-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patholcmr.launch.py
332 lines (296 loc) · 13.3 KB
/
olcmr.launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from asyncio.log import logger
import os
from ament_index_python.packages import get_package_share_directory
import launch
import launch.actions
import launch_ros
import yaml
import rclpy
##################################################
### Launch Parameters ###
## Yaml param file
yaml_param_file = os.path.join(get_package_share_directory('olcmr_pkg'), 'params/robot_configs', 'template.yaml')
with open(yaml_param_file, "r") as file_handle:
param_file = yaml.load(file_handle, Loader=yaml.FullLoader)
## General parameters
use_ekf_prior = param_file.get('use_ekf_prior')
use_slam_loop_closure = param_file.get('use_slam_loop_closure')
compute_camera_lidar_projection = param_file.get('compute_camera_lidar_projection')
number_of_cameras = param_file.get('number_of_cameras')
save_trajectories = param_file.get('save_trajectories')
visualise = param_file.get('visualise')
rviz_config_file = os.path.join(get_package_share_directory('olcmr_pkg'),'params/rviz',param_file.get('rviz_config_file'))
downsample_points_cloud = param_file.get('downsample_points_cloud')
vg_size_for_slam = param_file.get('vg_size_for_slam')
vg_size_for_tsdf = param_file.get('vg_size_for_tsdf')
camera_data_encoding = "mono8"
## Parameters and calibration files
ekf_param_file = os.path.join(get_package_share_directory('olcmr_pkg'),'params/ekf', param_file.get('ekf_param_file'))
lidarslam_param_file = os.path.join(get_package_share_directory('olcmr_pkg'),'params/lidarslam', param_file.get('lidarslam_param_file'))
cameras_calibration_file = os.path.join(get_package_share_directory('olcmr_pkg'),'params/calibration', param_file.get('cameras_calibration_file'))
## Data bag
use_bag = param_file.get('use_bag')
use_ros1_bag = param_file.get('use_ros1_bag')
bag_file = param_file.get('bag_file')
if(use_ros1_bag):
bag_file = "-s rosbag_v2 " + bag_file
## ROS2 Topics
lidar_point_cloud_topic = param_file.get('lidar_point_cloud_topic')
imu_topic = param_file.get('imu_topic')
kinematic_odom_topic = param_file.get('kinematic_odom_topic')
camera1_namespace = param_file.get('camera1_namespace')
camera2_namespace = param_file.get('camera2_namespace')
camera3_namespace = param_file.get('camera3_namespace')
## Frames
map_frame = param_file.get('map_frame')
lidar_frame = param_file.get('lidar_frame')
camera1_frame = param_file.get('camera1_frame')
camera2_frame = param_file.get('camera2_frame')
camera3_frame = param_file.get('camera3_frame')
slam_frame = param_file.get('slam_frame')
ekf_frame = param_file.get('ekf_frame')
## Tf
publish_static_tf = param_file.get("publish_static_tf")
lidar_tf = param_file.get("lidar_tf")
camera_tf = param_file.get("imu_camera_tf")
use_manually_defined_cameras_tf = param_file.get("use_manually_defined_cameras_tf")
camera1_tf = param_file.get("camera1_tf")
camera2_tf = param_file.get("camera2_tf")
camera3_tf = param_file.get("camera3_tf")
##################################################
##################################################
### Nodes definitions ###
def generate_launch_description():
# play the data bag
bag_param_path = os.path.join(get_package_share_directory('olcmr_pkg'),'params/bag_qos/bag_param.yaml')
play_mapping_bag = launch.actions.ExecuteProcess(
cmd=['ros2', 'bag', 'play','--qos-profile-overrides-path ', bag_param_path, bag_file,
'-r','1.0','-d','1.0','--clock'],
output='log',
shell=True)
# aggregate the LiDAR data into a point cloud
velodyne_pointcloud_node = launch_ros.actions.Node(
name='velodyne_pointcloud_node',
executable='velodyne_convert_node',
package='velodyne_pointcloud',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
parameters=[{'min_range': 0.8,
'max_range': 50.0,
'view_direction': 0.0,
'view_width': 5.23598775598}],
output='both',
remappings = [('velodyne_points',lidar_point_cloud_topic)]
)
# downsample the LiDAR point cloud (if required)
point_cloud_downsampler = launch_ros.actions.Node(
name='point_cloud_downsampler',
executable='pc_downsampler',
package='olcmr_pkg',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
parameters=[{'vg_size_for_slam': vg_size_for_slam},
{'vg_size_for_tsdf': vg_size_for_tsdf}],
output='both',
remappings = [('point_cloud',lidar_point_cloud_topic),
('point_cloud/downsampled/slam',lidar_point_cloud_topic+"/downsampled/slam"),
('point_cloud/downsampled/tsdf',lidar_point_cloud_topic+"/downsampled/tsdf")]
)
## static tf between robot base and LiDAR
lidar_tf.extend([slam_frame, lidar_frame,'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)])
lidar_static_tf = launch_ros.actions.Node(
name='lidar_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=lidar_tf,
output='both',
)
## static tf between lidar and first camera
camera_tf.extend([slam_frame, camera1_frame,'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)])
camera_static_tf = launch_ros.actions.Node(
name='camera_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=camera_tf,
output='both',
)
## static tf between robot base and cameras (if the cameras tf are defined manually outside of the calibration file)
camera1_tf.extend([slam_frame, camera1_frame,'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)])
camera1_static_tf = launch_ros.actions.Node(
name='camera1_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=camera1_tf,
output='both',
)
camera2_tf.extend([slam_frame, camera2_frame,'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)])
camera2_static_tf = launch_ros.actions.Node(
name='camera2_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=camera2_tf,
output='both',
)
camera3_tf.extend([slam_frame, camera3_frame,'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)])
camera3_static_tf = launch_ros.actions.Node(
name='camera3_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=camera3_tf,
output='both',
)
## Newer college custom EKF prior
imu_static_tf = launch_ros.actions.Node(
name='imu_static_tf',
executable='static_transform_publisher',
package='tf2_ros',
arguments=['0.014', '-0.012', '-0.015', '0','0','0', ekf_frame, "os_imu",'--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
output='both',
)
## EKF fusion between IMU and kinematic odom for localisation prior
ekf_localization = launch_ros.actions.Node(
package='robot_localization',
name='ekf_odom_imu',
executable='ekf_node',
parameters=[ekf_param_file],
output='both',
)
## matching point cloud / camera image to produce a colored point cloud
if(downsample_points_cloud):
tsdf_point_cloud_topic = lidar_point_cloud_topic+"/downsampled/tsdf"
else:
tsdf_point_cloud_topic = lidar_point_cloud_topic
lidar_cameras_projection = launch_ros.actions.Node(
package='olcmr_pkg',
name='lidar_cameras_projection',
executable='lidar_cameras_projection.py',
output='both',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
remappings=[('point_cloud',tsdf_point_cloud_topic),
('point_cloud/colored',lidar_point_cloud_topic+'/colored')],
parameters=[{'nb_cameras': number_of_cameras,
'calibration_file': cameras_calibration_file,
'lidar_frame':lidar_frame,
'use_manually_defined_cameras_tf':use_manually_defined_cameras_tf,
'camera1_frame':camera1_frame,
'camera2_frame':camera2_frame,
'camera3_frame':camera3_frame,
'camera_data_encoding': camera_data_encoding}],
)
## cameras info publication
images_undistortion = launch_ros.actions.Node(
package='olcmr_pkg',
name='images_undistortion',
executable='images_undistortion.py',
output='both',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
remappings=[('image1_raw/compressed',camera1_namespace+"/compressed"),
('image2_raw/compressed',camera2_namespace+"/compressed"),
('image3_raw/compressed',camera3_namespace+"/compressed"),
('image1_raw/undistorded',camera1_namespace+"/undistorded"),
('image2_raw/undistorded',camera2_namespace+"/undistorded"),
('image3_raw/undistorded',camera3_namespace+"/undistorded"),
('camera1_info',camera1_namespace+"/camera_info"),
('camera2_info',camera2_namespace+"/camera_info"),
('point_cloud',lidar_point_cloud_topic),
('camera3_info',camera3_namespace+"/camera_info")],
parameters=[{'nb_cameras': number_of_cameras,
'calibration_file': cameras_calibration_file,
'camera_data_encoding': camera_data_encoding}],
)
ros1_bridge = launch_ros.actions.Node(
package='ros1_bridge',
name='ros1_bridge',
executable='dynamic_bridge',
output='log',
)
############################################
### lidarslam_ros2 by GitHub user rsasaki0109 ###
lidarslam_param = launch.substitutions.LaunchConfiguration(
'main_param_dir',
default=lidarslam_param_file)
## front-end SLAM node
if(downsample_points_cloud):
slam_point_cloud_topic = lidar_point_cloud_topic+"/downsampled/slam"
else:
slam_point_cloud_topic = lidar_point_cloud_topic
scanmatcher = launch_ros.actions.Node(
package='scanmatcher',
executable='scanmatcher_node',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
parameters=[lidarslam_param],
remappings=[('input_cloud',slam_point_cloud_topic),
('imu',imu_topic)],
output='screen'
)
## back-end SLAM node
graphbasedslam = launch_ros.actions.Node(
package='graph_based_slam',
executable='graph_based_slam_node',
arguments=['--ros-args', '-p', 'use_sim_time:='+(str)(use_bag)],
parameters=[lidarslam_param],
output='screen'
)
############################################
## trajectories saving for plotting with csv/data_plot.py
data_saver_node = launch_ros.actions.Node(
package='olcmr_pkg',
name='data_saver',
executable='data_saver.py',
output='both',
)
## Visualisation on Rviz2
rviz = launch_ros.actions.Node(
package='rviz2',
name='rviz2',
executable='rviz2',
arguments=['-d',rviz_config_file],
output='both',
)
##################################################
node_list = [scanmatcher]
if(publish_static_tf):
node_list.append(lidar_static_tf)
if(downsample_points_cloud):
node_list.append(point_cloud_downsampler)
if(use_ekf_prior):
node_list.append(ekf_localization)
node_list.append(imu_static_tf)
if(use_bag):
node_list.append(play_mapping_bag)
if(use_slam_loop_closure):
node_list.append(graphbasedslam)
if(compute_camera_lidar_projection):
node_list.append(lidar_cameras_projection)
node_list.append(images_undistortion)
node_list.append(ros1_bridge)
if(use_manually_defined_cameras_tf and publish_static_tf):
node_list.append(camera1_static_tf)
if(number_of_cameras>1):
node_list.append(camera2_static_tf)
if(number_of_cameras>2):
node_list.append(camera3_static_tf)
elif(publish_static_tf):
node_list.append(camera_static_tf)
if(save_trajectories):
node_list.append(data_saver_node)
if(visualise):
node_list.append(rviz)
logger = rclpy.logging.get_logger("olcmr_log")
logger.info("OLCMR launched")
logger.info("---------------------")
logger.info("SLAM EKF prior: " + (str)(use_ekf_prior))
logger.info("SLAM loop-closure: " + (str)(use_slam_loop_closure))
logger.info("Camera LiDAR projection: " + (str)(compute_camera_lidar_projection))
if(compute_camera_lidar_projection):
logger.info("Number of cameras: " + (str)(number_of_cameras))
logger.info("/!\\ Source ROS1 then ROS2 when using the ROS1 bridge, be sure to have a roscore running /!\\")
logger.info("Save trajectories: " + (str)(save_trajectories))
logger.info("Visualise on Rviz: " + (str)(visualise))
logger.info("Downsample point cloud: " + (str)(downsample_points_cloud))
if(downsample_points_cloud):
logger.info("SLAM downsampling voxel size: " + (str)(vg_size_for_slam))
logger.info("TSDF downsampling voxel size: " + (str)(vg_size_for_tsdf))
logger.info("Use ROS1 bag: " + (str)(use_ros1_bag))
if(use_ros1_bag):
logger.info("/!\\ Source ROS1 then ROS2 when using a ROS1 bag /!\\")
logger.info("---------------------")
return launch.LaunchDescription(node_list)