eq::<F32>(),
&isa::Instruction::F32Ne => self.run_ne::<F32>(),
&isa::Instruction::F32Lt => self.run_lt::<F32>(),
&isa::Instruction::F32Gt => self.run_gt::<F32>(),
&isa::Instruction::F32Le => self.run_lte::<F32>(),
&isa::Instruction::F32Ge => self.run_gte::<F32>(),
&isa::Instruction::F64Eq => self.run_eq::<F64>(),
&isa::Instruction::F64Ne => self.run_ne::<F64>(),
&isa::Instruction::F64Lt => self.run_lt::<F64>(),
&isa::Instruction::F64Gt => self.run_gt::<F64>(),
&isa::Instruction::F64Le => self.run_lte::<F64>(),
&isa::Instruction::F64Ge => self.run_gte::<F64>(),
&isa::Instruction::I32Clz => self.run_clz::<i32>(),
&isa::Instruction::I32Ctz => self.run_ctz::<i32>(),
&isa::Instruction::I32Popcnt => self.run_popcnt::<i32>(),
&isa::Instruction::I32Add => self.run_add::<i32>(),
&isa::Instruction::I32Sub => self.run_sub::<i32>(),
&isa::Instruction::I32Mul => self.run_mul::<i32>(),
&isa::Instruction::I32DivS => self.run_div::<i32, i32>(),
&isa::Instruction::I32DivU => self.run_div::<i32, u32>(),
&isa::Instruction::I32RemS => self.run_rem::<i32, i32>(),
&isa::Instruction::I32RemU => self.run_rem::<i32, u32>(),
&isa::Instruction::I32And => self.run_and::<i32>(),
&isa::Instruction::I32Or => self.run_or::<i32>(),
&isa::Instruction::I32Xor => self.run_xor::<i32>(),
&isa::Instruction::I32Shl => self.run_shl::<i32>(0x1F),
&isa::Instruction::I32ShrS => self.run_shr::<i32, i32>(0x1F),
&isa::Instruction::I32ShrU => self.run_shr::<i32, u32>(0x1F),
&isa::Instruction::I32Rotl => self.run_rotl::<i32>(),
&isa::Instruction::I32Rotr => self.run_rotr::<i32>(),
&isa::Instruction::I64Clz => self.run_clz::<i64>(),
&isa::Instruction::I64Ctz => self.run_ctz::<i64>(),
&isa::Instruction::I64Popcnt => self.run_popcnt::<i64>(),
&isa::Instruction::I64Add => self.run_add::<i64>(),
&isa::Instruction::I64Sub => self.run_sub::<i64>(),
&isa::Instruction::I64Mul => self.run_mul::<i64>(),
&isa::Instruction::I64DivS => self.run_div::<i64, i64>(),
&isa::Instruction::I64DivU => self.run_div::<i64, u64>(),
&isa::Instruction::I64RemS => self.run_rem::<i64, i64>(),
&isa::Instruction::I64RemU => self.run_rem::<i64, u64>(),
&isa::Instruction::I64And => self.run_and::<i64>(),
&isa::Instruction::I64Or => self.run_or::<i64>(),
&isa::Instruction::I64Xor => self.run_xor::<i64>(),
&isa::Instruction::I64Shl => self.run_shl::<i64>(0x3F),
&isa::Instruction::I64ShrS => self.run_shr::<i64, i64>(0x3F),
&isa::Instruction::I64ShrU => self.run_shr::<i64, u64>(0x3F),
&isa::Instruction::I64Rotl => self.run_rotl::<i64>(),
&isa::Instruction::I64Rotr => self.run_rotr::<i64>(),
&isa::Instruction::F32Abs => self.run_abs::<F32>(),
&isa::Instruction::F32Neg => self.run_neg::<F32>(),
&isa::Instruction::F32Ceil => self.run_ceil::<F32>(),
&isa::Instruction::F32Floor => self.run_floor::<F32>(),
&isa::Instruction::F32Trunc => self.run_trunc::<F32>(),
&isa::Instruction::F32Nearest => self.run_nearest::<F32>(),
&isa::Instruction::F32Sqrt => self.run_sqrt::<F32>(),
&isa::Instruction::F32Add => self.run_add::<F32>(),
&isa::Instruction::F32Sub => self.run_sub::<F32>(),
&isa::Instruction::F32Mul => self.run_mul::<F32>(),
&isa::Instruction::F32Div => self.run_div::<F32, F32>(),
&isa::Instruction::F32Min => self.run_min::<F32>(),
&isa::Instruction::F32Max => self.run_max::<F32>(),
&isa::Instruction::F32Copysign => self.run_copysign::<F32>(),
&isa::Instruction::F64Abs => self.run_abs::<F64>(),
&isa::Instruction::F64Neg => self.run_neg::<F64>(),
&isa::Instruction::F64Ceil => self.run_ceil::<F64>(),
&isa::Instruction::F64Floor => self.run_floor::<F64>(),
&isa::Instruction::F64Trunc => self.run_trunc::<F64>(),
&isa::Instruction::F64Nearest => self.run_nearest::<F64>(),
&isa::Instruction::F64Sqrt => self.run_sqrt::<F64>(),
&isa::Instruction::F64Add => self.run_add::<F64>(),
&isa::Instruction::F64Sub => self.run_sub::<F64>(),
&isa::Instruction::F64Mul => self.run_mul::<F64>(),
&isa::Instruction::F64Div => self.run_div::<F64, F64>(),
&isa::Instruction::F64Min => self.run_min::<F64>(),
&isa::Instruction::F64Max => self.run_max::<F64>(),
&isa::Instruction::F64Copysign => self.run_copysign::<F64>(),
&isa::Instruction::I32WrapI64 => self.run_wrap::<i64, i32>(),
&isa::Instruction::I32TruncSF32 => self.run_trunc_to_int::<F32, i32, i32>(),
&isa::Instruction::I32TruncUF32 => self.run_trunc_to_int::<F32, u32, i32>(),
&isa::Instruction::I32TruncSF64 => self.run_trunc_to_int::<F64, i32, i32>(),
&isa::Instruction::I32TruncUF64 => self.run_trunc_to_int::<F64, u32, i32>(),
&isa::Instruction::I64ExtendSI32 => self.run_extend::<i32, i64, i64>(),
&isa::Instruction::I64ExtendUI32 => self.run_extend::<u32, u64, i64>(),
&isa::Instruction::I64TruncSF32 => self.run_trunc_to_int::<F32, i64, i64>(),
&isa::Instruction::I64TruncUF32 => self.run_trunc_to_int::<F32, u64, i64>(),
&isa::Instruction::I64TruncSF64 => self.run_trunc_to_int::<F64, i64, i64>(),
&isa::Instruction::I64TruncUF64 => self.run_trunc_to_int::<F64, u64, i64>(),
&isa::Instruction::F32ConvertSI32 => self.run_extend::<i32, F32, F32>(),
&isa::Instruction::F32ConvertUI32 => self.run_extend::<u32, F32, F32>(),
&isa::Instruction::F32ConvertSI64 => self.run_wrap::<i64, F32>(),
&isa::Instruction::F32ConvertUI64 => self.run_wrap::<u64, F32>(),
&isa::Instruction::F32DemoteF64 => self.run_wrap::<F64, F32>(),
&isa::Instruction::F64ConvertSI32 => self.run_extend::<i32, F64, F64>(),
&isa::Instruction::F64ConvertUI32 => self.run_extend::<u32, F64, F64>(),
&isa::Instruction::F64ConvertSI64 => self.run_extend::<i64, F64, F64>(),
&isa::Instruction::F64ConvertUI64 => self.run_extend::<u64, F64, F64>(),
&isa::Instruction::F64PromoteF32 => self.run_extend::<F32, F64, F64>(),
&isa::Instruction::I32ReinterpretF32 => self.run_reinterpret::<F32, i32>(),
&isa::Instruction::I64ReinterpretF64 => self.run_reinterpret::<F64, i64>(),
&isa::Instruction::F32ReinterpretI32 => self.run_reinterpret::<i32, F32>(),
&isa::Instruction::F64ReinterpretI64 => self.run_reinterpret::<i64, F64>(),
}
}
fn run_unreachable(
&mut self,
_context: &mut FunctionContext,
) -> Result<InstructionOutcome, TrapKind> {
Err(TrapKind::Unreachable)
}
fn run_br(
&mut self,
_context: &mut FunctionContext,
target: isa::Target,
) -> Result<InstructionOutcome, TrapKind> {
Ok(InstructionOutcome::Branch(target))
}
fn run_br_nez(&mut self, target: isa::Target) -> Result<InstructionOutcome, TrapKind> {
let condition = self.value_stack.pop_as();
if condition {
Ok(InstructionOutcome::Branch(target))
} else {
Ok(InstructionOutcome::RunNextInstruction)
}
}
fn run_br_eqz(&mut self, target: isa::Target) -> Result<InstructionOutcome, TrapKind> {
let condition = self.value_stack.pop_as();
if condition {
Ok(InstructionOutcome::RunNextInstruction)
} else {
Ok(InstructionOutcome::Branch(target))
}
}
fn run_br_table(&mut self, targets: isa::BrTargets) -> Result<InstructionOutcome, TrapKind> {
let index: u32 = self.value_stack.pop_as();
let dst = targets.get(index);
Ok(InstructionOutcome::Branch(dst))
}
fn run_return(&mut self, drop_keep: isa::DropKeep) -> Result<InstructionOutcome, TrapKind> {
Ok(InstructionOutcome::Return(drop_keep))
}
fn run_call(
&mut self,
context: &mut FunctionContext,
func_idx: u32,
) -> Result<InstructionOutcome, TrapKind> {
let func = context
.module()
.func_by_index(func_idx)
.expect("Due to validation func should exists");
Ok(InstructionOutcome::ExecuteCall(func))
}
fn run_call_indirect(
&mut self,
context: &mut FunctionContext,
signature_idx: u32,
) -> Result<InstructionOutcome, TrapKind> {
let table_func_idx: u32 = self.value_stack.pop_as();
let table = context
.module()
.table_by_index(DEFAULT_TABLE_INDEX)
.expect("Due to validation table should exists");
let func_ref = table
.get(table_func_idx)
.map_err(|_| TrapKind::TableAccessOutOfBounds)?
.ok_or_else(|| TrapKind::ElemUninitialized)?;
{
let actual_function_type = func_ref.signature();
let required_function_type = context
.module()
.signature_by_index(signature_idx)
.expect("Due to validation type should exists");
if &*required_function_type != actual_function_type {
return Err(TrapKind::UnexpectedSignature);
}
}
Ok(InstructionOutcome::ExecuteCall(func_ref))
}
fn run_drop(&mut self) -> Result<InstructionOutcome, TrapKind> {
let _ = self.value_stack.pop();
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_select(&mut self) -> Result<InstructionOutcome, TrapKind> {
let (left, mid, right) = self.value_stack.pop_triple();
let condition = <_>::from_runtime_value_internal(right);
let val = if condition { left } else { mid };
self.value_stack.push(val)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_get_local(&mut self, index: u32) -> Result<InstructionOutcome, TrapKind> {
let val = *self.value_stack.pick_mut(index as usize);
self.value_stack.push(val)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_set_local(&mut self, index: u32) -> Result<InstructionOutcome, TrapKind> {
let val = self.value_stack.pop();
*self.value_stack.pick_mut(index as usize) = val;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_tee_local(&mut self, index: u32) -> Result<InstructionOutcome, TrapKind> {
let val = self.value_stack.top().clone();
*self.value_stack.pick_mut(index as usize) = val;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_get_global(
&mut self,
context: &mut FunctionContext,
index: u32,
) -> Result<InstructionOutcome, TrapKind> {
let global = context
.module()
.global_by_index(index)
.expect("Due to validation global should exists");
let val = global.get();
self.value_stack.push(val.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_set_global(
&mut self,
context: &mut FunctionContext,
index: u32,
) -> Result<InstructionOutcome, TrapKind> {
let val = self.value_stack.pop();
let global = context
.module()
.global_by_index(index)
.expect("Due to validation global should exists");
global
.set(val.with_type(global.value_type()))
.expect("Due to validation set to a global should succeed");
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_load<T>(
&mut self,
context: &mut FunctionContext,
offset: u32,
) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: Copy,
{
let raw_address = self.value_stack.pop_as();
let address = effective_address(offset, raw_address)?;
let m = context
.memory()
.expect("Due to validation memory should exists");
let n: T = m
.get_value(address)
.map_err(|_| TrapKind::MemoryAccessOutOfBounds)?;
self.value_stack.push(n.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_load_extend<T, U>(
&mut self,
context: &mut FunctionContext,
offset: u32,
) -> Result<InstructionOutcome, TrapKind>
where
T: ExtendInto<U>,
RuntimeValueInternal: From<U>,
T: Copy,
{
let raw_address = self.value_stack.pop_as();
let address = effective_address(offset, raw_address)?;
let m = context
.memory()
.expect("Due to validation memory should exists");
let v: T = m
.get_value(address)
.map_err(|_| TrapKind::MemoryAccessOutOfBounds)?;
let stack_value: U = v.extend_into();
self.value_stack
.push(stack_value.into())
.map_err(Into::into)
.map(|_| InstructionOutcome::RunNextInstruction)
}
fn run_store<T>(
&mut self,
context: &mut FunctionContext,
offset: u32,
) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal,
T: Copy,
{
let stack_value = self.value_stack.pop_as::<T>();
let raw_address = self.value_stack.pop_as::<u32>();
let address = effective_address(offset, raw_address)?;
let m = context
.memory()
.expect("Due to validation memory should exists");
m.set_value(address, stack_value)
.map_err(|_| TrapKind::MemoryAccessOutOfBounds)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_store_wrap<T, U>(
&mut self,
context: &mut FunctionContext,
offset: u32,
) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal,
T: WrapInto<U>,
U: Copy,
{
let stack_value: T = <_>::from_runtime_value_internal(self.value_stack.pop());
let stack_value = stack_value.wrap_into();
let raw_address = self.value_stack.pop_as::<u32>();
let address = effective_address(offset, raw_address)?;
let m = context
.memory()
.expect("Due to validation memory should exists");
m.set_value(address, stack_value)
.map_err(|_| TrapKind::MemoryAccessOutOfBounds)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_current_memory(
&mut self,
context: &mut FunctionContext,
) -> Result<InstructionOutcome, TrapKind> {
let m = context
.memory()
.expect("Due to validation memory should exists");
let s = m.current_size().0;
self.value_stack.push(RuntimeValueInternal(s as _))?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_grow_memory(
&mut self,
context: &mut FunctionContext,
) -> Result<InstructionOutcome, TrapKind> {
let pages: u32 = self.value_stack.pop_as();
let m = context
.memory()
.expect("Due to validation memory should exists");
let m = match m.grow(Pages(pages as usize)) {
Ok(Pages(new_size)) => new_size as u32,
Err(_) => u32::MAX, // Returns -1 (or 0xFFFFFFFF) in case of error.
};
self.value_stack.push(RuntimeValueInternal(m as _))?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_const(&mut self, val: RuntimeValue) -> Result<InstructionOutcome, TrapKind> {
self.value_stack
.push(val.into())
.map_err(Into::into)
.map(|_| InstructionOutcome::RunNextInstruction)
}
fn run_relop<T, F>(&mut self, f: F) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal,
F: FnOnce(T, T) -> bool,
{
let (left, right) = self.value_stack.pop_pair_as::<T>();
let v = if f(left, right) {
RuntimeValueInternal(1)
} else {
RuntimeValueInternal(0)
};
self.value_stack.push(v)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_eqz<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal,
T: PartialEq<T> + Default,
{
let v = self.value_stack.pop_as::<T>();
let v = RuntimeValueInternal(if v == Default::default() { 1 } else { 0 });
self.value_stack.push(v)?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_eq<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialEq<T>,
{
self.run_relop(|left: T, right: T| left == right)
}
fn run_ne<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialEq<T>,
{
self.run_relop(|left: T, right: T| left != right)
}
fn run_lt<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialOrd<T>,
{
self.run_relop(|left: T, right: T| left < right)
}
fn run_gt<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialOrd<T>,
{
self.run_relop(|left: T, right: T| left > right)
}
fn run_lte<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialOrd<T>,
{
self.run_relop(|left: T, right: T| left <= right)
}
fn run_gte<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
T: FromRuntimeValueInternal + PartialOrd<T>,
{
self.run_relop(|left: T, right: T| left >= right)
}
fn run_unop<T, U, F>(&mut self, f: F) -> Result<InstructionOutcome, TrapKind>
where
F: FnOnce(T) -> U,
T: FromRuntimeValueInternal,
RuntimeValueInternal: From<U>,
{
let v = self.value_stack.pop_as::<T>();
let v = f(v);
self.value_stack.push(v.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_clz<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: Integer<T> + FromRuntimeValueInternal,
{
self.run_unop(|v: T| v.leading_zeros())
}
fn run_ctz<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: Integer<T> + FromRuntimeValueInternal,
{
self.run_unop(|v: T| v.trailing_zeros())
}
fn run_popcnt<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: Integer<T> + FromRuntimeValueInternal,
{
self.run_unop(|v: T| v.count_ones())
}
fn run_add<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: ArithmeticOps<T> + FromRuntimeValueInternal,
{
let (left, right) = self.value_stack.pop_pair_as::<T>();
let v = left.add(right);
self.value_stack.push(v.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_sub<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: ArithmeticOps<T> + FromRuntimeValueInternal,
{
let (left, right) = self.value_stack.pop_pair_as::<T>();
let v = left.sub(right);
self.value_stack.push(v.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_mul<T>(&mut self) -> Result<InstructionOutcome, TrapKind>
where
RuntimeValueInternal: From<T>,
T: ArithmeticOps<T> + FromRuntimeValueInternal,
{
let (left, right) = self.value_stack.pop_pair_as::<T>();
let v = left.mul(right);
self.value_stack.push(v.into())?;
Ok(InstructionOutcome::RunNextInstruction)
}
fn run_div<T, U>(&mut self) -> Result<InstructionOutcome, TrapKind>