-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathgca_dimaug_r34_4x10_200k_comp1k.py
122 lines (118 loc) · 3.8 KB
/
gca_dimaug_r34_4x10_200k_comp1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# model settings
model = dict(
type='GCA',
backbone=dict(
type='SimpleEncoderDecoder',
encoder=dict(
type='ResGCAEncoder',
block='BasicBlock',
layers=[3, 4, 4, 2],
in_channels=4,
with_spectral_norm=True),
decoder=dict(
type='ResGCADecoder',
block='BasicBlockDec',
layers=[2, 3, 3, 2],
with_spectral_norm=True)),
loss_alpha=dict(type='L1Loss'),
pretrained='open-mmlab://mmedit/res34_en_nomixup')
train_cfg = dict(train_backbone=True)
test_cfg = dict(metrics=['SAD', 'MSE', 'GRAD', 'CONN'])
# dataset settings
dataset_type = 'AdobeComp1kDataset'
data_root = 'data/adobe_composition-1k'
bg_dir = './data/coco/train2017'
img_norm_cfg = dict(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', key='alpha', flag='grayscale'),
dict(type='LoadImageFromFile', key='merged'),
dict(
type='CropAroundUnknown',
keys=['alpha', 'merged'],
crop_sizes=[320, 480, 640]),
dict(type='Flip', keys=['alpha', 'merged']),
dict(
type='Resize',
keys=['alpha', 'merged'],
scale=(320, 320),
keep_ratio=False),
dict(type='GenerateTrimap', kernel_size=(1, 30)),
dict(type='RescaleToZeroOne', keys=['merged', 'alpha']),
dict(type='Normalize', keys=['merged'], **img_norm_cfg),
dict(type='Collect', keys=['merged', 'alpha', 'trimap'], meta_keys=[]),
dict(type='ImageToTensor', keys=['merged', 'alpha', 'trimap']),
dict(type='FormatTrimap', to_onehot=False),
]
test_pipeline = [
dict(
type='LoadImageFromFile',
key='alpha',
flag='grayscale',
save_original_img=True),
dict(
type='LoadImageFromFile',
key='trimap',
flag='grayscale',
save_original_img=True),
dict(type='LoadImageFromFile', key='merged'),
dict(type='Pad', keys=['trimap', 'merged'], mode='reflect'),
dict(type='RescaleToZeroOne', keys=['merged']),
dict(type='Normalize', keys=['merged'], **img_norm_cfg),
dict(
type='Collect',
keys=['merged', 'trimap'],
meta_keys=[
'merged_path', 'pad', 'merged_ori_shape', 'ori_alpha', 'ori_trimap'
]),
dict(type='ImageToTensor', keys=['merged', 'trimap']),
dict(type='FormatTrimap', to_onehot=False),
]
data = dict(
workers_per_gpu=8,
train_dataloader=dict(samples_per_gpu=10, drop_last=True),
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type=dataset_type,
ann_file=f'{data_root}/training_list.json',
data_prefix=data_root,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=f'{data_root}/test_list.json',
data_prefix=data_root,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=f'{data_root}/test_list.json',
data_prefix=data_root,
pipeline=test_pipeline))
# optimizer
optimizers = dict(type='Adam', lr=4e-4, betas=[0.5, 0.999])
# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
by_epoch=False,
warmup='linear',
warmup_iters=5000,
warmup_ratio=0.001)
# checkpoint saving
checkpoint_config = dict(interval=2000, by_epoch=False)
evaluation = dict(interval=2000, save_image=False, gpu_collect=False)
log_config = dict(
interval=10,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook'),
# dict(type='PaviLoggerHook', init_kwargs=dict(project='gca'))
])
# runtime settings
total_iters = 200000
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/gca'
load_from = None
resume_from = None
workflow = [('train', 1)]