-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVideo Processing.py
101 lines (76 loc) · 3.58 KB
/
Video Processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import cv2
import numpy as np
import moviepy.editor as mp
from deepfill import DeepFill # Make sure you have DeepFill setup
from multiprocessing import Pool
import os
# Path to the video file
input_video = 'input_video.mp4'
output_video = 'output_video.mp4'
# Load video using moviepy
def load_video(input_path):
return mp.VideoFileClip(input_path)
# Function to detect and remove captions/emojis/images using object detection (simplified here)
def detect_and_remove_objects(frame):
# Convert to grayscale for object detection
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Simulated detection of unwanted regions (this can be replaced with any object detection method)
# Here we manually simulate a mask for removal; ideally, you'd use a trained model
mask = np.zeros_like(gray_frame)
# For demo purposes, assume we detect something in a specific region (e.g., emoji or caption)
# Update this with the actual detected coordinates of objects
cv2.rectangle(mask, (100, 100), (400, 200), 255, -1) # Example bounding box
return mask
# Inpainting removed objects using deepfill (or any other inpainting technique)
def inpaint_objects(frame, mask):
# Inpainting using Deepfill method
result_frame = DeepFill.inpaint(frame, mask)
# If DeepFill is not available, fall back to OpenCV inpainting (telea or navier-stokes)
if result_frame is None:
result_frame = cv2.inpaint(frame, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
return result_frame
# Function to process each video frame: remove objects and enhance quality
def process_frame(frame):
# Detect objects (e.g., captions, emojis) and create a mask
mask = detect_and_remove_objects(frame)
# Inpaint to remove unwanted objects
clean_frame = inpaint_objects(frame, mask)
# Enhance quality (e.g., denoising)
clean_frame = cv2.fastNlMeansDenoisingColored(clean_frame, None, 10, 10, 7, 21)
return clean_frame
# Process the video: frame by frame
def process_video(video_clip):
frames = [process_frame(frame) for frame in video_clip.iter_frames()]
# Create a processed video from frames
fps = video_clip.fps
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
for frame in frames:
video_writer.write(frame)
video_writer.release()
# Optimized processing using parallelism (optional)
def process_frame_parallel(frame_idx, video_clip):
frame = video_clip.get_frame(frame_idx / video_clip.fps)
return process_frame(frame)
def process_video_parallel(video_clip):
with Pool(os.cpu_count()) as p:
frames = p.starmap(process_frame_parallel, [(i, video_clip) for i in range(int(video_clip.fps * video_clip.duration))])
fps = video_clip.fps
height, width, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(output_video, fourcc, fps, (width, height))
for frame in frames:
video_writer.write(frame)
video_writer.release()
# Main execution
if __name__ == "__main__":
# Load video
video_clip = load_video(input_video)
# Process video (choose between parallel and sequential processing)
use_parallel_processing = True # Set to False if you don't want parallelism
if use_parallel_processing:
process_video_parallel(video_clip)
else:
process_video(video_clip)
print(f"Video processing completed. Output saved at {output_video}")