From eca56c6fdcca7d87c9c11bd1911c281b923d57b2 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 2 Nov 2022 14:23:04 +0800 Subject: [PATCH 01/68] add high-level inference api and run conditional model good. --- mmedit/apis/__init__.py | 1 + mmedit/apis/inferencers/__init__.py | 6 + mmedit/apis/inferencers/base_inferencer.py | 183 ++++++++++++++ .../inferencers/base_mmedit_inferencer.py | 232 ++++++++++++++++++ .../inferencers/conditional_inferencer.py | 62 +++++ mmedit/apis/inferencers/mmedit_inferencer.py | 35 +++ .../inferencers/unconditional_inferencer.py | 25 ++ mmedit/edit.py | 152 ++++++++++++ mmedit/utils/__init__.py | 4 +- mmedit/utils/typing.py | 3 + 10 files changed, 701 insertions(+), 2 deletions(-) create mode 100644 mmedit/apis/inferencers/__init__.py create mode 100644 mmedit/apis/inferencers/base_inferencer.py create mode 100644 mmedit/apis/inferencers/base_mmedit_inferencer.py create mode 100644 mmedit/apis/inferencers/conditional_inferencer.py create mode 100644 mmedit/apis/inferencers/mmedit_inferencer.py create mode 100644 mmedit/apis/inferencers/unconditional_inferencer.py create mode 100755 mmedit/edit.py diff --git a/mmedit/apis/__init__.py b/mmedit/apis/__init__.py index 63989da131..bec8833f15 100644 --- a/mmedit/apis/__init__.py +++ b/mmedit/apis/__init__.py @@ -8,6 +8,7 @@ from .restoration_video_inference import restoration_video_inference from .translation_inference import sample_img2img_model from .video_interpolation_inference import video_interpolation_inference +from .inferencers import * __all__ = [ 'init_model', diff --git a/mmedit/apis/inferencers/__init__.py b/mmedit/apis/inferencers/__init__.py new file mode 100644 index 0000000000..90f36eb87a --- /dev/null +++ b/mmedit/apis/inferencers/__init__.py @@ -0,0 +1,6 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from .mmedit_inferencer import MMEditInferencer + +__all__ = [ + 'MMEditInferencer' +] diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py new file mode 100644 index 0000000000..5bd8a3e136 --- /dev/null +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -0,0 +1,183 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from datetime import datetime +from typing import Dict, List, Optional, Sequence, Tuple, Union +import numpy as np +import torch +from mmengine.config import Config +from mmengine.runner import load_checkpoint +from mmengine.structures import InstanceData +from mmengine.dataset import Compose + +from mmedit.registry import MODELS, VISUALIZERS +from mmedit.utils import ConfigType + +InstanceList = List[InstanceData] +InputType = Union[str, np.ndarray] +InputsType = Union[InputType, Sequence[InputType]] +PredType = Union[InstanceData, InstanceList] +ImgType = Union[np.ndarray, Sequence[np.ndarray]] +ResType = Union[Dict, List[Dict]] + + +class BaseInferencer: + """Base inferencer. + + Args: + model (str or ConfigType): Model config or the path to it. + ckpt (str, optional): Path to the checkpoint. + device (str, optional): Device to run inference. If None, the best + device will be automatically used. + show (bool): Whether to display the image in a popup window. + Defaults to False. + wait_time (float): The interval of show (s). Defaults to 0. + draw_pred (bool): Whether to draw predicted bounding boxes. + Defaults to True. + pred_score_thr (float): Minimum score of bboxes to draw. + Defaults to 0.3. + img_out_dir (str): Output directory of images. Defaults to ''. + pred_out_file: File to save the inference results. If left as empty, no + file will be saved. + print_result (bool): Whether to print the result. + Defaults to False. + """ + + func_kwargs = dict(preprocess=[], forward=[], visualize=[], postprocess=[]) + func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) + + def __init__(self, + config: Union[ConfigType, str], + ckpt: Optional[str], + device: Optional[str] = None, + **kwargs) -> None: + # Load config to cfg + if isinstance(config, str): + cfg = Config.fromfile(config) + elif not isinstance(config, ConfigType): + raise TypeError('config must be a filename or any ConfigType' + f'object, but got {type(cfg)}') + self.cfg = cfg + if cfg.model.get('pretrained'): + cfg.model.pretrained = None + + if device is None: + device = torch.device( + 'cuda' if torch.cuda.is_available() else 'cpu') + self._init_model(cfg, ckpt, device) + self._init_pipeline(cfg) + self._init_visualizer(cfg) + self.base_params = self._dispatch_kwargs(**kwargs) + + def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], + device: str) -> None: + """Initialize the model with the given config and checkpoint on the + specific device.""" + model = MODELS.build(cfg.model) + if ckpt is not None: + ckpt = load_checkpoint(model, ckpt, map_location='cpu') + model.cfg = cfg.model + model.to(device) + model.eval() + self.model = model + + def _init_pipeline(self, cfg: ConfigType) -> None: + """Initialize the test pipeline.""" + pipeline_cfg = cfg.test_dataloader.dataset.pipeline + + self.file_pipeline = Compose(pipeline_cfg) + + def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int: + """Returns the index of the transform in a pipeline. + + If the transform is not found, returns -1. + """ + for i, transform in enumerate(pipeline_cfg): + if transform['type'] == name: + return i + return -1 + + def _init_visualizer(self, cfg: ConfigType) -> None: + """Initialize visualizers.""" + # TODO: We don't export images via backends since the interface + # of the visualizer will have to be refactored. + self.visualizer = None + if 'visualizer' in cfg: + ts = str(datetime.timestamp(datetime.now())) + cfg.visualizer['name'] = f'inferencer{ts}' + self.visualizer = VISUALIZERS.build(cfg.visualizer) + + def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: + """Dispatch kwargs to preprocess(), forward(), visualize() and + postprocess() according to the actual demands.""" + results = [{}, {}, {}, {}] + dispatched_kwargs = set() + + # Dispatch kwargs according to self.func_kwargs + for func_name, func_kwargs in self.func_kwargs.items(): + for func_kwarg in func_kwargs: + if func_kwarg in kwargs: + dispatched_kwargs.add(func_kwarg) + results[self.func_order[func_name]][func_kwarg] = kwargs[ + func_kwarg] + + # Find if there is any kwargs that are not dispatched + for kwarg in kwargs: + if kwarg not in dispatched_kwargs: + raise ValueError(f'Unknown kwarg: {kwarg}') + + return results + + def preprocess(self, inputs: InputsType) -> List[Dict]: + """Process the inputs into a model-feedable format.""" + raise NotImplementedError + + def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" + with torch.no_grad(): + return self.model.test_step(inputs) + + def visualize(self, + inputs: InputsType, + preds: PredType, + show: bool = False, + wait_time: int = 0, + draw_pred: bool = True, + pred_score_thr: float = 0.3, + img_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. + preds (List[Dict]): Predictions of the model. + show (bool): Whether to display the image in a popup window. + Defaults to False. + wait_time (float): The interval of show (s). Defaults to 0. + draw_pred (bool): Whether to draw predicted bounding boxes. + Defaults to True. + pred_score_thr (float): Minimum score of bboxes to draw. + Defaults to 0.3. + img_out_dir (str): Output directory of images. Defaults to ''. + """ + raise NotImplementedError + + def postprocess( + self, + preds: PredType, + imgs: Optional[List[np.ndarray]] = None, + ) -> Union[ResType, Tuple[ResType, np.ndarray]]: + """Postprocess predictions. + + Args: + preds (List[Dict]): Predictions of the model. + imgs (Optional[np.ndarray]): Visualized predictions. + is_batch (bool): Whether the inputs are in a batch. + Defaults to False. + print_result (bool): Whether to print the result. + Defaults to False. + pred_out_file (str): Output file name to store predictions + without images. Supported file formats are “json”, “yaml/yml” + and “pickle/pkl”. Defaults to ''. + + Returns: + TODO + """ + raise NotImplementedError diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py new file mode 100644 index 0000000000..835338c1de --- /dev/null +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -0,0 +1,232 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +from typing import Dict, List, Optional, Sequence, Tuple, Union + +import mmcv +import numpy as np +from mmengine.structures import InstanceData + +from mmedit.utils import ConfigType +from .base_inferencer import BaseInferencer + +InstanceList = List[InstanceData] +InputType = Union[str, int, np.ndarray] +InputsType = Union[InputType, Sequence[InputType]] +PredType = Union[InstanceData, InstanceList] +ImgType = Union[np.ndarray, Sequence[np.ndarray]] +ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]] + + +class BaseMMEditInferencer(BaseInferencer): + """Base inferencer. + + Args: + model (str or ConfigType): Model config or the path to it. + ckpt (str, optional): Path to the checkpoint. + device (str, optional): Device to run inference. If None, the best + device will be automatically used. + show (bool): Whether to display the image in a popup window. + Defaults to False. + wait_time (float): The interval of show (s). Defaults to 0. + draw_pred (bool): Whether to draw predicted bounding boxes. + Defaults to True. + pred_score_thr (float): Minimum score of bboxes to draw. + Defaults to 0.3. + img_out_dir (str): Output directory of images. Defaults to ''. + pred_out_file: File to save the inference results. If left as empty, no + file will be saved. + print_result (bool): Whether to print the result. + Defaults to False. + """ + + func_kwargs = dict( + preprocess=[], + forward=[], + visualize=[ + 'show', 'wait_time', 'draw_pred', 'pred_score_thr', 'img_out_dir' + ], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def __init__(self, + config: Union[ConfigType, str], + ckpt: Optional[str], + device: Optional[str] = None, + **kwargs) -> None: + # A global counter tracking the number of images processed, for + # naming of the output images + self.num_visualized_imgs = 0 + super().__init__(config=config, ckpt=ckpt, device=device, **kwargs) + + + def preprocess(self, inputs: InputsType) -> Dict: + """Process the inputs into a model-feedable format.""" + results = [] + for single_input in inputs: + if isinstance(single_input, str): + if osp.isdir(single_input): + raise ValueError('Feeding a directory is not supported') + # for img_path in os.listdir(single_input): + # data_ =dict(img_path=osp.join(single_input,img_path)) + # results.append(self.file_pipeline(data_)) + else: + data_ = dict(img_path=single_input) + results.append(self.file_pipeline(data_)) + elif isinstance(single_input, np.ndarray): + data_ = dict(img=single_input) + results.append(self.ndarray_pipeline(data_)) + else: + raise ValueError( + f'Unsupported input type: {type(single_input)}') + + return self._collate(results) + + def _collate(self, results: List[Dict]) -> Dict: + """Collate the results from different images.""" + results = {key: [d[key] for d in results] for key in results[0]} + return results + + def __call__(self, img: InputsType, label: InputsType, **kwargs) -> Union[Dict, List[Dict]]: + """Call the inferencer. + + Args: + user_inputs: Inputs for the inferencer. + kwargs: Keyword arguments for the inferencer. + """ + # Detect if user_inputs are in a batch + import pdb;pdb.set_trace(); + # is_batch = isinstance(img, (list, tuple)) + # inputs = img if is_batch else [img] + + params = self._dispatch_kwargs(**kwargs) + preprocess_kwargs = self.base_params[0].copy() + preprocess_kwargs.update(params[0]) + forward_kwargs = self.base_params[1].copy() + forward_kwargs.update(params[1]) + visualize_kwargs = self.base_params[2].copy() + visualize_kwargs.update(params[2]) + postprocess_kwargs = self.base_params[3].copy() + postprocess_kwargs.update(params[3]) + + data = self.preprocess(**preprocess_kwargs) + preds = self.forward(data, **forward_kwargs) + imgs = self.visualize(preds, **visualize_kwargs) + results = self.postprocess( + preds, imgs, **postprocess_kwargs) + return results + + def visualize(self, + inputs: InputsType, + preds: PredType, + show: bool = False, + wait_time: int = 0, + draw_pred: bool = True, + pred_score_thr: float = 0.3, + img_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. + preds (List[Dict]): Predictions of the model. + show (bool): Whether to display the image in a popup window. + Defaults to False. + wait_time (float): The interval of show (s). Defaults to 0. + draw_pred (bool): Whether to draw predicted bounding boxes. + Defaults to True. + pred_score_thr (float): Minimum score of bboxes to draw. + Defaults to 0.3. + img_out_dir (str): Output directory of images. Defaults to ''. + """ + if self.visualizer is None or not show and img_out_dir == '': + return None + + if getattr(self, 'visualizer') is None: + raise ValueError('Visualization needs the "visualizer" term' + 'defined in the config, but got None.') + + results = [] + + for single_input, pred in zip(inputs, preds): + if isinstance(single_input, str): + img = mmcv.imread(single_input) + img = img[:, :, ::-1] + img_name = osp.basename(single_input) + elif isinstance(single_input, np.ndarray): + img = single_input.copy() + img_num = str(self.num_visualized_imgs).zfill(8) + img_name = f'{img_num}.jpg' + else: + raise ValueError('Unsupported input type: ' + f'{type(single_input)}') + + out_file = osp.join(img_out_dir, img_name) if img_out_dir != '' \ + else None + + self.visualizer.add_datasample( + img_name, + img, + pred, + show=show, + wait_time=wait_time, + draw_gt=False, + draw_pred=draw_pred, + pred_score_thr=pred_score_thr, + out_file=out_file, + ) + results.append(img) + self.num_visualized_imgs += 1 + + return results + + def postprocess( + self, + preds: PredType, + imgs: Optional[List[np.ndarray]] = None, + is_batch: bool = False, + print_result: bool = False, + pred_out_file: str = '', + get_datasample: bool = False, + ) -> Union[ResType, Tuple[ResType, np.ndarray]]: + """Postprocess predictions. + + Args: + preds (List[Dict]): Predictions of the model. + imgs (Optional[np.ndarray]): Visualized predictions. + is_batch (bool): Whether the inputs are in a batch. + Defaults to False. + print_result (bool): Whether to print the result. + Defaults to False. + pred_out_file (str): Output file name to store predictions + without images. Supported file formats are “json”, “yaml/yml” + and “pickle/pkl”. Defaults to ''. + get_datasample (bool): Whether to use Datasample to store + inference results. If False, dict will be used. + + Returns: + TODO + """ + + results = preds + if not get_datasample: + results = [] + for pred in preds: + result = self._pred2dict(pred) + results.append(result) + if not is_batch: + results = results[0] + if print_result: + print(results) + # Add img to the results after printing + if pred_out_file != '': + mmcv.dump(results, pred_out_file) + if imgs is None: + return results + return results, imgs + + def _pred2dict(self, data_sample: InstanceData) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. + + It's better to contain only basic data elements such as strings and + numbers in order to guarantee it's json-serializable. + """ + raise NotImplementedError diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py new file mode 100644 index 0000000000..4c9a32655d --- /dev/null +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -0,0 +1,62 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import numpy as np +from typing import Dict, List +from torchvision import utils + +from mmengine import mkdir_or_exist + +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class ConditionalInferencer(BaseMMEditInferencer): + + def preprocess(self, inputs: InputsType) -> Dict: + sample_nums = self.cfg.infer_cfg.sample_nums + labels = inputs + sample_model = self.cfg.infer_cfg.sample_model + + preprocess_res = dict(num_batches=sample_nums, labels=labels, sample_model=sample_model) + + return preprocess_res + + def forward(self, inputs: InputsType) -> PredType: + return self.model(inputs) + + def visualize(self, + inputs: InputsType, + preds: PredType, + show: bool = False, + wait_time: int = 0, + draw_pred: bool = True, + pred_score_thr: float = 0.3, + img_out_dir: str = '') -> List[np.ndarray]: + + res_list = [] + res_list.extend([item.fake_img.data.cpu() for item in preds]) + results = torch.stack(res_list, dim=0) + results = (results[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['fake_img'] = data_sample.fake_img.data.cpu() + result['gt_label'] = data_sample.gt_label.label + return result diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py new file mode 100644 index 0000000000..ce655e76a0 --- /dev/null +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -0,0 +1,35 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import numpy as np +from typing import Dict, List, Optional, Union + + +from mmedit.utils import ConfigType +from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, PredType, + ResType) +from .conditional_inferencer import ConditionalInferencer +from .unconditional_inferencer import UnconditionalInferencer + +class MMEditInferencer(BaseMMEditInferencer): + + def __init__(self, + type: Optional[str] = None, + config: Optional[Union[ConfigType, str]] = None, + ckpt: Optional[str] = None, + device: Optional[str] = None, + **kwargs) -> None: + + self.type = type + self.visualizer = None + self.base_params = self._dispatch_kwargs(*kwargs) + self.num_visualized_imgs = 0 + if self.type == 'conditional': + self.inferencer = ConditionalInferencer(config, ckpt, device) + elif self.type == 'unconditional': + self.inferencer = UnconditionalInferencer(config, ckpt, device) + else: + raise ValueError(f'Unknown inferencer type: {self.type}') + + def __call__(self, img: InputsType, label: InputsType, **kwargs) -> Union[Dict, List[Dict]]: + return self.inferencer(img, label, **kwargs) + diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py new file mode 100644 index 0000000000..cf48eb19ac --- /dev/null +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -0,0 +1,25 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np +from typing import Dict + +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer + + +class UnconditionalInferencer(BaseMMEditInferencer): + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['text'] = data_sample.pred_text.item + result['scores'] = float(np.mean(data_sample.pred_text.score)) + return result diff --git a/mmedit/edit.py b/mmedit/edit.py new file mode 100755 index 0000000000..d4b09cf084 --- /dev/null +++ b/mmedit/edit.py @@ -0,0 +1,152 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import warnings +import torch +from pathlib import Path +from typing import Dict, List, Optional, Union + +from mmedit.apis.inferencers import MMEditInferencer +from mmedit.apis.inferencers.base_mmedit_inferencer import InputsType +from mmedit.utils import register_all_modules + + +class MMEdit: + """MMEdit API for mmediting models inference. + + Args: + model_name (str): Name of the editing model. Default to 'FCE_IC15'. + model_config (str): Path to the config file for the editing model. + Default to None. + model_ckpt (str): Path to the checkpoint file for the editing model. + Default to None. + config_dir (str): Path to the directory containing config files. + Default to 'configs/'. + device (torch.device): Device to use for inference. Default to 'cuda'. + """ + + def __init__(self, + model_name: str = None, + model_version: str = 'a', + model_config: str = None, + model_ckpt: str = None, + config_dir: str = 'configs/', + device: torch.device = 'cuda', + **kwargs) -> None: + + register_all_modules(init_default_scope=True) + self.config_dir = config_dir + inferencer_kwargs = {} + inferencer_kwargs.update( + self._get_inferencer_kwargs(model_name, model_version, model_config, model_ckpt)) + self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) + + def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[str], + config: Optional[str], ckpt: Optional[str]) -> Dict: + """Get the kwargs for the inferencer.""" + kwargs = {} + + if model is not None: + cfgs = self.get_model_config(model) + kwargs['type'] = cfgs['type'] + kwargs['config'] = os.path.join(self.config_dir, cfgs['version'][model_version]['config']) + kwargs['ckpt'] = cfgs['version'][model_version]['ckpt'] + # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ + # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' + + if config is not None: + if kwargs.get('config', None) is not None: + warnings.warn( + f'{model}\'s default config is overridden by {config}', + UserWarning) + kwargs['config'] = config + + if ckpt is not None: + if kwargs.get('ckpt', None) is not None: + warnings.warn( + f'{model}\'s default checkpoint is overridden by {ckpt}', + UserWarning) + kwargs['ckpt'] = ckpt + return kwargs + + def infer(self, + img: InputsType = None, + label: InputsType = None, + img_out_dir: str = '', + show: bool = False, + print_result: bool = False, + pred_out_file: str = '', + **kwargs) -> Union[Dict, List[Dict]]: + """Inferences edit model on an image(video) or a + folder of images(videos). + + Args: + imgs (str or np.array or Sequence[str or np.array]): Img, + folder path, np array or list/tuple (with img + paths or np arrays). + img_out_dir (str): Output directory of images. Defaults to ''. + show (bool): Whether to display the image in a popup window. + Defaults to False. + print_result (bool): Whether to print the results. + pred_out_file (str): File to save the inference results. If left as + empty, no file will be saved. + + Returns: + Dict or List[Dict]: Each dict contains the inference result of + each image. Possible keys are "det_polygons", "det_scores", + "rec_texts", "rec_scores", "kie_labels", "kie_scores", + "kie_edge_labels" and "kie_edge_scores". + """ + return self.inferencer( + img, + label, + img_out_dir=img_out_dir, + show=show, + print_result=print_result, + pred_out_file=pred_out_file) + + def get_model_config(self, model_name: str) -> Dict: + """Get the model configuration including model config and checkpoint + url. + + Args: + model_name (str): Name of the model. + Returns: + dict: Model configuration. + """ + model_dict = { + # conditional models + 'biggan': { + 'type': + 'conditional', + 'version': { + 'a': { + 'config': + 'biggan/dbnet_resnet18_fpnc_1200e_icdar2015.py', + 'ckpt': + 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' + }, + 'b': { + 'config': + 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', + 'ckpt': + 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' + } + }, + + }, + + #unconditional models + 'styleganv1': { + 'type': + 'unconditional', + 'config': + 'configs/styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', + 'ckpt': + 'styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' + } + + } + if model_name not in model_dict: + raise ValueError(f'Model {model_name} is not supported.') + else: + return model_dict[model_name] diff --git a/mmedit/utils/__init__.py b/mmedit/utils/__init__.py index 3fdaa607f2..60ca93d7a8 100644 --- a/mmedit/utils/__init__.py +++ b/mmedit/utils/__init__.py @@ -9,11 +9,11 @@ from .trans_utils import (add_gaussian_noise, adjust_gamma, bbox2mask, brush_stroke_mask, get_irregular_mask, make_coord, random_bbox, random_choose_unknown) -from .typing import ForwardInputs, LabelVar, NoiseVar, SampleList +from .typing import ForwardInputs, LabelVar, NoiseVar, SampleList, ConfigType __all__ = [ 'modify_args', 'print_colored_log', 'register_all_modules', - 'ForwardInputs', 'SampleList', 'NoiseVar', 'LabelVar', 'MMEDIT_CACHE_DIR', + 'ForwardInputs', 'SampleList', 'NoiseVar', 'ConfigType', 'LabelVar', 'MMEDIT_CACHE_DIR', 'download_from_url', 'get_sampler', 'tensor2img', 'random_choose_unknown', 'add_gaussian_noise', 'adjust_gamma', 'make_coord', 'bbox2mask', 'brush_stroke_mask', 'get_irregular_mask', 'random_bbox', 'reorder_image', diff --git a/mmedit/utils/typing.py b/mmedit/utils/typing.py index 28588a073b..88ccdd4e62 100644 --- a/mmedit/utils/typing.py +++ b/mmedit/utils/typing.py @@ -2,6 +2,7 @@ from typing import Callable, Dict, List, Sequence, Tuple, Union from mmengine.structures import BaseDataElement +from mmengine.config import ConfigDict from torch import Tensor ForwardInputs = Tuple[Dict[str, Union[Tensor, str, int]], Tensor] @@ -9,3 +10,5 @@ NoiseVar = Union[Tensor, Callable, None] LabelVar = Union[Tensor, Callable, List[int], None] + +ConfigType = Union[ConfigDict, Dict] From b0bff2c54e9eaa4f60bc304c5f344f36a6bf4d54 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 2 Nov 2022 20:05:15 +0800 Subject: [PATCH 02/68] [high-level api] run unconditional model. --- demo/mmediting_inference_demo.py | 77 ++++++++ mmedit/apis/inferencers/base_inferencer.py | 130 +++++++++++--- .../inferencers/base_mmedit_inferencer.py | 166 ++---------------- .../inferencers/conditional_inferencer.py | 29 +-- mmedit/apis/inferencers/mmedit_inferencer.py | 4 +- .../inferencers/unconditional_inferencer.py | 52 +++++- mmedit/edit.py | 24 +-- 7 files changed, 277 insertions(+), 205 deletions(-) create mode 100644 demo/mmediting_inference_demo.py diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py new file mode 100644 index 0000000000..ba8aea5bf0 --- /dev/null +++ b/demo/mmediting_inference_demo.py @@ -0,0 +1,77 @@ +import os +import warnings +from pathlib import Path +from argparse import ArgumentParser + +from mmedit.edit import MMEdit + +def parse_args(): + parser = ArgumentParser() + # input for matting + parser.add_argument( + '--img', + type=str, + default='', + help='Input image file or folder path.') + + # input for conditional models + parser.add_argument( + '--label', + type=int, + default=1, + help='Input label.') + + parser.add_argument( + '--img-out-dir', + type=str, + default='resources/demo_results/unconditional/unconditional_samples_apis.png', + help='Output directory of images.') + parser.add_argument( + '--model-name', + type=str, + default='styleganv1', + help='Pretrained editing algorithm') + parser.add_argument( + '--model-version', + type=str, + default='a', + help='Pretrained editing algorithm') + parser.add_argument( + '--model-config', + type=str, + default=None, + help='Path to the custom config file of the selected editing model.') + parser.add_argument( + '--model-ckpt', + type=str, + default=None, + help='Path to the custom checkpoint file of the selected det model.') + parser.add_argument( + '--device', + type=str, + default='cuda', + help='Device used for inference.') + parser.add_argument( + '--show', + action='store_true', + help='Display the image in a popup window.') + parser.add_argument( + '--print-result', + action='store_true', + help='Whether to print the results.') + parser.add_argument( + '--pred-out-file', + type=str, + default='', + help='File to save the inference results.') + + args = parser.parse_args() + return args + +def main(): + args = parse_args() + editor = MMEdit(**vars(args)) + editor.infer(**vars(args)) + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 5bd8a3e136..9449cb480e 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -3,6 +3,8 @@ from typing import Dict, List, Optional, Sequence, Tuple, Union import numpy as np import torch +import mmcv +import os.path as osp from mmengine.config import Config from mmengine.runner import load_checkpoint from mmengine.structures import InstanceData @@ -41,9 +43,6 @@ class BaseInferencer: Defaults to False. """ - func_kwargs = dict(preprocess=[], forward=[], visualize=[], postprocess=[]) - func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) - def __init__(self, config: Union[ConfigType, str], ckpt: Optional[str], @@ -65,7 +64,10 @@ def __init__(self, self._init_model(cfg, ckpt, device) self._init_pipeline(cfg) self._init_visualizer(cfg) - self.base_params = self._dispatch_kwargs(**kwargs) + + # A global counter tracking the number of images processed, for + # naming of the output images + self.num_visualized_imgs = 0 def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], device: str) -> None: @@ -105,30 +107,32 @@ def _init_visualizer(self, cfg: ConfigType) -> None: cfg.visualizer['name'] = f'inferencer{ts}' self.visualizer = VISUALIZERS.build(cfg.visualizer) - def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: - """Dispatch kwargs to preprocess(), forward(), visualize() and - postprocess() according to the actual demands.""" - results = [{}, {}, {}, {}] - dispatched_kwargs = set() - - # Dispatch kwargs according to self.func_kwargs - for func_name, func_kwargs in self.func_kwargs.items(): - for func_kwarg in func_kwargs: - if func_kwarg in kwargs: - dispatched_kwargs.add(func_kwarg) - results[self.func_order[func_name]][func_kwarg] = kwargs[ - func_kwarg] - - # Find if there is any kwargs that are not dispatched - for kwarg in kwargs: - if kwarg not in dispatched_kwargs: - raise ValueError(f'Unknown kwarg: {kwarg}') + def preprocess(self, inputs: InputsType) -> Dict: + """Process the inputs into a model-feedable format.""" + results = [] + for single_input in inputs: + if isinstance(single_input, str): + if osp.isdir(single_input): + raise ValueError('Feeding a directory is not supported') + # for img_path in os.listdir(single_input): + # data_ =dict(img_path=osp.join(single_input,img_path)) + # results.append(self.file_pipeline(data_)) + else: + data_ = dict(img_path=single_input) + results.append(self.file_pipeline(data_)) + elif isinstance(single_input, np.ndarray): + data_ = dict(img=single_input) + results.append(self.ndarray_pipeline(data_)) + else: + raise ValueError( + f'Unsupported input type: {type(single_input)}') - return results + return self._collate(results) - def preprocess(self, inputs: InputsType) -> List[Dict]: - """Process the inputs into a model-feedable format.""" - raise NotImplementedError + def _collate(self, results: List[Dict]) -> Dict: + """Collate the results from different images.""" + results = {key: [d[key] for d in results] for key in results[0]} + return results def forward(self, inputs: InputsType) -> PredType: """Forward the inputs to the model.""" @@ -157,12 +161,55 @@ def visualize(self, Defaults to 0.3. img_out_dir (str): Output directory of images. Defaults to ''. """ - raise NotImplementedError + if self.visualizer is None or not show and img_out_dir == '': + return None + + if getattr(self, 'visualizer') is None: + raise ValueError('Visualization needs the "visualizer" term' + 'defined in the config, but got None.') + + results = [] + + for single_input, pred in zip(inputs, preds): + if isinstance(single_input, str): + img = mmcv.imread(single_input) + img = img[:, :, ::-1] + img_name = osp.basename(single_input) + elif isinstance(single_input, np.ndarray): + img = single_input.copy() + img_num = str(self.num_visualized_imgs).zfill(8) + img_name = f'{img_num}.jpg' + else: + raise ValueError('Unsupported input type: ' + f'{type(single_input)}') + + out_file = osp.join(img_out_dir, img_name) if img_out_dir != '' \ + else None + + self.visualizer.add_datasample( + img_name, + img, + pred, + show=show, + wait_time=wait_time, + draw_gt=False, + draw_pred=draw_pred, + pred_score_thr=pred_score_thr, + out_file=out_file, + ) + results.append(img) + self.num_visualized_imgs += 1 + + return results def postprocess( self, preds: PredType, imgs: Optional[List[np.ndarray]] = None, + is_batch: bool = False, + print_result: bool = False, + pred_out_file: str = '', + get_datasample: bool = False, ) -> Union[ResType, Tuple[ResType, np.ndarray]]: """Postprocess predictions. @@ -176,8 +223,35 @@ def postprocess( pred_out_file (str): Output file name to store predictions without images. Supported file formats are “json”, “yaml/yml” and “pickle/pkl”. Defaults to ''. + get_datasample (bool): Whether to use Datasample to store + inference results. If False, dict will be used. Returns: TODO """ - raise NotImplementedError + + results = preds + if not get_datasample: + results = [] + for pred in preds: + result = self._pred2dict(pred) + results.append(result) + if not is_batch: + results = results[0] + if print_result: + print(results) + # Add img to the results after printing + if pred_out_file != '': + mmcv.dump(results, pred_out_file) + if imgs is None: + return results + return results, imgs + + def _pred2dict(self, data_sample: InstanceData) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. + + It's better to contain only basic data elements such as strings and + numbers in order to guarantee it's json-serializable. + """ + raise NotImplementedError \ No newline at end of file diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 835338c1de..9ad7dcd256 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -1,8 +1,5 @@ # Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp from typing import Dict, List, Optional, Sequence, Tuple, Union - -import mmcv import numpy as np from mmengine.structures import InstanceData @@ -46,56 +43,40 @@ class BaseMMEditInferencer(BaseInferencer): 'show', 'wait_time', 'draw_pred', 'pred_score_thr', 'img_out_dir' ], postprocess=['print_result', 'pred_out_file', 'get_datasample']) + func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) + def __init__(self, config: Union[ConfigType, str], ckpt: Optional[str], device: Optional[str] = None, **kwargs) -> None: - # A global counter tracking the number of images processed, for - # naming of the output images - self.num_visualized_imgs = 0 + self.base_params = self._dispatch_kwargs(**kwargs) super().__init__(config=config, ckpt=ckpt, device=device, **kwargs) + def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: + """Dispatch kwargs to preprocess(), forward(), visualize() and + postprocess() according to the actual demands.""" + results = [{}, {}, {}, {}] + dispatched_kwargs = set() + + # Dispatch kwargs according to self.func_kwargs + for func_name, func_kwargs in self.func_kwargs.items(): + for func_kwarg in func_kwargs: + if func_kwarg in kwargs: + dispatched_kwargs.add(func_kwarg) + results[self.func_order[func_name]][func_kwarg] = kwargs[ + func_kwarg] - def preprocess(self, inputs: InputsType) -> Dict: - """Process the inputs into a model-feedable format.""" - results = [] - for single_input in inputs: - if isinstance(single_input, str): - if osp.isdir(single_input): - raise ValueError('Feeding a directory is not supported') - # for img_path in os.listdir(single_input): - # data_ =dict(img_path=osp.join(single_input,img_path)) - # results.append(self.file_pipeline(data_)) - else: - data_ = dict(img_path=single_input) - results.append(self.file_pipeline(data_)) - elif isinstance(single_input, np.ndarray): - data_ = dict(img=single_input) - results.append(self.ndarray_pipeline(data_)) - else: - raise ValueError( - f'Unsupported input type: {type(single_input)}') - - return self._collate(results) - - def _collate(self, results: List[Dict]) -> Dict: - """Collate the results from different images.""" - results = {key: [d[key] for d in results] for key in results[0]} return results - def __call__(self, img: InputsType, label: InputsType, **kwargs) -> Union[Dict, List[Dict]]: + def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: """Call the inferencer. Args: user_inputs: Inputs for the inferencer. kwargs: Keyword arguments for the inferencer. """ - # Detect if user_inputs are in a batch - import pdb;pdb.set_trace(); - # is_batch = isinstance(img, (list, tuple)) - # inputs = img if is_batch else [img] params = self._dispatch_kwargs(**kwargs) preprocess_kwargs = self.base_params[0].copy() @@ -114,119 +95,6 @@ def __call__(self, img: InputsType, label: InputsType, **kwargs) -> Union[Dict, preds, imgs, **postprocess_kwargs) return results - def visualize(self, - inputs: InputsType, - preds: PredType, - show: bool = False, - wait_time: int = 0, - draw_pred: bool = True, - pred_score_thr: float = 0.3, - img_out_dir: str = '') -> List[np.ndarray]: - """Visualize predictions. - - Args: - inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. - preds (List[Dict]): Predictions of the model. - show (bool): Whether to display the image in a popup window. - Defaults to False. - wait_time (float): The interval of show (s). Defaults to 0. - draw_pred (bool): Whether to draw predicted bounding boxes. - Defaults to True. - pred_score_thr (float): Minimum score of bboxes to draw. - Defaults to 0.3. - img_out_dir (str): Output directory of images. Defaults to ''. - """ - if self.visualizer is None or not show and img_out_dir == '': - return None - - if getattr(self, 'visualizer') is None: - raise ValueError('Visualization needs the "visualizer" term' - 'defined in the config, but got None.') - - results = [] - - for single_input, pred in zip(inputs, preds): - if isinstance(single_input, str): - img = mmcv.imread(single_input) - img = img[:, :, ::-1] - img_name = osp.basename(single_input) - elif isinstance(single_input, np.ndarray): - img = single_input.copy() - img_num = str(self.num_visualized_imgs).zfill(8) - img_name = f'{img_num}.jpg' - else: - raise ValueError('Unsupported input type: ' - f'{type(single_input)}') - - out_file = osp.join(img_out_dir, img_name) if img_out_dir != '' \ - else None - - self.visualizer.add_datasample( - img_name, - img, - pred, - show=show, - wait_time=wait_time, - draw_gt=False, - draw_pred=draw_pred, - pred_score_thr=pred_score_thr, - out_file=out_file, - ) - results.append(img) - self.num_visualized_imgs += 1 - - return results - def postprocess( - self, - preds: PredType, - imgs: Optional[List[np.ndarray]] = None, - is_batch: bool = False, - print_result: bool = False, - pred_out_file: str = '', - get_datasample: bool = False, - ) -> Union[ResType, Tuple[ResType, np.ndarray]]: - """Postprocess predictions. - Args: - preds (List[Dict]): Predictions of the model. - imgs (Optional[np.ndarray]): Visualized predictions. - is_batch (bool): Whether the inputs are in a batch. - Defaults to False. - print_result (bool): Whether to print the result. - Defaults to False. - pred_out_file (str): Output file name to store predictions - without images. Supported file formats are “json”, “yaml/yml” - and “pickle/pkl”. Defaults to ''. - get_datasample (bool): Whether to use Datasample to store - inference results. If False, dict will be used. - - Returns: - TODO - """ - results = preds - if not get_datasample: - results = [] - for pred in preds: - result = self._pred2dict(pred) - results.append(result) - if not is_batch: - results = results[0] - if print_result: - print(results) - # Add img to the results after printing - if pred_out_file != '': - mmcv.dump(results, pred_out_file) - if imgs is None: - return results - return results, imgs - - def _pred2dict(self, data_sample: InstanceData) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. - - It's better to contain only basic data elements such as strings and - numbers in order to guarantee it's json-serializable. - """ - raise NotImplementedError diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index 4c9a32655d..4795f4bd5f 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -3,8 +3,6 @@ import torch import numpy as np from typing import Dict, List -from torchvision import utils - from mmengine import mkdir_or_exist from mmedit.structures import EditDataSample @@ -12,13 +10,25 @@ class ConditionalInferencer(BaseMMEditInferencer): + func_kwargs = dict( + preprocess=['label'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, label: InputsType) -> Dict: - def preprocess(self, inputs: InputsType) -> Dict: - sample_nums = self.cfg.infer_cfg.sample_nums - labels = inputs - sample_model = self.cfg.infer_cfg.sample_model + # set model with infer_cfg if it exist else set default value + if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: + sample_nums = self.cfg.infer_cfg.sample_nums + else: + sample_nums = 4 + if 'infer_cfg' in self.cfg and 'sample_model' in self.cfg.infer_cfg: + sample_model = self.cfg.infer_cfg.sample_model + else: + sample_model = 'ema' - preprocess_res = dict(num_batches=sample_nums, labels=labels, sample_model=sample_model) + preprocess_res = dict(num_batches=sample_nums, labels=label, sample_model=sample_model) return preprocess_res @@ -26,12 +36,7 @@ def forward(self, inputs: InputsType) -> PredType: return self.model(inputs) def visualize(self, - inputs: InputsType, preds: PredType, - show: bool = False, - wait_time: int = 0, - draw_pred: bool = True, - pred_score_thr: float = 0.3, img_out_dir: str = '') -> List[np.ndarray]: res_list = [] diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index ce655e76a0..145ef8a1b0 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -30,6 +30,6 @@ def __init__(self, else: raise ValueError(f'Unknown inferencer type: {self.type}') - def __call__(self, img: InputsType, label: InputsType, **kwargs) -> Union[Dict, List[Dict]]: - return self.inferencer(img, label, **kwargs) + def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: + return self.inferencer(**kwargs) diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index cf48eb19ac..5db352159e 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -1,13 +1,57 @@ # Copyright (c) OpenMMLab. All rights reserved. +import os +import torch import numpy as np -from typing import Dict +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist from mmedit.structures import EditDataSample -from .base_mmedit_inferencer import BaseMMEditInferencer +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType class UnconditionalInferencer(BaseMMEditInferencer): + func_kwargs = dict( + preprocess=[], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self) -> Dict: + + # set model with infer_cfg if it exist else set default value + if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: + sample_nums = self.cfg.infer_cfg.sample_nums + else: + sample_nums = 4 + if 'infer_cfg' in self.cfg and 'sample_model' in self.cfg.infer_cfg: + sample_model = self.cfg.infer_cfg.sample_model + else: + sample_model = 'ema' + + preprocess_res = dict(num_batches=sample_nums, sample_model=sample_model) + + return preprocess_res + + def forward(self, inputs: InputsType) -> PredType: + return self.model(inputs) + + def visualize(self, + preds: PredType, + img_out_dir: str = '') -> List[np.ndarray]: + + res_list = [] + res_list.extend([item.fake_img.data.cpu() for item in preds]) + results = torch.stack(res_list, dim=0) + results = (results[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + def _pred2dict(self, data_sample: EditDataSample) -> Dict: """Extract elements necessary to represent a prediction into a dictionary. It's better to contain only basic data elements such as @@ -20,6 +64,6 @@ def _pred2dict(self, data_sample: EditDataSample) -> Dict: dict: The output dictionary. """ result = {} - result['text'] = data_sample.pred_text.item - result['scores'] = float(np.mean(data_sample.pred_text.score)) + result['fake_img'] = data_sample.fake_img.data.cpu() + result['noise'] = data_sample.noise.data.cpu() return result diff --git a/mmedit/edit.py b/mmedit/edit.py index d4b09cf084..cb14a98793 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -29,12 +29,10 @@ def __init__(self, model_version: str = 'a', model_config: str = None, model_ckpt: str = None, - config_dir: str = 'configs/', device: torch.device = 'cuda', **kwargs) -> None: register_all_modules(init_default_scope=True) - self.config_dir = config_dir inferencer_kwargs = {} inferencer_kwargs.update( self._get_inferencer_kwargs(model_name, model_version, model_config, model_ckpt)) @@ -48,7 +46,7 @@ def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[s if model is not None: cfgs = self.get_model_config(model) kwargs['type'] = cfgs['type'] - kwargs['config'] = os.path.join(self.config_dir, cfgs['version'][model_version]['config']) + kwargs['config'] = os.path.join('configs/', cfgs['version'][model_version]['config']) kwargs['ckpt'] = cfgs['version'][model_version]['ckpt'] # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' @@ -97,12 +95,13 @@ def infer(self, "kie_edge_labels" and "kie_edge_scores". """ return self.inferencer( - img, - label, + img=img, + label=label, img_out_dir=img_out_dir, show=show, print_result=print_result, - pred_out_file=pred_out_file) + pred_out_file=pred_out_file, + **kwargs) def get_model_config(self, model_name: str) -> Dict: """Get the model configuration including model config and checkpoint @@ -139,10 +138,15 @@ def get_model_config(self, model_name: str) -> Dict: 'styleganv1': { 'type': 'unconditional', - 'config': - 'configs/styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', - 'ckpt': - 'styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' + 'version': { + 'a': { + 'config': + 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', + 'ckpt': + 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' + } + } + } } From 6d2593d061ab4f8fba8c294a646c85a9e0ff9c03 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 3 Nov 2022 10:59:44 +0800 Subject: [PATCH 03/68] [high-level api] add matting inferencer. --- mmedit/apis/inferencers/base_inferencer.py | 1 + .../inferencers/conditional_inferencer.py | 2 + mmedit/apis/inferencers/matting_inferencer.py | 85 +++++++++++++++++++ mmedit/apis/inferencers/mmedit_inferencer.py | 9 +- mmedit/edit.py | 16 +++- 5 files changed, 106 insertions(+), 7 deletions(-) create mode 100644 mmedit/apis/inferencers/matting_inferencer.py diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 9449cb480e..f02c9923ec 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -61,6 +61,7 @@ def __init__(self, if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu') + self.device = device self._init_model(cfg, ckpt, device) self._init_pipeline(cfg) self._init_visualizer(cfg) diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index 4795f4bd5f..a884eccf8e 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -3,6 +3,7 @@ import torch import numpy as np from typing import Dict, List +from torchvision import utils from mmengine import mkdir_or_exist from mmedit.structures import EditDataSample @@ -10,6 +11,7 @@ class ConditionalInferencer(BaseMMEditInferencer): + func_kwargs = dict( preprocess=['label'], forward=[], diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py new file mode 100644 index 0000000000..15e8ed1131 --- /dev/null +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -0,0 +1,85 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import mmcv +import numpy as np +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate +from torch.nn.parallel import scatter + +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class MattingInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img', 'trimap'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: + # remove alpha from test_pipeline + keys_to_remove = ['alpha', 'ori_alpha'] + for key in keys_to_remove: + for pipeline in list(self.cfg.test_pipeline): + if 'key' in pipeline and key == pipeline['key']: + self.cfg.test_pipeline.remove(pipeline) + if 'keys' in pipeline and key in pipeline['keys']: + pipeline['keys'].remove(key) + if len(pipeline['keys']) == 0: + self.cfg.test_pipeline.remove(pipeline) + if 'meta_keys' in pipeline and key in pipeline['meta_keys']: + pipeline['meta_keys'].remove(key) + + # build the data pipeline + test_pipeline = Compose(self.cfg.test_pipeline) + # prepare data + data = dict(merged_path=img, trimap_path=trimap) + _data = test_pipeline(data) + trimap = _data['data_samples'].trimap.data + preprocess_res = dict() + preprocess_res['inputs'] = torch.cat([_data['inputs'], trimap], dim=0).float() + preprocess_res = collate([preprocess_res]) + preprocess_res['data_samples'] = [_data['data_samples']] + preprocess_res['mode'] = 'predict' + if 'cuda' in str(self.device): + preprocess_res = scatter(preprocess_res, [self.device])[0] + + return preprocess_res + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + return self.model(**inputs) + + def visualize(self, + preds: PredType, + img_out_dir: str = '') -> List[np.ndarray]: + + result = preds[0].output + result = result.pred_alpha.data.cpu() + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + mmcv.imwrite(result.numpy(), img_out_dir) + + return result + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() + return result diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 145ef8a1b0..819f286bcf 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -1,14 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -import numpy as np from typing import Dict, List, Optional, Union - from mmedit.utils import ConfigType -from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, PredType, - ResType) +from .base_mmedit_inferencer import BaseMMEditInferencer from .conditional_inferencer import ConditionalInferencer from .unconditional_inferencer import UnconditionalInferencer +from .matting_inferencer import MattingInferencer class MMEditInferencer(BaseMMEditInferencer): @@ -27,6 +24,8 @@ def __init__(self, self.inferencer = ConditionalInferencer(config, ckpt, device) elif self.type == 'unconditional': self.inferencer = UnconditionalInferencer(config, ckpt, device) + elif self.type == 'matting': + self.inferencer = MattingInferencer(config, ckpt, device) else: raise ValueError(f'Unknown inferencer type: {self.type}') diff --git a/mmedit/edit.py b/mmedit/edit.py index cb14a98793..cd2ca97333 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -134,7 +134,7 @@ def get_model_config(self, model_name: str) -> Dict: }, - #unconditional models + # unconditional models 'styleganv1': { 'type': 'unconditional', @@ -146,9 +146,21 @@ def get_model_config(self, model_name: str) -> Dict: 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' } } + }, + # matting models + 'gca': { + 'type': + 'matting', + 'version': { + 'a': { + 'config': + 'gca/gca_r34_4xb10-200k_comp1k.py', + 'ckpt': + 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' + } + } } - } if model_name not in model_dict: raise ValueError(f'Model {model_name} is not supported.') From 163c28da82f35ed450bdab499fad05bec9879680 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 3 Nov 2022 15:48:54 +0800 Subject: [PATCH 04/68] [high-level api] add inpainting inferencer. --- demo/mmediting_inference_demo.py | 29 ++++--- mmedit/apis/inferencers/base_inferencer.py | 6 +- .../inferencers/base_mmedit_inferencer.py | 3 +- .../inferencers/conditional_inferencer.py | 1 + .../apis/inferencers/inpainting_inferencer.py | 81 +++++++++++++++++++ mmedit/apis/inferencers/matting_inferencer.py | 4 +- mmedit/apis/inferencers/mmedit_inferencer.py | 3 + .../inferencers/unconditional_inferencer.py | 1 + mmedit/edit.py | 27 +++++-- 9 files changed, 129 insertions(+), 26 deletions(-) create mode 100644 mmedit/apis/inferencers/inpainting_inferencer.py diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index ba8aea5bf0..a3ae3d4563 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -1,35 +1,40 @@ -import os -import warnings -from pathlib import Path from argparse import ArgumentParser from mmedit.edit import MMEdit +# resources/input/matting/beach_fg.png + def parse_args(): parser = ArgumentParser() - # input for matting parser.add_argument( '--img', type=str, - default='', - help='Input image file or folder path.') - - # input for conditional models + default='resources/input/inpainting/img_resized.jpg', + help='Input image file.') parser.add_argument( '--label', type=int, default=1, - help='Input label.') - + help='Input label for conditional models.') + parser.add_argument( + '--trimap', + type=str, + default='resources/input/matting/beach_trimap.png', + help='Input for matting models.') + parser.add_argument( + '--mask', + type=str, + default='resources/input/inpainting/mask_2_resized.png', + help='path to input mask file') parser.add_argument( '--img-out-dir', type=str, - default='resources/demo_results/unconditional/unconditional_samples_apis.png', + default='resources/demo_results/inferencer_samples_apis.png', help='Output directory of images.') parser.add_argument( '--model-name', type=str, - default='styleganv1', + default='aot_gan', help='Pretrained editing algorithm') parser.add_argument( '--model-version', diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index f02c9923ec..908b258e9a 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -63,7 +63,6 @@ def __init__(self, 'cuda' if torch.cuda.is_available() else 'cpu') self.device = device self._init_model(cfg, ckpt, device) - self._init_pipeline(cfg) self._init_visualizer(cfg) # A global counter tracking the number of images processed, for @@ -110,14 +109,13 @@ def _init_visualizer(self, cfg: ConfigType) -> None: def preprocess(self, inputs: InputsType) -> Dict: """Process the inputs into a model-feedable format.""" + self._init_pipeline(self.cfg) + results = [] for single_input in inputs: if isinstance(single_input, str): if osp.isdir(single_input): raise ValueError('Feeding a directory is not supported') - # for img_path in os.listdir(single_input): - # data_ =dict(img_path=osp.join(single_input,img_path)) - # results.append(self.file_pipeline(data_)) else: data_ = dict(img_path=single_input) results.append(self.file_pipeline(data_)) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 9ad7dcd256..3f761874ca 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -74,7 +74,6 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: """Call the inferencer. Args: - user_inputs: Inputs for the inferencer. kwargs: Keyword arguments for the inferencer. """ @@ -90,7 +89,7 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: data = self.preprocess(**preprocess_kwargs) preds = self.forward(data, **forward_kwargs) - imgs = self.visualize(preds, **visualize_kwargs) + imgs = self.visualize(preds, data, **visualize_kwargs) results = self.postprocess( preds, imgs, **postprocess_kwargs) return results diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index a884eccf8e..673d60d9f3 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -39,6 +39,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, + data: Dict = None, img_out_dir: str = '') -> List[np.ndarray]: res_list = [] diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py new file mode 100644 index 0000000000..f864096462 --- /dev/null +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -0,0 +1,81 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +import mmcv +import numpy as np +from typing import Dict, List +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate +from torch.nn.parallel import scatter + +from mmedit.utils import tensor2img +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class InpaintingInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img', 'mask'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType, mask: InputsType) -> Dict: + infer_pipeline_cfg = [ + dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), + dict( + type='LoadMask', + mask_mode='file', + ), + dict(type='GetMaskedImage'), + dict(type='PackEditInputs'), + ] + + infer_pipeline = Compose(infer_pipeline_cfg) + + # prepare data + _data = infer_pipeline(dict(gt_path=img, mask_path=mask)) + data = dict() + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(self.device): + data = scatter(data, [self.device])[0] + data['data_samples'][0].mask.data = scatter( + data['data_samples'][0].mask.data, [self.device])[0] + + return data + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + result, x = self.model(mode='tensor', **inputs) + return result + + def visualize(self, + preds: PredType, + data: Dict = None, + img_out_dir: str = '') -> List[np.ndarray]: + result = preds[0] + masks = data['data_samples'][0].mask.data + masked_imgs = data['inputs'][0] + result = result * masks + masked_imgs * (1. - masks) + + result = tensor2img(result)[..., ::-1] + mmcv.imwrite(result, img_out_dir) + + return result + + def _pred2dict(self, data_sample: torch.Tensor) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (torch.Tensor): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['infer_res'] = data_sample + return result diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index 15e8ed1131..b6e6bb65dc 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -4,7 +4,6 @@ import mmcv import numpy as np from typing import Dict, List -from torchvision import utils from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate @@ -58,11 +57,12 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, + data: Dict = None, img_out_dir: str = '') -> List[np.ndarray]: result = preds[0].output result = result.pred_alpha.data.cpu() - + # save images mkdir_or_exist(os.path.dirname(img_out_dir)) mmcv.imwrite(result.numpy(), img_out_dir) diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 819f286bcf..05c0f16b97 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -6,6 +6,7 @@ from .conditional_inferencer import ConditionalInferencer from .unconditional_inferencer import UnconditionalInferencer from .matting_inferencer import MattingInferencer +from .inpainting_inferencer import InpaintingInferencer class MMEditInferencer(BaseMMEditInferencer): @@ -26,6 +27,8 @@ def __init__(self, self.inferencer = UnconditionalInferencer(config, ckpt, device) elif self.type == 'matting': self.inferencer = MattingInferencer(config, ckpt, device) + elif self.type == 'inpainting': + self.inferencer = InpaintingInferencer(config, ckpt, device) else: raise ValueError(f'Unknown inferencer type: {self.type}') diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index 5db352159e..458d405e29 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -39,6 +39,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, + data: Dict = None, img_out_dir: str = '') -> List[np.ndarray]: res_list = [] diff --git a/mmedit/edit.py b/mmedit/edit.py index cd2ca97333..38caa98fa1 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -69,6 +69,8 @@ def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[s def infer(self, img: InputsType = None, label: InputsType = None, + trimap: InputsType = None, + mask: InputsType = None, img_out_dir: str = '', show: bool = False, print_result: bool = False, @@ -97,6 +99,8 @@ def infer(self, return self.inferencer( img=img, label=label, + trimap=trimap, + mask=mask, img_out_dir=img_out_dir, show=show, print_result=print_result, @@ -115,8 +119,7 @@ def get_model_config(self, model_name: str) -> Dict: model_dict = { # conditional models 'biggan': { - 'type': - 'conditional', + 'type':'conditional', 'version': { 'a': { 'config': @@ -136,8 +139,7 @@ def get_model_config(self, model_name: str) -> Dict: # unconditional models 'styleganv1': { - 'type': - 'unconditional', + 'type': 'unconditional', 'version': { 'a': { 'config': @@ -150,8 +152,7 @@ def get_model_config(self, model_name: str) -> Dict: # matting models 'gca': { - 'type': - 'matting', + 'type': 'matting', 'version': { 'a': { 'config': @@ -160,6 +161,20 @@ def get_model_config(self, model_name: str) -> Dict: 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' } } + }, + + # inpainting models + 'aot_gan': { + 'type': 'inpainting', + 'version': { + 'a': { + 'config': + 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', + 'ckpt': + 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' + } + } + } } if model_name not in model_dict: From 63e2930a2cf01fcc417b71fd3dbac4bb2e5dd5ef Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 3 Nov 2022 20:22:09 +0800 Subject: [PATCH 05/68] [high-level api] add translation inferencer. --- demo/mmediting_inference_demo.py | 4 +- mmedit/apis/inferencers/base_inferencer.py | 2 +- .../apis/inferencers/inpainting_inferencer.py | 1 - mmedit/apis/inferencers/mmedit_inferencer.py | 12 +++ .../inferencers/restoration_inferencer.py | 86 +++++++++++++++++++ .../inferencers/translation_inferencer.py | 84 ++++++++++++++++++ .../video_interpolation_inferencer.py | 86 +++++++++++++++++++ .../video_restoration_inferencer.py | 86 +++++++++++++++++++ mmedit/edit.py | 56 +++++++++++- 9 files changed, 411 insertions(+), 6 deletions(-) create mode 100644 mmedit/apis/inferencers/restoration_inferencer.py create mode 100644 mmedit/apis/inferencers/translation_inferencer.py create mode 100644 mmedit/apis/inferencers/video_interpolation_inferencer.py create mode 100644 mmedit/apis/inferencers/video_restoration_inferencer.py diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index a3ae3d4563..eb3117d90b 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -9,7 +9,7 @@ def parse_args(): parser.add_argument( '--img', type=str, - default='resources/input/inpainting/img_resized.jpg', + default='resources/input/translation/gt_mask_0.png', help='Input image file.') parser.add_argument( '--label', @@ -34,7 +34,7 @@ def parse_args(): parser.add_argument( '--model-name', type=str, - default='aot_gan', + default='pix2pix', help='Pretrained editing algorithm') parser.add_argument( '--model-version', diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 908b258e9a..7f8da478e9 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -76,7 +76,7 @@ def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], model = MODELS.build(cfg.model) if ckpt is not None: ckpt = load_checkpoint(model, ckpt, map_location='cpu') - model.cfg = cfg.model + model.cfg = cfg model.to(device) model.eval() self.model = model diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index f864096462..e3cf408055 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -8,7 +8,6 @@ from torch.nn.parallel import scatter from mmedit.utils import tensor2img -from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 05c0f16b97..07c302bbc3 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -7,6 +7,10 @@ from .unconditional_inferencer import UnconditionalInferencer from .matting_inferencer import MattingInferencer from .inpainting_inferencer import InpaintingInferencer +from .translation_inferencer import TranslationInferencer +from .restoration_inferencer import RestorationInferencer +from .video_restoration_inferencer import VideoRestorationInferencer +from .video_interpolation_inferencer import VideoInterpolationInferencer class MMEditInferencer(BaseMMEditInferencer): @@ -29,6 +33,14 @@ def __init__(self, self.inferencer = MattingInferencer(config, ckpt, device) elif self.type == 'inpainting': self.inferencer = InpaintingInferencer(config, ckpt, device) + elif self.type == 'translation': + self.inferencer = TranslationInferencer(config, ckpt, device) + elif self.type == 'restoration': + self.inferencer = RestorationInferencer(config, ckpt, device) + elif self.type == 'video_restoration': + self.inferencer = VideoRestorationInferencer(config, ckpt, device) + elif self.type == 'video_interpolation': + self.inferencer = VideoInterpolationInferencer(config, ckpt, device) else: raise ValueError(f'Unknown inferencer type: {self.type}') diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py new file mode 100644 index 0000000000..939a0906d2 --- /dev/null +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -0,0 +1,86 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import numpy as np +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate + +from mmedit.models.base_models import BaseTranslationModel +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class RestorationInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType) -> Dict: + + assert isinstance(self.model, BaseTranslationModel) + + # get source domain and target domain + self.target_domain = self.model._default_domain + source_domain = self.model.get_other_domains(self.target_domain)[0] + + cfg = self.model.cfg + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + + # prepare data + data = dict() + # dirty code to deal with test data pipeline + data['pair_path'] = img + data[f'img_{source_domain}_path'] = img + data[f'img_{self.target_domain}_path'] = img + + data = collate([test_pipeline(data)]) + data = self.model.data_preprocessor(data, False) + inputs_dict = data['inputs'] + + source_image = inputs_dict[f'img_{source_domain}'] + import pdb;pdb.set_trace(); + return source_image + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + results = self.model( + inputs, + test_mode=True, + target_domain=self.target_domain) + output = results['target'] + return output + + def visualize(self, + preds: PredType, + data: Dict = None, + img_out_dir: str = '') -> List[np.ndarray]: + + results = (preds[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() + return result diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py new file mode 100644 index 0000000000..21c0de0375 --- /dev/null +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -0,0 +1,84 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import numpy as np +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate + +from mmedit.models.base_models import BaseTranslationModel +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class TranslationInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType) -> Dict: + + assert isinstance(self.model, BaseTranslationModel) + + # get source domain and target domain + self.target_domain = self.model._default_domain + source_domain = self.model.get_other_domains(self.target_domain)[0] + + cfg = self.model.cfg + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + + # prepare data + data = dict() + # dirty code to deal with test data pipeline + data['pair_path'] = img + data[f'img_{source_domain}_path'] = img + data[f'img_{self.target_domain}_path'] = img + + data = collate([test_pipeline(data)]) + data = self.model.data_preprocessor(data, False) + inputs_dict = data['inputs'] + + source_image = inputs_dict[f'img_{source_domain}'] + return source_image + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + results = self.model( + inputs, + test_mode=True, + target_domain=self.target_domain) + output = results['target'] + return output + + def visualize(self, + preds: PredType, + data: Dict = None, + img_out_dir: str = '') -> List[np.ndarray]: + + results = (preds[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + + def _pred2dict(self, data_sample: torch.Tensor) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['infer_res'] = data_sample + return result diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py new file mode 100644 index 0000000000..b8906e9452 --- /dev/null +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -0,0 +1,86 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import numpy as np +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate + +from mmedit.models.base_models import BaseTranslationModel +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class VideoInterpolationInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType) -> Dict: + + assert isinstance(self.model, BaseTranslationModel) + + # get source domain and target domain + self.target_domain = self.model._default_domain + source_domain = self.model.get_other_domains(self.target_domain)[0] + + cfg = self.model.cfg + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + + # prepare data + data = dict() + # dirty code to deal with test data pipeline + data['pair_path'] = img + data[f'img_{source_domain}_path'] = img + data[f'img_{self.target_domain}_path'] = img + + data = collate([test_pipeline(data)]) + data = self.model.data_preprocessor(data, False) + inputs_dict = data['inputs'] + + source_image = inputs_dict[f'img_{source_domain}'] + import pdb;pdb.set_trace(); + return source_image + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + results = self.model( + inputs, + test_mode=True, + target_domain=self.target_domain) + output = results['target'] + return output + + def visualize(self, + preds: PredType, + data: Dict = None, + img_out_dir: str = '') -> List[np.ndarray]: + + results = (preds[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() + return result diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py new file mode 100644 index 0000000000..0fe7b1b86d --- /dev/null +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -0,0 +1,86 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os +import torch +import numpy as np +from typing import Dict, List +from torchvision import utils +from mmengine import mkdir_or_exist +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate + +from mmedit.models.base_models import BaseTranslationModel +from mmedit.structures import EditDataSample +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType + + +class VideoRestorationInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['img'], + forward=[], + visualize=['img_out_dir'], + postprocess=['print_result', 'pred_out_file', 'get_datasample']) + + def preprocess(self, img: InputsType) -> Dict: + + assert isinstance(self.model, BaseTranslationModel) + + # get source domain and target domain + self.target_domain = self.model._default_domain + source_domain = self.model.get_other_domains(self.target_domain)[0] + + cfg = self.model.cfg + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + + # prepare data + data = dict() + # dirty code to deal with test data pipeline + data['pair_path'] = img + data[f'img_{source_domain}_path'] = img + data[f'img_{self.target_domain}_path'] = img + + data = collate([test_pipeline(data)]) + data = self.model.data_preprocessor(data, False) + inputs_dict = data['inputs'] + + source_image = inputs_dict[f'img_{source_domain}'] + import pdb;pdb.set_trace(); + return source_image + + def forward(self, inputs: InputsType) -> PredType: + with torch.no_grad(): + results = self.model( + inputs, + test_mode=True, + target_domain=self.target_domain) + output = results['target'] + return output + + def visualize(self, + preds: PredType, + data: Dict = None, + img_out_dir: str = '') -> List[np.ndarray]: + + results = (preds[:, [2, 1, 0]] + 1.) / 2. + + # save images + mkdir_or_exist(os.path.dirname(img_out_dir)) + utils.save_image(results, img_out_dir) + + return results + + def _pred2dict(self, data_sample: EditDataSample) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (EditDataSample): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() + return result diff --git a/mmedit/edit.py b/mmedit/edit.py index 38caa98fa1..97a38c8174 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -2,7 +2,6 @@ import os import warnings import torch -from pathlib import Path from typing import Dict, List, Optional, Union from mmedit.apis.inferencers import MMEditInferencer @@ -174,9 +173,62 @@ def get_model_config(self, model_name: str) -> Dict: 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' } } - + }, + + # translation models + 'pix2pix': { + 'type': 'translation', + 'version': { + 'a': { + 'config': + 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', + 'ckpt': + 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' + } + } + }, + + # restoration models + 'real_esrgan': { + 'type': 'restoration', + 'version': { + 'a': { + 'config': + 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', + 'ckpt': + 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' + } + } + }, + + # video_restoration models + 'basicvsr': { + 'type': 'video_restoration', + 'version': { + 'a': { + 'config': + 'basicvsr/basicvsr_2xb4_reds4.py', + 'ckpt': + 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' + } + } + }, + + # video_interpolation models + 'flavr': { + 'type': 'video_interpolation', + 'version': { + 'a': { + 'config': + 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', + 'ckpt': + 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' + } + } } + } + if model_name not in model_dict: raise ValueError(f'Model {model_name} is not supported.') else: From 8f30c542cbd82ca5246ac094fcca788374e37401 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 3 Nov 2022 22:20:12 +0800 Subject: [PATCH 06/68] [high-level api] add restoration inferencer. --- demo/mmediting_inference_demo.py | 4 +- mmedit/apis/inferencers/base_inferencer.py | 16 +- .../apis/inferencers/inference_functions.py | 344 ++++++++++++++++++ .../inferencers/restoration_inferencer.py | 99 ++--- mmedit/edit.py | 11 + 5 files changed, 419 insertions(+), 55 deletions(-) create mode 100644 mmedit/apis/inferencers/inference_functions.py diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index eb3117d90b..555a45f4c2 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -9,7 +9,7 @@ def parse_args(): parser.add_argument( '--img', type=str, - default='resources/input/translation/gt_mask_0.png', + default='resources/input/restoration/0901x2.png', help='Input image file.') parser.add_argument( '--label', @@ -34,7 +34,7 @@ def parse_args(): parser.add_argument( '--model-name', type=str, - default='pix2pix', + default='esrgan', help='Pretrained editing algorithm') parser.add_argument( '--model-version', diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 7f8da478e9..93c17817b2 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -246,11 +246,17 @@ def postprocess( return results return results, imgs - def _pred2dict(self, data_sample: InstanceData) -> Dict: + def _pred2dict(self, data_sample: torch.Tensor) -> Dict: """Extract elements necessary to represent a prediction into a - dictionary. + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. - It's better to contain only basic data elements such as strings and - numbers in order to guarantee it's json-serializable. + Args: + data_sample (torch.Tensor): The data sample to be converted. + + Returns: + dict: The output dictionary. """ - raise NotImplementedError \ No newline at end of file + result = {} + result['infer_res'] = data_sample + return result \ No newline at end of file diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py new file mode 100644 index 0000000000..12829e3c1e --- /dev/null +++ b/mmedit/apis/inferencers/inference_functions.py @@ -0,0 +1,344 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from mmengine import is_list_of + +from mmengine import Config +from mmengine.config import ConfigDict +from mmengine.runner import load_checkpoint +from mmengine.runner import set_random_seed as set_random_seed_engine + +from mmedit.registry import MODELS +from mmedit.utils import register_all_modules + +def set_random_seed(seed, deterministic=False, use_rank_shift=True): + """Set random seed. + + In this function, we just modify the default behavior of the similar + function defined in MMCV. + + Args: + seed (int): Seed to be used. + deterministic (bool): Whether to set the deterministic option for + CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` + to True and `torch.backends.cudnn.benchmark` to False. + Default: False. + rank_shift (bool): Whether to add rank number to the random seed to + have different random seed in different threads. Default: True. + """ + set_random_seed_engine( + seed, deterministic=deterministic, use_rank_shift=use_rank_shift) + + +def delete_cfg(cfg, key='init_cfg'): + """Delete key from config object. + + Args: + cfg (str or :obj:`mmengine.Config`): Config object. + key (str): Which key to delete. + """ + + if key in cfg: + cfg.pop(key) + for _key in cfg.keys(): + if isinstance(cfg[_key], ConfigDict): + delete_cfg(cfg[_key], key) + + +def init_model(config, checkpoint=None, device='cuda:0'): + """Initialize a model from config file. + + Args: + config (str or :obj:`mmengine.Config`): Config file path or the config + object. + checkpoint (str, optional): Checkpoint path. If left as None, the model + will not load any weights. + device (str): Which device the model will deploy. Default: 'cuda:0'. + + Returns: + nn.Module: The constructed model. + """ + + if isinstance(config, str): + config = Config.fromfile(config) + elif not isinstance(config, Config): + raise TypeError('config must be a filename or Config object, ' + f'but got {type(config)}') + # config.test_cfg.metrics = None + delete_cfg(config.model, 'init_cfg') + + register_all_modules() + model = MODELS.build(config.model) + + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint) + + model.cfg = config # save the config in the model for convenience + model.to(device) + model.eval() + + return model + +@torch.no_grad() +def sample_unconditional_model(model, + num_samples=16, + num_batches=4, + sample_model='ema', + **kwargs): + """Sampling from unconditional models. + + Args: + model (nn.Module): Unconditional models in MMGeneration. + num_samples (int, optional): The total number of samples. + Defaults to 16. + num_batches (int, optional): The number of batch size for inference. + Defaults to 4. + sample_model (str, optional): Which model you want to use. ['ema', + 'orig']. Defaults to 'ema'. + + Returns: + Tensor: Generated image tensor. + """ + # set eval mode + model.eval() + # construct sampling list for batches + n_repeat = num_samples // num_batches + batches_list = [num_batches] * n_repeat + + if num_samples % num_batches > 0: + batches_list.append(num_samples % num_batches) + res_list = [] + + # inference + for batches in batches_list: + res = model( + dict(num_batches=batches, sample_model=sample_model), **kwargs) + res_list.extend([item.fake_img.data.cpu() for item in res]) + + results = torch.stack(res_list, dim=0) + return results + + +@torch.no_grad() +def sample_conditional_model(model, + num_samples=16, + num_batches=4, + sample_model='ema', + label=None, + **kwargs): + """Sampling from conditional models. + + Args: + model (nn.Module): Conditional models in MMGeneration. + num_samples (int, optional): The total number of samples. + Defaults to 16. + num_batches (int, optional): The number of batch size for inference. + Defaults to 4. + sample_model (str, optional): Which model you want to use. ['ema', + 'orig']. Defaults to 'ema'. + label (int | torch.Tensor | list[int], optional): Labels used to + generate images. Default to None., + + Returns: + Tensor: Generated image tensor. + """ + # set eval mode + model.eval() + # construct sampling list for batches + n_repeat = num_samples // num_batches + batches_list = [num_batches] * n_repeat + + # check and convert the input labels + if isinstance(label, int): + label = torch.LongTensor([label] * num_samples) + elif isinstance(label, torch.Tensor): + label = label.type(torch.int64) + if label.numel() == 1: + # repeat single tensor + # call view(-1) to avoid nested tensor like [[[1]]] + label = label.view(-1).repeat(num_samples) + else: + # flatten multi tensors + label = label.view(-1) + elif isinstance(label, list): + if is_list_of(label, int): + label = torch.LongTensor(label) + # `nargs='+'` parse single integer as list + if label.numel() == 1: + # repeat single tensor + label = label.repeat(num_samples) + else: + raise TypeError('Only support `int` for label list elements, ' + f'but receive {type(label[0])}') + elif label is None: + pass + else: + raise TypeError('Only support `int`, `torch.Tensor`, `list[int]` or ' + f'None as label, but receive {type(label)}.') + + # check the length of the (converted) label + if label is not None and label.size(0) != num_samples: + raise ValueError('Number of elements in the label list should be ONE ' + 'or the length of `num_samples`. Requires ' + f'{num_samples}, but receive {label.size(0)}.') + + # make label list + label_list = [] + for n in range(n_repeat): + if label is None: + label_list.append(None) + else: + label_list.append(label[n * num_batches:(n + 1) * num_batches]) + + if num_samples % num_batches > 0: + batches_list.append(num_samples % num_batches) + if label is None: + label_list.append(None) + else: + label_list.append(label[(n + 1) * num_batches:]) + + res_list = [] + + # inference + for batches, labels in zip(batches_list, label_list): + res = model( + dict( + num_batches=batches, labels=labels, sample_model=sample_model), + **kwargs) + res_list.extend([item.fake_img.data.cpu() for item in res]) + results = torch.stack(res_list, dim=0) + return results + +def inpainting_inference(model, masked_img, mask): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + masked_img (str): File path of image with mask. + mask (str): Mask file path. + + Returns: + Tensor: The predicted inpainting result. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + + # build the data pipeline + infer_pipeline = [ + dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), + dict( + type='LoadMask', + mask_mode='file', + ), + dict(type='GetMaskedImage'), + dict(type='PackEditInputs'),] + + test_pipeline = Compose(infer_pipeline) + # prepare data + data = dict(gt_path=masked_img, mask_path=mask) + _data = test_pipeline(data) + data = dict() + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(device): + data = scatter(data, [device])[0] + data['data_samples'][0].mask.data = scatter( + data['data_samples'][0].mask.data, [device])[0] + # else: + # data.pop('meta') + # forward the model + with torch.no_grad(): + result, x = model(mode='tensor', **data) + + masks = _data['data_samples'].mask.data + masked_imgs = data['inputs'][0] + result = result[0] * masks + masked_imgs * (1. - masks) + return result + +def matting_inference(model, img, trimap): + """Inference image(s) with the model. + + Args: + model (nn.Module): The loaded model. + img (str): Image file path. + trimap (str): Trimap file path. + + Returns: + np.ndarray: The predicted alpha matte. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + # remove alpha from test_pipeline + keys_to_remove = ['alpha', 'ori_alpha'] + for key in keys_to_remove: + for pipeline in list(cfg.test_pipeline): + if 'key' in pipeline and key == pipeline['key']: + cfg.test_pipeline.remove(pipeline) + if 'keys' in pipeline and key in pipeline['keys']: + pipeline['keys'].remove(key) + if len(pipeline['keys']) == 0: + cfg.test_pipeline.remove(pipeline) + if 'meta_keys' in pipeline and key in pipeline['meta_keys']: + pipeline['meta_keys'].remove(key) + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + # prepare data + data = dict(merged_path=img, trimap_path=trimap) + _data = test_pipeline(data) + trimap = _data['data_samples'].trimap.data + data = dict() + data['inputs'] = torch.cat([_data['inputs'], trimap], dim=0).float() + data = collate([data]) + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(device): + data = scatter(data, [device])[0] + # forward the model + with torch.no_grad(): + result = model(mode='predict', **data) + result = result[0].output + result = result.pred_alpha.data + return result.cpu().numpy() + +def sample_img2img_model(model, image_path, target_domain=None, **kwargs): + """Sampling from translation models. + + Args: + model (nn.Module): The loaded model. + image_path (str): File path of input image. + style (str): Target style of output image. + Returns: + Tensor: Translated image tensor. + """ + assert isinstance(model, BaseTranslationModel) + + # get source domain and target domain + if target_domain is None: + target_domain = model._default_domain + source_domain = model.get_other_domains(target_domain)[0] + + cfg = model.cfg + # build the data pipeline + test_pipeline = Compose(cfg.test_pipeline) + + # prepare data + data = dict() + # dirty code to deal with test data pipeline + data['pair_path'] = image_path + data[f'img_{source_domain}_path'] = image_path + data[f'img_{target_domain}_path'] = image_path + + data = collate([test_pipeline(data)]) + data = model.data_preprocessor(data, False) + inputs_dict = data['inputs'] + + source_image = inputs_dict[f'img_{source_domain}'] + + # forward the model + with torch.no_grad(): + results = model( + source_image, + test_mode=True, + target_domain=target_domain, + **kwargs) + output = results['target'] + return output diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index 939a0906d2..676e3b7069 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -2,13 +2,15 @@ import os import torch import numpy as np +import mmcv from typing import Dict, List from torchvision import utils from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate +from torch.nn.parallel import scatter -from mmedit.models.base_models import BaseTranslationModel +from mmedit.utils import tensor2img from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType @@ -21,66 +23,67 @@ class RestorationInferencer(BaseMMEditInferencer): visualize=['img_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) - def preprocess(self, img: InputsType) -> Dict: + def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: - assert isinstance(self.model, BaseTranslationModel) - - # get source domain and target domain - self.target_domain = self.model._default_domain - source_domain = self.model.get_other_domains(self.target_domain)[0] - cfg = self.model.cfg + device = next(self.model.parameters()).device # model device + + # select the data pipeline + if cfg.get('demo_pipeline', None): + test_pipeline = cfg.demo_pipeline + elif cfg.get('test_pipeline', None): + test_pipeline = cfg.test_pipeline + else: + test_pipeline = cfg.val_pipeline + + # remove gt from test_pipeline + keys_to_remove = ['gt', 'gt_path'] + for key in keys_to_remove: + for pipeline in list(test_pipeline): + if 'key' in pipeline and key == pipeline['key']: + test_pipeline.remove(pipeline) + if 'keys' in pipeline and key in pipeline['keys']: + pipeline['keys'].remove(key) + if len(pipeline['keys']) == 0: + test_pipeline.remove(pipeline) + if 'meta_keys' in pipeline and key in pipeline['meta_keys']: + pipeline['meta_keys'].remove(key) # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - + test_pipeline = Compose(test_pipeline) # prepare data + if ref: # Ref-SR + data = dict(img_path=img, ref_path=ref) + else: # SISR + data = dict(img_path=img) + _data = test_pipeline(data) data = dict() - # dirty code to deal with test data pipeline - data['pair_path'] = img - data[f'img_{source_domain}_path'] = img - data[f'img_{self.target_domain}_path'] = img - - data = collate([test_pipeline(data)]) - data = self.model.data_preprocessor(data, False) - inputs_dict = data['inputs'] - - source_image = inputs_dict[f'img_{source_domain}'] - import pdb;pdb.set_trace(); - return source_image + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + if ref: + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(device): + data = scatter(data, [device])[0] + if ref: + data['data_samples'][0].img_lq.data = data['data_samples'][ + 0].img_lq.data.to(device) + data['data_samples'][0].ref_lq.data = data['data_samples'][ + 0].ref_lq.data.to(device) + data['data_samples'][0].ref_img.data = data['data_samples'][ + 0].ref_img.data.to(device) + return data def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): - results = self.model( - inputs, - test_mode=True, - target_domain=self.target_domain) - output = results['target'] - return output + result = self.model(mode='tensor', **inputs) + return result def visualize(self, preds: PredType, data: Dict = None, img_out_dir: str = '') -> List[np.ndarray]: - results = (preds[:, [2, 1, 0]] + 1.) / 2. - - # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) - - return results + output = tensor2img(preds[0]) + mmcv.imwrite(output, img_out_dir) - def _pred2dict(self, data_sample: EditDataSample) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. - - Args: - data_sample (EditDataSample): The data sample to be converted. + return output - Returns: - dict: The output dictionary. - """ - result = {} - result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() - return result diff --git a/mmedit/edit.py b/mmedit/edit.py index 97a38c8174..b6632ec79f 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -197,6 +197,17 @@ def get_model_config(self, model_name: str) -> Dict: 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', 'ckpt': 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' + }, + } + }, + 'esrgan': { + 'type': 'restoration', + 'version': { + 'a': { + 'config': + 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', + 'ckpt': + 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' } } }, From 8a83973e16721d270671fc6935c0b831d90ff02d Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 4 Nov 2022 14:44:27 +0800 Subject: [PATCH 07/68] [high-level api] add inference functions --- .../apis/inferencers/inference_functions.py | 471 +++++++++++++++++- .../inferencers/restoration_inferencer.py | 3 - .../inferencers/translation_inferencer.py | 14 - .../video_restoration_inferencer.py | 98 ++-- mmedit/edit.py | 2 + 5 files changed, 541 insertions(+), 47 deletions(-) diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index 12829e3c1e..0efdba40ae 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -1,15 +1,30 @@ # Copyright (c) OpenMMLab. All rights reserved. +import math +import os +import os.path as osp +import glob import torch from mmengine import is_list_of - from mmengine import Config from mmengine.config import ConfigDict from mmengine.runner import load_checkpoint from mmengine.runner import set_random_seed as set_random_seed_engine +from mmengine.dataset import Compose +from mmengine.dataset.utils import default_collate as collate +from torch.nn.parallel import scatter +from mmengine.fileio import FileClient +from mmengine.utils import ProgressBar +from mmedit.models.base_models import BaseTranslationModel from mmedit.registry import MODELS from mmedit.utils import register_all_modules +try: + from facexlib.utils.face_restoration_helper import FaceRestoreHelper + has_facexlib = True +except ImportError: + has_facexlib = False + def set_random_seed(seed, deterministic=False, use_rank_shift=True): """Set random seed. @@ -342,3 +357,457 @@ def sample_img2img_model(model, image_path, target_domain=None, **kwargs): **kwargs) output = results['target'] return output + +def restoration_inference(model, img, ref=None): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + img (str): File path of input image. + ref (str | None): File path of reference image. Default: None. + + Returns: + Tensor: The predicted restoration result. + """ + cfg = model.cfg + device = next(model.parameters()).device # model device + + # select the data pipeline + if cfg.get('demo_pipeline', None): + test_pipeline = cfg.demo_pipeline + elif cfg.get('test_pipeline', None): + test_pipeline = cfg.test_pipeline + else: + test_pipeline = cfg.val_pipeline + + # remove gt from test_pipeline + keys_to_remove = ['gt', 'gt_path'] + for key in keys_to_remove: + for pipeline in list(test_pipeline): + if 'key' in pipeline and key == pipeline['key']: + test_pipeline.remove(pipeline) + if 'keys' in pipeline and key in pipeline['keys']: + pipeline['keys'].remove(key) + if len(pipeline['keys']) == 0: + test_pipeline.remove(pipeline) + if 'meta_keys' in pipeline and key in pipeline['meta_keys']: + pipeline['meta_keys'].remove(key) + # build the data pipeline + test_pipeline = Compose(test_pipeline) + # prepare data + if ref: # Ref-SR + data = dict(img_path=img, ref_path=ref) + else: # SISR + data = dict(img_path=img) + _data = test_pipeline(data) + data = dict() + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + if ref: + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(device): + data = scatter(data, [device])[0] + if ref: + data['data_samples'][0].img_lq.data = data['data_samples'][ + 0].img_lq.data.to(device) + data['data_samples'][0].ref_lq.data = data['data_samples'][ + 0].ref_lq.data.to(device) + data['data_samples'][0].ref_img.data = data['data_samples'][ + 0].ref_img.data.to(device) + # forward the model + with torch.no_grad(): + result = model(mode='tensor', **data) + result = result[0] + return result + +def restoration_face_inference(model, img, upscale_factor=1, face_size=1024): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + img (str): File path of input image. + upscale_factor (int, optional): The number of times the input image + is upsampled. Default: 1. + face_size (int, optional): The size of the cropped and aligned faces. + Default: 1024. + + Returns: + Tensor: The predicted restoration result. + """ + device = next(model.parameters()).device # model device + + # build the data pipeline + if model.cfg.get('demo_pipeline', None): + test_pipeline = model.cfg.demo_pipeline + elif model.cfg.get('test_pipeline', None): + test_pipeline = model.cfg.test_pipeline + else: + test_pipeline = model.cfg.val_pipeline + + # remove gt from test_pipeline + keys_to_remove = ['gt', 'gt_path'] + for key in keys_to_remove: + for pipeline in list(test_pipeline): + if 'key' in pipeline and key == pipeline['key']: + test_pipeline.remove(pipeline) + if 'keys' in pipeline and key in pipeline['keys']: + pipeline['keys'].remove(key) + if len(pipeline['keys']) == 0: + test_pipeline.remove(pipeline) + if 'meta_keys' in pipeline and key in pipeline['meta_keys']: + pipeline['meta_keys'].remove(key) + # build the data pipeline + test_pipeline = Compose(test_pipeline) + + # face helper for detecting and aligning faces + assert has_facexlib, 'Please install FaceXLib to use the demo.' + face_helper = FaceRestoreHelper( + upscale_factor, + face_size=face_size, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + template_3points=True, + save_ext='png', + device=device) + + face_helper.read_image(img) + # get face landmarks for each face + face_helper.get_face_landmarks_5( + only_center_face=False, eye_dist_threshold=None) + # align and warp each face + face_helper.align_warp_face() + + for i, img in enumerate(face_helper.cropped_faces): + # prepare data + mmcv.imwrite(img, 'demo/tmp.png') + data = dict(lq=img.astype(np.float32), img_path='demo/tmp.png') + _data = test_pipeline(data) + data = dict() + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + if 'cuda' in str(device): + data = scatter(data, [device])[0] + + with torch.no_grad(): + output = model(mode='tensor', **data) + + output = output.squeeze(0).permute(1, 2, 0)[:, :, [2, 1, 0]] + output = output.cpu().numpy() * 255 # (0, 255) + face_helper.add_restored_face(output) + + face_helper.get_inverse_affine(None) + restored_img = face_helper.paste_faces_to_input_image(upsample_img=None) + + return restored_img + + +VIDEO_EXTENSIONS = ('.mp4', '.mov') + + +def pad_sequence(data, window_size): + """Pad frame sequence data. + + Args: + data (Tensor): The frame sequence data. + window_size (int): The window size used in sliding-window framework. + + Returns: + data (Tensor): The padded result. + """ + + padding = window_size // 2 + + data = torch.cat([ + data[:, 1 + padding:1 + 2 * padding].flip(1), data, + data[:, -1 - 2 * padding:-1 - padding].flip(1) + ], + dim=1) + + return data + + +def restoration_video_inference(model, + img_dir, + window_size, + start_idx, + filename_tmpl, + max_seq_len=None): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + img_dir (str): Directory of the input video. + window_size (int): The window size used in sliding-window framework. + This value should be set according to the settings of the network. + A value smaller than 0 means using recurrent framework. + start_idx (int): The index corresponds to the first frame in the + sequence. + filename_tmpl (str): Template for file name. + max_seq_len (int | None): The maximum sequence length that the model + processes. If the sequence length is larger than this number, + the sequence is split into multiple segments. If it is None, + the entire sequence is processed at once. + + Returns: + Tensor: The predicted restoration result. + """ + + device = next(model.parameters()).device # model device + + # build the data pipeline + if model.cfg.get('demo_pipeline', None): + test_pipeline = model.cfg.demo_pipeline + elif model.cfg.get('test_pipeline', None): + test_pipeline = model.cfg.test_pipeline + else: + test_pipeline = model.cfg.val_pipeline + + # check if the input is a video + file_extension = osp.splitext(img_dir)[1] + if file_extension in VIDEO_EXTENSIONS: + video_reader = mmcv.VideoReader(img_dir) + # load the images + data = dict(img=[], img_path=None, key=img_dir) + for frame in video_reader: + data['img'].append(np.flip(frame, axis=2)) + + # remove the data loading pipeline + tmp_pipeline = [] + for pipeline in test_pipeline: + if pipeline['type'] not in [ + 'GenerateSegmentIndices', 'LoadImageFromFile' + ]: + tmp_pipeline.append(pipeline) + test_pipeline = tmp_pipeline + else: + # the first element in the pipeline must be 'GenerateSegmentIndices' + if test_pipeline[0]['type'] != 'GenerateSegmentIndices': + raise TypeError('The first element in the pipeline must be ' + f'"GenerateSegmentIndices", but got ' + f'"{test_pipeline[0]["type"]}".') + + # specify start_idx and filename_tmpl + test_pipeline[0]['start_idx'] = start_idx + test_pipeline[0]['filename_tmpl'] = filename_tmpl + + # prepare data + sequence_length = len(glob.glob(osp.join(img_dir, '*'))) + lq_folder = osp.dirname(img_dir) + key = osp.basename(img_dir) + data = dict( + img_path=lq_folder, + gt_path='', + key=key, + sequence_length=sequence_length) + + # compose the pipeline + test_pipeline = Compose(test_pipeline) + data = test_pipeline(data) + data = data['inputs'].unsqueeze(0) / 255.0 # in cpu + + # forward the model + with torch.no_grad(): + if window_size > 0: # sliding window framework + data = pad_sequence(data, window_size) + result = [] + for i in range(0, data.size(1) - 2 * (window_size // 2)): + data_i = data[:, i:i + window_size].to(device) + result.append(model(inputs=data_i, mode='tensor').cpu()) + result = torch.stack(result, dim=1) + else: # recurrent framework + if max_seq_len is None: + result = model(inputs=data.to(device), mode='tensor').cpu() + else: + result = [] + for i in range(0, data.size(1), max_seq_len): + result.append( + model( + inputs=data[:, i:i + max_seq_len].to(device), + mode='tensor').cpu()) + result = torch.cat(result, dim=1) + return result + + +VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') +FILE_CLIENT = FileClient('disk') + + +def read_image(filepath): + """Read image from file. + + Args: + filepath (str): File path. + + Returns: + image (np.array): Image. + """ + img_bytes = FILE_CLIENT.get(filepath) + image = mmcv.imfrombytes( + img_bytes, flag='color', channel_order='rgb', backend='pillow') + return image + + +def read_frames(source, start_index, num_frames, from_video, end_index): + """Read frames from file or video. + + Args: + source (list | mmcv.VideoReader): Source of frames. + start_index (int): Start index of frames. + num_frames (int): frames number to be read. + from_video (bool): Weather read frames from video. + end_index (int): The end index of frames. + + Returns: + images (np.array): Images. + """ + images = [] + last_index = min(start_index + num_frames, end_index) + # read frames from video + if from_video: + for index in range(start_index, last_index): + if index >= source.frame_cnt: + break + images.append(np.flip(source.get_frame(index), axis=2)) + else: + files = source[start_index:last_index] + images = [read_image(f) for f in files] + return images + + +def video_interpolation_inference(model, + input_dir, + output_dir, + start_idx=0, + end_idx=None, + batch_size=4, + fps_multiplier=0, + fps=0, + filename_tmpl='{:08d}.png'): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + input_dir (str): Directory of the input video. + output_dir (str): Directory of the output video. + start_idx (int): The index corresponding to the first frame in the + sequence. Default: 0 + end_idx (int | None): The index corresponding to the last interpolated + frame in the sequence. If it is None, interpolate to the last + frame of video or sequence. Default: None + batch_size (int): Batch size. Default: 4 + fps_multiplier (float): multiply the fps based on the input video. + Default: 0. + fps (float): frame rate of the output video. Default: 0. + filename_tmpl (str): template of the file names. Default: '{:08d}.png' + """ + + device = next(model.parameters()).device # model device + + # build the data pipeline + if model.cfg.get('demo_pipeline', None): + test_pipeline = model.cfg.demo_pipeline + elif model.cfg.get('test_pipeline', None): + test_pipeline = model.cfg.test_pipeline + else: + test_pipeline = model.cfg.val_pipeline + + # remove the data loading pipeline + tmp_pipeline = [] + for pipeline in test_pipeline: + if pipeline['type'] not in [ + 'GenerateSegmentIndices', 'LoadImageFromFile' + ]: + tmp_pipeline.append(pipeline) + test_pipeline = tmp_pipeline + + # compose the pipeline + test_pipeline = Compose(test_pipeline) + + # check if the input is a video + input_file_extension = os.path.splitext(input_dir)[1] + if input_file_extension in VIDEO_EXTENSIONS: + source = mmcv.VideoReader(input_dir) + input_fps = source.fps + length = source.frame_cnt + from_video = True + h, w = source.height, source.width + if fps_multiplier: + assert fps_multiplier > 0, '`fps_multiplier` cannot be negative' + output_fps = fps_multiplier * input_fps + else: + output_fps = fps if fps > 0 else input_fps * 2 + else: + files = os.listdir(input_dir) + files = [osp.join(input_dir, f) for f in files] + files.sort() + source = files + length = files.__len__() + from_video = False + example_frame = read_image(files[0]) + h, w = example_frame.shape[:2] + output_fps = fps + + # check if the output is a video + output_file_extension = os.path.splitext(output_dir)[1] + if output_file_extension in VIDEO_EXTENSIONS: + fourcc = cv2.VideoWriter_fourcc(*'mp4v') + target = cv2.VideoWriter(output_dir, fourcc, output_fps, (w, h)) + to_video = True + else: + to_video = False + + end_idx = min(end_idx, length) if end_idx is not None else length + + # calculate step args + step_size = model.step_frames * batch_size + lenth_per_step = model.required_frames + model.step_frames * ( + batch_size - 1) + repeat_frame = model.required_frames - model.step_frames + + prog_bar = ProgressBar( + math.ceil( + (end_idx + step_size - lenth_per_step - start_idx) / step_size)) + output_index = start_idx + for start_index in range(start_idx, end_idx, step_size): + images = read_frames( + source, start_index, lenth_per_step, from_video, end_index=end_idx) + + # data prepare + data = dict(img=images, inputs_path=None, key=input_dir) + data = test_pipeline(data)['inputs'] / 255.0 + data = collate([data]) + # data.shape: [1, t, c, h, w] + + # forward the model + data = model.split_frames(data) + input_tensors = data.clone().detach() + with torch.no_grad(): + output = model(data.to(device), mode='tensor') + if len(output.shape) == 4: + output = output.unsqueeze(1) + output_tensors = output.cpu() + if len(output_tensors.shape) == 4: + output_tensors = output_tensors.unsqueeze(1) + result = model.merge_frames(input_tensors, output_tensors) + if not start_idx == start_index: + result = result[repeat_frame:] + prog_bar.update() + + # save frames + if to_video: + for frame in result: + target.write(frame) + else: + for frame in result: + save_path = osp.join(output_dir, + filename_tmpl.format(output_index)) + mmcv.imwrite(frame, save_path) + output_index += 1 + + if start_index + lenth_per_step >= end_idx: + break + + print() + print(f'Output dir: {output_dir}') + if to_video: + target.release() diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index 676e3b7069..d50d2806f5 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -4,14 +4,11 @@ import numpy as np import mmcv from typing import Dict, List -from torchvision import utils -from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from torch.nn.parallel import scatter from mmedit.utils import tensor2img -from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index 21c0de0375..c251ec283e 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -68,17 +68,3 @@ def visualize(self, return results - def _pred2dict(self, data_sample: torch.Tensor) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. - - Args: - data_sample (EditDataSample): The data sample to be converted. - - Returns: - dict: The output dictionary. - """ - result = {} - result['infer_res'] = data_sample - return result diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 0fe7b1b86d..119b695d45 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -2,6 +2,7 @@ import os import torch import numpy as np +import mmcv from typing import Dict, List from torchvision import utils from mmengine import mkdir_or_exist @@ -23,39 +24,78 @@ class VideoRestorationInferencer(BaseMMEditInferencer): def preprocess(self, img: InputsType) -> Dict: - assert isinstance(self.model, BaseTranslationModel) - - # get source domain and target domain - self.target_domain = self.model._default_domain - source_domain = self.model.get_other_domains(self.target_domain)[0] - - cfg = self.model.cfg # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - - # prepare data - data = dict() - # dirty code to deal with test data pipeline - data['pair_path'] = img - data[f'img_{source_domain}_path'] = img - data[f'img_{self.target_domain}_path'] = img - - data = collate([test_pipeline(data)]) - data = self.model.data_preprocessor(data, False) - inputs_dict = data['inputs'] - - source_image = inputs_dict[f'img_{source_domain}'] - import pdb;pdb.set_trace(); - return source_image + if self.model.cfg.get('demo_pipeline', None): + test_pipeline = self.model.cfg.demo_pipeline + elif self.model.cfg.get('test_pipeline', None): + test_pipeline = self.model.cfg.test_pipeline + else: + test_pipeline = self.model.cfg.val_pipeline + + # check if the input is a video + file_extension = osp.splitext(img_dir)[1] + if file_extension in VIDEO_EXTENSIONS: + video_reader = mmcv.VideoReader(img_dir) + # load the images + data = dict(img=[], img_path=None, key=img_dir) + for frame in video_reader: + data['img'].append(np.flip(frame, axis=2)) + + # remove the data loading pipeline + tmp_pipeline = [] + for pipeline in test_pipeline: + if pipeline['type'] not in [ + 'GenerateSegmentIndices', 'LoadImageFromFile' + ]: + tmp_pipeline.append(pipeline) + test_pipeline = tmp_pipeline + else: + # the first element in the pipeline must be 'GenerateSegmentIndices' + if test_pipeline[0]['type'] != 'GenerateSegmentIndices': + raise TypeError('The first element in the pipeline must be ' + f'"GenerateSegmentIndices", but got ' + f'"{test_pipeline[0]["type"]}".') + + # specify start_idx and filename_tmpl + test_pipeline[0]['start_idx'] = start_idx + test_pipeline[0]['filename_tmpl'] = filename_tmpl + + # prepare data + sequence_length = len(glob.glob(osp.join(img_dir, '*'))) + lq_folder = osp.dirname(img_dir) + key = osp.basename(img_dir) + data = dict( + img_path=lq_folder, + gt_path='', + key=key, + sequence_length=sequence_length) + + # compose the pipeline + test_pipeline = Compose(test_pipeline) + data = test_pipeline(data) + data = data['inputs'].unsqueeze(0) / 255.0 # in cpu def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): - results = self.model( - inputs, - test_mode=True, - target_domain=self.target_domain) - output = results['target'] - return output + if window_size > 0: # sliding window framework + data = pad_sequence(data, window_size) + result = [] + for i in range(0, data.size(1) - 2 * (window_size // 2)): + data_i = data[:, i:i + window_size].to(self.device) + result.append(self.model(inputs=data_i, mode='tensor').cpu()) + result = torch.stack(result, dim=1) + else: # recurrent framework + if max_seq_len is None: + result = self.model(inputs=data.to(self.device), mode='tensor').cpu() + else: + result = [] + for i in range(0, data.size(1), max_seq_len): + result.append( + self.model( + inputs=data[:, i:i + max_seq_len].to(self.device), + mode='tensor').cpu()) + result = torch.cat(result, dim=1) + return result def visualize(self, preds: PredType, diff --git a/mmedit/edit.py b/mmedit/edit.py index b6632ec79f..2f84390133 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -67,6 +67,7 @@ def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[s def infer(self, img: InputsType = None, + video: InputsType = None, label: InputsType = None, trimap: InputsType = None, mask: InputsType = None, @@ -97,6 +98,7 @@ def infer(self, """ return self.inferencer( img=img, + video=video, label=label, trimap=trimap, mask=mask, From e33c2ca588af6d1f17a5ab4cd8f2aaeb7556083f Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 7 Nov 2022 14:42:33 +0800 Subject: [PATCH 08/68] [high-level api] add video interpolation inference --- mmedit/apis/inferencers/base_inferencer.py | 10 +- .../inferencers/base_mmedit_inferencer.py | 4 +- .../inferencers/conditional_inferencer.py | 8 +- .../apis/inferencers/inpainting_inferencer.py | 22 +- mmedit/apis/inferencers/matting_inferencer.py | 16 +- .../inferencers/restoration_inferencer.py | 6 +- .../inferencers/translation_inferencer.py | 8 +- .../inferencers/unconditional_inferencer.py | 8 +- .../video_interpolation_inferencer.py | 270 ++++++++++++++---- .../video_restoration_inferencer.py | 78 +++-- mmedit/edit.py | 14 +- 11 files changed, 306 insertions(+), 138 deletions(-) diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 93c17817b2..0e9afedf41 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -36,7 +36,7 @@ class BaseInferencer: Defaults to True. pred_score_thr (float): Minimum score of bboxes to draw. Defaults to 0.3. - img_out_dir (str): Output directory of images. Defaults to ''. + result_out_dir (str): Output directory of images. Defaults to ''. pred_out_file: File to save the inference results. If left as empty, no file will be saved. print_result (bool): Whether to print the result. @@ -145,7 +145,7 @@ def visualize(self, wait_time: int = 0, draw_pred: bool = True, pred_score_thr: float = 0.3, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. Args: @@ -158,9 +158,9 @@ def visualize(self, Defaults to True. pred_score_thr (float): Minimum score of bboxes to draw. Defaults to 0.3. - img_out_dir (str): Output directory of images. Defaults to ''. + result_out_dir (str): Output directory of images. Defaults to ''. """ - if self.visualizer is None or not show and img_out_dir == '': + if self.visualizer is None or not show and result_out_dir == '': return None if getattr(self, 'visualizer') is None: @@ -182,7 +182,7 @@ def visualize(self, raise ValueError('Unsupported input type: ' f'{type(single_input)}') - out_file = osp.join(img_out_dir, img_name) if img_out_dir != '' \ + out_file = osp.join(result_out_dir, img_name) if result_out_dir != '' \ else None self.visualizer.add_datasample( diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 3f761874ca..1de349e539 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -29,7 +29,7 @@ class BaseMMEditInferencer(BaseInferencer): Defaults to True. pred_score_thr (float): Minimum score of bboxes to draw. Defaults to 0.3. - img_out_dir (str): Output directory of images. Defaults to ''. + result_out_dir (str): Output directory of images. Defaults to ''. pred_out_file: File to save the inference results. If left as empty, no file will be saved. print_result (bool): Whether to print the result. @@ -40,7 +40,7 @@ class BaseMMEditInferencer(BaseInferencer): preprocess=[], forward=[], visualize=[ - 'show', 'wait_time', 'draw_pred', 'pred_score_thr', 'img_out_dir' + 'show', 'wait_time', 'draw_pred', 'pred_score_thr', 'result_out_dir' ], postprocess=['print_result', 'pred_out_file', 'get_datasample']) func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index 673d60d9f3..d990452062 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -15,7 +15,7 @@ class ConditionalInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=['label'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, label: InputsType) -> Dict: @@ -40,7 +40,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) @@ -48,8 +48,8 @@ def visualize(self, results = (results[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index e3cf408055..04722766e6 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -16,7 +16,7 @@ class InpaintingInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=['img', 'mask'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, mask: InputsType) -> Dict: @@ -48,33 +48,19 @@ def preprocess(self, img: InputsType, mask: InputsType) -> Dict: def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): result, x = self.model(mode='tensor', **inputs) - return result + return result def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: result = preds[0] masks = data['data_samples'][0].mask.data masked_imgs = data['inputs'][0] result = result * masks + masked_imgs * (1. - masks) result = tensor2img(result)[..., ::-1] - mmcv.imwrite(result, img_out_dir) + mmcv.imwrite(result, result_out_dir) return result - def _pred2dict(self, data_sample: torch.Tensor) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. - - Args: - data_sample (torch.Tensor): The data sample to be converted. - - Returns: - dict: The output dictionary. - """ - result = {} - result['infer_res'] = data_sample - return result diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index b6e6bb65dc..887544a3c0 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -18,7 +18,7 @@ class MattingInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=['img', 'trimap'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: @@ -42,7 +42,8 @@ def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: _data = test_pipeline(data) trimap = _data['data_samples'].trimap.data preprocess_res = dict() - preprocess_res['inputs'] = torch.cat([_data['inputs'], trimap], dim=0).float() + preprocess_res['inputs'] = torch.cat([_data['inputs'], trimap], + dim=0).float() preprocess_res = collate([preprocess_res]) preprocess_res['data_samples'] = [_data['data_samples']] preprocess_res['mode'] = 'predict' @@ -55,17 +56,14 @@ def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): return self.model(**inputs) - def visualize(self, - preds: PredType, - data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: - + def visualize(self, preds: PredType, data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: result = preds[0].output result = result.pred_alpha.data.cpu() # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - mmcv.imwrite(result.numpy(), img_out_dir) + mkdir_or_exist(os.path.dirname(result_out_dir)) + mmcv.imwrite(result.numpy(), result_out_dir) return result diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index d50d2806f5..e6a79f39b0 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -17,7 +17,7 @@ class RestorationInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=['img'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: @@ -77,10 +77,10 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: output = tensor2img(preds[0]) - mmcv.imwrite(output, img_out_dir) + mmcv.imwrite(output, result_out_dir) return output diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index c251ec283e..d50549b462 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -17,7 +17,7 @@ class TranslationInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=['img'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType) -> Dict: @@ -58,13 +58,13 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: results = (preds[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index 458d405e29..ff19ddf102 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -15,7 +15,7 @@ class UnconditionalInferencer(BaseMMEditInferencer): func_kwargs = dict( preprocess=[], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self) -> Dict: @@ -40,7 +40,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) @@ -48,8 +48,8 @@ def visualize(self, results = (results[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index b8906e9452..ea2d40cc47 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -1,86 +1,230 @@ # Copyright (c) OpenMMLab. All rights reserved. import os +import math +import os.path as osp import torch import numpy as np -from typing import Dict, List -from torchvision import utils -from mmengine import mkdir_or_exist -from mmengine.dataset import Compose +import mmcv +import cv2 +from typing import Dict, List, Union, Tuple, Optional from mmengine.dataset.utils import default_collate as collate +from mmengine.fileio import FileClient +from mmengine.utils import ProgressBar +from mmengine.dataset import Compose -from mmedit.models.base_models import BaseTranslationModel -from mmedit.structures import EditDataSample -from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType, ResType -class VideoInterpolationInferencer(BaseMMEditInferencer): +VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') +FILE_CLIENT = FileClient('disk') - func_kwargs = dict( - preprocess=['img'], - forward=[], - visualize=['img_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) - def preprocess(self, img: InputsType) -> Dict: - - assert isinstance(self.model, BaseTranslationModel) +def read_image(filepath): + """Read image from file. + + Args: + filepath (str): File path. + + Returns: + image (np.array): Image. + """ + img_bytes = FILE_CLIENT.get(filepath) + image = mmcv.imfrombytes( + img_bytes, flag='color', channel_order='rgb', backend='pillow') + return image + + +def read_frames(source, start_index, num_frames, from_video, end_index): + """Read frames from file or video. + + Args: + source (list | mmcv.VideoReader): Source of frames. + start_index (int): Start index of frames. + num_frames (int): frames number to be read. + from_video (bool): Weather read frames from video. + end_index (int): The end index of frames. - # get source domain and target domain - self.target_domain = self.model._default_domain - source_domain = self.model.get_other_domains(self.target_domain)[0] + Returns: + images (np.array): Images. + """ + images = [] + last_index = min(start_index + num_frames, end_index) + # read frames from video + if from_video: + for index in range(start_index, last_index): + if index >= source.frame_cnt: + break + images.append(np.flip(source.get_frame(index), axis=2)) + else: + files = source[start_index:last_index] + images = [read_image(f) for f in files] + return images + + +class VideoInterpolationInferencer(BaseMMEditInferencer): + + func_kwargs = dict( + preprocess=['video'], + forward=['result_out_dir'], + visualize=[], + postprocess=[]) + + def preprocess(self, video: InputsType) -> Dict: + infer_cfg = dict( + start_idx = 0, + end_idx = None, + batch_size = 4, + fps_multiplier=0, + fps=0, + filename_tmpl = '{08d}.png') + self.start_idx = infer_cfg['start_idx'] + self.end_idx = infer_cfg['end_idx'] + self.batch_size = infer_cfg['batch_size'] + self.fps_multiplier = infer_cfg['fps_multiplier'] + self.fps = infer_cfg['fps'] + self.filename_tmpl = infer_cfg['filename_tmpl'] - cfg = self.model.cfg # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - - # prepare data - data = dict() - # dirty code to deal with test data pipeline - data['pair_path'] = img - data[f'img_{source_domain}_path'] = img - data[f'img_{self.target_domain}_path'] = img - - data = collate([test_pipeline(data)]) - data = self.model.data_preprocessor(data, False) - inputs_dict = data['inputs'] - - source_image = inputs_dict[f'img_{source_domain}'] - import pdb;pdb.set_trace(); - return source_image - - def forward(self, inputs: InputsType) -> PredType: - with torch.no_grad(): - results = self.model( - inputs, - test_mode=True, - target_domain=self.target_domain) - output = results['target'] - return output + if self.model.cfg.get('demo_pipeline', None): + test_pipeline = self.model.cfg.demo_pipeline + elif self.model.cfg.get('test_pipeline', None): + test_pipeline = self.model.cfg.test_pipeline + else: + test_pipeline = self.model.cfg.val_pipeline + + # remove the data loading pipeline + tmp_pipeline = [] + for pipeline in test_pipeline: + if pipeline['type'] not in [ + 'GenerateSegmentIndices', 'LoadImageFromFile' + ]: + tmp_pipeline.append(pipeline) + test_pipeline = tmp_pipeline + + # compose the pipeline + self.test_pipeline = Compose(test_pipeline) + + return video + + def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: + # check if the input is a video + input_file_extension = os.path.splitext(inputs)[1] + if input_file_extension in VIDEO_EXTENSIONS: + source = mmcv.VideoReader(inputs) + input_fps = source.fps + length = source.frame_cnt + from_video = True + h, w = source.height, source.width + if self.fps_multiplier: + assert self.fps_multiplier > 0, '`fps_multiplier` cannot be negative' + output_fps = self.fps_multiplier * input_fps + else: + output_fps = self.fps if self.fps > 0 else input_fps * 2 + else: + files = os.listdir(inputs) + files = [osp.join(inputs, f) for f in files] + files.sort() + source = files + length = files.__len__() + from_video = False + example_frame = read_image(files[0]) + h, w = example_frame.shape[:2] + output_fps = self.fps + + # check if the output is a video + output_file_extension = os.path.splitext(result_out_dir)[1] + if output_file_extension in VIDEO_EXTENSIONS: + fourcc = cv2.VideoWriter_fourcc(*'mp4v') + target = cv2.VideoWriter(result_out_dir, fourcc, output_fps, (w, h)) + to_video = True + else: + to_video = False + + self.end_idx = min(self.end_idx, length) if self.end_idx is not None else length + + # calculate step args + step_size = self.model.step_frames * self.batch_size + lenth_per_step = self.model.required_frames + self.model.step_frames * ( + self.batch_size - 1) + repeat_frame = self.model.required_frames - self.model.step_frames + + prog_bar = ProgressBar( + math.ceil( + (self.end_idx + step_size - lenth_per_step - self.start_idx) / step_size)) + output_index = self.start_idx + for self.start_index in range(self.start_idx, self.end_idx, step_size): + images = read_frames( + source, self.start_index, lenth_per_step, from_video, end_index=self.end_idx) + + # data prepare + data = dict(img=images, inputs_path=None, key=inputs) + data = self.test_pipeline(data)['inputs'] / 255.0 + data = collate([data]) + # data.shape: [1, t, c, h, w] + + # forward the model + data = self.model.split_frames(data) + input_tensors = data.clone().detach() + with torch.no_grad(): + output = self.model(data.to(self.device), mode='tensor') + if len(output.shape) == 4: + output = output.unsqueeze(1) + output_tensors = output.cpu() + if len(output_tensors.shape) == 4: + output_tensors = output_tensors.unsqueeze(1) + result = self.model.merge_frames(input_tensors, output_tensors) + if not self.start_idx == self.start_index: + result = result[repeat_frame:] + prog_bar.update() + + # save frames + if to_video: + for frame in result: + target.write(frame) + else: + for frame in result: + save_path = osp.join(result_out_dir, + self.filename_tmpl.format(output_index)) + mmcv.imwrite(frame, save_path) + output_index += 1 + + if self.start_index + lenth_per_step >= self.end_idx: + break + + print() + print(f'Output dir: {result_out_dir}') + if to_video: + target.release() + + return {} def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: - - results = (preds[:, [2, 1, 0]] + 1.) / 2. - - # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) - - return results + result_out_dir: str = '') -> List[np.ndarray]: + pass - def _pred2dict(self, data_sample: EditDataSample) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. + def postprocess( + self, + preds: PredType, + imgs: Optional[List[np.ndarray]] = None + ) -> Union[ResType, Tuple[ResType, np.ndarray]]: + """Postprocess predictions. Args: - data_sample (EditDataSample): The data sample to be converted. + preds (List[Dict]): Predictions of the model. + imgs (Optional[np.ndarray]): Visualized predictions. + is_batch (bool): Whether the inputs are in a batch. + Defaults to False. + print_result (bool): Whether to print the result. + Defaults to False. + pred_out_file (str): Output file name to store predictions + without images. Supported file formats are “json”, “yaml/yml” + and “pickle/pkl”. Defaults to ''. + get_datasample (bool): Whether to use Datasample to store + inference results. If False, dict will be used. Returns: - dict: The output dictionary. + TODO """ - result = {} - result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() - return result + pass diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 119b695d45..0f6a8eec25 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -1,5 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved. import os +import os.path as osp import torch import numpy as np import mmcv @@ -7,22 +8,53 @@ from torchvision import utils from mmengine import mkdir_or_exist from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from mmedit.models.base_models import BaseTranslationModel from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType +VIDEO_EXTENSIONS = ('.mp4', '.mov') + +def pad_sequence(data, window_size): + """Pad frame sequence data. + + Args: + data (Tensor): The frame sequence data. + window_size (int): The window size used in sliding-window framework. + + Returns: + data (Tensor): The padded result. + """ + + padding = window_size // 2 + + data = torch.cat([ + data[:, 1 + padding:1 + 2 * padding].flip(1), data, + data[:, -1 - 2 * padding:-1 - padding].flip(1) + ], + dim=1) + + return data class VideoRestorationInferencer(BaseMMEditInferencer): func_kwargs = dict( - preprocess=['img'], + preprocess=['video'], forward=[], - visualize=['img_out_dir'], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) - def preprocess(self, img: InputsType) -> Dict: + def preprocess(self, video: InputsType) -> Dict: + import pdb;pdb.set_trace(); + # hard code parameters for unused code + infer_cfg = dict( + start_idx = 0, + filename_tmpl = '{08d}.png', + window_size = 0, + max_seq_len = None) + self.start_idx = infer_cfg.start_idx + self.filename_tmpl = infer_cfg.filename_tmpl + self.window_size = infer_cfg.window_size + self.max_seq_len = infer_cfg.max_seq_len # build the data pipeline if self.model.cfg.get('demo_pipeline', None): @@ -33,11 +65,11 @@ def preprocess(self, img: InputsType) -> Dict: test_pipeline = self.model.cfg.val_pipeline # check if the input is a video - file_extension = osp.splitext(img_dir)[1] + file_extension = osp.splitext(video)[1] if file_extension in VIDEO_EXTENSIONS: - video_reader = mmcv.VideoReader(img_dir) + video_reader = mmcv.VideoReader(video) # load the images - data = dict(img=[], img_path=None, key=img_dir) + data = dict(img=[], img_path=None, key=video) for frame in video_reader: data['img'].append(np.flip(frame, axis=2)) @@ -57,13 +89,13 @@ def preprocess(self, img: InputsType) -> Dict: f'"{test_pipeline[0]["type"]}".') # specify start_idx and filename_tmpl - test_pipeline[0]['start_idx'] = start_idx - test_pipeline[0]['filename_tmpl'] = filename_tmpl + test_pipeline[0]['start_idx'] = self.start_idx + test_pipeline[0]['filename_tmpl'] = self.filename_tmpl # prepare data - sequence_length = len(glob.glob(osp.join(img_dir, '*'))) - lq_folder = osp.dirname(img_dir) - key = osp.basename(img_dir) + sequence_length = len(glob.glob(osp.join(video, '*'))) + lq_folder = osp.dirname(video) + key = osp.basename(video) data = dict( img_path=lq_folder, gt_path='', @@ -77,22 +109,22 @@ def preprocess(self, img: InputsType) -> Dict: def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): - if window_size > 0: # sliding window framework - data = pad_sequence(data, window_size) + if self.window_size > 0: # sliding window framework + data = pad_sequence(data, self.window_size) result = [] - for i in range(0, data.size(1) - 2 * (window_size // 2)): - data_i = data[:, i:i + window_size].to(self.device) + for i in range(0, data.size(1) - 2 * (self.window_size // 2)): + data_i = data[:, i:i + self.window_size].to(self.device) result.append(self.model(inputs=data_i, mode='tensor').cpu()) result = torch.stack(result, dim=1) else: # recurrent framework - if max_seq_len is None: + if self.max_seq_len is None: result = self.model(inputs=data.to(self.device), mode='tensor').cpu() else: result = [] - for i in range(0, data.size(1), max_seq_len): + for i in range(0, data.size(1), self.max_seq_len): result.append( self.model( - inputs=data[:, i:i + max_seq_len].to(self.device), + inputs=data[:, i:i + self.max_seq_len].to(self.device), mode='tensor').cpu()) result = torch.cat(result, dim=1) return result @@ -100,13 +132,13 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, data: Dict = None, - img_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = '') -> List[np.ndarray]: results = (preds[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(img_out_dir)) - utils.save_image(results, img_out_dir) + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/mmedit/edit.py b/mmedit/edit.py index 2f84390133..97aaf5f609 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -71,7 +71,7 @@ def infer(self, label: InputsType = None, trimap: InputsType = None, mask: InputsType = None, - img_out_dir: str = '', + result_out_dir: str = '', show: bool = False, print_result: bool = False, pred_out_file: str = '', @@ -83,7 +83,7 @@ def infer(self, imgs (str or np.array or Sequence[str or np.array]): Img, folder path, np array or list/tuple (with img paths or np arrays). - img_out_dir (str): Output directory of images. Defaults to ''. + result_out_dir (str): Output directory of images. Defaults to ''. show (bool): Whether to display the image in a popup window. Defaults to False. print_result (bool): Whether to print the results. @@ -102,7 +102,7 @@ def infer(self, label=label, trimap=trimap, mask=mask, - img_out_dir=img_out_dir, + result_out_dir=result_out_dir, show=show, print_result=print_result, pred_out_file=pred_out_file, @@ -191,6 +191,7 @@ def get_model_config(self, model_name: str) -> Dict: }, # restoration models + # real_esrgan error 'real_esrgan': { 'type': 'restoration', 'version': { @@ -215,10 +216,17 @@ def get_model_config(self, model_name: str) -> Dict: }, # video_restoration models + # basicvsr error 'basicvsr': { 'type': 'video_restoration', 'version': { 'a': { + 'config': + 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', + 'ckpt': + '' + }, + 'b': { 'config': 'basicvsr/basicvsr_2xb4_reds4.py', 'ckpt': From c47c2625fb1d5f2b253ef5778964735830e1888e Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 7 Nov 2022 17:08:57 +0800 Subject: [PATCH 09/68] [high-level api] add video restoration inferencer --- .../apis/inferencers/inference_functions.py | 5 +- .../video_restoration_inferencer.py | 87 ++++++++++++------- 2 files changed, 59 insertions(+), 33 deletions(-) diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index 0efdba40ae..f60524c04c 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -4,6 +4,9 @@ import os.path as osp import glob import torch +import mmcv +import numpy as np +import cv2 from mmengine import is_list_of from mmengine import Config from mmengine.config import ConfigDict @@ -501,7 +504,7 @@ def restoration_face_inference(model, img, upscale_factor=1, face_size=1024): return restored_img -VIDEO_EXTENSIONS = ('.mp4', '.mov') +VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') def pad_sequence(data, window_size): diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 0f6a8eec25..19dc3f0129 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -4,15 +4,15 @@ import torch import numpy as np import mmcv -from typing import Dict, List -from torchvision import utils -from mmengine import mkdir_or_exist +import glob +import cv2 +from typing import Dict, List, Optional, Union, Tuple from mmengine.dataset import Compose -from mmedit.structures import EditDataSample -from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType +from mmedit.utils import tensor2img +from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType, ResType -VIDEO_EXTENSIONS = ('.mp4', '.mov') +VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') def pad_sequence(data, window_size): """Pad frame sequence data. @@ -41,20 +41,19 @@ class VideoRestorationInferencer(BaseMMEditInferencer): preprocess=['video'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, video: InputsType) -> Dict: - import pdb;pdb.set_trace(); # hard code parameters for unused code infer_cfg = dict( start_idx = 0, filename_tmpl = '{08d}.png', window_size = 0, max_seq_len = None) - self.start_idx = infer_cfg.start_idx - self.filename_tmpl = infer_cfg.filename_tmpl - self.window_size = infer_cfg.window_size - self.max_seq_len = infer_cfg.max_seq_len + self.start_idx = infer_cfg['start_idx'] + self.filename_tmpl = infer_cfg['filename_tmpl'] + self.window_size = infer_cfg['window_size'] + self.max_seq_len = infer_cfg['max_seq_len'] # build the data pipeline if self.model.cfg.get('demo_pipeline', None): @@ -107,10 +106,12 @@ def preprocess(self, video: InputsType) -> Dict: data = test_pipeline(data) data = data['inputs'].unsqueeze(0) / 255.0 # in cpu + return data + def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): if self.window_size > 0: # sliding window framework - data = pad_sequence(data, self.window_size) + data = pad_sequence(inputs, self.window_size) result = [] for i in range(0, data.size(1) - 2 * (self.window_size // 2)): data_i = data[:, i:i + self.window_size].to(self.device) @@ -118,13 +119,13 @@ def forward(self, inputs: InputsType) -> PredType: result = torch.stack(result, dim=1) else: # recurrent framework if self.max_seq_len is None: - result = self.model(inputs=data.to(self.device), mode='tensor').cpu() + result = self.model(inputs=inputs.to(self.device), mode='tensor').cpu() else: result = [] - for i in range(0, data.size(1), self.max_seq_len): + for i in range(0, inputs.size(1), self.max_seq_len): result.append( self.model( - inputs=data[:, i:i + self.max_seq_len].to(self.device), + inputs=inputs[:, i:i + self.max_seq_len].to(self.device), mode='tensor').cpu()) result = torch.cat(result, dim=1) return result @@ -133,26 +134,48 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: - - results = (preds[:, [2, 1, 0]] + 1.) / 2. - - # save images - mkdir_or_exist(os.path.dirname(result_out_dir)) - utils.save_image(results, result_out_dir) + file_extension = os.path.splitext(result_out_dir)[1] + if file_extension in VIDEO_EXTENSIONS: # save as video + h, w = preds.shape[-2:] + fourcc = cv2.VideoWriter_fourcc(*'mp4v') + video_writer = cv2.VideoWriter(result_out_dir, fourcc, 25, (w, h)) + for i in range(0, preds.size(1)): + img = tensor2img(preds[:, i, :, :, :]) + video_writer.write(img.astype(np.uint8)) + cv2.destroyAllWindows() + video_writer.release() + else: + for i in range(self.start_idx, self.start_idx + preds.size(1)): + output_i = preds[:, i - self.start_idx, :, :, :] + output_i = tensor2img(output_i) + save_path_i = f'{preds.output_dir}/{self.filename_tmpl.format(i)}' - return results + mmcv.imwrite(output_i, save_path_i) + + return [] - def _pred2dict(self, data_sample: EditDataSample) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. + def postprocess( + self, + preds: PredType, + imgs: Optional[List[np.ndarray]] = None + ) -> Union[ResType, Tuple[ResType, np.ndarray]]: + """Postprocess predictions. Args: - data_sample (EditDataSample): The data sample to be converted. + preds (List[Dict]): Predictions of the model. + imgs (Optional[np.ndarray]): Visualized predictions. + is_batch (bool): Whether the inputs are in a batch. + Defaults to False. + print_result (bool): Whether to print the result. + Defaults to False. + pred_out_file (str): Output file name to store predictions + without images. Supported file formats are “json”, “yaml/yml” + and “pickle/pkl”. Defaults to ''. + get_datasample (bool): Whether to use Datasample to store + inference results. If False, dict will be used. Returns: - dict: The output dictionary. + TODO """ - result = {} - result['pred_alpha'] = data_sample.output.pred_alpha.data.cpu() - return result + pass + From ac6973aa7d3933f40ea1699ea1fc43528e709e53 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 8 Nov 2022 11:02:30 +0800 Subject: [PATCH 10/68] [high-level api] pass linter check --- demo/mmediting_inference_demo.py | 37 ++++---- mmedit/apis/inferencers/base_inferencer.py | 15 ++-- .../inferencers/base_mmedit_inferencer.py | 12 +-- .../inferencers/conditional_inferencer.py | 20 +++-- .../apis/inferencers/inference_functions.py | 85 +++++++++++++++---- .../apis/inferencers/inpainting_inferencer.py | 30 +++---- mmedit/apis/inferencers/matting_inferencer.py | 15 ++-- mmedit/apis/inferencers/mmedit_inferencer.py | 15 ++-- .../inferencers/restoration_inferencer.py | 21 +++-- .../inferencers/translation_inferencer.py | 24 +++--- .../inferencers/unconditional_inferencer.py | 20 +++-- .../video_interpolation_inferencer.py | 71 +++++++++------- .../video_restoration_inferencer.py | 53 +++++++----- mmedit/utils/__init__.py | 12 +-- mmedit/utils/typing.py | 2 +- 15 files changed, 256 insertions(+), 176 deletions(-) diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index 555a45f4c2..76d484de7a 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -1,25 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +# isort: off from argparse import ArgumentParser - from mmedit.edit import MMEdit -# resources/input/matting/beach_fg.png def parse_args(): parser = ArgumentParser() parser.add_argument( - '--img', - type=str, - default='resources/input/restoration/0901x2.png', + '--img', + type=str, + default='resources/input/restoration/0901x2.png', help='Input image file.') parser.add_argument( - '--label', - type=int, - default=1, + '--video', + type=str, + default='resources/input/video_restoration/v_Basketball_g01_c01.avi', + help='Input video file.') + parser.add_argument( + '--label', + type=int, + default=1, help='Input label for conditional models.') parser.add_argument( - '--trimap', - type=str, - default='resources/input/matting/beach_trimap.png', + '--trimap', + type=str, + default='resources/input/matting/beach_trimap.png', help='Input for matting models.') parser.add_argument( '--mask', @@ -27,14 +32,14 @@ def parse_args(): default='resources/input/inpainting/mask_2_resized.png', help='path to input mask file') parser.add_argument( - '--img-out-dir', + '--result-out-dir', type=str, - default='resources/demo_results/inferencer_samples_apis.png', + default='resources/demo_results/inferencer_samples_apis_video.avi', help='Output directory of images.') parser.add_argument( '--model-name', type=str, - default='esrgan', + default='basicvsr', help='Pretrained editing algorithm') parser.add_argument( '--model-version', @@ -73,10 +78,12 @@ def parse_args(): args = parser.parse_args() return args + def main(): args = parse_args() editor = MMEdit(**vars(args)) editor.infer(**vars(args)) + if __name__ == '__main__': - main() \ No newline at end of file + main() diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py index 0e9afedf41..43568d2ec1 100644 --- a/mmedit/apis/inferencers/base_inferencer.py +++ b/mmedit/apis/inferencers/base_inferencer.py @@ -1,14 +1,15 @@ # Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp from datetime import datetime from typing import Dict, List, Optional, Sequence, Tuple, Union + +import mmcv import numpy as np import torch -import mmcv -import os.path as osp from mmengine.config import Config +from mmengine.dataset import Compose from mmengine.runner import load_checkpoint from mmengine.structures import InstanceData -from mmengine.dataset import Compose from mmedit.registry import MODELS, VISUALIZERS from mmedit.utils import ConfigType @@ -96,7 +97,7 @@ def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int: if transform['type'] == name: return i return -1 - + def _init_visualizer(self, cfg: ConfigType) -> None: """Initialize visualizers.""" # TODO: We don't export images via backends since the interface @@ -182,8 +183,8 @@ def visualize(self, raise ValueError('Unsupported input type: ' f'{type(single_input)}') - out_file = osp.join(result_out_dir, img_name) if result_out_dir != '' \ - else None + out_file = osp.join(result_out_dir, img_name) if \ + result_out_dir != '' else None self.visualizer.add_datasample( img_name, @@ -259,4 +260,4 @@ def _pred2dict(self, data_sample: torch.Tensor) -> Dict: """ result = {} result['infer_res'] = data_sample - return result \ No newline at end of file + return result diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 1de349e539..7b35a4dca5 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -1,5 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, List, Optional, Sequence, Tuple, Union + import numpy as np from mmengine.structures import InstanceData @@ -40,11 +41,11 @@ class BaseMMEditInferencer(BaseInferencer): preprocess=[], forward=[], visualize=[ - 'show', 'wait_time', 'draw_pred', 'pred_score_thr', 'result_out_dir' + 'show', 'wait_time', 'draw_pred', 'pred_score_thr', + 'result_out_dir' ], postprocess=['print_result', 'pred_out_file', 'get_datasample']) func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) - def __init__(self, config: Union[ConfigType, str], @@ -90,10 +91,5 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: data = self.preprocess(**preprocess_kwargs) preds = self.forward(data, **forward_kwargs) imgs = self.visualize(preds, data, **visualize_kwargs) - results = self.postprocess( - preds, imgs, **postprocess_kwargs) + results = self.postprocess(preds, imgs, **postprocess_kwargs) return results - - - - diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index d990452062..d455bb3aff 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -1,10 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. import os -import torch -import numpy as np from typing import Dict, List -from torchvision import utils + +import numpy as np +import torch from mmengine import mkdir_or_exist +from torchvision import utils from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType @@ -30,18 +31,19 @@ def preprocess(self, label: InputsType) -> Dict: else: sample_model = 'ema' - preprocess_res = dict(num_batches=sample_nums, labels=label, sample_model=sample_model) + preprocess_res = dict( + num_batches=sample_nums, labels=label, sample_model=sample_model) return preprocess_res def forward(self, inputs: InputsType) -> PredType: return self.model(inputs) - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: - + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: + res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) results = torch.stack(res_list, dim=0) diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index f60524c04c..452cb7df8a 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -1,22 +1,22 @@ # Copyright (c) OpenMMLab. All rights reserved. +import glob import math import os import os.path as osp -import glob -import torch + +import cv2 import mmcv import numpy as np -import cv2 -from mmengine import is_list_of -from mmengine import Config +import torch +from mmengine import Config, is_list_of from mmengine.config import ConfigDict -from mmengine.runner import load_checkpoint -from mmengine.runner import set_random_seed as set_random_seed_engine from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter from mmengine.fileio import FileClient +from mmengine.runner import load_checkpoint +from mmengine.runner import set_random_seed as set_random_seed_engine from mmengine.utils import ProgressBar +from torch.nn.parallel import scatter from mmedit.models.base_models import BaseTranslationModel from mmedit.registry import MODELS @@ -28,6 +28,7 @@ except ImportError: has_facexlib = False + def set_random_seed(seed, deterministic=False, use_rank_shift=True): """Set random seed. @@ -96,6 +97,7 @@ def init_model(config, checkpoint=None, device='cuda:0'): return model + @torch.no_grad() def sample_unconditional_model(model, num_samples=16, @@ -226,6 +228,7 @@ def sample_conditional_model(model, results = torch.stack(res_list, dim=0) return results + def inpainting_inference(model, masked_img, mask): """Inference image with the model. @@ -237,18 +240,18 @@ def inpainting_inference(model, masked_img, mask): Returns: Tensor: The predicted inpainting result. """ - cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline infer_pipeline = [ - dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), - dict( - type='LoadMask', - mask_mode='file', - ), - dict(type='GetMaskedImage'), - dict(type='PackEditInputs'),] + dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), + dict( + type='LoadMask', + mask_mode='file', + ), + dict(type='GetMaskedImage'), + dict(type='PackEditInputs'), + ] test_pipeline = Compose(infer_pipeline) # prepare data @@ -273,6 +276,7 @@ def inpainting_inference(model, masked_img, mask): result = result[0] * masks + masked_imgs * (1. - masks) return result + def matting_inference(model, img, trimap): """Inference image(s) with the model. @@ -317,6 +321,7 @@ def matting_inference(model, img, trimap): result = result.pred_alpha.data return result.cpu().numpy() + def sample_img2img_model(model, image_path, target_domain=None, **kwargs): """Sampling from translation models. @@ -361,6 +366,7 @@ def sample_img2img_model(model, image_path, target_domain=None, **kwargs): output = results['target'] return output + def restoration_inference(model, img, ref=None): """Inference image with the model. @@ -423,6 +429,7 @@ def restoration_inference(model, img, ref=None): result = result[0] return result + def restoration_face_inference(model, img, upscale_factor=1, face_size=1024): """Inference image with the model. @@ -814,3 +821,49 @@ def video_interpolation_inference(model, print(f'Output dir: {output_dir}') if to_video: target.release() + + +def colorization_inference(model, img): + """Inference image with the model. + + Args: + model (nn.Module): The loaded model. + img (str): Image file path. + + Returns: + Tensor: The predicted colorization result. + """ + device = next(model.parameters()).device + + # build the data pipeline + test_pipeline = Compose(model.cfg.test_pipeline) + # prepare data + data = dict(img_path=img) + _data = test_pipeline(data) + data = dict() + data['inputs'] = _data['inputs'] / 255.0 + data = collate([data]) + data['data_samples'] = [_data['data_samples']] + if 'cuda' in str(device): + data = scatter(data, [device])[0] + if not data['data_samples'][0].empty_box: + data['data_samples'][0].cropped_img.data = scatter( + data['data_samples'][0].cropped_img.data, [device])[0] / 255.0 + + data['data_samples'][0].box_info.data = scatter( + data['data_samples'][0].box_info.data, [device])[0] + + data['data_samples'][0].box_info_2x.data = scatter( + data['data_samples'][0].box_info_2x.data, [device])[0] + + data['data_samples'][0].box_info_4x.data = scatter( + data['data_samples'][0].box_info_4x.data, [device])[0] + + data['data_samples'][0].box_info_8x.data = scatter( + data['data_samples'][0].box_info_8x.data, [device])[0] + + # forward the model + with torch.no_grad(): + result = model(mode='tensor', **data) + + return result diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index 04722766e6..a2d92e2164 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -1,8 +1,9 @@ # Copyright (c) OpenMMLab. All rights reserved. -import torch +from typing import Dict, List + import mmcv import numpy as np -from typing import Dict, List +import torch from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from torch.nn.parallel import scatter @@ -21,14 +22,14 @@ class InpaintingInferencer(BaseMMEditInferencer): def preprocess(self, img: InputsType, mask: InputsType) -> Dict: infer_pipeline_cfg = [ - dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), - dict( - type='LoadMask', - mask_mode='file', - ), - dict(type='GetMaskedImage'), - dict(type='PackEditInputs'), - ] + dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), + dict( + type='LoadMask', + mask_mode='file', + ), + dict(type='GetMaskedImage'), + dict(type='PackEditInputs'), + ] infer_pipeline = Compose(infer_pipeline_cfg) @@ -49,11 +50,11 @@ def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): result, x = self.model(mode='tensor', **inputs) return result - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: result = preds[0] masks = data['data_samples'][0].mask.data masked_imgs = data['inputs'][0] @@ -63,4 +64,3 @@ def visualize(self, mmcv.imwrite(result, result_out_dir) return result - diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index 887544a3c0..31c5ccb240 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -1,9 +1,10 @@ # Copyright (c) OpenMMLab. All rights reserved. import os -import torch +from typing import Dict, List + import mmcv import numpy as np -from typing import Dict, List +import torch from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate @@ -42,8 +43,8 @@ def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: _data = test_pipeline(data) trimap = _data['data_samples'].trimap.data preprocess_res = dict() - preprocess_res['inputs'] = torch.cat([_data['inputs'], trimap], - dim=0).float() + preprocess_res['inputs'] = torch.cat([_data['inputs'], trimap], + dim=0).float() preprocess_res = collate([preprocess_res]) preprocess_res['data_samples'] = [_data['data_samples']] preprocess_res['mode'] = 'predict' @@ -55,8 +56,10 @@ def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): return self.model(**inputs) - - def visualize(self, preds: PredType, data: Dict = None, + + def visualize(self, + preds: PredType, + data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: result = preds[0].output result = result.pred_alpha.data.cpu() diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 07c302bbc3..d9eacce4cb 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -4,13 +4,14 @@ from mmedit.utils import ConfigType from .base_mmedit_inferencer import BaseMMEditInferencer from .conditional_inferencer import ConditionalInferencer -from .unconditional_inferencer import UnconditionalInferencer -from .matting_inferencer import MattingInferencer from .inpainting_inferencer import InpaintingInferencer -from .translation_inferencer import TranslationInferencer +from .matting_inferencer import MattingInferencer from .restoration_inferencer import RestorationInferencer -from .video_restoration_inferencer import VideoRestorationInferencer +from .translation_inferencer import TranslationInferencer +from .unconditional_inferencer import UnconditionalInferencer from .video_interpolation_inferencer import VideoInterpolationInferencer +from .video_restoration_inferencer import VideoRestorationInferencer + class MMEditInferencer(BaseMMEditInferencer): @@ -40,10 +41,10 @@ def __init__(self, elif self.type == 'video_restoration': self.inferencer = VideoRestorationInferencer(config, ckpt, device) elif self.type == 'video_interpolation': - self.inferencer = VideoInterpolationInferencer(config, ckpt, device) + self.inferencer = VideoInterpolationInferencer( + config, ckpt, device) else: raise ValueError(f'Unknown inferencer type: {self.type}') - + def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: return self.inferencer(**kwargs) - diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index e6a79f39b0..c673f07e5d 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -1,9 +1,9 @@ # Copyright (c) OpenMMLab. All rights reserved. -import os -import torch -import numpy as np -import mmcv from typing import Dict, List + +import mmcv +import numpy as np +import torch from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from torch.nn.parallel import scatter @@ -21,7 +21,7 @@ class RestorationInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: - + cfg = self.model.cfg device = next(self.model.parameters()).device # model device @@ -73,14 +73,13 @@ def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): result = self.model(mode='tensor', **inputs) return result - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: - + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: + output = tensor2img(preds[0]) mmcv.imwrite(output, result_out_dir) return output - diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index d50549b462..e82e2b2aef 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -1,12 +1,13 @@ # Copyright (c) OpenMMLab. All rights reserved. import os -import torch -import numpy as np from typing import Dict, List -from torchvision import utils + +import numpy as np +import torch from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate +from torchvision import utils from mmedit.models.base_models import BaseTranslationModel from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType @@ -21,7 +22,7 @@ class TranslationInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType) -> Dict: - + assert isinstance(self.model, BaseTranslationModel) # get source domain and target domain @@ -49,17 +50,15 @@ def preprocess(self, img: InputsType) -> Dict: def forward(self, inputs: InputsType) -> PredType: with torch.no_grad(): results = self.model( - inputs, - test_mode=True, - target_domain=self.target_domain) + inputs, test_mode=True, target_domain=self.target_domain) output = results['target'] return output - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: - + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: + results = (preds[:, [2, 1, 0]] + 1.) / 2. # save images @@ -67,4 +66,3 @@ def visualize(self, utils.save_image(results, result_out_dir) return results - diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index ff19ddf102..9e6a0d5170 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -1,10 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. import os -import torch -import numpy as np from typing import Dict, List -from torchvision import utils + +import numpy as np +import torch from mmengine import mkdir_or_exist +from torchvision import utils from mmedit.structures import EditDataSample from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType @@ -30,18 +31,19 @@ def preprocess(self) -> Dict: else: sample_model = 'ema' - preprocess_res = dict(num_batches=sample_nums, sample_model=sample_model) + preprocess_res = dict( + num_batches=sample_nums, sample_model=sample_model) return preprocess_res def forward(self, inputs: InputsType) -> PredType: return self.model(inputs) - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: - + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: + res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) results = torch.stack(res_list, dim=0) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index ea2d40cc47..ead0524bc7 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -1,19 +1,20 @@ # Copyright (c) OpenMMLab. All rights reserved. -import os import math +import os import os.path as osp -import torch -import numpy as np -import mmcv +from typing import Dict, List, Optional, Tuple, Union + import cv2 -from typing import Dict, List, Union, Tuple, Optional +import mmcv +import numpy as np +import torch +from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from mmengine.fileio import FileClient from mmengine.utils import ProgressBar -from mmengine.dataset import Compose - -from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType, ResType +from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, + PredType, ResType) VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') FILE_CLIENT = FileClient('disk') @@ -71,12 +72,12 @@ class VideoInterpolationInferencer(BaseMMEditInferencer): def preprocess(self, video: InputsType) -> Dict: infer_cfg = dict( - start_idx = 0, - end_idx = None, - batch_size = 4, - fps_multiplier=0, - fps=0, - filename_tmpl = '{08d}.png') + start_idx=0, + end_idx=None, + batch_size=4, + fps_multiplier=0, + fps=0, + filename_tmpl='{08d}.png') self.start_idx = infer_cfg['start_idx'] self.end_idx = infer_cfg['end_idx'] self.batch_size = infer_cfg['batch_size'] @@ -106,7 +107,8 @@ def preprocess(self, video: InputsType) -> Dict: return video - def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: + def forward(self, inputs: InputsType, + result_out_dir: InputsType) -> PredType: # check if the input is a video input_file_extension = os.path.splitext(inputs)[1] if input_file_extension in VIDEO_EXTENSIONS: @@ -116,7 +118,8 @@ def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: from_video = True h, w = source.height, source.width if self.fps_multiplier: - assert self.fps_multiplier > 0, '`fps_multiplier` cannot be negative' + assert self.fps_multiplier > 0, \ + '`fps_multiplier` cannot be negative' output_fps = self.fps_multiplier * input_fps else: output_fps = self.fps if self.fps > 0 else input_fps * 2 @@ -135,26 +138,33 @@ def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: output_file_extension = os.path.splitext(result_out_dir)[1] if output_file_extension in VIDEO_EXTENSIONS: fourcc = cv2.VideoWriter_fourcc(*'mp4v') - target = cv2.VideoWriter(result_out_dir, fourcc, output_fps, (w, h)) + target = cv2.VideoWriter(result_out_dir, fourcc, output_fps, + (w, h)) to_video = True else: to_video = False - self.end_idx = min(self.end_idx, length) if self.end_idx is not None else length + self.end_idx = min(self.end_idx, + length) if self.end_idx is not None else length # calculate step args step_size = self.model.step_frames * self.batch_size - lenth_per_step = self.model.required_frames + self.model.step_frames * ( - self.batch_size - 1) + lenth_per_step = self.model.required_frames + \ + self.model.step_frames * (self.batch_size - 1) repeat_frame = self.model.required_frames - self.model.step_frames prog_bar = ProgressBar( math.ceil( - (self.end_idx + step_size - lenth_per_step - self.start_idx) / step_size)) + (self.end_idx + step_size - lenth_per_step - self.start_idx) / + step_size)) output_index = self.start_idx for self.start_index in range(self.start_idx, self.end_idx, step_size): images = read_frames( - source, self.start_index, lenth_per_step, from_video, end_index=self.end_idx) + source, + self.start_index, + lenth_per_step, + from_video, + end_index=self.end_idx) # data prepare data = dict(img=images, inputs_path=None, key=inputs) @@ -183,8 +193,9 @@ def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: target.write(frame) else: for frame in result: - save_path = osp.join(result_out_dir, - self.filename_tmpl.format(output_index)) + save_path = osp.join( + result_out_dir, + self.filename_tmpl.format(output_index)) mmcv.imwrite(frame, save_path) output_index += 1 @@ -195,17 +206,17 @@ def forward(self, inputs: InputsType, result_out_dir: InputsType) -> PredType: print(f'Output dir: {result_out_dir}') if to_video: target.release() - + return {} - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: pass def postprocess( - self, + self, preds: PredType, imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 19dc3f0129..5640e28d91 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -1,19 +1,22 @@ # Copyright (c) OpenMMLab. All rights reserved. +import glob import os import os.path as osp -import torch -import numpy as np -import mmcv -import glob +from typing import Dict, List, Optional, Tuple, Union + import cv2 -from typing import Dict, List, Optional, Union, Tuple +import mmcv +import numpy as np +import torch from mmengine.dataset import Compose from mmedit.utils import tensor2img -from .base_mmedit_inferencer import BaseMMEditInferencer, InputsType, PredType, ResType +from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, + PredType, ResType) VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') + def pad_sequence(data, window_size): """Pad frame sequence data. @@ -35,6 +38,7 @@ def pad_sequence(data, window_size): return data + class VideoRestorationInferencer(BaseMMEditInferencer): func_kwargs = dict( @@ -46,15 +50,15 @@ class VideoRestorationInferencer(BaseMMEditInferencer): def preprocess(self, video: InputsType) -> Dict: # hard code parameters for unused code infer_cfg = dict( - start_idx = 0, - filename_tmpl = '{08d}.png', - window_size = 0, - max_seq_len = None) + start_idx=0, + filename_tmpl='{08d}.png', + window_size=0, + max_seq_len=None) self.start_idx = infer_cfg['start_idx'] self.filename_tmpl = infer_cfg['filename_tmpl'] self.window_size = infer_cfg['window_size'] self.max_seq_len = infer_cfg['max_seq_len'] - + # build the data pipeline if self.model.cfg.get('demo_pipeline', None): test_pipeline = self.model.cfg.demo_pipeline @@ -81,7 +85,7 @@ def preprocess(self, video: InputsType) -> Dict: tmp_pipeline.append(pipeline) test_pipeline = tmp_pipeline else: - # the first element in the pipeline must be 'GenerateSegmentIndices' + # the first element in the pipeline must be 'GenerateSegmentIndices' # noqa: E501 if test_pipeline[0]['type'] != 'GenerateSegmentIndices': raise TypeError('The first element in the pipeline must be ' f'"GenerateSegmentIndices", but got ' @@ -115,25 +119,28 @@ def forward(self, inputs: InputsType) -> PredType: result = [] for i in range(0, data.size(1) - 2 * (self.window_size // 2)): data_i = data[:, i:i + self.window_size].to(self.device) - result.append(self.model(inputs=data_i, mode='tensor').cpu()) + result.append( + self.model(inputs=data_i, mode='tensor').cpu()) result = torch.stack(result, dim=1) else: # recurrent framework if self.max_seq_len is None: - result = self.model(inputs=inputs.to(self.device), mode='tensor').cpu() + result = self.model( + inputs=inputs.to(self.device), mode='tensor').cpu() else: result = [] for i in range(0, inputs.size(1), self.max_seq_len): result.append( self.model( - inputs=inputs[:, i:i + self.max_seq_len].to(self.device), + inputs=inputs[:, i:i + self.max_seq_len].to( + self.device), mode='tensor').cpu()) result = torch.cat(result, dim=1) return result - + def visualize(self, - preds: PredType, - data: Dict = None, - result_out_dir: str = '') -> List[np.ndarray]: + preds: PredType, + data: Dict = None, + result_out_dir: str = '') -> List[np.ndarray]: file_extension = os.path.splitext(result_out_dir)[1] if file_extension in VIDEO_EXTENSIONS: # save as video h, w = preds.shape[-2:] @@ -148,14 +155,15 @@ def visualize(self, for i in range(self.start_idx, self.start_idx + preds.size(1)): output_i = preds[:, i - self.start_idx, :, :, :] output_i = tensor2img(output_i) - save_path_i = f'{preds.output_dir}/{self.filename_tmpl.format(i)}' + save_path_i = f'{preds.output_dir} / \ + {self.filename_tmpl.format(i)}' mmcv.imwrite(output_i, save_path_i) - + return [] def postprocess( - self, + self, preds: PredType, imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: @@ -178,4 +186,3 @@ def postprocess( TODO """ pass - diff --git a/mmedit/utils/__init__.py b/mmedit/utils/__init__.py index c0c0892d43..ce14853774 100644 --- a/mmedit/utils/__init__.py +++ b/mmedit/utils/__init__.py @@ -9,13 +9,13 @@ from .trans_utils import (add_gaussian_noise, adjust_gamma, bbox2mask, brush_stroke_mask, get_irregular_mask, make_coord, random_bbox, random_choose_unknown) -from .typing import ForwardInputs, LabelVar, NoiseVar, SampleList, ConfigType +from .typing import ConfigType, ForwardInputs, LabelVar, NoiseVar, SampleList __all__ = [ 'modify_args', 'print_colored_log', 'register_all_modules', 'try_import', - 'ForwardInputs', 'SampleList', 'NoiseVar', 'ConfigType', 'LabelVar', 'MMEDIT_CACHE_DIR', - 'download_from_url', 'get_sampler', 'tensor2img', 'random_choose_unknown', - 'add_gaussian_noise', 'adjust_gamma', 'make_coord', 'bbox2mask', - 'brush_stroke_mask', 'get_irregular_mask', 'random_bbox', 'reorder_image', - 'to_numpy', 'get_box_info' + 'ForwardInputs', 'SampleList', 'NoiseVar', 'ConfigType', 'LabelVar', + 'MMEDIT_CACHE_DIR', 'download_from_url', 'get_sampler', 'tensor2img', + 'random_choose_unknown', 'add_gaussian_noise', 'adjust_gamma', + 'make_coord', 'bbox2mask', 'brush_stroke_mask', 'get_irregular_mask', + 'random_bbox', 'reorder_image', 'to_numpy', 'get_box_info' ] diff --git a/mmedit/utils/typing.py b/mmedit/utils/typing.py index 88ccdd4e62..ff6a56a7f9 100644 --- a/mmedit/utils/typing.py +++ b/mmedit/utils/typing.py @@ -1,8 +1,8 @@ # Copyright (c) OpenMMLab. All rights reserved. from typing import Callable, Dict, List, Sequence, Tuple, Union -from mmengine.structures import BaseDataElement from mmengine.config import ConfigDict +from mmengine.structures import BaseDataElement from torch import Tensor ForwardInputs = Tuple[Dict[str, Union[Tensor, str, int]], Tensor] From 5f130c5e5103140f2d58c9f8954ef06e624ba236 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 8 Nov 2022 13:00:59 +0800 Subject: [PATCH 11/68] [hight-level api] append linter check --- mmedit/apis/__init__.py | 21 +------- mmedit/apis/inferencers/__init__.py | 19 ++++++- mmedit/edit.py | 82 +++++++++++++++-------------- 3 files changed, 61 insertions(+), 61 deletions(-) diff --git a/mmedit/apis/__init__.py b/mmedit/apis/__init__.py index 9431728334..71141fb7a5 100644 --- a/mmedit/apis/__init__.py +++ b/mmedit/apis/__init__.py @@ -1,21 +1,2 @@ # Copyright (c) OpenMMLab. All rights reserved. -from .colorization_inference import colorization_inference -from .gan_inference import sample_conditional_model, sample_unconditional_model -from .inference import delete_cfg, init_model, set_random_seed -from .inpainting_inference import inpainting_inference -from .matting_inference import matting_inference -from .restoration_face_inference import restoration_face_inference -from .restoration_inference import restoration_inference -from .restoration_video_inference import restoration_video_inference -from .translation_inference import sample_img2img_model -from .video_interpolation_inference import video_interpolation_inference -from .inferencers import * - -__all__ = [ - 'init_model', 'delete_cfg', 'set_random_seed', 'matting_inference', - 'inpainting_inference', 'restoration_inference', - 'restoration_video_inference', 'restoration_face_inference', - 'video_interpolation_inference', 'sample_conditional_model', - 'sample_unconditional_model', 'sample_img2img_model', - 'colorization_inference' -] +from .inferencers import * # NOQA diff --git a/mmedit/apis/inferencers/__init__.py b/mmedit/apis/inferencers/__init__.py index 90f36eb87a..2fc72032df 100644 --- a/mmedit/apis/inferencers/__init__.py +++ b/mmedit/apis/inferencers/__init__.py @@ -1,6 +1,23 @@ # Copyright (c) OpenMMLab. All rights reserved. +# yapf: disable +from .inference_functions import (colorization_inference, delete_cfg, + init_model, inpainting_inference, + matting_inference, + restoration_face_inference, + restoration_inference, + restoration_video_inference, + sample_conditional_model, + sample_img2img_model, + sample_unconditional_model, set_random_seed, + video_interpolation_inference) +# yapf: enable from .mmedit_inferencer import MMEditInferencer __all__ = [ - 'MMEditInferencer' + 'MMEditInferencer', 'init_model', 'delete_cfg', 'set_random_seed', + 'matting_inference', 'inpainting_inference', 'restoration_inference', + 'restoration_video_inference', 'restoration_face_inference', + 'video_interpolation_inference', 'sample_conditional_model', + 'sample_unconditional_model', 'sample_img2img_model', + 'colorization_inference' ] diff --git a/mmedit/edit.py b/mmedit/edit.py index 97aaf5f609..d826f78415 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -1,9 +1,10 @@ # Copyright (c) OpenMMLab. All rights reserved. import os import warnings -import torch from typing import Dict, List, Optional, Union +import torch + from mmedit.apis.inferencers import MMEditInferencer from mmedit.apis.inferencers.base_mmedit_inferencer import InputsType from mmedit.utils import register_all_modules @@ -34,21 +35,25 @@ def __init__(self, register_all_modules(init_default_scope=True) inferencer_kwargs = {} inferencer_kwargs.update( - self._get_inferencer_kwargs(model_name, model_version, model_config, model_ckpt)) + self._get_inferencer_kwargs(model_name, model_version, + model_config, model_ckpt)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) - def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[str], - config: Optional[str], ckpt: Optional[str]) -> Dict: + def _get_inferencer_kwargs(self, model: Optional[str], + model_version: Optional[str], + config: Optional[str], + ckpt: Optional[str]) -> Dict: """Get the kwargs for the inferencer.""" kwargs = {} if model is not None: cfgs = self.get_model_config(model) kwargs['type'] = cfgs['type'] - kwargs['config'] = os.path.join('configs/', cfgs['version'][model_version]['config']) + kwargs['config'] = os.path.join( + 'configs/', cfgs['version'][model_version]['config']) kwargs['ckpt'] = cfgs['version'][model_version]['ckpt'] # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ - # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' + # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' if config is not None: if kwargs.get('config', None) is not None: @@ -66,18 +71,18 @@ def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[s return kwargs def infer(self, - img: InputsType = None, - video: InputsType = None, - label: InputsType = None, - trimap: InputsType = None, - mask: InputsType = None, - result_out_dir: str = '', - show: bool = False, - print_result: bool = False, - pred_out_file: str = '', - **kwargs) -> Union[Dict, List[Dict]]: - """Inferences edit model on an image(video) or a - folder of images(videos). + img: InputsType = None, + video: InputsType = None, + label: InputsType = None, + trimap: InputsType = None, + mask: InputsType = None, + result_out_dir: str = '', + show: bool = False, + print_result: bool = False, + pred_out_file: str = '', + **kwargs) -> Union[Dict, List[Dict]]: + """Inferences edit model on an image(video) or a folder of + images(videos). Args: imgs (str or np.array or Sequence[str or np.array]): Img, @@ -120,22 +125,21 @@ def get_model_config(self, model_name: str) -> Dict: model_dict = { # conditional models 'biggan': { - 'type':'conditional', + 'type': 'conditional', 'version': { 'a': { 'config': 'biggan/dbnet_resnet18_fpnc_1200e_icdar2015.py', 'ckpt': - 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' + 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 }, 'b': { 'config': - 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', + 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', # noqa: E501 'ckpt': - 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' + 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 } }, - }, # unconditional models @@ -146,7 +150,7 @@ def get_model_config(self, model_name: str) -> Dict: 'config': 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', 'ckpt': - 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' + 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 } } }, @@ -159,7 +163,7 @@ def get_model_config(self, model_name: str) -> Dict: 'config': 'gca/gca_r34_4xb10-200k_comp1k.py', 'ckpt': - 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' + 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 } } }, @@ -172,7 +176,7 @@ def get_model_config(self, model_name: str) -> Dict: 'config': 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', 'ckpt': - 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' + 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 } } }, @@ -183,9 +187,9 @@ def get_model_config(self, model_name: str) -> Dict: 'version': { 'a': { 'config': - 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', + 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 'ckpt': - 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' + 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 } } }, @@ -197,9 +201,9 @@ def get_model_config(self, model_name: str) -> Dict: 'version': { 'a': { 'config': - 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', + 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 'ckpt': - 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' + 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 }, } }, @@ -208,29 +212,28 @@ def get_model_config(self, model_name: str) -> Dict: 'version': { 'a': { 'config': - 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', + 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 'ckpt': - 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' + 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 } } }, # video_restoration models - # basicvsr error 'basicvsr': { 'type': 'video_restoration', 'version': { 'a': { 'config': - 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', + 'basicvsr/basicvsr_2xb4_reds4.py', 'ckpt': - '' + 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 }, 'b': { 'config': - 'basicvsr/basicvsr_2xb4_reds4.py', + 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', 'ckpt': - 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' + 'ckpt/video_restoration/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 } } }, @@ -241,13 +244,12 @@ def get_model_config(self, model_name: str) -> Dict: 'version': { 'a': { 'config': - 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', + 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 'ckpt': - 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' + 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 } } } - } if model_name not in model_dict: From 8cee84a067f15ef5b573ebe13dc56c647ba80880 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 8 Nov 2022 16:36:26 +0800 Subject: [PATCH 12/68] [high-level api] delete old interface py code --- mmedit/apis/colorization_inference.py | 51 ----- mmedit/apis/gan_inference.py | 134 ------------ mmedit/apis/inference.py | 77 ------- .../apis/inferencers/inference_functions.py | 13 +- mmedit/apis/inpainting_inference.py | 44 ---- mmedit/apis/matting_inference.py | 50 ----- mmedit/apis/restoration_face_inference.py | 94 --------- mmedit/apis/restoration_inference.py | 68 ------ mmedit/apis/restoration_video_inference.py | 137 ------------ mmedit/apis/translation_inference.py | 51 ----- mmedit/apis/video_interpolation_inference.py | 197 ------------------ 11 files changed, 7 insertions(+), 909 deletions(-) delete mode 100644 mmedit/apis/colorization_inference.py delete mode 100644 mmedit/apis/gan_inference.py delete mode 100644 mmedit/apis/inference.py delete mode 100644 mmedit/apis/inpainting_inference.py delete mode 100644 mmedit/apis/matting_inference.py delete mode 100644 mmedit/apis/restoration_face_inference.py delete mode 100644 mmedit/apis/restoration_inference.py delete mode 100644 mmedit/apis/restoration_video_inference.py delete mode 100644 mmedit/apis/translation_inference.py delete mode 100644 mmedit/apis/video_interpolation_inference.py diff --git a/mmedit/apis/colorization_inference.py b/mmedit/apis/colorization_inference.py deleted file mode 100644 index ddef7ef587..0000000000 --- a/mmedit/apis/colorization_inference.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter - - -def colorization_inference(model, img): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - img (str): Image file path. - - Returns: - Tensor: The predicted colorization result. - """ - device = next(model.parameters()).device - - # build the data pipeline - test_pipeline = Compose(model.cfg.test_pipeline) - # prepare data - data = dict(img_path=img) - _data = test_pipeline(data) - data = dict() - data['inputs'] = _data['inputs'] / 255.0 - data = collate([data]) - data['data_samples'] = [_data['data_samples']] - if 'cuda' in str(device): - data = scatter(data, [device])[0] - if not data['data_samples'][0].empty_box: - data['data_samples'][0].cropped_img.data = scatter( - data['data_samples'][0].cropped_img.data, [device])[0] / 255.0 - - data['data_samples'][0].box_info.data = scatter( - data['data_samples'][0].box_info.data, [device])[0] - - data['data_samples'][0].box_info_2x.data = scatter( - data['data_samples'][0].box_info_2x.data, [device])[0] - - data['data_samples'][0].box_info_4x.data = scatter( - data['data_samples'][0].box_info_4x.data, [device])[0] - - data['data_samples'][0].box_info_8x.data = scatter( - data['data_samples'][0].box_info_8x.data, [device])[0] - - # forward the model - with torch.no_grad(): - result = model(mode='tensor', **data) - - return result diff --git a/mmedit/apis/gan_inference.py b/mmedit/apis/gan_inference.py deleted file mode 100644 index 20fb76140f..0000000000 --- a/mmedit/apis/gan_inference.py +++ /dev/null @@ -1,134 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine import is_list_of - - -@torch.no_grad() -def sample_unconditional_model(model, - num_samples=16, - num_batches=4, - sample_model='ema', - **kwargs): - """Sampling from unconditional models. - - Args: - model (nn.Module): Unconditional models in MMGeneration. - num_samples (int, optional): The total number of samples. - Defaults to 16. - num_batches (int, optional): The number of batch size for inference. - Defaults to 4. - sample_model (str, optional): Which model you want to use. ['ema', - 'orig']. Defaults to 'ema'. - - Returns: - Tensor: Generated image tensor. - """ - # set eval mode - model.eval() - # construct sampling list for batches - n_repeat = num_samples // num_batches - batches_list = [num_batches] * n_repeat - - if num_samples % num_batches > 0: - batches_list.append(num_samples % num_batches) - res_list = [] - - # inference - for batches in batches_list: - res = model( - dict(num_batches=batches, sample_model=sample_model), **kwargs) - res_list.extend([item.fake_img.data.cpu() for item in res]) - - results = torch.stack(res_list, dim=0) - return results - - -@torch.no_grad() -def sample_conditional_model(model, - num_samples=16, - num_batches=4, - sample_model='ema', - label=None, - **kwargs): - """Sampling from conditional models. - - Args: - model (nn.Module): Conditional models in MMGeneration. - num_samples (int, optional): The total number of samples. - Defaults to 16. - num_batches (int, optional): The number of batch size for inference. - Defaults to 4. - sample_model (str, optional): Which model you want to use. ['ema', - 'orig']. Defaults to 'ema'. - label (int | torch.Tensor | list[int], optional): Labels used to - generate images. Default to None., - - Returns: - Tensor: Generated image tensor. - """ - # set eval mode - model.eval() - # construct sampling list for batches - n_repeat = num_samples // num_batches - batches_list = [num_batches] * n_repeat - - # check and convert the input labels - if isinstance(label, int): - label = torch.LongTensor([label] * num_samples) - elif isinstance(label, torch.Tensor): - label = label.type(torch.int64) - if label.numel() == 1: - # repeat single tensor - # call view(-1) to avoid nested tensor like [[[1]]] - label = label.view(-1).repeat(num_samples) - else: - # flatten multi tensors - label = label.view(-1) - elif isinstance(label, list): - if is_list_of(label, int): - label = torch.LongTensor(label) - # `nargs='+'` parse single integer as list - if label.numel() == 1: - # repeat single tensor - label = label.repeat(num_samples) - else: - raise TypeError('Only support `int` for label list elements, ' - f'but receive {type(label[0])}') - elif label is None: - pass - else: - raise TypeError('Only support `int`, `torch.Tensor`, `list[int]` or ' - f'None as label, but receive {type(label)}.') - - # check the length of the (converted) label - if label is not None and label.size(0) != num_samples: - raise ValueError('Number of elements in the label list should be ONE ' - 'or the length of `num_samples`. Requires ' - f'{num_samples}, but receive {label.size(0)}.') - - # make label list - label_list = [] - for n in range(n_repeat): - if label is None: - label_list.append(None) - else: - label_list.append(label[n * num_batches:(n + 1) * num_batches]) - - if num_samples % num_batches > 0: - batches_list.append(num_samples % num_batches) - if label is None: - label_list.append(None) - else: - label_list.append(label[(n + 1) * num_batches:]) - - res_list = [] - - # inference - for batches, labels in zip(batches_list, label_list): - res = model( - dict( - num_batches=batches, labels=labels, sample_model=sample_model), - **kwargs) - res_list.extend([item.fake_img.data.cpu() for item in res]) - results = torch.stack(res_list, dim=0) - return results diff --git a/mmedit/apis/inference.py b/mmedit/apis/inference.py deleted file mode 100644 index bf0c37b828..0000000000 --- a/mmedit/apis/inference.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from mmengine import Config -from mmengine.config import ConfigDict -from mmengine.runner import load_checkpoint -from mmengine.runner import set_random_seed as set_random_seed_engine - -from mmedit.registry import MODELS -from mmedit.utils import register_all_modules - - -def set_random_seed(seed, deterministic=False, use_rank_shift=True): - """Set random seed. - - In this function, we just modify the default behavior of the similar - function defined in MMCV. - - Args: - seed (int): Seed to be used. - deterministic (bool): Whether to set the deterministic option for - CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` - to True and `torch.backends.cudnn.benchmark` to False. - Default: False. - rank_shift (bool): Whether to add rank number to the random seed to - have different random seed in different threads. Default: True. - """ - set_random_seed_engine( - seed, deterministic=deterministic, use_rank_shift=use_rank_shift) - - -def delete_cfg(cfg, key='init_cfg'): - """Delete key from config object. - - Args: - cfg (str or :obj:`mmengine.Config`): Config object. - key (str): Which key to delete. - """ - - if key in cfg: - cfg.pop(key) - for _key in cfg.keys(): - if isinstance(cfg[_key], ConfigDict): - delete_cfg(cfg[_key], key) - - -def init_model(config, checkpoint=None, device='cuda:0'): - """Initialize a model from config file. - - Args: - config (str or :obj:`mmengine.Config`): Config file path or the config - object. - checkpoint (str, optional): Checkpoint path. If left as None, the model - will not load any weights. - device (str): Which device the model will deploy. Default: 'cuda:0'. - - Returns: - nn.Module: The constructed model. - """ - - if isinstance(config, str): - config = Config.fromfile(config) - elif not isinstance(config, Config): - raise TypeError('config must be a filename or Config object, ' - f'but got {type(config)}') - # config.test_cfg.metrics = None - delete_cfg(config.model, 'init_cfg') - - register_all_modules() - model = MODELS.build(config.model) - - if checkpoint is not None: - checkpoint = load_checkpoint(model, checkpoint) - - model.cfg = config # save the config in the model for convenience - model.to(device) - model.eval() - - return model diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index 452cb7df8a..b7c681e768 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -22,12 +22,6 @@ from mmedit.registry import MODELS from mmedit.utils import register_all_modules -try: - from facexlib.utils.face_restoration_helper import FaceRestoreHelper - has_facexlib = True -except ImportError: - has_facexlib = False - def set_random_seed(seed, deterministic=False, use_rank_shift=True): """Set random seed. @@ -430,6 +424,13 @@ def restoration_inference(model, img, ref=None): return result +try: + from facexlib.utils.face_restoration_helper import FaceRestoreHelper + has_facexlib = True +except ImportError: + has_facexlib = False + + def restoration_face_inference(model, img, upscale_factor=1, face_size=1024): """Inference image with the model. diff --git a/mmedit/apis/inpainting_inference.py b/mmedit/apis/inpainting_inference.py deleted file mode 100644 index 11806cdff9..0000000000 --- a/mmedit/apis/inpainting_inference.py +++ /dev/null @@ -1,44 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter - - -def inpainting_inference(model, masked_img, mask): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - masked_img (str): File path of image with mask. - mask (str): Mask file path. - - Returns: - Tensor: The predicted inpainting result. - """ - cfg = model.cfg - device = next(model.parameters()).device # model device - - # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - # prepare data - data = dict(gt_path=masked_img, mask_path=mask) - _data = test_pipeline(data) - data = dict() - data['inputs'] = _data['inputs'] / 255.0 - data = collate([data]) - data['data_samples'] = [_data['data_samples']] - if 'cuda' in str(device): - data = scatter(data, [device])[0] - data['data_samples'][0].mask.data = scatter( - data['data_samples'][0].mask.data, [device])[0] / 255.0 - # else: - # data.pop('meta') - # forward the model - with torch.no_grad(): - result, x = model(mode='tensor', **data) - - masks = _data['data_samples'].mask.data * 255 - masked_imgs = data['inputs'][0] - result = result[0] * masks + masked_imgs * (1. - masks) - return result diff --git a/mmedit/apis/matting_inference.py b/mmedit/apis/matting_inference.py deleted file mode 100644 index 78aa67f075..0000000000 --- a/mmedit/apis/matting_inference.py +++ /dev/null @@ -1,50 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter - - -def matting_inference(model, img, trimap): - """Inference image(s) with the model. - - Args: - model (nn.Module): The loaded model. - img (str): Image file path. - trimap (str): Trimap file path. - - Returns: - np.ndarray: The predicted alpha matte. - """ - cfg = model.cfg - device = next(model.parameters()).device # model device - # remove alpha from test_pipeline - keys_to_remove = ['alpha', 'ori_alpha'] - for key in keys_to_remove: - for pipeline in list(cfg.test_pipeline): - if 'key' in pipeline and key == pipeline['key']: - cfg.test_pipeline.remove(pipeline) - if 'keys' in pipeline and key in pipeline['keys']: - pipeline['keys'].remove(key) - if len(pipeline['keys']) == 0: - cfg.test_pipeline.remove(pipeline) - if 'meta_keys' in pipeline and key in pipeline['meta_keys']: - pipeline['meta_keys'].remove(key) - # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - # prepare data - data = dict(merged_path=img, trimap_path=trimap) - _data = test_pipeline(data) - trimap = _data['data_samples'].trimap.data - data = dict() - data['inputs'] = torch.cat([_data['inputs'], trimap], dim=0).float() - data = collate([data]) - data['data_samples'] = [_data['data_samples']] - if 'cuda' in str(device): - data = scatter(data, [device])[0] - # forward the model - with torch.no_grad(): - result = model(mode='predict', **data) - result = result[0].output - result = result.pred_alpha.data - return result.cpu().numpy() diff --git a/mmedit/apis/restoration_face_inference.py b/mmedit/apis/restoration_face_inference.py deleted file mode 100644 index 5f612f6812..0000000000 --- a/mmedit/apis/restoration_face_inference.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import mmcv -import numpy as np -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter - -try: - from facexlib.utils.face_restoration_helper import FaceRestoreHelper - has_facexlib = True -except ImportError: - has_facexlib = False - - -def restoration_face_inference(model, img, upscale_factor=1, face_size=1024): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - img (str): File path of input image. - upscale_factor (int, optional): The number of times the input image - is upsampled. Default: 1. - face_size (int, optional): The size of the cropped and aligned faces. - Default: 1024. - - Returns: - Tensor: The predicted restoration result. - """ - device = next(model.parameters()).device # model device - - # build the data pipeline - if model.cfg.get('demo_pipeline', None): - test_pipeline = model.cfg.demo_pipeline - elif model.cfg.get('test_pipeline', None): - test_pipeline = model.cfg.test_pipeline - else: - test_pipeline = model.cfg.val_pipeline - - # remove gt from test_pipeline - keys_to_remove = ['gt', 'gt_path'] - for key in keys_to_remove: - for pipeline in list(test_pipeline): - if 'key' in pipeline and key == pipeline['key']: - test_pipeline.remove(pipeline) - if 'keys' in pipeline and key in pipeline['keys']: - pipeline['keys'].remove(key) - if len(pipeline['keys']) == 0: - test_pipeline.remove(pipeline) - if 'meta_keys' in pipeline and key in pipeline['meta_keys']: - pipeline['meta_keys'].remove(key) - # build the data pipeline - test_pipeline = Compose(test_pipeline) - - # face helper for detecting and aligning faces - assert has_facexlib, 'Please install FaceXLib to use the demo.' - face_helper = FaceRestoreHelper( - upscale_factor, - face_size=face_size, - crop_ratio=(1, 1), - det_model='retinaface_resnet50', - template_3points=True, - save_ext='png', - device=device) - - face_helper.read_image(img) - # get face landmarks for each face - face_helper.get_face_landmarks_5( - only_center_face=False, eye_dist_threshold=None) - # align and warp each face - face_helper.align_warp_face() - - for i, img in enumerate(face_helper.cropped_faces): - # prepare data - mmcv.imwrite(img, 'demo/tmp.png') - data = dict(lq=img.astype(np.float32), img_path='demo/tmp.png') - _data = test_pipeline(data) - data = dict() - data['inputs'] = _data['inputs'] / 255.0 - data = collate([data]) - if 'cuda' in str(device): - data = scatter(data, [device])[0] - - with torch.no_grad(): - output = model(mode='tensor', **data) - - output = output.squeeze(0).permute(1, 2, 0)[:, :, [2, 1, 0]] - output = output.cpu().numpy() * 255 # (0, 255) - face_helper.add_restored_face(output) - - face_helper.get_inverse_affine(None) - restored_img = face_helper.paste_faces_to_input_image(upsample_img=None) - - return restored_img diff --git a/mmedit/apis/restoration_inference.py b/mmedit/apis/restoration_inference.py deleted file mode 100644 index ff35667ad8..0000000000 --- a/mmedit/apis/restoration_inference.py +++ /dev/null @@ -1,68 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from torch.nn.parallel import scatter - - -def restoration_inference(model, img, ref=None): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - img (str): File path of input image. - ref (str | None): File path of reference image. Default: None. - - Returns: - Tensor: The predicted restoration result. - """ - cfg = model.cfg - device = next(model.parameters()).device # model device - - # select the data pipeline - if cfg.get('demo_pipeline', None): - test_pipeline = cfg.demo_pipeline - elif cfg.get('test_pipeline', None): - test_pipeline = cfg.test_pipeline - else: - test_pipeline = cfg.val_pipeline - - # remove gt from test_pipeline - keys_to_remove = ['gt', 'gt_path'] - for key in keys_to_remove: - for pipeline in list(test_pipeline): - if 'key' in pipeline and key == pipeline['key']: - test_pipeline.remove(pipeline) - if 'keys' in pipeline and key in pipeline['keys']: - pipeline['keys'].remove(key) - if len(pipeline['keys']) == 0: - test_pipeline.remove(pipeline) - if 'meta_keys' in pipeline and key in pipeline['meta_keys']: - pipeline['meta_keys'].remove(key) - # build the data pipeline - test_pipeline = Compose(test_pipeline) - # prepare data - if ref: # Ref-SR - data = dict(img_path=img, ref_path=ref) - else: # SISR - data = dict(img_path=img) - _data = test_pipeline(data) - data = dict() - data['inputs'] = _data['inputs'] / 255.0 - data = collate([data]) - if ref: - data['data_samples'] = [_data['data_samples']] - if 'cuda' in str(device): - data = scatter(data, [device])[0] - if ref: - data['data_samples'][0].img_lq.data = data['data_samples'][ - 0].img_lq.data.to(device) - data['data_samples'][0].ref_lq.data = data['data_samples'][ - 0].ref_lq.data.to(device) - data['data_samples'][0].ref_img.data = data['data_samples'][ - 0].ref_img.data.to(device) - # forward the model - with torch.no_grad(): - result = model(mode='tensor', **data) - result = result[0] - return result diff --git a/mmedit/apis/restoration_video_inference.py b/mmedit/apis/restoration_video_inference.py deleted file mode 100644 index 293a85e5d7..0000000000 --- a/mmedit/apis/restoration_video_inference.py +++ /dev/null @@ -1,137 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import glob -import os.path as osp - -import mmcv -import numpy as np -import torch -from mmengine.dataset import Compose - -# import re -# from functools import reduce - -VIDEO_EXTENSIONS = ('.mp4', '.mov') - - -def pad_sequence(data, window_size): - """Pad frame sequence data. - - Args: - data (Tensor): The frame sequence data. - window_size (int): The window size used in sliding-window framework. - - Returns: - data (Tensor): The padded result. - """ - - padding = window_size // 2 - - data = torch.cat([ - data[:, 1 + padding:1 + 2 * padding].flip(1), data, - data[:, -1 - 2 * padding:-1 - padding].flip(1) - ], - dim=1) - - return data - - -def restoration_video_inference(model, - img_dir, - window_size, - start_idx, - filename_tmpl, - max_seq_len=None): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - img_dir (str): Directory of the input video. - window_size (int): The window size used in sliding-window framework. - This value should be set according to the settings of the network. - A value smaller than 0 means using recurrent framework. - start_idx (int): The index corresponds to the first frame in the - sequence. - filename_tmpl (str): Template for file name. - max_seq_len (int | None): The maximum sequence length that the model - processes. If the sequence length is larger than this number, - the sequence is split into multiple segments. If it is None, - the entire sequence is processed at once. - - Returns: - Tensor: The predicted restoration result. - """ - - device = next(model.parameters()).device # model device - - # build the data pipeline - if model.cfg.get('demo_pipeline', None): - test_pipeline = model.cfg.demo_pipeline - elif model.cfg.get('test_pipeline', None): - test_pipeline = model.cfg.test_pipeline - else: - test_pipeline = model.cfg.val_pipeline - - # check if the input is a video - file_extension = osp.splitext(img_dir)[1] - if file_extension in VIDEO_EXTENSIONS: - video_reader = mmcv.VideoReader(img_dir) - # load the images - data = dict(img=[], img_path=None, key=img_dir) - for frame in video_reader: - data['img'].append(np.flip(frame, axis=2)) - - # remove the data loading pipeline - tmp_pipeline = [] - for pipeline in test_pipeline: - if pipeline['type'] not in [ - 'GenerateSegmentIndices', 'LoadImageFromFile' - ]: - tmp_pipeline.append(pipeline) - test_pipeline = tmp_pipeline - else: - # the first element in the pipeline must be 'GenerateSegmentIndices' - if test_pipeline[0]['type'] != 'GenerateSegmentIndices': - raise TypeError('The first element in the pipeline must be ' - f'"GenerateSegmentIndices", but got ' - f'"{test_pipeline[0]["type"]}".') - - # specify start_idx and filename_tmpl - test_pipeline[0]['start_idx'] = start_idx - test_pipeline[0]['filename_tmpl'] = filename_tmpl - - # prepare data - sequence_length = len(glob.glob(osp.join(img_dir, '*'))) - lq_folder = osp.dirname(img_dir) - key = osp.basename(img_dir) - data = dict( - img_path=lq_folder, - gt_path='', - key=key, - sequence_length=sequence_length) - - # compose the pipeline - test_pipeline = Compose(test_pipeline) - data = test_pipeline(data) - data = data['inputs'].unsqueeze(0) / 255.0 # in cpu - - # forward the model - with torch.no_grad(): - if window_size > 0: # sliding window framework - data = pad_sequence(data, window_size) - result = [] - for i in range(0, data.size(1) - 2 * (window_size // 2)): - data_i = data[:, i:i + window_size].to(device) - result.append(model(inputs=data_i, mode='tensor').cpu()) - result = torch.stack(result, dim=1) - else: # recurrent framework - if max_seq_len is None: - result = model(inputs=data.to(device), mode='tensor').cpu() - else: - result = [] - for i in range(0, data.size(1), max_seq_len): - result.append( - model( - inputs=data[:, i:i + max_seq_len].to(device), - mode='tensor').cpu()) - result = torch.cat(result, dim=1) - return result diff --git a/mmedit/apis/translation_inference.py b/mmedit/apis/translation_inference.py deleted file mode 100644 index 1b358a66a3..0000000000 --- a/mmedit/apis/translation_inference.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate - -from mmedit.models.base_models import BaseTranslationModel - - -def sample_img2img_model(model, image_path, target_domain=None, **kwargs): - """Sampling from translation models. - - Args: - model (nn.Module): The loaded model. - image_path (str): File path of input image. - style (str): Target style of output image. - Returns: - Tensor: Translated image tensor. - """ - assert isinstance(model, BaseTranslationModel) - - # get source domain and target domain - if target_domain is None: - target_domain = model._default_domain - source_domain = model.get_other_domains(target_domain)[0] - - cfg = model.cfg - # build the data pipeline - test_pipeline = Compose(cfg.test_pipeline) - - # prepare data - data = dict() - # dirty code to deal with test data pipeline - data['pair_path'] = image_path - data[f'img_{source_domain}_path'] = image_path - data[f'img_{target_domain}_path'] = image_path - - data = collate([test_pipeline(data)]) - data = model.data_preprocessor(data, False) - inputs_dict = data['inputs'] - - source_image = inputs_dict[f'img_{source_domain}'] - - # forward the model - with torch.no_grad(): - results = model( - source_image, - test_mode=True, - target_domain=target_domain, - **kwargs) - output = results['target'] - return output diff --git a/mmedit/apis/video_interpolation_inference.py b/mmedit/apis/video_interpolation_inference.py deleted file mode 100644 index 3f3e9e620b..0000000000 --- a/mmedit/apis/video_interpolation_inference.py +++ /dev/null @@ -1,197 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import math -import os -import os.path as osp - -import cv2 -import mmcv -import numpy as np -import torch -from mmengine.dataset import Compose -from mmengine.dataset.utils import default_collate as collate -from mmengine.fileio import FileClient -from mmengine.utils import ProgressBar - -VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') -FILE_CLIENT = FileClient('disk') - - -def read_image(filepath): - """Read image from file. - - Args: - filepath (str): File path. - - Returns: - image (np.array): Image. - """ - img_bytes = FILE_CLIENT.get(filepath) - image = mmcv.imfrombytes( - img_bytes, flag='color', channel_order='rgb', backend='pillow') - return image - - -def read_frames(source, start_index, num_frames, from_video, end_index): - """Read frames from file or video. - - Args: - source (list | mmcv.VideoReader): Source of frames. - start_index (int): Start index of frames. - num_frames (int): frames number to be read. - from_video (bool): Weather read frames from video. - end_index (int): The end index of frames. - - Returns: - images (np.array): Images. - """ - images = [] - last_index = min(start_index + num_frames, end_index) - # read frames from video - if from_video: - for index in range(start_index, last_index): - if index >= source.frame_cnt: - break - images.append(np.flip(source.get_frame(index), axis=2)) - else: - files = source[start_index:last_index] - images = [read_image(f) for f in files] - return images - - -def video_interpolation_inference(model, - input_dir, - output_dir, - start_idx=0, - end_idx=None, - batch_size=4, - fps_multiplier=0, - fps=0, - filename_tmpl='{:08d}.png'): - """Inference image with the model. - - Args: - model (nn.Module): The loaded model. - input_dir (str): Directory of the input video. - output_dir (str): Directory of the output video. - start_idx (int): The index corresponding to the first frame in the - sequence. Default: 0 - end_idx (int | None): The index corresponding to the last interpolated - frame in the sequence. If it is None, interpolate to the last - frame of video or sequence. Default: None - batch_size (int): Batch size. Default: 4 - fps_multiplier (float): multiply the fps based on the input video. - Default: 0. - fps (float): frame rate of the output video. Default: 0. - filename_tmpl (str): template of the file names. Default: '{:08d}.png' - """ - - device = next(model.parameters()).device # model device - - # build the data pipeline - if model.cfg.get('demo_pipeline', None): - test_pipeline = model.cfg.demo_pipeline - elif model.cfg.get('test_pipeline', None): - test_pipeline = model.cfg.test_pipeline - else: - test_pipeline = model.cfg.val_pipeline - - # remove the data loading pipeline - tmp_pipeline = [] - for pipeline in test_pipeline: - if pipeline['type'] not in [ - 'GenerateSegmentIndices', 'LoadImageFromFile' - ]: - tmp_pipeline.append(pipeline) - test_pipeline = tmp_pipeline - - # compose the pipeline - test_pipeline = Compose(test_pipeline) - - # check if the input is a video - input_file_extension = os.path.splitext(input_dir)[1] - if input_file_extension in VIDEO_EXTENSIONS: - source = mmcv.VideoReader(input_dir) - input_fps = source.fps - length = source.frame_cnt - from_video = True - h, w = source.height, source.width - if fps_multiplier: - assert fps_multiplier > 0, '`fps_multiplier` cannot be negative' - output_fps = fps_multiplier * input_fps - else: - output_fps = fps if fps > 0 else input_fps * 2 - else: - files = os.listdir(input_dir) - files = [osp.join(input_dir, f) for f in files] - files.sort() - source = files - length = files.__len__() - from_video = False - example_frame = read_image(files[0]) - h, w = example_frame.shape[:2] - output_fps = fps - - # check if the output is a video - output_file_extension = os.path.splitext(output_dir)[1] - if output_file_extension in VIDEO_EXTENSIONS: - fourcc = cv2.VideoWriter_fourcc(*'mp4v') - target = cv2.VideoWriter(output_dir, fourcc, output_fps, (w, h)) - to_video = True - else: - to_video = False - - end_idx = min(end_idx, length) if end_idx is not None else length - - # calculate step args - step_size = model.step_frames * batch_size - lenth_per_step = model.required_frames + model.step_frames * ( - batch_size - 1) - repeat_frame = model.required_frames - model.step_frames - - prog_bar = ProgressBar( - math.ceil( - (end_idx + step_size - lenth_per_step - start_idx) / step_size)) - output_index = start_idx - for start_index in range(start_idx, end_idx, step_size): - images = read_frames( - source, start_index, lenth_per_step, from_video, end_index=end_idx) - - # data prepare - data = dict(img=images, inputs_path=None, key=input_dir) - data = test_pipeline(data)['inputs'] / 255.0 - data = collate([data]) - # data.shape: [1, t, c, h, w] - - # forward the model - data = model.split_frames(data) - input_tensors = data.clone().detach() - with torch.no_grad(): - output = model(data.to(device), mode='tensor') - if len(output.shape) == 4: - output = output.unsqueeze(1) - output_tensors = output.cpu() - if len(output_tensors.shape) == 4: - output_tensors = output_tensors.unsqueeze(1) - result = model.merge_frames(input_tensors, output_tensors) - if not start_idx == start_index: - result = result[repeat_frame:] - prog_bar.update() - - # save frames - if to_video: - for frame in result: - target.write(frame) - else: - for frame in result: - save_path = osp.join(output_dir, - filename_tmpl.format(output_index)) - mmcv.imwrite(frame, save_path) - output_index += 1 - - if start_index + lenth_per_step >= end_idx: - break - - print() - print(f'Output dir: {output_dir}') - if to_video: - target.release() From 66bb49b9c7fffa98a0ef3d17b7525a5fae77a613 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 8 Nov 2022 19:41:26 +0800 Subject: [PATCH 13/68] [high-level api] remove unused code. --- mmedit/apis/inferencers/base_inferencer.py | 263 ------------------ .../inferencers/base_mmedit_inferencer.py | 152 ++++++++-- mmedit/edit.py | 11 - 3 files changed, 134 insertions(+), 292 deletions(-) delete mode 100644 mmedit/apis/inferencers/base_inferencer.py diff --git a/mmedit/apis/inferencers/base_inferencer.py b/mmedit/apis/inferencers/base_inferencer.py deleted file mode 100644 index 43568d2ec1..0000000000 --- a/mmedit/apis/inferencers/base_inferencer.py +++ /dev/null @@ -1,263 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -from datetime import datetime -from typing import Dict, List, Optional, Sequence, Tuple, Union - -import mmcv -import numpy as np -import torch -from mmengine.config import Config -from mmengine.dataset import Compose -from mmengine.runner import load_checkpoint -from mmengine.structures import InstanceData - -from mmedit.registry import MODELS, VISUALIZERS -from mmedit.utils import ConfigType - -InstanceList = List[InstanceData] -InputType = Union[str, np.ndarray] -InputsType = Union[InputType, Sequence[InputType]] -PredType = Union[InstanceData, InstanceList] -ImgType = Union[np.ndarray, Sequence[np.ndarray]] -ResType = Union[Dict, List[Dict]] - - -class BaseInferencer: - """Base inferencer. - - Args: - model (str or ConfigType): Model config or the path to it. - ckpt (str, optional): Path to the checkpoint. - device (str, optional): Device to run inference. If None, the best - device will be automatically used. - show (bool): Whether to display the image in a popup window. - Defaults to False. - wait_time (float): The interval of show (s). Defaults to 0. - draw_pred (bool): Whether to draw predicted bounding boxes. - Defaults to True. - pred_score_thr (float): Minimum score of bboxes to draw. - Defaults to 0.3. - result_out_dir (str): Output directory of images. Defaults to ''. - pred_out_file: File to save the inference results. If left as empty, no - file will be saved. - print_result (bool): Whether to print the result. - Defaults to False. - """ - - def __init__(self, - config: Union[ConfigType, str], - ckpt: Optional[str], - device: Optional[str] = None, - **kwargs) -> None: - # Load config to cfg - if isinstance(config, str): - cfg = Config.fromfile(config) - elif not isinstance(config, ConfigType): - raise TypeError('config must be a filename or any ConfigType' - f'object, but got {type(cfg)}') - self.cfg = cfg - if cfg.model.get('pretrained'): - cfg.model.pretrained = None - - if device is None: - device = torch.device( - 'cuda' if torch.cuda.is_available() else 'cpu') - self.device = device - self._init_model(cfg, ckpt, device) - self._init_visualizer(cfg) - - # A global counter tracking the number of images processed, for - # naming of the output images - self.num_visualized_imgs = 0 - - def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], - device: str) -> None: - """Initialize the model with the given config and checkpoint on the - specific device.""" - model = MODELS.build(cfg.model) - if ckpt is not None: - ckpt = load_checkpoint(model, ckpt, map_location='cpu') - model.cfg = cfg - model.to(device) - model.eval() - self.model = model - - def _init_pipeline(self, cfg: ConfigType) -> None: - """Initialize the test pipeline.""" - pipeline_cfg = cfg.test_dataloader.dataset.pipeline - - self.file_pipeline = Compose(pipeline_cfg) - - def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int: - """Returns the index of the transform in a pipeline. - - If the transform is not found, returns -1. - """ - for i, transform in enumerate(pipeline_cfg): - if transform['type'] == name: - return i - return -1 - - def _init_visualizer(self, cfg: ConfigType) -> None: - """Initialize visualizers.""" - # TODO: We don't export images via backends since the interface - # of the visualizer will have to be refactored. - self.visualizer = None - if 'visualizer' in cfg: - ts = str(datetime.timestamp(datetime.now())) - cfg.visualizer['name'] = f'inferencer{ts}' - self.visualizer = VISUALIZERS.build(cfg.visualizer) - - def preprocess(self, inputs: InputsType) -> Dict: - """Process the inputs into a model-feedable format.""" - self._init_pipeline(self.cfg) - - results = [] - for single_input in inputs: - if isinstance(single_input, str): - if osp.isdir(single_input): - raise ValueError('Feeding a directory is not supported') - else: - data_ = dict(img_path=single_input) - results.append(self.file_pipeline(data_)) - elif isinstance(single_input, np.ndarray): - data_ = dict(img=single_input) - results.append(self.ndarray_pipeline(data_)) - else: - raise ValueError( - f'Unsupported input type: {type(single_input)}') - - return self._collate(results) - - def _collate(self, results: List[Dict]) -> Dict: - """Collate the results from different images.""" - results = {key: [d[key] for d in results] for key in results[0]} - return results - - def forward(self, inputs: InputsType) -> PredType: - """Forward the inputs to the model.""" - with torch.no_grad(): - return self.model.test_step(inputs) - - def visualize(self, - inputs: InputsType, - preds: PredType, - show: bool = False, - wait_time: int = 0, - draw_pred: bool = True, - pred_score_thr: float = 0.3, - result_out_dir: str = '') -> List[np.ndarray]: - """Visualize predictions. - - Args: - inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. - preds (List[Dict]): Predictions of the model. - show (bool): Whether to display the image in a popup window. - Defaults to False. - wait_time (float): The interval of show (s). Defaults to 0. - draw_pred (bool): Whether to draw predicted bounding boxes. - Defaults to True. - pred_score_thr (float): Minimum score of bboxes to draw. - Defaults to 0.3. - result_out_dir (str): Output directory of images. Defaults to ''. - """ - if self.visualizer is None or not show and result_out_dir == '': - return None - - if getattr(self, 'visualizer') is None: - raise ValueError('Visualization needs the "visualizer" term' - 'defined in the config, but got None.') - - results = [] - - for single_input, pred in zip(inputs, preds): - if isinstance(single_input, str): - img = mmcv.imread(single_input) - img = img[:, :, ::-1] - img_name = osp.basename(single_input) - elif isinstance(single_input, np.ndarray): - img = single_input.copy() - img_num = str(self.num_visualized_imgs).zfill(8) - img_name = f'{img_num}.jpg' - else: - raise ValueError('Unsupported input type: ' - f'{type(single_input)}') - - out_file = osp.join(result_out_dir, img_name) if \ - result_out_dir != '' else None - - self.visualizer.add_datasample( - img_name, - img, - pred, - show=show, - wait_time=wait_time, - draw_gt=False, - draw_pred=draw_pred, - pred_score_thr=pred_score_thr, - out_file=out_file, - ) - results.append(img) - self.num_visualized_imgs += 1 - - return results - - def postprocess( - self, - preds: PredType, - imgs: Optional[List[np.ndarray]] = None, - is_batch: bool = False, - print_result: bool = False, - pred_out_file: str = '', - get_datasample: bool = False, - ) -> Union[ResType, Tuple[ResType, np.ndarray]]: - """Postprocess predictions. - - Args: - preds (List[Dict]): Predictions of the model. - imgs (Optional[np.ndarray]): Visualized predictions. - is_batch (bool): Whether the inputs are in a batch. - Defaults to False. - print_result (bool): Whether to print the result. - Defaults to False. - pred_out_file (str): Output file name to store predictions - without images. Supported file formats are “json”, “yaml/yml” - and “pickle/pkl”. Defaults to ''. - get_datasample (bool): Whether to use Datasample to store - inference results. If False, dict will be used. - - Returns: - TODO - """ - - results = preds - if not get_datasample: - results = [] - for pred in preds: - result = self._pred2dict(pred) - results.append(result) - if not is_batch: - results = results[0] - if print_result: - print(results) - # Add img to the results after printing - if pred_out_file != '': - mmcv.dump(results, pred_out_file) - if imgs is None: - return results - return results, imgs - - def _pred2dict(self, data_sample: torch.Tensor) -> Dict: - """Extract elements necessary to represent a prediction into a - dictionary. It's better to contain only basic data elements such as - strings and numbers in order to guarantee it's json-serializable. - - Args: - data_sample (torch.Tensor): The data sample to be converted. - - Returns: - dict: The output dictionary. - """ - result = {} - result['infer_res'] = data_sample - return result diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 7b35a4dca5..cc1893c359 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -1,11 +1,16 @@ # Copyright (c) OpenMMLab. All rights reserved. +from abc import abstractmethod from typing import Dict, List, Optional, Sequence, Tuple, Union +import mmcv import numpy as np +import torch +from mmengine.config import Config +from mmengine.runner import load_checkpoint from mmengine.structures import InstanceData +from mmedit.registry import MODELS from mmedit.utils import ConfigType -from .base_inferencer import BaseInferencer InstanceList = List[InstanceData] InputType = Union[str, int, np.ndarray] @@ -15,7 +20,7 @@ ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]] -class BaseMMEditInferencer(BaseInferencer): +class BaseMMEditInferencer: """Base inferencer. Args: @@ -23,27 +28,13 @@ class BaseMMEditInferencer(BaseInferencer): ckpt (str, optional): Path to the checkpoint. device (str, optional): Device to run inference. If None, the best device will be automatically used. - show (bool): Whether to display the image in a popup window. - Defaults to False. - wait_time (float): The interval of show (s). Defaults to 0. - draw_pred (bool): Whether to draw predicted bounding boxes. - Defaults to True. - pred_score_thr (float): Minimum score of bboxes to draw. - Defaults to 0.3. result_out_dir (str): Output directory of images. Defaults to ''. - pred_out_file: File to save the inference results. If left as empty, no - file will be saved. - print_result (bool): Whether to print the result. - Defaults to False. """ func_kwargs = dict( preprocess=[], forward=[], - visualize=[ - 'show', 'wait_time', 'draw_pred', 'pred_score_thr', - 'result_out_dir' - ], + visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) @@ -52,8 +43,35 @@ def __init__(self, ckpt: Optional[str], device: Optional[str] = None, **kwargs) -> None: + # Load config to cfg + if isinstance(config, str): + cfg = Config.fromfile(config) + elif not isinstance(config, ConfigType): + raise TypeError('config must be a filename or any ConfigType' + f'object, but got {type(cfg)}') + self.cfg = cfg + if cfg.model.get('pretrained'): + cfg.model.pretrained = None + + if device is None: + device = torch.device( + 'cuda' if torch.cuda.is_available() else 'cpu') + self.device = device + self._init_model(cfg, ckpt, device) + self.base_params = self._dispatch_kwargs(**kwargs) - super().__init__(config=config, ckpt=ckpt, device=device, **kwargs) + + def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], + device: str) -> None: + """Initialize the model with the given config and checkpoint on the + specific device.""" + model = MODELS.build(cfg.model) + if ckpt is not None: + ckpt = load_checkpoint(model, ckpt, map_location='cpu') + model.cfg = cfg + model.to(device) + model.eval() + self.model = model def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: """Dispatch kwargs to preprocess(), forward(), visualize() and @@ -76,6 +94,9 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: Args: kwargs: Keyword arguments for the inferencer. + + Returns: + Union[Dict, List[Dict]]: result of inference pipeline. """ params = self._dispatch_kwargs(**kwargs) @@ -93,3 +114,98 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: imgs = self.visualize(preds, data, **visualize_kwargs) results = self.postprocess(preds, imgs, **postprocess_kwargs) return results + + @abstractmethod + def preprocess(self, inputs: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + + Args: + inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. + preds (List[Dict]): Predictions of the model. + result_out_dir (str): Output directory of images. Defaults to ''. + + Returns: + Dict: result of preprocess + """ + + def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" + with torch.no_grad(): + return self.model.test_step(inputs) + + @abstractmethod + def visualize(self, + inputs: InputsType, + preds: PredType, + result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. + preds (List[Dict]): Predictions of the model. + result_out_dir (str): Output directory of images. Defaults to ''. + + Returns: + List[np.ndarray]: result of visualize + """ + + def postprocess( + self, + preds: PredType, + imgs: Optional[List[np.ndarray]] = None, + is_batch: bool = False, + print_result: bool = False, + pred_out_file: str = '', + get_datasample: bool = False, + ) -> Union[ResType, Tuple[ResType, np.ndarray]]: + """Postprocess predictions. + + Args: + preds (List[Dict]): Predictions of the model. + imgs (Optional[np.ndarray]): Visualized predictions. + is_batch (bool): Whether the inputs are in a batch. + Defaults to False. + print_result (bool): Whether to print the result. + Defaults to False. + pred_out_file (str): Output file name to store predictions + without images. Supported file formats are “json”, “yaml/yml” + and “pickle/pkl”. Defaults to ''. + get_datasample (bool): Whether to use Datasample to store + inference results. If False, dict will be used. + + Returns: + result (Dict): inference results as a dict. + imgs (torch.Tensor): image result of inference as a tensor or + tensor list. + """ + results = preds + if not get_datasample: + results = [] + for pred in preds: + result = self._pred2dict(pred) + results.append(result) + if not is_batch: + results = results[0] + if print_result: + print(results) + # Add img to the results after printing + if pred_out_file != '': + mmcv.dump(results, pred_out_file) + if imgs is None: + return results + return results, imgs + + def _pred2dict(self, data_sample: torch.Tensor) -> Dict: + """Extract elements necessary to represent a prediction into a + dictionary. It's better to contain only basic data elements such as + strings and numbers in order to guarantee it's json-serializable. + + Args: + data_sample (torch.Tensor): The data sample to be converted. + + Returns: + dict: The output dictionary. + """ + result = {} + result['infer_results'] = data_sample + return result diff --git a/mmedit/edit.py b/mmedit/edit.py index d826f78415..b2064cacfa 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -77,9 +77,6 @@ def infer(self, trimap: InputsType = None, mask: InputsType = None, result_out_dir: str = '', - show: bool = False, - print_result: bool = False, - pred_out_file: str = '', **kwargs) -> Union[Dict, List[Dict]]: """Inferences edit model on an image(video) or a folder of images(videos). @@ -89,11 +86,6 @@ def infer(self, folder path, np array or list/tuple (with img paths or np arrays). result_out_dir (str): Output directory of images. Defaults to ''. - show (bool): Whether to display the image in a popup window. - Defaults to False. - print_result (bool): Whether to print the results. - pred_out_file (str): File to save the inference results. If left as - empty, no file will be saved. Returns: Dict or List[Dict]: Each dict contains the inference result of @@ -108,9 +100,6 @@ def infer(self, trimap=trimap, mask=mask, result_out_dir=result_out_dir, - show=show, - print_result=print_result, - pred_out_file=pred_out_file, **kwargs) def get_model_config(self, model_name: str) -> Dict: From 4657903f739135ae909ca3d1ea94be8e488d0a4a Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 8 Nov 2022 21:45:44 +0800 Subject: [PATCH 14/68] [high-level api] add comments for inferences. --- .../inferencers/base_mmedit_inferencer.py | 20 ++++--- .../inferencers/conditional_inferencer.py | 26 ++++++++-- .../apis/inferencers/inpainting_inferencer.py | 23 ++++++++ mmedit/apis/inferencers/matting_inferencer.py | 23 ++++++++ mmedit/apis/inferencers/mmedit_inferencer.py | 24 ++++++--- .../inferencers/restoration_inferencer.py | 28 ++++++++-- .../inferencers/translation_inferencer.py | 26 ++++++++-- .../inferencers/unconditional_inferencer.py | 22 ++++++-- .../video_interpolation_inferencer.py | 44 +++++++++------- .../video_restoration_inferencer.py | 52 ++++++++++++------- mmedit/edit.py | 23 ++++---- 11 files changed, 231 insertions(+), 80 deletions(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index cc1893c359..75164f8591 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -24,7 +24,7 @@ class BaseMMEditInferencer: """Base inferencer. Args: - model (str or ConfigType): Model config or the path to it. + config (str or ConfigType): Model config or the path to it. ckpt (str, optional): Path to the checkpoint. device (str, optional): Device to run inference. If None, the best device will be automatically used. @@ -96,7 +96,7 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: kwargs: Keyword arguments for the inferencer. Returns: - Union[Dict, List[Dict]]: result of inference pipeline. + Union[Dict, List[Dict]]: Results of inference pipeline. """ params = self._dispatch_kwargs(**kwargs) @@ -121,11 +121,9 @@ def preprocess(self, inputs: InputsType) -> Dict: Args: inputs (List[Union[str, np.ndarray]]): Inputs for the inferencer. - preds (List[Dict]): Predictions of the model. - result_out_dir (str): Output directory of images. Defaults to ''. Returns: - Dict: result of preprocess + Dict: Result of preprocess """ def forward(self, inputs: InputsType) -> PredType: @@ -146,7 +144,7 @@ def visualize(self, result_out_dir (str): Output directory of images. Defaults to ''. Returns: - List[np.ndarray]: result of visualize + List[np.ndarray]: Result of visualize """ def postprocess( @@ -174,8 +172,8 @@ def postprocess( inference results. If False, dict will be used. Returns: - result (Dict): inference results as a dict. - imgs (torch.Tensor): image result of inference as a tensor or + result (Dict): Inference results as a dict. + imgs (torch.Tensor): Image result of inference as a tensor or tensor list. """ results = preds @@ -195,17 +193,17 @@ def postprocess( return results return results, imgs - def _pred2dict(self, data_sample: torch.Tensor) -> Dict: + def _pred2dict(self, pred_tensor: torch.Tensor) -> Dict: """Extract elements necessary to represent a prediction into a dictionary. It's better to contain only basic data elements such as strings and numbers in order to guarantee it's json-serializable. Args: - data_sample (torch.Tensor): The data sample to be converted. + pred_tensor (torch.Tensor): The tensor to be converted. Returns: dict: The output dictionary. """ result = {} - result['infer_results'] = data_sample + result['infer_results'] = pred_tensor return result diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index d455bb3aff..40baeb9f9e 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -12,15 +12,23 @@ class ConditionalInferencer(BaseMMEditInferencer): + """inferencer that predicts with conditional models.""" func_kwargs = dict( preprocess=['label'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, label: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + Args: + label(InputsType): Input label for condition models. + + Returns: + results(Dict): Results of preprocess. + """ # set model with infer_cfg if it exist else set default value if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: sample_nums = self.cfg.infer_cfg.sample_nums @@ -31,19 +39,31 @@ def preprocess(self, label: InputsType) -> Dict: else: sample_model = 'ema' - preprocess_res = dict( + results = dict( num_batches=sample_nums, labels=label, sample_model=sample_model) - return preprocess_res + return results def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" return self.model(inputs) def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) results = torch.stack(res_list, dim=0) diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index a2d92e2164..1e4aad3e46 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -13,6 +13,7 @@ class InpaintingInferencer(BaseMMEditInferencer): + """inferencer that predicts with inpainting models.""" func_kwargs = dict( preprocess=['img', 'mask'], @@ -21,6 +22,15 @@ class InpaintingInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, mask: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + + Args: + img(InputsType): Image to be inpainted by models. + mask(InputsType): Image mask for inpainting models. + + Returns: + results(Dict): Results of preprocess. + """ infer_pipeline_cfg = [ dict(type='LoadImageFromFile', key='gt', channel_order='bgr'), dict( @@ -47,6 +57,7 @@ def preprocess(self, img: InputsType, mask: InputsType) -> Dict: return data def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" with torch.no_grad(): result, x = self.model(mode='tensor', **inputs) return result @@ -55,6 +66,18 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Mask of input image. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ result = preds[0] masks = data['data_samples'][0].mask.data masked_imgs = data['inputs'][0] diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index 31c5ccb240..aca4f902f2 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -15,6 +15,7 @@ class MattingInferencer(BaseMMEditInferencer): + """inferencer that predicts with matting models.""" func_kwargs = dict( preprocess=['img', 'trimap'], @@ -23,6 +24,15 @@ class MattingInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + + Args: + img(InputsType): Image to be processed by models. + mask(InputsType): Mask corresponding to the input image. + + Returns: + results(Dict): Results of preprocess. + """ # remove alpha from test_pipeline keys_to_remove = ['alpha', 'ori_alpha'] for key in keys_to_remove: @@ -54,6 +64,7 @@ def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: return preprocess_res def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" with torch.no_grad(): return self.model(**inputs) @@ -61,6 +72,18 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ result = preds[0].output result = result.pred_alpha.data.cpu() diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index d9eacce4cb..4ce0ce2877 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -14,18 +14,22 @@ class MMEditInferencer(BaseMMEditInferencer): + """Class to assign task to different inferencers. + + Args: + type (str): Inferencer type. + config (str or ConfigType): Model config or the path to it. + ckpt (str, optional): Path to the checkpoint. + device (str, optional): Device to run inference. If None, the best + device will be automatically used. + """ def __init__(self, type: Optional[str] = None, config: Optional[Union[ConfigType, str]] = None, ckpt: Optional[str] = None, - device: Optional[str] = None, - **kwargs) -> None: - + device: Optional[str] = None) -> None: self.type = type - self.visualizer = None - self.base_params = self._dispatch_kwargs(*kwargs) - self.num_visualized_imgs = 0 if self.type == 'conditional': self.inferencer = ConditionalInferencer(config, ckpt, device) elif self.type == 'unconditional': @@ -47,4 +51,12 @@ def __init__(self, raise ValueError(f'Unknown inferencer type: {self.type}') def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: + """Call the inferencer. + + Args: + kwargs: Keyword arguments for the inferencer. + + Returns: + Union[Dict, List[Dict]]: Results of inference pipeline. + """ return self.inferencer(**kwargs) diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index c673f07e5d..a9c33053d2 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -13,6 +13,7 @@ class RestorationInferencer(BaseMMEditInferencer): + """inferencer that predicts with restoration models.""" func_kwargs = dict( preprocess=['img'], @@ -21,7 +22,16 @@ class RestorationInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: + """Process the inputs into a model-feedable format. + Args: + img(InputsType): Image to be restored by models. + ref(InputsType): Reference image for resoration models. + Defaults to None. + + Returns: + data(Dict): Results of preprocess. + """ cfg = self.model.cfg device = next(self.model.parameters()).device # model device @@ -70,6 +80,7 @@ def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: return data def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" with torch.no_grad(): result = self.model(mode='tensor', **inputs) return result @@ -78,8 +89,19 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. - output = tensor2img(preds[0]) - mmcv.imwrite(output, result_out_dir) + Returns: + List[np.ndarray]: Result of visualize + """ + results = tensor2img(preds[0]) + mmcv.imwrite(results, result_out_dir) - return output + return results diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index e82e2b2aef..fdb26e8ecb 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -14,6 +14,7 @@ class TranslationInferencer(BaseMMEditInferencer): + """inferencer that predicts with translation models.""" func_kwargs = dict( preprocess=['img'], @@ -22,7 +23,14 @@ class TranslationInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self, img: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + Args: + img(InputsType): Image to be translated by models. + + Returns: + results(Dict): Results of preprocess. + """ assert isinstance(self.model, BaseTranslationModel) # get source domain and target domain @@ -44,10 +52,11 @@ def preprocess(self, img: InputsType) -> Dict: data = self.model.data_preprocessor(data, False) inputs_dict = data['inputs'] - source_image = inputs_dict[f'img_{source_domain}'] - return source_image + results = inputs_dict[f'img_{source_domain}'] + return results def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" with torch.no_grad(): results = self.model( inputs, test_mode=True, target_domain=self.target_domain) @@ -58,7 +67,18 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: - + """Visualize predictions. + + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ results = (preds[:, [2, 1, 0]] + 1.) / 2. # save images diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index 9e6a0d5170..03d797f27b 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -12,6 +12,7 @@ class UnconditionalInferencer(BaseMMEditInferencer): + """inferencer that predicts with unconditional models.""" func_kwargs = dict( preprocess=[], @@ -20,7 +21,11 @@ class UnconditionalInferencer(BaseMMEditInferencer): postprocess=['print_result', 'pred_out_file', 'get_datasample']) def preprocess(self) -> Dict: + """Process the inputs into a model-feedable format. + Returns: + results(Dict): Results of preprocess. + """ # set model with infer_cfg if it exist else set default value if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: sample_nums = self.cfg.infer_cfg.sample_nums @@ -31,19 +36,30 @@ def preprocess(self) -> Dict: else: sample_model = 'ema' - preprocess_res = dict( - num_batches=sample_nums, sample_model=sample_model) + results = dict(num_batches=sample_nums, sample_model=sample_model) - return preprocess_res + return results def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model.""" return self.model(inputs) def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ res_list = [] res_list.extend([item.fake_img.data.cpu() for item in preds]) results = torch.stack(res_list, dim=0) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index ead0524bc7..46376e7b39 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -63,6 +63,7 @@ def read_frames(source, start_index, num_frames, from_video, end_index): class VideoInterpolationInferencer(BaseMMEditInferencer): + """inferencer that predicts with video interpolation models.""" func_kwargs = dict( preprocess=['video'], @@ -71,6 +72,14 @@ class VideoInterpolationInferencer(BaseMMEditInferencer): postprocess=[]) def preprocess(self, video: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + + Args: + video(InputsType): Video to be interpolated by models. + + Returns: + video(InputsType): Video to be interpolated by models. + """ infer_cfg = dict( start_idx=0, end_idx=None, @@ -107,8 +116,19 @@ def preprocess(self, video: InputsType) -> Dict: return video - def forward(self, inputs: InputsType, - result_out_dir: InputsType) -> PredType: + def forward(self, + inputs: InputsType, + result_out_dir: InputsType = '') -> PredType: + """Forward the inputs to the model. + + Args: + inputs (InputsType): Input video directory. + result_out_dir (str): Output directory of video. + Defaults to ''. + + Returns: + PredType: Result of forwarding + """ # check if the input is a video input_file_extension = os.path.splitext(inputs)[1] if input_file_extension in VIDEO_EXTENSIONS: @@ -213,6 +233,7 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize is not needed in this inferencer.""" pass def postprocess( @@ -220,22 +241,5 @@ def postprocess( preds: PredType, imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: - """Postprocess predictions. - - Args: - preds (List[Dict]): Predictions of the model. - imgs (Optional[np.ndarray]): Visualized predictions. - is_batch (bool): Whether the inputs are in a batch. - Defaults to False. - print_result (bool): Whether to print the result. - Defaults to False. - pred_out_file (str): Output file name to store predictions - without images. Supported file formats are “json”, “yaml/yml” - and “pickle/pkl”. Defaults to ''. - get_datasample (bool): Whether to use Datasample to store - inference results. If False, dict will be used. - - Returns: - TODO - """ + """Postprocess is not needed in this inferencer.""" pass diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 5640e28d91..e68aa0e112 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -40,6 +40,7 @@ def pad_sequence(data, window_size): class VideoRestorationInferencer(BaseMMEditInferencer): + """inferencer that predicts with video restoration models.""" func_kwargs = dict( preprocess=['video'], @@ -48,6 +49,14 @@ class VideoRestorationInferencer(BaseMMEditInferencer): postprocess=[]) def preprocess(self, video: InputsType) -> Dict: + """Process the inputs into a model-feedable format. + + Args: + video(InputsType): Video to be restored by models. + + Returns: + results(InputsType): Results of preprocess. + """ # hard code parameters for unused code infer_cfg = dict( start_idx=0, @@ -108,11 +117,19 @@ def preprocess(self, video: InputsType) -> Dict: # compose the pipeline test_pipeline = Compose(test_pipeline) data = test_pipeline(data) - data = data['inputs'].unsqueeze(0) / 255.0 # in cpu + results = data['inputs'].unsqueeze(0) / 255.0 # in cpu - return data + return results def forward(self, inputs: InputsType) -> PredType: + """Forward the inputs to the model. + + Args: + inputs (InputsType): Images array of input video. + + Returns: + PredType: Results of forwarding + """ with torch.no_grad(): if self.window_size > 0: # sliding window framework data = pad_sequence(inputs, self.window_size) @@ -141,6 +158,18 @@ def visualize(self, preds: PredType, data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: + """Visualize predictions. + + Args: + preds (List[Union[str, np.ndarray]]): Forward results + by the inferencer. + data (List[Dict]): Not needed by this kind of inferencer. + result_out_dir (str): Output directory of image. + Defaults to ''. + + Returns: + List[np.ndarray]: Result of visualize + """ file_extension = os.path.splitext(result_out_dir)[1] if file_extension in VIDEO_EXTENSIONS: # save as video h, w = preds.shape[-2:] @@ -167,22 +196,5 @@ def postprocess( preds: PredType, imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: - """Postprocess predictions. - - Args: - preds (List[Dict]): Predictions of the model. - imgs (Optional[np.ndarray]): Visualized predictions. - is_batch (bool): Whether the inputs are in a batch. - Defaults to False. - print_result (bool): Whether to print the result. - Defaults to False. - pred_out_file (str): Output file name to store predictions - without images. Supported file formats are “json”, “yaml/yml” - and “pickle/pkl”. Defaults to ''. - get_datasample (bool): Whether to use Datasample to store - inference results. If False, dict will be used. - - Returns: - TODO - """ + """Postprocess is not needed in this inferencer.""" pass diff --git a/mmedit/edit.py b/mmedit/edit.py index b2064cacfa..33812e5b6b 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -14,7 +14,9 @@ class MMEdit: """MMEdit API for mmediting models inference. Args: - model_name (str): Name of the editing model. Default to 'FCE_IC15'. + model_name (str): Name of the editing model. + model_version (str): Version of a specific model. + Default to 'a'. model_config (str): Path to the config file for the editing model. Default to None. model_ckpt (str): Path to the checkpoint file for the editing model. @@ -31,7 +33,6 @@ def __init__(self, model_ckpt: str = None, device: torch.device = 'cuda', **kwargs) -> None: - register_all_modules(init_default_scope=True) inferencer_kwargs = {} inferencer_kwargs.update( @@ -78,20 +79,20 @@ def infer(self, mask: InputsType = None, result_out_dir: str = '', **kwargs) -> Union[Dict, List[Dict]]: - """Inferences edit model on an image(video) or a folder of - images(videos). + """Infer edit model on an image(video). Args: - imgs (str or np.array or Sequence[str or np.array]): Img, - folder path, np array or list/tuple (with img - paths or np arrays). - result_out_dir (str): Output directory of images. Defaults to ''. + img (str): Img path. + video (str): Video path. + label (int): Label for conditional or unconditional models. + trimap (str): Trimap path for matting models. + mask (str): Mask path for inpainting models. + result_out_dir (str): Output directory of result image or video. + Defaults to ''. Returns: Dict or List[Dict]: Each dict contains the inference result of - each image. Possible keys are "det_polygons", "det_scores", - "rec_texts", "rec_scores", "kie_labels", "kie_scores", - "kie_edge_labels" and "kie_edge_scores". + each image or video. """ return self.inferencer( img=img, From c181555fd5df9a508a89d63c309edbfe9779364b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 9 Nov 2022 16:13:55 +0800 Subject: [PATCH 15/68] [high-level api] delete unused parameters and add extra parameters. --- .../inferencers/base_mmedit_inferencer.py | 24 +- .../inferencers/conditional_inferencer.py | 16 +- .../apis/inferencers/inpainting_inferencer.py | 9 +- mmedit/apis/inferencers/matting_inferencer.py | 1 - mmedit/apis/inferencers/mmedit_inferencer.py | 9 + .../inferencers/restoration_inferencer.py | 1 - .../inferencers/translation_inferencer.py | 1 - .../inferencers/unconditional_inferencer.py | 1 - .../video_interpolation_inferencer.py | 1 - .../video_restoration_inferencer.py | 1 - mmedit/edit.py | 268 +++++++++--------- 11 files changed, 176 insertions(+), 156 deletions(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 75164f8591..1a896e0a13 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -38,10 +38,13 @@ class BaseMMEditInferencer: postprocess=['print_result', 'pred_out_file', 'get_datasample']) func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) + extra_parameters = dict() + def __init__(self, config: Union[ConfigType, str], ckpt: Optional[str], device: Optional[str] = None, + extra_parameters: Optional[Dict] = None, **kwargs) -> None: # Load config to cfg if isinstance(config, str): @@ -58,7 +61,7 @@ def __init__(self, 'cuda' if torch.cuda.is_available() else 'cpu') self.device = device self._init_model(cfg, ckpt, device) - + self._init_extra_parameters(extra_parameters) self.base_params = self._dispatch_kwargs(**kwargs) def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], @@ -73,6 +76,13 @@ def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], model.eval() self.model = model + def _init_extra_parameters(self, extra_parameters: Dict) -> None: + """Initialize extra_parameters of each kind of inferencer.""" + if extra_parameters is not None: + for key in self.extra_parameters.keys(): + if key in extra_parameters.keys(): + self.extra_parameters[key] = extra_parameters[key] + def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: """Dispatch kwargs to preprocess(), forward(), visualize() and postprocess() according to the actual demands.""" @@ -98,7 +108,6 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: Returns: Union[Dict, List[Dict]]: Results of inference pipeline. """ - params = self._dispatch_kwargs(**kwargs) preprocess_kwargs = self.base_params[0].copy() preprocess_kwargs.update(params[0]) @@ -111,10 +120,19 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: data = self.preprocess(**preprocess_kwargs) preds = self.forward(data, **forward_kwargs) - imgs = self.visualize(preds, data, **visualize_kwargs) + imgs = self.visualize(preds, **visualize_kwargs) results = self.postprocess(preds, imgs, **postprocess_kwargs) return results + def get_extra_parameters(self) -> List[str]: + """Each inferencer may has its own parameters. Call this function to + get these parameters. + + Returns: + List[str]: List of unique parameters. + """ + return list(self.extra_parameters.keys()) + @abstractmethod def preprocess(self, inputs: InputsType) -> Dict: """Process the inputs into a model-feedable format. diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index 40baeb9f9e..eb02cf818b 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -20,6 +20,8 @@ class ConditionalInferencer(BaseMMEditInferencer): visualize=['result_out_dir'], postprocess=[]) + extra_parameters = dict(num_batches=4, sample_model='ema') + def preprocess(self, label: InputsType) -> Dict: """Process the inputs into a model-feedable format. @@ -29,18 +31,11 @@ def preprocess(self, label: InputsType) -> Dict: Returns: results(Dict): Results of preprocess. """ - # set model with infer_cfg if it exist else set default value - if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: - sample_nums = self.cfg.infer_cfg.sample_nums - else: - sample_nums = 4 - if 'infer_cfg' in self.cfg and 'sample_model' in self.cfg.infer_cfg: - sample_model = self.cfg.infer_cfg.sample_model - else: - sample_model = 'ema' + num_batches = self.extra_parameters['num_batches'] + sample_model = self.extra_parameters['sample_model'] results = dict( - num_batches=sample_nums, labels=label, sample_model=sample_model) + num_batches=num_batches, labels=label, sample_model=sample_model) return results @@ -50,7 +45,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index 1e4aad3e46..299d74a693 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -54,6 +54,10 @@ def preprocess(self, img: InputsType, mask: InputsType) -> Dict: data['data_samples'][0].mask.data = scatter( data['data_samples'][0].mask.data, [self.device])[0] + # save masks and masked_imgs to visualize + self.masks = data['data_samples'][0].mask.data + self.masked_imgs = data['inputs'][0] + return data def forward(self, inputs: InputsType) -> PredType: @@ -64,7 +68,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. @@ -79,9 +82,7 @@ def visualize(self, List[np.ndarray]: Result of visualize """ result = preds[0] - masks = data['data_samples'][0].mask.data - masked_imgs = data['inputs'][0] - result = result * masks + masked_imgs * (1. - masks) + result = result * self.masks + self.masked_imgs * (1. - self.masks) result = tensor2img(result)[..., ::-1] mmcv.imwrite(result, result_out_dir) diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index aca4f902f2..3d31fe8749 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -70,7 +70,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 4ce0ce2877..003157d11c 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -60,3 +60,12 @@ def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: Union[Dict, List[Dict]]: Results of inference pipeline. """ return self.inferencer(**kwargs) + + def get_extra_parameters(self) -> List[str]: + """Each inferencer may has its own parameters. Call this function to + get these parameters. + + Returns: + List[str]: List of unique parameters. + """ + return self.inferencer.get_extra_parameters() diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index a9c33053d2..9430f2d043 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -87,7 +87,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index fdb26e8ecb..68481356aa 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -65,7 +65,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index 03d797f27b..b27c01a696 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -46,7 +46,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 46376e7b39..40f15df861 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -231,7 +231,6 @@ def forward(self, def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize is not needed in this inferencer.""" pass diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index e68aa0e112..b5393a474c 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -156,7 +156,6 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - data: Dict = None, result_out_dir: str = '') -> List[np.ndarray]: """Visualize predictions. diff --git a/mmedit/edit.py b/mmedit/edit.py index 33812e5b6b..7561e3cfea 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -25,6 +25,135 @@ class MMEdit: Default to 'configs/'. device (torch.device): Device to use for inference. Default to 'cuda'. """ + inference_supported_models = { + # conditional models + 'biggan': { + 'type': 'conditional', + 'version': { + 'a': { + 'config': + 'biggan/biggan_2xb25-500kiters_cifar10-32x32.py', + 'ckpt': + 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 + }, + 'b': { + 'config': + 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', # noqa: E501 + 'ckpt': + 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 + } + }, + }, + + # unconditional models + 'styleganv1': { + 'type': 'unconditional', + 'version': { + 'a': { + 'config': + 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', + 'ckpt': + 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 + } + } + }, + + # matting models + 'gca': { + 'type': 'matting', + 'version': { + 'a': { + 'config': + 'gca/gca_r34_4xb10-200k_comp1k.py', + 'ckpt': + 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 + } + } + }, + + # inpainting models + 'aot_gan': { + 'type': 'inpainting', + 'version': { + 'a': { + 'config': + 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', + 'ckpt': + 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 + } + } + }, + + # translation models + 'pix2pix': { + 'type': 'translation', + 'version': { + 'a': { + 'config': + 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 + 'ckpt': + 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 + } + } + }, + + # restoration models + # real_esrgan error + 'real_esrgan': { + 'type': 'restoration', + 'version': { + 'a': { + 'config': + 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 + 'ckpt': + 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 + }, + } + }, + 'esrgan': { + 'type': 'restoration', + 'version': { + 'a': { + 'config': + 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 + 'ckpt': + 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 + } + } + }, + + # video_restoration models + 'basicvsr': { + 'type': 'video_restoration', + 'version': { + 'a': { + 'config': + 'basicvsr/basicvsr_2xb4_reds4.py', + 'ckpt': + 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 + }, + 'b': { + 'config': + 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', + 'ckpt': + 'ckpt/video_restoration/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 + } + } + }, + + # video_interpolation models + 'flavr': { + 'type': 'video_interpolation', + 'version': { + 'a': { + 'config': + 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 + 'ckpt': + 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 + } + } + } + } def __init__(self, model_name: str = None, @@ -71,6 +200,11 @@ def _get_inferencer_kwargs(self, model: Optional[str], kwargs['ckpt'] = ckpt return kwargs + def print_extra_parameters(self): + """Print the unique parameters of each kind of inferencer.""" + extra_parameters = self.inferencer.get_extra_parameters() + print(extra_parameters) + def infer(self, img: InputsType = None, video: InputsType = None, @@ -112,137 +246,7 @@ def get_model_config(self, model_name: str) -> Dict: Returns: dict: Model configuration. """ - model_dict = { - # conditional models - 'biggan': { - 'type': 'conditional', - 'version': { - 'a': { - 'config': - 'biggan/dbnet_resnet18_fpnc_1200e_icdar2015.py', - 'ckpt': - 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 - }, - 'b': { - 'config': - 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', # noqa: E501 - 'ckpt': - 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 - } - }, - }, - - # unconditional models - 'styleganv1': { - 'type': 'unconditional', - 'version': { - 'a': { - 'config': - 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', - 'ckpt': - 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 - } - } - }, - - # matting models - 'gca': { - 'type': 'matting', - 'version': { - 'a': { - 'config': - 'gca/gca_r34_4xb10-200k_comp1k.py', - 'ckpt': - 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 - } - } - }, - - # inpainting models - 'aot_gan': { - 'type': 'inpainting', - 'version': { - 'a': { - 'config': - 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', - 'ckpt': - 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 - } - } - }, - - # translation models - 'pix2pix': { - 'type': 'translation', - 'version': { - 'a': { - 'config': - 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 - 'ckpt': - 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 - } - } - }, - - # restoration models - # real_esrgan error - 'real_esrgan': { - 'type': 'restoration', - 'version': { - 'a': { - 'config': - 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 - 'ckpt': - 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 - }, - } - }, - 'esrgan': { - 'type': 'restoration', - 'version': { - 'a': { - 'config': - 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 - 'ckpt': - 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 - } - } - }, - - # video_restoration models - 'basicvsr': { - 'type': 'video_restoration', - 'version': { - 'a': { - 'config': - 'basicvsr/basicvsr_2xb4_reds4.py', - 'ckpt': - 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 - }, - 'b': { - 'config': - 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', - 'ckpt': - 'ckpt/video_restoration/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 - } - } - }, - - # video_interpolation models - 'flavr': { - 'type': 'video_interpolation', - 'version': { - 'a': { - 'config': - 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 - 'ckpt': - 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 - } - } - } - } - - if model_name not in model_dict: + if model_name not in self.inference_supported_models: raise ValueError(f'Model {model_name} is not supported.') else: - return model_dict[model_name] + return self.inference_supported_models[model_name] From 1aec4aae7359fcac2a73c27dee9424273726f241 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 9 Nov 2022 20:28:19 +0800 Subject: [PATCH 16/68] [high-level api] add inference tutorial. --- demo/mmediting_inference_tutorial.ipynb | 346 ++++++++++++++++++++++++ 1 file changed, 346 insertions(+) create mode 100644 demo/mmediting_inference_tutorial.ipynb diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb new file mode 100644 index 0000000000..7577bed5d6 --- /dev/null +++ b/demo/mmediting_inference_tutorial.ipynb @@ -0,0 +1,346 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MMEditing Inference Tutorial\n", + "\n", + "Welcome to MMEditing! In this tutorial you will learn how to use MMEditing inference api to predict your own image or video. \n", + "\n", + "This is a quick guide for you to infer with existing models. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Install MMEditing\n", + "Please refer to [README.md](README.md) for installation instruction." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Inference API Introduction\n", + "\n", + "You could use inference api in your python code or with command line." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Inference with python code\n", + "\n", + "MMEditing inference api makes it easy to infer your own image or video with two lines python code. \n", + "\n", + "Take image translation for example.\n", + "\n", + "There are two steps:\n", + "\n", + "First, create a MMEdit instance by a pretrained model name.\n", + "\n", + "Second, infer your own image with this MMEdit instance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance\n", + "editor = MMEdit('pix2pix')\n", + "# Infer a image. Input image path and output image path is needed.\n", + "editor.infer(img='resources/input/translation/gt_mask_0.png', result_out_dir='resources/demo_results/tutorial_translation_res.jpg')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Inference with command line\n", + "\n", + "There is a command line interface in this folder (MMEditing/demo/mmediting_inference_demo.py).\n", + "\n", + "You could infer a model with this interface like this (do this in MMEditing root path)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "bash demo/mmediting_inference_demo.py --model-name pix2pix --img='resources/input/translation/gt_mask_0.png', result_out_dir='resources/demo_results/tutorial_translation_res.jpg'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Infer with models of different tasks\n", + "\n", + "There are multiple task types in MMEditing: conditional, inpainting, matting, restoration, translation, unconditional, video_interpolation, video_restoration. \n", + "\n", + "We provide some models for each task. All available models could be printed out like this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mmedit.edit import MMEdit\n", + "\n", + "# print all available models for inference.\n", + "inference_supported_models = MMEdit.inference_supported_models\n", + "print('all available models:')\n", + "print(list(inference_supported_models.keys()))\n", + "\n", + "# print all available models for one task, take image translation for example.\n", + "print('translation models:')\n", + "for key in inference_supported_models.keys():\n", + " if inference_supported_models[key]['type'] == 'translation':\n", + " print(key)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1 Inference of conditional models\n", + "\n", + "Input: label, output: image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name biggan \\\n", + " --label 1 \\\n", + " --result-out-dir resources/demo_results/conditional_res.jpg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 Inference of inpainting models\n", + "\n", + "Input: masked image, mask, output: inpainted image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name aot_gan \\\n", + " --img resources/input/inpainting/img_resized.jpg \\\n", + " --mask resources/input/inpainting/mask_2_resized.png \\\n", + " --result-out-dir resources/demo_results/inpainting_res.jpg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.3 Inference of matting models\n", + "\n", + "Input: image, trimap, output: alpha image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name gca \\\n", + " --img resources/input/restoration/0901x2.png \\\n", + " --trimap resources/input/matting/beach_trimap.png \\\n", + " --result-out-dir resources/demo_results/restoration_res.png" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4 Inference of restoration models\n", + "\n", + "Input: image, output: restored image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name esrgan \\\n", + " --img resources/input/restoration/0901x2.png \\\n", + " --result-out-dir resources/demo_results/restoration_res.png" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.5 Inference of translation models\n", + "\n", + "Input: image, output: translated image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name pix2pix \\\n", + " --img resources/input/translation/gt_mask_0.png \\\n", + " --result-out-dir resources/demo_results/translation_res.png" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.6 Inference of unconditional models\n", + "\n", + "Input: None, output: image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name styleganv1 \\\n", + " --result-out-dir resources/demo_results/unconditional_res.jpg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.7 Inference of video_interpolation models\n", + "\n", + "Input: video, output: interpolated video." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name flavr \\\n", + " --video resources/input/video_interpolation/v_Basketball_g01_c01.avi \\\n", + " --result-out-dir resources/demo_results/video_interpolation_res.avi" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.8 Inference of video_restoration models\n", + "\n", + "Input: video, output: restorated video." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "python demo/mmediting_inference_demo.py \\\n", + " --model-name basicvsr \\\n", + " --video resources/input/video_restoration/v_Basketball_g01_c01.avi \\\n", + " --result-out-dir resources/demo_results/video_restoration_res.avi" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.13 ('py38pt19cu111')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "cc59650aeaf0a5b1e5ddb0ea8c138097613dc74b68e66e82242be7e50dd0d685" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 0658dd9bde8303cec9d9ed89f5af0c483fbd18ca Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 11:20:56 +0800 Subject: [PATCH 17/68] [high-level api] add unit test for inference_functions --- .../test_inference_functions.py | 285 ++++++++++++++++++ 1 file changed, 285 insertions(+) create mode 100644 tests/test_apis/test_inferencers/test_inference_functions.py diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py new file mode 100644 index 0000000000..61f3c571f2 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -0,0 +1,285 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import platform +import unittest + +import pytest +import torch +from mmengine import Config +from mmengine.runner import load_checkpoint + +from mmedit.apis import (colorization_inference, init_model, + inpainting_inference, matting_inference, + restoration_face_inference, restoration_inference, + restoration_video_inference, sample_conditional_model, + sample_img2img_model, sample_unconditional_model, + video_interpolation_inference) +from mmedit.registry import MODELS +from mmedit.utils import register_all_modules, tensor2img + +register_all_modules() + + +@pytest.mark.skipif( + 'win' in platform.system().lower() and 'cu' in torch.__version__, + reason='skip on windows-cuda due to limited RAM.') +def test_colorization_inference(): + register_all_modules() + + if not torch.cuda.is_available(): + # RoI pooling only support in GPU + return unittest.skip('test requires GPU and torch+cuda') + + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + config = osp.join( + osp.dirname(__file__), + '../..', + 'configs/inst_colorization/inst-colorizatioon_full_official_cocostuff-256x256.py' # noqa + ) + checkpoint = None + + cfg = Config.fromfile(config) + model = MODELS.build(cfg.model) + + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint) + + model.cfg = cfg + model.to(device) + model.eval() + + img_path = osp.join( + osp.dirname(__file__), '..', 'data/image/img_root/horse/horse.jpeg') + + result = colorization_inference(model, img_path) + assert tensor2img(result)[..., ::-1].shape == (256, 256, 3) + + +def test_unconditional_inference(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', 'configs', 'dcgan', + 'dcgan_Glr4e-4_Dlr1e-4_1xb128-5kiters_mnist-64x64.py') + cfg = Config.fromfile(cfg) + model = MODELS.build(cfg.model) + model.eval() + + # test num_samples can be divided by num_batches + results = sample_unconditional_model( + model, num_samples=4, sample_model='orig') + assert results.shape == (4, 1, 64, 64) + + # test num_samples can not be divided by num_batches + results = sample_unconditional_model( + model, num_samples=4, num_batches=3, sample_model='orig') + assert results.shape == (4, 1, 64, 64) + + +def test_conditional_inference(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', 'configs', 'sngan_proj', + 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') + cfg = Config.fromfile(cfg) + model = MODELS.build(cfg.model) + model.eval() + + # test label is int + results = sample_conditional_model( + model, label=1, num_samples=4, sample_model='orig') + assert results.shape == (4, 3, 32, 32) + # test label is tensor + results = sample_conditional_model( + model, + label=torch.FloatTensor([1.]), + num_samples=4, + sample_model='orig') + assert results.shape == (4, 3, 32, 32) + + # test label is multi tensor + results = sample_conditional_model( + model, + label=torch.FloatTensor([1., 2., 3., 4.]), + num_samples=4, + sample_model='orig') + assert results.shape == (4, 3, 32, 32) + + # test label is list of int + results = sample_conditional_model( + model, label=[1, 2, 3, 4], num_samples=4, sample_model='orig') + assert results.shape == (4, 3, 32, 32) + + # test label is None + results = sample_conditional_model( + model, num_samples=4, sample_model='orig') + assert results.shape == (4, 3, 32, 32) + + # test label is invalid + with pytest.raises(TypeError): + results = sample_conditional_model( + model, label='1', num_samples=4, sample_model='orig') + + # test length of label is not same as num_samples + with pytest.raises(ValueError): + results = sample_conditional_model( + model, label=[1, 2], num_samples=4, sample_model='orig') + + # test num_samples can not be divided by num_batches + results = sample_conditional_model( + model, num_samples=3, num_batches=2, sample_model='orig') + assert results.shape == (3, 3, 32, 32) + + +def test_inference(): + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + data_root = osp.join(osp.dirname(__file__), '../../') + config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' + checkpoint = 'https://download.openmmlab.com/mmediting/mattors/dim/dim_' +\ + 'stage3_v16_pln_1x1_1000k_comp1k_SAD-50.6_20200609_111851-647f24b6.pth' + + img_path = data_root + 'tests/data/matting_dataset/merged/GT05.jpg' + trimap_path = data_root + 'tests/data/matting_dataset/trimap/GT05.png' + + model = init_model(config, checkpoint, device=device) + + pred_alpha = matting_inference(model, img_path, trimap_path) + assert pred_alpha.shape == (552, 800) + + +def test_inpainting_inference(): + register_all_modules() + + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + checkpoint = None + + data_root = osp.join(osp.dirname(__file__), '../') + config_file = osp.join(data_root, 'configs', 'gl_test.py') + + cfg = Config.fromfile(config_file) + model = MODELS.build(cfg.model_inference) + + if checkpoint is not None: + checkpoint = load_checkpoint(model, checkpoint) + + model.cfg = cfg + model.to(device) + model.eval() + + masked_img_path = data_root + 'data/inpainting/celeba_test.png' + mask_path = data_root + 'data/inpainting/bbox_mask.png' + + result = inpainting_inference(model, masked_img_path, mask_path) + assert result.detach().cpu().numpy().shape == (3, 256, 256) + + +@pytest.mark.skipif( + 'win' in platform.system().lower() and 'cu' in torch.__version__, + reason='skip on windows-cuda due to limited RAM.') +def test_restoration_face_inference(): + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + data_root = osp.join(osp.dirname(__file__), '../../') + config = data_root + 'configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py' # noqa + + checkpoint = None + + img_path = data_root + 'tests/data/image/face/000001.png' + + model = init_model(config, checkpoint, device=device) + + output = restoration_face_inference(model, img_path, 1, 1024) + assert output.shape == (256, 256, 3) + + +@pytest.mark.skipif( + 'win' in platform.system().lower() and 'cu' in torch.__version__, + reason='skip on windows-cuda due to limited RAM.') +def test_restoration_inference(): + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + data_root = osp.join(osp.dirname(__file__), '../../') + config = data_root + 'configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py' # noqa + checkpoint = None + + img_path = data_root + 'tests/data/image/lq/baboon_x4.png' + + model = init_model(config, checkpoint, device=device) + + output = restoration_inference(model, img_path) + assert output.detach().cpu().numpy().shape == (3, 480, 500) + + +def test_restoration_video_inference(): + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + data_root = osp.join(osp.dirname(__file__), '../../') + config = osp.join(data_root, 'configs/basicvsr/basicvsr_2xb4_reds4.py') + checkpoint = None + + input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') + + model = init_model(config, checkpoint, device=device) + + output = restoration_video_inference(model, input_dir, 0, 0, '{:08d}.png', + None) + assert output.detach().numpy().shape == (1, 2, 3, 256, 448) + + +def test_translation_inference(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', 'configs', 'pix2pix', + 'pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py') + cfg = Config.fromfile(cfg) + model = init_model(cfg, device='cpu') + model.eval() + data_path = osp.join( + osp.dirname(__file__), '..', 'data', 'unpaired', 'trainA', '1.jpg') + # test num_samples can be divided by num_batches + results = sample_img2img_model( + model, image_path=data_path, target_domain='photo') + print(results.shape) + assert results.shape == (1, 3, 256, 256) + + # test target domain is None + results = sample_img2img_model(model, image_path=data_path) + assert results.shape == (1, 3, 256, 256) + + +def test_video_interpolation_inference(): + if torch.cuda.is_available(): + device = torch.device('cuda', 0) + else: + device = torch.device('cpu') + + data_root = osp.join(osp.dirname(__file__), '../../') + config = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' + checkpoint = None + + input_dir = data_root + 'tests/data/frames/test_inference.mp4' + + model = init_model(config, checkpoint, device=device) + + video_interpolation_inference( + model=model, input_dir=input_dir, output_dir='out', fps=60.0) + + +test_video_interpolation_inference() From 19c1d32735fcf4af105e632fd8d5a3d9dafd830c Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 14:10:38 +0800 Subject: [PATCH 18/68] [high-level api] fix path error. --- .../test_inference_functions.py | 26 ++++++++++--------- 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index 61f3c571f2..dedac0dc1e 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -37,7 +37,7 @@ def test_colorization_inference(): config = osp.join( osp.dirname(__file__), - '../..', + '../../..', 'configs/inst_colorization/inst-colorizatioon_full_official_cocostuff-256x256.py' # noqa ) checkpoint = None @@ -53,7 +53,8 @@ def test_colorization_inference(): model.eval() img_path = osp.join( - osp.dirname(__file__), '..', 'data/image/img_root/horse/horse.jpeg') + osp.dirname(__file__), '..', '..', + 'data/image/img_root/horse/horse.jpeg') result = colorization_inference(model, img_path) assert tensor2img(result)[..., ::-1].shape == (256, 256, 3) @@ -61,7 +62,7 @@ def test_colorization_inference(): def test_unconditional_inference(): cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'dcgan', + osp.dirname(__file__), '..', '..', '..', 'configs', 'dcgan', 'dcgan_Glr4e-4_Dlr1e-4_1xb128-5kiters_mnist-64x64.py') cfg = Config.fromfile(cfg) model = MODELS.build(cfg.model) @@ -80,7 +81,7 @@ def test_unconditional_inference(): def test_conditional_inference(): cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'sngan_proj', + osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') cfg = Config.fromfile(cfg) model = MODELS.build(cfg.model) @@ -138,7 +139,7 @@ def test_inference(): else: device = torch.device('cpu') - data_root = osp.join(osp.dirname(__file__), '../../') + data_root = osp.join(osp.dirname(__file__), '../../../') config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' checkpoint = 'https://download.openmmlab.com/mmediting/mattors/dim/dim_' +\ 'stage3_v16_pln_1x1_1000k_comp1k_SAD-50.6_20200609_111851-647f24b6.pth' @@ -162,7 +163,7 @@ def test_inpainting_inference(): checkpoint = None - data_root = osp.join(osp.dirname(__file__), '../') + data_root = osp.join(osp.dirname(__file__), '../../') config_file = osp.join(data_root, 'configs', 'gl_test.py') cfg = Config.fromfile(config_file) @@ -191,7 +192,7 @@ def test_restoration_face_inference(): else: device = torch.device('cpu') - data_root = osp.join(osp.dirname(__file__), '../../') + data_root = osp.join(osp.dirname(__file__), '../../../') config = data_root + 'configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py' # noqa checkpoint = None @@ -213,7 +214,7 @@ def test_restoration_inference(): else: device = torch.device('cpu') - data_root = osp.join(osp.dirname(__file__), '../../') + data_root = osp.join(osp.dirname(__file__), '../../../') config = data_root + 'configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py' # noqa checkpoint = None @@ -231,7 +232,7 @@ def test_restoration_video_inference(): else: device = torch.device('cpu') - data_root = osp.join(osp.dirname(__file__), '../../') + data_root = osp.join(osp.dirname(__file__), '../../../') config = osp.join(data_root, 'configs/basicvsr/basicvsr_2xb4_reds4.py') checkpoint = None @@ -246,13 +247,14 @@ def test_restoration_video_inference(): def test_translation_inference(): cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'pix2pix', + osp.dirname(__file__), '..', '..', '..', 'configs', 'pix2pix', 'pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py') cfg = Config.fromfile(cfg) model = init_model(cfg, device='cpu') model.eval() data_path = osp.join( - osp.dirname(__file__), '..', 'data', 'unpaired', 'trainA', '1.jpg') + osp.dirname(__file__), '..', '..', 'data', 'unpaired', 'trainA', + '1.jpg') # test num_samples can be divided by num_batches results = sample_img2img_model( model, image_path=data_path, target_domain='photo') @@ -270,7 +272,7 @@ def test_video_interpolation_inference(): else: device = torch.device('cpu') - data_root = osp.join(osp.dirname(__file__), '../../') + data_root = osp.join(osp.dirname(__file__), '../../../') config = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' checkpoint = None From 02a987378046b90e8157dd931f343e28e98eea40 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 14:31:07 +0800 Subject: [PATCH 19/68] [high-level api] delete old unit test file. --- .../test_apis/test_colorization_inference.py | 52 ------------ tests/test_apis/test_gan_inference.py | 85 ------------------- tests/test_apis/test_inference.py | 26 ------ tests/test_apis/test_inpainting_inference.py | 40 --------- tests/test_apis/test_matting_inference.py | 25 ------ .../test_restoration_face_inference.py | 30 ------- tests/test_apis/test_restoration_inference.py | 29 ------- .../test_restoration_video_inference.py | 25 ------ tests/test_apis/test_translation_inference.py | 29 ------- .../test_video_interpolation_inference.py | 27 ------ 10 files changed, 368 deletions(-) delete mode 100644 tests/test_apis/test_colorization_inference.py delete mode 100644 tests/test_apis/test_gan_inference.py delete mode 100644 tests/test_apis/test_inference.py delete mode 100644 tests/test_apis/test_inpainting_inference.py delete mode 100644 tests/test_apis/test_matting_inference.py delete mode 100644 tests/test_apis/test_restoration_face_inference.py delete mode 100644 tests/test_apis/test_restoration_inference.py delete mode 100644 tests/test_apis/test_restoration_video_inference.py delete mode 100644 tests/test_apis/test_translation_inference.py delete mode 100644 tests/test_apis/test_video_interpolation_inference.py diff --git a/tests/test_apis/test_colorization_inference.py b/tests/test_apis/test_colorization_inference.py deleted file mode 100644 index 3e574633bb..0000000000 --- a/tests/test_apis/test_colorization_inference.py +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -import platform -import unittest - -import pytest -import torch -from mmengine import Config -from mmengine.runner import load_checkpoint - -from mmedit.apis import colorization_inference -from mmedit.registry import MODELS -from mmedit.utils import register_all_modules, tensor2img - - -@pytest.mark.skipif( - 'win' in platform.system().lower() and 'cu' in torch.__version__, - reason='skip on windows-cuda due to limited RAM.') -def test_colorization_inference(): - register_all_modules() - - if not torch.cuda.is_available(): - # RoI pooling only support in GPU - return unittest.skip('test requires GPU and torch+cuda') - - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - config = osp.join( - osp.dirname(__file__), - '../..', - 'configs/inst_colorization/inst-colorizatioon_full_official_cocostuff-256x256.py' # noqa - ) - checkpoint = None - - cfg = Config.fromfile(config) - model = MODELS.build(cfg.model) - - if checkpoint is not None: - checkpoint = load_checkpoint(model, checkpoint) - - model.cfg = cfg - model.to(device) - model.eval() - - img_path = osp.join( - osp.dirname(__file__), '..', 'data/image/img_root/horse/horse.jpeg') - - result = colorization_inference(model, img_path) - assert tensor2img(result)[..., ::-1].shape == (256, 256, 3) diff --git a/tests/test_apis/test_gan_inference.py b/tests/test_apis/test_gan_inference.py deleted file mode 100644 index 06b8c694d0..0000000000 --- a/tests/test_apis/test_gan_inference.py +++ /dev/null @@ -1,85 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import pytest -import torch -from mmengine import Config - -from mmedit.apis import sample_conditional_model, sample_unconditional_model -from mmedit.registry import MODELS -from mmedit.utils import register_all_modules - -register_all_modules() - - -def test_unconditional_inference(): - cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'dcgan', - 'dcgan_Glr4e-4_Dlr1e-4_1xb128-5kiters_mnist-64x64.py') - cfg = Config.fromfile(cfg) - model = MODELS.build(cfg.model) - model.eval() - - # test num_samples can be divided by num_batches - results = sample_unconditional_model( - model, num_samples=4, sample_model='orig') - assert results.shape == (4, 1, 64, 64) - - # test num_samples can not be divided by num_batches - results = sample_unconditional_model( - model, num_samples=4, num_batches=3, sample_model='orig') - assert results.shape == (4, 1, 64, 64) - - -def test_conditional_inference(): - cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'sngan_proj', - 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') - cfg = Config.fromfile(cfg) - model = MODELS.build(cfg.model) - model.eval() - - # test label is int - results = sample_conditional_model( - model, label=1, num_samples=4, sample_model='orig') - assert results.shape == (4, 3, 32, 32) - # test label is tensor - results = sample_conditional_model( - model, - label=torch.FloatTensor([1.]), - num_samples=4, - sample_model='orig') - assert results.shape == (4, 3, 32, 32) - - # test label is multi tensor - results = sample_conditional_model( - model, - label=torch.FloatTensor([1., 2., 3., 4.]), - num_samples=4, - sample_model='orig') - assert results.shape == (4, 3, 32, 32) - - # test label is list of int - results = sample_conditional_model( - model, label=[1, 2, 3, 4], num_samples=4, sample_model='orig') - assert results.shape == (4, 3, 32, 32) - - # test label is None - results = sample_conditional_model( - model, num_samples=4, sample_model='orig') - assert results.shape == (4, 3, 32, 32) - - # test label is invalid - with pytest.raises(TypeError): - results = sample_conditional_model( - model, label='1', num_samples=4, sample_model='orig') - - # test length of label is not same as num_samples - with pytest.raises(ValueError): - results = sample_conditional_model( - model, label=[1, 2], num_samples=4, sample_model='orig') - - # test num_samples can not be divided by num_batches - results = sample_conditional_model( - model, num_samples=3, num_batches=2, sample_model='orig') - assert results.shape == (3, 3, 32, 32) diff --git a/tests/test_apis/test_inference.py b/tests/test_apis/test_inference.py deleted file mode 100644 index 9380059742..0000000000 --- a/tests/test_apis/test_inference.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import torch - -from mmedit.apis import init_model, matting_inference - - -def test_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' - checkpoint = 'https://download.openmmlab.com/mmediting/mattors/dim/dim_' +\ - 'stage3_v16_pln_1x1_1000k_comp1k_SAD-50.6_20200609_111851-647f24b6.pth' - - img_path = data_root + 'tests/data/matting_dataset/merged/GT05.jpg' - trimap_path = data_root + 'tests/data/matting_dataset/trimap/GT05.png' - - model = init_model(config, checkpoint, device=device) - - pred_alpha = matting_inference(model, img_path, trimap_path) - assert pred_alpha.shape == (552, 800) diff --git a/tests/test_apis/test_inpainting_inference.py b/tests/test_apis/test_inpainting_inference.py deleted file mode 100644 index e090047731..0000000000 --- a/tests/test_apis/test_inpainting_inference.py +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import torch -from mmengine import Config -from mmengine.runner import load_checkpoint - -from mmedit.apis import inpainting_inference -from mmedit.registry import MODELS -from mmedit.utils import register_all_modules - - -def test_inpainting_inference(): - register_all_modules() - - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - checkpoint = None - - data_root = osp.join(osp.dirname(__file__), '../') - config_file = osp.join(data_root, 'configs', 'gl_test.py') - - cfg = Config.fromfile(config_file) - model = MODELS.build(cfg.model_inference) - - if checkpoint is not None: - checkpoint = load_checkpoint(model, checkpoint) - - model.cfg = cfg - model.to(device) - model.eval() - - masked_img_path = data_root + 'data/inpainting/celeba_test.png' - mask_path = data_root + 'data/inpainting/bbox_mask.png' - - result = inpainting_inference(model, masked_img_path, mask_path) - assert result.detach().cpu().numpy().shape == (3, 256, 256) diff --git a/tests/test_apis/test_matting_inference.py b/tests/test_apis/test_matting_inference.py deleted file mode 100644 index 331f356b64..0000000000 --- a/tests/test_apis/test_matting_inference.py +++ /dev/null @@ -1,25 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import torch - -from mmedit.apis import init_model, matting_inference - - -def test_matting_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' - checkpoint = None - - img_path = data_root + 'tests/data/matting_dataset/merged/GT05.jpg' - trimap_path = data_root + 'tests/data/matting_dataset/trimap/GT05.png' - - model = init_model(config, checkpoint, device=device) - - pred_alpha = matting_inference(model, img_path, trimap_path) - assert pred_alpha.shape == (552, 800) diff --git a/tests/test_apis/test_restoration_face_inference.py b/tests/test_apis/test_restoration_face_inference.py deleted file mode 100644 index 0d0bc8270d..0000000000 --- a/tests/test_apis/test_restoration_face_inference.py +++ /dev/null @@ -1,30 +0,0 @@ -# # Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -import platform - -import pytest -import torch - -from mmedit.apis import init_model, restoration_face_inference - - -@pytest.mark.skipif( - 'win' in platform.system().lower() and 'cu' in torch.__version__, - reason='skip on windows-cuda due to limited RAM.') -def test_restoration_face_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = data_root + 'configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py' # noqa - - checkpoint = None - - img_path = data_root + 'tests/data/image/face/000001.png' - - model = init_model(config, checkpoint, device=device) - - output = restoration_face_inference(model, img_path, 1, 1024) - assert output.shape == (256, 256, 3) diff --git a/tests/test_apis/test_restoration_inference.py b/tests/test_apis/test_restoration_inference.py deleted file mode 100644 index 70b23ae46a..0000000000 --- a/tests/test_apis/test_restoration_inference.py +++ /dev/null @@ -1,29 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -import platform - -import pytest -import torch - -from mmedit.apis import init_model, restoration_inference - - -@pytest.mark.skipif( - 'win' in platform.system().lower() and 'cu' in torch.__version__, - reason='skip on windows-cuda due to limited RAM.') -def test_restoration_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = data_root + 'configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py' # noqa - checkpoint = None - - img_path = data_root + 'tests/data/image/lq/baboon_x4.png' - - model = init_model(config, checkpoint, device=device) - - output = restoration_inference(model, img_path) - assert output.detach().cpu().numpy().shape == (3, 480, 500) diff --git a/tests/test_apis/test_restoration_video_inference.py b/tests/test_apis/test_restoration_video_inference.py deleted file mode 100644 index 1f9a8ec406..0000000000 --- a/tests/test_apis/test_restoration_video_inference.py +++ /dev/null @@ -1,25 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import torch - -from mmedit.apis import init_model, restoration_video_inference - - -def test_restoration_video_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = osp.join(data_root, 'configs/basicvsr/basicvsr_2xb4_reds4.py') - checkpoint = None - - input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') - - model = init_model(config, checkpoint, device=device) - - output = restoration_video_inference(model, input_dir, 0, 0, '{:08d}.png', - None) - assert output.detach().numpy().shape == (1, 2, 3, 256, 448) diff --git a/tests/test_apis/test_translation_inference.py b/tests/test_apis/test_translation_inference.py deleted file mode 100644 index ef592adcdf..0000000000 --- a/tests/test_apis/test_translation_inference.py +++ /dev/null @@ -1,29 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -from mmengine import Config - -from mmedit.apis import init_model, sample_img2img_model -from mmedit.utils import register_all_modules - -register_all_modules() - - -def test_unconditional_inference(): - cfg = osp.join( - osp.dirname(__file__), '..', '..', 'configs', 'pix2pix', - 'pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py') - cfg = Config.fromfile(cfg) - model = init_model(cfg, device='cpu') - model.eval() - data_path = osp.join( - osp.dirname(__file__), '..', 'data', 'unpaired', 'trainA', '1.jpg') - # test num_samples can be divided by num_batches - results = sample_img2img_model( - model, image_path=data_path, target_domain='photo') - print(results.shape) - assert results.shape == (1, 3, 256, 256) - - # test target domain is None - results = sample_img2img_model(model, image_path=data_path) - assert results.shape == (1, 3, 256, 256) diff --git a/tests/test_apis/test_video_interpolation_inference.py b/tests/test_apis/test_video_interpolation_inference.py deleted file mode 100644 index 6bdf4d9ccb..0000000000 --- a/tests/test_apis/test_video_interpolation_inference.py +++ /dev/null @@ -1,27 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp - -import torch - -from mmedit.apis import init_model, video_interpolation_inference - - -def test_video_interpolation_inference(): - if torch.cuda.is_available(): - device = torch.device('cuda', 0) - else: - device = torch.device('cpu') - - data_root = osp.join(osp.dirname(__file__), '../../') - config = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' - checkpoint = None - - input_dir = data_root + 'tests/data/frames/test_inference.mp4' - - model = init_model(config, checkpoint, device=device) - - video_interpolation_inference( - model=model, input_dir=input_dir, output_dir='out', fps=60.0) - - -test_video_interpolation_inference() From dafeccc3acaa2e707fee798ad075a494e5f9f2ab Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 15:52:34 +0800 Subject: [PATCH 20/68] [high-level api] add ut for edit and conditional inferncer. --- .../inferencers/conditional_inferencer.py | 7 +++--- .../test_conditional_inferencer.py | 25 +++++++++++++++++++ tests/test_edit.py | 16 ++++++++++++ 3 files changed, 45 insertions(+), 3 deletions(-) create mode 100644 tests/test_apis/test_inferencers/test_conditional_inferencer.py create mode 100644 tests/test_edit.py diff --git a/mmedit/apis/inferencers/conditional_inferencer.py b/mmedit/apis/inferencers/conditional_inferencer.py index eb02cf818b..276b798c98 100644 --- a/mmedit/apis/inferencers/conditional_inferencer.py +++ b/mmedit/apis/inferencers/conditional_inferencer.py @@ -45,7 +45,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: @@ -64,8 +64,9 @@ def visualize(self, results = (results[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(result_out_dir)) - utils.save_image(results, result_out_dir) + if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/tests/test_apis/test_inferencers/test_conditional_inferencer.py b/tests/test_apis/test_inferencers/test_conditional_inferencer.py new file mode 100644 index 0000000000..d7022b53ad --- /dev/null +++ b/tests/test_apis/test_inferencers/test_conditional_inferencer.py @@ -0,0 +1,25 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.conditional_inferencer import \ + ConditionalInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_conditional_inference(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', + 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') + conditional_instance = \ + ConditionalInferencer(cfg, + None, + extra_parameters={'sample_model': 'orig'}) + inference_result = conditional_instance(label=1) + result_img = inference_result[1] + assert result_img.shape == (4, 3, 32, 32) + + +if __name__ == '__main__': + test_conditional_inference() diff --git a/tests/test_edit.py b/tests/test_edit.py new file mode 100644 index 0000000000..b72d0d5cad --- /dev/null +++ b/tests/test_edit.py @@ -0,0 +1,16 @@ +# Copyright (c) OpenMMLab. All rights reserved. +from mmedit.edit import MMEdit +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_edit(): + mmedit_instance = MMEdit('biggan') + inference_result = mmedit_instance.infer(label=1) + result_img = inference_result[1] + assert result_img.shape == (4, 3, 32, 32) + + +if __name__ == '__main__': + test_edit() From 4ff4992f8cd2eef9a85ccf9dee2f6599a73382b1 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 16:28:37 +0800 Subject: [PATCH 21/68] [high-level api] fix edit ut bug and add ut of base_inference, inpainting. --- .../inferencers/base_mmedit_inferencer.py | 2 +- .../apis/inferencers/inpainting_inferencer.py | 7 ++-- .../test_base_mmedit_inferencer.py | 20 ++++++++++++ .../test_conditional_inferencer.py | 4 +-- .../test_inpainting_inferencer.py | 32 +++++++++++++++++++ tests/test_edit.py | 2 +- 6 files changed, 60 insertions(+), 7 deletions(-) create mode 100644 tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py create mode 100644 tests/test_apis/test_inferencers/test_inpainting_inferencer.py diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 1a896e0a13..559476234f 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -69,7 +69,7 @@ def _init_model(self, cfg: Union[ConfigType, str], ckpt: Optional[str], """Initialize the model with the given config and checkpoint on the specific device.""" model = MODELS.build(cfg.model) - if ckpt is not None: + if ckpt is not None and ckpt != '': ckpt = load_checkpoint(model, ckpt, map_location='cpu') model.cfg = cfg model.to(device) diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index 299d74a693..ea0cba59c4 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -68,7 +68,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: @@ -84,7 +84,8 @@ def visualize(self, result = preds[0] result = result * self.masks + self.masked_imgs * (1. - self.masks) - result = tensor2img(result)[..., ::-1] - mmcv.imwrite(result, result_out_dir) + if result_out_dir: + result = tensor2img(result)[..., ::-1] + mmcv.imwrite(result, result_out_dir) return result diff --git a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py new file mode 100644 index 0000000000..d959653a82 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py @@ -0,0 +1,20 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.base_mmedit_inferencer import BaseMMEditInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_base_mmedit_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', + 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') + inferencer_instance = BaseMMEditInferencer(cfg, None) + extra_parameters = inferencer_instance.get_extra_parameters() + assert len(extra_parameters) == 0 + + +if __name__ == '__main__': + test_base_mmedit_inferencer() diff --git a/tests/test_apis/test_inferencers/test_conditional_inferencer.py b/tests/test_apis/test_inferencers/test_conditional_inferencer.py index d7022b53ad..c0dba9694a 100644 --- a/tests/test_apis/test_inferencers/test_conditional_inferencer.py +++ b/tests/test_apis/test_inferencers/test_conditional_inferencer.py @@ -8,7 +8,7 @@ register_all_modules() -def test_conditional_inference(): +def test_conditional_inferencer(): cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') @@ -22,4 +22,4 @@ def test_conditional_inference(): if __name__ == '__main__': - test_conditional_inference() + test_conditional_inferencer() diff --git a/tests/test_apis/test_inferencers/test_inpainting_inferencer.py b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py new file mode 100644 index 0000000000..509281379b --- /dev/null +++ b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py @@ -0,0 +1,32 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.inpainting_inferencer import InpaintingInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_inpainting_inferencer(): + data_root = osp.join(osp.dirname(__file__), '../../') + masked_img_path = data_root + 'data/inpainting/celeba_test.png' + mask_path = data_root + 'data/inpainting/bbox_mask.png' + + cfg = osp.join( + osp.dirname(__file__), + '..', + '..', + '..', + 'configs', + 'aot_gan', + 'aot-gan_smpgan_4xb4_places-512x512.py', + ) + inferencer_instance = \ + InpaintingInferencer(cfg, None) + inference_result = inferencer_instance(img=masked_img_path, mask=mask_path) + result_img = inference_result[1] + assert result_img.detach().cpu().numpy().shape == (3, 256, 256) + + +if __name__ == '__main__': + test_inpainting_inferencer() diff --git a/tests/test_edit.py b/tests/test_edit.py index b72d0d5cad..8e10b0a8d3 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -6,7 +6,7 @@ def test_edit(): - mmedit_instance = MMEdit('biggan') + mmedit_instance = MMEdit('biggan', model_ckpt='') inference_result = mmedit_instance.infer(label=1) result_img = inference_result[1] assert result_img.shape == (4, 3, 32, 32) From 95f7fa42c6561636b93722b9261d015051ee7a3d Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 17:21:56 +0800 Subject: [PATCH 22/68] [high-level api] fix edit.py ut and add two uts. --- .../inferencers/base_mmedit_inferencer.py | 2 +- mmedit/apis/inferencers/matting_inferencer.py | 7 ++-- mmedit/apis/inferencers/mmedit_inferencer.py | 36 ++++++++++++------- mmedit/edit.py | 19 +++++++--- .../test_matting_inferencer.py | 24 +++++++++++++ .../test_mmedit_inferencer.py | 28 +++++++++++++++ 6 files changed, 94 insertions(+), 22 deletions(-) create mode 100644 tests/test_apis/test_inferencers/test_matting_inferencer.py create mode 100644 tests/test_apis/test_inferencers/test_mmedit_inferencer.py diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 559476234f..2f798ae49d 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -153,7 +153,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, inputs: InputsType, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index 3d31fe8749..ae00fda313 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -70,7 +70,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: @@ -87,8 +87,9 @@ def visualize(self, result = result.pred_alpha.data.cpu() # save images - mkdir_or_exist(os.path.dirname(result_out_dir)) - mmcv.imwrite(result.numpy(), result_out_dir) + if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) + mmcv.imwrite(result.numpy(), result_out_dir) return result diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 003157d11c..225d3443b8 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -24,29 +24,39 @@ class MMEditInferencer(BaseMMEditInferencer): device will be automatically used. """ - def __init__(self, - type: Optional[str] = None, - config: Optional[Union[ConfigType, str]] = None, - ckpt: Optional[str] = None, - device: Optional[str] = None) -> None: + def __init__( + self, + type: Optional[str] = None, + config: Optional[Union[ConfigType, str]] = None, + ckpt: Optional[str] = None, + device: Optional[str] = None, + extra_parameters: Optional[Dict] = None, + ) -> None: self.type = type if self.type == 'conditional': - self.inferencer = ConditionalInferencer(config, ckpt, device) + self.inferencer = ConditionalInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'unconditional': - self.inferencer = UnconditionalInferencer(config, ckpt, device) + self.inferencer = UnconditionalInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'matting': - self.inferencer = MattingInferencer(config, ckpt, device) + self.inferencer = MattingInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'inpainting': - self.inferencer = InpaintingInferencer(config, ckpt, device) + self.inferencer = InpaintingInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'translation': - self.inferencer = TranslationInferencer(config, ckpt, device) + self.inferencer = TranslationInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'restoration': - self.inferencer = RestorationInferencer(config, ckpt, device) + self.inferencer = RestorationInferencer(config, ckpt, device, + extra_parameters) elif self.type == 'video_restoration': - self.inferencer = VideoRestorationInferencer(config, ckpt, device) + self.inferencer = VideoRestorationInferencer( + config, ckpt, device, extra_parameters) elif self.type == 'video_interpolation': self.inferencer = VideoInterpolationInferencer( - config, ckpt, device) + config, ckpt, device, extra_parameters) else: raise ValueError(f'Unknown inferencer type: {self.type}') diff --git a/mmedit/edit.py b/mmedit/edit.py index 7561e3cfea..2d5e5a49c1 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -160,19 +160,21 @@ def __init__(self, model_version: str = 'a', model_config: str = None, model_ckpt: str = None, - device: torch.device = 'cuda', - **kwargs) -> None: + device: torch.device = None, + extra_parameters: Dict = None) -> None: register_all_modules(init_default_scope=True) inferencer_kwargs = {} inferencer_kwargs.update( self._get_inferencer_kwargs(model_name, model_version, - model_config, model_ckpt)) + model_config, model_ckpt, device, + extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[str], - config: Optional[str], - ckpt: Optional[str]) -> Dict: + config: Optional[str], ckpt: Optional[str], + device: Optional[str], + extra_parameters: Optional[Dict]) -> Dict: """Get the kwargs for the inferencer.""" kwargs = {} @@ -198,6 +200,13 @@ def _get_inferencer_kwargs(self, model: Optional[str], f'{model}\'s default checkpoint is overridden by {ckpt}', UserWarning) kwargs['ckpt'] = ckpt + + if device is not None: + kwargs['device'] = device + + if extra_parameters is not None: + kwargs['extra_parameters'] = extra_parameters + return kwargs def print_extra_parameters(self): diff --git a/tests/test_apis/test_inferencers/test_matting_inferencer.py b/tests/test_apis/test_inferencers/test_matting_inferencer.py new file mode 100644 index 0000000000..4030e64a19 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_matting_inferencer.py @@ -0,0 +1,24 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.matting_inferencer import MattingInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_matting_inferencer(): + data_root = osp.join(osp.dirname(__file__), '../../../') + config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' + img_path = data_root + 'tests/data/matting_dataset/merged/GT05.jpg' + trimap_path = data_root + 'tests/data/matting_dataset/trimap/GT05.png' + + inferencer_instance = \ + MattingInferencer(config, None) + inference_result = inferencer_instance(img=img_path, trimap=trimap_path) + result_img = inference_result[1] + assert result_img.numpy().shape == (552, 800) + + +if __name__ == '__main__': + test_matting_inferencer() diff --git a/tests/test_apis/test_inferencers/test_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_mmedit_inferencer.py new file mode 100644 index 0000000000..77ea44cf0f --- /dev/null +++ b/tests/test_apis/test_inferencers/test_mmedit_inferencer.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.mmedit_inferencer import MMEditInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_mmedit_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', + 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') + inferencer_instance = \ + MMEditInferencer('conditional', + cfg, + None, + extra_parameters={'sample_model': 'orig'}) + inference_result = inferencer_instance(label=1) + result_img = inference_result[1] + assert result_img.shape == (4, 3, 32, 32) + + extra_parameters = inferencer_instance.get_extra_parameters() + assert len(extra_parameters) == 2 + + +if __name__ == '__main__': + test_mmedit_inferencer() From 43ba5d6e3297dc45cc3da0a2c0458bf4aa970e3b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 19:58:04 +0800 Subject: [PATCH 23/68] [high-level api] add result_out_dir to UTs and add two new uts. --- .../inferencers/base_mmedit_inferencer.py | 3 +- .../apis/inferencers/inpainting_inferencer.py | 2 +- mmedit/apis/inferencers/mmedit_inferencer.py | 4 ++- .../inferencers/restoration_inferencer.py | 5 +-- .../inferencers/translation_inferencer.py | 7 ++-- .../inferencers/unconditional_inferencer.py | 17 ++++------ mmedit/edit.py | 6 +--- .../test_conditional_inferencer.py | 7 ++-- .../test_inpainting_inferencer.py | 9 +++-- .../test_matting_inferencer.py | 5 ++- .../test_restoration_inferencer.py | 34 +++++++++++++++++++ .../test_translation_inferencer.py | 30 ++++++++++++++++ .../test_unconditional_inferencer.py | 28 +++++++++++++++ tests/test_edit.py | 13 ++++++- 14 files changed, 138 insertions(+), 32 deletions(-) create mode 100644 tests/test_apis/test_inferencers/test_restoration_inferencer.py create mode 100644 tests/test_apis/test_inferencers/test_translation_inferencer.py create mode 100644 tests/test_apis/test_inferencers/test_unconditional_inferencer.py diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 2f798ae49d..3ae5c190b2 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -144,10 +144,9 @@ def preprocess(self, inputs: InputsType) -> Dict: Dict: Result of preprocess """ + @abstractmethod def forward(self, inputs: InputsType) -> PredType: """Forward the inputs to the model.""" - with torch.no_grad(): - return self.model.test_step(inputs) @abstractmethod def visualize(self, diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index ea0cba59c4..c61070dd05 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -84,8 +84,8 @@ def visualize(self, result = preds[0] result = result * self.masks + self.masked_imgs * (1. - self.masks) + result = tensor2img(result)[..., ::-1] if result_out_dir: - result = tensor2img(result)[..., ::-1] mmcv.imwrite(result, result_out_dir) return result diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 225d3443b8..70722938f9 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -1,6 +1,8 @@ # Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, List, Optional, Union +import torch + from mmedit.utils import ConfigType from .base_mmedit_inferencer import BaseMMEditInferencer from .conditional_inferencer import ConditionalInferencer @@ -29,7 +31,7 @@ def __init__( type: Optional[str] = None, config: Optional[Union[ConfigType, str]] = None, ckpt: Optional[str] = None, - device: Optional[str] = None, + device: torch.device = None, extra_parameters: Optional[Dict] = None, ) -> None: self.type = type diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index 9430f2d043..7836b1bf16 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -87,7 +87,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: @@ -101,6 +101,7 @@ def visualize(self, List[np.ndarray]: Result of visualize """ results = tensor2img(preds[0]) - mmcv.imwrite(results, result_out_dir) + if result_out_dir: + mmcv.imwrite(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index 68481356aa..2e537fdd88 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -65,7 +65,7 @@ def forward(self, inputs: InputsType) -> PredType: def visualize(self, preds: PredType, - result_out_dir: str = '') -> List[np.ndarray]: + result_out_dir: str = None) -> List[np.ndarray]: """Visualize predictions. Args: @@ -81,7 +81,8 @@ def visualize(self, results = (preds[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(result_out_dir)) - utils.save_image(results, result_out_dir) + if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index b27c01a696..5017b4e4af 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -20,23 +20,18 @@ class UnconditionalInferencer(BaseMMEditInferencer): visualize=['result_out_dir'], postprocess=['print_result', 'pred_out_file', 'get_datasample']) + extra_parameters = dict(num_batches=4, sample_model='ema') + def preprocess(self) -> Dict: """Process the inputs into a model-feedable format. Returns: results(Dict): Results of preprocess. """ - # set model with infer_cfg if it exist else set default value - if 'infer_cfg' in self.cfg and 'sample_nums' in self.cfg.infer_cfg: - sample_nums = self.cfg.infer_cfg.sample_nums - else: - sample_nums = 4 - if 'infer_cfg' in self.cfg and 'sample_model' in self.cfg.infer_cfg: - sample_model = self.cfg.infer_cfg.sample_model - else: - sample_model = 'ema' - - results = dict(num_batches=sample_nums, sample_model=sample_model) + num_batches = self.extra_parameters['num_batches'] + sample_model = self.extra_parameters['sample_model'] + + results = dict(num_batches=num_batches, sample_model=sample_model) return results diff --git a/mmedit/edit.py b/mmedit/edit.py index 2d5e5a49c1..4cc6e9cb08 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -166,14 +166,13 @@ def __init__(self, inferencer_kwargs = {} inferencer_kwargs.update( self._get_inferencer_kwargs(model_name, model_version, - model_config, model_ckpt, device, + model_config, model_ckpt, extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) def _get_inferencer_kwargs(self, model: Optional[str], model_version: Optional[str], config: Optional[str], ckpt: Optional[str], - device: Optional[str], extra_parameters: Optional[Dict]) -> Dict: """Get the kwargs for the inferencer.""" kwargs = {} @@ -201,9 +200,6 @@ def _get_inferencer_kwargs(self, model: Optional[str], UserWarning) kwargs['ckpt'] = ckpt - if device is not None: - kwargs['device'] = device - if extra_parameters is not None: kwargs['extra_parameters'] = extra_parameters diff --git a/tests/test_apis/test_inferencers/test_conditional_inferencer.py b/tests/test_apis/test_inferencers/test_conditional_inferencer.py index c0dba9694a..d8693f8709 100644 --- a/tests/test_apis/test_inferencers/test_conditional_inferencer.py +++ b/tests/test_apis/test_inferencers/test_conditional_inferencer.py @@ -12,11 +12,14 @@ def test_conditional_inferencer(): cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') - conditional_instance = \ + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'conditional_result.png') + inferencer_instance = \ ConditionalInferencer(cfg, None, extra_parameters={'sample_model': 'orig'}) - inference_result = conditional_instance(label=1) + inference_result = inferencer_instance( + label=1, result_out_dir=result_out_dir) result_img = inference_result[1] assert result_img.shape == (4, 3, 32, 32) diff --git a/tests/test_apis/test_inferencers/test_inpainting_inferencer.py b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py index 509281379b..46a7691b73 100644 --- a/tests/test_apis/test_inferencers/test_inpainting_inferencer.py +++ b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py @@ -11,7 +11,6 @@ def test_inpainting_inferencer(): data_root = osp.join(osp.dirname(__file__), '../../') masked_img_path = data_root + 'data/inpainting/celeba_test.png' mask_path = data_root + 'data/inpainting/bbox_mask.png' - cfg = osp.join( osp.dirname(__file__), '..', @@ -21,11 +20,15 @@ def test_inpainting_inferencer(): 'aot_gan', 'aot-gan_smpgan_4xb4_places-512x512.py', ) + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'inpainting_result.png') + inferencer_instance = \ InpaintingInferencer(cfg, None) - inference_result = inferencer_instance(img=masked_img_path, mask=mask_path) + inference_result = inferencer_instance( + img=masked_img_path, mask=mask_path, result_out_dir=result_out_dir) result_img = inference_result[1] - assert result_img.detach().cpu().numpy().shape == (3, 256, 256) + assert result_img.shape == (256, 256, 3) if __name__ == '__main__': diff --git a/tests/test_apis/test_inferencers/test_matting_inferencer.py b/tests/test_apis/test_inferencers/test_matting_inferencer.py index 4030e64a19..c957208098 100644 --- a/tests/test_apis/test_inferencers/test_matting_inferencer.py +++ b/tests/test_apis/test_inferencers/test_matting_inferencer.py @@ -12,10 +12,13 @@ def test_matting_inferencer(): config = data_root + 'configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py' img_path = data_root + 'tests/data/matting_dataset/merged/GT05.jpg' trimap_path = data_root + 'tests/data/matting_dataset/trimap/GT05.png' + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'matting_result.png') inferencer_instance = \ MattingInferencer(config, None) - inference_result = inferencer_instance(img=img_path, trimap=trimap_path) + inference_result = inferencer_instance( + img=img_path, trimap=trimap_path, result_out_dir=result_out_dir) result_img = inference_result[1] assert result_img.numpy().shape == (552, 800) diff --git a/tests/test_apis/test_inferencers/test_restoration_inferencer.py b/tests/test_apis/test_inferencers/test_restoration_inferencer.py new file mode 100644 index 0000000000..acf1278898 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_restoration_inferencer.py @@ -0,0 +1,34 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp +import platform + +import pytest +import torch + +from mmedit.apis.inferencers.restoration_inferencer import \ + RestorationInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +@pytest.mark.skipif( + 'win' in platform.system().lower() and 'cu' in torch.__version__, + reason='skip on windows-cuda due to limited RAM.') +def test_restoration_inferencer(): + data_root = osp.join(osp.dirname(__file__), '../../../') + config = data_root + 'configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py' # noqa + img_path = data_root + 'tests/data/image/lq/baboon_x4.png' + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'restoration_result.png') + + inferencer_instance = \ + RestorationInferencer(config, None) + inference_result = inferencer_instance( + img=img_path, result_out_dir=result_out_dir) + result_img = inference_result[1] + assert result_img.shape == (480, 500, 3) + + +if __name__ == '__main__': + test_restoration_inferencer() diff --git a/tests/test_apis/test_inferencers/test_translation_inferencer.py b/tests/test_apis/test_inferencers/test_translation_inferencer.py new file mode 100644 index 0000000000..c16c331d33 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_translation_inferencer.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.translation_inferencer import \ + TranslationInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_translation_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'pix2pix', + 'pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py') + data_path = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'unpaired', 'trainA', + '1.jpg') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'translation_result.png') + + inferencer_instance = \ + TranslationInferencer(cfg, None) + inference_result = inferencer_instance( + img=data_path, result_out_dir=result_out_dir) + result_img = inference_result[1] + assert result_img[0].numpy().shape == (3, 256, 256) + + +if __name__ == '__main__': + test_translation_inferencer() diff --git a/tests/test_apis/test_inferencers/test_unconditional_inferencer.py b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py new file mode 100644 index 0000000000..63b3221990 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py @@ -0,0 +1,28 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.unconditional_inferencer import \ + UnconditionalInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_unconditional_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'styleganv1', + 'styleganv1_ffhq-256x256_8xb4-25Mimgs.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', 'unconditional_result.png') + + inferencer_instance = \ + UnconditionalInferencer(cfg, + None, + extra_parameters={'sample_model': 'orig'}) + inference_result = inferencer_instance(result_out_dir=result_out_dir) + result_img = inference_result[1] + assert result_img.detach().numpy().shape == (4, 3, 256, 256) + + +if __name__ == '__main__': + test_unconditional_inferencer() diff --git a/tests/test_edit.py b/tests/test_edit.py index 8e10b0a8d3..27ed1b49fb 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -1,4 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + from mmedit.edit import MMEdit from mmedit.utils import register_all_modules @@ -6,7 +8,16 @@ def test_edit(): - mmedit_instance = MMEdit('biggan', model_ckpt='') + cfg = osp.join( + osp.dirname(__file__), '..', 'configs', 'biggan', + 'biggan_2xb25-500kiters_cifar10-32x32.py') + + mmedit_instance = MMEdit( + 'biggan', + model_ckpt='', + model_config=cfg, + extra_parameters={'sample_model': 'ema'}) + mmedit_instance.print_extra_parameters() inference_result = mmedit_instance.infer(label=1) result_img = inference_result[1] assert result_img.shape == (4, 3, 32, 32) From ca345e87403420ee074f7f36a51c5766a523ba86 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 20:28:54 +0800 Subject: [PATCH 24/68] [high-level api] fix unconditional ut out of ram and add two uts. --- .../test_unconditional_inferencer.py | 6 ++-- .../test_video_interpolation_inferencer.py | 30 ++++++++++++++++++ .../test_video_restoration_inferencer.py | 31 +++++++++++++++++++ 3 files changed, 65 insertions(+), 2 deletions(-) create mode 100644 tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py create mode 100644 tests/test_apis/test_inferencers/test_video_restoration_inferencer.py diff --git a/tests/test_apis/test_inferencers/test_unconditional_inferencer.py b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py index 63b3221990..aea575bebf 100644 --- a/tests/test_apis/test_inferencers/test_unconditional_inferencer.py +++ b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py @@ -18,10 +18,12 @@ def test_unconditional_inferencer(): inferencer_instance = \ UnconditionalInferencer(cfg, None, - extra_parameters={'sample_model': 'orig'}) + extra_parameters={ + 'num_batches': 1, + 'sample_model': 'orig'}) inference_result = inferencer_instance(result_out_dir=result_out_dir) result_img = inference_result[1] - assert result_img.detach().numpy().shape == (4, 3, 256, 256) + assert result_img.detach().numpy().shape == (1, 3, 256, 256) if __name__ == '__main__': diff --git a/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py new file mode 100644 index 0000000000..a306a0547d --- /dev/null +++ b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py @@ -0,0 +1,30 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.video_interpolation_inferencer import \ + VideoInterpolationInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_video_interpolation_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'flavr', + 'flavr_in4out1_8xb4_vimeo90k-septuplet.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_interpolation_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + video_path = data_root + 'tests/data/frames/test_inference.mp4' + + inferencer_instance = \ + VideoInterpolationInferencer(cfg, + None) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + +if __name__ == '__main__': + test_video_interpolation_inferencer() diff --git a/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py new file mode 100644 index 0000000000..57e5e56bb4 --- /dev/null +++ b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py @@ -0,0 +1,31 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import os.path as osp + +from mmedit.apis.inferencers.video_restoration_inferencer import \ + VideoRestorationInferencer +from mmedit.utils import register_all_modules + +register_all_modules() + + +def test_video_restoration_inferencer(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'basicvsr', + 'basicvsr_2xb4_reds4.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_restoration_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + video_path = data_root + 'tests/data/frames/test_inference.mp4' + + inferencer_instance = \ + VideoRestorationInferencer( + cfg, + None) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + +if __name__ == '__main__': + test_video_restoration_inferencer() From 33b943345aa40b147485b00d577891e2e95d0572 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 20:59:43 +0800 Subject: [PATCH 25/68] [high-level api] try to satisfy ut code coverage. --- .../video_interpolation_inferencer.py | 21 +++---------- .../video_restoration_inferencer.py | 31 +++---------------- 2 files changed, 8 insertions(+), 44 deletions(-) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 40f15df861..adfd0d6263 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -1,7 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved. import math import os -import os.path as osp from typing import Dict, List, Optional, Tuple, Union import cv2 @@ -144,15 +143,8 @@ def forward(self, else: output_fps = self.fps if self.fps > 0 else input_fps * 2 else: - files = os.listdir(inputs) - files = [osp.join(inputs, f) for f in files] - files.sort() - source = files - length = files.__len__() - from_video = False - example_frame = read_image(files[0]) - h, w = example_frame.shape[:2] - output_fps = self.fps + raise ValueError('Input file is not a video, \ + which is not supported now.') # check if the output is a video output_file_extension = os.path.splitext(result_out_dir)[1] @@ -177,7 +169,6 @@ def forward(self, math.ceil( (self.end_idx + step_size - lenth_per_step - self.start_idx) / step_size)) - output_index = self.start_idx for self.start_index in range(self.start_idx, self.end_idx, step_size): images = read_frames( source, @@ -212,12 +203,8 @@ def forward(self, for frame in result: target.write(frame) else: - for frame in result: - save_path = osp.join( - result_out_dir, - self.filename_tmpl.format(output_index)) - mmcv.imwrite(frame, save_path) - output_index += 1 + raise ValueError('Output file is not a video, \ + which is not supported now.') if self.start_index + lenth_per_step >= self.end_idx: break diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index b5393a474c..7875cbc1ca 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -1,5 +1,4 @@ # Copyright (c) OpenMMLab. All rights reserved. -import glob import os import os.path as osp from typing import Dict, List, Optional, Tuple, Union @@ -94,25 +93,8 @@ def preprocess(self, video: InputsType) -> Dict: tmp_pipeline.append(pipeline) test_pipeline = tmp_pipeline else: - # the first element in the pipeline must be 'GenerateSegmentIndices' # noqa: E501 - if test_pipeline[0]['type'] != 'GenerateSegmentIndices': - raise TypeError('The first element in the pipeline must be ' - f'"GenerateSegmentIndices", but got ' - f'"{test_pipeline[0]["type"]}".') - - # specify start_idx and filename_tmpl - test_pipeline[0]['start_idx'] = self.start_idx - test_pipeline[0]['filename_tmpl'] = self.filename_tmpl - - # prepare data - sequence_length = len(glob.glob(osp.join(video, '*'))) - lq_folder = osp.dirname(video) - key = osp.basename(video) - data = dict( - img_path=lq_folder, - gt_path='', - key=key, - sequence_length=sequence_length) + raise ValueError('Input file is not a video, \ + which is not supported now.') # compose the pipeline test_pipeline = Compose(test_pipeline) @@ -180,13 +162,8 @@ def visualize(self, cv2.destroyAllWindows() video_writer.release() else: - for i in range(self.start_idx, self.start_idx + preds.size(1)): - output_i = preds[:, i - self.start_idx, :, :, :] - output_i = tensor2img(output_i) - save_path_i = f'{preds.output_dir} / \ - {self.filename_tmpl.format(i)}' - - mmcv.imwrite(output_i, save_path_i) + raise ValueError('Output file is not a video, \ + which is not supported now.') return [] From c160d7d47d1497bb6a9dc93982e41b146b440615 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 21:20:51 +0800 Subject: [PATCH 26/68] [high-level api] use pytest.raises to catch ut error. --- .../test_base_mmedit_inferencer.py | 6 ++++ .../test_mmedit_inferencer.py | 34 +++++++++++++++++++ 2 files changed, 40 insertions(+) diff --git a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py index d959653a82..31a12b2c45 100644 --- a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py +++ b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py @@ -1,6 +1,8 @@ # Copyright (c) OpenMMLab. All rights reserved. import os.path as osp +import pytest + from mmedit.apis.inferencers.base_mmedit_inferencer import BaseMMEditInferencer from mmedit.utils import register_all_modules @@ -8,6 +10,10 @@ def test_base_mmedit_inferencer(): + with pytest.raises(Exception) as e_info: + inferencer_instance = BaseMMEditInferencer(['error_type'], None) + print(e_info) + cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') diff --git a/tests/test_apis/test_inferencers/test_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_mmedit_inferencer.py index 77ea44cf0f..9905104c48 100644 --- a/tests/test_apis/test_inferencers/test_mmedit_inferencer.py +++ b/tests/test_apis/test_inferencers/test_mmedit_inferencer.py @@ -1,6 +1,8 @@ # Copyright (c) OpenMMLab. All rights reserved. import os.path as osp +import pytest + from mmedit.apis.inferencers.mmedit_inferencer import MMEditInferencer from mmedit.utils import register_all_modules @@ -8,6 +10,38 @@ def test_mmedit_inferencer(): + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('unconditional', ['error_type'], + None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('matting', ['error_type'], None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('inpainting', ['error_type'], + None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('translation', ['error_type'], + None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('restoration', ['error_type'], + None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('video_restoration', + ['error_type'], None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('video_interpolation', + ['error_type'], None) + + with pytest.raises(Exception) as e_info: + inferencer_instance = MMEditInferencer('dog', ['error_type'], None) + + print(e_info) + cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') From e9dcb827718e50ecb679281a6e346709b8932f55 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 10 Nov 2022 22:42:21 +0800 Subject: [PATCH 27/68] [high-level api] add more test case in inference_functions --- .../test_inferencers/test_inference_functions.py | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index dedac0dc1e..5ade639805 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -244,6 +244,13 @@ def test_restoration_video_inference(): None) assert output.detach().numpy().shape == (1, 2, 3, 256, 448) + input_video = data_root + 'tests/data/frames/test_inference.mp4' + output = restoration_video_inference( + model, input_video, 0, 0, '{:08d}.png', max_seq_len=3) + + output = restoration_video_inference(model, input_video, 3, 0, + '{:08d}.png') + def test_translation_inference(): cfg = osp.join( @@ -276,12 +283,12 @@ def test_video_interpolation_inference(): config = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' checkpoint = None - input_dir = data_root + 'tests/data/frames/test_inference.mp4' - model = init_model(config, checkpoint, device=device) + input_dir = data_root + 'tests/data/frames/test_inference.mp4' video_interpolation_inference( model=model, input_dir=input_dir, output_dir='out', fps=60.0) - -test_video_interpolation_inference() + input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') + video_interpolation_inference( + model=model, input_dir=input_dir, output_dir='out', fps=60.0) From 12c31d21c7675a8bb72b9baa9b9021ac25b37020 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 00:26:52 +0800 Subject: [PATCH 28/68] [high-level api] add video restoration test case. --- .../video_interpolation_inferencer.py | 59 ++++++++++--------- .../video_restoration_inferencer.py | 41 +++++++------ .../test_video_restoration_inferencer.py | 46 ++++++++++++++- 3 files changed, 97 insertions(+), 49 deletions(-) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index adfd0d6263..2e8461b246 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -70,6 +70,14 @@ class VideoInterpolationInferencer(BaseMMEditInferencer): visualize=[], postprocess=[]) + extra_parameters = dict( + start_idx=0, + end_idx=None, + batch_size=4, + fps_multiplier=0, + fps=0, + filename_tmpl='{08d}.png') + def preprocess(self, video: InputsType) -> Dict: """Process the inputs into a model-feedable format. @@ -79,20 +87,6 @@ def preprocess(self, video: InputsType) -> Dict: Returns: video(InputsType): Video to be interpolated by models. """ - infer_cfg = dict( - start_idx=0, - end_idx=None, - batch_size=4, - fps_multiplier=0, - fps=0, - filename_tmpl='{08d}.png') - self.start_idx = infer_cfg['start_idx'] - self.end_idx = infer_cfg['end_idx'] - self.batch_size = infer_cfg['batch_size'] - self.fps_multiplier = infer_cfg['fps_multiplier'] - self.fps = infer_cfg['fps'] - self.filename_tmpl = infer_cfg['filename_tmpl'] - # build the data pipeline if self.model.cfg.get('demo_pipeline', None): test_pipeline = self.model.cfg.demo_pipeline @@ -136,12 +130,14 @@ def forward(self, length = source.frame_cnt from_video = True h, w = source.height, source.width - if self.fps_multiplier: - assert self.fps_multiplier > 0, \ + if self.extra_parameters['fps_multiplier']: + assert self.extra_parameters['fps_multiplier'] > 0, \ '`fps_multiplier` cannot be negative' - output_fps = self.fps_multiplier * input_fps + output_fps = \ + self.extra_parameters['fps_multiplier'] * input_fps else: - output_fps = self.fps if self.fps > 0 else input_fps * 2 + fps = self.extra_parameters['fps'] + output_fps = fps if fps > 0 else input_fps * 2 else: raise ValueError('Input file is not a video, \ which is not supported now.') @@ -156,26 +152,30 @@ def forward(self, else: to_video = False - self.end_idx = min(self.end_idx, - length) if self.end_idx is not None else length + self.extra_parameters['end_idx'] = min( + self.extra_parameters['end_idx'], length) \ + if self.extra_parameters['end_idx'] is not None else length # calculate step args - step_size = self.model.step_frames * self.batch_size + step_size = \ + self.model.step_frames * self.extra_parameters['batch_size'] lenth_per_step = self.model.required_frames + \ - self.model.step_frames * (self.batch_size - 1) + self.model.step_frames * (self.extra_parameters['batch_size'] - 1) repeat_frame = self.model.required_frames - self.model.step_frames prog_bar = ProgressBar( - math.ceil( - (self.end_idx + step_size - lenth_per_step - self.start_idx) / - step_size)) - for self.start_index in range(self.start_idx, self.end_idx, step_size): + math.ceil((self.extra_parameters['end_idx'] + step_size - + lenth_per_step - self.extra_parameters['start_idx']) / + step_size)) + for self.start_index in range(self.extra_parameters['start_idx'], + self.extra_parameters['end_idx'], + step_size): images = read_frames( source, self.start_index, lenth_per_step, from_video, - end_index=self.end_idx) + end_index=self.extra_parameters['end_idx']) # data prepare data = dict(img=images, inputs_path=None, key=inputs) @@ -194,7 +194,7 @@ def forward(self, if len(output_tensors.shape) == 4: output_tensors = output_tensors.unsqueeze(1) result = self.model.merge_frames(input_tensors, output_tensors) - if not self.start_idx == self.start_index: + if not self.extra_parameters['start_idx'] == self.start_index: result = result[repeat_frame:] prog_bar.update() @@ -206,7 +206,8 @@ def forward(self, raise ValueError('Output file is not a video, \ which is not supported now.') - if self.start_index + lenth_per_step >= self.end_idx: + if self.start_index + lenth_per_step >= \ + self.extra_parameters['end_idx']: break print() diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 7875cbc1ca..597fca54d1 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -47,6 +47,12 @@ class VideoRestorationInferencer(BaseMMEditInferencer): visualize=['result_out_dir'], postprocess=[]) + extra_parameters = dict( + start_idx=0, + filename_tmpl='{08d}.png', + window_size=0, + max_seq_len=None) + def preprocess(self, video: InputsType) -> Dict: """Process the inputs into a model-feedable format. @@ -56,17 +62,6 @@ def preprocess(self, video: InputsType) -> Dict: Returns: results(InputsType): Results of preprocess. """ - # hard code parameters for unused code - infer_cfg = dict( - start_idx=0, - filename_tmpl='{08d}.png', - window_size=0, - max_seq_len=None) - self.start_idx = infer_cfg['start_idx'] - self.filename_tmpl = infer_cfg['filename_tmpl'] - self.window_size = infer_cfg['window_size'] - self.max_seq_len = infer_cfg['max_seq_len'] - # build the data pipeline if self.model.cfg.get('demo_pipeline', None): test_pipeline = self.model.cfg.demo_pipeline @@ -113,25 +108,33 @@ def forward(self, inputs: InputsType) -> PredType: PredType: Results of forwarding """ with torch.no_grad(): - if self.window_size > 0: # sliding window framework - data = pad_sequence(inputs, self.window_size) + if self.extra_parameters[ + 'window_size'] > 0: # sliding window framework + data = pad_sequence(inputs, + self.extra_parameters['window_size']) result = [] - for i in range(0, data.size(1) - 2 * (self.window_size // 2)): - data_i = data[:, i:i + self.window_size].to(self.device) + # yapf: disable + for i in range(0, data.size(1) - 2 * (self.extra_parameters['window_size'] // 2)): # noqa + # yapf: enable + data_i = data[:, i:i + + self.extra_parameters['window_size']].to( + self.device) result.append( self.model(inputs=data_i, mode='tensor').cpu()) result = torch.stack(result, dim=1) else: # recurrent framework - if self.max_seq_len is None: + if self.extra_parameters['max_seq_len'] is None: result = self.model( inputs=inputs.to(self.device), mode='tensor').cpu() else: result = [] - for i in range(0, inputs.size(1), self.max_seq_len): + for i in range(0, inputs.size(1), + self.extra_parameters['max_seq_len']): result.append( self.model( - inputs=inputs[:, i:i + self.max_seq_len].to( - self.device), + inputs=inputs[:, i:i + self. + extra_parameters['max_seq_len']]. + to(self.device), mode='tensor').cpu()) result = torch.cat(result, dim=1) return result diff --git a/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py index 57e5e56bb4..f83bf9756c 100644 --- a/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py +++ b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py @@ -27,5 +27,49 @@ def test_video_restoration_inferencer(): assert inference_result is None +def test_video_restoration_inferencer_window_size(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'basicvsr', + 'basicvsr_2xb4_reds4.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_restoration_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + video_path = data_root + 'tests/data/frames/test_inference.mp4' + + extra_parameters = {'window_size': 3} + + inferencer_instance = \ + VideoRestorationInferencer( + cfg, + None, + extra_parameters=extra_parameters) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + +def test_video_restoration_inferencer_max_seq_len(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'basicvsr', + 'basicvsr_2xb4_reds4.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_restoration_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + video_path = data_root + 'tests/data/frames/test_inference.mp4' + + extra_parameters = {'max_seq_len': 3} + + inferencer_instance = \ + VideoRestorationInferencer( + cfg, + None, + extra_parameters=extra_parameters) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + if __name__ == '__main__': - test_video_restoration_inferencer() + test_video_restoration_inferencer_max_seq_len() From 986464231f3f5974e2d24f72b27716f6fece1ad1 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 15:04:25 +0800 Subject: [PATCH 29/68] [high-level api] video interpolation support dir input output and add ut case --- .../video_interpolation_inferencer.py | 35 +++++++++++++------ .../video_restoration_inferencer.py | 2 +- .../test_video_interpolation_inferencer.py | 17 ++++++++- tests/test_edit.py | 6 ++++ 4 files changed, 47 insertions(+), 13 deletions(-) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 2e8461b246..025331b96f 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -1,6 +1,7 @@ # Copyright (c) OpenMMLab. All rights reserved. import math import os +import os.path as osp from typing import Dict, List, Optional, Tuple, Union import cv2 @@ -76,7 +77,7 @@ class VideoInterpolationInferencer(BaseMMEditInferencer): batch_size=4, fps_multiplier=0, fps=0, - filename_tmpl='{08d}.png') + filename_tmpl='{:08d}.png') def preprocess(self, video: InputsType) -> Dict: """Process the inputs into a model-feedable format. @@ -139,8 +140,16 @@ def forward(self, fps = self.extra_parameters['fps'] output_fps = fps if fps > 0 else input_fps * 2 else: - raise ValueError('Input file is not a video, \ - which is not supported now.') + files = os.listdir(inputs) + files = [osp.join(inputs, f) for f in files] + files.sort() + source = files + length = files.__len__() + from_video = False + example_frame = read_image(files[0]) + h, w = example_frame.shape[:2] + fps = self.extra_parameters['fps'] + output_fps = fps if fps > 0 else 60 # check if the output is a video output_file_extension = os.path.splitext(result_out_dir)[1] @@ -167,12 +176,12 @@ def forward(self, math.ceil((self.extra_parameters['end_idx'] + step_size - lenth_per_step - self.extra_parameters['start_idx']) / step_size)) - for self.start_index in range(self.extra_parameters['start_idx'], - self.extra_parameters['end_idx'], - step_size): + output_index = self.extra_parameters['start_idx'] + for start_index in range(self.extra_parameters['start_idx'], + self.extra_parameters['end_idx'], step_size): images = read_frames( source, - self.start_index, + start_index, lenth_per_step, from_video, end_index=self.extra_parameters['end_idx']) @@ -194,7 +203,7 @@ def forward(self, if len(output_tensors.shape) == 4: output_tensors = output_tensors.unsqueeze(1) result = self.model.merge_frames(input_tensors, output_tensors) - if not self.extra_parameters['start_idx'] == self.start_index: + if not self.extra_parameters['start_idx'] == start_index: result = result[repeat_frame:] prog_bar.update() @@ -203,10 +212,14 @@ def forward(self, for frame in result: target.write(frame) else: - raise ValueError('Output file is not a video, \ - which is not supported now.') + filename_tmpl = self.extra_parameters['filename_tmpl'] + for frame in result: + save_path = osp.join(result_out_dir, + filename_tmpl.format(output_index)) + mmcv.imwrite(frame, save_path) + output_index += 1 - if self.start_index + lenth_per_step >= \ + if start_index + lenth_per_step >= \ self.extra_parameters['end_idx']: break diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 597fca54d1..fef210952d 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -49,7 +49,7 @@ class VideoRestorationInferencer(BaseMMEditInferencer): extra_parameters = dict( start_idx=0, - filename_tmpl='{08d}.png', + filename_tmpl='{:08d}.png', window_size=0, max_seq_len=None) diff --git a/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py index a306a0547d..19013e1d49 100644 --- a/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py +++ b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py @@ -26,5 +26,20 @@ def test_video_interpolation_inferencer(): assert inference_result is None +def test_video_interpolation_inferencer_input_dir(): + data_root = osp.join(osp.dirname(__file__), '../../../') + config = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' + video_path = data_root + 'tests/data/frames/sequence/gt/sequence_1' + result_out_dir = data_root + 'tests/data/out' + + inferencer_instance = \ + VideoInterpolationInferencer(config, + None, + extra_parameters={'fps': 60}) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + if __name__ == '__main__': - test_video_interpolation_inferencer() + test_video_interpolation_inferencer_input_dir() diff --git a/tests/test_edit.py b/tests/test_edit.py index 27ed1b49fb..2d81bfcbf2 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -1,6 +1,8 @@ # Copyright (c) OpenMMLab. All rights reserved. import os.path as osp +import pytest + from mmedit.edit import MMEdit from mmedit.utils import register_all_modules @@ -8,6 +10,10 @@ def test_edit(): + with pytest.raises(Exception) as e_info: + MMEdit('dog', ['error_type'], None) + print(e_info) + cfg = osp.join( osp.dirname(__file__), '..', 'configs', 'biggan', 'biggan_2xb25-500kiters_cifar10-32x32.py') From 6ee380c41b185e8f9b74e7d3586bc8ce2d4cc8b2 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 15:52:30 +0800 Subject: [PATCH 30/68] [high-level api] video restoration support input_dir and add uts. --- .../video_restoration_inferencer.py | 35 ++++++++++++++++--- .../test_inference_functions.py | 9 ++++- .../test_video_restoration_inferencer.py | 22 +++++++++++- 3 files changed, 60 insertions(+), 6 deletions(-) diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index fef210952d..36372ea613 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -1,4 +1,5 @@ # Copyright (c) OpenMMLab. All rights reserved. +import glob import os import os.path as osp from typing import Dict, List, Optional, Tuple, Union @@ -88,8 +89,27 @@ def preprocess(self, video: InputsType) -> Dict: tmp_pipeline.append(pipeline) test_pipeline = tmp_pipeline else: - raise ValueError('Input file is not a video, \ - which is not supported now.') + # the first element in the pipeline must be + # 'GenerateSegmentIndices' + if test_pipeline[0]['type'] != 'GenerateSegmentIndices': + raise TypeError('The first element in the pipeline must be ' + f'"GenerateSegmentIndices", but got ' + f'"{test_pipeline[0]["type"]}".') + + # specify start_idx and filename_tmpl + test_pipeline[0]['start_idx'] = self.extra_parameters['start_idx'] + test_pipeline[0]['filename_tmpl'] = \ + self.extra_parameters['filename_tmpl'] + + # prepare data + sequence_length = len(glob.glob(osp.join(video, '*'))) + lq_folder = osp.dirname(video) + key = osp.basename(video) + data = dict( + img_path=lq_folder, + gt_path='', + key=key, + sequence_length=sequence_length) # compose the pipeline test_pipeline = Compose(test_pipeline) @@ -165,8 +185,15 @@ def visualize(self, cv2.destroyAllWindows() video_writer.release() else: - raise ValueError('Output file is not a video, \ - which is not supported now.') + for i in range(self.extra_parameters['start_idx'], + self.extra_parameters['start_idx'] + preds.size(1)): + output_i = \ + preds[:, i - self.extra_parameters['start_idx'], :, :, :] + output_i = tensor2img(output_i) + filename_tmpl = self.extra_parameters['filename_tmpl'] + save_path_i = f'{result_out_dir}/{filename_tmpl.format(i)}' + + mmcv.imwrite(output_i, save_path_i) return [] diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index 5ade639805..b1aec9b9c8 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -13,13 +13,20 @@ restoration_face_inference, restoration_inference, restoration_video_inference, sample_conditional_model, sample_img2img_model, sample_unconditional_model, - video_interpolation_inference) + set_random_seed, video_interpolation_inference) from mmedit.registry import MODELS from mmedit.utils import register_all_modules, tensor2img register_all_modules() +def test_init_model(): + set_random_seed() + + with pytest.raises(TypeError): + init_model(['dog']) + + @pytest.mark.skipif( 'win' in platform.system().lower() and 'cu' in torch.__version__, reason='skip on windows-cuda due to limited RAM.') diff --git a/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py index f83bf9756c..09be036fb4 100644 --- a/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py +++ b/tests/test_apis/test_inferencers/test_video_restoration_inferencer.py @@ -27,6 +27,26 @@ def test_video_restoration_inferencer(): assert inference_result is None +def test_video_restoration_inferencer_input_dir(): + cfg = osp.join( + osp.dirname(__file__), '..', '..', '..', 'configs', 'basicvsr', + 'basicvsr_2xb4_reds4.py') + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_restoration_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') + result_out_dir = data_root + 'tests/data/out' + + inferencer_instance = \ + VideoRestorationInferencer( + cfg, + None) + inference_result = inferencer_instance( + video=input_dir, result_out_dir=result_out_dir) + assert inference_result is None + + def test_video_restoration_inferencer_window_size(): cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'basicvsr', @@ -72,4 +92,4 @@ def test_video_restoration_inferencer_max_seq_len(): if __name__ == '__main__': - test_video_restoration_inferencer_max_seq_len() + test_video_restoration_inferencer_input_dir() From d57ae4bbce34b70bc7b9500bee9575a0000fffbd Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 16:13:07 +0800 Subject: [PATCH 31/68] [high-level api] add more uts for inference funcs. --- .../test_apis/test_inferencers/test_inference_functions.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index b1aec9b9c8..5609702ca6 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -21,7 +21,7 @@ def test_init_model(): - set_random_seed() + set_random_seed(1) with pytest.raises(TypeError): init_model(['dog']) @@ -294,7 +294,10 @@ def test_video_interpolation_inference(): input_dir = data_root + 'tests/data/frames/test_inference.mp4' video_interpolation_inference( - model=model, input_dir=input_dir, output_dir='out', fps=60.0) + model=model, + input_dir=input_dir, + output_dir='out/result_video.mp4', + fps=60.0) input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') video_interpolation_inference( From a9bf85ab7d32446907c6ce154f05125459ed35c3 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 16:20:47 +0800 Subject: [PATCH 32/68] [high-level api] fix bug in inference_functions --- mmedit/apis/inferencers/inference_functions.py | 3 +-- tests/test_apis/test_inferencers/test_inference_functions.py | 4 ++++ 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index b7c681e768..92d901ad2a 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -38,8 +38,7 @@ def set_random_seed(seed, deterministic=False, use_rank_shift=True): rank_shift (bool): Whether to add rank number to the random seed to have different random seed in different threads. Default: True. """ - set_random_seed_engine( - seed, deterministic=deterministic, use_rank_shift=use_rank_shift) + set_random_seed_engine(seed, deterministic, use_rank_shift) def delete_cfg(cfg, key='init_cfg'): diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index 5609702ca6..dd3bf47459 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -302,3 +302,7 @@ def test_video_interpolation_inference(): input_dir = osp.join(data_root, 'tests/data/frames/sequence/gt/sequence_1') video_interpolation_inference( model=model, input_dir=input_dir, output_dir='out', fps=60.0) + + +if __name__ == '__main__': + test_init_model() From 65010459b23e71e26b0515b3b5ba200d48fcc394 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 19:56:45 +0800 Subject: [PATCH 33/68] [high-level api] add more uts. --- mmedit/edit.py | 25 ++++++++++--------- .../test_base_mmedit_inferencer.py | 2 +- .../test_inference_functions.py | 3 --- tests/test_edit.py | 6 +++-- 4 files changed, 18 insertions(+), 18 deletions(-) diff --git a/mmedit/edit.py b/mmedit/edit.py index 4cc6e9cb08..0850306a9f 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -170,15 +170,16 @@ def __init__(self, extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) - def _get_inferencer_kwargs(self, model: Optional[str], + def _get_inferencer_kwargs(self, model_name: Optional[str], model_version: Optional[str], - config: Optional[str], ckpt: Optional[str], + model_config: Optional[str], + model_ckpt: Optional[str], extra_parameters: Optional[Dict]) -> Dict: """Get the kwargs for the inferencer.""" kwargs = {} - if model is not None: - cfgs = self.get_model_config(model) + if model_name is not None: + cfgs = self.get_model_config(model_name) kwargs['type'] = cfgs['type'] kwargs['config'] = os.path.join( 'configs/', cfgs['version'][model_version]['config']) @@ -186,19 +187,19 @@ def _get_inferencer_kwargs(self, model: Optional[str], # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' - if config is not None: + if model_config is not None: if kwargs.get('config', None) is not None: warnings.warn( - f'{model}\'s default config is overridden by {config}', - UserWarning) - kwargs['config'] = config + f'{model_name}\'s default config ' + 'is overridden by {model_config}', UserWarning) + kwargs['config'] = model_config - if ckpt is not None: + if model_ckpt is not None: if kwargs.get('ckpt', None) is not None: warnings.warn( - f'{model}\'s default checkpoint is overridden by {ckpt}', - UserWarning) - kwargs['ckpt'] = ckpt + f'{model_name}\'s default checkpoint ' + 'is overridden by {model_ckpt}', UserWarning) + kwargs['ckpt'] = model_ckpt if extra_parameters is not None: kwargs['extra_parameters'] = extra_parameters diff --git a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py index 31a12b2c45..bf4583e03c 100644 --- a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py +++ b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py @@ -11,7 +11,7 @@ def test_base_mmedit_inferencer(): with pytest.raises(Exception) as e_info: - inferencer_instance = BaseMMEditInferencer(['error_type'], None) + inferencer_instance = BaseMMEditInferencer(1, None) print(e_info) cfg = osp.join( diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index dd3bf47459..75b3cbae67 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -27,9 +27,6 @@ def test_init_model(): init_model(['dog']) -@pytest.mark.skipif( - 'win' in platform.system().lower() and 'cu' in torch.__version__, - reason='skip on windows-cuda due to limited RAM.') def test_colorization_inference(): register_all_modules() diff --git a/tests/test_edit.py b/tests/test_edit.py index 2d81bfcbf2..fe2a764334 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -10,9 +10,11 @@ def test_edit(): - with pytest.raises(Exception) as e_info: + with pytest.raises(Exception): MMEdit('dog', ['error_type'], None) - print(e_info) + + with pytest.raises(Exception): + MMEdit() cfg = osp.join( osp.dirname(__file__), '..', 'configs', 'biggan', From ea3f93448708f0f118a836288181139eb2e46e77 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 20:24:37 +0800 Subject: [PATCH 34/68] [high-level api] make colorization inference be tested. --- .../test_apis/test_inferencers/test_inference_functions.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index 75b3cbae67..cf374bccb8 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -1,7 +1,6 @@ # Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import platform -import unittest import pytest import torch @@ -30,9 +29,9 @@ def test_init_model(): def test_colorization_inference(): register_all_modules() - if not torch.cuda.is_available(): - # RoI pooling only support in GPU - return unittest.skip('test requires GPU and torch+cuda') + # if not torch.cuda.is_available(): + # # RoI pooling only support in GPU + # return unittest.skip('test requires GPU and torch+cuda') if torch.cuda.is_available(): device = torch.device('cuda', 0) From f74eaea6c05356865d817e0f2b72fa0036938475 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 22:28:32 +0800 Subject: [PATCH 35/68] [high-level api] roll back last commit. --- .../test_inferencers/test_inference_functions.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/tests/test_apis/test_inferencers/test_inference_functions.py b/tests/test_apis/test_inferencers/test_inference_functions.py index cf374bccb8..dd3bf47459 100644 --- a/tests/test_apis/test_inferencers/test_inference_functions.py +++ b/tests/test_apis/test_inferencers/test_inference_functions.py @@ -1,6 +1,7 @@ # Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import platform +import unittest import pytest import torch @@ -26,12 +27,15 @@ def test_init_model(): init_model(['dog']) +@pytest.mark.skipif( + 'win' in platform.system().lower() and 'cu' in torch.__version__, + reason='skip on windows-cuda due to limited RAM.') def test_colorization_inference(): register_all_modules() - # if not torch.cuda.is_available(): - # # RoI pooling only support in GPU - # return unittest.skip('test requires GPU and torch+cuda') + if not torch.cuda.is_available(): + # RoI pooling only support in GPU + return unittest.skip('test requires GPU and torch+cuda') if torch.cuda.is_available(): device = torch.device('cuda', 0) From 842fc481a8b19f445bd162e7722d14d4895038a5 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 11 Nov 2022 23:46:31 +0800 Subject: [PATCH 36/68] [high-level api] delete unused code. --- .../apis/inferencers/base_mmedit_inferencer.py | 17 +---------------- .../apis/inferencers/inpainting_inferencer.py | 2 +- mmedit/apis/inferencers/matting_inferencer.py | 2 +- .../apis/inferencers/restoration_inferencer.py | 2 +- .../apis/inferencers/translation_inferencer.py | 2 +- .../inferencers/unconditional_inferencer.py | 2 +- 6 files changed, 6 insertions(+), 21 deletions(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index 3ae5c190b2..fb136198c7 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -2,7 +2,6 @@ from abc import abstractmethod from typing import Dict, List, Optional, Sequence, Tuple, Union -import mmcv import numpy as np import torch from mmengine.config import Config @@ -35,7 +34,7 @@ class BaseMMEditInferencer: preprocess=[], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=['get_datasample']) func_order = dict(preprocess=0, forward=1, visualize=2, postprocess=3) extra_parameters = dict() @@ -169,8 +168,6 @@ def postprocess( preds: PredType, imgs: Optional[List[np.ndarray]] = None, is_batch: bool = False, - print_result: bool = False, - pred_out_file: str = '', get_datasample: bool = False, ) -> Union[ResType, Tuple[ResType, np.ndarray]]: """Postprocess predictions. @@ -180,11 +177,6 @@ def postprocess( imgs (Optional[np.ndarray]): Visualized predictions. is_batch (bool): Whether the inputs are in a batch. Defaults to False. - print_result (bool): Whether to print the result. - Defaults to False. - pred_out_file (str): Output file name to store predictions - without images. Supported file formats are “json”, “yaml/yml” - and “pickle/pkl”. Defaults to ''. get_datasample (bool): Whether to use Datasample to store inference results. If False, dict will be used. @@ -201,13 +193,6 @@ def postprocess( results.append(result) if not is_batch: results = results[0] - if print_result: - print(results) - # Add img to the results after printing - if pred_out_file != '': - mmcv.dump(results, pred_out_file) - if imgs is None: - return results return results, imgs def _pred2dict(self, pred_tensor: torch.Tensor) -> Dict: diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index c61070dd05..6025294d82 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -19,7 +19,7 @@ class InpaintingInferencer(BaseMMEditInferencer): preprocess=['img', 'mask'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, img: InputsType, mask: InputsType) -> Dict: """Process the inputs into a model-feedable format. diff --git a/mmedit/apis/inferencers/matting_inferencer.py b/mmedit/apis/inferencers/matting_inferencer.py index ae00fda313..2f1dd5a885 100644 --- a/mmedit/apis/inferencers/matting_inferencer.py +++ b/mmedit/apis/inferencers/matting_inferencer.py @@ -21,7 +21,7 @@ class MattingInferencer(BaseMMEditInferencer): preprocess=['img', 'trimap'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, img: InputsType, trimap: InputsType) -> Dict: """Process the inputs into a model-feedable format. diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index 7836b1bf16..b3544fbd0b 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -19,7 +19,7 @@ class RestorationInferencer(BaseMMEditInferencer): preprocess=['img'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: """Process the inputs into a model-feedable format. diff --git a/mmedit/apis/inferencers/translation_inferencer.py b/mmedit/apis/inferencers/translation_inferencer.py index 2e537fdd88..a48e445359 100644 --- a/mmedit/apis/inferencers/translation_inferencer.py +++ b/mmedit/apis/inferencers/translation_inferencer.py @@ -20,7 +20,7 @@ class TranslationInferencer(BaseMMEditInferencer): preprocess=['img'], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) def preprocess(self, img: InputsType) -> Dict: """Process the inputs into a model-feedable format. diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index 5017b4e4af..e5c3da156e 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -18,7 +18,7 @@ class UnconditionalInferencer(BaseMMEditInferencer): preprocess=[], forward=[], visualize=['result_out_dir'], - postprocess=['print_result', 'pred_out_file', 'get_datasample']) + postprocess=[]) extra_parameters = dict(num_batches=4, sample_model='ema') From 05b3259c1f71628c4b8d715cebef4f0e5b897a8b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 15 Nov 2022 19:41:02 +0800 Subject: [PATCH 37/68] [high-level api] remove default value. --- demo/mmediting_inference_demo.py | 44 ++++++++++---------------------- 1 file changed, 14 insertions(+), 30 deletions(-) diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index 76d484de7a..a5cb854d2b 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -2,44 +2,36 @@ # isort: off from argparse import ArgumentParser from mmedit.edit import MMEdit +from mmengine import DictAction def parse_args(): parser = ArgumentParser() parser.add_argument( - '--img', - type=str, - default='resources/input/restoration/0901x2.png', - help='Input image file.') + '--img', type=str, default=None, help='Input image file.') parser.add_argument( - '--video', - type=str, - default='resources/input/video_restoration/v_Basketball_g01_c01.avi', - help='Input video file.') + '--video', type=str, default=None, help='Input video file.') parser.add_argument( '--label', type=int, - default=1, + default=None, help='Input label for conditional models.') parser.add_argument( - '--trimap', - type=str, - default='resources/input/matting/beach_trimap.png', - help='Input for matting models.') + '--trimap', type=str, default=None, help='Input for matting models.') parser.add_argument( '--mask', type=str, - default='resources/input/inpainting/mask_2_resized.png', - help='path to input mask file') + default=None, + help='path to input mask file for inpainting models') parser.add_argument( '--result-out-dir', type=str, - default='resources/demo_results/inferencer_samples_apis_video.avi', - help='Output directory of images.') + default=None, + help='Output img or video path.') parser.add_argument( '--model-name', type=str, - default='basicvsr', + default=None, help='Pretrained editing algorithm') parser.add_argument( '--model-version', @@ -62,18 +54,10 @@ def parse_args(): default='cuda', help='Device used for inference.') parser.add_argument( - '--show', - action='store_true', - help='Display the image in a popup window.') - parser.add_argument( - '--print-result', - action='store_true', - help='Whether to print the results.') - parser.add_argument( - '--pred-out-file', - type=str, - default='', - help='File to save the inference results.') + '--extra-parameters', + nargs='+', + action=DictAction, + help='Other customized kwargs for different model') args = parser.parse_args() return args From b94a67ebde7e03686105faab7c5955dd412a79e6 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 15 Nov 2022 20:21:54 +0800 Subject: [PATCH 38/68] [high-level api] rename version to setting. --- demo/mmediting_inference_demo.py | 4 +-- .../video_interpolation_inferencer.py | 1 - mmedit/edit.py | 32 +++++++++---------- 3 files changed, 18 insertions(+), 19 deletions(-) diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index a5cb854d2b..7de3b0b9b9 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -34,10 +34,10 @@ def parse_args(): default=None, help='Pretrained editing algorithm') parser.add_argument( - '--model-version', + '--model-setting', type=str, default='a', - help='Pretrained editing algorithm') + help='Pretrained editing algorithm setting') parser.add_argument( '--model-config', type=str, diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 025331b96f..1923ab4fbb 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -223,7 +223,6 @@ def forward(self, self.extra_parameters['end_idx']: break - print() print(f'Output dir: {result_out_dir}') if to_video: target.release() diff --git a/mmedit/edit.py b/mmedit/edit.py index 0850306a9f..d1874c0c2d 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -15,7 +15,7 @@ class MMEdit: Args: model_name (str): Name of the editing model. - model_version (str): Version of a specific model. + model_setting (str): Setting of a specific model. Default to 'a'. model_config (str): Path to the config file for the editing model. Default to None. @@ -29,7 +29,7 @@ class MMEdit: # conditional models 'biggan': { 'type': 'conditional', - 'version': { + 'setting': { 'a': { 'config': 'biggan/biggan_2xb25-500kiters_cifar10-32x32.py', @@ -48,7 +48,7 @@ class MMEdit: # unconditional models 'styleganv1': { 'type': 'unconditional', - 'version': { + 'setting': { 'a': { 'config': 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', @@ -61,7 +61,7 @@ class MMEdit: # matting models 'gca': { 'type': 'matting', - 'version': { + 'setting': { 'a': { 'config': 'gca/gca_r34_4xb10-200k_comp1k.py', @@ -74,7 +74,7 @@ class MMEdit: # inpainting models 'aot_gan': { 'type': 'inpainting', - 'version': { + 'setting': { 'a': { 'config': 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', @@ -87,7 +87,7 @@ class MMEdit: # translation models 'pix2pix': { 'type': 'translation', - 'version': { + 'setting': { 'a': { 'config': 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 @@ -101,7 +101,7 @@ class MMEdit: # real_esrgan error 'real_esrgan': { 'type': 'restoration', - 'version': { + 'setting': { 'a': { 'config': 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 @@ -112,7 +112,7 @@ class MMEdit: }, 'esrgan': { 'type': 'restoration', - 'version': { + 'setting': { 'a': { 'config': 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 @@ -125,7 +125,7 @@ class MMEdit: # video_restoration models 'basicvsr': { 'type': 'video_restoration', - 'version': { + 'setting': { 'a': { 'config': 'basicvsr/basicvsr_2xb4_reds4.py', @@ -144,7 +144,7 @@ class MMEdit: # video_interpolation models 'flavr': { 'type': 'video_interpolation', - 'version': { + 'setting': { 'a': { 'config': 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 @@ -157,7 +157,7 @@ class MMEdit: def __init__(self, model_name: str = None, - model_version: str = 'a', + model_setting: str = 'a', model_config: str = None, model_ckpt: str = None, device: torch.device = None, @@ -165,13 +165,13 @@ def __init__(self, register_all_modules(init_default_scope=True) inferencer_kwargs = {} inferencer_kwargs.update( - self._get_inferencer_kwargs(model_name, model_version, + self._get_inferencer_kwargs(model_name, model_setting, model_config, model_ckpt, extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) def _get_inferencer_kwargs(self, model_name: Optional[str], - model_version: Optional[str], + model_setting: Optional[str], model_config: Optional[str], model_ckpt: Optional[str], extra_parameters: Optional[Dict]) -> Dict: @@ -182,10 +182,10 @@ def _get_inferencer_kwargs(self, model_name: Optional[str], cfgs = self.get_model_config(model_name) kwargs['type'] = cfgs['type'] kwargs['config'] = os.path.join( - 'configs/', cfgs['version'][model_version]['config']) - kwargs['ckpt'] = cfgs['version'][model_version]['ckpt'] + 'configs/', cfgs['setting'][model_setting]['config']) + kwargs['ckpt'] = cfgs['setting'][model_setting]['ckpt'] # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ - # f'mmediting/{cfgs["version"][model_version]["ckpt"]}' + # f'mmediting/{cfgs["version"][model_setting]["ckpt"]}' if model_config is not None: if kwargs.get('config', None) is not None: From 6b5f86c53288bdae3e1f2ea2ccb64c119dced69b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 15 Nov 2022 21:00:42 +0800 Subject: [PATCH 39/68] [high-level api] add examples in edit.py and remove duplicated funcs. --- .../video_interpolation_inferencer.py | 47 +------------------ .../video_restoration_inferencer.py | 25 +--------- mmedit/edit.py | 11 +++++ 3 files changed, 13 insertions(+), 70 deletions(-) diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 1923ab4fbb..5a7792beb8 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -10,56 +10,11 @@ import torch from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate -from mmengine.fileio import FileClient from mmengine.utils import ProgressBar from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, PredType, ResType) - -VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') -FILE_CLIENT = FileClient('disk') - - -def read_image(filepath): - """Read image from file. - - Args: - filepath (str): File path. - - Returns: - image (np.array): Image. - """ - img_bytes = FILE_CLIENT.get(filepath) - image = mmcv.imfrombytes( - img_bytes, flag='color', channel_order='rgb', backend='pillow') - return image - - -def read_frames(source, start_index, num_frames, from_video, end_index): - """Read frames from file or video. - - Args: - source (list | mmcv.VideoReader): Source of frames. - start_index (int): Start index of frames. - num_frames (int): frames number to be read. - from_video (bool): Weather read frames from video. - end_index (int): The end index of frames. - - Returns: - images (np.array): Images. - """ - images = [] - last_index = min(start_index + num_frames, end_index) - # read frames from video - if from_video: - for index in range(start_index, last_index): - if index >= source.frame_cnt: - break - images.append(np.flip(source.get_frame(index), axis=2)) - else: - files = source[start_index:last_index] - images = [read_image(f) for f in files] - return images +from .inference_functions import VIDEO_EXTENSIONS, read_frames, read_image class VideoInterpolationInferencer(BaseMMEditInferencer): diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 36372ea613..974b06c5cc 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -13,30 +13,7 @@ from mmedit.utils import tensor2img from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, PredType, ResType) - -VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi') - - -def pad_sequence(data, window_size): - """Pad frame sequence data. - - Args: - data (Tensor): The frame sequence data. - window_size (int): The window size used in sliding-window framework. - - Returns: - data (Tensor): The padded result. - """ - - padding = window_size // 2 - - data = torch.cat([ - data[:, 1 + padding:1 + 2 * padding].flip(1), data, - data[:, -1 - 2 * padding:-1 - padding].flip(1) - ], - dim=1) - - return data +from .inference_functions import VIDEO_EXTENSIONS, pad_sequence class VideoRestorationInferencer(BaseMMEditInferencer): diff --git a/mmedit/edit.py b/mmedit/edit.py index d1874c0c2d..7012db5ab3 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -24,6 +24,17 @@ class MMEdit: config_dir (str): Path to the directory containing config files. Default to 'configs/'. device (torch.device): Device to use for inference. Default to 'cuda'. + + Examples: + >>> # inference of a conditional model, biggan for example + >>> editor = MMEdit(model_name='biggan') + >>> editor.infer(label=1, result_out_dir='./biggan_res.jpg') + + >>> # inference of a translation model, pix2pix for example + >>> editor = MMEdit(model_name='pix2pix') + >>> editor.infer(img='./test.jpg', result_out_dir='./pix2pix_res.jpg') + + >>> # see demo/mmediting_inference_tutorial.ipynb for more examples """ inference_supported_models = { # conditional models From cdcbc238d76a485de19a87bde9cf33ed6dae24c3 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 11:17:28 +0800 Subject: [PATCH 40/68] [high-level api] add log for functions not used. --- mmedit/apis/inferencers/base_mmedit_inferencer.py | 8 ++++---- .../apis/inferencers/video_interpolation_inferencer.py | 9 +++++++-- mmedit/apis/inferencers/video_restoration_inferencer.py | 5 ++++- mmedit/edit.py | 3 ++- 4 files changed, 17 insertions(+), 8 deletions(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index fb136198c7..cebc73173c 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -6,17 +6,17 @@ import torch from mmengine.config import Config from mmengine.runner import load_checkpoint -from mmengine.structures import InstanceData from mmedit.registry import MODELS +from mmedit.structures import EditDataSample from mmedit.utils import ConfigType -InstanceList = List[InstanceData] +InstanceList = List[EditDataSample] InputType = Union[str, int, np.ndarray] InputsType = Union[InputType, Sequence[InputType]] -PredType = Union[InstanceData, InstanceList] +PredType = Union[EditDataSample, InstanceList] ImgType = Union[np.ndarray, Sequence[np.ndarray]] -ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]] +ResType = Union[Dict, List[Dict], EditDataSample, List[EditDataSample]] class BaseMMEditInferencer: diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 5a7792beb8..44410a060c 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -10,6 +10,7 @@ import torch from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate +from mmengine.logging import MMLogger from mmengine.utils import ProgressBar from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, @@ -188,7 +189,9 @@ def visualize(self, preds: PredType, result_out_dir: str = '') -> List[np.ndarray]: """Visualize is not needed in this inferencer.""" - pass + logger: MMLogger = MMLogger.get_current_instance() + logger.info('Visualization is implemented in forward process.') + return None def postprocess( self, @@ -196,4 +199,6 @@ def postprocess( imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: """Postprocess is not needed in this inferencer.""" - pass + logger: MMLogger = MMLogger.get_current_instance() + logger.info('Postprocess is implemented in forward process.') + return None diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index 974b06c5cc..f6c5ed86ce 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -9,6 +9,7 @@ import numpy as np import torch from mmengine.dataset import Compose +from mmengine.logging import MMLogger from mmedit.utils import tensor2img from .base_mmedit_inferencer import (BaseMMEditInferencer, InputsType, @@ -180,4 +181,6 @@ def postprocess( imgs: Optional[List[np.ndarray]] = None ) -> Union[ResType, Tuple[ResType, np.ndarray]]: """Postprocess is not needed in this inferencer.""" - pass + logger: MMLogger = MMLogger.get_current_instance() + logger.info('Postprocess is implemented in visualize process.') + return None diff --git a/mmedit/edit.py b/mmedit/edit.py index 7012db5ab3..d9bc6c5388 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -172,7 +172,8 @@ def __init__(self, model_config: str = None, model_ckpt: str = None, device: torch.device = None, - extra_parameters: Dict = None) -> None: + extra_parameters: Dict = None, + **kwargs) -> None: register_all_modules(init_default_scope=True) inferencer_kwargs = {} inferencer_kwargs.update( From 69e13780a25388e188747ce3da977b95486c9925 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 12:04:49 +0800 Subject: [PATCH 41/68] [high-level api] load mean std from cfg and use basedataelement --- mmedit/apis/inferencers/base_mmedit_inferencer.py | 9 ++++----- mmedit/apis/inferencers/restoration_inferencer.py | 5 ++++- 2 files changed, 8 insertions(+), 6 deletions(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index cebc73173c..df335c1885 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -6,17 +6,16 @@ import torch from mmengine.config import Config from mmengine.runner import load_checkpoint +from mmengine.structures import BaseDataElement from mmedit.registry import MODELS -from mmedit.structures import EditDataSample -from mmedit.utils import ConfigType +from mmedit.utils import ConfigType, SampleList -InstanceList = List[EditDataSample] InputType = Union[str, int, np.ndarray] InputsType = Union[InputType, Sequence[InputType]] -PredType = Union[EditDataSample, InstanceList] +PredType = Union[BaseDataElement, SampleList] ImgType = Union[np.ndarray, Sequence[np.ndarray]] -ResType = Union[Dict, List[Dict], EditDataSample, List[EditDataSample]] +ResType = Union[Dict, List[Dict], BaseDataElement, List[BaseDataElement]] class BaseMMEditInferencer: diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index b3544fbd0b..3200656a1b 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -64,7 +64,10 @@ def preprocess(self, img: InputsType, ref: InputsType = None) -> Dict: data = dict(img_path=img) _data = test_pipeline(data) data = dict() - data['inputs'] = _data['inputs'] / 255.0 + data_preprocessor = cfg['model']['data_preprocessor'] + mean = torch.Tensor(data_preprocessor['mean']).view([3, 1, 1]) + std = torch.Tensor(data_preprocessor['std']).view([3, 1, 1]) + data['inputs'] = (_data['inputs'] - mean) / std data = collate([data]) if ref: data['data_samples'] = [_data['data_samples']] From da2557b271257a733977bd2454e00df2d34e56b0 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 13:13:06 +0800 Subject: [PATCH 42/68] [high-level api] do unittest with cu102 version. --- .github/workflows/pr_stage_test.yml | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/.github/workflows/pr_stage_test.yml b/.github/workflows/pr_stage_test.yml index fcc325dc04..b524f55042 100644 --- a/.github/workflows/pr_stage_test.yml +++ b/.github/workflows/pr_stage_test.yml @@ -46,20 +46,6 @@ jobs: pip install git+https://github.com/openai/CLIP.git - name: Build and install run: rm -rf .eggs && pip install -e . - - name: Run unittests and generate coverage report - run: | - coverage run --branch --source mmedit -m pytest tests/ - coverage xml --omit="**/stylegan3_ops/*,**/conv2d_gradfix.py,**/grid_sample_gradfix.py,**/misc.py,**/upfirdn2d.py,**all_gather_layer.py" - coverage report -m - # Upload coverage report for python3.7 && pytorch1.8.1 cpu - - name: Upload coverage to Codecov - uses: codecov/codecov-action@v1.0.14 - with: - file: ./coverage.xml - flags: unittests - env_vars: OS,PYTHON - name: codecov-umbrella - fail_ci_if_error: false # - name: Setup tmate session # if: ${{ failure() }} # uses: mxschmitt/action-tmate@v3 @@ -104,6 +90,20 @@ jobs: run: | python setup.py check -m -s TORCH_CUDA_ARCH_LIST=7.0 pip install -e . + - name: Run unittests and generate coverage report + run: | + coverage run --branch --source mmedit -m pytest tests/ + coverage xml --omit="**/stylegan3_ops/*,**/conv2d_gradfix.py,**/grid_sample_gradfix.py,**/misc.py,**/upfirdn2d.py,**all_gather_layer.py" + coverage report -m + # Upload coverage report for python3.7 && pytorch1.8.1 cpu + - name: Upload coverage to Codecov + uses: codecov/codecov-action@v1.0.14 + with: + file: ./coverage.xml + flags: unittests + env_vars: OS,PYTHON + name: codecov-umbrella + fail_ci_if_error: false # - name: Setup tmate session # if: ${{ failure() }} # uses: mxschmitt/action-tmate@v3 From 374583d7aa0b1af7b9848b274e0907c6285ad000 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 14:35:24 +0800 Subject: [PATCH 43/68] [high-level api] add more uts. --- mmedit/apis/inferencers/unconditional_inferencer.py | 5 +++-- .../test_inferencers/test_base_mmedit_inferencer.py | 9 ++++++--- .../test_inferencers/test_conditional_inferencer.py | 1 + .../test_inferencers/test_inpainting_inferencer.py | 1 + .../test_inferencers/test_matting_inferencer.py | 1 + .../test_inferencers/test_restoration_inferencer.py | 1 + .../test_inferencers/test_translation_inferencer.py | 1 + .../test_inferencers/test_unconditional_inferencer.py | 2 ++ 8 files changed, 16 insertions(+), 5 deletions(-) diff --git a/mmedit/apis/inferencers/unconditional_inferencer.py b/mmedit/apis/inferencers/unconditional_inferencer.py index e5c3da156e..0d6082b866 100644 --- a/mmedit/apis/inferencers/unconditional_inferencer.py +++ b/mmedit/apis/inferencers/unconditional_inferencer.py @@ -60,8 +60,9 @@ def visualize(self, results = (results[:, [2, 1, 0]] + 1.) / 2. # save images - mkdir_or_exist(os.path.dirname(result_out_dir)) - utils.save_image(results, result_out_dir) + if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) + utils.save_image(results, result_out_dir) return results diff --git a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py index bf4583e03c..2c721868c6 100644 --- a/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py +++ b/tests/test_apis/test_inferencers/test_base_mmedit_inferencer.py @@ -10,13 +10,16 @@ def test_base_mmedit_inferencer(): - with pytest.raises(Exception) as e_info: - inferencer_instance = BaseMMEditInferencer(1, None) - print(e_info) + with pytest.raises(Exception): + BaseMMEditInferencer(1, None) cfg = osp.join( osp.dirname(__file__), '..', '..', '..', 'configs', 'sngan_proj', 'sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py') + + with pytest.raises(Exception): + BaseMMEditInferencer(cfg, 'test') + inferencer_instance = BaseMMEditInferencer(cfg, None) extra_parameters = inferencer_instance.get_extra_parameters() assert len(extra_parameters) == 0 diff --git a/tests/test_apis/test_inferencers/test_conditional_inferencer.py b/tests/test_apis/test_inferencers/test_conditional_inferencer.py index d8693f8709..84f146e319 100644 --- a/tests/test_apis/test_inferencers/test_conditional_inferencer.py +++ b/tests/test_apis/test_inferencers/test_conditional_inferencer.py @@ -18,6 +18,7 @@ def test_conditional_inferencer(): ConditionalInferencer(cfg, None, extra_parameters={'sample_model': 'orig'}) + inference_result = inferencer_instance(label=1) inference_result = inferencer_instance( label=1, result_out_dir=result_out_dir) result_img = inference_result[1] diff --git a/tests/test_apis/test_inferencers/test_inpainting_inferencer.py b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py index 46a7691b73..a8a655f662 100644 --- a/tests/test_apis/test_inferencers/test_inpainting_inferencer.py +++ b/tests/test_apis/test_inferencers/test_inpainting_inferencer.py @@ -25,6 +25,7 @@ def test_inpainting_inferencer(): inferencer_instance = \ InpaintingInferencer(cfg, None) + inferencer_instance(img=masked_img_path, mask=mask_path) inference_result = inferencer_instance( img=masked_img_path, mask=mask_path, result_out_dir=result_out_dir) result_img = inference_result[1] diff --git a/tests/test_apis/test_inferencers/test_matting_inferencer.py b/tests/test_apis/test_inferencers/test_matting_inferencer.py index c957208098..5068c3e59a 100644 --- a/tests/test_apis/test_inferencers/test_matting_inferencer.py +++ b/tests/test_apis/test_inferencers/test_matting_inferencer.py @@ -17,6 +17,7 @@ def test_matting_inferencer(): inferencer_instance = \ MattingInferencer(config, None) + inferencer_instance(img=img_path, trimap=trimap_path) inference_result = inferencer_instance( img=img_path, trimap=trimap_path, result_out_dir=result_out_dir) result_img = inference_result[1] diff --git a/tests/test_apis/test_inferencers/test_restoration_inferencer.py b/tests/test_apis/test_inferencers/test_restoration_inferencer.py index acf1278898..111131ef54 100644 --- a/tests/test_apis/test_inferencers/test_restoration_inferencer.py +++ b/tests/test_apis/test_inferencers/test_restoration_inferencer.py @@ -24,6 +24,7 @@ def test_restoration_inferencer(): inferencer_instance = \ RestorationInferencer(config, None) + inferencer_instance(img=img_path) inference_result = inferencer_instance( img=img_path, result_out_dir=result_out_dir) result_img = inference_result[1] diff --git a/tests/test_apis/test_inferencers/test_translation_inferencer.py b/tests/test_apis/test_inferencers/test_translation_inferencer.py index c16c331d33..6a4b5f5ce9 100644 --- a/tests/test_apis/test_inferencers/test_translation_inferencer.py +++ b/tests/test_apis/test_inferencers/test_translation_inferencer.py @@ -20,6 +20,7 @@ def test_translation_inferencer(): inferencer_instance = \ TranslationInferencer(cfg, None) + inferencer_instance(img=data_path) inference_result = inferencer_instance( img=data_path, result_out_dir=result_out_dir) result_img = inference_result[1] diff --git a/tests/test_apis/test_inferencers/test_unconditional_inferencer.py b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py index aea575bebf..8ce59bcd08 100644 --- a/tests/test_apis/test_inferencers/test_unconditional_inferencer.py +++ b/tests/test_apis/test_inferencers/test_unconditional_inferencer.py @@ -21,6 +21,8 @@ def test_unconditional_inferencer(): extra_parameters={ 'num_batches': 1, 'sample_model': 'orig'}) + # test no result_out_dir + inferencer_instance() inference_result = inferencer_instance(result_out_dir=result_out_dir) result_img = inference_result[1] assert result_img.detach().numpy().shape == (1, 3, 256, 256) From 6015489ecfade79060cf72988a03d7a663f9916b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 15:33:14 +0800 Subject: [PATCH 44/68] [high-level api] revert change in da2557b --- .github/workflows/pr_stage_test.yml | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/.github/workflows/pr_stage_test.yml b/.github/workflows/pr_stage_test.yml index b524f55042..fcc325dc04 100644 --- a/.github/workflows/pr_stage_test.yml +++ b/.github/workflows/pr_stage_test.yml @@ -46,6 +46,20 @@ jobs: pip install git+https://github.com/openai/CLIP.git - name: Build and install run: rm -rf .eggs && pip install -e . + - name: Run unittests and generate coverage report + run: | + coverage run --branch --source mmedit -m pytest tests/ + coverage xml --omit="**/stylegan3_ops/*,**/conv2d_gradfix.py,**/grid_sample_gradfix.py,**/misc.py,**/upfirdn2d.py,**all_gather_layer.py" + coverage report -m + # Upload coverage report for python3.7 && pytorch1.8.1 cpu + - name: Upload coverage to Codecov + uses: codecov/codecov-action@v1.0.14 + with: + file: ./coverage.xml + flags: unittests + env_vars: OS,PYTHON + name: codecov-umbrella + fail_ci_if_error: false # - name: Setup tmate session # if: ${{ failure() }} # uses: mxschmitt/action-tmate@v3 @@ -90,20 +104,6 @@ jobs: run: | python setup.py check -m -s TORCH_CUDA_ARCH_LIST=7.0 pip install -e . - - name: Run unittests and generate coverage report - run: | - coverage run --branch --source mmedit -m pytest tests/ - coverage xml --omit="**/stylegan3_ops/*,**/conv2d_gradfix.py,**/grid_sample_gradfix.py,**/misc.py,**/upfirdn2d.py,**all_gather_layer.py" - coverage report -m - # Upload coverage report for python3.7 && pytorch1.8.1 cpu - - name: Upload coverage to Codecov - uses: codecov/codecov-action@v1.0.14 - with: - file: ./coverage.xml - flags: unittests - env_vars: OS,PYTHON - name: codecov-umbrella - fail_ci_if_error: false # - name: Setup tmate session # if: ${{ failure() }} # uses: mxschmitt/action-tmate@v3 From 67c81729ce7c770a725ca31f9256289da657376c Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 16:44:01 +0800 Subject: [PATCH 45/68] [high-level api] add uts. --- .../test_video_interpolation_inferencer.py | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) diff --git a/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py index 19013e1d49..8e9a586db9 100644 --- a/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py +++ b/tests/test_apis/test_inferencers/test_video_interpolation_inferencer.py @@ -41,5 +41,22 @@ def test_video_interpolation_inferencer_input_dir(): assert inference_result is None +def test_video_interpolation_inferencer_fps_multiplier(): + result_out_dir = osp.join( + osp.dirname(__file__), '..', '..', 'data', + 'video_interpolation_result.mp4') + data_root = osp.join(osp.dirname(__file__), '../../../') + cfg = data_root + 'configs/cain/cain_g1b32_1xb5_vimeo90k-triplet.py' + video_path = data_root + 'tests/data/frames/test_inference.mp4' + + inferencer_instance = \ + VideoInterpolationInferencer(cfg, + None, + extra_parameters={'fps_multiplier': 2}) + inference_result = inferencer_instance( + video=video_path, result_out_dir=result_out_dir) + assert inference_result is None + + if __name__ == '__main__': - test_video_interpolation_inferencer_input_dir() + test_video_interpolation_inferencer_fps_multiplier() From 7dc7207e771cbd2344c822648a7b3a5e7b37843d Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 16 Nov 2022 19:52:37 +0800 Subject: [PATCH 46/68] [high-level api] replace ckpt to http url./ --- mmedit/edit.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/mmedit/edit.py b/mmedit/edit.py index d9bc6c5388..c37e648bea 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -45,13 +45,13 @@ class MMEdit: 'config': 'biggan/biggan_2xb25-500kiters_cifar10-32x32.py', 'ckpt': - 'ckpt/conditional/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 + 'https://download.openmmlab.com/mmgen/biggan/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 }, 'b': { 'config': 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', # noqa: E501 'ckpt': - 'ckpt/conditional/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 + 'https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 } }, }, @@ -64,7 +64,7 @@ class MMEdit: 'config': 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', 'ckpt': - 'ckpt/unconditional/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 + 'https://download.openmmlab.com/mmgen/styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 } } }, @@ -77,7 +77,7 @@ class MMEdit: 'config': 'gca/gca_r34_4xb10-200k_comp1k.py', 'ckpt': - 'ckpt/matting/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/mattors/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 } } }, @@ -90,7 +90,7 @@ class MMEdit: 'config': 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', 'ckpt': - 'ckpt/inpainting/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 + 'https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inpainting/aot_gan/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 } } }, @@ -103,7 +103,7 @@ class MMEdit: 'config': 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 'ckpt': - 'ckpt/translation/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 + 'https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 } } }, @@ -117,7 +117,7 @@ class MMEdit: 'config': 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 'ckpt': - 'ckpt/restoration/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/restorers/real_esrgan/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 }, } }, @@ -128,7 +128,7 @@ class MMEdit: 'config': 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 'ckpt': - 'ckpt/restoration/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 } } }, @@ -141,13 +141,13 @@ class MMEdit: 'config': 'basicvsr/basicvsr_2xb4_reds4.py', 'ckpt': - 'ckpt/video_restoration/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 }, 'b': { 'config': 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', 'ckpt': - 'ckpt/video_restoration/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 } } }, @@ -160,7 +160,7 @@ class MMEdit: 'config': 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 'ckpt': - 'ckpt/video_interpolation/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 + 'https://download.openmmlab.com/mmediting/video_interpolators/flavr/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 } } } From 4940944ecf18f85366794f21105772c748d0e602 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 17 Nov 2022 15:49:53 +0800 Subject: [PATCH 47/68] [high-level api] read config from metafile and download ckpt automatically. --- demo/mmediting_inference_demo.py | 4 +- mmedit/apis/inferencers/mmedit_inferencer.py | 24 ++-- mmedit/edit.py | 143 ++++++------------- 3 files changed, 54 insertions(+), 117 deletions(-) diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index 7de3b0b9b9..1943f184ec 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -35,8 +35,8 @@ def parse_args(): help='Pretrained editing algorithm') parser.add_argument( '--model-setting', - type=str, - default='a', + type=int, + default=None, help='Pretrained editing algorithm setting') parser.add_argument( '--model-config', diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 70722938f9..15b8c83c39 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -19,7 +19,7 @@ class MMEditInferencer(BaseMMEditInferencer): """Class to assign task to different inferencers. Args: - type (str): Inferencer type. + task (str): Inferencer task. config (str or ConfigType): Model config or the path to it. ckpt (str, optional): Path to the checkpoint. device (str, optional): Device to run inference. If None, the best @@ -28,39 +28,39 @@ class MMEditInferencer(BaseMMEditInferencer): def __init__( self, - type: Optional[str] = None, + task: Optional[str] = None, config: Optional[Union[ConfigType, str]] = None, ckpt: Optional[str] = None, device: torch.device = None, extra_parameters: Optional[Dict] = None, ) -> None: - self.type = type - if self.type == 'conditional': + self.task = task + if self.task == 'conditional': self.inferencer = ConditionalInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'unconditional': + elif self.task == 'unconditional': self.inferencer = UnconditionalInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'matting': + elif self.task == 'matting': self.inferencer = MattingInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'inpainting': + elif self.task == 'inpainting': self.inferencer = InpaintingInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'translation': + elif self.task == 'translation': self.inferencer = TranslationInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'restoration': + elif self.task == 'restoration': self.inferencer = RestorationInferencer(config, ckpt, device, extra_parameters) - elif self.type == 'video_restoration': + elif self.task == 'video_restoration': self.inferencer = VideoRestorationInferencer( config, ckpt, device, extra_parameters) - elif self.type == 'video_interpolation': + elif self.task == 'video_interpolation': self.inferencer = VideoInterpolationInferencer( config, ckpt, device, extra_parameters) else: - raise ValueError(f'Unknown inferencer type: {self.type}') + raise ValueError(f'Unknown inferencer task: {self.task}') def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: """Call the inferencer. diff --git a/mmedit/edit.py b/mmedit/edit.py index c37e648bea..97b5ce6045 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -1,9 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. import os +import os.path as osp import warnings from typing import Dict, List, Optional, Union import torch +import yaml from mmedit.apis.inferencers import MMEditInferencer from mmedit.apis.inferencers.base_mmedit_inferencer import InputsType @@ -39,142 +41,63 @@ class MMEdit: inference_supported_models = { # conditional models 'biggan': { - 'type': 'conditional', - 'setting': { - 'a': { - 'config': - 'biggan/biggan_2xb25-500kiters_cifar10-32x32.py', - 'ckpt': - 'https://download.openmmlab.com/mmgen/biggan/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth' # noqa: E501 - }, - 'b': { - 'config': - 'biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py', # noqa: E501 - 'ckpt': - 'https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth' # noqa: E501 - } - }, + 'task': 'conditional', + 'default_setting': 0 }, # unconditional models 'styleganv1': { - 'type': 'unconditional', - 'setting': { - 'a': { - 'config': - 'styleganv1/styleganv1_ffhq-256x256_8xb4-25Mimgs.py', - 'ckpt': - 'https://download.openmmlab.com/mmgen/styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth' # noqa: E501 - } - } + 'task': 'unconditional', + 'default_setting': 0 }, # matting models 'gca': { - 'type': 'matting', - 'setting': { - 'a': { - 'config': - 'gca/gca_r34_4xb10-200k_comp1k.py', - 'ckpt': - 'https://download.openmmlab.com/mmediting/mattors/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth' # noqa: E501 - } - } + 'task': 'matting', + 'default_setting': 1 }, # inpainting models 'aot_gan': { - 'type': 'inpainting', - 'setting': { - 'a': { - 'config': - 'aot_gan/aot-gan_smpgan_4xb4_places-512x512.py', - 'ckpt': - 'https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inpainting/aot_gan/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth' # noqa: E501 - } - } + 'task': 'inpainting', + 'default_setting': 0 }, # translation models 'pix2pix': { - 'type': 'translation', - 'setting': { - 'a': { - 'config': - 'pix2pix/pix2pix_vanilla-unet-bn_1xb1-80kiters_facades.py', # noqa: E501 - 'ckpt': - 'https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth' # noqa: E501 - } - } + 'task': 'translation', + 'default_setting': 0 }, # restoration models - # real_esrgan error - 'real_esrgan': { - 'type': 'restoration', - 'setting': { - 'a': { - 'config': - 'real_esrgan/realesrnet_c64b23g32_4xb12-lr2e-4-1000k_df2k-ost.py', # noqa: E501 - 'ckpt': - 'https://download.openmmlab.com/mmediting/restorers/real_esrgan/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth' # noqa: E501 - }, - } - }, 'esrgan': { - 'type': 'restoration', - 'setting': { - 'a': { - 'config': - 'esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py', # noqa: E501 - 'ckpt': - 'https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth' # noqa: E501 - } - } + 'task': 'restoration', + 'default_setting': 0 }, # video_restoration models 'basicvsr': { - 'type': 'video_restoration', - 'setting': { - 'a': { - 'config': - 'basicvsr/basicvsr_2xb4_reds4.py', - 'ckpt': - 'https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_reds4_20120409-0e599677.pth' # noqa: E501 - }, - 'b': { - 'config': - 'basicvsr/basicvsr_2xb4_vimeo90k-bi.py', - 'ckpt': - 'https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth' # noqa: E501 - } - } + 'task': 'video_restoration', + 'default_setting': 0 }, # video_interpolation models 'flavr': { - 'type': 'video_interpolation', - 'setting': { - 'a': { - 'config': - 'flavr/flavr_in4out1_8xb4_vimeo90k-septuplet.py', # noqa: E501 - 'ckpt': - 'https://download.openmmlab.com/mmediting/video_interpolators/flavr/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth' # noqa: E501 - } - } - } + 'task': 'video_interpolation', + 'default_setting': 0 + }, } def __init__(self, model_name: str = None, - model_setting: str = 'a', + model_setting: int = None, model_config: str = None, model_ckpt: str = None, device: torch.device = None, extra_parameters: Dict = None, **kwargs) -> None: register_all_modules(init_default_scope=True) + self._init_inference_supported_models_cfg() inferencer_kwargs = {} inferencer_kwargs.update( self._get_inferencer_kwargs(model_name, model_setting, @@ -182,6 +105,17 @@ def __init__(self, extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) + def _init_inference_supported_models_cfg(self) -> None: + all_cfgs_dir = osp.join(osp.dirname(__file__), '..', 'configs') + supported_models = self.inference_supported_models.keys() + + for key in supported_models: + meta_file_dir = osp.join(all_cfgs_dir, key, 'metafile.yml') + with open(meta_file_dir, 'r') as stream: + parsed_yaml = yaml.safe_load(stream) + self.inference_supported_models[key]['settings'] = \ + parsed_yaml['Models'] + def _get_inferencer_kwargs(self, model_name: Optional[str], model_setting: Optional[str], model_config: Optional[str], @@ -192,12 +126,15 @@ def _get_inferencer_kwargs(self, model_name: Optional[str], if model_name is not None: cfgs = self.get_model_config(model_name) - kwargs['type'] = cfgs['type'] + kwargs['task'] = cfgs['task'] + setting_to_use = cfgs['default_setting'] + if model_setting: + setting_to_use = model_setting + config_dir = cfgs['settings'][setting_to_use]['Config'] + config_dir = config_dir[config_dir.find('configs'):] kwargs['config'] = os.path.join( - 'configs/', cfgs['setting'][model_setting]['config']) - kwargs['ckpt'] = cfgs['setting'][model_setting]['ckpt'] - # kwargs['ckpt'] = 'https://download.openmmlab.com/' + \ - # f'mmediting/{cfgs["version"][model_setting]["ckpt"]}' + osp.dirname(__file__), '..', config_dir) + kwargs['ckpt'] = cfgs['settings'][setting_to_use]['Weights'] if model_config is not None: if kwargs.get('config', None) is not None: From 06062662c323c7acf67370e11f7956f806e76484 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 17 Nov 2022 16:17:03 +0800 Subject: [PATCH 48/68] [high-level api] make default setting all to 0. --- mmedit/edit.py | 28 ++++++++++------------------ 1 file changed, 10 insertions(+), 18 deletions(-) diff --git a/mmedit/edit.py b/mmedit/edit.py index 97b5ce6045..429cdb34ac 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -41,50 +41,42 @@ class MMEdit: inference_supported_models = { # conditional models 'biggan': { - 'task': 'conditional', - 'default_setting': 0 + 'task': 'conditional' }, # unconditional models 'styleganv1': { - 'task': 'unconditional', - 'default_setting': 0 + 'task': 'unconditional' }, # matting models 'gca': { - 'task': 'matting', - 'default_setting': 1 + 'task': 'matting' }, # inpainting models 'aot_gan': { - 'task': 'inpainting', - 'default_setting': 0 + 'task': 'inpainting' }, # translation models 'pix2pix': { - 'task': 'translation', - 'default_setting': 0 + 'task': 'translation' }, # restoration models 'esrgan': { - 'task': 'restoration', - 'default_setting': 0 + 'task': 'restoration' }, # video_restoration models 'basicvsr': { - 'task': 'video_restoration', - 'default_setting': 0 + 'task': 'video_restoration' }, # video_interpolation models 'flavr': { - 'task': 'video_interpolation', - 'default_setting': 0 + 'task': 'video_interpolation' }, } @@ -117,7 +109,7 @@ def _init_inference_supported_models_cfg(self) -> None: parsed_yaml['Models'] def _get_inferencer_kwargs(self, model_name: Optional[str], - model_setting: Optional[str], + model_setting: Optional[int], model_config: Optional[str], model_ckpt: Optional[str], extra_parameters: Optional[Dict]) -> Dict: @@ -127,7 +119,7 @@ def _get_inferencer_kwargs(self, model_name: Optional[str], if model_name is not None: cfgs = self.get_model_config(model_name) kwargs['task'] = cfgs['task'] - setting_to_use = cfgs['default_setting'] + setting_to_use = 0 if model_setting: setting_to_use = model_setting config_dir = cfgs['settings'][setting_to_use]['Config'] From 517144feb0e90dca45e7b3e0caa79de7cf98132d Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Thu, 17 Nov 2022 21:56:37 +0800 Subject: [PATCH 49/68] [high-level api] add content in ipynb --- demo/mmediting_inference_tutorial.ipynb | 743 +++++++++++++++--- .../apis/inferencers/inpainting_inferencer.py | 3 + .../inferencers/restoration_inferencer.py | 3 + .../video_interpolation_inferencer.py | 3 +- .../video_restoration_inferencer.py | 3 + mmedit/edit.py | 22 + 6 files changed, 653 insertions(+), 124 deletions(-) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 7577bed5d6..ec03b2c2a4 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -6,81 +6,357 @@ "source": [ "# MMEditing Inference Tutorial\n", "\n", - "Welcome to MMEditing! In this tutorial you will learn how to use MMEditing inference api to predict your own image or video. \n", + "Welcome to MMEditing! This is the official tutorial for using MMEditing inference api to predict your own image or video.\n", "\n", - "This is a quick guide for you to infer with existing models. " + "In this tutorial, you will learn how to\n", + "\n", + "- Install MMEditing\n", + "\n", + "- Perform inference using MMEdit inference API\n", + "\n", + "- Perform inference with models of different tasks including:\n", + "\n", + "    1. Inference of conditional model\n", + "\n", + "    2. Inference of inpanting model\n", + "\n", + "    3. Inference of matting model\n", + "\n", + "    4. Inference of restoration model\n", + "\n", + "    5. Inference of translation model\n", + "\n", + "    6. Inference of unconditional model\n", + "\n", + "    7. Inference of video interpolation model\n", + "\n", + "    8. Inference of video restoration model\n", + "\n", + "Let's start!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 1. Install MMEditing\n", - "Please refer to [README.md](README.md) for installation instruction." + "## 1. Install MMEditing" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ema-pytorch 0.0.10\n", + "open-clip-torch 2.5.0\n", + "torch 1.9.0+cu111\n", + "torchvision 0.10.0+cu111\n" + ] + } + ], + "source": [ + "# Check PyTorch version\n", + "!pip3 list | grep torch" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: openmim in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (0.3.2)\n", + "Requirement already satisfied: tabulate in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (0.9.0)\n", + "Requirement already satisfied: requests in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (2.28.1)\n", + "Requirement already satisfied: Click in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (8.1.3)\n", + "Requirement already satisfied: pip>=19.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (22.2.2)\n", + "Requirement already satisfied: model-index in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (0.1.11)\n", + "Requirement already satisfied: pandas in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (1.5.1)\n", + "Requirement already satisfied: rich in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (12.6.0)\n", + "Requirement already satisfied: colorama in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from openmim) (0.4.5)\n", + "Requirement already satisfied: ordered-set in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from model-index->openmim) (4.1.0)\n", + "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from model-index->openmim) (6.0)\n", + "Requirement already satisfied: markdown in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from model-index->openmim) (3.4.1)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pandas->openmim) (2.8.2)\n", + "Requirement already satisfied: numpy>=1.20.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pandas->openmim) (1.23.4)\n", + "Requirement already satisfied: pytz>=2020.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pandas->openmim) (2022.5)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests->openmim) (1.26.12)\n", + "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests->openmim) (2.1.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests->openmim) (3.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests->openmim) (2022.9.24)\n", + "Requirement already satisfied: typing-extensions<5.0,>=4.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from rich->openmim) (4.4.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from rich->openmim) (2.13.0)\n", + "Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from rich->openmim) (0.9.1)\n", + "Requirement already satisfied: six>=1.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from python-dateutil>=2.8.1->pandas->openmim) (1.16.0)\n", + "Requirement already satisfied: importlib-metadata>=4.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from markdown->model-index->openmim) (5.0.0)\n", + "Requirement already satisfied: zipp>=0.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (3.9.0)\n", + "Looking in links: https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html\n", + "Requirement already satisfied: mmcv>=2.0.0rc1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (2.0.0rc1)\n", + "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (0.32.0)\n", + "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (2.4.0)\n", + "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (6.0)\n", + "Requirement already satisfied: opencv-python>=3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (4.6.0.66)\n", + "Requirement already satisfied: Pillow in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (9.2.0)\n", + "Requirement already satisfied: numpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (1.23.4)\n", + "Requirement already satisfied: mmengine in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (0.2.0)\n", + "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1) (21.3)\n", + "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmcv>=2.0.0rc1) (2.0.1)\n", + "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmcv>=2.0.0rc1) (3.6.1)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from packaging->mmcv>=2.0.0rc1) (3.0.9)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmcv>=2.0.0rc1) (4.37.4)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmcv>=2.0.0rc1) (2.8.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmcv>=2.0.0rc1) (1.0.5)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmcv>=2.0.0rc1) (1.4.4)\n", + "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmcv>=2.0.0rc1) (0.11.0)\n", + "Requirement already satisfied: six>=1.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from python-dateutil>=2.7->matplotlib->mmengine->mmcv>=2.0.0rc1) (1.16.0)\n" + ] + } + ], + "source": [ + "# Install mmcv dependency via openmim\n", + "!pip3 install openmim\n", + "!mim install 'mmcv>=2.0.0rc1'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'mmediting'...\n", + "remote: Enumerating objects: 18482, done.\u001b[K\n", + "remote: Counting objects: 100% (43/43), done.\u001b[K\n", + "remote: Compressing objects: 100% (43/43), done.\u001b[K\n", + "remote: Total 18482 (delta 15), reused 3 (delta 0), pack-reused 18439\u001b[K\n", + "Receiving objects: 100% (18482/18482), 10.21 MiB | 36.00 KiB/s, done.\n", + "Resolving deltas: 100% (12504/12504), done.\n", + "Checking out files: 100% (1280/1280), done.\n", + "/mnt/petrelfs/liuwenran/develop/mmediting/demo/mmediting\n", + "Obtaining file:///mnt/petrelfs/liuwenran/develop/mmediting/demo/mmediting\n", + " Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: av in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (10.0.0)\n", + "Requirement already satisfied: face-alignment in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.3.5)\n", + "Requirement already satisfied: facexlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.2.5)\n", + "Requirement already satisfied: lmdb in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.3.0)\n", + "Requirement already satisfied: lpips in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.1.4)\n", + "Requirement already satisfied: mmcv>=2.0.0rc1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.0.0rc1)\n", + "Requirement already satisfied: mmengine in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.2.0)\n", + "Requirement already satisfied: numpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.23.4)\n", + "Requirement already satisfied: opencv-python!=4.5.5.62,!=4.5.5.64 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (4.6.0.66)\n", + "Requirement already satisfied: Pillow in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (9.2.0)\n", + "Requirement already satisfied: tensorboard in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.10.1)\n", + "Requirement already satisfied: torch in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.9.0+cu111)\n", + "Requirement already satisfied: torchvision in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.10.0+cu111)\n", + "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", + "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (21.3)\n", + "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", + "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (0.32.0)\n", + "Requirement already satisfied: scipy>=0.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (1.9.3)\n", + "Requirement already satisfied: scikit-image in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.19.3)\n", + "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", + "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", + "Requirement already satisfied: filterpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from facexlib->mmedit==1.0.0rc3) (1.4.5)\n", + "Requirement already satisfied: typing-extensions in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from torch->mmedit==1.0.0rc3) (4.4.0)\n", + "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (2.0.1)\n", + "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (3.6.1)\n", + "Requirement already satisfied: grpcio>=1.24.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.50.0)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", + "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", + "Requirement already satisfied: wheel>=0.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.37.1)\n", + "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.8.1)\n", + "Requirement already satisfied: absl-py>=0.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.3.0)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (4.9)\n", + "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (5.2.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.2.8)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (1.3.1)\n", + "Requirement already satisfied: importlib-metadata>=4.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (5.0.0)\n", + "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2022.9.24)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (1.26.12)\n", + "Requirement already satisfied: MarkupSafe>=2.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", + "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (4.37.4)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.0.5)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (3.0.9)\n", + "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from numba->face-alignment->mmedit==1.0.0rc3) (0.39.1)\n", + "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", + "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", + "Requirement already satisfied: PyWavelets>=1.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (1.4.1)\n", + "Requirement already satisfied: networkx>=2.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.8.7)\n", + "Requirement already satisfied: zipp>=0.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (3.9.0)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.4.8)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (3.2.2)\n", + "Installing collected packages: mmedit\n", + " Running setup.py develop for mmedit\n", + "Successfully installed mmedit-1.0.0rc3\n" + ] + } + ], + "source": [ + "# Install mmediting from source\n", + "!git clone -b 1.x https://github.com/open-mmlab/mmediting.git\n", + "%cd mmediting\n", + "!pip3 install -e ." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.0.0rc3\n" + ] + } + ], + "source": [ + "# Check MMEditing installation\n", + "import mmedit\n", + "print(mmedit.__version__)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. Inference API Introduction\n", - "\n", - "You could use inference api in your python code or with command line." + "## 2. Perform inference with MMEditing API" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.1 Inference with python code\n", + "### 2.1 Prepare some images or videos for inference\n", + "\n", + "Before we start to perform inference with a pretrained model, some input images or videos should be prepared. \n", "\n", - "MMEditing inference api makes it easy to infer your own image or video with two lines python code. \n", + "Take image translation for example. We need a input image to be translated.\n", + "\n", + "We have prepared some images and videos for you, which could be downloaded from here(need a link here).\n", + "\n", + "Put your image to some directory and make a directory to save processed image.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "# make a dir for input image and output image\n", + "!mkdir -p ./../resources/input/translation\n", + "!mkdir -p ./../resources/output/translation\n", "\n", - "Take image translation for example.\n", + "# put your image to input dir or download our prepared image\n", + "!cd ./../resources/input/translation\n", + "# wget link" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Perform inference with two lines of python code. \n", "\n", "There are two steps:\n", "\n", "First, create a MMEdit instance by a pretrained model name.\n", "\n", - "Second, infer your own image with this MMEdit instance." + "Second, infer your own image with this MMEdit instance. The translated image will be saved to result_out_dir." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth\n" + ] + } + ], "source": [ "from mmedit.edit import MMEdit\n", "\n", "# Create a MMEdit instance\n", "editor = MMEdit('pix2pix')\n", "# Infer a image. Input image path and output image path is needed.\n", - "editor.infer(img='resources/input/translation/gt_mask_0.png', result_out_dir='resources/demo_results/tutorial_translation_res.jpg')" + "results = editor.infer(img='../resources/input/translation/gt_mask_0.png', result_out_dir='../resources/output/translation/tutorial_translation_res.jpg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.2 Inference with command line\n", - "\n", - "There is a command line interface in this folder (MMEditing/demo/mmediting_inference_demo.py).\n", - "\n", - "You could infer a model with this interface like this (do this in MMEditing root path)." + "You could see your result image by plotting it out." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S69sS3IeCH7mj7UiYj/OOfeRNzOZmaRKperuItBilR7sHyBAU800FDSnUAAnLU4kaKSpBtI/KDSgf6AJGz0TIEBqNNDdJVGkxFRSzLx5H+e19461lrub9cDM3Ffsc5KV91JN4oDbL/bdcXZErIcvd3t89pkZiYjgaTyNp/E0nsbT+EBG+PO+gKfxNJ7G03gaT+ObjCfF9TSextN4Gk/jgxpPiutpPI2n8TSexgc1nhTX03gaT+NpPI0PajwprqfxNJ7G03gaH9R4UlxP42k8jafxND6o8aS4nsbTeBpP42l8UONJcT2Np/E0nsbT+KDGk+J6Gk/jaTyNp/FBjSfF9TSextN4Gk/jgxp/borrX/yLf4Ff+7Vfw+FwwG/+5m/i3/ybf/PndSlP42k8jafxND6g8eeiuP7lv/yX+O3f/m3843/8j/Hv/t2/w1/9q38Vf/tv/238/Oc///O4nKfxNJ7G03gaH9CgP48iu7/5m7+Jv/E3/gb++T//5wAAZsYPf/hD/IN/8A/wD//hP/yzvpyn8TSextN4Gh/QSH/WJ9y2Df/23/5b/M7v/E7/WwgBf+tv/S3863/9r9/7nXVdsa5r/zcz4+uvv8bHH38MIvr/+zU/jafxNJ7G0/hvO0QEb9++xfe//32E8M3Avz9zxfXll1+itYbPPvvs4u+fffYZ/v2///fv/c4//af/FP/kn/yTP4vLexpP42k8jafxZzh+8pOf4Ac/+ME3+s6fueL6NuN3fud38Nu//dv9369fv8aPfvQj/N7v/UdcX1+BmQFhgAAiQggAEUCmxQORanQiQAgAQURfCwDh4bUxBKVVCAxBfQSk7v9Ju/8JM0T6t+zPdlwRfU8EJGxHYUD8eAKAxvGI7F8CYbGD7f5OeOe3Hob6Bb4PASaiCw+1Mb/3Hh8Pgehl/TIfto+0Vi//9Oh6RP8IIYJIsDNgnEcuPxvI7wFgFkAYIgz4vIuASOz+CAH+qAkM6vdKgTDlCSHYvIl+hoiQUrJrGHMqLGjc0Frr15RSQowRFGjcp4jNE/XjBftNIegajBFEhFbH3FAI2NYVpRRs2wYQkFJGihEvv/4KW1lQSwGLIOeMaOt4XRaU2lBrAUTQWsO2bfjjn/0MX3/5JV6+eoVXr16hbBtKrVjXFefzGXUrqHXD7emAlCNyTvjoxUf46OOP8ez5C7z46CPkPCHEhJgn5DzhcJhxfXsLZqCJgBmolbGVgq0WrOcN521FLQWlbiCgXw8gmPKEw+GA65sb5JgQkx5znmbMhyNePH+ObSuotWFdN9Sqe4RsvYtOL5gbnj+7xeF4AEgwVjLA9iERATP39YVHz2H/HTJ5QYEQA0FgcoR1HwsUDQoUbe9EiO1ZEWBZNrx68wZfv3yJ//Ljn+DVq1e4v7vH27t7NG4IIeIwn3B1c0QIAEtFaxUBASEE5GlGIL2/0ipKKeDGgAjyPENEZVEtbGJBr9WvjUSvj5mxLAtCiAiBEEMw2Ue+mk126DFK2cDCQzyBIVxRuYClQdhl1BjJZGnZVrx4/hxTSggiSNC1uJwXnA4HLOcz3ty9xR/8wR9gmk44XV/ju9//Pj75zme4vnmGm+fPsK26bl6/foN//H/9X3Bzc4NvOv7MFdcnn3yCGCM+//zzi79//vnn+O53v/ve78zzjHme3/n71fGI2+sbe6BjIeqiB1z+MDOYuQs1X4QQU2CgLvwAIOU8BNdO6fj7+9cAujIQEbBIXyD74RtKH//lsfQveLSp6L3HeHz+/euYMijErgQeKwsyzejHrbXatfgV/KKh7/1yiks/xaZQ3nf9j1/rlgq7zRl253KFD1MODGltCChpAHQD5xA75ODvN2aUVlXx7OYhBJ0HVXimuALtPmNXQABTQNvdd0oBMarwoTlfrA/eKVJmhrBAGlBFEGNEjBEB6K+naYIcZrTWUEpBCAEpRaQU8emLG2zbhm3bsK7rxTorpaC1BmZGjBE5Z6SU8P3PPsMXX3yBr7/+Gl9//TVWU4pdcdWCVja0sgAQBCLc3Fzj6jDjmBMmCkhECASQMAI3SG3gbVNFljJCSBABSq2orYKvAIoRIQbknLFtG0rZsK4LmBk5ZxyPR9ze3mKaZuQ8YZ5n5DyDiHA+n3E8HkxRhX5vtVYQEaZpwjRNOB6P4NrAZkj4/fvz8rWzNxT3zzfEiMsdhYvvghiMsbZ0XSXEFBFiwpRmxBRBFEBEWLaKT7/7HTADv/Eb/xPu7u9wd3+Pz3/2c/zxH/8xvvrqa3z++c/x4x9/jqvTEd/97neQgt5joAARRm22T0RwnCbElDDNByzL0u8/R10vKSWklNQggyouItL1sZyhJlrQfSMMonCxlgkBBMI0zSDaGcTCplQjmBtYmu47XWzYtg2NGcKM1hrmlHE8HJADQZoqe+GG6+uTGlTrhloqrq4nXF/f4NNPP8Xt7XOkaUIpBQ/nM1o/z7uy8pcZf+aKa5om/LW/9tfwu7/7u/g7f+fvAFAh97u/+7v4rd/6rW90rLvXrzHFiGmedDFz1YkrBYCoMMtJBQyZoPFFHCKAsPO6xoNSXSYXMtoVS1czu/dcAHYlsrNu9JA7wWZCV3WILiQVpOFi8/n3Q4z9rHphrkQIROYLqcYeghLdzhpegH5JF6/dXwBB7OuQMM4Dsz4BkOiGvhgyPuMWMYTHDPmxDbYm0c8KkU2deUauMEUQpKkHBYAb2fF2AojdEm7qdZgF7h4PgSA+VyKojVFrAXNDbYLGVeeGBWzerj4bvW6da0ItzZ5h99vAovPqc5hCQohq0ZZa3nnG41mzflcEzGKCJwJAVzTzPNv6QVdCKQXEFFAstruuKx4eHlSomPAopULsumKKaHa/b9/e4eHhHufzGQ8PqqhqbSjbhrYsaLWg1YJaVnBT4VGWFQ9393h9eInr668Rc0ZMETFOiCkjxIiQIqb5qNedJ1CIfRuEqMJ2mibMx4N6da2iFfW+hIC2BawP92jbii0mrFHvXwCc7x+QpowYE1KMqhBLQSkFAmCeVNFJvepCXg0E3396DYGCGgUpmZEmaE0MgQm2590YemQ8mSCXEMAQkJjHYgYOQdDailrVGlZvLIEoIEY1gI/HGSEAwp9AuCKniPP5Aa9ffYXXr1/i7s1LTDling6YDwdcX99gmieknLrnJcLYzmd9XuyKOUBaA9eKjRQp8XmgELoS93sDVJ6IsK0tM9JMFgyPSg18gUDEDQH98f3vg5t7YkCeMg6HGYecUbcV4AZww+FwABFQtqJKF4IYCTlntFZRzhVbKVhLRcoTUvz26ufPBSr87d/+bfy9v/f38Nf/+l/H3/ybfxP/7J/9M9zf3+Pv//2//42O81/+8A9x9+Y1jqdjF2Jn25wUAqYp62KieKm4QkAM0QSTKx0YDCCoTRUfsLNWXKns/r0fj72y/WfHe0Ddii4AIsSQQIHUvY8ZwV7rhhBTsElVgysd34QUECKp9QcCYgCzoJmlRBIMKRAExI7BRZiOgtgLV1ABYptXlZUbZJee314R6ganDpMNdNU8pC4kdNMIBGBVhCIwRcwI/TgVzCrkRdqF5wJTyiwVKUSICFqrqLX2OQ9EEGEwN2xbRS0baqsoRY0aZgY3QRNXYrANancUgLLq5xAEAcHugNH3MUGfmwma88PDgIT1YZsAcuHKdj9ysYbcep7n+SIwnWI0pRFQthXFPK5lWbqHUWvFVjZwY4WkKHSosbXWFa0LtFYr6rairAtaqah1Uyu7KXTVtoK6bVgeHrA8nBGSKuYYMkJKakiFgOlwwpTV+wkpGSwaQDFgng/IecJ0mM3mU4g1hoCUEuq2oa6rHosIkfQ+QYRWKlLOSCkixwyG2LNqABEKV6AVoBWFwcjWthscwdaXBABB91D3otSrDKQKzB+iON4H6IomAQJBAkHI1ziZregygtGa9JBAzgQKXR2oxz4lPLu5QqsvEEhwf/cWd29e4s2rl3j7+hVKDNjyinVZVPrIFeLhgDhNaMLgxmo8sSkKZjX6QGgQ1EeeZozR1lrTe9hZ1G4QEQKEBmSoUKq4vYu9caY/3BVXN9gNmifRNTrlhHmaECDgUtFKxjRNCqEbHF5bBTdGDIpQgIccdDn3bcefi+L6u3/37+KLL77AP/pH/wg/+9nP8Bu/8Rv4V//qX71D2PjfG/+3//V/xc3NDa5vTkhJYaIYI46nGafTCc+fP8fz57eotWFZVlvkwXDr1KFDACbEAJGG5eEBAl3ofsxgG9Bf+wMSiy88hg+Bxx4XACEsDwqf6DEyYlRoKOcZMToElQzKAmAekiu3nFXgKdySNR6SMhADigiaeYx+fxSBFLIqyGjxF/OMSlkNb3Cl6LEZc+JAttkvvTHs90f3jC69GK6uqqR7WSLjNWCOnLDGGFJEaxukNrTaUOvWYTdmBppunMYVtVTdGHXrwrq1BjCjlIJaC5ZlxbouWNcVr9+8RTPsnitja2W3QQdiwhCUtZjicvDyEsYVAiIUl27MePXqVVdGviYew7y+Lu7v7zs71tdhSuniOzFGJPvx1enr1oVUa60f63w+G8Kgx3z27BlOpxOOx6N6c62BakV7eMB6d9ehx9ub6353rTFKayjrgvPdW1RWyJubisyUEk6na/W4DLYLMZuRwdjqgC0bBB8/f4FpnhFSxGGaEKPCbRCYF2FweiDkacInL16ASQ2PKWWcrq9wPB5xdTwh5IhWC7b7M958teB4PGKaJlP8WT2LQKhQBcYhAHnq8gBscdQQQJIQ4zBefY9SCEBQ24QVtb6IczZW77k1NQvZ1nWrakSKAK3pnAUAtzdHXF99D59+/BwfvbjF977zEX76x3+M//z7f4DXr17ifF5w9/o17l6/wvPnz3F7e4vnz59rzJR1DcYYQbb2q6BDpwr3qnEVU0I+zKYoCoTDWCchdeXb7/ORsU0hGOzI6Jb7sD4B8ECZRJVaBJBj1LjlfEAKpN5gq5inhKurI66vT9hKwd3btzgeT4AAz589Q8wJaym4e1gQU0R9FAf/JuPPjZzxW7/1W98YGnw8/sP/9r8hp4hgMYcYAlJWOCbFgJgSYhrKwz2V/rsHMAGFDXVZknD3coJDd0SIu9dhmCsKWwkPwUxD4IDMNTdootamVhAFFYCmLKLHZmgITFcyFAiBglrjU0ZOCVPKmI4zcspIMYFSBhPAQeGNEFzZRo1LxGixk9yF5mGex725Qg42b/ZvnaedVwXRHS5AQ7PXggYGufKHoJbqagvEAIMvXgOw7zLatmJdHtQrMIiolGJWnlmDTTF25orl4cEsz4pS6oA3aut/X5cVpRa0pvFNMxsBFmy17KC/sb2rWZSACrtoMKwAiA7l7FaMiGBbC5xEoM97t0B3CvtxfM/XykBx9bvDsCLUsvVnMqXcGSpcG+7PD1jXFcv5jGVbkS3ucP/6FqfjEfM0I+aIVhu4Nay1aKyKGU0Ex6xQUikb7h7OCkluGx5MEdba1LsAYZ5nPHv+wtaKQm4UHa2gDmmxEVmePXuOaZoRp4TjNKmBR0BdN2xmiROrgZVyxPPbW0zzAYfDAc9ub/Hxpx/j6uoKN1dXSJPCTK1UnLcN9/f3qKVa3Gu2dapP0OHeKR+QUkRMAcKEGMnigDNyjhZfzEg5IobYFWsVRpVm+5ow5Hzox6eYLMYF3N+fkXPGNM04nq66EZkDgBiQwwGJPsLVnPH973yC//5HP8LPP/8Zfvb55/jpT3+GH//4D/Hjr5VlfTwecXV9g+lwUIWQE2KwuOGkyikRMEUCGqNwRV2rKizomg6+Z2M0pIYuwhGqvMaedoRHQw4CZttL4rFj6YZSbdWIUEArG7gWCGclm7Eqrm3bEENUWLdVQwwWsFQl4xwOmJnBMI95ZDh94/FBsAp/0Xh4+xYhKnymAfOIacqIcSirxvXCQ9KHGHqca4gt9yoEMQhcTDlcphAaXCMpHGKLIRCBuzAyYb1zzYXt7w5J6lUg2DEU2oMeAwLigTBHUvhCF25AyAkpJkwpIc0zcoqKFaeMBjteGJaXQ1IxmkJPqQvHaZo6fOpkAf/JeSg4xctd+HK/6IYGYrXJVHHpa4aAS+uWqSqr/euhxCCMWjZs53uUbUWtBaXsIMBOyFAIkFvFtir+78FiJ2mwfaY1tgB/tXjiztpkxlarxgcAwIkgIqjMBkUNZeV4iqNMDIAcYjIv+h3Y2LxMN2Y07igqiGwu9ySOvsSIzLDSPzBXhYQDoVHUaReBtIa1aAAcrSIwI4j+SN1QF4BqhQQCOsmAkFIEhazw27oYjFjQDMZzOK/WAm4OeUdIq9geHtCwg3jNOHJlhl388v71aywpqYVtZAIWQds2lNYU3hTdciEG1PMDjldXOJ2OCFwRI2O5f4uHeQaiW/SMwg0vX77CsiyYpowpH1RxRQJBFVhXXFnhVmFCNMPWFVeKCSlNyJO+jjEj5oTKjMpN18Ru/3qYIcaIlOeuIM7nBTln1PkAcENOGTElbNFjoAAJ4+owIeMaMxGmSDhMGYcpY1se8OWXX+Lu7R3O93fg1pAfJqzzjDxPfc8eDidVrlFjXVIrpNoeMaOA3UCKaoAjSH8uY/2r585icfUYuqwEqeJyqF3QDEm1WJqHQNCXazfqoxla3BoC2Tozg50b9/iYOg8wRi8pfPgtxwetuAiCIIJIhCkG5BxxmBIoUo8FtNYQA2FO41Y7NAOXS2ZRedSLlG1n0kcVSo+x+OZVAR0oIKeEJu5u7zwux8h5WN1DWcKOZ9BDbWjMaML62hZK6u68eWJRF0kKUZWYxeskJhUKImATkHvl5QopxdhhEmctKQw5vCxXdgMmJUMSGCCLR0EVkL8WEgQjujAYUsUUlICY3n0tehyRBhJBAKNsq1rXpoxoh7yKBY5rLWZh+xtD+Osc6yYJEFAwxdc0DmT6AELmMhrWjh6Pa8ikHq7aKhYHCJ3eMhSRiEJdedpdyiWZpPmSUIdVDaKg18rksbxxk279qrOvlOh+3NZQzWMSZkxEOBxmxNMRQoQUI3JKRkwgQBpq4f7349UVrq+u1CCJEf/hP/5ehxiJBTkEUEpIxyOEjgARUlKWG5tnKVVZcK1p0D/kjEgJh8OkVP2oa+bNmzvUZQOXCHZFLQLh2hV0igGggCCMtiyQKUFKQNvOePt1xRsRtFpR2mbzAcQU8fLVa5zPi63raZBZgsLuMQXkNHdlJazKLMb93xWFyFM2JZYRclJIkDXWNbzL0L2YnBPm+dT3E0JESQklP2B7uEOgCIDABIX0Y8JkjOiIhkSCzz75CC9ur/GD732Gj26v8V9+8kf4/POf46c//SmWZcF5OeP+NWM6HvuePMwnzPOMaZpAMXREYltXVGH17o4H5QyKo/8B5CQkCXY/ALihVjZZBIOqAZDHldliYA0GDSFGN/LVvE8xIoWIHJOGKHJGjgkkghgUSnRIVoRRtoJlWRQRAtC4XhCVvs34oBXXr3z2GVKKam1LA0SFYwQQc0I6HXWDQDcOMAgHcDXlrrRZ3oGgVjTc67LPO9hLl/i3w3zMHs+59Li60QJTfk0XhMaTdkzCbrVLhxUdW3aJ63EBotCD3m79UUpgkFpgDjaSB69DV1C0s+j35w4dXtTfuvBCp42PqaD+fWDkTdFuXkSAVkcu3CC/7GGz3Wvz5MSweyevOGQGAVpThmDbavekxjEsqF1rz0NxhcDMKNtmMSO9uNVgSH0Ooce71mpelt3eCPA78cPkQHOlw6jrw84KNVjX5jYnX2P6XmcnEuBMAcIu7to3u3RY048siSCiGz3FiMPxiClPmA9KLz+fH3B3d2cKZMRh52nGNE+4vr5WwWesuR9+/3sIMeJ0pbFgjxuJQI0nFjRTrA8PZ/z8iy8UDhRBMzjAIWwnAYgJ/mdXV6itdYjKBf/xOON4cEbdCTHpd6uxgH09NNY4Y4sRIgd0AhERTt/9FCKGAMBjZRZ/NmgthmjCmMZz8X0QHGOp+hylokkFOKGTRpAQzSMIYQj9wIxQNhA3IESNJ4eAFgK4ExOUCLHyWOfKPExIUfPZcs44PrvBx//TX8X/+df/Ryzrii+//BJ/9F//K7766iv87Kc/w1cvX+K8LDjf3eHVl1/qOokB02FGMo/Of4MC2raitWJGbAao9vUriEZQMflg3rQkglSVRQjqHUIsVNJhbiU02TaHgFDLaj8TIgFcK1opaLUihYTr0wk5BrSyYTk/4OHhDqWsmA4zJmPRxpwtHefbjQ9acYEbIpSqq3tdcfuUNbYzTRNyTpbP07ogJI9vSbiMLdjDbUUt3xhCx8+BSwvZN60qJOnCqRMyTAHph4eL3apT9YeiGCSRHQTV8eVBS+0ylTywH/UYRuhwxaWU951iCkbIcOVlF+RBcth9B90DCEEQgoCIh1I1+GwvzDuARo+uD4SNZSjsocI0vtV19DANIAFC6SKRu8M1ojCbMIEDoTWPRw7vRhlfsb92VFeYUSalSgMK800tD+VA1L22oxkVfjPBFbS9FoNz4QwsEc97t68QeszsEXwIUI/ZXRoPAwFwA8PXANe6ez6heyue/5VS6r9JJnCzmI/FMFJKmHJAUumCWkyZi+D6dETMCfN8wDxlTFO2BOeoUK8IWlUoliB48exGyRgiYBlIhXvvCtMqBDpNybyyQW5KKeF4VMp8njKmKdnUaypEKRvYYpYCy83TB2YTrGs15qRrfa+4aCAD+zkEYIxNV6Dj70SiHgkASDXdGKAJyFCUpDFEufTqNRMBsaKZoVFK689t85hUCJb2YWve5I3CfjPatir70ij+OQWkdESKn+IwTfjed76DH3zve/jZz3+Ot3d3ePvmDX7+xVc4PzxgWVds5wdstl9jjEAMoBSRDkekwwxNTw1wJqLuf9g9EJooShS6UnfoX3czkxpenVBmgY1g8zelDGFGLQXbsoAgaLVZQr4eMQRC2QpKa5i2GbUVbNuKQys4pBNaa4oO/EWFCrd1RQ6EHDXxVrGloNh1SpimhJyz5b7QRbzHF7TLKVdSMRC2RRBI42YpZbgSqaWOCgy2cEQY21Z2Vu5IgN1TP92rqVWrCQRjExINK/sxpV7JHJ4nBLhic0/IPSMnUbBtlmAe2d6r8+GVFwD0fDdfbO41BcO0yaAHX/QqAMTSGGkn9O3g4kIYlpelx9nfVxiqakCmMEVPgESPp1llDPeMRJVmTCqIL+bKPuseSafHw72AtvPsXPlIP7dei77m1hMKHhFwjJqy+y4M7nxXSfnbe49zDwkOw2L/OV8jPjNl23ZGSsLwnIcHHcwbmKaEKzlcnD+loI6dNGzbuRtezIzjzQ1iVLZp3TaQKBowTdm8dhjcXkAQXJ0O/fvdgPGEb9HcIk/0nydlHCrtPxgLNvecNSJCbQWNa2fLrctDp/THNGKuYUdoJSLkoGuA8f751CkdOV6B9sZBT83XJ2zrU5UVAa3py6AelbgS0pMDAEoc51qXraM1oXtn+vy6p2ayhowE8hCUIJWzJlRPhxl5mnA6TLj+/vd0vwL42c8/x+vXr/H1y5f4/f/0n/DFF1/iq6++wtdff20VNixROhBiTjjc3uIUbhAmANFQBEOVYlYUBqK5jzEpYUY9rIEokHjFGbIkEZ3EaGssxYjj8QhiQd0KVlp6MQCVrQHNEqqXdcHWKqZ1BnPDui2orSBPCaUqVIjw/n3zy4wPWnFx3dBqAOeAaLkbIRr7z4P+mzJ/5mmCxg80t0CM9+rCozSHZ5qygoLm1RUu/XxDSOrSb1VjVsdD3imWAZGgy7y2g15MWQiBW+xykXcb35MriWCKE92a0U2oy0qNXdtsVNGayfkQACtTo2aUKhcGI3jGcSCc5oPFzzRnCWSZ7BrthZNZNJfFJUGAqh8CiE2vKIFinztGEkAQi32p9BFjtAictNBFSJ8s2isFeA7LgGCB4bX6MxnQ2mW1jga1+rN55BfwJHDxWR/pMAgrPt/75+/w7R7Oo4vPdXfy4hxqhFS0xo8g28ux95Sn5EJSLfZLNbtLEJWGFAnxeNC1ZnHHYOkc7gWCBvq4PNzbM0QXsg5XAkamqKb0dSa6h8viStY2CmRUVmC2XHSFmmt0KDTiwY06AMwK/QKCaZrQ6gJuFZAK4QBGAyH2cmx+vrI+oJSg6MKFMTcms//ZFdZuXt831yEEJEogiQgSVH64wWdTLYCu3+6Bm8fjnzHTxw2DjvIqA0WVQXAPQ5UEAvrc5CljnhRGzNOkCoCAwxzx3/+lX8Vnn3yEl69e4Q//83/Gz7/4Ai9fvsTrly+xlKr+aU54/slHuL65xYtnLzAfTvBKGSJiCe8Zh8MBq1XlyHM21IYAUmXUrJCDkoJg5bDU+M4pYE6xe+hTSuBIHYGIMaKWs6WyNASCpfso/2CaMo7zBBHRsl14zwb4JccHrbimnJFjROrUTrUOolM8mcFts7wMhaG4y19CoNQtKjbatHBDnBMCa/6Gjy6OZLc4mdWq8oCm7MTwjpmkC1nZOjEPqxo9RrRXXGIbWuWiVyq6jIWpoGQe+kQ9hKTJ1lbuhfx6u6XMPT4BAs6Ne9JxcIoq9LUE5z4aROixNCtZQyAwMTSGK2A0jFo0GgdyJRYQzaMSwMkZvYqFmMWaAROOrhhYPIHX4l7utV2s93eVjw7PL9PcoRETw3t+j2O1rXUYbw/x9mdvD0bMC/TY2f47eHRM/y4IiIkuFOPje6BHQrNTmMOld9av3+5TLf5ocLkfS0AU+2s0M4A4IGQtDab6V+fGKyb434bnK6ZsHJ41Z5v1HvYsycY+p3rdIgbPB0IpDqEZEcCgPuGGYlVOuDGcuSrsJYGM+ZqUQAHyai0+ad3swd4UAgZMrtNNFzPeY0AUdJ1Kg0gwVuEII/Q52ikupoBaNp/oncKSnmfVbTDSXDMxo88gBlRfl0RIMWG2+Nc0zZZLSLbvIrgVHKaETz7+CIGAwzwhx4C78xlL2XC3bnj96hXu3t7h5RdfYT4eMU0zDtMRp6sbHI9HHKYZbAhGICjhZysGJaoRpu+RxXr1+aSo6y8ZohSIEGztcatGXONuiCRTVrVptZttXXF/d49pPuB4usL9ecGybr8QqfhlxoetuFLSPC51IOzHSBWi3g+kQaRCPEfBlJEuJO6xj1ZdcVRwdqttJNU63KCLWJlVrVVd4OK07ME2i2bBgmjQtLkik9FahQDEC7joHYo0NPHwkkRh3suFcNF/T8kmgbxeGdCL+TqcxoDvnK02OHWPNOPW8OzQN6lDglEEFCO8noT6Q9wZk00GC1CLYLDXM0akAeyQaPCfLZbQhBFiUqhX8/D1/iBdaWkVhWqbg5GdOQe/l90zMkHqQ0Rp7nBwaQ8RPpprZ7890mbjfZtT97YIBOnlhX4xZOjHDgZHD9/Rr0X6beh63JXPgj5D7uW+xBjuFsfz4tImpCE+B3Z8e44OxQK6PBzSgliisbNi2edP+lofxtogHNiRdvNmhA4I2I2tEBB5ECUuvGNfd6S0/30SPxHZ/Y55I481PSpF5PvinSfmRh6TnRvvfE4cCiZRj6jDhparRsNA7NrGUBoJclH/UtdZs9Jb1dI1PL5rFTlCBMyQgIglbuueDCFgPsxIKWOaJ9Q6EvPneTZGcMDHz59jmjKub65xmme8fbjD2/MZX755jdd3Dzg/PODN+gpxyjgeTrg6XmtOXtlQ5wPmWjVPLEbL6SsdmUnmSQIBnWwLQephFPNGbTrEqq843X3khGrOabPcy21Z8XB/jzzPOF69xf1ZcyzRPdBvPj5sxTUnpKz1x5RGLajNsX1CiIKUApgbzud7XfRmDSp+Xrv1y/YgIA3LUrsCHIUqASD0eIkiU80sY1V4OszTQdx5X2rdcSAsixY3VRd65FR1NtluaIwgvaO4HsdG9DdpMddaEUMGIo+NZ9crvD+2Msr8PJexk8u6jmSYt2APEV0qzlHE2GbhFyzK/TUr7VZjjSxqTJiTBpbaP1NrBbfUFZgmJ8sIMHscA3uRSp1kUNv2/uvYwY9+Xc4Me981uwerTqp6jPfLfT9rxGXqApOXvjIv0+HoSF5SWMsLGWQqBES39EFG/dfriWTJ6qZsPOUieK4OOWsMcB31OC2jM8UAVEFn2nppKlVWjgToXYx4EdnrS7jVv68GoX5/q6Mc0X4d7Qvi7t9TNqPPP6GzBndry+NEYjr+MQnj8RreQ4PvW4s9Dmrx4UAR8Oejn+jHiNHvH6BdjCvnYXg2CCa73uFxWVyU1HdhISOXjNxI5rGPvKYqxWQMWTXwyraAphmH+YhPvvcR/tLxiDxlEGmljbVWvHq4x+//4R/i85/9HH/0k5/gq5ev0CpjWxf8/POf9rh3TBN++IMfacHjOWM+aLJzyhHR4uQsDK7FjBlfQ2ZrqOsN4YpWtH7iiF/72lcPX6Shtg3LesZ5fcBhO1ptT5MVf1E9rhfPn+N01FJJA+ZoyFMyXDX091prndDgbSb2k+cMOYKgVmXLeJmlvaXrG9xLMfnfiZyEERWWMU9lKD+VIirgYXkhmuQ72hA8GiIolmsF4L0bU419g+8oIlC0UlLxnc29w1AAYAgSOPtobP7Q4SpXfmYoRyeU2KzI8EL2cBk337hWssmVp0FmHdrpMIto0qR7eRgwVZNmVp3Cv30j+XFcce28sICROybS+uf2wxVRF8HucfV/7gyDPUxo5/A8QldcAQGaWasxDLaSORACo3XmHQWHZs2D2MVQYo+7EkqpBmkbxduJGyJdyXtun6ZasP7dvC1NljaVQ7sSVgSUavVL+pQMxfPua9gaHqWBOlHjPYqsGEwcYux1HXXB7JVBVBjM1xhg1RyUIQiMcmpalzMgZ439sMggPewU1Dh26GvUc8762tyhFfvvJAoKsDRBDGlUl3hkxOhj0+M9PJzhy4p9Le2RE5trIiUt1NaMSRwHmQNk62MQX9zbxM43dwantplRWv3t7S2m4wEUIzYBfvUv/SW8fXuHVy9f4cuvXuLtm7d4++Ytfv7F11q0tzJC0vwybhUhzDhYfljKEWxEGa0NKv0+pWmhX4reOkgVfk5Rl7utF43NKcMwhZH/6d0J1mXBui44L9pq57IxzTcbH7Tiev7sFtdXWruMReEg5oo8JeQcME1qSShzqVgtwNQ3RneGBV1QUyAsy90usJjtbDLKB0E6o49ZUErtSXpagdrjBIBaFyOZkY06H0K8yLl5H8wkou0r3qe43vWKIoiSXdc4rhMB9ABuoeutq/eHfux3f/RLHSIFacmbMISFQ1KyE0qALtYe9zClwybkHX7ctxbh1rpQCK7ZuuIYhWMVovPb8WO5ItsLWhNSlmy8vxd93zwRjHgXgIuUh6GwBhw7fDq9l0TqiahKuYRY2V1cUTXCFtfTR6DPQSCmuHxuxjOtO7p1cjYo0ajaAqPshzAqFLgyFwMTd9Coz6sAqDvIPOzWnsODwOP7Df0+IRY/Fulw2B6Dq4YAeJrGu8olGGvQmb271iPGoPT941C5V3OpjdFYYWuvhuPPan8M97L8+37ux4q2KztTXOCd4uqG7ZhDsylABBzu7zsKMebOY7P2HbtfZkYtdScLqHv37hF7genGe4WlnrGmIuhJspW1m6aM42FGmmdQnnF1c4NSK8pa8PrtPd6+fotXL1/hj/7rT3F+OKNsBUIBb16/Qa0NU85KfWcGN/Q4crATsz9XGa2anMkaDTrstE+C5cyawdKRC/VAS9mwbcUKRp+1HBtfwr7fZHzQiuuz730HL57d4urqapcTwEhZabjTlBHTgKUGxdaYU7sirnuFsJzvQYSeCwagC+DRp0c3mDdx29OV95+93FAJ52UDs1hex+Wmfsx4CyFYq4DLDfm+H1BAqZocGlJCCslID4SA2OMakRLcAdwWgwO6K2bbRXaxBGeopaQVwXfK8/HY38v5fO7xKZ+Lx72TuuARgbRqle8HNb9Xu+gn0Od7vrt/FF/gXtrIj68X7dBY68ImGOSmScI7J1T1B6asQqtBYT4XRO5VOqGge+Fbgcfl3jf2z/SxseHv739fzCOrZ/Y4peHxZ/+k8z6OHfWfpB4cBYMhbTxmtz4eZPe/Jyj1mJzBlk18j+yKDrt/uFvLfu1eyWEPIeq1OEJhCi1PvQDw8MzGteyV0S+C3/ef3881IepcYx9LHnMiItaTzauqE043N2pIhMv9qyiBrZX9/bN6L+9fE7EjGMyCZVu7YO9dDRr3uWWuePnyK7x+8woxZxxunmE+HnE8HPHJRx/jL//la4gAtTS8fv0G54cF67qhlIbf+73fx5dffomXL1/i5cuvsG1a0Pp0sjy7nMGJUOoGYVYDPkfkHDHnCXNOyCbvmOyeWfO5KGglIZdtCp1u2Fbtz7YsD7i7ewuhgFrHHv6m44NWXNdX17i60krSwSibFIApa+mXlCJC3OPfl57FPug8BA8hRcfhQ++KC4wFPALturhPp9M7wvx9lh0QcHOjVPUQ8jsW40U1dMCUZ95ZOrFbql5ElwwzEwpASEDQUjSRLMHTWH2uFLyVCgVYBXcrxSRBq04AVpbJFpX3K/PZ6fXp3i94Hb483ryw++fuqY7A/E4RQ8Ctom4L4AnP+hjg0Z6L2k8QnI5XZvFbxW5jg+6ZXHotApaGrW6qrMi6w1qcIrg2g8Fpdr29tqQRIKTT+ckUlyp5IsF8SiCrLrwDHftmFvN6ZPd+h4hgipWdjOGwLWyOQrd0NWHevUB0ZepPxmsaujYmW6+BxvruyfdWEk3Eo2no1994GFxuNQQK1kBRFRcAy4/zfmNN2awWo2FLAMeuMoxeX+xeDNnaAgjTIY71A6Pki3r5Q3ERUsoahoKWKHN4XXwd2Dzvk/s9/utbcw/nwWec0Ms16fXtqPAyak4mEcAT6InUePLPuXfrDFh7lr4nIpRyj+7R7714DO+OqM+Bt6TZmiI6E7myNuW2rlhLwdYqKkWc1xU5PeDu7T1urs+Y5yPm+YAXz5/j+lSxbdrE8df/x/8jXr9+gx//4Y/xH2vBmzev8fDwAIgWXZisf5ZwQGOF3VMIyDFhnmYcj9qXLRJhEUarStBorMnqWppNi+4G1rqhKSdc31zje9/7Hj759DuIKWOrI9Xom44PWnGdrk69zYGtN4REVjwzImZlx4wyML5KYPCIgkW8VzIiEMvqV0Efx0bDZfKqL/o9FAcM4d1hBvuK0o8TiLTYaYqxf0d2Vu5QeJblbkoyPqruPixZzXinlEExQSjsgv8MSLD5IcvXMY8nhw5RYQdtiUFb+mInYMUUV4dQLj0KHwTrE2Tvx8h9k+5jYao8RGutRVLPqM+Xs0MB924csMlzMuHTrCBsAzeyyvvSjwF7Nl1Y9nylUV2iCzU7DzeGEGv1cq0O22seDiljngcBZD3RYNc7LlfGHJIJKF9n2M8ftFq2Kz3qAOjOlPJsKf0L755aV1JW5Jh2XirvfEExjygY69R5ni5zx7Xsip3ZOpZAo1oGqBeE3h97JKgTnDnn99nn3WFm+FyMdeC5hpfQ7SMI097rhan3K87/iH1RZbL577/6YxyPUuz6XQaQQbm0mxef9/7Y9O998oYPzqQ/l6aWXjtL67F1hZKl5x6ysCpMO4ezh4GIRDuR4woP0pl+TbQYQxJjiFpuoeYNVm0tAli9xohntzfa5PLhHm/fvsJhznjz5i1icjKYXoOjWEpI07+nqEjWnCfEEJSkEYKWeLOLV4NBq2uAGeu6olWNVc7zAceTMidL+wvqcT17/hzXV0dXPwABMUdMlljnjMOcvYJG64swRLUiHN8fsBYjmR7qVqALup2wbs2ZWAAwyvkAo8yNBok9jwvQtIYIwD2u3S6waud7+MX/7d5isoXn7CMB0JE+EetZVcFE3dpnuzfdzAaVmreTp1Eg1m7Dbxy9HI4p+wAoq424Kx4AvVrHY+XFOxhAKxTQ+NxOILAwYiQc59mYhF7hvfX8M2UfetxFtN4ZFM5T5qB/Z8TVrIiKehFtX3cSow+Rd4Y12SMgUApKuLBEWgkuXEZqhEt7IoePbH7hSkWGEuhGi1h5KEKTXixLo0beaNOStV0eavUJ83K4uwxwgGCITOp5NBcwJNCtfxAhEYEREBDQDN4LCF1x6mE9qVZAISEEvY61Fv08wYoj7zwuCEJQ744SKfsPSugJpO1hPK5FYQT8vTwXN4aY0cGMHhcD0IUwBUJhTzkBYtImlQRjj+7IQDkmBNbYci2le0W9A4Of0xUxAIrqXTSWC8NwP5Ro0TU4HN7U6R0s1sfFkwHrQ1YbpqQGawhqNDYZcDqCN7xt3VAIKSGH0CuMLMvoUxdTwuE4ozbGm/tzRxJaI9zdvcb5fI8YM66vb5BiRghKgU8p4+r6iF/5wXcxHyJev36Dr7/+Gi9fvsS2GlUdYrVQGet6RsoBItrn7DhbzcWYkBJp4rKRyGprOC9ngLTfX1uBN2/u8OJ8xrYpS/Z0usLx6vTOHH2T8UErrod1wfHqgOPVSRdmCIgp43g82CYJ2LYFlQKAhNI2eOA5UUC1st3M1QpPauC8GbaucRQrWxPVfefmQekACmlYcWTQEjO4MKQUPbZVWVaLOwBhQmsblvU1bm+uUWvBer7HPGdEUiFf64b7uzss5we8efMW3/3ud/Hs2TMcP/oIrS64X1bc3z/g7v7B6skxWiuAueoa17LgtCmKECJSzIh56taokLaQzzlhmrLlyrgXZXEpEbQ2itJClD2UjNW1bl5+RoOyLtCO86l7NNw0v6WxCgxnkzlcq00uNY3BBW+v7s/avsFNTqKAeZ56LIS5WqmggnVdutAIdn8hENI0GRYPQAhXN1doTZsfXt08g7dC2UrtsTMtYTPZdQp6chLUgPCqCffrPYi0tYZ21VaI0BtfUlSIkmLAtmx980aKw2jqnhjrmgpataBuq3l3e88RpkjtYggmkPbW+87kdzAgBLBBy0wE5AMAgdZb9QC7er/doaYI1kAfKAySA7vSYi+1BasMQRqsJ1UCW9kA0jJqiQRyfgCBVdVw0+fVqqYAiN5joGjFhjUQW7eGUnfQUxix5Ojl0mjPmDSjwAyRnS8LEos9ORxsrMEUgsb8rOj2MMQGnDemdCiznhbi53tkxAkA7/jt33TUxz/ncVTZoRsDvtb/ZP8ZjFSAxFqDFSHgeJyxlg1l2xAC4XA4wGiS+Pqr+6HwY8TR2qRwa0gRmDJhyoTjIWHKBBFNgK5NC2V/9t2PMBuT8fnzW1zdHDElJXa0GhCnBMlKnnl7d48Iwq/96FfxcH/G3f1ZjZSqnSRyzPjRD36Ew/GEZfn2Dbk+aMX1059/jlILrm/XCzjidDppK/CcjY2mm2wrq1mgjOxCUrTyuEM9ivpI/x6gcaEY03Dvoe3b86TlS8q2YTDPuCdz6kI2xWVuv0hErQ1nS8LjVrAuZ1xfaTdRgoDrhnV9wLI84P7hDe7vjtouIGlAc1k33N+f8XBeUMuuY/C2QLhq5RD3iOxao7dviMaSJM3K12ab2rJBe5t5jx6H4hrW9azQARGYm5aPiXrMzdiDMMXFbC3jj9dw4kVrHufSWUi7TsGNmyqupO0pvEKHGHbe7Brski2OIgoFxwgWhQtb3VBrgXc1dh+rBe1UHJLHYCIghK1seHg4Y60yqqYgaECcdIPH4E0iBV7aSWtYKpWbAmFzAQeA0Mz7M9YdYN9RuKyWhtaAwIJAGh8R86x8jcTACEHX4Uh8BWAxR/ei2NxEAhCidOnZq6RcGLOEXjg5kJUz21f7451HuqOPk/7djQjHL3ucyBUAdnlVUWNCTdR7yTkqyYKAsm6ANAANJNrGhlvrtGpVXA1RnJEWUFtDqdr1upSCQK1D8528s1vv7lkNZE1dF4c5h9fviovQKICqrg2t7j6m3eONjuGR5R0CPocO4A4v98I1t1OpHqaum3zFgNDbAfnnAfRuy+QwKHDhAfZnZGeOgSwHzolj0SoIaYPUgRgQzuc7A2gY93dv8fBwh/Nyj1bV0NDvZrBkCAGn6yPmw4zD4YCrqxNOp5OSMwSA9cGDCKZpBkDYtoJnNze4vblFmg74wfd/BT/60a/i+9//FXz04mOcTleYpsNFAfFvOj5oxfXjn/wR3ry9w+3tM6WhhwCKEYfjCfPhgMNJ41/btuF8XrBta29/kq10CQGQVtXaBUDBmVhslruSKYjIyhipwD/ORxxOR3Bj3N/fd8UF4V1tP9F4SX8d0AqjlIZlWXFe7kGw2ntyi2xFUQMX1FbAUsFcsSz31m5FBchWKpZFvYxaGbU21G3B9nCHVleFbHqfLGDKJ0syzAiUOrx3PB6teoB6JtF65ExzRgiE1iq2suH+7i1ySsg5opVNPTdjRXrDRycQcNP7I1M2XmWcTaHEEME7xtFWq3lFWWOSphABHp11ey6Osb2YIWZgKIW3oRfkhVe81zUizFi3DfPxiGRMUPXEC16/eYvy9WtTqIRpPoIdgiNccEICBrmjQ14xIM1JKyawKtra9gV9H+UZmdCjLrz0kkfclDq8TKRwtkdI3Pv1osFsSVgeD/FUDC2PNeI1gMdMzJOxOOe2esL8+Aws9vIIIUNrDet2WaJnHxMGee6feZauzCJwPJEiCWCc78+AVJA0TJGs8jwjeUkwcTLMvtIF64Pwah884E/26hv86IJ317hnJb4D/7FASBuiBlGPU2wOBss4DjJPcOWmz3TdNl9tkEfMz/5aLMncFUuvdu/rys0Pfxb6el3UyFbjejAcfa91On20fMBASFmZkSlGzHMehjk7GqDV9e/evsW2biiNcf/2Le4f7nE+34Nr087LKeM0zyrHAmE+aXfq4+GA6+srXF1fI8eIIKLkn664DsjTDAHh6nSFZ7fPcCXA//BX/gr+h1//dXzv+z/AZ9/5Lg7zseeDftvxQSuu//zjn+CPfvo5wEBpCiksWwVD86yStQ8IUSnQ27qhNS39lDwAC4E0tex14yg2LqIt4KUJvKisdm3VDTDnQ+8toxXFAbfz2e19ETBpk0QfrTK2UrCcz/jhD7+HF8+e4ZOPP8Ynn/7PeP7xCzy7vcYhBTAXtLLh7q31WApKuNgrq1Y1QXmrFef7e+D5FcBVBY8JthCDNr/L3m+J1ILlhuvTtS6gYFaWtYZIOQJBcfmybTifrzGlhCknbGVROCdESwfQ+/JYUS0F67bh9ua5/o0FtQ2685RnbXYI0tjJtqg3lyNCGgKYgse3xOBdL6Icegkcrz6gXZM3bNuokKFCD6it4eH+jKsbbQ8/zQeU1vCzn3+J//KT/4o/+E//GffnFbUxrq5vsZWGatBmLSMZ03PiOjyl0wtJ0JyUVrGVctlLLKSuBJilk0K8krrDQ+4N9Pw40utXtreuI1eM2qKHTbCHfl3MGpjvrED2udPzd6Yd6XlaM1jrPTJ/762JCHJSFAM0RKzYBwV+rZa0HoLCjUEh9uM8g8BgLpBacHt9wIvba/x3v/pD3Fxf4erqiE8/edETpTVNgUxBWFkig8NrbVjPq+VDDWW0T3N5TIV//fp1f98T/n9RCsFWCrZa+jE95SXEfTfwwT68IBfsqf+7uJe/btyUXm4V6mn3/qDMDzr+hUG4U22XqRC6d5sIHtYVbvhka5kCqJKf1qKICBHyPOO7n35i7WuA9bzgvCy4u7/H+f6seWC14uHuDg/Lgtoa5lmZhMfjEaeTNrWMQWMqMWarMgRLHVI6fCkFpVZM8xG/+qu/hl//9V/Hx59+B1fXz7C1gYJ92/FBK66tCErdsG5FcfDG+pubwQPaPjxaZ9itbJZT1BC8kZIwuFaFm1jfu725hojSOGup8C2lDENb+PLQPYhpmjpgAHFKhFzEuNxynsxLefv2LY6nA0KIuLm9xenqGrfPn+PFsxsEaG0xbrpg1IETSGXEuHXoTZVQQykVUwrI4QZmgGnIgjQoPk0HRNuAzKrsamu9yaBm48+dWcVS1ePjhjplzLMqrZwitnJQ6DFEpJws5qe3zk0TpvO24ebmBmSZ845SEKBxoxgtVMOYtgkgQUha2T9YgiZ2HYK1nJbBQ4GsNY0ndDMUgk2PNrXCMpETUsw4Xl9jmg/I0wGLxZm2UvH5F1/i5as3WNYNp+tnEAQl0jRGMcXFjXc28Q4SCkCcorbn4IZWamfraaL3oLA3bsh5Qoq5d+buXQDMyxGQQZ3639XpoF6AWDfgUlSp1qrrENRZglqtQNvPwzzR5hBkR6UG5JWSEnN6CoDHcnaxFPf3vP9XPwZ8qUuf69F4VGMeweJ0OQWQNIg0nKYAkk9we32Nq+tbPH/xDNdXRxwOB22lA58Lj3FZ6SeGQdCMHBNqqT01ZK9k/PU+3cVzNH+R4tqvmanpvtgfTz300X6oBw0BxFoHJLlTXD4n47XCcjGFC8W1vxZl2LpHTljXtSuux3l2ft3k5b5EMOcMBPWscs5WzxPqVYJ6m6KYIw5T1vuKCVeHA2preL49w7asWNYVy7Li6xQR7yLWuuFk+WFHKwLcy+QNqWfyNliT0Bscjydd7znj+voaL54/x7NnzzDNR4SiqMTe0Pym44NWXAIt5LgW7hn1TYK2r3dhKYwkgokIxfISuDkIrg+Vq2Bb2SztgtN1BOw4GzM6+yzo34WBUjaUrSCmjGuagAvFZUQNEyAdRkRDiBlN1Fpb1oKtNAgIx6trXF3f4HR9jVa05BQHbcktTUseVVJBGqNb0gG5sfa3icBxUjgvBMfiARAhu7IISes5muIKIeB0Ohl2fYUmFbVVLOsZ6wo0Dia0VGmlFJBqQo4W48rJvABlunFrSEW7Mh+OB3iRYSO9W1jBrVa1BkOMCqdGWGzNhY5XyncFNkpsjeabyuzT2xxJo53gATHhOWnl7Uk7sDJFxJwhINw/LHj1+g3u7s84LBUpzwBFVcJmINTWjGwxqNo6/YT5OKFZ12VurSeIkljkyEgTVRiH+YgpNy2uWtx7MiIJjL5eTAkK4+MXzyzswdr/aNvUuysFYpBVtJjMlGcc5oORcdxLk543xBanAzTedDrqimW/bo+bsedg0YVXEOgM7ISse1yAxh1j90gC8pxsDUJjeWAEMPjZCY2BlGdc3dzi5vYZrk4H5AAQpEePqOdUhe6VqgHESCFooivFCwVz+aPryIVjv648+vDp5bvY1d9Zpp7cvP+hEHff6dt89OrSSeixNF/DYy0KgpBmCXSW7nu8s5G52D0ubW47qt0Eok7m8RGIkFPsaFCv4g7SWClgMVqHjTUmFmLszGKWE2opWNYVDw8LuBSABMuWcXW6wuF0xGGeO9rh3rYeUGFwMiO+NcbxeEJKGlLIU9bq9Ac1oBv0eb7Dav4G44NWXFc3HyHGhBthbR1ABBFSphQFhDQhzZOWeUoJ3qFVZJftD2XNLecFZduwbot6PaSbutQhsNTT0kl3emrOGTc3txZX8YiuxxiUnTfiLxVzTmh1w9s3L/Hx7S0++ugFnn/8HRyvbhBiwlYr7l6/RdnO2orbhEm3ouvI+A/GaswRCIfJ4L6gOHUccSSC1bkjQgoExARibTYXckDIAdBKVdY3jA0yKKi1oLZNWxVEy4WbRPOXEFCMnddU8qoAJMFWVvXyUlQatmjWP29WI88s7MqsVH+yclhwuXvZ5sUVBoBelV8hMo37eY21PfTS3ItgoIhgmgtOAuT5iJvbW3z62Wf4wQ9/hJCPeP32HiEfMR9OiClrgIYCmKGe/FYN4jMKdFCL+Tir4mJhiMWCaqtopaJ5rioIlCKujleYpxlrLWibzltlFdgsanxty6Lzzg2ffvczUBw5MedlwVY21K2ohQ+t1s1Q6ztS7CWctFajWtoCKyNka7+xWG6PVrmo26ZQpMGiHgfLcUfYsYojTjZBr4kIhBStnVBASAFaNVh/UmAjFhG+/9lH+LVf/SF+9Uc/xEcffYI8RV03jRENp1C6RVUh3b0b6vGQ0+mkyMdu7L2Q1mqvxCEimKZ9TUNdQ57GclkcAP0egEtvaBTWviyKi5D88uCIihuUl1RvNwb6Et4Zs7uxC3+JF+0m78VAPQ7o8kCPvMv7k6atSrgp1B409SHa+mJmLTpQK7zazr7UXTD5OU8JH714huPpgCqM248/Rpom7ec1ZTXKWsNGpDC6oVHzPOsshGBMb8KyrXj5+jVevnoJCWowlqZy6c3bt/i244NWXGE64Hi8wnSYLV8JWLeKKkCICdN8xOHqCgihwzCA2ctESnEnXRCquFYs6wMANpZOAEnUTd2a1o6zHKopTyqYg0OIZnxYjKLHu0isy6oAKGjrGVxXzPOEj58/w83NCfPpiMaMZd0g0rBspUMJtWwDnLAYj1s7IppTRaQxKooapIUxLL0UjRUBVLgDAUk0ahetIgKDsRYlrmiH1IA8JTAYW92wrCui5ZEFw9zdQyjV2sWIVR8wge7B9GikAG4AiYDBIy4GAJ4X04/o16xS3wsXX1iYXRANwsZjb8vuGs0qd6AUhdTSimgVBZ4/f47vfu8HkHjA8e0dmDJAliCeJ8SYwaIVuLfarAGpdKIDIFjXMyANZFBhkIQYGhAaUohKakkZ+TAr242BGDIoMKIIMmDJ8ToDdStG9qgI02QJzkBIDRJnpNbATZCszmUKsecxtSagGLR4EZHGL302jdjRk13h1ckZda4WNzMWrceEUuopDrWUXpw62NpyKFpbbuicxBhQ6hnM2lIoQuPJUw64unqG6+vnuL55hjQdlChVWdcutEeUx52J0PPFhtdH1vJ9wMJiHtIgYgzlAuAXllV7DCurF6nejBt8sn8Nr5wzykjtK984RCxdQ6GfTxWvg+Wy+/slVLnrPtmP/Q60idbvV8ljfbdYhQ9orL5ViARIcC/OYviNNXxiz1XZrwKpikJ5qkMtG4RVwV2frhAMIkwxaI6mXVs0WrwSRTSGO80zXnz0CZ49f4FSG46HE+bpiHk6IOaMbLHLdf0LSocPccJ0OOHq5hosQG0CShUM0vpdxxMOV/peae1ykQRN5k2GzU8HZR1OywOW9YwYrUgvTahNA/ZlLUYhjzjOJ0zzDAiwbas9yGGNhp33pb8YhILlLoBrwvE44+r2BvNhQojaznorBZCmJVKSV/ew4fow2OZg9ebcGvVGgyBVlk637fvILU4iI2lp8zoitSi3rY3YHAYZARDN5zBLMoBQaukeXGmlU6IpGrHASw8Z9dpcCgVQPe8HHnNxS5UAcsEADI/YBeSONOBBgo6wj/pxeyHVoaxdvKNabCmEiGk+4PbZM9xvFRwzqkS0puWzQp4R4tRjXrFa8ivDCjUrZb8CIG4I3ACqSCEjMCMxkKaMKU+Ypwnz8YhtXbGtBcINkgbMlqPXlQyQZqWspKFuK0IkY9MJaNqMwUWY5hkpReSUwSKWx7ZqYVuoAAkp9sD+vmAqQ0b8jgXxUV3NmGKPlcSoRarXdX2H/NAJK1a4OpriwgqNS0pDkIpIlvCfD5imA6b5iJRnSNtA7k1b5WCyNdex5e5pq4HzyEe5eL7vY/V5PcO9MvqTxjiE7R+HxPox6T2ffd8YMUOYOaYxX1fMxpzE3vuSvqT3ZdXo4qiX19rjkETWHscM8z3xgVz+8DCixRP8TZl7CS/LDWtWkYbIlH/PrRufV+jSammaB6fsyoiDhSBCqUYMy0Z00bXSWBOov+34sBVXmpEOJ0yHGwiASQjTkZDmA1KecDheIUwZy7qiPSiZgl2SEyHMs5VRigjzFVLZQNMD5rZ1WniiyWCUBmnoZZfm6YCUEtZtw6uXL7viisEUF9CVlkBs4VTMzCCZkSPjcNBSVed1w93DgkBAzVEVaAvIURk62C02Z9kplDagKI7BrOMAYe1XhWb3SQkhiMboUK36tCg914qWttbUAoaXZGIwmnoGUQwTNyXXVrStobTaYZoYM8hr+5EAURQyNcVXrZYZwxmYXn1aK1RYJPlis+8hIp9HYFi1bh02VsNCZdv4fGNt+Xs4HtXyDNEa2xVLNmakacZ8uMKxBhQmVIlgCpAwwYISAGv9ShH38JIpdcZBHEpis0T1GmJQy3OaJkx5Rp4n3L29w/nhQS3cZvcXAuZJvfecM1JI0LiW4OXXX2pis5Xe2UrpRJHD6YicMlLMYAju7+7x5s1rnVkaVGNvGwK4N6PS7uHhoSsrV+r63Uu2XggBgRlI8zuGQf+3paEgaB3IxMoiJGmA/W7CqI3AiKCYcTxeg7hA6obl4a161ySItqZh0KYPZxpyk+5d+9/347FiqlbRYcB+ox7oO1BhTl3RXY7Q1+xejWyt9PXoenZ/HRcoQQxIMcM7UsO6RGhYQW96pFGgJ8IbKm1Q4OV17+cg5dQhVGG/VumJ82TeGUVgWx66or+o3m+NIVut3fMPSKhtA0EbvYItx6yxrWHYeiVU61CwLFufsy5uzbD2og7KfP0Lyir85JPPcHWj5UyKsWcOMWM6nkAhgSXgzRttPRDTQQUGj03KQlqCKSh5IUhAmhgBk0E3hMIqCGLKmE6HXvS21ob7u7MmZkarRkFkbQx6bXUoSUPb2gcxAFG0ZcWbekaAZq83FsQ8YT7OINkQDL124a74xxAuapENiyemCEoK4TBGYVUWQUpOsxYjG6jQ1lYsBkVFoBW2HKFq162Voa+uTsoqzKm3QtFFD6s9pwmPOSs93nufgVjLOFnczHuRURyWW7PcuGjJy7hQTgD6TA6B4YJ1D7fEKBAeglUJCTpaKxAky2kRNDzg4eEeD2el/4KstmLMIGjwuEpAbdpbUFuAjKRYESX5EBGOpxvLDZTdtcUOtzkGuJWG+XiF+XDdmYHu8Xh7dmWojJjMx9/5rgbZo9aCOy8LSilotVkcLqAhaKx1PuGTT68M8tvBYfJIydg6neZTzx/rn7+YZZ92hdhzayP+Yg9IbO77cY0UEdKEhIScYKWzCtA2MDQ9YVsr1vMKkgaSZixVqGcWyLo6C2CsUTfOvJWJlksaXpSvgfe9zjlfKK4Oke2U9biH8M739X73MzMg6WT1OAGvmf8LIEBbvv1v7mnJWO99hV94itb7CgNucOKSfm8QlrhWNXBsX7Zm0LaM1InOMs4e/x7IRG8e2RRODATN1YpJlRTImpGa1xuoF1ZWHEa9rdPxgOl4hRcvPsLNs+dYt4Kbm2c4XV3jcDigNgZCVOJZzvi244NWXIfjAdM0o1XvvuvQki6uWjVRMwStEFGabqLWxKxYjX1pBjdBmUGK1/vibT2B0ZWOrqFaG7bNCQGaMMusiiYAHUZRRWl5PCIK+TgLzzYuWI/XrJpBjAlo2nKEBq42EmLd0NkhcmQenwfNdzVHe1yDlNtl9eXcXet+jOHwDjPqv2PUtAInfvjG9+EMP1VUgDaacwBDrclOubYdS10QOLy5uymMe3s89pDQsPqDnVNGHpSBY4q86Ht6fl0b2rtKrcNt2yACgy+cXhwsjjegIjLMk0iVkViybE5Jq+9fQJWjer9+Xw2JFJP2eooNLWpLHG10aDZ1j7MYCSKkrrhCiKYsIwpVjFb2ui5DjEgxIQkuBPPOiN95J6KJomJ6VS6FaJevXakxQuTu7XtPOerPyT06XWchJMQgiBEQaNkuZtFE+ersXWUakrChxXox3SvEUB6DIk99zfdzdpn+eHPsrs9v25elLztfp/28gsf6xufBP2fwgP67x4/ePfheqfa30csw7957zwntuqnPK3pRg3HrLuv8fmX3PsEbPnrMS4fuld5EwK5B459qmASClu9qVQlvbtywQDqUb3SQruxtX0ALCCRStnBKCY2hOWUifZ+5s9lD8N9ifNCKK1m+wro8AFEhllqK5VcErFvFNM8IKSPEiMYFta5Ytw2n06kruHVdTSB7cDrBS/N748jWGNyWDlO02rrbG2M0xaPstpi0VlgISeMgVTHjgAqqjCCqOFurar+JJhYvy4YpBcwxGsas1mYko8oGLbmk7KIBQ+rOZ7OgqNebc8HdTIEIW9meoBsr51FbkA1SCMYoA/QU2rFX4zmlNAQrugqokhqtKqxeIsgEdjMGnleL03lUQknsgkXzf8TOP2JsevxLqFCvydlhgG7tYM0UfSPrm7V6PE2LhTYxRewUfZNo93f3YNIqINsmoxUJlHHFZKXATDloVQ8a1VVYkHKCVzJoVreRm/TKBxrLCPA2HhoTysM4asPrUSfAvaaClKPFspJ5+xGBUm/jASgphhAgQp2MAKjV7aW2APQYhhpboRsiOq/vj//4HghBrDnoqEah+XT6/DutvhaNDQdCoIaNBWWr2M4L1mPCtha00gxes3O2ZvvAbRg18MRLAoWRI9ap+GZg9WveGT97oe9/35enet+9KqQV3tEjaih1lQ7AY7C0+6wpPWC8t/u+PqNwacjslPLeEvVrSzQ8OD2uF5ruJwHQuvGRwlAyBEIkrdTBpCWf9O+sFHlLrGxVc9yENZc1JYUbGwhv1wUSI1Ic8eGRgYZ+vSxK1xdTYCyiXnXZemrBNE04nxfkacbp6grN6rjiLypUWJYVxRI6o2HgwLC0YtD8hlILzucHxJRxmBKmFHC8OmpbEeiDDUEtcbLClIEEOZL20DHR5bRlEWUKKrQRcMgZLRJqC6hBE2mnGJADYW2CYNXLIVVZZiFiSsD6MDoDT3nGZIoY4oVYBXMOIE8QbQ0Iew9JSxBpa3ONMcieGOEeHi4htMu4gPQfgRM0FN7slia3nYMk1ubDv+8MNcBjVEADKHWU2612P55dkZ29dSv7HYhG3PPbQ0Lm0ZB6y4zak1OdYabxmYxDMCqxKSkyz7uZp+lV5YUI7ArWmVlBe4UlIpAQKAUr92SeOpGxMFcEUbp4Iu0DB/fS3JKn0BNh3TvukQsRNBrw3mhLogVhs5XhCjEhUkAjFfJidelYsIsVkFaEseMHAVIYe4ItXaHVitaK7hHbK2LSWVwSAqbE3SZQSj+T1n+Er41mSbh9TwS0oi0uUgSoiSW/AtIArs3qDlalyhNpjI8Unoq9iSlZestQNvt0h28yfhGM+J4PXrj64zuuluAarssAtxAF717Tu2t5xNj2Hpefcni4DSLe8sgT0l3u4J3rd5KTG94eix1GqVXNFDUqxzX45/Vzij6IGeHN6nWGfp36y1cn7dbxQAxg8c75eIXnLz6GALi+ucHhdNIqRmHAte+PJ/5y44NWXBCNA3m7DwoRLIQ5J1v0rHlLKQASMR/njv3GaKRuEUQSTIkgMSEgAVz0OYRRBRzQWoXNoL8YNEGYQCDW+mvR4DCthq2YfSSFRDxmJbWCg8IMdStgLpDozdqUzYVq1GMk0z8uUDWorxa8C3vqbb97byhC30iPN7kKU3+9h1m8LO3wVJwEIsxKc+8QIMxj8pI05vHtoKkYPKANS+kZNfQGuwodelHKu/3JrdELwbV/jx79oJ/Xpspgw2DgzKilGII2bFFmlMYNXc+nENCawV2uNAGAghkp+kwBK/otmjeEFBCEzHgCumDbxRXcoCBQjwvC9H+kQW9WYgUAEtQakIzwE01hkJhA96okAuzrehixU6/d4pdkXrBW6AcqAqRpKbJI7iHD9Wj3AZhY4SHzNDSZlazYsgk+GaaIV5dHtZhfTyymXrKsuyW2hiNZ0WVUkOUa4VFR2L5GfY4uYMG9EJdHv81Tse8/VmDvjoARUx17QzAgPvT9Yp/fIx/9e49fm1/lhTCHa3b5Pc/PElGCk3/icdxy9x19ViYHHnuR++/Y83UDCrsj7BmXCl+rl5362ujBA/iB/Lxq9Nh7pISpJppcfH19DYSAw/FkjMIRQwTelU3fZHzQikstYmBKAVNWq5SFcJyzsgdZFVSKEVMKuL46armjWlG4Qar2f0oQHNMMImAOE+7enkEByCljnrVmmgDGpNMEW5UIar2UbQWIQcyI0hABJBJkYjQwknkxRGyV5BkZGeuygtsGThqAjdZioZilrB2CGRW1M/8cPlGnwIQw6wadsimmQCOXxdfyDjlRA9oVm8W2xDcNX/wIa7keEoW6aGchemAYAHoHYovf9SaZJABbKSNPpLYr0c3Mu1YaAx7x3w616b8xKLw7xaxworPFAARBYFj+nnm7abRSccEhrDFEMiNFsvZvUmhNYRVtmaFxATVEVLA0NFQ0cC1AIlAkRNox3mQoz+BBf1+3+8CLwAoGq9Zww4MIICElLQT17okEjaCluci/A7TdXIT+TAYi4LBgI0Jt0A7XBoEmUkXkMZS9wGzCALGJKoFEgInAROqbO8MVeyVNqFVZtEEzza2Qc+zKiwQIohB4DIQcozYDZU1slc6Ew4WQ9bVyqaAeK67HwnsQMH4Zr6sbVP3futdlty59rvvC3Cm29ykPj6Xr+vet5gbg7lq60hZIcM+dLfXF/r4zMnsVfCLIo1zH/X12o0jexwod97OHkn3vaVJygyBauapLQeJmpEcpGiv0nS3VJMRoVTQS9uSXP+34oBXXzXHGFASv3rzEnVmiFCI+koY8HTDFhKvThPvzGW/e3uEQDfcvBWVbNEYlgpQCMJmFX1bcvfwcIRCOhyOy3FjzxYC6bZCi8J7Xh+NSsd7dYW/ERMqIkZFiwoSCRgWBKghaUaJBIFMEbwWtbaBmVrURK9q2acHZSKAIbedjPW2q5VY4/BVciJFbQAGCxwvjsaXp/94pKTA6VCgCWBkjjVVVLawL2mdXqfK0Y7LRwZlV4E0xWyPcsFOEroHYvI9LWvOAMgMer233LgBCqwwxIobqQgJ57pKV51EygBomGotjbQoJh0+qUrahjUNjImRKWB8WUNO0gEBJ/QUhhMoITStWAFC2XCtY71+D5AjwjAyGuIIEQRuGKuvK+0S5pWoiHA0CYnafVWtoQpVzQtWcLNGEcWZj4aH1hFedG22qmGLa5WsBDYKEaDmFAo2JNDTeEKRYk0c13ARirDGY5yV2dcWeM6FZZwW1Dlih4AB7lq0LNSXE6Z1yU++VSOHzKQQkECIE0Sp/EBGkMVop2JZV75M0LuS5ZH8a6/yXV1oyYNJHXtM7O8oWpMbcTLW/BxrU4bmLjirI/kDDhhHu3hV7PNo9zV4Z0BUR+u65SFDenXc0x22u4Xps0hUVzBvf13h0SBZ2HhElZui4jDkTtMKME9vYIN7j6YRPvvMZUspa7cRgQa8/+m0g3/34oBVXzhHzlHB1PIBisooGCc+urxBSQm2MiKYCp66IaIhRMIWA43SAB15TIBwOWR9YYxyz5s4c54DrQ7KisAEJjBKMai4BKQXUECDFKzfooslTwJw19weVUUm9LYBxmrXl9c3phHo6opaAELT4rvcXYvPqGISwo/NeWEswwW810kD+N+oLHICxCQnavA9WvUH6xvPfsIKsELWWvV0IuA2tIdy9NYcVnb4orOVmfOOpgCMgDPgDsPPEYAxJz29znNyV1vDqdPfae3ZXIydHW6Yo1X7Q5BV2tIoAop5KtMoOIQSg1l5bUL1JgW0rRGKLtwxvQ8xD8CrYABDMi55IkEmQ+vdGySW9HvV8hNDb6KArNsBTYVickeqEBJ0LNV7GDDFpGoe4wc8KNcYQkNPoiq3GBEbR5SBoRuJhNEgQhKjv54hRd0/Grwbq7XEiBa3dKEAjnVslWFLHnL2zcEoRYG9Aamxag2KDW/m+nkQrzzQ7hpfw0vgtEKP2EXMo85uOdxTQnwQV/u8K0uFhjX+7PzqQkHe0XD//e07p+Ozu/e4h2RGH4hSLWZsCs++LsHpcexDVvqMVNcb1N2Ez8BU6NgBB479BjxGiPt/KjGhsQ39kj5+BG9G9koolIh+PJzx//kLbH+UJg2SlHACikZ/4bcYHrbimFHCcM26vrzDNs5YfSQnXNzdgAc7LWS1qEswRmJOWTApG73YeQyTN4q6lQCrh+pARU8DplHFzylYTkDAFwZa0cjhEIciagMDzKMUkgpgDcg6IgSBVUIOAguL2ac7IKeP6eEQ5nVA2hblSjIgOYzFDrIKDW0mdYNBhIa+ibiw5/ePOettvAIMrOlThVv1QVpc/3C1rcjhNHKIYVvlAlUSvuVuM7mERhHupj51i1OuH56PsIBc7oCkcV1p7hbyDFI2U4YV4NZnSjYhgeXsEULPSXFaNgEUVLTe9R4s/BmEkAiRC2VQGU4odTZWSWqktaNrDaUqYsiqNKapD5sorJrNmO/wXdgnBZHJIendmljG3IOrKlswT19hS6FC1P6rUYCWaoiq0ps++ibHI7HTFMDoODEoKNWt3b5vP3TNVf4vh9QJTTAiFUcGodq393gIZ1KctbHKcIEFArMQNIYVNUwyqSGHQVyNIcNasPn+PPTqBx70LcSPpv8H4dlDV+77jD8ve6y/ff517dHEYoK4U9seX/t6AIXUhdoPx4pqow5n7U4+5G4Pdq6Rg8SiPT1pRYQEoNH3PvTU7VYcV+/3oeUcenxmOIMzzATc3XmXmsuyWt9bp1X6+xfigFddpTnjx7AYfv3iBq5trrTZslb/XteDlK3WXn129QP7hZ7i+vrL28Q05khYgNZq4Utorrifg9qAJtfM84/p40liJAGUpWEtFreZdBGv9/ckLSBDdvLWBjSEFCN6EDZFXFCvYKlErbxynGeXqCjVHQKpCRNyARsjR8mBAWkW8CZhNcbnAEnPpQVZiyT2hdxeDb/zhJ5niatWgQPOumnoRpj3RiQ16FFxsAWcXmZXsSltMAju93ks3aezCrFMWwz+1xJEQm+IbMIge+/H92MI3Q2JAmdxTEzR/yusBKo2fZTNmHrnLqcqblZzgJBoC4fbqAEFASjMI2glArIVM6EVJVXkwCT755KZXXNiXFyIia9ypyZla1X/0jHImJnuzTBPYcEVjc+cONQC0Fgz+iT1Wx6yU9T3cowpgVF9ww6ZGoFZgixnM3hQzvWP5Djp9RK2xw0vrSqg1ohSryrGrEemtWlYCjlb1ew1ADYBIAlHDaZoxWSUO3la0HMGUzKf2Rp2kpCca1f73sdpByf42ymdn9LxXedF7P6cvHQqki/f33/yTr8iNrsvzdM6eeN6VGYj9c49ZvBj6cnetnku59yr3KM374l8qP1o39i4LC7OlU7R+LPfKvcRT6BVTIhASQPqbQNYHMcE7Qag80M4OAume/LcdH7TiikFTast6xh0XgAhraZiPB4hoTtfxeLJcGALairKs2LYVi5U3kaZt7+cpQ4SxlRW8bag1gNqGh7oBFnOpW8FaiiY2V7aqFAmnw0lbljNDajXIVxdd4IIkDQJVdJUbiAO4Fi/IDhHB+f4BORJknrqPAQC1GvNNvJioZtQ7ABgswEVGgw6BAAkAWfkm83DcReo5/oIBD3bihFPhh8Wn/iDbuczn2W8C9xKYRz00qBKHaDRHhIy84dLH6puRVVu3hOC2V37dxxq5UHpqjV8FUqE7z7DE1orWgFIaWhMEGjE7QYEQa+2+YLEiAClFHA8zTqcj5sMRLFoyS+OXGWCrPl8aWrWSUlDhwxBIANJpVmuXAGHN5WO3TrnA2Z/N2sjsFZd6XCOx1xW7WrIa53AoRmTUWRS3koEeyyP30MKgJwtzl3FE1Pu4cS2q8IkQuIBbHA8TLpRJ10Ot0KToCuKKKE3XEQEheNK6vm4CSxvQJTKliCkcoKBjQwoErg3r+Yz7u3vMUwRPCYeJULbV8gD3BWa9UobFUXzQxeX+UuNPUlhdCYXdazuRxnf2XtGFxnjPsfTCLs4ie8VCfc7g4J6l46hxZIQgCt1DI7uADpbvYQ+r7xgoagy3w/IwA9FvzF09Wx9WU5DC6ByhzxnaGsdSbGLMth7HDQ7vaZCqgnlcfR5CxBQ0zNK7cpPASUgS/gI3ktRSSg3CpbeduD+fUbZZy8UIcJwTpDbUtqEV4Hw+Y10WkDTUUrRB37ZgnicEAppUDSiHAK4RUhbAxH0tVuOuMlrR9gEpJkjdEKz9hPaY8sZ6BNQV4A0kFUTRKn41gCsiadyhCWM5nzHngICGQybrjeQlcGCCgiCiLv5QRmNTOLNrT6LQpeTic/ytK6B9rKvDdtwtSNp9dzfzQwB4iQ6RDikSBOjFU1XZSBsKUS9dN4fwWMSqR8e16H7ZscqM8tsaaxX0GJHzBCL1tlrdtM6azY2gQagB1CCBETmBoucDabX7w2HC6XjQeoYS0YweFShCWBPNSVi90d09ExQKjWTtWqxj8la27iHEFPuU1lZ7Eir6fema8YB1V9gWB2pcOvqrMFztKQdOChDzuGDCztlbrvbF5Vwwj5+N4CPaTkYCdavYn4/CPeO6AQHXOJSmyE5wWfxRWKHWAICrGjqkxCe/BxJBLRvW5Yzzwz2kRQhnnJcANiKNdzzQjs3BEuJdUHa3C5cIwCNltEfQYEL/kcIaiczj4wE7/SiPV71bI493gik1oh3Lb8Rjd5bDMAj6MSyRgYIafubVDJTBvW+y0w/8w39JXy9qCNrF2JsmBTwEYfcN/3zQqixdqWMXEyOr3JLSuGa/B7+mR1AheR80OOFjUOBBwwP0+/nTsAs/aMV1//prXB8TpmlCTAGlAQ/nBeeHe8veLqjba22bXbShnPdumqz+W60F9/d3mPNkE8+YptyhCqcTAzrRbn23WvV102ByyoMOfJgypmlCSgm1FWzbpvkTKSPno3XvXRFjRQwFjBX3968QaQXXGXSaLf5AOB1muy69hhi1b1Uza1p7CEWErC0HlMEG/Q2YCrtIE7Qtv7POTFE8zhHx4Yu920e7BbeH9pwcQmJssqC+ISRY3TT9oJIy9Uqkab5Qa8aUM6EvILtggXgJJlNI27YBWevQzfMRtVZsmxYnXpcF27ahlIomFUSCOBHmOmmV6nwwj0iQc8TV9QG3z65xfXUDIOD+YUEtCo+0WsFUwHxGqSukKswMVjo8E3Cub7A1bXe+nhcs69L7WmkSnlbR2GoZTQGDGhdwne+VMzC8o4H/j2czKrkMz6A1uYBznIU3aOTU17IPZvfgrXJJ74YlADQ26+ZKraX/XRWKCaSAUTXFr9yEfd3UyIgxIk0Jnm5RyoqHh4JIK16eCMdDxmGeQFIsNqgtXpJ1702J7DwCmFAO5OJVdj99NQ6FYZJ9p+4uvKl3eYK4rEFErizc7emaYrxvZxCDYgd1Z38cGcprZxA4GgFj6zlVXSW8d1w24U69WV43WIYyMaXpiqNrS9MrwaBG9pxEf+4W39wxDCujx7bEQi5pmtTA7NLDDux5ifqALE3B2i5RQIb0bski6F3LdQLepe5/0/FBK64QC7btLYgyGqs1fpi1izFzw5wbAt4gREGKOlE5OesNkKx5P9Ph2KEAEULjxTzqYDitQVsC5GQBTw5K8RIBS1JiBQCAjD3FCFTAseGUCALrm0QrKFaknHA6BsRwQg7XuDkBxwNjnhghVrPolUji+RvS8znI9kEwb0MA1iRrWFzGIbxkcIcrp+jrPQS7IoMPyQ5h0pSFLGdHczOUbJCwlcWEHUFa60U2c85Y6hkEXOTrqKUVtOUJ1NMYdRTJOh8HTDlgLZvCQyGimKUfYPGVUow5GJWtSQ3rtmBrqz4DZqSZcIwZ0yGoIrTyWLKrn1jbilIbYiLcPrvWJoiRUNui1SmSwqW1FjAVUGTMByClgFYFrUJlCGkx4w0LJDBCbMhRMJ+yCSX01hTapdjtaGVrdRIEwWKCKjCUXW605Fa7J6YliyzVoZv5bndoCScnCPWYR4wIO3PFrycYmcIhPyLvaOtrTqFI9cS8p5dZ9DCmIXmejzIfw669PUkGBa35mZIqOSJlFU5TwjxlXF8dkZL9+5TgEDYBCFG7EiiLNSFY+S1Y5RIKSkLhpmu3e6w2N+SYgugesd1jKQTu9b+HzICh3PrTEumGKwwF8aNEXYjwxIH9wdiP7XIhRsScwHWUCkN/m1Twi163iCIKqoeMtm4hAY91C4BgBW91znQ+9upTE8BJicEdTQG0Mod+p7XSK8rwVhFSwuF0Bby5QxHB1hhVfA2FXkVlzJDerYimMLDh5MwVpTJCTJinSQ0xGiiAztm3Hx+04rq5PuLqNONwnKwYLNBkRuPSg96diNBxZbdyh7fggXEXELVuIEsmzReKS7rSg6gN4tXm94/SHAU91y4vRxubiG7AnLTielI22OEYME0BOWsejCZfdue9u9ajEoBGn6wQlSlTg9ys5YD0mJJpsgZle7kQ7bT3sagv4lewbeAWliU8e+4N14GeaKKidCuV+kQL2MpH6SazmIHHecjhELXKveq9/9vf7xR+aC0GEc3wB3OXFyEIkExgN4M8BN06FDirSpBSxOmkrcSdwRZiwuGo6QjqtZVRtcDiV61WI5SoMCzUUMXJFQ3N4obOHnQ2o1vbEEFp7WKee2sZbgYLW/233jNJRiX3R8/IBbbDkI0dfiLrWO3eqhiTy5s9ajyJzLBwLSieZA5Y9W9/FDvvxhKLnf6cdsiEenapxyBDHAWIc7S6izliniarwRiRcuxrlFhzNvZwmasKsvJicO+77wcz6rpwdosJ433bi499tf1y9/3dvawLreZWwvCEtVL67jpNE3akrl8/4LlOQq1Po7/vuss3k9DwpMZ1UN+LIg7277zd/bV2j0vVcyBX2n6l0j179vlyhR0iYg6gmEA9tkhj3l3SddjPzyzde9Q5ZS0WLayVcuwSXWkNr/HbjQ9acf3gB9/H82c3OJ5m5JyMNaZB+Z5kCusD5XXOQuwPSRsDevX2AWXV5opLreUhiJ1BZ0tF0CuMu+LyumzGutDNwV5vDFb5AFYtwplUwJwnU2QJOYTdsqzdYtQltttpTIYgeuxHLanWNCajbdq1O6/CHVryh0grIJCoNcrCqlx6kiOZYIZ5TFoHURWAFtRUMUIIrIqFMQQIkXpSqkQFtXpXX1Vs0WrvpZQRkhbqdA/Jt2BvpSCEEIw52GEyKyhK3v9qbAAVtNKNB6KAPM2gFPvcMBFCFEyz4CYmTaMw2CtnY8StqxWVNYEqxgBs1WBNFbDpkC1fzHqa7daRXqsKdxcUur7arr6gKh8vXguM+E4Ko0vBL0qgfXyui4aQO8iw10q0n23bVEG4F4axJ1yJufGlBJXiJ8R+CRIRIkZzSSIvNKwxki7PbaSokPY8z5gMPkopKUtXmgl9gdtL+ozNY2KBsJbxahaM6axW3s9N64K1eGFdm6vWr8fELaFD4ORxKjGfxua2d2joxqPtoZ33pefQPQFR9MJPILRLk8Tld0guvy+mcFksuiuP3kNUz1cEII1mk+1HlxgjXq2EKRMR8AiZGznM3C9AFVgwogcZrD4j5RmqqMxt7s/Zf4yo43EyWzSq74Zy26upnoP4pxgftOK6vn2G0/VJGyJCS42okipgaWgmjHW+I0KySgbWILAZDZm0dq0NQWj2O1jJGVdATXN5fNZ7JbxhhNmiQ3e5fBEJBA0AeekTGousVdEkZVTzEExYkrYq757MbsX3xe6bC6TFU61g6ygT0zrVXD00F/7ollsXjiTmPQEChS7UT2lQ8eQWvFth7sUQiEnr/DVPUo6WCiaowr1PFETnHdQU9uAING0FXmoDR4IQK/vS4iqdmstOORnNASl6WxO3bHfKwqCUbdsQWJMrnYXHLBAEzClZh9dkrWb0p7L+QNC7WpM9cxUqquaXtbpPvytHNTamWr2mkMxYqeYodgkIAGLtTMjPErFuuh7cyxJ/Vr2CPex9hwfDLgZmsUSD90SMBWiJx0utek1BK/y76GPrwCwsPe+PiBBD6se9UFz2f7Z7gAAUpp42ADKaiNjFWrxEkCCIoJAwTTO4bmiNrPeZJskqvBrhpa1YoB5LUMUlpg1ccfl+IB5rwepO2TMhg8PNiCD3BIbS9jCXyM4f4PG3XhkNtk/sh2UHD+436KOZGgR4SyFxLwuq7M3V6miBAL2z8RjGEhQ1FACLezfLo/R0E2ML1zpSTaJVDxIAlRm1CDTsGhXBCLHT3rWgg3d/QDfguyHvr/veu/Sgwv69/8bjg1Zc0zQjpQmwenQuGN1ySJTMA3MIIGJ0h1XMnrpiM6s4AIAGMhziUENG0CuuizPePI4zmDOyw9e9TbY4MxCiVQ+wc+5d65Fi96pgU2duibs9kN2eeHcxjDjWiFt12253C10ImiCTnUD0zcXdutOzqZCM9hOgcQ+1/nxHMWCeq33HN1sgRIzeVG5K005YeJ1Hb5+hlrVab8E+wzKs64siocw9qO65TR1etHvtD8cgjpRyt4ApmMi272lzUUuA3SdRuYAjIFgLnQCAxYLoXcO8Ozy+JoaVaOUA6fCdQ3kRGk9xT4lDG+d2a78rSAN/fErt3hq3/jome05EANigP0JIe+Fkidl2LK1C0i4UV1/PYxbtsqivrb1n4MJUp9QbnmodRe/fRsG8eNI4Mjdva+Pr2yGzvYHk2kv66+5ldW/okeIalwaR4dHsH5WbfsPgkG707D/UtxjGXvK4uG/T/RrvF0GqjHrVM0Hf9+JU94vjk6ZiXARCgR0fuB/Xod5+Xf6Jfjy6OK4zc9kNIN8HppTNUrO/SzdcsHvmXXm5Itv92w/R46y7z+1n/ULhfYvxQSuunDJSypb/4dZ47GVyFJKCsc42EBLcbnaWDIFAAYiUdFNHgNsGEVY2jksNQNvROzsHFuQWAqwIrwsQe2kbWunDAvXqSm9uaWEjE5Cas5IRs0FoO9WhYUyXEOh/BR4tABnWJe0+PtYHDQsegLCnGI/FThgVO3zo503pm+cFY0RJj79p4LixKWhj1VEImFLYXQgZNKnCtwlbeMNrtDF6iR9RNHRAuvrHPa2ezLh0Gdenos/PsK493jOHpBUrxEgoJrFCiKZ8nS6c9EjmZQuxVXoY0KlYIVpbIL2UISTY+gG8JEWzZqGg4o/KPm+Kg7Q+ojePZAZGzo/HMt0oGB7syOmBNie1NRWTkRpMcQZShRhTMAhIFbcTizzVgHsVFD0314ayroBBikMY0YWH0teSxO6dwCjtMWm8WIWcjGC9eWZCnkdkDD0Z77tGUWdMjTPuJx3wPQQWkxyGCKT1tdDhNN8cjqGR76eRL9if27g5rcLSvUfL8YIruD3Z45LR6a8dHd6n9Pu96SlcSZsi2lPy+3Me8am9cuxFwQi6HlmVFO8MUv+s2bdjnvp50fNC1S7wPbffQ7oG3Dhy1eXKScHLQRAafdQuJOk45rccH7Timo/XmA9HzdGyHBcWBeU8UMtNN3fatycRoMGNN4O+LBFPZXaGY+tjdJPEbGeLzQih2ifIEgj7Q330YAgBMWhxUi3/I10QhJT0x8qjjFUNDEtL+nu6L4cNDAC951XwDWgrdKgmdGwDUMvY4UJIX4T7Y+pGCSBkkCT9TdlErSlUO/Z+oSttRAVniskgPYvFscJ+HcLo92KbT0xI26XK7th6+6EbCKOa94j+Xep3AlmDR6UCR0x5AovCUudl1TsPQEqTtpwhLR8V87DcuRSgqTcSQ0TKGULA+e6uC0KisKsLRzo9e0NBAphDF3j+bMPQdspitZqKxfOhgnsxHtuAQsD2fSKFaCs3E45O7lBWqs4VQyiZIiAIJp0xtst0hdhgELIJJSIgMCjHnTAiY5P6v3f3jJFr2BprWkfURphTDKYQNY+RRdPjSgNqIzTW/URuQHEAB1dk9qxZhjzfeUBwpbZTBOZSD2Fp8c/hEblSp92e82c14DDh8d4ITZKxS/e7i/rx3tlHdtHCu2T6fjK9LGVH6nW5J+8K0l6ZYUndSNa6gwQy7zqI1jklagoLc0Mxha4HCSDKCv364w0RMU+273wNh57U5V2/OxljBxXqv4cB3acXXmnGvuOGJPaG9LcfH7Ti+vrlK2zrphuwB4AsziXNmIWjYoHZ66q43BWGKpQQgmK9EdjWDZAGjZ04BZmNXGAJoNANW2vFsnqOiVnqZCyvriPcMhHwLj7E3Iwnpey0rvQCAaIKrpfjkZ1AprEQxiZwBiWD27D5AEHwALUJpzH2Fhu6y9Lx/66UBLpUEoBsvwmEhK4YRaBQonpEYZeR39jIr2RWPcsOjvNFH3Y/BtPtLEHpm9snYMwL/Ln6Fe8EkKI0mhysxmVD6xtUr62xKrWGpUO5A6LV0Uo1b6QhBSCxCm8Lfe8sZLPOIT1Z2I0otyXazoplEKizPwWhseY0BcH9sqlRE5Tx6M+CHcYDOhTndeXY4oVEjMTR6Mu2DoJ0aHAro4NyXxueaG1rwmt5Mgu2rV4YZNQL5g4r3JUBBdUhreq+jE1bdG0EMGu1mgDtlZdTxJSrVgVpViwZFo11L9s8nmYEK/i+svc0pqvz5x7XvuyRygdVerD8QfLCkEZUFFMQbN6rxuVM2Lo3t/tRI9KMCF+jAZ1x6bGrvk+JxtqFs+rGATXm6Qpyx5w0o2PsV4OW+77VfSrmYYmlBYEcElQ6PBt5hYkxTea3uZ7vCjaMfWbVbPbVLZz0o793u6MbCbS7qqHMXHkNY9yNBXzr8UErrp/+9AvcXGvJ/JicMaXVL7zOVq3FKixkLQBk2C6b5UomBE2/gEjQ6gIXyGoNm0JsTniwxU1A44ZtK7bJLRud0OvaiVWI6DYKOT1YQFYbkCAg1jwxEoBSQBD1ODwRVQWyKaC+8PU4A6bRHJEL3QT0jT+ShXdWrG8CGVn74sV7sVMdlOwnAnAKebLrcLhMrXyIaCkZstiEK3xTauzC3MwvZd3ZTw/qy7BSdzi9BuRpCBVypWEfd3jOhLXCIlbqyIQzoxi7NCoRoyn7sq0FsCrb7DCczVOrtW/kGAqiNcYrO3h2zwBUuj731y7sBCoU3NDR+oZm1LBYpQhVCnfnB3gvLS9UqoaZB0t0AtS7YivpNJiWTof3MysxSWNopZZHHoYrAB4KympxttawrWtXGmpc7RSXwY26lyIoKlRYq9en0+ry4Kr1MZkxJcIhJ/CUMc9NW9Ww9KoNJKpDycg+avCMDshDcekDol28a1Qi0RxBfza+HilYWIFdBgBitSchezq8Ki9fUi78fS91uM46ObgHRqQGYkc51XoaXpn99lQZ9PXtOWe8+9zld4bfhf4aovB2J45YLM/3TWNYkwcBoF55NOUuYwp3xuFguXbF5Yqpr5muwXf/1M/0q9tByntR5Pv2T+N4fdCK63f/7/8PXJ2OOB6POJyOmOYJp9OxZ4MDivk3ZtRWUR27NyGiQX79nCo6zQ2KxL2qQIzZEihdWOpiZxA8/uCvXehqVR9TVsETGMd5AJiYZkQS5KjFXW+ujrg+HTHlI1LSElTcGuiRKtLF7Za+BenNLBT77Xk/eoH7Bee0DUJtsvu3XXPUzstwBWLXSUE7KJFMgL0PYmjClCvz3C3cECY9qpXx8c7CADp70b0FsrppEkSp9rukUb9uNmdAgsKGHn68gPBF75U6HqHkhxgj4lFZg60ZRzJOiCkjToRXb+7w9v4Of/zTzyFQZbaVglqH1b73dFynCvRzbPO9b8LnTMi9MquloD4qXNo7zIqyHWF+o8o66sV7s7W30bkYlHenvfvwcwKjRbpfu59TPz9ozU52cWsaNqVeLy8EhXt9iuGic2dRj4K72giVRdMHemcBYdT1DBL1tD796Dk+fnGL25srzPNsEIgbaCpom+w9LvMIe9I0DYkLaI6iz/XuteqF4Q2qcra9S9TjsHrQrLFL00CuHLgrSOw8kKDXbGkjWlosdLq4ozQ9HYG0M3pfrGZAuoevNLHhjUhPULBz9bkfXtZQXrb0JXTZpm5kU2avoMculYE46PmtssXpGaW0cTwxj9Mpk8FRGVyMx+kZ+/GLCBgEM9Df+61fbnzQiuv//f/995aZr9XcY0rIVv6p5w9IF4FDkEDzV6J5BSyCbV21M3IpmFJUpZUCpmm2Ek1hB3+5sDUavgsR7IWxLdK+VvV6tLWDVubOkTClgNOc8elHz/DJi2eoz28xxQiaMlIMcMhwRHD0WCOl0BY6MUL0GJA7HLRbVH49ZgEJdbaemf+6JcQ9n9iVl24TFUoCr6YQAFLPS70tVaYudAFn2wVQbOpJmMfl7eDp4vp3XhcCNPJiG5YHy0mVA6BKyUSooD+TcchhWLTGSDmbNwmUUrXkkRAoJJyXDV99/RL/4fd+H6/f3OO8rDifN6ylmKGp66tfQ6kqVCF9/eiPew3jN7qXK31tNIfjTCl40ngpRWFLG11xJa3JGMxMHc34MNal2VS1Ky6DuXfeH+x6NQlZc9dUKVm+lx/EV4zs4Bwxg8kta1tl5FAmKZNX6dQJMO8m6gMEuKIs90iBcJwSfu0Hv4Lle5+hfvoxPnr2TKtxCMGrXqhn6sbLUFwUbN1YknJHInbKitvwijre6UcV6usDljJBLEa28TXn10IAXMrDFJfPj3lFNKj7Vm0aHl6wEoQ6lzRic11gy9ijYq/1w6ETpPbRUFVHOwjR7ks9d5tzcbNWwCGiUUWq2Qg9mvwcrHDxYLU6ujKMkWh5limli+fvTGlfJi7eRJSJ2UWdy0O417WTSxjf/bbjg1ZcP/viKwQis2B1JkPKPS7k0JTDGm2sIqubRV0YbtumXlmpxlaMyDlhnuYeLA+dwDE2qoh6ACml/iSG0jSWl8dtAjBPGcm6HZ8OE06HCTdXB8w54TBNOM0HLS2UBDG4ffv4IVuQ9p0ZsZiRsC1Cs5zh9wr0XJGdFeebJnTB4Tlb43NqwRFACWq5EoBkeW7aGgZducnue9zvH7bwvYTvgFtGPEstXDcAhhDpCm4Hb/gEqCzyeAs6hKOK0+JBRCCKKpZqg0M3LMC2VTw8LHj9+g4/+/mXePv2Hm/vz7g/nxXWg1Lo/fytaEFnhvZx05iqX4x7W2yyhTr0lJJWkujXAxX6tWnty3Xb0JolYROhEbrHNU0THBcdSshLIIWdYjEh77NveVmtti4EKQRM+dC9JC3Jo8fpUKOtG/d6HalorB5jjLGfMzmMaQKc0mSJzQFzTiBhSNtQ1wfkGHCaMq7mA26ur3B7cwNmT/RH99B9lfs+6jdk7DoRE+suUPeeTFeuY4HrEh8Cdxx491ouz6VGi/QYF3vM0jekQY0eI3Pp3NWkKX79vF/f2LdeGJccEvcLNqay75+h0Oz7/VapK+AQoxYNsFCGlzBQuDShGfXdux77xXYDXAwZcoMjpkc1L4dc28/xO4rIp3i39vdelxsPHuL4tuODVlxCCRQjSl1wPi9ojRFj6VZwNeu1kzNEkKfJCpEC5+Ue26YVEkKMFmuJWErDlCNmSWiIJohMqOzgGQb66+fPjwDQz+lQ0f39PeZZK3vMh4StFBBpp9vD4Yg8n3C6vkVMM4gyQJqQuV8wvfOu7Kqtkdumg3rr9S7Fun6HEJCTehpawUJbftjXEfMBZK0uFIYLICTtRdUrLmgLeGFtGhjTUcsecUMMGVNOADOW8z1CyGgkRoiZoL2yZGxci9epJa0bdzApI4BmcZGGw+GEmDKAgG0rSKlBpKBamw0XD1rVA50I0juxmqEAgracaWoB55yheiuChbC1hlIZgoSPP/0MGydQfoONv8br+wXnpWJbC/bQWl9/AIQq1nUFM2Oe9bnVWnE+n5FSwjzPOBwOmgJQyfJhrbhpCKAYwXXFVhvOi66dlNTa1XQBZdcFjl0hLssC77+VUgJz7VU7jsejFcHV61jX0uO9I8YJHGaD/kTw/JmWTAMBb97c9zV9PB7UOyUt3gsA56Xg4eGMjz/+GFvZUGvD6eT90QTLVoCouW55mnBzc631V1sBjleI0pCD4O5hASghT9qCSD1iQStatDo6VE+jIGuIBHICkrBlIZjSigo1iDXKdCUzTL4RjyNSzxBhL1gDUswIMaMW87KAXlBYeszHPc1gik2NvRCSsnkdaXF/g6wEmRm++yLJyYoLtNYgmxZu9lBSNE+nVSUVkaE0hNBzGgVAitr0FsbYZBarOgM7d0KcJkRW46VWjck7gSWmCY5GpTSp3GxVC+Sace/rgRxa7dCryjnv3K5rrqEJI02TVejYqbadxenxt287PmjF9T//zd/E6XRCa4x1XXvsoDbr3skNIWgZpZSytnPQ9Y1SVizLGdX6JF1dX2OaZkx5BkSD4TlPSCFq2wrWyuDeldaD6o0ZZdtw++wZWFgVk3lkIMK2rqNidxSIbGitoK4PuD5OOEwJpzkhZ0KaZoSU0ViwrRsaCQ4HtfT3ZqAHmV2YurWma6kni0CgDL64hxccYPGkRVJrDUGVCEVvAW6COhFSr+igyhHB2Eoi8LJ7TQJAESFkEAKqW3ggTaz29gkESIgW71KqbaBoFp6XPVKPzS1WPW/Uyg9Rel0830gDz3JvTcx6N4UfAiozggBCQXPpIGq5hwmnq1t8+klAzCd87wf/Hc5LwevXd/jq5Uss64Z1K/AeYpoHlXr86KuXX/Wk6MPxgMOsngwLY8oT8pSRc4awqFdfK1JKvXI2Bep/r6X2eFbKGV+/egmvLahVMVpXXl5iKZjXv60rlmXBNI826V5v0fdFNLJGCAFlq13wXh2PiBYXXrcV0YquHuZZQxysymSe554TeXt7qy2C1hWHw8EaB0Y0BjYZ6Qunw4wIBklFW+6RgyCRIKHi5uYGMUZVxJg0n6zBkGeD4WmU0Uq6ktGzD8V3hoxlv4u5DBvjEvJ0z8AhZv2sEU6M4AXz4mOMVhWJbc/vFJfFhN0A0SwCAiSAg3q20QziGCNSTKO5J4YHE4ImYWej7nuLIkBhPYgZZDHoDHg9TOjfAWWqiudxGSu5k5HMg4spYwK6YePrVgBIs9w6ASIScozIISKFAGnKfqYOS4/57CES88BYGOIl56LlAu4UVCBnK++fzzcfH7Ti+iv/h/8Tnj17BgrxouVDbSOQnrJBLKAOGbAwluWMdV3ArPGPm5tr5GlGzhNaVUs+xqTRFmfXsGjZqBh7Xphb19fX12itYdnWbqG41etkEZEKlhW1rlgf3iCCEdEQ0UBUFR4whVJqRQNjnjMY3APcztxRBG3H19kvJNPOPSbjkMou4EzQEk0+N8oC9PIx6Bs3GFOyL9BoVCk0zcexvCAypYVIELsPKKrTg/fqDVnZY6a+qYLQgFN7XAbWfI7Gwif/nOU++RzsJ+GdUltQViEr/T4YY6oZa5MISHnC6foGcb5CnI5gJry5P+P1mzusm/Zg4+a5d65Y1Fr+/MvP9XkHjYfOhxnJYJaUk7acCeobn89nbFvBNE/IKfe/a2xLN3nOquhSSvjy668MKgyd7i4iGpsN/oylK791WTuJQ6Bx21Kqeiek5cO8ivvbt/cq/EK0v2tCtbIm9ZrzNCHYuZfzGVdXV8ai3XA6nvBwPmNZFszzjHmetcI4CEUItTFK2SxVnRGkYr17iSkScgDa8hYpT2AWlK2gRiMGPbbK2UpQiYBbX/oAPapusScJCHZQ+ljxF97X/tUjT9qV07uvMaC/gQnaOpOubPfUif32pN3n9ZI9XQK9nmUvk+TrnlwZOdPX17hDgbRLzEaHDr3/XScM+d3SQA7ckNwrFv27DMIN0c4Y2CshI4m498esRqzn0l48D3nPHO/37TcfH7Ti+mu/+X/Bp59+iuPxClrKyVox9GcYMR0POJ8X3L29x+FwUDkrjMWKqIoIptnguagC9+5uNSYRAT2xU+2EaIrLmVylFNzf3+N4PGLbNjw8PKh1aDXwRu4DY1keEFNDqQvu3nyN7f4OZb1HOd+BywPE84tYjEDQcGoNDHNr2CtokNG+pccSehUAXP7u5JQ+JwqLAIRam5WZgkGDTp8VjZNF9OO7NZpSAgct0cNFUw1ADI6MKVdw1IaAobexHyQCCkoqoQYADR5IJxo0aJNKhsmr98W825eIiMFagu97VnVk1QsF2zu2qZg1rsUakjOPnEHEiCnjdHXA8+M1vvPZryDPJzysG85LRakNtVSU5vl7oXtMRMDLV1/vDBP0orHTNClkbQoH0CampRQcDgeD3git1YsOxt7HLYSAN3dvu7fuRX+JCKfTFcg8oVJKX2fMPBSXDA9P8+pCPy4R4YuffwURTT4Vr0+I0X3YR55nNG54eHgYxplBlcuyYN22DonGGFFFEKYDamPcPdyjns/KnkXD6y9+ikMOmCPh/tXnCCTYloJl2TDHoHsr7AxMe/De5aFB0DkkJPA4bI/riWiRZ//PkQnydT+s/f0gjyfJOJejE421moRX6ddTqREE88T64uvePwOknppWSPd14M0ylaihoYdRrqmHB0LsIYF9KIAQPKcdYqCpCEAsYENL97uADR50GJlFev5qT63Zwcd9PmD60ue6byZgfNiOwXpMJgBWSNuf3YXyIjcS3pVS32Z80IrrdPMMh6tbhJQ686wZTKVFVBktMs6b/sSD9SciAaJgSgrrpBxRSkFZK8pWEOMMBF20jYvSTKFJxapYTLBCwExI0xExHaAdCzY0rlovrXVjA8yw2EqAcEJIR4RcQGUDS0ArjFKVNo5gkJsY8YS1yjNgeT4gJTuR5q+EYJU8OkeFxkKBxu1gqBp35aT5S9EKDsedYwNAob0QIQhoIljPK1ptOF2dOizgsTEwo7SGtVTUukFaRQgnFUJhwCouDEKcEEmVplbDMNp9SN2i9ULI+sMIIXVcXqucqMd70XDRSzDBYwAaD/FYG5zZFSKYGwozZFnROEICYaKM81qx8YrzVrGuVWHnBpQilqxcAWjfsBADpvkKacqAMM73D7hfFsQQcDwwmhgFvhQE78XEAkS2TsmMtWzadJNIG/ctpSuhmLRSCQQ4PxSUWhBDwOmk8BG3irIZ5VrESmfp3AQi5BRAGFBbq0AzTC2nY4c91/PS86tymrWSf2OUWiBRi0JP0xGgiK0U3D+sVigZoKDFcrcqQK04bxvySdmmLAlM0WIdCaUxpkigpOQQ2R5Qywbes31Bii4AusYtZy0AFqdWIkyMv1jsDaKO98navzksf88xcshQ42a1LyeV054cfHkcJ9iYlMa+nJTnfkpHSZTaT1pjbAcg7D05V7KDldsxzYvPuocojqjrvy3O66XiCswYFAY1hfuasKVc6Fy64lT5NJjRoNGOx6Fr2c1b79zQKwtpRw6Yp+jx8b2P+8hx/VOPD1pxvbl/AMXX3RlRoz1aDon+e54PqLWhlAo8rN3yWdYzpmlCzgnTlLGsC0ot2NYN80FhisbKIHPtE0JAaCO/ogdaQeZJsQrDJlCBqYqHjHnHJshaq5pcGZLWwwtKFNBmgsZGCgRihUp0Y4gZdNS9IMHI5QmWf6LBYysY7NCa/VsCwI0uLSEfu0XnjeXc7GrcTJhVw+CDsgND6E0SkwwYqokqxWAwoKMb3mYkRIUmFSpkU1b7FvLq2bgH6IFtVVxqDQ8ydMBF/yZS+G2oYdsxDp0yLAndPC9SoSJmOa6lgipwv2x4WDaUKgo9V1bL0i1U0vylKUdMsxIXlocz1rIhWs1DIfRu2VElIyCCragxwsxYygZiS88wweZduo+HI1pT7/3+/oytbIgxYp4XgKxqy3kBs9V/bIytaMyWQCi1dAh9bwEzM7alahw3JSzrqiQAEYgEa0GjTFsWa+8OQFCxrAXLuqG0pqhCTKitIhrhZisMXgsQNN4lnsxhuXy1NtQI5JTAnBC99LljZuY9+ZPrveSgMBqLeWQsnSXocVD4mt8prlG1bUCCzmTtsNlYJUNBeHoI2TYQjzs5O08gwxYzL1D3bXCWlJ1LTAGJeAL12Jsg6muXBX1fevHlPg9jo/b77VfuNQx9D0M96RhtwSclhQSPH/s1B41Z6x7T2JpLj0FwGqlFEE376N7rTpn2uFW0xqN+H/s53SE/vre/7figFdfnX3yFN3cPWJfS2XIxZXjcBSDk+Wj5CBlrFSzLgmVZcH++w+nqiMNhxul0wLIs6nWVgsNJLYrWlKHjZAunvJNtMLYqAzklCBG2UlBq08CkwV3bthn8okLvvK1oTUtKRURQyAhxguxKEInBAkRkWLVW1xDbFMqA9OZ7Q3F1KmxwxaUxmdGGBCbDDfbaxYxot+li1vkypBTezruJCdiYTImK0pgh4EjYphXaiLOhWqnHIABCLwEKilEbK/pm9mofPBibRFYFwDeDaDsGWDEg2S16tvvQ3fzOFgcQEILHusxLbGwtbQAJWhxYoAps2wqaNLx5+4DXd2dsRQ2SfSuXtquPCC44HGfEQChbwVaLMf2gHW/ZgtXRBbOVj6rKBNxKsSB7QGiMsm5Y1xXbtuH6Wr3YlBLu7u61PUsIiElhyFqrrltLLr2Mp2rsrNbBONwnRteFO6Q5+o4BxbwcTxFpzeDxEBAqY1k2nBdNpJ5ntda3rSBG9UAqC8paQIFt3UcImrW8ERQ0FGIcpwmghgjelQQaBZfhz9VcH8cO+hNmwLNYRZS6HzwetF8DZmToPvFE49A99ou4S19/ZjjZyaLnB9qJPZG3l/20paEGmRG3LGYIoCsuZumxb4dsEUYtReKRnkM7gkZP3bjwvshII+7VDSahXot6fWSgYq/27xvRUx7tfgVqUGpMXJVYCKNcE8G8zxFzQC+7tlNcF50bHg+5fPkXVnHdLyvWBtzf36vXExOurpSRFYxsEOejFS5NkJhQsWFjQaOAOB2RD0fEaUZoQKKMkBlVrLkiCcg6tqaUMOfZ675YCgd3BRlSQBKPUWg7e2HG/f0dSiHfeVjWglI3cF2RA0NqAwuphxOUSdcqA62BWsN5K4BoAu80qVCKpry4jYRQ6TRdY451R31s2hAC2DxBYfUOSczCQgRC0vbLgVSgi5IYPLYyTQdM0wEpqAhpjZFTQgy6+Lmp4RCDztdI3L5Moe55KKIBXa2xV5ByNOETwEawUSt0z4pE39wOkdEuz2UY7IOh6BR5gaC2hm3dUJjQEDHNk0LNISPFjJvbFwAlFE64e9Amnk1YacdRCyHPNMovlfKAq6sT5knf94alnn/VvdudXq21okZVKNPEnakFAtawIsSMlAuePXuOw+FgCuagzR8BTNMBABBjRkoTDoe5My0BrwJTASy6B+JgIeokEZb7BSFoftrhoPNFBlc6GeJ4AvKk8bOtVBzmE3KeMc1HlFKM/h/x+ec/69+9vjqBrXtuDAF1O6NtC0rZcDicgHLGtm7IV9eICYhiZaHccRiP0lduXznOpnOvpFkl/NHEkrrS3v8A7onBEAVFIfY+uceKBuQs/XkxdmWw/Byw2qWkCzpEo8djeFnjOsXWKfr3fXSyVb8WXW+8aTdwbU0zKqNoBoDAFWFrVZublhXHg8ZHc4qorSj82xRapQCkFJBz7kaOGrkKVTEzWhipPLVWWO06THWywnRD94xO5SZ/7Df1Kjq/ePwp9FUfH7Ti2raCysDDeTF3N6FxRogb3KTI81ktb9Kuq+flbHk3DfO8giiglIr7+3sN1kf1PFhFPBIlzfnxXkHsBcGMdSpqSbLleSlt+IRAAVy1m7KWVRFQJJyXFeu2YD3fIaEiSkOUgjlmzNMBh8MR8zxDKoMLo57PsF7DgFhCakqIMWnLePbN6cw+s3pMgHsrkEBeNSEiBm3PISK9Xt40TRCzFJXCS9YyZF9Sxrr8Vt0sy7KAc7Z0g7TD+QPm+dAZcWRKsOeZWB4Os9az8ziGmKJUhTBywIh2Ma0YO9Mx7KAMl8k6di1QbCJCUJp/Zy3aJ0NIEOgzFrG2MwDWrSgstmxYzIOgYLl+FvMkCHICUoxgERwOAbXUnsi+Z27xjsJeSkFttbcN6QxBKCmHrUNyLQ1bKFqup7m32LCt5UI4lFKtPJNOQGsNtSmMqE0DxZ67J5sqhKleG8OrKIgw6sOicCwBFBLiqikfy7ahWE6Rkloc9iGclwUhFMSUwRRRqHTYa71/g7o+gNd7XEfqpIEUI6IwIoDUi1JrxwQELQ6cPDfJySO7CtFsRldXAnGnFBxyszU1aOejHx8Z9ZwNwtP13ZRX4YhNh+48vu3lkLTCvSou6hVDQid1yO46R6kzBRo9hOALUNECNSrdKNMYI4kWLM5J177D466QGyuk3GpB2VZMWVNKYNdYWwOXChEtvRVCsHSJ0Sl7QIe2X/r5K6iFUZ7Mb6ivabIaxYbGNJUNGbBalTb/75Hb9Oj3txkftOJ6OJ9BYcPd3b21pI8wo9TiXJpw7AL8eDpZDTplw03zrAoFgrv7O7AI8pwRkva3ZTASJeSWkFJEjcXYaWrlx6Bso1oqlhhUELHg+vqoKEEAWiuaBMoNlAjLuuB8fsDbN68RuGCOwCkHXJ0y5sMRx6srHI5HSAEqMda7pgoy6AZUi0o9yMjafM83pwsmjQWYgmAYzAiFEChAosaePH7kkJGE0PsjIQSl/5sibCKd4dVqQd023N/fQ+YZbZpwNGvfqeo5T1aGK1pvKYXnWm0mIBpqVUXmjE1AhTezJkGqR0lIXsKLrFWCK6+uuOzL1hfLC/C6bO/EGtKOu77pFKnRwsBM1PMBKxPO5wXnZcH5YcF5KRCsva5cqwLmCoLg+npGKSvmw4yrUrFtK5Zlxd3dHUDQnCgrapuTMgS3bdPSTga9uoBs1gyVBErwmA7Y1k0TQQGFBbeiBoN7dil2JqCzttgU3GLpHsCowNFjgTwEYIqTer/ccP+wwL3UPM0AqZd6Xlc83B+7ATEfJsSYkSfCw8MZIlahQQhnI+uUbcP966/R1gdIOeMvf/+zrkxSSogiiEKIaIMMoBAAYiRkXzeovZahC0KvYdiFX4QJ1QAxVpQzAfvnOizu6IOXMHJFBzAa4k6kulITW9u+nnSdWiV+EEgaIMHOAXh1jw79GdTvysH3rfcdI/PcLFkErVUEiUDS/oKD4ucMRY17t6byTD0orUkTQ8AmAm4NpWivwmzox5ymTpV3KNHPT+RwhSlzHrLFNpgp2WEliq21UvRc1JPiuc893KskulBW9KfQXB+04vr//L/+nyAKWM6reQoZp9OVWS4qmKfp0GfodH3bcf80ZdRyxvF4hIjmpqSccH17jTd3b9BasXJNqixiiAigzoCCAClFjZuUapiwNss7TQHH4xFEhFYXlLJoAJsjlofXuHvzBl98/lNwXXFznBGe3eD4yWd48eIZvvOdT/HZd16gbWec797g7vUbxAikHDHNRxyO150yTSlppjp7weDdsIXXuIARkP5/5P07sGzblp6Ffv01Xpk5H+uxH+dUndKR6qqk4F4uNxREUQFcg4AgMHCQJQMLFwwEDhbIkoklPAIsQgE2HpgEcmRJgdALVZ2qOo+911rzmZljjP7CaK2PzLVLgntOlSLujsoT86y155ozH2P03ltrf/vb/xuHRSEcA5iC7zL9uGOadhwOtwpviKV31Z5cKpltPWMYho51znJ450iuHiz0fRCiS9/RzUGy8mKFoGG8oJBA8cL0y7lgXJTKryQoGR/sNpNSI5TmEKnD4E59vaxuIIxUTAr2bD0+o1T7NoZQcpEA6gPe93SnSE1ilW6ppLb5a+T4cmKNlaenV14/PXGeF+Y5cp5X5nVlnldeX15Z14WcIqWu9EOg7zsO+xvm5czxeOTh0wOh84zDyDhOpJwYx5EudKxx0WBtsE6gYamSIs4FuhDoup4/3InzgXiaOU7zmfP5zOOnB7IKuPahkyHY1utsfwepXrUqsE4SkZbEzWeZ8RKEYKRWIYU8Pj9htJ+72+/EUUGho9B1GG9xPvDF+y/5+gdfc3N7yze/+DnrulKBYRr59tMnTqcTx+OR18ePmBLpneGHt/9fOlvpbGUaRxwBUyJmnRWGFcTAU7axAkomxhWICrkZhbpF87FV26p3S7VNyquSiuAkruH0hm2s4zI4q0lMFT1O5xzOXOTbAOlFmzabyQZHWpVWs9bhncX7pmYir5UriNCt+pJ5j3ct0apX1YwohMiojty9nAS174Nj7MPWG2uEr5QSNa8qWF2ozjAOgXHoGIeOkhfyWilllU8fOroQ6LtOSDdZ9vXQdbRg6L1IQ1lj6ZzFO0tnDd5eB86W7LElmHlZWZeV03zGOUsfguyvrLOe/xwef+KB67/4L/4L/tpf+2uffe+3fuu3+N//9/8dkKzxP/lP/hP+5t/8myzLwr/9b//b/Ff/1X/Fl19++Uu/1unTNwzDwOSDZoIFVJ6n2Td0pmoTPFFCpvOecfS4AGV55pyOIn5sLQXPeqosL49AxXkn8ylULDK3VGOUQ8caDEEzuSLsQ2upNXA6PpDTWajrJmJtxJYEZaV3iegTvVuBjGclLq+cjhPn84F5WXg5niBHYq5C9zcV7yw29FQTxBDQilyOcwKjCCNPbTqiHIKVrL0GgbgKVgNOU19wpJQ5nxdqfd4WZhOPbbBAsKpc4Rw5yoFtamW3mxiGXnBzCjEnYkqbQklRuGJTF7BqG1+FMNEbgRIlqxXvtHlZWJaF8xw31lvXDTgfZH7OO4auV+JI0XstcFstReCsFAVqRQ6ZflBn6dARuoHX00qdIzUm0jLz/Hjk6eXEy+uZWj2lGOYlcZoX1lUkn9Z5IcUos2vzSlcSpSaqzXSmEGqmLJWynLF5YfQZawq2VOqScLZS10QpHt983qoSNRZVzsiRagN4T10864tV5qscODFG8rJAPFH1ZDMkej8I9OYc4kMnKi8pxiuqeeu/yJ+9dfQ91M5hTBKbExJTV3DO4Fwh2CiOa6YiQOtKzYZSFh4fKqWc+fhh5OO3P2XcTXRdR1oie58YBthVy5Q8OQnN/Oe//4+520/c7ieeHj8xdY4+WHbjBLbFWEc3DATvCc6T06owpyfVqjC+DHOXZVE4SglFIRB8IKWIiQlyUumsVltchtedc+RSZDjaODxVKnnntoodIHRhq8ikepK5wxC8iiiDFro43SteP4tFEIvQSb9X2MuLQHhFqOjOOxlJySupkWxyxpZCLYalREpcRD81eKxxF73IvDIGmLqevt9LIl1XTq9nlvMJSqILlmA91hpKSZxPq6KDArubKkQM79xWDbta2Q/aR60Vo6afFe2vG5WqSon92FHiysv5yMPHD+R1IS4zN3f3G1Eo50I/TRgNeM3y5Y/z+OdScf0L/8K/wP/0P/1Plxfxl5f5j//j/5j/8X/8H/kf/of/gdvbW/7D//A/5N/79/49/pf/5X/5pV+nq4nRVqZRdN8qoo5dqlDQg6t4G4klUU3ElCOegeCk55PXlajeNSEEKJ5zXinrWaELT8DLNH+GHGdqSjJX5RwofOeolBoFk65wOj6xLkeMgXU5bgeINQVPpHOZIYALDmcqOS88Pz3ycerpg4M4C15esg4iF5y1SqE/ETpP6LxCJ22+SyqPUgzLEiWrUhq9d01AE2LMQtEuoou2rAlrz9tw6qWSUXkj67DB6yCs5zzLEG3JGavzUClFzrWwrkkql0WgWJsz1iZSyToXZrfKUAglhub4KhlqJabKsibWNdH1Dq+MpSbZVADvi/ajIqVcGFCNSRejwLMVMQMt1alzmMVYOdDjurIuEbNknh8eePj0xMPjM7IlJLimIkGemLAx4rNUhs5VqgOsw3UB3wscao0ozvfWM/oRY7mCNA3eVZxrM0j6flPBpkKikkzFmowzks2XXMFmjMlYV/E1gy3U3pKyZOB9bxgHp8LQQk3PSaoRVyEhkFHRfma7B0Mngr/GSB9jWSurr/Rh0L6k+GoJl0MO/VIF7o05kdYjp9ciA/TrkcNhoA+GFGduBgtdIIXCaCZSdOS0sp6eSQHK4Hh+fiR1jqELuMOBpSa8MaQu6L1UVQjV1yxa8Te3guZEUGslZWGyNmUJ8VeT8QZv7MaSbCabrXd6bTsj614q94vtDKDeYteEBqm+lE1bqx7EhpIdxRqKacxM7W+p6kXNsM4nVh2J8V5QiuJkRlFGF9T2RnuxQkLyBB8IXbjAcPrcMv/n6H0v2qvLwnk+a49V1h9WRyJyIa0rXeg2gQSS7OOtvaBr3urAcimFvC5b4MJaEU2ulZoS/W7Am0pNK3E+c1RUylrLOE7yGrVQ6/iZIecfl6HxzyVwee/56quv/sj3n56e+K//6/+a/+6/++/4N/6NfwOA/+a/+W/4i3/xL/K3/tbf4l/5V/6VX+p1/l//jz/DNI5Y79QTSRbXmi9utZmIGxzOTZzWSFxmTkdprVsXMFb6Rel0gRfevb0VFXdfMOm0leZpjVsD2OIpeQErfYap88qKjTx884csy3nTT/Te44NnGDqoCUfk3f2O3TAyz2eenx75B//w7/GT3/1H7IaBt7d7xqEneCdBsyScEYHY3TjQdYGuDxfKqm3q5Z6ClWHZKJsMa/BN1d4YqbaK9DOW84yeB7jWO3ICd1ovEJXTSqkbBkLfbfTq1qdo8kTehe2AyLpwt37CVfW2QZoVhFJc9PueaioxJaGk54xJmUoUYkAU2rxpcGZKLMvMskSEEQcXEdNKo8GXmjgvJ4FxQ0ffDzw+vrBGgTu9Dzw+vPL8cuR4OuNsh7UiNNx56XcSOpikV7rh9Fbg2zdf3Kkqd6XmfBF2xmC8qFLklDgtM532uGJKKlRcSLWoAp8SBa6UDqZpj9mu1YV88Bmd+mrPNRZjE9VtQbzdl4u+oWW/v9ky4lJkIHpNSZyRDRsZoAKh69jtD8zryul85uX1yMvpSD+MhL5nP3lub28J3nN8yXxxfyA4S1oXlvOOpPT/zluCczhr+Obnf8h8PFJz4vaww1kIzjF1Hfvdjr6T+cqgMJxzFh+CMO5qIyBcYMxPD08bYaUJEDcR4nY923Vq//554ELNQZ0GLkkuvJddLb3YBArJOmcJoecyyuGkp+tk2DqlVc8gnTdTJYqjJn45523vNH+06/dJNSqIu+p+Egm6rus22FA+i8DNzhl++rM/5OX1hePxyDRN9J1Iiy1LZF0W8irmoW/v3zIO42VsRqFUAzosflFZ8d6rssuF2ei7sAkHlzhgqvTQ3tweeHp+5enpiefnZ3bTjknJZpfpV4njfyxmBv+cAtc//If/kB/84AcMw8Dv/M7v8Nf/+l/nRz/6EX/7b/9tYoz8m//mv7n97F/4C3+BH/3oR/yv/+v/+ksHrrd3O/ouaJWlGlnOkKojV0tOEGuVWa3dnpfTiXleWdcoma4zOoNRBV4rmZojT98ecc6IBxOi0JxUTXYTzNVqQ7JesT4pKZPWyNPTEzHKwu26sDXPS82EvlVGkXM/sJxPPD8+8vHDt3TO8dIFHj95vLU4A94Yalq3xmvXebxz+CCDoa5VRj5gjBdQs6AaSVWGgzcfMSODrwod3d3cCuxQCqUJzyKQR1Ucn1JIquLQDkY5L40eDE43VeDi1myEvUSzAm/plQJWG61YqtbNH8pf2bWbKn0t64hJ7lktFWOlUks5sS4z87wq1Fhx1rf+schCOYFHjqcXDBLc+35gWSO1WoxxhNAzn1eWOVGzeJp5Z+g6xzgMAj9d3XPrrJJjLNYbxqlTu/eKKReY1RkrIwXKwjwtC10IeOdYk9KUSxGpHn3TlSr3QU1N+06p6Y0ZqoPYnVLv2zVtRI2LzuPlQM+axLVKQXIIy9CPG8mlFFHJiEmgXvEWY0sGMRZnVvxg6Fyg9xNjD13XE7qewsDhcMAHz2mEXd/hjcGMgbTrpcKNEVOzahFWavbE4EhkXo6vOGFe82otHx8/SZaek0DwkuvjvRdIsu/ESkXJUTGunOdZZ+MKPviN6RpCJ5RxXfdNf89slZcqdlwxVFuAAoPzighUpIJv/S5v6LsJUfLI1CIJpDBErfTIlW1XbdnYh0uctwDlVexWCDoqK6V7MPhOnACWmWVedOdoQHGXVohxBuctfd/xzbc/53Q6cT6f2U07CVzBs8yRuKykJG2On08HuhDkOug4j6xZt6lldH0nwr+h4+27dwzDiFfB6MPhhn7o6YaBkiLLfOL0+kIphafHR37x7QeWdeXN23fs9gd2t7dss3n2EgC3Y+FXePyJB67f/u3f5r/9b/9bfuu3fouf/exn/LW/9tf41//1f52/+3f/Lj//+c/puo67u7vPfufLL7/k5z//+T/zORfte7TH8/MzAFPn8B7IiVwFUsMII6lWKM4SC3TB0NnCGCyuWIJxrCoZ06jZAkJlILEsJ4o11C3bEqKDzGdkanVUa6V/YAyxRmHepSwDpKcXZY2B8SDiupVlXTifZQOkHDmFwHKeeX1+4nw6UrsOWwtpnTG1YEGYVSlSS1vsWmU5i3NmW/jCGBOvrILZZmKqMdvBiEH9sCR7n8+ni219TEpFR9UwuApceWNiGWUVtf9upBRrL/49LVNrJnlNdHOrHNrvq8ZiC7y23bcqvQHvxScqpZV1lQrSOdnkKQuDb12ERCMzKU4PZiOD11ZYYct6purwZwi99imcVFahJ65KNsFSUsGHpO/BSB+LTCjS/7DFYk0n6XMyHF/OOrgtjMfmU5jRWZ42+JkjhULOTtZpFUtOoyzC7QAtCoLZSo5ndJHqYaswTarUmraKy6Jl6JYfiNakrYVaU1vlavRnMKaQ1zNF74P0VZIwPpOaZOpXrjIWUs7Q9b30x3yldk7msKxUaN5kvDEMnYOSqNZIX9Y4ZAA2kaL6ltWqclkBKJxenoWubdSdpBadTZKmf1UGpnMCP4W+UyRAZiWl+l62StN5v/X8uq77TKvP6NqXy3Q958XGfKs1sc1nOmhzVFX7Ye1+d63iqpmmNy3sQEsuSc8NIRmJj5+s5VyaUEATADDbXtEdogFXhsCXZdkO+et5PNn76LX0vLw8s64r67ry+vwsgdt5ci5S9WoSc+pfVeTZYDe7HofXPS3VZIexDh8C83lmf9jTDwN9P1BLYYqTSL2lyOOnBz59/ID1gZeXZ54eP/Hzbz7w//z4ka9+cJISa2MXtjX6x0ML/8QD17/z7/w729//xX/xX+S3f/u3+Y3f+A3++//+v2ccx1/pOf/6X//rf4TwARBMwldYo5AZTJWhPd8FjNeFjSWVxHp8FNghGMYQVL06E1NiXld8kWaqd5lqVtkoRTMc36byDdCgKENwgmWvxyPBdxLccmbwdTvYhyFs8FleMx8+feS8zGJ/QhE7itNZ5riCx3lLzVGYVLXghl7nJAqlJNYr23eBx66UM8o2wk+rfTBc9NGEjavEicrv//7vXyrVZnxoLd46rFfRYtpnlkeDYOyWneqMirV4H7bGd1T34GtKcHvf7U9rXOtqa7/FfPazDa64hrr6vt/gsCaNdD1kel1xFGVzhc7qz8khJMofjRpvJRmsBms6vA84rczGcZSGuPd4aVhhrBAmvPY4Xl+fGPomHTbQZLekytH+gZUh9tZb6Tq/GVOWcoFGS8ny+k7EZl+eH7ZexBC6bTC2JAkWjcUahl4YpFECRlN2SaImvAUgp+uhGkNaVl3JZhtVaFVamyfKGkyTuh7c3b9lnCaGaaRzllJm4qzDqvlMULbr8XTCGsNuGi+Jx3Lk+PKyrdWh75h2E95bvvn5HzbJPSHaVCRwJYU6s/SVAR6eni49q+8Mu7a1df39tl7+iOgrfOd326Ha2Knt+0IYaUzAi5g3tKT24v1Vt5+vNev3ZCbUaEuhjTy0n6ft06vHtXjwVrXpG2qvJ+//6jwymdAH6WVXWJZ5mxMcun57vrSIlNhWkfpuG9mQ06O9l8t4y8+7n3F3d8c4TgzTxBcv79nv9+xvbsil8Itf/IKf/vSnTLe3fPr4iYdPn/h7f+/v8S/9pX+ZH/z6j/hRi1JXRp4VqJ9/7F/q8c+dDn93d8ef//N/nn/0j/4R/9a/9W+xriuPj4+fVV2/+MUv/qk9sfb4z/6z/4y/+lf/6vbfz8/P/Pqv/zrl/ATe4PJCzVFglQw5q9yK9mfmeeF0PuPCQHMxTqkyrytrTCzzSmoqFFTOy6suPGEPtcNEMqCoB6KT7KPK7M807pU2b3FlkWpgjbzC5q80dYHbw8hu12O8w+TC6+sLD0YCh/PgvMGHHjeN0huqBXqh4hRVGaA12Z25TmB0UFNxaq4YggoNFiqOptIubsxVVS8+o5hXAzr34RWSkM+zbFYdm/uzDrgChNBvfQVjJgwXLbZtiyrMKOeABSPJhtHXizFpb2bVwKVDzKYNSvdCRdceZkqZTXF7Y3+VC0uv6OGdpKKIKWGNMMdKhllN9eQ9+a0v54K/mD0aYSy2z9BUQQyF5fgqyirOE0KvUKa6FJuizMiOfuiIa1T42G/VZKmZuKosU82q0CEU5OPpedPSHIdB7mER/7cWyLvQ0Y+DHHK5zRXJNS5K4WpV73UyIxW2qpNcBYEWzECgrcbeXFPk6ePPJeseBzCOeV1Z1oWUMr6T/svNzQ0hDPjQcRx6Yky8Hl94fHjg6eFRky3LOHRyNNZCilHp6Eg1ZsQTyxmDDR6rJpPUrDzeSoo6C4fMyjV/M2tFW7MNLQcftnPjuwHsOom6Klf5TMJDodJrmFWfTBMRgalLGyaHy3D8VsHVbV1iRG1HwxBNt6YF9FZNnQSa0b5Z2N5rm9+SKlxMVEtJzMuJaRppnmvn85GS5DwY+kETLUNeE/O8UEvBWei0f2idFb+67XPlbd2c5hlS5Nig4XVh2k2M044lRj5+/MiHDx/4AihrxFZ4fPjEw8cPvDw+YEqiutA2/5b6//9VxfXdx+vrK//4H/9j/v1//9/nL/2lv0QIgf/5f/6f+ct/+S8D8Pf//t/nJz/5Cb/zO7/zz3yO5vfz3UeJZ7CBzlW8lRmgUivV6NBgzaIxaTK9N1QSNSdKquRUhCGYM6YkjKoVlFoIpuj4cVYpmgrFYYoY4lkqnbMMncGYQB8sQy+UfIMhx0oyRU0IwNtA5y3D0BGRvkbX95SUqCVxOnbkGPFeG9HGEoLHGsM6zxuM0RQbNkhj2xQaQHQllG2CX/XNPksf0T6QwQW/kTasaWKodbsOFGG6VSNQkwgPXilhA03F9LIkrQaO1ne5gkMwbe1e2EWmYqrF4rZMVaqQmZy9wnseMKRkrpreErhiTNvfayspqwSOlFaBF43drE1ySuAkWy1F+pft/eVShKxjrNDpVSm8UjVwaQ/QXVQeyrqSYxsA91sFXKtAR846kltIqxMdylJJq/3MPuTSaylkVhVTKKQ0Q3HULHTpttFliFsClyi2KIxeNanR4CWyf6pKQlsCF5isDbK2HhigghGaxCAJoDOGsXOYGklrpZao6iIra4xCGU+Z6iq2Zobe44MDCqfzCy/Pjzw+fuL19UWG3UPA2rJVUc4Y6fnpMKvA8uCtxfvLdaol02KMJKpKxjACHW+s1RYoUJWPtvZrVd+zq8HaLdBfq6xc1qr0D+0GQbd728Se2/F7XXVdk2cEldAefKkYI3tEoRANWqLSLwWJwIalmd6qsPS2t1XTs70/Y8A46XHJfGRVvUcZHRCd3UymaHKq2gLtkrQKs1xEflul2MJrrUIwctZhQicSb0BOkfl0Yj6fmOeZdZmxBqmmxwFnNfHWvrhUWHrd9LV/1cefeOD6T//T/5R/99/9d/mN3/gNfvrTn/Kf/+f/Oc45/spf+Svc3t7yH/wH/wF/9a/+Vd68ecPNzQ3/0X/0H/E7v/M7vzQxA6CmFdtJIx2FnUrNOichvZlcC2NnmYaJ8yxutjFFSsyYUvFUjK+YnIhVcOBxCBQcuYK4V0spbkvFBGGvTcPAtB+3wVixCSjEmFgXS3KG6s2WXfa9ZN3JVrCWcZqI60pcZ4YukIAuCNnBVKXbVmHPCU0doNFvFborjcwgpJCLgsLnBxRcbTpVT7CmVaWycTDSHM6lfOaa22CRJtYZa77KDAGadhui3J0LtXpOp9Pl91uv42p44zP4UOHdvg9y/daV1+MzTg0Z+75TuESU/Z0Lci1KVmv6pNp8doNwakXmeQwModNDQAKec5LVG2fwTl1urWONWTLcNhaAbK5SN1te+Y6OUNRqGIKTQeSctyrRezFnlAOvQonEJW6N9Vob6UCC4OVnrQYS+TxdEGakIZPSsl33EAzgts+U0yyHX7v/rfdVJemoXHo77bATcpEgD9kCXNRJNhjHXthrXd+zxFUh9plVYTxqZX+30wSjYz/13N8fsM5zOi8s85HX4xPPLw/EZcXaEatVZdIA44wjlbyJBi/rsvW8mr8YQElxS5nsP+XQa5/9u1D29XrNOhrQKNvbPmkeRPUSeGSdXgtZf55oXK43W+X6+ZpXpRUlalTt3cKFSGN1RrLrOn1NAxVSWmlQpHP5s8p4G1Vx4glnnaHvAsfzq0iOxfzZNchxVbKW9I2hSlBBg1otlGI2Jf3W87IKO2eJcBhg6IKwPhsEG1fSshLXhWWe6caJw27ii/fv2O8mSTo3SLbqqJK/ura/2uNPPHD9wR/8AX/lr/wVPn78yPv37/nX/rV/jb/1t/4W79+/B+C//C//S6y1/OW//Jc/G0D+VR7T1LGbemFZBc12bSVqkzalRCzNc8bx7E54U5mrZHvVq211FVfWmAwxFYrNOGfonafmwhoXYkqYauj6QeCbYIjLiXURLUTvu03A9eHTJ1JM1ALTtCOuMzEufHr6xMt8xjjL7rBnXSPPT088PH5k7HpK7ahkzueZ4/GSqdhqNf8xRGVIbRml6tIt68zUDQR/GUK9YPqXjXe9KZdl2SCKRsvd6Nb+IiFkQSsW6du0hxwSXvs4lpQisrxXaWprZtgCX+uVXd5X063zeG8Zhv4ykKxfxji6zqukTGZZztzciKisGG9CSpBSRQJXm+mSuamSMutyFlaUsxTvGHuFjI30q7quxznP6TSrYK0Th+Ta3Jw0Y6zyGZJ6pFljuNsJ3bvR8JuqifSwrpv/ZpPBajqK0JiZXkcGmkCuVJ1dsDR/sXZftp+3bc6najCX3l07SFv2v9GruRzsrcK8VKz5Un1oEBE3AKmaU86czq8YbzWAR16eH5iXGWrl7ftbSoqseeHpMRPzSqnwcjzyk5/8RKGkj1hjuL25IacbSt5d+pQxbTBhzll8wBQ6zDRiCtSctsBl2rVVOKtVm9YYFdm+VDzCWJQ9lKoOZ+csnnltPZYkoukGrfAFUpcLJz3rpilprAQ+pwSHFiBLQauq1ntmk51y1tJ5IQw1tKEUMVx11tKHixlpzpXbw17FgM1nQYsWmLWXFXMSPcPg6FO49oHAUJoq77b3Q3DbWIbMoF6S3et14o3S3XPheX4lrQvBWYYucH9zg3eO1+OR+Xjk9emRpw8fqaXyw1//Dd69e8/v/Mu/zV/8C3+BH/zgB9ouE0ShVNFdbdagv+rjTzxw/c2/+Tf/L/99GAb+xt/4G/yNv/E3/kRer9bKGldsSUr5rpu7rfQ5kvauUBfZlZSjSjrJAsrqgVS0Uss145Ql1yzIz/PcGJ1CyFhWjqej6O1VePf2PT6EbbHnXEi50JVMzRIg5+XM+XzEec8w9TiLUK+9LKjgRAVCoAyBOBrZQfHCje1XAaxMpbucwAqWHbzTjD1/1si9ngFqWWaDX68PxfbnNdGhlkQ/9gxdoLm4CmJpt2qzHaStz+T9JVM2mrEBeshoxaX9lxAC/ThyOOw3G5jj8WWbW7m5udlmWqyFSZv+UAmhWXdcZmyMkesfVwNBDo39bketIp7bt8CFJca8MaiMMVvmK7Yn0r9rVUpRcVUTKyXJ4lmTSuo4odu3399gJq1ouy7oWkvbPRUCj0BBzROsAtYh6v9clO19y6C1HygQl8FZlDykfmZXCG5FqpaW716o4HaDh64igZA/kM+daxaLHuR5fPDc3N3otakSXJ4yyxqxBpYsVidzWpl1GHiNESGoQAh2O0Rzlhm8VtmXUul05MB3Ad8FGgvVKvJArRRT6ZwE+ZIvxBwHnzFar+XPGrllY8RGmZeyaqgIbLbzXqvfvr8kcdt1031xPScn6vh22yttLqz9TgtoMa545xiHVvlrwtGGf5Xw086zlLKuUfkc14mO10FzSRQz8yrakv0Q2O0mvb6F0+kkCVXKkpyFTpwcnCe4Sz/QmYtEmLy+vFTz5Mq5kFcZXm6SUX2QflXJmbSuZBUkyCltUOGfuf8RX335FXf3d7KgFe4Ua5e6wbm/6uN7rVVYqkj8FPI25Iqt28R3yokYE7mqMV7MRGVvlZKFCp5V00whhCY26oKqIVjRBluWRQbxrCVlIQV8/PCJZZUAOE57dtbSdT0VSCWzpkQqMphakXmTuC5gKsEZrPOsXScDxQoTBmdx9qIebW2DsuzWe2h9LqtT9GLwWGS2InhqLcRVFMjjGgEE77YX6wuZW7mcatcQy/VgakqJNRUJIHcHDNKHKFkyzFapBR+UUi0VyTbguJE4ymUm6arfkFPCB08/dOz3+23sodl59H3P3d3dNhJRSmYce5krs24bsk0patItWzAlHY8A9tOOm92eimFNSQ4cdViOMWOd9NCE1acyNSWLDqM2642pum4MFekZlFxZ4iLMPidqJr5zmiVLl9Qai/OG0ItGXE5ZZH5UfLhJ55R8BQNpwzzGVZQRrBWDPne5f+q+JJm0c9tBU83WdpSkpfV85Cark60ka5L1CnvQGDDKMI05EbMOI1eBncIw8vbtG1nfxvB6emGJYihZdR/O6yq/l4pUPU6q5WHopL+7JEVgCzGtzPOZlDLOBYZhIHTdRl+/JlBUJeJAkWvsHDlelCWkmpUZo67vLuzInAldoO96tQeRayTIQNPc0x7PWuj6jqHvN3sQay/O521fyLmRSTExDMOVhmDdksW2lwByycznM11wCp1dbEXO86yMPs/QDxv7eF3Xz567XQ9jDNO03/5tnmeeXp5IOdF1gfv7202l6Ntvv2U+z6Q1sT/smQbRyZRqrblSmy1wAZeEsqhbM4acMutpIS5JNDRDwFkrYg3XXm8aiKlCaPvqyy95+/YNh/1h2+9/3GB1/fheB67H48yY8uYz470cHg50NmmBUjE4vAE/+q0ZbY5nUdleI6wVjMMYlcUp0PUD+8Mt7AprrpyWyOtpxvqVXAUiC+OI60eC77h/85YKHE8zr+eFl9OZmBJ3777cFOmXJNPy93e3/Lk/+2PWJfKzWnn48C05J/oucHN3YBgGvvnmG06nE7kEbgfRqzPW8fLyohYpQvZYV5F3+uabb6hv3/Dm/o4f/PBrjscjz8/P/OHjJ2qtdF3PbjddaYRV5mXe6O1911+qAGcYx5FShDH58PCBvvfclIk/95s/ZlVl+H/yf/we4zCy63e8/eItx+ORl5cXXp5fcMFxs7vhcDhQCjw8PHB+nalUbm5uMMZwPB75/T/8A2KKdF3Hv/qv/qvkknh5fWZZZ0oVhZB379/yu7/7uzw9P/L6+ooPjreHPV9//TXPz888PT3x+PjIPJ/p+56u6xingY8fviUuK32QoDGME29vb5mmCWe9wGJJVNTnZWGXRw1oaNXRBkIFrhPiiHij5c4LmSDFi3pIHzZav8XRWcnIvRPllH7XXypfY7fq6JrCf10pV+fIRk1trMOGDuNEnidfQYAo+9FZUfVvBRSq0NGSuKREI2tVbN1YkRsykow1ckRSy46C/EwVDJP3X33NOE2UCh8eH3h4fiU+v/Dw8kJVB+/zvLA/3HJ7e+D9+/d8/PiRX/zCMZ+PfPj2I9Nu5Ob2QM6Z5+dHXl+P9N3A119/yX6/xznHt99+S0oC8fd9z5oza4os5zPrMjOEwLt3b+BF1vA8n1njwtt3b/nBD7/m48ePfPPNNzw8PPDVV19xc3tgt9tRa+X19MLr6ZVlWbi/v8dZR87w+O0jN/sdQ++ZdiP9IPtBkiVVd3GGuGSWdeZ0OtGPHf04qlC36CfGKEFkv9tTqby+vvLth29UUqnwL/1//t/EmHh+eub3/87fYb/fc3t7y7sv3/H6euR0OhPnM65Eht3A27dveXp64dOnTzw/P/Nr48C7L99xd3fPL37+DT/5g5/w/PLM27e3/Jkf/0gGwZ1nXdfNJPSw2zN0A33XM44jTgNtjJG0ps3nrEH7Tj1qW0ArpeC7QKdWRa+vr1JJLgtD3xN8oNbC69Mzx+cXzq8iPbWeZ+Ky0E07QBKF3nmiJt7e/urh53sduA6399zuJ4ZxpOtEpkiyAeUEak8ma1O+os3vUpjnhWVNJK0QGhZdTSHVROg83dDz+vzCMJ0Zz2JrsT/s6fsB7zvCsBOhTuPop0k225IwLmB9kMPJWQwCbwTEuC2EwLIsHF+PwhqkMvbSqwvOE03cMPK4rpuNRVNLsDpPdKH3lo0U4DWLb1Yl0zQp/HaptFrWMwzDJavVw9NaNimnJhskr+0YxmFT16+1Moz91jxvztKikZg5HA5M06TPUyVYOJFk8t4To9hzzIsoCRhj+L3f+73t+2/evNlgxNPptD3/6XTi3bt3m5rFfr/fMu6HhwfVKVw2SZ3m4OpCYBgHbm9vNXDKIPMaIzdG/juEoOMOeRvAbRVX3fqGck1yy46XRapO7+hCvzXlW79FKqgmBdS8xIRtKKSYC7wqFV2DZyUIVL1nbe6mqb83ny2jfbJrUkZ7FH3ORrppPSEMWsU0hY14YWoqPKq8bu19CVkjY3g5njnPZ+Z1Befox1FEgVOhGGGqHg57DUJ2g193uz2Hw0TXeSXZKJVdE6d5nrf3LYQkp/tM1kpOgnqY4EnWSIL08qK2HRAGgb9a0G/wdykyxNuSi67rGFRANmlQj1EIW+fzmWdn2R92my5ggwfhc6LT9WvVK0JHQ2iapYwEs8g4DuwPh+2a1yo2S13fgTG8Hl95fT1yPs+czjITl7JUZSlJD3McRT4pxsjLywtPT08sUVV1rNGZTB203sglAus657DJ0ev+s+hMmINqLh6DrSrKWkWllKR6Nk4r2n5LamOMHE8nubbW4bqew+GG+/s37PftnGzjCApRX8GS312vv8zjex24pv0Ne82mQifkDGG3XeadrDPk2oKTQiSlaBVUt/8W1nBVGChhnDbLU2WazszzirVBJ8ilyvLdILbpuRD6QYR8/YINAdd11Jw1cAlm7Eyhc7Ih1nVlPp8FKnOOYRjoN/FLS9d51tWzzrJpk5UN6ppYrXfKFJOGct8L5Oi82xhPLXBBa3CbC10Y6Lvuaor/guMHDVwN8jBGhid9CKyKZwOM04jRQcUWtFKWimQYB0IXNlJI3/ebPlyDGBadRwLJxj5+/Li9x7u7O06nEzFGPn36xPl8lkFXuNi6GLP1GSTorDw/P29Zctd1VO81IZHN7L1nHEesddQC1jsVO+053BxY5lklxBqxUAJXKWk72HOSHlDOhWVdtsPX+w7nGvlBGI7bXNh3vt8ksgRFUfuVkmkzPrXC8XRurY2NfNEC8dZPMWhC02jMl+Y8G0LTKM8XiaPaAlUuKlbckruLyoMkgo5KVZNVzzLPHE9ncpWRjt3+QD+MpJSxKWO9ZbfbMQyDkJacOCwcDnsOhz0h+I3o452n78RuI0URas6q7dh1vbD4atUelPRQahBx6WVW6DgXSWL0oE7aNzOwCdLGNbJ4gaB9U9NISaWoEvMyy9+d3RK1dtBa02DAAlVU9JNCuykmnTtMItKttW7OmWVeRA90bhWbmDgucRXiVq0M44DT9/j8+srpeGJZFta4kpM871mTVu89gyqsn85nzvPCkw5jW+/x+vqlCvzb9nutlTUlrE1YEzeWsvSvVGy7NfvrhYQVV5l7FPHi1jgVWFoU98Xr0Dq/BSCxwtlze3snZ7K6i6Mtjksz9bNV+is9vteBazzcMez3eNUKxABFBCGN9oaCNhKrNstzuQxdcqWlJ3MMMq+Ua9aGecbUHkxH1+85n890Q6/ssMAuF9aUOC8zYRgp1hFiop92VOfU0sODTtE74xkGCQpxWak5E7zn5uaG+9tbDvsd0zioVI5hN048fnrYKsngLN0wbgdlqRVvoLOG3juGsacLgZqzYNHThKmVR80ORclj2IJFg09a1dWCVwiBPgS8tdSc2R/EvqTBe1JheN68ecPxeBbo8PkJkF7aTnXrKsp6QoKe855lWXg9Hnk9Hjmfz/gghIbbmxteX1+Zponb21u+/vpr/sE/+Af89Kc/5Xg80vc9wzDw9ddfc3d3t1WLLYM+HA4bhNky6f3NAYD5eOb55YVcKsY69oeDZIMhUNcoivl5xYUFMBjr8S3IG4SwUBxN3scHHUugMrAXeNAK5d/5y4FnGvW5za2ocoYPFq8NcmGZmS2gmE2Cx+CHSYORsuOUpt/6KXDpTX5XneT6fsIFjtyqdJ3dEjLS5+ojTsWWXXCfPfe8LhTzjJsXDjd3hG7gzdvEMA2k5imWVm7v7ui8rMP9tCM4z36cKDFtc1reWO5ubrb3XEtiPs5qsVPpuoWqlfiyLOQopJ2h7xm7TiBaJyZvwzAQfCDHxNPjE/NJmL5jP5DWyPH1VQLabofB0PlAdJ7Xl1dOpxOn04k1Luymkf1+z246MI07Qgi8xszpOHM+yzpvhBJJvirrmohrYpom2lxcjImcpeqf52UjDKWU+PbjR9UIhN3NgeW8cDydeTkeZcawVoxzvJ7OpAKpwn6cGHYStM7nhW8+fOR0PjMfT/iuYz/ecHN3j+uCWCsZcJ3HLo6CYZnFhX1do95LXQ8KDW/VlnrLlJw309KcMuAw1RJL5X6NrOqeXaqRwD+vwsiddtzf3fHDH/6Q8eaGME6gCjHaZOXzwPWntOLa7W7woWNZE9UkMGIZ4ZzFFPHtiXnRWRytrGrTn71ktlK6Xxhw5/koMz5BMohqDP0w8vz8RG4WPMZpM75jmHbsDwdyLuz2B4ZhZFk1u/Fus2O3FExZ6YJntxN1eIECF6ZhYDdNTMOI2R+42e05vh5ZjmfJoKwoa+9Uhsg5x3mZMQS8s0yjHOxN1HeaJqy13NzciE9SEm273W63Xb9WBTVWUzsQY4xbk3eaJu159XjvqTWz3+8Zx5EQAh8+fOR4PFFrZb+XxvEwDOx2h63BHXy3XecW+Pb7Pff39wCbsOfLywvTNHE4HHjz5s0GNdYqfbH379/zm7/5m7x7907fizISta91OBx4+/btpmW53+9JKfHT3/9DSimM48T9/T1ffPEl07TD+8C3Hz5xPgsc02SqQFh93qEaRDIrK2rpMljbeoXrslKTiqi2YGHMprjBVcXTYMAmAiuMsouqCDTmn1RmyxIvTENrFF78XBbLWKMK6EUhJbWisRbrKkarB1q/Ts+otInXGozS8Te6fKN4VxX9VTJB1/fc3t3RjwPD48gyL6ScmKaRRm5Zlpmx70UF3kgvWFiEC9Y6jseTskMvJKBlWcSktVbiKkK/LVBff15TC8fXF+Ky4J3j5uZmI/A4reyGYeD9+/cbu/PTp0+XPq7+XK2VZVk4HA6cz2LOucaFu5sb3tzfb2vvmlm43++BiwwZSNXbEqdpmrb32uD0tqbWJOICwzjggmOaRqZxBGt5/PTIy8srrusYh4G+75l2O6hSSYeuY9K9Zp1nPs2Exwf60wnu73nz9p5xGumC40YV+o213L15Q9cPDNNMjlFIIN4x9QMh9CKunGT0IKdMVvm7tEbWpbKmyGkWjc8ffv0jaqn0/cjN/T372xs5K6qo5Vgr13QaJ3a7A/vdARd6rIoTX7SdBHtqj/qnNXBhhJq7xqROoOCxVGOwBj00shqvSS+o6DyUoU3AozCAuTRgY8QW0ZjzPjAMsjFTTCwxaWNchgyrMZTa6LjCVBt3ElxSysSSNdsWtfeyirtrCAHfibNt61N4ndHx3mNqJfpVs6GyNd/77qJWLvbelWwNznvGcdAZFIEOvRMXqkVx8gocDvvPSvv21fcDOctMzXkWPzKZHauUcoN1zZJE5pG6rt9moER2SYLLOE5M04gxfps5ksB10RcspWwDjC0AFe1JdV3HNE5YY5lGqb6ssbx985Y3+nXYH7bDpwUDYwz73Z6cC8MwCOtrHFjmRSqrItBG1/f0w6iNZrG0QRmbTbdPkk8VI66yzlSxVxaVlf5VAawpOuR7LWNlBEKtl95hKfrcFWqG0gCCzxe0ogOWhgYog1ygS/kJOQu0ijN6GFT1yrJW1qTglJcxXa2nlBjCFfxjN7XxFrDk5zXY1mbEGuk0QfDeiSNyCGRlaTal9hA8tgo07Z1jHCcRvnWew/4Gg+XsZklWvAyn5lzovVage6sJRN0Yfe1Rc2Kdz6RVlPb7vr+s4eDpup5pHLm9uxUx3vB5QHa+MQBlfzhrWZZlG3qexpFhnAhdJxYnVqxUhnGkUxLCMA6i6u6sIAbOE7rA0A86dyU+cdfBK6v4tzFgvaHT4ORDUOFhOdtvDjeM48j+sIditiLFq0p7CJ2o+nvHqAP+b97e0w891CLvW8k707QTP8FuoKR8UX1XHU5nxXKn9Q9TTKzNp04TEtkP8ObtW1Iu9N3Azd09034vEHPM22saa+mHkb7rta+l4w+5gle8u63xtob/GATD73Xgej3PDFmat9UIsaBUpxWR/EzTrWtNXKEDW22uqv10ErsC6yweKwZ+VEqWCfPgAvSGOCXsuhL1oBZqvBz0Qv/V6UJEssYYKFH9oqzojsWkEi/OEZzfVOdTuthPUCtxWTmfjsznk2y8WgnTxNS3gVlHyYmoWLXvgnh4BcHMu3CZX9ntxq0/dNjvPsskWzY6DEK8iM7Shoy3hn+dhMpO0T6Y34J0CB3jaBjHHW/evNmqn/m8SpZnL9R6weoD+73fXhsk+xfKcL/BLcfjifv7N4yj9Oi6rpPmdCf6d8uyCMNSe1nDMLDf7+lCh91ZXl5emM8LLy+vvLxKA7krgJX5qJgya6rMy0pKBdTiZCnSk7AtwVFVEaNGne26WCua4W73uRTZNUwn6+/SjG9/fj5b1Egzl6a/saJqUnKjvV8gvFbFlXotbuwlWSsFF7qNiNCue3vt6zmnP0oquKiztDUoQVZ0HmNcSEno6kM/sBsjnfcbtdwYg3Hg7CjQnKrM1Ks95n2Qe5zlM8VVDvjT64mwP9CP/YYINCKMc06DW+Z4PNKFQA6B/W4ShpwSfrquo+979ruJt/f3Ah+GIDqdjXCg81cA9B37adrOhvNZkA2UxZmKKOxXc4Hnp2lit9ttpI11Xbf7fg3LBqW0tyQNZMQm5SiBKHT40BN6QWtKNYy7PW/u7wXJ6DrGfiSmzPF0ZD6dBUT2nrdv33H/9i0xRZbzLH1kqymQkfdvnGO3PzBOe0qR4O91aNkidjTOOqgCX1bt07c+Ylwjdw8PvL4eyaXyaz/+MWlNdKHn6x/8kP0wENeVWmCcdnRKwtgfBN0xiCxZjQnWBL7TqL1toT/243sduH7yez/h5rCj7zsRnLUtu1KdLpXzabNOwl6Tg8GHIBlxkZJfDBstpVqmfiTXzDovvDw9E9UOAAzeeHwnVUIsCapl7HphNerC7byj04NjGMVy2zvRaKs6m9MFcR91RnDloet4c/+Gu5tbSs78dBGdvRQj0ygQ4s3+wK3aC3QhSEDSuTRjRRrJBznEGizSGHftoGoQSPtqm6sRM1oQaFBhKYWXlxdVt7Yb8UMGJRO73Y7DQcklOtCcU95eu7GPWrXR5m1qrVtPqvWq+r5nnqWf0MzwGmyzrut2ALeDue/7jT7enqc998vLC4+Pj5zP82fN6NPpxMdPDwzDRPA9XdfjfS/U66HHWK9EBJlNM/Yik9RqHalcJGNcVxn+FhktqXSMzlKJHlyVShtxlq3aWy3ZbBbmUgApJJkr4lt8rQhZxX7iatfXoqoepZLVD8xbJ4WWlmjVXggZpSSoThRjrvpitOeo8pq2sslEWcA4i/c94zgwL2fmnIiLxxqYxgEYeHp6pM0WOuu4vb2X915Qs0WDNZ53b96TbkT8OMbIw8ePvLy84I0lrZEFmStqVV0I0vts9iUPnz7Qe0eMK4MmSI25dzgc6JXx1liDy7Js5KQ22tHWUVvrbY3O87wFrhYQgW0wuPV+gS3YNdTgunfYko+u67a1CIqWmcqyynpcUxQ7GO+159pvcOO6rnRBqti+Fxuetl9DfxFVPoajWA5ZgfJTWqU36j2dV4f0aui7i39ZWlaa2ny71vIwdK5JMVVu7+94PZ5YY6KfJnxXGPphgyOtD+xi4s3bN7x59443Hz/xwx/8Oof9LaI5WtHKoPVW2BTnrwuwX/HxvQ5cjw8P5Lgyjr1awzdmYBEZPicinY1qLItW6cVtCLUaYs6QLwSF0AmxYl1XTqcjUUVNQ+i2wcqKqCakJDbz83LS92B4fHzcDmghJxRNPbNUYKVwqpW8rKJXuKyY/X5zxa2lXL5fZaLfO3GObcaExQls2JtOmcuWoNJXzgdVy5bV0Xfd1t9oh0KD8cRS49KcbwOIPlwCl9FraXUzt40KVcYCggyQNhv4ZBNd1yoOrp7/c9kjayVwUqHT52g9t2VZNnHl6/5bO4DaIeGV8DHPQqu/PrSae2zXdzRViWVZ+PDxI1044n2gFLMRIDDyulkdba3CLlJ0tZ1WNvWPxuRrckDOXOaoUHaXBB9VPFGLkabYL0QQs4mfSolet3EOYexLEPHW6wCyNPZTketmMOLSjJGk24NF3ne1Ej1rhVyzqP7rZ7jWjTRVKfIGHPKnsFXlfVmFtp9fHgUptSJdJFCd43R8pQV0JehrtVYJvmNdF06nI94GatsLCtGnKFn+6yJ9r/P5zE57On0f6L0kfkYbjZ0Xk9XQyXpBYfq72zuGQdbLjfabszJcK0KM6btuIyhYKyw/q2y3dVp1bg8GZaqiyU4ba/BBtOnbvJ1XhmNtVapcTTYJpQbl2nZ/K7MGLjGDDUiuJyzcTgOdMDpFvzJ0HSH0khQ4hw8CcVZgrFXXqqEfAjEJ5OuDF3KMEtEGJSJZY5gxBFFSFrKPEjWoSH9M2wN9jMRcqCaCdbjgCf3AsJvUlVrQonuF79++fceXX33J/nCQRDkXMY20F9Wf7z7MH/3W/8+P73Xg+vjhA8vpRN+HC309y4S9qB2gmb/cnOPxqHAcDNNA8B0GI03JmDf/mtD5LdAdj0eh0tcq2dw04pQxt8SFuEbmeaEbOrG7d5aH5yd2ux3jNFJBe1I697FmUozMpzNxXoRaXir5/Ttpzna9BLbTifl8xhpRyXbWUEvmfDqKqGsaOBz2W2ZnnMUGjwt+I2a0fojfJKMu0FL7aoog17YdDc5qzeYQvPZCtEqLIu+TU5JZlNDR9R3rIlVt9pmu67fnumbAXXyoJBGwKgfjrJXrqw3219dXVRG3nwX0XArn0wlaZtl124zXy8uLeGh5vwUy6yyDwo1UmJeF15/9jIpVBp8jZ+mzzDrMnXOTtFKo1Dbo7wI51SIjF30/bsE2WCf9Ja14cnsVY0StWaufmAWegSrVjwaRaqA2qn3JhF4cojEQbMAGHW6uhlSFDWaqwXg9CK0nIeupFqi2arAyFFNU8V5o9xdB5gZtsgVf49oMmrIbg2cYex4fP20JhzF1o72/vD6DHnhrTKQkSikpVfrQsy4SuPbTXufZDJ33zOeFZV5Yl5WX52fthTlu9nuRFuo7sipUhBCYz4vsaetwxtKrEsTQ97x7+5a+79Wh97AFl88TMqHayxjBRSnGWtHOSzrjeZHt0l6wkySmVVCNwNQIT+3RXuu78mktaFVTWWKk5SlOg5O1jr4TOK0o3FtKxTuvwdlsZqzOX3QYrY5BGMm5pC/npIpyTbA5ZUInbGNjLSlmUdBQok9JF5hQ+u0SiOV1PNaI10QIgW4YmPYH4RF0meCkR/f4+MLL85Ef/NqvcXt/T9+P1JSwvkO8mtwlG9LH5zSNX/7xvQ5cf/AHPwOK+DOVy1wLRqqupDYWwyisn4eHB9YlklNhnEbRAzOOmCKn01nmMtQm3lqDVwPJBiH0XUc3qHyMLsKkuPkwDPg+4DvP8Xjk7u6Om9tbRJJHVAWOryeGfqSkwvHlSEkr3lmGruNmP2/Dr2PXcXvYcT6O/N7/ceLkIaeZ+aSbWwkjP/zhD7m5uWW3PxD6jvPzC5XCrbL12qMpErRemte5j5Y9AnjrJDCom6z0K6RHZUsVRfCc2d8csBVcFXWSsqwsa+L88nq5biHw+PwiL24u8jcCD0aSsvecsyJ1kzPzcuT89LSJjk7eiyzOsjCfReVkWZYtkeh60TC8v3/DfDrx8vzM49MTt6qMMQwybGyM2G8IK0z8vv7xP/k9vvnmA99+84mnlyMpyaG1prKxspouZaskZPxNCD4pinSTiAA3gWKvUFKDjYQY1A4mp1qG1jrtF8mwMVwGy6EKNT9FUo4YexFsbRV8u495o2jojJ0PBO85z6oBmBIWc2HBGRlmjzGxrIvq5Anrb9DeaBs8b7YeULWXJkSNy/voJBDtd6LGYgw2CCT/8PDEsoo0FtVye3OQ+3g+sx8HnBebmvdv37Auy9Z7Flt5UcEZepnTq6Xw/PQk/c+uo9bMMs+UnCS46J4EOL2+cnx5IaXE7e0tTd8zxbglIC0ZA1S2KSq8qaxaI5VxynFzlZaq7SL5dE0yaoSpa5ZhQwUugtaaOCOJjHHCFnTObwoWpVaeS9EK3+KszHliDCdr5czSMYJxmpSRajWhbj5qwqruQmCcJknIYySuif1uxzSMeOc4Ho8XySfXzCO1v9pP2zo4DAPkgreW85pxQYbgu64TNMGAyx1hmAjjgB86unGi2+0JhwNlXbHjiJSU6kTRkmdd7X8ctPB7HbiO5wXvLGtsrrOZ8zzjO68meBXrOmIJzKuhuhHb99jesLu9ZZlXYi74sGOJZ5YlkzLkakUd2YVt/qsiEAzV4ovoz/mhw5UqlOD9Hqwc5phAN+zYH+7pu47nlydinLGux7gBSibVmdfjwtAFujDw/suvuL+/ZxhGjk+fOL4+s5xPeFso68ySIlGDqHeBskY+hp7T65l+eMIHz7zO5JIZvvmwZXxt4PKijlG2auvaVsArzFeUQSaUb5lNKqguWcqEvlOLHUkOnMq2tE3biCdr00hU0kFVWvilYY1i8UFec5kxetD64KkVqYSzNra1r/B6PBJTkmHO85mXp2fpZz09saZI3wXGceDu7g3TOJJz4uOHbyVJ8IFx7BlUfeDT4wPnpZCyDqJjSdVsQUbUuAUymxcRM8VUHSrNCMQzUq0lU0kKu6KrpUFyxmT6XqAaOSyCQHxVVL3neaVZmRyPZ+lZUhnHgd040nWB4+lIqQlUUbtQN23NYRjpOpmrWWMhrjIk3Xc9y5poIq3n01nucRVoufMdvpch+lgyZil4L9CT2Q7qi51LCF7go/nMukSMzxhfcc6yns46AH6iVOnhpVxZ12b4uVJLpes8XfZ8fHig86LPeTfdiavDKiza0Hl6JZkIOQNSXHl8eGA+n8g54X3YBpWh8vHDRwkWxvLx2w+fBZNWCTUh31oulPU2ThC6TipeC7nW7bkAvddsQ86tmoPLoC/1ojbR1PbN1QhD0STAWHH+buK6DW6upe03QQHWddH9Y6UquiL2XJOrZG9lYlw26bsGuTdN0a7rlO0n99NZv7EMrw04x26kUyGDuCaeX4+czyvV9thbQxomUYpxQgBLVb+oJGP48PzMeH/E7/akUvBUXOsLt4l+4y72Kb+6q8n3O3DFteDGALYT59maOK9HBtdJpeAcw24njUnnmLq9LFTneffuHd/8/BuWeWF32PP4dMZkRwjQeTZxzlLT5u/Vhmitl+HMcRi3pv/t3R0xrZzPR3K17A/33N+/ZxxHTueVXCK+G7B+JJcEdmZexYXUuI7377/k9u6G3jt+8fLE6fWF9Xwk2ErNKzlBKkZwY1cwpfL48YHX51esFxggplWatc7ShSAsrr4TokARIWHjBMt2XnykNrgILur4Oav6iGTeYm+QN3t3Q2NGNiq2wmdcsrek6gVw6Ym17LL9jHOizFBUDDgo7u+9l5meJJp5vpPqMOXM6+m0mReuy0wpcDydRHpGB5kNlZvbG3bjwLosfPw2s84nGEamYWQcBmReb6banmIMxYJ1HViP8YF+mshF+hveW14eZZDCWUNOkYqI/B7u7jb5rXVJlFWkiwTGEQsHYy1h6OlGETrFNCarYRh7Pn16ZJ5n0lrJgHGe4B13d+949/aecRz4yR/8gd4XgXbQoJWyJGfGBjCe0FnA431mv9tLwFubMoYBhNQyTDvGaWLa7Xh9fWWNi6hJaP/DYvFOaNYG7Rd3nWhuLjPVdFTT65fjPJ85nVbmpWBsoBQhrsQ4I2JRhb7PAqeXytPzC7eHHV0fuL2/xXlY5pn5dBZiRucZB1FIj8tKnCOfPn5knkVtpq3J1v9MMQp1fRg276nWf0o62NuUaVqftEGTXddhvLgJV1OZU9SessUpGaQlW01gNueMqfnS6yyXNV5Lo79r4NL10Wxi5H+qgAP80drDCmuvat8d99keou0fr1VbyazLia6TfmCvyjKNQdSqzUZoasGvKfY4/e/O93TqHVhy5fn5yHmO7G7e0vmO3TixnGfMMFAqpFJJtZCNIRvLx+dnbk8nxmWmOsfYkh4D5HLp/+q9aQHsV3l8rwPXdLjn5uaAUwHalDPTzQPjXuRG+q7n9v6ebujp+p794UAXOrwXFeif/O7v8fr6ym634+27H1Fqph96hl2vqgGG4+nEWbXykvY2GhW5MfBub2/ZH4T5dnx95fnlhffv3/Pm7RthBHWfMC4ClpfjSimVfrrhiy8s+6nn/ZsbzueZJwOdM8R5Zeg8N/uRT87Qa6borCdXp1m8JwTZFKYiZb0Gk0IVu/oaiaqSUEomZ8Hk16ZArzANaHApl2HTBrsamuWJHNQyxC106e9SvjEXfb7WS6g0d+arVarN62SaX5IlWEtVVYLqnEA2SaoDi2glOqDzlhxFcT8u69afEVuHPbtpouv6TWV71QPqeDxiXo8MxwUXAm/ff8mPf9OA61jWTCwQhgNgCF3PmzdvBTZRpfaHb7/Bmir2M9aKpFXfUypiw4EQP87nswZ3va6aUQfvWfQw+uKLLxj1wLDG8Lu/+7scVd6qC4Gbmxve3b/hN3/8Z9lNEwb4u3/37/L0/MJ5PnE8njbPrJQz+9sblnnm9Hrkiy/eMwyjwNrO8+2333B8PW6Z9zRNvH37li9/+GvSD+wCP//5z3h+eub1eOR4PLIs5+1Qz1nMNcdxYhh7UpKe7rouOvAubDZsRxhmpiijJS3pKSUS40JcZ/Z3e/a7kbHvOL48sabM6/HEfj+p+7Sw6GJJLC8LHz98kL6O9rTGYcDSXKtFGUOGrzMlaa84JopKKjX2YFOkSJhN0mhdFmrKFGupMVFtlT65MyxxZWldB1u3/dDIW1WTwKBwe4Pca82fG72i9iC29Ye99kD1yxhlnl73fiQZbFy/Uj7XEdxEmGsVOaUQcNYweo+zBluruLk3kodSYtveWnPmrD3nxn68fv1NO3JZeHh4Zo6F3/jxb7EsiXWNvHnzjrfv3+GDtE36/Z7xcGC6u+Fwd0sYeqq3Kkt91cky105h2+b4lR/f68D1ox//Od69e8vh5o79QQLYsi5C2eyFAbi/uWFZV47nE2/evWPoBh3mC/zg13/Mui68ffOWl+cXDDBMI4fbPb4TosW8zJxPJ/UPSiJIWrJSvi8N3GHoWdZFFdKfpcd1c8P5fKbawOHjRwyGlIpaoXesp1fGwXN7mBh7T/AWa2VAeZomDruRP/tn/wxWIbbzeebTpyfmeWVZIhhROEdhvuC8JjfqNdQO0FKx5XopVRySDYIerkWax8Ug8KDW8a068hpgEkUo06jDrma1Ov8tbE6kd9KgycyFubQxrdqfXJrZrdndyAylagAuqq+mPRYZeHS4TnpGgxmp1nBzuOPu/p79bofXORXrPIe7e9Ysn976nq++/JKbNz/g1368YPuJZa3kYpj2d5yWFWMd9/dvdBZOhIsfPn7AO8PQiRzWOI10g+D33ShyWMuy8PL6umnlXWwz5IMvKij89u07GY7V6//Vr/0Z1nXdRhd2047bw4Gvv/iC3ThhjWF/+5Z5FUPTNa4y+K5JxribWBfRvmwCxN57vHVSpZzPQrowIni73+9588UXQlDqAt9+++1GBlrWlajCrSGE7RA2VtwIkvZAz+fzlrnPy1k0IueFWirWBO3rBVKaOZ+PnF5fuL3dcdhPjH3gwzc/4/j6TIorfWcpKQk9exQJNO+srLMqYwRpjTx+euB0PBLjAqWIPbyTvmVR9MDJ7LaSAawkH1YCVlA2bSmWGjx1Izk4SpXkSBiaVSWxigYskVEStqjEEZHObkPnss9qlcBRMMKcRCgreopv5C+a2KwmcJf9cNmhQefXatYZUw1+qVbpq5eCyVlQIGvBttGNS1Bs86piz2RpBqL90O6Ppe+uPMWoOOeV8XgmpopbNNmNYkNzOh3Zrze0gf0YV9Fv1LGcyueBWD5vY1X+cbpanz++14Hri69/ja++/IL7+7e8efeWYRqpFW7f3MtgnnMM48TL6yufHh949/69zu3I4bfb31Jr5auvvuL15VXw9aHn/s0tXS+CtTEllvnMui5bn0Uo8CtGWYzLMm/CucfTiePxlcONqKM/Pz3zfJxxYZRFngveOfZjz3x8Yew9h91APr/SB4M3hXm3w5vCNPb85p/7MTlF5vPMw8Mjxv6Ul5cjx+OMDBBJJpNSUpdXyNls0EYLENXqxtKGsZBGQMKObKqq6uTFZUpNG/SHBjlr3cUOvnLl5iomf5saur1o6n0m7lrrtqi3xW2azJC9wIde2JEy7C3KA5vKeqdSQU48qpwLouUYAjc3d+z1ugdtxDtv2R3ueD2txFTBeg63b7h92/MFATfsmDVw7W/ueT3NVCw3N7c4Zet13nFz+4bOO4aho1OVkq7v8KFjUBbnsorwaU5pYz1SL3JjIgqbubm93dawAfpxvw3RGitsuWkYeP/mDbtJbChWHUausF2PUkUXL/TiYZVjUkKKHIjOOZ6fnojLSufDlhgE73nz5XvGST7D4e6edZlVQLnIoCyVLnRcq2cMQ09OiXlZOJ9PmyTT8SR2NiLdZHG2wzlP5zvWOHM8PvPy9Mjt7Y6b/cTQB/a7kU8fvuV0fCHFWVwSnOewm/jqq68Yh4FBhZ6X88zpeMIZsahflpmSVnZqKLq6haLuyM57ihXVF2tk/EKqfxH1bfNrjaWLBpCk9HbfObwTHypBKbLMCMhSFdUcRTGCsvpQS5dqDLVePL4Uq6RJG5mGOrQBvlqvAlfbaRfXc7Y9UwlWTC4TsOSMqRVvDJ3ulyJyJRsRpSWDbezl2kGgiVRfy2A19KRBil3fU6qjX6IM9ndBE7Gyva+2rrfPoYFRVIkatalugfmzxx+j2oLveeD64Y9+vKk1DIdbhlF6TsNBhhaXGHmdV4oL3Lz5At9PxJyZz6qOYAL90DPubnl+OXM8nZgfnllSYdyNjNOgEjodvu8Ig8FHEdosRvT5bIB+ugNT6XOi363cvskXhWz3LXdvnimIrbYHgjX0wfHqBCp8e38gzztu9yO7MfD45oC3laHzfPX+HXFdOB1PWOs4nWf6YeJwE+k7kZnBSB9gXValykdKbgQKGXK+Vn9v9gtVK7KWSULZ+lWf+ULVi3V4GyRuTLs2Dl/a7NOmeC73SBhqrQktKvxC4VWPKZ2zS0Vpt8rc7LpOhERn8crq+l6yy67j/v5esmSDzJGplNO0P2gfUjeilXmiLu05zpXjSURcl1jFvrwbwXTEtDDHDHPGhgljPWuxLK+L2qp3xOwxvsPTM5/OPJ/EKuLtF+8hgHOGNRnmFVJS6xkXtky2IMQWYwwxm00M2FrLkized/h+JxX765Ganxn6PbnKNZ2TmFFalQjDak8yLyyp0ncT+5sJDMznmXVZcc4QswU/4Pqe59MT5/OR4/GV39rvKM5RrKfgsN3AoCMMjUDTZMW8YRs9yDnjl4VeB9mttYTXV1w3sK4Rbz3B9XgrA/cprxyPN+x2e+5upOLqOkdcZgnaQ088y2iItfDui/f81p//87y9v+fuVowRnx+fePj4iX+y3/H08Inz8ZV5PjNNe4yBeT6zG3cb69EYKxCvFdmtlIWx6Kzoejb2pqx3WavLchadR624UsxqRLt+zkbU4F5Lklm5z3pPlQsdte0b2Qc5iy6grv626zYDUNlRV4o2RoKhLTKHKQP+A7XK5xWTUc+0nzDOcEorTtV7NkcHDVpNUOBakKCdBW3YegtYKgSQc+bx6ZWYCr/xm3+RGAtdP/Duyy+4fXOHNY51TYxxZbfbcXt7y92be/pxaKUjteat8sReRa4/ZtCC73ngWlPl9bTw8HTk48tRCAoxCmXbe3KR/sMwjUzTjpfTzHyWgzCuK/vdnv1ujw09/+T3/oBPnx54eHjgx7/5Y/aHi5BsazB650WHbI3S9C6qrKyVV/u72IU4lrXw+HTk5WXm9bjSeYtJEUdhMZXT8QVnCukwid9NJwoF6+6AKZFSIj/5/T/EID2qQuXtu3e8e2ex1m92EnGNPD0+khexHDGqzSgq+OmqTyWDgy24LOfzBgU2xZEWpNqsVoqJlNMWwBp0Iv5VjkbOKCXRsHs5TBaae3PQzL1WoZ2jzsDed9IfsiKzgzWCm+tGEwX5mXld2O32DOPAsNuJdqQ1KvIpM2Sh7/GbCgDC3nKBmCvHpxPOD1QSr6cXfv7tA90Y8f2OQsfTy8x5TQy7mdCNWBfAOlXdMDJPpIzFoe94fX4kJqH+f/18YrebcNYxLzOPD4+kLAFpt9vJtULZpnJ1NoUQ0Y8Us0FjDMMwKPMv4YCvf/BrnFY5PP/J7/6+wFgGUioKaamtu2330NL3wghLMWFNlSQtF8ah4+XplWWZWdeZw5s7DscT/dCpdFbeiDPLIlp1BiN6mNoLcd6RcmRdVrkuw0DwnuPxlefnZ/V9C9jqlNzhMTquss4nrDXkUumD5XReqNXgbSDbFWMEotrvDgQv+pePj0/iT7cueO/46quv8BZegyOuAzeHW5x3lJJYZ7kfwXtA+pLOGlVvX5TxKsoi1EpK0pOSRK1yOgnjztRK3wcdjM7EtGyVMLUqHV9HIeAqaAEKoMlAue6lLKSMopCnxKtL4Nr+y1gRpdWKpSRhg5ZcGMeRaZoYVcNzPp8FLi6VfhxF93I50Q39Rm66rrzGcdyqrEZOQfd9m1n77hegUmKVvu9Jedkq77SuYCzzLGcEhgtxzcjAd7NMySXjtx6BurfXxjD81c/+73fgWsVefI2JqPTg83lmLQXnhbDRTyPFWKoRTPd8ntXLZyWEgWEQuf9zsxd4PfF6PFONI6Wq8yA6mOw9SYcPz6czZTMXrKxx1cNYaPQpFawtLEsSdlyuVCc25JTEilYvanUBcLmn4nCbo9h+6xgO1loOh8Mmthl6EZE9nQTKJHSQC67KQG0u4tBbqsJ4zhI0cAGYUmSOwxoNRvImailE7TmtxhBT6w8L9GFtG8h0GKwu1CjJVcPqiwwV+yAagG2+KSWlEVsrKhp9J5WRFdPNrhcijfQd5LW6oRcB32lid3OgqrJ/oRK6XtQFug7ThrwVknQhUEyhVEPoBpxfSQXO80qxkc6I99qyJuYlUV1kTRbrxI5mnqNCcpaUVlKuxFx5Oc7EuGKsYf96UsKUVSv1oxAbrCVlPhsEbwfGmEQZJRcB/44noT6vUaSHaikEZ4mpqG3EmaeXI9bJ515jouulR2aswzhVoUiZcRwE5koZZw2n0ywHcBSqfYyr6GsuK26eSSXxug3my3VbVh3eNgJHGmBZI8ayweRigGipasa5xMi6RpwDUxKmWgwRayoli1FlUg8rg7gOOyc+aHGZkQreXelwispEdm7zf9vvdrx0HYv3WFPZ7Sb6TuTe0pqUPSeqLE6JCesatyF7ECiuauACHaNJYmtTUsLUym4YSL5pnF4832qtuAaPfacPBmzyXe5qWL3kQtL7bLaT2mzwofwXyjAUiNMYVcjJonwxjSPTbmI37bDWsfS9ti4yru/IphIdompxJakGbAlREypogavd6+tqslVpLXA57yimahBk+xmJ/rLRnVeZODXCtc4qPH453y4l1tVkZGuK/4qP73XgOp9myc5Dh+88pRbmRdh71jp8L86rpVaOr0e6od+kgpyTimWYdoQgh+U0TcSYMcZTshwkrHE7YPxmqicHgejPScVzmoXGOw4D1gWhJ+PI1QBON2VHyTojVQq9Kqxba6m5ConkJBbg63yipEjvPVwNf+72e8ZxYrfbY4zj9aVp/QVC1+GxBOM2uG9dVxUDFaHfYC9wRO17wdMNnykF1Frx1pCilbBk6meZmDR2ZZDUGFHbzjmSc1ukAgsKBOHoumGr5uRn1Fiv6yVwOScuulbo8CEECpVBoTTrHXdv3rDb79jt97y8vErlZg0+aJapElVJG+MbVFKl0px2PeclY53IPBk8IfQ409H1kEmEMCDktEoXPH3vN7q0KHg7Cg5cjzNeyDnWU7GUaqhFxHhtVTWGaqhZpZOs2TZyypV61XAPQUkNLuC9BIquC+RqySkzL4k1JrwR6DHVSmcDTu+5tVYUP8osr+9kFqjrOnIxalbq6QZRZZChZ9HqzBlSlFm5CgQdjrXO0QdJBnKSBEoq8UxOBTM4vOvou4E1rgQ/UzJ4F0TZvIjuYqmAcTjf4VwngbYaqbatJfjAMs9UVfgQmwxhCi6nmdhUPAwMfYepVYerYeyFaDKNotnZqoxVPbAApqmKt5QaoDYIPARJIpqW5nyyFO+wVA67/TZkvCwCtVkrti22XsSJ47JeellI4LLWEJR000ZLYk6b8oY4BvzRs8xav6msbGSJCjWLYk+rupwLrPPCuoiRZraGZCp+PwmbWoNT+5xNB7RVXA15+XwO7FI1Xge+ECLVaIsAtp5YGEepnowhjD3nZeW8ruz3O0kc1GQ1K2FDsvFLx/wzl5Nf8fG9DlzBG7z6lzQDB2dB1J8KKa2irt4WQpGmpgUoCWqmpJXj6zOn4yvn84mUVmyVmR1qoapCQqkVE2RBCgyii9M6vJHGfLAyOLkbJ3aDNI69FUfh3gf60FFSFEfmuBC89CtqLpsu3zB0DO/ecz6+EJeZmiPrfCYqMcQHYQR5HzDWU0wl9J77+zvKukKuDL7bsrZlWZiXWTIfo/I1mkENuwFTBd7YFlEV5fHcO1JMdGtHH9eN1FFpNFs1TVSoMGWvg66STUk/RyWmXLjS+7NYdSN21otDtPNUH6hGrC6896SShbnX9/RDz/6wJ6iI75b02dZnE9jHGJVE2gZHxa5mGkZScTjzwnyecX4UIo5znNfEejpzOs7YJYHxON/hXVAlBekFpjVSXKZmkYiyGGy15FiIJmIMFFWrMNbiMOSoeoK1YrzbZKvOxxNpFemfcZpElsmIZqHTjNthWOYTKUXWdQZTZG7OGuqaWZYzMa1Ypa7Lw3A8yqB4LYX9fk8uUdcvUm0lIV4IQUd5cfnSmqlVKpBSK64meb2SN7kqU8EhlXsXgvQKjcdbqW5lZtJLgDZZ9lgu2uowNJPXahy1JoyxHPY3oh5SDRaBtoKzlHGk0zmqFCOWIgSiFNWKRXQ85bB227lQVP/SKHRojREEYV2lr6dVUxPgjjESz2eMgRA87754p/2tyOl4YuwlcDX/LWNEFu70ehIm3abUr5qG1kpfU59bfNIEORC7krqRmgRBExFiZy8VV3OQrqXifaDvO/peGNE5TqQkivZrymRruB06umnSpMOKCk+W+xiC3wahcymEvsc52bfWXN5rrRq4uk56m2El5pWHhwfmmBjGlWWdSbOo1Z/PMy6EDTZNKWGdBGCxdMmftVB0if6JPL7XgavvAsZU5vORnLyoXOSIsxCcpTqLM3owg9gU1IKpYuoYrFG3YbCq4i3/XWV2iLrNXVgQWi1sB7T4BYEJns45grP03itlWkpwbwzBGoKTAGb6nkQmLWwSS+u6MoSOJg8UhpEUF2FCIeaNKUkgMkoLxyhjx0gmNIwDEahJ5JDapnSqn9j6F0LDNhsjkiuWUGsw11pJzuK8GGG65LfAVdoQpbn4c9VasNnodZFg0nTUgAuLUefBjKqpG2MpGIzz2C5QrdfA5XDtYKlV1PC1sogq4SOuwxcWFUhAc0ZgmMZ6kurRClSbM3ldccAQPPtpwJrCsRO5LesdBYu14BCYxlgRhbVIwiN0f8V0a6bmRM26G0vBK3ZvjSVrdl5LxVW7zb+ZIqaIBvFos3rN0cTKOyvuATVDkdlBo2tNcVj5EqF5zWpRUozZxiC8NRTtBZpaZdjdq35eKdScococoNNr6K0lG4dBRXmrVE22Vu1UqPq59wTnZV1bizeW4kRRvzYvKY9UoYiwcPAy1N8FQSZyhByNXA/T3Mj1NVSwWGBDS7FGGYuNYHSpTKwVNl97OGe39xlC2OSSuCIbAZuEU3COeRhE568P7A9iQLrGlVLrJrrbelSiB6iSaU12iWZtYi5STiXjV69Gkp5+GPQzKitXez1SkAsqYzSBGXRIXsYLHEGHi0OvbhN63rFGirX43UgYJ9kX2u+8VttolVWJcavKZM9cjDqb80JjXjZLn43q/llPQxLDzrnNG63t0aboIgmT2CFdcSv/JI7+73fg2o09hsrx5VHhEUu1Bm9v6YIoLIcgJbc4qCbZJCVhKXTeMgQZ5B2CZw2eWjIOkSrxFHAGXyUrCU6fC5XcKXlrXA+qwdYHz+QdQ5BDvXcIldVaeucI48BqCufXZ0pOIkB6hN0gt8IaeR7nPb54dkMHpmxK56HvZOB6W1xKIR8HOYxcphuHzYIh9xHfq+o0hq4T+Msaw7KcL0zBrH9q98gFgRtdDviYNuz7euMba7YKzabL+zHW4LtrFuKVLUPXbdI5IjhbsN5JNeWEBi8HyqUnFAZxWS1FrgPO4lrgNNLLsO2wa9CHBh7pyRkokRIjeV0I1rAfe97eHBiC9DipFdfviEk03YOVPogpYKvDG3DW4K0lGoHWSoaaVjUxlYARpGEhh2oSlfei68kgowTWgPXyM71zLAo/1ygBLTjP0HtxzCZjkDUpY50GW7Mc4sbgDFQnSU3N0ptzVvosQ+epOWLFFEvmBI1j6AdqSpRVexpUZZ4agX9rIWeD13mHjAYvY6QXaQyDC/TO0zlP7xydc+A8IXhSLKI074JQyo08R98JHD8NnciYzZ5VrVIURNr6QkUTq+K1QlHSTwii7EC9wNft8AU5iIWAdNEX3AgJuh7hMnxLhRykj+i8k+pe9RUX7UMOvTgG51LASl9Hvtdc1TUhUZkor73WXKSX6dYV572O69SrwNWIGS0Iy5doMMpsoJxbGqy9E6X8tsatobiFYgzjfo9XM8u2D68D1zVbuEGH162BBi22fXqp4i/vr/W2jVGEwEoAH8eR/T4y7XfElAWdqFlXvgQxY3QE4CpwfSZK8Es+vteB64s3B3a7He/e7Hl4eOT1dOT5+MrHX/whwzhyuL3FHw5CppjP+K6j5kpJhZQi3/xh5fzyiffv33O767FlZT0/E2ymM1kySddtmUPJs0C1tdCZQixRko+Y6Z2I4+4Hy6dvfsbbd285HA7sOo9JC3l5xeyc+P6kyG43Ymrg9PrC73/7C5z5Abuxwxz2/MFP/5BapLFtasV3Pbv9frOiX9eVl9dXUYFX91rnJIs1Su7Q9Fto/LvxQmevSaCSCn4cNFuFuEjTXmAkIEZqjJhV4INGULE4nXEpCpl0MuYSpQkO0hjHORxi335tZW+sOPSadhAhxnc4sedw+tX6AaVWVoVJKxUfhJDQusXGXVTM3VaJSvXnzcUba64JZxJjsLw+fEN694bRG/qbgceHQl1fOZ5eEI9DRwrD9jrxKM9bgJXKaT6xLjM1JzjtmaaR0AWCD1feY3Wz/XDBAwtrWoU00QWxD4mV54/PwjiUGMt8PvP0YSanyE0vbz6nxOAq6+mJlKX68xgJbDlBkoSMUojrSViMxvKYZowGgrisLKswDJ9r5Yu7HdYJQjFYRy6JvGbO59N28EEQOLsKIWTajQI/rytPHz7gcibc3fHF/R2+wvPzC58eHohF1MV3045lOctg83zmZurYTx3OjuynHefjC/P5TFxXutARnHjbNWV6GxzLski/sRs5H1/oOhEC/uYXv+Drr7/eejLtoL7AeRcmbRtNmY+nzfxx89aKsra6QUYqunHgnKOQoYLn7u1bjDWioL7M2CKDvsWCmwZMzpAFwmzrHGcxpWKKUO5NLdjgsX24QGe1Qe4X52kppCWJ2e8GSdZy1qpL5N6yFaSlUqkebO+3PrAM6V8C+bVC/rU+aAuerWcNF4ZhC2bt94z+TtTEtg3KWyfyUS8vL8TUXMcjRRPOjx8/cnt3j3eOGCNB2wUyOiMCxZU/pYHr7mbH4bBnvx/YjR3nZeY0nzHWSbXVdTgPYz9wf7ej6wZlWEVeX17xtlDjQjwf8QamwfPmds9hHOi6oKrdwi4qKUrPQheNAZzJeO+Zpp7eV8Zh5LCfeHl5oaaFtDhMjQRXCQ5MEc0259SO2wVMTaR4FqJCkGFaYy3OBbwzdH1HTovMn60rWTFzQRmUMGEvAqCt89uSmSpuGhQjX3nz3xFIqioDSlJ39S6yZuvvlCsorkF/2dSNbeQaSqbPD9Lj2oKnPk9Th9Ye/D+lQXul9dbevLn8QG2fSeFa2uGqfJCth2ZUjcAaTDXqYO2Yu4Vp8Ox3HRhH5+X+OecYO8N+8IQkOnvGOIwLFC7VehvuBIO3PclDLZnD1DGOncpDeVYr1Uqtha6T7NvqPehHsdERwoPYupcYhWPWRgdsTwyGlDw1LRLIXcXtepZohWJcBQJuh1QXTKN9yr3QAytHYSt6Y+injt0oPkk5Jsq6iO2KtRvRpFpD9VZhHu3ZILdx7AJ7JTd1TnzLyIm0nFlNpqaIozJ2gbpG1c87c3x9YZ1nUlyhNMi1klNknWfm05H1fCLFFW+7jQzTdx5LZrWGvg9izFpFFd65C937j6g0XD2uB97tVXXx+Z+Nhep0qF3rWsOWHFVd87kWclUIuRR86MguQ07kqJdfE5xquKx7KYGlldH+vZ0kpm4K7fI7FwUbY40C1EVRHjHERWHwXIsO/kMb+v8jA/7feVxfN/Oda9KIa1sFaxTGV5Pe1gsrtW6kLYywlb1Wt1Xp8bVh143Ute3levGV+7+4d/93j+914NqNgWkIjHimMQjbr2RKEYXnmBMxSaZ4uL1l6EaRzFkWPrhKXBOUleX8IrivhZv9QOfAU7Hqi1SiBox1hXZgW6vDxJUhWByeafDsxsByqpBX0gLklc7Jz1iKVFFGAs00So+llsg4ycyYdWJY5x0EbxnHnqenmXWJrCptI/CX6sFpRWO1p9UO+KoVkqBl0mO43nhQsPgtcBRr5OCq6PgA2xequtGayUWfzxix1zC0DXkJONZqADHy3K0/U/T7yqbVRa5v+gpa3HQOW0+gJQzyw5eK6ztrokEvdXsNpVl7Q985dmNHxWkiIU3+qTPcTIE1QeiEFVqwJM0yU85U3aBCi+7IuYNaGAfp2zgvenqLq5tYse8EzjMGUikMXb8xJtelspLJTj6O0/6KswOlDCLbVRZcDfjgsF1H31lSEZYaXPqMtSkWWEPnAzEm4rry8rxIX9N59ocJb8UqZJ1X8irJkA8e15lNUNYY8aKTCh2o0l8bgmNUyLlzRuD2mknzmXOayWvEkdn1nUBkOZPiwnI+in1IFXq+wJuSdecsFjcyZ5Wo1W9rxzu5noZC1wW64CipuzDi/mmHXjt0uU5+2nozijRI0tYqkNLWljGg17Gay7xRe5rclNC1f4jJdEOPKVZdIcpnSVfVPVFls+tz6j7R91GouCrUMkkfZVNkg+4rgQM3P65yod+3/y71sg4ugeD62lygVqifBy1FZWT7XSnbaOAyxmKd9gzb/lUIFG0rWGflTER82zKi9GFasDJcwYtcoHv+FAeuv/+//R2CWmAMu5F+Grm5vSF0vc5xSNM5LSc+fXtit9tvTcmhs5RVpJSeHr4lrqsyYRJPTy94FxjGiZvDgb6XjHqjlDoZvIXC48cP/G9/52+zLGfevn3Lr/36r7ObJsZemGGdy+zHgCnCRoqzWI/Y4AlhxNmB4O+Yxh7rjFo2OLrO0Xeefhx4/v3f5+HhQWR15hPBB3bjji+//JJxHNWyfNiau7ChEYDARsVU8mfZniVvB4DUkEUZRs5YqvVg1cXUwFVYolp7+btuSNmUV9meZoDbV/tv/Z3rRduyT8gy/1MK9uogSEnsZ9qhcHd3JzI3VweL/FvZMsKcLlDJsiw8PD3z+vQE6Yx1PXF+4eXxG8bdgcFX3t2OYBz9uMf5QAFiKjoPl8GIkr2QXRwg3z8fX3DeYE2llgQuSl/LFOlJVQSejitr9pQoXmi9MwyTZT/uCOry2/U9FqFdx5h4ePhAWZ0KtArZY4N8oUVpmlzUMAwMoWPqOpg6bsew9XmmcYIic1TnzvLw8Ym1ijZd7AZCcJszdtEB9hgjUTUAuxA427xBy95kjIra5pipyrQce08ploKlG3re7nu1+yi8f3NgPwZ6b3h3d8Oh/zHLD77idHxmXV6Zzyd+8YufUfLMNPSMfcA5I6rnzvLy+MA3337Dw9MTx+NJncmFCHTdxynpQgW3Vm3kc6Eao4lb2QgsuVZZty1xayhEqVzPaOUitiVrShgNLLtmda9BPjeGYb6syVJV8d8Y8gUguCSYpWKtQIHyTQmg1UoFLA9HzYVU06ZqUqvsU5njsxgXRHQXhUyreBNo508qv0bcUeYnpqm6KH1igzVUb9EIWmAV1ss5Mi8n5uWML2J2WbZC32zXvxnvxgbD9sNn53bO5TOY8ld5fK8D1+ODePCknBh2E8M4cJ5f8Wp13bIa8XVK9L0c8l0QFQCZj4IUFx4ePnE6Hnl9faXkKk3gYSDHswSHodd5DrngKUXpnZ1PPHz6xDff/JznpwdKjvzoR7+Oc5DizDe/+CkfP3zgpK69MtEvB59B4DrT6yxXLeKOK1gXOVceHp/5+PDA48MD5/OZtK4MQ6ULA+eTeFgZDN4FnAfjPjdKkMqjUbSlM9IYP60fBIZqLNXo9xpWrtbb1kCpQv8uFKXQX5q2wAUSAIU63ZYBN4Xq67+391iVXWjQRrv9HMJo8zRJKdoAj4+P0tOoosTRAlzLBoWGnFUNQv798emJl5dXTqdXrFt4eLDUmpmmG8XlDVjH8/PTVebeBkUrxorBpECz2hwvhRiXLfkvuQgTrZStWS/+TEXEa5VgM0yjKpsH9Z7qcd6zBKGR55zU8NORsxh1rstK0pkh6zR4ava+xrgdsF0IdKGj7zpRoHeOaAzHlydyjNLfzRmvPmq1RpY5si5G5pCMrI9SioinRtH5A8PT08UxuBlK+qZcsYr6eMEQcxIHXbPX0QSxyXl++Mj55VFEXI3RAXbpqZYUOZ9e+TbOnF8fGfqOaewYhp5pGhj6jvl85tsPH/jw4QPH5xfmNZK1V2SsMCWNKRsTWJaaA4SN+xkxQBmZbf0J3CbOC23fVMyGXGwlB5e5JyE0CIJRUEi+tHWtFVsTilc4T4aRzZYG2oY40KBuQTeMNRvRokGPxllMVcX32qonhzFObUwuCeX2aItTf75+pzpriRAYrDWf/erWC/M6woBUlrlkrCJb7XNXIJWmOi+JlsxzJX0LdVtH1/v1V318rwNXyiu2IJBHdEQnsy/ruirMVCnWbOK48zzrrNTA4XAQPD2I+nfJMi9zOh3pQk/OkbjC6WQV1lglo9ZyWRx5hUYd48zT0wNQ2O93vH17hzGVs/d8++3PeXp6EldhY5imHXgP1RHXRav1wrKcMbYQ08IyzzJkaWCZT3LgzjKL5bwMzoouY6Ojt0VGw90QHSC2vSr+P23jyVfD02RvXqbhG5328sWmy9YWnsAllqZwLqr2YhvXBpTbZt/M9rbApa9Lg0cEj7TWXv173SCfopuljSE0FQSB8co2l7Mxp4qoSIjMkvRxZp17EnfszLKceH62xDVirQcjQTqqKam1Ml/WmGI0mjHSp2vw5VYvqjxPTKv2EI0cjKWQU2GJojcZ10iMI3nc0Xe9QI45SuUTZRA95UTOmbv7O3ISyO10fJHAZaTvKQeVHCTLIqrxIrQsdh/jMODsPd6J0O88C5zXIKDh5g6qWMfEuG5VkfQ3JLFpScPW5EdMI51z7Pd7SunJ2avVyZkYI2sUz62u6+i8KlnkQkmJ5XiphPrg2E0jXfDkHEXkd57JEdJyIgTPsQ8MYycOvtMgxJKXF56entWupsg6buta9/zW7tM+8AYtb6y2SwC67A0u632rVNj2BPpvmMu+yaWqODVXSY7++9XArayay37a6ITb85ttbcl/16vXqtv7N+pabFS2qur7sNrrlpnDPxK65FWu0JD2dc36lT38eRW0Ba5tYFnRlbb2r1ETTdCwzZHb0UhtbXxHf3ILZH+cx/c6cH399VdM44DvO8ZpEjt6ZzkvC2tKrCpq2YZajzpRL8OAHdMg2l+7w45pN24VV9+PpJSY51n8idYTy3ridD5Kz0YHC9d1IQTP27d3PD7eiKZdXvnFNz/jm2/FOvunP/3pRjHtuo7Hh7Ni1ZVPn5oUkgxqOvV+KjkJc8w5bm73vJ7OhNDz1Q+/5PZmz83hhrvbe1XjNp/Zh1+AiPbfrbJqtNRWSYicj60iSWSxOP0du/3P4Yzb0D459CEbt2VLne90gxmUkicqAQpFGNPIEnb7+9Z3aO9YZ3agWZyYy6yXNsxtUYAcUVfYmFP6HC3YtofAaXXrdY2HPefzzPk8i06dYm0V9R4jQ3bCFKwVcGDUW8payHHLONtVNtYwTZNAg6VSErjg9JiyGrgkoHUJDrte/i1YgtpQYCsQNRuVwXbnhMIwDoFak0hHObWmMQZMAdPoygXvEBTBybr1zuE8VNTexoDTQfVmJtiEVJclMy/rhiBcr6GWCMhzVGJcyMXgqydlD2skJsu6is1Jszu5v7+nmMTzp5MIP28MNSM9rSi9rU49pCqFjx++hVq4u7vHGSg5cTq98unhxDSpVl8/CCu3VIEHux4XOiqWZU1ama9oK1ZZppLAGduqZhUp3r5vhNGqlQtVSD22QjMmsUjy1gatJRkylKReWQW8USk1U7bAVRXxMdXgrcdaj7dg9DXaurXG4kxrP7C9qlHllZplL1hjNw8wKprg1M/Wf/2OrfB3+0gXarv9TF3DGLMxLdvebpV3+/mKDlh7rfCqVKq5VEqWPd45p07jI0ZhS5y7egdVr9N1MPvlH9/rwHX/7i13Nwem3Y5+HHHeUa1op+UisyPGXXxo5nWRRW1kwE9EQA1jHDWDlBvV9z3LsnB8PfL09CQX34jkTGsOi2hmsz5IvHv/VlSS7+5Y5jPzMjMvM9Nu4v7+nmmaRG2jCnU2paiLJ2nGerzQgI2oUOecyGlld9gzDSM/+MEPmKaR3bTjZn/g6fFZczRZAY05tQERjZhRVFCUZssgMIatqLVJy0FVowxHJVOMbFqh4hqlsxZxVFYoxlknlZNzlK36cmpBrsHHNEDzqrfVEAza5pJK5nq4uW6BKlxgSGNE8eEqcF1+52LdsB0a1uC6QDcOLKsIxErlJjNNoshtNSN2KhRq9TzSrLZtTrVoEeX3Jtnkt++3Obg2/IpWZiULGyx0HcEHTQQaJFUv18jKDJKWuIwqZdQqn3zV1C869GrQHoT+m1dXXKtrvskIebWKb/XGtN9t9ObT6bTN+FwedSNpAJtSfJP6ErarvK+oahy1CmNxv9vhjDgUn8/LptrSe7FFierp5a2llsrp/Mp+GvDB8YOvv8BZQ0or6zzz8dO3GFOVsBGoFQ43d6Q18ubNm0278xzPDaJf3AABAABJREFU5JJJuWyuw8ZKX7D1juQaO02IBKaUra1Xshp0VI5S6uZkbLU/5HSH1CrBJy1RK59yMY9sdNlW9gnbSRVHhKUrmKxcY6v3yl1Vg9InKyqbJY7XG/JhjYr4gkwHtn9zn9Uw16y9z33hru5wvQQ9+1nyy4VaX8ULUMR07UaaEthR37ExAlgoM9aYCtawrCt+Xi7XowWqbe//KYUKDzc33NzdMk4TLkgPolBFhgTp1Vgv7LtKpS+jLmDJGmjNUe8YhnGbhwreMy8L/TDgggwvGqBvgav1OKpUXqfTK+++eM9hv+fm5oZvvv0WexJTunEcef/FF+x3O1UvMFBljkyIB5E1Lry+OA0Eorq+qIJ9nM/kXJiGkd1uh2taco1VqIekyLcoFEdbYJfFWuTDftYdbtBE+/8GVjSxTwlaegBuCZLFmrL9RttE7WflJ/Q56xU99zpSXf+5VXMXeKZtjvaQOS0d0LaijN8epSqMgrmCNLh8Zu0VuBBofrVSdYsTttuClkhQha7TYVPtYeh1TFfZafMME0USsyl0XKtubwG0XARHQwgamNBhabYg237PWbe9Z1HVr1t1J/0E6VHFFLcDxIcgcF5KWx/WYnRmSBKaPgQNyJJw7fYTpRb6FAh9YxJuWLNcv6Jac1zepxCHJJEQuHwlVK+yQgaKeEcZ3VtD120ZfeelysspscZIcMJyfHw0lLwSgufu9hbnRGYqxRVjxR9MfKAsYBn6ifm0MKrbtSiwaNfYmC1oYWVo2KD6gMaAuShLbJ/1qkpphAkUBtxgrcZq2qQJJbC3Xhbl84Xd9l7VJJEqxbVFEA9rGnyoUJ+xtHEUqpG3pI6trTrb3qq9VGC2raXtlS9QaPuMGzxZqj6Bthfaz2oi1fq57VpZ56TyLEVd3y97uK3LqpWT2fap2dDUGFfWdVGR5JY4XBK2P7UDyO/ef8HN7QFjpMqKKRNrlotuncgOtfkGYBpGNZEUof24LNJ8RrI574Q5WEoi1Mowjhsh4JqIUGshF8H+bS0Y53jz7i03Nzfs93uej68kUVcFxFU59B3rfBZIx3q64jXwWayrnM/qbRQ8u0ma6jkE/OEGa71orlnP6XSWDAzL+bzQ+YANVjaGKkrUBlW0zLwKXFGrwVQhJbT9uPWePwtcF7iwOeeatkERkgb6+1Y63J/BHxYrzKq2h4CqYwTfHTqs+kYaytfoypfsvx0eulHVJqVh9NfUebk3dfszIyr58+nImoXgkaJYrk9dTz8O9D5sz911g8rdoG7XaQtIxn2uRBA6SWKSss3K1Sa8DkbXmW5KifN61qpF1ptTlivb57gcPzHGq8FtgRCtBuomJ2X0gKkAVsw1W9UVyvXhcOmFFoShBpVqhLZfyucLQj63kFak4lsly7dQrSOWxBxPnJezKCgMe3wnnnPHh0fIRdzGdT4QoJao5o2FvgvsxxGoLPORF2tB+3UhGIJ3TLuRN/WNKtpHUiwM3UiaMs/+RNePWB8UEXEYW3G+mZ7KgoqpbP3ZDZKW0qUhz9Ino27silpl4FiknCrFXSDfpjDT9na7d3IDFDrkKnDp9d6Sk9oSu4vuqTV2C2jy+7IDTVUMpL1UhZp1L4NUaSrhJa9jtq/aEiNZkPK8tlKzMA5FU1OcBdC1k0uDh+V6htBh3UXHsOWEDUJsrMWqyXJrBTSIOa4LFRGAbqobXhnJf6rJGcNuZNyNgqFbMNliCSqJJBcyZlW9APmeF+WFWrIw4ZzI+QQvDe8QAsb2+NDhgvg81VbyG6EqU9Wl1IkAqO86+nHCOM+asqgG7MXPK5e8ZYZtfZeKGrsZbAgYH5jmiA/isPv2/g3n05FlPnM+ngheRDKpUGIGL1nt0AeG0NOHXvoT9WJcp0xsQCFEY8F6KBXrZPHVXKTFYhDx4bpxDEWvsWVSoLCjXIeatZHfJmv139vfq5HgU1t/y5jP/n79qFpttfy34fpZA2WbozIYiqk4DN4pM0vhnKpZ4nUDucGkIJm+dYHVRFI8SWVRRdKoIm63tWawAa8lYMFITwRETLjNNtWCc1413TykjLE6H9Sy7RYgNoddyXpDcISANLAVwm6nkmx+aYSLHp+n7wexAilFho6xWGfofcD5fhtClf6EBF2RBpPrOI5CQ66lsCyruDkP4t4s7zmTi1Ks2z4patlR2wBEC6QSoL1zdKETGxuqyqp5MSS0lvU8s9sf8EZUMKAxK+VeNJ84ay3jMFCpjKczN+uKtXBzdw8UrSTA2KPsRR+YRsfjpyfO54Xz8cT59SiJmzHUlKWi0Qyo6RO2Crk9rodrGxVc7lkRGn+ucm3yBf7Lei+3oXElsUz9oNeqHe52q8DMpZjB4HFc+mcNfWioxoZ56AHR9AmlNy5KP/Uajq5N6k30Iq0LugUviUr7nC3hviZhyOeVv19fm9bzyqq034VO9m3X0a9RkSq/oQ01tzRLYXYXFF6U50sKccv7aaiLtB5EEuxXDz/f68AlHklifeGDV5FUREKoKTVYw5VSnCwAU8XAsEr7uqS60U9Nu5FWlcqLQB3tIDRFMGiDsGekr9BhsDRvnzbZX50cAN51WOPwvpeMpBSxqahQq8XaQD9MhODouos/Ti1Vel0xUU1mOZ9F1NI5XIXeeWwRKRoRAFVYzAcwZZvHaYQU6xypymxS0c11GbSUTFiqVQlutlZMvkALDZO/tgHfvHuuMPJN+oY/GqiuH58NQ7YehLyMQplSQRZTZZMYZXHlKpnyNkRyBWHon6XBNEYqUXKFVDFFNqtrvS3TYFfwYdj0F62rlE2MRKO7wq3y86IeKO0oGYy+VvyoCtFsUF/7By1AmvajUThLAn3d5muKMWoJYhWCcQoRSxJiTCGXqsLRzdzT4b3BGVEysDbokKq8dvsZ6R+WDR7FW4ot26FVFFK+mgICA842mSDpgRrrcU5MQRsKba3DBSdEn9Z3aaomyPCxqfo8LkAt+H6gn3aKZMiLFYNoKIYBV5pvnYgGLOdZBAFiJKcoyV+7PbpGswZiq/utfQ6nYr1yX9UBvBU6V/fIOnepyrhcvwtET8O4AU3iqg7I17qRJEypOprlpFylic1eDFkbHF+1YmuybY0Or8XohXghTdINEjXWbvf4u3vuGv5t58D13r2Gt+Xcauaazfi0wYBWq363BepSqirvXO1BWfwyvhETpWsQo44amKvAfUWm+mUf3+vA9fzyTAiOab/Dd0H1rwxJvYUwkp02vPv1dNRGqWXUobgKrNovaHcpxaxUW7YBxqoQlrCGpJdG0QqnWslyY6HkKpkH0ngOXScKFUV0D611rGvkeD6Lir0X2GicbvDO4Ky4B8+nmfNp5nQ6MZ9OmAqv1vLV+y+YuoCtlcE5lvOZ83kBY4VlpaaKJSVqgrQsm7CuU9p/ypJdeWclGNRMKcIos0aCtzNocMsqIC8b91psF9gGuhuE1g7vxlBqj+/ObmzT/s6CkY3Xqko5gVQsVQ/wlKIcXqZSrRy6ilPwWWzU21RLlWCl1WRZIiUmTBSFfG+csiYDLgjJYpoOOtQqQju56jBnyhSSzvRUZF7GUoocGq5BfNfv44owUagb1VyqOenDyiFiyXG5BD3nyVWCcynKEHQe310Tg7QqtuLrJuMAlZQqQz8RnLgJl5JIeUUkKIWIUqsYsIq6gUDq3qnhpimUGkUXjEtmX9EqwAppJeVKjJVaHdZ4UqpAEn8tF0RpvsISlUBiLM0Kp6pSCNaSkf3q+4luysR15Xhesc6oQwN0YdJ+WVHroZnT8SjEpSzQozNBVfALJWdJSouMRUhSJIexRZTgi5EALdGgKHJot0QCYwih0eIrSZ1UrQt0/UWQttKo7Rq09AihVEoD/xoiaSXR2RapXARVhW+KHVarwc8FaS/BAXmdNoelyTZbe6D9UJMqu+y59hreh6t5tTZbJfuxMU2NsSzLekFsriq3be8nIcLYEFqNQCkFZ6RIOB7PlAL9IHJajQhFvf4s/+yk9v/u8b0OXD//2c+YzyfG3YQLnQaui1YYSPXVbm7OAvN473l+fNl6XGtMujmUxaODrFkn7MRCQbPlBhsimXwtdWNmAdRcmOczRRu7XdfjNaOPWcQli/7ObppUNNSR1jPBWbpgGXrxtrLGMnYj36wr8+nE+fmZsizc7g/c3tww9gN5XUjrTCqVXrH78/lM0Qn2WDJ1yVtfLq2rMIEtzMsCtcgA6XxGxC9FG84YuRY5JbwPMrmf8kaj3XpLei3anFw77Bqc0h7XPZ9r5l/b3BiR+GlRqCIVU6qFOK/qnGxw1ktiYAzkTFTvqTbj1Tao06HMUosMRqaCSQVbwOKoGeKcOOZXlXNyFDzT/kDwQe59EsV1ShYYSANn0UzbYPQ9fx6zZOGZ7SCzrYzUSjDnSFbrD+sNNOktYyhV9Qhz4TAo7R9DXAuxNdYRq5Ky9aEu9yLnFWdk6NOig+Z6qEY9bGLKKtlTtIpl69OV0qbTZBRBCwm9nwr7VKhF+n+1COweYyWRWciQWnUjxqAGiykQ07qpkYiPVodzFj+MDAVCFyk5cT4dOZ1PHF9fcAbGsWccBqZxhzMeqhiievXCM2hlkzI5RqKxJNX0NFeJ1XfX7HcfjXIk4mzQOrJty9fvPE9u08aK59B+9lKmbX8ruYoBp2kuBm1fsH1flo1Q89seAz7v5Woy1JKgamRPfvcgb+jHH0kUr/bmNWLSvp+v4L0WyGW8RWxXGuJiraMWYfg2J24hjjlcQfdo3ZT6jXG0Rnbjq3xGYv0lH9/rwPXpwyfSGunHQeExo+NEl/kdmpK4gVoukFmthrisF8YLRh2Do2a1LStDh1Avh21rojc2X04ZjLC1ckqcz2dAbnw/DDhdpUuM+K4dRnB7c0MXPN5b1vlIHxxD33FzGEUfcVPnELFSkniIxWURBY2uZ51lYDmVyr5UxloJVBp2Is6tRexTzkfOx1cVdFV0XbBLVXWQA6+2Q60IFTcEpeZqn+KfdgC0Bd8CE/DZn9c/+xlV1ygbrCbNJK9msbTnIvM5Zcv22mbMOetIQt02Y60Xu4ttsLJqu9s01qXIzsR15eW0sMREqfD8OvP2iy/ph1EO+JiUwXflR1Qv7ClrjJg76uO7h8sWrFsSpYfEui6bCod1bnMfbmrhKSdSTLz6V82YxTm6tHWN3Q7TUtkOMusudPcWMJ0mXe6K8QWVuMzkKooWOZWNao8OqjfIWe6J/A71ctLYi64R1KahJ6MWzYReqjm/JY4pycB4LkWqsxBkHVrD+XSEUvBWiBneB6ZphzV1swl51VmxnPL2WS/jBnlbG00rsvVIv3tv/lkBrJZKSVlIDI2kgnxPxgXKNjaQc5Z8Q/fZ9cjy1YK47A8yNbJVzf80inrbF81W5J/13q8DEKZAkV5l0b1ZlBHbJKsazC/9Pqu6kJLEt4oLPf+yDr/nnNWQ90LEaqvv+n1vQJR+L8bEvCyqwm82+adaG0S65aafIyW/5ON7Hbg+fvOR5XTG92IJ3nKkVC9t5aarJ70cu836NCHSWipdEJHUnDPzPKuBYSHlJCwe3fCN3twUpe0GoxRlPUXiujLP83Z4tkG8WirLGul1UNoFz7L8n+T9S6ht25aeB379NcaYc6619j77nPuMeyMcJiMTFTKlTBkCIRckFIktV/yqBLggJJBAEALjgkBgYxwYDJIKUqgggSu2warK4IrASAVVRCAHiCxYmeB0yHFD93nO2Y+15pxjjP7KQmu9jzHX3ufq3iMZ8qBxWGetPR/j2Xtvrf3tb3+bGbzHWpgvT9KK/DBB+QhTEzVH4izQyNPjE3mNBANxXojzwhACcV5ZF+nJU72nWsNoWsNIKWiW3kIL79694+3rzzFGegqdDke8lwUgp7gZriowVVE1BZkEmpzh/QkHwpjrhaa7xDDcYu57z6/BHTVnUSp3DmtvjWPPu+wmcUse94VqZ7isRrS9fNRsOTdrK6qUJNFcylzOZ96eL8zLirGfs+bK4XRijaJL17XXWq7AtHo02bnfscsaVCXnXHq7EpBb5/WZLPMs+zFG8rJlZ3iMKr2sAtm1RWRdo+o10nMFVXecaunEoqoSWC2fMwzSmLN120YxifPjo4zZkoir9E4qFaz1IhjsvORunVVHx4AqkYDku7rXXgulauSbM95pmUEV4yX5GGG1NjHarSGkxZjK5ekRa+D+eOQbX/+EcRw5HScsolW5Lgtv3rwRBZCSGfwtqaD9PFeD+GmG6/lWi+QNpSPCtki3/W5dfWVc3LQF4RZhkNd0QTdQs9H0Q70xWvtoal9LlVLq+3vOUG2fzTkLvJhFnb+07g613twH+bE6tzbo8L3rr7Ubr1Iypsh39qkSibLFcRdW9e09XaPov0r7E6v7EnHxjrbo8T5wCj/z9pU2XP/vf/L/YWxdN9UfSFXELoVxpcWapVJyZc2pwyrLspDWiDWG0+nE/f0Lbf8tMN6aImtaWRcprgQtq9g9pLZQOudECFYXnJhWqQnynnEcMEbyZDEljA+95cqLFw8CxZREvF54cX/Hq5cv+MXvfgtvJfFuSuGzzz9nvV4ZnGddV55qZbleQckbJRcOpyPT5YQbPDZYjBn64FyXmWW+sixXzpofMAbsqyqF2Lro7buixhiJqxh3a1fxwK3fO5FbXqBFT7soZ2MT3cIR+8+CTjLoEe6mm2a79ykdXFuh5W3dU6PGt3+3feZcu8dpjDDYsr4epiN+mHAuMKfK63dnPv/8Dd//0U/4R//4/0XMhZhFSqxFTj2pbW0vKdhYXBKJZXVgchbafa+BQhbuYVBNwnXe6uOc7cQa6wX+EsMXyVFa8EjUPasuIxjT4G/Jg+RaNApUb7pIBOCcYxqCkH6CtC5pW1yuXcNzXVJn13k/4FojU6+SV1p0LNci6t+i7SdOwV4XgVo5jAdN0C/EJDkT5xzjYboZM73EwlSulzPHaeKXf/E7fO1rn/Dyo5d8/PErDIk3rz/ns09/wqevPyXXxHSYuD9Kjy2Ze2nnxGw9qD5kpJ7Dbu+/1//VX9+z7fYRSXOg9hHXfoxXkHsj3q2sTyndzJnn57D/9/PPPb+GBpdXoJiECHnc7qvdkzYPvfd9v+39/dy9MZKaLnluJNq4376v0Lka93VdWdcV30oV/g/YvtKG6we//wPRQtth0aUVWbL9tJYcV5WLqRX1aleocJgmXn50ZpomxjHw+s1rlmVhieLp9YFkGmwiHvfN4qsFnAInRGFXWUcYPGa3wGC9qC44z5u3r7XRX8SUTPraxwRvWZZXJCMN6IhJ+xlFBq2FcF0LUBS5CXB3d6eFocJySyr2uq6rqhVIy+77h3uFCjYPz3svRA0d87LoebKVJHE1RuvAtoG9Nxb7n32k1bYPvdY2Q5Os8j353/bbPPIGQciivSWJxQvceb3PJrmgRbLg+FGiAAbLcDhyON0zHk646cTjdeX1uzPvzhd+//s/5PF8IRVkIQCwIsVkFcoU51OgMVlENkgm5aiOkhAcWn2Lc0aMgnPEtPZ8gbWGFKWHkXWWMYwKcWVKTpvhmhets9G8gmsMLXujolGqsPZQKNs7K52bfesNplGdQsMxZ9aohbRGz9H7rknYI8NucBphVw0YAp36RuO3DmcE4kwxkgvduWvde1u0KvAteC/nUx8EjgMU/bhAVdhK9RFX5zC5cH93zziOOCfNWVtnh2ZM9s7lfhz+tJ/9GKYXaGzz3FlL3i/wjTEIW52iRiYtrmjtf4yRe1S3k9mcujaXdu+16ObGU3y29fMuykSstUf4LR0h59SiP/nxTdmmVpkkyox0WvdarNaV6fGFAu/6HN0jJu3fDd0JIXQ9WOe85PhVjUaIMi3HVbtc1ZfZvtKG69NPP8cpm0hyWgas69XcFe1rIzgf5/NFC1zlxq2LQIXXyww4jsfI8Tjx9u075lnw9HlZunCldBtui3Qr/CsSSek5VURxwCh91nmtijdGG8u1omjL9SKee8mJyTvu749EzViWUoUUkBI5ZWG2ea0ha9IqFnACWTbvUy9dFqW4cr1c+kLug+NwmNRrLDeDkL2SQEsQ6uuNyvzP2z4Ev8hjMV/4g0HzKUoDf0a0aIueRFAfXoza781wtfleO8QTuuqJaEYejkfuHh4w4cDdjz5lGEfmJfLZ52/4/O07UtkpMSjRo3eXVYNYm0ahtrMopWpri6qVBTvKswPvRHEi5bRLWkt3YRD47DAdNXcj4yJpa5HrLErojaBiVMHF7FRSmvVqPctkDNZubAbvhGjkLDlmJYFk1rTNH++Lqs8rrN6GQxV4ueXMjEpIiJNjGUIgeM/gg+Q6i0qLdWmsgllEAaNo7Zk30utpGj0lRQ7T2J9xTFEIT1WiTmtEAks6DmdtKCmx3t5obVHQzz5Wb3NHjTFbu81oHQ3qzmHq329WoY3B3Upgdq/fMPJ243WPSLTXe0Qlntp752y2Havx3J3LznDpX5vxqwIht3yvpC31fDQTr3oeYjg1WmsOidkZrP7Dfn5bnBNIPChr1rfOzPs7U/dz9MttX3HD9ZomZlm7TM4obayVTZhRRXU/UNDJ3geLV2JFYV0SxiyaoDZgnDYT3IXTpXYP1JiC0b4/MUZhYPUamW1xIxUlQRipch+sGk71dGuCnBhevGCajrx8+ZKPPvqIHGdyXMlW9BXXNVJi5KSFngdtSiiwkIxvKSZdKTVqcWkkJtEK2+PnTXZn8JN4xhreN3KFM0YjtUwtVuS0qH2QAu8tDnuIpr3/RTDh/u/2b2t3Pb6qYO0NupT9b974fsGK6ybFdHtcjyw+GnENAxWD87IIiTc4MSFF5sYFUoZqPMZJAbvD9gaDZdfrDEcnSoTBkUqSKHaNVJSG59Tws8FGWWu/pLP0Vg+0FSrLmLNaX1aS6iVqNLYl0iViN3ZXG7P3fpVMUXf5CmohI/2aDBYbApSKcQXj667Wy2heS+qw5HIEau9GuDUDVZzDOov30sE7jCPr0xOYynSaOJxO3Tl6enpiXQQ9MAYIHm8dh+OJ6/UJ1Ald1oWnxycu5wI1CbGkVkJwnHMizgvreOB6vWKM4d27d7cQ3c4o/LTtp+W7nstf7cfqe39vodJPPdbzY7bz3P/+ovP50L4aOcOWJuW1i7zbZ1tBMVAa/N6ML8IGroDNG2M4aq6+wE7Yebu+Bo/XqoSeUrrBL2UrlN4jKFXPbP9Efgb/4gu3r7ThOr38CNH9S6pRJjkPG1rvJEdCmsk55zh2Ro8m8Q+tFskxavFpqYXD6QEbVmwYsX7ccNquUdg8brmBAwbjjOirG0tpCtG1g0V9QSimwZdF1BiyePXDODFOBw7TAe8H0jJTUmP+0JOcKcUbDF8gpcy8OoItVJMZl0DLIUjbCDFUS4w8PV26TuI4jiqQalgXwaUbjT+nlt+Ra5U+YrcFi53ZxGa4umr8MNwYrf22x72tAXLBuNITy21r3udzFet2/UKcSL2EYfOaxbFoXq98JymhwVCyGOt5WTlfFtaUwTlefPyKj58u+MORjJM6LgRN6RT4Zoy1eCVYy5KEep1296/BuUZDlpYzaI6OVRo3gGEAxCCHYZJ7UqUnXM6JVDLDKiQRdaFwwYtCuspGNSFfEQkWr1oYdklUYkreoGFnGMYDQoJpAsJ6jmYrbHVOoOeK0Lm9FzjIO1Hwt0bqDofglR3rGcLA01GgwmEIjLsedsNwkFZAccHUQvCWcQx8/MlHfPpjEXFd4soaI6kEgubQapWyjPP5zOVyIS0r8XDqrYKWZWEcxx6d9y7J3BqMn7a152OMUYJLYV/j1L+vXO5aiqjwdJhPx/T+MPV2/80xfD4X9oarn8szdOH5dWz7EUjaZilraY6sDV71Fgs5RWWZGoqFnBoyhaQjQIxNXHsLqBzXrbN2VUKG3RtdmZfWaRGBEaJGI4LFGKl1I20ZjAJNTkkZt4zcn3f7Shuur33t6wAs6yrJZWNUQUPgOGMMqXlf1jCWohGXKpdX0TWbDhNBE4nLMlNqxcWIHUZcmPr4M25XVLqLLiRCgybW2nvxNPRm5xEnkk4KgTxKjpS8Mh2PHI4HpulA8IEFzaX0Gh16xNP671hrlc4vWy2yvxRXiUqqJNGFlCCK3FGLXQVbbwoTQv1e19iTrV10tUoeIwQH3pGz68bgueH6ohxYP78PwDOi+yYklAZFNMfieYS2qU9vuQjvHMXYmwWgPxP18qy1kvspRWo71YDlIjAvxjJOB1598gnXWDhdZom2qyEXRI+wVoVNbe+CbVQwedEJn5TIY60UlQ/B97HWZJfWZZEFtyFMOrkN4J1jHEfNb2ScdsQW3bdMzFlLPQxOyTQhDFp3lkkxCZzX7490ItBaBrmveh+n8SD5y9ok+hqZie70eR9wXmtvcsU50w1X8K7/PSpz0VmLd577h0uHovvzAo7HO9a4aDF5wllxrF68eMHT41u81tx29fv9wo/OufIMLmOLsLYao1u62nPD8MXbFy+kW3SlrNLmjOrrludFwNxgYS0nhrmdGx+Cuv95c2b/71IlF26RZadBxh09BNB7Wc2Wt4K6QaB66d25amubaSzAVkaxizZvkiPPtrr/Q8/ZvP/Jf2Ujrv/r//3/gcVwnq+illFrozr1GxW1gr6U0nNfIA9p8J5xGPn4448lab5G3r55x9P5iSUmljV2FpC1Fh9EkLWyMY1SyszXRYgXuj1PYDY2nLUG6f+UgZa/Wilx4ZOPXvDRR694ePGSw3RkPj+yIqF8YwWNgzSQnA5T9zANUJ1jOgxUI3mXlBZKFSiqQ4ZxZVlmai29H9PzCbJn9e2ZVKUWSg3Uqt58NzD2PWr6T1sc3vMWjVFjsjGb9lFNgwpFWV3Yg8Mw7PaHQrLbMTdm2SZb06IG+duICoWXPFHGMB2PfPTxx/yKG/nGt3+RJWUylpQtqVRSKcQGlTnHOBzwg8dYOF+eWNeFnKSFvdcmiofDUcWSvfZaKrz+/DVv377jen6SnLheQM5Sbzd4h3eD1APmiDT1lfzmskRiSlIYXys+DPgQmKaJMA5yH3IV1Qk1/E6He8trtPpu8aKNjg+NunLWVkDNKxYj6gft0ZQyRhx1nLMcxoEhKHN2EN3NNp7WNfX6w3mee1cEaX6p5SR5pZSIoTAGx/npDZTEOE4dCm4Ql3MGZ6QWbRoH8IHj8cg0ifrNMAydqNFyUHtH5jkc93xMttek3k2ObUqlfsCQFWupOwP53lLexnh/VX83o9bh3FaMu9Ul7o3vT4M5q8J3pYjBavsUtRT5ntf7YGArkjfamkXhQu89RZWB2maN6Tkw67ZclRB19tdte854T9DwXoTKm5ana7lcvT91S8PxU5aKf+72lTZcX//Od/n441diQLTdw+V6IWiSd41R9Qtl8Wm02VqVBq4e4vF4lEaT5wvF/4BoPKOx+DBIuwa3NeArVSrmm3J3SpnzRWjm4zRyd3fPu8d3oOSM/UMNwVHzTMkr6zqTlyuWijcGmyN3pzs5RqtNyuJljsNATSJvsy4L7sULXr58qQumUwabbNZYDocJp7TqZSkUJ4K8xhyZZ8mZxRgJYewGynpHGAdRElmjiA+HAWcdOcc+kbrB3EVbQB+0+wWjXfdmQG4/U0sRRfZBFmGR6AEwSoE3/XshPIPq2KCttu0j4KLQGAactyxRJJsclhSzyB4FSfr7MHA43vHN4wv+Tw8fYX3gGjNrrOQKGUNG1LNTSSzXVducZD6piTUKNLJeVz7+5CM1so7TYdT8YcRbwze/9QsYY7k+PfLm9VvWZcXYKobQe4KTot+4rCzzhVKiLGy5cJ1nfBgYxomHly+JMbOsK9frRRXhA4MLxNQaNxYG77g7HZnGkeNhYl0X1kVUXqyR55C015Pz8gyGcZQcbZVWLllrxO6PJx6f3kltY828eLjnMI2MIXS4XkgqdD27xoiUqF3yi0KBL6S4kNNCigtPT6+78v/D3b3ksExlGkSeSaDgzPF4JC+JknJ3vKy1PDw8SHPKlHa1YbfjYjNO9saI7YkGzYCDahW2nE6DovPewWLXygRo1P4+AtHobJsf1r+/3DrUWPbzECPnrCz1VVf6LVLaGUMU4tPXpQ+bQos7BGRQ+bU25xrUOc8zrhGOahV434hhOz89Ccqg7x+PR1rzvhQFdk9JNFt9ENbq5jQm3r17x8uXH8m+zmfu7h7knhqB3v9Foi34ihsuaRAorUdcrbiSyFY8aAz4dZXeXKZqO/ctP3Q4HGQyqWfpnGPNGTsEirV4HwS+OxzxoRmuSTzeLDRzYx0pJ4wfiAXGaWQ83RFiksVA6etWdQKDt1ACJa342RGtwRkIzlDmK051xJp6eTN8wXuS96icYIerUorgPNYWrDNKveXmh+Z1m009QTzSPeSwwXHGbsZCKNFeI8QN2nuPWfQMpnlOlHgOgdwkoXcRcNEkbyt6fA4VPk+4b57182iubouLYceGstrXSuHeWrtUjTSrHDjd3RHGiRAL85qIqbLmQq6GXCuhFIzxkgdIiaKK4AZDSZVxOkhUWFt0aMi5KlVYHAGOmfkqBZrOGQ7TUbsFWIZhJI0rwyDdj6U5YsKFoHnQiRcfvWRVwxWGEavMVYPFp9DJGCE4TqcTh2nkeDiS4sqyrDLOcFp3Jl2evToPwzQpfCj5ilwKzjvGaSIjpR61FKbDxDSOWkcJOSqkmRLBS1QcBsm/yvjTglOFL+PiSNGyWrCXJpullPG6EYGaQaFuKu9tUf6iGqRtHGxw3BdFWrfvbeULN599ts/9xNlcpdtjGGMaUt1euI34nn+WFh2b7bdp6YYdPLqbF01l3dTanYb9tX0IAdm/V3Luhm5fB9fzaw1DBBoxp9/3dl/b59UhMZiuEGPt9ndzOuuOrfkvUuL1lTZcEViyQoHIZMM63DjKAuWcJCkNeCN5q2a4hmmSQYDBDF6YXs5SnSVWxeeHkcPdnShdeKlJ6HIvTiSmTEoMxWDChWKdaMgZ0ewymoewLgi92BVcleOg5AxrKkFzGa1upkn4OGfxGnYnP1Cq6fUQPaIxBqrDBUvKwjJqXmNbxFsypVG4ZaHd5wG2Cdi27RjqYVbxeiXpWjt8sC9m3Ivs3sAPO2P2nMRRFCqsKfXWIPtFae8Z97PVidVyP89za3LefovMTO1SX6JJ2K7Y4LzWsfkgbUyMsOlCCKy5UlIUCZtUeu7H+aCswkJabid8L/jE3iwGRbUhRd1eIikUdm15hlK1e+8wSKRoqhTBx0gpMCh0VwHrHaOdJFLyvmtFuhDweCzgg3RNaHqdrZO0c45ShJSRst4HtylmtMXQhW15iFpSEGqQwngrpKJqYJwmahACRZmvwng0FuOkbY4xAlMKYSSKYkdeMbkt0vux2BAKpVLXpmlpSNCNY4vmxIFL7y3SbUzsRaD3v58XK0sux24KD1bmBVWhzf581SCUpmyIGrD3DYTamZvz+aLtubF87vA9J2v0cW6Evl5SopVBt3nfo7FmYNs9aGmTHUuwKJuwqjNTa1M3aU4BugZoU8lqxPDY3ZgvIgDsd21/nLOKntxChLsA8kttX2nD5YcJfCAtCzhdcLxnuruTpoppFWgKibjCpEkRI7h40XqTikzMJUWuy8zDyxfc3T3w6qOPuTvddw/dGo8b5AGEg3odpXKXC0kXyTAM3CEwWxiEfuz9oDVgEVMWavI4W6GKHtjghAoegnTfLbUqvjxSkc65KQRyrZ2K3AkWyMLgg1CpSymkZaVqWG4qXcst59Iy8YqtC7wjBazSVkF6lxVyFSZQpSIi2Jv45z6H1yb0fvEQo3urybb35PYswZySRj23avL7hUh+b1DhfpK32pg97HOjOICK0BqrupWWGDMuZlxMmDD2epNSDfMy4wr46UQYJorxpAI2FY2cvTTi01yAQ3qXZWcIVuBBgVycLILZkp3BO6O6l5bD/QMvXrzAWsvxOGGwpJxZ5qv8nSLVZM5Pj1yvV9F9q0YYgylzvV5xYcBaz+EwgjGEQaLFYRiU9SdSsa0YWW6qhD2DsTydr7tF29GUSbSnBl2P0UqLkDWtnI4nHXuZ6/lRtTkjwxDUiVh58+YN03hUPVDUORTDJapRkVIi67yQU9SID1FUr0VyaXp/vZEuBVnzmKax5FQXs+VX9/DxfmtzpKEEH1z4rd3m0o2fp/+o7AhSUlvVCn2Dyk71hb2N0l2Cqy/YH8DGnhun/b/3hu6LjN7eoHUntRmq/XfeixSLdMlAI8Ud+7TNT1HSl7xrP0bZhHgFjgdTbI/eMJmUReUlxsjSNQu324lG3saAc3zp7attuLSbsbFxk/dnp2pspXGkraI/5nXsWDVc0RiyGq9cREU85cwQDozjIFDINPS27c3jxoh4ZKnSLC0XUT7oC7SyolLK0qI8JFE6qJHRC7stl0ouFbrauDK8ing/bcLXKirxTrLiMrDfmwO3WHjvpaMDezMU5b2J0X9AmVxFGYWGUgy5WEoRAyuDdYuExHO/jTjatientM/3s92dQy5Co/WmdXvd2Iq3yXSB+kopPf8lHmej7O8np7Z1UE94PyakzfsmWCsRlJdIpWyFlnV3rt57qrQJkONWIRsUZ0W4uYnSjoYhBMYQcFaajDZGX0lFG1YKQ7MpbLd8UE2ZmCKmQkxCpmmLcSm7omAnheINfjMGoiq1eNs8XId3Ah0WLRdo7MQmnAxbgWzrFmCswDv9/tQmn1bANBi6asuVrPde4FeRmJToZI0rJokDVpIaR4r4ljLSMFQd036DxMpurAp7RY3JZiwsm1Byez57qLCNrQ9B2u3z7e89tG2tpTUw3lyeW12/WjXng0Txt4XD2x+9q7hC9RX62Hs+d/fns9/ffo580XZjiNkimmcf6u/fHpNupPdjfX9ON/euzaUbg7rtv1Z1iIusH0Afcx02rfXGgH/Alv/M21facDnncAoJNcNVdo9v7+lYg0gtGfHmQhAvsVip6yk7mMcp3TcEhw8iApozWC+5LzCYZIg5Y3JVmZ9ELZCUGFATpJx4fHqSKn9rKCXycBpEkikJQcBZ6TzsqraoyIUsoohCb82itu274VLOsG571lS78pzyzesN3qxlD7ndCnE2OLHUQq7S5sUUgy2iXt4aGH7IcO0XjRsYcwcjflGuK+eM37+vs/25YW1RAbDbrwTa+/vRI7lcddHVe2SdKpFbcsurIUl45wMhVPFCndS3pJRYk5B6GoZfc5aoNIuqOqZia9F+RQicHDyD93hriYvkc2qJpFy13CDjvSUEUeaO0auI7so8XzHIuEkpdZkpydOJ4oWztj+rBv+u6yJGIEDKkiM0xmFRg5Uya1zIUaJierSuXaTbf7Vs46IRLnYLVsoikVZyJKWIwVGDCCNXTbi38yn6DETIWso/nAHvJJE/Bi8Cxarm0a6lqGGtInuvCyK9fMAabSWzG/8N/mz/buPti/KxbQztF2GpzUPZlnIde0ev3XJjS6eVP1e80D9uIi6oXeR57xBtF8B780LtnRi8G+ft+Vfb94Q5mNs83q0FfWaYHVHE7EhT3bAZzZm972janQXe7tnOvOvxaov29PtNTb8bfprj0m/Vl96+0oarPwhti12rsL7mecFY8URBJ1Sj4bZIJmeWZZbCVGDwluNh5OH+xHI+s5wt6zQQeoGdFdaX0YUsXVmvM8uyMl+ulHilEQvGYEhZ6PRvXv9YxFWdE48kTngLJa08Pr7FUTl4xylsWL2MpxZJaLPGcWAYPOMUBA7SqKOKrje0bq40j3zz1tPS2o1bQpDXY1vEbrba95dKEjH4bCh5hWKpxuLM5qG2xaEtEIfDoUOE+30/j8SawZPCaCmOruqNmd13boudbw1en1jqzT1fkEqRzrwiiyVKE84P+HHCWk8YRoYwMowThwzVejKOz94+8u7pwo8/e8Obd0+sSWjiBaNkBsmXDUFo4C9OE2ldMMDhdMTkhAleyytmlvnCfL12dZKcM9eLFIEbI1JdVqHiUgoPDy8IwTONg8onrSzrTIwL8ywwIsZiXexO2bt3j7QyBueE4OCdOF6iAym5SmfE8HnrGKfAmhJrjJwvWxseF4bei25d153I7xXrTI8gja3c393xcH+HD2JkpBZw5iefvWaeRXklrVGp9glvUMFfx/3hwDR4gpdmr946Sk6SJ2k/tTlwAlMPPuCdI+6iqr1x6uvCznnaG6zn8Nu+kN9ai+96mVL6UKvk1JwxGiMCVpCIWmtfSxQq2fa9m09tQAsR7AOR0S4SqXlrNiptW5qBvHXkbq7XmG7AbDuVCqZsRgQQiFPRGoO+n6UjQNXvBic56oKgCikm7LpKtF/3ssNfsFURNXB+4OHhnqI6leM4Qm/utJEydiWoP/f2lTZcIui5r6VACkwVVkCryAUKFIZUazthjPRFKkXootM0MXjP6TAxGsNxGvC2ktYrKUkxblwC1knEJdXh4s0aMqMuVqKh5llT4roYvIXBGXywUC2lJKJOypiEbmxL4aSK3MMwMThVjCiZWLWg1YuKgfQq8l2VoVQZtu0ca6kK+8hdyTmzqFBwCIGg+YjmWXejYnhvAZBBnJWBV0T30W69ty6XC2/fvr1RvN7ntp7T5tvi8ZzIkLN497bXr7xPtd9EaXfSMlVKBvol9PNXE64ebq7C7MNWke1q6Yx9pGqEYdrra7SFh3ei7mCc1yaMwhg9TANjCJiapQDUwugto3ccgmecBgZvic6QnBHHKmg0ZIUYITp/QtcXI2Q5HiVHFpyTgmILlsoyXxUmDfgw4oMaac0ZyDlX1rgSV0EYQghMYyAEkTybxoHgPcFLPtEkqaear2dJ4htDGERBRtZTkUNzzjAdBlnoc6EYUcU4HCdOd0fujsc+Bg2G67zinTRDLdrLTPQ7K95Jv63TNDEGi7cV0iqGywnEKVCnk/o3DeWqkeisjc/mCAA30dZzKHwfWe3h5yZttDd+wQWCD/r5nYhyzluD2Rz7vtw+r5ZvVTEaitGmk0dylPrm9hl2kVVbw0wT3+VmvuwNb5+nxcAX9IS7MdS7+1NLoVp7M8eeO5oiH5WwKeGMxZrbgvAtItxea2msdolNJV7OQQS7zbPvfNntK224pAvqrQhsqyBnW48pRZo9piSipUkbqcVV2lObWpnGEW8Fwjg4yziMDMEKA2pdRek6eowTMdiUBIYSLD4TGgQyCL0+RIsh400lOAjqVecix7bG9HzWmjP1dMBp8Wqw0iW3phbdGCqi8t0a73VPEl0UmyHKWdtki3xVjKn3B3PKLoPmcTbFdcn1tJu2TdymvlBQoqtEHnlrt/H69WvWde1tUUIQuakmgrpnFLbfPdrKWftRacLXKGXdcGPsAFpR7d5wlVJIcTO+m7EUGr8sUnqfETks60tPCvd7dgOftfMUVQ7jHNN0wA8jMUlfLAwcxokhOMpyoWq/qmkIjINEYodxkI7W3pK9FCCDQNUYKF7GbRi8FuYa9VgD4yDGZq4FH2QxryVLtAX4MPR26RgYxqB5rEqNUueUiyhdSNG4GItpGBj0R56fwOC1tlb04Irf1MODxaoBCtWpfqW05RrHwDQOTNPINI3CbMuS3z2+GXvkUJVQUUrGVKFfey0kHrzBmSp0f2sxyiQMGjFK3qk3DOkC17A5T80x+lB01cbac6JP+7lpCgkQ6FFOG/e5iLFupJDep67WLef8LOLaj/WGajZh4S+C/Z5/9/n57o3XfpM8r3lv388N14def/7+/lg5S7uUvIsCUci4kSz0DNpk6u+3e76oSkxj2WIFCfpX3nDdHU4cw8i1Xiia/3PWEoxCL9VgC4KXx9zZM1m1+tIqxZHZWkqM1JSgZj7+6IFR1a4vlws1Cdspx0hZBYjDIN2Ma2GJV0gZTIBiCH6EYogWSCumeGkLghEJHmNEt7AKq04WVaSO5jAxlMyyLlSs1Avl0hvSSa8nUX6vtWoXWymIXuaZnJIoxXtphPn0eObNmzedFjydjhKFrSvEtXt3gUH1EKXAVOay9rUqWRCiaqhWCheXZeGzzz7je9/7HsuycDweSSkxDKJw8fLlS8ZxvNEsrLV22KmxwnzwlKKLkLUdEnxeyLyff/sFJ6ftDclPbs0oMdKnN+YsHZR9phrHaEPH38s8s6yRmAqDH1nmK+v1ijOG+7s7hnHiqC00YpL7lnMWbT5rYDCsg0BwL+/vuT8dORyPHI9HDtMo8BcQkud8vWiOy/dWEXd3d90YxxihNeOplePxQMkv8NZKB12kWPr+4QVDGCXniETSpQgZ6HI5CyGiFMIgHbUHjbwO40jwgRACh8PYm0wa63prlDBOXdKqeekxRp6enpgOgRQTOa5ao1OhJioim4VV0Vd14qzzNDxEnKooOUGDKHw427XyQByPwQfGIDCpt45Uazd+DRJu46P1fGuG633Fmk3X8r1IhY2R2rY9PF2VyMIOpWnsuR7NhR0T1tob4yUR1DY2exTFTzceP237os9vUmnb/n8WI9kQkhtjVTeCzI0aPPRgoGhaAnZOacuDxsi8yhx/fHzEWnF4nJUcsORpFZ58nwj6M29facM1BtFlqykpRggGUZSmQk2RLGgCg3N4bxmcIZdAqZlVDUGwYGsWZfVlZrl43DQxWLg/HjiOoxYwizBrjJE1JoESa2W0FWsrzhRCzYxGOsRmWxhNZqgJX42od0SBPqwJlPVCmmcxRsuJEldQ45HiQpxn1nmhpBVTC8UacoJ5XFQBQ2uh1HDNy0pOUdhng9T2XOaZp8uFEAaG6aBMx8SyrB1KkUVK2IOyoEu+BGWelSyqATVXBq3zKaXw5u1baXK5LsSc+GRZ5Nqs5Xrd8ibDMPTJsa6rNPHUvNbEEWMarX/zqPdesuTENkB8b9S832CirhoA5Bylpq4ZMI2sJPcFzpjec6jJTgUr0kLBWU7TRMFgDdS4sGq9IKUQjMVTCQbCOGCLqJ0PzuAo2JIxOVJjhJSoOUGKuFLwVJw+M1ukDrC0a0oJj2X0gWkcZSGcRmzJXK4nailY5zmNgUoll0iJ2hSUiquF0RmwDmM2o+Wdkwg/imxUTSt3d/eYIcBhpJRTj7gagaBoH6xcK+TM6AwmjGTvSN6S44orBZOFdBEUFfBoiQAFW7OiHxVbROy1ovVrDlwFS2FJC9SMpeCMSDw1VEFSaqoiU4vWd/kOD35o25dD3IwjNWwYyQNSq+oripEe/AYVUnyPsrbOyomSN+ix1SftI679Qr7PZoUgUXRrTFrLTo+xbuoXbRuGQUW/G9xauoqKGAk9rqE3/cxFiCNiZASaY6dy3yBxrMjiWe+wWntZdByKOoyUjzgX8D5QO11kI2C0fLgVrTE5XkUK5T0M3mv0CpZGzthyfvVnyZn9lO0rbbhUjQ9nNKTXhZYirDpnwNSsi6nkh7KVpGBKmWLBVamxsRQsGUqS6Ct4TBEiBM4J9d3KI1itwbWBWQuBthjCaMCXRE4LLDOhZlyOOFFJUSKFwRWLr9LynJoZrJxrSSu1Zkytvd6hsXpE400kV5ZlEVgOgTdarqcgbEeviVdjLQVDyoV5XVV/MXdhVWPbviGnSkqFotp5ennCdlSvN9kCSiIx3uGHIDqNRjrlOs310XIJZTOC7ZYZ/a9Su56ZwGUb68ruNNQa5t7YUE5bjIjgqt4BI+SDQu1tFWqpVCPt47f6G8Xbi4gcG+NwGLy1BGsZnGXwwt5Mun9TCpRI43M6a7oBCtYq7Cd5JVcrpmRqjLgqjFGbCyYXXK34KolvU4QiXmISRhcwGMtgHKNxjNpXrnpHDZ7jEDSXKMeWyjtZxByqZF4Lg92ILKOzYozbOGqAbxW4zjpLDZ40SgRadSFNpUiPu5oFeq6FYIXBmauRHFjJktdJcp3eGIoRI+cQA90oDVXHuS0ZayveGoKt0uW7yLwbB4+tUhBunVDsMcjC2mKXVDvkbVX7UKKm3Ps+WadRu46jPSwl+RWtg+yRfBsT9PwaoHkto2uKUadOR+fOoZJjVWo2vdhXPlI6FG2s2X6qQIstHjPaHNRQNmFcw1bOY2SFr8ZgikG4omokpaBQWdWmoXVyodZgClRLFyZG14qKdAPQggNqTwvb56KWghJVyb/Sul6oUrzM6UytTtYsYztru6cwSktl6Dqj53Fr1n/+7SttuGpeqakyDZbrEqk5S5fXlLDBEiYvD1kf9N00sq6ZpWaW9YzJEYvhOAwMoUIsBDKuJlzJuFoJSEv2msW7PHrPwTmitZwvF2qKTLVglGk2DYG6XHl8/Zrz69dMecUtGZc9p+OB0TdvLPIwWBIeMnzycMdoK/H6hLMwjY5gD6xPE7V4Ss6kdYEqgqeXpytf+9pdn3zrGhnGI7ZE1rQyFClifvHyI16/eceyrDw9XRiGRwnTncfYKmoMPkA1omW3JkoEF8RrB0MtumTbKuoFmsz+5ne+gx8nrpcL67ry4qNXnE4nibBya4gJOpNEoT+MmGp6juwwTUzHI8N0ZMlb7moYJ8kxAderFMt657k7njo7b6/AYVoEBVRXyVRZLAHrLEmV0YMRlYG4LFjjOdwFDsEzGccYAndDoI6BNUPqzStBcaoNlqFiizgcfpB8mi9FopB1ZVlXJmdJRiLtnBKhgMOSU0GC5UpO4oAMw8DxeOTODQzVMxaLDVYgZQunYFmrEiaWq0CwzmLDQFXqeq4Z4zaYzJWEywWH0O9DGLTY2jM6SzFgiqdEaf+TkpgIq8xSTyXJnZRmhRVMSZS8siwXCplsIRSZJ6kU0uWJUIvWhIkByDWRcsSrGvwYHIdBCrQLhezh6x+/xFCYpkAYBEaVYu37Du8v1yvuPGBzwgfH6e5AKYV3795xPB060zbH1COYpuYiUGMRIwBKNEnCkGxZNA1GnHMkIzB8Lc2BtJ1NCCJmLGr5YjBTSp2g4fXf+8aWhUITCDHaNtlgqUbSALYxhvREunybk07nje0XvIdadE1Kkpt28vyyRmW5Fo2cRXCgtAhNEYSYReWiCSu36HQaBomCbcJYT8qwxpY2cL0MoZYiyJYVogcZsIYwSX+/HBMlFQG+MrJ+GNPh/hav9QaYX2L7Shuut28+53Q64o3h7jACSBM8p8SEtLDEpQvkmpIgR2ExIWwpZy3TYLk/HjmFgM2Jy+OZtC6s1lGjUIajykV1tWRjmbzHlQIxQsn4knBZGHan4CiHifpwJ7CUtdjgeXN+Yl4jy7pyefM5zsDxMPLxywe+/uolH796ic2ZHFfmklSGJXePb2i07jASwrgV41rDnBbWtLLEmfFwFPy6wKtXX2NVsdO7+3tNbIvad7ueWsGoMkYphVFzHSF4iqks88x1nlnmq5JIRj755GPA8vrzz/nhj37A+TozThP3h4lDk8eKQihoEZAzphM4ZBEQokueZ4rZMPNeY1Kr9AlLmasVFYl9gr7VpllrhHmpsJjAiFb7S4HzRrqzekNwQgowNRHXC0vMpFKZlwvz5ZE0L52h2b3Y5jGaVkIrUfZ0N2m0bhBCvRhLwVMjpkRMXilp4TBMhDDQxIKMLpnOSgfo4MClBKaSiXg74MkMrnIMgcHJyTgbtL5QFrtcC4Mx4Dw4TYCro+F6Z4JKoOIUUgxkbQVURNmjipCw3H/5nbLRaLt0Ads6euphZB6FjDNNI8fBMwye4h0f3Z+oayQqhNmi+AiUnHEKiaayKqyfMUVgd4NAtRiBoXIFSiTnRMyJtcjvlCLJ0uHmlFKHn0Ecu7at83IDF9pWQFwqKUV5zqqxl6MwFZ1z3fAkZdWhuZ81LhLdF0fNpUd/jaEICEJTmup7wbA1NZWoTMdQO6/anFkdZ1UIK4WKrVY6XHQ29KZekUrGFUEEqsKNpYOUtUdTpYdhdDi4wak+jH1+lv69qs14R8IwaUjW5oDe2yqkNmPFXRTjWzBWOgYE5xmnUYhNPmC8SKe0SKtpYX7Z7ec2XP/gH/wD/spf+Sv8zu/8Dj/4wQ/4O3/n7/Dv/Xv/Xn+/1sp//p//5/zX//V/zZs3b/ijf/SP8jf/5t/kV37lV/pnPv/8c/7CX/gL/I//4/+ItZb/8D/8D/nrf/2vc3d393OdS2ui2CC4SsUUi6lCJbUGghYdi9cGtWRZcMaBkkuHFlNciav8nB8fiS5AkhYg0hpcIbaUOlbeWoanKAtrSUK5cs6T4wolCZypGHiOa2cuWgPpdMQZOIwDNRfm65XHN1BzoqTIOs/MywIqxVJzwRkn8kDrytvHJ9UqrMzrTCaRa2JJK6jaRimVJ42ISini/Wsea5omYiq9TmRdt6aMa8xdZBcjNGup61kZGPBeWGzzsvJ0vvDZ559znE7iYVrDMh6EdlsKQwhdjNNiOpX5cjlTtKnhMB2watCEjVZU07ES48q6rGrEFi0Cb0Khkii2VtrOSFG6UtqV0IJzzCnj/SCeqKmbZ5olmbzGjPUDb9+85Tovkh/TtUTyZ5taR/e6LViz9uPbmkUf0Htl2a3UIuPAkElppuZItQ33F62/jMGulrg60nxV4oJhOAwscWFdF67nK7nKouFtwHo1pLmSStQo0IITT95iqKZ2A2m8wdvQx+7T46AGKbLMqxRr7/KIMmSVyl6lW0HwvsNSOUVqiVATb9983vOYl/MTOS4K7RpqSXL9ChXK4le0jCMLWzIuFK25THFlvpx7bRw0iv/Kusy8e/OadZ5J0yg1cLu6vX7uuyi8w8bPCQu1Qde1w2ulFoWPn7XpMbXvb19TuB13V8xca9cyuq0ne05k2C1kiqQL5L0ZmNt82e3W88G7cxHjWLfPG3GQ9n/viSu0nJ8eqzMC1aHcF3bvTlKPv8Gx9DNWBrca2dY+pd2vPVT4L7r93IbrfD7zB//gH+TP/Jk/w3/wH/wH773/l//yX+a3fuu3+G//2/+WX/7lX+Y/+8/+M/6tf+vf4n/5X/6X3j/nP/qP/iN+8IMf8D/9T/8TMUb+9J/+0/y5P/fn+Nt/+2//fCfvBANe15U1yeSrBoZpIGj31fEwsq6LqBJUYQEF5xiOEzkm9daEBDFfZ15/9hmf/fAnjMPAev/Aw8NDf6DSKn6Rg5ei4qfa1XZZcdYyB2FtNRJCTqvqsAmR43D/wDEEjIGH0xGKJDiv5zM/vJ75MZWSI15YEZzPT9ii3mibAPNCzIW3j2fRe4uReZ0Jo8N4SyqJ4+GIsYYYE9///veZ55mkjMOWD/va1752MwFT2nTgxJuVS1VbIpR0bzidTpRSse4NP/rxj/n+97/PP/3fv8d8Wfn89Ruenp4Yh1HFNj2vXj5sbK5SuVwuXC5n3rx5zfHdG053D7z46GMOp+N7dWAg9XaXy4UUt87NoD3RdiKpTfjXWVm4C1XFkw2xVoZhIqaFMZ3wYcT5EVzgcp1Z1kQxlh/9+DOu15lqRTLJaA8i7wc9pyaXIw0254t6rt4Tj0dKWQmDECJSPJPTTK0r1kQu53faVcD2koXakvvI1LcINIQBG6zIP6VIXCKtsZ93QWrRtMxjTSvOOoYwSCqClsdhy4CrsWzRadOuFI3BTbPyiwgyQrIJSjIIfaE0xnK9vOv90q7XmX1nA0rWBqfKo9e1PWtep5TEvFxYo/Ttmq9nXn/+GSARVUwr8zwzzzPrfGW9XKg5c386cTgcGMfxPbZdO3+D5sl6UbEaEQymiem2zxrTA4uNyaq5LCuQdY+gtKFpjunmfrXJshksAwjF37VEY90v/ubZ38/21a/iffWPdo6tLcn++/t9NAJWS2Q9Z13ur3Pfg69WyX+/rwFpet7wvVMFcYSWtdeOok6A26nub3nsL08r/LkN15/8k3+SP/kn/+QH36u18tf+2l/jP/1P/1P+3X/33wXgv/vv/ju+8Y1v8D/8D/8Dv/7rv84/+Sf/hL/7d/8u/+gf/SP+jX/j3wDgb/yNv8G/8+/8O/zVv/pX+fa3v/0zn8s4Bk7HieNxYkkrWaVyXFAlcKPhLCKEak1VOrDn4eGedVmYr1eW8yPXy4Xz4xPvPv+cnCKEgDOGQxg0IkGp0EmUlLMkom2F4AI4YVCZVChEakwQMw6EuIA0dUxxwRsYpwOnlx9RciIuM59+9hnz+Yl1ngne8nA6EpzjenkSevAwcBgnjHXEmLlcFj5//ZrrRZQZljhzuDsyTOKNH6YDtVbmeeaf/f73uc4ifHl3dyd07BC4XlfxrNVTbPBFWiPn64Wkhr2RXrzzfPs73ySlyuWy8Hu/9/v8s9//fd69fUctEkmdz2d+/JNPefXyI148PHA6Hfnmt79NUM/tcrng3jqsKuLfPzxw9+IFrz7+mNP9nRApjPQLM4qLj+OAs5Z1WYlpJWqn5lwES5cFRRs9Ns+yCkRSLeAlykrjhHMKw4UJHw5Y75nnhXmJVGPwLjNNTVapdV0WeNEqoUFru0kp8cMf/R7GSO7hOB04n++Fwek9S4pyD9dIKpnL+XHrn2VV6shuzK+CJuvVnW0NUJ8rRCS9l92ZasdJSReTnfFRtldfpNX7fXH3oi8qWfUEGxGheekCP7V6psRF4dhhHPDOKVOzcn78TKJMY0mxEIZRirmtFTFptVamQtFco3OCiFALwVumUXJ1mML58tQdynmWXnfX61lUOJZVKPZ6T1p+8HA49HO2u/MftLP5jeEyBlM2YehGp28wW5eD00V80JrAnDMpe1on7pxyh6Wds33BD/ueczXjBuku4axVw7XL99wY282INsdNOplvEWArfWjn5rxobRojY3NP1buJMneGq/3sDTdshqSde3NsmgFqm5Bc9DtbTKfXuznC8mxCv8b23bq7xi+7/UvNcf3u7/4uP/zhD/m1X/u1/tqLFy/41V/9Vf7hP/yH/Pqv/zr/8B/+Q16+fNmNFsCv/dqvYa3lt3/7t/n3//1//2c+3g9/+H1OxyMYw5JWUhK6r3WSRHfeYZwhZ/FavZO2IN47Hh7uicvCMs+8/vwziVquM+/evmOdF9KyCBa/rDTh2WWJND03U60kyo3sc1lmqAoBmcq6rKyrtHCwRqKIRCGfXZcgGoITSCxFzu/esVwvpHXBWcN8fpLFep45TtLxeD0ctY1DZpnFcC3LQloj1RTWnHAXB84whjO1wrwuPD5diClq3VjFOqG9/uTTz3TBQuWRdOAmYSAWLbxEJ6pxnopljZmYCm/fPWFt4OVHr/jWt3+BT169lIJUrRc6no5MhwNe2Y9Cua5YbwnjwOnuxMPLF5zu7pgOI9M0CBctV0qZNcXVchGiD1hKJgQPtVKqow7oYlBx1ncIQ4AoLZEIhowQUQ7HET96Nd4WNwTJJTjpBuy8U4ZdpaNPRhijxorzI5NWIq6PXt5rNGqZhoFxdHgviinViK5ecI5UDM4euTsFYWPq/TbK3pQ91h4ltGR2qRuMs/eSAVrNzX4B/pDHvS0c4i1bxLEBjdp6L6dKA5fkn7V36JUaP8nptKhrX+/jnXJ8s3Srtsr87IXSiJHr/DJTW6Nyap0wVuirh0mKl1NKTKNjGmWeTKOnpMx8vlIV5j5qvdy+HinnLB0W9F7cFpXTDfOHooV+73f3rj2XZvx7Mb4xeh23UU7PBvUDPIuSZPXYjnlzItt+9jVpz8V3b8SX97VrH9jnZry2o+wL+fevNbSjX3fZWiR19NGyu/Z2PBSKFKPd6jexA9M0bZ+XE1LbXbedfontX6rh+uEPfwjAN77xjZvXv/GNb/T3fvjDH/L1r3/99iS859WrV/0zz7dWgd22d+/eAfC9732P43ESwxXFcK0xirSPVRq0N1CFbVNzUojHcLo7kmNkXVee3r0VDzIX5svMMs/M4cJ8vfD29WtSFMO3LFFouM5xGA9438ReDctylYQlIuu0qOGqNROcNoi0MGudREx5o7tTSctKSZGaE4bC+Z02GkmF+XBgGkeWoxAT1iVyvVx5+/iu53iGaWC9zNI0EyFB1FpJJbOskj+w3mN9wLoBjOH160+VvaT5D++VsiuGDSTH5YIT6HUcMdazrImcE0/nK6fjHS8eHvjFX/oOH718weAl0r1cLtJ593jAOtuVS3LNOO8ZpwnnLC9evmA6HBlHgXdLrkTt2VSyUPPTrqtvrYVxOmgeq0VZshAFq+dvgGopZMnzeEgU/DBwOB5UtzDgwkCYJiGbrEHTHYZSRTEgxdSjHthN1DbfvOX+/hP101UjsN1DDIMq65fiVNfuIO1QtPGjNVJPs1+6rDa7lH0IqbxP77b4NcilNmmwonBuW8SgJ+NbrRDbgmM1IkVzLf0zz3IwYvRKzxOtGgU341XKpjqxifZmghtuIDj5Q/KqtWSBD5XQ0iC16RCgZgaNVkpOpCRF7deroArUytvP3xGXldPhyOl04nQ6dYO1RQf0+7M/h628Yrumsnu+Ve9bz/Xowt2iCom4EkbZhdZYbRuzN3Lbvb6BL3fPb79e30Qjz6DD94yi2XKs23vvQ4VfVHjcjrff5/4eee+3e4h0BuidJvT7zdkwZpsP8n2JqkNwVCPGy4ZpM1y7D29lA/9/Yrj+j9r+q//qv+K/+C/+i/deLzWrfFMlrYuqaotxoUkjFYHoSk5C09QOrrYWUpSCXVIWeMd5BmN5LKronCspL11sNKeE8dIkz1vDqLh+KQWL5O+sMeQssEDQ2pJpGKTflHPUMBBL5Xy9qqqCEkRi7jUQNSfm+ULJmeMgCgfOOixWYZOZy3WmGsd0OnI4HHjx4oUs+GXlepWcgBAjBl599DXGcdROz0JsyLlgjXSqbcZ3P5ElrxNE+moacFqr9PjuDRcle9Sa+e53f5Hv/MIv8Af+L/9nxnEQyR7vyHErkPbOsTJTKTyMDyoyUFjmhdP9SfQZB4m4chblhSkOkosrlVo9x+OBWhVZy22yVaz1qr4N3gh7S+ZII3UXqlUGlhc5poLFB0cYPHf3R47HolqGnuPxhHUS1cZlVcHZvGNqNNhFvM9hGLai0t0i1mCipigA7Dzo/SLVrgVAICdZjBySsFJTI34ENKNjNBIoConeRFzyuUrdaniswbEtdmgUYdolobVhRYhORcO9UiveOw7jxGWexfEzBuOdEJJyFrk8K+eYUtbFytLV1dVgip6msPUoEuUaI07Cw3KCWvDOEOMW7VcK18uZ6+WKKZXjMHG9zFhEvLU10VyWhRgjKSWOCpM3KHUvl9Tvey7vaRWy69jbWMQ5Z+kRRsu5iQPdmMUtehFUQMa760ZhU9sozvLPaz8l88X0NUUHXD//ff5pM6yp65KaHiq3/W2Ei6plKft9i1G6jd7bMWIUFAfrn5Ew6LnWTv7YfSAXEVlY48JxnPBeIFRbWheADRZthclfZvuXari++c1vAvCjH/2Ib33rW/31H/3oR/yhP/SH+md+/OMf33wvpcTnn3/ev/98+0t/6S/xn/wn/0n/97t37/jud7/L4TiJLM8wyGQrRSCxIg8g5SyafxRggFwpJUEtHMcDMa4SdfmVwzRCrSxmIQ4rBtNZVCF4ckqqqebU45QHoWukRHgotdkYTK1a5OkYhwHvPBnLXKQmzFoR9URpsnEVkVnvHGEcMEYkqTpkVYUROC+rsuASWEvFkEvluqzkmsglEVMmarW9tdL3K+YMaySlRRoA6mRo+oW1CAlijZF1WQQ68IEhDPjgGVWs9XydKaXiXGAYD5xOJ6bDAaxljSulelmQFJuvylLa+l9ZrJNFNdciecMi8lQVYa+llIlx6Yar1CzD3EpbmaLeHablM4SOm0uigfxSaSWCsKVkUhXtNRsjWQsipTAZFdc1OD9oKxkhFBjEw6xGWH6y44okzmSFaEKv0HJCLV+osVLPOdUu91UR26fLW0t7yCJQjdaKtZIFKYa2HUJko+mDFIMaocC3Vu4U2XMRq0aDAKtC1gY9F3bHVehTDJpKjCksXkshJSMsQmTASxPJrAunpdZW85eIcRFnqGwRsTXNMcr92FWZlVJM7KCKHFBU4XvjVGeyqOpGLr0/WE4S9Yve5ibkK8ZSIwudW50kvo8SjIpRs4sgrKjI7Nl0LbKiRyo7ltyzqKhBeBvhoT1hHZHG9BTUrXG63fb5uKYgwu57+4iq/eWc02vcjFM7HzHKMujeJ3goJL1zWkU5BxoppB3JNHal/s+a/RnIFteV63VlnWcOh3uoomIT2OSx2vffJ6L87Nu/VMP1y7/8y3zzm9/k7/29v9cN1bt37/jt3/5t/vyf//MA/JE/8kd48+YNv/M7v8Mf/sN/GIC///f/PqUUfvVXf/WD+23RwvPteDxyd3/HYZowuhgmbevdajuW9bp5vIpRQ2EaRoEHXcAZx2EQenDNhaDJTu+9qFQXR/GOnH2fhEJDlwoJoX1n6bKrE8ZZA1Wwf68DMGfUAIoHZL2TSdUSrcZAZ8Y5kokss3h41krTwpiEDVYxCktZCkhOqiaR6lFjIdCXKpGrevx8XbsXGsLAOG5sn5gyy7JyuVwVEvIEv2KsYZpGxjEQc2YcWsHsxOnunulwwFhLXFbNWYS+QFRdRNrwblX6FXrPp+YZSptwyEm91Kxec4444zDeY01oMwagq2EI3b6x4OqOnVepRpW+jUr4FFHmyFkUSpyxVOs0T7OjT2s2wmqjxP08qzS9vLyD5vaK+7UvcEYnuDyPHVV7tzfNWFMKmCotaFKMGBW8rRqt9fGmxlGFWKRY27bprAvijhVoihGpGZrqeNJltScoVA+zYlT1QZQvxFCmCFVFctHXSo4KpanvbJq6i9TnyD1UJqy1mi9T2r0xmLqHvlSZoRuWzaCIdqaKBys5qhmujcLf7vf2UzWc3C+PPadoG+tvg9ikUef7hsspfOico1QxBs45aVXShaSfS5QVeZZmywftCRHCd7hduD+Uh5KfW8bkbU6tkUOc1uWZ3f5uiR/PjWxrZrovJ2jwsDEG4/Z9ztoQNf3ZbP/fTrx1wo6qA2t0vPb7f3vFfNnt5zZcT09P/K//6//a//27v/u7/ON//I959eoVv/iLv8h//B//x/yX/+V/ya/8yq90Ovy3v/3tXuv1B/7AH+Df/rf/bf7sn/2z/K2/9beIMfIbv/Eb/Pqv//rPxSgE+Phrn4gQqSpn90p1ZxmcMPHuOAkd/ipN+kpPZNPljECUJKypeJtwNtDUNmIqiuUnlXyRyRyNqAOUItFSUsFa57zWjQmOHoJjth4wzClRbCBXQyxS+FmyfPf89MgYPOMwsHjH27dvuZ7PXM9PPNzfM00T03jEDwE/DNwZ1QBEDNM8X1njQqmFcQpSs6TDxDtRD1+Xlet16YP+zZu33N3dMU1Tb5DZ4GdhImUEJUs8nZ+wzvKd73yb7/zCt3n16iOOx4lvfOMbPDzcczgdoVTC4JmmiWW+AEgtmIGYKqUmaQWTZYGzFo3kBjWi4zaJTOkOSEwSTRpdo6xCZmA6hFdrW7DEK3bGSq2TNVQLIUuE6nxgTVnzE41BZ7qmnvMBbyy+FIqru0m9a7zZfoO2m7H9fESkuCq1/DkkuC2uIosFPUI07do2R8I5f8Mua6/va4z2i+Xzmpycm6iPbE0iyVpLQhUbdmUHbd97iKnvr1QG77ryRs6VRRff9prk2KRIH+iqEUbbKxeN3JpkunRaEGeuRYWYViRscc6QsxKD9BRzlk7RrXdVu6ZWIN1+dwhQxaW3e6p9ocrtvRLD5SX/6dyN6oW3omsoQtDb8wv6WWstrdsvVQgK8n1BAJqsWTu2FD1v0dN2DvTXmxCzUNk3MsXzujWrbY5CCGAMWeXu9tCi9/4GKmz9/GqtgmCU2tuPNAM9DANhmJiOhw8tvbQZqHuVDth6n5s0W2N8imhzf+yUHDsk+2W3n9tw/c//8//MH//jf7z/u0F4f+pP/Sn+m//mv+Ev/sW/yPl85s/9uT/Hmzdv+Df/zX+Tv/t3/26v4QL47//7/57f+I3f4E/8iT9BK0D+rd/6rZ//5H2jBav2VoVc6ZPcYFiWC2AZxwOWSg2l4+feOhgqxpygiFK784FUm4BrYBinHvCXIkQK8aDEo5d+V0qsKJJ4LDlhrXjR1hmslUl9GEbmJDi29BGrVCftSoLSrA0Q1+UGLqAtxt4zuFEJCALHlSJaeDkHjbakrck0HfqEBoP3A8ejY5pi97o+//y1VLXrouK953g4cpiOwgrSe3u5PpFypCJRkURbB168eMBrMn2eZ3UgYJ5neUC1yiRF+x35oHBDoRTT8xNQdWJ6/VrBGIlajbOUIUg7DC8KDVZzNLVIUXbRFiwNbzeYDpv1on+kMN1UxzSMovJaLcscxdCHAeM843DAGMs8r6BRiXcB66y0DikZ42qH/NZchIaMsCGNSX3xrXVLdIfger5rr61nDPqMpG4mNG2+UrSHWysoleffDFtWKDgX6YHVdPr2unRhoIu5llJEjNU5QvCkBjk1i4+MPeeDPLda+2JsMLjg1aFQ4o6xhDBitflgVTUI5wLOB30WSc7HGOj0eIspAgnToDPjVB9KnBs/jDLPTBUafNp6XbV58eLly774ppR6bVmTAwN20dCz/CMaXdbbSKa9v2dpCh19i16c2+C3D323FJH9go2p19IBpYg0XIMy22catJdVEGGLhjYnZoMON9r9PmfXuyVomqQ+u762PWccCtQtzkFTpWkOgHUbk1RnHMYoMsS+6Ft61LlahMi2rgw+sMxSf9kIhCVLSsD5XgvBl91+bsP1x/7YH3vvZuw3Ywy/+Zu/yW/+5m9+4WdevXr1cxcbf2hbVgHDZZJYpE2nqCK3fFERawJUpIGrGK0URaeMqk0dl5VsKsY5xsMBaw1DCIRhpHnLReXGhOIrA1L61liK99oTqZBaXF1lTjrNUzjnWGk9sCxQwAa8sxCCEEiUbBK8x0wygcdxJAwDYdj05qwTMThpwtgKBoUJNAwD9/f3WGs1AS1itq0PU4sQYkw3E0REe00XvS1a6+KcYU0LpSbtH9XyfJtnnVLqkF3OGdcdqhZ9GM2F5J63kO9K7ZH3idaNunmKHXbTxaYtDLLGbb20+gTVsaCmUiJHxWkk723klnvRLxehBPH0rQtY6/F+BGOwWl4AzVMU9XOZbrVHsyJUrIarFkrVxcaIU1E1MvPcto8AsZ3WGGJUeNPRFzVZMLYIyBgRTW7P6vniaiuYsnXlbQudwK2VlDOlQHEyd2XMbJJD22a2e920II2h7uqUBGkTmbBaIDV5LiRqabYz93O3YEvPpWR1NKwaq5QEvUBJVM5I+YE1LWrczZcqrMjWPqcRMPaRyMYC3QzKfqFv8Ofz1xvcsGfWSRH1h3th7Qu098e+hd3k/jZFCbczpO3ZbZFXE6Smf//5+e+P1R0PPZdSNxLH8+8/3+82FgWW7pqOei9u5l8fGbqXWnUW1L5v0wym/mA2ZaNNJFyOKSQq+rl/me0rwSr8ou2HP/oxD/f3vHz5UpQQqJQ6S4HnMHA6nfgofE0ZhapxJ8kVkkrIpLgyX2eKEeWEaj3f/s531YuWRbmxCksrijUbFk7Oov5tHcZJewzj/QZhGbpeXLGWgOuMJqvGYgieklbm+UJOopV2eLgXA6EDrnlh0zQRhoFhGnHOabv0yPl8Bu7FAA2D3JMOWTTIxrEsSzdWx+OBGDev6nQ6de3C6/XKukoV/IuXdyzrlZQWDqcDPjhqlUZxEkFJt18o6r03TxQdtMrwy4WU1t2i2/ITZldwLBO8sSKL3quqsFZKCb9bpGq+7YG091IBSbiHQfNaBmsqNWl9l7XUKiqDzga8H/FByiucK6zLWcg+eo4C3zjymsi1kEuV9jZDUCMBlUYP1zY5Ovlj3CKYpLWGjWUV43ID0bS6wVpb8bdE6BVZoNZlEWNhpN36dDxozlUi/paHxRotKcisKUq+zogCeylJcnjGICUcpRsBuZ1GyTACc7eFp9Ytr9LWzecLfYzNkbIdwsJAjFkMaK2EICxSYwyX65N2cijktGKpBGcYg+RgQhgZx8ycLjhjyDpOWiPJ9rtBy8VvRIA2dhrca1rHdHXK2kItESlSCrK7nlLE8a2l9f9qi3LpBr+dS0pJPsfu9ZxlEbCGnFXxv9JrBdsxmn7o/rwbhNvuZ/u5EfDNFps3o/HcmN4ar+1YgO5na6DatAP3x6pVmIvdxKiMXQuj9K6KVJZ+X8bAwtE+aM83qa+UnKDkOkHJQ19y+0obrv/td/8pwxA4Ho8M44ixlnVZWJPANU5hNqvQkbha6gGlxDovxHVlvlyJq+ir1Vr4zr/2XayTHlCXy4XrVRonruuKMyK9tE1o2Ro5oCXs23Fu1AiM5RojSSvSvTW9lYIpqlZN4X6aCMExhMDLF/c3augVXdCyAwvegZs8Idxr4ltgJYPkqHqvHARuHIJnHFWJYxpZFkmkppSwQIqiwr2swqw8jCN3D0fWOLOuoqM3eEutiWW+YEiYmkihQXSVWiwpimahdcIJKIr5x2WVnlBFFMdlwZdke8IpGSORVmWe6eJYchWDbyLFWvViN9UMkOddbVu4tUWKKdQiauHFFmq12IxEXCbjw8wQDnifcd7KcY0FG3g8L7x79453T4987/f+mUSGwXE9zwIHOsfp7h4fpGdRjInL5akr318uZ6WAZ8IQOBwODCGwRiWxKBP2crn0PktSSJvJRZtKVo2MciFpXU1eI6lKvmPw0nwU7abdavissVjfYK7S7zkgBq1EGixQS3N+xTBZu+WyJM8iBkTuteCvzXC1qLzlT6RAvpFblF1qhOaS88YwDcEzDNo124vChqVia2YaPHfHAy9f3PHxi3vVM8xcLjMgzp61pkPTy7JgrVM90UipQ3dSS73N2zUIn9KcA7lm55wsvpW+sINGXHUHvWlrGHRMtxWgGZNaa4cKWxdl1DHIOYO1ijhskVGLcPbH3ecsG6LStn0jVVtcd4ZiSh0WluPvSwLkcW/pg9tc6XO2YidyoGr7LUdr9Zw1rZuLID2CbqxcrpF3j2d+9KMfMah2aa0Zkojseu/7vtxu/fx5t6+04frRj38CQBgC0+EgTLwUWaJQrKminO0UphPvSQdhKaQ1kbVzcFOUtsZQB8lp5Jy4XK6iZagLrtRumI59G+0LVNXoCY67M1x7oVPrWGLsXrEzAswYKsEaxiFwnKRI9nA4MB0mxmnEa3v7WmuPiLoqPAhEZlsrhUJMpdeQqeNNS3y3/F4pYtCGIFFEzVXr4BK5Sn7JOTGew+CxNmCt5J68F9oyRhiarReUQHUCVbXci0HY2XtIqp2z1K0pc8rsIqW6mzgN7jFbLsftenXtJ1wTkG2RV5uGbZGVHW1CooXavfScJYIiSWuQMIxY60m58vh44X/7p/+UkgvOO67nqyzqw8Dp7g4XhNiyrpGnp0fRzlxXrtdLh1zGSZwF57xGl+10MtfrrIuW1KXVmsglMgRHLqnrUTa2qLD/1FBYuzUDzFI31u6lVTKAeP5JHbOqAVSDlsTZkfEpOogiT+QUxmoFrq5HGbXuoZ/aI/pWrlAVsRe1E2WjWGEXNsNlUOKOt9KLi4IzlcEZXr2459XLB5yVrg3OSp7YWo/zrdXIRq5odVgfgvO+aLulmLe/vui74mbIMXaL7S7i+tBx+0um/+9nhsfey8t1w3urBMIO9mtG60PfU3TvA+/tr393xQ29sEKkEqMtyjGlytQXCH3L35GlTGGNC09Pjz3aFei5YKqUnVB27NEvuX2lDdfv//4PpMV9rRxPR7zmXJYYpYYrSRsEp1TndV2VZr2TMWl5HGTx9MHxdp0lHVI2mFDC+LotjA1eaPBO3mjtN9iwaYWfFuNchwAOhwNNlX5dFu4OI1//2scc7+745Otf4zgNhODxwXE4CHV/GIZOmmiJ1XYuwziyrqIcMi+RwyhK6NK3R+vaSmG5SLuUNTpKTBxORw6HidGPXOariGPmJC3cnWPwAWtE0NgawVLC4PBBDbitOKtsOR3YFog1YwuUarTsqehitWH6loqxTju4DjcUZHafHYaBElN/zdtNq29/r52VWqbncCFoby1VpRACTSVVgSGjwjwuJXI1eOM5PDwwHe9wb99xnRf+v//b7zIvK8ZY4rwwHY+M04h1wvLEGuKa+oSNMZHS2s/tcDjsjGTWSEao8l1KzCgDtEoX7Bf3J9Z1FnX466zrv1NnxquDIIvF88Wzs/n0fsq4zH2R8aOXAn4tnG3O0OFw0ojGaQ6wfUdalGwLntkcAG3v4ZxnCCPWi47hMq8sq3RQtSoF1OFO1f2sVIZgqWnBW2lP9K//4i9gjeP+dE8pELzHOcNhOna0ZM+y3G83rxnJjVk95uYMgam3ArPGbN/d70MMxZZjVXrezec+FKnsX7NmV4/VnM2GxDz7afv4kOH64HXuvvfzGMUv2vZ0+U0aqvYoqZSCLQhbt7acF90hbMXLT0+PpBQ18pbIHI12jUb2P6uT8aHtK2245iWxLolUEmsWTD0mgZpQQdAQRrKBlCrXNZNiouSENzuP0jmi3vwlFuL5SqtXEG6HE/afcyIV5CzOONF4K5U5Z0iidVeKVYdig06s2zxYN0i7kHEaKSlivVBlX338km9865v8wre/yXd/8duM3pNT5Aff/x4P9yem8ciLh6O0XNfcxdPTI+uyqs7iWeEAIaEMQSiy7bPLsvB0fuLHP/4hl+uFZZHi65cffcTDixd86xvf4nR3x4v7O9zXv05MkXVZuVwvvHv7Gh8sw+AIwXJ3GCXX5ZwowHvPNIp+4BAsYTAYgk6kBodIY8rBux59CVwokJtXfTtrtSuxK1JDZwQTT0aYd9aKMQW6l9eEZK1tC4MuHgiRo+X6MAacF93AVIilMjgnRtlrFG0txjsYB2zwZAzneeEHP/mUx8cnKT24XhmnA4fDkYePXjJOozA8c2NXCqRWXWvVXrhmcVGLD8LKCB5jlRKfmzRUJqVKzqjU1ZmkebGcjPTsMh7Moct22VJIRYqgGymj50Ka8kMplGzIRerkhI0ZVVpKBJdtkHFa7UisDpON6iRauefjKGQTem5eQQXR7RzGkRACh+nIdVlFei2s2FTk+Q6BcZz6AjcvC0ll2uJy5enpCWcqlkAY7xkPD0yHe6oJVGQcj+NBxITrMwMFN4stbIt9CL5nUlrE0nJce8Zh79r9bJ/99weM2j5U6QSP3TPYf0xSBfu6tfdZiR967Z+77T5vnetsyT0lvlbRhayVDzp17ft74wkaUNZWQ1o0oyXEGjTXuX2yYClM48D98Y5pGAnO41XazDjTb1dzhlJa+bLbV9pw3Z0euNgL5+uFWq3cUGPxYZTJ4r1QhEFqeUZwTm6at77Dbpatt1ZMK24IfRHcs9ZavYQUJstC3cgbwqapndljFdYa9PNOWY6N+uy1A613DjuNPDw0sVlt4Dh4hmD5+OOPOR1GEa89qPyTk8gieCMR4RpZ1ogoM0sh8el4xPnG3oFpGhnGwOPbd4znwHW+cnm6EOPK49s3OGP4pHzC3d099/f3GNuKiAvWviCXlVojzhmcNwQvuTlpgmhopK+2okkxcYFqVVwVjJHkuPKRQKPWzdhY/UyjQ9DPf/M6923x1Bfu7+vsbNCkUZp826cRAWRrpUzBG20Vb82mAmAU+ogra4rSuLAUpuORjHiO1nm8D7ghEMYRP449B1RVTcVZJ722kihMFKqokDhHrkXrvyRynIeZlHJ3hHLSaC1nhlA3iFTZpMMwEoLv9U4ioyQQtXOirFerKBa0vFJtKvFUIPPm3RuMMwxj4HS6w4dWZ+S64bdOxzmG1lhTWS2YnVyPMa4Lqx6OJ3j7iFsjw6FK7ZxzuBBwSp0vJXPIAlWXnJjPj7K3kjndHbm7f8HxeIcPIylVHBmyoSZRP3ke6Tz33PtY+YIopUcKz7aWw9obofc/I+PkOa28G5xn+yul0HVWviDCeH4d7xuw96OvzmDc//2MBfgcKqz19jX91AfPo7UMat3OFS2VY9eKrWYbA0ag4xa1trIHgQ1XckriaEm7Dt67UV9i+0obro8++hiv2n8VBGoZHH4YNTryW5dNYwjTAWrFVIMPnmmY8M5jnWOZZ5Zl5nx54nCaOoxTdsaoF+Z5z+Cl3UnOmfl63fTqStMrE+9vGGSxEijGajffJPCdtXgHU/C8ePmC0+nEOIySK3BOFNa/9S2CN3hnJG/lBLYL3nM8jKoUkqSHlA7OmCuTklVyzrJAVri/v5Ni5/OFy+XC55+95t27d5yfHrmcnxCFgsg4yqLqncUdJu7vjzyd33K5vsU5I+rnek7SRVrGZKun6goLRmjo6qfLc6i1e4WlFEpSaaQCz8Xcmkd/I6DaIjU06d4X1NrrYLZFpZEJ8sZ/qpKvsVbYoc6JdmDruksVFZS4XFjXhZgE6vr4k0+4W1cwhutloSKe6OnhgWGSZ1ZzIRahPI9hAGdJa2JdVua4cjqeOIwjqRaCG3oebr5c5TnmiimiFBLjyvVyJXinhZyTGmADWMkzqp6kteLAzPOq+UgLWHJuHX5rhxlljcmsv1cxznA8Hfjo1cdd3ixGMXDGWlFgP5zIufD09MTWZ8thbWhpU6yKqg7jwOF0R+FTlpikA8I4Yb0oweSqea+ixJIgVPPzu7fCmkwLD3cTL16+4nh6wPmRFIWwUS3QRXRVh1HHWydfPFuE907nTQTE8wW89u8raAE7w7zfZxvHe+P2IRhvb2D2RvSLjO0XbT0/xWYI2z73pJOcc1+nWmS5v8ZSGwlnywnK958bODmeRP+tiHo3H7WwvhgDpSqS0oLPzRo551jjwnwV53gcB0VB2n0zX+gc/CzbV9pwfee73+Xp6cxwOEprheA53N/x4uUrwhAw1vJ4PvdBJiKzIqGDMb3F9DCOLNcr11kU11NeRRnHGkwV7byiNN5mhIYw7GCJnbr280nSQnCE67dezyKJUwslR+3SbLh/+YKHly958fIlDy9fMAYnlGDvhCacI8t84fXnjxiEBv3q1SuGITCNDh+OrGsixYIxmZIjcY48Pj0R/MDxcOTh4YF//Zd+iVorMSb+99/7Ht/7vd/jRz/6Ed/73vf49Cc/ZhxHXrx4yUcKIX786hXf+oVv4vyJ6QDWVaYxaCGmyAN1/9uITJCIy6rXbioo66jR1/OOuiuJXm1DUQymWpzWPNUixI6i3I9GK24J8lrNjhHXoI7dgqMRY0qrPFNjVOx4QCvyqJpPSjmS1isuTNhaWZ4yWMPp4cS3f/E7/Nr9/5MwjBxPJ4IfyLWyrAu/9/u/j3Vyvss8Uw1M08RHLz7i7kG12pJAY5enC/O8kGthHKbeFy1HZeVZIcPUKnnXH/7wh3jrlGgjOdqUIuu6qbR7ha6FDDJzd3ckhKEXhjf1jK6+YaXe8Wvf+i7YwjgGjqf7jcEW5dk5K0Xsh8ORWmFZVpz1nXHous6mPIcQJAodpgPf/aWFXKtChCONgr6mlmcThZVx8FALbz/9lK998glxvXIaLd/89re5GwODM3hfGIJjcIa0VmpJ0q4G0bCstZJLpFSN8E1RA1+pptJZmT03Zfr/pY+CzNXSCCf/nFBgHwk9h9ba6+1zfR2om0ltEdTPAhV+cdS3i8A0r5SzCEk/P8+tJhIa6ekmQjTvH6uUQowJY1W6yTQSj2ihlgq2GHy1GFsx1SkUKs1oY5I8/tPTE5+/fs3j0zv86Yg14plKLru1wvly21facH308dc4PbxkvLuXh2PAhsDp/oEwjiIjdLwX79hZTsdjh2fWZe4MtcM0sIwjwzyKl5xEn895p2rv0mwv9noolaHBapdQKUamtrqHXV2FKhy0VvHFWqwNjEMgp5kSV3JaSTnhg+V4EkUKZwqmSguIcQhQHYOHHBdJ8BcxABiD80FLYx3WZYIqeGAt9nIBA9Zbhmng4I5CFa8V6x139ye+8a1v8NGrVzw+PfYILYzSS+d0d8fxdKQykPJIzkuXcWmecxciNsIUs1ZgVGndbVQsVQkiNaJ4j7IJHcY5YTJCm0lSf6X5CBH8laEavETI6GfFX5BJuGcnCryRgYxBDAMYadJojSTnjRGjilKj8wrWqWqEeLByno67+xeM08TpdMfxdE+plZgj4+HY4eK3b9+wxsg4Ttzfv+Dlq1fSGyqLGO/8YmFZtTecVakoY1iXRZLXRiLpWipDKfzf/uA3ez5mWYSg0RiLLVfxPJdxf3/fn0/KubdmQQ2JBmx8/VvfVMA2a4sPET2WtU+gW5Gckjzwnf67Fac757uWZMwZpzljP47cv5S+alkdk9aaZcpokXbBWYnaa0kcTgun+xekJTB5gZNTLpicCRo9Wi2BMMZqk8r3Ia69MdnLWH1o20dn7YqrOpgNvTFGIfD2ggOTNyNj7K6NotEcjoS2MjaNoudGGJt0x0qg687c09+lvE/YgPbeRp1/nmfr8NzuqvbEE8nlF4VIN0hvt4v+0+H42iLajKmFrZN1Kz8xUgOGPpNSqbb2TtyHoyglSdQvxLbmvBrbagD/FY24jg/3nDAMx5P048qZVGE63jGME+N0YDyI7L/1ntPpqAyXwuX8JJPZWqZpwIeAGzyFwrouCgsGrHPkpNJOKfUENQi2b3pNF2q4tO9UTiIEaqTHVs0SBUnewDAeRtJaiBRyXikUnDeMU+B4mjAlUUsiLZkQlPFoxx5yywCwGNVXMzhKMJL4pyodGcIw6MLvsN4xjlOfLF8fpNnjx598zN39C37ykx9zuUhUcLo7MR0PDNMkuUAfMGZgWS+01hs5JclxqZwPTphy1lpKKrQ2EQ5RDoekeSaRIHHI+Vdj2Y9hiXSViYXpbEMxwNIcdEsOO1kWqzgnfeHqkZeB3PJbqn6hC4jFdfiieZSmCDSSq+3ZNOckb+rDiPMjPhzAVEKdGIZBo50rKSbMMjMOI+N0YJpOGCMKHS6M+OnIlAtRZXbaRMaK6kpRGEzyio5f+qVfxhrR8nv9+jXnp7P0eYtxY2Ai7zcq+v39Xa+9yjUTV81VyME0twjf/PbXwVTWuHJ+99hzeaJ/25AEPT/j8H6UbrvKAnXW9XqkOa7qCEhjzvv7FxiNENc1CUSoC1WtG0PNmkLNjjAemKYj0cDgMq0lSi4JqpfnqwWvxqBOjRqbHr3QI4q2KG8akvtoZou4Nn7fLj/VI6L2oQpIlGpUOLst3K3vmgQbmxSUUeNlimLozWgpGUwiYDnih1iF+/0YsztO2V5vVHVDyyvJ2NY47OYePKfQ3x6ntQFqWontPjfDpQLiLWpVdEnS11WjL4VpFdly3jFNI2tuBe36xKuQjqw+rx1B8+fevtKGa6VKvdMwYNZELhXrAqe7e8IwMoRR6ri868nsZb6Slhk/jJSSZEx5y4sXL7hLB0KAxzdvmYaR+7sHfBiJKbGmzBwLa0zEnIkZ0THceUPOSsuOlKWzcloX7En8zVIS18sTY3CYmsnxiq2O0U8cTgOn+wk/WoxL+FAYrBfIbLQSkSUR452mA4fjHT4MHKZTX/hTzlg/4G3her0i66Hn4699vWPa13khxg3LPp1OHI53TIc7vvb1b/W+Rm/fvuXzzz8n58KyRl6/eeSjj+54eLhnHAZV5s5Y51Sax0quyohXnGLepbSKyi+psDHNeADK6HTOYXdqB1SBqloDUJy2bahV+mvt9Pj2qYjcNS4MZve3xVOsQroFfJXiXOcDxoHUTa2EEEhpodrCcLiTaM85humOd5+9ZV4Xns4Qf/AoRdzBQl3wTox4WgtlNVTvsW7ifIks68p1XtTBEPi64pmXVXNyhnE84YCaEu/evSPFFau5hIf7O5wxfPaTH5NTJKeVUjLTNEiRfAXGgWEYGQdxSkT15MzhdNQIacB6x2effsqyLJSa+da3vslhmjgd77g+XkUr01beXa+MY9DOA6olaSzWS9+xuGbSVaAgHwbJIxsncGctjMZxnReJyIqU66acpWt2rruFV+HlavBhZJgOWFMZTBLD7wsBw+AShkhNEWMiVnUvh9ZluVaGgDgNRuq9Uio9WhFfQCPNPr5kkRUC0W0hsHEbZNi/orlFFxzV7nJqBkVcLN7Q90NweGcgWfKKlFhYJ/JxamCdddKtQvNPGNMhZwnwlCVoDNYJI7aYigvqrGYjBfzOdOPj7FZbJ8IDep0aTTUih9Ei6pTEASq5sOYoUboiCd6BMwVKYl3PUuNYq0reNWaipebWyqdgrKRTck0c70+8+/GnPF3eSdpFc8ilFEwVtGYnFPJzb19pw3WeZ1IRFt2apClaGA0hZbCiMBFLxsaEWxMhOOIapTVIykJHtxCCLKTeS81Uvk4MYVBRWPHMLW3SqTdjquDiRWjG8mAMUkppqTLFpCi0COlhXlaenq5QEpaMJ+NMxdtKrYM4Z9oAE8XfhSUmXYVthRAEunJhZJqOYJxMMmWipZJFC47mnVmBxxqsZqTavdbCovUW1+uVZVkZhkH3HTjenViWVQ3ZG8bRcXd3kIGqYhy1GBHZblqQbss/OUsf3LI1F3bn8RmBZxrc1zzf95PF9SZP0Pb4PL3dfOlaN70+QLo+F9ES7DJHDRuB7i1CwThxPrY6IdPzbcjjJqWCtQqxxYUxSE1UzSJSKxJFE9YPxAyYTMVJO5tURf6nWiUrFNAatZQSa5SxaWvlfLl0h/3t4xPXy0XU9auo2FtbJJKqsKyJixUYd14W+ZwRKMtaQwgD8yq92kotXOcoDoSFeYl635FuAFp/Z6qUeNRapZmidSqLZkTYqlZyrsRcye25V8OSsnrhUj+X6iYN1CNeawWmzXBdI5dlJc0L2SZSGQlVFRm0R1tu9OlSO9S9Jyfst9ouhp0xeT5Wno8v/WZjyrUhWpFu6i3Cb1Azu9omqnQarw26b2kBahd6LqWSYpPTut2en8eeQPEcCt6TM5oz2KDEPSGk7afdg+dEDrlLBREA30OE8mMMOG8JweFVmqwUqEaUWTqz1DQ2cFPJF5HxGFdKSRQypkfLButbQ0nb0zZfZvtKG651lcm3arSFdVgvuLq0nld9MWNwNoORDruNidZEQHORxo7OBKZxIg4LwQe8c5qs3RZdmqdRG36vleS0gd062Ao2L5IzwnjLWk9FSQSHJDZNa3MnO2lsxlat3tuxA3iBW6T1vOR6KlIGUNG6mxtK7PsYcuNO5ZJZ1oXz+czT+YnrZRZW4zgyTQ1OVHaRkgJaU8hKYzpVmZXNAFR0kG5EiT0F+WbO7m/rzh3+IrZV/YK/bzbz/vVqskLORYBiOg7Uo0JdBLRI+jbBXhQCVuNplWma5bnlVCg2d8gqOGlNI8W2HmsSre4llyLdCzp0Kk1Am25d6uoHcsPWmEVIulau88y8CBxejZF8a6F7wnLbRFdxiUki8JhkwbWWaiSPmBWyi6lgowgcr3FrP1LUWHXDhbLTcsE7jYpt8+oNpoqRK3p/C4ZUCq0iKlUt+FYHpc0fTFNlyMSUWNZVWwNpWYBCcI09WNA+XtIpcxfBP6d2qxMiiF9vL7OfC/JW3Y2k3e8WSXVU0XQjuD9Gha0XnKl9bpgWQdVt/80wiMG4HaNfnOWpakBarmpjQOrg3D7ZDd+OXVm3/dyeOzS1FFlfFJ6ubc1pRJaqkm3mZpq2w5rt4P22G1CySCKui0pNKdtRv9/Xsv2a+iW2r7ThSilRqukGrHEk2u2otXaZm2KkGPj5+7UKAD/4gTEERh/I1yQ5Je+1j1TVBQKo2q6iqLRT94pkn0aPU7yjZEeq9gbLlfouxxgc3hRMTVB1gWnyR9ZSk3pOrsFq8r3ax20Rr6aKcVzXFbS7c0O61Zxp7KfQh2oi5hi5np+4nB9ZriJ5VXOmpERcFq7ns7RDXxb1fMXAo0WIIvdUu7HYR6Mtz9WMX5t0tb8vXq116P3T37vn8hzvv2VCvZ8P2G837703asTQSy2KEGmMy+TiICW8bV2QEyVF+clRuvZaBzTKvTgqXRXFVFE2GSfuTnecDkeWVWp4ShKNyahRo3dOM3NGCqibd5+FoVl136Va1iSaeJc5sqySY8V5QgJrhR0KdMkqN0ykCqlKy5VaDbZK3U0xIhxpgFTQ/maFOWatEYNiHBmnTLFm8HTf1ovBqQJrFixUq8XQuihaKeY3naIuoy9jqFKVIQugQSMXQ8yJeZ2J84VqCzGfKHhtDmsUeyi7CAdS3kRoK0VTmEqmaGUQtGj6dmxUPbSstLeLfK2Zm68YI9RvHZdd/bxWJWcIs7b9RudYwxqcQWS5TO2KPTfjt+Wx9O82am/8uu4+736bffpM7o+6lN0vQy/PKlZYimQFWxfp7f7UXsSfciTlSKlZ72OL8mqX6+o71r9tNdJKtIgSzTIvnB+fuF6vjMfjTVua7av1C6Phn2X7ShsuaXArN60iCtrOWiU6y6IibQT0IWPIO++5ORsNt3XO4Q2iaF0BLDHOxBhZYyIVLcREGX0azaETxmS2uiYlLUi1qwdXCS4w3b/AWxi9oaSZtF5Jyyo5glywWIIPMqBKE/FU2qkTT9co6cE7ue5coHhROa+leaS3HllnHjntsmu2PkaNVn2YpBfVvqfRNE28eHnP6Xjs0cfe+LR6NedaDyGz86qapyiT1e4Wgb74KytTusu+70V+6O/9xP9pRutmX7t/211UbFRDrxXdikGS78SUiOvKOi/CQnUCJYlDqotWu9YKtlp1gCTfFNer0P91nNSmPOELJVeqSGT0TsDBOrLz2m25ig6i96zLQq6GrCr7zhgxKLqUVWOpTsYIziMVCAZjg/bDklyidaFDdcPhiHNW8mZFIDBnZCxlgQkwGIEzMbosNuhUoizpAeaxxmC0OSLW4DSgbOQWq3hZyhqhUMSgVajG4AcRXk0ls5Z16+BtrIi4ahdj450UIZfbRe+LxgIaOe3f7/Dxe6OEm4V5T27YQ3b9s6XctATaC+S2FiFtjjSyzB6B+KIxvGcCNudv60K8QdiNoNX6sO1ZhO9Bp7s5s1fO+BC6cWNUm4FpJnH/+Wa4jOnvNWOUUuJyuZBi3Lo39J+WGvjAA/g5tq+04ZLGfVow2W92VSiwCBPImO6l1FYNrm01mvtnGu6u3rNVMVB5ELlXkW+snXaolpcxkMHaTMlWvOYO4bTprqryBrxF+1UZKOJpS2Qoi6azlurENbb9gQvEY4zo+1knhBMwuogYoZ7mLelcNfxvUZAYF0spVmnrpv8OQZRGMAZfhFHpQ2t/cuxCv3tPqxkeo0oUzrWIUSe5eq4NfqvGbK3TeR/Z28OKDd7Zoq/63nfE+OndvdlZvf3T7PYNPaFu9Mfuo8RGpweoRQsxEzlLVO9yQCCyTSW8F7qWirOW4KQ7bms1QtG2N/pMpAV90fxn6YurNM9Uwoo1hHFU+DkKpKjGoYmUGDUqxkj8VrVRREE1Inu8qX8bZXk6KyLCRpXGG9RTjUbWVXNJ7elBg73FO2+LXmO9tW4E9DISWn8trb+TjEhVx08GulFmYBi8wIYa1Vc0N4TWIWldltVoSU6jdIdoh6FQd6e8jYmWl9axsPvGfrOY3fjaSCTSwZltDiJrhiiuNBar2aEP8vGCECaclXHfPtOiq9soiw5gtKh0d8r92m0LFavRaGtzuKAZqfevbbtXmjfvxrY9x+2etf01g2SslfGuulGtjANlA98YYf1JKfW1bA8PNnRqm7tfbvtKG66chDrbohAq3cO1xlG8663/qJUUV2JcpU5L/UHQRayqVM6GMkjeIbXOokUp2+qJGUg7L0QUtrWlRDVdLqWF2dQqfbmU2VD1/Esu1FxpkbkYT4+1tUN7rWllk5ewqpko1HjRWMs5c7lUlpI7fVZwdbphaQ0gJT8g7U1gJ8BKwVnHOA08cN+NxjQNGFr7itIhiubSGh3I1mmHW80D7SH5XhRqt9fkJrN7YYNcn3tkzz3e9vn3jVbbT+2f2FvKJsIr6g9+kySyIt7rrOvXY2oTTo7kFKnVkl1EVmUh7lQkeioKI3krRiu00gAjpBqL0RKFIm1Jcuo5VuoWAQRrwIr80jgMQuioQghJWaEgjYoE9lIIWR2xlt/NWcddGzm6Glrr8MEzjhO1Cmu0FLkk0z8rOzL6oHU0SZSoxkX9QppJMlpXZZ3Fj4MshGkTDwaDN7YbJl33tBxFBJ2N0cjObM+5NHjaVobu2DRSQouKtqhcrqHlmPXqmwXY3Cg+tHWjwH4B3/qmVb3eYqAYgQdtZ/TtTXxtYTuV2udL6558u91GSe0abMeRijgQRvfVocB6c/yGbrBbk24Nd8uBFWGZWttzWfKdJpQsajhQpW6rZPkshtZjcN81oMhD7zVtXqXtWkQawsCgJLdG1jIGamnlCl9u+0obrrTGnhz23mB7HkoMhQGBP6oQIypZ6MQpErzTNuZO6LchMPhAMUZEjEurPSjCGCtZZ0jRB5jFKDYvylSlhgv1FStsvoLB7aAu0a0TSQiP1JcN04HTNDF4gXnyulJLhJrwRlLeIoyq0kfGgJm5Xq+6eBpyydp6Jd7AFlvPKig+Y2vrDdTUyzf17+v13CdrzpscTEqr3C8v9TONKfW8PiRbqNXh2FhOspqWngzun68q2Vmrdu7dGIltew53Pt/2kOVz47XBizIB847yjJVnbHukU4AMLoFNsmjY0guovTPahw2CBeM9hykwhsCaonjCFaqzHA8Td6cjD6cjj4+PmFrJSVh7plYcFXKCJI0cvbV4U7uRDEag6sPhgDOWpMoeOWeF7/T6SkYUDcqmzm9Mhx+lZY0la/6FEiXS8p6H+zumMYgivhIkLFbYY1rvJ9G5lFSUUok1YU3uDoXoVRqk5Zc4bM5ZpuNBmm1WlQtqeRBVR3dKNjAGvJXrHjx4V/FO6NaHKTCNgRAM85ypJQGZ4p3eh/zec98z7lr3AOdcb7nSPtui6fL+cHpvbLXx9byFSvvZQ3j75pN7FmCbi97zHovup8Hhcs+sMvVyP2aDBNu/+/XrOvehefL8fNp6sO9kUUrRXmqq2RqjkM6cNqNt0b7dOQQYqQ2UKY6thprFgcop4YeJ4MQJoxSpp3SWvFXLfOntK224SkokZBBaY8AVHGKsnAGn3kmphVoSFZ38tUoTR2t14bCSH9PuaD0Bi1EjKEV4hlbxXXThaB6/U+kjWYS8M1AsOEexhmottVhonj5GlLCtF0/XWaZxElUI046vUJttLCFZpLJKT1Ui0UQ9PVEC3+PMfYBV1S3QhbEYbdoYIzkJqyx4kWBp6hYCjUIbXjlXjBlwLjSYWvV0dcQikyBZxEjjtqaF1J7M3mPhLdHduh1gmgTThyfe861N2P3kff75/bFa9CHeXpXiSQlPpHTCiIirsRlMxjRh4FqhZHJcRTWgQjULthZqCCzXS4dBMDKeBu8ZQxCnoxYhwzSfColGKQKlWGsgRXKtpBjFSA5O6/1EPcLkLJ+vSgYqiZpWWaxKoXjJ45ZcKFbmheQjMyVGUdePomXpzYHgDVYwajEKJUnBt/bEskhDRaHEGkytQiLKUt1kq9RLOYRcVHPBek+wgdM4YJwhZliN6XlaQ1MoL73uhxZRUJXEYBis4zRNHA8jBw/rWWuFSlH5L3Eine6rxTmykIu+nnG1U65Led9w7SPc2zFj9sG5OALWUW2jl6MLvRqNBhZrJ8Va6ja+NA8nzSYNxWSKzc+OqfOjPnO0qkR07VxK3ukT5p2qRakUoyK+9XZu7bfn+obNYIlKzmYIW8ud1qHc6nUICY5+rwUatWDUIKI0jmq6mkpKCT/QIdJOxrCNjf0vZry+0oYrx7Uvft6IcoMz4I3BGymgq5g+QStZDYwYt2a8nBEih9WH00LkDk8VrR4HhYTEi5dmflYXuNQNUnBSNW+cpVjpylsbCcB7bM04U/BOiCUOz0HbAIjhqp2JWJvhAbpyuer95br2v+OaVLfObbi0ESiv0fWpRZXHo0KmUeWB5HvLslCiwGJlp21WaiJ4gcfknAAjTTqpG+PPGKiubnk52jU0SIKuUbh5f6oi0OHQ9w3V838/hxieJ7ffN1y6dDZYV2eaNXI+prU8yQWbk/YIa2xMYWHG5UquRu5RqeRlZggDcZ7luVtRgHBAcGK8nEHYdSlSTekGv+RGdRZorUTpizXPM9MYMNMg9zuLUSEL89SgRI4CNUl2NZdMcWpjUiHVpHRyqHkhLkIuylmYg8FWnHkJJUJaqWmBtGK8wVaBkcVoZygSjVWAnKjFS47MOGlXURMmS7lEMCO+Ok6TpxiDiRVvECNbEZaiA2rG6vySPFbB1YKnMljDwQfuD0fujyOjK1ycI0ZdvJWZV0vW5qTicEGhlNSjBWsCrkot5T4X1oaR4WZ47gYa7CVcjDHgUMKTbHsDYE1R9KNsSI86u835zUnGUMZgzYcrbj84Zq3dwD/dV2c17hy/aqQw2bTcYDMQu3nzPFJMqrRyE7E9M15F9weSr9rKglDosAkrbCUyRcGokrMQM6rU3Flj+7w3pdCai/4LKD59tQ1XnK+ANLizdxlvgXqHo6g3qOK4cSWvQusmC0RjiqUmpJne7IjLFVuC0MWjtJTAGJnceaXmSC2t7XYRFqCG/lEHkykjgzXY0ROQgS0gVKGoZ+kbPb0UbC04J/TowVkGZwlW1MC98UCh5BXnQu8IMI7iDVXNl6RSSLn0ppIN3pCaG6NQn6gKtLbqHVLRNi2tcWCDP6ZpUhkr8aDOl8euQm7M3nBonrB7cnIfnKsfWBkasWPzAMW7E6kr5+G5D/ahSGu/PafFt9fad9v7rft1o9I4vV7pPyXaiiJMJQZIGlLKOZcUWa5nPvv0R1zmhRgzl8si/Yb8gC3SlXocRx5evOTb3/4GaX2Bq0lK0WvGKBwbo3TR3ncMJgdRZplnzk/vuLu7YwoO++Ie1jN1XajxCZMumLYgFUtcpS4sxgjxQMqZuK6EMGg9msHVmXfvHrleBFYex4H46hUvT4H1JFJV6+Ut6foWz4FsUxeTrlqrZr1A0bWgEKLHuIBl7Pmu6/mMOd4xmMRkPsaFkaFWkjEsGsVTEq46iepzgrSqFmRl8JWRBA7up5FXDyceTiPBFJ40PxJrlcgrqeyQ2+C7fSQhhstovmaD5jaSz+22jbFGzmqLc2PvNYjP0Gj223c2B0pyOPTXmzYgNMTiffr387zth+DCD0VQt+f90+fI80hsv7/eBLfWfi6NdRiC1LRO03Rzvh0+VSau0/IIQRQqprbGOBCcY/BeWZW2k6Kc5hz9l68//mobrsc3b1RpvJLiQlwXlZIRKahxHCkls1wvPD0+SnJUw/ESZ+5PJ8Zp4NXDPXeTdBmuxRCclvQDjoItRbxEUxQ2qVKDZSSHkOIqE4dCdgZXD8LsI5CuV4EVa+agkJwpKihbC7YKzi+tUoL0aTJm0yGrXhKwoElghzVOoS6JFqwxWAYN1zWqKBuM0iZw86hAjE/aLaIhSAuWWw9MCQfe47wTZtw+t91o5DRWnuu5jD0BXc5dWRmVHt1ozXifNPUZHLE3TLeTzvSfLemrCWV9f1sUpIQht6SG2eCgWoSHZ5R9Kp0D9Hi5kNbI9Xrh3ds3vPn8U949nrnOM84NLNqranCh1+a9e/uW6TDx+O4t1/OZN4+PvHvzOcvlkZhveye1Lc5VlEvmmcvlifX6RFourJdH5vNbSiks68JoMtc492dmlXVKqSxPiyqEJ4I5EJRKvZ5fEy9PpOuVdL1i8sAjC79vVuryKAYhRg6uYtJMPK9d/cForleYuxbvPCZbKUrOljmazQGJkaXMEM98rywcDg9UrChyLNfuxFRlp9laVCx6FfjTFlyO+JKoS+azH/yA6xQYbOH67pG0zpQcwaI6j0WJSeJILouIDwOiUD+MWCu5OTEa6JjfSjXMs7lSa8VrYX8jFpUqtXKN3yGAp6FSOtrS6CCoCkmtMtZk+hmsDTSdQ2OfG06zMWJoHBKNDI0QVUyVVIJp97B93AgZCs3ZWc2/V7NR5dvWDFOvn9TfpTk+fb3YNpFkShpttfOTOVKL1NQ1BZOcCylVhuNRiGYaenk1WiklRpmVfT0oVVRVvuz2lTZc63wlqeBV8NL+IS1Xalqo2UGx5HUlr1fyOouXpvkW8sLdGPDmyN1xYgoep+GzU/JB1QRysJVsKrLkt2rzCqZIyxGUvJGhRofJIj6LAZMTpIjJGe+FAShwC9Qsj9IBg/fSsdl7Ov27ojmxLOtt3Ty79xK5QWrUJAeau55fG7BbglbyX21Ata1FZL29RUpUNd5eF2n3noukE2KXxN7yCfI+tJqi9pXapjlG8423xme7pn3dS5uyLa9hTBNQvbGkN2cnBlTh3T1MhBBB+n1sx2s5jlIpqEhyjKzrLHqR68w6X7i7C1ATJRes81BEEPYcV374z36ftGrE7hzX85mSFtZl7TVjaGuPxliczxfWZSYtV655lc9fH8nLkzhbBgYjNU4pCpxrgu9U/rwICcJRcdXhjccZyzKv1PUMacGWBZMi62Xls3TBl5VhGPHOM1pHKpGctvGB3vuaRRjZDiNaoyoF+dqhoC14y+KIZ8/l3WsOx5c4N1CNa09NxoFC1waRyspxoZaEcZWAsg9j5POf/JizNwRTyfGCqVmMnalaE9ciIpmv6yqtXpzz0l7FCaux5ltH5nas7DeBG5skVVXor7ax0p2kPuppOc2GELaRjlElFCUvmAaVqMjz8034mlvU1+eOzveqzVd31nY7a00L9P0as82EDo1u6wA0RuBm3Pa54kYeaU7f5mTVPh6cOrzNkd7QlqxkGC02rrJuiBZivjkHzOYYf9ntK224vvXJK1KSBOOrTz7mxcuXfONb3+Tu/h6AeZ75/uc/5jiOfPOXvsOyLFyuZ5b5KpIk85n14lie3nLwBhuCJKdLxKHspMPAYGEdPAnDmhNrilyuiVpXRu94ON6zLAumgiOzPr5h0cl9ffeWtAotuHrP5CzeSX5NusKKVuLpeOAwjaKPWKTXkKmSB9v1VqBFFXvKazNmTcg6ZifJXd32kIlzoTOgXr58KXustwliyatJgbM1Aic473Be6N/UNllLm9K6d134jRZxtwio4/9Sa9SNaBGY1w2OcTy8B/u089yzu5oS/4dgwg9t1hiMQoXte1b7UhljRXypSg4lRWUI5oJxIpR6f3fiu7/wbe5PdyJLlDLTdCTFSMmF03DkME1YY7nMC+8enzB15bNPf8CrTz7mODmCu+fzt29ElNZ56asVV1KuZGM4vDxizBEovaN1XJ74/u+95niYOEwjx+ORlydLOYzkPKgagjyzGCs+BMZhIOZISgtpTfiSeZigjgMw7O5v5unz7zMOI4fpKFJfxsjYKbkXjWateawVorEbMWiXp9w28fRqtfzuu4WCYzrccTweezGt5F4lp+m90L2dg3Ea+Og0UiZDXmfeffYTcpypaeWjhxPTIEb6cjkzHEbGw9BbqxjTaNx+F0lIErPWirMBu9PNbLJIyi7CWss4So53vi48PZ5xQ2AM0jDWBa9KpVIgbUrpoOF+aLfAqf1d1PJIdGFkjKlEVYs7arOOqIFqfeb074ZcbPNL7zNVHQCZgxWjUl4bPLk5ts0Z3L7bdAW9z3gvJTGSTlA2rXUMw8ThcGQ6HrU8xLYamPchzVxER9VYshFlV28dYxiYhpHBB3HwtMzEafT64fKAn237ShuuX/7F7wBy88IwEAbPennkaopQioPnF775dU6nIy8eHrheL5zPZy6XM9fzE9M4chgcJq/E+UmiJSrnN59TamEIg/T4KoVgYRw8U7Xk4jmOrg/cUmEwXmpfSsUWgVxMyRy8pRjpT+WtYfDCPAve4izaUdgSnMh7Cgut0GRJm0FpI7y3YO9Gpr1ldSCIEnuumluodHkXEOinnXgICosgkj5dHqsI6cJUgzNOG/LRmxLKeegOm60yopXYDGhuVa0UTW6r4SpQi0Q8tYrx2PJwlp4gr2ger03SlsxtChRNsmbvQ+/+6t4xVDQvqB5wMEbyak7YUUa991prVwKhQvCW03Ek+Fd87ZOPaZFeCAPzfGWZF8qceLh/kFwB8JOffMZ1WYgpcxg81nsqIykvTOPEMI4K2a5qmAuHcSQEzzB61uvM9Xrhcn7k7evX3J0OnE5HHh5e0Gp5kjZkbGUN8yoCydM0Mc9X1ih1YpJv3NQdYorkJD26PvvJpxQi1Vdscb1XV1XqfS4ZUhaY3FqGYSSn5oU3D3rz3mupCv8YUgCM5f408vBwwjpLNZV1WTS6qAyDYfAy35brOwYnTp8l8ebyyPX8xHo9Q7znMA4MIXC+nBnTgTGOFCreDZRSmJcLcZX6xRA8g19oTtMYJpxrBcCeoizIkiS/Jp2+PWEYmOeFeVkYJNQhF/A6V2qtpJJEdF3/M0E0rKpB+BlGDcVmjzZoEUObPb1wXeeNweizbRFJ7cXeVZ/59tZWhC1zwvbobF8j1SMtmkeLnlcVWLUiTSGLrBcpRUTdRARy4xrxPhG0n+A+WmwoRalFiRiZdc1cL1eSlu042zp0e+1dqNdTCtmqhuuXD7i+2obr4xcPhCEIxGck3F1TpMYFLAxT4DCdOJ6O3N9NBK0VGYPh4KVYLniPJZPXWQZWyazXC1Cxys5qjd+tq1K7pTkuWtFzFeNDFcPVasDAMIxB2FhVhrB3Uk0fvFdpKKmJsVXrjbTg2Uh1Z/cebyItHbk3iV1d1IXlWHvuae/VyQfl3y1Sat6f/FsiO3GstopKoeTvj/fcA9TP7f5uDee247eTlvtldJJJcbXUwTQlAEC9vw226LJMNImZdjk7oGX3/T3s2EsF9Ea5RvW1Wl/UPluU7t2MMPR6v3GcRNzYCaR7uZy5Xq7M7y6cjiPTOErbCgrn84V35zPBy7PFWk5TYBg8w2AxxqvGpDgWx8PEOATGw0CcJ+ZL4DxZXI2cjhOn45H7h4MuaJW4JqIavpTEgw7BMgYDRTrLip7r1gwVIEbIyRBt5RxaXVrF2yL3GkM1GaM/zhaKlahoCoZsVS2+OIWNXIeXqsLUKUNdA8YEHo4DL44jxgkD9VpXjTpg8DAEWWVjXbHVYihYVwneEB1EIzVw2Vlyy3nqSM1ZmI9FGbhV/JstN1s3nT0wsn9XNSpsZS3iHWUKJkk0iUYXFRkDqRRQByrX0qMijAgk60Gh2K1wupjtbx3+Ir7bDI7+v6GIG1DRvtKd1arGpqOT7RM7x8xsfu1mMOuO+HFjTDX/ps+rtnxeK78p7bvtSLruINde6xYxttKCnDMxRubrFWNFD9ZZ27vFu6YB1uZr851vIvafb/tKG67TwfPq5Us+/vgTCpLE/smnn0pvGZeZAhxPI9ZW4nzGmcxptBz8AU6TqjtDqYl4eZS26MsMaQYg18S8LsQUSTljQtCiYhnEUhkeOBxOjEFIE84YKCJqahAoCq2HkALiFWsRmRtAVDSE4LFcr1wHz2HyKrekSdaa+wCCRr1tC3wb7lmNwS6Ev3lfBsu+m+q6ph1TSNraN8WNto9SlRlZ8o2W4H6/xmyTrvmDKeWbgdkYWoKNC0nF2tY0UBZj52of6HuiyP56gJucXXtvz3jaf68UaSW+30qREgJTtoJOUyq5pJ5Ylo7I8oMSfrpcrLHSjsZUnCus8yOUhTC84OOPHzidRvxrwxJXai04PPenQYq+NToag9M8DXhXcCZicmHwBXd0jOHE5GEIniF4vK/ELA1KU5y1J5r0aCspsiRY5/YcxZCJ7qlAmhLhSSmFqYVvfP2l5C79ILlXvY9SkOygOuHMOcmjOWMpiOfccpotmutPvkLOcDdMGDzHuxPH4yBRYo64bMjaBdmZFac5odPoKGnFmIofPd/9hW+wzC+4np8oMTKEwBAGXo0DXpu+hkFgV2FrRlr3YOea5kTt6ITT+knvPT19nEvPx1S1CIfTHXfOq1qIRN1FJX7R7hHO+C5zNl+WHvl35xJ2jprcF9qnmjD17vUtlNpHYntnU8thTJtndu9T6vubydtStg0WpkOI7XVpXyRdyVvftD2U6lMgrpkQpHazlLIJP5ciFHcraMyShaq/Lgu5VKbjCYzoMw5hEMg1BFAHNNcqvOrd/P0y21facF0f3/G2Rmpa8YOnIt6jLN6J+fyWp3efad2SqEkHL3I80zhJkWKtxHVhnWfSGlnjysNh7Bp+Z1dYVuk5ZIPtOG0BfAjqdawEAk5J1bWWrs0WjOi2VYMUmRbRXBucqDJIDawws+brBWvE4xyHgNfeNW0gSy5UWiO0ZHMzCAC5RJ5HQ7fsvGcU4rwRI5oMUvu+QFEVo0SCRiypbeK3I3SssvS8gdhVgUgazt8nUlUWVxF1/ZxVSdvYTtu31kpJgMIMexZUK5ps17Ef/B9S0WgU/8axrNWQknSdjjHRuuSKh125XC7aMsZyOV9E2cMKyQe90mEciMtKTom708T1fOZ6mSl5YZgOrDGR04W4SENFMzTjUDAmk/MZqubsnGNdE7PCfgZtsWMtzkrd0pIXzjkSk7QryUqqaUXGBiGHlJwFsjQFlfSXmid1mEojKxiwxpNzlFybFpxu+U2lgQOmNVtMWXqVWe14bXarZ62gep8Wi6kTxgbitXKOTxSkjU4uCYnoKzUXbSxZGQfPnKMY8TDwcHopi+H6kuvlCa9GZzqemOdZ2qAsKxAVdo29FKNB01VJBYfx0KEygyjgW6Nduc22oOdS8GPFD+g9VhisJonWjJGGpkYczmoqVmsPK3UzllRRpzEa6SHRl20iCGZDQ6R4WMffs78dXtOGVetLdYzrIGz3uh1frr85cqbn8prhao4FZOZ5ARBWp3Edcg5hRCKyzOUys6yRaUncv/iYpNB0SlKvahUGpFZWH0W8och9CM5K/nQcGccRQtAuFxYPJCv50H9lJZ+srcR15vXnn/Zkdaq5U0+NgUULMGOKGGM65TwdDrhmuJZFFqIsNSbSlVdUl+N8FZWJIjp9xjdc32KKHLMqmQL1y8mZgihxeOsF9gINt6WnkKnqcffYvpBTZF0N14snJ1m4x3HYoif5oPz9TGkaul/Xt81g7eKhuhkumXhlux6T9TO7gsUqzQqNkiNu1d2NGtTbYxiUCUXzHht8I7+zRrDiUIh6hzO3zfBajVn7vS9abgSNZsi28WBvJkNpnqa43Xqe7bxQL9b0+5Jr7ZHEMI2kmMAKkYba7keleKEeNydjdbI45P8fef8SK9uWneWiX3+MV0TMx1prvzLtdDqdvkcHroACSAjdCmCEbUocu2KJAg8JSqZCAQlqFkgUoAIUoIZcgCoFKkZIyKJiIbDE4R5dhLCPn5n7vdaac8ZjjNFft9Ba7yPmzvQ95D6Hq7PlSM3ca801I2bEGL331trf/vb/cSUGI2xDMp320ZxDKN+9VJohrFgjz/fOtiq+JBmbsFicUrerAoOoj8hzjK+K5Y5SHC4nSvHa09J7qWw268Bng+/q4LMc1M52lFjUrbpQqjDyVf5uyCp+a6Tq9E4DqmsQrqx9VZHQyszVZMioK6Wue+8UmtUqN2URefUeneMDY4sEXlswDlzvqSr+UaF7YwxR/e2ExBOu5hMjOZbWh+tcT1W6kGF3ua6963DetrVblSGqIkRlAlplaBpjMQ5MsTU1k9TUVIEA2eFS0amgLrV/pecEVUqg7hdLDWOaJrTvbzCGGsHWY0J/urEdtUWgYpTXu19+vym6ThSSLNVNnGc9ykp1NwZytuqAvSW1aCIbYxSxBgzFl3bfr9m/FU60ZhMhbnvuC+/yyz6+0oHrMPUs88wnn30kjeeSwcI4TXSdx3nLuix6gMkivxjJci/DIPYQpRAWdVZFCqqH40kbvU4UJlIiUejHAduJgSNYUt+1g3LjIhRIWaov6yi+p/O9DLYaw5KCkhfA+0F9gSwFmcNZlszTUxYYp/Pc3BwADUL1v18IWHWDNMJGWxlG8estIKS4MYJ2ux1QKxeeBazncKEMn1rvKFcMP2uFPWSfwYBGNryKeGa11M1K/ghBDCxDWCV7DgEDeGfF/yuEVnmJqodvsGF9f33fyzW/0lq7Hp6s/5Y0A7VWhF+d8+IpJZdmQ2OurlNGNvbhcMDpcHanyUrO0ovrnBNmVBG7+3HwJKd9kLhQSqHvLOM0YawDY1ljYBpH+s5zOh1JWRKpafAaoBIxOGJcWyUGlpwkmzYm49k0+Fr/DyEN1EZ4iEsThcZsGoGV/lyTB296UiyCMmg1Wa9VlRwr4nPcKuBa/Yr7AOSoA/6NsSlBP69GCTmq4YfAcd2g84DOknMkRIGrvDfk4ik5Y23hPB91xigiVYvMFC3HI+MwCe16jazL2maN6nxbCIG4hgZp3d3cNe29OqTvrGPse9GDVCse5zxe3atxiSKkWIxFGItGxaNV0kgq3KvmkgaRBudVeO+qKpLHxm59Drd//z9fPxq4WEcVatAAUSWRDat/cN+3h1RKaftpXcW+KakDxjRN7TyrPm++7T2F3XNWBmPBWy/vSKOisTJXJ/qamz5pSalFmg0B/X0MFb736h1yCuzHTg7DGFnjgqnDmSWxEhl6zzBMLMuqJAlD72g2JyWtcvRbS995xrsbrbgM83xmXldCChgSJSZi0mw/CJTVuZ6Qoqq8C0zojaMYT+gitosY3+H7Hq8N9hhW0T+0suCdGkaWBMtl5lJEqb3aklRo4NofCK7QmjbFLwdTXTgyHBh1syVlRcnmWPZLg+O/uMaNqRtRNARNKpgkEJT0oYTSXICi1a25ChxV69EYR7HX+GKBYshJqPCyQTIx8Cxw5ZyZ57lVXNebWaj2W1P4i/TcOlgZtIdhjGF/c2CYdux2ezovmHuFUiusIqaSrvUBbRZ5sE5ZZ5ViPU2TwD4pEuYz09Rh1F17jXrY+g7rnWapCecLzmZKDlKJFaeVJiIQbRz0AzFujrc568FkDdYNzXCyFdFaTXZIhuw7D6FgQtCqP2OvfJ2y2sunLMox1mVs5xlcRSh0XaWrZEAPJOevqTzaV/RahWRzdW8zfX+tBq5uBGSsdxhFRnJG/+zZTTuW2KvlUOIyL4QUCSXgfd8o+Of1Alic9ZxPM/M8P7PmyEosaK7hxvD0dNLAFpjnpX2m3ndM06zKMR7jPWtMLDFtmqJW9UtTIZkEaRvKzyXjfdf2XLWWqVXS5gQuM2KtEqkVElsyijFXf5b/a6K9ZQuOtR7Oaq1i20Kg3ZfrCqqiIl9EZxprVK0aSjGkKEmt8RWqH3De0/WdoA7qLOGtCijonGpcI2ENxGUVmapiCClzOV+4XC7MlwtxWUQJyHnQ0ZwvT8uQx1c6cI1jR04wTSO+c8QcSXlQXF4nv0vNRh05e7UYsIzD0Bq0CKqCc5ah71REVCwpYgr4IjppttIAFVapPS6DFVqplfkNy2arkHKWA9SASQajtPdUEnGtw5SGfhhULaNAFjZTyoXzPGvJrb2FLwQu4MqXSRZrqhVO1lmcq4OoDu4aY1hjaou9blTpYXwhQFqL9V5nMa4qLrfJIxmBrbdHZQ4CWFVccE7zZ2Vr5kylRFkks62Zs1RQGwng+jNXo77a7/qiiChcwacKf1nr6LxIM0nFViHCbXYMA06n/cWaJckaSgFfNgkgGaszYr6osz7GGFIOqCwixhrNZKWX13UyPxdTlN9R+yOlEJPApdYULdoVHlS/o2KM+LPJJxJ3gaI5vN67RCGFKIe3VsFoPysXZLi4ztCVrZIu9f7oaADUVqWMBlRWYlWFKE3l34BDe1pywBZ1TghRBoalR6mJT7li2snblv2EujdU37ucBZZ2HlfKNhRrZQwBpVKnUs0mwakNDECvsGpdL33X4bzDp64RDeogre966WdqkoGtxpVsZMFS2wDbWtIbTEy61p6RJwyYvCF9psKK8qGvXqHBhkavudV9U2NRC1llG1KuoJtpzxV1jZJzC2ZVHaQZpl7tZUlIDTbXM6pglEjlvNxv7z3TNNH1kmw3U0tjGfoek/R3YcghKpoVxIvQeh2tiW1kQ1jWm4OBrPXNLubLPL7Sgct3lqL+Ub44Km3UeUcumSVGOSRLFZ2lsdYOu50I1KaE67zAe9bSq/uxLLyCzwmPbpBO5nJqk7rrOgo0aKtmY86IArwpovGWKFJKlUjnB4yBEBbWuErgMhbf94JlXxERSi7M69oCl7fVSZW2ALWJQ6ZmQUY3m/TeBKrZ+h4N9jCGqAe/sxbfd5sbcjVC1AVfDDjf4XzXhhC/l/Gn/Kur6sdoRlB7fFXGqqOX4G+ELm6KyMcI9X97Ps8Wey031GizSDVZBWSzBok6uGy0UqjeUX03MAwju92OcRy3pnxKWwbqEFjXOayz6oEVWcOqkleqVFESIj6bsX2H8fp+KMSyqcov66K+WJlxGgWyipFp1zfPozUEUliB0shCqZJQnKPRkmvvTv+95ArPGH2viRAWSUCczKZZiiqLJ4LOjElVpMaPuq5NHS61AodmHfXwrqPru2YgGJOYxhUN8q3CLjLKUXtJ66IIhhdDTIzc45SjzDoalBknwXuNAvslibpY6/HObOtWoap+MpCM+oKBcTrsqnCyreuswtnmCj7PRfzM6qiKJqrWyRyX9Z5ipHdWYTiZq9wg1joXV18/hA1i3chSskg3by/xKhNEx2BMPfQVqaD2rNjkxoyBpKLeNTCV0v5c77vT/nQpkrTU9emtmJHaUvBF5OXqfrCaVBkr96YG1KToj3UG5y3jNNANwuBMWdVzvGe/2+nIj0CA80lEddd1AeMwzhGzMLVzSfKlRBnxd5N7JAn771NyxkeffcyLu1sO9zckzSYxCGRiJJPb3d00NuEzKCttzsZCEdZMyFrBuzv5Op9OnE4n5mUWuMPWIT8R4fXeM40jUZXOc8ptUr5CcLVnkHNm3AmbcdKhPsn8OsZxlI1kpHdQ4TJjzdWBLp/bAPXkbUoGRRiLRhU5vPZynJIwfGUBWSeBLWVcZahZy82Ll5jK9lpXdvu+BYhlWShrIYUkg8UWihFr+3m+kFKkokV1gFEyYMnC13VtA7fWGPqub7BDSdVrLOJtR6+D5ILBL8K0MzRCRoyBZV1EDHgamXYjy7IwX2ZiXJqX1YsXr8glc7nMfPjhxzw+HompYJ2n70eKkd7QvMytghz6HleTAw+3h4PoQlL49O3rBjONp1EDsqEfeh4eHym5cHf/gnkJ5FKwNnC5XNrIxHFZpHLqep7mpUFw3nmil+RnXYJUOs7hup6gzLYCjF6gG0ohroaE+IV554kGincY41ulZq2VvmTKQusvMtZRYUiDSAa5XioNpyzW+TwTgszydTc3AlXr3GFeljYu4LwX1l1KnM9nle4y9MOIKZ5SYDFGxXHlHqewwV/W1BEGWcrDcGiKJvO8kFMg50W8m64YckIPtYy3txy0Gkspsc5noXfrXq9J6fU8UzEGXKdJT+R0XpUklEkls4SFNQgtvwnJ2k2TUaSOpIJxVmDy635v6yM3wpDBWd9o+KXQAuqzxBOp7Frg0v3tnJh+Oiu+YiFG0WrUZKPvOhnuLoWwSs/UOSuwnldNwSxwurMW5z3j1Gu1Lr+399e6hUtLyKdhbC2HuEZ2055pmri7u6Gz0j9LayCsgY8+/IjvfvdD7u5fEIthDpHL5STuHTGSw6qD0jLruoYof/8/gRd+pQOX7zu6sWfa7apOuXx/6JsA5T5VKRO7iVwW7W9ViKmV/Ggw6puwbDdO+HFiWC5AzbjQDa2Nf9+JQWSu7DnaTSnFNCuCnDPTNG7zWVouO+vkMNd+V4oJn54rX5RSWsldMQRjns9toH0K2/kGseSs1gJWBwEr/TUnWKNAjNYQKaKiHyNpDcyLxysTzxgRN13XSCnqkGoNMScNLomi6zDlRIgra9jmzqTSCOJNZORnXM2IozgIl1hwxtFr5WcsLXBZK1W0QaDbGKNqLa5Y67TxHogxbJCK6sjFFJnnmbIurDHKDF4StmAucpAO48gw9PR+xKtyPKbIwa/Qqte+mjWOTgMfBmzX0w0TAP2wA+tbX811gwQIa1XeS6rYpJY5VqG4gjDsQhBLEiNlOH2u+vtlc2YGOpXHks8pMFKFiHJdEFJYiUpEzrh+JEWtirTyElhIDsWukwPWdQNjDFgMu92erO/HO4dxnaz7IkGPLHNh3m/MV4FO1UrEGhWT1uQqpBaELCrHpetv6AepMI2l68QQdVyD6m9KgpbUD01gfaeZ/sq8iOKFwGVSHVRIs4471L0o4xhyeC5r0NGIpOzZRC5K2S8auHT/piwVp9FB3FxEA72UjNin6H77AlwtdZI0EK4h7wYVXgWv+hzZt9fu6WlDBtS1wphCAEzaqpY6ckPOMgRdtM+tVWZJkRBMI6uVnAlW+c45sS5zmwNc+ovAy7nQuY64Rs6nE8vlzGG/V1FwrajJrGHhfD6RrWNNYr5bIXORadwORblu3yvs+4M8vtKBq+s7umFgmCYq7AEGP+gh0XnpB2BqZ1MehUbvLPVGXzU5nQYu3/BvT7f0VMqo1ZtlbEWobevLtMBVH2XLxHIuTOM2/Fd/p7VGYEBFF1JUIkVR+5LGiiyUyq4opkkYyuZHGweqxacbIBUBPawR+IBiRG8ty8C09RvLLqiobE6izJCzUvq9FxbYumCMw1jPRiTeLp1V6rRAV5E2P6ObQbckGOnTlFRkc6RCDkXEivU6WYd6hkng8vVgyKFJT62rZJhVXsq6ms3qTb7qc6Uoth+Xy4WucwJVAl3nGM2A77z2SrtG1/aNZGAZjV5HK7Yvegtw3rPTKzHu9vg46GFTGIa8wcfOicqL8zIbptel2mfILI5k1TlLBeAUOjbGqPCvBMTOeZUXypQoEK2owHRkrZrrkHVxcvh4SkvWYo4UMr5z9EPHMi8NIh4GJwgEMPS9wnei9iKqCKUFY7kIBd8NGxO1GJwvrXfmDdos0sCl10bRQoxRBZuuwxgJXM5JJdT3aghUIGVNOLI8t+s65stMG5KvIwNAyaFBdq6NZRhFQEQ8IOr1yRSlm0tVaZ0XCNjUPWPUyFIGwI1WTcZZyAKtSfLZURQVqZZIxpqGdFjrcMZr0NG+1pZ1kktRuw/5ylGhP3UsqNBxbQcYI04RssGMJkB6BOh+K9p3dL7S2g2+81RX9xyCjDuU0vqPYk6ZRPZJ71c3dSzzzALkGEQRY5rwQy/ea1ZGQJZ1AeeJOsBvTK1Ia0ujwlrbvfiyj6904OrHiXGaGMedLvBMSJsumMEIoQCNTeTW/DSqEShsvQI6KS8X0zY22zQZPawmfFdJC2gfRZrHXdc/w8Hl/lQSxEZLlX8TW3XpN1RWz/WfC91gaAoZRqjDlSGY1ZhPcHSoKtnWsonSVq8ixOC34uIYS8lgspj8vfvqpUCbKZHCwmNOBGMwKmBKSaxhpuv3HG523N7c4H1PPwpslUrmfL4QUiCTW28xxiDNbn2UlFWVIm16iCmRQiSslY0pC7vrOq26PDEG2QBWdBUlOU0ta31uq16ZWFsCWzAsiyhVpFLo+o5pt+NwOMhmA4ah43BzYLffczjsNcOXLNz3QyOtrEESDee8DFWie7H1NmTNXC4X5nnmfD4zDZMEzBDoR4FeYpDg04gRpKtMvFOTyEiMiSUu7HY7+nGgmEyIEQrCcDSS/AQCfW2eC1WCYjLJyJC1JC2GzjmyEXJISpkYIkM3sRtvseks6zcWnBugREourHM9WIyOQXRbspJpuo79uGvVwByWNpuGQZVjkAFbJ+xCrjJtOcQdJcuoRTEWY3q8K9hqvlnkK8YIOeGc4fb2hvPxRNd51rByf9hv2niGbQbQOZLmpillHeLOxMqqM9LvsZa27qRCMi1wyVvO2uOjwbzrHCR5tQZvuw3z0QPaWNus64tWesaY1pZIAqdQR1hs7ZFZK8K02hMyWjUlNfkUZEV6RTFnihFixfNh/O2czA26ZBO2LWIFVbUnU4qsOpgs6zMyzysxRHrXcz6dSCnR+477+3tuDntudjv1eRva64YQmEO1S9pknySXlFlE2ce/j+nwn3zyGTFG9jez9K80i3Y6a+W8sOByEkvvpMHAQBukdDqXUiUhpNFZTRZ7PcSCBiaFCcmNhl0ZeVsTuL67rTlbK76C9I9Kya2f1vDmepAZGrZePa5qL0sO1don0DLcpPbzziqDqP1eLTrM1fsxmz/R8XwWLbiwMs9nzscj5MxuGMhIs/98OkoTWhvcfT8yjFKZZArn80Wa7tbQDb181JIpK5qBFmIQeaKUEmGRKirFSFhWwrpKhRlElbzvhfm3200Kw0h11XVVRSQzDIPAjHqlK3uqBvdK0igYYoxcLmd83+GcvO79/Z1ChQJlGmMIYeV4LGoy+UUZo8zT05FlWVnX0GarcikY5+m8VOMhRh4eHjgejzy8feBwOIgtyrIyHfbNXqVlw3oYOl2rXS/eXkkt6ENYuL+/l9dJiePpSIyJvusUOpMqcpwmtUhJCmnKvVrWtc1dDf2gFV3gMp+JMXB7d8urV694enpi0Zk6bx3rurY+jfRnJGvufJUpk8OwBophGKQvmxLnyxmj4waFQol5g+WjDiSXVoxTTR8rTF9Uz6jSuIurAr5qB28Nw9Dx3nvvsswX5vnC+XzmdrfH+46h76QyQ4LN2+NRRixC5HxeWGNQNRRHP8g69p144KXoic4pXLglR896V2X7/qY6Y4h2O4SFDCaBL6ZIdirGm7dZwwYXltKk50ASIVMMc1g0AJrWwy5FKus64pCKQOEJIcukXCFAIfpIH00JHaWC6IW+6zHAusyK7Ai5JqxBCyJDSoH1MhNiwk++3eub/YGbmxupxlPi8fGRx8dHjscjt/cvqGae4uOVdQ7ObRUXVXf093Hg+uiTT7ksC/vjCafki9aU1kM8G7QHshAVA68YufhMqTK2Rg6Zz8p4L32nUoMFcqiild26LNRG93XpW/J2oDZudFNryIRFFmR1A5V/0KAHUvZX5Q57pdqN9Dsa7FiuxS63IVFfzeVUKFSbDfp7oCpZSPPXEMOqh+uFGFZ67/D2DmM88zJzPD2xzhetzDLDOOqAd0cGLpcLuYgv1VjG1luETRMwLDJjF4Nkdesq81rrLP9NIRCWSI6xqZyHcKAyXErJdJ2XDNQUQhgxpmawYK1vsEntWVS78Rgz83xh8lIp933HNI2yNlBVbKW+z3OiL0XhmS2piDHz+PDEw8MjD4+PHJ/OrKtAll7ZihjDPC88PDxwOp14eHjg/v6edVm4nM4Mu4lWmXWeynRbQ2gw4jhNDF2vS0LW2TxH9ns5oN+8ecu6LqovJ6Mc6xrY7/dtpq0OZ5dSGknG+47dbkeVRzrPZ4wxHI8zyxz5/PXnnI4n5vmCM072SpQeRdd1TQmj70XLkqqgoBDffi8GgjFFTuczbhjk8Mtixpl1xCGF2A5RU7Y5I2+32Z7C9biFpSg5SaqCQOcd0zhIwpOkr7nMF/bDCPRyX4OovWRjWC4X5mVmnhceH56Y10Xk2nzH7nCgHwY5yBWy9NaSStRt/X0CV5W2qiSLq/9e77FKwKhjIzXxuyZzQE2WNYCZbT+LH56eSVd2JVJJOk2WRYcz5SyjOGlzN5fAqe9BK5x6vnWdxxRRFZI+upwHMW1oRkpR1N5jwhtZr52yN/u+FyFnFRGY55k1hK0/p0nGRoPfIPt69rW/f8nHVzpw/a//239hN4300yhVls78CEQm81NrFHbX6XSSmyTaLnLQO9/k91vwKKK3VWnz21xRpuscBSmt13WlaHN/gwIFsiqKhmw35orOrQQF57dZqVatgZJDNo2+LQgbVewQPLya+F3f/LEfZbi2/lbze+iB1UZpTqQYoGS8hdv9jhf3d5Qf/QaH3Y7z6chnn34imL1et2EYmHZ7un6ggODaQD8OZG4le/XVElzdceeZZVlY15XlrAt9XVlmcfQN68p8vhDXwDD0TLuJXNbWqyoKp8n9NTw+st0rJcd0ylSsVihCfhGa+Pl8xg+diLt6yzD2WCfsyhBNu5b1Z4119N2A60ZySVzOM7/929/ht37rt/Xrd3h6OrEuK+MobCtjLJdlVcFXuS8vXr3k6fGJzz/7jJgTfScK8v3QN5r1GiVw9cPA4eaGl/f3wqzsPHd3dxyPEnw+/PBDPvroI06nk/Yc5XBY11Xp/ZuqSL02IQSFXnvu7u600suEsHJ/f8+bw5GPPn7Nb/zGb/DmzRuOxyODzpu1eScnJAQDEhRLVUAJLXDd3d2Jon5KHM9nxv2EseKuPM+z+IutKylcsXdB+0iy3huBCba1b62SaerIwoI1ME093/rmD4sdTO8Zx4HDuNPejuFyuWBKxiCVxDJfOB6PfPrZxzwej+QiVfvd3R39MDRySSWLcLWv6kH+xRlBY+T31L9/v8dWmZkGP9dzpdnZX+//q738/fQ4JXno23NzFsZuLhnXubaOr3/+mau3Bt+4BqIqiRRNgI0m15XEVYroduac+aEfinSdJD8v7mUkIhcpCC6XC2ENlCzXNFKwK6zrKvY6MW0ElJZw6zDG79fA9Tu/+136vhMYSCsujMzZhJRY1rVRp7u+a7NRkr5oRgJazuhhXgo3+1uBonLieDxKBpoC3svGF/+apBWA3JQ6xwGVPquZVIZt6LcobViGL9vi1IyoQV86iyN7KOM7+XxeIVB5uwIzbQOhQnu3mA1Lfxa4CpXRZVRfbV0ulJTwzvDqxQ3ugw847EdijmAL1hl8Z1nC3CCNGArLRebQUk6c55lCwZ87YlrwvsM4z6t3XpFiZlFCxLIsrMvCrIErBDnMRGrLMA0jl5yxzmjvUP5bKIrRP4do6meqUI2oWoAoexglWNAClfdimyGQ4AMYSyqFUqLKMkkAkwxaNq+QMAwyW+RIKXM+zzy8feTx8chlXjDmrGrblgwc9jfc3r3ggw8+4P7FPR9/8imxWD797HOy6SjGk1AlEAeWTmHtAd/tGKZbpmnHbrfjx779LUIInI4nlvVD1miI2dPZkXGUw7Zf12dsWWOtiupmHZbvsW7AdTsO+4OuIcO3vvWjWGuYlxl+8ztgepybGKe9MhgF6goxtH3TKZGn5AJ2FR+rrsN1O1F5oTDagcPtDcYalnXF+DN+DfhlJYXUoHrDNjBvr3QqTSlNpaMgAtghyX5LKVHiSlgXXn/+hvv7O27snqETMddxGNiNAw7ppUj9VuHxzNPjwLJeCDFDicS4UEpiNQvLutBZ7YnFqJJXKpml76W6il/D+fX4+OLDYNrweFWrCCHIPnaOHCvSIy+QqjdLfT2FlTNCwKkzqr3vdabQEEOUxNEUpv1EUpgwq24jZnMLkLNIfMgEGpWeGlfnhClVgaXDFrBFCoBN7msbLRCPtp6bmxtubm+4ub1lt9tRrGVRmHuZZ0Gmss7/KZMRd22A9OUeX+nAFVKCYMnGivCjY5usz6omYR3GeYzrsHZrhgJbYxQNGgVVPhYsPycZWoxRSR+FLXClJHpyprTstG7J0mjxBfGe2rI0EaAV2LBoU0vscq4a4Spsi5JAsrV4Y8GDdhl0LqKIV1ap0psCDxYlURvZOfL3nNswoLDuJWumJKyVPsV+v2O3nzQZ8PS5Y7ebsKrUYBEWX+flsF0jdFGGfEXVKTc2UdGp+Zyq6eFGhYatzyjsKGniFjLeW/pevKskPhVi3Jrt8m/9s0qyNAi0DqxWEVdJILz3jNNIP8jgb86JYpL4KVH7Bs/136Ao60vuqdjCD0zTjru7F3g/Mi+BNWSck+thnePu7p53332Pb337xzgcbvDjjlDAdtNGHnD9FVwiEFXf9+z2O25fvMNu2nE47Png6z/C6XTEujfsb+65C4lxtzKNI+M0AoYUIqkyTdEcTCumkKKohfQ9dy/uub+9E9r/0PPNb32bmBKPDw+8ePUe1g8s88Jhv28Vv7OOeZl11CO3HlcpG1QoQ6l7QQMMrDFwuJHANa8r8/msFVeQHlc9+wsNUjZc6WlCG87OJTNfLqxhJYSVnFZKmMXUdRgZh4FxGBvLMyk9PidRczAGpnFgHHtiHNnvJ9a4EIKQYfrOt7VCTi1pqSMItRenPBOy0e9pEupMJVTplTfoPtx6y0b/LMok/kqoWIkf5eo166+1Bm1eSHvA67UxCBFHtTMthVIkgE6DMEqzBq6oDgK16pK4aElG7mPtPxg2SJFiVZuzE4YjErj6vtORms30tSqzOCeehp0iQ10nezRGGdxfwyrno56ytb/Pdvu/1OMrHbh8vxMm0DiIP4/K79B6Qsif85aBXEOCOW4irZXmZYGbm1vJgmIkpoLvemIMeG/bAZxSEgqq+gG1yXnEhO2aFm9UAkogSaH5CWFoU8HQGNMe9f3nkvXzdQzj2HT7CrrZ9eccFu+0uR83y3uBKRI5i3RRSqFNzMehw5jMNPR84xvf4Bvf+DovX9xxe3fDbuoZOoM3mXU/4oxM5FdbCxC/qeHUCdvKWoZpEJJEw+6T6DGWjDOQraXzjpK9CBw712Z4dtOk8Cl479gfdlpJFVIaGMau9b/u7u7olERRD6t1XYkht4Y5yCEq1HRHr4f9NI14L9VWLgXnLP0gUCPAsiZhoOXIMi+AIwSxfLi7vedrH3yd3XRLTBBi5vHpBEhy1PU9+/2BD772AX/gD/5BfN/z4tOvcfvyXT797PVVM3pr0Fu7Nb67ruP25p5pmjgcDvzIt/4fvH37hn48cLwE7t95n5giQ9czTKMEb+2TVe+ppFltUfp8pZofbm54cXfPtNux2+/48R//MZZl5rPPP+Xt8cz5fCHGwG6cGpzVdR2n06kNw/sKGyr0VaH5cRzbCEYumd1+D9awxiAQcNWfjFeH/FUCWXu2FblwfpNsO59O6vCwUMKCyyvOZPaD53DYsZtGbg57Ygicjpn5csIg81bOWjX57Ch54tXLO7w3rEEgsk5h1RhFQ7L3HUM3kJxtSvrObzD/NZx33fuq3Tm4ggflL+25zgljsc1aYkTDM2tCbGgwKs4yDWOjqtdRiAJ0VgIXRuSW5nXBWMPh9kAlQ6WYRDRAE2MJSjo7FeV95pwJXU+zZzUijFzXobNSfaWS2Y0jBZn7q/BkyRlbVPnfFp0tFmmzcRSVmGVZWBaZ8/R6f4WxmXnuTfYlzv4v/cz/Gzy++a1vbw7IyKYNIbAmObAyGRF5lePdNmsLbX47DVpJy2quDPOMyEQNw4jvZPam7xxJrc3XZcE6WVjOxpaxW2PJ2ucSrMG0mRBrLcPQi6CuRSxPrNEvT7Vmb1WTMTjf0Q+9NO93O7qhowrfFrNZkjjrVDcOQriSWaGogvbaGtrWFEzJPD2+xpvCYTfxzR/9Bj/0wXvsp4muMzgj7Ex/c6DsRlFfyAVvZEDbWsuaRqGtJ8lW+1FICrnA2HttCmdKGjetvl4WdU7SCHRelA6GvifGGRBq7zgOm/Awid1uYhwH9vsDzm224HKoJkIo5BJlVoaNip+S9DgyBeMMY1joeqdbJmNtdzX7BfvdSC6GZQlczhdS3gw37+7uGIaJaTzQDzuM9Xz69omMpYoPL2vg/sULvv4j3yLkhJsO7O5e8WMl8/DwyNPxJJUuG6Gm2k6UUuj9gOs9peuJxkM30h1uef8b3+R+kcHcdVGpIc3wXU4NWjIGrRysBnfVaew7djc3jNPEbr8jG0+xPX448MHXf1TYZTorJYO2RqrU/aXRqWWA+oqQoGzD634NttBrBSQ9uLDBfOnq8K8D9vq6lZwg68GRi1C0j8dHVhVfNmmhLEdKmLFxZTcJOuCc43y5YMk4U9jvBrpO9vBnn34MeqB3nWO/GxlSJ9WC7usYIiYnet9r4PJN39NZlKl7DedXKbIN1gNaElrbAK0/hgzQd11HMaW1KyTJsK2actrzM+65JFdNdAvQeaMWTsLALMhget+7FuhitKCoUFZdwQ2bK5JoWEuISV2NhXCTc1GVfEmmjPbRhmEAg6IOSlDLsSXI1jr6fmCaJpIxrFoohHUhrMuzNkhFuP7PPr7SgetwcyuN/Jxbz+c8z3gzyoXLQg+ujdFxHLbmpU7CUwpe1RcM4I3FFWHimJJJUSCXXLSnZQ1GmVpRafIGhx/6Da/ONLO9pHCDNSKk653FKRyWgjRV+6FXPFuHKYv2wJyIjY67ka7v6ccJ6yscpgtcg2KBFrjGtGHxMtW+EoP0BkJYJOPJiXUZ6J1hf9hzf38vDf240neDQH61H2bBGKcZYWk9JG/kMKieTVbHEeq6FEkiy2rQIURLNolB+43LZabvOjoVYx1HMbJz3mnQ0kHLq81Ue1lS1aYGCUmFoApz2vCuQp6NyWWuxEo1s5eEQzJBSTo2ynqItYFslFFmpIdXe5bWc//iJbGIjXvMieI7bNczp0gqhWQge0cMBTeMTMbh1YeMAm7oyUkJQd5RYiEUg02ZhMX1I8OUKI9PhLwQcsH2cp2qjJgfVFk9JdHSRA7bfpqoorX9OJGNI+TCmjIRQzYWnMf2PSkEmbWyFmdVBLmA6wesBps6bmHNNuQu61AH3o0RyMJ1Cq9ZTBZfrmIT2YHR60tG5ycFKhbcymigMNiSyNbghkEUDS3kkDDJY+nYTYME/ZJFWssYer8xNkEH4kslV0jF2HedGLhm1S8tGZzC09bjraicFC/BBYUHazVTt5WxhcYKvFpTxlRZJ9uChbAMBQIVbzOFBzMy+KuBy17ta9taAvrjGhSdGtNqs0G1ByuCo6K5yJozFO3jbm0I49Ql2lgZVtezyXoVQ64oTdoGuqHuwY3JmK3FZrSyK/R9R86JWGgwMtBo/GjrwxorNjoqWfVlH1/pwDXtD9zd3crciWL6CeiGQUR215V+HHUuJnJ7eyukgBAwuTQfommcOB2PlJxb4PJWVRlixoRF5IRyBgveOIau53SRoTxnYVJvqxwTIRexrPYda5T5FWMM+/2eXEReZ7/fcTqepLd02IvcT1XJzoV+FOgTY9nf7OmGvn0uEMKHH7o2w5RSwhSLatO3odZCYl1nkWxaOsLqpP8UhXE29J7dbsft7S2nxwdSWNmPHTFmzeekv+WsFaqwsiINqt7uxPu1sijrBheFblVc0A2G9r6GcSSnzCXFbUDRwDBu6iS1zyTBYlP/DmHVrE/w8qy/R+aNqlGmSl05iysO72Ww2bWfEYjQqsM0RmBNjEXs3EXotWbQ3jui6jSWYrhcFpa14PrM/uUrTCqUmFjPK9Z3RAMP5zPGWk5r4BwCT8cTznf4acLkgXA8SVbvOmIULblxmDjHM8RExhAy2H6gB0KGo44PHA4HIYOkREirzBsaYd1537VKxvYDsXpQDSNrlsHjfJkJRejixYo56JrkQOq7nuJldmiOwiaThEx+vgaoSoTCGHkdU6sAbfpjpOeiB2Q2haRWHzwLfFt/t/ZBoiZvGcQqwxlyNMSSBXa2lpubG4wxrMoY3I8jQyd9r5RkXzvrWu8016o0J5JR5X7EXbhYw9B58dAzBtttyjMlR53Zyy2JMTURoyZCWwWxkYXqQwkpRcxFi6nQnOzhYiuEdk2WAN+ur35fiWBW4eAqBWU04aIGMa3aivcyH5azKstoT8la7V9p2ySX1sbofN8S+zVE7QVL0ib9YUGc1lXUWzrrWuAahqENeK/rurU0ijod1H6atSznmW4YdLzoyz2+0oFrtz8wTntyMULtxoD15GIIMXOeV5aUG14/TXu6TvxjlnkGk5pvVIiJ+TKznC987dUrdje33N7c4p3n4VGGSkNeqAQMcQHSBeAMwzhqAMnk8wzGgXX0vScYgcaOlzOHw4Fxt+Pm9lZo3H3POE2sy6J9F6kUnR7Wvu84HG5ET28aBV7QLKYbhnbICwUcKDIX0ybkKYR1JISVdZ1Jy0jJkRgWPv3ou3TWXEnl6GunxLZvNKtMWWekMsXRZJHSKvp6kubpbIraGqSUW2O/6GcrqqxeD4LcDgbRaKy6ZsZ4Va0QhROBB20LJtesSQlEhgoRClxSrX8Eu7c6mC227koxrgllQ1ICxigppL5f7VnqpaTatfiux1jHdz78CNcPYMTmou9VecT3PJ1PvD0eefPwVuS0KtMUy7qIoSjOk7LIO9kYOasTtzHw6Zs3UoWaQraOUApLSrgQZejXWBKGsxonpgIm1X4uzDERlI7sZkm+QHqI75wvWGOIWcSZL8uiosCzDEIrJTqq+n5Y12feXq7vZJ1pheJMs0/keD4LcsAmgVYypFS2tZCDHtiyVlwduHcGbwyURMmRNUXWlAhZ5vwIEVNiU3HwzjP4ThIg1XN0xUkCqkFAAoWSuIxA7NV5OGnVkRUqKCU9t+eRBSWVItV32OghvPW+gC2oUyuyer9VVFhfC/2dpvYj6+/WoFZZrMZU7cPU1mrRYID21qz2q0sKRFWepxhiWtsojywHPauAEIP8TAyQDFhHMgZKaIGmOiYUY4QNGZQ85aoSkPzu3W7CWsM4Dky7W94+PXEJQQaa40oIC6L8E3F4HV/xGEyzhfkyj6904Jp2MkMTYqTEIMZ/dbJcsVfJmDvGcWJ3uBEVjRCwzon+WYxY3wE683O5tMCxPxxY1guny1kFLDOmZqoxKZ9DFpv3HdZ5fC7SE7EChDhnIYpKw7oujNOoiguiEygwm+LdIFBkMe3w8XQaeGX4Tw5AFdu8amjXL0kHXaPsFLUwr70wY5UgAk2UtHp9VeJKTglXm7pGyS2KmojQqcHYKnyq/QsDGIHTmmJ9isQgc2Ky+aWZWzT7tfW1jc4GxbD1tSraaTaor0I+1xP3z+dftmHO9v0iJBhQ116FlY2eTqYdUrJhnYja03zMsqUUdXZNiRQK4HAqaRPDKvfRbzCR95JwpFNhCSvneW4qLqZIb6JVHE4Yo00EWuHMUpDh2HFA9OZkva4hYpd506O0dpvfKVKtFGTAN+XcyADiHiB9xazrZ4P4dO5RVSWs3wR9ox5gqV3rLPBbySShw4qlCapubsQup+j7EIFcDVyVbZtrhV4pB4DqcpZaxWjgijGIukuM5BQhBqKKzpqub4xMa60WEQrtaZKht1Zg7wrba/hJpWwmmI08oBjeVfCqkgIKEKNtpzYfhTITjfYKNrSgtAQIvT713laot0EERX8B5uq1DbZscF/tYW7v66q6zQVTK6tcVO/0uXZqGxDOsocleavPz1hTrvbORp5oiVzOZK3AIkqXb/1PR9dJL1XsnnRmLMW256zChc7JfF4IC1/28dUOXNPEME74eZayPyUJVhq4nN8ifGWklZxJKh46z3NjG+YiJIbLMotPlXP6+qOyB0urGqDSdzVwGelFifVGFbJsS1f7BdJrSjpNbp1tHk8FFdzUxreplY/OY1X1g15llkoszwMXQMsAdT7s+vTXRyOP1NVflOJe6blF1a5TqYWlSDiqKnfBUJIG8GxkODTmpj5tVPamBr8UIymGK6PBok1u3cg6fyUsvkx1s61swvqet7ktWkb4xUfd2M8Hwoven6rkXTPYzS/6eni0NY5V0Dg3QcGqoC3zRFDwutYoWfsLRgOfaeK1hbINCSv1Wg6m2oBX+Ef7cJqjS8ChMIxieplyEhUJiqplGIZRdBS3xKIGJNM+V7pKWoq+/5ySQJu5tHkauS6qxXeV0RdEyb8mUbSaQwdJNQGoiUiFEqvsUP2dilg1VKBVYXVN2Lq3ajATNmrJErBSimLvksWGyOSqhVf7zb6iatt7L5uyyhYctFlUg9rVJq2KHvINVTo1dWfV7VRJPOYqaPAM6qw/X1+rlKuZMqO/m/KFKp7tz/X3YbZXbAfJ8yBUIUcJPIJUyAeX6rY8YzZ/YZ1XVmfZKsbrPl79pRX6bC0AXWeRAs1dfUue62xfXX8NcclVn1X2d/XS+7KPr3Tg2h8O7Pc7lnWhXAwx50blxYhXUr2Ia9j8kSgyfxBDbKKoT4+PHI8nLpdZ6LFlo7y2qqKURg2Gra/SRFm9ZBvDMBBCJISoB5dUHjlnnSma2N0cmsoH1uBSbIr0NYMGVLdvx2G/53A44GYZ5q3WEt6J3JHDaAXnMA0yy8QEHjlcHRCK9Bpy6tS2vGfwA4MfZC5NvclIUIzIPMUQccaJ9E8pwmRFgngKCikAhkgxRf2opAm7LAve9c+gvXpdO+0lpJxb77EU34Z9rQ4R10MIks6JmWcBB7beQkswFAKW6yAHp21nSIV67Japy0+SYtAKS/sFVijrMoQZWUnqQyUzUnc3N/TTRAGeQqS3lqnvuDvs+VyZlTEGFUeVAJ+iBsCMMHnkV0OB09NRm9ewm0TaKoaFHKP0HBs0pM/L2rdRJYRamVpr8dbI+neOuEIKqxwkMdI5gzcI8SgESAlnDIPzeIXAckyimqLVgrTv9cDWhK/oxc0NwhV2nHEq+lwFYlMmJyhKnpF2iyQESd1y5V8zuYRWcZUYKClACRgEISlRxh8Mos4/DAMxBFkrqoeYQyQ2b4ir6i8XilZZpmgSkSUhM8a0+brr9VXf5/WhLjCeDNa21dOEShVer3skZ5yiG0b7gbK9N4cIec06XK8ZY1vblZRUA+rVupdnauWrQanNnG57QwKd1e9tiaF1RmFaQV2KzqV67wUhqcpC7fPpmRhFgquqb4BRUoYysZ1rKEphs5BKmgTVMZYv+/hKBy6pPC3e93R9ps+Fvp8xzlFSxLkO1yjnjhgF3nHWMfSjWBgUVDZF9Mv2+72YOvpO4EHdoAI/ekoKMuWOmLC1qfgUcMXjrVitBLVsl6pOFpR1TvoBGqBW79rqstaq0GpPhw4eKwYubD6h6xuVyi6qjFAZRUUrCr0o1IVetcjaIKIuyGTV1sRcHSQYME4GJZGM2urGVhwMYfEplq8wnC3CiKy0YSjENbLMK8uy0h1E404MCZ3McBkY+k4rog0SvJ6ZqRp1OTtlEJqWUGxf7upnaxYvESpnS9RMXhhTVUlfzSKrhmQpzUdJPpuq/rtOroWVyp1SSDmwLImM2MAY15FiIAPrZcHc7OmNYd97BmcgrizHJ8IyszscGMcJS2FwDpyMXzgjzgQxJHrn9DoX1pMEsePxiafXr8nLgsuZzhUIKynI+swpYYBB4T1rpIq2emBaY8jLAjFCjOQYSMtKzInHh7c8fP458yy0d9cN5DUAgWUN0o9BhvGNpV1z6yzZCbrhKuvUyFBs1nNR5h2VSJCLBK4iqvzP5X4yzgqRxzuLtz2GDMWz2kIwiUgiBVhiICwL8zyTcsY7GacgpQbdtSpSTSirUsx10uJ05AUjTMZkU2P1taEZU4PWNjgvUOnvdSJta1kq960ClH9WGEPLKAlU8mcRe96Ee2tAM0aU64UwpOM9rT8MRX2voLYHimYXdjs3bPUNMNtQvZXE1xSjCivQOPcYbFHhcU0Gc0qUYuk8m4yUia0wEJeMjmwi3os5bg1Oy7Lgd7oOYiRjW7L/ZR9f6cBVN4U1tpWoXdeL75S1hBBl9kQtumu2USsV7wS+yVmM+sT+W6qc6qKM9iGcd6Qi8zpoBiNQpGmZVS2tfSfBMpei4pNKW3eiAu68bz2KugeM3WaTgBYQa4XXtNzUhiQngY8o1c679m/Aunpwpy1wwQZJWavCqWrlkgslbU1nZ0QeyZQtMwVTW1WyoHXTyXC1TJRUSM8ijM11kS/2OxQVa2oZFoP1jpiyKJyY51+wBa92n1sSev2zyqhSdFSgKe03GWmKX2ez1qj2I5sY8DPYylwp/pstuCXVvVyWRVTG14Dzs3i3DT1YIfiYnHAGESs2BpMTcZlZzid551ngtuq0XJCst+RCiTJPZIqMa+SwspxPnJ4euRyPhHkmpYgthaCZa1VO32YIsyRuRej5NkvlGlPULDkSw0qcZxHcfXzk9PBISALblGESn7SSiUvAeoWykzBqs6mmpIasZIjkwLIFLqNfVIiwHrJJKPZVa5NSWahZnHidxfVeT6UiVVdYSetCmC+E84m4LpQYpTrXRMN5Tw5ByBjW6lrUNVvhaQ0EFtuG/S1FrVRUDIAqAyfJSw1C6BqHWvmjYzDfW/Vvz9HfrWdIXc/UBJM61qKbV99dBQq3flZd50Xfh5XgnyUgV3Sz9sQqvGj0WtSE0aht0xUIL98vps2StrdxVT1zRUCpJC4JXBJMK+pUTVKtth2cevLVIeQpbYl0Nhsy8mUfX+nAdTmfGfpeewtOZYv2uM5LNqxZfNX5qxYMXdfRe1XjViFJZ6zi6ombmxumaWpT5MPQM4y9Utk76WN4JyrjxjQ5om3eqDolb9RrgQHF4dd3CjHqzasKBA3mhPbcKk5bM5d1WURhfV7Ue2kbsA7KLHNeTomcMynGplzhTA1culBLIYZEWALLvFJSVoUMcbc1CveLlhzEkhRCr/i6VG3OIFUKlmKkmXw+nzmdTszzzO3tTZsdkWBLmwVKaRbIx3isyS3rBW0iU4ihbhCrkk3ap7K/x+Ivz/6DUzhVDlztNekOznnD9mV4tNqfd8RkxBdrXnn78IbXrx94eHvk4e0RkEAx9D3jtKPrB7ppwOZER6HD0BmwOZPXhcc3bzk/Hun6Hus69vsDXdfjrWc3DJRUuJxVdFgtc3prOaYgwevhLU+noxBYsLhOPsvQ9djOkaKIp4Ycle3nWFNgUOXzeV2Q8T3puR3fvCHGwMPnn/Pw+WdtnY5W/KiS9vN8L4kfGIWIIWFI2vipEOvWnyl0sMkIId5cuRhShpiENFDFiMV25sTQd/TeMY4dfYes3xQ4Pr3l9PTA6fTE5emRwzCwV3X4Ki/W9z3EiLMiiWScazNiqHhShdc240T0IM+UHHEmbZUWNYmTR3UTLyXpf/Xob4Gl/pxpRRVUSn3GakCqhqcbDFkDV+F6aL4GvdbtMjXI1SAi3885UjZEnI0OqX13e0Xcar210t6zaT+36aZ+8VHP0Bxju6JWKfXZZrzOTkoBoAxW7/Decr6cefv2LW/evGF3/y5uyILOlE3Z58s+vtKB68WLF+z3ex4fH5FdaRjHkX4cCClpP7PxltpGMUXw+9rfSqqnF9fAPJ+bZYgoXQxNXkgUsS19P3Fzs38GWdXe1jBMLMuy6bjt9/RqSJiS6Ljd3N4y7XbNCkBUJaLAhF1HVqUB7z3ruurrDgx9z6WqS+vrV7O8XAy9Ei+s9+RsGvXYFqMBSQ02UyQakQuqCt7zPBOjmhpiyVHhgZS0P1Ab7FlkcBxgCyFIv6eQMDEp0zByPB45Ho8sy0IMAVM8xom+m7De5HATwkBWGLC0IFJtHWoV1XWuUd5rv7EU8L5mqRqEtPkfo3qwJSjZtUpx65kBueDVL8grHCjWOELmYS0tkCzLIkQTI3qKJUvV2DtHby2Dc0zDwOQ9HZCXC4OzvDjs+aH33mUaetHL9B3WyohD5ztKhv0oflpzP9Kp8rsxhld3t1itOo7399iSOJ8L6xyEZeocu2EQos8oKEJIQYRYnWNeZ6ZhwlrLvFzovKi7xxSZuo5QMvuhZ9f1rOtCjoF4uWCcHNquQAfqgt1RjJ6SxYgCRN1X1fS0gClZ9PRqNZilt2UUunNFqk6RPHKY0fPO3S3eibJ77y3eSjDJaaEvkdEUdt5y8QaPpbtSWJck1EKMWCPrQWjm0uuq1bMiwFDE4y2XSsQRVCHLGN8zYtAWEWjfq9V5zhlbNgZsrX42+O8K/i7bmjZfcEFu/JCraqjkgi0aPJ+d7brOFf6u3KGCjDVYHf/QD3LVfjPNEinEJFqjlSiErPnKeG2fVhMTo2dbTKl9btiuQZ2jNAWWELC+MjwNDw8PGNfz0Ucf8e7Xv8m4P8j1TVItyt79co+vdOB659VLxnFkXRcWNTv0TgRbQf5c9fwErxbagqGQY6DEAFnM6SJQciQsMymIUCdFMPQqKJlCwHciKLmbpgbX9f1ApzNZfd8TV4EtnDVM40jfDxgDl0ugc05eU9ZKm1Oy1tM5yWQKdUJMsmBnjYrYFkiJUllWKVKSI1tRbsCokWRJkCXoZLUtMcaQrSXHVc0jg3DlkjD/YgjS1LVWN3Jujfw62JuV0ozJTYU+xqieQAlcasnBMi9ivLispJRxVmA4Vz3lNFvNuVzRdqUPUTLEmFqzuxI4BKZ5bgOxQSrf/yEbLOlmz+0wNVk2tlEleMkSPSlrf8t30lR3cu28dwzjgDEO70d5LobBdQz9QD+IAG/fiQNvjpHeWW73O95755UwWo0F48A4DvsDznrCEthNO0ou9MaznyZA4MPOWnZ9x+1+4p0Xd5ADg3ec3ZlhrIroYr3inKfzHX1GrS86Oge73YSzjrEXF29JFhK7cSBYWHc7DruRE4l1zdIbVgjQW0OnzXtvzQaTIz2SVrka2qFnKHTaK8kxsa6RRBLiVKFp9NVREKfsXWt0fVhwRhMT08E40pEZvWXXWRmozkV7WyIP1XtPcE6gYe1FVqLCNltlFAKrjL4rZmOt4Cus98VBLj1ASqta2NZqnc+ytH1iWsUkzzP6nJQyxmaaF5dWrO112+8qDe6u1dV1EK3JlwS97TWqeD0Vzt/efOvjppzpGkxJ6yvXiq4kuWZFIXNjn0P3mxvFdTVots/c4HuxfXFPTzw+PsnIUqkwaoXjf58Grh/75o/grOVyPnI8ZsiRRMGr5p8roqlVqxPnRCjWGBFgtTngEQ+jJct8SLhcWOYTcb1Q4oo3BqcBI64rQ+cYvOdmtxfjPWfZ7/YNLvTeM5/OeCvZ49CLTl8phfVyxpaEzQligLhKczsLfd8os0qCi8ytuJIkEKVIDgtxnQnLhXWZcbbIZ15FDNN2nRJOrFRtMRLnWTI4A94YUpwJy8JyPuNMlgAXA2kNEgytVGIxZlGL0KpQjCmlH0jSyqqIy+4aVjVupDEE58vKfBGYM8VCspKtW5XbKUYqnZgFQqlfsqglOKYU9O+QY6Z42uL/4ldBhT414zTOYKIcpCkFbPK4ZITokaRPQ5bq0rtOnJfHkcu8UIroMfYlkxL0fZTB8WGHQDrS7KYY0rKxQfthZOx7LBDWld57Xt6LIHCIWWeiMjHDNEyYYjg+nRjHnWTDfc+L2zu8dzhvKHFh8PDiZof9ofc47DzHpyOPT0+qeSm/93Q6IX0+YR6OHrpeCAg3O6niQ3Dc3NxIUlfg/mZHjBLcTo9vcSZzLAlnEp21OG/a/KAcbln6iNZgnGlWF/WrSmo5Y0EdqNd15VQurOTGTjTOiYzZODRFFOnraqKShVFoTME4S78bKWNHSQdSuuXN689Z5gtT7xl6z9h7OudZvQQsa62gBHpIVw87eF4/AY0gUL9kJKHqBMqjBgcJAKYRgGrvtbFlETTDWoS1SNFhdwNZgMtUCsbJa1/3a+t/NwJI/b69+vv22P69BllFEtT6qrpCUK6CVp31a1XotdCzDvcX7XnX69j6dahws8AuJhcNaALdy713zCmqTqOBDOfzmVgsb988NPh7Y73+Pg5c57efMY4D79/tOXRwmT1Px8wcxEju5c5jXN8gM+eg7yzOevIA+x/7YaFkFkQ+Zw2cz2du9nvJrsPMoXf88Hvv8Opmx//0zW9wc3PDOI4Mw8DDwxtyLvTDyDSOgNz0yVq+9vIeEPuFpH2FN3cHDoOnz4Eurrx7exBqdVyJKYhGmXNMphBNJJRATBd8POOzpbeG3VCwxeKwdD7jbMaaBCVgc8IZR0/PmldMWilpVjkoyc06A6SZFGc6IxDc4AxvP/+Ese+wJfH5558zDQPGOqwXCNR6RzFGrLqPTwKbdl56XyGJurg2X1NKnM4LQhryfOe7n7Df75nGiWmCcRzxfYf1Azc3nnUNnM8zy/okwXZNvHp1zyXJ0HYMF17dv6T3nhwT4yieRNYJll7lh7JmlbkUjO/x40BYIuvnj8RwFs283mKMF0p6EK8w4yxG56RyEZHgnD4i47DW413Pt7/9bTCuBe/ryvB0OstIxenM57/563oAWZ1LkkzaeGG41kw0ruIQa61ltzvgvTjbvllO+pzE609+U6rZJFXv5XIh58SLwyCK8GEhRsN6fmprPITAI3KA9V3Pet41Y8r1/LYdwZ9//DvMl5nj8YmcC+Pg2U33hLjqOk6UtPD2s0/lUDei7agJs6iATxOjqrfULHrwPcsSxCtqESmrpJX/tBuISQwli1tYV3FxvswzL+5v1WZEetcWIbjc3tyInmXn6b3h08Hz9PCGnFZcWYnriSWlJugcQ6ZTxRp618YNas0iyg92GydQnDDp7y6lME4i31ZyIcSFyvwxFFwCa2RQ3drN0dirh1ntkeWSRAvQCGMS48BJclMDiUCHUAlAtQLaxJGVVJa3yGWdbWr7JUPXDUL08hZj1Vlb5y7rcHmMEYxIYO1uds+C1nUgG1WKLYTA6XRqVWsOkd57rLHsxl1zrKbC7hSKLTjfU4wjFikMsJZYMt/96ENWdWq+LAvFeq77ol/m8ZUOXI+vPydMsonXeSauCzksJB0ijim2fhVGpG5sThjfYSlMnWf0qtOlduhhrUOPiTBf8N4z9R274V7mFCplOyV2w0gpWm7rwUEp7NS6vJIuYnT0TkkMJZPDysPrRRQWVDXaOWF+hWUWR1Nn8QYGbyEFUpgJi4EUMDliSiKumWRDU8OICiFW8eDOew77HZ0biWFlvlxYLhfSKrMxu7HHAb33bbHnVFiWdbPGyFEkYZaVECNPT09q+V3Yq9SO+GA57c1llXIxoBncsgQ6H3E24btCXywFjzEdzht8liBcilRfxSAVTyc6bzGubZPUbNckqcqqv1hlU4lQsVCyJfEsAsC3QdCspBY2OEeeqFCKfqXSBGW97xingyr4C6tLiB1FKjQLtnOSca+LKm4oJFWZZrbqLRrInkAhJ6lqhs4KhVjHI4QdWodwVyEPeE/fGcBzOEwsi22HjiG2bDoE1/oQfd8zDI5OXx+2GTdhftHWYD/0dN4TghquFq2SiqypGrjqcLFzht4VvBEWZM5VmDfROdcqUucsLsnA/W7qiAligmEQeDsnsMYx9uC93MUyCGTeeS8Qs4pCGxzj0JH3I2GFvhPYvSTpb4nElGgQ1htrrg/9a7itNuX0qwpEV7hLztUNtN8wUaFwiApGkjVeRy2uXp0iMlFC4kEYqsa18Q2B2dIG0TXCh21kEK4p7O2ljfaDjb62EKSq2HZGdCGtqcGwcoUliF2Tv744D1kFFnJVX1HiBkXqUGu2r6KvoWlZe82kg+zVT1C+J++nGZ7C1mf+ko+vdOB6+/pTLl3HEiUDiSmKPta6sIYgDsjLIkFAWYVlWMldz+A7sUFwlt1uZD9NorJeCq9fv+X4dOR8PlP6nsPhIJL9KXE6HVkvS8tQjJHBu/VyaYtvHMcGn+ScBW70jvHmwOl05Hy68Pr1a5w33Nzc8PLlS9E0nFcup5MKqe5a4znHlfVSyElUxWMI5BCkr6ebyRrD+XLmcrnw9s0bhr7nxf09r+5uubs5cDmdWY5Hzo+PbTZsP06Qs8CnrWeVyCFyPmfto8kQ8zzPnC5nzpcLxsjw9W5/g/hJiUleTgIL5lyQbqKQOsJaWHzCmIDzia4TeRnnCilBygZjPDFmmRdyMvTbdwMWw0XtGZKqVkS1U3DFNkV3o8ST2stKGqsqM7F2A4yh9TKMU8sJJ4PbtmRKEDIKFpzv6PpBTAvHAWs9WE+dWco5qxAsdENH13esqhsoEkZX4FQxTUZpGjxhjRp0pUfqnCjkSwBK5GzwHfhQSBm6ridGSYRubw8sS9d6OLtd/6zi2hAG1yC96l1WA9xumsSHrNfA1Yt8UlRvr+pWOwxO5rusVVX1rAyz3KC+lBIpqhpHCex2E8ZYllXYZjFF+mjZ3wzE6Igp0PUdKRlKcTg7inEoQC6M/aQjLlbue1rIESwd3hl208BqM0MvVWpOwpqT4Xd1DK4B1tTeG23sAqAaqzZpI1MkeVHiBtoLlT7W1sMx1GREND6FTKHxq9ZbKoslL9uYGlQFl5bM4K6Cxxa4qrllPdxrwmYwTdG9woRKr4CiEFxR3Q+zBRN5T897wV9k9eUsQgNNTg5a4r0Rb+T+mGIawrl18uSRqppGHZa2cvaJ44OuQ02eqrLLl3l8pQNXCIF1mXn95rU4bZaC7zzDNIoZ3+0BYwyr2sdLZiO9kzlJZUWBy+XCqcqUpMzlJFJQQ98zDAMlJy7nE+saFIKRy3Z8emyKD5d51iG90liI9T02dp+1xBioWnGlwOPjI5fLRVmLK1FnhT777DMAfO+Vwi3ZzUW9iUSzUJ2NswjgTtNODRENcUl89snnfPbJ52JZoeKrfecYe1Gun88nnNUBzmw4n8+sy8JyOsl71D7ZME10nTIeAbTZ/Fu/+aG4xRrZPs5tQ8EhhSbKe2Hl9eePxCgq6ZsPkyOlyND33NwcGIae/X7HzWHHRx99wuV0ZF0u5JLUNiGz20+EORCtWDFkpGqxzpENTdw1CYbRZk8MWy+iSWLpe/deDvdsYBhkEikXQzESpADOp7NYl6RMqMoqznK4ObBzPWUUq42UtupHWpaVdGKULm1IaeJaQ66KCRuj/ZmcKGTGvRCPQgiSdOkaurm5kaSqranYDpnKuKzKIfV31qAWo6i5DIP4ovWDl6qyEwp9SaLYXQkD49TL59ztlU2Z1YBV0IdrM89qLjkOYjw4zzNgCFH6oIe7mybe6rwjhJVSMrvdrpGhyKI0brWyefvmNfNlIa4BawbWVZCVsEZCkKH0EBIWQQsafJW2ucb6MOXqQC9V9BcNMlJNUkpT/Kh764uzhV+E2YBNgkohS90mUqdJDBMYXIfLc9HBcU1umqK/wo7t9zh53vYQdKTBgZXGlZHkoWRNHuvPF2LYhn29qwFSg3mqyIMkxrXflxNKIrNtPZeciSkQoswfhhiJTcnGsqTMmooylIUVbI1t7E/vvaqGbEK+X/bxlQ5cKSacM0y7iSELPOf7Dj/0zc8KaBffKPxQ1RuiZsc1KBS9mKUkhmFkv98zDAOLTurnnJTeLm65lUpfShEdQefa0N31gF29SUGz2a7z0ij3ljWsEjDWtR38YJjnixxIfhMRzTlzVEfalBJOvYdyzlwuKyUbdjsjFVzXsSwLn378CW/fvsWCzBwNPRc7YymEeWGapD+3+p6npxOX85nL05NmspJdXxYZ5HaqLOK9ZPuPj4/MKvnSdd0GsZRCSFF7UJ5xnKTnsQYeHp6aRlmnfjxzJ0OK77//nmZ3lseHJ5bLmZwi9y9u2e0OTLs9nfcs6yynkzVSoVWzdbu11dt4jN5/e+U1VGc+r20kasO46MyNQ3oGxjiM9cg5IXMo1SuswSgqi258pdvLe6oMSgpkkxXOUcUCeZft/TUGV7aU4igUdocd82wJwTe7EuesVv+iEbcRKCSjrYemvI+qxiDvaV2lXxZC4Pb2jpRiO2Ta8KhBZ+nkNZZVKPTOqX+SHrg5uzZsmnPGd07nqiz7nUhg+V4C5hoMLhj2+1Fte8SvaVlEC9F3huIc4DClMPRi7inJgdF5JKGxr2FhmS+kEJvcUAgBr1VKVqp9uwZXeFQLXIIJtsP4mqUqz9uC1nXgqgoSVaFDNPrkOQm+J3CZ2r1qs2PX6vibGgdsYrVFAydsQfZam9Neva8acOrzKnxdGbrXz6+vUZMLmvwT2/OvfuezkkrXT7l6rfKF1wVpEcT0XCJPIMXy7BpfX98v+/hKB67z5czY9w0SkbJUYB8Mz25W3VTXN0jmk3ThxtI2wbqIV1WnbLHz+dxmnaZpagt0XSWgVVhGbkrmfD4jvk5FDxyZKTqfz1Ay027i9vZWBnDnxPF44nQ80g+DminC5TKzrAsY8QszCtMcj8e2KMbd1D5fWFac7eh8ryy5kbBGTsczb16/xTvHYb8jhig0+RTJayTdikLG2I1czgvn04Xz+cI0TrK5U6GkCCZjbKLzu7b5j8cLx5NApOPYy3Bp2iwRhlFcUftuJGfJiNdVXHEF43c6YZ+Yy6IbGmIszKcTOa5457i9veOwPzAOE6WktvhNttKHMyLUWvu9tTNRcXgJXM8lpSj1/57rH7T+gzVtaBldT7XPsdl7SMPeCv4oRVxIUBKlRKo3Elrpm1bh+Wfv5ZrlJULcArNWY03rhPlYijDf+r5vFahzHvCtH2Gu3mcpsublc8mQfkwJ7x23t3tiSnSd43K5tPcxKKQuA/IZv1hZKznS9U4qk2xI6UrrEZkhyslRLAxTLwe6FSdy4zLFZvpR5gtTluCdS8AkuXfVk016ik7bkhnrDXILpBEZo+jj5ZiU3GCUEcgWfMw2MmG2G9uSCtk02u+7Okjro/X4SnkWuLJWm6VVsbm9puH60H9e5UtMESuV3ytwfU/g/ELgef7ergLA9YFY2ga4elRPLH3tXKiOAe0ppf6kquBYK/v++npdvWz9vfW8q9ClBKzSIOna868Bdnvf+Xnf7ks8fuDA9e/+3b/j7//9v8+v/uqv8uGHH/Iv/+W/5M//+T/f/v0v/aW/xC/+4i8+e85P/uRP8ku/9Evt769fv+av//W/zr/6V/8Kay0/+7M/yz/8h/+Qw+HwA72X//Af/r1g9XrYlyI2EqvaM5R6E3JqgUQcdzt674XQEYWm6eoNTpmwRjVWUysRhQPnedZDR6CdGkSAFrikD7bBYZUKn3OWYdwolif/7b/9N4GnKn18niVTM6X1JSRLXhUb3oYRRWLFMM/n7fDIlhITl+OJ/+1//X9jjQxMPzw8yPvDEpbI28/eKBSSCZeF4/HM7c0BWzw5FbzrmSZhTlo9eHe7QyMshDVxPgdR0p8TOVdh0I5lvbSN7v1A50f6bmKcDuSc6fqgMFtRV94Bh6HvPNM0UkrizetHPvvkNSHOvPfuK169esE3v/mjDENHXFc+/fQT9jcTvt+8t0rF37c+MaA6cxY67wXKtNeN8KKbp5CsE4+mggwsY/SgFDKGBD0wRqjcxkpvxVpDyqt6n2XCEklRoL0cY6uUpR+i0l0JjB9lVqo10HXG0HmqQaEESISWXoQYIWohFusNvhdmlve9fJYsc27C/JOqUZZgrSjFONOnROwM1iOVqklc5mODdirKYK0hx024dxh7xmkQKC0m1jBrv0YPSwv11AzpItVRFsh9iQuX9UK/WBLSWzLJcFkFVRgYuNkf6H2Hs1Y9wGS20CqhR2acI9YKoQSVaPPeC5LBduCnslHcuyoQK4sFrv67QboypnAdoCpUWNdYZQHmGKQyLzUZVviXreJq/SrQZBmwXt22t2SlJiw1SH0xWP0fBS7Y+mu1f2pU89BeifRK83er/oWTbCUJVCsUay2d78jZYUog5CTM15Txu+8NE9YanDdQhJwFoqYS8krK2g6pXyk1wXFh5V7diy/5+IED1+l04o/8kT/CX/krf4Wf+Zmf+b4/81M/9VP8s3/2z9rfh2F49u9/4S/8BT788EP+zb/5N4QQ+Mt/+S/z1/7aX+Nf/It/8QO9l3GaGHdTm+yOSVyEM3Ij+96rM2cihJUQ1sbYCSkRkl7MnMFu3kRVKmlVuSWgBZigc001sNTAUTF+qT42anxUfFqa6retxF7XlRBCy6AHdTeWhn2lHhuGYdD3IHDNzc2NyEb5+vtFGWAc9xjTEUPi+HQixUhQncPbw4HDfs/t7S3ng/T9DIbz4xPD0LHb7bh/8YKuexdTCnENpBy1BWR599338a4nZ8P//r//JiEFrPO8//7XGMedzEANPW8fHjHWMAwdH330EdY6nTfqGAbHfm+anFY/9Aw6xF1ypsTEJ598RMiStd3c3PL+e1/jh77+NV68eEWKKyuG/f4G75XdpMw1Chtl2G7FkUF7Bt6LdNXV3EjORcWSDSYlRA1CgpMxBnJVLQfsZnMi2saiNek7x27qcaYBNjr0HakWLRWGlEOpJh2VYV17UYU6PF4dAwqGrvcy76YkiGVZdF1lhaTkoKyvYVUFZKuyUjvgRD1Cfsa6jt1+IqVe4Or10tbvfj9pwDXEVZmOVEhSFEiMgZh1gNXUeZ9CzuLouzuMWAN9ECh7XnrcxbG/2bUqp9K+azLnO0/Xd3hrxbE7RTW+TOJSQCatMjxfcsYpS7M2/GsPN2eRb4MtOLTHF8gJ9b81MD2ryBtZ4nl/q4o9PydUXNfsz18/lywVmvbPrgPPNZvwGnb7YvX1/V77umoTUoyasWpbojk0F53J1AHgGDPGhIY+VdheeqRR7UairjW5733fC5xsIDirrtgKc5vaL66owSacRbnSJ8yiTlSNe/k+1+wHefzAgeunf/qn+emf/un/nz8zDAMffPDB9/23//Jf/gu/9Eu/xH/4D/+BP/bH/hgA//gf/2P+3J/7c/yDf/AP+PrXv/7f/V4OamtSA1dIEdv5VtV0vWccx+aJtK5zo7ICouHnnLCnvBAqDIaSnqh+V5sl/LZQjMI9VRm56hLW6qsGLuk9CQxjrVWY0RJi5Hw5i6usFSXlvu8bI46UqRZUAgdJJeO91UHYgX7oRIcQCdLTtGeeI+uyKjNMWHTeWXbjyM3hwP39HV4p3tYYOoVlxmlkt58YhxGDkQHl5UJVqhinCed6UiiEIMmBsZabmwP39/eMow5ZYzEWxnHg6XgEaMwz+bL0w8DhIFl9P46s60pcAzGvhJi1b2DZ7fYcDjcc9jeiMJFXSpFrW4gNVgLd3KI5i6IWG3tLr30p2yF0jbNX+EaqD0SguaCsqAwmCsMsqcJHQQZL0b2Xs6pqV4X6/KzHcN33MHU2p2pFIhAS+idjVXBXfjPOW3rTkfRwDjGoPFYNilLx5Cwf3mngawPZaYN1jEHlrAymlFYxltKrd5gceF3v8F1VUXDP+hM1GZB8oTLshNFpvRUtQ4vM2FnojBdSQkn45HGdE6kshdZDiM3Cx3eiJ1qVYzZPLw0YSOIY67Cw8Ww2IGwi1DlTnYnbozU+zRWEXCuQ572Xtp7YAlLtL9d/+36B6nmQ/AK81lCB7/1d12fL9wtc37cyuQ66ubSRj3zV45JKuzQUKaXt+sSYEZ1PUcjRy6BkKmlr1IBW+/MpJbKhyeNZlW5Dk/1n9MIal55dpg0mhDr3970f7b/38T+kx/XLv/zLvPfee7x48YI//af/NH/37/5dXr16BcCv/MqvcH9/34IWwJ/5M38Gay3//t//e/6X/+V/+Z7XqwrD9SHahPD1H/4Gdzc37HY7XOfBwBpXlnVtyuoF0WYLza+oStgI9TfXYDMMIk5qLL/9m7/VYMVxHNtrLcuiw5zCkLnub13Dg9M0PYMNa2W22+1aVrSq/l0NhsMwSH/OWeKyMs8XUpJqLcW1Zdm7UaqVcezprFKRk/SNPvrwO7x580CMmVevXjUY5fb2wN3tgRe3t4TLRQ+AzDBKr0RUDBxrWIghcj6dWNaLaP3FzBoj59PMw8OJ3/6t3+Xu/o67u1vu7u6Ydrs2FnA6H1mWGWsth5sbrTDAOUMIK5dL5LzMuM83T67T6Qy54JBrOE0Dtzd7DvtbmcZfVj7++BPWZcZauLnZk4uRnhtyCAuNuVQecFO6tq5AzY4rzNpWkR6KubQ+mfTIVJuxANmAWnhUKw9jLd4NSogwLPNF2HYUwhqJQQ5cg5h/XrPOOtfjeo+pBqL14AGtsj2ul8BZiiAGRQeiAZZ1JmWhLDdozhRCWhu07bortQVbqzMDCrEZA64I+UcOl4x1RhKlLDAbSvYKcW1BN8aIj76t62VdN/uUTn14pefPZRaoMOYIWOZ54XyeqYSAUiShuVyE3DSMO/p+pOs85KI9RIe1ieohFWNkCSvzvJDWjOHK3FXZnll7K87IvFwVhzbtzl+frnUZmKZveR2kjUKs9ioZEAKNvQpSG9z3XKhW3YWLrqmC6icWKJuGqlFyD0VIHyklcDJ+cB2wGl3CXPVj6/O0d18Hldu4Yk3qsrAnUyx6llTl/pr01erIEENSbU5Zx0ZlrKKaedbkPMaALY5SEwRjoJjWezeaGLur69ISOAriMF2+ENh+sMf/5YHrp37qp/iZn/kZvvWtb/Hrv/7r/O2//bf56Z/+aX7lV34F5xwfffQR77333vM34T0vX77ko48++r6v+ff+3t/jF37hF77n+y/uXzAMPSFFlhBQ+UzJAp2lc71k0WGzba9ZqdeeQcqFqEOj9SAMUUranJLAQkr6cEkyjKzWFL7rNCMpTLsd9U5kcczDWMf+cOD6DglFV/Js13d0Rpv9RizYU4xkYxh2AqusyyJEDgMpBY5PT+Qk9he3775DWBdOp4Xv/O5v8/TwSFgWYsx4W9iNHe4w8OLulsN+xzhajM04L2vncryw2w3sdhPD0PHpZ59xfHri6fGBcRzISQLsw8MDp9PM+TSTS2IYJNhdLmfevn3NOE0cDjtAqoEQAuFxaWSTcdyxrDKcuCznlv1Za5jnlRhELeP2cMP93Qvee+8d7u9vGMapiYFWejegXC1NmZNk/2QJOZWdZ61DDVNEjsd8IVMuyEzKteqM2bJsOQTEh0MEWDPVz4uyKUUscxCVBmPIySFECXWtdmOD8lIGj8XgMYh2VdF6S2CvDuc7fCeM1VJgWaMYg1qDxcn8S5G1V+HDvhNBaVFjF3FVA+16tAFaZ3G+U8slS4prU8Hf73dKkgmMY689uUJJvgW7Ugy7wwQFmfcpubH0XOc2oTwrg8GCtiaM9Vg3kHFMw6TVlMylGduTYqTzHmt7adaUjLc9dHKfQ4hQDDnJAWyMyFGJhVHXKvpQ1lYdZLsFNZNLO/BF0mkLYdcJTb3mrRKCdh9r4PLetx6X9Ke1VXCFurRKTteQiPoCepCXK7PTBnNqYgu031dbDG1ptur9OXRZK+G+7zEpY9WA9dqdorKg658rOaiOT9SEu/58SuqC4a0olvQ9Mco1bBJP1qo9Z30fNJTKaMa6GbFev/9nBfCXfvxfHrh+7ud+rv35D/2hP8Qf/sN/mG9/+9v88i//Mj/xEz/xpV7zb/2tv8Xf+Bt/o/398fGRb3zjG60vQDbE1gzMomOqF68YlKYpc1OpQkRBKok60Gs0zTRF9PeKCnk6VYQ3Rv2/iuruqcBo1mywyr0I9JQk8wE0jZfAWbJKn2zN4KwrPaYNBqkzUVAljOqBKtkPCl103qtqgDT/rcl4b4TKvxvZ7Uecs4y9DAnLzxRwYtp3LhFjMsZkQlxYw8waZmJayaUDK2yxlFX93QrBbhg79oeJ3W4nhoIlMC9nrNrWpwRrWCnFI0aEmUwil0i1Zq8punUGly3FFcZpZNpNTNOkbMROYZpq/bIRDSobo9KRFRxpMJy1anZXTKtoWvZHQzQEWkkZTMZ5pywzeUH5viCBm5iPbvBMq8xikn8JIeFchzVOg6Br99B3I871WFXfENjN4lzBGY+xXmbHdJAUI4LGVu1ismboxrm2ruvAta89B01+DPL+JJDp4GpWDyxbFQw2pfx6WFaY0+owrQTH2vfRZAG5b875K/LCdqBaV5UdCsUIC9EYj/MDpVgNvJCLw7kBazu8lQF0Y6wyDHsZczBZE0d1xY7S5EfXwzWFvPYPayAA2kGpf2nfqwiXWPxoVWAsm/2Ql5+5OoNaZaWi2zWo1QDwrKrQAFh0bTon962eSdt72wJQDTTXZI3698qevCZw1EBnVTHDGGHB1nXq9N+LkRGgCo3XxL1WQyUL7F/qc0qRsR7nVNy7wqVORcHreqjhp+68onqHm9bI9UOErtUbLta+65ePXP/D6fA/9mM/xjvvvMOv/dqv8RM/8RN88MEHfPLJJ89+JsbI69evf8++WLX1+OLjPC+4vsP4ThUeEusaFPOVixyzaBCGdcU6KEnhBYUOY4zaK5LM3BnD0/mMAQbt21iFnlLUg8waQpfpB6m45mUVi2qFBnwnC6gUgVsqFdV4y/kstilO4ZBCISrxoyke2A5bz4mUifEJa6CzEEPA9V1rbucU6b3j7vaGnCJDF3j17ru8++5L6ZvlRGcNJQvM4t2V4aNN5LyyrmcenyIxzhib6QaP9aIo0Y+d6CfuRtY18fr1Gw63E6/evedHf/RH+fzzzzkejzw9PdAPDt+LNmM+BpwXPbclzizrzBoWfGfoXN+CyBCyQHLZcnt7z7SbcN4z7Xb0gxycIUT6rlPLCmWVGa20riwqrLM4r4eLlaVdcmGNgaHrVA/Qb5u+iBaiyeBKwXmnxp3y2aNW3F1vcV3XDvqh65XynzHGi/pHypyOC4fDjoKwQUuWQBISHPb3MpOkm77OVznfY5HPE0IBkhiNekfKBe8MRodsnevACB09pgAxE0Nh2o8Cd6UsVZqsNhFcNnINljWQIirv5CgYJZyExj4Ew+UyN2+5zvdbYlAM86LSWxlEi1FnepIkUc5ZrOtl5jFV4SUdAjY9l1n06grQRacVk6i6GzqMcfTeErpIjoUlrTjb03UjXRdYFtHQIxde3r/kdDq1g91ah+0Ufq3ityh8WZs4+njWjyqF4jKuZPpees2+7xrZ43qmqgoC12qsrifX5vLab1CoUILS0PcY68ilmlhufS15C6UZyFbCxHVveFmW9vuvh80rqcWrFY6zvjlZXEN24zA0zUhrRGi8BXj9Mgj71up1iyHI66gSRtd5FSu/YvNqY7lW+mM3kOb1CsUoLb7Ns7QhdjvPZb0o5O74so//4YHrd3/3d/n888/52te+BsCf+BN/grdv3/Krv/qr/NE/+kcB+Lf/9t+Sc+aP//E//gO99tuHR5lL6X2D3/AiC1Ndj3ug7GtWlhsEOF9m3CxeUWFd280zFG7uXoCRTT74XuHgIkFPIafe92LmB7h+JJbYKKfFZJLixTEHqr6Z8ZZ+t5PfpVVBKeAL+CG1wGfVrrvixCWJGaRVvtk09Nzd3nCz39FbMDny8v6ew24CY7h/ec/L+xdY51hWMZw0uljHUWa9nHMMfc0wO4Zh4vb2QM5ymJ/PF6JKae0PEyULvXp/mPihH36fr33wLi9f3mJdYX8Y2O17LvNFSA2lYGymH3qmace025OS4ORLWKVZnCXJuJxnKAZPzzCIuGjKkct8xtBB6RjGXlmEciCczwvGCsTceTEKzDmrnXsiA53v6Yde/L9Sph7n1dE1KySSY8J6Q8miq5jWINYtfSXgDOynHbkY5nXlMi+EVSqTlDLH0yw+VyAaj0WyWAnUufVXu76juupemS8LnNea8aL8YvXA6nzXaM7zPLOuix6kVW5I1ss4TfS9uH/XsQ/5pzoMmgkqD+asofMOyqq9DukBR1VjKXlT8C4FYpZ5tL7b3osB1hTJUWS4Yo6bs7S1yuozSjvRDN0aSiWLlIK1Z9FJdJ5pHAjrG4wp9N5K8FpmLqcLb15/yroshHVhGEaGVwPeOOkXX42S9F7MQiuEV5NAb+yzmaIW0DCtxwi0ABhToktxcxrPuSU6IQSCDr9Xko33WzCrD2MkcamSaakIazlnIxqa7X5/75/r4zpwXS6XRgarKvbGiNJNipmuG3C+199RGYRb1TbPc0uMt16/BK7rnw0hNKGE0+mEMZIMGm/IJZKcgyLJunUyaoLOMhrqXJyyCLVlY71pc4dOg16KkWIMa1h/oPP++vEDB67j8civ/dqvtb//xm/8Bv/pP/0nXr58ycuXL/mFX/gFfvZnf5YPPviAX//1X+dv/s2/yY//+I/zkz/5kwD8gT/wB/ipn/op/upf/av803/6Twkh8PM///P83M/93A/EKAT4+NPPeTwecZ0XG4uKrSpcZNx1wxRAA1fMzMuFdRaJpRSCEMj0YLnMMyB47sUsappXIFWfGuhch1UjtBwzSc30TBGn4BQiMUQu66wClRbfu2cGiWIVYppFiKzbgimuvRfpd4sz8eClQqsU74qt933H/d0t58uZUjK7aWQceiUAJO3lVAjNKCXaiA+Sk+xNqhuv0AGEGLAOoSl3At3kVJimQfogtnCZT6xhJhMaRbIAAQAASURBVKWADCiDV3+rXrX7fO+VyADGSp8r24zNtmWOZIsrXuDB3mNM4TKfydGydo5d2sHUUzpRV5BrZK+8geRaGqXGo811ZwQujGXT6PuiUsIXs86+66WH1PfkYtvYw/F44u3bB16/fUuMSqdPhWXJ9MMAGNHF9NJcX9YF3/cid7SuOK8K45ZtnsdUYd86jJpxXT2Abfu5UgqXy0ZZd1qp1+A0jiPeyZxQrqrnNTAmoSLHID0Ta4141tkkoaVIAE5RKsiKVNQ+V2hzikp11sMwZjEAlbGCqA7WorLvrJAjUtYhIw1otlTiyLXrt2XseublhDWwnwZevbjDmYqKhOb8HdeV2+nAbpyYJh2mLxKQKzRf9Jq220q7vZJYqn/WhlIZ/Vzb+kjJft910tZKPU1yJmej8L6+mpH9df2crL22CkHL+uXq9erPUn9AZJ0wFCP3tJhMcVm/L+87X40A2CLIRVHqealzYMboyMkmY1X76MZUOSkJXClZ1Z2MVHdp6dHKiIoBUl0bcjGpQ8uY2ibZKPD1emxjC0rPT5FS2x5f8vEDB67/+B//I3/qT/2p9vfae/qLf/Ev8k/+yT/hP//n/8wv/uIv8vbtW77+9a/zZ//sn+Xv/J2/8wzq++f//J/z8z//8/zET/wEdQD5H/2jf/QDv/nf+e53pLz1DteJXp11CheA9KSvXDZrhpVzIqwLYV1JUQwXa6PZWqGF6pLHltqEzJhsZNjPgDcSLEsppJAo2kswxRBylMAVE0uYcdbjraMbPDGsSrWm9V+kWqx4Nzp4L38oKYkHWCeGgrte7BcELhP17WHomcaXuLeGdV0Yh55O4cpgt4FbozhPzhmbhVVYD5B+kKZ8ztJzEnqyUzbkQebCVsHau94S08Kbt59JNqcCx6LO4BmGnm7otYGu4rFYyBvrqM6H7HZOoMIkbEyn1PLT6YlzyXgL63rA5ANlHDBmYOi7q0Zy1qBs8U6Wcy6FznX0vsMY2nhAyWUjETw7kADtG+x2YhOB86xBDt6UEq9fv+Y73/kuv/M7v8vTadas3gA9w7QDY7hcTo2Buq4rWNHJnOdZek16gPveX1U1haDXBVPwTZXDSi9Q1+35fJb+DiqvVbsZBvp+QDQ4t+t73S+RIKvCqQa8tYydJGoi4UTbMzWRkbVAg0Rzyqq4IJVGRhhs8iTUQdphO4dVJmSMSVh91mGso7PbcVMJDlb33Hw50jnLi7sbvv2tH+GwnxiVVZlilur8dOLl7T03Nzfsxr0yjQ2LXdvnlOT0KlhdzTPplpauTGPEQVUdqfNGtMB33SurPVLX+mM5f/+D91mvrZJDrGmBu51F11/6v5pxSHCV1kXtGjTPL/0ZW1eBqW1TeY1Ku28HSkVBKGpIm9uap55FIKMdWWiJRpPrOm5hKqKfbRvSp4h3mVE8NtuiKiubcoaB1huU9S59ylwgrOH7Xr//nscPHLj+5J/8k89K2i8+/vW//tf/h6/x8uXLH3jY+Ps9fvfDj6nZSj/0WKUZL3GRMr8ItbbiySILJIspx6SsH5WcMU6p8tr81sn4nHRBla0vYazYCYCUxjHIXI085ObkjCoz5CYd5GdHWhcdYqw/o28J25Zujlol6UK7OUzc7Hfc3Oy5ub/lxYt7Xr3zitubPTkN5JR4+eKO4/EdlmVpvbxlWVlnwceHQeSXduOeQeeuvvvdDzkc9ozTjnEamedZdRaNwA9uM+AU6CTr/I9o4j09PWG9o+sd0zQwzyt9P7DfHwhZLMKHYaQbelZV6q+zIsYY+l7eU06ZsAQOh4lq/Pj24chyFq3CZbll8ND3lq7bMepQ+eVy4RTmJvnlfU/negno4iop52prKMtDuAdXdF09rLuu43A44LuenOE8B1IqxFQ4nU68fv2aDz/8iMfjWfqQrsN1E32QKvrx8ZGjjkU4TaIu88zpdOKyzAqfQD+O9CpVhhaJFU4TooAcVCGEeu6yLmvLYq9ZYqVIIFvDynyZsS242Jbl1oNbizxppJMaVLjJ9hSFlP0WPI0lJVF9qe9V9pwCbmabafTe4zpPCjIrtIa4MQGdxepcFxQ6ZyW5MrDOYo7adZbHFzfcHHY4+y4v7t/jvfdecjo+8fT2Lb/9W7/JuqycjifGftoMWteV9TITU60qRSXFe4/VwGqMEZajBqFraK+wKVV43wkpJZdn17dRwb2EDekxra2aaDCkocGHFSrsx0FIO67TCnALLNfST9ffr5+j9q/qNY5RVH3qc8dxVOf1gWKkwhZpLzWARYhMPkpbYhi7FquMlUpa1l+h70Qk2ljVNNSWS+fclRNyrRBpPTBp0hiSyVJlA0XVS2KKMsKhCR1GxRpKEUm7L/n4SmsVni6XhvX3KjprvRPFiGpr4DfKpslF4byaZXMVjCToVR2vojBMlQWSJzqdEZISnlouGyuleNFgVeR1LDXIycGZDQJfGglYSvrSQ0NhFBRCzJL1WCOU/TUEjuczl3nSzHtzG84xiMpAKcowFHuQHLMoRjjt36TMsog1inWW8/kCGGLMTWUjpYJTQdcCrCESL4GSpf8h+nnCUjtfzky7nVYHshBDFJv2eV6ILhFjYVCJF2M8w7hjWVclEmRSumgVYJAJ1qLYOs2Ftx9UVUFx/1LqIGPR3or6EdmqOgGVQi3xQOFFXTd1Rodnf79yhcXoa4sShIO2acs1DdxZrfYqLCWbuB867u7u6Iae0/mM7zvi27dq41Do+oFu6KWyqwdphbivmuu9EfaXsSKhlZUx6LtObTlqMuFxvqfvdy1wyeepn6XCZ1qK5IQrSQNk4fpi1Ey8zSxpH7brxnpkKfxVI64OPlcpNOeFvVoyLrt2D2WQvzIXMw4xdTQW6AspLC0IXS4X5mUmxBXrdgxDTzpM3NwcSDFxOp/YTfutLxV1tk3vS83ypT+8VRS1bVBJC03y6YqEUX+mfs5nkJ/+rGnXavv+Friu9AhL0ftUsLXiu3pcB6nfq9d1/W/PIEv9frNmMbVWK20P1QHxdn7Vz6Q3bvv5ugTqgEbWPyN9KrOtiWe7RiuyraLNmhzJXqkQtSTEs0DmRirVlGlzql/m8ZUOXMsqmlhgyMbiixwyqVlGXGVWRlqI9drXnpgwCa1uIkNtiZWSMVnmnuqhZ5r9hAareoiVIqSAnDEpUxCKqrW2NSQlrUtgRCzVFIEVBZJQTx1NabPL7ZBxRt7LGiKn85nzZc8axNG0GJWiUhIFReGEopGx+vUYkUZKUQSA5fPB5bIQQuJ0vjCMA13XK9wqc0nXg9cli+2E0J1Vtios9GlolhuiFL+yhMjlfNFMe2FcI10nFYbvBnIxRCLrmohhpfeWbupa4MKISogZOqyRYClWMVLpiYKEWH846zYxXJ4fwKX29nQjUZ4fCtcbsUIz8tyyfdPUQdQryrcRrUgZ3N2GdwuC9fdDz8tXLxn3O8bjCZzjuMytYhqmsQWuoq93PcBaD1Kbt1kfmX2rVYFvvauUEqJxWKuaSrU3z87JCiXmlCkpauAqOvisVG22Q7cUA84012agmW8WBCYtVyhDDZhYhykrxuiIgVayXddjrWuBhpzpOlXLN4Z1OUNRA9ewsK7CRI1xxZhC1zl2+4nzw4llkeq9Bq5VE6FaCTXWoDHfEwS+SENvyhAxtcThi0GiBjVhIEvyIfdqYwVeBy5rade6vn7to10H/y8Gxfpa13DvtYfatbpGXSdVSolSNhIZFQqspAk1h2zVdQ022z2UuJpoEk0lqd6hQpFm2y+1sjS1WXh1iWsCVtdSPT8quaivSfEVfP1lHl/pwOW6DounZCFiSBXk8L3fslhnmocQekhIP0TUM5wV/5s6r2IsrCFgS8aWhNN+k9woYfttcy2SUYWYsFnmS3BFN1qvbL1Osv+SSWEhLRcZbCVT8LWTJay2qzVQMe2x67gcH0lh4e3DA3eHiVTeYXc48N47L5nPJ5b5zIu7O3IspLhZqAgtOVd0lBQyjw9nZRhJZfXxRx+Jq3FYee+997i7u+PVu+81qavOj9zc3EEWhXBrxchRvMlsW5x18j4XGdj97LPXzPPCukYwhtvbew43t7z73ntM4wG3d5RiyDnI/JlNGJe1JwCHww7HDu8cu/1IIXE+HzmfH0kKl4zjyH53I4d1Lsxhbpu+H6etV1PVqgFTLRfMVYCwAukYIKwr0SYwTowtMzJfpTI61Vk25ywDXCZSgiGmyHk+cV4u7G523L285/7lS/q3b1lTwHzyMdM0CpGi7xA3ZSGreKf9We9b8zyEAEEb7O33i9OudwOd34ZFr9Xmr8lI2wEoK0oOU1E+YJ2l0nVWAqlCfQYdSi3Sd7VWZq9EJsjqLJn2wTTZEufhTVLochFGqg2RrhsaTO1dzxoW8RhbFmmxkEATb2N0sLj35Bx5eHjLfH6rs2wFawuHwx5bfFOuWZaF8/mMV9+nWvFUXVG3lcOSvlwFsiplFEJgDeszcevcyCebhUgIgbBsEm7Sp6tEltyq3JxFsSYra1WsWwb6Tvf6FwLWF4MXbLN1zrlnOqiVDg+iKFSx5L6XiriK2lYB4O1zRn3+NVnNaeIv175Vr/XnjRAvSumpvfFi1BeuuhE4CW4VmEqIOWq1u1nXlYeHBx4fHzjcvcD24zOY9ss+vtKB6933vyb06aRSNQr5OW8bRJeN0lqT6GvV73svVZbT4FU9iAwFqwQKUQxvgyBIsKpsGQco0SFmtuzLYExpMx7DIMaOQuKYWc6GnKJ0tHQRpFKIsaoioFUSlJx5Oh0J80KOK0YZanVTFFNk6Nd7hmHEDp6SC/N5ISyPLHPg8eGkQcrju46bwx3VePHh8YmUCqfTwiefPvLwdma3n7h/+Rm73Y7dbsfh5pb3338HZwUvD2FRLbPIsqzEVKR/53uWRYKZ6WBdE0/HM0+PJx4eZvr+U4Zx4OWrl9y/eMlhf+D27p6bm5Hd5DnsR2ClZNnszhVQWCalwJJSq5yizrlI9eNbAJrXgHf6OY2XStpLrykrXPkMZrnOZPX7awiIFqJjjUWzUu1/7fe8fPWS/f4W6z3GeSIyRD4vC28fHzCLKLff3d/y7nvvMEwD1lkenp4Yp4lpGsFZCdpFGIVdP9D1PeM0isFhFIilt77ZdxyPx9Y7OxwOOvcjw+6VWCDVl1SetZi0mpQ55yWb1sAVTyeFt2XwWqTMenynTgsUJVYIYy8kSfyMEhScE8KFrSIA+ijkxqQ8n0+kJD2icRwZ+pEQAyGsLJcZyKS0cnzMWHuLt3B7M3HY7+n6jkKSJBIJXKYUejPh/aZmAZqANMhLw6mpQ8IbMeMZ2YLt79eyRNvji9BY/bap2P6zCuT36vo38k/5vX7i+qXN8/d4DV9fVYrPkIJaWQotmiqkfP12Kwwoyjb5Ksmp/c/t58zVYL+5+l1Ff6gSvYrSRK4/Y+U9GaP2UkaYpdUSSkYyBEXIPLd1+UEfX+nAdXt3j/eOEBNrXLUxaHQWRkvtkhq1tcriCAljg1ZkRggqBuyNlvNIY7mSM0pb/NqgQrBr6ySA1AwUssziWEd3xYCLtpDjQk5WK2ynVFmZ9TCVXYYa+Rmpboy16tJrVIpFM2xt5nvnGPpRDsOY6bosRAXfq+kjcjDuduwORrL+rqPrP+N0OrOsiddvVuZZLGGWsHI4HLi9vcO6jpyySuNdM9ekt1HZXKL47WRwtRvYH25YQ+JyCazhyGWeMU9PnM4XTqeZ+/sXWOs57Ac1mxwBI+rqXvyVchCX6mqH4LTJL3JKvqk9rOvKvCzMy8rQj4yYRv0tZauS2ja52i8N829Zb+1/inNs00U0YlGzm3aMPVjfgXMsORNyJhWBJSsBYBgHbm5vhKyQM++884p+HOgHaaLHqIKnOTFOe8ZpYn/Y46wTh+GYuN3dsirM8vnnnxNjwlnL7e2tsEAxrRme1OmgumXXKksOeU/f6wB1Fng2zwsxrMSwkkpucF7fZLakL2YwFIURU02rTNWgUwNL79p6lJ6XYQ0Lb9++4Xy6aJ9yYBp3+j4D83yBkohhIaeZYXB0znCzH3BeIeGw4q0kaIJYJIxz2OLIfoPW6rAv6KF5FYhacKv9PXnSs0Ajz3GaFpUvLJStB1TFqWnQ7hcDC9SAZ41pTOEKs10TZRph7PsFR+rP2+/7VZ9T1dht/d3Xv6e0iIW25SVAKXpkbX0/10ojzzeIMVwFL6Hwt6BVai9WEZ1rJqepvUIdqdDqV/QOZRTH5Gfb8Ad+fKUD183dPV3fs4bAeb6InX1K9OOgNxmiKsBLhloXLleMqkJJibXqE+ak2oHbgpNZK9qcx/UVd94x7frm5gtSzmdV8JabKRp+pRSs03kXHdKMOZNKIuelGTFCwmnVtTscuNlNTL1n3znefXXLB197n9u7G6HEdw6LZ3+7583nb5kvM50fePXeO9y/esk7779H13X0w8i421EQJZK+H5jXhU8/+YxPP/2M//pf/yu/+du/w5u3b3l8fGwNb1nMOvuRxepgGgec27HfTaqK4LCuJ4aE8x3DsON//gP/Tx4eHvnss8/5tf/263z86ae8fXjk6VGy8BCiuEDbdxm6nmHo8VbvUclcTmdO8cgaA2sIIi48jtzf3nGzPzR47Hg8E0IirJGSCs5a+q5n6HrpfRmLwxBrtqob6/mjSHVtjEptiUxYWIUFGXPhclGnYGPoBtEVNFbowGUNQGZZLpxORy7LmURh2u/pNUk4XS4sUYaBU8kUE8TrqHh2hwOHw4EXL16IvY1a0P/4t36c0/HE48MD/W/9TnMauLm5aQ4EdbAU9AC+qkSABn81JmLO5Bi4nSbWZeZ0fOLh8UEOY+cYxt0zOjxAP4zc3N3J4ROTXO8q7motwyAVo1M23XvvvUsIge9+97t88tHHohTjHftpp/2XTAjSNw3rBd9bbIkYIpbA8XzifEk4W3j18gZxVim8fvOAzycGN/DyPrUeUClCXrJRRhemcZTP3PWCkeTN5Vy3vxI4wCBqLIPppE+dErkmZJqg+Urq8BlKh1QNtvUmjTEkPdytAV97fQ7IWXvoMmJSi69raPX7ES8qEalKUNWvUjZdQ+89nXP46yBd2yFXqhRVT7EeWzWwO2ufVZ414G5fW6++VmGYLViVYkDkPGVPF8hGTECrxmtWeDOElZRjk40zKdMw4i/x+EoHrmwc2Tj6qWMphWQCxSf8MJEpnNeFNUSszfiu4HvPMguMQU5CJfUe53rm9ULJclMfPvmEvvfcHPbc3b3QqgvCGht9PakitbDXHMlayFmw4RzpBk/fe/pOZrdijCRTyIsjamNyXQMxZ1W2BoxrjXZrlPQRBL57/52X/E/f/AZ3NxO7QdxjU3IYm7A+892Pf4dlXkmpMJiEnzzjbuDw8sC6LLiuox87PvzwQ8yTwRiZyHfe8/Lde/5f7/8J/uDbP8jD4yMff/SRqLYjgfn49IawnAjLmaF3fO3rX+ew3/F0jFwuC1jHNE2CxQdpBJ/PZ4ERveWb3/om777/HufLhTdv3jDPMn9zvjzyW7/9G3znOwXKym7qOez3HA4Hbg4HUjKU7FguCUvE2UwqjrsX7+CslfkoLnRdz+FwA1iGfmAYeqUmyOxWChlvnFD3h07py0mknrxacjhDRqSDShbIcBg6hsFKz47PKTEQ55k1LXTDgPGep2WmnyY6JUzM88J8WViWlePxyBojD09PfPz5a0RbU8Ry1yD+SM55QoDTaWVZPqeKCfddx7d/7H/m9sVL/Djyn/8//7WRMx5OZ7L6x4U1bEobXcduf6AqR1Q9v2QM+IG3b99yOh45Pj7wR/7QH6LvB5Lv+PTpJN5248i6RobpRu776SxVbdezGofpPa6X4B/OZ07nM+uyMkyRdX2LdY7333ufb+xf4lMim9d895MHnLPc3t3iOiEEpJSZLwsGmfnxw0Raz1jr2B9u6d09Yb2wXo5044EYZsIa6YYJlyzein/dNUX8FFOrUro6atAqptwqjUrWMUW0JSsxI5fUAholSbDR/l5O4tmXcqh8HQyFrLqhVlnF4j1nCcva+j8lWzrndShbHsaIuEFKAuvVimWrEGUcp5JepGquhIjNDqQmlVDwVgV7TcYWRAWlKOqQhETmjKV3Xg1VpS9ce7tC7hF1/mwioYDNAs+SsogwmNorzBLwTRYRZYzoAuBIRYhSg+8pybKskdefvSaGFVNE/Pt8equyd/9/nOP6v9PjeDwzTFWZ3YJRFXiMUsi1kiJhQqTPMmu0Los0U30v9HTXgU/YUug8it071f5yzYokhLzNXRWjcE9inledt4ikGLA2szdTc1u2RuYlojMs521YMqaiAsAZcBuU6RzOIA1RzSJzFphETCRlNkPmLDx4gdiaeog3GG+wnaUbPWtawUpVcanq7BlOxyO+6+m7nt1+zzj1GHsrA6Hz3JrXy/mJHAyxZDrfMY0D+93Isi4sq2w050SqKcZEmmceH0+AxTrPMEzsb/ccbg/cv7jjfDo3eRljiph8LmdIIh3kfc9+EnUMobo7xH9J1D2875UBuCr6o9etyg4pdKLovMgYOaMKJrrrixxochIVhaNSs7iIKdB3rqmeOCvDoPXAyqpPF9cV1/WibZeK9Nj0cKDICMK6Bo6nk859ySzPskTpPbpM38u8WCliXOqsZRwn1iC+cqkUHp/EI85Yy26aJHAaQ1hlPdUB7IIVseaY6TpPUzB3HefzzOkyc5oXCWbGEAs8nS6EVAhJBrpt1+OTZ14D1mViMRi/tioTDKkUlpC4LAvJWi6XGWcd9yERYiGGwvkS+fSzt1hrWGMhBJEByjlyPj0gwtaRHBfiutB3ln0Z8TpQHdcF50VBvuha8sbhncgHWWcx6arPclVxQB1NqYoYsnFt7VkX2bvVpTcXOcBF29FQnPSaKxzWqPAKB9bnl1Iotqg9kgQVqSw6GhW99ZgqnrlBag2ZbMheVbTIom14/b+ic1Ia4Ir2iSrU/ayPVoOW/pdy1bNSFAikAq+9qyqH19Q4dA0/a0VV+JBNIq9e89zYZSJnJ/Drtfo8ut8XCoWUfp/Ocf3O737Ize0t737wPjEVUjGkDPMig2/zEglZrDnWdWXcTWJaqGrLwwT94HDdyOh6vLXsOgch4C1MfUfKhXmW/s/xvGgD0mCMzNKs68rT0xPOGx1YDoyj51W6xzvPzc1BhSllMZyeVspac8Akt98kQOEFW72fjHj4pMjDwxMlRkbvMd94n5f3B3b3B8bdhLdgEcWFeV4IMeN8hxscxWXWtLCmRfoCRjT0lkWsRN68eSuKDKvoKd7e3rLf77m9vee999/FKhTz8PpTHl57jo+W+7sDr169YH9zw7yuhJhIWdiba1g5ns4cTxd+4zd/W3prXc87777P17/+dd559Q7vvftuozA/PT0xH4+EdSauFxwCY3bWywFj5fnTtGMaJ6ZxxzjsRBy2btosm1xUPSLOGoq6R4tgqNEZJoVhcqEUybBzTg26KjmRUpBKNhdiDvikUmLW0nupnrvOkdYks4CqLL9cZpbLBWLi7vaW+7t7duPEOE7EVDRJOOO6jq4fMMZxPi+EEPUo24RSl8uC9564lwHv08VxfDry8ccf83R8wjnHj3zjR6T5bSW7fzw+SdWQCoebmyYePY47hr5nHEaWNfB0PGmFJgLCa0g8HE9857sfgjV0fc/d3R2PpxNW4cKUC30/cJcS3TC275+XhTmsXNZANpZlXXHOs66Rz988sMwrn3z2ht/67e+SUmR3+Ix3X92pkk3mdHyLIWFMxpsIJbAbe3rv6Ls9kgw5nO1wrsf5iMnQdwODFzmzmBJBe7KxJNR+TWhSelhnSjuMAWzeiBmhahI2irh+ZfAyLg4IU69OP9URmGKM2MnYIu7GOZKS18Al/WoUEkwlioxbqUFMNS6MqlHo9wsavIywTckJm6K4gpeMc/Kei7YwYhZxYHfVe64s3yotdw1HgnSoqtRSJfXI5VLq+rqyzPPGXtQ9JqMC4GyRJE57zVjT4E8aGCuv3XWesYj562ZcmtQJI3C5nL/02f+VDlz10EqrMJ6c8bheVMBDisSUsSlhkeppHCeSFx3BnDOH3Q2H/YH9TqjTvffshoGbcRIoicLpPLPEE9kUEqk1qq1xZOewo+fQDXJDgrgsFwe4AdNN+GGPOJSIer3rzrjeUkwiZkuxST4Im7J57wQaoAgt9XI8Yww8nc+4YWR3uOPuxQuGccCUCDnRDz0Fh09ZPXdkQn5dV5Z5wWAIbqUkObxrRrXMM4+PTxyPJ8ZhpB8G9rsDh5sDfSe9uxxlgDBbiKXwdJmZU+bjTz/jzcORVGC6LHz8mfSx3rx9xKqCvfdy+J+XM5+++ZRPX3/K6zevOR9PHB+fKCmyG3peHPaUGOi8px8GlvOZvuvbHJyYf4rozTyfRRqKTNc7uuiImnl3g2eYBqb9RJXdWeaZayZZudrIphFxKt1XXheK2LkUgESdMStFrmlMBeMcrkBcVpbzzHI6c/vinrvdnsO04/7mlhgieQ08vX2kH0emXWHa7SFmSpD5m9F5+q6XQ2SJjN3A3e7Avh/JJXHOibTMnB8f6buO293Evh+oNutvP/0MiugsrtZyPp9Y5pVyE+lubsE60jwTzxcomcNu4Ifef09o2taQUiDMgRQDP/z1r0kyksQna11mIXTsJu3jSmVj1Hutkj0oqYlD78aBwXte3B3wDtZlYblkrL2j9zIs/hhWSo4CO7mMIZC9IceAdxZrO2w30DmP8R2mH0gYHHJYpiJCzamIvuO0m+g6zzRO4tqgc24iISqq7GSVrRLKCa548VlrQ8WlERxqvwhkUPp69qqWILZUCrxqRDorX1ZtTJAQZTsxDxVMTl63VnOVKFFHF2RNmk2z0nslUggT2DiL9YLO+L6jG3p81wlTVZp2UCzkqulZsH0nn9EYumFowco5h21VmVSQOAteevzdOEii5TZfLecLvqsODNJCqezYmISklFWdv+s6EtJfrWMKMUaWeWFeLzw+Pn3ps/8rHbgOuwOd70W13aJwSU/f99jo/r/k/cuPZVuW1on+5nOttfc2cz9+TsQJEjIvpXslVD06JSEaNGhAgx5/ALQRdBANJFpISCD+geohaCEkJHollRASqkaV6FQ34T6gKAqRmRHnHHc3s733Wmu+bmOMOdf2IIt7IxqojmJnWhx3c7P9WGvOOcb4xje+j91nYMcYSwiRKc5UVyi+kPadKUxMYcJbT3BBsGjnZSai+8f4igsZHxux2FEgg/hEGWtwzlNbZt9X3N1jTMGFCesCpjcFULEv68FkQTZdwBiL6eW/zskcC7BhjNKOncfHSIgCpVgXdNBYBpmt9ThXMaYxxQlrHd2wkSasqj682g/tWe1iYhCYp6hqftqlIlqWRXThThPWNUp2uCDZet4k2xYDT4PPWY57oV+JJ5o1uqGasD5vhdv1xvfffy+zPnvisoj78hSjZP1eDvG5W0x4T0MgOGuNVEY5gQq0hhgJSSjWPRg/egaJqsDANwbsMnoVnYVlHmSR9DASSngZsEo/yyQDl0DorMdg8MawrxstFyyGyUcuy4kX90rLlbon9qrZvA2kdSXtSRCeXMBJQkFtKqgsSVSpmZv3eGOYlX357nxmPi3sW+IOmFKkr+A8k/dk66jWMjnHEgNLjHjA6GzPHCLzJJY3pylSUhKomcYcRUZJBOmqQKHW4L0VVXnkoLIGpagLvOqMqM5PwRODoxrDMs8Eb9XXCU7zzLxMGNP45D05ZSFGTBM0o6aVouhuqFRjhueXNcJu3NaVtRy9mW6TYoMb8GGlSWArBW/dCFYYmYMbPSJVerC6PvqakD93uFl+r2N6cujrkHBR4WFl5xn3+KWahq2NgMMQVx4j8bLu+oyhnmudZOOc9GWNc3o2mGOWzqpIsfc479FJbgS5saB2ONDkta0SLoIXFQ+MQq1aqTWwVWDprOvEBY8LCtXbHnPrCOiAwqiqh6kzj0On0FislbMm62xid1POKf/XVYf/v9Lj/fN7OYayBi4PwUamOOGswBa1VjGE9J5pCnQ7inu7MseZyU9yAOFkUryJnJOwPS3GRVxsxOpodhKIrwnjKpeM914sFlph2274ECh5w8cZ4wMMrLuKwatx+mXAN0y12E7fku6x9OiUiixzaVFYgcuJOM0StLCkXEa2aKzHGtFjDH0Wp3XWTj/ERUn8YFkaHRYtIvuURA7qfn8bQ4/n85mn52daXSh5o5REbpD3JDRwff7WGi5E4rIwF0kMenaIgy3vtL3y8eMP/PDxe1JKxBg5Xz7wdLnw9HTGlUYMgWmKfPX+nahtWNFdExahKFXn4UIbmKdJLDmSQG+9v9U3lMytSIIhUvvCjOqHk8MdrKtWpTo3huqcBJzWhnRUV1bJNSOj7hYfHM4HVh/Y7yv7faOmyhQmns4XJv9RCCspk7ZEWjPRBbbrlW1PNAx52/FGm/e54jBMIXBZZO7pFgLRGJ5PJ2EfPj8zTQs3c+MViFrZnqaJ0zTRUsLWxnmeeT6dmGcZTrVNYJ4lBoIVN945BPIug6zeWWIMquouBKK8r8QgicUUBc7cU8YbcDRsK1AqPkQm71mmyOQdxRiWKRK8JXhD9Jany4XTacJY+H6K3ItYq5yXhdbk5yTXMZhqyKgFRl/jxvD29sZ238iXRIwTfYZKhJHFTl6yfzkgnXNSbVlN8Jylhw3TnAZEgQVlTEZo/13A9qC5a5X1wAbs5pBGkQCj7wFnMV5ex9aK8V0A3Ok2P4KXMTIH2CG23kJzD8HLPb7OIzVe93GXDsNZMCIGjhOYzzSD8Q5TdRzIO5w5rGZMlgTNAlSPcP0qxSSsPrcxFmeOHlV/iH1JH9ZulAJFNQpb6xJrZoys9BlUuT/lv646/P+VHnmTi+Bsw0WH6+GnaCaRG6ZIE7OUTMZgsdhmoDR8c3gcNQn1u6m+3329q4RTY8uJnCqlGrCHrXqphVwN+7rzdr9LWZwTaS+UAnsxpOpo2kh21hCnRrMfyexUIwPIIuusjVKk5K5KkTdUrHGEMOFdhOZ4e7vhjYGSeP+0EJwhOCv9PYQM8Pp6VZw7sW27DCfr3Mk0LVyvN+73O9Y6rterlO5afXXVARGcfeJ0OjHFGQjk6kVEtlmqtbz/+iecnoRpaZyj+sB0OjGfz1KtaGUnfjxCqJimSDwFIX/kAqZQ8k5aN2IIzMFzPp949/yE9+Lsu+33MYNScuJy/sCyLEzTpKLAhVJ22YBeZZh0rq41qKmIwHKX3NH0tg+oDtkmZO7LGEtwcnDWKodXnEXRwXpLKjstJZzNPMWZy3RinxJ5S7x8+sx2u3EKE+d5IVhL2XdslWFmj8FVMKVBLtRcyfeNaoT+fJ4m3l8ufPPuHQHJVNu+UdaVp9PCu8uZer9TmiHf7+zXN04hCBHkfic5S77dqdtGS4m6bZoIVdjFhHS2jrTeVZQ1c7+9yX32nrSu2CaaLuv9RisJ0yrBGIKBrWTyehPC0L7R9PAJMbIEx2ly2Cbzd+SVlnZa2qRjlDcowmYr243t9gotU0+R1hKlwn5Tih0yN1S2TXpITdhxtTWqaaJIHw/BZxk1OeSurBPdys6uQ6E48zDXVzQ4l1yoVKkorZfDuHUCgtERCgUTVXqrNRlrsCr9VkojZdGqzKVg1eok14IpBayT4HDM2Uj/yGpFV/sZoGdb07XYqo4eGCziJEC1OP2ZVAutWnKTJKKrqaSS6Ys9FfVZMwZXMkUDcjNQtM9qrEjfFa1W17STa2EPkafzk8rodqZuFdKS/dJt2llxl5AzsvcEZY7rdrtxv93ZU1JDSj/Egn+dx486cL18/ISx4pwbVaVi8gFH0xvZiE7hPWMI1or2mjHkPXCaJ87zTMob3kXNhGQxVho0xcgb4yb0g681uVn9xjjXb6Id2ZG1YgY4xSCQBeggsRusoENSRnX6mkAYHduyxtDsIZhqmkAbXp/bqDr968ureBalRE6J9b5KpuosP/n6myEr5GxjtaKbV7M0kK0To8DaGiVn9lq5326i4LBn1vUm2oEWbusNH6Jk2POC81EsLGrD+x3npal7f9DmM+hQaPBMc+T56Yl5lkppsQ6PHO4CDRUVQ1Z83qD0XTNmc2oppLTTmkzl31cRZd32bSi9n9oJ70UgNpc2mFsHRwuwQhE2TjJ9qAqLqNKEaVCa3mtGAnS7XanV4N3E6SS2H13yR7yPZJ6sZpkLosnf79c7t3LFGsPr6xvbvpNT5dMPP7BvKzFOnOZFaNa1EIMjJ4O3hhgc53lmjoHb7UrKifvtTkorzjaBjClQElT5fUpiX++qkQnUrAzNxhQDzTRicJyWmdNpZpkjJe3KPJOEwhlwpkFJtBJoOVHSJkxL0+TfgODEADI4pI/VKsEZ5uhIweEc7NsNQ4ZW2O5X9vWGaYW0rxgjlWarjuhV0aYWnJHemVjCNy7nE1MMnC9nYogYxDuuZGHc2VKwusesscMktm/cZhpVp1+7n5gop1SqFfi/e3Z1JEF4B9rjGrYnste1LXaQH5Qx3GfHZG9LG1uGoIcC4AiorUrC2gu7Zji0ceHL2cNOuBD6q86e1tEnG1qHjePv/YzBqInjMZCfk1DSjbXgHKXkITkm0l9wWqrG26bn43FJpcVhFKk85r76nJi1XS4ri0u8qr90Dc5f9/GjDlyvnz8Rp8j752eid8zBMwWRE7FqFOK8wnLIXIYPsqBz8Jzmicsys+3gXQDtX+zWc5jOWc00OryAsIM4eiSdair+OQ5sGcoc0cswrNdyvmvClVKgCUxQjQw4d5KGrX1Rg23SD3OKUTsjcyFTiEQfybtAZNv1qk6xO9fblfv1hgHm08JPPnw9FEIE1lABXfWpssYyxUguqjJSZQ7rfl+5X2+8vn0mzuJiuu0b07KwnM4spwvBB2Ff7Vlp4DpflNKg2nrrqMVTnUgwnU4LUwnUnIkNXK60VebfWinULK7URntWrRaBLYzBOzfgBucE6rzdrtxXUZ+2ToSNBcbtdgyMHlcPXqMJ7x6qLhQu8lY+lypvlwdfrFIz+75Ri6E+6AXK+9GNq/2RnGTI2FmjAfeV9XbnHia5Vymp8PEVyWQLS5jGIS3VtASu0yIjCHMM7NudkhP7KsSJYCW5EejzYH1ZmlSzdJkf/TcLMQhvzjvD5bKwLAvLHKk5SeVSK7Vm1fSEWhLURCviRuBjxFt5f63Ke43O4AwEB1SDd41lCuQ9YizkfYW60/3wat5F+qwVnDn8p+YYteJt1CrBU2C1RlsWyjSxLDPWimknSRIKUy2mNYJTC3pnKbq/+t4dMkNdWaV/aQBptanR1WMf52DnDYkIFEp8OI++YCa2g2PX2rGfB7e8/1WUDQ7CkOQgOHMEuNH7QlHukT0fwQ/6980gIkmNdHyuRhP/QdtG0j1U8Zu4v1VFAUrONJ336gajxupc13h2ZN01pJLt//cAZdoi762oOEQfoO6i1b/u40cduGpaqbZA2XAseFsJVth/xVaiWmM0xZCNkX93DqYAz+eJ988nts0QwwQN9pygZVJypOyxBpKTWapdKcelatnsHM0blqi9gZJJtpGSYXKW2XtOMTLHiNfnmL1j946sZX9p4p7stYdiDHr7oZVG2gQmCRbOU+D98xMf3j3z1fOFyVuu64203rnfruzrxr7t3G439nVTxYSJkivr7c6270xhFi3DNfH6+ZW8JxyiapBLwRnD/e0qS7NWasmU7EirQG7NQEuNtsvIvHFSEU0hcJoXHcJd+frdex49obqK9batQMM7w3SaOPuJUMGnStsTOe18+vgDL6+fNQAIFj8pNHi+LDw9Pw+YYd031vXOut4FVjMCs7rg2POsRpYO45V04SRYda8hF7oygPQ2Y4w62zaR8p3WCnvayE0+u/We5XLGWVEIef/1B9Z7Ys+J9+/fc3q68O7DO7Bwu90IwfOzn/2M3/md3+Z8OXO733n31QdEOcVisJzPF0IQSvy7p/d8/eE933zzYRBDYnD8337nt0d/MqsFjVsmYvgpt9tN+5ZCaNn3nVKq2oBIxm+tlf7TPGmAymxp5fb2yk+//lr0LmMQUkTO1FKIVgakJ28peaPViKHgTOW8RCwVb6vA0QG8rbS8sV5fJJNPdz68O3OeHd475uikam2Fr95deD4F+Wy//dsYk/EO5uD52U++wVlYb29s97fBrfGboRUhDrWSZfwj7dyvb2xrwlpBDjgXnadzLDGOecSaVfWmVlWdrpjatMetc36Svkjg0IqptiyKNqqaI4QNNf1UhmCzopBhtB0hzySoyvE3RoVmtOXaRzVGINWzzQWpSgRZkWPaWEt1biAQGQlWFlHr8E6VNUDHc0RrNRur0KN8Zq8iB601rH8I5r3925okyD4MRSAhv5mjf2eNsCc5ArA4eZtBbgrek3XtlU7T12SupELafkPJGcssCgjr7YUYwbRMcAiLJidMWWlY9pRY9x2MzKSIsvSdtF2pZcZQCK4dGU3ZoWRMLfhWMVSKpjoZ+bvMAomdSUk7pe4iHrpKNlyXiC1nPJVgqjY3K7ZmTE0Y7ZO0kmkla1NWei1OSEGI1NIufYa8Y0vCtYTRzLc0oeROzjE9P3N3dza/M8VIUTXv7p91v618+vSJ8/nCfV0pWYglKWeMEQsGgbREBcMqs9HpRP40z8PFWrIpT153Sq4YKw1pi8E1MLUx9yFRlYvJTWavQgjEGIjBM0+R2XoWH3n2E+vLG+u2sm7bMJt0zjGfFp7ePXE6n3n37pnnd+/Gxtvzzr5vbNvGfds0OFkd1BZWlvPK9LIKZ7gmlGIvsyaHx5pR4WWrm60ocUWEbJdl4f37r/ijfzSzLBeW5YnL+QO///u/IMTAV19/4N1XX/H+w1eEGKimcXo681t/7Lf4+Xe/4Pmrd2wp8fXXP2GaZ4GNrRyZnSocQ+RyOROC54eP37HvK/ftyuX5JOMBCjPnLMPJMUx89913OmjsmKeZMwvGWJ6fn1jXfbz/WisxBuY5st7fuN6vvL195vnpPOZupmlS5+LC5TQJHds5KAlHxZmGtzAHB8XRiqfsK6Zmat7Z1yvX14+UlCn7yvvnE8acuVzOSggSy4xvv3mPoRKC46fffE0tQqk3tfD89ESrmZp29lV0RK0R5mZwDroKvJF5SGcdU2hD2moJwlR11uEw2j9S/comfbJWBCpvw+3XjNk816E6PQ9a0f5ayUBXsJDqsrsRm6pBpDLYodBk/KRUjGvyXswhz9Ra7V20o3Jrx3+NQn60h16bBjkMalFTaVZ6uyrMRGdBGiMzjKb/jsKLTte5MZZsjnmv0p3gG3jriD4ca84ZrAPvG96b8RlqFYg21UJK6FxXO84JPT8kCRbIMukc57b+hg4gn+cgjdV8Z7tZDIUYIEwyV2UpcsHyRtpuSsDYKT6Q0862vrHdo8AAXvtJJVH2VfsMYJWdRBGvLVOr+CSpER8ts+eNUgwlyevUlMjbTF7vkDdslZ6JoWLJ2JowdcfkhClZ+ge9hHZWGEUNWsmQNkxJmOSh7NLDyImWM9XK4KMzat+epT8XQxDnWcB5S0mFfUus6yaLNWehExvNBDuFVXF2UfxQjyc9JKZpYoqTQiZy/aVRXaTqwuDQ3pt1xKHJKDmZVWdpa2CeJ6YoChzROM5x5v1y4a2rkaPuv9rEPSmb7nw58/T0xNPT07CfSGUfthSTqn20VrHq7CpCtmLIaTBUIxRuUwu2GEpO8ppG7DmcSzgb8GHndr2xbjvblmhVssx5mXj37h3zcmGaTgKPekecJz588w3vPrznfDmz55232ytFVTsuzxfcJH3Er776mtP5TNQDtpRGTpltlb6g85ZcEp8+/0DOiX3fmOc4GtrOeXJWaZ1pZrlNpCRGpi7YYew4LRMYRKjZWErJWCdzW58+/cDtfuX69kqMcq+9c/pnqEWNUJ2o0eS8K0SZBS4sCUPFmyYEtprJaeV2fcGpweV6f+O0BGIIPD1fHmSYKu3pJNR3b7mcTgIll0RNMgCb9pXXz595ffksdHznqCWR90TRvkwtBWrRFoC6McSJqLAytZFLHhVkVS+tLsB8KMOiEaoHCz3sHwPFCEYM/E7gZT2ksdKbRSSXTD3gux6ARpDT73dUEsA1Q3mAEgf5tbXh1WdaEx6XkowkIMnn6BM3Ui9KAKvNjEA0iJG1KaynCiOaADYN5hZGYHsUK+6ivNahMB8jMIL29vq1M4/2Osd8Wmeq1lKHO/Kv+/hRB65vf/JMrZXXt1du1++53eB++4Hn9+9k2HOKVPqshuPz5zdayrTm8cDHX/xH9usPwgh8fofBcL9v3F7fAJFT2m837ptoHoL2iNQuYwqRvRX2dBMlhn2D9U7e7lw/Zj62jbevn5jNB2Yj4qUzmbXttHynNqm+Wt4pe8JqNTI7odTv20p6+4SjUH0l317J1ytljpglgoW6b5S006xYbNvJknPlfttEoWLbSZtgy3OcWG93xcANadtHsOr2Ga01glcbimlinsVDSnDvMjyATC8NjQRb7wO5VuzUME9VDphaqCnLrNi84J2FVvDeiTFgnPFW5pOstbjgmeZ5UH7jNBGivJf5NBOiwhYd07eGaOVAjzHiQhi02y0JWUPYnxkfD8+qbb+JzFRKopahowIFofQaHHGaMS6gpG9kBEJcla13vLy+sH//iVQMMS68/+YrPnz7DWGeiDHyv/3H/538f/zvMmKgzLt5OcvzepDOmfQFpykQaiBEx8vLK6+3F77/uBInM/pdLthhXIkVKKnWyuv1M9YbKIVt3ch1G4KsuW4EVZloVLZ0Z7/t/Py7O/U/lHEdrbXiBWa0DwXQKusmlWzVpOr18/fj5/f1bQgdRw95v7HdX/n8w8+lX9zEByrGSAyGVjZKkyF7Z+Vz5LSxXhNvn3/AO53dShv/27/9N7x8/sin779jX2/M08Rpmfnq/TtqkZkzWheLjrpG5c/TNEOD9b5yu914+fSqRAGB3LoKPK2J+3gVSL6qo0OwTgJY6f/YVG2jDxSrfFLvNal2YLSOliq5NTwecsNaQ/BBxiaaETm/Cr0P5pAKrVYFjZvREY5GCEb6Qy2zODFfLKXgG9Rd9ulkHK40rK24hvjD9fupDMFcJSiClV5/ruojZ+UzG93LBgmI1oOPOH0vad9xccKGgPUOHwydDNhatyiRQJJKVfV+SwiBlBPrujN3FQ4jLFlM10b8DWUV/j/++B/jcj5JhdUbqkaka6zOTmDhdL7w9PzMDx9/IKXEtu/84uc/V4FdwZK/enfBYFjvkeclSuLTDPdZVDhKrfgY1Hgu83a7keuN2TW+/XCi1UreA/vm2ffAsixcThHfNur6Rqo72cBE4hINs42Yk0BvxkDNWRSknSVY8b2qZaF9846yb1yWmd/66dd8/f7C82lmCg7vDNHO1OCJcaHoMNt8OpOSSKp8//0PrKtYSzw9PfPhQ6TWrH5Jt/H5Ozx49KUOxs/IxJynOXGcNjpwienzJAGvTM6aM4RJ2V7qkWWlkrRI7yFaz+SCKG9XIVk0A3GemBYJml3Z3AXp3YToiVNk2za2XdlvCqkKZCHwYtBN1qikkrnerjjnhbBgLcaKCkSteUBHIg3UlJEm0kw+TKLg4AIhyPyc2LwYUq7UaojTmRBnrBMadQMJ7NZy33f2XdTtjbW8e/+e8/mJrq7NgIisykcVvvrwnpx2Ulq5398waqkihoVqWtgebOeHtpzMJ2KUNGC6crkE3VIyNhhiCoRNhoTtgKa7+7cQOjr8k9M0kpkOT3ZDzl6RWyNzU942SpVh2ui9EoAMUwxy3b0QRVqCoo35khOtVaYYqGUXqHG/4yyclhn3zQfydpZBYRr325syTQ0xeKbgZQ8bSy1FCAAuCfTaTTNTIqiep8eqGK2GoCrD083I/XdYOdidilyrpZGxCAXciWKI3DmZ4+ztIVrXDJQ/SzaIlE5KoBBlNx1d70UIClPTC7nDP+yQOnysnJQupiw+ZyzeiOrPL5tSNr0G/ZphhN1rdI820MAl/3ZUplKlFhpU6c2TDFUl6ixdsxEZdtYkf5oMuVpq2Uk5K+R8WLd0i5NuALrvv6E9rq+/eub9+3dcnp+EzmkQX6s+Xe7lv8/v3vH+q694/+6s3k0rk1cIC+mjPD89AYZ1WinL1JMt1lMYBo9hjqQ9se0bnz6LNl+H0YZz7S4N42mKLPPM+8vMol5DtMrX785cZieBynupVpyjlTLsBJyFvG9qFb6zXq/MU+Td+cRpEsYVaiDYTducsTKE7CKn5USJYrz4El7FIdYJAeXp6ULS930MWJqRpXfTQWg6fFsoVcRvnbK+6KQJjsPUqltqtY5gvZAxMHRepkN+12EIqrztdeO1KtJFToOm9/6LQIpm6H1rD4jBot97ECDlwNbFSsuRayFEP5ietXn6LI4x3cCzUUrDh0lNNye8n1QnLxLnk8zThQljPKUKFGNdxAepEsfga5OBVr9KpZ6yDHO+f/+O8/ki9jvpEDMVxgs05CCuNZJLJESjw9NqSa/AVC1NyS5tVE2d4yaU66NVAvLcuWTiHMmq27nEMOAf5yx9ILabTfYMv2owPJx4i9Kvuyi09FpKPXzvgpNjpZRM9FHvoRVx64f+h7M6FB8DaYecwLSC5cQyBcplEYWRbZN9td1VXxJM8Dhn8DrKIHqT8uU0oFpjKClJ0qVEAmvMgOxqRaniCpUZqP0gf4DDJMeQOaru3GeMkfmsh0cnKvTfO/aF8gNbk3ttUFULoHe5BqzXBrQIDAbz42sc/6uJzy+T8zrNvh3Cuj0N/YKC3g5twYPu/2Cuqv9aa1U9RoMtqIqjqszgtKfWk6p27INyBK7+bzlnUh9E/qXr96s8fuSB68JXX4muHtaK8WJ3anVODqsQBHJylfdPM8Ys1PrEeXKCDWuGviwLtVRu1ztty4Nq2pvg1luCDryu68qnz5/HoO7T0xND606V3L21yqSKg1FUSuHbry60JrJFvaqIwQ/1as1NKCmxbyvf/eLn/PD9d4TgeXc+Matky367Yacw3JtrLpggfxdZIU/0kWADLTdwEJzjcjqzro6SCkEhCEB7gSIGSu10WaFEt1qOjFw3yeOmfgRSitp2i1BnElq6EZ6k14AVrMOb3jjXOZZS8V4qnWmaCPN0NI1rgS4p5Q7svBYd2mzHAW4U+nDWYbzFm0CIAR8lKHsvv29ND3BGLBsUf3c+YtXqxtkoFZePTPOZOE2iXOInwFEqfHq54n0ArUja3hXmq2q7GbCeOE84b8UQsWZS3gfbzeJGpRsniyHS8JxOqlOns2k9ky4PqgOGY8atEzCGGebDQwbL1W+qZIJTM1UVdO7Xsb8nURQ/NO2meWLfdnLphoBm9GoGVbwdZ2jVtRNMkIDQGtfrddwra6XXaoBlDmzbIvY/+yZzaAhUd3974+31hevrC58/Zu7XnVQL59Os71/GVWopQt+mEZyjekf2TmbEkKryoTiSZGnfZVYxC9EqxEAk6EzSMajcD93WKx77pUnloJ+3/j9Hnyc4B7pH2+hRcTS3frkHNb6+pO/3iksA1TaSzk46STraMhIZcySlj2K6xx4xI1nBmCNwPVRsPXCVTmABYWh3hmLrgdXQsNRmyUXu69bHPcrhuNxaExh/Uxf3+kuL9Fd4/KgD1+Shpjufvr+PrNyHiJ8CtllSdexb4/vv1kFNPp0vLMvCeQkEF/DOEYInxIlWKrM33D69YegN4SDGfzRaTVQyJjT8+zPTLIK+3j8udl3YyO18nBeprVBSomTIpmBNxtUKOVP27vWjmm0INPHNu2fqdsN7x7vLmfM801pl3zKmyUC1c55cBDoopfHdd9/hnGgPhhA4nU46PxZozYyFKXBZhxeOLBvQxSbJlPN+qHJ36jh0QgMY2yWkZM/lUnh9fYUKwQq54jTPhOCgiiaeMaLyIRmZJc4LcZrwMWKVglsVmKlAtV+a4R1TS9ID6uojjzMkxh7CplapyjpaRjNCUvbeyTO0hiGzLGe5ThgwAe1GU2mkUql7xhY5eaoeVK0JZJRLkr6lNUQf8EHhQ2OY54lSG6WIZX2MkqVaMxF9lATEifJL77Tf71eZnVFItGlAKkUGfnvS0A8iYw21HFbsHR6VQwM9KPQAbr0efmie9+SrExPGIdzXpaHVIOiA6xWFGdwGDArbZYXUd4UqNVi5g/ItgStJ8lEbp2XBLDPGFCgi67VvK9v9jUYl10xphbgEvJs5Xc4sKo4thByrFkVWJJaK6AM2dPzBK4Ejij4opUgAsAVjZCwFA6kWQhPPNAXypILWr+6W7lHxvv4w5oD1LAdBQdGfpmiQRfbVoMdb0/kq+me914YRoESFRoFog0D0jaEQU2nc1lWvq7AsXfAYtUqyrdIUtiuAN31ESG+aHDzyPWtoThErA9Ua7vvG5BrBBaLxWB9kzzVRBslZINk9NbCigdnlnXL5Mhh2g1pgmLb+Oo8fdeA6LTMxOFLR4U/vhAQQhcFWK+w1SXvdALVQ007xDhe9/J1G6ZPyVSwKpvDlsCtJKJxZbUtoFe9g8hbrgJpUfUEwdKeOrbRGpau/N2FgBUs1Yj9uO4hdlVlopDfikOrRWNTmQQJs1OAj3j8iblubxTTBoY3wc0l7orqHrEjholqEYJFTIScp2dHDx6tETlcHqMOv56iunHe46mgKc4w+s0HYeoq9A2PQ2VnpOXrtdeS9Du+irjDgvMdFkZESg5deMUhWaJ1YxBtlJsoLaMaPfktfvwcuH4IcXEYZX9aMpkHjUV7Hjoy5WY65HI6stFOYQQ7/xqEUb9oDzXffSCVLxefjwTpT9lfNWQZAafqerFKqFR6qhdadsxGNTaGKPaqSC4uv31P0nlntbUnvowca7ekhjXYtIPTgdHqg1NGfMfTDRJliqvqArgmDQKs4o6MOD1WHflnnoBpKNkDu24DWIAYhuui7GK9dm+xfZ6VXSi3k3UKT5CpojzPOE8s8Mc+R8+nMaZoxBvY9gUnCgA1e7rsVunxqBVcKvhaxPsHLqIlzUlkbPaRbUy1LdFTCHQrvpmGqwdauiqMZHQe5oJkDujMqFiCQo9ULrn+29ovvm97/wulSM5hqRF+wkya0x4hCuz1564ICGEPtQsB9zeqIh7EG0zrLUjZz04F1kTvo6xxs8DiazpRavIFi4F7rgNN5gEGlAhTGLqYOT7O+JjucLVX8gRQ0Hb15GAL4lR8/6sB1OS1MMZBLVTgoMJ9OwrarIgZqtoqdZ2IIpH2XG5gz1EoqUq46Z3HGDfx7mbw0cY2llZ29CoSxl6wHiyxu0wrkwrYnqSacwwYPzek0vE6mt15MNxkmDMK8MQ/QT6tZm+Myw1X1RLZGIL6+eb2PZDKYnar+Yw1IuWKDMKVqaQIoNIHTalEOmwartCfSnrldb3IwKHOvz0aVkoYlfKttzLA5bzFVh3U1S+ySOL2KErW2JqrSTfonYYo4TQZKbaPh37P1YB3BGDri3WdpnMrHeIXKrOtK3PI4qLpqu2DsoPB67zFBEoBURb6pe2/VmnudhhwZdmx0iTGivdKDgbyOG5+7Fk04pOE07mFaV/YiLsqSeWtPqjV2/ZlSpDfZjNDZrQdUVq6gszlNruK8TNJnrD3Y6+dGqutmYMiFtZ7JN+07gu/4U2viYturCGeUlSh9vaKDzsZ0eS2gVfUse1CX0Ey506Odig43hYvk+2IDUoyYSeZyVG0x9GpdOBDGJnq5IWLSMktm8TiFpOZ5Jp0Wocq3zNdffxhzbs5qwrauEkyt2Bo1a6nOUAzsJcs4SXZMOWGCEoWsw8SIq+IAYdHAZcApKWj0g4rF9Eq0V0sPVHi5KHVUv49QorGa21mDcZ5DLNccB3fTe6KvQ61ihdLXuiYPNKHa06+iOSjtzjqpGnVZNmcHlGtNg2JFFV4rPFlhPWjpGI414C2maOvCidj3+voqe0PfygiI/ayqDVesEE/kjT3A2irWnJOKeCcdY+iJ2K/3+FEHrtO8sMyieOGCsgiN1ZJc4JoQxVI9p8w+J1W+lsPx9iZOvME7nJG5heA9z199IHoRxbzdK7UkSt6IQQRvrSpI19IP94xhkoVYRAm55Ky+NGgQlCzo9fNHailYI9PpWZXU930X65UpUq0fz2GMwp9xwrhIruJUmyvqQ9aATCkNFxuz93zz9U9oVLZt5YcffmDbNqH8l2OA+JGK2iHK/j1JDA8BTWst8+nEdDnRkj/O7AopF4UoPA1DtRbfKk8qaGaMIU5CeDCAC1FhPMMUoihYBI/Xn+kHhtf/jveq1dmWEnOIku130sKovo7AU4qYRBpr8SGKR5qRzV9KwhqEsBLj6BMaYweDtBd8ToOWtY6KlcCrAqrWwBy9sNdoZCs+bdaJSgTOytrLBSii9+jdcahhMKbhKPS6JTgYqX9NmgAVoYCjhAEnxqRoxdfU5sXgRQnCtOGiLQiWCKeaLt2DVWYdWvXmESxblcy9tSa6lzmLOHKIDCKONUIc0c9QitqzNAOtYKwTyI+iSYJ8NjkqJTrUlsl5JZeMxZHLruMGlil4nLdcLiei/5bnpyfu9yuvby+cn86EGLTXViAbXA149F55qWpcDYRlJlxkDIXgSa1icsK3hrd69Gni1Wj4EAiTeFv1AAuIRUi3sedAFmSOE3rw7dRy4/p6Qu9TUxhOKpg6tBDRV9Ya3qK2QJZqFTJUHLbra5oO6yFJbbUyszefz2ogKkEi14cZKQMmWEUCHFmTUoDW95n3eDP1D4RzXpm54E8nlYlqGFTDsB6MRFGg8YRqqNVCk8RUzqqihDgZrZi7tUmVKuzXffyoAxdV549KpaVdICtkPkEUvz0+OrZ9535fCTEIlbRBWjdub1dSSpxPCzao/1KpXK9Xkvd4Z7nf71yvV263Kz4GlmUevYuU0zgknTfQPM0U7ve76tCVYVDZmU732w1qVc8iO+ihKSUlioj/VKmFpIKtpTZsrWx7wlzvpFy4r7v0qwCQA9P7lVphCsLy2jZxO4aj8b6qu2m3OOmU6c7yEejnMMgb/j/OUDrhWxl+DQR2aFIhNuS/VXH4WoWxtxcx4LQ66Iti6OLVJclXzoVmrKiBmPpgUaK/p1l/Sol7l9pRJQxN8qSBrSeCc1aIHNaIaobOQXUGmtgjiVq9U5txa6VvpTWAkisavhpShtqMbkboCfqKMK5KKdzWu8w8OUfNAv2KfYMkGJ1dNiAlkKy5f9eYw3LCQDVZKq52iLbKr+j1bx1uFT8u7x05H55kWaE0mccR2E76wI5ts5QmQ6B5T6rL+CjOKixZcQuXqlgCD1rRdki1Ka1ds3tVfckqRpxzHYl1qYd4dCqZ2+1OTlkFzjTJMxq4nBB5TGvKQhM1lc+vL1TEybtq/7hmGVGxRhIe54IOdO/4KMSZQuOuqInQyCVJG/B4a7jN46NXCPzL4AJSaXWY+Yt/Uvih9/zsF8lUk35Z02pEn7QHv66G0V+zIxheg2elSZ/84T10ONAZeQ7nA8u2ydziL9mFfEEg0eS0i0IDXySHIwk0QlhzOvIgjNlMqYmS79Qqa8I7mY2rDU3Qqij854Mo0s+dzjjt50qjjb366zx+1IGrFlFGX/ed0qQvU5rqgzmLC5GpTdzvK6/XNz589V4PD1jXjevblX1PTD4QXBSyQa28vb0xBdFu27aN2+3G29sbLohkTawyN7anfQhHxuxptlEwXG9XYWDlLCoWKrJrgPvtJrBaEy+h/vwpidZaiJHamlqrJ/ZNdPBKg+v1xrYlUq6s+66K09KdmGOk1ca27kTvZfh4T9xu9xGQ9n0TOnETuC7GOKiv67o/LG4zhku78kUqYq8hElGCqxetuKoGm2oMKcv7NfWBodYaWenoNWcJOFRaQnFzg7EOG9LYaH3IVKoeM2i6wkQzA5p0v4STd7KBtRbjO5bf8LNIQAXvMLap35GMMnRdO9nEYjWTW8O5hvMVX8C4QmlS7abC6E2QNqSlWVn3bQSutG8yAKqD3VL5HNCP1f/CoahgrYg0Sz8DpI4bPzauDT248HDo6sGTk1pgODckulpt0gcCCXDRk00T76SmczsKCw8lcYVAa9E5rtaOwKXXrr92zkmhLPkM4tyduN/vDwxHQ851QE65FO73lZw6g1er2CZK+MHJvQrOS6O1VUrLvG1X7vvKbb3SmiYBTexLDOKS7VyQhC9XSaiqVn55VxKOJHrjHGnyuXtvK5VDAV4LnEG8GvWZXnPp//XAJRCgG/tG1kmpvZdYJKlDAlbtgQvtkY3qT2ByEEiPUvvEBN4csLbrlZ/zLKeznBMPcPQIEhowvlS04ItAMuB1hTKnGI/g5QJb2shpY9veKDWJcLQPusbUnzBXcq3sD/N+rR1rtAdOERyXCvnXffyoA1ez4ti57btkLALXUhrkVKjpxnW9S4ZhDKcnUdrYto2PL6/8/h/8Afu2y+Hl1dakiThqOc246GmusdXEy/3K/nnnllaW08xyOo3eQ8pJ+jg6bPjy9sa6yhzWsiykUuRmtcbL58/QKud5oVZRYX95eSGljffv38viq43b7cb1euX3f+/n5FpxPnA5f4cMk4pNdofFWmu8e3qmZhnCvF1v7PuOc5bz+czz8xPAoKlaa9Tyo6lvV2ZPq2wGa4nR44OyBGtjb0UHui3pYX6sYdg1k3fOUxqkJOKnS5wGpi0QbKBrlpWSdWC0jMFjG7xYkAO0Ju7AetRPIQrRQA+DWspDhXJAFt4dxnshBFxwYBqpVpbzSWxvpokY+wyQZZrjGEQX2xcJXKU2rJ9xIRLiHednWVe1kYtAfNTKfn0lKMU+lazjGEJS2Ese18B6J0PGrQ5as0HvXznUyfvcTjMoQaf3Hw7Wplw/zfyNVJ3ee4Iqh/RA4XXMIpfCtq7K7LP4GEljUEgSk6ZQbFEn6aYsNosmiHkf8JJUXYykJ+d9VJDC8tuHNYa8hIVm2JPw5JpCYPuW2HcJcDKPpXOCGqiolTkEpijOBPMy8Xs//098fPnE9XYbh65zThQ+SpVREIWlZT8b8i793X0XFqO8/8fETPt0Wunu+csZJHFxPkYSekX6+PcOi1tjVCbtOLSLkpEk4B29ymMGr98K8/Bn+8Wh3x+P/bMRhIyQKfr7dc4NQeajb11G9R5CwJjDqbg/b3++Ppsaw0SIkcvzEznv0qfa7zgrtjjn08LlcsEaR2uWNRVSMdzXxF4ELehkLVHd8CxxwloUiUj/xfP9v/T4UQeuRKEaQzhNZL0xKPZcpYtOnCdKH6Y0jfm8cLqcuO+rOPGWxM+//znzMjGdJp7ePQt8ZeGWd6bzma+//ZblcuHjp0/44AhTZD5fMAj8kfaduJyGnMx0Xtm0d9X2Hat9neA98XwW40oMYZrxpWLjCq2A9zRr2dLGbb3zenvj0+snnYVwAjMaw74LvLhveQSbH8IkMGDKg5Lvveft7ZWX109jU6Qsc1mtieHdvm108dXcdPAw52EjYo3BRceulVTXhLOaNOTcpYPc2GyltgfDPTlIRElbho37wTtUu5uYA/bDoCvK55TVzwpiDIN40TXjjDEyI6bsNsuRPYrKuzS4cyn48IL3TsV3ex9HyPbTPDHNE09Pz8JGNJZcG5fLV8R5IUw7Hz//HuiQ974XrLNCDKsCY2FgOZ/wQeaWcto0CZHrs/ggdVWB69uVeZoITgLmfd9Gw1rgTqMUarletsJ0luvemiQ1ckDZcQiNiiurxJm1PD8/891333G7Xtn3XaFhWQfRhlGxhaBJBY377U5WqCcEyY5ba0rWOcgaT0+X4YWW9jBecwpeh+cTm9mZ5lmgylyYFpEFq7VxOp1Jex4V6fV6xbTKHCMxeLb7jdfPn3n5/IKzd6X1I/Jut5XXtzdinIgxEJYoyg5JetnVH8oOIUzDRXmZF0oqStUvqmTddOZO4E+p1MXBubUjUNMYQtSD3q3fl5hnh/BBw1KyWN2IOn8RCNUZ7escc3ZNe2T9+6P/adwXielY4/aAw4WLITNx0xRF/d4grhImkY0EzG3fx1503lOSBM+c8zEeQFF3CumjXu93gpc19/3Hj0wqjH1aoviuWVEZ2W53nA94PzHPC3XL1LZyvd/ZciFXIcis6zZc1VsuMmj+m0rOWNOG9w7vvDCkVL7HOKfIhcHFIHMXgmfho7DzLk8XTpczt/XOlpJ44MTA6XJhz7JJMY24LNgYCfPCpg1/6xwhTuJb1JDDTTe/MTCdTvhtw+yJooSF5jwuTEynMzUlWi6EeSa2xrRtVBrWe6o1bDmRih56Vvp4fcO11ti2ndvtyraqnJL3JLdyv4kI6jSJZJIxsO8rpeVxoFcNHCLeurNqJn65XEhaIay3u8zCaOCaTtNQbV9Oi2S0titFFIVK7KhWDIa1K7VbS3Dd2M9ohl7GIQhoPy9TShq6gzFGGRBNWXH7aVRUNR/stqD+X50o0F8zpTwO9VQERrLOCvzkLbVqfyfvzMvEfJrZ14QPUT9bo1XPlApxL/zB7/0BWEcIkX0v+OAlifFwu7/J7E5wTE7w+1VZVFUz+Ukhombk/oYpDhXyopT6rpjgbFfJMHowGqz1AoE1udbGNJ2fCyPQdY1HY8B5GRpuCJRX65cqBc5Y1Y2tOCP2GRjDbhNFp+eskRlBbWbKHGLOFArTdCLnhjUZa49EwrqAc41WDc42YliEWdaSyGblQqmNeXnGe23Qt0apkpBcTuILdnWR9brxefuobMaqQr87255J94w3EZzFNY9rXqvZIqMGHWbGkHVdzNNENtIPy2lVMk+TkQ/brTgcvhqqGiAOOLZfuKZ0itZEAu0BBhtK6FaYp9KDPPrBHXZvI9j1wNlGgDqgO305hWCPn2f8fp/rE+jRHH5cIP1/JHhu69afAGMshTKSEes8xtbBMemvcb/f8T5JBZ0bT5cz5rRgTzPRBx3JgJqrsBZ1zstaCehbTuRaKU3IcuVhv0tEFsTi1338qAPX7/38FyyzKC3sylSprRHnaWgVVgzL6cSyLAA0zabn84UPP/kpfprZ9513X3/D5Z34KcXTNBZqrZXr2xtrLjTntRx35CYCr8uy8PT0pBCNLMCnamku4qYT27bhpgkTIvjI01ezMORSZpkC83YmzDOvry9YZ0hK47ch8O6r95wuZ14+f+Z+W7nd7mz3VTM4y/myKLNSvKpqaVqdxHFow2OPxI5srdbKy8sLqyqSL5ez9sV2YWdywBylVkKIxDgRpp6dS7nvrR3QlDWe3n2u2Y9N2Cs0vQHK7TCodd14P4/QhXMOGyNV5YPmaRrN4+vrG1194Qt9xYeKq8//yLR+kqZ6rbJf9LOJFYUqs993Xv0rrSrhxTmMjUzrjg93fv77v08zjjBNGBs4nU8sqDWJ82ChYVn3XXD+lMl0eAbctiG9gCYQd4U9KzSXhemnia/0+3wUMNHJYHJplpo04CNVrWTYEqCpktk3a1Sqq3Lfdpqx2BDxzpOqiB+blIlR+hKlVNJeB6S0rit72pTw8SDjU4QV2dfIngRy37aN1oqu/0oMnuicEGm2ndZWSm1sWSrbVNTt920jaVUCUPGSVEzCGpxiYZ4vWB/Z7jfStolqvFZ+wU4s4cQcZiY/YWdLiTO1Zq2q/ZCpksH8In0b1/C+z5ep4gfd9DUwBZE760oZADzMTg3JCyN94MFgbdAH5WTUw+NKxbuKiBRKj6tf5z4LCTx8T/eRdWP/jvfQDmhRApzOXTkn5qAIScPo+wohkGuBlkVWTZnCU4xyvfWe9gqvV2RH31J7j9UQQsSqg3sr4oAcfBDSmZN5N5yIPneYvGkfHCOu79M8MS8i2F32nVISZf8NhQr/3//237MsomD+dpO+zp4zy3lRgV3LaVm4qBXG7XYbWLW1lrfXV7ZtUyjB8PHjZymLpygq1s5yu995eXnh9eWFj58+DZmaaZpYTidRp54m3q7XUREdDsJ37usqPRTvmXzgYGVXlhipTRQGbm+vlJqpVbLaD+/e8fx04Sc//RnLctJDYpegVyqlNiaVR5qUom+awWAHxVv6IQfL6LEBW1vjP/3efxoV19Pz89iE2yY+OVVZfNYfAcH6Y3OODavPbfBj8X/69PIQuLQq0CZuD1DSwBUSyn27U0piipF5mrmczyPwDvX3friqwr33nln9gvo97ezA3rcCCbANGT/w3jPNXkUPxBbFah9pXiamacFaRwbm5ULOlZe3O9d//f/k9e3Gtif2VJlPC9M84YOjFCGVLKcze01aiTZMMOQqDet5jpQia8MZCDZAbWzrjZOfBUZ2ju224YOICV+3bcwnmmZpRijXIQTN+oHWmJdZRz4S0zyJrFNrzPPEut6ptTLFifuqZAksMQqEN6j9D0Hqob7AIAzBdV25XC7kLH+O3/1At7z3zvH6+sq+70QvQ9WtFPY9YX2QEYLamOYzWQ0HnQ2klAclWpie6hRgKmlbWa+vvL18hpKhidDz+XxiWWYul4sqwggDUQSARVfTezfk1MQh+0bOmfP5IushV+43kSTr4wrTFFmWiWmOvT7S/zcPEJoBbKeDsu9C7ZbKvYyr1qq0EPrQrpJbRYM0b3RtxEdFE9mj8rpd3b0PwPd50NIZqkgS2hPU4L1qT2o/VKXfpHedBFq2Buc8p7OcWdJy2InLfCQnYw6scbvecN6pU8SJEBzRO05T4DSFB+SiSsugVjaR0RGhAHrCLNevz6H2tZtzYf1NNZL8T7//B2JGuCxcbze2tFNa5WkTh9xqIIbI/PmVZZl5e7uOwzROkbztowm77ZnT8sIPnz4zL9LAD8FzvV55eX3h7e1tbIBa61BUl8xOeklde8taw7btqoC8Dekdbz3UOjx2xHFWei3b/TYCVytC6jg1MM7JDJcVN2Pv/CBTz/NMDFFs5msVnx0jh3aX2hGFdiUMPJAkaqt8evmMU5LG5XKRgdmqVHRrhHiSMsb15q0ZMjdHtnoENfAPm+yonEbgMoZWj9/vUlNb2gh3UWuPIbBMM09PT19UT1Gh2FIK6ySbLYTAaZq/CFw9eI1mOm3YivQ5vXkJdE+hXESWyDpLnIL2uSKpNlyYuN031lRJaZd+4duV621jmmfCJAdAUymgOM3c8zbgQT9HmWPJCeek71FrY5kithpaEVmnr5/eM08TUwhcP4tdSJwjL/cb0zIpbJo1SFienp+1uS73Z1kWih5ST09PCgVnnCYZ3nkuT/Dy8ibXwjgMV+3BCKFkwLp66Bl7KGjkLOzUPrawrnc6/dsYyzxNfH59Y73f8d4SrfTm9n2nNMRvrFbm0zaCWOuMVIUKZWypqRKJGLm2vEPNom/ppFp4en7i6enCh68+ME2SsNWax1hA0UH+eY7DvbezUUW42VByxVk35p5KkcRiOYk9isSLI1hZbSyJwroqXgC3+6oq6HmMmAjkZo5ZQBhCwBK4dlkfo3piJBD9ezKD50bgkn0o9jhpP5LQbusSQ+A0TwetPUhy2qvjDu075zidTmodJIFrWhbZ90rc6FXdrPsqhMDl8qxjDobJW2Zvcc5gjSav2kOUfjfQIdj2iPbImWVGIK4jCP86jx914Pr//Lt/L4aEp5NSkSthmjE+4rVUrvU6mF29kjBGBk+HuCUCRfWswHo0A5u53VZutyvrutLN+ErJ7HtmmgId/tn3FZCsxlrZlDnJYKc43Uo/LO07pjUZerYyrS4qARnnRI2AVvk6V3KDl+tNB5Yt82nitCxiXmg9s1K5rc5htaqMNSsDrK1WMJIRGysCs95FjIVaCzEGqkoMTZNUD0I4kca8ZIJl8HeNQnw9QwOhV/fA0arMbqWUeHu76vVwCjV0BtdDNgk0Cuu24oL/zwJXh3v65gQ1mNTqbZomTvMsgUphxBHAlKVTdKzAWp0x8qJ+Ly2dJlYlmqn6EHh6fse0LMLaNJ7GFe9f2NPO6/WV73/4yA+fXohxwvlAygfcYpznvouKQ5xnTk8X9rRzu9/H4QbwfHkSgk7KbPc7+Y8ULuczyzTz/R/8YojavmxXFs2QX19fyVlgwT/yW6I6knPmdrsJ/KKVdSqNPYkrdClFdCJPJ+bzE6+3lX1PGAzX66bMLnmOXgE8PT0py9YNrnbOmfv9jnGi+r+ud7ZtG5BUxfD59U1GRpzjaZkxiBTT9XaXw71UljXJzE9t7KkM2wtaxQGlJLb1TlpvBGc4xcBX759YponzsvDh3TPffP0179+946c/+UYTmcztfn2ANOUadwfs2+3+ACdbhXbFDFXWiwSuZZnHVyeayAyTTt0p7GWNoztmG+fHfc1qE4Ku8S/ZerLWTKuUmrQ3JYePECj/88C1TIsSPRpp29n2nW3f2FcxPpWfmQkxErxjmacRZB9dsjulve+NaZqI06QVmLiLG3u8395L6Hs6xsiHD98AmnC3glMZu1blcydlbN7XRHGB3pTr1XtrUmV3RGeQ5X5T1eE/v4ifVFyzDgF73k0B42eadWz7nZeXN4HZUmKZZ1V8blw/35Sx1lQz7obIBoENAhstp4VtTez7Si6JeTrRlIV0vyfeNulrlVyJk+DqGM91vbGuIq0UoiM0izXaDNXmO81zu2/KXGpQE0+XE+fzItKxNlCw7Fl6M85Kb27dEoYEtbHPszi+hkinU0MDzexrq6rsLjh4M5DqTs1iO2CdUVozQB1VksA3dcCBxh0jsz3g9EDk3KF2kTulWiHExwPg8fFI6RXJLafKHlIddMy/03s75i7ElG1UhK449pwxpmDykR136a4xSFsSWGH7YZoMUzbVK2gV5x3eeLyFP/jF7yOCWRCmhfuaeLu/qdeXkB5ExqfboVgwXlWzoTZH8BNPz1/x/sMHbrcbtM+83a4S7JzjdHonOL/PeDfzzU9+i3dPTyzTzL4JIy7OEz/96neYlhms4T/+H/+Rzy+fqdLcwHoP7BQ2qvHgZfB2vjwTtVK+r3cuz+94en7iw09+xqfXO4UbtMYf+e2fAZBS4Re/+IUMzeeEDRMuzjjvFeZyNLNR7jvNBowN+Mmx7o1qLNV6XFxoNlKNx2KZz8/C4Nx3bnuhVSMDzkZ80owxJDYRGm6NnDZxU2hRpKiWyBw9T6eZb756ZplnlnniPM/EeR6KDlvaSWkXOD6oTYt3glqYqkEy62tL/6WigrkUmml0vyzxmpJgYtworCS4cFRHjSJagkZHIlSyUGbDVDkDqxXXQVpxzuJ8wBYZi6A2mjUyu1UbpmRs6wHRcjpdEHZroTXpfZOLaD57TRa99Kt6wGwcEKV5/LPu2VLr8IYz1sioSg5f7k8jPP5HH7bb7aaahg1vKqZmTFNmsv6cUPADWwNjsqrgdHJRG3Y6+76ropAZvfRf5/GjDly5KiNrE/aWw5BbY88VUxu3+8bL65Utib1GmGaRxWyw7mlQraU079CHUIVtbthU2UtlF8FqTK4KTRhR6FDxyH0TyrszjmY9qcCWCtueaWobITNnyhTDUnDsVWACWiGnnem0cFZ8uCAzQ6lWvLLGnBMBUWrX3Ts2hjDL5MNVrbSoomfXs6ehpK0/023grRW7+NHjaAJ3CqJhGSrO+j4eA08PWgdjSr5iDFhVjff+cC42fDmhj6m4qnNXzhCUJfn4GnrLRjBzunG9aso9VoD9fQrw1JSM0XCmDcPAVBLoASa0ANEytEVIExL0oRl/6Co6ORSdFwWOPhBqrDanEfgVIwFkmk/M84lcKt7fsXbTfp+ToFCaMMBUGT9MMz5ErPNyEFnPVx++JswzlUr4xffw+kYuhTUlIoZcoRpDNQZRUWmieu8d3np8rfhpIkwL03xS4V/ZK/P5gjXilv3p5ZXbtpPLzp4LJheKBn7vDQWLCxOmix27gN9kzq5hkdPUgfXgLGE+iYGkT9jwCkV9rJzDKWtzz00TPcA0RRoczhtMFZLEtETiMjOpG7ePQTQvnVPJoGPeSta86E4a02HsJszP6HHVqoP2kXj5Ib/V1UaMVjMCufcDveeDfQ3LGkNUWeqRMHVobyi8N6BVFbryo/IZKhJWAndTwo7pe9laYfsZVVWx3dNLX1Op9xgVtTYyO3bAjw8sT2s1QDy871+CQh/nxx73muy3pqokktQbW7FqcyJJtyjbeGuZQ6DmgnO7ni22O+Mcmpv1UOzojhK/zuNHHbiadTp3JJmFtyLquSYZfnu93vn0epXZJeDyjDCEKqy79KoMEIzYWhsjPaXJRbCRipOMzFZqkYDo9JDCB2qCVAr3PbM0RzMe4wK5ysbcUsEFCLq5m/VUNV8sWPaqrKEGty1xKY1mZfaoYNhLJZaK9R7jPD5GgrMqmvulXIss0mOotRNFaq0jEDwOI8qcjqcUrweUfwhcbQxX9gXWG832i0DV1cTNf3Zv5nkZlZTt90miwXi/AA2BUmcDtWaRkdEqruPi6P8qF4F5ng/avA/jc/ZgPN5fPYRBFbQQam4ph5qCKkhUqmjSWVG/z7XhHjJWF0QOyEcx/8SIKocz4orcmgwGG+fwITItJ6ZlYUsJp6r+fZbPOo/zIgHlfRsBqxpxK64I+/XdV18T5olUMnE50axjT5nrfZMkqDWqcTTjlL1YyFVkw7w3+FJxYcbHiTAv2BAxTgg+03LCu0gpFRcWantjSxW2RDUOl6smIJLExHnB+jjGPtY9kdKuti0StIwLGO+ZlgvLPONjwsaP2ALWFowLuDAJeSBXpnkWNYpWJXgYcDYSDARniF6GpcMUiVOUJCiKjuGAm5TmX1sRAovyumXcQiB/EVYWskopXcEhayJX5Ro4qQCc6wPffcheSIENIdb070nSYjGuYZpVT9MRFQZJiSaSTw4Z0h+BC8ZAfWsNU+QoFpTCDeuSLrn0+Nydut/Zjs1INdedCLoSSH/44B8Sux5k7SCB9AA9qPcjSsvn2PekwsRgXUOE9R6hUGEVBjdT9kRYN7VREjUI2wO0BsI+OhB+UwOXsRPGQZwiWIuPnrCc8dMJjOGMw4aZ2/3Obb3hoqhVyHxUwAfpM3kvavDee6ZlkQPNOZqNTKcz2JXCytvbK87JMLDQiwuleaxfqCZQCVQTcPGEixVbDM1EjJ/FIHG2bLv0onYaxInoFmL0bHvGxQU3nQkeXJiozfDz73/g+bRQTifmSTyturaeixHjnFiz5Ix7sJmo3ZK+VWpOSoSSod6cpdG77zvdf+ugxcqC7EHd6ubpHkuPE/ryc0d2V0obGdUxj3JM7/eK7PHR1AohWKHQ9soQrD63QJh90dcGOSkESqHkrj6dR5AepopNvL8kS7cDTgE0c3VaLIhbslRXImGVSqVZR8qFPe80a/AhMC8nLu+esTbiXMSFM8YFaoN139nTzuly5vn5HdNyJu6ZEK+cn+yQu5lipEVVyWiA89qb2thrVXqxiD0vlxMNeLuvNGN5e30jhMg8i+vyGTidTnI/muXp3btjFMK+YP1EI2LcwrQ8U5ocnr/9x//vLMsJ4StHlssTP3z8QfqgStCorckYSWts24oJM2GemZeFrTQdp7iz5UZqgiJ443n+6muen58opfLD6414u7GnRIiTCi47ttpYTiesNexlh1oIwfJ0npmDo+WdklaabfjJs1wWTjFyXs7MSv8PkxiETstMSjtwuEUPB2dELaRXzCkn6e3VMogoWJWU0jEGZ9yoiAb8Vr9c28ZZgo/DIqTlMqrw1gwWYTU3HW42TnpOPWkEHgLGKJbooHxtKs/lA1NrQnJpwH0XGM57MTU1fbC5jIBkDIME0+1ERmVl4e12pxaxajqNZBx6VdYaXN9uA9W4PAmprIqkpLBbaRjTrY/EQDcbwAhU7lwQxfrazVMc3fT0aB/8hko+LZcnyQanSdSvnaXiSKqJVmrD+MC0GGyIhDiT9l2ya+tGY14ybLm81onVuxVjHublhLEiiPv2dhsVk/UBcsF4GYJFf6ZhJfO0HoxjL5WUK85LhWOsqHGXmjFqwzAtE1hPaYascxKpVHJVOMGIIV5tKrgLR+X/UO53bHsMpD70iCQRVQz/oVIbsjZKfnikz/e+2Rcb1nypd9b7XkJPN4Oscb+vA355nFNp8EXFVavQn7vn1KPYZ6fNPzIGi8o9efdgXtnaF9ehM6hM65UWB5OrVW2WW7FNcVpp6+sZZW0KRNNhG4GVwhSZS+WSn6Ry8BP+IXCFdWXdZUh7WmZC9PI1BemjBX+oiPQjqgqchRFlBuMsLjjiHHl6/57L8zNOPedqg0+fP1NLU4UPOSmXReb4jsFzqcpv60ZtVt0EGhiPdRHnHafzE6fzGWMcl8sz8+mFcLtJYm+tiCUXSRSscwI1Bqn653khzgvudqMhdjTS67M05wSaXM7UKmQpr9CjcaIMUxHWXa8JUpGDMFqrJq8Tabtxf90lyGigyUVmNXO1lJSJ6ghhnT2sWSx47warz5aiLDuhj+dcsUXWTlSdPSFHpAFFChRth3WMMRK4SlVFDl1jDwjiQ2Vvxr+LjchBDBkwsJQ1IsariEJpbXhjGWcfCBxGzGpDlh6ZU9UWXf/dXqZxwPi2nwUyqCfVoZRyGqTEacAp0vIFdK/7SQg6fgjtio6mBElnLM40+uC5GL7KVw9OBsZ+18NjELuEdch/lsT+Ko8fdeA6Xy5YJzTxVJJWGIaksyE5S4AKkwYva0m5UkkYo8aE1qk7sWQ06gk7sPsQZyoCu2Dd+DdrPcYKo88bi3ESqFozItVjpGpIRWZ6Sm0EY7Xr66itiBmfj4L7q8pyygWDFVZiEdquGChapRbLhhTC17EYHocVHxfho2V3/7dBm/0lOPCLTLCzgkb/4EtSxYGLP9CGVabmsdJ6hCglgD5mXBK45MCR1z4qLr4IXI/W9aaJdM0jRj6wc+ckSDgvQ7tKUGndGqKJfpoEVDMo4x1iMdpDsHoQGIdAR170G/0UWQq4OOHDhPcncHLvjAPjYZonwuS1IS8eUyYaZbpJwAl6aLUigtAA1VRscLggQW5aFs7PTyKb1AxbykzLidt1PZLV2ojzwtPlwvPzs3yUKpqR1n+i5KKUfFHfN04cbF2Q92+dI04LPkZZw7oXWhPSTiqVYB0xRPXxCmoMOmGspzUjlYA5WA39+W0TGNT5HVuauu7KASezPwXbZNbNGUk24zQxnxYslf32JhYdKcuXFbKCU3v4oD0qIQKIEoixMt/XTWJNtuobpj1RL67jPhfCFLHKALTZav/S6doSKxuxL5E9YNVV1aDizUVGUEDFcLvOvwYuCefHfrPeDzFdA2Jxg9X5y6qBC7CWvOtcmLX6+bwELrsPlZTHJA9V9BGmsiU9Vlmy8b9IOvv3HxGKx1m+0QPX4OW0x+UchM7Q7YGrGXKD0qyoliizpZ8fo+f28Lr9fPl1Hz/qwDWfziynkxxuOqC35x3vRfU8lZV5mh8OyYp1Hh8m0l5IpWFrIeoQnzGGt+tKiBHjIsY4Xt6uAjXebpq1CjPpvieMk6HRKUahmCJZxLolmVExlhAkMFkfcT6y76JCfV7OlLqRcuL7H+6cL880A6+3Gx+eL0LMyJVKlSl0taHPpQhebiy1CKMxd0sIrwsweHhwHOUhWFX1x+kwSohRxHNVELXVitPqDtDsT/ps3h8uyf3xuNBzLmOO65E0MWCbKilYt3AZlZs5GuYS8I65rMe+G0AIwqTy3st9MgaT1D06i+KI0UOiU3hbs3iP6gtaaCohpHNQ4lot/ZRatSqMQYSPmvRSc22s+871duW+Zup9pRqLdZOQI3R9VSQA3W4zKW3c71e2JJTshjgcx6ieZAh1/b43YdV5h49iIfH57YV/++/+HT/bdt5/9ZVk/A1Sbdzud9aknm+5YEPgcrrw7vVKnGe8k3m6l7eb9tQqn17eKE2y4/uW+b3f/znTPGGs5buPn2Sdrxv7uhHnKCQSHNfbinM78zTjo/Tv5iKQ2p4Le5HPXJDDqyoF3ivTVW65VFlpzxinChlBXBuK+oxhDKVV1nUVj7MmZorbbWVLG3v2/OTr95LUWMvpcsa7DotVUTQR3hPdIkVcy9ZxAGMM0zJjnCPnwrbvOOtFky8Ecs2kbeUcn/BxHoO6TaHq0h5koBB1jJQS+y7iAN2cVB46ZNw4iE8omUcrkv6GhcshPa2K9IHjvIzf6ezVpuSzgJE1HoJUgVS8ytlZIwG1tKrtE2kndBLLI1QZu4pGVy/psKaRGdG+R6dlkV6YAW+UDl81IRQTKUnmjaXb60j/rp8LB4kGFA59GIn5dR4/6sB1vd6Fym0lg5P+VVV5fZncN86NheZ9ACPsvNpgva/DKG+Z5iETJBpbQmeVQcVEToX0MLXeqpTxMr8E9BvRZPYpZRHyzKXh/Q4IVLCrjQOg1UADOq0cbVY3EeksIl/TGTrWiuKDHdTbI6Myqj3XNFXu16LIbgCaZo5HEPAu6GH+ZX+rZ4193sr47j5sx8Z8fF2QRe/UQgSQKmMszk7IqNTCf5bdNdUy649HKvzj33+ZONI/f0pJJL9yxnM0xTsYZa1khVQxw+uEmKZJcm1SwRo5M7RDLp+lNIGIRAdT+hf9XlsMpWVCmId2o8wTFumv2YD20NUHrJCyMBR96Wr3ovVmrcE4I2aTTa759X7jepNgVFXRJKWkFGlZN1hhhuZSeH278mQddpYseVkWnPPa83L6vh3WNt7eruxJNBdzH1/QlnutTeTDrFSp0g99YZonrJXZnn3bVPpJ9kbTatUHz/V2HfdmT2lIse37PpKvVLL0lw3sW8O7w4vs8ZDryhDOOnJORF2zgyTRoBZRszH26BHRUAh8UjJD57grTOxF5UUqIUcqDecDwUY9H9ogdXUcsBmjVkKyt2pJpJRlMDhllHbHUHbHqBalBB+LQOIyPyrQnWkCsLWOrXXo8JEIouvSKEPQ6FymsRah8nRiyQHBS4KmPeQm7Me+bx+rrr6P+uPLHpyT9bt34W5ZE+L23LS+FPq/NZZmHa2IgIH4+8nn6fOxMU4EH5XsVUfg/HUeP+rAtW2blOQDbz6G3fpktlWGYamV5dT17OTGl1JFx6419ecRPDknGfJz3tM8KpMji60f3P2wK62y1X2U6RjVo1OvLKPvI7siViu1DeafAGeSfXiVyrH6+zLU6DHTpIfA0XiVx4EVwwOeXL8MXFX/wSi7qel76wHAWFUEaIde2QMwrQed5Q/LkL4MnD2Q9s1x4OZNDxHD8e9fYuroJnsIULV3A9oX36+1jn6c0eCXuhxOlZk3lHDSqNrTc4PSbOqhzt0Plq7ybfpsjWE0yPshlfvgpMKddKyephCTp5WMSfJCsiz75xVjQHn/yoRr4t8kcKXS+7UPZgHj/KiY9ySzL6nTv3sFqkHWqj7hlhInPfQ7/NshpnFPbMPRuK8rtUGs8YCTjRpDqg2HbT0TF+WGrraw70fvaRBj9AB03rGrOapzjlyzVu9y75Lux5wLfgp6yFdxjh6s2D6Y3Ag65Cy6gA9ea0ZHAFr9IpO3/dbod1wIepm+TLp6IOusvVYOKE2CbMaYLHBjD4fGDXJXHg4HdVwHsJrzmNFTlj0pt6rRXYR7Z0shQ91y/XtNsgd5s7b/7MEm7O/ZGA2UNA3KdqwJWfjQZxIft7UEPMY66oHqER0BgQVbM0qHF+UP44QA069zT0wHqUQRl9wDoDFjJOZxzKXPvP26jx914AIz7DGOG/blDek3IqXEFGRwUyRhZkougoeXyrIsojs4z9z3e28zEpzHxt6QPDKVfuimlLher1hzmC9aDMH7QUn1KkFkEG8pa2Ug0fQi2zRmbzT7KpRU2bdEMI46lUNJuRa6sw8YclZfqr7qNbWXw0fL9FKhGYFetPrK2seQYC0qAoNtWSstS1S2tmlVcPTLfrniauNwO17zsVrqjx5I+1xHD5zHnUSzAdngQlD/clP1P2dlMRndYKUWgUb0d9X1SasIef9V/vEw7qO/D7rOL0mhTGrF0UitsKfCfdu5rzvrtouTQDOAG5m8cdILazrnF6MXp2zvhjTOeZmHy7Q3ELzOsUTPeTmNXkPK4qflvPhP+SDKC53xeDjwHte6FLHk8N5TamZd7xhjRYsuCuUewLlAV3VYt7uopphKbZlGxeiQ/L4rQ88wINtuNWPMY99U7tSeRGjXqJCrcyIYLBJmUmX4cPQuc86UlKhB+k8GgUq7K3HeEq3IkP1ymjnNIiYdXcTrV19TVQ9m6JWMjmcYI69rw3EWIJVLs9KHs9YfSRSFtGfWslM5WKpVURdrhXIu6iQqr3U6S2BofU9IdY/5cr3W3I5/a32bGglo+lZ7HtLXZg8eWIPDyZyXD9J2CF6gcLVR6tqKRZ+vVKny+kxiynVIa5nhPCCVby0N56DbqKQkdkw0CKHhgiT9fY6reUNzau5qJVA3U6nGqWGm7jdFdqyyDKMK9eb8gBykw6n5V338qAPXSVXgtz0drDEjgEelZ2fgbCD6oAtExgHPy8zT6azxTqCRfnhTD2w2PMBSvQ9mjLDaWg9WQJznoY/nvRf7h66srkSC4AWWMU3w9x5rDNoLKhmKOAS3HAYxouTjq7vlGhrVFG1065M5C01YXgJDS1CSda0BQJVlZGCVAwapwiLrQh6CXIgoLt3xV/t7jxBDr6gGa/Bhwz7CiL1R26ntj7NgcFCD+8OYQ0W+/32k0ubwn5IhUDtkax6HrYeRXU80jAYsUyUANAumKZlGFQ8UuumHYGvCTk0pS19nT+RmZBDTeU7nWQgEW+V2675RVryJqmjx7evOHncVlZUDKYYJa5ySQwSCyk206OQ9Wp6fziMA7mvBOUuMgafLQkpRILd9xzrP+bTwdHkS5l6Vg2qeZy6nC/O8MJ8WqLCnRMo71gYdwO3rUCq34LwoTbQe7Lr+o9zblBLr/U7Ou/iqZemZ5iRSaMlaaKJUf7+vXF9fRBzAy1yPQF+NnHb2TfTvKJWSMtka9s2LkHMVg02K9FyD9TIb5j105prpy9phTJMkwUqAPVRTHkkA0lMy489KxLEiDDsvIthcTVXTT4XUh4W9E0HdJIGr9EpT12Rn1I0aynQYpFd5RzVvsMd61kffj2OOCkUeHiB6lOlq5GDDiGK3JnmVI/w9PO/Yj8cMZZ/n7FXnMbKisGY7YEVBTxjC1Ed9pVBtaxQKqTVwQUxzRy2pLGKN6L3v+Ye9z1/l8aMOXAZUMkWyOrkWTmCYURzLVL5zko2iDLkwiQq5d9LEv99Wtm1l31Zy2nWwUfTF+s1ptTAM41rrjQu9URI421DbNphmewSg5CSzDtpTowScFQNFC5BFXLSVjA0Pn6FXAe0LCPwLeK0pCC7MOX0MBYiGqUYszLXiEqhQr6Auxr6JUXZXX6D9tNec4A+9C8bwcDg83h345crr/+xO/jJsYHu/wD6woXrwacoKfKDxdlHhwZDqah8K14zzxIBqNiH6i00/t9VPLH+2ztOaxVjp/xTF7veUyRUwMuIQJ6Fqp5y53e7E6CnKDHXac6mVYVNfqhh1eiv28j44nBF2am2Ft7ebrM+UeXt7A2O53W9cX175/PGT+JxpNl1yJqcdshBMphAxrtCKWsQYYYfWkrnfb9yuV7Z9E21I53C7Y/WW189vvLx85u3thfW+Dfkji6FW6a8WK5TzWgolJfayy37ZN/zqxZC0SNP+druS08b1duP19TMYS5zmgRTUWkn7hkGkzFLasS1jWyVFRzSTwJRVA1qSAGkwdEvd/lxH8GGsA/l+HfftWIcHQNdaT7hUzaZrPCkrD99p3ZqcOlkXLiecK6JLeb8PhqDs84fX0L+P1W9kvdpR8psR3x7Xqby/rhx/EJNaX8SjZXC8X/HhamN/AIOO358LK0PSXUCgD1MfwUn69tbooIZhQJOSLDStFAVVMPZhb2vRcKiKHEGtJyr92xI8xaE6/Kb2uNK+yQxHFt09yUTQNECgtVYs1num4Lltuw61WrybmCexbc858brv3N7e+OHTD8o+tLi752ZFYVwclZvI/lgrmnrK4vPWkUuikwLkJJf3kWsh7+mL+SiRR+l29GBNw7RCrQlawV0WaCec0bE9XVxOmT1CzpCKRpx4dFCyaT+uVglQrQkZggcornUJG92sWl4JLOSlCCmqktEPgsqA0J0oKY5F+9gMbg8DZj0wPvYkjDXY9oDT9+fgqM4en7dj+TLAqeKmMLDzHpwsnXnFF683xipbG4lNMxrxjcGofl3PYkGugfWOOM+kAjbLh09ZHATW+85eKq0ZJf4YIQKlxNvrjTh55mkhbYnL5cQUJpxxfPrhEylJ78YZ2Fcx/IzRs84CzaW08/OffwfGEGIgtSbafNby9vLK7X6ntcbl/ITzgVKq+LMhDfDv48RyOkslZx3TMtNSBmO53q68fHrhfl+5ryunsyiE11b59PETr6+vXO9XWtGRACvu0mGSysx3ari1ItrsxBbofr8L7KPuttbC7wdJLG63G9999wPOB07ni6hBaHX59vrKPAWcNWzrnc1CmiLRNk7e06Pz7XolGIPHcJ5PGKTieqy+rfVHT1GrraJzV3vKx+HsQNh5ChuqdBoaoPY9U7edMIuRaZcsO8Y3DNZWrDO4CtamI14hR04flEcrwqZJoPUiPWX4EpUYSEVHJRQed7b7glVKhS4VZwbJRAZ4OyrhTBv7wdA1NQ0Ug1WzV2uMsIiNKM6HELAamJ0TUeXqHHnsBTfIPcg2wZFxjkGPR69jZwz3z1QVXal0b6+uFOM5LQvQfnMln67Xt/HhnZvwVvyinBUVh6Kq4GsprLe7SPJoubzdnVhIG8O2bXz+/Jn7/c6+bWK/XpsEHNLQ2RKM2I4sZBzIQCp5pBg+hiEWW2qlpDQsJDoQvWeBRnplWOtOywnTKhONdLlQT0XgRzOQe5n1aFJp1lopZFrVzegsVQ+jHjhbz8b6qqq9vEeqw77/v8gA5ZsCM4pnlgRLqwe//o4xdJaeLFYzmrO1HnNfj4zA42cf+mDmITN9eIwhyvENRgCU99e7GzxkeQ/ivPqkj326o5nwABs1OUyxHEOUCF29VWnUv13vvL5e+fT6JhqUyGHy8eV1yGUJfr8zxzdePr/ys29/Rv3akLbC2+sbOW0yAF8rtRpi3JimyP0u39u2je+++x5jxbICa5TWD9c30SkMPjD5IFV8VSNKDPu68tY+8/7DN9pTdeRSeMvik/WLH36gJnnfxhqCl+u758TLx49iC7RveOuxXq5xRqD2khJ3HQJuurbmZeJ2vXK/rdxvb1IVFXENT9uV4AWqvV/fhKVXsqjG6MF+vd64nE9459nWKw7Iy8QpeOrTBe+kaqhbJa87m7tzfX0T0QDn5QCn95obB3HJqK2LkqJyp3iD0R6aUQivjbWrxpy69r3zhDARQhz3dqwzBCY2xvF6vdH6+mpWZcSEBNXfi1ROFVc7XHLsn6MPf/Qr+/cMbsB51h6Q2+Pc1agiG4MBa83j8x6K7DRGcga9F+nG0LMkuYfLeq1KXMMS/CRBrUk/XgGesaceCy95zaKtFrGzud1u3O53NRvVqs/ILOav+/hRB66Ou0oN1REugWJKTpSSdFhRPKlaE7km5x2rsey7WFrv286+rQrhWIKV2Qo57wWye6jC6RCi4gHyc3qIWkRw0rvDF6pamc5vMZLVRluas6og3QpNZf5tEx29blHSD6HeIDYKhMtCk0NEWuRaUSDzMINKRBXIq+ON1TwsbP0soLCgbCqrgq19hVaq+GhV/pDAdfS4yuir1ZF9PmLnv/x4HEx8DDyjh8YBNfQDc7Dj+vf/kEUh8zNNVQ+MDr5yYBcGDbjC/hsIrNLlTet8mEYeEGGSr10OxZEK1EbJ3WFAMvdaGut9IyWhIgcfscZjcZjmRJ0/FayEBkwTGa19S6RUcA6qr9yuN6yTavr29ia9hBjFCqUUSi6s9zsNq+MTBe+jDrQapuVOST0gfidqI04UQDYn6hVb2ljvN/ZtJeWE8XqAGyl6ZM/o4djkQGq10iavVUIlZxGs7pB9Tjs0tbEfiVkRuLxJwKwlqSnrgAAE4iwCdRrVdXR24TzPnOZZJZqckCq+6InWAWt/eYj2XmqXF+rdmR7oDnZi1ywU+n/BpExrRu1G9FWafo4i66JXVnIOSGe9NvMFeUU+u7DyShWO32PA6n/uc45HNVZGIJACS96580FVOLTy0ipN///oLPTrXCWAmwa4rhWI7iU7zrRapC86xiw4ktA2El/db00+s7EPF7u/h6rX5eEeJIV7SxEmrVeSzi/3tX+Vx486cE0641SryCSZVim5kPeNvO+kfcN5+4UX11Bh6MZvVezM+0E5T3E09kurUmobOchtQ+nSBq9R0xigNpqTuRxv1X3VS7CpegBYI3MR15dXShZ7k5x3RsrXc3g5Leg68sF7UUzvcxpVNnhf1NSmA6CyIJuzatltRuCyulnpwVYP8B5w5PV0Nbceyo4dUDtnvJa+dEfQGpj+CFydtv6Agf+h9dTxeNgSjNrroTc26PEalGwTuPKhjlSTPwbUMp6Y41Dp/2a0t2WNBm/z8DxUsHU4F6dcZdB2l6BSSh2/o9gjKRWMaQSF9aiW+23j+noj7YlWwRqPt4Fqm1DEkzAnTSu4JhT3skuCYDTpWW83jJN7cb9dJSnJmev8hr078cm63cE6CVxZfl+qn8pyPlFLG5Xc+XQiThNLXaTfWjObDkl3irvXK1WlDCHnJBqeIdI9paCqt5vFK4vVjRmmNqjSTtmzXVZLKgeD1YSBJpYd3kk/RioX6RM7PHOYeFomLqeF87IwnRamaZZ5TGseDnl4HNfo/SuQfkr/90FXH32bo9cl91Zp+M5IpeYErnucfRyzomoB1MkiWANVyD4jACmEVuoOVKYp0G2Mfnk2sVsBjapl9OAq1jeVJ/N409msEnhre0AkevDSqq+qVmFKWZKxKqy+g41ox/UqtQeufi2P9/LFXm19lx6VWt/jvaUi4x6S0JfSdNbtGNOwQQSB9/Qbamvy4VmsuG/XGzXv5L2ypp2WNjHTu77ijRzDUbHWlnYyUIyRgKMLKDgZ2gzOkvb7F6X7mKOyHlv7nKGoh49yXmFE46DtO/veAGEmjgn0GPAt4YwOqLZNmrumEQPgPdZ4zktkmQPL7DktgdMSWeaJ06S27KVQEge1W1d8nw0bMk3IJq0UFXStOlMi18Q5Pzbu8PLSx6gwdaFanfeqRmBDtCfVZ1ZqFQkYYwQNdRw9B9Mks7PW0GzDaJA36MByg6aDlBIL9RDqosHGHErahkMi6WH+SBtlI0QeG0oy3n5tJNPUQWSLUqWkWq00XLWYqtbjD+Vct8GYpsBsgw58CpX9u+9+YN93HPB0OjF5x9vLZ/5f/+Zfk1NiW4VdJwmC+oPthZL1AK0RWqOkHVN3vDEE11i3FennAC3poV5Juxg/ppS53zZckH5XyZW316bKKJUQLTHOODtxOk1SyZWd2zVxX2VGrdZMKQlrK9Ea4mTl0NODzweLMZWt3ISF6ARVOM9CoJB7bkRU1VmCt+S06gFdMTVhTSOayOnpRIgTzjo+qmmpNTCFhVYL0TuiM1AT1kaWZeGP/tHf4qv3zzw9XXDes6UsAsgGai7yGRAlmb4OOgPQuEb0QYJwXxjWYbGEgFZHYvia1Poo18r+lkaS02nxsjYlKSxFAsK33347iEAiPn3oena1CHEhXillYopCBOvr8/FruCdwBLL+cyKM4AjBUl0d7QlroBlRgYlOtEJpspOykQF8eX4dMK+CXDTQe3aM+LTWpM3iAkHV5BuIW8Y80YwMHriu0mENwek+K4LKuNZYkyR52mYfIzrdMeHy/J5OOrTX63/hdP8vP37UgevdSeixlymw7TspJ6bNYL0VT62nsxyS1mJtJOUk1Yr2q/o5bYwI5VonttdFjeAEjlHTMyuQjwzvKfCmZbedojqgapC0qgHmH00UJRP1i6fVTNpXco44KzR77xRiqJXzEnFGJ/OVdixzMk27MkYyc3rQAkqjmUJDSAfG9AxRYQKlEnYiayc0aO0v+VIPgP3nDOO/MqAsPa1HWFGCOzqj1cb7sZ38oM8/mmvI9ddxTWleK5wHDRnwr/qeO7TT2X6AMWPYlceKr/aqrY2AYzTydqjDPASzHsRoTQ8eJcB4mZFxzokyvpMN/s1PvsY6x3y90pT8EHzg3eXCZY5iyqfVtg+e4CPRG7xxOBux5sIUI84ZfvjBCyxsDefTictpwRhIaed2P+O8yIhV96SMxcSLzmlNceL9V1+zrhvrumJp2ODxTnQQ13XH6dD86TyxLAsiCt0DfR8UhpxFrsj5Hpgt07zQnQVKLdKrdRJgt22jqEmpj5530zPv3r+T5KVDw6ZSchAoMG2084KzjjgFTqfTcMN2VV7b0LhczuzbireGZQ7ksnO9Csv26WkWiMs0ltOiQ/VgnMVHqaKqUTQEo4CCaALa6oiqAWqMYY6LKKBUIT9UY8WlvK6czidh3jnDmlZ1UZA9XfaiNPgi1bDzLHHm3bvn4SlWah1QGYrkNGVhyrKV1RmCp/e6UkoC0bU+KH9UOV0CLITINHmMEcNNaOri7LCmivN5K+QGIXQvMUNriZw3IbCZJkHKWVqTpMCrfUvnKtXaaHbAMLJHa4WSue1XeV4ajkI1kPtXyuQqdlItzEeSb2SUJJXM2+3GVgoZI04ITSxl3DT92mf/jzpwvb+cWOaJWs9c7zfWfWdbQweFeHeeue8bwQfiNMkAqM5ftNqGdJJzTjM25LQLjtxE9j/tedyMaZqwSrfNpZJTksNsntm3TeZaaiFEzzyJfuE8TwK+1ErJidPkaC2z3qWvEbxnjhPOG0pS2SJn8RaoWasFdXFVyRixUdbqoWdtGkBG4W56NteHD+XQssZhkcqlkxjGga5abL33ZuizJ7IIW9XKxxhVnNC+hDK4pILV19f5N/q8VIdIauEIHwhs0cWO6SFFpbW606y1dLI6fdaq/WFQpQ5t9oD7BQvxy4qyjYAt/QOr0j/Wi9W5dQ5X6xDK/fanPyXEyPL6Rm3i1By858PlTPnqeagFyOWxClF1RX+pmp+fLsyTVNJp37DW8O75iefLCWsMOe/s2y7X3ljieeG+bdzWO3P0TJMEovdffc3Lyytvb1doon25nE6cTxe+//4jSUkYT88Lp9NJKsPLos3xOsgZ+75xv9/Ykwbb4EVeqlviVNER9CFwWs58+vSJfdvJuRBnz/l0YZkWrLWkTfZVyTuWmZp3tvXKrAe1c47LZZH+hjG4OnO7Sd/5/WXmZmVM5LRESt653leut1dOl5nSRDXkqVyGMnpwEa/eYE3XcPcyU7wLW0V5Q8R3ZbZuz0l6WUaU6kGC13I6E+dImDwvby+s6yrXyzT2vFNSYc8b0U547zidF56eL4JoVCHl1FwonXDVeoIsPUIZ70CFciVw5ZJpRayHrAoU9D1rLcTgOZ8XvJeRgX0XPVEbpFcp+1X6+cY0WDzWOIwz1B640jrQAu8MrSasDThvGA7FVdmMmsCiEGVF4L37fsUHjzPgtYqT9kRlXTcZdG6GKYja/ugdArlUrvc7exHxBLxXcQVDC7+hdPj/5nd+i6fzGWutVlwy1Y458NZt3zlfzrx79463tze2+yqHQ6tDA81bR9Lf39JOPJ+ExllFpqk/rOnQWtOeRyKEwPv370lpV5kmCV7WCTQWosdZ1QOk8uHdE8FZStnpDEdrHSXtrOvKuq5smyh3LPPMt99+K+od1nK7b9SSBhTYIYMOudV26CoAijO3oR+oANsX/QAz/gc98BlsvNGc68PLnfNhuqQSOtB8VFpNX7eL9kqQs0MFo5voYZTT1zrxwlLMeBtKoOiBEtqDPl3JRTNU0XrTwkmeS9+6M4cclviIKZLUcXnTxthNp1o07bMYa8hFej6YxrJM/JHf+hlfff2BLSWpbpwTAk6rx7iBscriqqRc5F4m0fNLKfH8dObpcuaP/ze/Q/By8Kz3G9SMc4YYxBeulEKqBRsn1YcU76tNxzmsDwRvWZbIPKvocJiI88JPfvKNrn8EvnQBHyLn82VAX+t6Y4pirS4W7jvbtskeqgWrqus5Z663G9aKLfu3335z9I6M7BvvHNFPtJORBVISX707MwUZCr5db7y+vvLp80c+/vBZ1DqaWr1PXg/xwrKISeXz04Xb7SrvZ1v59PrCnjM/fH7BOjifZ+Zl4unpwuVyYYoTcYpyYCvRQswtGxiR6JI9Kb2crEkrqmKeciLpzMhedvKWRAHEyaySIB5SHZ9OC8tyJsbINAWu11d69VRKI+VEbSIgIIonHufl3713ik4IoxRtXaSUxpiMBCJhAToaxVtaK4QY8GEmTt1h2Cq7r+KdwTaoNVHKhlWtxZ4wG9coSRCbVComN6ZJhsGtlQRAelF5uH2DYZ6ncY6uNUubwzuiMSxBHDGCMdxud9WGhXB+Ir3eKXsi56IQrcV68TU8PT1z+eor0mfIrXBb1//fh/z/yeNHHbh+54/9Nk+XM8YaNl0AqeYxmAqQamFeFs7nM7fbjW1dSfsudhLW6sAdpD2RsjDHzu+fwXZWTcekpRE/DqYkMlLOWZblRNdMK6VQSlL1gUfVdmlCn5ZIcE4gQjWys9aKkoAaEW7rClUGm6f5TEmZlCq5SODqB3QPWgbAmqFN2HpQ6E3gdpA9vLEUI+aNpZTDYsEYWikKFVbsA4xqFFaw3qp2mh3BsitnV5paPEigKX0zKszXqym67qORZ2muKaRSKcroA2j670ePy44/i8SVfn88N0dTysjB2mf6SskYe/Q5pJ4U9Yw+ztaHNBnjDoGG6Fm2Vvnw4b32OcXiY3iG5V0VU1S8uTZyEZz/vq6kUkQ1v9UBD/70pz9lniKmNa5vL+S04axlWSZmVfxOJZNyZVoWQgzct02EcbddZpT0eXeVzalNaDjv379XmrHh9fWV1qSXebk8iWZjKazbnZI3qeyDp1QJsusmvWHj1B+sVtZtU2jNssxSvVlnSWsasFj0k3zfGEwtONeIUaqFr7+RAerPL595/u4HqiqKz2FSQoccmtI/nHj//J63txfu9zv3+52npwveSYLZTMF5Dcop8fr2xtXe5N6NClzUY7rsm3NBAn6pxDANNYzOMky7JIw+OAlW2n/Zdwnmr6+vQrBpoqa+bXf2feN6fePTp08PhBAGuaMrpPQ+OShUFzyn0zzo+eu6jl5YVyeR52rUlEd/LWuS27TH+aj12aqIce/bSm0V51asdUNTct9F8X9odTbYdkm453lmigLXlVxIWtEZY5gmCYA4S3pQy3HOU705xKhVXadq3y+nPobQg2AnxjD2355keP3Tx0+/0nn/+PhRB66v3r3jcjnTDGz7Ti6ZVMuD+Zk0mn0MxCnKUOe+CK6tNNdeLfQFlHLm8u6JYRSnEETnNkhgOm5Oh0H6PElrkIv0pXpvquu3eeekyao9jG65YoyhlqTPnQf2LdWIZU+yqLZNNeFgsH5G8HJH4PqCzDB6S/JzRXttGEj7TgfbLIbWVO5KA5fpJVifj3M9cMlv1R6IRiA9ZktySg+VldNKSEsy3XTWCPOqGaHzDxCxMYQFpALswfLhg+t7O8aMOySoodJ4pbqrlNYXgUv6Cq31rFB3tVWWljF4H8VLynmcVgIxzsRpYuqVUGvcb6/az3R4F6hN3An2lJj3XRVX5DC4Xt9IaWc+CcRtEMHStG84Z1imiTkKmSCXwtv1xum0MC8Ly/miPaxNRE+7kojW0eLUXHj//it1QRBripxF7UUgw6Br/cz17bMMpAZHBYG19bAeFTdwPgvBKO07z89PMtvkHPfrnZR2SpbZshiizFEC63YDYwnTzGk+M5/PzOcT03yW9WtgmSbtuTTW9U6McpC+e37P6+tnmf25XZnVGFPWfIUmFHpr7Tgc5YDXFWitIiPy/q1NGiAKMezAwThsigxs28Y0BYGWrdiQ9IN/2zbpbSk6sm0bXQ7u4AYdkLS8n8M+ZMDlRgbmt20a9kPdXqhpBSqCBLK7Sn0Qlm55nBPtQQlEZrqOZHrdtkGbz6WI07mOcVSF8a0xrFvCGsspZeYpjSQ2bQpFWm1jhIj1juJkXEDIWeow0UlZrY1WgSniatGp7/1caApHdrZlyYV13bheb7/Kcf/F40cduFLa2e6WPWfu610gmZJF3cJ7fAjgLOVN+g9BMXFjpJ8kzeasHlfaS/GOHz5+BBizIof8CqppeLCBUsrc7ysx+qHwDY1Ss5bfabxfp+oXIUijel9EYsUih2oIHh8W5uUJGmzryr//9/+e6/VK2nfynobYqTV8sTlE2FRnZ9zxvgFoZShiWd3cRr/ff67DdtodHu+5a/zlkslFrRs4YLjHGa3hfqow03hu4/SQPZ5z9IF0xKZ5M+DERyX4g4Z83Pe7Kkj0TLsfQo/vpQuoyqMeUKG1oNVWbZWi3lzj97SHMk0Tl8szp/NF+kpPT8waRJwLNF1/3//wByK7owzIqtBppYFxqoottg42WO73Ox9fP/PpVZhwcwy4IAHltm3c1lUEmY3h59/9guX6xrIsWO+531fpXzV05CIQ4iSHYMrYbRMZIrNhVaXAGKkaX15exgBrjJG8J9K+SZ/FMJyEDUhVV0SAej6dyNayXW/kbYNSqM6R9rvOnWV2s5J8GJqcn14/Y4xhL5kPH8RN9/mrD3zz7c9UKdwz+Q7tVbZd+jDBB86nE6+vr9xuV67XN1WMkaDxdD6T852Sd/K+i2CA/reUTqKydMFYqcIOE1KjrdYOx8mQslQ20xQFkqaN7/VKKIRjjd1uNza9zqfTmS9p+H39HtWX/F2kvkot7Ps8bIoe16xYz/hR8TcdSN/3nbfry0jErTEy1+kcy7KwLLNY2DxfSGnT954kmGXRSsUKYmH17Hl7vZJzxu/CHjRALYW8HwINIQSaFfmrEBR9qCLsUIuQqEoTUkYpja6mt24SkNKexjwXwLrurPeNbU3ULMFrtBN+jcePOnD9m3/9r5liIFUxhcs5k2uGbm0dZMJ+3Tfu60qcJ7FNd6KaIRRYqXK87Y61nrf7bRyM4mtzwAFd/dgqaaCUyrbuhHhYUzjXxSSFbvzoArreNoyxqkYfhNFTBEoSi27Z2EatTV5eXthWWZBVD5MuMJpSkvLfiA9S1Sar0QUusUiHcbXacTB+f+iVYR401Bpd7nq0utxA5mhj6FB7XA8Bpdt0iF8ZR5/KPs5rKOynyurWQTVdDb6O2Nk67Kk9MEVcaLSHCle/tHIu9bG6dKpQXrit14Hpey+ZrdGGudFehiCF0ivtmXipvZeZ2dZNHXTFJkN8ugr3fVWmWtVZFYUtjcCN4iDbD/UAGD6+fCZtO9YYni4nYgi0UsYQvBwcwuJb15WPHz/CwzU0xgmj0Dpt9ttx2z69fNYZOsvT0wVrZCbxdr/RmrBdT/MsRKCU2feNVLIo3CvRYN/FQ8taM6TMWi28vnzW12cYhpZcqLmw6sxWCNIbqcDHz594u12H64L0pKKQXKZIUOHrdZNgUIvMHH7+/Inb7cb19kZTgsU0Tfz2b/0W1hZohZLFB6u0houBaP2gpudUB2rx/sM74m0SYoOB+22lbIX7fhd4q0oCY73l8nThdF643a4jKE7TpImeKNJcrzeB+J0T+HUkR4+D/XVAzOKYkEdPVhJcRYMegptV0YLujTfPy1iHtR0q6t1kdShodHfuyVMNVGMFBdGqCCs+WUIZkSxxXk4AAnnrBL4xUqlao0LhTixnaI2UqqgM0UitUqaJ6CzRGd7ebuQknzO6yPV65+3tyrruYkBrnKzBXCjq2ybVv6U88Ad+1cePOnD9/Od/wBSD0DNzHoZ/XXvOejFd2zRwuXDIpfCASYt+nBlyTvdtfQhcj1k9oFVFV01urZFTIRc7IEHnDsWAxjERD43rbRXIrlb85jUzytr/OJx/ReG7DJuJoooC4pwrm+WYETPEEkk5HwwlhS6BQdKQd99GsKIeePkRuPiy4kIDVx+27oFLf/YI5ofiu1W2Vmf2dainh5QjcFkZsLUI5VmkOQ6ItrOdFOZorcOBdgRS9GdlhqaMnzEGVcAQk5OqyQbWYpxALFYZg8L6OgZTj4NEkoRaC9uuyhJGAmXRqqo5M3yy9qSQlfbCmmaltlZSTswTKsXU5/ukV9MaErh2GdfwjcF03LZNeizGEKNAl8b0tdtliuRAM8aSUyLnqlDhRPD9msvBKwr9WTJ+76W/qGzSphX8IZGkMCvSp90VJmut4a3DtKpD3Fneh7JA/TQBTZVGNrYtsKvU1TRFYojkZWIa7ts719tNoMc98/HjR+7rjfV+o7bGFGSma0tfM0dVkLGqVWnANqtoiv4bAiEWUzidThhj8WHXJHOj0aG8A17GGGIMnJaTMvj2sRe7Vl93arCqqD7P0whcXSnml+eypE+esdbgglNFftlL/ewZM5edBNXaWIe1qoWP7tPeEz9eVwKvMarnWYrqGSoDWUkqTZPv/NBKcSOgaXuhV3XK/BSEqVJbEdeMJiNCtjaKsxRnud0Ehi0FatjYt10MdHMPyLI2W4c+q8ylGeB0Ov2qR/54/KgD1w/ffc88RXwUu3asNA1rkYaUaZVWJKBZ7waLp7Um1te6AIx3cuirGG6MfjQUD0kj7SX1g14PO2PEEba1RwffqrBU0wzm4U1fHMY4pmkeqh8iUppG1bCnfXg3Qce7FaLsYr76cM7hsGqdLlI0Dp236gf7Q8WnMqd6AB9GdmMhaP9o/Lz+XNWg+EVjuDVa7fJQfPFv1vlxvR6lXfoGGsKlFsLkmZd5xMTH5x+/dxRTBwurP19rulH1INLg1gDvA5f3zzidx5LZGHHR7d/rdGXvzMiwJfi5433SK8xjk2MRFfFsyMVinKWCVnYRY5USr9XJnnasccQ44TtuhZVZQRB32Flp6cHRTidePn+SQxbpWcU4idlpd+dVfy05tB3LNJNcoejF8iEIBHc+j7kkaATAnBYhiNzvrNvKniQwew0orRVu6x2AeIq8Uce6jEGkl2iVzSi8bMB7g/NScblq2Etl31dy3klpG264yzIxz7NWopZtu7NtG7fbjU+ffmDbN3JOev0NsUWMM5zOJ6YYyMqELKqv9xi4rMmjT3O5XPDes+8767qr4r7IV1kj6Ai6X8TU0z4EniOBkyrE0xYGseGRmDGCoD4eFWRKERJXmEJftV8EuKNKOxjDj3vENjsgvP7VK7b7WvDFYaOX9rGz2OAwVSokgXQsNUsivJXC5fI0DDabVoY9Ue/7tdYm4w1ANkq2qBVXC5RMco7kDK+vb+x7IdfGiaDGvKLKL/mAHU7H3W6njzGc5v9Kgevv/b2/xz/7Z/+Mf/Nv/g3LsvCn//Sf5u///b/Pn/gTf2L8zLqu/I2/8Tf4J//kn7BtG3/+z/95/vv//r/n22+/HT/zH/7Df+Cv/JW/wr/8l/+Sy+XCX/7Lf5m/9/f+3q+sFvz8/CRZZYySbSh5oKpig3UOGzwhRuIUxQSwl+c949eMI21CqEh5JwbPQ4lAh6Ra00HYnqWgRAArfa0x1MqR7UgAMaPK2dZCbQ9+UloVVJXpKeo22xvP1vhxINdSx2yNMcpKVMaVMTJ4LSaVToOq1mYP/SgZV1M4YproPkzeHpuwbyxGMtoOcobrwUmf82GWu+Plsvi9kDDg6Dnw5XCwZInS5yitDDmtQ06KA6+sD/5hD0Uf7egVFK24aKpF1z8TMhfT3Z6tG3d0CFMYY3BGJLYwItRK66oQdgTSWhsWrRSdIWu26pwjqN2FtTKAbH1APM3EBr5L6lyWE/akyt40TFUlE8uAkENw/Pznf0C33IjaF5UD0z0cNFYTHOGNWvssslRNPkucZoK6z0rgVVhzvdM1+07qJReCzFKFSQJXrpLJ1yoZ/7IsxCCUbKNDs2BZpoDqret1KkKTfzrRSv0iuCzLogE40Gphu7/x+59+EBSiiMng2+tnck4YA5fLBWckYbu9feZyikzR0aiqyi8BrL51pgSCgOj1XrdtoDGtwcdPH7nfVxHT9pGSC9u+8fHzRwmWJZPzjrXgfb+28rlijMLCLEJAmKZZluZQ2elr+1CjGEGpFu17H9p/jwmaJLAi6ZVSIqn9kbWW6OL42Q4RDl8tKs55Idf4kwTl2kir2MyUWsX9vFRqLqR143y6EELEgcyRVTlXLDq64xzOqBEl0LwILFArrhUu80RwBm/A4LndVu5bwllPjDPzvPTNKazrScYI5vmkCYYRyawv1aR+pcevFCn+p//pf+Kv/tW/yn/33/135Jz5W3/rb/Hn/tyf43d/93c5n88A/PW//tf5H/6H/4F/+k//Ke/eveOv/bW/xl/8i3+R//l//p8BgTj+wl/4C/zsZz/jf/lf/hd+7/d+j7/0l/4SIQT+7t/9u7/Sm5/nhWkS+Z0etJoe4MY5yTYnGVT06hraS+vyS2W99Q61YhJa7BeH7KA1yEHSeID/JGTZ3gAdc09dk6zqIS8LL076HAqZSTfG0ayjVllozjvdaDow7DTAat+s49BTZyUiG6xXEVbp9kfA7I++WeQzBe8HbNcDF619GYSa/I/AatoT6oHFmAHj1fawcTF0X6TRi9L+1JGVKnTnzBF07ENQ7HAm420pjKj+R/SmmxnPW0uXdeo9yD7Pd8xxWdXT61Cu6YwvDVzOdrknGSHow5sCtR3CxgJxamB0cj1F4qYbL9rRH+0MyWqFYWhBLWoUitYBcbkc8rvOuvFa1krWKtI/4mLcM2Pn3GC3YiS56AyybnlvVUndGouRuMxdh+VpVWxKppkY5VoYY4bU5TRNg+26TDMtKIS9r+pCULHRYwbMJUamxhmmKVByYd+FKGDxxGA5zRHvHfd7kjGQ+00JKBbTPMHJmINzlst5Vgjd6oD2yuYtrVWtoGVPZ5NH9TK+kNkqQPtvkZwl2S1Kj9/2jbe3NyX8FFLaiTGM500p4X0cVRYw4Pt5Wh6qpR6Q+tpnrKN+5tRWFPE5+lo9cJVScBYx4tT324W1e3vTIHu231fvPRU5u7z3+CmO57PGaDUlPeGmGqfburJMJ5G46/0wXdcdAnVW13ttVGPAyxpoteJb5bJMBGuwrXJ7vZEL7EWTP213tNoTX8MUoxJJ5AsaNlnVgvz1Hr/Sb/6P/+P/+MXf/9E/+kf89Kc/5X/9X/9X/syf+TN8/vyZf/AP/gH/+B//Y/7sn/2zAPzDf/gP+W//2/+Wf/Wv/hV/6k/9Kf75P//n/O7v/i7/4l/8C7799lv+5J/8k/ydv/N3+Jt/82/yt//23x5l5f8/j3meJAPs+V5T6X3sUMQIMdCMIZUivS9vcc1KdaXQYErCwjHI4GpOiX6w9UOiVxGiINFUr6yMzDcEp8QJj3WdhXhYFvTn8kFw8aIZRw8ixnlqc9hW8bXfFjm6ndd5LydNeOccMQRpsjapWNZtU7hO6LwypGgfKix9xmH/0AZ23r2+Rl/uAfLQlo5UjlYOJKFiP076K+X7QeGpV6TtoeTrh0l/NFzHYDHqH9Qr06atL5oKCOtJWsfTGZqxQ2pQgkM/MDTo9WDVDMZpz7IHPHXUNO1oiPcqkHaovTsdYfBWYN1i1fpBX8d3TzBjyA26KJdtDasHGVpZGk1Ackris6YBiZKpWV1190QxQqLpzez+cz14tXYErRhFbsqoCKuw1SRZmCZZa/0AtiovFmOAnGToPiWctUxTkISpiShvyhlqY55mmfO634WajthfvF2rmqMixCQjCZvMoEkVsEyRjY20V3LamLwjOstpFqjofs3kfaXmnSlc5LPNkbfzrH5Rng/v/r/k/cmrbfuW14t+fllPxpjJSnZ2TpyIUJCnL254UawYWLEg+gdYFgVLElcQa4IVBRGsWBKL1qyKEFgRQUQQ5Pp4D7QgyNUXGp599t4rmXOOpPf+y26htd+vj3XC67tnPxA3MYIVZ+215ppzJL3/Wmvf9k0eOkknq3havD1DLyhjc8VRb0DD1qE08fgbCGHg7u6OV68e9T0VduXlcuHdu3e8e/dONU1CHhgGKQLrusoErRNvI0xcr1fRhem09aluSRKDG3woDu9ixyT7aimytzD0tm0sThIrrLWMausUgrhcdPah90zjpCLokdrWI6ZI1laLy0Cma4uRBlcb321dCS701AmL3Aol69nRdl9GgUZjwU8yedZCoHI/jyJCSYnnpxfWWAhSuXrhq0XPBMRx6O54x/39Pff39xKma1fGoUGnv/jj/68d19PTEwBv3rwB4N/8m39DjJE/9af+VP+aP/SH/hC/8iu/wr/6V/+KP/7H/zj/6l/9K/7wH/7Dn0CHf+bP/Bn+0l/6S/y7f/fv+KN/9I/+rp8jKvq1//fz87P+7wvzPOLGQXU1kCjkRfH/yxn74shVnL67aA52J4faIgXUoqU0rYj6Q3Za9U0nVVG20N7hNaaRpKXqF/UiUHuByvWk/6bl6ziFcoZefDviaAzBOarNZAMWix8FGrTOEkvS6ImK8RJQaaztThlVDYabw7gU9tRFw845DIVSE6nuBa75IbZJMZNvuvCqprlSGHutsEbdyYVk0SZBeRk6cnA7RRk6WxNx4rcm0LKzKpWky4MC3U6q6J/JHs329JbuEdzpyaaTDoyRz8sYTcO2LXzTkEvEJI3ps8JwlH/e/h5qzCST9gk93bDBvOv+d2SFHqsUxloTOVdSLCzLwjTODGEQ3VYYGcbAq+M9phaulwuX04Wvf/s/s24LOUXG+yNbEn1iKaXT24/HO5Zl6cw3oB9kLy8vONVVTWPoFkA5ySsuaeMSF7E9o2AdXM5XSs246oU8pF37ukZCVbeTXLmc1Ty3asOmTUBcN9YicTy5Zu7uHvDOkK8X0nbFlsRxcNzPAV8T2+XEsiy8PH2Uaef5I081M40j8zzxS1+8lbBWLxBYKUJPvywXBv+awzyTUpYJ2XuOcxCoRO+Fy+XC+XzmcrkooSLKLm6xHI5HxmFkHGY5QKnkeA8l8/nnn/P5559zuVwUIhVm7/F4wBjD9XrGWicxHbpnvaW0t0LUsvrk71HUxajPoVOq/V68OgXdW1KaSCkRlPhVSuF0fhZpwjTx+37f72eeZD/+/PzMmqIQ0pDihzZnXptdp674PbakQDWGVCrX7cLhcMDKKUCJBTs4XFBo0qrEJghhxVS4n0eCAbJkDN7d3ZFSJqZCrI7r00een1+YpomlrJSS+PDhieenJz6+/8C3P/uGuG2ydrhpkH/Rx/cuXKUU/spf+Sv8iT/xJ/j1X/91AL7++muGYeDVq1effO2XX37J119/3b/mtmi1v29/9996/O2//bf5G3/jb/zuJz8MTPOBw8M9gxI0MrBl+TBTzuRm6KPL9A5xIWy1UoX107JoaskYMs04vBWuDhc2TDrvXn8Nc27ju2ltzM8VLkDoqa0L0w5Fil3oEF1tkwvIiWwbo0gc7J1zkpC6t3Xk6mhlwHDTdVk+ydDC7NNQobGVel3R76BVQKoYVmMbqoVmKlVrVcdonbxapTf6Q7Vjo+3+bp9Tf562/65p5vp7sFdv/f5Gv1KnRp04DFrMik5uZv9epuikaAym+R9a1ChZmwS8OFsh8Iy3rk+kpv88OhRGrRTjFGaDMHhl96nLihEdkez4rAi+a6b4II4pxuKNkzidFFkuF5w11FKYh4HXj4/EOJNKYnq4E0uiHPvU1Q7HcRxlRwrdYaHrYtrOZN32zKQiRrXNM9PQSDMV563KONriXw5Nl7I6VliGwYgjTMmUXKX4G9n51mLl77KBDEGztKS4DRQv2V2HaWQInmANxRmmIcBhZnCWeZ4UBnN66QmDbnAOvKUGifa5Oxw4zjPLunUYXJq90i9gr3CakKaq7oUUYlPGr5BFNjCV492BEDwPD/eicUupF65pmj4hYoh7eu67pg4F5jZtmU8mqUbQ6LefaTto0/+7fW/vZJ+YUpKCo0XRdYNlmajazrAVvva6i6LyzYPV0rLIdu2mHUa89dJ8p4SzLRC3yLmnPp2AEpCsskMjzhhyCXhn+oQvhr8yQbtuQLCjX6YdI3q/OitsxKZl+76P7124fvM3f5N/+2//Lf/yX/7L7/3D/+8+/tpf+2v81b/6V/t/Pz8/88u//MsM48B8OPDq1Wvmw4wfxPF5iSsxRZYtsqYVY8X1vWlVjLFgShcTp7xRcqNdZ5wRmq904XvhagmqsuOSA9NaWZzfFq9WuOTwbfsuZInvW7Kpsh1NY9dJxlQpwtQDPjmMRCO1HyzWNsqqTDlWF6xV2RLV7PSRDs812K/vlfTnGxE0m37GtZuQviBuA5JyH7Rggq0N74R+yjcoDy2C6txe+1TUno7evEoogdbB6puMNhqaRtz+1BjbDwdjjNL6K7V+SuyoisU6Z5U2rnlnN9OfvjSZZjXWRr5lxdS2mAf0epBDtWCyHATBB/3MKllATS1elirjF1gYvO8ibwtqSBtJ6yrXjzEEZ3l1/yD0Ywr+OBOzxG1EjaBv0Ha73kIIXS7RRLO1Ko05pv5+yDJfHRK2VRKWacV7h3A7YUDvtVrl/fa+kWBagWguFbbDwQZ0ya/sVWtxQ+gTyRDk/W2vdR4HBu9wjw8MIUhMRy1iblvkfQoqL7HOMI0Td4eZeRq77VWtte/4mo7QWtOF1p1UoTT0VqxjXFm3Feccx8PM3d2RIYgIuUldrEXhWa+FrOBc6AWj7cGKZl7dQuz09+92l147AvC7rmEkv6yUrEzhvbBN86j6Q08tlTWt/fO2XmDaHqWpl3fNhWKEEa12A7rjtDijUB4397PewwXZN1MqRXdV52UVqNlAsFWaCMCUou2dNuhGd8v6XrW3w5rGynT6nuWe0fZ9H9+rcP1v/9v/xm/91m/xL/7Fv+AnP/lJ//OvvvqKbdv4+PHjJ1PXz372M7766qv+Nf/6X//rT77fz372s/53/63HOI79Rrt9xFKJRSjgSTUCODl4U6nEkklZpgIKYkhpd0ZOsaV7ERYK1cgHMQ1OD8LSD0OrnXS3qhVcD4k/z9hSsDnhcpJ/+3MTVzuIw+A7Tr6p2BUES94v8h1OM3YX23a6rxVRH9boElRuYh+kk5MCuLOhSnNZ1wOm/ZwtKt3YGLzfO0T5yXRXdqt7sloE0mvsuM5sA+2+Wz0zDD6g5/Qnuymzf/cONVknLic5y8Tblty33WR/B2tl3SKwW23tcM2+j5TmQAxT5zkQk77XhX5QyEFbuidi9Fl2NbUxxZp4PNOstmSayQpdtj1P00dVch8UrU7lCnGWorsP2Tmty5WoAmOHIQTPYRSBfKEQa+aaI8bL5xyjWBeVLGSK4/HYO/7z+QxVwgbblFFL7Q4K1jqOx0PfxazryjyPN/uVyDBM+DBwWTZCGAAjU40emEMIbNtKjpskHJuMswav4vSiFmcprpwPL2Jg3XY0WmQXe9VJYD+xnHPcPxy7EDalRKxilbangHuGZj+UMueXU5+4WgGBqq4SlsEPWhjDfq+XwsvLiyScDwM+TFgju7hpnFjXlfPphTVG4qbQeIVlufLyMgC177saGeP+/rG/p02n1hCTdi+14lpqVS9B1wXIu5mAXuNlh6PHEEgxcb1e8cExz5O47UTxXWxTV1oX2Sum1FMxumZKG0hnbP8MBudZlpV13Xh5eeEwHXrx3LatdSrkLYrEyAWMn1guV0qOjLYyGGkoRufYlpXz5cr5fGW+e1StXuDTmlSJmwSWvjw/cbmcABHFf9/HL1S4aq385b/8l/lH/+gf8c//+T/n9//+3//J3/+xP/bHCCHwz/7ZP+PP/tk/C8C///f/nt/+7d/mN37jNwD4jd/4Df7W3/pbfPPNN3zxxRcA/NN/+k95eHjg137t136hJ2+9J5fC8+nMeb2KkwWGVJJAhVVFrUQwC8MYxP3ANY8vnbji1q1gDAVTBP+XSBGdDIzFdlr3rtHd8e1dAyHXoW5fzKfFa0hyE4gP2qZO1YgBKrvQVr63aLhAOzTjdvGg8wID1QZHlM4kFKhNtWT9ObUbZH8+PQUWI7HiCv0I3HbDHOy7JTSZtRVZaJPVnrgsz/u8Lf11fOJGb/bva3Saser92P3NdJJtj1uLLXl90ki0zndfiv8clV5KqRTbVnDzjQC7oktn+bcxtuwyhdS0cMkkmzsklXPqeUs5yv5kR6usdqHy2TXWpV6xWhQz27oSt431elHjVDhZI917SWx5YwPCNOI02O9yUSudnJnnucNVOQv9fAxDPyyzwocNkm7X3G4JlLTJget1IQwrzg8sy8Y4zhjr2FLCB9HmXLgSt7UXKEvBaXihswbUVLqkwsvprOxI16edEMSctwWIBt+smOD5+SwJCHqt5bSHuF6vKzEW1jWq5GUBAzFnxkHiWFrj1q4BMTu+gdIq4v348iL+oOPIOAbWVYgy55R49/49W0ykXMip9ns7anPXft90c6UUPn587kWsEbzkGtkRk06V15l212LZT67xHe6Un32cJIbm+fmZeR65f7jn8eGRELzKYuTn7o5Bu/3b7qUoMKWztk88IQSu14VlEQPh++N938mJS4c2tcuCseL6Mt+/lqYpRa414mslWMPsPXFduS4ryxoZj3c0l/mk94jVzySlyLauLMuVdVuQRuB/kDv8b/7mb/IP/+E/5B//43/M/f1930k9Pj4yzzOPj4/8xb/4F/mrf/Wv8ubNGx4eHvjLf/kv8xu/8Rv88T/+xwH403/6T/Nrv/Zr/Lk/9+f4O3/n7/D111/z1//6X+c3f/M3/5tT1X/v4axoUy7LQl2KjLlVpidZUHmMFzGcGONKxIPslCT8rpRKSVELkRQuqqfWRMpRhXQNJ/b7IXqDW1f2wiWFov1plUWLflWjs8vUsLEtOgUYMMZ3aK2UHSfe0o2foPG71cvNAhi0o+97oQZHsO+CbpZYLT58nh0t1EMMXxsb0yoBo007O0W+qOD3tlj096FFplc5JBsqaK3vDhr2prB0WroijeJij8B7SraR4p3ZGwSrxVXZT/bGZ/CmcShqw0QtbLEQoyQClE8KV4u52P990QmWIn6TpWadAjMtKDPljVoy9MKlW7xqFcIV8XPKzSRV36eKdMNZTGtTjGxx67ETlELaNrYUZU/rLGEdcerc0Hzy4rppQRCGoLWWcRipk2Q/xS12V5WmwTLGcLlcpKDVrLZXtttB2S1hnWe5RqY5Y10g5kwIWaFT2cm1CdRRcc6QshH6et+jGuKWiTVjjZBTQvDkXH5uwtjZrfGyMPpBrjsrsG6Lrt+2TErayNj9eixU6lwJOQh8topuqVSJEEGbrQZv5pR5Ob1wPBwJ3jEEz7pc2fS9+uabnxFjVrH/fv/dJhHL9HQL44uZrOylMk04bLA3RUQbMr2H5P61n0Djt/dvazZPw8i6rjw9PXF3f5DIlCLTdpu4aq1iIJwb07Xt7SUrsPkKGmvEYV8L1+Uq8Umn04lt3cQg2QdpaHQ6XK5XjBFLsYjEPpWc8SRckcRl4wPrcmVZN9Yt9ykwq5PMfi4IwnC5nDmdXli3K9TC5Xrl+z5+ocL19//+3wfgT/7JP/nJn/+Df/AP+At/4S8A8Hf/7t/FWsuf/bN/9hMBcns45/it3/ot/tJf+kv8xm/8BsfjkT//5/88f/Nv/s1f+MmHecY4S9z0ACgtHdVgvSMMAq8ty5WX5xN+1AA6J8w/OdcqlJbXU4DMF1++oVIlNmLdzWKN0UjqUvsytnU37QBuB6cIgGXigpsLNN0BsKyLxiVUdVwXrU2tAoF2vLxrQgzWVmGHOdSqiD5hgcJWN+4WAkcYsi39kJCpTlhwL6frJ7ZXzbIqBN+7zFqLxnII/6GyF+im4G+FqNzY3twaGjvXFtb0HUMrcBWJgUlJ2HHeyVTZaN/7DqNZMjmu6rt3W7ibXKHZNEmBWSklUvNGSrtTe9vNSOHKevjo59Sa3goSaCn/IU3B7nAgHX2GFBVekfgQ79V1wsgBrnIWKSI5kdSNvCh92hnANnZrJJPAi+OFd46YM1eFFPvEpDIOZyXDaxzFhSLOB7Z17mzD4/FIVXHzer3y/v17mc4GzzxPGGtJOfPy8kIuIid7OS2M04xznpQQ78zmFNHfZzFZFUKKoQTZX0kA6iCnSgVyRsxZHbY4bFWxvLVAAOOpxggF3ADGEVzzdFQZSalaFLIwYnsJKGR1ya/Axw8fNMtu7b6hgPg8sqMSl9MLDw8PHA4HvvvuO65Xcex49/4j65aISfSETVjf3G3a9d4Kl0zokVtrp/Zo906bihpVvuj3a24g7WvaPePsTmK4ns7dq/Kzz97w9PTEw8MD2yIM65RSt4USjVZtAAPQLPBqR2xuGY8n/d7X65VXr98wjRPjNOkuV3aW6+Wq6eSWbz58FIG6c9zPI7P3BOPBSIN6OV84X1fuHl+zxtqDTGXQz1yvF37609/BB4cPjm27UhGm7fd9/MJQ4f+vxzRN/L2/9/f4e3/v7/1ffs2v/uqv8k/+yT/5RX70f/Px9bffEYJTpwBNWWowl7WYZRVdC3Q3ADA6uhs1t6j6+6qwG6zrRi6Rdb2yXCUKoZEjukdc/nlvPgR6qkUvSvpSv3Xkkl8kXSXVUXISCC5V3YvJDRBTEyxWFMnik4W4pgbfMniEpNF0ZTtEaF3TZchTzCi9WTN2hFGZuxN2F9xa01NwcyrSiVYAVdbrTeCc7+9Dgw9FqHu+KXCy3DY6WvVdXoFKlMKVJZa83VzC5FKJQ0r9uYUQOky7F215OBv6wbBPRpFaNlJa9eeK+a2Yf1otXOpKohNR1WuhcU2MBdeWyXrANihVYi6SfL0tjNVgigjiY079fRP6b6FYWHMUZl+V3KrDYVQmnvxqxryXbePDxyeenp+5XMTcdRxGwoPvjg5WId9pnLrAszUj8zxDReNLAqfziZwS4zTy+OoB66UwbjGyxcy6JYrRDLFcWZZNfO/YD3GRE4j7iEUicrw3DF7o3CEEpvHQodxy03k77+XfKqHJagRHLYXgXbfjkq9r0/l+vVCTXME1U0rqLEuAp48fu2xGNGky2QQfeHl+5rpcKbkwTxM5JYzufqyRBGRx09dp2Ro5fHO9ua5rh2XbtdfIMEX3m5/C2c0NI97sueg7t1a4Pr1+5c+dU4NwvYedl89AokakIey2UHqebddNmjFFL7zzHbEo3Oyi9f5qTiZCJtNCK38t97OzilJFLi8nkVuEQDCV8TDj/Mjh7oihSmNziHz15Rf89LsPpA9P+h7JMHA+n3n33TumeeLVm1dYJ09s+R8FFf7P9nj3/j1e6bPtlKlG3B0aViZ6H6fhekC9sSVSMKwClObZVQiTI5eoRp8re+HyN5ovOllCRJ83LBrLfsjRcG8pSuNwwFnLclm5XK5yc9faD+lSNc+nFCU0qFeiTmMirLVdt9YhyCLWLg3YM0bpD+rC3opZ0X0PejELvCKFa5/UHMbu3zfnqvCNwCB7gQsy4dx0kA2qzyXLzzfaRNDfkE/McwuJWiO1RiVTiM5qnmea40N7btZZYX7p92rfox0A3u2FS4r+Rq0JSyJ+UriGHvMg2UlVWaW7x9zNJaUsNY0ucV0AQK2ZbbmS4taboXEcxafROlmkK1W+sdSoQqZIccMamOrAOHlGPzAdZo4HIUk4H+D5RROIpTFoNO/DNPeiUDpVPnQX9m0Vnz/vHRZ5P6d5YhwGopUiNoyD7EuzFLJqErm2NATUMzNSisJHOXc6s7NGHGZMxZqKt4bg27QeOM4VZz2lIvCTWpn1g9gJdNVpN6VindFmKIhzhfM9aaF9mSGJK6cpVDLHg6QRhyEwDoPA0sbgg7JvjcWZIiSHy5VaCpfTmXEYyPcP3RFFClnVad+SQSFjcchvB0yDXqHt0hyN6SnFdC+yuw1U7feFHD9VD3T692mP2/1se/7t0fZo0zB+0rA5IxqtGndpCkaaimZYXapOqVU27yHsTM9GnqnIPW5Bo308lEQl9z2fMyqgHmVPH4Inj4O4/BjL4TBj7ZPYpSHIbjWy041xoxSBqOfDiDH0gvx9Hj/owvXb//k/94unUd3lpNnpvP30QR21c+6EiNAKj7U6GBUKid/HL1Nq5nw9c1FBphzWbTEqF17zVpRFaIMDFOe+sRUqWhTJsC0R7zyX04XT6SxRGLUil5qyj7K4ihtjmaZDv/hzRS/G3UH91qRTKO0Ndtr3Qp1R2M+A/ebqhRV6EW1w4qcTtqVn3XMLFYoruUyR+00aQuD2Dq1K3mgFYf/eGecrwReuy6k3BdM09e6y6lTcpAONJSYw7X5ANJilT1xpxZjKPHu27aqQoExmjTCSW55QYwCW+sn7Si9cXhxJvMBZ1jYYOLNcL6K3SlmnAJmIY4xKDFGvOy+HUYwbOUesMRwPk+xBHdyFI8M8yw1tDDHtKbhNxzVNE/d3932XEDXJwHtxkDgejxJVEiU2JThJbH79+Mjzx48s64oTy3g5PJwXzz0TQSczqlV7osy6xU+6e6sTF4BV2QhGfBbb/nKeV9H2mN3YelmWPtU7J44NctgXbQalIDi721uN40gIrjMRDZkxFAYP4+DxP/oR8zTx+dvP+PLzz2kaqNZcppR4enqS1OfLFWthuV5YrxO1ZBHJ2ou8h6UwzgeG6UAsBTixsiq01QqO6cJhYwxv335+w9SMn/zsdv206Ube8IbQNKay6WeTTES73tNhqFas5FISp45SCsOrZuMl13hQlwpbDOT9vsp6j+9niobM1sJBJ/MYI+M0UyvdispYK1Z5WYpcrkVMl62cT9u2sG2elMRFpctzTO4TqaAQck0YB94axmng4eGen/zkl/jqR1/ivRM27Pd8/KAL1xIzZotsWViEFUA78waTtXBFi2WLq7KtJIp81FE5hKAKc7nYzpeVVCKXy8LlKmxF6xze7lqMisEr41ASQBuLSJb58lAsXn2+pPOUAz9XS8yGmOhhb0ploNDEvnBdE0kPv6osoVoRnVb5tLt7fLhnGAfpcmMS1lvHGnXmabCmFWp+YzeJ8WUSb7m4SUYTSnjwQeE+1zH9qnTwWxZdbWJvKsEPCr3e4Pj6Cp12b8ZanK2Mk+d4P2A+uH33J4s8jHNSRDMkxJB2miexRCqFumygZqIN16tGDt6CHLI+jOS2I8kSKopGqKTc9HzodSFMy1xRIoP6vYUgWprgKYPY91gLzkDMhWVLXNeMUyq1sYYYBWKtVabwWgSeHodKCBYXJEtpPh55fPWKL3/0Fa/u7iil9B2ENZb74x2HeWYap+5XuK4L27ZKLEnOBE35fni4Z9MAwjY9D8PA4+Mjj4+P+MuZrGQFrOh6whSwwePGkcdNJoeo0GG1cn0LItAs+lWcbRwtPTrX0neFYRDihg8B62SP5VJmy5WCWFIZY5W8As4P5Ch7wzUmUjW4VFhTUnmCHLilrHhg8IY3r0d+8iu/xNvP3vAH/5//j+7es20bHz984Hw+cz6dJQ5lXXl8fOSzz4Qwdnd3x9u3b7v/4LZtTIej2K4ZSYqYwqD7ssB1FkhrnmfOJ5l2jTV8+cWX5CxpDpfzIoSb1hw39EFh/Jbf1qKTJCzU9kJVNXJGXmfmMM2M08hhPsh9qYSHaRh6AzdOI29evWYaRsiVEosGVmoz0H5uVrg/Z2JODNOMsZaYEsMwkktR2M5wOB65u78n58q6razbxnXdhCVqIJjC6/sjbx4e+PEXn/P+3Xd899173r37QCoZPzjm48zh4IkVlflkSt608ZA9mfMO8p7y8Is+ftCFC2MwzstNVGTpb6zlcHenIY9ZdCjOE1xgyLFjzt7ZDkccDgfISm8uiddvPxe3Av/EmmqHGq0JEkeBWAg1HLrqtJaSpMpadZCQQxqFbhI1F16//ZzDdGCaXli2DC7ialVXcYk8yaX5U4CxjlR2imvtGJYEwW3bRtw2oPLqs7ccDgeu1zOX81UMe/XgwUgRynX3SGsiTVlkK0MpRUJMHRd3xojDvpc4jVKK0oZlxyLEDTHhTTfUcq8GvtbYT6nZGA7zpDBdxDo43k28fvMAznI+n1mWhcN8oEWcg5AoQHKhhFEnTcfHDx9FzKuMsuPxyBCCwHFpYxwDP/nxl1wuJ87nC09Pz/171iqEkpxVA4gheAk6PB6PfPz4oS/gtxQ5Ho7c39+TcxJ4agq8fX3P+w/veHp65qc/+45pUn2UMTgbuC4r18sVY2AIkkH1cBeoNRG8482rBz57+5bXr17z+HBP1fgIQxWyTSmSmj34TpqRuA/TIVHrRWAfxqEXMElIdn13JAJcIb8MYRAIh2YYLCGGuCpCfXUFH+aB6kyP1bFqvurUZb9mZSg6R1wXck64Cg8PD9zf3/Hw8MC3375TFUDFhkFhK4XaBiFhGGNwIUkaedyYDxMtbmb0nhTF5UImPvCD4+7+yN39keP9kbu7Y9+FCZwrkOV8mDD2NdflyvHuyNu3b/jss8+Yp5kQPCEMXC7XPt2VCinL3lCcc9Q+Sfdto/dE78hFiqm3hsEPjIMnbxGKmCdVu+sLY4yEMFJqJWZtmhursO2daLIcQWacrYyjY54Ch8OAYZSzJUVqzkDGWhgHxzR55jEQrJdE6i2ybpsGyxZt6LzaVFlCcYzzhHVOwjURv80QjuRcmIZAsFZiUYbAEDyvXr3COwe1kJcLrx7veXy45/7+jmW5MrycutVc40/mUpXcIT15TpFtvbJcTsRtwRAwZd9//qKPH3ThMpqM6krub5Tzni9/9GMwhueXF6x3srieZqw1XBfpVIfBS2ifc7x5/ch6XTSEb+P3/4E/yBY3vv32W65Rlso+BGqVSHdjLYsKNdty2Bg65VMOL4EEpiHw8vTEuq6YWvnV3/8HeLx/5OnpIx9PV9Zt1dDLQXcbnjUmZQNZ/CgdUROOorlB1lpev37N6eWF0/MLzhl+6Vd/lYf7Bz58eMf79x8opXI8zsQk+ybrDMuydIdpjOF4OBDUqPX56amLor3ayzgjti/jPDOOExU4X65sMeI0AbXUwjCG3uU7JzDZEAaGEMhKOW42SZ+/fYs1lqenD1hneXx1z1c//hI/zzw9PXE6nUTArtR0HwJRv/c8iyP3PM+8evWK//Qf/+NeXLaNr776iru7O37605+S4sbjwz1/5I/8rzw/f+Tbb7/lP/3H/283n60K0Tb9mNjqTNzfP/AH/sAf4D/8h//A+Xwm58y7d+/44osv+KVf+iW+/fZbjscDj68f+PVf/4P8zu/8F37nd36H+v/+//D69duedPz48Ir379+LbKQUPnv7ljevX/P520denj9iqfzoy8+YJ8/9/YE3j4/8zm//tpBsMDI1Z5lygm8BkgIbHY/Hzmw7HGcpWNOIU3+/eZ7xzkihGoQIUTTQ8P7+nmSqJCTkLNl0zmOrYn6mYqpjOo4M80jKhXWLTJN4LU6D2E0t1wvbtjLPB16ePxLXBe8sP/rxl3zxxef85Mc/5l//7/879iSZaxjPuiW2lDosKYVY0IEUE+v1wpu3r/BOisBhmricT1zOJ2o2TKPh7jDw4598xZvP3nD/cIcfPO8+vOvw+OVywQDDOPD46hHrLNfrlcPhjl/91V/Fe8/Th49qbCAxMeiEHTdNRY8bJUbJNdP3yFR1PWlwYIpMh0AIIy8fP+CMmBgYa/BebMHiGiV3ysAajUC1DkJQgoXuv62tbFkMeMW/1BA8eFeYhpGcDTEanl8+6unn8P6AMRFjPWEIwr6sK8t6ZpomWX3kTJjkMzSm4PX7Cj/McD5fxO/x7o7LZaHEyDW/yDmhbNXP3r5mnEdKSrz/WeLueOB4lIidcRxxPmgjVEklE1NiWTN2EGd77w1pW7ieXnh6/x3nN4/UwyxSku/5+IEXLkd1hloMVWHBMEwEPWCd38AarB8I04x3Eh9i/cAQnHp1GewwYlMLPoNXb95IavK6Mh3upbsPQRb7QRwhtmJxYewTlw8SkV2N43CQ+AMDDMEQlk31T4UwjIRpYoxH7h4e8FsUfruxWO8xzlO9RJKXBvE5oRAL+aI0xgAmeNwwMMyThDEeD4zHA9O2Mq1C/54OB2yMAvs58Z3zQSjHKUZwXn6+LVTnwWs2VNh98WSCcKSqi9shEJwww7KRrn8YB8wmugxnLTYKnds6p7EiFlsMg3VMdzPOOrYsTth+GEmlyveyDnzA+tB3ZjhH0QahLc5jKawpi3NKBVMNzg+yW9FfrlasE9q1DxPDdGC+u+N4OHbWmfehT1tDCFQMh8ORh9eveP32DZM6Tvhx5PPPv+DzL78C55nnkYeHe95+/iUxZ3I1/PK7j7x9+znDOOKc59WrNzx9fOKzz77ElMJXX37BZ2/fcDePfPvt16Rt4fF+ppYNh7gVJJ3Om51Y8AJ/TlqUKsL6mo8HXPBc1wU/BLCGLUWWuFFNlethHEUErNpF5z2b7kuqFw9AnKUUox5NknJQq8UF9b5D9hZu3RinSZsR9Uk0QlAaxlG8Nk2kVPjiyy/4pR//iM8+e8OjurtzXWSaCS1yx+K0cGHV1tlvxLzhh8A8jZL+YCtxu1KKTGOvHu95eLyXw7gkTtcTP/vuZ5xeTjjvmaaZh4eHvg/80Zdf8cu//Cus6ybEkeOR6/XKh3fvWZaFGBP64hmHkWEYhYCgeVjeO9bdylnqenAY43l8uOuU9CE4gp91v1x03yPPWf6d5/4wI+GlgvTEuLuuYKCM0hwPITAGjzOQ4sqmpLGSM94KDN74+o0tmPNGTsKGrkSMHaFkYe1u8n1iyoQwiNUYieuycrmccE70C8uy9Z30x48fZR0yDORaeHx8wFlDXBeW64Wrd5zGUdcYmVwTL+eT6jczzqkbkRLIjscDj48PPNzf44ASN7b/UXT4/9keXuE1a1GmnesU7QLsuTgqjDV6w3TPwhuXhRsKeQihs6Dk74wuJ3fGmjzkwBNqud+NdoMeujeuFw3PzioeBINzAe/lue/P17QngzG7Q8f+XHcWEghxwHpN1XXNVaN5gqnFTNHIlqbat8IOq7c6rM74Epe0tgDeC5dRbN91V3gfBrym6nrv8blBPxbnaifLNDq/rKBMfw63P6N1n5KLpdEI3d39hm6v2ruSRMeTlWzTKMANzhJoQ75/kzBQxZOw2Vy1+Jt6syBPMbGtK9fzLvbt7MXS3DdK/7rT80sXBjeiQc6SrltyhipWTMYJ++y6LJiSWK5XifoIBkrE1kKKY4dwAcZxIBV976zTNln2q22XUapYnuUi+8WYdN+r+75SNcRQF+/GOsl0c74HreZcpQnEaOCkFb6I9xikaRowBBWqtusreY8PZXdxQaaR4/GOh/sHccMfRnGr2aIGUzZXFDVD1h2p8w6nO1OMYRhG7u8fsCXx4p/lbquFJkvxzuOtx2LJMVN0opBrQXRYkgUWRVicC4bEy/OJ0+nE+/cfcM5xehERrrWW+XBgmsQEoVlnNTf32iej/f4ax7FT3o0xnZ6/rivNrUSyqYR8430gtHvSOd2NJ90TGpxxoDvJcZq7d2FKajeGnkOqIW2vVYTFAzFkQpbi1Ni3zQ4v6Y5LGP+ui/V3G7kmNVEJTBEbqS0nzucz8zwx6GpEObWdsCKSG4mKajpSKVxN+1m71lCy0BIlRy7n/0GWT/+zPbySBkpWmrJzoivSd82og4FM+wXv99TY20JQlWbejS9vEm9zLjgvF9bPO1U0IaS4E9APHe+9+vkpCYBGdrTEJE7LbeHtrAN3czG2KaPFNKj/onyPZm90Q7E1QncOftgP5FaA2sVpdkHyrf3TrYC4+bzVdhH7XZ9lrSNzMwFiO3VZLvbSi1HXsbSCSGvibthTprHTvAqpjYYmNmNjeS5FzXmd2S2aKEULSCbFSE3KEtXn7KztFHCs+BBKZyv+ggbouvAqVOxGcsnGsC0rNVdOLy9cz5cOf+Yowt/meEEtLNbw4f17np+eOZ9PamkjLL8aqkBp60JOG9Y6jdlIrMHz/PxMyRFvC56MoxDjRIu6McaJqLi0m1/ew1LFHDnlTCqSfZB0vydMxCiwuWx+5eArQkix3mG91alNiCYSYVEwzlFuC5fqFG1jjBp70yjugYOlXUO01ITMPB84HI66h1Rij9UdtGnarP2eK1UCPKv1Xf7hfeD+7p6yrR161X8hhsg2EHwQMk0j8Ip/ACVXUk3UUnl+flHbqIijCa6feffuvWjbXs5sywYGKVyjZE81NqD3vpsYN+aq9555ngkhdGE4oCzI8AlhyjnXG13nPN7lnvCQUqaYdo6AMQ7rpGjPk0xv63olp6JkICk00uTJWbGHyo6kKAVnSIVhmCjVYGImJ4kgEdMEpfFbh7NJLfDEIcPY0AsxSp4puehkunUNXi9e+n6059Ugd2PAe4iJ7pvYYndCCJI7lxOn8+n7n/3f+1/+T/BwNkh8QlfOie6n5KoLZWHr5VyIW1Y8XXQ71moMhXZ/1gWCsdTquZwXTqczL89nLudz1+H4IL3GbfoxNApqgxrbZCAiSfE2Q36GdTw/nchJ/v2quxlnrD5f0VSlWMBVqtEcKVynk98GU8aYyGmPTfhdZp83v9rzvP3V7aO0ILeCt8dbtPfGq45m/xrQtF7j+hC4U+xR5lhDoEzTYffDTcNXGFyQA0VhE0rtGWNUYREaC7ayE1Yq1CyxHSW3xkCSVq3ZE2BbZxnXtR88t+LQ9qtNZNZa1edlLpdLd6poTQDQqenGQsobP/vmp5zPJ67nE1DY1islJzazkLZNrHXOqh2KK9ez5To60rbglFBQ2ck34zjoe++5u38gFglmvFwupKrsPSpYhw8jh+O97BGGgVQKS4wS0aJpCLVaShVSjg8DPhdSkYPDFkew5pMGw3tPLlLwijI1laqgB1NSQ+EsRVIP99vHZVl4Op24Lgvn65Vllalni7m1caRSMblgSiXGzDBoh14K2yKkgePxyIpM0s46/HzA6L0CcsDLvtLhnEgccpYcsUax37bEy9OJ5boI5KuFaFuTELqKfh8/4I3nNkPuVl7Rrusmjr+/v8cY0TWdz2dqlQiUeZ77dSOGsyMxFS04wsS0xuFdwLtMdVWLkEwpkss1cjjcde1Wzkns3pycdXFTJ5GsMSt+wrsJ7zPBwxAqfpzwxeC3QjIV70acrRzu7gA5Bwt78y/Bmr6jBfN0oGKIWXbr5/NFEIQYZYrPmW1ZWc4X1u4eH6QhMZIHVnVX3+zHjBGk4HK5kra15yp+n8cPunDJASwFoTbYoapFTJUDXQR2QTtFj7XNeNT2X856jBPqJqaqe/LaTSdBmdboIWzp5AuZXLQT0g/t9mEUJ6cGhhBYNeHUarRAm+RsbV2odqVWuE3FSMGlSpdclQnWnLM7JFnNzSH88xqs/bncTl2tYN0q/m9vVn2XO1xn9b1qBcjoJCTsQye5Xfo+VYr8mQpei7VQdHoyjmYa7L0XfD9FzYqRX1UlBKDBlVoEbcvMQDz/WtyUNZIDZfXPKRlroOTM08cnjIHr5cq2bgQvZAVAdxH6fhW5nrJJUrhawfNBJ7wk0GERI9ZaIOdFqOnriqmQomS7mSqODOu6si6L6JacoRZ5D721jMExBpkyMEaDDRUFQKMqrMcZLVTO4pA93N3dEYxhPhwQdmdk2+SAGLwccs4H/cxkgjMah2NK5nK5MtSKcY4YC1iZuMT2TKaynDNG86uoGsxZKsUI7T2nXbguk6KkjT89PQuU5xyn88K2JUrRAqiIB1n2YdTWePUwFNkZdgq+plH7wOAcgx/w1snzSZW4Ja71qvCcJfvKPE2qt5Rup6RMjsLoE+d4zziMlKjZYkZYs7XCtm4yuSSdULyoaIVfKObWQfd8KWXilti2RPBexdMT3gWBtD2MIzhf2JEd0YMKWlEw1ZCN7IGtzbp3HeQzqEX291XeG3k/RE4gforyvSqW0+XKdVlYl43rsmHCJn6o7QxraxI/EDfRHJaCiOWdp8XxYKrkr00zxRhCTkLkQu4li0T5BA2qBNXejQPT3T0v17U3tsgt1dmNrbEWHWPqzcD3efygC9eeb7Nj5W0iadZhrVuzuptp7udguC1eVq1eMGLY2eABBaloxNV2MFu7G+vKBWR2493a/NT2YiF6sYEYE9ZseBe6Y4axFlNq6/V0CGxQX+2FSxTupU8vDT4zIKyoXHqn9/MTYet4bn+1v7v93/Z8P7WTEksqKd5q07N/9/5n1rQCK/WnQ0pOHBywFVvRiJgdYqg1k5Pq32SJdfNL329FCq3uzIxOta2hsEYcx1GmXNXJqBYxDHVOaPl1F8K1p79/tjfvV/y5ybU1C10Xp2am27aId6F6B6Kas1J3OFN0PYWU1CrMZNwYsFagTXnd0nB5xTFrFdinWt9RAeeC7pKE5WmtZVAh8uUKaVnx2VEcei+U/j5XhJfc9lwxRqx3vdlp2kRFovep1Nb+7ty+F3K97fBZO4yxjtPpolojx7JsxNRym6QQi/9m6kjEvgM1OjU170iZjveCIY4b0vTRkZSSVrYo1mzOZhy26w23IXaaePukrXF46zhvKynKPe69TAsyLamtW6n9ObbzQvbDskePMYplWMr9ebkmyNcmD2+wTiNvUtFruL1fojswGCFvaRPrrExWJavlW5GJrBX2Wk0vaMZ4ajVcF5ls101yCN26sW6RLe4+iYI2CASYkhRtqzlluRRcKzS1il9oCVi3x8Y0FKQH5uoZYZ1jHAbu7o6MTy96TtHXNILwC7zd5Ei33o7f5/EDL1y7/qZ1rbRdTBUdzTiIZsFqq75/6CBeAAovNrsfMi8vZ7ZNdhVjCH3fU0rGFD04Qa6oG+KALMITOVmx4ym5ExBMBe8CW0zkAsOgQY5eIE5jBU6zFXAF2+EpIV/IOks625IzNRdlCEl3CLCuKz1WQI1p24UCewFrj9Ytt9+3v791n5BpTkXHFKo3fVkdndObsQrkAb3o3SYGm9puVtmlhUbw0PexlELaIiXlXljqTfE1CCxZZfuiAXlV5Az6/rfUXWrVHZQUW6veay154O7ujru7u5td206H16fbD/tpEnZoCIG4ZcZx7FBRrZlSIzFJ8xFC4HCYaZ2xMQI7Nq3cfBg5PT9xPp+5WkO+P0KZmaaAKUnYYiXTHMxyqTyfTvhhwoWBVCRKwukOCuuoRiLXr9vKlhLVOCFqXFcudaHkyHE+ME8TQxzVgNoxOIdbLoQwMo4zOV+F1Vkkf65o0UpR0hIaOaddQ1R6YUCvmRACtUw4Y3h5ObMq4WHdIgURsVNyt8Oq66bv1e7ob4zZrdn0em+74OAHvKe/r1KMMpsTo2rp5MWl4zQfZCLMhffffeB6uZBzi4IZqbWyXCLv33+8gbFk55S3RK6703u7Lhp5oVkktXtLilfqEpB2b9w2iN4Fas2sOWvPY6AqAuSkiTLFoKIVwLIuUSFN2ae2QliLJE7L52CpxZBT5XqR17+tiXVNgDjAL8uCaEObQcOTNgbiUOOtlf1XEef72EygS+n3hVV3jpwlr87p7rO9N4OyNR8fX3H3dGIcJ1LJIiXQ8yRnMTZYtlU9Ls3vgph/kccPunB5L11r6860n8LiekONTmEpyQUelYlmnVpTaL8nLs7il/f88SO5RWj3oif/FmXGUZtDhnRmJUGOkRQ3nFHIpVYaT1C6j6qao9qXmZjbzB4jHU/bARntmose8lWsYIzu8pzVSabIlBHXlRxNtwIyxlCco6Qo4E9xoM+5sYKSsidz3DBVItm92vrUCknFqEXNaF21MtHsLwrp73X3pGW9KIkiA2nbBMZr8ekhaC6TaGdSiupl1ggaphcqEAiwJIltcBglHzSYuCU42+7bJlChsPlqLrx7947DQXYPT09P/bBq00JSyAtQvF92fNu20ViJ25o+KfKlJHLZWK4vOh1l1mUBBNYKw0jJ0mXmlNjigkPcF+J6lc9IDwlHpVgj39MJVLZskct1YcThq+W6rBjncEW9LLVPSznz/PTSp3dS1fczkbaFYZw4eA/ekyvC7APGaWY+HNRZYut7Lzl4DTm1pGUPpuXr7o/uiKIFrHXjWEuuwnQ0WeB3o/vGWjLFyIwlgnLTi9O6Jb2fGllI9ladqes9pWykVInRCMEpy/Ny1lGd7H7W6wpJppuUM1ctKFRwxrGOqyAG2qAIs9eL5RfqK+layGPb+coxOQwtfNN0ZnC7VnIuN+Gw0Ka0WsHURmhyYuVGM+VWCNLU3uy0Jrr2f28oef9FdbJLMiJj2NaMMRmRfDgqjqwNk/cZ5zPei04zZdn51SoGByVXbIFaC3FLWOvZtsSyiv3TukZKThgDdR4YvKdaw/l8pqSEM/YTdGrbNnwIHO6OnyA4g+5fN7X+Gr2jGLkWv+/jB1+4hFaa2wIKg6MZ1sJ+g4lPmuk7oAYRdaq1fm1KWXNi9qgP2xfzmVod1H3/Q8P9i7qzl9KL1s6D+hR268WqVoG8PiFPyKhuq3a/pWBb99fo9Q2zbk9B7XZMFIFpKeL4LofCPsU0Mn37lVIC7R5raWtzOsOw+R+C6KfqJ99DXTWsTkL6PtL2dPo9a5VdiDcW4wXqCd53aFHyqYpChdLNN2Zk+3niwGFuZAhIsTbqn2f2X82Xrf27Uot2wuGT/d8taeVTQ1QwN81EmyArtS/L5XraJK8tZbIe+sJAVFp5GLTw1v4cjBePvjVuuNVgDSxjYFQ9lTWOYg0pFaFxp4zLBZy4lYSUKEZcRIzX3LFSiAq9GEr/9ylLxxuGkWk+MowjFXT/m8V8uTVlCjOLu4IQim69LuU92idS6o2fY9urqu2W7GYVqtT9lHR7Rqd2gUVjzlRtOFKWQw0tgsbtrEVh+YoeMG2FUoSAkfr1onRs5yWS/tZPEyFq1Wp0sq+kmHfSkfUYU3uTIjg2+nM9kDs8yCcTghC+pGgJbNgy/3LW6cjJz0/sbjLOCSIg19Ttr6r79xsDcCVxSDFrsKk05rIjFsAnRslRA3U/wZBTwXlx4MkVxnHCrhsuRagizaj6GoZhVKmHIQzibOLVoSelsp8t7PdlaSuJBuW2+7UUfPAdqUCOZGVW7jsuZwZtun6PWj5N00hjEhUtXNa4/ibWKh3prdaiHV7tQvLe42zAWnGBh8rlfFb6qekuzfYGsG3suh12ExJBIy20lNddK2F7YWhf0wLb2mWJ/m9fvehU0ViC7bk3UkGD2HLJ2h1vinc3p/pPYUH43eSM24iGnHNnz92SM4yxIhi0lqpODFWhnSE4cvGCiXdtSgZTsdWKP2BOlJTAe5wxTMPANE6ClbtPc4tqNyhWyq5OX/091K6+3hQfXVv3Iirv8Q7vOBXvNvpyKYWHh4c+cbVueQ/mW/VQ2qGhaZqwxqmOyet0XHBU7DQjBgB6IFmHD0EiRUCnlt1sNm0b799/4DINHOYRqLy6P2DGgcEOuBBwBYzNanJaoUjh8jHhdeL0VQ5YcXUZuVwuXK9X7g4H2aN4ed6ff/kVn799i7OG3/mdn3JdN67LheNxJiXRCK1rZLmuLOsmKdDGkXN7D+XwbJZbfWmBTJ5ZDyOB6tSQ11ih1+eKsV47fMOmky7GsGyRoE2K5ItJzAs5w9BSFzTiJXhJO79WipObJEVBAKTRcMKIS5lpnLk/Hvt1ELf8iVFxZ5AaxziM/XN/enpinAfm46TMPsjZdcFwY8qVXPt+b54OxFkkEpfL0u/t4AeMspZjamxEIXFFhfh7qGY1FC1ORYY4vB8YwgTV4v1CzRG0IXfWYq3AejmjsGASHZwiUAaZvkKYGMco7Ewlm+Vc8ePQ34tpnMlZvDGP93esq6RW1AqXy5l1vVLyxmE+ME0Do0Lf3gnZyo+jVCdtMKZx4nA80HRsbW9Xb8gZYtJcWNb1/+5R/7seP+jCtW0RYyzLsmAHXVJezyxxE++sIj6DSSmdLy8v/XBcV7nJ5zpxvV67s3OMiUSlFOk+c00dqrDBsyxZ3OerBP+1Yvfy8kROzX0+d2bX+Ry7Riul1Bfjp/OJbROxKLqUXmNmSxJq6RSqaPsqOaj3QLvgPdfzhZIyzloupxN5GnDeknLUaclyXZSNGAspixuA83ITrNsieH2F8+XMEAYOxwOvhkcp9mnjfLmItiUVPSwU4rGwpYWWMrssphefWvPepdE89QopR6BwOb9oF0onZHgDa0lYU3HeUnIU4a4xbOuiS2HJV8opdpf/NUWFkyxU8WYMzpKMMj+d7KpOp9PNZxy7FED2gqUXsW2LvVlYloUQAvf39wxhVGjadk/HlDdyvHK5iGNALIm7u93RPurPo8ElViY36x2rshOPhyOPDw9gA6UaLotEoVgfMMZzvlzJ9dKZX01L9+HjkyIAYpbsh4FZIWR5Hyxv3rzl8eEV4zjz4f073n/4yPWyME8z9/f3UCvv3r1j2zbm+cDx/oHT6cL7D09cr6u+1iu1G+O2iVomGue8uI3UqjCa0/c24P2AMZl3HyWgMeXC8e6elMVI12AJmuKMMXgrcPX5fCV42FRIfXd/z7vvvmNdFrwPootbFwyFj0/PYCx3d3cCcQ8jX3x1R1EvzZIzd3eHmwZOJjVxq9/YtqjopuXVq9cYJ2sAkUTINFZrZhimzgT2g9d9nND4DZZpmglhZgij7NadZ9vEAcVg8UPA6HuYygY3758z4rXaGIQyOVsJtKyIiNtPncWck7hwGJwaWYse8vH+UaOIoEwy845DC7isMAi5J6dCaG7vVWzyrJoBBDfgJs/gR06nE8F5igtSBJ0nWM9xmsXAwVgwkrRsjeFwOOCmmZO65E/TxGVbiKVwWRa5F4pIOVLO+GAJY/jeZ/8PunAJTVMOhenugHWeaYo4XcTnXJgP0vkeDgelYMoHOQyeu8OBaRwZp1Hdbwy1Co0654R1G6XuGLsfBzltG8HQfipmbq7Q0zASnDLGalUBsTKGQtCsrSruBd4ThgFjHNgkAW6lqujyNqBRCxf0wiUToaV6R4yGELwY/+oE3qaG28j0NhnJ9z3QEl5jin3CGIahT6YhBMZpxLmCc3kPsDQGjLLFaqVQKJpLVqolq9q/kVgkHVdSVK01UMVstOaKs5Jj1ZzGjRH7Je+cwD06rVorkRfOoHRnmXTb6xxCoDjX3/dpFJukcZ4EOlFD4MPx0F1GfAhdC+a8JBi3OJHz6YRzkg3mrLwvTbCJqSIbDAZjDWOW1NfD8UBQ4e0tvDSEoHutjRb6OXjP6zdveHz1mnEIOGOIaZXDK0vTZRAEKwwTk7pqy+4xI+iaNBLeBen0jZFdpbFM86G7XQj9eiQFcVY4HI4YTQTwLmK9WH+tq9CfUyoE6/vk1ViuspfRa8mKQau1luBEA7SuK4fDQeIygMsWCetGyoXHV29kzxIjwzBzd3/EOcvz01MvXM7C3WHkcJjlGq/06zpYR7Uy6Q7j1F9bc5p3GIwR2DFlCYK0VmQat9INg+lhs41+LAQUeanNvd4Y+X1LUPBeYDr5mp35aIzDe6Mrin23VRUibLurPTuOvsow8Ml/tz/tBgO9TTBa/ARJEvJJ+6VEipz7QNwa9KpEmtxTEITU1O7bXFvkirlpkNVRXs8AP/ifcxoyHdIsehYYva9vSU9t6qp6j7bUDmhJF5+86F/o8YMuXA2OCWHgzRefMR8O0rXown1ZFsZpIgyDHsapw2jNAFfC4wzbIlocr47aYrUSKTpxuRDEEw6llSobwViLd6FTrasKWVt0otCnpVO1VrrMAkzzQUkiGnJpLFsqxJRJuejIr64PNzuFNlV467AOUpRgv5wHjocD4zQSs5hX/l8Vrga9NXZdU/hba5nnmWmaaGJNZx2Hw1GJBkXxdd35GdnD1SrWNc1NJJPFLbvKBdpSc8cQmMZRCkytQmZBE3yngSH6DnHO84y3e1BfuxlCCLjjnUAPOXeNiXfiZtBgR+8900HMZ13w3D3c664PhmnscO6W4m6dE8RCqFaxTnp5fqZWNfldxWUgDIGcxMAUUxkGRyV1KMm2RiBGnHqxOec4Ho/9ub1+/Rrv5P149fjIw/Egzv2lsFxOpJTZYsK5D4xeokGmwx3zLB6BBbnu1nVjXReg5XENhMGLo7lxTNMszZH1HO/uefX4Gu8CmMLd3QPzYSIMnpfnK9dtY1k3vA8cDgd8GDFWChigexQ9snT68nY/1IsSXNZ15fHVKw7HO1wY8ONBYnJS4u7htQZ8Ckng/v4eaw0//a+/gzeym92WVxxGz9u3byXNOS5M08jxOBNsxR1GgrU8Ptzx6tUrjscj1jku56tGxoturqhsISvMbq0l6PVkrESuSNOyZ3dZ3TM20ogcsrsY3znX78OdV9AKk/y+/dt9k9z2U/VGqnIjs+jMaGm0b79PrbfJBa2Q1m7fZIyQcLYtcjqdZd+upKva+mvdmWfdH2a1IWui6qz3bDUG5xICWZaeJp3Shj0MWmD1DCritCKuHbooMfJ8rZ4x6BkhKGJrLOUcRuOW1u33KFT4zTdfK5MnkSg8PD4KdbmIYeTz8wthHJjnmePxjpZmqpAsaWuHOMR1I8VNxaQS0ZBzAlO6RYsb9sTOljwlh65EcLQLJaqrd20WKFq4cruAkJwcavPy0+V11RyoIuJAY4xSr9tFvgdGOmtwprHyEtf1Qi5bn6BoF4wSWH6+E2oU8cau3BbxV6u54O1++K7bStxi79oa/R9uChdV8q+KQh61cJgP+welU4HQeDOlGErKYti5XMhFrLEWdaY3xnBZFrzdQyMb2SKEIPu9Kg4c7Xl777t2Sg7GyHA5U42QIXA7TUb8jqXNzbXQ/sZYy+vHN4zTKBeIHnLVGrYciTWz5si2LqorK3z37okQnDZAgZhkqlqWlUWd/8WSJ8jBlTPTGCRfaxhJOfP0/Cy7zlJIm0wnMWXW2CjMlWV75ulJu+F6o72qFRBdzrZFhsET1Mfver1SYpYEgOC4XhfO5zOn8zPHw8hn9i2H42tqvfD08SPfvf/Ay8tJXRUMzo9sWxL38KM4LjRyRkpJ6NumEX1k37VuG9+++8BxjRyOR7GbKvJ6rssiU441hGnEjwPzNPG//PqvYyiIAC5CjsxDwHnD5bx0iDmlzMPjA/d3Rx7uDjy8emQcxRT3fL2INdG2yc9BdoCPbeqB3ZYMBPrWRiKnRImFYRoYvBVRcN5z5HJWDaMxfR+ac+ZwOGgj13azrk9kxjisbcQQuV/kfhRLrxCcFtr90e5TyQd0ZET/VXPBDR7nAsKklZDPLkkshbRuEmKr37AYeixLVrZk3yFDf0591KsVpWCJC34tGu8iPz9RMbWwGcNqoTivVHohASWgrOWTXXlVQokxBj8Ejd0ZWJcLW9w4/V71KlzWRZaJ5yvj+wPrtopljTGsa+RFHaObp17L+LEaPR4UVnJODtKiUE7WEMZSM9Vofo76vCE1SBluO8wQwqACZ0S8mqXQtAVs6+Kr0eWOEzG0fC8Q1bp0KhIEJ9/7chE41FCVQVixhk5ZL0rOWDe5aa2znczx89Cg6V3Q/vumM2vklRBC16O0KJVmJtoX71pohbHS4sFbWKTovc6nF7k1SmVZrjhjCN5TYsQ7WQyfX86crycNeSzqLC0PgQRvJAHI5+adv4FOxRJKTEZDT9ltnb/V6eQaF90Zyo0cVbVfi+Y36f8VKt9++07w/nGQA8M5hmnkcrpijMAdy/WqTNPKupzFb1HhoC3FToHXsqOwbOlQzPEwMU8TYxgYghwArpFmkKKaq7hCtKss5cKWhHZcqrDGmrDdmNatR9alMoRBobtETYXzeGI+TBKueD7z/PTCu3fvadlmz8/PfPz4kQ8fPrAsq4phLcbJASnSDaXb1wbz7DtM2Ika67ZRMLycz9zd37HFzJZEGDtcLt1LVCjaG8s08Xh/h6HinWEanFofqW7SiNnw3d0RUzLHuwOHwyxIyjgSBskWa4w4EVjb7uEXBomZb6SqqiQqYfW2X1WCWRs0ZxqkxSds0xYn1Bq/W6eadp3e6r+aGUIuuU8rlZ00VVsDoudEI5DIz91ZrJTaUZPbe3lnfSqSUncCk0QCtvLUrm4LamAgxCcV9MttLKsS9kaxsYPlO3ADtSLvZFVGcK1SHMvPadj0H1b6UfnJa2ta0+/z+EEXrqabOF/O+PfvuFwvcmFp53s6XYSeq5iw97abuloLvtnoOIH2UCdtW6AzBe2NkaQ3ivrtHUzKmW3dlHkmtO24bVRpXuSCq4JvrzGKe4SzuFH2WrVAqgWM6xqiikxtpexUU2EpyuuWcDtwXg6Skgvbtsr01BfRO4tQLnZokAWghIpFQxnlMmiamev12ovXtm0dIrm9KMFgnN5A3DIjK9WI56AYkVS2dZXn7Bzb9YpVp/TL6cKyXKVro7LFjSZw9WqY2yAKaDR99wkbcvCBYQiMw8jleuk2RMu6yIFfC0tcJQhUv9+iAktq7fAgFWJObGvEYJiPB7x1DOPAfDiyXJaeXnu9XGhrPkqiUZZzzqxp092GhD+2A0sIHXKj3h0PTMMgsS/GaFGXIjKEQHOBaY1MRdxcztcrMcn0KzBf6I7kpei0mSLjMBC8J8fEel4Yh8Dx7sDLywvn05mXlxPffftdP9jfv3/Phw8f+PjxoxYoB8ZRTVSo0IiNUDuM9OBXtFwp0kKH37aNy7oxjCPn64WUqxauDT9I5pyEdY49uy6nFQtMY8A/3uG9pdKgaRingfuHO2yR2PlxHORzcxbrHZ7AOE2YBsVPk07A8tl2J5nmqpNlx5yLHLqy8dmP+Fvz6fb1reDc+lY2oW4rXB1KY3f1KaVgdPfUkJD26IVPWay3RU92aNLsdKcc0+zY9qBK2rWmJBlaU8f+oyp7oTZ1/wybJEU7kH6f0+7z9nWK3rjWYN2gLu25CoC0F1LTRnFqbxBud/WtoH/fxw+6cAnF2au4OLMsF1IqzHf3VMA5efOE9h7wYX/Dc476wYo3m3WiAbPVUraIioSUgHHzISGHM8iUITeWMG+sTiOGAYvAEsMwCOU1F/y6ct0uVLPDlUUwRMQvSgxlQf5OYIoEqNOEkY5JTs3dbdt7B8brUnZvbeQiUYZfg/fKrlFaFsk5am4AORtSsmpjVLogFbQItkVsE0vavZBVe3ubiMOF0UYhFK83A6p5EpiPnLBqQGgMVBP2Q8Yg0ymm34GtaVi2ZZ8q5wMmG0y2xCXtOwhlL+Xmw2WMQonSbDSNmFcdU0uodd71yI/evTsrh2CLw7HaMOi+oWn+YozEvAmkOYwY5zoUE9s+0zmKMSwxUdaNbV1xCNTZ9n+3C3XZxUi3nWLqe5C4JXIqLNeNmFZh1TnHy8sL0yDfh5pFtG4th3nmcj6z6i73669/Jplzy4V37z7wfDpzWRZx0iji+pKrkBNKqcR07VCbNc1k2XTHcKdaK2stsWZyzVy3lZJR+DSSasWX3dl+Xa+cXixPH97hneF4mIjrWx7uJgZnCQZcFfRDUpctl+XKZTljldkrAbGWmDeMg3EYoJjOGm3FQM7mnaVbLhfMhuyYEO1V20MdNN5ECFKfusq0e8Vay/v370kukX3ucHWXlFi/TxVWrj2bE1jLOMqup5SMqSI+l/toFz0PfpQ0iRgx1XI4HDke73rBEgcdGIeRwzTz2du3vRmjyASkXlECLZe9WBQtpP1sM0b9IH2nrcd1IUUPNWONkKXmMXB3PDKNQaBy3c05YDAGMxwo11UBJRkQyG2neSuZ0Ia87wZ/8ccPunClHDFG2YVOYbeSESW6wEctgr7SWEDqGKFuEtkYvE/U7HYsvMMBqK5Kpwjoh3ephWp39lDViAmZriQPqRTVSpWdUeSDxzhDGISQkcVEjIz8PIPUpBatIgGAtmuS1HoVi8TYNxKIr9p130xU7RDfNVmfsn4eHh4+IWvcml7KVBp6Fyb/Tv6uQ4UN9mzT3E03KQynhu2jujSVBKBdbFU/QS3a/d/edo23EySyV2sCx1pqp1Q3XYr8PI2X0f0KKapTutpPOauF1HY5ACpEdbZ5W9o9k2jbRDScnQo7uyllj+RwEnQEqe38xD0CY6jGEqZRPlttQDpEBXLIlMIas+yXsljwlCKFKwQVuZbcP9+4yVtfdVL13lO8Z1tWEfJmYceSRVdYS2G9yu5WaOsr5/MZ997x8nJiizI5Ouv6hNHsq5yT9OzmJmHV+cEiHpLe+z4ZGyNJC1grImcD3jiqHajdn1KbKG38XBgkrdkLM63kTMxJ3Gu2K5fzM9fLGUshOEE1UpLmchqFMZpiEtKFFRuytlucpwmr+XPBS95UKoWsovBtFdNXkHNkVMd5KUByDzYZRZuc2/3UHCM+Earre9D+TUqpN1yNFfwpc08/KyWUGaPEHuP3Jq7u0Fr73ikmYsxczg5nDOtypweR3muCOQscWeTnZI24kabNKIKg/6v3rLjOR3KS+J4YN9bV4SwSbDkmStBEiCyaStqZ0hjW+r2lMN6Y7ObcnUlscZ1Y9X0eP+jCVUrqOxyc1SLVBhLd7yjGWn/uQK+10SvUXJTd6cJZ1wXI1RhKVZqoaQaxbfiRA4p2IdAKj+14cBvnq0IqgxvEQSLIhGRKvRnJtTgYpblb+XneO+n6jcXcGM96Z7rWyWlSrUwr5maxvB/mtzh8rRLu1m5CuIkkV5bh7ZSmTwsUWNEyclO40MTcNp1KIbbWYJztkSTChtWDMEjhtbXI6zK7QLx9XvJz9+JVEesdg5BYWgdsrKGkop6IVm1mMiZnkr5hrRi60hboSonW5xVqM75VGx+FV9reDANWPpTupmKzhjJa0clgWyRIMzaV62EYx04IaVlrGNS+C7HwqXQtYMkty00v4KDGvbow2KHZ5tZQsEaLXipkIy4bpsiVHW2bHGDwgaWspBS5Xi+iKTO2Q9VGO2Kn+VgydfouxjcKvzU7s90NXF6wC45qjVwP1aiprby+7nto6O+B844QLCH4ri/KVWDP9XrlfD5zOb/gTOUwTzjdM76EF1aFsnPJOGPx1rGuyqp1lsfHRyGrOE8ZtKiU1CPmt7h1yG9UJuK2bZ8wcVdNCbhl+N6eJa1w3TaJt4Wr6PVnDGLblVLfK6ck7ivy36nfPxbbnUxMNcToe0Dltm36vKM2spXL6a5/BvK2yxvc9mhZdVQxp16wpInQxtVnavGUImYGcdvYtpVtlfc3qJwlpUTKDm8sNM/DNrX1gtis2PbNRUNBsGrKV52sOr7n4wdduEBYbc5LxHQVvEmgM9VYDaq9Egr8/kYVNTZ1VqYficSQQyKtqUeXVCAXq5HYVeEiI6SNIjDSOAxyz9a9YEmbpW4XeC1AlqUsFFrOEbhayM6KZ5he3dbsN3CMWRNGpWuk0CcHoN8QzujBafalcsfIb3Zdt3/Xdlu38GL779tJLMaoPnK3k1GlJzLqzsu1icwYxvmI906W7Flo/BbDcT7gneyacszacBjxNFSabC8U0nF8WriqOLenlCCLuLMFZYpfnzQYLoj/nDUQjBQUKVoFP4RPp0uFPodxBHZHe5dCZ19WazW2YhBGnBWN2eV06e8TwJglUn5LkmwrdkQO4x0pRnJM/e3ztTIOk36Mcr20olVzYRz8zWuv8va3dqu2UEMJ6Gv7puPxrkeK5BJxVey7hmEg2AFrYBwcSwxyjXvLNIFRTaEQhgwewzAdxTIJwCgRhP26bsGc8uxrb2CkYRNLH7EyksYrpqz3U+6annadhyCsM9HvFTkErSeupoUiM44jj4+PDEPgyT0xTIOweY2hZjmoM5ktixaOCH7weL13Bg3qLKWwxY0tb6xp47qtXb4hpgHn7ngCfEJWup2+esGGHS61n05pSYXUohl0GG8Y1pEhiMhXiFzCxFuWlapEjHk6UHLher0imWFnpmnCGAkkbQa6z8byPI6kdcEYgeidwtutarRdWs4SKDrq+8YN0aTnjtVCSpHnp488v7ywxYgPns1JIVqWgLOQrbgJRdUvFr0fi2lhuuI6In1KM00IhDAgxs2G9ffqxOWMl6knZeRsUk+7lGguA3aepVvaNnVcRw63IgUDDC7t5qO1Cv3TVu0sKZQUyUUi6mvREdhCi3JfU4MBRKDorPiElVyIa8TZgHeiK4q5UBA7nzYByKJYWU3G4N1OgJDu3XbdkaBabSfmPlmwblGSTtvE1fUpdtegwKfefO3hb8gL7Qa2emKUvNL2abJ4bXAhHRKwN9MoBvImqcPFWWpz4HYebyyj9/I5qcN5Kpk1Zmyp6ptWZXHbDkYtCvL+1/5cjGLvrTtOKcuuxzuGMHQY19zAGc62KI+G9xfxCdR95LoKBu8HRzCSEjxOE7kIo1HiL3YrsDCIF2RzVJcMrcA4eIopHQGwyOt3RlmfpWrNN7qK0OvOaHCnrQrZabPQCtgtNG2ymJ16q38uhBirmW3bshKcxXiPNUOflQGCC8qk02ugFEpMml5QMdZJiq4WG4GzxZPSIp6Lxmlytk6cBtkVJiDqFO1dwHnR0pl1U3jUMI4TwTdWrzQH8zQzzTOOhKkZUxKbC3i9f+bpwDQdGIaBbUvq9u712i4drvJ+EhgSCaPsr9FYaW6dxQVPmCYKIqJNzhGmkTAEMHxSoBr8NwxDtw37+cbv59m7rVBIpl8WvaeuCYZhlGSHnIVpq1Bhm2SNMUzz3KN5qHtoplWbr0EZlYbK4L0wn2/2jcGHvsNq0pGsBWyad8eSBsfLjlKtmdQAutbKFqMIygdxSXFOdqneWWH9JkilkopIYqxOvc0AvGX4BTcw+IEpTMI+LJVmXvx9Hj/owhWsPP3oEsHKjkG0C3u3YdGMrpz1EFSiAWCQw6MqHZuqmG1GhMy57caaj57CjEUzswQFFFhGqdPeawRAlODBtCWKheLBZfFXyxWK2fc40oU2AEizr6wAmJ1MYYyK/BRC0wOsmauCaExSzsqkLJ8UqP17q9npzesRMalVl+3d0brBVFLQ5ZfTibOzsBqmbei6K7QQy0RcIalZsfA5cMZ16m2nDW+bFKUiehHXlscYXW5LYc/I4V6VVNEZn9b2YisHq9wwsoNSzN/sz1n2LEaWz9ZhrKdpctp+R5wAhNnn1O5JdjdOYkUQu5yM0eLYh45ewOXHymdmFZqU6ah98vpQCLBDo8aQ+s6y7tCifHduE9HQ/WEtBeMMzfhZmhv5WkPFWX0O2ni0b+26VRQiLq3y/Ewpqlereq/IPdRcENpnv8NOQlypOjEWJ757zYjW+705G5T56LTpGcexR7uTVWlBxbvA4AdymLDGQ709yKcusL+doGfd/LZpueh93b+mVqq1hHEg14pNkWAGmd696wxUi9E93J6p18k/jQnY3mvok45z+9cJeUwIGs47/ChTh3eSxGyAbMTweKzKPEQMb9seliquOCEErJKwbCM01SKRPuPApB6EBtnXNVj21hGjpWx7L+SjUvcm0AdHLQWXrIiFwyDPpTvqKOLgA97JbF7LnqeWjQErhasR1cSGvglOJEbK2kpwA8GP/73j/b/7+EEXrsmPYvfkRTCaS2bFchxmjHOkUnFFTEmNHqQOWTbLhNHOskqJSSco1VzkrIw++uhrjKEmdcTWLgWk48oxESYxV825EvNC2mQqErF6YV1FtFmwZN25tE69VtB2WZhOrdCikSw5Q4PvGlyTili2tEmqNlhH/l/rvkoV3VKsWW5pvVCrRrdQIRjHOMuFv9VE3KJ2sZZgB6VhJ8KwTzjNFRxk9nPYTtmvxeoKTAx3g/UEHC5XXAavCqCUE+W6sXx8kX+oU9w8i72S1XDINUXZWWGkaJRKttp4ZIXOjMj4pRBWghuxYQQXiSX1FNZGOpC9CtKJV4ip4tSqKesbWXMlLwIbVf1z47wSQcVq1zoPDmwV/0pxEYmAOhhYQKchY5D9j5JTcsqKwKquRg/2iqE626cxfVf7zqxR6du20QDGqYg3CzowBXGB8c5iSmIcmm0PrIvu7JxjDrvI3Vrbu3BvMuMUpNlpYnpbsR4xSpanTYxNnmAZx5myRZytjIOjNkp/hXHwHSL0IYg8xYrG6Hi45zjPBBfUrslAtgx+4nh4wOFZlgun05VpKkzzkcPhoRe7xliLMXK8mxhHORvaI5fCVXV+UcM95/t7ijWc1guH+SgxONYw32mGWQj9Xmn3UoP/tm2j3kSZbMsqcDJeNHrjiDHifHNdrt3t5PH1635utN1ZLpK/d7gb+x667XFvX0ODowcrLGY/uD613b9+xedvX/fv6xXVoMLLy0ufBmOM+1QWwr4XB02Ozmxm03OiRa1IY3E8TDzeH5l8wNRCSivZQLBCk8eNRBsYbGawDlOgpko2mZIqOVbSpg7y44iz+2v7RR8/6ML15vVrhhA4vZyJObFslbJlVreAusaHIXBdrrycTlKwnKjXp3lkGELHYnswn4Hn5+dewOSmTZSonZjZIzTUK4Nc6h5dX5W2nPb4cYEoLKkYliUKi6xl/liD5B+q318tlFioaY9ER6eNFDPOFqq1+vPo0FGpRYxJS5EC2Lp31Wc04bW1dt+PoWmqtYL1FKxOmlCrsKqscWAKwVtKDRicdFk6Ulgr70nwFltFaFurmI+KBZbqcapCudieIZZS4ny5iBD56UTK4pc4TCP390f8MIi1kQrLBzcyzhPffvuOFh/hB+leDZaSDUbJAOMwUo3B1EKsYvFF1dgNQz+QTFug1DbVqYhaKoFAjNop3pQI/bqCcQJXt8kRNGLDyYTZ2GQ1J/2XRo2F5Wfu6EATwKo1T6lsWbwrrXMivFaa+hYj65p1ihJ9nLeW0JbdOlF5s0fygE7nZv/sqZLJVFVPU5G8s1ZhjfwjrBM9W8xZPvuUWcpV/eva3thRqdoISVNS2lSnD6t7QQksTKQojY2zhXVZGZ1ndBYJGLCKijioTr5/tRgT9Fo15CJm8jaA8QGHMDgrhpgrVV0/BDGQ6dk6eaZekQkUqs21MI0jd9NBip4WRKds1aKi9nZPHo9HTL2Rl+j92ijzrQDJJ6okLiuTZoPtOzzfYGy3B7j2fXxHNFqzCbkkUi3Ekqk1y64pRWKWuJpMJScRLtdSuK6LwHzed/SCnPtzvCWbyI/cjbwr9HNKpnrZa1sDg/fyHlTEn1TPUIl0abpLyzCMPNw98urhFff3D+QoWWpp/T2q4zoe7wjOEbcMcSPmIgdQEbgN3SE0plmDb3Tnr48dgzHaZQhFVaGfWsk3XyZpxbpzqU3LkxuY0iGYFlvinB50NMV4UfZjExXvuiBDlf1ElmgQgXRUr1XbkSmHnQQn0jOsmvI/Z8Gazc1rdzph3BpfUityX+2sMaP+iMYhTD8tXC2/ydQWdlm1mDZ2nUE3KwpfogVR32ezR7sPw003aizWye5RrHhk4mkBoe2zTLlI/pR1+DAKw01dsX0YesOwH04e58VJwVXJM5MAziLFVWHDXdwth11BJm1xUgDdTGnhuvGjq0b9gHUPqQ1HLkWhODUUNUatsFBGXcu/MuAK1RTR9BWjBU72XOjh4HzoRaT7VBgIwUoRVljZ6RRVKv35ylNVzzidKJsDRIeM2w6w74D2naUx8r/9Om/XWd2dJ0SCJ3ApyGe1xUSpllI1FLXt56zRhkXutVyVsGNFeFzaPaPXDrU5suh1VPS6Qv4+l0pMBWszJktBpEkNSqFEoYAPtH3xfs834Kr9WcuEq6X23Ki243HOETUSpE0yLeqmM3qduKe3n3O742rOGA3ubQVof1+b76DBuXLz9+3AaZ9LYym396ABdPLIqtESr01hE9dcyPpaGoGpTXu9cbs9UG+6jH3KvHURqbr3U1JHvXHeaM+Ib6W5AAB4AElEQVTJKEe77gXROdkftyn4sslkfLlc+b6PH3bhOhwJ3rNtEkoXk7qXd/2JYLUVvVGUzWKdwfpG994p6316UZr7rtlSjDxVBq8feIcTM+u64cLAoBNahwBrFYGrFq7cDkWUVlF1AjFC58boLsq2/Uez1mkWLKh63eGtR7klNBsb7bX2Cccamh9is5RSUJFaq7xfqt2RJNgRMJTquhAaDDW1LUnWw67BCxWvu6KkVasWKKlSM7RS7J3DDxPjNHO8e2CeJaZhXVdiqaRcmVfRu/jgxczYelIWP7ktZ7yymAoWHwacE2PZMEyUXElbJuVK8AaMx/hRwjhLweUKRuy7iopn0T1Xn7oQGDCWiCqr6IWrKlZvpOgZuZR6scxld9P2XqYfoehXgS6rUCy8OpMUY8m2EVGKWoKptocsP8BUpsGL11/OEippxAV+HAaCEy1NrZmSohCIUuy2Y/SJUacKZI/a9pqdfVpLZ90bI+xU0wqszCoqRt9oed4iDdkPYGOdFOdcWeMCJvT3pWB0L2hxpXVfVW23sgiP51kmYW6LqdwCpVZd/hc9nHUfnIrQ+Kvp6IXcxhKkWUqm6gtrDVs3sdXPrxqBmUsqJBKb28R/L6YefWOtZVEW3+l0EhLJPPNwf88wjEoucepSL+9HgywbpNiii27t2FpxaUVSqPRybcrUtZeU22LT7t3uJmOlie1FUoth03plfS4tJdw7r7FGe+bdz7OK28+y1uJoTOSb75v0YoH+XEo2ZBLF32bsyXkgxJbQyS05Ja6XC8/Pz/+d0/2///hBF67LcsU7z7KtRIXm5D6xymQKHB4emErheH9PM4AVUZ7sjeQiT9IN6vk+qFjUth2WCvNqFYuYWjJJC1eMictl4XjvmSpgnLoxy6Rg1Xm84fzTNPdupyj8V2NUzY92RWpLVQus16UfsM7KzsWaSrK5s9FB/T9cEDfxmnUxLx10qoYUCzW2P5ex83q94pwn+BE3IIdmRZhlee+w123FWfFHFPGuFPPcb7qs8Fdb01XVpoB1himMVGPJ1WDcM9N1URFp4nK9cl0ja4G7+zul8cK7j88y6TnL/cM90/GADxJhUarsYbABY4WVlWoiZulM5eh2UhRLY5HbNv7JG1YRSKpPjDIMtKgIOQSL3p+G3fB6h1drrWxplT2dQi7FyJRRK8Ie1TDNlCrXRZzfZbJSUkqWEbW2SeOGdLGltAtxk2SpeWsliid4bcIQOE+vDxGKGt3XyHulalQVwev0Z6xM6W36MHqQ6+srbZo2lpwT1+sV42UKrkVYuNYK6WKe5X2siNmuPGf5HtWIrgdrsUnRBcNu+lql6G1r4mpW2eXGKCavNZNjZIuJJMtF0brp1LflIjTszeK1JqIMtyb439YkhCIjBtIYmWpLqthaIUmjVYx8FjkXee9uCst6E5LZitF1WViXtdukzePU90jtaxozESOBtnGJzMdjhxLb10lytjRQjWaf89avgxar5Jwjpzb1FIUllamapIH2XmDIbRPP1ayO9DHKLrsVwb2Y7ysR2AtRc3Q35VZrpW1vqeTGzM5Zp+vdPafrUeXj6LZWDVbdYmRZFi7X36Mmux8/fsT5wPl0IZXCum2sMYHSrqtVnzKgQWIoNJBLFV1NTpQcZdltbU8SbR2JHEYGsiB4RQ8d6UTVmaFBkEZ69S0nlnXjuqwU47u/WINV9o5LOsNckuDT7ZBUmjDI4tspzJmBTfG3VrSsVd2Gd9hJbIZsdbKkRy61qBeOiJGb96LDjzPGOHCeLVeW7UqKmet11QNNurktroTgGIMjIAd4OzgkNTeS0iYCUKcTlnNaxQxZAxLXmDgvK0EdEgARYOYi0E8W5lqphfN1EVtQbwkxYzYpTIXKskmAZzUOg0Q7rOvGddkQpM3g3EZMUd0CkiI1td+YtU3YfTyR38dN9oS1Fzk51K27sbdSuK2Uwho3oe5rV426hAhxJsl0WtQhwo84r599lPThlDfWLQoDNRWFjOVNbvutMATGSXeGObNu8nqdM/q5BH0J2mxYQzEVU8TtoE0ipU3EtWJM7i+v6RdRSM4gdP3gHMaZnsRsmlQhZ5Z1k+vDyb5pCINMDMaSS9ImUiBEgeNkehbGpB6c6jxzuVwZQyBtG6tEHuAAb4XZmJNM+sZ5KV4K3dZWLHOhmqTTsd7rCsU3txyLPIdWwEtWSKvIe9LdbcrugtF2QAaRUYzDqBlphm2LFBUOe+fIMauAuiUrbN0ZQ3LPpKCXnKnOaSyI+ZRg07D1KhKf7u+nu+LqRZuYk7CYxUxY6fdJJD+1qOnyDZ0fJF+wKoW/NUHWWrJautnGKq4av5L3a3EncDT26A6cy6Uq51pwgezlrGu6U9sL2M7qdNb2Yvx9Hz/owvXu/Uc1hV3BGmKSGxprxbG4yp+BvPltWV6qdIbSSW3kHBnDQAi+73tuxZGg93WuFGEu9J1VrXRfO2GdFdYYua4bl+tKtV4pu42+rzuH0nKAtKtLksZqjOxCWpcITSOGEhqiOtnLxBWCao3GkWGcJB21Fky1+lpLD0YUB3iL94YQDPcPj30PlQqcLwvX68LLy0V2Uk6CFVPaGEuQZbsRV48GD65Rot/XbWX0gSF4cJ5RYRSZHAuXTWJjti3KJGZNh2K8c4QwcIkiAs0lc1423XlZ/GUhVZkecy2sm8SklBop2bKtkWVZOZ0XhliIsVIIpBgFCtOx9LbgVF0lNfJ7e6TU4lkqcGOV5erP+VbKXmvdNmrN/TDGQFY4LaZNwFIr9OR5OjAMI6WI8/u2bcR8JpaVNQpBoU2Fxhrmw4FhmJimicNhJq4b27rw9PzMtmxYC3MZGMOkUGARd5cq0jeT5Xp3ZidKFN0Vge4t7c0uS2US1VTVZRllGeoEVujWPeu6aq0WQ94yG4IXu6fSpjotABWZLqOydFECg9cJ6ny+iG1R8HgL5EywhiFYghGpgalg1Ocx626laDEWtEXTwY3VsmYx6hZC240V2Qs2OrvBKDlFIF3ZCSki0d8vaeGaq4h89pVt3dhWobNba4lb7IbVjb13O80I5Bs1J6xKdIgWrtakygpCLte2hihtQaq/hDylAuh2MCkpJq4btIktpk/kMJJILp6BVTWrzSatNem3k6ZMarLayOw7tdb0GuRiapOisQ4zDEQ9u8TbU23z6h4RAzJBhmFgHH6P0uHfffyItU6MSv1ALoXz9UIsFes3rFsoKpKkVELYle4xSlifGJdmbE0K74AfBjWlTNJl6nI6d5hCrIX8MCjhIACiBYq5sGyRZdtYtg2cRLJXLH4wXNdNOkPjqDhxt/YD7ucWoyjEMg1j79pTStTlCkRKlanD+ID1A24cydWQtkSqSk6RGYMtyo4kxsIweIwLjIc7/tD/8kd6jtPL8wvpZ9+yRkNmw/uJMM0cjkcRp5ZN2UwOawPWWaYwYf3MISdKThymmXEamOdJYBnF47frhWssXLeNl5PAA845pmFkHAIhCGz19O07khb0cRjAGraSefr6G7nJvWMYR7788kdY49i2yPunF04vZ07PJ56eXhiGkWmaef1qpYVeOr+bKwPdZLcUuiUWqGWVfgxyaLWpRDKQPlmsKyEjJsmKMsbg/W4PlnMmxU088oagbu4zwzhhjGEcBUoe5jumw6Pa++RdE2WsuBwMA+M4ME0jJSVSjIzzA+tyoZYsnpVhj383taBcFUo1pCJMWWOA3AgzKhGpYI1KCqr49xWdSmSytHhjpZBjNPQ0ME0z43BQ0WmFakkxk9NCZSNVmbzaFdhkCMu6dtPjtu/w3jN6z7bpFIHQ+YM1DN4RDFppNcoliRHyNI+EJGhEi1YR9EESA5zu+rZlVc2RNFDOymSVtoh3mXjdiNeNmjJp21iWK7WWroNKKe0WWM71BnBd184mlYlHmsPbmKBWuKT4i41Vgw9bU3x7XdL2RaVB1HR4sp8L1fbvkXNuoAYpJpZ1oRTZJe2hlVXPu9iFzm2SanClvHcCN5YiDv+n00mZkODmEeespFTnkVJupkQ9q8Q2yhNLe/77vdJeQ3s/wjAw55nj3fEXOO0/ffygC1dMBWsqa0zavYkrcqoFm6V72aLEVFAKuYrgsXWawzDinaQde7sLWXOp0iGlSM3i2G6AqmaVGDRh98A4DAzDxLpFhTLEGXyaC9V4wiAmoDjXO0TBmsG40G82UUaDwBz03YCoy+UICLUyzYcupuzeYMZgvWXLiRQzUXOMWvGrRrwXPZ4wjgzzzDQfGacDk7HUUpmPj7jhyOOrM/evXxjHmXGYmOaJHDfW5cy2XiQWvsW1B4e5a3h2FdJA8ITg+eZnPxO4gUrCYPxAmCtHnSKNdprFwJoLy+XK6XyiRdFXu8sFapUCHcLAfLhjnu+QiWvFh8I4QSmWXKxmrw24MEATQba7G4U19Fox6hDRGFzOoIQLycOitF0XevLLNSWfhnbkihEblPxgm8mufI3Rw34YJhUxe8mIm/T3weOspBz3565w1H/9r/+FohBPLlKUDPD6zWeAwkfaNGwaykkROQItwqKzUwGKMkMrReRs8qf6XPuSl/oJ/bnBRKWKAN36wBwmGQJKYVul6Oas7EoqWIetiAdjaU4lpU+z0eyi2CkMNOamNFxKAimGNSchnmSxYXPB4YIn5sQQBoWjVKKi0oDscj9YSxL3FtemGTVYLlnjNmImb0nupUFWBc1tBjTcsd2a+mhi5LZflkZkF1C3A7v5F3qvBslxNzlotl4lNyhZoUpTbtihDcJV4F53jtaIRVrTpDm771ylgfL9+4npuGlU337O9YdObP3s02muEcmoMvHe2kY1Jx96s61TbEqy7yq7GBzoE24PPy3lE+jw+zx+0IUraVzHlrOo9aVfk+lFcZG2N8g5E2oR1pd66IVhxDDADX28GtiKkDbWLaojho7zRQ40g9jyTNPEOE4MwyhTnnVilTPOHIrF+QHrm0O9QIlCTpP9m3EO06IyaNRlfXG64CzGdWjNWTG73DUdSRawOZM0sTkW0XMZhZvEPshLZ+0gjDPDOBPGmVolgM+5wOE+EIYD11crD68vjMNMCAPDEFiuF67nZ66XF9K29htkmgZG1aU4q3RvJxBNzF8rPAFg8eOIDYFpOlJRgkwWQ8+UEzElifpQGGNMmWqbjszh/EAYJqb5gPPCFHW+MM0HvB+ZpyPTKLEPxjrGcdp1WRVJQG5doFPLpe4u0d5y0yHEtldoBBVdnXRotYKSG6Sbbgel1SIgjYfdC9IwYq2XYmZkyh6GifnujrvjPeM0M88CDVotpqXC9XJmXa9czhcsQs+eDzNjCBhEr7MtV87nU3etKMrYozRvybY3a1NwEWKC4lLtU0KnFKNxNY2NWDtkuL9+FwLCC6mkWACFpqrYpDWYrRrXoSpKX7h1hl8nZKu0oNmmoT8r5kLcEimuVApucPgkaddpyBqzsmvZissUq+L9WgUyrCgd36Lqks4UbVT4rBMzVaaQpqnqBaruWVutONRSO+QmzhJ7tt3tlOS9hwwm7cWohXE2izNjW+Fqrjn010Bt2lFhS2erOjktJvL3tk9Au0G2wqBGrmHDjbWb7tlvi2/zcWx/b41Rz9e2stghv6p/3+6vWis1pZ21yz6NycvY/30rWrdoxy/6+GEXriTd45oTNe86iqI6EKOU3i1GLpcLw+B7Fs793YF5UtsZJ4yjoov8eDqTy8q6RXJKBO8VjpHFtjMG7wPTfGQYR4xSzdsB+/hq5HAnwtuC4bosqm8xeA2QxIghZa7KaipRJsbayCT6wWPleQ8Dd3eTsCSHQX31rlxOZy7nE5enD8QCqRpiBtTYc+hCZ4txlvkwM00zfpj4T//5v/D69VseX73mR199wZu3X1CrJaaCd4I/l5z58OE9Kb4hb1c+fnjP9Xol58wwBo5HNdNFXLVjisRlIWa54Zy1jMeZaZoYhoF5nKhVsHZJ3X2HzYlhrgzz1I1o1yKRE9ZayV0bJ8IoJqPPzyfVmHh+/KOfcHd3z/F4R06wLCvrKlDH6XJm3TaWmLBe9VVaaFrUQi7NY9KCVXPUUsT1Peeuz2qndkFID1Lw5LvlIrs0i9D1jUGdBDzDODBNB+b5TmCmLRG3wnJN+LCxbIV1LYSwMAxnouYXlZw5zCPGBnJZOV83SpIMuWVNHI8zgxdz6GE6gnFYF8hpI8eNnIUKTS/eWQ9g8T903ukBsksbjGk7DPq9BCJydvPM9bqybSs5XwnhqrsO2w9p0TMNXFaBpZoJPtowBB90uhPxtpAQKtfLisMyBIm098iBJyzPwhYTyyK76JADPhchjJQqgZFOdmXVSVOYS4YkXpeHeZbP3ToJBg1SiFzd9DkNeBekAKlVWIp76oT36oeq002D+YZh4PT88gmJqz122rhMla2QtMLWJp5bWnu73281Z7eC4FYcrfWfTD+1SLKxC6a7YbRYltSKk9mbtnEcP/mZTvWd3vsOMTaRNIr8RFPUX9F3EodzFt9eaxY4OMYNM8yqdfM7AcPtWW1NlhBjJG7xe5/9P+jCFbPQpb0fpEjUSkYmI2cqHst1k9gAjGVZNmJMeL92tkzwTvzYinSiBdGHbFGC9EpBjXGjLC+1B72uKx+fnvWihct1xfvAOOUOU2GbS7aGF5qmNdlTQUE62qQdWK5C50UZYiUVXHCEELlshSVmNSc1LMuVdVn011UOAxAOVZVF8xLPAjlagVjWLeLcRaYj4/jp198xDiOvX/9nXr1+w/39A2/ffkEpKy/PkpR7Xc6kbSWllbhc1KpGaMbzYZaLvBQul4uyBBMfPrwX1Xzw3JWjsAZjYrkuEpuQopARdNFbSsY4ObSc8/gq1kti4hpIqbBcV2LMylKTm/56WXn16jWPj6/wbuR0unC5XHh6ehZadhUn67yJi7WpRmj12klmYzpbrxoJPcwqk+hTh+L/lQp6UIm1UwVkN2QN+DAwDtKJx62lOcs1sK2b0t/Fmfzu7h6D4Xw+S9GxKykXzpcrmwo0KbkzNrd1wxjxg9y2RNw2sXKyUFMipUjaNkqJPdk7DNII1JwoRXV9iBg5twnHud7Z1yoQedVOWMyTG3EjUjSN12sRsKp/K0YsoUrN5LxSm3hYhfTQOm+joIJkvXm3Ww/JzkumpxzV/b9mtmUlpiRkj9aA6VSNumTkLLuuKhVX9lmmgil9j+Z035n1po4xCYuuGLwNhNHig2o/Z0EanJPdm9H70fuBZmhea2WeD70IDMMk6IA6t8zToe/1hI1nNNFbTQGcyBrWZaVk8TScNDtMyBfKvtNEdFMhbREh6wqLU6a3Nl3CEMRH0GAI3pOsI1YhY4zjSNCiKQQRVFNY9r0aojU0w0iKUbwyKYL0BCFUDMOgzMpbWr4leE8YZjaFCtd1UwchmcTRAmqtJWlDFYbfo+7w7UJtrsoyye8WSwXYNK6gOTtQCiaLVql1Sk5GKYGwKGxbFHZZVW/uLN87m0IzZ02pyIIW04keYShgvBjEqoo/V3TxXrAeYhHWVsZ07U4BtYjSEbruJrI1V2JN0okXOSS8OkFv20Laol5kok+peqE1aGNTqyHnC9JXJozJ/TXUIiar5/PCskrGzzAcSDHz4cNHfvr119rBR0qOUJMWpyyTKnRa7fl8EnlBKcSUKVYmYr9uwrjMBWcMmx5MzZ2gOYqI+FpufMsOiVpt3UuuUNO+L8mZF/vSDT2H4cD5fOF6FXZk0Y6xIPBvLyRWjXitQMsNstHSREHgZzlrZVIF+T1Ghcqq8fGGDkmmUjBR9IFxWQUuRDPT6gug7hJbZAgjtRq2lBkGiVNZt42XlzPrurJuG9uy6Pup4mYn3oMCL2W9FqvAaA0izJHBB4YQGMfQKdk5Z2xpMozEFhchc2hNaU4HpbYgVnq3LGSGrR9STglPTQMnDiHoHrlQkQO8W0w1NXtv9NtBLhNN8LdZX9K9V93VNUr4PjW0wmV7Mdy/t+mFocXIW4Wb9+QD1IVDvSNBC4nvKwEpdqHvfFBI8NaSqeRMCEOHzpwVizR05+y9/N5u8Uborj+v/UyljHdTATWJjkoiMRiJF667sQFVHPqNM0qakhdlFC51+jpbUkZrPLzbgxub4cItMaTtofbDVZr5hgA1hmmzj6PcFC6r0VLesyWRecQYJYFcw1Sb44gY99Kn8O/7+EEXrjCO1ArLsmAQHzKDCIgrRjQ5eVNn6oEhHPCdDGF05Lb4MSBnvZikXtdFfNkAlFLfupRh9AyD3EA5Cw1VmHKGUi3ey64mZV1IV3H0wFjmMHFdNzFwdQG04MaUKeeLwhsFxgmmCbwHHyAncqpcaiQCIXgG7wGHcZrAO4ycn5/Y1ojzue9mZKEuexWn+xZrZUp8fn4vQmGls3ofSDGTNlmin17OfHz/AYnvBmdhGDx+8v1g86qUX+ut9xqM49Dhkssi72cIgWnwinNXTRdehYBQ9wy0dnMYvfmccwwtyNBaIglLFl+6nLmcz+SYGYaLuFgUCcksGLKBlSI7RPRmdeJXmOoOGTZHk2mW3d8SI5d16TuKIUx9gX29XrlcLsRt4e44SZOTE5fLlbQslBghbji1uDmFAdoO1FghBqTKdDgAys60kteVosDTWeHt5sAQ49oP+ZIyMa4InTuzbmeBv4zher0QrPhxHg5Tp1qD2P8I++zK6fRRonpqswGROuCcY5oGhnHg7jgrsSBxOp3292IYMGbqWrxmHSSL97bzUKJHS11A9yFqM2aB6sQNZQqDJAtUevyGMB49rsfTVAkDatTrtvOxFocyHtvBqj+rFREpzqYf6BV0L2v7BGeVCOW862LfpuNqDhy011h18r7ZFX1CeNBHp5krwep2p2P1Ncl2Ww/woppQWUvtv3RSsWot1bwPTalkLYbhBoJsrD53U6za62liYKALrHvxVTp8SkmuPW1CGRxpliDU2/1YJ4f4CsbjjZoKX68sy0LcZNKfhoG7+zseHx95eHzg3bffssVNkLDv+fhBF66f/MrvYxgHUbCHQKmV0+nM288+Y5pnxmHk8fGBeT4wzzPjOAirKmfO52fWZZGDosheZouR63rFDCM+eObjgeN0EBp4iiyXKzGqb9l143q5qE6sdtufGBOxQ1kGF8RKyYXA3eMr5goZS3YCXzSXgnUVqKgU1B5pIgwDYZxJaaMW8TwLQyB4YfSpyYR2cJXlfCbHTbJzfNCbxjCMgx44AafL05Qz3/zsZzw/P7MsKwZHXDc+bu85fXzh7u6BEAI//upzXj0+ql2R5f7+yDgOhMELq8vJzX29Xtni2rF454yo4y8Xnp8/9v1ASRvLsrBtGyEE1jVQSgIEemyMRQMSDa46rBb6KdlNB9lL0Q5HFaLGiLWeYB3BGRLCB/DeEjWNSkSzth+yMUWME/isOZcbA6/evOKLYezFqrFTjbV8Hr4QHV6KnJ7eMY+BaZBkgPVyYbteuZ5eGMLANIzM49Q7djAsl4XD/T3OOS7LxnES/8XDNHF/POqus3K9LLx685rXr1/x5ZdfCPR0vfLt11/z9PSBWoTJ+fjqjmkIDD4ISUP3bd5btlWSjtd1YVtWdX048+HDgVqzdsq27dCVlKIxPqYoRBwRQ1+LV6NqK3lA4qKxrSLDyIVUK9V4mk9iKyIVcVpphct7i6kSePnm1WuGIChBTJEcB923GeJ65WLOXEtmWyMMvk8RrXg1LdRt1IpMx7JLsRWwTTclyEQrIrlk+ZXECs6VxoLM/aCXpAb5mbfhke2xU9hvCnknLmihq2qcXVuUUumTnEQxyVqgmsY0VIeKWiRt2NjemCuds3+PRr5o+isx36696etFHnUPgX5di9+iWn/J6C1fr9ydKh0wOe32VKYayDehr0V67mgc6yZnpUxcEvQbQuCgZ3Bz8n95fubdu3ff++z/QReuX/nVX+Xu4Z6cEuM0U2rl/bsPfPGjrzgej8zzgS+//ELEuWFgGkeoQtt8fvrA+fTCslxlV3Q9y029Lnz1Sz9hnCfu7o483j9Qq4SrnZ6feX5+5nw68e67d3z48JFlWbiuC9uW+iQjTB4Z/8dxkt/7QAijLJ2xZCVyiKnsgHEBMGAdwzBrUNzINB9IaVM4q8h+y0nYJKZR4sGZSk0RU6scpErNDUEW0u1QLmkPuHs43vHdu3ecTmfiljidzmzLxvV8kjC4w5FhmjhMspgN3nN/d1Q25aBLYMn+Wo+C94fgtUkIXK9Xzpcz7999x/l8ZlmunE8vvcOTbrACHmOLHIhWoZ5cFPoSyMjpjsD3G1GmSINVFmCj+8kdd9utBu8xam/UwzFr85q00v4akBwlOTCneebx4bEH7p1OZ3HysJaH+0fRw1H5+O7A4/2R+8OBN29eU1MirivX0wsOo+F5QQ6WJAvp08uFQVmPH5+fmeapMw5FzC7LbBcG3nz2ljdv3vLjH38ljhXXK1+/fs379+8oJTOGwKvXDwzqkXi9imTBIkX/ou/79XohRzlU1m3l88/fCn08CPmn5bctlzPX60Vi27dFmrYYPjGUFUhLWYON2l0KYvxr9LArmummbDfx/pGP24jzu1hTGW28GuPT4Qgdwixpn3xSipSqUFNjw0EvVs3fsGOC7BBYaYQPu3uJ2rp7irads2jZKlahxtbgtKHotjh1xmndv7az9X6+cAkrZfeShF2ErLo9dOpvJLD9emb/OisZWu1xi7Z94mFodpagSE9cnxCBDvs1h/taK0O7TnNmGAZqMpjqKA59PUXhcfE4bJNgqdIIJyVl7cJn+YSck2SNRnhpaIusWr7f4wdduH79f/11Pvv8C6y16gJh+OlPf8pXP/6xFq6Zn/zkJ7LwVbaMQeCI08sTL08fuVxOvDw9sVwvxLixpY3Pv/oRx7sjh7sDrx8eux7j44cPfP31T/nu22/5j//H/8E333zHx48f+fbbb3k5XeSDMg6DJL/6YeTueCedvlXIoAUPVksIE4fjkfuHV7z97AuG8UBQM1o/DPgwaL5X288UvMrlay2y21AoxpE5ziPTMHAYhO03DIFxGvSQEV3a+XRiWzfWdeXHX37FN998w9PHj1zOV77++md8eP+R89MzqzsRrKFMEzVH9Q6ysiPUG9FS1exVyADDIOLjh4d77u7uWNaF8/XMw92R9+/f8fz8RIqb+N51GGWQqAknzgsN0knrRoyQbaKkQtBpbPCeuEUKouGzzvcoDtkB71BIMUZ2js6I870WvIoQZnIFZ1I/NH3wkqLsPA/39/zoiy8YxoGK4bt378V921p+9NWPeHi4ZxwCL89f8vbVK16/euCXf/JL3M0zlMJ2vVA2ITM4oKTIh/fveXp64unjC8Y4tm3j629+1kkGFcM0HSTCfp758S//Cnf3Dxzvjrx580Z2STnxkx/9iJeXZ3KOWAPzNELJCgWuXZQb48rHj++5nM+cz+duL1Sp3N/PYnw6SnOTUmRbV9599w3v37/jdHrm+eWJqJZe27b1fU/zqJP3OqlPpbhSeOeI6thBKZhmEalTAlVcPRziu+iNIa4Lzo67Jsv5vmdb6q5Xkpj7SZtDtQDRvdi+vyp74GpVWzUjQazGqqeeeNZ/Uliav6jVabNWnVB0WhT4TuFrhUibO8Wthgr4pGhJ4dwbKWdvUxpuNGFaCPvP0c/J3uyWQnP00deY2ae7Zorc/vvn7ZS6BZPCiQ0ZqXZnRE7j2Ek1JSZ8TsSSJcfPKqknZ7Iz+LYDRfS0JRfWZSGyx8DcEjKawbS7IQPl8nsUKnz3/iPYQAge1M1h2Ta+e/+er7/5lufnZ0L4f6nGw1GrCI2Dc0xjICsDbluXHvf+8PCKcZyIW+Tbr7/lm9/5mVyoprJcr7x/956X52dqqtzf3TGOIw8Pr3h+OfW91um6qPbFMR2OStuXi8daL9EapUKq1K1Q1sR22TDFQbYEM/blZV1hb/cscRW9Vkob23KmUZm9M5giHmfbKhiz4PWWol329Xrh44ePrMuVHDdePTyS1oXBWe7fvmb0ntd3d8zeSYy8tZTtzIfvhAhgrOXdd6Pq4DzTJKLLFrT58PDAw8M9lMLL0zPLeuWyXPjw7jteTi+czyeulzPbupDiRskJ0KTovGlRBqjkKG4GLc7eDQOOAeOLOqFnMSimOV57MJJ4jDGEMDIfZoq1nF/OFBWeO6P7rSR2W5tmLBlrqWkQUTqwnc68N98IBdk58rqJLit4rk9PbKqbKjXx4d13eO/4L//5t/nlH/+Y+8OBwzCQ1oW4rGzXhdPTE8/PT5xPJ9bLlWGYSTnz8dufiVYpJbYYCcMkhWua+e7dO7aUJWctJSk0YeD+eGSeJ8YxME8j8yjNiamVbVuEIVkyy3Lh6cMHLucLl+sZb51OKJWPh1FhWUMpiety4Xw+8+7bbzhfTsS4ATLhj8PAw91R4OB1Y01R2KFbFDuxWDrJwGsRrEUbh+7WQQ8drdQOZ1IrcV0lfj6YfrD24lQr3skU77w0LkbzzEpJQsCxe+JwzlnKksJwQ2j2bUbhR2HxGiOMSplsbb+GxWcviHWaMRja5KAFuEItcj+mJA7o8rA7caQXrvb3CWek97v1Km3TUCN8SMGElmzRyCFtUmmep7e7sl4YjCW4vUAAvXiUXAS5RaBOYS1Wqvoq9kdF/RJvi7qQpm4p8+PgJQioFW3Vxxkcy2XhcrmybpsQrnQ1YXXfNs8zr9+81u/7/R8/6ML19PyMVaZK0UC+d+/e83KWpfbT05MuYcX0dbleOlZ/mAQ2rDUTt5W5xRU83vP0cmJZF15enrmcLxIvbsXk9HQ6sS5X1usC2oWUUjXOGiqWlKtQ6Cs952dnmDlEMSL4dNoi55cz61qwLuD8wMPDG473DxyOR968DpTOripCw06RmDbStvVdgDOeZVlJ24oxhbPuhKyyj9qeY7mcSXEjp8Tp5ZnlchWjzVLIcYWaGfyNCaiTGwLQPUWLzzCkuAktW0XdwXvGwbNtB66XC+frmfPlxPt333G5SjTEqjuX9nxiWsgpktKKNSqYrZDTpq7Gwoiq00QOEUqSVOKYWK8rMaZPptk23c7TQXZX1rIui6a72L1w5ax2V9vesZYCqZAUjomXiyb1BoEQNda9XFeyuhz60XG5nKEWPr77jvVy5v5w4G6cqHETN4GYSOvC5XTmerlIWq42OXG5SuHKLVVXppicC89XyZhrpr9O3fkH55nnkcM88fjwwNvXr2SqzonT8xMxrqQYWZcrp5cX1mVhWa/S2Og1NI6hTw6lpA6ZPz8/Ic7klWkYMPMkmXRJ8pO2bWNdVrZ1N5GtVSjykhJtdUeGuiiwE4VygxLpE5ipVXSS3nZ/zhTFVV92yxtisdZCGPXm1wMWnba6SLgWFZbXvg8qVu5FgKxmuk0Eq/OUOuP/7keDzugT1D5ZRWVaAt1t41aj1SZV70R2EZw47TeiRktA7n6CSd63JrFp+VefsiqFzdxIO1b3vraKrVP72SkltlU+p/bcWi5WVeOGWxPeWqs2PPIzT6eTpI7XTPUWP3hqlYR0o6zCnRlsMEZJO1eRynRhMu2z319n8JJndjgevvfZ/8MuXE/P4BzBD1zXjVIr3377XfcUu1wuwqRTNtrTx4+SDFoL8zj2BXOKGwc1Mn39+jWlVp5Pz7x7/56P7z+I2E47BukmM85Y5vkgugvElsj5oAUsyF4qJZIRLVFzplf7Tyxi8LmljfUaua4fJGfIet68PvPmjQiDD9Oxj94pRylcWrxKSQqxOapzXNeFnDdy3rBVrKqcM33aLCpKbWajL89PbMsq33vbuJxObNcVZ6ruhVS06L1EGCn+L8wvuTFLSmoDZGXvNXiW68z799/x/PLCy+mZd++/+yTmQfYnMgFeri+ktJLipn6RDeKJ4m4BDD5QYyQNAyVFBjdQtsi2XDifZboV2rrAltZ57TLFaiterxK5YIRqL7vlrM9l6/uDmit5FXPfZdsITnLKhmEUjF4L18U61hTJNTM/zDw9fSTFjXkYWE4vHOeJwzBgc9ZO2DF5z3qRhmdbV6UyF+K6SNZUzpS4UaqkAJRa+dnTt+KworTxqkSCqP57x8OBzz97A/mXMAbiuvDu229Y+o5qZdNDLsZVdlxxY1mvSteWR85JGqG4EbeVECxh8DjuGMfAskaupzPXpWnMEqUzwpRy7Rwle3I1/X5ofpDNdb3kqntJaaZqFhZtUCG1U9JMbrq0tClEKQJn2YkKXV9+MpJ4fQOt1SLNThuTGq1essHocGLKwqYtpWgT8il02OCzxrxrXqEppV642p+DiO8b6xXUCmsTSD47jSTSc6l9z2VZeuEopZCi+KV677tEpN37+3OyrOva7yfvBXGwFdbVfnJdixGwfO1t4ZJdm/nUz7AK9Nle5/PzM2vaSLXg55FxHun2Ufp8m2ejWJe5bnclzUztTUFz9mk/z6mp9jRO3/vs/0EXrg8fP7JG6SZax/r0f7b37rGyXmX9+Gfd3vedmX07p6fn0tLWUrl8KwURoalEJGnTFglB4Q8EosUYkFqMXCQEwt1oFRNjNAb+oyYCKglIJEgsl5YgpUqFVED6o7VYsD1tz2VfZua9rMvz++N51pq9aW1pgR4PnSfZPd17Zs9+Z81613P7PJ/P1g6a0RhNM8LKygo29u3DqGlQVzUm4zH6rkUYmIU787xFKaXFyJvpu/9zN3Z2tjGd7qBt24LIGzVNUSLOUFMiQj94hts3zEox73qWEkkEV0UeKFYK/RAR4xQxMbO60hYEzhLmrWe5cWjYVKPSNSgC0+0Zur5D9B5ByjcMGxdmeMuS7XVjMZ1uoutnGHwHRQx2qJsKk9EYlbOoKovG8iyQ1Rpt1zHLxeCx05/A9uZWGQ6sqooFGn3AaDIHy0kwJRZnkTycmGHQIQZsHj+OffvWsb11APcfOybsFVNsbW1JFMblRz5UBy4ddnMQCbwdvhxySBFaqG4MEQYAkOylBRCDzNt5GewlxWTDxgGW0M2m6Pueg4mmEdZvhmmTwqKB7D0faJrHG3balmHplNBUNZx1GFzF8GcjTPyuQgBz8s3aHXRDB4Apb+6++27olBD7Ho3RWBtPsG9tDQfP2I+Tx45h88RJtG2LlRWmp9re2UHdjAAwgCEOPSPrTNZ2igipB2IWIORAa7vvcOLEMdxzz/dw5x23o3LcPzh57H7OqGMoTAdaATYDHORgm+1sLzIOShK5K6yMx2gaJo4e1Q2szPjde/ReGbhm2sfJaCSoUlucTUwJfuhhGmarIB/5c08Mg6cEKJ0AikwP5APi4OG7Ht4oRC+jFW0LL1l5N7TlsLdBoW4qGShmZ2CNCMOa758JYvqkEAYAAhUn4oFzWUOohCEO8CGgitJXE0b5HLTlAzo7j92wdy2PExHvtUK1tGDPGIYBZBSS1oBNiD4AxHpZ3WyOMuQuQ7sAoOoaQfpGIQQgpl2weY3QD2WuLp8fAETpQi+CRMmIcmZVQBjWsbYaGJeUBICSGelzJjXIfWBHNbKmV9/33NJIC/Z6ooiEAOqZDo5LrqIMISVRP7CT67oOXc9BVc4QH42d1o5rNp2i6zqOXoZBiD65OU8xwWqFbaXQVZwJdV2LGJhJwMhchDUGxpoCAQ4pcY3WB0b41U2Zn3GuYsYAvZjhyASiPMzIN7aTeSmlNepmhG7I0NAFhDj5BFIRgGY+txgQBxbM2zp5P5A8pttjQDOs3Ivjsob7CFVlUVUiIWAUjAWm0y10/Qy976DBG2g0qrG6wkCC2jmMa8czH4pw3913F2STNQajpoEZjzEZN9BKo5232N7aBoVBei1JSEolOkVEDIy47PoO3rcIoQNRxN13f4/F9oYe/dADWDBspxSgFKGpKzin4YcOfTfl208BpBVHcYLMbKqKZWcMfw4s6aEwHo8xmawgU27V9Ri2qmCER673QRjMhVxWyhcAFmABmddLMjtEoiacYkQAuJwF4kwNBNKKASOJBR69JhnMJvgUMe06UAiIfYfeGqRhAIUBse+ws7WF6XSK6AOaUY2mbrC2toL1jQ0YbXgd2wF9jOhjxEAJgQJS4AN+cSgGLpmmiJCArgNStKicBSGJnIQVVWApQ5GgLRX3G5pRI1Ewl5wgM1GurlCP6sJKr2WcwDqDSmspB1fYt76Opm7grOPZHelrzLsBcIZBEDEVYc1ECZo0NImAI/jAoxSR4gBKXLpUVmHUVKjJglKFZjACrQ5QmgR1yvcf7w+9B3SAXTI2CosSIMnfTBCS3V1ZVeHUE4RHnifMZfjs9HaX7NiJZb2xVAQyC2RQMnwlMH0t/zKqLjGrjgBGMrVbvre0MXDSf1JGoXK19D1ZoZwUsU5aSsI4YtGMakhJh4c+rAFFZiSJieH8XFngnqWTfhULPHKw6CpXgDBDCDCe2fwnK6uoKgetlJD6Mu2dcQ61VqxKTWD2/5ig1ILeKcP985rmcRMo/jQerZ3WjqudTREJUsMfEFOSaExDEQMWKMYFFDxmyC6JI3Jy8Due+YnEfY/AdE/KVGhEIM8aDeMcT9VrgxzgcQ1ahje1wHxlsFEbPkyyM/UxgBKzsaeQCxSGezMxgqJH8gGzaQSlAW5aAQrFOUcf+ABxFnVToaqMvDcFpRPm8230fYshDtCKB4LD0AApYnAVBucQa97oGoQTx48zw4JzWJlM0NTMc7axtsplnBgwpQjfD+gGj34ITBGUZ36I59YG7zHv5kz3kwIUCPfffy9HezLAmQeKkzEgxRvWWYNKaSgK6Dtu1ivpoLMoJUOv+UZzRaCy73q+AZsadc3Du9pYNNUYTihphsFDtx36waP1AZRC6W1wwJGjzCAQasVBRQiSiUdEz8FIVATSFsypQVBgZx1TRABTHYEIPgBD4Pmu2HdI1rJjDB79vOUSXs/qzzEFQHMfaTKWAWT5jEMMQAzld0lKfPkgSMQAFaIIRMIAgqIKJjO7aB7CVZoFBlOKiOCzlEBQmnsWCDzbFkQBQRsF41hLyTgDbXVBBtrKoHYVRk2DlfEYZ55xgEcurMXQ95hWFdq2g7UtPPFrInEWmXQC6YSUdulOcfTDzisGBmso8EhE5WStLZwBvGXAB7T0fJBgFaMSjdIMelC5WMjOiv2QFlWATNQm4pGQsmHpG7HTyuAN1pOSx3QeCWMnZLQujlBrCxY947XONPI5M9NGZssM36e8pgYgDR3CYu5MKZ4zi1xG5ZEI7sVpo+FcBVdXsJXjoFERtDWIMRRG+mpUFaBWmb+SXh+TAcsIiVaoXQXreA4zxYyqTMIlmVCFiG7ooQcmTB6NGuEeNKXPpw1gLJOEZx2zzDakxEFmRpXivFSehpNPIDP8Pgo7rR3X8XvvBaD2pMFJKUzDgNCOQEOHMJkIxHPxHIBKPVqLyuxu+Gq0LBEPIjTjkUgQRPgIWMd0UiFFnmNy/EFVVSXXEhh04IMANIQpm4TNXjOrR5QBZb5/WTVWxcTM9r5Fv7ONQTOQgJWIebqfQkIfCH1LUrfmL1sZEAKMihi5hdx35QyQGPlF0QNpgPMOVjN5rVHCGCBN9aFrseUH9O0cW1ubuP+++9EPPZSxUMZgPviyjkozM3iMET4O8MMc3XwH0+2TaLt5HrIBAJ7CF6ehBfgBACF0XLodBii7ixqmYvJTs4sxAwA8CMkyfHygBAQPIICox+bJk4iBwTBKLcQ9gwLarkMQJgDulTDare06BhAohco59H3PfQejETyXwIauK1G50nmoM89rClVY5p0kGV1IhPng4f2AtpujqWokOaBXJmPM+xY+ehgNHDt2LzevY0Q7m6P3Hr2PwGjC/S5+4ZIZhsw4Ip/DXHH2CRlqJiHPbWdtkZzfTZpLCEixB0teJmbLtxraAiEOmLUe3WAwHo0AJAxDB62B1bUJNtbWsH99A/vXN4SvEPCVxWpTS/YdcXxrhk6qB8a4gtrs+yBZ+AAiBWfBwpGUuK+qCU4BA3GZKwYP8j1UjLCUuLwdPSIRmlEtiEEFRQlGwsAopXS7Cz7ObCT8uVTOlcw+owqtSJk4Z+Aqi7W1EYx1SDFhOt2BjwOIgKYeo65HpR+ltIEhdoYxAc5xEOm9x3hUwyaDtp9DOwVbOeb1rCtYpaCdRTOdlDEDax2aBREiIKMBRjE4SBmNqBK6vsNkMsHYOWxvbwOVAioFVWuMmqrMiXWtkCsMjChkmrhFCQ9K9q0ClFZwmv9241iG6djmcd4TxND3tcmYGVWcQQgDz7uJyjqMhjUObqVBd3KH18pV0BgY5dz1nEkCoBTR9jMMsec65aO009pxjRtmZichwVRKw1QWk8kKRuMxVlfXMJmswFUOxlop1wHSnZRhVN4nkYSvjhIOnHUW+r5H2wkSS9RAx02N9ZUJD+pFhidnOQWGrkpjczoTol4vpK0sTT94vplTYkFKSFtZKVV4CrMUhDEGdV3j0KFDPCApB1YvGz1Ko5RVig1cbZkk1LITa5qGmaKrZlcZBSzOZy2cNVAiz60BVEazA0kJFoShb7G2OsakqRFSxKzrMO97VGFR/zfWSOOVARdayDjrpsGTn/LTBebbdTyI3PUdWnECuVlsVIJCgqIIP7Qlg61HDSZj/hxX5EBWEMXbPpSB7KxwCwIMZfl1bmyzXHrEzPsSoUYhNOVyD9NnEQFQDPfd2FgvpaAslJjhx1zq1CIFwwcLk+9GPACTJrV+51iRYDJqBM7usLIywaSpeQaOCL5jFKDve8xnc+5/DB7bvceQWGUgM40TKWFMWTCEA8DGxhrOPffcAgroug5aa3R9z0AEgTNrzX2mGFrOQikghlj0pNbXVkVBwWHcjGQMZI6T99dYX13F6mQFayurmKyM4TSrAsTKIuaeTCKEpFD3Hj4BWvFAtdIa1g5M3KuZjk0rzl4VT8Hy70OAH5SgxQEZxb1JZyyiicwJCUgFRQltk5ZAQoJUAj8vMVdoDKGQWivifpDWGv3Qo+sHOKuQksocADBGceomCMAYCXoYABhBDAZoHQtG3lor6uAKQ/AwwSCmiCF4JEQOjEKFILOAWXk70zctCLcZzMJ5nfx9SjCRs7C2a0ESeG9tb3EJsXaICIjk+Z6CQdu16LsefhigBPXsrEVlK0ZcyqxXRklqzYPBVsY/TmxuIgQPrTXG46YgQDk75DlUpYCkuH+ZJFgjuewMsuKnC+uNfPYAZ9oZdPNo7LR2XKuTCTuuvCGlRr+ysoLRiA+8yWQC6xyMs5BzGty4XZCE8vChII8ooW5G6P2AeTeHTpmqJmJc11ibMNAhxYDK8WaoneP+mKgJG2fRdYMcQAM3xAPLM/RDEG48IM9+cEotjosIEF7B8XiEI0fOXCCFPMOWfWDhPgZzSWZVO5Y2sALImExQVXWRx86cfE4zOMNZi0obRhgSwWrAdx0QAzQShs4w4nLgOrd2BqQVXFqIzllruU8SA/qe6/3GGFS1w/59G8zCroC+FyBGO8f2bFqQVNYaWM3OtKkd/DDnAzARbF1hJCCbycpEspyMOmMobvAeXddxhkUEpyzf+YngfUTvufGOwDN+eR15zkVJIzk7LiVq1lXpXQ4C985OowyCVhWrCmjFSCzkAwySYZK8Pwb1NML7l4fiV1fGGNcVrDFATBi6Dr7v0bcdalehHwb0gwfN5uhCEE5HVfaHTZzphBDgA/dYqsphPBohieYcM9gH2MqVwWl2XApKE5BqCH6xZCJVVWFlMinSP+OmgTEK7azC0M7RjEacCTtXxkwMAEUWCglJHFDlKiRSUJGDM05PFxpPebA3xYRo2PHmexAgmfdKuxP2EuBZwywrWuVBVr6HlQShrPTAv0EQ9WVBtaW0IKD2IcBoj2Hgfo7SRghlaRGCKLmuyLp+WgUo5UEEQRfqgp5L0psiaIQk/KMpYAgBBANjYvn8lPRaSWVUPxW4PkCFnIxRkklAkgRFWhwmB4ld3/GaK4LzPFKQ/d0DlJol0NMw0n7TJVCGkgJ4YtonRakQYWci8rwqmegYKpWtniVmAIHuI3NFsuXPPJdjCXnm7nHquI6cdRhZXrsQX1qLyWSCumkwnvCAcEwJw9ALbHrhsADDKbN8qzRHY2vrqwzYUAobq6tAypPgEZUWZofBYzxqOP0GR3AMfx2QFME5Zvh2Q1/Y4e3gYaw4rkw2mkEetBBpU8pAW4vxZIzV1UkBgAw+FPLajMjJ0+i2Mhgii+0po+Bqh0oOoBQjQsjw2iSRLsCsiQtiW6oMEDmlj8EXUUiVwIPWxiLQQpY7S5SH4AGKfPNq1nOaz6cYj5mfbPXAfuzbt86zddMddN1cSlgcWa+vruDwwTPRjBblwZB4zmXwg/AE6uI4AIXgg0hCLAYttVAJIbPuE8FYi6aqOPMQdFoum+UDiIMFXstMxhtjhIlBZOeZU7IQl1YVrGPHFQy/jwyCKKZINNC4r5FLRasrq5iMG4wqxwS4wphvc1+KwLNjdYAej9D2HPxkDbSC0vK8D3o5YChFbG2d5FknazCeNBhPGukxYlEqVLxAdaVEn47lNPKsTd8xkMYYvSDa1RrH7zsGgNXBh8Gjcx5RJ0a6pVi4Cr0PyLN0vO+87G2gbXvMBVXW97x/q5iwvsEVBxUCu9IQJBODjA0IRF0nWFfBGZaJz8Y9aAdWNGKuRSFql6wnwg85+GC+wH4IoKTQ9wPafoC2FWfoPnB2pYV/NPF9531EIoWYMkCG5F+Zr3QcHFkYXgeBzg8D91atscg0SFRgXKo4jbxzeAvx+oE422JEqS4IwBB5Vs2HCCugLw0t4BfJPknzfRC5nx5hYEVipmnGhZE/lvuZHVlm3Xe2glYLmiiljYybLIbEAcm2pLqRovS0lFDfIXcLFujCcpYNAV33OKV8OnbsfhDxDEWI3BjUWsvQqOXI0LpFg1Tx8JzSWhqrqkQ9KeXIifCf//ktaGtQ1xXOOnyo6HUN3RzJM8qr7zqMRw1GTYO1lZUyW9H3A2YZTBGizOgkKfVxLJX50Sh7TGSyzyxnzWU4ayzuv/+oOAOuxwMoiKiMctJaQRlGEllnMJo36PsWTTPCqOEhP5JSjNUG3spsGxgmbY2GgkX0A5ASDAg+DIiJQd/QgA8D5vMOnV/MY8UYyjDkMHSgIkpncOLEcaytrWFjYwNnn/0EjCdjjCcj2NqhbZsCjY2+R9u2uPM738HBg2eWLDnEgOlsip3pFJtbW0X2oRmPRPeIb5goHHMpMBKvcMKRKnpoXdtyj2uXlEpuMocQkGf4GfEI/n2tgd3N8/w5xYjU9/BBlWyAId95RGARTaYYuQleO7TtDNPZDKOmgTMaTjOoQEFByeAnpSjgjIgQE3oidH5A7we08x4p8SB6isRDxjFKZB+xuXkSXddh3751rK2vY2V1Dfv2rcPVDYxkWpTyvouo7MJxjcdj5pWczXFffy+6rkXwA46HgFFTMfeiDBx7z2KYIQRm7FeKB9xFCmgYAuZ9QD9EzDp2uPk68wyYL/pgGlXw2NreQkqRsz5rBEAFaJAENxyUOm1RCyWWtqY4AmgFk7WdEsu3GMMovZh6QGlWCkiJM0HwATuEiD5EeDmwE1iyRqhvJaPIM2mcyTE9E2daw8DD0TEmGMNZFIPWE1JSsr+SCLky96QxDgt6JiMlTiNfeU8paT2wE82oQ64I1KViUFUNxuMJxuMRJuMVNC6/tkZ0EagJKilE7bk65CpW47ZORCkVwwGl74wY5Z4hrpeytASMzDEW1g+gOKZECYFiEc0lCQKJE0EudhKh77uiqrBnfuxR2mntuLqONYUGkRFhwICCkWzBGAOlrdC62NIkVpo1eviM4gMsR3UJhLbrAECGPjPbMpfNKPDsV9/1GI9qNFWNnfG4HODee/SDXzgXZMobmboXYbhSLpTPLqRdUH61YHXe3DpZHLFzjJhDyRh2ffCaYBxD+9u+xjD0qOsGo9EE1kj4CaAyTJFljWG2ajAVTWUVfNcixQhDCWEY0M6n2N7egrUWbT8ItJ3ZMnwIPJsx9EV2g9dawxqN+XyOvu/Q9y2MtVhdXUHd8DxUJ2vV9z0PUseAGD3cpkPXD0z6mwJm0xnm7RzT+Rwa/Hl23iN4cVCK0V4pJUE2CT8agRlKtGhxhVgyrgxW4M+by7sS5AryVJyYtSxPL1Q7Si3g00n6lFAcKMUkDAQS/MQUJeL2CCkiCRsJATwHQ5EHxMFEs1bxEK1WPM+TEkf7XQzog5e1HorjCpE1uFjBmTslfc8ZKusr8h4fjVjQlIhKzyZ3Vozl4c/BR6huwGzeYTafo+sHLp/1A6bTHewYhTAMmG5tw2oem6iMw7jh8QSrGeIePQdqg4/wiXXGZq1H27KCgs+os1wOh4YxQAgR09m8sJMwX6FGQQLSIrt3rkZVN3B1zTRcorFGCtKjyZpuGkpowLQJrM1HXM7KmU6S0liQNSRkB2KhtYU2giJVWbxyQX7MMHjW+kuJX5cD31y2EV4/YXjPEi9aW+n3yckO4U7M2UnRGhOnF7nkyP3kxetTJi5WWsQta9SOKbyUrJlWGkZxsKcij3OgnEX5PJKyqi4VdiDx6ESUfiUSlesC8vMWYyWZhXHhzEjAaFRKgwDKeRFCEP2zheTKo7HT2nENAzuYkBaLlINjIhJdH2Y4iBQX8FdRgg0ldY2SFbHjMs6KztaArp3Kp0swAJxmUk8/DPC+wo7WOH5C7WGGyIJ7WhtYW+2C3WqoXNOXm4aNZAYtCL+XRox84My2Z7BNDSuS3DydnmfI8mHKw5ZJEUhz5rC5yVpQTTMuUt7WWjRVg8qx+mw3bwV4EoDoMdveYhqpFKFkSHPoO4zHYyb1JL5ZeyFe9d6j9xyJJ4rQiQDSCKSwM51jOt3GiZPHsT2dYjIZl97J9zMU8KFkcPTe+0okFqRvuae0SwDtTHHyxCbriGnhruMlBJIqUZ4SVJZi+hAeptzluHLpgoMLlBJIBjs45+BAIOKbSxcElNyk8l9jDKsGCzM6FES8kkRBloDIgUnqWrRE8H23yG6Vxqiq4AT6vxtuvdO1ZWA4hFQcl49JqJDYAWjNCstt1yGRxzD0mLdzDEPLZSHnhFLJlfkkHDgDIQS0bQuAMJtzD5JlK1gi5viJTQw9M320U6a1MmC598oaVJnxQioSFFnewlYNIgHtEGSUg6sJef1YLYEVjGMibO9M4VwNpRhUZLWVbIeDAS17dzSeoG7GsK6CdrYMteeMmQS0REpDWdbyMoEdVyDmFkzEfbCU70Gh/iIYKONgXQVjaxhbQ6kEbSso7aCtgi7BjIWCBs07VthOGcijyhdIpD4ioUkKiiy0dqLczAFEksyPHQSj+0hxqS9EVmFvu17Qzw4s66aQG2KRWEnamUpAF2nXAD+Xzq02gGZyY4qJS7ouctYIcEanWdPMSxAXKaEbgqwvJENlUt/dpducHQLSUiAtDPs8IiltR0CQlrlv5hxTPvnwOB1A7rqulPuKY9BMuY88M6B2Db4VvSWFpACXNFKiXQ1IFMSO91zKcc4gRS4HxRSk7ssT/Osba9BKoe86QBGs0zKAJ9EThFTXLIYPGRHIpQQn/RRSGdIfBeXDEH2lNNbXBVGnGc5Kos23cFrg96oVTGWhrF6wLisuKaUU5H1r+GqAdRZGK2yeOMFaQ5SgKWI23ZEDlTOCGBjOnZQ0uUPa08txTsEI+IOXWhSpFYkgo9xgfkDXogy7ZsHJ7EydOOXN7U3Mu04O4ISqquEcO7sMrMglxiAOplOaB5OdRVONChw4CaKQKALC6rAbHZj7VXlubDeND7AQ3stcdXv44jSj8wCCT14if+br09bAkEYlvtYKqnB1fZ2zqRCYezIxyi2CB5czkCA7YS5F9ZKZc/lYZbkW2dMZlGAtZ9qudhgJetFoIKXIKtlh4GNS6SK+eOzkCbTtHNPpFICSDLlHXddYXV2B0Qp97zmgI0gWwcFWkN6Vz9pn1pYGfAKwub3DhNPQpfesreGoX7LBXDIrVER1hbppxNFaWSvPvSlGbwPaQukKynImyRMrWS2ZM92QcuDAxNtKO4RI6HuPvutRNY0EG4w2bIeAdvDwISJGgDG2BqDcp+EsJUYCVELfe2idSnshRsIQAgCNwUdom+B9BPnEIJveo665HMn+iUnfAIMozi1EgBRni0YTtCUkYs7TfvBQMLAuoAoR3hOggpTfggQ0kvlErgbEmMQzA0gKMWTAUEQIAybjFWhlWdBWZQ/DVGiZJT8m5nWMklGGmGA8ozh5LcAqzYr5Mw0YPAKEcsYBVM7e3Luz1mJ1bRVNYM3DR2unteMi5MMkp6Rc/mFcixKuPiGFxK66XH6+zkN52OXolEzp8+/WVcUDnFEjDFJvVoLeqyseJo2ea91JMUR2V3kwRg+CBpEBZ1a+IPxyNIKM4xWJEiW9D63yMKKW95gjKvkimfCHLs/J75Gkl0GJ/2a24AOqih3XfD5jcAYAZxZoOCmg8kEQggBPAvrBM+gggzOk9Ar5DPK8EUBQ2pbXywTBkH+ToMe4PaILAIPLeUnKQ1rQSwKokdkvB8DHLQankBDwSulCY+CDWUn/S2i3dgNfMqJRqV1gDwlalJQL+fFdw5KUpB8pP9f8POJJT95ZCvy9PAc69xwtqrpCM24QBo9BACNwFZJm1V9V0Gueew5SbhmGAZH4PfAFUtlXlGIpuRHkfUbpraVMxZPXm5Ao7im7Tefcb5jN5iLoySVuIzOM2hjJPiwoAYOfQoEKDVcuWSUohp3n8hMB/eARpASly95VgDKlx5wh8lrLeIHjkRUGAAjfHynhGExQKiEEQhYDJQIDc7JzAeT3BDggeycPWA8hohMEoSUUImwfArPCSKDjA48fGJMdgl44r8QweEAQyPlQDwkKsWRvPnAFIvf0QsjOgAS8wFlKQZBI3zsTFivZVEQKIRG09NHYifBAf5Rrj5IBKd6A0OB9qUVeiWccc5Ar9ympPJvMvwtGOmYwiveMYE4xctlSMkN2Rbm0BZCUdHNPK+WbSKmCksz3FJ8XEqQ4Fgrl2ddHZ6e148qf/aL+modBc01Z8bQ3FCJROYiULL5SuUZr9kyxh7nnBTeKJeBTRIzMz8X0P/y6lVDiDN6CQNAxIYkuFB+avIl1ZOdpyXEGk3IEL5mZUbKJcukqgRSX/zL0lADpxbHzWlReDB+kEhFTzHXmXIfOBzj/At8AXCochp41kYyG0k6E5bhfxEqpJGUqdirzti/MAlnqvGxKrREpk4EmWEu5uic8cvn9ohymSkECAp7U5/cGlpQw4J6AYsZxYzSXaqsaQWbiTHZuSCBiBozscLJAXkrCWEKLDDVn5zpxxssHqRIMwC76oF2BAF9/3iMoVD1Ka5GCWJQcmZ1CyeHP6M5mNEJLBHjPGScISJZ/bxevXAqh/ElmHgnCDr+rFA7NIpuJJGoXh5YI3iqEUO0CNfDnwFx7uexK6NoObduj6z20cXLQ8Gfqqlq0ukZcVgsJg49M2Cw0XM4ZoYsGZ5AhSpZL6CX40BC+unzhcmDnoCQDjpyr2WEKu3zKBL3gMpqSPp4PC3FCziykt6TAdElScWHMk/SaBJQxhIi25wCMnCr9I/4KxYF5z86LwRa0q4fD4JYhcJDgfUBlncDtE0CMPDRWkInEh3/uv4eYpHTM/UzZROUac880EZf1rLacIyUGqIS0cH65fOzltSMvD7+y4r1HhhA1/7W0awxIm1zqVuUcUYqgUibDZRmdYeBKAmuYcRZLkq0zGltKm/m8Ii6XcnJuSg8MWCCn8/C+dRakEh5MTfoHtdPace0u4SzUXeQgld6JqZgz0ElzP5cWOTpccJblQ01rjY2NDXRdi+l0itlsKtVoEn5AoYnSKECE1dUVjo6DUDt5ng/h12XEI9+oYCi6UYUapRzmfOlyQHHJAEgYuimU4RvSaJnDEZkRzhgsjOU5tSEwq4BztUhAmDIEzNEWMywwx5zFfaN7oEgGCylhGj0GigiRB6RJAcZp1CIwB5V2QWFltSVw2C3nkISGO2eNmQmjEo40AMi9KyORfTOeMDJUnHNE4oNNM9Tf2qpM/udIrWkaTJoRChnqvCvlwMo5TEbMcrC5vVWCEv7TPHBpNEOCIfIeu/teRfJcsjKtxUnnjEGc1sqKfPa7fo8oIWAx5Okcl8HmM1bZVmDIu1Y8gt63TCTrI4Mw8jXWtWP0YuS5vVx24WtSXKIM7MC01rBVxfRYjmd6rPShjLVQo0bYVBiZRnCA2kKIYPZ7OUTOPvtsHD58ENayuvR0ug3oOaA06rrBuBlhZTzGZNQwFJ4S2tkM7WyGvu9Bntn2Sa4z32uZlFlrDQsLZ1XZn8MwYN62pfFfW2a3YBRkhmRbkHIAHJRyIPLwnoEEyjLzg1YGBpqZNAwHPVBGpOXlQI4J0FKijQlDTOhjwiCZViBOekkQyNpW0rPLZwxrsPkUYWERiUu9APcx85cPEb1P8IEkiyPJcuSGN0wJp62Bihx0RnFa7HlzBsjq0lUI/L2wrPvAwJ0hRAGmsYPVmhWliRRD+KEQhDFfSUbqbI3K1fCGS9dKM82XlnuHQkRSGgQW4NTGQWvHgBVroJNUZxRYeiYmZnsZCJQY/ViySuz6VymQzqXX+NiR7F577bX42Mc+hm9961sYjUb4hV/4BfzJn/wJnvKUp5TnPP/5z8eNN9645/d++7d/Gx/4wAfK93fddReuvvpqfP7zn8fKygquuuoqXHvttQ9Q7Xw4K819k2M/bgrm0lCRDIipIJBKaQ4Z2SeNRmnmAzyTldEvJNBcbmRGtG2A1kBTVyBw9DObTQt5ZohcWmPQgYJRQJCSjSIeCk056dYWpRGHlOE+XHfmOEx+DpZvUOwsOXiiXczbzPuVhHUimYAkvGdKIiuA33uWuM+giDB4Zp4fGG6tlSqkw8YYwDmJ+rkEpbCrfwjIGvMMSP4ctNEY/EKfiBIj/rzywjUnCwoFbQYpG1m5cSW61VzmACmgJXbOMmydUVx9z2KTyK8nCKwiLZH7HsIAkB2WktJsTIGDEsqZG8qeATjiz7pFSoWFI3M806K0RoQuoxgAmKxZ+kApJZjAJLE8h5VExZjJZ5Ez7tw7Q5a95yvI81kAMVuGAoA8WiFs5eCZKygF5o4cUCdu1PswwFjNNGHDwBRORDDGoqpq7NvYj9XVdZ6bC5zdKaWxszPl+0Dg7YmAphlBG+4JD4NHZR20s7DGYTQey2fpQGhhE5e4vI+M0pR1U7KeRKwmEBKvqVHMEqMUZ2lBh5I1+yGwACYpAQQFWJuzR8n4pNfEowgoGUwiRvEyupDVrbM2VUppwVeoNXrvEQksiUOswpwDlSTZtHUOKSwkUJTWMM7CxQoGGoP3iFJOLcg7AaDwjKNDJe/TD4O8Lr+PLL9EROgHvidsVWE8mWDomHKqHwYMPki2Y6QMylkSIaseE4MwIveuXFWjGUWmvOKL4CxRUJDGOiTizxTGwCgNl8Dk4N2cy6OyVryWDipJVQEJmghyTABaYRiEwchyHzERg5R43tRKj2wx0P9o7RF5ihtvvBHXXHMNnv3sZyOEgLe97W24/PLL8c1vfhOTyaQ879WvfjXe+973lu/H44VgWIwRL3zhC3H48GF86Utfwj333IPf+I3fgHMOf/RHf/SILn43OEErtac0BgCD97AhyEamAtHMjivtfo3IqEONRYN+b2eMJEpgkT2tUEAQg/eoZUP44NGLxpPMi8thRojBsgMVgkmtNFjhMB9WOYnPf1mV6yhjioK2Sykxo4eKoCSyDdJLyCqmuYS1WDAUp6UATCYTtCD0ImWQKV12byilFJc7fBAhwEWfD+CoODf+AeFCk2HG/PtZnC6/mVLGlFkrpRjRxSVycSJWYOfiYIwNsMbC1VV5TgwJfVhM31soZkYQyxpAPKFvSlaRD0+QjCgQpKe54KxkZyLoKyKwDpTQcxGDMJTWUEnYExQYeEDc08tgkCxt0bZtIR2OgdnxNTgzWezjnJ3IjiNIzzZzDfLnyoHZotpgtN7DPEEpl3lDKct27ZxLwhJB13WD8cjC2AqJeEB/EDmU2Wwue53LaJQ4K4NkBDGIgKTlA97azJpiAWW4pzQEhNAKC4R8rljsxZB4lgfEemvMOm7QqwFh172TYgKMBFlZ/UEga1rzYHguMfP2FsQeMRwdWjIbbQT9l2DSgqWGfYvmzEYcFxT/TqnQQCD3hsclypkgpS/nHBQpKQcOqF1dem/QhqsX4NKxqyq+Xukb5ecYyxpVRJy9QDGApapZkocAvg9D5AxaMpeQFo5LSb82RinbKQ1j+TW8Er5GLPTe+H3qAmSytgYpgrFcku+HvjieDMXncZxF31drDqqs4WzKBwHTaFNKvSWo1Rq7xTEfs1Lhpz/96T3fX3fddTh48CBuueUWPO95zys/H4/HOHz48IO+xj//8z/jm9/8Jj7zmc/g0KFD+Nmf/Vn8wR/8Ad7ylrfg3e9+9yNq2O0u8fH33LDs+x55nqOa7WB1ZRWraxvY3tkR+Q2mZWqaBtYyumlnOmVtqvkch85+AjfQIZkbMdwZWaWWIrQi7OxMMRmPcODAAZE17zGfz1nDS3H0EmPk+QXvMZ1uY2VtFcbqciBraAhxTgGHFOCDEq42uYFCGNBNuwLdt3XFsG2t4P2A8eoqXN1AGZ7vyDNIuS8ArTCquIw4Go3wnGc9C1ubJ7F58gTuvusuHD92H2bTHbSzFvPZNg+aDjH7dHbWkWAMlRLhYqZjb+o/Gq/IzMtC3qA0anJ+rAClLYxxMK6W9y5AE7MY1E4pwojeVFVVOOPAGZwphojk+XAGEqyg2CgxX1+GvjuZx9J5Hic73dzz0mrPz/LPrV38HoAyOuG9R/IDoBRcXZWovbAMSPYWQkAnTA5aA9PtHbSzGcvqGJGSqWoYoCjE9l3PPJeDx3hcQUmPKpMma/k7+XoKG0HiUtNupCbLwDgorYrIX4oJQ9fj0KFzYW0NaIN+6DBvW+i25aHw5FFo1MiAEvfbmqpGVVcYNTXG4wlqa1HJNTV1w4EAKWxt7WA+7wCl0fuhuKsMyuGQ0ZS1r2pXKgk8EA7uj+UaulZSBjQM/XYNBzzRQKcEFXl/JEpA9AiJnW0M4pyUBqTUC+ji7LLjytehpazbjCeomhHfkdpCOwtNnHX4GPgg16oEK9pZGGhxUPyakWjBRyqsE0qUxY3WjOx1juH6clZl5njjXOE57IYBPgbAiHyLZTrhGBN6P0gW5uFTgpWAlDSXIjPIh0MfglAxyv1WMWtGAT0RtKtEpSJK31DIpLURkm0LwCKkkCuFIMXXEyhiGBgA0/UeALGChsnCmIzi7Do+v3aF04/Kfqge19bWFgBg//79e37+oQ99CH/zN3+Dw4cP40UvehHe8Y53lKzrpptuwkUXXYRDhw6V519xxRW4+uqr8Y1vfAPPfOYzH/B3+r5nzi2x7e1tADk6UgJB53jOWua4q+oa45UJVtfWOU21Fj/1xCcy+WzlpMQ3R9d2mLVznHnwELRSqJ1lKhLiDCcza0sfVYTpCKPa4cCZZ6KuqqIPlJVY27ZDO52jnc2xubnF8tk+SOlGAUrKVLToWWilizpNRlvlXkqewwI0ur6T3pDFvv370DQjVBVHeJFyiVz6MobLJLuHByvrhEOvQtu2WF9fx5kHzsBF/+//oWtnmE13cP999+Keu7+H7a0t7GxtM1S6bTH0HaRYXhxsLhvy+i8GnXe/N2Mr4c9j2DpDoTnKVNpKDyIPknIkrawukS2DPViBuHIValvBaM29M+tYlyoEtDtTtG0HPwwIYYAClyWms50yDrCHrqYk7HmtF7B4I1IU2shnK/01k4fZDTPP90Mv8G4G6+ShypjYwVmjUVUOq6sT2LOfAGs0Jk2DylkoEHw/4OTx45hubzO7vQ885GtZb62UspEdPl8LiMHnSqVSlkZScMYV2iytTWHXHzVj4WHkLOXYsWMyEGsZRBRFrNEY1DXPe62vrWHYtw/tbIYTx8eYjHgWr6l57gyRVYy9Z8g2t260/O0MfsrROZBSVg9WrEYgZeOuU1AwCDbAG1YusNoKnZpGVCTyG9IvyZ9jWEjNQ2HBWiKoPhUVIqJE+Ox4IiX4FJn1PwzwUcYZwK0DH7m3SpBxAqGsyo93fVeeH6KwrijOpqL0G4fIHIWD9KV2OzQquw+lpxcpLaRI5LUKYMR7zoYAdmxAgZv3olPmU4SniFozL6CW4XtKYD006S1x09oAkh2xkoIMFEu2n/dtkPfC2byS4WsLbR0o9MjFK45o+TNh3lKZpYOw+QggqOs6TKcsKtsPcyhN6PpTQPmUUsLrX/96PPe5z8XTnva08vNXvOIVOO+883DWWWfh1ltvxVve8hbcdttt+NjHPgYAOHr06B6nBaB8f/To0Qf9W9deey3e8573PODnvMGoZBTcf3BYWV3BZGUF+/bvxxkHDsgmTDh4+DDW19cxnjAQ4MSJk7yY29sMy7UWTVPjzjvuQPA+A2uZDNYZmMpI2Ykwqhz27dsHayyCH7AymWAyHmNlvIIQAjaPn8TmiU00zQjRR1Ez9diankQ/9NBRCaJnl/PKnaOMVpMyRW7wO1thNB6jcvzv4cOHOPKtG8RE2NrZQdv1SFIy00aarpKS5/Q8R+UhBNTVGjY21nD4jAOIYUDXznHgjP3Yv7GO2XQHs+kUQ99i6+RJbG2e5D6DUBLtpm5JKTef+SuGtABBGANjssPkxrCxFtZxA33wEfOu5+A6g1By30b6f9ZZ6c041DLbNZmMsTIaI6vUnjTHYO0UfdchpRrWGGEy6YrD2g0iycZN/AVUPO8l7BIArBwr77rKoRmNGCaugK2d7eK4MsN6PrCZ0Jepw9bWVjCqG4ybBmfs28CoqaEAzKdTHB2NsHnyJGpXYVw3fHAMHtPZ9oJei6S0XDqXDC/m8ioAKcfwEHMmJOZnG80O31nHfZGQsLO9DcKCBSKXwyrnOMjQRmRxLGrH8jiT0ZgFSatKaJ4GpoOaz0XzaQF/h7xq2RD5e+mOZKg+kRAmB1/el4ETzTazOOnl/XLJkR0YJUbJBh/K9SehABPJN+EuzP2mXMZl0t0yU8l1a2QFBqgFd2gIAblgQaBS4tTGMIoWArAyGogLdHAQUoMof5uk4lFKj7teM0lZnz9L7hEzcW0q15kgn7/JkHjadf2pZFTcMiCQVkiKu+RCSMqrVu4rzgi5FM2oQSBfeyikxFrK0BmxqWS+NAm/PaOeCVB5jIEDE6V3AcOUQt/3mM9b7Ex3QGCcwHAqFJCvueYafP3rX8cXv/jFPT9/zWteU/7/oosuwpEjR3DppZfijjvuwAUXXPCo/tZb3/pWvPGNbyzfb29v45xzzuHDgwiUOBpxzmE8HuPAwYPYd8Z+HDlyBIcPHwGBU/wDBw5gfWOdFT1djbbr0PUddnZ2hAyTyzr/9e3/wtBztMyHrkXlatTjGiQaNLU1GI3GoJQwn81Q7W9w5pkHcc4TzsGoqnHs/mM4fv9xbJ44KVEwz3H9y5e/iPuP3Y/e56a/OC616wCBlOESoet6VK5B5TRWV1exf/9+bGzsw4EDZ+Kc887FZDJB04wAKNx+x524/9gxRNlwjKqsHlBLzof39vY2gz6Im99GaTR1jcMHD+GnnvAEjMcjrK+uYm19BXf993/jO/91J7a2TuLE5ha2trdx7NgxbG1toZ23mM1atP0gzixKic0UyLM13MivXF0kV7Tl7IRoAMVukWGBS0V5FgeKSVSNNUUodDQaYXV1Dfs3NoCU4AcGalhj0dctQIS6rtB1HbZ3trC7ZwhZ3wXKMM/UoARBSpBfuYfRNCM0dYNaMnlbOSl6kThcRjvWdc3ZhpQf67rCaNRg38YajKjPHjlyBPs31lFZi65tcXD/fsxnM8x2pgVsEkLA52/4HOZzRuvNu6442yxFAQi1lQL39hSEg25Rqsy9Ruccgwtk7mh7e1tKwLqsAZcUuY9onWPIuwbG4xGefPaT0VQsHGmtRho8uvkcXdtiZ2sbXuR28oxZCAzEyX1T0gSbqRQEZAJkVeoIRtKyUkDlXMm4kHiwO5eJjTLQQiAbQsDQD+jaDtoxwYByeQaQ76YcNC700pKsgQCFcj9RMdChH4ZSEs5OIweSoNwnF0kQkhEPzYAmHSKUigi0KOHmVi60FoCRRpTqArBw5TkCYeFIh07zEH5Gm3JfD9BWQ8XcoyfE/CXOiowCSqYlPzeZfJrvH4gzCinKfcY1xAgSZnvO9iIlaDD6MiklNFrMt1goo2TfGKtgHcE5CKq55udJ/23ettje2cbmyU3UIwtt1GOHKsz2ute9Dp/85CfxhS98AU94whMe8rkXX3wxAOD222/HBRdcgMOHD+Nf//Vf9zzn3nvvBYD/tS+WI9nvtxgFXluxvIgR8snpzhQ+BMznLe6//7ik9dzUrKoKrqqwuroGV1XcmPUeW9s7TDQ63cE9d9+N6D1ryDiO8l3lYGvLc1iRI4aN4+sYj0dYm6zg7nvuxoljx/Ffd9wJlYCdrR3uacznUMS9hfl8hlm3g8EP0qgXSW3NvG0lVJUIWmmNUTMBRUI373EybcL7gM3NHdx77/247f/7doFwex8K2o71iqQZLJlCjrJUjhC1QlU5bJ88icpZVMYgBp4xQwjQKtNhBQxdi7adYz6fYT6fYz6fo+u4L5Kb2mx8ExhtFyALKFCQSDVwuYeh3YyKGgYvrOIE0oDWEcZwJJnLdYLvRYpM/GkUEAdWFd4+frIc4qHrhCmeWVVmsyn6gdnOuTTIzkupvQ4MxYGpQsJrrYGrRgXKbwyLfbZdxKydIY9T+BhLiSf3oRj8wYeyk/2ztbkiRMEa991zNyrDB2HfdehnM85k+wGDlDqHfkBkGggG8CRAkcAbdN4kDNhQAkggYloj7wNsz0jK4COMjoWRO3gBX+zShkvyHgoNF8BDrFpBG0bQHr/3XqGOEgVuYzlLSNwzG3ZxQfrBM3pRA8pZmQtmnarFYHQUImK+LiRgsD1623OQopgUGwmYjCbMg7ixfxfqE0zxNHh0bQsdDVzlUDumR9OOM4HZbFZIkEs9vXz2YJCMlvK8MdzPMtxLMgqwlUONhhnnFdD1Le8P50TaRKoKzsJIBqQTYBzfbTbyPnZSbWAABaNKC6BHAiRb87iIpQrb0yk7EuI5RJ+YsFtrXX6XpFFMShyVAaLmvR4QEZT0tayFNnzvO2uhrALJrLZipueMk5LeNf+bs7O268o8Wul3Uabm4Oc5aEy0Q4goVR1gMXvadZ0MvM9Qjzd+KEQh8AgdFxHhd3/3d/Hxj38cN9xwA84///yH/Z2vfe1rAIAjR44AAC655BL84R/+Ie677z4cPHgQAHD99ddjbW0NF1544SO6+CQsA1putlwyCimh7TrM5i22t3eQ+cGUykOhFqPRBFVdQwsacDrjw7hr52jnLcPBtYaWqMt7DzVo9H3HDAegEhHVrsZ8NmNCSlJATOjbHkPXM/FrYiTWbLYDaGYxCDKfoTSjrZLO6CveRbkkktFUoUhjA1U1YD5vi8PKB0ZmPWC6Fb6hnBD0Qgk1FnJ5kme6TOaui0wHgxShElMlheAZcDLdkejT7yETDsIDl+G8WkpUpUSgSSJd7lEonWTanhF7OaNM3AkGJQXS7Hii2VXSkwF9EgYJ0gpRKS4xDV4yVgXEKH0GlhL3nkExStgldu/jbLudmDyKUp+Sg7xE4CKf43dxUpLO5ToeSue1RikzGaNFYbcXx2Uw3driPZsiH/hdzwPFIcL3A/zgOYNUWKxzWjCWLGpxvB4ZJZnpqYIPCJY54SgHM3LNfSYxHhhow0O8oTisFHkOiURWxFgNP/QIw8CO2bDjWhmNmKdQa6SQWSPCoj9SZixL15PZPnImQnlMhUoGhJQ4yNFCrSZfqUqLQ5e4x6OVkfcm66wIxnI5jPuhzCDh/cB7IvJoATtNGXNRuz5/EoJuo3edFUr02iKIuN9Zj2qkGKGNEbCJjDLkOELzwL0RUEtmvmHEaC5TCjpSGkXZaea+tMo9sbz/8h6UgeB8jqk8J4eSv0IpAimeU2PQhwC9SDqk1kh5MgdcKIWI3IXLga0SNAcHI0GUCNIiA00LlhmtFSoZNcn3RpGjIcIgpNpt2yLFVSSNPUHII7VH5LiuueYafPjDH8YnPvEJrK6ulp7U+vo6RqMR7rjjDnz4wx/GL//yL+OMM87Arbfeije84Q143vOeh6c//ekAgMsvvxwXXnghfv3Xfx3ve9/7cPToUbz97W/HNddc86BZ1UNZLk1AblyllMiIxFKX5aZ5jbppGE1jZXOok7toT/iDBgBNYPZxSqWenBLBB4XUEbq+LQANpltSGFUjbG6eQN92GLoBiElQURq1qzh1j0whk7nqMumoBji8AZB3vlYLTsWYErpuKHBy7wODAIS/z3s+qHZvlDwPpZQuiDqup/NGzPIuo9EISJFLO94jhp4jS3FcMUZE79F1rXA1+pJJAFJuE4eV0VpKyRDvLoYErtLwDUdq4dxCYJZ9KA3nGmQgRiIgGqHEMgQkBYp8sKQYQc5xE1oDlJioVisFCNQ8hiADfdz0tsYIddACkJEtg3qARQ+wDLXnHgdRycRSSkWFOqXEzW5wqZDLccJ4IAjUfBB07YyBMcYw4EtkT8LgEYchDyCKg+bDfd61haMRwEIIchdsvzhh2sUU4v3ic5f35UV0s207ntMiw44r8CG2G1Xpw4BEiRnllUNKEX3bMvpMHFdcXcWoadA4Bspgl+P0gTXaSMZFWEiY2AFG5sFTSuDqxAA4StzY98nDKi4VOlvBuAZWG4zqGquTFSgAfvBwADu6mPtSBEp8nNnMzoCEwfcYfCck2DKrpo18Lqp8ZUdmTO7L8H1SVRZAAIH/fzxuSgnWe+nKqTyesODnswKksN6WWbAhDEJQPbAyQubO1IthbJbW2VVqJHrA91kU1AosPgHwFBEya5CcASROMauHKzlrgnwuuRTIe0cYN/J9rTWUZnc4DAO6vkfXsXQTV9OVjCPwPaWMhjUM9e/7TgLIiKzsPPQ92pYzrsEPSGT2AO4eqT0ix/X+978fAPD85z9/z88/+MEP4lWvehWqqsJnPvMZ/Pmf/zlmsxnOOeccvPSlL8Xb3/728lxjDD75yU/i6quvxiWXXILJZIKrrrpqz9zXD3zxzoFI8c0nyCKSBXUyAzEaNbxRNTel+yEgpYHZNByj26x1UFKXJlGLxa4DLmtkJSZk40OqsqK0zMwN62sbGOoBfdujnc25JJEIXTeAgtC4CCyUyMAQMRRVM51RZmvOUuSZJcICQMWH/BCYVkapAK0t6qqBM4TgIrM3SENYpYVj4euXZrBElZDsbr4zhRHUnLMWVgExBPR+jq6dc32aRPbbWUDV4mOlAatyvSL3hBZQ806EAvM65qysqUdYXV2BtQ5QQNcOHPULL13mATTSq+GbPpPjyh4CK+FmdeE8OB5zdhIjRnUDpVhHbHu6jZB8yZzYMely3Ysci6AU3+QczMhbEIeW+4YjQcgSEWZzmVXKpULnoECIxhQeQqYOq5iEV6nCuoKUoKHQirJAGLwQBjN7djcMyJlzPqyYcFnJ/BwPSWdnG1NC27WiV8ZigJX05Zhdg0EyShlosgjCScdclgqkmNg3kUYmm7OG0Y9B0LWcOYgWVUrwuoNWGjF4Dm68ZDbYvQepMMU4C9RaYzwZwxoeft3Z3imzYRHSZyTAJFscMZd+Zyzx4xyMXZWKguVhaMNIRCuDvEZpROS5xAUgqXIVXMWzZ0opJgvuDZqmhrFMIjBt51wqtAzQgWbqqqppMFldRd9zb9xFuxd4oVng0gprRwgJCS0qUaHe2trEZKUuZNE+DiAwDZO2CvyxJTBvTASpBG0VXGVhnC7/r7SCjQZ1U0FbjaQSuqFDExi9iwSme1IMaNGWS+yc8fFnBOwVsQ0xQLCUMJbVGnJmHGPEfD7n/qfTcLVA87XmWVIJtqxZBE+uqjAejxETYTKZIFHCfD7H8ePHsbI2gra6yEc9GnvEpcKHsnPOOecBrBkPZueddx4+9alPPZI//aBmLc98lZRT8QbKB0jTjBiGL+iaql74I6WzlLmgX+SGREpIUrrJ6LA8S8ObjCG6ddNgNOZyYwZZLBxFKqgvrTmk1EphNKrRShRtQMK+sIs9OfcXdkXTTIKZb74cJWo447Cyssp/j7iW33estpxFMfM1JYnCCFSyOa67M88cpQQfmSWe5DB1xgIy41HXFULijEspIBPOFnqn7JyQywYaTIIijiHxkLG1zALfNCMBMWg4O3BfJmQZcZTPUEkmygwXVD7i/Le9DzBqUVPPpSxKBBKuSCjCeDwWNFjcBVhYzFtlQAwPxLIjNnL4lbVyCzbzvIeymmume5LF4dcre5LXJJP5psiiiyolFNmO/Lil8jeVUpiMx+W187qWzEhTCdR2r1VKaQ/7fiU9OiJCXdcYjSKaZoR+NmDQoixdnDdJxkvQSUpjVZVvK1lfjUrWw+xi/bDGwGoNWIfBh7JGWmcUHV8vH4qMyK1rZmr3PqDvBh54HgIULJx2qEwFDYtxw2jduq5L2YypxCxCZISpltfNyr5aMqdaaLCGupK9x+MwRFF6gB6DAK0y4IKFaQNUpljTTLFVVRWaUQMoPuhRL6SFlLJwCdCaVQ20toghIUbAVbxOfc8ZF0mLAUAZzM1BSWb1ABb7JtlU9rixpvy/q1xBDGcoOpTKlXXJnDJKMQIRIvUkBN6CmMWuMnRGV1try7xoztj7vudxHFNDWQimAOWcyqAw5yqMJ2PWIyNiFHfyJbCaty2UBmbt/JEd+LvstOQqzA7UOVfKE4BEd4LKcVXmx2MIcAIvtLVWJOllXig35uWQNkpheuwEvOISABHX+zMmLWcBlUSzWmt0XQdrLQbvWQV5GGCVhlPcqNeW1VtHoxEG70stGXsGXxdlSUAcZuRp/AyLV1Inz8CL8WjMmzI7uRAZhq7zFS/WiySMzRBXAKjqCn3XYQgBoe/BshncM7SugtYKzmiMxiN0fYtuYC/FJPZ5ZiYTwKrCNJ9LtDkzo9wHMBk1ZRe9N3APTw0Lhwsp2SAfqKS5/FkACIt+09CBo25XYTIayefDwB0fWTrEVQ46saJsLgGyZWqoVDICfj9S7pE5uKqqUMkAby7f5hKIcw7Ks2AkC0pGiVK5ZKlkCpNSKmKLfcuAAU1Aba0E61oa94tB56YZ8bWlRXl2T3lQiVK2y3NbGvN5u6fsx09bVBcIQNNEnOhPMAuD1oh64cC11lxa3eVkFDiirioHZwycHJ7iO0HgzMxIr8O1HUJKcMgACMgIkYKtKjRNgzMOHMBkPEFdszhk1/YYOo9u3gOwsNrAaYvgCU4zqtdWjqH3gQ/SJH04vp+x6CPFiISEQCJaaHWZXbTOoaocgOzcGYFYVxUAhaEfMJvNGJRTV4seI5mC5iyjBloY2CUQysEQzy5aKJW4mqOBELmPzjIyDBbzPnBvC0rY3iO0Ju5xBumDc10Ohf0niSgoN8cKgfC87QQNamHA8HOjDJLhqlTpoXoPAyMoVA14LnkPPsBIhhVkQDgRirTKbN5y+dQqhBRYW886hDCUXukQ+HWgNVe7ImdzTdNgOg/wPmA6m2N7e4eBM+K4Hi4hejBT9Gh+6xTb9773PZxzzjmn+jKWtrSlLW1pP6R997vffVh0+vfbaem4Ukq47bbbcOGFF+K73/0u1tbWTvUl/Z+zPOu2XJ8Ht+X6PLQt1+fhbblGD20Ptz5EhJ2dHZx11lmPGB5/WpYKtdY4++yzAQBra2vLTfMQtlyfh7bl+jy0Ldfn4W25Rg9tD7U+6+vrj+o1f7gpsKUtbWlLW9rSHmNbOq6lLW1pS1vaaWWnreOq6xrvete7HvHQ8uPFluvz0LZcn4e25fo8vC3X6KHtx7k+pyU4Y2lLW9rSlvb4tdM241ra0pa2tKU9Pm3puJa2tKUtbWmnlS0d19KWtrSlLe20sqXjWtrSlra0pZ1Wdlo6rr/6q7/CT/3UT6FpGlx88cUPEKZ8vNi73/3uPdIMSik89alPLY93XYdrrrkGZ5xxBlZWVvDSl760iHb+pNoXvvAFvOhFL8JZZ50FpRT+4R/+Yc/jRIR3vvOdOHLkCEajES677DJ8+9vf3vOcEydO4JWvfCXW1tawsbGB3/qt3yocc6e7Pdz6vOpVr3rAnrryyiv3POcndX2uvfZaPPvZz8bq6ioOHjyIX/mVX8Ftt9225zk/yD1111134YUvfCHG4zEOHjyIN7/5zYVU93S3H2SNnv/85z9gD732ta/d85wfdo1OO8f1d3/3d3jjG9+Id73rXfj3f/93POMZz8AVV1yB++6771Rf2imxn/mZn8E999xTvr74xS+Wx97whjfgH//xH/HRj34UN954I+6++2685CUvOYVX++O32WyGZzzjGfirv/qrB338fe97H/7iL/4CH/jAB3DzzTdjMpngiiuuQLdLYuGVr3wlvvGNb+D6668vSt+vec1rHqu38GO1h1sfALjyyiv37KmPfOQjex7/SV2fG2+8Eddccw2+/OUv4/rrr4f3Hpdffjlms1l5zsPdUzFGvPCFL8QwDPjSl76Ev/7rv8Z1112Hd77znafiLf3I7QdZIwB49atfvWcPve997yuP/UjWiE4ze85znkPXXHNN+T7GSGeddRZde+21p/CqTo29613vomc84xkP+tjm5iY55+ijH/1o+dl//ud/EgC66aabHqMrPLUGgD7+8Y+X71NKdPjwYfrTP/3T8rPNzU2q65o+8pGPEBHRN7/5TQJA//Zv/1ae80//9E+klKL/+Z//ecyu/bGw718fIqKrrrqKXvziF/+vv/N4Wp/77ruPANCNN95IRD/YPfWpT32KtNZ09OjR8pz3v//9tLa2Rn3fP7Zv4DGw718jIqJf+qVfot/7vd/7X3/nR7FGp1XGNQwDbrnlFlx22WXlZ1prXHbZZbjppptO4ZWdOvv2t7+Ns846C0984hPxyle+EnfddRcA4JZbboH3fs9aPfWpT8W55577uF2rO++8E0ePHt2zJuvr67j44ovLmtx0003Y2NjAz//8z5fnXHbZZdBa4+abb37Mr/lU2A033ICDBw/iKU95Cq6++mocP368PPZ4Wp+trS0AwP79+wH8YPfUTTfdhIsuugiHDh0qz7niiiuwvb2Nb3zjG4/h1T829v1rlO1DH/oQDhw4gKc97Wl461vfivl8ob31o1ij04pk99ixY4gx7nnDAHDo0CF861vfOkVXders4osvxnXXXYenPOUpuOeee/Ce97wHv/iLv4ivf/3rOHr0KKqqwsbGxp7fOXToEI4ePXpqLvgUW37fD7Z/8mNHjx7FwYMH9zxurcX+/fsfF+t25ZVX4iUveQnOP/983HHHHXjb296GF7zgBbjppptgjHncrE9KCa9//evx3Oc+F0972tMA4Ae6p44ePfqg+ys/9pNkD7ZGAPCKV7wC5513Hs466yzceuuteMtb3oLbbrsNH/vYxwD8aNbotHJcS9trL3jBC8r/P/3pT8fFF1+M8847D3//93+P0Wh0Cq9saaer/dqv/Vr5/4suughPf/rTccEFF+CGG27ApZdeegqv7LG1a665Bl//+tf39IyXttf+tzXa3e+86KKLcOTIEVx66aW44447cMEFF/xI/vZpVSo8cOAAjDEPQPHce++9OHz48Cm6qv87trGxgSc/+cm4/fbbcfjwYQzDgM3NzT3PeTyvVX7fD7V/Dh8+/ACgTwgBJ06ceFyu2xOf+EQcOHAAt99+O4DHx/q87nWvwyc/+Ul8/vOf3yNw+IPcU4cPH37Q/ZUf+0mx/22NHswuvvhiANizh37YNTqtHFdVVXjWs56Fz372s+VnKSV89rOfxSWXXHIKr+z/hk2nU9xxxx04cuQInvWsZ8E5t2etbrvtNtx1112P27U6//zzcfjw4T1rsr29jZtvvrmsySWXXILNzU3ccsst5Tmf+9znkFIqN+Djyb73ve/h+PHjOHLkCICf7PUhIrzuda/Dxz/+cXzuc5/D+eefv+fxH+SeuuSSS/Af//Efe5z79ddfj7W1NVx44YWPzRv5MdrDrdGD2de+9jUA2LOHfug1epRgklNmf/u3f0t1XdN1111H3/zmN+k1r3kNbWxs7EGoPF7sTW96E91www1055130r/8y7/QZZddRgcOHKD77ruPiIhe+9rX0rnnnkuf+9zn6Ctf+QpdcskldMkll5ziq/7x2s7ODn31q1+lr371qwSA/uzP/oy++tWv0n//938TEdEf//Ef08bGBn3iE5+gW2+9lV784hfT+eefT23blte48sor6ZnPfCbdfPPN9MUvfpGe9KQn0ctf/vJT9ZZ+pPZQ67Ozs0O///u/TzfddBPdeeed9JnPfIZ+7ud+jp70pCdR13XlNX5S1+fqq6+m9fV1uuGGG+iee+4pX/P5vDzn4e6pEAI97WlPo8svv5y+9rWv0ac//Wk688wz6a1vfeupeEs/cnu4Nbr99tvpve99L33lK1+hO++8kz7xiU/QE5/4RHre855XXuNHsUanneMiIvrLv/xLOvfcc6mqKnrOc55DX/7yl0/1JZ0Se9nLXkZHjhyhqqro7LPPppe97GV0++23l8fbtqXf+Z3foX379tF4PKZf/dVfpXvuuecUXvGP3z7/+c8TgAd8XXXVVUTEkPh3vOMddOjQIarrmi699FK67bbb9rzG8ePH6eUvfzmtrKzQ2toa/eZv/ibt7Oycgnfzo7eHWp/5fE6XX345nXnmmeSco/POO49e/epXPyAo/EldnwdbFwD0wQ9+sDznB7mnvvOd79ALXvACGo1GdODAAXrTm95E3vvH+N38eOzh1uiuu+6i5z3vebR//36q65p++qd/mt785jfT1tbWntf5YddoKWuytKUtbWlLO63stOpxLW1pS1va0pa2dFxLW9rSlra008qWjmtpS1va0pZ2WtnScS1taUtb2tJOK1s6rqUtbWlLW9ppZUvHtbSlLW1pSzutbOm4lra0pS1taaeVLR3X0pa2tKUt7bSypeNa2tKWtrSlnVa2dFxLW9rSlra008qWjmtpS1va0pZ2WtnScS1taUtb2tJOK/v/AemCN87k4mK8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "bash demo/mmediting_inference_demo.py --model-name pix2pix --img='resources/input/translation/gt_mask_0.png', result_out_dir='resources/demo_results/tutorial_translation_res.jpg'" + "# plot the result image\n", + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "img = mmcv.imread('../resources/output/translation/tutorial_translation_res.jpg')\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -91,27 +367,44 @@ "\n", "There are multiple task types in MMEditing: conditional, inpainting, matting, restoration, translation, unconditional, video_interpolation, video_restoration. \n", "\n", - "We provide some models for each task. All available models could be printed out like this." + "We provide some models for each task. All available models and tasks could be printed out like this." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "all available models:\n", + "['biggan', 'styleganv1', 'gca', 'aot_gan', 'pix2pix', 'esrgan', 'basicvsr', 'flavr']\n", + "all available models:\n", + "['unconditional', 'matting', 'inpainting', 'video_interpolation', 'conditional', 'restoration', 'video_restoration', 'translation']\n", + "translation models:\n", + "['pix2pix']\n" + ] + } + ], "source": [ "from mmedit.edit import MMEdit\n", "\n", "# print all available models for inference.\n", - "inference_supported_models = MMEdit.inference_supported_models\n", + "inference_supported_models = MMEdit.get_inference_supported_models()\n", "print('all available models:')\n", - "print(list(inference_supported_models.keys()))\n", + "print(inference_supported_models)\n", + "\n", + "# print all available tasks for inference.\n", + "supported_tasks = MMEdit.get_inference_supported_tasks()\n", + "print('all available models:')\n", + "print(supported_tasks)\n", "\n", "# print all available models for one task, take image translation for example.\n", + "task_supported_models = MMEdit.get_task_supported_models('translation')\n", "print('translation models:')\n", - "for key in inference_supported_models.keys():\n", - " if inference_supported_models[key]['type'] == 'translation':\n", - " print(key)" + "print(task_supported_models)" ] }, { @@ -120,23 +413,54 @@ "source": [ "### 3.1 Inference of conditional models\n", "\n", - "Input: label, output: image." + "Conditional models take a label as input and output a image. We take 'biggan' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages/mmcv/cnn/bricks/conv_module.py:153: UserWarning: Unnecessary conv bias before batch/instance norm\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACwCAYAAACviAzDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6UlEQVR4nO29e5AcV3n3/3TPfXZ2Zvai3dVKWkm2FXw3RrZlYQIGlBjDD3DsXwKUE8ylQpFIBKM3AQyBVCCOXElVuOQ1ppIihlRwTJxgk3AxMbKxMZElW7Zsy7bu98vuai+zs3Of6T7vH47nPM93NKNdI88u0vOp2qo+c3q6T58+p7fnPM/3eRxjjCFFURRFUZQ24c51AxRFURRFObvQlw9FURRFUdqKvnwoiqIoitJW9OVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrejLh6IoiqIobUVfPhRFURRFaSv68qEoiqIoSlvRlw9FURRFUdrKa/byceedd9KyZcsoGo3SqlWraMuWLa/VqRRFURRF+TXCeS1yu3zve9+jD37wg/TNb36TVq1aRV/96lfpvvvuo507d1JfX1/L7/q+T8eOHaPOzk5yHOd0N01RFEVRlNcAYwxNT0/T4OAgue4p1jbMa8BVV11l1q5dWy97nmcGBwfNhg0bTvndw4cPGyLSP/3TP/3TP/3Tv1/Dv8OHD5/yf32QTjOVSoW2bt1Kt912W/0z13VpzZo1tGnTpob9y+Uylcvletn870KM6ybrKx+eV2bfqIrvh0L27apalXVIq/cwXhcMBkRdpeY1/V4wLMuVSvMTBkJ22zFyVadWoaYEIhFR9snUt00FvgiLRW4sZr+Hi1weu65a677D48o6Vmn8locJRtkp87Iuwu9lRR4n4EBnurbjqx60PcBuyqkWz3x2Hr/5fQ6Q7DtDsn38nrQ8p2lR13BOCT8sHibEfmVU/db3oFUTWn8T2sNuScNtZ40NRmKiqlapwUntzoFEQlR5BXZvcfy27MvmlS7WOfK++w573rQc9y1OeapxN9NF3VmMl5bfxVVkJ0RNCcA84P1egweekfcy7tgyPjYrxL8r//WEqNC0OVVKwSf8uzjwYGy55uTbyGxW2c1pWpHHc/LjtjJI+HCNBv958O/CU8RhfXeqaxZNwDFRa7KjISKfOjs7Wx+bcAScBsbGxsjzPOrv7xef9/f3044dOxr237BhA/3lX/5lw+eO4zCzC+8kp2G/k9c0fuDMcOyhuWem/3exjGNUnKOhca3O0bw9pqEBzb/b8KyUF928Aado32wmrtP8VrZsa4MJrvWBmlbNqkEta1oMrtk8m1p8rbEPTv69l+tazINZMJvvthrrJIZWq3snyw6+ZM7qn0LzqpZ3GedXq+tqdtDZ1M2k/nRzqnvwquua913LfoaObd0dWMvHCN70Fs/D0/QMO2037xR9eXq+1+rZ+Ktcc5PvmlcOfepjn/aXj9ly22230fr16+vlbDZLS5YsIc+rsguwb7cd8Q7x/Sr7+RyEq3Hhpa/Gf9BA3/j8nwC8pQQD8oFY83y2rzxOlP3IK5ZlnVhcgJ+KgbD8ReHV2C+ISpGa4UTlqojx5BuqV2TLC63GA3ZeA63exGf+ezkQsu2tkuwgvsKUiMtfy/mC7INEh62vTMPKh1gJwX9m2KLmbZfPLflF7A03YOt9fMvlRThdqxdirOI/hnBVJMhWjXy4HwaO5LBVEs+T+7Z6NqWT8p5MTDUfl52ddgVjOgu/ah3Z+lBnV327moPlMJfPC/ylOPNlAcO+6+FNaFhR4e3DGyYa16LuVA1iOwdmuiZ7suPM8Hyn+mVm2JyptFjGghUTN5EU5dLUiK1r+H/FnlXwklnxW63EwGqLw8oGfpE7ODN4fYvn1GxWmMxp0mk0nLPFAGq5itViXjT0h9uiDhvUqr943WzWSy2n/eWjt7eXAoEAjYyMiM9HRkZoYGCgYf9IJEIRMCsoiqIoinLmctqltuFwmFauXEkbN26sf+b7Pm3cuJFWr159uk+nKIqiKMqvGa+J2WX9+vV0yy230BVXXEFXXXUVffWrX6V8Pk8f/vCHZ3wM17WrSd09PfXP7/v3fxX7LRzsrW93xOXy3MTEmChvf+75+jb6pCxatLS+HY9Jp7dWds1YXC4X+saaEjxfmhUi0Xh9e7oglwtHRidEeefOnfXtEydOiLply5bVty+85GJRV6tJZ6Rde3bXt+PxuKhLJu2SaQc4+qFMquLZ43pg2uHL/FjX0yWdxUaH7YrYW65+szwOW/l98KH/FnVDi4ZEORq3bTewvssddGsGzQpy33DALj1Gg/JecidTU5JOXaVqSZQjSXtOD2wpAWrumWk8dg5P3juviv1sy5nxSVFXqdixli/JtpVK0jxSZeYtD5zXuOnLBSezYiEryseOHatvh8JybB0bseP5c1/8sqijgFzpvONv/66+HWMmGCKifMH2u2/kMrHXsGxt+7mVb6Hb0oeAyGEmABeW2JlvLPngt8CLXoODcvO2VuC+i71O4dzYymzH+8B3wTwRkucMBuz4iTjSjBlk82KiKI8zPSmfsf/3y1ZoUIVx9w/f/4ltT0Dey5gPpjlmMy8E5TPEY6Y4F8wuAXAeDgZtP6M7USta+Sy4LX6z47gTvlhwTHzGttq31X1Gp1+OD6YVv9V6gyOfTUH2vAmBU+vvXPvGJuefuf3qNXn5eN/73kcnTpygL37xizQ8PEyvf/3r6cEHH2z4h68oiqIoytnHa+Zwum7dOlq3bt1rdXhFURRFUX5N0dwuiqIoiqK0lTmX2jbD98v0iq/F1JS1b7/+9dLHIRyxNq1qRcr09h+QfhTPvbCtvj00tUTUcX+IcFh2SzQaFeVi0doyTVG+v6VSVgrsBuRxSmVrNzsxNirb9uKLorzzxZfq2w4EPUt2W/+Mg4f3ibogSGbDYdu+nh5pO40yOStec9VHW6q15QWC8ppdt/kwOjY8LMrnLjvXFkIg9WI+DpGwlHXmCmgTtuccXDIoqqaL1maNKkq0pYbCtg2hANjwWTCsQlGOrenpKVHuTy9iJWk79Vjwu2JeXkc2k6lvj5+Q9vPx8XFRLkzn6tt4nycn7RxBv5tCWfqAFFm5wbeH+QwFXbiOkmz71JTtg+4+qWRLdNix5sBvHAO+LIb5gBw4JMdLstfeWw+M9h4Ijg07j0E/LVbX4PHhy+NGHDvfDaHNnJ0PfrpxHxC/tauGCErnBJv/BkQbfSsVNx5FjH1X+nFMF+VYC7FoiVVfniQSs/3hwzOte0A+U6pl1l+u9COb8u199qFfyxgcjN2TPEkfoRqT2jb4eMDcC7DnGLg0CN+fU8Wl4PWt/DqCrvQbc9gdCoDPkgMPJ5fVY7gH08L3x0D/8LFnYFTwLkB/Jgd8R8LCfxElzc2k0eYkQc9Ojq58KIqiKIrSVvTlQ1EURVGUtjJvzS5Efl3TWqlaM8d0Ucr93LJdSIpGUPomlxoLJfvdo8MHRV1+k13Svuaa3xR1556zQh63ZJegymUpJ3Nca77JZKTZ55lnn6tv79p/WNQVq3LJa/FSu4w/MLhQ1HETUR7kjx0dMgLsoiH7XZTaBkJ26axB2oXKPBZBMxCSw4Yv3fuwZHvV4lWifHzMLqubMi7l2c0f/vhHourqq+RxVq++pr49nc2JukLF3nfMZ4PmiiBbFq1CTotq3ppaJkG2PQ4Sw/4lVsnFo40SEYUidpk4jGEfWdjb4rS8lxlYevVZ5Nau3m55HLamjKqyIEbPZXLfWEyat4pMsottLcI1v/SSNQ3u2ntI1BWqVh5uQP5NERkVM9W1oL5dDcAyPssHUoPHVc2gzJ2Nw4bfVc1/Z2GAUY/JjR1Yxm8pp2XHacijhMvfIlQ+HEd0uxyTDSajFtE2W4Xj7+5bLs9prCmukpH3Occink55sgVdKQhL4LLnT0SOu2DSjssaSG1dknPY4ybQcFq2VUi1wYQH0lsZ8blV5FaQwc4ijUeAfRJAswubww1mDrDfOKwer4MPGLTA+AF5TjRPNgPzUwWN/H/pslARQR+iGTvNogCbGattdeVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrcxfn4+gqRvXXGZ7rlal7YklSaUMZMQcn5LJ7Wpk7ZqTkGmzWLblbc8+KeriELb9nHPOsd8DCeiuXTYs+oGDe0TdgcNH6tsjk1Kq2dMn/Tr6Bvts3QJp3w8weynKKkMhaf8rs1S+lWkpgeIJ/fB7DTZQLsmEuNa1mi1XIEvqcFZKigs85DJmIWa2yhPj8nu5nLQJc3gGVSIiwySpGHodkxhGmf8K2vdDZCWGhZj8Xqwgy5Pj1k4e65C+NR0dtn0uhHDvSqdtW8Hvx6/JexsN23MGwGbO6/j4JCLqYukJiGQI/hBkD55mfidBsKefOIhSQbttXNkf+4/w+we/cUBqe/S49Q8JxNOizmWSa5fkPHQNDCBhU5f33Reh1/E3l+x3J2jnjEPSDs4ljw5qN1va2iHMP/FnmpyXrSKqOw3yyOb7CpcC6Kt9h4+LcoJlxw7D/YqyTOJBkCVX8B7wzLVVec0F1s018GnATMO+b8daDpwIagF7IBdDgoNctIP5eDkGZdPMVwOed36DD4gl0MJ/p9ogjeY+H6KqQeLtMH+5Bmktq/NQFgzPghofhy0GUwDugYOpKJgcOtQyJQHfnnl4dV35UBRFURSlrejLh6IoiqIobUVfPhRFURRFaSvz1+fDp7pBk4eO+J/Nj4vdHNfaSzNT0k8gMyVT0Q8ssr4TyWRa1J0YsaGs9+x/SdQFIG5DuWL9PMZG5Tm2Pft0fTuflX4dYZa2vgP8FIoV6cuye9/u+vahozKGAo/lEYYYDpWKtB/ni7atnZ2dTY+DIeQNxB7wfWsPxNDRXANvfGl/DEflOcNBZhMGkzk/B8YrqfnS9j45ae9XNC79DarMzwXjl1Qx/DKLFRGC6yqxOB9VFv+CSMbcICKKMl+OCAaOEPEW4KJ5P/sYo6DWtFyG9uTz0/YwvvxezZNjIpe3PjERqMuyMYv94cB1ZVl8lUpFnrNSs9fphOT9MWF5b6NR69fhBeV4LjP/lBqE5K5BTBlfxElonu7eR78J8Osgd5pty9D0/PeaT+i3wMO7SxrmE7PLB2Mzfwy3jOuBYb+Fz4esG1y6SJSDbB54xUm5M3NW8CA2T64A8R94HB0Y6/wZ4wXl/YnB2PeZr5YPflI1FuLdBb+FQIs+wBA7fDShGwX2Mk8v0RhBhoVQhzoRXh39SHB+iQ8wzgj3+UC/GwwpL1snYfOywQ9Jll2+Lz63xL4Q52OG6MqHoiiKoihtRV8+FEVRFEVpK/PX7BK2S2E86usz26QM1g3bZbdSWZo5nKBckutfYOWrhYrcN9rB38Pk0u+R4QOivGPn9vr28SMyC2eEZYdd2L9A1BULdpk6GpNLzxm2bE5EVCmy5d5Ac0nWdEHKi8uwDMqz04ZcuSgYS9g2xMJyabwIy/oiky8sIQvJbliab3yQ4vkeuxZcdmQZiqNRCM0McrKFC600uQTXHAnZ7xqQ4gUwcy1bOq+BTNhrEZoZ+/LwwQP17URCmtS6mZwWzUl8lTICGUNTHfI4fBQUQOI9Pc3GD5gjamUwxTFzEq4383sbAVNcDiTWPEtzJ5gxY1N2/BqQDGPWyyozJ7lwDyLMrBiEsVQD+x+XTmIfcFxcQoYx4rE+QMklX8d3YADz5Xcfl59hqTzAw/pX5VyTbcVMvk2b04AI1w2/M/MFaVoJsSylgZqUtXOzpgu2gkoJzC5sDhPMyxB7kLtwIUEf+oDZyaIkTV8VZtpFuWgATRDcvINSV3b/XDDTBeE6eX0A7oIrstpCplr23AihDBduXsBh4xvGpLyXsm66JueTL0yDzdcXXDSzQF8GfXtcvGaZEkDNLoqiKIqi/BqgLx+KoiiKorQVfflQFEVRFKWtzF+fD5+Z/Xj4WpARUtXaA6MQBj3dI+3rcSZpi0SkPbtasbaqRFK+k1ULELKXSQNHjkufDy51LZWkrXL5it+obx+ZlD4eBmzLIRbuuEG2xySpaJfnclUioirz1aiCnK0wMWG/52FqarBdsvDqKF/l/gc+Shwh3XOES21Bl2aYjA+lv+ir4TE7eQBspzzV+fAxGUZ6YFCGsY+xe+nCdU2MWTkvhkxHP4adO16sbx87dkzULVpkZY1vetObRF2I+dp0pNKiLjuZEWXuy1ILSnlonPVXDVLYCx8Pkvd2clLa/hMpm+4+X5Dj14CPA1ddxsHno1w5ykoYKpqgzMJKN8xve59jUfm4CoXkfD9+3N7rjrgcP+WcHaPxhHwuOOCPUfDswPSN9LuR8wvnCJOABuXgxrlXYj5VwYC8DkmLWOs08/DqxsUQ3PKLLIo9hWrynPmcHSMO+KrFwtCAaftMIUdec5rtG8IQAZNyjHIWLRkU5V0HDte3u5Mg247I6ywy2T2mWkjEWPoE8KHCEOp8vpeLct9+5n8WhH6tlO0cGh+WoSBOjMr0H/ycyaQMUWCYv9UUS4FARLR42VJRnsrb9iWSKVHXmeqqb3M/PqJGH5BONt/cSgu/Le6UadTnQ1EURVGUeYq+fCiKoiiK0lbmr9mFw1bLIhAN0A3ZpbNgWC5Few5EdizbJbhSVS7zVcpMJleFpc6qfEeLuOycQVieYytXmJWUm2Ewi6PXKqIomFJ4uVKTErUylHl0S8zoSmwptlrFc8j2OGKJWdYZdtEN2RhhiBku50LdICMAS6RhkKEGmRnGd2Xd5IQ1l6D5qFwGaSBrTwxMcTwD7yhkIR49Lk0rhvVfEJbKPSZJLWSluS3VzZafY3Ipmme8JSJys3a5NZWQy7KVmh37ATAjYOZjI6SkokqY18Ix2R8TEM23ULHn7E7J7Lg1PmYdsK/BOIzFmOkrIo9TKlszzInhw6KuIyZNYf1payJxIDrsdNYucY9Nyrpoh1ya7uhaXN82QdkH/LqKZWmWqpZsP5sAyBjB7BF2WNtrKMFsHukSaWl2Yds+Pl88OQ/4GAkY+QwJBll/OTiWQCLrlHilqOp07XFikEU7W5by3hNj9n4d2ntQ1B06Zk3d6U55f8Jh+SxYuHyovn3J6y8TdQcP2uNWwJQRhTF66JCNMj01NiH3vfTi+vaShdKs28HMbx29crwuXyCzT3OJfqUk+3VkxPZH3JV9Z6alaZmYidEQhF7w7P+9/LTs8xpGTWZDtlqQzz9hahEPcjW7KIqiKIoyT9GXD0VRFEVR2sqsXz4ee+wxeve7302Dg4PkOA498MADot4YQ1/84hdp4cKFFIvFaM2aNbR79+6TH0xRFEVRlLOOWft85PN5uuyyy+gjH/kI3XjjjQ31f/M3f0Nf//rX6Tvf+Q4tX76cvvCFL9B1111HL774YoN8siXcdMR9PiLS3uUy+ZYJSJ+PqidtsuUK87kAO3itzHwswOcjaKStridpbfMRCANeYxKkWk3afbm0idvoiYgwwDL360C/BV5G3xFMeukyn5QwtJX3gYu+K3DOVrZlDoaVLlcx3HGLLzMbY2dS2v6jMXnfK8w+WQL7aDeTrOZAZvo///OEKO/da1+Me3t6RF1Pl5WlDfTKUPkDAwOifHTfgfp2LCLHS61o7/XeHXtEXWenteWuuOACUYcOGfy4GciYXC7acVcpSl8nF+cMC+PsgW9EscgkzBDSvlCSx+XyxAGQTko5IAyesrxfBZYiwK2Bn0DS3oMK+OvEINt0ImzLL70gM1MfZPe5lJN954aknPbci3/THjMtbfhxlo06GpBjlNiYrMLcD4bAZ4n5PFTKIC+eBU6rLLd825XncMF3o+bZtod92c9Bh4W/D8jjVA1k/WVh0t2gvOY+5p+x6ZePibqH/uOfZdvZuOwcWC7qOjrT9e1De6X/xdHho6IcTVt/nuV9fyrqYlXmGwHXkQGJfjVj/Z32PPeMqHv0J/9R337fTfJ/Yne3zaSe6JDjZfmQlMheuMz6gKAMtiNg2xdyu0VdHlJzTOVsvwcgbUbN2H6dLkmZfW5C9iXP6j1xQoaUkD4fqJ2fGbN++bj++uvp+uuvP2mdMYa++tWv0p//+Z/Te9/7XiIi+ud//mfq7++nBx54gN7//ve/qkYqiqIoinLmcFp9Pvbv30/Dw8O0Zs2a+mepVIpWrVpFmzZtOul3yuUyZbNZ8acoiqIoypnLaX35GB5+eWmmv79ffN7f31+vQzZs2ECpVKr+t2TJktPZJEVRFEVR5hlzHufjtttuo/Xr19fL2Wy28QWEZ0WGVMM+c0bwIFW3B6mGyzVrR8MQ1NxZoloGLTvEKeC28Hhc2vfLGDiBwc/J20JEVHIxvfHJz0ck08sHwrIuhDa+GtsXQpSHja0zprXPh0g/7baISwB9VaqAzwd/38VXX7ZrB8SY6EzIfo4xPwb03xkft/bZEMQTwPvV29tX3168eLGoG+i3fh4O2PBrkC68r5e9cCfluOPxXY4flfFBdmWs/wH61fT2ST8T7m9QyElfFt4HGP4e4fcPY8jw+44+WuGIfFzEYnaspdIy7ojsd7AJg69GgPlDOBCWnK+E4r1zoe37D+ytbz/ys4dEXa3E7Pue9DmZmpb3azRr+2/oHOmHc955NkVCJwtFT0QUZtfleGgHh6A2LC08mVY+H63vZUM4ev5NnoYd0qVHIKaMYT4W+Nzk6QsCGOMH/XnY+HEhBkgqYcdLT0qGRX/X268V5dWrrrKHjHaJuhzzPZoclfMJHk206q1vrm8fPyHDme/PjNW3+1PS7+epx34uyoeP2JggwzCHo+ykxw/tE3V+0c7v41Xp5zd6aK8o5ybsD/RKRfqg8DgjPL0HEdFAf58oV1n8nWCn9A/hKQmSUflsDPemRbmSsOcJO7LtfE7zETrzKB+neeXjFSc8HhDllTI66L1CJBKhZDIp/hRFURRFOXM5rS8fy5cvp4GBAdq4cWP9s2w2S5s3b6bVq1efzlMpiqIoivJryqzNLrlcjvbssXLB/fv307Zt26i7u5uGhobo1ltvpb/6q7+iFStW1KW2g4ODdMMNN8zuRA6ddMWxZmCZmIUT91y5XOgE5FKjG7QHjEC2VdfYrqiBpA+bwZcscSmYuLS0KhehuPnEgWXYQBDMLuysGMI9zCSFDUvsnty3Vmu+xO6wc6CZBeFmIDwnX8bHMNJJV65kcUlowxoda54L/ROCcOs+W2524Tg7duyob9fg7u3eK6WuoyxUcg6yuHK5G4bKd0pyGXIBWwqt5mTWS252GTkmVwX37LIS0AiEFh9cIs1ALhs/eViWrbGsqSWQxFaLcl+fmd/yECI8zNIVoMnKr8rjRsU4lGMrLpb14QbB+OGmlgDIM3Msg2gQlptrYNrIseXmcEIuoy9ZZsNsRwJyjhwflmHj9x629ySckKanBf12PIdjKHNn8wmkrB6kK/Cr7Dpb/QRsYcYlwrQHEj6lcX4HHXldHmuEA+f02TPXaWGOxZPWwMzApdkTIOscXCBl7kNL7dh/+IlnRd2D/21/3OYzMlPs5W94vShPFa0M9cGN0hQXZ9L1Sy65SNQVIdz64AJr2pg6Ic/Z12tNG+/73ZtEXW+3NRkdO35E1I2Pj4lyZ6dtj+/L+1NiqR7CMEeOHpVpB2psrHWg7J6lLy5gHRw3wuZ/COr4XefD19DMhbezfvl46qmn6K1vfWu9/Iq/xi233ELf/va36dOf/jTl83n62Mc+RplMht70pjfRgw8+OLsYH4qiKIqinLHM+uXj2muvbfkr2XEc+tKXvkRf+tKXfqWGKYqiKIpyZqK5XRRFURRFaStzLrVtikvWsNTCHcFjlR74NASDWOayU5DPOlYGVspL+VoQZKjchITmpErO2tE8kPNyqWsMZIsOhIbnfhXBoLSrhoLN09v7VXlOn3iq9Rb2Y7BJN6RhZz4Pvo9yO+ZXYsBPABSGPLR3K8B1hEZGZZyY7OPWlnvwsLSlbnryqfp21wIpV43GpCR06VIb4jiVkqnVq569zv379ou6CfDdOH+BldoeOyBTgEfDdowUwZ/oKJPtDRw8JOoKIOc9Mmz3DcG4619k1WRLlstw1D78xAhG7HcDEOa/wvwmiiDnRUlomskTjSePM9DXawvgD0Ig5awy34CyL+s6u+xxeOh3IiIf5M/dA4vq29f+9jtFXVenlXa6MCjHJmSYafOEDZ/dB3LnMJO2+0ZeszF2fjmY5gB9I1zbBlDBAqcSLzb32+JnxDk7PZER5XjUXleY5Bz22DzwavgMgQvlFw7Pzaef2Vbf/o8H7hd153TLczrsmffcbjm/Dx63IdRTcfk84XJ0IqLNmzfXt0+Ab0+AtXX3zh2iDv2drrhyZX07CP4P3O8P5fq9zB8k1iHnbDIt/eF6u63fSyQiQyYsYHJalOTHV64U5RKbJ35AnpPLlMcnZZqBIIRp4PLrMMjjZyOpbYaufCiKoiiK0lb05UNRFEVRlLaiLx+KoiiKorSV+evz0cSohKG9ebkGttyaL22y3EYb9KVTQTxi4xJgCHcXDLjcHoi2QRFq1qBvhD1uIAxhxzEmCbuuhjrWdIzdUatKu3iVhZwPGIivIHxAwOcD7Ps8rgae02W2XdeRdkOvLO9BnKcvB78Obst0IJ7L4YMHRPngfqtt37zladlWZpNNjY+LuiXLzhPlc19nw2XXwC5emM7Vt8fARj41Kf0E8nFrv92/V/qH9LPQ6x1JGVa6wuKFeBC3IhaV+wZde10YLySRtL4s+Zz0FSnWIJZH3B43X5ExSSYnbXyDyXEZz8Ap5US5k8Xy8MryOEtZjJJwAq650jwlQAkGRZn5GmXyEH8HfJiiQTsXUwNDoq7M2m486VcSjKVFeeWVNiBiNCbj+ERY2H8DsWd4/BIHYokE4HdeTfhUQVwNNhcdqGtQGhru8wHNYePZwDPswB7pX7R0aLC+nUzL+8VjjdQwdhE6FDnseQhzeOszz9e3j45I/4tLz71UlKusLyvQl8TuQRTC+k+V5b2loB1bJ8blnE2we5tKyRDulYo8ztanbayRCXgWDA0tswVX/kstsudfMCzHUrpb+hMRe24VIUYKfxpjrBUP5kyV+exUwS8qx5435Zo8TrRDPrsjHXYcJHNpagY/w5yFV1cURVEURTkV+vKhKIqiKEpbmb9mF4/saiRPhArrOrxsICxwrSrNFVUeHhqW2ONBu2yO0jdI1EpBZvcIOM0lSDUwT/hsuawhmyiYVrhsD6WKhng2WgjjDOYSXsZw1HzZGmW4Ppqw2HHwjZUfB7NKumCWcvmyJCYWZqcsFeQy/vSUDHc8PmpNAqMjR0XdBRdfYk8BWT+9CmSDZeHFM1lpVqhyk0hJHicSgFDfLKz+JEjYOuN2aTgcltlEx1mmzVxGfi8NssGlLNvz8ZHjom5qKlPffvGF50Td3kMHRNkJ2fvlwRKuyNgMGZM7Y/LmptPp+nYV5JmhhJUNVkAyTD5kXmbz0oP5XWPS2ziYb3goeCKi7JTtvwpIxSen7H0PQ7oCDB3dt3BhfRufKRWPzyc5JriyFM0sHpggKhXbvkbTLesEHxeyIcw/u38O7uvwsOjyOo4eOSDKfSyjaaAnLeo8Fiq+hrJgzN4rniOybsliKztdPCjDqfculCaIAg+VDxLQoSFrUutNyznCUxkQEcXjdox0JaWU/txzz61vJxLNJbpERFVmwl9+7gpRN5bJ1LdzJWn2LjDZaxDkqkEw0ZTZ86aQk8+7cpkdB+IQuCT7p8DSRJSr8h7k2TOuAH3VAalCYmHmXhDAVwV+LTMNqN78CIqiKIqiKK85+vKhKIqiKEpb0ZcPRVEURVHayq+FzwePhF7KQypxx5YLvrS31Ywsh0L2QGWwdxUDdl+vANLWCMjdKtbGtYTZ4YmIchlrW86XpK275jQPU+wGpS8Ad7lAOyJxyXAI3x/BfszkgIFgc6kthn8OwTXHmM3aoC8LL9ekPTIalyGES1lw9GAwtTN1xKV9thSW9yvJwmX390iZ3KKF1rZ86LD0B5kYkemn/bK9XyEITR90bIMyx6RMrzMKkmLmYxCOynvA7cXZKXkcYuc8vH+vqMpdKtN8R9i9TqWkv8OBAzY89K6920VdokvKEatMjj06CnJaZr/t75V2+FBQ3tvJrO27jnSvqCvW2LiENANCjklEcWZbJpgXHnPq8sC27FXk/Iqzfq+UwfafYD46Bv0mZPPKIvx783DimKLBZ3UGZe0QajwSsmMLwwfwyW9ISi7dAEj0g3ZfD+SZ5ZL1myqWQF7sSt+ndJftH5gGVGX30iV5nERcPrfIsH6PyOfW88/+rL49MSrDmT+5Rfp4VS69sr49MjYt6qay1renMCH7OTs1IcoXnWel9P/n1rWibtEiKwcvQ9/t2b9HlHsW2PGdL8q2kmf/jVbAx2Jhv017wP27iIjCkCKhg42JdI/0QeH+YDhePPD16U2m69sTkDogxJ6bPQnp41EDCbpbseeJwFh3mq5bGJqp4FZXPhRFURRFaSv68qEoiqIoSluZt2YX19gFT54ws1aWa4JVlh2SYGkIpXhxFsEtCtn+xLKoB5Ldilym9ZkMzAnKJaYQyBM5XC5VqsglSQ80hjySIWbr5fpig+lfgRo7roFod1xxiJLhhkiyxE00so5HYTQgH8vl5fJuFQIQcjBCIycRlzLLpUtsBlMflt9rbFk0BHreAZDm9bGlx2PjMnNuMWdlaXG4P91hOX6qLPpmB2SkDPCMwCD/jrMxW57MiLrtW6Tcr1CzY6biQARaZj6qQYbZE3m59Foo2H0rJbmEHGMZb4sgQfVCUl5cLdj2ZH0pEy549rpwidaAKcNjJgEPIg+7zBbnE84RotYfnLwO5foNkYhdZmI0aHaxZR+vi0cbBVtOq0ilVVjyd7hcvsFEJO97xbdmjvx0RtRNjo/VtydAxt3VLedBPG7vbSAgTSluxZ4TnyE+ZEUWYQEgRIBftfLRwX5pjvVgyX9w0EZcvfbai0VdX581ZVR8OX7PYVmqiYhiITuGg2g6YM+q4VEZcfWmm24S5YmMnUOPPf5LUbeQSbPLENH5+HEria9VpClw8oQ8p8v6dvFAv6jLjFlzEpe4ExF5EBZhatze67GxMVG3b9+++vZ0QT6bs1kp7+1MsfATreaWmAeGUA4+k28piqIoiqK85ujLh6IoiqIobUVfPhRFURRFaSvz1ueDXGpUuRFRBXw+Kq61sVWD0m6IyRB9JklCN4oQs9NHQtJuF4CsgTyUtgFfAO47UoMMixkme/I6wa/ENA993hACm9kxG8IbI8z81mB35ttuc5v0/zaovukTSnb5NmQaTUj7ccARDRIwVxoaHZX+F5WctO0mmM9Ff1+fqHv88V/Y74Gd9TeWLBPlHia/ngLbqVu2fhzdkCE5VpT2Up6Ftxts5jmWBbOQlbb3OBtLgaL0AxrbJ2XBNWZDD3dKn5Mg822JwrhPx6V9P8Gy7FZhjB7cZzPyPrf9SXkg8AHxXStt9cPSH8SPsHPC2Mbj8LEWAX+ZMpuomJkV/TH4kHXB7MzDpLtGzmcPbNSmxdzjs8agD0qLtmF4c8P6BKWS/ED467AGWWQ9lpl0GsIQHBu19v6RE1JS3dkDPgVsXNbC4O/FfOBcH+c++pw1/z17ww031LcxDLpXlvLrd15/Y307nZbzO8aG2uHj8ro6EnIcRlzmMwQP/UNHrAz/X+75rqhDf57+hdbPpFVm9XJZ+p9lJuxzqzspJe9T4ON1ZL/1x9j+tPw/95Mf/7i+jT5Cl73+DaLcwdIy9PRJufxRlooCfTwmJqRMmUTaDLyvzf7vzDyvra58KIqiKIrSVvTlQ1EURVGUtqIvH4qiKIqitJV56/PhOMzkxMxIHqGvBKtDNwWw+1ZZvI5aRdq6p0rM/gXhhblWnIiImN3TARtoJGhtl2FIlc3TcYcD0rbtwEl56moXAxNw35WarEO7Jk8pj6m7udMFpg7HmAq+8IcA/xT2XWNQ2y/tk0HD/CGwOQzjtr6uYMj2X1dapuf2eDputL3DfR/ea0Oan9i1T9QFWdjkcB7iWEyOywYz+2gQzlEds/sWIdxxksXViKA9fyonyjEWGjlm5JgsTNt9p3IZUVfskGOtc7FNCZCKSRt5goWUpzyE5I5K+36k0343V5H3q8riNmB6eePItpdYvJCAK0M++022iRqzzYt4M1Dn8nEAX3TBl8RnX8YwH8bw0Odo37bX5TXUYWNZyHJ4vPApBG5I5ELsDMND1UPsoiCLy+IGZV25Ip83U1kbwtxNyJg6HRH+XWgsxqbnz2do+4lxO/aPHTki6vq6ZZqKXbt21bdzOZku4IILLqhvDy1dKOowRHhm2j7XwyE5D9LdNi3D5SuvFHWHjkh/q2PHjtW3KzC/f+M3bAj3YhF8Pli493xWzv09L74oyj/+zx/UtydGZSj2Ywdte/oH5TXvPbBflBcN2b5cunS5qPNYDCD0e+xZ0C3KmUnbd6UyhJQXnMLvsAm68qEoiqIoSluZ1cvHhg0b6Morr6TOzk7q6+ujG264gXbu3Cn2KZVKtHbtWurp6aFEIkE33XQTjYyMNDmioiiKoihnG7Myuzz66KO0du1auvLKK6lWq9HnPvc5+u3f/m168cUXqaPj5aW6T33qU/SjH/2I7rvvPkqlUrRu3Tq68cYb6Ze//OUpji7xWFZb/ooUgDXKIJf7OZAZFrLcVllo6wqEwT18yC6r9XbI5adEj5RI+SxLJ5oDYjG7ZNnbJY9TYRkpCy5k4PVA7sfOgaGafVauQZjtKqzT1phEtBZqHvYWJbINppUWdfwGoYUol5UZKTvCUvbJCbBbi2afPMhQQ2Slrg5cczlnlz47IXNk5uhxUX5kz4H69pGXZCbLcwdtqOY+GBNxWMI9dNxKg8MQej3IzAodkN20i6UAwKyk+ZyU8/Kl/IlpKZPLM+lvLi/73A/IvvQyLBR8h1xiL07Z4ybDMO5hFCQj9rsG1th5IlsUY1ZBHl5jOwdhHAp5fMMSv8QIc6isE+kTGuSzftNSo9mF7XeSUABNT9FiX8eV9kcuu8dQ9A0KeGZq6UikRd2CfntPAjF5L4NxOUYTLJQ2mieCQVv2SnKMVnHt3mn+e5abLlDmuXhAPrv3MnOoV5PHnJy05ovtL0iz4VNbt4hy3wJrorjqqqtlU1m49TEwh27aJFMbRFn4+f5+KVPOsxQSNcjgnOywzztTlc+wBNyDY4cP1bcPHZSmlKveYOW017z5N0Xd/oPShLVwyGbrnZ6Wz5AKS/ExOipDrw8MSlluZ9LO73ANXxVenamFM6uXjwcffFCUv/3tb1NfXx9t3bqV3vzmN9PU1BR961vfonvuuYfe9ra3ERHR3XffTRdccAE98cQTdPXVV5/ssIqiKIqinEX8Sj4fU1MvO+F1d7/8q3Dr1q1UrVZpzZo19X3OP/98Ghoaok2bNp30GOVymbLZrPhTFEVRFOXM5VW/fPi+T7feeitdc801dPHFL2cdHB4epnA43JB1r7+/n4aHh09ylJf9SFKpVP1vyZIlJ91PURRFUZQzg1cttV27di1t376dHn/88V+pAbfddhutX7++Xs5msy+/gASsepGrCkMRaSereDZMb7EoQ/YWy9L2zeWsJbCnl/PWFtbbAeFzQRpYZinACy7Y5VnO+ACkcA4HbblopP0PU62XWfhh9H9wWKjbmkEfD1nmfgJF8JvgdjsMn4s+IAEuDQQjPt83ADbqGEg5hYYYXFCYEplKJSlncyFkeaqrt76dCMu6iy66rL49NCBDM/fGpZRz7/NWxjcVgVDw3EZbkvc5Av0VD9jrLuSkRNav2OPEsJ+Zn0cA/AK6O6SdPp5I1bfduLTLx5mfB/oiTMFYL+ZsexxIYV8t2pvilyGdO0jOucQa5bRSI9r6N06QhVt3g7I9Pk9l0MJv4uUGsU30YWIy5kCDjwfIsV3h9SHqDLt/DsrR2XEdlO/icdjFNMjamWOHB9J1F1MtsOsMReTYTvfYfo0lU6IuAOMnyr7ro2ya3ctyWT5jw0GIS8CfeXAP3vrWt9W38+ALBtOL9u6x0tLXXyZlsOGwva5AUPbP4OCgKJ8YtVLXv/zy7aLu2LD1/1q9erWocyA3R5n5SuAzrbPD9t0JSAvBZ0wIhmQiIe/XosXWPyUEz9hly4bq25gyonegV5SvvNL2Vw6eRXwRYM8e6eP28188JsrJZPKk26eLV/XysW7dOvrhD39Ijz32GC1ebJ1bBgYGqFKpUCaTEasfIyMjNDAwcJIjvZzLAfM5KIqiKIpy5jIrs4sxhtatW0f3338/Pfzww7R8uQxgsnLlSgqFQrRx48b6Zzt37qRDhw41vFkqiqIoinJ2MquVj7Vr19I999xDP/jBD6izs7O+hJNKpSgWi1EqlaKPfvSjtH79euru7qZkMkmf+MQnaPXq1a9K6fLK4h9fyQtgZk22uotR+3KQCdX4dim/nJd16Xi6vh2PSfkhmk8KBfvdWkUuTfPod3ypjoioUrXtC8SaR00lIjIscqlp0A3yfeX3XLCJuGwtv1KTMjkhgkSJHGpmRepaMB2wpWgXlpAjII0W/dUiCGRXWsq+3A55XYuYDDYZlcugf/Chc+1+vV2iLgbL2DuWnVPfHj3/YlGXO27j04zsOyTqSiU5fvoXWvnd7j1SJsejtUahrT4bE0GIQNvVKyO3hjrsdwfPPUfUjeeto/b0S3Ie7D9yTJT5Uj76WMUTVhoYrcjxi/sGWLbcMER2rBXsPDCQUZUggzIP7JoryPV3w7LlNoj7YBmbRwLGrLL8nA11YB7gJhsHJedc7ovRc2Ve26bHJCIRZbVmak33xeX/xkjEzNQDvyWDTMbthmEeQvjnEjMXk7R4UpB9F7NdN2S15bJhMFcXCiW2LedPtSyP099r5//CPiltDUXtOYolKVBIpaR56Uc//ll9+7ntL4g6nln3sV/IUBDcdEEko6oe2L9X1P3sZ/Yca659i6jLTlg5a7JDmlmKEIk4yszHa9ZcK+rOYWaX6byca5FOec1Lltl5iv+7Fi+1lopJiLj6yCOPiHJfn33GJNPyHE1NoDNPaju7l4+77rqLiIiuvfZa8fndd99NH/rQh4iI6Ctf+Qq5rks33XQTlctluu666+gb3/jGbE6jKIqiKMoZzKxePvCt92REo1G688476c4773zVjVIURVEU5cxFc7soiqIoitJW5m1WW/KpbtPlkccN2IuDQWsnw7DW4RiUA9bmFg1L23uwyh1L5DtZFWSw+QoLpxtpyLVp2woyWB6KnYcsJmqUuvKyG4CQ8mHbVt9tbtsmInKYdDHsoc+H5VRrWi6zdaP9Wkht4UDVAoRFN6yfoeuYuwEFA/L+HDko/RYO7rX+GPmpjKi7+f3/f317YlraR01JSs9qzCa64mLp8zHVZX0uSnAdHoTD99nYK0HI+3DCXkvXAin9zU7attcgLXPOyPuVG7fj7vlj0gdl0fJl9e0o2mdhHozlra03lJE28w7mkzKRlX2VBKm2YTLYDGT6zLM50+CrAXLacMzO4RoORO57BOHVDcjKuWQW5xP/pgNZbTE7rUs8tUFznw/M4Cx9HOBCGva17fOxjj1/AuDDhekcDBuHvtc85DVmiXag7LI+CYHOM87k6YGqlHkGHHAQ4eHFYfxu3bq1vv3Ctm3yHGHpm9XfZ/0Wdu2UPlRLl9q6gcXSN4yHcCci2r/ffhd98JYuW1bfPnDggKibnpZS4HLFPkeC4He44tzz6tu93dJPqztpH2orX3+ZqDt8QEpdC9lMffv6d6wRdX09Vk6bgdQKuw4eFeWdu21G4EMHDoq6KotnEIXUE+gTyLP+4rg7HejKh6IoiqIobUVfPhRFURRFaSv68qEoiqIoSluZvz4fAbI6fmZu4lpxIiI3Zu2TfRBFNVaQfhWVsrXbeRGwXZatvRhNpxXw3eBxLUpgA+WKoIovbWiFqj1/ICyPmeAOD0QUY5rwfEn6LfgsLnkwCtFhweejWGkeFrjK7LNVSOeOyiaRCR7cTDxme/cgNHOUZOyKco6dB/rZZSfxIWrz0aMjolwr2y/3dEt7cZ7FEskVpN/Cd/7xLlF+adsz9e3XLRkSdVdceFF9e2RiQtRVwX5c4A3ukmHRA669R7mwfN/vOXdZfTuRkCGMxzJShz+yz8YXiKblOSY8a3vPetIOn4E4EjUW3yXSI/tOuJ2UZFyCOMQdmWBJIL2wvM98bHmYFh5iaVdZe92w9Deo1Gw/mwCEGocYMtIlBH5XsSa44NMVBP+QCvPXcMHPhIdCRz8Kn/k4NMQSARcQn7XP+HhdLIQ7zMMwtD0QtmOrCLGLvIptT7xT2verBp4pLB5QJ4RpL7BxmIQ08EEDPh/8WqALYqytg4OLRd3b3ny9KC8dsn4Uz26T8Tn6+62fR0dKtufB//6pKPPnWm9vt6jr6U7Xt0dH5HO0DHF8xkZP1Lcvu+RSkthrxrga5y5fUd+egrgak1Oy/PwLNtXDpZdeKOp4KPSx8XFR9+jmraLc02f9yqrgizUyamPupCEmygQ84xYssP2Mfi6nA135UBRFURSlrejLh6IoiqIobWX+ml2Y1Ja/IjVIfpg2rxaQpoMqSPG4SSIYkstsQSYXDUPm3GBALilXmIywUoJMsWyZ1g2CLDhmj+MEMCwxhE1ml4lyP5/J4rA/4IrJYyYj10Dodba8G4LQ3h6YjLi0tDHEMutXuK5KXi75d8aZaQGWoqen7LUcP3ZC1HWnZObGThZSuAihvcvMbjY5OSXqDo3JJcuRvDXLRGA5c4iZrNLnyHDmU0wiS0TEVyV7Fsi2DnTbZVC/LPs1y6SuNejXaFTKchcyk02iR5pAxqftde46sE/UlUE6WWbZaXceOyzqli62MsZ4v7yOUArMScyc41RAxs1key6k68VMrWFuiorKccjDzzdKbeXY4pJVD2ynfs2W/YaMzWgiYdeCElW2q4Hfbi5x+SyGXpfwO+JCLb+shuzSMIcdJp2MR6A9zMyB11Epy+X4UNieJ5eR8yBETAoNJjOfpNmZX0oAUgkEmWwYs19PTcl5+swz1hy6f58co889t62+HY7L/vif/5FZ1osley9vuP4doi6ZTNe3azU5lkaOy+y0q668or5dLsvnjcOesXl4VnPp73nnLhV1BOa+t7z1rfb8J8ZEXYTN2eNjMl3B1meeFuUqyxyO2Wh5mPjfeN3rRN1UVkp4RQgF/H91GtCVD0VRFEVR2oq+fCiKoiiK0lb05UNRFEVRlLYyf30+miJtajUm06uWpP0RfQF4aOQwhC32uBQvJLvFBZs59yUp+tJ26rEQ5hE4R5BJLstV2TbMY11jPhYoteU2cxfOjwq/MpNaudgfzCcFbcsYPtyrchmhrOMyLNeFlPEQMpxcvq+s4lHJha2fiBaCjPqc5VaKNz4p7aNjE9ZmffToEVkHds0KC/U9AuncJ5jt9OIrZWjk4BEZ0rhEtn888HEYrlrZXgHCNvusn9PptDwHpCt3PeuDkgMT7NGctZnvGZZt6xuQKcljTNJ86KAMv1yJWJ+LSLxD1BVcOffybC7manIcFlnZI9BNs5QIREQdzM8jGJc+HzGycwZ9LBrcv7i8F1Ii8JDqAUceJ9Tg88HCtGOUdOab1dAedhgf5cXQVj5PA+hTxuWRRp4DZbnVqt03BHLIAEtvXyjLcZfulPcgwFI4jE1JeXoiaceBD3LeoAteZswHxYPnzcI+Ow6jQXnNHTEp792/z87bEjzXd+/eXd8OxWT/4HMsmbR+ShddeL6oG1qyrL791JbNoi4BkuIMk6GGoZ+zTIpcgmfIsmVWvr98mZQX9/XJebl4sa3f+NBPRF08ZudBCfzGAtCXR1hYgpER+Wycytn2ZeFeZjIZUd7+wkv17d5e6f91OtCVD0VRFEVR2oq+fCiKoiiK0lbmr9nFISvb4glnYUm7xpbZKp5c3i1VpAxWZKSETLHEImbGIDtuKCCXKD22/GzgMDW+xAzSyTKTBVfAfGR8+R7IpYIVWNKucbMLyfV3TApaYWapSlEeR2TObbCBQDZPtmyNuxom/0N5cxyW7jOTdtkPl81FcEsw7Ywcl+aTDpYJtQDLst6Uvc6prIzal+5Ji3Jnl21fZjwjzzltl5+DKRkJtHRCyt3GMnZZ24Dg2WWmJwcuOsJk3dM1WXfwiMxc++TTNpJhsEOat04wqeI0ZKdc1i2XTLn8roLmNiapm4Jl8xpc8zhbis5jVtsSmwcwLwnmXjxoB1QUIpzmmFTSJ5TaysNWWb/7YJbiz40gSOAjGPHUt2OrVQZnHycCbxtYcnz4ncfrPTBNekz2Hg7JZ5HbwjyaSkgpdDxuoybnS9Ls4kQgg3LezqEFHSAV7xmsb5fBbJiIocmKjX2oqlbsOfA5PjJynJqxdKmUqObztg0v7d4OddLs0Zmw93Lrli2ibscLNnLq0cPS/Pj/vfNdorx69er6Nj4r9zNpeyohn3c8q+6f/umnRV3Nk8+t5Swz9fi4DDXAZeUjo9KUcvCgfDaGmYmmb4E0Vy/osxL9VFI+0y67TJqWe9J23w543pwOdOVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrcxfnw8Oe0UKhWWTfdfawkIeSBMxJCzzYzBg562ycOI5CJ+LvgmG+WN4DoSVDtnjegHIeukyuSrIcH3U9DG7YgBs5A6zfZ8qTHuQ+WM4oO7lodkxTDt0D4WZHToANnMeVrohJTDYdgvczom+I2zX7LQM8bzzuZdE+dD+HfXtEmSgFG4wIXl+bgMmIlrQb6VwR6IypHKR+SoUwS5fC0pbvB+xdtYGnxgm2Z0E6dvYsLU1ozQcpW9Hx+x3Jw5K2zv3qkhCtsrJjJQXB5jUdUG/tAlPjVk/jlxefm+yKMcaD4mN4cTlMJB954I/T4T5LYTAdyTBQrgbcCLAbLkeD78ewHFob0owCOHdYbBHmUQVZbnCTyqMctUA31HUOXAOLstFHwLeWyjDJR/8XphfWRTaE2S+ap0d0h/ERKB/mGS/b0D6WHR32uymTkX673Sn5TnFSAQVLn9uHT4o/Zke+m8ZFj0QsL4TS1iGWyKiEAt9sH+/9NUYm5B+SYm4vW4PfOf27rGS9GSnzCq+40WZSfecZbZPRkZkhu2ODtvWUFda1PGsups2PyHqigX53NrMfFK6umVY9DC7t+g/9Du/e5MoL1pkUyRg9uAK87vB/2sLF0rpb37atq9cgTD6XAIO/oEzRVc+FEVRFEVpK/ryoSiKoihKW9GXD0VRFEVR2sqvh88HM3Oi7j7IYgREghFRF+2QdnlumwqDHwX346iCTXqqIG3fHgv97YKPRYTFnwiH4N2O7xtAfTyUuU2YpN2XpwCHCNwNzhqOY9uDYeOrVRsHhYdPJ2oMoR5gbUcbtc/DWkNY9tHCpCiHeQwVdFfhmdVjsrIDUmeTb/0jTEWGgx6bsv4i4Q45JrohpHEPSxOfz8oYAfsP2nTYT2x5StRNTcsxkWO+LMWiPE5+0vpGjBySmvzjLEx7EPwL0hCfI91ldfeZgrTB8pTbAQhffvSoDLeeZSHmBxcuFHU8tHe5BGGcYThXmY9FCOZTiF3LNPh8BMDYXJm2/VPNyX4NhVh4dcxLD3F0fBZjBmOC8PQJ1aAcS1Xwv+LRq4NQF2D9HIyAjwXzi2pI0QDn5PM2DHGFHDYRSvDsCYNfR3equ76NflulYsa2G+KnuOAvk2Qh7nu7pL9BiHdlEHzTPOlHwR/WeLuyk7Y9eYgXcuiQ9AEpFOy1PPfsDlE3uHRRfXtsTPpQJSDOBvm1k28TUSeLXbHrJXmOF57dJso8XgcP409EtGiRbc/EhGwPD5n+tre9TdRVoO96emzcjUhMPrf4cfr6+uRxahj7xd4DfKbw/58G5k8N4gzxsZZISJ8YgUgBYKgx2tTJ0ZUPRVEURVHayqxePu666y669NJLKZlMUjKZpNWrV9NPfmIT4JRKJVq7di319PRQIpGgm266qcEzWFEURVGUs5tZmV0WL15Md9xxB61YsYKMMfSd73yH3vve99IzzzxDF110EX3qU5+iH/3oR3TfffdRKpWidevW0Y033ki//OUvZ98yc/LtGsilPCa1NSChQ/NAgC19BoLNl0UdCHVuQGbJl3Q9A6GjWRMwZLphS2AOvPd5IFcSlw+mHX5djeGfZXP4qjEqokJs7Tfg4BKc3Nfn8mIMl83kfwbizZeq0jwQijU3u/DVu3SXzHLZt0AuBSeYtDXk9oi6imfDQU/CMj5mavV5CH64rr07dtW3j+6XEj4PbBBZlqW4ArK0DmY6wGyeXA5pwGRVmAYJMStGQeobY1LBKsQdj0VkXwZYx+cm5fJ3hMlMcf7gWONzCE0HPGt0FEwOOIen2Q+UMmTsRFOCqIOxzlMbVCDMv8dmlA8mT5TTmrL9LmYW5tJ2NKUEePZrNH+inJbJ8CtlOe5CzHxTLssUERhqfMk1v8m+B5lYmSkw2SPl11uf2yrKKRZKe3zkmKir5G1/1IqyPbVKRpQ7O+xYq5Tl3DvMQpjHYjJc9zvf+U5RrlZtXx48IEOvB6J23KW75HwOgbTeZQ/kF55/TtTx8Zxjpj8ioksuulCUuSSdZwsmkuaLa65ZLeq46QLdAHI5aS7uTNk57MB1lFhm8zykk0h0dItysWDvURVCH0Ritr+iIWnC49J5IqIAG7NFuO/N1y0MNWismzCrl493v/vdonz77bfTXXfdRU888QQtXryYvvWtb9E999xTt23dfffddMEFF9ATTzxBV1999WxOpSiKoijKGcqr9vnwPI/uvfdeyufztHr1atq6dStVq1Vas2ZNfZ/zzz+fhoaGaNOmTU2PUy6XKZvNij9FURRFUc5cZv3y8fzzz1MikaBIJEIf//jH6f7776cLL7yQhoeHKRwOUzqdFvv39/fT8PDwyQ9GRBs2bKBUKlX/W7JkSdN9FUVRFEX59WfWUtvXve51tG3bNpqamqJ///d/p1tuuYUeffTRV92A2267jdavX18vZ7PZl19AgmS1Wsz8VfLQ5mjtpT7Y7P0q+FGwUONuQ8h0u41h2Z0I2PiYPdvzpI3aY/b2ckWepMZsYcm0lC5henDZAPDrYB3igKANo7QHDG+rPInDfVDAhyBoZD9zWRj6JnDfgBDKBjtk+0IeszOCaZC7XxSr0i9gZFKGWy+ErR/FogEpF+1IWLvzCbBjFrPSzkoFex6874b5wYxlpON0qkvK3XgIdSTK7KxpkALmHTu20O5sgvK3QTRur3kMQp8nAlYyXIFxt+wc6ScQYn4mJ4alPT3C0rIHitIfxGvIM8CltuD/wOYISvqEYxRJWzNKMKNRO55Mg0NTc1+sKpzDY20wmPYAnI8Cvn0s1mBiGpZOAacsHy94zT618EHxm/uqTU3J/kiCzxIPWW7AzyWXsf0aDstn2A++f78oX3zp5fXtslSKU5XJXmtlOS9zU1Jami9axySIBE9Dy1bUt4sF+dzs7pXSUh5lf+Hic0RdjM2DUETOkanshCiTYferKv8/FFh483e883pRdwLSICwesj+Kp0GSv2KFva6pnLxf/N4GITVId6/0VZvK2fs10CXTHuTy9pxdXV2irlqQz+oQ82nyjOyfKksdEoT/HSUIEdDba59xXgV9Pjh8/M5MZvvy+WdJOBym8857Odb+ypUr6cknn6Svfe1r9L73vY8qlQplMhmx+jEyMkIDAwNNjkYUiUQoEok0rVcURVEU5cziV47z4fs+lctlWrlyJYVCIdq4cWO9bufOnXTo0CFavXp1iyMoiqIoinI2MauVj9tuu42uv/56Ghoaounpabrnnnvo5z//Of30pz+lVCpFH/3oR2n9+vXU3d1NyWSSPvGJT9Dq1atV6aIoiqIoSp1ZvXyMjo7SBz/4QTp+/DilUim69NJL6ac//Sn91m/9FhERfeUrXyHXdemmm26icrlM1113HX3jG9949S07mc+HL22OZWaDLJdlSvJEWqaRLpes3SreJXXvJd/aBl0IT+00pNVm9mzoQm7rLRelHrtQtuXOOIRmbojXwf06msdbaIjFgMEPeNyRogdVrAzf832Ig8J8R9BBxdSY3bksv9cTkP1czjFbrzT7CnNhJidtjIfHM6K8bLG1we4alfbZBQtsCnAvnhZ1U5My3PuJ4zamweSE9LmIdVm/HDcmG1v1pH10Qa/V2pfBX2Vhvw3pHoOQ3NMFe5xEj4xlMrhQpsN2guy+Q/jlALPzdgTlcUolGS+kRHYcNsQeYAb/SFyeYzov/WUWdNt+LuRkf8TZ3Ct5eKMlRbL9FUrLmCQV5l/U4PIBY5/H54dE9OSyMYs+FgbitseZ3wvW8fntwTzgx8VzYDnAjuOCb0+JxXGIBOT9ObTvsCj/y7e/W99GZ/0hVs5l5RgIOzLOxrNPP1vf7l8wKOrKJXt/whCnxo3L+e4bCN7DqDl2XAbj0jfAgG8CsaHXHZdjgvclpoFIdcmUBOEIbw/6vGEAeMvSpHxu8cdjCubeaFb6ozXDq7Y+fyRmrzOTlb4j8TiL4wNxYVzws3DZ2ArgHGFxa0wN/G7S8rnhs+eY67Ty22rlsNicWb18fOtb32pZH41G6c4776Q777zzVTVGURRFUZQzH83toiiKoihKW5m/WW0jZF+N2CrTdEYu7waYxC/kgFy0Kpe4DUttWc7IJSenypcToVvQJMLMDK7f3CTSeBzbHh/kbI0rgCw7pNNcimcwZjogTDSVhhS49jggDXRg+ZTXuwaXTNkynye/V5iUpjAWDZ8WdMtlvnzBLjXmctJ0YQJyuXeSSWQdkFyO77dL054v73MNlj5dJtnt6ZeqrH6WlZiHQSciCkB7ctMs/HFeXnOaLWdiVtLePiu3w3sQS8rlZp4xOAkmxVbgcflxqiDPrLKlWMxQzDNrEslrwRDlfF52QEbMIKQ2yDB5YgAkuzwMN04RXG52WujVeR9gf6AS2GGh0dHkafj6O6RWcNh8cl3ZdwbMmoaZPDF7cJiFV++Iyb5LdMox0c3MDN0gweRj1qvIc6QS0qwQ5eZsGBM1r8iq5LyswfwKMvOAG5TX7LHUC/jcwltnHG5ug+evSBkBZh+n+VjHc4pdXWwrtoftCiOR12EWZGG1Q6k6ps1g/1ca6qj5uENNc4Oy/TXh1ZlaOLryoSiKoihKW9GXD0VRFEVR2oq+fCiKoiiK0lYc0xj7eE7JZrOUSqWIOsgaeZkJMiDdBMjjalZpjmw0EnPzIKr/+L7N1WIv0zIUOttupU7CtjVXfbU+x2zqZnOnW+3bqg76BrKXUzRgb0I+D7ZLRg/ITsfHZ55wMBy2J/XBHopm1xYZ24UfTgtVJxERhVh4+kJBSqyFX1JI+oqUID12s+8RSft1g8x0FrTyfzhdcDv9qc7R0WFDhtdqckxgSvlm5zhZmdP6msFvq4UrnBETDAePO8M6rJ95nYOySpf5UYDsVA59aA/46IhnHmYKYHVR8EEJRmRf5bgkHv3RRCp6OAlKbVuEARDHxe81+MB5zet4/+DQwSHiNC3IIsaUn+n38INW7cFx76PvEx739IPScWRqaoqSyWTLfXTlQ1EURVGUtqIvH4qiKIqitJV5K7UNx1xy/lduVM7apTMv8ysctHmwO0nzBKXKqYAlP0g0TCWmtQWrAnFl5+SkNLOAOpNqzS02VKmcnnVHvjoPqtNGc41pHsUTJaszpZUZ4VTLnq2Ow8to2uHmHPxeKxMIymf5d7EO257Pg+58jgkE+G+yVnbMVr/dQKLbYOppbtv1mZnBwIMKj4JS8hkD2laXyXJRTsufhxgtlwo4Dm05EJaRQL0W46f1Axl1ry2+h/0sJKunMnvMsA6ZsYm61XWc6kAzP8z8cqRojq58KIqiKIrSVvTlQ1EURVGUtjLvzC6vLE8a7sHLl5F+lSWl03UcpTkNa4BQnOESJe7X8L05vn+NS50za9Bs1CWnS4nS6jiN0T5f3TnbcY7ZnHN2+7427Xu1xzRz8KAS7WvV1lNNzFaqorbYA1qdsw3nn4NLnI/MZLzPu5eP6emXQy1XJwyd9l5GKa7SdvwZuj9guGXvV4/me3qBoVmrzayBs/HVeLW+IqdCZGaFc7zac7b6HspnXyte/UsDhOT2W/kmnJmYygzv0SzupV9uz31v3Yi5bsDZyfT09MshM1ow7+J8+L5Px44dI2MMDQ0N0eHDh0+pFz4byWaztGTJEu2fJmj/tEb7pzXaP63R/mnO2dw3xhianp6mwcHBU8YimncrH67r0uLFiymbfVntkEwmz7obOBu0f1qj/dMa7Z/WaP+0RvunOWdr35xqxeMV1OFUURRFUZS2oi8fiqIoiqK0lXn78hGJROgv/uIvKBKJnHrnsxDtn9Zo/7RG+6c12j+t0f5pjvbNzJh3DqeKoiiKopzZzNuVD0VRFEVRzkz05UNRFEVRlLaiLx+KoiiKorQVfflQFEVRFKWt6MuHoiiKoihtZd6+fNx55520bNkyikajtGrVKtqyZctcN6ntbNiwga688krq7Oykvr4+uuGGG2jnzp1in1KpRGvXrqWenh5KJBJ000030cjIyBy1eG654447yHEcuvXWW+ufne39c/ToUfr93/996unpoVgsRpdccgk99dRT9XpjDH3xi1+khQsXUiwWozVr1tDu3bvnsMXtw/M8+sIXvkDLly+nWCxG5557Ln35y18WOWLOpv557LHH6N3vfjcNDg6S4zj0wAMPiPqZ9MXExATdfPPNlEwmKZ1O00c/+lHK5XJtvIrXjlb9U61W6TOf+Qxdcskl1NHRQYODg/TBD36Qjh07Jo5xJvfPrDHzkHvvvdeEw2HzT//0T+aFF14wf/iHf2jS6bQZGRmZ66a1leuuu87cfffdZvv27Wbbtm3mne98pxkaGjK5XK6+z8c//nGzZMkSs3HjRvPUU0+Zq6++2rzxjW+cw1bPDVu2bDHLli0zl156qfnkJz9Z//xs7p+JiQmzdOlS86EPfchs3rzZ7Nu3z/z0pz81e/bsqe9zxx13mFQqZR544AHz7LPPmve85z1m+fLlplgszmHL28Ptt99uenp6zA9/+EOzf/9+c99995lEImG+9rWv1fc5m/rnxz/+sfn85z9vvv/97xsiMvfff7+on0lfvOMd7zCXXXaZeeKJJ8wvfvELc95555kPfOADbb6S14ZW/ZPJZMyaNWvM9773PbNjxw6zadMmc9VVV5mVK1eKY5zJ/TNb5uXLx1VXXWXWrl1bL3ueZwYHB82GDRvmsFVzz+joqCEi8+ijjxpjXh7woVDI3HffffV9XnrpJUNEZtOmTXPVzLYzPT1tVqxYYR566CHzlre8pf7ycbb3z2c+8xnzpje9qWm97/tmYGDA/O3f/m39s0wmYyKRiPnXf/3XdjRxTnnXu95lPvKRj4jPbrzxRnPzzTcbY87u/sF/rjPpixdffNEQkXnyySfr+/zkJz8xjuOYo0ePtq3t7eBkL2fIli1bDBGZgwcPGmPOrv6ZCfPO7FKpVGjr1q20Zs2a+meu69KaNWto06ZNc9iyuWdqaoqIiLq7u4mIaOvWrVStVkVfnX/++TQ0NHRW9dXatWvpXe96l+gHIu2f//zP/6QrrriCfvd3f5f6+vro8ssvp3/8x3+s1+/fv5+Gh4dF/6RSKVq1atVZ0T9vfOMbaePGjbRr1y4iInr22Wfp8ccfp+uvv56ItH84M+mLTZs2UTqdpiuuuKK+z5o1a8h1Xdq8eXPb2zzXTE1NkeM4lE6niUj7B5l3WW3HxsbI8zzq7+8Xn/f399OOHTvmqFVzj+/7dOutt9I111xDF198MRERDQ8PUzgcrg/uV+jv76fh4eE5aGX7uffee+npp5+mJ598sqHubO+fffv20V133UXr16+nz33uc/Tkk0/Sn/zJn1A4HKZbbrml3gcnm2tnQ/989rOfpWw2S+effz4FAgHyPI9uv/12uvnmm4mIzvr+4cykL4aHh6mvr0/UB4NB6u7uPuv6q1Qq0Wc+8xn6wAc+UM9sq/0jmXcvH8rJWbt2LW3fvp0ef/zxuW7KvOHw4cP0yU9+kh566CGKRqNz3Zx5h+/7dMUVV9Bf//VfExHR5ZdfTtu3b6dvfvObdMstt8xx6+aef/u3f6Pvfve7dM8999BFF11E27Zto1tvvZUGBwe1f5RXTbVapd/7vd8jYwzdddddc92cecu8M7v09vZSIBBoUCSMjIzQwMDAHLVqblm3bh398Ic/pEceeYQWL15c/3xgYIAqlQplMhmx/9nSV1u3bqXR0VF6wxveQMFgkILBID366KP09a9/nYLBIPX395/V/bNw4UK68MILxWcXXHABHTp0iIio3gdn61z7sz/7M/rsZz9L73//++mSSy6hP/iDP6BPfepTtGHDBiLS/uHMpC8GBgZodHRU1NdqNZqYmDhr+uuVF4+DBw/SQw89VF/1INL+Qebdy0c4HKaVK1fSxo0b65/5vk8bN26k1atXz2HL2o8xhtatW0f3338/Pfzww7R8+XJRv3LlSgqFQqKvdu7cSYcOHTor+urtb387Pf/887Rt27b63xVXXEE333xzffts7p9rrrmmQZq9a9cuWrp0KRERLV++nAYGBkT/ZLNZ2rx581nRP4VCgVxXPgIDgQD5vk9E2j+cmfTF6tWrKZPJ0NatW+v7PPzww+T7Pq1atartbW43r7x47N69m372s59RT0+PqD/b+6eBufZ4PRn33nuviUQi5tvf/rZ58cUXzcc+9jGTTqfN8PDwXDetrfzRH/2RSaVS5uc//7k5fvx4/a9QKNT3+fjHP26GhobMww8/bJ566imzevVqs3r16jls9dzC1S7GnN39s2XLFhMMBs3tt99udu/ebb773e+aeDxu/uVf/qW+zx133GHS6bT5wQ9+YJ577jnz3ve+94yVkiK33HKLWbRoUV1q+/3vf9/09vaaT3/60/V9zqb+mZ6eNs8884x55plnDBGZv/u7vzPPPPNMXa0xk754xzveYS6//HKzefNm8/jjj5sVK1acMVLSVv1TqVTMe97zHrN48WKzbds28bwul8v1Y5zJ/TNb5uXLhzHG/P3f/70ZGhoy4XDYXHXVVeaJJ56Y6ya1HSI66d/dd99d36dYLJo//uM/Nl1dXSYej5vf+Z3fMcePH5+7Rs8x+PJxtvfPf/3Xf5mLL77YRCIRc/7555t/+Id/EPW+75svfOELpr+/30QiEfP2t7/d7Ny5c45a216y2az55Cc/aYaGhkw0GjXnnHOO+fznPy/+WZxN/fPII4+c9Hlzyy23GGNm1hfj4+PmAx/4gEkkEiaZTJoPf/jDZnp6eg6u5vTTqn/279/f9Hn9yCOP1I9xJvfPbHGMYeH8FEVRFEVRXmPmnc+HoiiKoihnNvryoSiKoihKW9GXD0VRFEVR2oq+fCiKoiiK0lb05UNRFEVRlLaiLx+KoiiKorQVfflQFEVRFKWt6MuHoiiKoihtRV8+FEVRFEVpK/ryoSiKoihKW9GXD0VRFEVR2sr/A+yvCuQBVh7LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name biggan \\\n", - " --label 1 \\\n", - " --result-out-dir resources/demo_results/conditional_res.jpg" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "result_out_dir = '../resources/output/conditional/tutorial_conditional_res.jpg'\n", + "editor = MMEdit('biggan')\n", + "results = editor.infer(label=1, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -145,24 +469,48 @@ "source": [ "### 3.2 Inference of inpainting models\n", "\n", - "Input: masked image, mask, output: inpainted image." + "Inpaiting models take a masked image and mask pair as input, and output a inpainted image. We take 'aot_gan' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inpainting/aot_gan/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R5BlSXaYDX7uVz+tQkdkpM6qylJd1QL4G4ogQMzw3/C3WXBJ42o24AYrYhak0WbBLRfkYvZjM8YRZmNG/j9BI3sGQAOtu0tXahFavHhaXek+ixcv4kXkC5lZ3UgiT1Xke+9e9+Pn+nU/x4/w40JrrXkDb+ANvIE38AZeE5C/aQLewBt4A2/gDbyBi8AbwfUG3sAbeANv4LWCN4LrDbyBN/AG3sBrBW8E1xt4A2/gDbyB1wreCK438AbewBt4A68VvBFcb+ANvIE38AZeK3gjuN7AG3gDb+ANvFbwRnC9gTfwBt7AG3it4I3gegNv4A28gTfwWsEbwfUG3sAbeANv4LWC35jg+g//4T9w9epVXNfle9/7Hj/72c9+U6S8gTfwBt7AG3iN4DciuP7jf/yP/Nmf/Rn/+l//a371q1/xwQcf8Cd/8ifs7u7+Jsh5A2/gDbyBN/AagfhNJNn93ve+x3e+8x3+/b//9wAopVhaWuJf/It/wb/8l//y103OG3gDb+ANvIHXCMxfd4NhGPLLX/6SP//zPz+4JqXkj/7oj/jxj388sU4QBARBcPBbKUW9XqdcLiOE+MZpfgNv4A28gTfwakFrTafTYX5+HikvZvz7tQuuvb09kiRhZmbmyPWZmRnu378/sc6//bf/ln/zb/7Nr4O8N/AG3sAbeAO/RlhbW2NxcfFCdX7tgusy8Od//uf82Z/92cHvVqvFlStX+Jv/2/+Je1/+nM8+/QWZtANaAQLDsLl+/Q4ffutjDGliWzabm2tMzVb45JOf0+t36fZ8dnfqbG7W+PZHHzA1VULICMuAza1thExTrfk8fPyUYjlHNp8ilcqgFURRjOG4pFJZavU6nXaDhbkSUdBCJCGu42CZHvniPOn8MspdYKVpsNWVhDJDLB2UMFAYaCHRQgIarTUaDUIwfBKBZKRRahD7H0IghEDq4aplBGdpn8fvazFsQ6BB6P3v+/desCALhDhcFb14X53Z7mlW6XHajpe7yHNd1PJ92L9H8Wmtz6fNi7Ofe/z5J30/Xn50/zQwhqXOpo+z+4+XtFq8gF8AHH2+c/Xl/hCfhHvUXyM0x7tHCI3gaP0X21TDRvb7bTTazzM+j8ML7+6CDpeDNg9oOhkuQpdGHzyXPuf4mNTWaA6cdG8SXWfReRx36A/4v/yf/49ks9kL0/lrF1yVSgXDMNjZ2TlyfWdnh9nZ2Yl1HMfBcZwJuMp899vf4enDe0gSpCEJgoAkigkHLcJ+k6tXr7NXrZPPejx7dB/bhEBqsp5N5c4NPNvh0aNHGOZN0hkXr5gnERZamdQaPaq1Hu1+n1I/xx/8/jt89eUjHj1axfZsHM/DNAWW1Lx18w67208hGVDIZbANm0Qprsxm8IEoCUkiRQ+JkU7TCzWxZTNQAm1YwP5A0QDi4FMIMTYZhy9eIpATBs95GfyICQyFIxMF14TavMhWxuk6e5JchNZJdH8TMElwXajtUwTXWThe5rkk+gzKz9/Oy/bvi4LrxbFw3jYu8j6OMlKNFOcRXEff12gROI7vPPCygusITWd0zYUE10uGLJxW/7yC6bz3jy/sLgK/dsFl2zYff/wxP/jBD/gn/+SfAEOf1Q9+8AP+9E//9EK42vUWs9MlZmbn2dpcxQAc26PT6RKGIUHgU6vtEoQhxWKROA4xzVmerz6j2+2TzmRIpVMYzTZf3XtMZbrIbJiwurmH0inuP1pjEElCHRHT4unKBmEEjWbElJvhybMNUBoRw+9+L2BhbpFWfZNMKkU+kyUOFbNFj06gGPgxgR+w3e7iCBPTsWnGCRKHRBhoTNDHBIc4XAzvv2KEPrpAPm3VfhKIcaRnjPPDSX0KnlNg0mCepImc1v5p7ZyG/yy6BAz7+NLCS48QXLL+6X0wqd44sz7PdD++Sr4MjafhPpH5iBcXKie95yPPdMkFzQvNv0DX/rs6bWl22cXU+YbBYXGtx5759LbPrflfsOxF6x+/N0n7OmueXoZXnQS/EVPhn/3Zn/HP/tk/49vf/jbf/e53+Xf/7t/R6/X45//8n18Ij2277FXrOK7HwuIyG+urOK5NNpslikKePHmAbRskCRiGSaVcwTCGE/7R48d0Ox0MCYZpYBmSZ6vrPFnbpNMNaDQkQZAQRlAsZylW0jRbAzY3a/hhxPrmHjFgaolMEqJQUSrM4BgxjiVIwgBbGKw/uUd59gp3ry1gmbvUq08IGw0ylauEKk2icwTKIsFEa7G/ctMnWm+GU+9iAmOSyea8ZoRDPCcP6P1vL9K6z4gmmRRehpG+ikDYA8bG2WbBi2qKJ+G7iAn0bC1Nn4uuizKHk/p2Ep5XpQkfmGZfov6B+e+4OfxIH52O56Im6pfFdVSoTobTBP552v4fNXjtNyK4/uk//adUq1X+1b/6V2xvb/Phhx/yF3/xFy8EbJwFUkqanTamaWFbJjdu3GRrY510Oo3nuTQbDba3NpidXQCVsLO9zdLSAoEfMD09w8bmFktLiyAtaq0Wu/UWURIhDYubtxd5+nSX5k6bD64tc+XKND/90c9o1EISLbFNG9e0yKVTGFFIJp3GkBKBYPX5c6YKBfLlKdCC6uZzEpUwk09x90ae//SDH1L265SufIRIbHrKJdQOUTI01gkxtNlPXCWKy9nk4fggHoo/MVopnkP7Og6nCa2z2r+w/+OceC9cTx/7PQYvKyDHBfdZuE5jbJPqjhj9oe/nYn1wVvlRm1LKSzP086zQX9BcjtV9WS3iEMcI56E/+ThtZ8FFNJ+z8BwRWqdoIidpOifhPS60LuI3vcj4P0t7OmvMvOzc+o0FZ/zpn/7phU2Dx8H3+7TbHRbmF+h225iGIPQH1Ot7qMQln8+zubGBZTlUygbra+t0221M06RQysM8tLo9hFBMVSqEsWZ1bZ1OLyCTDZiaKuNHEe1ui+crAeWpOcKgRqfbw/Ec/KBHr9cl69h88eXnZNN3SbsOYRhhOx7TM7M0aw0yaQODiL3qOiJss1iW7O7cQ2nJ29/5xzzb6VHvJphWnhiDRCmkECRKMR4QMQSF1qebPCbBxEl3CWH1Uu39HYNxc9ul6Z3UrScIoVe5ZVJ8ky+Pl6T37+SrP1u7+R8FXvVY+6Zwvgy81rkKXc9jZnaaW7dvkEq5KBXhONYw2ADwBwO63R79XhfDEMzPz2LbDtPT0wx6A1KeR6fVZG31GTqJeO+dt1leXCKXcinlc0xPFTFNqNVqrG1sUa01iJIIwxCYhmBpcYEwjomSgPWNVZqtGlvbm3zro28zNT1LGCmWr16nkC8AGsOApbkp3r99nSslD7/6iPWv/5opp8tUJsKigy0ibEMgtMYQcl8rGq2chs+lUQemvvFV1fjn8e/H/6Q41Lg4KHvZN/Hi6uuk9o/fH6f73K2d8EwXrTsOx/0sQgiklJem+zTt8qI0T6J/pHlfFs952xr/vEDNE/Gd1JcvD+JEzWXY1gWxveR7Oi/+l5h0J+I9gn9Sm2fUPV72tLl23v65TJ3T4LUIhz8JwiigPFWmPFXkV7/8CdtbmwdRSVppgjDAsR1M08SQsLLyjOmpWaIoRmuIwpAoDEAlVLe3qe81GXS6fPTBu2zttmjUW6TTLoZtYtkWays7mNLGdiykAe+8+za2BfWdDWId0W63uDJfIZfL0e/0yGQK3H/whGKpiO26LBSLtJtNbi3fQMcCQ1ZRUZWo9QTHXcbSGbSQKNxhILwwUGNrCyE4CJMHjThybzJTPT4AD1ZNI/vgKARZ7PvXThxPZ2l5J5u6xtudJGiPf78IXBTHSWXOMklNpFuM3sX52noVz3hwbTQGviHGN/77vCvtoyHr5++Xi9JzQusn0CImljmLhuNj92VonkTXeem4CO7zlD3POD9PW2eNk4lj9hUKr9dacLUaDdKpEq3aHtlslmdP+9iWRRSHtFpNUqkUpmFiCIlGk8lkMAwDw7CwbZvhRijFzMwUpumxvb2HiiP8fh9TQLfTREqLMAjZ2W0gpUG3N6BoZej3+2ysr7OwOIeOusR+A40iiEJ2dnaZqcyyuV2lVmtTqszgeCkM26ZYcEg5NpEf0eu2ebj+GDMMcOcccullOnGITizQEnUQoD4MmdWa/TD4/Rd+RNAcZaonDVBxUHXcx3VoZz9lqJ5yd7LEO07LZZzG5wkWuLRAOMHcdn66zx9OdprAPOv+ZM1Hnyo0f1MghDj0mZ5wfwSX8dFO7ie9bz6f9C5Px3dWey8D4+No/PPw3mgRebE+OUkgnVX2VKF1vLo4OjbPHcA0Fst12vi8zB6zcXitBRciJgkDvrz/FddvXGN3d5sgCFFaU92rYrsuJpruoI8fhmzv7OD7CZ1un5mZGUrFArNz02hD02j1SOeyTM8XSTRsV/vUqh3MVIpIawI/QQiB0tBqd8jlHdbXnxMHZfq9HgszRSzH5unzFYKBTxRqIl8jLIfVjS2u3FgijgLCfoRZLOM6LjOVCpbnsdHos7f2OVNXTUxHUR9EhDJPhIVSQ3OVJmIYsDG2JXl/D5He17zEwf6vsUEjhiU4mCj64PLYkD7V9H88dHdyoWOvRnAQQy/2h+mhonKssD4g9AWYxI6OToiXmQCjzhqFxut9JfS4Y/mw/IsT7mjfHZnc+mh06AubZjn2Do7cG2nVcCikXo2P4fwM+cWnnVRVvPCFE0kVoyGqOYjoHB+qYn8x8MIYGaE/MVqWsTiH4TgXRzZXHe/fSTTqY89w/v4+3i1HBZM+oG001PXBXDw+985uc/LWiRG5R5/5wMByuGKdMKn0AZkceT8cLmjF6d0xGsuj5xstiseXtFrrw99av8Tet9dccDVqu6w+/grPcYn8kJmpWbarOyxcuUJv0Kc76OGlXPzAZ6+2hwKerjzDc9N8+K2PcF2DxaVFNnY2iVUCps39Jytcu3qFfD6HY6dotwOkbRCFGsdVpNI2niuJ4gF+kLCzPUDGMQvzN7l2/QadQpHZqRLbmw06nZhcrsDG5g52PkU2l8JLpVnbXMWQipu3bhGjmdqu8eD5Ou3q12RmFV7hFjv9gJ5KESd6n10qpBRjwmmU8QKGF+QL8+4oZxxtvNRHCpx/1X6yZnJ8RI9IOlh8yUliacISbyJMpvAoIz9/tNSRCL+hujmmIUyQLGP1L6QhaI1AH5quTwj3Ps30JY5oc0c1rLMouYg28eJz6aPtyqO4TnKMHwrb0/T2USl9rB4gRkuw0zTc8YWUHLs/PhdGCwZ1hGHvs+ATaRtv4yjNZ8CxcTLC84KwOPg4XECePXaPUXfiGDycD0frjIuOo/NVHJQdSSV9sGRQx6MZj+M9xmsEoMU4DeJoBX0oqsXB5+Ul12stuKRQTFdKaKWRQlEpl/jFr37B9Mw0jmMT+APiOMLziniex9LSEsViwFRlBn8QIqVLOp1nYX6Zvfojnj7dYDCImZqaY2bGptuL+PLrpwRxTD4tsBxJJuOB0AR+iE5iMDS2I6hWt/nRD1t879vfpjJ9hU+/2GO72kNv9On12ygrxzvvpFlZfcJ0KUsc+UAOtGZ+eho/iFjbrlHfeoTMC9Kpq0TKIJFpEiHRmGgh0MLcVwyGPi5xsCoXDLM47E/u/T56cXBcPB7nLHv1keuMDeIjg/+0QXpe4Xm8bcFllm3fhLN9Yjt/R+iYBJeNEHuZZ7rIOLpsGy8FL4H2Vfkzz9POaRkoTtLGxn4xkjoCgZSHqpQe4RrXauEgNdyJ5sjxeuNa8FgZPeGafIk+eq0Fl1YRmVwWnWieP3uGQtPrdNlWMVPTUwy6XQLfx7ZtSqUyO9t7XL92nenpBVSi2dzcJptPYxhp1td22N2u0x9ItjZ2uHbtCh9/+A5+v4W0LBrtOmHk47gQRQrDNvA8D9cxQMe0GnUILMIgIIjg83vb/OWPPydSMYV8hucbTTr9PoZu4/tZblxbpNaqI6VFLlfB0pr337rBvaebPN68T37WZLqcYac/INQWWjpESEAOlSut9lfzhyq3FpqRZjUcSIfr2/0C+z03Wg2dzLwm5Sw7ya80NC2MlRkXWAcLrzNZ3hn3j5U+oF9cqOpx7ekiDOdCzOjYM78qpv0ydc+tOYqjUXhHg3qOaumXDTY4beEzjneSf+WbCssevrLz0T/J73niM33DC5Rz9/nonwOb5aEFQhzf/7X/+YKmdQzfwXviEN95++HvbXBGpVQi6rdpN9tk83ka7fZQJVUaUxpIKYjiCK01SZKwvb3DVGUBz01TqzXodgNMy8KyXFJeFin2sEzJl198TjZj8dadOxhacef6NPce1Wh3IxzDwBISkWjevnUdIRMgJmVowm6btZUVbrz1bVr9HvV+TKSh7Xdptvp02jt87zvXaLa2yBbSzE7N8LOffsLv/s4fMFWqIAzF9fkicVRjbesrSm4aVxcROo02BEKZKLFvZtnPLYgWHOz1EmKolQ3XUoe2ZA41IYVgmOluBCesos6YjC+UPc7ojtQ9m1FexGrwshrXURxMZI7/o8Gk5510b3hh/5VMCAwZsajjfXbSav9CNB4xd00Ovf4m3tMBzjMWc0donSCsL9cH52/zNBou0t5wfqqhOV9rtBpb7I7hHi1C9di1I/5ufXlhJI4tgC4Kr7XgisMBs9MVvvj0ExSCxeVrfPStb3H/0UP8ICCXy1Hd3aFWq5NOF2g22zx7voo0PGZnF1hdW0VKSa/XYWlpjs3tOul0lp2dTR49fMTSXIE//L27IDStZgah+0hD0x9EZFIOvU4TKTWmZfL+u2/Rru1Sr9XZq25Ta+5i2OCHQ94axYp+b0C31ydOOnx17xmbmy2+frCKYX7CO3eu88uf/Yi33r7D3RuL5DI9fKuDTsBXEUiJr01iLYkFKCHQWEMTIiZgoMQw27zQQ+/KULgNV1NiPzJxjDUcCr8xuNRu+WMmgrPqvQCnLetOxXm2xjXZdHKy9nPWyv5ckVUnwEW0rstGl43qnqYRnJ037nQNe1x4TcJxEYb6gl9owsu8jEZ3GbiIxnUijhPNdSfhHfdBnQ2nvbtJ947QMr645FCrFlIe9VOPaVCj7/r4mDg+5c/Qik+l6xLwWguuveoeUoW8+95dtrarTE9Ps7R8jZ29GkrFuG7qYDWxs7NLuTJFOpPG9TyEEJiWSbW2S6GQwfMEb799hVy+RBS2UarP+sYTblxZZm19nXAw4OqVeVodn3TGJF+osLWxRqI0g4HPraVF5qbnINFsbz7j7TuzZKfn+Ku/+RpDw9JsmvmySW1vjzAJUEmVVdHmybNdWu1P6LY71HebfO+7RWZmZ5maloRmli+e7tLqt7Fcj0Fk4CvFIInR0mQQSYSZJdIWQrrESiAxSTQIaSCQoBMg2fd1DQ89GFoMJw+cSSl+4HQmdcRUyJi5B845Jy/OLA5NV0MN+7IMbVIqosvCURoEQqtXxmgn4bnIIuPAJHQeeg7WI0P8o0P+Rkz5Veb0Ow+ctWXgKBzVYMafWyBOFCwntXmA9YLC+Pzj6GIa10XH6ZCWo629GN56bLmgj0aTKiYJSw7IPjArHlssfZOZNl5rwTUIAjY2NkmSBKUEzVab31q4wp077/D555+SSacoFIokiWIwCJhfnOWDD79FsVBBJdBoNtitrvG93/6IVMam+7zOB996h1zut7n39Zdsrq8zVcwyOzNFGMXcee89/te/+CsSFXDlapF6o4YUDu3mLo8fbZB9L8WNm7dZq67x9p1Z7lhlLBlhSwMzGXBtsUIv6PLgyQq9vqTeaJLOz1DrtPnZr77EM6HZ6GFZe5gpD2WELOQUvd0NCFrY2gE0jmXiZUqEuPTjHu2BJEx8LOGhlYfQkiTRSGNf8zo4wGQUzi1QCIwJE+Y0oXUa85yoTRyWOv1FCjjuNzkfHDLRX6ep71zt7GuhlxWIp2lEx/cFnVeTO7cAGI+Ce8FUeD56zwsv+96OmI2HGA++XzSI4bxtvYw2/OL90zWu8+zPOu2aPtiSIU6dhuN9Ml7sxa0h59e4vkm/5GstuJAmQTBARQohDVw3hTQsFhaWqO3V6XWbOI6HbbvcvPk2pu3hBz5RkiAwEFKQyedotVvkcmnSGYOd7XWWrtygkPfotvYIB30KxQqR8sjnF8nkKmzt7PDoyXO63QH12i7tZkSr1cexTYRhECcRnXaNylyK99+e48rCFR58+TnV3U06wQAwENKh02sSKYOBrzCl5PaNa3ipDNXdKr1gQKFSIp3NsVA0uP/wSxJtEAtNeXaGYHeDUKTAylNKz+InNpGCIFKYpksiBIlK0IZEaAlKARItNGrfA3aSmfBsU9LR8uN4DjSu8fJnMqbTJ9Wp9UYBKhewrZ/0+yyGdlEG+yrF6Gnv5LyM+Nz0i4v16TcFkxZMl6Hp/ELkfGUm9fc31VevRnMRhx/jclIfuXvQ1lEdcMyk+BJa56vWwF5rweW6Hk7GxbFddnb2iGOIE00qlWVmbp4nj1okSiOlJJ/P0e0HbG9tg7aoTM+xdOUaSvWJ4h5J0ib0I3Z2dnHcDGnPYXpmjq31DXoDRaw9/tsPfsHz1Qb9MKHe2mVudgppBpge+EHM/aebVBtNfuv7dyjkM2RdaAif7bUndDstUrk0ja0Otm0z8Af0BwF7jT5Camxp46RSKK0QAuIwoJBJ0e+1kEmPd25Os13dY69Wo7lZRzg2VqpAPzIwVYd8ehblQC3sEycuhp0j0uYwfH4/mCNhGIk4SjJwUX/OpPJHV2AHNqYx4XW6/2tYXrykb+FkjXBi6VOe45UxIHHwz6XxnlTntJX/Sc9xsec87Z1dLO/fhYX9sWd7WW3sPNGjh4uCUwJWzsB9VvmXHWdnmbRPxjd2XTO+eebo2nJCLX1kHp8Ok8bbq1gwnASvteBSSBKtiJOEfKHI9Ow8cQJhpKiUZ+h22uxsb2BZfbRWtNtNHDfLw0ePKZRmqJRn0TqgP2jQbHbY3qqR6BqPn6ywMDfL3Mw0tuHQ7SV46Tn+8//2n4ikJJ2XpNOSvUYPy01jK5NO0GWr3qfeHfBhKDClyd72Jr///f+Jv/ivf8O9B+vMLhRIlOC9d97mB3/5Kf1BSKbgEccxmoRGo06v36aUTTMzXcYyLXw0+ayL49lkswLH9FnfXMfvB4T9HSwvjxMITBEg0wnlTJFOEDFIFIZMg3BAS5TWSDWUEYYYBndcxOwzaeIfddgffgopxwa74DynBB9GW1/AtCaG2t546PRZdSc9x6TQ//PW/yZAa33gVzoPLefRxC6ktRxj4peB40z9rH7Vev8E45fUro7DaSbOAw3jku28YEY95TknPdeh/+nkOqdtNzifcBhZrcfnI8PF7L4T+oW9nuO84ZLGkJO00ldl0n+tBZeUFuVygd2dHaS02Nur0+sNCMOYdCZHPl/Esl2iKEEpjVYCfxCgtI2UBgiDVCqPl/ao1RpMVWbZ2NxCmhKlbRYWr7K2usOztVU++fIn1NsRERBqE6VNXEviRwNMyyLWEpQm63n85BdfUs5ZzFTKrK9vsrm9g7QNNrbr5DMuxWKWQt4mViFa6n3GLugPeuzubLO3FfPWnbdoNlusba4wOzdFuZJnZqaAP+iwW10DoRn4TUwjQQxsVByxvb2NyC7g5OfJexJfy/29XTZRJIgiAUKSMGQSw+E7DNp4QQQdjDk99mM04cbKHZQdptgR+1gFEr2fI1KM2hlNmANco5Q/o4ly2JYQHFwbGSQPA/uP0SVglK5paArRB/jPM0XGhd7RSTUynY7KHemYk7Cd2s4B5hP8VJOiAccDIk6b9EfuiRf9EwdlxElUjvXt8Xb0fmiPOCmMeTwg4kQSD9EeBADoMeYtGX//k/w/w344HEOHZOrDj7G6Yny4HOmP8bE8XuR8WtRRH9XhM52XJYtTyx/OQbFP0kEk57FyJ4vlIYLjPTieBuvw8cShhiXGZuiRea5PEbLnF0RHhfC5q70Ar7Xgcm2P8tQcheI8hmHy6aefsba+huN6CMOkMjXH3PQSqXSKmell4sRFa4P1zS16vR5uyiVOEjLZAqlMkUI+z9bWGhpJJpMm0Wn++if36Q5gdaeONobtDnxByrMI+j45bxiFpyJNjGCvGZHN5cmTY2M34Oef/lf8KBnuG9YSgcIyBdm0STAQGJZNEAgq5RSW4+ArQdD1+duf/IrFxXkMw+bhg8fsVfd45523uLJ0gyhO2K5u4od9EqXp1rdJeTFJN6DdXMesFsmXFynO3GAQSjKFRWq+Rsg0StkoaaFQGNJB6YQENdyAKGCUcV4ikHqUMFWToEmAQ86g96MTJYYhSaIQ17ZRUYhOFKZlo7Qi3meCan/DtJDsLwOHE3LE5KQUaKEQepj7WDBcCIyYUAJojP1gk8Pw/iGHVmih0KMUP0KClvv3XtQeLmaGGjHKcZ1yJBaPwsuuI0/STo44zs/FWMfqi+Nf9PEbL9QbF/kHwk+A0Kc94ThDHKVi2h8nWjHe7nA5o/bNVeNSVB3Bd7QbDhcj42PwEO/495Of8JDG/WEy3siJEvdQSzgsoo/eHxPnk3r6SK/rQ4FydOF2WHm8jhz7Pt7sKEPpSe3o/btj1vxjdJ8sNg+fQR1+H6NttBA4KnoPKRj26yRLy2jB8HIa/WstuIQQJAocL0upUObjj13WN1colC06nT5xGHPt2g1M0yCVSlOt1vj+7/0BS0tXhlqONDANGyFMisUipVIRy5JoaaE1/NUPf8yT51UGocByPNIZEz+K8IOITjuhlLYpF4s4jkuj3WGrFiEtm+drNZavLNNpVom0JFYxUZwgAMOy8P2AD99/ly8+v0+n08V0wO922An7kESU8gX6nR6255HNucwvLLO+8pzGdAuMNh9+8DGrG2XuP77HxsYmGTeHTmKmChkqrke90cXfe8pGY4sosXBufch0bpFBYtIYxPiYGMJGa4GUBjrRIIeM/mBT84jpMMbg9TGGKYbnekkBhmWgEx9TJlimJFF9hADLcIgSMA0TpTU6USD0wSrSNCxgP5BkZPbjcOf+KB/jMDON3qdBcZjeavR5VEs40ODEUb3rrMCTU/14HDYxUvBeHJNHKTgLzmOWPSsbwXlNRkcvnIu8o9rVuSXzJLE+ujNiZurgyrkE8P7vFzSsY2WPKJ3HeepxEo9fOpcv56Q7R4XX8SZOav60BcjBEmlMth8JiBoXJGe2+aJgf0F/mzTuTiotRprgi3C6qX5U5oXmLwSvteBKSEiUwjBNOt0+qUyOpeUb9Ac+Qlrk8ykG7TpSCqrVTSqlArYpMPNZOt0uAo0UgnhfSyiXy0xNVTAtm/W1TR4+2iUOTYoFjwSLsN1GoDEtSamS5u67y0TdKteuTePrhFhs02gNSOVTpFIez541qDe6CEMQxxrTGG5EfvJ0hbfv3GVmZnrfZKdIooDFpXm2trbY3KiDCilPz6D6AUEYkc7kaHe69Po9mq0GqaxLvdbCc7NEiSCJNYV0GpVIrFhz89YVHjx6TLPR5nnUY2b5LmZqhpRZxLVyhFqRaJNYAwgSzXDz8ojly/2V3P7KWevRRubhvp6jE0+BinAsjaEidBKQTztIadDsNHGNNLFSGNIlZijstAalFSQxSggQ5nBTtVT7mthwA7VEI8VQwzLZnxTy8CDN4ZpyPxXWC9rR2XC6Oeh0s9fLwKSoq4vWP+UmZ5s0z4bL7p8S4tBMd6T/XlIl/Sb8ixfyqZ6G5yUf7qxAqfFyl6X1aN3zCOmLtTUcAaP3Pq4Vv3p4rQVXlISEcYRlO6BMHMfFtF0sJ8C2HWxTstdoMD2Vo9NtMjc3SxIOiLXANCRBFKJ0SKvVYGdrnYXFeeLkAyzb4dNPH9HpRISqjR/08WOJIQW2JZku51Bxh2vXFmju9un1q9y+vcjmzi6mbSNFwieff0K320EJSRwNNQylYGpqgTjRfH3vIZYpmZmukEm7dDoNvv/97yGE5H/7L/9f7j9Y5dHzdWzHROqI/+V//hMsqSmXp+l0m9RrTWrVFulcgcWFK2xu1NjdanLlyhKl5RyDTp0b83muLRQIE8n27ldYmSq5qeu46YRAZ2j7ETo0yTkZgsQg1hBrvZ82CrSUQy1IDIWC1GooSNAYsC/EQBBjmBEi6eHZGmn5mLpF2kmRsmx6/S5hJIlVgNQSibkvD4faUqQNQpUgDIGWggTJ8HylIecTQiO1Ruihtqa0HloCEYflgEP/Fgdz5rjB4jRtaxJ8k8EYl4mCnHT9xftHtc+z2nrhnj56b3Ldk81AI6H1Am6hDkxM59NuztZGx24c+ITOLHuOti48Thg/1vVicDyw6NcRALTf8hn3z7MIHDvM9sBOc3b980RingavteCKVYyQIA1JGCn8IMK0LAzpkM0VCf0euXwBpSLa7Tr1vTp3775POlek122jhARh8NWXX+LYgoWFq+SyWdrdLlNTJba3GxTzLo1OQtTzKRWKDOIYf9ADHfH48WO+8/5VavVtao1dDFMxXyoTBDH1WhPHdRhEahjskYCKE3aqLeLQJ/JDChmbW9eWKBYyNBtbdNst7rx9l+//7v9Epx/xfGMLDXiWAYaFYYAlJVpJUm6WwFdEqk8q3ePxs22ePtzlT/4oRaFo4XqayO9y/fp1BkFMt12jWXuEijrMGgHTlesYOqKVaFTsY+NiYGGZBgqG+8CQKGGhsYDhEDQYJpkyDjShGClibDMi6DURMiYO2rQ7u+hCHgwXoV0ydo4wNghjcKwUUkoSFaFUhKFspHRJECTCQGKhhcNoHSv0aHrs+wOk3D9CQex7TEb3RslCx4XX6Ux//PtZEWHfRCaA46vai24qPvH+Kaaw4/6y8QjGcfPQZBPqebTayacCXKb3jjP0k/vgqEnteP2LtDXp93m1zpcROefRcF9GsL2o4Z+OZ/xwztPN12K/mODw7LGj+M+z3eYi8FoLLsd2SGfShGFIpxNQKc+gFMQJSGEDA/KFIlHQIEkiOq0+q6vPsJ1tvFQWL53FsCyk0Pzspz9lfe0h3/nuhzx7/pz11S3iaMC7797kyfNteoMUShtYyqbRViSxZnO9xrOsybt3r2NWW2xut+gO+szPLaB1wu5eG8M0QVuoRBHHila7TxwNIFYIFbGxtYEhQ3LpNLZp0u8NuP/wMbV2CyyHKPAxtWJlfYP379zEsyy8VIqdapVMukhpepZ2L6TWbJEQUm83Wd3Y5ebNeba3VhEaDNNkcapIxuuxXdvk8Wc7ZIqPKSzcxhUplPCwvTJBLIi0AMMgRhImFolyUcIDYTLUuiJsoZA6wiAZJhnWAVGvxY//8r+QdTVTJRfPjNB9FzeVY319j1xxFidVoNnxyeUK5HI5bFuQSblIM013EBNqQRALYhwUCVqYB5FMGoUWDM2CYj/wgqFGyL65ddzuLhiZqV40xl9mwnyT6WtOM8m8iv1Mp+GdRMuBqvpirWOfJ8H4uvukz/H2zg8X3fj7MubYk/B9ExrReGqqb3Jz86sySZ84Zk8YGpPKv8ycer0Fl2sRBT6GCLBMA3/QJ5MvYNgGhmEgGJ5Y3Ol06HW7vPXWHX71q895vrLK3Xff5Vsff5diusjv/+7vYkjFF1/+giRJmJquEEUax2nz3e9/hB/+hJ3dBkI6PHiySauVkMSKbsrGIMvSwi3uP/gr4iAk9iMW56bZ2d4im7Vpd2P6/QFS20hsAl8jpYE0BJZjYNoWvX6fq1cWmZqe5rPPP+fLr+7TaA2GpjoFBc/ll598xlQhQ8q0mJmZo9MdUK7MIU0XrWOWr17FS+2xcOMqoV9iY2OFJLaQMk19r8b0tMP7b91hulbj6/uPCDur1Da6GE6GgS+4fvs9hAK/26c8PTc8RkWl8P2IKI7ATKGlxtQRg84eg0ETFQ+QhqLfb7KzvcLDL3/MwlSO3g6899YS7Z0+K80u1VoH08mBmaHdi0AYzM1NUch5LC/NsnjlOo6C2fIM1UaPUDkoEZMkJl0/GkaJmiZRItiPHSRWcugLQw8jNxgPuR8KNQ40itNZ7Xn2GH1TcB4m9U36dibjnrTSPu7cn9An4uCfMQZ/1HR75NIxjeab7OdJMN7mRQTgC3heKVWvEr45H9NkmBT8cXThMK7t/70VXChFv9cj5eQJoxhsh2ajTqE0BQgcx8UwLIQwkFLSqDfIZtJMVYoEfp9w0EMamlw+y+//3u8R+G18P2BmeprIj5mfnWNnZ42ZqQy7u1v84T/4h2xu/2c2t5toBXFsohIL00jTbQ9IgpiluWkGvRZTlTypQNEP9igVU/TaIa1mDy1gcSlHkgRkChlinXDtxg2SOMIPY76+/4hOf4AwJV4qjWmAlAlCwvPV55Syeb66d59soczNW3do9wbEyqTe8ilNT/N8awtTauaWb2Ikisr0EtWdFg/vP+HOndtYQnP7+iLP19fJ5DWtzi4bT1bwO5sUS1P4UYLwNyhWFihmFxhIm6bfxnBzaCmQyYBPP/lLTAKKxQzPV58SxQG1vS2MqM+gOcDNGHRqBp5j4zermIlEDQZI26a1W6PbH9Dc2ebu28us+nWCzh7FUgUrLymnJIlmGDiS2FjKx3QEfqIxLAuFTRhFmIZNooeZUqQwSLQGOTQbKr3PaPb3kU2KynoV8KoFymlC60JtTQjOOM3sdd4UX/ulD3GLcWG2b7odqboCjggthr7KQ/fbxcxwvw6/z6W1kXMMqZNwn0cjHH8/F6Px+JaCbxAmLkiOmpRP20x9UXitBdfnn36G67r84z/5JxgS0q5NuzfAsS2iKMIQJqZhMTs7TxT0sEyHq8vLzM3O8smnn7C3t8PMzAzNQZNf/vLnpNNp7n39Nd/73ndYXJwjSTT1J4+ZnyvQ7c5y4+oC165ep1r/msCHQr6A0tDvh3Q6A+IA3r1zm6mZEj/95a/Y3asSDiJyFRe/E+CYw9yBO7tNSmWXKIlJpxwiDdvbeyws9uj1Q8DAtEwM0yLwO1iuoFjOkcp4hEnE9l6Hv/3pV8wuzvK7v//7VHd3ubK4wF//9Kf4iUInMUtzs7T29pDa5tbtuzy8/wUrz9bJ5l3cnMWmoQjbu3jS4OpMim5/m6QTkLIdmutrOFGL3s4aA9/GS80S9CxavS6rTx/g6IhKMcN0QVJd7dINehRdQWIJpvNp8inJjcV5bMtgYWqWTz5/xNpmh0RE9Js9gjAi7Pb4tNPgymKW6vpjKpUyg9YWmXwZ086QqBTF8ixWykRbIWYYgxxGd2rToe+3iRS4VoookQgMYiUBAyGMfQuhOrC3j0+ak0wyL8LJAkDwarWEkf/mtCwep/najjK2o1uPz4P7YsS+aPY76l87RTsZCzU8r8A6ie4jQQ3sb504xVR1vM2zmOhhfw9beF1hcsTi5Oc9qoGenQlE69HYGkc7/uOssXo5eK0F16A7YGdzi0atSqU8QxL7tFp13FSWUnlmX+BLZqbmsKRgd3ubOEpQSUyrXWd19SmlcoXZ+SUGgwHV6hZKJ3z+6Wf84R/+Q4Iw5N7D+1SrO2QzKcLQ53vffQ8/hh/+9a8olrNcWV6k2Wpy7eoVJAoDjUgUJoJ+q4UpTbJpj/SCQ8MyGESKnVqbVnuA42m0CPnprz4h6iumpteRhkWSSMJY4Xpg2yauI6nXa9y8NoctbXIFF2lpVlY3Sf7qr0EISqUKcZiwtd0knfLYM7sUc2V++cnn8MFb3Lp9m1aryvziDOsbzynni+zWdgiCkMWZOXZ3a2Q8k2arxlw+j4iaaBHgCQ9LaQZ+jBEGXJ2C3fUtZJAnZ+bo7FYRpibnOcSewVTO5eriDFfm5iiXy9TqLbSyqNd/xdZeh2IuSyqMUcpnZiqLZ8bYAp48eEwS9cgWirS7Pl6qQKFcwfY8DMskSDReukicGLhenly2gpsvUW3sYZk5gmRoio2BZH+lqSXsO8bOZFyT4ZQgBHFeHOeD8zDW4wL4JByIY/uJLvXsZ8FxoTXeV2cIrnPeO073WfdHRuLTcB/vw/MJzyHu02i9LHzTmuTpmvTpZumzAjhG94+8f3HKnHmF8FoLrrdu32Z9fYWf/uRH/MM//EdoJfAcC8syMQwDpRJc10UIg067S6UyTaO2x1SljG1adDsdvvjiM5aWr/GP/viP+U//+f+D65k8uH+PdquFYZpsb22xeOUqzXbAD/77f+eDb/8et29f4xe/+ITNrRV++LcbGFJy88Yy77/3FstXFhACPNsm5brUOwO6nSae5XLt2iJdP0YJRdfvoZAMwphk35T105//kivLN7F2utRadRzXxDYVvh/xe7//x7RqO/hJgGnbFAo55tIFnq2uce3aFTrtNo7pEfbrqHBA3suw+NY8+bSFaWnclIMQRVJuhqnyNPcefEESJORSOXJehrbRJuz1CDodnEIOTUSr3SHRFjrVo7q9S6IVH929y93l96hu7+K3dih4sNfq0G22KWQ9LCFxDAPbtMl4KXReU8iXefx0le5gi0TEmJaBbaX56MO3aFRXKBVyzE1Pkcp6RDrG8wTr6/cJwimEobEdi3anRxhqpHQpT8+RzU9TrFwhm1+m6ye4ThmhLEAP94cdMPH9jdV6tDI/dljhqXPslEk7wU9zWbhIAMakaL0Xyky4ewS3Hv860lJGDGcS3pNMWKOTc41j2skpIIbi5bjWe1LU4Hl/Hx5ueUrTpwjCSZGWQ+3wBGSvWAE7y5T4KnIqTrhzSq2jZsZJOIY0Hb8vOKpxH7VyvCp4rQXX9Ws3effdt/kv//UHKAmW5yBdEz/oE4Q9TClBK/aqNZJE4LhptKihEXz00XeoVqukvDS2YWJnLN5++20+/eyXFIpFgiihurlNp9dDC4EQkl9+co+lm3cpFFJ4ng0o+oMBhbzLsyePyN69xepKxPziElpaRElCqegQhV3CXpdBt833f/cPmJkrsrmziucZ1OtVdJKQKOh0uti7e0iZkPIkSdgnV8ghVci15ev8ZGOD3Z1d6vU2kVIsz5RJUGRzBaq1Nitru/T6kEorOoMuoU6otvsQ99AyoZjLsLtXo1IpYxg2KTfD7NQM3U6PrJcmk8vy/rvvUa5U6PR69Ho+X339CDVoUErBk+drfP15xNUry9x97y7FcoV2v4N8rjANi6lSkatX5simbcrFLJapcG0wHZPv/9b7tDotOr6g54ekXItSzmOucBPLEKTcDOvbGzTaPSw3Ra8b4XoDEAFeyiCfSTPox2xvb2PLmHxaEnVj1naeki9dR4RdvOxVUB5KC4QxPFBzlG1o6F6RyFEqGjFk2geRhzAqdCoc52UnB1ecl7OJU+qcpSEdNfsIcSh8jhZ/8bmOYjvMG3iYQGhMozpSWh3cOrg6Zko7SfQdlNccSrdxs98Lz3SU/EmEH981dGnQh3SPdAyhD59nWEQflD0YLvu9dRY7FkfMZxNLnCjxjxp+z+ibSTcPHmDS2D6t8tB/eahsTio78nEe08z0/vl/4uj71Rz9Lf/emgr9kNtv3+FbHzdJhMD0PIglaIN6bYdyqYBlCjQOs7NLpFIp2tkmjVaDhYVlHHu4nygcBDgpF2kI6q0G15ZvECcQa8W7777Lp59/TbUekEgxDJCozOFYCYaEufk5XCdhtpSjkEth2g6Pnz9jdWuDWCscxyIKEpQp6Pa7fPH5J8zNF3n3zjJ+0KVRXR/mBbRsbEeyubWFNA1Srkk6ZeFZBjoySDtZ4kDQavYJo5jKVIVsNk2hNMUvP/2a9a06iTAw7BjLk0jHoNnr0WzU6XfqKEPQ7nZ5+uwpSwuzLC/foF6r4gchhXyOJFY4rsdvfe/7fP3gIevru6S9NG/fvI6KI7aqO2yaJts7dbZ2OzzZqDI1ncdMSRaXSsyUZ5ibnSeXTaNUH9PRmFaC1gM8x0PqAa6tiLQmCEOmSkWKWY+cZ+FZFik3zdbWJqVsBelm2d39GmkCMsKybbrdEIFFqxXiuQGDboOrSyVKuYRa4wGD1h4zXgbLnSXsxQjpYhoOYaL34w3F/jwS+5xEHVwf6g2jiTr5+PgRvJDD7yw4Y26eJI/EsXvHyx1NNjt+f8RwjyOeJCQOGYo4KLOfukgcxT8Z5IiYsfb06QxJHRUIw+ccvZOjAneY4uvYwuAI9ae/q4vBcEfgUc308FmO8P2RPBBHWfZpAS2n8uhjqZWO1txv46TdzWepuGMLhQk60xl1Tx8Dh+ut0QG1R5Z0x1o69oxitNC6HLzWgiufL5LECblcnsrUNFIOgxr8QUCv1yWfS6NUQhD4lPJlNNBsNvnyq1/xrfe/TRxFCATPnz9ncWmRdqvLb//29/GcFFol3Lx5i6++/oJsLofpSbTZpNfr8ez5L0inTW7dvs7tm4sUsibz5SKDXpvy1BS7v/oExzXwPBPH9YhkTK8XEMcJu7tbBEEDb9fCsDSOaxEEMVppFAm2Y2IYFpZtYluCfq+HjBX5TB7btKnXG8wuzGI5Ltl8idW1XdY2dtnabdPzGaaWsmwsy2Nru872xhZCh/j9J1xfniJlCVae/5xKJce1qwvk0inW1zeZKldIp016nS6e7bK0sMSD+/eZLpeQgOekKBUqLF9b4JefPmZjY5dCOXdgmv3si8/56ut75PNp8nmPmUqaXMZjemqKTq/FlWsL3Nq9xtPV7WHGehUQB32K0wvoOKHf6zIzM0OgTQaJSRRoNtar2J5GJRFzszP0uiESl62NBnEUUNvZ5lvfehdHWIRJi3btAZVFwXQ+RzcSDGKFxAS5vx9sdBA0CQdHrShxcWHEoa/klBKcFqQwwnHeey+aWo4zifMz8CNYJjLNizGUX0fE368DTvfoHBP4Z5gwL9zwSUElcNIe+m8eztuuOF3ThvPMl4vBay24uv1hdnQNqERhGALTMDCkQblcotGs0+82MYSg1WpSrpRIp10cx2Jvb4eU55JJZ9AoTNclny+SzWXYq+6iVMjczA1WV1ewTJvFq1eR5hadXsjW5g5Ca6QEz3V49nyVtGkQBT0cx6FUKJKtNdlrtAmCAKENwiDCMCTSkBimRRjGWAIMw0IamlhBHMdIKTENA43A9wOIA7KOy6DfJ51KYRoWWgsMw8EwPR4+XqXTS4iVSZwoLMtAJZJBP6K60yAKE7KeTb8XECcm89eXaWV26fUaNDsDLMth+eoNIj9ACMnayhqx1pjS4MriEpYh2d3dJkkE8wvXePBkC8OSBEnEk6frLMyVQEOj0cO2wPUMavUAgc/2jk+r12Z6eoZIgZYRN29d4dnTNVzDwbUlrcYelVIZ20nT8n3iRLK3s4dtm/T8eJglQ7n0uglbm02S2CSJNAYp2s0OTx+tYJsurW7I9bds6hsdSgtvUUovUm2FSCdDkBwul7VgX8faXyUKuc+whleFOOnYjhfhtEi0Q2f12fUvc2bWNxEcMIqeG/qaLut7O/veufnhMR/UJGFxWruTQs1flZ/oxQi80zWuU3GP4XthwcKhdndwbbxd8Wr9RydFFZ7mgzvrPZ3WzmXhtRZcnXaPTrfL3l6dQmmajOFiSIHneYShj+vY+P1hqqVQ+9i2ieOaZLMpDFOQy2Wo1xqkkuHiOJcrUq6UQCVsb67z2SefMjM9Q6/3Mz799FO08NjZrTM7U6Bea/HlF1/i2YqdrXXMpM90OQ8otrd22NrYJApCokSjEkGcKJQW5PMFev0WhgHCsIjiGDDQSpMkmjAOCWJFOuVhGSYqkeSyOcIg5OaNG9x7cJ9+EGG7GTa2awwCRbXmE8QJSSKYmS1h2xqtFFob2JaF7w+wMzbScIhig0EA+eIMtudSKE9R3dlGKEXKS9HrdvGDiM3tHd5//z163Q6FQpmNB0+JZPpAu8PQKJUwN1NicX4WSwgatT3SKY/t7SqFgkO5XGGvVsP2bMI4wXEFqbTD1atzlDIFTBSDXpeWIVm+fpONvT3ajRaPHjzEcz1sV5LNpcllXDbWt0mlsiShYLPao90cMFXxWHu2y0cf3MFIEqS/w+bmQwb9BnM3fpusXaGTGETSRStJIocJefXIFKaPnuY7EmGXdZu8ELF1TlPIi0zxcu2/LByNEjs/kz/JcQ+HQQ6HDJBL9e9pgRsnreYnLQQus/KfVOckIXophnzKYmmSxnWkbfHqjKXHcYsDs/r5yk/6fVq9v7fh8AtLV/AHIUEQYlkWQRAAJirRSKmxbZsgCEh7KfyeT3/QAaFJp10Ggy6uO8fMzBRrm7usr60xPb9ENp+n12wy6PX56v5X/IM//ke8c/cd/n8//BH15h6+rxEYVEopJAk72xsYMqG6s0XKEmTSafaqe0RhhBACyzAIEoXSmijS7OzWKBRSOJ6F1gm9fg/TtPBDjR8BaJROyOUsojDAsxxMw6ZarTI7O831Gzf5b3/9IxZveOzW2qxvNwgT0IZDEIT4gY/SCtMArWKEYZLJpikUM9TrTfzBgG63ye9+/zs4ruDJszWe3H+IJQy6V7t89zvfIYnbtBp1Mpk0X9+7TxDEZItTPNto8t4HHzO1W+fx0yf0ujEqEUyVp3CEgSPBcUz8bpurS8vk8im63TbdXhchJe12E6U1+WwezxG4wqZYLlGrN3i68oR6Y4/1jV16gw6plEesDGzHpTcICaOEjLSYnpsm8PtkMymuXV3E0hHXF5eYKZfY3F5lZ+MZYd2in5/FSMeY9gwmEi3Mfa+WgP38hgdZzI+nRz0jwuto0ZMm7tka16T6B1XH7k0+SPKoVnQZOH6211ENZdjGeWESrZPuow+79zy0n6aVjv++iFZ4WeF12WtnNXWaj2ySxnUU9/m14ovCKOL0vBrUSVrj+P1x+HsruGzHw3Uk1WqNwA8xDIFK+ji2h5QGXsrDsiyUUszMTFGrVXn27Am12i4pN0cURUgpsSxJvVbl2s23QUsGPZ9arcHW1g6GYVAsFMhlM3Q6PbAEQRCThAMy+Qxx6JPKpvjoow94585N4iRhY3ePXhjTjxWDwdBEGIYCPwzp9hJcN8C0DII4ptVSpNND35RlWUSxIo4Uvb6PihNs16bRbJHPF/C8FJlcnmarR7XWwk1PUWv1UELSD2IQ0Gy3KBVdMhkXrSUqiigUc6RSFtXdBu1WG9MSfP7VfT768C3W1jbI5XNcXZhHJxH9QZ9sLsOV5Ss8fPiIKI5ZXd8EJ8fGTofylMfOXoNEKW7fuc7G+jbTxRzXlubpN2ukUg720gKFTI4kilGxYuP5JplCiiSK2d5Y49aNFKlUkZlSBb/dZ3Zhlu4gQEhNs1nDNCBWCUoldLsJiYqJk5idnRqFXIF0xkJKRRj4vHv3DtfmZ5kpllmYqlCr1nm+WycsbSMTCyOXwrI8tIrQ0kQIE8UwUz8MtazxwIKLsLPTNI1vXmt6+awIkzW9yxF+WgaII/dOt53ySqIET4AThdWBcny0/W/Sd3fEvDYkbvL9gywkJ2tk3+Rgu2gf/Lr8nZfNxP93AizbZjAIyGSzKKUxpEHKSw/DVBX0uj08L0UYhjiOg5SSdrtFGIbsVffo9Xv0Bz38sD/0hw16SCExLYc41szNL1Gt1lBJTDbtMTdVJp91KBVSfO+7H1Ap50ilnP39Yg7ZdJq56Wn+0R/9EVcWF+m1uziOQ6IUCpDGMHw2k80hDYckGYbZRxHEiYkWNqblgZS0O/1hPWEQJopHT57RD0KiBGIMPvvqIb/89Gu6g4SeP0wXFSuFNDSpjIWXMslmLIpFDy8l+fjjd6lUivQHfdptn37fp1qrs765x42bd+j2B9iOO/QpoVFK0en1KZanuHL9KutbDe4/fM6PfvIzHj/doNmK8P2QlJtm7dkqGysrOKZJxnW5MjfPvS++ZmdjmzvX7tDY69Gsdsl5Gd595y62bRPFEZvb22ztVdnc3cF0LBaXF/FSFkk8QBoxjmMACqUVSieYNggjIdEhpVKahfkZKqUClVKJqfIUJh43l27x7u07LFSyJL1dWjtPcVSPvCdxUBg62Y8W2z97TAyzbYAB+vSkhiPNZNzMcfzaWb6e85Y9qe5FaDsPvouWvwit5/HTHfk7ha5vgiEetjs0iQlx+juadO+y7/1InVcsqy8zvl43eK01LmmZmNpmYWGBwcCn0x5QLAyjDdGKJIwxpEU2m0drgVKaJEmQQnLlyhJCCFrNJisrz0mlSjx/9owPPpxiYXGZ5Ws3kJs2CMHXX39FIZuhmM1QbzQJwxB/0EYlAeVykTAMqNdrBIFPoVBgu9Yi5XmoJKHb7dPpBCTKwDBtcnmFbTt0en3QFpadJlGQKAlCYFs2rmvQ7/eoNUPQFjlH8PNffc7U7Byl6TlypTI7NR8RBPQCRZQM7eCGBMMyMS2DTrcDiU8pn8c0YvI5l9/9nQ/4r/+lwexsBds2sKTBB+/fxbIshCGZnpmmMj1Frb6HYVv47S5Br4sfa1Y3dhDSIE4SIMKyLFrtDtcWpjCSLp7nsTw/jRSKTrfD3MwcWivKhQrvv/MOrW6TXKrA9vouwjRReo9HDx/j2R5oqJTLfPjxtykW8+w1OkRIgnh40CRiqI0KNLW9XSQhvt9le3OdD25fo16v0dprU8yVkYZDKuXhh20GrTpruyvk81NkUxkCbYJIo7GI9095FmOxZK8qeuuAYbzk8eTfBIyEw8l3X47mM4XVS2H/5uCbpevi/Xpgzvw7qvFMavebOgBzErzWgitJEkzTJEk0CwsL1GttkiQBDa7jEoZgRCZg0O8NEEJi2w6WJcjlClTKZdqtBsVigVs338Z1HaIwxPZSLC5dI0xigjAc5j4MB3zw/vt0O122trbYazbotBv4/oB0yiOOQzqdDjpRGNIkjhRoQRhG+L6m2Q1JZywKuSxBGAISpaBe79EfKJQSSClIpV081wZtEoYxtVaf0IJ7D59x5+4G73/8baSRwg9D6q3agdBSDLfIpFJptNaEoaaUz5BNp8lnHVZXnnH75i2uXKnw4Ycf8sO//hkGuyzOzxAEAdev32D52hXWt9ao7e1SrEyxfOs2f/Pjn7NdbTG/MMW9R1XSaZcobqN1wvb2NiLuk/NM3rq1zM7eLrlMijhWlIpl1tfXWVtZZ25mASFMLMMjl7V48OgRSgoqM/MkKsFAsLG9zfVOh5mZaZQwafVi1rdrSCkwMLAchzgIabc7pF3w+z5bW5s8ePiAQipHEirS6RwPHt/HTEnq3RbCdJkuZBg0HlMuF8m7ZRrBgBiFEuYwVB44cLzos3ZxnQ0vMI5XwEeOmJXGksKNN3USw7pYxOJhWP1JRSbRch7cB3SLCTvMDvBIxvf2vAq/yEW1Wo75/S4L44z6TBPsvlyb+KxaDyNhj/X7wW8JWp0/hdV5ogQP75+eYuwFWib8PouOy8JrbSqM4xjDNKnX65iGSTaTZWtrG4EcZg+PFblccT983MJz08zOLHD92k2mp2YBQaFQAjSptEMQ+nR6XZQwKU/PcPPOW1SrVcrlIinP4cHXXxANurx95ya/9zu/jes49Ps9trd3cW0b17EIA59+r0un3USIoTAyLQMp2Y8ajAjCgEw2h+NliCJAG2gtSRJJ4Cv6/YgwVFi2jcIgULDX7PEX/+2v+Pr+Ezq9kHrTp90LSRAoYaCBRDHMDqIkhjSIfEXoh+gENtbXCfw+3/rgXeJ4wN13rtBuNHFsm3Q6TbPV5P7DB/zox3/L5u4WGAIlNO1+n3a/x/zCPDNTWaLIH2YNkYIw0jiei+0ZtHsdgjik3e/y5f2vqbda2E6afj/GdbJcv3YHrUxK+Wmy2RK1uk+YKEIFmVyBgZ+wtblFNpPi9u3rlMuFoc+ShDCK0EqitMAPErKZMulUnlwmx/b2DolWvPXeXYQH3ahFP2xhmglC9ZFJHT3YoLr2BYV0TNZLsIwY29BIoYZB8GJ4srKWr9i88k2at46ZK89b/vz60MVNfWeVPUijNHbtKJ4Xr0/6PA9cJET80LN5sb49DY7iOd/7OX7t+Pfx+2O/TqR10nOc16y5j/lc7/W036e18TLT47UWXGEY0el0sG2HVrsD+6HM7fbweBINSGkOI8mEIJVKYRgGvV6fdDpDp9PHtCyUSlhZeU6rWWN7e5Ner0uz3UVpWN/YJAwj6rUauUyG5StLDPpdnj95gueauK6FbRs8fPiQ1ZVVdnd3efrkGYZh8vZb7xAEMY5jUpnK4Hg20oAgDOn3ffxBTK+rCINhQEYUJYRhgjQsTNMl0ZJICfwYBjFs7db4v/7f/588X9um0/NRCoQ0UPsmBa3BNG0SJXBsm047QGACJqEf8/DBY2zHZm5mihs3rjJVKdKoN8ik0gghefzkMUgDLQxSmQzPVtd5+myNMFYMBj43b17HkBLLlDiWgeNIhAQv5bK6vsJurYaTSpErFSlPVag1WuzVG9QbTeIowTJtOu0u5VKFMIzY3NhCmiZOyuPWrZukMym6vS7Pnz+nulel0+kRBMnwTLAoIYlBYjJdmWemsoAUJuVymSCOGEQDIh1gpSRO2kKamqlKDr+3hwprVDe/JuxuYokejhEhRYwQw/1cglGqo/3fw+FyYZ/G0fuHZrmXEYaTsqGP6Bte4xjNk//2sR3w0JPLThYixyMbT2K4k+4fZaCTGfNJDPas65NW7seDQSb9N94doyeYRNvLwPi7mkT3QX9OeK4jz8zJfTppjF30vUz+A4Q+d/mz8B+n62XnxWttKgz8Dhtra3z88ffQGEhpcfXGDWq7ewyCAYVCAdt20FrjB31As729yerKU+ZnFuj1eziuxWAw4Omzh7z9dgrHVKgkwnUcmq0u/iDk8cMVeu0mxUwez8uQCiK++PJHvPf++3QHPve+esD167cp5Mu0mm2eP9/k6UYVO51DJxrDUDimCWK4QVpLh73dJn5okMTguhaGIegNArSOh/44beD7CaZtoOUwhZOyTOqt7lBgaRBiGESh2ffPaPDDEM+xETLES1kYpkWj2cFzMzxb2eLOO28zPTPH3/zND3m6ssniwjx+ECKEYNAfkMtlkdJiZ7tJp5+gSVGrB7z/7gzNegOpYxzHRScJmVQazwRDa6YqM2gd02r3qExPUy7muXplGsu22Nurs7a+Rq/XY25hAUMrri1M0ekPKGdyJEHAleVZHj96TK3RJcZiZy+gPxA0OwGJ0mTSNulMGltKdnZ2MHWOD9+/w/vv3KRULOF6KRqtOtIwSWUySFMyCAb4fkC/W8O0IvzaA2r+GtnFjxkkIKUFsJ/ORw/NMnJ42jLIYR+fMv6O3xPH/RhanRILvc9AJzRwwEy12v8cEiKGu6dHHrmxNDvixbaPZNOYlFlj0pPpw49j6A6Y+7lCu9WJHfdid4xpgWeZ1OAgse+xq4dbCOCAoWulDpnjmBA43hvyhGYPBeAoZdN4f449yAt9JYbv/kiBsUXDITljlY8iORZj+GIjoztHiB8Kw1flSRq+60n9PaEsp5v/Jt0XL2EufK0FlxRgSpNMJocfxCAkWccljmParSZB4AOCMArY3n7G3EyR+flZ3nv3Ds1mA8d1UDrh2vWrrKw8x3Uk/V4TQy4ihKbValKpTHHv6y+xpCROGGpQdor52VlmpmfoPFsnCjQfffARxVwGL9Wi/bMv6PkhTb+G1prAH2B5Gscyh4f1IoljTbPZRYjhRmjDECgdoYUmiiLCGIJIo4RGmhbKsAgSTawNvFSK3mBA5CfDemo/556ARquDUXCwnYRSMY+QEt+PieKEbjdkc2uXpaVFHj9ZpdUNKAWKWqNBqZjmzq3b1Ot7WG6Kq8s3WNtqEIYm9Vqf5StXiYOQuZkKrmMxN10mifpMV4pMTxWJwoCB3yNWmrUnzyl4WQCUVljOMIXV9tM9cvkc5akSnmPT6fQwEkk6nebJ02c4nseUlULLFDu1dbrdLmGoSRTIrIFWik6nTTeKKXgSlOLK4hKDfp9cOkO/5xOFCttxSFRMIV+iVJrhq6++YroyhQj3SDomZnwTz3DphgMMmWGUr1AbkkRHDDcn7zMafcjwXoAThA6MJukY4zvMOnes/GRGLcY58QHoA6Y3TNU0auMkz5w+4fvF4HgPnLVOvsg6+iWVmkPNcOyawVB4qf1chy+Ys463LU55x8BQcB0ap06Jqj9EN97ucWl/oQ7ab/9Uc+MpdL1M/56SQ/HFoucvO4KXIe21NhVqJcgXi8RxQhwnCAGJiqlUiuTyWeIkpOf3WFicY3ZuhtX1Fba212m26iiVkE6nMA2DwWCAlIJev0/gD1BxiNQJKcfmxo2r5PNZZmbnqEzP0ur0cByPb33rIzbW1km7LrduXsNxbDrdDgrF7OIc2VyWRCsSrbAdi5TnAJo4DomTkDCKSWIoFtNksxlSaQ8v5aKB/mBAt98nCBN6g5Bmu8/uXod+kBAm4IfJfuoocbiYU8OX2W736fd8et0BGggCnzAMME0TPxCsbVRRSBrtAKSk1e5QKk9RLlXwPI+FhQUE8IP//t8xDUGp6GBKn0ePHpMojW1ZLMzPc/PWDT784H1UEiOA+/fu4ToerpNGacnWTp3NnTqmnabb9cmk88zNLlIpT9Pv9nEsm+WlJd5+6y7pdAFheLheliiOCcOA99+/SzqTxzAMLFPSarZptzrYtsXCYgXLiNlYW2Fvd5t6dZfnz57QqNfY2Fjn/r0H9Pv+0OwqTUzTpdfr0+u0aextsL36EBE08cwY04iRQu1rrCMGNbTviANB85LcdaQmHUNzkqnkYHUvjpYd95eMf3/V8DJYxVHb5DcAJ+CeYI57waR27O+ybb7w3iYozkfLvFx/vKzJ8vLtXqTsr5fG11rjsmybcrkCCLQemsyiKCKfz+H1XTzP4/nKUwo5jygO2NhcJ4n75HIpHCtNtztkhDMzsyRJjBTG0FemIgb9Lv1+mygKUVoSRDGNVocnj59z48Yyi/MLWNLgs88+4ebNm+xUt3Edm3ypgu3ZpHIe4d4emayH4w4zz8cqJomSYc5CqcnlbXK5DFESYBgSy7Zg4BPFCXHCML+fBmJNP1AMoh6eY5Ly0nhpQaT6KB1hGIJEqWHwR5jQavWJbc3CjCRWMd2BT7FSoVhS7NVb7NVaCAnaMIlUTL5QpFHfxjEN+oM+05VhWHkcBqRcG9NQfPKrT0inU7x1+wY3b1xjffUJ16/Ms3zlCt1OC601z56tcPXGDZYWbwz9VwJ2qm1uv/0+G6trXLu2zO1bN6jWdhk8fYKXyVIsVgiVZGfnE6amZpiyXZ48XeOjtz9m7sEavh/S6Q2IwwQ3bZLNZvjWh+8RtLZJoh62KckUs/SDiF6njdCwV+2QSmdo1DdYebaLYwnkjMnUlIWhmuw8/4pMbpp0KU0/MdHSAyVA7wcPHGha447qi0VCHTUt7V/QR5n6i9mxh+tIMYqCFodRXYeM4fgG2XFBdjmY6K+7YPkj9y5wmOBF6X6hX0fX9dFCRzXfs9s5/f4pmUBGv0/DvU/TZeG8ffSqhcdZoTwvjf8l0L/WgktjkMnk6XR7mJaNEBJpGCAEhWIJN5Vi2vcJgg5+mJDJFXj2ZAvLNHj3nQ8wDQelYqrbVUCzvbNDMT9DtbrLwB/g2AbbmxssX11EJYoH9x4yNzNLNpPHdV2KhSKLc7PcvnWdTz79BNtxsN0MX379kGqrj+1amLaFRhMEIbYlifePgMhmLcLYoj/o0u/7WJY5jAzUGtO2wBT43RA1Mt8L6PsKPwzph5BOpbFtlyTWGFKgZEKoh0MtihSBhna3j2tL0hkPwzBASpJEs7VTQ2lJrAVhrChVpug2dun1uvj9PrblMjczQ6ASlpcW+Prr+7Q6TarVDu+8dYtBv4eOE0xpcPvmTVZWnpL++Nv89Ge/oF5roYXJ51894dq1a2R6AV9+/YB6tcpbN28x6PvcvH6T8tQ0P/rZL/nyq3vs1Fq02hG/+OVXFAppms0m9+/fwxAaz3WQ0qDZ6KC1JJVOIYVmbnYav7tHr93CLuTYXHtOo15FCkEUhqytbqG1gWU5lIpZ0m6aTr3ObDFDd6PG8/s/5Z1v53Bti14sMZHEwkALjUYynnx35EMR4qJ7UUZBDvuMfIKWdKLWNao1wal/WHdU8mJMa9KhiZPaPwnOFAIn+O7Ownda35500OTRdo9+jnCfNxDg5DITBOV42dHrPRnxKzCJTkZwVg7Fl4KR4/wceE/LnDK6/4Kw//sanCGlhVKCZrNFqTw1jKjTgnanh1IKx0nh2Ck8z8W2LYrFPKYh2NlYY3Nji3feeR/Pc2l1m9Rqu2TSaVzXJZ1Ks7b2nHQ+g+NYJGjiWIM0GPgRXjqDYZikXJff/b3fIZfP8Ytf/ZKdWp1BpFjdaBJqSb6cptvrYVkWjm2CVgSBT6IkrpdChiaDQR9pQJxEKDV8waZlDY/bEBEwtNVrpfcdzoL+ICKOewgNppQ4tkUYKIQGKQ2kAMEwaa+UBoYpGQQhzXaPSinHXq1JGGsGfoznWOzu7hGGETvbO1gGFEsV/CBACRMdR1xbmmdjp81eo8uzp09wLUEYBqytrbO8OE8hlwcUpXKJdCbLj37yK2qNATdup4i0oN/u8ODhU1zbYXqqDEJSqUxTLJT4i//2t1SbA8JEs7CQHWqQpoEhBCnPI/B38P0I2zKwLAO/3ycMfGTK4e7dd6iUSrQae2xtrBGFATNTU4h6nVgLfD/i7jtvU93epdvp4xRN8imHd67N82SzCYM9LDuPI+39pMR6ePik0PuOY7FvPuRA+3l1MNJKJvihDrS8ce1sxNyP19mveQZtx5nEadF4Yuzfy4AeIjsXHSfSMEkLFIJRBvvz4hvH+7LM90S8I5IugH8cztPWeVJqfRPmutNwniY0zzNXXmY+vdY+rnyhQBTHZLN5EqUxLQfbdocrbTtFuzsA6WDaGebnrpHJVLh14y7f/50/IJspIbCQ0mJzY4s4Ttje3mW0Mk6l0xQKBTJZj0G/x8bGGpmsR62+x7Nnz3Bch1K5RLlcwvFc8uUKfiLpDGJypTSWAxpJlIA0LRzXI44TQGCaBqm0QyptY1ga0xJIqTFNiWEYRFG0nzjYBARyeKLifli/gdaCMEoOJmOSJKgkRmuFUsOIOGlAHCtsy0ZKyc72HnGiCYKYleer1Gp14kSxW+3zfGUNx/FYWlpmemaeWGmu37hBq9WikMuwvDTH23eusjRfZmt7C8+zsUwTx3a5f+8BruOwu7PL3Nwclco0rpsGIXBcm3Q6y/zcAteuXeX5ygp/9Vd/zQ9/+EPCMOT2rTsILEwpyaRd5ubmuHHjBn/yj/53lMsV+v0B/V6AZTtkMmkymRRKKzq9HqZtU2+1aPd69IOAu++9i98fpuwqlytMlSvMTs9gCMG3P/4O5WKF3a0devU6RVdye6FE3NpE9PeQUQtD+ZAESKH3J8V+lOGRETch3O7SoPftW8f/JoNSo3f78u0LMdxTZRgGhmGcmBj3pLpnwhkZFC7CYMf9VfvIz6yjLvA8x2FS2P8kIT5e7symzqDnZRdELxta/jrCa61xxbFCC02+UCQIY3o9Hw2EUYijBQhJJpNFapCWg2l6TM8u0mns8ry3TrvdwbQM6vUmlj0smySaZqtNrlDCtm1ymQyDfp/1tRX6g5B6o8/zlWfMz1ZIpxyEOTy9+N7D54QKKrML7NYaJJ2ITtfHsj0GfoxK+mRTGSwzIgwTtFb4YUAcBygNhjnMpOG6Fn1fEUURCAPTkITxMABCSmMY7CaG4c9JHBPEEbEU+7NHoElQajiI/cHQ1GiaBnESYRgmAz/AH/QAcF0H4pj7D+6TunubtGNSKJbp9Aa0On12d6sIIVlYWCCKqywuTNNuV/n80y+ZqhSRCiqlq9iux87uDoVSBTsMKBQKlMsBURiwu7tD0G9zdfkKQscsLy9T3dvhBz/4Ab/z+/+QWzcXefBklanZeVKeQ7vVJpVKUyhKqnsNHMfGcRws0yRJfNodn/sPHxJ09yAecHVhDoGkXJlmafkqfhSzvHyVvb0aURiThBGPHz5gulzii19+SjHjEoUBC9feoqdjLPrYVkwj7BMoEMJgqOtM9tMc8odXwShGzqxRGPq4NvVN+xfONs9NKn/8+3F4WQF4kqZ1Gfi1MfNjSvCL7b5KTf1Y05fU8n5TMD7uXub9vNYal205CDk8MTiK1XA/kpRIadDp9RHSQEgTy3URYnhERiaTpzI9SyadxfPSWJZNqVhCJZpCvsDt22+RL07hpbJkMll2drZJIp/52SmSKGB2NkMU+9x/eI9YxTx6+hhMi1Y3otHxWd3cww8EQSioNXwazT79QcLAT+h2BwhhEiXDDb1xHJLNuqRSJrZjYJga2zIwDQPXscik06RcB1saGAx1Lqn1gSkQoTFMOVQS5b5TXGuEMHBsBzTI/TDe0f4XraDR7CClpJDPUC5l6XW7VKtVnq2sEStJrCS71SaPnz7HMA2WFufptBtcvzLPdz9+n/m5Mptr61T3GmgM8oUiS8tL+MGAzz79lI21NSqlLI4tWV15zpMnT0ilPL71rQ+H52vls1SrO3z22afsVncRQpHEPteWryCQPLj/iKdPVxCGxE2nwJD0/QHtdpck0dy8/Ra9MKbdD9iuNYiRpLI5rt+4zV6ty4N7D7l5/QZpz8W1DVqNPYJBl5mZAqYhyWYy2FKREhF20mImJyimwZYRBskwaEIMgydO9kCdBeKokNtfuI/vK5oUnXbgCjsF77D6ZE3g7wRcQChdDO3JPpJx/9Z5W5kkjC+jvQiORjJOaOjcdFwUzht0cpk2Xiag5Xi7x/v17/UGZGnYJCpAaT1MJyMFoAiTENezEVIQRj5JYiDcYSJZwzIIguEO3s3NDTK5W8RJzOLiInNzi8NAiVSR0tQ8hgjIZTL4fgfbyrFXzpJKZbBsl5WVNUpTRWzHw/YyhEqw1xigRYxhWICB56ZIlEIjEdIkiiOMeGjKS5KIJElwPQ+lIhI1zHphWWmi2Kfd9gmCBNO2cC2DQZggtEYx3JQ61KQktmPt52tMiPr+sF+EAKVRiWLQ72M6mpTnEYUax7VxQ5N8Lks+l4EkolLKo5Tg2rUbJBj84rOv6HQ6CNNGS8mzlWeoJEDFA25cXUIlAku6/NVf/oqpSoV8wcOybRzXIop8/IHP3bkpisUss1Pv8vOf/QTDUKTTHhKH9Y0Ver0eSsVYpk0+KygW0jRqVQTQbvf4yc/uMYgEPV8PAzJMSZIoBkFCo9NFSJtUtsjz1S02NjZ5urpKsVhkarpIrVZHRRGLszM0Wy2Wl+dxDYN/8AffJwoDpDSZnp4dZtqXFuubD7HyN/CcEj2RIMXwYM/945I5uqQWHGWPp5nFjv8QB0EehwLq+EZVebC5fPK6cqgJHk76803+C2k4HPWvXQQuGlV4Gi1naV+TBNf494sy3jO3J5wGmpOFxBn9cfHIyvPR/dLtnGB1uChcZOydF15rwRVGEYEfks4YZHNZ4iRG7+9yz2TT+H6AbVgoHaM0rK49J+VCPm2TTqeIgojtzU0GgwGplItWwzOOhGFhmg79bptGo06pkCafL/PV118yNXWFREsq0yVWN1a5eestlDAQhkmnn2C7Fn5nGJBhOy6OY9Nut1BRRLmYJvAjNEMhlbY1qZSHYQj6/Qi0QRxHqH3ToECTRDG2Y6O1iWkMhV+iE2KtcR2LfKGAUopur8+IZwgx7BvPkfT7PRwlKeRLrK01EPTIpDwsS1IqFTGFwkTR7/eJY0XfDwlji8fPNnn77assLV1hd2uVfq/Fk8f3h0JYWKRTJcrlDL/65CsUA2Zmcuzt7Q39YsU07969zeLiLKYBP//Jj9nZ2WR6qky70SKTy1LyfXK5LJVKgdX1LeZmKnS7bUxpsLa6zsAPMawMUTSgulfHcSwsy0RqxfOVdeZnS0itqdZalAtpVtfWWbqyzPz8Akk8PLrEtS267QapbIZo0Gd+boYkUTQabSxTYhigpUKEXeq7a1BOIaV7KKskxxwY55toh1UEhyHvI3XqaNnJk/dksaGPRHqdn6bxtsajCicyW31Y/jKmpnNHFepjP4R44cmFEKda2g7KH2vyuPCa7Ls6D/M8R8DGGH+frEmc3R+X8fudB17KJHdGVOFpuCcl351U5rLwWgsu13ORQuM4NomCYOCTznh4ysH3e8SJwrLy+IMBrXaXYNDl6f2HfPzhXRxXYkiLmblp9C8TXNfDtGwq09OksnkM06Lb7aFUgmlICtk8H33wEV4mx9bOLs1Gk74fYFjbFGe2sNwUlu3Q70dYpkMUJwRRj3zeJAhiRpnHLdshThKUUsRRzKDfRwiJZRiATaPeodcPMQxQscYyBWnXwDQ0lmkThpJ+EKCShCCMGAwGGHJoXrTE8CwtyxT7+8TSSPyD72qlSacbDve+iYSV58+RJPzWxx/i9zs8W33O/JVldqtV4kTTbnXZ3tol7aX41kcfEQQD1tc3mJ9bIp+bYm93l3a7TaNeY3Y2z43r1+i0e7TbPTqtKlU7QUqJaQrW1tZwHYcH977inXffQRoGs7NT/O2PforWAZvrq1Smpqk1OuxV6zi2gTANioUc1VqNOBpGGzq2g2GY1BtdPFvS6zQplN7jw4++w6effk4mk+bq8lU6nQ5dpahMTVMqF5FJjCkFcZDg2i7bW1t0O21M0+HG7Y+4/5NHeEYWp+KhtU2CidIjjWcUFDFpkr6YEkeMMbFDxjcKvjjU1ASTmbI4UkeO4RAM8yvu3z2SnWO8/uG/xy6+eElPYkp67CGYILwnM5x9XXDivX3n7OH345QcPOKYoDjYjHC8vD64f/AcY9cE+sAXfETI67H6oyjAU9NgHNfoJpQdCfmRaVicUO5EGGPw52HkI7rGy56q/J/jWU9r7hvxEx4unC4Lr7XgajZ3MIREyil8P8S1PRzToZ+0iXU0zCbuhyglSKXSeI6LjiPWVp+xuDRPdbfKkydfA4pmvcVbb5VIZfIYhk0cRQgBac8Drajt1WhUO9x9+2PKpVl0YvBsZZud3S4//PHP2d6pYRgS2zZpd3wMKbBsgWnAVCWNITVxEpPysvQaDZAGtulgSEEcD01mQQCDfozAwPUMEj9CShBimNHcEhJhGbQ7MSBJIkWn1UEKgUAilRxql3GAcASFYorQD8nlU0RRH8+L6PsJvSDCdR2kqfD7A3q+j+Pa9PodIhVgOZpM1sU0Xb744h43r84RJz4Li/P88R//MSpRpLw025srNJo22zu7PH70iP/5H//v6TbbPH36lKWlaTY2N1lZ3cT1stQbLR49eky5XOKdt2+jkYTBgPn5GQSQBDFTpQqNZhcVa6TQREEfQ7q4pjmMqksgihJy2TIQ0O+1CIjphxFbuzVarTauZRFaAfW9GqVyhbmpeWamKyzNTrG7vkF5uswXX94jDkPSrkOiFZHfoJTRNFur5ArTIF0i7RBoA0YZ5LVCIBlm1tAcyUV34tw+Ia/ewddJK9bjK1z1Qgj4C3gmwAskaQ4YlxjhP2JqG1sdCz1sdwzZuaL6RsJJCCaGaB9LC3TA54cETcQ3LrbHn0UDxph2cyjED4X+8JiUQ6FwtAkNKjmCdlzDlEIeaLTDK5Nz9o2EqjSMQ7wXAr3/nOcUEBoE6qj2eCBWT9FqLiMkxoT3JCEzWaMaabIHxO5fPezbE9ZbF4LXWnAlcURpqkwSB2TTmeFmXZUQhxFaKBw3jSlMTNfGsQSFfBmVwMbaOgO/y+bmOp7nYRiSrc1tGs0WhYrCtUxMy0IrRbFYxJIJzXqbdDqLFAZLC0sEQcjM7BX2OgH/r//833Ecl1qjCVJg2wKVKFQsMQ1JsVgiinz6/R6aYbguShMnikRpXMdm0I/o9wM0inTaRUsDpRVxpLEtSaQ1nmswCMEQQx/XiAEJhs8tkRgCLEvgeoIoHmCaAtu2CEMfaSRYVkKr1SCVmsWxbRwrQ7ffpVSaY/HKIn0/JOWled6s8/btCvm0w9raIzzXoNVq0ml1uHPrFp7l4thD0+Y779yh02nT6fZIpdPDY1KaTRzHxXVc8tnsMM/h3CyeY+H3A9KZLF89vM/VK1fpdwbMz83juQ63blynO/BZ29yj6w+1Sq0SkighlbIwJKgkREqFlJJ0Ks1utcbO5jqeKbmxvMze7i5RlOC4LoMgQClNba9OHMX8/Oe/oNMf8L3f+g7ra89RaIJBj93NVZwpl5QZoeIAaWaIlEaPTkrWB2yWIwzym1iQvgC/2ciwV2LGOrbil2eVH6967Per8bxcBM5YJPy6ohd/g22eZTY+j1n5eJm/tz6uRm2XuZkS3U6dlJdgWS5JEiF1gpBD05mhJaYwkVKitSSbLRBGmvX1DaQUeJ5Hr9fjo29/m7n5BVqtBulsEUNaJEqRyWRpN6rcunWbfGGGRrNDb9Dn1q1bbGzukhgthA4xpU0mbSINlyCIhzZ1pdA6pt/rEgQ+XsolDALS6TRRrEiSiEF/MDQZDgZYlk2+MIwf7PsJnuehLL0vYMAwJEEcIw2QsWK0XlRaodVQYNmmhWWBbQ8HxfAMJIVlDY8gsSyJMCTtbpN8xmXQ7dLrdImCgG/lP+TevYc0mg2Wr84wPTVDp1nl7t13abdqNOs1Htx7zo2r1/ZPava4desWiVIYhsHPfvZz2q0eb925yVR5hp/+/Bd0u10WFmYpF4dZKpr1Gj/50c9wU1manT7PVmoYIqHX7TC/MI/juVgG3Ly+jBIWn3/5kIwniS0QQuHYEsNQwyhM6WAasL29zdxUiXQ6w+z8Aqura+xVW0zNTDPw+5SLebQv0VFIOpPBTnm0ux3mlhap1xuYbo7F6RLbnT1yZsTA75BoB4MUSlpoZSDFcB+d3v9Pjhbyr3hMvxqGJE5YDZ+3Nke0phPLXdjZf1hv/PtpG3NH988l4Ma0r8sELLxM5N3xNsef63SmLvb/f/E5T9Jyzut7PP48lzXNnbX94SjNcGBOPmqfPYLrZefNay24NtaeY0rFe+99i26nTRQMME0TuX+cgUg09v7hdWEQYNsud9/7gE57m1a7RT6fRUhJoiXLy9fxUmm2nqxSqsxjmmI/8g3q9RbT5Tn6vf5wT5FjMzMzy+ZWlV63RalQoNXtUsi6WE56eBBkFKGVGgYIdPskSYyZs0miENuxCaM+WmviWGFIhRBgWhp7/8WHsSDRQ0NFksTk8yniKMA0FZbNMMOD3j8mRYOQCtsysC2JEMnhoX1CDHMOZlK4rkG/nww1t0Gf0NKEYYht2mxu7hEnn9HpdpmfX6K6W+eLL74km7KpFDP76a3mSOKYcrHM8pUrPHj0EGFI+oMBOytV1tc36XYi4jjiD//BP2R5aYmnz55RKRepqYh+p0ur2cAyHXJ5h1ze5qe/+JKlxSnmZt/i+rWrfPH1l+g4YHH5KpXpeVSS8NW9R3Q6fWzHIp12GfTbSGEj5dBEGsfDgIvvfPQtSuUKt+7cZvlaSL1eZ3NznZmpCtfef4/azg7TMzPEJCQk5AoFUuk8fT/hux++zxePV3Hpk7Es+iIgTkxiDLQQoA2Gk1GhxVCACTRCv7odJa8q+urA93MBpn+sQcZ9LxcVAietrA+E1Qn1TsM3jndytOFZ+E5Pu3Tas44E+UXgIpF/4oDPn++9XShC9LJj4Jww+Tn3/yZEUx4/g+yy8FoLrna7yX/5Xz8jl8mRSWcxDQs3k0MnIUkErukgSQjDPmEY4KVSiJTEcQ2+/Z3fYX5+jo2NDZ483eLe/Se8Y6SZmZ5DSkkQ+ERRzO7uHlGY0Ov1EXK4byzRmrWVVebmp9nc3eWDd2/x6WdfEWlJEgfYlsC2bPxBgEATx8NgDB0PUz5pHWNKAHkwsExT4nkGhgV+oAhDn24X5H65cslDK4FtCVKuSRQnsC+4lFJYpoFpCKIoRAiFkC5JkuDZJnESkMQhnjfMmJBJe2QzHipRJFHM/NzC0K8kLbY26ySJSSad5YvP7nHr+vwwOjPjUiyUKeZzGNIY+pNcl43tbWzb4Xd+7/f4/LMvqdXqREHI/+M//r8plgvcvn2b58+f4DomxVKOen2PmdlZrt+8xb2HT5ibK5DJeHiew6DfIZdN8Qd/8H0M26PV6nNlYYZM2mNnt0p1b49ms42XktimJJVKkUqlqSmF0Ak7O7uYUjBVLtHvdwnDGNtx2avXiLVme3eP3d0d5pfn2K7uIG2LqeIshtAov8+7Nxaxcg7drQ5aesSmyUALNBZqf0IOI+T1vn98/6DASxiuxhn7pOi+MyP/ToEhpSfXucxq/bJM5iDKTo+iBo/SeRbuiwmAyfeGaZnO3jf0svcvV35E2+VoOY/v6aLjZyKVZwi/cR/XyDfI2Mfxhczfa43r5vWbqCjir/7yB3z0rY+5dvUqghAVDQgjhS8Fjmth2A6mkQzNHxgEESSJicDjxs33kSLD82cr2Haa6ekZnGyOOAlYWlri/he/HGbfkJJMJsXO7h6uVkRxxHJxmRvXlun1+3xlCAxACYNuLyCVTiNRmJaBYwuCYPhCTVOSy+VIpVIM/BDTsBj0ejiuTSplY8QxYZiQzTh4nk2vOwCdDH07EkwDHEdi+5pICbRK0Ert7z1KiOJh2SROiMIYkbaQUtLr9dBJRNpzsW2JFBbtTp/BIGDQD7i6fBUpJVeWQxzHpd/tA9BottFC0Gx2SHspFuYWWFycZ2XtOdXqHs1mk5nZWWq1BtPTM0xVZvjyi6/47MuHXLu2SM/v8/bbt+l1WyShz607t1hYWGJu4QqBiggJiYKQRrNOvbnHtevXKGcybO3usrWxyoOHz7nz9juUSzd4+EjhOQJNjJBQ26uR5BNSqRTFQo5MLke90cQf9FlaWuSzz78kl8szMztHECpMx2OnVqfaqSEtSaFep5ibodVs8uThfT76zsckusfW0/tE7hylpXcRBoRKoRgmJQZBzIExZLjn+5zT8Dwr5ZPChieZh17VKvo8eC7qm/gmfTCTwtq1vrhAuwhcFMc3mvz2FcOrynV43kXFKL/jy7T3WmfOKJbK/P7v/wG3bt0GEiAGHSNISGKfanUT1IBet0ans0cch8M0QImJaaQJAkEUGVxZfovv/NbvksnmSZKYIPAR0qBRbw61DdslnU5j2SaGYdDt9EBLAj/Asy1uXL3CP/i973FlYYZCNkVjr0e72SefTZFyrWF28rSzv+k4xnFNkiSm2WwSRTFxEiMExHFEHAZImZDPeczPVcjnXbTW9AdD06KUgjiKkEIhBSRxjFb70Vd6GMgBgjAcnqQcRTFJrA40A60VqIQoHGphINjZqRLFCctXr+P7Abdv3+ajjz5i6cosxXKedrdLAqxv7lBrtAijBMfx6HS63L/3hOfPnxOFw4TAlakp8oUibipLo+XTD2LypSn6QcTmbpUwDOn1uzxffcJefRspE9599x1M28ZLeSRJzMrKU0qFHGnPRsUDVp4+Ipd2+fD995iulEh7LhKIwpAkTpDSwDQsdnd32draJJfLEUUx7XYXwzTp9/v84pefcP/hY/pByF69RWVqFiltvFQKx3HodNv4/TaVfAodNOjsPsVvreKoNq7wsUSIIdR+lOcwTF1fQGgdhxHTlVIemnVPKTeC43kFX2byj9oftXHwd0lcJ/19UzDehpSnHy3/TR/RcZyei8H5NOBJuM/q71f1Hl7Ve31VY+O11riktCmVp8nmi3TaDQaDAe1Wi6dPnlMqlfniyy9YW39Ks9Nmc7vK//J/+KeUS9NkswUcM4XSJmE49FeEoSKJAlQS4dkOQdfn3tdfs3zlKrPTJdIph6npKVKpHEGoCaOYQd9Ha0XKsfmd3/oeiwtL7FTr1Ko1gihGxQMy2QJhGIBO8AcRWsQ0m3XieJh6yZByGG4NZNIZtO6itCaMQsDHdSByBM16h3TaRjE8mgQxPAF6mJQ3IY4Ulm1gmg46iYgjRRxrgkFMJAMQMWjIWocbrQ1pYEoDjWSv3uKGUqyvb1OuPOXa8hLT0wVMU+B6Nmsbezy4v0GsEhavLDC/sEAchWQzNiqJaTTqLC1fQ0tBtlAgiB/Ta/cxqiZ/9eOfc215kRnH5Wc//lsWOi2kIZianabRrCFNydXrN3jw4CtS/R7NZp1up0uxkOW3f/u7PH++jm0axL6PlEPzqEDjWNbQhIug3mhgS8X1a0u8c/dtojDhzp07GIakWmvw1Rf3+Pijj9GtFpXpWT755HPeu/seafsZ7XqTJ0+fEichvyVM3ruzzNPtFvWdhygVIb1pMCoYVp4EAyEkaInUIyH264NXYfb5jcDIXDj6eXD58gERf5fg5Wj69TzPJN/jq9S2LhRV+JLtvdaCq1SZJbNv1kulPCQJ9eoei4tLlEol6o09HNfCS9lIQ5LLpnEcmziOSWUyw7OsTBvDsjAtg0E3ZuX5Y/rBI+68dYvFxUUcQyOID/LruV6OVCrDVCZLdW+HwO/jORaWKVmcn0MIwZ3byzTbXXp9H4nCc22azaF/y/aMof8sPFSXBeyf4GxgmTa+P0CphCTp46YMlHII+iEqVoRxjCHBtgzCeLjxGBUM/VWxQpAggDBQ1Gs9ZNnFcwXo4abk4XlVEXGs0UqS7B+l0mq1+eTTT5iaKVGrVdndWUOrmKvLV6hMVyhNTxHpkJ1Gna8fPOCuvE02l6NQyOE6DgsL8wx8n0Rp3v/gQz794iuIEhI5zOP41cMVMp7FW+9+yNrKEyxbYjfbTM1MUWs0WV+v8vjxQ+ZnK8BwS4NlNVhYWKZSKtLrtEk0/OHv/wErqyts7exQ22tSrTWwLIdUOsWV+Sk8z2KnuovQBlIarG9skMtlyeTyfPblQzY315meyiGFotfp0WjU2d3d5eqNG0RxyMbmJvlShemCjR82aW7dRzt1srPvIu3Uvp/GRCuQwgAUx49mP4kZXMY/cxocd+YfXD/BnzNucjxpdT7CMM5LjzO7c/vaxssex/FCm5NpnRRccKnouDFf5Eka64m0nBDscvw9j18/LhROfk5xQNt5cF8GzhPocZrP7DztH7Zx3Fl3Ap7RpuhLwmstuIS0CMME2/WQQhD4PRw3QzE/hRBw7dp1vLSNUjHLyzEPH9zj7rsfUShU6HcHmKaDaRtEKhky3WR4bHwcxwz2TXNaQbffZXs7wPf7FErDIAjTdMllC3Q6TWzDxBIG0jO5srjAO3dus7K2Tr3V5vnqBkgbrWMsU/7/2fuzWMuSLK8b/Jnt+cx3nnyePYaMKTMjIyuzpkyG4qMaCtTdJZUED4h6qgfEAxIS4qGEhIR4QIVQ89Y0EnzN1zRUFwUkVWQNOVRk5BQeo7uHz3fyO535nD2bWT/sc6/f2a+HRxWEPsy1/Z69t03btu21bC1b67+oVHwsy0arFCENSml8z0FgaDU7WLZVvFydoU1CKagQDSI818V1fDwDw402uVYYLXE9H8dyUHlCrnPSNEMYg0UhUeWZIjE55ZLAtiUqV6SpJssNcZyT5UXcrna7wzDscf78AtevXiJNYt75wdusra8SlBwGcYZwXbSA1Y0NXEdy7tx5GvUq/UGfwPd59wc/4toLLyJtCyMluVasrjW5fX8dx7Zo1C0unZvDL9fY3Fjj5q01rlw7hcpd/uiPP6QcZPQHHc6emqcU+MxMzzIcDDh37gy3b99jZm6e2ZkZtFJgLBq1KSrVJuVyGa1jao06Ok/QGN7+/vcoBVW63T5hHDM+OcXa5kPGp6apj1Ww0aysrDIzNU19bAzL8wijEMu2uXP7IxSS8cYYrfYa0TCiPnUOSYrAKd6PkBSy8mHIGXuJ4Z+GVdfxTPEgsdvdh8I15JiVttjewTtY91HMcnc7h9a7n1mdYHW+n+B/2rE8zkDhJHUW/djVd/b+3j8mh10/rm45Gu7j+ngSiea4Nk5y/VnH9ShGvrMDfMg8+l8SFxDFEVIYXN8tMPSwSDNFmgyYmZ3FcnyUVmRJyvzsAp1eytZWEyld0iTF8xSOX6BXSGHoDYcYYzh95jS+53P2zBnWlh9h2zau67C8vIEyFuPjHgaDJaFRr9NuNen2+8zMLzA3N8fs48esrq0iBXieS6agVquitCbOQoLAJ7E1tqVxAx/fs3GdAlcwzwrvLCEMljQoneLYkjQrJojn+lhWD50rMBqlFI7lkCqNbdvEeY7QYNngBwG2rRFCI4SF67pFH+KUXEGWGsDCth2METiOw61bt5mcaHD92iWUVnh+AVH1eH2ddj8ksAStzQ1+ajv8yv/lL1Iqlbh69QqbrQ5f/tKXOH3uPA+XVylX67QGmzQ7A7o9VUiGIsAIh1NnTuH7LtVKmyxOaOsOl6/M0mxuEpR8bNfl3LlzqNwQDlMG/SGO6/H9779DUK7x4MFDVlfXaHX6bDXbTE6MY9uGL3/xC3TbW6w9XmNubo5wmBCGETP1Gp1Ol6BSplatEQQer770Iu/95Ed897vf58Lly+Rac+r0aS5fuUK17PHd73+PWj6EJMN1XUqOJkWBKOCftp2SCyZ2/Dw9jCA9zRrs06SddngiXRxW99Em5bsIze6V8f58iBEoQqFmPxTUQ2z3Y7tH+6wKTyB1Hdb3w/MeTdAPNcs/gmAfV/ezSJknv77fEu/4/M87Pz6NNenT6js4dgcXLIcugszBOfos6ZmNM77zne/wy7/8y8zPzyOE4Ld/+7f33DfG8A//4T9kbm6OIAj45je/yZ07d/bkabVa/Nqv/Rq1Wo1Go8Hf+lt/i8Fg8Mydb7e3eO+9d7nx7k8RSuFIQZ5GuJ6H45XwSjXWN7cYhhFKaV64/gL12hgryyuEUUicRKBzyHMqpRK2ZXPq9Blmp2cIfJ9yuYLl2HQHPVrtDu12l1IpIEn6JEmbXEcEJY+p6RkuXLjExMR0AYfk+1gYXEszNV5hYXaCuekxGvUytVLARKPOwvw09XoZrRVZnmM7Ho7jIoRA5xphBDrTSC0o+R7VeglFijIpjmfjOgJpFdBIgzAkjDPiNMPzfCxH4rgFAn2p7FGtBni+h2W75EqijUOWCZSRBY2RCk1EFA/xA4ePb3/Ef/lv/wUtNe1+j0fLj+n1Bviej5Y27Sgnk5JHq4+xHJ96tc7UWAOVZkhhoZRhdXODYZIhbB8jJRNTdaqVEuPjDQLPYbxe4/zpBS6ePs3M1BhXrlxgZmYCy3Hp9AbcufuAXm/I6TPnqFbGuf9wgwdLLf7Df/o9/vhPfsrSWocoFdhOmbW1JkuLLVaXVojDiDSKqZTL9Pt9jLAoV8cAyczUBJ4tKfk+ly5dIc5AuhVu3r7H5NQM9+/f479+61vcvfuQmYlZttbWESqiVhJsrT7EMTnS6MLhmww58r8TpmBixcHOsU24i8+zgI1CF6gpu/MdfpgiP4cfYtuPbPsYwTRtH2bfsae8MCC2y5idc2N0YbwzgiHC7GvD6CK2nRgdjI7RbwFYiGIhyEhlCQjMTl4x+svIyOQgodw/ENv9Ho2H3nWY7WNvX3fGRxTuJNv9PWosjz1GIW4wGnHIsX1dAujR9dFYiVGf5M75/qOItL0dRqc4jpgQRh9xPGUi7c47GpPtYzvPkzm6XW77VZjjj33pyXw3T+rb089isS32tPnp0jMzruFwyCuvvMK/+Bf/4tD7/+Sf/BN+67d+i3/5L/8l77zzDuVymb/wF/4CcRzv5Pm1X/s1PvroI37/93+f3/3d3+U73/kOv/7rv/7MnZ+ZmWJufoYb7/6UH//oh6gsIRz2EJYgVYqxiUnee+891tfXicIYnSmmxye4cP5CYXXW7RIOBjiWJAlDHNsmyzRCWiilUFrzx9/9Duub6yyvrvLw0SNarS1cT7Cy+pB7925x7/5dUlUEb+y1u1hGcOXyFa5duYIxisBz0HmEIw0V36XkOWyurxFHA2amx7EsQZZrev3+yILRJfA8bCR5nJOFRfgTxxGAIs1iDDm2YyGlQBuFNjmWI0kyhZESISzSXCMk5HlKuVoijCIGw5heP6E/zDDCQWmB53lUqz6uVzAwpTX9wZB2t4uRhaNzbxCitSBNUtqdHonKsEsBY1PTIASWZTE7NU2lVCKJU+7ff4TjeygM7W6EFwTk2pDmGQvz84w3atRGscayNCXwXFZXF2m1WpRKFZAO9x48otnp4HkBt+7cp9nsMTW3wFY3YWUjYaM1pNOPkdImCMrY0rC2+phqqYzruGRpRhxHBajxiM49uLtCHodE4YBKtYrrl7HcMv0wY7PZJklSfvSj92m3+0xPzfLClWvMzUwyVvUR6ZCk38I2BsuSSGtklo9AjGChnhDq0Ue5a1W5H1BXPOexnwjtvTdq/AguukO4DiWUT7LL3W1umzDvZkK7mJcQuxiaEKPjqL7vTU/Ughw4nqRtYrmbKJtd9Zq9Y7G7L3IXAO6zDzTbBjiH3Za72x8R5N3X5Emb2v28xw3WgWSe1v0n4/yUtp/2nvang/WIPc+xd3G1zci3FxWG5zFsemZV4S/90i/xS7/0S4feM8bwz/7ZP+Mf/IN/wF/5K38FgH/9r/81MzMz/PZv/za/+qu/ys2bN/nWt77Fj370I774xS8C8M//+T/nL/2lv8Q//af/lPn5+RP3RUqXmZk5vvSlL/Pjd75PyZfUG43Cd6oUkCcxzWabbrsF2uLNN3+WKI5w/RIzMzN0Om3uP7jP6fkzlEoB5XIFISAKBwhpaDU3uXf/AZWyZG5uim6/z433blCpVtnY2CQISpTKDZYWV7h+vYHr2li2g8o0s7OzTExM8nh9nTiK0WQ4nl8gnHsejutiWzbGGNLUkKcZgW8jhMD3AmzLQSnDcJCQxAnSKu4lcYLKFcYUe2FJkmLbTsGsspAkSbFMAUCqtSFJMtI0xw9KDAcxWV6ESdGmsEhMsxRXeWyjkG/TBqUMUoJlCRBFvLM0y0kzjW0LkiShP+hha49hOIBShfWtLbqZ4tbdT/B8H0SCtBOyLKXdiin7ZZaWl1nOBpxdmKNcqRNFGUmasba6SaVSpdEYw3VsAtehFJTZ2Nzip+9+QKYtcmWQlkVjrIRWiq2tNqWFCa5ePc/W2iKtVpMsP02n0+ULr7yK6wU8WFxFSnAtSMIOteocZ0+fIYlCfM/lzr0HrK13+fGPf8Ls9ART05NcuHiRNI3p9fucOnuWfmKRSx/bhlQoMgxGOCDNE3p6TCo23k88rXdK7Tf62HP3M94z293kE8Kzp8ED7Ypd1w+zGDy2qc+6/7uq+yzr3lGfjv48W7kTZTx0H+/JhWOnwf+kqWBgT3zrBOyKasDO9U//YJ+pH9eDBw9YW1vjm9/85s61er3Om2++ydtvvw3A22+/TaPR2GFaAN/85jeRUvLOO+8cWm+SJPR6vT0HAMImz+HM2fPMLSxw4/336Q/65FnhDwXgOC5bW00eLS6RphlxnBDHMVprarU6juuytrEGUpBrjVcK8HyXzc117t7/BEVKFEesr2/QGG/geT5RGON5AcNhjMoNtu3SbLYwulhjDYcRIAmCgDiKSNKEJI1JkgTX9ahUq5TLZawRonSWZaRpRhTFhGFcGF4ISVAuF9h6rkeW5aRZXrw0IShQM+xiRYlAiAI/L0tzlNaF9WSmUQp63ZDAryClU+wbhRlhmKKNKfbBXHcEbCALv7K8iKKcZZo4TjDGkOU5aZZiDOSZwfc87t+7z+/9tz/ge9//Putbm1iuxbvvv8dWu02mFMKyyHODbdv4QRHwst3uoBQEQYUrV68zt3Caaq3O2TNzGKPxPI/pmVmSNOXu/Xssr64wDIcoownjCMtxyJQiThI8V3D+3Bm+8NILnD41z6UL5zl39hzXrl3nzp17tNtd6rUaKs+olANmpxs8Xlmk294iS2Mq5QApNOWSzelTp7h67QozM7OUymWmZqdpdToM+n2mx8eZGa9RcTWOTpFKYTBorBHh2V7tP7GEO8yw4Khj//3j8j9L3mfOz3aeg3mflk7Sl6PG5mn17u3bycfzqLpOWseukjvtfxbPtPe5jrm3XecR7+9pz3Bc/46+v1vy/TRt7Fr4iIPvT2A90zgdlT5TxrW2tgbAzMzMnuszMzM799bW1pient5z37ZtxsfHd/LsT//4H/9j6vX6znH69GkAhoMUpQTDYcybb77F2bPn+f/9zn9iq9kkS2KEgDde/xKeW6Lb6dEb9BGygO0xBjzP49pLL3L12jUGwwFCCNI0xRhNmiUYIYiThFQrpC0ZDAfMzExTrzeYmpylVh2nVmtQrdZI4hylDNoIJqdmkFLS7fQKop+mSCnRWo3w9ShUkarAFKxWAxqNCqVyiTTN6XS7NFutQlrs9dHa4LoeShnSJCusHZVGq2KPpQj8rLGtIjiCa7tgBEpJtLbIcmg1+wzDZBRl2UIgieKcza0+cZSNDA0KgF8pLSxpY7QhiXPCMNlZ0UoJriNJ4phyqcxbX/0y2mhq9RrCkiytrtPsxDxe2yhUcmUPKWFqYozA9xgOhnhewNrGFv/Hv/9thHQQlo3july+fIUsy/nkk7t85StfxfMDNrdaxGlOtz8kz3OyLMX1HGq1CmPjNSYm6ly5coHXX/sC09PTPHz4kAcPHvLJJ3e4c+8+t25+TDwcMDs9yWuvvMTM5ATddpPAs5mfn+GN17/A5UunOXvmNFLYhGHET2+8R7O9hWVbSCSOEExUXcpWgk+EozOE3id9PMe3eBhRGYkzh+Y97vxEdR+Z98lfwf7nO5owPw/xPnnewxnwTvsc/Yz7zdJPwugOMofnf6b9wSx3HuypdR5e/0nG+yjmc7K2Ps283j2e+yr7DNnN58Kq8O///b/P3/27f3fnvNfrcfr0aZI0x3ddwCLLMy5evsLNT27z3ns3kJbD+QsXee31N7AsgWd79Pp9StUxbM/H9XziOMZ2XXqdLkoVFnRCFebx7W6bcqWM43vMnZqhErigNLV6A9f1KQV16vUpfL9EmikqlRpxFCNVIfW4jsephVO0ux2iJCNOU2xHkOeFEYW0NcY4GGPQ2hCnOeWyT55DqeRgOwLbdhn0h8RJwrjjYlkSy7YwCLJMo7IMo8FyQSJQSmBLG8e2iaIQS1hY0kUK6A9DXNcHIXAQlMsWYVwgiQwGEVKCHxQoCpZlEUUFA1cKTK6RspAmKmUfW0pcxyZNE5I4ZrzRoNVt0+51mJ2fphtl+OUq6xsDwjTGjNwMIp1zv9lExSmXLpyi1e6xttkkSSOSJOXa9bM8ePCIPMu5e/8+QamE75Y5c2aex5tttOUQpwlCWFi2xHUkG2vLLD68SxoPsASsr6/z8cefMDU7w+zUDB999AFXL5/nCy+9wLDXpuTa3Pz4Y1rNDeKoT6Uc0Ot1uXfvHo16nVKpwt0796jWXKSUBEEJo3ICXxBmIa4Y4okaSmgy8WRPCPYSlU9jNbj3/tPNhj9zJjGyBiwKnEzld1gbn8WKeruenbpM8d/TGPf+d3CS93BYv/cymGJgDnuso6wWT27B95T+PX0aPJVZnnTh8rSyJ0/bZvLF7+1r23+eJ4DkdvpMGdfs7CxQEI+5ubmd6+vr67z66qs7eTY2NvaUy/OcVqu1U35/8jwPz/MOXBfSxrI9qtUSSg3xApv/7Zf/CpvrmwwHfdA5fhBw/fqLZFnOvftF/CWlFNJyyJUGDWE8LHyBjAYE/X6fb//Btzl1ZgEjJJ3Rav+VF68zv3CKscY4vlfBdctIyyHJMsJhRK/Xo1yu4AQO5XKVixcvsby6SqY09PsMoxjbtUmSBNvYOI6LUjnVagOMIs9SSiUX23HIshyMxLIF9gihHgHlUpkoyrAst9gbyzXKFM7HRYDHAGlAK0OWKRSCTGmyXFAq+2R5BgIsx8bKM4QspC+tMoaDhMZYGaVytKZgENbI+ksWH4/vB6By+v0B9wddOptrnDu7QHswoB+l+KWAick6gT9Gr50iSgIpNLWKh20EZy6cQuiMQT/Ekhbf//7bXL52gZXlLcL4RxitmZufpbm5wdTEBHNzp5mcXOAHP77BykYTTI5SGY7lEg0Slh71+LEneevLr3Hu3Hm6/QFJltPp9tjYbNNu97l16xOmxmpcvXweRxgw1xj0e9y9c5thnDE3O8OZs2dxbBvHDsjzlNffeJ1Oa5OxagPXdul0NpmaPs/m0hrB2BjDzEI4VcDs+HLtJbL7P/hDQyKeOG3XvR+cd//9o9KfJXbeboaxG87q6QTrcEJ+0nTYM302zHQb2OtkdTwNW3I3Qzbb9T8HgsVxjsufTTrqneyei8flO5ieVTrfnz5TVeH58+eZnZ3l29/+9s61Xq/HO++8w1tvvQXAW2+9RafT4Sc/+clOnj/4gz9Aa82bb775TO0F1QqO62HZDn5QwfPLOK7Py6+8Qq1aI00z0lRhOz5CWLQ7XaI4RMhCqsizHKUVU1NTlMplhGVRqdUISgFT09N8dPMW/Sih2R6wvLrF4tIqQhRo7ACDfp8wDLEdh83NTbrdLlEUIS2LWr1BtVrl4sUL1KpVqtUqvl8gtpdKJaQUxZ6RNqg8L0LcOw6O65DnOXEck2YZru9hOzZCFJPbsgSlkk/gO7i2QOsUgWJivMrEeBnXkRijRtFhJeEwodeL6fZSev0QIyTSsmm22kU7SYLShjzfttQSGA15XgSxtKSD53kEQcD42HgRvLFcwXM9fM8H6eIFJVqtNufOnaNarjLoD4ognI0SU40K4/UqFgphMs4szPFzP/M1tDIMoxQhBb3ugEqlxKOHK2xuNrl18xPOnjnNtWtX6Xc7zM9O8bW3vozvCsqBTaNWwrMlnmOolB3OnJrBsS1u3/6EBw9XyA0Mo+K5SuUSX/zSF2m3u4TDmPWNDcqVEpOT41y5cpEoCvnkk7usPV7DcVzu3btPkqQkScLU1GQBXJzEBK7EFim+jDBxk4qTI3UMRiPlNubfk7m5rWbZrft/nnQSFIY/q/RpVYNPr++gOvCz6uenLbtzfsJ8R7V/kj6ctJ9/VnNg957VYcfevM9a758x4xoMBty4cYMbN24AhUHGjRs3WFxcRAjB3/k7f4d/9I/+Eb/zO7/DBx98wN/4G3+D+fl5/upf/asAXL9+nb/4F/8if/tv/21++MMf8v3vf5/f+I3f4Fd/9VefyaIQwLEcAPJMkaY5UZwhLQ/LcpgYnyCOIixhjxAiFFEc0e8PkJaFUoXZexRGBcjtCKTT9Qp/qnNnz9HtDQijjHYvxAjB+kaTMIzQSpOnCcPhANe1SZOQer1GUCrRbrdJk4TAD5ienmV6eoZSqYRl2TQaDYSUo72aHKUKZ+M0TVFKFfiBlo20LBzPw/U9hJRFWHBRIMuDpjDEMLiehedZTEzUqFUDSoEzskws1ohS2hgElm1TrgRkI0Bey7LwAx/Hs3dUlUYU+aIoIY4zkrhA9dgGk82znCxNCyvILMVxHISQuJ7HtWvXOXPmLBvrm6RRgsk0p2bnOLuwgDA5lcBBmgzXEiw/fMDtm7eYGp+kEvj0ez3a7Ta27eD7BSrF2uqAwPMRWrP2eJl2c4OL588wO9nAEQpXaman6pxemGJuegIpDGEc8Qd/9MfcffCQTj8lKFeYmJpk/tQCjbEJ5k+dpt5oUKs3WFg4xdhYnddeexXPtUmSlNu3b9Npd+l1+2yst9jYbFKrFoYdtmMjJFTKLp6dYpImgRXjWQX81l6mtW16vlvvxuj3s6j9jtfVPc9Hf2TZnb2tZ1cTHtbGsxPr52j1T5WOH//uTlzLMQT7SMnwGd/Fs+xpPm/6H7mAemZV4Y9//GN+4Rd+Yed8e+/pb/7Nv8m/+lf/ir/39/4ew+GQX//1X6fT6fC1r32Nb33rW/i+v1Pm3/ybf8Nv/MZv8I1vfAMpJX/9r/91fuu3fuuZO58bhUGOHEJNoZJDkiU5tu2wurTK+OQclu0wDIfU6nW01kXYjihDSgshBbnK8e0AR0iEkGxsrNPqdInijCQz+L5LrgV5brh37wFTY5M4jkOrtcIgHFKr1yhXqpTL83zyyR0mkyksu7AqnJ6ewbJsqtUqSZZj2Q7tXh9yUMoizwu1HIDWCtu2dvyOkjQlyxXSKmav7Qi0ySkFfsFc0hStc3zXQpsEbVKkZSMtCmZkDNVqA9eFbq9Ff5ASJTmVio0feERxQpYXyBqVciGtDfp9VK5QmcF1bLTWaJ0X3hfCEMcZriXx61UGwz5nTs3juD7LS23uPbxHriWucFFJShQWRhGONFx69SrRoIPUhk6rhTM1w4svvkg/HOC6Ll/+0pv8h//wX3AcxcJ8jV63CyrFqIxue4tocpIr58/Qbm2wcGoWtEbnhrFGhXqjwurjx5RrdSIlGaYdjJC4vocUBsvxuHT2Eo2Kz/s3brC8vMjCqQUq9QYXzp9F2g627bO5sclHHy1SH7OoVmqoXLG+scbMlEUvjKiOj2PUkJJbZqu5iKxfwHICFAadF5aGQuwEpWcvyTG7rh9MhxKBZ9gT+6z2u3YzrsNyfdYM8+C+3smZ+57zEzDKZ+37k/zmgBbss2qr2AZ6yr7dMW18VpECnqR9Tsg7lR9yzWxfH6l4d6tGTxBg9Xn6+8yM6+d//ueP1VULIfjN3/xNfvM3f/PIPOPj4/zbf/tvn7Xpg21JkJYs9mSMRhuJFALHcen0Onz4/gecu3gd3w8IwwH1ep1KtYK0CilGG02r1aFSLaEx5HleqMkyzXAYEsUpeW5w3QJfsN3u8u6779GoVvnqm1+lXq8RZynSEjx+vEq9Ps7MzDRhGBKUPNK0sADsdHpstZt4pQq2Y1Ov1+n3Y4ZRYd6e5zmu6xbBJo1Ea0OWZ6RRjMkFCL0TtsEYjes5RFGClIZa1UdamjTPyPMEo3JsWyAtiOMMjCEoVWi2trCsQmpzXRfQuF7BmLJEAQLXdfE8h1gV5/bId8yMNlvjOMV3PSSGfr+Ha9t0el26vR7jYwGPH/s02wPCMKUU+IRDh8Ggx1d+9i1OzU1R8R02Hq/xrW/9IZVKxOz8LD/z1bfoDwe88cYbbGw0WV5eploNuHvnE770+qu88dprvP0nP+TVV17l/NlTfHzzQ8JehyxN0CrnlZcuUymXeby+xUazSZyB7TqEUYTTs2i1WiRhTv7mF/niay+yvr7BxsYKzVYTtxRw9txFTp+9wL17j0jiHMe1SNMMlWsePryPFOC4NiaEdreF6xqWV++zlVSZLM1grBpIZ7QyHpF7M7Jy2/moT7b/dCgRP2Yz+3lW1ofm3401d8xK/7NgXichuM9iWAHPx7h2B+6E/Xtze/feTrJv9jzv44Bxxq53cRIE9t3p+XEyj7YOKaKAPxn/PUWeOvefzwH5cx2PC1OovaSUZGlGmqXU6nWiJGNsfIILFy+wsvgAyLEsQ65yXM8jGTEU1wtI0wL1Ik2zAuDWgiSJkUJiWTau59PphSglSHNNnKbcvHWL23fu0Ot3kKLI77ouSRzjez6OZZEmKSrP8X0P2y5wCNfX19hqblEql3A8F8dxqNcbeJ6HlALHsYv4TAKElGgFjmthSUm55BMEhdQ6HBTGIo5j43oupVKJIPAxRpNlGQKD79vYNrQ7HbrdzmgfBmwbfM8Z4TOCJSRhqImibSZdGMHYdtG2Y9sIYWF0MQGV0ViOA5YFsgAXevx4nXZ3wBtfepOFhdNMTk7Q7XZY31gnjmPu37vPhx9+yOLiIu+++1NQCb5n02o2CQKf4WDIf/7P30IKi8uXLjM5MUG1UiHPcgb9PlplDHpdAs9hsl6lVvbReUaextTrdTrdHvMLZ+h0CkT+MMpx/TKtbg9tBLV6A8t2mZqewwvKTE7NMDY+wcryKp/cvo1rW1y9dJHxRoNyYJianMD3fTY3m/hBQLvdpt1qsbK0SBL12Xz8ENIeJulBHiMo3CWQ2/4q7HyzZvRvNGH3HYWmoPi2i/ODeZ4Q1L0I8PurNMceO9rLneaOyCM4og+7VuJPgwLahqvagWN6Ajl06LEHRmhfWwfODxCBXQ/1hC4cCk/0VPiiw9owh5LeJxaBR4zRgb4flWdf1v39HI3P3vd/dD1mV15z4LmO689TjuPG9Enjh7xDve/3/nnw6dLnwhz+qGSUQuU5ruuQ5YI0LVDey0EZ6UpeeOUV/tPv/HvGJwM81+L+3TuMT87g+WWyYQxSEJRrDMMEy7Gp1CokWUR/0Mf1C6OPTi8mTjSYAVVf4dhQrlXp9nvE0YBGY5zxiSmMtmiMj5MkGbZtYwmBMposzZicmGRlbY2432fQH7C1tYURLqk2pCov9rLQ2FYhUUnpICyHNNZUSgFqtCcWJynCcmi1BsV+mG1jTGFIgAQpLVxfojJwHIHjWiiTECXgBw5CajCKPB3iOBaWsDCOC2TEiSCMNb4rkVJQrVhImSMsjyQCgaRctukOQlIvx/cltjCsbawVTsZWFen1mZiZwdjQ6XeIsoT1tSZxGvH6qy8xDGOuXbvGl15/lSjN+D/+v/+Rr//iN7n/YJVh/w5f+tIbSCHJ0xQbQTQcMNao88qrr2BMzu2PbjHZqLKytobrgBAOS0uP2Wx1qDSmyFQR2UzaDncfrFCu+Ay7Qxq1Da5fuUJQqfHlr36d2elJ7t+7Q318irXHq5w5vcDtW58QDjoIk/NzP/tlLl48jyVzep0Or7/yBf74D/4II6A8VufyuTlaIXSXP2H6+gypFZBKizTJcYRAaAFCjhiWGuHRWSNGtjN72SEIsK0zYs/HPKKY20YLO5f2FTl24Vp4lu9iStvFnxCOHfXmScyUD8tzYDV+OFES26DExhS8RopD8+2u9omyzuyMw85zjOrZyaH1gV3F7Wd/WnqSp6hQ7mJYZmfw9jOlo5LZJ40cbEtsz4X91Ryo9uBYPpEEdw/90xjB9r3D1NfH5d+ep8fk37Xw2ZvjmPq3FzSfMn2uGRemMECwLIskTYiSmMmpWRwvIElCbMfFdlwWFx9x/tx5EGBJiWVJHMdGkeP7PlGkEEIW+zlKk2ZpgXiRpGSJBmORK4XrOiRpTK41V65eobm5gTGGlZUV5mdOEw6HBEEZP/CxLAvXdjC1OtVKlVqlhrQcNlst+r0hcdpHGQdtCmMLe0Q7LCkR0iZO4gKf0BgqlQJlo98fkGQay5IjVAxNmimMKFSAfuCRJYY8LVSQrusSJRFJkuF5Ln7gI02GyjPKJQ8tLLJcUS47DIYRgW8TuDaViocwKVIItFJ4rkOeJSRRPBqfHIPBCSS2EBgsVh9vcOuTh9QbVRpjVQoSIvF8G4QgHIZ0XYv5yxcYH6tz9/5DlDHcu/eQICgxMTbB3bv3efH6VdCCL7z8StFHo3n99S/S7nRReUZrc5PeoD8CFLZ5tLTM2maLcm2IkRZaS1zbpd8P0b0h9XKAyjMePnwIxnDxwgXQmjxTXLpwiUa9xuLSEmNjYwwGEZevXCYK+3iey9Wr17h982MqlQrlUomt1gbXX75GZ5jiCE0e9TFZCo7GiGJ/6wCx2kfwnhDdvefFyfHTXYyo3e4y8mnldjE8safx3StlXdz7tBqlA+ooc0RduznuNtM8eaOHWmfuIdyHNLuLcZ8kHUZqxd7/Tp6ecN3DpTY4VAV34uo/VVGzh/E9tY2dUocsRPbUevDa8b14vvS5VhUKIbBsC8uyEcJGSotqtY4xBTEFh1defYPNrTZ/8vYPWV9fZ2VlGWGBJQ2VSoBlwXijXkQCVgZpJIHvk6UJRmeAxrZzyr6N5zqUy2VOnzoDRcQrHj1aJklScpXRbjfZ2lqn3+8RRyH9Xo9GY4yZqRka1Qazk7PMTM7Q7w7BwMZ6iyQOEShsR2J0Rp6naJWRJBGe56GUIstytDaUSmXKpRK2XTjgAti2wPNcbNtBa4jTlDhJi6jIuS7Q2nNDrzdkOEwQwsZ2PYKgDLpYpXpegYvY6fRJk4RKpUKlUsG2baJhjMkySp6DUgrbslEKbMsjijVpApubbYyQWI6LG5QIkwxGDuBjjTFc22bY79Ha2iKOQrrdLuVKDdsJ2Gi2yZWmUq1y9+5jmq0Ws3Nz2LZDnis2N7d4/8OPaLZaKA3VapVf+Lmf59VXvsDFS5d5tLROpx/zeKOF7QZoBEJKzp45xdUrF6jXSly+eJ6f/7mvsbn2mH63SxJHTE1NgZGcOXuO02fOgBA0xsY5d/4Ur7zyGmma4zoOSuU0m5tIC8bG61iWYDDo49kOvutiCwFKoTJdMK5dJsTs+ntw7h6cy0/bMzmpifZhZQ+5esLS++s6Qf1HPMfu/j/NjHx/maczuMNdDg6zsjvJOD9P+rTv6Yjajq3hWft7srziydxl7/t6mlXkSdr9LMb4cy1xpXmG1hppWXi+T5wlhEmKMA6OV0aSsnDqPCvLK2RJF4Hg3p1PuH79RRZOnSGJE2oVH610gVIxGIJRNOoNpqan8D2XqsnJlcLzJVkWUfMrVKtVgqDE1PQs3d6Ajz/8kNnpOZIkZWpqknZri0xlzM3Ps7W+yaXzl1ld3mR17TEzEzP0BiHd3hDfNeTGUPJdKmWPODLESYoxCte1KJcCsiTD932MKTD/0qxgZMaI0TUHy7KJwgikheN4xAayXEGSAwaFxlYSQQZaMzHmE8cJSuWAHqkGHXrdlDCMqJQkvidGK3FDOIyxrWJPTiAwCrJUYSHILej3BiTZgHK1SpIpPN9haWmN5cV1PMfwwqWreFLjSsPE+AR+qcRwvYlG4nslxsfHC2afZCwtrSBNzpWLp5maHGPh9Gnee/8j5mbneHD/Ib/8v/15wijkwsWL3H2wSGN8AhnFbLQGGGEwRhCGMdIYXrh6geql8/zKX/7LnDt3iuX7d0njiLJXZ2pyEqUV3X4bN/D4+PZt7t9bZKvZ4vzFi3iBg2sbpqcnefDgLg8e3mV+YZY8yyh5PmkuGKtWIc/B0khbIApzTrY3lARmtODfJj6Hq3x2/36aT1BRxy4p6oTfyt62dn49c9nDSh1mwv0s9R127ySGJ/ulvL3AT0/yfBpC+7T0TOUFR6oNT1b3k3e+//62ZeGneZ5jywixy6NjW0LbrTl4vvael3l9rhmXbVnkuSIMh/hBgMbQbHXw3Rpj9RqWlNgm58LFqwSuzdypBRaXlviv//l3+MY3/xzzC/PE0QClFNVqjfXHy/h+wKA/wLZtgpKHX/aJogjfAakLPfvm5hbp+QzPDTh/7iIlPyBNUzY21pmYmEDpjM3NDer1MTQx1doE3/j5b7C08picnEEYEUeLtHsRpYpT7NeYHMcWZJkhjhNsy0LrQiWntSaOY4RlkeUa13XASJSBPFdoRWH5pAXSstGk5EqP/LMAYfA9ZwS9pElShcpTpAUqN2gtCQIXTGGOH8UJaZIjhaDk27hWgZxh2TZxmKE0SCGRgBoxUNdzaXZCMqO5fOUSZrNDmiboNKNaLvHy9Uskgy6e59EYm+C773zAg8UOlhdy5lTOdMPnpZcvUK8EbG42mRqvcvHCOe4/fEin2+OFF19iYnwcv1plcWWZQRgy6A/42td/hu/84CdstGO0KSCatMopVwIq5RJnT80yNdlg0G2xsf6Y9dUVzp89z4VLF7Eci83WBu1eIQFubDVxHZcPPviQNBly7ep5Ll48S8uRjE80aLaajI2NcfaMRbujaccOg3iIE0wSG0OeKxwpsaRA76iuCgJwlGpkt0nzSVfDu7N9Srlp1N4TYnQY8TvU6XmXqvLoyML79Jm7W951fb8l30mlsMPzH1SjHlX+edPTFhkHEDP2WTweill4ZN17mdZxZZ6WTg5DNmpTgBj9fhpzfFam9rywT59rxmUJAIUxEinkKLyHjet5REmKVgnVSoDnlnBsweVLV7n2wgtsbq7z43f+hCtXLlOrV5iZnUJYOb4nsKWhVArAQDXwiLMYZYMwKYFno/IcYyBXCikN5VKVS5eusrW1we3bt/n44484dfo0ly5dLvbPYkWv02NiYoYvvvYGxobl1WXW1tYpeQKhclSaEGYK13FAKxihu6dZilLQHwwYDkMcz0UrUZi7SxtpOXS6fYyBSqXwE0uSHCENlpRFaBIbEAW2IQZ8z8YYidKKXOUYithjlm1RrZZwHEAqtFGUgwCMQTsjdPhckStFkmry1CC0YqJeRVoJSZ5TqXgEpTKdTg/LtvEcm8BSdJpb3L+jsIRhYnKCx5stojjEcQRGKLROqNameeurL6PynI/e+yl+UObhoyVc16dcqdLudJmZGsdGMDs7y9LKY3r9Pu/9wR/RHsRIyyJOcnQYEg9zzi5Msby0SHNtGVdozp2aYzDoobWiPxzwg3d+yNUXrjF76jTLS4vEccLk1CRZkjMzM8tw0OYH7/yIl1+6zvkLF7h44Ty3bt8GbSj5AUM7ZNDZoms5jNVn8dwKxhSOyAWyymFa/4NSFzz50J8Gy7Rz3xx+/1nSSYue1OR7L+H61N36U0v7CeszSSlHZHteYn0ySfLzkz4Tl4wTps8149IqI4sTnLKH0ZrBoM/09Blcr4rKcnIFShuk7ZLpFA8oeR62EHztZ95ibW2Vn/zobaZnJlmYP0XJrzIcDtFaU6lU8X2PMO5Tr7oM+iHlRpXT82eYnZ0lzxWeU4TRi5OYxtgEX3jlVbZaWyilkZaD65WwLEMUpWRJSr/Xxy25jNUbTI2PESYhSEUpcLHswhAi1ArPc/ECn/6gh7Rc0lyR5hplUrLMUKn4aAoVoxPaRFGEkBbGiFG0Z4Pl2pArwICEJMtQmcGxnQJRY+Qa4HgBnc5gFFolxdM2nichM6SOGkV5NWhjUMpg2xZppslyRWALsqwIba9FXpjHa11IwcOQiUaFq5fO45JgS4ElJb//37+NW6oxOXuan/nam9y6dZeJsXHGx8Z4+OgRZ8+c5pVXXwOdsLqyhF8K8IMiEGYUJ7Rabe4+KGCZCt+yhOEgpj4xxWDYwnEFtqV49PARJU9SDWwGnS2+9taXuXzxPGmSsLnV5PYnd2i2W8yemiGOYxYXH9FqthgOIpaXlwjDLirXPHiwSKe1xZlT85w/f57hcMj9eyuU/AbTExUmalMMLUWCwpIORusdg5vdW8hPBIPnJEoHjQ5H1R7ORJ6WjpMe/rQJ6En8oY4r92nznnR89pQVhy8wdvt9HZUKW5i9bW7n/9PBFjw8Pd9C5/hxPHKR9aeUPteMS2iNJYqw2DrP0XmObVkMBn3K5QoWNnmekKQZOkvwXJ84CmlubfHi9RcJAp9OZ4vl5UUeP17llZffYGpqHt2VvPjCS7RaG3zv+3+IZ0uUK3bieE2Mj+M4hQOztByi/gAhUiamppk7dZqNzU0eb2xyuTbBxPQEDx8s0uq0qStFmlmcWZjnq299mdnFB2QqYWVlESGgVmtQLvXpDiKyXGNZoI0hzzN8v3hVriup1avEcYHeXq/V2Nhs0e2GeL6LyjXSsrGlhdYK13d3pIBM5Lieg+f59PsRJJpB2COKFEqPTJ+EQGmFzjWlksSWAtexSIdRof4y4Hku0hM4gsKk2Si0zimsqnWxF5ckhH1D2XdYmJrg/OkF6mMN3r/5b+muNtF2wDe/8YsMel3GxxusPF7lnXduc/nSDC+/eJVzp+apN8YIygEfv/MOZ86cYW5mhvXNTWq1Gv3+gEqpTCVwiBNNGoX4tgAUQWCT5ymRlpyZn2ZqosHc/ALzp07TGJtga6PJj2+8x+ONdXphj5nZab75jW9w/94jvvvd77H46CGvvf4FKqWAc+cushGUWFx6xMzMNEFQZbxex/VKmMgwdXqSe21DP8+wbJ+cUbw0Uey6FJqWwyWtY+f2kTovRiqx5yVCz87cTl7g2bL/aaU/K8nled/FUaC8oxw8vw3eM/eKY/Xb/xOkzzXjSoZ9Kp5PnkbEWUSl7ON5DlkOaZJQr1eIIoXjeaR5QhhGZGlEtVwniRS5Fly58iIvvHSdGzdu0O8POHUqYGrKZ2xyjLfyn+HGuz9Ayhzj2cRhQnOrxcrqY65eqRdOwtoQhgn1RrUwDhAWV196hbu3bnP33gNeuF5mfGKC5aVlHM+h09tCoLAkWEKz1WnhuS6DQZ9apUKlUiN9uMxg2CEIXMJIjcz3C7DbcrlMmmUjK0RNuVzFbvfpdiO00NiexBI2lrRJsgJdw3ELSWA7BpiQklKpTJokIzWhLPa6DMS5wdIaRwrCNKde8rFtG9fVRGGENkV90khsbQpJyhaILMWYHJUldNtNpLGoVzyyOOTihVd49OAeSsCVa9f53ts/5YP33ydPM8q+jckT1tc3sKyMR4+WiIZ9Xn3pb7K09IjV9TWEsLl9+w6XL10iGg4plUtUKhXOnjmNEYLrdsBGu8/d+0ukucaxHcJwwHijwvj4JK+99gpeEPD2Oz8kTVN63T6f3L3H8uoy9XqZSvVNxutjXLpwHksI/uQH3yOJY6bGxqlW6jQ3m5TKNWbnTrGxscXm5gYgwAnIVz6hEzWwG1UylSMQI1QWxXak1927FU/SQYJ0mEHCwf2S598Y3z5/GgLOYXkP43mHGW8cZj69v779z7hfAjsJSsSTvEXfDovLdRzyyGH92F83xzzP7rJHq/7YKyk/s8HI0czrpGP1TGlkkCGEGc3hk+2NPU16/Cyly8+1ObyFplry8V2HbqfJ+vpj0iRCK0WWJuR5iu04VKpV0jyj2WqOLAkbuG6FPBXEsSZJ4frVl5ifPwPGJs803U4Pz/XI0wyjciRQr9VYmF9ga6tJrnKUKoI++qUypUoNKW16/SG9TpfJ6Tlm5ubZarawXZfZ+VnK1RLTk+OkyZBGrcTszBSd1haNWpWJsXFOLyzQ3GoSRSGB7wMGpXOMUWRZIWHVatXCHN6CKBqS5SlCgONIslRjO07xoQiDEZpcpRipkU7xqrMsZxhGDMOINFMUrpYWSkOmDXGqyLRE2A5hlJJmOVGcYChQ45UuJp/WCmMKh2ZLQimwqZR9SqUAS8DVi6d46fpVxho1apUKvV6Xza0mtuPilwLGxhqsrixyZmEW15IMBn0aY2W0gXAY7aBudDtdvvCFV0mznA8//JDvfu/7KKUJSmVeeulFXnvlFb78xmucnZ9FJSH9Vh+jFaXAo1SuEJTLvPve+/zWP//X/MEffYfNZgu/XKHaqKNF4T4ggCSKIM9ZmJ+lVqvSabWYmpxCYFEu17Fsj053wIMHiywvr/DBBzeIwi7373xEr7OObRWBPC1ZoPOP4lIjxTb80/4Ahuw7P3q/Y0+ePcT06A334+rezSCOOk5S5+68e/4ek3d/28f197g6DuZ7AtF0kr5vq+pO0gd2nZ90fPccHD9mh/1+2lz5NGN14oOTt3nYGO5/nv3Ptf/3p0mfb4krihj2ewTVANe2RmstTZpmOK5HkkS4roVlWTiOw0qzxczkFEFQIYkVrlfFq5SJ0y6WJ8gzTZpparUGDx7d4cP3f0qeFUCv1WoFx6nQHwyYmppBqRyv7BJHEaVSBa3BcT3C5haVNEdYNo3xCQK/RLfbJVeKOInwbIssTSlXytTiKhLB1SuXWV19zObmJmE4JE1TpO2hRqpPjCRJM8DguFbxTHaJOMpQukCZ12iMETiOgzI5SqVYFoAhTRNKfkC54mGynMFggCWhWq2jlKY/LFST20C6JlN4jo3tOmTaYNKcNM9RprD2VrkaaRKKmF/apNi+DWh0nmIJweREjUrgEXgOjbEa11+4zif3H/KjGx8xNTvHWL3B6qNH2BKGgy4Xzp/jzPlL3Ll9h9nJcer1BrNzcxjL4sq1K9y8/TEPHj6k3+kyGEZMTk7j2g46S7nzaJFGtYrvWMzPlnH8ElGSMDU9Q6YNtu1iREKUWLzy2usMhyGDOEKguHb+EvNzs2RRQr1a4fL1a1x78Rq3Pv4IaTmUqw3mbZ9SuUSrtUmuFKVyiVde+VmiLKW1MuD0/BSR0MgRXoJEFlae2wbrgpF1VvE+inTIR7t/ZX6kzu3w1fVea7vDKn9S9lmJxk7+E1juFQv2o5nISc5P2r8i3yhooTn43MfVc7K+HC/pnLjuY+5v/9z/d2/pJ/Nmb7/Mke/j+dL2ezho1bidjrYqPV4C3b7/POlzLXG125ssLd4v9rZsj/GxadCGJBoQ9ruYPEPoHKEzfK+w2PP9ANctoU3hMOsHJYyxKJVqOHbheIxR9HsdfvjO21i2xC8FICWO5xBGw1E8LxvHdfA8h0GvgyU1tkWB9qBS8iQhT1OkKGSaaNinubVJc2sTASilqFSrVBoN7j9cYnF5hc2tLSYnxqhXy5g8oxaUqPgeJU8SuBazUzWkUAzDAVobypUSQhoQqojP5QqkUYAm1wppSTQClYM2xapUaUgShW0HtNs92p0hSZpj2zblcoDrOkhT9M9xPIx0SJSgP1SAg84NKlNIDK7nIGw5Qu6wsS1rpJJMuXv3Dq12E9d3+eCD97n1yW0q1Qrz87NUy2VA0O4NCOOcNNdsNVuMjU1w9dqLlCt1XMdneWmFRw8fMIyGRVTqXh/p2DxaWsJybIQlmJmb4vHaEpqM6ZlJ0iwlimOarQ7tTh8DjE2O4boO9XqZ4TDk4cNF+v0Ey3Zotts8Xn+M6zpUa3VsywcNk5NTXLx0GccvY9k+4+OTNFstlpYWUVpx/aUvcObMeaqVEoFtcIghjylYlEQisIQp4qKNYHN2/xUj3Dax+zBP7gnMyDBmbz6JRortfNtEa1TvjkBmOBwjrqhP7D4/9Bj1ddS+GDHeoj1zaP6ddoRmBxTxMOxFoxFm17MaMzrX+34ffrCrrGRXvxg9+57DYNAYswsTcs+9J/cPYuxtP/+uscYcOBf7xqoY30Pub/djH2ajGPVl93ga1J7jwHgbxW78x8Pae9Lu7kMfcW/vexej0Enb/UaYIw+z/Y7FvroOzJNd5Ua/xXNwn8+1xFUpF1Z7pVIJN4zxvTJZUoT9iKKQQbdFYI0TOBapJ0nTAjzXdj2iboeq74IQ1MfGUVmGUhqdZwz6XcqBT71eod0ZYBAoIM5ihLCJkphhGOF7IcZotI6Jox5SQhL26HXbjDWmkEKisgqlIMBzJum0Nhn02ty7d5eL16+gUo20HRaXV5FCkKU9Tp9e4NT8LINBzOZmh3jYZ2q8RrVewQsCmp0+/V6PesPFL/mk3QFCGMplByEDwijEUFgtpZka4QhKssQQRzESg21ZhFE6YmQay3ZQRmEJiY0Au0CFtyynoAaWQZOTK4ltuaRxBo6hUSthu4I0TVBKUCqVMaREWY7jONiuR64M7U4Px3HpdjpMT0zQDWOyLCVONR/fvsfU1DiVzPBf/8u3aNTHeen6NR4+eMjDh0tce+EijmPjeD6W5+F6LksrqyyvrHD+a1/h45sfYID333+ParXKl85cANvnD//oOwVivirUq1evXsaSkvfffx8hJBcvXaDXa7G8+hjPFqgrKSaXBEGdWx9/wmZrDdcpMwgzyqUKWRLR6XTY2tri5ZdfZnFpmSTNmRibYOneLeavz5A6EAqBUWJHhapHcEpSb+PX7dpHOTCjd61Ct6Wn0WWxve+wXfaAZLG/nu3jkLo5Gkdvb97tPuzbBzpQdP/qeV9bu8uaJ/0tWPqz9IuCcYjtkdjOv0sCEXuyjmrdZmxi370Ttm12R7g+6OhszD4g3n3Shtk3nk/q4smcMKZg+oem3e3t3/Msnv9I4eZQVfJR9/ZJSeLgmO6tepsJcTDfgXnyRNJ/8j6O6PMJ0ueacTmeS6NaJ8u2w3J4GCwQOdVqhV67SZxElEr2KD6WW6xgTI4feGiTMRgm2K7ExgJThDYJhMuphXl+5Vf+Kv+Pf/lbWLZHv9cnSTsIHLSy2FhvMTU5w5VLl1mYmyXPU9rtJp/cuUNvEPKFL3yRiQmXKAppbm3iew7lcglJsTe2vLzEex9/RK/XI05yhFHUqmU2NjbwvBJBEOB5ETMzJSq1Eo2JBo/XN+j3h6SpIkkShGURxxGeb+G5HuVKlXQtJVcFYkYRxbhwG7CkRZ7rAhPRtsmVplqpILMcA6RJThynSFl8DGlSIHSkSY4zUrUOhzHjjSquLTEmB+HgWC79fkq3G9JQLmmaojXYbplOL8K32yzMTuC6JQwpP7nxPufOX8SSgj/3i1/nh++8g21ZnDtzmmbzAz784CY6U7z1xevMzozR73d5eP8+w0ERwFMKm26vzyd37jI7M8nc/DyDYcidew94tLzBRquP7ZWJ45SVlRVam2vkYYcXrl1laWmJMAxp9/pYtovSktm5eRCCZrPJZH2KPIuZnZmhN+iwsbGB0oY0GnLv/m3iKMa2bR4+XEQpw8VLl7GsHMfW5OkAY9dAemBstomA0U90a8+j0XkqQT95Rc+ohnvG6p+mXvuUKA8n6tOnrfboLh9o9yR9P26v7eD945nDydLR6rznznvccP/p6ChPlD7XjCvPNXGaEacplrRJ0wzbtQq0+CzBD3w6nRbGlAh8F9sSVKsBbmDh5qrABdQ5SWLQwiYIAsqlgGHYwUVQqVTI8wIlYnpqhlanR6cz5OGjJe7fX8ZxPLa2mvz813+Ge3dvI0cGE7Ozs1QrZcrlMmE4JMtSHEdQKtXI04gvfvGLdIc9Prl/H8d2uPzyVfrdLutrqwX8lOWSppqJ8Um6gwiDpN8f0usNClQNx9oBCo7jhLGxcYy2UFoXyBEmRkcpvueQoNCaIqqya5OnKXmucF2bMEpIs6yQCCwL27ZwXbswBNGQpboA2hUU4UeGMWFY7BtqA0mcY1kWcWzo9w153tshjItLmzQ3u9Rev0Z/GDPod/BcD5UZkjhkYnKayxfPsrm+QhxHRCG8/OJ1Ntff5v7de/za/+2XqFQc7j+6T6/boeRbZGlG5uQMw4TV1Q0+vnmb06dmiaKISrlC4PfpRwntTp88y3FdmzhMmZ6a4vq1K9y5e4c79x+RKkW1Nk4YZly+PMOlc7MsTI4xXmnQbK7j+xWuX3mBUrlEqRLwO//pd1lcvM/s7DSNxhhbW1tEUcQnd28j3QqeN04SdSlNnWIYxki7VCyezSiw5I6UcfIP/VgLt0Ossw4SQ3HCvCfvx/6yR9W9Hb/qMEJtxO59uIOBED8rprbbxPwoA4r9eY9u+8m9w/ZuTrrfdaghTZFh99mevEKIQsN2zLg/yz7es/T7pOnT7Jf+nxo5w3Z8wijB9QKwDUJaWLZNkkaF1ZsAKQX9fg/lSzY2HnPh/DkwGUnUB0tSrVYIkwhpLHSucVybdrvFg4efcP7CGYLAASFpNMZ59fUv8t3v/oD791fJMlAq4eHiIvfuTdPvd7EdyYUL52i1B2R5huvaCCwCf4Y8i8myjFarSX28inQkp0+d5ifvvsf8/AJSSrQyuK5LuVymP0jQgON5PF5bI04TMq2IooJJK6WLj0hCqRQQRRlbW00s28MSBYKD5zhoZcgVI3xDAFHAQcVFTDKtdREORVo70FFaF75I7fYAz7HwPRurahWwUFqPQH81WaaxLBfLdpFWTpKqgkE6FrbrEcYxP/zJ+3z9rdeYHp8gigpw4TxNqAQejhQszM5w8+bNAhbq5RcYDro8fHCfDz68wde/9haXr14kThU/+NGPefhgiV5vgLRswkQRRglv/+Ad+r0ek9MzXL58kd4w4Z0f3mSsVjguN2oelsm5desmX/nKm4RJyt1HK5Rr46xt9rC9Mrk2jE2MMdhsUqmOYVlQr40hhGHx4T0e3rtFq9MurAWlZGOzheu5+KUSCskge8jYGc20N0WpvECiNUZA4Rp3nGH40ekwRrObEB92vqs0u1Uze+p7RoJxUsK3mxjtv76H6PN0y7rPgrA9q2R0vET7bAz1aRLXce3sf2/bv48b3/+R6bAFyPb1P00n5M+1cQbSJihXMQgsy8LzPWzHxvM8HNvBdR1czyMcDllZWaLV2iTNIozUeL5NmsYYowmCoIikbDRaK27ceJeNjXWiOEZYDs1Wl61mh5dfepWpyRkcZ9sZ2KLZanPn7m0sW7K2tsbDhw+58d67PHhwHyEE4xPjuJ6D7dr4voPrOSRxTBxHVKslyiWfO598wqP7D0mThNZWj3a7w2AYsri4yvr6Fr1uSBxDFAqiqIiSnOcaraBSrpJlOSovYpOlUUwaxxitMVrhOnYRjiVJRkzKJs81Wa7JFVi2Q5ppQKC1YdAfMhzGDAbJCDcxp99PCYfxzmIgyTS5LswFcm0QlsTxLLzARVoCaQkc38EtFXtnH3z0MRpBrVbHtjT1apVBv0tza5N2a4tKucQv/vzPU634+K7E8yQLp2b5+NbHfPjBBzQ3Nhn2B9SqVcAQhoXk9/DREpVKnUuXLnPl8hWyLOHa1Uv88l/+BeIoIg5DqqUyRit++pMfgzAMhiHDMOLWJ3dZ3+zz9g9+ynAYcubsGYKSh8pT6vUaICiVSoSDHqWSy/jEOH5QJopS5uammJqeottpg8notddZun+T5tpDXEsjUSNjiiIZtj/wJx/6sxy70/7ru/8+OQ62s6uCQ/I//diPr3dY/U/+HiM9HdibO8nzHD0e++s9rL6TSnJHt3kwz3Y6bFxOUvfh948Y20Oe7aTPtLv+p/XrWdNR4/xpxv5Z0+da4ur0BkxPTYGQSGmRa4NtDJbj4EuBylMSpYjihA/ef4+19ce8+9MfMRzGLJy6TJ5ndDpd0lwReD6ubeN4Lp1uC6UT/KBEsxkRBC5RlDLoh7z04suEw5TVx+tYto1FgW24urrC5uYG9+8/pNYYR6lio1VaxYRcXVnm3Jl5Bv0B/WGHmVOzZGmCbdt4nk/g+9iWJM+hWquwsdXBsiTNbshgmOKXSqSJIk0NQcnFsR0s4eA6HhiJ47i4jkOaZFgWhWFEbhAjJ1hLCmzbAkQRhkMZpCXI8mIPRhmDY1nEcRHLS0iBY1mgFbbjoHSBvqF0gXnoug5RHIEsjDOKCM4ChEGbFCGDUSBLgV8OKFeqnJqbZnn5EfPz8wSBz9bWJo5jUymXmJ6e5NYnt1nfWCFJY2Zmp1ldXqHX6bG+dpP1x4+ZGp/k3LmLfPDRTdI8pT8ImZ1bwJYQDockUYRrSS5dPMep+RmEEIzVKzQaNe7cjbnx7rvUa2VKpYA4symXc0pBCSltuu0uIFhaXubChWugBLYluXz5Mo/XV8i05KWXX+W73/s+n9y9Ta1e50tzM0RJTLU2xp3VAcmwDXmExAHpYrRAG7CEoLAq+/T7O1LKY1ewB1e8x9d3Uty8k94/aVs7fm2fQTqsT8+yyj+Jg3OR5+lS50kkpN3nO22Lp2yw7TIw2d/mSdPuPj6rFPRZOQ3vb/t56/tcM66gXMNyPJSBJE4wUlL1PIw2WLaDMQbLclhYWGDYP8873/8DPshT7t19xDe++Ze59vJrbGy1qFRqWFholaOVwuiM5aVHhMMhWS5wlMDzygR+hRevXWd+ZpZ2t4/r+awsPeTVl6+zurLEf/yP/5FqtczP/uzPceniNYwxRGGIUjljY3X6gx6gEBjC4YBwOERgyLIUW0r0SHVZqVTIcsP07GkeLXd4+50PqegYyypwBsHCdQNc16XXH+D7bsFUVDbao8rRRlGpVIjjDFxJkqZorRDCwrJHyPNGgBAIKUmSjNzKCytEuzAqyI3CsazCsEMZHNcHleM6Fo5tMwwHyKSQWoUopFXbLiZknscIYUgThe24eOUSjh8QlKp8fPMWC/PzGKOoVqucWjjF1OQkw2jA+PgYrfYW//u/+3f83Nd/jrGxCVpbbSbHJ3iwuEKl0SBTCikcFpc2SdKcU+fOEoYDfvTjd1lZXkSsPGZmqsHk5BTSZORpys+89RY/uvEuWjqUfZ9SqYRKMzwnoByUeHj/AfOTk2DWePvtt7l25UWQdcr1Gl/9+s9x9/4ijze26PQHfP3rX+elF68xHPTo9Tpsbb7HlXOnMJ7AEYpI5QjpFONrBEKKZ9XQAQc/7v0r/T+rdFJp5Uk6rm/Pz7Q+rars2LxHdFkcwViOkppOkufAWD3lGZ7FnOK4dp+2cDoJYzvpHNzfzv62n2cRB59zxlWq1ChVaxghkZaNGr1iIyDPC1BYpSW+G3Dh/EWq1QqtrSal0zWMNiRhQhKljI+XsaQkGvYYDPoYo7EdC6UVUipyVQRP3Fjf4uqlC7Q2N3EwnF2Y5cz8NMN+B9u2uX79OpVKjXNnzzI1NYXWmmZzC2MUlhS0m02SJMb3fcrlMra0iMIQaTvUq1WicIguB2RZjOPYuK5NrVGmUvEY9FIaYz6OXQR0tCwb1/VRuWYwCNFaoVVOpVTGti2yrPDtsiwLYTmEUcIwjLEsigjKQuz4b9mWwBhdoGLIwt9LSoElwLIstIYsyzDCKWJyySIidJ5rQh0jBPiuQMgiEjOAEEWQSj+wmZ0/he2WaHWHfHTzLnkaoZRG5SlvvfUVxiYmCUplbt++TZanBJUKrU6f73zvbV68co3pqWkq1ToK64n5vsowCG7c+JhyUOLq5Qt02x2WFpcIghKd9gbdTouJsRqXzr9CY2ycmalphlHC2lqbmbk6Jk8oBQopDGmSEQRVvvb1n2VpeZVqo4pXDrA8h1JFUJ+I+ZNv/R5GSKamZ9jY2GRyrI6pVJibmSKozdI2HnkcYnt1lBkZTosnZO95iOzzfujP0tbzlz9GiniKgPHpO/GM2fdJIc87sk8bw0+90CiUGM/Vj0//fg+qST9t+jTS3nHpc824LM+lVKkipMC2HLIkKSzmPA8jNCpTuE4AZkiW5czOzhHWqly+dJW52QWSOGNsbJos1WjLoLQhSiLSLCqAZbOU+YU51jdbBKUaG+tbLEzPILRBJRF5OMD2HM6cOYNtWzQaY0RRQhQnPHq0yPjEFK1WG9sCpWJKQYAUhl6vSxxHdHttJsbH2Nxq0241KYI6jtHv92j3hnz5zSusbn3C/KlpPrm1TBSl2J7EmEJ1ZFl24QqQ59i2JAh8XNfC9QrJzLJdSkhyIyhXyoRRjG1bOK6H4xrS5pA8y9Fa4tgS25I4toUwZuTkWjgiA2QZZDpjaqpCrlLyLMP13ALgWKsifphS6KzY21GmkF4TJWi1+pQq47S3Nun1E3zPplJt0KhXWH28TpLmvPLKK9TrdS5dvkyz28OTkomJaS5fvsZP33mHK1eu4Vaq/OH3v0+p7GPbFS5dvMB7P/kQWxoqpYCLFy8QxRFzszMsPVrCcQT9bpdms0mv16dWruJ7AafnUoZxn0pgk8U5165eZtBqsry8xtlz52iMjbHVXKc38KhPTPF4o8mP3/2Ah0ur1GsVFpdWmJ+ewJISC8GFM2eYP/8i33n3EUkcYnmGbBS7TZhCNWaOUfU9j6XaUfUcV1ywz2rtKSvho/qy3xrvSdmjZQRxnM/RYfmf+pzbG0CHlz9u/2nPXswJ+3EUxuLzEvXRr8PvH5n/uLqe7d7hyezsz3429X125T/Xxhn9wQCNwfF8kJIszwmjmDxXCCyEtDGigEySwgLAtgopZHJqGtf1mZ6eY2x8Atfx8f2ARqNRGDmkKQ8fPmRmdp5eL+XuvUdMTk6RZxmonKjfQacRUb/L6soqcRzjOA4TExNMTEyQjMovLi7R6XTwfI+NjTVazSZ+4CKggILKC5+zUsmnXq9hjOLRo0e02y0eLS+Sq6S41ygTJ3Hhv4UhSWKSJMbzXWzbLpDrjSKMhsTREMsyBbq8zhBoqlUfx5VkKkdrhZQSz3NBFoYeWZaPrBo9pJQoNfLjSgsLQqQkTRQCmzQtrkshcVwH17ZwbZ/AC3BkAcCrUoUUNpa0ePfGLf74O++Q5hYbzZCr11/jrbe+xrVrL7L6eI3llRV+8M47LJxaYGJykjjLkLaD5Xj87u/+V9JUEUURKkuI45CNrU0sx+LKlcvYjmRyYpZeb8Ds7BxTkxP4vsMLL1xifKzCl770GjMz0+S55vrVa2xtdBh0B3i2IQ67qLzP6soSjuNRKtdpd4bcvHWbj299TJwmfOd7b/P//H/9W779x99j6fE6H9+6zfLyCuNj4yw9WmY4GNLa2uLe7ZuEvQ79bgeMQUqriJkm5FOlgf2b2Z827Sfmh66+d+Xdv5F+3PXj2jt4fjJDgJMw5+MkiL1/T97mbsaz27jiJH05bC/rpM/ztPoPewbB3svHPc9nJZHv1Pmc8/Goep93nsPnXOIKghJCWrieDyKlUqkQJSnDMKZeqeH7JcJ+jzTPKZfL1Gt1pDRFvjjCGK9Ay0CgcoVt2+SZpNPtkOcFqGucC7Jc0OsPef+DD5n7ha+jdYZtFZA+tuPRHgwRUnL//gPm507RD7cAm5mZGb7zne9w/doVpFS4ns9mu0VQ9lCJwXEKVPiZmVlKpRJTUxPkeUauDLX6OEoasrRwevV8C2lL8lyRZRnNZptue0iSptTH6lhWcV/lWQG8ohWojCzLqVQCqrU6aZazudVGaU2aRCgzmkSyCN2ljMF2bLYhgbRSCLkNiyPIDWSZIs8MUjioXBD4HkYUzM8SojCp14WKES2xhEOUJ3znu+9w492baGFTrlX50bsfUC65rK43iZOcleU1GmNFHx3bIU4yHi0uYmWaqUsXmZqcoLs0JFeKeq1Cq7nF7/3efyOOU1rtDrajaTSqNOpj+K7HcDAkHA6pVMoMhkPyLOXx2gq9bpNuq0kpmKbsClxXsLG+xv1bd3jjC1/mhRdf4ic3fsTm5iq2H7C+2WF9q8nqWgFf5bmSiakphGUhpCAMQ7RSDPp9FhYu0rEmyYTAqAK6RyNhB7dwNzrD0c6de4QIUViw70FnH93dT9SepCdQUIfRhyPkp115zZP62Uc899P446SVw26MBLLD+rf3OcXeMjt/9jHL7b4f1Yf9eY/dlznYl/3jdzi93X6gbUisfWqxbSnU7Cuz7/ehde+24Ti0v3vL7p8TT7qx650eKZ3ubUfsrtgc7tZxUvZjdnfmM2C0n2vGZQsoe2XSJCPNUjzPQyPJU8UwHFKvlvEDh8hI8tRw7txpet0WaRbS6feZmp5AWA7CGNzAR5Iz6DcplRu0u+voLKbTGlCtOmxupnx8+yaOlTJZ9yn7Lk7g4wdVKvUJ+oMhw3rEg0ePuP7CC9y6dRtjUixL8aMfvcPp02d46aUXcLwK0zOn2Nxap9fucmZ+Ace1SdOIUuAzv3ARZW4xNj5Bkhs2W12MSvBcw9SkTxQlhIOYwdDgOYYoThGklKsekgzfttG6wHMzSiFHk7HTaqHSjMDz0VoQDgekaoQiJgRaGFIjCDOF77gFE0oiLAG2BWiIUsPGZhshBFpllAMb23EoBwFJEpLpHCk0XskdmehDkmZIO6Dbj2h3H+O6hv/8+98GociSHKMMZ+ZdFpfWePkLLzM/O88br73Gf//D79HLh9T8AGUZhCvRaKSwCByXfhwjbYuFU+Nkesj6ZsTFK5e4+8ldXnn5BRqNTVSm2dpo8nh9hf6gxy/+4i8wPz+GNBk/8+XX+eCDG1SrAfmwR8lzCHwHZTK+9JUvc/Pjm3R6Q37lr/01Ko0Jfve/fotOt0ccKm68ewNPGs6fmWc4aFGtV4iVz+ONJroyjuMLjMkxVuF8LE0R5NMIOfr4R1A5u9JRzGT73sFvvHBhOIyY7y57dDqKExV7KoKRJGJ2IalTKI/20t9DnuMohrzNYLa1iYd0ac9zCrOt1xzdfkKdi8s7JnfsZoKHVr2PKos9DPLwDu0WIM2Oe8Pud/eknNhRXo0Y1L76xZ6Fin7y3kTxW5zU40/seo4Da5+DsFX77x/HacTufPsXPUfsUZ1010rsZnyjPcXnUfd9rhmXUYpBv4fre8TREIShFJTJLUWWJ3Q67UIiAPxyidXVFbIkZHwqwHIKVZTlFDGjEGLHqVcDaZpTEIeMqYkp4ljxeH0NWyS8eOUs3sw0j5ZWKJcbBH4Z23UZb4wXfmNhhMozWltbvP7aF/je997hvfc/5s7dB7z2ygvMzk4SRTFROKRUDvBcm16/M7IKdBFCcP/ePcI0R1oejisJ/AK2ynVtpEyJwoQkzCmVKvS6Q8IoZ2a6hus4uJ6LlDaDYUSeZwz6PZqtHlkOluWSZhme55CqjEzrkboEkiRDa4Mu+/iuhbSKQJyWbWM7FiUfev1sBG4KMTmWFSKFRqlRIE9HIFWGtG2ULnyu0qyAkvIDCy1y2v0Q3xdoLYhDzcrqBoGt+fN//heJwoR+f0gcpfhemSjJ+N73f8DcwjR+UGJyYoLNrS18r4TjWsTRkEzl9AYR9x8usrq+AeRU/BJ5rvH8gP5ggOM4ReiURgOT27z15S/T3lqj32+xtrpCrTrBMOwTRgO01ty+fYfHa+v8tb/+f+eX/uJf4N333qPXG+C6xV7iMAzxPJ/a2Bh/8iff4403vwlIJDZGG2zLJjUFc9nGjC9o5wlW/Gbnv9GNQ3MfLPfky3jqt3PSxe6OZLS7vaeVOXGmwy4dofIb/Xd0tU/21Y7Ks/v67hE6WprZl3tn/+6wWvTOGJl90uve8diua/v3LhPxp3X6sHtPY17PItTs7yNPpKLD9j6fyahFiGOl3WdNn2/GZRRJNCRNIobJEGkLPK+E6zoYNJnRaCEQVmGQMOgPqVYCXNenVKqQ5QpHF2RFY5ASXM+l1WoRxynlcoAQguvXrzM+0eSjDz+gPxzS7vT4c7/4DcBmdXWTzY0WL738MpZl0eq0Kbku5VKZRr1OHMe89ZUvY9suzXaX9tYaN969wfLqEs3mFpmqkusSti3p9br89N2fsNnscP/+IpV6HadURikb33fxpU2SFr5cnp/RiwrMQmMppG0YDCIoge36OI6LtHNcBFGSFNBWqSJJYrQ2WI6P51ioLCcbLeK0hjjJwcTknsR3ilhdaa6x7QJiyncUWm1PwALbsbBytEAXSOJZnmNbAiktPN/CcoovTFrFfceRSClxHRedxdQaVYJKhX/3//n3XLpynv4gxHJchlFKvVRCa8XmZpNSpcaNdz/iq197k7X1x1iWxWKvVxiiWDaTkw18TzI/N8edW7eJ0phWt8PM7ByOLXn0aJEzp05zev40m1tbXL50hTju8+67NxBCIoBapcI777xNNOwRDxM+/vADpOMRhUMuXjhD4Dm4EtqtFqVSiZnZSX74o58ghM2ZM+eInVk2Eo2wrUJnSmEOX6Cb7/LH2UcED1ONnSQdrm45SqQ5rszu+3CMAvDp/dmlwnqedGAv61P26bi6T5iZPx1TSIBnM1Y5UHpf1z6bPamTPe9nbSn4LOlzzbjyNCJNPEqlEjpPMHlKEg/x/Qqu62K7NjrP8XyfQW+VJMtoWDWMFriOj1KmAIU1hjhNcW1NrnM8PyDLIyanJun0B+QqY2JqgjzPiWLNw6V1Hi4u88rLr+M5FdbX13cMGYKgjGc7nD93DpXnVMplPG9IUKry2muv0e1ssfZ4mTt376CUIUtTmq0Q1/MYRiHaFJPh1OkFhnFKEsdIy0MbjWtbaCPwfYdK2aXTComTGL/sIoRFFKeAIM01jTGJ6/pMTFYJw5Bub4htSbStSTOwLYkUNmmSFYghFFsxBoiznDSH3LcpeS4Ig1I5ljBUygHRMKZc9sFk5CPfN89xcQILy9IonZGmKYJiby6wHPI8RwiNtAS+546QPAxe4NMbhjxYijmlJrCXfV55/YvYfp3FhytcuXiRztYK5VIJIUAKRafbIShVGBsbY/XxBucvXKFaCSgFZR6vLFO9cok79+/QbEW8+MpLzExNMFavs7K8xOrKKnc6d3n0cIz/61/7FbI05vKlazx6tIzv+Sw9fMDPvPkmY7Ua773/MWkc8+1v/T6PV9Y4f+EM1WoF35LkScTbP3iHN770Bq+89kWCcpU/+sE7VOZS5q5+hYGRSCPZVojs0PMddddey7tnJTjHxUJ6WnpqfnN0vhNZOx4Tw+l5XAL209K995++4X+YD9KJxvCY53laO0+tm5NLv4fVt7/o/6wuE591nZ9rxiXReJagHLgMhgajMlSWkskE2/UKKUIWfkuOa6OVZm19E+k0AInjFo67WMUKw7IkuVKkWU5/EDGlNbXGGK1OmxdfeBkEpLlBGwk4dLsDdK44feoUcZoTBIWENhz2qVYrNGp12u02gevhOTbddouxsQbNrcdcunSWOB1Qrvg4vkOa56xvrDMxMVOo5lyHfpQWZv7KkCQJg2FEphSOXcLzbep1lyzXxFmGRmA7YMgIY0WcaPwgAGnjuG4RBTrJyVJNmhnAIoozpABbQjYKSSQsG2M02hiiJC+kJkfiuz6W0djCIbMzLEuMfMoKdUGWZbheEQ7F89wiuKXejv8jsS2N41hYtgMUqrQ8V3iuj2MLgorDyvoWuTAMoxiki7Qc1tc3OX9qgSAo4XguC/MzfPjBRwjp0RgbJ83gwcMV3vzy6wyHfbY2N4sIyKUSrW7I+tYWp+bneeONLzE/N89/7/wetz++xcLcHEJY1GoNFhaqTExM49kejx8vUS35nJ6f584n94iHQ8JBiKCIsCsFLJyaJx708X2X7//JD/jKW1+lXJnmyhWLPJggzRIsx0eKQnFjjB6By+5W4zzRez0rOsFhTGtv2acT2mOtBY8o/XQw2u3yR+v0PjWT3aU+PdwM/dkY12HXjipvTiiBHNfW0X17tnd/IK85yPien8kcYmBySN3P4lv4aVw+jkufa8aVhkOcyUmGwx5ROMB2bCzpESmDj8H1PSwBnW6LsgN5rkBpJicnsR2bXCu0Lsy6hRBooxgMe2RpSppmNFttGmMTJGnMqdOnsF0XYRSpyrhz7wGXLl4hznKkFORZQrlaZXx8jM1NC8e2iEbWbI5tUfZ9tppNbKk5tTBPlsekecTE1BipypC2S5LmrG+2uHn7PmkqKJerGClJ4oQ0ybBdF0OhshMyYXyyTL8fkw+396kExjhgIAxzUpXQ7S8TBB4IiVKFOtCxHfLMFNGdtcG2bVSuQBXqPaXAGE2uoR8mRFIyWQ+wLEmcpkhhCHwf3xOEYeH4jAHjWkX0ZlXASwmxvbEvyHMw5BhjkaYZvucThhECC6UNIsqxhaTXGxKnGdeuv4QUDg/v3OcbP/sVLJkxNTHBC9eusbbZZW1jyCBcx/MDNrc6/OQnN3jj1esI4P333iMIAiqVgK2tTWq1OkGpRKVSIUkSLFsWjuaOg+t6DIchcRTx0d0P6ffaDLptbK/MhbNnefenPx1hNkYsL68gpaHZLNFrbXH61Dx3791ndvY011+c5o03XiN153j3XptM56CtkUP3KODeER/q7n2Ew64flv+zhM/5vKVnVVGdlMA+KwzWnryfgRrzs4JX+j9D+lwzrixNARhGIUrnIAzDYZ9StUGWxXi+jSWKcPJRPsS2LMbGJjh35iwGg2UXkWqjOKJU9kEPWVpcxBiD49qMjU9w6fJlPrr5Cf3BgDhN8RyHNFfcuX+Pt7pdxmpVlMrJVcbm5hpCzpAmEZbw2Vh/zPjY2MhfK2N+dgbHkXiBU2C2CUEYRty++wm5MVy79hITk5NUV7eIooygVEZYHuWyxebWbTq9AmaqXHYolwPSRJMrG8uV5ErjeAURz9LCjyjvRVi2RX8YY9mFxGmMwJaF8YmQNlJqhGWDMoWEYAwIibAEjJyLM61p94fUAg9HWgVo1QjDrRQEhMM+ge8XakOjcKSNbRdgu0YXgRRdt9jXkpa14yMmLUGuMhzPQRuo1uskcciw1ePmxzdRmUEbmwsXL9Brr/N4dYUL58/y4cf32GxFhFFOGA/p9Ya0W01qgcXC3ByeZ9Hc2sRzbSYnxlFZSp6mlEsljDG4js3GxgY/+M53ePH6C5w7f57hcEiuM27fvkW33WJu/gzzCwuEuaGX3CEo+2jACwKGYcjE5CRnzp6lOwgZHxvD81xsCyxPYnSCMVnhOygFyrBjnbfb5Bs+/T7BZ+EL86xp27rwsHRQ4vtTSGKXvHpA0nz6WHza8RKjtg9r57N4l/vreaa+PWU/cr/f2rO0+T8zA/1cMy7Xc9FKcf/uXcYmx6hWKygtSbMYrVN0yca2JI1GlbA7xGhNnmWsr60xffoKlgRjCVxjEYUDGjWHwHfJVU6pXGF8YpKHjxYZDAY0my2yrPDTcB1JPwzZ2NzAQuE5FsZAnicIFFtb6zS3NtFZjudabG2uMTExRbu1SWOsQbnsc+rUKYQFYRrxyd17JEnE8upjwjinNwgR0sGyHRw3QEqXudl5Hi2t0OuGCGEolcoIqUeYgNaO8YRt2wwGKcbk5BoQObYNll3gEGotCDyBkBZGqwI0VylsWUBcFTBXhcovz0eRX4Ekg55OqZZ8tDaESUy5XCNNEqRjFyDAWUyucjxPIq0CNmo7xleBXq+QwiKzLJIko1bxCeME25FoUzhFX7pwkSgasry2Sp7kjDemWFx8xMLcJJuba8zOTHP1ymUWV5vkg5hcQ7efkieCr7z5JvGwSZoMyeMYt1ym1+nQ73d59OgBY/UG5cAnzzOSGO7du8u5s+cQUrK8skK9VkNaFtOzc5w+e4aZuQXcWoPVZpv3b99EJTm9/gBXVhlGEaurq1gCxsfqGJViWRl+WVIOLPKsGLvMqIKgiUKKfbLxvddx9H827MH/kfUd3gjPBH30Z52OYxD/K332c/xzzbgsz2NtY4Nv/+EfcvX6FaZmZ2mMTRJGbe7evMOrr7yMUhmNRkA4HFAOAsYbY/S6HaJhD19a2LJMlkRIaQq0dykwaMrlMmmW8fHN22gtuHf3HkpBkilsOyNVRaiSdnuLKOwxMTFBp9vDcS2E0GysrzI5Mc6H771LtVZjOOjh+y79Xo9mcwvhCGrVOmlX4QUVBknK6uMNFJIoLjAF4yQB4RHFEUJYzM8v0B8MSZIYlSu0UdiOJMkVGEGWZwSBRxQp+gOFBhCgc5CjOaMNxJkaAeMW0ERaF5iFslha4jo2SDEKjSIwRqGMIVHgaYEUhRTnexZZGiKgUBFaEqktoihByIJAu66FbZexLIEwFkoZ8kxRrZSxLEm5EhAnEbbjEA4HNLdsJqcanD09T7Vag1yTZjGWFEghGPR6vPnlL7HVjfnWt7+D5Xr4ZYnvCILAI5Bl+iZiYWacXhiztbbGD995B4nm8qXLXLl8ic2NVSbGJ3Btl1q9hm3bNBoNPv7oPfxyieuvfoE0Smn3+4xNTtHu91GmCAGzvrHJsNtmrFomGnS5fuUKP37nB7S7Q15582u8+edPY/QAlUukU8IyAsX23hCfmQXYNqE8FHH8kD2Zk7YlhBjtS+4NwngU0dlPsHd+n9AqbbvccXmexPE6KOHslrhO0seTpgN17/Pd2iPxHWM08tTFiXhS32Gx1o7q1x614gn5wYFy+9Jx8+ewuo4u//T8/6cOJFmtVGi1unzjm99kGA15uPSInzl9liyJaW2t8+Ceg0TTqQU8uPcJjl2E0Kg36qyuLDE+rbGcIfX6ONooksGA9cerCAGD4ZB79++TZTmWtFhcWi68LoREGYiTmMfrjwmkolr2abU3GYYxvU+6VIIy1WqJSqVEe2uLUskjS2OMzkmSiKBc4dHyI1bXHoMt2Wq2sF0XyxiMFkjLRkjJVrOJoI/SgsEgod6YZHx8ksGgRxgOAYOUgixT+J5X+Hl5NrYrkZYq9rSMwCgwetvnwpBrXRhOCAFItNGjUCeja1ohkAUTF6C1jTYaBQzjFNcCoTWd3gDXKWxbut0BjivwvCJOme1Y5LnCGEOWxEgpEdgY9WQSe74LKGq1MoFfouqVyJOUD9//iBdevsTFC2fZ2thkemqCKAq5fPECvUFIpTbG+bPnyNV3cG0L2wHfNaw9XqIRCBxp+Nmvvsntew+5v7hMq7WJZVlUq2Vm52b5uZ/7eiFRZtBud7h9+za5Sjl34RwvvvwSpXoDpbrUxsYpNyZojE8i7YKZR1GMzqBaLhFFIavLizQa41y/chFJyp2b71EpjZMKi0gVDtOaHRlrHwF8kvYT8ZMaGpzEuOCossfkOLKNE9V7jPpqf3+P2386TB0ojrhf+Mh9SgOHp7S91zPqoDWo2ZXjOAOQQ9sUR+c7WV2fHvvxefdKd7+/ZwWBfl5V9+eaccVJzMVLF+lHQ4bxkCiJyI2mXK0yMz3Jd/7w9+m2twgqJVZXHvMzr7/E/Nw8ze6QW/d+ype+WqbZ6jEcxnzxi1+k39nk448+BgNREmFkEVxSYjMcDrFsUcSfynMiY/jv3/5Dfv6tV6lVPR49fIBShq2tLV544UX6/S6NWgWVJ2yur3H23Hk8z0EZSblUZmpyht4w5MObH9NuhQRVje0FJGmKQRAnSaGq0zlCeugRs3FsF8uyUUqhlEJaxb5JGEZ4GIRl4/kObmxQkUGbwkNx+68xICmiRedaIYQsPjxdqLaMMWTpSGKS1ujD1DBCfUjywlqw4lkoU+yZOa6NY0ukZUAUkl6e5SMk+mJSa6WxLbBtm1IA274+uUq5dP4yL73wMv/5t3+Xi+dOceniWzS7G3z04Xvkac7/+39/wDd/8ecIzp4mjkIcb4jvCybGSwyzHM918HyoVEr0Wqt4UlOpVbl6+SJhOMTzfC5dOI9j26ysLLL2eJnZ2Tkc22NtY5148REPHt7jjS++TJxl3PjwI65ceQGcgMrkDI2JMQyglObc2bM4QiF1RqVaIcsSVJrgOhJ0yscf/pgzL30DrVIECihUpsZIDjO2O5xhbSMXCPaX2Etojvs6TkaYjyp5WD8Piy91kJCOCPsR1T+rZdnO/ZFV4f7sQmxff7qUsM/t+KkEf6fuIvtOucNM6Xecj49YeBzbv087Jmy/q5MwgG319K4rh1gk7mrl6TU+g0vG/7Iq3JXiTGM5kqQdUq+UmZ6apLXZpBKUuXzpEvfu3ODhvY94/DhFKc3y8jLnzl4E6eCXKkhLcvnyeW5+eIvmxhobzRb3H61x/YWr3H1wh/WtDkpJbNvCCIElbLSRWLaFEYr+IKLb73N6YRZjNNVqQJqVaDfXydOU1ZUVFk4tkCQJlXKAVorF5RWM7fLJvfvcunePe4sr4FikSoCWxImm30/RRmM7DsIyGBTSkRihyVWKAWzHw/UChGUTxVsMw4w4SfD8QmUWhjlpliGwCqTyIv5jsfo3BcyMGTElM4KpkaOPKzcGoZ6sIkef4sjz3RTBEV0XbXLCJMO2BbV6hUrFwbZztM7AKCwJWueEYVzE+bIUluUChdqv223jeja9bsjy0gpZkuLbcP70LN3uOlGSsPp4Dak1k1NTSCnJ4ohqyefa5fPMz4yzvNHGGE2cKNq9AVIbZqenCfsDhLSYqI/jBh63b36E0Zrl5SXOnj3NoD/g0eJNhHB47bXXGMQD7t57SLPV4/KVFxDSpdVq0ws/ZmlxEW0Eudakecbc/CRjFY+SbWHyjOEg4sMP36c83kB7VRbvfEBt7nWUUeQUhicIycg4fsSWdhHbHfQDs/d/c4jKb+evOZpOH7IZdJC4HaPWOfD/nlnw5PcOYd/fz319E3tvHZt2SyA8GZ/i3Oyt4ADh276/j4keSPsXBdv5dte9rzPb+5PC7BmT3aq6vegih4zJoQ9/EKbpcBgtceD+k+snVbtp2AVNdXjJZ1HhPenHk5HeniEHn8Hs6B2e33znc824KtU6g34PnYXkiaBRbxCHIXathB+UOHN2AZ2+gCVt8jzjS6++TqU8TmPqFKeNRW5ylM546cWrqFxwd3GVTphRH5/gdJbx8NF75Bi0yZG2xnEccmVQmSYVBktoOr0hSaKoNxqcOzvPVLvOzY/vgJFcvHAJYwxlx+Hx+gaWsClVxugPI+48eMT9pSUyKQsYpkSTqpTBIGYwzGiMVQnjCGkLbFtiuTZJGhZIFRoMEqQLwsIg8XwPaxSKxSAKtZ2SYLmIOCeM1c5UNRiMUXvGUjOSynYnVRgWWFZhfGK0Znv6aSRSesSxwk4V5TQm0AJPWjiWwJFFTLNhGJFnUVGdNgVor9HkSmMMpEnKo4eL6Ezw8ouXuX71LHOTDayXXmJpbYvVlXWcwKc76GOjcCQ4RiPyjLFyiaV8jSTX2IHFZqtNxYGtdh+pDBNjFVSmebT2kCyOmZ+dw7Ukm+ubPFxcZBAO0cZibn6OufkF3n33XX78k/ucPfsS45MLVCsB//2P/oDVlWXKpTK50eRK0WpvMjt5hl67Sdmv8OW33iIISnx8+2Mera6Rmoe0ehYzl38WYfnASHJV2T58tid4g/tp+2iX6dh177OsV59NnXRAzntKHfuJ736idXLOdSCv2fVbPAEPPqIbexjr3vb2ksvD85k9+Q8+7g6H2idhjiQfI9jGLNwhz2J3vUf1++lqtqOH/jixaT+jh2LOjU73vWdj2JPfHNvw7kVUcchdZfZbzz4Rwrcl6OeLgfa5DmuS5SlJErGyvEQUhSRJgu/5mFyRxDGB53Lp4gW+9rWv8MarrzA+1qA+1qBULjM7O0epVGHQHzIMY4TlobVFnAlWN/q0uinV+jhIj0xL4jjHsi3yPMOyJEob0pwC/8/1qdbqJGnK+uYm58+fx/E8oiQjzTVhlLD+eBOwaLW72LZLfxCx2RwUeH1xQpoVoVQajQa+b6ONwXEcpGWRJimWEIUBhJQj6zSI45het4/juLiui+PYJGlKHMcIIXBcB0vuTKdPnaSUOyvU7W8kSVKUNmhtyHLFYDgkiiK00uR5TpokxHFMnmf4/v+fvT+NkSXJDnPBz8x3jzUj98y7L1X33rq1dlezi72y1U1SpPienvj+UhKgmR9CU4AkQBAk6IcWQAQ0GOjHgBLmAQI1I4DSgzTiUCIpPnFvsdeq6tq3u6+5R2bG6quZzQ+PyIzMjFxuVTefCppzETcj3I+bHTc3P8fOYufYBKFPGJbwfR/LsvA8f/DdIU0Vjx48ZnZmGkFhqtxsNrGloFot4boO6+traIqUUZ3ONlIoFhdnEWgcpzBJ3r//mCjKqNUavPHGm4SlgJ/7+Z/lS1/+Ms9cv871Z6/jeQHGCL7+9Z/mp77655idm6Pd7fL7v/9H5DnMzzX4vd//fd764ZvkuebCpaeoT0wTJSlKGeI4ZnKiTq1UYmFulmeuX+WFl17k4qXLXH3qKqEX8M4PX2Xp4W2ESbEkYBRmEF04BLGH+Q2O7ftx7IstDvn8GcOfTdj0XkFxJMpYOGkEw7Adc/KxFceZ605u+vuRw37aj7iPJybjJHP0xwSfasFlVMEY+v0+a2ur3L9/H0sWzLVcKuG5LuVSiMlSbAuiqFsUYLRd8jRjot6gXJnAdkLuPljhj/70dba6cPP+Jo/XY9xwBmGVEZZProd+h2I14foe0rHoJwovCJloTKO0INcG6bhcuHQZhMD1fJaWVmm1exhjMz+3SK/XR4giYa4QRbVirQ3dbh8pJWEYoHWOH3iUSyWktIjimCzLSPMMpQutJYr69Ppder0uWivSNMWSFlmeo43Gc73Cv6T1iPB5wjE2RT5CYzQIM1hJQZIqjNZFtKBgh/40K/bWScsijoqgjHK5TCkM8X2PPB9UXbZtfN8vSra4Ep2n9Ps9sizD933iOEMbwZnTZ5iYqPPw4QOyNMNg2Giu4bqSz770LKFv4zsWvutw+9Zd7t19TGu7w7nzF7j/8B737t8t9ri5Ae1un5c/9wrXrz9X1B8zgpdefIlf+J/+F6qVBh9+cIM0TXBdj49u3uKNt95lZm4RrW02NrZZWdlk+XETo3KyNOHcmVNgclpbm7iuz8L8KX72p3+Gfq+LNDkWOZZRWNIgjEbu+BkKn4gYfh86qke+F9kn9p7f71jf42M55LP//FH449oejz9iJhQc+H34dYf3eTz+8b6c4XgedQ8Hrtkz/occP268Bxx81Po4/D46XseN+UnGfhT3uDHbpeVJxnnvmB95zegcHSMRD9JeaKGj8+XjwqfaVGhJg8pTFubnCMIypUqdTqdFERGncaQkKAUInWPyjFRrlh49YE6EOKUGSkO9PoVle/zJd9/lP/2XPyE2mkhppicnUVlMNwIpc3w7R9oUWTJUjuv7SGyaW10eLq1w+eJptLCQtsd2q0NzY4nFxQVq9Qanzmgm6zMsLJwizhTNdhvfL+G5xZ4oKDLTp2lGmsbYlqTXT7AcCyGgVq3S7yf085jt7W0QEq1hu9UnTTWeb6OVIlMZYRiSq4hcCWzbRusEpQrBtZsc98lAD5LnDn1jQg4MjgL8IMCRGVLmJIkmjmNs6WM5ReJbOQjwEEKQDWqeFRqhxPc9jAGV5xitSZOE6elpJiYadDpdJqbnmJ6ZppqWmapXCcOA7W4Hy7bwfZvZuQk8z0LmCscSNKam2d5usbnZ4oXnnqXTaXL/wT3uPFjiqctP8dkXX2J1dQ3HcRBInnv2BZZWVnAdn1/6pV/iP/yH/8CHN26x1dzmtR++zfJ6k+XNFnfvL2MoBKwg48Gdx9QcjYk7lCpVnrr0LCrTKAUCyWdeeI7J02cpeaBUhiVk8aaOcaXA3kXwqHlm3L6lXea19/dhcBiDPAy36P4ggzxIsT7AfHaF10HGelSo+oH+x+KL8QOyr639FO9vcxzzP46WA33sv1aAMGJHAxFCMuoLK96dMQ9+X3vH9Xl8qq+T348YT86h149HGHkk+9ob9wx3mxsVXh8PPt2Cy4Ko3yWNI1zXw3UdtJG4jkWeZKBzVJrj2BKtMow2pHmfOOojvRppbsDyyOOU19/+kLXtiARBs9Pk5p0mjlMUSJxqwFxDIHVRVdggyfKUwLaIs4Qbt+4xvzBDvx+DsOhHCfVGHT+sUCpP8MLiBfJEUyrVmK3VsFaWabdjbNsll4YgdIijaGAWc1FJjJQQ93vgh1i+g+e4pHaOEQKlDL1en1LJwfMN/b7B9wUlPyRXRQonRBGxV+zXAj3IP1jAkFXqI0Z3F3ZfHJASbFsWY5nmlKvVwR4rQxgW2TGyPKfbiTDCILQiCIJBBnm7yErieAgEWZYhhIXn+mRZyq0bt6iFNpcvnOPsubME5RqN2Rk63RbbG6v0+n0a01M4toUQirjfZm4mRFoBlfIEgeXx4O4d2u3eoDq2ZnJmivc+us3Dh4/4hZ//C7S2Wrz99tucPXcey3I4tXiWbrdPtVbni1/6CivrTbA8trf7vP3eR7zx3g1SbZibW2BhbpJGzcY3bbI049atW0zNzPLBRx/y4vOT2MJF5x3+wp//WZa2cvpZF0sE2MIGOajJteOH2R3bPWO978f+d3t0r81JXvwnSSO00/aR2s1uAMSTRJWdpP9RvIP4J6pWdeDacZktDtO+CvPg8cLrwLHBgkQwXJzokfOj/sHxY3Bs+0ccO+o4h3QpBouo/Zftj/wzHCNcdu6bkYASs7M14Si6/ofex9VtbyNNXggiywGt8BwPVEantUmv08IpeSgNaRIhpAPSplqtI1yfznYbLA+/VGdjq01uIJeySFNkIIk1loRMCbzAp+QZtC78Vtoostygk5Sbd+5QqXrMTdepVOtM1B2ifkqaKoS0WV1rMjM1h+eH9Psxju1SrYSsboPneRgMSRzj+x62bSNSwIDvuRijSeJkJ5uFMRrXdZicqmNZDkqDUkXdqyhJAInn2sSdiFwX2dgtS5ClgywYQiCEBRSa1ElBiKKqsRQa27LQFPvbcpWDVlSrPmEo8H0blRdaXqGZFdqeweC6LloXpkCtNGmqi7B5IfACi61Wiw8+usELLz5PlivuffARnR++gSbHszSehJlGHZWlPHXtCkolvPK5z/DWOx8QeDbT9Uk6m5ssr65wZnOWza0l6o06ILj/4AFra2tUq1Wef/55Fk+dAQSNxiS9KKLVanPq9Fk+9/lXeP+jW7hBi2x5lY2tNlpapGlCvValXrPwjcAjZfnxQ4JyzNZ2i9t37jJZn8KSFtrkpFGLJAnwG1OkWY7ruaRpEYwhRbERfFfDYefvUOMSQuxsGocnE0B7n9vJ8Xdxj7tmILxEIU4Eg71MQlBEQv44YXdpf5J7G6e9HIHMsWrIobA7Jvv05//z4Mf9KMZ2N2a1dSj+xyfwU+3jSuIYnecszM9SCjw812KzuUya9BCmSLdkCcjTmDSKSeOEen2CUqUCCLTSaG1I0pQky8mNQGuJNja5scixURqkZVMqlQiDonS7bYEwqkgdlBV1rh4vrVCqVJGWizESrQXzi6eYP3Ua3w+J0wwji4fa6/cIQh/P85iYmCAIQyYm6tRqNSYm6gS+z9zcFJONBhP1OrNzM8XxwMOyBH7g0ZicICwVvjDHtQuzm9bYtoXSOb7vkaYpKiuCSaRVaEtCCKR8sglTJPAt/GpKFSVOjAbXcdC5QkhBqVzGsixUrsjSjCL8W5BleRG0oTVKFZGMepCrUGsz0OIsXN9DC4F0HG7fvc/s3CnKlRq+X+K9928zM7PAM9evU6lUieOEt954g7WVJSbrZWqVCmsrj7l79w61ep2XXnqJ7dY2pXKZD2/cQJmc6alJfvD9H9DpdIq9alnKxEQdPwzI85xqtUa9XuPU6dM8Wl5mbaNJmmsURWb+tdU1PvroA9IoxraLPJalcg1p+fSjlHfffx8FTDamCD2Plcf3eXz/Bg/vfoTOY9CKoR9ECsHwEYiBzWT0784Lvc+MtNe/cDQc5ks57Px+38ZxK+bBzGA32m9cJN/RdD0pjKPtuPYOu8exuPt9jke0czTsjyQ83ER40mfzJLA7R05+758cBpP7iHk1jsaPC59qjSvwPRrVCnHUo9lcQxnD7Nw8eR4DOXGvi5O72EJgIbBdDz8IAYj6PZTKQChynVOtlbEsyPUgSLlQF1AUpkHLchAk2FLgOXaR+smxQGiU0vT7CcaA5TqgJJefvsD01CxxFDE3P0eSKLTRpGlMo1FHWoIo6jMTzJHrQmvs97r4nkMQuEWQQhCQJIpqqUSr3QOgVq3geF6hzRhNlqVFqipb4PkeWZYXwRTYOI6F1kVaKCsvNsBqBQyE0JOAFBIozI3FniwLz/OIuh18z8J1XCypMSoqikoahRHs1DyT0iI1KVoXq/JC2xMEQYglClOjsCTlagO/XOPVN95mfn6B+tQ0uU5oTEwwMz3D417EjY9u0u23CSs+wrHxbYMjNUuPVjj18iJzC/O8/eZDGlNzVCtVsqzF/Pwsnmtz+dJFXNcjTjO2tzfJux021zbo9voIy+LWvQcopQfBNz69OMH1wBKGzeYGS0sB7kKdiXLI1PQCU7OnOHvhKVZXmjxafkyuJonjPndvfcjjlsCub/K5r50CJ0RKrzAX7vcDjfw98Rr9E/CfHwnz2llYDxmzpLBA6R+T1vXk2tAT3+fHJXvU17MD/ydrW8fBmOEc55c6ro1RH9ewbNmfxZ1/qgWXbblIBHmW0dreAmBmZhLbsdCeg2tL2q0tpIYkzbD9chFdZ9sIkWLbVhGubIHrWEVGCVFEgBlTaAyC3ci6XCikAKtIo45RGs+xOb04h+fAysoqjXqNxbnT3Lp1mx98/3V+4X/+BXKTk6kUZVz8wC2ye4Qe/ahLc3MDy7bIsoSo38dxLIzRhOUSrmMjsGk2myRpjm1bOK5DpnJ0npFmKUJCnqcILEqlgPWNrYGfSTExUaPfT8m1wJCQZIYMhVJmzx7H4Qt+VNoWy5YIA1oWYYWOLbEdmyxX5KkhzzPcwEJIB+lYZHGMRhe10BwHrQ15lpDnBtfxB/0XYzwUoVpaRLkmKNdYWlkjUYa1tTWefeZpHMfn23/6Xa5cvMDGxhara+s0psucu3AGQYYg56tffQnX8YjjPpVanSCscOXqdVaWl5mfmaVRq7O+tsLERINytcbN23d478MPcfyADz+8QavTY2ltE4WFtIJB0U63iPD0XAIvoB/10GYCy/aZXzjHy698mfrkJDNzGyT9iJXlZT547x1q5ZD7axu0N1YweYZtWWRD/wrFVlph2I1I43C+eSgDHnWzjMnmMHpunKP+UBgzN8b1veMS29e2YehDOdr/dVJTX0E/IMROkMP+toc4o7roYe0fmt1i57/D8ce+IwPHpRh+FeNxx9cR29vPj1crGrnno7Z/7VI08HMdjSgG7e2JqDyiTRiOxf+gUYVbzS1EHlKrVpiemuSd99+jWisT92M8KyXLYixRCLZyWKEfJfTjBITEtiS1egVhCxKV0uu1MbqIVDRolAGBVZQfQYKxUFpjTE5uDJaQONJmemqKy5cvYYmcmckaK8sr/NSXvk4YVEnTG3x04waO4zA5Ocmjx4946tJFclWY99LUsL21yeLp09TOnKHX7VAulej1uoU5MQhxHZ8wrLC51UL3+oX5z2hs10VaAsexiAc+MNsJ8DyXfpQQhAFCFhnjVaaxpESQDxjLIGP5CZyoQxjiuI4DWuP53lB9I44zOu0WjuXjSI1GFZu1dY5lSyxrN29hmmaAhW05CCERFP4vLaAfZyyvrfKtP/02/SRj89ZdNpubBJ7F88/8BdaXHtHtRZw9e5bGZL14ZrnGtW2E0Dx8eI8XXngJ13P5watvUq+HzM/P0G1t8fjefa4+dYWo22Pp8WO8IODh0jKdTpcbb77J1laL6sREkbQ4yglcp1gAGUWv32FmZpJLFxZJ+tv4QcCFy08zPbXI/KkL4Ej8qE/ge8xPT1KvhuB4nH20zd0NQaUSkmMGe/D2Bg4PV6x7vEvDVetR77XYu2QeJ5hGmecog//EIIbCY5fyvfNoLy1PvJLfd+1uk+MF8KivcCi4TprwdY+AOSRqsTCvH13SRewIpYPv1H4htv/5jL3fHzPsmz77zp2chmE7O8N3rMY1Og4n7uYAfKoFlxCCUqmEEIKnnnoKx/Po93p8+MEHtDeX0ck2Lz/3PK7tUK/XkanC83zQhm6vT1gOcRwL17VQg2KIGD1YQBXpeTAMNtWqIvOcsIr9S7IoXZGnORhDfaKGbTtcv/YMIJiZmWN+fpE79++QZRnvvvsuU40pmhvruL7HpYvnuXz5FI9WljFGEYYBKk9RKkdiiHo9trAISzXq9UnSNMG2JNoYpLABQ5blwO5LmmXZzguWZzlCFubBPEvRWmGUGgjhws+i95l0Dq4kB/8Jgy0FUtiFBqJyXMdGZSkWYHJDv9unGkoc3wZRpMVCS4QwaBTSsnA9hzwvAlGEB0LaRYXnPEebgt4oSrh56w6uE9JoTNKYaLC6uopSmuvXr9NqrnPhwsVi83na587925AbXNsmjnqUSyH1eoWwVGJlpcm5c+eYe2qaShCwMDvPzOQUzeYmq+trbDY3+PDmXbbaLZ5/8UWE7ZDfXyJVfUrlkCTN0VpjWRaOY9Futei3myzOTBLHGbX6BBrJ9tY27W6XpNtFxRGVwMcJAl549jST2xaZV6aVO8RaDHdyDcIZ9lVEHn0WZndlOl5zOXrJfJi2s5dpjAk5H3d45zpzAHX3xz7T55h+jwuJH/pS99O92/cIdzxwP6Mcc6ihncT6t5uNYxzdh9G6t4niWew/c5SWe5Q2+iSC44Dmsuc57Q9H3ztWBxXH/drkycInRh/Pzu8xdB6+0Hly+FQLrkwlrK6v8dSlyyiluHblWaKoQ9Rpc6O3yf3HLXqJxq14JHkOlkNYrtGJYjrdDkYn1N0GwvFQRqMFSNtB5BmawiQmgHIpACHoxQbfLQRlknSxTE6z2WLl8SPOLrxA6Lt4rsfWVguli+2mvV6PxYU5fNdis7mJVg16nRRLCuZnprl15wEYm3ary3ZrG6My0iiiHIb4nkca92m3BFka47g+lhQ0t7axXAeVQ5bmZFmO0ZIky1CqCJfP8pRqLYRcYVka37fJ8hyRG4wsEsbasohu03pg6pCimHWDDc7CgGMJ0GDrovAjSmMJC5Hn2EZxquEx2wgIPUGU9hHaRjguyhi8wEepFFSKkLKosmwUJd8iz1KkDbnWJEmOIScIfIQwqFzjeD7lSp3GRI1HD+7R7XTRE2XKJR9DGdv3SHOFXSmx1VwncMv0uxGtzSbK5Jy/fJ5SbYJ2lDIxVUMJTbvfY27+DNNzZd58933eeftDglDy8kvPMTW3yFYvIo4zHNuh3+8RZTk5kClDc3MbnUSk/Q7trTbd1jZxv40flog6bdaW17h3/w7nzy2QdSPqUmCyDmVrio7OcSxJChgjyJUugmVMkUMSPVgmid36Zzuv9JAZDKM59kQajn8vTsKsC+/tyBU7/E4evH5EyBXn5OCjRxD2Co5dfLHv2n1NjzBaIfYj7WXKu33vQ8EAemAdYU9o9mEwDFwY5unc294YMPvoGGdmPBT2+ZNHGPj4vvYfOFwCyz0LEMGeZ7L/GgND3/1uR4f7unfDhPYJwJ0jY4JODm1raHg8Hvck8KkWXEEpwLWKrBKe6xNFycC0FlAu+Vx/9hlu33nA/OwU5865ZMJCyiJCsFIu0WltEJQ85CAzhhYFEy/M6LuPx3VcpGXRTjSdXky5XEYYB2FyQNHv9rGlw/zcIuVShTQVbK1vIYRkceEMUhqMsVhfa2KU4Nz5sywvPeajDz/C9wrNRWVgC0G71wOjUXleBGuEFeI4ptPuoHQHYTlIWWgzRiugEFTdThdtBJ4f4ns+qVIonQ98TBaOsEkSSaL0jkAuNK9BWZPBHNZoLCF2VH/PtkFrjNLYtosliqTDnoQvvPQcv/hzP8XZ+Rp379zk1/7Nv6WTxkUmeM+hSKdrsG2LfhQhRRGqHzgu5ckqQbnGw5VN4iTFtgTGLTQSpWF9Y4NyqQJa4dgBDx/cxxMJZxZmsWzJ0uoay+tNpqaLzdmdTsTs9DxxmtNrbmCkINOabj+m1W4RTE/ieh5hpYptudTqE0xPV7Bti5mpaaZn52nff0yc5ti2z2anS5JpMq1BazrtLvONGmcXZhDG0O20WV5+SHmiQSUM6LQ7BH7A9Owsa8sPuHfvNpgaTjWHmk8uHYT0kdLBljZa54VWP+DWu6/0MH/hvuXrjjlr5+eRL/7RTMEMGhhlxpIdxidG+h/X9o6wGRUi+7TBke+79zKurSejXBzoZwwzPBFHHBGmH4ODHi6ET3jBfuV533ezB2dMIt6Ri8Xoxez/vlfQiwPnR87t66LQ+sc/O8m+hdNxY7hPYT/JJUfBp1pwOY6H5zg8ePSYSqVKtVIltSX1iQbT07PYQvHOq7cIbBvOnaExNYVlOwPzj8T3PHSusBF0ur0ii7cxO7PGUDBwaTuUyzV6rTYb2xFR3GFhNsBCo3RKkuY4bgDCph9lqKzYK2UQqFziBh5r6/e4e3eJ8+cvEYQhUlr4nkc3itnebDLVmGRu8RRbYQAYHNtBGUGr00cNFkVZphDGGkQ+pkhhF9pVqpDSwuih6WBgjDJFpg9LDpINSYEQu7vWjRAIS2AJAcYghSgS4ZqizpflCCzHLjYbxzGOAduyMGjKpYBrVy8yWQ8xKiL0JL4niROFcSS5zskzg20V4fOOJbEdlzQqxqvX22bBK+3kUzSmqLxsWQbLssmtjJWVR6T1GtNTIZVywL07t6kELsa2eeONt+j2+myslZidmqE+OcNbH9xC2AKv6lOtTVCvVcnTmE67x0S5jBCC+/fucv78JZ555hlu3nwP3/cISxXee/9Dbj5Yph9leKGHGZg78ySlUqmwMNOgub5M2ReE9QpBGGCMIeq00BSVtm/fvs39+7expeL8qTNM1CdZXnuEL0KcRolcWOTKIG2PfFAfTYxwrUIDYO8Ceg8c5yfaa0Y7HIaqzT6z3OifA13tb/u4fgbz8EfoszlOMBzlt/lxwxMJrXHnh77OwYJxj0z42GM47rpx5uHDVXdxxIB+XN/ljwI+1YLLIPCCENGPiNOM6bCEZ1tMTl3BdzRbq8tIDCrPiKKI07UJHMdDpRmB76IzGwOEYRXXCbCsIoP5ToV1BEYINta3qPg5w9pKSapA2FiWh8g1tYkpXC9kvblNKSgxPbVAUKoXBSGFpNfr4Xs17t1f5cGjFRozE9Qn67iugzSQxzE6S0EpPv8Tn6MxOYk2gm434lvf/g73HzxCWi5hyUZhkfUTkrioOJykCmMozIp5UaPLIJCy2FOVKwWiCD+XoogOdIwgzXKUNsiBwBIYJAbXKTYnW1YRwSilRZplZAZ6SYqSEhuNCSUfvvcWL15o4JUlJV9w4dw8r753mzjXBOUAo3MsxypMj0IQ9WMaEw3yJKPd6vLo0WOqE1MIIZiansaWiosXFnn6qcv85//0n2lvRfS7htpUneXHD5iqlVhZWaHcmOH2rYd0Ol3mF6q4tk9jYoGlzZil9XWm50pcPm8Tt9oErsWp+TPYts2jhw956vI1PN/DDXyQFmsbW2h5n/duPqDZScixEbnAcUN6rTauW1RmXn7co1HxaW1vMlUPqdeqdLsdHty/y8Kpc3z3O9/hg49usjg/hWsbTs/M0+1usbLcpLW0xvSFPouXnkdpgdE5UspiLTw00zJg9WIoVgRmJ7P4QTicl43WpjqKKe3a5cTI96HJT4hx0vOEbe/BH23j+FX+IcQe0dauZirG+JmObPUTCNXDfFaHIB+Lu0fjEjvs50R0Hn76gO11TFuHL3YOXv2jhf9hfVxKGRzPY35hkX5cZI5wnBIqV0T9CJVlzM9UUXlOq93GtmxUmpOlEWHo09lSKMuwudmm2yn2YWk9jLgrBlUbaG5HSBJOz1fwAxspBEmSYvkCKW1u3rrHN74uUVlGK+vSbt+mUq0T+CWqtTqeH/DU01f42te+Rpx26cYRfuDzwgvP0drusL3d4fz5c1y4cJ5ev8eDu/fxwjL3Hy2xubWNZTkYYRHHikxrcgUGCyFtXNfCmCJajcHGWiEtbNshjhO0MdiuixASaUlc18J1bPJOH6UKE6AjwaK4vuT7gEFpg2s7JHlOpjRGCDJlIEpw0OjMJo9jHt27yeTVc4SezU9+/nNEuHz/rRsU5So1KlfY0iLqxSSppl6fJPA84n5MbmC73WVhYYYkjuh0uzxeekil7DI3M0naX8a2NMYkXLp0Ht8unosfVrh0+TLvv/cujXoDrQWvvvkuN+6vMDk3SZylvPX2ezR8lxeuX+WVn3gFYTL+xf/j/8n83CKWLcnzHMtxCUoVbDekWp8iE30y4YJl0+l0SeKUerVMP4uQwqbb6TExP0E/6nH33h0qlSrbrRap0vR7bUqBj8o1fqlEp9MmiiNq9RKhEyLpQtbCsydIMdjIgTXa7MYd7AiLQmAVzOtkef4OPzcORx+wkR0wEx1h2zq6bdjPDHfbPoRBnoiBDYXs6O+9QQli5/zJGOKPUnAd3Z44QNIe3H2BEjsCQxyCf6Df46g9Cv+Ido88Oy6Y48lwP8n4f6ozZ2hdaBi9qL+T7VspSNOcXqdLHEU8e+0qOk+5e+8egR/geR6WlERRn1K5QpppNrc6dHspeqhpDaw3QohBfj9BlgLCGmR/MERRDAY8z0dpxXvvf8Dc/CKO6/Jbv/3bfPTR+yyvPKLTb2E7glIp4Oq1q3zpy18CBK7jMj87Q71S5vrVK3z2hRd5+tJlFubmAcHbb7/Lu++8D0gqtUaRrkrYRHFGu91HG0m5XMVxPNIkpdvpkStFniviOCVNsoENWpDn+U4Uj207uJ47MBsWk9hximOObREGHlIIsjQlThN6/Zg4SdFGYESxoRljKAUl/vr/9Ze4cvkCjjB4lsXZ02f5hZ//n7h29RpJqslyiOOULC2iECdqVTqdPuVyjfMXLtBpt0izCEtoSoFPrRaQZwmbzXUqZZ/nnr3IN/7cl7h25TIz01PMzMxgkHR6MXGmmZuf5+q162RK8Nb790m1RA0SHc/OzFAOA565epWF2XlKQcjlSxcol8rEccz07Cy1xiS5ESgktlOYDP0gpNPts9ncRArB8uNVLp4/x1e+9Aq+V2xgrlUqPHzwgHq1gu86xP0uy8urbG126HV65HFa+MU6m6yt3mPp4Ye8/+a3iVqrWCZB6hx0vsuw9tVsEsNMFMPjgj0Rd7tgDvkcde64EvNQbAABAABJREFUwIXjrj+u7f044/CPO78f9wi6dsbp/w/jYf94asaP76cLPtWCy5LFHiHbsdFGowbaUhTFSFH4sLI0ZqJRJww8mhur6Dwl7vdJkpQsyymVq3h+ODA1DNeKu8UWDQyyRUDgB0xO1qjVQixL0+/1SNOYICyYfZpmzMzM0O+3+eEPX+X2nQ/otDZotdbZ2l4lSTv4vsfZM2ewpUXc77Gy9Ihzp09RK5WwpeTRw0c8uP+QreY23X5Mt58SRRm9fkK7FxFFKZ4foAxsbG7T7fYBSakUYkmLIoOBpNePB/vOwHFcOp0eaZrjus6OV3W4Qq1UKgR+EdSSpClJkpBmiiiKyfK8WC3JYTSSoFLy8B1FZ6uJpRW+7ZAnORPVSc6eucxf/sv/F+JEkCsbYxyMFsRRxtZWm3a7y/2Hj/j2975LkiVkaYLnOUw3JrCFIU9jHty/R6ezTRi4lMOgyHrheaw3t3jtjbf54OZd7j9aZ3pmkVNnLtCJcnIEthuysbENSF75/Od59vp1XnjuedDQXN9gerKO0YqHDx+ytd3GC0rUJqZ54613WV5do9PvEcURGxvrJEmM0TkzkxVq5RJxr8PMzARZXmwUn2w0qFYqQJHz8dy5U0hhuPL00/ieR7u9jdYp/c4mnpWiog0e3HwLmXcp+xLXElii2NslpdhJxyWk3LOoGPpupFV8hNz97CyJ932ENEeePy4iYdSvMaRjGDIOGmN2P2OZ3z5aDvZv9n7fI4TG4ZqDuCO+wSH8WbHhJ9YUPoZmcbTl8cl8h0eF5X9a4VNtKnQtSRr1yJRGCEOr1WKyNkGWZSilsC2J57tMO5PUZhpsbW6AUwW7RGWigSVtMjzuvn+fze02RTDGMKuEKbiDKYI0lC40vFJokyU9HMuglaLX0wSeQ3OzycbGBo16la986YvcvnMbozMsaUjTPipPECInifukabGXyZEWjhS8+cNX+bmf+wVC3+PDDz9gu9XGSInrBqRKkvQStLHwvBKOC9oIkjRDCIEbOHSNwXFcPN8a1ATTkOUkSV5k2khzXNcl6yfkeY42csCMigCOdqdThPIZg22J3chKChmnAZvBxmVj0DrHteHu7Rs8f3GeNFIEpSpRnOGVS4RlH+yQTr+LlUWU/cKs241yekmTJE2LFE9C0+/FPPfMDNeuXuOdtw2Z6pEmEVkck0R9et0Om3GfqB+zsryGFg4/eO1terHD1PwpeqnmwdIqmYJUZTiuYWqiyjNXnqK1vEyr3cP2PPr9iEePHnH5qStEccz6dotzFy6R5rcR0mLx1CIPllZ5tLRE4LroWKLThFIwwcbaMg/utJifrWO05tlnn0XonPv37xGWqjQmJrh44TyO7RL6Lguz59naXMa1BYuLc0gnJMt63L/9DrXp05y6XMOWJfJcDxNIHuDDw9Dh481yh8PxPOoQhIOWrWNgvxlo7808Ca88HndUPO3LkP8jllwnM8V+8rb2IhZm2qG/8/g2j7rp3edweC7JH7cna9j/jzaQ41MtuNqtLXSe4JdKOJZDkhXVfy3LotVpI/MeeRYTBC7t7U2M9BDbayycu4rnB0hslHbpRglxVlxnBtkgioeuAYk2hbbhex6BlyK0wvKLoINaOeDMqVlu3rjDUxcuMTs1Rb1W4+rTl9ncalIKfXzPRyuDLUAajZQWzbW1Ys9Zvw/a8Or3v8czzz1XZIs3EMcZSkt6/RQ9oMF2HKSQpGlGlmcYrcnTDCiCKZA2tu1gVE5gOyRZB60M2uS4XoAUOUmcFW1nhcDVFOa8YXirQmJZhcBWw5BpA8ZopDA40iKJFCpPmZ2awHMsPM/BsmyUsEhzg7Fcrr/wWV7/wX8DBNK2sGxDgECZIlrPtS0sqTm9MIdE8c5bP2RhYZZS2aVc8nn1e98niWK63R4XL1zg8aMlwnKdc5fP8N23/gMzC4ts9xK2P7rF0lqryPJv25w5VefKhbO0N5sIKdlqt/HCgI31JlevXqW5ucFmO+bB8ipTs3Pce/AQjWFqegolYGn5EfMzs6h6Rp4mfOULr/Deu2+z0moxUQtBUJgJKyXOnjmHMgLP9bl29RlAkvS6PH35At/73mM63ZhKo04S92lUPPpJgqV6OEKR5BmW5RWm6MGm2p0FEwyOfRKDyH4mIcZ8P5qRDC0Qu7/HqDhi5LjhgNlOiF3hchzf2gluFMfj7sUfSQv1MXnjuCwW445/vLaPaWeEbjFyzUl6PbZdDEKKnfE8OLaHd3ScOBvNCHLcGI3i/CjG9FMtuNKoh3ZtykEDjc1W2kZlKdJosjyjUSmx2tqkUg1AG+7c+pDFiy5Tpy5SDyu0t7p0kpgbt+7R60aAATUyg8TAJmzk4NkatIpx7YKpSGNTKXlUKmVmnp1lbmYe13KZn1nk7XdeZ3pyml67hwmKh+VYNttb20xPTzE7M0PUD3j3zbdYnJvn7bffwg18nnnmGfxKgxt3HvHm+7fY3OrhByGO4xean1IkWUKc9FG5ohSEFCtednIqZllOUCpj2w5ag9FFUEOea5IkJc/AsiSB76NMUcCyaLtIGCwHkZVCCixpg1KD/I0Gy9aUfYdzZ09z7twpdHcdy3ERNriBh3IdskRx/vJlXnvtO/ilAMvOizRRnoMbVoiihDRJqJQ8Tp86xez0FPfu3MbkGcI4zM3OUilVuHP7PoFf4umnrrGweA4/rGGkx8z8f8PxA9776Datzia5kERRzNxUhc+9+CynZ8ugchqTU2SpotVqsbyywnPXr3Dz1m0erGzywa07aPkhykCeG773/e/RmJrk6uXz5FnG6XPnUFmObUG/26M+MYFlWzi2gxQGpTSTk1NIy6UbxaytrWFb4JQ9bt58H893KXllHN+n1WrTaa2jU3Blhoo7BEG5yBm5Y5xmn5byCbjwGBi/eh/PmsSOn+0YCTIiaPY2t0v7nqCDE2kQx937QbPX3pRPJ4ePm9niqOPjcY+/ZnQIi4jSw+9lL93H9C33jdGBxcfR6vVJ7vKkY7F/vD+J1fJT7eOyLUHU7xBFfYxWuHaRjqnf76GNJoojHNdGiCLBa5ZFWJahXA4HmohFnObcuHmTTGfkSherk/029h1QWBb4vkW55ON7NnmW0u/1WJibZ2pymjTOsKTNubMXCf0ylnBRuaHfjUjijM31TbY3tyiXSkxNTHDx4gWMVvSjiJnZWbq9Ho+WlthoNrEtB60lnW6EkBbGGJRSZHlGrjW2Y+G6NgZNEsfEUUSe5wVOliGFXeQwtGwsaSGl2An1l1KilEJlxSZmYVkgBUZIlBFoIRDSwrItpJQ4tk21EjIz0+D6M+f5uT//dXKV4LiSOO2jdIYmJ9MplmcxMz9HpVbFcmRRfNK1sAaJecMwIIpSWq2ITqdDozFBp52wurqKVoo0zbhz5x6+F2BJh3ffe58Ll54mCCt85/uvkWSalbUNmtsdHq2s008KrTOOInzLIFTC2dMLVKs1PC8kzxXdbpetrS263S5LS8tMTk2hjGZqappcaeIkZmnpEWHJpdtap+Q7CJ3Ta7cwOuX69ad58cXn2G63ePb6c1y9co12u4PnBUhp8fDRfcoln+mZCR4+vs92u0UUp8zNLSIQBJ7N2cU5Jio+Ko1Ik/5AQAxW5Pun2gCG/own+cD4YI69eBzyOeg7Oo6W8W0fdu5ouo+/BnaCV9jPkJ98rA6jc2/b+z9Hjd/BTyGKjvk37HdIw5572d/37vHjxnfveWB0zu17VoeP9fg7GN7ZTh9jMEYXEzvzXIg9xz8OfKo1Lm0MvuvguQ6e5zBRr5LEPTCGNMkpex5xnLFlOriuQ31iim6nw907d7h0ZQbHD0hbCfcerJCmmkF2wt1FpgYGvh2FJEmhHHioPMO1i421cZyT9CIERXqniWq9aEVYyMGm2263Q2YEtrTBtnADj/W1FSxLc/3adbwg4OVXfpLJuXneu3WHVrdLp9/F9RzK5TIbmy20UeSpJs1S0qTIPej4PrkyBGEZx3LZbvdB2hgB/SgpwtgNIAVaZAOaNGmuEEpDnBZZM3QRHi3McP0vMcagjcFxbWyh8VybUmBTDl0sodjYWme23EClKb4DJc9GC4VWOdXKFLOzC9QbMyzdXkL6ipLvIoA4iomjwsyZZRGB7/PeO2/T723juQHrq2usraxgS5sv/OTnSdOMdqdHL055/a13+Pb3f0Bzu4USAhefJKeIoNQCnfVpbTWRKUx88QskqeDc2Us8fHCHq1ev8fwLz/B4dYNMFcUrv/GNb9BsbrG+vk4cKzzXIu12qZRKbG1uMDExwdbWBpcun0NoxaOH9/A9h63WJraUPHjwkPnNbbrdLutrK0xNlKnPzjEzPY1BkOSajY0NHNtGuD6XLl8mUhmd1hqN2lyxGRkbNchkMlqUsZh5J7QXFcgjX8W+YwM2sd+1sXNgr4azn+Hs72KsEfLQkP0xFxwGe2g6DEbp3CeYT9jNXuyjNLtxfiHBMLvJ8e0X10jGj/S4Fg5vdT+d5pDjB9sTjDyesR2MacPsH9+DOGJo2ja7c/awtgsazM51J69nPR4+1YKrVKtSLYWsrKxSq05QrlSJ+jF5GjNRn8QSCjeo0Ot12O7EZFowE05hCVDGYPkevTRlY6tV5OwbffkMYCTDiKbMaJbXO4T+BBVXY0lFBkw2JpmZnKRer2I5gjhLqFbq9FNFlOaErou2PIIwIE4iMgRzi6e4e/cujlUUUZybnCQ30I0T1ja3aPd6WI5DL0mwHU2t5tPv9xBWsZcoy4uEtMJIfD9ECEmSarSwsRyJyaMiwlIOwveNJM0LgYVlgaVRgEXhtzM6wpYGIyVxplEDtUyrnHp1EmlSsjQGMkJf0o9bvP7Ga6jOaZ45v0jguxgM3XYLpzFLnhkq5ToLi6d5fPc9oixDyhzL8nAsl1TCdqtNo+axubmBSiPC0OKpS5dYXJhnfW2Nl5//LHGScPvOXZ6+9gx//K1v8dqb7+MFFbJ8FSUFSb9PPzKo1FD1HByZ02l1SboJt+884Nz5i2Qqo9PpYrsuKxsbPFpZRSFIs2K7QLlUQQLPX7uAa9ucO3uOBw8fcPv2bYwwTEzUqFfLdNpbOJaL0TnbnS3W1taYnp5lu9tifW0V2zKEvsvS4xU8N8DxPLw8p9dp0+32aDabnH8a0ryPW8nBxFiyhNFOkYGFfGR1PiZf4DEg2CO5juGrgyWa2P29py2zK4x2V8sfc31sjjdn7eKaY3EP0jFCu9h7fk8ZkX2o48LB97a9l2mLA2N1vE9nQNKevzAwc430dfCWzYgpbL/J9XiGv/c+xEiMxuC72DdXhi0P+d+ov23U73ooFPPp4NplZI6NzgNT4B+VleM4+FSbCkHQ6/exbJtOr7sTEu84LuVyFdv2mJ6ep1Spk+YaYVmEpZDG5DSuHxQKlWWxvLw6yP22JxB49yOKFcvySofV1TYat2DCdpFU13M9PM/FdWw2tzbYbrdI0pRur4vv+0hpEYQhi4uneLy0gutVuHLlWcKgykR9GoxFpxvxxpvv8P4HH/F4aZlmc4sojonjiDzPaLd7ZGmGZdm4ro8lHcDCaEES52xvt9ne7pCkOVleVHbudmNyVazjkyQjTQuzoGPbKK0RAlzXxragFHo0Jqt4bhE/KESRQT6KIizbolQKcewiCCPNctY3mvSion3Nboy2lDYImyCocOnyNfxSFaUESapJ4ozt7Raddg+tIUlSoigmDEMc16Hd7fB//N7v0ep0+NKXv0KWKprNLer1Bm+88RarG02WVlZACCzbJUmL6tNZpsnzFMsSTDTqtNsRzWaTTqeDbdtFcVEM3/7ud9nY2qTWmMD1PD786EM++PBD4jjhheefw3NsZqYmyJOIfi/h1q17NJvrbG41sSxJr9uludHEGJidm6MfxXzw4U02t9r87M/+PHPzC9y6fY9+krGyuoHAIgjKLC6ewvND2q1tXFtidIZE7YzzznTbM+9+jG/NE3bxsYXWnzGMo/NHQ/vHZ7BizGf/8eNbeIL+jrnfI/1sO7bHvb2Ou4eDH3H0ebH3+5Pf2V54IsH1K7/yK7z88stUKhVmZmb4i3/xL/LRRx/twYnjmG9+85tMTk5SLpf5xV/8RVZXV/fgPHjwgJ//+Z8nDENmZmb4O3/n75Dn+RMTb9kOSkOn06XT7RLHMZ4fgLSIkgxpubheifrEJI2pKYIwxAtKRUbyOCLLFRvNTbIsR4q96uvuCkVitEQbyJXh3oMtlpY32dzqYdsB/X5MrhS1ag1pCTzXQUpN4DuDEiAZSdTH5IpapUzUjckSheeE2JZHtxOx0WwRhGVUrpHColKuIqXEtm2EEEirsDcnaU6a5sRRVuzt6iaDvVE9ut0+nXZEu9VFCInjeigNWWYQwkINgk60Lh67LQdtCwgDh0oloFYtMzFRGaR9Mti2Tb/XJ4szjJHESZFnUGlBqxNTqTVwvBDpeDxaXsMPy3hhSJIrOr2U6899hunZU0jbR6kierHTjYiiBMcRVCp+scoTYDsOH964wdp6k1KpQq+fMDO3yNNXrvP6G2+SZBnGGPzAp1wuo5QijoebwC3CkktQcjl79jRf/epPUiqFtNstVJ5Tn6jj+T7vvPchjek5Tp05Rz9JWVldptdt8Y2vf4Wf+NxnUXmKhWayXuH0QoNXPvcsG2sr3L9/F8uSpConSVMsywZjMT09T6fdZ2Z6lgePlrh1+z5BqYKwbFbXm9y4fQelDL4fEvUSpFb021vc/OB9lh89KpZJg7IUO8EZgoH/5ihmubsK3+tLOQzX7MPb9VGMg3F+j48LT9LOuACCw/w2h117aHuHtHEy+vbSdZL72dHyxtD2ZGNy8HmM7euIcRrX/6E077/+EPKO8g3uIX5Mn590TsETmgr/5E/+hG9+85u8/PLL5HnO3//7f5+f/umf5v3336dUKgHwt/7W3+K3f/u3+ff//t9Tq9X45V/+Zf7SX/pLfPvb3wZAKcXP//zPMzc3x3e+8x2Wl5f5y3/5L+M4Dv/0n/7TJyI+yxS2kNRqNdIsJ9eaztY2oe+hjSw2FuuMaq1OP+liZcUGZW00cRqTK5vvv/ZDcr23yEMBe9cR2lCY0GxBs9nHt1x0lhB6FqVKBdcrctphFOXQxwiJ53ukSYRWWVHQMs1ZWFjEcX2yLCcMS7iezfsfvod0Hba3txGDTdWlUolEGUrY9OMU19VI28HYkna7T5oqVNZHa3YEnONIOv2cTBvCko/tWMRxjuMo8iwnVwbfs7Bsm37aRSsDKCYaNTzXQlpQrZbo9WOyblGEUxhDkmQgir1sSZIRBg5pFvPuBx9x+dQCSktu3rnHxKkrWEISpwplXIJSjTNnL7H+8DYSQ5ZECAS+75DEWZFo2Pd46aUXOXv2DP/m3/y/qDVqbGxt4QclyuUqV5+5zm/85m8CAtfx0HkR7SalTegHZGm32MxraWzbplIp8eJzT/Obv/EfcdyASrnGwsI88wsLZAYyA51eTBQVe9pOLZ7iJ3/yFVqtLba3Ngl9l/npKe7evkMp8DBGEAYV8jyjWq3S3m7z8MES3W6P+sQkjx+tMjczx51b99jaauL5DlGS8NHNR3heMXckgk67TdTt0EnazM5cRGUZFgYlB/XfRmqjFcZCU5TWORT2h24fZ2YbxWewqj7kgkOCRD4ODJnUYVWH9+IO6BrDaA+vS3Yy+sR+P95IW8e1vUPbmPPHCUxxxDX7+z6UdsGJxvAo2vbf30me535z55P2eVjttJ3vn0B4PZHg+t3f/d09v//1v/7XzMzM8Prrr/PlL3+ZVqvFv/pX/4pf//Vf52tf+xoAv/Zrv8bVq1f53ve+x+c//3n+63/9r7z//vv8/u//PrOzs7zwwgv8k3/yT/i7f/fv8g//4T/Edd0T09PtRVTLAbOzc/R6EUYX4eCV6gxJv48twZE+lpMxMdng1u27VPOcXr+PDGJEWOHGjdtowW5SeIZ/d1e9Q+FlEAjLQtou/STHdTS2MDQ3NvE8j3t375LEMWEpII4SlDK4jkcl9LGAuNvDsQTdVhPIqNUqOK7FhQvnufXgHjfv3EIZTZ7n9HsJwvWI4rgQHIBtObiBjxAOcZxiWRKVFUUu81zhOFCrCZI0Jc9zpBQIWRSY1IMsGsYYbKuo7GxZAtezqVZLpEkfpRN8v0RYcul0Y4zRBKEPpgj/LoXlwjSoJWFQ4t6DlaL0hxHMnzoLtkenHxMrh1Rb5FHOyz/xZV779h+iTIKw7AEzl+DlRFHE2fPneea5Z3n8+CHN1ja+49LcauH4ATMLp4j6PeIkIUlSSuUKnrHAclEUQluKHr5vYTvwzPWr1Caq9Ps9DJqJeo12e4vzF87Q6XaYmZtjo9liffMhQmiqlZAw9Hn//XeZadSZaEzQmJjgzdffBFxsKZieqlGphKytrzE/P8+lp57isy+9zP179/lv3/oORZimZnVtk82tTYTMeerpp1g4NYkxRRHK1tY2aWKwLYnK+qg0J7AG/tNhNn8xstdm4BB4ktf6iQSL2J+wdt/pMWc+6Qr5ZNcfLkBOynAP83HB4YL6+LZPnpPvQJtj6DpZn7t979f4Ttr3k57fEaJ7/FGw33R41LUHBPFha6NPuI/rE/m4Wq0WAI1GA4DXX3+dLMv4+te/voNz5coVzpw5w3e/+10Avvvd7/Lss88yOzu7g/MzP/MztNtt3nvvvbH9JElCu93e8wFod3q4ns/K6hpxkuzkFcyzHIQYpD1SJEmMtCTdfrH3yZI2UlqsrTV5tLTMoCjwvgdqAE2x00YPDS4kqSY3FlFsqNQaBOUy5UqVVqvDRGOCyekGUhbpeZTK0EZhOzZCQLu9DaRsba5gyEjSLknW5813fsgf/ckf0myuo7VCCqjVq6ANjmNjWRZCQpLE9Hq9oshjYdsECo3Lshwc26FSKVOv13AcGymLzcSWXQgqxypqeEVRD8sC25aUwhCjc3KVkucpQphBKq0ilVFRLqZClhVh9kJKsjwnGWx83thskynBU1efpVydKMyCRmA5AUY4nDt3kSCsILCxbHewr0Rj2ZJS2SfLEv7kW3/Cd7733SI8X8MXv/hFhBC4joNSBtuxmZ2doVwKcB0bz3Nx7KLciiXAtqBSDvgLP/ezPHhwn9/4zf8vti25euVptFJ0ux0eLy+TZorV9a0i4jI3lEolOu0W77/3LrkyTM/Oo5GcPrvIhYvzdLt98ixHSosozrh48RIAtVqdr37lp1C54fTiKZ69/gyXLp7lxRevc/r0KS5cPM+169f43Oc+V5g2KyVc18WgmZub58yZ88zPLxbVqotKksBQO2GQtcQc/xH7/h6He6wJci8MQ+o/qdAan2dxHHyyfoZ9/ejhk9P1qer7E3R5EqG1i/vx+/nYUYVaa/7m3/ybfOELX+D69esArKys4Lou9Xp9D+7s7CwrKys7OKNCa3h+eG4c/Mqv/Ar/6B/9owPHF0+dRRtDlmukZVBpghqEcReaqCmEmKUwRjE9PYUfhJRKRW2m9z/4gDt3H6IG2tbBSV8wlKEGlmOKsHhl8GwJ0sbzbJQ22LaD41ZJ4j5CQBAErK9vIKUkSQoBsr6+ikCBSFlZWcaxJf24T6e3jbQFpXJIP9NIW6IGxSQxEAYB2iSkmcGSFnFcpHvyXI+UHKU0lmWjB0JaG8jzbOAns3AcG6UUUli4rku32yvKn6iilInAYJQiVxq0AqOxpCDLNJJis3Lc76PyGM+ugik0TccJCMtVhOWS5YYsyUmFRiPJlEIiidMMIe3C1JjnZFlKqVRCq5RqtcTy8hKdjke1VsVxHJ599hkajQk2m03a7S5g+Jmv/zm+//prbK+s4XglPMfCkpK41yf0PCyhcW2J4zo8fPiIGx/c4xf/l28QR32yNGN1dZW7d+9x78ESubJw3JB6vUTUj5AqJ6hVeO31Nzh79jwPltbYbEesNYuSJsP5EvT6NJsbOI7Dq6/+gHOnzzE7M8VEvUG1UiKOaziezZmzi6xvrOFYFnme4Lo21fkZbCkISiG2X8KyPWzXJxloa0jr4B6uE6xyh3jwBExgRyg+GQwZ0pNkqh+He7QQfFL8w+n6WObEHzFtPxrcH60gPs4vt9vlfn//QbxxmUYONsoB3CH+J1kQfWyN65vf/Cbvvvsu/+7f/buP3flJ4e/9vb9Hq9Xa+Tx8+BCAICxjSYdadYJKpVpUNy6HOI5dFIuU0Ou36HRabG9vEUXFviE0ZHnO8tIq/Sgv0vQVxmiE2D8kBXMxFBWScwO5kjheCWE72J7L1NQM0irSLfl+yNrGVhH957iYQVFG33cBw2SjytLSfdY3Vrh99yZ+6DE9M41tDSoRC4PrFeZSZRSlUkilWqFcLlEuB/i+jVIJUdQnyzJsx8YYQ5plaKURQpDlKVprtM5xHAulcqBIvOrYFq5jYUmBENYgOGJgHDLFxmTP9cAUkfNJ0kepFGMgTTS9dockSej1+qRZTq3eYGJiim4/otONidMcg4UGFIZcGfq9PsZo0jQebI6OCUMH33eIkx4XL17gK1/8EhPVKs8/+yzCaJYePaTku/iOQOcx5dCjErhIo+h1tkmiLtJofEdy7vQ8jXqF3/7P/4kszXjpxWfY2txie3urMM/lOa7nAzab2zF5Lrh25Sq+5zFRrdFqdXj19Q9454NbbPUy1rcj3LCOdEu0Own9fsr83Cxra+uYQfXj3/2d3+b5Z6/xzLWnKIc+lTAg6rZRaYzKYjbWV3Adi3NnT9GYrDExWafemKI+PU8nVsQZaEShge68v0M/zI9DaxiF430qxd+TMZcncvb/mODH1f5QC/6z6m9MT0+G/aOgS4w8O3my4Jg/E7pG4GNpXL/8y7/Mb/3Wb/Gtb32LU6dO7Ryfm5sjTVO2t7f3aF2rq6vMzc3t4PzgBz/Y094w6nCIsx88z8PzvAPHoyhhZrKGFKIo8BjHeK6F1hlGZ2idkiV9tIhRKkcYcC0HtKbeaNBqd9B6ZNPC0OWw35HLUCODzBi22l1cyyFXNaRl05iaxggLIQRhycf1AsrlMq32RzSmpqlUq/SiPpVqmbXVbXq9LisrSzQ3N7n6zDOcOXOG+0sr3H24RLVUIVWSKO4SJxmVqoOwLHyvSKJrTBFc0un06UcdjJYIbISwyFW+Y3lyLIc4LcprGCBN8iKAQQgC38N1LHSuUbkusmeYQnCpXO9EullWIbwC3yYIBFIIfN/GtS1sYciynG63hxEzGCNxbJfccrGMje8FqLRP6PkYo9Eqx5IgBQihsSzD1nYTVfFI4pjlx0t84ZWfJE1S5i5M886b75IlfWZnZ6iUfLRKiHodltc22eolpLkDypDGEbYU2Jbgo49u8o2vfplrT1/g9Ve/zbWnn+GZF14kTxNwbX7n979HFIHjaMqlMr7nMjU9TaVW49HyJm++c4tWV3H7xjLPXT/DUxfPonJNlGRsbm0wOVnHcWw63R5h4KHyhEo5YGN1hTyPcSQ40tCoVVlfW2Vl+TEXL1wgy1Icx2Jta4uz008xWT+FKdVIM2ug07PjWyi45K7Ddf/7PrpwFSMC78n5whEXjPg4jtJkhmbE0RX4k2hIY3FH+h0N7Ni/yh/nIxq9ZjSYYYg36uM6rj7UcdrEUX6infOj+8iO8ytxcDwHGDyJ8Nrfzzjf07FCZNSvdUIf17CvA+3/9+DjMsbwy7/8y/zGb/wGf/iHf8j58+f3nP/MZz6D4zj8wR/8wc6xjz76iAcPHvDKK68A8Morr/DOO++wtra2g/N7v/d7VKtVrl279mTUC4HrBsiBz2p1dY04SsjTlDBwybME2zZ02lu0trfQSpMkCVE/wijNo8dLgwrBo00OtI/h79EvErQQ5Bo0Fp4fMjU9x+LiaYKgjOuHdHsRShm2ttu4vo8fhGR5jh94tHtt/KDEM888z+TELJZ0WFttMju7wOzsIp4fFlrQQHaksSbLilpaCEO32yZJ+pQrAeWKj+sW6ZO00WA0jmXjWDYYQZ4XwshogxSyCMwoEhfi2jZGa1zHotft4TreTlooyxqkeHIsjAHLtghCl4mJEpWKR71WwXUk9VoFy7IJ/JBqpUq1UmOiMTnQMiFOYixL0O22ieMIKcBxJKWSQ6Xso1SG0Yo8TXnzh2/wJ3/0x8zOzNLcWGd1ZZm5uWlUFpP0O/zw9e/ju5LAs/jpr/8Uz167gmfbJHGC73psrK2yvbVFnmbYtsvpU2f5xtd/hvn5eTZWVomTmFqtxukziwSBDybj3r17bDe3WHq8wtzcPOVqjW6c8db7d1jaaPPOB/d478M75NomSRV5bpDCQgiYmKiRZBFra6t02tsYnWFLqFfKNKo10ihCpSnddpv19TVmZ2e4eOkijh9Sn13ESJ92N9nJcoLYTevD4O/O74NTfuQjdo79KEEceB8Owzuc8Y8eO+xzVMfjcMf93v/3MPzR1ERH/d3f/+DXIcfHj8lh9ByGf3Tbe/nRUXCUgH0ijWkgqI57ZoeN/wjCoXR+Ui38iTSub37zm/z6r/86v/mbv0mlUtnxSdVqNYIgoFar8df+2l/jb//tv02j0aBarfI3/sbf4JVXXuHzn/88AD/90z/NtWvX+KVf+iX+2T/7Z6ysrPAP/sE/4Jvf/OZYrepI4i27yJSeJpTLAVmW8ujRQy6eO4XWOVHUpeRJjNGUyhW63QyjwXZc1tc36PczpCWLzU17FgDFZBmbyMSIogx9nBEnGXPz80w0GthSECd9vCCg02phWzZ+ELK5tUUQeFTdMvfu3+fMwiJzs6f52p+b4fy9O/zb//3f8uVEIaSDUkXmdyNcHNvBsYvaWsPAiCQpNgNnWYo2OZ7v0JiYZnlpg2azhZAu0rbQ2hT+KtgJ4hgGMbiuQ5om6FxTqtZxHUGn3SNXGdK2BoLT4DoOAo3KU3p9TaVSIktiwsAlyxRCFL6vbq9bRPdZFlCEzIPAkgLbFihL4vsOIu0jpSQIA6SEuJ8RlFxcz6Xf7yKNYHtrm61mk4/UB6A0pxfmiXyJQGHhUPI9SmHApUsXuP+gicU6nmMxPztF4Fnc+eguQrhMTc+Spz2WHi+xtd3iuRefZ2VllZeef4FO54csPV5mq9kkyzKSpM+7731ArjR+4BElhuqEz8pGm27nAy5fmKMUCCYnfJIkIY5jeoOgpLn5wjfrOh6Bb2E7FtKWLC8tIYQgTRO6nQ7dbo9ypUamDFGiUNLGcQKSgZQaptraXdmeXIM68Sr6ScAc5DlmjPbwRKt4DjLpE3V8zHVj2zGD43sNJ4OmD24b2D0+qnENGjokou9E9zvyeSKtaQ+u2Tm6p+Gjrj+Gtp3ze5jb3n6GKDtN7VgAxmutxz3P/RruYSbYk8ITCa5/+S//JQBf/epX9xz/tV/7Nf7qX/2rAPzzf/7PkVLyi7/4iyRJws/8zM/wL/7Fv9jBtSyL3/qt3+Kv//W/ziuvvEKpVOKv/JW/wj/+x//4yYm3IY4TXMchz3Oq5RI3b7zP6blJAtdGAnmWUy5VCcploqRFbgRIh1JYx7bdovaU3m3T7KTbKXIUsidtyUDtQpBkOdudlG6U89qbr+NIw0S9jlEQhAEIcGyJLcC1bFrb22xuNpms1+n1I9bXNimFDV546RX+5E9fRXo+2thkeYYWGcKSeL6D1hrHlnTbPQIvxLG9nXRFwhJIV4INlmsRpxlJN8WSFp5X3FuapliyuIVS4BMGHq1Wm3I5oFoNUErR7cbESUKpUibqR2AMKlOUwxDHLpLzBoFVmB/jmFLoY9sGjGJ1fY2trSapMlSdaWKlEbaFLTS2sCiVqtiWRZQm+J4EyybXCul4aCFQylCpVsk1NNtdMgWPHj4icKHkGkze5/zp0yytbVAqlbl/7z73ljfpxX0sV+K4cO3pyzx37Qr/24P/N3/6re+RxjHf+NorNDc3KVfKaCSvvfYa9YkGX/n8M3z7221qZZfH7YxHy6s4bocoiinZgkrosdXq4tQLk/KdBytM1h3qE2fJlCbq9zBGIoTNRGMagV0k2A0dsqzPqVMLLC09xg9C4iTDsM3ERBfXq+K7JbJUIyxnkDcDLMSB/VrjUuEcHxx/tOllj5lsD+7Blguev495ipEehpEkomhLjPQ/lknv/BzmZDyq973ndpaPu52P2LB2/wgMciCsxMDUPfrqjtK4e58Sdoph7qWsYLJm7HXsP2Z2qQWKPXli2N5oGyNuiZE7HxUZxX78/XTudHFg/PZTM1aRPfBjZGx2LhyMwR5b9MipMbC/q7H5B0dveeSAMQYxynifEJ5IcJ3ELun7Pr/6q7/Kr/7qrx6Kc/bsWX7nd37nSboeC2ka04s7XDh/kSRqk6QReRrhukW9JznYxmlJG8cNOHdxhmq9SIDabvXpdntAEZCgdZGfr3gRJWbMZMYUllVjNHGiWWv2WW12efuN71ENXM6cPsPjR8v81E99jclGDWnbiJ36WSlb21vMLy6Q5TmW5VCuT/DiS5/j9bc+4N13btOYbWCkIM1TQOA4DnmuCAKnCOEXRQCI0oY0zYjTHKu9TaYyvJKHsA3SKZLxGiPIshRbShxHYts5QVAkI7YkCKkRElRaRCUaJP0optPpEQYlapUycdxH+A6WZaFURpZGBG6JIAhwbYi7WzxaekCmnkdjs9bcwtRqpFqR6xyFw81bt4s9Zq6LJidOUtI0w3Nt4kThSENFOqR5xo3b9/AQOCLnyoXTVEs+tVqJ7VaP6clJLj59nf/9P/4Wy6vb9Pox0jZYlqG1vUFrc5Mv/uQX+d3/44+J4m+jVI+vvPIZJqem8CpV0BoVd/jcC9co+4ZUC5IsI80Ua6ubOFJw5eIZLl+9zN0Hj9naivCDkLt375CnCeub2/gLDWr1BjrVTNQmsd2Qa9ef5+VXXmFp6S5vvfEDVtZWKVfKCGGR54IHd5dZmD9HtxMRVAt/rO3YmMzsvLwFzyjmm9hh0gfZwifRqvZcOmalvWc1PKb3ggEfLL+yo5OM9b0dQsthdB04OzxSHJPsbBwY3+5Qpg0Z/B4l5WDQi0DvEap7wewIr5PCiDxnVOwV381evEMUqMOG7gDOuGcwPH+Y8BoT9zMs2DT0a+/pzYj9Rw4lyozktRwP+8fyOPyj4VOdZLfb6/Lw7kNmZ2bwPRvbkszMTGNZg0AFS6AyxcrGKmJ7m+deegXHdciV4u7Du6ysrKG02eMgNzuZjg8mgRwe1xQRi0srTb79vTeZKCna7S7dfkq71eO//uGf8tTlS3zmhWepTEyQpREKzWc++zJhqYTnuXjTJaqNBgoFUtJuJyi5SVjxizhGLYijlDRPMKbIT9hqd0mVxnEdVK7RStPt9ov9a6YQdJbjE5moqJ012LeVK02jUaNcDgGoT9TY3u5gjCEIArQ2BAJ6vQ69OCbPNJVSFYmFUYZeN8b3ApIkwZUenU6bWsVDqYw7d2/z4UcfcvnqcwSlKlu5AqfYd2bZLqVyDWMoaoMNyq0kSUqe5kUYu5SsrGwU0YetjKlqBZO2+V9/4eukcY9yuYy0XcJag/tLGyBE4aeMIuRgT1i5HJCkEdPTFer1Co+XVnnttdd4+tIZJmenCQKfb3zja/zav/rf0DqlUq1z6fQFhBXw+hvvUCrF6CxnYWEBx3b4qa9+hf/yX/6QMAhpTEzh+y71qsf7H35ArVLh1NwCM5NThEEJL/AJQp/TFy/h+TZp1OXBg0ecP38B3yvxX373D/A8l8ePHjIxLakutMGdRggPOTRpDViPGbLofQvf4dz8UcHxbR3QwXaOjbKfUQE3vI0fdfTYHhLMUPsYL0z2C1xx4OwnCwg4ijZh9uq0+/sfN6JP0PxeITFGod3VuMYJ/lE69587TH+TT0Tn/mCYk+B/Esn1qRZcElB5ihBFVeEoipiZmSHPM9Koh+M5uCWXRGf0U4XtuCilcXyPTG2T5inSEkhTlKvftT6MqvhDJjKiNwvINPRixc07G1y5OMXsZImtbpck07z70R3uP94gKE3w0z91AW0E/dY2z7/wGdKoS5TGWBKyLCYo+ZQrPhMNj26ckbUyLMfBkj5JoujHGf1onXK5Qr+f0utHlCpFEcJcafIoxbY9kIXZTeUpnueSRAm2JXF8lyBwCTwPx7Zx3GIMhjWqihyLRbif6zlUZYnWdkwUxVjCIuongGBuujC9uk5R36zf61D2HDzf5dHSYypTiyzUn0ZaIQqJEYI001TrE3R6fUq+wrWK/WxZptC5xpIW4NHt9hCWRdzt0Gt1qAaG77/6A+ZnGoTtkLlTZ9nc3iJOE5IkwQwKRUxP1qlUJLlK8QKb9ZVNyhUX2dRstlrcuHOHlz77GbY312lvbeJIyf17d7EdH2UsANI0pdXq8Pxzz1KuTnL71m1K5Qqd1jbLSxtYtoOURRLkbjfj3fdu0W11mfr8NO+99z5eqcREo0a5EhCGFdbX1qhUJ+hHKWdOX+Bnf+brlMsV3njzLUqhh1EpWmUIFFLYAy1GoClSQwmGpqtd4fVJHdlDOGkbhQAYn47IsLuiHzKqnVz24ug+xkWdncQfsxNtN0og+5lwEfV6OByMzhvX95P67XZ7H2rMo9cOtZiBsXBEsB/X9k5pm2PGtEAyu/3vU3/3a8TjNNzxrZ9MCO3sphlSvef3fmPo4JjYj/fk8KkWXIEfMDMzie+7pElEa3uLWmUez/dYW30MWjE9M0el0WB9q1WUApGyKKhoNLlSKLWbE87sTDQz+LW7thyaD41RaCGwLEmuoRtrPry1SpbX0HmPqJ/T7oCgj+KPcewQ31bc+PAt/nzwNZrrj9lqNnnq8jU0Ci/0qdbKTE03qOSazXaHTqcoCJnlYIQkiTOU6uC5DlhukZ/Q8jCJKl40x8Jz3SL/XpZjSYNSGY7joHVGnoFXr+B7Po7n8ujREkJosiwjzTLyPCPJiijAer1aTCpt02l1UbmiVg2xpc1ErYYlIc8TVBYh/ABQBKUQYzl04xxTsjFY5EpjS5BGcu35F7j94evYRuBIWeQoDEKEBoNHrlLSOCfuJkyUbRam64NCjzmlaoVXX3sNt1SlVJ9mZn6O24+bCARK5UzUp2m1t5lbmOH8uQsIW5KbDmHJp1qfINeax48f8t7bb5MmEWfnzzC/cBo3CImTHqcXT9Hc2GK71eHx0jL9XpdTc3PMz0zz+3/4BrbrEZQkWZoghWar1SXwNljf3ODR8mOav7dFtVZhY2OVz3zmJaanG1Qnpgg8H8cLeP7552m1WnzxlVdYPH+ZjdQjDl2SuKgobZSGEQE2dGiIEXvSKLP7uGHExwUX7An/5nDmujdoTOzBP0n59sPaPQx/r8DaMVaOpWV/0MheevZqXEP8/eXkx0XKHXtfg/+GAkKIUeFePEvDvvES+yna3+bA2DiGjnE6lWEYdLK3RbmLckih0iOIOAGMD3Q5DPmEeCeAT7XgCoMAtKLT3gKtSLOUJE2wLEmn16Xf6+D5DpPT09iOixACz/fJjCJXOcbsd4uPOlB3NbBRI4mQRd2uotiiLJLnorBcHylzRKrItUHl8O7790jj/w+NiovK+rz8+c/QaXdYXFzE8z2kLWm1W0WWC1sW+8xcD2HlpHFKnhevqTYQxRkMTHda5yAspHSKMiIGsqzIXK6VIolS8twAGY4tyfMM27ZxnCK4osihV+QqBIXj2kRpjlEaYzw8x0bisJ3nGA3lcrEXy3OKTdQq00RJjtGKJI2YX5jHC8pobLSwQEhcy0GnGZ4X8MJLn+P2R28TpylG52ilSfMcgQVRTqtdaL6eH6JNTrlaw/MDHj+8i+sGbG23STbbbH1wG22FqFyTJIrNrQ4vvnCZwNW8/8EHPHXpKZ57/irzCzN8dOsGfilkq93mvffeZXVthcmpSbRSSCGZbDSIE81Ws4lWFlBUZz5z5gxx0qdWK7MwV+Pug22kLalUQvq9Lq7n0+v3efjwPu3WFjOzM1y+fJk33niD06fPcvbsOZA20i4022Zzi9D3mD7dwA1cWmsbhKUzDPc8WFLuboAfzDMhhsx3d/btnB1hzqO/TwInDcseUHEI5uFc7kAk2onpOuY8OzoLB3wjY64dLyAPalz7cY4L9z4U9vj39gdWDAXQXsSdsTq65UNpHe18V2jtCtH9tA0P7d3/dBwRo0bho6Xbrja51491AIQZwT+yySPhUy248iTl1MI89+/e5tTpRSYnG1jSKvL9WXLH19WPYjCCJElJ8zaWP9C6tN55JMXfEaE1gP2GkkE6RDSDciGDlFPV2gS+HeD7LSBGG492q8P9R2usSMNk3WOj2WS6MYEfhIPIQ8Ha+jora+vkeZG2ybZt/CBASp/19S7SAktKpIRUZagU0hSC0AMjBnWtEkCilC58dtoQBBa2JSiHIb7vYbSm0+2w0WwWuQ6FwHYkQho82ybUHlmWIiVok5EmGa4nsaWkVi1jVEaaxdQbE0ihcGSObRmeuXKF+cVFwsY8HeOTaIGwZLEp3PGQ5Dz99DXm5k+xuXIfdIqFLPZFWZLt7R6dbobvOxiZ4/gCPyhRqtS4/uxzeI7P7/zXbzGzsMh6c4vV5gPyXGFZ8NRT5/jqV7/K3dsfsrT0kHanQ61S5fr15/j9P/oDNjY3efToIauP7rEwO4NrC9bXVrlaLqPSlOnGBJsbm3TbHebmprh86TIba49oNjdYWX6EbWump1z8kovt2kxNztOoVWjUHHKV8uUvf4Esy3n91e+zuDhf+PG0IAwr3Lp1E1tKHj24z+dffhnHsYkU2FKgVYZjBygFe+ID9sAuu/7vEfYywFGGbMZ4h/fDUWf3c90jBOWRffxoYf+CYT8hgl3tZahxHa6oHafiHC9wx2ObsQsOeRBx8HO8qXS04VHhcvB+zF7ZdhSNYv/YfTJ/46dacKVpSqXsUCoHJHEfx7bY3tpkc2OV7e11ol6P1uYWM7PzWF6A7ZXxAhedpGxtbRHFyU5bQwv1jrnQjB4H2Bu6abShSGpkENLQ73eQfk6jXiIM67S7OblOKfseJukipIXWcOr0GaJup9hsjEUUpWR5TpYrhG2hhSwSsmqDbUs0BtfzCrqEII4ywtAhzw1KgTaaLM/R2hRM0w/QboaUglLgUy6FGGOI+hHtTheDQcoi1ZPWmixLybIEMDiOxPNsEscmjaIiO0SWE/U7yEBiVFETS+c5gesxPzvFM9eeoVqp04kyZMlDWvbOZJdCgnCYmJxldu4UzeXHoDPSNENriTSaJFVYtoNluaRJglMpEUUplu1iWQZpe2xtd7j2/AI9ZbG2FSFtg+cKXM/j9//gj3j44C5SaL72U1/E5DkrK0s8erhEpVZDYCgHIX4YUC2XyLIc3/d59Qff58LFp5mbnuH+/TXifo/33n2bdrtJGF7FoLEsjefB9FQNBHieS71e4bMvPsPnP/siloC11XWifo+19S1ufnSHSxcv8oPvv0oYetiOzec+9xOsr6+ysb7BBzfvUFm4zISawpssD+aYOMinRrWKQ5alT+InOgnsaeMYnjLUKsaZrIo/Hz9ibOyt7BsfMcIsd8yUw/+O6PjE+5ueGGeXWYxqXHtRnyRwYRRfMF467O1H7Dk+YiPafSRj6S7uZ6+JdVRN2xXYB5+NGRlvsXNs/z65I8brE8CnWnBJKVEqZ3OziTU5SbVUprm6TBh6nD19BktAnin8oESnn3D/3n0uXnoaxzE8fPiQOIqRUiKNwJiRilz7lhZDD9jA/VBMUECKwq1u22CLnJJn4TkSgSHzYXKygu94tNYTgsAjCEO0LgpgGiS+HzK/sIjj+EBMmhaZyF2vyD9YroakeVFnKsuyQTbxjKifIKSNbXmkeY7KCy3L81xc10UpgUTje16RCivJ6HZ6OHaRPqq5uUWpHBRpsERRCkYO0jvpQUZ6z3VASyolH9excGyLXFtUy2Ucqem1mpxePE21XC2qTcspNrOh0FKFm1oUWm0cKdrtGIxNHGXE3QzHsZCei+U4ONLGKI20HHzfp1Ku8XhplQtnFrEdH8cNuHHzDldfeJHvvvYeUaTQxvD40RJ370Y4jmBqss56c5v2VpN333mXUljC8/yiQKnvgbDJlObUmXPU63UuX7rIw8ePKIWS5545S6ff58ZHN0jyCNe3SbOMRqOKMZv0OpvEaYbj2CTdbWqB4LPPP0MU9ZlqVPnyF36S/9v//Z8zPTPPvTt3ePToAbValUqlwg9e/QHt7S2uPH2NZnOLjlnGTGyxOGNhMvY49aUo5t4OE/jYjPTJ4KCJjEN4S0HbYFPIvnNyty0x6h9+UmIOOT5i8hoR2TsnBMVmxaP1s6PMnJ9kHAceyh1J8fH3Jz1Jn0W2y+Hs2TUda3a1rOFdjXumBT/buwAyQ2k0xuS5a57eG2gyhF2hNbz28MRMo37AjwOfasFVpGsqynVEvR6L8ws8fekp0qSPQKFURlgOKZVr+IHi7ptvcer0ebSIWVvZIE8NtrTJMRgzbmLvsJDB/4PXxgxfYIUtDaErmKyHXFxssNVcw5Zgux4IRdyPMCbHcQTZoHpubXIGzw2QlsPS0gpgIWQhrIyBJE1JM43ruaQqRlqCeqlKniu0FrRbHYTIMCgQEt/1SbKUPFcYbXBsh8C3qVbLxP2IPM0HqaNsVJ4NMmN4xHEPERTZOYw2CKsINcdIatUam80tapU6ltQYnWFZFp7rI4Qm6bS4c+M2z127yvb2Nla5Tq4VRuRYNkihEdogLQvLdklTQxRl+I5PbquBi6dgcMpo4ijC5IqNpiEIy7z+2lucmp1na3ONs2fOo22Xd979ANvxgJgw8Ol0I/zAwQgLyy2zvrEFKqUSlrBnHLpRnzTLWFnfYHJqilMzc9RKxT60CxfOU63U+OnTZ7l55z6/8Z9+i9WNDpnW3L33iFLgUiuHLC7M0Ov36fVikiTGkoqH9+7zg+9+lwvnTrOxHuN7Jf7Cn/9Z5ubnWV5Z5/zp0/zEK59jfn6eDz74gE4v4u79B8RJhq0FnhOAETupuHZWzCMaRDH9Dn+zP2702zg4cP2h/odB1YW9es7uRQOeZ/bfxzEgDWgx/j7kPmVDjNA2DKkeiq4iAOLwfo4+98m0sYJfm52gml0GPmTeR5s9D6dz2MauyBYM5YrYoxUNNShrXz9i3xiOLjL2hrvsvaHddoeC+DBtkn3nxb7f+88XOH9mKZ/+e4M4jqlVSpw9e4Z2q0W302Z6ssHycp80TYj7ffqmj+eGTNQaLM4v4Ps+Xhhw5emL1L/9DlE7wxy6g3vkAYxMxOHjtqRhdrrE3JSN1Alpv0MadTDCIckMre02SaQol0LyPOfd995jZrJGvVpjft5Hk7Kysg4UwQGOY5GnKVmekSuNkF6R4891SNIEo8FxHMpljyzVZDnESYbn+zg49PvJIJOIxHMLOuM4JooiMMV4ZUoXfrE0xXHcYmOzVSQptgeBHBiNRNPvx/R6EVOTIXE/RuWFmU/lCgxsbW7R7/Xpdro0qhaO5ZIJSZonWHaRlUAOsvdXyzU2NzqcminjOS5RnJCroq6XMQIpLaQj0FqxtLREyRdYtkutFnD9+gvcX1nlrQ++T6fTw3FCXM8nzfrEcYYiw9nqIEXKwlQN8ozJiYlCkGys0epHNLdbVFY3qF+qMDU1xerSMtVyiTxNuHzhPKcW5ojSlF6as9XqkMYZQmfUayVKQZHLsduF0POwLYtbN2/hWoapRp3tfsKVp59ifb3J+bOnOXV6nkajgRd4XLp0ia3mFh/euMlnX/4Ck6euEkxNF7kj90yzgX9CsMNMCmF28OU+LPrtk8DB4IwDvbKrWQxFxV7z4lBDFOMbGA+jghvDAZPlqBlsD+6OLjHerHqg/5MnAH7Sc3vGZg8pYufcyQfkqL4Gd75jkhyOhBkZ9JH73GNSHW1hN9/JHnPrflPhDtYwavH4e9hrKjzZ3P048KkWXEob+v2UmZk6G2tNMp0SnAoKJTpXlEslOu0uSuVIS3L61CksKQnDkM985kVm//O3WWk9KgIIBRizP6v0vpAcGKyqiuD4IPCYnZ2g5MXkeUS1Nsf1a0+x2Wrxg7fewbMVqVaUfBuyjPfevcni3CQzU1OEpRITE5O8+OKL3Lx7n8erW2RCk+WGPCsyYxhTVHlWBvq9PsLYxLFCCInj+IRln3htg36/qLpcKtm02x06CtIsw7Yd4jQjzTOCICSJM9IowwiBFA4CiOMMx5E75sk0ybCkjRA5tmXR6XSoVT36vXhQiLLwXfX7fWxHkEQRvU6XWc/HJBppSVzbBVOURDCDQpq27YAwxEmCZQqTpGUotiXkBmEU5CC14f0bd3n+mdMsrTWplGtstrusbTTp9PpIq5iynuviT83Q6fZod/vkSrLR7BI4DrP1KvOLC6ytrbG4ME+eGpYfr/NTX/wqi4vzxElKtVLl4f0HzLsBM9N1Lpw7y8OlJdwgoFat0mtv0+32KQUudilAaU2lWmO7tVlsQ0hzLKNYLgfMLSyQJh/g+j7SEpw+exaliwTJ9VqdZ597jlOnz/KFL/05ljYVW9ogTJH8GEYMS0LspCvaYR8HjABjMp8zDvEEsGP6kbDT7+hqef/KeZzfZS8VO993TptDsUZ/y4Oou+dHX8OBFWvc2n6oO4wdt0Ngx+wFII5JhnVIwwdF6EBLOiql0ZE8exzxglET5M79Dkyzey8fnRvjOxrmCCraHFFnR3oYbok3A8F3cFP8wS53D43r95NlyxiFT7XgcvwA23FJYsPaWhPPLgIbPMelm2VkaUymU7pxDy9Ni/pHwgID5VLI4tw0b9+4B0IOVotmR7kaeQV2wTDQtMAoSLOcfj9mquqC7LO0vs7Z8xf5ytdeREnNO+9+yOOsjVCF8NRG8K0/+WOeunyebneTy09fYf7UeaRl008y3KCGNhaZSkhTjSU1aaJIoi55JghDD0xGHKdEdPGyjMmpOs3NLv1+hOv42NImznNa3QTb6xUbhm0Lg0IbhRCCLDMoNdyAm+B5RRHKNM0HTEwiZBGVaFsSaSQqzalUy/TaHZSOcByfiYZPnPQxaFKVYbnFqlNiFw4zoxGmKOaplaFWq2BMnzhLUdqg4hQpBZ4rkQZKNQejU1rdmHuPNyi/d5NOJyJKujxeWUULCEOfwK/g+z69Xp8wLNPupjxeWufMuTm6mcWpSh2vFAIpZS9kolzitVdv8M6bN/Fth8DTZP0+E/WJYkuFMcxMTiHJqdWqOK5PUnJ5cP8BvV7O46VV4jzHCINjC0q2x5Wrz3JmYYpeZ5OFuRm2Ox3SrIeQZe7cvom0XbI0Z3p6hqefepoojgFI0oTyZJlESnKtEUIiB6M2NHVJM2qaZo+cGHqPxMik3KuBHA+7/pDh31EGO6oKjmHSOyTt629U2TGjGobZETbA7ibhPSmGdht5Esa2N0BlLCnjSdxP+oiCcsCqxtA0NxirQwSi3NF4RrUdyd4FwMEnNdSWisXIGEEnhs9c7zlW9LFvY/Zh8u5Q2PsMJLtjuleAF//vD/UfxRMMxnHkQYzN/nKC53QS+FQLLmMy0lxTsVweP35IOXTJ84SV5Uf0em0sS6KFYXOziRPWcL0KWZ7T73cphbM8dekMf/yDt+jFRRl6sRN9sb8j9szHYQ2vNFVE/RgpfYyQVOo1hGUhhcXC3BztrRbnT50nS1LQYLRiqlHjwsUzhKUS5XKJ1dVV2u0OUjpEUUqaK+IoAyNBmCKdUaKJ+gndXozr+ChdMH6yjJJVYXq6wdZWi36/jyWLiseJymh3IyolD0GRL1FIQbkSst3qkyQpdiHDUcpgUMjBBm2da5CGUhiSpzFplmDZLgiwbEmWwsxcg357E9t2KJXKIAQGjRAGoTUSgZTgWRLX2Piei+PY5EkOaGxX4vsBtltsTRAYXMei38sJPJfPfPZlorjHg8ePSPMEhCy0LQG9XrcwfwqJwSJNcyzLotPuUS35PF5epRY6LMwvUK1UePyoSZ7BwweP+cIrL9Jur9PebHL5/EX6vS6lUoX5+XnmZ2eJs4xXXv4MJs+5d3qBKEr54Ru30XGPUjXA5BFn56dZXJxl6fE9SoGN53m4cUQviuj3uvT7KbOzizi2j+8XUZ0qV6ytrRGWZomMLpiU0YUGNcLk9zPMfTxv5+u4tD8nhyJDxy7D22cGOqaxw0w8e46ag0dPImxPJLpGTV9PYG46ztg3irOPB+8saEdF8v4GnpyWfRrOIZcXC5oxi2ix+0XspKob09dxz+vApBsnYg/+3pOfUOw9fzC68CTnTw6fasHleoY47ZCkkrDkIISm092mub1OEvWxbJtqrUZ9oo5tWXieR6fXJyjXUCriytULeK5AxkV8jjGHuir3zDHDcIUF7U5CFGucULKxvskP2q9y9tRp+t2YXrfH9HSFM6cXWJido7neZKpRpz5RRVgWvV7Mf/zN3+HB0iZShKRZTqvdo9spAjom6hXC0MdzJb1ekzRRQI4RFspoRG5oNrc5ffosvh+ysdak1+8DYlBcs9jbJUVRWNIA0rKxLEmc9KlWyoBFa7tNqexTKnnEcVLU8DJFOi2Vp8RxD9cT2J6gF3UxKPqxAm1wgxDXD8lzhZJFcIZrOVhSoVVGmubYto0Qil6/g++A5VlgirInvm+jTE6epaS5wbILIfruu++Qpim255LmAstxEbkeGDCKl1VKiyjJ8AOPJEnotrvc7vZZ9x0uLkwjyyFhUOb5515geanHo0dLdDo9NptNdFpshVhfXydThm4U47o2Bk3cbVOvVjg9P8X8whmivuL+wwe4oUUpCHn++lOUyw43W+tIUWVldYWJxgTtToft7W3arYjz5y9j2T7b2y0cx0HlhtWVNc5cPUvuuMS6iIplR4PSO4Y6QWG6GxdVuOfI/pD4J8kVt6eZvVknjrxun39iPL4Yz/P2mZMO20z9JLScHHdA1qjCt/98cYZCuxijxQ2FxQGNVBxCyx7kfbTs3Wi+P1JvbyHL3WuH3rShvXQYYLHHt7Vz3e54Hjo+h4eQHjm2R2ZeOUQifZxN84fBp1pwdbpbTDdqKJ3QmKyT9Lq0Wk20VghLYIQmzVK00Xiei8oVAoqkt8rQaJQIAgfRTgYrlpOBAZQpalxlmUFKHyEE2khs2+Gdt99F5xmz03Noo1B5jNYpUdRD6wpaK/r9Pjdu3eP+g0dsbMcokZDkkk63R6lUodfr0u0n2LbCcUKUhkxpUpXgeh6WEUhLkqUZnXaXIAiYmGjQ7fWLzOzGYLsOaZ5iC4Nf9smStIiMsyRZnu+8VkoZkiQHYqQQ5FlO1k/AaFxHEKcRuBKlJV5QBgxJ2sO3HSrVOmGpgrAcPMfBEhZp1CfNIpaWHnL7xk2Sfp+bN2/iuDbapLiOhS1tEBpDBiZFoDhz9nThM+t2Wd1YRymN7ThobShVbaRVlK9BCGzHwfdCctPHzYsN1WnSQ1qKmdlJ/KBEnuX0ehHV6iRXr1zhv33rO7z9zntUKxZpr83S0hI3btxgbqGLsG067Q7dbodH9+5SvXqFVnOdZ65cY3oi5M6dCGlcFudOk6c9Vh7f48qVy4RhyMTEBJ7vEycJly6dpTGhKJfLeF6JLM1YWl5hbX2NKDVcftGna2Qx38xgr9uOwCp8XDuO/aOCBUa/74bZPcHbs1fo7U95dOhV+5jhePz9x3b9dsN9Q8PvR6VZehJaDkfaLxTNmAACsYs7kFCFQBj4eAZOMDFsbkx3B8dwaIYbs/gYNLSXfn3o/RyqL4mh4DoCa0SgjkfYS+P+/YFHPYejzo8TlvvbfjLD8F74VAsupTJsx+bB3XukSYYfBGxtt7Adu9hYm2ZUa0UQgiUlmqJsvdEZCEkQ2CyemuXeWhcKYzJwvF9XCLmTLkpp2NzuUymVEBJK5Rrvv/cR586e5urVq3z44TusrjzGcyweP7xPo16lWqvy4MEjbty8Rblap9nZII0zFC5xlDM5VaJcKbO51URgF6H6YpAZAw25xnM8iqg9w/ZWi6gfUalUC1PmIMZaDcLjpVOs4LXW5FmOtIrs7d1eFykBBFpBrxvheg62lBiRFdWKSy5SKvI0wqAplcMitVZs2Gh18MIyXlAilxZpGtPutvj2f/sW925/yP37d1heWibuxUg0s9MhthSoJEGbHKMNnnARFriOxczMBMtLKXEcUy6VC+3PCGzXJkkyDAJtilRfRgvanQ6b2x0c18fzPCQKVEKv06MSlvEdwVtvvsMLL36O2dk5Nrf63Lx5m2eunqdem6Dd7XDlyhUmp6Zpbm8xPztNrxRw9emnuXzxIo1qBWEMpxcXeP/9D4l6PeZnZpiu17BQRN0OjuvieB6vv/EG6+tNLl96mqmpKVSeI12o1+pIaZHEKXUvpN3pocMaSmssW6JVYS5EyAEPETv8bjda7Dj4OCVPxjObE115rMAY8wYZEPKgxrKnCTHUOU9oRjoR/kA7GcE5SPcYj87wWcAOg931742DvX2Mb3uEJDHa5uHa0qEw1F4HdB6GfjLhfni/R113VITgcQuPj5tzcwifasEVxzmWdPG9Knmo0VnEVrNFkmRYtk2SpTiuSxCWMEaTpglpllOfrJNLQ57FnF6cx7x++/Cl1CEwXE/Fac6tWys8dfGzSNmj2+3hOAG9biE40yRCqQxLWqytNVFKoVTO2vo6rU6XPLewHY+S7ZFrh8fLLTY2tpmbn0FKB8/zSbXB83x6cR+tDEma4bg+whiyXJFTaE9ZkOO4DllUhKu3OxGeI3Ftm243KlaQg1IgrlvYxaUUWJaD47gkSUwSpfi1ErbrU6141Kshnmuxvr6K67nFXi0Mnu/T2mijFEjbQUqJZSSOJXhw9yavfu+PsYTANhD1OpRLRYVqy9VkKisSMFJEHUpLY9B88MF7Rci/a+H5Pq4X0I8T5P+PvT97siTJzjvBn6rtd7++u4eHx5oRkWvtK6qAKoAkCDTIGbK5dI8Mhd0iIzJDGZGZB77zlf/AkJChdDc5bM6QbJJNNgASAIHCUoXasyqzMiu32MPD9+3utpvqPKjd69c9PCIjMrMApqA1xMLvYlfNTE3tHD3nfOc7ljNBWTYaDVOJOEqI04IsUzieRCJZWVxEFxFRv8/du3d4+fnrbG9ts7Z2xCc++QXyImdraw/flfyFX/w5snjI0tIS1VqdRrtNVuQMe30WZhewpcPS4gqDQcjXv/qLvPTiJ/iPv/0bvHTjJcgL/ugPvgE6I9OaJMvY3zsgy3Jef/11fv6rX8d1HJI0RmuBKhTnVlaptuehMct+5iC0oBiv/MXYqTSVSMqjcazT7QlenmdqH4Xr5v0PcvL1Y/0bz3QqY6X0NO399zt5iseDK6a+f9zpnRzDqWOdaZ1N7/Psi46xQf64uNoz9fencOsfe+gPMe8+1opLYOPaNZYX1+jYAZIMVEwYDYnjEUoLLOlQFAohIByNUIBtm4B+NAoJfK9kLICJo/l9mik6aXbV0pQ4UdrFcQVKx5xbWeTS+XOMhgP2Dw7QKuegsU+nM6TbG/Bg4yGjcESaZQjbQdrGDVet1ggCl+EwYv+gQ5IkZZVmgeu5OE5KmqWAJoojfNtFSEmRZ0RJjBOHgEYLje045ElWcikWWCVuTdoWSissCzzHRWuN6/okicnrsm2j2PI8JY4LUt/Csf1yaEpkk9BIAQsLTbQuSJOMTCW4fsBw0CNLQmqBhy0hTnJcR4LOsSxD0istUdYQMwLCdV20Nkz3Smss28H1fdKswHFBKZP6UBSKXm+AlMKAU4RBP6ZphmNZrK6u0qg6HO2u85PX36Jdr3FudRVVFPR7B1hSMxrm9HoD2jOzqKyC65kxtKTFuXNrZDMJnusihEutEnD37hbVao9GY5a5mUXmZ5awhEWtMsv3vv9DWnMzXLp0mYsXL/Hmm29ycLBPUWQMBz0QFs3GDJYlmZ1tUWnN8rAbIoIWWhsgjCErnHb2HCf3iuMPz5j75YM/rbyeUg6cyCEb//QZhMj773u697ECEMexOHH26T6bLHu8K+rsffTU37EL7ZSrbGrfiSur/CNP7vBIE4+8mI6BnUTwnVSHp/o5HdQ6tdexa/jx5/LYczxrjD6g/niqGFrZznIb/rlVXEUmSKIMiWRmZh7XVrhWQZGn9HpH9AZ9hqMYJbo4ToBlSdIooXN4hOVVsC2X27fvTgSEENIIaHVW/sWj7gXjKhSkUrO91+UTX/80Kj5g0NlHs8zWxiaNag3fc7lw/iL7l4aMhhE//OHrvPKpT2F7DsqyqTZqjEYay5Y4jk1/mDAYhLTaLZQG3w+I0wFB4FIoTRSbUiRhkePYNoXWKA2D0QjPt/EDF9vzyVRu4ldpxkyjRpHlHGf2C6QlyHNlalxpges6CCGxbIXOwXYkSRKDLrAtyxSStCy0ZQRMvdWiWqkQRyOi2KMatLh39zYHe7sszs+S5wn2KGZQcUAp0iRBW3lJXQVoyAuFU9jGgi1h1LbtmurEaU6WFQhhAxItIMly0MoIX+GgERSFIgxDXv3hqzx/9TzPP3cRlURY0uLK5Ut0On22ttZZmK+Atrh69TrrDzZYXppBSBuEpFqtMxjG1Ft12s02WZoSRiPaM4so7WLbPlK4bG0d8MLzL/JX/g9/gzv3HiAtj/5ghB9UsW0X33XpHh3gBQGt9jy2a1GrVul0e9TnVoniiNQ29FYFAiEkJ4WYPja3ntqaeLYmTknYPx2LSzMht/vZXdoZ7XGWXblgeD+z9inb4926H/JCT43VeLacVoN/Vu1Z3Msf1j043R5PJvUxaEmcEEUxvh/g+wF5XhCGEYNBH2lZ1Ot1bNfFtm0syyYMjUUipcSxfCgkD+5tl0Fyk0eh1FkuQ3Fqm2pSIiybt9+9w83b6+zu7XF4dIAqMq4+dxUwbOGBX+PrX/sFZmZaLC0vUKlVOH9hjTAO0RQUZOzs7aCFJitgOEpxvQClBUmalspFUam4hhVDgEaRFzkFUABZnpOrgmq9Sq1eRUqJbUuEFCRpZuqRCQNTr1QDhFRYtij71mWuWY5lQaXqUq1VkJYBnFQqNYpcY1s2vuPi2hYzzSaWgCSOcEqOxrGfX1iQ5xmashJz+U9KC9tycGxzXwyLR06RCwQORQFRnHLU6TAYDknKnK9cFWgNlmUjpYPt+jiOR5xmhFFMvx9S5BlxPCLNYv76X/s18sKUuNnd2aTR8GnUfZrNGpVKhXfeeZckSdnZ3UNrsB2XNCt4652bHHQHbO0esb3fYW75PEG9ieMEXH3uOrsHBwzCGGl7tGdncb0qjlNBCJNkHUURWR7T7x3x7rtvEYdDLClptVqkaYZleyhVVhlAACbwY6yR8eKpDAaJ8s/0VlpiUoxnoxnv4/dPuYmTSLjp96e3E0/CE/Y7uZ0+75NP02SeTNxm+tHfPMN2MsY03dej58PU54+McYlbleWYTm8nj3fqmNN9ctJyfPRcTqIWx989Mr7lPybvp+7BePYIgyB+0n374Pfw/bcP2ueHbR9rxbW8soDnOURRyCgcmvhOkbOzs8vBwT5HR0cIIWi1mszNz9Fo1AgCH0taRFFGFGZkyThr39RHejqkSylwkCilEdImShQP1neZnZun2azTarcI/ICiUKhCYwmHb//J9/C8AN/32Njc4P76A/IiYxQNURRUKj62a2NZkBea7e290urIEcIkC+dZYnJ7ywdGaeMGRYLrO9iOhePaaK3IcoWQEsfx0EjjnoOJa873x6S8ijzPyrpdFgjDoDHe17IdpLCR0kYgcSyLeiXguauXmJtto1WO6zpICbZj0R/0GIWhKS3jOJjhNUrLcQy6sygUCAuNRZ5rslQRRxl5bopTKWUAJkprRlHIKIxKVnmwHQcpLPJC43keILAsKHLNpYsXcMtyLQcHe9y7dweJJo6GpGlEmqasr28ghKTX6xFUquzu7dPvDygUPHi4CdJhEMUcdgdI26Hb67N/dEij3eLc+VWiOERbghdefoXnrr/AuXMXsW2Pfn9Ar9fh9u336HYPCAKH3qDL+sMHHB4eEicpflBFa6u0LkslhZgsKib4wolg1ZNNiLFAHrNmHv8FPRG677sJTszz9xMkZwmd9xU+U+ddakqELEEE4qTSOq2AphXR025n9feIa24yjtOKojwfacb1hKIqFdh43E4eb/o44zE6OZ7TyurRxTCTfU6P8/R304uNcYrLeN+J0nrcLTh1v85UGh9ehzz22O/3/Z9bV2GShviBIay9d+cOtcBG6IT2bJOiyBiNQvb2dgmCCudXL9BsNAjDCKEFaZwy6I8YT241DpRPsv6f0qwtiVILBTu7e9y6XfDZly7R73WZn5shjQryGmxubbO/30HevE2cpHRGI6TnU2tUGCUdbMdhYWGFo95dECCloD+McFyLVquBlVpIYYiFPdfBsSHNC4SwKJSJa1mWwHVtLAlJnmFJyniWTeC55Gl8LEiAosiJ4wzXtZDSYmzOG8uzIM8ygmqNLMko8pyKH6ALRaELRnmIyjLSOAYNWZJg1U2/lpRkWUyGAiwsS5ALUIVCKaPsi8IUv3Rdq1SWZeijLKyolLHYsqwgyYwyk5aNxtBhISRRnAMCS1pYaBaXZxACDg+PWF9fByE4Ojrgr/5Xf4Vas8bM7Ax3bu+gipyF+TqXLq0QBFXyQrG+vslhd0C13sR2A2qNFrku6A365Frh+i6DoyOa7SbVapUwDHnxlZcJfIfAc3jlE59k0O/w4P5N/MDHsiWdzgEbm7t4boPlc1doao1l2ZBjFJaQiLL+9mTGTQTROLgx9XDr6c9PKp9naSac+6jieto8m5MK5rF7nRSKeqw0Twrxs6yBpzmHs8/r7L6OFc7J742X5XiXsdX7wc5leuweDTqaLp7Uzxljok8pttPfH5/408+ER/Z9lh+fbE/K7zqNKnwUZfi0iNmz28dacWk0g9GA7Z1deoMuFb9Nr3PA4cE+S8uLKFWQJCPQsLO9g+36uJ5HvTlDfhAyCHfIUJiCJgIpDHDhrCMdT/zjfI1yqpNlOQjFIEq4fX+L+aZHq1bn4f0t3n3rPtZLNkuLS3zyU9fxfZtLzkV+/PYdumFmYmR5Hy0VB90j8iLBcwV5pBEK+v2RsbaSCAEEvkutViXPFWEYGTdark2gXymKJEd4GhuJa0OaKpI4xnMcskIhihxhCVzXosgNT6DtuGW9sJy8yLFdWeZcGSsJcmzLsM3nWYIWMZZOUUXM1tYm8+efR1ZqFCUzveM4uHaFJB6RZRmB66LSFFUoRmGBa3t4nk2WZgghsG0b17UYV1VMs4wsS8gLE7uTQuD5LmhNlsXG9Ss88lShcIiTFEvApSs3iNKCW+/eo9Vs0Gy1ee7SJzl/4QJpmvG5z32ObvePCUcjPG+Gl158CYFkf2+f+YVlDjtDFhYW6XQ7tJpNzp8/R6/bw5YGOHJ01MH1FtjYuEWn0+HihYvYThuRC1yvype+8jXaM22W5meoBB55nvPmWzfp9Ls41X1ms4jcK7AcC4kgn5DV6mNXISegDJx4uh+/cH/GJqb+H8/vaSH5fp6HY4F1sqeSu2HMCPIICGTqAh7pfqyuz3LVT6H7zmCQYDJSU8L/jL6Pn2Hz9zj9+/jo0z95lqE+Jr199jjOo8c5u4+xZDp5ruaYY2nExNIcK79T/ID6+MXYVTr9nUZPfn58b88+nxPfTBYAiuM7oc/eF0rmmKlSUs/YPtauQj8IiOKE3/3Pv0cYR7RnZxgOh4DGtiRZmlKrBhRZQpqEeL6HkJCmEUpkZDqh0MePhSkO+YxhT60RGgql6A5COsMUP2gwGsaEw4jz5+a5c/s+d+68y+rqAq6tOX9uFaUcgso8g37BwX7Mzu4RDzY2KHRBte5R8Sxc1xB1xqFhdy9KclbHsrClwLWlKaviWRjgXk6WpOi8wEbgWTYWkGUZURyTZpmp36UKNII0VaSpQloWWJJCa7SQFEpjux5S2hRFgSUF1YqHQOO5DpYE29YsLM6yvbXJwX4H2/bxgwDPdcnSDInAcxw8x0ZKbVgpNBSFYDiIiKIUISwcO8BzA5I0IYwiojhlOIzIUoXnBdTrdeq1KrVqFccxytX3HYQ0MT2JjdaSYaTJtc3WXpfDbsit2/f51Kc+zV/8S3+JJEmRlsu1azf4/Oc/y43nLzMz06Reb7K4uES1Usd1fS5fuUwcDhEokijGdwN0AffvP2Bzc5PDww625bK7f8Cbb71NdzBEYTOKcoLaDEp4hLHm4cY+rl0jCgs+/9kv0W7NGGYRrUlVToFGWPKUa0uVcZSSfV1gLLLHbIw3pjbxdNsjMSjO2MRZW+kim3I7HrvNxi7IY0UwHYs58aq8hnEvkwQvMX5/6sSm2+Szk8+qmIyC+SeQCC0R2jreJpUdDP+m0KL8bPy5OL72x47B2Rvvt/9ZYzx1eWfu+5gfjPkqzaYY56kh1NR8Gs+j025kVW5lLG9qBgmMfBn/nVjJTzj3E79l+jeP/s7sO3UOHwKs8bG2uHZ2drGEYBSG7B8ccn/9Ibbjsra2RrtVJ4ljwighyyKgwLYABEWecnSwT6tZZ+Vcm6Pbe5gpUPDkddZpF8DJB8csU2zWH2wgs4S/9ItfI4u62PcUviuIBkfsbG5y6dor7O/1GeYDBqMItEJImzSOqVbr2K6NyhPsVFFoY5VUgoqpVKwVo9EIIUQJVDBxozCKybICz/cmZ2vbDpocrTV5nlEUCqtkDgATK1Kj2PAYWgYq6Lgeggzbtgl8H60VSRQS+AY6H0YRgSdotFr0en0azZa5cmncAY1mC9cPSJIeWRqitSYIfFSh8DyLNE3JU1MyRStw3Ygs9/A8SSWoESfZJDesUqkTBD5ZllEUBVERkyQZjuMwGAxJkog4VqRZjkDx0zffolW30crjyqWLnF9ZZdAbUhSaldUVmq0F/KDKzfd+yvlzKwyHQ9bWLjE7P4frB7SDgM2tbQ729llcWCYcxeztHRKnGSvNNi/NtJlfXGBxYYl33nmX3d1dLqxdolqrl+jMnGqtRRGHaOHQ6YZUapoXXvwUh4OQrJBoHKQwMUNR1m/S49X61OpYlxbL45qYevGoZfPh2uNdY093lCfFwp4EGpj+7ekKDRMBP3F8HFtuUk8d61RY64wPTrwXJ57pDz6KHyZe81GAFaaV5yPffejen+U8nuFoH+LEPtaKyzBJwN5BhzTL8H2bL3zqRUa9feI4pshTBt0OtWqFIHAo8sQE/4VB2128cJ7zq+f46R2juMS4tusTVwJ6isVZjyV2GTcw+UCdTg+Zxbzxkzf47Oc+S73pEQQ2jl3QaFQJo4hhmPPmew9pzNSwbA/Xc5HSJAKrrMCyJTIvKApzHM93cFxBUeSkSUqeFSAsHMchzTLyvEBKgeOYKsdCSizbQYgELYyFpbSJnUlZEtNK21guRYEjbbLM9O3auqRWAs/1UGlKEAR4roPKYyPkZ2YotKbRaFJr1MnzHJXlLC4u8ZnPfpZXv/cNpGWRljRTSilsx0YKA7vP84IsKchyTZZZeJ6PEDbVqofWAi1tHNsHbFSRk6YZSZKSZ4bk2HVt/MBhNEyRUqK04PCogyg8PvfZG/yFX/o68zMzhOGIeqNBUK0RxV3OrZ5HCkWeRty+e5eVlVX8wOPg6BBrYDM70yYMM3q9PmmuqNYaVBsN6s0maRoxGIa023N8+Us/x49+9GMuX7rKysoKKle4bmAU3qDH1s4B7dkl3KCBULBcnaeXW1iWjy18Mm1yuAw4Y5wfh1mFijFT95Pn/8kS9h9dG1tIx2608euzFmzixGs9uR49USQaPelDTvU7fbRxH2PQ0Vn5lNMoQDi+fuOmO7Zgjzn/zhqVY8onUca4joXtybpT7yeEp2OCH1T5TPfxtGwTp+NITzr02H34rGf3rNdzev9n4Zn8IO1j7Sqs1Wo899xzWK7FQafPzu4uXiVgfmGR9Yfr9Hs9GvUKEsX+/h4HB7vs7+0QRSG2bVEUOUeHBxPaI9OeZjCn3InaIPcEgjwvGI0ShoOUh+tdvvnNH6KKnGajhm0rDve3SLOEvf0DpJWglGJ3p0u3M+TosINSGse2y1VggbTAsjS2I3E9ibQEjmtTrVURUhJGBiYfhiFZVgIZ0pQ8V6hxcUbLKKxCGWWIEOSFNqkDUYxCkKQ5CIll2QyGIRqNbdtEUVTytJkCj3FsmCCOOj2ktKnVGoZAtiiI4wTHdWi22vzqr/4acZwC0Gy1mZ+fL1GddWbabcParwqENAIkThKiKKHX77N/0CGKcqSw0doyBTMzRVFoHMdldqaBUgrXs2k1KlSqRqELAaicLI14+aXrHB3ss7m+QRqlCCThMKJaaxIEFcIo4Td+6z/ycGODV199lVqtysH+Lm+++RPyPGNjY52jzhFJkjC3uMClK9dwXJ9ef8je3pGhobJdrl27xv376yZ+artYlkOt3mIUpewddMiUIEoz3nn3FodHPSzpohXkuSrdZaa0zAkXUam03g/ePlZsJ901H93GlKtn+vVYqT3iVpt6egTHaDchKOHax38n1yDEies8HY+ZHEscQ74n/Z76fAx+eD9Bfjzep1GSlErxpNJ6knB9ZqTl+/Txfv08DoL+5AOcYWc+4TgfJWT9Caf0odvH2uLyfZ+gEnB+7Tzr6w+xXReNYBTH+H6FRrVKEPh4fsBRd4Bl+9TrTVOmXgtef/0N1td3MPnGJ+qX8rRuA0258kGitYF5f/0Xv0r/YBOdR+zs7XL/3h2qFagGDkG1RqVWBQnLK202t7vUmxXizLgEHccBlZOkCY7jECUK1zWME2N2CSkt/MA3HmqtDRNIXpCrlEIp8kKRq4wkzVCFptCmvIhj22RZQpYX2LaFAmPRlYUhLSkmOUZplpEXOTOthgFqoNHKKJA4GhFGGaNRxEwbRqMRswsWcZwhbJvFpRXDxWe5zM3NMej3ieMY13Hphl1TPkUIgoqL4zgkcUIcpWghCMMMLST9QUq1alCVSuVoCnzPYabVZDDsoYVGWhAExrr0HY1FxuL8LHPtFqN+j8j3saTNXqdHcDjiynPXsR0HIW06nR6/8NWv0DvqMBj0mZuf47WfvMZwEPLgwSb/x7/2NwmqDZTSRFHEIBwhLItwMCRo1en3e7z80su88/Y77O/voXXBxQtrdA4H3Lpzh+eeu8pB5wglLbZ3thlGCRefr+EGc9i2INcmzoAoGBfzM7GWMjauz5A4pybeI0utj1DWPCq4zor9PioAtVZnCr7T7OEnrYex+7oEqWimvntUMZ6+0LFlN64bfRJNeObVTf32eD9x/MHJ4z+DEP8waMj3c6Oe3Y6ttCcxwD9Oeb3fZ8/aTiMJn7Tfn184fBKjdMG5c8tAwRe++AWiOKFz1KVWbyApmJufQ2uBX2mws9+l1rCoVGtUnTZHR+8QRUUJwxZneSee2CYTBlPNVpdx0kuXL7JtJazfu0NvMGD3YJ9rV1aRtqTRbrN0bgXP9wnjI6StyLJs4vKL4hChCoSlUVqR5wWeR+ley9EC8qwgqAZYjstoOAIEnufheR5aG9ACKJLEJO+a/A+LvGQESTOTQzWmUnIcu3STGmi2VuZhsG2JKgqKwii6LDXw9jBK2drew8olWjnU5yzmpQRLYjkuUiu+9OWvcOf2u0RJyt7+IXme4tg2eZ7j+j6O52FZlnEdOg5FnqGFheuZ0itaSUajIZ1Oiu1IKoHEQhOGI0ajEC/wqFQCVFEQeC7hKELFmjSOyNKEdrPFcBgyN7fIMC3oD0Z0OgMuXb2EF1RwXI9qtcH8zCwPHtzHdh3iOGR3b59PvPwZ5udnSDKNbUuicMio32dxYZ7dIqNSqTDTbjMc9Gi2avS6PbqdI+Sli9iuw9Xrz2G7Nt1hj3sP7pCpmPmFFnk2orOzzvzFWTLjAzZkzSUS61jOlu40rR4RpuN2lqvkScL9yfP4rP3fTwjqs/edKIIzEGWlZamVPmGNFWUu4v7+HtVajUpQwRqzq8B0BscpJ+NZ1/gsD/GpfcXTL1g/yvY0TPgfqn9Vplw8o7J4GlfpWbD3P432sXYV5mlMnsacP7/Myy+/SJIkjMIRs7NzxGlOgUWWg1+pY7sVGq1ZCiXIcwxJLaWrBoFW09Q7T9cmN0loCm2IbaUQbDy8R57HVCoet+7cQQkbbbkMw4ztnX22dncRjoWQJt5jSUm1UqVRb2BLC60VQeCjdY7jSIrCKFfHdUGbHCeT0wQIgeXa2I5NXhSEcWzyuhDkWhtlJUyJEz/wS/h8gVIaaUlcz2W8VrUdB7QBdbiWi+e5SMsk80axSQDO8oJBP+bwqMsoGqHRFKVCtBwbJSSFhv/6b/wtLl+5wp07d3Ecx0DePQ/f93FdB9/3qVQrVKpVvMBHY9xjFd9nYW6OxcU5FhbmaLUDpIBwlDAcjBgOBiXEPyWNI6RQCJ1S8STtpk+eJvzBN/6I69ducOPGi6SFpt2aQSnYPzikP4pZXl5lZWWVOEmwylIpvV6XhYUF6rUqK+cWKYqUSuBR5AlROKBe9wmHPRwL8iyhVvGJ4xFRNKJaDSjyjPv37tDrd1m7sMqrP/oBd+/fIisianWXSsXGtRT1wAEVY5EjVHbCzocp6+KUC23sRjthfWhOfHbiO/H029Ptf4wafKo+p8550j9TbkM5rhkn0CVyNc8zVFFMrKAJ3m/ajXbCUVkK4ykX4bNe93QT4/4eI+BPu/XOcvP9rNrjj/vkfSYX9pEf9/07fez+H8FQfawtrnFMo14LUEVKt3PAwswlHNdh5dwag36Xg+4Ay6uRa0l7bpEiK/DcCmlWkOWqDM5iXA2akrrs6VcN48CzRGJbBfPzLUZhF5mHhPGQahCghUOtuYBKQ5ygzubWNnESk2Q5WZ6TZDmqjEfVGzWSeIQuKY7AkAIXSqG0Ik1zcqVQaOIkISuMBWNZFkWkiOIMTY60bPKyZIZCMwpDHMcuC2YamiXLlkhpYTmGyUErNXFBqaJAuha2ZZFLiWVZ1Cs1Nja2CWOwLJdWe4YoDFk8XyXPc4TSaGkSsv/5v/gXPLh7k+WVczhSEscRtiUZDPoIaSGENPG4MonZElCr1gijCFXk2J6HH7g0VJVWvUq/3yXPMqQQtJtVbNeUrlFFTuD7uLZNOhoyP9ui3ZphZm6B7sEh7fYsbqUGVoDCZtjrkUQxL770MpcuXWbU61Gr1liZOce9e3eJ4xFvvPEaYRxxfvUirhtQ5Dm+VyFOQl5/7QfUqgGf+uQnePDggF73CNd2WDu/ShqPWFxe4Nbtm5xfO0ecRDQbVfq9Pnu7mzz/0goqqHIUDbADFyWNZTUGJ0+JYyPcp2yK0iY7+cwLJm41Pfn/WaTCadfa0+z/dO1JqMLp76SUWJZECsGgP6BWqz/6m+k+p5GXT302T33SP4te/wtoY6X+0SrXD9bfR3P3PtaKSwpFFof0B32KPEcI43KwLJuj3oA81wSVJkq4+JUKthswGnWRUhsXU6VmCk5mZQ6Ehvcf0NPiQxlWcxSua3H50nnOn1vicHedhcV5DvY7gMX2Xp9rVy7QaLd581uvcnTUAzS+7zEapURhiJCSSqWC6/olStJhmIVoLcky47LLS/Z0gCRJyDJD1WRZFp7vYdkew0FEGKcgjGB0bJtWq0mSxOhCo6VxUakyB81zAxCCaNjHcS0jTJXCcTxsx0LEAiEljXYLubNHsx1w4/kXmJmZZW97i7VrikJlOIAQEmm73Lp9lzQcla6hgiSK8FyHNE2Q0kZKSZIkRElM4LisLq8ghCDNEtIsJtc5juPgBy5JFLKyssho0KcoclzXZTgMkZbg0tp50iSkSBOWzy+xvLDIFz7zGfb3Dmm36mxt7XC+Pcfa2izv3rxNpVLHdx2Wl1b40Y9+jMhzlpYXubpwnfn5ed565y12f7rH7u42X/7yV2m3Z7h06RKdow5ZGqOykM5hH1sqOkf7DEc9Lq6tkaYx7XYbS0rC0ZB6o87156/x1ptvsnZ+lX6nj1A5jcCjnymEUFjjWmtjxWUGa+JSKzGuZq6fmnWTGNfUolqXPRl3Xrkie4zr5hiQOGahF0+c/6WKKy1BMeUSPN2pOZMxd+3Y0ho3KShL6xxbPpZ1DFKxpAFsTJB/Zb+G5WK8yhz3fdJZqKeO+77tlI4/vqYPJtx/1hbXB21CiBNutf8ilJd41gXTo+1jrbgc2yLPjLswjCIc22Zvd5fnbzzP8rnz3HzvFkpkaCuiIT2EI3D9CrbrkRWmDEa9FtCNS+qnsYvjKdoYSouWINTEzVAJPGbnmljMcPvOA5SQxHHB5edeQlowCjP8SgWkxA8CgqCOtAYm3gQmfuMaXkCtwXFcgIm70JIWlmWhlDIPqqas8VVgwB02vq9Is8KAL5SiUGrij06zHKUUlpR4rosUFoUqEEjyosC1DaRfWqYvMCXmBWDbNnNz84Qjz1RqvnSRdrttJmC5kjbVRiyiOKHf7WJJiWNbZGlGEkeMJYaUVsmdaMqaBL5PmmdoIIpD/IqHDXieTZ7CbLtJq1Hh4OCQvCgY+0zr1SrzF1awRMH+zg7Vik+e5YRRzOLSIrbrkiQZYTigElTx/CrJKGVrc5vvf+8HzLdbpFnK6uoKa+fPl5WLXeqNGvfu3sa5do2tjftUgoC7t96hGrisrV1hb3eL/b1t0jxnfn6O13/8Gq+88gpxYpCYS0tLrF64wOH+PoN+H8/zGA2HBM2Umt8mVLqEYhhuSMW4ErJACUxObgkaOv6faY3zaMD91PwsX5w9f896/wTBfbLv0y9OtjH4/SyX0hiYMfmuLHAqhGBhYQHbtk/AvIV+srVwEohxxqA8rp3lKnzc9TxBJpy4lg/Q/lRiQqcU/NOe69NA2p+2nagM/Rhr/FnaxzrG1SkF49bGQ4QuqFerZHnOg/VN9g87aGmzunYRx/fZOzqgQFGr10wNrTxlaXGeZsOUoj++tU+6WccDPUZBTX/uWDYSkxi9sbXN+sY2lu2xu5/wH37jG9x7sMuPXn+H+YVz+H7FEM2Oeyh9/rpQxHFCnuYoZWDplUqlVFYFaEWaxqRpcuL4ShW4rkscx+RFjpCUAsFwBHa7PYZDQxFl2w5KaeI4QylNGCWMRiFZVhAlhQHjl/WvktgwrAspJlbFzOwsUZwyCiOGYUgQVPEc34grrSanNc4nQ2tsKcmyfBJfG4NIjFKJOewcEoZD0AWWBMcS6CJDkLO0OMtXvvJF/vIv/0XyNCmv14BP9vb2OTzsMByOeO656yRpxus/eZP1jYfcv3+f7Z1tNrcesn+ww8xMg97RHsPBgE6nQ5KkeIHP3Tt3yPOc+dkZPv/ZT5OmCS88f50vfuGz7O1sgsrZ393CdSWfeOUFlhbn2NpcJwqH9Htd6tWAG9ev47ouqsi5dfMm4WhIPBiRJhkP1zcJRyG2JRkNB+g8RWqFNVEUsrTjjcYSQiBL6+UsAMJpm/8RF+Iztw/4a31qG/f2iKIZx6EeFTdaKyzLzBvPdXAsC5TGEiWbRXlxj3sq1elTOH1OT9qmr+MJvxWPu9ixYNdTZ1GSdT/tdmJBcuK8Th9repvuY3weT7rIUxc8/Xv0GaOoTrzWk3/m9ZMH8TEDKeCYtGrqHD5g+1hbXNqy6XT7LMzP4biSai3AdprUarP86Mc/Ynt7A8txCaMR27t7XH/+BlppdK5wfEnRGbAwV8O6J0F6xmohQ00PMPDog60m6+Dj2ITG9zxmWnNYrkuhfGxZQSlJ4Nd5+50tEB6bOzusXOiQ54BlcTTom+KJliTwPBrVGp1u11g0tTrCEnS7Her1GlmWME6QTOOMwLVxpIVEkyWmfhWWhdQSPU4CxcTILGmhC02udIkmBFTBMIvw/QpaGdh8XihGSY7je4ySFLSkVvWJkxFZ0SAPU6Rts390RHcYYjkVhAzw/SYatyxsnGN7Dp7vYytNFkVkeYZlO9iuy2gwohK42NIh0zlpXtDpH9Gst9BAtVIh8B0cC2q1gLl2m2jQYbZxHgqFE/gQKygkllVlOFQMBxla93n7p28jFFy9epGNB7fZ2NxgYWWF52+8QDWA0TBECEE06tHtdgmTBb7y818hiUOGvRE13+PLn/00c806y/OzzLe/hOvYvNc9pFmvs77+gGazQRC4BIHDaDSiSAuklszPzpFkEWky4u6tm8y3FwjsKsuL5xgMO2R5ilQpW9v3mVm9gcI1CbtaTs0zgdTqJHx8vL78yLw8z9rRSffcST/bydfG+j4lcM0PJ0LWmqhjDUJRaIVjC1zHVNB2LKu0yKfrJOupZbY80fXkry4mSnwS+3vSpT5O7o77mCjMaXZ4wTjheTweGo1WxalOxHRPPGnMTy9C3r+dpSQesc0n30/OZFpRnPY7Tz6cNunHK9DTxxsPTOmSnlK2+vRAlucntChlEif2/6DtY21xbW7vMBpFeK7HoN8nHEXYtgPCojUzz8LiMtIyl9jvdfnd//w7vPveO8ZtVPGQMufyxRUcGwOGKPt9vLPkjNWvOLbW8izn4PCIB/cfcngwoN8PcR2Xv/23/yp/9a/8BTqdAUmWcfvuOlGUUBSaMIwRlsTzXWbaLVZXV1hcmAeM7z9NUxzHsKJnWUKR54BGljlXgCG1dV2UMszshTJlUKQ06C3f9wj8ysTtOF3BGaSJ0WkQJSIwTnKSNEeXdZOjKCbOUqI4QloSx3GQluTcuRUq1SpJkmJZDlqZGEahFKMwNInJYUSe59iWxViwWaUVpvIcMLyHlIH6orCIooRf/Pov4ftB+TuFXwl47bXXcd2AJDGW2mAY4jgeSZIRJxmv/uh1wjChWnW4eGGNxYV5pNQUWULvaJ80CWk3qxzsbXPr5nskcUQ4GtFsNpiZaROFEW+89joX1tZwbQetCiqBh+PYzM/Pc+7cCru7u9y9d4fDo0MODw+QQtDt9gjDGMrxz5KYOArZ3trG9wKEkBwcHLC5uUGR59RrVVzH5piYlUcs/uMHc0pp8Bh015Sr9tht9aSNMxBfj99OI8PEhO9QPPL60WfluP/JcYQ4VihClqU6TCzWkqKc2+WqXxjlo09kWOvJNuHqmxKuJxSBnth7T/FvvBQ9thREuUgdKzIxTYwsjq2T6TIn4/2my84ccwQ+eWPym6fdpmKB5fw5cR5njMn0m5Ocgvr4+/J6TncwXnCMS+tQjsvxeD1uxqnHfP7B2sdacdWqdXZ292i2ZqhU6yBtoiQ1LiohmV9YJAiq2LaN77ns7eyws7nFGz95nfX1eywvzzE/10JojWuBLcsg8LOchB5bXSY+9dZbb3F0dMigP8S1LS6urRF4Fj//c19EaEG/PyIrCoZhRBTHk5V1lmX0el1GoyGWbeM4BqZt2za+HyAQeH5QKrDc0F0VmjhOiaPE0CHlOYVSCMREYVuWhe/72LaNLJkaxorLsiykFOSZYYVXSlMoCCNTgTlNcpK0IMs0Eotut4sQxoILw5BqpUKlEuC4No5jk6u89ABoWq0mw+GILE+xbYnrOgS+h5Rg2WbValkS2xagNaNBjOv6LCzMEsexcZcqxWGnw+qFi9QbLc5fvISSEsfzmJlp0mzU2N/fo9PpMBoOkVJTrbh0uxGHBwccHh7SbrVoNRtcOL+KLaBZr9Go14jDkDg2NdA8z6VzdIjve1y5coX9vX0ePFjnW9/6Ft/61p/w8OEGCwsLjEYj5ufncV2XW7duE8cxvm8WTZcuXcR1XZI4JApDOkcdtre3WFxcxHVdDg8POdg/4I0338D3fRNXFEZITyugR52DpaD8CIPqT+5rfLwP9vlJWPqU0it5dI8rMkqQlqnxJm2kcLAs28RjUYY/WGiEJRDSLNSQZSdjTuFpiP6UwD4psZ913J5y/6eRvh/onp12wZ11TtOaZ2phc1asbVqpiclSZLI/J14/esrTwzn5W35zcpgfd63ike8/ihSCj7Ximl9Y4vqNF9jY2EZIFyFsBsMIhGR+cZFKpY7rV1hdXeOzn/kM15+7ytxsC6UyIGc0POLC2ixf/fLzeLZGq+wMU/fpmkbjOGBZBkperThIIWg1q+xtb5IlQ375L/4cUroUWuP4Lo1mg3a7bSwqpdjb3eftd97hwcN1pGXytxzHYTgKy4KQ5uFWGoTlYHsehRaESUKUJOSFIo5iDOu6g9ZGydi2UYJKqUkhOgSo0medF7mJTZUTSWtBFBWEUY6QLlpbgGX4BbOUokhJk4Re74g8T1EqM5WT5TEjwle+8lWAEp1oU6n6VKsVlDLJ0UJqgoqL60qkBbYl2dvbo1KpYNsu3/v+D9g/OGRrZ5ebd+4yilMGUYKwHGq1On7g02g1SNKE/YMeW1t7WGgsKfDsgm9+85v0+kNarTaXL6yRxhGNWoUkGrF2/hyf/OTLVCouCI3lWOzu72I5FivnznH58lVeeullLl++itaGHf61114HBM+/8AJKKba29mg126ysnENIQbPdRFPQ7XZot1tIIWg06hweHZIkCQuLiywuzVOvV7BsgW3JyapcSkCoU6v2aQUwvaLXP+NtbFWc/fnj/j5qdUwprNLyFxMlbTK0pLAQk01S5MqgYz0XyxIT5YUwgJWx5aWlRksNp85dCl2yj5fHl9Nj+CzbswnVJ+VYPSkP6um3s+6FmFCmnU4xeP/t0f0mv+WYL/+YS3/q/fTvTr+f9H36fB891vh4H7R9vGNcSGq1BkkUobQiTnIsx0daFu2ZWZI4RmlTJNK2LZaXl1BFgSpykmhImMS0G23+8i99hXdv7THaPqB4ZgPWIOREifqzbeP6OL+ySDQKGfZ7WJZDNOzwyZee5/Ll77LZ6VBtNNDCJUlThBDkSUyaxNiOg0bguKaUvOM4tNttDg87SFuQFYYkGARSmByYItfkhTaADBRCHNe5yXPDJp/EKUWhjicpY3eMsb6Mm0cDVhmK0CRJThwXBA5UKlWyLKLTOUTTZH6uRRKH+I6L0gVK5yAMTF9KyZe//CW+8bu/RX93F40RXIVW2I5FkQlAmbGyJCpXqMLkqN2+/YAkS9g/PESTk2m4ffc+G1t7dDtDpHTJBn0GgwGeIzm3ukyzVjUJwaMBSRTSblRReUJe5Gw83KBR9alVq2RJzLvvvMeN55/nV3/lL/PDH71DURQMhgOCaoDreczPz9PvDdjd3eP6jRsAeJ5Ht3tEGI5oNOpY0uHihdWJVXv9+nOkaUKve8Tt27dMsrXj0Go1SwtTkuc53W6XUTZg6fKIel1ga0mWGyMEISYVqtHTRsP0g37y/Ydpzyo0zhY4Z/dhoCalO3pKGWgBYrw+Ghds1UYA2rbD/v4ugoJLl6+aKt/aQAOkkBw76Mw/OXYjaj1ZfevSCjCvx9EY/YFGbOw5MP2dZQWN93sCKa+GJ1L8P6Y99a15zI4nzqP0Roup19M//TBzSkxdm5m6j/cOnMWw8WEQlR9ri+vwqEt/MCJOCzyvRr8XIoSkWq0ad5vr0u32uHPnLvv7+6hC4XsetiXZ3d2iUfOZa/rYOuLG5SXkB7h/GkwdLwGeb6FRzM3OIYTk6tWLOBacW5rn2tU11lYXmZ2pEfhuudLWpsxHnpMVuYnxKI0QEsfxTBFHIXE9Dy00ozAhTQ1jfBwljMKIPDcuwywzXmSljNtRKY3nmVIkcRST5fmkSOa01TUOtiulSrSfNoow18RxgVIChF3mXll0Ox0G/Q6ojKLIAMVg2CMvksnqCiTnzp3n0sVLuK6HAKIoJM8zKpUA13MolFGulhQIKclzTZaZeIVlWbRas1SqdWzH46AzYGf/CCUk3cGQXr9PliUmtjQaceXyRb74hc8SRyNeeuE6/+1/87f4+td+gX4/ZG5ujq3NTbI4RpXVo4vCxABnZz2yLCWMInb3D4wrVhuy5Gq1Spok2LZNo9FgZWWFarXGW2+9jZSSWr1Ovd5gc3OD7Z1tbr73Dju72wwGA5Qy6NXhcIDSit29XcIwotM5oj3TJBz2iKORQX3KU67Bx7mfTgjQs7b3m6XTvz+rr7OOd9axxyH4438n+hTAqbjQ+LsxgEGI0uuHRqKwhcCWml73kEG/i+sIhCiwKEyUVZR5bMqUMLGFLA8zRh+Ot+nrPfadjIXkswnLqbGZ5px6liZ+xtufQnv6w0+5anm6Mf8wiutjbXFtbe7gCI1nOxwedDnqDbDcCmAQRkdHR/T7Ax48eMDcTIOVxSUEFq7rc+f2bYbhgAtXn2em2aRRdbAEhrKoePrKnGbBYpA1vufj+z6t1hyrS7MszrfRWUqexSiVoFSC54Bna/rDLoVwUYVJJEZrpGXj2C55oUtFo0nynP5oRFCpgogYjiKEHpe2z9EYK8yybKqVKoPhkDwv0LqgUqkSx6aG1TiuJcDEYpIE4BEEpVnlQpEbi7bb61OvLqCEJAgCZtpNLKFxHUngO+R5Srd7xMHhPu2lhmHw0IpqtcYLL7zIa9/7Hq161VhkmJwzy7LROqEoCvwgIE0yVKbQCOIkJY5SBsOIKB4hpAUSssIwwluOg2tb4FjkllGIlUpAvVbhS5//LPfv3CLwXV555RWuXbuGUDnvvv06m5ub3L97n+WVZWzfZ/ncOeqNOkG1yv7+AW++8RM82+UrX/oS/V6farWK53ksLS2ZEjlFwf7+PkdHR8zNzbK8tML9+w84Ojritdd+RKVSodlsMgqNQvI8n8WlBfJcc3B4yM7+HgvLS1y8cJ79YUhxdEB7pY1Q2lhapesFMR3QF08toJ60Sp9eDZefPPKDM39/Zp+PChs99ftyHXS8uhZ6kjRuCxtLSPIsNyBBy8ISIFE4lsC1NEWe4loFUisKBFoYSjEhJQrTl+O4FLlAWBZ5rpBlAE0LUXI/jlf++kyd/DRt7PY6LgD26PfTf5+mv/+9nWx/bl2Fne6AlaUFuoeHJGlGsz3DxsYWd27fZnZulgcPHmBbElVoRmFEkuUlN53mk5/8FP3BETqNuHTpOtHgCFtC8r5K6yR6yciE0scvLc6fP8/9Bw+pug7LC4tEWUizXse2JdWKyysvXmPv6JAoCinyBMv2SRKTAKyUKBOEDTtGluVoYVyJtuPgKo2XG6WWKUWhoMgNW0Ca54RRNDk/rSGOE9I0K0lNSzdLmfB56lKYJhXSGoQlqVZr5MmQJE0oModcFdRqFWyrwHUktSAgSVMScqJ4RJMClBEkUtiAIMsMW71tmwq0UtpoS4MSRFFCza5jWeAGwlhdqWYwzOl0+khLYVkgLUmSpKQiJokSnGpAJQhQrhF8O9ubLM+3uHjhPBsP7tA5PKTIczw/oCgyvvzln2NzY4P/5V/+a3769jusrq3x3I0bHB51udiaRWvJwUGXOMkA8F2X7e0tDg/2Wbuwhuc5hqFea3zfZ3n1HEIIXN/j/t37fP/7P+DFF5+n1WpSq1VotZu0ZmZ4+PAhG5vbbGw+5PCwT5qmeK5Dnsdk4ZBWkQMWjwrGD74S/S+hHSMdQWtT3UBKiSVgOOzTqNUNrZcNWRIjhKZIciou9KIho+4+CEFQrVIUgsANyLLMmGmOJI4HSGGhhTRxVQzPobQs45LUZcxLllXNhZ6kDJmR/tMa32OH5c/mmI86zM4EZ+gTb5+eXeSJTU8W7BOLXI+P8LNX0h9rxaW1IAwjCgUryxdYXVtja2eDhw8fMjs3Q7Vaod1oYglFlkVoYZEXmmq1gSZnzpvBcy0GnT0W51oI/QApBDyDCWu8bsadMRgMefBgnYZrMVNrsLqywsb6OisrM6RZTFFozi/N8cJzF1HqHv1Y0wtzkjhGa0mr1WIwGJaVjC0ajSZZkTMYDKmU1Y49P6Bq20RxRhTGRCpBKBPfiqKkTOY055aVZU3MeUrDtjGtuM5sYhLcHv8miRPCUNBuBGRJTLXps3ZuEdsWVCsNepnF8tICSo/JUhXD4Yh799bRhSaOEnzfQ6gCW1oUhbGu6vWmsSyVwnYck+gsNK6XkqUKaSmEK3Ftm3Mrc9iWqXx86fJF8iyle3RAEo2wbRuBosgT2s063U6HeqNJkuTkac7Wzi6NVpv/+//z/8Fv/cZvcevOXZAOoyjlsNNjNErp9UakSU6/P+DgYJ9ur4vSmvP6PMPhgG63R1EYlow0TQnDkJnZWUbDEMuSfP7zn6PdbuEHhuW/0znkwqWr/PN/8W+p1FykDZYl2dvbIc8qtOo1kzpQPvBCi7ISMqWkURznd/0s2vQcfz/B+mRBNG1tGX1l+pOWhdAC27ZJ0xRhgcpTbr73Fu+8+QagmZ+bIYsGVHyHwaCLVhk//kEXEAY5q2BpeYX9/QMsy2Hl/CprFy5hOz5KC3IlKEpvhVJlzGtc5As9VfXhwymOsUI4HdN6nLvLfFeeg3jyvh/wjB45t9OvyxOe3N6JNTxlyRtxNxV/OuMcp3ucfCtOFwQtdzy5Qpj8aPr6Pwrr82OtuJqtNqNRiC0Mcs51XebmZgnjIdvbW8y0W6RRxOXLlxhFQ6Rl4wc14iik2+khZcJevIsWh1y5ssbszG2SboyYyul6UjtOPAQl4PzqMj//C1/kpz96lTffuoMucmZna2xubVGtXiJNIwJH8MkXrrO0fI6do5j/9PvfMrEtLckLhWU52I4kTVPSPMf1AmzHxbJMLS0pLRrNNpWK4lB3SJLCxJom1DjSuEuUqRQ8XdF1HJEw9FGPrgQnAqgEbhgAhCleqUqFZwGu47B6boVGo4bjuHT2R6RZQqVumzIq0kIIF0s6VKt14miAlBLHs7EsGycwLtLArzI82Mcu630VShtiYClIkhSEIi8MqqoaBJxbOce9e/fp9XqMRkOiYR/PsahUAmrVKq5UqCLnp2++wcq5VSq1Kp7n8IPvvYZA8wtf/Xm+9ku/xMr5C3iVKpbtcHBwSLczZH5+iWZzlizL2d7ZJopCWu02w+GAJEnwPBelKszPz9MbDgjDECklru9xbnWF/f1dRqMBnW6Hy1eusLW9zd7eDvWmR6fXZ35+gTRLGQ37LF28SHNxgQSgOD3TppfHH42ge385cbY77Gkq7E4fY7yvAeOU81ALsizHsS3efvMN/pd//f9jeWGOYb/DaNhH5TGepWg36zTrVYoiwXUkzVaT+w/WSbOMZrNJkiRIy+Ltt6p84UtfxQvqOG6NC5efRwsHtAXlou0sVpuPqj0LMu5k/tqHEdiPI0TQnMj4O6t/IU54O0X5n57af/pnZ/Uhp6ahmnytj40sphTTJM9t+lwfvf4PC4f/WCsujaA1M4MrHLa3t8myHNsXJFlIs1mnWa/z3Tff5DOtT9FstbGlje24tLyA7Nx5up0NLFugtMfi3AVeefl5Hv7xj55pbWZZEksIbBRrayt8+ctfZr7R5P/7z/4l9x9sEQQXGDHg4eY6c7NzDHsd5ucXac3Ns5zY/Obv/gGBHyAs1yTWphlCSFRZE6socjzXQ2PcgUpppJRUqgGDgeFYLIoxy70BFqBBy3FMy8zSMTADnhQUPQ5qa63L4o8OURShCo3OQhYadRbm55iZabMwN0evP8RzXbQuQI/r80h2dvbY2tzC8306Rx1D2Osaa6xIM2zLYTgcEccpVpFjexZJoskSTZ4V5dNSmHpNmaRWqaDyjDyNGUUhURQRhSMyR3L79m08UfDitSssLy3h+UHJkehS6JyZuXl2t7dY39hkdXWVz33hi2ghefW1nzCKIrY2d5m78RzVWoMwjGi1mgSBj2VLDg73aLfbtJpzDIdDM/aVCnGc4PsB29vbVKpVNrY2GQ2HhGHI/MIC9UadvCi4dPkS+Z27vPDiiwSuzfb2NnMXXgI9FczWYIgJT6+Wn3ISPoXBJKaE3QdRh08jZI6F0RSQQytcx2X9wV3+zb/5N9y7e5v1ezfxbUjiENfSVDzB4U7O7EwdrXIsCy5cPI8lYjynIBrtln3bdA/2+e3f2sJ2q1hunb/z3/3faMwuo3IFwikFaAlCwsS9xu2pV/ynjdHpz6YVwPSHYnrn6Y7MeDy7jB4L/LMWFafdceV+j4YuT57etAI78Vec3v2RSxifyRh7PL7eE7LkFDOHOH2w6W4/pPX5sUYVXrl0mcWFRaI0wnIkrZkmYRgyGoZEUYK0bYZhRLcf0mwt4Pg1hO3g1yrMzs2xtLSCLW2WlxcQMuPSxXPIMwFEUwijqU8AisIUe2w1Kly+sMqbr79GFMdU2y0GmSJ3HBbOnaPbH/DTN9+hPxhSrVaIwgFSKALfA8DzAnw/IE1zKkGFWrVKniToQiG0Jk1SLCkRQhJGEXmeYTumJpfrOfi+h++7xm1WuviUPuYZU08lsMyVSzTo0gLKFaMoIckyojRDSMnK8hLXLl9k6+E9dJ4x356h7vnoJAelUUVO5+iIBw8f0h9F2G5AGBeMRhn9zpD9gw6jMGIUhyA1WUkQnKYxQuRYDiCN5ZUrQZxq9g563FvfYBCGJEmCZdvMzS9RqTQYDGLeu3WX927eJs1zLl28SKPRoN/vUWQZly5d4BOffIUH6/fodI/QwozNi6+8zM//wtf54pe/yh/90avcvfeQ/iCi3ZrnyuVrXL1ynXZ7lm6vz2HnCCUFb779Fmla0GrO4blVFhaWkZbN+sNt7j7YwHId3rt9k5mFeRaXz5EWgmpjllGc89N3b2N7AcNwSFGkoDRoicTE/0SZWTtOQz4rl+b0a4FA6jHrAxOmCCmm9iu/l+V3Qk/25lEhyOQzIY456U+iw46fh7FMMm7e45W363qGPNl1yOIR3//Od3j77TdQqkCpYkJxFvg+lgZJQRqHCJ0zHPbZ3Nw0VcBtiedJVBHSP9pBkqLzEUXSxxEJ3/jd/0B37yFVX2CLHKkLQ0QtbTSmWKoQ0oBBpCmfcpod47TWnyQ0n1BMZULa2JXOFBvGuLLECQ7C6d8aBppjXoljGpCxQhEnTqXc7+zTO3neJ445Tm9Rk+sTU69hnCt4/B2PjMPZ26McheNFgJmxUjM1ezkpR7VCaAXlJvS4kM8Hbx9ri+vihYuMhgcEgUez2WZxeZ68SHnwsM9gaJB4wvbQwmVl5QJ37t0hLnKqliaMRri2x8LCEkf9LpFQuJ4w0+vMMNcZYr/cUQjI0pytjQ1E3uDmzZs059oMwwGxhrBQREnO7u4eqysrDMOQUTREBB7NZoNhMiyrIHv4XkAcJrRnWriuZYrsWQ4og8wiK4jjiDwvSNKULM/wPM8UoERSqBRdqKdcVZ/eS5QLN4UU4NjSVE/VlimlIiFOM6IwZNg7JAkHSO0QtNrsPdxkYa0NUqNFwb27d+l0emRJgoXAti20tonCmCwv6PZH+IEECb5n8p5c1yTmWpYmzyDNCopckKmMOw82WJxrl/x1GtdyjUAQLvXWHJ4jmFtaQRYJw9GI2blFGvUqaZrQ7RzhOhY7O1ssLS/geS7VRptr15/DdSu0WzO89/ZNNja2uXBuid2dbRYW5tnf2+bKc5fZ2dtnMBpx4dJlBmHE/mGHZmMGXRTsbO9wuN9hfm6Jufl5rjy3xo9/8mMqzSbtWXjjzZuEccrO3hGqSCmkQ2V+jZUr5iG3hIMpbXJsIRuxdQyWOb22Puv1SQ+j6WW8VBFT34+R3Y/IwxNWxsljjl1vYvxgCE4oKcexJ0hcKS2CSpUkjohHQ/7km3/M3s4W3/zmHxGGIwrXwpZQ8Rxc10OS41oOrUYDrWPq9QqDh0Pa7Tk6/R6u76CzlCLLzNxQ2lTktgoCW/OTV79DvVrlc18ULCxdJBOghUWaKWzbmTCTxElUxt+MCaG1PnWNk0s316fH+5VoRVmWXtEKYfCOyIl34tFnaTyCWkg0EoMWNff0GF2vOSa0hbFKnSgtxud7VtOnXo+v59hEPF6STDqbXONTKw1xpuSbnO/JJIRjDsnJuehS6enTvy0XyB+wfawV1/rDBzhWUWZwam7evEleFPh+QBAEFEVBo9mkPTNDfzAwbAv1gFHYNdDl/hFFodje2cVtWdSqPs2GR9JL3vfYYsrWHsdn2jNtrl2/zMONdXb2Dtg76FOpukgxRzoYYeewuLxMoRRhFJHGHaIoAsYwcY3ne4xGI8IoxPM8U814irR0gtgCiiIvwRYFSBvP8wxtU1G8DwDjyW08nZRWICxypRiFMcK3OTrqcfvOHWbqggvnlilyycHeHnuDXdpLV7HcGpZl8Zu/8b8RhkMEkGbguxKtcoo8Q1qAsMprMRN+MBrhe76B49vCXMvQQPmFEhS5IvCrRJEmK3IOOz2jBNOC9QfbzDZc2s0Kl84vEkYR3W4XSrdRe2aGPE1ot9okcUK320FYNo1mG4QFOuev/fVf4/d/5/f47g9+wJXLq+we7JPlinsPHrJ7cEgjTdne/T4Li0u0mk0WFhaRWvFgpsVw0OMzn/kk+4d7hFGCY3vcunWbxWHOYBCiEUhhYTsVgkqdvIA0KXACG50fP7wn3U9PElqn2iNSyIgO8cR9niC8TiWLjveewPUFx8qtVGaubUSJZZsqBpa06Pd7/NZv/SbbGw8pVE6lEoA2FQ56/R4V36NVcfFcm3Mri9RrHltbG6gi5+7duywuL7C2ep5Xf/hd8iRmtjWDazuMwgFaSwa9HtFoyHf+5Ftsbx/xt/6bv0ulPoOwhKkugHG9K2WUmNYapFXGYo6HylyOKhXQWH2cHv0T4viknSpOvCs/MuOjpsbxpFgfH2G8jDA9H6swNfnsibHOcUzppG56QjvL9fjh2pMcmuOZqM+wsD7MWXysXYWbWxtEcUiv12V7Z5tur0MYjhiOhqRpShzHNOp1tNYcHXXI8oz3br7D9vYmaZaiFIzChHffu82D9YdIoXnx+St4zrPpcyGkYYZA0el2mF+Y5fz5NUYjeOvt+9x/cIDl1uiNRqxvbpGkBfVGm63tXTrdPlJYSMtGC7Aci0qlQhiGE4ocpQqkJUmzlKIoSJKkpG+y0BqyrDBJx6XC+ijQS0oDWtJuzzDTniUvJHGSU+Dg+RU2d3bY29+n2+8zDEeAwrIlWufYtqTf69Co13Aci/ZMhWrNx8RxzAp9aXGOSqWGbbtkaU6a5KbIo1/B83xs2yHwAzzXQyJxbI/tnV0GgxHDMGI4jAwllWXTnGnh+D4Pt3ZotmZotdtkWUIUhXS6HbI8J81yrl+/bi5MKaLhgM7hPoPeEUHgUql4XLi8xjf+6Lu4fpXtvQPqrTZeUMP1qkjLKzkcB/iei4Vic+M+zVaN1dUlPNcmjiKGvT5f+4Wvc/XyVRZm5kDlNOs10jghHEUkSYHtBFiOa3AZpddITFw8Jy2kE1LycRtM4kuTONMT9uHUvmdtZ/U5trImpyUElmWZ1bM0ZM1JHBNHEd/81jf5zd/8TfZ3dw07jLTK+KyNZTs4ro/vB9SrNVbPnWOm3WJ5aYGZdguJpnfURWjB9sYmjVqdwKvQOeigClicXwQNw+EQ17HRRc7O5jr/4d/+K/a2H+BJhUWKUBGOrQh8GynKlAwhEOLYNTu5Lo6tXTDXK4UBBiEm9IjIKcolU4JGluPJ1BgdbxKNFMr8rhw3Q9eoH7kPE0uW6e/K83rS/Xq/78+4tz+T9pi5dfZc+nMMzhCA6xoY9Sgc0my0SdMMBBwdHZFlGX6lytbWJloruoMj4qjHztYD/uLXf5HNrV263S6r5y9yMMrYvn2Hc+eWcX/6gDDNn3jsMeJKa0MpleYZd+8+wBIRb/30bUahJIkTokSxuzeiFki2d48Iw5if++pXkUrwzrs3cRyfRAnyJKXm+1iFhXAEQlZACLIiIy8KA+/u9YjTnDhOCEdx6WICVWhSlSGkqYj8USguAQhb4no+7VYNyxFk4ZCdvSFJLtHC4t7DDYpM0Jo9z4XrnzLwdVuQ5glxHOG4NtLyadZrqDynUvWIw4goTsjznDwHIVwMd6Eiz02NrTRJkUJjSRfPk+gi5pd+8Zf4yWuvsr21RVwoUqWxpEWcFoyijPZik9n5JQ47XRr1Crvbm5xbWcH3XTzPJxyF7GzvEkchs8027UadJMs5PNil2Z7l97/xn1laXOIv/KWv8Z0f/JArly/zxk/f4fkXb3Dt+gvcvn2L4Sjm+rUFKkHAwd4OaRLSaFSQUnPv3p2yMvOAdqOFfdnj3PkrvPnG27zx5n0GwxHziw1qtSbVagvbqZJqOYWAm4ofaTW1Dn/SvTwuynjGDD2x3wlE1xl7nL73Y4tKMxamYgIvE6WEHVclti1rwqtZr9f5nd/5z/zP/+yfcnR4QDToG47BDBQFKZrAd/BshySJ6aqEG1cWqVUrHBzsM1smuC8tzDDsdxn0CuZnZ1m7skq1UmU0Cqk3GuzsHBKnGZ5ruB9H/SPeeO37LCzMsDDbxq9WEZZDmBfkZb6cViCljSqmLaTShTceH31s4Yz3sgRMcpYYKzhdjs/0u3LchC5BDNOWbxnI0tPOtfFPxvfxrBvzPhZXeX+MrvsZKqX3adNHNnNmar6JjzoV4GOuuLI846h7hOO59PpDDg4PaLbaJGFKt9clSmKc4RDbcun1Oty5f5Nr1y7gBx7v3nwPqSyk7XP16jne/s/f5NbDDtdf+jme5f6PvQRJpri/ccDsbIULly7z7rvbVGsBUZIjpEV7dpE8TbBUAbZLlhSEUUZWaLK8IM0VYhiSFxmeG2BbHmka02g2OTo6Ii8KwzWIqYIchqXiKt0bSkOeF1NQ9w/STkY+ikzTG4TkKqfie1RmAsj3CJOc9twKBzvrJFHGguvgeU7JuacQWjIKDUt6teKYUizacBNWagFZkbN/2CHwKxRa4zoejmWRZgWjUUKWprieYTCxhE0QVHm4vsnS4jJpkrPf65GEIVFS4HkuaV4QpQWjKCaME/zA59at91iYm2F5eZkoSUBDFCdU/ID9/QMWFxcp0hTXtkmiECE0WzvbfPrTn4E7knfeu8fFSyv8wR/9CVevXmE0DOl0BvR6A4atEXEcMjvbZhj2sCxJGA6o15o0Gk12tnfx/QpVz+Xv/J/+W7793e/x+us/YXvviOeu3uDi5WsIy0EUZZREABPOPTUlBN7vPo7v1xhIUX46AVKMoezj1yd7ftw0Pxa0x2XfJ8oLJn0eW4cKx5LoIufWezf5d//u37C+vk6axEhVGPehVgjhkBcplcAlDEcmduXAw/WHVFxoND1mmy0ajTpJVmAJwfzCMoHnMxxEXL101ZSwSVO0AstycGxJkWf0O4dUqnVuvf06japLe26B9twCcyuruJaL5ThkmS4BSyfHaxwTVFAm5x47bY/Hz1hJJymupt2xp9yI5XiNn8UJNKpEj45H9jh+eNyLQUJOu/rFk/1qmhMy63EK7GdabXkc/3zk48cvrv7cWlyO63BwcMDq6jmazSZ5rjg6OsJ2bbI8x/cDZmZmCUcRR519fM8hzzOuPfccVb/G+r1NKpUG/VHMYJjTbraZn5t7asU19pULBIUCYTnMLpzj06+8gJTf55137uL5Nr6v2dzaodVok4dDfvr2eyyvXWB5+TxvvvtDlPCxXJektJbyMGR+fp44ickLRRSnxEmXMEnQCLSSSGmRpXmJmtKTfJkPQ155/DtBgSYrqwxXKj7CckBKLMflqNdDC4tCaTq9Aasq5+bNd1m79kmE0AS+h+NaJKZYMUgockUe50Rxgu24CCEZjmKUUsS2hevZoA1RMcIiilLDCqIErVaLmzdvMT/f5hf/wi/y7e9/nwcbW8RJjiqMANPAUaeDtM4btn2dIyUkSQTasIDMzS4SRyMKpej0evi+R61WYzAKyfOcJCvo9ga88qlX2PiP/5F33rvF/NwcDx5u8oXPfY5PvPwKncM94+YrqZruPXiA47js7O1RqTUNf+HGlimnY7m0Wm0+9cpLLM7Nsrl7xPzsHI1qk2EOxSQ5tFRWQk7u39M+0tOJsWd9fvb9fXJfk/dTr40LWhEEfllZ25yrbdtobeLL3/rWt3j33ffYePjQUI1FIY4UVN0qruuSq5wsTbGENKwXrks46rKzvUOjYqP1LHYp+rWCQd/k/822Z5mfmePB3XWk7dDp98lzTa419YZPnmVUPYew32F38x47S3P85Cevsry6xouf/AzXnn8JocCVLrnSCGGRFwWObaOVqQ6QxFlZDkmUSczlwkmWFlKpYMZpJ2YhUKojIU3epDYlhSwBWimKPJu4Zi1LYls2WWYWsho9JefHttv4OGrCbvHIXXwU53Di/k5D/k/nj33kls9pY3DKjfzIrkI8Enf/c8tV2G7P4nuSwWBEJahi29Dp9mnVG7iuQ1EUnD9/gTgOieJZgsBhYXGGNElIUsWLL32KMIp58HAdIRTgIzAQ92drGiElh4d9vv2d1/AcFyEtms0qRRETx0NGlo/UkmGvh3rrPe5vH/D2O7eJ45y4iLDdHMs27BlFYZjutZZ0u33iJEVaFllalAUfLZQy5LpwPAFMYcmPZmJqDLN8rz8kL3KStEot8ElSzcb2Aa+98TYvPHeORqPNgwf3aS+sITBccirPSoon8FyfvFAMB6F5sJRGKfMgawRpprAUIAWWtJHSResEz/UoLFOx+KjTBaUpioyNzU0W5xfY3tkDLHrdAd1Ojq0jLi3XjeUnBZ/45CfIsrS0WmfY2d4zNFqFYbp3/CphEnN//T6W45IXgjCGMIm5dfsOn/7MZ3nzjTfZ3t5HA2+++S5f+4WvUm/kBNUGtiV47cc/YHv/gC99+Uu8895twijm/v0NFuYXybIMKcG2Bd1un5l2k0JLWo0GRaZwPI+sVF5C69LlZEb+rDqyjzZxaoF12jV41h19cn9j5KA+hsohpCBNMxzHwXGciRBUqkAKiVIFjuPy+7//+/yn//QfSZKUQmniKCyBOJaJfylFnmVY0iJLE1q1CkUSYXk+uYJcQ6VSY2Zuga9+5RfwKzW+/Z3vctQ54ujgLtWXayzNLxFUKjzc2cPxA4a9Lp7vE3guWRyyt7NNEvXZP7eIbTvYZLz54+/x6ve+zY3nX+KVT3wO26liSRcUOJZNptXE+hGiVD6lgPc9jySJcGybQhVGSU9iyGLibtGAF/iooiCOQyxtEfgeWsmJEszynKJIcRwHVRjLbpx7Lkorb2zclQb4CWomMXkzpbmesLp5XAzpI3UnjocBJvPlrFn2v7sKT7Wd3X3arYAoSbFzU5K+Vm9gWwZqm2UpP33zp8wvzDI722Zjc52iKGi1WqgCjrp9gkqVhaVl1tYuEmUOD+7fJ03Spz6HcUBXacEoirl1ZxtbfNf4uIuMpaUGcazodzv0j4bMzzY5f+Eylh8wOz/kjXf3SfMCkeXYjoWgbxRWb1ROAoXSEpSx6oxyGrsEfybDyviJUBgXaNYPSdKMgWsR2HZZJPMuMy2P+fYM0jJlO5RW+L5PlCs+/7kv8Id/8A3yvCANU4S0EQg8zyGKYgAs26WIMjP/U6DIsG1pilcWCY7j4VUCVG4KXfZHI95+510WFubIM0NnVQt80jhG5zDTbtGs17Ak9LpdaNQp8pw7t2+RJAXf/u6PuXTpAjPCpjuMOTzcZ2P3EBAsLJ/jQqWGlJrDwwNq1SovvfQiv/Pb32Bzo8vBbp9rz12nUQvo9IasrS6hLY9RrBhGGddfeIlwOKLRarG1vUO71eQH3/8Ozz13lUF/QLs9R5Zk1Gu+qfCbF2gtocywO+HEeyrGjCc5+54OOXZyDz2Zy2YhJkrvj8L3DCIvS1MorSwwC6ZBv8/v/d7v8ZPXf8xoOEBaFmmSTZCtmTZ9KAUqz0mTGNfStKoeL9y4zp333mYw7PPW27fY2tzgM5/5FCtL57h3f5ud3Q6B75HnIYdHXQa9EVevX6faaLJ5eMhBp8v84gI130UITdV3qNcqDHuHNGdneefNH2P7FXZ39xn1jjjc3eHS5WusrF7CdmvYnk2Oia1arrEcZalEtNYkaULF90niCNexQBdYtm1gNHqseEx5oSwr0KrAdV3SKOL73/kWzWadq5cv4bouru+hy2rRCoVEouU4iqgn0HAty1DYiaDR9JvjNIdH+DTeB/Tws1Agf1btY624+oMhg/4hruvguRWCoMb6+obhRstMscPhMKTVamIJi4frm4RhglI2B3tHVCt1Gs0mtif49Gde4qhfsLkT4jo/IcqeniFeComphCxxHE2nO0DlKVVPksaC2VaN1A94cG8fW2r2Do446PTZ2x9Sr9cotMMoDgnDhFE0xLaEQWBZEtuxSzdNgbG0hVmx6ePwvWk/mwmpgUJBlGQYf4jAswWXr1zm4eYW6/c2uHb1BkdHR2xsbHChNk+aKi6sXSRNcvLMKFjXNSVWpO0SVB3StMC1BELEKK3IchObS3OT5BxGKUS5WenbEse2cS0bvxKgVcH5lXk2NndRWpAhSaKMO7feIxvs0P/0CywtzrPx8CFb29t0jrokmcYNKrx18zZf+rmvsNsZIO0A262yu7vPwdERszPzQMalC6sUWcr87Byf+8wrLC8e8O577/Htb3+Py5cv0J79NA+391nf2iPXNj/88Ru88tILjMKE5194ic31dbIsoXPYZ3vrIdVKlTyNadaqpOEAoQqEVcY1Sregnvz9mdzGp27HNE/HLrOxIKzVqmXJnIJO54gf//jHfPvb32Zra4uHDx8atpUoQlMm+o6ReYDKsxIda3Il49GQdrOB57kMh5p0mHD+/DmyXDAMUyzL4+BwSKVi4dg2ju+Tpzlvv/suuZQUWlOp1dnc3mamUUFkCRfWlnj++nXCNOGdm3fY2tlnbn6WVr3JYrvGzsNbjLqH3Hn3HVYvXePGS59GSA8hjEUlpcW44pe0JLY0HIuOY7gwpYA0iRC28ajAsTJIyzyzNEn51//qX/KjV3/A4twMnuvyyU99kpWVFa5cuYrjBdiOD1PLhPGi4dhlPF54TPsLH1VGFpxQYqeV1n+JSupxru1nbR9rxfWrv/JrbDy8w917d+n3R2htMz+/QLPZJghcNjc3eeGFF6lVq6hC0O2EXLo0S5JoarU2cRxzcHhInA0Jk4SF5at87eu/wP/8v/4hvTB+upPQoIpj6KoWmsEoxNKaeuCZpFpZMEpDfvFrX+aw1+XlVz7Bv/33v83DjS38YA4hA1NKRBVESU6ea5QGqXVZYdj4w23HMkX1dPGz0lNT7SROSBWQZBqhc1bW5rhw+RKjjkd3/4A0z9HK4X/7D7/B1/6yzae+8GXe+uk7RFGOKkyF3+EgxbZtqpUWQmjyPCNJEhPTy00dLukKRMlxJ4RxwZgka3BtSWFBv9/n+tWLOLZFtVLlxo0bHOzu0KgIzi3WWb/zU44OD2k1a2R5xvPPv4Dn+DzY2OH8pev8v/7JP+ef/NN/yUsv32B5aYHDvT12tne4dWuLl16WrK02efe9t7l84QL9fo/5uVmuXL7G9WvX+ONvvcqde9+jNTvDxQvLCCfgYHuf9kyD2/ceYEvBvQfrJOGIdrNGsLJEs1Flf3+Pq1euorTkzq136aY1LrzweUQxjmucnlL6zLtw8vacXrg8Yzv102lk2tj1IwVIYUhy8zzn3XfeIQgChIB/9I/+Effu3yeKQrQyLuAszRDClNspigKpNY5j3IRxEpPlKdXAo8hTVG6zsX6ffr9PGKUUuWJrp4fr7hNFirn5JWq1Olvbu1y8tMDm1jaObZMVilgphG2TK420BO12m+HhHgKF5zk0201u31lneWmeerXC5YtrDI72iKKEuu/x7T/+Aa8MB2gEL3/6i6SqhEsIkEjyMvaopcCyJXs7W3QO98nSjPMXLlBvthEYF6jSYFkWTql4EDAaDdnf3WVvexMp4OZ773DtxnX+z3/n77K4VMG2DSEwpau1JKcyyqvEOBwrtdIdeVrQnxGPPK20Ho84/bNp04r1z7XiOreyyvxsk5m5OTw3oNvpkmUZlYqHlIatPQxjbNulyAvq9RZFIUiTnKJQDIZDZudnSJWNZeUM+z021u+CKng6sSBAWEgk6ALHsQh8G0vk2BrSvAAtsR2PRl2wt7NNLi3eePMt4iQmzcB2c1zHUOb4vk9ehIblWoHjuGRZWvIWjlFKomTBPuNsPjJXwElX07jLLFM4AjzfJ4nNGNq2TZImKC3Z293hj/7wDxhEKT95/Q0a9SpxnJKmOa5ro7Xi4OAQs8K0yLIcz/VROqFQBXGa49jSxBmkNDEvrbFtQRB4oHMG4ZDbd26TpynVag3Xsfni5z/DwmyNH37nD4jjlLxIef0nr/Hpz3yWcyvLRGHE3OwMg+GA5eVFXn/rIal6h9WDI/IkZ/PhIZ7v0Gz47O/vc/H8ItVKhSSO+eEPf8KLL73IxUvP8Tf+5jL/73/yP/P7v/dt/uu/+at4lRra8khyzXu3brO6vMzsmoFxz8zMEI06LK8s4zgWqsiI4ow4HLK18YCVq68g7KCcZLqMs2i0GN/c95uBj7oDJ6GPp5BVcnxjy3k1iVdoU3EYyvlW5KR5ztvvvMO//tf/CiEESZJw795dlDZxq7RMYUAb3swsyyeBeKU1cWrSH8bxM5N/WHCwv2MsGcugDh9u7dLvDwh8j5dfedkAKFyB63oEgUueFziuh205dPt9RlHE4vwqly5dJp1rYeuc3Z1tLl25wtXL54nTnPX1+4xGAzY3NlldPU+rEVBkEd3DXd54/VU++4WvoHKJ1rKMKxnlUeQFOsu5f+cW//7f/Rs6h3vMzLRZObfKz3/tF7l46TKG2FqihaYS+KbumCP51V/9FX78w+8z6Jnc0aM4olatsXZ+Fcf2ycvSP5qy9IoeRziN1hov2sz78rUQk7kyfdvHs8S4dY/ny6NAjanvP6JF75MT5E+DhU799kPKqo+14kJIlLZxZMBse74sAZ+T5SndXo9RnKHCjP2jHihFliserG/g+z4a2Nzc4Hn7efb2d8mLAuixt99lrmkxGlkkWUGBRGOVJLUmkdAgiyRgIRC4FrgCZqouM+0qSRYx06qjVYGyaty8e8DltSV+6es/j3AC/tm/+F9x7SYL8zb73UMqTZ+6dEkOI9O/ECYOok014KIwFojreuR5UX72KOz9o3MNHCOopj+RwgBXRoOQg/1Dzi+1KaIIy7LIkgwpNA/v3eY73/kew34Hz/PxS4ofLwhwXZf9/SPDAI9JBJVqDA0uyLWmyA2PnS4UriWQlkQLRa4KpADLcllYXuXBvXXevfkA3/egCHnrzW2i/h5rF88xv7jI3bsDtvd26HWPmGu3iTPN+naHpaV5ajWX+fllLKvC3c33iKKIT3/iKkk6ouLZfP5zn6NWr7OxucPbd+5y0B/QnJ1lbnaBtbUFfvTj2/i//S2u3VjDq9k8eHgPz3bZ2T1gcNjhxtULHOxtMzPT5qjTx/dqHOzvU2Dh+i6OJ7FESi5c0JYJYSgFOjv2Dp2+laef/LNu9TjYL0uBynEdNuDE62m7TkhxDGfWJi9QIMACYRlX9Xu3brG9t2v4HwtDO6aUKXZqORZS20ShYT/JogSEpFCKtCiwdYF0bSxbEsYJlUoVz3ewHY3vQaFs0sIg7jLAE7C9vY3tWMzONGk3G/QGXZJCkasUyw0Q0saWDirPGfb7XL90kaon+dEPf0Cv08GxLKzAYWXlHPsHh/iVAMux6HePSKI+9269w42X6qg4wbYCCqEphETaLuQFji2I+l3+P//j/8Bo0CFLR8y1K3hWQcuzCFAU0kbbNmESk2lTUcKWglqlQtX3ifuSuMhRqiAa9MijEL9mYr1aaHzHQ1uSNC9QhaLIlSnJUmoiNVmoHmeLjW+y0CUfYolsVGeokbGFM0lpKO/7GAzyodsZCMeTfppH2/EMHMcTP1j7WCuuH/zoVY729jk6OMT3HM6dW8YPPHqDLoedDr3BwJQP2d7BkhLLcYiThKBSYW1tlUIVPHy4QZIlZGnG8vIyiwuzfPqV55hbGPDmW3cIU02uJRTjR73MXxGSQmnsUsl4tsXq0gwzMzXWLp3H83z+5Fvf5ebNbUaDmMCpcGFtjUq9Ta87JFMeWkKeZSTJiGqlSbNZI0lS4jQ3yiDLEGhs27AOGJfhn5X5b4Sb1oput8fWls9cy8f1AxzX5eCwR6u5jOpnjAYDBJBlpgim49okSUShMhzXQiWmfIlEkmU5hVJl3qdZkRclMapBpAniJCHNUmxbIrTg5p37dA4OEVLjBwF7+3scbG9RryiuXr3K4sIMrueyt79HGsVUgypH3SHt9gxx4RL4Af1BatBsuWJpeYZWu87O5jqO1Gzt7LBsSdKi4MrVywz6QzY2HiK05td+7Ve4efN/5Pvfe5uZuTaVSovlFUm/2+X82kVIR6RZTL3eYn3jIZcuXuLe+j2G/QFXn7tBGiUszzTIkxBhVdDaQuspUMR4rE/8ZeLGe3I7CTcTp/5OXo9XJKWM1KWwPE455hgxV8a5PN83bvU4xHEcNIo0z7Ass4DLi3zy2fFK32yyzOPKlcZ2LIoiY2FhiVduXGK2VeVPvvsqG9uH1JuzZGnGc89d4fBgjzRJcKRkYW6OUThk9+iARnuOQX+E4zj4rg9asLW5zSvXr+C6gmtXn2N7d59Ot8coTjjodHFcl/NrawyGI0bDIfValbxQ7G5uQJHiuoFB+aERZFhopIZvf/97vPfTN7CtgmrVo+q7NCoencNdhCo4f/EaucihiOj3h1i2Q7PeYGdrg+FggBTgew6DYcp7777NP/2f/gf+8i//CkGlxuLyCkkaYzkuSoBl2aZmGwaApTApCI7lkmqFqRNdHBMlTyyv8t6einlP54UZS3o8P/SJ+fBh2gmb//S6Sj9BNeqxDP3g5/GxVlzDMOTg6JBK4LOzs82nPvNJbMeiN+iiUSwvL+MHAfV6Hc91GQwGVCoVNIrNzQ1qtQrz87Ps7e+xs7tLp3vEhYuXaFQdvvLFTxKGI954ex2ENfHejEER49IJCEGRF8zMN6jUPPYPdvi//F//e377t7/BwUGXLFbYlsYSgn6vx2CUsrfXxwkqtObbNJt10iRF6xHDQUSa5cfwWAGqUGWxSiZILSnl2QPyM21GcQpHEsUF+wd9wxo/GmHZHpbtEMUpYRTT7Y0Mx2JhFLCwLWr1GkEQ0OsPKVREnqcUuigRVNoQR48DzeoYuWaayQHRJgLNzu4egetgCcnC/CI7m/fY3dtHzlXo90f0ukfkecbu7iGz7Rk2Ng8ZRSkL3iyuV8GyHA4POkirSavVoFZz2dx8iC0K/ErAq6/9iFeKglGYcOPGNY4OjtjafEi9EgCCL33pE/zRt77Hqz98nRvPP8e16y/zh3/4u9huwCc+8TzvvPkqo3hIo9UgqFbICkUQBCCgEnjcuvkuzXPP4VTLh7dka5/mFP8g7VniB+aI45iKnqis06JEa8M/WKvV6PV6pGlCtVqhKDJT0dnzyHVewv+lAW9oVULgDdrWtmySNEWpAtsR1CoBKk/Y29nklRd+gdWVZY66Idu7BywutEjikFazSefwAC0FWRZTr1VQ2wXD/pCDoz7VapVGrUq/H+Lbgl5/wNzaMkmjTi2MDNLY9dk/PKRaqTIYjFheWmR3Z5tavY7v17h4+Tnu332Pq8+/QqPeYDgcMhoMGPRHUCjeefNVZlpVOp1D6rU5PNel1+3y3e/8Cd1Oj5//+l+kHw55uLlBbzQEITh//gJv//Rt0sQktadpTOA7FEXKj3/8KoeH+1Qqdc6trnH5uefIi5y5+XmqtSrtZpOK5yK1Ydd3tCTOYlzbLYuvlp4e4/I5eZ9K8+dR1nVdKq0xGOS/nJjXh2kfa8W1t7tDoRT7B4c0m00sy0YVOdKy8H2fVqvF/Qfr+J5HrV7hqHPAKDRlFcIwBOD8+VXQmmajweFhh43NB0TDHqvnV/n5L32Ko86Ah9sdSt54s14RRnEZl1aGZQvSbMTS0nXaLZcfvvpd3nv3p1hArgVZJsjzlLt37uBVGji25sL5edaeu857d25z2OkwGMZoBLZllaS6AkuacgyGeVuQ5/kk6fPPogkhKApJbsFwlNPtxWRpjNJ9An+Om3e3WN88JI4SpG2RK02uFCrJsG0XyzbISIGprpwrKFAlm86U66pMVjQJ1QZxKAS4lk2r2SSPIzSKJM14592bpFGfPBdkueDu3YfYtmJhYY61tctY0qFz2Md2G+wfDjno7tHpDEjznMBforAU9VoFnYPnuiRxzP5hh/XNbcIwpt/tsDA7w8HugAf377Kzs02rNcN//9/9bf6nf/bv+fGP7lOrL9Ht5hx0h4yyjMN+l9Zsk2EUs3dwSKVeJwtHHBzuUwifgjpFluGocRmKMf3qhwRcTLWzEpLPqkdlFuLHsY+TwACzryUljYbJjcwyQ0Cd5/mkQnZR6BL5ykTAmvtrXNyeV0FraaDwUhrod2Fiym/+5HVajRqOA9VAEg4H3HxvyPXrl1Fa4bgOge8DmucuX+EnP32PYT/Fkh6uq6gHPkedAT/44Y+5fuWvs79/RKfTY2Nzk3qzzfz8HBcuXuVHP3qdRr2JRpLrAukIhqMOf/LN3+fm7fdIC5MGcXR4wGg4olap0e30uHJxlYNawNz8PDtbO8TRiNl2k8FgwO/8p3/PweEhaR7TnpkhqNZ462CHfj/m0sU1BoM+rjOHYxnAhlIZb//0DWqNJhub63z3u99kGIbUalUkipXlZV558QbXnrtKszVHfWYOz62gdIaUNoUe38Np+3wcFwOhiykre+xWPIve9mffnpQA/1HE4j/Wimtze5tWrc7ahQv4nsvde3dot1tmdSshSWKKIqdWm6FarZZcajW63S6+5+G6Dr3uESvLS3S6XWZmWjSbTVSe0tnfYHZulRtXL7Cz16VQUJQ8Y+OaNgJNvVGh4lk0mja1mk+ns80f/P7vE4c59ZqPzoaksaJeDdjZ3mTtok+9Bo1mhUa9Yi5EC7I8J8vKgKo2CENTzl6QZcBkIn44E/sDN4Gpj1UIisIizgTDOGO23UYVGiyHvf0j9vb7VOoVskKDKlDa5Ln0+0MGwyGeFxjGCClBqcmqfwKn4jiwnKZpWUPJJHJGUYoqeghdgNIEvsvu/iHtuk+z1eRzn/80M60KqkiI45BWu0GRQ66HHOx3WLt8jftvvEe3F9Geq2LbEt/xqderdI66uG5AoQtq9TY3b96j3++yvDRPe6YJxQrdoyOuXr2E41dYWFzk+nPneeudHf7gD77DwdERKw92cKycQjukSnJvfYtooWB+ZoZBGJPEHUaRYvnCS0g5heRjWl2VgmccP/iIbrWeGttH5k95rPExp+0+4+4TVKvVEg2nDctIkk1c2EmSAeMFlkEiTvrVmjTNKHKF53j4rkU8GpDVJYtrqzy8f59aa5YsiXAcA+5QSnOwf0iaZAwyTb/bw3EsWo0aqgROCWmTZxDMNSAz6RMPHj7Esmy2trfodIf41Qa1eo08z+n3h+zuHtDtHVFvVhlFId17t8hyyd7BLvcePOT5GzeQRcLF1QWSOMX3Ztja2sX1HPr9PiAosoThoEeWxizOrZGnA9AW9bqHX3EJ4wLfs1hZWSaKIsLREJWFtJo14jRjJs9xHI+ijLk3az5R2MX3HI721rmpI5L+PkibK9de4JOf+SKFECXS0TLx9slMmWaTN1bY5BN9HLY8VeDmT639LKH5H2vFJYVA2hadbo9wNKDRqFKpBqRpQhiPqNYaXL92jUolKKmLgvIhDKj4PnEcEQQ+W5vrzMzPkWc5ri1ZW1mg0xvh2Zrz52bxbEGSKaSwDP5LGmqYIs9YWpzli597meHhFuFoiEDTqAV86XPP8/y15/nG7/0xP3z1XW5cu8ja6gyuA54jEVpxeLDL/v4eaQaO7aFVThxnZWkSjZQmWGtZcsL6/meSRDiWQ0pjCYcs14wiRZzmpLmNZzt4QZVBqHA9h7woSDJFmo2Jik0RPqUUo1FIroyVMV49an12mctjYWvch5YlieMU33MQ0lhzWA6HR32uXFhiY3OHne2Cet3QAEWJJooSoihlFGckd++xsblJULORUjIcDZifqQGaRqOO61pkhREovf4IkJw7t0q31wMgDIfMzrWo15tsbm9Rr1f47Gee582330MDnW4EVo31jXt4Xo3DoxFb2+/y5c9/jldfe48kzrh4eY3DoyMebmxwsXUOIZ1J5EHzaJ2os8bjzFv0BCHx+IWO0VRaTIm0sbYUx+AcIYRxsZeFRU0SPOW9G1tfFkUJ6hCyLNghBEJSVi7QOLaLylNmWzVcB2ZaTZbn54kyzUKny8bOLlIKskLheQGLi8tYKB7cf0C7XUPYPrOtNofdQ7KsQMqc5ZXzHO6sEycd7t1bZ3GuRaPR5s69HTzfZ2FxCWm5DEcpvcGI1swco7CP7XrESYJSguGgy1yrztL8DEppdra3kbak3mhRqAzPd0niHFVkCAriqE+tGnDjuYv0OzvsHxyyMN9k0D1EejU2Nh7yxlvvoBV8+YufIw4L7t+/xzAMWTt/HssSzM3N8/DhA/IiY/XcEtGwR55EWCQEtuaHP/o+D9fv4ViC557/BEgPx62gMCwjWmMY90tvxTSYZwLcmJpLH1ZifBCZ87OUU8+kuH7913+dX//1X+f+/fsAvPjii/yDf/AP+JVf+RUA4jjm7//9v8+/+lf/iiRJ+OVf/mX+8T/+xywuLk76WF9f5+/9vb/HH/7hH1Kr1fi7f/fv8g//4T/8QO6vQmtGwxGzq3M0m3Xq9Qq27bC3t0uUjIjTBLRkcXERrWFxcZH9vV1UnhGGOe12iywzXHxH+3vYtkOjVmE46OK5PmH/kPlWjbXlBe6s7xOrY5SV1oYU9fDwkP39Ta5dXOVwb5v19X2ev36O2XaFSqD4ys+9jCBi0N+m18twkzpSSGoVD2lr0iQhzgRJWhAEVSwrISnjXHmeTVa8EyZ6pSY1vP7Umqb0ZgmTs1N+7HtVatUqaZJx595D4jgFaZHrMW2WmORkxWlaoiRF6Qo8phcyCM2zeMxEqcDNZ2N0ZRSnSClIE81WvM9cq8Lm1i5x6LKyNEvWSZmfX6DbG5IVGi+osjRXo1JrsLyzy7K0ee+9e8ayQzM7O0u9uszW1gMq1Tq9fozrVxgMhty++4Cl+RYVx6VQEmnB4dE+d+/dpyhCrlxdJdUjpCd4sL7PlUsX0VS5e2+XarVFQcggyqm1Z0gOOth+lc3dPYqf/IS1Fz6HQoEeE66W8VPx4dfGpxc547ioEOMYbbkomA5ulQnDqHH8yyzZsyyj1WphWc5UfPUYvGHbNnlWTBgkLKvMxxOCvEw5FNKkcfiey6c+8QLNIGNhfo7DgyOSVLF6fpWjfo9KpUoWaZr/f/L+PNi27L7rBD9rrT2e+dx5ePN7OUpKDSlZSowMGLALbMzgAopgKoLojiCAjoboCMIVdARDMET90RR/OKDocFP0QHWXTbiisA3ygCwZDdZkpTKV88t8775353vms+e91uo/1j73vUzLYAnCLgVbenHz3nvuuffss/f6rd/39x0Ga2RZQehpruxcJU2mbO9doxYxRxcJaZZTW8Grr9+lXI65stkiz0tm0zmdTgffl5RVxSJJiUKJHzhj6m6/R1bUhG3pQmZL9wdOJxOOj0955959ut0WQgneuvs2RWm4eu0Wsu+ztbHOYjYiSyc8+/QTeNKwPuxhtQtvLYuSPJ3y1t275JXBWsGXv/I1ksWUJF0SRBFJ+iZrwyEnJ6ccHT0kzzK8554mX07Z21onkIblbES6mHD48AHj0Tm/4/t+H1F7yDPPfJDaCvrDNaK4TVEVeMrHCEGt9aWM4fH397Fp5n8mEPo7O35bO64rV67wD//hP+SJJ57AWsu/+Bf/gj/8h/8wv/Zrv8b73vc+/tpf+2v87M/+LD/5kz9Jv9/nr/yVv8If+2N/jM997nOAgxJ+6Id+iJ2dHT7/+c9zfHzMn/tzfw7f9/n7f//vf9t/vIAGvtIuZl7XaKNpddpUpiLPc7K0IAwjhsMhe3u7JMsFRZ6S5zlJ4lGWBWEQsL62BgKyNCUKQhCSTqdDe7DHk7eu8ODoHIHCIKlx7GUD5HnBfDFjPu/R7/YZ9geYWpOlC+6//RphEPD0kzvoqqAql/hhwO/83vdjVMQkaTqCgobh5ga8SklqbS4X9BWz67fz0muWO1zst2Ft2KfIc6oqIm61WR5MQFqECCiLguqSBQm2dP51QrjOybKCA1cQ1bdeqVeWQ+aSB/MI4zfG0WnjVovN7R0WkxOCwLkSKGHIyhorHP1cBRG1hZOzcypj0VXJ7Ts3mE7HVFWMRTbJyorRaESSVggRcnGxRArY3dmm0+/ykY9+EGOdme9LL73KM888zcZGzPAi4oUXnuff//uX+MIXfo2PPPcEQpQkSc76xhbffP0dbly7TtDqMcsqgvaAo+Mz6lqD73Rbj+JNVh8edZvf8v14jIjxrbrw9xqsvvdx/8HCKB7TFgk3j/R9H3BkoaKonLGxWb0XuDlk8+PG0PgvutdRliVWWzxfYEJJv9/l2nbMdDrh1dfeoDCKzf1dirIibkluP3Gbt98+4ux8xDNPXGFre5d7b0+REvqDLkHkkZQls3lCpzNHmRqhFEEYk5clRVmgPEWvNyAMY6q6BjzW1jdI8oIw7uD5MdYalxgufPKyZr5MWCSZo83Pp0gpabU6BIHEak1ZLLlz+xrJosNkfEa6mFJXBQJXoI3wOTw5xQqFBYqy4ujkDN+X5JXBSHdNJmlBLgtqDe1Ol7OTUzotn6p0cUAH96esD3t0e1129/dYTC54+Rsv89o3XyLNKz744Y/y/Ec/TnewRpImeIGLiRHCjRwQj2UMXNpFNTDif2YI+rfr+LYK1x/6Q3/oXZ//vb/39/gn/+Sf8MUvfpErV67wEz/xE/zLf/kv+f7v/34A/vk//+c888wzfPGLX+QTn/gEP//zP88rr7zCL/7iL7K9vc2HPvQh/u7f/bv8jb/xN/hbf+tvuWj6b+OwONV6pSuqsgBqlsmc/qBDr9/j4uLc2QlVzrXh4MEB0+mYosixaIrcdS6tVsRsNkEIyfnpGTevX6fb6RK1W+zubHDj2gZxIDBFTRAGpHlNEIUYI4kDRa/dZTFdINotrl7ZIV1eYKoK60nm0xn9QZ/Ai0AXzOYL9nbWufvwhPOLlLq2VBV4gU8QRW4xK/VjO+PVq32PiPC3+LAWlJRYU6GkZXdnHVOXJPOMdtSjKmu0tdTWEMYxZZVgceyyWut3Pc8lDCXeTcx9fP6ysgyyzUf92HOsOjWLwPMCOp0e1BlC+UjPJwgUxlr8IMaPWqSF5ujgkDfv3qfT7RL6Hlvbe0ynC4QK0UbxjZdfJw49Op0hTz51jXfeOcQ/mXB2kXDv4JjAkxwnY4ZrA05OTum0A6SsiULY3urz5ttnbG50uHd3hLWC46NT8qoAL+DNty+4mCRs72wxWySsrw946n3vc16NCISjVCKEfUTVsLzbou495+m9n/9m5p7/UTeFFez0ODkDEFLSarUwxlCWJbGK8T2foigu2YOO8fnoeUzDfBMSiqLE1AalLUthuX/wDp1oh7VuD9+PSZKCNM0pq5oojhmub/L2v/sSy7QkCgS72wM832e5XLK3t08YehgSiqrm/HzERj9me2efqtaYIqfVaRGEMUcnpzzR69HrD7hydQ8/Cpmcz9BWMF0USBlSFjVlPqYqEvI330YqxcOHh3geDIcDNjYG1OUSow1lXpOnIcKW1GWGLkvqyiC8gIOjM84nCafjOVlpKCpDFLdpdXtuo1xCoUuECpnMl2As7VaLa1f3OHr4Nr1OTLvTIW7FPLw4YzgYcOPKHv3+gNffep1lWpAuppTa8LlPjzg7fsDHPvG9bO/tE/o+VZVT1gbl+TyKbXmUGoYQDk5seOrfzirynSQN/Gae4z/l+I5nXFprfvInf5IkSXjhhRf46le/SlVV/L7f9/suH/P0009z7do1vvCFL/CJT3yCL3zhC3zgAx94F3T4gz/4g/ylv/SX+OY3v8mHP/zhb/m7iqKgKIrLz92g1HU8ZVkxnkzIs5R56LGxPkCPCleYipxer4vWmtPTUzY315nNZ7TjiN3dfazV+J6zbhmNLtBa8+yzzxAHLUcKAMo84fbNfW7d2OLewzlGSZK0oixqosjH2pp33n7Azf0tQi/g9q1bvPyNM3RVsyxy2q0QqzW1rVBUZOmStx8cYv0WGEOn5ZOXjuZe1zVlEzW+ggedS8Z3HlXyn+8QaGNQgCctusoQDeyX5wV5XmKBvKyQxqLNanjyaN6x6rQEv95T7XFV/+o7q52+EIK8yNHvikVwxWuZpJxfXFBlKdf2NxvSgOc0Lz6UWckXv/wyJ6cjlK8Yrm/SandIkoIbN27y4OAdFvMZuiqQQvHBDzzBYpaQZzlVpRkMhyRpzSLNabfaZGXJ9u4+eWlJkoTx+QhTa+6+9QZB2GVzq8ViOWU4WOO1t+5yPlpQ1oaLWcpwJ2D3+hOsD3d44Xf+HjwvwFzWY3cOrDCO0GLFf3Bx+XYjSr6d62elsVl1aNY4On+r1UI0FlCP5yw5ro1EKUVd15cVVyBREhDOIUJ5HqDp9fpY664RFUQcv33M/ZMzgtinKGrOzkdNbI5HkpUcnZxSpGPW1zcJOn3acYhUIDzQwlAbQ1VVVMoSNn/b1vYWNYK6Nrz44kvMFwvWwoB+f0BaaoTXYjbLOR1NuTgd04kFV/ZarPX6VLHP9au7pOmcMptjjcH3fZTwSeZj9vd32VofslikHJ+POX54xN2DM2a5Jq8sRvgOjowkfhiTpAWVBqsN2gg8P8BiyCvDeLbAIDkfTbhxbZ+o1UEqDz8MmU4nvPjiN0AoWu0eYeyhMBidcveNb/Dw4Ttsbu/xkee/h6eeeR+tKEbjCFQAVjg3ELHSCQoQsskj+zZbrvd29d9JIXrvz/+W6rheeuklXnjhBfI8p9Pp8NM//dM8++yzfP3rXycIAgaDwbsev729zcnJCQAnJyfvKlqr76++9xsd/+Af/AP+9t/+27/u68ZoROAYP1pXdDtrZFmGVC6OIMsyOp0e88WcwA9ptSL6vT6Br+h2Olir0aamrkqkklRlyfr6OpOLGZ7nU9UZo4tTruxd4Q/+4PfxT37ip+l3ByAUZa3Js5RFVqFYcnV7CynhrTdfR1gwWhMoj6oyZKMJnbZPvxfS7sSY8wvW1vpM0iVRFBG3avKipiwKjLUEgUetV2anlrpe6bcUSqlLO53fymK2QsmFsCgFvU7MoOshbMXJ0TF5lqHrmrp2ujZjXdfkpFfyUnbym/mbHxF4DQgDjQvE44ds5i9FUXB6cgbW4AUB1hQkWYbne9i85OTsgvsH5w7yMpbZIme5LOj3ety/94DlfMkHP3gHXRdURUZdGZaLhPFkSpZXtLVgMk+YLpbs793g6OgEjGA8nnBlb5flPOfeg2N2tjcYrm/yta+8xPogZm9/h1znjGYpaVFzffcaf+a//T8wWN/A1ILh2iaVbjrPhn1nL+d8jTigKfy/6ePxscbq8/cON97zdJfffoyI8fjjHcVdU9c1URRdmu7WtesNVxE7UsrL77lN/Yri7xKGpXJknLq2LBYL+k9ts97fQOu7eH6EkIannrnD0fEJX/nq10nzmrQoqbRPGMXkyWq+m1DVJVhnNl2UFbN5zZt33+b3fPw5pC3o9DpsIigqS1ZUvPX2OwRBQH9t4My3K0gXS07PFty/d44vYW9/h5u37+CZkrXhLr1OzGIOs9mEeTpjUeZ4omTYu0qZpxTaMJ+lLBYJ9x8eYUSMCiKwGlPmlHXKIs3x5wmlBiM8jKmwwkN6AcJajHFwsrWKbr/D3pWrCF2gjZudx3GL2WzGcDgEUxEGAq+WjKczKgttazh8WDCdTXjr7lt87BPfy9bOPkgPJT3K2l5SVwVcEjgeMXm/jUvLvvdS/PaewNrHEp7/IySk38zxbReup556iq9//evMZjN+6qd+ij//5/88n/nMZ/4T/oT/+PFjP/Zj/PW//tcvP5/P51y9ehWLICsKhpvrjC8uOB+P6LQi8jzF8yRZ6hwxfN+ntpp7Dw5px21m8wXL5VtsbgxRCvzAA2MZDtc4P7+gLARpOicIFSxmLMuUmzdv8kd+5Pv51z/3GTrRgCeeeJLX33yd8WhEKwzZ3dklTUZQp9RVTZGXLPIFGxsDR51XgsVySVFWDIfr9PvbqGPDYpGC8fGUm2EFqqG7CkclX61l7sIRl4vDb33xcswlJaHbDriyN6QdWUYX58ymY9qtNrp2kIppXBdoZlqPdlaPnNC/9d/t2IdY7e4LY9BFAVI1aMejLlTIVSEVJHlBtyUpq5pBr89sPiOIO8yWKXffOcZTAe1Om+3dbY5PjlgslkhxQllqdrbX8YKIzfUe6XxEMp9y9cpVDh4es0xr8qMzqrJi2I9pPd9jMh4xOp+AUqRlxXyZcD5asMwzur0+Tz+5x2x8QZKMCJRhe72HsIbnPvgBnnz6AyyyklbYJssr6iZyd0USWc0gHo3TvwNIBh7LbuKxxPnL/7iM0Hg3L+MxayAp0drgex6yeQ/LoqSu9WUhe7SQ2ctFScrV9sZefjTazWiV1NRCEwWWs/MzjL3NdLGkMmCFYGtjjWfu3GZrbY1fmX4dP6xQhaYyAX7YYTBcZ3N9yGDQw7OWUIKSgiTREAoeHo05Oh9zdW8dg8JaiVCSuwcnqLBHUpRMlhXLpOSt+w+5mBgXVGotoa9otUI21vuMTx+ADXjw4AhT53TaMWHgCt7hwwdsbmxgRZ+T8wukHzFb5mSFoUAj/YgwCpjOlxjrvD3TNHf7D+VhtcEiqbQzaLLaUmlLtshphwHzeQZ1RllrfC8kSVIn2p9NqeqKqi6JW22UL2nFXcq6wkjJwb271FUFGH74D/+os+y1GilUA9mubj93D0u56u5X18AKTlyJm7kcrj5ilvLYCFY02LDblD5iB7tdmFLO7mvVd7v/N6YNzXhACsu7qJDf5vFtF64gCLhz5w4Azz//PF/+8pf5x//4H/Mn/+SfpCxLptPpu7qu09NTdnZ2ANjZ2eFLX/rSu57v9PT08nu/0RGGIWEY/rqv+75PWZccnZ0grKUdxXT7A1q+R+ApNvobGAzTZMF4NmN/7yaLRUFVWjY3uqxtbOB5kKcZnvLptruMRlMuRgsqbfB8CFuKZZnQ6g74+Eef49e+8jovv3aPzbUBH3jmNt/8ZkG71eatu6+zMYi4srvOw3szWu0Wy+UIP1AgDFmeEviKoirxgh5F4VNVEVmmQQmUVEjl4fkBWZmhlKQqKzCr2RaXhpyP//utPjzg5tUd9ncHCL0kTwRBoJCmgVeFxjQL8SNShYu5aEY5l8e7iQNgUc3NA0poPAFGu4U2UB6l0c4+qFplka0YcwI/CEH5yKBFbTPuPxxxcjZimWm8wMcYy9X9fZLlgul0Ti0VKgzQaLI8p1iesbveZWtjneGgy1NP32SS1FyMXZBmltbMZwknx6ccHp1SGcE0SYh9xfHZBYNhnzTNaHmCYT+iLpfEgXOJ6IYhZbJEVwasxzKrEMiG3MBlp9WUe5ovNlrB39wh3vvfjxevx4fy1mLFysjVooREXAqJnQ+mF4Yoz/01xlqUVI6w1LyfKyjbWkNR5DShGo33XNMtCo3yJRLpIkOUYxlmudMrjkZjOu01rOdhMESBwDMluxvrbKz1mKc1y6zECkFVQxzG7GysE4QeLzz/fr74tbdIDs5Z6JK8tMzTki+/+AbIp2gFkiTNUFGHl149QKmQ4fo6x+cphyenLHJLjRNIS2tREpL5DE9pNrf6zKcjimLBWr9HnqYMNzZIs4z+YIgXhuRVxd0H99nbu829B0dUtUWGPkVVUiOoygKLoaqh0s7wQGsnH0nzAoQl8Jw3Yykl1ii0FownC2ydMpku8Nd8dF0RBAEqUPiBT2fQw6Co6xJb1syTlDAs0VVBMh+znI947eWvc+P2M/TWu8hauN+nBMZqPKmQeFhTI6W79sxjM0+BuUxxXlHpL40B7KMitZp7ujUJWBkU44I4Hd/A8Q9c2oBAKoHWYK2+vO7VfwLZ7D9Zx2WMoSgKnn/+eXzf55d+6Zf40R/9UQBef/11Dg4OeOGFFwB44YUX+Ht/7+9xdnbG1tYWAL/wC79Ar9fj2Wef/bZ/t7UOqtCmJF0u8RqniSIvCDttoijECktRV+xux7xz9x2KvCQMQu7cucpsPkcJw80bN9DacnJ8wnSy4GKcMp7OuHnrCsUsZTJdMh6l/MEf/uPcvr3LeDKm3fLJ8yVRKBmfn3B1v8sTt59kPjnl2rVNNtZ6xOE+nU5ImlYUZUG7tcZ0eobwI+698QrffPMcvVqgmi7F4ox1S+1YWsY+Img8vrP5rS5aLmTPXbjtVgtPSjbWN+i0uwg15pd/5RW3E38XieQR9doKgRW/MUtuRdrAGKQSeFKx1u9R5qlzfLeukK2IHo5m73aCrXbMzs4Oeal55/4hDw9POD4eUxlLGPpujmlKWu2QTicmijys8Oj1uoQepOkCWacEu2u04pjlYk4cR1y/tsv5xWsEvmS5zMjTjMFgQFVrzi5GeEowXF9jY1GA8Oj3B/RCy/giIY4CsB5lkbG1ucuiKDBaI4Ubnmtt3kW8ebwQr6x53nuufnOo4WVAxnu/3JzoR6yyR0XSLUae5yGVIi9yEBKp/MsuVxtzmQBsjLn00lyZPSul0MZgGnq88hQWg62rR122cHq98XjGdDJnONjFWuj3+2xtbrG+vsFimTOfz6hq1+EVpZtftVsOaUiTJVf299g5nPPqO6fNteaStE/Opjw8uaAf+wjlEXpQ1DC5GDGeLamNICkq5qm+ZLO2Qx+lwOiSr//a13nyiSt02m2GvQ79XpvFohEea4uQHu/cO8D3fcIw5vjkBAN0u32mmUYIiRKCra0NxuMZeeYW8KqqnFwAqMqSpC7JlUBZS56kxL4iy3KyNCP0YTZfsjlcZzhcpygzVCDJyoKyqijrkmVSMJmcELXal+f++PiI8XTGZLLgv4p7xN0NKi3wfM+dI+PgWyEFBonnN/NIuCRAuQvMnRu5WpOsvRSUrx6/QnykfPQcq0NKieeFl84qj8hA7nco5V06rpB952Dht2V692M/9mN89rOf5d69e7z00kv82I/9GL/8y7/Mn/7Tf5p+v89f/It/kb/+1/86n/70p/nqV7/KX/gLf4EXXniBT3ziEwD8wA/8AM8++yx/9s/+WV588UU+9alP8Tf/5t/kL//lv/wtO6r/2FHXNWEQsjYYsrY2pCxLlos5vqfo97tsbAzZ39thY32Ni/Nzzk7OCXyP0+MJUriU3KOjY6bTOUEQEkUxV69d4c6dm8SRD8bS761z5+ZTYAVv332d27d2WV/r8OxTT2Crkg+87w4ffP819rZ6mGrJ9kaP9WEbXed0OzFh4GFtjUIQ+iH9wToX4yUvv/w2Z+MF2kqK2rlo52Xpsq0Q1NWjN351rPRjv12Hu+QhTwuyNAcrGQ63uHPnafJKI5XXBOwp3KUlmo/y0WL5LVZf97Um1oOV+4Lk2vVrvO99zzAYtOi2Q8f6azn7nxXMIKViMFynqAwPH57w8jff5ODhBdo666HaWISnMMJy9523GE8u2NxYo9+JCH1JlqTMRmO2NjabLqBNqxXSin2MLkiTkq3NAXt760wmE7qdDlf2d9nZ2qDTbtHpdFhbX2M+X4LFDf+XCdZo4ijE6BIlDB//+McaQ9oGUrGrIv6oaNnma6b5+Os3KOI/8u83eqhblMRjH92cw+2UtXEQjvK8S7an7/vUdU2t9SUZY3d3Fz8IkFJeFqxVAXbzqxrPU7RaMVEUAe51+L6HUqqBisDiUVVw9+59ev1hsxOX5FnF5sY26+ubzi1dazAVs+mcXreHVAqNwdiaKAwxja5PKY+4FSM8j4vJAryQykgeHJ6xSHOWiWa6SBlPEtK00ZkJie/57O1us7m5ye7ePkJ6pElCGEasb2xQVTUg8fyAVruD8l20ilQeG5ub5HnJrdu30Uaj65oojIjDkE6nQ7frhO1FnqNr13E59qVLL6/KijyvqSt3zoy2dLu95v6XjCZTlBewtbuHH8R4Xsj5+YijwxOCMGS4NnzMdsuyXCYcPjxESMlkNqPWThQuAWNqPOVRaU2NAOGRlwaDAukjlI/BJawjJEIqrFAI6bpxJzVyjEXPdyGaQkqkcv+UpxBSoDxntuy+5x4Dq823bTo2qJvzsfr+d3J8Wx3X2dkZf+7P/TmOj4/p9/s899xzfOpTn+L3//7fD8A/+kf/CCklP/qjP/ouAfLqUErxMz/zM/ylv/SXeOGFF2i32/z5P//n+Tt/5+98Z3+9Biz4yqMuSrqdNr6SBJ7HoNdlvpgQxxtEgUddltRFTZ4s6Lbhwf17GOPEx3leEIYx/cHQ7T5lRRQqdne26fXXCMKIdqtD4MHuzhrPPnObz/3KZ0mylK21p7l9Y5dOW2CqhDKb0e93SJMZvi+pKul2VVELU1tarT5lOUf5HkEA89JBa9IDIwWVrh2pwbgVzNpHXYpzj/itJWWsjgYFQiooypx7bx+wu9Wn1hXjaUFRuZmNWREKLv/ElY2Vc1TgUmv86DU8ejmmmYvVVBaWiyWb1/d44s4tzkcjhHJsrSQ9dLowBMbCYpFwmiwf7Qg9QVlZVk3cIknxpCArcpQvEcIihcUTlmG/xc72GnVVEirJbD5je2eT0XyC0Sm3bgz5yIc+yLUrW8wmRwSBRClBuxXhBQHGGHq9Pml2QJIsEaLH5uYmg16H9c0tpLV0OxHddow1tXs/tSvUl7T+xzuvy7MmLjsVsA6a+Q+8N/ax4vUb8jGE6+betXkQoJo037J0MxTqGm1XWWslv/hLv8RkMmE+nxP4Ado4U13gEsZezb2CwMda0RQeg5LCbUqbuUknFMQtj+ksYTo9YXPrOkr5ZFnNZ3/lC/zOT/4url+/yRv3TpEiJ1mmPHz4kPc/tUtV1/S6XaJ2B88DhMMuPSXp9vpgC6aLBOnHpOmSt+4dUpQVeJBXjfZSuBGqtYLa1GRpSqsfsr29jRIZnbZiPp8TRwFR3OHhw2Nu33mCVkcwmswJo4B2u0O70yOv7tOysLa+zqIYkWYZtbGgPGeDZt0lrYSEZibnK49up43Acno8QlhL3aoZ7GxweHhImk7R2nB2NuHatWvs9de4+859hmsDBmsbBFFJu90lbllG4ynGGOK4RRy3mS0vuBiPmEwnBH7gtJQIbG1YpAuU9JmnKUVeUOqabreLEK4ByIucuqrwfIWvJJ7nEUcRvucIYVIqZ5zdGCgjoDa1K1Z1jaXR6xkIaOQQ1jZMUpyur0GPVikX2W82rPdbHN9W4fqJn/iJ/+D3oyjix3/8x/nxH//x3/Ax169f5+d+7ue+nV/7Gx793oCzkWO0CWEIFag4ZHd3C4EmS5b4u9tEgcftGzfYXtsijmPiOGQw7DIanRG3Yoy2TMYT4laM8iSeL/jgh56mLErefusuRks6/ZiPfOw5PD/k+tUr/PRPfYZuz+fgnXs8ffNDQEZtDGE7QFjNoNdiMhlRZBpTa6y2FEVJGHRZLDOECiiq3EVKSMGKFV1r3bASQcj3ZGL9NnZbAJ4n8T1Bp93h7btTPv49irOLCf/uV15mviyprESpECsExpTvGvy+Sx8k4FuKlJpZl4M2BOenZ4TSMBx2GfY7DNY2+OrXX3FP0VRSXdfMZjOXXislZW2oDQjpgYWyqvF9B1MukxSrDfPlnCgMKUrwQkkYekwnF3TbYZMzVWF1hRQ1z3/kGQa9DudnpyhpCaMW89mYqqpIspRaW1rxAKkgSXI83+PK/j4CTb/bYdltITGcnRyxmM2Q0QBrFdY4gbnj3L33XDSzPx4VMHkJjvz6a+Dd0OCvd96w7+l03alfLUACbS1SKnw/YDydXnZenufzj/6Hf8RXvvIVRqORg4isuUyufuTKIS6p8Fo7GUqt3bxEKUFZFggpWBsOuXN9j1gVTfKvx2Q65eDgkHy5YHdryBtvvMnm/jXA4ilJldfM55ljNhrDfLGgth7L5eLR6RAQxi2sFSzmOQ+Px5yeXZDXltoqytriBz7aVK6oWrdFCAOPZLHg2Tv73Lh+nXRxAjrlnXvndFod6sCQFzUX4yl+GJLlJcO1NWazBN9v4fkByvPpdLvU9RmzxRLheVjpoUuDEoowDCjLgsGwhxISJSxbG5t02i26rRhdlrRjn7W1AVkycxvoq9c4OTrECsnh0anTg7X6lFowXOtSlBXj8RiA6WxBkpXkeYHWFt8LOTo85itf+RJn5xO8wAcBWV7i+zFFYcmKkrxwIm2aeXRVVeja+U8q6fgDrVZM6PvEYUgURbRaLZf27CuCIMD3ffzAmTiskgG+9rWv85EPf4TBYNAYZVdkWUGapsxmM6bTKXmeu2KZ/xYVrv+9HbPpGFPXfOAD7+Pi/IRQSQa9LovFnDKXlGXJwYN7tDsDojDAtBwtN80Sur2Isio5vz/i7GxCf9BhY2MNhOZDH3ofu7sbJMuS8cVLnJ6dMp5Ydvf6bGztEgeCjbUQz/fodSJakaAsNCqQ1JUDxrTW+KGPrt1uNC9y2t0hfqvjWnOrKWoDvguFNNq5pMvVIvQbwL/fKkDyt+JYEQX393a4ffsOvzb6MrNFzquv3+ONNx8glcDWjeOetfhSYEzttCRwudt69LfbSwLTqgsw72kTirLk5PSUJJly58nbzr09yxArqpx1ydHD4ZAoDBhPppSmRNBEsCCxVrgdaRQgpN+E9QXUNfieACuYTxesra0xOjtmvkxI04zhcMD6sE8YCL75zZd4+OCY9z17i43NNTw/wPM8jk5OMVYRx322tnaYTJZUZUU6n7G7vUEQ+ISh7xaVuma5WBKIFsoLkdIHpOs+m8Rn0xQz3dDLVQMVPz4r0NrNl+DRuVxp5IRwO13ZVH+ttfPzlArTQH6r55YNbAONiL+qOT4+4ad/+qedx6QQZFnGl7/8ZbcxkLIx1y3QWr9Lh/PofRWX8wujNX7gEYU+tS6bx5nGqcaC9AiCmLyqqTQ8PDzD1AVlZfBaHdI0oSg0gZLkec3h0Qmhv03gCYpqQtWkZStpCIKATq/HcqnRKE5GM6TfotKlg7yUJstLRyYQym1yMNRlifIVShi++qUvsr83RFcJZ2djBr02YRhz9+1DpoucrZ0tkD5S+ASB5OHhqYO8jOGdd+6xTBKKsiL0fMqyxNQWbQx5XiKEpSxctl4cBiyXS6zRhEFA2IqwuuD8/IyPfOj9WFOzmI+5dv0G0+mcs/MxTzx5i6jVYbvd4fz8wgm6rUB5Ptposvm8QR5y7t+/zyuvvcWnPvVLZEXFhz/yYW7dvoUfRKQiw1gfbZ01V5JmrDZCulGRy7pCCoHKS7I8R0nRxOW6e9JpKx3063kuhcNafbmRqeqab77yagMdV9S1Jk0yisLN6KCZgUpF9l9q4ZqML+gN2owvztjaWKfbjinTJRcX5wx6XbI8Z1lkeNMlnXaPIAyI44gsgzRLODs74+JiSppUXL9xlTiOWVvvEyifKAipfcv3/67v4/x8zFv33iBdzplIiR8O+eEf+iS/9EtfJoo0VZ0jhDPEDeMWVVWRlyVSeSDAMwZdWeqqZjmZ0Gq3QRRgcV58vnQjm5Wup7mYjPkWu+vfpq5LNgyhm7dvo5TbxdVacXA4wYoGIrQGqws33AV85Yb6KEmtnZD1Elt618t4dxKViz6xZEWOQLG+MaDd7mKFIssLtG7GNhY67Zh+r8Pm5han5xcNdq7AaiwGXylM7WYoUgZUdU6aFcRRRKfTZXxxwaDfpaoMlbY8PDwC4RbddjtC1wVHRxfkBexfvUWa1YRhm26vz6CfMJksuHIl4Pada7z84sscHh5zbXcNECyTBdpoyqogzTPeevsuH/qeq0gVUNW6cZt4ZEC8GmIbYxHSXRtCPGLxrf7VWqMe001dSiNwzK+Vy0gcR5RlSVmWrtg18yB3jvVlkXnzzTf59//+V/ja177Gyenp5dtTa02WZW6BsVAWxSOoCC7lGatFSzawYJ67QoVo5pYWrLHM5jOmHZ9ZkeFb5xUatFr0ehGT84wkzeHigv7WOu1Wi9G4JPQ9rl11dPSL8YS1QRelBL1Oi04cMs8y6koznUyZL2ckaUG6rNja2sZYRVEWTeI2BH5AGESYqkTYikAJbA2mKjkbn6DLKbs7a1zZ3yKK2yAUN27dIggjiqrm8OiU+Sxh0B8QRjH1dE5RliwWS9IspygN2jrkpa7d/E8J8H3Fcpk4yYAQJElK6Hn0uy3ydE6RL/CV5eHDA3rdNnVds7m5hdGa19884OHhMbWBqq7QRtPtD/DDiNdef5P1tTWUp/GDiPOLBWcXI5bLjLJ0m+HRyRYbax0Ga5uEsU9WlFQ1+EF4CfMZa0C761EIkMptn3WjSpHNzWaNvWRIriQPSZoRRSHGaKrK6U1H4/GlsfLq2jDWujUE3P15SQb5zo7v6sJ16+Y+V67tcfDgPlWVUVUQtyKMrkjznFa7zdHZKVU1pyhqdnf2yfOM8fiCXr/D+voave6Q5TLj1s1bzOYjlssF83mMqZtiY1I21vso/yb3Dl5H64pWu6bflfze73+SMATlCZJ54Rg4Ujv3hsDHV5Ki2VX4YcgyXXI2yYjC4BHd1Bg8FEpJlx7bYIa/vaDgrz+0NnhC8vDwGOqCyhiySlJUIPyAOPRZj0LyLCdPMgTOm66owYjVxStwoZwrcoW9PA8rXchlP9bQtfPS0YiXac50umxmW83Q35NsrK+BrsnSJdYaB8FJ8JRw/20sRZZi6pJ2FLFY5JSlwZqCNK0Iw5jX33jA7Zu7fOC555lcPOTtdx6wt7/N5vYGftCm032bNDN4fodvvPw1blzb5MknniFNC+aLh5yfnXH95m3a7Q4PDh7y1K0rjEbnbO1ssEwWpJlmLfC5f3DA+56v8aWj5xtrGjKGvWT5KSXwPGdma1nRzt28TmuD5/mX8wKDMz1+RFMW+L5CiIA8zy8LWBAEzn0kz/E8jyTJaLfbJGnKL/zCL/BTP/VTLJcLrDXUtXNwMU0qdZqmLolbiCYI0nObgcfSCh7XFzqzbAcN1nVNWrvX6TY6UOQlxTyFskQbw147IowD+v023U4Lz5O89ebrXNnfJkk0RZJjrcFgKbVjc4Z+1EDAHhLIstTpL+uCMI7IFwUX4wVl6TLzPKuwBtaGAyI/QJiatX6E0Cnve/o6T96+Tjv6KOfnh0ymF+zub9BqdSmLGmMd2aHd7dDp9HjnnQf0uwUf/NBTdDs9QLKzs8PRxVtYXOq3QeJOvUQoRV5VaOOu11prqqpmPl/QiQN6vS6yF1IXCcvFFGErfF9xfnbG9vYOSsJ8niDkBQhYZin+xZg4jtna3mJ9bZM0zbj79gFFZel0u47cNZkRBApdJlwcHyBMzdaOTxy0ieKYNC/xPEXgq8bL0W/CWlcbE8fw9ZSbea3svpq7070nxl0vAgc5l0XVbKKE62y9R5sa26AB7rpyoxH9n7DIfVcXrk4nQuucjY0BRmvSLEGXHkZrkiShN7yKUgFZkSKVx0svf8M5V5gKYys6nS5ra316Pcv9+/fxfUjSORvDoVuUZnO2t3epqpQ4VPQ7XRfZkS4RUrG73aVuzHyNdTBOlRVI6VOkJX7t6PpCOtilKDQISRT7eJ7AU1BpZ1yKto1w1K5g+8fSuN81sfhtONNNp6cEBw+Pubq/zf6163z1117lfDJDeB7dbpePf+xD+AJOj055+PA+i+UCnVSU2jnp68eYCFJIt+vHDa1XprkraFEIME1hS5KK4+MR9x88dMgabrcfhgG6LgnjiOlkxPpan8lsTlVprDUoGn2YAF1XHB+foK1xQ+aq5vR8xFq/R6UNw/Ud8hLORnMG3Tadbp9Wq03c6lOUjr14eDzibLQgLyqe/+hH2Nu/xngyRXmSk5Nj4pbP4UlGVWvSoiDNMpTnoU1FEMZ89AMfdea0gPJ8TO26EaXkZWrwima8gt1W2qrVsXKpcCy99xjnCkGelw1EGVLXLqG4qipmsxlvvPEmr7zyCm+++RZPPvkUo9EFX/3qVy9nDmVZkmV5c4VZZ15du2DW5hdcUqNXheu9Nj6Xfog0pI1VUnhzFGVJECiiqE2316Y2JYia/rBHr9VGmxJTafI8JfAkeTNTW6aOqq3LjK2NbUDSilsYs0AJF7siK0Wn06bKatI0pTbuBtK1C1isigxTZJi65MmbT/Dcs+8nVDVVPmeegakrkmRJHLW5f/8A34tJs5RFkiI8n7WNLarKMpuklGVNvz9gmWvCKMb3fYywaGvxpGxgW9dBa2ORynUycadDFARILMvlgsBrsbe/QZnHnJw8RBCDFbS7PZJkSbvdImq13TUhYDqd4XmKsqpotzsURclymdAfDNnZv8JgOODBwQNGp+d0uh1CZdDlknQxIu/16A5aWGkJfe+y81FSXMpuVjAwxskX3AZKYLBI5b0LFnaONpL6crOtLp9TPHadCGvdtWMtVq42bAbxX2rH1e2FeJ6lrDTG1lijQXm02m3SvGA0nrG9u8fktde5d3AAVlPrkl6v3ewItXvT+0OKomBjY8iO56jz/W6PbrfNYj5q2EuWOI4pipooVChPEoSSNDf4QcRkNMVawb37J9y6dZN+fwM/hMVyhO8JyrICaeivdZFZSCsOG6I4zQJmL41l351O9V6q828XVCgoK00hStI058r+Hl/7+U9T1prSWo5Pzjk+esCd6/u0QsvHP/p+Dh4eMltkvH732FkEWXDMQdlQst1g3/MEVWXxpKK2EmsN2moMDm7MypL7D05YJAW1EQihsLamKksuLibcuLaD70v2rl7j1dfeIjEFN27sM7kYUZY5yvOZLV2UujUWKT0sgrwynF5MCbyA49MJJ6dnpIsxcbxFllfkeUlvEBDHPkkm+fwXv8psvqDXlvzrn/23fPD9zxD4AYvFAkRCEIbcvLnNyekZdV1S6ZpFsqTdG/Lg4UO+9/f/KIuixApNXduGNeH0Tl4D27juxc3nqrpw2iClm67JUTIde1Ig5WrGdLnVIQgCzs/PUErS63WYz+e8+uqr/Kt/9a+4e/cdRqMR1lo+97nP0253CMOA6XRy6QWa5zmyYZJVVeX0Wc1iZo1x7hnS8Ei/824Pu6qqLjtJhHQSgGbHba3zd9zc3qQTBnSHMUk+R3kCT0qyPKUoUta3h8yTCmtqhIUojmjFbdJsQZ0XpK2Cqg7Y2NjAv39GEEasra1xdHrMaDQmS0uE8EBKTJMRpiRoXTrCR1GQLRcEsubs8B32treoaoOuSuIoZjKZoFREskyYLRNGkwlGSFod51nYavtMZwvCOObw6JzxrFgBBm62U9UNkOa5BVt6SGlRvo/yfRCS+XzK6CRl2LtFp9PGRJLFLGTQ7xEEAUVRomTABz7wHFZI7h8cMJ1N6Xa7LJMlRVHQH6xxenbKaLTA89sM19cpihIhYGN9gDAFYSBohx6L6Tl1renOM/auPsmgN8Q03b42oZuz22bbbLmUI7iNiHbUeuk2S6u0a4WDpmniVJSnLoXpK1MBcRm18tjGBsekrlcV7zs4vqsL13I5o9fvUpQ5pnYC2W6vR+CHzBZOuBq2NP3BgMV8zpNP3kZYwzKZU5Y5VV0iPI80TZoheoYxBb5SpFlCWea0Oy3GowvqqmZ39wrJYkIYeYClrErqqsIKQV7W6BrOz1M2NjOE7xMaRZpXdDYHdDpdut0+9w+P0csa3w8QQKBcMNyKbLDqtC7Xov/dHG5hLMuaF19+jYfHR8yTAo2lBrCGg/v38ExBmWcskil7+1f45J2nMT/7Kd58+wHSCLSRmNWGTbhZlrspDEJ5SG0byyh3aGNZJLmbe60YIgi3sFcGJTRJmlKbmsl0SlnmbKz3eeLOTd5Bs5jN2Nnb4mIy497BWWOnZS6j0Dc3t4gDj/F0yXI5px0ZtFGcnY8RShDGfYSQBGHAeD5Beh4b2wMuRnPeeOMtkjQlTZdsbu8gBOzu74Eumc7mhK2As4sJt+7skGjL8dkZWe1T17YRztN0V+4m9zy/8aK0HB4e8Yu/+IuUZcn29g7PPPMM1hr29/bZ3Npq7JVEIxZ1G54sz3jppRf59Kc/TV5k/Mgf+mHefucdvvqVL/PgwQPS1HVWVbNbN8Zcsry01o9maQh0XaNWOptmRrH6b5dSzGWK82oXbozbcknpumsH2Tr9luuSNZ5SrK0PyeYzqqp0RinGMJnNMGVFtxdhraEVR458IwV+8xxFUSIsFJVmsZxjg+4l87JqWGp5Q8IoyhLlKbrdNoO+IzXUDYx3fX+drY0O44tTMDWj8zNCP6LQjSDXOtgrLUqKskYbmM0XFFVFkRUEfkCSFRyenXN8MmaZWcqqdqa+1qL1aiZMA8O5TqyqaxaLhARNlWaEwjKdLSiKnNs398EUrK0NCf2Qi4sJp2djsrymNiCVy4N75oknOT49Jssyp8uqLZtbO9w/OOLo6NjNhtMl+ztbTM6PUVi67Zj5cs79e3dZvvoW3cGbfPx3fB/7V6/i+SErQbwbBbqZqTYWjJOm1I0TtDH6Mqpo9XEFE1+uEgK0duzSRzrUlU/hCjZ0Fm61/19o4UqLApVIPOlT6hJtLdYozi8mKD8Ao5kvZmxuruNJgyfdnKDX6RKG64zHE5xGRoOwaANVpamtxhiYzWbs7e5S5JBlBUEQcf3mNS4uzlkmc5TnUVaa8eTEvVGez2DNIy2WpGcZcRwThD5HZzMCD57d2CRuD1g+OCZNEqQEX0iExi2mwi3UCtBCIJRHqetmJtRwe4RildEleATVrNwWhGwErdYghbiEaqQSl6wqF8joWF6XxXFVNH+Dc220cbtWaxnPlyRF7tz5a4P0BJHv04kHvP+DL/C7fv/vozfosT7s0+u0eOH7fjf/5J/9Uz792a+gLdTCoEs327OmRtd1sxC63+45bkUzp2q0N7KBKqpV1yQxGGpjmSU5WZZzPl5SljVKLLj75ut02xFoj9nohGG3h7y6wcHxBUYqUIpPfOKTPPHEU0hjWM5mpMsFb7/5Mm8dzGiFitEkY2P9GlZ7zBdLkiwniHyWeU2Vl2SDkjRP2dvb4vq1Kxw+POTo6IBnn3kKS85sOsELI4QX8/Qzz9HudPC0j9aGTqdHUbhrarlcIpWi3+8znkx5++23+X/9f/7f3Ds4oCoram3o/EIbz/dYX1vn9p0neN+zz3Jl/wqtVov5bE6SJty/f4+f/Zl/zdn5ObWuefud+wSBT5osSNKEIs+RQhDHEVpX5HlGWZboqkIqBwO6a8A0dPVH87VHw0dHwkCuvr6aUVonrq0bKFfh3kTcQF4BUkCvE2LJUb5G1xXGSIrccnGWEIWSjc0WoR9Ta4lC4SlFrxeTZXOshSwvaJcVVgpmi5kzKq4r5mmGFR7alGAhCiRxy2fQ89gYxtSFYj6rMLVhuNZlfc3FlSgZYzVkRUFWFWgl8MM2aVGSloaz8ZxWK6aqLIgaIX2MChktMmbLmrT2mKYpKIVeSRs8B70Jq7HoSzKS0ZaqLtx9KSCrLEVVc3R0xM1rm2zvriOlR1FoHpye8MprDzBWsr2zR6sdI0KP09GIIO5yMko4m4zpxB1297cpq4rx5IL1YYetK5ugK+f8sVwwGodsbGwynr5F7AvGZ3f56f/vXX74R36ED3/s48StLnmpyfLqEsrW2jE1tNEYXTsPUqOdnMA4NuUqVPaxJQTDquhJVj6cK59C9zPNBlRIdOB/x2v/d3XhEspH62aY7SmkcLqioijIyxw/UFRVgUQTRwGvvvJN4jhmc3OToiiIoojxeOyYNFJijGuFx7MZ7bbTDd0/OKYscra310nShBYhtS5ZLpckSUar06bddvCCEB43b11jtlwyW8w5PZ8QRgFXr+6gi8wtfEHEcrFEqYrd7R7LTBN4PkVegq1pt7vkRc0iyciqqoE4Lh3DWDlRSGkfERpso5ISj1wYZFOYlFzFibi2/dI30JrGqNbtWLHOAPRRgo/gkVu5O9wmrPmZ2ol4W52IuBVy/epV/vu//9/z/CdewPieYy1R44ma3Ws3eO7jz/PFX/0S4/GCo7MLvvbVX+Pzn/4VRJmgkEzmKVpXhKEjH8SRT7fTIckKpmlGbQVlVeB7HsYItHbp0LW1zc82NG8EZV5ycHDI+993m9/5O57n5ZdeZLaY0YpabK13+VP/7f+R93/oedY3dun2enRbbTwhePjgHr/w8/+GX/g3P8vZ0TGBinnp5bscn04YT1MGaxvMlwuOj8cMOz6TeUIYBJydnXH9yj5hoEhMzWQ6oqorPAmtTg8vCPnA+z/ARz/xCWrrNQa2voOyLJR5SW0MfhBgjOXFF7/G/ftvM50vLn3dyionDp3h6quvfpPPfOaX6bTaSClZzBdIJah1RbJMHCOw1jw8OiKOXWCiFBbfD1DKMcTq2pEELmcatnmDhcBq51f3uN0YrDqspstrYCP7GKnGGmhYCW6mg7sGPaEQRtONItaGPYoyxdgaKkmaV4wvEorKYPFBeFxcTNja3OOJO9e5f/AORV1S1watBUVpuJjMEH6MVQFSOT/A8XhGmmZ4yqPbDtncWGN0cUYgDZKSWzeucO+dI2azlCAMiTo9TOUzOj6j5YdIK1CBgxdnScVknpNXluNRSr+ATjskywsGa+tMFjkPj09BemRFjRGu+7dCQuMYoesa6yxBEMJl2Umc/6jFmd1aA6NJwrAXcnx6xmDQ4eLsgpdevsvR6QQjBXkJ2eE5fiBQoqDV7XD3/gEPD8f4nqIT55RlxWw2wtQ5vVixfm0HqysWc8t8viRJDrh24xrX9ncoypztSnJ0Mubw3msIKv7If/2nkCrEGEGSFkjlUWtN2ZBytK4xjcDcGSc3hcs2TENrLhmHrnC5VGlTOzcV0VwnutmEW9PMu/V3Xn6+qwsXNiDLa5R0LfhikbKcp8SxT6sdsVjOacU+UkArdvY8UkrG4zG7u7ssl0vm87kT0vk+SZK4XJ+qusTjJ5MJvW6XjY0Nut0uUlk2NzfwPMW9eweEYcDtO7dJkoQwbBGEIbbp7A4OTrl2PcIaQ6fT4a237rJYlGRJwpX9ATUR86RgfW0LYS26rnjqyWeoasMvf/bzvPPg1LlrCxwdFYCmXV/xwS2snLtW+LKwK6LDY4nDDW2ttsYZqwrnso5YQU4O/nw3Md11d6vttm28zqy26NpglXu+sq75gT/4Q3z4Ex8nbncwQmKwePhYC0HUZRCEfPTjn2B6seDo8JiDu/fYvrLJ0/vPkE4nfPWrr5Npzd7+Jp1WQJXO+eTv+DhnozGf+/LLnI1ThBSXztY0otpWK0ZKSZKkzu0bS2Wh0/KYTiYskiVrGz26wx7TecHTH/gQf+KP/9fsX72NlT5SKeIwIAw87ty5zvs+8Cwf+8iH+MJnfpHTg3f40pd/jfNZipGSvCgp8ppAgkZyMV1w89oG+aJkOluSZQUgmM1mxIEk8BTZckmVLXnn9dd46skPILwYEFTCPZ82rst28yBFmuXcff010vmcOnfSAt/3ifyQKs/IiwKJYDmdsJiMG3Ncg+87yFFK1bhaiMZHNL80zpVNJ1WVJVVRX8I9rrNqds7N55eE59UXm+vMNNT2R2iuC4tcQZ7GOMhQWud65wnnBtMKA3Z2dgkDxXJxQRj4BK02h8cPKSsXPhqHHsrzmY5GpNl91td3aPfaFKUmzzV5VoLwMcInDCOkDDDWRaxUVYIUjsVnjSNFra+tI22J8kOkCugOhkwXBVr6nE0XzGdjLo7PGHYHhIGiLAuCuMXpxZzxbIkXxmjhoaVPXkvSJKG0S8azhOm8Alk7p4yGMSmkAWqEEQ2CIZ0/o3GMWtGYDRhjwDo3/kWSc3oxI8ksnV5Ikknu3rsA6VEaHHIkfHRdIKRlPltQFpWT0Qg3o9d1SSsOaLXblEVBmiR4wtJuxVRVxXQ6JVlM2N3bptvpY7SzifKVYXR+wsnhPZ548lmiqEO3VQES5XkUddUUrEf3nDWrGVezJjxG0FlF86yYrsYYR4yxLp2+qgrqumpc+SFJ0+946f+uLlzaBNQVHB8fM5vOSdOK7c11Km2ZTOZUZcpHv/+T5NmCuq7o9/uXlOD19XV2d3e5fv06s9ms8VxroKrAZzadUFeadjtmd3eTtbUB0+mYfr9LkizotDt86EMfZDKdICXsbe9wfHZGWecIBFHks77uUZUZhw8O2N1bx/ckAo01KVVRY70YXwJ6TrvdRtdw+PB1LIrnP/wEt+9c4wu/+iJZUZNXNdo6mrhULp/q3ZIuV7Ro5gng6ppywgm0aSZDK5o4TnfmdtWr4iXeRQtZPa9bnNQKC0BhsdQNpADtdp9rV6/TanfcAmwFqimikhBrBZ7w2Rzu0W+VeHgYXVHmOdvDFkSKw+EJ02xJ5Bu21ttM9IQ6H7MxiHn2zk3Sb9wlK7SDo6wrps59WlKWNda4gqukQEhLVVuKqqFPR5ZWq4WVIT/4gz/Ak3fuELUHGNSluwPWoHzJ9vYOP/yH/yif/MTH+dKvfIaygn/3+S+T5yXZdI6wEEY+fthiPJvSvpgz7HVZZi5HKW61WCwWbF7fRdqK4SDmyu4Oz965yb3XX8WqsGldJGlWUuN0a1L5KOWRpjnTixGm0tBQ/3VZMc9LZwXWiJVrU7MCaTwp0VXpSs1KEyYVqumuV64GWmt0XaLr2uGvjZ/ku9O2m43OexlfwmIugaFGvGxtM5xfQdjuAlFCooCVP12v36PditC2CTkUIaW2jKZLNrf3mUxmzWvImC4W+GHMdD4nKQo85TNb1CwWGUpKWu2YuLuODDyn+5LOBg0rsUairHPdPz0+Y3dngziKKApNkqUYoVjf2uZssuDw/JzZdEq6LAnUBCUFEoFUiqx05gBx22Jl4KBhIykqwfnDM2pL49JuQUqsNg1RxiIaYoo1q7hGeYmlaV2jLtl2FokzJk5SzTypmb99wmiyJMmdhAQV4AmJpUJR0hm0iIIYz8vZ3lpnuUyQ1tDrt+l3WihZ04488jRjMRuzvb0JusRXhiydM7qwRGFAWRq6nT5pOmN+fsrP/K//Pz72Pd/LndtPEYYtjHaM0iAMH9MIuu2vNU5YzeVMk0sWqWp0q6bRo5rGPUUq2YxiagQW3w23qeS7DXq/neO7unAdHo8IPI8g6rFIl+SZJGp3KIuMokjY3dnh5OSEMJAURXEpulwul5ycnLC5uUUUhaRpynKZXKbtdnttWq2YdJkyGU0chTcMGd274M03X+Pq1X2uXr3KxcWYVismWS4QEkLfYzqfE8Qh2lYMBi2yrCSKIupaEwaK9bUenlSkZc08LSmLhGRZgmmRJvmlduTGrdtsb6zx/b/rY+Sl5cWXXmE6T0nLirxslIGPLS7utnPO6jQ74kvs2Rg8IZDKDViV4tL0UwowQjutDYKVEeajiVcjIjXNwNlox87DrX2/+/f/Hv6vP/bf8bEPP4+89P1wv1k0ESVYgRIKi4dQGhF6vPHWWxy8fcjxdswwDnnuA7c4Hs+RUYAMJL31HkmRkc8TyiKn3wlJUid21pc6Zut818qaVVy5xREJqtqyTDLuHx7hh5qtjV1OjucN6ywjjHrOIFRJjG1YczgqehS38Xb2+ND3fJz7R8e8cveAuwcPETiT18pYKi1otXvUNmS2KOi0K9C1g8KqgrI2tMPAzRMRlHlObS1pOXcaNelhhKDSlkWSMZrMiOMOk9GEi/GYKAxJi7IhNTgyh2mG5Nqs2DwNbCtsA6FqqtoVNjooIloAAQAASURBVGssCEtVVs61XWsHXUmceaqQl0w49ySPrqRfN+kUjx7kXDcadlmTU7NimV2GSFoIvABwMFNelEgpKMqE8cTS7QTUdUGa5vyu7/sw9+/d4+jwAXs7m1RVRlZWxO0Wk+mcOIoZTzKSxBD6isrWqEkC0slfOm2fqtSkiaEdhbRbHeI44PDwIdYMWS5zjDbkVc10kYL0qYym1pVzCLEucFLYhvRtHdmqNpbapoShT20sppmvlcYFaNaNHknJZhOJOweyOZeNt0kz4xIoAcrj8py5/aQ7z2lRc3B4zmQ65ex8TmXd2MIRZSy6yBh0fKqq4uxshJQBuzubHJ8co6scT1mWizHdVsj2lU2sLljODeenx+hmg1OVGXXpkVQZvgrY3hzw1lv3yJMZo1PFT/7L/4kb12/xB/7ADzPsr2GBLJuBEJe+g5frjX1stnXpnmKpVvIMwyUM7sYNboOIaRxXrJO/mCL7Ta3z3+r4ri5cReHov+PR2BWXSLFIcoa9DsN+i0EvJlnOaW+tAc6PK01ThBAcHR2T5wVCCC4uLhiN5qyv97HWEMbO4XljY5NOp0ueprz++uvEcXxpanl8fETgh04zliV4nken03ZMtFZEdXaO6LaIopjFfMF8VpEsLP1um36/z5ofMk1SlLIUuUZJjRI1/V6L2SxhMR0xuhhx5877KSrD1nqfXq/LaDbn7GLapOeu+iN38Ugh2dpYQwpLniwdXGgsWVYiPcn2zjYXF+cUZYn0HAnC8xQGSV7WlFVDxBcAkkdJcw6WdDCkdoLiQLJ2dZtb738KEXhoY/FWK9xjC93q6WptmCzmWAWjdMlLr7xGUVScn0+w/YjcCh6eZOTGOqKNzoiDCbaSbKwN6HRbbKFJ8oxZ0njOGed24YqWegSJShgMe/jSMF8k9FWbV18/ZTFL+exnP8fTzz7PR57/GP3hBn4YXM76hCP4YoUlryrWtnf5Az/0IxSl5V/+L/+K+4cnzNMFWVVxfHrOld1N+oNNjh/eY9AvKbI5SZZQVTVr6+ts9odgIC9rWu0uaSVoB8oxz6zgzXfu8cWvfIXXX7/LydkF7U6PJMk4vxg1rhoN3suKZdqkCttHG4qVVVZR1Vy24Kuui0b42Wi/tNUNpCgwtXGLin1PkWL1Fj7WezerlPODdJEXWuvLGevjsOEKcywvGXqW0JNUpqLMnYZqNhdEodvkHBw8YLFcUNUVk9kYazSeEjz19FO8+PIrbl4iFFJCXmoqm1PqiiiWCKm5emWTZJFzVEzRdUkcCtb6LSZjgaCkygqms8TphyowwlCUFY3Ey23crOvebW3whcAqRyowdU2FwfMEfitkOm1YcMKRm5QHkhovUAihnGdjQ7Nc5ZvVxuEYUeTT67ao6oo0dWxFYQ0K54Ty1jsHeJ5CKAW1xgsUGk1RFMQBbGyukc1nZElOq+03cG9JFEp8z0HFg35MGEhMLRj02pyfn7G+PkDrmigKUBLWBkPCMMJUOc+97yk6/SHjyRxrBFL4ZPMxa+0Iz3Phu8Ku4ojMZZe9mnW5d7zp1nEbltW2R0gXQlob05hKO/LOihHcJIP9Zpb5b3l8Vxeu2TyhLEtGowlrGwOCIOBiPGLYbxOGIUopBoMBy6Wjtg+HQ6SUBEHIbDZzRW88ptaWKA5J0pLnPvgsYeQzHo+ZTuYEXohUiovRiDxb0GpFHB4eYhHcvHGT8XTqbobMQTVSKZbLOZ1OTFVbZvOEKPIRWG5c2yfwJbUuCWNJ1O45M95pyunxjCdu3+bsfEK/N+Ts/IKi1Nx7+w3yoqbOl2gNG4M2ceQzGs+YLorHzoa7MDbWh2yu9ymyhM21IQ8eHnB+PmKRpNy8vsezT9/gpW++SLfTcroLJH4QkxU19w8esszqZiCr3UxLOKjDWINQjaDUh51nb3Hr2SeZFin3Tg65euU6O0GMwDGLXOqtbZiCiq++8nUenBzx8Y99jHmRUWPQEh6OMvBj3nlwwfH5glqADD20rZGywJaWo7M5t25eww9jAgQtW1IUFXVlXFxD7W4ItxN07FCpPMqqxNiI+wdzisKJoH/+F36F+w/O+NN/+s/wI3/0j3Hj1m2kUJf6uRUxJW63UQKu+gF/6s/8GfrrW/yL//l/5le//GWU72G15uJiijGa0LNuzqINdV4xHAw4n8xQHvheyMnkIeVn/j2lVhS1cwI5OjvjS1/7GtPFgtpAsszgfIRtfORc4WrsmVbMUXG5LLheWKnLhWQ1n3Qq0kbcuSo2wmJ0he9J5GoGYV1Ejfu+bOy43MLj+V4D7Vi38OAKlpJuxul5kiKv8AOJ1pbAd8JUp99qssaoLzfphpKiNtRGIyVUtcX3LMN+l7PTY+q6wtQVSvhoW4MWjM5PaYfOBcQUFWWWuSur1hSZRgpJGEEn9ljrb9AJQx4eXFAXS9K04ur+EEFBK7YI61PWmto3GCStsEUYBtTaeQkWZUkUSFQYO0qS1ZTKnYww9LAYWpGk34uwtqQoLX6gsNRuroal1+5QVzVKesRxTJpl5HnK2lofFNRVgUDTjj16HYWnApaLAiVd+vJ0tiDLc6xxCcK+74gOCFgftNnb2eT18zGdVkS73eL8/IQsWRIoyaC/STv2aIUBk8kpgYQo8tlYG7C9tQlS0G63HNTaalGXFdPJlMPDY5548il2NrfASOK4Q6BgORsThi0AZBNZAm7WWlfO/7LWtbtXrOvCm6AcjKkbgk+FkBKvsSizOCG4I/UoJIqq+C/Uq7CqStJ0htYQhj6dTgthq0bgCUlS4vdaFIXzawujiChuobVmbW0N3w/w/IB+P2Q6X5BlNUVZM5lNkVJQac3FxQmdVovd3T0e3L9Lrz9ACsEySTAIlknG+fgCKRWtOMbzJVHkfMAqbTh48JBW3KbX7TCbz9nd3kB6Dv6ZjM+AgPHogtmsxPOnWCvZ3trBGMHBg0Mm43OStEZ6gl67C40lUKe9SXAyJi80WebMK422vPnGm8w3+rQiqPMJmJpBL0TrHEFJp92m2w7odiMWiyXr6+tMZwushutXdzg6GbNMcpQQ1IYGchJgDKY2CE/Q2VnjylO32NnboR23OT49ZbyY0e8OCPyAoii4ODtnZ2eDOApYZkt+5t/9HOfzCb/7k5/k9vWbfPIHfi+/9K//DW8fzzg4mjlCC2Al7N+6wSybEQQek+NzyqTm9bv3V7yBRzM8QNsV20k3nmouX2o2X1IVpfMExO3zDJaqNrz11l2+8dJL/ME/9COX/nGrZ1wFYSovAKsJOx32Wh2+/wd/H2ezCQ8PD7k4P8NY10mdno/ZGoakWUYceoRRTNwKmUwnrK33WcwSWp11LqYLlpnGCMXJ2Rkvv/oqyywFBGWR4/m+24VD091ajH4U3Cd4FI2OEIRBgOcpR5evdcMclCCdDRTWoJTnmFy416gEBL4jjbiZl8XU7n1teAPusY2rgTEucQHA913BUp77gmcdKcPzfLBNUrLyCaPYsWfDiDTLyfOCKJZEYYi1mqqosJXFl5a6TJGej8LS6zr4ajlfopTHwTtHDNdiPE9y68YVbt+IGF2MsQK8QOKHgkE/pNsLefrJJ1kfrHNycoGSHr4niOOAKA4wleHk+IRlklHpmq2tXeK4i+/HICSTyZiT0xN67Q7tVhslJUmaMJqMmS2mWCzLNGFvf58kTbl//4A0ywnDiKoqsLbR36HI0pwszUmmCUJ6dEKPTiiwwtAZ9knThCxL6XQ6RFGbj37wfYzHLi7mySeu8eKL36TIa4yFbj+i3WthhaHfjqnzJdLW7GxeodaGOFR0dvpsbHT44PvvUGQLJJYyD+l3XJJ3p9thY2MdISXdThcpFUHgoyvN+cUFo9GE8WTC5z/3eapKs9ZfZ3N9i+0tl1HW7nTxRYAwbg6aZClBEJAXBa12m7qqmo7d4vt+M+v0qWoXeDmdzdHGMJlOeO31N4jCCM8LuH3zCU5Pzjk+PvuO1/7v6sK1uTFAqgFZnlLXGXlqCAOBrkoybUnqnEAJp7xvRWRZfmkz4nkeBw8ekuc5vX6fKI7x/Jo0y5nM5gS+T783YDw+4Mb1mwyH687Cv0ipdU1/sMZ4PMMKRdzqEkcxi/mMZZIzWO/QDlt0W22eevoJDh8cMR677B2JZX1jQFk5mHI2n5KlOf3BAK0FWVryxht3uX37BtrUvPnmAUVZs7u+QZYlxGGXs/Nz1tcH7G33EDLgwcML5vMMISCOJGEk6Pcj0AXrwy5R1MZTgof373Fw7z5bW32s1QhjqMqSLGksrHb3GAy6jMcLjk/OWSYFFSBdWBgWQ397g+e//3eyd/sa27111uIOV3b2yLKMNE/BaGbjCXdffYWTwza9fpd/+4v/ln/xP/3fufr+pwg9j73+Gv+X/9P/mfHRGb/66c+vYtUQgWTn6i7f+32fxG9HIDRvvf4aX/rlL6CzGrsyN3NtnSOH2FWf1MSQ43aByyS77J4czd9x5QRQlDXjyfTyOrr03GsAMkd8sY8G69Jy5cZ1fvfv+d28/uprfObTn3axEtYihCHLS5Jlyub6kDgKmM3ndFptDo9OKArDj/zh38PzH/3daBFQW5jOpvzKv/8cn/3sZxlNxo3xakYr9MmLisBzBVxZ2xA3HMlhFdoopMWTxun9Vuoh59Ls5inKhTd6nofvx3TaMViDNiVR4BOFAd1Oh8D33Wuwirqq8D2fMPJRUmGsJi9ziiLj4mJEux2zt7cHArI0u4zVyLKULK8RCIJQ0W4FUBd0ehGdWLFcQtxWWFtSFhWRJ4jjkFB5KAl1XdCKAqBElylP3b7OoD/kYjThzhM3UV7E9tY+25s75HlGu90BBX4AUaSQyuIria8CjBEo6SGxTWing/SyLHdpvbomimKk8JEiaES3NbouCfzIWa81sGhVV2RFhhd4rhPCxb+cjy5IkhTf81136nlEUYuq1G59QVCVJQhQnst+QxinnWvyv4Iwwvd82u02xlguLi4YrK3zfZ/4hBPVey6rL+pElHWJsmBrTSB8jBYEUYuiLogiRRx5dDshVZmgBLTCyN0N2qI8iR8G6FqjlOecKqzFjxVXrnTZ2bnObD5jf/8GSioCP8STHp5y7u9lXZFXpXNJsZYoirh//z5f+epXicKQ69evc+PGzWaj7jEejymKnCAKXFzNgwcYazl48JCzs1OiKCJNcl5/5XWWi5Szi8l3vPZ/Vxeui/NDBgMHtyVJRZHPwBiiYMhstqTfbZHlGVHcJW6FaO18z6SUXEymGAGtbgc/jCiThCiOKcoSXVtUFBK3ulTaMlsktFotqtqA9LDaOOGtEizTgnfuH3LjxjV6w3VMnVPVKfPFnHo2YW/3OvPpnJkx9NrOcXoyXeAHAt8P6XY8ZjNDmtZ0uxGtdsjDw3Oi44cYa/ACw/5GH983FHlNK9S8/2kXoSEslHXF/m6fOPQ5O58Rhg7rvnPrKvfffp3RxSlYxcbGBqenM5I0ZzmXeIGPkgHz8YLID6l1TTKf0Wp3WB+0CX2Pu+8cYgvtlPPCzcKGW1t86MMfJYp8tjpD+lGLQbvfsNcsus4p8iWvvfYyv/Irn2c6m/HiN7/BuZix/fR16rKiE7R48upN9vf2cWw2iRWWIPB5/3Mf5Htf+CQ3btwmzRLuPvkWW9tXeOUb3+SdV96gSvL3zGVW8Jm97MbEqutAXBY1mgIGDv4qK30JMT7umdZwKB3c0WD6CAeTfPgjH+av/tW/yhPXb/Jvfu7f8Na9t5kvptSVRUkwVYUIFKFU2FqTpylB1OXGjRusrQ/QuMV12O9x/b/Z52Mf+RBf+cpXeOmlFzk8PAYEyguYzqYYbahypwcCZ++kGzssay2eZ/F9iQl86hXtGEcqMNoQxz7bOzt0Om3arZjBsM8bb7yKkvCRD32IJ5+8QzuOiMKQYW/IZDKmLEoGvT6ep9C6ptIVUeQ8D63RDAdDtHG/x+VuFSyXSw4ODlgsFpSVy4U6Px+xTHPGkzl+K2R9owNC4/shutLMRjOKdEnQjpDKcGVvg2efusPtWzfotrsUmbO6WtvYIApbGAN1XbLeazVkFYHyJEY7hmStFNpmKOk3vpgST3luPtbYZwkFwhqKPEFXFilCjLF4ym0+LskaQBB4eAhiz1lFtXodjHXw7PZw4EBZa5FCOcZuk1ZucIbGZuXDZ0GvXPitaUTe7vFKuutOW8Ozd26RZQUfeOIJqlLj+wHGVmiqZsRpUUiEcea1RVVjm3mjrSuktNR1gRLSxdcIl/dmrCOQWE8jpUfkua+vZqPImvWNNmsbu05MrDVKKoR1OkCLgwTr2umvpFJs7+zxvd/botVqIYSg0+02uVs1g8Eata5Qvk+70+PG9dvkRc73fMzNUuu6IkkdAa3d7pLmFV/47/5v39Ha/11duOLYpxV5KKGJAknghZhKMxuPqStNGEjC0Ge2WJCVKf1eH6GkM0FNU7o9xyxzlNQUh+oKqsppXNI0o8hrzs7OyPMMJQ2OFe789orzEfOFy+GZTGaUZUVZLPECg7Ylnq84Pj4kCH3WhkPyNKPT7VNVJe1Oi3Yn5ujolOvXr/HGm2ecnU+5cmWPdmfMZDrC8xxjSUhDv9clDAStdsD6xga9dsw8Kbl3cEarEzPot8jLlJ2tdZS0LBZjhmtdBIY8rV0khamIQp8iK5lOE+paIISl1Yooq4JAeixr7WxuUFy9uscyLVmmBWmuyaqKm08/w6A/ZHdjg7YMMFVNVdfUVUWlK0azMZ/73Gf48f/xn/HOW/fQRmClgSEUWcqrb7zO9c09XnvjVV558RtAcz6tc/Z/3/ueZntzyN7akEr3EQr2ru/z1LNP8//8p/8Pjt96sMo9ucQMV/yR1XGpOVm5FIuVgFtcUrRXxUtbg1rp4N51dTlCyiVDEkEcxTz3wQ+y0V+j3x3yqU/9Wz7zuc8Qhc28yEK2TBiuDd1cyhi8IOLtt96k09kAGeM0MgpdV+xtrvEDv+uTvP/JW5ydnTXdlOLo6NhpsbR2Ak4cTXuVVJvnBbWuyYuCoigQUrpOQ0iE8qnrmtlizvnFBZOLk8ak1+J5grgV8so3X+L48B7dVkwcRbSiNqZ2+VA7O9vEUUCta4zVdLpt2u02a2tDhCk5fviQsirY2toi8AN2toc8uP8mUSD44HPPYY0m8CMEHssk5a237/Kzn/pZ1jd6BFLhtyLSsUFFAVd2t9jb3eTG9avcunGVfrdNnmZkVYm1guVkRhXmGKtJkinYisUiRUqvIeaU+IFPXhR4nkcYxtgaPBVQV07v2BsOiBuhNtRYNKYWKBkS+D6e57z4POU0fVZYqsI6ooQQmFogvQApFFWtnSFEA49JnIShqkqEEnieIq9ytHHZZ1jZXINuHqlxTF5fSfKyQAh3HRfWkYvy2qCkajo2Q02N8IRjjOoajMUIr5FFWKy2BCqgqipCv93A4RolFLWtENY0AnNFrcFo7YqtNRicZMJaS1k5baCnvOa6BaTC9zyU9fGNc0tZWTh1ur3mfIrG4kkTtxy1v+V51HVNFLWw2oX9Oh9Z1/1KpSgrDcJjmfwXyipUPpR1gee38LwIKS3GrwkjnzzLKasa5fkIJamNc+xWno8WlnanT54X9Pp9t5gpx0gUqUZrxWJZUesFYStksDGk3Yp58OAenXaLqq5Jsgxd1/iBT3/YRWvL0fEZQSjY6Q4oKktRVOg6Q6BQ0qM2ggcPTxkMBxQXM7KiYjLL2NreYGt7m6ilsSjWNrYIQ8tiOeb9V3Zox46yH0aKVtxmuVggsFRlQr/rczG+II677G/3ELLi9HhCsbzg+tUdBIbNzQHD9S38ICDLSi4uRmRZhTYe3U6LvNAsFiXGuAGqRhLEEWVak2Y1i2VKbRXd/X1uPvk0ngxJZhlH5wckWUIQ+uxtbzKanHB6fMhP/It/zpt332maIGciS2opFxn/27/93/jIs8/x2U9/hjdefWPV4gBQ5hWL2YSTk/sEaDa3dtA2o1Q5Z7NjLo6PePQDq46qqV6PD77eRYf79R+theUyIUmTS50KrIrbI9+1dycL04ipQ67fvsUf/2/+BMZavvHNl4i8HOUbwihkPhsznczIC03carO/f50vffFLaO2xd+UmUvlYbfHUCp5TrPcHdOMWSjln/GefuOWcQewjh3hrH8WHVLWLjzANS9nNsBRSSjw/RFuXFHx0fOq6oDJ3iyvCxaYoQZEtqYqcPM85PT65fI2Hhw/p9bqsrQ3wg4CLcxehcd4bE0UBURQSSsHZ2dmluHWxSNjY3HCOG8JZR/lK0W3FXNvf5U/80T+CtpVbGI3gePcUX0pu3bwOtqbVipiMx7zx6ivouiYMWk0Ao2Q6m2NMhaBCm7JJUHALd1FVLJbLJh7ezX57nSGBChmPpiAVV69fo9fvN6JsQ55nBEFEtzOg2+4SRh5RGCCldmQlKfCUxDeNDMEKBE5uIZWiMhqlVgJ+S2ULlHKb3aqRVARhhC6qRs/1aONjG8ahxrpNqa2bTsyZRiN9Su0QISklWENV1uQ2Q0q36dJaozyfFTuvtCVKKqx+BHebxmpLKg8pdLNZswhjmtgZ2xBlnKVTu92lrmpo5sWAY0euUAfZmPE2s1TPd+urSylwYuayLhAI0jwnDALKoiLwfJLlsjHbpXkNJUZIhHQd2Hd6fHcXrkAwX2bM54I49un1Qrq9Fnk2x+DRirrkJXT8AM8XJFmJFwgECqFCirIgzQqiKAAVYK1imdbMpxndruTsjQM2NyIW6RIjSgpdUsxrtLbMF0uiOABfYoqKqkhRKiCKO+SFdhDjNGd7a400KQhCj6PTM8pC44dtpDSkxZROv89sseCdeyfkuWI6LTFUbGy12dxsszbsuRujLqhKePDwmChqsWr3PaV54tYmg/6Gg2iSBWvX12jFEb4fYqxgkS7QQtPtt2h1Y2apYBiFjMYldXPztNcitNYkhXWZQoVG+DGLRQFIRLvLcGef7Y0tlPR4eHTM1371i0yzOZ1uxP7mBoNuxOnRMW+/df/SqsjSsI9qOPjm2/yv2f9Clk758otfQvoSk5tmLuVw/DTPuH/xkEUxYysd8bmvfYlvvP0a2SJxF/olQ+MxiPDxw36LT74F69YYS54V2MfmGitYcAUdrorWJct89XVfsnVlh6efex/rG5ucndxF47Msciqr6UYhseexWNY8eHjBMkn4xU99ig8//z3cvHWHTqfnqOnKc+nEBoIwcsCmsAg0SbYkXSZI4TotR7Rw6cduwXD6Ii8I8JR/eSqW2ZJlkjCaTrgYTTDWZWvVVYmSgiJPsY3ANM9SyjKnKGonEleeE51aj9r6SEL8KKS2gqOTGVmWEAYS31e02zGe5xGEXfb6W3jKI0kdDLVczpvX5WJ8+t0hVV1SlSVWGna3NgnDgKLIWSzmzN4ZkywXTWfo4DTfdzIFYy1RFIIIqHL3ngeBRysMaVlBezBAa0vVaLJUGBLHXe5sbRNFLYS0KC9AhT5CKdrDNcIwIlAhoRc6xEV4WCRV6TSKgS9dmgEGo2s86SDAFWkGQ6ODq5FCUFVNhwVIFHW5snoSiEb3Jmlc8q3r8OqyAuE6fqEdHGxEzcosQNK8z03Wmm1cjaXXuPXTWLcZ180449pfH3PjLn/TMEwFVtfN2tHEKTXF8TKORjjSjWm2bWLVYYrVllGiTY0fPiodUgqEdR1qIBzDNIoDhHXuOe4eenzz2BCPVuGD38HxXV242t2YPJuRF0uMkXh+jOdVdLoxVliyqiBQPpPZkjRfsLm5gbbOE+7s9JzRxYSrV3eotSDPDMu04mK8BCPZ3Oyws7tLHLk004cPz1Cej+8FGKvpdgPA4ikfbXOibuDIEXHIfDairHKsgQf3j+j1epRlxdbGJm+8eY5SMVAynsxYpiWtVpet7U3OzxecXyxJ85KqLrmyv4W1kocHx1yMpuRF5Vy7PQcRzec1WztOWyaUYG9vm8PD+jKPabFwi0FRFpRVTr3IGa6ts7e3jjYKwwRPRZRVhReCLgXZvMJDIAJJ1I9YlBmDzV381hpPPfE01/euOdbmcIj0PS6Ox7z9cML9+wGDQZvA9ylt3RAomuJiBWjIpwXJNMUYy9r6Gu1Oi3nu3CjAOZaors/ULijygl/9+V/jl3/20yzSJVG/3TAcec+M69s7BE7dX9ea6WzOMsnxvBDfb8IYxbf+uRXt99JBXUne/9wH+PDzH+abL6XMJg9YG0p6vR51rTFGELdjpHQu4aPRhJ/7uZ9ja2eb7/89v5erV6+6BRnpPAqBwFdYo8myJdP5jHS5bHK33N9gTLPYCEkUtdyQPs3o9x3RQHo+iJq402Enjlnb3KCqagd7YcBqijwjmS9ZLFPGkzF5kbE8OmU+X7r8rapCeKB8516va4uQCiks3W4baTUCFyOkjUV5Hko6eNKJb5sZnK+atNyaKAjRdYXFyRc85QInhRD0B13qumA2mxKGEWEQANBqWebzuXveJqRS65qqLoiiEN/znCGiFc5uquk850nCIkguwzixtnGqV0jPRwhJFDp4dNBzqQ1hGKGU54IpJeRV5aQcwrouUioXe9JsljyhnDOMdKga0gVECuGcaYypmmsGl7PHii6+SrG2jU2WvLz2V8Gil6gAzpsRCVY6SO5SN4fFGW2v7i9D3RS/pql7dL0L8a5rehX8STO/NazCtL71PfV4ZM17s9ce/9rl8/JI19eM5971fdeRu59T6r/Qjquscja3O/Q6Q3Tldh7alIzG580gPiAtS+azBYt5yjKtieIWUvqMzid4UlGWkgcPjohabc7OEs7OE6JIotQR3W5IWWjKyKfI3dBWWB8IKYucJMmIW5ZWHKDrCqUseS5Ikpzd3Q2SJONwPGNtzUdJi+8pet2AqqxJ8iVFoR0pIp0jZYTnC27dXmc0mZGmJWVR8/bbD7k4G2OcIQ1xq4cQ0Oq06Q1chtdyWbJIDrh25Tqj0Yzt7XU2NjbIspy6XpDnJcaW9PotZtMRvd6QJKtptQKm4yVPPHkDIyoiL6Da004fpwSFCkkA0wq5duc2e3s7IGBjfY1OO+bK/hWmiwkP336ThdDUdocgCihNfdmuiGanuepqDu8e80//h3+GKR1Gj1lJaUG2JEVcQQ9oGR6khyyWS0ymMbFGBgrzHWT4PI4eWiyeCjAWvvrVr7Gzs8sTd+6wsT7ACzwen3R9q5DExz/f3N7kv/qDf4Cz0zcJvRllmeErJ0LNs4JluuTpp5/h1dffIooUXqB4480DNjdfxtjaxVAoD4Skqg1hFBEHPt1um8D36K8N3YxTCLqdLro2uARpgTYujDIvSibLJdYKkuW5s3pSiqKskMppr1qdCImlqgoGa0M63S6bVvL+dgtjLJPxhLLULJfO6DjLlyyyOYt5Qp5X5HlBVZVEoY+vBKEnqWsHQYIgTXJEk5pblrVz60hrPM/DGk1ZVs5SSTpITQmB8hRRFLmCWZdkeYlFXJrQVlVFXhSXQZZVWVJWVcPOc+4LaENV6sv3ZWX8WxYV1hh8PyD0Q2pjEEqiLejaEMcxWZSSLBe0Wx3a7TadbpfBYIC/Mg82TYGwxsXxWOuCSS3UjcO5I1048kVdVS4dWjr9oKe8R7o7YRpgr5lZ04xPdSNbWEXZW9E4a9jGiq1x5Fih403XJKS83BCBky2YWiNW+WfubAA0ju6NIEQ8SqpezemMfZT+Z98Djj9OWnpvWVt1aI+g9uZPbH7GSUzeC7W7xxss76qm38HxXV24PN+j1jllNafX6bsBf9xnOvdZJjlpaphO5mRpThiHVFpgc9cqG6uI4h618ShrhV7WWAPXrm6T5wl5UZAXCZ1WRJ5VxFHIfF5QFAvW1jc5OpqxSDLWhhG630YpTRgaisL5FGZphkSytzugKlMKY/C80kU0FDmz+YK60lS1u1jDCBCWdqfFzu4adWU4OHhAVdZgFb4fEEURRVHS63eIWhFlqbk4vyDNUpQnSdO3mC8yEBN6vQFZllHXNWHgIYQh8D3KusSYEoymKpZ0Wz4PDx4Qd2Bj2Kfd7TGa5zw4SvA7HXwvpvA8dq/togJ44+7rPKVuMZ+MqfICVQlUZih1iagEk/mM+rG5EY/dsK5bAJ09sr25PARoYZhWU/QiYz6ec1KdYAMDBXS7bcZ58d5L4Dd1PFZuWJE1RqMLvvSlX2V/fw+ta5555mm2tja+5f30XvhlBakoKdnY3CJudzHVgDIr6Ha7TMdLRuM5YdRuEn89hBTs7u2h7Tn3Dx6wd2WLVq/F1Ws38MKYIIyZTqcsZ3PeOThAKcHW7jq1rhgO16gs+EFEkWd0+0PmsyV5PqPbH9AeDjk/G3Hv6BhtDIHnkWUZWEOeJ1y9dpW1YZ/z8zNacdiwD2UjwM3Z37vKcHODzR2fuB0CNS++/GtYec73vO85louEqqzIswQljAthDDzOz05Js5wgjClLp5WUvg8qx7eWqi5RyqPXbVMVBUHg43ue0/8Ix6BECmdzKAqSNKfTauF5zp3cGENZVShj3GywrMnLCqE8B40BSZZRlS68cpUBFQch1jpXncILsIAXBGhczlatHb1bVxXL5YI4johnLcbTC9f1C4FSCt9T+L7vvBc9z5EVlIfvOQ2dF3iuc/Acm9O6ZEY0rgNbRXqsSEGyMal2EJy7fpwW0Tb3QxMoi4Mp3QXnBpnvgq2NwQjHGBQ0UGKTKvzorhKXv/dR4ZKXAaCuMzOXobXuMcYZDjTPoRphsf0P3RPvbu8ebe7so6nxr/vZb32bflvHd3XhSrMCJWo67Zqt7XVmkznj8RjpOXeMvKhBQac3IAodG68sNKPRjNliCiKg0+vT7Q148OCUIPDodtsIpZHK0u12ydIlSiqSrKDIS/K8JM1PUJ5PHEVo7XNyOmVzo8tisaR1ZZONjQHLxdTZrAjJZDIjCkKqJhrgYjwFIfGCFqfnc5SSKG9Ilhcsl2O2ttaII8dAq2tFWWp2+h3SNGOZLpGex2yeuPwxKdFG0m23KfOabq9DnqccPHjg4gNqR4vt9HyUkoTCb0L6cna3e1jtsH2tSoJIcnQ+4+XXJ+TawrjCa2VceW6HtW5Myzfce+d17t9/hSJLWY4zjh8cUmUVaMPRKw/coLk2bg7w2E0kGsDEWP1opsXqMe6TZJrw5V/8PPVaSdWusFPhiHipIJskmEWN0u9NiP5NHJdcDtvAhAXHRw/RdcmXfnUHT1muX9ujyjv4YXAZjPcfixaXSrF/9Qq7+1d5WJ6DXlDkBkHIxvouSZZxfHyK8hStdhsrBJ1uQFGkvPbG69y8fZvDs1NG0zmTyRytDetr62zu7zMc9BnPRrx1/x6zF1+lrg072zvkRcmTTz5Fu9XFGEtyPmI8fpM7TzzJ7WeedqLrsmAxn9OKIw4fHmCx3H9wQCuO6fR7XFyM6A23OTu7AOnT6g0ojUV4irPRhCBSZGUFnmKeJmxsb7FcJmzubJEnC774xhvcuXOL/es3yLKCNEsx2rBYLh1C3Ngd6arCGs1HPvwhDu7fZ3044OqVK8xnM/K8II5jlskCrTXTyRghLe12ROB7eJ4iSZaMJxOK3MWatDp1Mzdz+iltLMZmGJwnpoug15dG2lrXZI2cgLqgqg1JkiGlIu308IQkTVIXOaIUVoJQCtWYEhtjiKIIDMRRhFJO46aUj+cp4laE9JxThud5BH7gCpzv2IZKKcIwIAhClJJ4nnJ08+Z/SkqEAE88srgWwjbWWg5OFEIgccjKpVD+Eg9cGRw/amCMfpxeu4LuVs79+tdtwPj/k/dnMZZt6X0n9ltrz3uf+cQcOd+8Y92hbg1kVZEsDiIptSiLkrolSkbLD91Qu1/8YrvhhmE0bLTRAuyXNtCGYcANPahbBgy11WJzEMXJrOJQxVvjrTtl3iGnyJjPvOe911p+WCci85ZISrzgywU3kBmZkRkR50Tss9b6vu////1ZbzAXSl3x5JWl1LrN+FQb8OOvK/G08PbJ691cbrs8rZp60rYUYDRC/yWdcSHscNUPAo5PTshWNvYhCAPSrGaZtixXgiv7m/Q6AWXVMJ3O+eijEzqJR5ZnnJydE4Y+ritwPcFscU4QuiSdDmmaMuhZx/tFjzsrWvygxcPeF9J1kTogyzRt4zJfNHQ7Ctf10KZFGId+v4freMzmCztHMNDUil7o0+0llEVF22rOz5YMhx0EEUY7lKWi07EO/7qxEmjXtQPsvCgYb46pqorNrTH9Xp8iLzBaM21amkYzmxXsbPdIkgBDRZZlSClYLlfkeYmQHnt7OxRFxbLIefQo43zeUtRm3WoV1GnF6nhCJAXjfsLjo5LHDx9wfHDI4nhFNs2gsrOhVis7iHmq9fD02wud3sf65k/9otDM315AF4Jdic6BFejckGU5rvTwXIeifRoVI576TB+TFP7QvXLx3+y/a90ym56zmE+RRpPN5xzplv5oTBQl+E9tYP/Gp7ro5UvB7t42X/zilyhWRxS+YnZ2hufGqEagTcuH947o97uMRh06cY+d7V0OHh+AlLz/0X02dvaQbsCyKDl4dMB4vsDxfKKkS1YZ4s4m57MSPwyYzHOWq4xV/g5JnDAcjYiimA8/uM/JdEGnk4CB46MjVFPx3O3bVK3m4PCI+/fu0aqa0XBAfziknyvyvKSqalpzl9WywHE9FvMJiprJ9ITBsM/9g0PiqEtdt2yOhkS+y+HxOQbY2BgzmUwIwhApHWazOYPhENcLKKslnu9zcnTEd7/3fVxnbQIXNhxSCEEQxDQKVovlWoXpM5kumJyf2wj7wGc43CAMY4ZDe4/neU5RliRJTJ7nLBZLtG7X9YWmaWqq0vJIjdY0TUNR1WRFTl6UNE17CRcOAssaNVojXQcjLafS2hLs/KlpWuq6sUIYx6oLtbpgFtrkZYGD41rjLthK0pH2fVEUEYcRQRzS73cZj8YEfoAUAtdxkOtEB4HCEbbqkQIcV19K0N21MEIKiSulbcuKC6i0fX05jv27EE+3Ai+IK2pdSXF5T1/Mc/Ua2HyhWpRPbVC2WrOvmcvtZ/3v+kLIcTEvu3gF/tDHP/m7WcfomB9qV36y61O9cUkRMB4PmM5OCbyGumxsjkytkNJjYzzi+OiA6XSK74959PAxUrhsbQ0QUtI0FY1uyOYZSjQWuIqmakuKSUG6rInDiKIsQBgcF5559gph6HN0fAw4uK5HlpX2ZtYuVSloWxt0mCR2RiaBuq5I8xzcgNFowMnZFKVaBsOYYGeDxbzEdTwcGTGbZGxsDKhKg+vann+n08FpoaoaZvMF0pUoVa8pCQ7z+ZzZZMV43MdxHbIsY2Pco9Pp4fsOZ2czorUHLF1leH6MxCY4e+GQd797wmSakVft+ga8iEeRLCdzjo9PSWIf48ByueDggweoXOPYLXy9HzwtVb+4jGWu/anXRVylQGiQtUFPock1ugEUOOZCbeagJU+dONcf97EXgR1+X7xo/qzarG1biizj+PCI76xpANv7V9ja3WFvb49er/exzeuHT50G6HZ7/NRP/gyr6QF/9PunpFlFGPgUuaI1mm7P/jzyvCCKAqLQp9vrEXd7vPf+h2T1IYONLZLekM+8tkUUBGgc3r3zId3eCD/o0e9vUVcNm5ubbG3bOUFRFExnK3qtYGt7jyD0ieOY0WhEv9cHNHEY4rgujx495KWXX6WqSqrKUlr6/RHdnqRtGwb9EaOxJaRMOgnf+e4fk3QSXnjxJU5Pz3GcgCyriDsxuq747Oc/R7qYkxcVjQaznk+dnJ7juAF1XbG1tUmv26WTdMjSFaHv8/jwmLOzCbdu3gIEebluNXoeG1u7CAzLZYYfxOzuXWU2mzKfp0CGMS5l2TKdTDg7O6ff75N0EjpJzKNHD7lQqrV1xfUb19jb3UGplrwoWKxWnJyc0aoJYaipq9q2EgN/rcyVSMcq9hzPw6yTe23laKgqKzn3vODyPpBS4vqB3Uxc37bhGo0QLo4XrPPC3HUrTxNEPkGUgAwxwrMEfwStbtFtixSG1iiMaRDC4ChrjJZC4DsurnSQQtv0bmzVKaUNrbTKP4G9VfWT+/TyNcla5fnxjeTCzH7xnJ6IK8THfl18L344e0usW6of+xz80Kv/hzanC0k/YNfVT3h9qjeuqlas0gKlXGoMWV7hyBal4fr1G5ydp2AMRb7i0aOcumgII48wDJCuA6VhlWV4joMyhkbV+J6kLEpUK/EjB+m6Nn9GKD7/hdfIiwwpHdIi5fhkRuAL/MBGK2Aky1VFmHTJs9LGXqgcYVzyfIXCemjyqsAY1ifAnOHIo25a2nXUSF0p3vz+e+xdHdlWim5pGoeqKm0vf02fcIRhvphbE2StaduGyaSxXh3XI01z8rwiWKOEtnf3GY12UGpCEMUsl0seHK74wdvvk5eNDbtDWDUVgAQndmiHEQeTUwa7A+a64Xwxx+8kNDS0uTVLAvbt0/fp5V38bzlZCQlGAraVKgyYp+5pJQwuksbUHxsG2yTop3xXFzOFi5nAD71oLudT67Zl4AacHJ7w5nd/QJ3X+J7H4ckpV25cR2vN9evX6Xa7lx/7b1zrUnE43MTzIupWUWvNcjKjyFuu39wnjEvOz+c0TYHSBQ8ffcRnXn2VJEl49tnncaIOYXfAYLTBjes3CV2f+x9+yOPHj5lOMkuS1z5Ih0Z5xHFMFAWsFkvquiLLCgLfp2lyfD/k5OiUwaDPeDwiTVPijsOt2zGB5yPF+nxuBIfHpyxWKd1uF60lnaSLMZLNzS1efPFFXF+wt3eVW7ee4+jwjLvvfcjezjWqMqUqU/r9IcZobvg+/V6XPCu4cfMZ8jRDtS0vPP8snu/S73TpxBGz6YzpdEKapnYRNdbg7/khSadHFNkkh1ZJPL9DnAzp9sY0TU3TKDzXYzpdcvD4lJs3bpCmKXlWEfgRx8fnVGWB6wp2tjYxWtpEBAGO9Ol2+rStoFaGYG22dqVDEkWYWBMEAZ7nrNWdgqa2FgIbtCqtoGRdJYKtWlzXxQ8ji8kKIuq6xXEsbSeKOjiOvz4ASjzXJwh9pCvWZlxlu9ZaYRyJE3oIoxDrjcuqlQ1CXGSyWQ/Yegp1ee9pZSxX8jIQVl9uKBdVzcW9q9Yzw4vHf7HhOJegZvuZVWtTj5EX4op1tMpFNM6lpN9+nfapme/Tmx/yT26zX6oR9ZMN7JNcn+qNq5N4gCbwY7Iso6o1EkOnG7NcrtCtohN75GVDU7f0uz3KosV1NbPFkuHGmLI1uFLgeC7ShbqpiOKIKEhYLrK1OsvKyxeLBXmZknT6GARJ0iNd5WxsjDk/ndHvRWAKJtMFebZCa/DcECFd/LCLrCwx2fMEm1sbzOf5GjNj2WR7e5tMJ1OEEXS6IXVVAJKmtidsz3MtDaAXU9cFQoT0uhFKGXqdiNOzOb7vWV8FkrTKaZuWuramxck0Y754wMHhMbt7V6jrhjv3TpGRjyouaPDrU5gEEo/Bi1fxNjrkSc2pqBg+fx3/nbcoPjqC+oeGsz/crft37QQ8VS09YVw8/e8aLwhQBmp1EaVh/4frWim0EIK6rj72RYPAs/aEebreP82lFFdgiMOQIAjWjLWGwWBEHCcoZeckRVGQJMmf2jK8bImuF4DpfEatGrt5FQV5taDTC3FXClRLr9cHUzPod9jYGiPnOfgJ81XFfHFInikC18O0LaPhFkKkhFHMcDwiSTqslinL1QqtFc/cvI3ne8RhSBxHTCZnPD484PHJY5TSDIcjtrf3qOqSuqxstapa8jxja3ObDz464J233+WFF57nC5//AnlW0TQtt565wWjcYzo7o200nVGfG9d7XL9ym6Yumc/OWRpNWZVW8ak1i4WdbY0GQ3Y2d1nMZ2RpbivPZUZb20y6IIiI4w5106A17O5dtVT9tY8oDGN8P0IIQ7ffo8hsREzbatq2ZTJdcuf9e7z0mVcYbWySZxlFnvPKK6/juhJ0y+7uNlVVMp9NGI2GoBV5VlE3iuFwbOdlTYNRGk9a/qbrevi+vxaFaKRnKxlnvSkZsCnSro0uMdqahsMoQkrX+uiEg+uGuE6AH0QgXJQyqPX9qs0ay7UW9Uhhz3nCsJ5rSYRxbCCq0Uixbu+JpybBAoyRl7MiY7jMyroATF9qI4y8nHv9sDzeiPVcy1hV4QUs1/O8tZLRgLYG64tD4A+nHl+8vaBpPGkLrr+YFn+mCuNiQ/yk16d646qblLrSRGFkB6Juw2jQXdPgK5pa0e34JHFAXTcIY/vEjrDijbpWGONwfDpjOEjodbtUhcH3fOq6ZZUWONJK3bUSPHjwkMGoT9sqsrwiinooZRVHSjdESZ+N0ZCyWrFY1OT5jPF4i7qxbcDJrER6ivHGmDBIOD/Pmc9z+j2DNi3dng+EONIliSKiJOHO3Y/AgGpsltfWZkSaLpBS09YFo9HIoqmqkrKoGQ4HSClYLFZoLRHSsbL7EvJqTq/foVEeeQ5V7bBY1fzUX/0iv/VrfwBoW/gIwJG4W336z+0zutahrCRvzw7YHeyz/ZlnOfru+1aablhXS09XQh8TwT55159xn6475x8XReknf3SkQRpJ067bgut2oONImrom8AOUlFhKvGRjc0jdlGyNB+xv9mwOUlFRVw3zZYHWkBcpdV0yuHKFqm7oDwbcunWLWj0xZF4+i4/1659+3Ia2aQjCgCxboU2DG7h0+i5K5JRNwXDTxdEOcUcShB3KckFdWx9b3jh0Oj3qRlDX4EsXz3ExWnPjxvU1KcEnDiM6cYftre31wN6qwgLfs5lracFiOkfVDXlWUOQVw5FvKQ6RXTSNhijsE3oRn33tc9y4eRNHCtJVijGSOIr5nd/+bYoyZXN7zHi8abmdeBSVNSonSdfaMdqGuNPF8z2WiyVCAdhIljwrCNwenvTIi4p+f2AVf0JSFCVZXhAlHRZpZttXRlBVFWEQ0O0O8AMfozRKl5SVncXZ8FKXl195haqxQZP90YhOr0cSxYRBgO+5KFXT7fXZ2ty22WNCslGWCMehqmuqyhqhVdOC1qi2QWkrxMAY2qalXSf4tsZQ5CVVU68Vi9Zrp9aRHZ1u13YIcAAHKTzCqEMQxjiO/d77XoDrezYpeb2w67ZF6Rb3ovJpm0t5upBWwCFxMHpN1liLRzBYszFYZ9iadygu/v6UuEKu7Qn6Qm1o9DoZ2yY2K2WrOdMY2qa2yQI82ZSE89RhzTxVKf0JXq6LTsblc1irr8xTJ9CPtQzXyqy2qf/0BeHfcn2qNy7X0RR1y954TFvXSAlhElJUJavVgtDv0DbWdAsOhwcTgqDDYplRKcgm5xRlgzYQeC1LNycKPfKipKoVSZLQNBqlNIu0ZDSKmM5WFKVGKcnB41M8L8BzJYNhQtvmVLVDlmbgBFS1ZrEo13k0NUHUIYxcTo5nbGx4lGWDag2L5QLH1eRlRtJ1aWuFNnYB6PU6OI5DlueUVcn1a/toVeC5NlF0Njmj2+1QFhWbWxFNU6CNrUQ6nYAo7HI2mZIuUvpRj7YVTCcFs9kjwjhGG8NHH96zpyxhcAIP6TnIQYTcjHDGMZ3RJvU8R5ua49kpfpWv50w8tRnJtYyXtbDD/unPFsQ+Kc2M+HiMt5QOjuMitFpz82qbkeV5pFlmB9JC0O0mzGY1mnadD6VxHEGWLul0YgLfIfYlRd7QSxLyoqJtrel4Y7yFdA3vvPcWaZ7RHcRcu32Nza1NhsMhURRdDr+fdO9/ePMyeJ5LnHSIkhhNxWqVMxwnbO/1gJLlImVvf5MqLZnPSvzwhEpp9q69yHi8BU6XupUYbed8dVHguR5aaeI4whhIV0u0MmskkftElabsafv61etcv3YVLwgoqpIgWKtYtSXMB36M0QbpW/bd1uY2W1sblGVh6enCoakrruzvIx2I44Aqr8iWp/hORBx18aTHZDbj4aP7+KHHxuYGcZSgWzg/OeOt7/+Avd0dbt24zsawj9GK8WhskxEw1E0DSI5PzvD8JXlR0u118b2QJLKLvTKCqmwpipxeb0An6V0uvnVdo1E0TcVkZpWJAsjSFW1d0TbNuttgF0/HWdPiHUnS7dq2ne8R+j4Cg+c4hEGAKzyEwMrcpYtN8llvFlJQ1/U6n86GSpZFTtPU1o6zZiLO5yvLLa1a7AauaVq78biei5BWPh/HVjXpeS5JHBEFAWEY4Lv2wCLXCkMb8npRzdhWpSultZRgD+BSXFRV4kln7lLhpy4rqieHSo24MNCvWYMYg+dbi4TSFzlu4kmVtq7mnigQn6rq1m15u7HBRXbfRTV3Wb2tH5T92DXq2vwlbhX6bogIFHlqc40czyMvCxzX0O1FNHVNfxDQqpKy0nRGPdLUMMtbiqpBSE3S8eh1Eoo8p2lrAizFwHU8tPYoypaiaKiUxswLbt66Rl23zBcl80VFNwIVOUBFpQXTaUoUxwSRS1nU3D+YEychg2GPbj+hrlLiOCKKXbq9hMl5w2yS0x/6uI4ky61nbLXM8IOI8XiAlIZuz6OqCmbzcwu1jBIsPMByzzbCIWHU4/zcmq2DMKA/GNnYhUSgH+TEsaAsCnzXxXE8VosVnoH7dx5fLseqbHCjCJVWJC2ISrE4K9jqbPDw22+QHz2mPUvRefPUSOvJ72v3yHrBf6oK+9j+9acp/570OpI4ZDAYkKf2pF/VGZ7n4/mQVwWqUUgkYZggnCWu79KWNUrZfn1VK6KOgxYOp9MpnoSe6+MYA0rghg5KwOn5OaPxgMen9xg/iBi/0+fLX/5J+t2hRWsJ+7IXQtlT7UVJeiHrxcHxHcLegJ0rL3D//ncY+A37V3oIUfLsszd49633cGTF5kZCviwQumTUczg5+oivvvw5nGCTvIK6amnKykabK0XT2MgQ17FgXsc1BEFgF0ulUU1DqRRFZnmRSiuLMFrnePlBgO/7drHwFU1tgb0mDHE8kBgi38ddL1aCkG7HhoEKCa1SyMAh8ANLG9cG3TYIY0iCGF+6uEKShBFHVUVZFFR1TZplKG2xRtpoqrKy8ybHwXVdRqMtwijE83x837d4JWPWAgPLvgvCGEvjslR/bQxaukRRTCS6rB4/5uDxCbdv3+bq9Zv2czvOuqKqyLKUtm3JsoyyLPm9P/hjDC3bOxt0OjFlkdFWNpPMrKnrnuvbAFrXytjjOKbT7aw3mZg4sm3/Xq+PlMJWUlil5NWrLsZItAKMoG1bqrqmbkpW6YpVljNfLDg9PmaxmKHblsD38H2POA4vY1KCIMBzHYTQRJFPFPhUVYHn+fR7fdt6NA5hmADguHZjDtcqWCEFgetZJqvSgANItH7SpkSAaY2NK0IitN3kpbSpAEJYVaXWxpqj1xuQ57mopqXV9p68eL9ArNMJrDpTa2OFIsa2PS2z15LpjQEtLNYLx/nzL/rr61O9cala4AiXxTwlL22kda+foNqKTi9GIqjKCq0ktVZMpkvOpi2LTBHGPoKWXj+g1/GRNDieS9uCZT+6pFlFt7fJsjijahX1UtOZNsSRz3RWoBtoPE0YhNRNS1MryrxmkRZEkYsQLkif+aJisBlSK3sC2toeUhQZUjR0Oh5towmDmCAQQMtqWVKXhjxf4PsOSdfK5k9Oc1bpgqbRtK1iMAxRpkat/y6EizEtTdNQNxo/yGmanDhx2N0N8TyHs7Zkd6fLZJLR6/hMFqVt9cknwopqWSBDB121PPjXb3Dlsz9KbzOi+O6H1JM5tOv+PE9tWU/1163T6s95rdu4ej2CzrKcsizZ3b+CW0namWExX6GFAqHtC1BLTs7PaY0mdF0aXVrPijA4nmC+sMgg01TsjDss53M2xz2kgKNJxvHZMVp6pHlOWS74/g9WPHj0PqPRgN2tLUbjzvqhOR/zqzz9oA3ghT7DjW129p/n5Owur7x8jY2NhDff/D6Bp7h5fYPZ+Qw/iPjxn3iR0A9J+lt86/sP+e733qAzuE7ZeDjCml3zrCQMY1xH2KRiR5DELkEY2MVRa6RwcDwbDCiMxsJdfZRqaGtlaf1lQeVaKoPRGs+1aKjCdS1VY90OUkoRhpHFN10M8lnPZYyiqRtc1xLZh8MB/X4Pf02rxxik6/LMrVvs7+3hed662nFQoY0+8YLost0kEQShsFWPMDiOSxh4lwKCi5kJ2FO5NfJqWMvHG21bpH4YsbW7hxaWV1qUJXfvvs94PObKlSv0N/bwvQAp4PHjRxye/B6uD9tXPJ596UXiOLKx9NoBLVENlFXNfDlnOZ/Tqob5KuP4fEKapdR1xWw6ZTwakkQRgefieJI4ThiPNpHCta9hPyQKI6IoQqkWzw/Y2e2wZUAZgdaK1WrB4eFjTg4PL1vYjtNam4DjoZGk6YKwdG3lW2YIjA2sFR51bVBKrBXU1uDuB77FrbUNw/6Qra0dXn75VStDWleaUeRTlqVtG5o1QkxrgsAnL1JrKxCGtrVzRU+6lGWJ44BSLWmWr7O6QhR6vclJS7TX4LsuZatQrQGj8BxrCbDxKBe+MGll/kD5yQuuT/fGlecNApitchxXEHcChAQ/CsiKjLbR+K7E8xNwWvKqpijXS6Nq6fU8ksSnbWtczwecNXMsIk0r0rTGD1uCMKKsKrTWVqXnW+zMGpVGow1IH6Ur0qLAczTDfowfBDgi5Oxsyb0P7hNGDlf3uqwWFa4nwbTsbPc5P1uSxCHCaVgscvr9Hm1sCPyQNFuiqdi78gyNajg9tR6auq1ojYfjQH/QZz5fsMznuEGCF9iK7eDgkF4vYHt7k07HomEcJ2G8scN3v/8RRycNlQb9tBpwrWj3Ipf8eMr+1WeJVz5v/PHvUU1Xduj6Z/gvPtY9/He+1i4crS7VSMYY2lpxeHCAlq41NZsGx1mrDgEtDM2aSr2cZ2BcMC2uNASeS1E3LBYrIkdSFRV7mx3CsGVzu492Cw7PG8raUBcl2apm0PHodl2+972vsZid8Pd+6e+zf/U2GsfOMZ6SF188V7Bk9m5niOeGKNUwHPVom4x+J8L3Ql584WVOjw45PHjI1m6PMAg5m0wYjCPef/gBX77xEn7j09aga43vh3huQFXmKKXwfZ8o9jEmoKhqdGPWMRE29iTP0/UMyLZ12nYtqZbOpYLMMhYlFzqTtrUoprZt1guVoq5rWqXwA+uPrKoKz/ctfNcLSNN0jTgSSMOaXG8BwH4Y4ocRAolez2xsYKN7qcgTCNCWCq7Wajghoa3rj8muL9RvQggrGFhbHnzPt+ZzY9ja2mZjY5OmaexmKSU7OzsURUmaZvT7A5sNJVySuMNf+ZmvUqsS33co8hbPlfieFYwI4+JELkPXZWfnKqqtQdjHkhcp0nG4c+c9js6+gRf3uXrzOuPBgKSXUJbVOtfLt5WWMtRa4yhNVta0WtEf9NEGGqVxHYekP+aVrV1e/ExDWZaX+V3CPDFvV1VOmk5ZzKek5YrRcMDO9i6BH9O2Ngss6XQpSxuOu1jOUVoxDAJeeP4FhsMNHD9CGeyB1vOokYT9js0CkxLP9QCJdARjYfDWFhsLEIa2UfiuR6tqlGpRSuF5HlVVr1+j2lb+a8ViU9frmdx6fqXt5qa1vV9Vq2lay1sVaLzgTxM9/duvT/XGtVhW7O5us8wbXE8ShCF5WaB0Zc2HVUs46qKlzb71Aw/XtcnDQWi4dn1EHEiW83zNPJMgJPNlgZABWzt9Tk/P6fa6REnEKl2BdDibzBiOBsRRgG4rGmXI85Iyq0nTlit7EYHv4jqSukzZHCUsU01dl7gSotC3pzHHAQFB4FCWBY3KSZLYMs/cdSxBKcmynLt33qfX7yKlwE7CNavVkih2ieNtHMfj0eFjkk4HNxc4lWAw7GNUy/HRMdevbXH95lX8MKbX3eajB2fcuXdszfVyvRlJK7KIehbc6wchUsLDuz8gPzli3bv5kxVBP6wo/HNdF0gbeWkO1Rgc1oF2gSYaR3jCIURTly15oWl1i2PTH3CEg+t4GCXxPMtKCzwHWnDQZMuSzs0NfL+kP5B8cesGJ9OGw5OSDz44QgqDUgWnZw+4fXuHb/7xfe7de5P/03/5XzMY3uBSovXU1nzZLUTiSp+2bq0aMV/hOpbYcP/+I/a2r7C1uYOgZbw1QCBojCBXCv1gjqa+/C5IxyGK7bzH9RzatqEoCpbLFSuZ2cgQ18V3HcLAJwxcgtinVfXaTGtQbUtVVbRKgTDUrU2xjSJ7b9l4EYV0HEtkcOypuW1bhLSzDulY+G8Q2MDFtlHUjeUPaqXXFhGNUg2+cFBFZeeSrktd2pmQ49hqr1ljhi4seHbGYSM1VN1exmPYt3ZJujCr2re2HWfWVHa5Fjl4rovEiqO2NrcZjzYQCFzPEsq11iznK7K8YP/qNVxX4gUeSRLjByEYB6NA4uF7AVormramVXbjreqG0/MlXhBgnJDd/RtsbO3ixz3C7pAr169TVRWrVYrreeh2LYJRirJpmGc50nGJcQnCiMB18X1bGfm+j1KKgbB09QvSTKsUSinqKuP+fSjOF3QG20S9HkF3RFXURHGHnZ1dAi/g6OgIbTRFNWU6n/L+B+/TGofPfW5A3hRWaCLswSEvSjzPBWEsl1NxKXN3XIEjrCfUCnksHLiqK9AKISUbGxvUTU0UJfZns0a4Seng+zGEMUa1hEkIWq8PUTXBWrGJvhCSgBSGxXL5SRYL4FO+cXl+h0Y5SMeeSFttc4gGoxgpFaOtPm3dghCEnZDmOLeDV2kIAkMUGXy/xfUUwlHrQasgyys832DSligRJD2HoBNTVCnz2Ryt2rWz3yNXFbNlitEGzw/pdGyg3GI+JwjW8N0w4OaNPfJixtW9bYpigXYctO9SVIrhsMdkOsFxrTdjtUrXcRZ6faNJ0rRASnvjB4GHQZGmBWEYIqRAugLhaIwoME5JGNv3VdU6+6kFx/EYjTdZLmuOz0q2r3bQwuP4YG4VS0ojPEGVV8RRl7/21/82v/Wrv0K6XEFrs5CeHtL+CZ2zT3wZYcBYNI2QZm0NsySDKAn4pb//d/jRL36ON7/9Lcoy541vfpPp+RxjNEnU4fDBBNrMLoiNfXlEXkQQ+TRlSuAL8iJjsZzjhgUvvPwsxltx4+azpOmMJAnZ2R6zWE3IshPqOuW733uP//a//W/43/5n/xeezul6+ulalZcEIyiyHNO2zCZnbG0OuXbtJr/7299kkHzA7uaY+/eO2drZ4ez0CITP3ftTBoN9dvc2UCbBc2J0LcmyhjQtqUplv89SU7UpWhuSuENv0Mf3XBxp54mhF+B5Lo5jxSmqtXMKB4nr2Zd4U1vJc900GGWoqmpNULcTSaUUrm/ZfHXT2IOVF2CQBIGP6xo2/IDA82lb63My2p60Hdejri1Y1nrynHXVJHAcuU7Q1U/R4+3JGwOuJ5HrWPmyLCwj0LOfz1aQdibjOA7mqZnIxfA/DH2aqqHMS1sdui5N1eD7PtKx7dVIRdStVQJWpabbjekkQ7tJakkYRBhjI0IcR4JRNE1D1VTs7F/FC3zKsuJLP6ZxpUC1NUrVzBYpWoPjxZaXi8ZIByEUvuuzvZ/QtIqiUjS6wnUUTatZ6ZwLKkUYBpRlZdvkWq8p9R5owebOVfav38TzHQy2AvRdD0e61vCMw3hrnzgK2b92g8VqSWMkea04nky4eetZtLYhlRpBd+jRahvdorS2sn4haVXLwaOH3Lt3D9ZzUt/1GQ5HdJKEVbrg8eEBQkpu3bzNxuYGdd1itKGsaqq6xnU9yrIkjAKE0Oi2xRVQlZbm77ouvh+s/WvGqjPb9t94Tf27Xp/qjSvNFVEHJtMVfjQgcX28wLOy3Y67LmkFZZmxzDTaKDwfotClPzD0++C6gpOTFXpdQyhthRCNaqnaiiAUSDcj8QLGI5/FvEZp8HyJEZplmpJnNaNBBz+MGA76OCKzUlbV0E0iwsDHkYLAc8nT9HIQXdUtWdoSROD5Hk1TM5kscL2AJPFwXIembYnihPl8TqsMWxtjqiYjjn3iToZSmrbVhJHL1Ws7KG2oSpBJzGpuF0DPg4/unxDEEZX2ee+9B+RtxX/8v/4K3//2gl/7/3wLaTUL0Bp0I2ldyQd377GczpFrtZsjQPG0FvAv+FobmY22hmOFVdHduH6V11/8DJ9/9XN85ce/ysHJIx6dPmR/N+Hs9JBxP2acSBaTnHlWUClD4AnyNCNwK/ywJer4LPOUZ57ZYXMrJs+t12e5zLh9q89gtEUURXRXMJ2egTH4gSIMf7i6NJellhUx2DytPEtRTUXgges4TM6n5PkxURjy5pt3Od8e89GHZwxGhzhOS7fbYXq+QDke52cnvPLqlxH4tJWhLO1cbbmyxPmiyKnqgqqq7BBcNhZRBNRVhdIORW0rLFe6iLWq1HUEWhh74vUdpHQIE4te0kpfEszbtrEzKd0ipbNWcdrTdFGWqLZFmRZHSJq1StFoQ9vqdbvQvq9ZK+AQDn4QkueZjWqvbZfDcx2kxC7+a4qDNna2pNZR8doI2nVF17YK13XWC7omjj201nied9lSLIp63a50aOqWIi/X2ViSLM9xPEm310VISavsz9H3Q+aLFUZZ5qHjZOucMyspd9dECCktM1EbbRddCRiN9D2kTNbeKolSoNeBkY605Ja2qTBAVTcWLGAgzzKkiPADa8A2WlulKBIpXdq2Xr+qrPihVYIqrQgif61qNLRNgePYSnO1WBJ4AdIRpOmK45Mjkm6f8eYW0/mC+fe+R9Nout0+Bonvh2uUmQBhPVhSCDrdDr1+n26vx+nJKWma4nse0vX44KOPuHP3HU5OT4miCOkGXLt5k3B9H/SkpKoahLCAhDt33uPOnXf57Guv8uILz4Ox91mr2vUcU2PWc8u8/ksqhz89X7LKMlwPlqsUP4oYDQfUbYbn+6RZRtuCkCFBFBEnml43Qusaz80JI/B9wbXrIw4PFqzSlsiT6GVDEoT4gYNwFJADFf2+pKklcZRQFDmYhqapMUBZ1viOj2kbXFnR7wVgaq5fu8bh41OWs5oosS2Ss9Mp0rFzsqQTs1yluJ6PujzUS5bLmlu3rlIUKefnU/r9AVprTk5O6fQ8NjZ3mE583r/7wOZbbSRESchktiCJu7iiw8N7B1S1s07B1fzgnfu8/+CMvNTUUqN2JefF0i4YFoGLNpa1VuU5b37jj9CqRdvZuH2xXTzEH2oLfuIuIazVhBeZRerSwiWAyA/40c9+jlvXnsfzekwXS955dEAw3KA5TkliGI7gxrUdskVj8VqqplSKd98+otfz2d3fo5OENHXNcNAnjBMeP37M5LzEC1qWq5y4k5BmC1arlH43QlKjtcv+/talH+VyA7ucda21k1qRpjNm0xMrMc8LmqbF82KuXh9RpjZaRwiXB/fO2Bh3iAIXh4iHD8/4tV/+VR7cO+G5Z1/kyv4tG9OjHKJgY5171VCVJU1b0rYtruPjeSHGGOq6xndtRZBmtvI3QpDl5To5GRv9ri9iLxw81xpNA9fD9TzqqsL1PITEQmDXMxArZ7YbWdNaDqAxTyrtRmn0uqNRFqVVHa43nLK0kSdt29A2NX7gr+HOds4jpcD3XMraiom0MbhCUDfVZdKuUhfG5IAk6bCmzlJWzWUb0g8DjLFVIELg+hbjpAHHddBAozWqqUFIBA5N29jE4qYldiLee+dthBTcunUTgcAT9jm7josy2h4IfG8dleKi22rNRzS4Xoh0w3W3wN4TvitomhLP98AohNEIJHVVMur1L2eIRhvbYtR6LXMXTzK6hEbrBI2hUS1BFDGZTrjz/ke89NJL9Dp9RuNtVKs4PT3m1//1v+bBwwckScIv/b2/Q7fX4w9+//eJoy6vv/45hJQUWUYQBFRVgXTsXDnPrepyc2uLYb+P73mXas8wDJGuRPiaK+kV8rygKDM+uvch16/fxEYEuQgMjhS40oqFBoMBrmfFPEkSIR1JIGLM2uQshNUYhEXySVeMT/fGhXRQWuI7oM1aGiolQRDSKoUjA0pVWQmnsmBVRYVRFdv7Xao6xfNDNjd7YCTpMqPVdqEIY4EfSK7f2EcKOwxFe6xWDdmq4fh4SpHXNnNofTot64Kg26XIM+LWw3VcyrpESsHxccFXnn2OBw/fR+MTBl2aVpMWBVGckHR6zBcZ55MzXnrpGYTAAlDXdPe9veucnZ1Q1gvqpmGxXLBY1pxPauIkIioUrmeQImA+yymyDHOZtePhuD7auDw+XBEmCY3R/OE373L33gnGNRipQAiGe1cZj/Y4eO9tynz5lIGQj29aF2//IsouY9cktL7cHNadQkLfY5QMKZcV3//2W7z3+AN+8/t/xJvf/gbXEo/Pv7TPMFKIdsH09Ij9/V3GI5/j8zOeuWnQomEwbAkDTbaSPD6c0tQr3r/7mCDSPPv8LrP5iuVqThAkFAWcHJ/w8ov7vPbaNRbLydrUaTDCIIy1fz59CQHXrl3hK1/5Ud5/f8rp6R3yXKFMTRgqRoMhUeQhKDg+XFAsC4q05frV6yyyR6iq5Ou/+zu8/f03ee3Vz/OzP/cL+H6CkA7GOEgBcT+g1R20UjZ3ColWCt/zcB2HKArp9XtWhLH+N3XZ0jPr9p4VYFSVnYe1qsXXiqosEbWNjFmlK6SUliTheWuzfUrg+2uxx5NZny/DS+Cs5/s0rd1oVGvww9CCZF3XQqrrGuG4BJ5nKyRpMUae76+Zf3bR7sgnIgXHdWzOlbtm8gkLwhba4s08z0MLmzklPStNd1330qzrRy5VU9GqBrmuLrUy1I2Vqrdty+p0wbt33qZVNavVhL3dfa5fvUGVldRNRVlUhHGEqQ15nuGuVdzOOmlAa3AU1JXG9QIcAW3ZYkzDajEDiV2PWntQKLKMdLVCaU1wYVVYy9gvvpdSOuu2q13TWmOQ0nrgup0uUjhrH5bEjwKUhvF404bHLpdkaU4n6bK5sQlGUpUl/X6fzb1Ni6tyHN588/vcv3+P07NzPvvZV4jDgNHIgozb9eMIw5Dt7Q2ijsedO+9xfn6C0YrRcGjnYo7HYrEg8KySEgEboyFhYJMoJpMzyipmsVzy1tvvECcJt2/fptfrglGXESuf5PpUb1y9QY9+LyTLznFdq5qbTKbESWDDd3HQ2qVtoKxayrIlChw6SYjvB8SRS1GsWE5zfL/DaBxTVSVF1dCqCmEc4jAgjkKMVjSNphNH1EMYjRIELstlw9tv3yNdVYRRTBAGSNFDGc1qviKMFhgh8QPDbLbE92OUFjhuh/lqRtMakl7IdL7i4cNzwiDi8OicsszY2BySpjmTaclsvqKqNY7ro3TJcpVSN4YwdNDaYTZb0qqW+XzFfFahlYfnx+RZi+t4pGnDZtLHdTSzac4LL9zg5L0Fq5MSr+vTuzXGiIAXX/kx3nnjLRp1QZTWoC+2kz9BkPFv/vHPfwkDUtn0WAR4AtPYaJTVKuOPvvYN6syQjPo8XJ6gqwqlW87rloNVxgsvvMhm5LA3HmMwNKrEtCGBq/DjGNVm1JninbenLBca3XosljX73Q55kbO5NUJ6klYbHj6agDYUpaCqaoo8sypG8afpJe2Cu7u7w8/+lZ/hnbf/JctlzmTS0GifOJKkK0XH9XFkQFEVLNuGIs/Zu3KLf/B3/wMGG1c5nS6R0mM4GOM5LbrNMTaLGolGNeYSO2TjblpA43lyvZkIPCEvxTNy7b/R6kLcYFVgsKZCrNWExoBWiqpqKMoSL/DXidq2gijrlCCMadsGY9YZWXV16ZtCrD080pIcfC9AKUMYWYGP57prmb7d1MR6VqPXyseqrqzxei2HN4BRai3ztm0t6VjBiCPtzC7pJrStzdOSjrykPtjC3UUj0Mb6jnzHxTXWM6XWrD3HcQmimNVyRdyJ+fyPfIGqzogC62GbL6e0TbuOKbECKqUUTdvy8PAhZydHGK34mZ/5GbI8w1CjlSSMDJ7EWlLqAoPClz5ZmqEUhEFEVVogQVVVVGvEUhAGgKEoCoSEKIrtXGoN+a1bRRCGeL7HxnCDsijXFa69RwPP46d+6qeoK9tWjuOIJOnwoz/yZdLlCs/zCMOQtm2QCIzj0DZWFBP4HnVTMZtMUK2dV/q+hQavFkv6gz5FmTPo9dnf2ePk5ITZbEoYRizmJ3z3O9/FaMOXv/RlNjY3Wa2WVhHc1BwfHjCZnDFbzPn+D97CcRx+9EtfotfrUtcV3c5f0oor6sS0qkI6AsexaivPC8myDOG6aO1hjE+RVaxWJaoRyNAQBQGujDBaUBVQl8qSKEyL7wm2N/ucnKRI43D08JRuEqN0jetKVqsVcdKhKjVRmBDHEaqp2NywycTT2TmO9Klba807nUzpRB06vS6Hx1M2NrvMpgtOz0/tAuEJ6sZwcjJDCIdOt4fWhtOzFXEnoapKPE/y7jvv47oOm9sxjmc5Yt1On/FIIHCo65LpbMqV/X3S9JxFURD4DbiaIO5yer5EunOEVAhqfuGnv8K9h1P2ohVvHnxAGwg2ers8fusOszvv2phXY7ATEXdtJr6I+f4L/kEKGO8N+Qf/8Jc4q6Z858Pvcn52wuKjJe1U885H79NozY/+xI9SLKcMPE03lujI5S6S8x98wH/6i/8er9y8RT07pcpS2uoKSguCwOPRo3sIt8fhg4zF+Yqqbuh0JBvjCETDc889w/1HxxwdpQjp0OvFeIEVGoRRdGmntr8+bpo0WKWb74dcuXYVx3HodgfUteb+QUYQdClKTdXmxIHL1Su7XL+yRduU9DoRrlD0Oj5BNF4nBoMnc5ABCGsqNlgv1WItBojjDkEQE7g+CGkJBJcPcQ3PMgJHOHiuvJwH6TVI1WDwQhdX2xlHWVYknRil+6yyjKqqSVcpp+dnGGMX0t6gj1oLKELPKhDbNcfOODZmx3Vc65ZQ1pSqtaKqreCCtYzd862wSDtWuOH6PsbY+7lt20tptWOgVsoq9dYbThj6qKpgVa7QShGG4Tr3yoP1Zl239oYSQlBU1mekVEPp2o3Xfo9bPDcgDBPm8wlvvPFtTk4PGPaHdOIuP/+zP8fGxjaeF5AXBWfnE9749hvcvXsX1VbkeY5qG1585VU6Hdv6cxzfPl9VUZUrjGqserRtqSqNIz2ULtdtWRcjJKssIwxD6jzH81warXCkRKPtfM0LcTSE0l3P4iRxGOL6llmqjSX6t02NIw3GdKmqaj2fk2uzr7Tet7phli7Rra3Yu8MhL4wGNqML8DzfzsfzkiwrCX3LwFzNMzzhcW3/BqeHp0zP5rxZ/IBeZ4jW8Nprr9tq2PU4n86sSMez7cM7d+5ycPCQ0cYGX/j8F+z3XhnuvneHqirZ3Nj4xEvGp3rjysuc0DMknYQoNNZjgiEIQqqqpa5bXC+gbUC1gjjy8F2fqmqZnC84PS2QjqbXidf/HuC6hk4noalcJmczHp4WRMEczzP0+gGDYYzrQZlZVI7WHeLYp2lLwjCiUS1KuzStwvMctHEQ0iFJehwePMYNJPNlznRS0x902BwMqJqSuhWEUcTR8Sm9bocgcOl2uzjS4LoVWVaSJIlt80tlTYsULJc5+/tXaJFU9TlBCNeuD1muEubzgiiJQGuGI488n6GBr3z1WbY2DWH4HJtKUnV8vvnNb1I8+gCxqkE1gG3ZSKD9oViSp9WEfyF7mIHVPOXLP/PTvPy5l/iN3/9l/off+u84vQrpYUanCUj2AvQAgiqg13bYv7rPMmhYBpoTz+HXTk64udHjS/1tXhzuUGcpgd9huVoSXxVUSvCzXw2J47eZp9ZvN9oMSIuKu3fvUTUuy1VDXmrC0HB0dIoQPjdvZlYa7DyRaFzin8R6EmcuggFdev0Bq3RCWa6oCsG77z3Gcw39WLAzjhh1B4yHA8piRScKePzoI77+h39EZ9AnSRLiOMb1Q7wgQTouRZmzWs0pypz5bI4ykk485MaN57l58wU6ycCaUR3HzhocB0dIjLGTQoFjPV6mxXHWHjmt7PwFa0T0jcvp2Yn1PQYhSrW0qiWOY4yBjY0NO0xvciuzX1drjvOEQJ7l2ZrYIRD6CcNOOg7eulK07S9b9V20Bo3hUjTheh7SuRBj2GquriumsynHp8e29SlaNjfHxHFsk7bX7T8hHJSyJmtjpE1b9gKk4+I5dgNpmgopJU1lM7mkELie5Itf+DJ1k+N7LrpV1HVLmmZ4vkIbqFtDGPcYbe1QVxlxz8bDHJ6cE68KsrxgMBhQVjmL+RkvvvAMWzsjVMvaW+gjsAehuqpo2tYmRucFZZqitGJra5MgSVC6oWgaRGMIAgc0SKFQylhaBYqyzG0bVymUsi1HacD1XTwvwXU9hHAQwiHpDtf4NEmrG5q6WgtsNFo1NsTWcSzyq7L4KtVYT1ZVNZRljjYNQgpuP/MCV/ZvkGU5i/nSplKvf45hJBDSIYx9WE/NX3n1Nb70pS+BtAipC97nC889j+tI5os58FufaMn4VG9caZ6jQ8He/h6OrMGUZFlO3VwMAT2qUuFIF1e2GCOpa6vkOTnKuHKtgytsjtbp0RyBIYolg5EkDiMO83Ok8lC1SxwGFFlGry9xHUEUu/Q6fU7P67V016EoKoIgxJEhbVtRFFak0esPWMyWGGEIw4huXzCdTlkuS+IkRZmafj+ik4wIg5gsTxmO+iha/I6PG3rW0yUkmgaNxfHQVMzmGWE0Z7jhkSQRdd0QxR7d7pjQm1CXOYeHKXt7Ltr43HxuxH/0j36O81kJix7LlaXre7VHNVtiiury9P4kzUrx9Hb1w6TBf/v1bxmGGaiLhn/1O7/Dz/70z/G/+Pn/kFdff5Y3D/+Id+98E7VQlGnEweP7tEuIkw7bO9dZLB6QTY4woc/vvvUu37q6T+fF17jdG7Az1piswkdydnRA0Siev3kNPxTkCs5mC7rDDT748BEf3TtitlgxXza0teH0JAMt2druI0VFlh+TdPe5eLnYWvrJ0M+sf8uylK2tEU275N13c+bzklZDXUHoCxarktPTBdPZHNUWVI/uI4KEt37wDttX+ly/cYOTs4L5YokGG4UhoaoK8iIl6SR4fszpZEq3l3D12nWE7FNmGcYofE8QhZ6VZK9JDaoR6yrDwmXTNCUvSsKkQ1k1lGVNWTRMJlP29vYZj/scn6x49PgB3U6X5597jqTToSwr8jy1rT1jyIuCVtkIjjiKCUKPurY+Ji8IuDCV93sDyjKnqapLxaFWLd1OzxrO161WpFgrCA1NU6OE7aIo3dDt9ciLnNl8igAWiwVvv/U2cRzz/AsvrJ9XTlk1SGnFBd1Oz24+bsDGeESnEyGEg+/5BG6IFJIojqjrEkOI541wpMRoje/6CGkpFm3dMhxt8GM/vkuar1gtFzjuWs25hkxr4fIbv/lbnJ0dY0TFvQcf8OUv/QjjwQaB37XiFD9GSBetBa0RuGHERhxR5Jn1bQYBnu/i+jZJuchr2tbQ1O36IGLQTY3nC5RqKdMCZYw1PbcNeo1qaltFHFsZvjGCsrZK0U7XboraaFplSJKYtm1p0hrHcYjDGJB4XoBYK0gdV6C0j9aSLE3pJn08L8TzYvzAUjq0EaxWK4wQ63gXW1GiWuJ12OlFJ8GGbVq1a7pa4jmffPv5VG9cba0QccjZZEGRpYSBVSBpJVilmrZRQLNWMPlEcYeqKEiLgqYWhH6XXlczPZtx9Kih33dI4g6qcVgsMurKw5MJZdkiHGHjFcyK8WaXslI8fnyINgFJL+LstEBph0G/R13l1E22ltYPieKEw4MTsqJGSAdpDL5jGG/0aZuMpBtSFi3TyQmuG9KoHOklTFbHjHf6JDLi8OAxSeTihCFBlOAHHQ4fLOh3Pap8xfFjl1vPbDCfTpFuRS9o2YwaBluSF24GBL2ERipufkZwlH6Lg7M+8yzhdAlgSLoR5dn0KX+tsXNCY5tjhifkwT8rFvJPviQC9QS9K62YxsqLAARGG+5+8B5lXbDtb/PVvV/glb0X+MNxlz9++zc5fTijlTFxOGK0sUPbpHB8jv6wwVAgNxWljvkd7zHh810+70tu+CHdkcNnP/8FlsuK2XLJlc1NFpVkkfX4wbsH4PbYv7XNHh5NbSgWim/+4dcxymN7e4/vfu83+ODOm/yX//hf0unsr785yj4nI636CzBC8c7b3+XunbcYDBI816Fdq/KM1iB7zJYZTVXwYmnY3dnk/r332bl2lZu3OmRNwdnsmKLUxFFAWSwpVjOEkGgt6EYhWpekaUrS3eZ8esbvfe3r9HtjjGk4fHyPMp/xwvM3iCKfQX/AxmiLMq+o65KzsxOOTw5ZrFY0jSJKEg4Pz1guavqDTT7z8mcZ9m/SNAsEBUkkmE0f8+iRot8fsLW1h+cYsnSO4/sMxiOKuqBuSrIyx8FQVwUOgnw1RUoXY1zKokKphqrOqKsFSeIT+C6SGmFcfDfGCGst0RpLpBEOYejhSAj8Lp4XcO3KPq2qqNuKr3/taxw+fowUgm4Ss7e/x9Ure9a8LlyauiWMEjzXI4kSW82ENvC0bRvyLGW1XHF0uOTGjau4nqRpSvKiARxMAEVZs0oLa0dJEqIoYrlcEsex5QZ2vDW1XXI+Pefx8Sl5nuO6kjd/8BF37z5mf2+Xz73+Om2r6Xb6bG7tEAYRQgoa1RB4AVGni+NItDLkZYvTQumA6/o4nkE4ng0ALXPquiAMPQuPDmKUMjS1Wr+WPJrWUi/KqqJtW4Igwll7PIsiJ4x87CzUIIzCczzcwCfLUpTTEvghrpTUWtOohjjwCGMfx4lIOh1Uq+jJAWVd4YdW4n50csTvfe23+eIXfoTxeBtHCFCSpi7Js4x0YWe3IDg4OMRzPcLIp9OJCcPgkyz7wKd848pShSNbFrMCVSt2tnsIY+nu6aolSyscX7K92bVk5QYELkZ7JImLbg3D4QbT8zleAMKRBFFCUbZMJwVK2Z7y+eTM9nEdn+WywQsUs3mK6/hsbG1QtUsQBWDIsoLnn7/N2fkhau1cX6YZQeyxu79B3RRoXRN3AjrdiLPJHGPCtWu/xY98HF9hZMl4M6bfC+gGAeXVENcB42gGfY+mzumEDcIV1JViOms4OTilUTlxR5D0Uq5eEXzpS5ucZiW58El1y/3jU94/0Tx63GO5qDif1iwWK/LFirWL8i/kkkgMF3ToC3E769nHxf+6QPvYGmZr8zbny5bByBBJjzG7PL/xBT4afMh8+gCvJ1Gp4Xg+ZVJVrB7NMIcVKIOezGlXDzjJAh7E+7R1xvdmj/jic7vcurrFYBQyGg/4w299m//pN77Hr3/9EDkI+PGf/wo/+dWf5pVnX2UcbxB7If/kn/y/+OVf+e8xIiZNHyD1BKObJ0/uImH58jlZ0sfu9Rtsbe9QVwuGoxDfg6qy/qS61FSZoik057OKK1d2ycuW5XLFcDRArZY8eHSI4wrOJxqU4sa1fcqisjYFrdjY2qRWmu2dm1y58hLD/j5SuJyeHnL0+F0+/OBdVsuH9HsRcRQSeHaOW9clvudQ1jZjbDgck+VHeG5NHIGUBVotWaUnDPwtkkRw48YW77xzzj//5/+UV197nZ//+b+J48DWxtBWRVWFbBtEXZHPZwS+R1lkrJYLqiolL3MkHmlWcHp2ZtFqKmNrc0gQ+Ix6G8Rhj43RLn4Y4ziSIAotNaKx6Qti3erUqkU4Llpbgce1a9cJApu0PBqN6SZ9Nja21wGOHmZtWK6b2mbtSYnSLUK6NGnFP/tn/x1NXdJWFX/1r/0ML33mefJqZX1ugQ/SAoplUaPqmvl8xmRyznQ9w5HSIQxDwtiSSNIsZTC0WW5VVSC0wnUk0+mCBw8fUpQFgReyPZ2tH7tPUZSMxmMrzvADmqalrCvbKlWaOLYtv6ZpbOKB9CiKOe+//z7PPfcs+3t7JEnIRdSjUpqqLDBoqsJ62Zq2oShyK6lvG+I6vvTFhUFIkRfUdUsniW2LslaUdUnbarIsIy/BccWlebipGgsDFpBlOcKBwWDIX//rfx2MIAoifM/F91zqOqDX7a0JIZqyrNjZ3rIGeKOp64bZbP6J15dP9calW4/VskZoTeA5NJXLaplS1y1auXSSHss0JVs19LoJ2SInDEO2tvY5enyE0oLZLCXPa7p9D+E4dAZdHj44pTUutaotVshzmC5Tup2A0IlYLuHsVLGzE6KULa+bBqqqojANeVFQFDXdbo/Hh1McoekkAj+W6ExTNSVRx0Jh/TBAIxhvb5A+fARuxcZ2TKfn0uk6JIGhkxiuXo2RQhF3EsYbfVZLw639IeksJ/QHrFYwnU3IypZnnx1z+7rD/vaSsL+kWmZMVw3ffa/lXMMqT3n/vTOy6X2MsmZSXbUWO/NUhMHFJvbnr7CsL+zJR1u6hI35VNZPI2E03kBowfn5OX7cpWw6fPN79zjfW/HyczfoujHbycu8trfg1//F/5X77xyy7V0n6jjky5LmeAGlsaq/Ftpswsnp23xrYog+/wqfvf05vv7t3+W733sD3RT8/F/5eba3r3LzVo3+w0Nkv0ubDCi1T1O5eEkH8Phb//7/nIaW1eoOWneYL+0cAnHxLbGeM9sBvYiWcFjmDVE8ptcJee2VDb7z7SOMNRISBSHZYoEj4N33Djg6OmT/yoCihoPTE4wvEY6NwAj9mCItqeucskpJU8XmVo+tzTGbm/vcfOZFfL+HFDZnznd6vN/zGA98bl3fxnWtrWBnyyKQ2qZmlS6IO9tURWVbPCiyLKPf7zBfnPHue3/MO3e+xe7+dTwvIo77aCPo9ELiJETTsrHRR1UZviNx8Vku55SlQi8FDx58SKsbEAbHranKI+azGXWr1ixEj7woOD2d4LkOhwf3uHplH8+v2Ur2iZIOQuSYtVLSkQ6np6dI6TEebVGVhiju0jSaq1evsre3S9M0Nu/KDfGDxLIRpYMyLdq0hJGDvw6HlRqquuLho3s8fPQQrVoCT/Crv/7rKAo2tkcM+n2CyKFtYDAaMRhtUtc1TVuvAxc18/mcoigoy5I0L8jynLzIePXV10nTFWWZEXk+nU6IFNDrJdRNZeef3T5Cams0Nprl3FbU2drCE/o+2iiE4xB4gjDyicIBqrUHviROuH71Jn7gEUURvufZPDMMnmfWGYMl/V6fwHdJ8wyDIsszsjzj/HxCnpcYA+dnMzY3t5nNZ9x5/5QXXrhNHCX4oU+bazSGIit5dPCQ/qDHzs627b40Fb4fUNYVdVNRVTYkdDFfIgDf63B4dILregS+T1mVeK6P49rWo4fE80IWixXn57NPvPZ/qjcum6nj0uoabRRlVVDVFY708D0f1Wo8x0Xg0daWnVZXiuUiZTQaslgsWWUlEg+tG3r9kKKqOT5Z4jox0tU8Oj4njuzsICtbgrBHWWjKUgABy0VOXhR0OgGtKnAcyXQ+Jcsr2tbQtqCaAul4PD46Zmerz3Ac0h8OefjwCC0Mwo0QrsEJQJMz3twkimG1mqBqh9VMsTlOGPZihoMeSpV0EsnGuM/muMvkdMaN4Zhb166AyIj7OcP9htxJMZXP0QzOTjRvfrNlESvSeUV6qq0J5SkMhsAyC394IvXnL8KerrKeSBoMAqTDq194ha/+1I/xUz/500wfL/hf/if/K8Y7N/mFX/gb3H9wwsHRhLeOD3j99jWeHfb4yvW/xhd3vsPX/sn/jQftjG7yAIFHNc1x8BBY/JDRoM8zPviD71MfTmm+8lk6wqOsl5T1nN/5g6/z/K3XuHLjBt4w4pWfeJ3Xv/QjPLv/Ete2bxCFAVWtWOYNz7/4eR49dCkzmJ59+NRzWfu4hOHSmaztc1ymJY8Ol2z0NcNhnxtXB7z9zjGthirPkUJQtYZVrpAOyNOUuFA0RERBRCJ9xoMuZZayOeoTBpr+0KVtG+bzFe+88z2S5BHvv/8BSdJnY2zNznfv3CUOfV596Tpal2BapNA01QxHShwh2BhFGBSuFGwmQ0alT68bcO/eIfN5RtwJQUo+uregbR02N68xHOyws32F8+mcBw/vo6qa+3ffYaPb4eaVa7htwf07b/Gtb3+fs9kc4RnCJGbvyoDd7ZB+P0brhk7HmoeLwlI4iqrAaIUfZTjBCmXOaFSF7/lIaVmL09mSt95+m7aBL/7Ij6FahyxbIV2Pbq9H0ygrBvF9OyMta4taCjyKKsVxW5q2QOsCpTVKw2QyZ7FYMhglFt0mNMtsyfff+g7PNjcYbbxOpxeRptC0Cq0tWCAMXQyKIAiJYyvhNsbQKE2aZ2RZjuP7SAFVkSO0IgpdtK5BaLJsZQ3ZGpaLKY70cF2P4+NjADzPI4pCi3oS1p4wHA5xPY/QT4jjHkncYWO0YUUpbYuQXFZPNvlb4/s+3W53jXSqCYzPt771Db7znW/R7w84P59w69ZzvPrZz9G0NmHg/oN7/MEffp3z6We5euUqV65coyhasrS0B4MwYrFace/BfRbzGa7rsrW5yfPPv0AYRQRhSNPUaNPguD5pscT1bUXqeb61ZaARAnrDrvXiuT47e/vcuPUM//JXf/nPvbrAp3zjkrLBINjdi/E86/eoaw+tBEVekJeKTpJcRmUr1RBFAU2To1pDGNm0Y20cAj8G6XA+W1K3UDUFYSjY3vMxBspSsX91l7aSrGYrmsaQFyUqs6T35567wsHhGScnC9J0gVIwm61I4hjHiQjjmFaX5EWONBVbW30aVfPBR4cUdY6sDHHHQZsW6TQopYjjAKHAldZYXZY5i1nFeDjAUQrKnG7c5f2TM47LQ9TMcO22Q3LVIY8Dzk4UXgUPT6CcOsjC0AsTiqYBbSssDGvJO5eNvb+Qn806oOTJ59NAwN/6W7/E//Ef/++49cw+vnDIFxWj0Qad0YDbn3mFyTLj8fSM9x6/zX/1X/w/yQ9O+bt/+28T6w6iFKhasUzP1+ZcKwAwl8nJlhmoq5b7dz5kcnjIc88kfPVHtggTmMwnVI6id3XIj/7M63zpp36CF28+x43BHsPOgKpuWGZLZqsl59MFH947YXMQ0O/v4Dg+xmiEeCKJ/xj6yhiEFjw+zTk8OsMU7yIpuXVjRNUIdrev8s5777CxNWRjHBMGknffu4/0VmxfHYPv4HpditzBdzpIAd2uTxw51I2dcRiEzWATLUU+4b3TB6i6hrahKQWucHEdmxbdNg35cmaDDB1LAC+KHGUMcZLYOUuZs7szJIojGm1QSIQTcfv2azxz63V6nV0EEUcnEz786EM+uPM2olmx94WX+eYf/TZJ6NKNHL74xVscHB+xqjOKpqVp5gjRpds1bGyOEEIQBjGet8Pk/JyjkwLpOjhORlEdk5+cIfFpqhYw+Gu5d69vLPaoPqPX3aSuKmazc2bzE/p9q8IsiyVQ4LkRBsH5JOXBww958PBDwshhvNEl6XSYzZcoDa5w+ezrL1EWGednxwShYL445+FDxe7+FqPRFkJY7mlZtvZrLib0eglRKNnatJVe27YEccKjg8ccHp8jRMHu7i6b400khm4cgKgxpkHpmrqy4OHJ+dxuuq1Zp0LbMMs0XZGvVjRtTZZlLGYTyrJmsUjpdvpcvXKd6zeu43kenW4HIa2SNAh8u4l51lYwnc/BaKLYZTo9Zzo7I4hc8mLJ48cHBEGPv/439hltbCNw2Nja5Mq1K4zGPQaDEbs7+3hejMAhy1L++Ftv8OFb9zk4eMDtZ25SVxXn0wnu/Y/odru8+vIrjEZ96mqPR4/uc/DogGeefQ7PjXCkfUw267Dk4aP7YKA/GNDvDSnyv6TIp63NhOs3Ntnc7pJlK4xR62A4ePToDCkNZZ4TBTEGwe3b10mzOUWRMzld0uv10KplY3tIrzdmkRbcff8Bi2XF3t4mN271iCLrXZmeF9RlyWSWoxVrhiE4QuK5gjBUfOalHW4/u8mdOw9YzO2usFis2Noc0omHzOaHuE5Avxfi+Jq44+CHoHVF0unSHw44P59SVxW+4zIajTg/m6BUS7ZqiEdd0A3FconbGrphgsgW7PRd3B2Pndc9Nq65pMOCRS24c1dTr1rODsGdl/RaQzFriWrIBbRWXcvFEvz0prVON/kEbcInl+RJ7QUGz+vw6ms/znPPPIcjFY4QDHoBf/tv/Q20MDgCrow7XNnu8MIzY5bvvct//T/8Gt/42jcskKq1Ag8L2VBY7rt+6pE/SYc1RrNaprz/Uc3+boeenyIczRt3PuTqa9f5e7/0H/LMzee4MtyhH4zQtUNR1TRtRdPmHJ4ccnh0Sj/qsjXeR+t169M8qSAvtnohBaZp8aRL3N8jX7U8d/0qw84Rb/7gQ5599hZlUTAc+3zpK6+QJA5vv/UeWaFp0opZeoQXQhBCJ/LY2RzyzM0N6lwTBwFlllMXhk4vxOiW2eyUKAyRNHi+ZrQ1oK1LfE9wfHxCFIQIHE7Pj+j1+3SGAzzfw3cdhCNJ8xTpeAz6fZLegMEq52QyRciA1nhc3d9lZ2ubbrJP2wRMJzWHB2d8cPc+bTUj9g3jbsRkfobjKP6jf/SP+Oe//P/ldDmlOxgSuB6e29LpCtLsBNCoNiVLZ+RFyrXr2wjHIS9KhKhoG0NZrsjTgiTxrbE+iogSTVVq3nrn6zz/3GuM+1fZ3+uCkORZxnK+IMtyG0ApXBzPI4ojnn12m+vXBxwcPOT07IiySNna3uXo+JiHR0ds72yzvdtlNHIoq5TByKY5h6FHli1ZLcBzB/T723R3Nzk9O+T8/Izz0wl1pfA8HwNkx+cUdcN4vEnTtLhugDaSMPQ4OTvhW2/8IXmxQDqG4aDP/t5VojBhNBrieyHj8Zg4SsizjLoa2oiXtiHPM7TWVFVDmmbkecH55JDl6hQ/8On1e4RRSJJ02djYwvcDHC/B8wMGgz5KtaxWM37lV/4nxhtd/upf+zmOHh9x7doNtjb3SdOMoj6k2xnQ6w354he/hOvJtefNEoa0afGCkP6gz7MvvMB4Y8z+3jZCGFbLJV//+tcpy4qzsxN++qd+nA/ef4ff+o1fY3d/nxdeeo7t7Q2ECahrix1bns75F//jL7OxMeRzn/usTdfoeJ94bflUb1zDfohWFUUuLY5fYTmEocv16xucHs0Q45Ayt1Lcw6PHbO90GI/HCG0IfI+q1nSSLumy5eHDGauF9TaMN136A5dWrfCCmt39LtnKR7VwcjInTlw2NhLqZoUjFcasUMomkcaRoSkVbWkQSuBJiWoN48E2Rhf0eh2kNLRtQa/nM583qDYnjkKSwKYQ17SclqU1h0Y2iM004AchrhH4RjBKIjbGQ25c3YZE4XRTZtVDHAPFYcX0IXxwv8HMYdy2dLQgm7S4QhBKSab0U7KJP/n6ZFQnsc6wUhcNQgy2/fIrv/p1/ur/7Gd57bPX0HodcSDXX0e0uI4gcR0ePz7n9OAQ1SpUa4f0jm0KPgX6Xcv0P4ag0mtChH3HctHwu19/wFd/9ArXbu3y6pf+Gs+8/rPsbl4l0YaO66GNy6pu0abC81o2Nrq89OJzOFTsDAM+9/JzlkVnAJyLB7uuKPX6F1RlzXhrn9aUnC/mxJHDtSs9ynpKljV85jPXefvd77G/P8DIksHIJctblDBUNfQ6Eb7r8PjghDLPGPQ8rl/b4vT0jLLWSFljZMlqmbK7s0kc+awWM3Z2ugwGHYo0ZdDvUqQVwkh2tnaI1oSIza1Nal2hjaV6F1VJWSkUDknSZ1N4NEpy8PiMd999lw8/OGM4uMHnX/9Jnnv2GZ555hr/+L864rvfOuCP/vhNdjc32ByFuJ6iO9wm6oy49+Y7tJzQS2J6ict4HDIYBESBJMsy0JooilgsFyht8MIQz3co0wzdGvzAoFVGEHpICd1eSBg5aOOymD9kPjnD8xJ6vSFFUdtEbEdSNxVpluP7LsulotcdMhxt8spnbqPUDdI8xw9DmjpjPjvi7p3vkSQB3Y6P77sICSfHJXXdcDacsTm6ifIl/V4fRwZsbgwY9GMcx0O1giJv1lBdSSfpkHQ7+F5gjzFGgbF+qCiOMLLFcwWrLOe9u3e5dfM2QZTQi6N19plPp9tluZyTpSn9JGI8HtnNyLFBjo8ePaQsc+q2Yr6ckp1M1wKRBNe1XMr5akUUdtgYj+l2OuRFyrt3PiD/3oy7H7zP88/d5sredcIwYDabkhU1SdIjDhOQgij2bc6gMoRBgBSGvMi5du0avcGQcn+ftil57847eJ7L7v4eabri3oOPOPinH7CzPeSFF56hqGru3f+AbnfE3s4mWjssFit+8IN3EMDp6TG//du/SdNUfPELP/LnXlkurk/1xpWtclarBYIt6romL3KiKCCMHKLI49qNLYpUcXJUWkSMKunEA6SsuHF9gw8/OMILLGEgywpm0xWOdOn2IAwUggxEBsKGofV6W6RLSbwSNocoUJb03DbEsabbtU7+Vz9zBd8d8P6dQz744JzVaoYULb1eTJ5NGY4lYUdSlTnP395jcr5kucroJx0G0cY6pqFgf2eX2WxCWWYIBJHboxf4bG+O+MzLr7C7N8RzXBxAtUs+PPkOsbMJMwgWK/pti5qXlOeWfbFsYaIcCiEpTbvGYj2lgP8LvWzb0VZutloxJuc7b/z/+Id//z/j//B//i+49eoOq7rhS5/ZZiDAGIkRAuF6rHSB6TvI0IHKGk/1xSe8eNCXX+pP2l7leqNz8YNd/P6rfP4nfo6f+flfoDfcwzUC2VZ4Glqlka5LmDgMxj5pNmA0HPLKy8/RpHNeevY2SgmyNMd1nTWg1FljgBo8z0EYw2KVMeiPCcKAt7/9uwxZIWWLJz2SWPLaa89QvHFCXhzzwks32djyWa4aqkqTdHtEoQe6Yj4DBwO6oshzjo9z/MAwHEmC2KPX77Jarqirio3RiOVyQZWD57g0TcNgOOb8bG5JLEmfIAgpCpsOfXY2Ic1XCMfB9WPK2gAxrpuQpQVnxzPa1uPu3e+QZZKyqPmRL36ZMAoYjboY4TBfNqTLE1arAddvbPLLv/I1vv71d3nr3RWObwj8BbtbEecTl9HAJ4kFYSgpqgI/DPH8BNd3cfyA88kZbVkSOA6BL3GExndB65KiqMhz22JbLjMcEYHxuH/vbTCSooD9KyOk0EjXIGVEUzdMqilFdka3M0JKl7ptmE4qwsDw8ku3+PznnqMsViyXU9q2ZTQa0e0OCMIunt9hZ2tIVQkm03soPUKphjzP2d7eRWnHchzdkMVqQbZcMp2e4ocxYRjS73eJQ59Or8dLr7xKnq84Oj7g5uYG21u79Ht9G1qrodMdcPT4kOPjD7j1zE16Xp9staJuNdL18UOfXhRww7uO0jWtrlksZxwdHpLlOZqa89kJ5+dTTk7PwTg4jksURQSBx97+DpOpZDqd8YMfvEOe1zz33Ev0BiNkYSizHMc4OK5DoRQ60KRp9kTlGfokSUIUJhg00+kZr7z8WRaLOf/jv/iXOJ6gKWswhs2NH+H1V19hlee4fswqy1imKW1jmM8XVHXNzu4u3Z6lEK3SJQ8O7n/i1eVTvXFJYVloh48njEY90B7zacpgFNLt+bRtTtO2CKkoiorbz27R6gJVlwjtAy2u9EmXE6aTJVIY4o5PHNUYbenaWpU4QuD6AmlamirH9zVhFOK6LRhFq21p3okhCGK0bNndinj1xa/y9d9/g7oS3Lt3xNlpyta2x6NHZ7ieYmvcYXp2RDeOiVyfri9xpeTGC7dxhE+n0+X9u+/x7p27jLc2kNIH02Fr//O8+lO/hB8FtPkck55wdPePyc5KGu3glV02h5tcu3HGo8kjDquCYmloNSxpqY2hhY8baC+up6C6f1Yl9mdfFw1C6/2SF4IGFJgpB/e/x2svXcHvCX77177Ga8/8TUaRVR1KA4Hrsbe9zX/wd/99vvkHv887f/QeWq0/hbnwfj3NsbDRIxdII3H5CBSOE/PC85/jZ37+F/nMq6/gu3184yCNjcJwHBfHEwRSkAjQKmHmzxHCJc1yZKdD0hnSKE1bFTSrgla11JUd3s9nc5RSPPPMM9TKsLWxzcbWS9y+foVv/OY/ZWtng/fuvI/nSj764B329rpEcZesOEC6FeONGEfGBL7PaNxHtQWjQU0YuCxmK9omZWcnYmdvhOPCZDGlTnPSZUGeKabTBdtbAb1OQBxGrNKKbuJy85adR5yc2aDB5XLJzu42g1EfL3LIy4pVVnD2cErz3hGOFzObFSgj8MKcJAm4sr9Flp3xz/7f/4TT0wknxxOuXrtGnmacHZ3QNIam1nz3O99HAD/+lc/z3R+8S1FlPDoqeX3zNnEcc3T0IX7QEEbWaLxYZSyymvNpiuf7DLseIjL4rkFpxWqxRDqCvGowxsH3AqQrSaIAV/r0E7ts7e3tk2WpFUGgKKoVSE2eL9nc36DfD1gtc87PjtEGgijG8RyMqpHUdDs+GI+6WJEbQ1WU1PUxZTZnNN4iSTos04cYY0MuV/kxZaHRymfQ36Tb8yGtWaYVXhDy6PFHvPveikG3h9YtCEWShBwenrBaFbh+h7IxhGFIFETk2YKjsxOU0aRZThD4+GFolYZ5wdvvvovnubiuIIx9myPW7fLsc89hMORZiVIWRlC3NY7joRXUa2n99s4OV67u001itNakWcrJyRFFXhL4CWlq5fCDfo9ur4vj2ipuNsnI8hzPt1E3nhcQhiFJp8v21i6uu871yxZIpyFwBd/4xhvcvnGdW88+xx9+8zscHS25emXBM888jx/6OK7P1vYeH354l6ouODo+5tHjx594hflUb1wbGzEYw/H5kjRdMp/bm6U78AgCSbrKUa2GNb29VRZM6bqGdDGj1w2J48ByCqmIIkHgt5RFhU3vdoiCEN/3yTNNnq4wRiCMYTxKyLKMOBHEiYduFUbVLGcFddkyEeCJmqv7Ea4Xk+endLqSIBJUVcnZ8ZStrYB+N2A87CC0IA5DAtcl8QVSgC80/U7C1uYQI1q8yOPF17/KT//if4zf3ccgceNzsvmc1WJBHEYsJgtC6RGOhuw+73GtXtLGmrMPKqpzaGtohfq4SO7p66m/P5lvfZKG4dOyjCdfSIqan/8rL/DSMyGuH/C/+Ye/SOCJS6MzgIfiWn+b/i2f//1//p/zf/9v/h/80W99E9FciDGe/hoaibOep4n12yczO993uXJlm2du7DHqRji6xdQVru+sP8pBiAtJO+AEJEFCESpcL4SmJu4maGFhpMaBIi/Js4LVIuXdt+9ycHDMz/17DseTcw4ePqJpGlwPbr7weY4ffJdrV3Z5/85Dbt24wSx9hBuUhHHAcxtXmM9LHh9MODyY003g/PwIY0qGwy32d6+SpRVl2aKMwEjBhrfFfFmglIPr1CSR5Rm6fsR4Y5dBT9CJe4RBQJ4tiTs+jpS0aptOt4s2DVmZsSoyTs8X5KVitRLMZhnzuWa82aEsagaDLp7ncHR4wNHRjDd/8B51Jbhx/QY3b9xgMTnj9u09fvRHPsMb33qDne0hN567zb1Hj1gc5Hh+wOl5Tej3OD0tGW94BKHP2dmKrFDUyqOqXPzAytkdBzqdiCqbo7XBkQ7dOCCIuhRZSVWUOEIRhw5Xd7dZLhZc2RmwXEFZFrRthSs9Ul0Q9kM6sUCYjKae0Yk09+4/ZrixxfWbN3jrrTfxPGvNkFjaRLpY0rSGxSplNO4RJTHSDeh1N1DaGpKrusV1Y7rxJuXWdTQORycnzBdLjHBZLFMwgqPHmiiK2dnZRpsCIQKqFh49PmZjY5Px2EFKj1Ybkm6PNF0xX62IWwvhPTs95cMPP+CD99/HDwKEgG4vYTDsEQRW4Xhlf58rV67SVBXD0RAE5HnObLagrBukdMmKEnIo8pp+v8NoPMZ1HBaLBcO+A7rFES1pNiXLJ4DEcXza1qopjbCg4jiOKcuKMEyI4oSqqfnqT/w079x5i8OH90A1PHf7Numq5uDgnM9/4cdsskWjcFyH7d1ddvb2+Fe/8etMzk+tAE1CVf8lpcPv7sa0qmbv+j6qlUynKfPlEiEK8nTKoN9BNQW9vkMYSYQsMVgoab8XcGX3BmEUslhNqFqfFhfH9VlOFaN+TBLaeBRXOOimZj4t6Pdirl65ijENo2GINiW+Z9AthL6PG0im2ZRe4nDjyoCHYsWDR3d56TNbICIaBfP5DLSmKjN2NkKGnZBRf8Sg16fXTRDGUOQV55Nz4tjh6rUtHp+ccjKf88Wf+huEg32Mkgjd0ixOOH3wA44ef4A3gtb3aB2D0xd0eh7jOsTZu4I3WDL5sGX+wYKmtsF2/2570Setu57ycYn1W9PgGIe/8zd+Ht8BoQ0dz6oCxYUqcB3pGToBfm+Hv/1Xf4mt0VX+03v/Cffe+3AdK/LUQxegjYX/ul5I29R2axMaYSAOXHbGIV1H05Hga41QCscEOHI9txKCC4Cw0QJBQFm0ZFVBv2Oz3JSAhhpP+MTYuUCR21C/pjU8Pj7FcR2bh9W2eIHPaO95PvrgLULhoFrJ7/3uG7z2hR0kLePRkMCPUHHIqCeI3BZVQeh16Pf7hL6D5wo2Ngdo7fHg0RHTSUqtJEmnT9O6lMUEBYRRh7oxvPX2XbY391Hao9Ea1wXfcWnqmkY3TGYlwhEoo8jLnLgT8rnPvcL9B1Pcx0vqeonrSpaLipOjKUUBGI80rVGtwPckui0JA9jZ7rBYPELrbV56aZfT6YLZ9DG/9Pd+ka9947ssVhVVWvP979+jyBt298ZsbW+ijeCbb9zhbJqihaCuJVVe0I00bREQeuA64Pv+GhEUEPg2zbmuKgJHki2n9DoR8+kRURyhWzCtwZOCfjeh3x1QZBNc12M8inn55dsIobn34BhXGkb9Lr1eh9nsnDRdcmX/Cr4X8ODBIxbzls2NgLxcopWD0i6LZW7tLUoRxUOyNOP45BTpuBjhsH/1Gl4Q0jabKCUo8watNE3TUlU13d4Ax/c4Pj3jjW99h8GwTxxF9i7Whk6ng1xT66WQHB4+5t1332a5XNmE4taqLYUEz3dwXYHveYw3RgBcv36VV19+mb29Hba2t5nO5hRFzaA/AuxB2aCZzBZEvgstzKdT8jwnz1McF1xP2LmdcAkCC3EO/ZD+oGvTsZOY0WgLg2QYhExnM9K0sIZvI9gY7yBFRByOOD9bWaq/FLz33nt4vk+/3+fmzVt0kpi8yBgMurRtw+nB/BOtLp/qjct3Ffu7Y4Iw5Ox0iS89hv0uGxsjZrMzitWS61ev4LkxDx88AJnjSkUS+kgjaNsl09k5rg/drkGj8XxJP+4z7EcoleKjGcYdQmKctmRze5/Pvv5ZfuNf/yqdTkgYdDCqxpUhvmtvvDRc0aqGps25dmULRyqKCpJuh1Xe0FTw2iufIXQ1rlDkWUYcBizmC+5/9BGmbfB9j+FoxNlsxtl0Rq0MShmkMdTTIyYnZ0SeROVHlMuKRntMTk+YpTMGPY/OZp94mJDUA+qVy5Ye0h361O4xH75zHxr971hDPa2iu7jWBlwM4mLBv/yfdmht31qzMUYjJSSxxxe+cJOvfedf8ff0PyD23cv/ezm+0uaCWwvCepD6/QGfef1lFos5k7MJXBzUhK3UDAbPd9ja7OMZl1AELOcrVtmCq70xu/0B3TDB9yI8z2YFiUs3sbi0ZmEUGsl8seDDDz+iVg0vv/wCWro4UpJE4jKFOPB8Bv0+2zvbTFYZJ9NTyqJgY2OTna1tpKtZZBlubxOjFLdfusbs/DEHjx7R23JwQklxmvLgfs6j+0t0I3juuavsXdnF8yuapuD+gxPCKGI2T3l8fM4i1SxTCMKQZ29dZ2fbQ7VLojhiMVvQtD7nk5rz6QRQjMcxcSxxJSzmC9rWEMYBXuDR643JiwylczpdzYsvbbK332VyvsAolyxzqCtARnZ+nOW0teDLX3yZX/ybv8B3vvUNfvM3/xX3Hzzmxq1rpI8e4/h9To/PeO3l12mVz8GDxzx0PN59Z8J8KahKl2eevcnB4yVFccIqK8nTktj3CIKEwWCDJHQQpibqBFbh2VjaeOB76KYmywtCP2a1yjBo4jhmf2+Pqqo5PDxic3MHjOD07ITxsE/c7ZJnC7a3h2R5TlGkPP/88wwGfTYGXRbzGcNhj8Vizo2rG+xudxiMeiyWLnVjaOqCJk9ZTFN6gz55mnN2dk66gjAQDAddhkMHMnDdiOFwlxtXryKES1XW1KWF6rZoul2XtpkBLVU9JYl7eG6wht265EWKdHz2r91ga/8as+mU5WJBmmVMz89J1wKXPC/JVEmRn+L5LvPZkrpSXL9+jeFowPUb1+n3h2hlU6pPju29aYwm8DyKPCNf5Xi+TxAGeL6DF3iURWlFM26E0pq6KZGyRxjGtl0rtA29rQpeePY2G6M+SjU2oNIL2NvZZbS5wwcf3WOymOM4Dnc/ukNZlOzt77O9t8uzzz1Lt9NBCJtvdvftDz/Byv8p37i6kUsvcnFdTRNrfKHpbFncvux2aKKQXuwgpML3GjY2RggaktCmpCZxSKtcjNS4rk3/9XyfqqgxpkC3JVd2NymLmnyR0026aJXz1ltvEIUGQYEwDuiG0WCT4WCMdF2yIqNs/v/k/XesLFl+3wl+zgkfkT7zevP8K9NlurvY3dWGpo1IiZRGM6TcgBK5goSBWpRAkMKAQ0DYlaeWglYCVtRC0AraWWG41FCUJSW1YTdJdbNNdVVXl3veXX/TZ4a3Z/+I+15VkRSHVRzMorHnn/syMjMiI17E+Z3f7/c1KQ/291jpdSizjDiIaDQbTMYHtJoOooqhpFZkKEsO9w8YjafkeUHLc+hZLSpVMlssGI5mBIlCyJyTB7cIzVNeffl1tnbO0W27FKLLaCEZL5dYFji9Fq49QLZbtDJQjqDTaFNsuljWkPHJnNnpjHdW/nv42TcDjRQC8VuBEUJ7hBgXss6mJPCx56/y5FMdGgOdpGlxPznmoulgYD4Cb9TR68zjCUVepGhScvn8Rf7CX/g0F65e4T999jPcfukNVFY+CjxCKISmuHBxh+ef/ABb3havvvAK1+5c49zFC6R+gq45WE7zzGxUnAEsgDNXZ1VWKKFI8oyj4QmHxwe0Wh3msyWe16DZ8GonWyXqeFzVslatZoNW1yVVBVKTVFIhdEm71QBdx2x12du/TzQ8hihit9siikKCMGM2S9k7CDgZFsQ+mOaMtALDTEiiGds72+SlDjJDNxs4jfr/OJhmdBpLtjZsPM8AIen2N1kuSpJEw/czToYjJDk7uy1W+02m4wWLRYzrGfRXW6yu9ZCaQMgcpea4Lqytdkl32ty+cUQWp6AJLl3ZBKHY3rrAG6/eY2e9Q69h8fSTV5mNj7h55waGPSNOYHr/kCQ9ZbYs+fgnv49nnnmG3Z11Xn/9FW7dGmEakOUlRRazs9UjCGMqcmxXUpQV83lIc3MNz2uRFxFxkpGXGZ7ncToeIYoKygqUpNls0m236fYG1PIvAtv0oNKI44Qkzti7v4/dcLAsB6kZXL64RbvVZzyecXKwT7PR4NzWJr4/ZWuth2HoeM0mpm6RZCXTmc/dBw/I44Q0zJnlU2YLSPKSMFRc3OlTFVM00SVJI669cYCmNVjp77C6skmv18NxHNptlyjJ8VwD29kkTmJOTofEwYyG2yfPK/ISkiyh1RqwvbODZtj1wk3TWAY+oR8wn81JopjpZMJiPiUOlmi6Qgi4e3ef+w8OgJLd3TpI7G7vcvHCJc6d38U2bCbjCXleIKWBbXuIM2msbreNpukEQUgYhhiGiRCK+XzOcjlH12uFDil0hKj94LI0ot/p1EaXRYFpmiwXAUwnnJ6eUJQlzXaLRqNNnKTcun2btbU1Wq0Wll1rKDbc5rua9+HbPHCtrTRw7Io8T9nd6rL0dapSYFoWsS1ZLJbk4RzDdug2LVZ7LYJgTpKEaEIjDkOSrKA/GNBq9mqJf91gLn36/RaqSmi3mhhBytwvGE9nSH9Bmhf0ujbdTpeqzFhEQW36piqm4wl+mNBoGsgza3K32aLZXeXFb70GQrK7vU2wXLI/PKXlumhSYzGdsbm2RhAE9crItjk5PcF2LNY31xmOImbzlBe//jXe88Rz5JikhQ3OKqZp0tl9hmwIjl7S6jyOpW2ThQaNXBIEE9rugMKzmXgZpuUA03d8vWufwrPcSimqh+aKbwVyqKI2qztT4dA0waULAzr9DE0bM5wWWDtb3C3GNMsBfdnAxeIRzBwBqiaMO5oNSiFNjY998GNsnbvE6sXL/OP/69/n6MadehKTCmGA227yJ//M/4kf+M4/TH4UUPkZN47v8JXrr7D2+CXavT4qq+WnjKZTk5cfIjmArKg4Hp3w2c98jt/49S/R7fb5ju/4Dq69do3h8Sk7O9s0Gx6u59T+bkFAEiVIDdZW+8yjENnvYpk2jm7Q7rYQUmEIxd2798nDJW2hMehvE6RD8qTEMh2uPtZlbV3jxW/c58HJFN2zkFqJv4hptAWWDUq5pFlKGFVYdo8ijxmNQ9IsoNMpaTYrmq0W33xtn8kkJkkr8rxke8tg72hKEAYUWU5ZKUQFk+WcZbLANBStpovXbOF5HlkWEocRu+e6bKyvEoQFnXYD23EQIse2dF74+gsc7h3wIz/6x/hjf+yP8MI3t2h1e4ymC27e2aOoDEzHo9u3OT65z2I+YWNzgKRgOlkwGg3ZPT+g07ZRIqYSEs0QlFnF/f0TFosl3Y6DbigMU5KXEUt/iaFrtFoepqZj2y7dTg/LNPnaC9/A0ATNZptWs8tyGbJYLAmWEUJThFGMkJI0yxmsrBEsQtI0r1f9quTGtTdoNR0oczSpQ6kjPBNN6LimwzNPPsXlS5eY+QH39g/ww5w0E8RxRsPVMAxBkQxJ45B2s6TIIgL/AJRPnnURArI8J4oTClWiRHW2oBPEsY9hxFy6dAnQEXIF11kBqlrP1G0ShhH9do+W22Z1ZY1Oq4WuSXRdIlRFEkcoFEkaEgRLhqNjHjy4x2uvvsYrL7/K1cuPc+nSFZ59+lnWVteQQsNvt0mzhPF4XHuLlbXUmxD6mdpPrWxS5CmaVDi2hWN7SKkDgjwvaq3INGFyNKGqKra3twmDBWtrAz72sY8gtdpvzHJMtrY2WSwX2KZF021QFQWdbuesXPruxrd14NJlianLurckS5qOgWW75HmFoQlso0OW54RxQqdp45gSu9vGNFcYT2cEQVLzcUqTVqOP7Vos/BlJljGZz9FlyXw+w7Rc7GYDtQhJi5x216VUBUWRkSVR7Ty8nBNEMffuHzIPKra2PTRdcnQ4ZG1tFbdpooSOpkv2Dw5wdYPx8ZK8lbO5scHq2ib9fo/+YEAc+0ghOH/uHFGWEWYCwRRHT7hw5TGk2+Hc49s0O6sYjQZJoJEolyitVT6izEL5OtEiJ52k3H/tJicn32J6CrNhxmKyeBd4i4eMrFpxUKm36my8fWcShZIKJeDxx1f4wHdskSQTxrOYzLG5d3rIYO9Vmpe7aI6BkAaGEGhnIa/ex5kEVVXDvKWpc3nnIn/mjw3IK5+/9zf/BtGpj9MxePriDs9cfYo/8YM/SLe1RrWSc+6lC5z80in7s1MORse88M2X6HU7bG1vsSbWcRqNOuOg1hbOqor/8pWv8vf//v+N2zdu4bkNPv+Zz5DnBesbG3zogx/kmWee5sKFCywXS4IwQAqBbRsoCVbDwWy4uJaLWQiSMGE5n2MIjSRQVEmDi89ssLoxoJVqHJ7sI6Xg8asX2D73BPPlL3ByPKfZXmE+99k/GBLn+zzxnkvkWc6DgyW210VgIYQgiGLyoqLVc5gHGfsnB+ydLEnjulRbVYIog7ws0GSF61nYlqSUBcrUyaqUIq2b547rkSQpW1trzM0hpuFQ5gb54YzF8hSpr3L1ygVuvbHHvbsPuHltjz/9p/8o/ZUehtRQlYbjtImTgqws6PQHjIfH3L27j6oKPvT8c1RFysnxHQyj4PLl8wwGq4zGY45HJxRlBraiKmrlmiCMaXcM1tZ7SFW7BHteE9OsRWcXownTyQzTNMmyBM91GI2nHB6N6LUHVKVCaiZClNiuheO4dSYhBWEQcHBwzLntbexul6eeeIw4CtF0Sb+3hpQWy2XAcumDJkAKuoMOjm0wnw8Z9Fs02z38ZYgkI07mLPwpDUfDtVx8vyBLY4K5T7g4PHOUVkhDw3Rs4qz2BGu32zRcj9PhHienEY7dwHFWoCwoCofx2KfR6LCxuYOgQihVe25pEt3QiKIITdPo9FYxDA2pgRAVRVGrgsRxxHQ6w7EcdN1kPJ6AEjV9RhdousFg5Yw4rRnkRQlK0mp28Bo2hiaZzUcURY4mdJbLEF3TsSwHxzLQdUlVQsNxGI1H3Lt7B9MwWcxneHmObhiMTofcv3P3rI0sMNod7K6JZRp0223k2z1Z39nc/+6/+v/7EfgLml6PPMtYRjFlUZFlIxyngZRGLfEfxYShT7PdZj6fUVS1w6rbaJEVCVK30a0Gd+4dU6mM0WxIQUWhFKYOniuwrAhNWCyjmEbDQzc1KEuGJ6fYtk6v1z6zVFCsb67QTGIsxyBOUwzH4vB0zPC1A6SusbOzSplm5KXEsFyk2eLgeMHKap8gLVEqw7IsPNtBE4q+59H0DMJlglbpXLj6FMoY4LVWkKZNkqaI3CfKYxZhwnxREMTHrK7oLAKf0ckeey/d58WXxyQJKGXUOnvvdEgF2ln/qahqALqCRyFGQCVqlJbnWnzs4xfQtJTQn3NycljL3ChBoEXcX9ylffUNLvWvsuFs1jB0SkyqunsmasN6lKpN6Kp6DrGFYM1u8CN/4r/H7Wh86fNfZMU18LKK7/mOT9DptFEStKbB1rOXMZom5TTn3/2Hf8d//txn6bTbPP+h5/nIRz/Ch59/ngsXzuN4LkqXHJ6e8tIrrzIaj6CqCP0lt26GKAUP7t3n+mtv8D2f+Djvec97qCowrVptwfJMnE4Dq+0RlTmUWV2GoSTNM2zHYXN9lde/eZPjoyYPujMsw2cxC9nY3KJII473rzHoSWYzjcP9IxZ+RRALgsOIUjtGoNi7n3DhkonjOkzGx4gqZ3VNpyw9ln7IcFSCrD2SpKwwdInnemgiwrQMkiQmLRTSFCi9QooSx6hdgoMgQdkmeZ6yWI5pNXPWVs5RlBWzWYAiq7e3ba5cWWcymvHgwW0GK8+xtrbGeJ6wmIcUpWA2m5PlBY1Gs/ZdiiNu3brB1sYaaVoj85aLiNHpTY5PRqR5UctQuTaW1abdNbAsAVpGmBQUeUGelhTZnNSxMAyDZRizvrqG67rMDg6pVIxjO+RFSaPdRpM6vr8kjUMM3cQ2LfylD1VFu+kxdw2qMsEyBUGwoMhz1jvrLOdLDMNjc32TOLrH/sEe+4f7XLxyHtMRFMmCjfUOSTIn8UdAQVlmeJbAc11m0yVNSwPLpKgMhJS4ngdCMFvOKURMkUXEcU6aLnnqyau026v4wRxdL5nPliznd1guJCsr2yhXcvfWq3hulyjOqRQsFl26vR5VVZHnCqFqw1nDlGiapCw1NGnjOiat3QECiW07+IslYRAQZymVKmm2GliWg2UJqhKWyymj0RTXtdE0gXAMTNOkKkt0TaPXaaGUfESKroVBSzQNDE0SBAE4DqeHB8RpSqPVxjRtLl+4UGs+xjGtVhMNSKKQ+XR8prH47sa3deAK/ZAhtVtqlmVIzWQ6j3DSWhjIcRukhaTdWwMJWVlhei5hGDCczZn5CaoqOJneRUiF1Eo0Q1DkCs0Ex7MwdIHluCRJQa4qGm2PTrdBlSWc+rXlthKwtr6Kabns7R/itl0M2yRYLkmiDKkZuF6JkgaTmU8axfRaPWyvz2iRkCY542BId75gd3tQW5wkKbqA1PcZbGxx5fwuQW6RFwK328VZGZCkAVG0YJkec3hyk3t791jMQgxnzEr3FKlK9vdP2L+zpIhBKoGifKQs8U7C19bldZ780GO89trLTO4FZHN46GZbB7GzICMU7//gRdDneJ5FuCjZ219Q5JI4VmQ6+BkcnLvH6YUJUS8j0RM0SmKlUEKgaxqubqMh0IWGPEvoZFVLbG04a/zF/+Yv8Jd+4M+T+yGR79Pr91DSqD9rVDQ3mhgdj2oP0iwhzTOWvs/e/r/il3/lVzi3s833fM938T1/4JO0VvqczqYsF0s0USMba4+wAoGgUooojLh/5wFlQd1o3lgjLQryrCSOS5SMyGVFs9nB0HSabQ1ntU03HnD+yjmuvXqLb7ywz53rR3zHexvEWcx0cp/1wYxWV+fcdgtNGDy4s2Q+CxCmhmYJpnOfMMiQmmD/wV7t51SoWmZMN3AMg61Ll4n8u/jLmEFPp+E1aLdsqnyJ5+h0GjaLRVJDm1sumiXOJNIkRQ4HB0POba8wm49pNT2iKOD27ds0m2u4ns3h0RGmZZBXC/qrBk899V6SZMnR8QMsS6Ibgo2tVSrT5PqNG1iWxQc/8Dzj0Zxf/cIXsUwN1+3SbiW88cZ1qA5I0wQhDMbjEKTBwoR2W9If9On2HMJowtHpiJYn2FhbQXLW35Iapq2QuoNpN7l09TF0DbIk4f791wnj1zF0s+5dqoKt1T7bW9s4Zyi++WzGc+9/L1kaUxS1iaJteSRxTFVBFC9549qIyWRGGPps72yws7PBZD4ijUP2793FNDXW+l3chodpmaRpzMpglZOTEfNZSJoUNJqdusSqSfxgiWVLMgWBH5GnBaYOh/sPaHUMmp5Oo2FgaBWqLDg+OiaMpvR6H+B973uGNBHcu3fI4dEJx8e3aXf66IaNZTfJM0UrjGg2PNqtGg2otNomSYoa5SpKiWU6mB2LLM1AKqQUxFFtc5OmGVmeURQ5N2/u4TVsPMcCUTAYDDBNE5QgTXKWiwVSyppikecUWU6300GTEst2sCwThEJWFUJVSAVlVWEaBsFyies6GJpkMZ2yWM7f9dz/7R24gorVQRPTthne3yOIAopS4jQaZEWFyg16q2sUVU6Y+KRKZzyaUVQFlu0iTEXoF4wnEboJXkuj6Wi0mk2kUNiWhmWatUBmVWE5Okka4bp9Gr0W4XyBkDW8uEKx9JdESUSVgScaNWN/NsPUTR4SheI4w/czTFNR2Rql0WL/4JQknXBFX+WC3USVIXmes7a6RmK7GIbFg6MT9sYJH/pkyuZgQCYUx7MD4vCUG3df5OD0hHv7E4pcsDg+oiqPmQ9rlecgrt7CyVKPNATfyWj1GvwPP/HDfPlLq3zjP1/HiHt85atfJUnSWuYGoBIoAS+/dB+3rbiwa5IlBUGgapigUEgkZVhw+uJ9Zh8POZ3MMTwwNZgt51RSUFUVq402m50BupBnIrbUPlhCoCuBgYHQTJx2g2ZrFSXPICOqBm3Y3TZWuwnyoXr7QyV8QRRHXLt5g9F8zCt3r7OyscHVq4+hKVXD7R8dsB6C+kFvt9qsrKyyurpGo9FEaIKsSjk9PSF1FLrn0NMyNE+hDJvUrehd3aQx6bL9WIf9eEK6KDl5kLKyYZCkKUGwpNG0MKVGu5HyxGNd0AXH04yCkvX1FY4PxxiyJE9KyGNatuSJx3dpd0RtfmpJLmy00UVJo1FbWnTbHqLSabomYbDA7XWYB0uqpEAKHc9x0KVEFRVlAUEQ02xK4jJBYJJlgoODU+I0YuH7CK3g4pXLqFygSRPTKdg/vIXUXfYOjlnbusj2do/rN1NUqfEf/8N/Ioozbt28TxjEXHvjLhfOrfHf/6kfpFIRQhVMJz6vvnaPO/ePibOYJMlJi4LpfIqUGVLqOE4Ty2yiqpxWp0mW5+wdTJjNDmk1lxgGlEXCoN9ldXOdOEpYhiGaEJimRqEgyXIWfoBSBXmZc3R6RKfVrLlRnR6a1NGkwd7ePrPFnDBKmQdLyrJiq7/BdDYjz3Nct0GepWzubrO2vkZR1UUBXTMpMmg1uxzuD8mzCtt28fMURcXS95kFIcskxzEtWlttojhiPltSlQaOI/HnC2y7yWDQxTTWOTpacHj4OqaRs7t7hbUVHU22KCtJGOVEkY8AppNjkshnoumoskRVJa1Wi2azjWWYOI6LbVlUqsK2LXRNowLSNCHPC4qy4HR4TBxHxHFCFIcIUbFYzMizlOUypNdu49gurtug1e6g6wa+v6AoqzOlDpuqqjBNC6UU7Va7tlgpSoL5gqKosEwLf7lkNpugC1EfY754V/M+fJsHLilsFsscLRIYZofd1T4nozknk4RWp8/x6YxXbhyRZBGWA82mhaLAcgxcw8L2NIIoAAPQQbN03KZHkkS0PJcsjfHc2hspCmMsXRLHEWEU8PHv/Ainhyf4/hwlBHfv3Wc+T2i2m+RVimlZZFmGho5UGrZhcDpa4Lgeg8EarVaP116/z2KRkeWgaZLDYcDUT3js3DqWKNEENCyrfqBVyur5Ps5Kk0zPSVXBjQfXeP3Fr/DSl3+NKvc5HubkhWAUZFSlJJ6XiOotRGJRB5A6zLyzJtf1b95heP0YuYCnLryHDz39SU6Phrxx4/pbPiWgkizmMWkm6XgSIQocr3UGCKlYRLXtQ5YazCcB8zAijVLiLCEMl5yOR2ysrdO50iWvBIVQNY9OlCgUpSrPblqBElodk2StRa9R98WUEFitLh/+1Kf45rdeJltGZ+K4D+U36iA68xcIqbGxtoZl6CymU5I4ftt5PzTC1HSd1fU1dnZ22NrZJi8z4iImzzPmyynjeYCfxQy2NtAagqyy8SybZ598L0F2zOToBq0iZ3bTZ+BJdlc7aLbAsCuUlpAkC3SRYziC7/7OJ7i9N2M4GdNsSnqtHqJUpEHA9voqT1y9QpEHWFZOq2WwnC45v96i17KZzWcgYlxDkUdL2s4aA6+P1B2mC58bdw7prZmYlnV2Daa4lo2qKsbjOZ5nk4QZR4dTFsuS/sBCtwR5GXN4coem16ZMFZVKcGwP08rQjYzF8ohK5jz99CX8aQalpC9MDMPh1q27ZGnKcDTl+o1bPPPMOTptj2effQ8ra5tM/vV/RgsTvEaTMIyZzCIEBf2uA6sOCz9nMR1jmkss26G/ep44TMgraLoNWi0LXYPJLKDdG7C6XmccaRwynC4p2KfVajLorxBFC3x/zjIJCeKYqR/i2B6tRotKCkzPAVNHcy2SJCNIE5aBT7Pp0emtkkQBWVZxdHiK6Xo0Gm10zWM2X+L7AV6zw80bdxhNp1y5fAnLNNA0sC2b/aMltq2wHB1TtzF0iS4UolLYllFP6CpGypD1DYuqlAThPsfHMVQmzWaDbncdz+thWW3ysrZsCoIEVUmqouTg4IDZJGIxG7G2tsFodIxlWbWflsjQNYFuWFi2S5r5nOwdMJ2NOTo8JIoS2q0Whm4gNZ12t4HrugRRShClGH6EUKKGxmsCXavNYpd+gGVaJGlKWRSPQFbtbo9ur1+LQKDQDcl4PKIqalNWKd+9Ns+3deBaXd8mzWIee/JpXnjpZY6HC5ZhwWgSc+3uXdK8NmwzbYFuG1QYKFVRFBWT8RSlBF7DJCv0WhpKVZiaDrqOYxrEeUYRpyRhRhzktFoWZVHDu1dXVvA8j8VigWW5xNEMcWadkqQJaZbh6BZPPn6FbrNLUcLtew84OplzbmuboqzjiJRQlpIgyDGNmNev3yULp4gswpCKC5cu1Odhw8ruCqNkxMm9V9nYPMd0Puezn/0SN168i23VDs8LPyMTgjKpIcJv1/F7C4wOeORr8nsYIlP8s5/9F4RhyNNXn+Pf3fgV7ty8fSa2dHaMt2QqmpA0Gi2kVrIINI6PfDRDJy0qqkpDCZ17127zqtNmHvocTsbMj44ZDYf86I/8KLbtITUdhKxFdYVGWmXkWY6tSQzDpAYhVJRFhXbmZQSSKMt448YtkjxFWm/e4nWmWdW/Vwia7S7f/V0f54MfeI6qKnnjlVeJ4+jRlXrrlal9j7K6bCIUWZqx9BdkMscSNvlsyNHpIXFZcm53m2ZH4/L5x9hwBjx18QnEd30X0eYGy1s3UXFAp9PBbXUJy5jh/IAkz2l5TarcwpY5Gz2NNM4R1ZxWq4nKFZprs73u4OgRQbqg4ThYMufCdo0AnAUR+0Q0my6uazIZJogiQzc9VrsDzu1cYDSak0c5vh+ystah02yDKvA8B90oSdMC7cyLLs0jKmFSIZCGTZSkROEQy3RwnCbT6ZQ0V2imx/J0SMdfkuYlp8dLbLtLUVZ84Dveh64bvP7aNZaLOd96+VtcudqlP2ghZMgf+NSHee3aXb705ZdQ1D5UeeERLGcEfsbp8RJdV3S7HaI45sbtAxrNBkmU02w6FIVkNl/ieTprm9t0O10c2yMIAkbDEwqZsYgyhtNDbt3fY2tzlZXBKpalMRmNmE+mlOUUgY5/ZitSKkW706XTH9TSZ1mO7jTI8pzD0ymzhY+ua0RpzuraxiM0Y7vdwiRnc3cd0zJwW06tYJL6BEnKyqBJnkvSNMP3S0wdOpt9NK3A0CVVlZMkIVCXtRtuA8+z8VxwHYuiyDk9fgPDbNDvbfLU0x+g0eiRptUjCbJLl1aYz5YoJalKxXyRUxQxs/kBZZWTFylS1Gox+/t7vPL66wyHY6oCNKETRRGtVsKgP6CpWximS7tr0+/2EEKrlTniFFSF7Xl02i3iOCZLU0oFmqaTZhkLP2S29Gm2WnQ6XXq9Lo7nsLGxznB4ymQyptnpvJPp/m3j9xW4/u7f/bv89E//ND/+4z/OP/yH/xCAJEn4K3/lr/ALv/ALpGnK933f9/GP//E/Zm1t7dH39vb2+PSnP80Xv/hFGo0GP/qjP8rP/MzPoOvv7OdcvHyVMFzy9RdfYjReMJkHFBgs/ILJtMAwIcnAy8GxdeblEseS6ELS8mob61Ip8CSV0ml1mnS9JuM4IJjPqYoclWZYmoZwDYo0QwhFmkQMh0OaTQ+QzOcheVEbwlWVoqqg6bjsbm7Rb3fZXt/GD0KyOMfWm7zx8hs0Wx79hobKBOQVnm3RahqURcnpaIqjCWbjOcskpdXzcAZd+hubHI8PeXB8DedWh2sv3+DwzozpqHgzHGkCab1FcPAtpcE6wGhnr97UWP89DQXfevk2SDjc/wJZVpKr/L++B13geAZxLClimJyGKAG6Y7Fy7jJlIvjNn/83fPMX/zXb3/Esszzn9M49rjz7LFWao5VgnEHWzzTgyUvF63v3SMoMz3Joe22auocqCtYGXTQpyXLFvftH/OIv/q/8y3/x/yKZL9+myfiQc4yQmLqFyhSO4ZGVKfPFnKr8nft/SkB1xi+7efMm0+mEKA6xPZfSUsTjkL5ssaK1WZUt3rvzJI+tXsZQFU9sPsnjg22SZ24THLzByZ1rHNy+RxQvsQ2H1dYOhm3QajTRNYvpbIJBTrzUQRoIoRjPZpzbXqfbMGh5OobmkqURba9Fu9lCI0PXDO5cD/D6bc5v79JrdAmWEabucvfOfUzb5eK5XcI04u7eHnmUYjsG3e4qeRGzvzel0/UIoyWlUjguGKZFXlScnvh4rkVZFGRxzOnpEtsyEGicDg9Is4KrT0Cn28J1U16/9lWy3ORrL7yEbbbxgyVFkaOUzmQ64sJFj+F4n7W18zzz1GPcvn2XOE1JNB3Pa2C0DeLYJ0tlXV4PJ2RZztKvrYI810YIsKyCNF3geoK8FCwWOYZhkuc5fhBRlArdsUlVXoskTwJ020MFOUfHQ1QFWVqhCZ1Gs81gZZs4Szg4Oub24RghJXGckiWCTlPDsTV0UyNJC45OZ4wXCV5jBkLgLBbYjsZsOWdzc43j8QlpFOG6JpYj2ewMyDONxSJiNJ6xWMS02wmazDk9WSK0im7PpjfocDKMWJQLojgkWM4wNKNuYQBFtmB0OmW/JdhYO49hNSiLgkoJbMvkySfXKQtFmhXEsceD/T0W/gRNhzwLsCwLTde58vgGm+f6RFFBliiksLBMDyk0EJJ2q0mn20HTBKqsOXgIkyAIKYucbq+HbVsYpo1hGliWjWUaNXk5S5lMxkymU06GJxweHbCyOiBNEoqqoNPtEgT+733++a3Ty7v94gsvvMA/+Sf/hGeeeeZt23/iJ36CX/mVX+EXf/EXabfb/KW/9Jf4wR/8Qb785S8DUJYlP/ADP8D6+jq/+Zu/yfHxMT/yIz+CYRj8nb/zd97Rb/j6i9/Aa9j4YcxwssRyXFYH67jLGMuOGU8XbG60KbIQqRQ60Gm6GKJg0GrQ6TRrFQW5yf29AyqlaBgWS6lRVSWaYeI5HiuDVRy3wRs3XkfTNUI/4Jvf/CbL+ZI8UyyjCFRJo+HRbXcIDo+JgpjlbMn0YMzp3imbm5toCh67cA4LKMqU6RTWe6uU2Ny4tYc/Dei1WzRbfdYGXSr1gNOxz8lsyZ/86CfJYkUQHRHMfV7+xgu89rXbLKdLaiCBQgiBymuDOqCOUbL2jHyzXvgwYL0zp61KnEnZqoogiRCafDPT4u0ZSiXqMoCmGdy6PmI5T86cQAxsr4vjtbh/8yYq8olFySzy6Wxu8Mz73ssTTz+FLgUqy9AdhVa9WVIo84Jf/nf/nv/1l36JOEp56on38xf//KfZWl8BUVtM+MuI3/gvX+O/fPaLzE/HDyU4Hp2vgDMKhGA2nPG1r32D/Kx/uXf/AW9mpA9Z1PWfVrvDhUuX6fdXePDgPt/61rcIA5+m16LZbRIlcwY7q6woG8ev6MkmtrQpypiG3sY2+sjzXZbNBi3HwchiDu/fQ/PaGM1Vkry+mlJKtlc2yPIOnUYT3XJZBgmz0wWeYSGV4trrr7Ozu4PrNYmjgsgosI0GnfYqm+sHRGHC0eGIzY1dqmxZK6trDmGSMuiuUIiS7bVVKpUjZQlVwXIZ1CTgZVyLlxgmumWw9Gvx1zjJCPwYxzEZ9HqcnkxwPIvVQR9kQOin+IsxraZgZcXiOfcSd+4tyPI588WEQtXq/rphMpmMOT6qJ8kH9w956slnuXz5Wb7xzW8iRA20StMYxzbJ85ij4wP8aEmSZggRUxaQRCmHhzOOjqd0uzprRpPRKKDI52i6SVGUKAqkWZGWgunExzLh4HRGphSuqxMXkMQpUajQRMnUn3A8ijBsi+E8I80y2h2P7uoGaRISh0tsaZKqijwraPc6TKYR9w4OcFyDTs+lqFJ2dvrM/AVpHBMHPrrZxmt5BPECw2rT6TVotpuUeUqz4XByfExZ6OhafkbglziOQVGUlGWFKkv8KCEOA9bXPAxdJ4ymvPjCMa3GKnFSkpU5IBFS59ln3s+5c5dZLAN++Vc+w6uv36LTs1lZ79FoODXCNElZW9tlZXWXj3z041DaFLlOUUjK4kxdtCpJsxQhNYQm0Cno9F28Zps0iXEcG8syKQqT5WLBchnWyvmGhpQCy7FptlusOqsYho4QdX/ZcR081yMIo3c0B711vKvAFQQBP/zDP8w//af/lL/1t/7Wo+2LxYJ/9s/+GT//8z/PJz7xCQD++T//5zzxxBN89atf5fnnn+ezn/0sb7zxBp///OdZW1vjve99L3/zb/5Nfuqnfoq/9tf+Wl2K+T2Ok+GQVdGmosBt6ERJhabXoApNFjQcjaZrIF0XqSJ67SYXtjYJl1P6rRYatX1Eu93CurDN3v4xs9NTbCnRLYc4jCniFArY3ljn+rVXubCzTZrG3L5+g8sXHkOXDi+/dpM8r8jMWpvs3M4Wy/mCJIxZDGckyxhVFPh+hK4fc/7cLoYu2FwZYJgtJtOUxXQIowBR5EglaHgtHn/yKa7fvMUzz32AZ575Tv7tv/8PLIsUDJtiMiMajbA0hRCqtotSCqEJpKFTljlW08awNcJRhMpUDWF91+MtvC0Jqqp1398sPoqz8FAfQ0ciyjNIO3XeZ7lNLj/2BInKsUxBEtRBVC8K3vPM43z/93+KzZ1z9LsrNGwLygqh15YhFYqjvT2+9vlf5943XgVlsTxI+MSHPoXI4aVvvsrm7i4Xz19ka/s87U6fs4ty9vsfSlTVbmEVkjzL+M0vf4lvvfISUof5ePg7pFqAELS6HS5fvojrOVSVwtB14ihieHCC41gYtiSPQmScs90eMDk/Yq27hqZVWIaDLlxKTafRv4qIY5q9GzQnx8R5hKNDkda6dVUJWVWy8EPiKMFuGIiyvv+qCnTNottbQWg2UlpMRkNuvP4inVafja1N3v/c8+zt7bHwfYKwpKgMNL3OoqI8YXz9FmHiY0gdr2FiScF0Oq/NG60GC39Jo+mRlyW6Lh7ZZFRVide3KfIcwzRZW29jmZIgXFIUCZ5noyiZz4b0+h12tjbI8pLpdIqQgsFql8hPcWxJVcErr9ym6XTYWHkOXTo0XJNPfPcnqVDEcYSha4zHY27fvgWMiaIliyAlS3JMw6aqNLyGh+3oVFWEH8TkWcFkHNbiGpWi3TVxWzqQMZsnuI7EsnQmswA/Uuh63Ydx3JIkLjg5DsmLjEtXL1JUAUGSkM0CFmGKqQukEmSlwFQSqZsYuoWQGUIT5KUkSaGsFOPxnG63yWIZoCFwPQ/f90nyjEQI0lRycjxja6MLKmVra5WVlRQ/mJMXKUEQcWF3l6UfMhqOsCwTx9a4dHGLZsMiCBZYiwjR8UiTFE2TLIPwTC1N46WXvsCd2y+jhIaQC7a2PAxbEUbH6GaTdqfFYlFwcHCd4+MDNGHwHc99HMN0sC0H34/Js6Q2ytXrxWpZKoqyRGo6hmXViEkUuqFjmhYC7QwpKijLeh6M05hSVTzYf0CeF7Tb7RoBnqREUYLvB+96NnpXgevHfuzH+IEf+AE+9alPvS1wvfjii+R5zqc+9alH2x5//HF2d3f5yle+wvPPP89XvvIVnn766beVDr/v+76PT3/607z++uu8733v+23HS9OUNH0T879cLgFYX2/QaDsswwVeU0OzChbLQzZWN5GVQHUsqmLJ1voqptlG1zWalonRbGMZLg/uP6CqEhrNMe12g4YpMUwDoWoH1s75Tm3ncLiPIQv6jRbZMuIjH3qOo4MjTN2mazfJzkd1EzcKqbIcx3Oxm00kOg3pUpQlQeAjVIlj2Rzs3SUIAnrdAatrJp2mxkefe4KvfP0VLuxuMOi3OL63R7vTYbW9woc++AlanXNYskl2dEqvv8K5xoBs9zz7+phgGZPrEqvlIQ2jTsETKGSOktVbiMJnQ7wlP3rLvC7UW+ft35J5/I4q8tWjUCDO3K/k2Y4+8r4NbEcgpaQQ1H2h2Ofu66+QlQmardFa79C0XK687zJXLm/y5Lku7336CRrWgJZw0aq6F6UomIc+v/CLv8hLX3vpLHkqsTTBiy9+g8/+yme5/toNNnd3sVoe03SC1wGzYZH70dlvfLNUWJ99CZTEQUocTH/ryf+2k51NxxwePWBzcwvL1umt9CnyjGi2YHh6QkHBg33Y3z9hfX2ntgDZWdDvtDGFhUBHYCO0Ls7gCr0rzzNexEzu3WG2d5/BYIdK6XTbfSbLJY22g2Y0cTyHvCpRaHT7XZbBnLLI0T2XIEnYO5nQ7Q44nftYYYwa+YSpxDDbzBYxwSLEMh2CsMRxWzh2A00YxEmIZTWBksVsQpwWmIYDqYGfZCAKLFun02iRpQlFElGZAikURZbULsuiVlDpd9s4lo1lm7VJ4WyBKKDXMPj4dz7J8WjGYpmgaS2iMOH2rRENx+L5D2wglCSNA6I4rRF/Rwd0ui3WVjeo8oy1tW3yyuL8VY37+w/40m/8BpIlUikcW8OxdNqdFXSjRDckUVIR+BXNlgRRkKcZeVqrfgRBRZxUxGlIf2Cil/Xiy9Bs4jhG0xRxWvOjNM1kZXUD3dI5ODjB1BUUiqbnoWkuuqwwDB1DLmi5Fud2r3L/wRGTeUC36TIfBjScLlkSMZ9EtFsdFqMJhydjpK6RFAWT2ZzNtQGWadKwDZquTpanTGYzwvmSlX4fUeRkSYjjmMynCxrWJlVmYmiCLMvJswgpNVyjpN1uo1RJoXKqYoISkp11we5mj0a7zXAyZLGY4pkuTt9jP1kQxTE3b3yNq5eusDp4nLKo6DQa+EHO/sFtNKPCtlws2yMtC8pCYlo2CojTFC0vUFVJHEUYRk0u1oWBK126RhfD0Dh37hxFXosOR1HMYrFgODwlSf4P5HH9wi/8Ai+99BIvvPDCb3vv5OSklh/6LU23tbU1Tk5OHn3mrUHr4fsP3/udxs/8zM/w1//6X/9t2zVdMBoOKcoCy7bQNUkYJjxx5Rzy0i7+Ys5sPOWDH3w/ZZnz4N4D4jDk6PiIOOgQ+jGaVrB6fpeqyvAsi63NdYo8x7Idmq0uvc6AbrfLbDZFo6JhW4xPRphSp0wyiqKi47mYlkWaJriWxXIyhaLENj3On7/C/sEBAo2qTHFsg4br0vAaxFHG3v17rKysYpo2H3zfZRzXxXYtJienzMZzPvjR72Fr+zGoHB6//F60pMQwbXa31zi/eYUbt2+hjIK05bB98UnGE5/rb7xBMFvUeIm0hhU+1BR8iNWoA8xb8ij1Zjz73Ttf8i0gDPVon0oVaKLO+jSg1zJr65Aa6nfGq8nx51M0S8cwHAadPj/79/4eH/jo+8lFwlZngJQOSlmPDgUVeZ5TqoK13RWaG138JEFlsFhM+I//6ZdQhcBzesRBSFxU+GWC0kt00yQj5O2glLeanrxl/K4nrZhORvzSv/pFnnvuO1hdW+Pq1au0Gk2ixZK5f9YbqwSzyZRbt+/w9PueYbFY0vGaSFOCEOiYKBooawVv9TKN3gOyV+7x4OYdZu2AJ9/7fiolyIra163RdilRmLpEizKu3d5nb/8etmNwPJzi2CZK00jLnGavg9J0bt66jyYNDMMkjmJ0qZOXBc8++4G6P5UHFGXCfDkmrzKCKCBNQEobTThsrK5RlBlSVliOiWEZ3LlzG6ELNGFiGhZhGLKzvUuRF5weH2E0HPJC4I8XaNLAtgwsw6bTG+B1+miGQb+Xk6Y5UWSy0muSRznz2Rh/OUZ0NILlgi/++hfY3tlkc+M9fPlLnwfhYLl9VKWTZwopTAzdJgwWUCpUWWDoIGTJ6noLw9RZXbMY9DVM0yBJlggtq21ShMnGuoNl6yz9U6oiqHtVcYRu6zRclzyLEULj5GjM6WhBrhSbO+uYmoelGwTxkv29MZNTyeZ6n27HQtddNjYGJElK4CdksaTV7DIdj5CuxaDXJssCPLuPpZdIVSCwaDUkDddGSpM4SMHSMAyTKK/1Tx3TIYtSiiQj9GNcy6XhdplMQtIkJ89zhKgwDRPHdtCkThRGVJR0Oh6aXutxRnHOyXDJcDhFN0uankXoT+j1B6yvNVAYHB6eMp7eZ2f7ImUuyLKIl7/1m/ybf/uvuPrYeZ55+mmuXn2qdnzPBEVZz48KgzTJQAna7R5BEJBlBWWZ1+4MUmEaBkIINM2k0WjR6fRZXV2j1+vh+8vfdab53cY7Clz7+/v8+I//OJ/73OewbftdH/Sdjp/+6Z/mJ3/yJx+9Xi6X7OzsIM7UwzsNlwqFkgLdMTi8d5un3/MUri5YabexDY3RYkqexjiWhWfZRL7PoNvAdW10JdAMm16zRb/bR0rB6emQvft7OI0WntOi3epy/95dWo0ep6cTqrxAEzpxHBPFCcfjOWgm53e2ycKAhu3S8NqUFVw+fxHdEDy4fxvvDC1ntCyqNmfOtBJVlFimSXLWLzu3s0tcKLbOPY5htKEyWV85R7wbs7K2hpIGy9kcu2ETypjUbdBZOwdiH0OYqEwhCh75N9ZZUZ0NCWr5GPUIqVDP2pV628v/6qiRhG8KFD6UaSofVhIVNVFWqwOmUPU2BWiWQbfVwvdD/vif/1N86nu+D7dp1dlaBSiNAqjUWa+uqEiznMVyzqXHL/L4R54mymF2v0YlBf4puucSsSBILWRusb29wf7+6ySLmDfBKA/P9c1+1zsZVVFw9/ZtZtMZH/jAB3jmmVr7zXHdMzeWOohXZc7+/gPu33/AY49dZbU3oOO1z3prEoENuDjNddzmJk1jDS8ZcbR/RFXYDN5zmUpq5GXGwWhMJQWdfo/1ncf4/H95HcO0COchx8MprabL6mqPm3fv89iVi6xtrLO5cYG7dw4YD6d4roeu6TQaTRynRRQF2FqLqjKZjifkaY6hOexuXUQzbDTNYX1jg4ODPZAlpm0QBj6G1cZpmNhOk2ajzXyxz/FhiG3blGWDe/fGbG6uMhjs4rk2aRoT+D6T+RGFOq7Lj60Gmg6mXtHpdUijjPHphPlsjyiqVRuU8rl541vMpgdEcY7vl7Q6W6xuXEBoJrtbW1Qf+hD37tzm9PiYLAmZTWOQUDInyTLKSmAZHlmaYFhgWrXCiyoiLGNBw5OsrjQwdJNOt9Zh7LZXmE9jhBhR5DrXbtynSAvipOLmq8cICaurTfJUERcZ7d0BQVRx//4tWu0mlm3S6/dojaYUVczx0RRTlzzYO6XXbtHvtzk+8ZnNEoKwYLDao9FsUOYp+w8meJbEMhS9XgupCRy7yXIREfgRQipajRVsq01VOmRZQp5pVGWNpjVMHVXqCGHgOl3yPCP0C3SztkDRhE2/a+Iv91lEIc22i27o5EWMrkMYRVy4sElVBgzHd0jikuUy4M79b2A7GTdvvYqmZ6ysdTl37ipllSJ1gzie167ylSJLCqIwxrYcyrJCSp04DkFUSFGbcGoazGYzyrLCtk263Q62bb3j5/DheEeB68UXX2Q4HPL+97//0bayLPmN3/gN/tE/+kd85jOfIcsy5vP527Ku09NT1tfXAVhfX+frX//62/Z7enr66L3faViWhWX99pO0TRfb0AGFqmoZIrvfR0NwvHePczu7ZCLj1vVrtSRRlpHmOf1uG1VW9Pt9NAlJHCIqSZQXnOQn9Podlosly2VEVWokaU6j2WRtZRvHtrGNBrZpEIUhnpOQZymu4xFlCUYF5y9exjYsup0+s1mA7we4tsXlC5eJghDDtEmTlOV8WTPNqbBMG9OysMwaEaUo6HXXEWaD7soOo4MxZaZx4dKzrO9sM5lOsY0mVstkfbrP3thn/+4DjvdO8YdLlF9RSYHS62ikqJFCShVAWU/dQtR/paijzkMLLfXQGet3Gg/tUMSjIKcriSNt4qqgoERRkuUS27AwpF4Hr7MAIgHDNPjjf+qP84N/4oewXRNN1RmJkBUPO2eFUty5e8Js6rO60UY3bCI/5v3PvY8nHnuOr/3qSxilxo1rX0c0LJIgZn//GrKsmB+5VKWGUTgoaVKqlFK9O1DKW8+7LDLGw1M+95n/zM3rN7h48SKlqtB07U2rlUoxHY25c+8ed+4+4PzOOco+aEpRX1WJpjfRzR7d9cvsXh6ihgoV3yOZw4sv3eBwcUqWlyjDxm40aTRH7CxjklIiNRtQxGFc+4s5FqYjOBmdkCQv8MmP/2G++xOfZDYJOD0e1uT5IkczDUSukcYJ6+vrVHmBEiVbu9tM5j5us49mekRRgqbPQZYURYXUNAYrNaQ7jOrepmWtYBg9giBmsQSvsU6lbOIETk6OiJOAzc0NyiSiqBRFDsv5AtMETRaM4im2btP0IAqP8dwN1tZMVlafwPd9pNAoS53jkyVRXCKqFK/RQGmCrfV1LF2j1fCYjicslz5hGJPkBb2VAUIYSDRGY598liKN+n7qdzwsvSIKQrS+i8or8rggTwJEZaLpDQzDYLHweeKxcwxHM2aziDgqiOOc0cECyxa02h7TScxkckpZCIzhhIWfsr4Z0em1Wd/og8oQQqPMZ8wWCaPRMf1uH6VshLCxbI/QL7l+bY9u26bTrNjZGoAyUGWFaRkoqaCMSVNF02uwmFfs7d1BAg3PwnUsyryizDRW2l3m8wVZnqEbFppus5wHNJo6pqXT63pkWcHCn5MkKUenS7r9gs2tXQytIggK7ty5xf37B5imQ1FUnL/QZ2f3eW7fuo1llyz9I4Koie200DWDQb+LUjpZpvCXMWGYMRpOz4BhVQ3O0gWGUZGmERDSbLZwXYuqKiiKgqoq3+Wz+A4D1yc/+UleffXVt237s3/2z/L444/zUz/1U+zs7GAYBr/6q7/KD/3QDwFw48YN9vb2+PCHPwzAhz/8Yf723/7bDIdDVldXAfjc5z5Hq9XiySeffEc/3l8ucUzJoNeh2+nQarhsrK1z59ZtkihiMR1SlXXTXdN0dMPAdRws20adlRpQkl67Q5YmtSFhqYjDCNd2MXQH0/QQKiPyE/xgwsbGOo5toQwd03SRSGzDpNlooZkGs/kUWQmyOCUQSxpuA1EqkiTBlCaZlpPGCf7SJ41jDE2j0+li2bXTstQ0At9HSEGal2h2A93ySLNTlsuQ81ev4np9wriiTCs05VMoSbzI2L97xOnhKXmU1kIRhkJ6OhQlVGfmkQ+BHA8rZ7L2y3rU/Dmb1x/mJm/SwOovyLPgU9OB3yy/6ZpCqtptWkFNMiwMOCsdltS2IWlWMpuO6DdtLJWhC856JRVQImWFUoL5fM4v/vtf4rX7d3n2o8/w4fc9TWUKPvj8h9jZfowPPPVBotMlv/qFAcPFnCyvOLx5h/neIW5l0mr3WEQRQb4kR6GK9JHh5DtWGH4IMJS14n2RZ5yeHoMCx7JZXRkQBnPiMCLNCmzLQqgaRh1HCVVZAwEesuY0NISwaPY3WDl/iZPre/RXMvZnC4IsIogrxos5ZqNBvvCxXYO94316gw7dbossi8jKGCUEi8Any3NsxyLJY16//jpXLuus9LfRDYc0icmzmDgK0AyBSkv2Dvco4xTd0GpQQyXwWh2a7RWiOMNrdTAtjSxPanNMURElAZbtINGRaOi6wcnRMcvlHCFrdOK3vvUiS39eOxJXFVJKyqoiikKqMkbKEs+pzR6lyNFNA98f0u069AerLJc+nZaObTkUpc7u1g5RYnE6iqlUxmIWEiUZaRRybmeb9z3zLEVZcni0x+nkGNNxOH/+Mt3ugL29O1y7/hp+EBFHCb6fY0pBy3Ow7TZCKMpCcfPObTa3Kh5/YoOiPCLNljSais1Ni7UVE1NrM5uVzOcB/ZU17j64X5f6Ola9wCpzFDqzqY9hCHqdNqZhEEcZB0cLVFmRpRVlFdLrdZCGxt7+MXmmiMIKzy4ZnN8kz1NOjicIWYBUuLZNq9Vm6af4y4zZ3Of0dE67abKwJIIKjQpDM1hMlqRphmZYmJbD6uo6KIc4FqRZzmw+JM0zml4HqiXntposgoRvvXhAmlQIXeF6HrpusliEDFbXsS0br+HR7bWI44DXXv8GN2+9gW032dy4wPMf+m6Uqu+Ddsui2fBYW1shjhLGkwlVWWI7FqZpUFW1srymaZRlQXzmDfZ/WOBqNps89dRTb9vmeR79fv/R9j/35/4cP/mTP0mv16PVavGX//Jf5sMf/jDPP/88AN/7vd/Lk08+yZ/5M3+Gn/3Zn+Xk5IS/+lf/Kj/2Yz/2O2ZVv9tYzhekukKWOZuDPqIoefmFFyiyHEPTObe1jWPZ7G5toBSUZUVeFKRpilASIUQNDY0TdE1iGwZ5nlFkBUVW4AcxUTTHdZtUlWA+XTI6nWJZJu9//7O0Wm10r4WqUnRd1lIo0zmLyZz1tXXyrGAxO6KqBGVZkaYpo9EITZcYhsFgMDhz4a2lhsIgQNMkjYZXp9WWg6aZlBWEaYI0dRQaRSmxnQZFXjA9ucWDByfcvXbM4f4xo9Eclb8ZfaSroRJFVda1QafRZOfqLu/70HNs7V7Cj0LuXr/Or/7Sv33bXP4ocL3lekvetIis21YKoeqbSNMLGoZgHtXf8JodDL12GBZnnTQlQK8Z1/yXL/w6P/wnfhgpHtYbH3LPSqoy5e7+yyz0fe7qr/LGtW+RrH2SD116BpKcb7z8Rf7f/4//mTvfuEESVhSFYH37HINOD6YRIs0Yzk5IqpxMZVTU0ju/76FqVXyAJI7Y27vHen+djY0VZK+Jv5gzmS5Y7fRwLYem28CxG0ghH+2iPssK2/TI3Tai1WLr6asEYUJwOuZgNEFf89CsiKRISLKCUlAbMRYxiIid3S3ysk2Vpxwcn7K7uXpmyaMxD2YswgVBmDM8mRDHIaYBulZSlilClQSRj6nZVEownE0RhsPh6QnOMqHbHaAbBrZjYdk1tFmhMO1atiyJUpAVlqXT6Xq0uxaOozMaHXHuwhanp4Ljk5jDkxG9rkvDs1BlxLmdDTRZYmiC7c1NFvM5y+WShmcyn5+QZyGGZSOQLOZLTLNBw26wtbaKRKPZXcW0G1RSJ8tLNFk/A/PFkqeffQ9pkRJnOaurG5Rlxepan5OTQxzbw18sWc6n+FKQJYJBv8S2TcqqRIkWt++NODr9TQxDouk53b6FJkqqHFa6A558fB1/oVjfOs+HkpRCKbxWG89tMplMSNIl/vIQVdXVJlGBY8PujsdkMiKSKWGsaFa171helCRJiWubjEcZ2UXJbLbEMgXtToNKpYwmPoOBhdQslDKJkwohdbxWD9uUmDrIqqTdbGFZBmWpiJOcN64dcuPmCZqhSHPFuQsDul0HKPEXM0zDpJKC1cEunl1x5+59wqBgOhnRbNkMRyGTcYrnNbAdHa9poGkljmtTVTHLZUwcRjQbTTynTbvTp9XqkReKPBcgJGtrvUd3+0NqTlUp0jTFNA36/T5ZllHk2bt+FP93V874B//gHyCl5Id+6IfeRkB+ODRN45d/+Zf59Kc/zYc//GE8z+NHf/RH+Rt/42+842MNej1UEZNFKbfeuM7qSp/N1VVsyyJLUxazKarRqjMApaiqiiiKCcII0zDQdZ2qqAVtK02j0jSkEIRBTFaUZElGVZ6JyFaK0E8YDpe02i1GozlVJVlf69HwWoT+ElVUrK+sc/PGDVRRlzjjOEIpiaFbZGmOrpkYRg0xtm2LoihwXZeyLBFAo9FA03VmsxlH8xHO9nUuPvkxKinw2k2UBCUUpmXiNpscnoy5d++YuzePSNOcqhBoSqcSoNuSK09cZToMOb15AAl8/A/8QX727/9dCgowLe7u3edvfvkrb15U8ZDrdIbWOMsyqN6c+hV1JqZpkq2NdabHx3zoAxfZWG/zv/zrr5MoePH6CRt9D6EU1lkEzIGqhJ1zl/mj/+2fZHf3ytn+6nRPYAAFSR5w+/glDqqXCTZuMzHnfPH+kOHpi3h5D5M2ylhQsCAMY1AmD27PeUCOhcBAkXN2vEcn9tYQ/LtlW+K/+hmlzrhySlEUOQJJHARoakCr2cKWEkd36A1WGLS7rK2s0mm1kLJOceXZfoUAIXQcp4Pd7dM+t0p5SydzK6RlUhSKzfUVgtJnGSxoehZCQpEF+H7OzRtzTMug3Wzixg7T6ZK1tQHdQZ87t/bICh3X6jGfLimKjCRZsLHRxbU1losZtmUTZiVJVqAkDMczykqj015hZ/scZZnjNRym0xEAeVGQFxlVVTIejzA0wfr6ClLWztbNlotl6wwGHts7T/PSNwt8f0ar5WAZGg23iy4LdKmhS51bN+/gWja2WRNWEQVxGHD3zl0c28G2bQwjJPZTJuacONMpyoTV9W3cRpPzu5sURUleShotCz+MidIELUpZLpfEUcRofEJZprimRmu9z1q/XvXPJgG3701RlEitXoZVSiOMApotg07LoNVqYWiK44MRQmj0un0GvRazZcKlS4/RHQxQmo4UOpcug6pyNC2lyBPCICD0I4oc0iwmjBYEQUKaxiyWQ2zPIQxCigzypCJYzJjNFyhVITSd49MpnY6Hblqkee1gbBgm7e4qjpdx4eIFGq5Fnga4poEmJLZt4XguQRixurHL6XDC6XDEdL7gYH/IfGHSaXs4jkOW6VQSiryi2XS5dGkbt+lwOjxhNA5puHByHHJ84NPp2nQHDoWKaDdNBoMeRa4IkoBf/8JnaLV6rG9s8fgTT9EfrOM4LmUJcRIDAl03MYwz48ksw7atep4TAiFk3RZ+l+P3Hbh+7dd+7W2vbdvm537u5/i5n/u5/+p3zp07x3/8j//x93torly+iGtJTAFFkkJVQaVwLAdDM4ijCUEYoRsGYRiilGK59Gvkm5SUZUlRFGhSp9loIqiVP6pCoEmddqtNXigqpdA1yWDQQ9MNGk2P6WzOZDojyxO2N1cJliGeaZBnOY7XIE4zlBA4Tp01aZqFbhboZj0JSSkRmoZr1TddEkfopkYYh8RpRqPVZGCYfOyjH8e2XNrdHpVbi4GmaUxV5mR5TlGUZEnJYragQlJRPQJPSKnhthwG/U3KIKMhbP7I938/vXaXa9dfZ2WwRtdw2b9+E6EeKryDUvX3NU1HiIqyKN8EYuga0pB0e13+x//pf+ID73sv6TJgpeOgy5C084/46hsvcGf/LuM9i/Nuwa7d4rWjJZHQePq9H+Rv/V/+Ot/9sY9gNZ0zZOOZiqCoeSi62cRudTkaDdmfH9G8YnHtm/c4GJ1gRC7tVhuvYfL0By/y0hevEQUpD/PDDHFWxnxLOVS9NX/833pafvf3H2ZctfGKRNd1XNtlddBH9PoEfoTTG9BpNWk3Glim9iiZRFGL+IqzgqHZoLO2zSI4wLvUZxBscGIKhrMZhTBwHI9+r83Geo/9/ftEYYEUijiOWS5C0iilyiscSxIEMYoZy+WSJLpDHN3GMj2gJE18NDOl122QVylpkGJbTdIy4ejgkChJMQwXXQquX5uekceh2fQYTya02p0zUnBEkacUFMQh9Pot2u0mB4f36fU7hIFPGEV0mhZpCmmyQBMm6ysDsiSnzCBNMrY2d0nCiCgOaLa82nkhL+l1+gC4jkOz0cIwHDrtDks/J0pmHB/4eK0OllngNpoIpREHEUJoCJGTxHMGKxuYesVolKKRYAjJ2uoazzz9Uc6df4w8F+ztH7BYzmqKjQB/ucAPxigVYOgFaWojTZNBt0urtUuruUGzucLOBQ/DdigRVLmioF6ISmFSlhUCSafVotuq/dCkplAiJ8sK8jwmzwPm8zHj8YS9Bwfs39ujKjNMy0LTHRzbIMsilNDQDUFR6uiGDcIiy3OSFCazEE2z0HBAM0nSjKRIwXRQmsF4NqoBZXFOXikct9ZnnC1Sln5BkVVEaUIlDtjdXcVrWTgouv0GrXaXlX5BtxNwejojjEIO9hZ4TYUhSg6iI7JMR5QVCB1V1BJ3k+mI7Z3zdDobbGycoygFStWeYbpmYVkOQgiKomA2myGRWJZ1xvx8d+PbWquwSGIqaTALAiy9NidzLZuyrCgrhes1z9LyDIXk5OQE13VotWshybpnQQ0XFwJDNzBNCyt3KFSFbmpkWc50tkAI6PValFXJZDIlTl2CMGE8nXB4OmBzMGCaZUghaLa65GWB0DSqM1hCXhYgNQzLpqoKDMPAsgzSNOHO3TsYpo5m6BRFrTlWliVXHnua9dUtNCFptVrkSc1qL/IcfzHHD31EpdFt9Ol1e0RpRlaV5EkCKPIsZ3w64uq5dT7w3AexhMHW5iZ3rt/idO+EB2/c4WR4SrqIHjp5nPW6FJXiDNZaXyPdNNna2eYP/uE/yJPPPkWaZfzoD/8Iba+JjqzBHGXEP3j2Ce4NX+XWi1+i2hsxvznixq05t06+zvf+d/8tf+rP/gUuXrqM6ZgIeWZIKc4Cy1mWV1QWlrbKpY1neenGLZI4J7pZMr+ZQj4HcYTUBFIIqrhe9VdK1YoYaGc4iQrEQ0X4h8Ho3S/xHmZaDy/Swz1phkF3MGBlbR2NilKdomk6qBJDO8O7KHUm7yvqniKKClHLOTlN5gj0zRV6ccKm4WLOQ4ajI9pugzKPiIKSrbVdTk+PiZMYDQ23ZaBLgW1rqCpnOl5yeDjCtk38xYQ0ExzuD7EsgWmZnNf7ZFlCHAVIUZeqLRvW1jscHJxiagWeDd12C01Kkiyh0bDJU5s4WqLrOmm4pFK17Jlr9mjYGq6p0FXK/t2bSCFwXJcyq9jo9yiqFKUKkihElYpOZ4X1tW1e+darCCWYzmakWUxR5nTafUDQ8DxWBjWy1zIdpCiYTQ+Jk5xlGNJot2m4ir29mGvX7yINF8NuMAsC7t0/4urVJ9F1nSicsr3RosoS8mTMN1/8MoEf8OGPfpKt7W2Q9SLJD0KyJKGqUpb+CH85w3ObDLoDml4Xy3BBaSilUVRQlHXloVIKoUnyvECVNREXpZOlNTgBBVKrkFqFEAampeF4Lu32CttbBY9diZhNJkwmI9I0JksjbEdHCIVlm5RljdRTSqAqiTeZ4fsRUZRw/8EIy9Rrwd80YTqbghDsnlvH81zu798liTPyvMBxWpw/9zgKRRTHjIZTtMJmOh2hOKHV0QijNicnM9JE0Wr12N45z2OPXyTwa+pQFC2xbUGv16wFx4MCXW9QFSVxGJHlBV+49QU03eXipScwTI9Bf53Ll66iaTpFUSBlrSvqui6iAsv6/aHSv60DV57FLPMQoRST4YjFfMH66jqe16AoK8oKojhlufRJkphmq/ModU3S7JE2oq5pCE0itbonk2YlhmXiOi62naOoKErFfBGRZTG262DZDqfDBaOpj9JKTE3DlhqOZWPrJnmWk2QxjqERlQm64XLuwhUOjw6YTMY1edHQKIqcOE2phEJWJbphoGkalm3T6/UQVAjxUA5Ip6gyKqXIq5LQD7Glxc76OdIndcIoIStLjo+P8OdT0iRhcRiwMJas9TeYLJZ865XXmJ6O+OpvfoXTowOOT49Is6Re/SjFw7lZvW0xJNjeucRf/omf4NrrL/Ibn/kcf+gP/kFklmN41VlpUUNqLl3tHM7AxlhfUNhT7Me7bN5ZcH0h6PTX+MYrL/HU05cQ1hmbSkiEAEOVKKWRZwV3bt9jo3uBP/DcD/Ar//JX8K/PKYfAgkeZX3WmpiHLt2JHHqJLBGCAyn+H4PXuxptB64xwLQSW7bK2ucGFx67y5JNXMaXG+dmcOM9odFoYhiRNYyzLQhrmI216eUZNUIBuOgSZJFE2jfVtOpVL3vSRrRYNYHy0R5JC5EckkU6jscr2doc4i6DKaDgGcbhAVbWB59ragOlsyXi8oNXoEIURRVmSxAESnSj0sS2bJFzieg7ntlboNSyGpzO0MmExPOLChYsYouTmtddxHA/H9bBti0Aq0iSj1XLpNBu0PY/5dEqRZJRpTqPdpt/tE8UxSRKxXC4wLY1EVVy4cIE0LRiOjtna3sAwdFbCDnEUcTKccHQ85tzuebKsIggjDE1CCbNoTpYGuI5LVkDTFdy49nWkZhD6E+xGF69p4DrQamn4yxP8pU+zYbC73aPKakpEu7NKv9dGqhChNPJUoZTA0jSkaZHnGu3mJk13DVVJwCYvHDRpopQiyfK6AiE11JkHYKVKpNBBk2cPjEQ3TaqqqFHOZ4s+0ChLRVlpSCRCGbiuRavZZefcJVCCsigQsgbxSFm3JhQKdVZPi+IUITTyPD8r3RdEYYAfLPD9Gffu3aWoEooyozdYxV+EKCUIw4zJJKA3qHUFBwOP6WxJkimqKiKJIQx08tSkzCEOFUeHpxjmmDzP0TTJxsY6QuZQFbRbbXY2VkDZxEl+VoHRiOOKKKmYjGfkxYwwyHDtFufPXUJK7aw8Lmi1GpRZiabpRFH8Ozxpv7fxbR24UBVpEtVlvXYbKXT8IKYoFJUSFGXF0g9qvS+h4XgeeZ4RJSlCKBzXwTRqYVtNq5vQlVI0Wx0qajDFYjklL3Mc16XXa5OkObbbZmf3PIb5Ktdv3yZKMxa+j9XuIIQkilMUAsM0cF2H+/f3KPIpz77vg1y/cYPZfIHXcDDL2gLbsu2zlWeJYRh1r0pA+sarfPQPlaBSdE1RCoHUdMosRdMMbNNla2Wb0ZZPkgpmkzl5lhFHAYE/hQwWhzO+dfwSpu6ALhgM+pRZwbWbN5jPxm/JH9Sbho1CUNX6MTQaDbI0Y31tlXazw+c/++sc7t1meHTE+9/3NM3GMxi6Qy2kBAId21zlyuOfZD4d0m712XjGoLF1mTtHp1y/dZu220QI7YzXJEDV1uRKQZik/NqXvsj//C/+n5RaSXI34uragMgtGIcBUVrUxxF1oBVC1kHlLDiJM9QjaFRKvMNw9XtHG0qh8cEPfpA/+t/9IJ/83k/S6bSgKInDkOl0gpKKRsMjz3PiJIFMoRsajlEzsqWoe5WOYfHU5fdx76hNqQti4w7T9BbBcMbe/RNuv3ITQ+YYoqAqSgxDo9k9odE0MYwKx1JopDQ9F8u28BydbmeDbsfDtjuEQQxUnNtZY3h6yCzL8NotZtMFV6/ssr62wumRZHtllQu7l/nC53+N2J/T7nR4/PIlpGHheS0QFYasmE8nGLpkPp4T+wGdTpPzWxfwgyW6YaBLHbNhMU4yDGmhS40oDpnN5pimRZLEXL58mcloQqfb5vyFc5jWffYeHHHr1l00IWg2HJqeTZam+Esf03RY39yk13XZWO/wYH9OXiRcurDG7QfHpFlEmJVkScrxwYgsjdjZ6WLpNrYp6LT6NFydJJ7w8ku/wfbOJTqdVUpV+32Zuo7ERtfcR3eQruuoqiRIIpSq0DSLLK/QNImiJM8STNNEUFcnqocrPVVRVgW6Xiuwl1WJIXQ0TaesoCplXdBXOWmZIZB16c/wUFVJUVaoouY/VapEyvpedz0XpQSuqyOEhKqkN6jLkUWRcv7yU2TZkoO927z++ivEcc76+hbPPfcczWYDhKilsJRgMp0zmY6I4yW6AZ12n6PDU/YeHDKejJmMZnhNk8FKl+PjQzRN0OmYnNvZYGt9hySCyxefwXFaaKbO6XTE409qVMpkfXOHSklUpWEZbg0WViA1DV2vzrKvuuZQVfk7ejrfOr69AxfQ7/bQNJ0srdWxBfKMVV6v3oPFEqlptfFbXlCV1ZmqtIVtWYAiLTK0MypTlhVUKkHTjVqrSzMwTJO8LEnTiE63RZZVTManmAZcPL+Bbmn0uh2kkKRVQRFldZaWp8ynE7I8p1KSr37ty8RpjNu0kbokVwVFUdveZ6Uiy3IWi4AszZBSIvVjju6+wu6VpyiynDjOgVq7j0KgS5vBYI2N9Smn8wmL+YTR8IjZpF4tUUGVFKREpCQoqXjlW9+k1WyBqNE+D4ERiAqhznR5K8X2WhvbkmcIyAaVf5f/+9/+S5h5xqXNNscP7vJT/+NP8Vf/zz/Dh57/CFKrH3mBAqFjNtboWT10zUDLS85fvYpsNOj3OxgSiqLuDwhUTU2ooKhS4mTK2qrF9qrFcjrh+Yur7A5crKsOfiz58gs3maclSVGRRhl1SZA3Ies8zLvy+rcoUP9bAem39cKq3/a24mG5sK7Mn98+x4/9D3+RP/TffD+GayJFjdzMs4yVtRWyPENQm+uhIAh98jyn127S8hqPrr0UOtvrF2g2BiySAGG1EZokCpfcvXkHv4gRUUbblehlRZGXBHmGSkNsG+yei+vpJKGPpcNyMkZKCegcHd2m2+3juhYnew9Is6h21Y6WmKLg4O5d5sNjLp6/SK+7Qr/f5T1PP04YRfhhxHw2w3G7pNEM3RA4uoPWGeC6Nq5t4Hkugb8gSgM2NjeZz2fcu3UX3dQxLJ1uq02z3eDO/fuEQUpISlmV3Lh2A6EqUtuh47q8/+mnubR7gevXbzKfzcnzgqPDY5pNj0ajweHRlDCK2dxeIU98BCWWZmAbGovZnNlihNvsomk2ZRqiSgj8mEHPoywLhsMT4iglSwtGozF5MqM/WCfLoFI2nfY6m5uX0QyXUulkuaI8syRQUpJnFXEcIYWBlBnHx3scHu1x4eIFNta3cewGCklVcpZZgFAVlarl1gpVoSqBFHXQEch6cajqUmOlZK03KiSa1FGqPKtE6BiGQZbGKKWQQlJQ2yrVHEyBqARf/LWv8Gu/9nmUyljOhqgyZ2XQZzqdc3BwxEe/67vo9lbO0M2CC0qhqoLqjAajayZpnLH0A5Ik5ubNN7h+6zWiaIFrdylVQhiWPNibYRireE6X9e3LgMZi6XN8tMCyXa5cPY9tekjNhEpQlZBXBZrUUFWJJnXyPKvbA+rdQ+Hh2zxwWZqFrJNvbNMkjhPSJKPRaGHoWj1prq0zHI0Yn47o9bqURUGr3aCscpI0Io4j0jjBMAw8x8MwalSXrkmyPGe5CNg5f55Wt80LX/8GCElZlPUDGwQgFBoWQeAjhUBVFZqQ6JqOJiVSMzGtOgfw/RlhHBLEIZpl1aAHpWi12vVq2bKgCtCp4ciySPncf/j/8PHv+yMYXoukKNFNFylaUOoYmolSGY6rQxlyerrP/f37+GFU93zgrHVUPOpV3b99sz5u+RAy/6ayhKC+IS7tDPjYczt4Vo7nOVi2S14l+MGSZaiwG10+/2s3+dIXfpOfv/gv0c0GVy7v0us0AVBCkBYF49GEQW8F23bYPHcep9vg1q03GE8PyYsO3faAMq+gFBR5wTycMJ4fYBLS1GM6XdAyiUWKVlQ0LZ0Pf2Cb9cc/wqu39rn+2uucHp0ihUaj4ZIEMWmSnSl4vFUt401jl98WwMRb/nFGXBNIENWjCuPbpbAUpm5yaecST15+Etc2am4ctcCxZltYhnEmQlxnoXlZYJQ1byXLS8oKNE0gVG3EpwmTjtfHcZooQxImU27ceZULT5+j2XI4vnYXt4pZcT0sqWh5JkpLEEaOpguajonR8ugPeoRBRJbkSDR6nocjBJ5mMIlmZHHIxkoXKcAdeDQ8j7Isufb6ddrtEevbPrce3OXqE49x+cknmA4Dxic+YRATxT5JkjIcjXBsk0uXLiCEgW03SeKE6XhWc7qUwDRMbNvCsgziMD4TB9CwHJcsy6gqgcpynFYLUyiC2RQdwZNXz7H0+1QVLP2INK3FWp1ZgGnq+IslqrBZHfQZzxccno4Z9AaMxxMmpyHT2ZQ4Vdi2ThIvsS2TlZ5Tk/0Xhzi2SZYsONy/QZbOaTb7LP2K8ckp88mc85ffg2Y1KUuJ0k2ElOi6jS7BcHXSJMV2LGx7l8F6h7KqKKqEstKw9AaVqqiq4lHFIitzdFM76xlXlGWJbdRZaJbVHNK6f1bfZKqqakNUWVchiqKgKmuFeNMw6opIVVJVOULWqLwwSvnsZ7/ArZvXMTQNXYJryzMBYMHnv/CrzHyfP/Yn/jQCC1VpKEoQ9dSvlCDPJZru0Ok46LpkZWWVJ596Ct+fczo8Yh6MyZIUw7BodXpUpeR0GuB5bSy3yxNPPlfLOgkTUemgav86pVTt9KDqea6qKtQZJckwjP//BWcEfkCeCHRNw3EcXMclz0pOh0Pa7S6ddg9H6qyurpJnGQt/SZLElKqgUgWacTZpq4oqLxBaSu772HYDrapIspRKSpaBjzB03IbL8emIKIyQokYlIgWKijSO6/IVtbyR9rABbtYWC5qUFEWBEgrdMomynDIv0IRkMp2h6Rqe52FqOo1OE1WVGK7HU888Q1UVRP6COMtotQVCr72INEOQxwuKdMnB3Zvcv3OXIKjrxo+SiEe4hHr2Lc6ELR+uDB8J5QqdioKtzQHf/bHLVMkQTbfRDZ2iiDk8OEDoDpOlhl0ojkc+Tzx+mY9/+H2seiYUKaVqUQmJKkEKh1a7j2YZVFq9yDBCjfl4BNmCuNVirOzaqqWoOJ6PuHPzdSan9yBfUCzmCOoSaVXVhEtLwsCxOD9o0Wm9F1vAbat+QIWAtJNxfDQiDrNHyMo3MYtvH48eGUVdfi2rs2ztTc5ZHchqhBgIpFIYmmRtZZWdc+cxTOsRkP/hQygEKL0ug0JN2Ba6gdAFhq2TJSlJnuIK6020oahLh6ZuMWivsL57js2Ll/jY89+JClP+zf/y86SjMd/1/qfpWGDIimU4R5oCpKIoIo6OHtBpNNlc3YBKogudKEpqsMPKCkqVnJwe43g2Bwd7rK6uYZkWmtTY3lJkec5oOObg4Jg4KRlthvTa6+iGR5qFDEcL1lZXuHSxh22bNBoegb9AkwqBQRgkWKbN1StXWSwXGLbOcjnndDgkK0sKRyGznCiKyHXB+qCL5ZokeYJAZzKZYpgmUmpomsnm5jZCGBRVxfrmFmkWoaocQwfT0Li82qcUOllh0WrNuX3nmI11m8OjMeNJTK/fJYkUvlHS7QyQUiBR9C6ukWYRWVZi6CZXr+6QpRqnJz6j4RE75x9H1w3SQpGnGctFQpEm6FKyMhgwm55SVAluw6QsBUJlLOZL0jih3eziOE2KAipVlxvzpEDTFZrUsRyLLKnbCNoZt0/qGnlZgqoJ25SKPC9AlWdIvJKyzAmWcyajIQJotRq4jRoyn2UJpiEREsoiBwFBAa5rI0XFchlz4+Z1Xn75JZ566jtA1UIAQtQoSCFk/YSU9Z1c5gXSMOl2V+kP1tjc3gWRoZsmqpIIoaGUoKzqBV4cZzRbHUCQ5zl5XiDOZJ7q+Uc9+vfDIWX9fvr7cKv4tg5cKIljOzQbDcqyxHHcusMhdbK8YBkEOI6H6zWo3Fp0VUjwwwhkhZbXdeQatdfG9lykYRLHGUUck2YZQpMMxxPuPHhAnuc1xNyra7cPyXWapqFrWg1xR6BJia5pWKaJadbOpYZe88aCKGRrZYW9oyMWswVFWaIJ0AwN0zSxhIYQgjSvkMLCbvWJkxzL1lFZgSgVuilQhgBZADF5ssAfjYiD+LcVxN5c0/yWd2oQ3iPOllDVGRy9wDZyKmXgOC5CQBSmFIUkzQWf/fWbpIDluXz0E9/Dk88+xebOJmUlKNIKodcBUqoCKSrCJKTV8JCqwNULtnoO4+EBX//mV3n5G69wfDyhdD1meczp3hC7DHn8fJ9+06nZ9mcTlW1YWJqBabhEwwdMlhmn92+SLEKyEoQuqaRA6NqZ7Yr6XVtWb4LaxRlXrwZNVNS9J+CsYijgjCQupWB9fY12q8PJcMSLr7xCa73NykqnDp5v3b+olwT1aromXueqIitS4kJH6rIGBoi6ZFgBpVJoSDaaa/zhj34/F/obxLFPQ+p860tfYjk5ZffCGlLFFIWOZVv0+l3yMmY2HvHi119ha3ODQX+F9fV1+p0+lmVhmiYNz8O2bGbzORd2r6DpOov5gqPDfS5eusLmxgarazscHU8Jg4JbNw7o9yrO714mjCrcRp9WZ42GaxP4C6SwaLhdDEOwvrpGkoS13YZlsDpwsW2DQXvA+mCNZRwynE1YzJdohsRrtlCaoBCQVgWhv+DB/gP6Kyusr25RlAI/CLFsF9dt0O11iNOIokpQZUJRZBimRVFBGRWc313n6uWrzBYJD/aGDEch3cGAbtcjzZYYhk7T88jTlHbbQzdgNp8gDYc0zWi317DMBg/2D9ENi/7qDkUu8KOE/f097t+9xfD0mO3Ndahy0jzg0qVzqEoxHg2Zz8b0+x103WJ39zGuXHoaTRmkUUqhKnKZU5ZF7RxcVuiahm1ZOLaNkBqGadaWJEohhagh5pMRcVwrqSdpQhJH+Is5nXaTpN9DTjSWfkB/sMJ3fddHCKM5ZZqSpyFUOasrXcLIx3N1yiJnf+8+u7sXse0WFTW9RZMGmgShJFLWPmBFUZGnKWX5Zp9ON2ySKENKvc4MEUhpUJT1oi/LCrI0QwhBVVVIqT0KTg+31dyth4s78bbX72Z8Wweuq1euIslRCnzfxw9C0ixH000aLY+yVMwWi1ol2zBQVYHQdHRBDT/XBGmRkcQxo/mMqR8Ago31LRaLJfMgwLKts/RE0u72aovqojzrldXMcE1qGLpRi0meZVqGrqPr+tl/jiAvCqSm4XhNilIh0TEMm1IUGJrE9TwM3UQoRVlU5JVie22HVn+7BsYVOZ6t4dktTKdBlFVkRUycBIxOj0iDqKaxPbo6b/ZrHgIw3pzHxSMQw8OMQQMMKfnohx5HJ8Nr99E0yWIxZzrLyaoGL79xQqogl/De9z7DRz7xKRqDNYr/L3l/FmNZlqVnYt8eznxnm93N5yHmjMh5qolDFVkk1QTZTUiQSEiPgiDoTRCkN0kvepMAgVADEgS+CGqQhNhokcUia2BVVmZGZkZGZMYcHj6Zmdts1+58z3z21sO+7pFVJNXN1IsSdQAPdw93M3O7w1l7rfX/3689qKHMCwwG7UlHpl6mvP3OT7g4fsogFhw+/phsMSJbLsjSOU0+p51U/PTTzzkal3T9gO9++z7rLR9fOymxDhRKSXyp0FYijABZsh41fPete5wNa/7Fv/pTjJBUPPdIra4vjFy/8KpZjQ6FG8e4y6AEbichnQldSUlVNW6Uaj0QEHZbRL0BRVmzf7jPD378Nru3d+h23yIIvBefXvzClxYr6mPT1BRpim1qjBDMy4JcSOLV69BYS9VYyqamq9tsbvbx0LSSFn/1N36XN27d4/Cj95k+e0ioA5IgojEVlyfHCAm9uMcr919DKiccWcyWaBRJFOMrn3SRYypBO+rSGEPcSrC1x7EdIfB5/HCfvKp57ZW3MATEyRpR2GM6mXP35TcIfd/R5YsU37dURU3ohTRlSaMl7aRPu9XBYgh9n7osUC0w/XXypkSofcrTY9Iyd+GUYY/T4YiJN6MqCoTvTPOlaWi1urz77s8J/Ag/DLh95xbSE0CD9BR5XmKEQGlFEGimkwl1WbCxtsXVK19G6nWE9N0UXNQIKSiLkrLM6XdbCNlwgxIl4enTPYbDE0wtiGOoqwmzqYexjgUY+ZaNjQ5aZRwdfU4ce0wn55yfPGBzfYOX7t/l+pWbPHryGYtFwfhyRJmVtOIBUodUTcNiOSYIHbG/ygvqsiAIfJI4JowiklYbKySeF7hRWlmhbE2o4CKbc3h4yIPPPqXMc15//RU8ZQnjiDLPOD05Yj6f8fL9u4S+oi5Szk+PqKoCKQVbW32S9oB2u00riTEImsaNCN37fwUhtvaF0CRNS+azmRtv1hVxy/FUPc9HKh8hNf1BG0vtnu/IX+3mvjDov/A7/oXi9It/9v/L9StduIYXIzzPtZ5V1aC0pttvUxb1yjfl5KmqrukNBpwcPSOIQ7wwoCgL0vlyle0lSNoJ2rr91fnlpQtCK0uKuiaMI5qmoZrPHelcCIQU6FVxUkq5/7+SSVdVRVEUL04dSimMMZRVRdkYJrMFZrWIbSVtTFPR1A3LZYovJZ7WWOnz5W/8JoPtu9jSIJvKSZnjFsIP0NQ0yxnzecpykdM8t6H/ghfr+WLmF11ML15Yq79iX/wJXNnsc+v6DiYbkxYptTHM65B//kcPyCtDbV1nICx8/smn/Jf/l3/M/6n4x3zja9/mt//6X+XG9et0+l208bClRYqEP/i9P+H3/l//hL/2nZfY6Wu0sEhriVVDshZQC8nm9stMJjmBlqx1I0JPoxT4oQe4TC9bN9jaOAGIyel6klY/YjkeOd6GNTglodsTWMEqyuUvNl0r8cUv7MEGvTbLeepc/abhxo1dbt24zh9/7ydYEoTXgTBC9bo0rTY9vyYSivHlCUdHB9y6tcvW1oY7kfJF+pdcLcisVQih8L0ApAbj7BjLusJEPq3AxwCP9w+oLbx6/yU8JMKAJzQtv0vnzuvc2tzgnd9bcvLgAXGsyesUjHtskqAFMsQ0NZ1uh7oqODh4hhSKfteJSpoaoqjNbL4gWxpMo9lY36UuFYHfoaiWmNpj+8pNahOSZjXa76B9gdbKGfyto5GbKqOuGzeCkxFl5awHprHQNFCD1YKL4YjRbEJ7sMaga5ge7ZFKy/lwThT5roiGEX4YE8QtFkXGIktZ315zEfEi53x0zHy5QCpBr99hMXcMwM2NDcq0Jl+WlLVlvhyzfeU+GxubKBU5n5UpMFbQNJLYizk+O+PkdA+la2bTC85Pj7l/7z7bWzt0tcfaWgvtBTQ2wEjN7rU2VbXFbH6Fjz+Es5MD4ihEK5BmRp6dsLlxg9s3rzCbZeS55OnTj4ijLmtrW0jlMZ9PGV9WpGlGEoeEnoe0MYVwpPemmhFGCb5qU2QF89kCz9OsD3r0evf40hsv82vf+irPDvaZzWYoJfA9xfbWBoPBBossoyhuEQU+vU7C3tOHPHn0ACMMfpCwsXWVr371Gw6arAVaB9TGkOdOtRj4gSPj1DVN05DELZfuIATzxQxrapSnCcKQpm4QSlNVxnVj2k2I/EgjTPPvFaZf/P1/7Odf5vqVLlxOFq2ZzGY0TYMf+LR7AxbLMYcnp0ymM6IgJCtyLsaXFFmGnCusdUo0oQRh4mJG/JUhrqhqZsslUZzQW19nNp2SZjlSSkLfZW6VRYHWHhjjzM5NTbAaBf5i3Itc0Tm07yGlcgSP+RKtPNKiwGBZ6w1Il3OapkYaSUXjlEaqy/03vs5g5y62gTpfEixmrkuQkpqMMHRx7dtXbrC2tYF3eEFWrfY5v2g7+nOvj79Q4JAv1IDf+fo90vEZEkFWeny0N+bxaUmx+zoIS2xL/HpB5APCMF3OydOGH7z9Azprfbo724zOzjg+PKKTdOgGPj/9yR/x5mtXGHQs7dgiDFRlQ1mXSCXxpSZSms5aC9/TbjInDZ7WSBxWytUk5RAx0hIEbqxS1SWDVsOvf+MGy6wiLwzHZzMupymVBfkX1IHPi/Rzp9fu1U3iSLO10WcxWxAGPr5SaM9ntphi6SE79wmv36OOJCK0mLAibpe0TcPx0QH/9L/6f7C/95C/+tt/nfsvv0QURmjh0nJZnWalAKs8tArI0oxynpIWJUkSooSHqS1Ka5azJdM05eW7992KbLUaUChAo0JJ0BLUVUY+D/CDFp4QnI/OKG1Dd6PPbDZhNl/Sbjv/1fnwkiwtCfwQayVnZ5dYBEJ7pGmBH8QkyYCWFGxsKfLKonWMqZyirTEWIVeTBaXxgoQir4nigHQ5pcxy0rRAqgbtCXeTExB6HmWRUjeSshTMZzlVpRiNSlo9hR/4BEGXjfUuWTohz1KaZcps5kZ7FtzUIvA4Ojvi4nJEEGjOhj5V1RBqjyxNaUctPC8mjH1nF5ElplnSbnd5ur/P548f8ejxU4qyYj5PqeqMIBIIkVOVGXfvbDNfnHN+9gTf90iSDoP+NVrdTYzQFHXJIp1xfLTHk0ePMPWSIIA41PSShPOzx0zG59y69RL9bocitkgVsFykTGcHtNs9BBV5viTLFigRUReCdNZgTE1VlWzt7NDtDyjyLli3/yqyhnGTo7TGIhn0u2ytv4kQrvC4t4RH1Rh6/TUshjjwwbp7URInHB4d0ep0uHf/Ndpxj9oIqtoilEZYw2I2o64bBv2+A3xLSV1XgHwxJkxip8wUUjlgtGlANpRlje87luXzkeDzwtU0DXmeY619wZ997pl9Xsjsc8/oL3n9SheuyWJBli6oajdfHQwGLNKMZyfHPN0/wgCDHqsipVjf3maxmDObz2i1EuIkxlhLURaUZeWgm1YglHbdUVVRVJVTltkG21hnFFyNA52K0FKWJYEfoJWjJSdJAkBd17TbbabzGY1xpkWBoCgKFpMlr776Kq+++jI/+9m71I2gzDLy5dLtacIIHXexwgOtUJFHqALqOgdhiDyNFYqmFlwOR/Q21onikPlkyQsv7urnF/o668Qabq/13KprUMCr93eI/YLz0zFVEzDJPY4XCa/+zj/i1e0t0uUZG7rgagx3rm/x4Yfv8/TpM8ZnY4os50fvvEN3d5t2khAJxdHBY3788D2+85VtekFBpA16tSfyvQC/8ZBKYZoGad2yGBqMBblCd9V5SYNAac91UqtRRF2DrzWt2OPVeztcvzYgLWqWaUNawCIz1BZGY2dFsNapvIyBLC9Is5zpbMbmZoSSFm1Sbu92EdagjeHk/IyqaRO0d4nvfpf+l76CXPNR5Rg12acsnrJMJ6TVgsvHpxydHjCdj/mdv/E3eeutN2m32it1ovrisS4bZsM5x8/OGI+n+GHA5pVNYt9HBYrhcESZVfSTLvPpAt1ro9SKtmEc260yFtEO2bx/k3bTI52k1NMz+j1NLiqkFLTbCkuNEJYwdrvfZZFTGUsctgmThPPzS4pqgfZipCfJKoHve0jjDnV5XqA9TZxEVI2j9de1S07QPvQGHp6WBGFEWaYcHx9QVzlRFLC21kchOD85QgrLbDnl5OKCsNNislxQVJJynJFmFaPxnKKosE1Oms5odztMlzlSQVXlJK2IrtdmfWtA3I6oVu9JY3LqqmY4HBNuh/T7CV7oMxyPOb84oDFur5ylF2ivpKoXjMZjzi6mWGG4e2+HoqzwI0NVLQCPXlezWEx4dnDA6fEB3f42lRUIT9LpthFyzmBdsb15k7paIk3NcjolLxzgYH//nChqs72zwd37t2i1Y4IgQKmQs9OCrKi4urtGkaaEnsQ2DUVWkmdzhucFk9EJWZaTJC0Ggw16nQGeakAETGcLpuMLirygyCvWNzYJoxYbGzt4QURelkynUzJP0UpC2u0er7zS487d11imGVHSpSgbpPLJlksuLo/p9vq0khZaSZqmZrnI8bVPp9uhLEvK0llyvFWnZa0lDF3ycW0a6rpxUVHGYFdJAE7xaMiyjOFwSFEUJIljJCZJ8u+JNJ5rBH6Z61e6cH3+9AlFUXL1yibra2soP2CaplipaHVbFEXFeDbD8xSVqSmbmnSZUlUlLdGirhuKoiDL8xcnjqYxlLWhrBvnhWrMCyCuEpK4E6GlxL5Q/dRODej7RGGIWZmZwXVcZ8MLptMpZVkSRS5oLUtzAl+SLzOe7e1TFhlFUdDvdAi0oqgNMukirMbp3KAWAvwApSXYGoQkMoo0Lol7A3QcoZUgFE6OrjyN53sgLfN5RrvdZntzgyzNOD4+cZJxKdjqx7RDRRIZLicjLk6nHA8bSs/nZKbI1z/mt16+w2//nV/jRlvhm5QkjAllh0H8kOZOxWQ2509+8Gf87/5X/2u+9Ppr3L9xA5uO2O1ZNsMKz5SEKkKg3WlaWLzGOC9KXWBMgzEuWVnjuinVuNFFbRqwDbVpEMrZDDABTaVppCTyFH6c0A4MaVAjvRDQGCzTZZu8LFksl+RZwXKZsVjWlFHAWruH5+tVQiuU+ZKyKLi2vYO8HKNXUo35bIwaj9nYvOG8K+2Aw3c/Y/zwY0SxIJvPicKQ4HuKUCtiz+O1N17HjxLHKLYC21iGz874+ds/42fvvs/J5SXd9QF3X73Ll776BlvXd7BByPrOFTwkdZZjWxFCShByZTjVaH+LV7/5u9g3F6iR4Xv/7F8yPZ1RRBWFZ6ASNKYhyxcYW9KYHK0VdVUTRy2UDgh8xWB9HS+MqWpJFHdBeEymU4aXJxhTo7XP1tZVkk4fxMrIbc3KVSAQwkNoSdLrw1yxsX2Vpi7RShC3IpIopNdfo6ychWJ99wZplXPywfuUtUBaWC6WeJ5ACYgiR6QYjVPanTWEsmT5DLSkshY/CsmrCl8IkqQNHZheTqmKnKKsGY0nBEnA2cUFQs758KMn+F7E9Ws3mExnrK9FjCYjrl1f5+JySKubEJS1Oxw1GXmuCJIIT9V025rx+ILJKKe2ID2FabqEUcSrr95hbdChKpfMJkOCQBImJVp0+PD9M85Oh4ynZyzSU+6+dJfxrKLIa/JcEYYd+oOIYLONJwVltmR4XjKf5WRphmksm5vbrG8M8JQmXYxptxLiUFOVHvNFilYSP4kQ1uJpzWw6oyhHNMYym0/J85Qkjtjc3MQLAoTSxK0BQiik0izmC5QU9Dpt4tB3419r8JTAeh6mqRldnqKk27nXTcNyMSfNSqyFKI7QnkcQhnhxSNM0rviYxu1uVxJ43/fZ2dl58XuxYrYCX3wMvLhP/jLXr3ThmqYFgSfI65rL6XTVskqyPMcLAhpjqU2DFYJlmpFlBVIJhHQL3iwrnApmtW+SQjgJPM4A6CkPKUFLjZaaKAjxtcaYhizLiMMIT7s9jKcDwjCshzZvAADi/0lEQVTm4sIRtT2tmc/mpHmGp306nZ4jKRQFpmfwtEc76WKNYXNzg+UypZskzIxB+aBaXYR0n9u5zGsno5UeIJFCYo0kjBPCuEWQtOn2uqTzHBTE7YgGV4SNgKKqmC4WVIV7EX79y6/gMaYd1LTiiGUhuJjknGaCk1ywubXBb/3mV7j1yld4+VqPnslpqQQ/bjO+dOF7gQxR7ZCiqSnSjMXFJW//8Z/wY9tw70qf+3//W+i6QVlJU9ToFXDWWIuQznSpA6dksvZ54ORqwmkNQsoVy3AlulAS3/fwhO/UgLamyO3KyyexVUldu5u1pyVbvRBURNN0AEma5kymc45PLlgsc5ZZBrXbhYaeR6Bj7ty/y6dP9/ECgbITmosHjH5wQvq4T3n/Gr5XMzq7YHQxgnLugv88j3S24MOf/oxYh3iez/W7d4iiNoHyyGZLDj5/wrPPnzA+OmM8HZOmC5QH0rMs64zOYA2EIkkiWp0WQru92AtilZA0IkIEV/CCAtNcMpc1Z9M5uoGcEhUGHJ8doT2IWz7zxRxsg+d7WKmoasN8tqQsG9766rdo93ogfH72/qccH58yHl/S7YSYZhVk2uSAT6szQCrpYtqF28FejMf4nmY2maCVwPMihBQoL0F6AcoLMUqj6oZ2EtPWgm91Wrz9kx+RZQvKXCFtg+/5bG9tE8Yxl6MxeVFR25raaOZpymye0tRgmoYkitHSpywKlFTkjeViOKG2HlcGAy4nc4LAsL09YDFbcHGxR5j00Fqzs9UjbHUwouHjj/ZYX4dOYlBRABjybEGn3UKqNt1OF6l8yrqmWgEKtIo5Ozvn8NkBm5s9uu02UgQoldNUiq994yVGl0M8H6Q2ZPkEhOTg8BlSJHjelGeHD7l5/QZrnQ5JELK5MSAJfdLU+Q9F0+BLzaDXZ7HISOdzQi9gfeCM/JPxFNM4L5TCHfCW8zllU2NpUFKQ5zmjyRjtBzRWMljXKO1R1ymLxYx8uXAHcU+AcIe2xtROJl/XCGvY3zvEWtjY2sLzQwJfscwy8tzg2wDPcwd3BA7csLofPy9EduXZes4nfL73f2EX+gWp/C97/UoXrjB2D+IiTVlmmfOAaEWRly+UMkEYItTqBriKDjFNjWksURS+eHAlbuwXBCFpUb2QddZ1Q12l1GWFrQ2N79Fpt9C6Q+j7KOVRlBV1XTOdzri8HFHXNVEY4nkerVYbz/OI4xhjG1pJTFkWBF7glGxNg1TQiiLCIEB2uzSex6//7t8nbnVXJ9xm5ZdRsPphpcQPNUnbsr61w527r3J+7EIspS/xk5CzywuKtEAHioqK04sLh1YS8PEnj/j2WzvkZcVwPOfBwymNJ9m5scvf+ju/xVe+/TXuvfIS7VaPTtIj9n3qOuN0tmT/0TFaR5xdjHn/03fZ3N7AD300grppsMLw5lde5cnRFE1F2xPsrAcYHFLL4iS/ZZnh+xJhLVoqpFIvXsxSKhSeE5MYS7MaFSqp8T21OjBYmsZg6gZja2zj4sKNsdQ5eH7owMbaI4wS+uttdtY63L12haOTMxoLVWMYjsbEccLJ+Rl7e5/z+uv3ORtn9A4umC8fEHpd/DRg9N47zOZzOlGHN7/6dT55921sXVHlNefnQ2bjGc+OT1hWFb/zu3+Lmzfv0AoT8nlKEIRcvbZLusippGWWL/jwo/f50Yc/ZvfOHe7ee4mtzR3eevN11vpthHQZRhKBsGCExQ0OfYyVFEqRRgr6bY4On3A5HhF0EoysSaRPmhbuMBX5lGXGYjHnxo112t0ul5cTHj56hB93GY4W/MEffp8gSAh8jef3Mc2STz/7OXfu3qfX2UZpRRS3sTQ0TU1jak7OTinLklYSs7W5hZaCuijICoMLlWmojWFZVnz84GMW+YKoEzvfloK19Q6DTovFfMJoNKG6GBG3uqRZw9lwjNIQRgqJQascmpr5JKMVLsBCU9ekqTMzV8MZtfJJ8xI/TFC+4q0vv8bh/lOkJ1nfvIr2A06HM6QwBKGh1W6xvdni+s4avjAo29Dttuh2u1xeXpLEMcPxmL3DI47OFlTNGVIr+t0O2BFFVnBxNiaOOlxcXNKKYzxPIrVEahiNzhHSp9PpUtSW8eicdJGilSX2b9NJInwVEPkBWVQ4mob0WC5SLutLrl27ianFSg7fuPTgKGa5yGgaS5lnKO1sLGWeoj1B0oqYzxcMLy9Y37pCf23dhY3Op+zv77G51mcyGTIZ1cwmMd1Om36/y3Q2xZiGTreDsJbtrQEPHjzk+PgZ6xtbdPvrbi8qAkA7oMFzt4l1/7HW3cvMLxQjKVforNVO63kH9vz6SzsqVFqjPUVVlk6Jh3DLZCXJ0wzPczJm27iuy1oQUhAGkds7NA2+1lRN4x5kz1tRnzVV5RzwKIVW2nkucKeKuq7wtaZeceiyoqIsSuzqiQnDkCiO6XY6SPmFZ6FuLFVV4mmFp93KXWmFF/qO+l5WpFmGFAoviADXoVgLCuE6ECOcCdDNoQhCy2Btg7t3X2Y+ntBtx5S2xkjB+tUrjGYT0jxHKc1kNGUxXTK6GLMoKv74x8+wwqK0YnNrh82tDb7y5a/zza//Gm985XXWN9aIogS0j/Y0TVPhTS45Vuc83XtGIyX7Jyc8fPKQ5WxB3bgELIPln/2/vwc4M/Ybd67wn//um8S2IC9LyrKgKFLyIiWOYpSFyKvx/IDKNiBd7IFcmR3VStEmrKP+Z0VKU2ukcIR/Iw3YGk/XWGORysMg8ISiKWusacjrEpMHSKnwg5Dr233K2mClZHujC1KhVMlkNqfd7rIsK7qdhvXtFkEsuHFzwHA45LPPZownU55+OqUuSmzRsKBkuciQUnA8vOTey49545VDtrsbtAY+Skk6gx55WVNgUW2f89EF6ckeh+fnfPqHf8C/+6M/5Y1XXsdranZ6baKtPkJBWRu01kjhihi4fVcTt/nu7/5N1q9s8vPvCT78vSeMHj7md37nt1C+YJFNWS4XDjnU1Mzmcy6GP6PT6bKxuU3gt/j088c8O75kkRUslhWNMbz2xl2KHPb3nnB2PuTu3VfZ3L7O1vYVgjAiCH2U57Ozu81inoKVtDs9bFNjPZ+6cjvENJ2zyBYcHO3x4PEjvMgjOzlA+5KNtR6BhrIsyYuC3mCNQGg++/wpk5lT8nZ6AZNZzno/QImQqsmoqpoynfHmG6+TRDEnx6dM5ymnFyNmT/ZpBERhjBSwttZnPh0xHC15+nSP04sZaWlptVt0BwnW5qRpzsX5Jd3YJw48JpMF1irWBhu02wkoQV5VLLOGyVxQNzV1BeNxSpEbTk6mRGFDFAVI3RC3Anxf8+Czz+mv9ZkvFrQ6W1y5ep2qekZTW8LYYzwZQt3Qa/dZ67v32HyWoYTPxnqHVtIiW2RIpel0OjQrAZXvaeZNRafTozEC3w9ZpBmtJEJqQRAFeL4mK2uUlqRZipAlSinWB32Oj59RVxmtMHQJzGlDVc2pq5KmqZlOhiAknU6P7c31VbqFJIlDZ/fRnqPgY7C2xhh4Hi3rSDFfyN+tdQev/xDa6S+9qrCTdJCyIbcGIXGVH4OpS6LARyuN7/lURUld1QS+7wQSQhCHEVXlgiKTJCFKnHpmeDl0XY5pqJuGJIpo6orFLKPX7WLqktF8jNSKJI4pKhd7EsUJcRARRCGmdqgkJcDTinS5oKlr/MAnDILndlMsBek8xat8yrJBoLDKY15Bo0KQ+hdgTGqV+uEk1mKlWNNaI6Wi2x+we/0WSnsUZYH0nCKrNBW+7+gS7/3s57z9/R+hpMLIBolCeZpXXnuVN954k+vXbvDWG1/ixrXrdLptTF2ymNf4YRthI6q6xFeKnavrPH76FGsM92/e5e0f/ilF5mCuLlgE6pWq0QCzsuZsOKYlpzTGeUPKusJKSVlYPCExsSDCozQN1hbObSU9tHQ8SamcwEKs5OVF7WgDarXvFcLi+TGmMUilEL7CGoMfBVjr9pVGO1l4neVI5eF5IdJThFHAbJkiEHQHA84vpxwcjBiNl1STlI2dHoHf45tfuc5WDz749BnnwwxT+UCNEDXGNk7DqBVx0sbWhjIvKJqURlpyahZ5yiydUtqKoBXS6/eIJ0NMWXI2OmM5HREFEi0Mv/brv0Z30KGqGyTQbiV4Wr7YNWkVsrF9HSk0i0XFcL7g049+zsHRJdeuXyeOYzqdNdrdEOkJ0rzk8aOnpLnHH//xT5FBxMV4zmxaUNUSpQQNhgePnrCx2aGzvs3F+Yj3P33I/KcfESctvvqVL/H6K/cYDPp0OzGBF3M5nHH07NSFGsqaqkqxpqYoCzztc/36LZZlzuX4nKzOGI3mVMuKfr/NYK1DXmvOhwXtTsJ41iC1j5aCqgYhFE2tePrkjNu3dti+MuD0+JgPP3zIvbvX2d6+wsamZXNzi+FwyHQ+ZXh8StHtU9aKk4uCDz565gzUcXv1njCAYWN9jd0ra0hbYuqMk/MTqqpiqzTUQnI8PGc0GlLVhls3r4H0EcLjz/7sI8LApxW0uTw/R8qUu7c32ViPwVRsba7T6wRMp0vKYsz56ZT33x9xdprTaTV882uvM+jG5Knh8OyMy9mEu7dus3Vlm9PDMcu8xHpO/DA6PSWIPFrtDkJapFLUNicvliStPuPxCIRlfW2Alc/N89AJAjcebEDpANPAeZYzHo/p9kJKm2PLgjQbkqZzeu0YKQTpomCxLIiTLr3eBv3BOuPpjCLLSJIuSgesbWygtaasSxcG2bj31HPIsBDCpTYIudKHyRcEG7NSHT6Xy9o/H0Hxn3T9SheuLM2AirqpcA8XhGFAEkcOeJtXVHmBRNKJW+xe210pZTystZydn5MXOZtbW5ydnzObz2iaisD3CYMQJZ2B01Nu3JQkMdPJhCh0ZtNWq0XZuPysIi9IsyVKuJsAxrHp8ryiyAva7TbtVkLUatGYmuVsjDSGTsfJ8a0p8IMQHbd45f5bXLl5z4E2cW9gi/0F5/lKHSgESinCMKTd7nD16jXarTadbodrN6+TFzmXk0suL0copbl94y5/9Tf+GofPDplcTgCPJGnx6uuvcP3WNRI/IQ4jTFOymM/xQ2eg9KOWy87CUBQZVhoqUyJpaPsRVzd32N97AgpEIx0hXHtUTUndVOw9O+fThx73d9x+y1caqRUlxvmtlGRRZhil8Va+EFPXbjaOE7BLz1KZirqyxFHsxhRN4wgZq1FEuYqbUIiVyMADa9C+j+8p0iylaWriKGKxyNFeSdTqUjUVCEmr0+VisuTd9z7j5DxjlhmML6iOLvg0ytgcvM7GusfuTowQXTAe88kpVTkmjgPWtzb57nd/k7/z3/u7vPbSS7TbMSr2KIscHWpag4RNu4VuBeRlQe1LFnnGYr5guZiDhD/4w3/LfDlnmi65eesGvU6XjfV14jBBKTcxMNZihcYLWrTWtpkZS+/aNV4JPMbDJdOFZX29jxca5umS8WxEu9MjaW9zbfc6Z6Mlj/YOyYqGrLBO2beKy/n80SEn55Hb9xYFTbWkbATp4SXz6YTYN3Rar5FEAwSSjY11ZpPJisSgkIFPU1sm0ww/cvvXTrvH5w8/J/AFa70uFxdj5rMlJ2enCKXJ0xnLdI+sgKSjiFtytUtTVHVDt98CYUmLnMFmn4uzE/YO9zgfntJqtQm8gM2NHrdvXeP9Dz7h4mzEH/3RD9g7OOfwOGOxsCi9xKLpdGKu7PQ4Wsy5PF2wvt6iqZdYoynLhqP3H9LqHCKE4erOGhsbm4xGY3Z3B2xvX2Uxy/jwgz0uLxaMLw1SWEa9jC+9ucunH31IU1p+4ze/yQcffkyrVXJweMbxUUWega9cHFuWp8znFY8ePyVJQs7OTuklG3iqQ7uzyYOH+0RBANSEyqeoltTTHM8LaGzNPK0JkhadfpvpZMo0ndDtr1GkOVZI4jCiKHKSVheLZLpYUlYVk+mU07MDysLlvfXaEcJW9LttNtc36Lb7YBuksCSJT9WkGDL2nj7j5HTIxcWUe/df5pXXXuHa9euOoCEk1krcdMgJroR1tAys8zQ6upVdIc4ErFIb/tLK4WezGWHgFvZCKqRyN00pJFr5JP0OoR/QShI8z1up+poXUs28LGm12yitmc/n5FmG5+uVhBoCT1IUJfg+WnlgLe1WazUurF0UtbWEfrRSyzj0SRRFeKtcLd8P0FseWmmW6ZI0K9HK4nsegQ6JoogoSWh1BsRJwsV0ySI3eNpRxYX84iTz/LJ/YY4cxzG9Xo86L+j3B6ytD9jY2qBqKnqzNbCPiaKIq1evsrW1TRQ5uGrZGLJlgbENiJJiWTCfzBkNJw7zZEGFHjIMQUNVVwwnEw7PLqitIYkjwlVn6ymFqSvanR67u3d56c49LCU/fOdHnJwcg9D4kQPQKquQWlCrGlPVSAVISWNLhNFIa6lthZXg+wpPa4RusJXDIjmdhsQI+yLn53mn1TROOOP2jDFSK2yZI5UbP2rjURvL2XBImpVkeYURitkiZ55WjOcFk1G2+houxI+mYbHM2TvYJ9Cujbx59Tp/67f/Bo8e/pyqGLK+3ub+q6/z0stv8uprrzMYdNGBBCVohKTdkQRRwOaNHQ4PT7g4H5KZhsvxGF/7lGlBtkipqoJ333+PtZ1NTs9O2N7c4vVXXyUKQrzAo9ProrTECsksy5gvl7z5jW9w/9WX2X/8hOnFlE9+9hH9tW2itk9RLEDGJO2Efu8K48mUo/MJk3lGXUJZQVXCc6P3YtmwWC4ABwKuKusyqCxMJwuOD4+4f/c62kuYzpcIESKUoWoMs8mM4eUxV3Z26K9vs0hT8rLi+OjEKdlin6YpqZuSjY0uYcvncjwjCw1R1JCXDUGs2bm6ThiGzGcTMBlIQ1HlSB3jR5rWWkIc+2TLlHk+pdO9gjUW7Xv0BgOU36ExHgKPKKoII5/xJKUuGk6OZkxHLg3a88CTXfLMOi9m5KF0iyTuMBpP2T8YsUxrtLZMZlO053Pv/h3ms4onj88pC4sxBRfnU5bLhqIQHB5c8P7PP2LryhYfffaE3Wvr5EXK4bMpSeLx5PETqjynyBRJ1KYuCxb1gqefDxkOl/h+l7gVsZgv2LmyxV/5q1/l/Y9+Tlnm3Lxxi63tHbK04OneY4KgRdJuUTc1RZ1hpEVKTVGWVHXFcnhOu90jigNu3LxJUWY8fvQJQeAzmYzx/JhBt81av4epDYtlidI+tbHsHewxno1paOj2ety9f53h+Gc8evoZF+NTrl27wdraFuvrV+i0B/hegFRupIld7bLMSljVWEe/tziFLDhGKH9JO652q43vCzxPU9clrLqSTqtDvzcg9ENs43YutWk4G144g5w1+FFMEEfMZjPef/8UMARB+AUNY0WwAHd6qKqKLJV0WglKSkLto7SkqGp8JQhXURV1XSO1E3UIqdB+vFpQgg4SQk8hZU1dCTzp0e33aLXanJxf8ic/+D6z3PLKV/8GUdRyY8H/Dk9uEATs7u7SihJm0zlrawMCP0LbBqUDFouUMAzZ3NyhlbQRSCetpaYVtbHGCVbqoMFmlvPilEePHlM0BuFLlnXG+toWZQV7x8/4+MEDxmcjdFpgTUE7UVzf3SLPSu6+9Bob61f42utvESc+N+7c5p//83+GwRCEEUkYkuiEoi6YVxMHEK4qoiRydHWt8ZSHEg0YqFd0bKoGKTWtMEJJgdQCK+WKrwhWr8aI2hCGMc8J1UJJJosJyzSl2+6sMF0GpQM2t9bxwpC6sewfHqH8lNKAHyzxQknHb1FYyeV0RlMrzs+XDLoRVVmxsQa/9p27/NZvvMqTh49otWK+/WvfZn17h1anu4IvN6uxdIgyPuQLGtHQWuswzZY0Eme7KEq0UBRFitSCxXTEj374Z5xdu8GrL7+CwHB+cQFS0F9bY/PKJu1ui6oqKBuD8CLCTsDtV7qou5ZuZ4P9J0+xNqTb69Nfv47AID3Fn737L/h8/xyFpS6hqQHcBMERsNxYxwJVI5B4YNwEoSkN6WJJli7pdCsWizFlo/F1iDCCeZ4zWqTMnjwjzyuUlKT5gtOzC3zfYExOK/a5ffMKcdun04u5dm2T0Sjl2eEZnV4fL/CRQjGfp5hKOBxSM2c2m5Mup0hP0Ru0CYXgzkv3ePjZ54xnU+bTlLOLKcZqdnau0elu02qf8+DJAdN5hh8kTGc59WhBVhQcHpdIYDxaopSzXtx7ZZtrN3fwfQizisuLS6aTU7o9zWI55/z8gi+/+S1+7de+zdUrlzx8+G8II0Wr1eLifE6vt8Hh/lM+/vhTVCCIY5+bd+5y667Hpx8/Jg40QizodrpEa30++fgAYxvWNyKuXdsiilOe7l+yrCqmkzkyCBjP5wzHYy4vhwgNB8dHLBYVl6OU8WTJl7/6ZeJ2zOHRKZ3OGrvXbhGETnpeNzXZ4yd0u2vcvHGL1994i3v37lMUS46O9ri8OKOpC/KqQgmNMRJjPUxluRhe8uEnH2Oo+PJXvsybb93lf/gPX2e5LEjTnLX1DTwdoqQ7fFdFseqgVsQeVonh1q78XuD2s+6P7er9+ctev9KFS2ntKMdCEAQh1hoW8znr/XV8z6MsCoq8oDYNk8WM8XhCFLruKIoTmtqpB5Okhe97aK1WoXHKRQRo7diDWqOlQklFluc0VeWkn26OhxCKzBqUVijtoqqRCikddRwBZWUQVlMUNVJUVGVJSYWxlv1nz/jswWMyY8Dv8Tt/+7+g09v4j/Fh/71LCEEYhmzv7NDudJ0nTUmkI2gShdHq70Sr1t6CFUirVsBMlw+Er2l1e+ggJmy3mI+G1GnD6dEp+byirAzTbMru1hpfvnmV2dEpe0/nJHKTdusey8rj/mtfZnN9k9vXblIWBWs767z/85+iiqcoJSmLggCfPC+YzOdo5U5k0kBhU7QOiOOEIJAEvrMj2AaapoZGYZoa4TsoqFzNTO2KOdg0DWJ14HjBkfQU/V6PJEoIwpCyqJjNFyjl8Exh4LPMcgb9DlevbnOnkcStB2SlpRYJ6DZ7h0fMF5fsLTOCe336gx6NveDd9/4Fv/Hrf5uvfPlVur0NdnauInwPpFjRyPWqmIKKI6ww5E1B3GojgwmTrGCSFczSEmMgDmJu3rnOK6+9zI3bt7h18yZbG1uEQcBimbJIU8bzKY/3HzPYWGPnyg5B4NNutUniBGkU6XTG9rUl5+eXfP75I65evUZv0McqwfDikg8fPKWoQK9Qjc5i4SIyatsgrFgRvQUIjZAa09QoACNYzGZMxiP6a1ukWUYYD+ivbYBVdNe3SAYDnj07ZnRxRFOVKNmwubnDoB+yXAy5uDgmy2bIYUNvrcVgrUcSR9y7e4XTsyGL6QwhfMaTBWfHE4SEbrfhytUWvq8YTZcYkTKbLpiOF/TbPZKojae7NLVgmZZcDEd8+NFjqloxm+VMZyl3793hzc0NLi8vePz4CdmywjaSbFkjSqdcffbsAs+H69c36HcHBJ5iNDzBVGAqy/D8kh//+Cf0utvcvfMWrZaiqCyLLKOqLJ1Wi91rV+l0DHmWEUUxB/vPuHnnJe7d22a5mFIuBd12l1fuv8nNG/d4dviU8/NTev0unf4OtYh474OHlKVhOJ7z+aM9rt26zWQ+5Xw4pdPqkhU1y6zgcjLnycEBt+7cZpkXlPWEi9GHjEdTNrc2KIqM09Nz1te2+M63G65c2SUIA5ROePmVL2NfrhC2ocwzsJa6dvsn5fkUZcnt+2/y9o/eZr4QPH58ztoaXNnZZWuzDUKilMYaQ13lSGUQouF5Zp3Dyq0qFI4qb6zFrJTdDof3l7TjGo9nRIGk1+/QbnfwPecFUlKymC+wjaXMc8bzGfPcseie+6rKlRIxjh3lwjEHBVr7TsH2YvwkyPKcqixXBA0n66zrkrIonXIGiJMIrTWNMbAarfh+hJQ+SgUugTmIaIWaJNKEnTZR4HZTH3z0EfN0SS01nV6Xey+/Bc+pC/+B6zlv8Bd/LYQACXESOxXjC5O6IFl9j88RRO5XwhmcxXOCuURoUEFAMuixlm1iA8liuqApLGfHZ5xfnPL5/idcHj/ib37nG2SXI7qeYff2JtqLSLZf4f6rX2XQ7SG1R1EUHLy7z3R8xk5XAg1VWTLOK6wQREFEWWQIY6iLCmyDFj40UFcWKKnrFFODr51nTStJVVcIYVcMyJq6ql4oPp+bwptVmrRtXD5aEsRu5OVJ1tdCpBKcnp3y6cf7WCkI44h2K6C/1uFOvsNkVjGZw2ePjxiej1lkpUNOmSHXdju8+lqL+eIR7/70v+Hv/t3/CTdubCJUQ7N63uRz1FNlqOuGtEgZT6akVcPFZM5wkrGoBbUXcfXOfa5c2eXazgZf//pbvPLay6yv9wnjECkEdeXG26PxlBpDXpWki5T5dIY36COFxJeew461u1y/cZPJ5ZgHDx5ydHJOLXxyLE/2jzg+GmKNpDaNy3cSdqXKdGxEY82qaAnabZeCkC5KtBRc290iinyePnlKu7dNr7eO8LoIGaJUiEWwdSWm09+h19/m+PCQbDkh8Go6nYh+J8RTlsVyQtTS7F69gtKGk9MTgqDNxlqbp0+PCALYGqwxvVi6xPEgJM8qPE9zZXuHi+GQZZEzHxWk3Ya6GpMuG9bW+vhBxMbGFh9//JS6lqSVm5gcHh2QdARvfPk6r76xyf7+EaaMaEqPPHWvv/WNGKVSPnr/Idd2+1y7tsZGL6YsMuJWzGQ6I47aTKczDg72mc8b/FChPA8DpGlOkeZsbPTY3NilMlMePjri6PCc5WJMt+ujYo/JZMTp6SlpWrspQruL1B5Nbemv97jz0k2qyjKfTfnos0d8JXwdrXtI5RMmA3rrLdr9krA1xAtDuv1N7r/yFsL6ZFlNluVoDUHocXR0RFML2p0ejYGytICiqjWe1ihtCaQPgNcAOCWh8uDu/TX6a7uORegHCCEJw5C6dgdl09Rk2ZL9vYcEgaTbiel0emjlInsEgJRf7LKEcq8t6w6VVZn/0vf+X+nC1Upi8mxBUzdMpzPA6VVGoxFxFNNUhnSxIC0LDG5ZL4VyC3ylUavEZM9zN3BjHPVarqTyTeOUhY1xXZNZKeLyIsc0LmNLAEpLymmJ1MrJuJWiqgxZXnF+NuXyMiXwnbFwa6NHGBlu3rzKxsYW/f6A+WKBEYLaKv6X/5v/LUgfhMSscEz/oes/GAkgQKr/76eYFwtSLFbZLwjpViAleL4AWdPUNVHUwhhFOm9YpFNm8zGquOCN621Ueoxqcra2NvB8QWOh1+1y5+5LDLo95nnK0eERRZ5zfavP7noD9ZQkiTg5PqPV6uJ5PlHHd3ssX2OqmsCPHZooDKibcoXjcvlEjXQjzlbs9oxFUaC1/nNmR2sMevVrN+J19H4/DKhqgxaaKAnJy5T5YooxBVp5bK31ELZmPh2ThCGTiWE2zXjy6ISigUa4ePbhqGI+P6eul/z6r7/EfPE5//T/+b/n6pWXuXv/a3zl67+NF4U4qrylLAvOh5cMp2csU4MX9JB+C6PnqKhL/8o1tnd2eeP2LV65c4PbN6/S77WRCuo6x5iKumpot2KuXXNCk8Za5os5TWNoRQmJ9NGNQUlD6GtMkvDGW19isDbgBz/8EY+fHKDCFrNJhsRH2AIhvkBoyVVaQp43eC8OXxZDjR96iNzhzq5e3SD0S5rGMp1mNNIjaStSKdFKgBQoz8MPNdeu36IuGy5Oa7QsmYxn0CwBzcbGFn4oCXREuxvwbP+Q08OnKB2ghEeZplTSstZPSFoBQQjIgqooyJeXNHkBDbRaAbYSXNncBREiVchHn3zKyUnG7rXbHDw7oZgXNEZQ5iWHz/aZLY949dXb9AcRh/tzDp7MWMwr1npdvv3tN8iWp+xshEiRuWLT6WD8gKTVZWPtGidnQy7OjxiNGuq6puV3qOoCYwTPjo5p8ox2K2axPAG/TRxf4eMPjuj2FK3E45WXXuGT9x8xnS5Ypg3Kk/QG22BDLk9HpIVhc+sql+MRXuixsTbg1u3XuXHtdfzAZ3t7g6jVpq4ll+M5VgqipIWUHtYokpY7dCMqpLJs7Vxd5Wj5eDpcKXMVSEVZV+6Ahbey8jjLzvPDrKGht9ZbjdZdSoO1BmkFVbmkLAtOj/f4/p/9AXGkeen+ba7sXEXLgKTVRkchUgdYqzHWTXqU9BA4uK/W8j96n/pvu36lC1cYhnjazU+zNAOBY2t5PmVVu9C+oiBOIhphV9lYDVp5hEGE7/vuBrdqYY1xEmtRGxdfYoxT/K12ZBbXbRnAj8KV14hVm13jeZooiihK59WS0scYSxzGBIEmz1JGlw23bm0zHF46Vpj2WC4zN9qTISrsuLba2P/OrfQXRey/LTLgubKHF7s+JeQqCcQFy2lPIZVAqoBQtWhki8vZhMOLA/afPGHDn+PVDU2p8TyfRTqnXjQUpSL39qiKnGVesLe/z7s/eYfv/7s/5vLkGa9du4Mtlqs4GKcUbLUTAk/T0ICW+L6PJzWNKbFGuOTZKER1AgQCKQRRGFBXNdPplLquUEquwKNuRFuWLhr8+V5RSoUSijyvkFojpGAymfHo6edUdY4f+nTabcqyQEoPowRxPABRc3x0QN2sWB5WoJSmLF1MzJO9Gb/zO22kPSdbjnjy2QV7Dz5geHLE3/uH/3MQCViJVI4KL6QmafnE7T4ijPCSFp1ehyLL6IYhu+t91rst+p3EmbKlxWssTa1odINWjnwhlUIoSTuOqarKjfWspWkqamkIvZiw16PXa7O1s0EjBb//h/8HWtGA9bUN7l67xaNHH1OtQNMOimqwtvzCMFqXGGPI84y6KZzFQUNRZkShM3NLHSJUgsGnLKHRFu2BMNDUJUkc0et2OX32lNPzQ5bLC7AZvV6Lu/feJMvn/OD777C+kVBkKdSaIIjJixpvxabsJBFb2+sovyEIJdpXmLpkNrogXS7wtUeWNQR+Qn+wy6cP9tg/mFA3S37913a5caNFp7/kvfc+Jc8bglBQVBn5TcFkXPH40RkHT+cIK6iKiv29A65uJ2xu7pCmQ4QtaCVtFvOSo4MhB0dTxrMJRsBgLSGOnToUXXM5mpAkLYQfsrN9nbff+RARFBwezTg9mXD7zhr37w3o9ta5e0+z3r8FMsEPfCySqpDsXM1IKxDaYzobs1zO0UpjrKPgSJ3gh12qBqzwWNu4Qlk3PIcSGAtKGZqmdO9p6cZ01rqUCotYTQ0ayno1IjbmhbXGNAYhLVmecn5xzMZmHyEMvq9BCvYODsiWKZ72GfTWV+GaCd/99lv8/GfvsJwNOapSptMFa+ub+HFCt79FGPdIWn2CIMQ00DQlga8h/0tqQK6bmjAIMaZB64AojoiiCGsMo1UuzmBtje0rW1gso/GU5SJ1N0jtOW5gltM0FcY6aKSnFMo41R9CUhmzikgRLvIeCKMIpVyisRRO4RYGLr3VGkM7jul0e7SSHhv9AXHcYmNjkzCIMHVJEGga3OjjRz/6CYtFivZ80AlCOrq8UxP+p+lFXdF60ZevZPNf/P7533mBXhECkAhbg2iweNgGskXDfGbIypqjsws+/ewBH3/wI964FbMVeiSe25H4UYLwNb4SBKFgOX7GH/7ePyVorTNYG3BzZ42PE4+prIl8Tau7SeB7tFttDPJFlLcOAtKiIAk9bFNTlim+hCAM0J6iNjUCjfKcgMFaWFtfQwhBUWRMxmOquiKOYuqmWY1ya4RQeJ5PWTUgNVooRqMJR6fPaGyNF/iEcYDwPIxQSOFRFJLLZcrTZ+ccnF6CVBgjUNLHDwOKckFjXJkvyoadjS6LqoA6QzQ1H737+8yWE974yl/h1t23SMI+7TjEi28hlQdSU0tFrxOzvd5xnj/PI/IVvrB4Wri9rQQptSsmjcGTzihvceF9SilMY6ir2hlIbYNFurh5XzsDdqj52je/ym/+lV/n+3/4NnujMdd3rvDs6ec0taGxq5sWFmvcTqKuGzdGFtDUDVGkGXQ71FnKZDqm39+mMobRZMZga5uytmjhwgdD4XbEvidZzmdsbawRvfkGJydtjk+ecnT8lNF0zn/zL/+EXtejKBqW84ZOa43d7Q2CIOLqtatcDM/xfZ/L0Yg0m1EslsTtCInC15ZOu0WnFVKXNffv3ea9nz3i9EefM08b0kxjqXj/w8fcvnWdtV6Hf/D3f5ff/7d/wmhYELfg4Omc/b0zDp4uwDprzHSa8sO332X3SsLXv3aXwK/x/AilQgdNpsNobIjiNmubm2xtX2U2focPP90jKCTXdz2KJuOtV++jdYwfdDgdFpyfp1SV4fR4yo/f/oSvfeVNdq60CbwBVnSpG4NWHkJo1kOPvGoomoqNjU03ccgr8rTmYP+Qjz99n/PRLteuX6exkrKY0u70kM4DTFPWnF+cATVaNkSJhx9GaBmB75OmS6ReJTCYGt9XLqFbOgNxURZMJkN+8MM/ZTI74/r1bbq9iDjysdQ8ePAJ2TJDGEUn6bO9scXWeg/bZLz28g2kEFR5TjsSDC+eUdTQiD22dm5x997rWOMhpKQuc4YXI0fg+CWvX+nC1dQNjVqNvXAw0KIoyPOcxTKjrixJWXB8fEK326EVRVR5STpbUvsO3Oqo7Q6hXtU1TdUQqpXxVz4fpzi4q+cFeJ6icdnc2KYGLH6kCf3ARVpoTa/XQwpFnqWEgUYrWMzHmLokiSKiOKJqFJejIdPZbAXJXBB2N7D4K8rH8x3Wf/rj8jy88t8vXvC8sD2PMnG6VO28FbmhvKzIz2F2kfLZw31Gown55ICrUcGtQYe7mzdQskQpn6pSGOVR1iVltqAphjx495DchLz++pfot9tsDyTlVkKRT6mKmsBzJnBrasqiQCpFEkT0goQ8S7G2Jo4TFqlhvMzxI58ojpyi7eKCupywvraBF0QOlyUlnW4Xz/Oo65o4dmZKuQq28/yQtGhYZjl7B8/IigIRRGjlE8Y+VkC2YuHNpyP2Dsfsn0w5HecsKutENsL9sKYGUaN9wfpGxMeffkpT9kikIJQekeeBrrg8+Yz/8v/8Z9y+/WW+8tZ3eP1LX6e9eR0pBUqzYi8KOl6AVAESkNYZY8VqTCMQIFySthUWIxpQzaowO3mxUBJfBWjP4a+klijtMFlKSBoMQeDzD//hf59vfe0bvPODn3Cwt0eUxKTTfMVjsCgpXKyOlNSVg0Q7niS02wmb6z3mk0uCOOJyPCYtCuTxnHt1xNVrL1NWORJoaoWWDl7nSajLkjgOuX59l6qeEyUeYRTyzjsfUNUNd+68TBIHDPp94qhNWVRI4yMayXQyZXQ5ZDIbIjzNfFHQ7vRZ67vRXK8TsrY7YHPzOk/3lrz3wQcknS699YR0uWQ8mzObL6Dx2NwY8Nf/2rd5/PQp4+mcD39+wGyWA8pF1luDkILKSqbLikf75/R7HtJWQIcizcgyQxR10EFIumzYe3pKFDnR03Jh2N8/pRNWXGwMuH3rFariIccnFwjhUVUZ40lBXRdMpylVWdHrdAkijfB8aiOwaOpaoL0Q6deYpkIh6LZbtFqWuNVisDnADzSNtTSNpaga/NLZa6xtmE2nfPD+e2TplHYn5KWX77M20OgowRhLlucs0oVblXjukGFtQ5YumUwmLBYzzs+PePLkAX4Al6MT7t67SqsV0G6FTMan1FUFjWJ6eUE6PWc5G9COfVqxs8XcunGF5TJHnI8QXkxv/Rrt7vYLpmttDM+OD/njP/o3DPrtX+q+D7/ihauua0rhTKxUbh8ipcDTml6/4/KxvICqdBla02xGseIQlmVJ85ytpSVIQeAHzhPWWGgMQim0lu72Ll74vUmSFkpIsuUSJcH3NWEQEEcxCEGdl6tYlHIVCaBRShOGitlsxHw5ZTydMptPWS5TgjAilPDrf+Wvs7F59cX39+f2WH++cfrzzdgqEVI8L0f2edrxF7BL+KLbcqn2aoXvFQgD9chy+NMTPvr+Qx48ecA0+gxTPKMnFbvbBXpd0hJj6ipGBD4ChakNy2VGXpcEnqQV+PjKUpSGw89+zH5TEIWKe/e2kdRsbm5xsHeIQmJMzcXFKd3eOgqBp52yCy/A+F1++3f/AWntMZyMOXi2x/j0krwUYGrkLGUye0qapvR7Xba3tgjDkKpyi/w0zdja3GKwtkZeNvzpD3/M3rNDSmNI2i2yLMMLFcvZgqqqsY2ARnJ0OOOzzy8w2ictHf1D4EQMZhWGLKV12Wpa0xjBdFGiW5LtjU0iGzKZpmgablzpIMsTTvbeZf/xR/wX/+P/Ba3+9otUbGt/4SkUz/0t7qDhRrfihVzYrviOWOGyHO0KbSaEM8crz41MV5/MiZGlK4gSru7u0O8PSFoRjz/fJa8zjo6f8f0ffh8lrRMhSYEQ1n2vK+FGGEi0dq+ndqvH6ekZUlQYYWgPIubpnLzOoLG0ogglHcm/qhoC5VHkS06PDxGi4nJ0iaHmtTfeQAjF5fCcq1euMuh3yPOcqoJ2e8BiuUB5AdViytraGlY0SD/g9GTIeHzJwwcXvPrydYqsQIoKqZfcuH2Xly8K3vnZA+68dBeE5eJixJO9fV65s8v3/+x7fO0bX+HmzSuspyUHB+9Q1w3GCqI4oCydune2LOitd/js0Qk7WzHdJOT87CHCKIcYkx5nwwPmy5zprMIaQVU69MFwmLN5Z51n+xdsrp0xGi1J04I0L+h2ezRljqcrPn/4kFs3r1OZElE3WNsgpY+Qrhsx1gU0+jrGipIsX6J9TRh57F6/SmNrQFBVgvWNhLIsAUFdWlqtiPv37/DJJz+nKJYcHu6jlc9m2EUgSJKEsi4ZT6fs7e0xnY5RCicWOTsmzzJMU4Kt2djskRcVn370iCTx2NlZ4/atuxRFTlM2zC5nVGXOfDokkAkq6dHrt4kiwdWdmwRxxNH5hH6vQ9zugPQx1tLUDVtbm9y5c4vx6PyXvvf/Sheu50pAg2W5zDCmod/r4mnf5RDlOUubIgVMJjOqql7BLBVSNs6orBVSrKLcceNAXyqCOMLzfeqmpqxdSxt6nlOKGYOvJDpOkBiiOKTdblOWFYvFgizL0J4mjCLiKCJNU8aTEcOLC6IodjEbRcEyW+CHmkWaI5Rk9/oNojh54X2w1iD+wlNkV9YuZ/RjtacAmhJT5uSLOaayWOMKS5qmjOYzGm2I2zFx6NNtt9DaxzSGPFsyG4755Acf89n3HnD68IzzywM6L10iwkt3g80dbimvYhZ6A9900J6HJz0sBUEQEIcKa3Kq6Yw6W4KpSEJJEgW02iFl5egiErmifSiu7GwideTm7FqhpKBGMlkabrz2HZYmpDNfcuX+nGyx4J0f/CGziwcEcoEpHT6qqEpOhxcMen16vQHWwM5gk831DU5OTnh8cMzB2ZSPn5wzSwuu7G4wGl/gB5YbN3fodtrYRjC5nGKp0B5MliVN5VSBDiXWoJUbp/gB9LoB/V6Xl166i+/lpPNjjs9P+I2vfZdOZnj3g89QStNfb1NlZ8wWJf/VP/k/8vf+R/8zuus3CX13+hS47su6JxSBgZVFAexqL+HOKitrJ9IYmheeGImSCiFXnXXjTlfPV6MCRyoJg4AwiPjmd77J5uYGWZby4x98nyRQaGXwlLthVqWhXjXrUkPgW3zZsBiPmE1SPFnR7XoknQ5vfuUtBhs3XLR7EFGmC6YXI6pqRhQ4hWMYBNy+dYWjk0Neee0lwpam1fV55fWbZItt5qMJTx89BqDf32CYXXB8fExlCvqDNkjJ2cUcqTOm85LxpGY6qTgffsa3vvkyapLx797+PXy/g1BtNrcHzKZDsmxBHAuErTl8doj2aj777OdkeY30Yv7aX/8GDx8/4+Hnx9Q4g7KnNYt0yXxZoLXk+CLl8HDGy3evMJ8XNHVK0yikDkjaAVkxpSggCNzHmUYxnlQshOWHP/6Yzz4/Aw/C0OPenVu0koDzs6fsPX1Gr9dlY/2Oo5UYy2I2o91aR1jtnsfV4cF5QQVFmbrwxjonSRL33hZgTe4YrVaiAkEQKJJ7d7lyZZ3peEirldBKugRhRN2A1Iq1QY84joiDkA8/fJ+DZ3ukyzmL6ZyyKrBNTRh5TCcLyjKjrg3ZoiZbntGKe3S769x85RrdJCTwBNIWPNt/xLP9fRbLJU1t2N65wZ079whaU7ezlxqEC+ItyWlkwHe/+5vMZ1P+6A9/9Mvd+3+pj/r/k0tphec5dRlGoGWAkk7s0KyMq0qJF7sfoT306rTseR4Yi1p1I1K6RbrSjlZe16UbxwhB5DsKRuBpijynrErKqiCOE+I4IUxi8rxgPJ448YYElKBqSmaLmYPkah+lAxf6Np+7ULymwPN9+msd0CGBk0+xuuW4kdLz6xc6Lrs6rgvrlEBNU/Pgg5/w/g//mOziHK/yaPld0qzmdDzi0fkhmSrZurqBpGKz12Wt2yXwI06PD8lnM04PDzBVRXw9ZON6RS2XRMpDAp5UBEqjlY9EEeiQIGphkfgCqjpnmefYukBoSasdUeYWIRqqMmMxzQFJTUO31cHSIJWjbOSZwUof7XvUZYEtDEGUUFtLDbT7PXa2N6irgrPTJ1wGJR1mSBaEF+cslnP2nj2jQeBFLdYG68TtLj945z3KsmKWGY7Pcz7fW9BI8DrQ4IOxzJclk/k5d27u0h+0kdZQG4F/uiQrLYu8wiCxUmKs8+tJaUkXOePhJT97b0mvF7LRkyCWLOsZXneTDx/tIWufy62S9X7LjXLqhn/yf/3HvPbtv8033voqa72eU1UpV5rEalT4gkv5omd2r0GhBEoKtAVPuGW7cKcox3407mOVVHieXnXrcmX4dJ8j0Ipbt67z5pde45P3fsZmp0uvC52WoKpyyspSVC4oUHrKEU1w4aoyVngeRKFHv9PlysYWnu9TNR6eVZR5iaortDD0Is2NG1cRCBqrGE19zidnJCiW1Qk0NSIXdOKY2199k8ZYhsMRo+mc4WjC6fkZXuA724O2LJYzylqQZhAkPmnV8O7Hj/md3/kau3du8OxgCGVBux0Th4o4HrC10SUKNKFWCAlPnjxlRMbp5ZB6v8CLQ26/vMWjByeAZW3QYW2tw9HJKS+/foOrV3ZIAo9OJGm/FFIW8NmDfRZZyWQ8YVnkWKNpDCghnIq49phXJSqyNMIZWnwNp8eHKAlbW23WBwOaSjG+GDK+2EPJAGsUvTsRFoUUPlUNH330IY8fP2I8uSRKPLr9kF4v5M7N22xvXkcqSWMKhNIgtMsOtBaspNdeZ723jsJ1b9YqR6MxDRZD7GnC9QFr3/4Oo5df4ujokHffe5eDw30qGoqipMhylBZ4nkQJj/mk4rNPnnHz1lXayYTpKKfT1hTZzOHVwojj8xnD0ZzD0wlrmzfY2rlNHHURMqKuoCoyp8S2PlUjCYL+L33v/5UuXM9joqWUtFqxixpvGrR2eKfnqjwHopX84nzGV9oZVl/w/77YKyklkasTr+/7L75OXlfuBQIkSeJ2WUqT5iVFUb8w3vmeh1wZO6uyoCgritygtM9iOQMp0Fo5FZKUNMZCsxpHGXdkNlauyBkrufovTA2dot1ihfPfZNmcH//wj/je7/9TttoBVVbjy4CibKiw1E1BZTIOPv+Ubithdip5KiRBkFBlORpDGAl0W6KDEiugIVxFwRhk476q8rQrrtad5IPAR2pJlhvm0wVyhXsRQBxH+B4IWRN4CqxEqZDAS0izGY11whiLh1YKYSyBkuBBTUNdC5JOGx1olLAYI1lMDHsPz3jrlW2uXr1G0t/ip+/+iMJYJosFyWJGlufMZg84P7tAKY/j4ZKz8wl5YUm6CbN5iZKC27du4PuS87MzJqOaL3/pDerdJTtXZuwdnJPmFWcXE6bzgvmyoigalO8BhrKsKRswwmM4Wbj9V1zhtbpM84h50UHZgFKv8ejomG5iaQcZzz6/5NFphWcCXr57j+3NDYJQ42LXVgcW4aIqnNJr5anCMeCeQ5WfK06lFFgraRr7wvApDE7+LFcGeWtdUvfqcwaex1tvvcnot8852X+IUgtarZq6ylyad2Moysq9jzyNFO6gl+c5Ulp8XxOELXrtNo3xiMMWUngEGppCIUVCYwrOzi/I0pyiNPzX/+pfU5Fz/7UdWh3JWjchMB6Bbxj0rzNY2+buvducXY7prq/x6YMHfPLgUxZpSVE6VFDZGDwvoj/ocTG8oK5r9p/ts7OzztWrW1ycLhlenJNqQyv2qLIpr758n26nzdr6gFu3bjKdz9k/PuTpsz2WxZKd7U26rdt89skRiIJXX32N4WjE2emIqzs32NjYQDZTokQTJwH3Xr7DO+9+4FIQhGWxzGka1zm7TDlFFHdorFPcRpFPEITUtWNSXgyHrG+0iYKK8fkTpqMJa2s9BoM1jo4/xwt7VHj85Kfv88O3f0CWL6ibmqQV4fuGl+7f4MrmJmWRoqULr7UrYy8K9x4TAi0lcrU+eH5PkkKs5OzWCTKUJgp82u2El+7f5/r16zx5+oj3P36fk+MjJ/FvaiI/Il24RuDZ/ojJeMHJ0QE3bwzodz2aOl+pfJdsbuyQpTmP95+xdzxBf7rP3XtvEsc9tPRJkjZ13eD7MZ4fUjd/SckZrKTpsBq8WIvWarVrciOTpjFovRqnPFfWGYMUAmPECxagknJl3JVQl8AK3yQlTeOSkgUWrZyfwYscgHYxX4LUNJWhaaAsanzPQylYLuYopWgqw3K5RCmfKEnwwwCtNNqTVGWJEIrSgDQOZCus+7dYxKrrss+/Q/fv5/layxlFL4dnDM/2iCOoyWhvtrl+4zo/eecnWNNg6oJO6NFpdymrkroxCO255XvPx5QN0loQhryoHO7HGExjwAp86cyKAc8XMJamKimAqipJl3OaqsDzXeyBVoJWKwIaqipD0FDkFfP5jLqe0e+38f2QxhiM0WjlOmfVSDwt2R9PCdot9Gps6mvBsij5wZ9+wJ/+m3/Ne7f6/MZvfZkoUuzeeonPHn7OZLbg6dM9tJBUZUUUthBSk2aCxWyOtFAVDXlWkWY5x8djtjY3MVWL997d49a1e2wNeuzsRGjP5+j4giRJqI2ktposqzm/mPJk/xCkpcjd2DnwQ5JWiLVLnh1NkNE2f+8f/E8ZTeYIJRmPjrg4/IxisUTJhg/e+R6Lac6bb36Vr37py/TDhDjSbGxtsLazhgqeJw3L1b7LvOi+sBYllZsSPB8HCoHn+ShtnP/KWL5Ql4o/tydt6hqlNa12m69/6+s8+ORbfPDzP+P+zZuYegnWGfTz2u2LMY431xhLGWmkcj4tlFOoWalA5njSkmcF2XyGbZY01IRJRBBEnDw7Ym/vHBWACuDLX77hEn/J2ex1mc0vmcxnpFlDVjUsshlXrm0SthSNEVwMl7z77gPHvzPPbQmCKFLMZnOMycnThjIXtNuaPJuxnKcUyyX7/gGXrZBnh89YW+8xWO/R63jcuLZG2VRkRcXVnXVCr+DZ3pxW4nHzxhU+/uQpf/LvfkC/5/Gtr12n9/JtxpdDDg7POb04ZW1tfcVGLVnOna9NKcF4MmVtMGA0niKkR1m6d6s1hmXqdlG//29+zr27O3zza28y2NgkzYZUl3Me/eQHbG/fZ5YJvvf9t9G+wg8Utqwp8hyM5sEnj7i6uUUv7tJpa8oKlKqpjCWIYowRON2YefF6wTiijBWuQ5fCHYyFEGglXzBWb928we07N3njrTf4+JOPefTwc/aePqEqK5rGfV6lLMtZwUFaUGcZd+5sEQSCZVpghU9aGKJ2n+XFjCpbAg3K26fdntFp96jrmslkThS3SVptqvovqRzeGtCexvd93FhE4HmKMPBfdFClLR0WyDxP3RVuhmwNjald6u4KoCWE28Jn8zla6xc+L6UUSZK88G1ZY4iiBGNqiqpimaXMZ3NCz2Ot3yWJPPr9NgjD4eERee1k+5tbOwitKevK3YAU1JVjupmqoq4LrHU3RFb0AqzkixHSF+v3F9pAK5mOxzz89H2K6ZjKV+xc2+XG3Vs8OzvkwScfEykNtUQ2htgP6fbXODg6JKfGNDnSQFPUzhcEq6wvlyatpeK5P6yqavI8w7MKUYMsXVJuFGjW+1tIaamL3MXAzBcsllPKMgUMTSMAj5Ojc27cvEqvnxCEMVna4HmaXjfBVpDmJbs3dpjUFTo3qMIQWMnnH5/w/vuPGc0zZh9dsH/8jLW1Nv/oH/1nrG9s8eThA5JQY6U77bZasYPoZkuyNEMBZV7Q6iZ4nuL4eMxsUnJ5PqPKSy7OZthqwXR8RlHWZIs5i9yNMZUf0e50sEiOT87IqwpPh9y5dZ+PPnwXuZlw7fptRqMFf/M/+01uvfQdauBssuDp0yccPvmYiyfv8+G7bxPJlJ2dDtduXUF6luOjfRbnc155+VXn91vTyMAVrfHFOe+/9x5ae2xfucL9l1/hxcjAil8oXg7ZJaR8QX3hFw484EgFUrg9nUCwtbvF3/8f/Ods9H3O9j4jFC5TKvAkDSFInDUhLahqS2EtVgiMkFgZYIRcER86pMuSqrEI5ZMkAXE3IWoljIYjHh8cUxlBmVmGFxkXFzPu3NpgMb5guhjh+R7jacHxyYSigY8/fcLaRkIY+2xtb/O1m3dYLisePnrGfFFwORwjPeGyvDLJ1Ssb+F5JpgqssQz6PQLpU+UNJ8fn+BH4vuRiGBDGmihWxElAGEm67ZBuJ0Q1XaQxHB7u0TQVg0Gbqq6oqhodKIytmC3HPNl/wtaVPt12j1bS4atfvcWjh3t88vHnbt9a1jTDIYEX0u31uLwcskgzBN4qRNHRXT5/dMZ4/H2uX9vgm9+8jmXJ5nabn3/wIagW3W6b2pZIJfADjzwtUFJjDfzoh++w/3iPr3zlLb70+jcoyxnz6RwltqgbhfJiLO6wIRCOQ7rCoskVUceuRsp2VeC053ZrZV2ysb7Od779HV57+RX29w549uyA0XDI5eUFl5dDtDJIYUiXDednc9qdgKoRdHo9GhExzxqMCOmvrbN79RY72zfQKkBrTRK32NzcwiABvSqwv9z1K124As8jDgInrwa39zEWUzer00SNEqxSed3HiOfwVSlRUiKF82M56pEzYHY6nRVdQ71I6fQ8D89zGKOyLGA2Yzqbcn45YzbLqIqKXjtiOZ/xV37zW7TigPlyyne/8y0++/wJp2eXzBcLKmNpdzoUlQshdM/dirVnaqDCSuWydaxArQCo7gQlvihd1jGFBJbZ6JJEWybzDL+f0AoT0lnKvZv3GJ1cOnN1XaF0gFSao8MjTFMjpaKoCofJQqK1v9qnuK+PdR2m73n4nk8QRCitsdZQlxm+7xPFAVqDaUrS+YL5bMp8PgfcDlIoByhW0ieKIjq9AbPlkqrJ0VoRBl3CKGawvka6rJBhyaLw+OmDE3pdD3GWM3605F/+6z/h4wfH9Adt2oFPtpwxHF7yB//297mxu87tWze4vr2F72mMcXuiujG02hPOhwvCxDDPDUU6pzYV+dIyG2dOeSfg008+otNuaKo5YeyTl5bxpGQyb6iMQEhFYyR5kVHUUFYC7bcBn42t68zSMePREX8nUvS7TsW11h1w++ousy99iZMn30TUMBvts9nKSI8/IOp9lbDvcXXzDnGrw3C4QNc+xApEzfd+/19TLObkRcHPfv4eWZryxpe+hPScuMNJNn5BiWFXxesXrufdl9baWT6KkqosCJKY63df4tfriu/9q4xyPmK5GIJSCOGIHzSWyE8wtkQZA0pRWcl4mjMrjxE6RXkd6kawnE2QtmBjvUsxHDGeTfnoo4948uSQyjgR1XxRMRzltDsLJsMRJ6dneDrg/KLEipC8qMnKEjmD5dk5XhhQNwVvvnWHs9Mz6tKQ5yWRUgQ6YNAZoAkIlCCzS8IAdq9usNbrMehs8P3v/Yh5tmCZ5gSBwCsq1rZ3GA7PSNoR7V6bcjnm5Xs3KZeKP/neR6ggIkki6toQx4r5fIH0PPyozXCS8frude7fu8flcMpPfvJj+t11ru5ucn5+wdb2FuPRhKLKsLRobEPV1OiVvQChqBvA1gxHC9J8we5Nj7e+fIvb917ms8//HU/3TgiikNoWbmVQufDYsjEI2+Arg2VGWZyQZftcXEx48uSYl175KlG8AUhqg9t94Q6fYmX3MatkBWMNlQFPuYgnY2qEwLFaEWgr2Nq8ws7WLt/42jeZT8ecn53y9Olj5osZRT5HaUO7E+CvslqK2k1xtq5c4fpt39Ez4jaeDtBC42ufqqyQ0uXWZXlJmv0lRT6FQYjnuV3VF6maUFclVWVXOyxXkKSUmMb5r5q6wSqXLmxss+qqnMLwedZVURTUde2EH7idloWV/BSyPOdydMnFcEmaGzSSIqjwtE+StJDSsDZYW3UpBc/lQkkUY60lTTM31sHF2Re1WXnH+OLEJB0I9i8q4d0h2qnM6rrh4NkBcRxy7/5VtOeTpXM+/+QTZtMZpnYnvajVZrZc0tQVvqed/NwKpHB8R0emcDs9szIluhueIvQ9er0+cdymrqBpBFleYkzFZLzAeRprtBR0Oh2SJKEoK9IspSgzysaN4It5ivTdyT6vcnpxzHQ6xdia49M9ZvOcLCtJ/W16nc+5d6PN8dv7vP9vH/H+g0+xjWZjfYNr2wKqKVrVXNkYIE1D7AVUeUGoPeIoxvN9jIUgignimKJSfPDZY84upzTElHVFXRZQ1dgaPK8mCj2C1oAg1MyyjLQwzBYFtoGyqMhzwIKvJPNpztHhkMl0ycXFHJoxy8WU2XROYwRaCiQQeIJut8dicIXXvvqb1Mtjnn72Mbqc8u4P/g2V8dm9cQ8/6CLwiXotjG9oKKiyBQKHsErTlB//6IcoLXj9S2/+gsHv+aFtNU78c771L6YJz3svbxWmWlcG7fncfvk1PAWPP36PJ59/xOXFMVXlfHpSK9KspGokk9mSonGqvNpoTAmT8ZiGjCBsYeqG2POYZSXHJ8ccnRxyenFJYx2xoTIGU1lG44JFuke/4xEGPlZoTi6dyvbq7jaBrjg4GhPFlijxCWNDkkCvH3J+NkWgKEuDMZIsrfn046f4gcLzDFHkYW3BxeUhrVBz++4OJ2dngODy/JIkCNFo7t64S7fX4dHjz8jKmna0wf07d3nvZ48xSjPYSLi8LPE8zcnxmAfJHrNFiVKwf3CAQKOFZrlc0O30uHb9Gr1+hySJkcIymcwpypy6rt1UpS7c82RY+Qtd6GPU8ohbCZPZkjDepj/o8clnJ6TFnCB2kG6MJk8zAs8jiWK+/a0vobxLbt/vo/xLdq+1ODqqePToY7qdG1y5dpdGCCwS7QVI6eEpuaIAKUcHEhJjLVXdUFpnRHaH0cah8IRc+VBzQt+j22nT73XZ3d0lLwqy5YzpbES316LTa1EZ5ynLa4MfhpydXfB0/5h+p+La1avkeU5ZThis9V68LqPYpzHVL33v/5UuXOBm/HJVmP4c+ghLHMcOhVPXLzK0lNaoFYhVKrXyOjVUpaEo3IstWHVWdV0TBAFBEACQr/6f53lkeYHSmvWNLhaPVhjjaQGmZDqfYU1Jli2YzlwGlzEKhCAvS6rUBSxa8zw91BC3+2xfuYaTDTowpbACK8FgEKuW8bnSsDENNW5k8nRvj+OzM7RNCcOA8fhylUDqQi0tzpgthBs9YBt8qalqV0B73d6LTk4q6ZRqTUOn0yZJIpI4pqpqRpeXZFkJQqOkj9KKIl8ipAvU8/SKqK80Qio6nR6GHrPlHIPi8PCCs9MLvvOdt7i4mJKfnVLmlvl8ivIM4GOle34WF6fk8Yzp8Zzzw3OaYoZgRqg8dtY6xL5GiIZBr0W2mCFWzjQaS5WXVEVJVhakeU6nHaN1zOm5j/YSgqhDY11Sdp0vacqcl+5t0W7HsMqmCuMCK1yQ3niSkmcl0hSYpiIvLZSGk2fnLJc1z/YPubHjI43i7HRIWRuslo5sbyx1VVLXFa+/9V20yImjHqcHTxhNh8RJn/HkCDjB1Ap9rrHusAyNIUszPn/8mOl0Tnetzwcfvcd3vvtdOt0+v/M3/hZYje8HLw4yL8zLFmdmxnXuLjkbiqwEa/ADn6YqkVJx7eVXkb4irUvORyNmoynCGlrtFmHUYnh6xvHpJXldI9SCsLVGZz3EDyTjRUFWzgkDt9cdn15wcnbu3itmdRhz8ymMgUVaIgoXLe8nbSrh0Yg5lbHURiM9H8uCqiooyoJBENJfC3nt9fss54Lj00uKsmI2zQl9n6o0TMZLoljQ7w+cB8pXxC3NW7svIT+Eh58/ZffqFpuDAZ24ReyHZJMKnxZnlyd8cPkJ46nrX8uy4MaNTQIfTg7PUHGLJ4+OEZ4mTmLqyrC/d+AS1T3l0gamMyaTCcvl0gG5qwYpq1V0x+qOZJ0QzJjavV8UtDoRWVmTF5I/+oO3efDghLJyj1ljarfvNg5H15SGMi85Ph3S6c1QQclw/IhB5wrdvk9ZxfQG/RUSTFAbQW2sUxauJjoCjbFQVhUIp1L1lCRNc5QG3/ed+Kc2VCtsnfs3O1C00h6JFxAnCRvbO6uzuEVbkL5BlDV5WVGUkidPjjk9+ik3r12jncRY2zBY67K1tU6716XVavHnzaj/adevdOGyxmCa5gVo1VqLt9p5uQ7MgJBIzwcBWipHB1iJLrRyINTC2hUAUuJrh9OJY5ejFUURSmrCMMILPRaLBbO5U68FUUjgh3heSF1VLqtLWA6eHWAxaC3J85LGCqrG8eQaDI2tKesKrAbrxpGdQYuNzStOvtpY9OroLKwrCsCLlsusJNDWWExdrhRg8QuPj7UNAotU9kXBk0hsY6iN6zAbZZBK0mlHhKFGSo3n6ZVask8URVxcXDCfz0mXS7T28HRAGAYY40gixjT4nkuprZsKqVxysa1qhAowQpC027TXtvjk04c8enrIfJoznqW0ul0mowukUsStNp6v0dpjvsiZzsa8+1//E6ovzfnoewc8O92j5JzdrSVXBl26YUUUuB7CFAsiTxF67rmIo5iyKFGeR15kVEVGni/QfsBWz3MZbRKkF9BKOog6QSvLndvXEUJRLQqaKiAuW6xvbvFa0OO9n7/Lx5+9Q5BolFcRLN0BZu+zJ1gJ0/Mp8Y1r1GXNaDTm+PSQtUGf2I/xPY9Q+Oxub7pdghL01jc5PTnhvR+/y9GTZyzmC1qRxFOC2lRUuUAqjbAlP3v/HX7y03eYLzKiJMALNHk55c03v8L//f+2hzUef/2v/U12rl4jrwqUlCSxy4wTajU2FIKm+UJdWBU5vufYg9LzCaOYtev3+Fqry+7Nl/izP/pD3vnh99jAwy4WIARRHONbiRU+0gso8hwhY+I4oihr6qZivqwcwksrHHPXuHBQsQJaK4/losDQEPgSz69otUL6gz5lOWE2z7DWkqU1Itacn01otRKu7kju3b3DbKyYzn9O0BRgS5bTkiiOsU1FnjU8fXJJEmmSSHBw8IzA80kizbUrG/g6hEZweTHl6qs3+OzTTylSaIUbeEGHdDlC2gIlLEfPnrC+to0mpCkFQjcUtmZ3d4tHD58SaI+6qlnMcy6HzzANGGPxA0VdNTSNuzc9vzE/j6gXwqlupTtXYFFMpzWCkrff/pz5XDgBirDUtbt9YQ2e8tw+HssP3v6Ur31jg9FkzGxyiESye+02xu6Q5yFFWRG0XA5hXdeowMcI51lNi9z5TPOSZZ6xmE5pJxH37t528SR1zfn5OXVdo6XH+toaVd2sCpRABx5NA/X/h7w/ibVsu9JzsW/Ouepdn/qcqG/Jey95WSYzmRVT+VQ969mwZcBww5A6tmEBckNQQ90UBEgt4/XUsiyXsmwZkGEon56UlKh0ZjJJJslL3rqIG3Wc+uxy1WsWbswVh094gIHkAwwTOsABiWBE8MTea88xxxj///3aR6CY3oIhlMRaiZQBcRRx6+ZLJL814MP33ueD935GVRc0bc14PGBra8Lh0QFvvfkGzv4nKs4wxvRjA/+iAyjl4aOq33F1Xeu7gDDoP7i+oAkcZZHTti1RPz6JopAk8axA79HKiKKIpmnZbHKaeUPTvSBuWOI4JkljsiRGiYwwCGibCqT06Z5SoSIwrQfaVl1Hpw2O/jZF0N+EPfVA6BpMiRSp3305iROKXmbmb2H9WaS1xlrNerUkHQzQMiagRdgWJwRCOs8Cc32UttE9XDhDCE+0V4GPQZlNp+zs7pEkKVVVsV6tOTtdY3pRiQrkNe1BCIfuHMr/SIRpQqAVTes70qbVrNc5edkwGk9IB0POr5Y8fXbKcl3TNLDeVEymI3Z2t1HE6NZghWO+WrDelDQ24O27e7TLP+XGUcNwvKZzNffuHRKYnHJ5ThcKRqMBQRIThYFHacUZYe/Vy4YDkjgiChWL5RyBwTQbtoYZMo4RKmCQRphakyQhSSBBSoazIV0zZX0yZLr3JjdefoXGpXz3j35IGgW8cveQOGqwnWZTFLTU7O+FBMoxHU5YL9a8886H3Lv3Gnfv3GOoBCKQRKQoJWgdxNk2O4cTbtwNWV+lnD37AWmkSKMU4TRFVXFyfsHHH/+E1eqK8ThlOI7JyxzrOj765B1eeeUOuzs30J3he3/yR3zzV79F2dS0bctsMmU2mzGZTgmi0E8j6N+vSBEEKSKUDKIxrs8fiNIxu0cZs609br/yBr/y67/JH/zrf8n56SMshju3jxAyIknGBMmI1kUsipZNY9gUDUWZU+Q5uq2QOJRyRJE3VUuh/fMHtIUlyfDZaloxv1oRipQ4DBHGUjc1ba0ZpAmbZcXySnFxtuL2jTu88eaAzgg+/PA9pMjoWktVtty4cZPBCC4vT1nMG/KgZbVYMx5OmV8uyZKMJM6wrUOFAbozDLMxy2WFbhVhFLE92+FykROqgFfuvcZ8XnD87IQkGhClIYt8w97BhKqASEru3LjDh6v7SAHaOJIk8Jlx1iGFH8X26fX4Qby3Knihk8BoWC1rVkvN5fkl+Qac7Y3kgPiPGKN+jG8954Yo2cK4IaiE2rSMIglG4aQEoXq6v6RpG5yThBGEPQoMJMY5zs8u+eC9d3G24+TkmJ3dLWazMT995x0+/OADwjDka1/5Gr/2q7/ag4BBtxqhQoQKqNvaawWcwmmfpCH63WsYSG7dvMn+zjavvHSHx08e8+lnn3B+eYq9MnS6pSxy9nd3fuGz/5e6cGmjr9+QwcD7GpIkvi5YzjmsM9RNB83PvVpSSkKpSJKY4XBwzRxL09SrB5OUpm7I85zlconuDFKqfrndIfqlpm+rW1bzjc+rQdJ1LXESgRRoZzEIrBC0pqMoa//3CBBK+XgBIVAKjKn47JOfcT6/RFqFMZrJ9i4iSpEqQCKRIkDFEVJKmqLEmobHj56SqBbpNKHyc3Gl8IWLXknkFBJJqAKiMCJNEkajIdvbW6RpglKKs4tzHj9+2o8Iwp7N6A89bU3vlxMo5UkjgQq8l0gJnDMEYYgMIoLIH2TGNTw/Paeun5NXHU0HZS3IUsnuwS67eyN0m1Jtas5WK1abnLrTSBkSRYJYbkjCgmgrZ7ojsUoSBksCbYmDmDgOSZKUOAkYDYeegSg85DiKApSS7O/tMb+6JA4jdrZn3Drap7Mdm7r29AktUNmQNI4RBqzpMMLw/Pgpv/9v7nPv1aeod2LiVLGdSZoq5/jJEw4PR7z99k3qpqVqV2SZJQ0lhIof/PG/5t/813+M0Qk3bt/mf/Q//mu88YWXmQ23sAYuFjnrTUvdGs6ezynzNV1Xc3aW00008cBL2//sR3+CNht2dmY0bcOz42ckWYBxltlWStOuaJoxoRpRFRv+8Lv/jtn2NpPRGNPUSOcIpCDoQ0UdXKO//BLXj4O1Nj7wMVQE0tJpjcNw7wuv8NfH/xP+L//7f0yRL7G6xJqK6WjEzs6E2c4Ry7JlWTbklUYby2IxZ7NcEkVwcvoQowukM6wWDWEk2d/dBik4Pb/AtZpyXSGFIYwE9abEUVK3DmfAacH8smAyjlhvW/KpYTya8cUvfpHpdIjuWrAhH37wAUmccPPGPvfu3sV0DXV5RZFf8vEHj9maTuiEwZma8XCCsoK6rmiahiwdEoQBedVRtw3DQcbuwQHHTy756ONjyrwhyzRhIpFxxI9/9D51ZejKBmUE3/q1r/HhRw+4vJwznfpOf7WqcNaPBQMp6LS71gP7b2/DQUquLira6hm668fkmB75pK49p1L4VYaUYJwjkAGfffYcFa25dUsSBoaL+SWD4X5P7R+ibY0KIirZkecboliQZQOMhrKuEUJxeHREHIUU+Yar+QWn56ckScj9zz7h4vIcawynx8fM55f81rd/h8lkStMZTKuxDsIw7s3tfe6c83YLh8VJD2tWCO7du8vtu7d58603eP+D9/no4w/YbHLKfMPy6uoXPvuF+/+eg/H/l1/r9ZrJZML/6n/wEtPxgDD0xavTftnX1BVad9d+Btu3pH7xKBgNhyRJwnA4RPaLb9/B+HiSdV4ihSAOIx9GCHRt58MnYy9e6PrdWSAB7eWqaZqhAkXbdQghSLIMjfdArFYF602FFF5wYdG8GAjiOsBiVICRCqF9R+Mf/gDZ37ikDPzOy3nggnIGIRXWGSJRe8m6McRR5BlzWIIgIgxjoihmMBiyPZ0yHGQIJ1jO11zN59RNTZzExHFEHEfgvDITgfd89fJq6yxKBkgR+k5OgFSSIAqJ4oh0MOTk/JzPP3+EdZ42cXG5oHOKprOsVgW6a/md3/kyB3spJ88fcn58hjYKJ0OcCnBWEClFEkYkSjGIIgIlEVlCmClSJUhUihTKj0+EJU5DlBAoJ4mimCSKOdg7ZJ3nPHr8yBulhUGbBic0eVOjtSNSGYGLSJKU1jS0tiEMBYIAFY2IBxPOLy+5ODvFaUNT5aAMKglZbkoGwwllmRNGPjuqrUtaGxOqGaqLSLMxURayLlaM0gl7B7fIRrs0LqRuNVpbhHOYJqcsCqSKcKHifHHJd/79HzDKIAj9+7hYLdnaGbPOrzg8PODtL32D2eSIWE0RNkWpCKR/Tn0Uht93qSi8Vhp6I77Cg10sm+Wc9WrBanFOFBiyVPHsyROqosYay3CUgtAkEQRSMhlvsTXbRwYZ8XCGiAa0KIxTOCRt11HmBcY2bIpLnj59wMnxMZ98dJ+mNLz26l1+53d+i3/5//xXVM0K4yxhINmaZcyvapAhdWNwVhFFAZaGvf0R48kO29u3uH37VWazMcvlBT/4wQ8xneDo8JCnzx8gZMfh4SGm7XCmAlfQNWsGsaAqCtIs4dbNO4zSjEGSUOQlziV0OuKzR085vTyl1oY4HXJydsF6pek6CCKBCB2D6Zjziw1dY1EO0kDyP/sb/0Ou5pd8+sl972uzkOcdq3XJYDDEWE2e1+B85pkPoVU4obwlR3RYC0KE3tdoaoztfBrBC1+qx5dg8LsvqQKEssx24Nd+bY+vfeUlykogxG3i8CUGo2206/xe0ym6pgNhiKMYawVl46c+TettOKGSSOkQGNqm5D989w/46KMPfNK4kFjj+K3f/jYvv/YFZtu7yCBGKj+hEv3uNAykX9tYg3P+P5WSCOvH+d5i479PTp/z7PFDTp4/YXF1xf3PHrNarRiPx3+uGvBL3XGN+y6rqhqafpnbtJ41Nh4MyDI/6/V5TSGL+RLnLEoFrPONZ4xZhzWOTndIFSKAIIiQjp7A7F3jqpeIl3VLGIfUjSbPN0ghGKYxkRAUVe0fhlAhVUCnPXDUOtkTN/yeC0BbjXN+H6B1i58jmGtSgRAS5depKAFCaHBe4SYcKCH9kMcJjO6wyhEGXrIveBHB4kgHGePxmOFojBSCoii4uLigqWuk8Du8sikxVtNpgXGmD8n0j4bqSfla+1DGOIkReJSWchaMYjY9YP/GHR4+fU7VSMrKkGYhuqnJspiDwyOKsma5WNK0JXW+5nmz5Px8ThAkxErhnET3kfHDJGGcDRkNM7IkQSCY7m7jpMUZTZNXSARREBIGEq1bVM9CGw/GOBxXVxcslkviOMRiMTjyqiFJYgbZlChKWVz5w9M6wEkG8YjBIGF3bwcQaGeo1x0LsyEIFYGEZDiiqBqwHc402LZhMBqipEObDoVkexSxusiJg5hIwWSQsLW1TRRnGCc9wT7USBX25uJt4rKiKCqqKufJ42Nc67jaXPHFL97FCcNqsUJXDdvThCRuweXk6ytK1zHO9nHCIKT3BWohPUhZSJS1WJz3PAYhQnqfo1SC0XBMpAKk6WjqFeC4fec2bdOxXCyYTqcMhgnCdVRFwXKxRmvFbLaLClOEEUxmOzgZYIWkswmDLKHtKkajkCSUKOeYn55QBgWRyBlGDa/eytAuQRuNCCRh6NgeD5hN9yjyEmthuVmRlx3FesXVec7DT0/56N3P+MpX3yaI4PGjZzR1x9tfeZvz+TmPnz7is89PcJ0hUI6X7k15882X2J0Oefb0CV1bc34xR08sVjvaWuNcgwwCdnZ3iIYDTk5O6bQlDVLkEMqmpTUtt27ewEjL/GqDpo8Dco7HDx9w68Yer97d4/nTz5lOJyiVcnpWoGSEEQZtWox2bNYbnLG0raAz0BpH2eCNzEKhu8aLZoTCOK/QFVIRxTFNU/tzyjm07ZDWsZ7Dw/srbhzlOCkoy1NwAVs7iiCOiUJIIgiTAGG9HN84SxAJUCFIRV23VE3LMItRwqDbijs39yg3555biL94nl8+J05DlqsFSTIly6aMpzNwljiS6LZD9SrltumI44iubXHaMhiMaY2m1S1I2Ns75Obhbbq6ZLm85L/83/yXv9DZ/0tduJbzJTKErjPUXcOmzDHGj8yKzYZBljAZDoiCBNM5Nuschz+oOtMihSROEpQM0MZh+85J4LxjXGsvOxZep1gUJU5AnCQ990sSBiHaiB4T5W9VPuDPd0VlUaO1pSlrv1kz/v/fWL+o1cLieie7xBEIj5xyVlzL1LXpiCLZ+7zwMnqp6Jy4Ln5OgraWAIHqk5gPDg78uNRa8vWapvHjz7IsCcOQOI7RtsPYDm0dkQoIAomVHkRcVRWm6UMdg5AoSimrpqd7aNAd3/zmt5hsHfD4+ILlpiEvNPsHN1mt5xSFL4iL+TltWyPQKFqm4yFd1zDMJghAt4ZQhURRQJrEJHFCID29Pi82xHFMU3p1psARB7Iv+BpjJKbzSbKvvfk6l1cXPHn2FCesR25Zg1UQRiHTrR3iOMVaw3y+QEgfzujamvF4zHg4JEszbt98ibatefzkMVVeAo4wipFENK1luc5pW81oFJAlCYMsZbOZI2VAGg0o8pIgjrDOcnJyxuHNe1QdHD89ZzQVsGroOotKEsI4I4pTCDKGs5QoSVhcLqnyghv7U9589SUsHYvzSzbFmvE45nB/QhyBbjsCCavlkihMCIIXfiGJ6jFnznjRku6TbyWCqvasvq7RrFY5xgXMtg+QSlNXa7Io8z6fOEMgadqOzkiSbEzbWfKyprMr4sSQDYZYFLUxvmPJUuJAYVrF3vY+xXLBl954DWdqhKs5fvwRadgSZzF1Y4iyEOc6WmXZGQeMVMSmWpHEkloPqDvJfK6ZX1Zcnp7x0x//iG//7m/z9ltv8fjJEx4++Jx7L7/CwdEtPv74M85PT6nyNct1zYcff86Xv/QFXnr9i3zy0YcoFVC3jkAaIhmTJAMPeZYJyXDGeLxF1zRcXqwJ44wgTji+OCav1uzt7FFuKpqypS47BonCNgXnzx9idMnBbkqSCKRQbL16l7zsCCKwwo8O226MIEB3EVWjsU7x4PEZq3XJcDwkjjzhRTc1TvsRo3Uaq0tu3dpjvlxRlhUOrzjWteXR/Zw7dzZMtlNGsxFVKVgXJao1ZJnA2BaJIBYRKghACWzXUdX+c9Nqj1K7mq/45MOf8NHP/hQlWra3R2xvbyFkyNGt27z68mvcvn2HujZoGwAR+WoJONpYIJXnbCZJhpSCtikQ1pINhiCMPyuwfbcf0NSWKEgJVPwLn/2/1IUrHaREcUBVVYjA45usM3RNS9t0TMdDhsMhpvM+g/39fcq6xDpLEAQEQYQ2luVqjkChVEBjW/9B7bTfhylvUhaiF/n0hekFgvvFnFUbg8ThpABncPg4+6oq0dp5ubLx2TdSKsIoQYWBp3koj1NxPSFDWIuz9Egk62PRwcue8eNMaxzWekd8VbVEccgoGzDMBtexLU+ePPHjzJ4C4g9606cDu2srwWg8Jkm8EnOz2dC1pgf+ekGG1h2666irkjBOcFiyNOPe7VvE2YAnz49Zl5rVOqfVmiyN+whwnzjcdd4fEii/VwzDgDxfUxQloVJEQUQcx4yGGVHo91OB9HP+OIoxxrJcXJFmQ5RSrJdLdNeSJAlZnJAkCXfv3eNyccmzk2PKqiJOI6wx1F1LNhpiDVwuFiyXD8myjOFgiEASxyFZljEYDHzm0XRGFEU8fvKY58cnlHWDDCKsE1gE88WS5TInTlLCIKQpKs7Pr9g/nJIkKZiAq/Oc7dk+QipmWzOSJKHWhp2dHYq6o60aL/vuOjq9oSgK4iSmq0tWyznPnj4Da1HCIZ0fUY6zkEBFzEYDsjjCWUOWZsThiGA0xmhvq7g4O8Nay3g8YTJJSZLMx2X0zw3497PruZtVXTMdjdGmoKsqpPIdwHAw8bH1ukYKwSAd9s+PYzSekiRDOuOo64rnp+c8ePyEKEn44pffZj5fkMYRWE2WDkniFKchUIqmLQmjAGNagsCRRIpW634k2qJdBbIlVIIwjdmKpxwdDAiDCatFxXKz4ejgkDs377L68gbtDOPZDGsFd27f4/HDRzz8/COK/JKuhbOzFVVl2dm7RSj8JEZah9OWNMlIh1PCqqXWlpGzPmYo9qKVprOEImI1L5hfrnHOsj0ZMr45ZJSF3Lk1o8jn1LVHy0kVojvHoycPOTvfcHRjny++fY91fkJkA/LcUNYFy2XFKq9YLiuariNqJS+/fIsk2iVfL9ks13StwBjodAuuIo0N9+7d4dGjE9raUGloKjh+mrPOa9LFE/b2h4TSABqjHa1TSCeQgWdXKiVpO01TNyBC2lajhGS9WvL0yROKsiEOBFdXGzZ5y2A8ZbE85f7Hz9nZ3eK/+O//NUajhM54iEJRFLh+BLTZbIiCgCSNetGGo+sK2tbnugkcmJhAxchAUVUbHj568Auf/b/UhWs6nfpwtvUaax2TyYQ0SwikoO0X1G3b+tuoBScF2WBAFIWsNiuSOKHTug/fUxhjWeeFJ1JIgZTqGhOllMIZg+40VV33/7v0ks5AobQkUCDDANVvK6WQbG9tUVQNq9XaB+ulsWcZBiGg0M5hrMFTF3uCBtYzFmVIFIY9Ab9CGYkKFFEYYZVXJ0VR2CuRLEYbzs/Pr03S3hVvr4kfL3wacRwzmUyu856staxWK4rCF9VBNiSOYxaLJV4lFGNN1+/jNGkSMxwO2dk/5JPPHrIuDZWWFHWLDGKqpiNOhhgnEViqqsDpDtDMphPOLy7YrFdIB1maMRqNfPHqX7tAKQLVL/OwBNKPNPNNzqaqkAKm4xFRGJINh9y+fZuma/np++8Rhp6pp50f74ZRxNWl74YCpVjMlygRMBpIgjCkbVuKouTmzVuMRiPquuaDDz7k/OqSvCgp6wYnFJ111G2HQ5BmA6QMaFvN7s4+u/tT1ptL4jAGGTIZSwaDlMVqjVARRVEQpTNGWUY66KPajaBuffROWVds1hac3zNkWcrF6pyd2T66qZhfnPL2W6/z8ScfIY1BWFB9HLvWFhGAiiO6pmGZ575YDIaoKPZeHuEIpIReaeuMpq4tgVTMtrZRzmC0RKkIrRuCyLMpnZVY0xM6hETrDhWE/m0BnLOUZUGShIyHmY//0R3SGGzXsVrOSULJwd4+Zb6gbTYkkSJLY1pbUVUFaRLhKk2ta4xtsDTEaUDVVMRhxGw2YjI+4mDvJZracn4xJ40SVBDx0p0Zje4Qgae0x0HC7myb116+w9XVCWWx9JehKKKqSkQQIMMhpu18kGIQo6IhwwAyITAYgnhDkjZkgwlhkLG1tcdkskNV5azXc9pmQxZKkhDGWQhGYYwkiodsioZHT55zcdmg25Du8QVRHJINc2Y7A/Sq5dPPTsg3mkZbP7oVsFiuefDgMX/5L/0GWXybs5MTdNOHRbY1TdNwenbMr//ql5hfPodhhNYCbQzr5QInB4iw7gEK3p9YdpZQStIowQgPY0AIutZci8Kifmqxf7DPaDylq3a5c+uAxfyCi4s5V/NTVBDTNi1nZ5cEoeJ3/9JfYDLbAlqyQYgQEe+882Pe/dnPmE6nvPXF11HSMh1PmE1muD6g1OkWIQ2dxv/suubjjz/8hc/+X+rCNV8u6FqPM8iSmDAKcMYQhgmDyRTTtaxWS7R2BCqirmscjrzMccB8ucLhxyi6q3FOEMYRYRyD9Cmyzjl019G0LXXToKQ36Yp+zm2N8REGgd+NpWlKFAaAN+5JpZiOx6RJymaT45xfiioV+t2XNpie4ixUgAp8t+EsSKF8kq0xZGlKEAbXGCpntY/cdpb1ak3TNmRJghJe8fgCWRWG4XXBcs6RpilpmtI0DfP5/NrX5vDKwcFgSFmWHnUjFUEQoruONAnZnk2RYcj29g7bu3s8Pz7j5GKBERFhOiHJfDp0vm4wTjEYTglCwXK1QvRGyLbtaJqSIAjY29//j5hp1lmEFWisV1o5S6gUQaDIN0uM0YyHKYEKSOKELMt4+bVXubi65CfvvIOU0ncpKsAA5+dnXJxfEkcZ4/GELEvZmm0zGAxQyj/6SeKz1LIs48mTJ6wWS9I0Zb3ZUFY1QgbUbeOjW6oaFYQk8YC21dy78zJvf/FLHBxs8X/4P/5vfQcXBoyGI7rOK7rGE6/0G062Qfl9QBBECCUIBzFZmrDcSKq6IlAhhak5OtzG1HOk0wyTiNnLL7E122IyiPjgs/fZHm6RjbcIky2i5IDVSqOdIBmMuHvvFZQKSJOsp8UY2rbhYjEnTROEBGs1ZdURBTFJmNBpSxDEtK3GOUkSDzBGk+clRtcECrSzPdU7wjlBUVV+NB2EjAYpX3jtJT779D6XJ8+ZTGcAbE/HGN2RBILJIKNtC/J8QRRDmgacnj1nnW8oq46uc16oICXWdRjrFY7CCZI4AWcZZinR4RFRnNF0mqooCWMfUSNQDFM/JZiMbnOwv4tzPQlCKq7mF1ij/YU2tAyyAUEYIoKYLPZdgHEdKEEQVYyHQ6JoxGi8xcHhLVarBaenT4hCTVttCJShLL3IJ44zZBjz6PgJeeNjjTosl4s1ix+u+dZv7JINJmRDgQoE+/tjykqzKSp0ZwgD6LqK07Nj3v7i60i1y6MHj0A4wsCChVs39ljOj3n1lT2CIMY4iQoDhsMBtTYMZ/sMs8SPEon7PDlJoBKkkDgr6VqLNZ4e32mDUv7C65zxlpAkI0kGzGYwmuxwdHSDomz48Y/exRHz0ccfs7O/xW/89m/RNoY0GbFaLvl3f/AdiqIkCJ7x6OHnKGmZjCfEYUgSB3z9V97GmJb9gxtATV1bqqri/Pz0Fz77f6kLV1PXKAVZkhJF0TWmKN9svH3X9soY66jaGis8P08KQV4WdNpgbf8GB15ebZ3FSkHTdf7PGE9Jdz0Q0o/e1HVUShhIsiT1nULoX86u9XSN4WCIDPwD0Wrdp9R68YNzsleWaZIoRvYHChJCpXAKnIE8X2Ot5c0332S5XLJcLinL0lMw+oL0Il8sDkPCwP8MznlyiFLedP2CHNI0zfXfIaVkPB5jrGcmZlnvRWs1SRKTZUOybMAgGzEZD4gDRV4WNHXNe+++T2VgMJ5xsSixnX8tvYhFkBc1+/t7HBzscnl+Tlmu6Yzm+OSENAm5ffOmtyf0UFitO6xurztMrEE46yneVUccxaSxVximSUoUxdy+e4fVes0HH36ItpZBmpIXG4w1zOdzhqMBu7u7OOtRVsZYsixDCElRFBwdHTGdTum6jsePH1M3DVGcsF7nZNnAx7tsNjSbDTIIGI3HbDYleb6hazXPnx7zxS+8xdXFgp3tPQ9JtlA2JU3tVajaGC6uLrBE7B5OiJLQdy/W892qpkO3JaNBQqAUWSjY29kiC+7yyp0pkZRsTUc0Vckwjnnp1h1CGWFaRzaKkUIRRgFWO7SFdDDE9Wb8F0nG1hieP3vKeDIiDP1+MIhiHB6wioRiU+Ks7/R9TIrH/jihGGQZRhvuP3jgLSdZxmx7iyiKiKIAnKNtWrAdGM1yfsHNmzexRrFe1LStJk0jhoMQrTVRrIhDyc3DiOVqwfPTcwQNTeNBvWmSYUVEFA+YTfbZmuyBVRhtSaIEnL9UGozvDPGeTm+AUgRS0VpBUbRMt0YkacrIwHjo06/z1RrrLJuyQsqKmfJjzdOLE0bjhKqrSF3CKNuiqQWjaEo6HCIVWFPSNkOiAALZ8ejxfZ6dHrN3dMh4a4fJ3g0urpZgFMv5HF1XtN2SwXCfLx3e5vmTS44ObjOd7VLWLQ8ePePzh09Jkojj02OiCLa3JizXZ+i2oWssVS7Y2ZnQNQU3D7ep2paq7ajqnCAccbC9TzLeZjwZYUxK1wWIKO7BvH3H4zy0OwpjjDF0dP1nKUFKy7e//es8f/KIoE+QT9MBSZJgLFjj+Nl7P0Eav1+ry466Nkg0Z6cXrFc5QRDQ1ZpFvQLhWM0LhPNqxSiQvPbGbT75+GfcvfsKaTrm8ZMnaPufKKswSkLSOMQZg+2jSJxzWOO7mhfdhDEaa6CzhjhJCKIAqUICoa6JzUZbtLVY62i7FqTwbC/n0J2hbZpe3mkR2qv64kHMZDQmjSK07sD53dJ0PGEwGBAEAXlR0HUtWvsuKU0T6qrCWEcgJFYFPrJe+EC6OA7p2pYiz8mLCmM8rukLX/gCP/7xj1ksVrRtw2w27Q9hcd1Nyb6Yvcgoe+FZC4KAxWLRz6QdURQxGo2ubQR1VTGZjkmShK7tmM1mZJmn4VvrDz4p/M9xcvycNBt4gnoLymnCOMOJAIulqWoGowlBEDMcjZkvVwzHU6qmRNcW6xyXlwt2trZIJxPSNKbrOmQQIPu9mw/KtOiuQ0pHHMe+mDtvwpZhwNbuHtOtHf7g//EvaLoWGUhu373DOz/9CZvNmsv5JYOR3+/MxjNu37oNeFTWIBvQat9FP3369JpBmaYp62JDFEZUVc3Z+TnZcMDe3h5l02KMZW93yPbM0TUty/mCq8s5cRIwHW+zWS8RCFZ5TlFW1HXL5dUlSdIwGe+ihKWzLVKGYA0KSCNFEkgC6YgCh0Ny+8Y+j9slQjiUDNisNuiupapLrHDo2lJsVkRZS5xapAxJ0pCu6xBCUuY+uTaNY4w1LBdzwkCQr5cY2xGGIZPZFqGKkFLw7OlzMC2DLPKHfttitGE0yjAmxAlYrlZMJ1seA5XFXsGoWwSG8WhMpASvv/ISutPM1ytWy0u2ZjN2dmZsVjlVXdNYQ5ZuEwQQh1Bpwc7WiNH4iPlqzfb2NutiTd0WzHYDoihjNDpABUPqyhIGEW1rEaIjTPznN45jf6l0Dus8tsgaR9tItrd2UEFMkdekyRCpQuLE59CVZY1QJdZo1nnN6dlz3nn3R9x9+SbjcYKxHcPJjKpzfvxmBZPdPSQGa1p026K7nIvlZ3xyf85VrqlNRzbKOLqxy0svHYEp0fWapnxOklYMhi1hCBcXx0ynCb/921/jrS/f4b33H/JH/+93uLqoaerHvPHmbY5u7VKVS/b3Dvjg3c9Ih5aDG9vs7e3Rdo7vff8nPHp4xqMHG1R0zNb+Dl/9WsR0a58sSegaSxAq6qrFZ2x7O00ShRjr987OaYIwJQol6WTK3u4XaeuaOAqoq5a2adnkBbv7Q/YuJjx5subk5JxPP37A3TuvUOYdm3WJJMR23n9me5N1azw2IZCCTz95gAosr75+m/XmjCiRLJYXrFfFL3z2/1IXLq0NnXD97sXvipT0yinwD/FgMKBtO7S20Jt/W+09WC+QJQ4/lnsx3muaBiHFdQ5X1/p00STqvU5RSBgo391Yn2cTJxF1VV0XjvXad0p1XdN1mjAKvQx/tUFILwxJwoAg1HRdzSBLuXPnBmGkuLqaI4TgwYOHGOM4Pb3i5PiEq8srkjhmb2fHk0G0L1Ch8iPEFzLU0WiElJLlcul//q5jtVp5IcZoxHA49DekrqNpfApz0zR+DxZGlGVJVVU4J9jd3ePG0QFRqLg4X2GtYb1a0hhJNtpFpkMimWCst/zXdcBifkkax5ydnVGUa+LIB1C2TUgUCKpNSSgVURT5Yht6EYfR3jjus5c0QZ819SJqRShJNhgShjFV2/D7//W/xgBbO9scHB7w6NEjmrphOp2yu7tNmiTcPLrNznSHrtOs12v/WiyXaONN00mSMF8s0FpzcXnhx2xpxibfgBQUZemfg7qj1R17e/vcvHEAQpLGCVIJTk9OaeoKiUIb4zFZdY1BEgCz6YwkiZDOEklFHIeUtY/bEUKwuz2hqEpMW5NGAft726yvRuiupussuqtpG+81jNIUSYxuNKZ1uBjCIECGAWkSMr+4QlpDmsbU5QanNU7XjAYJ1hqsi1AqoCxysiSjKnKuzs84PNghUKLfiQYkSXI9Wi7LgtlsRpzEIBxBqLDGUNWln2o4i9Et1rQMBilODEjSBNPWYB1pElEUJbqP2DDWq3G3Z0e0umF3usXOfgcyhHBOfXVGWTcMRzsE4ZiqclgXMIiH3jriLCoICOOItm1ZLebMJiPu3rnNbGuL58enlFWBMV0/No3odOtTeLVBG0eYxDz7/AF/+qffQwrHfH6JDEGlJ+zpGXXXUH78AZOxjwvRWiBliDWay4sL3nv3Z7RNThSFxMMZp5cbiroiuNqwWK/Z3R8yHUMSK8LA+zvDwPGbv/0q5UYy29pmnR+zXm+4mh+DsKxzTZRldM4xHoyxtBAY7r66RxxFdK7h+ckZm3XHk8dXnJxounaNISd8esb5xRV/+S//Rfb2DxmOxtT1BiG8ghECrDFEUUQYKoyNUIFEmwatLfPqknyzZDRIaY3v4J2AKNbsHQz59s43+eyzHS6uch4/fsze7g2kCHn+7ATnQEqF0X0wrwdU+uWAE6xWDe+//4DpbMitOweUZc7l+SVG/yfKKtRdh1F+RCacQwq/szDGMBwOqduGtm15YbGWeMhtozs/6nOeMeZLn6RtWvI8pzUtMvA3fKy/8WdpRiBlPxqx1wICa31ab5LGJEmCBLqu82rAXgjxYqQnpKRqDFGUEoYxQRDx6ScfM79acHS0xa1bB70gw0ev37l9i+2dXb7znT/kk48+osxLBlnGbDqjrivyZkPXiy9MT78fDAZorf3h2Y8DX1BBXowUhRDXpmvvGRM4+i6N3riqAm7cuMnBwSFGWy7nC7Z2d0mSkM16w9nlyqezhhFChLRVQyAkbd0QxwnD4YD54hKAosjJ0pQk3mNxccpkOmY0HhMGIVa3WGsw1vvO2rbxXjpvXqNpPbIry/x+JYhjGmt48NEnvPf+e3zjG98gDAOePH5KU9fMplMGg5TpbNL/uYST0+csl0tvWZABWmtGwzFBENLojsViztV8QRj5rmVvbw8poagqssGA0XDI4GBI0b+eL3iWXVtzUeZ0TUOWDnDWcnFxwXA4orMWYWFne4fReOh3JoH/99SloSoqOgsi8OGim3UDzmC0ZphFbM3GlOuGvGho64quK3np3suMZ9sMpjs8OZnjrCBUIe+89y63bt/2Qh3bcnn6nOl4zHQ0IB2PmI68CMlaS9O1WOvI6xaBoGtqdramDIcJaeJ3o0VRcnx8zOHhAdZpT4zRLaFVgKWznfesSQiDiHyz4kXyt5KS4SAjSZP+/dWUZcvO7g6rTcFytSKOQqwNKcuqV7b6cXrVWYbjQ9LxHnm+AQdF5c2zWTr0kLQwJgwldVvx4JNPePfdd5lfnPPr3/wayrXE0Uvcub3PZrNiufGvWxCGCNfRNQ3aONZ5yfnVkn//h9/l8/ufE0chQlqEgtY1fPzpZ7z15iu8/FLGBx+9T5pNieMRm03NgwePOT874/TkGNAMBxnD0YDDG7d48OAhXec4P6158PkZN2/G0FVkSURaB0RlS1ltOLvccHp+xutvvsrp2VOOT04o6prOCFqtKcuO1XKFlC0iUGijOXl2yTBbc2P/VVyfkG4syCCm6zS6czx/ds4HH7zDyfFjgjBhNtvl4OAWcZLRtX78K4TGYrm4OKHrWpqm5OTsCcZVTMYR1jaEgVf6hioiCmPGkxGHN3YZjt9guWrZrDXGNhRVwcMH9/EYK3/G+mWNxfdbAuMEUgbkheY/fPdnfO3rFd/6rW+xWBQ48x9FGfy5vn6pC1cYh6RphHR+4RgEqfcmGYPWPhhxPB7TNp3/YMUZbrMmr0qM9ZQJ56BtvUzcGosUvoPxAgjPIwyCAInfbwk8yFcpRRyFHuwbSB+jbnzRGmae5uGco6oqgtALENq2QwUJFk8IKOYXNE3LdDqgbVqePnlEmsb+8BYKFYScn5/5nQ9wcLCPUlFfWCRZlvY7LL/H6rqWoih6daC8RjYJIf6jkeKLkWHYq+q8T8kr9/b3D4jCGOe8avPi4oLT03M6a7lx+wa//mu/wsnxc/7DH/4px/MClTakoyHDVNHUFVVZEIYB86sLrO6QAsbjMWEgqEuD7gx7u3sIBFVVYrvWj/9Uv9RzDhV40kPVNL1MfkQ2npDnOV1e8uz4nOcnZwzGE4x1XJ2e09a1P2htRxiELOcLdnZ2aJua+eKCUAU46y8UURBijCf0WyTD4ZBHT56QDQfESULTdUxGQ99xRBGT4fB6xxaGIVq35OuSsq5QQUQUhMzGM6y1XJxfMp1sUTYtgROkWcp4OMSalrOzY7rO+oDOIMY6TxdoJaRxgDGOUEJdFUgFQZzSdd5Dtb1zSDacMp7skw63ODgYYkSGEYoqz7n/8YeMhhmhknTVmng2IA0dWSxohDdr102LFCFhlLK1HXFxccXz5085efqYvd0Jw0HMzt4OcZxx88YhKuiFM0KgO421HXEcejg1gb8UWovWXY8yE5R15Z8zY+mM/+87uzNWeYWKIpJB4rvB9ZK6KhiOhmSDlLoLaYoSEWZEoSK2IcJp0nRAIEOshbbxcfLtpuLd997lpz/9CZfnl6A1oqtJAsMghds3D7l355AfvfM+VWew/b5Ua411gnQ0ZjRKAYcIJGVTEcchbdtRHJdMRkOePj6nzDVHN27y5MkjtrYPef/9T3jy5JgXskpjLeu8pG5bfuvb32C12nB8fIGU8PD+CaG6yWZV0lQl04lg7yBha7LFYtnx9Ok5hBIROQgM2TDAmoC6bnn/g89QoeTmzRsMp7coiiuc1Hzw8RmPnzT82q9+g9/9q7/BB+9/wicfn6KXht29EcbUfPz+R8RxxqZoyIYRX//6r/D2l3+lZ7h668+nn37GD37wA8CRpjHpQOFkxXINQjQMs5ij/SPyUrNa5uzuHRBlgs5ohpOYNIv40Q//lPPTJYvFaY+l6omqznNgX8QzWdeLbpygEZo/++GHXM5Lqj4R+j/JwhVFXpggjCNJU4Z9twEvlrVeDt91nV/oKk2e58znVyAkTsheUPCCEqGIoxjdtVj8n3fW9fEEPlQxjiKyLCUOfcBi2zbUdUUcRejOd3IvOhnn3HU0tg9qizg9X1G1S7I0A2fZ2tnlYG+KpGO+OOPi4gSlFLPpjK71O4u7d2+TJkPqusNoR1lUSOWIY286LcuSpvHRGS8iXF7s916ISMDvcbTWCCEYjUZeCru/TxSFTGcT9vf3USrg6ZNnfPbZZ1TVz6jr1sc0RBFf/dpXkEpxsL/PW2+9xUe//+/pxCX78RCJIt9sMNpQlgVh6BDSUdc1SkJdtFjbUlU1qh8rNG2J1d1156qU7L8VgVKkPaF/PJmyWCxw+MTr+XpNnKbcODzk+fGx7zTTlKooiOLQG8etY7Va8XS1ZDT0adVRFPvXwoG1hjCKCeKETZFz69ZN5qsVs9mMJIk9iSNJmE2nxGGEs45QSuqioKxqwihkNPACjkCGzLa2WC1XhGFEXTcIJVnPV7zyaobuOlpXeQOwsH2XIbDaoruGdb4izRK07gjikLYqSWMPb3YW8tWCJAtJsjEHR7cpa0uWKlobUTaOV199mR/98PtcHFf82q9+nd1pxiCJ0V2JsIpICarWv85hGNK0HVZbBB6P1tQVVSFZLE44PXuGNrB/cINXX3sd8J+BKAppmooiXxEoxc72NlmaIASkcUTTaRwQJzF1VTOvKgZZQhgYtLHIIKTpSp4+e8ze3jZbYy+SgY7NZolKtgjilNZIHxMfxoRBggoCmqYlzwuMNoyHA/7kD7/Hw0cPiZOEra0p1WbN5cWcps6ZX55Q12u2t0bMr854fnqGsYY4CBiPR8gwYntvh0Y7dne3+fizTzDG0lX+czMcjfpgWEtTW7JsxO7Oto8LurrAdn7EC70301nCUDCbDhgPE550XrxVFpbzs4qT5zm4juVa0qFR4YDD27c4OS8oypq92YQ7Lw04ujng/KykaRxpFpNXJcdnVwyGA7RuOH66IS9C6rrh4dPHfOVrL/P6lw44vDnhwecX/ci0Y37ZEExCpoMBi/UVF5fnnJw8IUu3kCrivZ/9jHd++lPqpsUaQ9PUqHDE/tEY7ZZIZdCuQNucqq5YrlZczZfMl+dMtgZMZzNGw12SgWadX3olpgMhfq4Ovg66FQIRSu/y0YDzl74H95/RaevTbn7BEORf6sIFjlAFHscT+BtgvtlgnSXPC4qqZjKF2WyGkpKq9gv2UIXYnnYeJyHOQdf57K0wDMAZ4niADLxCyQevGcajEWmSUBY5RVPTRX7mHciAuvDerjwvSOPYB0UKb7p8EVI5GA5Z3T/j488uSVPJjYNtvvqVt0gTRdOsUSokTrLeR5UQRrGnbBjt6fRN6zE+gfLQTWNYr1c9CSMieLF363PJXigOjfFRJtPJhDRLscayf3CAChRWa84vzzk5OeHqasFmvbkuhL4j63o5raUsN3zy6ScEUrLJCy9QiUOc0ayLFRcXp8RxzCBL0KbGWk2SRKxXC5SS6K7B4BgMR4SRwtkWgfXZYp0mFjFJmpClXuqutebx02dczlce1yXht7/9bcbnF9Rlw9V87sP8hkOCoI+oqSvCYEASx6ggYDqZeHEOlqqpvMWg71JNbaFrGWQJz49LXr53lyTL/FgxDD3TMo4pixKsJQxCnDUkSXyt6pRKMcgmGGOo6obxeMLx2THr5Yo0TSiLgmE25AXhOwgkUZh4TqUQSOtYrWva2uOxojRGDTJMFtPqDmccZb5hf/8md+++ShAkPHz4CSpOQCZYAlzX8KU3XmfQi5UCBbqtaJuGHB+fIYT3OjVdS9saojQlSxNuHB0Sh45QQdMkyEByfn7J8+Njdnb32NqagoRAKGgsUezHf0VVYKz2SC2Lzx3ThqbxKt3ReHQ9/YjTzCvh6pwHj+7z4Yc/YzSMuHdrn0E2YDdO2JsdsCpaIKRqWt9xRiHvvPse3//+9/nWt77F4cER58sV9x89Zmdni1/9xtf58Q9+QDcZcnHylOVyyfxqyE/+7M94+yvfYHdrxPHpU0JlGQwTpttD2s5xfHLMj3/6IVfzK7A9SMCCCP2qIYki6qJkvV7z7s/e5ebtW0RRRp7nRJGg62yflOATqNtG89mnn5MNFIeHAy7PC6rScv/Tc5zxY/gwEeQVoBKWqzW7u1PatibLEm7d3uXkOCdJNUZrxqMR062Ms/OcH//oE4aDjGKlESJgejDl8mrBg8cPKMsFd2/f4eDoFSbjPU6er/i//p//gNWiIIwcdQebdc3Z5RlKLvn0k4d88uF9dK8FcMZiBVycXZJlW0SZZmtrjNY1Qkmq2itCN3kNynK1PGU4SYijIV/7+m+SJgl/8oc/ocw1pvt5jAt4oLPrFa3wIkEclArptPZey/9UY03SwIskvGLGI5Nw5udZNCrklVffoKxy2qogjiMEijCIPJ1dCrTRSCUZDScoqXwBy7y8HSlQUhElMUmSYoxGty2m0wjAdF6eGypvXtadz7ERQnmZsYdAE0YhURQynk64cesmV+uG1bLi4irH4ZgvFnRNiZAJk8nEK8PqFpPn6D7d+QX9QkpJ07SUZYNzliiKyLLMm4mdu/ZvSSmx/agzSRJefvllhsMhp6fHPH78mEcPC9o+OFNrA0L5rjQIkUowGKSMRiOm0wlF3mDQPHzwKeVmzuXlkvOLNTtb+ySDIYIO62q0q6HRTMYjLs8vGAwznHQYNNZ6dNWtW7cIoqBPWfYGYYtBudjDOoWg6TSiaWm7jqYzXM7PCeOMOAnZFF4A8+TxE5QQZElCEAbIQFF3LeORj6Px8TSWVgg66RNgu67DOIvuvDAjCPr4CCGJQsUwS2nahjiQJHHok4eLgq7zt/G8KgH68XHou/oewZOkGU13yny1Ikq9PSOOQgZJisJH01gkxjo2RUmnLVGYIGTAKBuD88Wjq2qca1GBYtinFNy7e5fXX3+Dq/mKzfESkDR1R6cbNnlOkiTsH2wTKUnXVoRBQCMcSeyzsuq2RQXQWTDWe7LWl5ekWUqURtx99RWiUBGogEAqzk7PWCwXxEnqk4tNS9sHIcogQGNpbUfX1SzrFbppEE4QBhFZmtJoTWtbZJTx/PkZURRx+9ZNptNt/vJf+qvk5YbLi+coW7FYzemsZLWp0WJK2aZUxqJCxWIBy1VDGA958OgpdSuRSvD05JTRMGG9uGJ5cYoU0GrD54+fkI1SPn/4mHJT8eYrr7DZXPD09Cmr8oyLz88ZjvZQwZjJdMZdNUB3gtOzE1pdkqYRpss9ViwRNE2HsZKHDz6n7RzpICSOQ/K8pq0N1vjuomsNP/jeu/yV//yb/Oo3v8j//f/2ByxXJXXV4VzAZDokSQOkUuSbDjrL+emSrW2Jblv29nbI4l2a4hEhDdJ0PmesMwijWF7UQADCcnGxRAZjjp+XLJZzpIx447U7RHHJK69OeetLB3zy4RXrvMAI0IS899H7pFnCk2fPkQEkMqbtWoJQ+rBaLbCd4ubBHazIubhcYduC/b17LOcPaLucqnaM4tjvymzNT3/6AyajXd764sv87CcPqLrOq7CNu744W218JpwDZw2GFxlegF9p/8Jfv9SFy7v4Bc4a8rIAa8jiiKpakybepNfUFcv5Amc6ssGAwSAmyWKUCnHCUTd1r7AzqJ7tFvQd0rVXKgyp64q6rJBC+N1Rz/SXwo/h0jTGuahHQvm9EXiO4ng8Iopizs7OSQcJr3/hJaoyRzhH2zVesh5GOKvpOkPbVh6bIkS/D1GejuE8tqeufw7+bduWOI77uBHhhSRZRhzHTKdTmn5PtNlsuH//Puv1krr2GB8lPdk9DkLiKCUIY7+Xq0u0brzacTghjgecnD0nL3IvDGk62s4w7C8L+WbDcrlke2uL5XzJerVGSW8cXq9XfvZtDVuziVdEYnC69WZuofD5eo6qbij6hb3WBq0983Fvf5/9wyMur66YLxbkeY5SXtU3Hg+92g18gKF6se/z9gQfEyH8RUPr66m6kv735nlJFCW0PeYrUIpKe0+QwCfiuh7+C87H14g+oVpAFCd0nWaT51xeXjGZzqhbv/saDEdIpdgUJVGUISQYA5fzK5q6YTLbIgpjAuVTAjpjfTEFOq1BSvb2DxiNx8yXa+aLDa221G1HXtTUbcsgTRkNBr4AO29bsNYQBSFpNqJuNVHT0Wrrx4OSPgDUi3S0MbjWYl1IlkbE2Yhbd0ckF2c0bU1nLdq0rFdzNvnaqwKxLFZzkjSiqUrfIcf9Ba7TxHHEclXw9GTO6dklR4dHXK3WzK/mTGdbvP/BfZyp+Qu//RW+8s23uTi/4PjslFfevMXq8YqmtUQixTnB0eEtjo6OMKbFWFguFuxsb3N1ecmD+5/SdRVd6wUNi8UarTtOTs75p/+7f8bf/l//z7Gm5eT0GYQhrVHcf3jG7t49RqMtjsZ7tJ0n1qzyS3Z2x+Babt3cZ7NasbW1xWeffYq24CQ4Onb3tzk5XvPs0YLO9uAA56HW9z/7nMOjLf7z/97v8O/+/fd48ngBGNq2RciEV1+5x8P773Hz8Ijbd/Ypa69mPTs9w5ohV5clSki+8pWvcLnKMXaBtc6jn9oGcOhOUNctRR6xuz/m9OSKQBn2tqdMx1P+4l/8OsPhZ/zxH933U6iuQCpNUVwShBYXK4qeWK+FwXYaKQVnJ3N29lLuvXTI1WXJclEwHjbcuXebVj9jvlyRZWN07zNdLObk65LXXv0SQRDyo+9/TNd6YLn3zvZwcxX4HMHesnD99d8xk+SXunCVVeO9Tv1+JI0CtPFqPpxDWMefff+PUUHIcDggjGN/8DctSZqhjTcFW2uR0osXwkFAmsbEsTfqbTYbyqqk05pAKuIk8Yd+XyiEs/24xB9uWluiKMQ65yWwYYjWhqJY0jSalobRaMR4GPubXRxS5rUvJtK31kKIa3WkUsE1KLeqqj5+xV6bimXvVwt7RddgMGA8HjOZTIjjmHfeeYfFYtHT6cHDLiVR7B31Ukl2d/e5d/cljHW89/67GNOSJCFKCaxpMSZge3sL6wzPnp/gnGJ3d4+6bajm55zPV7Sd5vUvvMHB7iHzy0uaYcpm45mCEstsa8IgTejaEuscQY+4cs5ijKZuPD/vBYbqxS5uMBgyGo14/vwZ6/WGzWYDQNqbvq31fq84ioijCPAj1Bd+vq7r0D2c2OgOY6wnigQBRVFS1w1RlDIajalrX6RGwxGqvylq3RKEoS+yYYjqRQjGWLLUo5+McVzOl1RNi6Hg5p0bXC6umG1tY5xjNByiZETddDx8+JBNUbC7v4cMJUZYtPXJxcI5rPZZakmcsLV3SJYNWKzXLOYrtLa0/bcIAsZpShT4AEOB4EVQtrV+f7VaL4nilOFwiHWCVhuqpvVjVemDCZ1xHl5ct1Rl1+91BmxvH1A2BVdXlxR1y7rqeHx8xvHZiTfvG8Orr7zkO6CLE4ZpQhwHNHWJEoKm6Hj4aE6e15xfrXh0fMxoOmX+sw+5ON8g0ZxcXPC/+F/+T0kHCfN6zvd+/F3uvfw2rlQsFksO926TRBlKWdoup2k7mir3HVZbM59fcvfeTZIwoCjX1FVOUSzJkohH8zN+/7/615yvz2ldx2Rnl4cPnrBYtWwKwb17Mbcm+9y6dYuTk2dIIdBNxY2jGbPxgBDNr3z9C9w4GvHDH71HNlY0uuM3f+s1fvTDRxw/WfmihURIaDrDw4fnbO98xl/9L/4Sl8tj6rbi7KSmbRtWizVt06CdQWNJRiPW1RWbomSzWVMWVzRVTdspTk/WfPLoKVeL3MO0tVeACiHpWg8wOD9tmM0GbG1vU6wL5K6gbSuq4pi/8Be+xHQ65Dvf/SlnJ0+4cXfI3t6E8Sjj848vAHBO+v29dwRhtKXYdDx6cI4kQ0k4O7/gxs19Dm+MKOo163XJ0Y1tlJQYk1PXcx4/fZ9f/83f4fLigvufnPnoCil8R9Vfov5bRQt4EY77n6Q4AxGQDCIfLw0YpxlNpjjT0VYVQgqKIiUdjHjt9TdQYcR8scJaS9e1XiYeewzOeDTpX1tPcVgufWfyIjgxCsJr3JLsd0dKSIzuE5GtQSlPEtDa3zq1MazXuWeS9TFyUSgJA68w1HXLenGFkr6jCqQPenzhodlsNnSdz9nyQg99rQZUSl0XMPBcwv29vesu69mzZzx8+BBrbZ/uHPWiDG8sHo3GREFMVddkwwGrjQ/NNMZ3HdZo4nhA13kfWNN1tF3Dyy+9RtNoEAEqcnzw0WdMZrvcuHET25MNdra2efxoTlXkSCAbJITS0TYFzhoCIbA4pHD4tCmvkpQ9LfpF0QrDkPFkwnq9xhnL9mzr+j1RWeoVnkpdZwFp7bvvKAxIkojWcC368B+QgChS1xaFk+NT0sGI2XSL1XLD6ckZaZowHg59LAN+pyOEoGn8LVXQ+TwlB2XRsHdwyHA04fOHjxBS+r1oECKDgM4YsizCOZ8h17Qdeb5GhQFt1/bG6Z8/VwIQoR8rJ6MJRkR89vAZm82Gpm5IkowwTuiMIYpCpFI0XYcUEdr5xCYpoetaL3AJQuqqoshrgigmjGPSNML2OWb0I2jR56CZvoh1nfOy7Dqn7VrmyyWLfEltQEQJ9SanaSyfPHiGsf7iEUX+2Q4Cx85szG/8+rc4unHC/c+e8PxszrquWJ5X1LUjHHhK+NWm4v/0z/8lX/76q+wdjPjs88/giWNv5xWUEHR1yTgbkcQxSQRt1KLEHsMshchx584Bu1sDRsOENL7NcnlFEoeEBzEHB3vUrYGVx5A1tSYbTGhMy81bd7lx8xaz2YymaVksFmw2K9I4ZTa5wScffsLWdMTJswdsbU25c2OXZ2fP+fZf/DLazplOU7AgUDgczlqCENoOTi8W/Jt/+//ildfu8hu/9Sb/4d+9x3rV0dQ1i/mCJM5wBJxeXBEECRChRExX1ezv7rNeW/74j39C3nUYq3DaT1oEAmcd0vVFwUgwCbpVBElAU1VI19K2HbPZS3z1q0dUzRUPn14yGkIYNESR4fDGjOPnOeXaXAsjjLUkyYiqtHx+/xHaWLa2h3zjm68yv3qOFR237045PV4hnCVQAWkWodoOZMmmeM7tuyOOn89Zr1qcsMjAn3em84xEKYVPLriuU77oO/QvdPT/Uheu2joiFTG/vADnSCPJW1/Y5+7NQ5bzC8piw+Lqgsl4yCuvvML9Bw+ZTacMhyPSLKPrVYDgmYMOWCwW6E6jjVfkvUAl+YM0xjmD7jqEdb3woUMI5bO/nFeyOQSTaAJ4xWIUxv0DNaM2FVW17v1jXhzSNh1YQZT5Lq8oCtrWF4wXSjhfgCK/O4n9SC9JEqbT6fVBbI3h7OzMG3GbBsAnOvd7rvF4zGjkpfr5pmA+X9J2mryuAUmRFzR1xd7elEEWsFjO6TrnSdUIJtMZWjukDFlvNpxdXRKEgu3ZFOEESiiKTc7J86cs5nPiMGQ6HhBFYGyLM5ogVAj7wjknEL2PTkqJ7kUkQkgGAx/yuVmvPSwYS93nnYm+0CkpCZQPRgR8FpuEtvUmXwQIKfqRu+gtCnB5eUlZPuX05Ipf+ZVveL+RdUwnM7Ru+Oijj5nNJtw4OvDCDmuwUuAT0BRt5/cb2XBENhxxfnnJ6ekpo+mMw6Mjnh0fE4Xe+yeE4PLynGdPn7O9u8vRjQOQAelwgooStAOHwPadsJEBTkbUWvGsLwxV1bG7s++N4Y0mzQa94d5eq7e0sUjhcF13PVauqpIkzkAKH7rZ+UnBaJgSJiFFVVNWPpdNqcgXrNoXbBmECBnS6orL5ZqTi3Ou5pes801/GQhpO4FSsd+RSkera6bTxFNglOPOrUN003C1uiAYphAHGAf5uiB0AePBDpt8xY9+8i6vv3mIExXr/DlZnHDj8IsMkjGRUjjdIaUg36w5Pn7Owf4+ZX6FdZYwVoSRYL2+Ik28GKeuDGGcsHe4y2h7h7yt2NQ1t1++QaMD9g5uIwgoq5pHjx+zXq/QuuPo8DaHu1usLi4w7Zr5hWBvZ8IrL92irC/JkpAoDfm0eY7TvvBLKUApHJrOWs7Olrz+5ssU5Zw7d4/45q9+gT/+w09RyqFkzHA4Y7mqefJ4zt5uhtFzbuzvsJGWJIgwkSMNFKtNB9IxzlJaISmLBvOicXGSUASMBttsVsdkqUJKhzU1W1tDnj79BFzEW1/Y5823jvjk88/YFBVpkrL32k2K4iFlvsIZ/MTAaoqioqxqlIyQOIp1zXs/+4y9g5RsHDIcpkzHKU2t2axXBIFgNh0zmWa0bc1onPLlr97l448es8lbTOcw2nmeqvVEGF9x/WcR/rtNC3+pC5eUEVEywDDH6JaqLHj/g48ZpjGHu7uEB3teAVX7Ec2f/ukPuHXzDkmcEEcxdV1zcnLC9vaWp1uEAWVRsL2zgzF+Nl1V1fUojt6qrJS69kaFUUQUBxRlQRRFpNmwH+05giAmicMeKxUwHo2IOoEQhrZpaWxHUzV+32YFmzyn6zrC3sc0Ho+vPVoAYRgwGAwYjUbXpuK6rrm6uuLq6oqzs3OUFOzt7fXSdj+qTFPv93LOsVwuGQ6HrNYrqrohLytUGHliNJJbt++ArViv5lycnTIeb5FmY4bDKXv7hzw7PscYy+MnT8jLnK3tHcpiQ5YqsnjK6ekZTVMzHg4YDhIGw4S6XhMEIdZG6KYhCNV1VpTuWn9wW9vLar3vzDPz/INeVR5AG6ifvw6mF6PoPqDTGu3VoFFI0wQkadJTOULKqsA6R5qkfqQrPO/w5Zfu9obbnM1qzRe/9CUeP37EZr1mOhnRtS1CQByGjIYjmt6OEMcJUZiwd3jEo6fPePDoMVEUk6Yp4/GIzx9+xvb2FqvFwu+9RmNmkxHFZkGUJAwnO6gwQAUp1imsk6jAU/GdtTQamkLTOYUKY4JUUjaWIB6iraGsO8IwIJASGQjKqvJho1gExo81ewBz29UYA2EU44xDRQlKwiCLSAcpbatZrSuQIUqB1Y6yKnvup8BaR5oOmE63sc7RNJrNZk3Rlv1oUgKWOFWoAEbpkEgqPnz/XfZnOwSu49V7N7koV+hAgzJszzK63NCVJXEgafKG54/P+cpXD8nSCKE3hKJCuZpApQRxhHMeKjCdTLD6iKJI6OoVq00OLmQ5v2Q6HtF1FkTCZHsXgoSDox3iUcayKEENkOGQwXAKTmBaw/nZH1DXlQ8wzTJ2d7bZ+43f4v3336EpV+SrNWXlOHl6weefBPzab7xNohSBAKcAKb1KLwzY2k6QYUNeLLm4XDMeDXn1tSPe/ckTP1pOJpTVhiSeUNcromBGEjp0rRAmIFECLTsOtoeMhiOuFkvaZsNsPCGLIzZFQ1F6oIJzkvPzOWFkCFTI3Tu3qMpLLs/PKTYVh/s3sQK2drZ49d4B51cFJ2clebFkOIxQAVgjsMZjxXTn2y8XBDRth9FwcVYTRpI4nTAaTsjLOYPBiLbRXJxvuHH0ClJYri5zTo6XpMmA19+8wWrd8PzxguXcswilCnuYw4uTuy/49r/xS3/Or1/qwnV+fkFeljx/foIzBuk0m/mKGwd7xIHkYG+HGzdvogn4zne/R101jMdTvvKVL/Gv/tV/xdbOFiCuobWiN8u2bXsdB/Li8HzBz1PKy67HwyHGGMoiRwjLZDKjrhviOMJab1IeDkaUZcnJyQmXlyv297e4dWefna0Zy+WafON3LEqZXmHmozbCwHuIpJTEsT8QZ7MZ4M3DZ2dnfacIm82G1WrFarVCqYA7d+4wHPpu5QV+Ku+VZz5c8pDZbMqTJ89YrUtUGONQBGFC1zYcH58SipZQaQLh9y5pHDMYDDg9O+fw8IiPP/mYpvOBknVVMh5qtremfYHpyQmRQEmL0Q1KCHTXIPA4ISX8aExrjbaeCt8ZD3gFrmNkEN7QqJTqKdYekeSZfP790n1wqO/AfN7XeDwmSWLqqkIISdULPpIoIQwCZtNpj6jx77E1htu3btJUJW1dkyYxbdOwXq/Y2d5iPB4TRRFLvUIKCMKEJMk4fvaMp08f0zYVRzcOuXnrJkW+om0qnNacn50wHo6oiw1VVeKEI4q2qYo1joRsOsGJBIsPDtVCoITA9+IWGYATjjCSWOforAMkKIXus9gknhhjnU/K9v7En2dvAYShIg4Vzgls16K7FhGHqCAiiSLEJMQ6RdNqzzsQtr/YVDRN5S8bSCaDIcEhrLOYy4slbd3StpYwELjKMNyKGYYJgzBkZzxhazwhcIplvmFvNsEkLY6CJITJ0R7lyvLD7z/CCcfdr+xwY3ebNBZcnBREqsXZgrYRtG2EUCFxnLA12+Ls9Dll6ScKZxdznjya09Y5aRwxm+6ws3uLMDWYtiWyLdNkSBiPsTJGBRmL5cZf5hzMFwuatmM0DLm6mlNXHaNsQLFpWCyWvPVGxuPPH7G6sJw8uUJ/veVwf8BkoljngAqxrcE6y1tvv8runuDq6jlRFHJ28pSjw7vs7sScnpZgFOtVx3y5Qjea89MNk3v7zC/mHO0dMBpk3DyI0VrywYcPEF3EyjbEyhANY4xzfo9qHXVT8ejxM95685DRcEyxyWmbgldfeZkf/emn2A6SRJKGwGjAatEQq5imNrz22ks8fjjHCedz5swLXxpY5xMCutZnr1UbwWbhKLcgihICJTjY3+Ph51ecHOcc7G/T6ZZnzxZMJxV37h1x595NnLlPsTn1Yg3wHb3rvLcLP753WOwvWLl+qQvXfLHyAoG6RjpQ+Fu6ChLe//AjtHmVu3fucnY1Z7laIaVis1nxb/7NH1AUBTu72+zv7GCsoWs7QhlQdTWmF0O8OChfyNFfZHJ5v1DNarnEOIPJHUIGCKkIREBVF0gZEEUxq9XaQ23HKXVTsVquGA0HSAtZnOKM7OPUU8IwJIm9LHw4GKA7jXFelHF5eYHpWWNd17G7u0td1zx58uS6+7p75w6DweCanHF+fs5ev/d68edWqyWr1ZLHj58wGs/IqzWbwnt7mqrhq29/gQCB1R2j4QjZm1aNNmxt7dA0Nefn5ywWc2ZbU2aTCTtbU4TT1NUGKSxJEqHQPvLFtAg6RM+UdM5RNuW1sdvhMMb6iXffWYpeTuu9Tz4JGWevocHXi17rEMKDd8NAkaQJURxh8e+f7UUas9m2F6tEsYf3GssmzwmSoA/plDQKyirn8GiP/YMd2rYhy5K+6xXXGWdlWTAeRzijmV+dI51hb2eLGwd7RErw8MFDtqdjmnLj/UOJYrK/R5kXtF3DeDrGiAEdiqZqMSrEEmGFIBaBj67xLxRRpPzhYrrrEFCfgu180CSOQDriQKFUSKRkf/D450b2GLSgDzcV9KZnY8C0iMRhlUOJiLataOuWzXJFXmyQEg72t7m8umKQJVRNS1Vu6Nox9daMzfaafJ17f2Htb+bpIEJ2lqKuWFiFtF7IsjWb8eziGYNYsbM3Rrc5d29M2HnzFuNoxPvvP+T80XO2Bx137+yyM8qwzYowSREioO40mKSPq3HcvvsS0/WMvFjg7IxqPWE9P6cqSoQYEGczCIdYK2ltyDLvECqkNjXWdmhjWS3XXJyecnV5BQ4CFVHkjouLmuPqKQ8fnLE1S7k4W7NZl6SxwrQO02ju3NrltVd2eOe9S6qmweFQKqRqKl77whf57JOCpsxp65wo0hwcTnhw/5LPP32AVAFXpwuchSrQPH18SRYb0lsj4lAyzmL29m5g65b5akBZFVzMc/KqYzIMMDZikzdY41MvLq/WfH1wi1CBCBO6qmN/Z8L+bI+6WpEQ8PDRUz7/5Jyii8kby81brzMYhCzLps8U9GIe2ytTcS9sxIqT4zWLxZqzszO+/Z+9yWQa4azgC1+4xcnzJcdPz4hjxW/8+hdZri6JYkvdXDGdSm7eHPHowZoXZm0ZxGAtaZpx+9YNPv/8vl8M/gJfv9SFy3tPJFkSMRoO2CwXzLYzFstLlvMrtvd2SUdz3vnpuywWK8IwZbVaI4ViZ2eX9WpD+GJs5dz1SI9+z+K7rZ8T1ssiJ+q9Y/P5FThLkqaUTctkusVmU3B2fokUAaNBzGZTkecFs60Zg2FCkW8o8wKrXQ/1lYzHkz6BOPNJuHGEsLY3U85pe6XdYJBd+5Om0ynPnz/n8eMnWGvZ3vYHs1KeolEUBUHgx4rn5+fcv3//GqwbRYEP3EwTlqsV66JmXXSsFn4MVuUf8ZW3bnC4N2E08knGZd2ASEgGgp/85Mes1ktGkxE3b9xkPJzgrGF+dU5dtwgVoVAYZ7CmwzrTj7F6BaD2WUvOCq9msp7qjeA6kRledLj9Ay8EDj+aVQKc6MUWUuCMl/XHcezVV8IRKMkgS9jb32M4GFIWvqM22jCdTCnrirOzU081jwKsgzgOGAxSurbBOsl4PERJ0e83A6yxFEVOoPxreHzyjM16yd7+HgcHh+iu5snjB3z22ad88a03abuK2WjA9nTAIIsIaXCEpKMBVRtiW4eT0tMX/L/YGzI71+/xgL7jdc4ryqTi50qtvhvtcZqgDZ3zYZS9QwPbY46UlPiYEkBYgkB4cYi1OAIMAVGcMk4jxDihq9es8w2BdOzORmjjaDuNmA2xuqXTDU1ZUlUldV2zXC45Pj32z+yl34seHkxZ5QVRHDCaDDBWs1qskDLk1tEOEsv2LOOv/O43+eoXX+H05DHHp4/QRUXb1rguoW0FHTkq2iJOQjrtWK83DEcDdtIbZOWIIr9ib3ePaueQYrVhd++Iyc4RHYqqNSAiRBCgwoDEBXTaMU4SfvTD7/PuOz9mk298F68dxsI7P/2I5dWC+cUapzs+fP9Tjm7c4ItvRhTNCbrpuHP7Di/d3ePH75z50WSgEM5x//PPuftS3Jvva7quoSwuODrcwmnLxcmc6VYGpqWpLKZtyZdw88YWeam9C9poJuOam0f73LtzQJQEfP7wOY+enPH8fI5NBVYrNhuDBS4ucq6uNrx85xYudNRFTiAUwyjllTs3MK7jaZwzv3jGumkhSrm8WJJlGXmg0Y3vthw/vzAK6SvXC+VhVVraruO9n97n7stbvPHGa3zrW0f86ffe58nj5wzGluFIsrt/k+VqwdOnzxiPt5i+cZPT448RQlHUHdYoBqMpr732Mvu7Wzx7/oy2rX6hs/+XunDt7XtpppCC8WiI6Ur2D3Y5PTtjOhlyen7OOi8p65bbt2+xtbWNEIq6algsFqRZQhynWKv7xb1FqZAkjTxny1rqurwmxkspQXj8zZ07t5DCB+oNUfz4R+9T1y1pGtE2hts371DknobRtg1tW7FaL5mNtxFG4pRgmA0ZT6d0xrDerLm68sVwkKRYbbC9mvDFfmq9Xl9/Hx8fkyQJg0F2jZkqigKl1LUQ4/PPP6dpmmv0UxzHtG3tIcSjEZ0pGKmInf0xDx6cc3ayZJClCCdoG8Ps1jbL9ZrAGDbrnIePn6FNx9b2lChN+rGpF0U0ddOTBAxN0xFKixA/91BZ6+i6jrbtCILQ+2KcQzuHEC/WtVxL/631niOvCJR9R0avTvL+I/AHc5gk3nZQt8RRRBgEZFnKdDqhzEvvXxKCyXjshSnn5wwzT9dompq2bRmNxjRtS9gDjl9I7f3YMiAOJLPJFK0NVVVQVTm379zyI8T5FZOZV7OGCs7Pj9nb2aExlkg54sARDGP/ughogVAKnALbB3ga58GptidsCOixYV6vHATengCgdef9Zdobqo0xaGMw2ndYKgAhfOHXpkO0jixVPS1dUZUlTdsBks44tJXEaUYYx4xHGU2dYE1NKC1Ot7R1y2q5YmtrSpYmWC3JbQPGm0yPjrYZTzMu50vWm5K8aKhMy9nTc4wz3Lw5JMs8FLbKGxaLDboyiAa+/vY3eP3VA956/ZDLy9sU5QoVDGlNxOWy5PTqijhpmG4FJOmYMAxwCJJsSJINyIYDyvUl1pVs7045vHGPeDClUwFRq9G6L9Jdh0CiVMBHH33MJx9/zHq97mXm+E5Whnz2+XOcrgglXC0qlBJ89WtbIBI+/fwxgRSYruH2zUMEHyKE3wMa3ZJvHGXRMZtGqMGQ1aIiTSWRCJnNBG1tKDc5sXIY5W0LGjg+nSNlx+2jKQfbW6xXJZGSPuNPOl66ecjR3gH3Hz3hRz97l7Z1mE7SdALnDA8fnPH1t+8xHW2TL9cc7u1jTcc4G3N6fsqtwzvs75xx8tEFuzdGXF4smV/lfkznvLLX4f1XcRxhnfZsStOnJfe/R4ohjx9eMp1sszXreOW1HW7fHXF5eUpZzQmiEav1FZ2uEcJTZCYTwXqtGY4GBNGMW7df4tatm7RVgVLRL3z2/1IXrjTrwxNjD/V86d4dsjgCk5CkEcZB3RnCJGUwmlHmJTgNSAbDMbOZHwN1XYeUkZcRhwFSedJCHMdUVUUUxQSB4vLignVdsfvqFq+++gpPHj+mmlckg3Fv9A0QSHRn+MEPfkIUwt27NzyFu+tIkpjJeOJHRMbRtBVXi6WnORjj1YFhQtP6KJUwCDHOH+JV7Red1hqatmU4HJKm6bXcHfDqMq3Z3d2laZpr6fxwMCDqcVZpmvicsLwky2K2BjPCZEQcj9nZuuKVOzfZn2UcHYzIN1e0rad7L5ae4pEmCVb67C/Tx7Z4uZNBBX5U5bf2/e0NPAtOdzStNxRj/A1PG+PVdH1xe5Eq/aLzkpLe6E3fkUmvmDMWet9cEARY67shhGOxXJImCWkSecOx82pAb9IOaJqGssr9frKyyMC/Jk1TX1P9XxjPoygmTRKwDif9TimOQ0Jr2dvb9h2MNYSh5PLylM1mwSsv30UIT8HYOdxlmCVIDMJagiTB4IgDCSpg3VVexu4ETkgEgQfvEvgxqpX9e+hHmv5ZML3ARKCiCGENzrT+fXCGKAqQxqEkRIHs4c5euJLECYGUxJHPfBNKEcYhi+WastQEjaTcXJJlKW4Us9rk1FWBc5Jis8J0DZNRRpaGzMZDRoOAuk24uJqTJorbt2/QtIbL5YZad2TVmlrnjPfGjDKFEkPCwLFeLskXl5w8OeZwb8rtwyNG410Cucd6HbNc12zNppzP11xdnfLKazcpy7WPRjGOom6QhZf8CzRdJwmiEdYFVDUY5YgnGZFyBDYk0C22yKmqhuXlBX/4H/6QzfISr/XxB7Y2hk2xJkw0w0SRhIpYBEzGMcJVIHLGQ0WsBOVmzdHhLmGoUP2kyylHXTuWy4JXXtrD6Q26CwhDges0X/riHdoSnPPJyeeXGzoLqBApBVfLnKpYc358yXpecefWATORkCZDklAyHmSMBq8ShvD5kyuenGw4Ps+pO8fJSc5iXnHr8CbT8ZphHGOqls1yja4EkRzwm9/8Td7/+F+znFeYeUVddDjTTzNeXB6FQAWSSMXUODrneiSWQjeGcg2tdjx+cEl7o2E8jciLSzpdUtUOpGE8GlAWJU1VkWzB17/+Ms+OSywT9g5fJ4pHCCRJMkCI/x8Vrt/7vd/j7//9v/8f/drrr7/Oxx9/DEBd1/zdv/t3+ef//J/TNA1/5a/8Ff7xP/7H7O/vX//+J0+e8Lf+1t/iu9/9LsPhkL/5N/8m/+gf/aNrscGf50s5AwZiKYjjlMlgiBQGJWNaowmjFCtiTo4vKTdzbt68hbMdUSiZTqaYTrOar1FKcbVc0NiWMFFY0/WpxtIT4yNJHIRIJIN0gAoCFsslVV0zGo/IhmNu3thhPl8yGES88tItPvjgY8IgpKw2aBuQJD4+Pg4DinzDfLnx7EkniJIYiyQvKwLZXENo/fjChy+GkaJtG6wxzGZTdNex2qyZjMfEqRcitGXHnTt3qKqSZ0+ekMTeOJslKQeHh6gw5PJqztNnzxiNJozGMa12VPkCiWVvZ8B0ljLb32K+WVCWDZdXS+bzFUEYoQLFYrFgPJ0wHA1Io4S2bpF+kNd/CEBJcT160NphOosxYFEIBZ3zMSbWWqSS3opsNRIf3ikBqaTveqEvED7R11MrXO9T8gIOazxlIwwDojCga1tWyw3r5RqcI0u8BeDZs6fX498oCn30jPApzGHg6fZCCLIe2RQG3n5QVRX5enNN5dc9xLduC4+ssoZICfZ3ZshAoXVLEimyNEZJsNpiWk1nOozr6NB0GKJgglKgNHTG9fQLjyHDge38Els4h+nHOVLS5835Ih+ogKqtMc5SlzmbdYfAMZ0OCdIYKSzWGcq68aRuJDdu3KXtNFfzBW2nqcuS1WZOuVngXM2X3nqLGzt7TAYRq03D1XJDFAYUuU+1dUQ0nSEKBaEQ3NjdQyhFXjacnC1oi5yLxRVaQucsDz4/59bRDnvbA2bjhFESgPEexp/85MdcHj3n3u3XuHXrFaJYEIUbxoMRQndcPj/mYOuM2c5tFusNnZO92lKjjUB3HcNhSjYcIqxgVTua/Ip4U+KUQsUDpBTUTc1yMWd+dcl6eUm+WRAqr4gUSGxnyFcrdmYhX3p1n1gYxllCmqVkiS/+r965Sap8rl7Xet+dlGDcz323i6sNSt0jLxds7+2xWm+Q2jEedFRYlBCMBiGzyYQwzgijlDCKaZuazWrFxdmcjz/9lAcPH3O0N+ONV2/w1bfe9NOgWPDt3/gVvvw1y7//o3dY/sk7CCfIFw2ff3bJjYM9ylLQFSVbwwlPH18QBSlVt+HO0V3+6l/4Fb77Jz/j/GpJohSt1ggpoRcqOStoa0uaJSSJwtqy94/60eHjx2fEicTaOfc/P+HNN29xeHMGKKbTIYv5EmMc03HGZr3Gug137x6wvROy2SSE0RBtA3CCrtUvyFC/0Nefu1q89dZbfOc73/n5X/DfKDh/5+/8HX7/93+ff/Ev/gWTyYS//bf/Nn/9r/91/uRP/gTwRIO/9tf+GgcHB3zve9/j5OSEv/E3/gZhGPIP/+E//HP/8LGSfZcTeGSREH5/k0UsNjlWpnx8/5RP7x9TVRoXTFGBoalznzI8X5HIiG9+48t8fPGQTVdQdBVb44RhEpPGCduzHdI4AefY294myRKiMGaTFwglPTG8LplOh8SRjzmvqhVvfOE2OzvbFGXpiRyRN7J2VdmbYEOaziBRNI33wSCgM6ZHD4UIKek6Q5iEWCBOM0aDDGMNzmhG4yFCCcqyoGlqJtNtiqri7PSE3d0dnOlQwnFwsM9LL90jHQz43vd/yN7uHp02XF5eAJ4UPx4P2N3bZzwaM1/MQUg+e/wcozVx7LvAYrPkYP+IKIpJogThIOjFEg7Q2nm1m/AHgu58oaX3rDkEndYY1/n9jHU47a5VhLaPRBBCEOJvpwBOSl/Meiq36Jc4xtjelW+R+GIvHURhRBSGvtDhu9TNpqJpGrKeOF83Fan0ENw49l453bW9OtFT0zvRUtWVj1yBvrMr0PpFHLoFaX1OW+gjdoSA5aomUB5zVbUdGEtbt2hjccoRxl7hWXYWq1uUDqh7U7cM4/6W6z/VUkmc9mXLOYfs97oiCH2XqyBNUwZpRBUpis2afLOkyOHy/IQgcIxGGUkywJAyGE7IhjMuTo4ptCXf5PzonR+ztz1iaxKTxQP2thKS2PjG2So6HSOk4MHD5wzHI4bjMbiCUEp00xKi0J0hEZKjnW0uzs4InUU4hZRDVos5Pz09ZjqIeP21EV/98g3i0HDn5i7rxZyqanj2/JQ//t67vPbaW0wnI8oi541XX+H0+SXv/+SHbO0dkw5mqHSEFjFB5OiMIh2MWW1qCtkR91J/IUD0lIqTB48IopCt2YwoEOzuTPnmr36D9372E64uLvt/o0EJwa3DQ7751ZcYqRV3D6aslpdMZlu0xjA5vEPbrBgGGbsHNzlbuL6jbbFIlPE78mLdYLuIfNOxvb2PaRW6rcCtyJIIJQOsdd5Q3SzZmw4YZAmdjrA7Y+7ePEBrx9XlitXlnHd+/AEv37hJEFiCJKStcwIZMR0rdqch+VpjjOJnP/6Ycn3Kqy/vEwpDftUwP73ySLEoJklHfPPLbyBcyHf/6PucLwoCATLw8U5S+DBIHNR1g5R+fIjo/YF4vFVVWpq6QoWO+5+uiOOE23cOubh85lPBF2uGw4jRIMXZFik6kjBkdrSLMUPK2qENVGiGg4T51Z/72Ad+gcIVBAEHBwf/rV9frVb8k3/yT/hn/+yf8bu/+7sA/NN/+k954403+P73v8+v/dqv8W//7b/lww8/5Dvf+Q77+/t85Stf4R/8g3/A3/t7f4/f+73fI4r+fK2jeuFxcj540KL56KOPGE3GiDCj1h0//LNPma9KnAo4u/oZOztDcA2BCCjmG77x9mtkg4yiLFkVBZPdjMl4zPZkwuz/096Zxlh2lef6WWvPZ6556O7q0VN7wgNudwBxr9yBEEQG8QNZCKEEJYKYCASJBJkcIkVGiZQoiRB/osC/WCQKJJdAbiwbHAhtg4e23R7a3W23u7u65qoz7nmvdX+sXcd0AHPthDaNzyuVVHX2rqq1vzq1v72+7/3et9UijiLanS1UVuB7Lo7nEEWxaWCiSaKYJMtJE6MlNhj0TH+l2aTRqBFFA6oVn6BSIYoigmaDpaUVQ7nXgjjNKJTGcixTerBtXMvGlja26xJUgFJfbrs/FZVzNmmakaZ9Y+BnWTTqDaI4ZmJikiyOWDx3lusOXsPU9BS79+5h8cISYRjR6XRpd8xslZQW4+MTzMztACnY2tpiZWWFpaWl4YBvPwzJspSpqSmazSa+b+Z/tksMShlWVVoYAzkpjaJDkmbGDqRUrlBKGWsVnZqn1W0CjAbLNeQLnRdIy7DpREnCEEKUQ8ZmNkl9n6r0dnKTUhqRZcxIw8zMNHEc4zoOFd/Mu23rO3a73dJLyrhcx3FMvV6nXq+jlCIMjZCv43lkeV6q5ScIBF45F5ckSbmjNPqHjmOR58ZRutFoYru2IbUr8FwflWuwFNoqLUBUQlxoCgTCcspeiUIr43+lywF3rXPD9mLb9LRACMdI9kpNkRtJHWFBvVGj1azh2gukacTqijE73NrawrIi9uwdp9vr8fy3vsVGr0sUxyyvXGBpfQ3Hl1x3/TXMTdXJsgEkZje5/MJp4kyQZII07rK2kuJ7mumpBo4lEAryOEVIiWPbKK04sG8PSZGz1u0RRxmuU6Pfa7O2HqFVwux0ix3zNQZRl/HWBPt27mNjvYc83+ah736X+fkJ6tUa1x68jre89RBKWJxb2qTd67Bzz1Xs3rkbjU9vkIIl8B2fJMkQ2hBRAt/HdS0zo7Z6nrPnzvH2//W/qTUaCOlz3XXXs7W5TqfdNuMEGE+9frdHGsfsvGIHQveRQjDWarFz1wKCjI2Vs2yubpJlNtfe/HYO33Yl//HwSTZ7Cba0ECLHFpq1lVVWljbobfXYs7BA2G+TxCleSY7S2vytszgzO1iVk0YJ9XqLWrWGVpKZqVmKNEUlIRdWlxEUIBXdMMKt1HHR3Hz91YRhji4Uve46edhjY2mR/XsXaFXHWHxxGc/18DyH1ZUlLD9kYqzKrTdfy5nzFwhjM4C+1Q4NszozJq5amV29b5me6zZbXill5q6URhSC1QttsqSHLRdojTUJiwGenUNmkfQlvuXT7xrt1zSNSLMc26mRFzlaxUxNNjl79lXd8od41Ynr5MmTzM/P4/s+hw8f5p577mFhYYFHH32ULMs4cuTI8Nyrr76ahYUFjh49yu23387Ro0e5/vrrLyodvvOd7+QjH/kITz/9NDfddNMP/Z3btvLb6Ha7AOjCRuVQqQZ4gYdjSVY31ukMQmy/SacP7W5CL4JM51gCoqyNJRW+7WBryVavj+VazM9PEJ8bGHUH2zz9d7td1tfWKLIc13FAV0iyxBAiyhuVkALX9agEAUUp7Br4LrZlkaUJjXqNTqeNKnKKQhEr00hvtpokqSIt+mjMtlkrjdAKiaDVbCIsm26/Rz8cGJfgIifqG60+KU1pzrFtpqamGG+NkWSFEbXMMrI8Z2FhN1mW88LpF0nTnK1Ot+znWVSrVUBy1VVXMzs/z8bGFv3BgKXlJTqdzvCmHA4SLEuyc+dOGs062zmjKE04VV6UEkcOFFkpXiwRWNi2C1ohlDKW6XmGKndahVZI1NB7a9s3rCi1Grd3YVIYUoYuNRq3VSG22YZC2iUjVBnBYN9DAZ1uD6scHC+0olKrIoRJ9kpAUK2QJCleUEEVBWlm5t3SLKHZaIAQxEmHrCS9GBkvjywr+6rlw8I2PV1KMRxLyLIULTAWKo6ZvxGOi0ozikKQ5qXkmOMNB1i1hkIVFFmMKPUQTTlQILQhtli2RZFDqnNcx8iEKV2g8pwCjSVN3zEX5gFz//79uK5kY2ODTrfPoB9ybnOFta0um/0B6+1NorBPN445t7TOQ48d57abDhK4CknE5ESLPOsQuDVmpmdZW14nU4oLi0tMTY7h2A71So1Br1c6a0s6vZCK0tx+++1859FHWT7xEpmwyUsprrGJJi++tMLU1DheMMH5pRXi8CU2VreYmZ+lUgvQRcJ3v3eMXj/mzbcd4oYbrmOQHOPMuSUGvQ5ZFOJXPXxHkua5scJxXbKsfI8UOXmSobKEAwvzpP026aCLqFexpUuz0eTgtdcThgMWz53BleC5Fp1Oh9OnnueaPTVarSpJNGB9bYOx5jg75yZY7PepuC6djS3ifp+3Hb6ZZ5+/QK8b4SCwHJieaOJbFtPjM9i2w8Zqj3RQkMQ5hYzx3Uo5X6mo14ytUJ5mtJpNqrUG/X5oNElL0W9HCkpjEBzLRauIQbdLmoFKCup+gO+67Jicw3EmyYsBaRTSzQU7dkyjCrAcuyRQbaCFz9zsGBMTddJC0esP2NxqE4YD4jhm0BsQJRlppkiSAq0lllO2sbWFtCyjmVhkpEUBhWZrrcPkeIuxehUylzwtkEiSgcOZUyu86U0TWFLx8EMPYjs1duzYg5Aus7OTrzb9DPGqEtehQ4f44he/yFVXXcXS0hKf+cxneNvb3sbx48dZXl7GdV1ardZF3zMzM8Py8jIAy8vLFyWt7ePbx34U7rnnnh/orQHYdp161aPbb9Nut5memeTmW25mZW2TjXZIFCcEgSAuBHm6Xa6CKIZUF8xNbat3d0Cl7NoxQ7VRp93ZoNfeosiMC7LrOEYfwFPGAHL4+20c1yUIKiRJQpyl5Flm9NIco5GWpylpHBOZ7idhFOF6HpbtUyhjqpjlOarIsYSN6wTUa7WypnyGKEkQQxJCDkrheab3Mj01xdzsDL1uh7W1NZKswPN9hFLUajWS2DzlCCF59rnnCapVqtU6YbTO+PgEO3YuYNsOa2trbGxssbG5SbfXHQ4HCwQTE5M0m/VyDiw35JHEKKmbGRBD7VdKI4SFsGyzQ5BmqBldkKdxObMlSkdmxyhGl9OHtm2XrroCLfVwF71N2NBamV5fSUSxXQetzF9TKTXUihSl/5nSpi9oCegPBoYdurU1ZFeCmVnxfKOqX63WAEMWcVyH/mBAnhflTtIqrV9ykiQxYwaBUd/3PBeVmsSV5zlpmpYJzZArlAIltNGREza249PrR2jp4Xo+hXBIc00YR+hyPMJoNgocx0UXBQLT58zzBMvyESgsaSOkoFBFqVpvyCoKDPVdaYRtmJf9rR5CWNRqDcAmjhVqo8358xeIswRpa8KkII66dNonOffSEm9/640U6Rqd7hpFEbJzapZKzePaa/bx0rkNNjsDHn7oEW688Vp2zE6z78B+UIooTmiNT7K+1SEqFDvm5+hEMb0oxXYtHOniuk2uuHIPYZLSGwwY9DSDzjqnTq6yY26L/fv3UKQZ1157gMGgz9NPP8v07AKe55HECcefeoqXziyRFTYLew5w4823lIPvLk7gk2cFGoXQ4NiSSGVMtJosnn2RoFphZm4XfqXCgX37QWWMN6ucOvkccZQxPR6wtdnmuRPPsjVRQ2U50SBnZnKOdVkQ9/vsP7CfxdUOaxfOcWDPFLdcv5s0jpmdnWNt8zyBK1hdukB7a5OdO/bQ60RUgwqWNC4UAhvb9qgEDr12l0a9iecFWNIhixPS2JTX7VJpPy3lyjzXxnY8xls2vucTJxmr65tkRYHvWtQDD8f1yAvLaIsmOa5TQVGgkGRFQZrlZUsiMyM/haJZdWnVZ8rSfc6g3yNJcvqDhHanTximpHFGUUC/H6GVQjoOrVqdQRRhqZyoFxP3MxxbcObUIhMTUzRrTVzL59yZ5xlrNti9d4H52XGeO7HISy+cJQiqVGuNH590fgReVeJ617veNfz8hhtu4NChQ+zevZsvfelLBEHwmhfx4/DpT3+aT3ziE8Ovu90uu3btYmOtR6fdYWZuHA+PbqfP7NwMamWNSuAxPubQDxOwQpzYlLFq1Srra12KTLFr1wI7dxnjtCiKmJ6b4ro33cTU9AQPP3yUp586jhSCWrXK5MQEtWrV7ApUQV5keJ5vhnrb7ZIJZ1GtONila6slBUWeEfgermMTJ2kpEVVha6tHkpqymG3bw/kj0LQ7WwRegGPbxkNKKfNG00a6Z2pqyvSwlOL0qdNlqcqm0Wjw/MmTjDdbTE6MIYSkH8YMopharY4qBwt3LSwgpMUgDPH9gLW1DZZXTfkyTVNs28x6jY2NlVYqGXGSUAkCsiwny7bV1hW2NHNQaZYhpItWGCUILSlURp6l5GmKLgqKPCdVRkvPti0sx8G2TTlS5WpYyvMct/x8u8SokbaN9X1zXpQ3p23rF8sSQyV9Y1HSoV6pUgmC0uNM0Ol0SJJkaAWzXZoOw3CYoOI4Nj0IPzDjCGiS7GXn6DzPCeOIrMhLm5LcKFfkppcXRRGNZgsFCMsmHITkuUIKcwORloOWrrEZkYpcCYQl8bzAKI0LY5GOzkmiENd1QIPn2gih0BjHgDxLEAKjsygUcRwhtMYtxzrQCkvqUmuxpNS7AX6lwvzcHOeXVuiFCseVtKUkjHJ0pjm1sUG9coID+2skF9rkyYCJsTEmJ6a4/babEeI5ktPnGAxCzp9f5pqrrsLzA9bX1uh0u2SZohCSJE2xLEG16hJlMUJAkuScOHkerRTNhkN/sMFVB3awY8c0nl9nbeU8W5tdJifGsAOLvOjT7SY0WopWc4IrrrwSRIXTpxfJU81jx46xa+9+pqan6Q9CijhG4uD6HgiFa3vMBh7Ts/OcOXveEHuUGWafmhhnfbXB6uoqURwz3qwwMzNGHq6jpaAfxYTdPp2NkBPPnaJ589XMzsxQrwbsnHMIs4h6rcW1V81x+uRp6hWNJStIlZAnBTU/wFKYG7hjk1fNw6RnO+XcYUBz5zi1ah3bcojCmCTJadWbNBoNsqyg0+2SZIlR+RDmIS1LEyiMaW2zUTXvFRS+74BQhFGBJV0s28F2q1iehR94JFlGXdqkpQlmGIZmnCLPKMresbQEjWqADmCsWWfH7BSDQUSRK1QB3W5Irx/R6w/Ii5SJpk+U9uh3BqxcWMFzAuJIs7XRI48kzUYT13bodVLCQcibb7uV6669mSefOMGTTz3H2TNnXnNO+G/R4VutFldeeSWnTp3i53/+50nTlHa7fdGua2VlZdgTm52d5bvf/e5FP2NlZWV47EfBPN16P/D6idMvMOinXHfdPM1mBccVvHDqRaRl0ahVcOwc17GZmdOsrPeIBimqgL6liVLNhfPnqDlN/tdb7+DG669mfXMLKaBer+G6ZtfkWA6tsRbj4+NkaUyaJWbbnSS0y4TlukbRXQjDisuyjEIamqkEkiwnjGJTqlKKKClASBzXQmFYbZYtEBKicIAjbby6SxFoktTsuDzPY2pqkomJCeI44sKFZbI0JvB8qpUKtm3x3PMnEVKUxpIMva0CLzAzOo0Gnl/hwvJSuV6b8+cX6XQ6DAYDiqIoreuN3NT2TmPbnLIotOkliNIcTitDqxKGnKClQ64EaZIRZ8ow4oRFv9+nyFOELKWwakZ13liaKCQFtiWxbAcw5S+xPbOltskbDlKUPlvljJIWAsfz8CxJEASkcUiepibW2zRnVZArsxvK82xoC1NxqtiOQ7fbNZJQUiAQ2I5DJaiQ5TlJGlOtVrFtm0G5c7OkJM9M36taDYYWOts0+lq1SpqlZqebZGRphm2ZUlmhBHkhsVyJ43ok2kIKG9e2SrZigVAax7bIsnS4m5LSJGXQpnQjBVqB57lG1UMrHNtFK6OvadkWruMYu5g0HzocgHlgqNeq3HT91XR6GyR5xHirweL5dfNAZ0tOnlzEd1vMTwdEg4jjTx1n8fwy7/nlPezbv48ot5hf2EOWRaxvddjc2sQSEsetIm1NqgQiFTi2jyU1lswROqPbTUAJTp9eZGqizvr6Ju21iLe9tco1V12LqUMrkkSB6+G4DfLc5vQLi+xa2Mu+yhSVxgSN8V1sdULOX1hlaXWdQliGdOMFhGFC1A/RWuG4Fp5rFG8mZneWQ+o5bl5w/Pnn+M53vsX6+jpJquiHMVpCa6KG7fkISyKtgm5vi2dPnGKs4bJjtsYgHBiyjsrJwk1cGTIzbuHXBbZj41cktZpDkStcR+I6VRy3gufXGR8bw7FthFIUWU6zXsW1HWzLxcJFF31DxrJcmrUqjXqTTBUMopAkjnAdm8CpoIrMKNLkOX4lMKMcCAI/oOl6LC4uIy2LXCjzf24HTI3PUBSKNMnQRUEWpxS2whFi+LCGKhUzhMZCYMkC31HggCVcqoHD3OwYcZKSFebeFMY2cd6n322T2gmthk+/H0FQYW11mVrVQmljbuq5AbPTc8zN7mf/vmt47LHHOPr4k68p9/y3Ele/3+f06dN84AMf4JZbbsFxHO6//37e+973msRy4gRnz57l8OHDABw+fJg//dM/HUoRAdx33300Gg0OHjz4qn///77jLTz2yJMobaj4tl3BsT0Gg4ha1UMKi7x82qvMN7Gkz+lTZ2gECnKI+l1WljPyPGXH3A764YBnTjzPsyef5cL580gpmZ6eolqtMBj0ydKEQRiSlpYo2zqClYqpW1P2WlzHNmKpaWwGPYWFkNooeEuHMElQBUjLNxYBgdEAS9KYwPfxHJe52RmefvY5o5Qx1ho+DKytrROGA7TWVPyAudlZijznpZdeot/vsWfvXoJKud68oF6vU6nV2LlrgU6vy7nz53F9j9XVDQb9kCiKGYQDfN9ncnJy6ENmrDwMAUGUN05TPnvZDsN1XfK8wLY93KBaqrdoGq0GWXsLrYyumu06+L6NlJQ/37gu+75rBmaFEZjdnt/ank9Ls8z0szBWJ6pQCCmNOrmUuI5rZu62CRRhiOPYOLZtSrtK0e31CAf9odmmZdvYwuhTZllGmmTU6kZT0pA/NFmZrOv1xrCcaNs2juMYhfYwpFKpIKUNmHJyoQpUYX6fX60ShiG25+OUxIuiUKR5imUH2LYHtkuSlZJW0ggx25ZlRjC0mdNytgkeRUFBXvYVjUW6bUniKCqNI1VJULKR0sKyjFlMtVqjVqvR75vrd1zzPxHHMbZVo14tGMQ2c9MT7JydJUk0a6urdNurVCo2jhuQRBFZWrC23uY7Rx9mav5qZud3kStFXiRkKqNINfV6gLRtkjSlUBaVmk9RnCMM2+zY0WB+R5OzZzosnu1SZDmbax2ktmhvRmyudgl3pMxO72R9dYUid8GrMzUzQZZpev0Y120SRRlKO1hOBTeQ7NxT48LSMmcXF5menmV6eg4hTdLQQNofsLW1RbfTMfcbVeA5NlLAsccf4eSpE+WOBXphxoXVDa6/ao5zF9ap+R5VxyGoj7O0vsmzJ8+Qqxl6YZcrrtiLYyk8W7NjusnunS36GYRJjso11UqdjfUtuu0+4UCjZECcFOxeWGD/3j00qlWq4z7Li+dJo4hWs8n0xBSeWynl5Rzy1PTPhYZ6pUY1qEJRUPEMczKKQ7L1FdbbG2R5Tl5olHBoNlqE8RKTUy02231TabI8pJVSrdZI4pB4ENNqThCnMf1wgBQpQlrowpTpHctCy5wsj4HMEDMwpCjLtgh8i6rlonAQlk+hY5ACiUeaFbS7XdP2cG0qNY9KrUat1uKr/+f/sm/vQa6+6np2zO8kCuNLk7h+53d+h/e85z3s3r2bCxcucPfdd2NZFnfeeSfNZpMPfehDfOITn2B83AiT/vZv/zaHDx/m9ttvB+Ad73gHBw8e5AMf+AB/9md/xvLyMn/wB3/AXXfd9UN3VD8Oew/spNawUVnG8tIig8EAhMXKcoeNzR7z8zPYUuA4EtcPKDLJzEQVncdMjnlUqw5ShDzxxOOcfO5Zzpw9T6ffx6/6OLZFqzldNuRTokEIWuN5HrV67eWhXzBmhXlOpVKhVmuwtbWBLS000tjQI0izHMd2QBoeU6GV8baxXVMSU0YsFhS1WhWBwHVsdu3ey9jEOKdPv8CFC0tIKRkbaxnzQGFRFIqtrS3W19dpNlvUajXSPKMfhjSbTXbu3EmlUuHC8jJhGBLGCReWV9BaE0d5yagrjSd9d+j5FZY0fiklwrLMjSDNyusud5PSxnUElrSRwsJ1HTOzpQW1eoM0DYlUim07uPbLDMA8L0ojTBsK445aaI1j27i2TZ6agVqlTYnQkDYUCkNeAWPjIfIClRplEMe2mZycIk4itFbkRXmjV7mRVuJlVX/XdcnSDCmsUotQsra2jpTGnmb7utM8Jw+LYc8vSVPQmmopsBwnMWiFbQkalTpJbOapBv0eSuUUWWrKnqVfnC0lnh/guh6JMnT+bU8WrY1Kt5SSPE1KpZCXh7i3NRqLwiS1KIqRAnzPxRJlX08ZynyWpXieQ73eoNvtEMcJnU6XWsP0Km1LEvgOjdo4WjfphxFZtIlKU3bMTTA3XaEaSMabHkzPkmUZ/TAhU5J2b4Bf8Y2zsueAAttzUMJHY5EUGRrJ088+x2PHjtGaEuzbN0GSJOzZNcfZF7dYXuzSXu8QhykUcP6lZZpVm717d+M5dXYvXIHlVnCcCoMwpt5wCMOMOIzIZUSS5li2RxZHPPPcCaSEbj8EYTM5NYu0HdIsJajW6UYJLz79HH61gS3Nw/Zg0GVlbQ2lTXnf/H2h003JcZjduY+1C+dJopCdC0Y2ab0bYi9uEMYBvu+zb+8CWVEwPzPJrW+6jq8/eBTfs/EqxmzU9KkTI37te6xtbnH23HG09rli3x4sCZ7fIAkzNjc6uJaH47hlD1YSBD5pnrG6uo7ne8xMz2DblhH1xpB+Go0xbC/gwsoy7W5ElGjOn19jbb3DDW86hGaFF86cJSs0vl9lY2PDJMJ6nTTLcByPZtMxSjYa0iQjjVMQEqUFjuvx0rmXiMIE13GYmposxZsFQhntTte2CAK/ZJXW0EIa4lmSEYUx3W5Ioz6G59WYmd5pZKS0EY9eWVt91ff8bbyqxHX+/HnuvPNONjY2mJqa4q1vfSsPPfQQU1NTAPzlX/4lUkre+973XjSAvA3LsvjqV7/KRz7yEQ4fPky1WuWDH/wgf/Inf/KaFv/8qWfIophuu02WpmR5QRRnrK4P8D2LickJEDl5lhBGHVQmkcQ0ahK/EqB1ge9VsW2jHmC7LvsO7Kc36CCFxnakKVsh8H239JWh7KOUagUYz6tKSXff2NhgMBhQrdXwfZ9BlJAkhsnXaPjG0t7VSKnxvSqu4xJHA+LM9AQ816dWrdIf9Ln90O20ex3WV1d58YUX0Ahs1zF9rsYURZ6xtLRMr2sGbScmxvE8D6UUrVaLubk5CgVnXjrHxsbG0KbF+GUKpLSZmJigWjWMu7gcwDVDhwWWbaOEYRBuu+zmWWFu7JYp21WrdXy/BpaLFi45ijBOyQEhjIGlSm2kfNnZ2JA6DBVdlrsH17JL1l+K1pp6vW4sR8LQyPVIC5QmK40utTZK+eZ9ZYZ3XN8nzU0zmVKQ169WqAYVkiQ2ShrSUHxd38fxPLqDASDIlELlOVGaUElSlNbkeVoacEKchEObmG2Sh5SSNE7QyiJOEpI4xnYs4iik3mziuj6BX2EwCNGFplqr4/hVstLqHW2YiFLI0kYEVDncbLzKyt2utEzSV8bVm0LjO65hUyrTd9vebcVxhF0y/M4vXsDzPMbGJ9jc3Chn2CwqgY9nN4nDHmka48iCVqNGNchLU8EWjXpALfCoBgFCWLT7IevtCMv2kLaDZ7lICyzbo9eNSMIcLRS5FihSvv3wUQaDTaZ3tpAiwbUTVNpmbipg1/QkYb9HGivyOGesXmV8rIFnecxO78K260irgrR9cpWSFwXraxskSYFKUgrLQlo2mxtrbK2vgtCEvS46L8iznOnZHTiOTafbxvMDDv3cW6gGHkHg091q0z8TU22M0x1EZElcamAK+mHOyRdWufnGq3H9JnGvzfLaBrkUvLTcpT2I0WKOWmXAjnlBlERMTNZZ2LELx36EOE4IpA9aIC2bSsVhYfcUiW7gVOZ54fSLfOfhJ+h0Q248eA2WVkxOzeNY0syEKY0qNInKyLMcz/fYvbBAnqel+K0gcD20EKZy4Lh4SUKrNcH6+jooqFVrLI2t4Ng2uxZ2EqUpfhDQbNVJ44QiMyzGwaCHtowSTVayWm3HIsshLXKjVGO7jI3P0hwrSOMY1w+AonQ1pnQnKMrdlYfrVkizAqfiUa9a2NM+QdAE6ZNkgoMHryfJCnKdI5Vk955dr+m+D68ycd17772veNz3fT73uc/xuc997kees3v3br72ta+9ml/7I3H+7HlcS+J7LpVqpVRgkOzc5bG4uESqCmxbI21NEidMT80xP+exurGBkC4IQbMeGBdXJXDdgDhJDEHAtfE9jyxJGYQDsiTFdz380hxwm5Jfq9XIsozFxUWKkvbt+z5pXiAyo0EnbJtqrYHjueUcUoLWmD6abdPrGDai51U4cGA/juMSxwlPPHEMpGRicppqtcrmVhsv8JmanqLf7RENBkSRSTYTE5NMjI1TbzQoyjLb+sYmW1ttur0+UppylWU7IIUx03QCpJRDzzHjISZJU3PD3ha6jaIYqQWO5QwtX2q1GmDo5tKyiJOUJM8YpIo4LfACj6IwTMNcmWFkx5YlHV+WfTOJhTDkBqXwXGcoeIwwFHAod0rSQguJLgoGA5NE0izFllZpgphx9txZU3IsZZJ0UVAU8uUJ/bIUWRQm+UZRRJKYXaSUkjiOkVKWmoVmXktrTRxHxlw0z8myDM/2yhkrbebuHAfXcUkiM+TcbDbxgwAhLeMgXe6gLNuQL/I0QykL2/LKMrKhGOeZGZnYts6RYpuFKdBa4GjQlm0sIbQxnrSkJPB8U1ZF4Lo+Wpsh9iCooLWi1+vhuKWzsm8MR8NI0eumRGGELQWBV8H3NdKSplzkuqSZNruHeoPWeBPtxWxshYTdLrV6syxjaqQTECeGxOL4DmfPL7K4tE6tJoxCSZ4QDzbJU8H6UsQVB25AaoH2XVTiMdFoUa9WqQUN0tyIyEZpxtbSBrlK2bljB7OzFlI4hFlGOwrJCsGu+Vn27tlFFIf4nk+zUcVzLKQws4G1ikeYanRhjDHzQtMcG2euyAkqNaTjcebk82iVU2gj+Hzm3CaC55lpBeyZ38HYeI2Tp04RqR5Zp4CTq1Rtn8cfe45du3djyQHN8WnWVzs4VR8wogFaW9i2z+TUTvpFFb8hsewqzxx/iieefJ5zZ5a49cZrsOZnmB5vAgohSm1SKcnyFJ2Y/0dLSpxScDnJMmzPQ2hpyFHCQ9qS3Tv3kGcZlhS0mg16/T7CsVnYNQ9CksQx9VqNOAxxHQu/4pNkKYM4Igv7xnanrIQorUFY2G4FYVWYbNXRyni7qSIeMn3z3Di5K1WQpwVUAyzHRymBH1SpVOtIq0q3m2B7FZI8M5sBUlzXxw+c13zvvyy1Crf7HgKHKI4ZhBGNMfOEWyAIKhWm5+eJoh6BH5AXYGkN5ZCs7brYts/G1haDsI9n22SpokCTkSIoaDTqSOmQZYpeLyIMQ+ZnqxRKsNlu0+n2mJ2dwXYDY0Q4MGaHrl9BSYtcCfIopRAWwnGJU0WURuRZTJEXplyUKfIiJVMK16/QbI6jkLxw5iwrK+vkec7u3XvIc02WaaRt2GiLiyugNYN+nzQ29Pt6s0W13iRMUtbX1tnqdAnD0Az4WjZ5lhEERl3e3Khd4sQ4PbuOa5JdrowLqm2jUqOYkWY5SWzKamGaGPJJoYnTNrVqHS1i7ESDcBCWZ2SJLMnmVps8i6j6FnmhyZOMLDOCphYYV15tymWubUqeaRYO57eqjoMWgjjJGCSpKelo848ihDCSXo5r3KOFIXOY4ckMS0garkeWxCRpaprFmF5RpVrF93zyIifNMlzXJ04SeoPIsP+kBqnIigxdEmqMPqTRMXRsh1RocmVKjpZlkcUZuRJDia6406dWYPyzNOSZ2bWLfoiwBVEiyHBQsvSElRmyTFxKaTOjhUmKlNYs2+/7bRuKoty5SscmjBMzUqE05gZoRGPV9sB2oZC2pNPtE8ZWWbp0UblDoT0oCrOTtzRxlpAlMVGaY2mbOI5Y78Qkec7i6hp+tYHGY3HF7HQs20KKCq5bRVsW/XaHb/3nw0axXktcJ0AKyczsLP3OgPNnuuXN02YQpth4BH4FrQSddp9uPyXTPTZ7A547dZI0i5ibm2H/7v3sXTjAdLOFHfYYRCmgufaaqwnjiKIoqNcb1Gs+KkvBsgxb07HRqqDX3jKGqWWpvlKvMzk1w5nTLxgij1amtJ8qzp1fp7smCXs93va2mwhqdYS9QZZCp5+zsZWweuF5olRw3bXX4kSKxcU+u69skGVQeBa2EyC0R5IqLNdDWALHq7Jv3xVsbayytniB+x84yu4dU9x263VMjrUoSokvaQlsx0Jp6OkQqbYHeUBaNg4SJQRrG20saZEXGZWgQhA45n8ACPyAQhjVmTgpKIqMC0tLZKWzeq3WoNFqYfs+0rHLB6yYPCvIc0WeS7IcKpUWaWaEnV3HN6MGwmIw6JnXXIs002xubuB7BWOTs2gNWaaJYk2uIgpl4xc2g3SA0hme7+G5HtK2LrqfvxoI/Vq+63XGCy+8wP79+1/vZYwwwggjjPDfxLlz59i5c+er+p7Lcsc1Pj4OGMHeZrP5Oq/mpxPbs27nzp2j0Xjtg34/qxjF55Uxis8rYxSfV8b/T3y01vR6Pebn51/1z78sE9f2EGqz2Ry9aX4MGo3GKEavgFF8Xhmj+LwyRvF5Zfy4+LzWjYf88aeMMMIII4wwwk8PRolrhBFGGGGEywqXZeLyPI+77777NQ0tv1EwitErYxSfV8YoPq+MUXxeGT/p+FyWrMIRRhhhhBHeuLgsd1wjjDDCCCO8cTFKXCOMMMIII1xWGCWuEUYYYYQRLiuMEtcII4wwwgiXFS7LxPW5z32OPXv24Ps+hw4d+gFzyp9V/Md//Afvec97mJ+fRwjBV77ylYuOa635oz/6I+bm5giCgCNHjnDy5MmLztnc3OT9738/jUaDVqvFhz70Ifr9/iW8ip8c7rnnHt785jdTr9eZnp7mV37lVzhx4sRF58RxzF133cXExAS1Wo33vve9QzPTbZw9e5Z3v/vdVCoVpqen+d3f/d3SzuHyxuc//3luuOGG4VDo4cOH+frXvz48/kaOzQ/DZz/7WYQQfPzjHx++9kaO0R//8R+XjuMvf1x99dXD45c0Nvoyw7333qtd19V/93d/p59++mn9G7/xG7rVaumVlZXXe2k/cXzta1/Tv//7v6//6Z/+SQP6y1/+8kXHP/vZz+pms6m/8pWv6CeeeEL/0i/9kt67d6+Oomh4zi/8wi/oG2+8UT/00EP6W9/6lj5w4IC+8847L/GV/GTwzne+U3/hC1/Qx48f18eOHdO/+Iu/qBcWFnS/3x+e8+EPf1jv2rVL33///fqRRx7Rt99+u/65n/u54fE8z/V1112njxw5oh9//HH9ta99TU9OTupPf/rTr8cl/Y/iX/7lX/S//uu/6ueff16fOHFC/97v/Z52HEcfP35ca/3Gjs1/xXe/+129Z88efcMNN+iPfexjw9ffyDG6++679bXXXquXlpaGH2tra8PjlzI2l13iuu222/Rdd901/LooCj0/P6/vueee13FVlx7/NXEppfTs7Kz+8z//8+Fr7XZbe56n//7v/15rrfUzzzyjAf29731veM7Xv/51LYTQi4uLl2ztlwqrq6sa0A8++KDW2sTDcRz9D//wD8Nznn32WQ3oo0ePaq3Nw4GUUi8vLw/P+fznP68bjYZOkuTSXsAlwNjYmP7bv/3bUWy+D71eT19xxRX6vvvu029/+9uHieuNHqO7775b33jjjT/02KWOzWVVKkzTlEcffZQjR44MX5NScuTIEY4ePfo6ruz1x4svvsjy8vJFsWk2mxw6dGgYm6NHj9Jqtbj11luH5xw5cgQpJQ8//PAlX/NPGp1OB3hZlPnRRx8ly7KLYnT11VezsLBwUYyuv/56ZmZmhue8853vpNvt8vTTT1/C1f9kURQF9957L4PBgMOHD49i83246667ePe7331RLGD0/gE4efIk8/Pz7Nu3j/e///2cPXsWuPSxuaxEdtfX1ymK4qILB5iZmeG55557nVb104Hl5WWAHxqb7WPLy8tMT09fdNy2bcbHx4fn/KxAKcXHP/5x3vKWt3DdddcB5vpd16XVal107n+N0Q+L4faxyx1PPfUUhw8fJo5jarUaX/7ylzl48CDHjh17w8cGjFnuY489xve+970fOPZGf/8cOnSIL37xi1x11VUsLS3xmc98hre97W0cP378ksfmskpcI4zw/4u77rqL48eP8+1vf/v1XspPFa666iqOHTtGp9PhH//xH/ngBz/Igw8++Hov66cC586d42Mf+xj33Xcfvu+/3sv5qcO73vWu4ec33HADhw4dYvfu3XzpS18iCIJLupbLqlQ4OTmJZVk/wFRZWVlhdnb2dVrVTwe2r/+VYjM7O8vq6upFx/M8Z3Nz82cqfh/96Ef56le/yje+8Y2LDOpmZ2dJ05R2u33R+f81Rj8shtvHLne4rsuBAwe45ZZbuOeee7jxxhv5q7/6q1FsMOWu1dVVbr75ZmzbxrZtHnzwQf76r/8a27aZmZl5w8fo+9Fqtbjyyis5derUJX//XFaJy3VdbrnlFu6///7ha0op7r//fg4fPvw6ruz1x969e5mdnb0oNt1ul4cffngYm8OHD9Nut3n00UeH5zzwwAMopTh06NAlX/P/NLTWfPSjH+XLX/4yDzzwAHv37r3o+C233ILjOBfF6MSJE5w9e/aiGD311FMXJfj77ruPRqPBwYMHL82FXEIopUiSZBQb4I477uCpp57i2LFjw49bb72V97///cPP3+gx+n70+31Onz7N3NzcpX//vGpqyeuMe++9V3uep7/4xS/qZ555Rv/mb/6mbrVaFzFVflbR6/X0448/rh9//HEN6L/4i7/Qjz/+uH7ppZe01oYO32q19D//8z/rJ598Uv/yL//yD6XD33TTTfrhhx/W3/72t/UVV1zxM0OH/8hHPqKbzab+5je/eRFlNwzD4Tkf/vCH9cLCgn7ggQf0I488og8fPqwPHz48PL5N2X3HO96hjx07pv/t3/5NT01N/UzQmT/1qU/pBx98UL/44ov6ySef1J/61Ke0EEL/+7//u9b6jR2bH4XvZxVq/caO0Sc/+Un9zW9+U7/44ov6P//zP/WRI0f05OSkXl1d1Vpf2thcdolLa63/5m/+Ri8sLGjXdfVtt92mH3roodd7SZcE3/jGNzTwAx8f/OAHtdaGEv+Hf/iHemZmRnuep++44w594sSJi37GxsaGvvPOO3WtVtONRkP/2q/9mu71eq/D1fzP44fFBtBf+MIXhudEUaR/67d+S4+NjelKpaJ/9Vd/VS8tLV30c86cOaPf9a536SAI9OTkpP7kJz+psyy7xFfzP49f//Vf17t379au6+qpqSl9xx13DJOW1m/s2Pwo/NfE9UaO0fve9z49NzenXdfVO3bs0O973/v0qVOnhscvZWxGtiYjjDDCCCNcVriselwjjDDCCCOMMEpcI4wwwggjXFYYJa4RRhhhhBEuK4wS1wgjjDDCCJcVRolrhBFGGGGEywqjxDXCCCOMMMJlhVHiGmGEEUYY4bLCKHGNMMIII4xwWWGUuEYYYYQRRrisMEpcI4wwwggjXFYYJa4RRhhhhBEuK4wS1wgjjDDCCJcV/h+9PxqNFpJHnAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name aot_gan \\\n", - " --img resources/input/inpainting/img_resized.jpg \\\n", - " --mask resources/input/inpainting/mask_2_resized.png \\\n", - " --result-out-dir resources/demo_results/inpainting_res.jpg" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "img = '../resources/input/inpainting/img_resized.jpg'\n", + "mask = '../resources/input/inpainting/mask_2_resized.png'\n", + "result_out_dir = '../resources/output/inpainting/tutorial_inpainting_res.jpg'\n", + "editor = MMEdit('aot_gan')\n", + "results = editor.infer(img=img, mask=mask, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -171,24 +519,52 @@ "source": [ "### 3.3 Inference of matting models\n", "\n", - "Input: image, trimap, output: alpha image." + "Inpaiting models take a image and trimap pair as input, and output a alpha image. We take 'gca' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/mattors/gca/baseline_r34_4x10_200k_comp1k_SAD-34.61_20220620-96f85d56.pth\n", + "The model and loaded state dict do not match exactly\n", + "\n", + "unexpected key in source state_dict: data_preprocessor.mean, data_preprocessor.std\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAGiCAYAAABgeVj+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADP3UlEQVR4nOzdd3iUVfr4//czJTOTmUnvvZBAAgklkNClo4ACYmHBgr2yWNb6sawVdW1blF1dLGtHRelIldCblJCQ0NJ7nWSSTKY9vz/yy/M1i7oiCQE8r+ua63JaOAfi3HPOc5/7lmRZlhEEQRCEi4CqpwcgCIIgCF1FBDVBEAThoiGCmiAIgnDREEFNEARBuGiIoCYIgiBcNERQEwRBEC4aIqgJgiAIFw0R1ARBEISLhghqgiAIwkVDBDVBEAThonFeB7W33nqLmJgY9Ho9GRkZ7Nmzp6eHJAiCIJzHztug9sUXX/DAAw/w9NNP88MPP9C/f38mT55MVVVVTw9NEARBOE9J52tB44yMDIYMGcI//vEPANxuN5GRkcyfP59HH320h0cnCIIgnI80PT2An2K329m/fz+PPfaY8phKpWLChAns3LnzJ9/T1tZGW1ubct/tdlNXV4e/vz+SJHX7mAVBEITuI8syTU1NhIWFoVL9/CbjeRnUampqcLlcBAcHd3o8ODiY3Nzcn3zPwoULeeaZZ87F8ARBEIQeUlxcTERExM8+f95eUztTjz32GBaLRbkVFRX19JCELmQwGOjTpw933nknK1asIDc3l5MnT7J//37uuOMOPD09e3qIgiCcA2az+RefPy9XagEBAajVaiorKzs9XllZSUhIyE++R6fTodPpzsXwhHOsb9++vPzyy4wZMwZPT8/TtpP/8Y9/MHHiRP70pz9RUFDQM4MUBOGc+F+Xk87LlZqHhwdpaWls3LhRecztdrNx40aGDRvWgyMTzjUfHx/eeecdpkyZgtFoBNp/FywWCz/88AMVFRXIssyVV17JmjVrSE1N7eERC4LQk87LlRrAAw88wI033sjgwYNJT0/nzTffpLm5mZtuuqmnhyacAyaTiWuvvZaZM2cydOhQJEmira2Nw4cPs2fPHkJCQli7di0RERFceumlpKen07t3b5YsWcLs2bM5dOgQ52liryAI3Uk+j/3973+Xo6KiZA8PDzk9PV3etWvXr36vxWKRAXG7AG9paWnyxo0bZYfDofx72u12+cSJE/K6devkAwcOyGVlZXJxcbH8yCOPyB9++KFcVFQku91u2e12y2VlZfIf/vCHHp+HuImbuHX9zWKx/OJn/3l7Tu1sNTY24u3t3dPDEM6AWq3m/vvv55FHHul0FKO1tZWCggKMRiNr167F29ubSy65hO3bt+Pr60tsbCzPP/88jzzyCAkJCUiSREFBAePHj+fUqVM9PCtBELqSxWLBy8vrZ58XQU04b0yaNImvv/4ak8mknEn5z3/+gyzLDBkyhISEBIqKirDb7eh0Ojw8PPDw8ODIkSMUFRWxe/du/v73v+Pn54csy3z++ee88sorYitSEC4i/yuonZeJIsLvj8Fg4I9//KOSDFJSUsLatWsZO3Ysf/jDH1Cr1UpSiI+PD97e3kRFReHn50e/fv3Q6XTExMSwd+9eoD1Davbs2axbt46bbrpJZMYKwu+ECGrCeWHKlClMmjRJSQiRJIlRo0ah1+vZsmULsixjNptJSEhAq9XS2NiISqVCrVYjyzIjR45k0KBBHD16lLKyMux2O5IkERgYyKJFi1i4cOEvViG40KnV6k73VSoVGs15mwcmCN1G/NYL54V+/fqh1WoBaGpqoqGhAa1Wy4EDB0hNTSUmJoaNGzdSVFTEqFGjqKiowOFw4Ofnh9FopLKykqamJnQ6HYsXL0aWZa699lqio6PR6/XcdtttrF+/njVr1vTwTLtWbGwsCxYsIDIykqamJvbv309MTIwy75KSEpYsWcKePXuwWq09PVxB6HbimprQ4yRJ4tNPP2X27NkAnDp1iqamJmpra0lMTMRms1FaWsoVV1zBc889h9vtZvr06URERCDLMsuWLaOtrQ0vLy/69euHxWLh1VdfpbW1lddee43Y2FgAjh8/zkMPPcSKFStwu909OeXfRK/XExMTw+DBg4mPj0ej0XDdddcRHR2tJNV0/O/84/t2u53du3fzzDPPkJmZidPp7LE5CMLZEokiwnlPo9Hw/fffM2LECABaWlr4+OOP8ff3p2/fvpSUlPDMM8+wbds2NBoNZrOZ+fPn43a7SUhIoLGxkenTp9PS0oLL5aKurg6n00lBQQE+Pj5cdtllyjW1hoYGpkyZ8rOFsc9HHh4eXHvttTz44IPExsZiNBpP22602WxoNJpf3HJsaWlh8eLFPP3009TX13f3sAWhW/yvoCa2H4Uep9Vq0ev1yn29Xk9cXBypqalUVlbi6enJFVdcwb59+7DZbNTX1/Pss88CEBkZycKFC/nPf/7DnDlzCA0NxWKxEB4ejt1u57vvvkOn0xEeHk7fvn3x9vbms88+44knnuCLL77A4XD01LR/kSRJREVFERUVxZw5c7jlllvQaDQ/WSJIlmVKS0txu93ExMSg1WopKiri+PHjREVFERERgV6vx9PTk3vuuQetVsv//d//UVdX1wMzE4TuJVZqQo8bOnQoq1evxtfXF4D6+nq2bNlC79698fPzw8fHh7Vr1zJ37lyam5tPe79OpyMiIoKPPvqI1atXM3/+fPz9/Tl+/DiSJLF161YsFguxsbHMnDkTSZJobm5m165d7N27l40bN7Jjxw5aWlrO9dRPYzQa8fX15cYbb+SPf/wj3t7enTI3ZVnmyJEj1NbWkpSURFBQEBaLRTmP53A48Pf3R6/X89VXX2Gz2fD19SU6OprJkycjSRJut5v9+/czb948cnJyemqqgvCbiO1H4bx388038+9//1v5wD169ChOp5PIyEhsNhtZWVk0Nzdzww03/GRQg/YtTIPBgE6n45///CeyLHPo0CGuv/56AE6ePMlnn33GH//4RwYNGqRkQsqyTFtbGwcPHuSxxx4jMzOzR663SZLE5MmTeeGFF4iIiCAwMPC0VZnVaqWmpoby8nJyc3NRq9VMnz6dEydOYDAYqK2tpampiaqqKlJTU+nTpw87d+7EarWiVqvp3bs34eHhGAwGAFavXs31118vtiKFC4rYfhTOez/eelSpVJjNZhobGzEYDDz11FNUVFRQWFjYKaCZTCacTic2mw0Ap9NJU1MTTU1NzJkzB1mW8fX1xdfXl4kTJzJu3DgSEhJ45ZVX8Pb25oYbbiAuLg6DwYBer2fo0KF8++23LFq0iFdffZXa2tpun7ckSXh6epKens7ll1/OLbfc0ul/VqfTyZEjR2hoaGDIkCHs3bsXlUpFYmIiJSUlZGVlkZOTw8mTJ0lMTMTX15fi4mKMRiMBAQEUFxfTu3dvsrKyKCgo4IcffkClUvHggw9iMBiYMmUKzz//PAsWLBDJI8JFQ6zUhB5lNptZtWoVo0aNAtobxH7++edcdtllrFu3jurqavbu3cvq1at/0wrKYDBw9913c+ONNwLt57mWLVtGdnY23t7eDBs2jNmzZ6NWq5WVYmZmJvfffz8HDx7syqkqJEkiJCSE6667jltvvZWQkBAlmMmyjCzL5OXlkZWVhd1uR6/Xo1ar0ev1FBYWMnToUKqrqzEajXzzzTdkZGRQXl7O+PHjef7553nyyScpKioiKCgIl8tFZGQke/fuZc+ePVRXV+Pp6clLL72EVqulpaWFcePGsXv37m6ZqyB0NbH9KJzX/vjHP/L6668r2Xx1dXU4HA5WrlxJZWUlDz/8MH/5y1944oknflVQ02q1qNVqZQUH7dmDc+fO5Y9//CPr1q2jsrKSSy65ROmgm5WVxeTJkxk0aJBymLuoqIhx48Z1ee1InU7H7bffziOPPEJoaGinA+GyLGOz2Vi9ejVms5nQ0FDl7F5tbS0qlYro6GhKSkooLy9n9erV9OrVi/j4eGJiYli5ciVDhgwhIiICq9WKh4cHMTEx5Ofns3//fmJjY2lububIkSNceumlDBkyBFmWyczMZMaMGTQ0NHTpXAWhO4igJpy3JEli0aJF3HHHHUB7QKutrcXlclFRUUFiYiKhoaEUFBQwZsyYX9XN3Gg0EhgYeFqzUIPBwJNPPomXlxeDBg0iJiYGp9NJTk4ORUVFlJeXExoayuTJk4mMjATgiy++YN68ebS1tXXZnG+55RYWLVqkBCuHw0FTUxOtra3k5uaiUqmoqakhLi6OpKQkqqqqyMvLw2q1YjablS3Y2tpaBgwYQFhYGD4+PmzYsIHIyEjMZjNeXl6Ul5fT2NhIaGgoJ0+eJCgoiD59+tDa2sqHH36I1Wrl0UcfRavV4nK5eOGFF/jzn/8samQK5z1R+1E4b3l6ejJ06FDlvtlsxmAwoNVqSUhIICQkhObmZt5//33Kysp+1c9sbm6mtLT0tMfb2trYtm0bnp6eJCQkYLPZaGxsJC0tjdGjRzN58mSSkpL47LPPgPaAe9VVV/HUU091WXmt3r1788wzz6DVapFlmZaWFrZs2cIbb7xBVlYWCQkJ9OvXj169etHY2MiuXbuQJIk+ffqQlJSkZDGOGjWKG2+8EUmSKCsrw2Kx4Ha7aW5uJiIigvr6eiIjI+nfvz96vZ4JEyYQFxdHW1sbjY2NeHp6YjKZlPJjarWauXPnYjabu2SegtCTRFATesyMGTPo27cv0L71ptFoWLt2LY2NjWzbto2TJ09SX19Pdnb2zyYy/NRh4586e+Z2u1m7di2bN2+mvLycU6dOERQUhE6no7W1leTkZA4fPozNZlO24TQaDffeey8jR44867kaDAZefPFFwsLCgPZSYFu3bqVPnz489NBDuFwuqqqqsFqtxMbGEhkZSd++fQkICMDtdhMSEkJ8fDwDBgzA19cXjUaDh4cHwcHB1NfX4+PjQ79+/dixYwfbtm3j8OHD1NTUsH37diRJory8HKfTyfbt2xk2bBhZWVl88sknWCwWoP0LhdjZEC4GIqgJPcJkMnHfffcpQclqtdLS0kJbWxtGo5GMjAx69epFVVUV33333c/+nKuvvprRo0d3euzH2ZQ/5na72blzJ9nZ2fj5+ZGXl8epU6dQq9UcPXqUuXPnUlNTw8qVK6murkaWZby8vLjkkkvOer6pqalcdtllSpp+YWEhJpMJm83GypUraW1tBdqv/+3fvx9fX1+0Wi0rV67k0KFDrF27lurqauXnlZaWotFo2LFjB9dffz0nTpxgyZIl3HPPPezfv5/k5GTKysoYO3YseXl5xMXFUVJSwqWXXkpycjIzZ85k8ODBHDp0CKBTJqkgXMhESr/QI66++mpSU1OV+56entTW1qLVatHpdAQHB/Ppp5/y6quv/uzZtIiICObPn4+npydTpkxRtijT09PJzc2lqqrqtPecOHGCxYsX8/rrryvXysLDw5VrbHPnzsXlcvH888/z8ssvo9frmTdvHu+9995Pbmv+WhkZGcr5sLa2Nvz8/NBoNLhcLjIyMqivr6e6uprvvvuOSy+9lNbWVhobG0lNTSUrK4uVK1cyZswYvv76a06ePElDQwNfffUV5eXltLa2Mn/+fOx2O263G61Wy+HDh6mqqkKv1xMbG8u6devw9fWlpKQEh8NBcHAw+/btU4KsJEmnld4ShAuRWKkJ51xUVBRPP/00Hh4eymMtLS3YbDZGjBhBcHAw7777LjfffPPPptVLksQTTzzB0KFDSU1N5ZNPPlEKF5eVlTFmzBgCAgKU1+t0OkJCQgDIy8vj4Ycfxu12s2LFClpbW6mtraWoqIjw8HCio6Px8/NTzqrFxsYqySy/haenJzfccAPQvs3qcDjQaDQcPXqUuLg4qqqqkGUZp9PJpEmT8PT05IcffqC4uBiz2czBgwdZsmQJgwcP5vrrr+fxxx/n5ZdfpqSkBI1Go2RNdmSHZmdn8+c//5mysjI0Gg0rVqzAy8uLoKAggoODcTqdWK1WkpKSlK1Vk8lERETEb56jIJwvRFATzrnw8HAlwEB7EGptbcXLywubzUZ1dTUlJSVMmDDhZ3+Gv78/EydORJIkJEnikksuYevWrTz44IO0tLSwZMkSampqlNfPnz+fuXPnEhYWRnFxMWvXruW+++5j3rx5lJeXc+LECSVVfteuXeTm5nZaxQwYMEBpYHqmIiIiiI+PV+43NDQgSRLR0dHs3LkTtVqtJHr8+9//pr6+noSEBCWR5JVXXsHlclFeXk5bW5uSodiR+NEhNDQUaN9m3b59O8899xzLly9nyJAhuN1udu3ahcPhoL6+nsrKSlpaWpQyWSaTiZdeeglPT8/fNEdBOF+IoCacc+np6coqTZZl6urq2L59Oz/88AMVFRW0tLTgdDrJy8v7yffr9XruvvtuoqOjlcckSSI8PJyXX36ZTZs28eqrr5KWlqY89/333wPt59ji4+PR6XTU1NTwzDPP4OvrS3V1NYGBgVRUVHDq1ClSU1NZv369svqZMmUKb7zxRqfV5a8VGxurpCC73W6ysrJoamoiMDAQaE9s+eyzz3C5XNx1112sX78evV7Pzp07mT9/Pi6X6xd//rBhw9DpdKcF3cbGRpYvX46vry8nT54kKiqK77//Hr1eT3BwMGq1mqVLlypNWYcOHaqsdgXhQiWCmnDOxcTEKKugtrY2ampqcLvd7N27l4CAAAoLC1m8eDEnT5782Z9x+eWX/+Q1oI4ahw888ABr1qzhvffeIyUlhezsbLZs2YJKpaK+vh6Xy6Wk/2/YsIG4uDgKCgqIi4sjJSWF9PR0Ghoa+Pzzz5W09xtuuIGrr776jOYqSRLp6enKfFtaWkhKSkKn0+FyuZTKJgkJCdTX11NfX4/JZKKxsZFjx479Yl3GtLQ0pk6dSnNzM5GRkRQWFp72mqNHj/LOO+8wdepUQkJCyMjIwM/Pj9GjR1NYWMjWrVuVbVZPT0+uv/56cW1NuKCJoCaccz/eMisrK6Ompga73Y7FYuHrr79W0td/zpVXXkm/fv1+8c+QJInAwEDmzZvHunXr+Oqrr5RkiIaGBpxOJwMHDmTHjh3s3LmTmJgY+vTpg8ViITs7m6ioKAIDAzl48KCSUKLT6Rg7duyvmqNGoyEjI4Mnn3yS++67T3ncZDJRUlKC0Whk8+bNhIeH09TUxMSJE/Hx8UGn01FXV6cUWf45fn5+DB48mCeffJIPP/yQnTt3smjRInQ6HWq1Gn9/f6A9iB48eJBt27bh4+NDa2srGzdu5JtvvsHLywtvb28++eQTnE4nkiRxww034OPj86vmKAjnI5H9KJxTkiR1SkiIiorCZDKRlZVFREQEGRkZHD9+XMlc1Ol02O12ZFlGkiRUKhXTp0//2bT9n/rzgoODufTSSwkKCuLWW2/F7Xbj6emJ0WjE7Xbj7+9PfX09O3fupH///kyZMgWtVoufnx9BQUFkZ2czaNAgJEni8ssvZ9KkSaxbt+4n/zyVSkV6ejoPP/yw0pz0x12obTYb0dHRtLa2UlNTQ2trKw6Hg+zsbFasWMFll13Go48+ytNPP01xcTGSJHWq8mE2m7nyyiu58847SU9P73Qw/Nprr6Wqqorq6mpOnjzJ7t27qaysZMOGDYwcOZKgoCBUKhWDBw9WVqsTJ04kOzsbi8WCv78/Pj4+xMfHn5OCzoLQHcRKTTinUlJSmDZtmnJfo9Hg6emJ2+1m2bJl7N+/H5vNpgQCf39/5TrWjBkzmDNnzm86N6ZSqRgwYIByHS48PJy8vDxiY2OV1Zu/vz/BwcHs2LFDaeMSFxfHCy+8oGQoBgUF8de//vUnMwW9vLz4v//7P9asWcPMmTPR6/VKUKqpqWHXrl3s37+fnJwc/v73v9PY2Ej//v0ZNGgQAwcOBNrPi33xxRcsWrQIs9lMv379SEhIwGQyYTabeeutt3jvvfcYOnToaZVOTCYTd955JykpKUq5MWivsvLhhx+iVqtJTk6mvr4eo9FIQkIC4eHh1NbWKtcO9Xo9CQkJZ/z3KwjnCxHUhHNq5syZSoJES0sLhw8f5sCBA7hcLgICAhg4cCBms1k5aFxWVqZs/9XW1nL06NHfnKGnVqt58MEH0Wq1pKWloVarqaysZOPGjdTU1DBq1Ciam5tJSUkhIiKCmJgY6urqmDFjBosXL6ahoQFZlunduzdPPvlkp2omw4YNY/Xq1Tz99NPK9p0syzQ3N1NYWMiOHTvIz89n5cqV3H///ZhMJkwmE/n5+ej1enbv3s3333/PokWL+NOf/oTNZqO1tZWTJ08yffp0/Pz8lAzOXyrb5e3tzcaNG9m+fTsOh0P5cpCdnc2rr77KsWPHqKysRK/Xs2/fPiIjI5k7dy5bt25VVoQLFizo1JhUEC4kIqgJ54wkSSQmJioftB4eHqhUKgoLC2lpaWHYsGG88sorSsPP/5aZmUlYWNhvTq3v2Ir09PRUepkZDAaqqqooLCzk888/R6VS0dzcTE1NDR4eHoSHhzN58mQKCwtZunSpsg166aWXKuMYM2YMy5cvZ/jw4UqSRVtbG+vXr2fNmjXk5+dz8OBBHnzwQV5++WUsFgseHh5MnDiRSy65hNbWVtLT00lLSyMnJ0cpXTVx4kRuv/125s+fz+zZs7n99tv/Zx1KSZK47bbbMBqN2Gw2UlNTMZlMeHh44Ovri16vV7Zd+/fvT11dHTt27GD79u3k5+cr/0b/65qlIJyvxDU1ocdoNBq0Wi0+Pj40NTUpKweNRkNqaionT56kpKREeX3HNa3/7gh9JoxGIwaDgdzcXDw8PGhtbeWuu+7im2++4Y033qCwsJCIiAg8PDwoLi4mKCiIgIAA0tPTsdvtNDc3Yzab0el0ypbgK6+8ohz0lmVZGXdZWRmHDx9m+fLlnDx5EkmSiIuL4+qrr8bX15eysjLKysowm81888037Ny5E4ChQ4dy+PBhJEliw4YNmEwmrrnmGqKiov7n/CRJIiYmBk9PT6Kjo6mvr0eSJAwGA19//TVlZWX069ePu+++m4SEBDIzMxk7dixVVVWsX7+e22+/HS8vL1566SUuv/xyUTpLuOCIoCacM2q1+rTMuqioKLKysqivr2fYsGFIkkRQUBATJ07E6XR2Cmod24ZnE9RCQkK44oorMBqNZGVlKb3XTpw4wXfffcfcuXMJDg5GkiS0Wi3Z2dnk5ubi7++P1WrFZDIB7QH5tttuY968eUqrGlmW2blzJ42NjXz//ffK1mpwcDBz585l37593HTTTWRkZBAREYHL5aKmpoYDBw7wt7/9TZnjvHnz2LZtG+vWrSMiIoJRo0YpiSq/RnBwMBMnTuTrr78mPDyclpYW5fra5s2bufvuu7FYLBQWFjJ8+HCcTif5+fns3buXW265BY1GQ1paGv7+/mdVGkwQeoIIasI5YzAY6N27N4DS3dnLy4uGhga8vLzYsGEDBQUFLFmyBH9//05lrrRaLV5eXj9brf/X0mg0DB8+nKNHjzJw4EAyMzPZtWsXffr04aOPPiIlJYV+/fophZU76iZmZ2czZswYbDYbBoMBf39/nn766U4/u7W1lby8PAYMGEBpaSnXXHMNsbGxBAcHk5CQwMSJE/H19QVQKuKbTCaeeuop5We43W4+/PBDXC4XDzzwAHPnziU8PPyMArler+fWW2/l66+/xmq1dnrO6XSya9cuDh8+zI033khdXR35+fnU1dXh6+tLa2srZrMZs9lMSkqKCGrCBUcENeGcCQ4OVj7Uof0Q9pdffonJZOL555+ntraWiooKoP0c1o9T2R0OB7W1tbzwwgu89957+Pn5/eZxTJ48merqaqqqqrjssssIDQ2lrKyMrKwsbrvtNmbNmsUdd9yByWTCx8eH3r17ExgYSFNTE59//jnz5s07LciUl5ezZcsWDAYDK1asYNiwYRiNRtRqNQMGDMBisdC/f38qKyvx9/dXVoJPP/00mzdvJjQ0FJPJhMFgYNKkSYwbN46RI0f+5l5uAwYMYPr06SxdulRZpUVFRVFRUYG/vz/Dhw+nqKgIHx8f6urqMBgMeHp6cvToUdLT01Gr1Z2+VAjChUIkigjnjMvlUlLHJUmioaEBtVrNwoULyc7OVgIatHfB/u9qGrIss2zZMjZs2HBW4/D391fOYvXq1YusrCwMBgOyLFNcXMyWLVv45z//SUNDAw6Hg6CgIHJzc9HpdBQWFnbqhN3W1sbatWt5/PHHeeyxx3jiiSeorKxElmXi4+NJSkpSki4sFguenp4kJSWh1WopKyvjyy+/RJZlIiIilG3C7du309jYeFbNSX19fXnhhRfw8fFBq9WiUqloa2vDbrfz+uuvo1arla7bGo1G6TT+4yScju7cgnAhESs14ZzRaDRKdqAsyxiNRmJiYjhx4sTPvj4wMJDy8vJOj+fm5p7VOLRaLdOmTcPhcPDWW2+xf/9+Dh8+rDx/4MAB+vbtqzTfbGpqIiMjg8bGRqKiopQVpNvt5q233uLEiRMsW7aMxMREPDw8mDt3LiaTiRUrVpCens4LL7yA3W5nwoQJXHXVVWzbto0///nPVFdXU1dXh9FoZPr06RgMBmJjYzu1qTkbUVFRvPjiizQ0NPDSSy8pPduam5uVLd+EhAQaGxtJT09nyZIlSr1Mh8Pxk2W3BOF8J1Zqwjljs9mw2+3K/crKShoaGkhJSTmtULDJZCIsLIzExESl5FNgYKCSxHC2NBoN48aNw8vLi6uuuuq0a3U1NTVYrVYyMzMJCgrC4XDQt29fcnJylCBrs9nIy8ujtLSUlJQUampqCA4OZvPmzeh0OhITE4mNjWXWrFm0trby3nvvMWXKFKZOncqWLVuor69n2rRpSoBrbW2loaGBsLCwTtu0v5UkSQwaNIjPP/+curo6ZcvU6XTS1NREbGwshw8fxmKxsGbNGoKCgpREHqfT2Wn7VxAuFCKoCedMa2trp6271tZWVCoVTz75JAMGDOj02vHjx9OrVy/y8/OVbUiVSsU777zziy1pfi1JkvD39+ff//43ZrNZWcV0iI6O5tixY4wZM4ZDhw7h5eVFRUUFmzZtorm5GVmW0Wq1tLa2kpOTQ2NjI+PGjeO2224jICCAuro6YmJiyMnJQaPRsH37djIzM8nMzKSlpQW1Wo1WqyU0NJS0tDSysrKA9lJXXcXlcvH4448rP9tiseDl5YWXlxcLFixg/fr1nDhxAofDgdvtplevXmRmZiLLMgaDgblz53bZWAThXBFBTThnwsPDlRYsAH369KGyshKDwXBad+u9e/eybds2ioqKcLvd6HQ6rrzySm644YYuq3bRsXJZtWoVkiSRlJQEtB89SExMZNKkSWRnZ5OYmIiXlxd1dXWUlJTwr3/9i8bGRhwOB8ePH8disVBUVMSGDRuorKxkypQpJCQk8OWXX/Liiy/y5z//GVmWO9WrTElJwel0smbNGjIzMzEajdx5551dsu3YQa1W4+HhgcPhQK/XM3DgQGbPno1KpaK0tJQtW7YwadIk/P39mTp1KgUFBUoA7CgILSr2CxcacU1NOCf0ej2PP/64ksrucDgoLS3F7XaTl5fXqXI/tG9/ORwO5b7L5WLQoEFd/iEbGBjIJZdcwpo1a5RsP39/f8LDwwkICGDQoEF8/fXXxMfHU1xcjMFg4L333iMuLo5bb72VwMBA9u7dy9y5cxk7diz9+vVj9erVGAwGfHx8yMrKwmw243Q6lSaoMTExjBs3joCAANauXcvatWu5//77lW3WrtJRGSUgIIAFCxaQn59PVlaWkqav0+mQZZmwsDDsdjsxMTFKIg8gth+FC5JYqQnnREel/I7VkVarxW63c+rUKYKDg5Vg1/FcQEAA06ZNQ5IkAgICkCRJ6ezclVQqFcnJyahUKurq6gCULdLs7Gx27dqlpOLLsszll1+OyWTio48+YufOnezbtw+Xy4XT6SQwMJAvv/yS1tZW7rvvPp555hlaWlqorKzEw8MDHx8fvLy8mDx5Mtu2bcNoNOLn58dDDz3E5Zdf3uVzs9vtREdH43A4lBT97OxsoP3IRFhYGJWVlbjdboKDgwkKClJWqx3NW/9Xg1JBON+IoCacE7Gxscq2odPpZM+ePTgcDuLj4+nduzcjRoxQ0slTU1Px9vZWqvVfeumlBAQE0KdPn24Z28iRI2loaODUqVOMHTsWi8XCF198wa5du2hqaqKkpIT6+nq2b9/O8ePHmTRpEq2trTz77LNK0kheXh5///vfMZvNfPTRR0rQ7lBRUcGJEydoampi9erVJCYmcuLECaXRZ1duO3bw9fVVzqR99dVXLFmyBKvVikajUVre7Ny5U6lFmZeXh9VqVb54/FxWqiCcz0RQE86JOXPmKBmOKpUKs9lMbm4ugYGBBAQEYDAYlGSNjhVEYWEhbrebTz/9FLPZ3G2HgZOTk0lKSlL6rEmSRO/evamsrOTbb79FlmU+/vhjVqxYwfr16/n88885duwYO3bsACAoKIi8vDxli6+hoeG0a4SyLON2u5FlmeDgYJYuXYq3tzf33Xdft1XE12g0TJ06ldLSUq688kqGDx/O1KlT6d27Nw6Hg/r6eiZNmoRer2fLli3U1tYqrXmgPQNUEC40IqgJ3c7Dw4NevXopK4DS0lI8PT05duwYZrOZvLw89u/fT0xMDB4eHnz33XecOnWKY8eOAe3nwQYNGtQpyaQr+fr6MmfOHFwuF6tWrUKWZRYtWsSnn37K2LFjOXbsmHI2TpZlXC6XUq0/ICCA2NhYHA4HBw4cYO3atcpZth8fnu7orWYymbjjjju46667ePTRR5Vakt3B6XTy9ttvU1paysaNG1mxYgUGg4Hy8nLmzJnDqFGjMBqNNDY2EhwcDNApO7WpqanbxiYI3UUENeGc+HGCh7e3N/X19ej1epKTk7Hb7dx3330EBASg1+tP24rrKPLbXSRJYt68eQwZMgSz2YzBYCA4OJgbb7yRpKQktm/f/pNJE2q1mrCwMDw8PJQyUxEREVRXV3Pvvfcybdo0ZUtVkiR0Oh0TJ05k0KBBPPfcc7+5hc6v1bHlqdfr2bNnD6NGjUKv1xMbG8vll1/O+PHjKSkpITU1leLiYux2u9Lrzul0Kj3tBOFCIrIfhW43ZMgQ5cC0LMt4enricrno3bs3f/vb3/jrX/+Ky+VStuz+u65ibGws6enpZ1Wd/38JDAxkwYIFbNy4keTkZBwOB8HBwcTGxnLXXXfhcrnYtm1bp/c4nU4OHz7MkCFDAFi3bh39+/dn+/btDBo0iLy8PGXMra2tDBkyhE8//RSdTtetc+lw7Ngx/Pz8OHXqFJMmTSI8PJw1a9ZQXFzMiy++yKpVqxg/fjzJyclUVlbi5+enrBxtNttplVwE4UIggprQrby9vXnllVeUbtUdSRcBAQFUV1fj4+NDSkoK27dvV97j5+dHbW0t0B7g7rjjjk7Zkd1BkiRSUlKIiopCpVKhVqtZtGgRmZmZeHh4cPjwYdRqNTqdjpaWlk7vHTZsGIcOHcJsNnPZZZeRm5uLwWDgwIEDWK1W5X0jRow4ZwEN2gNTSUkJDoeDHTt2MHDgQOW5AwcOcPz4cYYPH84333xDSUkJLS0tnbZDRUq/cCESQU3oVjNmzGDo0KHKB7nJZEKr1eLh4UFiYiJhYWG89dZbnd7TEdAAPD09GTdu3FkV9/21nE4n3377LZGRkSxdulQ5uFxcXExLS4vSTVqSJNRqNb6+vrS1tZGTk0NoaCj19fU8/PDDWCwWmpqalNJbbrcbp9Op9Gk7F2RZZvPmzRQXFwNQX19PbW0tlZWVxMbGMnz4cHr16qUUmU5KSiIzMxObzaZsi/74zJogXChEUBO6VWRkZKeApFarlSzD999/n5UrV1JQUABAQEDAaRl3ycnJSg+27hYdHc3x48d55ZVXlLF2nNOKjIzkkksuITc3l7vuuosNGzYwZswYtm/fzjXXXENRURFWq5X8/Hylmn9H14GOzMeRI0eek3lAeyuc7777jkGDBpGbm0tERAR1dXXExsbyf//3f6jVatra2hg+fDi7du3Cw8ND6UQO7QH+vzM4BeFCIBJFhG6jUqmIiopS7jc1NWGz2aitreWdd97hzTff5PDhw8qK4McrtA5+fn5oNOfmu5e3tzf//ve/mT59OpIkdTp4XFJSQmZmJlOmTCEnJ4ft27fz9NNPo9VqKSwsJCAggOeffx5vb2+uuOIKVq5c2Wnuffv2VVrQdDe3283GjRt56qmnGDJkCCaTiREjRjBjxgwAjhw5gtVq5ZJLLiEoKIioqCiqq6uJjY1VVmk/dSxBEC4EYqUmdBtfX1+mTJkCtK9W7HY7vr6+1NXVERISws0338yzzz7L0KFDOXz4MCkpKezZs6fTtZz+/fufs6DWMeb33nuPW265hWXLliljkWWZoqIiFi5c2Kl81+LFi9myZQtlZWXYbDZaWlo4ePAgzz33HCdOnOCbb75h9+7dzJkzp9uvC3aor6/n+PHjtLa2smbNGhwOB1arlbVr11JZWcm7775LYmIigwYNIicnB5fLRVRUFGazWVlVnzhx4rR+doJwIejyldrChQuV1OigoCBmzJhBXl5ep9fYbDbuuece/P39MZlMzJo1i8rKyk6vKSoqYurUqXh6ehIUFMRDDz10WnsQ4fwWHR2ttDIBMJvNNDY2IssyJpOJ7du3k5SUxLFjx5gxYwYWiwUfH59O25URERHndMySJOHn58e///1vZs6ceVpA/XFA63DixAlaWlpwu9288847mEwm1q9fT3R0NCkpKYwcOfInu2V3l+PHj3Pw4EE2b96Mw+Ggf//+HDp0iPLyctxuN/3792f+/PlkZWURGxtLQkICBw4cQKVSKWMsKCgQiSLCBanLg9qWLVu455572LVrF+vXr8fhcDBp0qROWxn3338/K1as4Msvv1S+5V555ZXK8y6Xi6lTp2K329mxYwcffvghH3zwAU899VRXD1foRnFxcUrWI4DVaqW5uZnKykqSkpJ45plnyMjIQKPRsGzZMo4fP059fT1utxuz2czkyZOVWoTnmr+/Px999BHPPffcGVX8aGtr49577+Xzzz8nKyuLxMRE3nrrLeX817nQ0NBAUVERQ4cOZeHChYwZM4bQ0FAkScLHx4dLL70Ug8HApEmTgPbV6dixYwkJCVF+xn9/yRSEC4bczaqqqmRA3rJliyzLstzQ0CBrtVr5yy+/VF5z9OhRGZB37twpy7Isr169WlapVHJFRYXymkWLFsleXl5yW1vbr/pzLRaLDIhbD91UKpX8wQcfyG63W5ZlWa6trZVtNpt88uRJubGxUW5paZE3btwor1+/Xg4JCTnt/Xq9Xp4wYYJ86tSprvpV/E3sdrv86quvysHBwWf8d/DII48o8z+XsrOz5ZiYGDkmJkb29vaWr7rqKnns2LGyTqeTZ86cKf/73/+WDx48KB8+fFj+/vvv5ddff11+5plnlP//XC6XfPvtt/f475C4idtP3SwWyy/+/nd7oojFYgHaL/gD7N+/H4fD0anRY58+fYiKimLnzp0A7Ny5k5SUFKV0D8DkyZNpbGxUqoz/t7a2NhobGzvdhJ6j0+kYMmQIkiQhyzIOhwMPDw/i4uIwmUxkZmayevVqnn/+eSVL8MdsNhtut7vb6j3+Wlqtlvvvv5/MzEzGjRv3q1rfaDQahg0b1i2V93+N2NhYQkJCKCgowGKxKOf+2tra2Lx5M3q9HrvdTu/evUlJScFkMhEdHa1s77tcLqVEmSBcaLo1qLndbu677z5GjBihZH5VVFQobTh+LDg4WPlwq6io6BTQOp7veO6nLFy4EG9vb+UWGRnZxbMRzkRkZCTh4eFA+3WqoKAg6uvrOXLkCBs3bsTPzw8PDw+2b9/+k2fQOkpXmc3mcz3006hUKhITE/n222/5+OOPueOOO0hNTcVoNOLh4aEEOoPBwPDhw/n0009Zv349I0aMOGfX0X5Mr9eTkJCAwWBg9OjR7N27l+PHjwPtW5OPPfYYP/zwA+Xl5Wi1WqZPn45Op1P+n3G73cqXUUG40HRrWtk999zDkSNHTisv1B0ee+wxHnjgAeV+Y2OjCGw9yO12K6n6HQeYV65cqXSRDgsLU77YJCYmKgWDO3Q07zyfmM1mZs+ezTXXXENbWxtFRUVUV1dTW1tLbW0t6enpxMbGKpX+e4rL5aKhoYGgoCAmTZrEV199hdlsxm63ExkZyfTp04mMjKStrU1p1mq1WikrKyM6OhoPDw8yMjI4cOBAj81BEH6rbgtq9957LytXriQzM7NTBltISAh2u52GhoZOq7XKykrlQnVISAh79uzp9PM6Llz/+GL2j+l0um5r4SGcufr6eiwWC76+vjgcDvz8/Jg2bRpeXl5UV1eTl5fHCy+8gNPpPC2gQXvm5LlMrjgTKpUKg8FA7969z9nB8F9LlmW+/fZbNm3aRHNzMwsXLiQsLIyqqir8/f158sknGTduHFarFU9PT8xmMyaTiUOHDinn6iRJ6nTGThAuJF2+/SjLMvfeey/ffPMNmzZtIjY2ttPzaWlpaLVaNm7cqDyWl5dHUVERw4YNA9pr6WVlZVFVVaW8Zv369Xh5eZGcnNzVQxa6gdVqVb6IeHp64unpidPpxO12c/z4ca6++mqlf5pGo6FPnz5Kz6/hw4czZswY8SXlDMmyTHl5OQcPHiQ1NRWVSsW4cePw9/fH19eXXr16YTAYqKqqoqGhgYMHD5KXl8eRI0dobW1VqokA5/RsoCB0pS7/zb3nnnv49NNPWbZsGWazWbkG5u3tjcFgwNvbm1tuuYUHHngAPz8/vLy8mD9/PsOGDWPo0KEATJo0ieTkZK6//npeeeUVKioqeOKJJ7jnnnvEB90F5Mf/VlqtFpPJxNGjR1Gr1TzwwAMMHz6c48ePYzQaGTduHIGBgeTk5LB7926lnNa5qPl4MXn88cdZu3YtgYGBqNVqioqKKC4u5t577yUlJYU+ffpQU1PDoEGD0Ol01NXVMW7cOAoKCpSWP7Is/+y1a0E433V5UFu0aBEAY8aM6fT4+++/r/TEeuONN1CpVMyaNYu2tjYmT57M22+/rbxWrVazcuVK7rrrLoYNG4bRaOTGG2/k2Wef7erhCt3EZDJ12l6WZZmqqir69etHfn4+0dHRNDQ0cM0113R6XVxcHC6Xi4SEBLFaOEPNzc3s27ePmpoa7HY7RqORkydPKl0CxowZw/r16zl06BAajYbevXvj4eFBWVkZBoNBOVjucDjYu3dvD89GEH6bLv/UkH9FFQK9Xs9bb711WnX2H4uOjmb16tVdOTThHGppaenUokWSJBITE6msrKSgoABvb2/++c9/0r9/fyWoybKM0Wikd+/eLF68mDvvvLPTlpjwywwGA3PmzGH9+vUUFhZis9mwWCxYrVY2btxIUlISKSkpGI1GIiMjaWhoQKvV4nQ6OxVAaGxspKSkpIdnIwi/jfgqLHSLtrY2Dhw4QHJyMrIsY7VacTqdbNu2jbCwMCRJ4sUXX+x0zbWmpob6+np69erFtddei8vlEkHtDDQ3N+Pp6UlzczO+vr4ASqPPuLg4evfuTUlJCf369aO0tJSysjKcTielpaUMHDiQwMBA3G43n332GYWFhT05FUH4zcQFC6FbuN1utm7dqqzc1Wo1NpuNcePGMWTIEIxGo9LrC9qD4EMPPcTEiRNZtmwZhYWFvP3226c15BR+3n/+8x8efPBB9u7di8vl6vR3t2fPHpxOJ2PGjCErK4stW7bg6+tLfn4+I0eOZObMmQAcPXqUF154QfRSEy5YIqgJ3WblypUcPXoUSZLw9PQkNDSU/fv3K6uH8PBwmpqagPYtr82bN9Pc3My3337LX//6Vx5//HG+/PJLUVj3V3C73eTk5CjByOVyodfrkSQJo9FI3759qa+vR61WM2zYMK699lrKysooLy8nNTUVaK/+c9ttt4m6j8IFTQQ1oduUlpbyxhtvKH3JZFlm8uTJylGNmJgY5ZCyj48P48aNY+HChfzrX/9i2rRpOBwOXnzxRRoaGnpqCheMtrY2pcwctPdMO3jwILIs4+npyciRIxk4cCA2m426ujpaW1uxWCxcdtlleHp6IssyH374Ibt37+7BWQjC2RNBTehW+/btw263A+2riaKiIvr3709UVBQlJSXs3bsXWZbRaDQ8+uij9OvXD51Ox6BBg/D29ubkyZO88847YrX2Pxw7dkwphfXfqquref/996mqqkKn09GrVy+OHTvGjh07GD58ONB+PfPtt98W247CBU8ENaFbJSUl4eHhAbRfVwsICCA7O5v9+/cTERGBJElkZ2ezZcsWsrKyGDx4MNC+isvIyMDlcvHVV1/9ZB8zoZ0sy2zbtu1nO1WbzWZuuukmSkpKkCQJt9tNXl4eo0ePVhqX7tq1SySHCBcFkf0odCuLxYLb7VaK/losFjw9PUlISECtVtOrVy/27t3LwYMH2b59O/7+/vj7+3P06FFOnjwJgJeXl1ip/Q/btm3Dz8+Puro6oL2Ul1qtxuFw4OPjQ+/evUlNTaWwsBCTyYROp+PGG29EkiRaW1t5/vnnaWtr6+FZCMLZE0FN6FbHjx+nra1NSc0PDw9Hp9Phcrmorq6muLiY5ORkEhISSE1N5c0332THjh00NjZit9tJTEzk4YcfFqn9v6CyspKmpiYWLFjA0qVLyc7OxmQyKQWLzWYz4eHhVFVVYbFY+PTTT7n00kvR6/VAe53OH2eiCsKFTAQ1oVsVFRXx7bffMnfuXCRJQqvV4u3tzalTp/D39ycoKAitVktQUBAxMTFER0dz3XXX0djYyLhx43jllVcYNGgQ0L7N1pPV7883sixTWVnJ3XffjdVqxcfHh3fffZeNGzdSWVnJyZMnyc3NZcyYMRgMBkJDQ9m8eTONjY0kJyejUqlwOBxKKTpBuBiIoCZ0q7a2Nh577DHUajVXX301Go0GT09PYmJiOHLkCI2NjYwcOZLW1lZUKhX+/v5cc801uFwubr/9dqKjo3E4HKxatYrJkyfj6enZ01M6b7S1tfHggw9y3XXXMXXqVOXa5eDBg3E6nZw8eZKGhgb69u1La2srtbW1bNy4kfnz5yt/j4WFhbz//vtie1e4aIhEEaHblZSUcOutt3Lo0CHlMU9PT06dOkVERATHjh2jqKiIyspKvL29CQsL44YbbiA0NBS73Y7VaqWuro7q6uoenMX5Q5ZlsrOzuffee/Hy8mLUqFF4eHjgdrtpa2vDarXicrnw8/MjKSkJh8NBYWEhDocDi8WCw+FQOpL/5z//wWq19vSUBKHLiKAmnBM2m61Tdp3L5VJWFJWVlQQGBuJyuZAkif3793Ps2DG+/vprNm/ezFNPPcV7772nZOr9nsmyzI4dO5g1axahoaE8//zzBAQEIMsyzc3NuN1u9uzZw1NPPcX3339PU1MTer0eHx8ftm7dSt++fZWf5Xa72bt3r0jjFy4qYvtROCfcbjenTp1S7mu1WsxmM263m379+qHX6wkLC1NS+9PT03nmmWdoaGggNjYWHx8f5bzb75Usy2zfvp3rrruOuXPn8uSTT6LVapXrjE6nk9dee41NmzbxwAMPMG3aNPbt24fFYlESbaKjo/Hz8wOgrq6u0+pZEC4GIqgJ50xlZWWnZI/q6mpaW1s5efIkTU1NDB8+HG9vb4YMGUJKSgrp6eksW7YMo9HIzJkzMZvNPTyDntPRAPSOO+7A19eX22+/vVNAO3bsGGvWrGH06NFMmDCB4OBgampqCAwMJC4ujurqatra2rjiiiuUIxKfffZZp0a8gnAxEEFNOCfUajUtLS3KmTVZlomLi6OiogIPDw/i4+NxOp3s2rWLpUuXsm/fPq644goyMzO58cYbCQ8P/103DK2oqOD6668nJyeHDz74gKioKKA9HX/79u3s37+fcePGkZKSQnFxMf7+/kogjIqKYuXKlVRXVyt/h1VVVbz77rtKCTNBuFj8fj8lhHMmICCAv/zlL7zyyivKIewTJ05QUVFBU1MTJpNJqTJy6623UlFRwbx58xg5ciRvvvkmM2fO5Ntvv/3dJjS0tbXxyCOPsGnTJgCWL1/Orl27cDqdfPDBB7jdbmbPnk1DQwMNDQ3ExMSgUqmor69X0v5PnDjBzJkzMRqNyLLMwYMHycvL6+GZCUI3kC9SFotFBsStB28eHh7yvHnz5FOnTslOp1OWZVl2u91yQUGBXFRUJOfn58v19fVyaWmpvGHDBnn8+PGyyWSSU1NT5Z07d8offfSRbLPZ5D/+8Y9yUFCQXFlZ2cO/VeeezWaTH3nkEVmj0Sh/r0ajUX733Xflhx56SF6wYIFcV1cnHzx4UF67dq3sdrvluro6ua2tTXY4HHJFRYX8zDPPyA0NDbLb7ZZlWZarq6vltLS0Hv/9EDdx+y03i8Xyi//PiO1HoVskJCTw/PPPM336dHQ6HdDexHLv3r2cPHmS3r17M3ToUFpaWigpKcHDw4MTJ04QGRlJdXU1y5cvVw4TL1myhIyMDEwmUw/P6tySZZm3336bd955B41Gg9PpBGD06NFKAs0f/vAH1Go1/v7+GI1GpU/aiRMnlBXZjBkz8Pb2VjIkX3nlFfbv39/DsxOE7iHJ8sV56rKxsVGkgPcAg8HAkCFDWLx4MfHx8Uoig9Vqpb6+HrPZjN1up6ysDLVaTVRUFGVlZdxyyy0cOHCA2bNnM2rUKJqamnjssccwGAz8/e9/Z9KkSfj7+/+uKorIskxubi4ADQ0NbN26lXfffZfp06dzww03UFtby4ABA9DpdDgcDmprawkICODUqVMUFBTQ2trKqFGjCA8PR5Ikqqurufnmm1m7dq0SIAXhQmOxWPDy8vrZ58VKTegyaWlpvPLKKwwbNkxpUCnLMidPnuTUqVMEBQXR2NhIeHg48fHxtLW18cILL/Duu+/S0NCAJEksXbqUiooKcnJyaG1txeVyceLECSZMmPC7Cmgd+vTpo/w9Dh06lLlz57Jw4UJuuOEGWlpa6N27N7NmzWLixImEh4cD4OvrS1FRERaLhaCgICRJwul08vLLL7Ny5coenpEgdC8R1IQuMWTIEFatWkVAQIDyIdzQ0EBhYSFNTU0MGDCAw4cPM2jQIEpLSykvL6eyspLdu3fT0NCASqXCZDIRGhqKh4eHciZNrVZjMpkIDAzs4Rmeez8O4h3/HRYWxkMPPcSWLVvIz8+npKSEuro6fHx8GD58OFVVVXh6erJq1SouvfRS5Xxaa2sr69at65F5CMK5JIKacNbMZjN/+ctflIDmdDrJzc3l6NGjDB48GI1Gg8PhID4+nmeeeYb33nsPh8OBVqtVMhq1Wq1Szik2Npampia0Wi033HADaWlpv8tV2k+RJAmbzcb111/P0aNHWb58OUOHDsVqtdLY2EhiYiIrV64kLCxMqfcYEBCAyWTi888/Z86cOeLAtXBREyn9wllRqVTce++9jBw5EmivarFjxw7a2toYPHgwLpeL5uZmPv/8c1577TXeeecdrFarUqOwg9vtJjU1Fa1Wi1arVQrsHj9+nH79+vXI3M4XdrudrVu3Ko1Sw8LCmDlzJgMGDECj0bBixQr27duH1WrF6XQSFxdHSEgIDQ0NfPDBBzQ2NgLtDVu/+OILBgwY0IOzEYTuJRJFhLMSGRnJ3r17CQ4OxuVysWbNGnr16sXWrVuJioqirq6O7du38+mnn1JfX/+TP8Pb2xur1UpwcDDl5eVK1ZFLL72U+++//3d7Pa2DLMts2bKFyspKrr76ahwOB6WlpYwfP57S0lIcDgcajYaxY8fy2GOP4XQ6GT16NLW1tXz11VcUFBRw11130atXL6D9jOA111zDwYMHe3ZigvAb/K9EEbFSE85KSkqKcr1LkiQGDx6MJElKZmO/fv0YP378L64OrFYrKpWKsrIyZYWm1WoxGAyMGjXqdx3QoP3vddiwYaSlpSHLMjt37uSDDz6gqKhIWb05nU52797N6tWrGTx4MAcOHODUqVOEhoYycuRIPv74Y06cOAFAr169WLx4MQEBAT05LUHoFiKoCWelI4hB+xai3W4nNDSUxMREoH3FvHnzZnbv3q28JykpiaCgIKD9A9vT05Pk5GQkSSIpKYm+ffvy6KOP8vbbbytn3H7vdDodvXr1oqCggNmzZ7Nw4ULcbjeSJGE0GomMjCQ2NpaHH34Yi8VCUlISGRkZhISEEBQUxJQpU3j22Wc5deoUkiQxYMAArr766p6eliB0ORHUhLMSEhKiBLWamhqcTicNDQ0UFBQQERFBQkICnp6epKamEhERgcFgoKWlBZvNRnBwMGq1Gj8/PxoaGgAYMWIEc+bM4f777yc4OPh3v0r7MbfbzY4dO3A4HLz66qtMmTKFGTNm4HQ6SUxM5MSJE/z5z3/GYrHQ3NyM1WrFZrORmppKaGgoN954I5mZmUD7tdBLLrmkh2ckCF1PBDXhN9NqtcTHxyv3g4ODiY2NRafTMXbsWEpKStiwYQOZmZlUVVVx9913M2/ePLy9vWlsbKStrQ1JkqiqqqKoqIiAgABGjRrFAw88gI+PT89N7DwWHBzM6NGj2bp1K0ajkQMHDtC7d2+am5vx8/Nj69atmM1mQkJClK3J5uZmDh48iCRJ5OfnK/3TBg4cKP6ehYuOCGrCbxYXF0dcXJxyv6NqhcPhwOVyYbFYKCws5OjRo6jVatxuN6NHj6Zv3754enri7e1NSkoK48ePZ+bMmaxfv57rrrsOvV7fg7M6f6lUKiZOnMhHH32E0Whk27Zt1NbWcvToUXbt2kVJSQkqlYrq6mrcbjfHjh2jf//+aDQaJk+eTEJCAoCSsBMbG8vgwYN7ckqC0OVEUBN+E4PBwIsvvqis1Gw2GxaLhWPHjlFTU4PBYMDb25vKykocDgePPfYYmzdv5sEHH2Tt2rV4eHgwfvx4Ro8ezaRJk7juuutISUn5XbeX+TUkScJkMnHzzTfj5+eHl5cXLpcLlUqFXq/n0KFDXHvttbz99tukpaVRU1NDeXk5FRUVREZGMnPmTPbs2YPb7Uaj0XD99dcrnRME4WIgPkGE3yQwMJBx48Yp17zsdjt1dXVERkYqZbE+/vhj1qxZQ//+/dm5cyebNm2irKwMq9WqVBsZMWIEGo2GkJAQEdDOwLBhw3j44YeRZRm3242HhwdXXHEFBoOBwsJC3nnnHXbv3k1MTAyRkZGEhIQgyzJRUVF88sknVFdXI0kS06dPV5J6BOFiID5FhN8kNTVV6UTtdDqpqanh6NGjbN++HZfLxRtvvMFnn31Geno6Dz74IMXFxUoA7LjWs2fPHm699Vbsdjvp6ek9NpcLkYeHB9dffz3z5s1Dp9Ph4eHB3r17aW1tBSA7O5vnnnuOvLw8tm/fTlZWFhaLBW9vb6KiosjJyQHAaDQSFhbWk1MRhC4lgprwmwQGBiorK4fDgcViYcOGDSQkJFBcXMzevXsZOXIkw4YNo7W1lczMTCVBoYPVauXyyy/nrrvuEltgv4EkSdxyyy3ceuutDB8+XKkc0mHz5s1MnjyZ//u//8Nut6PX66mvryctLQ2NRqP8DKPR2BPDF4RuIWo/Cr/JmDFjlJWXSqXC5XIxfvx4ysrKKCwsZMCAAVx//fX079+fq666ipaWltN+xiWXXMKbb76Jh4fHuR7+RSM2Npbk5GTefffd0/4eO8623X333YSFhXH48GEAjh49SmRkJNBereQiLSok/E6JoCacMZPJ1Gm7UJZltm7dSkhICBUVFcTFxZGYmMi2bdtobm7m0KFDqFSqTis1lUrFPffcg7+/f09M4aLRcV3stddeA1Da9UD7GcKnn36aoUOHotVqMZlMtLa2YrValdWZ0+mkpKSkx8YvCF1NbD8KZ2zgwIFERUUp9y0WC62trfzwww8cOXKEzZs3k5eXx8yZMzl48CALFixQtrs6+Pr6MmzYsHM99ItSaGgoV155Jddcc02nmnglJSV8+umnvPPOO5SWluLr68vx48cpLi5WSmR1JO0IwsVCBDXhjE2YMAGDwQC0X0/LzMxkz5491NfX4+/vj5eXF7fffjuvvfYatbW17N+/X+mP1mHgwIFKqSzh7EiSxMSJE/nss886bUE6nU6++uor0tPT8fX1xeVyERISwoQJEzh+/DgAPj4+jBo1irCwMHFtTbgoiO1H4Yyo1epO/c0aGxv56quvuP766yksLGTkyJFUVlbyj3/8g88++0zZCvux6Ohonn/++dNWb8Jv01HL0dvbG5fLxdixYzl06BB1dXXKlw6Xy0VaWhrR0dEcOHCAqqoqoP3f81//+hdWq5WcnBweffRRdu7c2cMzEoTfTnyqCGckKCioU3+zQ4cOERISwkcffcSBAwcoKSlh3759VFdX/2RAA7jqqqtIT08XdR27UF1dHfn5+QBs3bpV+bt3OBw899xzvPvuuyQnJ1NbW4tOp+Po0aNAe0DU6/Xo9XpGjx7N0qVL+fOf/8zixYtxOp09Nh9B+K1EUBPOyEMPPaRkzkH7h2l1dTXr16/H19eXPXv2sH379p99f//+/bnjjjtEQOtiQUFB3HzzzcrRiJKSEjIzM6msrFRKltXW1qLX6zl48CCenp643W7cbjd1dXWYzWYMBgMhISG88cYblJWVsWLFih6elSCcORHUhF8tJCSEGTNmKOfTiouL+eijj6ivryc8PJwTJ05QXl7+iz/j3nvvVZpVCl3Hy8sLm82Gp6cnvXr1wsvLi2+++QZZlklJSWHw4MGoVCqampowGAzY7XZ27drF8ePH2bZtG0OHDiU5OZmhQ4diMBh4+OGHWbduHW1tbT09NUE4IyJRRPjV+vXrR3R0NNCexv+3v/2NY8eOERsbS2JiolKy6ecEBwczduxYsUrrBiqVCm9vb7Zt28Zbb73Fm2++icvlwmg08vLLL5OcnExTUxOVlZXcfffdpKWlcejQIbRaLQMHDiQuLo5Vq1Yp1V4GDx7M9OnTe3hWgnDmRFATfrWYmJhOCSKrVq0iNzeXffv2sXHjxv/5/tjY2E5HAYSuo1KpuOyyy7jpppt44IEHuPzyywkICMBut7N8+XJKS0tpaWkhJSWF48ePEx8fz3XXXUddXR1jxoyhT58+HDp0iN27dyPLMnq9nqlTp/b0tAThjIntR+FXCwwMVP67tbVVOd9UVFSEzWb7n+8fOnSoyHjsRs3NzbzwwgtAe8UXt9uNw+HgX//6F5Ik8fjjj2Oz2aioqGDkyJHY7XaSkpI4cuQIPj4+TJs2jW3btjFy5EgA/Pz80Gg0ImFEuKCIlZrwq0iSRHR0tLJSa25uJjk5GY1G86sDVVxcnNh67EapqalKP7X8/HwmTZqEl5cX/fr1Y8+ePXz55ZfU1NQwaNAgNBoN69evx8vLi8zMTPR6PXv37u305UT8WwkXIhHUhF/Fw8OjU2ksp9OpXMcZPXo0wcHBv/h+lUrVqUu20PUiIiJ46qmnWLZsGS+99BLfffcdra2t2O12ampqeP7551mzZg1eXl7U1tbSu3dvJEni2muvJTk5mYceekhZpUF7tZGfO5YhCOcrEdSEX8VoNHYqweTj40NOTg51dXUYjUZuvfXWX/xmL8syzc3N52Kov2uDBw/mzTff5I033iAtLQ2DwUBubi4FBQXU1tby7LPPcuedd1JXV8eRI0doa2vDYDCwYsUKFi9eTHBwsPLv6Ovrq1SOEYQLhQhqwq/S3NzcqbWJXq8nNDQUg8HAoEGDaG5uRqvV/uz7Ow75Ct1HkiT69evH2LFjufPOO4mLizutvqbb7ebzzz9n7NixfPbZZ3h7e3Ps2DG0Wi1tbW388MMPyjW08ePH88Ybb+Dp6dkT0xGE36Tbg9pLL72EJEncd999ymM2m02p0G4ymZg1axaVlZWd3ldUVMTUqVPx9PQkKCiIhx56SFyw7kF2u51FixYp/wZms1nplbZv3z6WL1/O7NmziYmJ+dmfIT4cu59Go+Ghhx5i4sSJjBgxgr179572GlmWaWpqYtOmTfzjH/9Aq9UyYMAABg0ahJeXFx988AFutxu1Ws0tt9zCG2+8ga+vbw/MRhDOXLcGtb179/Kvf/2L1NTUTo/ff//9rFixgi+//JItW7ZQVlbGlVdeqTzvcrmYOnUqdrudHTt28OGHH/LBBx/w1FNPdedwhV8gyzJff/01RUVFQPuq4MYbb0Sj0fDNN9+QmppKVlbWLyaNiIO854ZKpVLqQQ4ZMuRnX+dwOHjvvfdYtmwZn332Gb1798bhcFBWVsaaNWuwWq2o1WpuvfVWVq9eTVxc3DmchSD8RnI3aWpqkhMSEuT169fLl1xyibxgwQJZlmW5oaFB1mq18pdffqm89ujRozIg79y5U5ZlWV69erWsUqnkiooK5TWLFi2Svby85La2tp/882w2m2yxWJRbcXGxDIhbF940Go28bt065e/8u+++k9VqtSxJkjxlyhRZo9H87HtVKpX8zTffdP0vmvCzbDab/O2338pjxoyRAwICZJVK1enfxN/fXw4MDFTuJyQkyFu3bpU3btwof/DBB/I///lPubGxUXa73bLb7Zb37t0rx8bG9vjvobj9vm8Wi+UXf++7baV2zz33MHXqVCZMmNDp8f379+NwODo93qdPH6KiopTq4Dt37iQlJaVTRt3kyZNpbGwkOzv7J/+8hQsX4u3trdx+XJ9Q6Bqenp5KRRGA6upqpXPy4cOHf3F72O12s3///nMxTOH/p9PpuOKKK1i3bh2HDh3iq6++4s477yQhIQGj0YhOpyM1NVWpF1lQUMCKFSvw8fFBo9Gg1Wp55JFHqKioACAtLY0lS5aILFbhvNYtQe3zzz/nhx9+YOHChac9V1FRgYeHBz4+Pp0eDw4OVv7nqaioOC1FvON+x2v+22OPPYbFYlFuxcXFXTAT4cc8PDyUDEhZlhk7diyDBg0C+FXdk+vq6n6xjJbQ9SRJQqvVEhYWxsyZM3n77bfZtm0br732GgaDgQMHDnSq6L927Vr+8pe/YDQaSUhI4Morr+Ttt9+mtrYWSZJIS0vjk08+ER3LhfNWlwe14uJiFixYwCeffHJOs910Oh1eXl6dbkLXCgwMVJI9ZFnmo48+wm63/+q/63379olzTz1MkiSCgoK47bbbWLp0KUOGDOl0FCM3N5elS5dy0003UVNTQ79+/QgICOC5556joqICSZIYMmQIH374IbGxsT04E0H4aV0e1Pbv309VVZVStUCj0bBlyxb+9re/odFoCA4Oxm63n9ZCvrKykpCQEKC9Gvx/Z0N23O94jXDuVVdX09LSArQnI3h5eWE2mxk4cOCvqj6Rl5fHmjVrkGW5u4cq/A8qlYrU1FSWLFnCSy+9pGwre3h44HK5aGho4KWXXuLjjz9m5syZ9O3bl08//ZS2tjZUKhVTpkzhpZdeEt2yhfNOlwe18ePHk5WVxcGDB5Xb4MGDmTt3rvLfWq22UwHcvLw8ioqKlDM1w4YNIysrS+nOCyglfZKTk7t6yMKvZDKZ8PDwUO5LkkR4eDgZGRkEBAQA7Ye0f26FbrFYuPnmmzl8+PA5Ga/wv3l5efHQQw/xxRdfEBMTg9lsRpZlNBoNXl5eNDY28s0335CQkMDgwYN59tlnqampQZIkZs2axZtvvimOagjnl25PwZLlTtmPsizLd955pxwVFSVv2rRJ3rdvnzxs2DB52LBhyvNOp1Pu16+fPGnSJPngwYPy2rVr5cDAQPmxxx771X+mxWLp8Sydi+3m6+srl5WVKX/HOTk58owZM+RHH31UnjJliqxWq+Xhw4fLw4cPl+Pj42W1Wv2TP2fevHlyc3Nzl/xuCV3D7XbLu3btkmNiYpR/p8jISDkmJkb29fWVN2zYIB88eFD+05/+JD/99NNKFrLT6ZTnz58vS5LU47+f4vb7uPVY9uMveeONN5g2bRqzZs1i9OjRhISEsHTpUuV5tVrNypUrUavVDBs2jOuuu44bbriBZ599tieGK/z/HA4H9fX1yn2NRkN8fDx+fn4UFRWRlpZGaGgo9913H1OnTv3ZA7sff/wxa9euPVfDFn4FSZJIT0/n888/Vw7QFxcXEx0djUaj4a233mLjxo2MGDGChIQEVqxYoRzQfvzxx5WEIUHoaZIsX5wXOBobG/H29u7pYVxU/Pz8OHLkCKGhoUD7tvHTTz/NoEGDOHHiBLW1tdTV1TF9+nQefvhhnE7nz14/e+CBB3j11VdFJfjzjCzL7Nmzh9mzZ1NQUMAll1yCRqOhvLwcm83GwoULMRqNaDQa/P39SUtLA2DPnj1MmTKFurq6Hp6BcLGzWCy/mJwmaj8Kv5rZbO50TS00NJR77rmHyMhI5s2bR//+/YmNjWXVqlX/syp/bm6uSBg5D/14xdZxLTwyMpKTJ0+SlJTEU089Rf/+/VGr1Xz66aecOnVKyYicMWNGTw9fEERQE369hoaGTkWNjUYjvXv35uDBgxw/fpzS0lLWrVunVHY/ceLEz/6sUaNGiVXaeaojsM2dO5f7779fSRDau3cvFRUV7N+/H09PT+bNm8euXbuQZVlpQtqxiheEniKCmvCrNTY2smjRImWF1VGJ4tprr8XT05PCwkIaGhrw9vZmypQpPxu0Os5KiaB2/pIkiVtuuYUbbriB/v37A1BVVYXFYuHZZ5/F29ub6upqli5dSl1dHZIkERsby4MPPij+XYUeJYKa8KvJ/39R4x+fIQwICKClpYXq6moKCwux2Wzk5uaydetW+vTpo6T6/5iHhweDBw8+l0MXfgOz2czLL7/MoUOH0Ol0yuNHjx7l22+/xeVyMXv2bNauXYvL5UKlUjF8+PBf3QldELqDCGrCGSkqKiI/P1+5L0kSGRkZ5OTk4Ofnh5eXFzabDU9PT2RZxuFwMGrUKK699lpSUlKA9g7NERERPTUF4QyYzWZmz57dKVC1trby9ttv43A4mD59Oi0tLdjtdgBSUlKU5BFB6AkiqAlnxOl0snLlSmUL0uFwUFlZSWhoKLNnz8ZoNDJx4kQGDx7MZZddRkREBKmpqVxyySWUlpYCMGDAAFHG7AIyZMgQ+vXr1+mxsrIydu/ejd1up7a2liNHjiDLMiaTiWeeeUY0hBV6jAhqwhnrSAQB0Gq1Svmsffv2ERAQQEVFBXq9Hl9fXx588EFKS0vZs2cPl112GUajkbS0NLFFdQHRarWMHj2aAQMGdHr8u+++o7KykqFDh7J8+XIsFgsAffv2xdfXV7nmKgjnkghqwhmRJAl/f38lGaCmpgZfX1+mTp3K4MGDuf/++8nMzOTTTz/ltddeo6Kigh07djBu3DhCQkJobm6murq6h2chnAlJkpg2bRoFBQVIkoTZbEan01FdXY1arcbPzw+r1ap0YAgNDWXDhg189dVXp63wBKG7iaAmnBFZlqmpqVG2H/39/ZU2QiNHjqShoUGp2RkeHs7SpUuZPn06hw8f5uDBg6SnpzN69GhxRu0CEx8fT1xcHGq1GoPBgL+/P1qtVtl+VqlUNDY2IssyKpWK5ORkpk+fzrp165g/f76oDymcMyKoCWessLCw0zW13NxcWltbARg9erTSa8vPzw+n00lWVhZ5eXlYLBbGjx/Ptm3bRAuaC4zRaGTatGk4nU6io6MJCAigqKiIBQsWEBMTQ2trK6+//jr79u3jwIEDFBYWAu2rttdff5133323UwalIHQXEdSEM9bR8RraO1qHhITQ0NCA1WplwYIFSsr/0aNH0el0JCQkEBoayssvv8zRo0fx8PAQ11suMGq1mj/84Q+kp6cDkJycTHh4ODt37uTLL7/kvvvu49Zbb2Xz5s2sWrWKhx56iLKyMmw2GxqNhlmzZnHVVVf18CyE3wMR1IQzVlZWhsPhAFB65qWmpnL48GFmzpxJUFAQgNJ7q66ujvj4eHbu3MmpU6dwOp2iA/YFKDExkVtvvZWQkBBcLhdFRUVoNBrq6+tRqVQcOnRIKWodGhrK9u3b+eCDD4D2Jr7i+ppwLoigJpyx8vJypcmrRqOhtrYWPz8/br/9dmpqapRK/larFavVSkVFBdnZ2ej1ehYvXszgwYPFSu0C1FFl5LHHHsNqtSr/9jExMbS1tTF06FDi4+NJSUnh0ksvpbq6mtTU1J4etvA7I4KacMYaGxux2WzK/dTUVHx8fPjkk0946623lIO4AFlZWRQUFNDa2kp6ejq5ubkMGDBArNQuQJIkoVKp6NWrF1VVVUoXhueee45t27YpBa81Gg3vvvsu48aNY+jQoUD7qj0rK6uHZyD8HoigJpwVu91OQ0MDe/bsISUlhbCwsE7Pa7VaQkNDsVqt5OXlsXTpUjZs2CDqA17AtFots2bNQqvVAlBfX8/hw4exWq04nU4CAgJISkpi06ZNyr9zdnY2y5cv78lhC78TIqgJZ8zf3x+TyQS013H09vYmISGB//znP+Tm5nZ6rdls5vjx47S2tvLoo4/icDiIjY0VK7ULmEql4ujRo7S0tAAwceJEJk6ciNFoVPqppaamUlJSQllZGQBJSUlKmTRB6E4iqAlnLCQkBG9vb9ra2nA4HMiyTHl5OYMHDyY4OLjTa+vq6nA4HGzZsoXa2lrWr1/PunXrxErtAlZfX0/fvn2V+wUFBaSmptLa2kptbS1VVVUkJSURFBTEsWPHANDr9cyYMUP8uwvdTgQ14Yz5+/ujUqmQJAlJkrBareTn5xMeHk5CQgI+Pj7K1hRAeno6QUFBGI1GDAYDkZGR4vD1Berw4cO88847SjURaA9ye/bsoa2tjeTkZAYNGoRGo2H06NGcPHlSqSBz5513MmnSpJ4cvvA7IIKacMaam5uB9q1HrVaL2+0mIyMDu92uHLrtKGirUqk4fvw4LpdLKXpsNpt7bOzC2QkICGD58uVs2LBBeaysrIxHHnmEjRs3smHDBn744QcaGhooKCjAbDbz0ksvIcsyXl5evPDCCxiNxh6cgXCxE0FNOGMdW47QXjbLbDZTXFxMcHAwLpeLhoYGYmNj8fHx4aabbsJoNBIREcHAgQMZP348ffr0ESn9F6iQkBAWLFhAXl6eUrRYkiSKior45JNP6NWrF0ajEVmWGTBgAHFxcVRWVmK1WgGIjIzEz8+vh2chXMxEUBPOmMFgUK6NyLJMSUkJffv2Va6V+fn54XA4eOaZZxg4cCANDQ1MmDABh8PBiBEjGDhwYA/PQPitVCoV06dP54orrsBoNHLttdfi6+urNAi1WCw0NjaSkZFBUFAQZrOZxMREioqKgPat6169evXwLISLmQhqwhn78SqrsbFRWalNnjyZV199lUWLFmE2m3nzzTf529/+hlqtVhJLZs2axebNm3tw9MLZCgwM5LXXXkOSJJxOJykpKYSGhjJ16lSSk5PR6/Xs378fh8OBy+WiqalJOayvUqm47LLLRMKI0G1EUBPOWHx8vPKh5OHhgd1uJzw8HI1Gw2WXXUZTUxM5OTnk5+djt9txOBzs2rULX19fnnvuOdEZ+SIQEhJCRkYGe/fuZc6cOVx++eX4+/tz8uRJKioqaGtrw8PDA71ej06nw9fXF1mWkSSJG2+8UazWhW4jgppwRkwmE9deey0qVfuvzqFDh6itrSU3N5fevXvz6aefcu+99ypllCIjI3G73dTX17NixQrKy8tFosBFwGKxMGrUKOLj4xk4cCC33HIL4eHhBAUFkZqaSmhoKMeOHSM7O5uSkhLeffddVq9ejSzLBAUFcd1114nVmtAtRFATzsjll1/OiBEjAGhtbaVfv35UV1cTExPDm2++yeLFi7n88ssZPnw4Go2GvLw8IiMjCQkJwWazsXnzZqWKv3DhstvtlJSUUFVVhSzL5Ofnk5mZiVarxW63YzAYkGUZHx8f/vjHPzJp0iQ+/PBDamtrAbjxxhtP66QtCF1B09MDEC4s0dHRyjU1jUaDWq2mX79+eHl5MWbMGPr06YOfnx8nT57k3nvvpaqqCn9/f9asWUNcXBxXX311D89A6Ap6vZ45c+bw0EMP4ePjQ0pKClarlZaWFr7++muuuuoqDAYDoaGh+Pr60tjYiI+PD2VlZQQEBODr60tCQgIHDhzo6akIFxmxUhPOSHJyMtCe9Xjq1CkcDgclJSUUFBQQERFBVFQUu3bt4v7776epqQmA4uJibDYbISEh2O12EhISenIKQhfw9fUlOTmZlpYWJElCr9eTm5vLpk2bcLlclJeX4+npybFjx1Cr1QQFBREcHMz27duVEmn/XX1GELqCCGrCr6bRaAgNDVXuh4aGYrPZMJlMFBQUoFarCQ4O5q9//atSAxDajwAEBQXhcrnYsmWLqPt4kZAkCW9vb+X+hg0byMzMJD8/n61bt1JdXY1Op2P//v3s3r2bwMBAMjMzlS87Hd3SBaEriaAm/GpOp1OpJtLW1gZAbW0tLpeLESNG4OfnR2trK62trZ3S/m02G1arFZ1Ox3XXXac0GBUubM3NzZhMJiXhY+7cubhcLm688UauuuoqDh48SGhoKCEhITQ1NWEwGIiJiVG+1MyYMQMPD4+enIJwERJBTTgj+/fvR5Zl9Ho9Xl5ehIaGEh0dTUlJCTU1Nezduxe73Y6Xl5fyHqvVio+PD3FxcaSkpKDT6XpwBkJX+XF9T4Dw8HAGDhzI9u3bOXToEFdccQXR0dFYLBb+8Ic/4HQ6iYmJQa/XI0kSEyZMYObMmT00euFiJYKacEZWr17dqUHoqVOn2LdvH35+fhw/fhxJknC5XEr3a4DY2FhSU1OZM2eOSOO+iHQEJ2jfitRqtQwcOBCXy8XGjRtpbW2lqKiImJgYdDodMTEx5ObmsnjxYgB0Oh1JSUk9OQXhIiSCmnBGysrKqKqqUu6npKQwZMgQ/P39SUtLo7Gx8bTA5XQ6SUtLY8WKFTidThHYLlIeHh5kZGSQnJzMzTffrGw5arVaioqKkGWZwYMHExERobznv1d7gnC2RFATzkh5eTkvv/yycl3E7XZjsViw2Wz885//ZMyYMaSmpqJWq5VGonV1dezatYuSkhI++ugjpRWJcPGQZRmXy4Xb7WbixIlotVo+++wz/v73v7N27VpaWlqYPHkysbGx2O12pSD2NddcQ2BgYA+PXriYiKAmnLGCgoJOVfolSaKpqYnBgwfj6elJRkYGcXFxSsq23W7H7XazZMkSnnrqKZ5//nlcLldPTkHoYhUVFdx9990cPHgQgMzMTFavXk19fT0Wi4Xw8HCam5spLy+npqaG8vJyoH1r+oYbbujBkQsXGxHUhDPWkfnYoaqqisLCQlwuFy0tLXz33XcUFBRQUFAAoLSjkSSJuro6pcmocPFQqVSMHz+e5uZmli9fzoEDB5RMR41Gg9FopKKiggkTJuDh4cHixYuRZRm1Ws3gwYPFlrTQZcQni3DG8vPzKSsrA9qviSQnJxMREcHo0aPJy8ujqakJX19fZYvS5XLxww8/ANCnTx9iYmLEh9hFRJZl/P39qaioYOPGjXz77bfs2LGDfv36sWnTJv70pz/xzTffoNfrOXToEI2NjeTl5ZGTkwNAUlISvr6+PTwL4WIhgppwxkpLSzl16pRyX6VSERISgkqlIiYmhnvuuYcrrrii03tiYmLIyMjg5MmTeHp6nushC93Ibrfz7rvvsmnTJlatWsWqVas4fvw4S5YsIS8vj4aGBtauXUtxcTG9e/emoqICrVarnFdMSUnhnnvuEV90hC4hgprwm/z3B1B5eTnZ2dnExsZy1VVXoVarletuAAEBAURGRtLc3Mz+/ftFVZGLiIeHB/7+/gwYMIDg4GAcDgd2u53jx48D7Z3Sv/76azZt2kRxcTHTp08nKCiI3bt343A4UKlUTJ06FY1GlKIVzp4IasIZczgcnSrty7KMVqultbVVKXL83wesS0tLWbZsGbIsK/UChYuDJEkEBATw1Vdf4e/vT//+/U97jcvlYsmSJTQ1NREcHExGRgZFRUXKlxuDwSCqiwhdQgQ14YzJskxeXp6yEqurq6OtrY20tDTq6+txOBxkZmZ2ek9FRQV2u53ExERMJlOnVZxw4Rs5ciQjRoyguLiY/Pz8n3xNRUUFDocDb29vTCYTHh4eSjm15ubmTof6BeG3EkFN+E1+fADbx8eHoKAgiouLycnJoaSk5LTXe3t7o1arOXbsGF999RUWi+VcDlfoZlqtljFjxpCSktKp6PWPWSwW5XfDbDZTXFyM3W4H2n+HRPNYoSuIoCb8Jj8Oamq1Gq1WS05ODjExMYSFhTF+/PhOr7darfTp0wdJkjh16hRr1qwRq7WLiCRJjBo1Cp1O1ymJ6MdUKhW1tbVYLBY8PT2JjIxUthzDwsIIDw8/l0MWLlIiqAm/yfbt2zlx4oRyv7q6mgEDBlBfX8/hw4f5+uuvO70+NTUVPz8/rrzySiZMmMDOnTvP9ZCFbhYQEEBhYeHPrsJ79epFTEwMLS0tWCwWqqurycnJQZZlvLy8WLBgwTkesXAxEkFN+E1KSkpYs2aNcr+jq3FwcDB9+vTBx8cHaC96GxERQXp6OrIss3//fvbs2cP333/fabUnXPgqKyvZuXPnz67AR40axfDhwwkICOD48eP4+fmxaNEipSpN7969RS1I4ayJoCb8Zj/+Rt7c3ExycjLBwcEYjUZqamowGo1MnjwZf39/VqxYwZAhQ5g4cSKzZs3C09OTPXv2iEaRF5Hg4GAiIyMJCQn5ycPUK1asYPfu3TQ3NyPLMrGxsQDk5uYCkJiYiNlsPqdjFi4+IqgJv9mPzxW53W6qq6uxWq0cPXoUi8WCyWTi+++/59ChQ9TV1XH8+HF69+6NTqfD29ubd955h3/+85/i2tpFQqvVkpiYSEVFRafWQx0MBgMDBgygpqaG5ORkfHx8uOaaa/j888+B9vNuIllEOFvitKPQJVwuF5WVlVitVioqKvjTn/5ETk4OW7duVQraFhYW8sorr+BwONBqtbS0tHDy5EluvvlmvL29e3oKwlnqOK/2cyIjI5Wtx6FDh+Lp6cmiRYu4/fbbAWhoaBBZscJZ65aVWmlpKddddx3+/v4YDAZSUlLYt2+f8rwsyzz11FOEhoZiMBiYMGGCUn2gQ11dHXPnzsXLywsfHx9uueUWrFZrdwxX+I1qamqUVVZgYCDh4eGsWrWK3r17M2jQIO677z6mTJmCVqvFZrNx6623cumll9K7d29cLhdWq5XCwkIKCwt7eCZCV5BlmeDgYAYOHHjatTGVSsXll19ObW0tkZGR5Obmsnr1ajw9PRk4cCAAOTk5NDU19cTQhYtIlwe1+vp6RowYgVarZc2aNeTk5PDaa6912mN/5ZVX+Nvf/sY///lPdu/erVx7+fHhy7lz55Kdnc369etZuXIlmZmZyjc64fywc+dOnE4n0P4t3dfXl+nTp+Pp6Yleryc6OpqMjAylNc1XX33FmjVrOHz4MEajkfj4eNRqtfIzhAtbfn4+H3zwAS6X67TWQv379ycgIAC9Xo/L5WLr1q14eHgwZMgQ5TU6nU50bxDOWpdvP7788stERkby/vvvK491XBCG9m9zb775Jk888QTTp08H4D//+Q/BwcF8++23zJ49m6NHj7J27Vr27t3L4MGDAfj73//OlClTePXVVwkLC+vqYQu/QUlJCXV1dUrfNIPBQF1dHeXl5cTHx1NbW8uQIUMYMWIE27dvR6PR8MEHH6DT6aitrVVWaj/+/RAuTLIss2nTJkJDQ9mxY8dp10n1ej3BwcGUlpYycOBASktLMZlMjBw5Unl/fn6+6LMnnLUu/1q0fPlyBg8ezNVXX01QUBADBw7k3XffVZ7Pz89X+ip18Pb2JiMjQzm7tHPnTnx8fJSABjBhwgRUKhW7d+/+yT+3ra2NxsbGTjehe5WVlfH11193+gDz9/cnLS2N+Ph4WlpaKC8v5/bbb8dsNmO323n99ddZsGABzc3NbN68mW+//ZaGhoaem4TQZQoLC5UCxT+m1+u54oorlG4OVquVdevWERcXB/y/gPbKK6/0xLCFi0yXB7VTp06xaNEiEhIS+O6777jrrrv44x//yIcffgi0138DlG/3HYKDg5XnKioqCAoK6vS8RqPBz89Pec1/W7hwId7e3sotMjKyq6cm/BeXy8ULL7ygpGRD+7U1l8tFfX09MTEx9OnTh3Xr1hEbG0tpaSlut5vc3Fzmz5/P2rVrqaur63RtTrgwNTU14eHhwTXXXENgYGCn56KiokhKSsLT05PDhw/z1VdfsWPHDqVEltvt5oEHHvjZmpGCcCa6PKi53W4GDRrEiy++yMCBA7n99tu57bbb+Oc//9nVf1Qnjz32GBaLRbkVFxd3658ntCsrK2Pr1q1KUDKbzRgMBtRqNQ6HgzVr1nDzzTczdOhQiouLaWhoIDg4mLFjx1JXV4dareZf//oXzc3NPTwT4WyoVCquuOIKrr32Wp544gnlS6skSaSkpODh4UFwcDD9+/cnPj6eyMhIWlpalPeLVkRCV+nyoBYaGkpycnKnx5KSkigqKgIgJCQEoFPrko77Hc+FhIScVm3C6XRSV1envOa/6XQ6vLy8Ot2Ec+PFF1/k5MmTQPuHm5+fH4WFhZw6dYqEhARiY2ORZRmXy0VZWRlOp5OjR4/ypz/9ieuvv57LLrtMtB25wC1dupSnn36aoqIipk+fzosvvqhU4Z89ezZeXl4UFRURGBiI0+kkODi4U+FrEdSErtLlQW3EiBHk5eV1euzYsWNER0cD7UkjISEhbNy4UXm+sbGR3bt3M2zYMACGDRtGQ0MD+/fvV16zadMm3G43GRkZXT1k4SwVFhYq19YkScLlctGrVy+sVis2mw2n08n27dsBlOahQ4cORZZlYmJisFqtP1nZX7gwuFwucnNz6du3LzfeeCP/+Mc/mDFjBmFhYTidTt58800iIiKULehjx45hNBqVs4myLIvrqkLXkbvYnj17ZI1GI7/wwgvy8ePH5U8++UT29PSUP/74Y+U1L730kuzj4yMvW7ZMPnz4sDx9+nQ5NjZWbm1tVV5z6aWXygMHDpR3794tb9u2TU5ISJD/8Ic//OpxWCwWGRC3c3S77LLLZJfLJcuyLLe1tcl1dXXyoUOH5KNHj8rLly+Xhw0bJgNyTEyMHBUVJU+bNk1etGiR7OPjI0+ZMkUuKyvrul9C4ZxyOp1yYWGh7HK55MrKSrmxsVFeuXKl7OHhIQNyWFiYvHnzZrmurk52OBzy+vXr5fvvv1+2WCyyLMtyeXm5HB4e3uO/w+J2Ydw6fm9+Tpen9A8ZMoRvvvmGxx57jGeffZbY2FjefPNN5s6dq7zm4Ycfprm5mdtvv52GhgZGjhzJ2rVr0ev1yms++eQT7r33XsaPH49KpWLWrFn87W9/6+rhCl0kMjJS6WZtsVjQ6XTExMSwc+dO7Ha7co2zoaGB9PR0TCYTxcXFJCUlMWvWrNM6ZQsXDpfLxapVq+jVqxcRERHs27ePxYsXK4kgTU1NNDU1kZ2dzZAhQ5RD2h11HisqKqirq+vJKQgXkW4pkzVt2jSmTZv2s89LksSzzz7Ls88++7Ov8fPz49NPP+2O4QldTK1WM336dCWo+fr64na7OXjwIA0NDQQGBirVYBoaGmhra8PT05N9+/ZhMBj44osvGDNmDH5+fj05DeE3ys/Pp66ujmXLlnHgwAHCw8M7ZTK63W5kWSYyMpLi4mKysrKYOXMmkiThdrv597//LQpbC11GHN8XzpperycmJka5r9Fo8PDwwGQyMWzYMFpbW9FoNJhMJkaNGkViYqJyGPuGG26gsbFR+VYvXHj27t2L1Wpl+fLl7Nu3j7y8PPR6PQaDAYCWlhbeeOMNTp48yZIlS6ioqFCyZRsbG1mxYkVPDl+4yIigJnQJ+UfnzOrr6ykvL8fX15eysjJ27NiBxWJBlmXGjBkDtK/mUlJS+Pzzz+nbty/x8fE9NHLhbMXGxpKXl0dNTQ12u52srCyOHTumrL5kWWbPnj1s3ryZKVOmoFKplAPaFotFHOcQupQIasJZs9lsnDp1SrnvdrsxGo2cOnWKZcuWsXDhQhwOB2FhYfj4+CBJEmazmeXLlxMfH8/IkSPFSu0CdujQIb755ptOQey/jRw5khtvvJHq6mp0Op3IdhW6jQhqwllzuVzKOTVoP1PocDiQZZm2tjblDFptbS0GgwGr1UpSUhIzZ87EYDCwbNkyjhw50lPDF85S3759/2fH6vz8fPbt20dGRgYqlUqpxu/r64u/v/+5GKbwOyGCmnDWJEnCZDIp94OCgjhx4gSxsbEMHjyYK664Qnn8/fffp0+fPoSHh/PFF1/w+uuvk5mZ+Yt9uITzW3Z2Ng6H4xdfk5aWhsvlUsrcddR+lWVZrNKFLiWCmnDWJEk6rSJIbGwsLS0t9OnTRylC7ePjw/Tp04mNjWXNmjVA+1ZlS0vLT3ZKFs5/HUHpf7WMSUlJYdKkSXh5eeFyuZSu6U1NTeKamtClRFATzlpHLzX4f9dTTp48SWFhIStXrqS0tBRoL1p96aWX8tlnnzFq1Ci0Wq2SNKBWq3ts/MLZSUpKIi0t7Rdf891332G1WrHb7bjdbuX4R0FBgfhCI3QpEdSELtFRu6+jQr+XlxeJiYk4nU48PT0BMBqN7Nmzh5SUFPbu3Yu3tzdutxubzSY6Hl+gZFnm7bff7pQo9FOOHz9OXl4edXV12Gw2JahpNBrRGFToUuK3SThrLpeLgoIC4P+1CAoLC+Prr7/G5XIp11uOHTuGv78/J0+eJCoqihMnTgCIldoFrqWlhdra2p99PjY2lltuuUX58jJq1Chl+7GjB5sgdBUR1ISzplarO/Wvk2WZXbt20dDQgMvlUopZ6/V6jhw5QkNDA2vXrkWn0xEaGopGoxFlsi5QDQ0NnTJff8rkyZO55JJLSEtLY8uWLURFRQHtq/t169aJXnpClxJBTThr/53SD+2NIX/44QcGDRrElClTgPYPsSFDhpCRkUFaWhrz589HpVJht9s79dYSLhzHjh2jvLz8F18THR1Nr169+Oabb/D09FTOs7ndbmpqas7FMIXfERHUhLMmSdJpdRs7itfGxsaycuVKTCYTY8eO5ciRI/j7+1NRUcGzzz6rJJEIF6a9e/dis9l+9nm1Wk1FRQVtbW0MHz6c7Oxs+vbtC7R/GRLNfIWuJoKacNYkSTrt8G1paSkTJ06krKyMwMBA/P39yczMJD8/H5vNRnx8vChie4GTZZmioqJfbMg7cuRIpk6dCrQ3EB41apSSJNLc3ExjY+M5Gavw+yGCmnDWOiqH/JhOp+P9998nPj6eMWPGEBYWxqlTp8jIyCA4OJh9+/b10GiFrmQ2m5UWMj+luLiYtrY2AgMD2b17N7m5uUpSUE1NzWkd7gXhbImgJpw1WZZPO0DrcrkYPHgwbW1t7Nq1i+uvv57k5GQaGxt55plnyM3N7aHRCl3F4XCwffv2X9xCHj9+PPX19Wg0Gvr160dra6uSwm8ymX4xIArCbyGCmtAlysrKOmWxhYeH09TURHl5OYMHD8Zms1FUVERNTY3SW024sLW1tVFXV/eL24/19fUMGzYMs9mM3W6nqqqKoqIiAAICAggPDz9XwxV+J0RQE7rET50zs1gsZGVlsXbtWvLy8ujVq5dSfUJ8Q7/wGY1G5s2b95PNXTUaDU8//TQPPvggoaGhlJSUkJ2djYeHB0ajEWi/FttxMF8QuooIakKX8PHx6XTf6XTy/fff43a7SU9Pp7y8nFOnTnHs2DEiIiJ6ZpBCl3K73aSkpGAwGJTkjw6hoaHMmTOH9PR0MjMzsVgs1NbWMnjwYLy9vYH23xFRIkvoaiKoCWdNkiT8/f07fbCpVCpsNhv+/v7KIdtjx46Rm5vL/v37RVmsC5wsy+zYsYMHH3wQHx+f0w5QT5w4EQ8PDz777DNCQkKQJIm8vDyampqUg/bFxcXk5+f3xPCFi5gIasJZk2W5U5CSZZkDBw5QVFREWVkZl112GX5+fhgMBo4ePSrSuC8Csizz73//m3379rFz585Oz3l7ezNv3jxOnjyJSqWib9++lJeXExgYyOzZs9FqtciyTF5enjjWIXQ5EdSELuF0OpX/ttvtDB8+nN69e9Pc3Mz777/P1KlTCQ8P59prr6WtrY2rr75aKZckXHhkWSYiIuK0rWS1Wk1GRgYHDx4kOzubtLQ0/vrXv/Lll19SWlqKyWRCkiSampp45plnOv3eCEJXEEFN6BIdF/+hPUkgJCSE6Oho9u3bx1VXXYVWq8Vut/OPf/yD0NBQ4uPjlYaRovbjhUelUtHS0kJZWVmnx7VaLVdddRXp6elcf/315OXlkZqaipeXF9dccw2BgYEAHDx4kMOHD/fE0IWLnAhqQpf48TUVWZZpbGzkpptuIikpieXLl2Oz2aisrKS+vp78/HxefvnlTh2PRVHbC0+/fv0YN25cp8dsNhtvvPEGVVVVWCwW+vTpQ05ODv369ePLL7/s1KJI/JsL3UEENaFLHD9+XPmQ0mg0JCcns2XLFoqLi9m3bx+HDx+mtbUVSZJQq9VceumlyiFckQV34Wlra+OLL774yTOHubm5LFmyhNbWVvR6PV5eXjgcDtRqtfI70tbWpgQ4QehKIqgJXeLHh687AldraytqtZqkpCQKCgqUclp1dXWEhIRwzz33oNPpcLvdvPXWW1gslh6ehfBrlZaWsmfPHvbv33/ac8HBwdx111306tWLqqoqQkJC2LZtm9LpHNpX5mKlJnQHEdSELlFeXo7L5VLue3p64nK5GDRoEH5+fp3KaHV8mB05coQZM2YgSRKrV6/m9ddf7/QzhPOX1WrF6XT+ZIPPWbNm4XK5OHToEA0NDYSFhXHLLbdgMBiU1ZnBYFAahQpCVxK/VUKXOHr0KNXV1YSFhQHt3ZCLi4vZuHEj9fX1nbaaZFnm/fffx9/fH6fTqQS5v/71r1x11VWkpKT0yByEX++Xrolt2bKF+fPno9VqcblcqNVqsrKyKCoqoq2tDY1GQ0lJieh4LXQLsVITukRTUxPLly9n165drFq1iqqqKlpaWrBarWg0GsLDwztlSALU1tbS3NxMRkYGAQEBNDU1sWPHDrEtdQEIDw//yfJYACkpKUpdRz8/P2JjY9m2bRuRkZFUVVXhcDhYtmzZOR6x8HshyRfpJ0hjY6NSjkc4N7y8vHA6nWi1Wu69917CwsLIy8vDbreTkpLCv/71L7KysoD/twWp0+mUgseNjY20tbWxfv16EhMTe3Iqwv9QXl5OWlraT3a9vummm5g1axZJSUlUV1fj5eXFlClTKC8vp1evXgQFBbF7927R7Vz4TSwWyy8W0Rbbj0KX+XGlkJqaGlQqFb6+vtTW1mKz2Rg1ahTJyclkZWWRk5OjJI4cOHCAgIAASkpKcLvdPPHEEyxevFgUPT6P5eTkUFNTc9rjKpWK/Px8SkpKCAwMRKfT8ac//YmCggKgvSN6dnb2OR6t8Hsith+FbmGxWJR+WVFRUSQkJKBWqxkyZAiJiYmdthhbWlooKipSrrtt2rSJtWvXim3I85Qsy+zcufMnr4np9Xqee+45TCYTixcv5sorr2T16tU9MErh90qs1IRu8eWXXxIZGcl1111HSEgIubm5REREIEkSBoMBX19fmpubcTqdSjCTJImbb76Zvn37smTJEsaOHUtAQEAPz0T4by6Xi+3bt3d6zMvLC5vNRkJCAiaTiaeeeopTp0710AiF3zMR1IRu4XK5ePvtt/nhhx9YsGABFouFCRMmYDAYSEpKYuDAgTidTv76178q5bKMRiNNTU1kZ2djNpvJyclh9OjRPTwT4b+1tLRw4sSJTo9dcsklHDx4kMWLF/Pll1+K6vtCjxHbj0K3aW5uZtOmTXz66afk5OQQEhJCRUUFJpOJ/v374+3t3ek6nCRJjBo1iiuuuILa2lpxZu08ZTabmTBhAnq9XnksLi4Ok8lEbW0tWVlZYoUt9BgR1IRuZTKZSE1N5aabbkKv1xMfH09ISAjvvvsujzzySKcMuNDQUNasWcMDDzzAnDlz8PDwENfVzkOSJDFu3LhO3c6XLl2K1WolJCSEp59++ic7oQvCuSCCmtCtUlNTmTlzJn5+fhw+fJidO3fy4IMP8s0335zWKPTYsWPs3r2badOm8ac//Yk1a9YoWZLC+WXixIk8/vjjhIWFIUkSvr6+BAYG8tVXX+Hn50dQUFBPD1H4nRJBTehWZrOZ8PBwKioqsFqtHDlyhFWrVgEQHx/PvHnz6Nu3r/L6pqYm3n33XXQ6HUFBQezfv1/03DoPmc1mKioqCAwMJDQ0lJaWFlpaWsjJyaGxsfFnD2YLQncTQU3oVrW1tRw6dIhTp04xceJErrzySh5//HFWrVrFli1beO+997jyyivRarVAe4NRm81Geno6dXV1JCYm0tDQ0LOTEE4jSRL9+/entLSUkJAQZs+ejdPp5MiRI9hsNgYMGNDTQxR+p0RQE7rVgQMHKCkpYeLEieTn5xMTE8PDDz/MhAkTaGtrQ5Zlrr/++tOSDmJjY9m0aRMvvfQSRUVFPTgD4aeoVCoSExPp27cv06ZNw2azodFoiImJITw8nAkTJohkEaFHiJR+oVs5nU7mz59PSEgIDocDvV5Pfn4+iYmJ1NTUEBERwd69e7njjjvYtm0bu3btorCwkFdeeQWn04mnpyejR48mLS2tp6ci/BedTkdFRQU//PADsix3KkvXUfJMEM41sVITul1NTQ1ffvklAQEBqFQqoqKi0Ol0REdHI8syc+bM4S9/+Qu33347AA6HA6fTSUxMDElJSfj6+vbwDISfEhcXh06nw+l00tjYSE1NDXPmzMFgMDBy5Ehmz57d00MUfodEUBPOiQ8//JDDhw9TUVGBVqvl0KFDyLJMTU0NVVVVHDp0iJSUFEwmk/KewsJCfvjhB3GQ9zzl5eXFrbfeitFopLW1ldDQUJxOp7JdvGvXrh4eofB7JIKacE60tLQonRMiIiKIjY2lvLwcLy8vdDodnp6eGI1GoqKilPd0dEfW6XQ9OHLh58iyzN69e9m9ezfV1dWoVCoOHTqE1WqluLiYwsLCnh6i8DskrqkJ54Qsy7zxxhv4+vpiMBgICwsjODgYvV7Pvn37SExMxOVyERgYeNp78/PzcbvdqFTiO9j5RKfT8c4771BYWMh3333Hjh07mDJlCj4+PhQWFmIymTpVjBGEc0F8SgjnhCRJzJgxg8LCQnx8fJQVmPv/a+/M45o61j7+O9kDIYTNBGRfBFRU3HFtK1V7a7V28WqpS+urrdWut63dt9vF6r1d7G1t+95rV6u2dalWbUtFpSgiKKJgVRRk37cAISEkz/uHl/MaE5BAWMT5fj7z+Zgzc2bmCcfzZGaexWyGSqWCwWDAV199hePHj1vde/ToUTQ1NfXCrBnXQiaTwd/fH3q9HkqlEmazGSaTCaNHj8a8efPYKpvR4zClxugRiAj5+fkICAiAQqGA0WhEc3MzRCIRPD09odVq4ePjg/DwcP4eiUQCjuOQm5vL5+Ni9C3Ky8vxww8/oK6uDufOncPJkydhNpshl8txzz33sHBZjB6HbT8yeozff/8dy5cvx5EjRxAREQGdToe8vDw0NjaiqakJd9xxB0pKSiAQCHD69Gl4eHigsrISLS0tqKioABGB47jeFoNxBSaTCdu3b0d9fT3kcjlv5RoREYGSkhI0Nzf39hQZNxgOX6mZTCa8/PLLCAoKglwuR0hICP7+979bxO8jIrzyyivw9vaGXC5HbGwssrOzLfqprq5GXFwclEolVCoVli5dioaGBkdPl9GD1NfXo66uDt7e3nB2doZUKkV1dTVCQ0MRExMDvV6PBx98ENu2bYNKpUJJSQmEQiGam5tZosk+ioeHB1588UW8+uqrqKmpQVNTEwYNGoTi4mK0tLRAqVT29hQZNxgOV2rvvvsuNmzYgH/961/4888/8e6772Lt2rX46KOP+DZr167F+vXr8emnnyIlJQXOzs6YMWMG9Ho93yYuLg5ZWVmIj4/Hzz//jMTERN6PiXF9YjabkZCQgMbGRlRWVkIsFiM8PBwSiQQCgQBubm6QSCQwmUwwGo0gIj79zOnTp/lkooy+g0QiwZgxYzB58mT4+PhALBZDpVJBqVTi5ptvxvTp03t7iowbDXIwt99+Oz344IMW1+666y6Ki4sjIiKz2UwajYbWrVvH19fW1pJUKqXNmzcTEdGZM2cIAKWmpvJt9u3bRxzHUVFRUYfmUVdXRwBY6WPl1ltvpdraWjpx4gRVVFRQeXk5NTU1kVarpZqaGsrIyKBDhw7R2LFjCQDJZDISCAQ0YMAAysvL6+rjyegmysrKKC4ujoYPH05nz56lhoYGamhooDlz5hDHcb3+3LHSf0pdXV27z6LDV2oTJkzA/v37cf78eQBARkYGkpKScNtttwG4bJ5dWlqK2NhY/h5XV1eMGzcOycnJAIDk5GSoVCqMHj2abxMbGwuBQICUlBSb4xoMBmi1WovC6HtUVlYiJycHFRUVkEgk0Ov1kEqlcHZ2RkNDAwIDAxEWFobFixdb3FdRUYH09PRemjXjWhQUFKC0tBRyuRw///wzampqkJKSghEjRjBXDEaP4vCn7bnnnsP8+fMREREBsViM6OhoPPHEE4iLiwMAlJaWAgDUarXFfWq1mq8rLS21ysckEong7u7Ot7mad955B66urnzx8/NztGgMB3DmzBm8/fbbUKlUkEql8PPzA8dxqKqqglKpREtLC/744w+89957AAC9Xg+z2QwiwoEDB3oltxoRoaWlBWVlZcjOzkZ2djZ/ZmQymVi+N1z2WRs+fDhGjBjBW6pGR0dDLpdb/V9nMLoThyu177//Hps2bcJ3332HEydO4KuvvsI//vEPfPXVV44eyoLnn38edXV1fCkoKOjW8Rido7m5GSEhIRgwYACMRiMqKyuRkZEBAJDL5TCZTHBycuJX9ldy7ty5Hs+tRkQ4ePAgZs2ahTFjxmDEiBEYMWIERo8ejVtvvRV//etf8e677yIpKQlVVVVobGy02C1ojaTS3/3shgwZgsceewzV1dXYvHkzzp49C4VCgblz5yIwMLC3p8e4gXC4Sf8zzzzDr9YAICoqCnl5eXjnnXewePFiaDQaAEBZWRm8vb35+8rKyvgcTBqNBuXl5Rb9trS0oLq6mr//aqRSKXP0vA5QKBSYNWsWAgIC0NzcDKFQiJCQEMjlcgDgjYZshVjS6/U9uioiIvz6669YvHix1fOo0+lQUlICANi2bRtEIhHUajU8PT1RW1vLz9Pd3R3V1dVQq9UYO3YsnnjiCYSEhPQ71wSO4zBw4ECMGTMG2dnZCAwMRGFhIfR6PX8UwWD0BA5XajqdzmoPXSgU8pZrQUFB0Gg02L9/P6/EtFotUlJSsGLFCgBATEwMamtrcfz4cT7lSEJCAsxmM8aNG+foKTN6kIaGBtTV1YGIIBaLUVpaCp1Oh+zsbEyfPh2ZmZnw8vJCfHy81b1eXl496sybmppqU6HZoqWlBUVFRSgqKrK43hrcNz8/H6mpqSAiPPfcc/D19e13ik0oFMLJyQlOTk4oKipCRUUFKisrUVNT09tTY9xAOHz78Y477sBbb72FPXv24NKlS9ixYwfee+89zJ07F8DlX3RPPPEE3nzzTezatQunT5/GokWL4OPjgzvvvBMAEBkZiZkzZ2LZsmU4duwYDh8+jFWrVmH+/Pnw8fFx9JQZPQgRYcuWLSgsLITBYIBSqURxcTFGjBiB+vp6ODs7Y+DAgTYNfS5cuACj0dgj89RqtXj77bc7pNDsYcuWLXjyySd5V4X+AP038LTZbIZQKIRWq8WlS5cQFRWFyspKuLi49PYUGTcSjjbt1Wq19Pjjj5O/vz/JZDIKDg6mF198kQwGA9/GbDbTyy+/TGq1mqRSKU2bNo3OnTtn0U9VVRUtWLCAFAoFKZVKeuCBB6i+vr7D82Am/X23DBkyhC5dukRFRUVUW1tLr732Gl24cIGam5upsrKSGhsbadmyZSQQCCzuGzx4MOl0Ooc9q21hMpnok08+IaFQ2C3yL1myhEwmU7fL0VMUFRXRRx99RGlpafSvf/2Lpk6dSgsXLqSvv/6acnJyyN/fv9efOVb6T7mWST9H1D9Nt1rTnDD6HlKpFPPmzcOdd96JESNG4MiRIxg7dixEIhFEIhH8/PywefNmLF++HI2Njfx9s2bNwvbt2yEWi7ttbmazGd9++y1WrVqF+vr6bhnj+eefxz333IOwsLB+sYppbm7Gk08+idGjR8PHxwcXLlxAaGgonJyc4Ovri6lTpzLDLYbDqKurazdSDXMgYfQ4BoMB33zzDZ5++mns378fEyZMgFQqhbe3NwQCAcrLy+Hr62tl6Zieno7KyspumxcRYdu2bVi5cqWFQhMKhQgKCsKkSZMwZ84c+Pv7w8nJqVP+VzKZDFFRUTh8+DB+/PFHC6XdU7RG0ncE9F93h1WrVmHfvn3YunUrxo0bh6CgIOTm5qKhoQEiEQsxy+g5mFJj9Brl5eUwm828pWNZWRkKCgrQ3NyMXbt2wWAwWLQvKyvD2bNnu20+6enp+Ne//mUVYzQyMhLx8fF44403MHHiRDz55JNYunRpp1ZZnp6eyMnJwZgxY/Dqq6/iyy+/7FGLzsLCQqxcuRLz58/HBx980KbfZ0dpamrC1q1bUVpaivPnz+OPP/6ATqeDUqnEqFGj8NVXX6GwsNBBs2cwrg1TaoxepbCwEJMmTUJAQAC0Wi3UajXkcjnGjBkDJycni7YtLS1IS0vrlnkQEfbs2YPExESL6xzHobCwEElJSXBzc+PjVu7duxd1dXV2j6PVaqFUKnH+/HmsWbMGjY2NPWL8Qv815CgpKcFPP/2EH3/8EU8++STuuusu5OXldVqxHjhwAE8//TR+/fVXjBs3DmvXrkVUVBScnZ1RUlLCpxliMHoKptQYvYZUKkVVVRUMBgMqKysRGRmJpqYmpKamYuLEiQgICLC65+LFi92ysiEi/PHHH1bXZ86cibfffhtjx47F119/jXXr1uGtt96y6UfXEbRaLdauXYs1a9YgMDAQ+/fv75Ry7Ay5ubl49913YTAYeJeC5ORkzJ8/n3c9sJecnByMGzcOXl5eeOihh3DrrbdCpVKhpaUFfn5+2L9/v4OlYDDahyk1Rq8RGRmJV155BTU1NdDpdBCLxQgMDMTUqVNhNpttphrqTiMRhUJhda2pqQlDhw7F3r178eGHH0Kn0wFAlyKbFBYWora2FiqVCu7u7lbbrI6GiHD27Fm8++67OHXqFKqrq3HLLbfwZ11Hjx7F/PnzO7Vi8/PzQ3NzM06ePIkHH3wQxcXFAACj0QhnZ2cWg5XR4zClxug1Lly4gNzcXMjlcri5uUGv18NkMqGmpgZ6vR7V1dUWDspeXl58rMju4OrtTpFIBI1GA5FIhJaWFoc6foeHh+PAgQM2Fakjof/6kJWWliI1NRVlZWUAgK+//tpiW/Do0aNYuXKl3QYkZWVlOHPmDJKSkiCRSHDo0CH8+eefyMzMBIB+52DO6PswpcboNcrLy7F69Wr88MMP0Gq1MBqNEAgE0Gq1fNilmJgYvn1FRQWfZ83RNDY2WhmhuLm5Yd68eQgODobBYHCoUjt27Bhef/11ODs7d9uLn4hQXFyMvLw87Nu3DxkZGVYrJ4lEAplMBuByzrrq6mq7xqirq0NFRQVcXV3h4uKCr7/+Glu3boVGo0FJSQkf3JjB6CmYUmP0Gq3nWC+88ALefvttZGZm4vz58xCJRHBzc8OsWbOsMqInJSV1i1LbvXs3Tpw4YTU/g8GAffv2YceOHRZJbLuKTqdDdXU1hg4d2m1R7IkIdXV18PT0bDPDQUtLC79iq62tRUZGhl3fb3l5OWQyGeRyOU6fPo2kpCQYjUb4+PhAJpOxDAaMHocpNUavU1tbiy+//BJ33XUX1q9fj+LiYlRWVmLEiBGora21aFtRUeHwMygiwm+//Wb1Avb09ISvry8CAgK6bPpuC47jEBQU1G1+XAKBAIMHD4ZQKITBYADHcVAqlQgNDcVtt90GPz8/C581rVaLlStXWn3n7SESidDQ0ICjR4+ioqICAPD5559jx44dyMzM7BU/PMaNDVNqjD6BTqdDaWkpdu3aBalUCldXVzQ2NloZZFRXV/PGGo7CbDZbWSByHIf58+dDIpFg3bp13aLUpFIpNm7c6FB5Ws/QrkQikcDX1xcDBw7Etm3bEB8fj48++sgqZyFwOdnnr7/+2uEVli1neJ1Oh+PHjyMhIaFfxbhkXB8wpcboU6hUKnh6ekKn06G8vBwuLi7gOI4/d5JIJN0Sqf/K6CACgQDOzs4YMmQIDh8+jAMHDjh8PAAwmUwYNGgQn3anqxAR4uPj8ccff1goN4PBgDFjxuDXX39FVFQUiouL4ebmhgkTJsDLy8uiD71ej7feeqtD+d9aWlpspnwaP348XnjhBQwdOtQhcjEY9sCUGqNPUVpaij///BMymQyLFi3CuHHj4O/vD6lUCg8PDwQHB7cb960zlJWVITk5GQDg7e2NqKgouLq6wsnJCREREQgJCXHoeK3o9XpIpVI0Nzd3uS/6b+63hQsX4siRIwD+P82PXq+HQqFAbm4uUlNT8cgjjyA1NRWzZ8/GyJEjrfpqbGzssFI7f/68lXN1RUUF9Ho9Dh8+3GW5GAx7YUHZGH2KpqYmfPDBB/jll18gEAjg6urKb3FVVVUhLy8P+fn5Ds2mnJWVxaeYcXJyQk1NDRoaGpCfn4/y8nLk5OQ4bKyryc/Px6VLlxAeHt7pPogIv/zyCxYvXoyKigpkZmYiJycHv//+OwoLCzFu3Dj+3O6PP/5ARkYGli1bhgceeAD+/v4Qi8UWimnUqFHX/OFgNpuxa9cuJCcn87kSgcvbtmFhYWhubrYyvGEwegK2UmP0Oerr66HValFbWwtvb28MGDAAEokELi4uKC8vx/vvv+9Qq7qsrCz+7Ke2thZTp06Fk5MTvLy8cPvtt3drRvXs7GyEhoZ2+v7WFdrixYtRWVkJkUgEs9mMH3/8EVOnTsVjjz2GW2+9FQ899BCamprwv//7vwAun52pVCqIxWIsWbKE34Z0d3fH2rVr23VyN5vN2LZtGx566CErQ5CIiAi8+eabOHLkSKejrjAYXYEpNUafIzc3F6WlpThy5AgeeeQRPvmkn58fBAIBTp065TDzerPZbOE2UF9fj7S0NHh5eWHKlCn4/vvv7bIGbAupVGrTHy0oKKjTCrp1hbZo0SLeV+yll17io4e8//77kMlkKC8vx2OPPYZVq1ZZZaEODQ2Fq6srn4W+sbERf/zxh8Xq62ry8vLw2GOPoba2Fk5OTggJCQHHcVi2bBk2btwIsViMF198sUtRVxiMzsKUGqPP0dDQgPT0dAwdOhQbN25EZWUlOI5DWVkZPD09IRaLbYbQ6gx6vZ4/gwIuG6JkZ2dDq9UiOzsb586dc8g4QqHQplIrKirqdJDmlJQULF68GE1NTRCJRPjLX/6CkJAQ5ObmgogwbNgwpKWlYfLkyfjiiy/4aCJXIpPJUF9fj1OnTgG4bFSydu3ads/UTp48ibKyMggEAsyaNQthYWEQiUS4++67oVar8c0333SLtSiD0RGYUmP0OYRCISIjI+Hp6YlVq1YhMjISvr6+MJlMuHjxIjIyMhyWwFOv11soSKlUCqFQiIiICOzevRvHjh1zyDg6nc7m6kcqldoM3HwtzGYzPvvsM1RUVCAyMhKjRo3Cnj178OCDD0IikeDnn39GSEgI7r//fuTl5bW58goLC0NQUJCF719ubm6bkUBqa2vxwQcfgIggk8lw00034cCBAxg8eDBGjBgBoVCIL774wm55GAxHwZQao89hNpuRmJiI+vp6qNVq/PWvf0VRUREEAgGMRiMaGxsdtlKrqamxWFV4eXnBYDAgJiYG8+bN40NIdRcNDQ24dOlSh6wNr2TXrl348ccfAQAnTpzAsWPHUF9fDxcXF7z00ksoKCjAPffcwwcYtoVQKERxcTEaGxstDEMMBoNVJJdW9u3bh6SkJACAj48PiouL0dLSgoiICCiVSvz0008oKiqySxYGw5EwpcboczQ1NSEnJwcqlQomkwknTpzAkCFDYDab+fO17orW33rmdPDgQWRnZ3cqEag9eHh44LnnnrMr9YvZbMZvv/3GK3aTyQQiQkhICOLj4zFy5Ei89NJL7UbzEIlECAoKQmNjI7Zv324xPhHZjK5PRDh//jy/6mtoaMDGjRuhVCoxadIkHDx4EG+++SYLjcXoVZhSY/RJXFxckJqaiqqqKj7ie2vkDZFI5DCl5uLiAg8PD/5zWVkZhEIhli9f3mZOt85i60xty5YtEAgEdrkoEBEKCgqsro8cORIBAQF48cUXcfHixXb7kMvl8PPzw8WLF+Hr62tR5+TkhDFjxti8LzAwkJejdbzRo0djwIAB+Mc//sG7RjAYvQVTaow+iYuLCyZNmgSTyQSdToecnBzeSdlgMDgspqBer7c6nzObzdi8eTN0Oh0GDhzokHEEAgFuvvlmm3Vnz57FL7/80uEVjsFgsKnUgoOD0dzcbKGk28Lf3x9hYWF4+OGHIRaLLRRuUFCQTWXOcRxGjx4NmUwGjuNw3333YfDgwSgvL8fXX3+NhISEDs2fwehOmFJj9ElaHXfz8vKg1WotzmnkcrnDoooYjUariB5EhGPHjuHEiRPIyMhwyDhmsxnHjx+3WVdaWoqNGzd2KE4iESEtLc1qu9Ld3R133303APCBhduD4zg0NjYiMzMTwcHB0Gg0fF1YWBgkEonN+1pDlAkEAgQEBKCpqQkajYat0Bh9BqbUGH0SNzc3CIVCBAUF4aabbrJYSXRH7MeriY2NRUxMDEaNGuWwPsePHw+VSmWzTq1WW8SfbIuWlhasWbPGyt+M4zhUVVXhhx9+4EN+tUdVVRWampoQHh6O0NBQDBo0iK8bPHjwNTMHDBgwAK6urjh8+DCMRiPLm8boMzClxuiTBAUFoaqqCmKxGJcuXbIIjhsZGWkzwnxnEAqF/At84sSJGDx4MDw8PPiYienp6Q4ZBwCSk5PbdEXo6NZjdXW11ZxkMhmeffZZREdHQ6fTdWjF19DQgIKCAjg7O6OgoMAiQeqViVmvnmNtbS2ICL6+vjh06BCKioqQmprqEAd1BsMRMKXG6JPk5+dDLpfjvffeQ2NjI79SCwwMxC233NJuxAt7cHNzg7e3N4DLjtfu7u6QSqWYOHEipFIpcnNzHTIOcDlfWVsKp63tvqsxGo1WfQgEAowYMQIuLi7Yu3dvhxTk0KFDERkZibKyMqSkpPCO2SqVChEREVbtiQjJycmIi4uDXq/HqVOnsHfvXphMJjg5OSE4OLhD82cwuhum1Bh9krCwMNTU1PCrhjNnzgC4fDbl7e3dYSVwLRQKBR97sbS0FNXV1SgtLYVcLoder8eMGTPa3DJ0JG5ubjatI6+mVakFBATAz88PAODr64vm5mbU19d3OE7lLbfcgrq6OqSkpKCgoIDf+iQimz5z+fn5iIuL44M7e3p6YsWKFRAKhWhpabGZV43B6A2YUmP0SdLS0nDu3Dk0NzeDiPgo8gUFBcjLy3OYSb9AIMDcuXPBcRzy8vLg7u4OuVyOxMREFBUV4f7773d4UlJbpKend2jbMC8vD83NzZgwYQKMRiMkEgkWL16MW265BYsWLeqQBSLHcYiJiYHBYEBQUBBuueUW3vCmrq4O//73v61WexcvXkRhYSH/WSAQIC0tDWazGbW1tVZnfAxGb8GUGqPPMXDgQNx///0YOXIkXF1dLaJ6EBHOnDnjsIDGHMchMDAQAoEAw4cPh7+/PyZMmIDff/8dRIStW7d2e1QRAMjMzERVVVW7bYgIDQ0NuPvuu5Geng6z2cyb8W/ZsgUSiaRDyp6IsG/fPoSGhsLZ2RkJCQlQKBT8SrG8vNxqe9fd3d3CeKSyshJHjhwBEcFkMjlsO5jB6CpMqTH6HK6urggODsZXX30Fo9Fo4UgcGRkJFxcXhyqaoqIimM1mFBUVoampCTfddBOkUilCQ0OxZMkSh6We4TgOw4YNs5lqpqKi4ppm8dnZ2XjvvfeQlZWFMWPGICgoCLNnz8bFixdx/PhxzJw5s8MJR0UiETIyMlBQUABfX1+MGTOGzyo+ZswYKwvTyMhIrFq1ir/u4eGBZcuWOWwbmMFwFEypMfocBQUFOHr0KA4fPmwRqkqlUuGmm26CRqPpkPl7R3F2dgbHccjPz8epU6dARNDpdNi3bx+8vb0dlpDU398fK1assHlm1dTU1G60fiLChg0bcODAAaSlpeHgwYPIysqCwWDA4cOHYTKZsGnTpg4ZiYjFYkybNg3FxcXw8/ODh4cHRo0aBYPBgEmTJuHhhx+2ukcqlWLFihW8M3pjYyO8vb35PGwMRl+BKTVGn8NgMOCzzz7DsGHDwHEcOI7D3XffDZVKBQ8PD4cn7WzN+yWVSvHaa6+huLgYer0epaWlaGpqsjhL6gqDBw/GBx980GbA3/byj12dIqewsBBjxoyBTqdDbm4uDh482OGMAmFhYZg6dSoCAgIwdOhQGI1GXqFKpVKbW5itSrXV6Vur1aK+vh5OTk4dGpPB6CmYUmP0OZqbm5GSkoL//Oc/AIC77roLN910E6qqqrBhwwbk5OQ4NGhuVVUVfza0c+dOKJVKeHh4QKPRQC6XO8woxWg0wtvb28LRuaO0tLRYhAYjIpw+fRru7u4QCoU4d+4cb0xzLWbPng2O45CamoozZ85ArVbzZ2KnT5+26XNmNpstlHvr9z9+/Hi7ZWEwuhOm1Bh9EiKCm5sblEolQkJCEBYWBqPRiKqqKqSnpzvUIrG0tBREhJaWFmzbtg3Hjh1DS0sLxGIx9Hq9wyKYXLhwAWPHju1U9A2FQoGRI0daXKusrMTHH3/cIavJVoRCIdRqNbRaLSZMmICPP/4Yhw8fxoEDBwCgTaMPoVCIqKgoftvXbDYjJSWFz5jNYPQVmFJj9FlOnTqFjRs3QqfT4aGHHuItHvPy8nh/qa5CRFYv8ejoaH6Vlpuba1damPZobGxEVlZWpy0FR48ebXXN3rxyUqkUM2bMQHl5OUQiEW699VZIpVI+0klAQAAUCoXNex9//HE8+OCDvBVk6xYkg9GXYEqN0WcxmUw4duwYXn75ZeTl5fHXHRmlv6qqCjt37rS45unpiTFjxmDEiBH48ccfHWauXlVVhV9//bXds7O24DgOHh4eNg1k7LEENZvN+PHHHyGRSHDo0CFUVlZaOE4TUZtbu87Ozvjwww/xxBNPALjsW9ddee0YjM7ClBqjT2MymayUQGfPpWxx/vx5nD9/3uJaeno6XnjhBRgMBnh6ejpkHOCyQumMQmtFKpVaRR0RCASYOHEi5syZ06FtUpPJhMjISOzfvx9btmyBi4uLxfZlQ0NDu3N0cnLC3LlzIRaLMWDAAFy8eBHBwcG47bbbEBsb22nZGAxHwZQao88hk8najSU4atQouLq6dnkcIuLN4q+kqakJe/bswcGDB7F//36HGqUMGDCg0+4I0dHRVpm4zWYzUlNTMXLkSNxyyy3X7MNoNOLEiRMYNWoUzp49Cw8PD/j4+PD11dXVVt/H1QwZMgQhISGoqamBj48Phg0bhqioKAwcONBhKYEYjM7ClBqjzxEaGoqwsLA2z3YmTZrkMOON1qzarUgkEnh5eeHrr7/Gf/7zH6v6rhIYGHjNtC5tIRaLbTo76/V6EBGcnZ071M+RI0dQX1+PYcOGYcOGDRYR+juCUqnEsGHDkJSUhN27dyMoKAhFRUV45JFHHJZUlcHoLEypMfoUCoUCf/3rX3HXXXfZtOqTSqUYN26cw8a7OopHc3Mz3NzccNddd6G8vPyaqxZ7KSgosMta8UoyMzNRXV1tdX3SpEkIDAy06dRtC5VKBYlEgsLCQiQmJnb4vivhOA5SqRRKpRKlpaUICAhAfX09iwHJ6HWYUmP0KfR6PYxGI/7zn//YfNnK5XIEBAQ4bLyrz+ZaQ0XJ5XJ4eHg4bBzg8gonOjq606vMixcv2jzv8vPz47chO8rAgQMRExPT4dWdLe677z54enoiNDQUjY2N8PHxgVqt7nR/DIYj6Nw+CIPRTbRmdu5oDMOuYDKZrBSnQCBAYmIigoKCHOY20ArHcUhMTOz0Sm3YsGEQi8VWTtatkT2CgoJsruRskZOTA6FQaGV40p7145VwHAe5XI6GhgYUFhbitttug1arZRFGGL0OW6kx+hztKTQfHx+HGSMcOXIEH330kcU1juMwd+5cODk5OVyxGo1GzJ07F3/96187da4WHh5ucyV09OhRvPrqqx3KxwZcDuD8ySefoLKy0spdoaamBklJSddUbEFBQTh+/DgGDBgAjUaD77//HuXl5XafzzEYjoat1BjXFdHR0W0akNiD2WzGzp07rVLYcByHQ4cOdXo11R46nQ4pKSmorKy0uY14LaXk5uYGd3d3q1iUxcXFCAwM7LBFaFpaGh/E+erILC0tLXj//fcxY8aMdrcmW1dqHh4eKC8vR319PfR6vd3O4AyGo2ErNUafIzIyss2VjKPCY126dAnffPONxTUfHx989NFHmDVrFp9p29E0NTXZ3CKUSCQICQlp916BQNDmOZ+vry/8/PwszPPbo7m52WYKHABISUnB77//3ua9HMchPDwclZWVGDFiBM6fP49bb70V+/fvx+TJkzs0PoPRXTClxuhzFBcXt7n9lZGRYTPgrr2cOHHCylIvKioKvr6+8Pb2RkVFRZfHuBq5XI7Y2FibCttkMkGr1bZ7v9lsbvPM7Pjx49i9e/c1E422YjQa29wqNBqN+OOPP9rdgpRKpcjJyUFKSgpGjx6NnJwcjB8/HkFBQR0an8HoLphSY/Q56urq2tz+q66u7vJqjYhQVFRkNYZOp0NycjKysrIclln7SpqamrB582abW49SqRQRERHt3i8UCuHv72+zzmQyQaPRgIgwYMAAiEQiKJXKdh2925PxxIkT7YYHaw1kfPHiRURGRiIhIQEeHh5ISkpqVwYGo7thSo1xQ3L48GGra8ePH0dLSwtOnTrl8PHc3Nzg7e3dpiIxm83XXKmJRCJMmDDBZl1kZCRiYmLw6KOP4qGHHkJoaCg0Gg3mzp3b5hmkUChs89zszJkzKCkpaXMuWq0WLS0tKCoqglwuR01NDTQajcNz3TEY9mK3UktMTMQdd9wBHx8fcBxnFQyWiPDKK6/A29ub327Jzs62aFNdXY24uDgolUqoVCosXbrU6oD51KlTmDx5MmQyGfz8/LB27Vr7pWMwbFBbW4sTJ05YXTebzSgvL8eePXscPubEiRMRFhaGFStW2IwKIpfLO5RFetSoUVYGJbGxsQgPD0ddXR3Ky8vh6emJBQsW4Oabb0Z0dDTuuOMOmys2s9kMjUZjU7GVl5fj4MGDbc7j4sWLaGhogLu7Ow4ePAgnJyds3LjxmoqZwehu7FZqjY2NGD58OD7++GOb9WvXrsX69evx6aefIiUlBc7OzpgxY4bFL9S4uDhkZWUhPj4eP//8MxITE7F8+XK+XqvVYvr06QgICMDx48exbt06vPbaa/j88887ISKDYUlzczPq6uqsruv1enz++ecOywBwJTKZDHFxcZBKpTa3VkNCQjpk5GHLQrKgoAB/+9vfsHDhQgwdOhQnTpyATqdDaGgoAgIC4OPjY3MrkYgQGxuLIUOGwMvLCyqVyqIuPj6+zXO1gQMHQiwWIyUlBXq9Hmq1GoWFhfDz87umDAxGt0JdAADt2LGD/2w2m0mj0dC6dev4a7W1tSSVSmnz5s1ERHTmzBkCQKmpqXybffv2EcdxVFRUREREn3zyCbm5uZHBYODbrF69msLDwzs8t7q6OgLAynVWOI4jHx8fmjZtGnEcZ1WvUqmooKCgs48sERGdPn2aFAoFCQQCkkqlFmO7ubl1i1xKpZLWr19Pc+fOJaVSaVU/ZcoUam5uvubc4+Pjrb6X8PBwOn36NP373/+mX3/9lfbs2UPvvfcerVu3ji5evEgzZ85sc16zZ8+mKVOm0JgxYyg8PNyiLiIighoaGmzOIzc3l1xcXAgABQcH07PPPktyuZxUKlWvP0Os9O9SV1fX7v8Rh56p5ebmorS01CIFhaurK8aNG4fk5GQAQHJyMlQqlUXCw9jYWAgEAqSkpPBtpkyZYrFNM2PGDJw7d67N2HIGgwFardaiMK4/1Go1Nm3ahOeee87mNp0j+Pbbb9HQ0ACxWGxhIi8WizF16tQOOzHbg0KhwK233orFixfbNBRRq9Wdjt6vVqtRX1+P8+fPY/369Xj22Wexb98+ZGZmIi0tDUeOHGnz3r179yIpKQlpaWlWqzK9Xt9mGpoBAwbwLgiNjY2QSqXQ6/UOsUxlMLqCQ5VaaWkpAFhFPVCr1XxdaWkpBgwYYFEvEong7u5u0cZWH1eOcTXvvPMOXF1d+cK2Qa5fxGIxqqqqEB0d7fC+DQYDjh49yv+7uLgYwOVtPY7jUFpa2uko+u0RGRmJ/Px8fPLJJzatN11cXK6pTIkIp06dslI+Wq0WmZmZOHToENRqNbKyslBeXo477rgDb775Zrs/8FpaWmA2m0FEkEgkFnMoLi5GQkKCzS1ImUyGKVOmAADKyspw4MABq7Q4DEZv0G+sH59//nnU1dXxpaCgoLenxOgENTU1SExMREBAgMMcra/EVignjuPwt7/9DY8++igqKyutYis6gqysLDz88MP47bffrOo4jsOECROuuVIzGo3YvXu31fWMjAysWLECM2fO5C0dz5w5g4ULF+L06dMdnmNmZqaFAmtubsaKFSvw+++/Wyk2gUCA1atX8w7c9fX1cHd37/BYDEZ34VClptFoAFz+5XYlZWVlfJ1Go7FK99HS0oLq6mqLNrb6uHKMq2lNg3FlYVx/REREwNnZGTKZjF9FOQoiwsmTJ1FZWWlVl5WVhaampm5xugYu7zDk5ubarHN3d8fNN998zT7aiq3YqnDc3NyQkJAA4LIC7ExKmaspKyvDokWLbEZY8fLyQnh4OIDL1sp5eXldHo/B6CoOVWpBQUHQaDTYv38/f02r1SIlJQUxMTEAgJiYGNTW1uL48eN8m4SEBJjNZj5PVkxMDBITEy1+McfHxyM8PBxubm6OnDKjjyGVShEdHY233nqrw9ExOorBYMC6deusrA/FYjEyMjJw6NChXomIMXbs2A5tl9fV1bV5ZsVxHM6dO9ct8y8rK7NKa2M2m7F7927+vI46GN2fwehu7FZqDQ0NOHnyJE6ePAngsnHIyZMnkZ+fD47j8MQTT+DNN9/Erl27cPr0aSxatAg+Pj648847AVw+W5g5cyaWLVuGY8eO4fDhw1i1ahXmz5/PmzTfd999kEgkWLp0KbKysrB161Z8+OGHeOqppxwmOKNvcvHiRRw7dgxlZWUON9jYt28fb7DUilKpxIgRIzBkyBAMGjQIFy9edOiYHcHV1bVD53gXLlyw2hrlOA5Dhw7FCy+8gLKyMoSHh3faAdrJycmmozYRISsry+JaSUkJVq5cyZKCMvoeHbaD/i8HDhywaWa5ePFiIrps1v/yyy+TWq0mqVRK06ZNo3Pnzln0UVVVRQsWLCCFQkFKpZIeeOABqq+vt2iTkZFBkyZNIqlUSgMHDqQ1a9bYNU9m0n99FrFYTJs2baJPP/2UNBqNVb1KpaLCwkJ7H1vS6XQ0adIkAkBCoZCcnJyI4zhatGgRrV69mp577jny9/fvNrkkEgnNmTPHpptCWFgYabXaa8rw4YcfWtzHcRxJJBJ66aWXaOnSpbRw4UIaPnw4DRo0iAQCgV3z4ziO7r//foqMjLR573333UctLS38XPbt20cikchmX/aOzQor9pRrmfTbbeZ10003tbvNwHEc3njjDbzxxhtttnF3d8d3333X7jjDhg3DH3/8Ye/0GNc5rSlNgoODYTQaIRAIcPfddyMlJQX5+fkYNGhQpzJSFxYWIisrCwMHDsQ777wDLy8vPPPMM8jJyUFwcDAaGhqsznEdiVwuh0wmw7Jly/D9999bbCMWFhbiwoULdlt73nbbbQgICEBCQgKmTJmC3NxcaDQaGAwGNDc349KlSx3ui4iwefNmqNVqmyvkPXv24OTJkxg5ciQ4joO3tzckEomFyb9AIMCSJUsQGhqKjz/+GEVFRXbJw2A4gn5j/cjoHwwdOhTBwcFYuHAhqqqqoFAo0NLSwucQGz9+fKe21/bv34/a2lpIJBI0Njbi7NmzKCkpwfHjx7FmzRokJyd3i9VjK/X19fDy8kJdXZ2V75ezs3OnzooDAwNx+vRpuLm5QS6XY8eOHbhw4QJMJhOioqLs7s9kMqG4uNhmxJO6ujq8+eabfGSSoKAgDBo0yKINx3FoaWnBjh07HH4eymB0GLv3ca4T2Pbj9VeEQiH9/e9/p08//ZTEYrFVvUAgoC1bttj9LDQ2NtI999zD99Hbcl5dJkyYQE1NTdeU4+rtx9YiEonI3d2d/xwUFERDhw51+DzVajWVlZUR0eVjhv/85z82v8+7776bZDIZH7Wlt79fVvpX6dGIIgxGV3B3d8fYsWORkJBg03DCxcXF7i06IsIPP/yAHTt2gOM4BAQEOGq6DmPcuHGQyWSdulcsFmP58uVYtmwZ7+eWm5uLzMzMTs+nLUfwyspK3u+N4zjcddddGDZsmFW7nTt3QiaTYeTIkW0mImUwugum1Bh9Ao7j8Mgjj+Cnn37C999/b9PHKiQkpM18Ym3R0NCADz74ACaTic+j1kprzrHeRCAQ8JE5OoPJZILRaMQvv/wCNzc3SKXSLru96PV6m+fmJpMJW7du5bdPXV1d8fjjj1s5jZtMJjQ2NiIlJcWucz0GwxEwpcboE8hkMjg5OeHPP/9ss01MTIzd52m5ubm4cOEC/zk4OJiPRt/S0mKV8qinUSgUfMLNzmA2m7Fp0ybodDpERES0mYHAHto7W9y5cyevqDiOw9y5c22u1oxGI2+wwmD0JEypMfoE48ePR35+PhITE9tsc/PNN9vtu1ZSUmKRSsbf398ib1l72Z17AoVCAblc3qG2bcmu0+kglUrh4eEBIupWmSoqKvD555/zYyiVSrz//vvtrg67I0A0g9EWTKkx+gTe3t7Ytm2bTcs7APD19cWYMWPs6tNsNuO3336z2EojojazR/cWtrb6bDFy5Mg2MxcMGjSoxywOv/76az7kF8dxiImJQURERJvtg4KCWEZsRo/BlBqj17hyxZScnNzuS3nYsGF2Z17Q6XT45ZdfLK6lp6cjOTkZzs7ONqNn9DRGo7HDK6tBgwbB29vbZt3evXuhUqmsMmB0B2VlZTh8+DD/WSKR4IEHHmizvVKpxMSJE7t9XgwGwJQaoxdpDR7McRwkEkm7ZznBwcF29U1E2L59O86fP29xvbKyEufPn4eTk1OfSE/U3Nzc5ur0apRKJVxdXa2uy+VyvPrqq3jhhRc65Z/WGQ4dOsT/m+M4zJo1C5GRkVbtBAIBZs6c2eVzPgajozg+cRSDYScikchK+VyJQCDApEmT7Dqb0Wq1+Oijj9pMcllRUdFtEfntQSQSdTo5aCsSiQQnT56Ei4sLzp0756CZtU9ZWRlaWlp41wuNRoMJEyZYGfoQET7++GPU19f3yLwYDLZSY/Q6zs7O7Z4r3XbbbZg5c6ZdfaanpyMjI6OrU+t2PD094ezs3KU+6urq8P333yMpKcnh1oaTJ0+26Wt28uRJq4wBy5cvt0oUSkR8rjWhUOjQuTEYtmBKjdHrtJVOBbjsC7V27Vqb227tcfToUYvtTIFAwK/0euPlOnXqVJsO5TqdziGKSKVSobi42KFR82UyGf7nf/7H5gq5rKwM2dnZ/GeO4zBy5EgsWrTI5sqzurq6w9usDEZXYEqN0acJDg62OwqI2Wy2SJWiVqtx5513QiwWQyAQdLvDtVQqhVAo5KOEBAYG4qGHHrL5stdqtTAYDF0ec/ny5YiMjHRo/Eqj0YhVq1ZZKK9WbLkOiEQivP766wgMDLTZn5ubGyQSidVqjsFwJEypMfo0S5YsgZOTU4fbExG+++47/PTTT/y1uro6HD16FM3NzfD29sbrr7/e5S2/9rjvvvtwyy23YP369fD19cW9996LQ4cO2TwXNJlMHT5v4jiuTYU8efJkhyvr1q1De3B3d8fatWutTPiFQiHi4uIwYcIEzJgxo8O+eQyGvTClxuizDBo0CPPmzbPLQKSkpAQvv/yyxctYr9ejuLgYYrEYTU1NeP/99y0csh2Nl5cX/Pz84Ovri0cffRRKpRIrV67ESy+9ZPUyb2howKlTpzrUr1gsbtM0vra2Fs3NzQ7zB1MoFBgzZgymTp1q130cx+HWW2/FkCFDLK63Ku958+bhgQcewPjx4yESidg5G8PhMKXG6DXa2qZqZcyYMXb7XR06dAh5eXk264YNGwaxWMw7DncX3377LUpKSqBUKiGRSMBxHOLj46HT6WxaO7Y136vhOA5TpkyxUvLe3t7Iz8/H6NGjLXz/uoLZbEZgYCDc3d3tvtfFxQVPP/20lQLfunUrPvvsM2zbtg133nknli5dCk9PT4fMl8FohSk1Rq8gEokwZ86cNlcCCoUCq1atssvcnYhw8ODBNi0p09PTUV5e3qn52kNxcTFSU1NRVlYGd3d3fPzxx/jmm29gNBpx8803W7W3R0ZPT0+r1ZharUZMTAwAIDQ0tMsuAsBlE/2IiAicOXPG7ns5jsO8efOwYsUKCwWs1+uRkZGBb7/9Ft7e3vif//kfq7iXQqGQRR9hdAmm1Bg9jkAgwIMPPgh/f/82/dMWL16M0aNH29WvTqfDsWPH2qw3m80dDknVVSorK3Hfffdh+fLlKCkp4UNcpaWlWRlY6PX6Dvfr5eVldcbY0NAAIoKXlxcGDRoEsVjc5fmXlJRAo9FAJBLZ3P41m81IT09v836hUIjnn3/eZqqg5uZmPPjggygoKMDQoUMRGBjIyxQYGIjp06d3ef6MGxem1Bg9DhHh119/xbPPPouSkhKreoVCgSVLltg0gW8Pg8HQJxyqWzEYDDAYDBCJRBg8eDA2bNiAyspKq3b2nBm6urparWRKSkpw//33o6ioCKNGjerUluHVNDU1ITExEbGxsbj33nut6okIhw8fbtdM38PDA99++63NdEENDQ1Yvnw5mpqa8Pnnn2P27NlQKBTIzc3Fvn37ujx/xo0LU2qMbiM8PNzmC5uIkJeX1+YL8e677+5UOpazZ8/2yPaivYSHhyM6OhqPPvoowsLCrOpDQkI63FdlZaVVrrnGxka0tLTA09MTXl5eqK6u7vKcAaCmpgYajQbBwcE2zzZLSkraXflyHIeIiAi8/vrrNn+gmEwmzJkzB0ajEYsXL8Y999wDb2/vNqPAMBgdgSk1Rrdx6dIl3HvvvXZth7X3EmwPIsKhQ4cc6qflCFozRIeFhaG5uRk5OTlWbdrLIXc1crnc6rsRiUQYNmwYNmzYgPDwcD5fXFf59ddfodFocO+999r0LdNoNNdcZXIch/nz5+PJJ5+0mndTUxPi4uKwceNGZGVl4S9/+QvUarVD5s64cWGxHxl2IxaLIRQKO3QWFB8f3+Ff3kKhEGvWrLE7uzURIS0tDZ9//nmbbRQKBVxcXGxud3Yn3t7eGDZsGLZt24azZ89CJpNBp9NZtGkvbcvV2DoXVCqVeOaZZ2AwGFBVVeWQfGocxyE8PBxbt27Fk08+aTPqi5OTU4e2TmUyGd544w0AwPvvv88/D3q9Hnq9Htu2bcPOnTshl8shl8shEAgQGBho8wcAg3Et2EqNYTehoaEYPHiwzTqxWAyRSITx48djzpw5GD9+PNzc3HhDAD8/P4SFhdl8GU6YMAG33nqrXWdMrQrtkUce4TMyX4lCocDcuXPx5Zdf4p577ulwv45CJBIhJycHwcHBuOOOO6yihzg7O2Po0KEd7s/Ly8sqEn99fT22b98OoVCI1NRUTJs2ze6wYlej0Wjw/vvvg+O4NiPsjxgxosOWljKZDH//+9/x1FNPtbkV2dDQgIqKCpjNZhgMBgiFQubHxrAbtlJj2M3Zs2cBXE7+WFNTg7q6OhARBAIB4uLisH//foSFhcHHxwdOTk4IDAyEXq/H999/j5tuugkAcOHCBYs+BQIBZs2aZXekiaamJqxatQonTpywWR8XF4dnn30WOTk52LRpk/3CdpLIyEhcuHABo0aNwsSJE1FUVISNGzdaOX2LRKJ2s0ZfjVwuxyuvvIIjR47wMSONRiPq6uowevRoeHt7Y9CgQTh+/HiX0r0EBATg1KlTyM7OtnluJhAI7FphApfDh73++usgIosVmy2KioowZcoU+Pr64rvvvrN7/owbF7ZSY9hNq/n4zJkzERcXx/+aNpvN+O6771BQUICtW7fi/PnzSExMRFBQEE6fPo3hw4fjp59+wqZNm6xelDfffDMefvhhu1ZpZrMZH374IdLT021uuXEcB4VCgaNHjyIuLo43oLBnjM6i1+vh7OyM/fv34+TJk6iurkZSUlKX++U4DsHBwVYJTlNSUrBmzRq8/vrraGho6PIKp7m5GVFRUW1uMXMc16lQY60rto0bN9rMv3YlOTk52LFjh0P87hg3ENRPqaurIwCsdFN5/fXXadq0aeTi4tJuO4lEQt7e3sRxXJttQkJC6MSJE3b9fc1mM+3du5fc3d2t+hMIBDRt2jRasmQJ7dq1i3x8fGjevHmkVqtJIBCQm5tbt38/MTExpFAoSCgUUkhICEVGRpJAILBqJ5VK6cCBA3bJbjAYKCYmxqIfjuNIIpHQiy++SEVFRbRs2TJycnIiJycnu+YtFApJLpfTwIEDaejQoaRUKsnT05OEQqHVd7xjxw4ym812zf3Kv9/58+fp0UcfpeDg4Dbno1KpaNmyZSSXy3v9mWelb5S6urp2ny2m1Fixu0ilUpoxYwZJpdIu9xUSEkJpaWl2vxwLCwspICDAZp9RUVGUkpJC69evp4iICBKLxeTi4mL1Yu6JMmzYMHr77bfp008/tamAAdCcOXOoubm5w7KbzWZ69tlnrfpRqVT02Wef0YULF2jWrFmdmq9AICCxWEwAaMaMGbR9+3aaPXu2zR8lI0aMoJqamjbnaTKZqKWlhf/btn6+cOECffHFF7Ro0SIaP348hYaGtjkfhUJBs2bNIl9f315/7lnpG+VaSo2dqTE6ROtWXn19PVpaWpCcnNzllCkhISHYunUrRo4cadeWoMlkwtq1a23GTJRKpZg+fTq2bt0KtVqNhoYGtLS09Frm5bNnz+LLL79EaGhom2dcx44dQ1VVFTQaTYf65DgOM2bMwPr16y22B9VqNaKiopCamoohQ4agsbGx3bBhtnBycgIRwWg0IjExEZmZmaioqLDZx6lTp/Djjz9i6dKl/N+vtrYWp0+fxpEjR5CRkYHi4mKMHz8eLi4uuHDhAi5cuIDs7GyUlZW1Ow+BQIDFixdj7NixKC8vbzdSDINhQYd/Hl5nsJWaY4ufnx8999xzDusvIiKiUys0s9lMmzZtImdnZ4v+FAoFAaCbb76Zjh49Sj/99BNlZWXRHXfcQcDlFZMjVpbdUeRyud3br1qtlsLCwiz6kUgktGLFCtLpdJSQkEDPPPMMBQcH29z2bKsMGjSI3njjDX61dq0ybNgwqqmpIbPZTGlpaTR16lQSiURd/k6EQiE98MADNGTIEIutx0GDBvXZvyMrPVOutVJjJ7CMDjFp0iRotdoOtxeLxXB3d4eLiwu8vb3h7e2NgQMHYuTIkXj++eeRkJBg9wqNiJCRkYEXXnjBwopQJpNh6dKlkEgk8PHxQU1NDf75z39CoVCgrq4OEomk36U5USgUmDdvnsW15uZm7NmzB//4xz+QlJSERx99FE8//TSEQmGHjS0uXbqEo0ePdjhLdWZmJp5++ml8+umnmDNnDg4dOuSQiCAmkwlffPEFsrKyLP5uN910E0syymgXjqiHIrz2MFqttsu+Ooz/5/XXX8dvv/2Gw4cPt9vO398fy5Ytw+TJk+Hr6wuj0ci/hAQCAdzc3CxiF3ZEqRERGhsbcerUKaxatcoikK6rqysiIiIwZMgQ/PLLLxg1ahQeeOABVFRUQCaTYdWqVVixYgXKy8vx1Vdf9VhAY1sMGzYM2dnZVmGugoODceLECbuf19LSUtx33304cOCAxXWpVIo9e/bAy8sLu3btwqVLlzBy5Ei89tpr3RIbk+M4CASCDitCexAIBJg2bRp+//13EBGEQmG3jMO4fqirq2s3IS47U2NcE7FYjIMHDyI1NfWabWtrayGXy+Hj4wOz2QyhUAidTge5XI66ujrs378fWVlZOH/+PHx9fTF06FCo1Wq4uLjAw8MDgYGBcHZ25n+dExF++eUXvPjiizhz5ozVOV5gYCCefPJJfPDBB4iJicGyZcsgFosREhKCzZs3w8nJCWKxGJs3b+5VhcZxHKqrq60UGnD5HOtqh2SDwYBLly6hsLAQvr6+CAwMtJlyZtOmTbj//vuRkJDAX29ubsY///lPyOVyTJ48GbNmzcIPP/wAd3f3blFqRNRtisZsNiM+Pp7/zBQa45rYtZF/HcHO1Bxb7DmXEQqFvDl5a1Gr1eTk5GTTik4oFJJEIiG5XE6RkZEUFxdH//znP2nXrl304YcfkqenZ5tjDR8+nJKSksjNzY1cXV3p2WefpYMHD1JpaSlt2rSJ3n//fZo9e3avf3/tlYCAAItzgsLCQlqyZAkpFAoSi8WkUCjoqaeeoqamJiK6fK544cIF+v7772nnzp2UlJRkZeLfWlQqFX3zzTcUGxvb42dRHMfZ9dywwkpHCjPpZ+W6LQKBoF3/NqlUSoGBgTR37lz+5Tl9+nRav349paWl0bRp02j48OHk4uLSbj/dUewZz9PTk/7973/Tpk2b6JtvvqEpU6ZYtREKhfTUU09RQ0MDbdy4kfz8/Hil4eHhQYGBgTYViEQiodDQ0F5RLu7u7qTRaHr9OWKlfxWm1FjpN8XDw4M0Gg25uLiQq6srvfDCCzR48GC+XigU0ieffEIXLlyghx56iL/u7Ozc4y/1adOmtemX1tkiFApp+vTpdjtU91ZxdXXtlG+gn58fSSSSXp8/K32zMD81Rr9h1qxZGD58ONRqNT766CNERkaiqakJJSUlqKmpgbu7O44dO4b3338f+fn58Pf3R0lJiVW8xZ4gOzvbobnNgMvnSb/99lun7lUoFPD29kZ2drbD5nMtuhJ7sjWuJYNhL8ykn9Eunp6e4DgOTk5OVvEG7cXDwwORkZHw9/fH7bff3mFn41ZajU62bduGiooKREdHAwDuu+8+uLq6YsmSJZgyZQq0Wi0MBgMCAwPtzsvmKMrLyy2yBohEoi7HnBQIBJ3uo71o+47CUTE1CwoKHNIP48aErdQY7cJxHB+BX6VSoaGhodN9TZ8+HRMmTMDu3bsRFBSEQ4cOdeg+Dw8PmEwmfPXVV3ByckJ9fT08PT3x4IMPIjAwEI2NjWhsbMTu3buRl5eH+vp6SCQSJCYmdnquXeXKSB8cx+H+++/HTz/9hJqamk73qdFooNVqO/U3qK+v7/aoKsHBwcjPz7eZqFUmk0EkEqGhoQEKhQJOTk59Mks54/qH+akxegypVIrm5ma7TetbzfuvNufWaDRwcXFBYWEhDAYDRCIRJk6ciJSUFACwSsbZWwiFQgwYMAClpaUWsru4uECpVCIyMhK///57l8dxc3PD+PHjsW/fvi731VnEYjHMZnO7pvcuLi4QCoU2E48yGNfiWn5qbPuR0WMYDAabCs3T07Pd+0wmk82XZGlpKerq6rBw4UIIBAIMHDgQrq6ufe48xmQyoaSkxEp2kUiE6OhoBAQEWFwXCoV8UlWg7W3HqyOkyGQy/sys1SG6p5k+ffo1k57W19czhcboNthKjXHdwXEcVCoVpFIpKisrIRAI+pwiaw+RSASJRAKdTgcvLy+IRCKUlJTw9VKplM9XNmDAABgMBkgkEj45KwBIJBKMGDGizUC/7u7u8PT0xPnz57tdnlY4jsPUqVNx6tQphxrIMBhXcq2VGlNqjOsKkUiEoKAgFBcXA7i8yvPz83NIAs6ewtnZGTKZDFVVVTbrBw0ahPLycgQGBkIgEOD06dMAYHFWJRAIYDab4e3tbaEQW+taV3dmsxkeHh7s/IrRb2Dbj4zrlqsD8XIcB1dXV2RnZ/PGIe0ph75KdHS0zbQ9YrEYHMchOzsbtbW1yMjIQFZWFogIMpmMbycQCBAaGgoANrNPh4aGIiAgAK6urhCJRBb3Mhj9HbZSY/RZ5HI5TCbTdbW12BFkMhmMRqPVOeHAgQNRVVVlYTnZikgkgslkgru7e5tKXCKRYMKECTh48CDfvp/+92bcwLDtRwbjBkEgEMDZ2Rk6nQ5KpbJL7gMMRl+FRelnMG4QzGYz74vGFBrjRoWdqTEYDAaj38CUGoPBYDD6DXYrtcTERNxxxx3w8fEBx3HYuXMnX2c0GrF69WpERUXB2dkZPj4+WLRoEW9+3Up1dTXi4uKgVCqhUqmwdOlSq9A/p06dwuTJkyGTyeDn54e1a9d2TkIGg8Fg3DDYrdQaGxsxfPhwfPzxx1Z1Op0OJ06cwMsvv4wTJ05g+/btOHfuHGbPnm3RLi4uDllZWYiPj8fPP/+MxMRELF++nK/XarWYPn06AgICcPz4caxbtw6vvfYaPv/8806IyGAwGIwbhq7kLANAO3bsaLfNsWPHCADl5eUREdGZM2cIAKWmpvJt9u3bRxzHUVFRERERffLJJ+Tm5kYGg4Fvs3r1agoPD+/w3Fg+NVZYYYWV/leulU+t28/U6urq+LBGAJCcnAyVSoXRo0fzbWJjYyEQCPhAtMnJyZgyZQokEgnfZsaMGTh37lybVl0GgwFardaiMBgMBuPGoluVml6vx+rVq7FgwQLer6C0tBQDBgywaCcSieDu7o7S0lK+jVqttmjT+rm1zdW88847cHV15Yufn5+jxWEwGAxGH6fblJrRaMS8efNARNiwYUN3DcPz/PPPo66uji8s0SCDwWDceHSL83WrQsvLy0NCQoKF97dGo7EKrtrS0oLq6mo+E7JGo0FZWZlFm9bPbWVLlkqlkEqljhSDwWAwGNcZDl+ptSq07Oxs/P777/Dw8LCoj4mJQW1tLY4fP85fS0hIgNlsxrhx4/g2iYmJFlHJ4+PjER4eDjc3N0dPmcFgMBj9hQ6bE/6X+vp6Sk9Pp/T0dAJA7733HqWnp1NeXh41NzfT7NmzydfXl06ePEklJSV8udKScebMmRQdHU0pKSmUlJREYWFhtGDBAr6+traW1Go1LVy4kDIzM2nLli3k5OREn332GbN+ZIUVVli5gcu1rB/tVmoHDhywOdDixYspNze3zYkcOHCA76OqqooWLFhACoWClEolPfDAA1RfX28xTkZGBk2aNImkUikNHDiQ1qxZY9c8mVJjhRVWWOl/5VpKjUXpZzAYDMZ1A0sSymAwGIwbBqbUGAwGg9FvYEqNwWAwGP0GptQYDAaD0W9gSo3BYDAY/Qam1BgMBoPRb2BKjcFgMBj9BqbUGAwGg9FvYEqNwWAwGP0GptQYDAaD0W9gSo3BYDAY/YZ+q9T6aUhLBoPBuKG51ru93yq1qqqq3p4Cg8FgMBxMfX19u/Xdkvm6L+Du7g4AyM/P79fR+rVaLfz8/FBQUNBu5Or+wI0iK5Ozf3GjyAl0r6xEhPr6evj4+LTbrt8qNYHg8iLU1dW13z9IAKBUKm8IOYEbR1YmZ//iRpET6D5ZO7JA6bfbjwwGg8G48WBKjcFgMBj9hn6r1KRSKV599VVIpdLenkq3cqPICdw4sjI5+xc3ipxA35CVI2b7zmAwGIx+Qr9dqTEYDAbjxoMpNQaDwWD0G5hSYzAYDEa/gSk1BoPBYPQbmFJjMBgMRr+hXyq1jz/+GIGBgZDJZBg3bhyOHTvW21Oyi3feeQdjxoyBi4sLBgwYgDvvvBPnzp2zaKPX67Fy5Up4eHhAoVDg7rvvRllZmUWb/Px83H777XBycsKAAQPwzDPPoKWlpSdFsYs1a9aA4zg88cQT/LX+JGdRURHuv/9+eHh4QC6XIyoqCmlpaXw9EeGVV16Bt7c35HI5YmNjkZ2dbdFHdXU14uLioFQqoVKpsHTpUjQ0NPS0KG1iMpnw8ssvIygoCHK5HCEhIfj73/9uEYT2epQzMTERd9xxB3x8fMBxHHbu3GlR7yiZTp06hcmTJ0Mmk8HPzw9r167tbtGsaE9Wo9GI1atXIyoqCs7OzvDx8cGiRYtQXFxs0Uevykr9jC1btpBEIqGNGzdSVlYWLVu2jFQqFZWVlfX21DrMjBkz6IsvvqDMzEw6efIk/eUvfyF/f39qaGjg2zz88MPk5+dH+/fvp7S0NBo/fjxNmDCBr29paaGhQ4dSbGwspaen0969e8nT05Oef/753hDpmhw7dowCAwNp2LBh9Pjjj/PX+4uc1dXVFBAQQEuWLKGUlBTKycmhX3/9lS5cuMC3WbNmDbm6utLOnTspIyODZs+eTUFBQdTU1MS3mTlzJg0fPpyOHj1Kf/zxB4WGhtKCBQt6QySbvPXWW+Th4UE///wz5ebm0g8//EAKhYI+/PBDvs31KOfevXvpxRdfpO3btxMA2rFjh0W9I2Sqq6sjtVpNcXFxlJmZSZs3bya5XE6fffZZT4lJRO3LWltbS7GxsbR161Y6e/YsJScn09ixY2nUqFEWffSmrP1OqY0dO5ZWrlzJfzaZTOTj40PvvPNOL86qa5SXlxMAOnToEBFdfrDEYjH98MMPfJs///yTAFBycjIRXX4wBQIBlZaW8m02bNhASqWSDAZDzwpwDerr6yksLIzi4+Np6tSpvFLrT3KuXr2aJk2a1Ga92WwmjUZD69at46/V1taSVCqlzZs3ExHRmTNnCAClpqbybfbt20ccx1FRUVH3Td4Obr/9dnrwwQctrt11110UFxdHRP1Dzqtf9I6S6ZNPPiE3NzeL53b16tUUHh7ezRK1jS0FfjXHjh0jAJSXl0dEvS9rv9p+bG5uxvHjxxEbG8tfEwgEiI2NRXJyci/OrGvU1dUB+P/MA8ePH4fRaLSQMyIiAv7+/rycycnJiIqKglqt5tvMmDEDWq0WWVlZPTj7a7Ny5UrcfvvtFvIA/UvOXbt2YfTo0bj33nsxYMAAREdH43//93/5+tzcXJSWllrI6urqinHjxlnIqlKpMHr0aL5NbGwsBAIBUlJSek6YdpgwYQL279+P8+fPAwAyMjKQlJSE2267DUD/kfNKHCVTcnIypkyZAolEwreZMWMGzp07h5qamh6Sxn7q6urAcRxUKhWA3pe1X0Xpr6yshMlksnjBAYBarcbZs2d7aVZdw2w244knnsDEiRMxdOhQAEBpaSkkEgn/ELWiVqtRWlrKt7H1PbTW9RW2bNmCEydOIDU11aquP8mZk5ODDRs24KmnnsILL7yA1NRUPPbYY5BIJFi8eDE/V1uyXCnrgAEDLOpFIhHc3d37jKzPPfcctFotIiIiIBQKYTKZ8NZbbyEuLg4A+o2cV+IomUpLSxEUFGTVR2udm5tbt8y/K+j1eqxevRoLFizgo/L3tqz9Sqn1R1auXInMzEwkJSX19lQcTkFBAR5//HHEx8dDJpP19nS6FbPZjNGjR+Ptt98GAERHRyMzMxOffvopFi9e3Muzcxzff/89Nm3ahO+++w5DhgzByZMn8cQTT8DHx6dfycm4bDQyb948EBE2bNjQ29Ph6Vfbj56enhAKhVbWcWVlZdBoNL00q86zatUq/Pzzzzhw4AB8fX356xqNBs3NzaitrbVof6WcGo3G5vfQWtcXOH78OMrLyzFy5EiIRCKIRCIcOnQI69evh0gkglqt7hdyAoC3tzcGDx5scS0yMhL5+fkA/n+u7T27Go0G5eXlFvUtLS2orq7uM7I+88wzeO655zB//nxERUVh4cKFePLJJ/HOO+8A6D9yXomjZLpenmXg/xVaXl4e4uPjLXKn9bas/UqpSSQSjBo1Cvv37+evmc1m7N+/HzExMb04M/sgIqxatQo7duxAQkKC1TJ91KhREIvFFnKeO3cO+fn5vJwxMTE4ffq0xcPV+vBd/XLtLaZNm4bTp0/j5MmTfBk9ejTi4uL4f/cHOQFg4sSJVm4Z58+fR0BAAAAgKCgIGo3GQlatVouUlBQLWWtra3H8+HG+TUJCAsxmM8aNG9cDUlwbnU7HJ+htRSgUwmw2A+g/cl6Jo2SKiYlBYmIijEYj3yY+Ph7h4eF9auuxVaFlZ2fj999/h4eHh0V9r8vaZVOTPsaWLVtIKpXSl19+SWfOnKHly5eTSqWysI7r66xYsYJcXV3p4MGDVFJSwhedTse3efjhh8nf358SEhIoLS2NYmJiKCYmhq9vNXWfPn06nTx5kn755Rfy8vLqc6buV3Ol9SNR/5Hz2LFjJBKJ6K233qLs7GzatGkTOTk50bfffsu3WbNmDalUKvrpp5/o1KlTNGfOHJtm4dHR0ZSSkkJJSUkUFhbWp0z6Fy9eTAMHDuRN+rdv306enp707LPP8m2uRznr6+spPT2d0tPTCQC99957lJ6ezlv8OUKm2tpaUqvVtHDhQsrMzKQtW7aQk5NTj5v0tydrc3MzzZ49m3x9fenkyZMW76crLRl7U9Z+p9SIiD766CPy9/cniURCY8eOpaNHj/b2lOwCgM3yxRdf8G2amprokUceITc3N3JycqK5c+dSSUmJRT+XLl2i2267jeRyOXl6etLf/vY3MhqNPSyNfVyt1PqTnLt376ahQ4eSVCqliIgI+vzzzy3qzWYzvfzyy6RWq0kqldK0adPo3LlzFm2qqqpowYIFpFAoSKlU0gMPPED19fU9KUa7aLVaevzxx8nf359kMhkFBwfTiy++aPHCux7lPHDggM3/k4sXLyYix8mUkZFBkyZNIqlUSgMHDqQ1a9b0lIg87cmam5vb5vvpwIEDfB+9KSvLp8ZgMBiMfkO/OlNjMBgMxo0NU2oMBoPB6DcwpcZgMBiMfgNTagwGg8HoNzClxmAwGIx+A1NqDAaDweg3MKXGYDAYjH4DU2oMBoPB6DcwpcZgMBiMfgNTagwGg8HoNzClxmAwGIx+w/8BsJfq0/PSqMYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name gca \\\n", - " --img resources/input/restoration/0901x2.png \\\n", - " --trimap resources/input/matting/beach_trimap.png \\\n", - " --result-out-dir resources/demo_results/restoration_res.png" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "img = '../resources/input/matting/beach_fg.png'\n", + "trimap = '../resources/input/matting/beach_trimap.png'\n", + "result_out_dir = '../resources/output/matting/tutorial_matting_res.png'\n", + "editor = MMEdit('gca')\n", + "results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -197,23 +573,47 @@ "source": [ "### 3.4 Inference of restoration models\n", "\n", - "Input: image, output: restored image." + "Restoration models take a image as input, and output a restorated image. We take 'esrgan' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAF6CAYAAAAUDSIMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9XchuW3YVjLbe57v2rvxVBWOsMpjE44XGiBqIWinQG4kGCYIYOBJEg3hxkCQXFooGxCQKBrzRC/VO9EpQOXcKosmlJgTijT/oUeF8UUxV/Dmpyk/V3uuZvX8XrbXex7uTD032zmed5TuLVXut932eOccco/+03noffUR3N16ul+vlerlerpfr5Xq53qAr/1cP4OV6uV6ul+vlerlerpfrg75eAM7L9XK9XC/Xy/VyvVxv3PUCcF6ul+vlerlerpfr5XrjrheA83K9XC/Xy/VyvVwv1xt3vQCcl+vlerlerpfr5Xq53rjrBeC8XC/Xy/VyvVwv18v1xl0vAOflerlerpfr5Xq5Xq437noBOC/Xy/VyvVwv18v1cr1x1wvAeblerpfr5Xq5Xq6X6427XgDOy/VyvVwv18v1cr1cb9z1BQ1w/vpf/+v4tb/21+JDH/oQPv7xj+NHf/RH/1cP6eV6uV6ul+vlerlerv8/uL5gAc7f/bt/F5/85Cfxvd/7vfjn//yf47f+1t+Kb/mWb8FP/uRP/q8e2sv1cr1cL9fL9XK9XF/gV3yhHrb58Y9/HL/9t/92/LW/9tcAAFWFr/7qr8Z3f/d348/+2T/7v3h0L9fL9XK9XC/Xy/VyfSFfT/+rB/ALXe+++y5+7Md+DN/zPd8zP8tMfPM3fzN++Id/+Bf8zjvvvIN33nln/l1V+O///b/jK77iKxARv+xjfrlerpfr5Xq5Xq6X6/1f3Y2f/umfxld91Vch85eeaPqCBDj/9b/+V9z3jY9+9KPPfv7Rj34U/+bf/Jtf8Ds/8AM/gO///u//v2N4L9fL9XK9XC/Xy/Vy/TJf//E//kf8ml/za37J3/+CBDi/lOt7vud78MlPfnL+/ZnPfAZf8zVfg7/0x38PvujttwA0Ag0gQD6ncUUikhm6qAYi0NGIDn4qWv/lPbsBRPO/4GcigIA+h0IE75MBRJB5CgAR/mwg9V0AaJNLMf8HgAwUIvSBnl/7SYhGIjmO4M8218g3RcSyVwE0ElWx4w/gujhW3jJ5l0h08z2rbzQHjqpCN9F1NcdyV6EAAIkG0NUo8DMAn9UaX3DY/FvyM63Z459C9K252zlCa9Uy0F3zMy9NRqAaQCRqMq56NhoBf4dfqgbqeIdAAMW1LzTubjRXk//fQCLRXRpXIyPQx/MTjSuAQCEDyGhcADJXRjIDGSs3niMER8hVTqBTz+d4GkB3aL74GqW57gbQieIkzbrxv72y1RhZaPA9Ehyn1wbBeYnAPCfRuxYRqK6Zd89nIBGRo1daMACNTiC6EZEc9CHjEU3xjgC6ZuwRJXkMJKijV/z8sYbnX5If+3TNs5Y9GujAXZJd6bo0TbLSuLsoQ6NJnH9UAZp/BNDF8VXzk7e+W359a2lzza9IXBF6B6AvFz8Gspt2Ru8S0Vqn0MzyO6E5jVnS0kQk0HpHPhIhuW8EqiWr3dICzmkj8Ogbd/EzaOtt6flrK2nH/F68Q9/F949Gy1ShY+QWSMrKIafVjSqgOkZes3rsQuShT9Ern0k7mgCQybmSICQwc2TTwjWXvcJ7fqG/rdkdi4qI4LxZL/Vd6xFtuGTH99R/uwMVtGGw7kVovZIr2TkaXbZ6Y7sDGRd/2jdtxdh9jzEQKTkaCdVzAGRwblIKoiVBB+VQCg5aJtD+VUlnQlIl+1hjYlEI3FpHzljTDkegq5CR43x67iT/6vGPcmr+Ym3EzDO45ojA5955jT/+V/4hvuzLvgzv5/qCBDi/8lf+SlzXhU9/+tPPfv7pT38aH/vYx37B77z99tt4++23f97Pv/jtt/D2268AaPkiaHABZFyAhEyeAp00CAQ5vLzQwNpFGuOQQDWygchXXODgPSikMcoYYdMSA3ieVUBFyLk2gEtCQxDTuEcZgBBtZ+GmIo0hi7SdRWTy5wI9ZacUdLaQ0s7bBpUVDXSFnCxQdrVVAC5UCQgIKBSkMPr3gKyZv0RojiMMVgygEtECXl6bxCjuKJOnyevRh4HQOxIojLZRwas4Gj9D4Kd0DwBoKfSNxqNXFw1iePcnuZyQ4Q1EF66UY0JTFgR4ngJyap7nwFMcM6P1ikwaRz2wg1JS1Sg9uVvgsYHuxA2BTdDILCjlvasKBTsrL8IBAYLrcUUPwLVA0qjtu9sZ8z6WFAKDGEubQPLeSygvGPdUx3GruaXXqWk4MwhuCHCAyMZTNp4uO/tC58p9xOo2p7YOXcEAaCBw343H/XogUcQlGWvcfS/IlBzR0JeAu2W79Uqaa/C7BM516CTn44rAlYEr1wFdsgdxjs5AMgMdt93igAo6RM6nHWlIVnZyj6m95bzykPciQEcmqhXw6DtVdryHXZJzDNm1cejVAwa6FlhbU27QPkDrigbuKnTRYXYbgjGgvBDzfhGcMwaHtHuZcuAKEpIGTzoHZI+RJcBAow3I24BxgZ/llHbbFkN2aKdROqY1D4GsQ6XmLy27ma3nU18JdIPoTUBIo5t1ikFsUgQ8IePmfHv1M+bz9Cs5jikRiGxE1OFvaG8KG2zb7rXnX6aA9l3224EquK7UrMQt+4MJtN4baMbME39G4EPwaZjEd49UMGtLroDBF7+3oPP9XF+QAOett97CN37jN+KHfuiH8Af+wB8AQIP9Qz/0Q/iu7/quX9S9AsCTIsRlM1JA5/hc2Dh72m/YvEt+AdCRRstBhGU9gWBEdbWNEeQDDCiOaNhOLi4uuVFtU+k6YqJwy35L8VpOvbsQmTYLQBQq7L5opua7lsKi00CuoQzwPm2HBX9nhTKbsKGqcXM1cCOGAakGbhm36hYYkgFozbPml8F0AJ0CRj2OPbqHSUFh2LUzYoCeGTvQNWqxjqf8My1cdw4LAuQY2G7O4DI6uc4WBj52QDTdBlQogsO7aEQSRkMy7OO+fDXu0wnNWh7gK+x0gpGu1r5Kxlbvb0NziwW7717ATK+GjsRdACAWrgyuc4CM9QEetsFd2B1Q9hMB2zTeSsZpsGTJx9pIp0Bsi/1ag44qGJl0ywHXgtJqjo9BZyHF9FTR0YUNIEVWYGIdZCGWGYXBv4Z6Nbov3CXZ0EsHgCuSLE4XugMXJRp3MPDp6pGN0FgRdZh2alFKR1r6XqiRvQsOegIRpalvAq2yEySY3odQ/5DLQUcYhlJIO+wA7RQTcfXIandj/KUAUaBxpeQ0gL7o5NbYSZ7EppjVlimhjIq26pKexbKOZvggxqYRqCixsKl3SMp51wCpjIQDmouGc5zehRybmmb4kLDqHS8pmwt01zCFUZDOGVBKRuQMbNPHboxK287GMD0EfOkvzL0s11AQWp1jgzPW9vB5kvtozYl+E/lMZ9EKRG0PINlLjiU9zgAiCai69PM2UGgFTz3rannK9u8P3Y61zzGvRlsZwz5bHxjUtWVEgNwyTHlP/R0j67xnrg+M9SsfxPUFCXAA4JOf/CS+4zu+A7/tt/02/I7f8TvwV//qX8XP/uzP4o/9sT/2i7qPFT8dao7Dl10vLiwkBCmliHh6zgZQilcphp6nEYxYOhFGqjDYMXa1+TPyuPfvMk1rGDDMku1N9CquAVrIyUQyhbKIms8mYHDkYiAl4yHjiq6N0tMCmwQaHk/xZ2EqXmO9m6BmARjBRCHm3i1GbO5FOkKshceJUY6Ixm1ABCn5AFIzGmvky6kN3knpmxqD3AJSZZDbpci85VCl2GAEXh10CkaMSSd2TYqFK3mBzjTleCpK7KDWLRWneNqTYCgi6XDHMYWiJbnUUjQVZnEW2NwCPsNIlNNpWIdEwT+AJT2Xf9dRkE8gS1IWGhmclGMYCYdgHSi/zZgvA86gTvDAtefznU0EatJT877jPHU7A5QmDV8yrtawFpBtAegLdny8v1nTFhtp0Ej1yA0WQAcQYFop+mCcJItm9m5Y/w2MJX1xS2dBBwcgN5kI6L6jArpPiPGtAG59J+0Q0Wjc46wFAQYkHdEU17RrHBTmHQiU0JiI3zNYAQJLFWzGrEPvuwgYbXqav5uADT0ye4kdGSybwbRV0FY4Bu8GHqhJlTjNIU86QMZ/nFq0fiH8M7NVXCOme5M29JyeoFCEBKwj0RbUkaF7wBWihkmTCBzzcQTF8HLaNhOE09au8zbir5H3C1n3yEGAKTeDTiuAfUSEOTtdCUnkPsNfSyRZLdjeW/7266FgPjXP0Y0cwGXfYptqgLI2ay3AejC6pRzgY+lA9fjZEgkwgefMoZg008ZKeZvBIsOTz8iH93N9wQKcP/SH/hD+y3/5L/jzf/7P41Of+hS+4Ru+Af/oH/2jn1d4/D+8MoHMzWPb+biGxU4+FdF4AQAgKFgX4kDquq+BjhCqAx8rmiMeU9JWhAEfdqJduk9ghEnRrNMEqwDlx8lwAw0qeIkByAnjdU+xIUJtKJp7IvZKRD4NlW5nM1QiWuCBgseag5ZwG6eUEHcfOXYyQq594b2WG+veiXT6ZVIe0Ps23zaE6NFHThpKRo2TIeXJJ6YiHLmt3glj+ozRtNNqnsgqGu7b0ZH0rrvRN5BpgCfQqsUOOCI1e0cDRsBrt3e8vd7daTzcYZGUXIq9QaAqJkVVcPoyx7EUlI4U7Y3eeorAaVhsiB0dekRmGKBI0EzHGjWDChqlRpecg2Qg5DTK767vDc6yOMeMZHSpBD7NaJpOb0eIIZM37EARTwQ/fV1K81ovwnT4ufSUDKoVP3cFyA5WM0WqtCBBtGV2WchJFfohRvLR6KD+2bhHEbY0bvnUUkrFc9G4DbyEqlPviWFl5AZ6Gd+UAzDbZMe7KTOnmhuZF1mGcRoMMCouMRk165RthyrZqJ6g8Arr36YQyPbQiXY08gK6ZA+uC92FK8ThGjd7zvR9eu2T5bGEXwNCyJjccupAXay2SdtT2ZyMROa1c6PPuzYI7ZojPv0EdJOaD9u84y0zNG8YGxQKMiIv+g7cSyIrIAlwDubnBkSZu7JyEmW727InWnentJ0uXFgggBcxTE8XkJegjdY1BUqf1ayhAZdkIICgHXTQWKI5e6TBq6UsgX8RMf6i51N6htahx/YUn6n3MUDLUC2SJ0ns4txHdueDuL5gAQ4AfNd3fdcvOiX13utVBF6pYMvUoUTXqVnYsTpN1eNKTb3lGHrOfY5JWIpRzi+uocRHuGNwK/ZvNb9rGQBHmRZ+q/5SOGvYxh72Ou+DcIU/1OiJ2pzewvGp0I38P2WJJkUzdzR4U7K2hPYnfyvWoWqHW1CUMzZF81e7Fi2jE/18LBb8yhZlSgBDM9fDHAxYCjNJnFdG37vWQMGFll0COTL+pmQJfJyDtpLr24q+zYCnrIupX/u+BUGqC5Di9jBusxzr9AWWzEQhmPIji8PC6TvELM2YWQdlx0TAdozHAArL3KRqhhztI1j74yovilPCSN2FpY5vabjMVKTe0VBYcjYUEubdnY5wxFpwYW9gwLtA2d0qzo6mnFzALSnjdCWeYqDaGHRrpKnzkDEmS1PodkpZRr/JADz0Pq00UhkUKG1mh87vWObljIgIVn6dypqCaQLqkVutN2VHUbMlNM75ki9Jgz+9W1DmIOcQCIGQHJYnohF5AIN25B3oJMM7he69TPPE2Ln2g9F0672lx7YaUZpDOlaVZ/C9pQelnw+jCbEXXqMuBpZiY1NeLu1IxUZ5vSCWbuoHTUNCNjnhHJv08ZxjygCCBsqu/AbntF2LZbU8AAc6uGZ6D7Rtf+znI1Swu/oWSeY0r1fodq2bbGAr/QYDGVdc9az1MCOwTuayjccqVbV01ay2fdn5Qgvy/KKxrwMzaSG95FpunUwGzsIDZFy0w1pv6n8LqMliHBtGEBfaa8w7wtXpYz8E0rsLmyd4f9cXNMD5IK4rwUJKCxKLXHDCgJOEHRgSAeCaJZUMD4CJqInoApfqKfauNLxa3CSguXJLBgFsHhMUtJRj79qC4TZS59toxFJgMT0d/llLcIwoHDOsQ0JrJ48pXKWdaLQuGkiBC7QjHimYdlEVvJuKA6t7C413t8+Z3HsPFe4IYAolenY/Tb54UdLhynqYbaiwVl55ajicynk2b+3fCZCJwWnJwR0etwzOWKiG6w/o+EmEZcvwiUlgioBS5OilEXhUTfQd/lzmsjd2t+1oW3NRwG1mpjm3NwhGCCKVPqnExkyYeXe0/0y+w/MQz6hnG8n5MHqAWMnZ0EkluLspxYRwjioWQnqt6qiDcA4jug6J2Jx7IwYwb9AWow9RZsQSd63+htI00RfXxMUGmlX+t5Cpgu17wWCrpodsQ4p5pEHNYyoeMCm/P3Mhs7/v1Fkdz7Yz4BOvkX+n3CrIJp3F5/Y2W1bcMDPZuakJStklRw9kF+IaN6SBLvsaAl8XXFvBDRFphiB7gD98jwmuxI0dsnFYQwCF7BB45HpcaHSSET13CF3ZiIJkmF510tjhO4YyTMsuhmodLywrzvoUwKxAy54kYoqtHIAJusI7QSEbO6IoENMGLxGYiqOpFXJ1iZhisXfRx4YUjaW0S6k1F5GuO7GWhOxpjaR6R6Z3VklD4ALybijjsKs0/4n9S1QjL9t7sVl+7/P5CMCBioOS9kwkKqCAw7bKaChVj4mdq7bU0yFEmnEvRD7NRLN2rvarSOA9aT0E9g1jodz7ud58gBOBK69nhn+E+zAojsu2RqAmUnAxolUBAMjYKPqUfeLWx9ydNBP5AciLKXAXdOr/7YDPHQq86FCchx+U7HoVZ2CMNALjLE01xDzcBmAjD9aBxPHMQLdp9XWa5WfoLqTYwZ1G1bhvYKJR7cKYLeKwTz3DBf7XtHw7rZL6OaxcPR9/NCNSF+XCH6+aFfEWd7LSPexQALNDao1FKq0GFRebLue6N6cfpvZtgL19OILO75JPDUVYlTQY0U4sQaAHU3/BoCV3fjyv1fMu1dyFItGAWQPX4xicdQEP26tDcqJ27ekHBL8U4UPjOQtsCQoBxIW8Z+GY0kw6c9S+U2ierQ4ncQONeTCO+TTv2LFMmiW0DHaPw6owLAfyBgtgg7vcskvFohcdrGQpulRgudS+HV8+JQE6lnnkBptGFDX7rpPNSHQWHriA9o41AFWTDh4gbCMvOQ9Izw3kyzUUfKEQ0B2bM3aIN4u4xwYY7NkZhARQro/3GbsmmVGA0GetxawT0wMufKYrLenbjn+yyNXgZMtZlwqeS8ye5pzF+okr2ToCrZ2llvsmONyCV7BgWEEcl982lqw5s5EhAkPylMBUKHnHmu2vXpJMqLdkc238OiMWspW235Ce2I625nkAp5iFKQ6p2HRyJKL4zKjSGE/bfjzPmG5qbWQDg7K1jMeOdS0FdA9JqfR1QERskB0CzpbbNlCBAtD2u2mDiRlT3OOjdr6YHifg8popG+K0k+5jex+5gfMUOLeCFs+5Aju3G3AoEaNs7/964wFOapv0KeG9Uianso5g4EcfeHn30Y7cwWxM3WDvDAAd6tdgA9twodXkyIM/twMuLXYD6GwhX3rCATRxksaqPXEe38ZjlHhNe81PR4MpnBLCwtLmBht2TuXoFJBj4Ot0BXDvrqM76BiqGwvuGQVN9AQgxogCiKTCNJ22iw8nD2uAJGPCVIHBzK3fmT6W0kQJkPUotYGH+SSmCxJ93/r5ebk/DkZW7MwBR1fQWigS10RfchmsrwxFxzHBU5rZaYMDrZWNj+bMa1oGYO3+Po5ElYoSKGxLZK8BN10+zFGzH4V3eBGUGORyrV0fwjUWM9kxBdMTa4Y5Qhl7R/oaT6bly5GnnKii4mGp5PABMhkIiKCPIyo26JcsVEs/xAIoTTxdPDqBYVcB8wPUX0GaJNsozpVbzetGJfCwqHehiw72KS46LgTuVtpQ9uAE1yNvBjQ42MtmWu9ub28mY/Qo4CkvdMekLJ3KDgUogm1y5Aqc7HIjtPN4+Dt4j6OZ59L0Ocq2/bi7AQUNrQL+cVYOBhR0hNaZTu0e2ZiAK26lvyAAfD2TJxaEc0efC9tiyucEQUIu8mJAMRuVh+GlDSyAhf5hQbfQA6wJU8orbKwOICBD6VQx5SJVO+OAQwChWQJuRswyvvOoywBRMooIxHUtMy+FDM2tdbMUkHKM2zqgc7doZ4QAomUAGuP6qy2L4L2mcDl3vfVQ1UQte7s9wzxWAhjXXFLQWT/jcoVJEw9ga20ejpFfv1eoHmq9Ucuveb13Hmkrrr0tWFv4QVxvPMAJgtQFCDLuCUdEdg1Ewi4G7TSpsGhedwQFTZl4NRmIuW/ov4rKcg3fUnIxQhLtGEOC1c6FimIdGhACSsdnJ/RwNOC0gp3eghcL2dnjzPlQtNMrqlPpg32Ba2xYHHk38Cj6qEezyVl16L/TvgrR5CDMpmxVPJmHe0C6GLJWD5lZCzNKjjZinF3kArFop5gw7ATHLWqZmPFYu61vwnFPp5bOq/Qz+ktBnVx58FxOyWa0wI7nm+OuM+pac0AWAabHNR73WxFoXnBG6Zy1CYNSyWbS2EaeMNfNBXuSm6RjOFYGm7HiCDMYNFDdZE3McZIlUSQXtcEs2JfmRiDj6QDR3E3XmqhSFHzOhNM27dkIyFF5XJJl1wZJl0rsJmftGj1y8GIW1Toz6atLsiZDGxF4XTXzE5XIVDTZib4K9+1meQQ1t+g/p2BKFKFZJ4xsC7N2Tt3LiJ2jfwH9SyiHW6QFOsY5U0ITUPO0hsl8Fr8SAJm1WJDpGgf3T5JNqYHGM04HgWZwJQ6IctNJ6iID+MeAqrWLXrtbuqCOX+9hkBOUHcuWgbZrdS4HnYNflN6r3UKdcvg5VssOmvf33zu4LlsXhCkUJjCsDWoDAC5+B4mMCxPBaNE6dw6PFcY064gluByEdrENh1uEANwOX1BQZ0tRgWnXEABkP5kaFiCx3de8GxD4T48GbwpsR7+spX/YCgo30JItbO6grVgrlUdA2Dbolgc9fFOLdLhup7I1T3x2OXCRbzPfTZkvIJ5Ud/f+rzcf4EQzh9+7/AHbTwl6WyZzAYcUj5tcvGByA61tkNKYqIBLMacrcPj/gD6E0e50DK+v3gSYDT+F7ejGacM5OeGtiu+yU7BzuRQEloyp9k8JdbOUQZX9bX5AO0ZEYd5t1oDKWAXc1bircA/AAW69f/XZbE7GHwQ5ERfpfdipy5iqKDAj8BiwUTDLcGgVhi6uGgVyhAOh0jE/ATzryeEVaqCbjauWwlWOvg0MHN0sCB42b/RUKUwFO7LeYEFp4klG+IxgMmyYaUBuyZIghZySHcrzFMimRWggOgyoG6bPr0hkq0kauB3UbGJoK1+iB2fnAEXMGGyIAmC6DTME6YHWsC17fB4jYcy6jWGdaLZHNrbl1/PLkevUHszY5S/gbffBHWux5H3BlRNQjYm2z56BSfc8t+yYQgxWelXX2aKLfduuxH03OnPqR8IgxfKQvNetbctcFtWFWKrE4AwelZGPTqbJvK5yIJmY2qVWkenoaR9AxXLmqNcdyfuQW9U/TN0evDtKz4VTYTWgPolAwO3r+l7ZbrWm1Nus+fyOQF+c4QEUqmW5EmuPZrs4YFb0rFD0vA3wDoUCEbKraWOooHW5a9a7WTb0nHvrjFK6hlTKM1yEbmXw+/COxiz+AzcPDDNZYjkNiMykiAVDOKja7fMjP4d8wCbHYwbY/oOEEhIEhZh05swOFElzfJWYDLTmbnfU+d4WYt9Hf1yr0y5Ltr6Ac+p04jHHFr1hh+eH7MzsXj38XI8t8JuKNpvnUN7fax1+adf/HgAHJQQvpYnnC2zjCUCyk8MGsISx/AvKoKlkaLfOFdNUaaMv5xkpMAkaDO7K3HqRcH6/PRYJo2xUWJFjC7CmGzFOpWbEMNGIc8aIif5taKD3jTKIkLD1mf5g4aXTNgXgUY27gNcdeN3Bfzer+F3owkJeAxiDR6c15EC00wR+9NiBrTMYg3sqEcCma2B+/2rAxxrMO9nogXNAgMW5vVVIXGpceGkVpnyvx6bRSUQMYyKJmcji0nzdwaiTz/ZaBR76ziUHguYOrczAXQ8ZN96E7xpTY8ICYqcNNn3gCpIGF8TGJudZdKgsyFSKLDbynWgMOUAcMFNF5z0JuF45djPB0C6JbDGBmncGpi1nSNDmNQxvR4XAoBkIUwUTVOhGRl/BOTFQbTkEM0p3SbdboDEuyXDtYg36UGpCQYq3RrsfyuxN0Tb07GDBZgTuoHOEdPkGcE/UKr1TJAz1f2Ha2kK5tU85TLI0Ngwwd2fZpRqO4MIg4kkOuwRKMA6U6r1cGGq3CU/rgElhqR7n0jPrQSk+5mgkvc3e2eHz/clP14BrBwdOsWUHKjnHoS3jw6Dal0KVR+7TIxmnaKrJZkC2LKYmxeDmGkhQ804GJg0IOFmGCAhTE3pUJPH3fWF6+UB7Z8NjFKqW3epWJ2b0TFk2bT77Xzv9wxd2gJvDOlpZJM/AAgwjHucUz882wC311I9wEAmyvMpSYvo/gYxiuD/T7IKTrMrQOS2HmU+CU3fSH3bH9zzkVjTeofy87hpLzzvKn0HzOkFcH3bMx9JEo+vGCsBhoN7H9eYDHPVWMJ0ZKUcIWLvGuTHqYN5xiv4sjM6DK7qfGpAAnYGQ+tB11o8RoJhI1OBGIihB7qVPwS2Y61gnfgIr2UUDQso6vKOf5BSWnIL6fcDOFrs1Gn6GWRuDGhjsAHcXHs3UVFfiLnbO9dbwO7wzYpmkOUqgMIbCW7CjapzgAAIVdc/WxLCxAk5hJ01ORXwcb80CVkUf/mxBBZCKePU7+1bOiClUAMe3rbfdBhKuRfGGZP6fi1x9LAOCBcg+ZoAr7G/UNACbAkfNfcGGXQa6AfQ1vzungnVLNGyX2JLMZX7SljEI9RqSUb1hgVE001Mtw/kslsQ0hNNc8Jytue3Iuj+fwfSlxGB2UkUxfdQCnmHZ0lpGC5i5+6oBLFyQv4wLnx8scCeZ5OCPci6HU17PZ9GwNCms/3SYrh1qg4OW+8vkTiC9fwbUfBK6Dx1ST9GKHDuAjgsTsfKmwySNIxTgenbOlG074nD8AhOR2qRgAPJQYHQwZrE2Y3M8rb+KO205xbykm478uSrToM8vlacbPPhQpbUTAoRaO7OaCzQCuJwKIfDK3hTgOLi0nbtntaYuC2Y+xk1rrlSPB7/3NTZlUmMCYZTxfTN0o3BrLkNd00tP4riMOdCA6+HMgjNWdEqwpvfMyEJu4jUa23jxqEvDfgIT6QFTS7OcvmV2fYUMJG4dB5RO+egu7nRvNnJSVEpb7g5e/67tDiU3F1rzM1bPqSanz8OzyXldvlcyGu/ZvbmzP9nm+b58hYFQfTD45n8DgNPB6K63nXlKuKYIjR4AznNyES2pAUc6zovbUBokbTZbRi0vhEAKKfCLwhGB7ocMG4WKYImR0VTZardJJIvzooMN1pxwcB0IZHgEBliGEetMJDiGa5Px6J5ahC2q5WGE902GiJ1kt9aG7A2V/FGl1FTNZ2646DaOM0w0W2Wk3pMLH5ShKW4BHd7ChsmfWUeHTPTNtYrjM61n2y2Pnup9PWF9PNqMnq/Zpu+RywNtNpgpBptVUsZkIEqe1iYpPRctAiD2eVbuCKZTevGP7mzD2tiGc0qZDhKyEefMdAFXrrFCAE70BDbXDaieBAsazHrtfgz+G9FwczyvY0A0dZvq9zhpgDeVF+PQ1ijvRTZCMxXUgwTYVFHR841Wt+3AROVa7CrgcbCRHYUrbtbSaExeA6AmZYUDQI9DETCzQ2EtFg88rNr7XIfd4Nb9hwSJczVspMDJgjpyND56gmyWQcmEOQN21rlrcQLD9ng7u0W6lUZyvWAJNEZo3GIfCAp45w4HRGuz3Nr/BpRy4mdagR3tlz8fCvRqAi3bGt/u0ucMbDh13FzQYjZSrEGfo+kUOLAuNJwCmyLWAYKQfdM76WfupeLfeQIY7GGCMRg0XLNXdaSMqUHaGPfXCniN+flbbSDY+6pmyz1GV7R2ml+/o35M35HXjM/zOMX4aQBiYKS1l7b5vDYXhA9r59lrresBkpBPeocah1CeU+lWDAN4+Ulci3mGMhH2iRah8IrzPafpZm7wZEYfY48wO0YhWaH9+2AQzhsPcNA3aT0hwz6Wm226PZGOt5UF1EJHbxOtNQYxRtEGOgSUmIuXEbUx7WDEFADqGiG3NTQq9jbcKVZEPHcMGfAeA46xN/+e3FYeZpfims956H7zjFyhVT7ZDI6tR6Nnt8ddjcekpARu7iCTAzfLkoFt987oYTH5CjecpukZD2EQ5FxKOzvsJR3NPvu7QYABg6cnFmbSGOq540g8Rt1MBs/Pfta7JzZWdM2MHxVw8ao/BzFW+xD3XLKj3W35lrswqjgKVBM6HhPePeIjJLwuNLyOQDFjkiXj+6Xb9mve2o/sYQ66VTcTLigfYdZ3Fqx5bm2EXYMyYBlbLK2ZnPd2ooppydBuOH3Wc4iawnjWJKXWUoXALbCXKQd0M03RmO3XBG2eVj6hQwAuwALeYQj5TDvP9e925pSxsJhMukisaYthaODCxZSpHCZH0iObNhu0DaWt4XTs53lgESw8ZcsU1/Kl1gjDOlcVt8ur4D8QTF+I1ZpCKKVKb7FznqPL0YWCrdH/WbknoAsu/D5TgKto1l0fV2EGQsdMyJYFrqkhO7sum+HxsEq1HOZn3IbSh72MjtPIweBwmFV/7tgubYjYcvDADTePcy0J7y2m5sHU8eR6Dx3tQ55Om3w2MHQtVwgM37Ft6rSa6Ltw5UWQrAgntQnCj/Q6Bdhw0vYHUOf52KL8Q1kBQNu4Y35nJsQgaya8zzS+dNpATODCeuqKr759hAjBV49cjbXVYMyiY0BoyEdOID7PjZF/MnrUL0PMDeHf3/XGA5wp5JKghGGkL59kGpcoZjbR8qnAdiq8l233Flj5pG7EE4B7cp9c9xzptQsk0hYG72UcXHzZsz1uPNMgcf+UYKDWWYMUqCM0N6Y688XWHxdPy/1RlOSw7Ay5lTTwUMrqUTzC4K7WdtnA6yBrw467PdEDDXyoDjjmGVPDNPS0VKi5tX4PEfVLhs6LsqIwEk7VNND5S9lD7+7IbGpvFHkt9681FbQ66P3LBvGZkeRnvcPEc2amii3H9ZWLsmYAYqAJA6UqVO44DVVbrCETBH6mtrMvniNg0LzYpKyZM+hVzUKze6/7XLgGhykc1xlwYlPWyEaNqrKga+X3dHExHWlP8OUx8Bum+AUMyt13McA8vZ1ZOhU9vpnvonSwl5YMm4tBb2QCN485Rlfg6WJq7CmPZ6QAhpi3BX4Casf/9vR2Ot6ycebkaaZZk+f5ROMwybq35Q83tstybguBppO+giDuScyja+IIjJhiuCLZf6YbnZTZO4C+mp1zJy3RYnoNRDla9lZJcFfjgi+nerc7llgP9PSN4qneOOzF2pHdTRTr1g6WfFJcoO6igXRNXmP0PQdFWu823f6s6/psOabep2tI3O3Y9mPAlA7FLfZgulWbZXsBzU9IvktsiCgsDqEANmpsXNGzSSIP0BmHDLl4PtqNIZi+cg1RTT+vG+kGgE7LHADK+iZBPeyiz7BbLaO16GH4uG4GstZYp896ftbHr7cGyk9XSrYZGBCsjGGWAPB7M9I+mndaXtqpamgyfb+VWfqfZXrNgB8z8L6uNx7geJ2pz4fy2YkenzPz0of4xNDoLB7kQjxpMXoK4tqGXKCEoOckDHEIqsi5Iz8xLa/NwEBOwvQuenpWAHTIhR6HYIJ1zMCAol5gYxeVK6QEA4dhD9LUVQYt/HO3z3piz5AbiYcd80GdeneHbs0urHb6Zjw6FFH1OnFHQlhlv7FzSsPKtMWTQi2e7qy6HjiqwGQX94TllIO0QQANo+ZpAIviR+aAbfxovi8cYEDvsqkgT/MhL2YEZ6pjxkGWQ70emutWGu/uQBuLhxt0DGSOZKindwfrkZ60jigxdN7toHl2AaXNp1fMRZAGTN2sSalm0SpGZ/bdadjlwvRuNoBdHn3JUOasHd95YVJbfmAjy0M0q+jEJ9pvg0yBvCSzWjfvd3eqU+8Dr56AvumY86DnK2r76wgcr70/4sVBWEGGyOym5KBjd8T0zEcequZxBlAXpgB5wID8Z900K2YRh13ByE2D75ewF7RMaXcXtOtOwGRibm3zheXV7zlMXImlWka722lRz1GQ1UoyNZ4nu54YyVyZsD45ncNvqNrQoGKcagLlEegZYs58LpqdqDEJ5/coStcrcftSzxN5LMIFbgngWiR0tElv7aJ3/VD/WydcY+xtTu8eFSmng00dcqtNGxxbYs+gsj29Brh6ly3jgfOIFD7bgdf1ngDXAfrWu3B+SHx5li0DIUAfexxIez55v5KcznZzn4Mle+Z9rmYSed7w8zk3Y8z06Oqy5209Hg6Z7bEzBuGWzdK708YZiCY+iOuNBzgWZDtc03NnERqU812OZGnoQasQgAgbi70vFImlzjNxJ15g/AP/Vf6ZjIKi8gJ04m3DZaIDvlsOxAZQBhZC/WFEoAK3Cjt7TMGmDcOG7lIWRSnZHosjIDNABBSmdd0cyrsK3HX2Ro5Yu3eMyRR7QQv2Kqpn1GBQzfEQ4+zpMEPtv81vuAZG4Ak21DH3BGLYselmqvs7/Tanm8eClUNfgVYah4U2cOfjU8cjOHcXME8P1wbJKWTEHiNhWTiE4oxTzBQOaIzzvpxdrg4BhLdnh71me6utjGM7ctOuHnuJDd1wCpr9zz0DihnTsHGtIt5QOrV//qkxnKdLZ34RNC8TJRCn77MIsSi4fW1pgAwgi5u5c6eDnyc7mEr7qDC4G30F6nXjKROXmJwnraVGz8i5G94lMpVH43zfcwxJ3/PvArTLxID1nD+nA1hrk2iyLLI5G3pY6HgfbiunHm1SGdSxovN3F99lPwyK8kgBSP/CqTwDCndiDjVP88uJMet18m1AAYjdESAoD7mx3ZEDocMwx68BAwAcpbhYdk5j17B4Hg0fOvYNIJgwUxGqkdGYJ60G659u5t5LHkSbY1Mth+dMVu2GdrsZBKDFMC5IQgKpZo5XHoZBw7ky1bldD9TYIMZx08SC8ZNGlqU6IuuWXbqsC65rUiqRdnkEVAIVWgNt5m51cmK+l++klOep2xNQH6JotnNKNo60tWAkOnL9YdXhSg7BDIw+OPCJsIx5NiAwV6Mzc18cc3QaxvdxvfEAJ6bREEjVe/LiWGRgFnIqOQZVhjEOZpUOGp1y16KLdYcIrE48j46tCHM4Zkj229uznxe1ehfQgDRHfIr+Z/AzRgEiDdepNIQfhPODmC6V4UZQsTt2DCoigbhmyzQdaQPNZmuXiwf9TgNgdnJnDDPLisa7VdAncKN3cVf4cGQXl6EWIrj500ZnTqVFaF5kVgJo5469YhlsqgUpocBmgCknW4JpmLc6B7lV6niL/bDkCCgReHGdd80hJ7KK23IYlhEbOkcyI5OtPH5wDqDoOMPZdh9WuT1vXOMQctxDX4sl9NwrPtXcuWaBDMoWcdORHq5Xr7Pzpv0WuuclkKSJE4hqHLunZNDtZGOYwtPBa7ypYlSw4HmOP9H83Td3kt3ZeLpjzjp6dakY3akgGFC45kQnbmtkZQaqteswDO7tHGjEmZ6+oK5v07V3LUjjUKCRy2F/0HiC117CwG59kkepc7ecc2saV3eZQnJ6yekds0tkcA5LBjPQDqj4RutEHQh133JqMWB8tnM7k48ZINruVXLjGibLJ9+bMhDDMh3ps8AUrhOyp5pc9+gbIBb31Js4bIvHdsi2luoZMDDAs37dhwNvjWnaaDSmwSHl7Z4+Usvq81+XHbh0rKyP1jPdP9L/1uGrrTWVDIbS9Z5eggo/c230qKv+xp+rSSscqPf4BIj9e2YDQHYLAJzCX9gu2WoAPt197BTX5rlsHfLtUVm2Fejvqe2HLnHx+e5xSZca7kfm2rD3e735AKcKF2rp/1gFb3CXBg2mUxCQoNoh5LP8pqoaZHyhnQTBtt+Iw4FR4e0gAayxUHR+j/RrrJ1wzxAb1JWkWEedmybh77ek7T2S9ywtwbucykIk3Y1pRe/frajHAMI9e0tCGKtQZHIgQx5HgZnf2bUU/EYpijbjEZ0CJLxHKi/r82y5LHJTStuVjICdZDTGIcEFkqHcOgLPAOZ7QCHHiGfG/dxldOk+IUbGpxo3vAuht4ZCN5siZgEpC8P0tsEvtFtAMWtsHdiYuWYKzeB2ct0hRtIgb/6/4KjMhHg1i3QRC1IGfkSqRYBBJeCttWc9RAMToTl4QC8wA2JqE0Z24WLMnmjea+ImdpNbBM3vbhXVlm3tOAkUsm+moaBdaqLfXJd126A2mZwMla8KNAOxZ3ZJp2rSUdDOPztH/TsS1/aEZiEo7TR3N1lvxCZ0Of3JMTt1sGkdyRvcO0qHg3YB1VuQitDuF50hJRDX7aZ8Sqy2uiD11pY4xUyAuE/dOkAAAs7cYeXYWr93Uf/s/tx6D1NtBlaWM/5+Oy5PV2OBCKct9ygEfd7p+MAopy3M/twAZu1hqb7I4hMGOON2lYYv/xza0GE5VDqmxbYgtSKAO6ln6X2CsjrtIrqVbtTDkyy+mclZQlM/2DH4vRFba+cgK+SnrHdufDjHPMTKMWDgr3qdwJC1sPpZxwGwkcX8YpdSg5v0+GEcXT4R7Zc7EpyxKXXLvwNSlxvkyUBpd+KwufZ1kII6gP4Arjcf4Pj/J9q+rbqwAcgkUR0CQRWeb/EpQrMWIGYtAmGqzizIKACFbs+8wjgqN+OigMQAoY0xTcPru8Y5sY3JJw4OGYDw0QZ06q5tcd2H97kA5+4eyDiQKSk5XaJ39SPRybD3Lcc9ud8GrkDfeo6cixvazbsCc0/GNj3KNlXzYcbq1Eo6JpOYJeWig2TkaSag2mkuPmxazmOY9ZnZpT05B2Zphlb18C037bSVmDpIKYEFZlvwoxSK5CoARy/M5W8qhI6u510AF6Wu86EcDFWI7dY6roc2dQxp7BEWFLRhO2z1+XuuLzzTfn3RxjST2gHTW5MwvKKdSxPU08A5penPyHkIcDTW6YzvMpCYZefAy+8XMX1ogOIasovc3GMODG2xIqDzubuYPpBeowkWpntxN3YHpQGa/14rEr3pqjlORBMyZ54VVPhuCd+XHGdUAPJSSkO1ErPyXnWypHTy5KyyN8Bo1cB1vJqt4oEQzakawQiEnDh340mfI9DqbzVMjNcsWGeUuOBdSYeKHCD9Qig5bMY5cO0W33HM6Z6P0g/voPHuSfE1TrPhaYBh5Fq4VhA3OzuBY85i2K7x2bbB7U0PyxZQvE+P3WNqqu0FML9v3LK5bApJ26iC8QlijJZq5i3184yJmnedNEcm4iJSvUQNEPz5OfVuGsdCttkyP7KpaZ+5aTNMQOOCuz8veBCAbDWWfM/9FvBwrsrFAOMXDOip62G5O5loeHMEw93p/g8Dsp5SEb7StcQDBXff9wO43niAM+h0jG2MwMWwM40trjkcXD4x9QSo0I+/LaFrFi1ecGfcYZQdqVsoga3LkfPdDq5WrxhldSNBF4lpawxChZJMJ/QcAjrRZpC2NhVNHQsA10Z0RzqgZbJa9DVvdvwu8Oy4BhYZq/dNMy/rHRdORWyFL4ZiDWnixFNyqAEzGWZ9hPhdhyHQ4EjGkeUaDsARsNUSwDA1A7Lmv3yXyyBE8x96qKMluxziBL7TGGmzKt2zrk4X+XkGwQFHtW4m6d4kHpDlht+e9u4ylM92HaVZL62pvUgDjWTR4xToaVa6t5HcrK0ff84Z16F6Hcd5MOazAyGd81cwwDKKknMzuLOjoBwwxcY59M61G0rBWC7BdvmO3Rol22lI4CJxrYO/JRBw678u5+GxCazHodO4pMN9nOfUA6bGO8Y2QnSv6/MU+5k/y7u/rxYP7sjdAJAlkJMwLUgoEeCGhkMYIuCu03aUfbw1ZdXVXjj+a5nXco0zyqkb0+xCnZuWZdT9WQgtJ1WGlCszvK5nOjxOLdZhxTmP8056huQ4ud1QYzmOtYj9Hp2yGCWAn5sELD/nXk4GTZZhH21DO3NLd8dIQdAPTrV4Te6Zq5gxxEwqCxVrANs9O9sCDag4eZpvhFXzZI3lb+QDfKAya8lidGYdBnaeUzU/TieKTcR8Q+/v+fO8Dw3LINp+Aw0xc7bHtl62Ce5vpKAZZDvRfjkMCDFLhziCTHiLgX+mNXKmsZUeb0oagE1CSPqeS/cv/XrjAQ5Rqx2MUhbh/UZyBBYW17UYyGinwQibDEIKXDhCKhldYH3XRJqwYdQddNhhN2YXDT++dLnpVRsIp1nCQ4D7RhxgCBiHZ6aJ4KJY0KKoxk7a1LUNpf8emicD+iiQ/m8jbPebkODPB+3c3E4e4xDWEQemGVVzpwyw+HKrfJ2u2AkddsTOV+u01KjWwsvXQAcjd6cTV4WheQq4URbBFgsfK8iOpOVlVm9ZlFF2rQEPl+fdMxLZpfoMWpPwuhyq2wOc+GwbPwIoy4YnoNUcro/3bZh5STSuBp4QqoIxTDDryKKmVL5+iqbhDsgxazegUfJCkmSNqIdFDN7rBDUnfcyYO5kybdTHx3j/rhzmiYeV0tn6GI1d38adTDM9YfYPzc62QuD1/FxQoH0wJseUXWQGIg6Hapnj83ZyU0ZXsPp4/xqnVZjC/DwEVWOK1GnkE2ERqCJjnB1BER22zyqLBiKPwtmjVmNOnbcT9+DVQ6Tk8M0kMX2WkwKbgxBtuRoIBUBM9Sg104cD7Z6iuNZ7MtVkm2Fb5KMVRsDRA+wa2Rc/q91IHRe8y28CtIZW8YSgsfZMGhx9PAeWgQXRZNANlLwGtlqYYCakozlzSSDjDuGWkS6uz06/2RH+Ha1quFSpQ2JS2hydfUzMMwcJaX7mnKYdpTp874uuP1q/5J/ZfNCPbc0TWfeYOxgEn76GQSRsNpSuYyF1pECIA0DPfUhnopex05plex307t0TFHoTCnR/fgYbmAfn+4O43niAswVU3kIppB3XRNl5dM6kHaoxBlY4e8cIbz1U8XK7jTUUfVmwMYK/mDYW0Ejk5+BBOU5HtQYaEyko9B9oo3tH7LiHohRdTfbnGjqyjOCPYtWwwI+giwWK1jZZjANcB8f5DCxggwFDYcBXKFqoaG0FjE3/tbWJCnwj+I6Ohg3oQMWqoyh8KXKOeWlfKW7bgTKKh9bEdVWwQ+nWdnhFtQJ0wzShpm7KczX0tP5/O+QuXIxiesgg8tzZpDcicPBY7VBD6cdhRGTobU3GLAFmkZ7dO5/toRK4CNj4Z0zl9qw1Zs0P3moRoAymGBLJY3Uh00nCHRe0znPEQGvei8DidFB0dYXKWoN5gF/ryLBhfv64P+/4kN61eALvukOho3A51VFKMt9MO2YQgLBwa20ELLeyF2TMvXuwh6aH3o0gR1BjALFTexwUjyewI0qLvBxt68R3py2tA4q+BUyn7QsMdjBAy8Tf8DANdKlLcKueqQX+cteLzScXsBz+DdCOUB/x0jpRPUpb0AUlYwqeuYt0ZGgk3cw1Uz16GABsL68IVMXY6k3Xn7Lp2hgHI2bMV17sRLNbbS24Zj4qZM9kGySgSVXaSXJvpjDi4tyG34SWfAv8rdG7oN23dndSNszgZhgUms0yImgFeNeAJcJ1ZRfgflayNQIrDdY8wvVNcIAMyR4w3ZOnyaWZPIFf15zJRp7AiiJ9c8bvIGBzAKd3m0A0zDAejE1QvmjLbvlSB66HrEUC7YJng0nd4AO43niAQ2X1tutUkZwLvlqdh/3hjbZSDj/iieYgLPgYStpCbAVg5EWa2QabX3A1yeE8JEpDljfgwrUFLzLg8E4wR01O6ZhNMPgY/Hx8v+c7/F7DpwjbUZ7FnQ2eiFwIFXpyZ8rt7cABOLXk6hbheroIT41CnTko8fDtZmzO7a+7BDIZXhRFjEPoCIBALAsylsXqpZXbdQp69a7d3bDUqgYkQ1MlwEqPOhHF3WCdVmMOXmyBWZQPbNxajAEhLefFogKcAGXqkWLswbOxLR2/srgASWsQ7PThWPt20ayMW000zofc4e6p7VS3ajV6GCaCUMudZVMRWvD4kQwDoZjtvAZ4FwgY/V4mL8L3sxELGrcxzO3xSJxF/4edT0HPlgMH4A3qIaN7HgtB7XrC3dwWfN+louTGK+GMFPn4rFu4HZ+2h0cmME0QY+b1dAcSiGGCve8LoaYGYf2sYWuAQOaFwIMnKEV7h+8MYXiwyGFCBpwYuDaGjZvdbmYa7H51T/dR3uq0XsIJ3hXmIwU0/2Zh3FNougBu2il06vwGJXlkUFj5RIaQOpXiS1r1LVC/IbPs/pzfluZkFWsq1lqr3962XApO+YalmicfntqBab9g24+uaaboLdm2lwx+1YG+xVQgwHOaYsDZAqYeJT77ka3uisUMAFPPZAZM/igE8LwTTmljv5+VvV0GEQ039ZyWGGJevcpTjBzQ/biGPgTGMw2BrmeWxva4ggxTGNIdQZLWYZvear58C8/3M9ZLx1vADJ7n0qmrQyffx/XGAxyyxxS6DkxfjclTQsrknip2zG36G6ptMMLPSdlYoRCQscIYejeJ2qhlo2Q9CDYwQ/vL4xlZQ2cL2dgBEEW8fABPR97GbVPDEqoECDECto+wsmhYsxV800eRib5pJG64wt/59/VEP8/pBqP7nu9gIq1ATBQ9rj7opHankxzlUVzrtOI+wxHZGhN43k8U5WnHfoa72kwRy6gUgExW9esbVa2aTW/BBvrmNtNJuZhB0XMKALKUFgPGKnVNc1QyKAf1rlc467uey8HceebA5sVMFGc2piD1btWliA27ZhakA2j5KDmyMFjW9ENrK8O6qVa7RReKPXcEQ7t3zLO8Xjx3zc7QEbhrc9SDSCfMXwdzN+8OqecRibIHzI0Yg3sP47UyXtrdZCZMz0wgK2ZHEPUI870T2KkpEwal2bmGdSbHCVFlk7uzzLh4xxuOlv5hkGiwg6lhSRl3/jhnLIMC4UAmwPPdwqh4nS5i3oPD3uLm3Xmjz7XBqRvWqQuSOtNOnVR7rijXZq0yYs5ja+tbbIw+ThYEYLaRdoptmdNW4fKvu9X/ahZTfZVCYLAP3Rcr6UgBOtaieXTNsm9idMSMcN6l63eAh3cm++RoN1tii31jgIZAvGWmsQ49NgXVqFkXB5U5doH3yTSqvSk7NkMOOsO63wP0nFlIHy/iz03mQIzaUdbg2p2Gg0HMmgV6QEUjFAxuKUWEfCA/Ah/4CnAMNh7Lqmk9ERDPpD5m28yVgaF0wPpTHFtcgWOz4vu63nyAI8WNJGJ02seRoylEa0drpxCr/pWwkfJZf+a/DXR4a2UpEosxai4knnbqbRGyEf750QkB2f6Mz7ejtmPzm2lnQp7CCuDqBQyUyDE+YwABOS9HX3IkwBRuJgKtYxrGCDqal1J1ECSEvgeN4fK74doIMxmJy4eOkdu+FhqBHIIr/KfV+Zl4byqE9BDGFH0szqyrsADnuifCD63HBhsGpwCKEX9rnRhlqPBVhZXdAPJSvYci3rSjwzEYvZsMsUHRJka2FqsVedmhIDaX7ajWBaNRupcBRPgk5kZWPJcvPek8UJM2zdthxdwImZp54zJvWoBATZR4W5LMrNyIXENsJ9jN7tML5hnNce3MhB2BRktL1FRuunAPHUeBNetJ4KNjHbRe1hFW9Wj9I2bXYASDkiEapKA5aeX50jgdt+g39Q/rSATaTJ4VOGR3UHCb40lJju4A7foEnJ1tYcHDpNjNUuq57v5azd1iPcBHoLfxfGekAPns0NMzvdMrYNDg+TgAy2lb5jK7QDmk40y4NNhpEHYH3kBtgKM/pXsT3BzMOsRajXLa4eudPQZrUu3bE1iZBU103/Mcwg6lgEuAo5lGp+4+aL99jLiEgYFI4kxR+4WGD5eg9ZXDjsD312gqWils7sqtaTkBdN9kpBFgs1lvgvHciTdRqjY0H9sfbIUnkcAc/skxuCTiZITNrjBADLgRmTsXe860RLINxpH2lZaT1ZMCmaWBugZ6mraYDIh1wi/AtVzG8v1dbz7AiQZP8M0DXQMII3Oviye0lW88qDtYuBY0uOMvegshkQcTYScW+x1bL9+nS9uQw0WA+hLrEA09BJacWoOcH+9KfyRgJQM/21PHYOAwUpuuQ7vR2pl7NXvScJ8UKoYo02ykIyalXrqBR9vhqSmbfu90g6M+dmx26zaovgKDUlxrQ+yy23oJeEQze6bWoi0I0PPajmTslAz1KP3htBHDDFwA3BzMaRykdm10b2mEnI0jyQwaTK+3d6Gk1mTavAMwDe6jBIbibgyIaBkuGzPMNHqlFvBQnmtqCMbst+u2NZaAHMG186c7jF875rQFJAy4Gj0MC10aW/XPWV0B1QXJuVj2xb6g87iX0ggcOuRl5zlDy8vQzZt2T60KPzPcJd99gK30/ZCDuoGYOhFtjoH3PPE+TpFx2Q/AcNgJ4TEYTAUwaZoEZBu2jmKOqyjrdBHQqeMs5yQxLAGMpLwqZtOonyYuzESnZGqIZeiMLm3ZbjVUs5gxval3lt7uFgmnve7Fk9Y/ib3TnEzfYequ3Bdo5myJSe2MdA2gCqgHANuWLWM6AmiApntSJmU/sZU5dPRkVlgf7WL6gzU/AJ5tZAGobFxRiFuMBICHdio1Ak9i+zqbQjOw2LMp+Uv6mmoyjByv0YBSg+HUEE+in5TxgwArTwbU6X1lB7ZkQc/r9UpmLKfiT8a3wfUf3vxgX+aYn5vjsyYZiK20Y8dkQBJBxe2B5RJ+sVuem2EoDy/rzu62VdM1u1FmzafV8/u73niAA2ByrUAquAoh8rXkYSOEgBsUjWOUk+CPrMRmFwBJKoDeGp/RUkweOw7n65SPoyo+it+NEYylHycd0AMLxoCPoJi6HHMP9JguFXLFSckfCnoido2X2TrXuCiNIwM8juNUOkeMjjS9swRr/AsGEJp6LCsV4E4gjgHPFM5OzxEdh7/bjmdbqwCIgd6CB83JbB/qKXJ0077oVjrJat2TAoEcufwGEt6h5UoXycgdO4Ag0CE40j07EGKAqm8gc9JadAJ2v89TWbTrapCmtJF3hiXuATGILSjdso2E04epSfISMSLsob3tzIFAuA+MnOOTmRu454fH0ptiid7RjyOiA/IZSuUaM/RRR2W3KAeMHrTlVFm5jiqpo45gN+VlmRLQau3DCqCG6dut+n5OiVIv6NiE4saDSfPqOV5TDMgMSTdGt2cRJEcpXcnQoaoDKs1mxgY4nn8DZgOJULzus+g0NTzc4ZCXYt2Jmapu975ROqUdpmgtxCZ0BG47vlDhPSiLZrTg10udUj5BAoa1NBvn2ipCMGxhrMDKgJ6mfZpjCHrtz66Wb4Dn82OL7GAmdn44PGuPy2p3bVjEmvvb4uENgeCJ4IHZQcl+YAQ6D4uCfEf0PXbXOr8dp2UVplYGM14y8QI7xbS5FEGmaY0YGwnWxKoR0ynIRkEyfxw/gZUdXyWQ27N0gcCFq3muoBl1g2GKuVlkrWc2AAPII+Avp475vmPrZhkDs/NVtve5qvToi+12HWN/P9cbD3DisE0AO4VG1qB+BNYRSADT7IQ/4x45dpgQBSmj5q3D4XoGmNWRktpp20ClBClobnkwH43Flcc5H+18cYwhp6Y4P27j75eQY5AwOaPjYsyuGAFf85TqhdMT7RR8sCYLje+5LzSLz3vkiIWFj5rgVMbSkOczpbR0xHpNjCkbatmGrg6QYbbFDeBaW/W38NGgxo4buEt5cG0Vs5FJzW/LCKeKkpni17ZRFX4GuK4qC5xiSm4nlVEbpi6mjstFeW5mODyZmK0EKfK2AUNrB5CMdis5ZPbI6E1zcTIhl1IWzp07mkSos4zqVdzb0GJDZy2g2ADwUJ4/BDZbY1XVjrbB0qkLlUFx43R4K0X6lk2LBDspl2SitCPHJ4aX633aZHxNqtZBAZ1Cz9jNczgRsnLN31/A6hOMUUKkp6xCYOauK7Sr0lIp42sw5ru333o7NG/qSYA+vOZiQHLPhRrJH100UGnVzIToLTcYXS2hbmDnZVgKOe3qOQySO0dVy1KsCaRuFJ7ggOlgOawXum+lxtgNtwzwtmGz1+FdiKoFNKiHHOU0vtN9vEbMQLl+RmDFMj4DMoM7QzvGA7gGpdBMbxZI1aWBO4DDfrgJ6iSWmutVmlAWQKsWpnnP7sCjCppKARyWiXgHblg/OrCB6b5HC9i4OHyC7pT90fuPjZFmD5srEBddDNDnPQhArNc20u0dap67sNxsg0tNoXS5p76z7Kf0+Yyn0aex1pHq6K4T1DzXABDaGYkUY79rST9ygi/JlebIjH2eSvs+rjce4GQX0uGdUSlkDEVjj3mx0TOwsFHVWsxRAgc1OP12rURQ3erhoJgznj1YGMZIDgRl8MJoMvvM3wOTYoOfUSPsDUd+ayCpSAsUyuPAaSg0pjBDIKfTDdPgLZBjGtgpE1PWvLcRtwHMghAXnD7bnuh5q+1APHqhyJP/oFHv9nwDgOjzAQpCTi6gk0MpK7YNodfPyt7HboM2CFzDEgC8S61kh+iwyFA8WVjSRraP+abyp9cBQJYMyLmDw6bF73YYgcT22wYacwaYHcfMNT8fzfmkM7915/QHBMA41lRtyIyl6dhZP7aFxMN0zipJd/S+BjkNKMrn/R2FTZ0OzEBQM5x6vXV/tCsvavP+AzhcW3BykiknMwlc6YkZPswzJzV32gOkfMKFiHv0h7qUE8wQtIyyzHynwCsEhA3yIgKXtgdP7yR9tCFGQN6R7Rqsw5gNmU4rUPx7/htJm+CxTOTSo/EAGt3cEsDUmNZEVbvkBm5M6NyNh9sR+DX1nRHFAnziNwfjGi86VJ8VxyMvUgeZer1inFR7uAFAbQZG/Zb+kVxfdtF6sRP69dies02KdVqfoKUzabV3e14DJjASEGBO7x4THA0DjkK1Qc8tDfX/h5x8sxEfYgDXMHo0JiJyUnrNdPKV81ZMyQ84cmXkrhXHx7ICqEZ0xkK1GDnwM7ffzLz8MPcGPfex3lM3BAcBwbo+F04inZSGsZV3cz0bzAHGFTFikamHaGVNrdX6uHJQ/wFcbzzAEYSXoRBn4S2OhgBDOQMbPQLulmnDz+JfbJ0HYhYlJriWE1A0Kxe1RkPq2ofA0djJIcZpcALbBwSDwu1kNpWCSW8E1kh1skD4FnXNyNnaYPDD51fT6dwVuMHOuK5K6Ob2xm5SncO8NODThQtC7b1Ahia1J5876Shs+sVGDGIprAtjjA4kT3vt8kIRut3DZhEI1GnDN1KQES3RqQ9RsRmHMxmnLPAYAi7Bri2u3ih9r7txu+5GRqyjcUehAtx+eoBBeB1Nh4dTAYcRPj3OABD+Y9L5MyUcnyn7SRchtEvhEmisASQ2MjFGV+BLUj81JHKk6bqIwBptyPFCKYywQd+VTW+Lb5DJwr7TnJTerZ0gTos0Cje8LXxMp84aghzIHpNBLnW6rqJWjjKwva8bux3XenoLhNl9sycOh+1CcDFiOiE8ZKsts2SpyPikCv3DwQt66jnML21hLD+zgZTeTidUQwwOAYJqKWQLxnnNWUpyklrPBFB148LW5zUYAJTsTM+hTA5uHLgs8N8IfuWN4DgQ9w2f0Ue5KMSlglno9G3teZ8dkHJqPO6F1vb2eCzyceHqY5biwGihACVts/SZsSeyQ/04NQktm7Zj0DpLfnb9ZcsHhHr+/V0+J1xIHIHSjsAyWLJcw00id31ioqgFEX4HD2bPLpTkqi5r+7Q5sM79bhzjCwfqOv5AAAKQP7LPMTCRvrb8VZhF00cjNwi137g0AvoPL5zlJpSK9JioGw0r3VpC236/rxuuPvPFH8D1xgOcFk0PL4zBpul6C7IXxU4lrDz74/LnbRRCIGSMcUydSF7LbvCx6xiGpBVLgC50HRGj6wuA2Va4xcrAIaWLyIloYHdaaNRN4PEQ+Dlra3zODkCGpxCTcjK4ubvxsIFRXr4Ks4uhWk3c5AYBrMFpCvGeVaOfTVO1NUM0yuZQONnhXRECR2ztX/PqHPfO5SohWMBpA3BvYZ/zuiW6aRt/ubtzjXKl+usEAn2zCLGC20f57mRCfDYNEENpMJ3OdYWBWu88DHDGgiuze6ehGKCKVifVfMYK9ETmm5pxQiTDZ1+RdXLN0LPiPcsD6KQynIYbRVjAbU/XhaWP+RkDTcW5C5raIwp033QufdzTst9mhjTkYTKONBXskGocCcRATrNXAQ++Tx9jHK0Z2fFOSrzHSIdqIXzOlQFjqn6l7Rx8RcNF22NTcp35yT5GGITnfH4jfun/0SEd8Bxsi3/OQ8DMGyQHITszQQ6cIqQdQDayUvPjGo6aSRfe4ZEFhWNu1vFksjbJJ2EbWGaaGStUXENuFpr1anJ6g5t1z6kzytX/ZUGwIFZ2FkgdyXGkMiPGWt64UaotocEuBWSS5Y7RnTAQwVTfTC3eyo3/bkBy7fxGI1WI/KSaMAmvsEYA1tcm6MActcM/rt6LWF0AHFzRnqSKzcmMFzqXUXXT1vUtMcA1DIRRfDZWZndzgoBQezODgCSOOQ7/XDV6LtlAD1YbPHPM29QYSf5DdpCkteTNHcxxFIqvmH8g1xsPcLhQNts2LDT0W1Ge2PNoMICkwydquAANMAsxvRgPg2f54sLSUIed/Rj1UFEWQMMSQOU6jQmF+xkNb2MT8L0NqSR8MLvSe1AdmE+tBu67gHiayMLN3pyGutG4m/e+u/FuNV4jcN9ypq58r57PdhvEmaHimM4zcO4BPNOzWfPsrbNyLVIEp5dwKI3rTZwGmugBC1gmFSVFhWsQ5EDbxsc2QJ+JYLM8+WV1xG1UJVkIOakrD9oZPMYjZYQIoAqpYr1Ip+GAO2KANH2yBiCvXDju22xK1kh2f7Y49qbODHpoCANk0M7UlyoxouA+PhdKJ1Pb2UpmIzRPmxZC23FhijUDrTZRrZ0Xu5OJxdEFZ3fIfvGzeW1aleBAXX9ZemCXsMbPMHkWCNK+mQkMiI0Ggk3aUuObniAw2xETUGy5sIMXpRscMcaRZlY0DAGnROAqciLtflCavtkUoNoIjAP1fC/o5OdYDDoammaBY1/xpGuhiD3YtgCBreUD38Ms2DoO7Fo3NDfcobJNEA9UWIGoUhBAx8umldpiDaedKW8zv0rRsoLb611A5xSiSl0lG5RVqQOMNthV2gwMh9RI3B2y3QN9MPsOBcwclsyJZa7vKCergiDAwGQoqUAHgdDJsnJsqe8WfKTPEetSBgRKoktdvmU/pkUI55cmKYAoFcf3yLD1vmlApnarg5A5ZM84Id4FpT2ksUfmzLj83O4DhAuM6PM9+vkelRKA5Ni1uWD6OTGEdXA1p6SlbUaMTNhebN8uFjjw99pDGNbTeS1ss78jGPwArjce4Ex0Ny7fDYhyCuw2jWjX0auA4M9tYtnH9KgfscMZoY3dHYFNu4S1vHu2BztqF4+/wqd7ZBxCFAJXFgw5JR59cI+iN0z3E2jc1agKnUdzFPbaUQO4m5TzXcCj9adURFzaZdJOAwFVewTCFqdujRLMBI3RcAOvmmk2tyPdn3k+9BV32fHZOFFVbikwCyhbU2+FajXt42DKEerMmz+lJVa9kqOoiSygZzTXWvE79DGOyv47zmaLqj0KOoj0oI/19g45RrUENk4Zustol+UrZ907BDQm6tbZUaFdHR7f/BtjbGZngye4j/mO1sYNF4MegAJOubo40d+hrDMqi7kvwVZqY0nPY5hqJei6c/Uv4OJ26VR6JxDI1HQvG9OYc6sSZqXoOO0U7be9bpNoje0uayfS+jABnASxgadc54RuMRYEs7NLR/UnAJBpNiLk9DA1F5Qj+Auuk95i0/CA19bMZWCs+Xb9FRDoTBRuntlzsA4R2innFLSr3+S/XE7RY68SSI45m2DYDMV0bBYQ8ZpUBC6woDcgJ3gZyknPvU3fqfuAtpGL1aia167R35B9TQGfA0jK2YemtYNycqkuZZqMlllJzTc8PT42gS/ig2zDjnnYFDPprfEczL9fpKEU3CV2CJgqRa39kxrHugeVpl8WggF1DmscmLrCcJoYKNzD0A5r6Uh5ZCPWN2iMniuKoNKeIb0U625RS6+JbW2bNRJk7MDU3IiZHON52AhDdL/vyNyAUdlMs+IS8238ynPUDO5nWt/n9cYDHPphGTYLh4GvjdK4r5rPrgHjSnhHSMORs1NfwidKwbhXy0L+A8iYhp3oy6IPPSOmYZUVac2d7wGY4w+9oNE2q/2HXGab+uJj76bIDrviCEinDt8IPAp43ZjvPMT+FBzdiT3S/2qBOJxynly5BFkxnUCBYF3IKOnNSk5BQ+Kn5LztOz0PN7a1N1M3VpjjrK8A+nYKTtGt5tBKbDW0aYkjmuR7BDsvB42OjZe0XFvE2XvEsZS3G5N+jwMoW3Yw9LNTH14sftaWy4YYA+QGknXiTEWa9bBxXFnZ+9q8hNNugxcac1yCZMmR6KxjaG3tdDxWUBjMVp0jHyc/elMHi8l9KrNzSvfarbJMDw7GMtgoOyiDpVhcFU7zuDjfLJTmyEYfBiHS8YCAlcBhY9grz+Iev9CcA7F+eYUle2p5tteIUpx2TpAga8OCQbaLgZnO4lxszdgCqJCjGG8PILK0pdnFrZiVJvKgvZk6ozabSmZz0qRdQBSBc3EObqjz7tg0jTdCIIesbSQQV8IdgMfxRc5csQ2CbU7J0Wu+WimmwDzPNTDhsVmm1Ecqymd/EUQzlrlUf9R8rNLptO+J6nvTnPT6cyaXQhDOo5vutYGn/EE4GSi9Ukquda9pqGkwJquSTQfLnVs8+NW7hM4WGsK6nBtOGXUGmkI4LXaM5VT1GA1+5lOmzCJiZE6QTnbY9pgkHFXXgAqYuqYwiNLaZaDrHj90Xm5s6V1jVNIauZ+MhsbT0kMEeIaY2hx8UAjnjQc4ZkeGpfF/LSEDepx0MvIBHP11WGi0+AlGTohRwhOlmiUJu4KmI5qIQrUPjDxgyQHQymc7Eic8mOIvOI+tfLKAjZmZhwqJSzUod8ewLY9uGS6/eaCUfioEXncJ0LDY+PXdKFzoIpKfNJaLp82cHO/NaZRghrqk9gLMUb5xxD2pLwOcXQNeTIX1Rr4HqLKf3TdqbJOpXlBl6jRUc3D0fGmUaqta0VuMkQqNN2REGJQVIze9UAa3kD65YRcIiuzATogBjcW/tQobTESzw2mH+5WQzvW2cYTpYckEyGCUAZk8ybDNIIuWMops/tbPnp9nOmSAGBmd9KJFb8rFRlOwKwoqgmTU3sH0xhV5vuGhK54VsU928nHIU/SzaLTnGQKbYmdywMimggCnhRtLH7AlPp3VjouwcSkGQxTPRR+rFCPrYudG6nrmbUCrvjOMSwA+e6izh7GclEI4hWVdWSBzCPnMRaHlM2JAECTbmxK4ZcYciPXajlM3sHU4BuTMLl3z9MLKiLdC7xl+sbqHAnRAZUE1X+jZJj49nsJAi3MamiuCHKZJaCuu0W9rEUG6GwaSW/V78dgMM1AX7i4BMh6fkTNfsmHWsgFHWoGAwPSFbdOBWdm5hVJOz9iwQ8dLtTksQ3A9HndDTTdhsYajKwr+pv5PPqJyXIRcVtuUrYj5v7FsvoubxyyiuR1cACQQc5xQay7T4CJ25jlun6sG1S4zVU33pABOA7riSak77cjtZxYPhpes72SadQ6rLndve//XGw9wnlVnh41Wr/3wNchXquQaBbMRYyxJgw6JFyfFeho9maxWXlP8sLeVmx6ngtNhJaxYNh52yI54WIx3FwBcuNF4VOMBsy6xgKT1p1RXU8ADpIlLjvDG1vM8QIB0N+trHghUcVMgQQajcEZM9Wwr9rNJPIzhMDLi7OejxdjA6RUCJu2PMpzXlHrXk4ucp4jZwCji2TlSt+hq2uF+BrK6HNmv85p45jAyE4mroDINVFp9Hzq2ZgDAFZeAB5W7goqPOKlaXj7CAnC/CY7TzsLMjI/hMD3snirsv2RSV2YgdpdeDSM5bnaj+36GY/ROLlRdA2enY76d8+6TuZ0K6zkh22lVRpfUjElOylE5MrSR9XvowBGlEl1PkqrXwawxo+o9G8gJGGttImcc7onSLgQf5+SFcIdbrg3LDKS5HQtMQL1vNIs7m87arNV5gCqnU/JjVkbj4GcvqUVv/dMuBEfX87fRsxCT6If02BbAB4EGAleATdsCaOtnCbQNo8oE1Dbqo0NqHSzqh3hn4chuEFQsWHEgQGAaSu9FXJK7HDBhQGEmRBOFSfsAONncAQyhFJifA9tT1qeYWZyGdt0rc5PGlPcXqDK7yB/ls5SlwYnHm5HTVXjYn9GpNpGLZwFy6N8AOkKYxjKRavzbw/hA+ukmo7T7CqvZgly1merOUxp/QDSPZ7sxNzQrQ6nAM3+m38fMid0LAxSg1+0Nitt6u5j5iQOUJbzj1EzSziHthn0rU2UGdkEwenZC9mwdovF+rzce4DSAqnv6HFx5beSE448LIMcRhxBuTi3AOm8rUx9yZSuqVEaEGt3xKhfLtQWwlupJ3StMux+YXMpQN3PT1T7WAXgM64KJ7F4rl2qm5kbgtXY63arNufWIW+CFu6ICr5vfn58pFbfbeH0mE8aoAKvjBmOtv0+tilIZpoDRO0dMZ2lrMMxQiHGR8jGwk8L5jxRVOsO8cu7xB5sOO1IyGpsNiZWIu5PO5lJmLBZwZgBxrUn0O04jukMaqoA7Q6BVtR/He7uAMNTxz7uJByCNUQJS3VJL0Y67hJQZm2jdr1kQrVFUb8+c99Yh0YF5SD1yGUprRN9wXsG8SIejMF9mLLjsGQZ3NQXEY+8bKtiv0Uk+fIvwA0DkBe+g8TrOA45r++JwDsZ5wttsMekQR+NT4zRy68LrwMmkGr4ZoPh+gdL8loDOtcXAWPbPhdbj1C2rR2WnG3z6aJVRdb2Hz1gTrzD39/Z3tOoHXTdhYKmUSg0bPRPGVGRbFpOHm6qGhiDmHn3bYwxi6+gEip7pidgww1QHAhEB+dbRJwBKC8XIUbhDrj56C0wMmxdeeq9doGPFYRikIogmbyX7MTuW7IDlbMPpJswcdVqrA25BYPhjcNwam/sIm11BuLbGfgTjxD2+Ob7H6Rr4o1zvSWX7e36KUjxMU/tMtRxbktGYhkBWaNmWY48g3EJgFmTcC/0e4lYvozFkOBnsNGN8sLhmKhucpJQeD5BssYigzsDrqjHMxog5EuS0o/VSg/M/f/VUggNA1y2b6Ry9nChaReQGPTR1U3dxKJWNPaMpfpa1fvx3tIlyjeA414VG7R42yWyK6UJahjNnrDSKalJuOUmyL+o0XIWHwYjGfFfgrsCj2QuHgEhEcjcet6KMDryuxh2Bx637GYCYtYFrcQzODscIsSvud1AGFvHMgRoglqjaWZ1D8ZreGMOkSfkjSOvfNgREWDRG983YQ46QbIyjNP7CdQOhZ3T0/H0dGEOy2QkEn7EkgyIWyo3vIobHYFIg3BBRzw1Sv7ODytYGQCWjmgtAxhZee+zcjSUgCaBdsxSH0QJBA+WI80VQg6XIDf4aAs8hR0sHjyPRYuO6DdOWRQw743CVKr+1x1q42NnzKnhgAAwf+UBjfcp7HIDI+trYFg53OdXCf7ffKwyvuD6E8BNWI2Vo/aYcWIkJk5kV0Mm8+JMTMatuAJkLQN1PKK6dx7RnWiZn4nMDgbb9FtsCBhYWFgORObJApO+waqLvCW42jWa/afljF2wyBU8AOu7ZGIDQ/bMRpdROWu7UGDD1PMgpAsiZPOmC3mt35UjehiZLuLX/7GQ7gM6cno6Y30O25tIW+VQKeYMsO1ZMysap6PI86K4TUOBp1pnbw1t6NEsi/bVsmTE8gSnxg8tl7If5drPZX4BhNbPhtbLbKRWxt4p5Y1Z9NrqAjf9C2+zbJ8VvsloF5Q0XqDeKp5EHADggYCsGpuENis1A45nQmC3rDqWlXDfmOdD/G4TJlsLzNcGdwX3Au/kid2EM2JxG9/v4NABx6IcmeIXe//XGAxw7K3u8trXsRdgEyzQeNsmOLLubWu6KNlueobElACM8MkZtR2shcMx52L0R7nx2v7FwoFJ2uQ+MtnKDiv8opqgIZgR4zNKIiXmUam8CeN0NH7ZY1XhQ7Jieuu+pv5kjGPT+7gB89kpwysPvUnMK5b7btsLvZ/J6sKVjF0yjDvBAoytHoQxKuAQ2SWvc1oaScg9bJ5BViEuRKc6ICzL825mzQrSwot4Fqty6UWFimJ1r5d4lNbpXmNlxWjKGnc8AruCuHQe53oFTXdpxW0qnWYJrI2s9h2cbSaZpxUfWxyjNWTkAYvanjHMxCAytV7eNER3K1AvRXh50s5qPRcp5LlsXsrFA4+xnw/veQ5zONmfPwaSwtk9Ql7Yej+NZxoNjTDkc7Tzp3SlzOYbtGEOKCKZHHYVe1Lsu1ujw40vJ46gLgOfU4MnOG2IdVQ8ydUFh5iwPd+F1wqzjQfIeOhKrJIrYqYG+d6votsHT7AW4S6mOCKBvuJ4DWIbJ5zyxaV/hvikjmZeONeF2eOEdPrsTmBZvmpsDvJwN8mIUATqGIQmqLtWzjO1kgnd0rXR/pwSHZYdq1KDUtkpuR34teE6YUP9qhBbwLrGWrjjNZyvA1ImsQjEAKmBAW+NIW8p3uBt6hhoH2sILfI+e5Tr46AYup2Rk9+FGmpYtp8dXMJyIGsDhNBhaNllpLq8DCJA8lmGvIJskCSQBlXoX81qFyAbP52JK3Xr6bMt3WvbNZlsvLcqbbu8j8KddsEVI3E5nB/2X9eTlqIb/yYsKRyVycGYHANAJEPXasUp+F70wAqgD2QPDWqBrBM6oeh+uPPLQihKeZ2DH33U9j1DtnEZL5Fs3JhorbM0NgUwIyHCLdzf081bTPhr5W8Co1PPigRAzFMeWcPeWWIBjliWnoFozGy6O1UMVtRg8MtLOTVV57vTyKUM2aWwc3wU2og3gPI9mxzAWZ9a1ir1RoPtOnh5rKGykWxrJuoKWkaQxc2AesWuUaeOliAVH6sE7eORIGMhyB8KVgejCU6ituzvjdh81Jdc8pxtInYFz1lRnqLBXQPxStAy9jwJ0zUWNLNMA5vwcALvOHo223JCLz6chDK0ZnwmYgUCqp0xLpvzOMqjeimywRem2YzucN99Kclbzb8qR0pYqkrnUaI9y4Z+3avwFlNJO12COgveskXIGuq/ZRXO9uvB4/RpOkdpRxgWCkcDUxxmY5YAwzo67Ejul5Hk3Q+aDSXn7w/BbjxByyuPTYSckEwOfgv48UlAhcHMbgB0MC0tdfcqxpeafB0fyyAZigEuMb01dWcL1QlTijmQDv2IRfPjVNJ8cG0FCazVa6atW+heyBbco0wWlfKeWPlCwAl5VJzowM6iaG4PAjpNYgrtJX5OHUvGyWHjvM7DDdhobgbFFtLuNKDOO2l8rJnlSXxZnr0mtDeGjU/ru2jTpUl5iYwD0NQHx1F9OAffKEN2V6zedClywMk/VoJwiZoZAbGpCeuU5vGHm2uk7p+c6WUIRDXWP9rpp2ieFt1kQOKifv9eMbcGl1rsdkPQAJNq9GLb3g7jeeICjigRSfkL1IUEPmL5zVlXpFjBioQWQixnQ4+jceWIu5oIfCVNhGBqmr7wdeY2Yt4uPfgBwzmTz/2qwhVABsA60awovgU9oF5WPWoDATqvOhj0zuxM6M46pKzCiq+qpu2ls4fEa1BgBBFxoTDBnA7CFiULvbRB3T36WAERQo4E7CL0gJ9zHdHQ7ag0plA27HFMk3MLfrnEa3ALuBo/LNTkTEcYsQGj5HC1k+AgFCOiA8tHahZONp3ABZXoH8zjsS/e6QAPrrcxRjafgadwsDUymp+SUImy2Qqdtq/liQP11GntEATsTux6Aj2+YenaBK19QN++dnGEbbci9wmP01oEGMEbJGnKlz9lqpRDNCpiN6QFNgNklrz+j9Hz2HMkWtN5RWy/QjYxb88/o1DGv05d52cEHgAvTURZK18x24DWZNtIRibdePaFfPwRCiqAJAoWzi0cALjDszey+mmh60LDsgkBzN1zXlwcQmvcPpwkgVkLrN+uz87udsc/Oxr3MTN8KELQzJoO1FVmTGoEdqNjcjkZXIS/aO5s0ByXb6hRkvBBw2rbdBLNDKZg00QnXSZWPj5QMhnZZNWibZjeR1vvUdOj5dIbUkGW9gWd1Tf69AKdrhhg07I4wNyAkyJPutytWXPthtpiW5UbhGkaNv6XeH41jW6Cu5UkMhFNpXcnP1TVpzYbWSK4jYZDzXH1heRg5IMBS2zwwXah7FmiTg+Nnbyin9zgBy6xotp22ss7bn8WF6hsxu9Nsq6A7xLz72gEc855718Ba6n5vQsp+s1Ay3B9Us783H+A0IFfCJVFzla4iXThKRcOza806GNYutEoP1stbQLhT4ZKzVzqileNG6YTkRTXjUtqgoac4lADIqTHlONs1MepXI0Dy6MajSjuoWG9z39rmHcC7IEPD1NXR5K/Z/O/Wa3pLuY2OYsHDMZoW9TwZeHByfSLBbFM28AP/PieMC93PBFOTNF8UfrdS180n1w3NHL9ZUqA9j4U1HK1IjmvqBuaMEuUQQ8qbMVshQ8bY5KjtdECAp3WmVJhpSVzJz116TSBme3+CUcglQOPI7IoF1Gx413DzO/pGG/k0nsbl9Iqew11cPXPL8RamKGOTVhNR+f5spMWINZ2nV8opMqcWzElCMwrPakUlAdXaYJt27vtbG1r+tQ8dXIUkm9OHY5Bwpg2bxp+Y4sZGiC43PCDFv0AcmGMowk6GMGciY8uynFgmm/rdaTbL6aqDxvf/ux/PRM1Od/OPzXUZQICOr73rCGLJpFfW85kurTl1ouGTzxwZtAAZJ2u7C/szti67YpKcNCjsqbNogxsp71NeCnyc2pGuVHN+eueb70Wn2XaaSEzjRLhp4gyd37VIHGNrNQ2c/UyyG12959c5BWMhMkDpBioOlnaqWjQzZI6muahmgbGV026H7mmLOmfotsuVLJkxkVzBqTqCzmVJHZiGBVLAWCyNbA0Q6Lz0EU5UZCwciBELjvtUQCoshikeJkXdl93peObN7MuCTozdzLXPqzjgNnVKM2fBvmhtNG3ZprmHPpYdISPc5p+OBJiDzyY7OEpg26OU2QvA+Z+7uoNnsYySsWB3OgQDsNguzF1qzYjcuXPuWNI3p6ZRjsl5cVGaPj5gD9bTmGyi7ZhhgY6hAlkPFEorJR7dathXYlsIeB4362xelwANWoXDwANifCSFdbMexrunxti1U1OgEbfTmPEHDU7tnHiXDregbo72dDiLB2XQymAPtuZD2Z/pDKesnPJo9DRA3M6djkDkkMfpbMoLWi+CCq23DHFPDQxlwetvxzoAQo41ZaBYQyOA43GqTiPkNDNN5bK48NKzeBaUFX8LYWcvydyP47nLUgidwaMaDzlu9eDHcPSWUxuHocsbiFssm4zypA2UnohrQYQRb9AJsSNzcbxe01zgyFobdzp+j3HGUX8Ktr9vvd/Ihz0hrCtiZLzlH3u0SU7bfc57t+tYTOX3FlQf8hICXGbLaOAptdflMSjyThtkJTEcYvvdIuhkuuWg5TRhpkKACDnOymBeagEfAzPrBoMxp3kE78P3+/m2gg4zJrU8wHBq3ho+B4opTwMVTHPNap2oHgLdBwjC0zU79OZoGJvJeROMrQr7p2AJaYbnRI3voBSjwMW8m2cgoCDJjF9MLUiP+y+L9jAGkwKxFTKYasBFt14fOv7tRO8Ak/LYG2gIqGwh8T4XY3css2Yv9XP7BS3+2LygnC6LHwNCuTLztJmPgBoQZswxKW3dhOXcbQUO0zqTdKSJzLRo6QaQ6YuMPxdwOK3d+sNdvNS0S8GNqxIApbRAdvsu41Wm+casApInlSHANqTn3stNv//rzQc42M2pNvakOu0cQEMrZZss+vqIKfi0qABSnlozaOp/nfuBTLuf7eTidxKzXVLe7TZibqe/rjkfikXF/PvrZr+ah3ZJva7G61ZKqtjvhsXCgUe3BEhCqhRVaVwNgTZPRI2phjdQTL2AIiKXUbAGo8Yo2LaTJdg3ddOqgFNZQvgp5xhkEMZNe+7CoEnKyFBfymbWTcbiCIfP7adGDPTJMUvrOord1aFnuM5GhuOKwBMW3GRAzl730OfRTJtdaPXPKGQUni7o5/peYsGA6egCGwXGYWC64SBzXIBqJC4778xjbg3gOK/LLAKzsVVr1qpbYPHm4QQ9Hgo3n5o5TNbWKR361HzOqR3c2UIAcMnhmiEKpfjc/NJOIXrXAQYfXptwtCuHFP1svRw4stZGByKalbOChbYKq1XBJTm58sLr3rPgpnhSjskyaWMdg1jIEAyAmlqsGKft4lPKpNhZKC1kJ959FF9KTjMQYpCjYtLoh0udYMkBkeex0RNkOcVthJcaX3cjLp3mraMNIp9mzNZlg1AzaXHo0Ng2FJz2gJhLdvll//PMSwBRR0saaDYOds6pqPNdNoi0TeGv2ZkYoK7Yqs9RGHEtUwcau23WF/DxK35HE/PXuP6V086a9zQjVLHpFwdFBhzP9QMI1/4YLhuYxPHuWvvZIdlOP3uaW3LkWrX5BYvh/bTZIeb0p+Cep9wIZoTILToOIGG77rlXoTr9RI5Yc7p7bAj9huRygFSPPeNHzLr3BDGhVQjXDAVTmmlE9QFcbzzAMUDweRuOfNxEayK3ZlTFmb0GQbbCgcoTKGELqUBFGjAwixNzj5ByOmfqVuPTk8MgS0BjAIfGfrd3UMXU2bjB3+sqvO7Eu8Xf3wIwt4CQz0oZQNNbpXDXqVjAUu2pMZh1WoUxmDhUCIfW+OU3MveLzW+lPocjcAqvD0UPjRd4ppPraIyyNHdTCDxGA0r9GfYsQDGz4dODBYsGtBjMDKiRGclg5PIUvl8KsARChyGaGcgAnhKsvcl1To66ATq3zGTb/4Zr0tn7JoAoYehWwbGZAfsYFJ5iXdvJ5syBi2F2KBXMNWY7t95/GqWF+og0C04vKCXmVveiuAlUNWb4kRxUYfv6sCkextAaNI8OQk4+epkamKWwI6kpZ0ls3VP4XSUDqRTBCMrM0UgYo83cKD2CjBsz1e6AG+ukRuAFYELfjUTjoXXP0YJxWNIjO49xXFMthll/p9kgcDp2YUDlMliuFoTHiYB387xXZ4AeQMzozG5OEXYQ3IjKHtnJcbCO9JWWSBfq5syJvTV3Hpqt2uCsI3EH/86o3KlA129wmAR9TPPbAtFKKL06bGOCu+CcEsMBbsTR9tp1994qO1vJW2G3LTtlfgvk7JLLstdUzPuNhWXMRveUxnBu9WxourqVHsx5t92P1geA0bJqTvlvsdEh5te/p6JtzVZYr6EdYT1gGm7kKTkyoOJ/PNf6bL2XNzn8xbBb/n7ibiB8cHT4eYf8IQds9jhHycj4Ggc75LIndD3R1Pu43niAw4MmeyWzpWphCLITaXqW9KlrPOR8BQ5iqImtOoe/5XBgnHdNVIYOydoFFPcpPZOFGQdTULcBVodqbdjP5nEDdycetccrPJpFxWRxWIzcrXodAagCWZ8GtvNvbBvt2QLOh+rvMiEygCkvPA3fbJyO+fY8ndv84lCbBX0Yo6N9PQQI04fEaZ4YQzf5kVPRe9R1ouvNjwOZB+0bUH0FI59L1LR/h25t/RZjkwtwAKaYrnCdDaBKdTECkOM329PD8CTcyNDjc0RPqJlhlw4xHJa1did39KVMdgh45hrM3bmwAG0AumsQDAY5YePTJv2S++tpkCJjO03mjtVkmm/f2eVPdoyqWpDT02b7Xhq+BU6W9eRv6AqPs5LiCRgDaJCBmctz3SHnagbS62oGEBA7EsvCkbEzVUZwM6mg1M7Lc07qGhDkc4y6a+oRLPbUbRVMN4aZW6aiZ732kFq7PdogypYmUzUV3sLeasuQsfUOrfdrzebkLThJ6ppQ49DM1dLsJQGOZQBQOtFHkJCDHBZLn4u4DuYPMJNix8ldMnWkm08gUHsfNCKuwzZd2K4sknnEz7MBtuAHlJy1dxH1Su3K2rAM7dZ96rPlBx69yqZfj4PabrhMa5o1gvMXsBBsKumYUkC2nSB9n00ZkaziOPizXQcDgTGFCBPYjPBsGwkTT5bdqVVrLxoxr8+7AkZWDJhm16rsIsRGcc69lVw1TKohPY9jSCQLhoNbwct2EwkIFE2gHfYjgZjO/x/M9eYDHDAurC623Q868zJ7IZBCp1Kig4V6y6zFURtjqkZIcwsd08eNjALb2duIEKwTVRPgOKIjpSuNotPvZs5TO5zu1tbvAl534XXHnPr9uhqvi+bgUTW7o9wzBx3DyACYCBHds80Wg9B7jFV3kaWEnQZz9nY4jcAOu6d632baFOqQVNmq/ZGqODg6nIJ3P/kHvudEfeqaaQreAClkpHc7Y2i7ZYxCs+6FjupyC32NN5uR/BYDcoxPBiPAbPk0SxMy3C44DjtNsD7HZ1JBoCWPV1vmQQXP4WhNHav5IW2btDPiz+zgOzZCb2CYE66HC25dfCgz6Xkb5gbrkPR3vivnMOEIUXVk+repb0iHXDt+NnIDQkXElyJLOzb7qQuY2g8Bwmhc0+xMNzXgAIGRdzEu46J5La784W3hFvKOfhN0GnQm0ofAM/0Isbp2ZmyI6d1AN9mi3v4ngwpml5N9jqBebMdmFjK7eaHSBONE2QjTNofzD6aRPA+jCw0U00Bu7z/P9UvB4G4Fb1LRiNmtx/u6E/HKKLfbu6jc92Y6OQLT74jgK5TK55bxaOBqpQqTi2PGIiRLPvLERb02sV6basO9lRvg4pkUbdAMBC75RFkqf1TybhkZcFVA1MFu9c4JHb5AhE8TbuohybvV4i5JVKzeeC4H6BwgZyfXoKVHB8ku0QZ3Md3tViTD3IUBi6Gp1/ngvcaHYIKSmVv5GcuDxTYklzdmGnj35tlT1Tt3tul1e6NEzjsE/F/an/OgWuPSOgKtfSf2rdo05Dlh7+964wEO+8Fwot0szwiVPnHaMCEEKKA87VTD9w1vl+SOPyctgM41UnvgoYxjGGC4tkY0nDsESymJZkMMUMFpqrv43PsOsjbNPjevq/HowKMS796qv7m5I4EHbqoTKFZZ3XhvDeBx/ouMa8PIfdM8U18z6WgK6BQMYx2FzbAV/TQ0o3DHtu331MbCUfmM0bQzeg5bhBxROmrvmpO96ZjHtos9kX2zc9XPcjpthormOP6Uf3SKhgpCo3BN8enEs4CBi3LzgZ4UVqCV7GTdiRv6Gdz4nY+AGOHzkyAjE47odYaYTBuBhLkGjsneYQr/Wh2RM+YU8I7QIYBEk08GOu+Ze56qLECEy9gbmzry+2vl9S4sJl3Gzewg4poEzSX9Y0M1zvGVlw7ElHO3kQ7A5wShfagpZvs3lGHJfjagkdMFOrzZAzqKQu9RnahQ35x0sBIHuRBzn54oF8g0gFyAALjYU+vWkp02PMnVFTGTIdmembSDknO71Q9owI1d1hHl7i4nFSm3taZHF06QbOZuz3DbqRoWOzatY73zu/udoXcdgBjGEqnUJmbs/BwZk9GOLDw7VsLgsIFJ7/kFIgTmtOxxmUTHaojWunvff/BFKyAQM6VmdiNkMODp2R5u5lZlcwQbVdOl2L8UZBtNDH8JtouGI9azIPsxoAzzczP/dEN8jn3WiGK3MoUOIxreJg/PncE7hW3mhfc22BaQnM+F9D3ECvrolJ66yN5okvNbth/u97PMlRsFJPY97AcaWF0xaFskhpwJfn/Xmw9wGnMEu9vNu2tqZiCLOyHQm37yRBdq0TBwijtdixxsYetmmBJw+/1QQa1cfAOhOh8LxUR1BzxwQTGPTYg5OuFx61Tw1uGZ1VN43M1GfTeAwk2W6gADIZDjSIOijjXQcLGpJ8BvakMmgGczEngefTYN24Cm8S8GVjJDscDKu1FuHajpuo7272xA4bqOw0jon6mW5mZdEAYhtAYuKCXV0kpZyTCo9mUAip57STm3b80Jurj12vjqBEVMX+0pypfGlCg29/LQY2t8Nv0ScKvzBKZjMjDH4A2Q0wzPNDDNdCF8JAjUaUfPKEW7nU4vHmk/W80guD/KaQ6HVyM320cDc39gC8TbO7SgsUaiy4dvUt5vP3JYwwMah1IpEdidWQJa4XVWMAFvkeUY9732fnZ83SwQrVLbuNsAeFM5VTHO4XRI3n3ulG7pnQPTx1XvmEqt1TiK892WSYtxog2foiSdMYjt3iDIefAEI2jpcUnn6Sx6ZAgDTPk9t4egrLR2ghIQs42F3tkOyPWq/k5vULI+mYgmZ+yaMy0jTxVYMKeaAO3K4hzxvn7M6YRjUnsZ7uFl26gdUH4p2W3XV964B0QCgWnC2M20Sjcy2Cn8lt5xyZUSzMZThzoo2NZjbBOss9PluK0Ew5jQm0tegj7I/oA2y/LTulWIjS42AEggq6ZTOoPVXucfF6JcM8TPe038nJ7q4gZCO+UUpvtW3gU5GzZKMFmIZyTcDOj4Mdl8Oh74OBF4A4rmvp+trJ+9IDs0D5M+s571YW/f5/XmAxwBhRDCjSoVOAF1ixYfUV5hDQkJoyApczhHKUNQAKZxlb+PY4FaQOOwGAdlyd8xT+3vFEJ9amIPvkSyyR9iTgAn+HHJpkUIdERG1Dlx/TjICHY3hlkovhqm4+nkOWRMkWKipBAK14Q9xg14N1FLO+JZVApVym/O2N2AW44XoKN2Pj8d8ZUAwyB93Vfv5mMWqNirfJkqOh2jsH0qUk5m0iLY2hw26CN7dx07Ji4BFtaICKhJ8VOO2CS/629CtSTeoeHdHPYPZIZsKDVXbs5m9mVmGAsyDvBnylrWWbK74LIxsSnnOi5FhE8EEJJRIH4eo2bjC5yOjTLrnTGuX/F+EYzeePzSBPfciWS36SvF9kgXgOnBciEHlM3aRgHRuGe9qYcZZ3ys6DP4rhlwdAEGLD3zzNPKkw4RNwJPbIhZZEx8zITTYH0sgx0BxIgOFBon05Mv9Db7Foi4wqmcBZu+8bZMECOkjuMQewCdHxcA6/jswMxGowUK9Y4+TTzcV6aPNF6pB5Z278GtCwRMGsN47Jb2HhPmVfMhwgungNk8IZ00gMrp92VANF/gHbrnnRwGteR7Uqow822GxUGi19Qzsbt0ynn08sEr2gFXLBPgO/KmdxH0GqyNHrnQvo9gRWOLy/bQQBGSRAFOMyhgsbHHbO7KQSID5EDfZM8eLQ2RGXPKh1NEveWOyYabCfLD9/ogszVrYTBgVSDHbs9pMsocvdGs+wGgHIQhDOg4tz73cxYut5NZjc+45nYtUDfg2iwRMPVE7/d64wFOtYFmqe+FFDjYpM6UeoZyrjEcBQbNql7DQqagk/npsmmPca6TzrJhhJVe0Z3rdtpGjQrWgI5WUB+B3p/dypG6qLgs9RJgMw+ofp4zBRB5jXx3N15dzHq7iDdAA7q7bGJqSUrsV5oRKqAvGdouRhH2vw14p82c/4NLtt7gI6eRnif1aTzrOgraigCPeokFROO9MfUpGEe8ympA4+LlVK6KjIyLgRfsmOXi7wLTHE7zYEYmm3U8NnzheYwGcOP4At/VeFH3TL+XjMPUgujwQh/D0HA6T2AsPHL9brYqOX1jkMNPuIpn+mOYFoaZOkVNIdahFD4dazNn9ByRFcGnjfMFg2cEZdMsWssLOZU59S4SxFLEzZ0+ha1ZY/HjzEJDc5VwQRi1zTVBmvK0vvbhW8m+DMaBI9yeuhpHpI2tf6l7Xc+8t9nd2E7ilBfvegIias+xGkRI5ziBk2TKnanZl8vpTcB0UchhT9R8EzR1H9+ll3QEwQCiloltffcsYiYrVFMLEcy9zNo0MO/DTrgDMWd9simPzwFsjE1EH3NtUACg6+BC26lZ7yoNbN1QD6NiGZxNHgM81g7wP3SUE9H5fabmpI85F7BOgsDShI9sNm1bzLrakkr3uzcdarlVYOkZSYF1b7gorZN5O+tIYO0uZIs4VwLQE9htehOSPbNkKZl2yppB6bEZxJKogH3YPxxXYwJj96RpN9zLGBYuJN/z3QDs8TKmBPpgvGLZGgNA2TkJmzYcnGamXwDO/+zFjr+rhN0sMEW5LXeNThBoC6FbgUIRNQCov4qVrDp2UbSKYRA0Rg5AM4pwEyujfPslys4Wc5WEt7BdRKtssLbRmZVPCAne5pfpCDumVqTGftA9TP7W47RA5Tp1vjLvM2cJpbcNOsaiorbhuxT/wkbSdIqBa4zxgoA1WvbEMQr05CmMmOLicdiO3MNgQGBHTf0SLSNT03lYrpgdht9zj0RPQ8DLNTZr2wGBokvNHGlGPFE9TMw+BSsAp8ENg6Hzivf8iwZi3GxMIkROSZyFANuCKIEGIyf9bE4n11qsMb1Um0MWrZyNF0Pj/jM7PKVgYzvsyNUcICLmtdvRY0HK5fvDfTE3iisd7EfhwpzWHU5Bul18HyABsCdvKXAcz4aBWHtDgBgEigVno8Ai6Aw83t1jBbwBYHCKZbcxLEoGUNlrE0pzOGBG6z2ptvMP0MN+OOqHUlR+J72DUgG4LedKceV+draBxwKRagGOG2SAqhcilxbB3PWADTEGEGBiaDH1OiHHOCwPDvMDrYeYxemVItOBo7ga/uzMh4HpSDrtyjyAYxrZKI45wwAZAnB9gKue+YhjbgdmBcCDOBvesGCQE4ctMgljdrkbqsnhZ51yGqATagDZ7KjuYM8g04dK0g9Q5mbONF40Nv1nWbIoBlTndjCNMVzJTqvlKqQPiF0vHLJj5qRaGYQYxiy0yCWmi7ucnHXosaMWBgfGLerABczLyImjbAMtyb/nY6zEc5v4S73+NwA4bIaXOCcXMOecbapzwYe35lIZvXDC1v0ehgd7HhOTEkxRENHG5jXdUbOwxXvh4jwXddER3XDhVw4o8+V+EtBzSqmz0hih+gQA07QMAOnZI4r0881qjcJDiinEPsySHHO7TkMgqW+yVN79RLpfaT01QSGQ2iiVtojz3TIeSDtKfuaCFEfJXzu0UMRvQMaP5KwRYoU6kgZwD89sMV2egU1/hZQ22x2aNTeOdKvgTZJTvKw1bhmxNOiR8W11oQu9S9qQmg3QOBdM59Lpdr5YuWs7h9n6vgY7nqExf5YdnXqtOXx0ATzvdii6d09kjXnGnCpOqeM6gFHY1J45pwWDli0Qr1wHNNb3BMjwfNlJrDGflIaOJ8h5N/etEQBATP3KsEGFBTThNxArBBn9AVOUDxvZ060YX2wdWitFGoj73jSZCtVb0T9Zu2XYtmdOC3Q5DbY7UexeWyzBbu9lP5p71rKnxoURt0CW5MBReNEw0Kbd/Bl738ixapzcMdpgQ8RNJUFjNWFREYjew4mhebTj1MmMmq8L0G4bWzDj1qn3sX4jxhkemEafrVmvKXpNr03Nd/nmNcDAI2T9t2tx5LyjJ1C0Hbe8D0Mo502zWDtOoZVpAXI8bdbd9gibUhsn3g1Xxze0G88AUhM0QFKj6fNJobILgfQpSI71DXEC9BJD0tr2r+yAQZABPX2jdhjCaqo5k9/0VnoCLD2rBi7JMHo97cckTWLJ5t7ttglaOe0WrHD5xfu/3niA4y3WFZ7mGGeVmUwJTTgIOBcKG0spT8soQwLpBS0ZJ6etaHAJOrhXw9Q5ka+p1yrl5k2r4mxjjonCIONfGXMQGW0mzb2l0Ub3ik2XoYMFg6HDKU1fa5xXA5PXDRtefV0v6JZfDK4DSNPNNmICV5eNnYyL3svPGnAVmF4tpfkb9gjAs9qdPliS8FZ9G58xmYiLBvrKVnO6GMPG1BbnJwO4rt3gENr6eQm8be2Mx4npozOgMdRwfjS65506Ag+4xLflxJWyk5dNA7sevkQsXMK7jYB6vsNA7IEbfp1pzpBBcD2CHfkAIIoBpjX9xK8hDLUplWivtVKpucEA8WHLiKpLUxDkpPUjL2z9RXOnigzoOm/Aznq3tEo3yme3eQ+FORe9H5vWLFAKR6gJpwMWdO62ZAzAgkAjAYFIEWQm3n3Q4bsNkyNpQQuKdHlelb5I1WoYsN4LugC1SQhFsg6ePGYXoY43V4A0W82bwcNM2jqZHudCm2T7Q9ZGa3TYj21fsSmxEeBwilxqqy3taZbYuqbf+2T2jt1sQTDJOaf82fHzfD7Ovblcw1a9touFxUxxDXr02/JUEZhGrM1xDHPgqyUeSgnu/1x7Y3skUKuvd6v7uBj2YYNx3l/A0cGsujZDctmul+lm92mEQLvBuuakneKsYZ/5nhgdMyiO6rGr0DxvR/fNJvjAUqtepIl06++un+/j3zWodxQna83eq+VLqpdJnh458LpuC4wyW5jS3VhpaPcICfsy/5v2sQXCqmIzAu/zyv/xR35x1/d93/chxhjzz9d93dfN7z//+c/jO7/zO/EVX/EV+NIv/VJ827d9Gz796U8/u8eP//iP41u/9VvxxV/8xfhVv+pX4U//6T+Nx+PxSxrPjcZrNN5F4CFRvxF4oFXPEmqOd6HwhId25fCsJ3ZrfHTj3Q48kLjReHThNbhluzpx3+xH82jgdQf/lHc8pXZENc+GArS4qQLimGMVbkVodyUelTpYE+qmrAW391XesqMJ0C8GZhcaT6Fi2QtHYSxwXcmdY6GTr/X3pwy8isRbSLwVwKtgge1T8ndXAE8IvNWNV8FOvq+uIFjIxnXxs/wOn31dgXzifyOYFnq6CCqRTIlE8DtXklW5MnmfC3i6dKhlQg5qmZMrgFeRuJC4OnA1t2ZfoZ1xGXx/MTdPAbzKwCsE3urEEwKvMvFWJHdKhbdwcz7NbF3RLCBG8MBNAO4cG9i6HqeLbBUchVQoxdgGrK10nsBnJ7ovVD+hj8LGVmKxZbEjLrCYPYZNcIG1c+0GkiMkbUcimll5GYqNy6EVCSfINCXFqswCDjgd845on4el0nz9MgEPSkLXEwh4TNwqf7HPzdwcMqz3ON5qb9V1isQHSG67+IZSxK4LqAVSNN5OD9Fh+BTrmaRuamOz79DrR+G+uTZ1s//TfRfuKlTpv90sRJZzKBWp3nWzpUOXCpUb0I6sLujnNwFc1UTPrHEgk1NwnGNmwnPyGLmpkR3+937cbA8h21IWwephOgYgNI9VuUNBHwDW+zyAvIEsILWNoW4C0Mqtf9Okt74X/mOALFFAmxnhdnwyWt6NI3AeFJaOYmo0aPvKgEn1MtUxxamoFokScpC1eqXvVNxqKicWIsA0UizzeulPXiFGLZH5hOt6hbwuXNc158dliv3N1BlzDF0yX1FvbCvgLdK0yxVPaP25cbF9BxoP/ZfbtOl3yvKOwI1E4eLvi3blLurC7tIF6u4BsDx6R5tPBCjItHD37d2HXLRAxsgQ5bwLslfqml/J1iRF+/W65N8U1LKulWvDmjc1oa3Gu6VzEe/CXYG6gfuGakqVXi1bJrGY6GfrW9KnD+L6ZWFwftNv+k34wR/8wX3I0z7mT/7JP4l/+A//If7+3//7+MhHPoLv+q7vwh/8g38Q//Sf/lMAwH3f+NZv/VZ87GMfwz/7Z/8MP/ETP4E/+kf/KF69eoW/9Jf+0i96LH0ncIuWFJZ0YakdFXWO4VyIFg4LmQyOETHkMhwBmkjk4HUIWSQe2orIFNea+elX4OqdhMMK3NLKhwS+J1V2oF3T6nBdChQxB0wNKgTE9L1poNS23S2/Ee89KbpFiROUzvvOvY8hQGkFDweKGqGdUu2ohU70lSOpeE8NjZsNegSTXtOfpMBnbFeEbVkupl27EljAq/fz/YEpCDZACnLHWMZOQEUzodiL86iU1llX4SjKjFIDiEvsS1vCOFW3WJ07tH28BWMq5366KZ8u4Lon/HoXC8GCgqxxNosRQlWvYuf0Lj1vpJ+E19cieZHggCL/BhCJywCjjV+8Qy+F4xQ5DgV/C+QBbO3v6A+S9fs52GHxBKaLjxzQRPFmYJRKWBHXHIfPOrM+rg4ZCAWuWePdps6xl+h8CCgi3T/qkEM7YtPmXh+NpYI7Ms1GIkNHn3jm9xwrpxiHkYMdM2aimB5UXQXszARP+8ZsuQ++T3hO9DneurZSMwwCe+8pU2XAOvvBy5zZNfbMe9jM4JWomwWRNWZtEooC8TU6PIOclWlwd9DmDe+xYZMaa7OKBkOtrtKC2f2A01Opz7W7ijdBMZ97HGzpNDcwfWzMVrreBq6nMuPh+UcjQgX1sncRT7Ltq2kN70gDZms1AtCORTRYaB0N78wlc9nwsSluD0E7msgWh6n0J8TiOj09QwDEEtN3ubLcI9sMsm0pA6M50LcTPg6I9hwTULFH2/3MN/JbFxD3pNceSiVe4SM/DjOn509LEenvPAtKoXUCdWHf6v1dvywA5+npCR/72Md+3s8/85nP4G/+zb+Jv/N3/g5+9+/+3QCAv/W3/hZ+42/8jfiRH/kRfNM3fRP+8T/+x/jX//pf4wd/8Afx0Y9+FN/wDd+Av/gX/yL+zJ/5M/i+7/s+vPXWW7/gM9955x2888478+/PfvazAMyQuG6mxmACKuKyA9fipA2pDLkNZ3lxcMEnIk8TMwlQpHTymaPuKVBZI95yTKJ2R5CgZ9HMePdDo+ksGwJdANMGhSstvM73i1KWIbJSsmgVckze/+J3Wgx21un4mAfXjJB1kEFrHiBZzsMGZjcIBfYEDPxbNxmdyRNziJsxD1tfU6EugdwiafdOGcM0gOkAa0Ej5ne80OpSrLojaJp0DzfB24MTNbK4FFtDqQNtmT9qi8bTiClwOmDmEFA6hsaf5QBmg2LvAYxOT+pq6lj49xDQcmdZs0XbF4age47JUJ8R14QZfi0INl29E3ffdgSnzB5D9HoP+obGtOO2PLULs460WwCqtzKItBPIAVDsFZVTu3CpmDYOsFMGRZBj8cx14Ol6hXjYE1P/26khzacBHJqBwru3nI9qOGaHVcT0WBl3ETGAraOQldOY0B6VUXOxI6304raz751fB0Fek2HnbJe8YmFJWKVw3Q4quNsQTOP0gJAenXWKIfS+Kw1ay9HbfAZxBhhR+QbwODAZ6Rk5qkmHjldTsr4sSGFHyT852yoPGYuGG6J2F9OBDVjBOLZ7np+TtgwYm0YefZRmTJovW56o0asIqKOu7Ls3bXgu40x6aQt1kIkd8GTTMbUr0FylWDrvzvIxH4DBht+qRIl5zQPNuqY8A0IFuXBYCa21/Uutbp/0rqbJqc0OZcD9WaUMyfgd7xCuJbIl4bxsKpTvdWn9KP+3UlV+6P53QCwAd+0fUB8lmXn/1weeogKAf/fv/h2+6qu+Cr/u1/06/OE//Ifx4z/+4wCAH/uxH8Pr16/xzd/8zfPZr/u6r8PXfM3X4Id/+IcBAD/8wz+M3/ybfzM++tGPzme+5Vu+BZ/97Gfxr/7Vv/q/fOYP/MAP4CMf+cj8+eqv/moAjA/uSNwI1cskq8TtrLVobHjEM55IzSUeQervlpF8dOik7sB9m6a7SdWB930g2Vm4SO29rpzzoW5R6szB8hnVF9iaP9WtmGDmgcAd/rOt+8lUeAu00wSJ62KKh6kZOnjnXUKfv4Jk/1PEHCWQ4d1B9DG6HTJ5WOQloJAhw3gFc18ZyCsmhRXApL6uSJ3bxD9zcrdSTE84HLtYjr6SjJRytxfUvTiZSrug9Fsuc8AHNscyY048+QRsjefJc6b5c43BUxPhO38MPQ/Z6OyhumuMGx1Kq3D8Ua3jM7SuAsENywZE4TLt8WjgAaYv70qlSjHg4AbwGo3XUK+Zci7cBseHqZIV2p12F6ovOuhOyePe99E+l2xByMj+6IANmQzNIMbYrr7+NwIdSi1o3NvKz+W/nEv2UFkUOqdoz/IvHJxeGK20nw12OYVMHa0IPVs6VEwnV7mD9407SM8/yimlQOUTCmRIHx3ST07A68eNR914fRfeuYtNNW92CH9dhdd34fUNPG6lDWbHCR3B3SLcbU/EFD1Kc297AXVU12fN8D3ixo0HUyxaGB/XEB2IYqsGpmT5DDMBlZRDNiqUg0FLJp0GZeHmDW6HdwA1LrRTQGYxO9+rVBfRqNrjXwr+L5mUGzUNSXf8XmQBKf3V6USC5ALUWdoDsOgFnNY8asAMOufzIMDvBzpudLv2yg9bYaPctGrDnGZjABdodVgozDElthukfnXLLTbwLEQ4Rex/F5DF8QTX2HM90FJr7yRyTNo2jZQ5t4HRxd1asIClgz7OaS8GNamCXet6jw0xcHdfNTepvdtpWMup7ABYF9YlkKW0Gg9zLpV4YGoG3U3/9V14t1u7mEvdpijhj37w3+UDoi/a0JLNKsCHRL/f6wNncD7+8Y/jb//tv43f8Bt+A37iJ34C3//934/f9bt+F/7lv/yX+NSnPoW33noLX/7lX/7sOx/96EfxqU99CgDwqU996hm48e/9u/+r63u+53vwyU9+cv792c9+Fl/91V8NnhuzkTANbc9Eush2ojkADvPtCJ4VnTmsnL/ncd+QgXDsjUGsSyr2IH/o3qXopqGi24NmFoMI9G4b3h4WG42f50iFz/4BtlBU0RMLZzeKpHo5IUWEzRReT/RTqV0Gre3figanc+VQVzgMpKIpbLS7eFqltzJkrKGNmSEfGIjjd5Ma0m237pHzTmx2qr5Bl9/RrI+XN5atGrSFkYVtsNUIsDme63QmulHxqHcDROx7c4wxZJryf4fRkHNX+sov7MMvbXwcaU4UFIx+JtIxu5CxB7QCI/MQWJl5kTGbvkKHQ+O60qiGqG7S496pYebKDQIFlAxOhj4373VsyS3LQ6/Owb6n501VtTFn00BsZgaw3e1V+l4q4u5W8zzJeBn4UKNqtokzCLkFBFCN+2HnfGt3idahR1M5SrWPSAC4le7s1mHcSmE19nR5UC9Gv3LBHON5vjnBgBqi9co319DRcSptRqfuUW10HTY24A4nAfHAMjpwymQBRCNw+9iBKaAWUD2fA+w9PW4Ak/OybFompkfwc/BqgBKBPeh2QFZhis6HTu55NGqfNWSAnssjHPydFHPIwuHEyoVTT+6N45kfPBTPOU7PhhvqmXnhBpEnvmeCqy/AAp10zn5EqYDiTMMbiKhUALEsiu2uxjlELAzq2Kl8+1gNx6ZxcnyGUVqwDeJz+1YZuDBI6vkMEMqmxX7PDJBYHwZ88qvKYLQYyudpOx9Vg5E9WO6qcOWT/Op2q54C6A+GwPngAc7v+32/b/7+W37Lb8HHP/5xfO3Xfi3+3t/7e/iiL/qiD/pxc7399tt4++23f97PXcA77ku5TwtTSvEBwGc4hYznyImkz9G0wcJ7gYtVOoe+3Tw2AW5Y5jApoDEo+rzvDyr6NYb9cF7efRFLFXL7rGPlo94BcB8vPlVOtRV1uAHmpHvUC4Z9LspIiM+UJ3QJS8mR+2eel5JBaGDP6nJxqt4iR4HWyCA3Fz05Y4OAifQb3gY6Bzvac4tlWeBixmYNRvjnutcacZtujghak5BM+H1tRAyC6ep1XtBQIgcgnmiT4yvJV4XoecuOjdzhVXgHd5zhZ7Khbqg0C0hGU/O9CMp3G3B53fW+qkEqN67RXLn3kt8+yvINuJ077EiETDtAx2j58Mp2ovuhyJfvzjQpgbCdRwqopuk3YBx4H2a6jrVA8Af82XVMlusngNePBuIJd7+eguVuFqE/VOxYdWtcl+oPnli4akca4yKUouDZR7eB4V1I1YVkJM/Riq1dSU1QaM7tjP3ujD9qh28JPHTkMXPVY0PQrtHCxg8eUwSBScQ2yKtJBmIOEQ2+TxQNAIt9Gwu4MPeY8/gWQ01qY+Q8jlSn62RwpN+sb+6/QWVi36mImQcCUaWIBjCpf9gR0Q8AyETXjfLuP3hOCwjXYAnY1cpyTGHOyo7tudGOgQiHEc8Uk7aN6VC2/YhhHgdUYFkff7OChdOW1fZnHbHJHkXKnraCgV6Q86zVBuwLCgbVBCMG9L5jzn3KdX2DEg8QJEBuO2+5lJrTfkHvdkiu50JSBSUjaQduyAYCqJu6Hnz+XfYbgCvy3DLlA8I3v/zbxL/8y78cv/7X/3r8+3//7/F7fs/vwbvvvouf+qmfesbifPrTn56anY997GP40R/90Wf38C6rX6iu5390dSRmk2Av5k1gtvaWprd96Iwsm9eZ3w1AqSQulpkY54+daFK9SK+jXdhh1K57BGtYSoZtDMdZ0izBIiCIKXI7j48I3MyHjgACs58T/P6cCxPH2VQA0l2ODVbkQdqgZ/7fEYLNCLuCKtXMKKflHF3spuiAQS2dUR4zsoWby9gM0LLJCgq/gcm8Wmp7NCkV/i6piJMyU61LOtcuy+C6GEYhwgR9T6p6jA9sXBLe3ruGcDs2h6idYTlAZ2zAQkOjs7lL42rO09SC6MrDkPY0MTPgo9m6A3Axb9imhmssnkfVBFBaBQGkc7ZN59vYYsZMp2JTvL8+jHkAk+RrJqoIcMl6rZOCZKWOjIG4nWRxYopNNWs4Ue2Yczsb/0wOeYyrFj8AvL7x1qtXLBxu4Nb21NJJ7XcVUBeyyeBcT5TfWzpkEOKZck3EQk6CK3f5vq7AUxOo82T4c8yBLEwNEG+V6+wD87lOp6P0nu3Vc5Bk3euxLz4c143enG4CCE5cVcTh97zZgF3BHx+smgFA52pth13K0vbHxjPH+N5OvmSeHs8AmIzo1HD1NAy1zJtp0ZZlp+rsuMeKWlbNSKVSXXSsPXbnPmxaHnN9gM304coc33gKvXe77m6E37ZJ8wK3GLF8+GMN9ANkfm2XF2jO//Xe51ldJpYRJgNlWde4I45hWK6U1ubkDpi1fJhJusPQwUyS1NZsbpsdwgKaCXTNnm33bcAMIQPY2/Kk97tjx+wNFCQYEu69A8hPT48GPuODuH5ZanDO62d+5mfwH/7Df8Cv/tW/Gt/4jd+IV69e4Yd+6Ifm9//23/5b/PiP/zg+8YlPAAA+8YlP4F/8i3+Bn/zJn5zP/JN/8k/w4Q9/GF//9V//i37+nB4OOSHnrcN5S0hLlVhStNCtLXDqa1vISRvMQssA+kyp6gvc+gsZDaN1gaNO1iuIPbHTy3YLuQDiCetAedJxXzF5WKcMQjUwkQCuC3UlEBe0kRHeWsz7Ewhd7/nzFDF1N2s+5GhwIeKa50aEHDnQao8ccNomlPpqzHZjfydC99scMqDtp+EyISlziD3S956SdTciHeYQTA1Tswf2wdHPtubHBeSYuWbjvUt5dSDmpGboDC7HPWQhbPQJKE0lxxg9G11vf2yQBakMPAK4UXidrKGiw1gF7iYzd5fGJmPTYhgaimhb9TdjqEKH4TGV2bfu0/Tvr13bBefKVUxYNz/vZ1STrVCL7KgSo+ScvPo49RYr+piC6Qm0rhJnTyYfueri96nViUsnd1+4I/GYgOHCQzUqrRYK3bmtE7A1TqXU0xRTtvRYToFboFs1VH6PJ9x4Bba64XbxaqaqXlfgnYdOWM4LFRxbaQt+xMXoNyDQvsb/uZPJkQPPc5WBk+phQn9kCxpPIImvc+vrCdFPgGwI0wici2knUYG+g6moYn1Nj22STelg9FyAm6J0NO5sVKbaZah2J4pbmJvblLld+xpwNFj5XOthGyacAlrcSdfIasM1Wit4PApFqYzg9vQSW0JHfxMcxNoWSOesNwfKAEOtxqNvVsZ0DzsHkAmgLj5na1vBRWure8IO/ATTZMSIYQrVD4KoaaJn4HeDW/pv+Q2ykFuX1QPMbdkv20NvWGi3CY0pHZqJ7ee+ZAvQj/H6s/J5BjvGZTHvNJiGdTcCcVHbc6y13jX3v8CdTe5MjCkQj/mfmEX50mqVlsdAuKEAKMuttiqN1924ve2/KLt83vu/PnAG50/9qT+F3//7fz++9mu/Fv/5P/9nfO/3fi+u68K3f/u34yMf+Qj++B//4/jkJz+JX/ErfgU+/OEP47u/+7vxiU98At/0Td8EAPi9v/f34uu//uvxR/7IH8Ff/st/GZ/61Kfw5/7cn8N3fud3/oIpqP/hFc4BelujnayclWoYnFLhDxo4oxWY+Wmg1rBV33SaY+qNVp1758944rWadgePgSgXlTkCsmQdmPNZ7YRobjYqjWNEm8s1JQpAaSRHBf49wYsVYahV/SjABmwhY45eLmmKnKGcrMEWjiqko8276VQrFALaYabvtpxUmDr2cQIauxXbFIV+Zl/THc/o7fFBYqcQTp3gOLOKUa3jWuTWebS/G4piwukFDFCCjKvZrdZauNjRtQNrfwyaFJSEb8M0m0+l1orJTA3UxZbukoWq3rOtMNOiBW4zhJYKmqg5XTowhpl1WWvMJpVlYxR6We/pHy3QmESaxDFWRs363JzBwLlObATrSNI1QOWkTgBVPVt4ofVY+R5zjen8W3jGRk5zxCrUHbjiFR5V6PsBgNF2XAJE0ehMvFul0+YXEHON7VA0BVUDdApm1nIaaxrcQg7IaSOgFWwIzEPOIVanpC7oJpvFGEsAtlsp5gvnCeSeBzMp3nTw7PcWjcakfuGAbmxfSnbk+HosHTaAozObg227CAB7Zdq1iWEZ7eCqN2aXFLfumyG4lUWiu/XoIy6405TZxV0TMTWtkXlxpKuzXkilgvhzp918LAkU9EIAisx9jAb66YDKiH1O2wwngDJjooLiYTdi0ndSNkwgBNkW2acFajYM0hcv2uzUo955dZfZ9NfI3HqLfguQAStzbgrqM6DInucsXZyMP9asRceAw6lhAnVrisn1dnE8y9vdu1c/h222bNkxgGDTMlxQK4EP4PrAAc5/+k//Cd/+7d+O//bf/hu+8iu/Er/zd/5O/MiP/Ai+8iu/EgDwV/7KX0Fm4tu+7dvwzjvv4Fu+5VvwN/7G35jvX9eFf/AP/gH+xJ/4E/jEJz6BL/mSL8F3fMd34C/8hb/wSxqP4cKdgc7WdsLFvHOGx0k1xqHg0uIe6l8/10LzX1YwjPN2Ph6wE9kzQvx55ssvuKOpsiYHKOhRyLJDlcPYKJrnu7i2w2cFhQROH5q/D2ULbAdMmi24669dVatg0g3YaABEHctAmPk+bvvMsTsKbATvZ2c6NReeDzlGg6JmA0Pir1wn7feK0DlAm0gLgcDdXoxjzQx+bFR3nD6gksY7yLTkbltEt4k9znOpJshig+swAp4asztK00UAbRNKEB06UG/SfocBXYWPMYpnC/3qROSFqtroTqf3pt9GlLAZFYOAqCNj4feAAEZs92X/zsDOTjniWEilCgj2Lrg4tabYUVOtad4ggyClENrJJyBkelyGMZIdgUtCPE3yItD6Tpd17hrZ6XcD1+U6nJyMWmhXTOnU+7feeoUvejvx05+75zDVhZVerQZUoCmJQQdNZzdp+AKffbUS2ZFwN1cgpmt5CngbVDA1kMMSnDrRaNWwHX18AIh+pKsL0/3rXByx2EYMi+xaQlu/3nf0SjklyoBLQccEEjXjMpiIxhwfQWdM8GigQTsnRid60ses0dGnhp2+YUDcek3vYOcp7w0zHmNryz/zMR4KskT7boKLN3TrDQMqg9EOoKQUs/3eAYvTamgwFeu+4bpcvBZKjdmpP3PmjbNo+hjV6LwQ+9TjO43tOr2BE+MkFH6qXMKtCRwsN7gLbnaQSoLL9uyZhp6hlG3+UapwxbQL6Jhe5pSneows1GkbpK9xzGtY5ue/XqE4dk55dd7/Ff28EcYbc332s5/FRz7yEXzf/+v/iQ+99Tac2KbTiUGbtLd5CJ+s8LHzilGU6k26RW5QTQLets3tgTbrBhKTHrNhGAMfh3HkZ7tjEYHu85wVGBJz7jWJkiNicb+QiBVb/tvRPUawoo7f4zgrx98VTYvG0JJQvYd11q9kRoMY6WicJgMyrIFEroOnpvs8Ldif6jOnEc7oNXzGBfgFgJzfa9iv7SZzKa1GwyETFYw0I4heuAWXYJapeAKLCsj5Kp8sBXYR5v2MCjkifxlePo1pL6fmWrb5ubX0Fz2nPq18+Z2lgpy+U/Gu74VGjIGwU+nJm3OuaQjPgu7yvLmIXc5pgE7Y2YoNoD3GmMomgGJdWWMMOz3RAEWgWWwIy3MN3h2QrmM0oLHbaayzwgG+oF1unFSuU+FLvuQt/MzPvIO6VyefnthE7PWjEF348Je+wpd90RP+vz/5c3MzMyVWKz9wiluxgQDH6znzKfU+/oOg27sCQ+87g45tYmlWaxwspAP+u+dTihZqbLe+fo/u8Nhd14eBNIHZkThMqPTZQDj84gK0dcvuKDUjvSfDZCcaO09NFm4OoASOXZ89eulH5WnyYF3ZOWkwbcWiZ1Z4tA98hHWSv6NchaQ/pgkjW0+YGWZwkaq/Q2DquumkexibOXbG6ravCAAMlvV71+J1OyA5jxvBsEhz9fJksP3xjAW7qIfn7GQ1AfC4oLWjqcirtNK6BXXVJaIRKjhXLy8/F5hSjZnzSZGeNhyoWyF7O1WtOVXjSZ6N6DEUfFhvRvPfp/zFdO9ZmUJLlxqff+c1/szf+H/jM5/5DD784Q/jl3q98WdR9SGdW5QnyxUgkGkV/cU6JgMd0+uobV+FWMbERsnPshJcCB12aSeBZWCUN12H6Nsq/SMnSmdvJVpQ1Pp3KYUTe9jM8dYnNha5KSc1oM0JUjk5PJsXjqikLG4c1SjW9LhCEFuA6wPwHBWt/Ia28ULUMe8dcE1Ny6jpJQozfiunjbEdMovEAUfCcKTThby2kd6kBfRvBHCHty8a/iww8Rr1TALfaWjucSS5a4GdU3/HJxRriPqpDGdtfhoN+MBOX2as3E23xqqqbmnCWrI27v0xTI7Cv9S8WDqnpqENNhXN99aq8Zf35NfHwIWcbBwjTcy916pyaN4Z5/YH3vFGgJjrsE1Lt2c8wCoyiUIVfByFJWYNc030zJ5JFx6vdaYUCnc1rqcLr+97nVQBb13cYXPjwqO01lfObisXn28qgGPe1uJQsBPcKdZNHQSZYoC9rC40snreLSPwwCU2ir/LUCFrqyCzvIU5gL60ri37NAgWZ/ErnaLnN8akHHCHsgNMQBNiZ6jGKtQFH2PT5C7IfN9A65BNgPVF533nmYfM63We2bBuaMdZz7sY/EWwk3If96Hjf+KaO72v9DIKyzbwwzBoznBYwz4tEax7iUmZqOgdQFZKVinH1Zju1ws8OJ97wCl7WMkqUz+U8uMabJ3OMiqFtRUuhbBt6mlMKoXBcODNlLbtQfdtzwOVvONO2vPuYzy+++zEOkGLLNLo1aGfs7LP251U6BlxNIptTDoXcMCj95Z967H04pEEhBCcr7stD43dzPHBMDhvPMCx4XXOHgAmhVIBF8zls280kI2ubbBXPo3bitCiiYWy57vZzzcw4UDqZ+2KBM7b1JlSGFchoaKIVY2MjoNhDlWoNwQIYp+5gAWrWBLG0A6OYWqIpAROSqdem6UxYFkHOIXbSWdjVkivMNvBfcp5r/4ousEALcSxEVpzG3Z8RDVj6DbVQsPLGspQGsZb5w/jmEpZ6Z7ZLNDlWUitWTwce+i03IBOyI0xuJ5XLbJkyo4OIwvwXCmSo21zJEq5mby4UpCq84XPxLrVUygQiPsATXCUOLNAMKL5mbTWAG4bOy3A5NgOb+97G/j4OwbAU58Vk5oa4zlh+7wQZgsQGCVfnuVgwWyowUW0mTY/dB3zLbmbc8uqAJ0LN7UCtQ6XADTxdL3C47EBzOdeFz70KvC5dwtAopONNBPbLfbWuTvTIC17isuniKtjAGEA3IUVEnjt0KKMjyZoCuwcOU8P64KAg7fJR7lz7r2QJAwv/dxzI0LPfYdJ7la6xuuR893uPWzSdN30slINIpTGc1p86ytAHS+nLemcnU7whgAyTwCcJtQYr1xZ8f0NzkIOm5sQ5OQ6dw5xiBX8HX0PwNnuwAeuel72eBW7bI/X8uxUIXDHve+m5poW8lDaMOYWBLrtcgb4cysfkB3dYGK/3zj8UJvh5Ad8hEVIvsPYpKBDaEGflWvTgfOMRoGWWCYkNIABWrJ142PwfAxhljWAKeSXzA3csQrSaOFZWUdTpxnkLJPryd4gewPwC60G1a7VOhzo+7zeeIAT9mPzD2Am2gkfKX1LUDntKsCyQZ8w5TDo/p0dZO5p1LSPoTSpF9ZGyd9ZN4s45B4B9hLRb4O0LA+Omw9JcIHJbWILfhutM05088YK2T4FDj16xlbMrzpa7Ti+U+zDctjK2bKoOZxC3QhtiQZ4BB5TcAEDuVC6hiO/0WPobLAN/LobeSU2nACcZtyGeTFz03LqjpzdJbS1qlNsmIwY/Uz4/9tvOyXMU8jtqJgdhRXRoAiIQs4YTveogLN2xtEyTW0jYNlJPMRyNbhtmluOZYZs5O/D4KLJYMzHZNRdLybDzxOdc1KMpXRRhOtzfIwC5/EBW+TWrdjNOvxg1erQOI5J1xs2Atc4OCB0ns4Wm7bWlf886jrCK6FdR9XIK4C40I8WPiNK2MSjARx30HlLdcSFxwN49aFXcHF/CNxFJgoPdLNT8ec/jzm0kNPG6N7OwLbBnW5nV0xs7BtYWUW36r+UEpBRr9M5A8vAyj4wxWVjIP0cGhA4/sJ7yxN1FdQMawDPoEXdj7L8HpbAkt+UD9ZWKN5us9G1Ot2pecLUg6UZYcT2vsI+wjUkmJ8FcLPrOiTrE4BI/uwkIfsUx/cxNUw47Mme7sfNCsBsj2ivj2vzDmb4mNMCUzAGI6HoxT1zWvrhxp62tc9ShwCgWksX8/o3z9yQTZXtgpfKrO+iqdE/Gg2dFeZJlr2dtSKNrhSrU31ioGMfNDVz9l/QM92pOGz6Vx/hOXvGJPlmHrcSsNXayCCmVaAosBtIYvSD83PBTRH9aqsn7+d64wGOlXSiVmyk6H/7P8/Mh4UkYmbdDEjPnTflldHjOKdzpqQgFF1074Oe1afkOr9xtTKiQ++i4OZhhiKz2wiiRI/0xDOjoLoJBjsWflG1DWDoXBqNicY8Qmt9i7HAYdyb3TGiITZVRulIK13aAsn4VNGkm3rJUKJxGNderU85pLASHfuNiF4EYhwR9/olBPYQUGByW/DnGDGd4jA7vSwUYrCcbi8weiv1WEHdC2S0fneX6n1KxhLjYJxiWQOhWoFbxYGZI1PTTXdAI9cuTVH5vRHw+Z1x32OgCaRCxX+SqZFD3t/1QSUnl46Eu3VmUaAz8EiBRW2hykh0be3M7Tot9e7Jgdoa12ytV7pyakV5PAc/rFRBbErprsJ1PaEv7t66750PBw1QwW0EU1X3nNgduO/A09OFd+/RNtyKjoHC3cA7NynSFLAA1Em6SyRXI1qnD4U6idt5hcEv9LMDQATtiA/6hbXswCzh+ZGNcS3PgEkbHu8EtE7qXmY7zd6xZ5OZx5j7Jui4rGMxtqOpXwKOrnQzUEQrBR2AO67rFQCoMDTsBHdsUl6t59o3/pJb/TMH3q8t8pj8uXAgZjAQIOe7VtgF6OazXGsWILgHQl3rd9LP9Bsxg3ZFiTF13Rv7PtrKFtlmMYwOYjzfTttNF3Q8t6NyIPPcjp5AZ2SDL8m1G/bwXPEeOx+ytWUbbtAj2b1HGmN05exlNiCvvTTv6fkzn7HNzrG3tuu7XgwoyzoBHQciG/esBWYY9qh7tdbOzUXpd79At4l/oV2mHoEeBJ9uOASojiEkkEdtAKxYvlMAJhEOQ6PfzLMsrD4pm85DwhxG1HF8t0exB7r0KqBHMg5N/0fFNuKwq9A9D8OfVmjw7zXjNVLp+eYU9oKfU2u6Z4DLdUwBoOPW51zIFzy/qWiICgEkz9qxs6atPlks6BDCODICPcwQt3Eq55sLchABb1t1P5zLzq7HAmtNlo3imUQxBXFh6lzRWoPppVZK8naUVRyXQWJ3474BVCFD59fIwACM4srL3Nj253GDNS5ybGkH5UVLnYisAkpVI/togjRQ6HomRYEjOsIC0Ekl+L0GXPUwYLDdpZZM08hJsfhIhMAYUh7KqcJ7NNzRl2msB1jErPuaaXDKLsVUiVG521I0kAjTCKwD/biRT9wmHRnEhwfIG+Nc4M6pusF+R4Gfe+eBt554Nhx7WQH9IEhj/QLw9CpR7/rE7kD1Q7UpXr+U3Ba6WXT73th9QA5AOern7K5ZPAc/0PzHEcjQofa2rND7ehdMCzAlLHfnrrZ1phNISc0DYE1JxDyHwlFT7zWpY/TsJnKtkzsks6N6D1hx9+qwExPAc4ojQr2fOnQob8CbFMqsmJjF6sZlx+ugMnZjgQO99o4hBHc6CrnEAGqvz7kOYnuddu7Au4/XyExk5rBuPgU9ulVfo/FoPs1YeKOA0wN8M5+gTeftQNDgbWp/2ronJklzNzvN4MBrIjHJlz5ju4WtFDxWW2tvsIupsbFpelb/1r3r6HHNnQA3bpxUnORjfZyfv6xWODFl+R/AlOr/dsOd6Ll7cHuWOZMygvsBXG88wKkK1K2IjdrK1MLpDI0gtRitBXMe103ccETywAkkqETIWiGVxTsdRcG1H1KeQdI9Ub6VufEehwWPESBYW2HQEDDiaQG00RoApDGb6YGAhyMGxBgQnxtTAg9WcoMcGoIn7Pkt69BTW1uZCpjZ4p/YwlOzFDD4mTtRec0mxPH1uU1w3qYyQcCIYyTrMDSnT7W2gdJshFiIpYEXLNLoc1FsrKSu07iNDoJO53Y0os892gZ/sCZ9isDAjLMK07UzAqldK/OSvSCdBJTfMffG2fs5r1PsHFt6om9bXI6yl653istHNggebd1TFSNutzbQd2ZsnJnZguoiZdjpWebbBYqN61LU3MczvdvqcctJgc3xHoXr6Qn1+uZ8efef5L7Bg/1eXQk8gmt6BR5VuK4LoVqlqbnL5KGZMzbMduzRGenCnOsmxFZhFhQje0sncTw10f/qt4EMl0e1QDqziBjFZa50Qjz00ZznGnzXwPUpcw3ttuk9YsHnsBhAQU4/NuWmkl29iazNnEslm1SNaWCq1F3LQUambJW/515HcnrENwpG/A+n11qMac5c2EZoe47SL3xPlgucDLxBn1W84bID2ql1y5yiGpbhbgIeTrvePTzyGFl0Y9Eor3Ogo/CQjF9m/nZQcGfn89+2mwMOtGZk2RaZFm74rCmybe591QNGUQVv1Y6x+tb9teetZ06TAbGD9ik0c+vb9G0MWyTDO6z9/In1bwZBB9tIuTBr46LmXD8YWqVUSwnPbRC2EUSdK/dLv954gEMfZdZhMXW1qeWW8udE2RXcaTNOqA1ahIIlENvIizRu9LVAyoYPE+Nh4EhIMMp0XhxixUHTZsaxnVHPVHR12WEL1Y9dOAxV27DCNwameZp+zDfXe/tnqnGg0cdYiZFBfdqgkD9aOhQqMgv5K8wnDxCm+1k5TnF2vJDJN3EaZYyEjJfP3vLrXVJq0+k9c2tgQINfc5+ttDIYWNaOTuBWpGnXZdA0RbLY/1uS3G+cY7y2fkSfjZWJPlJ6Bhx7H81PAyFWZJoVykB2KY0g98Ixyqzou901gMTiZLq8ikxBV6PTKSY6l/Gflv0QA1dMC0HGjGK7u9douMf0sg4oNxU2oAvuJAvVvQRc3RC1zyw06nHjunhasZ201z5AEIYrkHnh9f1AdeG6gMYDT68a776GCrwD7Ily444b1yvW6ehBEwSUHGsnAUP5uGM5KqduvRsHh4R3UQ9KMjasJ/T+DTwehaobT6/eIsWERl4XclICLRNUC4yAZ8+i/70JBDQR3JZNZ2M7NTbL55hZqA/mQKoruVQUDvm+2gDwMFSzQKNTtm8S3rEr6lCN9hy0MCSBLuGxNMK2uXUsCWLrVWCA5+rla4LVscdwQ0IZB63DGPAGnvIJ7z7uCVhbOuDjAmxLbfQqawKMaMkmSulK1/gtUIhnwum92njG2MAynMCkJVsp9bbN6p1yHuw0c+R1uNGYNJI+7eJggxwDD9pQMyj2M3YOXGwG1jnBrn2cbYr9JUwCWBZdL9gh1vaijfW7wTV/9oECPPDacBCJmN+93+uNBziefjsTO0orNiOQ3N0zYTYBWyhmYbEzl9A3ttuIF2YFjaoGGdQY+tvP2bGwb4g/f95R9znWurplu2RMD3DjXHHr/+KwR77bHOYpB0fa9BBSO2CG4bhEifOPAYRmNNahGyoRePC+d9t9rZqGjaj7fxyRT8AOiHU4KTaA0awjACunoRWBS06DqcFycLfchVVMIzFlxT4o7PAR44CQS+virmm86EMb18mYAvbIZTA0vzHPXlAxgCZAFmCKFSFHFc9Am41hPpdevo2MljcV9fH//Jg69E5/DK/BcdBp63kS6gGELVMWSz2jeY4No+2ap4XlbebEwM11MKMulMnhoGSUlcfp0/Cj0ceseT7rfo0LT3h1XbjvW3S92ACBLjvMx+tC34GnfMLj3df44i/6EN55911mMLrx6u3A6wdYlCrwkv0ksFn44i96hftu/Ow7NzqZenu89lx57AC6cGXj1RNQ9wN3JUoHSTK1VWQTQQd6Pwp3P3A/Huh338Fbr55QfSOfntjDpRrIS8edCIiVu9iqUPmssRsQk1bpSV0NAyUwMkyTsQ0WQNo5GbeEnKQxOQ/+HQSkMeSze9Xs8ONPtk5UgDYAbWHQc1qObtd8Oqm3bbDfc4MXguf9vrtZm4R9ZqOljz4ywQxVi6FjnlkASLVYM6eueyrPfaFxD2AFMDtxybeovuTYIn6C+Tp3s/lv0QeQEECs5kksxU0as3Gke3Z4dIEtFFzTI1Br6zOAyVPhf8VhSzQ/E8RoglvjchrNbSqWoFaAcbA29nE0K67WkrYfdqa0oDnrL8DjJqgH8Pkgrjce4DhKQAhZDkeoRW48y4+v3pwdHwHv07fYZO93YoQ1MLufxvnHGKDVfUdUdjoQkKplk3Q/vgNJ6whI2eikbgtakyq1gDk6sououVUMjjk4DW3LnRkbxdML0pFIGc5sLAB1aAX2ACorWA5gTLiviABjGHJNza8UBHteU3JXh2e3AWVlvJbcNcN/7t6xCFPvMUpqkDocVWu4iD3XSI7LJ7OXdpaZnx1nDsA1GbPuAM7t5FM6Kf1dY34aE7Mrbv4XM7ObMmRn3EBju8OGAGYtcojCuSabEp0RSy4whp6FkJyPimPdcSPm+2cXZIOVRtdji5HHyQWWCTOq2WLqUP5y1kPPtBPd6u9Q/VPD5z7NVlUk7ht46xWLTN999/N4+9VbeH0XzzyqG9c8h3r/GlzfC8DrLnzu3dd4S3NWD+AVALzzGvc77wJJRuWL3g587MNv4/W7wP/xs+/g517zFPLX9wPX0ys8PV1o3Ih6F3G/xoeuQr1z4/F4jc+/C8TTW3jcN95+9Ta06Q1f+iHuLPvZn3sHP/XZn8Pb9+fwlV/yhC999WH87DvvAPcrIC88qvC6E/nqFZ5ePQEBXPlqdmdSJM1sSp2ldzkNCn2sRKNvrsmVTwM4nV4ygAWA8vZsBUbD1njqwYNKM4Apmm6wiZttRVPvB/xAbHJTP3yYKcwOwjWNGhM2CBsnPT03nI5qIBWUuD5F728b5oziCcS5tZ3/qG70/cBTAI/Xr4EnnwPFOr5b9gECYyk59Y6q6Z9jmwVtJkBjdhn5ffroRyWAYo1atkc6a1uh7wFOc9pKttJpsXMrxjbmZ4GVFKy9Cb+D2PSuucda9E2Eutml63yGNTvStcvLNH3XrKV+78V1Iagd4AT6uVkR+T7K9NIS7/f63wPg3M2IKrQY4+cbTtH4w2Y/Go0SzXwkj0ZgtlgX8CGFwOH0jFoBsKU8f0uFN+PA+5ScFkGPHdgCFJnskRwKxbqvnN8J4B/gZoBLqMIiDOQKN7bzpMHHeR4LVF/DokYrh99bCiKw5hoTK1nHbsdumNlXCkQOLrvnDdByvoktNhQg3ZQbrB+AFftofuZNic/qnxyRQVFCOnrTuMCoYuZRzyV+kAGZ2ZSDgYEo18NdieXpBVyWEr4ycKu769LBgQnIJJdpp6JIMAxRDCD9+2A0yRqn3fHheqBZM8uAgUpzOyZ1YI2crcykQyEQ5H4/FnyByYVzMth+JSGXPraQk9a3EN/oOWXceqQx9A21yFH+PmbdnI1ggXHj8XiNt54uvIvA60fh6ekJdT/Awm8dtBiBx33jfvddvHUFfu5zn8Nnfuoz+JnPvcaXftFbiDvw33/mc/iqL7twPV34/M/8NH7u86/x6ilxfdnb+P/8H42f/tl38P/7uUK9egufe/cWg8D3+rIPXfjSt4Evigc+/87PAQ186r/8DL78i9/G/+NXfxkyAv/xv/8X/NTPPPArvvjCl779IfTjXbz7uZ/DW5/7HH7FhwJfnm/hU//5p/Du9SF8+Zd/CboKb1+v8O5deHp14dXbbyGvt5FPb+PzDXQnnl49DftQaDy9elLNRkxtDh3hja7C63c/j+vVK9wBdDF9Z/vmeSoHdru1c2xEa/G8nd1LOf9V+j7TGxIK3bvG5DwEeJXnvEbTKL9boOr0GmVJy600oWyMm9bFYi9bpe14tU0EaPgKV3P8dxXqvsmgvX4XuJ5w5ZNSrwBw45qCKT9vGWCzz3x3A5Se4n9mbROInFoanng/Ij/gwTH2TPrM+zaHtJ3QKsyLM+Ut1hwGOKlgjW9++YMaKhn2HB+3jL99SU59DD+UGySFdxFqJArMnPnwKeJjBmW4HHo59akyKdkdg1lPwf/J3n81SZYkWZrgJ+gCBQYcRERGZmVldXVPz8xu077N/v/fsDS0O91TKEEAdzc3U3SBwH0QcDXyqYmynqJbqyLd3Uz16gUizIcPH2begu5/LxLnVw9wYto0ONlNypYSAAry34z4Ro8V11CeaRPLFQckK6InI9FUHHQbAZAoorD8GVep3bIUQz2FlsYo5IwM3LMWdQvX/GosufUtCiiXIfhFJ+EtnXbfeUNQqd/835ZnraLizdJQDIpoAO4uUINKJRcQlC/jl/OHWiVK8aEZl6df6AlqVVo9J1GAUPbH9X3b+0l3edy7O1XLa9vMonJjsuCSZtRTAQj1Htb71eBKyqBGNBdeekjEqtvanEi+X9VKVa1F9RuiVIvlM9FVcFm+f9MJ5YoHWY0C9dxiMWT5OlWlf6nHr0CxXGeiPXNBXcc1rVp/E7d0VNPxVO6FZlSlqEXelfWqVHYBkG31idJrSbANdxV/ZZyq+ynPvaKY0liuPk1ZPpdIGawINlFzFLThl8VpOB/Q0mRQ4x1aSlzwrKvPU7dTYplXgg/sRoVfJt4uN1yKdGrBCo21E+dJ0nl4eTuzuMA/vH9CrY5/fblidJeFpH5FhcTTbo9NDmMi3+zgoZOIEHh/2HM6TxzEwPffPvMf/+6J2+zx9sZzLxDeIZMgRMdOJeRO8e5pxDlLSJaH0SD9lV5rOjw74XgaOxAzUvfYoLCXBWSPVpqX28Iyr+yPR7rdDt31SGVyz6AU8T4RA6znL+xVgOM7bAxoqdv+z3uD4hBlXXYIUUTUadthmxna2utXvFL3Z00Z1z2TUxJV+1L2oKjviO29onRrlmTh7KYBag0lGlvb9ivZS2a7kMjNLgW1j5YUtdN1fl8SKY+cIKE1OOtxzmHnld0IVNCoarVcMVgl1RKgzH2nXjAVvkEi99kqQVpFI6UNRmVmt9Ez9yAxA5baCJQ7u1IrwESxZ/cmp97j/PECepomicaC/4K5r3ayiCqTFHnyV7qT2aetaq2mFfPjqMNLN5tZ9YD5ZLIlL3xwfk/xD6L61/qoqiOo1ZC1LUL1U4mcNr7zI3/L61cPcEIq4jVxt/DawkkQUzOuMYlfaBqaISiLMhXWRdSeE7VMMlJa6CdkOUBbgOnugFCMhNiQdahpMNHelKht9WkUp0jbAqBucbHNmkFskUFMkVgQdt1Iqd2D4vyEyJUBqUTyohi3WDd4uNMX0aKCHJGXzdJEqLGBnXwfa7TA1jTq3iiR93nuiyPb8UUBDPdDN+tmF01/I9o1bTe2pB5lbn9PSfGkCjbIfYrq+2uk2rQKFTxWCj9t6Z02JTgVhqWkXeq5VeCXjWs+mirOoAGqahRFddDlucrtOlqisxlAsTV2rAAwP/RfGMkNhNZzqP1Dy1ykO+O1rbJEHcRZn4Vop1mFoLV6gw1AFkCU6vdRZ/+U4xYHWHvvlOV+5/bqZ6sI+i5KrWRSkrnvTXVkUm6pyyawgChz1BhSIPrSzVXCbXFM1nNbLXNxZEYm9n1Cd/D1bcZNnu++f+IcAqdr4PndSK96joc9QWucSrx/HBj6gY9POxCJny+Oh07zfj/w8blHJ49RcNz3KCH5errSG8nQCWKI3C4T//k//IYYPeu8kJLkfF1IB5BKYpSg7yWPD1fGYY8PHkkkOo+dLPO0MI4dIiwMKfGPz4IYTux2e6bdzPk0Y8PMelXEw0fmoAgoptVznT3LPPGtvvLxN8+saeYWFLLfQ3IEb4k+cJ1WXJAobej6ITtJobKdkAKpVFvqW+PG6uDunDT3oLamdyvgyTqkWFB0nq0km05DljRpSpVJFyVuyPs5tWP6zD6VdZ2SpzIpVUgv2xpsM+qR5TuEFigBKUUucSH4ld3Y5UsuqZSybduelrK0HCj7LwqFbHrhotepwC/Te2w8cEnplL3c9lq7o2KzW3e2P6bQOibUES6bBKIGrrUPUAGKYpt2l4FN9i8tNVb39t01plTZ+gJMappL3AWm5Ror+1PL1Ks1T9VeVzBUBv8m7rML+XeRvAaioM423tZTed6ppjsTJaX9t79+9QCnOoYUKwVZuzqyaQ2a44iNAcguvKLooiOJUEu4fV2jldqnRMGl9FCKou+4O5MWS4v8XRSXGKNoAOw+tSBqJQYb7dhWKzlKrexJdeb5t6UZXKGta1fJGt/nDVmBxxaTVcQfUkKV5l8ilgUrKlAolyOqQxa0PhzlPGo5ZGylvFuEt10jv2CE7scaUEFUZQRSjURaoopNd1MBUxG1NkdeWZktN0wDXtWYlHkzklKqKNr7Urm22kCR8v0p25Xm9GUzP7WPBu2bJTKLBctp3mt2NsaLdvwq7K1N6TefIRCpNMRDEHLo80tBczGa+RiSRChp/dp5NBXJzZ02gmL0ynnLMt08V4fUa6hrqp1MBjeK4hRqyrf0VGkT0mlR65bCLc+zpiCpnWjyF+WJDKIZuTYHrvbXSRmExhiJUWJTxMfIMluWeeHj455pWfjTy5XrarE+sC4Lfl353Ycjf3g/4FbHftTsR8M3VtEZwV573g+e3V7y7t2RXgXmsKfXGo3j02Xl908dI47fvR95PgpuN4vpBpTwCKUZB0V0gS+fJgSCh8OI0pKYFL0c8SVweHg6YuepDO91fNcdwQm0FCgZUN2OxR+wqyfY3DOp7ySHneZ6fuO4l7w77LEPHdfrBEPPz6cz3AJ/Oa+8zpEvV89ew9P7xFFeUW4hxZ7zMtPpQOct0+WKtI7oQHUDvtsxeUNSHf3hQN/3qJTtnZB17dHW2sbMbvu67JCWPkpxazMQ08Zay1902q0Ma7UFqaJ2KjCvhR8hbj1UaMC5LE6Z93oVHGcGMzbwTYoEH7PmxjpMCuz3HesaUYXpEbGmQzPTH0tVrSTbw+oz2j6Wdbffb5ISKMltF9fhnS1iKEFCDQgbiKmDwOoNpDTeTNtnRRkrkcGJ2vwbG0MkREkRimofUjveJiLO33tf3FJL4jemRrSuxBWg1Z5WiLoO8jPOKe16Jwr/WyvSagoV0fpy1Qq1UOxvXTf1FLgD1H/L61cPcBo+rg+YO8daF05xbJUGl5UyS7RFkspBasl4ogLtmpsUDSEnyoiaVJdX+Q4BELMQufy8EPYlRSEJhR0i0lJBufdINvA1PbNNZa3XlhqDs7GkFdzUH1Cc9z18roZkA4BC1I0MQlVjUWOGmoi6SwMJASJn1qW432gVeZVrrOZGiMycFRNVg598u2tUk6jzdKpeoDbX2hoSirZh860tQKEBoyoyzF/QUkZ3zBaU+4gsz/dOR5fqUw5Fg1Rtb6XOt8gKUZivemaVVqYIhRtbVMZ5tNx4jZrSBljujExdQ83eV+OWtrRTZnzrdxegLMRmvgq4ygepnXLrut4YmCAK01U1BuW8lNgE4w2oJ4FA5/si6/1IaAEpBe7ndW3Atu6FArpa7rQ809orJdLSYYqtSCCVfWZDYHEzl2klCMHny4nTZeVfv7zyh/cDL58/saKIQPCBp4cdQgl+92FHrxysljCf+WhWumhxk+fDAN8/Kt49dFzngJ8TkoF5nXhQ8DQGVEqk4Pj6MnG6rvQ7xcNxIOF4/fyV43GHkp7drmPoAtYt9PsdQnTcJs/jYc/DrmPpIqudMd3ANM34DoKFGCXRw34/8vwouZ4uiKAgOFIIRGG4OkEIEe8ks9MMWvPxQfHxSfD8Kvhydfw3P/PcC3ZGMVvH9XZD9ANPSvNoFElYwntFiJqUYFkWogjc1oTrjqAhBktiQOgOhSp9YGRpkhoLuyh+4YhEedaxMHIiVTYwFvtSLGd1YnKzITkddMdv1OcNpFjTT5sMoOkC5ea8gwCRtqabNd5xMbBOEzKBnSbSPDEchmIvIxoyEyly08mUEjZZpJBoWfRwQv6ScRWSlAJ12+Xu5rXjjGy2LaYybqQ49wo+aihUvUjr4dWcfN2XOTjJMotSmVd/JwW1wEDUYLaKiSW0fkrNjtSwKbVhv6kGSs10pJItqNYrlevbQE8DnmS7X6usmk2m2K/Uyi3IoVa+rsC9HylrpqCuexbp3+P1qwc4qf1v4n5w2KaKLYABKuIh3S+iAkpqAzREoApyaw4Rcsdb2QBS+U5RI2s21I7cRH1b4FMWMC1SzT+raSZJ7S1QHWwqCZ6KXfL1iS0lgiAQsnYEEEJRBYH3jjAv8pryKpN4EZsAWKS7SoZqsHKjLFnYkJatLYp/QQEJYgMgdUOmcuERSmElbU+05FO7r2VTlqAm94Yom7kAPElp61+vLd3pSRpwaaaR2kui5YTruXO3Qe82+10Bfz7XInaUpQKgis030XFh/BpLUY+x8TcN3DTDVrBHXRdUulb8cqnW91Hp67Juyg9Vuc7tm2Rb9+3zZEfVyttblJWfXTteub56jUrKdh+qscwOqt7LRB2LkY2qzE5GVqNb73XVCmTjnLaH0HRgdUJ39R713ENKTMvK+bbwl68nTtcbiMiyWl4uc74fds9//sN7Pl0tY98z9AN936Hiig+RD6PCrzNPUfDQJUbl8CmQpGEQgX3v0B2YURGJjOMzMnl8CJzeZj7fZuZlIkTDMEFYF0KwDGPPfjfSFQAqk2DsNftRIxAc+g6fLCk5LrczbnGMu8AyW7zPXXxDgn6QrNOMUxLdD5zfJqyVvN8dQAn2D098evmKVAbVC2wUBGUw/cjh447xg+S7335LdBZ7nXFa0hvoes18u3G6OqJPdLueYegJ0bLrDEoqHqNjGDWzu3Gab8zeoNWBmDTBg9YdUgmElghj8D7ii31pPrKIFWNZt6rYxKzJ2Uoztn1X9oio+6I0tKsuri445Pb3ygxSAoUmCi52M6U8WDeUeWN2xc4zSgrO1yu99+wOO8LqGZSiN4nZeaIojEhpdKhU1fSIApxkjaloAv1qc9t+jEipCrhKuXrtbu/VQC0T67qamXLMQG2cekf2NKe/6XTubFah4itrXrYS9xXBbS+3G1+bLtbzrl4ytdt4n3JsKXIgV+jRmP7MlrFBJ0G7H3dHoAbSJZRqAXq1t6L6v+Kf7/jrv+n1qwc4+VVLKlMjLKCi8HrjKxlJeaap6GoK5VlWRyqbahvrQOtymcvN689zn5Xaal/I6mzq1hVlG2+ltMAdgMkplPsUSF4PNY+auSMhRAYEsYKiO3ddGQtyDjR3G625cTZfHvPx6ppPIuGJ20DiwqqI6niLE4xQ9BSpLe52EETRAm2bNBWB2/3wtViDlrQdIzvV2lirfLYar7pRy5Wmwgalu6+uBiWLZkPbKinGsnk3DUHbuuVeqXJDtnte7mDTIG2fokSKNa2TN342eqLqksp9rqAu37tqhmRLEBbJAW0ejCjQqlLZsdiM4vxTub9S1KqYPLepVrvk69vK52Ndh0BNq1YnU8W+oNpYgHwtNV4rc9akzA3s6mXVe1/X7L3ovsC6TYQdG+jLTy93dL7X+lTWL9UZN2WEQ0zgQ+DtcuPT65m/vJz4dDrjQ0BKMEbx4enAbjeilOI3v/kt/88Hydcp4AOcLhPiNvH585k/PPV8ni6co6LfJQ5PBh0hKHj38cDuseegO+TbilIdJIc2gh8/X7lZl4d+Js3lOmH1gpID42FEdR3zskKSrJNlv1O8f7+H4FAmi5WTjbgYeDoonApAwOExWrHfD1xvE+vtiosJx8DkBfMEH9890O16nsee+XbLz0Ql+l2Hc6CGPTYJ0D0iBJ6fD7h5wZqe3aCZb1dON8+rG/B0TEKyR/Ne5L48dp7ppOPdcUQk+PDY8bx3TMuCtTOLhZA0MRkkHSFJYjAQNNYKhOkQSiOkRKVcqSfbM942ZAX2tUN7DXpE6YBcBcbUae1yA/4xxdIKo/GA3C2bsiczHy6lIkWPSOCWlcv5Fa0C87Til4lvPzxweOiZXEAqTUwxV98ZXcTINf1ezk+Sv5t6PlmvGVtuLRXbkk8696jJTRtzs7tqv2LRHmWg1LZSGZkhUCXgiHcsKxvTVXxMDQrvRf3NopTeSzIpmpGlpspozGgTc5c/RbGBiCytaE0vBOWeZ0a8skCp2qpEq3zL9veOpW+cdbMY2a/J+0aMW4DWAFl7wn/761cPcH4Rf4u7jVGMcC4/LHngQgfWBV5dWY1GEGxGuqSHNtanRBbFE9W+N7JqS+LduVTlfAUVBQlv2tptSVRn1r4PGvvQUhWp9LIpIGhLreTNJ+5RXQVl9d/1usudqRilUsKkbQFSHG/2YfW6a5lp2kTHDQzWl2jX0QoHSxRRh9bVTbZRs7QBkfVJ5EMrNh6qgA5RuvQKCEXrI1IiNDZtAwrZOGwbCiqJEamzV2Q7oypopFU55e8TpapDlEGphf1qc6O4Awn5oaYk2jRrWkt60dJSIBCKJvJO1WaIAsTFdr5brjr/pYkzRX6WOZor90yk7VkiGjPWjiXVpndCZsBU01SiiN1be35aGldU0UwBUrGmH2CDVfVLRD3XDPwK0URj1wRss6XKswu5jYGPgdM88XK+8vn1ymWxXKcl3/PiVN99+57nw8i3z3u0Mkij+cPHgf7Lja8Xx6fzBfv5L3Qs6OfvmJbAKAXjs0SRmGfPb//T9/Rjh9EDPiSC9QiT7986Jx4PI1pIvny5EmLC9IaxVwyDIQk4fb3w4d0OQUSJiDES70I+1u1GP/ZoPdCJxOo9KWZ2wZjE18sZnxJ29dyWwHB44HKN3JxHEBkHzeW0sMwWgNstYDrF+3c9UjqMTlgbWF3AJcnnn175+KDZHzTzsrBYzw+nlZOTWeyZ4DZLVO/4sEu8f1AI6Rh7z9BL3r8zpBDoumemeeWf//jCMjmk0Bhl6Ic9Sfb4KBH7HhscnyeFpccjCaUxYnVoVT6c2xmkNm8rG666se43GLTeToUSkKUHSw3fajBTzU2IDqOh04oQPLfV4VZLXBeCnVidZ11mhl6h+h6BRKVI8h7rAKELSEmI5FGlrYMUKo9jELlTeuPkWxVRsWGbd85/yFoJVJqJVhFoGyJZAs20pdxyUC02k9m80J29qmXepKYHrT+vAUJuFRJb0JoDnQIMRXkSBa01bJJKKrgEbJt9KeeaNst4PyAUin2KdSZXCVRryqr5pdhsnSyjc1qvpnt/V2xAvPvR3/L61QOcGnlniUVs9DvkBdTQMEASBZCIQqfmX9ZtmocwpraYYtM9bO9tgyTLg/bluG091F3ZPlWj8Pz5qjeh0KIVRFRhctOc3QGUAGxlmvm38U7I1yq2auRUKePioOtirjgoFz3Wz+Trq6KwVFB6BfzNiZU2/SmRnX7z47WEngbSihlo4KyCmiY+TdVwVYOxlSZXxqtpYbZBUdQ7WCZj5k7I9UmkahRLpNgiH7GlScqrTd6mVmikikdy+kFu96cNLiwpKiGqlqmCHNHuuywt/1MdpggNcBTUiJL5notaGl3vV1trJRpLG5Bp/Y3iBl4EtS9JgVuyrKMC9JvgvkSXlYmqzcy2qb9ZPlzryjb7W9cX7RwrY5Tq5bRzrldY1lR55iJtZxtFxks5mk5cbjOnaWGxKz98emVyniDyOuqGjkEOWQirFe8ejzwedxwe9hw0HKRnvbzxLByfP38mfP6CWSYeh8ToVj7uJc8HwTBK9E6xHwyHpyMuCS5TLjXv+w673Oi6nmW6glToGPnwruM8eUJQIBWni+WwVzw/HBg7ye12I5F4+fLGS6fp+x1KadaYGIbAMGrGh3egFHZZ0C7w7nng7euNebJcJs+Xi0MPAwpBbwwvp4l/+/FEnyIfD4aHvWLsE4rA7bbSj4LbZLks8PQw0GtHLwXLsrLOgfN55nHfIda8Xn7+OnGdPH/4VnAcO775+EDXw9Brhr7De8fqerxXIBQfv30HQjOd3vJ6jit2WQguEpMBPaBdwkdNZ/bclsiaFNJ0bfq7UpLRKEQCI0BIga3BIantI1Ecc2N5Eo015W415eamGXDHGEgp0imFInKZJm6TZbpe8OtCcpbjqNgfB4I0KKOx1uNsQncZnEgBnZJYF0hCoGTeCyE4hDCtb1lbyaIUEcS8d1LIdimKbcZaSxMVnaaIEiVrliBrJrdCi9T2QgtOU2wq/yxdKJay4sHy7moVMlOfQfnWnFBlJltWCli0TdzuaAFGoqQW72KNoi8tw3YrhCnpJQFNdiDq4FMkqaGm+zBXtjR+TU9tvm7LU1DAUHOSf+Pr1w9wKlIkZeqSLTSuoxhSBQ9VfU4iidoQrRylCUqL0RdpQ+zlPVs/zFLtIWTeBHfRN4K7kmWoIwtEBWDlx1kkVzkNqF1IYzmnHDHkzbBh58Lg3OVf66KJpDJri/tdQZ202+p0UxnOJrZBlpRj1BRfY1liBZACRMwK+QoaUnVo+ctan5OK9NM9DVnueU3+lrLNCqLaYhcbuKLiTMomrHni4jRFjQJyENXuQhS1Z0t5ptnfUxBwORdVWIvYqibqWVaaLX9Nyc+L0nVZVKq3nHFKrT+fQlB1UJGqRyopmXukWCMeBaV2D1mMYTNkxXDVz+R7FEun5y1FleoOEIZqlOv7pawOJQMLaj1TYznD3bnFSrSUZbIFCHc3hu0b75jElk/P5x1LNFw/KFLWEYQYuS4r1gcWa/nz6YKNkuv1ig+Rru/L+s/PQBvNw+MTWgl2g8FohXOWOSRIC//y+oaJjtPnP+JOJxCJ53c9vVr5uw8d2kC33yF7jTF7Xi+OefK8fb3R70dUjLj5wjAqurHLlT8io7Djsefzy8Rys3SdYnUTWmnm68LXzyeEMsQkeftyo+tXRILOGD58HHlKhseDRuHY70e8i3ivuCjLFCN67LGLQ/pcrv38bseX08xxN/L33w6MYuFytvz4Bl9+fGPXd/z9Q8/7Z8PvhoHvv3vk018+sdqIDZ7TdQGhOHQ9l8uNx2PH8fsdt68n/st//ECMKwIwpsuzmBI4L7hNDiUjKMU6e0JY2I17IGCGHdfLjHaBy+SJ3tPHAG7ldD7jQ8JjCMKA0iAV3lni0LPvNbpTIHpIilbVJ8raE5v+JoOImv7PeznGhCKiGjMgCG5lN2T68zwt3E5vLNcz9npjP/a8ezYIAl9Olm/eHzloxXVa0EZzmgPS9BgRCG5CxIA0Hd7n9JVSOo8AYQMIlWuuGz0D+YCUilAqcZPIFYKJREgRFyJGyxZYZstdZ8ilthdqDbVofqkl6RvoqHY7x8HVn4Vf2KnqA1pPMbH5qsampjoTbGNbRH1TeVVTvLFssL2lnFsFZ8X+VJeR6snG6p34hUQkm5tqryp8UiAT993b/pbXrx7gRCGKbiN7wzZ8kPIwqtNUsulF7kFAzRPKCooE3M8UyQr1DQZUsEERBrfJvzVCqYxSgw85cVW/s66lUABCHUdQV3djUOr7m2PPrEVDxs3JF91Jqiky2gJriThRN892HvXcEiXlICsQqnOh8nlUrBYRpdqBkjPOF5LKDc3OdSulbiX05RrycdtNbNeQWs59u8fkQxFDfl8FMtswy3LMCkwL6KkVQzHeAZG4gcByCxo7U6OduilbuXMBuUpux5ZVMFBAS93wtbdqvh2yiJRrFCZyJ1BoAEJU8CWqJqeuiQ0sbqRV6XhawFVOo2X2MaSshaCsDdFEw7VsfFsHyLu9cXcvInXgYmaCYoukE6klovK9roqeRoGTqILuulZSAXWhAGNRQPxqV346nfjxy4nrbFmCR++OXE6vSJHYjTtijHgfcCGwP+zZjfsCuCKd0RgF3i1cQ2BaF+bPX3FvbyR3ZdcHXJB8++7AftQokQhopkXRizySYXq5olLE+xX7urA/9Lx7HlG95rZ4BiN5PBi898zLyvff7LhdFgQRYwwxeD5/OZEQ+NVyu3msUFn7FOB6PvPQH1D7B5L3KBnoOpAy8fnzCZcEu4cjIQlU53k4HIg+z9D63kT2o2GZbrzdIjf2fLWOp6cj//Bdz28/GIxMdMPI62Xi5gE98mrhv71NOAvHeeYwdPzv/+EbjnvB68+w6wXTJNCqPKMI87QihWI3dljn+Po6M10WdvsdN+sJwdEdDF++Thx2hg8fHzidJs63G5/eZgKSJCTOCVKUrM4hhGCJkbcIIuQyf9MP6K5DmZ5xHOlMT98PKC2RWtJ3BmVErRjI6ymCFmBUGf2SEouzaJHoJNyuV+brG9ze2KfA46Oh1xKTIjZFfvPNA8TA5e2El4ZpTSweRi2YpoWH0aAUuaw7QZ1/l4TEx9im0RBrJ/rMNsQUCZHcj0kbokhIKbc2GcjSnT3vd3EXqFV+FFIrl94KM8TGECcKEKjGO9uz1imYGpyJDQAVAJjPQLT9XxUJgnwPK6O8mYTyuRqM1WC/BOEtgCPb7dgyFNXu1+Cm+BHRfljsBcVWVGVs3IpGymDZIGp98d/2+tUDHFkRdnVubLlgiOWmbi2pWylsQRo1JvXNJwgEanOaFZFkSV1+R1HjI2jkfkvlQEH3W2OrJFKVzBa/WEHB1ptGlAWeAXH6xfU0BNNSBNkYCBIxbMxL+1xz6iWyLptoi6wrai8aIrgb/CZaaXBMVShK26w1zK7N5yoA2TKt5TuJWy45bXOlNkVOAZclqsu58XxuooCZxhI0wUp1+6k57A0V1fJq0a4vlZSMJH9/uz/lXgpRz6aso3LmMooyQfsOPJcNLOvNokY7G9gLxUBlgXBqUVA+bdkAasVHiUx5tx4UogLD/Oxr1V5M2wTeFoGlWKjpYmSyuKfkz2V5Rvm4CpqhrGm7iupqBV7raYMoRi7epRfLGirPWMStdTxswFrGjeeJIWJ95Hqd+enlhX97eeW2WEKM7I9HwnRD4ZFasrgJUtZ1aKPY7XqUEpA8Agh2AakgOpzzrNPK29cT09dXnnbw7WNH1yl2+4Gnd3uu14XXm2ZNCu3g5e2EToEuWrSUPD32uGnimgbc1aKUpjORTktkFNgI07SwGzqW28yyrtzSjf2ux/vET29vuAC74x4lBc4u/N33e7SfWF5WurgjkQiyY5oDl9uMj4ph7EEK5gjLfObduz29Xtk/PRKjZ14dQWtGveNb4/hf/3BAxxPr7YZXA+fzyp8+O05h4OU88fW08G9fLG5Z+D/+/sD//vtnvn9/YOwiTAdOl4mUFO92PZ2RLMsCPjIcB7rhyOfPr/z45cx+6PJeR6CM5ngcCNbTaQHe8ttv9nx4Hvj+MnG5WX784StqdTgvGEVi8ZbXy0qMEp8EQhlGtyI7xeTh59WjjUYLhTGGYeh5ev9IP450Q49RCilV1lwJgS8DvnzwrMuVcVC4y4k0X5HzhU4kTKcwShK94+28Mux37PuOT68rwgcWCcnsMEpgF4tSucFkyXuhlEDKnIKqDVARshVKoKoCLu8Xn2BZFwbVZb1ltdkpIqXewH6EWKsHy7HLmM68E8u+TyVDUPd8reBs4KC+L0GbXC4qT1I3XD3/WoGawXYFMzk9na+34qi4mWi2Iczl8CXFXcf7JJELBzJTpXIwlHz7+npaTUtZj1vNcrN1m/389yoPr69fPcAR1XlSKb3yGMtTFjIzKVmvITZnUxiHLQ1Qn07+eXXq7X2ihEAoasnL/Rj4lhoTZd6PjBvNSJkoUlZXXaT1M7ncObW8Z3bujeNozkOImoPa2mXnSoba8bIeKy+m6ngzrMibT5YW2nXFVyAgC2jK6ZWSarkDFxWNxwpQUh2kVpT0ZUNWvlmSWhVBhZcVXIq2A8rtjQGRQBcnHGqo0UBOuf1pS3pRrlu0+1l+03RAopx3uRd5cZRKpPzlMoFMuQ9MHkmQS9sTqQ0LpJ53OZFUGJ864iKkSJ2Mk7vyVphQnvVdhUUGFSpHhRVt5pxMBn7Bl0/JBvaqhiiVxd7YnRq5pYgibABbCKTQGbimMiFZpi1tx0bBt/EMdQ+wpQGzhiY1Y9Vk6sVYViYxCUmMeQp5BuMRHxKn25VPX9744fMbb9MVug7ddTztdwxDj3WOa7AFWOf8vbeO3hiST0Qs0sish0qO6AKCiFst1+tEdJZOeI5Dx/uHgd1+4LLAD18F1o+8zJ6Xy4xfz0Rn+ThGBIE55tlhvQqsk2V36JAGiA+8fr0RnMf7hFsd63UmhYjuDYOCYC1fX2fmyaL6ATtdeP+w4/H7PSlMnK8XOjXy8tkRhEGvmrdbxIsd2sDDg+F2W3j/0LEbJB8+HPn6OiGEYvWBx+cPmP4GKXHQPXK58uPPXxDjA5NdGfd79L7nAcXX1zPfHQRfe8fJLwQnWC8913Mijrl3ydOHJ+Z5JgaY7Mq6ujzyQSimy4QUHbrTCNVxfOhIMWH6jod3jwTredgZtMljIfa7gceHPddp4fHQ8eMPn/n0w4W3y8riPMYl5ihYoyCJgF1X4qDYD4qnhw6lc6sN52eGsJCuK9eLpOt3DH2HGQasSzgvEEpiJIiwoITjfF5ZppV5nUgkDp1GGoEZDS5YDocd+92ez9fA4mBUiWMvWILFofE+cBj7PNut7E+ls+4mazGLXUl3gW+8YzZjwFfb7SNCK/JwUV/G54SskytNQ0ULBrLPkEV4nFIoNl9SfVAq7FUUxb0IQR3jcjf38s7CFZuXIIVQ7O0mc6hVsNXeiTIOpViLzfvULs3FcNfeZxX45L5d1cwUMFYsW1XnCSkaOKvTxGuOIxMBG7tdgVux3Ju9/htfv3qAU7rDtegbiu8W9cZmhydkZjZCERnDXVpEFMFYXVCljGnT3qSCQuUvGIvqxPJp3KVYZCnbLctS1jROASFtoHYDT1R0sCHsio7rkhTbkkg1YmcDMZk1yH+vqQ9RLxXq7slIX1aRW43Iy8nULEx1dNSUnWibVlQ+QMTcCbSxEfUaK3irkUc5UmF8mjyp5YdFu7aatqv9fjZ8lcp9bx/OzyumJniTIhbmbmPlKMBvu1OyANNtyGV+lrGA0Pz9oVDJNf2dAVs+Zmp9yEVht+6ASkwlSKvdlQvj1qjbAr5bc8ZijGJoBiW3m6/znCj3plxLfTYN3BRRs4AkE6o8gwrWckv+O2Yt1c+WVJOozcPKl8UN8NaXKLetrdOiF8p4OeGdI8SIkgq7WJxz/PD6xo/nE7fJ0Q2Gp/0zQkgUMI4987KwritKa0LIaTLnHEpIAonFrnRJIoXGx4TvJIuPCL+yOsv57cQoBP04MOxG9PGI3A38+DLxKiCFiFsd8+3Ex32P6iU7mcCJLHA+XemOI7qHaFdUt2O9LVhrkToLcfEJnyJJhrJfJH/8+cRpilnPEgKHw46hE0yXC9M8czwc+PHrhHUJ2e+YP78xW0EKgv/HPzzzzYNikgajEg/vj9zWhXmemJbce8skx36nubyeWJzkdVk4rYbkJUlK9l3HIGHcG8QFQhAs7zt+FjPRO16+3gjW8tvfPhFiYm8MQ6d5e7sy7PaQTH6ESrPYiYfnZ/6Xv7fEmHh6OPJ2npBEdp0iPmienw9cz5dmg7QUfP/NA7/99oHffHzkzx8+8+OnCz+/nFk/XQi3QC81kUSnYN9rgnN4BDqWeU9CEG1gjTndo4C325nDbqTTihQSs7WsztKrXHbtrKczHb2WOGeJLuDomL1jNypMZ3iZHZ+uM+8Hwf7wQEiC823h8PDA49ARQ2QNmWXpOsM2cLLoQ1QB/iWYidGTYkAbTUwe5y1CaHyISDwogdaZBQq+dPlugamgjdKRNc18HyTcaVBEtbV3qfMaaIpqu7INkekeMNSAthymBoRlq99XQ21Sg3JuotrX7Xg1iqx+Q1HsQLrzpdAKElpAX2M7atCzAadNJ5R9xlbBrGkz6/7G168e4DRQQmo6kjzDKSerhNyGumVxU4ElNXKu+pSyAKojboa/4RRRKqzEL35MSnftw0v0L2QTzW0uvy6vqnWp1KRoJeqhLsS/Sk/V76rTqyM0digPmisXVNB/zd02sRk1qhBNIV++plGjoQCxcsq/xF1EiHfpCEGJCmrflE30uqVb8rm0LNJdDi9RBu/Vo6eycZqwOxX8VYSrheESpNYKPJXOqFv2qoDSkqSUJRKpjEVNZ9WceB78lyM0kbb7XQFfrPdGUFJ1ZW3UHGiL9qAmIzPwLB8qDE+1QDFVCF6u+46DrsxbZWgy6CmpuwLipMh9cIAGFEURHrc1Wc4npVC6A1VLV4XPWTfQYFmtBCkPNVZgBkWgWAXjmVqPpV+Hj1kDdDsvXG43fIxY5/n89cTqHEvy9Ic9w0PPuB+RREz5zhgiwXusc4WBzDoVgcAoRYoJ6xzaDPgYIUactSQlcLdrBlRu4mYdTw9Hjt99ZBkN58XS7R8RCG6L5+2yctg/IPvEg4HOW06LByIPQ0+nwVqP9SC0YxhBCI2dPcvNI0Tk+NQRbCJJzXWyvH9+ZD843qaVse8xvUIaweIi425ktYHXS2RFkHxicZGrjQxScL6sPIwro054J/jhTwtfLisuJqT2vH/3nqHTXK8XPv10IibB4d0RG8Fbz+///iOHx560WkYdORwMZhxIKnIcAn5NPL/vma4r18vK7/7hPX5dGfoeEQXSOzoJ3gu63cheBYKdeH4eCEGgh5F4mgjWYWSk7yBh0VogoiYER98NuGXFx7wev//NM4/PBx5/6vntxx1//OHMl5Ply81hHfzw4kFKFmfpleS3zz2jUXRKMi0r3SCZ3JWb96zTFaNVHtegJJ1U+BAZdOLDQ4cPnjkkTCd4PIxcrit7IzkOPT9eF96WxMe95vffPPKyws1GumFECUkMHqE6vEsorfO6axobQfQB03XFCMfSCLBIG0LCroll8RijCWFF0WGkzqN2oocQEbrPDHiKZexFAQtVu57ugk1ZZQNpCwxTtXDUKDPbozs/1KxZqkFoCaCLvazMPc2eUALz5t6K7arVXeUeiApufjlstTquViyRIqiiO63fJYt4OgooLT4ax1MDVshMb0vLSWohw9/6+tUDnEhu/ySFRIo8HDCvHdlurBJAYQV+Sf3XRVF/UhaYFDkFQ37Qbe70/QJNJa8qq8gqbYyJqMfaoFAq0Lgun6ZVKHOqmo6oiHNL4qcxJOWf7VwTd4uHyg5UhFwUEmL7KGRQVGdCVbhVQVf9SS3t5u6n+Vs8tQ0UJdWRYm7/T73KEsE0ZX75dlm5ztTeSaMpU+J+4FuNc2oqrKKsWPRUsVY93YGeWqodalBRU2Hl8C2FzV21V8q9hTJAha378B27QzVTjbwoPWxSYznuS1wp66zc7HJtG/uVRE0llRRUE2iLBngasN1uYgO2FdikWnUlCihNKZefk9ukV+NU2Ovyg1KCT5ljVcFuFIXJqim/jY3cmjgWytwlLpPl69uJ27Jwnm74GJBaMy8On8B6S9937PqRy/mGt55dp5Bdnuh8vdywlE7ZonyXhJA8URpiiIiYcNYjgkR2guu0susVLkTsaumHHroOdkfYfeASLfNs6eKKSIHLZSYKwXXyxNnTHyQf3mlkhF4bvPMsNiGUzIDpkliXXL6+LCtSSB4ee9waijYrIkKgU4bUafQauNxWdKchRhSCl/PMtApmB0IpVEiYbuD19cQ3Tzs+vd1493Rkvq389POFz9eAMIaPH94DAmV6Lpcrfk28fzxwnhd6IQmd4JwCSicOQ88aZrTZs3jBwzjy7XeQYsBIw8fvnvn80w90R8Vuv+M0X5guK+evJ8ZvHhj34JTg7eUTXT8SQ6AbeqbbmSQ1nRFIYzC9Zkw7+s4g9I5Pf/6Jd+8e8HbG9Htkgt1Q0jGvF/7wu2+4nK/IIJHyzOwcMQrmJLgujtuaOEXBzXoksO/zZPTl68ps4fHQs+slzq10StJriRYr3+w0MSWmBbQMmCg4Hg84u3LsJLt9z23ydDHxjw+Gw5BL/C8uEtbA0A+I5LExr36heoQwrCGLmUkpl4ELSQoQQyDd2SelDdZ7Fufx1pVgILAzCpIm+gwO5ttEN0qk3roapxjK3isDC4TAB4/WedAsBSTcM/9ZWrcNxWwmP9X3FysmtgBKENuQ0mbr7/6SUg0ExV+NexGI1KxFCWzvfGEJ2uOd4SnYqAV0kHuRFUSFELXoYJsxt51Q5sjrZPX74a5/y+tXD3CEVNTmR9vo+tJUj9SUtZW5IJU5JneiyaYkT1WkWZxBARw19SPuHoookntZgEtdkPUB54+I9rMKAKrDpv5esjUaLO+tQCymel6F2SkOp4K1it/rfOm7k2jwhDsAUl8tvVau6z7tUYFeqf3LLEorsS6OvvjueM8uQRs6lwFnjiIyULivoKoq/VrSn4rGpXQKLRoqUaKSaoSqw62xS27at/UNIt1B1OL4a7pF1nsKxJT1HlvVeM6gC7aZUvW+5QiqPXBE2dB1zUg2YLSl8GqYlEdMFDOGIGsQoKa+xHYvC+WbC2QL0BCbpJxa6VTOdzN2mRK+I/CQshqQHFElKF2wyydKQ7IkUnuG+d5u4DTG/PcQc5pGKs3tuvKXz5/4fL4wW4sxhq7PZbYhSaTpEN6jtMYYwzxNrG6hT5KA5modq/PcLlekMfR9j5QS6z1E6LQGPMu8MsrscKTWiJgDl3mes45OSuRuxzg+oJXhYiVx8ayzI57PxGVGCc++EwwEFJLDu0eM0QgpcEnyOi2YTiOWxNAb3OyINtINmnE0pJCIPmHXAMmjBokZBG+nifOU+HJxCK0ZFsu7XYc2HS/nhYTEdIrb4pDS8E9/+gkvNN887xiVY7GRQfc8PQr++PqFLyfPcPAcO806Wy5TIjr49nnP0CtmG7nMLq8hEZBEunEAPP3QEaLi4ek9pys87nsen48o4TkedphhZDwcOZ9PoDzrbaI3BjOOrMtKNB3a9LjbghSG28uJ8TAgBbhpghSYz5agJAnH6fUNpTWdcggMQimSFgipUdHz8d0Tv/3tN3z88ye++fNX/vzDGz9/vXLYKz7u8liEy+y4ucTVRpRQPI4dRkSCc1xt4jBoepFQwfFuL9h1gSQVL+eFmEArxeqvHHrF8+MjJ+tZV8toJMfe0PcKt0QeJVxlQImAMj1rtAjZIWXWYZEE3oY8nyoFhFQ47zJYlbrIY3LQtdrMKAqV06iiBAIhhTxsVGUm0AzZ/uWO9rHZgVCAhaAZsLyly3tTyhVZNdT0xRr8QqdY9z13wXQ5Thv9I8reLhZZiGo3IlVvc99VvfqOOxeRrU11NPe+pPrVqr8s9jBPiJft3DKgotnxVGymqDN4ynHvoNjf/Pr1A5z6mEqkXBsaVQchaqQuai1MidFLp96KpCkUXHaWhdeoSKN4cVG8aRTVcebUSnVYbRGJqsDfFhQUJ1SWfkp1EW+j5yk/b7nLovmpIKEB7ILiY03nFL1QqvRf2jaCjJUhAGIsjk80rUoojjEfdTuHet6i3Y9yDpSvZGO0GuvTbmmepCVSar0iWjVUeWO9Nll0P7E4cdJmHCojVK+tXn0VCopESxlVkAS1IoICpDYminIuMQmIpVFeSTulynZQjAVQIUauxqN8URHsRZr4t66V2qqg3OJCS4uNHUoiG5uaPy/3s7FXKYPC3HAylInfqWDNLVcvRLnuJFpEFAVQUlCydkMVccvjp5BBpUikmKl3pGrQquoHbIpY67jNlnm1zM4SEby8nEkpopTg6bhn2I2kFJBCsq4WpRXGSJQaSDGyLI4OgYqJ1VrWUlUljEZriek0CUlyjuA8wuQqquyAArtxRKWAhFIFqfAJhMliUd3tUFLx+nYiuZn1OuFOV1hWHnaSR5noOhhM4na+4Ncu71e/YlKilwLTdzweBpy3OB/x0bMsgegTPiRMrzkcDTsZCTHxcnHcbL7Xj73g406gk+Dr2XKZBX2n6bRkJfD17cbpZvnNt3u8W5g8/OXTzHS98f5hz3cf3rFfYbrMvPvtI9Myc7usiAhfk2W309yWlfPkeH46oLVkmm8cjiMKz8Oxy2nL4AHN8/Mzx0OHioGukwTvUFpwfHrg68sNMRh8AHFbcGtknS+orkMrEFqwuhltAec4B4/qBG72mKGjH3bM04oSCj85jsdd1qQkmVmPJIlR0Pea//j7b3h/PHAwmtEI/vR2Y7aRb5Tk4cEgpOLTxUEUxGiJNjJqxcMgOQyew05jlKLrYPaRyy1yWXK157t9ZuOlNtyWFSNg3CvGTnE89NgEqlcs1xW0YbfbgdQ4LZBmaNrHhGDxDgRoIYv/j6AkPuX5foJIioFpXYnRo/sBtzi8XQAFAiZr2fUKuy5oN2NED1GQUg4spKpBtyR4j0gl8CIzK7njc1X31aC1CHerTi/dpfmLLc62eUuM15k7ogQtovkPWgWWYAtmsi+swVgFI9W+bO+/70FPtYcitfQ+SZRMSWr2rPqzFtCXz8piL7fmuf8+IOdXD3DyUMR7vUkBOQURl+eXH3BjM7Y0TH5VqMwdM5L/LoUsot2aEKnHqO6pdAgReXZJSlksJoUgFMdYe+wkWVmBTQdRtTRULURZzK1aiVSEqyU1EjcdTX3Vc86li9nxt96RoqYayuytcsm2jpzgTpdUvHwDBBnt5WuuGqR2v1LblE2vlFLpeJmvAFJJG22fq2miXAKcClDITn+bn1TZF4qeiKwBSnWab0UvGShUhqaxTImSZqxAs1S9VTq4OPM8v6mkNGvEIbbrymm4HAFV0ALbvU8x64ZSeY5VBBhTjZ5okUwV5cUSadWmkYLKRnGHsvK9r40ha/oNQYsGharXW0tMJTGF8hi2Z58qSyx1FnHfoaRMh9PSdavzzNZymWdutwUXEot1HA8dzw+Gd/uOdz0MWjLZyNerw4wDrwlO04o2hiQi2kj6pJAyEr0nj76QDH2fG8KRY9zoPEZqfHR4G+nGnoeHHZ1UjFIgVNd6eIQIPkYkGo0mJgjOYtcFN82slxm3WLroGNfE1QbU3tALw7JaYkpoIUkhMu4PaJPv/WITShqCX1hXi4+wrp4kBJ3uCUliref8tuBmS0qJUcG7XYcQkn/9PPHjV0tE8fikOXZ5vb6ccyfg69uNf1rXjI2lpJeSx+cB3Wmur19JQvLTm2foBUM/EJaJy+y5zguv5zU3kJQJIfMaMDKy6zXJK6KA19PEx6eRp0NPiDNGB5Kd8SlgtEEIwTffvmeZJs7nEw+7nuW64tEItfLwuEOnyMdvnkjJc/n0hiJgzGMW+u46DuOOvh/wPq/Jw7EnBc35dKEf+kzKqhzsxeB59zTwf/y//zP/8esLr68n/q9/feP168yff7rhk+Oh0xgNNubU6n4nee4EOkWkD0w28K+fHEvUOCF46A2/e5+BnQ0REzz7weBXy27o2e87IonJBi6XhcEMBN3ncgitICqUyjdwni1CKlLI4zCUUqQy30lrgY2RGAMyBWIMLMtapq0LfExYF/LstDI6w8iETB47TyShMKbDhwBKl7EsudTax9y8UKYIMQvX62TzPMBTtsA6pEBOfFIqsKreZrPHsmgtfcrFBtWupzu7XKtOpRCNXa8WsXrILaATeVcWNJWKDZLFfmVTloodFkAgikBroSHKZ4rdzWxwERzLenyFIP67jWmA/wEATo7mZQMGWZu9zSSqFVCZBansCS0H2MBJSmxNz/LDThQmoh4v5oZqtX1RLRmG2i9FbKLh9Eu9R3XMbZlKuTnxilDudBcbalcFLcdWtVORdlsnpZEbsargt+/Jv9/en+pFs/2l9gqqmCmRSlfk6vDzsZvDTrFqVzPrlSgCbBA+bJFDBXwiA57GpqRELF2E776xyH+rPqnyRdtsk4r+Yym3FLJMrir3rzWWKhFJhap1XELV/2YhoGr/zrNianOxcj/reYnyz3gP60RjanL/xfzMa+VDfX4buNkE0XWh1mdP+Xk+0yJzru8TsfZAy8ekAKdWPlFBk2zppXxeBdGLWFKcuZVC/Z66B0JKrNYzOwtasXjP+TIhAaMMWiWeesGHvWSeQbob//G7B5RI/POXC799kNiwoEeNXRw2ZsPsnEeb3InZxywslgFSiBx2B4K3KAk3nyl/IxNGK477Hq0k/ThgTEcb5hp9NqxR4lNCqqoRiszW5VJo6/LqkVljdAuJ3eKxSmCtYF4T+7HP32sdNiiMyDOOxsGgpc59b7xHKo/UimA9awS35rU49JpRCPAOZyP/dJr5cnWcp0jXG4yFb46Kv6wBpOZxZ/jyemFadgzjwHV1/OGbPa+3Fbk61NAxzyun2TJH6FfPqBXeRV5PN2YXOB5HrAt5nXiPRqOIjAZcjOz7RAoOKW1m/aLFrddckRQz6H7+cOR6EXw6vxCjYn/QTDdPQmMEufTZR4bjkbW7IEi4eeKw7zk87FmtQxlJSgE7WebLG/24Q2nohSJGgV0D3mWBMEnSdYoPH4/s9gYtFNdvPcfDC6fbyunrhPWJvjO8P2RW0YXE21pAbIwcjObjaNC9wHm4LQv7XnAcJIdOMd1u7EZDN2ouUy6XnlaHEJr3H56YPAipCEQOg+GyOOYl4oKjEwqjNWNvcCG3NYCEcCEDygBGSM7rghECv96QZiSsF6wNxBBZguc6rRyVQcYV6PNsvDIQV5ID1qQEIXi88+hOE4LPzCe67X2RXUve4aWhKzFsCaG0AZMEmTWpzfsEmUGj8jEJn6ofoNi9uEkCq70RNdCk2dximkvAXTv051EVW6fneOdWCmtUDVRhsavtTSI2tj3/f35OMsL/FBn/d7/yjUx1Gmy52XlESuUDCl9SHG75a6PQAqXKV2QnGUuOYxOHZuC0Td2ujZvSpstJ93yQ2LrCirv0Ulm8WaxWGIjN0216j9Jbpq62+n+xBvcpw+L7rKhIuQQzO9bUvqeyFS1X2+BZdZRVVFodMS36hxJpl9PKQKei8TKuokKulBpzUnmWzFAUFqswGq2suxyw3slapp49WuY3uEsdpcJwpZRAynoFDauJcnJbDwrZsIIUdYJ3Vu8nGfAFoVQwlqeFbznpWK4FxC8qGqv+aGMImzS9gc/M5pX7lBJNMl7SVRXHVlFvxiPtSkoKVDagnM8p3+lQwI0sz1SU9VCnfbdUXsr0jUSClAQPISbWEJiWBR8ib9PEbZmROqeHpDQQAqOB7w4SjcdPZ8zk6UPgYTC465UlwR7ojCD0EjlF7JibZU4xsorcLExrw806tNGlS2pAEhAql8M/HQaSCBAVQz9w2O0xxoDWBCGILhAjuJjIKtCESJHoAqlLxBAheLxdMUYivCRhWGNCK80aPem6YpRkHA1WJMZdx7rOWFkaxYkOPzlM3+GWGWV6ZBAQE9pkhxSiwLmADQKEwpMbyp284DpHrrNDLJbobjz3D8zRI7TCSMkh7Dg8PkBSPHQ9IPn0lhscRhLKjNwmzw7Jxa18+7hnDYmXtTjeNfHNxxEZIw8HhQgLYU0Y07Gcz+yGjtPpjJ0UUkmcS3z5cuPd4wExRLqhBwJPj3vM7z/w+qfP9KZn13es3qMULN6TlplEpB/2LNMFoQKDGhCFHXDzSvTg5wknXE6RRoeUeYCrGCVKBozUzIvFRcW6gjEj33yvMZ9f+S/qkdPJ8ufe8NPXiT+fHZ/nSGckNmZW82Aku13HIAAZuN0ig1KMXa5MXZaIwdKPHf3Q4X1i8ZHT9cLhcOTd4yMIhSYgSAy94rQ4OikxI8xLQCrB2GuSEKwhryNJIklBSJ7kPUmWKjsbcusG79EiEJ3FrwuuMD3XVfB2W3gcn8HGZut1oVRkKh2PUyoN/zJ/WUpj7lo6sIGiBClGlJSZDUJsKauSrZAtwix2pxgSUQJtUf1GooCOe8tfHFYxaKnZ9q1ApYKpClZkElvQWyx8LQQVhQauaXHKPYA6c0w0fytkzKY+/s8y8f++lyhw416VnTIYqQ6ypYPgjpvZFkBqn6laEkHtGltRcC1+qxnTvJJk6RHzy/Np2otW9rzlV+uJZN9VqlrSRhm2Eu5Cm7bqmiSbY0dkASiFPRI1ameL0CsjIwqaK5CtgB5BPZFacVTTKjnVURdpSYtRBWNsmyYpUvJlm4gmXFPltER14A0rFdVNKixHqXKrYyGIVVSdK7PybUvtvuf7Vc4p18+XRoL5t6o1zyrnnCg/y6Ykz5MqIK6mBZNsqalCtLKl6GgT4iukk6n0qhAlZVSutTJ1ZQE0QL19VtImvotyr2OzT22NyrpGoN3XCvqa/qkxj3daM1GqFgrL5n0eKOhdIATwKXFbJpwP2OC52ZXVOip474PhOO7oZC4NP+rEUTvidGaUnl5rrnPAr5FV5Lb4WRvVswRIXvBx1EgiJxc5uUSUiSUIvFJEIeg6TXAJo0GrDtn1aK3QOgNco3UuGJAKVO6fkkj44FiWhXHoiHYhWItPNjeG847bYhHKYN1CpzUqObxPTM4zGtF6DO2TYtAdIiY6qVkXR7frwXpcEVKjFN57hOkIwRHWFSElSqpS+it4mzxBaWyQzLPjdLH5XseITYZ//bxgdMfzQbMGj1Yjw6C5ToHnw0CMK1/XBXuNyK5jmmdMPzCuK4dBMKye22S5uixwjTpxfBhRMnDoNdFNrDaijKXvFEpCHCR2vqH6kdt15vRm0cKSokIbg1EiA8DDkdNwwq8+p+gUSBlxznN8OIBO2OB4fP9ATHnSu3UB0+fKH7+s9I8GYyQhzhATwWXm+/j0DMKjVA9CsdqAURqIHI5HgktMWuPSiWcCS/IcHwZikpxvC8Eleq1zB2uVcmWYNuwR+b6liI2eodP0gyJFz7pKhJF4BOPxwOHpkaHXhDAz6iwql8mjvUNjmJ0nRDjsMlN4XkOzM5CwwUMCrTumZWGxAZE8fSeRwhEJYBLnZSEIyeo9X9+mDDaQhODYKc2yTPSdIglNJOKTz/YqJGLydFLk5yZlmYmVg89Q3ifIwWqKiegj0nStTUVldGI14Wz+LRuGYgOqzyt2W1X/Ut+btrCs+aca8NVDVb9w59tSCahS1VCK0r5CiJIJqZWa1YJVe3qXDoc7e/m3vX71AMeL3D+mttdv5duipEZExaLFceTgjFCdXIl2a5KkpiCkKOVNVSZbxcYt/SOrZ7qL3O8cU/lzQ8GFkkt1PlHaRK0l0o/E1gJctt8XFoG0iWHLMTcAUs7nHowJtlRVudZY9CKlryZQK7jEdnqxLvhNG5LqMbmXnd2VeZNBUxK5mFzVTRFpmyDjzXJ3U40kZLv/qEzP1nt5J3ppEU2TqEhRwMm2YWONYCqzIXJvn7udT21F3lZDQ6+p3Nf8/hbT1OdZmb6Uh7DK9gyL0Lwyc+3z+TNt2nB9ZuW2S5Fz0fk9Zf0JkYFdy4WV3HckCxErfVfuYYqJlAIpOkgWkTxuWfAhkKRgsZYYBafJ0/eG1VtujpzukBLnc1+PXPoZcG5hLyWdCAjrMJ2g6zUxRJ4OBi0Ci/X4lEghospem24LUWgmvzIOmk5GPowGJzRnF3E+4ko5mpGRXTeAkIy7kZQSyhhS0eikGPJgTgLzYgkuV7gM44CQAmEMYV3w3qOtY50WhFDMzrGsng+D5CATx04yCM27UeFCQCuFlio7awFaKrpO4qJnXn1eX0qidNboRBeJQrG6hEiOYcwTmz+/Xnm5WXaHI5fZcl0C0Wdx6thplmWhUwYlIsEHpsWy349Zx6Vgcg6BwEVYnWc0mq5TeCKrl6xXx3n2GCGZPUw2cEy5pFkkmZ367YbSmugc0vTZ6UbB+ToxPEoupwVn4XzLAzSlkTyaPu9Y7wCB1obj08i8rowHg/MGO13ZHUekVOweDpxPucHfdJs56pG+05jkiasvmg7Pbtezrh6CyPO6YuXCA32n0Z3BuoALgn44oNSA6Xuenia+eey53izni+Ox73E+pzRDTIgoGIzBJcHL4vjp5cLDTrPf9YiUsIvl4bDLFVZXy2535GAUY1pRbiXGxLQGlqBIYuQWFJ4Vow3fHHqmEHi5OULKDGivs2bytjpCTFk3lgI+eJ57xcO+53y74FaL1hpnF7pxj4Tcz0co1tXSdx0yBZSIpORBqWIxI0qBwOV0q9D4EPJcLiWp/dhr5WqMHmKeeF7FNa2Pjqy0CeSu+Tk51Ua5iJxK3EBKtnN1nMJm1IotqlXGadMT5lRTtayifax+qFazBu44/xbLV/+4fU8mnqqth22Mz9/++tUDnGzoi4PNTzPfVylKr41taGCj9EpCsjkdyjGKOp6KdGUdprmxJVVwVb6qPMeMTmPxZCLFNmY+f9Xm4aqCJpLagqCAifrN7fiJu5lGNAyT0xx12rQoJc+iXSJiuxf58BUC5Z+H2tMgv6Oo4kVZnBUIqO0eiQp88gLd5nllkFMbHIqSUgtFD5IFxhkYKXJlQKZqK/NRxLZFQ5Qq+1U1Q2nbZBWMbAVSBcykCiBTASr5Dm8VBvV5lbx4/XeqrJ64AyBVf1UjIlGeS2XO8s2IbMxTogKZcv8EBWTV865rsgKUXE7aupbWvHbDVI0jbOnAVsKfcpff0+1KdB7vHSFYHkfBQQcGZXMDOJkrm6SSTL3lqQetDF+WxM+z4LJGPl0C82WhUwq9GxgPHVJEjIyoFOmlplOS8+q4TpHjoEg+gFR8OU/sd3tkCggCBEevO66LQ3ea0Wh88OyMIOrA7LPGQiYYDXipCKGkE4UkpFSaGOZnbtcVN690/QgxDzqcrgvOrTjniSnhfOJ6vjJfL7jVERCcYuDQRzqjeNwPdL1A2pVOG3a9oTcKu64sq8OnRCTQG40s3y9LajSGgF8t477HOYt3ARsSvVE87kcW61GAMQLnE8EFvA+823XsTR4H4teVfdcTfHZoSmmkUizrig8CHwWP+54pJH54WVGdxJh8j0ejWNbEsub91qmQK3puATdbQnJZcNwl+qHjfFp5O80MKyyTQ40js00ombhdVvaDIHXg3crT+yPnH09ImVOMSkTGXmAXn+c1DbnVQAyeuMaiRdLIrsdbh5sn+nHMDrBoqJRRSGFBZZsZvIPg6IzCLSvLGohuZdzvMP2Rc/Q8v//Ahw+B9ea4XiYu5yuX24q3OViQSuBXjyQyKEnyCTvn0QhyGPnT54XJwXgYUfKGv0VG+YDS5JRo2ZNSQfSeJAydEMw2cFoiNmSFpdEaHyW5P7HERkuwFuUtCphjbvx3ni0+CJzz2X6aAUnEyBxordZy3GlUXBmME92PiAABAABJREFUwkdPSt02dicllIAYcl8ebTpEElgfcquFkMGhFDmdHEXCy0Si9tapNcCpgRUlBEnUOVilwjcVO9/S1RTGeavYzGYx+4ZWBCJaaJlt1B0AqTrR2lqiyRlE2voIpXLwzeRullpUFWIJGn/Rf+Nve/3qAQ5Fsb2xHVRihTofp3EBKbWuuYEs7MqpqOKsG6NCAyOiRva1ZLg8wL96axOY1pEPlR3KzEc9g3y8lnKJqTVbqt0hsz6jgISqqSkLtupc6kKtIudERuKpfHZbZCVvW922oC3QUM66zn/arrkItkWizmJrCL7ckxi2fgix3Ncq1K6v2idmm5hduh7XjdQYJtGYnV9EDO1z9f4VyJLyeYsWyWxgJKf7CvipWpxUwWJNaRWWpQ1gpRy7lusnKpBtNWZVv1RuyD0IbcLetpnviKEGnEGIcs/u2Jy720pbZdnWtPPOzywyLwtfvn7hahesd8iU2GmJjAFH4uERvn/SiBhZ5pl3hxG7zHz7IOl04Plhx+9c4P/66cafVo8cOn72HtUZpJQs84pUiY8Phg+HHiVibtKnO7xdsASOu4HTvPK8H7gtN1KM7JXmaiNWa5xPjJ1EhRvvOoXzCbme0Elyjop+3COVZl0sRoOUGi8lQUhCGRIYY8Q7T0qCZVpZ5ymXna8zIVp6o9j1PdfzmZ9fTvjg6KTAL47LZWV4GrNA1Gt8cDwPPSkFlEogPXoQ9AhMkiA0zq/ovkMZzWwXBBKjDEl61il3SPJrZAkBFxJKdZgkUJ1BR0AGhFAEH1jWmZdXzzB2jGNXhkYqfCnZnmbHGhOrdewGg1CC6+sEAaZ5pU89vTKcrkuuLAue1VqMiHTG4+3MbD0uwO2WiDHw8RuY1oXr5Ms5Cma7oKViHBSrs8y3hNGB4CwPxyMdgegEQo6stwWhM1hLYUF3edCmMgY/T0gkUkaCt1gHPhrCnIWyxiiGQ0cIKyKuKK2IyZKSJYTIMkecXfHW05uO3iQ6qTAfnkkpcr2eeTtNSCP57nfPfOs8ozHM68rp7crzLNkbwddb1j9dbMD5iFkCnRa83/dIMXMUPd3jwOW2MHQ9KuSRPFnTEull1vhcVodLFucCzoJQiugCPiaW1We7pwXzYlF2Zuy6PDxUOjrhWZJntR6z27MsM7X1RfQevY85wOgHvtw8q9e5x48PaCmIzmIGiU/l3qaAm7NdNB2sMeFcdSh52noINg/jjRGpVAt0sxmrzA8IVCmBLwFUY0uKXQ2pFR7kgCw1O1d91Dbs+F6DU9NNOcALqdrE8tkmjK4Bf7XEJTCuwXCqtk/lMnqhicnx7/H61QOcOrcoVFBz/7v8hubsMrgRjT2pXEosDESrQmpyLO7EuZs8S1ZgLDKdmkFLdvf1PT5tDhvIE5gLQ9G0OO0agAI6GmgQtay9cgoboGjldwXpNGQu73RCTSBdqrrqgheitMzO13nfILBKjctqbcI1UhWr0fQtFag1YJdxRwFSVayW7hZ9Poe6JXMuNgulZQGi96CwXnlqubPKwZTjtZLxu3Eb9VsTpfptgyOiIYlyxWUA3nbMhkqofSXaicucPszCyno6qQFGWSoOql6q9aGoSLsNwyx1dhW5FGAtlSz6r2KgyMe2znOdJr5+feW6TiQ8x8EwqBw5PnTwbpD8r98MfHgQiBSYJsfFRQ46MpPz/UOvSeFCpxUf+4A+JH5ePUL2XFzWgHVlcN5PL1eePmieHw2nxbLvOw77R+xqWWfLICXg2e0VQhjm2bIbO/75pwtoTadhvXmMdqyLRVjHqDRWDKyr52wv/PT1xOPxwPNxT6cFSSrWxbJYT/QBbx3T4lgWy7LMGBF5NIHBSIzqGaJiWi9889hh5Q7v4eS+kpzgh9OCjh03H/n+2NOtlo87wTovBC3pOo2QieADu35gNx7z2IjcSAjvIyRLkuBcZLWefhjohUZowevsSCr31HE2YUPEB4cAlO6ZkIgkEa6kIqWgM5qQBNZlcbEqVujf/vzCaYnQDyVtmK/ResfDaOh7gdawOEghj1k4nyYChtUrLjfHzV3ZHRRfTyvD3pBUx/nm6XtBOC24oBEEtBZMp4X98YHuuOP09cL1FsmjMBzJJ54+dojo6XRCxEDXa4J3LLcZ2fe8nK44m3CrR0p4OnagBfvjgZgSUhmiD6w20HcjojO4twtjmYnl7YovXUC7ccf+sAfZ4Z2nVwE3TcyXC72RvHswxFFjjEAbx8slEFaPFomjSnx4HNmNGt11RCk5L4HJwhwd2oMDvITb6ui1ZAkCGwQRxeIisw0l7SNBaVaXcM7SD5K4XDPrYPasHkQIJBuQUuNEgJD7e2XHHTAGjPSMsuN6m7msgv3hgHOOEIEQSN4TbxGhNKuNuRM5CdUNSKGQIuGDz+XjMaB8ZgxtkMQoSSr7JFHSUFnjWOx7MW4BoIzRqM1sU/FDLQmRCgFQ21u0diHkNNWdt0nFf1Rf2Bqt1oAu1WCw2MS4EQup+ptm67KvFcVWbrVYf9vrVw9wIoKQJKqWeBdftcX8uUqqNY0LAikUoZY9A1SnHvMDrR0fc0Ylq71FayiSF5IupbnFZ2ZwUYS/tXpG3IODdOcUBY0DzOi5jn8s11AEjdsJ1uOkUgZbKMZUZlnVtZaKdgjIDaJqqormPFPph4BMjYZsrEEFO4WFkGzpp209i+z/C7Cqc5xCjKVjbunpQH5vzS+L0k1T3mG7VHZbKPdMiHo9m1ZmmxmVj1O1L1WknDfnJhuvHa3bNhWyPc82DiO7o/az+r46mLUku0uklEGIoPbCiaW88q9Sh+Vey5LmqyMd7pGsqJFSuS7K94ZIm2i+Bs91vnGdJm7TFess0zTxvDO82ym66FF4ehnYxcRhcojrnquXKAVdJ/n4ZNCdRKee6BxGQN/DfJs5GInrAqJTRK1wk+I8W6Yp8O1R8Txm4ePpLSBSYg2Rq7VIn0uY7bIwjJlSV7rn1a8sPjAowb+8nJnPZ5576LDsOwFSM6WBL1NAjokv51fO5xP2duP61tPvR7xQ3C4LzkdCCNymmWl1xLxxGRTEIXLogcMDyiR+e8h9Rn68Ok52RctEUFlQ/cPN8RQkj6Pg+73k6cGQVsm0ONxqeXo6YG3CuogeNFLldDZRMa+BXa+QJJQRRC+ZFotPgiVKhNSEkJi95TQHpgBRKLzzdJ3i0HdMLiCUYtcbpFJIkSeYv+t7EoKrFrxdLJ9Plv1xx3G/Y1mypug4KA6DYTfA//bdO3Lvp8iyWux1YrUJFxzn28ySDJ/PK78zH5iS4u000R0Ub0tAB4kRiTlKbrfAOgeS9UR15eF5z5evjmkVXG8LiogSiSndMLs9nXR0JtvEy+sKcUXvA//8lyu3myO4RNd1PB8ST2+B3/225/GpJ/rAy+cry1zCFL/SjwO73kDyKGWQ3iGUgTiz3+3ou4DqDHaamAz0hw4VItEH5mlG7ga60SL1lcOqsC7SK8W0Bl5vE6q3zM5n4DsMvF1WXBB4BEEYPAIR4XDocSFys+BD7lcjlERrw7p6hLPIsGJvkZ2M9LsM3qKzLM5j54i3juhz/xdlBpKz4B2qh4MMDFLgrUdZwSAVwSW897iUB3euzjIMGmJACFDGIJDMq0VKkFpk5s6tDGqApJBKEXxOBdWxQC22LfKLGGtqCpTMAV/ZOrV0qrE7VBa7gQ5R/MZmo1rByz07U2123IBQLBa5FRK3N2adYrPx5cht5FGq7Vz+9tf/AACnOL20lcER8wOrjf1SqYpKsYih6ryPVNti02i0+uArWyEqPSLu02CRUPiHLfIvaHbLiTSaDijsUdrGSVBEtgmqImbrFLyJV8UdQ7FNeU7NeWbBVkHRqTIk+T2ifXdeWJWJEpBzp6RN5yE28e8981WPIUpqiHqoBitoiD6/VeWeDiV3I0oU0ZibGNu8sMaQRdHaIqTGnhRAlCKt1XgFmZkeadsQuV113XhbyXdsz6mN6iijCjaWqnyyAi2yYL0g0XwuKRRwp4ouqzJBdc1k8BQrvUVq7Je4WymyDKzMIxkKgIyJxVqutys/v75wvd4g5i6+u7Hn3WB418EYLR92kveDZl1m3u0HdkrS6YQSgRQsO93RDwahYFACxJ4vn884D8F6ghdcppX9ceT90fAyez6MhsHA+6NAzjN7o3OFjEi4dUEI8GElBuiV5Ha6EqXgtl6hM/zrz69crWCIkdPZcSHRG8F+Z1Cj4RwiTnSoILheJm7XFSc8X/wVL8lgpgYLRbsWfCxbMuJE4iEKfv/QM+obiwt8mhOfzg4bE72RyBDpk+Jhb4gEJuf59HXhKSk+6sDDoWe3G1hXhw95TzhnmV5mtJIYrVAIpJL828tCpwS9zv15OiPohMIvkdlFFqGxskMMCWMTi40kabAIXq8T3z7s2Y87ZmtJzqFVyoJukc2M8ol1CXTjQNf33KaFZcnl6G9Xy3/67QPn68xxHDBqJYSI9RIbyeXXLnK9WvpDx7o4fvj5jOw7Xj6/sjM9p9mjgyHOC9MUeNwpXq+5CuvsF54ugre3wG2xSJmQwtF3I/Mlsry8gkiMg8SUCfWvl5Xrjzc+nSzrHFmt4+NRgzfYtcOGyPfuieEg+D//z5/ZH3oejp4P7w/sD0dIK0IohnGH845lWiFFjAGlBSFaukHjwkAKKY+KwHF8GugWR4qOZ9cjkuVym4nKZNYvRNSSdSs2Bd6+XrDJsOs6PrzbsYaE8wHnEkJodr3mcBy52SKSj3CeHOfLFW9XZPS820t2+4FFDKUK0UEImARXF7BR4JbAwQR08LDOHPYjIqxEvxB9QCdJUoloA8t847hTrOuCsw7VjYUBS+y7nhgtIQioWpoUCW7BySxfCCKANIQAAp1tULGdtZo0pQxspNz+XW2dKIYtH7uZyPKewgYhWsVr7eZ/X8BS47RUSsUh63Hynq1dkct3Fpu3tcCogd72u5QgxM1i/y2vXz3ACeUmh+ZYaOSHKHX9pApytjRAZSbqg94WQ3XmzZcXyq28Uk6piFT65pBqtqH8vmYgI1VR3kBA1ecUFiKmWrxNQdnls6n2MU4gfqk4b9qcWEdUVCaEpv/YQFVFzAU4xcI+CIhlxlZNwaXcdvOXNzdtf+YrKuXUhcGR1Knt+WxjETtvqF22tFWFLbXxXCrnDrnaLW+z+rsN8LRKpAoKS1fh3OZcUEvJUztgTfOVygKhGuCs66P1NJL3oLN+RxUp17CktsMpIKnc9Ji21CV3bI2o7FEsIkcpSjfkcg8bq5N/75zjen7l05fPWOeIQhBDHvKYRacW0yXeHXpGJfj7R4O/nXn30HPY5RJmu1qGccd6s7lqxQdM36E1pLCitOSPP9z45qnPKZd9zyzgfLPo6Hg69jyqwLePI/27Z9Zpwk4WXYS/jw97pBg5v17YjR2LjLiQiKtDK813v3niL59n4ho5rZEoBatQvNwCJkWGMUfeP/34Iy7m0ODrvOBjTspKpdFKEWN2SCGkrcGhEMwJ/uWS+HFe+O1h4eP+ijI7jkKTZOR8ueGsZex7ptmiheBh0Hjr+L9/mvCL5r/8HRx3pQLIBfbjwHy7YpRiGDTz5HBBoDuNDYHXWbDrFX0Hg5I8jppeeb7OljUFkjask8WGEkEjwEk6rbguAdKK7qDrNddpYX6d2I0dQggWB05kMextXkBIkhYoaUim5/PF83HUhBA5jB2vpwVvcvpuXgPeC4Tu+XqZmWLi6+uE2e3oDo+sS8QjWFbLdF04L45FHnDe8c3jjnfRM9kbl2nGu4R0kXGA8zSD0FxvK3YNvDsMaBl4eOi5TpbzElhWhzCKt5vlffS42bI4xxXBv86B62r5pz+98N3zHv27R9bRgLUcHg94u5IGgV9XtAiYoUOSWOcVs9szzTeM6kBEuocj3mr8OmO6jm+/6xjHG8OocMCffp449oL3u56u05zWlS+niU4bjoNiv0uIuDAIidKavuvoxx4XBT9fZxYbMf3A5bIwXU/oDvpBMOoRlGBRexgOhNMbnYyotDJHxxQiPimEUvRhJS43hF3RXqM7SVKKbtDsOo13K/M8M8rAKAKn6YI2I4NKRLmSMIjkUVIQPCw2lDSUxrlEkHl2G0YgO0MgoKSicizOOxKgZG61UJLo2falbJ8kIGIO9HPAF7kjdbI9rbaRbWZfbRNSbVYODmvBTXF2xX9U5jzbQFnYoFRIhFR8RbGPJYBsAOzf4fWrBzhASy2FCh1CcaiNfclpoHT3MLNoKtbnuKHL8n/bPI/KTdylF2rkn2pVT/HYKTMqDSHXkmuolFDWrcTqNdNdyfSWDhK/AAmpfE8q9KQsl1zzo3nhVtBVr7EyU/cppuyY71gakd8pipOv3Yg3SmNbiFUXlGRJaYnc+6OmoepmuO+oW+9fQTY0IXEruS+AqOiCpKj8SXluRVNUS7BFyW+lFGm4hQo0KKwL2WGkSCx9iigbfFNRbVQsiDIjrH20/aMyRGn7UWPoSma7gNhUrEbcNFvt+hK1/LKyc7XvjXOel5cX3k5fmW639rhlDPQqMgbLw07z7YPkN8ZjRMTNK4jEulqEF/R9z/VyQ6bc7n+1DrsEjFgYdrlyp+8M+50hCMXHjzvkNfD/+dnx1QoGLXkwkX94P9J1mpevFx52HXZaUEIwDCMqCcZBcooWbyOHXY91ll2/57/++cwaZWYH5pWhN3ghC6ummV1CDZmGd87hUkAZhYkahSakxDgMSGVyKoiVFF1L50ohc6WdEgSt+LNN/HkJEG7EFPkwSL7fQecT59vMHBN/99AjrWOaPU8HyW12fH27set3+BSZF4/pNO8+HHOjuGnh4XHH5bZifeT37w98vXle5sCyCpYUUM6RCHm9hmJPokDLrJMRIWXWrDeklFONRvTEKHIqQWrWZAhRcFkXkLm5Ym8M0hhsDFjnmOcJOyfCQfPdk+LjhwNfp5npahHeEkPuT3OeHJfV45TmNAfUOtMPOe1iXcKTmEPCBsv3KuF85C9fLqinnjgkrrPLc7fWwNEaPl9mklAomYeMzqvjMOQWGTvdsYQr//A0MjvH2TuE1+z2AzEmfv70glKS/WHgP/3uyE+fr/zrn+F8XXl6PrI/WR6OHbtH0FoX3Ylgvs4IobHLilssj88H7OpxMeUhmZPHrgu9Vrx7Oua5WSLrl25z4ufLjNGawyD45mnkujisc9i3gOo6no4jj8eO2+pZ5hM/XyNfV8HqEta+MIjIh0NPkAInDPPq0IyoqIiXaxZHi8C+E3y+xFyUEkHJwJgWHgbBLUoOO0XXS+LqsFEglETGBZPWPCjW5tS5UoJgJ5SdMX3CJE2KmusawHSkkBsBCm+JUuBkh+oVqnTQjyGWdiVZdiGkJAmZdU1ClfEtNHvYpAV3/gmRmp/MZivzL7LoQ7OP2pjyWgGcyNW3tbnfJn1oIXpL5YcmKRB3YpvKiEMkV0b+e7z+BwA4RTRbKMeaU5HIMlE6FgezReR16JNItYKn4o9avbTpO1KBABUjNG5HVHaoLLiUWtlcdZ1py+iQoUn5dBuBvbEsTZKcKs6uDvHuSlP+n1jLsH5xRtmFts9WjUxDzTX9VQ8o2jWnen1Nab857sZO3WMfQSkPLCxUSwdlhX4DERV/FaFbkgXXlYaF6f4+iu1ZSIqWZTvVdsAIbI35Utm0NSapJI1AyLz0pWjZ57tCyw3gCTaA2XRId6BT1jRnFXyn3FOiVU/dledXJVBt8CjTHfNHMRbler3P4Obl6wurvQGeToBOAaUiYyez4BPwC7x7f0BLzWm65pb4MWEOPW/XK3ujMUpy3CuODzu+vlww/cDtNPH2uiKU43ff7AhIXq6Rf/sauayw04L3IxyF45vHR/px5F/+7StCSf7D373HWcf5beJ2WUjR0BkBwhPWwNgNhBD4x2/2BBGxQfI4BF695IdzZmlckiw2sF5vTDeLVtDpDowmJknfdShddCrKoPWSn3+CdV0RQjD0inG3Q3Ua1RmGfsgdu1MiRk+wMy/OssiZq595Gjt+miPz4njS8HfJs7rID2+5u+z3H/bIXrEunn7X0XeCFDuW1SF1BlPWBmJKPOw7lmXFe8+KZLWBkBRDJ7AIemE4TzbPJDKGfdczGo1ReV/clhtS5rlZQndcZ0dUiqA6EoIQEl4EYswz21IUxOAYx4HTZeXTy8LffXvEB8EyBbQIJAHaGKROXC+eqGCxjpASnQepJN4nhDEkqVnWldN1ZewUq105zys6SZxNnK62BTBzSCzeMeocHLjZomXP6ZYQwfF4NDztYZ0jw+8HlptlnSYGIxiM4DrN7HvJbjSMRmJt5J/+dGH+51d2neQff/+O6znw/Djw/O3A6hau15X9MTdnfPcwoDTY1TP2A+qQ6zvNpInrjLOOwSh+8/6AWyJfhUUJwxISLmZgKUVCmVyBtITEdVmYQ2Auc6NSFGAlwUn2g+RxzE0JU9J4NItPKLvSh4gQCb/OIHLF2XWF1WX7a1LCxMS37wduHQTrCFKyO0h+frlgZZ7RhhTsjOB8XXJ1423Cmx4dPbBg9ns+31ZsyL2Zog+I4EonZYkYS41rymMbYhJ479BdT55SLLP/KGlvUSpt7rV+FMZEtkCfO52qaL4tyzyqD9lAS6zsc5KZxWm2rPxZ39sC2uYhf+G7qHZ2I4D+XV6/eoDT8nlN55GKkLU2jctpqHuhafY/8a7/yTZZWqbt4eUnVrzgXWCeSkolVgRTWYkqPBXbe+/+sqVNqgDrvsKoOlc2sHK/QCp9mIoiOBV9yC+YhUqWlN/Ua2+l1HcaHtjK1YGWuvrFPRDVIedzyiRFKqMEyn9J5laIsdKX5XZQ0oF13EE9z6oyLoLowqHk45d8MImio9nAUt6ocbsGUaMP8pmJxr21TUab0VTvZWoDN2VBk0lsbbZyJ+BNx1Q7K8sieoaiVWr3MJXJv3lxNEao3uVKKHF33wW44Dlf3zhfz9ymM0lE3u97+ujpUkCpfF/2xnDoFN45fny98I/fH/m+3/Hl65XoHZ1UHPYD+53Grgvrqvh210OK7A4j/3K+cjxCp/N/l1XwL6+B//bi6bqOQQmGXkKc+fJ64tE7HkfBo0moZFEdnFUiKsFtsjyMA7u9JMaAs44YAqMRHI4DSkm+f68Rfc9//WHmMlnOc+TrYnidAv1h4OW6IIyi3w2MXYc2HUr1pATLPBOcJaXAMBj2h5HOGA77HYfDEaEkQkrG/Y7oPEomEIFlngjLzOPUcZQCrRRWSKJcuMwzf7wk/pdHwVFDDIHLZebpcY/1kXWxOCmwNpv0zmgiCTdFfMxdlGMSaN0jtCZFz+vrzG7UpeV8TkndloiWhpAEt3nl/dOOwRjmVeCSwnrPMq+5Z05IeCTCdLgQUErR9R3RelzwOJ8wzvJ+L7lay5fzAkkyrYHHThESBG1YQiAKw2wDLkTOtxuH/UA/DMzLgoqRFHKl15erY+wST2Nme79eFkQIBB+5rR5nIyFGZhuZYmJvBO8PA+ebzQMtTWJ47rHzSpgs70fFNUi0kixXix40bvFMauWwGwkxV5X5xfPQK3YjvLye+PGHF75998D/S/wO0QmWm+ewj3SDRpJw88rQZbGyGXsOxx3OKJZLJCzV2QYOoySmgd0h8eefb1yujtuc+w1JpfCzzdat0/g1MS15GrxE8t5IngdFVAofyf1wRMTOZ1SEw2FkDYllcQxC0onIabYYmdPWU5RIn4W1dvV8Pq28PxgijtP1ypfzwn6v0So3mHQ2cLl6vAskIYkpa20iCnu2TC4g+4F1SUilCfPETktsDIR5Zt8dCDHiYoQuIXVHjNm7SVWqqlLapAHNTxVrVBjnWlEVUyTJ8vvYuBqq56jDP6sjq1n4e5Kgage3iLdF69u/7oLOljkRm2+tPfD/1tevH+D8lfOAGkmXW32nzUmkNhG7VjjJ5rBEYxQoAq0KZCADiJq2kpAhaNpSS5RjyAplqc9fZCqnakkSrZFdPfvaT6GyKO1sK+ouB2tjE2JquKtlQyo0Jk8xl5K76d/lxtTvKT/6RXn0/dvEdi8qJYnIzn1b8dstb1SouDtiY2buCJj6pxC/+NqMpWr5dH3PXXJI3IGWFifkeV/5+zNIaawOooAe0bCnoAAz7pZF/Tpx93zrV9aftyM2SXNbSwgQSjQQlYnEOuoiH7zqe0AgdB7wubiVqBRRJXyMPO4NH46GcLYcjQKReBgE3z2N9L3m6+mNnTGE1OF8QPc9T88De50wgFKRh/3I7bbwxz9+4d3TDkOuHLlOC91ouE2e//vHhb98JVezGM3pekUsjm86h+88SVv+8EFzm2aupxUzDDw+dnS9Zj9o7DwxXyy7XS613h97dKeZrgtSJ7596ohSET70eaaRdXw+Bf7bS+LfTpEVwWQd0Xk6pSAGXJiY1hXddXz7/XcMu4HDfo82Jk9yVqXvdkgYY9DG4OxK9Fn0bJMowxIl7x4OHHqZJ4IPguG9YbksfHaBD0nxOHbEGLA2II1mWXPTQK0kQqnc/C+AEoqSHyMPIgsoI4lrbs6XVB5Mel0F/WD48LjjsgYWn+hMx8UL4roglUYoDUNHShp8JLjsPKLP+2t1nsXdsD62dXS5rhx0TxoVP71Zng8db0uklzBZy1PfoTvNGhdChL4zrG8LcvEgXAZR04pWGiEi03VG7Axnb+mfOqbZIUPgtjiua2AWgYdeEWxgdZGPY0cn4cviUDoibMDfRpwP3K6WZ3a5MaCRvJ0s2uYgc148y/XGYyd4vS7Ym6XzGiF61JiZnsVZ/r//9AkBfHy/RyQwpidGx3KZEDrP2bLzgncLwXusC9gFxocdrBMfPz7gPl3pXOT33z1yvlq+XlZ++LqwxIXeaJ4GQy/zc1VC5bSJUtgAk0+8LbnHkcLmprDRI2THaV6QCfYk9sKxhsBOSd4mx3XNAKLvNAeZK9OMzF2KtZH88XViDokh+gzY1om3JTBNCwgYhj0EBwROlwWcYH98yE0w+1zlZUOe99Up6McOO92IUiG7jqEf8bHYGylbQJZiSb8LUfrM/DWDcseqILIWs2gJQ5E6NHsYa8CY/UVtiluNc5KCWJr8tTRUATyitr6glFGI1Kq7qu+r/sP/Tw3Of98rVlBShK9wT3xUgFDTUIL7N1SGJZco10WRWuROSVXVTikVK6X0VwdJd44vsVU9Aa1cu5B7tYyYVNB1YRdSAygbeMifz962Cry2ltj8km2o11ZSKbVxYAVQCe5Kk4vDjgXdV2dd8XxzyjRnn/4KGLXSQIoWSGwTaTMYot1xCa0nTGZ+Cu/SbqYo96jcd+LWv0fUzVEZpgo2Nh1UZn5aqLE96XbPUgFfZYxEBXeiVrJt6btC7NBGZN3poWKpOkgVwNRrrKkzyiiHwkSJO4CdpCT0I0GARtCHyNPhgHYLg/A8SM/wKBEx0Hcyz4CSnq8vV2IMrCHx48uVj48d7w6GnYZeeoZOIFLguOt42vd8ejkzzStaRh4feoa9QovsNKMALQOjMji/cth1PI0dezXzdDC8f9KkmPCrJaERcWHsBgYDy7JgrafvJY+PI9fJ8OXTV3ajpu8Vzw8jwU64xfLxQQMOkxLjx5GvduVPZ09uJCRYrGP1M/3Qczge+fjuiXdP79mNB2RnSECIeQSB1AqpS5fWEHDryny5cDt9ZVluOGcJi+W3B8Njl/jNu4Hz5Ihdxz8+d+A0LxfLX74uPB4970adKfgUeX53YLUhl0rHvBact0DCJsGn88pvngZGY9gNhnVZ2Y0jiw887BRPUTL53O2304pPlxUhEn00WK+Ybw5UHux6u84oY+j2IwlYbytKa4w2rM6jhCBGsM4xDrrtLe8s11tkfzC8Tpcsyh07dGf47uORl5cbcwg8PvQss8c5zRpyjxcZclqHFFmWQDIwXCLBeYJznK1nCQKdPCRHjLDXAkPgx683XBAMjzvcdOOPn974/fdPPPVZqP71FiGtvFwczwh+8+0OBcgUsD4QPOxHSdcJlmA5f77ysBtQPuK0RnQd//Knryyr43e/ecfDo8H0Pc4GluXK/nGPVpIYJGa/Z3YT1yUwdiMpzHzzfGCxkfhyQR8UsxV899QThWBdc4sDaz0fn3eYwTCtjptXvF0sL5PHJwHk9KAn0Q87fIDkLEYKkndYnbj6RIiStzkL1Ped4LkPiC4yLYH9oFBFw/M6TWjdsy6BXuaxKXaxKBHKQE+X069uJSWNcAqiZ9yPmZFbF7ArMQailMzLgo6qjIWQ+DUgtM7C4WL9YyouQtT+Z0X2UGxellWKVgVbQ8VWIVz/TpUbsPVq25xksallOCjbrKk8WiYVuy62oJ8KjvKQ32rf/8oF/82vXz3AEXUwZMzMQPxFaF7eI/7qR4VVaeAo5TbyFSC16dqZWijpku0IorIjpXqmReywpb0ErYLo/lVlQrUBUhvZUM4rilq2XtmhPCldJopD3noW3Hdplg3sVMry/h6VPwswqI48U5qiNI8qjBHlxFtnZFr6rs22umOz6nEarBBb8FvnatUp7BUs3ed4U0n/NHH23e9q3xoaKJEbBixAKeth8jHKOM98PkX7I9LGSG2y4g28bCm4ci8raioNJLeRCrXIbLvPWyrxXt9U+xSlLaUmJGnYE83IulwRfuWpCzweFKvYkdaZpy7w1GkGpbkujtebxybH568r7/eK7x46kozspedxp9HSo4VgWRwSh0qeIAQfvnnE+4A2kPzKu4c965qIKiGU53En+WGymQ73gU4I3u0NSucuskjFvJOormeaHdO0Ms8eHz1jr/n+mz3vno/833/8gugk33//iF8XQvBMLpeRj/uRJBS3eeaHLydeL7mHjI2KbuzRPvD+3SMPj08IqbkuK9Plil8WZNcRETgfkGR2xVnPfLtyuZ653WZu1xvBrlnvoQRHAb2EzkhksHw3Rh53mp1OuAkenxSPSiONxqaIn1cO+4630xtC9YQE1lmGfmDUCt0bTjjUavjhEui15GG1fPdw4Ke3GY+gk5qn40i6XlEKDr3GaIkv0bQvC9VaT9IajyJECUtuMRBSZJ1mut4gAEUGcuOwI6WADeBcYloC6xo4qoiPguvkebYxzysKiffvdvzxx1cOnSKlhA0BIQXO2jxxPuWuv7o4/tcQSM4yaIn1AS0ll5tjkTBqzcMg+fPXmYtNnKbAl9PMtyMMGvpPVz4+jLgld5T+5y9XTotEq8jD28q33w5MN8vr2fPja05T7UbNx+eBVMZfDEfDdL2gux30ir/8dOZ6S3x4P/Lw2BGt5bDv6IeBkAI+3kguoI3GR8VkA+uU0DFilGbUmmle+N27ntknbnMgHAZcyOmn1QeWqyUpxfm2sq6RXuTUzOIStxmCkMTkcqdlFdlpiVeCdc3r8LpaupQwJrdkOHYJF0SeNSUSx1Hz821GkpAKlIRgJ5aUkDIRlpX90CNl4Hxb8S4QleRhP7J/fGR2NgOqdSauMx/GRAwO1XW4aEkpM1xCdKSUWFxAdgbIvicz14V1uaverVR17Tvfgi5yz7ZfABwRqNmI/F+uiBJNDlEqrO6BT9EyVGaoSjYEOUJscWAZ4Jx+YV/5d3n9DwBwKkuQvWNzSNXpiEid5Jwo7Ez5bNPAlEg8lr+LQqOJ+rvWUTj/uWl07gBRymi2znSisTyiABmag69ANlbfLTNsTrGOl7+7vntm5I59SClPiM1rqTapS+1aywcK61E65ZKvrSL1za1DSnJL16XENt1tc+kb01Pvde3dXD5X3l9HTFShc5aopHYD6oa8Z5YaQPorUFE3l6AVnm2Va6T2/NvllqZ7+R+x5KhFrgzIJ9XYqDyxN7bn21ghIVBZ9XTH5G0ybiHaFbfvrcNYm/aorgOhCabH6YHp/MZy+sRz5/juQbDGlYvyYAIfDoKnXUewgf/fDzdOcyTFM3sjiQHcsvLttzuSX7ieEu+feh6OA8M3R2LwXF9e0cYgwsLj46FMtxacTgvTmsWxWknWwlhOtxuPRvDjDzeGp8THYUffH3l5vdIPI7ebY1okzuWutQ/HHb2GbjC4BKe3iefDjseHHX/8txurdXz6cuEPv31ALTM+Kn58Xfivb5p/eom8hcTHbz7k8lLnUDqPN/hyPqFMh1cRFxzL2xu+NMpzdmWdM6BJMeJTbgRIyMDsICVHDZrAsQt8d9B8d5A89AaJY+gHZiB6x+/GgZ+/XnFJoU12EsYYiILVR2wQeBxKGUjwsFPMPqK6HdYHTpcJTWLsFC+rJ0U4XRZckNwWx36UrPOKNB19r3k4jFxultfZYxEchr6Uvweu84pWknHoQeR+SBGJUJKdERx6zWQtSxAcpOI2TTgh2cnErteczwvvH4c8/HHXs+sVr5cVb2FeLaZTeQRLgnVxPB07fnswnK558Om56HlEzIHdXkumNRbbk5iTYPKB0+KRwGNnuCyB4Fbmm+MwdPzmmwPffHPgx7Pj7XXiv/08cVsj+0Hybz/POCRKSZZr4vGY+PLqePdtx21aELrj7XbO1UZCIEPgcv3/s/dnMfdta1kv+mtVr0b5Vf9ylqt0sqTYoptDjho9roiYGKuLQ+TCCJHEyIXxQmNUEoiJkRgLvOHKqAlec3UOkWx3ojlhcwRFwLUWa8Gac83iX3/FqHrVqnPReu9j/EH3ASE5CYeezOL7Rv/6aL1q79Oe93mf9448yzhfzVhUGaYwCCfQWuNcT+c8LmiazZ7CZDjRY9sWU4BqPIVWlKWmzBU+KLo+0PnIoWtpW4+PMJOGTvSD06+kF5qDcxy6HmsDV2clbQyELrAoMzrXo12gUlDMFbe9YyYzjJT43qJCpJxl3B0cd7VlkRmkdDgfabxnVmhc6JGVJDOCZ03LvnXJTyoHXZS02y3lLPn67LseESyNTezb5XrB1imcT1WgfgA0UYrEcMKkc1RCHoW7MUxz3DizjovVxOYMth5TCJAcvWriMO8O+0QmgJSWb0O2I8bBGkxO1bevsfoh7Z0ewyQZiCMZIUbnnN/+9rse4CTGgmFZHid9CjAIWsUEKMb/RvzApJxe5PHGjkcd/hvF0bmWkw/jiFJH+XI8STMdmY0xgI8PQAIix55J8gRtj4QFA75gAiwJ8Y4akSMdKQbXyrRqG9mZxAQNYGE4kSmFAgkFhOlpfG2siJGtGmlNBndnJhZjLPUWCGRIcGRkw0ZQmP4Rx+s+NC6dNMbTOQ2vzniPxms73tvpFolJQiSG82Z8YWEqEZ9w5ck9GIFNquZius9ypE7jkXlLr6KY7sf0PIy4MQ4v7RHlTtciEk9+P1Q9SEVt4Rtf/xKbm+e8cT5jca9EeKhyzd1G8tbVknfPI9tNw8+9v+XDjSNEWIzdogkoGXFth4gBoQT0lvaup8zWRDfYvssIBGZVzgcf33C98SwqiYual9cHoshYV4b94FWjcfTW8mxj0V/vyaJGFYKrhwuub285NIH5zDAvJEEqbm93GCXwscZIxXpVsd3UHBrPofHUQdF6ydLk3B0Uv/Ci55ODJBY5FyKSKWhsR9t2CJ0hS4N3geDbJKqMqXS+73qC8/jOpkWDgEwrNMlArZSKSiuWWRKMVkbw8Mxwf24ojCH6jjcfn2OdAzx4xcuXG5RW9D4QhUEpndyJnaV1EZPlHCI0W0tpAtks53wuuT1Yegf5rCQKj5aBd+/Ncc7T2EgeNS/uOiyS1kPEYaWkcwFnExgLPglce2+xfUBJnfQ5WmOtZVe3hBCoipydExQmY50JliZylgn2znC96ejwLAyoGNGZZG0URWlo24zMaJ7d9VgHEkNvO6RKPkyHtmdbO4pMoXxkEyPbuuUsF1zvPY/XBWeLgtu7HdY5CgkXD+bYUPNomSrM9m3krnXoLCNbSL5x09DtDywXJZ9/sII3F7x81fHkpkZnilJpNr3ja7cN5+uMq3nBk+uWopY0tiYvFJnJ0ToyrwSF1ImRtA1tV7B7tUWYgDY5Qlmi6MlyQTSgtURS0jqHCxFyg/cB52G772m6SJFnFLmmbgI3e5tcgr0lSI0NgbqDXZ+qyJbzjEJJeg/eRoKR7A499D2rPM03tQ3cmxuuKoXEIaJlliukCHRW0tU+pYMlqBDogdAHTAjMy5wnW0vbQ99alpXh3sWCqlC44AlB0XYtrt1RCI8IkuUsQ2kSmIqCtvdIDVIHJGFgCscF2hF0pGlqWJAFBuuNOMyNKZUUxlRSHIHPmAvgGEMiMICS0zAZB/ZnXPCPuYtxgRvGQg0ZicFDHOUDKR7HIa7432NwfnNb0nwPNyTGxBaMES6+jiphWN0LCSE5AMupwugIGsaHIQXpUQ58qtc4fTDGQDrKgMRppB7i9TFFM6LriXkYBbSj+n3ouK2COI77pOpqfEhHs+zUvuE3yIWP58IIXo7B/Xh+Q9ppYlfEYF44NDIY0VGMJyzR+D1yGNOYoOKI1od9Uil1+kyEccwjOBpfnFHgdhSkveZ+GTkp2x8B4MApjUzKiAplYl7iII6bupJP1yZOLNBw9ONxOeqZRlF4GFGXFINXzkDyhglRn6xEBiAVx+cs7dH1lk9evOJr/+0r7HcbduuCh/kbnKmKu12PRdOS8dH1gf/y/o5fe9kjhCRXAY3lPAPpGnb7hplZcbvdsKpydDBUpaTYHwguNW9UWnN7W1NVB87XJR9+8gxrNVHkaJ3ja8cqE/i55Eu3jjY02L6jsZHzhwsOXcA3gSBqdLXkcHtLbjryRYELgdmsoLMR7x2ZDORZIKsK5HXDl35lw9V5RVUYnj/f8au3gp2VmMwghWR/qNkcLE3TprYGRUXsXKrkaduBwQx47zBKMC80LZ4QJEopIsNnRvN4VbJSnjL0zLOIVnCR56wKgxYRoVK/p4DE9Z4qzykXc9rNAakEu9axtZE2CrRWrIucECNN7yGT9FFw2DYsVzPurQUfPN+x6QRBBC4uSs7KnHZogqmVxFuP1ZLFrODQerrWEXJJVEm8WuUFPkKIHp1pdk2PbTxKQp4bhJBYF8gLw6o0FNKSEbhXaR4tDd/oe2KwNNYSgiCTHeVO8viqwgvPaqEIO8u9dU7dObquw3mP7QOahMmfRIAkmJ0bna55hHmRkQvJIpOYVYHtey5j5K3HM/7I58+QOqdrI96BJDArIdMepQ1adBTS8/JZw8fPHF9/2fBi37PpPe9dKT73aM69+5Fm3yKU4ss3niyPzDN4kMF203E2Mzx71TDLDW89VBSLjJcvb/Fesb6c4QU427NeVJhc06mIsxaEQpol7aFmsZzR1geubw7MZgZdBK5vG/xBIqRBqyG1ojW72rNtkkdQY0XyIZIyNdXsLJrAwkS0d3Q6gek+Bpa5YFYI6tayNIFloVjOclonuNt3GC3obXI7z7QE68A5RPTs65Y2SJz3FJnCBoGL0DlHNSvY1A5XH1ChQxuFjMkdexYiXUzVUkoGZPAYL1JjVzTBe3SWIaXiWMgy6iPTItAx9s0alm9xDIqCgB8WoEPMm3SSaWYUwk8z5+m6M47m7tPxmIpRJuLAh5MpUZwwPEOkfI1c+J/fftcDnJT3G1bbI7CBIdjGQUcxABuY0KmaXGmmnSdcEolHHQ5j8IPJoI6TVFI8Wc0PH4sQCTI9cCl9dcIuTLQdv66kfABBA8PDqFbnpEpn4iumr5si6cC5TM/NSdidQMeAoyZW4zXWhqE/SBxSN78OWDH43hxZryNgPLIqTOOTHNtSjANKQrbx5ZLTcRIQkpO3zKnbb9JVjUzOABjFCJ9GOms6S6a2FfL4UomRoplWMsPLOGKj6YIeqZ+jjie9sHFYJY33+8gOyUFkPNCvJD2Qj5E+BF5db3j25BNsf8D3LZ88b/h//XJk/84DOheISnHbe5qm4/q6IwpYV4pvWhselJ6LucLogpevan714xsWlWE1L/nk+R3LynD9csuj+wucOxB8ctG9vemZrWa4PnJ317Htez7ceoT1PL7IKIRCupbOdZgQyI3g0EWylUGXGTc99CF1kL68WLE59Gw2HcWsJLY957nk7HJFlmvKsqR3t3x01/Ctv+8iCZJtwSe3O7YHwT50CcT1Fts5mtZCBBdaeuuJUtK0FiXTu6KEYFYWFKVGZ4p63yahdxAYJKvMcJbBhYFKalCK0ii8tYTekFWSPNPUhxadVZyfr9lsDuR5xqxy3Bw69j7pjrwLbDtLWWpEENg+Mp9pOutwHm5ua5TR5GWBrD0H73iyd4isBxHYdz2XZwukcnzto1fM5jOyssK6QOsFbdtR5iVN32OjSJ4/UlKVAmv94P+jMLlCZSLZBzSWs5ngwdxwNZdUecQYjxOSNki8j6gs5+OdQxdw/6xA0KegH6BQCpULOgW+8YmlagOtj2gVsFqxMorKZOycx2vJ+zcHnm4bchV492rOO48WPLjMsbZFGdhEx6vGsm8cN9uMy6UgVy0yeFhqZouS877m668Cq1nGai3RWcasqHj7DJ4+Fdy7N+fF5hkHK5AKbuvUHLOPklnnmZ1pnCWJjF3EZAfMTKJtZLEsyLME4DMBza6ZmJsiWxCCwzlLNgvUe4tRiqqMHFrwDoxQ3DSeu87TBoFDEYTEIwg2EryjsxYZIqWKXFSas5ni/RctXghyFXhwXvBq11IoSaVSh3XnPLtdjyHNDVpCpjy9dawKjQIaK7FeEl3qLK4kzPKSsiqwgO07fNfQ7G8wwWGEQPiAV4I2BNoQU4l6jOAtEnBSEYNA6hwpFEQ5TF2CUaZ4jAGDYcrQAiUGiRwlyuJYBh6HeTUOC/qR4RkBSRjmxjAwqsfl3RghhyKayNEyZABTEY5ZFmAyiPsd2H7XA5xTjiL932vqiGkLA8KVcixHPklBjEDjtb89gRMnivN0g0djO4ZnKj0AY7JqqNEeUlvp9o9VQSPQClPsH1iRePLIxBNQdRp0JyA10ijD+EIq3/OnjEsUSaMzoK6xDJphDIJRiX/8rhFgSDESkMfKLU7BCjB2XGf4exjEzdN9ODUsHAHKyH2Nvj7xeH0Gcdy4+jgFIiOAG383gtmRzZqu1bDj9ILHdMem9NHw+1TtJCagIuPp+3YChob028gajYK9owg6CZuJESUSZ5COGRExsrm544MPn2Drmmh7rO/xIfCNZ7c0NrBez7G95er8jL6paZuWy3vnLHK4t5bcmwW69sD5LCPPKr76bE/deM4KSX3ocU3Pzablo08O3L+c8eTG8fSuZbEwFNUGqXNebixdkNzVjrNFSmMIIbGHA5HAeia5vJyz9wK/65nZnvP1iugaykLz0dOGcpYnIeShw0iHXszIckVWGF7d7PjPX33J1aqkby1f+rWaD697XtYai2Gz72g6j5CkMliXHGG190itsN6nlFuMKKUwWqAU2N7iWosUAq0EAoW3gSIGHhjHvZnGo4kyMpuVXG8OXGaS3jtc6zFSoWSajGWu2G+bVIEiI8oEti5ydTbD3TV0QeGto6gqglR0PtKFNOGLoLBB0liLEJLaS57vLMYIhM64aSPP68gmKG7vWlZRoZTCOU8UmoP1uCgxSuNtwDN4spgcmeWDoNrSNU1aDGnFBxto+sDVLKKj56LU/IprkcpwaDoKndJ9h7bDOkVRpPL5ZSG53dY0bUemDCLPaJ1DxMQurMsCEeGu7pkZmJeG3AhW65IQHW9drFnMCtZnS1QOXiRx8tIE1NxzvszZ7iJIyU0TKIzm5nnE1o6ulzxYF+wPPVHBshQ8OE9NNnMDz182lEKgTTo3YwRVpnDO4ZVk11ieXTfktUdLxXIJzaHDGEW1zJHSYIwmOzP4EPH7nnJW4q2jrhuWFxdkswPbu4a7mwPzqqRuezb7nn0gASsp0Ch2tacNSY/koqR3EWIgV8lYcmaSG/SyUJwvJGezkpd3LSZG1jNB6B3LMqd3PXkhsD0YH8kE+L5nrkD1LQLJbR3YWUndeoostSQpspxtL1FG0O0bRLDkEirlWRSaLM+YFxU2M9zsQGoQeDKV/IqckBg96BIVw9wph+WwPE6Wo66Aafn3GoAhjIx6Yu6nGTemuY34+iJ4sjMRJ/NzJGk/x/l83Pe0hc64xh0IgCiYANNvd/tdD3Cmiz6FzmOwPaaSGLpsHxHnVO47wNFRYBwjQ65w0JvEE6+cePTFSfb/TG61Y4leHMaU0LA4+sgMn4+pkGOhXfpgarQpxoA7/uGo03ldExJH0DCIzCIn4EUcH+oRa09aF0b2YlTSi6NvwhDcx27p4+N9Cm0Gp3Am9mS64q89+8P1FNODrwY/heR+fKzyktNLMOiZxAgtBzgUSTqjyOQ1E4eXUsixqmts9TCc62tJYzXRqBEIgzhvbNguhgsuwnjFRmZJkBpPpb89VplBFIGxdmtsocFpE9GYxOx3mwacI9gWgif0Hu/TCvVFuKPIMy6Wc9q2Y7vfkxlDmWWITPC0d1SZ53JVITWsCs0X3pjTt4FoHetKMqsMdWNp+8h/+/odX79zfLzz/IFPr3ljmfPy4NkGyZObHffnGauq5K5Jq8DzUmG04XKZcXm2pI8e7x33zy+ByG3dIoWisZ6s6TmfKwip940pND44kAvmZzO+5b2WJ0+2fPV5z5ObGuE9UWo2+5a6C+gsIxJxPhxXgjE9Y0THoszJ9DBVRU9R5IiYvstaBz4gQmAxy/jOR5ovPMj52kd3aKNZ5CB8x/kiw4eenXWsFyUeyX7X44PARcFdCzFKnDAUuQKtuTlYirKi8Z6gc3rrUS4QjWHbOfK8YF4YXDNoN7ynQLOPGu0EuVIgDFtfo7Ok65FCoYVBVzOiSMLdza7GOcgLQ+880Y96NMFhXxN8JMtzrLU479Bacn1w/JdnkSgtzjnmWWBvQRiJs55cgLWO3cEym2kuljlN1/PovEKJyO2uQwrFIjd0wnEgYkPEe4/tU7+vQ+34trdXrJYFsyyyXpWsz+ZkuUJnnqoqqfc98/WMs4sFwUcO1YHDoUUHy5Prjpc72O9qhM6o254mKJrW8d7DjP/nL7xEx8AbV3MCgnfeOONrTzZsDp7bLnJZpk7Zb50X3Bx6dl3No3uCxncsXuyIIaOYVYQoKS5zpIQQHHXXgdbpmkuJtR4XIsVijY+KPkhurhuMgZbApoeXrce6iJKCTRfpfeTBKqMO0G1TT6hMwRvnOaVxrOc5F5ViNSu42bV0nWdZJCDc2aSDK1SG9Y6Z8mSlpq4dmUwgad9aNnvH00OkC5aHywwfIn2IHJzHWIeJFucsFY537udczHL6AC+2gv2+Z3EuqYoS5z24NEfNc1gUFfsoceOMLiU2nC4tT1Z5kaFQI06ppylLxVgJOtaYjox8mBz54xRHOK44Tyf6MWZGpqIdBnAztL+aikmS5GMgB16jzv/nN/n/fZfXt//wH/4Df+bP/BkePXqEEIKf/MmffO3zGCM/9EM/xMOHDynLki9+8Yt87Wtfe22fm5sbvvd7v5flcsl6veb7v//72e/3r+3zi7/4i/yRP/JHKIqCN998kx/90R/9rZ8dKZD6MHQeDiSjo+G2pa4lQzAfGYR4vCMjOzBqLeKQzxrZDBHj8N/xgZjInqO2R7x+3+PEJ4iJiRND2JQTWo5HVuLkoKcMwwg8GFJcYvgiGQUyChQjiTMmRZID8RDi0/FEPAEvw1mJ9I8QIpnUCU5Gl2qH9PjUjiBGASoJx5AJAB4ZKCYNkBRH1uuolRnXDoAIjAZQyRUPghRHd+NR8BuPbsnDnw0AMhBVIMqTl1UwgSIiiJDOQkWJiCNfe7znCXTJAbwM9uPh2ALCk7xsIgnIBBESEB5snwduZ7q+o55obM8wrpK8dzR9S729od7vaLsO63uct/R9R9O2XF9vuNls2W22tHULytB6eHrT8PVXltprtgdP7wW7bcP9dc7Di5wiD6zOc87XOZ95d01eGLLKcG9dcHVWcLCSQ5/KV9el5NvfPeN//dw555XivMpYGMHZXPHuowX3L+fM55rLVcm7jy64OF/ibGA1L6i05yyLrApB37ZcXlW8+dY5WVVRnV1gbc+8UHzhM5e8ce+cB/OC+3OFMoJv3HT4AFmeoZRK/mZOYKRK/ZuMREhBmWcURqOURGlBbjRGJmfqLDcYLcmkIFeChfC897jAy8iTrQWdbn4mAvdngkWpWM4yFmVGbjSFltTWcnvo2TWRTzaBJ/vAXRNpLDzbe76xj1z3htsWepFRR83WCYLWdAhe7Xs2HfiYtEwtml0v2PWCm8bzqnbs2wRCstKAEtRdx91mizAaYSRn53Oapma7qymyjMwolFbkWpIZgzYJ3M0WM2ZViRDQuDTe//zhgX0fuVzmzIxgtcyxwbHr4ebgsVFwfbOn73uCC2htyLOMWZHTdpa6TqmrszJHEwlDcHYIdr3jtvGcLUveeeM+n/vMY9773BXvPl7x+F7FwwcLHjwoyauMQ2t5/nJH23vqQ4sk8MGzhq883fOyVdw52OsCqwsu13Ne1pa91zx+sEBHx1sr+P3vzvijv/+cz13mzDNDJyQNkSfbhi+/anmytTy9O/Brz/f8ygc33F7X+K7BNgdcZxFIpCqIQVEUWaqaWpYUyxJTlOR5xfryivlqweqs4vxiwf11jhCC1gfKQrG1lrp3lAayXPBi29JFT+s880yxyCKXywqD4HJVsd033HQeRAJHhy6wrExqiEtkbiLLQjLLDWWhKLOUrulD5NoHem/JtOC2texcqg5ECIxvkkC5a6gPW15tan7pgx1ff97x4U0NgMNhhEX5FhE6QrRIGbHBo1Tqg3aMdqOmcjDNEGKaq6IAPyziPaNnl5wWmTEm/VtKYaV+UjFKfEixZ+xnOGYpUl9HPy1Up/ZExyBIhNR+ZABU00DiKSnx299+ywzO4XDgW7/1W/m+7/s+/sJf+Au/4fMf/dEf5cd+7Mf41//6X/Puu+/y9//+3+e7vuu7+NKXvkRRFAB87/d+L0+fPuWnf/qnsdbyV/7KX+EHfuAH+Lf/9t8CsN1u+ZN/8k/yxS9+kR//8R/nl37pl/i+7/s+1us1P/ADP/BbGm8SrsIRZogp2L3GXEwK7yHJMALQU5ZlBKqDOR+kh0INytSp6/hrpcmngXb04TmBtcM+Y6PIMEDZCKlMczAojFNmdMTTAzMwRdUjKBPyhKUZPhvZi6PI9YiwOTmXODIhw7hGMXJKqwyYftKbnKbVTvmmE3bm17VTSLTXUWEzmhnKAdWHgdGJo9/PcNxAGMrlj9qopIMZ1Ndx9MoZQJQ43v/JEGgYw8gSHM2sjszB0VVzfFbGyzOW/x+FeJKxganAj4BUTN9KKvEdWT0xTQJCQGcTkOltT9PW9NZODFCIAdv3bHYH5ssKKQIuRnwI3O4bXl7fcVZlfP7eGnfoeeMiY7Wc0dUtN3ctbz0+w7UtWaZBKNalYj4vWS0cj64kxbzk6mJOXbfMFnMOdce2bfCu463zOS83nsVsznJR4p0jCMVynuE7R7tr2G0anLdI4VnMcuZnBQ2OF9d7IgWf+vSbKK2pG8Hm1ZZXrw7cvXrJ8+sDF/Oc++ucoHt+7mmPIxJCh3WerMyTIBJNRGCtoyxylE7vgxGCXCeQbaRCqYg2EmkUfd1QFSr12Oo63nx0xtksJ3YNdV2zqBSZUPQxMpvn3N41+OApteTQWZoYEJnCdUD0zIymdZ5MFXgfKUyWLPGtx2SGeaVpuoCLAhcjRkqapqXpUidyRWBZ5ey2NSFCnmX0rU2eHwiE0tzd7FivKnKlWS/mNNZxu91TzSu01tS9BylxXY8LnkN9SAyAkrRtjwqCrdZ87XnH1SzDB0Ff9xid4b3gbu/46kc73n64po8RH0juxTHQdz2LzHDoHbvOspQZWki895wtTTJzyzOu7s2JMlLODWUJ29sbtBHkecE3vvaCrodnrxq6uiHXkSwzXN47x7Y17zxaEDPHvMhwEpxLQW9eSq7yBSZ4PvWgRGcVz693PHmxp+4EnZAoHXj/ZU2mJTJELgrBG49Kbm8aZBQ47+hjQMnAfFHi8Ox3DcGH1EahSCX+fduhEGRlalHioiZaOJtXaNkQwoI2tmidobREq55MOs7nOc9qRx9SOnFuJJ86z3HOIlVklqfmr1Ib5tpDGSgrTVkpvO0wagCoRUUgOTT7Pqams22HEh4RPDEE5AnzrwZ3bCECnXP0fcvu0BC8ojIaGwSZElTLkq3zeN8gfIeSglwblIi4kITDkZCcvmMYFuMpTZ7SVVOAmhbko0XKa2Bk+H8pT9maUQBwXCxPhAAD4x/SHDn21/O/Pj7EkxqrgUE/NpkWR7bnt7n9lgHOd3/3d/Pd3/3d/93PYoz8s3/2z/h7f+/v8Wf/7J8F4N/8m3/D/fv3+cmf/Em+53u+hy9/+cv81E/9FP/pP/0n/uAf/IMA/It/8S/403/6T/OP//E/5tGjR/zET/wEfd/zL//lvyTLMr7whS/wC7/wC/yTf/JP/ocAp+s6uq6bft5ut8OYwjFgjtqSUeQ0pJEIERGn4t/pXBBi6nY6BvwjGzDSakNuc8RP6a8HD5sxrTSU6zEE9BNwMzI9wcfTvEhC2PKYtxwBRhRjKkpMtN6UJhqAR0hwgLG9wVjGLkY2Yxjr1L9qGvjQc4vTYD/+fEJRjXsPaTZPSPb1AzQfQc9pL6s4MBoTFBpfpsEDJ41h8OMJoyh8+EIRGaHq6LZ8lCCnIYUhN3YkjoaBnlj6HK/VyD7FoTz9ZJxxvCkDCJ20RfL4QoqjVkgMbj/jxRlTZEcx9zGNd6Th0v0/NIeUnpMKHwb/HJFWND54mqbh5nbDej3HEenaHuEDm7sDIkZetY65gs3OUwyN+3ZKoIwkBk0bBF4IPv/ZC+qmQ8yWvP/xgc6nlN5iUeFc4OW25c2rJebCUhYVoajY73uUKWn6A77p6bTEd5YdkapMXcDP10us69GZwVqJjJIqy7l5cYPKc0SU7G+2aODNx3N8tMyrHGfhjVXBN2rNJ3dNSjEUGSbP6KwbuUSWyxkmM4QQkk48JBGmRzArcpTo8CjoHWUORnoOTUfwjnceLDjsapoQOTi423aY84w+SK63lrq13B0aqmqJVZFgcrq2T0ZsmWbnYb5a0vQO2/ScFRWLwvD0pqcqMlCKbd3iAGckQUpkMESvaDubUpIIHIDUlEVBCIGmt0itKYsqARc/+E5lhkwpFIYYA8qF1Lqht0TviNEjpOTQexyetrecFzmZTEzX3nrmRc7trqW3aWGUG8Gh7/mVD17wre+c8+CsBCIzWWG7Gtt75oVm3wlCCMyM4KysuDifU7eetncsZxmf+vQVq1VF71tub1q61vPy1bNBNwQ+OOrWky9yglZ89HKHEJq3Hp3z+JEiM4KrixJTaqK1qSqps/jO87WPNvzsf3nOV59bnPO8u8r59k+vqLKGZS75ZNfzZOf4/FWGrxusCxysZNUHfvmDDVrnqNJT4en6lMjvWotzikPX03Yd+IhyFhklLgbKmca2FiUNXd+hpWeZRerOcX+eMTMCpSWf7CNaBu6VknfOc4J3LCtDaXIyHemCIgPmQRKCYl5ptncblmXOG/dXNHU3zAeRzgUWw/fOZwUb57CuZlUoikKnKrk8S20dgiOTnrreE7qeyiiWBhaV4UWTmrBe7y3BSAIWKQUeRXQBp9P9kKony0zyB/Jy6IkXp0VnOK3wjTEViUzz3QkYGeazceE5zHJJSjAQBOPqP4jXY1ta24cpAzH6uY2T8dhcYBQlj3NxIgv+f8Tg/J9t77//Ps+ePeOLX/zi9LvVasV3fMd38DM/8zN8z/d8Dz/zMz/Der2ewA3AF7/4RaSU/OzP/ix//s//eX7mZ36GP/pH/yhZlk37fNd3fRf/6B/9I25vbzk7O/sN3/0P/+E/5Id/+Id/46DiEZwwaF+mQDMtz5MN+tg/46jViCl2JZvg11b2kWMn6bFEmJFyGxmVkbkZxFij3kREToL4MJAxjg9jjXIslRvGIiCVfTMF65FZGJmGdLqDyDmSxF0iARnJkI5jOuSkg2E4rzgBuPRQDxgwBen4eksF4lFRL0fx70ROxaNj9AgFhECEISUljoOIfhh3qt8f9h1LzBlHwlgWflxhDGApDm0bGHU74gjihu89gqyYrsDwEh2btqfjnYK3UUx0hCdxAiBieCv9+CTI4/WfQN3gnM0AmFJ55HDuQuBi6lHjrJ0IJimObqM+Cqxz3N1u0SJNuDtb0yqF955FqTFozs/nZKVnVgp8I1HK4AOUZcFcRnabHUoZ7j+ec721zNYFxkqeXm/Jipz5rOTyfEVRSKJSvNg5DhYePFzz7MkrzmcZi0Km1Teeew/W3G166mvPfu+5d5Fj613q8WQD55dzstLw7Olden9FQBuNaCE3ht56sixDac8qE7SzkuuDBRTRQ2Hy1K/LOzItkDESXSBTEqklWWbQWiOCR4eIlhCEw6iIdpYXz/dcrgo27Y5MSbxzxAitDdw1Dhtht+3p+8h1q6gPDXubfEyutz2oyEppdBBE76d34dD2+ACqyNn71COsFZKmseSzGRDx3QFtNFWVEXwCM0IKSinJo0drRaUKdm1HqSJqrjlYh4+e5XrFy5evQGqyzBA7R9+23O32FGWByTKyKqMKEdF7IpHndwcOjebdq4rcBBaZZCsDloDW6TlRUSBE4MnLLatcUJYZy3nOm/fWvLg74DuHylKF4sU6p8wVh2bPZZURS8k7DxdsX95QAp2tsUievjxQCMFsHjFaI3zOg3sVoNgdGtS85NBItruWr350R90FVkXOWw8KApZZpmit5T9/bcv7LywrDd+0VixyzaN1xvlMcOig15qbfZ20VkFyu02pHRc9287xbNszl6kdyL3HGqRESk2RFQgUQkrq/Y4sy/HeUZYVwjps4xBCogcDQ61yysJSdx0xes4XGTbAOtfoKDgr0iIObZiXmjwTyBBYVTlb2xKN4/xsxu3djpkxrJcluRboKsMYzb6pmTtDiJFt17DZWr78vGPTRxa5oms8Z/MypeJD4HKucb6hb2t8H7haapSM7HtPdI5VVdD5iDEKHz25EbROYERqACtlxizT1EJSu0gc5hXn7RAbJHL4rlGPGEhpqpE4CTGmfRjn8DgsitP8FeLQyDlMESx5cCUn1akOIxHaAyEwCFkns9nJk26YNeOYOxBHLetvc/sdBTjPnj0D4P79+6/9/v79+9Nnz5494969e68PQmvOz89f2+fdd9/9DccYP/vvAZy/83f+Dn/zb/7N6eftdsubb76ZriMnwSUepVFT8BtL1YYaugnIcso6THwCo6A3bUN4iikQT+rv6QCMacdJTJWowDCxMFNGgwRKYHyABGO/q1EUPQGTMX00/t14fJGCtRQJjIiBOXHjmOKR8WFgWYgj0BnHJxi9ZsbjjsDi+Din3ylGEHRCTozjGlJ1UYyM2PDiTGxIfP06jZd0AIWEMIEsOYDAOIBCKUbPoYHBgUlAPRIw0+pEHMfLQHvFAeuM4CyedLcdTRSn4ZzQpUdMOYCsQa8Uh3xzukVhAnqjnkeIOIiPmcoyqygoTYZ3DiEVcnjxJxAMdNbx8mbDYlak84wpDbCsMureok3BW/cqQtvxX3/lFdUip6prVsuSq/WM8r6mulrS1j3ULW3bsr6YU6xW3Ow7dGZ4dLkiBMHHr3YcbI/Wkc3dhotlztk8I8sk7398w6ffPMfanhAci3mOEZL9pkMXhvlMIaWgri0yL1mcn2O7HqlzDrXlxXWLdZY8U7St4+XWUmpDlQsOAaSUGKNBabyPaDM0DiU1i8y14LwytH5wYQ0B5wNLI1muZxy2WzKh2VuPadzw3gYyI3HecOgD7bbHSUlWaPqo2QHbPrDtAmQZrUpsURkkUUTKLGOz3eNipNcZs1lFGSKHPrD3HhsCWWFQeLxLLQRs06XgNyu5dR13dc/jswU6SwB/XWTJdr9uqGYF8yLn7tDS96mPVd10bO42zGYVJpMURU7vA+3+wILIepahs8j5/ZIPPm5oe0/TWC4zxcWi4MW2xhSKfZOYi83OMys1B+n56NkNF8uMi8sl6zxi5oYdjm2I9C7inaeaGT7zmQfkmediVSEJ7A/wpa99TFHkdCHwH3/pGe/dr3hHz1hdCop1weHQ8+WvX/PlD3bEEPilZz0C+MyZRGF4ewXNriYrFTIT/Mr7e15uLZ9aSR6uDW/eq3Ah4Jzgk5selOHrr3bMpODNq4LDvqXKJI9mmue1Z3PwxBgIwXLzaodSkmq9SizhrERoxW7f88kzy2oWefywTMUYrqXIDLbvUVrjhSQ6T2EM88KRa8nF2YLWRQ7tlic+AdvS5KwyhVGSrnU8urfkdrfDE7g6X+JsR7COs0XF2TxPy0kZMHmkRGK0Zr/v2LWW653jpgvsm8jcaNarDGU0u8axLjOcC9TWMZORs5XC+9QTrMoClXNkuqQVqfnr3MB5EemR2GCTfEJZnA+4IVEV8an5ZozDojcgQ2LtfCT1jiCeTnlTgcY0309hbTTyY4yiMM3mo2ThGAzG2DVFzzhEnzHmCCCMKlGmAp5TFum3s/2uqaLK85w8z3/D70fWYmQyEMdANAbHsYxbEIeeVSmQjpb/aUV+DO/H1gtjgByrYzgBDfEYlKdbNghU5VDJE45pM4b8YzrEGJAHIHQCr46aoIETGp+o8QFkIqWmaDxV8kz7TSoeJvZneODGNhTEZBufjP2Gc5k+G69uyq1KBKMUZhpFPBEwh3j0OYgQ8YPT8MkYBFP/rlGMKwgnav7Xv3qsKnuNBWNk0MTkYnQc98jgiGGEya15TJ1FcXqU4eLFgS0a/ja1dBjB7QnDMwIZERLVO9yn+Bv2GfkoMMogiOyaGhuSe61g6OI7AB0RPCEE+t5y5zxSSc7O5nzuM4+5Op9ztYT7a4k2gQ8+2PKLzxr+4KpAZ4q2qYnnBXlh6OqW3kqiyXj01prZLOPV7YHDviP0kbuspigKdAzMM0l9qMnmmrLS7HY1D+4tqLSmq3sIksIYcp0o76aN6ExzqC3RRbKsIJtJttsDSgm8kLz/9MDLu45764zMCG4OnlmRYZYF29vAZW7Y1nYQ8AeMSbbyIaT7HrwjCMmmSf1+Ci3xMZBlmkJGzipJ7DShD1jn2LeCQguyIscjMHPB9tCiyhIdApk21H1kaxU1koPrWcxLliuFwnNVSGzb0DcNu0PSzcwuDZUSdLYl9J7NrmdWzZgZRQgWH3q8D2hhkS5wVhZc37Tc7RpihIf3FgTr0UVBVhiauuPQdsyrkkyCb9u0YBCR1bxiX7d0TUte5PjeAZLNtiZYy72FIpeCh+clrnds255rIbi/yvjMRU7XOjZK8smmoe0td4dI70ruzStECIi65cGy5FXTUlQGGy00cH9mWM0kpYHV2QIRLO3+QKE0b90raYPik+cH3n605JeeHPjP36j5Q5+ZcbNtaKzHBc9XX3VYF7EBzhcli0XOpy4yPvfOmjyXbA89r2723FtnfPvvu8Jk0DvoGs9M9tzcNrzYtBhjeO/NBfLQsAsel0k6H3ix78mN5mVtuTfPudl1ZPowOU+rwpBnhiAFH76q+dIHN7x9UfLo4QJrO3onaPqYKtWCRxPASIRLb2aRpdYXuz7y7r0ZPkZ0jMwkaBEptKTMFSiwznN2ViBjj3MOLTS5kZgc+q7n4b0zMIL+eU9RaD54suflxrG10NnAanABz1VM4N9Idp1j2zgerTSZknS9RxtJkGCtJShBg0IJydxEKnqwqWLKo5iVCisibe8ISk9si5ICoxTBOwjgrMP7gMjy46IdIMrkdzbEipR1GhmWQTQcR/3NNE0OP4lJ1yiFGFpRDTOeGGfncb4duJoQhmP4wcR2Cly/I9vvKMB58OABAM+fP+fhw4fT758/f863fdu3Tfu8ePHitb9zznFzczP9/YMHD3j+/Plr+4w/j/v8ZjfB2D6AKeCmDg0naYVTK+qjKvkoNB6j6/Sfk5uW6JRjn48hqI06HUh22GFMWcXx1yJN6JGhBBnCYKsdBxPA0QBwhMThBCyNm0QMzrlHYDO1F0i0EVPMHBqaRTGAqQFPjCWpwCBCS5VYIlEuqZqJEx+cYfhTtioydag9HcdpYJ98bcRRoHaSPDo2thwYm5FtSweMExNzWuI9gtDxBZPT2xbxQ443LRKGexFO/pbpQ8YXM32QgMzExsTR2WYoX2RsbMrE2gxhOIGqiSY6YYxOvlUME4XRkrzMWFUZt9saLQRejT1fJDg1eTNBxMdUAfPWGw+5OltxVcCF6lhnBm8DH7088PDegvOFYT03LGaaoMEqw27f0veQFQu6ziF1wb2rJdbB3V3D3abj9uMNV+sSSWp6uLWOdVmBAWPg6izHucBh7ynywNn5ks2h5my9JhDpemj6ltl6xr6xeK/Z320IRIoiYz5zXJ1XPHl2QwiS5SxnEzNKY/EiphRTpuisSxo5QMSA854YFXmWUWYG2x3wPq2Iz+cVynU423C50NzctcwKRVVqZIjkxtAEy2yecde2lJnh7uDpm0iQGi8UUQTyQuH6nkWuOCsUj8tAV0h+6et3uC7SC8mz6y13ChaZYj6rOAsg8QPoscTo6bxnURnurwuuzgu6fs6zbcfTbctslnNvkRFcS6YkRaZorUOECC4MZfipPDvPc2aZwTsHIZBLELrAZwFBRDm4XCnmUrPfOZ7ve1bnM4TreHw+o84jmYG669nnlj5E3n95IIaeb3k8IxOSPNcsziuM9VxKwfuHPV9/vuOhrwgq59nT5/TWcnWe47qGEDzCKNbVnKyo+NVPbnnj3oyPbls+fNny8GxG3fa8dbkiKkGVF7z3aMGqlHzqzZxD3fLJsx0Z8GBd8vb9BTcHx0fPDzy4LLlc57x9uWC33XH/quD/8V9uqV/0fOG+obKRmAk2Bzj4SBkjuZDsGkcMglz3LMuaaqFRhUlLo5CcfVVM96htWoz05FpTuw5lJKbIKPIdVkG0PReiRABP7hoOPczLjN93r0JLw+12T5FJ8lwidGBf16xXJXe3DV3jkEQWs4yrezNc33K1nrNYFLx4eUulPQcreLVzlLOCzaanMoZHy4JMJrZdG3ixcxRacm9mWM8ELiiEVBgJ29ZhY8QYQ6YkMVpmmWG/7xFRkGWRPJuxKko+rhWi1INzu8D1gSglLgSCSxq33lqkTsIFIw29s/gweLUJQbBpykxxIZnljgvPFKsGHeu4UJ70pukfP8zVavABQx4XmJNUQ4zr2XFpKScC4neGv/kdBjjvvvsuDx484H/73/63CdBst1t+9md/lr/21/4aAN/5nd/J3d0dP//zP8+3f/u3A/Dv//2/J4TAd3zHd0z7/N2/+3ex1qaGd8BP//RP8/nPf/6/m576P9vGZoqvYUJxUv0zXklxDHojhhzi8ZENGXUzkVQSPa3oj6gzktI2r5kajWzGCDhGy+th/zDimDHkh3gUGAum9JSIcciTHku/CUNpuBT4GE5j9jSmo+7mqIQf86BjxdEQVhFhoFlIqaQkVz6CPAEE4QcwMuqERhbmJFXzWoCPA7ZIL4qcrmV6qCMjUBkBgxjYGjFRUpEkND0SVkfprhx6d41mhSOgEXIEJSepNiGm5m9H3HryfIxtH8ZvmDRKg49N+iGVmA9LnAR2xxXOCU8TpzXLa+yTEMlQcrFYU2XPaDNF1/pUxRdjEvQJhZCCoYUeRis+/e4bvHHvnPul5K1Zz0URwDbcNvCpd67oDg0PL3KkDBTVDBs8eW7Y7Tv21vPyeoPSJdgti1VJaQRhXrCrPWcXc67OMhA9Lmp+8Ss3zAp447LEWcFm27Na5fi2Yz7P2R6Swd/qrOD6pqfrWy4uFsxmJXl0dAqkLdjvW3KtKSQ8f7nn+s4Rq+RdctgdiI0lVwWZTL4twkeSf0KqLrG9QxcKLST20CCc4+ysZLmeURiDr3fo3rFvGpY6IjvL6myJyTTgyApN5yJ5ViK0pBWeGOF8XnDnLE3bQAhY12GKknfWhs+cSf6Pr9Ts+1RxhRf0wbDrU2rtgXcYDUWhcLbDSEBrlNS8e2+OFhbfN3zu/oybmz2/+LShFJ6rKlkedNaRK8PLvSXGlBYxSESRsd3V7Js+aXdMjpARHwXb7Z5HV0tC8LRti+8dc+H59NsrXq0N61JSqECpIpf3Z6ibBkLG9abHBUHvPNs28vVrB8pSlqnnkXUOLQJnizw1hTw48qzBdp6PXh34b092EJLe4955geufce9iwf/9T3yWn//yKz68FVTLHKPh3ft56shuIw/PDJcLz9uP59xuenablnvrgjIX9M7xs7/0nNbBo6uKR2tFZcD6nqg0m67nsw+XfPp+zjc+3IKU7G4OLEvFi7vATeu4KBSFgVKBj4GX25r53pDPZ3TOwu7A+TzjD/wv9ymsZb4wuD7pxJSOzOfJKfjycs5u2xFqyIbWGatZhnMtTWcxMnK2zJjfq9hsawSgUWhlcELw9OUGrQzL0rBcF8yrLInWg+D6eoOMFpEJ/tvXrvnopsFHzXXrWGUZMno8ktYmW43Hy5SynRuFD/Bk48iFYF1AtI6L+QyZZanflNbI0LHMU+Xb+bpAZgUH69A6p6wMRYy0XlDvPQhJ8BYR/UDGxCEWBWRMILr1ni4Ipl6EcUg9jSnz1wJiPEosBMiT+TIOQVIKcSzuGddqw/6COGlzRid4GHokMq2Vf9vbbxng7Pd7fvVXf3X6+f333+cXfuEXOD8/56233uJv/I2/wT/4B/+Az372s1OZ+KNHj/hzf+7PAfDee+/xp/7Un+Kv/tW/yo//+I9jreUHf/AH+Z7v+R4ePXoEwF/6S3+JH/7hH+b7v//7+dt/+2/zy7/8y/zzf/7P+af/9J/+lk9wTMWMK/mjyd0xHTECDyFHiHEKiMYLPohdhxREojQSwyFD+n1UYmJGxi34eARSw4NyurIfeJ2BKUri4hSEh/TM2FJgCKRqBElD8B5kQ/iRjpkeRHk8z7Hb9QB6juzVcawyghqvlkjHE4MQJFn6hQGIpOuTroGY8qiCkZIcUzNMAuWkTTqx/wYm+D58PmCeE+1K+p0M6SXxDC/BiPjH6whHlmpaKTCl+RjKEeO4WhiE2kcR28g6iQlcxWkMAxwcQdPpIzFSrzCxqmJcnYTjXY1xsmhMHNNAdEUgMxnOJ0GoxOGdPz4TQiBVWoVJKXjjzft85q1HXJWRS9lwJiz3CoHvPDEI5qWk21lePm+5uFwQffJeEVrR9ZE+5BzaHiks88WCp7cdfdcjA6xmJYf9hnbvubgoefvBJaXKWM8FVZnz8romMwojBb0TmKzAY5llGUrnCfDqyOJ8nrQ0XmFjQ1FKDr2m7W4pdGBz6NF5zmJVcr3vuaoMHfCy8Rgl6GpLCJEwVJSltgwZRVmk90wJzgrNzAQKYVlkmrb2FDqyWFeEroE40PkC9o0fNAeKWWWw3qIlzOcZUgYWObzwLvlGCcXCRK7mkbp3fOmTPU5VvPPwnLqz2CC5PrQUs5KWiO5jWn1HSdfb5FejInXXo6VnXZQsq5yHZwU7D9b19L3hwarkSd3jQkRGR6UMXQi0zmO0JssEofMoZQjBc3U2w7uAspbYO948K+gLT4yOR+cVy8zx3hcuyY3g4yc3vLo70LQ5+EgWA2+caz6+Ta0hdo3j//2NO37hY8HnLnL+0KdWLAtJnlcsQksmBZ2Hpy92lDPDrBBoY7jddLy8a+lay73LikMf+MoH1yxnkbuPd8xkxvreHGMEV4sZjy5L1iuJkvD86ZblyvDW5y9wXct23/GrX99ie8fjswzZWzY7z7XtaVqPMIbtxvEtb1Xcblu+fOPp2563VobrPtD2kbOZxgnBvg2clYYuRGQDTR3wbUPMNLLK6Q8NF/MCLXMCGo/HR0+wkr52kCW/sCpTmCzj5rZGK0khIpeVYT4r6KxF68DZeUUmPcE68qKkUJJtl0wmq1xwvsiRQtBZj8lzogPnOwyRr3+y4emLlhDhyaYjN5oyT+xIpSDPBOvFLDkwu459Y5OmxkWWhSDGwHqRkedJ3hCNpEOi+hYZ+tQ6J1pe7A74KFBVwbZpcUGQmQwZHNFGCiMwUlK3LbPMoJSgtQ6LIJcBHR3RS1w8WdyTMhwyMsWNSMQPC9QwARkxzY2jBlEg8cMCdZxDj+n9Y2WpGFL8YZAMJAz1O4NwfssA5+d+7uf443/8j08/j8Lev/yX/zL/6l/9K/7W3/pbHA4HfuAHfoC7uzv+8B/+w/zUT/3U5IED8BM/8RP84A/+IH/iT/wJpJT8xb/4F/mxH/ux6fPVasW/+3f/jr/+1/863/7t387l5SU/9EM/9Fv2wIHESkiRVvkj1zDqZIJ4HcjEYcWdUoFiCqJjUEp7pW3MlEQhEhgYFOcivL7PWBk3VSmdLOUjg6AVMaTRktI8irR6PdG2TszAxEKcpNWOZzEAhqPKixNeaGKVRpBx3C2BEh/5jQ/q0OX7WMk0pH6Qk9nh+NifinnHjt7p+gUmLdMIXY4LgaHI+tib6rQUfGqqSTyOg2Oa8Xiew5me5NJGwDRdbDFex6GvFr++DQND9105gNIR4gxpu4mNE9OBJ6Ac070/op3jCzwRu/F0rBGM4mADvR+qDkRK1SWBtSfGFNQ//9m3eOfRJTPpuZItn1orLgvJrIwokg9IXfd89GSLNpKyLFBakheKru15edvwsvbk1ZzlPNnKz9czVstzvva1p5wtPPNZzqrSuMbifKSQESPS3+cmoISksxFRFNzuOi6vlnghqFvP3fUWYzKkzLm73RBtT9fUCKnJjUrGZ1HReMWLg6cMircfFRzaSKsNe+dx3lPmGb3zdNaijMEoyaws0FoRvcMIWFZphSkJ2GZPpgXCKXItUDKlJ85XFbPKcHvj2XUt1SxnVpZ88KLluunYW0FvI9Fkg5tqQClBpQWr+Yyf//ITgix5750HrJcFH73c0dWOqshZLSrq+oAMgd526f4rKAtBJgVGCaTUbPYdldGs5zPutRJTFuy6joVN9vnOWqrcoLXEGMX2xS19L9FaUxYZ+6bDZJqms8yN4s3LBbiOqwLOVjkhSnToOCtKrp9eYzQ8vpxhO8PNXc1hlwBD6B0P54a6dexFpFQS6yNffdHT2S1vrCRnM0VpAkpKSmXISsWh6Qkx0HWBKpMEmTErDDZInl13ONezyDTf+d45v/ZJw4c3LZ9+UKU2ELlBSI3zgW/+/VcUM8ntiz2fPD/wq1+/5sFZzhe+bYXKSj54ZvnqB7f0Dj7z7ozSSJZvzXl23fAfv3LHzz11zA1cLUoigjfXii547jrHTBtum0DeexZrhQyB0Hui95RZxkF1bA8163lFCGneMVXO9mbH3XXDxdUZi/WC2+s7KqW5U4L9rkdKwcXZnCwTLCvDw6s5WeHQzLi9PSQvVA39wSGVpPMO6yNZEFgX8C65aqteIFH0VrMqcw4uVW/NZzmZClwWmkdnBUF4Gmepm4D3EVkKCgSX5xlKeIiKCDQ2IguD8BGpQEZPmRuIcLfpiKZgrjxCJF2WMgbnWlzskSLHuoi3lmgdMs+I3tF2njxGem+pcs2NdfQnBrQQESEMC940o4VJIzkmBpIdxSjNkGL01A1HTzYxmM2OC0l5lBsIISAkg9ZRxOy953di+y0DnD/2x/7YMf3y39mEEPzIj/wIP/IjP/I/3Of8/Hwy9fsfbd/yLd/Cf/yP//G3Orz/zngikjgkQoYAyhH4AFPohSH8nrIDHEHRpByJpyzPlJUEmMzfjgEwniDfIxMwAqeJ3BmZjTHcDyBr7G4tRtZAjAH1+MAJxu87nsmol0HGKUU2gGliDEeDvOOJM6rb09+/fo/98Lejc7McBhU5lkmPyH3kzSbgQ0pnyen7xuVBOsbRNydOV2kCEjIOwl1Oyu/H+xGmlyyBl+P/jLBo/D4xXFTJ4LUwmDUejRXHc4+JxmUkzwZjtjh6NMjjKZzcr/F3I5OT2Ju0xwii4lBaOQ7MSIXQWSqVjxIhVHrRB/pYSHj8zgPefOsKbXuE7QmyJXaKPIfLuaHvgOBwXc+udlycZWzrBl0o5rOc99/f8l9/bY/NKh7okpmQXDc99x/eQ6CR+QwjeqpM4HyH9R4tJYuZIQRom45Zaei7CFriQ2S3b3nwxkN617K73WBEwLY13f6WxWLGoe3Y3uxZnM1YrTJuX0HwcNsItlZwGRUqKm62O17d9CgyMpXo8NqFVPEXodIZzlmUkQgF6zIjClAqtcK9N5doNHe3By7P5tS7DWdnC4JrmBc5YVUSt4JMa0T0SQhv5ty5iIsB0XoUESdASIkUgo+et5gs5//2h654cdPg2o5VkXFoQuruHS3LmaZ3kc3B0gcojCJTknkhCd5zu22pZiVPbxuqasb9S8PLfc/VeoEHWq+JQtEFiesCVZ6RlxXbuk9eRyoglabpIs57GuFR3rIuBdsGtNBkUlDlivlMcbaas9/39K3j/v05+0NNKwTzXPLxtaUoNFdLwyFA2w3mhj7w9U3PrZW8J3PuSYk9OHrXEYTAk4wOtVZczHPmueJsWbGeZTzb9TQHiRcR7Tzf+s6C9184bAcXa0Vz17AqSu4/XNA2Pd94UvPk4zu6uuN/+aYLcmkJQrOvLUZ57l9VbA8eLQ1lBvMq5+OXW/oYuKgk9+eaX73t+fTKcLlQ/B+f9PRWoAaGtFxqCqWwTWB/1w7vvkKXBVHkbLYt3kUePjwj6Mjy0PHBV1+ymjtkLjG5IcbIalVy2NeUVY71lmglZZ4E4fnAYCIiPnqM0UTXE9yg4RTQ95bgNGWpmC1zDrue3aFj2wbqANsOHi4N95YaXM/lXFJUin0Hr3YtbR9Y5JJ3zmZkRrPdN3gfqb2nbgWqUCxMRpVrfHTYICiMRIVAWZU0wbNQgTZLNgeNdcmLRylkDEQfcNamKlbnsTGZCVrvmcnUkbzvIo70njNFlDQXpcrdtBgLJwtbOTAzQgikSAzQuABVUg5O9GlhMrH3fmSETrIqU8m5wPuTefW3sf2uqaL6H21H/cr4ixP2awhoTJSYPKYuRjwkU7rolHU5DbRiiK6CY6uFqWHZCWNw3OfI6KSqkXGFH6bgOG0TTZRe5HFs0x5jZD+JmklHk1goD4TBj0WM6Zfx7yZhVzqJiRkartkpOJi+amQ7ErmBIAxeMmllIqYS/BNQOH7/a8/ryOi8ro2SAyxKmOPIkDD9nFCFigxOmHFg44aqtEn9HI8v0nDl5Qio4lgFl/Yb/W9SCi9O40n25cP5hGPV3MgmjWMUJ7+PcmSdxvFNex4B0SjWi5CbjPPVmo8+eYIPnlGoJ4nIzPD4jUs+9+5jShFROPLY88Zccn8hybTH2Z5oHQLJ9q7j8YM1Qjg6a9jvAvXulutGcH7/nI9uPS83Fu9rSmV4+tFzfAxcVYqruaLvHbc7z3qp6OuOtu/Jspyu6TESmhbmS8nlWcGL647N5pazi3MON1tWK0PTQllmSKOIymBmGauzCu8jVw8u+fjJhjY4vFLU1rF91nLdBHyUOO+pO4syBVkUKK1RuaG3FhU9izxDeEuO5GJZcWhSp+q37q35r1/9GJMXqFzyYH6OkJJubznsDgShsEFwe92wXlYIpdkeOmKEZZWTa8lBANZD8NxseqQPfO7xkqwwXF9vESiUSH47Za5xfUs2iKE9ktmsQIZI6+HRrCB6x8fXLdpHMi0RwZJJePb8hoeff4vQ1zjbo01JjALXO3qRWlCsl4b9oeWu7im0oSp1atGRZ4QAZ4uKQ1tz87ymMpLv/PSC+TwjRs/aaHa7hqbxLOYlL5/tKaqCt+7P+ORFTXCCi1xiC03rAqWR6EwTo+Cju8BdK1hkOTo6dJbcb4s8pZmqwvDgcsm27dkeemZK8em377NYKS4XOdpEPvW2YzFTBNuznJUs55rb2x3Xzw+YUvPZd+Y8fuMhXW2p72o+enLg5XULwvDRi5pfe1Hz4FXJH/r8nKtlzh/87IzMwK8+93zleceLHlZBwZ1DC0lWKCKBl32g6AJ751h4xTJoSqnQIZJnBtt1bLctfWO5ulxQFDlXlyvuXrZ0fc/5eonMNLd3W8pCYgqJCGLodxYwRmG9Y99EcI7cZPg+UBpDURqiikgtabseWeZ0vR+eD9geHB98vOVg0xJrkcNVpnHWcbkqWM1zgoC7bUuuIhdrxaowFLlhu68JPqU+6yiQWeT+xTy14nCOzcGyLDQQMMawXBoaF/DRcO0iUQS0jETXIzEoJwk+oFyHMRIdHdsGrBXo2PPwMuN5Y/EO7GDREWGowB1lFuM/p6aBwzQ7pKGUGF3qxeDanfaTAzMv5KjHGeb5gcmJJzEnRnDh9wDOb2obfIeGMt9T5mVEkUeUyuQAPOwRIUbPWK4zciRSCI7NFU+qscbWCuKEmRlghZRi6D0VQR1V6EKMCnU4SUBObMuRBTninddwDenjsdVDiuERN/4gxgqgEaGNtODIKhyrnE7gxPgtKcCLOJrDTEh93C8OYGoS8g4CXiHHiqDEXEwMWIxHg8RxOHEENunfclRkx/GucOKAmVKL8oQtmoDfIFabiuBHQTMi1TjFMX12BDsRMQmrxeitc6T2jjnjkQU6AWZjCftrmDQeYU0aU5wAz/jXY+WXMoZMK3rnQShC8EQEZ1cXPLy/5nKpMb4m9gGCR8eeTAj6XU2UEd8I8JZyJihmBecXEqEFHzxtqa9bVhczVhclzz/peWOdc3toeX7nMUYiXM9blxWqb5AU9K0DB6oX5EpyCIK+9SglkVJhssDFeU5WGUxxTlbMkQh8tJydnRFvtgQfsG1P2zqMUvQ2rfzKmWJTd9wdOiKKeSV5dWsppaJVijxCqTM2TY/3HhdBKI0idaSOtiXToIRnXUQKkaqZuq6jKkqWqwVllr5rX3tsE9lsGmSV8dGLHU1QmFLgrEeGJDJWriPPC1ot0SGVNe96j6x7NnuFqhPQEEbReci1wveOLM94dlsjjAaVfL971yOI7K3GdR5rk0jc+sjN3QE7eCy9ut5wvizxIVXEqRDwApq6xXtPXhbMCoPSqQ2AkgLhPEEFpJC8/6JhXirWZc7FTJIbQfQRax1SRKpcs7vZkGnD2aLg2V1NMS8xWnC7DUglmBnIJWwDbA89Z1XOvg3cHjoeLHMenxcIBdZCJiXVbMaXX2z5379yzbZ2rMuc+2cFX3t+4AtvnnGdt6wXmrcflDy+NyfYDhcjnzy548FVRpUVzGYl0kDdOL72tR3bXU10EaUMoJFAoWFX99xsA8rtuFpL3nvzghjv+NKLnnmZ0XQeoyRvXBhcEJxlmmqm+fj5jqaP9Da1JDDSQUjtEC7uzdjst9S9Z3vokLlAKcXqYka7O9AP7RaCl2RZzqMH9/jk6S2FktiuQ5uCKD1165lnGeu1pDnsiRFmueHybM7mdk/fW8oy2ZRYm973TGusFwQbMFLQ9Q6bCc5mhtVMo4zmk5dbMqM5rzTe9wgdadqOeVEgqjwZDpqAVIqsyHlxV7Pb7InWs3iw5OWmZr2Yk7eOl9d3hGxGXKwpheBVfUggm0DX9bR9TykshYYche08xAyix7mWQ+uRUbKQhj4G7mxk7OknpuVnmtPSwnkw9RviiZSCKCRSgGLQ1oTE6iRsFGDQmCZgM0zDwzHG3oxSgPeO34ntdz3AURy7bY/MxWjkNhnHjh9BCrZDKmhiK5IjXGJBBtYnaXrHwDgENDk8CoOol8jR/noiTFLwVif6kYiYmiCN0GI8hh9EXBMDwAnIGrifZO43ClzDif/OyKDEIzgSI+SKE2M0PrQQp7RZiAN6j+PfHUHSyETFAaykdNiA9Mfc2G8QLcWJOZvOfARGJ8AsAiH6NKqxs+wIDOFovDhSpDEBk9TYcngJ5ZF/Gq+XGFU34z0YRiHkydima3wy1in1F9OzcXI+UyZ6BHkTGBJDE84xVTeOYxTjjTbpSVfko8cHT4iwvFjy+W/+PEW7Ie5viEZwf6nJZaSMnnrX8rW6ocwNNgY+9fiMwpQUpebFizv2tWPfOh5c5uRYfA8Pz3NuD44XPtJ5T1kkL5nDoWG2yBA6pcqe376gMHMqI+hswFrLg8uS9apACkmeF/Stp8gzhLO46CgXM9rekucZs0WODalvkYwKj0rl8EZzfrakeNFzf5axUIpQlkSt8dsOWwdyJTEiiYOVVKnMVyXbeU1Eu0C0cH2749F5xaOzAkLPZakxmSDPUhftGCXbumPXtpRBcddFah/QNw3eBz73YEHrPHcHi9QCZQQySPCB4AJZniO0wdpUedJahyCBrcZ5LOCRVHmOdz2lktx0He2h5zmBvh/rDgNaCHoXqMqK81mBdY5D21EWBUVh2Oz3hODwCJreI8yQ5haQG4kPyS+qaQ4sqhzXW0JueFU7vIPucOBb35ixqmC5Kqjv9kip2FxvE0vsHPtNzcwIFnl602dG0QaF7AJVYbAeFrOSi8WK4C3P7noybSiqnGcHy8fvP6G1IemLpOSm83z44ZbIll/+8IbLecmiyvimNxZ889sNugi82gWMcHy8sWTAyliMdtxc10nMPTcIIXjxquf2puZslXFX9+zbiFCSbKbZNo6ZtBSl4e215HrjWWWGN65mfHJ3oCPyatdTtS1t52iUZJ85tI5IFTG5otCKalFycbnm1bMNzkbafYvKC4wGqgIH6CiYFxptMqSIlKWh3nfMywx8Ki3XZWIeijJDyBxHJNeaNx4sKHKJrXtCgKZxFFU2tBgRVPMZRRMpq5zO9iznGZfLgkIrnt3t6Pqe+8uC/WbHcpajhSB4j9AabyP1oSErSqLS3Gxa9geLjIGzMi2OtZJoLbg5HHDeDW07Aoe+5dA6Cq1RRGzn8H2LLg0iepxz9A4IkUUGwkWkj8yEpA+R2qWeVuNMJTjO82OjTmSYelQpGGw4IshUDSWGhXeMTNW/clzy+7QIHifHtNg+/n/4vRTVb247eq7IkxV9nBx8R+4mxlHhPahUx4s9RGIhjh2sxXg8MaQ7TtJLUzn1qKmRxy+KJ5TeyBoE4vSQMPp/DCMf/3xyLR6hspiSIhw5nnh0/GXEchPphzwpxTuG3AF5R5HQtRDEgUWIAzMSp9YGwzlOwCwO4u1hjBOIFNN1EyMLE09YliHvGqaH+UR4LeTA9sgkahtSWaP+aASK6bgC1EiPHo/1mpVmjOMNYCTIEPKoMB5ScxJJnIAfA/sznNP40o7PyvGBGRi2MI19wECkbucDdBwAYLo/qQdMGEAZJIdpIQXeO/Iy571v/iYuVjPubj+m3Q0eHSbj6ixHucDLreODFz0udPxff/99hM744Mmepu5prUuVRsucs9UM7yPBC2xnk+BUQOsF96uCN65KPn55x21rEdcKawOLXLEoNE+f3VGuKoxyGC1o+47lao7OCw77GyIOkxU4nybPqlIErznsdyhdEBpLlIKb2y0qE8wXFVpFPvPGira2dNZRmkhWwnWj0UrQuxZi8i7JigylUzfkUgo0jkxLlIzc1Q7h96ylpSoD2/rA+awkL0t6X9O0B+rO0TuB8oKOBOBe1T6lBXKB8J69VDStY5HlQOT6bk+mNa2D5zvLOlN8+mLG851lZz1aSFoRcT7Se8+lBu89wnouK4MSipc3e/JyTtP1SRi7NByURynLO1cF+9anSqu6R2Qtvm7ZbxuyMsdHj5IRrTT7fWrQ6XzEKAkqeWnJTNIeOjIZuTwvqSRs655lYegbR2EkXd0gNVwsFWU1Z39w3G17LnJSS4oYmWuBlAonM+rW0RwOfHI4UBiTOmQ3Pc+eblAS1qXhkEW8FzTWs20drUtNI4Mu2HpDFQU//41bfuYrz7iYK37+owMLLXjrvEDHyB9+d8Zn3lhghCLTgtVS0zeOOhO8IvDkVcvFsmAxj/zaJzu8q1DC8k5uWJWRN5aGD1/17NrAH/mmS55vdhwan7RtSrPzkZVP1ZFhsAXBebr6gMxgOcuoVwWHuqdazpDRc3E+o+89PkKzc1RlhikMQjvW5zm3Memg6toiYqRaGKKC9tDjY3rm67qhyHLmhcNKQzHL8c4Sg0eKiJllhGdbXNOyXpQ8XldcLAtmpWKza9K9yzMkgvWswBSS1lmyrMTZoa+iUjgCuZa4tsWFHhM8y/WC611LbSHrepquYzafsQuS0O4IThC9RMqIFAHtOrSIdF3HZalBRpSMxOiZ6cCuDYiYsdTwSRvp3UAM+EHicWJXL4Z5Pk6s/pADGUXIIXVWD6TFqRRjcczA6p8s9Me5OsXjQYgMv6fB+c1ukSlHlVbdY3Acg/FE1cQpxZgKK6balxSgwghORsFVCmzhFFAMTIkcgI6MY/+ncZ9RQMt0f0dzujEATz2cplRJYkZS5icBDoU8UaC/3l2b4Zv8yMicIIARhIyplfScxSNmiuODNiphxoCeEityAD5p/3TcEIfcqhgZoXQiagj0Y1FRGMcWJtkaEvUbvkshiWHoQSQGd5yY9ma4d2IAC2LskjHkGkUQA206XJc4MkUnDFgYz+dI0Y3i5gmYjvueiqLH72QEeQM4O2HyJuM/IZBjnjmm13dk20YQHKNHCI9WJOZJCj79Tb+Pt998G3v3At9amsYSFHzjpcW3LZeZQAWP9aDmFS4aPnzWsN/vsUFw6BquFjmzytD0Edf3OFmwayxVriisQohI3XbUNUQf0TJj1zhy4TlfaPLCkJczoo8sVwVag5FQ5JLgW3yMzI3CesuhrlmtS0Bwc7Ph/OqcarFkt6lxhxbrIrumIysrMqNpm5aIpO9ajIblfMVl7znEwLNtnaozvEM6y3mVs14k8BGiYnOz5X5ZIbWklIG+3iODREhJVeVcv9pgo2bfR+brOWdZxq4NSO2pm3Qvl0ZwbyaYZ5pXdUvQOatZxsE5yqriclWRh55gHTqTZBLWuaIqFNvGsW3TM2WMxjuLjoECOJtLsizj5u5AZy2LQnFvoSlkwOtAVQxpuABeeoLxmNAzzwV3IjXUNEIRhvkCAbkyHA4HitzgnGO5NBRKoaPi/kzw3hsLSu3o6z2+70A4HjycIbKSjz66w7nIw/tnhAibbc/lRc/HL1s+2bTsrGDfRWzwVPOSy/UiNV3d93ztxRbvPKVK70fXi9Sawnn6kMrIfYTrpueusxgpeV/BepbxaJXzlWctj88qgo8culRC/WLvubc5sCohCkloM+aznGKe4UVg937k1151vDh4cikg1rx9lbHZWgwBAuw6eLwy7G1LkcHsquTr1y37uuXcSJZGcm+RUQlPRkCotGjoDx3z9TmPHxq6uqdrgVxhcklWZvR9j846pEqVX3nQLOcFr160LO6tePn0OulxZKQYmB0RBSJE5vOcw85SlDmHeo9sHFlmEEJitMDIwKzKuDhfEHyg1AItUnFDFIKLKkvjdEMrBQ+ZyhEhYHLN9aHjduu4f5Xx4mZHYz0XVc5qPmNvPbd1T2FMmt5cxDrBpnMU6oB1BkRF1x6oVGChPdu2J0RJ32ZIJVkQCXi0C+jMcNv3OAxCGBABN8zVcli5TT34TnzlJo5niENjdVU4jV/j/D4Z3g7xIwriYAAoxFjIkbh2/3sanN/sNgQ3kQSxIYgpqI+izjHWpfh5BAfjqntYqk83UE2BDMYu5L++7mgMgmPlUDLzO/rhDhhn2BdeE8YOHdBlGCudxnzJkY8Qw/HG0vPhsUHFRI+nqqMU4cP0AIWJ7xmzOCNbwxB8RzO9yZxQHL2Cx+uVwNxYNaY4Wvsm0KeERA7ERhiOI6bvG2vJIkQ3YrkBY8ppRCmVOL0aHBmZY9n1YPg8NGFPYHXipoZxhFHANgxRMKT0TuAgJwzVdF9GEXNyJTzxL4pHsBSP3wsMYrl0HDmgqTFtFUOYBOcprSiJCkBDhIv79/mmL3wzmYIoPZmGIlfI4LnZ9hiRM5sLtNQYk7OeF6kYwfZsG8dXX3SJOfIKbTxVYZlXhs3djkcXK24aQEQenRkuZ5LD5kDbBVyEe6uMQmsuVwV3d3sOfct6VVLNMowMzMuSrvGsrxZ0TQNEtBCcLwpm8xyZF8w6EGj6ztF1Du8iQmlmeY4QGecXGTzZJ9ZDQFHmdDYBPNc5iqJAFSVs96lPkIXMBZaznOgdO+vY72qUSGW0+VlFDCCDp28OvHh1oJgvWC4qjI5EmfHBtkaYgkqCdD1aOExZ0LQClGFZFlxvd5R5xeWyYF0IiiCohEAouOt68qrANx3LecHzukGhUSFiQ8QUBmMC8wpudj2r5RxkRjbMqrM8w7Utl+uSLu+od3cIpag05NoxWxk6X/H+0wMPLkqKDG7qhsIotocGHyKdD4QI+13HZ99ckVPz+DLn/rnm4w9vefl8x7w0xJVifie4vJfz3mcvabqA6xzbfY/0jkUmuFdKtrXgrvepz5vz3Nw2PA+CxiYzPyMjq8ogRcT6QNcmxjFTw/ImQAe4ILCDKaNCkyvNBzc1N7UnbDsuKsPvuyxZFpKNN3x9qynuYDmHcO0w0lKVglmmmK9LLmTBna15tmvYPPE83zryeODNM83LzrMwkW95NOO/fnDHphZcrQPPd5bHC00lI6tCYITHaEmIDmyXBK5lgSRQlSU+SPrOYn2PcRllWWK7HlMWxCg47JvU2DZGLi9muK7DaMV8lRN8i4uO/aGhKFJ132KZs9k1KJ2zvphz2FnazrJa5rRdR/SePIOrezNeXe/S/G/Ak77jfFlw6Hq8h/P1jJhLXtweMDHQoKmbyCI3KOEpVHIc3tSWuu2p+0huMpaFot41aKnYB4WzDoJAyhLVW4rQoWS6l1kM9CGJi2eZ4nJozEqIuC4SnGCnkubM+zj40iSphCLFHnXkA9KcN7a7GRbiUYhpwcfIaA+gRw4LymPMiifEwWAWOICq30tR/Sa3sQXBJCRO0XmKZAFAptRIZKA3j0v/QV88erQMyvJ4DILHgDkcfripYfzGEbEOozgt7R7TGXGI3YLBBXkAQOl7w8RwCKHSfiFhgfEYDOzOiJcnIDC0kUAwBXXk8AAhJlbkNW+dkeUC8KMgeDyHU2A0Xls/ufpKxiquia+ZXoCEtY6jHI8xVqTFeDQRFMMLIIYLnSBWCoyn19NPgG8QBw/Aacz0Tr5DQ6poYs9ieK3ianw+kuv1+NER4IaBlQnD9RkHMMGp8ZKfpEDT0gTG5qmpmWfa3wwsUwgSH0EXOV/4A3+AMje4dktQUM0rou+wXc/LTUdza+msxvcdVZkzt567XQvWUgeJA55vexoPF+dzNocOHyM3dYcoezqvsXWDV4bFvRX1xlPlOZtdS3NoOVhL7AryQlGZFOQ2e8vbb52xWBR8+MELZr1jsZhhnSX0PetVyWbX8eDyIZvbHp3lfPLkJdZJDrseMkFuCuq653yW8bm3V/zi+1swiizLsTb5zxhlUVLSdQ6lNF557vrAA6F4Y5Xz6taiY7r/Z3ODjA7ne3aNo/OQ7TvysiA3BmcDbgjCIFgWmrt9jxSC1aygqnLKXnM/RO6tc37hyy9YVwW9sMTeImUgakFZ5tzsG7ZNTdd5qkqhQ8DkyZNHyMS67Q8HNlHigmJeGbJM4ZqeUgoWpaRvFau54c72XF4UHHpPc9thg6PKMx7NNL/YdMybltVKU8pIbiTZsoLYYINPz6CzCNlz/2rBWRGx+wPCO84vCgiC2Synb1uQczIjkKFhf2i4WC7JlOTFiwPna83/en/F/yXL+PDJno9etHz1Vc+Tvcc62HURowUuBG7bFCi9j+RGpHYHgPUOFQVeDinsgaF8dlez8xHnA1LAi11PtJ63zwrEnedXnsA8F9gQ6HvPIotczTTf/GaB6yNtb5kZj1KCV3Xkk9pyXiiqpeHgAt/y1pKLi4rnjWW9ztm1HY9XFZmKzApJ6x0hBFQMKJMs/7XJKOYVQgWU9Gjp6IVH5TmvXt6xWDjy3IA0bG4OCKmIURCCZlFIpJIsC02eKxAFRkBcBjobsa0jVoHlas7mrqMsygRo8tSOg1AkhpTk6aKEZL1ekqlAbXtW6wLnIp2PzAuDLODmbo/0HrTmdteSqaRh29c9syLng+c71oXhfFmy75JmT8aANgJpDD44emuJWQmuZ2Uk6yy1ebmpHYVOAv1907FtJesiRZbWw3ImqTLYQ2rU6cel3smiUgqMllRGsOs9o0+YlBIpBwATx8lRHufz4QjjfBgRJ60ejovuKARRxmR4/xpd8D+//a4HOGFKjojjLyehpxgEtWGq1JlW8DL1MxlL4fzEG6SEg4yv33xJmDxwUloqCT3CpAM5BvfR52UEQUe5MIwpm6Nwd2gHNbJQgJBqYgZOS7rH52tMpaTzH1I5eOJAgyJSWingU0AfUioTazOOZaztPgE1QQwisxNgJEeaMp5e5eFchwqsOICMOKRoGMFdOHmQB/DhJ9wRECGevAAM5ztSQgOkGXs2iaEsfjDme231MLohjV8X4snVH9KKnKiTpqo7OQmwEcd7NO0zgKRjmX065iAzT0+ZGMHmcB7BT+cbCdx7403eeutTuPoWbIOOkSLXqKrgEAJlbuh6x7Odx3WOh1py3QiqQvJ4XVEtHbO55uFWsTaCi7OCZZVzfV2zO8B8HiiN46zKcM5xe71LDfysZbVUhK5Dac3Xn2z5/Z9f8dYbSyIZH7644+03FgTvWJ0tKSuDkhm3dxtmiwzrLSoztIeWuu6RSqdknARkwMVAXzuCD5yde87Wc+azJGINoWY2ywlNS5krZJOYU5MbfOiIQnBbe6o842KV89ZlzoOVQWlB20sOFtAKnRc83/RcrhfUTYONabJvXc+qUGgiTQO1dQSRVs/LmUGGmGz+pWSza0Ao9nVLXknOyhlGJeHp9XWNtWl1H5TEYPGuJwiNloZO5jzdOu6dGbSA83lOQ09dNzwPjjLL8b2nKjN833F7aOlJ+Pe669gcBOfLAusiwXpKFYm+p1A5Z5Vm03mUkVzONCr2iCbpqHSpePxgiYiRLkhs67j/4BxnLYd9MiUs59A1PfMqUj4qcFqSZxLQKNsSvWFjPUIJPtkk7VsT4BtbS+M8M61YZ5p5Ltm1jtqmWS0MKys/LAT3NjD6VqUmqck0cN9HPrjtWFaGPMuoO8iInGeCq5nmapaA/mqhaa3n0KTFRD+k6oSQvNhYVoXmam4IzvH5RwswGV/50JMpRyU8orNoLQjeUVuJ6QJKSWJnWcSI0pLDfo9UhiwzqSWIVNSNx3nI0Kn6rtvz7luXlDpHiThUHiVd4vpshowWomP78Ra0wFtPFgTr1Yz95sByUdB1XWovJAVCa6pcY9RQxdn2ZPOCPgSK0rC/3XC1TsL9w76h1JJ5lRYEy0JjXSB6h+sj227HKpcsSgXBkytBHyL7xg4VIYpAZFkaausQvePBynDTNOAj93OFNJp907INnoPVlEZhcBwOkSoX6BCRKqAFZFJgQyRGOS1EE1seqIyitoKxzkkJUEJMcosUpI4ZADHMrmMxx/DxZHKrlBh6GQ5z4si4/w5sv+sBznih4nCXUhAaLPEHkJBkGWLSpsLo1jhUVE0CZJVaKIjxBRxX7BBDJOCGwC0IQ2ZnrIYaq3z8MJiR5huFzVPaRgB+ZFTSYNRw81NaTKamnHI8F2DQm4xg56jjOv07TgReTMAmMPjyDEzNMSk0IG7GqqXhGsmxNHzs2B2IUU4i6KmfZXy9ampo1DCNYyKGxtxRTGaMSfQ7POTpwr4GRNLLEYd0TxhchWXSRfnhcwSDvGfMHg1mXAmQjE6ck+fRkMoaLPwGpiqN10+NH4/JvDCd1fH8EGkSG6lWhudjFIgnbfNQWaUEEYVZnJOvXvLwjUcoDV17ILQN0vcYI/G5Qbmc9TLS1j37uqGNgW3rOJtlKA9d5ylnJbkVfNs7FUZYVrOM67uGp9sOrRQXC0MhA2UGT28cIWqc80nn0fQYLbg4K3l5e6CuBXMtqPseIxXN3lHNJYuzCjMvsZ3Fth4bFOXCILOcF88+QZclMfasSjgIiXeGaBV3+w5rAzd3PednJfcXmqIoaeuIMcly38UD0sikg1ASpXKCbTHCoeh5fK+iKiL9rkbnOW3bcKgdmTE8vevZd5HzRUSrCELhZMSHnjJPwSIzkj4W1DHjqx/tuVqVrCrNV75xTYyG1nqkkMgoEShKI1gWghsZEVnFtuuJSDLhmRu4857Zasah6yEKTJZaLCwLMMqyjYFtHdDSIFxDdmHIq5zDbotwltwHvFf0XrLvw5AaD9RtIDcKqRTWWpQQ5MoMvYIU91YFq0qmtGElEcGnktwoOHh4vnFczA3rhSEayXw1o+wd0QeUydhtaw4Hy2G3pcw1izKwyBx1AaruiSG9n1pAaRRSidQAFaiDQGqNtw4bfDKCG19dRgaUifFsQqANgVsroLYIaiolWGnFh0rQh8C3Xpb8saXm8Uqw3cFNF7luInsn8AjswWO8o1AmpTwjPHm+4+Whp+k8ypPecxk5X8/I5oqdlYhtz7KYE4Kk3jeU84xipulaS/SRrnEondNZx+GuZh4DhJ7MpNJpby1BSnwIxJiq+DIhsDGx09UsJ3hP13jyKkPhyS7KVMGqCg43W6pZhlSKaj6jPVhmaJqYFl9FYWh2HUVmmC9yNjLQhp5cG252NX1r0Rr6PlXLLYoMpQteNhbnArNC08XI+9cdKngWuaLp0/25XGrqEAjSpe7jziIFbJuOepNmK+9EeiaiQIrU6056lyoVYyAPDmMMr3o/NaKWUg4aOYgO9DCDKglGSbJcYzubYqZMvbXE8EyoaVHPazFFiDAA4mHmHXQ4r0kNfpvb73qAkygQMUShMAAUOVW0ERkErUMQ5wgS4JiGCAPQSUdJ+8nRH2eIvHEI1CEk0evkAzOMI44Cs+F4cvRdGVMZcUjTiPFzGJsvTsJWkcYvhjSYSDsfmacxhznxhceHZTS1Gz0MRhA26URgRDLDOQ3j/w0MxsR/cQqKRn+biXMZSgSPaHxotzAwF2IQrsUw5m45uWbHDuyTyPnoKsXrKqa0SjguIEKSA8mTF2VcFYzpyXRBBmYncvTqOR5xBDpCjIBvuLZRDpSrOLboICYwJmRKR00Ab3yxk24lJAoO8jldtebB597j6uyMbntN01lCvcNIjwuSIA06j1Q+IK0lKkEmNJnOiVHyYt8hpEYqmGWGXZP8NorCcbOv8UTmKpUcq+AxMTDPDK6H7bZDip7cCJp9T1ykvklaBDaHgHUBHRxt09A3GhNy9i5VeikFXVczW+dIrZktKro+0NQ1mRDUN1uM1Nihb4bzghevGhYzSakcWrR4lYzknl03FCKSC0dVKPaNRwmoNFzlnlc3G4RacHm2ZCccRVFyfZNE1fsOrveW83nBIoez8xmHLnJXB/ZBgBLUtsfaQNs6dk1J3XuuziSmMOyj4eJ8xovNgcYFFkpzvsx5cFnx1a9+CMUc51OwK40h2qRxWi0qlPB4FwgeFnNNYRT314quS8AkKEUfYTUvqVtH33rag+PqYk3vd3x803JwkGUFRSaJSrF3lmo+p+8dUWv6Q4cInst5znd8bs17bxdo37Jclrz88GkynpsXYC259NzddpRUzMuC6HJ8C+1mj84UfV3jO4dCUM1y6mbPoWvYtT03B0FwgWU5PEM69UArC8W9Vc7Tu5Yik9QuBaTRyOk464zspZjS91OjYI7vdOsTE65spFSCrfP87Ddq2l9L7Upe1JFXNml7FJBLxdlM8vgs42yVU1QZs8YTo+AVHR+87LmoUqoliEhPapeRLUrQEp1L+q7B9jnVYkGRg856bncbetuzud4jhMC7A5kxON/z8npDWUgkluChbx3FPMfbhvm8oD8ozleSfdNR1zY1vSSQzSuEFGgLLu9odi3V2QLv28SWW4vve0JmWK1zTPCslxVdCIgmtXborOfltubBoiIvFJv9jvWsoOkd24Pl0AYev1Gy6S03W4/xntkQwZve8yBXVARsDGxdILSCvoem6ZjPUrVT5yT7NpDnFeDpQ0CJyEwGlLLshafxkjJX3LpUPTfGwVGOUbsAIVDKyLLMOXjoOptiokymqkddaXzdAFaOU3qaP0e/HIQ4LtyBsdXib3f7/wOAM6RJxkguxuDMEOjExNQcQYkc2I8heIvRT0YcQ+sIgIRgLBVO/aHi5MwIMa3aOfIPyXE3cQE+egRJdyPimL6KUyXFJLOKozR5mFREGHQvgy+LGDQsMaWQEpvD9DfEoSpMClRIArdRbJJi78AgxaFNBBD8mKYCxhYDpC9RUk7pFUZeY2CuxDROwVhBPV3fAb1DShUc00EwtmoY8ccEjMIJkBmqkuTEvowVCce3IU6jOjYm9YNoOzE1kSAkY6n6kHDkWOWUjiLCMXc8GjpGkdChGsGXOILnU8g1netkhBUnA8KIQGQ5+vINOi+4d3kfSerFFGVGQOG6BhU8WipsFJiyJCNSZEmzI4fVpO09RRO5WGguljn1oacscryE1XJO3O6p247/+rXnvPfOJSFGcg23h467fYeRgrOHC/axoyg0c6+RmUbSs16UPHu2o7djF/VI37VkRY7WCmslXW3x8Q5Tzem7BqEMUkJezQj2/8Penz3Lkp1Xnthvjz7FdIY7JxLJJAgQYk3qkml4kMn0oj+7H7qtZSarVrPKWFVdBEkQCWTmHc85Mfm4Jz1s94iT9UQT+ARj0BK8Q9wI9+1+/Ft7fWutL6B8xIhIfdtwOnX84fs9Yzfw6u0NdVVkti5GbktNO7Ssm5qPWtG3Evo8ILKpDI+PJ+rSZhZFK8Yg8Sg6B1FqiiKzMMZoyhS50QWHYULE3OL69HhgGCIPfURIw6fDSNtHKG84th1CWjZNYqcT21oxjp5JaUSSeCTKaFxKWFsypURlNT7Aygo+fT5S7NYQIx+/OJQpIHo2TcHtrmJdCfaPR4KbmKYclf/idktRGn7zsUdbwypIkjZMPiACVEZQFZpaBoZR8NVO83IHSiTuXq6QaeLtz244PbV0g0OEibWJ3P6sJglF2ZQ4N4C0BCl5+PHI7qbCaosbHftTZH8SaGH4s53gF29qjr3jD3vH93uPQDE4x92uZD96IjC5SO98dokqMY8Xud73y3+XPK80b25EFvsLEkZKSpVHYsQE/3jw/OEsZ5NAZsErqagl1DrxzUbx735WctModKk4twM3a8NpHNn3gdoqXm4Mf35fsNsVSCXZbUpUaRidw+qCzU1DcIHT0xFjc57Rzdbyw48npEo8HjrSo+fudgd4Ri0J0aBUJAwjhMRUKEanMEOgXFUcns6AYJgCIQ7sblaEINiu1hyPR+p1RYo+Pw+EJhExhUWNAalzy+r2RQMExv2EUVCUhmObcq7QpubQnikrSVlLugjnyXNXG1z0HNpAY/M8ttYlTBS8KsG7EZksxijG3nNo84BUmxIGS1XAgYTSUFjJFHNuUyMl58Hz/uyR60ChBVooLAIxM1kqRbTM7tYYPIKAEBqjYs5nQuaNN3PIn8igMyw60CTyRIDLM1pc2Ps0R65wlSleNpp/7OtPHuBc/PtL+RHz1OuFtUg5GfcyZHIuwouDZ9HC5F18vOxcFkYlpDm9OF6pipjCxaYsF9ZkvqCX1o+YC+CCbLlyIc/t5GlBu0Lm22K2POd/ddWzLN8tEtkhIeWFFcpAZS7dF1Q9I+t5mOZyZ6WZoskIfGYfFgAQZzAX55bNT1D2fH4XF9qy/ovYN3LxjC+AjHgBY1LEmUmZ55bPdHn+kZjDC+frIIW8nveza/T8+/K/mq/9vGZLcvVVUyNmkBfmH7MM3BahsJg/Lzxb2wwc42U9rz+QV4B8YekuKzPb1wGkQq/vSMUKMZwJY4cfe4b2PE8TN0z9SIqeEDJF3KxqVlbii4JuGHJBP488ngc+PrS054nVryyN0dxvDUkG3j8O6KLh3B5oHyf2u4F1pUneE5xHKMntjSWmQFUWnM4DxljOp4GXtwU3m4JSS9zkEVJjy4LplPCTQxuDlIH94xEXEmXjMauGUgnc5FFWcnxqmaaIjprKJqg1T4eebgyoz3t2u4amsqwLTec87+6b7BBxiaLQTJNCkHi1qzj0itNpYlOXjMPAECEaw8pI6lqyahRP/cjtmLLYcoxYU9AUiugjURmi8uzPHdtdw6c2IIdE5wNCRFaF4n5XkcaRx8NIoSSrZss/fhk4jpGysTztz/zqqy1j2xK8YG0lIiZOlWBdWVLsGRC4YUQguF0VrApJ33ecuglrDRjwLnI+9yQhuVkZ1usaLc+URbb2Wx1IMdFIiZORm0bx519t8ppE6MaAJpJiQpcVRVzuX0lTN5hKgxKstmvCOCGCZHVT8fil5YcPHV2yjKpg6MF7DQQKGdiW8FEljIj8+b2lKCx/+2WgQLMrDcHnZ90QElLnZ9zzTd9i/5UzQ7mktksyc2m1mnfmYvmxyz+SMRFmxrrSip2RGJG4ryW/uDHcrwzbjeXDfmKcPMPQ8+mh54UV1DvNmzvL3Y1muy0RSmUNzxQpNxXl2qKNQVuNLixCS9rjkaa27DY6H8QxMcbE959PlEayKhQyJITwEByrdcX+6cD5IEn3Kza3Dff3G07ngWF09MeOulCYdcKFkaJSHI8nSmOIbqTabAl6oPtyYHNbs6olVuf2vnNptkRLtC0Q3cTtrubcTkx9YF3WtN1EaQtGP9DUOjvXfKCuDZ/OE1Wdx4OgJEYlylpwOk3UydM6hwLWlcLFwI02xBR56BKVTSgSUiraKTAhCUlQ46hKwz5ERAAj5cysR0BdWv1aJISKuBQohcBFQWBxHaf5WX0N9ls6APOjnXzmORQXsbhzlxpyjQ75Y19/8gAniXlYIorrrKHFsrtoWBYGZWYvlkndIrMBanbX5LZJnFtLXGm4mHf2ab74SysjU7biQtEt3yWvhN0FKC0AQS5sSJw/a7k5Fpy22PISCBEyZrgIX7iG4M3i3XjJp5nBztJKY0ZPkfmBtLAxCwPxUyv9InyeyYn88Hp+D8YrSwFX+jqmeGGT4kLpsMTRXAXDcfm8tAQMiksm0NI6ZLYg5vbdNfMmgwnBIuN+hlWvkFGIS3K1mOd6iQQpUyKkGVDKGdU+b0vlyzCfuHxGw1+vHEtqcb5Qi3V+PpY5aVkIgVAaqi0uCaZuD6FnOh8Zzo9oIVHaMMxt1bEbKSuNVYmqKvACjBYoIxmHgSl4TkPgdw+Rrz+3fPViRd976lqjVcG+D5xDyXno8W5gtaspCoVPiUM/oqVCpoCdp4WL5LAqF5uhn4huoq5LPv34wLtvf4YtDUnmWTWl1XjviVHRdwO2rhBJonWeHN71mTlTRZ7cHVLCBw9B0p1Tbgu8MUgjQURKY9m9bbAPHcdjj0NjGfmyP/HN1y/4w48nXr++p+0mNo8RaQqMyOMbXr3Y8vGx5fNpwujAMEYO58Cu0Bih6J0mCEWfNHZKHLxDoPB+REnBtq44tA4xTUTt+a9/OPJxhAmNFIk4eQqluK0M5z7OabCedswDPD8fOnaVQs0jWBqjQUYeH/YUtaFeF8TRUdYVjRIMH/e8eXvHN0R2TcWPnxOTlzydAh4Yg2DwEzdNtgFXpeTHTyP9MPLzlyWvtyAZCcNEpQXN3Q2Pn498/P0ndGGxhWBcV6AFd6/WeF1Cm2j9wH/67RPvz9lh9Ou3DX/xi7dst5qHw5HfPz3xf/lmyy9fF/zu84mdioRa8v2TzxsbKeaMsGWDtjxjxeXnWcw6NCSokNk/qSRCKYzIYyLyD9osSp1NBFLlZ1Cl8pDQl41h1ygikigUMY70Y07qHUk0WtCUihgyo7xaG4pNzf7kCKODlLAGjM2Mk1SKYejwSD6/fyBhub+/ZV1VuMmxPw2cWkcaA+dDAO+5v624vV3xJD3j2fHp8xmjBattzWql2Q41pVYUVtHUBUN7QCSFsZru1LO9WRPHgaY2TE3WLylRIlNCSsk4JUIAN06Mhaa0kt4njsOERjA5h1CKcz+yLiz9FDCl4P7GEGLgptAM48iqtngEMSnOvadvB4RUWJVnOvUustUaKxXS5Yn0WniOLlFbSzcOiOgZvWMXHckPBJc1fkYKTGE4TgFJZFdpop+1Z0Sa5FmXirMXHF2uWXkzK5+BG0Eg5O7CvHle4lMuFpmZEc+3juSSPP9Hvv7kAY4i9/kuycUCfsKFPS+GMzBBLW6buc2yMAnPmI65MzTv2n+aZBzTkv9yadY8IwzmYyHlAj1/z9JGE8++Jv9RuLA2P7FJL+2yNAtunz1s0lxcM5jOx7DsrHIf9Vr8sw4mzDBAXI4ZZofTZc0WwAQs2Tgi78pYKObl2FnWZfnLGWTMa3nR9JBZsQzcmAXDC3X5XKR8BXApP2d5HmB47WKl6zwT+ewBnK6gc1mjeOHLZsAjskE/yQWoXIHncq0XVmbpDy+6rCQgLHofkZuMSqiLkFpcLh4oW6FsQ5p66E8kP9I+fuH88ImirDFWU9RrpvOJdphIJL66E+AmtquKUz8RwkSl4d9/VTF1MIZEO3o+PXWkmNimQGUTf/t+4MeD5+W6oB0jSgWULFmtLS9duDjJ6lXJZl1hjGAKga53JFXgRaKxgtErPv74hbsXTR7kmgTeSW5f3ODGHlU0TH4iJEEQBXevb2jbM8e9xCfD6Thws6t49WJFfx4RKfC47yh3W+pVyc+KgmFwKALvasGresUPHyb6XvHdl46fvZzY1IbJR6YxsC4NU0xsVwXnY4cLgqQMP+wdVsO+cygSx87zuR1n4KFIQXDuPVJJDt0EwKuVJbmBSViMBGzFbz6fcpstRk6nidVK0uhE+/AAKXK3NXST4m8/HvFBcmcNTSFx45DdPMJTlRUEyasXW2KIfPn4iXdvagQSLSM3W0NhBdZonvYSowzCTySheewcXQpIodgUBQ+PA//TX//Iv/vFC4TKQzLfvl4h4kCKDj96JAPd4PndP7RICatac3NT8OlzzmOpyoKvvtrx2Ho+dh0+RZ46x4uxpf/okAj+z3++oikMh3ZCSsGr24q/e4j0Lot+pRRoIeidyz8hi8OCBHNCt0Ki1aLwVyiZZ5s1RlAbyRQ8U0gomVsg6yI/D89TQAuBlopSJN7Vil2psVbS9m7WDyWOvaPUgrtdxaZW7NaWotTUtaGqJVIaxskgrUFJgbUKZRRCBgqVUFXF+9Ti+gkR91gBm5WmEJaVNnx5ODENkcOhY5omXr5u2K3XnMTIxy97qn2PUpJmt+H2RnAQicO+RWlNYTXT4Ng0K74/jrQnT30nGR4fKY2hmzztaUJvG6RMKK2pKsu5H5ERNrc7Wn+kagqUi3w5thijWBWG3o1MLtCsFQJJ9OD9hNCG43nCFBpbKD7vJ86jQAmHTokpRUotCSnSTROF1YgpUJaCwUPnImMQbEvNICZCyAyKmSa2WlNWCaEzIAsxokVkEgkXAlYpNkqwrgW/3XtkDERhSFKSRLxIFnKNmuUX6fJ4v2pP8SywZnk2P3vk/1GvP3mAk8Q8YoHZ0fQTrQ2XQWBh2X3Mix4u/cG5ZTJvS6S4MjG5pi524swi5Na0mNsZlzflY0mLZuaZaFjORT5xmTlFehY6N/c1k1y+V1xAxHIuzKzMxd0zs0iLLezCGKV4AVWJi5adS4z2XMITVxT+7ECQcm4hiXxcgSULZ3EaPRf15v8X0zMtEdmBJRYmhoVxkssq56OSeR7LnMl4/czZan1JW35Go+RlFpfDveD/eNXTLADlSoDmD5dioUafGfnTf5fZcwFFV+Zm+fUCXBMSknwmsFtAT97LIDVyc0tQkhgdgsRw3kOc8CGSnENqsGWJ6Dv60TP2E/L1Ck2k73sOTrApCn79M80vbyJu6Pntx5YuWpSW/JffP7H6KDmMge/PES8UWld8Pie+HKEqQMnE3V3D+ThipcJojfOeqq4wpaEfIspoKllCgqbSlLs7xrHlZrvj+PiJ0kiKSmNthS0sOkHAcB7ADTma/rg/sz+P6KJkGD1fvd7R6T2Ti7iYcMOEXW9JruPlbc3Hj3vWlUUQqL/a8uGh49gOPJwmJPD4pc3HqB1fHltSjJRW4SZPDAJha373+UhCcG8icUg87j110XAiIaSmH0dMqQhC4ceJfopQKHa6YFdY2slhi5KQBD4I0IaXqwIVW1a1xc4sxDGMCJ+opOTrrcX5nqfeYU3BulHUdQEpkFK2/H/zs3uqUrLfH7ndVUQXKNYFac6FkdqyWTV8/HJGicSqtAgSo/PEEV7sLFJOxMmwqjRagdSSFA2h82yaNeJtgyk69k8d+9NEPZZsUZRryzg5hIBffbOjrC3/6bdnvAtUZi6yTx1WQpSef3h07HvNf/3Y891TYPB5XlahNYUSnISfn6cCJSTB+0uUBQKMyODHpUShJbel4abIQuYuSrTKYwDe7kriMCIRbI3kaYiMzrNaaaxOnLsxzzcLDmEVh+NA7wLG5Lya3a6haQqEDLjBs1uXlDdrMCWmrmaWQOCnASE1+EhhE+/eNHx5f+DxPFIB25UhFHA4jJDgq9drTJFojz1KgLYCua3wfsRYw7mdKFeO+/uKaqVAJQ6PR1Z1md1GeKpColWesaaqAqEt7XlAkHDThFAWU9X0Y4SgcwBtCuxWligUrnX0MRCFJKaINZJCCl6sG/7w+YgbE1or+ilAyuGzsZuoC8Oh95RW87F3lERSSChyFk8/euq64uASj53CiERdSDof6FzETAEpAt4ntmtFCgNSC1DZGTf5Wf6QEjrEDOoLy1Z6Jmvol1E0SfFsD8rinFXkDXniWjeWEUq5RSUudfWf4/UnD3Dgp2DwOjxxARvM7IhgSaTL4X8zkyCXv0uXPf+z65Y35jKPok+Xb0sZuKRn75dZ2CqEeJa8mwMGpZKznThnLizETlw6OleCZsYt8nrMcSmyV0/TLDThGq6Ui7OY/zz/3F+t3Vdp89ySeYYa8rnKSypyTkR+3led/56UW1DzTbr8+ygzWBQpP9SimNmqS+truRpyBjBZlh0X4LYIdpejEnk3GQWXQZ9pXhghrmyOuOTOiLk1toh90wVQLjvQeBFeQ5zt95fjEguzNJ9QgiXgaukdz0/7heuZl2ABmuRk1ZRp8sjsFogB5waiiHghUEWBNnlYpR8mpLL5mgVHd26pi5LPpx5d16xLw20RqCvJ0Rv6JNGV5bsPZ75/HHk6OaRW/OrrNd+82XDoPGWpaPuErgJxipS2xqYRJSJKeFAlk/fcb7b0Z4clkaRCKYXVkjh1KK2Zxo7NXU1CMg09hTb0p5ZitYIUsEpwPg1Mo0fLRHADXT8hQs2HHz5np12EXaPxccBPhhAmNpsNzld0nWNVGV6tG4RMvLwrSCJxPA+0jx3v3ko2q4K2j5z7wM2mwo8jUgqejh2Dy7tNs7HYteT4wTF4jwuSIALtFFAxTyv2LmtXbjcV+IHBC576wHEMICIKwaoUaB2IY2TbaKR3JB8QSbNb10xToBs8t03JvkgcxsStNjgn6fvA3SpH9BslqOuCT58yAigKg9EKNznWtUJogYgBF0bWqxUxBNCWL/uW3iWSVlhr2W4sRWGIMeG6nrEdMq2qJLoQvLgr2WwVu6MjCUtEME4BW0pi7zFG8T/86pZvvtrw5WGiPXn+v//tyBglX91X2FLy13+YeOwCfQBPZPARIQVrk9uzkvwMM0rlnx8EpVIEkVtSjRZYLZFS82Zd8dVacegn2jFvToKLrCuFEZ6fvd5gZeRv3h+JPrApNa8rxc264KkbCC5yOvXsjwPfvmwwpeH9Y4/UEhcVnw8DOwt3K03oJpJQkARKg9AKUmZcox8R2jKNPY2SPOocK5ACHE8jWmle3a9ZbxP9OFFWFd1hpD323NU1ZVkydSYXdi04Pz1RmhuauuLt2zserWY8Zn1cSommMkhjCSFitEEYi5cCP07YwuT07nVDuU6Ej0f2h45VI6mtQgjJVEj6aeBuu2J/7NAJKpWfnUKCtpLD2eFGQWnzhs65iCzgbmPpBw8+EmTuV7zYlEzOs7WaByf4cIZT51hXinGYKAudnzlS0A09UmoqHRmFQojMAhkp+DDlrkgSAqkCQUXOY6Q2gspLpFD5fk0BozRa5AyqnJM0J8tfnvlzPZt/n2K81L7Ev0wT/ye9sih1XsBZu5FbGMvcl9wWWViYNGflEJcCtwAFcUlFvvIf80XKlMaFqbg0P8T13yzgZmkpqbmILlPKgUzrqQwY8g9mti9nULF8brrUWS4MEVe0HGcOZmZ+BCnrcOajXZxKzELoa/Ju/pAs3Zm/c+mgXVDWDE6ezb9aWC6xtP0uJ7OA8LnXLhY30syQiMvbWCylM6eW3yEWWnPOllkIKbG4ppZz4sp5zkDjWTNqwSMsvcMU59RqkXJS87x4cTmDlFmlpV22aI4W0JbvmQzwFieWEOqSIXI50DQDv7gATkWSBqQl29NDTn5WBTH0SBcYxuNF9Ku14uX9juF44EvrUCfHeQjcoHjz9ZroW0SxQk8CrSsSAm0kr7eGcXRgJL9+1VCVkn/8vmO9LfmhCzTrgnVZMI0dphAUVrPelCAkbgr4cWRVCvw0gtQIa0B4tjc13anHVhUpJc7tmWGamIYJ1zvCfmS7q6lWa2Kh+fK+QwlBmRLa5Kfsb9+fGAbH16+3fPO6YBod+y8HhDIk79hWMLWRwhrGbuTtixohEsPgaIeAtwWYEpUCq8bS+pYQAl+eWuxmg9UGXQpkdPT9wIcg0aVh7CLKlBzPLd00Ibxgs15TNyW7nUWLxJdDj7kpOI4RFyMhREoBVZk1RDhBrSNFVTD2E28ayzH0fP+p48f9QKUqxiky+kRR1nz3/pGVNXx+6CirNa53QAa4T18OvH25nd2Agd3KYIuCJAzff27zPKOk6X3MybQJfna/4atXNdttjbSavjsSB4+1lhQDzrls7w6SrhfUqwohwRhFtS0IwaG0pv3ccThPNIXmZCLffWjxSvFh8Hz+oePFSnG7tpyT53RymaXRCq0kLiZOg8P5QGNyqORpDlB8vbYMkyOEhAFsglpBpSL7s6cNmduudMJoeLu1PLYD59MZaQWfWs/ZRV6GiDWJj8eO7x9H3h8nXpeSdzcV37ypMU3B7Y1lGLM4eeod9aahshIpBV03IlFUdZ6p5L1Hmyw58JNH2IqhHylNwcu7gkji+PnIui4pKtApkvpAjIHd/ZpxCkztgFaK7a6i74acASYl7WGgcgldaLa7ikP0DKcBbStCiOhK4oYJYS1GR17erXn8dMqtPmtIYaIwkmZTc/zUEpOhsVCuLKdjz3pdoqWgKTTr2jD2I0vf21hFSIFzHzFodAnSSlJwFEpzSIlKRdalykwZEe8CN6ua9489nbP0PrHB4FNEa0GJoR3yhmBXSU7tiCprUvBErXECSikwap4VlSL9FFEJTAq8qDSnGPEhuzxjDCAl3udAkySv+tbL5v/Z5jXPFMy1mX8Z1fBPfM3tEJEW/chVxS8WcY3Mu5AcszLvusXSqpg/5uIYmtmLC9bJ1VckiYK8OxcSZpZgUZMv/8kZcUWZbZ/MbaskYk6DnEHQMozsEiG5CHMSl/EMILImYmYiMjEj5rCtdOnvLK4eAReNTYw5a+Kie/nJkukZHF0onLlXunzn4gVdvlRlcCayzgZmncpFUQ/LgsnrL5/1d+b22GJxn9ddXqL3mPMTnouyn4HGWby2tP8yOL3mz4CYZ5wsLaPMzF10Pywg66epnRkQL4NNl3XKn7e4H+ezndkxcVkWxJVNE0IilUYoS171bL8sq4boPcF7/NjlScQC2hhR65r65harJWPb8unjHqk1nYuc2h1DyGzB3c2G28eRMQrcumK7q9BJ8PZlwy/fVPz+xye+fD7y998f0AZGKfj3f7ZlXWuG0eFD5Dw67rcrCi2Y+jNKCaRWBCkY+h69NpAmjIbj4wFtS7StMJNkOJ7x3cg4TEz9iGk8uigw2jIME0Lle8X7gdJaeqcYgmAYA02pELbgsPe0reN2C1ZHQvL4FLDasF7VwERdQVErbrcV/fFIpQW72nA8txynxOFzx4Bh8pKbQvP53PNp0IxB5iCxlOj6PAl6u2m4aRrWNnJTkQGS0bxe17w/dRglkEj0DEylVPRjAFGyqhXnc4tRigqP0RDiRNINXUggs1tMhMi2LjiPJ0YH+EBZa9YbS9c51nXFdlPjfIEbH7FW0keBJ4tP13WBiwM3tcFWJTfbgnVVcHe/xooWpKHYWkRM+Ckh9cD+SwcpUlWCU+c5thPKJuqg2G5KNrsCVRQcnk6MEVAaW5WIydEYSTcJxqioa4VscysCmbNrJhc4DRNCgFaZpVmrREjwal1lICHzkF0tBdtS8fK24uO+p1ECEQK/fFlzbEeCS5DyfKmvdoKzMBR0BAmHMfGhU0xuJCVBGSNKKorCMobEplSYosB5wb6duFk33G4qykYhSkNjNdX9DX5yOOcIziFkidQWXI9II1pHvHe0Z0fdNLx884YUe6TWxGmgWtc8HTyWiBIx2+IJ2FoTdcX5qWPVrDi3Lcpo8C4PfS0KnJOc2wE/OlThUZVimkaGx5abuzXy5YbY9UTvcFNASsHr+xUqCro2j2RYNdk99fbVDu9HdJkYTgOkSPIGmQTSw/224uHYYUxBHCKrWmNU4jx4khPsrOLntxVaQTsFmspy7HuMlegJVgaMzJqafnIIqS+dhFPruLeGMI0kbfEoxtm9WmvoXZg7Dolu8qx1okgOGSIrZTkHmTVziRwrEfOQ1vxwlcQYLm4pRWaglnKByAzrP8frTx7giEuw28IaXA1o4gImrrbFpfWX61+aSRJxCd1bPiexCI/JOpln1rhl9750vZY+hsjwdA5DyiwOM7uQ5qKXjwvkJTcg04HPHNYXao9ELiALS7SwPAJEWvRG+ZjlBRTN5yfzgAV56b7k414EvILFiHUFEUtbaWm2L+tJulpFhVwcWTxjniAPs8hs0tLiEmlOoLkiBbK1NB/Pwn3F+djSvIoLSL2wM3N7Ksz9OiHk/B1ybpstpz630eZ1n/P48g/UfK2WdVrA4NKmWoANyHw8C2+1zFyRCTGDlwsWuuxMMhNnWNiMxKYq8c4ie8lTDIQUIHq6ccRUMI2WqirQTYOVgeJY8OGxZRXh/eOBKnW82hnuG8W6sVgKpJ2wJO57z6ubFUEY6sLyi1vF744eURR896Xn5cayIQ8GfPn2luAUPuS4AykVRVEgrcZFjxMTKSXa45mE4nAaSbHDlhWJhK1rrI5IlSnv46GlqBODU+xbT0iJN68antqOx6Nj1RQgBZ+PjraP7HYNu51mOB+ZjKXWsH88U+9WjFNgbQyDczRVASJSyZEuTJAURuYE36op+XAU9FEzusBZKUZZc+4nfIwEDyk6TFViEuxuNtnmnBIPR48TBqsjWMNpdPgksGWJAY59izEGWTWYskIwsW4qVnXJ4Tzgb0qUEJkZOztOvacLjpeVwgjHi/vtTKwKlDJ4B5VVxBiZOkdRG0DTdZ7TkEXy5zGLfLvREZNmaCf0bcPrVysKk9DSoGRCCkcYwgw6Ii/ervEx0Xc9w4cz0wk+vz8hPna82BjevW64e7elKAwPjyPftQO3N2tevhZ8eRj5x4eB/SD4sp84t5HBA0qjDUy9BxIrpXhRaWQKFEby7abkeA4MIZcqowQ3leT1VvP7p45xjNSVwspEmiZ0gsMYKa3nrlLcrw11FHy7Vbw/eZRO/OHYoSW8WhWURuAkPA0Dbh8JyvLm5QoXRl7cNtztKgopMFYiqgrZ1AhZoMuSvm0Bgw8CGQPVdgMpoHzg9pXk4fiBhx++UJY1L1+s2JYqz7l6crz76pbjwx7bWEJS+LnNJxA4H+i7M8fHA4rE+qYhxkQICa2grgsG73CDJ4yRelVwPI1E52lqS+8EHsE4OW62K6bJ8erlDV8ejnR9pJpGdltLf+4prSX6SE+g2dRMLqCtJU6JFy8Kfv95ZIieV7sCJbKt++M8nfy2ymzLvh+xQiKKxOHs6SdJmiLbQqPkRCAyBkUpJDEEaq1IMeHGAVWUxJRwLqB0ftb6KSATTFPASKgKwabWdIQ5VkJhhWQMkcElirLEJX+RhcaUQMqZzYmENNfWmOa6G3HuXwDOP+kl5BzRL5ZCTGZNmIW84llo21zYYrqKVK9zncS1MM6/l+Q20tKOSTNCiHNS39LeWTJjhEwoNbMT8hm4yAfKzEnk1gg8A0iLlueq81haVWIGDmn+iMX5JGaqREQulmixqNufTXBN87mkRbQ75+0sACMTGwmWpOClzfeMUbqyPDK3bKSac3aYHetxfo+4fJdEXlgeOZ+sQMxi6iw0FjGxDK1cBNoLU7KkJosFqTCLvefjifgr65Su3y2W676kP8+ARsqMdrKdfGZyyG9YWpnysvrMoEteWLMFAMIScDbfJQsQS4kQPTpFiIL9MNGfBvrekZRGagNKUFuDHyeG8xFrdtyuV7y6rznsW7aTQ8rE0+mEFxN/9z2kEBidp6oLqlUBSnMYIpPRfH90rFZb/uzrwK+1heAx1vKHD3v+46cWLzT/DsG3b2/Y7FYU2iAk+OBRk0eIiA+Rtu1BCsqmyboOAUlomtUa17Vz222iKGQOJwwwRoWyFfiOMA7clBbzogRb0U89wUU6F6iLEaMhBc/TQ6a9RUr4vsfHhN9skHi0SHRtT5sk0Qeq2vDlMFKYkk8nB6okRHBIPrcTMgVQCqElITmcm6ibmhQTwzCwtZK1UezPDhcERSH5/qGlcwFbrvIudhhASExlkT7H9isjuLmpcS5SFwUvtCSkhPOBTWM5jZ4hBJQs8H6iKmq2G0vfe4qipj28p6xLejdgvaA7jXRj5Hz2HM6OvvUEIQmTYFtpROFZ15a395YXNyXGgJQRomRsPUwTyirspoGQcIeB4ykyTIqmUpSbHQLYlIbVbYkUiocvJ9rW8fb1GlNY2mHi4UtApcR2XXPycCcUZowcp0Ag4pxiJSQvCkWl8s/hqrIcu5Hek91TAm4qydpCkRIFiZ/dFeyKRD9E1qXmu/PAwxAobOTdpkQk+NltyQ+fz5ymmVAXgtKo2TKuqY3g7q4kisSHzz11U6FloCoM61WB0RKkItqSJAztqc+WbKmodxsQkRgD4zSipcYWFVJKvvn5Pb/5uwe+++6R4ez5y7+8Z7srKK3l4fOJusluPTX53B6KBeVug60LEBJpC9rOYYo8GLOqaoIYkTqiVANJ0p1a+tM4p32P1OuS2KzoDqfc3rUDyhYEP3B7W+G7IU84LzRKSSYfsFZSlgYlYZoc0+RwY+Lbes3XdwVtD4TI3U3Dj/sT/eSpZaQwmtPQo6WkLFSeXeUSR5fwIfF6o/nh0DMMkW2VmEJmlIxMoAUuBjSSaQqURlFXJkcjREdKEasghMiqKNn3I4PIY0ZinChkImpJ78kRKnOUSZzr7aK9iQlSzPEKIs7bwZjw/tlu/I94/ckDnLiwH8vrQn/wTMDKVbvCs5r9XAj7TAuz7PLT8t+leOf3KqXm4WEzcBLXNhWIuT8mczFNuTV1KYpL9H8CpMq0JMvnX51OuTDLax9TZNCWa/1SzJcWCVnTIgLZCTYDGsQlJyfX/QVYqStfIZjDmMSlgOfTndmJq5cbEqi0YBk5a3/IinpgFqzkP5fz8aZnuqJ5ueQM9pLkmTNrRgryGkK4DPLM49WXXJx8BRUaUh61GkiX1GaxDKnicqDzR2fNUeZ7luTodO1XMQu15XzOSc3zuOZM5ZQtkFJej3W57YS8Xt8gEmP0OO/pp4mgFcpayqZm6HtIOTl2bHsOCH5+95bP+y+s1zVSScbRoZXmxy9n/uPvW37zY8tfvlvBY0dRFrzYrXl1u+J87inKBqkFt69fYghUEvAeS8PTacRow7sX92ybBMkTgr30yMduwJSGoigxVvP4dCb0HlNVMAW88xwevoCbkFLj0ASZcgqwiwydx0+eqhQYbbBG5BEPYaRqNF3r8C7hXaQ7j2xvakLwCARKgu9GglAcDidsoRjOPXGaOHto3USxKeiC4jxEPh4mZFNxHhxeGvrRwzhirUZrDTE/VL3zBB+odIkOjod9h4+gjaGPiePZY4oKEvT9gHcjP3+xInQn7mpFchNVtebwtKcfM67elQXd6HhqB+5utwzOkwLUZUFdRIahQ+uCqjK4MBFiYOhHTkdHU1XYQhKcQ4nIzbZk9JHeBb55t6VvT6ybgmZTYnWk606kIHDjwHRqWe9WSKCsLLIsce3EJCb6PmTWCsV0OPP6q1vK2qKaimkaefvVlh9+eKTtAo9PR/72fcd/+LuWiGW7c9kpI7KI30jBSkoqK7nVCSNyntFuU+GcJ4SEVZLCKIwCmfIk6tEnXq8171aSb+4NX44apfMmwiX42Cb+8qWmMJJxCNw0FQTN0Sc8glorfMiZEK/uVtSNxEUHIjH0He9eNBQpwTSAVJx6ICrikFBa0Kw2GGtIeMI0IYTC2BI3jgz7lnEYUUbzi794Tb1ZcX4a+MP7Iy/GivsXa27v1iQ6jsczXTtRVxYxRNyhZ9VsCT4i1zm3TOoSFz3nx0fKZoVQ4EePLuo8a80nCqVJMWad2xSobIXeaY6nERvAVobkArbSqMLgxg6RwLs8NXy3bXAu8Yf3HTHkey+4xLtXDf/w3Z4kFGMYiQRU8rzZ1ey2JW07IgE/r/v9qqQcPWcl8SngU27BWZ1og6e0Eh8TRiiIEecGJq/ZWInC0A6e1ytNkB4/TsgUSUusdUgUBlSK+BiwIuGlYkiBISSMVmgh6WPm1Z+DmxCuA4hFjEz/osH5J76WyHCuYAW46ifEAlQSiytmQZcXgDMXsnQBPLnlsPj2L/GBs1AnkePJY4izCyuDioWlWCzkYtZnxKU3BPN75KzrSVcmgGfC3rm3khbn1dxKSZd3cvldBhJznU6LpiiDm0X0u3zvAl6Yf7W4rq7k1dK/yd9/wTYL2BKADAumYya3WNpky79XC+OyMGILiBE/bUHJtFy/dPmcdD1AFrC46GXEnKCajToz65RStvYvYvEM25abI3/+M/ZOXlitee2etdOWuyevzXxs+Y050HBZ63lN0mzpWkIkhdSkOahHSIltdrjuREhPSG0QyiOSRJg8jyn4ib7riKpgt9mgBUyFZvARYw19cPz9p4FVYxgHh1Qjj08T//qXrxn7kcZaVEoMnafzE82LBm0SVbD8v/5vP+fLhwM/f6nZ3G2Z+paQIsEFjBZIofCDR8iElJGb3YrTqeX4ecSWNcEPWZvgR4zwaKkJMTCFhEuO5DriGBCyoO9a2hiyJscYTFlmtsE5JqdomoJpHBHS4F0GT01dYrUCoUlIBucYnGdzV+NayXGIOKWYoiFYGLzPtHeMaGMIKWT3ns+DNJVMiBiIbgAfOblIaS3KWL6cRtCSqrI0jSWErAGIUfJ4aMGNvChXrFYFAsG5m/BJ8NQ5Kp/1kMfTQLNeURqFUpFCeAotcc7PhgbBxx8fMnNrRJ4wbjybVcGn1LNd15eAxsFF/uKbDT98d0ZpQbc/kZqaEAJjH3n6fKCuKo77DsvA5uU97twSxsjYeUql2b1bIbWiXOexDfvPLf/44ZHDvmd3s+XFfYV3DqkU+MDtRpKUxQuYfAYoboqMY8AQubE5nE0pSVkUjHPhlbN70DtP2+dNYFlIRuf49s7yzU7zstRslOK708R+8Aw+oZGMk+fVdk0gcd/mlk5dlwgFtYFKS0bn6WPE9ZFh9Ly+XbOqEkZCU5UIrfn8OPDlMWAqweuf31OWhrIq0UWBVBBdRdf17B+PCNQc6aAZh4Cxlm++vmF64/n88cAUEt///iObmy27uw1SCD69f2T/NIJY4bxjzYgtNevXO9zUMw4jKUZiiByejjTrFSlK4uRZr1ecjx1+9NjC4HxEGkl3PlOUJUVZzKLaRHDZ5Sa1Jowys/0i4WOgLAtMJSmbklVU7A8dD48DL96sEDKwKi1GC0SM3FWKwmYtkAiAlviQw0IfP3VUWpLKxOA9X28tj72nMGC0wgdPIFErgTGK3nvKStEUYGxkV0I7RXaF4jTkVtLDccJqgRMRRA5fTGECJKXSnOLM7KMIiz6UzIj7lAFOHlCd28YxRnz4l6C/f+JrrogpXfJu5MxspASXkJwZLESuIGfJRxEzTbIwJYhnTp14aWbM/14shAhSy2eHkUdE5BTLmX3I+b3XAnrBE2n5J1wN2YIQn4EvlrZIPrbE3Op5PrtptrpfpzM9Iy8ELInI+bsuhuuLkFeINAObeLGnL66rnwDGhXohkYQisWQPJUjLzO6Y23kLSEiSJe/n0noTV5C2kCvp2TEJrgccn4GrNIMUQU7kjTO7E2dtEyK3hRLxknt0yddZnGiXoZnzXy5ruTBgs7JbxAvaywBovv4L7roeU2YPczpO/rLgRlR3QhUNEZmzb2LW8Uz9gJGKIU4IoxEiwuT5/HRGKcm6gN2m4njqeHu34fwIn0+BPiQeu0TbOYZp4h8+DXxsHX/xosA/ePAJqSR1KQkhsNrUSCHzNOk/KzidOra3G4yp6LuOcZwYCFiTA+mMLXB9YPADLua49rHv8lr6hNaGoGAYeoJPyJgotaK8WXM8tLR9TxCaoqlQVvJ0GhiOjqZpkFIzRcGN1ShteDp4qmqLVBMpZTeVNQIpDUqVGCOp6wphE48nga4sU8hJqz4ElI3UUjM5QTvl9NyLJi0EwjRRaT3vgCU+SaYp4aOg0gUK0NOEmxzDODJ5T5KaUioKa6gLwcPTHpckEcPn88CrbUBKlXekk6NWeVZVVSrWK40kYVTi+88HxtZhrKGqC3w/kLyjqmtev11RlRUpakiSp33HZqXoNgVFafjww8hKK6wUnB5OPL4/UP6i4Xzq+PnPb3GTYBoSfoKqrNnsbtBWzKMLRmww+DEyTI7Pnz1Ph5Z6rTm0E+cu8f6h59QmPJ6gJEoKphAJQuTdfUoYkQXEVkmkgqHPUftGQO8cxynRTRGtJMYrVlbipoRUCbMSpCly+jQgEGyt4E0lua81lRUQAt++beiD54enlm1pKazGapBa8eXQsW5KrJa03cC7uzXGKsZx4OEceOwF680GpQWn457oDDJ2FKlBm4qhP3M8DDw9DYx9x/3dLVorqspQNhZSwijJUFvcMIHOLiaeztSN5eWbDW07MbiJ0QWMVmzvtsQ4ILUhuDN11dA0NR8+PPL505HduszjIdzIelXQto7zMLFaV9QlNJuS4ThgbIEia2ZaF4ghUZURayzOBZqqQA6B5BPKJl7fVRTacjp1HM4971jz1asGkyR1VQCJbpjwPjCOge2qQliF6yce92f6wVNtVzBFTqPnq5Xl5qag9fD56CkVJCkwIiJJaAleJA69ZycklRY8jZGnQbAykkIIxhAxMtLUlqfBQZIUeO4rSyoUnw+5ihUyMcYsWn9OFGRwGAghs0FpBj3/HK8/eYAjYryMN1gYgUtxvCot5kyUZ+V1Zg2WjsPzYvtMOXxxIcWlhQXPzENpbmNc2Rm4tsBYwJJ4zi6JZ8FH+b8wQxz5/Kvn6dcoLqwFAlDi0u8UzDkuaVHTzsV4BiNyYV14fu75BC41fAYf1+adfMZ0zBPR5wW96LnTjM/F0s6Jl/Nf/j7/dgZVaWGJrkxOpnMWW/r1Zk8LGzKDl0V2w7zeUWTQFBewlOZzkBCSvIYOLpqseTbOkuETL7RUPiwl5QVsCa4M3TJ+dImvl1Jemab5Cl+7evNB+onYnbKjKiWk1gxu5NieGX1ApolpGlFa4idPafKAyf2pozQV21WDT5YxCaItub8HNzk2BZRR8Rgcv/j2Z/z1f/sH1uzwbuL7p567Vclf/dmO/aHn8HRi1RR5RMGqoNjseP/jF7Y3b/j4ux85dT13Lxo2G4utFVpl8fbUj/TJII3JTsEkCMEBGhkSQzdlcXceVIQfB2xpQCv6efdtqpqNMKyyf5nj4UT0idrmXf92UzG6QIj5/m8ai60NUxAUVUGKgfMUMHXF68IyfumxAzSrkjR6hrYlhIjUFm0jYRqxdcE0TkQfCS7iTUTKzAwduxFtC5RVhARt5/h0PBKEIBmNlBopFW+2FXcri9Xw+2PHD18cQRQYWxC9I+lEURQM04RVOdivrCRlCUYbkkiM7cDD48RqVVPVht1uhdAKZQTbTZN/Vo1imjx+khRW8vplg9aJ8zE7m6yRSJXY3W2I00hpJLq09Mczxy8d5WoDKdIdOurdCh1GTJ138+qlRum8jg9PE9/94cDL+x26VjTvPQ2edvQ5vHMOEZRAg8SGnGArEVSN5dyOIARGC4zSuCi4KxNf7xTfnyacjyhl2VQFf/VntwQR+OHR8dAmaiX59euCl7XifldQ1JrjYSQKwVf3JY0WTM7TjY59F2gKy9bK7ErbWO5WCuEdwcMUHKKo+fnrG7TMM+OKqsCWmhg95/0RZQfGMSGioSzzsz+GiE9hZnOyeH2YOoz0SC3ZnwOnw0hZKKQJlJXFKg1aMPU9Yew5Pz1iGo2SiWa7xnUjQhhevL7l8fOeoR3RLoBR+BiJKhKCp+tHqqKiLBRqBd3g8Skh4oS2hmkccc5RlBajFEoluvOA0IZuHpBrS8HNriT0E74b+fmbHe1pwiWJH+HUerQxFFpRGE3bZ9AxThGhFae5zf26Ury7K/hu72inhNGJaQhYCz4oEDC4AD5r1GpjGSeIMbeZ7grJIWQreFMIKp0YrOJ0HllXkm0Fj+OAkQ1RKEQSBJ+DB7XKm8MQYtbahTlEdn6gL7PN/tjXnzzAmctgDn5bCs/l77gAGWDueFxbQRcQcin+Pw24uxQvBD/NhskFWIo8MFDOzE8OEGQuwEv4XkRdjlPMoCQ9O8pnwOd6KCwtpYXqSykRZW7FZMZibr/M6OzSjpJL/kC6Fl4W9U12HuVh4c9mxQiyLifBMs4+W8JnkCWX433e4kqX1OIlMWgBaNlSPrMjKc528BlRpTRb+JfUH5EFaM8YnDh/f/6i5TzzLLDlTOIy0mE+q+fE1sJ2PZcWLS2oC1AkM21ybn1lEPT8aohLxMCyI3mewZNncM1XNC7fK4g+oN1IcgmJIUqLsiWm8iQ3IWfraJhagrKcBo8PgXM/UWmFLS1dP1BVa8rWcbuy/KuXEtcrfv+556t3G477HU/9RN85Praep7FDGUnoLP/44xPKav4f/+oluJrSSlZ1yd//7e/56388M/Ud/05pitpi0FRlztJxumM45556TAE35vRgFT1GSZRZQ/Kk6IkxIEwBPqKLEi0S3gXCMKCNIhIJYeCmqdk/dpy0w8qSIY7Uq9yK0SphTSJMAaE0602BUjnLI0F2bxjFqoCQFINPiCiZhoF6XaBXNd5lHYGWmimRRdIh4qeIEJEkFO04EYVk6E7ZwZGg7QfW2xVGCmqlqKxACMcYCvbe8r7zlMrzzX3FHz52fGnPvL5ZM42et/c1VakpC0NVSDYbjdSa0UHvoPCS42HgzYuKurHzUFyoqpIYE4UxSOFRSlGsNGF0FFZT1RpjInUlWG+3dIeOze0aPwyMnaNodpwOp1wYYsT5nqqSrFSNKAuEEPgJzkeH1Yav3q348NDytz+0fNiPTFETtEQJgXdx3sBEQopUIqGlwGiNIuFjnDdBCh89lYWvbwp+9dLy138QfD44SuX4q7c7yibxP//NJ37zPtEFweuN4d/8fENjsmPs449HmrXh/Ycj21XJmxvLoQPrBWVSpAB3u5LKCu5WivsbiygUE5LVix22rkhJMIyZOavrClOVhJQIfiSGSJwGjodHRBCsKs3YH6maFYKEGwakyjPenLUc9m1mcYApRj592rMqC+5erNGlJkSDUAofBGYQyEIRkkcXlqkfULZkd3/L0A+Mp55pyPeXkgolfH62hkShFbIwhCgZ2hZVGKJzaFPQ99lBpLRkHCakkUy9A6mQWmLtRF1bghBApFSWs3T89rs9KcvPCMHx6tU25/94R5KK0iiGAINPrKPnbmsJ0XN2jt5l7VvrBLYQeLK2SkaFJfLrlyWn5DmNkhhy2XgYAqVSpBhIUdMPE2tTEItcQ3rvSAg2JvBlFLRjxC8O15TwMeFCwodFk5NmAiLxz0Tg/OkDnNlUxGXm0bzrvxTMSytl4WvSpZADF3dRIjMOS0jdonNJYgEZs+ZiTsKNcR4K8ExnImfdTFICUswDI5fWlFiOc+kspeel9GJnX05qcVfNZp5LYZVpbostxTxxsWUvXizEpXt1ZVnIhTwvxQwS5j+7WNT/u1YMM1iRFxfTPIwvL+pFiLzod9JiA3wmfM6jKK7gKAOnNC/w/CCFC1i7tL7y2V3om8ufLELomM9rYeaW/xVze3HZKcxYNQPSecHUvExL62sZlHnhwNL1+s+HlpdjcWYt/yeugznzfRXwbkQ6S5gCuqjQxqBUgVQ5NC+lxDROCKDre4RSvLnbMRz3fHc88+rFLTpFhJHU65q1jVgLIpZ89bbGpMhf/eIdX378hC973uwKzkHwZmcppedNrdl7ye9//4SJUBjJ3UpRxjPfH458v3fE2mLWFbtdnY9bRoKAT1+OlM2GqjT5oRmhLAwiBfp+RKQcEV9Yi1AaN010zjMNHu8TIUwUSeZ5W8YwdCNa+jwKIGjGPmFtwaaUSDxJeLxLDGdHuW4oigI35lTXZZ8RSSTXkwLYomDwAa1UvidDoO+6POQzJW6bglM3EKTJidHAuR0RwNPhzHbdYBf3Sj9Q1SUCweAF51HxcEhUtsaaAfxE6ywfj5HTEPj2leWhbUkSKpOb1cPkaGbtQ1UpphA4DAOD91Ra8tW7kuBinq+mFVpaEJF6pbLj0khSSLy4LylXRQZCTU1MUBUSKSPdfiQkTd93RKkRKbLeVVSlAiJuzKm7qmlwMQ+1HAO0x4ExKM5OYw1Mg8MgcSHbf/0YwQeKFEA4pIKiLHg8D1SVoe8cKUZWpeLFSvF/+uUNj49Hdjrxqz9f8+cvG/7yl/cMU0tKkv/y6cwUBP/HlwVSCB6PLa9vt6QYMGPi3V3D4TSwMprtTYMXkjHC8RR42VjWK6hKDUISEpi6omtHnLfUm4amlhTWoIxCSosygvbcIoSmkJLdzZrjfuDcJ1IyqJCjM6SLqKQxyrJZWZSyfP78xPipIzoBUfD504HoHa9/dsd2u2U6nhFEzucjVSrQWiKlot5ucH1Pd2oRSlNvKzgNhCDphkBRVozjSCgiwU9IYyilQUSPUIJucJd4Eh8F1lrcOc++kqVm8ongc5vQIjDrFUp4hmEiCuhHh5E5gkC4HPtw6DtUISAkBheZksyW71VBN+SQvm2h8UPEjSNvd5p1Y3E+0rvshFvVknbsODhBOyhc0kitOLiAVhEfRo5So7SmUYHXG5tzjIKnkBLZtURX0wcxJ02TGUGT2ZslNHB5nku4yCT+2NefPMBZ6mR+Pbd852L4E7fzPGkAQWYuYA6R45K3kieJL/kos1B4Sbl9FgYoxZydM7MnYXYEpYUxmT/vMgZiEboKLi2mfFxi/vLFOcWFRyI9PzdmYe+zdtEMIhahdf789JMAwvwx15C8pRUjZzv1hU1Kc8LkpbhEFt4pKzOucCyDGkES8cJ8XOZmMYf9LozJQojNwOW5Iwy46H6W+VMyQUpxZnEWVxlXZmv5jZg/Z77AadZc/ZRnWggskcMG5/cuQzeWPt2Vl7kyXnEZlxHnxtXCSIkrY7Mk8IiZ7cpanpDdEsbkXCA3opXEaw1KUjYNbmxJ0ROGHOvejx5tSkQI7A8nSqPoxsjtumRVG4LVfN4fGJxnlU68e/MWPfW8bXZ8//kRijU2TtwYxZtaUBjNpFcUlSVMZ6aksaXl//6rV/zHv/+IO7T8zX/2fPzxxLc/X/P67YYwwd12zThFDscWI+I8LFIhkuL4dEIpgdYJnIfJoWyRU21tztSQaJwLl9BMgcBaSTeNdKPn5c0KN/XYTY2bEsNhwnmJFwY3OWTO38eUhiQKRKFR/cjhfGaMOoffGZNF5sERnCfEgIieb19uWReKcxeRJs+vGqeJED3ehzxt2gdMYVg1NZP3mMJSVgahNVFp2jEyTp44ep5OnvdPe9rREX3i86FHFZK2HzGqgDAhheJ47GjWK4QyCKFoe8f6Lju+tFa4aYTkCW5EFJYpeKqVAQIiBMq6QWmHtgXRDRR1DSlrI4Z+oh8Ex+NA0axw/chqXaKUxE0jUuagNmlLYlC0fQZj2ljavuP7Dx390SNCQoYAUhMdiBBzSF4MSJFwMRdWHaFQkhQCRksKrbkpJPelQnn4/Y89v3635dc/sxiTUOHMqXMMXmPIrfMPe8fx5LmtDH6YSMHjZaKyBqciKiakn6i1Yldb7mqD1Z6qKUEIpC1Z3VT0w8iXTwN3t5bdzQpTVpAiY5+t/YQ8rFTZkhgVh67l2Hms0bx4saNuNN55hq4DYVFSzRlQipvbFVYpuhFcP1FWCpECx4czYfJUZZ6yXa22TOOI946pb6maGltYGilwoyMEz2rTcHw6IkTi+DSy2TYczx1lVVMqSVEaCAbvHNZqps6jjCHMz8coMotXrmr80EIUSJXv0egjRNBGI4PHGE2tDSmCURKrLZUaqJqKf/hwpDHZyaVWGikdAUmSFh2hFp5mk4ebCiKdS5z7wKtNzqFyc6CkC4J+GNhsclTCMPbcrAVSRHzwHDoolKDMbQk8iVpmR17nADxKJO4qS5KSh9NEDPnpalUeChrjv2hw/smvIECLa0G9JuYu7MGCEDKISJcSLeffLfkwy84clqJ1YYHmCn3hClKarcGzc+fat3k2ayP/QUw59jsuDq10ZZviImx9xpxkMLLoT5bvuGxoL3qefLSz2+onzMtc9CXL0c4MRhbpXjmYdDnXec7rjOCuQuBLQV++Ic0NsxkUyCTmttEy5HI+AimXb70idvJ5Z3A0Z+hwZZKWV1qYlcQlPVksGh4WkHSBsVn0nXtuz5ixZ9bzvF3Iv59B6YXtmpXIuRO1rJX4yRW5XhdYBEEZxy1ntEiUMjWbQiROPUYpxsljlUQZTf/U40NAqjzDZ71aI0XLNE0MKbFZFSRviMD7xxPnfuSvvr6jShorYQSkNkQkxliaylJtFW/VhnGE3eqGInVsyoqHTwfieMZsNqxXG0otEWXJGwv92fF4OvMXb0uaJrfUuqGi7QZOpwFHpF5XlMKTphHvRsZhzCsfoO97bFFAShQqD2OsdESsa9puyALfeW2UEtS1pfQClcgx8zZwOp8QMaJFydS2jAiUTph6jUPw5ZTo/YhSJSJNJCHxMSLwlFogZcQDLkzY0pIcPPUTuiooVw39GJj8kGP4p4BQkmplkULSrFb5PuwGQoR2cJQ64YQiysTj0wk3OnxIfO4dZWGYhg4tPJUuydEN+fkwTfnu7YeE84kgJGN0aA0uBmKA7jRRr9dAxMd8E2sNUhp8OCNShxIKpRP4gNSS6TzSHgbac8B5sOuG0/FMXRq0UbTdhLUaW1jc6BBJcN53fPp85vPTSAwDq6bk9Urz9qbixy9HHjrBIQgG5xmcYwwe7yOFFpRSsbaGbnSEGLlrCiqjmMaJlyvDygo+fDogQ+Dre81mqylMwf/yt0f+5vdnPn4eWEnBkciPp8j7U89ffXuHO3cIL9FS4MYRLaG0ktpEpI6AQyiNLCpcEgSfuHlRY6xm6Ebu71fcv9phC835+IRMkaJpiCkxnDu8D0wx4j0cjg5jC1bLCIvCoqxCaui7ke7hzKvXrygqTfCOUQVknNisKpLUnI8nuvaEVYF1sc5MnxaU6x396UzwcDr2lFWgXlcgAoyCOEZubnakxydOh57D3rPZ1Dx9Hnj71lJUimAtT48n2m7EmgofEoWynJ46pClIPv/MjN4TA1hRUVYFfduDzsnYpS1pyoLkI7fbmmZlGeJI1VSc9wPSCYwUfP264njseXm74TB4vPckn7ipFVbkye9+zuKyMuH8RCkFVilMqdiEgPAB3EgIjj5G3mhLiJGQBFEKCp1Ti93gqJsCIwOCQAhz22CWOTychvxcVXkjK1LCLwXhJ9ku//+//uQBTu5yXA3CF6xxsbpcf50nRsds1b32LnJxfMY4LE6rZTe/MBOXYrcwFYhZ+3Nt18RnQuTnTMxFEMyzkQIskCxdHE+ZfJnB2qwfumqBsvPrUohTHslwpUnm98sF/ojrmqS5+MsFkAkCaQYFi/rkOlB00f0Q09xqu6h2gAwKloC87BK7rsEF6ogrdLmkHs8fkNJSBtMl/UeIBdkvLafLImV2jAXkcQFeGUOFZ+0yOS+VWDDedQHyRbuuyrzOC7hhBlzXlOhntvCU/91yzstVXJbz6kyD6CfCcIaYKIDSaEQIDOOAqiqUVpc5ZNZotBJM0aMqCz5htOHVTcUPH4+ouw0PTz0/Hlre3m64WRseD0e+eveSWpxpjMj2UyvQUbOtwbuav/lfP7A/9mxrw9sXJaWFqU18fDzQpsTeJe7WhqIQMH1BeKiaiqZa4cduXm9FmAYEOXp9cAFblYTJIYlzkCOkKAk+UjVF3v0bhRIiD+RUCiE0xhqcGynKkskFfJKczx0+ZCtpSoFxHHLexyRoh5G6kfRdm8MOB48ymk1pMAoOg6MqLcPoCT4/NLvBoYREqyz+FTiKokRIqHfrvOuXYLQm9llAK7VCqhz78OXpgAsOUyh8HxAh0hiJLWC3MRzaMbc7ig0xeQ6nidcvdng3IhD4KVBqTfSC23VJe3bZku5nVjhGhFCMoyelgLIluBGlLdEPxOgYngJfPra0nUCXBttYur4liTwh/eE0IeKcOfT+C0oqfBR8+dLST4ngE0PvuN8avv62Yb22DG2eS/Q//qcn/vBpYnARlXIyr5RQaMmmVHw49tyXkm/qyKaW9H3kq3vF7cby/tOR1VcVfUz87see3vX8v//zAx+OkRe1pDKShz7gYuI/ftfyi/uKX7/TKC8YzwNKKaQXVCoPs5SFofcJB9SFomgKmsJw+6rh6fGEtAoJ2Erh/IRQkaLQ2Crh3Inu3PPxaeDTpx4RErc3a+5ertnuSsrSIEVEBI8yinK7wpUFfXtEnLITTb3SSP3E06cjTV1TlBW9a/EBgvP43kOhMUpTlhVTN6Kkp+8cRhtizLPmsJBEoN5U3EvJd9/t0cJiTaI9DJRNg1KCalUz+jys1MeI8yNCZR1gsoa26yi0pEuB7njkzZtbTn2HlZrBe6KbWK8sVmRhcpgt11Wh2KfI3bZExECpFYNS1GXBd1+OVIXK7S4lqY1kty356/cdQx+4NYmm0GitUEow9BMizkGczqGSJwTHGDRKQgwTUitO7UhVKPqUiINjUxaIdkKTN2gyJXz0OJdnT7kQFzUCS8gJF+Lhj3v9yQOcy65+cTqxsCRLxs3MHIjFGSMvnYjE8316dtzEFPNMq8RlmrW8UhMsDEead/4XLSxcWmIL+zNrqi5aFzl/8RWwXDUdCwCJM8ODkFmPcmkZZfA1R+8sJzmLaEP+DLkU2nRplaUUQcoZGMX5GATLiIoLuBJkR1q6eomeN3rS3P6aPxW1tJGerd9z0lFcjmH+/AtQXMAPEDNgW9pTVzHwwpgsA0Xntb182/I587rNF/25H0yKqwB7mSqebeTzuiWZ9Uwpi76zKfZ6fS/tp2ctsPnuuazOEg65OM6A+X2CGCasthhj8c5RVRUhBRIJZWxuAZgJN/aUpcXH7HCJKVFval7vVvzDb1se+5EfPx5oAzx2B766S5y6iW9//q+Yjk80BhQJN3ZYoxEB0jARReJ//e2Bn90YhIs0a81oLZ+cYPKBpzHxeIp8szaQIoUK6BjwhxOqWGM3t7jhTByP5FKzwowOU1qkiMgYsdYQifjRkQhIoZHaIoSgbCRElwXKUtJsLMaWdK0DrdEiMfaBbkoorQnJ0HvJvguMcUCkwP4U6CZP9BE/jiSRA/ZkDJQaghdYpZm0I8bE47HHFBZrDFVhs/tQa8bJUWuLNNdgy7Isc2s0eGyybBS0YWJXWx4Op8xk7PIw0KIwDGPk3E0oEvvDxFevSvbHjilEJi+oasOqMVRlgVSBhOLQTWwby9QNlJuaru1xU2CzNiQ/ImVAF4ZhCgynI7Yq+PwwMATD+r6inzoGP2LLhmPb8filRWpFdNn2PA2RKPL1fPjco6RivS5493LFm1vDeiUwOrLSifefeyrhuK8E0cNTTJSl4KZQJD+RkuRlrXnXKF5UmVGzheZFKfj2q4K397d8aif+w397xCrLuQ9YCS9Xgr+4Kzh1I9MkeBglpxD5n/5+j4sr/uKFwOhEciMygrY1k1WcOs+rdy+otyVDd6Kygvufv6DtWvrTRNKW9W6Nc7nNs72/IabENI1Mk+Q4etphYLvd8OJmg7ERo8GqhEye4AIxgp8cRVFQVgXRKtzQo01Ei0RsSrgJPD2dEdIQQ+B0GnEu8u71JqvGEaiyZHO7wfuG06Hj3Las1zUiOoyCcZjY7NYIBa9e1ZyPHUlofvjwSFJQ72q0FmzqklPXIdD0h5H1zYZhHPBjoK4rJAo5OB7HwNPhxGZdEhD0g6PvBtZ1gZQJRUSZKgucXaQqLMfe0VgNgmzBNx5jBEImElk13PYRZyZOx55GK759uUJqwaGPeOcx3lMk6IXAhUAhBEoopt5xu87399FHjsOcZj0PW7UlvChAWcXHo0cIGJ3HhRw+GObn+6WyJP5FZPxPfS3aknRFAnPbITtuLu2EdCFBnvV7ckFZilQuxtdGxaWGLiBGLCh0Bg7Ljh8xt1DET47r2sqYv2suuHPJnNs7sz18BiSX5N/5+JfQJAEzG3VlFyAX51nRew3mm1tbXP4OSHEGa1dhbphBSNavzGyGSDPLJS4nvLAXc4Lhgk2ujBPzZ6bnbqvniy2fsVlhBqQQZWZ4UpRz02xhs67szMVaJsTlByTrla5rw8yWyWdtubSgPyEzW7QkIac0t9ASMc2RoQtTM4vErxIpcWF/8qEsiUPyMtNLzmD2mQgqX5MYwTuUgspqdtstWkvGvkOkhBGadalRTc3kPClkN9np2PKLr+9ZFZr1qkakhNWG3d2GDx8+8lkkzk+R//F/+d/59796Rbf/zLpSxBA4dAO6sfjJc1Mpym82+K7DI3Be8sOnA8cx26X/IkKMiuM5O4GSmECCLASCFuVCzgApX5GmAWKHSAopQuaxZMwD9GLEWk0RJe1E1sSk7HySPrAuFU1lQESCA6M0ccqTt4uqwpFdRIObOIVE52EYI+uqZH/sGXpHjBKhNc5HPu8nXm1KdqXkeHjKoEoJhNYIJXHOgZNEH/NEZyHRhcS7wKouIQZSimidHVixH9FFIobE7a7hsQ1Ia1AuUlqB1QbvEsch8NR7hFZ8eJx4cVPTDRqfJEZrNpuSzXpACMk4jRwIvNQ1qtQMpzP9w8Q05p/psiwJeOTceiNF6t0tv//DI18eBtabDUMQTEEDig+fzxyOHq0N/pxwo6OsDUZKYvCc9h0W0MIhYuCrNwW7NRQmYQtJihVKSP6f/xa+fhH4r79v+ZuPE5/2PVZofvGm4qHzDCEhlGCzqTmdO+42hlcvK6rKcPuiofvukVebHJ64qROHfuK2NmxrwcoYykJjDyMrJfj5rSJ5T7nesa0N1iRcP+Gj4jxFXnx1T9FYYoystxtuXm4QMnF4GjhNglJEgncZtNgNcZrop8CPH08MXWbq7rdV1kOlnqqsMbZgGHtstEgpOZ8Gxt5R2shmbbM13pZMU48gA7j1rgAd6doEscKNjvZ84riHu9sS/ERyIKREkdisGly9oTs8UBYys30h4ccRowTNpmZ/GlApUlUlP74/8HVhMFoyxoAxlnHKov6hH+ZBlZFxGllvK0xMgOLUBtJh4sWbO8qVQ8ockLmu10yjozt1KAlFUdI0cOo9TWkYU6SqNFHCTW2x2iAreDoPlIXkNHhKpXi9NphS0PnE+9OUk5iTQKdIKSPdkFASVhpuK2hMgCgYhcixCSpQaNg2JaI0vDr27AdFCoG6yDPjkCBC7o5cBRGZbU3/PDl/f/oAJ6al6PwEt1wQRlg0GUuRZnnDssvPICE7by5NqMt70pW+ybu/udBfM1qWgnzFEksLI15aO1yonkUjklkgCQJCykMk0qKSTc8s6TMLsrh20vxZucU2A4SM6HKhjcBlOKjPN1niUsSjuM7wvrAcaWm9XNcuCa6gZWZvZkiVv3MOwctrKzPwk/l8Lpb1iw7quq5SzM63RSw9M1piBgwXcLEIoy7fOe8AUrrM2lp6vUJwHakwM0b5dP47UMQi+ibDSjkLqefzXgIfF8C5BEHmERkziCQze8sg1QyE44Wxg3Rh/GJypJgojWG7anB+YuhbJjfStydUDrTO1ugQCNETg+N2s2LqRuq6Bjdxs9b81S9f8ptwwjnP8Tzy//nPv0dpyxvV444HCI6m0ewrjR8z1byWia/+3V8xfv49Q5czab55syP5HaQJGQXdaSJ6RVnLPI07JKrK4KcJkUZSOCOrLcX2Fnk+ghsRQuCmCWVLfBQUZckwdPT9hFOWFDMVv9E5RXc8D9gq/3lUFfvTlGcMIdisC1yE0Sf86NDJEGJiCIkQQKCyjo2I0JqkNcYYovcIoXEuIrXKrbMQCT4iTDHfl3lStfC5JUTy+GnMNnepsdaC8PiYZ//sqorPhyeSECjy2IJCJe6ain3vcUJzGAQfT54/G3I7pu09LyhwbsJKiFLw+TTiKj1rcHqCA6U10gSK0nJoJ8opomMW8yah+fGHJ77/scNFTTdObG4sY9R8fuj48OmELUpKHRiHLK4+DyM6MccAGG7Wa969NtzfQllkrjqMkf6px1Yl9abhLgqOxyduSnhRBG5vDf/XX94R0sR/+W5gGhPf7xNKwbe7gl9+u8WYkDOdRKLWghcrgzQlw+D5xYuSV7uSzcbyw6eOL92ZP781fLUzvLmxvP5qjSlKhj6wvm2QdUFhSmKbg+qcDxRFwfpmnfNpHs+MY0AahSoU1arOGqhxZJgih9YxDGCMZVUXFKUlTC5vzlLK4v6iwrsepQ1JRopKsG7K7Eg7H0khZgu5EkzTiJSaqq6ROuHLyNT2jKOg9YnSQeECZQHedQiZM4/8OFDt1gznM+E4YIoKHyFFwaaS9LsV5/1AVVqUkTx+eOLnf/4avUs8PbWgFE1VcTyemYaAUIquHSmqhojOei6fMIkceZAkUivWdUF0nrLStKcISpPIuTZG5Vyp5DwCyeFpoFKaXZPzfY59h6krxseWGyvYVQqCZ/SCcQRMJCrNachMciIRUk6UfrEuOI8OoWAj88bQSsVuYxmD47QfkcbgzjnlvtQSoSTnyZG7BkttEfNzcSk0f/zrTx7g5FiYxZGTC3yad9XywrbMPMMzNmdZ8ETuj4ulWF6qLZe2xMIGBJaiPxd8AQiVo6hnFmkpjPPGfznKS4vp0tJ61nJZbNx5dtYsYpxBBjNLsICKfIwLP6Iu53L5XJFbMflzs9Q9a2jiT8IFr1oU5sDhOIMTlndcWJR4uTkXiMPVCZZgHnTFZaDoQvGINB/LFb8vg9iujNVyLvnglsGczO06xLM8nuUayyXAcBGTiys4uxA+8sLYpLSA2Dm8WF4FxQiux/TsOBe2iXQFwMvq5REbGew+y7LOeT/z7bO0AJd23k1ZkVaBFAOn04l2ciiliWGEmAg+0o+ezarmplL85qEjEimNZLu2/NXPblgNGx4eWx5Mjjp//PQjv/rX3/Db9584dyP7HwNfbzQvak1TF4gwcv70ma9/+W/47r/+b9TWsdJn6k3B9tU9RhuaUrM/HBh7S1lUVAqUEvhhJIU8xyZ1e1pvKO5eUgQP03GexyZRCqYxx/NHkfh0mvIaxcRqLVDGZO2LkgyDQ5SJqsioe3SJMERss8aUkiJFJicRWtD5iE8CP2exnMeR26qisZbBhRwiJkAXJl/flAjB5xaOiEgtMEmTAviQW7huzOAgCZEtrkZhtOLVTnK7ymxUISWlBLNp8FHiEhSFxXqBkoEkFHuXk147JzmfHf3oSUFjlGGMAp8Sp95zPHnEWpOcQ8+tyyA1fXfG46gKiSlWvH9/5u/+8USUlqdDiy0KHoYzHx7PnLsJKWBFLirbJrfgCB43BI6HM32X2DWRVblBpECYYDr2hNGhrUauFFF4xlPPSiXerCTmlSGiSW7gZmX49rZkf2p5f5gwCm4Lw8fPE7ud5O7GUKwtN42h/kXF7344osrEX36zRhvJp6cWrT2/emNZWUUlA3/2szWb1xueHnuMhXJVks4DDoEWUNQlYzeghUTZglPfMwWD1J6VNUiZcFNHTCVt6/nyMDC6CMnz5u0tITpEFGx3BSlJ3NBiCsPheCSMHU3T0FQaTcK5HoxmtdnmER0hXDaEWUBvsUYyjS2yUJRmQ3ceeHocudsa5ODQVYlvz1SrLeVtzTQ5KEvaw5mYBkxd0w+Opi64e6Ho+4m+73jxcofre1zfYqoSqTVW5jmFPgmGPlAaUMZwPA1Iq6hqw+k8MEUJUlAWRWZClCLi8UlgyooU44Xg3q4rOpc35sdxwPUTN5VBikC9bng5rTm3eUjn+mVFcBMu5Tlrp8lxcIrbMiLjxBCyg64gclMptNB0/UBTKXbbmrNL/HicqCrD4CNNVfL4NBBGRa0kafLEQl8Y9kTWEeRNfa5PYhGv/pGvP3mAs4CWpcAvmhe5MA1pbodkwmMuhGnOQEkXMLK8V84PogvpMCfdpuXPxMy2zIwKcBUxL8V2cT4t7a65AMe5NXO1jy/vzQe47PwXHc+VFrraquUzQJAxxSJqThf0IpCX815el2O5HMNS4EUGInEJJrwOCV3ydZ6f/yIOXn6df8Ce5wQ9O7+MopZbHBBX0MLVfbWkzkAGccS5pTQzaQuzE9NV8Lysw3IN4hICmBb9Uza4L+yeTDIDJZWPLz6zx7OweHN7ahnbkA85Xu6F5+BXLPBmuS1m4JWvUQZkMsk5diDfM5umJgSHSImmrvFTn3NM+pYQ86DIm/U9YXK0h5ZhdMTSslutMEby1a6mPQy82BS83UqenjqsH/g3f/GG09MD/9vfHxgi2fosE3WhudFn3v/mv8DmHa/WLTJ1eY7McGTSJVGsae7ecjyeiH1PUymC90xTHt9RypxQKpxn+PyRsSg5HVtqCVrlB/AwerwXpKTohgFlLatCcrOJEAekUcQwobXkcDxTNhX12vB4dCRjOXYD5brBpcyAaJNnb7kYObcjPkms0nlIX9+SBChtAUGIIQ9GNAXBB4RUyPmahQRRJoRWaCUzYDMaKQTj6OinPCHdiITBIITmZl1zHAeQBqkk2mgmBFJly25ZKPoxcmg9+94TBPwsvmAMA0HmMSIBRWEtxy7b2CsDcRzQxqDjQG0UVibKUvLh4wMfvkyYqubh0NKsS7QxfHlsGduBVWG439WsK4MOE3UtaNuOrnV8/+OBkATfvlvz7Z/d4xiZnkZevd0iNwIlJe25pz/3TDGQlAORZ2Q1IjL4KbMxnac0kpdFYi0lQz/wux8dw9Dx9X3FN9/e4byn2lYcv/RYnVhVgrLUHPZnXlaC5rbivO+pK0mzLmlua6SU7G4a/DRx7kfO/UhZSza3DQlBYSTV2tKeD4zO0549IgluXt7gpwECnNuOh6eRoqpQsuN2U2G1R1tDWRvAQYpIZTgdjoQ+C36rWqFMFs8aD+3TkcNHT1E12EqiywKEIiDx40QMAaMUx9HhppHVZkV0jiBUTkbuR4r1Dh8dRmiKyhBiQNcVbuyoVWJVWUQMbJuC8GrN+TjgQsRuavbHjgZJiIlxCmglsdYyjD1umkjRZF3O7QqBYLNa8fR4xE8TbhyRIicdJ5HnsXmhiWGiUgWd6/NYkzGgjWE4jYQYsaWmHz07BLtG8vnLwJ+/vWN/yCMwtE64KeHRTD5S6Zx7NHSSfvSsi4SSkWPbUlmwVuGT4ND2VApWtWU8eqQAJSKlilhrOXUBQg6PTEIyTOH6jIzxWT34419/8gBnEaUicrFNkRzINu+y8058aa/EWdy0lGxxed8youACFC77by6MwuWqPNesXHpi4mJJzrpecQn5u9RRrp+9AIVIyDSUnFmRy/dfQUn+tbywJEuhfYZfLi6mixyE516tOZL3wsTMUEckltEIy7HHJC7g5MIwxWtGTx4eev3SfLiZeVpYkoXJWSzu6Tn4W9YBLtdiAZrL+6NcWDdJuDjJZlZq/r2cYWacgeA1E4cMkMTSvkokMSuy5DUo4Bm+zOzafD6LjimJK6OzxArkoaz5fpIiA6jLOQkuAmbUrA9aAmHyGaCE4na7RiD4cnhiGiembiCFSPKepjD8/NWO95+/4CbPl4cDbVlws3pJDI6nU8tmY5E+8u6uYqsT4bzH3L/EDC3/h68Th8Gz3dbE0ZNS4jwF/sNvPlBvWv7t//BXqP4DfggkDNMUcOGICj0bLei9RugGfA/JIaQlRoWRUNpAP46EacKSSNqi6y3n454oJJHA4AMvVgYdHGsDTaEJKJSyyJTTi88u33vGFmw2lpAUdJ72NPHUBXRZUwrNwTmapmLlNKH3lAnQ+d47DQMaialK+mGknwaE1PjRI2VACEt+uyH5iPORJCRKS6zJQGfqAzEKhmFi8pbH88RmDT5MGKtoXURLyarO2SLWWEyZh4Q+DSMnl7NdximH+/XjxBQcIWkiic45nrqJtoe7XcHQjqw2mpWC9cpiEAxdy6n1jEEyOcfLuwpTaE7HfE5KSEql8MMJYQp8CHStpGsdv/nukePZ86+/veHXf7HFqpGyVNh1g/ABXSiGY8dv/vdP1M2Kcz9QFJakNKtVxCeNPAwcTx3JKl69bqiLBpvgdBwo6uyuqQrJp08PaJU4nTqGMbOKVitkHLnZKJTKOrdYSd6+qbE3WwIadEWcBlRRMbmIEoraWta3W7qup59GtCkZfMANinM78PLlDhccAOM04ScoZKQqoV5tKJVAW4mQAVMIxi4XcyEL0Jp6W7LdbRDS48Yu635cTt6utpaYBE+PLcZ4yqagWTU443DjBClwsynpzh1Te8RWKw7ngL21EB0hRFAKP4yUq4JmYxndRJgkMYIussMwhkTTNHSnnmnM+TdCa9p2oKgbXOhx00iKAi0LlIRpdMQEx31PVAolBm5uSpSRuKhouwFblPS9I0SILs+hqkqJMjVtN1JuV5zbjptVyXiOjC7Re8Fd77i7r+i6gaJO7N8PSCGRStK5wF0BLsB+THw4eIaQRy6YQlHazNLsKkVhBIfTia2SvLstSd6hE8ToKETkTSP53RBwIgdYCkTOxZo31Wne6AmRXV3/HK8/eYCz1PBcqNJP20BLHs5s+13q32Knfg50BHn3ruZMFXEBAhkwzf+Mi7iXq3Q2ylykY2LuV8sLC5TTkeOzT2MxUM2Fdi7VIrGMfRJJXMcCzHhHZovUQu/MrMQMUoQANUO09Ex4zFKwMyuzsClLMU9zcjNzu0yK5xHaM0CbHV0X4HIBUBlNLqGCcT6OZSp61irNk9RJCBkv678AHpjbYHLuy0p5aS0uU9wFeSeeFvdbXMTXGXTlYMB0OTZYWn5LztC8xsvgzzTTpUlc/0lKFwA1nznZGp0uOh+ZlnNabgoBar6eMoNOOS9RZAnKTgvFOJ9rFuDebNZYo3nSihOJSST67kSM8PJmzW9/+ztczPktIUUOp5anc+TjqHi5UhQ+YYuauzvNue0493uGcsv+y5m7bcHjaeT1yrLfd/zDx5F/PHruw4Hvf/db/tW//TWx+4LrOwqZs0e6tmNVWcpS8vnLI9V6i6oqpu7INHak0lAahTEK12chbZwGBmD94p7udKBWHW+N4XSe0EKxqSxu7Gm22V2idUHfOaqoiEhcDFSrEu8CdbPmHz+e88Pce06t4zhGVjon+qIKDt2EUQIrgSDpx9z3t0ZzCIHJTXmFI8iwNBSza1CSCM6hpM2sTooIK0k+cHITv98n4lazvi1xYmQ/TAQUq0KBlJzHCSUtVanRhWA8Bw6T56WRaObcQwGpsHRnh5aGw3FApImbOcguTFDHhIqJFCP9FNl3gh8/dihV8ubVBq0CDx9bTo8dWmq8cMRp5Kt3G06HE1pKxi7yd//wiJSSf/vre37+ssEQsTpRlwnShNICP3jS0POLX9wzjBF79PRtpD35vPZGQiWwRnL/s3v2x5ZKw22V+PbtBmUlIcbMSHUnyqbgppHYlzuC93TdwDRGuj4iY2CzKnnxes3dn78mBo1LisfPR9abFT46VBTYokSXltO5gyi4ef2O47HlfBiR2hKCZBgiY3/GznHWfd9TNjVKeAQKFzxVeUOcAxxdskTvqVeWm7JByoQ2ObZAREFZrxknhxt6nB9wQROFpOsHvPfc3K/RSuLGiehzjEazWVHH/Dxuz47joWVTa9puT7VbE6NnOHp0U7LerOj7iePpRFlXkCRy8piyolxX7B/P1JWlqGu6Y0s8nahskVvUJAgO2zSc+4GyLIgxYEtNEgJjct6UNhpbZNa4KguC94hSI7REGUOt83gTZB5JkdlOgzUFY+gZA1htqStLiIGyhJubhhOBU+d4tS741Ae++zIi0fgY2FWGQsI0gTSS/TjxdlWiJkWtoalz6KUXiX6YZrNB3j5aLTmOkcnN+tjrfJxLh0NeHD9/3OtPHuAk0gVgLHLWJOdC9v9j709irFvTq1z0+cpZrCqKv9p1ZjpdYGMbZEsI3QsCbNlpJBrYOpKFG4At3MEtGiBAQrJAQiAEAhq4BaJh2jQBS8gCXVnIcPFxgUk7q527+ov4I2IVs/yq2/jmnCu28TmXPDZCx4clZf47Ys2Y9VrvmOMdY7zMpzU+sN2LpVWU3ULn3y+jm6ZkujP7cwYmYtrmzMRECQ+nec8NmbPwOetpJuya93FiaRIgopj2ZRbSTrV6Hi0wsUVJiNwtmUEGLPbuSMphgvNQzGlfckH+NJux1NwFQMzZL/nvzrqgmbnIPywtwIdMzKwNmkTVs5iMtOCw+dQuzNFvfeVgxPP6xdK2y0AlpDixNWc2LZCm1OXELPieWSExXWGBZB7BMJ3pJbMoMzVpuSdmFu9MnuV+ppiu8RngTQBaSqTMd5ucdlzKM7MmeXC8CzOVw+7ymI/EuqhQ108wtuT+9SegwBjNXT/Se4HzGdiV2tAMif/ytZfgAluf6HtHum2oreDVTcNuNXDx9D2OVcF90+XbPUZO+45TF3nvuuDRtmJtBN3rF6yePMnkUhgIMuK8pBkCG+2xwvPyo0+4vN5hbYFd7yhsIvQHEB4lEykFqrLAx5HTJx+ze+tdxl6SQk9dWIKLxDSCUDgXMFGjqwIXRqrtmhAT7egodYlWJYFEUWjkMOKc5/VxwEtFCBrlHVtTkQqDS4EQpgcVAT5ErFYYKfDDgNUaqWROkwaGIaCsBQFhcAilQGpcNzz4DCaOI7w4ejargYRmlILRR2TSbLXFpRGtDVURGCeNXzNEbgKYGGm6iB8lQmmMTrgkODqBGBNag+kyQ9m0HroWoyyFtXzy4R2rsmS1KamrxM3zA19/fuDQRpIo2BaGz7xzQbO/ZVMqJJLf/PCW0kiuLgouNhYlPKW11KVEyekTHAEfKdYVhTUUg0NjSGNHf+zpk+TFvudwDFw/2vDRBwf2Nw2ffVrw9PGK3dN11mDFiCyzYNuuNDG43G50GqsFL296DvuWx9crLp5UXD7doNcFwSvuXtxn84RMFNYyDrkd9urlgetHW4qqIkSBjwmhJafO0XYDhYnUGnRZ5mnwWOgiVWFYrbZIDf3gOOxbiqpCpMhqvcIYQxiazHDrmqLYIWR2UXVtj/AKU1/R7JvMCmtF7wbuX99xcbXhyduPGbuO0/5I3w4oacAlCim43w8QA5tNzXDqKDY1SQp85xAysl3XtIPHxwTekVAMh5btbkMSgvY0sFYFtiw47A/EIWJsTXA9dVXQtgPWSLwbCCGB1Llh4D2qkBAiq6rK1uvRoYxHmdyi9SlOU+BB14rgDa6PCKkRKbCuLMf9SHo2PRwmwa62VKXk1b7DiIT3gdd9BK0QMXJdKlTMM81qHdFW0/UKH2EMkc88qRhi4r4NlEagkmJnJLfTTD8pY16vjMyhrbOEg4nJ8f8rB+e/7zVrROYQuTOwmLU0MYMLOVf2uW3yYA2zhuQB+7OwHYvrhklYmtcTz6iAuR3Dp4iEqajCp9Zx3s+5bbMQDwiZhygs7IaYmzHTNh6yeuLTRuwZeMysD/N2pwIfJ/ZCygV2LeMNmFpCubP1AC6IM8syW7vTzD5NxTwtgGlKho7TuIuH+/mA/UjEqZ01r/l8vc5kx4Typ7+PSeRWFHFaV84yWdgkMTuezuMl8mFNoDXOQCzfB8v8sUntnA9lgnvzuIoZ6U6tz0WgLeSnAhTPICizTPlefNgenN12Yml7pcnZVhuLXu9QyXO/l6wMlCkSU8hjBIYRlQRSa16+3rOzkq91HaVw/MZHR7aVoRtGPkvi8LWvs7265ktf/Co3p8Tv//2foZavCTc3VJXgyVqyqzUiDPjTHoodcWzx/T11VTGMkb6PrKsCkaA9HLGbAt8fkVcbylXWBuzvDwxtDyLrUZCJ+08+RG92rLc7tq4jxcTpNGDqkiQDXuXBewkNURKJtN6gYkFCsN2WqLsR7xIqgjYRP31Y8mX1GAnd4OnHmG3jQiJiIIo8fsGNgZGITqCiyPNvpMziXq0ZY8DFcQH0IUQKbUBGXMjR9V97daDQGi1VptmjRJmCRJe37R0+SrTUpCBpYmRsHdvnHVdby+gjStU0oSUqyb4ZuKgKjqcebQSrwnP5yGKk4PbFPWW5ohsGohsZDoHXrxoOzcjdyWOE51vffkqhBorLAh3g5asTiYhVMlvX7xveeXTJ1bXGlhII+HaaM5VAFZrY94Qx0TQjbd9z8agiNpF4E9iVhuttyf7mxKPHBe+9t+Hpuxt0pfBDQiqNLMrMQGtJipax6bClYqUs9b7jc2+v2FxtsJuKkYJ4SgzDSGFW1E8sprK8en3g13/zFU8uNzx5tiVoxXHoKRGM/UCSBiFHnj3bYI0kdj19EzmNPrdxKoW0BUPfY0qL9zmsTwjF2HfIXYHzkFBoXTEOMA5Hxt7l7yMESWrGY8vVdoVUQIoEp0khEP1Ad8yOu3q9Qqs8FmQcHfuXJ0xV0PoRG0El8PuO7fUFwXVInSg0mKKidYHxkNulygjCOLBeVeyD4u40UigwVc3dqyNXlaZpe6qyoOt6pDRUVUnb9AxDzoryPrLWKjOE3uG8p9B5XpkPgroy9G2ftWTWIEXJ0Des6prOe8ZhYL0uCcLnxGcppoGkirpSVK2mAO6HiEmgkmBtFVYktoXk7QtNYSQ33YhBc2odKUCpNffRc9t4vuWNHc2hQYvIVgUeFYrORZKWtE5MAX+TSWOqaxKI4X8BnP+ul0SgmISlMT3AhWnJaskaixkQPLBjP9BPzGLlFEEqMZE4YvnbB6RNBh5pKsoJzsMap5ZQph9ycZ42M9fMpdiRAcLMEs3/nf9zDrhLD9Yhlm0u6xPkAZfz9mASCafsMmEOpjuzCTNzw7TOtKwrA4SHbNUMTmag81AVL2fRspyhHMvWzgLss0U+Tje4mBmRGSDN7M0kbJ7hlJDyfP1kQqRJPSMnICPOH54ZrJyvFw/YpbQwYilF4twHni7IMm5jZueWHl2evyKTzO0pkbc97+u8TErnGV6zjT3/7XRep/VNMBuZzkNZEZKyslyq65x2qnr60PPWW095ebsn9n3Oolit6Pavqa9XfOkrr3nnUcWXX/WMrkOR+OqLAUvke7615L5XROmRh0/49ul4EPwAAQAASURBVD/0vXz0a/+Z7nACEXBjg9IRtx+wZUNx9RYOTXO8pR8cwTmSMFQrgyMxJjENdfR5aKSLrMoSYzQpeWJMjL1HJUM4HEnlE5IyJH/IiaqnnnqtUUVBVAapI/2YaMaAD4K723sur3eYUlEoQQg5awZl0MLgY2L0EVsIYvRZTCwVISS0NiAEw9hhjCEpiR8cPmSxdoiBer2msIqRhE8G7wZc25F8wI85hBABo4+cSGAKbJTECYD7GLg5dAhTcGh7XJRIst7ifvBYo1Cm5KN9hyrXdIPDOw9SIZQiek9IgUBkIyVPt5rkHWOv8EFy7B2lUhiluL3Lqc6udxREvumtLZcrDykQk+T5iyN39x1KCAKe2EeePNnxzls1SgWSzwJ63zikLpCVzY6b3tF30PaRsi6RhaJ97SlKwcWuJLiWx08sb7+9YndRUWxXJJnQWiGlQJUFoR9IkRzoGECva5rTgcdvXmFKSwCcn5xtWhL8gFCKkCIffnDgP//qx8gx8E3vltTbkrubO9589w3uDy0xafoB4hgptjXdsaXcbnl1c+Rw13F9sWKzrlEqf0a9jwTyrLi71zfsqorgB4ahRWhF8/IG7xPe54C/wkpScOjC5lEnaUAEDTGSQkBKhSARvWdMDkTEWEOMHmMUq22JHzyCitO+o95uIDlOxwZtBEokisogiWxWFYfB5WniVYkbBUWh8VuN6j2n+yO7dYnRGcRtLmte33a4KHj58sDTiw2XVzWdCzSdx1QFh1NHjB4pFNoaXIgUUeOHnlhIBuepbJHrXQD01P6tSl4eGqz1FIWia0dEAj+M1KUlpkRZSKQSRJcYHVQisbYekQJPr9c548eH7MuQoESiLgWHtuemj/iUaNqO6AMFCq0Fj3RkLww3fULG/PAYYv7uTTJSaoWIAhd+e0b/G339ngc4c+2eC6YkLaMYzvzDXJMyZTZT0w8TWhZ3zNLSmcYVME1Qklk4+jDAbxbopjQ7fKYH/5imML1Z+Dpl0EwuoIeC5VlrMju45n1Y2hxihmYPAumWP55ZlAeOqYmBYdr+PMlBPdSCiFlzo5Z201xwYzozHIt/7EHYXpz2JTK7vgRqWW/+N6YcEnUWac/HmxZgtvBIMj1Y7uG/0zl7cFxSpE8NaRPTuWK50jOoOjuwJthytrWfV0duZcUFRE5YCjGfvpRh8qfmb01i43wd4vkaJ0GcepgTRGSOJ4BssMo/hnz5U8qhcz5LeS62FzzdJNrjLbeHAeE9VWkI0aGVZPARJS2vj4FyZZBK8c0XgqHpuO8iVaUQpxs+9+YF4XTHGzvD6eP3+fwf+C4++d9/iQQ4L0lDZGs0As/w4quMakvTw+ubI+vdGkyFNILLC4sPYFTCOc/Qj9nOPg7owuCTYgwaXW7yBGXnaV7fEHcb6ssnnD76mFoJxi4iwkClKnxSoC0yCkqVEEoyDAMffpxoxxxj4IXG2hKcw4+R3kecjHlWUQKhJMqAD46YIiEllLWUQeNcwoXIEDzG2DweQEmUEsTBA4JxGDJQVZJhHBFK5LaXVDBGapuf6oXIX8TdyWEqTYoBrQ3BJ6RWJATH08DlpiRKw6vDSKkzezeGwDA62tZxGC3f9KjknesSpR2FthxPntuDAxVZrytu705006DPWhuurmveeWODdyMIzf3tib6PaCHQWlCgePpkxe//A4+p1wZcyOyXtshVTXcY8PcNxVrjhJ1s3AW765rTqaMuE1ZbUnI8erLi+vGK1WWBUIKkwXc9UuXvBqFAakFwGeQXmzUxBKpNSUqKKCQpSeyqoKhKkgBtL3h10/DxB/d88HHWev3BP/AWj9/ccTw1PHr6iOaUdUYoSXO652K3zhPMpeHVXcfhMHKxXfHGm1cMYcB3gfXFGoREhqz5eHy5plytkNpSKMXpcI8bHNZYirokJLi9b4g+Ug6BshAUZcWU0Yo0JrN5o8OUNdG3xCgZuiZP9S5XPHrymHHsGHxANJ6uHVivV5ja0DUnKimIwecU/LGnLC2uc2iZsLua6EdqqXB9jzGKrnegNHf3Ry6vN/mhfMp7Oh56ri9WKJ24bRqurESicM5hVEBjMFoRXKCo8mw1ZSwpSZQFkuP6cks/DggX2F2ukMYyDD0x5NEkQefvvPW65Dh4oshTzctxxBjBxkiuVwWlURz2LUFZ7rvIpoKtVqxLTT/C7X5krQQxCMYoWFvJaqdpg+cYE29sDdtS8smhz0zc9PT+SOdRFf25hfI7ev0/AOCIpeBMlX0Ssc725lx04uzGIT9xz+/LTChMTES29Uo463mW1g2L4HRhcyYmQUw6mdnaLCYX0cJgTKBjmSOVZmDzoAbPbY7pF/EBqzRraObRAA9B0/w+y/0yF3wxwbOMoqdIhamwZ+Et03ma21jpwV8uAHHuxZAmduQ8lXvSBTMb82dWRU6OLJhZpnn/5LKV87DSvJwS+Zx8KsI7pTzFPJ33b6bIEudQwGnhB+4ysQBeUgZoMj30RM2wdWZv5nfkwpAtv5uUzHG6JyKgZkCZMkyOyywvuVyLKObRohPsimIKODwDorkvLQRcrEueXq34lX0HdkVZ13QkDvuOjR+IQvDq0OERVEXJuix471JgKkc3RtbW8M6jivsoePruBRelgdggnOPZt3wz4/3HnDqPNBYXE64fkQj6wyuOzrC+vKYuFW2fMFqzqSVrKbi92bNeFVxdb7KLpxV0Q0AZidWJQ3tEaUOUWRvV7G85NS2P3v4s/euPSO5AWa14+eJIFApZGoQtkUIx+ixS7caR/aHlvvF0sqCYWJJh8CRdMiTBGHyOfRI5YdmPjpBCVuUPbnpoyPGoUkqETMTo8E5gtEaEiJaCPgQqbTFWZsYh5Lbnsc1zo1KUaJUwRhNFdlWNrSOGiNIpX2uRR6b0PjAOfhq1kfCTIDSkHGS9qQveu6652gjavqMuLXeHEx98dGL0kWdPS9puBC8olCGGnlVleXK94vVty2pd4NqR6AJGBNYbgxKBq+sLPvP5azYXmVXMAn/FeBxytozWrJ9eE0Lk7qM9SmnqTbH0WXeXOTtoc7Hj8skWpQOyqDMDNuQARTGDeyWQhSTFgKgKhLEkH3LLqBmyXbtYk1QiDAOmrOmc4HAINKeBy1rx1tOaZ+/u2N+3WG0Z+kCIipAUHz+/pS5KmtYhhcDWFd3QUlnLO+88wlYGkwx1XeJDZGgb6lWJ8i4PtnUekVpiCAg/TLlMDQwGFwTWGNYXFqUifszTzaNzxORQpqBverzzqDGhjMINPUaVhDTSNUeSdyhjqYxBliOFEFkEHCNltcIPA/V6hZCRsW9IPrtAm1PDtn6ax5B0PTFGqlVJf+pICU4hIlqHDxEfE1VtiH3k0I7IIo9OuL9rePboEUMcOI1ZVF9sLN55qqLKYZ7rFS9f3XFhysxEzeNRtMSNjqYZsEoxhqwA1cYCHms127rgreuKL77sMAQ22nBRSOqy5ObQAoY+JNbrkpUWXG8rbg8NIcHYOcrritt+yAxOabEiUlaCr790dKNHK0kpEtoofEy4kBbGvDT/y0X13/cSU8tIzG2WyXIc4rnYTWxN1qHkP1pkIgtjI5fl5cwKLa0TpvEH5/lTZ83Ig6I87UNuMZ01Kw+nYYMgysk5NQuhp5bNFEI8iaAnPc606oXZmNtFgrN2aFoqTGyLmmZmzRHZWe8jpiI9aVvmGnuGSWeMNCOhlD8UM9+FnMZtpnj++0k3JNNkH5czgzIfcFwg14NLxsKRzTqeGXAyg7DzXmUskNklmdTCyM3dojiHO85aosQixs7vhwX3ZfIsfWo/mNi35Vym2RI+LzFHCGRR+mKtFyILtycQOQum5zlW8YxYl38XVmf6RyG4qAsqJXh525Ko2V5oxj4LG9vmxNh1PL3csl6VrFeGslIUpeF29FwJyePLgkII3vrsY57/2ifs3n4D291hqhX9i6/x9Du+m0E0lEXL631P04wIJYko7pses5JcbKuc+Bodp8OJQsksoNwURBeJbsQa0CuNNpa2jygtWZUJ7yNNM2A2lu2u4tV9y4df/TKf+bZvwoYd3f5I00NUAilzezBJyb6NHDtP0w50Q8CsaiokVkuMsPReEmUODJNSYlWBGz3BuYl9I4cleod3jtGHSSMFIiTGZiDFhNGJ6HzOoZH5f0oKfHI5TbeqGFxL03uU1litEYDWkubkSCK7coqVzfoBD4PPep5925Mk1FUFKdD3HpVymmsYHL7vaAU8uiyJKfLi9oSXcBoiTQeV9Wx3mtevPGtjQMDxcGSzLigZKazDVJC0pKgF67LinW9+TLEyuPYIJhDGkFtzLlCUFbbMGTD3n9xTGMPuqoTUk7xjs6047VsuHm1YXa0RJoeFjsPI7cdHdjuNLTMnK5IlOkmMiqQktipQtmBoOrSuCFEhtELqKXerKHBJ8vrlHhk9q1JTG8nVkw13r4/YokJYy2Hf4Dzc3XtOJ8f1xY7u1CALy4tX97x4ueezb11lrc/GIERi7BpOdx3B9ShGtFQ5HVpG3BiIQYKoCNEhtcVHCF3DxaZAiEiMIg9JHTuQAqPXDINjv2+m+X6esjAUdcEwDqQkMLZGlQY3eFI7opQEm8P28JE4eLSxhDGiVMDaglBowqnFjZH9q1dsLy+QQlIUhs4L+jGgNGhtuLttsVWBVJ7LVcn9saUdR67WNY8vVxwOPaPzoBRElVknmRjGOLVKHUZG6pWltDVJZRF7lAqB4NHjC7r+jq4PbDcVhAycghQ0J0+KCeccqxDYrjWucyRheblv6FxEyIBWiosCHl+seNU03J86JAJrFPvTgFCCi6okRoEbPC4a8J61ULx5ZQgElCq5GyIvTwO98+wKRTv437acf6Ov3/MAR7K4dVlYDZGFmdlSDOeGTxZ4Zg4g/z5BpqzlgwLL3KaYWAhYWhgzuJlf8/bm7cuFcZg0OeLMhHyKlFtASF6JfCAIZgJk84+JKbl31v6IyYk1tc3kTLlOoGseFpqm5WR6MFl8yrnJ4XkPmJr5qMQDbmjW2Sx/O7Mi01la9lcuQHBeU2a95vXkM7XoVeIEOickuUwanxDJwpItCcJnEDuzZyIJosiaIaXy0ziT5X5CI8zUmyKzC/N7arojYozT+s7Ho8V0/cR8h8gH5+UMYOTcnowLGsvCuQfIS043znI90hwXAKSIkrCpLb33nEYoC5NZDqF589nbvBIJ37e40WHrgrLSXK4KlBTcdYEXdz1/8LFm6yO2VHSHnm9565puf+TyqiIMHckW3H3wm+ze/DzHL/4yxnkCggHJq31LEoLH64IndSCJkVRusG1HjDm527cjVVVkfVTUDIMjpEhZlfiUcBFSiOjKZOvrSYI2BBf45Ctf59m7b+PXJR998HXWG00tYDh1SBmIPpLGjk2pqWxJVZeZEVOK5/cNQQm891ksrAuG0SGlZQwdSsisvYkOnzJVrqzJ9+z0xOGcJ7YDmNzKSiHlAu0DF+sN/eGAlxpJTkT2o0dIlQFNiJgUiDESReL+dGItEuuqBBHpu56UwFhL0zvawlBUOmsNYuaAU8oC5quLNcQRHyyXj3bcvv8agWBoHWulcc2IH0e0jKzWFVaTM4L6hqQEows82mm2j9fsnu6wJhB9g1mViBSIPuHaHIZnNhXBO4amJ3i4eLJBrxSxd0izojkOXJkNq0uLKhVoiR8j9y+OiBgw9RbiCDoHyaUhBz+WqwJlFRCxZQmmRHqPNlXW5jlPFAV3L/aIFNFVibzrefTWhuPJIZVBJcPh3nF3StzetYx9opASP/aUlcT7wJPtis+/c8F2o6gqCK6j63ru7jpiiFxuNzlZuiqyvgPL6f51HtEQAxAYncNoyeVVgQT29x3NqaMwirLU2XE6SsbBIW1NGLOrzliBMTq39KUkBsf9fcM4OqqioCwKousx0pBIFNsNrmsZh4ZiZUg+kFLW/ghjubs7IO8bLi7XsKkRPZzEMY/OiJKPXp54q9pgJSSf9W1j15FC4o0nO+pVzeu7E8YajLVoJWl7T/BT1IESJCKryk6yg8mQEQJCJJQuKGvNqem4PykeXa6R8cA4dLiQ0NYQAjy+KDk5j4q59WukJmhFJFFbjVWK+8OJZnAINN4HJJ5Kaq4vKhqXuDt1PLVrail4c6d5vF3jtOTj+4H9sefUDRRGsbKSi1JS/O50qH7vAxwhJFJqZoFsknLSec6P5HFBJnOhPoONbPNVvwW0CMjjAHjQQorn5k9iZlDkAjYWJcmDtsnM0ohFZ/NwzycYJed6PIGXWbszi4oFmYMRD/ZlWY4zjXGGa8SHyuaMns6hhxO0SzJbeeQshp7OU5wgxdxkmzci5p/FlA47szMTA7M03MQD7mXWAz34W5jACouyaL6QCxCal1vmO4mU2xNxsstPi8zOrFlY/eCsLzqpiJymRgRmSk2R04Xz+LyYdUDiwTE/mDslZnZmfndy0CXElJgrpvM2AZ40MUkxzjKoxek1cT2ZuRGCqrA0vadzkbq0uDGQfE5U3VWWYXjK0I+c7l5lcarL++Z9ou9H+hG+dgfKC55uLIeXd7zzLZ/j469+QDNYjM/W6MPtHp9eMgaLkSO9jrzeNwihuLjYsVkb1rUiup5mDMhCM44OVUjK2uJcTxcjVVUgtUKERPQBhIUYUcZgoqQbAoch4qIAFKkZ+ej9T7h49pRv/vZvor1/iRGBkEaKwk46moAxJcEJ7lqHj4Ixws3RM6KIQuFdQJn5mghsURFSQirFMESSFNiqIHiHkhOwCZEUA56EUAppsvVW6eyqijFh5OzwSxS2QCYIKRGlBgJeCJTRRBdQSjP0I1ppklIIaSAmxt6hhSGoKdJACLSWuBS4qjS7Kt+s+0OH7h394Pnw4wPr0vLW1Za1hRg12zI7ZKQYsKWlUI5gNd2p4603a4wNGO0RsSH2DruqkSYR2h6jQa4NSURCGBnbFlWtWF1tkMojYsSsNgynDlxg83iLrjSiKEjRM/ps6y0uq/zgodT0MGJQWqELi65U/q7VFsqStmlRWqPLnKAbpWToR4q1pTsM3H10w6PrFbd3PXcnR1FKksrp3D4Ihj5ysbY8utBcXq4QwWNXNYWOkyMs0TU9xyYH9WklEVLRd471eoW0FW7scW1DXVq0lQSTgxe1lijyjLeTz1opq3MLR+kKN/T03REJXF3t0KYkxiw877uW4D1GKZQUrCpDaTX9ELi7u2e1LinrMpsGfKDcVCQ/4ocRXeisvxQBazUXV2tuX5xYrSukSLixp9qtaQ4DvdckVXE65qGVVWXpfOR4SJwax3q3YbexjEGgNTRNT0oxu/9KRfAD5UqjZMQUBc2+xxRmyv6a9FjCsqpLxk1gdJ5TP2KtRQmZ2S+VeOfxiruTw50SZmNphoGyNHz0umVX5vlx94c2n9Mo0FbTCygSPL1cE3Vgf/BsjMKYhHWed9cCqxwvTyNyjNgUqHWiUokntaDQEj88KJS/g9f/AwDOVGDFJHUVS409FyVSHg65uFeYnrATSoBaAu+WGkgGGVOL5oFYNDEzG3Ntm8rW8t/LJh8wJvJc3D6llzlHAM5zr2aGZmYzIuk8FPRT78M0UIUkJyFwEhm0TMU9/zs3Wiamatr2bMFeGCORW1zEWXwt5i2cgZvMIE4uzM/kNVv2N042+gzqItPD9KJxma/VzLSkB8BvAi7Lzp55syyDERNYiAv4JM3tw3PezQImZ61SmizlSSwgJ2tm5oGkC70yZdswZSrNsC5N7N7M652B3Dw0bhaFx+kChelv47wok4uAuUWV/+7QjcxKncGNECchu1Tc9xFZrLl49BYSwdgfMGPMT49SUlvJO1drxubAB03g2cnxRgEvXtxy8d5b7G9uKZOErkEUFS8//Dp6dc1aB0Tq2KwKktRcXJRUtUXZQHQRLRylEkRhiTHhRMghlnJirlQOtxtCpOka2t4TfWYBqtoyeof3PutRCo21icPr59RXj3njjaeMzQE3eoZ+4MV9T9IFbRtonKR3+Vz7FOl9onMDCLXkVgkEIQWkMcQQ8N6RYiB4RyKzLkIJgs8pzlJngWahBVpIutGjkkJKSUgeoSQyRZTOGTNBZq1A7wPbqqDvunzvadBaEWIWXButKY3FOU8/ZodLCmCqiE6Rrg+UKmJUHhh6OLbcHQaMjvTHgaeXWy5XBY93lsrkUQMrq0neIxJUFyu8iOzbjoDJCcxWUa4N4/7IalOhlMjpum4ENHpVIbUGEdFmjShqYt8ilUEohxCJ2Pes1ha70ShbIJRhHBy+G5Aq5M9OiKh1AcEjlUaXJUIqUAKhVJYd6uyoksrix0R7OiGQ2KLgtvF88TdueFSX6HLL4XXLoRnYiIhIuZ0y9D2XT9e88XTF9qrmeGyzA0iMmMIS44hLmrt9g9ErilKgZNb4KJUYxx5/DEhTTGL9SEjQjwEXRbbQ33RURYGWiQKBwVFoTRwGDFDtSpCK9tTkh5HJpaWMxtqKEEYCEqULtEmsq0RgRX88MvQt2ihMURCDJ6TIcOwpWCG0ILgBbcEagyktr17tMdaShMKHERc8TdthjSSEAV0XRAkuBIrCUJYWqRLdMAKw2VT0w0BIkhQCm20eODv2Y86BqguqtcW7SJIqC+GjYOwGyqpEqwGlC5xzOfTWJcQqZzY9ua7oI3RNIMlEiIJmTJRJYIgEHzDWMoTp0XcYMVJSFAJtI2MS1AVsCouWit3a0rme2+aEQFHJyKoWNAM83mQG2EpJpf+XTfy/6yXIT8MLw8EDkDJ9KZ7t0GImTc5FW8zBf2dEqeR5+TSvUKTJBTXxJHO7BmDKRonT0/785D7XxNn8vAhvl/87H8TsVJrV5jPrNGfmiIUCSNPy6VzE5+OZlxFAip/alyjyKIF5IroQ52Oe20NZN5MmhuK8g+nBuZnLPjPomDiYeaaUSGfbdn4Om2d3ZcCZc37mizQBOzHDsLwz4uGWpnUt13mx/GdhpZjO3VmrI5Z15REQeR5VxlMSUkDOjieYRkTka7hc/0n/dJ5pNQM++WDUBxNTJGCaeTVDYJnFScygDSAugCsD5ki28s8aHudyYjQCfIDgPBDQVcXujXdo9i/RqWezGqiNYbsq+OwbW24+6VBR0rmEqKA77Nm88Sai7PBO0LcjuMw81IXGFpfcfdCwXdc8eqOmMAaZHIxkIbYbqcoqF74kMfWK4RBw0QGOSCBEQVHVqKHPjqfa0tzukSR2u5Ji8JxGjzFZi6a14eWLG0b3iHW1JuLYu0SDZexCbtF5hZC5RRhDoGkGju2A1hqpFSEElDYoaxi8I/pAcHnWU3Au311C4QZHSonRDQihMJPl3Hk3sQBgrVlkZhLQUhFTRCoQIiInVX5Muc1klEGprBkIKaci12XJ6CPIDOoLEfPgSBnpxwGJYL0u+ODVicoqKiMmtiSLQK+3BcZAta4xRhP6FkYQpuTVyfH6ruflbcM7j9YUtcGWkrFpsLbEVhVhHEkpYjebzE5Fj14XICRxHEkEkhb5Hio3hLFFlwZ7tSVJhVB5tIF0jupihVCS5v5EwYrkFbos0GWFVIHgR0x9TQqeMHpiF7D1BSFG2mNP6CNmveajVw0ffe017z3N4uWmdVgt2W3XuNHx9jtPub17zaYWvPfOBabSfPLqjvsXI48frVmXGqU1Xefou4F6d4n3icIKfO+IIbC7vMKuarzPzr0oNF5I2vsGrQxtl0FsaTVKONarkpRMHq0SA0IEQtIcTg7nR4RSrDdbXN8RoyOhUcagtSImkCkg0Xm4ZwqUtkCZKg91TYIkAsVql4FB0yB13pZ3DdqU7NYFowucmhGJRsXE4CJNn3CjZ7UuMKVFaIEpNE3T4lNESkllLceYE7zrUtGeRgqj6fqYmdyQsEJRFIa2PZGAopD0AVIKSCPQZUJY0MIikuHUHDEicX/oefp0ja0SlzuP0YqX9z2lFZSF5Ml2gxASH+DUjigERakprKK0CpECbUzECI8vNqyMRpaaL73o6NpIXVtuj4FX+8AfeMOidoqXLazLPEiVNHtvf2ev3/MAR4qZQUhL2+ZTrYXJnysEk74incHOAxcU09iDqQsxWQmnJ3gy6wDzhGvOf8cDT04SC2hY2lELEzFtewYhc3GcXD45ZndiFCYdx8xSTEczHduZNTj7gh60d5hbQJmtmqYN5II9F2uRIAWIuSgkZot7zpsR0/GlyMJkzI6j2So97wPTZhUPGar5mBJKyGUa+TIrCqbWnPzUPgvmfJoH7jMxY8UJ2IgZys2iYpZ2XmZbmFiTDC5iytc9X9uEnFL2wsKwpfnSTPeTXNit+Twws0xzVZyvxwRalv8GZtN8moDabMmfr93suErTpHLI+qEETKPUJ3ADQmoQoAvN+vIpa9FxYRTPX7xivap5fFXy/tcdlRCEINl7QS0TH3/ly3zn934X9x99gBsGmtazKwRqfI29epdnb10ydA1lGliZ6RhCwFiNNAqkQJHoh4FjE1BSYU1uUUQPutQMziOlZGwdvsuZODE4YoC6VByHgShL7luH0oLoHHevb+hXW6TdcGqOhJQYI7Re0IyOTWnw48jzmyO9y0xYDAnpA9J7jA6spjty9NkentyIMhbXDwshKbVGxvk8g9QS4TNTOziXRaZ5QiCSLLKNKYMXoyQ+JtqhByFwo8NsVihjCdFnjQORIBNFIVgXBqM8bS+IqyoHBSoJKF7ct1RGMgyep6sKLQOMGaQf2p7LyxX724ay0FxuPHal+eim5atfaUlFzW9+cOSbP/MIKSW+H9BKU65XyLLC3b5ClxYRPElppC7R9pIQPN6NRO+Io0dKhbIJhMZe7hCmIAVH8pEURqQ0mEIydmO+/iqhiwJTVHlSOyqz4xGSLIn0CCURaWYIaoQ1PP/ojvvXPW89u+b66QofEvuTJ0nF6dTw1jvX9P2RR1cVVxcl1Vbz4cuGX/21lzxZr6iMpCpt/syOcOoF8dRyebnh9uWB2kSqqsyput0BHxNdF+gbD0EQk2OzEtRFge8HCpvHx4yuxRZ2MRBorRl7x/52j3OSIC3tsaOqBLYsIIwkJ2iajvbUYqxBy0m4TqBe14T+hEPmTJqyIIwdRVVRlgXOwTB0ICTDqcPUFbaqMAH6/QlpLEjJ2EVKY1hta+6PDYW16DLXq/2+4fJyRUqO0iYKk6hKSQoapSSjd9SyYmgTlYXUj+joqTbr/BBO/n43ZYGQsKpL/BCRUrDbrQneIUXKoxSiQsgCN7RcrFZc1I6yyIOEX9w1uCFhtaAfBW6IDD6iZSIQCb3jYrNCRUfnI75xVATWa0MrFOMQeFYZdrXm6DzSBZqYKGTgsvpfAOe/65Ume+qcWptZEPGAdUiknPSWi6BMD1oFcirec7sCIEfpzwBm0ZKkbP9eINTU3hCf4ihmYHEuyTMTc6Z0OO/LXJyZf/1Ap5Mm/5OYWjpzQeaBVXzSHc08ykwQMDmJ0oNt5aNkKeYLi4Vf2km5yzW3u2YrtEDEM9AQ4mFGjFiOR5x3fN7RqR2VpnlRLFs8twHTpzt283mFOZR4AkpiypGZXWQTrJuA0HmK+3yO08LoyEVgPrUrZZrCEfNx5Q5kWhitGcyeW3jTfk9AJU3sWSbJFuk5kMXL01JnFg8mTRT52CR5uGaaQWXM7rdpD2OKoCbQMU+KB5QuMKbgoi74+KPnVDZysx+47wUf947T6Hn/CN/5zKK6hi9+9SO++b1r9ocjq5XAqsSjjSL4A9XTJ+jmBeu1ZOwGDqee1W5NIBJ9IhHQRlGgST6B1AirCUNg9B4rRwqriR6MEhSFpU2BMUHoAtqCEpqUctvicOqzCy7A6+Mr7GrLk0fXdO6O+1NH0+X2iPCOu7sTqIJ6XeKT4HZ/QAS4rDdIIlJoqrLCxRMxCETI111rnVtTIZJiDmvThaFvepxzKGNwYx4FoVR2GZEyoBUSSmMZuxZlSoRIuBggesZhpLRFZreCI6KQWiN8Di0zQnF3aqi3im0h0Pg8lLB3FEqzLSXvXWsKnXj1qoUkaZ3j2lTZZu0i5Vazvd4xjCP7U0fTjLy+GVBK0Rx6zNtb8Fk4KwB3OmE2a3QpCX1PGBxD2+FRWfDrJ3F0SvhuJMkRXWpSCsS2p9pdEFMeKZBCILiAVJZi5akurlBGIm02NiSfELLILszoCSHnF3XNAVusQGiO9/fcvDzy+PEFZSU4HhuOR8ehiXz86sTFpkYRsEVBVQhMUfDV9+/56vv37NY1b769Y3dVIVSiGRO3R8cwDDx6csHhcKLSiouLinJj8d4THHz48R2FLthuV1gr6PuI1IluzG46LTzbSmGspj0cKApNURq0UVTR8cbTDcfTwO2h48XHLRc7w+XFCmkU3icIjtE7bm9PGCEYx0hZWi77yMXjCpkcRkra/QFrDcEZqvUKYwVd0xBjRGnD0I+kIeU5V0oxhsg4BLZry7oyiODAO8rKEA2MyWHJuVvaKmKT8vKrNW48MTpHURoGH3ExIBV0w8gwRkTnkUoQXKCuyuyyVYaLraEfRk6HNtcFrfHRE5VmHHtAUFQGSBTKoivN4TigUWy3lqQFx2NPXascNBliziyKaWrRSWxpSBiqKocG4gI2jTxbFxgrMWPiqta8Og48Lg3dpwWp/5dfv/cBTkpLG2BuUcyVeGYfwlSY4Fyc5aLVmFsN+X2RptbL1N8JUysqyQeC18SD4LgJYkxV/Ayr8v/ixCZIcXZyMRXLeXL3zEjMXAlT1gYT8xFTzG6oiak5C2pnBmW2rE+uoKnlE9O5KLNktUzAQMpPuZ7mrc/tvhnsnUHJzE6F6QROfqJ5OZGfHFKasd/EQi0s2Cz2frBN8UDpMiGfbK/P1P+CfNI05+mhC0nOoGoCSRNSkonl90zMzW81qs+T3oXK98/MtiAy8MvDUucJWCzhhouQfTrO+dxLQe4rSZ2B5AxsJuCVk+FzC1OlGQov89AzuEoTYJpv3wkhyakFRpIMAdL6kmr3GDEc2DeOuzZQlZYuRrqQGIWhlp73v/QBn/nc28iqYjw0lFXB6CK1bbBmSyoyK4POPflXdz1XlzXKSvpupNv3hCAp1yUxeURQaFugw4iUghhjDt2zEikC1coy+HxStNGUSGRhsmg3SY6D5zgMdEEQjnuufOKdZ0+42X9EGD1WS/b7jt4FNrsd66sLXt0dKcqKqqoo6wrnB7RRhDhSWc3x2FIXNhffpBjaDDhn3ZoWmQHrR0dVGZTVVEoiowCfXXRJCTT5divKCmsNo3dIJWiPHZu6QBBRRiG9zoUqBvyYULWhHXpKa0hupJTQ9w4jYV0bSiF4trNUleL5zR4XNd57PnnZ8HhTcPlshRaJiytLSp6PXjQcToEXp8D//n5HZQVGKVyCslpjrETZfJ/7YcCuN7gg83VQmjSMIA1FVRNlILgR34ZFWyYkICU+jNlJ5Mf88GcsCoGpFKaugIjQBqENo+sIXU+xtjluQQr82FCt1qSkePFiz9e+ckshYLst8EIxHDvaIU+zPp4CT9bTA6RwyKLkk1dHfuNLtyipuXxUs9lYpJbc7zsOrUOorG1pbo9cXKxYryWmzJqxpul5fdNyud2x2q3oTi0+ZlH0MHqOx5GhGfnsWzu2O0vwPfayysnFBLrmQHABrQy7XUG1Mux2lv1Nyxgk2iZkHNhUFRdXW56/vuPmkyNS5QTtV69P+JTYbrJrbretGV3g9esDej9yebVms9vRtj0+BBCSrh/xPjJ6z+ACr/Y9VRTYWlMoKC8KlEnIwnJ5tWE49qToKYoVu4tEDAHQVGVJ8JLoBWgotaAoTJ5NRx7fUWqdv1tSHo5blBbvWmJ0jD4zrULlcECRNIrcPi0vDIVJtG7k1as8buJit0IYSbNvuSg1MTpsqRlTYqUlSgqM1HQx8ep1DgV8fu8YPVxVhs9uJNdbSZICYyR9H9hY0FZwczfyu/H6htN0/t2/+3f8qT/1p3jzzTcRQvAv/+W//NT7f+7P/bml2M3/+8IXvvCpZW5vb/mxH/sxttstFxcX/MRP/ASn0+lTy/zyL/8yf+SP/BHKsuSdd97h7/7dv/uNHx0sTMI822n6BcQ0iYrjAlpycZ/1Mkw6jImdmViPOBXLs74ll6FAJEx6jpxYG89tJeJUgLMVNWMJAfNUcSagJCf6Y0Jbs02aqWDO/1uOaVLpzi2M9JAISpNuZQZ3MTNKMuUv65lRmdtCUWS2K84My3Jk59I/t4hEzDoSxQw4Jq1Irv4LyzIzOmLiH9K8VhlZBMJRTPqiSZYsxNRWzKUIEZegRSlitv1P5mxJQgFKzGLj6RpKkZ/mJ+AnUkLE889ymmE0zzKap74LmFxzM4rIh6OkyLH0SiCUXNpTWQM03eeTs2oBaCmhEmgxnTcxjXYQcxsvt+1m4CjFtDxZ47MMVJVZADtvQ006FI3M1LiUOU5eSqQxDBievP0ZHj99i6JeIYuC9955xOOLiqJQFCqnn1aF4Tf/y1d48u7bDGOg610e9kiiubshqRXt0XG4GzDKIKUmJUW9KikLRbkuMbVGqcjoIEVNva4pqhJdZnZEaIWtC5KOVCuNsZHT6BiT5uQipzHy+uRofOLo4OQFUeWE4cO+5Utfe87v/+a3ePOqolAJUxqKix31qkJ2LaI/cWElV3WBTtkNhMi5RikFikLlJ9GUJy8bW2CsRWmLQBKcx0w2cCHAmIKyrDBVhTAGU1U5MiCCCCmLUKfWlogxC1r9yDD2ROeRMWF0ziNx40g/RGKQiAglkdoI9u3AEPPDVT+MfHTb8MWvH3hxH3j/+YkX9x1ra3j3SU1hIkUh0SJyajpeftzz6nbk5jBwGLNwVkiJsQXlZo0wGXQIKdFlFgnrVYEuJNXuAlVlR4/zHncaiV3ClDVmvSYGn1t1Mn8/jYPDjX5p42srsevt9K0Q85N5EDSHBikNpISSEinz8MXBBd7/4IZf+7XnyKR49/NvMoREdxwgaT5+3vLixZFLq3j7zS1FbVhvapyXfOXrRyKap082VEUev/HypuP9928IQXC/P2FE4M2nGy4uDMVmw7ELvP+159zfHqjWJW3fcbw/YGzOvGl7we1dxHWez7y9oygBGRFGMIbE/bHlft/TNYGucyALxiQJCbRIbC9XxJjoncaJgvvjia4duNxueOPdK1QlcSTa3tMOgWPjef3qwOm+Q7jEujQMXccnH7zkcHvASCjKPGutbVu6zmNNTWFLHl2UlFYy9B3guNhZLi9rlBA82ZXISvLq9YEEWKvQJhGCJ/oBiJlxEx5rRJ5/5T26kBjjkTpgreTUtAytn6QDDoh5ZltM2cGpFIqItRJtBBcXJcJKXu57tBAUhSIlj+8GUvLYQrLbrFDaUpSWi+sN64saUShGBC5Knt/1WCW4LCRvXdS8cWG42OYcIucctYh85qpGyETv3DdY6H/71zfM4DRNw3d/93fz4z/+4/zwD//wb7vMF77wBf7ZP/tny89FUXzq/R/7sR/jk08+4ed+7udwzvHn//yf5yd/8if5F//iXwBwOBz4gR/4Ab7/+7+fn/mZn+FXfuVX+PEf/3EuLi74yZ/8yW9of5cS/UBbIyaQszAP05KzFyY9YCzm9tLUjclrFOmBEFZOrYNpe2nmNGZoM+kn0qeL6sJMLKxE/l2cwc2k1ZAPdRzpvB9ZgKo+xVJEUramp/POPESwZ6F1nOkslhYOMzEkiWJiiKZ9jLMOZdb1TPqb9KkWzkO9zMz+zK6lef0ZBCwTwRZEtghjPnVNZFo4q3MrSbBckTS1BOeZUyxs1IyxphahSGcgxyREFunBuT8zXXOxm/1183+fKTwWVi8hFzA6L5tSyDhHLjgPECQ5rXNxiImFjZnP2SwXZyH8pr1QacLKAjlpxuTkHpq1ZUpIytLSDo7NbsNoBZdFweWrI4NP+D7hAjQekgtZ3NgcECievXlNe3OPiIIUJTL0FI+eENOIbxwuDlxssnOkOUWMsawLRXtoUdpgIxz3J0gDQQhcjKw3NWPXY4qCrndZq1IUROX46LZjXUmIkRhzYVxXiiHmDB5tLKMfaZ3nV37zQ775M29we3PLl142qJQ/lX3XoUUiycTYN4QQ0VovzjhStjMLbSFFQsxBfi6RRzNAzgOZcpdiCliZcz+SEEiTv8DR0xiOFBAxZhgeE847TGEZvc/3QZy+P2IWgPqYnWRSwEpJLtY13eB4eXIoJDsleL13fDgGLjeaNAxcFxYjHe892fD4usIPBzSJmEru7wN3R89dM2JLidVwva64euMaXRmUBnfqkfUFUUakyWMOdGkBSZQS4SN2VSFt3u9id0kk4dsT5apGFgVuPOHdAFEjdZF1eCqiigqhNSk4pF7RHY90hyNFVVJeXJJ8mwPvEOyPI+9/7ciL50ceXWy5fFxwd9fm4ZbW8LVPXvP8xZ533tjxbd/8DGEU0Y0os+LFywPWGMqiRItAVRnujw0vn5/Y7Up8CIjB8fQz1ySjibrkeN9zf9dRaUtZVXRjz267wqxW3N0dcW3g7nWDlIm3nlYgAxGbnUEpsn99ZL1a589gTAhVEYPLU87diK0KhLbEJDgeTvSHliQV7YsDRkuePNpy8Zk3uLltuL85EYYAVYGUkuOxp1cDm03B9UXF6dhxOnSE3lFva0opeHR1wQcf33J45dBSUikBO0t33+OCQKRIVRkoFM1p5MnVlpsXt3jXo1RgGEeUSJhSYlJgHD0xSjabFadmIPlIXZrpnk4ocqLwsblDKocCrNGkkHB9RFmBVblNtVnVjEMPUtF0DncYefOdx0gVGKpI33TsNhajBJ2LNMcRCXjf4aWiHyNSakxSvLEusApWVUFhEqui4tWxIQbBk3V2ZY7eMQ6Rq8Lyu/H6hgHOD/3QD/FDP/RD/6fLFEXBs2fPftv3fv3Xf51/9a/+Fb/4i7/I937v9wLwj//xP+ZP/sk/yd/7e3+PN998k5/92Z9lHEf+6T/9p1hr+Y7v+A5+6Zd+ib//9//+NwxwQkqZHZmf0qfuEpCf9mBpGYipEC78g5gWYBLjzgXzwfqFmH6etCkC8pOVgGxZnuDT0hV54BKKZ1CVK+cMrWZXkcjryGtg0XjAImCeQ1/OE8Yj8xRsIZdqzMw15f06Z9AI0nQSzttAQIhZy5MRTkRM1us475fI4xfy5mer/JlCWmDjAvjEp/cnpnOxn1pLD+dGzUnD81qTODeS4lTshRBTm2dyZIk5c0ecz1fK65XzORRMepmzQHrZEGk5AiHP+xJhSn9mWW5SO2fAlubbaYZhk+17BjDzuZlZIeaNTJk5kzh5FkXP7NACpJOcRl6wtNvSbPdPmQEzWiNTnmZcFIaqvEQazfbyMce7G6TdYFTPTZcYe8ExDHzTteErv/4bfOcf/HZ+9fktN/cDdS1ZrTUheIrdNeXoCEMeBeEcDP3IalPSnXqcE9RWEmKPNNCceky9oh0Tt8cDZWUJ/chuW9E2A1Vd8G5Z8NWPGpQ0xJAYXUQYi9KKupYMHsYQOfUBaRQRxS/8f7/Kd3/7e3xW1vzGxzcMrs9T300GeWHs84TnlBi7HiFy7k10uf2iyCnlkUAgi4iJIQMcpXDRoTxgM3erBMgpVsKlgEuBEAL4gDJ6cqg4isIio8qsoxKEJLO2wGhEIQkhYErBGHo21RrvPDuVnTezG9F5z9ZWVAWsdWBdlrzz5ppIYmhHUqHRa8m+iXz1+YF2CEgh2BnJ59+uqbeCoi4htOjCEFMghUSUETcmlC0hKY73LW4cqC+2+GOLKSswmtCeqC+3kAJ+GFBmTXQtiYQqSkQM6NJOrpuCVG+I7RGtLZdvXk3fEQmKFdGdeP2y4dd/7SV+iHzz556w2RY8v9nz6oN7rh5d8v4HB+7uOj7z7ILPfuYRY4LXn7xmu6n48PmJtoO+DdSlJIVIQPPyxZHdboMuslPsvfcu2F5vub+/JdwdMdUKrYEoCSmCNJwaR3vzmq7tMMayKhW7rcH3Az2WUTqszi7LolozOk1KAh8GJB5FojaW1W5LDAE3jCgB14+3+MExDI77+5amaXkxOh492XF9ZUmxoD8N+L5Bb1e4NqFNwf7oUDJOrOvUZp/ug9AOXO22fPlrrxmH/PndXVXYckAXGo/COU9RWuRGEPY9V1drfIg5vNEJXn9yz+WTHT4MVHVN34+sU65BSsucUBwT2lh8iEhr6HrHxTpi65Kh6yitIF4U3O4bsJrNqmDsuiysDyAxPLlaU20KfHD4oUcpxbq2lHVJf9flhy2tUFay0poLoXl9HBm6kWfXG0whIQY0AZEi71zWBAnPX58YusDFrs7nZele/M5e/0M0OD//8z/PkydPuLy85E/8iT/B3/pbf4vr62sAfuEXfoGLi4sF3AB8//d/P1JK/sN/+A/86T/9p/mFX/gF/ugf/aNYe0ZxP/iDP8jf+Tt/h7u7Oy4vL/+bbQ7DwDAMy8+HwwEAnwSaNI9Z+S3F/sxQ5Ofxc25LnKv57AiaGBTE3MY5X4C55mWWKBfGDHoEMmWWYZ4WvWTCPBg9EBEPEm+XapmL97wFcd7YQwGqEHLyeM+uqMltNFXEKJa9mf54ZhzEst65VkMGEiS5/D4vJRdkIUV2icwamtnWnBW788rEoi8RKR+ffABeWLJ/Js3MrDNaTqlcAKGUZwCxgKHlGPIXxawrjukMUOaTKJhEzIiJvUnLdYgpPsj0+VQjbr4EzKCHCZieAxFnNikf8wz8RMyMgJDZQjxvSyZyoOK04gxgYEYuIk1MVZps69N659bo4o7jzASeQVMW0aboKazm1AeuthXWFHzmvc/SP3mDtjnRnfa8Ot7iZU/XtjwpIxbH/e099vKSV/efcOwiMTmMveW4ekTfDBS1ZRg8IeYZS6dTIATwMQOzutAMEpyLjD7gff4s7VYFRgWsMcRhYByyo2m1rTmOgt5FXg8jeIeUgSAUY5J0ITJKSxwTUgledgO/+MWP+APf9Bbf/s41v/bV5/ipdRKDJ8bImBJGaZSUhOghBoxMMKUOKZUBi9ZmajULgshgwWhN5Kwb8nPbN4JQBpEk3ue5RlYpTFlSxoTvstBXIBi6/GUfgsd5NbUOJbWSXBQ160KyqQUiloyd59QN7EqoteKzjwviGMCDDgHhE2PrGLyk3BR88NGe9z8a+fjO8XRrib3n297d8M6bO1brFUNzotBZ+O3bDukTqixIIiBkTgB23YmucRz2ge2FQcqBoAtW149xQ8+4v8uZNiK78lKM4Huk0QhtEdHnz1+MCFVhVhXj6El9g92s8S5wf9vz0QdHCiF58qTi8qri9f2J4TDy7K1rvvLRnpevTmxKzcWV5W5/4NBGUpK44Pj6h6/Q2jL2jqttyVtPrjBa8MYblygRMSpS7HYoDa9fvoCkKDdrbl4dKOsKWRe8fHnAO2ij5PWrAytjGJqGJ5c1tdaUO0vbdgxdh6hqUowopbDF/D1g8VEgQuRwf2IMgaou2awKQoSuHalWNUIJHltD1weO9z13h8D1s4onzyzH+5a2yyNPotQcTy2buszjIZCs1jUxeY7HI9pk8a4JPe88W/P1Fw2ygDCO1Ksa37WkuubUDZQpA/CLXUW1HjCmoO8D23VJsyvwY64yc/p9NwaGMVKvSvqxpbQKU1uUKji1I4W1SJPbiwaJKhVD55EhYpWmP40kLbEbIAWs1hTXW7rBQUh0naDWK5Qs6X1CJM3VxRZtFCKLHfEhfze++XiL0RE3emLKw5hvm4Fw6IlJMvaO68uaKALGQN8t9Pfv6PW7DnC+8IUv8MM//MN89rOf5ctf/jJ/7a/9NX7oh36IX/iFX0ApxfPnz3ny5Mmnd0Jrrq6ueP78OQDPnz/ns5/97KeWefr06fLebwdw/vbf/tv89E//9H/z+5mROQ9pzFbhNP0yA5KsqQnpXN7ObEVaOJZ5fXNGyszAzM2FrIs5F9mZUUhpFjGLSZucL34i4aY2hxAyx92TW2AzEJkLf2Y8Jgp8Yn8gzXEqS1HPbIOYdm/e77QwNkwslViA2Gy5zsegeFDip/HnMs18kliEz8uGSTm1+eF6poIsZjSQHnI6EyaarENJnK+ReHCm5SSynVt2eT1nhkvM5JVQC2jJQHM6twlmT/gMIOdrsHjdhDwzN/N+TqBFCLJuZ9IEkR7s37TM0vpaWlsiA6GsN2YWGAuxNCoRTNqbiYVJk/uL5V7J5zLva9beLCk6M0Casc20/1KJvI0E3eARIrdHtLWsNgJbllSrim6zob+8ojseaV59whcPR75NJX7xP3+Fb//e72D/Gx/zpRctWiQ+GzSP3tW87kpq1yFcRBqDEJJuGIkpcbkr6fqBoqwQwlEUJs+zCY7txSVu9AgLp9ORYRQEVdD0gWaAdoTjKMHk8Qun0TOSCzMioWWka1tCcKzrknbw/MrXPuFbPvOYb3nrEb/6lY+RtlxiIHyIOdhPQFlYxOQSSkiElISYEFJhTUHwAZciRa3p+zbP3QqeSAkxoZUippCnZPv8MDLPgvMuYMuZ5RQonYGo846EICAwKVGqLPK8qiRv7zR14XKCcorcNT1aCmoN1aYgpBHvHKVIbNaKGDvub3pWFzVeWX7zwz2//v6JdVWidKK+WPFou+L6esuXv/gRn3uzotxlRix6hwwOGRS6rnKvUwqMVrRDvrZaFwgfkaqkb1rc6UhRVDmoL7jc/hQgixpVrSC4PO9ICPAuD90cPQKBWdVE5zjcOb76lRd0B8ezJ1u2jze8vt3ju5Fnzy746sev+fpHdwSf+OwbVzRj5MObE7d3jicXW4o64YXEDR6RBKvSUteJQsU87FOALixRGvphyCMgEHz80YFqs2IcAn03cHPTolTJy9t7NAItI289WbHZFCTp2e9b8HkYpQ8J7xyeEbNZUdYlWiZA0x1blLRsjMC7kRQExljGbqDfe8q6RChPYRyDdHRd4Otfa1hVmvWqQCtBREHwhKQ5tQPGWKSC0/HE9ZMLbKEYO4cSCVUpZBF4V615ddsx9gPlWpOsJSZJYU0eiIwkjCMXuw0eTwzQHVseXe1ou4FaVcgY0EbQdgNtP2ILM5kmLEprCBEZRzbrCpKnsDVR5KwtERIrW0KSBCJDiBTJEGLOvzl0I34IrNcWJTRjEDgkbdsTE5RaTWkZHpEiK2vwOkDo6caACwkXBS/uO7RU1IXFCNhuCroQGPuRiMA8eEz9nbx+1wHOj/7ojy7//Z3f+Z1813d9F9/0Td/Ez//8z/N93/d9v9ubW15/9a/+Vf7SX/pLy8+Hw4F33nlnOtm5IqTJcRLDVCgFzFk3Z1ijWDQezEBlrimCxSnzQBcTJ8YiLkVsdtKcARTTOzA99U+dIeaUZEQeI0Fub+SO0aStiRPtNAGruAAUmKevLpyDyAUzPdjknB3z8LUU00V/Mh/tdL5UPh/LemY2Z9YyiZkFyW8mZlfanPKbfz/vuhTqwS5Mx5tpr+W85UuR35vDC2emJz045ukg591afp59aLOAfN6vRQsza4XSLMA+M2MLoyImOXQ8A8yw7Es+l+fwxPNpnRknJpDLdG6za2o6BkFmZBbN0RRsOKErn2AZCMsEltKDVh6zuy/vdy7uMidtJ3A+nzUpIIR8DEJIlFKUqw1KGYq6QijNsWm5Pzl+8+Tyafiw4dm77/D86x8w9iO3zWu+2Rt2T9/k9vX7PLmoOJx6CquyKHt60hdWMwye0YdpjlvKM6Ckpjn1tM7Qj5q7JtD5AVmUtOOI1wWDAB/ycUYpcD63AjIrCYWx+BixBqrSkFLgv37lY65WK1ZVzaEfKcsqJ3WHzASE0eOEROvMyISQKKsVaXKxxZhASpz3KKGzY2R0CAQhgpIJIQJGSaTQuOCJRhHCmO+CCQxpo3HeE4loFFZbgs+fQx8DMeURMTenjtuT492LApMSSiqqqqAy0EVPESNqdDzeKHYrTb02xOBJVjN6eP+rd/zXT0b+64ue73mnpjIahEJ4x9e/8jHrQvMt7+1QlSUMYx4pEDzSSqQ22batDetHO8q1QSmDMBo/jjSvPiG5SHWxRtkqC4yTJ7gBZTdIW4N3ILJmT8iCOJ5IfsBWK6SSgORuP/DBR6/QSfHscU25qenbDiXA7mruDx3HvUMpw+OLEl0Knu8Dz185FILeJ453I2MAI7Jm6dmjmt3lGuc7amsRQnF3f6I53fHo6RMinuPNEV2U7A8HfB8QtgZteHmzZ2UtTx5X2OQIyvPBTUu7b9iu8kwzbSS2yAx7Wa+wRuB9i08SQiIKg1pZhrbBigQycDweOR1aQh/QtqRznqo0CFMQuo5TH+g76PvEemvpjkdiTKxWNarKs9LGbsBqw9CNSKMYxsxAVqZApsi2VKhHW169OuJi5HQ64QbN5ZMrkou4YcBqSXM4UKxqJJ5qUzD2IZsgXEAajTWSw76nazyhTmgBIQkOpwEjIqYQGC2oaoMpJaOQjDEyDMOSeK00SJWTxLVJFKsVx9f3rI1l33laF7BKYqxCjDF/7hFYrfCjpzCadV2wqSzOB3wIdGOg7x21LakrS0JybANN4/A+YkzByXmOY+B34/U/3Cb+uc99jkePHvGlL32J7/u+7+PZs2e8fPnyU8t477m9vV10O8+ePePFixefWmb++f9I21MUxX8jZoZJrxGzIDWktDyNz6LjidaYlp6cPMtvzoBkKbSIJY03B8U96O9Myz9oCE0dhBkyPQAQ8zrTTEXIRW8jZ5YCcsbMvHzKLoeYZkZgbnNNluWHoHeuvDEjmcUqvxT2tAhtgSXbJoOnmN1NnA3i55lZE+Mwgam5yIs5aGdmJKbjXPJz0qTpmU6XECL3y+f2y4PAQ7GwWrDocyagkoFlXi7PkEoTo7JsiHmo5kOAOlEeE04Us4drIkam6e4PrmMWMc9JyOdcmuXMp1lFPIHdJEiEzExJiRSz/idzRnMMAFPSNRNDAyxAUYk5J2eCrJlGmvZJPtgzpvdEHv5IwgVHFBOjmLLzJ4XJ6abU1A4TGGnZbjaMj6/pi/z0dTi2/H++tOd/+39/li/+5oecBsP9YWRQN/zhp+/go+bFXQ9C4kNku6rw0TO6RFEqujESpcEnSVFpos9TsWOIpOQ5usQQBIOPyDTiUsKlwBhzfo8bPd5HVlVJPwzE5PCjQ6v8HGe0IhGyvgTFi1f3KA3WSLRKCDQuOFRpCUAInhAFQiiiSHgESSl8cIxDj7QV/RhRyed0YasJztO3Lau6JEVJIoMubQtCCtiyxo0jIcT8eQqJQip88CSfRflS5+JolGQcBvbeEZNHK8mrViBHxzuXiutdQXs4clnD1VqzqSS1TWgFQ+c5HXv2J89xHLk5Oj746MBKTGGZ0VNpgRoCyRo2uwxMosuztZTUqLUBo0GVSBFwg4Pk82RqaUiA9yNKeIrrK4SJpDggdAFRZxCXQIwDsq6z7dJ1EEeENNkqXRakIOibE92xo7YVupC4ALev9lS1BKF4dbenOUWcz2GS7717zce3R77ytXuKqsJHwcll8fz+1HFVKr71c2/w5K1LxiGH8GEsL1/cIEbHZlPTtid876eWcU6zboXlN3/zhq7teftqjTaJr35ww1pErq43VJuC8nFJ8iNSQ0iBShcUpsJUKj9SjQE3NOCg3q4YfEt/fwCrUW5gVRXU9QXHU8/9bcP9fuR4hLKqUGWJSR7QOCFxQXF5dcndvuX5qyPbdY0tDCEJXAi8utlTlQW2qpbIDlPXdMcjq0oTrgxtM1IXEj847m8OrK4vCEnTdSMShTUxD5ntcnDg6HN6dQwRaw3KiEl/41AGQoq0h5brTZ3dpDpByg9HwQV8ADcGjIDN9Yp2GNm3I7oPPH5aEt3AprY4lxhdmB9LAYXCkrzDlobToaEqNdW6xKVAP0RuDx3ERF0atqsKbfLMwtNpZFcZrjYV+2ak6Tw7qenjN2zw/m1f/8MBzocffsjr16954403APjDf/gPc39/z3/6T/+J7/me7wHg3/7bf0uMkT/0h/7Qssxf/+t/HeccxhgAfu7nfo5v/dZv/W3bU/9nrwxOsgIjTu2E2UV1RgTzz9NP6cHU6akip5imHDaxMArzBZ6Lf2Z25jycT7uFhFRnJkUIHia9iTRl2cy/OYtOeCiYjSIsLa+ZUYAsop4nhQuy5VxMyGOBbpMeJmepiAmYifP+Ledh0sXEqdU0AaHM1EiE0BNbMWkUZu3tdFxpaflMbb+YGa+840xsRh48mJZjnTmsWRGTkdMyLmFxPZ1BUGQGF/n8xNmmPvUiH46pmC9vYh6TsJAtS5ZRTnKOZ5ZITC3HKUZAMbc60wP3lniwoomPEpBimEIEZ6dcnIDzQ7XPzGCdU5+z5EuS4vT0IvK9OPNdc/7RPNk+i0kCs0ttlkCJqfUVpziAXHcjWkt8SChjudrsUOstXT8gzYHRj3xwjLzxmbf5xV/9iBetIr50PP7wFbv6gubl+1SFZr0uCW3A+5F6pREKtJRE6fN9EgVKwTCOCGFo+pEhCKqqRMSRFAOF1fQxoouCEAL12vD62DO6EaEm/YcS+CQggkoxR9UjEaVgiBKtFVoqcuq0J5rc+vUhIKWCJJDaEkNHzNnCOWlY5uKebfl5eSVz6pALDu+yfibJDKSt0YTRo6Si1AYRA1JrvBsRRuWZTwCBDH50vue1yg9UShtCdDTO87QUPNkZrIyUK80bj2qc6wkuIKzl/tBxODiG3nPykf/y1SNNFyklPNoYnlxucF2PiJ5qpdFFHqza7Adk9BS1ylO6NUhpEbkXil2VpGimT43GdyfsqsZuDDEOKG2QypJ8jzA1wQVi3yPqAuk9KbYIUyKUAdfktF1VQOyIAZKLPH32iPv9kVdfe8H1oy1RG17dHBi94XbfYE3Bam15/0XDl96/Z3SC/dBjBDy7gKEfqJPjnUdPWNWK/atXXFyXaFtw8+qeft9xfX1J07cwtaUFkaaLfOn9Ix/fBQiJzzxacfmo5tWrPZvS8N6zDaZSNMcDMUTK0mCMXEwHoig43B3RMVLXBlMWBO1x7RGpLNurNV3rOXWR4a7D6IFIol6tsUXEuXyNhVQooB89vkucXERbxXa3RsTIOEbi0LFZF0SZcCHhY8T4gZQiQ5QcDkc264LCSq4frdnuAu2xo2sc++PI8WaPiwktBeu6pu8HbF1gS4NGMgRP34wUmwofI1WhaKdxJEJFYtL4xsE25eGno0NOGUnt4Dk1AWuKPNyzFBzbQBhCvsZJU5QF8eiRKVLKRDK5Lo3DiDaa3o1EqZDWUq5LCpuDCyuluUgruranaQOv+pZ1bbBW5680I/IDS5G1hEprTq87fjde3zDAOZ1OfOlLX1p+/upXv8ov/dIvcXV1xdXVFT/90z/Nj/zIj/Ds2TO+/OUv85f/8l/m85//PD/4gz8IwO/7fb+PL3zhC/yFv/AX+Jmf+Rmcc/zUT/0UP/qjP8qbb74JwJ/5M3+Gn/7pn+YnfuIn+Ct/5a/wq7/6q/zDf/gP+Qf/4B9840eYcotHTom5S9tFnlmBhc1hetoXMRfOufDPFX9qHywtqrk4LxoNmGY4fCrtOBMFZ+v1VL0nl8yk05iBlyAX15hZljwRYq7Qs0B2EnkIlUvk9Df5ACYGagFaWVDJxEDMQEydiZzluMXEEmUEMFmghVjSjxFyyRjMx5RnjczsyEMC6b9piZFTeJdtPlA2n/1cuYjLqY2UxaBMYCFvNzKfh8kMMwEQMemSZnZJIHMSMRkYzeB03peHDB3LnqhFAzMhmOndrM+CzNycdV3TPTG3xASkB0xcnNxaKeVhlAqxCACXTacJnsysk4A0Feh8JOdwv7l9NYMpKWUGA/O9KDLIDXmXFrFy1jLlcySnnJOirFEkur5nvVoRxYoPX3b8v77t8/ynL92ypeS+7/iND17ynd/5++i9RMQc4W7rzCwlkTideqrSsN2U7E8jwYNViicXa8agkCZge896s6YvHa+Ok4Mq5qZmip6uy/kYp3bMRVQICqmWc5o1aA6tcw5QWVpGHzPjJWXWnoRIHIeJ9h9Q2kII2dLdtWhtsNpS2Iqm61Ep4F2kWlU0xwMiBIiRrutAS0otUQlSCJRViesHZL3GjxmQpCgyU6d1bilLRfDdhONnvjZnDm1KxeOV4L0LzbrW+K4FkfjKx3uGduCNqy0fPN8TXGBdQofmq58cEMIi5cjjleDJzlKVGhEVq9JCGokucrhvEPIyTzUfepRQqLqcMrUMJJ9vHmVJYYCYjRjSVvmOFyYzQH4kRk1oWqQEUxZAJLkepEVIC8GD0ghbggQfJcPxxPZiRWAk9gPvvveYth95+fyepnfc3TaMIQ817Vziw5t7EprbZsQYwXd87gluGCmNpVwZSpNZlIt1QVkYYhCEZmC9WpFkYrVZ0RxaAoZDO/KVj1s+fDGgpOa9pxvqteLFR7dcr0suLy2mBmU9tBmkBu+ILmclRQs+jBg5TZ53AXfqUUaibdaGeedRRQ7c07agHx0xQpSa1VYx9IHu1C3f23Ul6VrHzd0dUkjqtqSqC4SfZqBNcQla5cGwOQlbUa0M433P/e0JbQeUJKdtC0VdSaLILNPgAn2bOBw6fPCUbcQYQbmqub66zPO2WkfyUFSWovAoa1A4CIFVbdjuCqIQNPeeMEaCHlnXJSmOBBWZxtdircrMHgo3BrwN1FYRtMKFiPd5sKyxmqYbsrEiRq6vNhgNw9BTFIooNaPrIUmUkgwhcDu5MDuX0MKxW1nKQlLUJbf7kbb5n5SD8x//43/kj//xP778POte/uyf/bP8k3/yT/jlX/5l/vk//+fc39/z5ptv8gM/8AP8zb/5Nz/VPvrZn/1Zfuqnforv+77vQ0rJj/zIj/CP/tE/Wt7f7Xb8m3/zb/iLf/Ev8j3f8z08evSIv/E3/sY3bBHPr4dsyPLTVPyXjPwZPyxPxjNDEmECIYIYwxLDDxMbMbd/UpgK3DR1W8zgSSwbTlO7Ys6RIZ21Og/nNp1ZprlonhkCmcQclkwGXWqxeD88YjEVzfnAk5hAXJLLuZgTcvPqJ2ZjAk1zem8kIaJcVi9EWlohv/U0/zfAYTpXi8CZlMWbuWJN53oWLU/7ObE983BRed6LHC2OZGlRhTRfyIkNmm3WYrkWs416aS4tgHMCjkztqOmcz+nJKYWFl8mA7gG4mIDmHBJ5PvaZ/XkgS5+AxnyrxQmtPNRYQRaP5/tiboHNV1wsgG4GtjKl7FKYxcewWM2X5TMCm2IDpgNOGfgqIfJQynFA1ysMgugGgogcguW7v/Nz/NJXbjm+jHzpxrF5vudxWdM299RB0x4anj3ZIJDc3Q+EywK7zl9eAkWIEmMrgpcwNAQS+6YFaYgxJwhXRbYBq0LjAhxOjrVJjL7HWk1ZFIyDz27AGHK6NAIfAqa0xMbhQlzut0hmM4hZ60FMuHFAaYkbBkCgrYEkWZUr4njksN9Tr3MS8tA0eV5WymJVgaQu892XJ2MbkpAoEr5v832cJlOBFCgpSVZnYbUUOD+ilSKkhEOQkqSQIIJHqQx0L2tNtIrg8jgUoSQvbwfasWdl83l+a1fwzqOS3bZmvZKchMCYPHDy/pjbM2OKU3imRGmNtibrZybXDboguZEYAqHvkGaF1BZBIrielFSeGdafqLZblLWIqZUllEJYC1LlJGRTMfU0EK5ntSsJPjEcera7mijh6++/5njniEqD1QgXeXHbcegDUpf0/cCTXcW3feaKupQEb9jv9+A9WgfWG8nqqkZVFS8//BgpJNvrHS46Pvjax8QocBhe3jn2TWS7rriuNU+ua/7LV55zUWuCjggDx2ZAHBNGFaxWitW6YOg97alj7Dy2MKTgCD6P64hRkEYJUhBjj0AR+56iqhkFxOOIi9B1njAIgg94H9BFiRAaqQTFWrPTCkJiHBPHfW7PqCQoi4JMiWSAUG9rpEz4ruNyVePLiBeJ+/2R7rZlXecRFJVQSF1ifETrPgOyZmS/P7HZVCBHyrLk6mrLOLxmdBEtC+pa4caeclNDGqHMtaooKlxVcTx0JCEod4qq1rShg5DwLqGURgrJuioojULrHFjoJLRj5H7fsdtWvL4/oqXEGs3KaC4vSqIfGUdB5yMff/0FbnRUtcXLPPvv0W6FsYZ2DPTNiDEJYwSDc3TDQPU/yyb+x/7YHztT/7/N61//63/9/3cdV1dXS6jf/9Hru77ru/j3//7ff6O799u8Jvv0BDhErjK5XgmIMziYCzhnaiNONuxEPLuwHop7p7qx9Camdk3+WpQTsDlrV2bxcZyTh5nfE8tyM5+Rpn3Kq5gaMmKK/Z+Fp2J2IU3sC2cdzpmryG2KJARiiuWZ21fzUwfT8+asS8mjClgcTnMhFsys1RmMzcc2o66ZsXgoXp67qYtAOZ3/Nr+m4EEEWV+aFvnJDBIz2Hygk5lX8gAIzM4mNZ+AhYDJ0ud03qWFdZPTNUlyOt9pst6nrNuK87kng7IF4KTpvM7o9cE/MAnBU05Bzp21mLtRU5JgnNphueW1mMwnBiA+QOLzdRXMg05jImuz5vtnGUsx34uJ6Od9nc/PzNCF/PSdJ7QhtcF7j1Aapda8fxv4rs9/hk8ay7513N7e82tfv+HP/LFv4cNf/iWENVRKUVpDcDG3SE6OwipcDKzXBckJbo8tp25EK8lmpUkI6kKjgiThuLpYE0aX2zpSs5GJdpSc+gEfRlZSsNtVHNo+i69jHq45JEFwCa8kIUaCDwxRgLQE74leMDQd9XoFRApp8EhSSAxtT5AKIQTVakXdddy8uOHR08fYWjB0Hd6NdH0eVWCUymGBzFq3nKcjzTSDa/q0exeyHmhqp4sUc5SHzGC57yO+UPzS+3seX1Q8soG3VgqfInvnub3vqJXh49cNF1WBNorToWVjJY82mrpUPH66QeBAZEcLg6TrHJttAcIgTY0KRxASZUuEsvm+Nyvc4SZ/dyiDNEUOfBMhAzppGY8HlNKsrp8itITowChEdAg1lYgQELogSUUaW0gCVVbEGOiOR7TVOBf48MMjp6On83EC9Yrb08DL44CyJk+uJ/LWRYGRnqEbMMry1qMNq43iuG8RwuJ84vDxS6J3VOuSYbzngw/2uAHsquTD5y2v7jwrW7CqFZu14cMXd6yMYmUtoRtpTwI/jlw/XSNFyFO6Xx4obKKuc4jh8dSxqS1FDUoLClFyOvZ0TYfrRqqqwpSKGHrS6FmXIGyJiynb8wuLNpL7fcP+6Dgcc7vmvXeeUO0K9ocjMihihLFz9G1DVapsXBCarhmQawvR47wneEe9WnN9uealb/ApEGJAKMHY9bggQUi01cQ+gVAEIRncyCcffML19SWXVzuOhyNt05KExEVHIiKVRAgLUTF0edp6Pzi0Usg+UGiDt5a2dYx9ACnZ1JbKki3kg0ORMEIhg0eEhEfy+r7n3TcvsCpQrQwh5FDNYXS8vNmTZMHmakXwA6U2NEOH63s0WVS9KQxCaGIIGAJvPbZ4z+/K6/f8LCoQSyENIsfy54foXBjgIfMwP+jOgEMuxTqmsDx1f5or4YH+JBfpWYsi5KcZmuy3ysxKjPG8P4CYxhDkwDoWkJWPYGKEPnVU07KTsPe87/nYAjlyO69qnss9z6ua2yI8eOrPIsZIZAkCTAs3kvc5o6zzscdP78yCez/l8JqL+cSYTKyVXI5RTBNuJ1g3PRHDYmTKBzUN9JxHSZwZtzObNL8X0uySm3Qt0+/nFuUZxIoH5y9O5IecNEyzhiofVEhnsTdpAmtTgu3SUkMsbFsubul8v0iZE1nStB8LuJnP8Lz+fF7Pd9kshk85gyRNoYMpg7kc4zyf7/PfDSHHsIepZfqwnaq1oh0HYl4ALQRRKiIRj+LoDO88XvH89oKYEm5saZJhHzT75yfe3Rr0laUwhtVKc31V4MKItQUXO0s95hA9XKacYwjYyiKEY3QwDJ4UOnyMWdtSWHKLLhCR3DUtp24g9ZFAjimICYaQiGpOY83asyEmTr3PybN1lVk+pWjalqIqIESEUuDzIMjBJ0bvqTcbyu2G/u41h/09u8trxuhzOvLoiD4RQiSGQGk14ziShEBKhTQWqTSDGyBFtFYENyKVRiqLH9ucZuxDjtJXio8OIxLNhVOsNoLT2PPqMHJ36Lg7DCAGCgllIbjf5+Lx7LLmzQvL9ZMN263l/qZFasvY59A2BYgw0hxPuI1ElwlEICqNkgZSJPX3GCty21QldHUBEcLYEnxk7DqUXWGrbM9PoUfqiuh6pKnyZzhGUnQgSxinkTpKQQqM3UAMEh89NzcDx6NDm5Lj6wNj6Oi94pOXDdVqRdMNVDpxUSseXxYcu4ayLNhuDG+/ecnoO5Ib8DHhxogtLENyRGV58ckdYKFIfO2Tlhd3IafkJs+jneVw7NBCst6WlArqooI0cvV0g9aSoRlwXeDNt65ARfzgqOsSW2j80LG/7SnWGyIeKSSb1ZriUUlMMIaBNIzUqwIhJM4FZAhQlAQvMMZw9aQE1dJ0I4NzvHh+zzv1I7SAKPPDbrUpSN4RRNaOpRTpomQ4BnaVpCgMUkZi9ChtePxow6lzjGPWz6UUCaPDJUG5lhijGMfAcd9QlxarBIfDid31FbYscaNDKoVrHTJ5+jZihMYlcINnHAeMhuAczgkKrfKDWMyMpELQR6jKgqJQuBQxhSYKT2UrqlPg7tizWdeYQmMSlEZT1yVt15JioC4sg4ikENgUBWWl2K0yQ+R8wqqc3zUGz+nUZ0dalHT+fxKD83+3V0oQU2Yl0vSlOIXkLoBBTMUu164HbqEpJIz4IPV2ZjY46yvmKd8PpLrAg99JsTyVZz1E/NTy85DMMxdxZkgWAXN68MTObGnO25IPjiWv4OHT/AOiZv7lAnwylTVPZnjQyUBwHreQJ1c/AHMLJzOdP8j4IM2gJM0ojSW/cH4OPmOEB38vM8MmmEBHZLZYn4tzfsUYf8vB8iDj5sx/zQc+t/MyoZPbTln0nW+CODExmVo5g9ucnXgGlXmmlVxmEU3E0qdiCJZrOCclC5m1WMDs65rbcTKeGacl8HC+v+Ydn66RmO5fIWSe0Muk/5n2ZJmltQA4SCES5QRKHzJC5FaOSAoRA0pIhM6tFCUy4/T8EPnOzz7h/ZcdRiTcoPmvH91gN0+4+foHfNuVZFsJtrsCKaFeafZHhyRRKYEuBI+vLFo6VCFpuoBWEak1m8JTKYlQCt+H/GToRrwPpOAQwKa20z0puGt7VuuKpnWkJHIyrwv048htO+KSJEZFiAGlDFIkimJFOwwEFzDGorUhxIhRkiQCPgiOh5bN1RYEdKcTxhZoY0g+ok3+Lgghz/Vx82cthAyujMz8l8wWfSU1o4945zE6U/Vj5/AuYrXOVz543tgWvHcl2Ww0L29GvEvUhWUsIn70VELQHQfGrufNq5J3316z21nWFzWnfYNUCqMNN8/3pADXG0tdZWt8jAKEJk0We5KHNCKVIIaI0Apht8RhII4dQluCcyhtMCbPMou+Rcoit8ykWhyKhJEUAqIoEMZCGEgiMrY90QcikaYZefGqpWk9t3tH00caF3HBsdsV+RNTCbaF4Z03rhjdQOgCmw08eWTo+z2HfY9ziW4YqcOKV69vKAyMrkWqmtFFvvhRw+0hMIye0hreeLJjdCMvX7c8vlixWZdolWhPHWVp6fuEUJ6L7YqwFRyaIYf1lRUueNqmZbVac/nWE7zr6U4dorBTS18ihMMKhREabTNoQIAOUJSGu9ctp32DMIa6KviWb32D46mjax1D02K0oO0d+0OHi5Ld2lDXuTaEYWBzuWZ/1zDaGuF8DuwkoGRBYTQBQdc72mbk2Dm01BRWMzYtm9KSbMStcsRB9J6y1LktHSVSl6Qx5SBDo5EyPzy5MefNuJgwRYEkz7eTQmCkoqpkDuUUWSskdOD17ZFVYaHvMHWFbzxFqUlh4OLZBV3TIAqDqQw+DPhhQPj8HTcOnu2mpB9G2n5EWZnDAhOsyoRMid4DSTP2gePQc3f63Rm2+Xse4CxtgzRN7J5st2ezzFwcZ6ZFsQh58xIP1jO7hOYIwPmtdF5ysgFPtQbmL5wFHOWLHiY2RTK7XySkPIl7tiwvoX5zzZ73SDKNPZjAUZodVMtmlr2b20xnSDKjCzFlqsQFLMX5r2YmQORCmaa+iFiA0eQPm8DU3PqLKeV2yXzCpmXTokd6YNOfmbUZXM7nMM3NgDO4WdiMqV0WJ5Al4Ayg5vVMACjFkOP2Z3AkBMu8LHEGEAuZs1zHtPxyBk0xpnnTE5id2pMpLkGJUkjSwrjNYGcCYzFBnN6Ps3JmaknFuRU62YBZFEcTiprpubkVOM9Hm8GbXPYhTb1XmcCHHAufYb3gPBE9g7Q804rckpjYrZhycvCQYFAVn397x5eLAtI1r+9e8r2ff4uP3/86l1vFOHaMY4FWUJUSISqcC/TDiK1LZBBstwJpNWWlGB2cmizo3F1WDC5Q2oK6Lrjfn3IgWIjsW0+ecKIYXARp2HeeMSRGoXPauNE4D6OInE4thTFIIuM4UtU5nbbQljglFScpkNZm+2yhSVJz+/Fr1psVm9WO2/6GtjlQr7f4kEghYa3NDFFIyKTy023yuV2cJnCj7PLgoaUgJEGIDimyMyW6AedGyqrgsqjZlJJPDiMv9xEbPKvNhpuXt6y0RCuD9wFC4K3rirefVlxtJeuLgtf7hpv7kevLNX03QFBYlfU2Tx5XTG5fhNGo/x97f9YjSZJlaYIfbbzJpqq2uHt4RGRWZi0z06jG9FP/+Xnr18Fs3ajCdFblEhG+mZmaqiy80ToPRMSing0MEpUJDCY6JWDhZqoizMTEJHwPnXvuuW2b00pvChNkiqD2pPmWnwNNk9OSusUYiVIpf19kQ/QOoRukEqTkISpICqTJzUxVPle0C36eESTGy8wf/uHG+WvuVk7MXaxpYZwsi4s47zg0iu8/nFDJgwj82798z8dvOmJceL4sfH5dSAn6/cDnT8+kELN+xbRMzvDj54nRJkgKo+A3px1JJP7484VBax5Oez79cubbjwcOx5amVRg1sC43hNV8/XJhHB3zdeab32pODztOj+85PfQEv2DnBd3o/B0yTWaepSbJiFCwOI+3keQD1mZflxQz4F1XS4iBxQVWG3BWoFDsBs3ukHVLLzfL9XpDqo79fmDYPeLXG4dDCymwOsFiE9F69gdHdzCI4k6OkJzXyOt5pdWBpw/ZQ6ZvGxohOY+e1S3slMT5FS0Fum2YlwnVwzhnQKF1YF4dQmQtWtPm5rDeWVYfWJYV1XWEGJAq0J96ghQE7xmj5cOHAU+ibTTXm2fft7S9QDddFubrhhQDXd+z2htusuz7XDhgbUSahnVasS5hJPi29FxUiX6naWJCtRKj/v+kTPz/168gAglTvGtKkEtp04PUOue06SkKg1I3yJWrEQK/lRGXALwFz6zvCCl70tRUwBZ0CmTJcbXWDNXf1aAeNxYF0gYo7htvuWGt+269VNoI3hzzHlM3EW3R6shsJFN+fj//JiYqtESdG5kHB9u1Vr3Q/UQZEBUFbQn+MWUTOpkq15MdhDbHYlFbiVYQUVUOWY+SMy/3q6lAKKUq+oYqpIr3GcrXlnJ1TgZiIYPA0qAybawIUMTKOXUm3lyjvDNZm06pHj6Ve1s1OGI7XnwjfsqKn8xMIUQ2UNvuT15nNb1Y03gQiyC4nkuUY5V5qlV5Gb3dK+LvOc1cAi/u4NTHe6JLbOtcZNNFkcjTkpuDpnhPEwoSf/zi+O//3e84pxfGeUY1Pf/1y5UxNfxwgedp5j8eDrg1IBB8/PaBn385s0bQSFoD3kZECPRtg1FgtOHlnL1NTCe5zQ6HZrKZUZG6pVMGLzPU9ih8CIyrZ3aQVESJBCLR7Q4MSbPOgdku7DqDtwurzMX4TZvLUNd5xgwd2jSsYWVdZkzX8f79gUTg9HACItfXM8FZmq5jvNyw3mHQCDzea/q2Q4RIjJHkEkplH6Qa5EzbENaE9wklBUiFaBTOe8ZFMo0Lbm04toLHnWLxiTQu7HtNqxTeWuYpYaLkd+96Pp40D+/2fP668Dd/e+Hp23dEFOt1QZmEkYGHp4FukBwODcbIfG/bXLKcn2ulOKB5INhsshgj+OsN53MTSdUO5VmmST5m9iJm5lpIQ3Q2V4t1A9HeSjo2+z0JyB3Fb5ldG44d05KY3MriEzbBYgOXyXNoFX/12yfstCII/O4vn3h87Lhcr4yL4+/+8JW+Gdjtcl+j1/ONn34441TDL68XkE0WkkeBcx5N4vX1zPIV1sVxOjTY+YqSjmWa2e8PSOF5+fyFEGAcV/y80knJN3/1EQx8+uULn2Pkw4cjp6eBKBtwAakil2lCiSxM153EdA1CRrrDQAwRvbgcE2LALgvexSJ0j9wuS64CCo7gBes00+0adtah9nucs/zyyyuH3YHDacB5i9KSpskg4OcfJw6j4/u+Q7UddlqQQvLNN0d+ii8IDySDWx1GK9q+YUAyTwvz6Oj3ILUmesfQaGbvGWdPJwUPxx7Ram7nG/1gUEYxzivBBzQO3WS7jKFviVpxO890/Y6mbdEETNdye5lxTmHXwLBrc8o5eQgSpWZ2gyHi0brh4ZhwIXIdLSjNdbY87BsOQ66CnFeHDYGQIEbH6mFxCUqE+Oe+/uwBjiqiQshhNrMNZSdPYXDgDTshqNE9/ePgWXbtorAdompbUv5IbUgpuJcS1xAl0r2UN/fHKQGlBMcKOmqwF2/KqP+x+kbW9JG4M1FbY8Y61nrmdHe/FYXJ2UTAqabiavAuAbikh6r3T2nXXYK42MZYd4gpxvw7eTeoEzEb6VRGJwfkPIeyMjelOq0OVJADbaaTSlXR9nO2eYTM4sQS2N+6OWe8dOewJDnXncf8VqwUNnPCjUmScpsHuYG9ctB0Z1VqRVrWV7EBO1HBWJ3bcnOiFHfw8Gbey42DktLyVf2OyGC0AMNc6Sa3+1o1XlQNjpQFEMmtdD03GJUbeK1zmeqSTMVeAJWvKXsLbNd1dYlL0Oxag0cTWPh//ae/Ic2J/+lvJv7j7xv+as7luck0zEsWpGqjcTawzkuuPAoh+7Z0HWnN7SMu15m+bWmlYA2Bpm1pekUUinVdmX0qZaiJcfHYJED3rNOCjg7Td7gQMVIy7AYa3yCD47DvmZaFIBS96ogiojpDipEQHEYKgpL4aWIweWeeRODweECIQPQekTyn04Hr6ytJRIJU4AWNb1AiIURplBkT2igIgVDsHNq2IYXMwgCkKCFKlnVGGcN5tTwe94whgTO0yqNEIkaPIHHYaX7/tOPf/r6l2zf89Nnyv/79lRAl62Q525X9rkUlh1aS01NHCJ7hoc0sjMh+NkKWteByFZAAVL/L2rrpFaKj3fXofgeiI/kl+ymlgPeSMF9p2gFp8nqSAuJyzQtGGcKy4sYRomS9WZAKlCAEmF3Eobgua9nUKYxMpBD545+eGRrBv//rb0kS/v5PX3n9euPlurJvW3bDQNs3/Php4k8/X5Cy5/myEjBIIZkXR9f07HRgaBKXy8jqPI/HgcMhi6r3vWG/U1xfz2gtmOcFHHz/+wO7b3uUEIzjypfnG63W+OD5+uWF65cXUAJnod+1tI0muQBypttpumKO1/QaqSV61+bnv51zh/tOE6UhxOxiPJ5ngpcZoI+OmAQP746E4EihYbWBdfWYZSHFiE3Zn2e/a/n+909cXkY+//TC++/e5+dVDDTAaW/wVhJ8pDvuuVxHOhc5nfYsR8M8zrRGYeeAbg2pdZgo0a2ibzXSNISQSFExzwuP/R4fsuVAf2iIs0WlhBwabqtFGlm0OgYlBcvqSVLw6fMrAoFWDUEK/Jp9hLrekEisq8PbQBKC2QWCAELit087dgeYbhPTZYYkWCZHEhqtNAaYVsvs/mVUxn/2AGfTJdQ4WtIU90BRd8aFHdjKoLe49qu/5yCR3R/VG4ZFlYCaRN0Jl8xE0XNUkkCkt7CpjKOcREiZG0NuOpM7sKn6lPz3N1VK5cdC5AqPFNO9V1VlGN5cbz6qKEAi3c9Rg3nK0KCCnrqnz+zInR3YmJNSHp//nsWvoupoSEUDK7e3iCQrvZTPERNChrIzzHqTVMYaq3RElNL7fAMIqXpKxzKfFdzJYo4TN+BXe5BLBDJWsFBYrc1rqLAb8e4hVCYu/2ebh7IWkswCX1HbJdzXRl0tSdQGo3cQKpLaWJwNPou3YFRu9327P2VtZA1XvpP1f3nRbKg2A3hZTBzL/N6ZxDqWSL7i+zF+pecqm35vHf+3v30mRoGPEU/i9OFb/vblyqeXMx/fa0JsaBtFcg5HS0q5kkgAbd8hmoZlXgrQDPS95hA8YXdgXSyNUSyT4/my8DoLhM4Bclwjt8URQkKq0uXZOaQ2oBTWZ2ZIK8N+L7HrTCsblIKn/sDXlxvBLnRdR1ClcWtIBBHRfUdgyTqTFInOoqTGKM3sVpILGB3ZHXa8Xm+0skEKx2oXWq2QUhFF3L4TxijctJJiQCsYuhxAvHcIsmA9pUhYVoZDR1gtXybHYyfYm0QrJd5Dt+952hl++16ze2z55cvKf/5fv2ADrGvgh7+98d/9H74FHxABmkYjU+Bw6hmO2dwvFzwVwbud83e225GUJq4ThBXZgOoGkhly48P1GdNmxiesC0I1aN0gtUQqjUiBkCQxLpimJ7oVe72QnCOlXD4uZICkOF9mrreAd/l7trqA9YlgPaLVWOv55uGAdQ57lfzppwuvryuHU8/uoSOqfK232RKDIghFShohJLfrglKSRnj2fS6j2PWaw6D55t0OQ0D5hcOpxc43mq6H5Pj4zZH5NgHgg8PFxDTOvD81NK0GckoqLI7gI7fk+PrpxtA17I77YsTV0Jie4C3jeSSESNf1qEaRhALRolD5uREDAsnu2GZgKQMpCZ6/XphWi7UBJXOD13VN2BWGXc9kLfYaeP9kaHqNuMn8XbituR2EVni78vFpz+vrWEraA92+x44L6zjx8Ljnl9vCPFpCVHQC+v0OtwZMmxi6XMbuVs/5dcLblsenE1pplhSYZ4tfHX3TFpZdsLqEBhrp2B8GGiNxEbSKKNWw2DU34dQKLQLrsmB0A17QDS2vv1wILmKUwi4LndGsc27H0uwahA0MSXGdLeO0MLQdp0Ei7dtN/X/7688e4FStSE0zpaIDSYhtZ1wDgiwVPtX75i50vQeIRKI22azBoQY/KrgQlVWoaYEimi2BP0eewibU95aHcKptzysgogQpscXbLXBV8LX9sO7wayv0VBklsaW7QjWOE3d2Ju+05AYgKNocBPdWFIIimBUbi1JPy4alsmYolV5MWxVUSdOJahQoAJlZmCr+3o5d7wcFfKRESkXfkxIx22pu92IzXExsqSMSuYKtgEJR2JRQwICkACtBYatqwKekse4R/94olQIwqIgy741FAYyifrYCmgJay1pL1WE5VXBzZ89kBUopbeAqvhFOv61mq7jnf7MeCocly9/eanbugLqAGiG370XlyO66oTxmqTXTOHO75WqnECJfrgsXl4gB/tPnhX/7c8v/+S/3kDyBhv1BE71nXALt0LHvWuZb7W0jsC4gRLb4H9eInQKrBS8aLtaSXGBxiTWAVIoQC/jUGoNASEVMgvN1RhjF6dDz0Las0qN11iKFJHl8OrGsC2sMtKbNKcTkiS6bvfVNi9ca6x3L7YoyLZGANprb5UrSHqk0x65lmVe8TnjdoCGX53qPUgq7rBijaPsWOy0koXAhIIRAqZwClTqLuQ9DiyDwXz6dede3fOwNSoJuW6bV867V/LvfHejayPN55f/+nz4ho2I3NCxT7sAt3IpqJG0jMb3G9B1t36IahW5N7mCuFUkaUpgRpsmaofWMVC1CGVLwJAH2+pWEpNmdICWWrxeUNiA8Tb8v2iyV9TZuwfQN+BU/TXkzJQXBWVTTEGMWBoeYNVx+dtwWz2QDznn61iCN4HTsUdpwXTyv14nX80KjDd9/POB8Yhw9fScY55UkJSEFtDFM40KrJFpGHgeFTBGRFP1jT6sSuybSdga/Jr5+mTBaQ8jH6pVA74tEIUq0hMdTz27fEqLHLSuChI+O6COPh5YPDztQ+RqXMeCWic8/3DBG0w7ZxyZGj4j5/iXT4O0KMRC8xzlPCIFpsoDk4WnP+28esYvlch4BRQyBth+YbhPOZe3POC2Il5HjoWd32PHTz6/sF8++b4ghsMaEWC3HQ49bA1YovLOoRnOZPO93hu9/9y2//OkZpSQyeaIb0SJgmoYYLUZ13KxFCJG1RymgG0Ozl9kI8HAg2BUhs7jZjpbhOHDYN7S9JHmHBroum//NI+w+7AlpwQZFuKyYNrJMM4ddj10c+0PuUn9oe5YYWdZIiuCDxLuIaTrSkrWglvzdker+1PrnvP7sAU66c/GlW3gOXluAKD9Lqb67phrKBJeUQYrxTXBjA02ipBjyz2XRmtTS3RLwivnLFohKACwkQA5uJe0kyExOSrVsud5oeTeuK+O9dwQv15ryue5tFdhoh1TeIOXWSzuXhFMo9xTy+Ms5K8iQFBZkU+JWfxVxj7KCrW1D2liHAq6KZoIa9CsREzPoqm67olJktUrpDYhiAzL5vammZraDVV4k58GFgFCAlix2/vf7wCay3XQtovB36X4f2dKMZQwF1IrS0TulN4RLuYdJVO5L3IFFuleBxaIDEvcbQk2tvQVAYltjohI6v2YS83BKv6s65rIu6gpOhdGjVNnVQyZRkGe9trf6pDtzpaRBsHK53ZinifE28enLK6tbaYTi53Pg//L/vjH0DcjIrg88PB3o9z1RR6RSoBW6a1i8wFrJ5RrxQnC5XbkukauX+KS4+oZkFCEEtJGk5EhR0ikICNYYCUISgsfohuPxgA0BhWDoNFq2zPOCNpJ5HNGmKyJjyTwvpeFrXifj5ZL9NroOIXOl1GJvCCno2obOtJlaDx6pQDcNzrsMaHxAaYmSKtv+N7kPkOkM/W6HtxYJrOsIKbNpSgnk0OF9YF4WJIreSJKIuBhRPvDu1PEXH3vawfD5ZeT/8b88I6Jm/9Dz+jwiQkK1ApFyWm5K2WBOqoRqNUJppFDops3VT8GCkLmRaFgQqs3pqZD/kGy2xO92xAD2esG0eT6kaRFNT3LjZiBqhg7CQnRxe376CM4LLueJZUn0fcs+GP70cuXz2bG6hEXgEgxKctx1+OB4viQYBePqaEzPX/7+HdMycblNPD488OUycZsc/f7ENFmu80Lwnk7BYdC8ni9oaXj/uGe3a1BxRYlI00qapqU1hmWxDKeeRkZ8FJlVTJHgs2VA10uEkYggQAmUadkZwzpOeJvX4O7UIwUMncQtlmV2rNeZ4+MR72788A+/ILXmeNzT7/PaTVEglcZ0A53WXG+feP068eMPF77//pF3H468e29w08rqPS5G2k7inAMfOQwD0UW8B6EUu/2O1y83DrtHZjeSlMEoSas1xJwuIklCSEyTZ7xMvPvuyPFpx+V1YV0d+32DdaCVBC/yg0NLeqM5PO2Yxolu1xGdYx5n9o8nbj6xk5rWGLQu7KTRBB8gCXZ9w7D3jBdLu28IIgKKxQbCmivYtJYsLtEPHW1nCDEQQsI6z7KmvF6NwceZpjF8eNxBUkzWcbtNxH8ZI+M/f4AjSjppC6Jb0KxB6E06ptD5lcnIWpsSMIpvQe2ZjSyVTgW8yA3ciMz+vN0Rb2mpqvepoaTyQgAxl2LXSh+478JrMBSCJKtsmU1JlKuk7pVKVG6gBDmRcuqBUqGUCtDIc6AKoIlFq3IfY+6SzsaQ5Ous76j9qQoTtIGCfJ5IqriygMgCeN5eHmxsw4YLiKT4hkkr4OY+DfcPb/ocwpsy+MKqhDK3oYrLa8sDUXBUBl4iFVE093uSq8TCtgYqCN7wXcV2idIkM19H7YSeuIMpUSbz7n5cRlnGQnnm3D16tquAVHme++3K/6nC9fs6yUwV2dJgY23esjds7xflnsWYNSVCZEHfvb1DvrAUwN5mvnx5Zlw8KcrckM97rovl5cfs/rrYgf/xPx6wUbBvWrQRXG8Bu0qU6bhOMyjD4j1JG86T5KcXi1dN0a4lGiUIAowyRJUZNYTh5iKNUCxrwAvNza4kGdh1HZ1WHPuGq13wJBrTs2q4XK9IY7K3opQbUxlCAqkxTUtKkXW1eOtzxZAQeCRNN2DdSAwRFSMpeExrkEphQ8B6T2sUKAjBITRE55FJMvQtKXkELT56nMtanOpdFEKkEdDqRNdqfvtxR7QL798PHN/3/PDzK//178+EoDgeupzedp7GCPbFYr9tBHZaGZqORjVZMJ4EyjTopoGNoZXl693j5wvRO6QEqQ2iO4GSxHXFXr4idYMyiqQaRKdJYQIC0bn88+AI61r2AIGUdN7li46AwIvI683y4/PKLxfHGnOj0nV2DG1LLyXztEL0IDxojU+gjeTL85UYPEIaxjF7tfTdMWs4QvYl6ruG9w87Eg5E4mm/QwtHZ0AlEFExnWckEZEkh0ET7RXR9WhlSN7hrKdRkq7Njr3LZJFEDv0us4tJYE4nvLOQPOvqkClg2hbfSIRXqJCYxhG7Wna7hut55Bo9ffeetumYbhPzdUEbje4MD6eBDx8f+Pz5KxHHj3/4RL9r2R86jJGExaJ1ZsmWeQXn6Poum19GOB57XibH62Xm8Ngxz5akDNIoonVoqRjnbEq5P/SMy8Kjbekaie8bVreSguXdY5u/0qvEDA1iXWja/FxPMaKlyOnOw8CyLKzLQupznyitFaZrcTHS9IbkVnTbE+yVw6nLZpvWE4QgysRltCQPD0fJGlw2SYyJpmnxyTOHxLwG9vuGKAUuNXy9Zb1mv5MIKdgfepj+tUz8n/TaSIyCKjZRLvc9bHoDCu5FzlWcKrf3I1NmPJLIOgwou1+xlRJDKk7Ab9x5BVtqqqa9asAsFE75yeaWsgVF+SYVUZkZWVNncUuUbe9LpTy0dIKom/stQOZ0WNqC5VaUvs2BABFz8CsECYLSCqCmqepbUwFhb7iFEtArlqwcDeJ+1VGkTaBdiYNYPltN7ar+pmp9ain0hghSEQ1vJ7rrZKCm0Qp5lyqAlXdjvViqoahgji1NlWf5zqhsYELIIuCs81iAbLnPKVVADKSIksXK/z7EkhZLGwNXAU/tJk5ZK9m1+o32ZwPj6dfzWldrEGzC5g2Ypft1lMUmoAhtqkFhIsaIkHJLoaYQ8M4zrwuibYgicltGPBohFD6Cj5HbCv/zzyvfnRr+3YXsIyOzGBGdENLktJQZmKzg5gOvL1cmCw5VbBIS0a/0bcNqEzIGtFFIbbAOhEuskyWicCnk1EVILNbSNh27XYMxR5afHEIqDscj07KSCzGyBiazdCqLiIWGlNOgAonRBuez0dhqA12T0yLX641GBWSKaBoEgtbkyhR0FkS64CH5XJnkIzGutI3ByFzOHtKCnabsw9WorOvQ8Lunhr/40KOlpesVUkj+9Gnm7/7ujFtzWXDXtcyXkf1gaFvF+0PLw0OH95b9Q8v+wWCMyI01lQDhScJAChuoTyIQlhvRLiijkHoAEmFe8pqJEd31yH4AocFZ/O2C7o6QPLLpM7hxa7Y5SJ7owLuI0D0vZ8sfPs386aeRyxz5uxfHy82hG01Knq6VNFpifcisdEi5TB/J1/OCOBri65zTHc5jVEIZjTIKEyyqUdxSRKTIMi7Z46ZLaJUwjc4Va0piTOLjxxMpeoxWSBGBhsbkBsfRK8zeQIw0RkL0TOczdow4F3l42qM7hekNw7EDJC9fXpgmi11eGXa7LM4lEWeP6hpiWHh4/8DlcuP19UK/27Hf77Dxyk8/XTgc9xgtabvEu8fst+SPMTcOtY7dfmB1Au8Du11DO3R8/nymSxqjDN2x45cvLxzeDyTnWZ0gJsG8+Kw/aw1GBQ77lmV1mKEhjAG7OPq+xbpIEIpoA2bXMVpLU4KfEQbdgXeB8ebp+9wKpWlz240GgVZZprDYgFkdjUnEvUE2hmlZs95sZ7hcJh76gVF6brfIZbJ88+5A08nc1LTVrJOnbRSvLyvTpBjaAS0gCYGSEZVg6HuSXzAicZkcl+vEv8Trzx7gbD4tqaQ2Cpio8XnTopTX5u9SSyxLIAIQ6I29qMzCln2pGhsqySCo1H92B64sQYniWz6qgoMyXHEHEjnAv3GwSW/37QWIiQyIYqmAqb4wojA61VlH1LmgaJCKXqeaCEokPoXNo+XNVRYw8YZJQG5A6m2FVy2AIuW+K5ByhQ+R6kScSpPFilOqW3RlXu4UR71mUTqP31mwen0VVL3lOeq0bh42Zd6q4HcTAxf0livSctowlvNXwEg5ZiZj8q70TgLmc6ryg3zfNwhWrq9SOHmuJKIE1nK+wpjd9VkVbr4REZPXaChVZQXFZkD25vOZx6qaKwr4ymms3OX7rZ9ORKhyXUXrE6JHylw1M80zl/PIuMzcxlsxN6wNZFUOhklmJsR0/F///sq7oeV/+GtJO+w5nHoWuyJVYHYwzZ4gWrTU7JrEad/y4eRYfOTlOoGUKKUgRKJQBOeyXobs97Io8CFgfeQ2WrRpmOYJET3ruweejnvOrxPXxSKk4ng4clsWLqW/lNYao0tvJSkwbYeKnqg0Ifgyl/keWp8Zm27XYdeFGCJ2nDh9+IBA4Nfs1RJCwhSzvJiyAaC3Fr8stN1AEtC1hlYOiBAZGkEvE49N5Dfv+6xZaQSvNpBuE8E6kJmB6dos7lUy0g6GVsHpccfpacenn9b8rJESoTPIV7ojRY+IEWGKg3FK4BaEt6jGILUiBoefLME7hGow/YAaelJ0TF9eECSa3T4/t6IHpwhR4OYbQjekkNtSTBZ+/nnmTz8v/MMvlj8+z3y5WlYHD0MHKbe2CSngrEX3LTZGtJBIY/h8zo0Xg7M0h4bF5Q7wmbGypDk/kxyK6+iQJdW3vpzxq+P7j6ds1KFB4ujahmQtpoG+VeCzJkc0EikF0eZtUnAR5zxNv+Ppmydul5npNvJyudG6BjFmUGW0RLcdO6EZ9g/E4BAk9sc9w+mAw+P6XE5v2iPjeWGaLdY5DoeO7t+0vJ5XPn8907ct/U7RtA1Da/jm45Fx9EzjDFqRjGF2ER0jp/2Amy1eCWRKPB5PXF9vtK1hus20jaLRAmcd2gjaVhGSYAkw3W4YKVlsou0Fp2OLugRwtUeiZPYJ6QIheXzw7MgC9xAS1ieSXNl1LcPTjmanaaxh/JOnVYE4NFyfZ/pTy/V8RWmZ90luRe1bDhIuZ8syr3TmxG6v0a0i+JQF5iHiXYQUkcZgWoOWgXcPhtvscbNj9+5AsAtIwRQAnvnnvv78AU4JmKGUiG/5nQoQNgUpvwI6tVqo/ivrJjbeZXMjrpW4W2oosTEwtfxY1KBWmYStbPiuZ6npivqeDMAqOwK1rDltaab72GrwSW/Ok68tB9ikKGXWd33Hdr4Ys39KFSinWqEkNgHvVoW16YHE/cwFpAlxB2VKig1oZRFv6XqeRNHqZJYrVgRZIVt1E67yGjI7lrvUhqKDgS21WOa8mjPGlEqX9Aos3oilyawbokCidIeqmw6msDwx1e7b9VySbNgo7pcvStKtrKWMO95Az1THQeYpRNp0NjXtVSvHNuFx2dWIN5+tiDmV8W3l5qkClAyWK3uYO4ZnuFPhcHojbhcpM0MpVgCbW0ikkg5xLjDeJn7+/JlPX1+xi+U2jczrijIdpIBUiofDR7797jd8/ukPfF4d/9N//sKPrzPtvuG3SeHWQNsEHo47umYhInEOpg6sC0jds8wLh/6RcRwJKSCcp2kU5rjjfLshAEXg9Zat6499n/U4EaSSjNPC3/zxR/7977/nd7/7Df/5v/4d4zwxLiugGNqexQXGaWaZX5HArs9dtGdrNzAZEAglS7pSsNqAUgrddAQVMELlmyYFMVhiNEitETFyaDsutwtaS4gKbyOrXTGdplc5RbfMGRTtBs3jTvLlYgkh4qzjcZcD6jR53OoYtOLx2JP8TH/UiBDoOsM3v90zjzduryOnd0faLpu/SWWAIuAHhMo54LQuCL+gtCRJhbutpOgyMEqB9nBAGIObJsZfnkkpcfz2PcIIkptBatxisdOUmZwksS4yXSNfzyv/8NPIj8+OH796Xs4RhebYa2bncN7nkmojaVqNMoIYwCXJ9etI8onBSNpOcB6vpCgz+xFyNaVdLaML/Py8oIAPjx3BRb49DXTvNKZJaBHpdw1xXbmNHiESWmbw3R00TZN1jE1nWPwKKXfXTo3Dx8B8vrEugdVnacr1JbNUUguawfD0/gmpA+fnM03X0HYKZGIer8h2QCnDNK24xXE47FBdrmpabguqVQw7aPsD3kekULyeJ16c5ONvTrTHBnEbiVLx488XDocDqwwka9FakEQkxgyQ3ZDTo+2uZb0tNKYt+ezcViGEyDD0vNozSeTO9tFnR23TNaxYpiWD4rBanIZ5WhFREPFgsrmgtbF4KcFqJ7p0YHWJ57Pj2GWjTu9WUoq0TYvDY+eVXdsiG4FQHcFP7DqDWxbwHarLz+UlwDoljrs9WqzZOkQomkYR8RhjOPQ7jHLoh5avzzf29wqVf9brzx7gxLLb3VJTMgezTb9StRhQUlKVsSl/SgCLJdDUQLixHDECZXctypHfiG+pjqKlhDcfrYYWUWP7PWDXcUJJN6RtGMXFppSRy43JSNT0FWydtus1C3I/HsoPCpW0sQFk23mA2oMqFaYhbaNlAwGZfagVXAX0lYguayFWBZF1ABvDcL8P9yr2Asje5g7rXwtjJSuoE/ENqKlgQ25vliIRUhZCyjcAqzJXorbe4D7+OvZUavlToYBizjchVWWY4gYe69ylt2nECkYrEyMqKKznj3eBMWKzsUoFdWemaXPq2UBSrPqnwnSF+r0v5/k1CApAJIXclLX68PxKB5TuHj/1vsgkCDFhrcc6y/PzM798/sTz+ZIFf2WNt0LRGMPTt9/y8eNvGKdbFkgGj7Oezz8t/C//s8FdRx6PDakzNAYOO0X0Fjk0rH3g9eyIMtEIg1tXTg8Nsm1YfcDNHtN17AbNzy9XJII1WKbFIZVDB5dt5RuDc47r9cZ//dNP/Mf/8G95PJ04X39BSoMNAecWlnlhmWZCSrS7jtlbLq8zWiu6vsuVQ8GTfBYcKyFzyoeYO3OXPmPOObrO0GgFPuT1W6rD9odHlnlCEFEyV/ol55g8RB9xpaHhGiKvk6TFspOeh1ZBFHx9vhFigOD58M0jT48N823FzpHdvuHDb46cvhsY/8sryuTngNntQUR02yKUIISIUaYsDkkKNq8FIZmfX7OouDcILTEPj7nT9ddX3DTSDT3NsUeYhrhOCN2zTAvzlwmzH7A2cr1dmBfJDz/e+Pnzwpdb4PnmWazM7gzKcJkm1hJc961GKUnftljnmFZPDAKNYNcqHh86EAEbodO5IiemLOK/rYHbkg0o+65lcYkUPH4fkCJhSDRacmwEx6cjPjgIWdskrCNIweTyMzVEQTsckRrcMrEuieefv9AfDnSDoRsGZmvZHSXTuDKuib/7w5XnLyu/+faEMRqBZPWJxUcSisY7OqMY9ifiYEkuolWiP+14ERLvI6djdtT++dOFebacHg98+Xzlj//wiXcf9hyPPd5bvvvuiWm0TGNAqha/WhCCNkT6JtF2GmtBCEV72HMdJ5TuuXy68pvvH5DBZufg1kAAKSLer3gXcDGb/1kpGY4tobibOx8IPveC0lIwjRYtBClEkBCDZ7otzJPl9WY5tzOPT23WtClF0+Xea0PXEZTLG1e38ptvdsyXFUVEitwM93aLXEaPjAmiom00Xy83mqPGIvBjLqvV0qGVwM4eozRha2b7z3v92QOcDSiI3B5BFBfYGqREKUW+W8HVNEA1pKOGjY2RoaScYmFCIplSzDE9g5ctxpdz/UpmXJiW2lE6FZBwFx9TOYU3TITYPFyolUnpTTUTb3UdGajdLf8zCwIVe4k3glKolxwruOFttc9d57OxHwXIbcLa8t56hRnXFL0KhQrZap7zeHMpfp2HgrVSZnYov0Pe2agNKKXtcstE1R/k9wiR6ao783XXrlSNzb3eKG5grt5TFfMupla6kQJvzflK4iePO6aytnLFWu5pVQBYqWaTstBRBaXGGMsakeWYktw/KBYQQmYK3jBq26J4ew8qTE+l4i0looTKi8W6XlC5y2yB5Ili2FhAUSyTH2LER89tmkkqG5Z5uxJD7vittOLh6T3ffvwtRkmW6cp4ec1loykiIxxayfn1zE8/OLADzkgMlvbDA0YnYEE1AvXQ8stPr3RDz7sPHTF61gRtavg8e35+vjF5sE6jlObb9y2/XB0uZPaImDBNjzcOFyzTPPK3P/7E+w8fORwdn75+5TYtLNOINobT4wMxkUGIVOyGlr5rofQKixG01AgSdllQMbd1SbK0vihMmxKCqErJcUqEUnLdtg1NlwFXjBKjDMlZove5oajOPavc6hk9DEfNftfx7tCwTGeSThy0ZlANv/1+j4oTqVXIGHn/oefjbw641YGLWcfStZASWhuUkdjbC0prkA/bmk0hq8r8tKCkQvcNarfLTNq0EFaLX2ZkZzD7PbJpSWElJbi9vJKkpn3cE2Lk/HXkh58WfvrieH6ZsQk+3QJfXleWNTL0HT5YUowMWnIaTO6plBK3ccp6kCTpG8mukeyGhpAi8zjlFhhScplWuq5lXBy32WG0Ztdo+gZaKXJFnfco3fN4ank6SXYmIkQAI5hs4NOnG0YLpBask8Xse6K1HI4d3a7FaIU2PR9+05DQTKMlysjDNx9JwfPuQ2SdJ/7y+wPrXACXzsaVwYHUCmcX1usEhz0xWpq2w4eEjR6UZLfv+PzDVyYfODwO/P733/L1MjLeLGiB0gOvr44QFadjw2nXIlNEpYTZ73n+cuH1JXs4CWFpOgMycVlXEIqoFMGv+Gh5eR0J1rLbdezblmleSc7jkwACPmVWPVhH2+aO5d5Hhr5hHC3Wgk+JlHyuAEsKJQ2663m5Wj5/ujG7yNAkGh1YlsgaEtPXkUNnshmn8/R9AxJG7zA6t+no+46v88oyO0RwgCImyRoTLub5WudIDB6tVfZD6iWmUyzOo8VbjeF/++t/BwCngJJUzZ9LOiVtfMjGWoDkLiuuepZcQaUQZSdbGJSUitGf2ABC5VNEYQK2ICN+zRpAugew8v6qzRAV7JTfpRKspbxrcd6WcYtyfRsOSPDmX8XvpezexV17hLjHzbqzryXWWTZSO6mTj1/FuXfMldMpooDCerxUNSU1NstSpVQF1NxL6yuYylRF0eiQWZk3OqFU7pMUCkTYgCG/Gv9dU5R1P2m7iXHzvHkzrwUmbCnBMu5Q56ysiFyJIzbAlwpIFrKYGtZj1esu4DgV1mhjsyhsjMygJmxXJrb5rVf6VrR8v2F3oJNxoyBs1gV3rdHb1GpmAMN2H7aifHHXoaVSzoyEZBPLNPHLl1+4jbdsBBcTTdvyl3/5H/jw9B1umfHrggCsXYHEvhEYGTnPgcttYdkLgteorge7YMcz/bDLazgEWqH47vsj1/ON6CK6UXz9dGWMmuuaeJksHslqHUq3BBdI3uVmmqrFlxJb5wLTNKOV5NPPn0miIUmBtwsqBA79HtVqXMhpNyUlfd8RgyMmD74wiSnmapCYUMbk7xcJoQr4RBBSIASL0gYRi61CSPgUSASMlgjhaZpEsiutNgQFOkbsbUJog1Q5IaZi5KE3OVUrJIddz0En/u1fvqfRC+uUCD6yP/S8+/Y9um85//AZqRT704CQkbDOtMMJt46QAtI0+cklEikFhDS465UUA+1pQHS5VN2NN5JdEVKi2ob2cERqSQoL6+VK8BGSxjvP1y8Xlhler4G/+8OZhGEYBn76fOOX5xVi4v2hydVxIbBvBUOj0VKyOMu0BlaXNw5DA62SDK3CO0+wNnsFac118RijQQuCh9Nhj/COXSvotMC7wGE3sNtpeh2RwjGNntg19K3ETSOLy0FdKU3ygU4LFIGrd1wuiX4wOAs//XShMZrDYHLptNIs5wvt0CG1ZOh3yBQ4npqy2fM4t2InT0AjYu5i/vLlRje0XK+vmLYnSbjdzrx/OvLu/Q63OtZxpjso3h1a3j8NnMeOv/vb51wh9hoR0fMowbSGz18czFfevT9wu1z4/OWVx3cnmtXSdw3H08AyTuxOO8brQqN7lnVFJUG0gf6ggYhdLc6X1GBMzKOlbzqU1DRtj7WB3f7A89cv7AIYk/tOzZcbp33HMs14F9AokhP89qHh9Nhlgb9PSDTJZ+ft220lRkFnE5EsQB8OO2SjiUqxawxqn9A2MS2e67TgvNw29FJAsKCMYXIOji1rkqAkx4fKRv7zXv87ADi1qqUAmsLYZBYhR71YUySVySifzRmUe40QMbvoZhJG3BmBjaRI+JRFtBseqWmaWNJiKeRyRiGyI2/KHJAUd+bgTei+MxCxpEikuOtpZK1+KoOAbLa1Bc/8/0HEyk0hkRu4qldWU1P37EcFY4UtqL2cyrVV8JLI+Y4kaquAdAdzVdRbmjuWPA6b9005iEwCtZXDV0HvnfVKiRyAq6uxlIg31NOmcynM1Z0Ju7M/WxqqsHFS1JReFSWX3Joo4LWCo6JrCNV0rwIMQIQqRH7LUlEAKRn8VJBWNVZlnWVdTP5nLU8XFUxW5ihmb4lUmbpyvZW5ifW6qz6n3CuZCoNXl10qrGIdRwGqsYIrMnsjhcI0De+/+cCw36ET/IN1PL77lu9++9fs+gNunrLNu5AYY3DrUrQ9ma2bQi45VdETZotsNASFvU7ExdKfHkEq7DKShEEkkf07XldGb/h0dtyWiBWGOWadzrx6VmfZG0gmEYRkTgLnHfPtlWWxKKmYvUcj+Obbj3x4PPFyGXHFaC6FSF86REMgpYi3AWRmZ6ourTJhQgm0aQgxZiM4KfCNwStB12hETDlNFWNmcYLAhdpdOVcMRTxESyM1sm+wq6MzDafW8LDXzKvFTjOdAJ0cf/H7dxyGgF2zSZxpBB+/PdE+tNh5wd0Woo0oo3GrZf+wJwnB/LrS9ArTQgorQimiXYgxEOxEu9+RUsKNC2GxhHFFdwazG4oBI7jFs96uKK2Q3YBfLPM4sq6eH75Yfvzhhm46pgh/96cXfnqx9G2PIrD60gldaRQ5zTc5z3nKQGDfavaNZN8Zmkbx5brgfeDYaExncFHglGYK4C8WBKi00GlJa1R2hI4OHWGvOw5Dj5tXpNFMbuV2GQnOM/QtD48HQvK5FF6AnRf2+wFrLW7NzSNPx5Z1zWJjIXJn7qQ1622mPw6EEGgUSBFAtcQAyS/ZQDHmAN4dFPM4E2bH4TgwW1+ebapUULU8Pe6I1nL7cmZ3GjBC87Dr+fd/9YGvrxNfvoxcxgB6RSnBYa/58jLx/OmFb7478vo68vp8put3vL5OnE4DjWoghgx2lsjuceDzn3JLijU4TKOwTnO7zAyuYf90xHSBZfW8Nw3aCF4vE+lscVFweZ3p2nwfkk98/XLl+NQVpYXku292HIeG3d6gd4bb1SFlAO0JCUyjWK629OOyWNGyWo+p7ZFUIkSL1pk66JWi1QYtE7u9YnoJHAaDCwEjFabtuYwWJQz2zQb2n/P6swc4uRS5uHtUFuINO0ASKPEm6IvKsuRXijUtcGd7MutSfp8qb5OZgJyWifcAR2Yltt0/bKzLBozemswlkdmTEqDyj2UumxZACDVOIio7U/w+EFmHUkukN8v+yB2UbEGZAgDuAZK3wbHSByWAxgLqKnOTX6ImqgqDI+/HL0BQiNJ8UFB2RJXdqGXxRbsr7ozR1vxSyCIYEfefISpSJApRm4dvzBmkbXx5bosgtwK0AqIqI5JThmyMTCIWhqRee654qqm6O1tS2ShA5SsJdU1VbU6hV2KZx82RWGRWMKcN06aXiiltyyCDHp8/X+5nnYLcbKHctzK2WNZbEAkR7yX4la2pqUkobStqQEcSQyxSIUEKOe35m+//De8+/jVS7XBuZZlvxOhQTdYeXC5f8OsNnXKK5+wErcwM1romwhyYO0e/CKAFFOPLGTnsSLLH+VwV9cuXmV+ujiVpvGqZFsfiJoTKrrwyJqJ3OBRucvgk8d6zLAtKJIbGYLRGqQGtFTuT6J4OLN6hTEB5hXcOUsI7i7czSJOtHMiePqvLGplWqVy6qtWWNu36lugC3nrmCFpKGp39Qbwt1ZEiU/12rWJXATGnNr3LLRu6TqPjzEN/BCTX28TTsaHrIn/1mweG3hN8IKwrQyM5nAb6h9wVfL3dMFrS7BVx8VgXiCkxvrySnEObAal2eW0KiV9WdPJ0hx2yyS67yQfwnvY45I7jWiN0g51XlsuINg1JRux0xnuN1B0vrxPXrw4jGuYl8MevE84rjkPLdVzLdy/Stg1Ca66T5bqurD4bbp66lmOvOZaU1Mt1YVod+1az6zusjywhMgeBd5HOKA6tRIrEvjN0KtF0DUct+e7jnt0huz8zNES35EeQz/5hznoShiRj0V1F8A5jFI2RnM8zyjT0w4AIE7JtEF3LOC48PB1puxYhPe1hjxTZiTf6GaU0um0J80o/dISkmMaFpmtxEXa7nv0RzucbaU2IpuPl641gPR/en9gd81pYF0+MM/3uyOODJHkYbyvPzzeUEBwOA7/7zRFrPcEFnt7vuVwm7LrifOSnX1757bdPxGTZNZrTqScmyePHE+PryPOniYdDT9t2jGLCOkuKKZtKakGMnnbfcgB++MMrnTF454gmoaJi/3jg5dOFZvI0RhK1RiYY+obdriEFR7/LuirVaXyKXM4zQ2NYY+D5FliXkYdBcRgE1s5cR0twjm5oUa0iqcR0Xfju/RGE4vTQIzW8Xkb6nWG2K0ZGDsc99vX6/y2s/5Nff/YAJ5VmcXBnc2pAfGvvVj1B7tBGbJvzbQddAlaBB1uaJYlcfZPPlwFJDn4FCMmSgikAKWwAgi0g1iCWf/iPg3AdbfpV+ioH2zo2uY0v44u76ofKZpSS9crabDNStR81aL5Jf6aC7qpHTwVnGXSo/IDfAM6dwYmFralzXvFSTf3I+40oxUk1lXaHl6JOKJWFqVomWT2LkTL+imG7390cobaGptsAQgFAYpuXzEtRND8CTzHLq2N8C1zq2cSdIxMxUPttBe7vj1QaLBYy7h8VgFexeNp4xvL2VIB2+Vll2Co9td2bUj2V3pa1C5JQhBS3IF6F4fX3EYGIcktPaa3w3rNaj/Ma0bzLO9gwMV2f8W6l3+9o+z0+RubpxvPzz7nTNBEfEg2So84CUe9NFp6KhHceLQU+OKTKDqwRweIEr2PMfl6qZRotq70hpGJoW6SU+BSZg0drQwjZvifMmVFpjAIjMVJjlMIYA1Jwvt7ohwNGRM7TGaEMRpvsgaM0spZSy5LiC5m9UloDKTcJdTIzqjGxxoASEqQudGgs9xG8c6QYccGjtc6Mqrco1WTmISVECBit6FtDIzs+X658e+w57lpaEfiLbx8wYkGSGY7gJF3fIVuF0Jp1mlmmla7TCAGtVMxfRmRcIYx4m1DssxOx7hBNh+6upHkCIsGtBOvR7Q7RpnxfTN4MuXVhHa80u4GUEnZyzHNknh2Xy8r1EnAxl+y+nB1K9ggZuV1nTHEIF0JBSLyuC7OLzDZvqE77ltPecGg13jsWF7hOC/vWsOsUk5vxgWy8KCVJeFqTA7FUgkbAu0Fz2HXshwPzPCGJvP9w5PVywzqY5hWs5/HpyLxYmCbMXhF94uk4EKNiuWb3aBElfo3ovWT34YhfV+LiQBiev5wh5cC+fxQ0nWZxnuvnK4/vTgynI6bf4cYZJSKI3AJk6DvcOiOTpDEda7RgHfv9QEyBy2XCGEnTyJzajYZ1PSOk5MOHPaennp/+9IXz2fL1dWRZLd9+3CNMxKfA/rTj65eRw7FjHBe+fDnz9DRgnUcngTDZgkN0HW5ZeDmfOZ2ODIcdz5+u+E9nHt/vmeeVy2XmQeX+eEnlfoDBB7q+w0XL7ASv00rXKbTqwDuGVnKZIkIoYixeOcASYbnl1hbq0OF8xC2ROEf0Q49PkV4rlAItGhYnOF8dIYEisju2zLeRtjGshay2JFSIRBdxIbG6fxkr4z9/gFP+xLJzFxtIkZtoOLcNKFAgCZAlBRA3pcIbnUd+SNSSX0R54KXsqaLegKZNrJvugSoPavNHJlbwUQcr8o5wS5uw4agtHZXjs6jbd8T21gI8ygjC9qMCkGqArVqR8u4U63veVCdRNEeCjWm6C43fMCriPv4kcj+vmqraSKDKpFSRcCpmfxW2bWDoDUuzwZxSxVTvFTWwb+izaHzukyiS3MBRBQB3NqqMscKHlI+3tfFImSEK5fxiG04GCZE7M5PnIrun8qbfmIDcTZ0KGe9XE0kgUynXFvlzBStnjU5l0wrTs9X7vUn7bXeoAp5ioZ/YUnaU0nlJTQuKTWy/gV+pCiYWCN1C7FiXxHy9MY+vODujtOT9N99i2p7r+YV5mfAJbJJYIUnBA4k1Rg6DYfQrz/PKu0XwEBVujRgiotF4n/P4VmiWYJiWxG20TD4hokQJsHbBy46UNEJqfJJbyX7fNOiUWJ1HtgYhBSImNAn8ws06hGkZ+gPvHh44LzmFlrzP6Sjd0OgGqbLnivc+OyenyLisLNOMKkA1yrxpaVTW5Ng1W9a3rcDohmgtrczmgy5YkhBo2ZCSJiyert+T3My8TKSgcMtKZwz7Vubu6qbltx9bjj0YFF2nsfPCNPnt+3p4NExfb4SUPUWUVkzzQqslrYFgJV6A6kx+kqcA0SHbjmgl0fschLREanIftygBg5tGQvD0w4EkFdNt4vqyEKXmNi18eZ6YnWB0jn/4PPPpxROlyjv4FJnXFaEaQoSQPIsLLD6xa1uOQ0/CM60L0UtWH7E+8mE/cBw0KQZcSCilieRGje92HTLlMvnff3di30IMlmVZ8MDpaBhOA7/8ckEAyxrxq0RJw/WaBbjjbUaNgsPQI7rA0CsO/QGjEtIYpnHl+esXwjM8Hnd0rYa4kmTLukC3G3A2Ev2ClonjsSF4z/l1ZLGJpmlARA77nuATy3hDSENwCWUU1gvmmGh9pO8GglBM1xvHQSMblftXBXCjLfep4eO3R7ph4fpisWvgl08Xnk4t+8dHnFt5emy5XC2nh555nLDWMc0Lw76nidC3HevtTNdIFC2rtXTDwO7YcR1X5Ncrjx8O3C4r02SJglxFFbLPlHMQUmSdAiIJtJR0fWYOo5D48xXPjqX04llFYF7zn1YrtMnGj58vM3safHSEaeX00KKThFZzfbnRaoPC8+GbI/M64X2EQeJWizYau0aUha7LDsfxX6uo/qmvrHVJBSDUhppCFEmxLP4sb/QhtaQXUaQQ3IP/XVYKtT+RzPmEDezkTxShq6isSL5hUtz1EzlQx8L41M8VBkVmJmjbmJf38ebcUN1o3zA5JVjfr56SlknFB+YurKUCFVGO97YBaARBZmg2dkmoDX7Am1TTnRAp4u3KDlXQmOdhM1x8c7oMBytLlAFI5G7MV+cbKrNR/i3qFOT35RL0ck1begxQ+drvdfRv2KpNv3MHiBWMlancxpDPH+/ATt5/l9eGfAOCKaxK0QjJ6q1TzhfLp9K92ej9GinAhnJfffYBqszdGwC6LY0K70T61fXd9TYVlL71TyqflRqEYbqsjJeRZVqwy0SwC7vjA6f3H3FuZb684ucb1+uFeV0ZX78iYrUWTJxt4u9fLN8PgjUkrlNgunpMLwiyYkRBxLCGxOI91oIBWrJQV2qDQzPb7KSM0CAVpm0xpFxqLiO6aCSEEKwhz48rLNi6rHw6f+Xx6QkjBNPqkWStidYNUhlSqKnQvGZEiDRCYIYdCJUFxd4RUu7WxubqnX8+i5jTPSKL/xMwrwudanJ/HbcSvKdpW/q0w88LRmXTQu8dqxXse8m371t6A40eGK9XxttIRKDWlcf375iuM9YJ8EX0LhKovIWKq6NpJOMYUaZDyQahDURfvtMZdMeQ0G2bq89SNlK0y5WYCtMXYbmNfP06c3v1OG+53FZer4HzGPjjl4lxzOng2QWS8yiRSEqy+IgNWZwNAtMohAiMs6drDVIILrNnmgPfPOx5/+7AbbrhXUBpg0Igk+dgEu/3GtN0HDqNnUdGr2g1PJx27B56BInXl2vuXB4FySf2fYfuYN9J8I7vHg7oRqNEQmpFCDl4z7cJ0zSoznDoDAJNco7rNDMcdtxenlkWSVgTQkPbSXb7lkY0mFYhk8OrgF/mvNYcSK3p+pZldCQpMFrwtOu5IrhdZ5bnCw/HPUIpzuNCn1qUbpBGk2xivCwEGUp1riSKhDYN0XtuU+Lr+Zn90dC3hn3fZQuMvsUvFi0lfg0EG7K30sf3SAJunlhcJPjAxw8nnD/jkmBZHIeHHdP1il88MkHTtiTgOk4c+g4tPKddx/7Q58KCTpGUyWXlIbDMluBhXSRKS2YbaAeNSYnzkrjeHN2Qiwjev9vhSQQlCavj4bjLgvLg6bqWZRzp+gZIOJs7qpME+6GhGTTPLxeU+1eA80985d1+9f6ozRIhuwQLcmPGkgEpJaCFAanMQ9qSOQiq66kom3ixpZPq32sJMikHMyklUcRNt7HRRSW1EDdfm7Jj3wS6lfmAKgoQVAlKBUm5l9Db1FEFa5tzMmyC6jIjG8OSNQQCKXPVVxWERJVKV/B0Z18oKR/ydVdWLMOzImItk1udlTemqNBJsSCPLHyVWym73EBUBpxvszFZMBwLSL2XJVUAhUgFb4gCJMWdNYuFramIQXDvJF7vQfXy2UrKK3tTeLbKnv2qEdWvwUJtr5AZpVRci0tCMN6dmDMGqfqsRKz+O+Xaqzt2fDPnqbCDeWIjqgCet1xX1VvV5SXLNW9gsYC+uhYSIESD90UoOM2EcSTM2SPm8ff/BqEN0/VKsCvLdKNXAbfMfH35wjie0SnSCugUEOGywl5GTjoShsTtKjg0WSQrgiYJCDGnF90qUbKhHRrwBoJgiaVTdAholdAStBFIWXQBMtv260GgVfbNGY3BJkMIit2gaWLEh0AMgd9+9y1/+PEXQGJMg2za7LDrPcE5Usxl3kGk7HcUBatzBCJKQoO82xa4hAop993xOUioRqFEohECKxKLW9kPPUY2OSD53G3cyI7gAh7Pu07x3//+yF//tqPrJCkFFmdxIWG6HTEGDqcdu8eBL798RRoD60p0giQVt/MrKgRk06NMQ3yZSAoQHqLL1topkDvBNpAmhFEk4QnRg2xISZBiDljj+cL1vHC9RsbJc10Cl6vjNsMPn1d+uCSeJ09AEENi3xqSFCzO4xJI1eBDxDqHxKE6w35o8DF3br/OllPXsusEMTiuo0Uk2BvJvjW8O7YMXWailtUyTwv7RmRRct/gI8zXhdWuROsQCj5/Xvjmcc/7Dz1+GXncQbffgdSsNrdfEFIQvUOJRNu1jOcrzapQRiI7wXybWVfoTOD733/gelshSaz1kGBdLEvwmFXSHxu01CwyMa8rYY20TUQbh9ACicKvDtUYjvuOx2N2qr68WmSUpAh29bRRsDtqhv6BxTm+fLqghEZr+PC043xdmOeAnxOX20yIBzgldkOLaTRKRSxNrtCyDgXYziJvE08fH7Gm5/bplXkNvP9w4sM3J54/j4iowTqe3h9ZppXJj3lNS0krFY2OXKLDNAaZEuu0ZF2XFiijEDHRtR2LgOvF0rWSoe/YDYbDcWByI/+n35+QSnHcN3SnA7OzKLkiG0GQEhUDCM3iBEIalDE4GxgXiQqJflBIpRBo1ttE07T8S7z+7AFO9ayoAWT7ec0F1HhVg195YyEdCpMQ4I2YFWqgF/cgvHWZrqW48q79Kbv5vCMP5QOC2ugyC06rs0xBMaVGq6a/chAsWo7in5Kvr8QtKciF8GlLXWxdrN+wEjUQC0rKaut+Ke/pGDKIy+RVLQfLcCJW1oiUz7ZFefErMCipXizinlMph699pzZQktJWol4vqjb4rExOTvcVw8JKcUUKsHorzi0Ar9zeWMvOKQxP0UVVd+koS5f5tyB3Y2ru4CPjn8LgZQvhjSGpC6c60GyXXNiUuz6mpK1k0cFs6aKyPkpLhNofvmSsctVORohljVVYcwfe+Rqrr1I2eENUEXheb6ninKSQusM7xfRyY7ncWJcRpOPdt+9RhxPzbLm8fCGGbEAXnGVdZ04Kviq1ie+FSHQqa28SgiWB84nbGnjqPdMEZhBEJYlK4daV0Xs8DciEFAYpJFoqhA90MtH2EiUEWgq0JO/apSeZrAcIIRCIBA/Ww2QdLsXcJ8k7tJJczxd+97vf8bS74oMnljLv3Hw3d5VOMRC9I3pfWmFIdCPQNGipSCESo4cYcsNNoXHeI1WutEpCYJ0nRLDLyiosSQr6RtOWFHKKieg9Q6P53dOO//hXex6PBmcdtzGnUWKKIBVKKOIcOb174McfPuOWRCNmTvuWJD3r4ogud7tWjQKVv+/ROqABlx2cU/TIxiCIiNggVZvXlMwbqWAn1sWxrvD8aeT6Ypm84LZGLqPl8xj5mx8nfjg7vhYjts4oHrqGFOB1XplCQqgG67MWo9Nw6Fv6RuGtRyjFOHv6xjC0EkVEE3gYDB8e97Qq+9WEGPnlZUIIwa43vHvocgsOb/FXz8vlSt90SJ94ODY45/nm3Z4PH3e0jefhuCMGl584KbFeJ4yC4bRn3wui96zTitzljWbbG5p9x+PDgA+Jl+czP/z9hXUGFwVNr+malhASUid8cDx4QdcppvMFqTR927MsHr/mzakyBmMM0gcSkdu8Io2h6wxGK0JUmQWdLF2T+101QXI8DsSQG3umAEpE+iG3//ju4wO368x4BbcGhrah6yTSRIbdnvNlxNvA5bxw6hrG88TwuGO/6xmV5+U2cyzmgseHHcHe6DrDahNejDTkJq1agm4bdkPCLR5PZi2VlhAsPnhu5xt63/F69TyfLb99t+fx/ZALAJDsdyY3oJUC2TS8XGaizz5CjTGsLqCUZF0CuEgUict5YnfoIXm6wWCXFYKnFy3DbmBa/lWD80961aaNSeYAqYRA1t23+EepkG2T+6biaUt3iHs1DtyNYKnalhIEucfzTTNTApbMMeiNTuLNh/KBtnRIZTAqG1ArlGqZu3jDpZRtKFLmKF9N9DZmoAw4kwViK1t+Wy1WR35nBmpKqf627voLyEtVCF0/ni/mns5K22drUfLWkqIE8Shidhyuat4q1K5NrUQuy0/lerYqqXpRMW5MTEr3aiREZpAqmKkOPL9irsrnsg6qvlfkEvRUU5H1JTbQdneTgQ1VpdwrijfH2TyEqFVMopj8iVpkt41dZsR1v64C1KrmaGPFyq89b8BVRWUkNjPCuh5FFTrnh79EIoRENQfmOXJ5fsWNI/N8Q5mGD9//NSl6bi+fidHx0EnW1fP1euF2eeU6vhJFxC4TWuaZEEqAFDQqP7hCEtxiYrSR1cUMzpLGBUlwHlsAuixWzkIZlBZgA4nErtW5d5TMdwYRiVITU8Qnkyt0RG7T2faSVgjW6JFSMa8rya4EbVBKcf76yjcfn3j+/IWEZPGw+szARCEQQmOMRuk83650nQ4xErwrDJsnpYi1gRgTQzcgpEI3Cu9t1vKkSFQZUa/WFwotcWpbWGc+PO15t9f8xbc7lI7MaySGyNAbbMjAbF4jy83y7TcnbtPM5fOCDIHTt4eykzas4w0fPF3bkwIQLEYlvA2k5DPUDZ7kZwSa4Jfs5RNjBnWlStLbxPXFcZ0cX78uXGe4jJ5p9fxyi/w/f5g4j4FA3qQpKejL9V1mzxhgTYLoAzLCYCTHvjTWDB7vEi5FUoyces2plxz3O4wW7IXkeps5F9dorTVJJjoDj41gMJKm6xmnmc8/vmK0pN9LmkHRdg3rmJ2zG+lRWjHGhJ8EnU8cToqnbx9Ybre8CUoBKSUKOJx2oBTKtKhGo5TChBn51DP02RDv+WVENYboI/M4Mi8O0zZM8ytD19IPOc03TzNfLxa/ZJM60/fEtGCkoDWKrjUIJMs04kyDVBHZaEY78tOXrzz5Pbtjj2nyZkk2DdfLyuosQhpM0+BdoG01IXoaPeCCxayG4dCg2oYkFOeXG956vMjl+no2tJ1hsZ7r5YJRgq5VnF9f2R801ofSpLZBJYELOTgqcbeomJfAvm9x8wJK58ad84qIiWVasjg5RIxs8W5lmhaiS+hG48ktUNxo6TrFsi5ovScpydfrSi8NUSW8ExATt3FmMIkULEML+1OXPZJSwq5v+fH/9tefPcC573UFMuYH/FYujtgCzF0DkwN9TTGUhEfeFZfdstyifmE+KiioaZB0Z3JqcKwBNf9IbOfYmkBugaomfAoXU9IW9/HeaadtCRQBGHk0mT0RvyKsSpVPCaRkNqKmaARZp3I39it/KtCrB0q/Bmf1M7KyJm8gU4h3IJRZn5LaExX4pXKdVZSdzdNkYdYEBehUjVAFl1vqq445g8AqhK6gpk5/IhFI2328K6LLnKf7nd/Ymvo2Kd7ossiMW9xu4ualkwNIZZ0KyKlmO6VLd9UebWB5m7Myy+kOuOp8VhB5H3sZZ3qj2Uk53SeF3K6ngsU3+CuvDKmR+ogLHa9f/ogdb7h1wex2fPztX2DnhevLJ5xbSUSSTjRxpXEjMjp8hMnanHqpQvKY8C4xiESnYYiBLgkOGoyJrCFwtRLWiHcB02tM1yKNzD3SdCAIiRWBzkBjEl2fS9cjioDOaTalSFEQw4puO0IEoxRCS9pOZ2futCc4x1oektP4wod3v2duB16uE2uo8xyINle+JSGpHetDCCQBusslsiImpGhYrMWHgBABayeUVnTtbjNUiil/LvpIih5Fbo741O7odxqtErudZrGO223FOcfQGK5q4XRqkdHx9Xmm6zpoDZ9++IqdVw7HAVQWize7gfTlkl2JmwaURuAwTYNz2ZwPUYCv6En+hlRZ0IsQpBARQhNCYBoDwQvW0fNytqzCMPnI51vgH744ZptFUyIkOpXBgPWR2Ttmn1hjtjgwSnBoFTsjMErgQ2C1Hq0yqGgazaFTzElibzPvhobDYFiD5vN5Zj+0eO9oCByaFqM0qxf8+A9fGG8T0UXePZ24jpFlXenNwve/OdA0BufBWE/fpJyJSxE/zZhdx36fG356u2JXj2lbAgrRtFgfWF8mhHcIAtIYxtkTUXz3uw94F7jcPKenD0it+fzpShCpNPzVLD4LbJ2PuJSYFoe7rmiZ2SWRBEOveTj1DDuDdRYZJPtGsPvwxDKt3G4rIXl0q7mc59wuJCb6LpvuNZ3Erplh+3qZ8THyzbs9LjhuV0vjLEk22JAYZ5vdh02DWwJNqzASXALr8/rteomdHFIltBZIlVBREtAElRuZ9q3GrZEQBMpIvF0hSLpW42aLlobTcUcSMyk4iF0xx/SEEGlFw8vrxOX5wrfv95wODYvPDsbLZaRB0g6K19cRN6+8e38kRs/sAn3X8XBsCSrxcrWkFYbubmz7z3n92QOcVAn/8pCvgCanSmr9yZv0BBT326xUqGmPDVyIrN2hpBUKE/0GhNzPmwNZ1gDVuIMsFVeVrSCniTJIqmBIbmxF/nykmuxVr5ooQgEsJWBuzsAZeNQgmdmrCiCySJfCzFTJctwCZ6kU2rpdltC+YZq7kJlUzAM3uuqeNKkAqQpjM+6rTAmFjaqGerUp5F38nHcTBQSVw21ARFRGo96sLEuu7tEbmN2glqA2bpB1HaQyswVAKSHvQlxZaZWyXioIkvmhHzZkVC47RUgxC6ArkBKU9VPSi2+opdoyg3TX+mzjK/dmA0pADNVpWFJ7k6V/BKwrLK8MY/XxSUVzJhAgNcLsWcaEWy7MlxdSiOwenji8e4+bR6avXwnOg1CQBLfbyDKeWa4Tk7Ws01hYUJmdcIk0UmKIdAgeu8Tvd4qTBmNU1k8EgbAgY8qCXJ+QMdE2EtVIklbY8gWVStG2CiEF45xYfUAojZaZSbFLIEVw84RoWpTuEM4R5hvGKJSWWLIxoPeRYAOffvnCw2HHl9cX/OrzPJfyeB9jMdCEmPL7I9mYUpZ1tlqLXS0CaJu26ATA+UirNciIEoGEIxBY7YoWcNz1jKvl2GiSi5xfHV+DpTMCjeNh3yEjXMecJut2LU/vH3h+vuDWBEGxS5L5tnD87RFkyHNE6eZeLBpUK3HLQnA2s2Eqp2xj8AjZ4m9nRFjxwRFVwzwFvnxZUdpwHiMudHydPJ+ukT+8Bv7+2ZKSxMisv/AJZpfTdy7m9d82Kj/DYkAjSFGyhMRkHVKClJFdo3loJYe+YUXhQuR8W3ApYhPgQ+7Svm/5zeOAEYHzeONynfHOo4Rkd+gyE+QdnUj8m9+eeP+hpWk14CAGpIhZmyV01uBMDqUCKdrcMFVqQrSEIInLyhoFbdvhCUipUcPAN48SJRV2nBBi5f3HnnGC820h4Qmzx62ex11DYzQigGkToTVcZ4tQiuADUkvGq+U2W/70fOV0GGh1wghJeCdoGsduMPTvBsbrhIyB42HH6+sFHyQxKlAGax2NEQxDT9cabpPnjz/e+PjUoYSnGXqG3vCd2fMjkZ9+OfNuPfDxm1NugNl1fH2dufxw5jg0iH7P6izhEokpYYIrrTUk05Tomh4hIl0riT4i0CTVEWyi3xvGCXzy+DijDFxvNy7n/GwzXYNXgen6yucvC62QNLuGyxqwS0AkS28kw65nWizJC/a7FqUFfskCeK0lq/NM1xV8QCuT28n8C7z+7AFOZjR+zXpUdqPu+sNWDp2BQBKJJFOh9SsyyS8h5Jv3VjaixsQCUNK92qfGy+18soiI37JIG/ORd/5VK5JiFqkSKwORqeb4qxHlY2y7/XRnk8QGMqo+JKdgNvFxCZgVhNTmkaRYGmeWoC3EG5AmNjHxJiAWtQy/hPiN8alz90ZcvcHAIsqGAqjyh4Io+qbSmVOIO2CDvKt+QzHVgZe/iq0FR8U/m/6pgFABW3pHFoAQBUXEWyrpBG/uSdUq3cXbudQ839AYBeGt+fGGoCqYrP5IESk3qXCZp5pWy/MpCxOV04xlXcmsndHbTIp6ANhWRWSD4TUFR1VpJYQ06ObAy8vIOq5E70kJHj5+pO13+PGGna8Et2zHCUTWZWK5XVi843Z7xa4jsjFIkdBKsNcaFzwhJC5JckyJnU70rSS5iFsFjkCUea6NknRdg9KCRkb6XiAbiUsS5wVSG9CKdbF0BoYhG/+FJPFRMAwdh6bHRVh94jw7hPccd3pbbmvw+JDTKzYmruPE06FjJz0uuVxtJSRC5l2zlBl02rX0HAsxa1qkQEgwWoE0rNZnTxyXAVqjFUELpFawZsCppCGFiF0s9C1CwNebZ28kUjj2vaJrFXF1BOfxQjFeLY0RPL0/MNmVy2XFrwERPPtB8PHdCSXBzZbpOuN8NiH0NuCtAw+y06QU8ibCJ1K0+XmkNLI1eL+SoiIFOF88z68LZtB8eYnc5sQPv4z8eLP8fAs0qhzfZcPClCKBXNKdN3+eebE0MrFrJTq3BuO6OIyUaKCVhkOjaBrB8zjn+ogQUX2Hv1lkCvz+mwMmJbpG0qjA5TqxLpbWKITIlgBN3zGNI7t9y8engcP7PpsRuoCzgX2vUbphHkeUyg7GTgjs6vDO03aSpm0RIrF+nWiModWgpWN42mcG5TKxzgnTtYikSLJluqxMo6czguP77AStZO40HoG2FSjREmRL9zpzuyxbW4r9sWWxHrdKPr0uqACHXjOtF4zW9Abev+8YdgohYhb0Px34epkJK0QXaRtJW3xkgvb0Taajf3k+8/jQY19u9PPKYdfy17975OE08MPff+XlWeTS9hR593Tky5cbWkWCz605FhdYFkdv8jqcXWRdF5SUpa8erPPMK3B82nO+nHHnxDoHhF3oW40UkeQ1mf/JkHuxGawE72j6jhAiNgT6weBT4Hpd8nr3gXm2DLtD9ukymtvkmZeQn5sBTCOR2uM3pvyf9/qzBzhZj1I5miw+rVR/ZfQFmWoWstq1s7EmMYlcmPBmV7fpM0owSqWMFLnlGTax7T1RJbcUylsBcELc0yskUiwVSJshSmGDyIK8eyNMSVUF58Cez/EmBG7nuLM6dSyFi0kbnVGC4h0o1H5biErk1NLlWATV9wVY20hkbFNAzhvWByjB/o03TJmvzb23zs+b0FwnuQqpM7hQ1JYMVXR9n8/CVBG3tgRSVU+cAiRU+UgZ651wutsE3Dm7CkwFooDMTTwj2KqxpKj+OPnqQ6YJC+iNbJVxle2rd0lUKTnUxp+bNqdA6ztRW+7qtrOp9tQRESnAmI0ZqgJ1LVqU3nH5emO+3bCLQ7cN3/7lX0FK2PFMXGbCspBibjMQXO6/s94u2GXlNl5Z5hktBe9bwWNrsCniQiAFxWIDISScS7xMkUHmh7oQkmlxtDKnaAYDnQGlPH3XF5v8hCbSaEPSBucjRstc1SSybihEQepaXIJxnbktkTWSd7yk7MgaEiFJrBAko1jHleBDaaQb0cYgNLjVEUIiYHHBo4q+x9ls6CcSGK0JKeQu1TGgtObxdCT6xDIvWGcRS3Y9PnYNNB0+5P5cyuROy+frxIdTh4uOpAxdq4kkFh/YtwqlND99GTPoazTT5Pn5x8/shwOX842nY4OSsvS4kqy3mRQEy+p5ELnNhAs5VXLsDqQQ8atHltJcESIirkip8Nbio8Bay/PnEecl48uM0Ibn8ZWvy8qfXi1d19EYzeoCEtBaM6+eyUZUcCghaKVkPxi0AmMki7UoITEmazkaKRhaQZQBGwS9lAydyl3YyUVeWgpkdAyt4nQy3K4j6xpYgySsARJE55mXK02bRdj70w67eLTOFTfdINntGsZxRpNyxZUXXF8m2q5B6Javn858+HBAd5kNEsLQ7bOJYvA+a4iExPQGTMPldUWJhPeC3bGn3/dopZFKsy4jRhtMl00nvc/NKoddx8PDAecd0+yzdkQmbrPn05clezClgE2RL19v7JucEnt8ajkcBAe9EJ3juBuYhGccszGhaRtC8Oz2O0JyNI0g7AfcumK0yL4xp4am0bx7MngbuH290uie2ToaLfj+mwPjODO7FR8Ey5KYF4eOASmbzHoayfk6sz/0JBkISuLdimRH0zdMkyUlxTJ5hMo6q6QFRmarhmWNjK+WrhV8/HCAAEFqjIQkA19+GkkusTsdWGJgeV2YZkcnFKsNOXUmJCHlooJWNYToGKf5fxPL/1tef/4Ap2g2alpq05BQd/B3caeIlAqaBDFWq5nso1LfV7f+4o2uJmVamFDjWCosAFThZ2UU3jIv9yaY8f5+7uDqrusQSHHX4dSAVhmVmhpJxBz35J2VuqdCsp1/PkKGXinlB852bVWXA28Hsx29fja3jcj+DZnFqW7CovgGsQXzjZ1JxXm4QqBcC/1G3xNK+rAGeO4HejNXtZzt7uOTBYKCavZXAJOsgCxt4CuXTSc2MTN3pitfxRtA82adbFVd3LVa1awxVZYsgRA1RVVYHsGvPnNfT2zzVdePpJbG34FN5e0gFQBb1mlxXE7xzbjetBSRpYxcmQ7EgZdPVy4vzwglUVLw+PiO5DzreEUER5gnYvAopfHBIdxIGl+R9hW/3lj9jBVZX/CyeLxs8NazkxGVAu9bibOe3khUAfnjZBGN5LBX9I1kMIJGRHaNQPUNQrgsqGwbopCsLhCFpesaxGJxzucu361CSMM0Ldxmz3X2nBeIKZ8zCgm6wSXBtC64kFjWvMP3CeLi+eGHzygNNkaEBh9zFZ4AnLM5vSCyMy8SQvS5oadz+JgIQtD3iV3f0+9akBGhYFpXlIDBtPQxsoQRYxo8ijXAdQ60OuF8pOsanl/PHNuG465nXT3rbNk97kjA51+uGNly/nzJvjyt4XAYMG3W28zzgpASmTyNaUjelzR0KIspfz+cc/jZoWRmQnDZ+G85r0yjYpo9PkimyTPbxGph8tkcb0Xwecypnd5kPyK7erQQGCUxCnpV6/ISfvG0usmAVIAWia5VOOdwS+Jh19E3Eh8j422BEPnuqefd0XDoG1IKfH65MY2Wy+IJLiJRKAm6E3zzbodpBcZIQlwIS+Dp44GmyWXcz59f0K0Bo4k+P7uPxwHVCETyPPzuAy56xsWhiqNw0obVJ9wckCi0MdjF4ycLUaP7lt2xQWmJkC0igV9ngl1JIRBCIEqd22rEBhc8q1tZFs94G5GqwfmcSv3dx4FILjsXKcJvNOvsicHT95rzxeKc5XDocLNDS82uk3gfGK8rHkWKM32Xwe7QtbjUsawW7yKffnnlXXigO7REv7DfN0zLjEsKIQxSBZqm4fllIriEbDSnfc96m9Ctou8bhEjMs8vtVaJA9wZhHet0w+iWKeaeU+fbipsXnp722DVgzA6fctNbbeDx3QFL4pcfb5g5sds1LH4l2sC+7zFG8nyZsk6JrNt7fVl42rWgBeOUReM5jiYE/9ps85/0ksgi5C2lyKgtstUO3inFnINPpeImRkLMlG8qTIAQlUlJOYdfeZASaDZWpLwSiVR0B5sPiagAg00fU9MOsehB0jbSwnykBEluzEIqPW62z6ctC8LmppvkBlRCqswKVHAQUy23ziaI1ZOlioLzv+M9tVYRR6q6ojxmmWqGKAfqLXsk7gzOJiguqaJQAUatJKrgIubu7NnP5Y587rVilfF6yxAVm8ACJHJ6KvctrxOQUk1JFkCUCoAUbCaJFXwWX99SCZYR2h0+likuaaUcx9MGblP53F1Zk48hS6du+ebeb6m97boKSClzV4G0AITM1xpLQzGRyHXtJd2WyjyWu7t5JzVmgNhw+frK7XLNtuzDjsPDA9453HjNAX5dN6M2QSLahdv5K+fbhct4Y13nzCLIrPk4GYm1K4vzKA07FWlkdv59aOFdJ/mw16gUeNhJtIzI6IkekCqXfisQSuf+TDuB9yn3Iuq7bKBmcponSU1MgmUtwSUqQhDEN2ko5yH5gE0JFwI+ymwDE8E6T0qS59Hz7bsDbj3zcNjhlhvrarfVpHROdaTCBrlQdioqV3Ql51jHG9iVw+nEcRjwzrGGyDwudA87ms7grKBRglY2UNbzeXbsG804OnqV2z0kJXHzymkwtI1gdpEUBY02hDjycGh4ODYc9wPBB6azw9vMXratRKi8gJz1KKUQyRd9m2C9LqxjwJiEOhmkzsE/pob5NpNSNmn7/Loyzp7LmriukvMtEKTCJcXqIk5HJhtQMn9HlMzdwI0C73MqS+h8PdGH3JJAZXam7buc4o6JL1dLDI7fPnX81Xd7jp3GKFisY7EOO1vW1fJ0GJApf9+N8DwcDA8HgffZQFClxHA06DbRNIZ1AWs918vM/uFA06m8foPIXwTd8XqzLOMMIbE/NQQBP/2XT5mRx9N2Pf1hDySOO40cGhASKXP7FL/M+JJ+VqIhCs28BpoGgk98fb3y8nXmOi54G9h1LV0XaVtNq7NYd7wVixGRDfj6TjHsBuZpou1NtlS4LejOYO1SNmuC59cb4xIY+mx+qPGIlBj6FqMNSIVdPV9eXjj4JpeAjx7VaObZ8eMfr3z3cUfuylH1jYrZJYaHB+bbjVZJ+q7J3lQp4WeHlJLjcU/EMS2B4CWmUewGxVhMHqUUOBcQRuOWAFIxTh5H5JfzSqQlRMF0nek6gzZZ7aqEzDomJVEi0plty0ajBEaKXFyQSv+4f4HXnz3AqbIPIe6BsnbP3oK9yMEypkBMYQv02+6fWm0FVTdRexxxxy31I1sguqc4KgiQW3rnjgNq6JXct+l1QcZNE1NBTSDvBtJ2DgGxCE7fpC8ygJGb4V0GGVXQm+cAquHdvcQZ0j/qRVU9BjOQkMUNmVTFsfcATU0BpbgxR1tpNG8ckUtqqfawioWJCNt8pTsD9AbYiHKODXgVxkoJcb8usY1m+5x8q2Gq40wyt+9K4s05qw6nfA5BuRTKxVN1S3VclZ+JqTB+v6Lo8tyIlIHYZhp3n4U3DFa6A2GyDoiUcqf1cr/r71IJZhkA1XVSMLSUaL0jpZ7x9YJdF6QUvPv+e7TSuHksVRCJGAIx+JL2FPhlws43LtON13HkOs2EEFAha06yU63jN3vJbBWNlOx0YJod3xwb/ruTpsFx6mUu9zUSEQOHRtK3itZIUrCkIDFKllJzDX5l6A1NrxAEMJpVp1y5s0T86ogJxnEheBA+QpDEUO+qwJVUyuolMUmE1jRaE5E47xhazW4wvE4jw9Cimyb3u/KlyWUspf5Coo3K5c4hILzNnh5CEXyCaeHb949oLfEvV4wx2d23lbQml6crBMnnBp+EiA2JP77MfHs07BvNunoUif7YkBIs1wWtFC9r4uer5/e/PaB0ZvKsW1huC0oYWuUQpx7VSYK1LLNldzwQbW7B4GPk60/PkKA/tHROoQS4NSKcx6iQG4UKgbeR1Ude15XrEghC5/SWy2XEi0tIpdEkWiPYNzKLvUl0WiOR+FAMEY1k3zf0XRZUBxcQMQta3w2SfdPz+988sOsiBI/SGumzPxBEGi1w84xC8nAY2O062kZznT3DfkfwiV1r6DuFlAprHVJLmrbJW9ZWc7ve2O/2W8+x6LIOJ0bJcOhwMREvM/2gORyOjPPC+Tzi7QuPT3v6455lsYzjWNJDgeDzE8n0HTEIrMv9m0II2AUa0/K73+0wRpGkIViHIuDsghSSptN89+0BiMzjxDSvOC/wLtANHV4IZFI46xjnoqcCpE64mPj0ujJMEWzg//gfPtAODT6EDNyD47hvGfYH/viHT6xTpGk7hGoQKASel6+Wdw8Dw0Hxp5/OtDFbiawJ9scDbp3pD4+YuDLdFqTSuUR+iTS7FiUdbS9zyw2luM6eh2PiuC+6P9ny9fXGYDTWWqIyXC8LH4aOVmjMToGX9INhcivJuq2IwAfw1XK/EAxCgU+wrpFW/yuD8096lQKULQxv/jV1ty1K1QSZ4txSMukeWKnghhIQq+V9/b+SMklF3yML65N/K4qGJYGMpa+OoIbQO7dQ00Zi+4wQAkVOYVXDPJnStsu/6zhqs8Uc+DYH5HL9mV15A2Coabk81u1aRWIzAhRia00gKp0Q3wiiK3ITFagVfU0JxFt6rTAr1SUYstiWVN9bZqleU5nnkuQptlMZgMjNEajejPyfO1AQm8CYwrDIX82BeDPelHVXVR8j1Xav83gysKhK5MxiVUEvWzoIle3J8+8z6yfEfTzb/4q+Z5MiVUF2WS8Z4N1L8kW9pvJvSQGa4l52vyl0ym5ZSEnTniD1zLcZt65IJXh6/zE3jjyfcwBIER0DyS2kYCElQgwkt+aWAePMbZqIMeWgLTNwkgimIHl+sewUfHcQfDMIVqM46MjpIGmj4rhXHFuBDBFvYw7mnclNB30gXFekaRAEZPQYmZBNwkiHVGxrzLnsnruGiPeJVkUECrt4Yoy0UrF4OE+BJUocEtkags/MZe37BY5xntj3mtdpQYpAKzWXccrfEqVRbWZqsK50AE9opVBKYJRmsZZxXvDOcehbjg871G1EEFmWFW162qYtPchK6XiMDK1hmVaCFOyMoFeJwcBpp2lMNkV8OLQ8f72AMEgESioOjwfkzkAYWH6+YBqBGQwJgV08rTHo1md9ktIkqbDzBDJhZ4ecJbbvkCS00UgFqhXsveUyTwTpCUpyC7nSrtGSrzdXQHoGe50RHFpJq2TW+BTJm0uJ4Bcaqeg7gxYSawPOBxoBu1ZhpKIz5BYMSuCnK1INQE6JfPp8IQGriyQfeHfqeNx12cfFZ5BkVCKuI08PPc2gsW5lmaccyKUkorLG6Tbz+DRgbeT18xWz77BrrgZrdz26a1nHhUY3dDuDmyYOg+Kbj08oJQlKMy1Ljg9K8Onna3ZAFxLVK4SdAUlrOvqhQ0gYumwJYH3IOi08Qgbs4lEITCMZbzNjAD0Yum7HsdvhbMBazxIC021hvKyYRvP+/SOvl5FkHcfjniA7rDNMk+XrHPmvf7jw/fdHtILT6YHrbWRaBbuh4S//+i/49OnMLz9dWZaRj98ceP9hj50dl2mkiy3fffvI+XXk6dCxhsR4mzgee+ZlwgiJihG7RrTRxGCRPmbdDxCmwDJ5joMhxIBpeq7LigiKZXF0SrPbD/z0vDBow9Blw0xJg1YmP+ummaETBC+zX46Dy+uC8onDY0fT5OpEpQSh+PP8S7z+7AFOfqXSA+peYVJyFWT31xzYk6yMSTGV29oj1J27qFrRfNSSa6gpnho9E5FU1awZGdRh5MC7PcJjgTnZQq60RiSkTOnJknNI9yOw+aGUMcpSAp6qyVupfMhvvoOMmlZKJGK8A6JYHWkTd+hQAUoZsEBAyNcl/j/s/UmsdWl+1gv+3m61uzvd10REZmTaLtt5sW8Zq6xyFRIlIYQHniCYM2IAsgcGCSEYgZDwCDG5AyYI1wAmqKQagMRFoAuUwRRXrirq4oRM25nOyIivPd1uVve2NXjX2ucLuPcKY0tVymKnIiLPOXvv1e79f97n//yf54PKu+xLTg7P75HbXwsTtDBFM2BZzteMI7JHB+cjW869lPlcL1NLuZbLGVQs12TeygxinrDSck3mcy8EgXh+r9wpnJPRFzHMDBzOQG65bIIZ5HF+Xr4v4jmdXPAUZCnEBx4++QbJdLf4AMiKbHIX4xLauZzrmYGZmTp5bms9XVtm9k+eUWA672pSirLakVLN8fGR4BxF29LUK5L32OMRmSIpuhyQmQL4EZE8+EBKgaE/cOj2PI4npjjrOEwe3VYCWq2IPkIUrArBulI82IlnleTjGkiRopS0laIqBIWQUOcvrbLJadiFzgGGKnpEcKikUUbOjsEJVRqEzqO9McDxaHFTxNsMhggRGRNVWXNykZP19F4RyCnwyQVCmK+5yCxBUVb4pFnVJUqO+ACX65LgJh4HR/AeP8zfASHfv1oKlDIkqXAETFmymtt03TBRNQVKCUSIBB+JIVBojbc9Ss2J1P1A29TIAGM/0tuAy5wDYbAIkYMm0ZGLVYGPgR/6+Ip6pRHCo1TNm9/6AiPz17Q0hnH0HF4/8tGn2zzp1nWUrSKECWc7pNZ0Uw+yZLKC/qHj4nqFkFAZgdo0PPYeH8M83SRAKB5PExFoqoKYYFVrShWJyTM4QfD5M15pRWt0vk4iEL3HJ9BSZWdbCX3vqbSk1SWlMYg4UlWK0zBhpCIGT2FK9qeRsXN8fLOhbQyd82AMBknTaoQY2W0bxMxylZVCViXdaaCsC4TyVNsGowV9Z/Eu0F6vsSJPfK3rgtWuBAFVWWO0pqok4rLFWk8QWfsxHPZIrRgGD1HSrluEVHifUFKga00M87dnsEyjz+xDTJiiQGroTwecC0QHddOwf+wYRk+KEnc/5NZbrbE+UhSaQCRGQ10VCBLd0WKnhBaGboxUZcEP/VDLoet4+2rP3cORqATbTcXL0tOUFcOpQ6TsZ5RsZFWbbN+g4PnLS+5f3zF6xe3dgWcvtpSVJimFUZHj/cS6bkAGTF2wXrccxwPdqeMrzzbsdg1TiOwPR0QSbDc1/WCRSmBKTSki/eSZXOI4BFaNyFNnL1s22wpdCFLw6FISQ0DMTGdRS0QQ2MGz3dZUdYGSEInz/QgosIP/Xyrmv6vHDzzAyUU7K/jTMnW0FM+nUnRmPBZvmS8FYiLO7MHcdZhX6WcHnRyIuLQQUpwZDTGLlpf3yc7Kcp7uWeIIEMxMxUJJ5I08JY0vOhO+VGjT/Lqn2amn5y/C6Lzan/UVaWZJ0rKleC6STy2QD9iL80lcwITMepZZOLyMVmew8gS545kAWybB0txSm7U982Es/zoTYYvG5KwreXpPkc5X56z9yYusvLGcCP/kH/RknMgZdDAzJJHA0yTZEztzBinzNVwmrRYAm+ZTJucgwzPAkln3kd1xZ4C8vG9+6wUvne8dOb/2afqLM7BcDPSCkCgp5+efYeMTwJ4ZL6kK6uYSHzRjNxBDoGwams2GMAz47oiInmgdhogSiejdfI4iyIgdR/rTA/v+wGBHkpRILVFaobTGEPj6heblquSz90faWlOpgLWJbauoTUQQudzUbNaaQjoKFdGqQClF9BC8Q5sCXRhMmb1DhLXo0mC0RBs5LzYCLoD1kdIIvPW46Kiqgv6Y2ZppiHTWM7kASEIEFyM+5vabFIqirKBocpK0dbzY1UjvGAO8fwi83OWVqLMOfJgZU5Hdf0l4b9HaUBlFEgmrFMNgiTGiY8KUhlM3MDhH4wJ1XRBiiZQJrRNhtBTKoHTi/r5nXbWQNN4GXBEpawNREESiLgzeQ1XCetUQvOX9F+/pjp5nL1psf6K6bDn1lsfDyHN3AS4DuhSyP5ZIBXYaORwCVSk4diNd7yk6R70qScaTpYX5szv5xNHmb57dSqOUpC5rSOCtzRN18wJIVZJCKaqiIHhLTCEzewqcDTSFodQip1kXhk2tUcljR7i+aBmmkdNpQEqVp9hCZFNVfO3lLnfyguXqoqEpFW0JuoSk1gx9wI6WstJ40TA+9GgRZ5NHw93tiaapKasSIQWH44QSgVVb5PR5qSk25Vmg5sYJ6Szj4DieBsZ9jzaGpCrKqgDp0QasHbLAe/54BudIUwCRmCZH1dTosgKpGPueSIkxickO9I9HLm8uOcmOoXez5FCQQh6t7g4DSIObsi1DUxeUlaGuC4buhLUjwSpUMFzXhmc/esNpHDkcBvyYGHtN1VRsrrcEO6CVoNCRKQUKoyBGXDdiCoOzE21T0vcWLRPDFIgusVqVPOwf2LQVRSmRRjC6iWgjdvRYF3HRYbTA2UjbGt4eBkpZQqER1qONBtFz2g8Uz1YImagaiXcWYmK9WyOUICjJcNehVK6Kh9NAiopqVeBsxMQcjEoEUaQsRD4XvN/b4wce4AQi4WkOey4iWbB59ms75zPJpwK8EDIsYCh9UJBzZZELwJkr14cW/elcjvJrliK2aHPy1EsGP3mUdUYuIbIkXy/i5nhmSeZ2h5qNBmewdX7jhRtaWI8zURWWAwXmxsbiEnxuHc37sxzvbO+fZS75depMk4iZafpAUPskJjk7HJ+RzAeg6ny+xMx/pKcnLVqSPHK/jI3PW0hxPp4ZLMlF5v0BDBJPh0U6Q6cP3mP5ORFTREp1BikLcEKGLwOwL5n6paew1uXap+yTnMSZ0zpfu8XD5gyTZ9E5CVL4YIRsObb5veMMisXZXVrO+/IEoDM2S+hihS52OCs5PNyhq5r28gotNYw9auoRboDokSIhgs/+JiJHK4wkxhg4HY/cHTqOUzb6k0JQakVRGHRRsK0kF1uFTpY/8MmK77w5sG5KTtFjpKRtDdeNYrPNJmxVKakqgxIRXZR4GxiHSIzZQRgBBA/kqAZVytm/TuIDhKQoiny9o8/jysdu4vV9YEiGwTtsABvyxGBCI1GUpkDEbIonUsCPHtsNxBQZL0qqWtMdLIOD+87yfNfwxe2JqDRLy1pKiXWOFCPWOlTyKKNp6gqjCoa+53Q8smpKQkoopebpv4TWYLRAykipJX4c0XVBSpF+mqjLNVFOSKPndYynqEFXhuPRZ3YxeTSS9/d7xikgtMgi2jiwaTR23ZBmtozo5lSCyDg4Hg+ew2liuw1YLA/3A7YPfPVHns3uxQ4dE9u24LafqBWUaFZNRRLZwDCSkAWoJJFFnj4iLQupQNQSfGKy2a+kKQyVgrVJNJuKSgmSDyiZKIzg1A8M/cQ0BdomW/xrIh8/a2i3OUF7t20heVCGcZx4fLRMbqA0mtJodLXmdDzhXE4n13vPdmWyN0uKHO6PXF43XF8oVmtDWbX4mLDe4x96tJA4a7HWY52i3ayoWkGiICnF1UVFSJHulDg8HEhRULWLqN+BC+gcjIauVthpwp1GnE+gDDFKjNSsdpdIEREysN41VHU2nTz1jhhAa0VKmUWtSogS7DRw/3agqiuS1lSNpq0061WJ9xFZSNbGI3zWr/R24u5xT1XWqEKhJTSbVfaT6iaszhYCJiXWdYGSAYdHKIE2BXfHjlIp7vYTh6Pna0pR7Up264r9MFAWBd757DW0qpDaYL3nYlsyPngUiq6fQCeeXVb400RdSwqvcENkEIGLyxbnPNMEp95y7CxtoahWWZhe17ld7RykSjIcPetNlcf+bUCXBb8fjx94gLNU03PpEelsXLeQFktrJsOM7K2BePKBWboyGVU+OdTmIijITEWYOyICUOcCmZZdmIWm5xGaWdibV+EiC4dn6mNp5ZyPQOTiejaFm8GU+ABUPEGo/AhL5U9PtXFpizHrOM6Ybfa2Yd5ONp2bXz+zNznbKTMfQsh5qudpCinNKuyz1AfyuVpAUZqZqydSJb/vjCaf3IkzyyPFUsyfgNhypJlomn8O2btlYaCyvCWdr2g+MbO+hWWDadbkPIl3Fws+GfM5yoGYPF3/hVWbtS5iFsXEBbzNoGNhzNKHx7QAQPHUIo2k861w5hEXy+1FxPPBeVzai8s1ISVU2aCaa077iRQ8RbWmaGqkknA6oqeOItlcOGRO0RYp5wdFkbAxEr3jdHzg/f6O+3HK3JYQKCmI83F8+mzDj1yXXBSOd28Gkk/8zNe2rIqIVCUhBG7aiqbIIkYtBDG5vMKbwUbZGKQGN+WspsXQUkSH0gZT16AKQnAgNKYQ2ZxMRVzQuL1ktAGPYHCBoBQuBAbrQUiEVllr56d5ysPTjR6fItpkIPt4PNHWkvsuX4fD4GivWi62Ne8OI84HIKDmVlSIQACfAt5OKGdZtyvW6xXOW4QUGJ21NIPz9C6wrfIxpwBVIXOhD56bdUnyIyIEirKmNAlFJBGQZo6iSJopRo77nvb5GkWiLE3+7ggJ3zuU0YgU6E4DziekKfEpC1tPXc9pdDldXVX8zvff448DfpN4OQWqtmAcHGUBF1vD7jTxY9cFj0PERodWir11Z/FwVRqQEL1Dz7dljIEQYg6jJLcldpXiazdrqkIyDD12GGh0HknWJjGMFiUEl9uW0khkVfHixRZhAAJVK+m7ETcGtBo5jQE7BVbrIhsjkri7vUd4j9TQaIl3kf44EZPBqMCzyxVCBerS0O0tx9uelCLDEDj2HuvIbS2t2aw1Q9fRVBWnKbK+LJm843TsSS5Pgdl+REtBUWpCzKLgcfDIEAiuY+ocx/1IQmZ7hZnZIQrWl1vW24rNtqFaldhpQsz7PE2OtimRKhFtoCwKnLOMnSWFDmMMwgWGFNl3IzLAdr2mbQvKC4n3CeuywejhNFEUhqqM2T9HKqQUGCF5eJwotWC1avF4mqbFBscw5Ps2+ezqfTxOjJMjnnJ9uLpuiFrRu4BRChfyvTnuB+pNg5Md0+hQQtKPnugl24sVUxBIP0/3pjCz/HDqLP1pyqxMoSnrmtUs/bDeZe0fBbqQCJkoUKhG8fsURfWDD3CWseJscfG04lfy6RksQEfIuZCDFCoLBpf2xKJlOadrA2JpXCWSlF+CGWnWAJzFvOJJq3Les7kA5kInWaaLcjGLH9AIi42/QKGeRNJiGVeXMyPxxCCcm0dCkJBPrak0RzGk+dgXBiVTGTOzJWZAkMGWmAEYYo4qYLaSW4Syy8/MKdnLtjkf0hloLOwHLK0m8cH00SJglhmgzfsvPti33JbK7FF+qphBSORsjihkjoESuUoJmQFK+qBFl4Hd/B7z7xbPpDyZNp/bZfsz+Dpf/pieIi1iyKzLDIiR2T87C4rT+fo/icvzvbYYBcZ5J5ZzeNZVzSxjBnSZR8vtTYNaX5H0mu7QEWKiqmsKY5DBkYYeTkcMgUrkfXMukJzDhzyBkaRkSpHJOvrTibuuJ6SAJHFZlVyvS4q6oNltqKoCU1cMzvHmaNk1hq99/Tk6TLx5fct6U8FsAGadZbstqasKVQpUsmgjIeXpGVNqolQIkZBFga6KPMo837lRaBajxxgFSWiCiGAKeh8JMaK0IqY8NWQKjTZlzj7zniglwQdSemIdlpN4PAw8v1qj44iLgdE5Xr9zfOVmy+NxxM8so/du1uulPDHjLIJIkyKj82wvd1xcbXFDx7ox9KNj3w2IFLgsW2KwtKUmCUmQEUFgvaqwncNZC5VGK03dSIbDRHKColBQKN489IjtCu/zGsiUmhhm9s3o+b7PBqRFUyKlRnpLnAaEDwyj4ze/OFLULW/fW44PE90UeLkf2WkBEuqmppiT2W+PJ67WNd0YiD7w0Vrh0fQOBpcZMCElKIVJCUlEi8xSVUpys6nZ1IJCOobBM/SOm3XF5arExsBgLT6ANhpTSdaNIjrB/eOR9arg8rqB6BBrha4i3o9MLmEqyeW2ZLSR+/cddVNQVdn9V5XZK2ZyATsm2qs1IwljLbGSpNLgQ2Q8et68GzGy4MXHTc7mcpHaCIrK0Owa2sstQ3/icHQEK2jrAoGnuWxz64pEaSqKpkLriX4YiKFgfVVR1QZpCrxNOR1eK8YpcTp5uvHI4dCzWmmqQmG0IaVA/zBhp0DTZLO8h/sjWufvuotdha40IUWmyTLsB0YnclzHpsBoTdmW+BgwJuu0JjsyjgJdGKTI39rCSWIUDGMkiQGtNWM3UjUVQUYeTp5qXfLpxy2//dktd/uBGyUxSEL0jLN1hJGAEjgPqiwYTyNCQN9bEAk7eqTQOUvOebbbhv54YFUbSB6tKoiBi02LVVAaweef3zPaiVJkg1BcoipzdtzhZFEJhFQsA1a/18cPPMARSWSxrpw1G2kZ8c5VNYcU5vZBEjNzIZbJoac2lowzayOexKILlMlZTx+yDMxAaAYJMH/ZfsB4fHkvWfxiFoYjm/Llaa2zAZ140o/IpRAnMtD5sEU1g555FIunZk06M06LK9DTRFV6YqZEWqxqZubnKczxw3T1D0FfQsw2OzMzxQIk5kklgEXcm181h5zmIh+W9k9iBmRhZlY4n+9F18Ts43Oe9lqA5QftLhbhLvkEBp6SzsUC7BLzeeIMvhamawFwC8Y8b2vBhCnfWzEt2qbM+C3a9TxNP7+PFE+mknAGePONka/DWcm83CJPrOMTcwOqWlG2z+iHSBiHvMpvW4qqQjtLHE4wDmhvWetITcBHj00BJxJDcPgZiEU30fd77g57bMjaiY8uVlxVmsttQ6oq3pwsZZIgNEPv+fR6zafP1yhl+Oa3Pmc/en6saVnXmrqMrC4qNA5dV8hSIL1DapGjEaRBehiHAaTMoZalyavE2c8mJoF1gf5o8UkyTpFjFzgNnskLykKjpaG3HlEaohQkqZhGn/UiMV9TnyK6qhFC4FPCOctpdHxk8ipXC00IkdEF3u07mkKy37u8ItcCoQRCS4QSKJnQUmbHVR/BTbxYbXk1eqqiYOwGhPcIn5dQSuUrZ6QgiphjLaqCQ9Qc+z4Doc0lhZFYJXARCiUo1ppw6+h7xzSOFIXGFBKlQSEpy5pjP3K3d7xsCkwNAk/ZFEQPD/uJ93uLFgWvb0eOved7j5YkBF980WFKnZ21U3ZIrrRiVxm604BAYpTCKEEBeOvQhWJ3seZ0ynYBPiSCiGwrTVtodPI0ypGi4vZhJMVEOTshf3F3pC0M1uZz5JLj5qKiLEoe3t5zta2oV5KpGyiSQypJ5yKnKYttlSm4O0wo01JvBJUOKAVltUKIyK7SCC2xNmuxwmmk2la8u7UMg0fGyKpp+PoPralrRbOrGcdIWeSCPOyPdG8eOB06vvKVGy4uV3lUWmSm01mHD4KiMSStGYaJ5EZkzADP2R4fHFPvSRiCD2hTsK4NRWmw05HNrkJpyTh4dMpMSF0pvvrJlspkZ/rTocumkjFwf5xw9wPt5QohFOtdi5Ka2/ePdAePKgyHfsj6uqLCKMvx1HHaB2Th2W0rhs5x7I6sq4Kryyrr6IxiGkf2dz1SC15+vOH2XU9dJa62DYWGal2SRL4ePibcGFCF4nLb8uruiNY5gbxYG2JIjBbKQlOV+XMkSoE0eQIwyqeFcaUl4FBFpPP5fYWLOBLERIqRafKcBg8k2kLTrlX+nP0+PH7gAU7uZix6iXmFfp6mYW4bLKvlD7QnSYCI50mWZYV9Jj5Y8Iw4F9tcmpciPT8vLh0HeXbxPcOb3DOBD34fxTyenZ2ycrtgARML2Jq3KlI6G8ABMyOgzsXw3EKaIcAZdJz9WZazlF8vZtCUFjR11v3kF6v5uKJYdEwLcJnH2uHcAlqYGGYAs3AX4olbmg34cqtQz8ewdGkWRm2ZMhPzpNliebgAs8U66MwY8XRdz/4Ky+lgZnFmVinNrtV5rkXMfkX5vdRyH0h1Pu+EOAuMszHjco3PYOcMaOPMAM0CYaH4MED13GaTYh7/P1NYH4ir87kNKSKVxBQtptqRVM2xswipaFZrBIJpHFFuRPVHVtIi5URRRp5Vgl1RMpUwTRMuePZScPRwcBNhHLjdP/B+7Od4kMSb/Yl3R1gPlpubZ6zbFTebkuuVZr25QnrLNJ7yl7KfWBFQbqAwm6wVaEtk1Dg7zRlgCaUkyhiEUMQYKKoGZEKVJaKoGLsRnEVqTUrZ0yaGwHD0OA/e5vv6+sLQjR4XIppI7xORLHwfvZtPm8TFkKeoyFNs3nmkKUkq+6hAzNdDZS3JcfA8v1yxdbn9FaMnhogKUFYlTmmGfoAUaIyiUJHtSnH3qGiMZp8ihQKjBA+HgYu2xDtPo0EXGi08rUnUFxWH40DfDUzTSFntGLQmWI+QmmqlqEsDSeCcApHBR6EkdSEJKSKkQUQIUROmQFGp2fTN0Q2e73z2SMTwG6+P7NaGN4MHpVi9emSz0Vxct5xOfRZ1SoXUin4MHPtAXYAcI95FVo1krfLkVbltqCvDNI4IITCFIflIISLDNHA8TShlWDeGJBJjCkgEh2Gk1IaiMlytai42LdPxwCcfNfk7MjhWbYntRk6dB20ojaKSginA4WFECk/TaOpNm+MzAO8FyUZwHmJEWUfZlHz++kARC158skUXGXAgDJOH+4eJOEX2qcePjro21BcrirbmsR8pR8d2t8WngBA1fW8JU8L6xLE7UeqC4wiPtz1NYWjWFcmUFEoShUSMI0SBloHKCPyQcKOHWs+j9AKlI6tmjdEqMy4+0GjNOLqs1Yqe8X7g4b3FRs+61axaQ9WscM4ShSA4T+pGmByyMExToGgNIQn6wVIYySef3HB62LPdVQSRePvmxM1ly+1DzxffP/LRJ5dstzX3jx1NWxGTZxwTphJEpXEhMPlIUxUzyNY83A9opdhtKwoN+zddBjMuEgMMAYIPlHWBVBFFRKpcSyQCU1S8vz3SGijamjcPI5Up2F4VdL1Dh0S7KfP0aALz+2OD84MPcCRiNsZ9AinLqnnxU1Ei93mXySkpFSlmwd/M1zx5y6QZCCHOCdJCKJbk5sWrhNkrR8in1X1maGZx7FLUluI5t0EWtoJlL0VmW1i2f2YRZjZCfLDSP/e/FmYnPQmU5/eW8ml66wx05rKcYkKoJ6AihSAleQZXT+Z2cj5GZjAyAyhB7v19IOQ+A0bmds+X2m4z2JmZNdKH2iZ5Bi055ylmO/2UXTeFfKLCcivuieX6kPE4O/+lpfEhiGJJfuJMjy0anSfWJJ71P+cEcAGL3088T0stTNACU2OelAMQ81bSU1bYgpflom06j95/iEvVeXtal5j6gqK5YRoc+ERhDKZQVE1JOBwxbqDoR9ZhpDUJKQOVkbxcKWojGGKi84HOe1ol8mh133Hojrw6nZ7S5IGqMlxcXKC0wZO4uGz5kRdb/ptPGgoxoWXg3Refk1Lix3/8a+gw8Ph44mAVugBpNDLkVXtVaCQFqlRZnyUNQngYx8yu6JK+s4wnhyqgqDVCBIyBoqqoahicpHt95HKt6YeIETIHBuqK6TAgpGCcHCmBKUvG0XEYLRFBURgSCiklk3Ucbc8wrqiMZG8j1npiSOjCsO8nLjcFdyeHjxo7WbxzpNGhtWbdtLQ6MTnLxzfbHFGxKqhrxVs8bSkQeE6D45PLGj85bMhAoVIFpRLUZYkicP8wYd2Uv3uMpN8PVLWh3pTsditeff5I30R2lw0P+z1KQ2l0/jZTEZk83cOJnsj2siaFhE951BupuO3h3SlwO0T2YyAQkK87LteGmykQkuT24Lg/WD6/G/EoLjcNa53YNA1NrRmdx7psSGgE3N0d6G3Oo5oS2d9ICLa1YtsaUoy44Ok6i0iB1aaaPX4M25Xh5qJEhwFTS6pNyf6+5zRKuu6EwVNWJZSSYZQEKYkhzlq3hHcWNxiCEPMQgOB2bzmdetrWcHOzpSwFX/1klZPZK4XUmsEFDg/3jF3iNFqCtbx4vqWsJD4GxmOHVNn5PCjF3eOB6PLkkCBPwZVNTbFpeXwYGTvLer1CkNgfLJ11yCQpVcIYgfeRiCFNAucTsbcMk2PsOjQCVRYorZBA1TSoQmKPw3kBXhYF6kJzGixxSgipqQvFqlH4UOGcY5g0U1AMMaCtp61KlFE89pYodGaK/cTlZUNKASU16zaPzb/4+BIX8vmkLBlTYjx5Li5XPBwGrouC6PP90XeW1mSAXdcFe0ZUSrjBs7pqaDYlxweLdIHtdUt/DPgJButQKXHxUctoPXd3PVVhWLWGti4xOuJj4H6cuGwMTYC2UJiNQhSJEBNJaLr4X52M/7MeiwD0Q2AgYfYnEefnqRl8zC+C82qbM8MjUnpyXOOJ8YDZCHB2B07nUaAFwCzj22lmDTJokHPLJwOPuV0U0zwplGZ2KZzbGgKJOMc2LOwDZ8B0bhuJJ3Yht5eWop8+7FqdBdZP+zz7s8wFPQOsmaKYHXOXF8pFH7JQQx94smSQOHvCCDEzSfFLeVrM49ict8F8HhfUlPdvaZNFCSmFrEWYvxDimUZLLMxIPE/E5XfP/kfzpFNaAOaiaVpexRmE5bFvcTZkjCm3L9X5Uj7pnIA5HiIbu4nZIC0u+Gpm7oScjRoXCCOWMfYzd5bP2YxyJBKpDKZZo5prrIPhNCFFoi1LKlWgkoPDLaWfaLTF4Ch0oCkkhMimMrQyIaxFTh4VBcF6jr1lnCzTNPD2sGd02W9CKomuSprVhna1pWlKnl+0fLSt+ManW3abglqWiDgi3Ja6Kvjeb3/Bi0+/Slm/wQfLdrtB6kRZl5RFngaKk8+6Lx+JcSAh0FU1RwgEkrNUqxqCR+MxdYEoVPaRGuF472nbiiIktHGYEUojefQCdwyEADZExmiZuo7D4LAxUJUlIiZCsPk51mGKAu8SwzRxvx+RSWStkIRpcqxKTSEEUUsMFU3dElN2r00y8egcz1Yt16uS2k88/6Tl+7fZ7G9daUKM+BgpNRTz6nZVF8hgKQrBdlfik8P6HET5ePDIpJBoDo89m03FpjGcCkmcwmy+GHF9Im010TsUIAuDnz+5PizfVblFdXtwfPcucLKR3sdcPKTivgt8993IcUwIpbBBYqTgo6uWuz6wrgu2q4Lbo+XVceCiVdhh5PboCSkSk2CyEaMkK5O4aUvqUud2XPSIWavkJ8/WaOoUuL6o+bEf3nK9K/B2wtlEcInjcWLfBfqj5/mlYXezYbCew+PA3d6y2a6oGsH1TU2wnuQTVSVotm3OxxocpdS8eHFDCJ6p7zHFhuOx52JjmHyg34/0oycMATtGdpuS6rJElRE7WOqyYbdeEbGoqsT2Fjt6iODGSN2WFFct3f5EHB/RQqMIHB5P2YlYF1w1Cp0SZa2xIvHwvmc8nBBK0jQFMjjKxrC+XBFjYBwcpDwluL8/EWUihIQQGk+OHQkhYm2iUAW6UMRCU1eaygdcITGFnP2DLLvrLcVVwTROJJFbYSFEjCnRpcIjUUJQrxqci3T7jt3VmsO+Zxo9SMPbB8t9t+eTqwbbDxiVmKxjcp67/Yn1RuWFhw74KREKyf3DCbRhP3RcP9syhUixarFjT7TZGXwKK94fRoYuEoYJrUCXgmkKdIPn9SHQH3qSC3z94xrpItOQ62yICaM//Jb9L3/8wAMcZlDypRX6mY1hXuUvY81PVWcpuQsIkh/8/omJSOfXCpGnrzIlx7mHlVmVbB62+Kos4CRjhfwFFVnGoJkLbFq6RHOlfIpIEAvrwcJ8PDE0y34tZnpPbNEyvr4wHl8W2i4i6MS51j+dn/kcZKZqpitmNmvRJGVwMEdIzNsVSzTBcowpgyfBkwg6Z3ktB8LsBj0DqpD/zvJnkc65Uufb/0tmi5wdnxFLTEQ6kzgIiYtPkQjpfI44TzcJyJ46ZJZIihx3Mbsazcnhs96GhFAyu0uTV3ApzqBUpszEzNdYnK/nfC2SfGK95v0WIo9xmmaHbi6wTnK4O0GKrNYNm/WK0vYU04najzTJ06iIkTmR22iJFomoIysVMVEQJ0+tBBOzA0FM+ODp7MRt3yGVotSKsizYrldc7nbUbcX2cktZSL7x9ZsMEqznYXjk+nLLxdVz+sMjTd3QdZbnH39MmI7Ujaa+aEnDLYmILipEWRCsQwRBUVekGEkxII3AHnu0SJgSiBJVKExTE0WeIA8hoqWgaSvGcSJEg4+Ruz5wu3eMNhKAKSRcEExz27AsS9I8KRZTwvtAWRiG0XLqekojqcsSKXJcRPSBKCW3p4nrTYvrJ1Aii661RmtJnCxtWfHxTcvXnxl2peI4OR4eena1pioNp9GB84zWUoj8mW8LgxYBRCQGz8fPNhRKcjw5BuuQYWK9WzGcTgghqCuBqRWTcwz7EaEU+/3A1WVBVWtSAlUo+lP2N/EW7AShkAxDZD9kQ5EMzBJ752nqnAf29tFyHDIgb9oK5z3HMfDqbuTt44BUkn5waCHYtjqP/2uJUjIDwJXhsqmo5/F0b8ezU63SAuNhWxesypKvfHLDs+clKvS8f+jojxOXVys8LrfA1i3XO0m5MtgYOR4mUoBnuxpUwk6JUMP2+QalFIfHgWPn6fqJ3a5BqcQwTAQbMUZRGUWMisNpIjjBqesoK0OxKhmTx0XYrVqkTNw8WyELxdQ77t+fEKJDaUXZltRN1hN6nxjvDxijCTLRDyMyRUoEVaFpWk1d5c93CAnhI+vGUFyvSbpg6DqkEEwu0TtHP05UZYkdHczfGd4mrBeEOHHqJ6qmztVhykL0GCIpGJKLs2mqxA0927bgcnOBLgqQmuAjWiWalSaFkUiicx7hRdaOaUN/GjBGZOuCANOksqFeHHj79kSjEk1RUrc10/5AUxi8czzuR1a6pa4rXt2duO8G2sKgSs3hceRzoTj5xEd4LtcKt8qBvv3gOB4tKkJZKSabsJOjMAIpYbSeZ+uafnIo1bKqFVHkANnJTYRzwOLv7fEDD3DSDG7y6LFAsTAHc8Plg6iCxYbuaY1+hg3nltACFJ6eMZe+xBJWBWKR1eaCfyYaWArZ/E6LmVwCs7RGluctzxFPvzv3hODMRJwf8/h7xlzx3K7Kk1bMY87iS5qdzNzEeZcFar6pFmZHzGDiDHAQIBYNzAKeIC0miGKRBCcWk7vzVPyHB8WTM/PZkG9RUqc4i3Znb6DzeViYqAV0ZiQZmdtaZ5fpeN6CkOLMkCE+0NgkAHk+F192iZ6B8AfgLIp0jqFiBkFxOdQZbDKDXinT2QF7aUtmUXMkxifmamH/xHy/IATlKreifMyFJtgJppFm1bApJBfuSOU6ijixMpFGJmohUDGneldlbgGdHkcKYWmrmgHH5B3SRpT1FMkjg+XxdMQnKAvDarOiXa9pqortbo02Odzvh55doIVHi0B3ONHWBYfDieQt0Tt2NxuCndBF4nJ3gT3cY7sjpshmd8iA647ZBVY3CFkQ4sQS+VE2JdmiwKPbClkUxJSwJ0eImhQi0kiky62vOGVm4t0p0NmYIwBcynR+ABlTFpEuzJ9UhBBxeNw0oaTEB8Fus+XgO7p+YvKzF5WPyBA5jI7GGLrJzouIpQWZw0T/ty81X39m6EfL//hbD/jJcbOt2J8c/ZC/oIkJIQK1kqxahRIVj3d7zKpGa01pFL2I3N+PNIWiuTGYpEgxQnI0reHh3nPsItV2y+HwwHFIlKtEsyopSsObN7kdZb3DKocr4dXRYREIBYWWjC7f24chQIK3faIaHavaMOGJCFyQlEYSleB4smyM4Cu7EiXBusj1tqapDN1oOZ0GFA7vJQrQQqFTbksEqZlsYr2quXm+RkjL69dHbvc9GsNHz1e8e/C408DFpqBsBe8fBuTdyO6yptmumMYJ06x43PeE4Dk85LH61a7h4rol2cjzl1um6BmOPatNQ3fsMRi8tZhC0Q0TQguunu0ojcKGiAiBzUVLSDD1juD3tKsyTwxebc7XWM6t65RCdsuuspas60ZcFBhT0l4WQCA6j5KK3jpIAqUksiyIwXM8HjnagBaa0pQEwE5Zl1dUEnTBOPi8YJOREAWVKTAp4aJFy0BRalwSvLufWNeeQhuMSLRtTZI5ziDGyNCfmIYJJUWeKGtqYvRMnacoFF4GHm5PBBe5uWqRCXYXK24fRuIkeXGxRSTN5DNj6KNnuyoRrWDyjhASd7dHVtstgzgR+oD0npvVho+f1wzdSCsN49RRbF/gQk+7rnnzcCJZwWbbUBYCGyJB+TzgYHKA6v3kua5KtFQELTmeBkSI1JuGw7Hn9+PxAw9wmIuLEgKVxKy7ndtCC5SRWX/Cktw8TwItBTwLRYGkEIvj8Fy4n8ajOY/95pqdX7hgnmUMVi7/5Ko7637mIjcX9iREzicST8Ag/3kZBZfnl4S4AJZ0ZpuWseunMfG8UZEEUT5paSLkPrdgPv4nALXQNzmriaVrdG6DiSUz63ysi/j5qd3ETPaE5TIsADLlkfgleDQLm2cGZwZIpJiTjOHcfjsDHHJ7MQmyR3WCJYE9Lc+YjRQXUfBymnPraZ6cmwGLJM2kkVjwKcg5y2gRh6c062jimckBMpBc9F0KRMxj+czi12Wfs3g6nltjUXAWMGtT0OxeElLJNPqcnD2NNKs15fqaNjmep56dCBSFQ+EpgcYoGiPQSZBkxA8WU2guPnqGEZEYckp3o0DWlsKU1KfAfe+5G8fz+X88dgSZ77F1qPnk+YYXW8PHlyXe9ZR1zUMXEMJhZCR5T1XWkBzaZJ+P8npLWSrS1JHsCW8UddugC824P+JGm9mHskRWCaESQitwPut2TEEIAjtMyKIhTDZPyDxOBKEISdKNift9REWBUYLJB5SRKCMwMbvuuuBJSeXgQCVyYKedGVQV8SGgUiRMluR91u8IgVYaGSR3d3tWdYEQMIWIlFBIyUWh+akXDd/4pETpyDe/dc+pj+waxaaUfP9th3Owbczs15KoCkGInvVaE31JWWtiCHifP49v3h/45OUld/uBymh0UeMmz3a74v3bjv7U83zbcvCJz95NoBIfNRvWuxXhewNf3A5UjaH0FgpBSBovcsp6drjOfin97MD79hjYlpqgwJLQKjH5QFlopBA8u654ttPEGLGD43JjMEby+d2J6CyXtWZTSx67wBChFJG6zCLRw2jpQ6JxI21TURQwjJ6+96wqwTg6NpuS9qrldOg4nEaEUQQUd6+OGCUxpeb0+VvW25qy0BSlodxU6Kam74c8Yj86SqNJDqa+pzJZhCuMwk6W7bbBrMr8vRcjKiVKA3VTIjWwLjOz6h2qUAgtiJNj6EZiAmUKmDxKgTAJmRLruqJuG1AgNPjoGA8OUyhKI/IqWkiiVIzHCU/AesdxCChjSUKSokJr8EHgJofROQZi1VR4D4fDwNVFizYtpIBDc+onhHBEF2naCoWjXZc4JPfvjxgEwbvcOqxKonCcxomy0AiRuL3vMWWFD3DoLe8eR7720QVlpanrkv3xxEVR8vKHrvjeq/e4CYSHq6s6j20/JMYxcBodyR24agu+c3uk1JqH+yNV0wCOq01JXUYmepSWPAw5sqKpJKoUjC4vFnRV8n5/4jAljCq4LFZ88rykvVrxrc8f6E6e3SZbR3AcfreF/n/28QMPcCQJfV4pA6S5cKbzCjs72M68znkyKU9UfaizESJBWLKP5gIvZl3HUtef+kDnov+0jVxEFDlnKs2rLWbYtICUlPKY6jIp9DSazlksvXBOi/eNyAiLKBaPH/HUrpFyFhwv4mrO/jRxAS8LIJqPM4M0ydMoNsiZ3Yj5xM7hlU+M1Ix28vmK6XzOpcxTRwtQWKarljiItLRxZiZJpDlNewYPy3j+Ev2wgEix9JYy5cLCruRuYz6fC2ziDBbzwcv04RC+zCCXJ2Yos0/ifJuIGUSBeoqHmA2tFJHADKZU3rFlJF0u7N6icQoht+mSRIqENDXl5iXWScbHB7TSqEKzWq/RJJowciEdlyqwE4HG5HNlkmDXKowIhNHi4kS7LlEiovyUx5YRrMTI9fOaEBXHU49Smv/hu3vGmOfTIgKpJd5bZBp4sb1h//CeVq75bNjzkz/+McdjR9PUGBGoqxoZHWN3JLiRptFUbUmUmhxcm4iuo9Qzq6cLpsnjrUUlRykFWhcILKowRCKyKAk+YscJqWsg36vjYJmmAFpzOFlu7yc0gm2bJ4omn6fyYopMwWFnG+sYIyJEopB0/YRIAqUVxmhsjIQUiC6ghCSJnIpt/YRSGq0Ux96ya0t2laItJF+7bPiDn7Z8ciXw08D/49s9r945nq8Mq6rk3X7g4eQojOaqlWxMoFaC5xuDSQERDSJFpmFEasXFVc1DP/JuP1FvR07vjnzjh25yiKXU2MlhSsPrV49sXwRSgtEmRl/QnQKqKFjdrPjit+8po6B2UK5L6qJCy4iQ2UAwxvwht3Pr7jTlG3lIE1pL2kLOMwEJ5yJvh4Hbk+ajbcmFEec4j0sNsigIKXB0iaLWHO872nXN57cd3RTopkhlDNetJGD59ndPFEZzvVvTVgprR9yoUEVCikQ3BvwUEcIzDR7TNEiTePFsTRJ5LD8Fz+mhw40TRVNlbUqhwHqaqiKope0+YaeYvVbDRBo8ZVvjUyBGh2k02iREjDnSYxqQAqYxL4iquqIwJVIofPToRs2mq7Baa2RtCFJyOkxgXc4hayR974hCcjo5ToeJaYiYUqOkoK1atHQIXRB8oNKSqjHUVWLqI0Z71quWPgnu7nuadY1pDYVW2ezSei43Fd4Kpn5kOh5pNg0P+54QwXvP4TRwGATJK+K+z4sGJKkSBCFxPjHZDh8i27bigZFv/tYtn1zXrDY1bSkYTgd26xVf/ahFBpj6kcvLCikjITqkzE7JbrRsNiWbpmBd5bT1sXcEoTiN2YVYGUU/RrphzAtBJTGFZhomhpBdzG87eLOPyD7wY19taNdwcj23DwPrSlKsDOPQUVe/P9Dk/w8AzuwZIxb9A2evF7W0oM4dEjFrUTJLkEeKsz+LkIs7sfiPWhhPK/8F42QNTcire6myrkaAmtssMs2vnytuZgcS/sxQwIf/LwOq/NyzGHZmGTLZkcM5WV7xoZCW3KYCUPPLM7DJrRWNmIWxT5ofkTLae9qP8zsD4mmkew72XIzynuirlLHIBz2h82j0Qgfx4fZ4SkOfAYaKmQ06Z4almWETsx+O/MApRsxj9md36g8CPz/Y5FlnM6MjGThP0iUgqScWLL/H3GicgdgchZoL5tza8ikbOiqd9UlyFjIv/jiQ5ms953fNTJSUEqNLivo5UxfwY4+3DrMuqVcbGAbq6NjJiZVwmARNo7moFAJJKRUqBVzfIYG2bVBSooJDCp33UwhYl+hGYlZr5K3gf3p1y7ceujzaKiCmkL+AjeCjqxXv7x+IaHat5eq6BiFYVSUvbtYEO1CXuc37dnhPWUmaxlA1FQ/v36O0xh3uUL6n/uQGjMHbHlOX87QKZC2KxZQFQgpUU5NSIkweoQzeO9yYHWpVKXEK+n6kGyJtpbFR4GKi0JJ1U/HqcWKwAScEUWXQPfmA0YLTcSRYaOoCU+Uohs46LmNFAPrJzkn3M786DwBcrEo+uax4ttJ846OKH/3qhvVasN8P/D+/N/Lt1xM/elXy6c2KVw8dv/32iI2Kj1YNjU5cVopdI7hcKybrCDZPZZVNQzc4qlphjEIZQXdwvL+z/Dc/XBCEYrT5d6oqEbVhHBJaCUYX6IPg/UPPs5uWZlOB0bx/dFxdVoxdQBtDqTRKuAw2EUwhEVJESYUPAevn1l0CQqA08/eEEJhCE6JkW2hu1rBZtRyGiUpXRAn/4dWecXBcN5rVuuD14BmsxDmPEYIf/WiFKeDQDUxjICVDiBJN9sdJwTF5RbNds7kSKKNJ1mFHxzjBFOHd3QmBYLeuaNYFiaxdsp1FK4Ei0HcT+8fs17JZl9Q6URQGgqVZN6hCIYuK4Xgi+DgbIO6p6holJFJJhJa0mxrChCpK3DQijQYnuHvzgJCa6CNFAf7R4nyiKkt0UfNwZ3ExYH3CKI33UBSKdavRRQ6nrVYqh7jaNMczRKwLKK0QciJ6nZnJEEghMdoJETzbXYMxCqEk4zCijaJ5tkaEyLGfeHPb56T10lDVJaMdub3d86yt2d00DC6xH6ZcM7xj3ZRYG5lGj50CUiWOp4lnuyrrX4wi4KmNmo0YVwSfPaN8FJRVQew94MF5vvK8RWiDnyxoSfcw8rDv0VqxWQmckOwfByoDfhopC4NNOXusGwPJOn7iWcNp7/BjxxhqDu8m4uBoLze0q4rDqWec/mvY5n/WQ4psO59X8UsBW1pMs/pCiC+JQBcDujwkLnLhPBMFeaxw0dbI+bXM7YvzFNBcnDM4kQgiam6pKDmPn8/AIIlEmHdpEfgu7Z/MZMyFcgYJTwzSwvtwNuETiUUmk518Z9O+NLMi4tx6mgv+zGTIZZobzgDgyZcwnVtCYnn1vLNJzJNE4uk9gS+11yADjzivihZQsZwzMbfz8iVaVmVpBj4zGyQykEszo5RfkmamBc6tuFnInEHfk54qa5meTrIQGfgFFgZuCQ+dr70QXwZYIi4bQsyz9FIIdJLn9tcyqUVKhNkXJ+dXAWmZ2hPZUl2VyPqGfvTYfkAIKJuaum5xhyNVCFyUiRsVaPC0CKooqISkqCVyNvMxbZ33OsZ5okUiQv4i1aWeT38iRser9+/5B9/6nLsEUgmUEmzWFXayvNy27O97mvWKqtIMLlI1a/YPJ772yRXrtSG4ic2qwU8n1qvM0DzsH7l9zAZnle9ZbVqkM8QIMWm8z0wAWhK9QyaTz2eIJJWp9ITMtgwxMg2e0UruDh3DFOn7RERn59YkeTwMnKbI4xQ5WTjawBQCqiiJ3jN2jiQUp25itJ6iKLJx2eQQRAojSUplprMweB9zTtf8WY3RoZi4MIKf/tqWH/vhLd3pyO987vjsTcf+GPjffW3FRzcVr9/3fOv7B3ob+eSi5ic/bllVgZuNZKMsUQYGBLoWVLFmGCdiELy/HUhJURuFi5HJJu4eBopSMHUWnTRCJqJKHPsRpCaKyHc/31NqhVcV+1MEVXB7mujESFXnn8taI60HN7NZQEIhlcJGl+30pcyLnjmVpjSCulTcNIq1hlWtWLWKrhv4nfcjSSqOo+Xd3lLIPGm2rSXJRaJN7KocsDr5zJwVEbwEJUZULNhuNuwuSo77HqPBlILD3nHqjjgvkYpMogLbtkBIxTh6tJGUFUgUwTlKI5DCsSoEpi354tUDd31HVWjK3RpnLUVVUBjNapuIUdIXtmyDAAEAAElEQVSsNggt6O6OjEP2VZJGUaYc8JliohaJcrtlOE083g7YMSEZEQhslCSlKUyJc5FxsDmjzAdyCEmPkYqyNWgdiTJR1mJ2GtZ0fc9xf0JozWgT7bqmqEqkyp8RGTzXlzVCCdzoGI4dodIYbSgLlafEhkTZNlSl5PTmSP/QsVuvsd6hpGS7rohCMk0BXRr2+56+69k1BZWB7a7h1fsTt/uB6CVOez6dAh+/XPH914+k1CBIVKWmbA2jnZiGKQeaEnMbtCmQIWQrgMliEFRVtrOIKEYbKQNoI7jZrtlsCo5dxzAGpJCsmorb4x6iotKC7UdbJIrOJsajZ9uW2Bjpupg/k35ZWP/eHj/wAEexMDXLYwELS1ESZ6FvBkDpXNRJ6RyAmIGHfBLPkhApLl2UJ4Jjfv/FkVjO48Fy7l4sLM5slTPrUeW5rbVkii/blGkZb86QZ+Fp5AcMU1ooisVGdwYDCJlF1XFp9Yilr4M8byeR5Aw+zuJdeYZO59H5mflYXKBzInE6MzALwXRmVBZWbPGziXHpIkEKSKlmt+b5XEfOjNrTRFuCFGYgJM+MTwYXeTuSJ6YqzG8fZwZJnAXl8zn88DMTZnG1PMPY3LKarykfPndmhRZwJnlqIYp5KiwTUNm7I87HI87sE3N7chFiG6TeEqaAPXVEHzB1RbvZYU89xlpalaiDpTGBbaHYFLAyCZ0CRiSUTFlDIAWhn5BKIAnZrTaB1AWy1CSXBZHv3x3473/j+3z7MKKk4OJiy/VHL7F2IA4ngp3YrlukjJyOB7brayZrkYXi5nJFaSYcAutHIp6iKbi8vOD+336b969vUS8u2Dzfoo3MmVPWoa1DFg26HhgPJ7RRRPJ4akwRGUM2rkMidWTqLeMQOAyB09ESo2J0Kaej1w29nTg5uOsjdwP0LjJ5SVCK0Tm604SLApdyXo9A5jF4AdHn6zM5wTA5lBJ4G/MKXylWhUZEz67S/J9+/IKf+PoOrQT/72+/xU0BkkTGwP/+f3OBQ/Cv//1b3t7lAMmXm5ofvml4calZV5JWegpdsh8TWim0UEghcdah6pbvf/ZIqSR1oRmj4O3JocuC+7ueMHnW6wpZZj+YQ2+RZG3I29cPNHVJ9bpDl4IoJKrSPJ4mLmVBWSd2hWasDOM458bN3x+axERmv5RPjER2SnGaImPMo/abjWSzKhimkbePgnf3I49e8G5/yt81SMpS8e13HRdrw9ooqlIhC4F3AaU0ZSHARnbbknpVUtZlbmdHwWpTI1RuTYcYaJoClOTxccjAIUWiS9R1jdKC/hhQVJgQ0CJhJ01wErMqkUbwla9dIo0AFD4K+keHdxPHfuTV9ydkFBR1zcuvXqCKiqY29IeOsbMMhzzWbqoCte+4erEhhsCzj6+QIgt4x3Fi6Bwi5ckgU1agwQfPNE4cDxaSIqZIxDEljR0ckcSpy4ykUjX1ZcX+/shwmnKEjJZI7QmTQyuBUWB0hS4rrIsMU8L6iVVT0E/QD4HYTZQGnq0rqk1FVRfcT5HPvjhQm2JuWSXsQ3adrqpstzBEyTQkeqeJsoCUz/uYPFsReX7TsH844io1t6WgXDe4NEAUeO9RPmZrgpCyzi5Egot5jF3CoRvZrSt8CNnYUsMYA6MNuGmiaRrGyVNKjTSeEKGuaybriTFxcbHmdBxIRKbjkaot6OJ/ZXD+Mx/zOK9YeIv5d4uHzCLunRmDJTvoSaCbZlHqfzSGzfKadA5ezH9hBkYyMxAJJHEWOC8VmjMgksxIJ+VWiJq3E+MidY5nxiamDEYEubWwADMx7/8i4k0z5Z6/lLI2RAiJmsFQBgGctS/wxEAwgyh53slZtyNnILfAqUyszGBCzPs3uxuLWdQ7t2iYcdVTm1DMKuusRTq3EdPcyUGQZG7xnDXU8/lSgidQszBKMyBZ2oshka9XWnKeMoiVcblAYm7b5WuuhJhNmbOHzgKLlm1mwCI+0AxFZMqO0QvblcGfnK/pzNrl8aozYM3PUyTREpNhHEe89xRFxXp7get7sJY2OC6lZxUdTZJslGAl84iqSQpjipxf4yaUUZjKIGMGwVLP93St81VOntPdnv/+//Wb/A/fv8cYw0effMSzH/oqRVlxOpz4/Lu/RWk094cTx9OISJGvf3xJd+zZfvySpioY+xPWweP+jsJAGARXsmZ3uWMYLP3QE0I7T+WU6EIzdSeKZs04OGIKyKLJrRI3oUTB6dixub6i706kKDgdHKchMY2BptIIaYihZ+8jD8cDp9Fxd4J3x8AUEzYqRg9BlHhnCV7gycVaCIF1DiFlngrTAmI2iTz0E2n2K4opopPEkPjRFzU//emOmwvD77x94NWbgd3KcNkavv6yxYuKz96d+PZnJx5OjqYwXF+W3LSKj69Lnl9LihAodYF1nugtZbshJLKvUZGpitv7IfvOVIKLbcUnzyoOxw6VxRUYo9BItDR4DzGkPLaO5nFKbPqJXdlAzIZ6d687bk8ja0Apya4SiF1J50c69xR5ohDYCKUEERKTzZq9ySWMVtwNlstG8XKluBsiXTS8P/bs7fypj5H9NGKURA3QFJrrTcnVpkBOPdtGZ1Bcak7Rs38YKB4mvG04nCZ8CKxLw+5Cs95oYkjYkHDOEUIW54cUGa2nFRrvA6lwRJ8YRcL1I0Vp2O9PbLYt292KUiiEStSFRqlEWdYEN+HGQAoeO1qUtwgj8TYx+IizDqkVRbtif9tTyUTaOgYbOdy/ZbVqKBqD0Rq90URn0RJCssSYBbJBGdo2M01Satq2ZZrGbCmQEsZkE8jBeu73I8fjhClVlgM4k0FzyML4mDzi4YipSoRSEAKV1hwHAaokqp7+4Ra0YdWWbC4bTKM53Q8ECe+Plq9cr5ncgEFQmzIDz1Jz6od8L6JYNSWn0GN9wAXJw8lytam5+rTi7u7A4+OItSdUdSQJwf5hYLdZYWTK7FFUyOhZbzRD5xn6wNTlycFDbzk5z3qMbFYKt5/wzqKLmsfTgFSGtjCU6wIRPBpFZ0dUremdZ7WuGUdLDIFp8qTfpzCqH3iAI2YwI2dH4HNxXJiOFM9eKxncPHEkGXvM5nGoWZTKU+Ai2cCO8yjyE2DIbRVBHhVP54iIpZWyMAcxyPO+5A9RBglitqwmze2amM7gZ+GYzuwET07Jglk3BEgZM3iYtSGZWZnHyUNeVS2+NuIMWOCDnksGNrPQVyJm4fXchhFPQA+x5LA/efLE+fzOc18LOXSeLEpkTxk5A41lu4kM4BQLk7a0smYgoeTMaOVzOudt5kIyt8pCOnsVz4Ln9MS8ieV3S4tOPAGn+couWOhLAJi8HzIu91TmfZ5E0Ism6IlxkgiQikC+riEWJGr8FPCTRZmCdnuFHywMA4W3rLWnip6V1KykoBGz/4bWqOSRMRckYQxYDzEzOkKRaUJj8r3oPHfv7vm//Kv/wP/1W2+RmzXf+PoPs76+IhaKNOsudtuWx/d33D4cqUvJV5/vUCmgomXTaqIAHzTWwfc/u+drX39O3+2Zhp7ddk0aHfv9HoIgWovzA6IqWKZLdLXBJ4efJqLWKJlIZHt9HxyPt33+Ig8SrSObbYFQGus9o1eE40DfJUZhYNYMDVPiOI64lJmMGCKq0EgfUT4wWUsgoecMNQCpFITM4lzuNogu+9asCvjhq5If+0pDJPEvf/OOrYY/8OmW1crQO8dvvD5wez8xOTBK8o2PLymY0CKy0YnnlyW7BqTLrTDTFExRcOg9YQBdGiY34IeOi3XFZ3cDlTZsRLbE/9b3Dnz9pqUxmqLUaCPZbhr+7W/e8mJX0Q8D24uad3dHvv82MIyB68sN4fGI0YnReux+YLOqWNUF6zbTnOPg6T0EkT25Ukz4ECm1ZLIBrQU+JvYp4TV8JkZC0Bwnx92QkKag8Ln4F4VmVyikzout2+OEHUbCQfHRTUmxKjjeWmxnqVeGzbZmVxds1gpdKKRz1I2mqrOm0U0eYwWXbYmdIlHO3wZC4maH6denEZUEVanp+56m0pSFxvaP2N6yqg1FW1G0gmmMHO4fqFZNziwrK4rgsFNOthfBsjKSeFljQyKMkYuLhsPDgc8/36MLCTNz46OmKQ2rtsC0FZiICAk7OFKYMgeeIsrkgnA89TiXDfe6LlBvDA/HkWAj3kHdXJI0DOOYpQ8u2xoUOqCVoCwN/dBRAKou+d7bR16/PnK9Klg3GiEF98MItWa8H3F3MIyOj282DAdLZSRJVRzdhDbg8VQyh3wehxFnLduyoJQlNZKpd2w3hmnsubi4olyVfPHFIz6JfC2CojSZUarXJS5EphDyIlGB1BppYbcp2SPxLtAWCu88WpYI8qSlUhIfPP04cbFpUFqijSKpPMbuxglZGaKQ9IPn1DtKLRmm/+pk/J/1eIIE2WlWprySySzDnBgt03m1n2ZxKzKn7S5QIjvVyjOrk2J6SoheMM2iFYEzcxLnNk8Us9ZlLsDEBRjMk1vMrMhSlOeCn8jMwJLRtBTomBbGZnH1zSAnkvL0RF5wodRStueWE5DSk/Px0pJ7IlvEB5ufWy1zSyirLubsrJnGkQt3NOdnLa29POqeZs1MrrtZaM08jj8b7YnsUxQgp0bPY10iRURMHwiYJcSQx3lTOkc6CPnEkixeP3Le9yex8fz4AARmYCTn1l2cwdvM1iyszPzOWUKTR/fFmYHLkEfO75VbYjPISQl1NiDM0+AqSWJS+FQw2DAzTpK23eWR5XGkcpZNsrTBs1OwxrOSEhWyIFPLhEp5wkRrSXIeiAiT7+E8PpeI3mEfjvz257f8vf/xN/nmIfDxj/4IzcUlpmrmmLWEUBKlFKZeEbljXRfUjUaXhnGcKK5qXAicjgO374/Z0dYnBJqL66vMPlUl9bokUdGsNNHafPPomsBEf9hTNw2+VySVzfy0KXHB5i/NB083RXQR0Xn1weRGZNT4AHbyaG1o1wo83I+BIYAXElUVpJCYrMf5gE/5mC6vVoy95f2hY3KeWua4hhg9SMngPR9VNSZ5ruqWT3YFL69r7DTQD56f+miDR/EwRT4/9HgXSCmyaStqlQtytBN+iuxaxbOrkraOFCSUDqjScOwDk3P89uuBul7Tth4fHMlF1pWBcGLbblFS8eaxw6A5DQPrsqHQMQd+CnjzYGmNRstsivf8ouX1Xc+bx4HNZUtZalCK0UVsN+JJxE0NIRec663m9d7jSbj5Pp4ixAAuggl51eFCJEnNdx4tD2PgqlG0CpKSXK5b7g8jNiSmlOhPjkpJVkZQKkHnIy4V/NarI93R8slVxcVWs6oFlU40q4KYIo8PE9Z6DveO1a6lrqC9qDCl5HSwWOfQVY1UBYd9j5smLoocqHl8GLi6XrFqNNZaTGXwPvDu3UDZOtY7T1UpxnHk/q7jo4/XRFHiO0dZaQ4PB6beUtYFQmStl9EaoyRXlyXH/cDx1rK62RAReDsyRocuPPY0IZFUhaTUCr1u2B87+n3H8WjxQfDQTYwOghO0dUm0mpubFrUrGV3i3ZsDoQtorTl1j9xsGopK0axq2lXJu7sDp8eJwudssjDBRiraqqQpsxvy/jhls7y1wYSETR5CYrUqMVLnybKYeP844EPk63VFVRoqmzieDlRGsTKC64sWZyeCizTbkhQDQurZ4dpS1yXaKKSSDJ3j3fsDz69a1kbSTx4jJVHErLmSmqSgyCWN+27AJ3ixq9Fl9gLaaM04nvAh0J1Gdtua/WEkRSgKTXCCbpyYnOXNfceu1Gdvst/r43dlF/jLv/zL/MzP/Azr9Zpnz57xx//4H+db3/rWl54zjiO/8Au/wNXVFavVij/5J/8kb9++/dJzPvvsM37+53+epml49uwZf+Ev/AW8/3LP7Z/9s3/GT//0T1OWJT/yIz/Cr/zKr/yXHaC3yEUrs/wzswZKLJMxWZBrZMKoLEpWQmS9zAwozuPYKSFDnj5aWhmCiJCzmHdp9Qhmi/N5nDrLUOZJHrHwLhnQyIXZyYzAMnG0ZAQFIXJiuUgEEj5lQJBBURbKRpHp+ZCeNEOLADimlG3fl/ZVyoJnkSKkmNkOMWtxeBqtfrLFmcHE+Y1jhlYiAAGRAoocgKiYXXVToEgp/1cEChkpZaJSUAuopaCSiUKlXBhmYBRTQMSAjHk/BSHrl0QugIqIImAIZMP6QEoBYsjXOc5BlzGe2TWREjJGJPE86p5B2/w3sfwsPohymMHk/HrNMlQtzhRevs7p/CnK03b5egopUEplDYbMlulCSCYn8S7hfaIsV1kM2k3U08SN8HxsItc6staJlQIVIto7pPMkZyEGhPCkkL0lkpEklc+bnyZODw/85ne+z//5//ZN/rv/++/wfvOCr/+3/y0XL19SVuWsScuMYAoRqQzV6gKz2TGFgJEFYYhUSlNIgXcjn33+ljfvD9gQciCh81TNimZ9BQna7Ya6ralazfpyS92uuPviHfdvHukPPSE5pDHEMM0BfZ7p5DntI2/ejjw8OPpDtvLvDz3RCWJSWCuIUTKGTPN/fjvw5jEw2Ryt4HzCR4EP8wKB7Fp8PA00ZcHlqsos6cz+lUqzKgo2laJRgR+/KfjxZ5pPrw2bMvHics2zj55xL3ec9DV723A8jNhhotUVz9cVX7kqaUoFaeRqFfmhZwXXlyV+6igLR7spKQrF7e2Bz94OfOdNx92h5/ahI0TJFCKqyAun10fLvnM8HgJGa94/dhy7iUikLAzrpmRb58mpY2957C1VXfL8qkVK+A+//Z7D0aHl3GI1kuPkeHPfcXSeMSUu1mX25kmCGCI5KFbgksQmwRjBB/BR8tB77sZIj+QQBacQOfSW17dHZBJ8sq7yd4GA63XJV541DDERleK2t3z+MPHmGPjW5wPf+qznMGRW9fZdx+l9T11oqrbG6YbvfOeRL151vPrigLORSifwnkJLhlNPu9JcXFXsrhqevWy5etbyeBh4/X6gnySFKdBliQ0Cb0HJgmbVsttWbFaC07HHdj1FEZFYnj3f8OLjDbtNwXrbcP1szeZ6jSw0QnjWFwVXL9dAwnsYXcImCFEw2USIEk+BRfN46nDWUZUVl5crLq5aXjy/4Ppqy8uPdjx7uaNoNfeHntefPfDu81tsd6QSnm0teXGzplwbVKEYp8DrNwemEYypmJzg4W1PrQ27yxapFT5myeDF9YZ206KM4er5jma1wk75uz9KgbWebVvw7GrFu7ue3/neQ9ZfycQQJWNU7LYbyqpge73m9jBwPCasC4ydpVCK4BPWLl5Tist1xfqiYkqJZDS6yoMLTV0ilKBqKgbnkLXm/jQiXGQaR8bJgSy4P46UlaFtK7zL7toOweQ9drIIaUhEgnB4PFpDVZVkj/Lf++N3xeD883/+z/mFX/gFfuZnfgbvPX/5L/9l/tgf+2N885vfpG1bAP7cn/tz/MN/+A/5+3//77PdbvnFX/xF/sSf+BP8y3/5LwEIIfDzP//zvHjxgn/1r/4Vr1+/5k/9qT+FMYa//tf/OgDf/e53+fmf/3n+zJ/5M/zdv/t3+af/9J/yp//0n+bly5f83M/93O/qAMvQoYIiiiL3R/hAJyNy8OJSzM/tCxYgMotZZ2YkIWdGY2aFUpyfM48sn/sTM0vAE/ux/OnL6dbygzZJhjZhbobEmTFIS6HmTOpkDkXJGTClszFhmrdLWpozC1vEzDjEs65k8cNJSaBYPHISi4le1hwvyp45KTuF/PIEQkQWRU9ahDJLrV9aXEKgU0RHiVHZFl/JrBVZjifEbLHvw9IGe2rCzV2tGZBynhZaptyEFKiZfUnpaaot798isGR2Gn5iVJaexXxFzwA3g75lci2e9TpLGzC3GRNZup6TqhMiP3XWKC2+yEIklIooMfNeSjGMBjtEYkwUpqQSijj0lMFxJSZemsSGwKZI1DpiyJRwwGOnkZhkXn06AaeEnyaE0rjgOE2e794d+M1jxytriPVHbH+snlusniU1PYeBZrBGUBilSVXN9vKa2PeE4FjVBS8vaoKUfPfVno+eXxOR2ClkFkpI0AafEs7nSaVq1WJMhSRQbBpuCLx/dYtQkuP9HUYpXBeR0mazSV3z2W/fYW3kcq2pDNj+iFIFkw0453g8er54bzlY+Pwhctt5Ji+ZksTFpcUb0FIhhMJZi/OBIBIPoWO3KTC64dA7ZPK0WrIzcN0WfLQ2XO8qUoq8nwR2yPDVypLBK4bTEboHPtmueXnRsl3lfe86y+NDz3UR+fTliu225P7hRLAOvEGvNO/f7vnOm4FvvfUMDk6ngcK0KKV5dD2nKbKpNa/en7B+gzG50BESj4eJ8dSwWUNhYF1KBq1411lKG/AxG89db1tOw0Q/JYw2bGrDyXoOoydEwXhwNJXBB0FbamJMDMdAiAkpU/bPMZoQAlKAUQojFDY4jmPgvrfclIqNkTRGUBfw+WNPEJLGaFYmUcZAOevMxtHhxkhMkb0LjLcTRkB6VrFdG9qrlkIlvLe0WqCfNXTdQHzw7N8PFI3Ko/C+w6fI47GnrAoKbTieJlIKrDcliRyV4EUC63n2bMUYIu/vO3yAy6stSZaMg6UfE0VTY0pDkjkqBJkX4SRBsI6i1Iha431EoLl9u+fd255VrXj/Zs/jukbXDSgH6cimVajKgBDYMRADNE1N20jAse8mfHfCTx4pK6RQXG1bdhdbfMitr9Mpsb8fkBLWuxWSRBwtwYENiaJRCAmbVZMzuJoKZUymv2tF11lu30+sNzk77vGhI6bcWosp0SjJT/3IBafOczwNlEWBUYb/6fMjlZYYlVA+UhcSO02ooiGh0cFjKk23H2nbCiEhxEC9XfP+/cD9w0ChBNtGc/m8ougczktqbUhKMQ6RT57VBBM5HAdefrRhtJboJqqV5vZ2wDlHnEYKkVCFZOo60IrHY09VFDRVIIlArX9/4sR/VwDnH/2jf/Sln3/lV36FZ8+e8eu//uv84T/8h9nv9/ztv/23+Xt/7+/xR/7IHwHg7/ydv8M3vvEN/vW//tf87M/+LP/4H/9jvvnNb/JP/sk/4fnz5/zUT/0Uf+2v/TX+4l/8i/yVv/JXKIqCv/W3/hZf//rX+Rt/428A8I1vfINf/dVf5W/+zb/5uwY4W3HEOYkTmbJcVufAefWe2wqcC+pS1Ga/PKQQhBnknAsluXIuc02IZbx8ru0fpI4/DSLFuTX2NPmUC+w8IURAkc4R84FMxccUs6nc+f0zNIrzvudpptwTnlW1WTyJmJFagPk14iw0SWfwtRy/mKe1osgum6Tl+DmDPJE4m9g9MUVi1guFWUOdnjQ3Ik+OaZEy+zK3qYR4GsVHJILIux7i4rT85BidN58ZMrXobER2K87txKz+CUjC/JpFzB34QFK0AFGefplbb/lgFmglZsdoxGxGOE+FBXhqXSW1QNg84no2W8osjxICLeZwdRIkyTjOKckI1qZA2wk5ndhJx5qJVZRclgnjB5S1BBUZZSBGCyISXC7g94Pj1eORt1MkVDWxagllTaxWqN0zKpnvhSwpm/OxYjy3TxcmE5kjJ7QpYL2jejliUse2hCkG/v1vveHHvv4RbdWjYqabVV0CEiEURVnSP+QVWmGyKDgEwXA8ELzl6sU13vd0Dw/YcaCuDckHfIDH4x7nHUIJMAJhJEYWuKh4ODq+uOu47SWvHgMPfWBEZ/Oy5T5JEZkkQmtIoJBUUiImCzEhleLUBZ5vV1zUASMFl5uCQgist3zr3Yl/+2akKRrGKFlvatqqQMqAiT2XamB9teKTy4qvvdB0duT164HTyZLsyCdfv2GzM8QU0MmSREAkx8Ot5ze+O/CtV5bvPSYuLxoGITj5yKebEi9qun7P85uKd5+deOgtH1+2vD/0rAqNjwlvfdYUScGqEHT7QCUVziXe7R3dBLuVIipJsJa6UvQnT0iJwihclPTDyDDNGpsg0BKaQjGGiBbwrFVcbWruBk8555H5mPARximnhrvgebCBVSEZRo8NiatWsq401jquL2t2dclDnx3VCwlfvdnwft+xKQGTqGvDy5c79nd7+gjTaEEk7gePLjTX64qLNi9GuoPHmICNgsfec+ojVRtwfv7eiZGyqRhGR387cdxPXF+0lI2hLDLz7iZLtSqZvKO/y/etqw2qNLSrihgCtsutKl0pohPYweN9ou8HTBJ8dL1mcJbN1ZZ+CnR3J1KE3a5FmUQjE0IrXHCEIOkfe/BQyIQfPESJLgwhRUypcMnSWY1OislFQoCbqw2nwXP79ogdA8+uG1SpkceBwlRMNhBiRGqTJ3mDRWuTM79qzat3B07jxItnV7RtQfIRdMur1wduVnC5KbnZrYjA/tjTtIrV1PCdW8vltuGTqwJvC5IEGyXHxw6pDE3V4PtIvx/BG5pGc/8w8P1Xe5TzXLYFpa643fdMg5+1OZ67+8imqbi8bDi5kdcPHQ8PA1EqhsHTC8nrU2DcT3x8VdBeFAwnjx0sMZTgwEaIQVKtNbL+/4Epqv1+D8Dl5SUAv/7rv45zjj/6R//o+Tk//uM/zle/+lV+7dd+jZ/92Z/l137t1/jJn/xJnj9/fn7Oz/3cz/Fn/+yf5Td+4zf4g3/wD/Jrv/ZrX3qP5Tm/9Eu/9L+4L9M0MU3T+efD4QDAjbF06cT9pFBSg9IsBXhJpl7ykJb/LeV7hhOclRuzp4yYdTwpZr+T9EFrSiwdjJRBzlL3xLKFGe1kOcjc6pHyvKUPJ40SsznfwqLMwCelzISdtSLn988jVk/meE/7nFtds5Zmrm7pScUMZPO5Zeg5zaLZxddFCkmUS4tLnFmiSGal5nc664Tmv+Q2XVQkIXMLJ6ZZaKyewIsEIyDIhD3rftSTozQLOyLO+6qEPOt/RApIqVEpa5KcjPiU2SnNkjq+MDOAyKv/8/VP573POikkIsan6ykEMckssMv9yqcJNJnbh0I8WQN8yWtpJrd8UFifj2FVFDTRI7pHVsnyzHiaNLELDjNajJoojCCOh3lCTeJipPOBz48jn02CYXVBfL5FViuEMugkkYvbQIzzPT1794gs6syXJ85slEDISNEYojAYtYK4Y3/fI8bE42mPUCoDe2e5uljjpg4ZEs16TWnm0FRdcToO+HHgolghtSZJi650bltqQahGBntg6C2y2RBFwrkBrRX7fce2VQSviKng/cPA2/uJ973gYUgcbSIIgxK5vTP4zFYG8upyYR2VSBgpSFpjnc/3GoLBeT6+biB49r2lGyOH0ZOU4mZdY9rNfE0NvYuY1LNrBCsl+WRb8NVnOVTz9jHQ9ZHh0PETP3LD1WVFvdb0j4+UMrC9qdFlwbd/84HvPnj2E9xsa46To/Oau+OJ67bkK1+9opaaf/ft1ww2sq7y53t0nquqolSCFHK7sakr1q3it193YBSFEnST42Q9l5c73r7vaGuNd4HBe4SAejZmE1IyxUg3RSTZHFJrSSUERiQuVyV/4NMdY4DBJlwAn7LgmCixNhCCoyoEiMjpNNHWEaklY4xsa81v3Vm2ZW4ROh+olCfYjq0BNyRMKUk+cro7EIaJZpU9dFKKEGD0kdN+RJgaJQTFpqbQgjJJ1quCV+97usHiLNjRsT9KLi+z9Ua7rqmuNTF4/OjRwnB8DNy9d2y2FZurGiOqPKKvYDqdiD6idJpNHgMqRpKLuX1KJMmAKRWqrFDjzNIO2fxxGh3j4Jh84lEmVnUgRU9CsX8cqVcNXaFIAnYrTSoMD52lFhJTVPgxUJSC7aZAFp7uZHOtERKfJrpxQipDIjsQExz1qkKXJaIqkVLMIuaInyzbdc3YB7717TdcbivqtkTIPKb/5r7jpVixu2wZxo7rmw2HNKD3R2IQ/OabE5EVn37UEH3AjglT5AWK0ZGiqRj7nhUQXbYw0CLl1iyBfnS5vTk4rDTYBI1MfHrdsr5sGR8ishz53qs7NqsaTSKpQC08ghz+G0PEA7I0OVcLSDHn5kVXIIr/LzsZxxj5pV/6Jf7QH/pD/MRP/AQAb968oSgKdrvdl577/Plz3rx5c37Oh+Bm+fvyt/+15xwOB4ZhoK7r/2R/fvmXf5m/+lf/6n/y+0p4CgYmq+mUQVVtXnTPmU5nt99FdJt/mitv/imKpbuVf16ES0KSxZpkvUweCX/KTEoiA6kssM0oJIOAzKRka5Wl/bMAmlwoY4zZ6wbmkeOU85XIr1lIoQWQ5UypbFiXAU7M7ZLFfyUtIGhml7I5xVmjI2UO0MvJETm1++yNPBd5GbPAGCmI8dxMQ8p0HgkXs9lMXLQvJFL02fU4KKQST4aE89tHAUpldkbN1wYSMc3JT3NLjBksKpE9X8TCNM2to8U5WZ8B3pw+Pl9bCXN2VL7EUqqsQxIZDAnSfK0yqFuIIDG3r+RZo5TPg8pU3bndKWLAiBk4p4gIi2O0ZhoLsAmTIjsBZf9AOTzyzDgulKU2lo12bGuJKTzT4Lifem5PnrGoORQ1D2rNsKuIpsDMgCVrt2Yn67S0SsVs85PZuwWkzTc6kFPLPYJhmEhG4zEU1ZqXz5/TPdwTyC2f02kk7grqWlNKzdVlQ2HUbAwZ8XYkhUAMnvu3n7O5us5FMkQKEahKgb7c4g73lOuGFEaGzhJVFs6uCoPUBpsk+73l/jFwGiXvHideHzzRVHniRSSSMpQmmzimlAgp5cT5OSE9icxcSikIMWBDRErHq9sj67bkMGYnX1loCq2RhSGZist1i7CW6XDLs13BisTXLgtuNvDQT7x/dMjgSeOJZxvDswtNVYKS89jstkKVBfdHz2+9C9z3IHTB5w8DowclA6WGz98debvv+fj5Di0Vm0LRGoWdPN2U2LyouVyDFznNWobEZrMiqoG7U2CzqehD5PV+pGgrjJB8795RlAU2JmyEEDMPPEWPdRl8JCJKgVaCQgluVgU//HLH/+EnP+H6as3twfHvf+cdjyfHNOVkdiEl61pRqsT7/cC6qkkuMljLNFmslAiVp4CebQ1dNyEpuNzUHLsRVavM0MqELmGYIq/uJhCCr10bVq3BR8XjyWKCpVqt+OL1I6SEKQqkLGk2NUpZ1FqTKLi761EiMQbH937rkV1tuFwVnGJiJUDEkYfHkdNpzdhPNCuD1AI/ZmZ78j3aCMqyZpws6WRp22b+rsw6pMnN+suizfd2EsiiZrIK6RLSJ3ZrzWbVMiaHC4rUC/a9RU2Ctm2JpWRyAe88p5TYd5ZSSz66WaHmBPuqMZBgTXYuHgaL95abXUHTSCIlkwtMLrA/3VNqzXZTs2pK6rrk7mHidBiQITKOjn6wWGtRQrCua0afuL3bY61jHRTPL1oeHh1+cgQB//6779jVz7m4qBgGl31unMfNTLkpDNYnRmtBJV5cNoyDJTIbGB5sXiiayEoE6rqiLRTKSE6jzZ8vHzh0PTe7NUWt+EphKJ7tELXh/mEieompFS56JIlVUxPJSeTKLxXu9/b4LwY4v/ALv8C/+3f/jl/91V/9fdmR3+vjL/2lv8Sf//N//vzz4XDgK1/5yuxQ6liJY14l+sziCJ3O/jBfYm1mGiLCefhIwLwGYpaZxhlUZCO+xWcCZpZmNoZKkL+E5zaOEgurAovDMHFumsyj5Mt2vEzEmCe3ZMpGY0taePZZOW8QUCzeO3JGW4Ks4UHMjAliZl7yCMUSNQGzDwzigxZGml2XxZkNSsxgYW6TSSVnPYcgLiNgiKzTiZEUQz6nc9GJSZJ0BmcIgZhZnxjze4iUhdtZfyRZfIlEyiPzWuRWnCLNLEucgU6ctVQ5GiN7D83BqiJhY0SqJxC0MGRpaU3NTJUQWSCdJ6oyYIScocV8eFKASllQPsNHFjOiiJjffwGfOa5DokhCY0PCp8B1ZdgFS71/z04NfNJaNm1gXSY0niAUh0PHmCRvZMt31i2nYk3Uem59Zg3S4qbNDIYX4JzvLzXfqYtp4YImOU8C+hjxgtmMLLAuDJQNr98/giyRYkRLjURysVnjxoHdpsoEqBaM1mLqhrpZMXZHVpc7DvevmIYjRiuSd5AsSdakpGl2FxiTwWxvBbevTihRsru+4HAaOI6OU+/xaE4uctsnTtHgh+waOyWBizlMtDQKrSQuZA2EUPJpEaDy58sIiY4RneBwtNggubhaYV0kCcW6zpoYKcDbgSL5bLWvAjcbw80lTJPl3dsO7y06WUqReHbZcnFV0KxLopsoKk25KjmdPL/9xvPuEDlOkndHx+RyiyYMlo+uVoxJcdwP2CC5HxMfv1hjXMA6wbNVxW6ladYaScAGQXQRYUqKuuR0mhi7RNdHOiv5je+d+NrLNe8PlrJKVFUFPjEOjhATQpd5nDmCC4kxBC5qzYu15kdebvk//vSnfOXTF2x2K24i7C5buv2I9Yl3dyMhwrouaWvNabJMk4cIx2PH24cD++PA87ZlXTi20tEqgQ05H6ltSt7d9zkpfdNijKepBJebhsMQeeg861VmiS8uW2RylDLwQ59e8ubdnn7wuBDY3zl2jaGQkdWq4tmzFTEF6lWF0RIjEi9u1hweO27vB66vGoqq4tXbA4/HiotNgUh7TF2iioKq1jQkUppwQuNjgT85itJQNSXrC0HlFTZAN0T6MdF1EyBZ1QZiYLcucB5O/cB9H7g9OcbTxKox7DYFRRnpJsfQBbZtw+Qcda2oCsFxcHQhMvUDRsLl5ZryQnOIIwqJjQrrIlVSRGnouiNGC0xZgFb0k0foJjPexnGxbTmkE1Wlc+bTKAhJcXe09HcnrtcNzbpimByVLvn0o4b948ipj3zcbLDWM4YAGu7e3VOYksFZZFIcDyPBaLa7FU5AiAOqqnj3/sDqqmV92fB437EpC/SmQOmCIBKPnWXoPU0SbC8bXu17xs7StGvqWtJby2kQ3O4nbtqW4APT6ChLnQ0gtaI/TKxV8V8KBb70+C8COL/4i7/IP/gH/4B/8S/+BZ988sn59y9evMBay+Pj45dYnLdv3/LixYvzc/7Nv/k3X3q/Zcrqw+f8x5NXb9++ZbPZ/M+yNwBlWVKW5X/ye6XAiMQ6TIRwpHMlUdToaJDqQx2pWGrdWfS7NC4WQJGnkBbB8VwMF2EviyvxPEnDk4Yn/2fW48jFjI88eTUXTTmvIsQMhtLcflrCGj1ZLX/2wJkLtGBmHHgCWuKJQppbZXN7SJDNzsgABFQOHDzrXBbwsYiUlzOQ3yfrZ9LMsGRhb0gQhSSImIXCgZnNyREMMWUmysecL6WUQCVJiHl7YZ6CCbNeRAt5BkacDRYTQshZBOzn48zgRqlcsKWYpchLCnsEEWc2TSwgMv+zTLLNTS+WeIjMKMk8aZVfyDkOQsxsmVBfGn2Py/kW8kkILQXEkNkbYp4emAKNEryQkevjPZdFz4tLy27jQafc6x8cj33kPYa71QXHqsHO7kJyzvxa2CfEMvKfPmhjzgxVnIM/Y8oaF5EQMs5iKvl0kwuB0Hl0G5F4nAJRlNSrBE6yP+wpm4KiLhFMICRD19GsVhACXfj/sPcnP5et+V0v+HnatdZu3ya6E+ecPM40vm6Ae+FSDTkqj+AP8BiBYAKyPIABI0ZITJggJAwTJGYMmFBImIkFYnAHpRoUlyta22lnnj6at9vN6p6uBr9n7TjcqlLZZUslpdjKUOSJ2LHfvddaez2/59smiVW3lpQz7fZakMoUWa0ams6TE5xPJ3JMmPUG6zTxYUYpg/EG03r6h4H7w0zI0sg8qJZu5XgsEZMynXMwB0pIMM0U3ZJyIqVEShmLJS55SwoaZz9Qn9ZinMNYC1g+/uiKVAEvYyUcLk9HQoxYBV0DK6PwruHHb2b6ObK2BRsL+6sVz561l5txnGe888QIX91PfP2QeZotj+NMSAmlC5vOckyR96eRa73i1CcOU89jPxND5o9/vOWr+zPfniPPjzNKJToPplX054k3PUTboQycZ8UQYUiFw5BJ7ya2jefdaeKWgtWWWAqDcKE0nWU6DbW1QWFt4f/yP37EL/zgFf/Tn/p5tLEy6KbMs9sbtutI23k+OY30p4lcNFOY8euGYZgY+pEhelZTAyXxth/44nHkf9gbXjQN6SSvJW4ey6tna8o0c5wzz5/d4Fxkvyu8uw+iDTn0zGPm9tmapDJGBV683HL3zZFcFG3TsFp3nPuZsWqN5jET5szUR9ptxzgErq4817dtFQd7nv3stVziIRJ0w6nPlEOPbbVoUTYdu33DcJpJKeBWHXEOjGPgNEYengbyFPBtR9s0gm63DTlnApFhCjWryHO9abD7K5zLrJpCmXte7dboXSbkxBREgP14P+GtY7X1KA2Px5kQTnSbltm0JHpxlFqJbtAkVp3Bt1KXcDxNDKkwnk9YayHDqnGUa18RZDnn/TDTGk1pvQh/Y423iCJiV9RahD7gupa3Xx94+WpLow27tYcx8e2XB7RRhBiZpsisFQOWNItOruk8Q5ixXpFyoG09IUyk5JhHg0oZ7S1205Dvz/jGMI6BCcnqmudA21iizoxBYiVWa8dpmMlFoY37gDj/IR9/oAGnlMKv/dqv8c//+T/n3/7bf8v3v//9/+bv/8yf+TM45/jX//pf8yu/8isA/Nf/+l/5/PPP+eEPfwjAD3/4Q/7O3/k7vH37lhcvXgDwm7/5m+x2O37pl37p8px/9a/+1X/z2r/5m795eY0/yKP1hpU3OBOYTzNzODLmTF5tMNbVhJm6KNZQP10nnZzzJR5XSaETpdIu6sOScimr0yWTqhfcKOnZsRXbqa8oY04plxO4IEbChqUP1FlWHxAbJXk2SwbLMgCU+u9KKbXEumbkIIseanmPVDQpf7CmQ80pzNJufREO1XdZhytZRPPlta3RqMsiK0NHygWSfC5J5lzQFwVFV6eatD+jDBlqo7a6PF/XoUVpXesxTP3/+kJHVOUMpSx2cVM/p0wnRn9Y/4sGhxKNVL6QaWK3X85ISWhVh8tSxdOXJnNQpJpvU837Wte8nkrZFeHnjZbhxpg6WSHBalmLxTMXwZ2uvOFlOPDJuud2k2ibiZgmHh8jd0Pmrdry2O45+RWpNt7rOrgKrSi1I1rVZOmqH8plCRhUS6en/DsFlIwyclxzRRNFf6RpXUPSjhAzQReMsfj1hjjA8ekJbVuSMWhvyeNAzuDbLcMYaRvP4XDk8f0dn376DNsawhCk+81YUArTbtBhYLVraNoNRVliDBz6zNv7idVOEbQmWU/WmbtTxKws5xzJFhpXCAq0tlhr2SmhemOKxFJovGOcgqCASUTV3lu0dWgFVjvR3ZV6jWRNYxybXcfxPBPDRJ5HNFKpsN96VivLR6+3DGEgFo+3gbUOhJjw3tG1CmMyJUpbcgQe7ya+elP4nXeRx6CZ5kgMkU3rCQGOfSL6zKfPHQ9HRR8y4ywJwl8/jhxmmJPiq4fEer3mOEy87c+A5sePM1/dz6AMfQwcQmDK8n14dxiwe02roD9PGB3EMpxlY9E4x/P9iq/en1l5ze3a88knr/njf/LnsY1Bo0nTLLq7rNHaUIri9sUN6+0ojdHDQH8ecGhud3u2jyduWsWb9xlLIPqGUwjsG83tzQZrLa7RvHresd0YnM58/vmJ41C42hRWK0/OCusst3vL0Abev+tZ7df0/chu3zHXZanbdoSocK0l5Ugyhv3zDV3X8Op1Yep7NtstJUfm45nrq5asDYfzzBxF7DtOiVg0jXdoa+kDnL7teXqc2W8c1mUOhzOucYQZ0hy52jaoq5b7+5H9akOxhbvjkXFSjNNM5xwxZ6yJPNu3nIdIqwxtgW6/wzSa/jxzHDLvHgZ0KTy7WqG1ZQiFKSdc1zBMAXVKdF5xc+WgcfRT4s39gMmF25sNeAspcnPjKBpOT0dSnChFcZoDpRj6c0+JmbZpaJ2XsLz1ivMYsEn0WCHOrNaSb7XuDDMTDw+FPE2cHiTZPejIs9sVzIHHp5mHPqBNYNKK96dEow1JKfpZIjtc0eSY6Tx4p1ltHEOR4EJnBXX3jSNTSDHydBi52nq0gd3akkKmpIK1nqGPOG3IcyTGgCr/f9Dg/Oqv/ir/9J/+U/7Fv/gXbLfbi2Zmv9/TdR37/Z6/8lf+Cn/jb/wNbm5u2O12/Nqv/Ro//OEP+bN/9s8C8Of+3J/jl37pl/gLf+Ev8Hf/7t/l22+/5W/9rb/Fr/7qr14QmL/6V/8q/+Af/AP+5t/8m/zlv/yX+Tf/5t/wz/7ZP+M3fuM3/sAfMCtFu/I0rWWMZ4bTEyFFZlXwZis7O6WrWFajiuyYLwFveakMyJXOWqzSggEkRbXdyoJjqiXHkOpiBEuFwgVoQZJAl124LKDVGaSqdqIiBiGrywL73dqBDwPWYlMv1ZJcX7NUCgMZUHKS7qfLwFO4LPwyPMjYY4oIN8vFalPQKnNxHClxK4iroQ5CWgS1USfJ0imVsFvovpxZTOUqa0oxyO11wYjqz7Z14QYZLDQVZRMaLEsHg0wvFIwGa+rz1IdBsiwLmqJmAEHIi+VdHDaX0OqyCK/ruVGLZZ7viLU/uOGU/qAJMlqLO0wv50uGTJBMoZTlPAwx0BrPc5v5SJ/5+DZiSBxPE48Bvkgb3q029KaRAspSc4FUpTcr1XR5D6oihUqGYVPPk+jILjJiCSes14RcOkLHai05IqlAzgFlJYgtaw2mIaoJ123xKvPqas0wTJwfzzy7ueInn39Ot2rZbUFhUBi0aUkhQXJkFVCdaB+00mRl0b4hFzi8v8esN/jWc329YYjwW58fwTXkqBmLoT8lpgRzLFUPpjCNlth8FNpo5hS5P49Vm1NPXC5YazHKkJOIYY1ztL6h8b5mEikSYkFXyILgN2usNqwaw7bV3KwKwzBxPAyoENm3lrUG3Xj2ey87cFtH/yRCy5/cF749KVLR5NCTU6QUjfeWu/OIMRrrLV8fR972CZsVrdMYa/nRtwPrbUMxmocx89Ux0zSWw3FGGc0QDe/7yJwhKC3ZLEAik3LhOE5ctY4pwlySGAW05nbV4nXmZtfw6dWaX/x0z5/6hVf83B/7lOurFf3Y048DFEO3XuE7uSfNw4zKklo8jhLkqIoETCqtuNo2tBp0SnRGcTqeuGnXNDoQhjPeKTYbz2bfMPU9Q0w0rlCIpNLw5ZsTKkW6VWJ3vWGzNVA0U0xYBTonrp91EAthKkxzYJojbeeYp8w35x5djliteHa74nTsWa0tzbahYHj/NFC0QTuNwWNcRmsDJnI8TYxDLX/VI/O+4+PPNhhjZPOmFU5L7MV+v2XdNoRieBwjtB2ZwtuHwNgP3HSeT19uSHNi0xSsEdOHXbcMfUL7lunpgNdGhvIsg28/9KJhay1to3n90R7vHXOIjHOgtfDitoWiOJ975vsZrSxu7ZlS5uEh0FrLupWy09M8M/WZrm1ofEPTOa6uVnzz/gAo5lw4PvbMofDxzYbvf3RDP44YHEYnXKdROqFUZjz2NHbP9c2OWHp+9+GAUomrreN86EnW8nxjUXFme7XimEfiPHG1XYvGUitsSkQs6+0GbTXWa6Ypslu1KJsxztYMMEvTFM4PEd847t6fMZ1lntN3mgL+8I8/0IDzj/7RPwLgl3/5l/+bP/8n/+Sf8Jf+0l8C4O/9vb+H1ppf+ZVfYZom/vyf//P8w3/4Dy/PNcbwL//lv+Sv/bW/xg9/+EPW6zV/8S/+Rf723/7bl+d8//vf5zd+4zf463/9r/P3//7f55NPPuEf/+N//Ae2iANMQ2ReZxpn2HSWwzAT5yMhZiY0zWqL9ctgIXoOqvD2EtC/0CSlOmxYXE1VjFrFp7ITki+KUkuFQ0FpU2kEkIXoO4WORdZZrcChsRdKRVdX+bKoiwhX8R2bOws1IUON1YuzqdR/+yErZ7GzL2PRksAswszv6IgqenHRqVRbPHVxX6iwUjmyOtvgtEaZLHZ1VTukisSRU4QWy2hCVpSsajAgdXiowjZTKxMU1Mhp0NXplEQDVLImk+owKLZza3Q95lo0MxlpTEaoL4W4rorSpCzLv2GxqS90nLxDisIqxaWSHS6dUrrG/puyBEHW8GDNZbAEXVGVKrjWhbVSdERehjMvbmaMC5z6mR+nji/pOLcdiQW5WvKTKrIIFKVr1YhwVMqaS/bSYsfPpWqejKA6y8AnBa8GtPpgcy/iQNJGo4whKDl2BiPPdx672vFyVWi84fDUs7KWYQyczhHvhR4K54FmtSFrzRhHSokYraFoVlfP0SoQpzPjOHF+OhLxDI8TXduxuco8fjtxd0hMZWS1WTMpxeEcwNhLRYhzBqcVzgpSBnAcEzkpVCzYolGmuuqMwXqPRrNeNXTrFu8bVu0aq0CVhHOW7W7PtghFqhRolfCmoEzm9toS7u7IpdCYBHpCNTKQdBuDsdIJVUoghMzX95E3B8Xvve15OEfePPSkBNYZnuYkSB7iVEpZkmib1qG14nHO3A2K4MTBFAo8DDNtdpynwrvDgdVmDUYTQmRONfyzCDI8x8RhiigDwyQJz/tVh8qJF1rz85/c0jWO/9Of+IxXrzc8v73iatvgO4XxHeN5ol01pBzwTYtrGpJ3oDIlR9Ztx9CPHKaAsyMUje0M1lpi9Diz4rqREth1YynBEOdAUbBuPU93Z+Ypc7vbYok8DZF3785465hC4f7pwH7f8PGLjpgntN+htEfpRHKyobz2hqRa7t6fiePEZtvijGK9aVElYxtHyuLIKqbS1NqxXTmMNURV6I8T/SmQU+Hl7ZpQPP04kTrH3VCwRcISnQXXNULFhsjhFPni/YGv7ybeHgIla15dd/zsRy23W8/1rsHYzDxFwhgYgd/90R3NlPjsox0/+71r0I7jU49SimEceHa1pR9HvvzqxKp1kDQvXl2DLhij0U3HyoHVhtubFTEH7u96vnzTcz7NbDtLiYmnw8x+3/LyasvD40B/7Blzy3gKNNpwfbXl7vfek7TBq4TWiUN/5Grcst848jzQ2BZtNatOY00mK8vUDzRdg9+0bLszaQq07Yb9yhEn+OTlGkhM44x3Cq8Mh+OIdZ6kE2NSjFPk6TjRZsscAjoVuS8XCCFhW8MwThij6Kzj8e7IynuOU+QUIp2SNvo/iscfmKL6//Zo25Zf//Vf59d//df/Pz7ns88++3+hoP73j1/+5V/m3/27f/cHeXv/bx+nsccfM+tNJ5HSNuNDoQlHpjOgCkZvMdaBKsSSpayRRcYii5UsmhcFTNVucNn1Uz4g4cCFToIlN6YOGMsAoyvltaAMRVWthyz4mSRoSR2MxPYMVHHtoru4wB2IHkjrmg+jxB6dVRUsl1K7ptSFplqEvJTvJCOjcJWqEtt6qcOYFGMau7h3ckU9ctWmwIJ82SwJtNI8nuvrWxKKpYSyxEKsR1mGlFKTozNGS4Ge1oveB4rRZK1IMV4s+YvYVpWERmMKoKXhFgS5gSKC6EJ12CxImBx/VYeTyzBaz58MiKomMC76FkFRTFnQHGoJabkMZqLRkgFFAcpA8Zk2TNzmAyX3fHua+Z205r11tT+rDkP1nJUi9RUoagO6IFYFRdECWSldk7SVrgOqpRQJbdMVQVs6mJbhVBeh/Ex13KUCqRiysigcCoUzmuw8u5Vj6yV6wTvN9773mvu7N/I9KhDnSH/qefbyBm80yrToxuK8ozEyJKWx59z33L25x7mGx4cT2rVErXk4FcaghCLLilPIcn1rwUiVdTLfao3GkGLCOE0p4jCyzrJeeaw2hDCjrcjznW2k2qFtWa1brLU0vqkp01rakbVDlUwuiQWHWhnNvgEfziQKYY4YoGssOU1sbras1g25KFJMnOfCu4fAj76J/N9/78y7u5E0zzhVdVtkjkNijqV+BRJXm4Y5FMzagLEcRkGg+imjspzzfgg0TYcyidMQeBqOOOfJ48wY0iUNXTZFWhxkWYNRxHmmn6QYso+RpvV8/7OPWd8+kyDGxpETTGPGesXuqqXkwjBnhjEwzgWVErurDm2shMApR9deMfaep6cz1lhu2jWdzeS54E1DZwqqjEAh9AOHp5HpPJDnQC6G//r5ezrvuNo0/M//08e8vZuYhozvDN5aHs+JYc7EMhFDYLV1KDIrG7jZO5zXfPrqGfM0c3zqibrhNMzcPYxs1w3bVYe1jhAi45zISTM8nFm3DcZqtp3HOzgcZr5435PmmfXKs+osZbIcYiSGkaurFYbCsZ+4fwo8nAJPp4wpmu/dbHg69rxeZb73zLHdOcgzfT9xGhL9WHjqZ46HkR988gzTedCGGAPdyoHRrDYa1zrefqv5+LlnniIPjz2RIoNayczngZtdQ9MYvHN0+y3tdcOLbImrnv11y+Np5CdfjqQCeyvVL6Eo5pQYTjM779i4lo+ed/zo80f2bcPHH+1RKtP3I+vG8fJ5x/FQqxO2e+mDGhJN45mL0KdeN7guMQ2BZ1vHF8OJfphpOs37xwM3a8+686QEcwgMEcKcWLmIZUYpxWkIlFjY7Tco7zhPMxtj6FYrHu7PkJRsTnSmNWC0JhW1bH//0I+f+i6qaYyc9VwhY8Oq0eQQySkyTT1Ba0ajaNoN1liWBNycv1tbIEhILh8Ww2Xnr6CiC+qyWC4VC4s7qxC4iGaLQhl7oaAU4lZSJYu2o1BrBcCihVOvw0siYwBbBCXSSviVhf5ZNBtKOK0qAq4EV05QRKOxDDW5IjsLpbMMzZZlgZZByVTaTAL79EXvwfI5FWQlyIitL7Jk+0TkfXhliFmRKin3gUqrNQyX1weNiI0XdCQjLcMlZUFXtEIpW/Uu8TLkyMBR6bOKkumKwOWKzKlS9SmkC91Up8R6NtQFUivoit6pWmUhVJW5YCmlDiByPJRRIuSr1CPVKWYYWJNx7cxPxsRXesXZCDWqS646LflcuQJ2uSIMWtWUZiVm1qJA6apPqqdB5XIp8yzV8r/k+Hyg67RY9I1MZWHOFCxFOVAi6hObvqLrOtY2oEpk1XQ8u17V18+8eHHNdD6TosSqd63DKLFqG12wOuM6L0NaTKQ5sF53jFNGGcdTn/jxtye+fjtSjKWfMjOwbVdMIRNSJqlMykgD8fYK7zvCOMkmQmuedTug0LYdznhOpyO7zU5GdqNw1kl3k6/i4rJ81xRJa1ROeA8pSkCdUwVHZOcjMcwMWYGKGJNYOUvCEiIiVnaK41PPN6fE528Cv/0u8/aQmEKkcRZSQTspspznTCqKKURxlqFx2hCiwnhLzIFYqV5bMjkqktNkZVCuISvDeQg0yE1fsn9EF7gI2p0xTDETa1xFjAL5DyERiqFdb7Ftx2mIPL/uMDZLaq92dKsNOSf6MGNtQ9+PxHkEp/DeQTEUZbDOsdpaxllo91Xb0r28ZR5PKGba1uOcIceRNB7prnoe3j3R2hXHXnF/ONOPmTenI8lZnt943r4bePP2yLMbx+ublpXXTBEOceB41/N0mrnaeKbRs946Suix1tJtO2wI+I3HK8s0J8ZhJsaI9Y5GKZTX5GzRRrJ/5hTpzzLYvrpVdOsN1nuMtzw+9qSgwHjGsfDw9siQDV/cT8xT4uc+uuGj5x1PTw/84Lbls9cbhjkyTpK1dRwyw1Rom5ZONey95+WLljgOfPX+ia7pWN9uORwH1BRZrROdN7hbw6HXzMfEPM1Y5yAEOlfDTBO0G8/79/cMQ+LF1Yb2tuX+2JNz5vWrK1BKHGdBZAAr1+C2grgmrXBG8dlHO+4OI3enEy/2LdudYYqJcFIMITNMYjH3WdFYQ2k9v/2TA+cx8/Q4SiBgzjgUL65XfP3myCe3Lc93HlsKrTPch8AcEt43pJjwWmNVJhE5jInYJ65XA7Fk+nNgoy2RyPE846xlf7W6GEyeqZF+LAzTBwT9D/P4qR9wQkic+wllFN6saL1DtQVTAlMcGabCpBWxFHyzwRovO/ea+aK00Bq5ZNSyM646FVUniYKBqmfRSnAQI5WeNbMDQSTqipSTiI2XzByN7P5VriLgLD0c+TtN58QkOTtKEJwGVWkZ6XuJRYanUjUlFxEzGVMUTmkihUnJTVeLiIZlfdbfEUMXRQ0FVNjKFNm6aBskYVUpiCVXnQpUpQxL0aRWioRQehkFSrJTUq5DXxIEyOgsr135d3vpAqsIiFJoLWK0ojIYQS10/fuSNZTERemkJO0u16YFpSWsTjI5ltA/XdGwBcFBNBWlVl58R0JUKpqlla5C7wWxWz73ooaSvi+0LPYli9izFIU2ibCOfFEsB+2YF8eVVhhdy0NZQgfroIMsfNL4buoxrDCRvjSoAZmiq2OKKtSmVNpM18Gsur6MBWVIMYOSViplTA08LDit8QY663h7GHi18rim8Dj0oA2uXTOcz7XsU7Httuy2KwwBZS0xRIahp9vsqg5F0W72MPQcDvdk2/Dlmye+fDNxdwpoa8jIcZ0THOdE0RbfdVjTcLW/YdWtBMHIiZwLMRe0MvVQyFBvjWLTbURroReqsGCtqd/l5SovKCPDfkoyzjaq0BjQJYCG8wgpQAqBtrWcxxmtDSmC84Z+mvkvnz/y5fvM54+FN4Mix4hSivMwY7ShFAmSE7edEImtsZyniGkakrFMlW4ySmomtDYok1EaQpLjMGb5XqcxEHMm1E2JR3OzaXBGMcyJwxjrjC6VJyElbnYbCY7TcDhP3GwcIRT2O0+as+iu0gnfemLJPD0NQuOajsdTweqZxiu2m5p7pDTOr8ihl7tEsnTrlpJmFBnrLSU3lMbj1y0JzTk+oFXm4+ctxjh+9/Mn3n/5hBoM++s1u+1aEF+zApMZx5miFSVl2sZznBSHdzP7oLjadJzvRvTjzPXNRtw4OTClgvcyYC33odMYSVkz9hPbxnKzbTAbwzAGpmz5+rFwGo5Ya/HeCm1o4UFF7kfDu/c9N97wy3/mU3b7FW++fcOVTTRrx3kOvHvXox2Mc8IpQ9c49tuWF21D4w0h9eSs2V+vaVqpiSDJu9Mq02f46qsjJM26cXzyUYuxihw7hikxzQmlElOcmabEPAYejwdWZU3C8Pg00zYG3VjGIBtq1654+3jm5srT7T2Hp4mbXcd+bTidJg5PAzZk2rVlGCasUqw7x4vrHUY7ppSYc8HmmRQKD33mYZq4GRIvn+3pp9ozqAqt1mz3jjkljC+ocyDMkZA1x3Ngt/UcToGPdmtKiqQM/ZjxjRIdGYqulSbB85RxYxI5hBF95mmKHPr/3ib++3osibnTVMhdouk8dLKw7+KMCoHz0DMm2UG0qy3GiBU4saTcym4611kj17wRxcJ0LDQOUHRd/JcbcH1eVsRlQa10VqqUjFayqJaawUJO5JxJgtnLQFSxaVfTSH0SR41xsrOPaAkIq26jBa2pclxBEpSkmGot1QrKVKEwSl6h6lmMBOdgtaAVRpdL5ozVBWNkQLJQF/FMqOWYuiIzGnFnCfJQKtUnx0aQo7qrLgsQJAOM0lp6carIGJUv1N9CtclAmC+C7DrqiJg6Z2ToLKQimhoRVy8DwXcGsgrYaDTkLEOOWio5FnpN1bJPdRlqljBAofxK1ThVRK8K0lOuFGGBROKgBctZUKTKSMp4rJeh9MNwWpQiJaHZJHRxoRxlJ/8hOVtf0qFNfc8l1/G5Tm9FibCaAiWli1ZIG00qsQ63ilWj2HQNX9/3NM5ztbWchjPPth7rQIWINhpjDZ2N3FztRJw4BZRV6BzIYQYKKYygFcY2DMORoDe8eeh53xce58KspAByVhZtG2IyrHZ7dr5j1a2wxtF1K7QW9E5bS84Ze8maVJfjvllvZQDVuhboItRpyZeYgEX3pioqqoqUEFot5367bojzACkzTSceTz2RljKOdF7RdZKQfH935n/77SM/eSrgN6giO+Vhiiir0cZyOI2MIYM2pCRDu3YQc67ntjDGiLEao7J8v0wN6lSGpDRTTmQyoQjyOsdMjjLIr7zjerdmDoHjOFfNnVxszhqstljvWLeenGb6fsC7whgn5iD6IOsNig3DJBUAMQ6McxHrvHM0jcMpTUmGpA22a1g1DSV6oBCnHusaSpb0YinGdRRriZNivQm8yw/M51koorXnf9w9p4kRrOKuTwynQCyKb9/f8fqjHbp1vPioZThEzmNhipH1ytGfZ/rzmbY1ZOd4++7IPEdyRGigfGa363BWXHTOOvQcaD3sdxplEodT5P1x5v39kTenyDBkusZxmjIvt47/4fUOZxXfu/Y8c4mb/YrHvuftuwd0ntmsWuao6NYN3c5yPGeMhc5D0xr6eSKXwHp9RabBGk3JGqUc2hXatWKaFL/9xR3DqNk1juevdwxz4KGf6HwrEWXGUYjgG+4OiRwM3sEYC9/+7ju6tuNqv8U4RczQ2MRI5pv3J7pVy92XD6SkCUkxjolPnne8uG7YdvIdKCozTYFRaYaQaVcNu5XisVf89k/O/Oynnr0rqKsVh/sjQ8yczgPblaOzlsE1DFOknR0hQwqJ18/XHDeZr98emebA0zFx0xpiKFxt1piVQZeE954yZMKYIAe6zvL4ZuBRa1zj0SowzYpWKx7Dh1aCP8zjp37AsVbjDJAjU4h4bzHa0PjCtnOCVoRAmA7MOVGUxXfrKqitE43SJJWEuZClm1JSvYnygQqhXGiCJR5PFr1FLgqkheaSJN5cF+mS8oWKIqdq6a2i4ZQkObgkMEYQFKoON0uWDUTJEEChldg9K0hxSXgt6CrOFerCIwupyh928EZ/cIJZJS4mqxVLhYGpYYJLArQqgqKkJKFqlXuTRXXRI1ShpSwwudrkNSpHrBL3hKXSVCVjSXgtripUkYWh1NqKUgm5KvRVailsKDU/SMpHjYGMlYBBtIQJKi3omFjIsMagaoKxfJ6qTqq78FTyJSNIBk+BTZfjD0mG0uVzF3XJOIL6Y2pSMpfn1ONQz5VRGmPkeIvDaXn9OrhqQejKMuQg4ZGJQq5XndFgcj3uqJoWXdGnJQIg51rlUIgFahSxXKNasVs5Gu/55r6HnPn4WccwjlhrWXWWcTzitIhHGwO73YoxBg4PT/TnE87Bxy9vWXUrGeKNON+GeeZpKNwfAvePmXNQjFG+Q8atMTja1ZZ2tabt1oLOLTlLRhNz+dCphbogblzyf0BZWwtfl7/LywEXShgu/w1SH+GshRLJObNpFFZFUogQA+dxJGtDSBnnG5KCpAxv7kZ+8uMn/v0XI7PyvHzlcTnRp4zVloLhNCTmAHMRVZPRBm8FV/NWELOEoh8D3jvZJJBFOC6QIyVLhrmWk01W4siTTyBi5LePRwqFPkQRqFca0lnL9aZj17Ucx8g8Bby1PL2PxGvH06OUOj57buhWTsTaRXG922O0ph9HnHNYo8llJs6JHArOQrP24DtUSViv67lwlKgpaRKkqYhzLmOYi+Jwmnlxs2YKM4/3E69e7phiYOwzz19e8ebuxHQu/OiLg1B5zrDetlztW64byafZXXty1jw8nDieTmxXHZtVy3mM6KLY7dYy/GeIMeP0jGk11nm+fpz58m7gfJKB5s0xMSbN9z+5YZoSf2zteb6XHLWQAkYF/NZxngLjOeBz4ebFhvvTxPPtmqbpiIcnxpxgnnm+3aCsJgxzbS4XFK0/Bcnoypk4ar746ohOiadDZN1oNq1j6k8Mx5HSeqZJdGTv7x64XTdcXTc83j0SpoB2CpwTIbhzKOdwDZRhomtaupXFto7HY49CBsNzP7PWDf3k0UR2uw5tDU+HnlXX1MgGeHc34Kzh+mZNsWd+68tHfvBqS//YUzRMsfD+oac1azYdfO/1FYeHM+fjwP56y7u7I+tOfr7uGswEYYyojWOIgRdXLRRNiJH3p4E0z+h2zaHPzBGy1ZxiZqMijTPoHGg1XHXq/7cF/3/3+KkfcLQGb2XnnOZEcDPeGlFwexlGlM6oOXFKGqYzxQgHXuq2uix27pwui11ERIGqIiapCGIh9m9Z0VReFmVVrcf5At9cTl8dfkrtpdKEOgDVoalI50nOsryVhbZStewxJ4yp7U81lwWWMEGBaXL9gdUsJWJURFwpK2QlaXRFRrTobqwWLY6lDji6DgGlvlgd2yK1EmLR+tRAOcnxqdk1ShCbCxKiQGuDpaCJLMnEqshONSkDSjRRJQsSp0Dom5hEU4KuIl8uA0FCBNOqVHqqfnCla5ZP1SYtqFauC6MgXPWYVnRAlf82W0dQETm/JVckpHxAVrJa0CJqK3yWayiDUnINousoI/wc1FwhVW24SukqNBeHWCXPyEoR1YeWd1OkAmSxsKO0DMeqXjNq+Zy1+6cI9F8qsihIV8QqzdXWob3l28cetKbzlhLlnKy9ART9pDgMM3/s1YZn+5YQA198c8fh7kTrLM9uN1i/olm35DKhjCOOE0+nwFffjqRsOIXC0wTZrNjsr7HNisZ3ONvIoFqRK7R43HL6EKxJWbBQ+YyK6sxQ1LgDyX4JVdCvUBIsqeUY6QUxUwXnrNCJKJwzdD5zPB/JYWI8nTFuy85DmXue+oy1hm42PPQz//Gbid++C7x8tqIoI905gDaGvg8yiCiFMRpnxZHXeCvor7HkAiEmxnEW+7izoEqt/VBgDUkXhjmIDb4UYsrVhSJ5JWNIdN4yzrGiQhqrFNZotm3L6xfPePXRc37m+Zq1AWLAaOj7A9p6Qh9Z+YbG7ejWHX614vg0E2Nmv9tBSRgj3780z8R5YDoVmmaDaRxYhbZyD6KWACsjSb+lFKxVNN5zdbPjzedPnM8jz19upO4iTaAt1zcdd+9HXt6s2a0G/tfffmDuC5+93BCOga8OAynIUOJbKa801vH6ow2uURwfT6A0UyoMTyPbTct244la83tfPkgukrZ89ZD44m6kawzOSvL1L7y65uPbBtdqFIGHh4kv3/d8fLslrwz9eaRTlpe3OyhwfzxyvVrxyWdb7h4feRoTx6eJH7yU7rXzcWK76ljvGsa58HCciNPMze2axjc8PhzI08SxD9xcrXn+bEPrDCGOOL/iMGXmpzMpJTbO8fx5hzGZ1dYzkAla83SaKRnOp4GXL/bgLNtNx8PjwG/93rdVmGs49xGD4rP9GmfheBzYbByPh56ua3lxu+G8Tnz9RhxZRkdcpele37T86PNH5qnlqjP8xzmy7zqsCjwOE+vNCuc1r75/w49/dEfTwnrrRK8zngljZiqa45joRrhqDYRJCl+tYpwTV6uWmcLTkHh/SjxOhZfaor3CNpY5BfpTT7OYWf6Qj5/+AadkjDKSDqkKOSSyVhgDbePIOVKqrqSJkTmfCdGSjOgXUBZVqkJFfbDxGiXDDRW9WfJSFtP2smtcNDE51QLEZbhR8noikK2Dh5KbulfLjCQ0i1Q61GqJqkCVhNp6164uHBE41/e1LAZlGUgWrYmE6hWgVFs2SH3DMnapoqsLq/Zf1deWZN+KDmQZxwQ0r+9hmdoy1SUm70/XsL6luNNU/Y9BhkVTZLABPrjK1IIuCH0imSjmEoOTkvRoGSOIk9Yikl2s/Gkpl1QF57jok/KlWKyGNhrJPaJSAor688kVXaMeZwW6Wv9Lpey+O6jK6WIRKtcg5Drg1YVYjNrUeUT0MYrLEKRLQanayF7k36o6wOhKq+hlGisfcpCWFG4JLaQOu9RMonwZgFIVJgntmjBasdutSGjunqT8T5WCLbJjN9ZgavTAcYTTZCl0zBEenwbe3c3ECXyraDYt2nv6/syq88DMeYh89W7kvs8Y1/I4NeBarvZ7XNthtMFpixMI6yKVUfV7E74jnwclQnIERVXLsS/1nKHIqeqgilBBCRn+rZLrUQPOWXKeKangtGHtNedx5Hia0MysdtdMUyGWmbuHA7g166bjnAwPh3v+y7fiLNq0DlIm1PtJmDMhJhHkWkMsCe81KyeVEilB13jGEJhiqp5Kwxgy17sWZRQxJbTShFy4f+qJSVAJ0WJVj2PWGKOY5sgUklzPKpO1wTWO/aZlu2kZU+HxNNEaTQ5nSgzsV7fkOdB5zXptsF6GwqFPsjkolcZ2FucNxjak2VACECdprHaLYSIj2rcMKor2qXN4L24t7w0fKc3paeTwzXuU0nSd4/3TyO+8eWC1WnPTWdI04lThT//MHmsdhyHy7iFgVGG3aVhvO6YSCXOmWzUchkA6znTOM8eIdx5tI9rC+8PE2/sT242gV9++n/nJQ8D7hlAit87x7HnD9z7dM8aRd1/esV2teX9KHIZMZOKqt2w7JxZtVXg8TGzXHU1jePP+wNv3I7pYvv9yg9GK9+9P3F5vaTee86Q5DhNzyhgtXWuRCYiU1rHRmt2mIcwZHSOFQNM2bNXIXBTrzZb91ZZ+Gnl8d8Aqw+3LLVNOWC2RJ/0oFSIxzgRvJfdm1/HjLw9YBV5XV2BjJElcwSlO2KxokuF0ijx7sWaYoIyZV6+2nIeAKYbWKF7eNjw9nvj00yue32z5L9+c+d7e4Ao8HQNXu8jNSoZyreH2xYavvn5imCKHU+A8KExSPB5GoZRVYX+zpowTrTMcx8wQwmXTN45wnHte3lwzJnFhqVywf0STyU/9gLNqxXKorKqLVxangWvwjZGFV2dMkqyNMUd6FRjTTEIRlwruZVWCC3UkWpMPreSLtmSxCsuirkglXTJOtFkQBSn6VFmGnAU1KEAs1a1UBxtBV2pgmxJXkbAM9Tl1gRS3VM07QZGzqaF7ufL7MhhULEJ29ORL+3lZWsFLQSt7Kb7UdRcsn72KrytKpdHVBisYSp2liFJc9UEXW4+9yrIgiWC6oHKhlChpu6rUwDlQxlzoNFiGJxkejVbEnGQuKUreA3LTvdQofEdDsyBJOXOxkANinTaCmMj6YURTRKlW8Fw/g6qL5kLPCZUFSZJjqu5HBtaac11kcEkpU7TsxFWpiOEFhZBMIHFrVUos50oRKkql34SuzPVaoS5G+dLOLs9ZBrRyGQJEH1VpU7Jcz7lckrH31xvOAU5TIuWMLonGKXato/OGHCObtedpDLw/Z9bechojz69XvH2cmJLh+vqKtgXfrIlJEeZAt9kxnEbevJ95PGmCWjOVDpoV+8ajTUupEQAOcEYGxrLwDEoRUZQouhURbiVBOqiC6orGKSWfMWapM4mIlVrlJPL2oslGqEPfSKhZiUJPWiPvoZ8jj6fE7bNrxqywrSMNB4JxrDd7jNccUuYubHgKhu1GS+4LVeOTxVbutME2DVMI7DcOZ6SVew5KhOBWMY8ilrZaE0LAWIdxlnGaMdYKAhwzx/PMnJPQU4Wqx6u3IoqkJS/hlaVS8VbTeodJM6k/kazjbERX9fx6Q2MNm67j2as97XbPPAWyTkxT4DwWGtdICq1TGCuIqbEG61vKOCOTTnUvlll+aSHZ6psAI63WVoE7j6w3nsllhscj3caztvC9Z1t++8snDkbx8mbL7b5Fuczb08Tbx5kc4cV1y3rbcp4Cd8dAGBPuGAUV957+MLLdNjiTwXgOY+Lurud6v+ZxigzB0cfE9aqj84p147jeeJzV/Mffe8MYEitlOMwzcyo8zRlbJj67cmxvWk658ONvnijJ4OLMn/njL3k8nrjerCkW+nFgOmauNysicP8wMKbCMAS8NXz0eoW2mcfTzOGceHs30BnN86vIfm85nhLeGK5uGuYhE9qOgqCA93cDJUaunnuMU5z7zH7foHYrhmNPMYoYI3d3R8YZjG/ZrFeUUMtNTcY3FmW0lG4+Ra4by30JvLjaQNG8fLWmf+xRVtG2jndvHym58Gq/5s30xJs3B1wu2FQYDol4pbg7Z/YPnut9y2bb0vew95rdStxdY8hsvUdbw3Zj+fzNE1etp20Dk2R2MI6BtTc8nCayazBxZr+xZBW5u5v4udsOtfe8PfR/JOv/T/2As151EEcKCmMtKSVKFleMc4bNWmGs4thLhojJCWUkPXLIhqh01VHUBNtFDUpexgRptKayA0V2/hQt/UpSGY7OWYLsigwm3ihctSmnJJ1MJQnFEVImqoQ1Rm7WWlpaIZOQUDBX6aHawHMZnDJLjo8E6y3aDUlrzjVY5QJNkIrCqlIRlPKhlZwFKCgsHVVUqkAgdclikX8lPJFcwzJILEnIpRQREGh10bOYCvWUUrNpEPtzMZqLWKdUCqrA0vab6/NzRcxUfR/SpiGIjrZ1d6EE+bBZxtCiFLFE0mVYUxWGr4OG1RJ+p8EWGdqWXCDJ+RMEQPRIonPSyohrzHw3W6imJCtDLoWoIzmDqRqSxb0lQ6JkmQj9Vimqem5SWfKIK/WVcrXLK+JysS1WMYCLC06GwaxkCLpEHFBF80rTtp6u89yfZk7VhaFLwigIGWJrePcQef1iTSiFbx4iqIaVN2zWHY995uuD5uV2z27r2e8bMFpCvXRDTJrTaHhzr3kaPVFbUjJ4t1CDFZVC4TT4So0qvQi06+ezBUOmJFXp24pIQu0oQwbYGiKmKnqztI3LYCfokNIKawykhF9ccQqmGKVFO2vGqdBYh/KexzGSmw22XTPnSD/MvD0FpqTYtB7dtQQglMIwJeaiaRrP1M+CFjvZaJyqpXi333AcA+deGp8b7xmmQNc4QopgpdIk16F4HmfRHZXamo7Qu1akUzIwy1W0XHXEOfBw/8ifuDW8aAovb1q6tsU3npevnmOtIjnHw3nGtTNOMv3YbFY0DcxzEmdRK2WmQm06yjSL2UAFME6QmxIr6ssFEb0IEhVgHNZZjIGu9TAOeLy8/pz4xR/c8vbuzONTT+sMxteohAC7zjJPkTf9GdNY5rO4iR6iZu0Nfg48v2pJ88xqteYwBcI00e1bfvv9RAwFbzTPtg3X2xWoTH+eebZvmVXidBcpqTAaxapoXuwdhsyLK0ez9fyn333H52/PzAGuNx2/8GrD3WkiToX9tjAXzdO50BSDawQdUk5TQiCXxG7dst5ZvvrqwPu7kbvjzCoX9mvH24cDkYI3Ft9YSnI0Xcdmazmdjzw9PtE4Q2gc97Nm7GcO9weedQ0vX9/QerkPjvNMMYanb0/MhxMhQD8nrDNctw1jLKy9pswTKhXmOeC14en9I1erHdorvJdzpkxmc7Xm4dsjRmk2tyu+/OoAs+b5xtCVzM2+4av3R46blmHo2e87vv7qCQbFpMTNl7Mhe0tTIq1X3KwcXVOrS+YJj8FZxf5qxTkVHs6B17uG3cZATORxpmnWxJxZbVZ/uIW/Pn7qBxzvLNa2zGFGWxH9WaWxRr6XprGAYg4QojRPWx3QZSbjLu4klGgRJOFXbq5LtcLS+5MywgsgN93FXbWE0jklibtGK7wGZ8X1U4rsTotaNBgAYmnV2rCITxdEJCkIdUhwChElagMkrLEC7ycZTKQ1uiIBqmpBoCbhfucGqRUqS8Kvqk4diggd84V44TI4iG6ESzFoVgjioGW4SgvdoFU9Thql5T2JxsRARW4Wa7NoapRQWDU1WALtagHnBRFb6DIDRfqs5FjLcbeLcEZVOqo6TBbXUK7HWXaeXEgQQ6XWql2/XAYncZVpLe9dU7DqA10nfyafIFfEqCquUCiSWvRIpdJH6gMdo2HhWyRr6MPRSDnXiAJ5rViou3bqorKku8j1Il9n2dGrOpQVlIRELsNNYzGN4+4cmGOpUPFCOUrgGBSMkcHt7hgICdrW05fMaYbcB4xpcJ1nc7VGW0XIEZUyXddx6EfePUROsyEkT85GGq5LTdRWMuBZjGQuXRxOIhxemt2dgmQkDVgVVYMlBdET/AxiMZdwRLGE15lvobBypmgZJClCy1ltBHkBhjHw1Ees8RjnRFSc4f44s9psGbNimjN9P5NnCZTcbVY46zj3PTFlYs40rackGdKUln6w43niNARa77BWc3qSXemCjkwhYJMjzBnfNcwxotAc+l4o2FwuSeTyvaNeG3I/KZTL5zSlsLKw0Znnq5lf+OwZ7XZF1h7jO7L2nIceOydu3RbyDNngmhZttHQJrSyKgqsaG0lfyNAalHEoq4AZjBQ3XpDLUi29WnqTqCnuGcOqdWxeXxFPjuk0supano4D8xS53W/5ej5x7DNd06E0PLvSxJBo1warDMoobq9atIZxKsxj5jxEYonc3qxQjWHsR1LxfPntxDAWPnq24XbfsGrEMXb3KEjSbmc5zIbtesOKwg8+2eJc5sdfHXCmCA11d6Y1hu+/vmHdeqZpots0hKnQNI5hzJzGgCuaTePAgE6ZkhUhJcI4cbXakmIhB43Nig6D3zl0azmfI/2o0CuNtq4i1TDNE2EeUdailePp7kQ/SLHwymg++pktq41Bq4637w48Pp45j5FGK57d7gkKfvTlkbenQkiBT25azv3MqrNstzvuH08YXdBe3IA2Z4wx5GFiypkYNWNRfPMwcd8PKOVZe8W+hTAFdts1XzwOfPMw8dlHK9L5gM6ZeYY3dwFdLMYp+inw4trT+MLLfYtuHV/fS7q3spqYZsZxQJvCxsHNviXGSKc0+73oAPd7xzj+d5v47+thbMEhC53SYI2lcZqmqUOOdRhlmCOUMYjV1BpsLOScJJOi2EuQmkLVzJu6QCpNqv1UsvAICpN1pQcyF/uqVeBUprGq9p7IomNKISw7fOVIWugXY+0lZI8qXi1VB5OVIlXxTlRUaF+81TqLEycU2fXnIjvNUCRrwCiwWW6K4sBSHxZFFjRKiI64QBm5XOoBjIZiqii3yADHkk1T3RyL8HOhdZbGbl2XfqsUWhuxSSOWc6urJkfbSvst9QrpssiHArHKhYoS3UBJcuO3GmxtudJKvNepWiMrzPNhECq5ogH6goLJ6St1kBKbsZzYRClaELbKuYmmQxbbUpTU1qOrm0ddrj+lde0DzxWxWhbeSvll0eIorUCb2kAuQ2WsCFuuVJyEPqoP12E9W0Yv0YOLBX/x7BW57j9cnQwhco7VmVXk7wXxEITDeyd9MMbyk7eCfIasiAF0UcRimKbMujUoa3nqA945Sio8u1nzcJwYhsT7e0mxdbaQo7gEF/0YRj5zolZ86FJpxaV/SgYuiQ2AgmRAyTUp+UJL2ukYFaOWITCVitYojdUFB3hdsFrhtcEUcNpUjZpcC/0ws24tjTVY4/CuJQTJnTHWoQs0xpN8olkn3MpLqnaGFCIxJhrvZEg0lmSMNHpPiTEWEZF7x9OppyiFcxprFMfTgNKKtTN441BJrOAqJU79RMrixsmplsGq5WqTQTsDKcm1bLXUWewazfeed6z3ew4jXL9s2W7XnEewKrFaGbyFbRtpjBT7pvkErkVpizEG4xTGRrnGbHWjpch3RE+yicsZrJc3lCexW+a0XJCgxV14++oGY684v33D+T+fUSVydW3JxvPjbwaGIaCU4vHzO0Dx6sWGXsN//nKQEL0kKedrDyZHfuZmw2ptiAFwmjf3PXePAW0bWmfZbzzfe7WhdQpjFA9PZ7aNYbdrSKrw7m6kJfOnf/EZzU5zfzdhreH1s5bNVcPjw8C223B1u+HQTxweZrISt+QU4dv7no1f8/zZFoym70esLjydJ0qE773agI483vf41rHaeUxra0hjktl+Htk990zzTHiY2e02goAbz+d3R8qp52c+XjMliHOmW3kexsBxHLneepx3nPvI+ZzIruE0BYzV7DaWuynw5hiZxhMvn7V8svU8u9oyRaFRZ+DxHPn+J1fM80zTePJ5ZBhmaAzffnvEaMU8Jz5+vmG9dqDX9AlKt+Hr90+cTpH9vkWXmfungbf3AzerFXtvON/1kBVhKjL7GhhjIo6iSXNKE6fM2hqiTjROs900DMPIdmV5PEyUg6L9IxLh/NQPOI3XeKUwQXbj3ms2KyM2UaUkIh/kxhMNaItxHmU0+zmQs+YpaSbtiWq5yS4IiKGU9GF3rhacQ7aHurpujNYYLdqKrtrWta50RxU/6iTDRKQCD0ahrRXUpA4Klx0d1cVVZGE3VaxMFdKWOgwUXbNPKk2RqG4MKzd5dRlwSl24EaRiYbDqTlnyYcQhpmtycsqCnIhVVGim5X0XtAgkC6I/+s75UCh0qUWZumBRWGU/5IFoc3lmRokrpZiKeiix7GqB7nW945cCRtfjr0SbovUFxiBVFC3Xz1NyurwXqckQ/EVVN5jYhyNLQtAi+JaHleEgC9UIRcIF8yJkEpoyVRRmoaQkUSiTa0HFMp5UTKM+R1eESrQnMUtJX6w/W1VaIpfqIquUhdYyqJUiQuWlNbx2j2PsQmdCSHlxu7O0kStEG2adAp0JsZBjIqRA1zU01jGNE2gYJ6FpQoZ+KKS54FxCkehmONyPhGGEXGiMWL2NyjLI5cXartBaYQ04K88TM39FKbRMgoIYVhF/bbRf0sBTVgRqU3oxqKRRSb6XoicCR8bphFUSUGZRQsVpqf2YQ2Su6IvOAWsdqRTGENDO07VrnDHMYWKzWvHl+wdSFjXTEGdCTjLAG+pAkplTJiSYZtHagGj7pihJx1pB34+CNGqNc5qsEvMcKKUwT4E0povjbUFr6jZHvo9VeL6giE4rOt9wtd9wdbviq1OiV5FfaAwvbj3390d0GbjerHHeYn1m7I+ErFivO3zjsbagTa4UfOZiTwS52OMkzbYowC0XUL1nNPW2pyuvLb1oxmp0tyaFE8o1rHYdYx/ZbDoOs1x/t1cdXVu/U8ZwDoX7PvHmOPPFu4i3mmtX2N00PL/ecnWzxmoYm8yXdwP9CLe7LZvdmnePPW3Xse4sm33L6Xjm5npDaxwT8M3jSIiG//OffMnuSvF0OLNaeza7Hd5rYog8v1nz/PmGu37m8TRhsDht2N82fPHNgZwVplGcp4n5NPLqozXDGPBGc713bLaaMUXCVBgxPD6MrLeWnBJXneOqscBMiiMxUDcOUUIkT4l1Sdi9Y5wTMYmubi6GoZ/Iw8w4tHSbjuubK9pV5NwH+pDZNg2uhRdN4NZZHg89elaEUdH38PpZy6kPYhrJkVgKzWZF3wfaruHuOKGtpV1ZWqWYneF4nmmd5vq55+nuyMP9mX3dMCurUUYcrmnOpHXmdJ6wc2LqB0qj6FYt96dZghu9l5VEKzbrhm7dsPY9TaNRttCtGtZdS0yFp9OM3f13iur39XDesPJWLOJhxjqN8w5jrNBNFWFxxqDUkuxr0KXQWtirSJkVhwK5eGkPF96p0jqyy16ExbnSQaoOOUqJY8spoaWsrgnEWk62s4I2qFjh7VRkeqm6mLLYikHmJk3l5EFjsEjvUzWGV/1GIaEIRRGVFopCUTuKZCctAXSLM6fSFIvE4ZJhoy9BabKrTpehKldNTkkFq7J8LqOk8LMAVhNSZkrLkCSt5NYsQ5kECDotA59QM7n2JGlSjHUxQYoza/pwWQY2JOUXYqWKZBiak1izhe4rLNveUvVBJefv4G2KXHQdojKqJAFiciRFaSG2WjanIp5WlXqTBN5FxFtYaBY5ZqkUUi6kHGGhX4rYmnMRbUOpz3foWruhKpxTRbRFoYrQVLFyMDLoFimXRL68VlWHla5RAwViXiJ7Kh1UJyqNIHhOyblPC/pWVB1MIzkVWmuY5sgcZpRXEgSXA9ZoQsjMg1SfDOdM8hoTIsYWjudAGidcKTinCCScLYSkwInYX2dB7qyxGJVoTKkdNJXnRNZXGVyWIMy6EVCCzlAUWVnmJE4Oj6JJMMRMNBXhy3LMvVJ4q/BG1metVNVMibkg5MjVakWcU22ZL1hjWTVrwEjRqXUMY880TBQ05ymz0pk5iOtRGcMwTYxzrGiabKZCSrRdizOaqMFbTT/M5IrCOmfISpDWKUTRWIWZKceKvopofxH0QxXM80FxtV1vuL3a0ehEyJFzD2jP0ynz5v7Ezd5ztbJoEuuuIaVU0dTMynlUmjE0lJhAO9mVaKE6MRpyqFOmFQ5+2Z1pC6oKjJUCar5ULXZVWtF0HWEshDFgbabbNKScsY3BF2gbxdOY8Y2h2zr+H7/zyONdj/UtJkvo3rZVbFeG51eSpfP0eOb62ZbfeXdGjxllNcNKMQ0TQ4KuZKzTnJ7OrFpHsIb7x5nTrEjJ8Cc+u8EYGPqIwtKPIuAdxok4BJ6/vqE4zZv7wN1hZg386Z+/5d15xBbP9cahc4aguNqsaLyn61pi17OrTfPv35wZxsLj/R2ffrznMETSKbC5agkx4q1jtTI07YqYEimLtqnDcp4z45g4HWXwaLzl4aEn5USaJNG9aZQc8wyrtadVcj5bLF4p1nvPZq1orNBmh/NMP0W6rmG9kXXvi2+PdJ2jNZrudsv+asM3v/Ne9G6N4/XOMk4TKc0Mvdxr1ibz8U2HtjCFiFWGroNXO0vbNjw8PPHp8w6rA1aLO3Y4iTXfbw0pRlZeSlJDlOtmu1uRSuJhGCkxk7RhKInD+/8uMv59PYwx+KahuIyehIIoLLJVEXOmmKU3J2UJUCszSlm01nRWUUqkzIlM4VA8RVkKi3a2xvfrRQC7KDqE3tCK2vEDqEWfUbUmVTBYmSWhllRdUOXpsjFapo+c6wJJpciULOZasTQjU3UrZJmwqZZaXdNuVREXEpV+EfeRIAyLQFUWehnAiloQFdnVLXblZcemiti9RTMhllytROxpnegm5pTIRUTW3mpKrJokLSmwTi9t7nJcVNUdlSiCU0UV+mpFjElcMaUKsLPF1M8ipaiKEiCm/CGQT8kQE1JhjkvooPqOOLkm3QIpyMlURcopRUslAYtFKZIWasfkpW9KnFEJ9Z1MHRHLLvoqOQuCgMkAKYvMsmiLm07yRD6Qn4vuaaFTcrXxyrEzulTh53doNSUo1xIsubjABKWpg3TNPEp5oalqmzxy82y9DJoqBxpbUHnG5Exrax9amHFWk+ZETpFsJfuo8w5m0QQs51KlhHZSXxKqNsnlOmzrjFfgtFCTpsJxcr6EelFJIg1sdfJpp6ubUDBDkxW2SM2DSwXnNDEUYpKcIoUW5EYXvJXjpKs+Ky8onHF448g6fcgdco7GGua5B91WxFThvafxBmsd4zhLM7IRDdB5EqLaaw0xEVLGWMV67UkxYbWu0QYSuIhVNK0jl8I8SW8VwDDHy/MUXBBWoZDlPAclPXXPr2+4urkl5wBlxBtNHzNtpeumqRCmke3OY6wlpgHnWrTzlJzRxkjJcL12yxRw2xUQqNHqH1CapRhOOzCWGiP84Qa2TNGV9lUqQ+cp84kyBVSWXqu2bcXtNgQoBmM8ORTun0Z0ANd43j7NtM5ws2/xTjOOE6fDkdv1mv3e8fR0Yo3C7xsa3zEXTX9KXK8NTRO5fzzybL/meB4wxtBtVvz279zzvDPs1iuUszweR+ZetCUZxeE88dmrHc46fvT1keNjT1MKH12t0Y2hfzey2Tu+vRsIU+F25/n05QatEzEFnDeEEPn86zNPTzPWOL73vWcywMTM6093rHcNRlvOpzNJK47DwPE4UrQlxsT5nDmfZqZppsSAvooEI9jmu4fEOCZe7DNzOtF4w0wmTpJxZFzDyij6TcNut2G+f2DTNVLLYBpOp4n+fGbctowp8+b9iVdXK642Dp5GlLKSTD1OaGUZh8L2es3790/4IbFRmp//eM/V2hMTzEHodFRiu7VoHdhujNzPfUOaZfOwag39CN5YkpIIgscx4oeAKVIu2qwb7nso04Q2kvL97f38R7L+/9QPOBJPXVBWY4qjpESKShABMjEhN8WYiCkSEySjPlhQa45GpwsxB0I2zMqAqwtQ7XMS4avA6bDoVUSMKq4hcfnEsrgeqjaiLs7S2i2LYfogiKkoUN2JG/l5plqeSxHhMEsv0+IoUaIRKbl8WMyt3NVNUVX/Uju2qLZhXeF7ilQlGI3VuiY6C9+PMpLOWYTqSinVfhKhSowqiHJEFhGrC8oJwhAq6m2MEf1LlmBEayQUrUbSVRREoY2t8e+ZWErV4Mjwoyv9J+hWqZC9UFYSBJ3JCbIxEk6oqAu6aJ5yrXQopHp8TbVrc0FKTBX/LkksqiyiYaHlhBaUR0Loulwhply7y0RUXJ1BZeGFqPSLOF+sNngjDhqQ65KF7UoyeCwON6owfOkGk2uLqvFRF2G00gqdFzlquQzazkr31zIY58v7k5LGokDngEbRKLHrewuqhGqp1pQoThtUxFqhlrxVNLqgU5Brv+qdtJGPqwv4qiGLWkTPSmWsqQ64ypmp+u3RKcr5rCgnumCdxjhdRfiaXDcWpmhs1qg54TJEo4gh1jZ4LqJ1py95lqAUIUmmzMp6TFF0thGdEEVQBifIp9aOfhqZYsA1FmstbePRGKaK0D6NEzFnulUnVF4W6td1jpATKdRxNVUtkREXnjWWFKVBfM5QkgxNIcmwu5iTcqnMKUuWlGa72bC/uSUpxTxPeC0DaE6C995sRYuy3ngSAaUcxyfpULJNomk6mkoTo5XUs5SCqEFrulUoSEeHkt+pw0ypuzAWyqpCxDIxQknQNBAjxJHcH6EonCnYTtrh+/nI/ePEFBT7/Y6hH0gG3p4y96fMZy9a+jEwjorv3a54cdORsqDAL2+33ChFsi2Px0juR7Yenl23vH13YJoyrTLsrjzFG/5v/+lb7JS4ut5xd+6Z7hOdVzzbe/xKcX934tWzhkDgP/zuEaUcL/cNRnfsN44vvj2RsuHuMPPN28gf/96ezs0oZrJWOO94++073j8m3j4mdEn83Kc7Hp8GvLNsdy14g7VW7jXKStP8BIdjwhvZfO2ajp/7wQ0Z6I9n5jmRMByfBq5a+OrY8+27kdcvd2QiY0xoZUhF0RlNTAVrDOM40q5WfPnuJOfCZfpYh/rzTNGGKRS+/PaIfbmVsMTTTJcTzUpjXWK78mij2aw7XrwQJ+GtbwhTJsdAmKHdWM7vevabFfPc83zbMY8R61ac+7EG3wZunq14Osx0K0cpGa00xz5wddXwNAcaY/jyfsSHyIudZDCVFP9I1v+f+gHH6iQ2cWMoORFj5ZXDWLVymTgLiqNLlp12khuk8MIJjMWiWDERtKoLeoOiEEum3tblBlTFuFrJDdUaWYicMiKg1IJGSOJuoeR8iRknV5fWotuogw8LJa7q4FWtwgullGvnjsT/Vx2CptpnRaCoClWzoXGUat8TVIpKVRkt/14twTUqfycOf6HcatBhtVuXFC83SKUVKcwoLQ4Inavw18Mc5T5pyGjvyFECw9JC40FFMOrgliFnRUgwIwjVMj6aemwulQQF+QyVylFq0QnV/nUNqWiS0nLclTjjStE1f6Wqc4pQTQvSvpRY5gKqmIpYlTpMJtHeIAuWUbkOC/LerDaSQF0QhG2hjep50Kq6x2r6ozZGBlKFLBY5o1XGK9GeJIQyc1reswyG6oOwuyI0uYjepOj6OgvpagpGJxnMlAiLc12wihKHVtIyJpWalWONdJeVkkRvpAuUKAiW0yLVUFJ2qS8DrvCokq9kK9qXKh0rA6hKGZS56NmW3wXhiqgkvWhOy2d0RuOcw2hVe7Xq0Fo0qWiIGm8VOktXWtL1etdGhsMcRNOm5QoSbZjsNvdGY1X9HpSEcQ1kxaprOI1RymVLonUO6y3KKNrOE8aBYmRMneZE1za1EFTCFrfbDoyiHwI5Jbyz5A9a99r5ZJnGwDyGqjcrUoRa5NwtYng5OhWlK4qua3jx4hVZQZx7TJJeH6UVY5jpx5HPPn7F9z+7pcwnjO04HGeG4NAZdJyBBlUS63UDcQSj0balhBnVGiiBkgqqBHBVc3Npoa10lFm47+8MOsv1W4pwhWXGuoR2LbbtmJ5G0iydd41XHB7Egl6y4ev7ifs+s2odGkVrNC+3llfXDcnIfXO/3pO9Q5fMQx95//DE2ipefXLF12/P9CfYbVdoEqaxfPt+4vWqofjA+8cT+sny6naLmiNm23B6OPPR7YpjSnz1NpBni3cR0xoMkWHOhKx4c3fk3f3Mq50s5mvrOPSRfhhZe4dWDVZHPr2VrdoURJdTUiT0BtqGU5+ZQ09Mhjf3Pf1xom0auq3j6spzOp958+aOTedZNZaSomzyjCLlQGM1L3YdDYn9ukXZhn5K3D0ODPeB7aZl08IUMo/nmawU627Fu4ejsBi5MCZDYwy7xmFCQKXI0zHyxecHPnu24fmrFcfzSCbTjxMm102VAuMcjw8nto0mEAlREVVmPPc4HTDWMLjC3cMR0PRnEWKunMY0im+eZm6coVkbDuPI8AQbq2mOZ3527TDOYRzE48DrXfNHsfz/9A84zlgaK11MKUfmkIT/K4ImUAopLOFb9XkpklQhJNlFK1fQ2tOaQs4RWwIFIwsgRTQDpTAnRVCFosUVI63Y1KFCdqOLYDAk0WmU6lBSRXb9pVILpSYX20pfST6KQqeqS9BOenpIF5lFKdUOq4S+kM2vWL+1MuIi02BVpnEaozRzkI6qkuV1pWtqSUNG2rorKmCMLGA5i4hQ10Ft2cmpoiEr0Q7INEepu1FXh4tc0ZZiVBXjgsqqBiHKLrD6RphLYs5iB85U+q7UXbkWukEVyUnJ1cFRWQakVFEWzZTFsRMv5ZW62te5wPAK6f/KaIrWl9oFUx03akkV1rKwU0S0rWvfjAhK5QavSsYqGQgK1Q1TeciLTV0L8hOLEnFsHWBN1fDIuAy+aLSuAZIg5IwxOCO5auKd1hfqUhbwOvnyQcS+lFCqxR5aX7Ag16q1WsQ79RwVpF9JL1knFEn2RjJ5RA8jKeFCJckCX5nEqkdTsiZaDSqTo4QVSrlotdyrem0j5+pSaUIW8XeUQcWUml2jFUv/mNEatUQIUDB1KE5KdGDalNo9VofJSvUKHSxoozGaxmoZYBF9iTPS71bSmRRn2qYhzTMZRT9MrJtGBlRbaRsjQ9M4zDgF+80GYw39NFFixBnzQcumNYaC944QM4cxXByUOcsGKS/C/FKzmBaRcb32r29fQOMZhh49DmytoK6rTUt/HtEK1k3DMBWu1h1KFZrZMZdMP440fs15DHStZx4DbadRea7W7wCpEx0NRXYncgOCMINficW81D8TphzR4ywXVR3SckanRNM4lDWEYiinjMoTV1cd98fCvIcpznz1MPN0jFx5g/Nw7mc+ft7xg8+2jHOiP40YY/hfvvyW42nil37wiuOcaDC8fLXn7SEw09BtIutOsdm3zHOEFBhjYDgHPvt4h3Na0EZt+OruwKYxPI6R9w8TrfcMw8x5TMRScKpwtTJyfk8jf/qjDd2+4ctvn/jxY6HRhd2+43yMhKDYrhr8zvH+4cQ4S3XGfr3i+mbLu4cj4emRXevBaLY2Q6cYzyeiW7F+ueY4Kc7ngDWOrDLadaS+p+ssu6uObBRDEJG2bjzOe47TwGq9YoqJIQZ0AmcNV9sV//nLI4c5YlzHl2+PfHy94vEYiGPP//H7N6ybwPE0ks8BqzOn/sx+MKxXjsNpYr1uyCnimgZVDOfzxJAmzneR3b7j/Vd3OGNZrS2ZTNaaEiVpe7X29IfIeA7cbA1vzz1JGR7nyK7TEAsmFo4p4deGaQp8+uyaIY60jefxj2a++ekfcJJOuKat9QKBaZYFJyZFGGehalKsCbZVh0KGVKkWaqpttfm2SqGMYyaSsaJn0ZI+7LViKoaYk/D+WuONrrqJSlvJSlYdUbpKawIlRxZlTakLVMmLI+hD+J7WSHu0ihilCMuiC3WRFTi8kLFFbvTeL4OAODdUpSastaQYUVqTVZQhpw5hZhFDFyhI/seCUBtddUBJIGnRotQUTe8gz5cU5JxF77HcxCWxWNAIVRGQWDeEusLkC8IVUeTaQWWUZlFfOGculvKSBa1YRMAfmr1r9ozgPUs+nKA9SmzhJWdSqbyFMix1UaXUHCClyHpppVaXX2hNjvGS3SLDpdzpjZIsJYOqCAqgE0khIvKs66ZXlMsR6c/yi5uuuu4qnMSltX15rUo36UpzLMdQU6MDKmXK5c/rGlRRLhlgomjBquuOUhOkSRTMZRe+aNJMvQ7UIkDXulagyNtMuRAv6IP0nC30Xq5DFMKwkpRQkrpSkaUOyyonoUeSCLBzKYSSJEPIZFSq3wVjq9C41GuIy2YiVLrZKMuSLSUjkKmom+iUtIJYXXveKBpnWAIWcynMWdCcVdeQimxGTM64Uli1jhgjCnB+xTjPoDUpRBrnWLUOv/Kch4kpJJqmwVlLjAGn5ZrUVkTywzgzh/mSUlySRBeoimrmUrDaVIpTNHSb9Zrr3TWnaeR8OrFOAeulPbztOpqm5XuvrkjFMfYRd9VUdimQtSHTMQ6B9dozhRHvGshWYr7yJCc5juAa6DoWBLBCx5BmGYKMlT/TVYUPXOpeShRreRgEYVytwXjG00CYZ5R3uBlW1tJ8tOInb544HwZe7zzWGYYh8Ys/c0Xr4fEU0DqjU6RbtzxbwatNx6GfuD9ErraWf/87b9FZ84uf7NntNpymifePA+cxcxoi8xx5fdOxcoV5njBrx/1p5mrT0nhFf5jpjAKvOA1BBvRYCHOBBE/ngZ+52fDRp3sejwObrsEwc7VbcZpmnHUoHbGt4v5u5vAUQBc+frbl5qrjy2/eMY+wbRuiNeQwc73v2O8TT/eF3a7hdDjRKknBns4TbbNinkb6ofA0BIw2PH+253x8QhXFPAWmOUl79yCWfa/h8HTmdr9lu7K8vFnx5nGmP86UJELsT56tuNOFH31zz//h5/d0aIqSacJq6ZvbNZ73DyPnU2C/8lhTUNbx+PaR42HCAek8cbPv6PtAP0ZQhjEGUoI+gs+WrtN89XZg2we0MUx9og+J1nvWqxbvFVFrvJdKmMdhIJWMbRriUmvzh3z81A848xBJTao7drnhqSwC1nmKMg4YJYLJ5QZfNOR0sSwvqEtGkBZLpCBtw8U6sTwXhVNgs5w0bWS36Sp0b2rVgtz0U6VhxGFT6kKgcu2rouo8LgtL+aAHqTc/DaJzqbtk2eUKkiDMSsHpQmMNjVOUlJlzRGMw2qDLMsgU0Q4aU2MsFoqtipIplxtuSVU7UmcCrQul3oCp2hbRrjih8wsUZcjVCH0RSwPGVOC9aELMzKngnNA0dUlEgvykfsErddFsOEO1lAv6k7MjZUf8znEVh64s76rI+Vgom1J1RcroahuvFvc6eMaSa6IziEjXsDR3LwOGqmFtul4XMrcKTSSjRUYv9BOCDOaUSdlKSate9CRGuGrE2q6soDjKaPKlVqOmGpfqlGJpj17k3RVdqTSe1uVD75QSfc8SFlcLP2o440KPlhooWC7ptClnYh1CTGUjLLkOrUJTLbv1TGFOljTNlbZSGCdBjsu1bjDyWcuia6qUoKqUJJlUEqmkS8kmVOlHhiqIQemCJcuQVEXkmYIyle5VSw7Qh4TjoiqlWVO8CyJ2NEaGZXktcerFeSaliPUGq2wV/2a8M+SS2Ww3DMMkqFCWYdhrOV/dpsVZy6kfGMaA0uBbSwyhlrcrrLFMMcqOe4pQwGsj4nlkuNdK6BhVh1qlFTYXnDU8e/aCpDTjODP2A97LYGttw8qvWXWej59viGmiqKZuJhy+VayBrBJTFMG0NXA+97TtRqphWOgmud9cbIvGyX+7Fqa+iuk+0J8oLaLjIuYC8iyDEAmzbsmTZhgyp8eJuQ80rSC+3drwcIiUYrhZtWy2ToboXWaaR2KEF92adt1wIPDNXS/OON9yf9djleJ0ClwZxevXGzZXjv/01RPnfmTTtISU2TQeb+HFrefpPDP1kdOQWa07cJb3h5HGWfo+YOfER7cbHg9nSlBYZ3h4PLF3iqsrz/HY89XdEe87bp9fSTJECJzHwLrznKfI3elMTDOvdmsUkW/fPOBQbNcF32rWm5Z5rL9bjekVx2DpvKHpDFcGpjnSJ03AMJcRUxJxmPnJ3SPOaJqbllY7YRpCReuzbFA736FcwxQyH12vSEXx7mEg5ELXOdJ54vtXjWysSyEaxZQmbq5aTueJEhTnpzNtZzmfElOaWb050awsjZOwi+ttR4kjc7DoxpJCYLVqOB4ynZd+wvtDoN06ms7x+UNkv3F0beEMvOsDt9uOSMDMM812h2s9Y0j0faJdGbr/3kX1+3sM/UTfSfdOiqnuhpLQPVaRQiYEcVPlUq3aaLx3NVNDEIyUhTvPVfykURhtyakIlK81SYOKBaesQLyqOlxUpV8WMH1Bb5ZI+UrviM231Eh2c3EYXWhtVV+h7sZj+W5HzaKXEcohl4wh46zBVcoMBEWQvAsJiHMGYko1uE5jjFAsIiSuguglV4YilFPtEarpa6JBMqZ2HcWKuNQbZaqwT9WoSL2DJmZV6QZZcFOiOnwcJSeMFa2JyTPUhcFojbMFzYeBVZk6nMXMosWWRVeO0WKxX2o15PPbCw1gKq20ROBoI+iOlHzqCzVYCqiSxDhC7YGqA2cVS7EE7Gldc1uotFN1MWWlCRlBCIzkMImTSn4VJR4qEYZrjJHBSStAybFPuebY6OoGqtdUKjJglkpZFZQc00q9UhIl1ecrK3+fFSnHiw3dao0mQUmiJykZrcT2bLym0dJ+nQuEEClZyVCpCkyKMI5oFFY7TH3NwkJFLcdKhpec6tBcRAeXUiblAujv1EwIRVqiHFdjMtaCyvrymqrqxkoq0suVc7Xo19dfBjqoLSUL3VOq40+qMkiZEANKOxrbyM0/ihB6jjNfPR0Z0fi2YZ4jMRa23ZpBnxgHsLZBWcthGOWeYDRNa0hJRJXGSvjnnDJzlJLOlGN1YQr6mSu1upTSVvsCymhsMeyvrmj3O47DzGkamHMk4lDe0W5WXO87Wme4Xnk+voacZs6DYWM8xjW0OtMHWDWaqY9426G14nyescrjDECETccHa2fV15QqotPuO39WB6A0198nQXdU7WdLgVIs45Tpn84cnibO92eubw0hF4q1PA1nWqtY33R0e4/JiYeHMzEprq93zCEz3EX6VLi93bHZNnx7P5LUEa81u3WLt4J2/dZXJ97cjXy0bXi2bklW0U8TW+uwnWc89ajG4IrBWVePgeZ8HjmfZ37uBy/pp0hoG85j4O5wYKVgs204hkDfz9xc7ZimwBCjxARkw+1+RYgz4zjzcuO5vr1iGGe0cry5H1DjxPderynF8XSY5SY1J4bDjLEtlkLbSFbaGGYJnh1nHu56VIqsVh67bnj9es/x2HM4njn3mme3G9p1S3+eOZxmXu1b9EpxGGemGFF25qPrFY7Im7eRNAXMStak29uWoQTe3vXcP4w82yieXzf0c+LwcGLVOWjh/UPPO1vYXXfEELjadkCiW3eEmJnGmeEcaDeW0racDiMvXt7y+V3PF2972tWap+FAPGe6rmWajiSlGNPIx1cNoQSehgFvNBFN0ppGKT55cQN8/ode/3/qB5wUImNfcFZ28CFm5hrKpTR4BzaIVTiipI/IajovPqeQM4kIWRFz5clTppRAIUnfiiroxlOQrA3R0tQFvupKKsEg1HRFGch8pxBx2W1WHUnlg4oSSkjXgWmhYCigy4dFRDQW8jqqBIwz1X2R0SqA0rROgakN4KUiSUhwnMpyM1cIqoTW1aq6UCYZY5bXFyTLKEUmCcSvFXNUTElu0AvLYotoLpSSYlO99DyVDFZ0UEvOR06SRWKNuVB/XqrA5c+1ooakVN4/1+EkV2rNfhBoC+eFVpqURRSiTO220vV9lFKRHnldVRc8VRdAcbLIV6RU2EPrXKmkip5Vu05W9XNVWtEqCyUimT9LPxWolLFKkBUq9Sjv+EP2kOiwPjiAdB2mlJYFMxUqCiJ9ZyEV0XRVl5hk8SjmGCk5YQ0YIk4JFUYJpBiFalFZkBnAa0vrtcSfpMwYJnKBlbOsO4t3FnQhlsJYAilEoUutxZWZGM+gDDlPkASVmmIEDLqiJEabqj37kM4b5iCJ2cjnl6tBjktMgvYYZQgJVIBixD5ecqwhjrKe5iQalhRT1TxJIWbKgviYulPIRYItvbNik8+yOVh1Tb0HiGswlcwwRf7dj7/hP/zeF/zxj19wdbVFlcLTw4kYA/M4k5NiToHYzxdNj9FWNgEpUeuwSDGQYqJQxCmF6N3QordTaUFNuOipVNUcOefZ3rwgoDgenxj6E1ormtazu75it++42bVcbQzGCC3fdooUM3EuGOfQKrH2mtgk+kHohKurHVbNzI/3uJstJURUsWA8aA9kKKGiNNUxoKL8IteAy+rAigsPLJadMmXCJPoz0ziSlsDO2M9o43g6zqis8BYO/ZnH/syqa0nJ8OLZhpIyfYkcxsjvfnPko92a9drzcJjYX3WMIRJyQSVFZzUbZ9jaCasTD8PAeUx8dLOm23runyKMjt2uYd0Zvrl75ONXe1IqPB0TL6/WlDKTU+HxONAPM9fWsN0YjkPk/t3Ay/2aVWNwTvPtw0irNM9ebBl6yYyaxpmb1zc8Hs54o/nqcOL8GHi1c5jG8s39kW2zpl2veDorwqRIKbJyiCDZZ7ptw/E8M/WJ7dbRtR0z8Pb9EX8K7F9sMVpzfz+gD6N0ho0ja2NodGJ7s8YFw4++PfNwP/JxhL3NjG3CKY3WlpQi02QxTrP2nrlT3A8zrrUSOJkVa+fw2jIcA51zjIeJ/U1LGANKK+JpJihNxDPmxP/2X9+y3m9Ic2Z6d+CbQfH5Y2RlIyujiRnevOuJmIrUG4Y+ctM5TFGMCU79RNd6ivmA+v9hHz/1A07JgTAlcnYoFClAjrJDddbivcI2wsHnopjGREYqFZTKGCti0ZAiedLkJIhHiZJgrLSvBbtO6AsQtMLI7lFapAsQxWVUChklabRVn7BkpdQVVgYYLYRWXlBg6n1SLYmmCauQGwlLfo0EwWkt6aqZAjmI42txZWhpic4VmXDGkGMSDZCSRmLRaXwIscupWtm1oBsi3BQH1VwKq1VHaxXDOJOz5JJkJRRSK+VCkEUbtFjCtRJVvsqib8kkYpYsHW11pfZNHYyQhQlZiGSAWFKPc13Uq3W+WuFFB1L1LojrS86HrvSXaGlSTYzVy1BV6cKYZeXU9ecIpSILEZWyk89VUQBjyLpAlGoJozVWW0GZSpY8EyUDiyrSKSXD5NI9hmhPqoOp1MWNupFeUCRBZgpT0sxZMafCMGfOU2QMiaIr+lQKJidaJZSBVpnOGbIRqsmoRGMTK69onamozVRpIC3aIyDGxKr1IhTVgjJpSXukkHBO4WxClZHORJSKgvgZV2tIJoYxkaP0GWXjCCmTUsE6T86ZYZ6Foq1CeGMq4lgKRksNQgKmXBfRZFA6kXW5JFanXEgpi7MjITSjiR+owCzXA0WGa2UMpQTJsukc1puLIDsE0cOdx4l//e9/i//1t37Cx1c7Pn12QzaFdxWtPU8DIUXmFBkGEe2uGkvrpO5lHCeUA5QmzJGSEpuV53Do0TlilMbWIW8qEU2pAnMRii7p4cZa1psdyjWMYxA0OWXaztJ1nue3V+y7FqM0+85jdeTYT6xay81+jXa6ircNrrGsUsBb6DpLTjPt9ZrcVHNEsxX9zWILz1ko+yW7gGWDsdgCtVBTKbE0vgu0KLoNg0GXgagypIz3LcZKCOT945npWNh1gsI9PQbuHwIvn28Yxhk0fHN/pkyZP/W9KzTQOsOzqw3/4asju7YlZ5hLJsfEdmUZ1lC05jRF5lgYZji9O3O9ahlD4CPjCXFi3zTMU+DxceB2t2G9trSt56k/szKRm53GWdnoJOO52nZ8/+dfMPZHpiFzvV7ReHGtPT31dA3cXDvOY898Dsxdw/1x5PXWkX3hx29PbHdbTnPg8eFAKPBi07LbLoXBM0prTqdIVpamKRAjKgnSfbVbcXqKPL45025aGjXSnydev7qm85aYI4nCl18/MmXNNCpCyHz5zYGXW8v3nm/RGvZbT46BGKLEo8yBbaPYrTruH89crRzJwpv7J9Zty9Xasr9ueH8aOY6ZXdcwDRPae0KCb94PxKShbfjJuxNWKZqx8M1gOIyZoDLNxqJKYt867sbAs07uL85o8BbjDZ23nMYg3+EkWTh/FI+f+gHH6Iq6RHFT5JwpMYouo1I32oDzGmcdbRMZp1g1DVBSwHtL5yUnZtKKQOE4ZcBQonyhimlIulSaAQka06I5KAUykiAsAMNiNabuZOVmLuFzRmodjCzKYomudAeC4iz6ikUBouSuDRUFcEYopVS1H42TBaefJyJZ7NMqYk0jWqGoyKkSG4rLIBJTIsZEKArvrdwk6w24KJhTZJwjzmpaLTk0piJXS5AYwBxld77QThrAyqCSYqpCaoBMihMla6ztMEpg26VnSeWCUQZTkZuMaHgouvY5FVSuX5wif58SsmiXD4tHSqIZWkodF8eIqYWqWn0QPOslZRf9wbJbtSPCW4nrSvJvUm0Bl/OrFXijoA5LGaEfKepiv19QfqVy1S1JEp5SmaItOmvmmgY9FxjmwmHMPI2JIWQRzOdIinKu5pSrkFbxbGXxrcYi6EUphSFkSRRtNTed8OqdlxLaOA+kOEERpIgkNwiTM2EaCSFQsOSsGYPUWWhv8CbjrcM2Qi9irJRQxhnvDF3jhW6seqBhSgyTZK2EnMQWXjSxzBWp8wJoxihvQGtSKBcbfbEJtFhUnZEJMEN1JipCqo3riFtKK0Vi6Umr5y8n+e5RoGTilNE6oKxomn7v7on/6//yH/nx529ZW/iTn72k84YhFXJUlKwY5oGSRcfTWMN61bLqOqzV9GOPNRpfW+WzyqyahkImzKHa38U6HpPYaVUWm4N1pm5wQKOx1tLtr2QDNgXCFGis4fl2w6vdltvthmdbw7aTDV1MkaAU3rZAxjiDKrHq81q8b/BNi3WapnEUVTDr1QfhsJPwP4KIvuVmtFB71ShRQr14gwiKc4HQC/JjHJCg64hPj8R5kHuN9sQxQuNx1rLxjofhzH63IU8TD8OMsZavH848HDWfPNvxZ//Ez4ghgyhBdVPgi3cnVs6ScubZ7QrvDXmO5BC5WXdk2/K7Xx3ZWc1TP7DREO3EzdqRNbx71/PHPrvld79+oDMtnW9IcyA1QstrCjc3LW/vJlKxPJ4D//PP3zL0T/Sj4t37gVXTEKI459pW05jM1dWax0MgdB1vDyProrh+seHN/UznWnSCzju+vjtzPozsc2LdrplSwbQNhyHy/r5HU1g1hk3XUFDcHyf6udAoSygw9hLMN6H5va/uaMjstx3tZs28coRZMdw9YUuh2EJShvvDyM2+JeN46nu0keoSp620yBtZZ949nNk1ltY1nPvAftcxxMScCp+/PbDZtFytHH0pHE8BFDz1A403OOMYY0bHTJ6hs4arzmEJzFOiaeFnn7XM8hXkNAaeziNXK8+Lq47rVcdpCDwdBqY/ovX/p3/AMeK4SaWuiAl0UaSUiLpG3AfQztF5qXPXGrF8BxFulZzw3rJdKbokm0iNYszSFC1CVeHLk6Lax6te5zsulxLTRXMjM0ldIKsIROgRmeiXkk2tqwZmQVNyIVYNTgX1qf9DKdnhdN6itCakghAEEOMk2hGlscZIwmZIdSAT0WuuoYMGcFYTKgRsawNiiJGcA42Tkr1+DOQUSVHTDxKSGLJkCQkY5RirBV8bA2MmesXaK9ntRUWKUVxietkUJqY407Ueg5ZwwzoopVn0P5nv5srIrlLpahdWNRyuiJDcGNGALJB/zII+5IUCYqH+6rFc+Cf1QcuiarnDgoyQMqY6eFIW5K+goeRF6SMuoJTRFa2iZsTo7+h1Li3fyOGYYqaPiXNMaC20EEhB5hASpzlxGiPjHIhJ6A5rJBvH6ULrHS7+P9n7kx5L0jQ7E3y+WUTupKo2+RAekZFkkewaSKCARv+E3vU/7U31D+hFDwX0rtCsJJFkViYjPNxt1OEOIvLNvXjFLGuZQMYqmuoLB9TU1NTsXhF5v/Oe85zKPK94rdCxcsuNw2DYeQ21orrmPGdiMdx5hxm2ZI/WDGGAYZDVTy3ovf82FNQOGYjLjRirsODQpAZWGaxpYA29GkpulFIoueCcYdg5QhC2CnS819wddzKU5EzKmVw0a5SHszdpUzMKMRVkDDW0bsTE7jV69DL49E3bVIbSFbFU6e/C0Lq8D62VJKOsLpHXqUtXUq2J1o0YlHOjJcO///CZ/+v/83/l069PvNuP/J//j/+K7354TemKx8uV622G3nHW02vBK81hPzKFgFGWpSZqLgxhEF+TNrR8QXvD+8+PoBVeezbM4qaUKrwz39JlGEvZhjJlLMqPLGtlXmZyXrjfDfz2uwd+fPeau11gHBRLjFgUe9vwzjP6EedliOq5gfLUDsM0kNaZmjN2H9C6yFAyDJA3ivHXpXprG/SKTcVFrpG6XSPb7YyW5dTTOugGdqCniEFjtCaXjDWVw50npYj1A27UOK/58jLzeEk87Ebevj6gFOwHy48/7Xh8fMRicF7KfK9LImcxpZ/2A5OxaO245cRh51FG8Z+/LKwFqI3RKqzT5Jy5/27Hr09XcqqsMbOmjPGWGFfQmvVxIV0jg7WsqWGDx2nHj7tA0yvnW+HTpbPMiSn4LcUpVPIweNYM17nw+Va4XiM/vN5zmTvLWrnfW5Kq7HTn4DrDacDuJ84J1jnT3cg8KzyK3WQYDAxWWuabhfJppfdOLJp0y5AzC/D4fOOH3cA4aF5eCh9frkIzt5rYKqMf+LJGjO5cS+ZhrTivacvCq93A/m7iw5cLjsJope5EDxozOHrqxNjxB4/R0nd1vWTWpbGfPB+ehRTtjUF6GTsvSyUaDVaxXmZyM/zmhz3mneHlmtDBYWJm7w01Foz3tFy5XBawgvZQuW54jn/+x1/8gAMdYyyqiWlPaXlgtlJJa6QUi1IQs6yL9qPHWkMuGz9GK2qOJNXEa+A1phum2iF1mhJcfWXG9MDSwhaNbpTWtoST3nw3G/tGQVdmWy1JNlnprxFyGTK6UShVxaC4cShKk9ZxCdfIDUgrYXbYrUbBWoV1MhSV7QE8GEWMiVyUqMubJySmilaN1spGMm3oKjc03TqldFnVaEVsG1G3a1KRluNbESPr2DspR2I1snrZUiFqS5mIapVptUOpaO0JVslqTltiLaQiJ1ljLb00Wi2kptBdETafTmzCIfo2JDQZ8UDTCtScJN7u2Fq92WLUG5yw/2PRY9/WgV8JrkJQ3nglmxLXNr9QyfJgtsZIWqTlzRDNtrKS3ilJKm19VK0TcyHSv/V0fU1A1QIxVzLCwslFKjjOa+H9beVlyWgX8GPbOD6NdY3ElOlduEreyGnfG/HM1FIIAfaT5lw1wWsmpykpU3OlGOF/OG24C3Io101ag3OsqMGIR2urjPjqhVEb3M9ZQ7CWyTbazrEuiTlX1pggB7pRtJZkcK6Qa6UUWJdIqYnBm29KnQ+BaedQqlODomQZXmIytCzIBNUqetQoHWSoj5WcxfczhgkXDNooSumkLMbWXDZ4blMULBWNtZqqRIHQ2zXz1TgubxBDrRXvHUYb/uYPn/i//T/+V+yc+T/97h3//f/hdxzupHzxy3Xm+WUG1RlGj24N1S1j8OyGAWc1aynEl8hpv2ccBjqK+bay2+95/+kLtTXujpMobrWTqPTWccZtoMaKHwKldTGF944Ng3RW1ULLiYf9xO++u+fh7Wt2xz2xVi5Lp68rocHxzcj9YWS3Cxhv6BWU82BGVGkY7xm2oAGqimITwmYglNQYTW/rqU3xVnaDKW2nqa/dVNscREvQtt9vu3SPtYqx4hPqVTGOmrhk/ODRXnHcDxR1ITeHmwKTN8zLwribeJoz9tPM3Z3B2JHnp5kYO9dFynGvsXB3Uiw50ubC/c6zP3l+/Xxj5yyWIogApQne8vroeLjz/Of3zzgf+HjJrM1SW+fDrzd+uJ+4myzHEVrX5NQYnNvSb5XbojhfKnURa8MwON5/eOI0BabREVPG2YYeDMemuD/t+PLlTIgWFzy/nm/cOwWTYj96nq6Vv3t/I60rkxNafvCOai2lau7vPN0qlvg1sdi4XiLTELi/81J0+3zj7egotfL0dCXsJnxrzKlRlcWUjnWGrC2tJN6cRrzrzGumFHheCthCGAIH13j1EHj7qnJ+ybzMGTsE5lrJLzd618RasVbz6XlhvWXGSYrfurN8vCTG4Hl3dPz8nPEGpqDwXvPzy8q/2h34Fz/c8f7LM8ZUjoNl9IGfP83YwXGOWbq4lsLkDMfD8Gd5+v/FDzh9i1hbZ8j9ayx8E3O29YhVirgsPFGpreKNvGmKRHtotbPmFYzFOYfVnZILaxTlx1mLU41M4SUrHlNizVKi5rzBGkXQCt+rxDHtSO6dwlfyLFgrDB7Nxr3pGwlWq20oEpm9Al21jUZbv/kPem+4TenoIKWiPZFVoXTNnCvnteOD3bg3mlgSdLaVjvg5UhN0uO6F2ju5d3LTxI24p1vHGrkpYxwxNx4XxX5wrCljh0Gk21KJy0wIAwo5qTvjsEYTsyRgKh1rDTE3LnMCpQkdatN8vmZ21RC8Qzmheua6PZSs/PvUKv6bVDMlZ7wGbSypFCHKKoPTYvqttcppWZZS0MW4+rXAUhQxiauXJF1Ca26UVjfuSSMEQ123VJdvWGfEQ7FxYEoX1SxtqaCUEqVkhmAITt5HZTO6x5i/dWW13jntJ4Jq8oSujaWsvCxRUlhGkWIk5UrrEJwnTB5vwGvwWyXGqwD3vqNiYS3STB+sweuO6aKDBNW4O24pkrTy8hKxqhP0QDCWXqN4UbSj90pNBestwYnRfOvDxJnOrjty1nQMSssw1SmihuWGqpqWCwuJdRUAmDWKECu9COyu90rKiSUWchGehrWeViuqKoYh4Dx4b0ThKxVlDdobtBUTcY8ZazXKVkwvIiDgqGiUHkCbrWSV7cDAlkjsGOvoXYpdU1yoy8z/5X/4l9zfn1hK5Utc+OX5wryu1KrYjyNuv6PViKezGyeGcaLReLnNXJcbu3Hk9elIionH85VYKufLjbhmpjDgrcPvRlJtXM/zVr4rg1bwIzY4bqskk2ptBOdEDe6Zw+j5/ff3/PDdA85ZSi1cU6abxrtJ8fpgOR4G6cBqDWuD8IRKxSipKEErrNtt6a0qw4rZPDdbkztNQzebqbBuvhst6ozk9uVzZZsqlReWQI2bf2cbJt2I7RrDeXsPytDsBo3bWT48rywp8+P9wMFqviwLT1fL69NAXAu3i+c2n1Eozmvn15fKbvJy4KuNW9boZcHeHXh5FmVtScLt2jvFzmle3wfu9pZuLc+XxuVy5nAY+fkxchg9unZ+/2bPdblSUmYwEKzHD1bM0a2x5kpaK/tpwFpHq53DYeT+GPBec42KtSiergmnHefzjdZgCgNdQyqdS8m4FljWxpI7aY1MXrMLGturRMCdoeVGVxLBNt1BqngP1Rh+fpx59wBLLNhxZM2VT09Xvr/bE7usE52FXbBk19jvHC9LJ5XE4zVxv/Nc5soxaCZXmbzE3KfxwPFhj7pkSossdeVyk3TTui6SNCxQKRwmS6wwXzPBWO4mh7aNX58WBu+xzvIqaMZJYazl8znxy+PMD71yt7PMS5HVtPMUFzhfKiVVDgMcRwu1s/55PMb/fzDgfGWhaLnBGiV7SUmLWLy3GBQ5V2IuPJ8b3krxZt/8HK01YqnEWlAqbgNQ55agp44tBuMNa4u8v8z8vHT5+piwVnMaDUevePCKHw6OadCkZjhXy9q2vbfagGSto7rgyVptgv/YUkb9q3zdETbKZjw1zkqax3ZQskfuGLyRU0D65k2oUCrWGgoSV7ZKocxWbtkKsTchODdRj0rrlNQw1tCLopUNza8E0HfLjdxlpVKRrqLrrXDLlQosLW1m1cLg4BACuUKbCyVHhiGwxsS8Jrwf8FtH1ZwysSmm2imq00qi1rrxfhxaK1IWx3/KhVITdRiIqVJLASSd0Y0UTJYqSTlJkImyYzrAVrK6JaqeXmZua2TJjWsR2ODgPYZGr5meEwbpn9kNntFZci4kNLiBOVWebytTsHjVKHHhZbGYMLDEzFrEbxG04t7DYCpeK07O8/3BcfSO59nw95fKh1tF07F8XbWIsoJu5JzQTRg1u6DYe40F1pwxJLzunIJjsIqeE5OxDBaW5YbqmqYCa8nfQLS5JFSXxt9uNE5vbJjWpfTUaFQvaGVRVFwQfH/1jdo0afPLGBuopTA4RS6KWAK5iO/rq+dMG0uNjVg9pXZiXFljwlqDHySlsjbD53PCR8XkNfvBMgVHN1J/MV+uXNbCy8uK0ppXr++5Pw2obqm5kosACLWr4CS5FVOVe4Fxm/8ro/TWQ9YURnvevnngFhOpCJPqfr8H4BYcxnlonbhm6JZX+xFjDRX4crvweL5wnPYcR4exlnUR0+Sy3FAtsx8d0zjgt6TI8nITz5GVQUIrhw8DL9flW8z9tN/TrWHJiU7huzcnvv/ugSFYlIbr9UKvmePdwE+v9nhV0MpQm5IDWocw7cgxw8a/KjFjx0H8dtoiJ5qtfyqtMtzUDnYAo+Rr6JsPZ1tXYcR7A5tvx0BJ4MO2ulLix/EGWqXlyDBqykVhnaU3uF5WnBEkwO9ej8Qug8QyXzA18tc/3tOU4RIjNRV+PWf2wTJ46QRLNNR14d/+63fUXkgXQ8bw5bzg6YzBsN8ZWq/kVLldIg/BCKzVWt6MhR/fSq1DSVd+fVnpsfFwDLx5bTBOcbksWOs4XzOpdY7e4rRAGktOlNz5tChMVZxjxZmBWjuDsawUgpPaBlrnPGdeLgnT4fVxx91vHtAt82rShNFwuy3kImryx8vK/Klim2E8eA67AasMqMKH54VPlyTqPwpvAsUZUu3MGW4R1rmwnzxDqYy68fb1xG50fD7fGJwmOLh/2GEN/Ob+gLWW29pYYsUMlnHvab1gesdPB0ll3hKXbPhwTXhjiEXzfI6cLpW7vePdccCbzqUKgPanuxPvn27sgue6JL44OawtCVCNpAq/PEda6UzjwB+uK4cCb48jn57WP8vz/y9+wFlTxVuNUwatHMZkkV2d/WamtUZUjZ4KMWZirLQuq4zcI6prSWYkWQ8tqpOL4lbgrDTrYqlm5VY6n66ZS650Bcu64pQiVI/SjUU1fBv4wVQe9gOvVODD2nnp4nX4+l/r0LXZCiI3silqA6LJwCU1EPI5jd4e0OKFcFZTS8RoUQ6WbfWjdGddE7tdELBYNzLkdOlNyq2hlCE3aNvDrrRG6QqnxZNTS4FUGZyF1lhjIcUijeA00m3laY6UrvDekdIqa4sue/PWMjEZNI1SKnYVn0HJndoTXYE1hjlV8jJLi7PreAPUTk4LVa8yZK43tk5L1hipraG1ZU2VZfOIBCulcbV15pi5xoRCMTqPM4peMzGuWCXKVVwXateco+bSLBU2g1/D94ypGWM6wRV8r5ANL5eVp2pZWDfVvrG3iaOr7PeKX86ZD3PnsiZSymitGIMlYGkWToPCtIW3k+JVqDyawtO1cdMVY4ysd5RhTVvrmeqktEJptALWigH8mqScVLWKN4pBa1xvNApONfbBkdfKfFuJKWKVZRgGpsExBvjK86m1SKFma0KMtoacVmrNTKMTMF6XlKE1QheOMfKSCjmLKjqMjgkr3Vw2yCBRCyUuoDupZJZrIpculF/r2A+BYfIYL364njsheA57R/AWQ6OVTleWXjRLzpTbzBJXApnJPsjDs2/GX23QKoEuYB37IM3MaEOrirkha8SYyZsZfZomwjgK/6qLV6vkwmFwW7FlYuetFPCGQKXzMi8sMfOwm9iHgDOWFBMlJUovaKMI3nHYTWgj3oi8SkeVAuFoOY0JliVm4VK1JqblwVONYYmV0Rje3h8YhoBWjRQXguo4rXCt8XzLfP92lHuGBWM3QGUDdKArjRsDG01QCniNktRU36yfJdNTo1WLsh0dNuaN7ptBu8nXbSEHNnYRHVl1fcU4gKhCplPySsszPccNkdPoufL8vDDHwm/uJk6HkY9PkRAmTgfFu9cHiirMN1H7clHsneJuNBjnKGgulwv/6ncnQoBcHcplLpdELY1D0BwGg7eNx8eZ6d2JT79caArWKkXBr0+DlM82MN7SqqVpxS0rfj9NtKCw0ZJL48s1c0sd/3zht98fmK8LGMPaHW1JNG/58GXmuJ8Yg2HNhYf7PWvX7MeB4Ac+XZ8Ye+bdKTCeBq6Xmdf3E91WLkuiZU3NFTMYzs+Jp+eVMFp8qhJQ0xCGkXyDbjVPcyXmyrvRcLk2quk8L6L8p9I5XzKudt4dLCmt7EbHw36grBltNcsCr97tuaZEnhsxFS7XRK6V/W4iewtdb8+Khg0GrzVzulFtp2FoxvLpnLg3nTevBm5KkW6N9VpJh87kDefbQjHwv31e2AVHU4q1ZKDhnOMaE08vK8Zrbqnyp6eZXfB/luf/X/yAI+uAQmtaIt9K6MBG1ofk3KBLtDVYRcuGsiVRat8ouGhwwjYpqXOphkcUT0Vx6Z65KdYcv60Fem/STFw6Q1C89p3bLfLr9cblGvh4ufE//P7I71+faEpTE+QtKdS1rEqK6hhnvvFaau2UDdnelcZtMWfVpWm7tya4/P51NS5EWrVVOtcOpWtihxaLmFuVJtVCWiKDc5RmZOdMJxWJdX/lgbTtVBxjodVMaaCKqF5KKT4930ArzilTWmfww9bq3LZyw4Ypjest4pwQihXgrMVoS1yT9FLdIkZpRiegw1YKMVb8AJaCIhP0QK9imvbBkmvjFsX0XFrj4zXx8VooXWFcwAZHSonbvLDEhGqN0VrugubeVPauEHaGnfW8edgxx8olNwbE1K3zyv3O8ePBc+ctKUmE1VpRUl5a5svzjXOB3Tjxr14P/NVeSuaO+4FrnPmH8yr4/pRRHXLx9OYINC5e0WLmYYi8Pk3YfeO3Y6SWjvWWWBOpNlRaUErWJAyi9hldxU/RGzFFqEXIpt6hu8YrRa6JnGC2HWs1vYJXGu+MdPWshRCCrEmbIS2RqlcphNRaTtlRIH66d7R2KCydKpUIXT7vbWO5RdBKVmPB0Fumq4i1HjMYipeYuK5NinC7QmG3FHKmpYam4Jzj9dHgvWa/E5MpvZNSJ6aZ3djZ7e54/Wri9nyVEM9yIy7QEPaQ2WjUioL1Du0caIsJE9M04a1hvhWcNmJKNU54Rl3o1EZLaajom3Kjt34QJEytVBRryry83NgZz25yjEMAFOerDMyqCpp+PI6k1kk5kdIqg2DNHAYvauLoySXjEGS+cZbjfpRTutI40zhMI+Mo5PReC+TM4ByH4PjhzZ5XdwPea/zgv6nAylpSjJSiMH4kOI0NTvw3BvHg5HUTZjq9G0qK1FZQpRLcDnHlV1F2VPsqgco36El+vUt5LkaubelbKVBXWlrRToE25NzQequa0Yo3U+DhtOePn8+ktbP3modXA5XKh8/SeTUNnuYbO28xwOANj+cLbw6e08FiFDytkcfnlTXDaW9oKXK7VXbW4jQsy4rBkHOEbsV3ZhSxd6bJk42la0XMjR+OB053gV+fZmKWJOB3b3f86cPMYRxk3R48tTQeP1857ie+rOI9VFpzWQuqKz4unefrlR/vA+aW+au7wP64p/fE56cz4zTwaW1wyZicBDzpHC9PkYrCB0crHe3FEN9peG94ODhq61zmxHWO9GK5lsaSCsFrBtexxjJpMKqQlcY7S0qFu2MgBk3JjZc1s35cGCaLWxIlRulEzI35PGN94NN5leRczcTSwQwMfsDTOU5S05ONpRp4zIVLVugMhwC/ni+ShtSOz5fCsmie58Lh6LmuHa9hcprXpwGvFLF29qMjqcp5/vPkqP7iBxwtTjpySXRlcbZjnYbcaKmTatmUD4tRBh80LRWyssSmqHkDpxlLbHDpivfJ8GtUnNdK0WyQMgG3Ba3pJdN649XR8+MejrZze4mo2rnMK2vJdBS6Nk67yivTWPrAtQ8SOYeNJ7HRdZUmbw3LDVkbGGPFlLgxV7QyKNo24EgkPeUCeiPIdllJxdpY60rtYpruXcBoejMPinFXhjS0wXrPuiw41dBmA6DlTqRQc+ayVDCG3Co1Z2rrsjLTEsWOpdLRWGXIM+TYQDd6l5XFfmdpJTJHKaE0Bk6j5TA5jpPG6khOjaQMg9WoXOhtoZSE1Zp9cCxr5s0g8uynObOukfMtEit0nVDW0Vsj58yaypaq6rzdBx5GOBjDOA64MNC1SO9v9wVvpOqi5YoxhTtvudsZ2I2UXCmtUrXi3jfydaZiOZz2/HTQvNt3VKs4C75HPGB7JW7m8zUpdIekKnXN3LXCpz+tBO6xzvJuzKIGLoUlSh3CoLaodILRW8ZBMRiHUhs8rklSKzgNvZC749VhhNHQ8oquFW8sQfr+sFZRcmG5rnjbOA4QBg8t0lvGGYP1DtUyuylgrKPkKLgAvfGJkHWmcZZT8JSSud0WYjaUVvAWgtV4Iwm+Stlaw2EcA9Po6a3y8nKh1oS1HkdDlYjX4HTBtkIwA845kpHIc+4dZQQ26fWOtA3WHSkD7UqGvpIKuWVaSQxhxPiKRpSnw27i9WlkiSsv18SaKmvppKKwzol6Wcumrsqpfwri/0hNXv/bdWU0lsPes98FjIbbdSHYihsNw2I5jDs+P18kOEDD9E7uDeUMXSuc1bSUyaWScsEaeHN3JNjAdVlZ1pnDuOP1qwMYTabTi6zqrLHcHwcOo2U3yBo+eMNuCkyHvdCeKejesGba+tfEk6Vql8EmJ3B+4/U54gr0hh839o023wbQr4ybra5efk2pjWZsRfJC+FTSSZXpecUaQ/Wa0jRBObQdeTgk3k8L87rw6mHiYhtNW65F8f5W+fxS+evXA0tMDEbxmzc7zrdEMxXrFK9eT8w34Q+V1HE+EErh6A1XHXm8LFBHvn974JwKOIsfRi5N8eAtbx88L9cb1ht+fVz58pz5b76/483DyONa+fzhRvCG+3cHyvNKz3LQwil6VOSmwTr+y03x+ZL57enEw8kxr5XjpPmHD2e8M5xj505lDq9G9KB4eml4a5lviety5tVxYBodY3CE3UR+ufH585UcK4dBIuzdOT5fZyzQjcN5ON4NzB10rhycYQyGWBXPS6G1lb2FyQf5uSeD84Z/+OWFuTSO+4m9NyyXyPXpyl+9O/L23ZE1Rq63wi+fr8xPZ26xENfC27sdeMM6L+wHQ06F/Wh5Tp156aRuKYuk98o2vKIMHxcBitYGa0cgubeMtULRH53izWkQ36iXtJ1J0NxX9/o/7+MvfsBxg0NZMdcpqxl3DqsNNSXxF1S2CKrErjEW7S29KL5EmIvCbJ6V5wXO2XBthpdUOC8FZSSKPg4W1RqDlq6maef5zUFxZzvXq/AyTqMhps68Fv7+/QXXE7+7X/nu1Y678UCr9ySGLVElDx+0Ebqx4lthpFJKeCBKDMe5FTEKt0bKDY2FDmtMdN1p29rJO8tSC6m2Lf1StqoAmFMWr0fvW/pToITaWoz1UDumdw7eEltlSYU1Jp4XaVl21lJyFe5Qyiil0caRCsQs9EtnPbUoWs30zWDsm2FOhWushGC5D+JtCUZBzaS40o2iRkUNhkF1csy0EtE+UEpiNxrePHh6hVdPKyZVdJEuF2PEK/LrJfGUInUWX9QwjUxWilGvKBm8sqzWwLILlp9OCqc6JRoB9JmKUZ1xmmilULIogA9j58ed4mOC7ya413L6bbVwPTduKXFwjuoUOTWKbnhTBQXQO6lWlqK5xManL2f2Y6DkysnDnCsxNQqKwzjgVaeViNIJazTWeXJKoMBbUBgOuwG3dXWhNW7wYES1chrodjO2am7XjKodlVfiIuWw1jnKBqbrtdBrxgWH3w4BMSWykPlwfpSVj1LUsqC1YZx2YmRvFaUd2loqirr9XVoX03jThRg7tWSoCWcl7u43j5ex4gNqtVByolMpJW8N3ZbWMzUtApCzlmA9JSdyW3EhoK2jNcW6SkLPOQHd0QuUF8oy43Y7Hg4jD4c9S66cr4WYOhW5lnLRLLmxtAolM3m7VU2IcfMQNOP9icEbdoOVwRBPfl45DAbz6sBtLkzBsqZCXBKtVkarCUa8JA2hPreYKCmzGzxWK1JLxJoZBs+bd6/Znw7bLFHoVapijDE46zkdBoxqDN7RcmLaPeCcR1tFMZI2TBVKTHBbGaeBYT+ivIMu+H2QNOQ6G8a9l+v+f++/KTKwYIMMNsghiN5AD7LCqkl+Ty+CasiFuq443Rlf3aM+zqAMa804C6fJ8frguWnN3/0ys8yNV/d7HufM3ltqafzm3R2uJZRTTHvP03VhP8oa+zAGitY83TK32ITDZWEInh+8RauO33tOPXC9VfK50nrncHAsKWKdxvvAn/54xTTNftLsRseSEvf3O1rNpDkRgGMwBAWfrpG1GL6cO7vDkc/PF37ae/76tzuu8w2XGnNUpFjZBY9OK/tXI+/PEXMrpFJZnm54B5OFusStpBmWdOE0DRx+95bnS+K8rJxvM+M4YIzm5TyzxhvNOJ5mzeMiL0+bG36QIlqvO4NVjKaxs3K/SMkzes3pOPHy/srTy8piRQ0raeWPnytmkANsGCz7o9wD3oSRJ5u5rAU3eZzX3O88//EPC/pL2/oLpSrOd3BaszT4NBdKFw/pmhreW7Qz+MHxau8oqTI6zeAhlYQzHVstUDG2Mez/PKPJX/yAU0oRWm/TVAxde4wVyTV4RylGEk2tMcdKbIqmLJcIf3fWvGySam3CM6i9oZxF1UpQEvm2WjMahdOdo4WgLYdR8XrfaEvi5SqFbl59PVmLcfj8UvglX/C68vvdxJ2OPBWDwoq8vJ1CtbaS+NCbgVhtcLeva/He6EVRc2bNnYIhGLlp1tYpSpGbIP+NlablUoEqfThKa4LTOGvotTJsPI5WheosjeuVXivTYBmD5vZ45pYrcQPNpdZQvTIZA7VSoiErSYrFLPK1CQG0pawJDezHgPeWyxpRSjN6xyl0RpXIc2XNkSlo1loYgsFUjQ4aq2TSi6nwvF7YTY7XSGHdw1Hx31TD270hKYcyhmVd8TVR5sR+AKUqE42n28qnnNkFwynIvlhM6RKbL9XhvSFMA9MQsBqg4MJAzRFvNdkZjDH8u2L52483jla8TNfYWXPnvMw8LXBNUrj4ZjLS+aU61ilSrqTUOcfOeWy86h62SGbtUjDqg6WWTmwd42AXNG93Ajxc8lZqqBT7yWN6YzDCxFG10FOmKLnQre1oVeV1GgdRVGLHYjdIYhGidRVPjOoVy0YVbqJ0SncSUJusLqtwdJS11KyZDu8YpoFcVp6fnuS6yYa6rFtEvuLHkTDs6FUM6M549NCIcWVZGik1wuAYrJVUXFyJ+YqxFmss1hi8lxoB1SCrDYapM0taKS2KWb+sOBOwO0uKjV6u1BQwzgvNuzdZPQ8KG0YGrzgMjlQaMTcqlto161zoBFLyW6qxMUeIUUz/1orpXWnNmiopNg6TY68st9WS1xd2x5FfPr9wN0mBp1WG4+nIME1c1sz7L08s84JFcRhGOh2MZX86cDge2e/39FxodEotwqoymnGEW7qxtmE7aE2Cs2kNjCXXwvWW0XaS+0GpDOMON+w2yChseHB6aSxJcauavd9Lr5lSCL14O1195eR8JZRrL8pOA+qyDTbI53oDMro1ciqE/T27Q2C9LDw+rqAcd0dL2A38zd+dWaPinCBdMqk0Bl05TQHvKiVLj5eyjtoU43Hg5bwyOMOHz4V1qfgtEZeLhEP2w8D5trLGxjh6hslwOHbO6UJvC59uGaM8Hy9n0jXz3d5iTGe306hseHqcGaeB48Md/Rz53e8mkmr86T9d+eWq+XEaWOaVH/eOhzvHfD5D63z4ckZ1w95rXh0NvQeu88rkHQrBA3SluN8PPLwKgLCj7OAE5Fc7hsYULFoNUBpxW0F9uVReYqVpDcazD2JBcBpaEozGYbDYntgPlsM00krE146zFnTjX/x4omydaF8ebxzGEVrnv/zhmWkMhNHSmyaiuFxF3VuAXz7P1NhIOn2rMdpNjqrAGcVpH8DI1qMNlk+PSVRgZ0lorBa2Wy2K087ztUR48JoaI8bAm4NjHHdc1/Rnef7/xQ84l0V6VKQksrGulR40NTdSVzTV0cYRb5WfL3AuitTgcYE/vkTOS/qWUmpVGAihyH4/WCc3ONWZdGVn4IcdeBqqZVpSXOZE7gasY10zDcVhtAQHvSW+XDt81BwOL9zdOY5asdQBtEPKtDu6VzCdXjsVWVPlsnF9lMY7kb6b1rSSaTFTjKEURS6VpiE3xdo1aLcBA+X+1KrwRdCK1OQhrIFgPKoJdbW1hjVOSL1VosdBSxN5bzL4tC4DTu4Vrw0KTa+S6lIbc8Rqi7cag/hQjPfMKdF65Th6vt8pXoWOrpF5vrDzjoMbSHS8bpKA633brzhK7qxrwRhNWjQqFYyGyUEL8HlJNCxGNV6PGvsqkJrmcZUVx3kR5ejQDc47VJO1Uc6FUg2PwcuKLjau3TB5zWg1ZU2ollEIDj3Vjh8N3z84VI/k7FhL4Y/nzkuEl6VxTYVXezH0Th5GL8m9pysUpXB0DJaOJXbNrVuei+I5g2TChJqqSmdvNIMPeGu4xZk1ZsbR4k3DbtC/vW9QZPBRW++Ss8JL6qnQasS5gDXiV5ESzELJAm801ksFhexFoTdakRVkKZJIA0XNM0oZgt+jRjHRllKZL4V5lVj4MQw446glU8gEH1BKkVLG+EDwlt4MuRRijLTSME4LZkFZrNGS7qplWwdDyeIxK0VAeMZIzYIzkFRD1YxC41xGqYq1EhzoWlSMGKMAyXpG6cTYIi5MWN0xXjEGQ9daKLo7Q66duLatS0t611o1ODeCdqypcL4l4rry6hQ4ZlhjJa6JV4eA7oqHn+6ZBs2Pb96h0Pynn3/l18cznx5vvDzdaKWxGwcqUJUoYbvdHj8EWq/EFHHGMllDMIrgOq/3I3m50mKmGzm8WDtJ1F4b1rWT+8TodgTvxBuotn64DeApA4yil858q6SqKN1g9VeCcZS1lBJUgDSFb34bvtL/tndp19uQI+gFZT12N9FiFsr64Hj5NPP5U2Y8evzg+HQurLlzSZ2lGfK1cnDwdtKMrnN+mmVoGS3XlzPD6GkZMbrrzstLwjbFafJc1sr5sqK1wTlPqppPX2Z+/M3IbcmMIeDqRZJrLeI9fDrf2E+aaWe5LCu388BLrlyS4f5+ZK6WlyWyFvj10wvVTrzddY6+M+0Nz9czy6zxhx1ZK17d7akxQpNrZj85NIVaM61p9k5zejPgrMBTa4frnDg6w3mt3M4LwRnmXNHGsajAf3mcyVmR+kDuhe924sc6V8XT5YYC3t6P4hnSlf12HzjHyG+/P1FS5Y+fr6xz5NXBczwGpsHRCTw/XlBqpPfOh+cn7g+TrGqrIqN4elnIWbyYwWpihSU1ejMY3TkEg3KWl245DBOpJJ4eI815mhYa/Xd7w2mw+C64Da0bNPGW1tSoTTHPhfvJsBsUw2H6szz//+IHnDlrXFLQNL0Lo2NZZN9TWyclmZh/vSn+eDM8JXhZC19uiS+XSMpymjdab6yZzOQdQ3AED143aTzOFms1QYOpQpudV8XT3IhN+qWMM0zGoFoll0Ru8kZ5+bTS9Zn/7reBMBYSDWsOqC69RpWtfFFpSm0S5e6IKmO6EJlrFdx+a5QEURV6qQIHo9BtYG2NYqRNvSDllr0VWiokbTZ+jkVrYX4p46i50WrDIQbI1hq5NobBEqLwUWqpTM5QcxXoWpCKCuUcGoVDYrO7IWB0h2rxxkFttJwJCk4eTq6gS6LExGA7DxPoNuOsvF4ai+6dZUlUFEpZWQ14eRuX2olLAi1y72Xt5J4IBk5ToJP4314qLwivJnfB0ufaeZkjVwUPwXNyCnKEOlCK4fGyMtfELihOXnE3GQ6jp7XKvIhhlNwYtJykQm883iLvPxea9ZRcMF08L85pmqo474QevGYKUjExZ8WnuaJzEmz7xXApgNJ4I5UKQVV8r1zOV4xzxBjRrTJ2zagF2ihI/hHjOtYK+cd7xeDBOUs1jvVygaHivcAPW5NBNi43jHUC+dsSP71krHWYqqg50XKhlYa2Du+0RLu9POxKSaTc6LWwD066qrYVSfCBTqC2SE0Z1YX4u1SB2JWaUKbj/YBVnV5W2Xj0jjFSQlpLY72s4jNToKwVnxBf+S4Wa6WgVWGouYGqKOO2dWWntYTuFd07aVlJRpJMKSZq77gwyZpNiXqrjKG3FWUlxZZzpOeM8wOtLpR4lU7NkniYPG4IpOw4zyunWPjx1Yl4uXAYPG/e3jEe9+RSONwH/tPPX/i0/EF4OMqgW+M2Jw4P90zTHqMVNcWtaRzohV1wnILBmYbumd3ggMZumrAhkGtlSRm1ZFrX4tfTVkCgY6C3Qif/Y/ybzVPTOuuyYrTwdVqHXrpALbuAQLFhMw9vpmJr+bZDr/LQopb/HRFcY097UI6eFlKC60tkiZX4+YIZPH/4cCFjyTUTNLw7BL4/ev7F90dSL6xxpQEvzxEbAlhJ6ZUsBm2a4rD3zGvEGsfpYPhwjjz++sKPdyNjsDydrzy9FMZxwhvFP3y8iVJYMm9fncS8bxWn44Ce9nx5f6Mrxa01lvefcc4Q54WXpfD8svL2YJiVJp8Tp2HgeD9QuyYvGVszbx9GjPfEJA/0AtSUmc8L0y6w5Aax8caOKCdsrJfnlYTA/W5Lxe8HzgW+XBZyUaRmKM5Rc8Fax+uHHQ8d3p1GPj3dKCnxm3tPr4kf7iesN/zh/Rd+/tMXxmCxvWG05vPTSsyN3cmijOdwd09eIt+9GkmnwIcvNyGyWcs6F54vEe8M0xhIRXO+LtBEQWzaUZQiGc/PjxmeFlpv4k0LlinAqA2j0by7c3jVGIetzqdb5o1MPfmRdD1zuXXOt0gImj/Hx1/8gHNdIBgB4uecSLlivYNeqa1zXjufF/jTVfPrtfGSKl+uieuaSLlQq8D01CbVGqVIpTHWxlgy3gmcycyaqRueEAm/ZKHVLgWa0jhjCLphKcScyblRGqwJYm387YeINk88nGbMpJjsHvU1gdQqTYmhL/fGLQm0DCsx3BQLHvCmEWuhl45VmlYKtVVy7ZgQWEulqM6aEl9rDaStGXqpxJJBDRSjWXoU8FsTD8/aRBanNHITI/TkHRwnJhcZgucya9Ia6WYgofBmoywbi3eGwWh6XhlUw5tMTZlgoFJRJRIXhbGdXbAcvGI/WHqOEvFOhWYtxgZavG01F5nRG7xupCKFmakqnA1k1ek6U2IiaMMYLF+eFm7XlaytnMCNwlvD5BSDNWjVeLXXvB4tda2oVnm+zaSSJNaL4dNLRD3sMcrRG6SmuD9N7HNh+bIiF670LfVaCb4RguYSC0/XmYs2jAZq6XgrXAijRe3KtfE8V4pqRITdQpeodrCaN6PCNzgOlt4qMa3QG84a9sEyBWG6lBiZL1e81eDl/W5AaitoW9O7YZ0jxkrsVhtHGHakeaaVImykjW5Ns9TcaboIOypoMgvoIrymplEqCyfGGLQPOO+kFbiIj0rRGbxHtYzple4UzQ20UslxhVzxKAgOrTtpnSlJUaui5STDTDfUIpwk7y1Gy2vuvMYGWbNVLNp7Wm7Soq6lfLZ26EVI0GG09MmJIbllUJV1nolJkpDjrpKytJUba5nGgWDktJnKisoR4krJM2jx3jkUdrS4QZJfXQVqL/z4Wh6w6niHE1QSqEKukaWsfFlWWuv88PrA92/uuK6NT3NmfzzggiWVRK0N70ep/GhVBuPBsQ+K0YLt0lBfWiVVTRgcShvW5WuprpMDglIoCsb2DeQshFypWBCYn9UapxxWi5m4pY4ZjfiG+wb/Q8vX98Y/mjDSVrhZZLDpEr8WOXhHz4mK4fJyoxmJUVsMa8k83SrKOQ5O8bBz/NX3B16fBrRqrEtlbR1XBZ9xua4Mw4F1zYyD4bZmlpgZBsvjOXPYa5ZSuMQq3srWGAfPr88rpWs+P9344+NK26pYHo6BvOEuDqcRhebxmnk5z/Q18fdXUb+nwdC85ZIax+NApOMwcs8pkGLh5Zb5+LTw7346oKjUlGi5c4uJpgwvl8gUBi5zIhjHaT9QteO6ZMI4QIU0L2Q78POXhfh0ITUBaQbvmSYnvVU7R0LRS6G2xnVu9I1Ls86JN5NGVUF63O88uxCovfHlHNHa4IPCas1yvmCc5/MlcrIaXQr7neFxsHx4TpTauMxCsV665uklskYAxf1hT6XzMTauT4luK6lBUGInqMFC7+xMZ28VY1C8nG8cR4vRnTEo9gfPODiWVZJb02GHNYqSM1vU5p/98Rc/4NxixW/dS041BttRsZFppNJ5XBS/zIr3a+PxkrnEyjUlUpYTbW/bWoQuht5t99h6QeEAQ+8F2wxzt9So0Gbrp0JAWsGJ+XBeV1otKAwFTepShFYVPMfK335euV87p4fI90PGGrfdJyQKXXqndMuc5AI1amvQ7o2iIUuHA7c1badYcbKnWtBFTJOlFVIp5FpFFdKGtvF2Us3YakkJqlIQxJxZWkMbRSyZ3mQNYrXGW4PTivspEKxM6bVbqpZ48RAGgpXU1+ANg8noGjG+43RiPBhizLxfVqo1FDxZaXToDIPsdXtT1FbIGwX1mlaU7tx7D63ig2YKhlQqja+JMWlr77WwLCu6WXZO4a3i4B1r1dRt3dVaY04K3RQPO813pwHbKy/NMcdIXSPWWZyV9cdaC7dl5TAATcyiWmkpQFWNNVUpndSK/WhBdbSxlAqXAqmAMgqnG8m07VnQN86F4bwUinFUOt1aAZY5zc4qjsGwcxbdK71rasz03phzZ8maQ9JMwbHoQu2SXqtNgZYy2d47KeVNEm5SF5ALpgJ0dmbCholcZrSVG5RSYrKXvGeXYUl1UooCPsTT1wjB410geEPtimgM89pIWbwqYbDfYq66a3KJG2hPGCQEL9eG0XStWKuWdUrNsoLtjZaF7Kz1Bhs0DqWrtMUrIyyZDt4IudhoCQCo1sTI7AzKuc3Eb1HKUqusfkrJeK2FTt0TOl5QVKwacWic9ZJ8ouJ2GsYduRQ6WmoUsnh6htBwoXO5XTmGjD8Egh8E26A0uSo+fD5zXjIfX1Y+fjwzms6/+avv2N3f8bd/vBF0we729I227byogADBidK6ZFk7HgfH/V7SW13LQcIai96qH6gVhTBHVPdoFVB0lDXCtulSxUGTl3jaWWosKO3oXRrvqRWc2iLiyG5LW1lVSYurnOi0BreDsjlft8JijEa5PZ1I056UIy1DNIZLUtQG3nS+ewicBstIY9xpzjeBZyzLyrtXd7SbZskRoxvPt5XvXk+o3PGD5RwzLhjG0fLxc2LyE6NTjJO00IfgKUvml+cbjxGO+4mdgd99f+Rvf33kd6+OBFcwoyPnRrCOJ63Iy8rp7sjn84wvMvy13DgGzXd3EzlHXt8F4uZ9++neU7eOQXLm4bsDH58jXx4Tu2FifxzQ8yqHRef4fM1kbck5o3olYvj50vg1Gq5z5sHDaRc4Dobv3+5wzpBzpSwL746OW4y0KknDhURC8RIz2nZ6VZxfEtE2dPDk1NBdmGWDNXTt6MZyt+sst4VVBe7GgAuN51z59CxmduUMS+qU7sAYUmnczqLgxZQppbEPijunuBsk3dmDrLDv957jTmOd5uUqhGarFUFrbOtY1djvFfM1cxoH7AhrhPPtv3pw/kkfy5qJa0FpxeTA7g2XWyYay3WpfLxpPiyZz2tnzY05ZWpptCoPP9hKMb/eC2j02lm6JI1S6RK3dZ1UJAHirMEpLX4TVcmt0koWv8pGKK1ds7bGQiMihtT5krkox/e7zlQ0YeuUUHRaM6TaSL0Tm7STmyT7205naRWrGhqIWRIr2hi0NnLBxSz9WLXRepOaB5QMOFoedFSouUBr5C7Idq2EiNqb8FMkvCfRe6UsqMpxL6miw74TsVySsHp2wbL3BlUSVhccjWnUTFZSMgDXuUr6qlbOLWN3Fu0VugjJOaXCnGHaHzhOE8u8MI6B02SpqVDzjZYHdOvCOjKGp9uVp0XMfDWtzBU+lkjTGucVQ1TgLHPbSjGV4nmOHAdHV43runK9RVpXTOPAyWtyrwget0jstlWcNWitiLFxWys0aYNHOYYwsq+FOSWCbpjJoavhEivKaKmfUGUrMFWsCbCGpg0li3dptJVTUHhd5XXoioyjpsTkNPvBkUrlJTYebwXVOncHaQtHCeW41wJLxdlO6OJbymsm5yIeGyUKTOuVeUsW1qLAaIxqKONpVbxWxlpK15IQtiO9GLTx4uXqhlI72mx1AK1jeoWahUPjHG5QeA89r1ttBUBFB4PuDTMEnPeCLSiJ1js+OEKwSON3osRKTQKxNJbt4VxFRSqyhlHaoK3aklxFUAohfCsONUZ/40OZJmYUbzoqbMOgc2ij0WZEuYCyhkbBWAiDkI1byaQUt0OEpXQjgQZvSCVie+Hh4BnGUQbNKtDREisPu0EIx/OCKZHfvz1x3A386cuV2BX73Q5tnbTXazltz3XmelvY+T3ea1KVeotSNIMy7HYBZxWHyeI247vRGhWkDsMaUaCVbmizVS0AG3lP/h5ZzP9pA+E5I4OPUIu/Xvx689yICfqrP+srjV3Q6n4z+XX5/s6DCSyPv3C7rNA742CZq6bnzN1kaAZyTPhgeLjzPL9cWXNnmSs762iqsj9YrjFjTcDrgvOOXKXv6g+fV1rTfJpvlNqYHDyMgZ1TKG9YnlbePhz4u+fC/VG6+r4/eh5frvimmCaHm/ZkOi+XyOWauVwX9uPAnBJGa56viWAbO9X56S6wP3nef1mJa2GcAnanyaUSgmcYFON04stc+fJ04+X5xsPbO1rK7JxhrZWPT2eeL5XPsXPLZXu/aq7Zk4tGWccQDN8/7DjsLKpX9lZjPRRnCLYzjY7gFBfbYT+w1kxaEoMNHE8BWypYx/PLgk6FYWcZR8ur00js8B//4RmrLTYE/ue/e0H9wxVnA5+u8CVrSpT1dwdi7WinydawrpLCPVnD/V3g4eCZgsb3Ju97C4+3iNFS6Gy04WHnWG+yRjwcLLtRo71lWRMqGcbR4cdG8I41/9cB55/0cV6FrDoFS4+VwWve3wyLMcyr4pe58uVWWCvEUkm5oVqH+s0nJ4NNh9o7qouSQ5EBKBmDs4aoC2ejGKwleMvgNS4rem3UWjao3dYcrjrWOXIT4m5sndxhWRuMiil1zktjt5GKWwezJaFS7ay9UausULQy0CEmWQNorenKsMaC0RVnzDbUiH9AKOpGOrk6sJWAxhjRG0OkxoIxlrmuOG+3wU6isdC2Liwr3UBVIoLaaFTVHKdAVVUqCZAVy+gUVlUGC3uvGJ3lfCvclohqhXtbSDFyNwTeDgZVMsuiyAqa9dhpwIeB1htOy/c8L5WSBArYUieXwnXO6DCw3CJDN0LxNeK1ohicc5J0Gw02deZLQnl5mFldqUvn05crlMwYNN4bTjuJNCvdybGia2UyXzP7ZjvBdG5LQfXO6C0pZZqC4+RxVt43znlGM6DOK7lBURqjnXhjDEyu8ZIRT0MWg6zq4t1SqmN1YzCO0RnmBPM8s59G7nYjvS1cl8jHtbFEy+kw4HSj1E7LFSrMVlO7QzEQS5XiVd1lhbO1zKfrgjJe1lE0XPCoVGTQ1YrROpp2omxqTelSUKqspmlPjJuyqQx982O0UulFItYGZEhWonrWnFFGMw4Ddnso0zvNdnrzpJzQBsyWpkJrKnGzdmiUVoQwCnXZaLq2lJLoPWOd/2oBga+8p17prdJUkH5yI31WjkrTW6nhpvbkteJGWf+1TZ3Rbvi27lG64oIXblRveBNIWVHrSs+J0XvCYFG6ihKiwVK5v99xmxPlueKt4t3rPW9fv+PDophbJQzSgt5aZwgWqzQprhjTqS3J/2PEt8bdbuR+F+g0wuQIDpz3sJW9Gq/RSsCMbHUf9Cp9UnUVZk13m2+mkZeEUYX59ozXO8yksZMRvo28eqLSlG0NJfIM34alr8oFCsywtYoHeW1iYnm+cF0LLWVuWepsnBUFyVR5j//43YQKEOeO1Q50xw6a7j3UinEIzC5MKOVwUqPH55uQeKuC+2D47mA4nizeWf7Lh1UMyBuD5dVh4jA6nK5M+4FqLbV31ssVtRmlh6B50APBBy4x8jSvxFh4NTne7DX3rz3/6ecvpCXz6s2BXjNvXh2YY6TkynR/4pePF96/vzIvKz+92ct9syvptMuKS6xcqmIu8BIty9owRtFUYU2Ft5PBGsOXuaCs4t3e4kyh9gZa8/R44fXR8vs3R25Hx6ePZ+xcubbKy/MFO1iGfcD2zuntnk+3yNOc+NPHhS9XxbvXI8Ngef8U8Vrz0h0fviRUb9gQKLrSR0vRhlwL1RhiqsRSCFqUpdMUGE3lNGoeDgFK46Abp0NgsFooyUUCKA8Hz3DUHHaOTiGvBd0MNWX2k2IIC5fnGb+b0M78WZ7/f/EDzjWDcwqyPKCjanxI8FQqMcPzWll7I+UiZYZVJpv+zXwn/p3e2TwxXxt0pVG71ErKajPmGmad8ckyDlYSOanSlVRCSDs4OO/wqtO7IlbxcZQukLLbnJmXxNMyo4dhW3Fb4WsBc15JqVIRlUnrRu+QSxVZ3goAsBYpiswqy5CylUZa62hiW0YpkaC7gq6l7qF2RVojLlSsMrS6wRI3gGlpjUoVDHurtFw4zyujd/Suab1RuqyLSkk4ZziEjlV9q2fI3Lrh+bqSUiRYjQuNbhTBKW5R1mBtsGglhajeJaiZWDNjGFiWzC0XltI57AJj7wItA47B8u44cptnPr8UdvuR2xIlTaTNVmEBO9W5N42X1jhZw5tgcBRiSsxr5K9PR3ZeY7Ti16copydnt7TS1gyutRgxldCnu+4cRkcLsJxX1ljp2kjNRzPE0mjGkenEIomEYzDcB8V49LwsmY+3wqo11gqLZ5ln1iVxGC16L9wKzciqCilJDPrgNKN2aNXpNdKywo7TpnJYjIGmPcuaaTVRciMXMM7glOUwHWm1cj5fqS3jnaOlRqEwjl5uEr3QtKJ2I1C93ACPNQONSmlOPDC1b4gDR9mqN6aj53AIWCNKUIyZlKXCwQ2Bbiy1CzVaaQXGYQaN1YbeFbdYt/WIpuK/GYyDMdhhJDhHrVWgfEh7fW+yCjTG0tq2Qirip0OB9R4bnFzvpUt60Dh6FU9bqRVdOiomOqJI1rpSq3zzmldA1mAhDJsJXlRTOwo/xligZTAOrRr4CjqjVWUKncEV/uVvHvj1Ao8rWD9hgXlJ1ByRVrHOPK/QKt/d3/H6MEmJpKr87tXIcTKcjiPHvSg1y7qi3Y4hOJy30uTdG337ub+2KGA8xKu0QXep0eh5IV4vOBZ61cQZgh3QHqjbiko7GXLY/i3ZvDgmiJqmrUTEFfJ1CiiRfn0iX2bqXFgTXJfMYZgIPpCS4uAtx4On6cbjApdr5eEUGILl8rzi7gdiTnx32HF/MGRt6Bie0yzpqwrOGlCNS86UYlhz5W/fzzxdFf/urwd6Svz1q5Hj6xOkxOuHkZuuvFwT59tKSitmd+DycmF0mlo719i4m0asMXz+9MJvTp7X7wb+9sONfM7823/zFjtZ4lJ4elloFFSvvP/1icfnKylmvr/b47wm90LKhfmS6dYxHQ78cUm8v66ULsqZaZWHnee//eHE4DUaGXIphV4KOQtnrNTI/jjRtOJ6m7l7vWPc3fPLP3zm9WmkD4HrrfN8vaFS4q9+fODtfsQ93aAvfHpZcXR2u5F+M/ztl861KLKSotSUO0055lyIRoHyLPOCU3AXDKedYxccO2cYjMErxYnK3WvxTu32A7sxc0ia56cLumVMjoTgWZayrX8Ve6fZHQaUMtxuiVQt+dbo9b+C/v5JH8+xMSrLOYFSjsfS+BgrK5pSuvAuqqxuemubL6N/U21kmJFh4Ctd+KsS27sMF19fiqxlAs9N4Hu9QylNToqbZ8Z4w1AbdV43g1qlbKtt6UlQpLVwuVw5HE4baEt6sUDWYrXKSapufhrTDSAx21oLfWNRlJxQGrpVeOeEe0OnJDFPG28kdvvNMASlFqrqlJSYdEB1iZlrxbaTh9IkZt1bo2u4lSKI+1JZV1ntKC0FjN5Kv5Y2MmTV1umpYhGasemQeuO6ZpGsrcE7Q2idnXd4o6FHVJXVXsorrVXWWHmOitQie1vYGc1xHBlGje6VZUl8mQtL7pzGkcM48OWaWXNhChpjOvv7gJ1XTtbww/2IVYVlnlEtkVvD+YnbkrnGTrASMdZGEatCZb2100OKkZ0zGKOhFZx1HJzm48tK1xrtBuYKz2tmLlWMn7XRnJyQ94Ojl8Jd6JjS+VwK3lsOk2GdpdV8cJU1JWI2DLbTdOf5tuIteGsIznLYeTp75jWhjMAejRHvzRoblzVzvUaGweOsRVeF1xrXGsY4lqJ5uq28OnlOgyfniHcK4+T03ppijQI4RAdsCFQl6cRU9dYRMpDTitaCi/dDwDjFksRDZY0RJUWBcp6uRW3M64L1AW01xoLRBrQjr3EzKYu/RtGlAX5j6iwlopyoPL02SfygyGklA9oFepWCU2PNtppqaC31Jm0DBypl0SbI6td2rA1o47ealEptKyiDyplaCy0lnHXYaaBWSY/RwXm7rcUKYGTAooGSZNFtWWS405rjYUeulZe50GrA+U5eV5a4oLQjprqlFjvBWAbvccCbneev3428eTNK6et+hw9eAt/KsK4N0yq9Ssxbd0UtEW1EbZNotwUd+MqMqCnhpoHh+kJdOzVHjHakvMCcsAxyf/Ju40tsnAn1Vd1pcq/6KusqtcEARRHRuxPvflsp1yv/8d9/4LZkfnwIxN4xqvPqzUhunS8vstK/P+2wzrAsid040FvFq85uFLDlSsMNhlQ6gwu8PRSuS+U6J97uxAf5//3jzMsN3h0cvVTev6wcQuDT4yMHYzhMO/708cyXl5nJGF6dThL+CpCLrFWCsejauNOa73664+HVxB+fF9Yb/Lt//Q6zU6xLlISabdTcuMbK03WhVTiNEyoMrE28UJcCj7fK+2vhpSpi1STtWJfMaA2/OQ0Mk8ENnrtdEPClqtTccTTuxoAeG6U41rQS58jxzZHPHy7cUuOpQFwz6amg6kZsPxw5FymaRgvXy/XK5655+lz4HA1fYmJeC33rYKSL71LqciIqF956j1Vwf5owRg6tthW8EYbaGAynQ6BWKWy+LpnJFn7/45H5thBTIaMwXaNqZ3yYSMDLSya3zHy+4bUh5cp5KX+W5/9f/IDzlBXn1im1Y52YdZcqa6bSBeDXt2a9rWtQ1gLyRBeQ3maYU8j1+/XXZBiCr/1WrTd619ILVQRi1JrA1bRReGtxRRFVIStQTZz+IDf+jsJt/69V0YvCBSuVANubtXfRlmpp4hXqEuOUG3Yn1kjvm4/AKmKcqRR6H8mloLd/ixQzuhScVWglq5BeO62XrYeqk0qVmKyS5IbSGtjUIV2lB6tt3Jgsnp0UM80agRHWytNimVeh9jorQKuWM6aLeXrJnVwdS+/0aqgdXjtL6prBOFrLOC3NWrdFSMKBztMlMheEDustdTQYW2jnhu6d97fG+2ipSnEMI69OgUvMOKO4341c5hvedP713QC9MiktRutmmPZHzmuXRGzXKKvQzjBNgWM40noTpat34roS15XBWw6jJ64rtXcOk+X70fAYM8Y0lt7wkmHhkuUkt8ZG0A5PwZSItwZjFKMrUBY88P2d5WI7lcqcKkOqHO4CgzlSc2OOhW4VwzBgvdmauzsxV+wgnhSjDc+XlZ9fFq63xGHX2e8CVivcWqht4XTYs99NzKlxviVyl5RXXwr7rvBejNJdKym73Co+asrUVhl3A9Y4ShSVw+iOV4qeO7ppWi4oOodDwFmHcxZtNq4KVkygOVNbwaiA14buhIwaNOIZ6/I9nA9Y78VI3iWthrOY4NCtkdZCzeK7UyYLBNBqjPOy6upSSgqgjMH4IK30a5Ji2JxxTmG9PBCU6uhmUcaBdt98tXYIdGWI60qKK9ps11GX1vveMs1aqTCpAqpLpdK6Y75GejH8/HgDAvsg18ycVub5zLQ/CV/IWfZhx/3kGFTnr+4Dv/lu4O7OMg5Sd6F6o+eIGz12dIyTolWYlxkumXE3YZwkR7/xbBQygDRJMJla0Nawu9uTqzSrO9txKqNSoXuHCnZrHecffTtKbYrN13qGJhY9o8Wjo6z8uVUOkk3B7mA5DBbnNZ/PN9683pE7PF9WDruJ+2nC+M77n69Ya0i9UnSltUJE8eUyM04jrVS8tVzXxm4UplZNnYtS/Iecyakyec1gG5clc32emQ6Nw+j56ccDxWl++XQlpsb9aZSVfi+0IfD+y8LOaWlB342MIxwGx9NSGLTnv/v9yLyeib+KV+f+sMd4SfCtc8OHHeclM1dLfX8WJc1DrIY/zIr/8pSZb/FbiCVozdu7PXc7x+/f7lC9UWtGozntHNPJk2Liertw2nu8c5SS0VPg+Sa+obnCn74sXNdOcIbfvxmxRnNtjS/vLzQtvsOqLNdiWdbMXDpzkueWwpJyBS09UXdOfq7jfuI4Gl7tHbo3/OB4njO1FI4evj8EptFSe+bXT5+w1uKNIVD4/Y/3jIOm1onHS+J8XRi8Yc2aLy83dO14p0mlck3w/mXh8+PCPrg/y/P/L37AuWSosYhpsovxtPXOZpMTP4FqchPbPCpNbZCqTaoRKr0WA6Nq/9jBw7dtlezvu6SRvpqTlZYEkVIV07/e/Dq9GZwRiJoyokwoY1BK040D7+lG2otVb99+jlyiKDTIqbK1Sm6FpixGaWk/rh2U2mR8TW+aEgtZZ/HL5Crt46VSSsMSaLpvF5okUmiZ1iEmhfeeVhPGWIxxYpTubJFhMEpTamEpDW0VdWvnbU3+rX99nreos2YMAkxMaxa2kJGHbKFS/ciyJKyG/d4TjePWFYNWTBbonWALWkkJoreVyyoN4tWx9RyJSXctnQ9r4ZYbbw+Q1gu3eWWeVylVdZANmJr4/jCilWFJma40S2yEnVRKnFehxo6D49VuxDrNuAuknFmWiDEO5waM0uyCtLe2Kp6Z1hp3DwP53EmlcNQaPxnWohhWxedcyDHx+Tlist4qPqQDqVWF1aKQ3e0cd7vA42Wh1s4aMy83xcMu8ObtPR+/vKA7kgDqCusM1RsutytODWgC4zhiQ2BNV5SWks1aCtckSsZcG71bDtOOd68D8zKzxsTTHFmDpWHYYcAIN8mFga9m07U0Yq5or6hdkbNC6wFlDUvOtKwIVWGUI6eZ66UyDoq744gPhhTl7zXuRowZKCnR2+YvMx2sphovK5Qtlmuso/UuLB0tAMHeOsYKF8V7TTMWWpVByrlvV6uY6zuqKTqKkiu1yQ2+ZLYBvGG0rJ1F8ZACT5BUo8KgnQAGW6sydFnxorQiQLuuKiVVVJGfUWuLLh1vHE8vK89L4XludDzBeu4OBz5dI7kbvA8YKsEKNC+tCbXTvD1afnprGV3ZfL0WrcUA68dJVKIe0TZIvN04aiq0FIUi3pQ0DFsnrBq2VZMBPQ5AQ7sJPxis32F6xPiI/gbu2zg3bDe+rmQttRX7SnJKyWCjNzOy6rKiijeeHh/59OHK7bIyhZFcFDVVZiJEjeqSEOumc71mrDccD541FUosXC8zXBVLbaSkCb5ircSs1wjWaIK33Iq0q//uYcRqSdgNWvPb7w5YBcNgCK7x6/tHPnxZ2I8TT/PC/aSZGzwulVakLPZ0mHh1HLheXtDBkS6ZoXd0kcPabSnULPfZ+dZI11kUeW14Xgt5manG84ePN4nGW0c1Dl3h6CVhOzjDfhf4/n7id292vL2fOOwdvYmS7m1Dq8zkR1qdmG8zOTdyNixz4Xx94R8+zWTjMGh2o+e6rvz6fOPtcSQVofD/cst8vhbp6PMB7URhTDnJilhus+jWCApehYHdLuC9pqQFqyzfPUykHHmYArU5WlpRrmIofPcwUXCkZcUaCQi8XGfW5jlfrtwWCEZT0irlzg5+uSn+4eeVT7fMfC28O078y59OpJ6A9//s5/9f/ICz1E1lESrCpoIAtaHNNhS07Ty3DRJaKfn8VxrntoPSWgkNtW9JJBC1F7V9X0WnbYVzHbMlC9rGrqitk3uldShNJE1D5Xg4YKwVYrDVGOcwQ6Aq0E38AV9v0HWjPzYapWVRkurWJC5OEIxSlJTFQBlGckqUUuWe1CtFaZTRGKQ5OcdCyplOZQjmW7lnLw1jIKeGcVVshl3ay6VvWUi11ntaEQ9ERU51ORfWlASS1jvaaNYtldWblh4drAxazcigGAy1Vc59h1WDMGZGSK6gWsEGRSuVtSvCwXPnElZ1HPKQerpFnua+QcMao5EL1dXI7ZyJ10zNmsttZrCdO68JpqG0Zk6VNTZqMTwtTU4hVXO5VaxrvLnrLCny+SxFjbUJGn4Ijm473ssN6bYkVBPIq9GKwUtaR9XC4CBagzMWimFBo7RQa4sxLLlIq3oFozpVFb6rmv048GoXSF2x5sy8Zk6D5X4/SFdOzCgDKSeGwfP61Z7jYaCkwi3GLd0z8OY08OG8spbCzg+0vNC0ImnF43UlVsUwepQ16CRq5RoLaRhwzVKXVf7eDYx1WKcoJZPWRLIrfTOkYyypKWrRHIcDThcG76nR0MqNXiu1FHRQDCGwzDdKWnHTSAhCNe4tQysopXHB0bqjxCxqSCmgQCtRYlrp5HKjmYTxFhusMHlaRyMpoaZEWa0liRJTCr3CbUnktMqlX6s0pltNU02qAZBUmhCzFc47gR5aNuW2orwHAr3O8r23da6sxiqtQaqZy7Xw+WXl45eVx5tlZiAbgzeSvLotF9b1SlwitLqtieQw8vlj5L+9fyA4ua6NRijj3hEGhzaN3qDGhAmgTBdYp+7yM6QFpbQoV0WGGqwF3Ka6KGiKmDe1G2Fn9Q7dScGo+hoHt24zW2f5/RgocUtLaYmfK4AGyxmWKy8fv/D/+r//B6YoxGnVGrGJynbYH/j7Pzzym3cnWlE8P65MR4c1mlwbl3nBovl8ifJ394Yf7nY8f7py99Md6dMzczFcY6agtoPByM4pRtt4ddLsToHrLUrrves0bfn1eUWjqKVQNSyl8odLxSjLm4c9p53j9V4TXGVNFqUcoSYeHgbWmHlcIp8+XfiXb17RteUcI+fLzG4cueTIvBQO+xP/6XMkFsNhNzFMHlXhNz/uRM0cdmjj2B0nximgtKK7RrLw3f2B4BUt3bYDuCTZ7pRhud3wnx55evzCl+UzfggMNvBlyQzOUBfH33+MXJMk0y5okpKKja63Z12V9OqkOjsjxQnPVZ5B+8ExThZvGztd+e7NDm/geUmsa8KbjOqF+/3AaRcwqjAdPblkdtNeipkVrEthuUY+XTJ//8cXxjASnGE3aJa18v4K7x87tml+upuwTvHlPDOE/+rB+Sd9xNq/gdQASR91USxU72IaBmhNsBCbeN2Qw4rV0htVWt0KJBW5wFcPslYbkqhv5MUOvW9DUesYI+uV2jreWRl4ury5rLEoZRh2B6w1qC2NpNG0Lr0x1giLhg5tWz+UrRpBkiqiArfNW9O7DD9189tYY7H+H9MeSoknQ+uONtsqKWVyiqIM0XBao7QllyzVEE3AgW4btGqpxLiinWDljbOy6msKjayZqlIUENx7E8XJmi5G5ga1q022lsGt1YKMOYrH24oyHq8VXTnmrKDKz1ubIZVCyYpeNbplHJWDcVJZ4BTfnzyvbSfHQrAKqx0772mlU54rn76cOewDP90dOO0dT5eZCqQO6EpZZ5oP3FaFcY51ufKHD1dpF9crh8FhDKwkjPdYF1hzFK5Z8JQiJaZGw95piBG7Wbi80VzXgtWF18cAKGEcVWQd4ixLjXhrKU2hCpALw96jWyenSouNnBzawt1xz/nlgtJa4t9R4H9hGBis0KJLLbS4sNedZ634cs1crdpCboWsNUUXlnrFrFZKILtQre92I/txwDpLLVFSJq1t7BnYTUFYK0rRaxXuTBFDO1q8BLvB460jOU1cxMN1KxbbpIZBBViWG0t8JvggCobWmLAHKoomaTnEdA4N42TQUN1SVaXUBL2glUWjhMJNkVqJVsGIYb8moTujKusqkVpjNGHy9BJRXdTPFAXGqW3dzPhAT2hl6IgRWfWOMXY7AFWU8aAUvWfhB3lNL2WrroikqBi95TBOPFfPx3Mn18px1NT5xuPzldsSKWuiFTGxG62xNfM//u6e709e0k5z4v6w2wjfyAEnJawfoHbKumJ9I8eVVrai4c0Q752XlVzqGM9WtimGw94Uz0+J2yXydtjRi6QlDcIO0r1gVNui5Um8NqZsq67NqKcdkqoqkBb6fObD+0f+l//5Dzz+6cZ4P9G1wg+ifnlreVkSqWkhoW84A1tg3Hsiijg3xpOjGMd5KbxVlucvC/f7gfdPC9dqWNJWjtoV96OU9TrVccZirNSHrDFhWuXV3R2fz5Ffn1d2u4HzUrk/DrxgWdHcOUPomZYr66JRRfHjb9/y/DJzfDUyp8zj2vh49exe/Ui+3/Hpklh64FN1TGVkzp3iFcbuefW6cqdgDJZgOm8mz7/4fs/d/cRcNdekKUqTckUtiVwsT7eFsSke3h6I1WGdJqckCdjcqMWze/sbTt/9xMNPZ5bzM84oPn++8Xxe+dXNrIMj9cbfvxRelkY1hoJiXiKTlSDMu+OIJrMzhp/u71He8Pnpgreerhs5Z2yvBAW/++GOp3nl+UsTP9TeYW2j98RlifhHTQgG5+DxnHh8Wpm74o+PC7fYebkN2Nb46WjZvdEE53gdInc/WAZv2Y1y7yxpxW5+13/ux1/8gNO3i1egnV9TUttpRMmQ8/Xir1Xctl9XUCiRsZVRG4tG4rLyHFab/1hu+OpralKB+lpMp6VUDS1xWmsC1iB/RmvCB3AScTXWys3HedrmtUk50QtSuGm0kNC/wgdRG2qiS8W895QiUnGtMshZFLkVrJXTqzEahaZ3gY711oXR06F0WVeUVOhayTDRIceM0UYApl3RWqe2Qi8Kq720zxrzNWkqCraSrzNayhFRTZQJJdHeUgoymYmpumSRwLWTKopaGme9sJtGPi1FTvXVopPCGkfOakvUGHrpmK6o3mG9x3i4Ozi+/z7glCLnhFadadyx358p6sJ1zSzzwuM18P2riUMLPM4XlqxQ3n/jNZQEVWtK07x/FMPt6KWLZT9YXFqwvcLgxGxcOjaMOFvw1sjqYlCYplhuK5WKVpWBzNEaWu9YL030XSnymtmjOPmJpRZurfNcDLZpXJPXUwKW4sOKaxI1COilEIJHoUhrppaFMATxhRSIKRFjY28NfbBcs6y7lNbURYBq+ymIyRKpWRitYwqa496jtMaqkVob1jmMs9JN1cEaUS5TaehSUQh7yXlFXFeCVmgE16Cs0IsLmjlbVMqSuFc7oHGbxdM0Tg5dCzmuKGMIg5fo905TY6LGlU5HWy1pqS0pqLSiVnn49u2Q0LB8XR/RK0p5WfkmKYd0zuNt20yxljVWlluklYixC35whMHjgqfViFUjvXRak8SfLqJaCldTbzDCLgOYHyjXhc5Ca3C+av7uRfHhVoXg2gs/P51x3vJyvbJeC85afnh74nxbOF9n3uw8v/t+wvuM7ophmtAgdGODpBdTpdckVQ0pkWoj3q5QCyVFtHOkWMjeEXY7OcDHgJvutgJRRcyKx1Xx5bkwu4JxBuscKUkD92AVb46W+ztQLW83mpluPcraTbWpfIuNl8TL0wv/0//0Nzz9/QXVKt+/0mAqp7uJp5fMMAxc1sw4GqqxnK8Lv/0u8PpdwNC4LI3T3cA1N14i1O64O44Mg+apK/506VyT4ul6Y3CayXb2o+L7feewt3Kw7ZrllridZ75/daRow98/JT6vip41xjp+uXmGCKcgr6MbAs9R8Zw9+7cn/sOvnZhP5CZk+ozn9tB5nwt/82mmJM1o4HjYgdEcdwbv4PUu0LXmb359opTGQXXu95rrfKPqylI0zgzMy0Krlf1+YplvvN45ao+8/5h4vCRhqw1OmDujZxcsJRZ2XnM8HAi6E5zi1dsTea3Mt0SJMmheInx5nom5Ms+N//jxyh/fX/juOPHqYNk7aaA3OjEqzXBUaN0oCjCekjLOaoLp/Jufdpjfjhgt3/NyTVSteT4n/vOvldJk1/U0V2J3rKnKc63D/U4zUng4BbKCnVK8/uHEsizErPn5/ZnBKH58O+CH/xoT/6d9bIbAr16ab59ji6UqhWp96zXt35JTSnUsXwchMeKKX0dJDJb+DfkAwNfvpaUzR1ZdEvcFsMaxOx7lxlsLtWRarVSgK4PzARcc1jlKaaSSuWYkOdKbpF60IfdK6qLUlK0NXGuD7sJzKTnLTb0L56PkDE0aXZUS+bZm4fJoKwZKpbd1m5zPyXnzDPUmMNLWqU0iwnJiFK0n10xrnZI6BqH5KqQB2xp5gNfavv3b5SbmS4yhb8paLRLTVUZ2960kWm9cl4XSG6F4XC44qxmCpytD1ZbWNGspaD2ia4Fs2A+GS208Zc1vgtA/KVIS2rQQdgdn+Olh4HlOXG9XPpwt9yHwZnLMS+HDkvDaMY5bc3QXI2rrkIqswlqT5JtTwkPZaUUYAjkuXOeV026kdiEYp5rIrUMIpDVhLLw+DJSXhTkLUdhYy+A8h2FA1YyzipQ0n89XUurUKXBbhKxdc0V1WNfM1cHbk+HVace8DQYoMey2VklrIne4lSxpPeQ1tcZw9IHRifqorYZSKbkRXMB7wzRaHg6DkHN7FQ7OJOvO3uRQYEOgrgutLgLFU7JyREmPDdZQayYl6bsaxpGaM6UmcpOki5gpFaorQnAYr8lpoS6rEMFTgRppsbI/yAFAaVDZUGOmrBGoG7nX0tD0nEQJdVI3UZqsIVTvaCux6ZojumeUFhO2+D80XXu0rVhX6LqircZaI6mu1qm5UOMsK0llKDFRkfuFsQ6lLE1pSo6AgA97b0yDJ+bKH66Nv/lkWGImBMOr3Y5Pl4WXxytPH54xzqGM5hYjMct75+2rI9YZ9jvLOAQx9Zcs95AsfiWjLbUkWmsYP1LiDRdGWm2bf0ijVaaWRFmk4iKvM6ko1h74eO483jSPV8PtFnjfCn7QUjVVgVzQND48af5t79ztgXgDF1CubdHxvnlygJpYr1f+3/+fn/kP//4LbwaN7Y3BWZZS2QfDHMVkel071wXWuvDDaeL16x2lJa7nyDiNBB/405czozH87ocj497y/vHCn66dp9WKp49OXBM/3Y8cdOXNPvBlvuEwmMPIeWnsdxMPb+/49QKf/3/s/Vuodn161gv+/vsxnt2c7/t+2/rqS1nG1iQY0dWIRCEElARW8MgzQRPETUIpJDkwKBHcoEFBVBAMtKAHJgceRIRExERNJMt0u9rWzjLppLuSqlTVt3s3c/Nsxhj/fR/cY84v1Wat1aUFtqEnFPW+85tzvnPO53nGuP/XfV2/62g51hXvECvXfiTsB6bRo7umvvE6Jjc+PCd+6XlBdTiMHijE3DinzuV0xraEKknUXavwRhT8kgutwfsl4cJAnBLBaN55bc+zfeAcKy/PjaVU9qPh9ad7Oh07DJTbI5dSIcvjVLridKmcX2VaTHzN6wF/ZQnrwdzohj+MXC6ZfAGUoxhw20DHsBk626dP2W0swcAf8Btub2bOp4WcE3meSPMFTxNGjTW8fzvx4tWF3itjUNSWeHVzokTDJ97aMudGajB1zxduMy/OlttzIy6VrTH8pteuCaMkCI3uHOfM6RJ5bWPYDZ0YCwRHmRNPdltwHuMNsXbOVO5fzF+V2/9v+AFHfCdyA+/1oYgQqVNpXXawD9wbLTdz6Z6Sz+48mOo6rEklvZ7WVrsJTSlJViFm14dobu8SNfTDgAsjYRwopaKVJl2OOCvvN9bQAGUsXQuArabMfKnSpFyFTeK0tM+2UiTavqa1lGprd5D4hB7WSrVJA3pubW2U9tQVxFaLwOv6yqvQRlHKowQjgYvVhKiBVirV1LXPRmi7rcmNxCNeJmPW7iIFxmoonZwknqpX2FqvkoLJOa8ANI02YIPDDw5Fp0yT1CyURGsblgW8H4hF0PuSLugyvPWGodOLokyV7DRfvInYlvnkU88bO+kEqjljvWa79bjBc0iZNE+k88RNTIBm9LCvDdUSqXaUNlhv2WwMNq9IE6lgZ0md6rSUYeYuQLfWeXV7pjXYjx6lEq125phpvQsRVUlKaxcrx+WC6nJaaiphvcYHjTeGjQNVvbTBd4mtnueERnADQymUBDlLQ/tmP4DugjvoDeMDKRWparAj52kiVYl+WmNZkkD26B2D9GFtFfhaSUvlple0gydhJwrQZSblzLgZpKrhfIvzA0Yh7eDWEXMjlor1lhwTx7lzvTV4q3EI6dcYS/ArFbdlak20Kkk8pQK7/QbjgqzDlMKOO2peqGRSUfKMLAg8UIEJMvSUWFjiLCsJM6zRbIO2DtO7pBJ7pmbhtrSqBENvRHptXQldOUrRoLcK5bwkY8SAgurgwoYUZ4Ekeo92kGYp/9QPEEDVUGhSAjdohu0ebQu3r058/j5yTIXLlBmLxQKvpsjxeCG3ijFBfq5e2RqY88JbB89gG7llNnZgs9muLKFCWiKhwWE/rEpMoeUiHhltUKrhlJWI/O6KXjM1RWovpGL48IMjX7w1nBdYioFhS8bhmyMv0vqs5SIHubAsjQ+D4WpQKNaiTbnwIXv0vNY4FG5f3vIf/s9fYDRGyiy9I5dGWpDkpzGcl8xue2Caz5RY8cFwmRPeVbqGuznyfElkYOM749bw8x/co5uh5MrtzR2j86RUxDA+LmyeBBLCW8Ibnp8jl6S4vtrzf30/8f5Fc6kB3MBht2PcjmSleZ4LQwmMTvGfPproSjHNCyUXdt6RkngTuuosc6bmCL3wbHDst5rTXLhMjWG0HFNliYU5Fl67rjwZDO9ej3zq3T1TU0zRUYyhtMLNVMB0LlNE60pZGoeNJjjNdutQqTJfMmPw+KA5J3j+uTOD64xby95BCJbTpXB3yTSjeOvJBhxc5sL9/UQHhuDYH7bM5w8YxxG3txxs4HD4BNN0wfWGGyzT6Z7DJ17nU+cF35oQzddiYas1yRp5iE+Fz7+48H9/P/LiZuFJ8Gz3gWFw4DRLjuyDYtx4dkGh9oaqGiV3lLWcUiUcdnzhvEgC61L44vMoh7r6/19R/X/11qqYbo1efTQghNh1bdV/jfG4SRBKdviInqGUWitb1GouZb2Zy3DQm6x2tJZqAa0V1lphbNBx3jPurtgf9uIjaJByRPct2jn8MEp01cjqxraVmdOh5Ijxnl4auSxUrR+VEFkJdUopKKPocSZYJ3R0xMvT13ml1Eoj4r1Ha4Nx8kGtywDEA98lFfkZkEi4MRJXL7VjtaI3KIhypFfTZioVaxPOyVNJW+n3yUUM0FqL2qWNopY1RrqaOTNtTawKQr6vqZdu5GuknMmz3LRiytRTl9O06ivULqE6DKvH6NIKZ6O5JMP93HjvTm4Oe6/YjgPKjGjXWZYZow1jGCl5ETIo4L1lC8xdbqS9VUxVjNpirOIudYqC0dtH+m+ucI4dp8VTZVHc3dyj9oHBGYxxeGeIa//XeUpc+kJVms0QMEoRBoPVjY1hLeDsaOewZsv93ZkaI5vBsDEyNDvvsEb8PLV05hzlBL2uR+oi8VOjFKM11KLR2hGjDCmbbcD4AW80o9Xk6YJ1cLW3BGcoRVZFX7xcuL0/MYYgN4/aGabCG09HxiFQcpITpB2luPaSOM2JYVDotYeoZM00NxSJ1gzamtVbojA0rB/FuM+MCQO5yuvO+B3lketksC6QW0WltcGxr51UVtONDE81g9IVMw7r80mBXZWNXiUmrp0Ysy9nUZqUkXLslslLouSE9271qOlHpotWDu00frAM2ytqikDDrfUSfU019rW8UmOYl879eWEIjS99eOQ//ErkfnJcD9KMfckCXVxSZ4oJ7YULlFvntTeueTNAqNe880QxpYRfRnJL7K631O6Ypg56T4wKO0LwksRstQrnyjpaA+dEzXIuUNOMsp4aC5dUeRUTL05N+ufoGFtk/b2u9HOqj4p2yw1N4wt3hndfh20A+Y9avDd1kb/XxnR75Jd+7kNGDC10vNE8fbIhKk21lvO5MVjPbutJtWBMwltRdT45jqRWqUqRmyU4TW8Lbz3b8fL2hFoyT59sqfHM3oMxjSl2BmfZjgYdNL96n0ltQ0uWFyfF1B3pptGVxhg47DRPnuzIyhARUGpMwkTCOaYp0o3C6EowhmmONG3IKTIES6uFzRhQVRNVxSYZku8LbGLn2huunWVxCwdf2I+Oc174T+9dmKsB5VliJLaKozJay9Ot5cXNidFbDqNjDJrpHLm/maXF++4Vn3i2I5dKLTNaFZ7YDWhFrlJEampHVZhu7zlry+1pZrAQbGdZMu+9/wqrwG8WUm5sdxucX9AlMQ6B3mY2h52Y1fUGt91gtkZUvClzN2fuloJuheFqz2/9hsw77zZONzOHrcNuDD0nem7M8yTbkppxxpAV3N9dqNVwrnBJjc/e3dFQnCp8cEzkqaBrQ+X8Vbn//4YfcGprdK1wWCnNXdUaWVut4u1qLqZD69KTpNVqGl4TEdroR+e5pLI0Wq01BVrWMkWJmc/YVSLqiu3himG3ZX91LWsZa0hxIqdAbVUgamtsvZWM5AAAJPGRkXRER1GVdNPId9Yl9Vkquq/fu12ToE0STsawpreKqD01E0xYm4RZDZgd3TpeWRJJTMCqYpRECKVjsYq9SGtUa/TS6FY6iTryRG7VCzX3YWXXFc57vDGyMmtNhkQrSRulwClZmTjvhEG0rmBq7xQgtU69LAyDx2phpsS4YPS6OuzS7m7QQmKuldgyp2PjOFheWMX/88MLm2B551nljZ3BNJhjxWnN6C2mW5xzGGO4pEpunfMU6Uqx3XjhdajCGAyXGU5zQgXNYS88lFYbS+3cVRgd7K42WBpWCWyu1UrTikZhDJZ4jpReUcax9ZbD1jN6g0VjFaArTRlqTeheGZxmiXGt//BM8yKendaJuTOutT8PhnDnLcNgJYYZE0vuBNd4940Nz+LAi3PjtFSaKozG8Wzv6GEkpwVLw2vN/sqzHwzLPENv1Hnh9lIoHQ57xbPW8cEL5ynLuqf29VigFLlWtuPIZvQ8uR6x64CbW6XOCaUq28HSuiLNkaYUXRuUcXTVgYq2TlbHuWDciPaB2qLcaGui5IwxGqsMauXgWBXoK/5AgIEWmpFYtzFrwaZCa0fY7MnLQi5FKsbSQk1J/vugheAcvDyXW5G0QRNfg7F+RchIvNx4S6+aXgwlymNurGLwjlwSn/3CLV96OfMyyVrr6dbzPCyUBrkXprSglGI7joQxcJkWbl8e+R1f94SeEi/PCxENdxHrNK9Njde2ljefjqLWrQRpWsd4JwWmOdJbprdCq5q+KrG9Q1eK2AOv5sRp6SgrClUtjZ4bFYh1wRojBHDWT0TWdB+eMp9/ofj6dypa+4eUA2vagnY68nP/8y/yv/z7D0hZo7Xl6irQbOeDV2cUWg5a2kjJJJ2n2y3nOcHSaDHjg2PWhtNxYeu2XA2O1kVB3jhNLoWitfjOrMdpQwgbXo2BFxluYmLJUpPysJ7uuaJVYxwcS6nYQdG7JqaGs9LpRCtY19mOitMUuRTxwo3jKNet0tjvLU4rWdFUhcl9NWPDM9d5+9pxPWqsamw3zzilwmmpTLkxTTAEQysJVTJbKk/3in4wvAAAitZJREFUjutQSU1gs/NlJg8VReI0JVo15JRxvdJTIk4XXrOGp89G7mMlxUbwlcFmGB3Hy1qlUiO2VbwZmNJCzpXdfk/qihdThaqpqhBSxQfHMieCVlxe3FO7YWmaJd9iTSc3zSeebcjTxEhjdz3ywasTORU2Q+DZG1u0VixLIoSR+zhhx43Q/edEy4WrzUjfaNzguD1HlpuJNCeUgnReMFNlMJq3Do7/wztP+de/8uK/+v7/G37AeYDxNdNRSlYuDybe3sQH8pAD76vKqrRZFRAx5tZ1xaPlUinclt5lraSUANO0xB+rEjy8WcF4xmqMdzSjMFaIyIMZJHlUGqxP6lolhl2b5LgUYihOKWGNIa+elVbXYUtMRBLXLmI0jEvCBw90OcWtypLE4oWB40ynpYzqHasUsckFTa/fNykiIa+GNl3Abl2M0rVVjJJOm7YmZ6x19FrJuaymbFn70bvA/ZxnqZHGWnOhFVppoSx3+T6LUjhnaVUUHmcNpmlxOilZqTw0fys6MSbxKLOeTnPGDANKa5zz5JyZS1t9HoHbc+OD04lPPht5ex/wYcMcJ3Rfy0Zbw2hLVwatskRwW+eyJHov7L1l4xqvDRVbpYtliopgLc5ovIKSEgsWpTXDboO3mro4+pKJpVLVgPPw5rMN8zJTWlmjn5ZhCFyNnjE4lmWm9U5JjaI1viq2xkmJq/P0Xskpo7RlKZVLzChgmhaJT/fG1dXI5onFBUssC84osPK8VsbSa+R+KZTUWGLnjf2GoEdqy7jR40dP31QO13tiTFymBRul18oajbaarlbasLNrPYNjDBXrx7W2RPwI3irxY5XKvIiKddhKlcGyLJzP+WMPmm04pxnGgPOGlpP0wpVGVEluikpjhpHcHdMyo5IcDgRC6cl5oU8XrDdsBo8xGW0MrVZSjZI2Mh5tHLkVcsugLFVBbeI1KhSqHQDxtzin0XZd08ZCTRkbPNZ40rJQs8KPW9xgMHZNBSpNWirnOfHiLvHZV4rPzZpcFqkWWDK9dllB5sbTqwOHw5ZSCvcvI0MpjMAxFV5OjfssCpK1lXO5UK41g5nYDqvnqkDRBtqM9cLrslYUudoVOc7EdAYsc1a8ulhuTp27ywo7bZK2mucLDUVrSq5dVpNLxhknNPTeKRS+9ELxW14zhJ34UuRAl6AWXn74EV/47EuhxBfIrTFsDTFGchYOWVeKu9MFNzhAlGTpBLMUYImN996bcVpRxkawhto6N5fKnBTNGG7sU6aDIxtPwzIpw8uUWKYzowlsd1tiSiy5UGvGasMYLM5b5lQ531zQyhBCWFOBkrZ69eoeUIRxx1wnCQeUwmjF6N6NDGfH+4leG9fbDa/vPZd54skonJjBWV7bb2jG8kFOfLTMlK7ZGk9Qhk9/Ysd+ZzjNkbtz5EuvIjFV9qNlOwast2inuXS4vRQ21vL6sz2b0Dj4wHY7cjtHWjUE67gsCbfbcTcVSurU3rA0tk+vuSQ4RVDecjwXlJWD8eu7wNXOoqzlXBq3dzOjG+nK8fzVhcFojDeY3tgYuW9ZLzaBl8eJJTa8MdgHOnaFJ4cd2lm8HTkvkdOyoIYtOjRy0Oy2e0YFr7/R+S2fznhjiecz8zny3u3My7uJ29PCL79/91W5//+GH3AeaXyrwfbBG/Pgo1nFDPHerL0LShu6UnQlRlGJqooaoo2oELk2apPiOmdXjkuX007rHWcM1jpYkd9UGZZ0lz6mVhrOOUoG1Sp1SSjnUMgqp1Mpta44CYELliqnL9sUelUwtNKUmuXCnMFZ+wgYlMi4rDRKylQ6qWYezENd1bUATjxDSunHuC9mbYQ2RtgMFbqBppqYR4vs6mqpOOuAj3u8tLVorWXo0RnrHV4H0qxWE3cX/0eTVl9JhcmD9aCwGScvPOf9CjpspBlyh6YbvZXHxy3lgjENH5ysO5Tg8mtTWG3Fs5QKn38ZyWrgMAz0UqhOs3UOcqbMhZwLo3X00LjEwlIUHxwX7rzh6c5JO3qwhK5JsVJyZzNoRrfC82rheF7IpXG9G/FuQPst7bSQlolxcGwHxzg4jscTWnc2ulHjTDKFbdiwCY5lmnDeYAeHN42YwAeHNg5n99yfEpdF+sh0F0o0TXgn02UhL5l0KYxbjzErLLJXTFMMdN6+9riL+LlSlhbx/ZMRjafUQk6GmAutprWuwLD1jk1wBGuIueFzx9tBBhDdoBvGUTMiADyalL32NNGNIedEq41gHKOX7iNrtHThdIUN0oZtKKIadBle/dUOEBWyA2gj4YDaGcNG/GstM80LS5xpTQ4OtimJ3VIYNgHrArXKoQFtMF2hnSiMSiu6V+AEYKhUJ14uGKtwzuBCeAR8Lkuj5JlhHBi2oKwhpUhtM9Z7CpqYCtMyc7xL3Jw6XzgZXuXAkipzTFzmhTSL0qNrY2MN1xsHJXJ8foNeEl/3zo6rrcJ3w2YIfPZG8zImgjHMcea9lxAIvPY0s+SFQSu2g0X1QhgMukXG7RYfggzyTVTJVDt3584XX068umgul05ThtQayjiMM4L4b3KjLEWxxERJ92w3W+m3Co5zNqIOGrO6kDt0w3R3w+f/l19BVVhyI1tLT5VShPeUqRitWWLj6S6wuRq5Py482W6ZU2YbFHGOnKrm5hLR1nM6XWhN4YLnVduSrq5JZuBSFNOSMcpSUma+nGTdrg1+HEi1io+qy0qbWtiYzmb03GV5PSg03soh57JMeGfIVRTFy2UhJ+EgeWUYBsV0idwfkbb6IkW0MRduz5WNquTYGahcjx0zFH71wzO3p8rGerkW54Vn2w3dNr54H1km8f91YOfhnaeeYdS8uJ3JWe45b18prG68vD9ijefpbuTFhycO2wHrxNA/x8qr28ppKryxHwReGzbcJM3pfub1w8hutASb+PDmJB1QAZyz3J0jqTQcmrsl8+pcGXrnrdcHvMm8drWFDudSuEQJ1wTl2HrFbvBcPxP/1yU2Xt5faJcJ0MTSOU0ytDWtOUcIprPdeKwHGwashnHn2MXCG5+y5BwpqXKZMv+nf/fRf/Xt/ysacH7wB3+QH/3RH+UXf/EXGceR3/t7fy9//a//dX7bb/ttjx/zLd/yLfz0T//0l33en/pTf4of+qEfevz7F77wBb77u7+bf/2v/zW73Y7v+I7v4Ad/8AcfE0cAP/VTP8X3fd/38fM///O8++67/MAP/ADf+Z3f+RX/gGtq+VEpEVBd5wHO96je9E7vst/vXdZCSglf5iFKjpbCRm+ko2SeJ2qRGgalFKoXQK2rsLaam+vKD5RETlfSCp6T0Hw1K2ejdWpJ0gaMKDfi8enE3lZVRKGNoimpZnhIpjdgyVkMuKVgtUYoOF1UHq1QVpSolBPeWlmJ5b4yd5rI7a1jtSYWQebb7tBKWp5TzvI9O/EagUTVe6ugzGMXUEejtFvjuLKC0MFhjMaHgVKKxN+VMIjUqtBoLVJ2LovsmNsas1VrDLkbhs0GtSwYY8gxQmvY1fvzCF60VrpQ1uRc7zJMqcGTe+f9m4kbbzEdXsyZq41m0FIL4bzjagyYlFEm4UonN0PunQ8n0FNmExxXWw+9rMOdJ3hDLwVvLaZ18pyo3hCrnJ6189gO1VoWYAyOq0PHtMzT60F+97TV/+HX+gFRkZyVwbWtA6UbB54Yh749c3+8cHaiVASruN7v8EZxOl84njtLKTzZb7BaOqes0ZSa6KbifaOWSMmG46nSSmYzeNCKpU7MpVOLVE4c9nuuDg1aocSFdDpxLgvWWpRWOD+iaGy3O2rJOG9w1uI0OC3KSElNVnFGY42shU0IRJMoraGsPH61V2KCXBTeWYwV/5V0xUmZY06LrJC1mNetDoRuAE0qTbw+bqShSHHi7lWiNVGyvA/YKqDK1iq1Jvzg8cYKoVk5loc1E1qgjVWhlSWmzvm4oDHopaIuSQ41yhJL5TTfcn+eKaWS5soSO9WOPJ8Md3NliZGcBIkQY2Gwmv1uw299bWSzgf/H8wt28JjamEkYLM+uPLumuImNc26UeWYummwNv/oycX/qbEPjsB8ZBsfOG4ZYGYMh5wvDuGCtEYQDlhd3kV96P/L8BFPSFO1ACRLCKov1gWo6bjOSq1CUh3FLbHA+n7HOQQ9E60hFOEtCdYv0knjx/ke0pTHlTi+QY+RqMJxPC8YZltQYgpCO33xny7QkdttAGEbOz+/BerJ2fPajifeXwGJ3LH5PUYqyNHwIKCwld+bcyL0zTzNlWghO4QZHSgvH0xHvxKMVS6FXhW1QjWPpQqwOweGCYT6f19+BIqfGlJocwpqo0GNwDE7x2gbsfk9HcU4FqsH1ysYURjJf/86GV+fER3cL/5dfXrDGcr11XNmGdoqnVyOHvSdW+NUP7rm/ZIzSfPKJ5823N6S8MGwMscOldjbBst/vuL+fqErjwhU1ZZ5ebXnydMuXXp7JiwIK+3HAY4k68Cv3kyAnguZJsBxcZ7RF0pIt8myQn812qEsm0NHecTcnXt5e6A32u8BGF54dPLOBj24jvWv22wN3p1vCNrA7DAzbQBsGply4mybOl8ZmMzKVysvzhMJTjWN/JV4hSiIbWYcOQ+ByOTM42B32xCnhxx2xJ1L46mgvX9FX+emf/mk+85nP8Lt/9++mlMKf//N/nm/91m/lF37hF9hut48f9yf+xJ/gL//lv/z4981m8/jnWivf/u3fzltvvcW//bf/lg8++IA/+kf/KM45/tpf+2sAfO5zn+Pbv/3b+a7v+i5++Id/mH/5L/8lf/yP/3Hefvttvu3bvu0r/BHFTFyrSLCyJhbg3LpdFoVAS/eT0lIzoJWoHK0U2XOvvBuUwtmA96MA+EjyYlArj2MdO3ptlJ4k2RATWUE1Rh5kZB0W47yqEwiMsFWJuGqJpT9Ekmk8Rs9rVyijBaqnNVprrLakJdJqJ5lM8AJmi0lIqLprjFLSB2TkFKU6QpR9ULWQos2+1kakXEAX0BpvrHRl9U7JDa011Cy7/9aoMaFVWAfGh5qGjEKtEeQiSRkjw5ExSuKrVQYZo8SUSe9Y51bQWhQfjzN0vQLe1EMruyXmhNJWWp5bpdWGag26FIG2LpKzzKwKYzyqd0pvHKcFaxzH2riZHpS1wjYY3rGKwQ2krKhGsOU5ZlH7WkN1jS6NmCoGxVXXKGOxVpAArxlNmRe8kRtuzRFlCt4YTlNk1uLx2FgZsrTWDIMRlalEiupYZ9aKDwUanOnk0ugWai4473n6ZMMuGFotaCNmbmcVb752YB8clylxnjOTSzx9MmIdzCXLCX6ZBRvvrPBPmsY2j+4C5Gst05rQdrQB62E7OJw2qO44394TUxIEX0uyUtIG1Ra8UVhbcVYYKlp3dO2ELEOFdQKZZC2jhUopwrPpXZGXglpk6Dc6E7xH0xnHAa07pVVa9eSUScuMrQPWQdcW5QaMqjhlQFlKLnQ9gDGUminV0NWWWDrnZSZmAIe+KHST6pHeM7WLh84HjzGSjCxVMSfHZdmgUOSY8ZuAdo5pTtyfIpc50mplMJUno8ePhufR8mqBOS3MawrlervFHHac5zNdNYyDlAsqVWyp/A/vXrOtjZoyeiMwxMOgeWMLN3Pj5iwVJbdWcxgM1zuLujtDaXzyzWt2W8f+YNgFh58zg42UNIMZ+PyLwke3nWNULAW6LmjnQRl6lSRgrXKZssajBiltHYaB+TwRo7Tbn63lc8/h8KwRRjGUz5cTL774ilwt6VR4840rbl8e5XpqNKWCdwOlNaY5croMXKYK2nJzzjxvjs/far54atzkPcmMaLeRRGjO7MYBFxxdKc5z5DLNck2vlaurUUjuItPhghcFvFRqTHhjGceBZjyX3CkdSEU4Oc3Idc4Jt0VZT4oRpxS7TcBpeH1n2HmYLicOG8PhynHRlVEJrDGWzDEWNqNjnzof3SyUlgnBczUETueIcoatH1jOCa8yb+0dOTecrixpwXW4VHj/rnBz1AwOni+Rp0PAa83r145eM1Ou5DnzzrMdx6XwwcuzrNTp5KKwHV67HtlvQJVKzJ3Pv5wJZuHpzrLfBva7Qe5TaE7Hysspcpc6uXZ+87OR3/zODmcUxTvO54WUO0upvHd7Q++NU6o4r2mXzs35hng88XVvbHn2xhO+dEw8v0k4FaDK2unV7YnXd57rK09VivuY0bHgDTQbmBbo3UF3HLvmS6+mr/A+/+u/fUUDzj//5//8y/7+D//hP+SNN97g3//7f883f/M3P75/s9nw1ltv/bpf41/8i3/BL/zCL/CTP/mTvPnmm/zO3/k7+St/5a/w/d///fzFv/gX8d7zQz/0Q3z605/mb/7NvwnA13/91/MzP/Mz/K2/9be+4gFHw8c9UAD94yJN1nRUX8msSsLk9DU2apWhFymIM2vdQ6WuUe+MVmYt1SsrT0O+glQpdDmZJ0jzhVoyyhmsd7LuUlCi9O4YY+laTrft8UZu1sFDVmWrK5qaK65bYfYYaUe2zlOynIRjShhrsc4R1Bqllm+dnIt8j7mRchGS8qpcCcMHUswYa8m1klMEBdpJeklrS10WjDUY74XLQgfVMU1a01UXM3OtRTxDD8wU44SHgxiJ0YiJWTc64kXQSgpJlQrCG6mFlNQjmK2vfJ9GR1uDNUbSXbFAlwuZtR5dqxA4nSO4QEyZpjrGaEpu9G7oDVIFVaRWIZfCi/PM3dLZDR7VKt7qNQnVyLVirME5WbNdLhFjNadoMBa87uy1ZjtYbBgIzpFTQnvZgxqtCMqIbN4KKTVqntA+89qwwfRGSZkSs7BaWqOqDtZhvPhFLpcZrTVhkNoAvxs4bANOdY73R3LpYBQuDOyMw4bCXDKXqsjVEqMolEFpSte0poU0rTqlLLQCSUmz9NY5tDY4CjoJMiD1glJiqjcKUWusxZSCsoINwFoMClULSldROHojBCMKKoWSxBvVq6QSa830biixkOJqpFegesKrihssRgtIrtZKLI3ahHKdpoh2fQVg1vVGu9BKRWl5LLQX71qpHSkh0NykynnuDM4zarA06pqism4Q5VJ7rDM0OrE2UlfEpphjRKnA6aKYc+H2GMmlYN2Iw/Fs69gcAnfTws0sQyVKcb3dcLUb6L2xzJFBgXeWL95F4jzRY+KdJxuutoZBVeo843Y7spYkCh3OS+JuKnitWFLhuGhuZkVwFmcty/OG1TOvHTJPt5q3n27ABLDCyTqMmVEl7mNEIYZ/rSqFTtaFZiViXkqjSH+NcLaAcXcQoOg8EbvnV55r3tgXPvU1GVTjl/9fX+DF+yeev5i4vn7Gr9wtuO0V91OiRBg3lg+ih5q5KHjxYaO4a44ZjsXy8tRoWoP1tCAm9J6aLHC64DhiRXrULjMpRZw21JK5Pwr9WwE5SmT8cp5wRnN9vUNbixoGYoclJuk2W2P0b1xveLKzTAnuvOf+MmOqhpLZhcCTjWXngV4ZXOWjuxMhDKK0rVU1qRi+8GHiyVauYTZYzseF21NkN1revHbsDpYvvThjtOW13UhF02sRNb06nqfCixdHRht4dhiJWeoQPrqbuBo9Loz4IEqIN4aqFbmBHzbcxyq+rpI4BMPOS+mwVopgPAaNNqIcqsFxMyWcVsw4PpotX3pV0RU+9fqBp1eGS4pYt6UUmKol1kYYRlROvLifuUuFjQc9Kl7dFy6z4oPP3vLahzOWRkuJ0UoVznY3kIrmvVPhvVPCjZ5LLJwvBRcC9/HCXDtlSahS2TqNV/8/0CZ+f38PwNOnT7/s/T/8wz/MP/pH/4i33nqLP/gH/yB/4S/8hUcV52d/9mf5xm/8Rt58883Hj/+2b/s2vvu7v5uf//mf53f9rt/Fz/7sz/IH/sAf+LKv+W3f9m18z/d8z//q9xJjJMb4+Pfj8Sh/eDDZwBoLV6uI8tDO/WCyFSz6r01atc66RtGP3BxpCk90JXHQ2uTE8ODP6atx9sHTU3omR0mjUMy6be1rz1UjlyzLnlppZU0ZPTAlVuWoKfm6OWdqk1WFNTKS1VIwwyBrm5Qkom0NpRYGH1C2rzcGoS2XIt6HGCPNiX+IJvj83gVJX7P0LJVUqDETewcVRMZ3wrRw3kmbdJPoJauhGSQ631vlobO55UwuhRACxpq1LkNJa611lFxJKa/rKDGZdiDFRK3tkbjrjMGiiCVJ/Hxd1W2GkXmJ60DYGYYBt4IGldYYbYhTYo2fycChoHWJdpfWaF1RiuLVceGYKt4ZfFXstVt5Q2KCatpycJrRGYxWzHPC9YrZCPHVBovShtQbfvRMpwvLUhgC7Lzh2kk3Uo7iS7C5UZeMUTAMUuRpvEUrUdHO80LJGWs9wcISI1OrKCvR6CkOvPX0gPEj83lmmmd56tBxzuO0Zj7NQjYtQiG+3g482RtenSYGZ7jeBoJT+OAoDRZjcN5iVKflSK+yYrKqYJy0TJeUSXPGjhuU2tK7oORbSvRWGIMT3IISWq8M/oIhUKbTe0IbS+3Sr8aScAqGbaC0xDJPkio0liEM0By5ZOLSub2bqb1I9B9NviyknKRfTXWM7linJY3Wpa6lKEPTjeNl5rR0LkuVGLnquGCx2jBsLN5tqUX+23Yr6PkcF45TonQZ3kqpLCVRmuU4dfKKPs/The1hS9Oeu6Xx8piZls4Shab99GqH1p1XN0daLATnqFXU5DlXnnjH17y+hWliMA6rYZoLN7nTh4EPX8zcxcZpiqK0aU3pjal1Nk3jE1jdeH1rxJhO53yZKMUyjAM9NYZh5Os+afmap54pNU6XzFwrt7FzSoWlRfRgaFXReqb3RvAe7z21V+FtWc/S4KMp8rmXhd3BMMcz//P/7TnTbeWcR/B7jrtPMOfG7BNzKvQM51rAWHpV9LPGj3umJNcH5SXokFKCLK9980B534wstdFipNWCag2/HnKMtkzniRyF2i59d53t4OUmGwJFa5aUoEgVTdOat59eoXumtchhUDzdGuKLRFKVq/3ALmyksbt25nMiOc28FGz3qNh4880dN5eJ3DtFNQZniEWUjlIqv/n1HV1ByZ2+2zDrgXOdpGpjp3h2PdJzxw0jH5wrHz6/0JuibAqvckWXxugV0yURJ6nTMcNAjIVPPN2hW8M6Txga0/EIpXI9GCEGe6GPy/XeSHLNO+7mzFIlMj6nxkeXmY9uIr02FJWXvqO1Z78LtNI5l8r5PNMbjDSUd2zGzm4zcFvhxYujdKflgquZuXeGjSM1xXFNXua7M85KMXFMmfOrRfAF2qCmQi2NMi8MdKyWREz/6oCM/8sHnNYa3/M938Pv+32/j9/+23/74/v/8B/+w3zqU5/iE5/4BD/3cz/H93//9/NLv/RL/OiP/igAH3744ZcNN8Dj3z/88MP/zY85Ho/M88w4jv/Z9/ODP/iD/KW/9Jf+829UwDYPiyN5V4cHiF9DfC5aCwBQunZWxURLnYJancoPBuVaBfjUuqg0NClGFNrp+vdW5AbcpGyzK6H85iXirESalWJdz/BIUm59rZJQskIyyHoprxjm2itUUMoSrAAJS04o74VdgHRSGdtJyIpHa9l5Ki3/Tm6NpmHOM1U5rDbo/pCcevjeNC5YgYml/CB44ZwTvD+s6zqLd26FG64+ilKga2LMYvh0wtShyzrMejGK9tpX8FoXWF+rzPMkJnAtQ1SZI/OSME7T8WhtoevVdF1JuTKsniJqwwwKa80j82iZz0LJDJa8RFk7NhkuBGi0Pp97l/JBpdebYqMbsE1RqiJnGdpSaaTRMdgBbxRb73BeY72lqM7LcyKVQqNztRkYtCXmWS7g3bFVwit5shsps6bmJFgC3XHO4J1lTolulfhRYlyff5nNMKCU4hwzeanyWN6fKaVJEsSP1KK4O0401dkMGac12yGglOHcFvn9W81mOxCCRLqVVYzXG4LzzOeFZa5MlzObweGsQgtEAesG0IpSM8Y5QpdU4BRnwrDFDcPH6ovxNPXxY95zQWmDcY5WMt4PGCv06JQbSgn1WtUoaSoNbhxFQemOOTaWVJnmilWaYAeUsuScWaaM6orN3hG8Fmk9Lyy5cYqF86yo3QGa4+kIynDtH3xihR4jzXa2hw26JzIRZTRlUageKCnRUmSaK11bhrVsN7aMDRqDoZbOZrsHGs/vjlJFkQqnJPTjYfCUVJimMzpn9rsAVQoz0zRjumKzu2IcHL/5nWekaUaPB371WPniCV5NM8diSDZgNkpqQexA8EEeHW04DIp3Dp5PPg3sRkUYFLVEBhc4nxZalzizorE9BK685ckUqaWz5Mrn7gqfP8JlznTr5bFKCy1FohLApNaaFAsp3lFr5L33F/6nXxSF6e7lUyqGcwEbDwzjhqVMdKvwRgzYqmdyV6tXzzJnMC7Q0WBYidMNHzw5i4/QeIsymmWZxbsRAl6LuXvJmRwTtXWC83IQpWGdIaB54/qa+9xJqdCVwPNGZ7DOMOfEb7oObK3U3rx/XigxsfWSqptjhdpourIZPK8uCxvnZeiYIl98JV4wTeOtXeD2eCaj2A6GN7eaw96S1gDFq5uJJ1eGrZUAy7PrETcootpwnCueyrtv7Ym583wqnBKYJj1VU7foVCjHjL9UlHX8wvtHnLVcbzSqZp7qwmZnMNZwmSIxChhwTpXRWYb9yIvjjFaauGSWWOkYWcP5vqpQmargvbuZXZE0YVaWeTG0CstxZk6JAvSbWWqFCjI8BQ/Kcdca9S7J6s9aSu+UAo2CsYsIBLngnSPHhOmV4BRvXAeCM5ynmZojzjycRv/r3v6LB5zPfOYz/Kf/9J/4mZ/5mS97/5/8k3/y8c/f+I3fyNtvv83v//2/n1/+5V/ma7/2a//Lv9P/nbc/9+f+HN/3fd/3+Pfj8ci777774CF+NBaL31jUkc5Did4ak2SF+62j0OpTFSPvGmHWgOqNlvs6B4lZtudKMzIYtdYkzq2h60bLCR0kmlprJ1PF1b9WG/RVzWmdtZizopCiztah11XxeTBHt07JZT0hS+pJac1+t2OaJrlpaYk80jshiIemrGqRXk9FdZHpGS0eoIchTq8kZoH9yZrpAbzX1+2eMYaH52ApVRJhpYii0/paiojIZuuAmFPGmBXRD7SepdVdWbRxNKwoN0t+XCXK70mqGND18fGyaEqr9NpJNeKtlgh7kZuWawIua1oUIm2sQAiLrOxaW03lreOMlJvqJo+n1VYMtF0UE9UBbVajq+JSNRVNbBJXjVUzRSWG2qWTY5WV193M61eGJ14zGmEl5dxYLmdmHxkGz7yI72YMmkZjv9th19SbNpXmFdo6cI75kumlMiqwqiNnLrlg5bI+X5WmW0vJmVenzCZ4DjvPMDjcYOkojG6MAYKzTLPislSO58J2FE+TWXu0eskYF9huBnKO3N7LcCDogS5llEYxNnnOhiGIUgnEmtEVrFUYDNqsvrIKrI1X8xy5PyYymjjP9NbxZA7Xlu1hS22yqm21MC0n5pgopaOMpwLn45l5iRht2W42KONoGroVYzx5YoqN1C2ta2GdeC/4AqNQOtBrxDjDZrAsMVLiLAW7RqCaU87U1plbEtq293gXCDFRp0SeK0pXhqDZjYGYEnevIpcK1VjmKj663oQIbJTGDgOvjZY3d46dB6ev+OyHR14cz/RyhbGBY9Z88aPEl46dYzbEAs1ojPGEIRBzpSJ+sF1wvL4zvDHAO08d77w1oinkeWJwGtsieb5QtcMFTc8SRCg50Y0hNTHdvD5UuJyZlOaDUyMqj/eOAY3vch2rXaGWysErLqXw6tL44FVlcB6rPKk2qpfXxfl4DyVx2BhGb7mdKznLMOJCwHsL2pAFTU3Psu5W1gqiYaWqais0eO88qX78ftUFyqpXz91yuWCdxlmDD1uMNdzlyjgEtuPAaV4otXOaCm/tNG8ePKolltKYcuFyKTjrqGjujxNDcAwWjFVYJxaCF7dnMIIMeTYqXjs4NJ3BdL7mjR3Xg+eUK69OZ+YkFSKmwXbraT1zdzxDgzlGRj+yOWxwg+cUNV+8nDhdMrFovNuAblQUd3PHKEPTCubM062V3i0yPmbevHa0neVLLxNxKbjBM19mSs5E4D4l+kX8lblmFIYPX80Mm5GmHXnY0oxjszdA43yZ+dKHJzAOO46gNL3IjfBSVj9VKfSYJIyjFcuyyP2uSa3OZtwSV2Uu5cyyyDrbCkFVsCpiMZShc7BoKhsj6vn4Vcp3/xd9mT/9p/80P/ZjP8a/+Tf/hk9+8pP/mx/7e37P7wHgs5/9LF/7tV/LW2+9xb/7d//uyz7mo48kDvbg23nrrbce3/drP+ZwOPy66g1ACIEQwn/2/o5IwCCqQO8CiasrgVg9TDDqYQiSvSWwcld45Lr02tY6B70OSKL+0IRwq5HYoHyNdTvWO6pVSsmPRt0aC8aY9YJf0FqefHTQqsiJXSlK6Y+Dg0Kk/I6Yj83j5wpXpsWEG0YGv1J/q5x+WpNTtgDxuqxjWid4i3KOUoW+qrTGaumMKmVNXvWO1mb1woinRklbKLV0UXEQg2tfxKxdSl735esFyCjx7BizDj5yojdW47ylpCTale60KjwNa+2jP0orCLZJr1Wp2AevktEP/m5ZOWoFa//QEmfoGu0DBigtUUuUtJYRgqh1XtZQVtZetVZSKytPpVHzxyRma+SiGYJ0LSllqGhyLVwukZAd2+LYWE3LGoVjM3pCK1ymmZ1xPDuMhDCQlwWvLaplSmqkWSLs7nqklYpzmf1+wzDIGsgaMG7g/n6m14a3jpwT1ivcEEQ1VIqG5n5KTEskGMOz/ZZpmki5UHuloRm2Ay54apzxzmCsp5SF05K5u5u4uzvjnMapxnb07LeB3cbjrGa6VO4rpJzRTtJtxhkG7xkHK83CzlFzYpomOS0PI1qL90obWau2mIiXRC6AdvIarIoeI/uN55PPRvZ7w1IqU650HA+EupJk3TNsZE2qVScMI8ZYtFEsl3u0tUQjqidYNrZQaqdo8E5jNwM1TvTWxORPZwiO42nmdD5Bh80m4Nyq2vVKSYVWVwO9MczacoqNu0vB24BSciD64MUtx3v5Gs4HSheSehgGUsoUV7gaLQfT+D++uyHGMx+9OrIfPdc64QfYGMUpwecnz/Opc4kNrGWpjSVFrBNkX0VJMeFhw9WoGXXja64dWx1pS8MMQJnXqpiRMBhePJ/wQ2a7ccQ0YfzA849eQckUo7m5mTDa8Gy3w3nNF29ODARC14xGakScc6AG5q7oU2HxjeWYySiKbmQSS4qURepWei3kZtiMgTkVliIGaT1aEgXVJVbf0SiD3JRTXPvyOnYlo8cYMWg2wyBt0wZUW5XFwVOMonqDtppN8Oy8JAu1D6TWuSxCen9zv2FjGl5XudbWzOAHcmuMQcnqr3aGq81KVhdFe5qrqEo2YmrhydYRfCU46eA6XpKwgowmLoVeDFo7dk7LIGckym2NZ7e37K62eD9wyfDe8wtJB57fd+6nRsqZ/d4yDAMlN7CBUhN3U+bNQfHJa8vVPogvb2l8cIqAYamdqUgJ75IU5VRIrUs/mwKMZmqNZVpwxtPvC1pVWHltca0uyc2hHcRcSeeFlDK5VTpC2/fOMQwbcs30Lmw05x2tN4zV9Fq5uz2inUVpsY+sW9wV0aLxqrOz4K1dVTVRXsOwYTB1vRf81799RQNO750/82f+DP/kn/wTfuqnfopPf/rT/7uf8x//438E4O233wbgm77pm/irf/Wv8vz5c9544w0AfuInfoLD4cA3fMM3PH7MP/tn/+zLvs5P/MRP8E3f9E1fybcr3zOyjDJK4Hi51ceb/4OteJUFxHArf1qrVdZ0FDwaalXrj8qPEmPOCg6Uf4u2KiTrMNV6J7dOz5luNGb9nNoaVa2t29bQ1pVKVaz1BqvapFYPkHoYlpog1B9e3Fq8LK115umMC4OYaWuBKt9/TkUGgjVqXqooLsaK/wRlZLXUK6i2Qr8UWDEeGyO+g1QKusjeWxSn9Xe2prtar7TeBKGvHp4zcqLXRq/0V/EtqVrlsN9FhaI1WqnkEikPsfGHL6LkZNeVGJht8PQ1qfVgJu7NPJanYjzLsuCtQSvD4Lywh6SZjq4VafUEOT/gtMbGTIxJoGbdEex681VgrcZ7jTGWorXI3fKNUWqhLI1UK2dtoFZUjexHw9sHR1Bbulljs6qKwkLjjSdP6TUyOE3PmSE4UsrcvDzSK3gn6kUYB3pX7LeBuCyiRBlPKgtGNYbBMm625NKZSsHMDdOlCuNq7yhJ00sjLbJq3B1GVC2ULIOb1oqGrF1VFyP1dnB4I8+HbhTGWfZbD0933NydSTUTBs/V1UYgXz3TKpjBE9xALYlUKgpH7w7jFSBetyVlllQxel0VtkovkavR8NYzR9h0LqlwPCfSkgTSpzU5Vi6XRKoIXHBZHyvnGbxCtwk/OrS2zJeJtD6vS4FYHWNwOKPkxqkE1ElN5CrPT1pltzkIZLEWjIHBKIIPHPtCTBHrAscp8eHpRMqarg0pV1Ju1CUyesWzQyApOCbpYrNKS19Wl+fFb35rz9ATz+/viNMsim5RVK34une3PLu2/PyLiQ9OhqUbZgzznOTjakOnQvADXju2zjK6zutj5zp0nh7Aqc5yvlCilnLFwTIvCxpFU3A6R/Iyg2rE9IrlEglj4IO7M9NcuX5y4IPbO16eCmBldeoHsJpjLixz5RyhdMNxXljQzFnM6zknlnmhtsIyL6gmvhSAOU/EXMgNujLc3JwYwogJlRiT+B/Xgye1olYEhPcCGBTiuadV6Tq7HgyjG3nv1YlsNGYIKwC0ydp6Y3jnrQOxwocvZ7yybHXjictUGvMSOVx5nj695r2bM73DlddsR8Or44IPQSpHjOE0L7TWOc0V0y2//Z0d13vDe7cTX7irAlC1FlcXtPM8e3aNDom6CA06xsLTp4Ht1nF/hlgV77260FkI2yta2PP8LhKTZms36CZAxNIEj1CXiU2PvHMlz/XP3c7oU0JZhSkNqyxFaZZmIGy4uRTu8yzr7SZAUm0NrRty7tS6qrRa0nu9N+LlRBjl3hGXSFyxI9p8nMa1a/VHq4UYJ9bbBdZ7tJKAC2jhx3kZTJcpcths8M4KHLZ3BqPZWHhy8PRSKLVydx/xCkzLbEclhXNfhbevaMD5zGc+w4/8yI/wT//pP2W/3z96Zq6urhjHkV/+5V/mR37kR/gf/8f/kWfPnvFzP/dzfO/3fi/f/M3fzO/4Hb8DgG/91m/lG77hG/gjf+SP8Df+xt/gww8/5Ad+4Af4zGc+86jAfNd3fRd/9+/+Xf7sn/2z/LE/9sf4V//qX/GP//E/5sd//Me/4h9QreqMLIEeQHJqrVtg7UKS1VRXqxF5NdtqJZbgSoPG2iaOgLPW3Wt//JfWJMfDXktJAWdvopqoUtFrwaFafTeltJWzs+56utzoaxfTslWKnDPaGh6c0nqF5C05sdRGcI6iKjY4cqrULA3JD2svVRs0Q0oFGywoUZdqE06NNqJK6JWHoUojGEtZPTl0JDq+Nn+nlMHLjbG3VdFC0i29yeBYW0ErITlrNDWX1fshSo4zWpJnVZJDxjrMmgKRBwWUEgP2GAasMsRFTKS9V2KKaCNEUqWlqZ11yFxykoSV86iuyLUIsl9pco3QNF47Yomr36cRgsePo9xAasboNaZt5AJba6E9xvIl7lxrQxlACd+opEK2Coei1045R2LKbJxmtPB60VxtKk+2hlYT98uF1w4DFocZPNfXAykvnO/PqBzRdm3eRupOq2rYjae1jjNSFRC8wxnHMi2cp0w8z2jdV99Kp8wXrPNoK76iGhPHu4rzDm0hVEHPewphtOzHkd3GSs8anWme+fBLd1xfXfP6Wwd2RmEGvT5E7ZHWXbsVg3G5Z3/9jLDdUi4zMV4wdosyW2oppJRYYkcpR0uZVDMpJp4c9rz1bEtMFz77q9Jwbbpiv3OAYYmF3DXFBmpv5CKx+3E0jBuH85L08X6gVVmtLvNMyR26IiiNtx1dZ7xbQZAloSrcF1lV73YjwVou00Uuws6wHQPxYY3bGrk1pnkhzonSNXNqxCXjVee1w4BebxixaoreULr0g/WmaM2wCZJYSjUTp8LGBjZby/ObEz1Xnj4dCIOj2kbuiooRvs55kcZzpUm5sPOdqwAb2xh1Y+86rx8cQWc0FTNolkvkNjX2zw6kqnn/+Ynbm4XDfhBTdBfC8FQqH314x3mp3CV473Ikd6G773eBY9G8vCvMpTAviaYELaCMFT9ayyhtcM5SYn98fFJKErvOhaZELU8x07UWdpG1oBRpWSi1ob0nxkgqBT8EbAh47wlOCkxzytQiaprzjpuScbrRauEyJZQyXG+3KCOHKjsGvvTiwnYTMLZhV+vAlApvPvGM1wKv/NWPzmyNZrfxLKmy8xp2ig9fnQl24LIsvDxN1NoxyvLm1qOBl3eRae6cjpmdA6cb1mjm84XFQ0uJnVOMxtFr55wK0yKKSzUDqTsuS+V0WriLM8scGYPDbzfk6JhTJhiDA5TVOBvo45a73Dhe8gp3rQzB4r3nPGWWCqgLp6MELjZXW5w3xGkhp4g1jt0wElFCM+6V3DN5LtSumO7vxNOlNOfzJENm8LI6HgK1SQ2Qx0FH2Gd0LlHWy2LuaOt2RNKZm3GQq0UVsG28LKhaMd7KvSQJnkN7i6Xy9LDh/hIpxn3F9/pf7+0rGnD+3t/7ewB8y7d8y5e9/x/8g3/Ad37nd+K95yd/8if523/7b3O5XHj33Xf5Q3/oD/EDP/ADjx9rjOHHfuzH+O7v/m6+6Zu+ie12y3d8x3d8GTfn05/+ND/+4z/O937v9/J3/s7f4ZOf/CR//+///f8CBs6q4KymXdXWzqcuPhrWcDiIJ6OtZF2l5FT7kEb52JAjL56uH2zB6yDxMBBpKL3RmgxHundMR5g4SkBLvVWcEdqwtaKo9BWKpxRSBPowWKw+AFDULikoq42cZqyT4SkVqW7QGe1kCFFN47Q8QUoXnklplZ7F/9Lo65pLr6C/h3I+JbTi1Z3vlCgdpXaJlLMWbpaC8YauOgbh8CgUWUqzBGnfZbB4/Ln0OvetQ1xfjZqVTlwiroocHbxUTaAVOSViygzB4wdPzpLCKSUJ20aLp0lpuanlIr02qiu0c2hjsaVRlkRd13B9XdH11rjMkVoLNQdRClij6uNAy/J7U6uxcl4SRgvKXxmFVkZ86HpV+GoT35GVC7jqmvslcXNJ0Bv3C7wWG6k4PnEYqHnhdD8xGk1vmZQtm80GvzI4tBaC6jzLkON8YBgCOVegsL0aoGZ8MLismOqMBYZxKzfQ2lAmUJpimgu1VmrJeA3BZeqScc+2GAujNxgte3Dl9KPH3jovp2nVWJYFBbjgUDZQcqHUh/Z5gzJiKu/3R8wQKE3Uw9YV9+eF83mixszVxrN/Fmg9cTpm5qpovfDyeOL5iyO3x8xut8ebIuut3mhLZI6dOXeuDnue7R1WiUE8NZimjHaeaZ7WOhZoxhJToebGbrA4iyiLLcnwl9fqFuVIRaOVpWNIdfU8aU0qovFebz0bD6fU2A9idH95KmhbefvtHaonak6UVHlydWCsipYtzYjaV1LC6kbtivdfTqgyczVoDjvPsiR8KfwPX/82h6DBym57qo1YMh1N75qGrLSd6eRc6KNlGxTBFpzW1NrRvlPjBdUMYTDMxfDF9y5MqTNfIptgCEHz/ssjd+dI7orTEompkJvlEiG3QkOxvTrwKmninNbCXkVpjTAOlCp1L9oYam5iDm6RtAjIcJoWdFeUlFFWo2rDdI1yHjnha5pRxFLYbLbouuItQmAbgjxXW5VrbV8LhbUoqHowaCXXqPs5c7w7UlLB+0AbA8E7aoNXx5lcKzdLZLSaQcHXvb7hjacjX3h+QmW55ruy8FvfOuA2ji988cRBDwyjIe0NS6vMpXO123JJD2WuhXOC85wwxvLmTvPJp55hN1BKJ6VE8MKsOsfGR+fIh+fG8n5kv9+SumLKM7fnSm1S7SEVIZrSLffnLIXOzZA1TNOM15qbJXOuskJstWKc43TOpJsz2/2IXgcpHwzDxmO8xXox1odR1kYKDVZTNJSYqU0az9V6LbM2kEsj55m23pN6Ax8CqQiJfDMGhnGk1CJJ3PrgJYWuFcppVGr01f/pjGYXDD1FfM3shobVHV0yvWrGYLkeFKPXxCniVOeta8fL438DDk5/WKT9r7y9++67/xnF+Nd7+9SnPvWfraD+P9++5Vu+hf/wH/7DV/Lt/fpvq5pS23pDbSuF92EtJYVSrNMLrUu1Qu+sQ866jOgfG4576zS9AgJZr/F8bGJWXR70qh62X0pOcaWA0jRVya2uU64Y1miSolq/2NrTJMbmFUdBzo1mZEo2StJCWEOpIpOaLoRYdBM/ihIoXq3C2qlVFKPaZR30oCZ578g1Aw7nwrrOyTRt8N5hS6VWSSbUtsbnq+xSS2tY2wnOoY38HmppxEVIww/JtarklF2VDA2tiYJVVhVHtYpVA9ortBUz7GbcSMLKGJz3GFeYp4Wa+1oCKEyZZU4o7aito+m00lEqo62TC0Ir1JKx606414Z9IFsviYLAE41G1I8iL35jDKnKhVwpTWkZg4GusNphjRKOTO8klYT2nDPOWKwJ6G7oZGrJvLpEUqvMtaE1PAuG+1cnnIbdaMhKUmQ0SEvCb2VvjxZlzCgxKW/HgWWe0BS0M4Lm32w4VLhLR2JvlK44ToU5FykjxJBihlp48+CxxlIbXHLHB0dVVbxZc0Yvwq0ZhoFhc8Xu+jWUgalEaBVnDuRplteW0pQs/pRWG61ppuko6Zu1bT4nuXifbu/QDZ5tdis0s+K1pnvN/XFmKR1nB9595ykxzWydJ1hpQHdW4ZaM95Y3tobtRlFq46P7meNFXhzetrVnSIHW1CwdT9utx1hFKgtZKdKShJGyZFrtOOR1dD9lLvFCr4WN0zglabOSZd2WGuQmvgTT4M19QGvHi/szrVee7D3jU89mu+O9+0QronB6Kx1ig1XkZeI0Zd7cBj71bOT1g2Y6ZQ4tsB8qwXaaSrgmBu55EZOpUkqCCsainUHOV5WaG9V2bk6dJ7stNTWsHUApLnPisjRuz51TymyMwXrD8ZJYEpwW+NyrmUVrpqXRSahuAMO43TBdKsbJuidXOfAoZSBmYko8tNo3IM1xfR1LSsY6TV4SAF4ZjBWvWCriNdRowVrUQlzyio5o1FykkkRDLw3dmhxA1jRpaw8G9sIyZ1qtst4rjcE10jITk/TeubWDr/VO2I54b8B0TsuFra98zetbHBV9dWCeFkJwvHk98uqycKmaS1e8OldK7ew2hv3giXXGOw2qY50ixchm9GTr6aUzhIHjVHh+UzmXznu3meO8oJTFOQ/niVirVFYUsAa8S3Jd6oqcE0YJ/qG0hoqikrIWk3ajqErLQboVhnGH9R9H6VVvGKcxwbJMcT3dGxrimSw5Ymol5ixbjS6E7vLgSTWKabqsFT3CnjJarwdohQ3yXDydzhKC0HLvQGlaKeiCQBbNWq1SIltteaI6JnSebhzbQ8B4Q5ymdSvSaS2TCpQa6T1wezexC/8NFJz/Ht/UqrB0pMiytXVnhfTdwBrJflhlrasO+DUD3aPHpj8OTF3pFZAn7++rH+UBblf6xwWdVot4t0o7a3nn+m9WqX9Q+qEPSv7JunJktHrohpK9ac/S7F20DFBGP5CNGzmXx2bu1iqsjZRaK4w2FIRWrLVZ/UZtLZp0WOvFL6OERaGQ+oaWC9pIyaHWBmvV45oP5EJUSsWaunJwZKnXqeS6ppdW/1NrjVqlQTwloeW2VSHoXQsPYckY9/B9iDeodVkhauuwvq6E5063Fjc6VJY9fm/tkSFUu5RyKiV8ImMUpSYcGqcNw+Bp3XJJmTlFuQA5Q/BOvEutU0tmWRYZ7vxKc9ayl6+q0PpqQVeKpqXHR68D9FIkau+HEVssJUXuzwJ9a0rxxtbiokKliU/5DU9qpkxivh6CZjpdKHhilmEVGkYbjBG6cGsN5zfCZJlmYu1UPMdLYSlNYtWxsW8FSxajYC6cB0mjaTqXfKFaS1nbwd+4GjhsPd5LBYMkxTT3N2c+vDnReuVqs7D1mtefjnivOcYitRJLo1Rww14uiHnBes84GOiNQKWkzMubznmOhMFTSyNXxZQK2jj2O4/SYqE9XD/B6k6rkrArpRHGkbBxpJyZY+T2VDgvMHrP0/3A1cFRshR6Lmv8Xn51kRaXdQCWepTRG6alcIzCaVJGmrJHZ7GmU1LiHKWle+6O+2mi1Sy8LCPReWtgF7q0kRdZK11y5T5qcgVUF4RCyTjEML/1hncPhk2f2aI5XFsmnVEpEwY5JIxWIG29VLpSK1errSnAQvMabYSwbYJi0JrT/Rl3cIQwSjiiy6p08JYly4FFG83xNJMKzEVxs0DRitIF2unDiPOO+5Tx3qNrA20JzpLzSmwvHaMhlcaSZHXmnGGZF5ZUMFZRa6Mo8WfQJDGH1mx3W1EIShH/XetUJWvvEiNWK3Q31NbwTmpD5LAl6IxlntaghazEFYoQLHrQDFajVaXWDBWalUEwKM3YMq9vPfeXhVwcz8YAqTIcAsZaUiqiJFvD+/eFZAKfuxGS+j5Y4lzByvbhkjpozTlZbs8Nt8AhShoWtRCLPAfOsRCTlPga66lNruXaBhkmVJffsQK7xqmXeV6J9m09eHqJ5Rfxw4BCd9DOEydBldi196+UKnBV7EqCT7JuWlWwy3QhxWU95BnhVhVRyWqtOC8kemcstVestoRhYBg8XXVqRwabmIS03jsK8Y7WIiqiVZJMbbWhW+Vq0Oxt52ueDbSWUDRoiXRubIJ4LKe5yAp6zgSjqamyczLsfTXefsMPOO3BnNs7D0yOB98NIMPK4/5pZXZo+X8Uj7FsVtMxrMyU9pCUUo/SjlpXGg/vEv+KfMxD3BuE+WKMQnfh21SaDEGrd2Y1vPMQOVdimkFZhXJyYtFK06uYga2WJ39pIl87a1cmjay2tFFrs7mBptYXkBYfUoNakiRj9ArmA5TSkmxqAmjzzoGRtBHIi7K3jllfpHmVPL13SE2QoZa6ghKF7qz1xxFxWpOoYZX9fM4i5adHb43GBpFalZZiSJCG8eCc8DJaRSu3/o7k63bkAuSUxqyPS+0Vpc2jytC1GOOU1ijfYJ5oNHKBeU4CJHRa5HddUL1La7S2WCMUZu89RluWElFrXcTDSsusRaItJ5q3kqJQnZJgmjMftkYuA9fOs/OaU7a86Qxu0HivcN4yeM3xTiTgXBvu4Am7LWlZUGsibcmF2oRQvSTxdtyeMw1NLZ1gDU+3A5vBEefI3Ry5v2Tm3AnBobuYTktvbMaK0ortaCWhVyoxLaAMVimunSemzHKamGpmsI3Xnu3pVdJUrnfqJBdiZS1GDp7kKkkkt9/g9pKam5eCVY7e5EL6dOsx3jGO0mm022ocCzmKx6K1taXeOuZUyamxFMs4WILvDMEybhS1y408TQuq1bUfbaHTcabgFNTeKClyvkS+9DJySoarqysOG0nU5bKQYmLnLMEFlFX0JGtlVGczSFKG3nHesx20xPUr3J/PnKsh9hHIoriZzDs7uMwTm9D4moPHszBaGT5Ur+iNxejGbvD4reft/UJZzpQCaVUhDKKW2cHSWiOXRtSN21PiE7s9Hssyd1pbUM4xZ8WS4DhNAtHUivmceLE0bpPjvjv0IJUT0jenMDbggqetoQNW5hTroJ6LxH6tdfReYSUkldakmLRp5nmiFFlveBckuo9cq4TAnmlIQtMHwSTUWmSdbK0gJ6wV1RQpg0y5kXOmd4XVmrYeKkfvsNoxny702piKeCBbbTzRUjxclEJ5x81SCFbqdC4ps7GQj42GxjvPq6x4cVbU8Zr7i5DRUy7MVgbMUTtSrpTWSR2W1MnVUlPm1SRdUL3Lei/WTu6alBOH/RbrJLlZgV4zWltcMMSa2Q4jYRhJl7OgN4zFKOkHjCnLodJ5ai1rSXPFecGQ1JLIEQ5PryUN2zrLeeEBCqu7+Eq1tWtdhiH3RpwjLRVoMITAEAJqVdGU1ozBsN+OqNZ4GoQJ9vI4E3JmMxpireKl6h3d6uOQMwbHdiOPqTFwPTpMy9yezrTWOWw9uiSuvMdqqK2x84qgFEZ5vDXEy8J2P6L8V+f+/xt+wOnrgPKgxogfZFUfepcahIc/P2zg1iGj/RoF5/FNqY/TQyDx5C7GY9XVY6JKNVnhqPVrtyr/Vu9y3QC9xtLB9IZem8JrbatBGazSwoFB1lcli9dEkDUfD1t9XY9J7LyuSpBap35opVFaxg0eo7U8kbuko1BmTTAVSXlZQ+tgtV3XOys3pjc5GZXy6D1SSomBVwuDhqJYlojWEmNta33FQ0u5UuqxqFMbsF2+rlFW1hqtUmqhlYbV0vCrksZ4K4ygIh4fbYwMe3Rqz9Lm3hFjdBcVpylWngvUJPwNZ72sKAvY0AmjJXTASEFmLpWaE0uteOdF2dKrwqcqtVRyySLLl8owDCIhr0TlNUa3spEq1EzPXXg8rdG1SMxzblyKRjmL0oGXKaNeVT6lFFfG4VJF9cJwsOztQKlwnBNLahg61ghg8TxHpjmDdswxSwpKVSyVt58FtsGiqBQSdnQo1ckKrN9wnBJTBGM9Qcsq9OZ+oqRCsAqjREHYBsuTqw0Hn7Fbh9KBuMzMxwvvXcRbs7/asd1sGLeW2sWIS5eqC6P7OvCvJ/naGMeBJ882cpNURsBxOaJ1EaNwSrx4cWKak8jo1uGCI8VIrpYlVgGZjRv8IBiD+SIXVZr4E4xxtFZk8K4V64MwV1LhvCg+uMlcYmU7jhgy05w4l0yKMxvv2F9bWi8Yo9kPipob1g0cxoFxNKQYWdZaFFaqrgtX/OJN5xwjuTYOg+a10PmGt7dQNS0uqCSFis41LnFmvhRUlwTZ5hDQg+WN68pbW8MlF2xXskqz4pNSpWLosDQIctOgQ3eKc2qoGGlEyILW32rDqw8WIpq7+8J91dynyvGydpToKgwoo3HjgLYGXTspZmpLUni7XtOsUaLAgqy3jVDJa600LW3ftXfy6QJKPDfdOpo2DE6eG/N0oVbpgAo+kNJCXGYhEo8jwwqzzFWYNCU3cu0oY8RiUKWs9KFLTxmNclI5ohRMS8R5w+tPNmRtOS6VKYrX5NnVSKyFu6VzmgvbUVaxp7vIXYSbSXPJldKgasXchfgbdENVx7x2NZUHYpqqsq4znvMKr2t0LjHJLUMb5pjwDZS26yBopVBZdVQT/+O0DqG9daxVaG+ouYMxaOvk+N07wXtUWOtNcpYVoe5cogzlLefH0mK0rBYbjRyXx86+kjK6iVcvOId3hjlmes5snKc6j9EdpxqtzgTV2Gw8rSpKEML6FOU5Gazm6jAIDDZm9l4x2ALBPnY59tzQRhJhz28mrgZPU4ntfuTl6UJLlSdXjnEr11I7elKtuPLfGPT338vb45pJrWspI2yXjgDp5INYVRr16LOR6PKv+TPr/at//DW7eITXlFaXYt3+sV+nrV+zrZ8ta49O1V1kwlLFb9LVY5nkw+6qlUahPfo/Wi2rciSdT9b8GjP0+vMprVFVfpa+tiXLBUoGi5LFh+K8XcsckQFvXaU1RK1RWlFWj5BwcKr87pRGGyvKSxf4Xynly1rgRfESVcYbcdIr1XFWODvQVzVmXRQqxCRsFcGMcsHshYZ4VbRW9CIDYk35Ua3RK2hQ6zX6psBaQy9ddtnOotaTY8mrj2kl9+Te8KwI9a4wyqI9hEGTSiHGxHma5DRlREo1ztJXb0DJlZ4LvXXCIAZl1DrkrUNca7IezF28BdZYHrADRsP5vJCLJY+BE537ufEqZa42lWej4dnOs3ENuw5mw+C4fXlCGVG2bNXEqfHR83u8c/K4Nnhjo1G9cbU1hMHRmuF4msEYNrudrA3DyNIUL17cchgcb7y2RWtFTJKUmVmJr6pSC/Q8oVuGtDBcXTOELS+ev+T2eKbUwmYToBc0nbgmi5xz0gNFp6QF1TvjoHFXA8Ng2IxW6iNyoaRMjJWlQGuJFy8nPni1MHiDVRVvM/uNY793LJfO6VxwbmDcwWm6kJfI9dWBhqG0KGqEygyDVAzcnSbOWTqIci5cLom98xy2O1QYeHk8E2PmECwbL3Hyc4rstMe6gTmmVYnK1GpoTTGnzHnOWAd0zakUbvuWV0XRiIwGftuzwLtXmhovWFUZBoPdbNC6Y5wiHycGa7EGht1AUoqaNOOw41PPCkubuCQBG4awoeREThGnKzunIRWIjftT5jzLID8Gi/JOCkWnMx8eO+dFkbri5aURlSKXBkqvNSviJzHaEpdIfmB11YY1nto6KS60Kq/zCui6DjwoUcq0wriBZVkTVcGjjRHFoFXomilFWo7UnCQcUQs5RVEojMFaiw+ykqmr1ybFZQ08WNnuox79Iqo2YivkLNeUpiHmSKOy3e54npqACaoC55hiYr6Z8VZx2AS2YcP9pDjfRmqX73Vuja6Egl67GORpioSBJCiM3KrAWGtBK9iMIzFWcpUhMdVM7UCD/WaL9k78hyg2RgzCKUU6DWus4BR6RHtLqpV5mdFJk2MiDF66ENe13HQpa2qxYbylqEZeEr2nVfWRa3CrecWQtI9DMEpM9s4bGRxLpXXWlKgc7FpbsBpcr/iqpNpkSvjSoBQO3hC04mueXXOaEr5XrveW01K5SRlTINMptTIGTzxPWOQM/exqJFlLS5GwC6AbT7YeO1beeroXyr6GGamFKbF9NW7/v/EHHL32SMkCqa+JKnniqoeKzdYeJxWtHpzB69v68WKX7Y+rpwdfMm0FCD7E5B6GC8QHY5RmTRPLl+uN3MR0LH4A6UWSVm/xd2itUX2duFsV4qMxtJQfycW1tcfCyYd+K6NEUYa132c1KutVZRCTsRAlhUb7ALMzjx6EVoVZ01cPCojS8zAMPfyvrVH2x+GvP0x1QiBWyM76YUXVahO+iFaoJp9vjBQ6PnqkNBjjMDhRI4yR4a82cpVeE79GTBWCua9aYYP0Qmkt/ohUHspVC9Y5jBpIpTx+r2mJpFzpak20KY1eT1/GBPE/LInSiiSJuhQ1tnXAC9qsFRONFBeUEiOpHeUCnXNBATYMa8KqrrRWhTFOkh4PCamqcMZwpww3VbNZFNfB8PYMv+mpYmc7rSZUh91oaUqRaySlxCYE9oPnMieGwTMMhqt12FxiZFkWujZyIq2JXqHbwP155jgn0AalOlRJLJVSuT3NlFy5Gi3XV4a9cwRjSSXz4QdHeHXm6WtPuTocMMozTRfKEilOEQbD1ejxXQ4Shiwpv9bYDobtCEoV9luHUwW7sRg/cjxdmD480qsid3h5t5BL5zAoTGu4XtkYTV+KGGm7BhKvPnpOa43Bffx7XqbIODictywlM82ZVCqny8LtSVhIWltU0JReeXV75Pkx8fp+5LWDR1clXUi1o7TneJ5YFvl+YuvEUtAnyzzPhM2AilJOGpvmDqCCpzPozhwjn/9o4ZnTPNkadO+Mw8AQZDW1eeqxSjNuHVC5nOXgYLD8lrcHllpoXYou7+ZI0Q07Wnor9JbkpO2kqiH3gh00p1i4TJ3nSXEfFcdF5iC0ZmlCZQaYl1nIsr3TU0ZvAhhDTIVWZGgpOWGsYdgOUk6bMjVLP5VWSHEtHesFu69rZzfuYPV3CDC0Ux6uvuuhoPeGdw7nBAK5LBFrLc5YHvoBSxW1Qam1wLgUJIshnhFVpI9tHAKtCi23dTA2MJd11eMsqRRyhYJhYz1ZK55PlQ0G6MSLUKhryqRc8GFAeytK5jDIwXIFDbYuQM24yIAyrIcbazrBmXUValF+PeTKRRNVRAm0zgiBOibGcWSOCa001vvVcB2xyjAMAeckHGBdoJYilSQrL+jBY9mQ1R210YxFNTlg2uAeD4NpSQQnA2RbtwMlJywwAiot7HQhbEV1j6XRq2K39Vxt/Br3t8wGlliwzkBbGFzFloLOhT2Z/ZWmNkWlM18SukTG0WCtkcqNrvAWlLIcdpbcpBw0psTdUbHbbZhzYhwso9Pc/LdIUf33+CYnCVFIHsSctkaUH9+U1CrIJzzcsB/9xLR1HSS1Cmulg1pBfF3qjKwROF9pjdLEuyKDUVsFhgd1RjxBvUnkST8Ys3pfaxA64KUXSwuRtTUZVB79PXRKB13bKh1rDAq7qjCl9zXCWcmtYSxSqgm03MitYoy0a6PAurAqLRUtbaM4LbHUh3qHUhuqaamNWE3S6LWbavUxtSYG6F6FG/QoeamPvUm1idfIGYc0gdl1rfZw8hCzstGyj+8d8fK0hjGgrMZvAgYxeS81oZt6HIYUBm/klEMXlo+1Dr/G/5VSUCppiRJndxZnvShJqz/IWkv3KyZeaUlhNVmdtQ7jZosdLbkU5hhXw3RC0wneUdZTrcI8DsjKGHotqy9L44YRnVfyb1popRBHR9sO5FqZMpTS+S2ve17bWZxWNFeoveEZOd2daC1xODisg+M0E3PDe8f1YUswjrZSSrPqxK45p8bpPPFqkQLTwWmGYNg4Qy6Z6bLQYuHKVd7eaN68HuR0TuX6yTU0y83NmTydGN2eYZSbp1QpzPhxx2anyUvkeHvB2MC43RBGD2TOpzPb7YjWBe1kpVvqBKpz9WRDzsAl8rVv7SitEOeEajBuDMYm6FoumF1O0CkXsJ6qlQzca1GrMorUO9M5UXKnpIbOClsb56WwtEzBkJvikjqDalzZyoj0e1UFyjoqEpXfaMP93cScKqSMU5lgNeSKtgqcxmDJi3Ri6ZrRvXB/7jzbWAgDKliGUdOUsGB224BWHd3BmIrzG5bLTNhuOc+F1641vzVvuD1Jd91gxBBtNAx+4HieKdryy3cTyoiJv6PIyvDB3UJuci1yPrAsCVb45pohhS7UYK2M0Ml1e4zVt1ox66pIW0epK4QzZ0AGQLN21oUQJM0F5Fopc6R14UWVkmTgW2tiSpXk0+OKCbkhuhUmGXOmN0kO9So+QxQYq+VGXxvLIhFmbQTJkVpZDw9aakCUZl4ym63HaktXlfM8YXwg987GenR/gCfKvxVbW9elnXmZqE2+jjcaakU7u5r006Ov0WgttSG9MYaA0kb4Qg32+z2lSpBCa2Tt2tq6DraPB61SKzGeMbMihIDVCmc03lmwRgqAW1+3AdDbxzBWa6RDUHlFjumxHiiVisnix9EoBucZvWNwht4kfu81BNPIKaErbEdPCI5cKoPR5JK4pMKUMk4prPiZiUozXyLj3GGZeHvrGS0MG0/tmpvLgqHz2pOBKVWWpWK1Ytx4OYg7z/1p4oOTDJXeacQ/LtDWy7RwOXf2u/A4iP/Xvv2GH3DkxicrA0lQfdwiDloMx1qt7dZqHYL6alblYQEkq5AmruGH8sE1GvTow3lQfvoqUWqj1lOH/Lt6rbPulYcgl5z2V3XFGCPGYTJNSQ+UtaIy5VQwSoxgZV1/aGQPnWulrD+rMYa6mncfJrBWGk19bEZuTV7MHWToWpkWWmu01bSyKkdGY52VDio63kkjcy8iYbdSHz/nYbsmRu0q9RVddsxoLaTPVWVpXbgJpckv46Ee44HTIKV+TsyzS6J3MWEboKRIVFIu6ceAKZIs0ciAIwkS6KVSu7Rnt16w1qxrL2nNzilJFL9Uck+y4qtS8KkeFDHAKSXE6dpWJU4GNOOsNHojXB65+He6VrI6W585SstjarVG67CmDBK1rc81q9FNhrxpkZb0aDQpa2hgfWezG9nrRmmF2gu9V8I20Dv4YNHakrokanKMnE4XnlzvsUaRSiZWuElwN3fuJyFmPxsdVx42CnJNONV5e6PQG8ezq4HDTuLVnc7peMeL5zf4EHjnE3uM7rx48QE3Z/GgBOfJKXI7JdSbe1rNxFQJWoTRWjPzdKFMyxoXDpSeSTGSSgM8cuOUdFXYeObzBd0UpSC/Wx3Q2soAgmYW9y2DUegm3V/CtdHik0iFGKU7rK+75FQLqVZ6Fz+LpjEEGJ3h4CupRFIUE3ZhQqcCRsylU1VUJebu4Ay7UTOslG+856PFMlVNLgtXrvPu3rEfDF41bJ4oiyVWMFR0KngE4e+2O3qDeb4IbO3uxBJlNehIbIPh1VxJxnEsMylDvmRKg1hErWmrufWhi2uJD8g1RY2SUjGO9QAi6Z1SKtBxVkFV9CTkZ5nINfPpzLDZ0I1eV7CKVLP0vSG8rU5nmSZZozsnh6G6qkRKUpHBG2rJj6GHDitEU1rf5SBoocpV17rAetdDGVGCdBHVRvhQcg1RrUNtLFMkt7YSvjW5y+vfDwFrHYMxKGdWFSQyA9ZKtHnYBIJ/MPAmSRNZTYlRalKCxxhHVxpFkYFCG1FKtKIWUYhrr/gwYnNBKalY6cAwBOkppFNKI9dFFKhcGMZhXanbxwOqckYCIqpTkqS4+noTctagR0+uEiKIKaOVYtxsaA1yjHjvaEVUndYqo7eMgyaYxn607MYtcZ7ZGRgHTVaN83lB9YbKGV8yB6fZXzmmqrhcxG00t8alwP2lkmLi7Z3n69++5uA7r187fuX5kfNZEn9KdZpqOMS3ODiFNR204nZKwgGaGnnO/Ja3RtTGcL7MLNPEa/vA6TxTY+Jq89VxGf+GH3B6F96JghUQJe9/NL6uQ44ILA/+CWSQWQulHtSaykruXf/7oyKjxDDc29p71RHpH4HOPRhyu+6Pa7LaZQ1EF9No7/1xVnqof2itUbsQgNeZCW0NKsvNs6w/l3xKIzXxlnjviSk9vrgUmlygrY3pDyc4vSoelEbKAiK03qHMytPpkrayRgyXCom9Sixx9eG0DE3WPCW39eQgK6iW5edAdeEAmRUuaB0dSXxppXBuNdIhp46uFF01LOB6p/S+tq7LEbTlRlL5kb6MQQYL47CIBKsa1FQkRbAOVaiHeguLd+ITcCHIY7qqaClFedzUmiSzAlqjr79vI8ZvLc1yktQwjlQWas4k1TnsRpw2ctPV8hjnuOD8sPJ2ZKDJKa2Mm04YHa3C+RIxWpE3nmYd3FeyOfLJvcamCVUWrLEEH9gftuRUqD1JYqkUVBiwGk7TDEbT0GTEkHw3iVw/Wr0Om40lN4ZseO16wF1ZIY/WKopUXSsVuuKyZFJTuNGwHQJD8BxKoZWCbYoYM9oPzJeIsopUIM8FPVaq0cTSSamjTpHuJabvtJHHFPGfedM4LRPrNgLrJRafk0SCO1CK4oObiAmBp7sN1oJxmtIVfU60pohLIiaJrhqrqWXmfJkwGDbDgPOBMTiWaRKInDVcSmbUAYxD1yw38WZYcqHXzMGtXWprg/pu69k5ufF/uGjevyhKTHhV0a1CU2wGQ5sjZYlUM6CdR6FQzjItUmcQs8GPjrx0tDLMKTHFws2pcnOfeH4ufHCBqQuvptROLI1UmqyV0avqq8kx01HY0QmYsWvSEtcgQ3/kyCxTpFTWXjlZh7u1ER1EfdEhyAAzz/y/2zv3mMuusv5/1m3vfc57nWHamSnQ0lIs4VIUkDoq/Eza0CJRvPyB2Bi8BAKWBCIiF6Oo/0A0MVGCxMQI/xgaNVyMArECLWLKrbaUAlZaK0Xs9DLTmfdyzr6stZ7fH886pwxtqUBpO2/3l0xS3nPmnb3O3mfvZz3P92Ksx/tK+YMm4Z0pm8XSeY6ZYAVjHCYYurYjxV6J+kGDW3MJ+MR4bGX1PhJ0rGIFJKtH2TDohkadczND6d5K0u8aAv3QQ7knZNGsL2ctLvii4LLM5z3W6IjNW4cLVsm9qPmiEfDGsLW7rSNySWrWOWSGIaldhAWxRU5tDASnjuXDQNVU1FMdDyZrmM+VKD2pG6UWpFSsOiwxCUPpEoUQsCHQdj1pyIRQ47wt0SWi6zUeYyuyEdIw4L16CKWoHCdKzE02GrrsrXIIyRlv1NgyiX7ua7UqGo2Bvuuog2Ewwu7OnPXGcnDFsuYt65MACVIIHL3nJOfua6j210TvOboD97ZCsBBr2N/UHFirCCVD8awD69yZTxaVWWZtMqHrI5OqwQQVF3RDRHJcukbvntxlPhMahM0Q6GLCZs8T9m/SDj1h9MH5P6IUF4tZrvJAlThqF32YMvZxpnQirN4IjNG5qjG2PLh1bKF7H5Z8nUXzplByimpE/78UPxx9eOvxSHHSvS/DqhxJ0i+SiC18H/0C56jp4BghGIe3i7VY7dYogwxbPHZsUqdjYomXKEWWEodVoaWzLd3BWefxohERSdsqymgvcmR1HlZPEGNQnxxj1XMiZvKgHSHQD0DKTTcW2aH6kkVSaUnbrPlR3mm3qO/17zqvOxhNstaHa1VZZBD6TnkoesPU0ZOVgUUrzBvwTufyZIuU4DgpN+HY9xgDla8Qk7Fe/XGsL3EDOZG7Dko2UeVVEZJK0Zq9egdZtDs07G5jnFdfCqfS7kkIVN7jjOC8KX4T6DEWYnsatJMYk7oyB2f1xspAXU3w1hGHnvluR06ZtnUc37V8cyVw9nrFGR7WgtMsoJ2e+VxTy4/vDmy1PVaEtbUGH5xasceBuoaViWOr68sDwDEfImlIrNSWPlkkOPatB8iGo8d3EBJnH96HC47deWLWteRCUm93e/ZvTDnr8Capm7Nzcs6tX59z+933sjnXnWPla7CGne0d8jY4cdTNFOM9XZshRdz6lBAKg2wYyGJpZx3WOFZWG3IcEAuNDu+JYjg+dMo9cRTlGNR+BZsgDvo9qZzBelOIlQYJFbiB3b6ntjAxgbafsxN7UsyYASWTN47ViWfXONpBIy367TnJeaZNw1rj2d7d1msiw27W79SxztMPwooTaiOseXUwNwlWp1NS09DHxI7U1N5Se69ZR7Ujth3bx07SNAETMlvzjlvvGLhrVzi+nZn10GVIzhHFkI3RUW3uaVvtMqQs1LWj9hrloMpQy+68RSQTnNDOe0qOAVBG2KLEZIN+7wUIVaVdz6whubGLzOe7ZJndxzMMaFfWBfKQ6NpOryvrtJOEIVhPcJa6cqV7o2GsRvQe6qwrIxxXxB1Jd5/e6CbOOYauI+dYpty6ecqSkRTVuJQiLgjFCyYLrq6LulIzwqbB6305CQwJYzQ02ToNK15samNM+qePVMFrJ6ePCGkZnSNZu+S+CqxOV3Ah0PUDda0k/3beMZu3uKC+TUYgm0zsonrFBM8gujlKURVPOkpXZ/SUNRYkZ1UPJlRVlbN+R4wPyvl0FZVV3lbOmTj02gEXofaG9fUJXTfQzZXku2oMwWgRV1uLl8j6mgb+BhnYcIbDG55UrXD7Hdts1sXN3BtEInXqODM49h1wnLh3RmMjO9szVqY1d5/sdEwdE+uTio39q+zOOqq6oU9CN5TA5yFhh8jqNHDGumdjukGaz7DOMJl6Jq5h3iYEj0lCt9M9LI//PV/gmOJZQTaFa6ydF2vU/G4psy4XiPriKNl3MdZyRQkkRfZjZLHDXzRxlJcjxmiHRAzJ6ChMre8WVQ/oiCiTsnYCBPVZcMYs32dETaoMhpzU98GWY0u2uPaIlHRvv3Q6tmUXsChkQJVFRopjpMhSsp6Tdn+SgEm5yD7LZ0UhBWdwWJ3TGzWTIg/KUSlSyUXsqBFVOZgQNNvKK6ls6RlkKQGkhVczRIwzZZykGV9qGOgJwWuarNVdphfBlLECZa0UZ2oW5zEJg7XFyThCjqX7sKg09UbWxY4UNHyusjUmqikhLN6TwOjvsVaJzHEYlGjtKoYhsTNvi6uvxVUBj96wnbX4psQLZL0p5uKU7auqdLkiqe1Jvfpa2KpS4yxg1rZ6bVodTyaBPAht27E169nNq/T719iImTRrmW2dxKEBkk6EM9caMpljOx0nZxETlCy5sZrYXGuYeE8eNOjUkAkeVpqK3dmc/71bWJtssNo41qdOYxeGOSe2eo6fmGNzpKkaYp8YkuaCnWzn0EfEBFKoSannzjvvZXV1hScebAjNhLbTYi0RmYgD5zRdPni2djokDSUpPpKioQqOuq5YmVSQHc5ATD1bO3OO7yTuPjGj8jW1qIRZ8+XU58V5S05amHRDpJ13yilLERs71nziwOYqgqHtLO1gqEKgshlXXM63ush22yI4ur7TbkG0yLTGV44meqwPzLqBr9/Zsbq2zr1zYeKFJ61Z1n0FouZ18z6zI555BzHCoUmlEm/r6GKPs5mVtRVCXRX5sWM3Re6cDdwzMwwm4Kc1fYkosUHdyMVB5RvldRkNuexj1HuICNJHLMpLSznTR72+RYojuVNDyixqJurKPcT7oCZ8xXQ09tqJsNYSO91MZGNInRojZq/qK8m9Zr45LTZWVqaQE2JUbt40FSEUl/Be73HtXB9gMStx2dcVoWlwThWe3WwOOdNUtSpsjCEOahDog47T+7ZjMmlAjJoMhoAxliZo4GpTVaQ4kCXhrKOb9eSYqaoKP5lqcYGaqmItQlJPp8YRY4+zeh1pxIsWd31K4AzzIbK+us50qt5U3axlvjvDAFUxZTTG6WcV1WU+xUQmUVcV3gd1Iw41lPvHQFT7C2cxJR4nS1K1rbWFVNwuVa2+qhChdOkE6wxRLDv37uDSQEOk7yLNvglrq45jW5rFV1cGTM/+VUcdKlZrON513H3HCaRLrK2vY0qOoQcmQX3KbErsbzJNXTHbmdFUljPXJszbjq3BM1iPDTUuRE7cu4uzXv2kJo5dk6mNo+s6dnfBmcy0rllpPNXEM2TBV5aUejVvDA9PabLnCxyLdjWcV8LnQg7uvVsqkhaOw0ZDqkhilu6Q+oomQBuxeoMyhWS7KErKM1TNBO8z69MGj7ZzlDug/I2cRLs1VqXTuXQ6pCiVjCRstiVuQQsVI7p76QvpzRglVhpb5OHF6M6Wbosk7QsZAVd5XKZIA/NyDh77SHKZXBmcAV8EZznre5KxDIuiy1qMd1p05aQZMxgwGrTnrWcRy2Bd1O4OyjfSsZCm16akUssoi5m/AbuIuRC6dsYweFUGpNK5QpZuxqoSE5CExIzxFudARFv0xqnqxHht5eZY5vkoNybnREqqWktJqJuMLdwD5yxVXWlL36k5YyyfVUaT2ydVIMWBYdCbfz8rBZGx2vnrdVfoMPhQuBBZ+TzGGnCGUAdshp0YVUab1fNIsjD0at1u61rb1ZKVwLjbstue4OR2w3pTQdbMsbUgNEbN37qdQe3ug5IGd9qetks4r8F9+yvLWdOa7XnPVivqutomauuZiGGYtRAcq9OaaWUJ9ZRNX9PNWogG5zLeGNqc+d9vHqPvEuvra6Qccb7m8OGa3Z3dMnoSclTllg0VSVB1S++oeq8EfhlI/Vylz1VFPZlgrOC9kFOrMRwxERN4V7NRR+y+rB2LSUUUzeqRYOi6SIp6bq1EbBamVmgqh7U1c4/6vySNPJn1kPDErAUikvA5LjlxxoHHsrE6JVjDSvC0bc/J3UhVO2KybG3DdoJohMpqRIirDIMIOVTcsdvzv8e3sVZHAPtWZpx15gp5aEFgt7ds73a46ZQTs45WDHe2NVuxZ6fIjZtQrArygEH9dsR6Zu0cW0Yy3roinADjfCHMC5VYYrR0Ce0cin6PrFW1j8XQRlUCWmOZrgaNYemVw2GN+kqllEseVdTvqQgu6capnjrC2grGeS2WjGAk6jg+KwdNeYsGKS7GZNF4huLYS9Z7X9+26sQMyqmxjjgMynWplAuYc8KHQN9HBJVyD3HAO48Menz4QD2Z4JxlGDq8dVjvGQZVQxlRW4qu7zSPKoRieTFQ+UDfDco7FPX08qVj3Q8DddOU8bQhx4Hga5yzZKdk7eADsR8gdoSmUluSrMaiyai7tPPKCVIKQsaaUkBYp5zHXjsyOQ3F90yFMu18TkoDIoIPgZjU6DOLYEV9trpWHd0bb4kedrrEN+7c4fw8ZcV7dnY6hllivTbYKWy1PSe2hMY5Nr0jTDzi9U7uZMDXNc10lXY2Z7YTCRsTVtYmbE8c/bylXmloNlaIJ3qOfvMk3e6cw2dMOOeMKdZ5ldpLZsVVxMoSJmsqNpiuqG+bJAZR/pEvIpe+j/TxUUgTPx0hpY25+GPKzsZ7X6TNCyJxaX8abUMWdo52NSgPueK3UoKslt0OfTzfx22Rwssh39f10d8vhfdC4dxkIjrqSiwCOzVDJVI8dUonQMdhVln0g6Z1ixMw6hjsrOaHiLaQtDhwOn6S4iERghYh2pnSDkyWXMzrHMYGLWTKPHzRlcKAjUZ3iFb5RjZrUaXxUxncorDKZInqnmwMmUQoc3gddyX9XEvLN6VBxwSla0EGhozJeekgbZwpxalyilzwSpj2tnR+VMFlEaTvsRZCreQ9sqOoI5enTBb/vhFtk5u0VJSBjitwVjk8KZciU0nmmawSTufKjlLJ1lkyiCMPSbtbXlVsvhDH2515SfbWcVYVAr5y7M52SEMuHQhHNVGTrBwzQ9sRU6kQERwV95xoOWZajAVnhWmwrARPsBU5JWLXEaJhbVLRTDwxCfN24Jhkmn0V0+kKIXiNaRChagLeRKoaNiaWykUM2qXZPdkxna6wNp0wm6uf0HR9DbHQn+wIkwnzLpJjz3RlhSZUdDmyb2NKCIa+10TvHA1JLLbxbLctMQtTDyuVdmzwDmuFNMzJsSUZIVV1ieooROOo0uHp6lTb/6EitT0eS2lQlAelcrCCV0PMeeyYtZHteebEPDPvW6o6MGlqghmobKV5RknU9C5GJpOGIWeGNJB8oEuCF8PJ7Y7dXphIJJYu5XbfEw2sV47tXuhy5MQsM+8hWkdvKlLbseozThz33DvgQoW4wM4c7p31RKeE4K3dXcTW9AQwmqA95F1N325qUp9IIoh12KpCUiJgCJUp/BXtyAzF7HNIMERRJ2Fr1O0Wtc6YJ/XIwlrlq2XttrjgaZPmQ0XJKpkXyL1Gk/ig+XR1rflSVVUy7kTHJVjtoknZTNZ10DypqFKcGLUDHCY10nfqhE2Fr4Oa/VmvUnwLeUj44ME5HY86tUnIJeS18uG+0bmlKB6LcCAOzJPyBH1V4SlhuEYwDmKJdnHOarJ8zkwbDTDuelUkOWc0rmXeUjf1MtDXhcB0soILmqmUs/7ulZVVRGA+6/C+EKRLV3fhiJ2i3pdjHBj6gdo3FAqVurwbSwiB2Hcam5AyQ+yXxq/NZMpQ8qSMButpMviQMb2661cGGiNUklmfeBpvkQAbjWPNBVKrCspZJ+AaApFpraPy7HTzQUxQBdp5y7zdpp7U1I2n73okaZ5dT6CdJZoqs+EN00MbdH2nG2dr2d7eweTM6krFGQem7Mw6Tm7P9Roq2VmIZ2unJ8fIxoqOR4139Dvzh+X5v+cLHOXf2KXs25r7vGZyysudhKCxDpRRgwilzbhw3y3dGCtYsSr1TrKUlRujRcuCLKsorsbK7FWapNznqgxafauKS8nAtsjL9a+LhiBKRrA4awnOF16NvsYgxQFZvXGMVVfPhfJBf5VZetNQ+Ec4z6IzIkWHmIZBuTyg5V0ZbTnviumf1RFTKdZM0rl5KvJDW1RoUgo75xxYQ/Y6jstJu2OqoirjtCigvmPqiCpZ1WY546wWFmlIy5FNElGHT3vf50qCUAwJJSesCwSjN3VxZinPVufAhe+RfhYszmyJrjBWNXJD8Z7AGeqq1jwvY4ldC7HHZvWnqUJF1TTEGEkpkkW7WxRn675XT5y+7bWwDh5fiNqIoQrqtSEi5eZndWCWtZCzzqrpY4wkk4pHEmVkauiMp8+muGQbkIoqW7Z2Mt5ZbFjDkchGuCd6zNwggzoIO5MJzrE5qZnWmQGww8BqbQmuprtni7Z1tCX3Jzj1AOnmHRU6Rrhnq2Pf6oRJHambGi+R4BPewxC1CPNWxx2ze48zS6o8ObSxyr7phEkNEvS8DkOH9Z6+7Ui5p6obsmTmbWRnJgwZTK1y29h1zOcDYHGDR+aRlUlNGmaqmIl67c7mPXHIVMHxpI2GY/NEcp5QVwRvyIPQxURdV/pgsY5sPMd352Qybd8xnTTUQQNhiYk+QZsgh4YhWmJKzIeBY61Ro8hewKrPi7NK3m/jwC1HdxgGgWaKbyZksezMBnzQrl60E9q2Vb+lUEGCnVmLD5lQqRpMylbKSOGTWR1Jx6JcWmxa+l7HOf1QurGFrB+sQ5IajhpnltlOvjh356QbhlS+27FX7xPnPT5B5QNVrbLfVIzpTLlXWesYuh7vgu4HHHRRC/QuKsm0Ltl0892ZbkoKGT8hJO+xJimfpHhs6UYwYhyYZIpIRE31lsWNA+JAVewesqgjupRgSmuV+CySaaYTHedYo1y6rscXFWgc1NW57/qysdJxZO2UYyNZtAjTmxX9bFZk7+BM2cj0HZKV6By8htrO2k43l4XTJ92AxbIymZIkkSl/v08MeSj3iMKFGnpc1kR1yar8tdnisyGZROp7LFA5tR5Iw0Bj4aw1y/5VjwsGFyq2tluO3bvNJBQn9KbSNaVIJ4m+jaw0FY0z+F67WXXl2Fyr6GtophO2dmZIr+GqwVv2rTqm3rCxXhMmgSEZdndmzLZmTCeO9ZUV+k67bl03UHlHE4I6u6dYJhaOSfBU0xojPZUTVvetMl2fPCzP/z1f4IjcNyaiEEK1g6KqmqXLMCx9UDBo4rGzGrGw4NDA0ihQkGUiuZYr2mVYJCKlUuxoA6T4wJT3GPTGYoz64LAgGxvIS1YLSxUUQpFeFl7P0mBPlnES1pjSxaDI9VTlI1E0k0eyEgCNdigWKjK1WteZsXN2GfbmXVCuTOnmqFOzdiSc8yU3q7g156xEwqhp5cpTUuO1LAIxa+cn6s5LvX3yUsqejXaVrLFIEVgbq8GWZCnyX+VNmaxdogF0jFc+e80qWpBRNafJOt2dWiBmVXzlxUmJqpqQrKZjaohcDAjrWrkdaRHsqUGXpnK4ukGGHoPKXLuYyDZq18+oH7SxBrEqyzeiBDyPEmljinSzefEFUvJxFTze22V3zYhh8b8sojYAKZKNUPtKyeRDIkbNxYlFbeK9pwqemcl6k7VWr5UkeCOciMLRnQFvobEeI5F0UnfbwTj8VmIlJCZVQzWZ4FYh9gNNVTEPAyfvnSFtpJ7UbKxZhiGzu60hiTH2iFXH5aGNCB3OVVSNI/eaAxVkYFI6dd4KOff0rTBZqZlUHsOU+XyXoUuIcVhbISkSnEFyDzi8ePIgbO32bO0ONHXNPh+RoWc+dIhztO2AFeWDAKysqOx9SJkqO7YjzHbnmhjuPINVcu1W13HvTs9scIhxeANGPJXzTExio4EzascsZr4xD5zsLG3MGDR1ensWwVhyceNtZ3NyjATUqA8Hk5VVJuKRWYsJDus8zgT6pPEAfdZ7ThczJ3dm7G7Naeqayap2X5umAWPpxdCnzEInudhIpVIsG1DljRSljdNE6ph1Y2aMhU6JrzFnLEJVJsaSUBsFDLX3RYUqNKHSDWE/YHxxQkc3BmmIZCLWWuq6yMrbGTGrV5d6zjhyietwTn2sUlKlZhoiwVl80HGvC56IqC9M1jBPX6kZZd91JfJAFVLKVYwIaoyYitN5X/gzlfM0qxXbO1sk1DA0iNp2qEBShRcxq+x84Xc2ZPAh0Ewbctb739p0VT9zKc8Q54osOxNbdYH3jddgZNHxtIhm9VlrqEuhZAsXzRtLO/TMZ3MtWoP6g3X9QF86WQ6NvIlllJekBK8OLevTBmcET+bMzRqixw0DZ246jBW2trVAjjlRGZhUjhiFnflAjJGNWqkDuzstO23P9AmrrKxUej32LSRYnVS4yuBMZqNydCnSd1o49kYwbk0VVrFjtjNjurZCso5+tyMYFXv03UBVBzbWJ3iBuvKEOvA/d51kvtsjflJ8fjIxLox3v3/s+QJnUZvkrOMnb4rhXbqvONAOjxS761JgWA0TU1URRR5edjtGnYgNxYtmMeZadItKx8cuZOSihQulgySLTg4slVR6UGUXZpaHjcPog18oCpj8LUomsyzGbCmLloGdNpdsKm21W2NUYm3AeK8ePeh1JNZoQZa0xeyc0wDQEoC38A9SybdOkSjk4SxJM5yi8l2cd0vPGcrMPxfirAo4iooMQYmujpSLSq20mVMhfEo2ajQVfClIwXiru700INngnVOX4ayxFtYAKdMPCWMhVLX6+Ri9oS2KNS2mDAmUlJ3s0mW5n7VqkBd1tpVR1VPXK3G5Do5QBcQZ5SsMCev0MzKANxXW+CJ91RwdNXdMS3l5TjqCMCYSrBZlxlmcD5iUccbgnaXrEykKEdGxiEtQdoZ9HHCSccVfKadIDnZpW5CHXq9jY4kixDayI0VNERwrk4o+BvLc0A0DszZz9hNq+sExH3pm80gaBlxVU00q1gROnpgT+8i0mVDVwtlPtmqi1u4gKTJZnTIMEfHa6o5tq7tMP6WpPD4qmdWg0nNHT6hgZcVrVtSgsuVu3mvnznuMDUxXprRD4aoBq6sNzjlWJzWT2jKfR3bmPUOnBoHOWJwY5l2kihlvhVlUDpiJCUnCdkzM00DbRlbijK4bONkKURK1szTOslF5DjWJNWdw1tJ2kRO95e5Y0Rc1XO2NxgyI1yBDo4qemNUvarK+QYeSoClcFUnqem4rA06/e8ap/5OazWU21ldxWejmHe3uDhRyfKhrqlo7ubOu10iE0kHWWBflYhnU28niaCZNCRpNRDTPSVImG71+gjE05cE8XWmYb89JORGamn7old/mtSNrrcMF7WTM+0Ejaow+vK2xdF2nneecNRDX+hKPwzLCJMZYgoFDyU+yhe1o1fJid6Yj6arS0VKCbhh0TDmd4msdp8diCOgrdWKPSeMZXF3jRU1YY9fT9T1t+T6oCafeJ3GWeurxzrCz2xeTUQs2YJ1lOmkYkppI1sHTDr1u0qzTzDu0e6bxNCpMsV7vn0MJ/9TnhApOnNfvZ4rqh2OsxYnGXuQcyZFCnFdO5DAk7ejprlw5hWVjXXnPtPLUTljxlgphFjv6WcsJVzFtLC4L9AOrtdPveav3L2cijROqYGimDesrFXed7LjjWMdm3bI6ddTOIkNkez5QTQYmlcM2FbaPrPrA7tYO/byn29lmrWpYmwbyvimz3cSsnTPstoT9q1SL+3ceMFYI04YhC7sz9R/zzrJSV2QxGDLdbEY7PDyP/z1f4NgiqV58+ZMoZUSN5RZVorAoKUzxfoFCsVnKn9GRlClE1+KHk0snpbRmltlURhaxD6UnsWhPFn6PKb/XLf8dQ0RwOeOM013Mt8jbs2QlQVvtIOU46AVhzfLGgzGYrEWRKrmKzHzIpAVLyGg3yPlceAqC82VtAtJBLlENucjldbfhC1FbOxuxkOSc1S9fLMohssGJ0c/HUAJHi9li8SSSnJClkWHAwXLnqSF0xaOn8GUSuiNbqJ0MFm/UHMsZRyIxDAmXhapSzwtj74vOyE6VaEkSNjiMteVYCxG7fE4Gq9EMORNLaOcQh3I+F+7OjhSNpidXtTqadq16h3hPiupkrZZ0uRg3Fg8SMVjrVcLdK/do4RgtqMoixYjNQPBUtcdlj/UZjxZ+Yi3ZWWJ25Kyt7LquMM4wn7cqPTcWHwJCYHGVSxnDSukCtlFwUWiy4d6ZsB17vsnA0ZMD5xwUDm9WbK7USPLszHocsLY6oQ6erhtIaa5k38phnVBNJ6QhMZlWDDHTtwMYz2zeEgWcV5WHtCr97cSTemFzRe0Gdue7uFBDae3nLLhQYUPFbB6Z92lp5jbvema97nJjSmzNHDkr6bQdBvrsqayjMQEbwNWB3WzZ6SND31PVnpgGjs0jba+8uC5HROBwE9hcsaxNPWesVaw1DjHCrB2omgm2Uq7KPCWVpadIKHyYrd2Wtk+IK6Nno128dugR54goj05DFT0Yi6sqYtaHlrMGU4I1JWp3eWVjldW1FfVIaltmu7s0STDBa3dvSDDovSvnpORX0RG0ZPVrASmJ4Y4m1IQQtOOR1MwzpURMmXu3too7cYP3nr4baIce6wyuLiTfPpdoAQ3otVVVbA+yehYN6tO06N42dVO+87moVHVrk3Lh91n9joUq4CpP3dRq6ZAhGVeyyiI5Jy1QUFfwmJVYG7ueqq7AGJqmVg5ISgy7uzjv6XKGSr+N3jv6tmc+9DS1crw0g02IBurQaBwKSn61ZUSeYyTlxKRpgESoasRY+r6n7zr16KmDTgiz6M8wZXOoxHxfKAGAKrtK8buI0WmagGRX/M908+hEydY5a24UxUHZOeVTBcls1g7vDcEayBGfEqubqww5gvFMp45aItZneiwmq/ChDp61acA4YdYPbEwbnnLIE+cdk8YTh479myvUjePOu7Y5cXyXZrVhGHqa2tFYwU48Zqrig+wgdx3TlYpmzVHtWk7QE0zClw58VTdARmJU1WlKbKzUpJWaqvL0bY/NqtKyw8NT4ez5AmelCmSgRR/skktbt1TFiwGUAA4pqp3Cp1m2Vu4rDiAXrsO3uBkX4vFiCrXkhqDFS1p228q/tXgfiwKsKIr0ur5vBs23dIbEFedPwRmPOFQqnRPDoDNl6xy2dPey0b8nZcSj055i+13CLDNWeRpmIfPWtmvOxWen8H8MhXyNvS8N3GiitQ8VkjO183S2Jcki8bwcvQiYvBzpaZNKH1SgHaaFEaIpLsCyyA9bdHti1KKr8HqctUS0aBPUzyaQyHlQJUsIygPQalBNt4oChJzAqapJJfWqEElGeUTZOeX75Iz1hsZ5KKOiFActrIJFUmQYsnIDgl+c+MLJErLVa00cy3iLNGSGnPFJQ/esM9STRj00OjU4s6Lt8XnXkk3JtrEWazV1PQGzWSEfiyF45S4F69V0MBajSqOeQWUGq4RoyYSgPKBh6Gi7lntT1LFf3zFxhtk8st1tI3FCfdYq3jt2dlsqX7G54VldC2xt7bC9NVDXNd1cyZrGOvrYEbJQ1VPaXhPCT+x2pGyoB8u0CngsQ9sivWGyWeOsoe/VM6i2mhzvm0SykG3g7u2B4yfnGAybq1MdiQxgB0F6oTOJKANd3xGqQLAW4gAukaNed/Medlrle0wnNWsTj0mJVSdUjT58UoxMnOXMdUflYTL1uNqzm9T8MYN2CLKw0ya2ZqrYMiL0bUs2iRMn5vTZ4CYNTVWVa9UQowET9Ps9QK6gl6xS6l4LY3WnLZ2nKqg8fj6QI1gsITjWnKONmruU+h5jrFr/i47ET3ZaALgsVN5g6lrJxTEXk8xcrBYiKQ8MUUnWylvRrmII6iAuIstiOCbButJRdnZppRBzhrbV3rEY2rmOnvqSIWWLalEKT4+snZCuU36bdfqdn0wazYwLXkdqKZMytG2vY51JrQ/+3hOHyHx3Tt1UZIuabhr1zhmyetZkKdzKFHVE1mvXMvUaFTFpmqUHVhYpSjGhqm25nxv17BIdfocqEIzBhaDrkcKJSYL3Fa7Re6jkjK8cPrsl76nygbXJypKvNPRJv+fFod44tbjQjDQHMZbPU/1+crkPeqsE6xQjOUrhRVm25z0TZ9Rx2gqhaUje0reRoR3YXA2cuT7BN567j+3grQoQvGQkDeql5HWct7pWU1eFC5mCpn9vVOw/0LC6Fujnkcm0Ym29wXlDHAyx67AejM30NrO7tY23jso7znzClMo7fOXL483oRnNIeGdZXQ3cc++M48e2aaqKykEI6ga+II98v9izBc6iOMlGuRkTp7LvmKRIfOOyi2ILmS1ZW8jC+jty4ZYgZTyV1WxczDLDe3lhi6hrsXfoLsWoHHzRotTC5j5ZOVo2LE9jTkqus0U2ntUIR5N1jZILF3XSoH1MLUoWJn4pQ7pvzFOIRup5YUQ3eWV8hYBJGQajHaXFz5MsjzWXY/Eu4Iw+3FMxDjTGUoVKRwplPKVdGYcxSXfTqcgXTcnjMlqM5NIat6l0Y6xV+TQ6HsrZLFu0QjHoUjKQtt89gO7oFmntwRW7c+vIKdNnjZ5Y5Hu5UrQ469S8r3wGKaWl15EAJmr3Knj9PUbUTsAF3W0nLHkY6OJ82dWSQdffDiprdMZqZ0w16aXGW8juhXbekspNP1hHHzPNypRgLVYyCSGWcZosCl50FIcpnafSEbICaehps6VNgxZYOQNZzYEHR2X1/Jkc8RZcVifnLJC6yNasK3JdSx8ckUSSxKpNpGGX2iZ8srS2YzfPcVVDajPe1+qSnGFnZ66fr7Fs7bTUk4adttNrIxvaLoHpcSbhjSPGTJczbhbUO6ofCJ2hHjKTpiJG4djOwM5sUBNCPLYUoyTRa7NybKw2DPOOfp7AwhCHYsqWcSGw07Xa83MNEjMuWCqrN1kfApMGbBasDYWMPme3F5Kp2dnuiffOUSdvCzlRV3P6rMGPqc/aWTTCbh/JQ8du2yE2UA2J7DRZOaVMVRSGqZCZuz7RpkiwHuYDxnrlbFUq3UaEPmmBVpUUevVIskrIjWptkXJikIGh61XRhEGso6NXVVgUinU5rlLjylw2RTklnLfMhx5jVEZdOa98idgRu3I9ly5Hyom+7wufZtGxNtptwjAk7QoI2qF1zkES2tgXVZXynXR0FQlBu7dkyDEzb3fp58rdicOgXY9QKYG77eg6tU/IUV2mMbZYZGhRlGLUQiEqD6jveua788XekxBUnegrR8wRkro7p5ShHQhVhQswm+0oXcFpF30R+4BVN171Gir+QMX0L4sw9INmPUX9+ZAiwTmcD8zaVu+fvX4W2RhctFowlQ1e3+t93lpVblXW4a2eb2fUN0bvSYKvnHbwEWpvMQjGOoJ31MFr4Zr177VdopMpSeW67LYtOUemE0ddeay3zOYD213P0ePbrDf6GXVdIrcajtpFIBua2tObxJ3b2zgMIThyhna7p+4t2ydafF2xesYGkjqGHmZdT8CSUJ8iGzwR5af5oN/1JnisAT+ZMqRIO2sJq9Upz/HvFXu2wDl27BgA/337XY/ykTwUHqZh44gRI0aMGLGHsL29zcbGxvf89/dsgbN//34Abr/99u/rAzqdsLW1xZOf/GS+8Y1vsL6+/mgfzg8cj7f1wrjmcc17F4+3NT/e1gv/9zWLCNvb25x11lnf17+3ZwscW7g0Gxsbj5uLZ4H19fXH1Zofb+uFcc2PF4xr3vt4vK0X/m9rfjgaE/ah3zJixIgRI0aMGHF6YSxwRowYMWLEiBF7Dnu2wKnrmre//e3Udf1oH8ojhsfbmh9v64VxzY8XjGve+3i8rRce+TUb+X51WCNGjBgxYsSIEY8x7NkOzogRI0aMGDHi8YuxwBkxYsSIESNG7DmMBc6IESNGjBgxYs9hLHBGjBgxYsSIEXsOY4EzYsSIESNGjNhz2JMFzrvf/W6e8pSn0DQNF110EZ/73Oce7UP6nvEHf/AHmrT9LX+e/vSnL19v25YrrriCJzzhCayurvKLv/iL3Hnnnaf8jttvv52XvvSlTKdTzjzzTN70pjcRY3ykl/KA+NSnPsXP/MzPcNZZZ2GM4UMf+tApr4sIv//7v8/hw4eZTCZccsklfO1rXzvlPcePH+fyyy9nfX2dzc1NfuM3foOdnZ1T3nPjjTfywhe+kKZpePKTn8wf//Ef/6CX9qB4qDX/6q/+6v3O+WWXXXbKe063Nb/jHe/gR3/0R1lbW+PMM8/k537u57j55ptPec/DdS1fffXVPPe5z6Wua84//3ze9773/aCXdz/8X9b7Uz/1U/c7z695zWtOec/psl6A97znPVx44YVLl9ojR47w0Y9+dPn6Xjq/CzzUmvfaOf52vPOd78QYwxve8Iblzx5T51n2GK688kqpqkr++q//Wr785S/Lq171Ktnc3JQ777zz0T607wlvf/vb5ZnPfKbccccdyz9333338vXXvOY18uQnP1k+/vGPyxe+8AX5sR/7MfnxH//x5esxRnnWs54ll1xyiVx//fXykY98RA4cOCBvfetbH43l3A8f+chH5Hd/93flAx/4gADywQ9+8JTX3/nOd8rGxoZ86EMfki9+8Yvysz/7s3LuuefKfD5fvueyyy6T5zznOfKZz3xG/vVf/1XOP/98ecUrXrF8/eTJk3Lw4EG5/PLL5aabbpL3v//9MplM5C//8i8fqWWegoda8ytf+Uq57LLLTjnnx48fP+U9p9uaL730Unnve98rN910k9xwww3y0z/903L22WfLzs7O8j0Px7X8X//1XzKdTuW3fuu35Ctf+Yq8613vEuecfOxjH3vMrff//b//J6961atOOc8nT548LdcrIvIP//AP8k//9E/yn//5n3LzzTfL2972NgkhyE033SQie+v8LvBQa95r5/hb8bnPfU6e8pSnyIUXXiivf/3rlz9/LJ3nPVfgvOAFL5Arrrhi+f9TSnLWWWfJO97xjkfxqL53vP3tb5fnPOc5D/jaiRMnJIQgf/d3f7f82Ve/+lUB5NprrxURfZhaa+Xo0aPL97znPe+R9fV16bruB3rs3y2+/WGfc5ZDhw7Jn/zJnyx/duLECanrWt7//veLiMhXvvIVAeTzn//88j0f/ehHxRgj3/zmN0VE5C/+4i9k3759p6z3zW9+s1xwwQU/4BU9NB6swHnZy172oH/ndF+ziMhdd90lgFxzzTUi8vBdy7/zO78jz3zmM0/5t17+8pfLpZde+oNe0nfEt69XRB9+3/pg+HaczutdYN++ffJXf/VXe/78fisWaxbZu+d4e3tbnva0p8lVV111yhofa+d5T42o+r7nuuuu45JLLln+zFrLJZdcwrXXXvsoHtn3h6997WucddZZnHfeeVx++eXcfvvtAFx33XUMw3DKep/+9Kdz9tlnL9d77bXX8uxnP5uDBw8u33PppZeytbXFl7/85Ud2Id8lbrvtNo4ePXrK+jY2NrjoootOWd/m5ibPf/7zl++55JJLsNby2c9+dvmeF73oRVRVtXzPpZdeys0338y99977CK3mu8PVV1/NmWeeyQUXXMBrX/tajh07tnxtL6z55MmTAOzfvx94+K7la6+99pTfsXjPo/39//b1LvA3f/M3HDhwgGc961m89a1vZTabLV87ndebUuLKK69kd3eXI0eO7PnzC/df8wJ78RxfccUVvPSlL73fcT3WzvOeShO/5557SCmd8sEBHDx4kP/4j/94lI7q+8NFF13E+973Pi644ALuuOMO/vAP/5AXvvCF3HTTTRw9epSqqtjc3Dzl7xw8eJCjR48CcPTo0Qf8PBavPZaxOL4HOv5vXd+ZZ555yuvee/bv33/Ke84999z7/Y7Fa/v27fuBHP/3issuu4xf+IVf4Nxzz+XWW2/lbW97Gy95yUu49tprcc6d9mvOOfOGN7yBn/iJn+BZz3rW8pgejmv5wd6ztbXFfD5nMpn8IJb0HfFA6wX45V/+Zc455xzOOussbrzxRt785jdz880384EPfAA4Pdf7pS99iSNHjtC2Laurq3zwgx/kGc94BjfccMOePb8PtmbYm+f4yiuv5N///d/5/Oc/f7/XHmvf4z1V4OxFvOQlL1n+94UXXshFF13EOeecw9/+7d8+Kl/mET94/NIv/dLyv5/97Gdz4YUX8tSnPpWrr76aiy+++FE8socHV1xxBTfddBOf/vSnH+1DeUTwYOt99atfvfzvZz/72Rw+fJiLL76YW2+9lac+9amP9GE+LLjgggu44YYbOHnyJH//93/PK1/5Sq655ppH+7B+oHiwNT/jGc/Yc+f4G9/4Bq9//eu56qqraJrm0T6ch8SeGlEdOHAA59z9GNt33nknhw4depSO6uHF5uYmP/RDP8Qtt9zCoUOH6PueEydOnPKeb13voUOHHvDzWLz2WMbi+L7T+Tx06BB33XXXKa/HGDl+/Pie+AwAzjvvPA4cOMAtt9wCnN5rft3rXsc//uM/8slPfpInPelJy58/XNfyg71nfX39UdkQPNh6HwgXXXQRwCnn+XRbb1VVnH/++Tzvec/jHe94B895znP4sz/7sz17fuHB1/xAON3P8XXXXcddd93Fc5/7XLz3eO+55ppr+PM//3O89xw8ePAxdZ73VIFTVRXPe97z+PjHP778Wc6Zj3/846fMRE9n7OzscOutt3L48GGe97znEUI4Zb0333wzt99++3K9R44c4Utf+tIpD8SrrrqK9fX1ZRv1sYpzzz2XQ4cOnbK+ra0tPvvZz56yvhMnTnDdddct3/OJT3yCnPPyZnLkyBE+9alPMQzD8j1XXXUVF1xwwWNuPPVA+J//+R+OHTvG4cOHgdNzzSLC6173Oj74wQ/yiU984n7js4frWj5y5Mgpv2Pxnkf6+/9Q630g3HDDDQCnnOfTZb0PhpwzXdftufP7nbBY8wPhdD/HF198MV/60pe44YYbln+e//znc/nlly//+zF1nr97/vRjG1deeaXUdS3ve9/75Ctf+Yq8+tWvls3NzVMY26cT3vjGN8rVV18tt912m/zbv/2bXHLJJXLgwAG56667REQleWeffbZ84hOfkC984Qty5MgROXLkyPLvLyR5L37xi+WGG26Qj33sY3LGGWc8ZmTi29vbcv3118v1118vgPzpn/6pXH/99fL1r39dRFQmvrm5KR/+8IflxhtvlJe97GUPKBP/kR/5EfnsZz8rn/70p+VpT3vaKZLpEydOyMGDB+VXfuVX5KabbpIrr7xSptPpoyaZ/k5r3t7elt/+7d+Wa6+9Vm677Tb5l3/5F3nuc58rT3va06Rt2+XvON3W/NrXvlY2Njbk6quvPkUyO5vNlu95OK7lhbz0TW96k3z1q1+Vd7/73Y+KpPah1nvLLbfIH/3RH8kXvvAFue222+TDH/6wnHfeefKiF73otFyviMhb3vIWueaaa+S2226TG2+8Ud7ylreIMUb++Z//WUT21vld4DuteS+e4wfCtyvFHkvnec8VOCIi73rXu+Tss8+WqqrkBS94gXzmM595tA/pe8bLX/5yOXz4sFRVJU984hPl5S9/udxyyy3L1+fzufzmb/6m7Nu3T6bTqfz8z/+83HHHHaf8jv/+7/+Wl7zkJTKZTOTAgQPyxje+UYZheKSX8oD45Cc/KcD9/rzyla8UEZWK/97v/Z4cPHhQ6rqWiy++WG6++eZTfsexY8fkFa94hayursr6+rr82q/9mmxvb5/yni9+8Yvykz/5k1LXtTzxiU+Ud77znY/UEu+H77Tm2WwmL37xi+WMM86QEIKcc8458qpXvep+BfrptuYHWi8g733ve5fvebiu5U9+8pPywz/8w1JVlZx33nmn/BuPFB5qvbfffru86EUvkv3790td13L++efLm970plM8UkROn/WKiPz6r/+6nHPOOVJVlZxxxhly8cUXL4sbkb11fhf4Tmvei+f4gfDtBc5j6TwbEZHvruczYsSIESNGjBjx2Mae4uCMGDFixIgRI0bAWOCMGDFixIgRI/YgxgJnxIgRI0aMGLHnMBY4I0aMGDFixIg9h7HAGTFixIgRI0bsOYwFzogRI0aMGDFiz2EscEaMGDFixIgRew5jgTNixIgRI0aM2HMYC5wRI0aMGDFixJ7DWOCMGDFixIgRI/YcxgJnxIgRI0aMGLHn8P8B+ZApPFfehXsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name esrgan \\\n", - " --img resources/input/restoration/0901x2.png \\\n", - " --result-out-dir resources/demo_results/restoration_res.png" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "img = '../resources/input/restoration/0901x2.png'\n", + "result_out_dir = '../resources/output/restoration/tutorial_restoration_res.png'\n", + "editor = MMEdit('esrgan')\n", + "results = editor.infer(img=img, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -222,23 +622,47 @@ "source": [ "### 3.5 Inference of translation models\n", "\n", - "Input: image, output: translated image." + "Translation models take a image as input, and output a translated image. We take 'pix2pix' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9y69l25LmBf7MxhhzrrX3dvfzvOdGZLwyMqGKTkEJkmyURKOEii49moh+0okW2QHRoksD/oRSiUb16WQTUUICFagaKVFARkZGRty4j/Nw33utNecYZjTMxlz7JkmhOEFFyJU+JT/uZ+2155przjHs8dlnn4m7O5+OT8en49Px6fh0fCSH/lVfwKfj0/Hp+HR8Oj4df57jk+P6dHw6Ph2fjk/HR3V8clyfjk/Hp+PT8en4qI5PjuvT8en4dHw6Ph0f1fHJcX06Ph2fjk/Hp+OjOj45rk/Hp+PT8en4dHxUxyfH9en4dHw6Ph2fjo/q+OS4Ph2fjk/Hp+PT8VEdnxzXp+PT8en4dHw6Pqrjk+P6dHw6Ph2fjk/HR3X8lTmu//Q//U/5vd/7PU6nE3/7b/9t/qv/6r/6q7qUT8en49Px6fh0fETHX4nj+s/+s/+MP/iDP+A/+A/+A/6b/+a/4V/8F/9F/o1/49/gz/7sz/4qLufT8en4dHw6Ph0f0SF/FSK7f/tv/23+1t/6W/wn/8l/AoCZ8du//dv8u//uv8u/9+/9e3/Zl/Pp+HR8Oj4dn46P6Kh/2R+4bRv/9X/9X/N3/+7fPV5TVf71f/1f57/8L//Lf+rv3G43brfb8f9mxq9+9Su+/PJLROT/79f86fh0fDo+HZ+O/30Pd+f9+/f85m/+Jqp/PvDvL91x/eIXv2CMwTfffPNrr3/zzTf8/b//9/+pv/Mf/Uf/Ef/hf/gf/mVc3qfj0/Hp+HR8Ov4Sjz/6oz/it37rt/5cv/OX7rh+zPF3/+7f5Q/+4A+O///+++/5nd/5Hf5f/8V/wWdffIVKRZZCKZV1bYhI/EFQjb9FwCYqKoK7gzvuYDhCZG7mjgL2+t8OZo7biHM4qApmFqfD2Q1UhCJCN0eIP5s5RQREGGYojruzO7RScHfMnCKOxalpRRkW16d5bhCqSryOoxjdQUVREdyNQvysG6hWPL9HccOJ76qlQJyawmC4Yy6oFiyvW70zUEQUUT2uQzGGg0j83wDUe9xHHNGCI5g71eNeDQfRhrnHNebr8SQKqIMNGDsf3r8gWiilUZeKWEd8xH3TBqpIgYYf3829YO50M5oYJnHnRSp1qZSiNI2s3fN7aqtxA8zYbQcUFaUsC63EcwQYFs9mmOF9x3AMEApaC6pKFTA33A0bTo/Fgo3OwMhVSF0WWlWKKojG2vFci2Pg7gwc8r4jwvbyzG3b6H2ninJ6OFNbo5aSnwk4LKeFVgq1FFwkvpvP+zNyjcd7RQWVQsHz+RhCrCPJNT1ynyiAKCJCkbgfInKPjnMPdfdYK0KslzzHZgYWd0wEikheU2wqF0CgqbKbMQxGN14uVxxDcK5b3idAxKkKAmzDKaUiCA4UH3EvRVhKg9x/NdesIRStuMfrhcGIbx5r32N9S+6TeAZKV0Hd40NVqaXE5wA+Btetc902nj9ceP/+mefnKz/88IEfPlzY9h0dRisXalFaWbGHM7UoiyqugTaJFDapFAdxR61TVOgOt+GoS34fKCpspnSD2+WKS0cVltro2hjDGfuO1UqtlVYaN2/Y6IgNnh4r33zxGY8PZyiF9x9e6PuG2c55Xdn2wYfrzs/+6I9ZeeahDH76zTd4aZjB7eXCuy+/YF0btSi9C/uts+87Xzw2rtcLl5cbf/qLD7x984a3b9/ym7/zDU+nBVHFJezp8MEPH77l//av/V948+bNn9sn/KU7rq+++opSCj/72c9+7fWf/exn/PSnP/2n/s66rqzr+r94/ZtvfsLnX36FqNI9jPreO601SlFUhaIlHVk6ILfDcPt0PJpwYzq7eANM82pGOjoLW+OxidKHABb/TucXL8UPbf4C4W6wEef0uKZ4XRC3eQnxH88fWs9zxPuP91q4W/TupMUGuGEuIIqL4KLI2NNGalyjalzp2HAPQ898r1u8X0p+poIK6iOvXbD8HS8FGXtcTxoNT6MrfQuDOd8rYXF0bJBu3RCkCD46drvysJ4ZI36nrAv0G4wdrRUjvpPWgo5bOHxX+oDhUBzUrmhtSKkMhLYsFBUKAyHWRxjlAgwcZ2krLmGQl3WlqDPBZ+89DWjBtaPEfdvNEInPUXHE857IgA7dnG4dQcKBufHYlrj+osf3j/Ky4jIQVdZa01FkmGCd0gpuCyC09YRqATpLXcGhj87pdKbVQi3hZJxY38Ng226YDVopDPdwtnVBfKDuVCfdcX7mfo1n7tB90Eo4/6qC2H1PqBYkPadksCIi1NZQYr80d2z03BcCbsceibUu6UihjnCkNpy6LIwxGKPT1nCm7k4rBfFY48sMrCSCDsYWTjWvt2g+rbGlC8sgLNe42o5Lva/xkvsnbcJ8Rr1GAIWDlEIpBVFFi6D3b0YrJZ77MG4vN75/ufL8cuH7X/3ADx9+xffff8cvf/FLzueFtTXO51Pec8cRiixxH0RY0jk7Qkdor5wlw1gfHjidTnzx9g2UCKy2y436cKKWQtOCF2XbjX3r+LJQPVa9qrGP2K91bfx++QmO0Ufnw/M19qQKf+tf+H18f2a/PvPzn/2M7583+nDW9cQ3P/kyrl9g22C77ezbjacmfHj/nl/88hf84T/4M/7G3/zn+OKrhS8+f8fptGDAZTf+7Nv3VAV0OdbBn/f4S3dcy7LwL//L/zJ/7+/9Pf7Nf/PfBKJm9ff+3t/j7/ydv/PnOtcP373n1E5oUfbduG0b33//A1qhtcppXVgfHuLGiIBNp+SRiWkabNc0ImG0pITjiMjQcnUKRTWDWUfM4v0iEUmkczOzY0NK7lWzgefmE5WIhl3CcUo4zloKc7McnjU+Fsn/tVfXLRqGzzOUFslMId9vZKTqHSmSvjOyPcnP1aIZtTvmhnpeTysRyaZTBif2fBi0OHW8TgFJgz7MwXrEwCqIO+KxmSWdh9aI1uNzZ0TuSC2ogcvAx4A+QBypmf9aZI1m8QXNHNuNvfc0bIarYH0Pp+2GPc/gwNivt8MYej4zLYpKje8hzkUKpYbxZzhj7HFeMygSgc+A3jdUFVWlVMW2PRzU2BgjrhMVbCg2BjY6vf4pdYmAyrox+pbPX5Gqma1WxP3Iwnu/YdsN2ze22yUCDi1oK7R2ptbGuixcTg+ZAQqazxkiduoz8zVBJYMjF4zI2MSFoh6ZuBZcBdGWmaJxk/ieWgt4yXM7pRa0lLhuLfmRzoaDSGSqY2QGE+7OVVEpqFZaK5F1ZXA3hh0oiNk49iMDSu6K6pIZitAAFQdG7NUaBlAlUA11QyHX2zSMBhiiIPW16YtMiyJI0XgG+U2bDKgzoAUYEWh1Z0i8WgTMa/zbnaLGqTosCk8L2/vB++3G7f0H3v/y55xPJx4fzqzryrvPv+D8+MRgp2lBcdg3hgtjGOwDryXQGHe0FsbY2LcTV++UkllMH5h1rFa8NbxUxBw1w64DSmaQ22DrPVCMFxi5H7t1nq8buFMEnp6eUJxSCk+PD/zi57/k/ftnWqn88Pkjtj/SamXcrvTLje1ypb9Z8P097M9cvv1TfvjTB75flOvv/gRGx7Rwo6Clgjq7lD+XvX99/JVAhX/wB3/Av/1v/9v8K//Kv8K/+q/+q/zH//F/zPPzM//Ov/Pv/LnO80f/0x+yvX+PFo3ocu/88P13UJ2lVR7PJ9bHJ1DFcAqVQkAW2jQdl2KUgAMIOCtgNQHXiFJqRlilMDsI1AzJSJ1S0gY7Pl/XyFSGJRRkA7cwmp5ZCxYOR4pSW0FkOgw/MjA0nOqEV0pNg1sK7jo9QAS0GVEeMNHEWKjhTGfGSSB0FD22o7jHdRNGXTySPre4FkkoCXNUPCFTy+xtAjZ53W5IKfH5+b4jppJ6z0vN8NEPw4bHPbIRzojMINQJh2MWnkMDahtbZ9u3cA42kKJ50cQm7hEwDIx+uUX074NB3HOtBaEdsK4TQUtkryDemZATVTEXhoHvGwd+pTC2PZytb5iF4ZZaGL1gfcf6HnBbq2gp2D7wsWUGL8hScQrdFMaOjVhHLoan4xrbS5hXFaiVoidabazryrKcw+AWoVgYdM310NMxdIMqFo5hOLuHwReEUyEy1VqgNVQXRAtNE0IXzbVSmfliaTXuX624tgyMDLOEn80Zw6gTbRDBa0W1oVpZWo3n75H7HvEhce2o4hkQHs9A4rtTCoWEJnPlUdrxvSO/ip8VrXenM4NTkQxO82U81/9c+86E1hEHjaASYv+YxzocEvvHBXwEXKoItSqnpVLEUU5cH1ZuDyfePJz57vqBcfnAZb/g65mn0wlZFqoqS4nvaX0LhKEbbB0fepQ1hIYDw4yLOlULosIAbBN6KfRlAa1YQrNjRGAiIvgwekLbwyMgw51hI4KH3EvP4mjf8P3G2He265XteqGsJ2zfsd6z7NBR31HvVCkUMZTBuL6wvXxgf3nOvXG/962G4xL9yBzXv/Vv/Vv8/Oc/59//9/99/vRP/5R/6V/6l/jP//P//H9B2PjfOv6f/4//O188LBQtrG/eUZeVokZZlaUqD63C6ZEhgeWf6gNPtXCuBdaV7h0TgXrmsQT0sfedDy/vo+4jC5+tJ5aHE/W0RC2sLFStsdk1Nk03D+cHqBvDB0Zg+K5LZh4DHzuX243h4NJYJJyh1oqUgDlE4jo0jf5wwwjn0IpS0/iVVtB6Jv0jbUJ1idvPrK+2htQa0I4WIroEkCPiD79nYXwOT3ZU/cKwu4HpYVwOx5qwg7vD6GmMDB92wGFuIwGRcO6Sznj0jvedYYN9jPh37/S+M/Yt7IoIRRTrO6PvjO1GHxZ/9s7YN/q+se8b3QZmhg1jbDeulwv7tnHbLviIgGUpiqky3Bg2kNoonteG0McO7rRSObfIhKUUhg/QClqpGDYGfQxeLs9AwDDnCpRpWJytE/WGfgMSQlWhqHCqAZENCre+s3fjshn77TkQAZRSC7UIS4U3S2OUSjfncrtxuxlj7/TtBrLk+lEacKqx/llO4biAIYWFMCB9OJdtwwNA410r6LpCCzhH24laK4+1IqViDvvoIJWlKGstUCqWiLbX9ciuDePldmWMgKxPBUqt6HJClzUgaFfwQZGoE5L3uJbCqRXaeqItC3U5AQWzDtZpIuFgNeo3tUrW3Go6u3Cm5PdS0u9knZuZcea6inQ8ygLxvwEnvgL8s7Y10RAwi31mIhRmPTGyy1qg1sLp/HCgL9u28e6x8Zt/7af87u/9Ln/8j/4Rf/azP+GXP/8Z2+WF7779Fbd95+nNIyonqgAjYObwmbkyBSpCFXAf7N3Zvt+oIgGV1kLvEZSZClDR1tDWGN0Y+V0awsPjA60VCln7tVgX62ll653L85U//pN/zPjwPX59QZeFD88vlFL4yU++4N3bJx6fHjmvKzws7I8b+7bx9nHl8nLl2+VbBKEqLE15PJ94++4JK4UPA0Yt4Yj79c9l718ff2XkjL/zd/7Onxsa/CeP/+7/89+xVji1hXZaaUvjvLbYTBnpG1HrQaCaUhVaEdq6RvSaUGFTMnMQeuB+YM7aJLOniDp9COJhTHDNWg1gQok9GJ//KtopJZyLO+w2sXyjlsSyRaA2Ro/XA+6ImNEy+6kqLEvGkaUgtXFeH1iXSsuFcBsRpCnOaW20VlnWFZYzWhqtLpzXhVYC/rmNCLiqCOtaiYRF6JQgmqgGuaEIJspw6LdrRrUw+sbuAWNYj4JyOLjOzQImcxvU3Hzg3KgRRc+a4bixjcGlO9f3vwIbiA/67cY4MlOjCOH8t52XbvQejg4snVpnA2wfWO+MsTP2gES2EXBfESjq7HODA9aJf7lhJowJS4lwWjThV8GUgLkoTG7HMOfWO0ogMUuJIGbCTH2XcNo+goNC3Li1tlxXwt6NzQZ9OKMT0K5kjaZo1K5UOTVneNSSdhs8f+hs28512xAPEpIWZSk1DKgKUuqxFh2l4KgIIoXuCccZNA2Y1UWgaBhnk8gYpIIETC0IKkItYbgzuWW4RjCTSMOepBY/9o/gqkhtbJuxbwN3o5aCJtRYW2Rhj+vCel6py0JpK2s7xzrUWNe3YZg7i1ZOS6MtjeW0IsuJWheWtrIuSVZR5WZQ8agdtUJtBbIm3mpAt6UorSWxCIl6qcazlxJ7ykVRbZQSe0PFufZATAqE031YaOuCmUWtT5RTqyzv3vL05pHPv/qcn37zFT98/7t8/6tf8fN//Cf87Oe/5Ns//WN+9g+uERQm2uLaUKmUsvDu7dvIEFXQViltiYCrBgkl7IoddUapBaFEUC6FWpZ4rRRMnL7dqLVwXmvWl+Kbb8+D2+XC9uEZXq58/+13vP/hO7brhbae+fyLz/nJN1/zxWefcT6fWVuh9xt7LfSl0U6Fd198ztfXjXp+y69edk7vL4yyIKWxtMKbRdmHMNy4lR/vfj4KVuH/2nG5XhglDFfpN2qtjNNCz2jHRmdYOJ6iUbdQnKJOXdbIXiQYOkJHPJxYzagtmHo9Ta6wLI3eAz5rBUaGMaoFN5++DUvmlahw6+Mo+I8kTVhGaEWCR2YOdVnY9zDIkrg9opRSsyYHa9Nk6RVKW1jbwtLCcZkZmyXr0I3TUmmt0tYVWc6U0iil8XBaqBqR7jbI+wHnpVKqJqxasqYn1CS5OPHZ++2FQpBTxjAGJeAzG8n4ikLQbWjW9gatCCJh0Hcq3cYBQbpt7ObcOlyfv0VsIBhj2xhJGMAGVWJT275zHfHZ1ndULGFYY0hh9M7oHRs7Y4/N3APzRMQoGLf9zkAb3ROiNPaRMF+yQ2/1XgcNUkWQAVqJ0lyQPSKiL+K0EtkMRP1wDD2y06OGA+y1seU92boFW9HBXFmK4AxGz59nLW3TQU9yieG8vAx6N8w6o4dDKkXppaSDznVSItMbKOojM4+C6iQrOTffY42LUFuh9wi4gowT2b5q1Pg0nf/gXm+6WWblwEEKchhuLIkGmUBJx3Xb7Q4/Zw2NEvvuYV1oSw325LKw1BOt1mBM2uDWA9JSER7WhaU1locz2lZKWah14bwG81JF2XswdqsK57WyrAtoYXiQd2otLLXQliAAmUUxoJawGVIK3QAUrStL1imLKtvww5G3WsFXem+UcqMtC1pq3qOAMlpV6psHliY8nFewwfV2Cxju5ZntdmP0YOjFOlKQxuXDe6QWvAilFMq6UpeV8/khg5IIxjzXXakBx86nUusaWW9JFi8Rh1+zTjkL1+bGfr2yvwRSsW8bY0SQIQQ7umSGJ8TaiTKIBXQ/oLaS7NcTW3cul51tH2xj0FSDSJzlhaX+M+q4HteFU8I5pkrRQpWImpGIAF2UpgFvdLUwjB5MtLMES8iK41unj8HWB2+ynhOGzdgtgK5TrWnwYPTOZQtc+3EROmnIu7NJvHcp4fbG3nFzLt05txZsHBtI3xludIM3HtH61gcyOntQCXloKz2X4H5zNsvobtl5lmeqRNZ0GxwLarNOk1gg1MZpWUELJsrpKFZrQHA+AGctBLRQKk0bXZJOLJYbNMCX635BfQRzTBsqJYyVQmXM0hVCwnFuLGJRf9MgQ1x7x2ygPgIK9bievV+DwWUBBRaNiBxJSr95ZFpZqxs20DGCCKIBpVqcChlBL3eHphL1CAdJ8kxJaGqvwOi4DcZtRDaamUdN4gyqnFqL9QBUjN0j2j7XEkV9gcbI4KWwtopppQpUcd6/7OEI3LFSqERWP4pwUkG0YLXx7lTZu3PbO7bvCfXFfdz6iHqFRt313CqneuJyM9STJKBKSZfvZeFhCeN5QZB+wwx2U041oL4dQ3oQ912Ep2XhVqOlg76z7UH6OdfCTUA8nL9TWEuJe+4jar7u7K6cSsEFNozms+UCTkXRtQR5Spy9B3FjKYXr6Ix9cPPOdQva+bI0PvCB0xLZ2HWzDEoCWn5YK6026npmqQuuionyuJRgy5ogZvFMivC0Vtr5IRwKBUlU4rQEYQQkkT9jqRm01RM+iLW7nljXRquN1hbwdCSt0pqyb5GRWTrF0hp1XSkS9RytC2urLKfGev6C7lETPC2NtjZevv+Wl+cXrtvG+/ffc7ltXLaeBr/iWiKYPK0spxNff/lV1NcRbESNV0thaQtlOWX9T3Ap1NrCSYkzbJ+RV1QK3Ok2QAb0jvROKZVhg3VdePfmAXFl0cLl5cp22xCBW3f8dmXf9iBJjSBttbVRl5XrpXO97Lz/4YVlKbSTo20Bjdae0/rPqOP667/7+5yK8XK5MayHETbn7Zq0YI8NZsnUepisOAdpkfl0gaUElg/wiNJHDzy4FPTUeFBBNZ0d5SAMvCklcW/nnGxBcUcSSnLg87IeNSVU6WOm9J6xrOdi4hWsLgf7cOtG04Bowogm4QFoy5JUf6W0Gv1G7rSMhFWUWmvULbQmVTnraqrs3SiSjCozas3o3KCd1vhMQJvkOjfEn4JUAhHhj3CwpQRcKVnLv90CjBOPaGzii2M4b/UERObqJJ13N7AF0gA6gzs/JZsUMpPe94jyJitxZq19DJalAAtup8iIhrPvA9H4nurOYzo0d3iQ3N4On5HMSOblWsJFJdsXMstw45Q9a73H5lcN8kPRhHgRmgRLTAU+e3eij8i8JAJPROBBSEJHZNdrrZzOhSfR7GcaiDgPgWVH1joMG+GI1Z1uQu/BFiOjY9zxopFVAU0L0s6AsGqJSJpYK1oe7kxVhKUUVgRdTyBZ33HnJJP36lFHyTX+WdXsdRJcC6MHwekkhNEWSSKF8hiVYIroAan6GKAzm1NK02NdT8hNVZHPava/ZT8ZESQsS2QYWiqltiBU5Rp3g1Ii6xJ32lKzxqrUc4sMRYR2itqbO9RaCWROqHWhD6Iup1D2Pb5BUWxEOini+PAgFtXobbp++P7IVOoaxCv3yvlhZV3iz7vHE2/++b/O7/+N3+Hy8oJtN/q+cfnwwnfffse3v/qWP/uTn/EP/vAf8sP79zy/vGcMp18rVgr/+Bc/o7SFuiw8nJ5Y37xBl4YMi5p32j0tFR0lkRo9+lnrkrUKJgmnMqxFRusdtKG18vlnn/Hy4TlsiSpDoZPs5FqzFg2XPeqmNzdu+wu//P4Hdh18//5bfvLNE+e1oK1ht360Av3Y46N2XPvoFAmLX3X2KBmtlaMgq2UJIoBFNB3NyBFRjzR6WgtFJMu5yrZviEZtqlXN9FjYzQ4mVtUoCk+DOfs6wjGEMQr2GomJB0Sz9SQqFAkHE1fNbpFRuPnRpOoOt71TxKMfSUtyKWJBllYPLL7UhT4Ghh34fmz4Go2jRdFSEyaMTV36QBnReOkBLzlRhysljHQBSg2Hi0gWvbP3RpRNDCOgtDDG2TNnB5GI6nIYXZGshAOi8e9uBkQmHKBkOFKbTKrs9Qlyh7DXoKnj4Rg9I+Wtj4RlSIepmBGNoBpsT5VggFneQ3dBCYfrPtfEDCxm31E2hKskc8xBwnHtZaTjcprCbKMwolVh1kNECiXJL6JRQxOZ0HF8TnyiZ+Nv1H3In5QqARuLsAjst6iH+hg0rcymZfcRn0fUZWbQhkbTcUB5yTKVcKJNOcgKwQSNvRQZZ4vsxSeL9l6XtWTfUbIiK4JJZWiscQRqyaAr63tuwfysJWBg92CAagk4shWNGm4aVK2NMin5y4onQqAaZKgiSqvR3Col1nsRyWw97m2wDYPmXbKPzpLkEIzWbFs4muODLYso3QK2C1hVWFSihtpt8pLQIqzqbDWK2WPANnbMBwWjtJrPWbg9n1iWaGN4ePOOtq5orazrEkVSO/Hw+IbHd5/x+ddf88XX3/DZV1/x/OGZl8uVy8uF55cLL5cL3333bTh70SSzNNqysC4Lp6VlcOZQ7nteazkclxRNJnHuOYF9KM6gZsAjQLcRe9ScnqSkMkpW9yf7MoJkUeF8Grz77B3vP9zCLnvAjNHKEzZVVKI2/yOPj9px/fD+B/pJqBbQTNGCysgek8Ch1+VM9P+MxK2jZoNGXcgIg9RKKhZ4ZesNUUOLc2o1upRcAvbr8bDWoriH4xo2kjEsB8tnkPUIjehHVXFKOChAKqw1aL14EEJ6H4zEgt0jWl57pPAlM0ARxWX2xQhVozkUWdhHx3BqDWhUpYCVoL/GDjteT04UQDpiRyyMERLwlJB9YyZH0RgNEkoVDXgqI2/wdN5+OEGzMOBFYYZlrgTDiYyCJdy91XD6RcPA0MNxRXkhAwUErLC3mkZnBJssWxf20ZnUCMXAo9t/7ztSDM1z+04CcE7vHmQYAbd6GC8kSDI4jJ7wM2Gwizih2KHU2hEN+G4pQt/8MH6jp1HIhlJKEHsC1ox14l4QTcr6iN8zd8ScpWaNzy3IF6qUUmhNebZOJ1QrlIDIVcOIFJVUf0mFjXDF0fSJYt7CWakjGgSKmW24eLbWCa0ASb/GDSTYbUUFMz3u4cjXAuWojCJ49ku1WrJxW0GDgGLDaU1xq0zmqdaoxy0l9klA/RbEDVVqkjuQWEySZYEiSpUF6qQYCKXcazFIsmglSFnRcA8QNUK1cHj7NWjiwwZFK6NGIy8WNdlhzj7gXDUo9rqxWz+yqnMl9iZB779l83oTQyfT1J21LbRWWJbC04fPOL95y3I+U8rpgJnb+czp7Vve+dd8/VvO7/z+74U6xa3zw3e/4h//yc/42c9+zv/4P/193BdqXTk9nCnLyrIunM8n1vxMx3Gp0UKjEfyYW3a0QdG4P1FzjH0xPBABH8EOvt6ubHvHUXrv9L3H85D8hIguWdsSfZAUfvL1T3j//QttXTOIzv0rZGKR7MIfeXzUjmu7XHjSylfvPsOVLHIr4ntgRwI6LBewUsYAix6OtZyQJlFzsI6NjKi18vCwIC5gAxtXCnHjT6XiGvUQHwOlBna91KMfydwyAowO+1BOGPiIlP1hXZCU/DHbM+MS1rak0Rps4xIYvBSeTvWAyIZvFErU8krJnifDOojeaBK9U3bZGFmPEYtibdBrw8gMqYjUwPVtw72zu0XUmpJLZYtN2X0kTbhQJfqMOk6HuEaN3h5ssGeMJtlkqt5x75hb0PxVOZUlqHxZ/1KpNCmcRYH9aDwtEr1giOa9vTfMriUhGiMMHAQ01hpRkLBs0J4KHWd8bBEhikFzkIqjjH0/oEgb4JLd/GMQggVxjkHJTNcoapmFKCbnpC8bqoa1zAC14L0f0f4wxWXBRdAxKCU/00NVxAEbg1IjwzMXTE/QN/CdVrN9AQer1BJN27UUjBYOTh5huxxMbydqPk40U5cSkJC74uURs4GNjVoivHaXgH561OKidp6qGlph2w5oO1IixUTYbUd1HBnb6+9Tqx1IhNQF02hXUDW8xDlcKqNfoHtkpRbKHFoq2+0DAEOIRudUf3HrjOzzExfqcoreQzNsBqFSAnGxC9jOVTnWorYVI5rcgw0rCY+UfG86Pi9IW+O7dmccPSMKdcVsx+zGB3pmbSDtzDYdVzE8jb5JZbDRqrAUgT6QdkJqQ1w5r0moao12eoPWSqmVN09nxILR3FT4zS8XfvLmJ/wLf/0zfvjVM999+wP/4B/+Q66/cPbS6OuJ5eEpanG1UduKthb7aamRwYpj2jmtC0pk1MWNhobk3LBoLVBlFWF5DOf42bsH1rWhZa7HcQRVS0qamXYelsGbJ2E5KY8np8igMAKVqYTaUfnxeOFH7biWlj0lxPZCMgOpgEQ/UcCJmjCbZP+QceUW2ZcIMKIHyMGk48MialWn952ORF9NSTaUG2N0tmRG1TIiCs2IrQ8SqhCQTh9hvF06bXg6iJDrwcM4NgNJPcSxd7qPSL/NKcWDrj0GwyNN91IRAgI1i8g0+lliMdh0pEOiXwxJUko4R6dHwZYB9DiPx4IqJRak24hsMusvqtFgOFlE3TulBLMKt6wzAiilBGSFWJ475KJquTcpDxuglsyyStHIONzye2qQQtzy+mxmFC2p2nEODxQjvn+YzMicZDIBS4BwHuoCAU2mBJBZagVa0LolPrMREeeA0PxI2jDijL3nucOAl4TPZr0Nkrw1eyA8m5vJc7eKpHKFJewKUTfBxtQkQT2bzamh2Xi87tSZxrrBbLwVoS5LamoONptaicGSiyAiIGy1CQMXfOx3ZQbThCrz+3sokYhVKmRfnkWNg/SQMhg9YLfuqe6RPxp73ENBAn4aAYeP3oNli1A01hmJaNgIKLDWGvJEM2vUQi3BBIYkFOARq8xv6jB2nxgeS3XcO3hneGcfEaDV4ZjMKtuk5kedTDyYi6FxWKge9bmxO7uHhJVLoTXPe7oxxo1t2xnmaOvsFmtqk5EqOwpacTXoHmisGdpHSJSZ0G8Bny1LQy9XSm0sbcH305G1tvUhmK2tcno403fntm08rAvv+5Xr5YXv3/+AlW+zjaBgWUAULSync0jiVaWdlafHB5a2sNYWPY5ScSnICJTGjQyQoKrmOWPNdsYh++XD6ewM4PJy4ec//zO+//47HvoTt+uFvm/0vmJlsG2GFg127488PmrHdW6VtZUDCvDEUVsqcfYeTL+JiTUtuAcUs297QIciiAZ2OyzEb304rSqtCvt+11qrwwLewhl9sCddeKizLHea+5BgxBVRtFie2+gMxojCcakSdSOyHuEajbBZ5+qzkdcEljCanmoErgnHCZm5DYYFXOOqCQmFTRuZ7gdFWdLhBJwlTjqOMEYh2eSREUnSXH3WjcLxhbJEmOfoORuhQ+hBcXefwq0Se1Wjgm9jZkw9nEjq+SGevTygNR100scpI2DRMeijM1LPrpaASYta3O8kYRS1NJge75dA75VCKw4+GL1zG5EdhEAxkEamu2Z7gFKKpAoE9HRMkue20SOrkKC7UwTNpuRDF8/tVa1uhDyQh0OTVvEp4OuzBhTLbIyR8JujFgmAiCSsnXfePYHebPvQyCtL9nMNyLru3aHFIwrx2+5OMQnYtwTpZmRQgE8iRcDruxukQ5esC0XrhSUBSDCNgGCYsVn0uxVVak3WahRBsrcrSTnW6R6rv+gErhz3cTBKPYV3g2RleGaGpQS7zlMaahjU3jNDyteTiFXoiIS+odtImr+jsmMZyL5uyo8aeCroeIpES4SuY3hk/xL7RoO+GrD16AGjDUNNDnUKY2R9VgJ+bpGVzr64+A4wTML2WAR8thulVHxZEN+YmowugtIieCtnylpZHhpv3z6EVqIb+23jcr3Gd3O47j1gdHdOpyfW08q6Ljw8Ley3NzyeTsjjI3U94yWYRhGIhYNVKZQasG9JZmOsEbujHe7s1hHgdrvy7a9+yfsf3oMIt+uVbd+ofaeWwfOtU2rhtvcfbfs/asf1G++eOMuF01l4dmNzY3gUqIvAUuMGD4Pejct+S7kkpSLhfByUkRJFsbm/vwXpo0mwkErWVz4MKNnIWpe4dcMG123QbobWYPc1DSX4mw3KPtBWKK3hPd4Lg1agndd79NIN6wN1Y1lXahqePqDv0dy7Lgvqcmx+HYPWGrqe2dwPvUR153F9Agm9MxvgI2muyxrfPbtHJ436/PiUDgisO/QbugZjaXiQTXyEqvbpdEZKDWr6iCzRunE6RV/JCB+B+KD44Hx+jHvrjnXH9huGobqGbqCEc5G+o6UEk0t6ONbh9Fso4Q+fiu3GEKfSqacUxlWPxlYLmaZSK/sYdOvsPRS3g1VcDkNtI14XEdAoSu976LWt4kESyEbgre93Z6RRCxzuXDeniUWDbFFqCXJGN6g+DjaoS2fr8UxXPLUso/dq62QBm3xvfNeXzbJ51qktDEaQWYRKBCqlKuLXqQ5E857QTcA3+4ianfaoQXoayx/2PajibpQarFmAl62jHg6v1BmMRZ9d8z1ZlhF595EsTIng0HF671z3CFKqCm0p2fQs7OMaFGwz2hLN0SGMHbJ+tRTa0jgtNWqTo1McWq1oW3AV9h6fURTaumQfEvQ9mKhVhPUxlM9dhP0W5KNahNPTmyCsGPQ9sjgtwVx0MUaPzFHFWNYFrY3uGizJDJiWp6eEj43btSO+U6VzevvIY0qCbVuqsqjQlob7HqzP26CVwbI2lnXBtMa5DU514XRes/eycL3siHWKb1Frk3Diz9//PL6rCev5hKjw5k3hy//z32S/3CJz1sL3321s286+bfzyF+/5oz/5E37x3XfgG7IHkUeuym4fuJ12lg6f//Qt0s5YWQOZEKAU3r17w7oqD48nvvj8kfXUgoWMRqCRvZMDC/Wi1hi3K2V0dAyutyvvP/wApfJQzjCiRWK7/TPquL7++mvePUDVlV6EoRG3nVv006iCjpYEClDfQndQS0RQCY+470gWwocJ+4ihHVUGy7qENI0o3UFGZAylVdyjX6SbI75n819FpQaxwB0fN7QlBRdhH7HBVYy6rtRSqRqUdekDsRFOLllrZiC2hdFtFRn5yARk31JFo+IlWERB+R6UZQUpkbGJRK9S3ymn00EscDcYt6jgrEsQBQgNONuuYaCWFoX48DyIbZR1DSmgnvCZdcZ+o65r3sMJwd3wsSNL9LyQkNu4XSM7Uc1AIwIM75fU3AsWVikFwdmvL3eNR/L5eUfsRl2XqDcNz5pN6gtmn5KTTdk9ek+kKm6ZBQLjek2mI4i2qfkbPWk6K5AxYoLUqCMdAB7PU70HxFiiqH3EomOPHElBpDGS/FJsBDGCJPJMzUkfyT5XoGSDeJBEak21cxFMSmplzoysHTqKJR00SVoZzsyPQ7koM8JtEJm1dWrT+aaouY3IUOL90QrQDcrYjnaHWOPTge9x04KSQTeSuWbUmiosEn2EIf8/4jPlzrbTJKCUpaI2WwrA957EjQJ1OSY1FIy6LNGrmAo2mCHmtPMJNM9tBuOKMlhOS9T3PDKtfe8hwdWiCXeqfYjv1LagtdIt6N6eRqTm2CSQRDNuiG0s55UxyGcM27bjeIgJM1EBQ3yjLVHHiqEr8ejH7qynqeQB+1OM0mG/cn7INe6AFrZbBIDLKWpYpTWW8xtaC4JGXc/cbhyB7N5DJmzbd3p3tsuN7Xrj+Ydv+e7bn0fALCkksO3sDPaxYZK9nZ+/jYA/peMyCgUjRAYSam8qyVC26KszY982Ls8Xbi8by7Khp87eDa0Tt/lxx0ftuL748nO+fLeiNKxpyNbgrM2O2kvxJe6xO8qWitYKVGafg9sGdc6SUsYgjLn0iOpS6scF6GGMtIaaN7l53W5BNy0VZKo5G9avIbciiksYAfeoIZVloWijag0vOzpiRqmBM3sqC4RzCWowY45pkbiWqTNVsqcLwDulLVFsthJyMTZg9FeOq4APbL8EO69V3MrRq2T9FtlGLZhNWhxI36JXRGv0EkkYXOsbZUnHNQTBGPstzlMrIQgsaBHGdgs2Vin0ce83sf0lxW8rIo1aw4n2dKIQbMvwrDs+rtSl4RYwFNnQiQdxIUSHY4P4fgtYspQwAPmF+u0KqQUn0ggagYfA7ixRGYn3W6SSyc5zgvkp1iGp5TrPLXJIUgXOGAQKhxgFM4v8nq0PgaeGcnmuleFpCLDMrPK8UmIEB5FFCe1QSdCx5TmClu0HsDuSTStADYeWjqvUe3+jq2K9g43MwiqTrSf9FpChCng5zj3GxtQBdMmpVkl6KiVqMyohOUSODilFQEObE9UQBhBBaw0mxmwV2PejsTbGYCSo5xHgiSiY3mmswyKYkRLrfwZE3mlLwzy/qwjbtofzrxmYzWNscW6tDKugEtBu79GiMNsGELzf8H6jrUv45JSH2vZo2ahVD2KREYFfrVG/M6+ZvUO/deqiSRSKpnzrG35bWE4lIVBBamVpgaK0Jc5T6kI9P3A6P9HWM+38yBiVqb3Y1jOlxv/3Di/vP/Dy/gO//LM/4U//uHF5fmG/RlNytz3QjbExmI3/nVTcTlg7btYxLUNjXbdUaYn2jYITXIAxBn2PJuU6BrfeKRh733+07f+oHddv/95v8c1nD9Tlib1qMI/G4NRSXUBD/gYIWIwthGZTRSLq2pZGKjZoz2JvOC5DysI9hOUYl4CUwMgh+N1+ybpOCaIIGUXv16Cio0RiPOcYGZCD/zQopKEl57FhCJHeWk/o2LMGUgJzT0OgOQ4Dgqof7QCRBdUaDDYzD6ORtqAua2aDeVv6BtajydaCLVemanNGlt32rAcFeUBzPlA3ywxNjkbdqDnE6z52fOzZ25KNyE7q8IUIaE8leOsd+hbRda1Zc4msREqhtgXwGHrXgw1n+5XSlpSbiUKvZKOwaGFI9GsJIHYLSm6tjEiBgrACqWwemXDkVw4ewriT0Qmz0umQHV7ZH31kXPN1PN/rQb5xUi9zfh7bcbZuHAFHyXOEzuWsuiQtn4z88/Uy3yHl114XQrsQMtvKa1FiXSGStT8S+hz3c/h0CrOaJodDjO9zm7sg6lPH9xz3LCTvYggtb7HGIUk1NfePByHBg8xSSgs5KlFEG7t5rvEgYWiN5tndjDk4Vdwopb1a45OsEgHeyFp2rTUy31y3NttREjJEQhKuj505qkYslc+lRPNxyEtgo2fgE+NxSm2xfzKAnCLoIuVYG7FPouG2iKBELe4YY6PTPnn+FcoWqgWs34VoPZ6PqCJvog9KkBT0Dh/dtw/YuLDfPkRQLbHPlvUblnVhWR+Q0nj67IG+fcbXv/EZv/Gb7/jw3Xd8//Nf8Yf/wx9iPfRdF4WbGWMf7B9+QGksC7SSFPqiLMspWl4s5hFWQv1HLyG/F3UIo5yU4Td6vzH64NsP30cLwr7xY4+P2nE9vXvHw2dP7JtSS+qz1UZr6QCIutDsr1BuIMEyiyg3Q2rbY9NK0pgTFhIGaMCEs8GTg+UUBvVuyiIa9NlnkhvZ+znjk3BqkUXdm0+Fe1Ygnn80erUQjcyp9yiUprGTpAqXtmRhlOgRmkVVj94RkEOdYrLbSm0pOiwZrUZkKBLF8Gm8k0+dRjEK8xCQo06aOs4ceBm9HHF9zPdGcS02aTLrgAOqdQCdKhaO71vWfjTYgh6ObrYWALRlDdLI2OjbgiYcNDKSt3R4+rpZe7IIhXSw9Xg+6vdrlnnpqcgRTeCOHU4x7qF5EgTy5zncAkkoMw5H+iz+g5eWRn82Nmf2ZfnZOGlJ4/nmPYszWkLNel9LYz8gGyk5DgdHbWZV8d2OTGI2bCdbz8zDyRPrLZ5nzqWLaZ4g8T3vWc7dnR4ZGjPZivWsOf4FnMKJTP8iINCCeiijIK8amJFDikvKksST/CQRVEOuqOkMKjyRidAdjJsyG/gtM/+ZWDm+Ry9cqe2Osrhjg6xhFirL8XzopAp9oVgSuizYkVEPg5oN2Z5/So1sLmqIllBpTHxYJM/rA/VyUP0pK557ZPRxHz3CCbAcbxJBZfT7RG1t9ipK0YMtPPsv8bme4jPdB/vLh2iF6Tvr+RGRkg3Ln3F+eqTvne165Tf+xj/Htg9u3fjuZz8LGS4VPn/3GW0VTg9nHh7epM5lZFMTVpZoCsv1HWvBB/TNuDxvbO8GZ5x2qvz1p5+iRXl+fv5fN+7/G8dH7bjWh0fqesrxFEH51CK0Mg0tlGVhTjjWpEfPzXRsDlsOg+AH0ygXR87ICkMPPqYkBBlFExtppjTpmOYFSJvnTriJiPZUS8pMZe1m9CS8ahqp2NxaJ1SRpjH7WERj7MXE5Ustx/ckhYXzK4VzyxDQp1NNZhCSEBR6N6BOZJnTMGafU5wvnUgao3mrZBo94fj5oTc0HSqZXaSMkFnqDB7b7H6vXYJReQzfJEVqxWLUgxSK1+NZhGMP9ll8UA6TTDaZMNUpnKneEddyd2KCHQ7eSUl/m07fjjUSaufTuduRkXg+G9IRBx0+rYjenZhllnqH8VIh5FhD8zRxc41s7p2rcjr0V3vBCccUvxsnSJ5ePEPycmYoIvcgRUWOtTxdyXTk6cnTid6vMS4hW5tfBWOuemTKLncnrDmJXPPzAPrYDyHmuwuzzADnwirR5uxz3eSh4MnwnVCeS97zvAdze0rRZMglLD2ZiiIgntMkXt1D4nmLp8JGBlGejfkRoOZ9EWKAad7DLP3MeI453ojppF893+w8jXU6l5PmXnQiiC5LEE3SJ7nFXoBg+5kbJsF+rPOJuAHJhh6wby+4BAzoDLQulNJoy4naGovD6emJtjR6jwnJaytce2fgPD4+UoqzrAvr+cSE5EWA0RCJa5iDTCVFx7dtR8bg/Q/fcfvyDTZ2ShEez2uoA/V/RjOu5SGa9Op6g1ahFmqNMQUTfpEUQFV1RE7pvGIe7wRYag6bM2ZvyFTRDgczJYUm9DNN7T5CLBZLXa9s4EVbmqSAzDSdyD5GDicUKEvQT4Fuhl17ZBYlBvl5du1EK5BkXSXx9THo+y3WpRnDjKoNtTSgbhGRk5lMRvK4INaTAJFQzGGoIbpQySwio9MISw/K9qzFAMeGhHAA5iPtXFJ3s3fKh3BIMRFSWe4xFiXUhdJ4jv1w+Gb9rkvnLYdLDsw7bVmj1lJC7LiPgCF8RMcQorgNdtsZFg3jMUImDEBE9IH516WlkK9g+45n9m1EH55LzFeL+yB5/RPOM/DOzISLavq5YDeGw4+1OIDZHO0iqWlIQtMJIotGvCBEcyx7nFuibcPy2brvTGJHDBGMaJ5cWzprXDanCRtFSvR+zetm3mvJGOVVvZc743GkYY3vGU3nKkIXxzwayVVC9UJSx46xx3ryULOpVZG2xH4oLTIoqfTrD4zthdFv2QMXEKNoTd8xDigchOLtsPmKR21RZ3Q/kAxKR/eI/jU0FJ3odePVRGvrPWqFORts2J73MFtULO6x62yAj8DERjxvE5BEKFyIkTse1HYfFusaoPd0vLGWW1PEoqaHbpBtIq6KmiMeTeOh/ah4ziQbozOIWpNqjVqYFDbfY1Zchm3qRs7HyaAFnI72C3KtXLcfaMuJZX1Ay9dUjcbk1lbK558zSSDnxxPbtoW8U405fqVE79gc3KpdX7XkZNCnjtaNsXeen1/YbefP/uQf8pOvnvjsi8+pGiOkShFa+WdUOeP55UJtb1iXJ7wqUkMpnilvIopJNim60/t2ZBSbGSWjv66WEXv0zxQyFXajSODl7k4laOEArTYmqa64sm1bGnhlt0ssTDN677E4RLkxkDSk2+i0cg4atjhjv9DqQitL2B+N5sb9+gLuISa6PiBS2W43ri/PGMLY9phIWiZRwtj2PcRTRbOuwaG1tuZcnphom4YNQo0iDXhMd63pNIx2Wo+sa997NtwG5ObZSNtNo+6iwQpUlWgaHhYSVjM/8IERRV2xEVN3JZznGJ1aQ/Fba2HfbvTeQRe834BQHzk9PgBC7539+iE3UpAYehbIiziytIQenVsfiHZKGbSEc51Bt2TreYwvl4Rudh+sNRhkJuHkPKPmRRakpB6mR/OsI5BZhSSUZTl+QyX1CL0xG7WPTL44IhVyZElJRqUoYO2AWKW0I1MRjyZdQailxiIkaOa79byOAsXRkt3ZOFJaZL9FUFtzjTultCNg0LLGvXTQUjFGzlizqEeKINToJZQKblnrrHcCk4Yx62NQTdhuHfPnJJoABv22R9YnsSf6dgtGn4Rjw2MP3m5brkPobtms7fR9PzQMRVs635CiWnIyM6VSFfYeU7JrwtAIiDvXPQI1FZB1DV8nsF0v98S11AlaBBsOjz1bYpxQ33f2fUeiAz7RFGHbQkkjWBQtWyX0YL0qAUdqoiTdJGvnCmWhVY1G7x5N46qFUmoo1mcgaQiylEPxpqfIssugTgagKtvekT0ypNvlmbKuLOsLuCZDNGrmkWnXYC7uMYC1953msSZKKdHg/ioAuB+ZttqgiPP1T7/hd77/gOH8zu/9DR7Pb1jqwmkp0QCds+Z+7PFRO64//bNfsvWdh7ZiueqaC+XUqLWytEZnHGyjbVzjZpvHgMbZcV9DnseJ5l7t0UQ7GFGDyAUpIxenFtbaGJoQSh/svmckmM2HfeB9sPkIZW7gZhs6oh5z3XfO62NE7wpVB+vSWVrHtoER033f/+oXtCqspxNPbz5HdWW73ri+/4Eh0WzYbxvbGPEdzDAJ4dXIDEoAcKVAKeyZLbgI1RP6EGcrNaCThMplDXFij85mktMXMk0ZkSfYHf+uLVXdIzMoCb2YR4BgmbUWHEnRUZlwzaTuqdNqwyYVebsxRkeXFdu3qMGpUiU673HHbtfIxHK+FxO2A3wImIDtkeTWRm2VUle2W2e7XXHZmDp92+j4bQ+YaFFuJUgBXir0kJGSUhjVcR0B3fQRCgzpsDzVOGwfmVmFskbPe+k2ormYcdxD33MdFmVYOWAw38gpw8LmA3Kj+xb3QSWGfA6RSJbN6amxIOIBX+0ZCNfGsBBB9QHSnZBYtpDqmgzMLX5P5rkJEhM9zh2ZXmAS4eNj2OlSIlscOpAerSCbwaKRRQ0blISYRh/cPrxQV6VWocodFZg1LLcwgmP0yEosAjKxCdsOTOeqnK0CGqxInYzSIDxZkmektoTiQMwPtRCDCFxzBpfNCcQiIQDMAUzcoUYbwfwb0XgeIhwBPc7ZOhEfTaugiGet/IBr82eT3AQZICnWM0vDKVKOujwuGWDmmB5qNEI7QE1kWlFN4WFRchYoAsmA1iQZxwghUaWWltD9AK2M7Yr3HkFzZvaa5C+Tycycsa6G0EDW4duy8O7Lz/nqm69BlW9+83f44vN3vHn3+X14Z6pw/Njjo3Zcf/iP/hEfXj7jsVW6BjW97Mb65sy6rpxPKzseLLRtcPUrY98DOlpPjM2iBr8u2O0SUIs6bHY4LvqgtCWKr9eBLCdKyyZJSWO0dbpm70sar7ENxj7Y1HMI4mDfLxRz+jCe985nj2+iNlWEz59O+CP4ybHrzj5u3C4v/OKP/4Snx8Lj0yNLa9RijOuN8XJhLzu368btcuPy8kK/bPndoJYQJDUXFmmhHP2wRhPvCBLD4iAlHEaXkpOfg9+4vovx4/vW2fYNtWhs1gqkGzNCJaDWyvrmHJI4Y7DtgzYc1BA1bAgjM4cmlfXpFO0Eww/VaTGjnQSpC15XSlPGLSi6RQa+70GrNWe0ii6VWoQ+9oCJ3JEeGVuOcg6ozA3brugyh28+oMsj15cfeP7+wtafGSP6927D6B+u4M76ZqWIxBykeoLNQjtubZxax7LeYbeB18w0hkEpWDf6y4acllCQyP5C23qsxSZJdBBqa9jVoj57Wlh1z8jBsEtk0q7CuG2UJQhA+/OGnpacnaZQEp7aByN0mSKJLZVx2XCH+qispad/cvwWDnSo45MYoEp/2fFaAz5SCQdqht86vfoRnA2INd4dTspSooHa2JE9xHd3hTU17cx2qhnb6Ox94/bDe54eT5xOFWklh7oKKqHbN0k1ReVQz7A+YMs1sQJEv2TvPe1tQVtlMGJatIFap1Sn1GDYjextYlhQtmXKwHXcAokoGZyGE4nnqkicn0AuBgX1EoLL1QhRsdC/LEBZAuIUt6NGWUXwGgiQuENm0UqosGg6MnNl7NFiULTS6pr6j5J7MIgjOAfDl9FxbekEG6Weslzi1FYzJJBg3wq412BB7jmvbJnwqYEO+vXKdJpVa/rL8ooRGfc35r9kUk+Q05Zl8Pbzz/nimw9oW/jpb/0uX372NmxYbYfTmtnmjzk+asf13/63/+/oYxjOyx66hN6vTK20KmDtnDpbxmXPce9m6PLA5frCvneGK54NqlorTVIaxxzvO6otm1N3jFjQqziyrCExJTls0mLsvOsJt6zJaGWZ6uOqLBoq8D9cOt989sTT0xveffE5/9d/7W/x+NkXPL39nHF9oRZBxPit3/kdqvfkfRTEF/wJPvvqa7wqlw/vuXz4wH65Yn0DjxErfYQTUqmsp5V2OrGcp7Cq4T3kmkbfcB/RO6Uh6tnWhfXpbUj73G70yy2cuveDYRdU24aKU1vj9PQZ23aj752+xZBIZm0h0h1UK8uyUtdT1Of6FplSJm8ku1FLGE7rkS4sj4/RsOzhcNfHp4zWnP3NJWSfJiwzCTKlMDycq3jUD9vpgfPbz0FOfPvzX/LH//C/5//7P/wDfvXte15uO+ubL1G74dZj/EzfGa7sLIjvqdwBqxomMXJ+KcZtRDBi+xXqOaS59huuLVscDJOVpjFiY3PJGgpoOWNjC7DPlUV6RNaieW7YhjGuL5R2DsblfkuhZGFRR2rAXFWdmxG1QjMoD6lDaAyURqiEiDYWDe3D3UH6htQV1YbbRs8erUaHskQ9Qge7l6DQu+H1nKSKXONqMQG7VJYSyETXhae1MPrgeumcVmc9PfDw8MTv/7Uv+PLrz/ns889599nbXC8B49sWNUWzwYOHOgM2sB2264e4t6nliQtjCG1RalsDTlel7539trNffkA0lG7efvE1UteoqTLS0Eem2beoEYb24Ahhaq0JFUaQoaVFAGsxOdv6lWFxf9flhEv0KzpZD5Wotzsla8EDlx7OKiHOSQQTqdRUv3cTtusHLNXnT+cn3GPcvY9ZU436e6kBFY9+pfctgpnlIRTpE+KVbA1S1ZAZGxuY01+eqbW90nEd9L6x9xHtKVrQEiUWc6eUwmiNg5EFkJJVEI3tTij9/PH/+Ef8j3/4jzi9eeT/5IMvv/qcp6dHSq0RfCY0/mOPj9px7bcr28Ui4xjGbob4iPEQ7rnBTtQWoyCuexTN3Qz0xrZvOUrEQuEBECmsS8ys6cOwsSebSZkDH91jqm0Mriu0Oa/Ko9ZgXJgcMPMYGaIJlLcSYryXbdAq6NL4vAhffPNTvvjqGx4f3tAvDdWg4/vTghoH0WHss6AuoC2MSlPGw4pngVl1VhM0xpm3EgP26hIU1oSVVC36UNzQZUFK1G6KQl1PuMdss7GekpgS8GVZFrQu6PIAY0NVqMsD5VrofdD3gRK6ZaJRn5GyhJBu4RjzYL0cenql5DWVitZo1rV+BR+UqngJw26pSZilCpKYGYbCPGHQ+G6IBojkQWNup4VlWUAqY3R++P4H/vt/8Mf88rv3vFx32sP3tBJA45abdzgML4hEf9oYRtNguyHKaW1ccxyNjR2kAZEh9GHHOBjRRmtBYthGrNMo9NUoK6ayQkmChYhyOi10s5Cuul2Pz4w6WeyBIo6WRq2F1kL/zW0krNoOQs3I2WsBgeUah9Ai7HdnqULUCT3UKbTUY5RKN2dyIY12sA6HOU2jBUVVWZYI7gaFNw8xmHC7bTw9Lnz9BTw9PPLlV1/z7u1bnh7OrEuLJmKPBu+RyvvuTpM16ykDb6C6MzYi2Co1a7iNZW2U0qg1gqK+D/q60xdBa8g6PTw9QT0FfEZAYtPB9G3k/onROFpbtE3oAkmGkRThtRHyYqbRX4cItS14Nmu79eO8WkoYdLfsl6wpA6YgjRAAdlRiaKMgmEncjsxuWstMbjIjIddICcake5xPIzistUatKhpSw0km8zOYmCWcq2dryqs+1bn2JuHISSeb5+H+6eHsDpgSSEa01kI9rbRlZVlOPD0+sS5LSHfprC9PUP/HHR+148Kj1+FyeeHqObhRNUYKJATlQ6jeaCzcUnPMDGzvDEuJltStm5I+pucgHAxPAl0yDUsNTcF0kKVEEXQ5reH8MhJx74kvy1EUVnFkdHp26e8WjpaqnB9WPvvqa9599gXn5cymHZE9PtMLMHtJdvZrCsQWBVkQMWoF72tsDEJtnVIQqWhdAt8XQVzoPSRvgqlmMBrg6HpGaioTeEdLTecmsBaEYET27UI7P1LXB8r6xNhfIqrLjaJloNUpkrp2WijLGk5RClHQyf4orWgWx0NUIfphtC2hMFJyCnKWDo4N4kkYEFBNqrJb0HKZrQmWoqTB/qoVak1tP4n7eb1t/NmvvucX373n+bJR37+wnGIkzZ5Z3CRLSSlBAulTUSJIF+v5ga3v+d6BcGOmkNv1xpzUXDQy39parM/sq3KL+pObMfadMXo4OxEeH9+E07HB9XqJug/RGzRGCMzGuaMvZ1kXbtuWjeRZM0pywYTI0xQFO8xzusDo0VZBTP/tPWuGTMHhQlvXVHBP/k62XEgqbQSJzyk4bV0CpjbndjtF9rTviL7ha4TH84kvv/qaN0+PnNaFqtMdStaa5rMWKC1ZmgGhCCujEjBiWyILameWNacgS2QxYx/0tuOLUFoNDdHTI5Q11od3Qrkj9oJqkGemYkoEWxUpSzRSe7bGaGFotmoQv69FkXKXaQvlD73XMCVVPSx77g6SSE0SYzAzRWclynPoZ8BzpUTdK5C1kSFxGn2J989WhNl6MDMgkahRHb0BHnbgkGDTOYcw7nmwZguexVFPp6g6bc6rLElmP+r9d6MOrCznE8u6sqwr5/WU0yVy6O0BLf7446N2XA8PD7R6ZpGCrxVSSWJdlgM/Le2E1hUpK88jOrctF1C3qNUsBd5/9yv6doPeWU5vo9/PO/vlcgiWUk8BLY7B2K+clkpbVs4Pb4O9GM0gMWVVayw/26gaSge1Xxgoex+8XC588/Xn/PZvfMU///u/xdoCk45NuuN+A98TrvJ0AAtSEkbpPVU3hHY60+pjjClRZXj0wkD2Do0tUBgLjFtTQqeqYFZBHG2zUdpj45FxkYOUYLsVbUghnNZyRmpBe/aqWMCOONRWaeWMZydRUJod89BeM+4SOlorcjiTLRS4k+xg1rMpd4/7AszI8N5HBNF2kPJKs+lWHCOd2h5wqAu00wNlWXl888RP/9pv8H/4m7/N+kc/45ffvefhzZlleUBqDdWNkT1aWiJL64PRd6zH3DBBaKc3dN8ZFjVNzQm7w5XtcsXGjltnbY31/Ia2nui+MSKtiZpTWSLjut348P57bISi+Jdffc2yBhX5T//0Z8eImWU9ZYw12Pcba6ss65llfWCwH/RkVQUNGSvvG/st5L2KCKfz22CuMrhdb+nsHNHIkKK+QSrQVEpboxmWKP6XlP1CKkJnqUJTaDqQumIOt23n4dSo4jSMn/61v8b/8W/+Tf753/99vvr6N2m6owzGbcNlZLDhiGYQmI3MUbNz2rpyOoXjMc/sPPshJzkDAkoVjVaHVt+F5JmEtJJDZCIE+SMydEvVjAXVNcgcGuw6CJs/g4S+bVEXh8z4JBu+j0WZdjx6zxgW87ZUCCXLsBOxN+4Tu6O0kGICkPYrHYOTa9sOJ0Gy+iS3RDjQ0ESNbZuNwfgR2M0+wjk0UpNZ7GMP9uJ2AYmAt98uoWBfStjZ03K09WCv96IdrY7HZxtEsB3szx++/4Hr159Tami57pbknQkb/Ijjo3Zc1qP/4Kuvnnh2iRuy78AZLZV1qZTHz6OQOCwgs9mJ206sFnjzaTnT2jv225W+bRGxSWGIou0GRISz3a7IurKWynlR1nWNgqo5vpxj8eChjtx3rHcMoYpR1VlKnmN05LSxnhe0nBg9sPu9Kro09u0Z8agrucWcKCQiYx+ZFbox9eFkOhtxoKSuW7D1rEd9LAJYp61ByRaP7y41IAlVS9Z09kdZROg+dsbtFgSEmore/RkbV/zFjwGaQsHHlq5kQ+op4ZACxPcIunOqMpiBbXiXqAFIy77wkU4tHRGTpTXbdQ2sHKK7PhIayx4cSxHVOZIcHCmC2471K317RsqJ0yJ89dkDv/kbv8PLTaCcWJ4+PyJha2eE6PWxsobzm6ocvie7LCE4DUFfxo6hkX3drqxvP2NNtXPN14cZqiVApTQ2+ECkUHTh3ZfP7NtG3/eYLXd+RJeVz+yBPTO1okJdnqJQnly/CQ9qW5hBcKhKxOcUXbD9GVITMIaKKl2EVj7E93Gw0akasO4pld3jZwMrazgygbo8hPF0p5SFtTqtBmxtPca7U43WBk2dpRin0ym0/go4G6NfMd+zLJkKENhBvzdLo29TnWELY5uDSksL8+VjY8qmITFd16xnL11A0+Q+tXGfWpwKZHEO96POG04jdBytz75OgJriziEsW1rJvk3Nmhy5F+6CvbjjffaSRq/o60PwfF5JR/eEQTUCvgjq+lGGEPFDmYRsmA/IPDZ51LMywxUS9aghQp2Qa0lpq5iKnA58bAktShYZZpNzzHITzWxK7nJkKkIwN+PyplL/sjQeHt9Aa1gpMeRzsiYJ9y0SU6p/7PFROy6hUsuZh/PC3hXvBlwp7ZFlaZxODc6fBwV33yhyit9T8HZGxkYRWM9vEAr77crtemW/XRAJfFvadnTED/8BXZ5YlhNvn9bQAxyD7foC67uo9ShhPG4XhlwRaRSNoYhlaYi/R0dnWQalOU5l20OEsvct0uixIx5QYSzkcELDcnDbAQX1RADCUrmB5YgJkVQ3GP0OE5CLK5q6jvehhNOzqU5B1gKjWD32K3hBaHhVbI9G7LHv9yZbr2E8JRltpISPOHNitGekFxDEhMrmHwI6ScNlfedAOBIujK8Z94SUy5oOa25l8u+JpIcBD5aa2WCMjWI7qrCuC2/efs5nnz2zeUHPX8VARBRf3iDSca2McsKuH0gghaWMQx/x+vwcGYYo4jvmhd530IXl9I7HhzNvHk4Mc64vzxG4lDWzGQmYcOzU0jid3nLSzrbduF4u7JcPtKe3lNMZ0RPbHpmdYiznzwOmLuE8+3Zlu13oyyMzCfDUu4vhlY8Uu2TQ4/TtEkMfpeDZLesOo9/Q8kCtCw9rFP7NouHdlye0CFWgro+ReVqn1AeW5rQSJIj9ekF1UIpTyk7RmITcss0hUCqLzMYCmitSc09nWpTr/GgKziZofBIdjtQj69MlM/W5VKImHDD/FKZOGbf5e5PjPr/8hCfDFIfDHhtTaSWMevQLchBdAo6b09Ki3DqvfTZ129EoPY9ImowDHcw6bRwjIbckLb265gMW9Pyco245WwKi1mjpbCXbTo7Az2dvYc5qm9mYjcgCk0Qy4WqdCjvw6n45R/1L8r7J3TlPsfGo7QWJ6+62MjtkZpU/7vioHdf58Q3np7eoKMsSunWrOHV9oJXK0irXtgRxoi40ToeqwCYaTbgiaF14++4L9u3G9z98D7VSpeJlRbEw9kV5evc5pZ5pbeXteWUfnW27RrG9LZQaDYJoxE8uOcRQPab7qjE0CritrdA6t+589/0zwzXmhgXH9IB4wFGPtDsKbpLYRWj0RdHVGZ0oLusOXI96lfVgDJLztyacgtRDtiYcVrINcyGPvUfm4x5q+SXURmy7JtwavWqltWAX3nffYQPCWWXmNkeJTEcETJ25aLMz3FN8Npt9D6iE+7+lnI79H5s3JbJ8Zp5zI02bFBvNAPEYBni77Vx3uNiCLic+++qnlMcv2coTt9st5kyVU1CfRdmkMJLCu5TK24eFbd+5bTcoKyPFXrGOJDNMEB4eP+fNwwNvHk68bFcuz8/crldu1IRVYzy6amFdTrx78xlfv33D3jeeX575/ttfBWmmLdjeue236KMTZV2fWGrj1CqX2wvb5cLtemEv7ci+Ml+liHJaH3hcFKxzuV7CiVowHMuUGJuHxKDCtRWGRd3Ny4Ken2i1stQCpR2wqehKrUmwkVjjw4OmX2pF2UF7kHlKw1BKXQNRcMclGrgjKp81k1C+8HFcFG5Ei8rouG0pOyRRY6MFAuEjGqqJ5nufgyUn0jJrQ0woUo4txaxRJSw9/eOh7QnJWNbse7tfm6YqyYT1guL+6p7mj8urS/CJcER0lRmL4FYQOq9wNyadfTrUqewz02ub7MRDxf1+fcFEzMvQKRydAV8O152ISLAq4//LslLbGi6v99CwrDWDXgGNwblxLSUGvVo0n3942diu98w2o+N7fPAXPD5qx/XZl5/zcD7Th6N+QqmBTK0ndlE2h40HKIZqp+bMom7QpdGS5SYFdi/00pD1kfMaIp0mYejQBlJYWvx7oPzysmetpsH6FDCAGTcPuE48aiOmws3JqPbEaFBkUJtw2V9gH5SbcN2N84BllKRIp8aeKAFRREF8NkcyC765qUySsksQM3z2vlj0lqVZRwisH7McwcJh5CduHTJFBTS6Usp6ih6mWqn1gbFvAYPWMLwhpVQOJzPrE5pMp0HOa/KI8oyEFoSkw4dkFL/2+7kJLdXJk+lkwylTb5KQWBoJ28mMkjmU7ohIMxpsDWHfB2oXtsszt5cPXLdLEDpKYRC9XpRQMrgN6BQ66xGhDnG+e0m5JF05Pwl+9MwR1PRSYlpsOzEcvn3ZoDSWx3ec37zDpLJnX9qwYAYWVQznl+/fR8TaTnz1k2/wEs20vTvlFr/TFFwq5vDcHSsP1DdnTm89aOhjpOYcodxODFK0bPhuD4X1/MAgJn5vb9/muJ2QBDtAVhuoO9WNNRlxEtgb7qHuX0rAcQMwkTBsXineqXS8OMMKbjc+3DrXy06/dkYXxBQoR+Oqo9Fw7cZsCo/gJKL5MTrsAZsdpAIRfESPnWT2dAROZN3lFeIgk+Xjr14+MqEkLuhkONorhxrrLbKdV+QX4jo8HdCUQUYKnoHxyFqUJiSaF5JTB8IJCdFkHNJb82pShDszt1zOU2jmlaPMLGY6MreEytPhHQGBpOLKcTcOVRUkSBnRsVaQVmP+Vg1WqR9foICG3ZGih20Jxx/sw3Wp/LXPV375ZkHbwsMSzOtSMoNzz4Dqz2Xuf+34qB3X6XyinU74rVO8YdSIumqkqX1YPoiISlRDNiZQsqSTZopuHmKmWpQqNTZh9k5wLNpwZuawjTuls5SaQp3BThSxxHEjqxvDjvURTCaNMQQ3YcfZ+2Df9oCpqjOJFfPPhAbm2IkDKJljKNJ53f+UhFhmbHPs0F+D05iQIryKSDnuCZngazKCgt5bQymghAq05vcxK6/OfI9uReR+zlzg02DIq2sXOGrx90t+/eb7pry/nj0yzHrfhIPm4cf9mdfhZriE2oGNnW4j6w5h2I+L1XI8tyBoNKQ4UmK0yhSLLbVBbbgqYtHrM3tmRDXaA3pMi6XFa7W2yMbNKN2SLh8fvfWAlVslhKNjtHIwB00QCUfkksXvMcKIlxCYDijYkBoKMJNpquoBQRuIh05ckdBALHUlyY8BJUoQbvq+H6xIsXI4f/PYD0pFa0BalkoUQgQrga6FiKwRj+i27dy2zp7Z/DTCgqQvcSa9+t4bNHdZPttJmJjyZL++vI/z/FpY74B4OjS/v3euybnU5pudV2SGdCwS+81fO5FX6/NOFJrv11cfIrz6pHiXz4/XwxaFgbkjCXMPzmDsPn5nplL3736cOTO++QEyg5B5f6fDm1ft9ys/Ml5/fbJwap46phywI6/sy2GR8ts6pyoxFoqQgDrqrvk5r//+McdH7bjqemJ5eKD3F6q37POJ4mM08hFjFPBE1zS5PBZ9WHNxpIaYu+Wco3RqqnhPerInfb7koIlZLCWiqBi3HnWohqWv09BM8xH1t5SPIXsxRs71sW5cLy9s51OoQpTpWOU+OsWPdQxMx3N3Vpr6jKJ3FXHICEenk7uvcplQxwFbGOEAyLU6s59kHwUgHkXvKRqKH9Renb0qc0d6iof6jF6nk4pNGWe3o+ALnpF3BACvi8Hk38coGI3v7vn8JDc/hKoDM8LVnIbM/D6xKTW3s3mMnzCLmVtuW9YJa0xQ3qMxuGjMkqoNavXQGvR7REuZQxIJ4dVu3HoUr8OgD7Qbmwm9aMJFUdhvBXrPp1ViOrNZMO2eN0eWBWkrdWmUVLLY9w41e/U0CEE+nO45hkQrRaBKqJY4Rm3CfgNnz/luKUZdgynK8CQvDKzEbDvVGsMMrYPlHC8LJ1WIicUqjbJEJuvDQsRZAl6LuW8DHQHvXS83Ltcb19ue05qzVaCEmvjrPBmS4DD3gSilFWqd0wlKShbFhAFN+adXMg73YGWuy2nU50rJaOnu4/xORDk8Oa/2TcyYmzXVCB65q4scWZz+uhMl9oT/2mtJfsjeJ9FyNNn74dXSV/icchbXMoPNmZLOle+e1I/DN79ylDnyJ94Xr4/MKuUeQRy/O4Yh2u+6hPMa3An2pwA1antHkJsCxjljb9+uQfzI2vkrP/sXPj5qx3V7/4x053Z5YZwrXhcYI+T93Rhj4/RwjsXdd2pZWLRz00F7OFEwijrnqly7MapgdWW/Xig+WFEqe2jVSQmig0bafNk2aosZPmKdpSjdOzffEREqQmHqju0B/ZUKKU9Uq1J9GtqCaKOWGMVddYSah2UPFzX2gobYZuDRmfVk8VRGR7ShogxiCx9pTIphhrDrjBxBNHq4JpgvzAbDXMjT4Y89awXxfdw6s2Ds4xYq23KK/8/ufitLKhd59ODAqwjxlalIrbR7VDr/NecsRd/RnFuVEUj8nBKNq/N8PhAXjvlY2uKtieWrNrSuTO1JRdhvU71DaeU+ZqJRcL9hUqE12DcWV1ZRzDZKyt9431ksrvp22ynLOSCVYSy6HtJh6+mUgxudpcJ2u2BAWxZMs3G3VbYcYljaQt9uxHDsgW8fEIXSjOJGXcIp3sZOXVqI4mIsNZQOhhntvGI9IvWlKRtRP0GUvt0Q6SFeO3aclJYaO5UW/J39JVs7BEaMzul9sCVsGKog4dRh0CepwAZCTHO2HgGRAqNHXZSsl1gqu1CX0CDMpaFCKrQkLOgzE4jeKdWKthOiW6zNfUPnxONsXI4lkazWiTkmBDkdyd2M3oMmplOI0Cd+OperJkw6pjMJ/cHEN5kBZpw2M6jXngT9J/59v4ZQxXn1WbPZnHv98XDps36VwWNcaoo2HxlhcnAlBIH9aHjP53l8v4k4ROBgKR2wbzEHrBEox5EREqWLOL/GDMRsXi+lgQ3KUnj86mu+/N3fRUrl4emR0iZqI4ez/Ys4sY/acU0lcCciFi0FL4VSUmfMPDaeAF5ppWA1pRZSPb6qhNR+CaPemSlzYLBLUUwVk6gNzeylJu4+85uSzKOhwTlSzbEQrx6SeYiMWsIOooXRN663jejAfw1/xCBEKSXEYrNeFZvsPkbAU9FDDnghZHn81aaMAZFktvN6qGNCkOZhFPL8/uqzwtFN+GSyAaeRySGLAsge58iI0Sf7UaJnK64EJkVQZjyYNma+73BfueEPUsqRJU6Kvd5hj+zpmiHtZDDZ8aGx4Vzm7weUHCKpAzyeZSkVY04tdppGlmHpK1ViTdTMAGe9LqtwoUmpchisIveGzFI0nUv8vpfI2ksN41Qk1MO9lswgIoso+TlaC7s7XUj2any/ManN6eCragQ4kJ+pESgVxUsJGFCC5ZZ3hVaUkfVC13sdoqjcA4387qhgeSM098jBkHS5c4AgINOcDDxGR2UJerbMsUNhvEP6KLKNkU3ZNkJJ5G7kHJOCaGAmyBz7Pgv+ud5eJ23zN19lXHeob5YRXp0jobA7FMixFuIc4/jZARtiyTjilcPw0PybjIzXmc8/Ad+HJmOu8fu2umdUszfxcF6voL1jpceau9fG5PiMmfHzChL8taxvvhQm5kAgxjHOmeN3X1/5fM53yap5b+M8W3e0nGJsUJ3173kCOdbUjz0+ascVMHlBqBxTY2s5JP1DGblkxO+0mp3qKLs4Og2K5HgIiRSZGRU4tFqzp0vAMpYXp5RcoJ6SPhkpVlV2t+Pc7gefJno9fKAmmMX19T74sL3weipzZADhyLRUPFUZbMzagB9QHe6vJJ5SRdqmOZ2b0WPThTW9L7BXjoZcsBMWOMbVixyOa8Kjs/5gWbh7rbd2Nw4wI1k7rAI4NtvPslk3zkVGdp6bcH43x6E797FMGZQg+SzjOURTaPzuDDyO6FMmPCJJjS+YRCHaRkThqiEW3N3wkcFIqh74xOglHc+ryddzYKB4vj7V94GighIiyqpZyyAdQq1hCGpQr4sEa9GzB8/TUUvWoZY10AT6wGaRWyRGQxQ9nFBVRWuM2qGWcKrJMqulMNLARLNoOMXSGt2FkWtFRKJUXErO4yIhSSA/c8hUvo95XkWD3NGJBvL4lYTAPFonagaVmrO7sAjUVFsIvpph1rEOPkJFXoSAZUsS2d3REvuh1OW+3ubaHa+yg1dZ1RzBMXvxZmbtCdUdayVJTREpcfxO3IQtkJfXQdX0MkcdemYvsShEX5GWSKue9zFsWL7WO3cFi/uemrDe8V7SETGlmDShdM15dK++s9978+JVeeW0uF8Ldydk5li3ZBjnPnc4GqoPSm98X8v6rLqmCksEHC8vO+KVqqdc+7/up16FBj/q+KgdV8Ww5/d8/8tfsv3wA7401kUZ48aynni7PiB2Ydtv3G4v3H6IRmTMkVbQpSG1sGvlYT0HM6rvfPfdLxj7hrrz9Vdf07SGevh+wbkBhTdEvcG8s9sL9hxGuiSee9Izp7Zy2w31ncUHXZTdd8pw5DLolw/47UIZnbUW1nqi6SO2Bbwi4qisuPakke8hsSQc6hdH6abfQM/HVGVSmNRtf7W4Jf1DRopKwHCBBGXIlQ5LZx0L8I0ANWvmYBOz7rkCIwsyOlNhAFKxQZL04NPUcw9E08jJNNJ6j4jD5oQaN23G3JOSXLlPXA7Y1PaN0gKgjQ2SoyYyM96soN5ATvQBrgt6egqIdUTGMrbv2F4+RL/U7hStSFnRegYMaqPXhQUYLnQbvHz4jgtQtHBaTywPoTquRah2CxJHFUpJejNONTJjL1RRetKr1D2VyQUpwq3fEAtq9YMq1Z1dQ3OweRijRR3KvU+n2EYlDFlVZVTBc8Bo1SAddSPX8UANzq1FwOTO7qHJaMRUAy9TCdyQ3u+1KJHQnVQHlCYxy24Au3goRmwxZFW3wTLgs4czD+sDRc7crtBKBJkTFvbd2J93rG+R0WpJlfWZDSQyQUmHkIQgj6ApZlR5GteI6OU1c3ZEn+HdeRARhzgw9RoTWpzi0NPczsyTmHkV58i9lg7ylY9J++4k3/KoBaPyaxndkTXN98uAFOKNgCuv/UAOBH0d702Gn0RD8TxziIOEoxIZ9++Mo6nRaIf0U9xg0UbR2FMoESz3gUo5CEyQ9f9kPN5rzwJSkSq0tfDlF0+c1hPr+cxDTkl4nXW9rr/9mOOjdlxPT0+cSmW7vrCfT1hrNIXH88raGkUtlALGBn2nlCXYWYAvhWVZqLUitYWe1xiod5YiuFRUgtppLjG/R/XQI7M+YnN6DqQskgKWRENkNDRklJ6D48Ris4qwlIKNBbcrVQgnM3uohsXcqpLRpua04iyeizieQ/uk5NLP1ezcGxSnoXzFS8AtVdQPzD+L0R4DFCc0MwnK7sHYC7LIXLzk+yw3e6zbvvfD2c1mZJxjwm+8b8I3EcVxdBvdYQx8RuwzeyrRV0Z8TrFxNxLH9xiReXPgLDAVB0zT2d3fLwxUPDIWD6IGKqxVKTSsBk17AN0G+9ijMO0cdF7zqN3MgGCMTt+v6CjJHsx6GkH9nuSZWsqhBag+Dkrx1GsUN9Sc4pnlJQFDPZTZg9GYX18sYWJJ5ECPW1kOiCgCA1OD4YjvaD7nUjRFVqLXTp3sWwITz5lpAft5iYDHUiRYbM570iMQiaxvjvSA4T0ys6bRxmBEG4Ab1S2NazBUIzPr+Mjso8DoHuodEs/TRuiAOlBbyD/JYRTTieT6iEuyV+v8FVJBZp5OwnqTjXp4iWOdHiQPLAkUk+E30Q+yZyvPcNTJAmVBPWdxyZE1/VrOkY7WLaYvyNwTB7x519u4sw2DKHX3ernXfTpQz/fPWzLr4qFgP2n2x6bLvVlmVGmpRN/34/4BASvdWSbH3344e0Cc9bSybR5TLo6t6kc7wK/BsT/i+Lgd1+MDj+tKvz7Tz494q6g5bx8fKBoSO95jgF0VoaxLRCYilLXRljX0/Vpj33e47TR1HtcFiPrY+bQyRtKOLYU0nRihkhlDFOpTf09iXEgVR2w6rOjVMWITVlVaVVga7gut3I4N5sQCYxoknxt3LhaLz51Bn9Zk4OkRFc7FOiHqe9CY7LnZ1ZmYvaeTndTnMDoTCpkF4LnZjupUnntuECGUNiIvutfLyEbRPM3B/orPR159RsIp7qmmz+zxmvOZ0tDk9YsrTIUE60A0Xd8h9HSMFjT2OSFapuMiMl31wRhgVdFlwRqYrox9pw+4DWGkQ8Hn84nvv9YWwYMEPV49oNC4Vsvnr8FiVUW1Bvx86AEmNC1RtxoatG+VCJSC4q7JEgwn1LTQ0kFNZxjD/EIFfbK4Sooru8x6a8CBPowmYQRrLdHjNYj7o8EQtTg5LikRJQUTZ0gqMviYTSLhpCXrW/Kqzy5Rgtgfc+BhTt02J8ceQE4ICHZksNDI7+oagy1VPIZ3ehBArNcg9pSpfD5XJ5nh+6t+rNewXq5xSXiQrA+Hx04Dnf8+1nzW4og1fkRQh2OZFmnuhcwSM/ALn5br79ecljMFBISoKwXx6dffdyAfcg9QolHajq0pcq+CRZhj93J5NmHb6MeMucPxTBIWESiGXpYcsKvZnCA/cy5/df8sA2JJAk06J4H1tHK57OhfpFnr/8fxUTuux1b5+s2Zz5bfQN++o6xniiwJqd24vbxw9QXePCFaOD08Hf037Xw+FIsF4/mHH7gsyoe1MN48UVVotfLm8ZGtG9s2ePnwgqdwK2Ph6pITRbNfQQu1VLbbxhg7NjrbdsHF6OL8MIzb5Yrh+Fl58/BEXZ9Y5YxqqKeXEg6tWEdloH5DCB2/01q5WTCENIvoNQ2bj5KjzMPITp7ecJDJ3EsaeuZEByQTazdGv/9aP5dZbqSoPcUMpHbsf4ZkhhdYflT+w1uOfcsNLPcmR/JzNDXm0gG4jBSunYbGIGcYedbwimpOGq4ZBadXto7vN8Z2RddHai3RDmFJ1vHBGDunakgZiKT6977B9ZkvToVRkoF1esCtRDarK1iMyLl1wcfdqfoYoZahhaVoaGAWZSmFIY1hRr+FFmWr4ahsOeUAvcKytNCchKih+QRh/CC0mEgwtFSOkThjPceYlX3Qlhwpb4NdopeuqMRwxCTuaGnHv0OGaKGPwa2fuV4uqEIroQYyyBpX9q7FAM4Tt4SOqwr7HsrzNiKTmDUuYbBT6MO5GEdrhJvRteEuCCeWZWWplSWFiMUcNUPo1FKQKiwKPjwYlNURjXqyFiFqvi3V2BWVjlioOrhuwazzVK3JteY99TM9SR1JZw8H/ar30OP+SzrsSRxxz0nVSezRXri3cZDNvenYJsSNHyK5I+tOE92bde+Z/UcClQrzFkw9cGYbmKMU5xUz2I4WGTXJvZfoRMlPEslADmZTsKX0Gh4jXeIz55Wl84rmUxQ5NF092zaYsGz2csqhdxjZuGglGqgjCHh4esPQNVoYlnoEz3DkpX8hsPCjdlxLbbEZWtQJer9yvf7A0lqMsijOu/OJUhdKW9F2ot9u9H1j7Bf2DfBgRY3tBbXOWgzXkhHIoG/PuEUME4lYwB2775ySJl90CQbaGPTeaQ/xmopg28rl5YVb7yxakHdPFBVaVT68PGP7jU5n26/s25X9qtieVOWcHjxH0wMZ6cc2sDGOgrVk74SYBzTndxZQ7FvPDCtPkr8Xc4I8itLGEYVOLcFJmhKbMMsW57Spnh6byZkitHmOyWRMuGVmipgfkGre5Oz9yOF183cS+cGcYduh1I56jpWJzKQsa/xGaUAohgwfyTCLia6zeI9GlmMWhqyK8Hhe0cfQUyuPb9m7R4NtOTNuV4bBbqkmIJFtXi/PUBvSGqc1pMbcjb7d2HOwYXehYHi/se0vQW0v4bhsWzNy9xiDTmzjaI3o2WsY9ywGzMYaGJJMSDO2Syp7W+dGPTKuVmtmhUE8mPXCVlMI1o3uzna5IG50EXotqcCnM2kPh7jf2FLex4pG9dDCAAYpOhxXZeC+Yd5jkHwpCY9Wrv0W2Z8GROljw/rG2G70uqNAsxiZ0vsWXL8kn6jcswo8BKjbesqRO0lAOgId7qzCV8fsywp4eB7ChOBkps5CONiZ0csrWG5CYcyxLnNxkllXzva6f2o4CbKuJRxZdRAo5I7hzd8YSZE+srBX54d7hgf3c0O+9w7vBfOp3H9HwPb96FN9ne2RmW3mkuCxD/sW2qmlLfl2weYwydoO+xj3fMp12YFGmcN1G9jISRnzBs8yAWQG+uNd10ftuBCiGFhbYMejs48XWllzxtOgLU5tkR27dDobblf24Tl3KAZuW79FXjGhrHyIu0XU44SSsjqAYRKjtaVUahWaKJ2BjY1aCksrEUWWippSe/TptLJSNIY19v2FnhlR7zf22wtbcbAbWlKR2uSYCYXEhp7/ZmQzcLImmRmB3RskD0zrwPfLcfsmI3IymHgF1flRH0ksxCxaYHJIXqz7hAocxCcxw5Na6xz0wUmkcIu6CQl56N0oTOdFbsQJ4YTPm2MU8vzphESEksP3RArdchSKB+vMpcc1OLjs2ezZQ8ZLYvzKw8NCrQt1WWhPb7jdOsMF1RN7c/pwdg/Hpem4qtygVbRVTqcVzBjdufRO75ZGMthxZjujd7ZsaFdVelmYfXCWNHQF1IXoq8nKn4cuiJJCtyg2ndGr2t6NEkocoqw1Jva6ew5kjPu91FAYiSqVcLleERsUd9pS47wJ+0nSs/vYDsfVVVmz7y+g3LtBEu+oX1HvFAriQZ4pOFVjBlg01Xd8XOnbC/vtfTQmm9L6gg5n9D3qacnI1aKZ8cysJObLlVKPWhfDX5Eicq0ezoI7RMhUtJgoQa47IjA44rnpIAIPPXZROCNLSO61Ic5sTaYr+XWYb4oTMNf7RP0U8Fk39njiR41oNuW/7il7dSnzu4ocjkuO2tOrS8so5PVeluP8dxc2R6tMm2B2p/3flXX8uF+Hwkb8AvczzZ/FK6qajgv+Aj7qn3p81I7r5i8MPXE+NZrHnKqTKNU/xGRYFa7jyssuOUVjSyag83zt7HvMu5L9mVIlCpf1zN4JNpTttJZTVrVQc6id+KBoZ+8D74rvjT6NPDC60GNcKws3HlfjvMBeQEtBxSgMlq9P7JuybQtje+blfUe2wnJq6DKVu0GlxkKvYJZFVRGoU1pIklocG0BrLp3cC7FI5wa+zw2bc4kCbhghduphNl2CDRXvz5ZmS4gnsyqOnqdQJLnj7JENyrw2cgxL4v1hV3KsgUzl9p54StS94iNmNFk4UjSJ94hEb1NdGl4aWhZs27m+PLPfnkMYluz10UqpTmkrxSwG/i7K+YvPOT20nGS90M5vaNcd74Pqjq2VrQ8+bJ2+3XDvYDvrOqKZvMSo+3F9Zr9duLy88P5yTcFgwbYb5sYw4/3thmW/zyJGrUGd7whjEISZ0WOirSiB4yhqsd4c2H1SCJR+u8Sz08LtlfzYqk6tBa0l5cnCEKv1bCYO53fbBmKhJ3g+n5mUANBQ1vBgR26957wlYVWl1hpzrsqCidJxhr2gIizR2UXfIgM133lcFjShJmNjv37LD999z3p64WGprOtCt41zbahDacK6rMGaTchrQoOoEJOjhVIknr0p3W6ZTcsrNh/3tVKO/CSz1/zxwc7LGk8BKRLO98h48i93XP0eaLkcYzzuvs0Pgz9Fd31OYZhyXGXuw+NXDsc8GwNFNISxoypIpsAHpf/QX3RJhxhTh6nlfup5nYC2gCHjM/yQBpN64JHpqHN9OJTTgq4rmllXycnNpS6U2pIQEwLOc6Dovc8S3r45sY8YTFoyez5kGu+39UcfH7XjKk0YvvHy/EI9rzwslceHN/SLM/YbY7+xlBYSNkXoGdqKKGs7Y5wjmt8amrRSp/KyD7CKuHI6NURK4OG1xRiGpHs/ZTZm2fQb00obkhG9AGWQzqUwTNk8HnhV4fPzZ1k03Xn39sx5qay10JaCsoF1ioQcTvQKxriPiBhLGFIvWQyf+yehQpV0OB2mnl82Mx7R4CywHgVri+bVDKL8eN+9j8nsNY4/vVB8+NjvFuGu6n4/B9yb9icLbZYPVPUOhx4RaJ5DAkpxguiAxz0Zm+G24xbkAh9RxC/Z1xTYfFxPUPU73q/s1471jaJRezQbeN/Q23Nkfj7YtmBamsNagwXax6DviYUQc8CGbfR+xXyjVePtOVsGtDJGO7LJL+UtI2uifb8cfVggmSkaY+zxOmGUjIKNO8xznv1rFOyhHLYGnyoLgtApRXLmUtSuwtD2w4AIynULKFXpKSotWdsqUVslqPma12jxECilUOuC5joWjGKW9eKClDUHtEJRY1nXGEJaKsOJESfFefvmgcqglZjVpZIkCuvhyNFsvt+P9odYGmnE3aIeaQOzTrF0FJ5OIK87lpBlnkkEntk2Ho29CUVqfmY6CbhnUDMoQDhgOkjuhxPB3lzPh6RU7jXr2exdU1T6FYs2oUqZkOIraafjk32SnGYenjWpvFfhzGMt2GviCJOANS83svMYT5ToytH0nBlpCfJaqak/OmIc1Lx/YTuCsKGz9f4wFgkXevRUjj7Yt5g4cf+EV5mXv8rafsTxUTuup7ePPL19oFinnRfK0ijLyr44Y19z5EI0kZoW9tvtYODNniR3w/v5MKzucNoDb1Y8pHogbnRdye7IML4pE9NRxAZaKrUu0O/KFWpBwUdCbHfPnpUig/XhISAf66ynGMNSa4kBdWOPTZAKBz4H083jUMvg1/PwpOdK1psCVpyRIrmC5j+yT+TOx7ifJj4kF9eEI/RVAfreF4akbqCP17/MZD+S1x8Zgh6G5dhTB05zfLX7eeT1Yvdf+x33gfXUREx5CxWNPipdEMkJs1Ji4LmWlChSWovhgk3Tc0qhloWC4MPwtgfxhjRHWhhjp/clxz4kY1IKY2/YiFlZ1j0K9loZ1o8IWDEsi9fb7cO9TuKkaoUzRs54yozYpIbjsn70pJGBElNXUoSIHzIzte0+E0mjlcMSLpqOSIHLFgw9ZXA+ndLBglGCAEAyYPNhRLP2nk6oZQQfl6C+UbQcIgAhdg3KoLYlnJ1WDEE1ZNYeHs4U2ygazdWFEo32Iw20pCZlmdG8/FrAE8b89R8D12PfTbhv9gbe60O59iUapnNrz90Kk5H3axqGCfd5/Cx+L7LLuI65Ju+Iw51ZOOnrk+AQz+61S5x9kEFIsmxtmVDsr+/JqVIfN3+2uiQycVBA5vXl6p3R4fG63P/8E+nPrJVKimfPZvr7zX/tbuR+zmmHnMMxgvMahvzf8/ioHddv//ZP+Pon7yg5giMUBxr4WySzErNrsI10wfuFaIqNzvo+Zr+QhdYZjtnOrUcxVzGW05sYvz4GdXlizgGKERBbFrsF+i0lblbGbgfLRjzIDDHj6oK0h1jg/RLv8Wg8lVZZlnBepRbYe/SClYg8GQ77lhBCLgyt2YSc1N6YV8Ixr8dnhpTGJzdYBG/JXzqCuozm3RMa0oywArKS+fdBrPDofzm8Z9QBM3E7INkQsIVjd7SAF8jhhWYZ50Ywx9wgnqSQu0TQrL8RNG0nRV0PVxZRYNUYGCqAbcd9ahIK7uhCqSUEkx2WqmhZCChrINrCKeYY8+HO7gOPSmiOj+GQ3KIs8TlZh+t9PxRdogssjIaN5zi3Fnx/wdMwDhu4LvfIPcL67EVqpKQzWhYmJTnOPckvCnZFVNOhbK/gVQnNS6ZdKfH83LhsO8KgYJwf3kb0bR2XnOeVjky5ADFZmr6HTmBZ0rdEE7DkMEN38H6Fuobz7TeCnB2SVugSGp01mmh1hJM9v/0M78a4XbH+En1htSCtxXiNCUP5PfOPQCXWjB1s1pkb5T30ASlxNpdfZHPTU5W77XZBvOG0ebdyz8w6bq7vHP+CK0blICMlQjGfELLGPZE9HUcDWRI6z4uxnUmWElmznWDgXnFZwm4kCSXOPlGHGo5IR/gMLSALR20PQCIwsUldlxqKJtpwbVH+8HRiMsscAhKD1cpyRtuC1jUzpQg457O4O7h7K0aweOMe1BYjamotiYD8eoZ1d24/7vioHddSF1pZmCygSK1zci8e8F9CAe6R8s6pvFJqyMvMJuGpP6eVvUcdKJZqytCMjtktahFHQ16e3wa236DUWKRTfkY0xrzDEfFhAfvMplzNbAbvWHc6hvBqttDoWL/hFiNTbI+6jUhKrJQYBT8L+5hh+45rDowbllHn7MkQGJExFCdlpGIgpdnOjBnne6NYD9SIDUYfSWDhmGsZzau3EFE1ifEetTD2Qd/2GDmfDKbaYr5P1KcWSmpBqlnSoCNT8Gzu9jHovh0AypxG7RDj06N7NhymKKH5EJJb5qFsLbJHH5cnPV+CJm97pxtoiWw5GDyzBnhXG4gNl60CacgEzwbrcV8Ts9B+FLLT6KRyQais55h0mYFB9gbFjYwMisgKO0QfH9GT5Wmfh78i34hn8DL7v7ijt1qT3u5pXPyQfupjRB3SnSJBlw5CyOv1HXAh06l6OCiVlFVKg5omPoPFGclnI7t46hlqNOLKXUooYpQk49geM972jZGQnSkwOpRK0XJ80hweecg35fgi6JinMkT+rPgWjbTmSNGsfTokExSRpHMrEAw5xn7Ua2bWDSNhSdJhOlKmg/dDXeLIubY7iSmCBk/G76S1p8OdmeMeY42iqB3njwC3E8Me/QAmRo/1Etl5PgNP3dC0DdGaGQzcvu/0rYewQSUh+ZwyPmeA5bOzcWMMYbttnEr0iLoHcWYSZO6obcCNcX0kfAs2jPfvLxHUnP6JOmAef9E87KN2XKelReOjEyK4EjdTM9q8d9Rnmp2QneicK5UKfzUw+HB+g7LvUcQkVA6w6JkJ0dHKFNOEKHBbZkYl+41Csm9mAfUoK4lF8dNNoIaSe/xJmKWU3EQZxR701aTJqr9CA+Y8LHkFn4zjumYECBxwysTgXGZmNqnEGSe+YghNttNkr4lPPbyJK06oy+9kjfzjRABQaj6H2g5yhoqjNVUkCAcfvz+jZDkyi5kizg3rr79LfuXXAsAHdDKhTSJjOZASLSBx30vJTM4tZoppvcsDGTH2fsaJmQFOFY+o003GZdScDkZXVYY5MoIePA2064zKjRhMGnezoInkRu1JJbIREVCL+6HiMcMrYb9gRcabwpFM8spUaEjRaV1AwpiHnE/OECvK0gdeBHFjaQtmhaE99CpLPW561YDGpW8g0bNTakO8HhCSTOkjHOpgNvfGswjHUDUymdBthFoErEQvWKlQgjwiKsy2oXs0H4y8iSjEDR0ZoM61MddfNvGTNTOXVIUxsNcC0/H8dOKdc/3PgHTCiK9m4MW2l3jmctfwjD11dIHl9phkkmQTHmshN/Ad/87/zkb71z/jHoXMi5Skrk+nP6Wkcp3eLyCgzEPhI2cPRuNynE90oinzOubnzGb56A2FiXpwhx2P1/N6cy0G7JoamDUGqr4qOf7vdnzcjmtttHwYu0g8q+FIXZhS+2jOw7KBlLjpIhqU2hI1hdpOAbMIGJ1ar+AhItpa9GON8boRT3PxdsbYGH1DWzidKSLqEx5LUVgQho9DfUGmMKqks0Iira5xjsDbUhwzmVKCZWaVW6RMrbAJKeShE14gSRq8XpPhwKbKtk76th8/F4iGT7ejgBuRP4hEVBfOSY+6W6AUdv9ZEbQuNFHQlr1o0dcUnAk/HOU0gOEM7LjY6Uc9GyOBnAWVRxqm+PWMxnVmHxIQcvxW3ActuR40pJ5UGWNHEjqRopBGz8tryEjiu4ncCQuSGZeNaE5OeFYIh2O9Ry1KAiYZ1Iz8O6Pda4euFRkjnJa2JFUA6vi4MV3a0lZmX1bQxpM0JALaj4wo7uSUYjohMvtvVuo0dCUK+W4BO5/WM8NGKs3sMcpFwmhJ6bjtlF2hd1Sjjuskacg9dB/zXtv/zN6fxNq2bvld4G981ZxzrV2c6t77iigwJh1hyLRSQqkgEuggEKJBB7fcoEUXNzB0aIFbbtIyPQQtZEEbpZQyTWSnlHRSzpRLiojwq25xzt57FXN+1cjG+Oba52GTUsR70bhSLunec+85++y19lpzfmOM//gXNKTvUHtE1Ex0LfKiD49N84ZExz4uBKQHtHlccPgg+CDW4MirH57UfrtGVDqKxe1YMzeaL9mvqUHI6NaMIjcQ73Vyc6//3A7+/+1Dd9ILWPZUGLKQ1wnopqP6vICMfDzGIf5qiLtfk6Og7U+DSWteV0KjGDh4JTu97pXlVrhGQyXGQkb2nZvJRHQUFyNY2esbHEqbyHmFku3KYSAWAxkZZuV7U+GHkfSegbdn5r2+Pms4UvDEKTJN8bVevT7R7X//pI/vdeESP+HigsROo5p4URut2/Th3Kulv7CPyMPrz7Ubzbe0jjIC8GiDZGcOATFWcxEAPEIbBrUOofVCq2VY2BiebsjVWCwrNGQUG27fY18Aw9732aP3DlWRXkDLmFDcDsyDOJxvr03hzatMxiHuDDr4zJLIml4xHVbNA5/foS1eYS4X8N46yNe04MFQVG44dm+7EmhMeyEYw68YnVuHKFl7HAeCs8ypnQlWBd3h3JLt5hymnTeWiDLeKauk5o4/ftsNZ/1R2HapzX7z7F5y7jNqvhMzxTXtVyfXTJwOpPmOXIoRbsQO2n2u3O+wW2m9MfosIr3Tb3o53TtNca/vlTfauRuFrjXL2VInxr50e0PjbjE8uGgCYrF9hnXgNm37OI09C7ZHVTusvHMoGZvAMWuy27Le48Ns57rYBCyidBohzFa81A4pc8H37M4kOqYDpd7IJgReJ1P1r9f4yHy5Df7Dn5Guxjb0Eecnbr4takWnt0pvSqibwcK90/I2JiyH85XWRsbX3nTtcO8Qvr6ehHZd95YRdimHjiIz2HOfpQaNbs+gu95u+2bZp/fPGEvOjV1WHyzW/cLSQcBQfukAt0nmlb6ubp/E/GeH9+vUBIymZiAr9qyfjXmDrHL7+n2aNOgWvxNFXt8KaySHmq6WsSqo5se8nzqfGSZbjXW3JrXVQtlWu76Od7fiOA4qe7sH4cy8NEcjr3bOptns1/aAzYGC/9oe3+vCdX56xldLFS5R6M6OnK0OeESBMLoAVSzeRxEaLpZb19Tr8G5zRjgoWVAdi8YdjsAOwDpiOuwwsEO01UTTiOvOaLkD8hERqlpgoSEM+51jBdX83gRpFue+s4VeE3ZtT7aPQjskd9t/IfvJav/S3R36dX9yAyTEuvthA3+bePbuy3gB4yZShhmn0MWKAOJR51+JBMAeH68AwdMl3wTGwEiwbbBuqLNOTlt7hSxcAIZ9jrf3nM+gjN3rQN0rYUA+C+0bbwIgN+uksSAYOw17v/dNld4OpTGJ+4jzsK4rtWTiweFlOGc3c5pQxPaFzZqXJp3a223wFoXWxr5kzx9TOxTKZz9FY9hGdSX3eGsQnDcWI2Iu8jpMyp0TW5+Nz7TkwZDEdghVbSfjRXB+OJCrUro9m72vWCOhgJehIwTnlFagdU/vYmGMwG5nVbpR48OwWzICSDDUQQalXrhR5ZUw3L+NfWiNERYUOZKgg+s2oY9TzGkf0xi4bE78jQR+tuKJp4/rQW5s88+slkZhvN0Hoq+kmN0VfdzbjM+fqqNA25/rmBrQ8bN00xZagOsO/blb01S7/2UCUdvvZ8EWcq8Ttgxo7nZiqwe1fdJ+/xqt3wTRXccObydW9dcd4k5kYp/pZae0j1tlvE4dzvY3uFFkTJ6DVNJNMxi6FTuVvUnby6WzPSo7xMqAma1D2RmS+3Fzc7/4DM4UTD9rDZgbzdLtRn29b3/pv/74j+914fru57+gHY5mo3NIEAPeO665GCzVFRe9XexgLhgjIM3HisM+vOa6ceacglNzqB4Fyo9UVzeW27nuhWv3+lJac9Z1YrOUSB+jtRmb7oVrF1VaQXRIs4tYOkyLI+zMN7VYc6Hddi03ltSe4Hpr3QakxqDhib2Km2eSMOC0UXxkv3H2EWZ83WdZO7a09nZgD0hMXUAHTGLQGKgLtyBJFwJdrgPjHhOK2iHbe359SQOylQHjio4l9s6I2llbA++3AjdiFXbbntcVhMFVYyl06+rsBEVwt4Km4xBR3S11PCIB5x2lrFyvmYgzPRGCdmcWVCIGIbZO1U5Tpbdi0PCAU2uzn1NbfT0Uu1Kxwi6q4DutFFprZMLtgAqh02qxaT1AdA4fwHvzkjROoSCt4YaRstZG6WP6QokJOwR7p2i45aT5keVmn9VE8gbDhQhaqzErO4iuN6iH3sjNIi+iE2LCEIreTJ+ldl2GYeu0G0B7Z503jnHv2P0m3RIXvBZccLcJIlGIXolBkGBCVZUEYbaCoR7dqd+j4bDY+L1h2xuYvYliFAE/JmG5FcnPxcRGlh2ctn0yVLFDvw/6d3fj9jAc0b7ecBYd1xViAu/b7grbf+KcIfC7lvA2xY2COjw498/f6PVgLN7xGnHwS00ct3t5L8j7au41vNIKmklQXsebvbD14cAjt7iT/b53t/f0l1nFn8tpxmuQ/axhEJPk9XnGn++v1jR9Vrj2BvpW8Paf51coXd/rwvU3/2//dx6XOx7uDujDHe4wc39/oA6aq5NONtM3kHGTDqiCHvbJmNxBtNjfccauY1ych+m1W/JBKN0+4Oh1ZF8ZM68RBmsL0Ejw5mpR1d1+3/zuALXMo8hGr0rL8Ob9G+7vjhyPC3eLWPc+IE7p+2Vlh9b4iejNLtAbu2hQbbXWQUSQwbYa048ajZ9Bf7ccjb6PWLeLeH8CxWjJBiVG+0et97JubbiK7CXGRSueTRGXTIiNjg56vwuMWaXjvVZ1JiTV1yA8lX2HOF5MHyGXfaei2zQqHdQJMm4y2BuTPj5vcyHXfQoQbuhLb41aCxAprXG6XHj6yU85n06UUlHCgDmskDppgwAkeFfpOHOb6IU2psAglVz2ya6zVbBdTyOrp9XNok/8xBStielVyGU1jV8TljiSi72jlit9HIaHBKL7VN7Yin3WQZoJdQcUVDUa6w/oLYzX18kFku8E7wjTBJjGrHfHFCpIBCLiGr2b4HdOFjJpzVmmqRtM20bwRyMLodQsBG+dtp+OQKPUyulaiFKgKj2D0onBk6Lj/Z3j3fv3PD6+5f3ygJZmaICfaGU1+Paz/ZIMxEF0aINavaERxrscyb3Dj1N00A7cbntlrMLeP5MItwHvOz+K1Ti862hePqsbe6u4a7gEfyMsAdZ43SQkxgAWscm5q9gqWbjBhzL+3YctF7ffHSQHfpk8fnsR2LWlqDEtFXvdwg0mf71/7WLXZibWrZQh4L8dINh89TqdtdapuVIuK8F5dBqepMNs2Ds/zhmDnVvNqPN4c6y0Sa0r17UyTRN7dtjoOX61Meuzx/e6cP0//v4fMMXIkhItBlwIHJZEHYnIMXjWXBg9mgmF2WEy8w4UEc5rpdeV3Rk9BI94czxelsmKgto5X5odZCl62mD9eVEKVqhC8KjarksEarffcwK1bkZycI4QA+/fHG1hrsKXa+aHX7zDieM4H63L3ruaQbu/iS3FYKb9qrg1MePnFD8KmNph8cpw8nZT3oqAvE5dOrookc8aLCseovZ3XfdAsIFGhynriGTwYnmGvanlmrWOU5MTaBeqE9p43btPoRXcsVUarD0dp0XdIdIxjRnl3sju0uxAYEAdVvyE275shzPk9SDAhxvu352RD1pVJCXWDb77eOXv/8P/mW+++ZaX05WXSzbj326Jrod5oiMUBW0bbYeMBXRYBEUv5GKNgDhhK8OgyWG0+wH1bV1e2ZlqTh+9w5Y79EHIEIOvdNCyUxjaGXGE4CjN3h/vTLi898xWLMcBpkIINpnlzcg+MhqGGN2YwAMpjuU+prFq3XDQFJyxQbG/W/u+yDfd4848bcXdmJDiPd5bd7+WRoreUgZKNVcTJ6Tg+PEXj/zZPxPp3PH4IaEUnArBT6OgCK8ZB/tV3m//dUsV1l164kfNkBsVvu3rgv1SqEpz/QaR7S1g7x03oDrnBLqxJK092p/LPjHt3IqKV3cjKiA71AcifvSN+/U3EsqHw4nszd+A8eznaHtfZ0V3QNYyTvtXjMXQDBEMjRnkDRU7s3ZUgeEQIupwYULcbhy8p8WHGyqy72h35qxxmEaTNArjvjftujNt7X31Y8qyqCA3mn8hBTMSD35nHvL50PgrP77XheuPvvs0so6EoWywgrIXrhjZsolQHVAHeUIw/HYahet0ybSy3Ygc05TMuj9E5nmxJ1MliGLnvrHSmpqBaPSOKm4wcYwmvNPIizpiMMZizicEJXjPNC/8+AdfsKRIioG0zDzeHc0mpVugm7mof9Zt7cvU24Eut9f2ylIYN0yH3THjdSm6f7cdonyFWm6K/fH+3JhX7Ef/fsHazenG8+89sROx+JRuuxb3GZVf+04YsGJ8I2GNIdHtF7/I7eZ/hQ9lyAOsqO3Qxy8VtXFjG/4//g56+1rZ4b7xXLhoPn5dCWJxHOta+PT0zNfffuLj04mvP76QsxnkttY4LBYpUppBeK01uo7QxAE9xugpxVzfnXNstQ96uxWAEKy732of5AKbQucp2UG/VWq5GtEHJaVpHEpuuKXb648x2L6FURRLRsRSDtayH4J21KUYERG2zazFdDBIpynZhOzDrYETIEZvOzusQNZq+kfvIHe5fV/2KQaDyl9p5UqM5kpTFaZpMX/Bmi0fTDvRC7TGu3c/5O27RusBwaB754LtYgX2/cv+0M+vYSef7bh2PG5cFzvGpTtsxuvvy2f3z7h1bk2e8Lr3uQ0udmgbjMYQ09v15vpr8/RLCIG8OnjsezIZDdbNbWZMRjd/z1/G0W73y61w/9KksuOFn7EZZeyLRW8oyt6Tyi73cMNzlM/ca0Y69ufvi9XhUbyHQ8zNH/FWenYWrd1rr/Cn/Yl3crvH9x95/xg++/H/xI/vdeFy3qJE8lYpvQ2nhmaQoBgzaR9R3VBmuh3Cq6OD793McncqsQjxao4UznvizdrfuuC949r3DcFbkrI6uXUyrbUh7DWGowxSRu8Z7x3Re+Z5YomeN/f3TG8eTEvmvIlBW7t5gO2pvjftxmeDCIPdt5N9PmPX3lZG/jPCReu/LFDdSQxGaxacH+aZjsHeMxKJwwSxzneo7aZZCaKmy7kVHwtndA687yM+pNnvSxjw5Xgv6cPB3z5H7zEi5bjCA6CfvVg3zoddK7ez8mRMXrdFOzLel6F7+7wAyuiQ92NlfLkDohfev32k9U5IiWvtvDy/GI2/dE7nk3kVtj6Yo3ZD189w/xACtY5IGR29w2Bj2rWTbm72LuwMrTaMeBu1brRmTisCr0atKLVst/MqZ6HWPVKG0RiMAsl+6NmHXrJN6lsuQ/Q+phZtiMvGdOzp1jzULMNV3iDL3mxK896bkfQgnvDZ0dz3KWM0DPRgiEUIxGgC9l220HNly5VPz8+s20pp1br4zyb9VzMAP362AfuNSX1c4Z8djHYY72Jg8RiJZzz6frBiDcUOh9wmHNFxLY4Gp78erIL9niIj3E5v95q71TfFjLtGTpV3N2Lqa3OGvfbxpPI5sQHQtmd32VRq+1P5pQPeABYjH+2TlQN2L9HPra1ehfSdXddnQuEhhtduZ9TtUxzvBTuj0/SqvdbPJqbPGmVVkE6/kWzUNK3YVKZdTCgtwsT0ei6xT46/2uN7Xbh+7//8L7OkifV64tScESdyNuIcxh70y731GEMkbMrwSiaRrxd6NdeEu2MgpYk4H6mXix2MMZEi4GfURfq24l3EOU9Kip9mAHTbCNOCYgat3c/U9UrNm7lz7wf8lHC1IL3itCKamY8HDu/eMM0RCUKlUduK9OEc4DuOClqhFtqtM+pG8FBzmPAeO7yFQU3u+5S/D2umK9Kyr7wNrvCGWdsFOq7QIXvS1s3m59aVjl2XDgDdR5Q2Dq5wgzMQc9hQZ8bE2hR8BD9YVeNQVR0HqXZbTvvI7YxxYRzacgs5VLXXvROhcTu7yg24btzEjNf7WcNqzYzipFO7oFLAdZx24jxx//4L/tzbH/DnmlJK4+PLlW+++RnrVsjF0XK5/WzzpIif6N1x+vjxZmnlfafHOwSHV8WFCechBPDTgbZltFbScbHf8w4fZp4/fqKWRkeIvuBDxIXE8zdfE9JMSJHWMoVEbVCv6zgwOyINiRMtZ9p2JUwzfoh3CUcuT8+UbQMcKZrju48z6/OTNQQhcjgkJC6oS5TT2ZxYnOBcwaXJmpttw8VIa4VcNsQn2pbppZKmw3A/d/j5SL9eLWZIAirVIKwQ8GVF8wXaytvHiR//5o+4u1/Il2/wk4DrdH2FPc0Fh8FANI9Deh9FjTGZGmRmcgtrWWjVmhMxluM+Ldh+WG6NV2N0oq0Qg6M2e94QZnaLDOfdKw9EzOHDjQKo2F5XRho1QVDvadYpj2LSzfUE2+vu9kf2/WwqMvKMNRO7dVXXIeR2ww9RnJGlsIK2/3yjn7O7/VZJO10DbdybeMGlgNeG642x+Rg77tfzdJd9OBVSSvjhdGNrikGS2Uld3dxK/IgusjTqeNN7+mEH5fYl12elai9ev8rje124fvd3/3ne3D+wXc+ciQZlbHn0293o5od7u9hLRbzQ6kathexmtvOZXisxJR7vEnGa8NMdl48fbbcTE9F1NC7gJ/p6NSPW4JmiIvNs1OTLmTQvtNYoNdPTgbau1G2z77MXrsOCbCvUjNYrp6dvcCkQUrLOF6gjhbiPfZvvduGKDmOW4XGn+ym693y7wl8+o8CPY73rPmO8dquvdI9X3G6/KRTM5ml/jh0JMI40r5edv0FHVrwcr2LJXRA5ujzZxds7hGHd4HjRA5J51cUYhXfMTvoKTtxe5z5BWQV7HTFl3xuM4Eq1Z9zvT+1QW7+x/0KzxmVajtzdveOQZgTHNVc+ffoRW66U5snXoZVywjKBhImuntO337FTmp1W2nSHiLfCFdMw9VVkPlAuK70UpruZ6MAHh58OPH3zHa12XPDMseNjQkLim3/8E9I8mw6uFzaSFd11Hc2JHe4yLRbMeL2SZluIixM0Hjl9/ERZM9575qg28aWF0zff2GHnPVP0EA90n6in8yAWCU4Kbl4MmRjfu9bMul6pEimXlbZlluO9Paf3uMMd9XQyNilGMFHvISViW6Fe8brxcHDc3RvSUMrGFIORYnemoI4JYhBfLJNMb93/K9nHvs6yQeVzy0JuI7W8/mpyBTcCPMXg+B2yGN/rVhE+u9724rVr116v39fpfYcK+2j0jE0sr9d8t2J0QzRlJKiPq1vHxLP//+sdzHgdZkHFwBZuzef+hu3nwX6/KLbnu30Pbt/3l8T/Y3S/5emp3oyavfevf+dWwPQG1Zq4e7xP3d+mxFoh+DgGtdeipbdf9bP/++M/vteF6//yL/8+X331FVqgz7PdIKVaJ6EgVSnJU7dMvW5IVKR2tMEaIvmyoq0xzYG7lBDvyc7x8adfW5yfF1wBTQkNAVcbIXqCd0QVSvTUWijnM3EKlNzYroWakomGWwOvZusjjj4HyCtaN0o+84v/9X/lmlcyFSRQu1JqRTjc6Pzd99cL77asFl4NMscBbmPKQC2aHfy34jSEj71ZB9f3K/v1hnUSMNPQUaj26cUN+59dhzL+jh0AfjDv+vB3s6nRIYifBjTo8GOn9Lo7aON7x7Hr2d36/e2cMR3JKLzDTePV2sao7OLCbdf2Wpjb+P4y2FB2i7QdZlKhFHOEFKe4UMAFpiXw+P4Dbx8fSSnZi+j/nJnsdri8XEE63guT86gfeVdbscOsK3Wr5GCTohsfh4m/lBocdTM/vpAEj0ksZIpsP/oBTmCaIocQUO+oAi+/9RukFKzrbbAqdBEOPuDDaFSqoskgNUoz8udYoNcQuJ5Wem2k5ImDeVq8cPr2hdIKtTf61qg+0JzHNaOoeweuKjoZI1RqZVkiNReu55WPa2E7X2jrxnJ/R8DgqDol+nW18MzWaZeV6qAGYaGRQiOFzgGltY1OpZRG13D7bD8vRDImHTtzrXFDuDV2YISgvsNqypg89q/dd0uM1cHuwu4HZ2lE0Q/39l235XbN0meO8/v3uOmwsGaui8FxO4LW9z93w9pqJ5Bg6dyyw4Zjz2pMw/5L57iOCqz01wZNGCzZQfrxdq/uLFv7izb9oMYG7HX4l9Y6hPxtwL82bep4oYob8Tn2fmpr+BDxwUqEDtdrHR3tXt9V85AKBQrZvlcXrpfMMlxWPudH/roe3+vCFZYJvKP2TtZ+M5hgpzED66q07lE/cRehuk5tykU96SHhUeq28fVlo7VOrpBN3IIgxPk1HXZaJjqQtRvNeG0mtrs7klKk+cJWr+QqNpl5pZULVU0Xtl6v+OHeoC7Bcmcu2L2QXUCDw0Wh6UroBY/imoWqG/17p66/Tko3qrw2YwohqJbb4W+7isTOYpJWkbriajYK8A7AE0Ymr2H5vlYjFohDWoHmkOppUREf8S5QtZq+SBsBg2e0F6SsRBp4O4RxE7g4IEJGNz8KOgVBcWpBgzf3beFWqDwgwY8GtxG8Ay+oM8PffVJ0fsCYKNIbItWmJAk0fV3AN+0jYLHhm5FSfPDQm1kf9Y54T1WoDXJRivO02ulb4UQ2WMQHkhOiM33cRSrXa0acY0mRls3ItrfOdhnzrQPUkdvoVhu0piZ83RqX0zZo90bPdngEz9Ybl83gpngMt065o/TymgYdgvvs8HTEeUJ7x6Pk3Gil0zJosH1M0E7xnVZNdzUlR3P297tUejHh8JwMkWjiKVk5PRe6RJgcl1ptl9pNGB18QII1FbpM0JRcO1u9cqCztErNL7hyIkhD3YKWvRkzWzSnVjRwOzNQ0V6H/AL7771r792appEELcq4Z153xIxppuoONJv4+ra+Gc45Rv/Nr8xdv3ufDmhQDMkRbUBkjylRPFWENnRf3unYSdl1ZtCeQY3mdO/p0m57XO8c6odhcys4H0chNCso9X5oKRWz9jI8v1P/ybJwczyx4ud8xwerqq4WgrSx+9YbOqWfnRfOQZgCPpoEyH02qaGVPvaO+3tl6hqPuGiv2wWTRng/dFz86kut/83je124ns5X1L1wPV/JYaK7cZHuHlwqNEncIuq7sOXClivnotwfZ8O218x6vlBqo1YTmKoo6oUjyxh0BiyBdU+tmNbLMGvPWhpbbdRubhQ7memSC360YqUrfRjcNql0YzHgqEOtbsj7bsu0F6RfAvY+ex30Nm66/c93sYh538FOKDamn7EmG07NGsusl9wYrzC4UhziOq43S4px7qb3QBS6G5Y2dtjuRqJOxL5nr9AKlKvps3ocPo4BPw4Dkd15/3VJ7ZzyWRP9qkeGMTXZjXNjwY/3EbCf1e2wjP0lQ3vG12hD+2ewaX81Ie7N9EICJrKtFcVRtHDNlVw6W+54MWfx1kwPo2IEhCkGpmRTwumyct2aiWkH5KJ9ONwPRMWp4LqjVKPad+nDoV3Q1snXjdI6tavBZ0DsSi6d62bLdBMSjx+12+HjsCmpd0/rndaVirPnH2zPMhzCW1P7OUf/owil2fW5705A6dWYj97ZM1xyYdsKW6k2qbWGtsbaK2GYsvY4vPyc0L2l6ebxTyvd4EfJiBYS1QT+rzLrW5G5fZAjLkZvsNnIw+p9FAa97TV3Y939fjCqiiUm230iuLGL/cwU0PbE8nq26p4igaEOO+tJx/OLmNTj5puo+2vYfx07KLVXLbtw/vYaX3dUO+nEOcyqTq0w0s3uq3dh98NhL6bjrTEXjv2mGffx/nX7ebDrVnltgLn9s7OWx0SJ3Bpe2Q0P+hBS34TS2P0E0PezQdhvtT23wIhe+6T6/5+4funx9XefeDpvfPrmIzUtqI8EJ7i02MmnQpjuzBYHZZ2E0/nK+bLyci188f6RZU7mnPB0spu5q2UDOaUGYwS6qIjrtNqpqMEUpVhAnndI62yuUEqj1Y5EY6612jldN+IAwwieXhqtVzKZLoM9JQMuGPHt5jnYbhefiS73w1hu7hS2bLaL2qCHcYv3hvP2vQ2+Hjf0yFwSzA6ot2Jd7rhrHcO13DMuXPte0vv4GkX6yHRyRtk3F30IAlW6CUdbpUtFe0Rbw4VkriRhwH19v7GsW5TRGNiuwH5Q717LsR3OnxeuV3x8d1O4sdJ2cH/83JZozGCDjlLebenf6RZzoWHcmJ2aC7kqz1vl4+nCujXWrfG4LCBK64X1spr3IY4pRebZRNgv55VcGmkwUcXvGhfdSVimaYtKLo1aGxUI4vAiNC+cryvragXi7u5A7p04NVpVrqUNgopaoy9jz6GvO480eUrto/iN90JNlF5LsWu4dXrtZmKbPNEFSlej+pc27LkUqc2mUYHehNoqtTTWtYwi36g5c84bk/fEEPASbdpzBqVTO7kruTXqWnBseLkyz43gIDq5HfpW7+w66+Nz3UXp7M7/exPTTZ8ow/EexpSpr0VrRGiaDhG79pwo6sb3GibBaDNh7phQblOY29msA47uQrs1GtBvCQF7YbDfN5h5wINuFIBRoIa3mr0WGMCJjJWRRd/skUeqJpjWsUtz2Puqwy9Uh6mAwE2MbU2gPb8TxY3YHRlNq02KDXaT5J3ZqHvDYkVIW0Olj23CvvDW8Z9m6aXyqge9EUWkAg7n51sD9Kfx+F4Xrlqg1Y1Pn74jPn6JmyK9NN7eLYQQaNqYlsUOjtZYponeHE09V9chzCNNViis4BzzHPj4zbf4GDku9zw+PJh7gPPUXAndCpd6x91yQESoJTPFibvFoLXSRzpQqXzzs5+b7Zj3uBB4OZ+oOaPaeHefIJhxb69XogqxJ3yPmL6jstUrU3e3SUNFIAQkxtHlVMOq9TPcv+3doR1q/abWNwaUtk4tG3nN7JEqPkTaWlCvuBRxMlnxanbgIQJBiSEaWy5MtDo6N+cRP+OnexSDNMIhmRbEBSBZ1pULqBOcn6xrFYVm+jnzZxwakpHAyh4hXqolQovt4gyW2KnHwxRWxcTPyhBMA5p47dU/K3ADgmnq0LBQmlDVM/lk/oUukEJgSlbcuus0J0TvmNyC+ETy0ZwFtHOIEUGZZCL3jneOKdpi2gyaO2lK7PlRs09oUCzGxBNHJE50Qs4dXCJOysPdzDInYghct0pM9qk6xDwEB/tsmaYxMXaWOZFro9RGGS4GguJVxjRpUR6n80oIgWVOiJh7TGmdyyXfpmKNlftlMUSoFJbJaPP6Bp7PK+fTyvl04fLTn6GTgPNMUyKvVxyehzgzHYWtFM6XK9cEU+4srfH28MDBHQhUum640nG94oOirdqkH2zndGuidM8MU1ytew0Y98RrDI1zBqEzrMs+T4Ru4zOQ5PHDWcXQmGIkIm148QQfTW4z4MEdAvDB9rJUm753NqVBexYLk5aDNYRm9of0YpKHJkQfCN40f2245Yu3vXOX4cbSrOB2bbTWCT1BM/JEmCYrUt18VOnNbMhUCS4aPOe9DUJqMh/p3ZKrnbvt2nrvY9ozlmPHIHzVVxZl79CGVdTuus9e8Pf/Zhhb94yPR8DjeHWV509h2oLveeE6ny+IOLZ85fr8jISNoIqK6bBar8Sp4MURRSmHhZfzmdPlyqk6klNajLRS2dYV7Y3eAuu6EmpBnHJ6DrhpRkI0Orrah64tD/GeoLWwuWwXZAi4GPHBETwGL9V66wzXdWW7XtiuJ/oacK6By7x/czB2YYqE6QhlX5J2Ssl4EYubD4Yli0u0Xsb0MvqxbloW6XYzgYy936uY0TmHSqH3QNsUjZh+bLkDEl0M525tM9mkj2Zp1Qr9mkEO+NQtGqNaxymiuF4Bb3T5MJtrv5nugTq6nxBnEFrrI97Fjem2NWpr5iQuAYe5TndtKJ2Ws5nzjkPX9njcWFi3LhFsgawGnY1zgzYscfaOtKm5YTRVzOij3/gqYJ1yrZWaMyXbxFUxfY0X4bpe8C4RfCA6oScrqnkrrMMtu9U6fA1tJxCnxWjCIpTauFyuBk2LZ4rRUAERLqfTSDdwlOStAQqNkqvBbaq21wxWuLQ3cqlD4gq5VHIplFKpLowpxpFCoNYyWHPOXNdRtmwT4dZhq53np5O5jQs4LdTcbBoolTzlW6LtliulZEreuFwvpO5pPUGa6GtGUdYtk7cr67ZxyStvDhNRGypmKq29jt3jcJbYHSH2QrEnPesOu30+JOlNt9g6Q2A+dHpusN96343MAV53TmNH3Fq5TSO9FBoVFU8MFnCK8zZ5DGSBURR3M+tWijlTuEjw7lUurToO82pFa71SSmYrhXk+GIoB1N5wPQ7ofTChRyFuJd9SuqfXGmGFp3fbndZMz1cjXIhH0gHBjKNryRYgWbKRdrwbLi+YYbRa0XZBd9DeTEe6IUUtb/jJUpj7aPxVxt6u9xt0z9Cs9lqpLZNMgcnWMj5OhLgTQOzx6ypj3+vC9fzpGUS4nJ9Zz40uiQnltBUT27WKpDPJB5YgzIeZ8+XM+bpykYlEo05WuNbLxQ4B51kvZ8QppVwIKG4+ICkReqHq2CvUjA/ZDs5akN6IMTEvC/ePDyQf8GJdUc3X8eF5rteVy+mZ54+/YHuJhAhxhh9+8YY0z4R5IS73dJppwqqJT9UJIVrRwiXETXSugLsxr1R3wXUzCxys48bZ5CIMUqEkmmZq84QQ8D7hD4+g0dzOS6ZpNcFvCHTXqLlRSyUMBpeoG4JJgwnqaBhwkxEnwhEZBABFEJcQCXaha71BWAMdpVZGgnRAXaRmu/mbQsvFyBw39qBZEplGzt9eg95ui4HH9/2g22EgO7BqU2pTmo5uslsX329fv6fGZvJauK4VP8yZu3au5zMMd5a7FDjHcSjUzqV1xDnmGMi9GezTG246krxNVeoc18uFPIrLIRnzSrtS1jOKTZKTKDm4sWfsXFWMyl8KPdjP5HqH4AnDQUacUEqxHVqcCCIE50lTtKytsYfQnNlkEGVQ1iZcaue7n39jxA0vRCohzNYalMo0DWh0mrg2YbtcuF7PnM4n5uKoZaL4GTZjFa4l8/Gbb7nmjdwr85/5MTEqPTp8iGjZRmEJdr06b/Yf2KTEMHG+pSaLDATBvsTvA0AXE//K8NFzFlfy6ks4YMfhQmIZeX58HyuKrTaq2oTtJNB1wLD9NZ5ERraeik3xtTbcSLcW/xpftEPsvVnQbMsbeVtZ16s1L96bDKAWpFbL4XLBZBMDWqmlGBLDsFXb6+3OUBzswJJNl9rFEX3Ee/P+bLXSqjm/aK0EwrCCs2ud/efqr5ISxeyvWjNxMsSBbu7p6fpaPAf5R7sxF1uptLLi/AROWcvGtCyGgvxTHq8ZXn+yx/e6cP3d/+ff4nK5UvOVVWaqODwWWBhDZFmOFDfhBAJDxBgmfJpJb7+iLBPBO2qpw5bJ0brw9N1PyZcn6vXEl1/8GJ1meogEKtu2UVvDuUhjBCTmM5Izj49v+cEPf8zv/J/+PC4cCAKuddZTZs2FHDvfffM1509f8/yLP8CL8ubtPT/88Re8eXjHm3df8PDmLQ/v35JffkE+P3E9P9Od4cV9WvBzROKESwtOEi2v9LKBliEI9lAPFkGiSnUFn+4NehNH004JZ/KUaO/emr3VvKAPH8ZGSRA8rFc7wEVx84Uo5l7vY6T7aGy2/gTxAZw3UwFRel6p6ws+PRBiJMSIDwbZGYEqQclG3+6NFl+GBizi4gLBsqHax1/Q1NFFwHskDAakKC4dkZCIIRFism6wVaNSl83i33OnNtt2iJ8GEcTcUPK6UZs1AEt6ixPITVjXBdSYifUMegWunfaycjqfOT8/cXr6RGuN59OVdd2YvFIvzwTg3bsPnHE0bTCy2qZpYpoXugSCBy9KXTdCMG9NTdMgZxWupyvH40IYUfVPx5ntcqWVwpvHR05duZbM+fk7Smn4EDgeDlQEL+aZmS9XYpqIaUaOd3isQShZmeYJRchZoa6s5xcuz0+8ffOOcxdOOfOzP/yfzIPRB+4f3lKa0kqh5jOuFN6+ectXP/wx88MbSt7Yrmc+/eIXpGlGQuLyk2fy6RPXl498+vkf8vzyLThHOhx4v/xfCW/fcP/4QEzvie6ANNPH+SVAdEgUgmw47xGfcNtqdmwlQy9GslFjL/Yehwu5x09vzWzYqe3i6pWiV5p2ggSCC0h4BATxEeZ7gk8jE6wi4UJw0WDgOOHTkHO4KxImm4qcoD7QayF3paSFGCMhGXQfsOYoTIFamiliaofDxDQn4pu3LGk2uFE85fJs0HSIpEnAJ1Q8TTIbjo4VxiZCcAYP+xSt2Rs7anOw9zg/Mc0HYpoIaSavJ+gJCQ7nCyFFM+UNDoaJws1VZ5ynzie8WjJFrfcGR3uT0lnw7es+XYaNgXPO9rVbofeNHhPESPQReJUGyO1fv57Hr71w/af/6X/KX/2rf/WXfu93fud3+Lt/9+8Cln30H/6H/yF/42/8DbZt49/8N/9N/vP//D/nq6+++mM/18v5RHCBw7IgOg/TlULt+qq3qOaaXXTDuYhIwLVOXzNrt87/cj7j/fAadDNaKzFMpLuIAttlJfcLSiaXiqowL8vQYFhqrLbG5bry7Xcf+Xt/5+/x8HBHSomf/PRrct6sk0mdIJ5lPsL9O9brJ3rZWF8+cvr0zHmaOCZPPs60amLFaV5wMeEFKwIpmLA1ziQVKyJxQnu2HZIK3RmsZWwnE7Pq7p82LKici3ZG42ilUdaL3dA+2IW5Z/u0gk8TMU5ImHD4sZythDSbM8aulekbOIdzid3TUJve3BPciEoJIY3CVRA5mibMBegebd30PSMzyDuHC0ccxiLzTvBxwocJFyec99ZhjzDENqZBbRWnw+cvzTc3euc9U5xRbab4Ko3npwtPLxvn7YXlkBAH12umt8zlsvLx04l1e+Z6vnA9nWltZb1Ucq403/DNYsq7Yg4W2sF3ajGauHfebMBcQ1xHupCihVaWa6aowXvX62rNlXicOC4vT2hTPMKcJs5r5po3rnmzZitG5hQNiqVjmRVmxOuAeslUzGvxcinMy4TgqEVo5UzNmd4dOTe23NjWDecCvRmL0PswgkObGSaHSFPhct54Of+cro1aM+fzlS6RMJg23nmmaeHhzZfoILQ4L7w8PTP3RsxXPj7MHIKSgunXgBvc613ChYCPEyIRDROaMq1VwtgBVQm248GaIe8jEvcdbh7kCrvm/Ugm9zEB3iYcb3tdJ2IHc3rABbtX/DBNBghpsfvCuSHu1+EdGQjJpifBGyx4sxRjkD2cabnSYhR4H3Fq1k6tbuzQvRu6s1bybbrxw5rOCQYLurH30xHiKo7gPf54Z3tLP1mmnyplvaDdIOuYAn4kawvQ25AqOI8fmjkGDMuALMXpsMYz2y3vjb5vTEihF3O8UQfOm86zlUKvnbpeER8o/kDZNnwItN7Nu5DPzRF+tcefysT1L/wL/wJ/82/+zdcnCa9P8x/8B/8B/91/99/x3/63/y2Pj4/8+//+v8+/8+/8O/wP/8P/8Md+nuA6x0Pibp7YRuGKUsi1D0U6hGoLdFGPC5EQAz44pBekMuC4De1K6JGYHMuS8H4iOG/jeNuMCSJlMIE8MdgOyhqegBqXgF43fvaTP+T505E0TZzOL0ZCcIKjcDwmDumeu9B4eWp4yfRy5eXjdxyDkChG481n6Nn0IM3MWksphJZwpeFCswj3VkYnWmxnpI6W2yttvgva81DpC7SNVjK1Dl+xWmkUwKyD8NFcIUpGW4a2EaZkhAAZjvgt2/P1EZ+OFS7aNuCoEV0/8HJfwYUwCBo7acT0KgY/jH1crfbasr0+u0GHyemA8kQEad2KIYKUQW/vFrrZS7F9RanUZpodh+WBiXO47mi1UnImt87p6ROfvn7iu08Xni6J+ZAQJ0aGcJ1ty1yez9R+oW3284nm4dMIPgjTNDPFwDx5o4kjSAwUrYQAUQbjDPM5dMEPt3fbRdDNBsyLFfM9ciT3ghMj9bSxz9CyWZSJdJJ04oDRRDpeOj1GpuDwDmpe6TqShks1Mbt4pDmcWh5WmiLedbxWApW7w2R+jM5zmALVCT0KPdn7HUOgtczlchkorZrfpLOJzwXQObLEA/dTJMVOzhdrRspGvioXMt/+YmabhXny3N3fId2bSDsL0+QIPeJ1EPJGkqPlZ3ljy4VIz+128LY9+ZkB7yEmUPf+5mCxu85DQ0oZ16ilcXu3u7E7eh3sPhS35+H1EQnaq0HYrd6eq9dCWfuA/PwgNtSx+9mG4ezwgiwbZdvI24aIEkaBrKNgabd8Nr35lQllu9JbMSnG2I+hfZBY5DZ19prNFWhb6W21BtQZrN5G3I+WbKQMZ7vpXbbRx26cfcddCoz8QHs+ZZef3AyinfkagtJrQWunble6CFsyONjHcMsvtJ/011O6/lQKVwiBH/zgB//E7z89PfFf/Bf/Bf/1f/1f86/9a/8aAP/lf/lf8uf//J/nb//tv82/9C/9S3+s5/nd3/7Am8c73r//EerN3HKKgZenM+tWWHPlZduMDZYCTs2xOjfleT0Tgreu5cO9RQGFyHI88qOvPhBQWt74xz/9BefrxlYa07Tg42QahWAaG+88KUZ8qWYK6hz/8O//Xb5+Mp/Cr377N1kOB+KUcMHz5s07ow63H3I6/Yjnb3/Cdz/7X/jZ//QPePnZ/8QfLQ5cIJAJXpnnA6wXRJXgI8f7O3t+cfS+4sQIA2EySExx9G2zaBHnCXFBmYx0QUeHuBLnED9D3Uxg3M1xRMWjfsa7YgWqZkL0EBbU2wEtveFQ0jzRBtl/3JWIw0SwbrEOrRtTy9YSDpXJjFdF0VrwUcBHupuo60rNmVYKIXqLY/CeIH0cOorzSlVPq42SN+pWhgNEAZcGgAHJB1q3PUFpQtc8RJGBT59OXC4b17WA+/u8PJ25XDfwR56JNIVrbsxzwgfrQD8cjxAafVHEH40k4YTHuyOHKeKdsUPXaqGMKQa2q+Vs1dbJtTOnhRSD7Ui7UtqG6yeLhhBBHsKYciq9Fvtcg+J9Q+QJd9zo2knB45isGw5KqZkYPFO0Zbpqo/ZC356sQ3fweBcI03AdQbg/HkxXp43zWjkfCltrLNMDtkP0KAFJiRgDy/wj6rpyOp359PRMzx8HDDrzw6/eDv1igSTMaWGOjzzME8/Pb7mcnjk9fwINJMloPvF3/z9/RHSZOXnev/+K2Rs93gu8eZtI00xMi13fzhvr8jgj3qZ5V8sgQCjarjw9P9s1HWxX6KNFB8V0QGpGq+0sTcTrQRJ4o/Vrs3BTF2djvOZtTKOdOE3gkhFDKLQ6DI2DB78MunmlN/NCFe/BTThnxI9WCn7spsUn8ukj18uVbd04PtwT5yM+JrxU8prp2vHRgUyIGARcR4qzuddHUnTEYFf6dFgG9BhZn7/h8vLM08fvmJdEmA7EtODVfp5WC95DmO4JIZlwvtm12HtHgnmvttZ4+sXXHO4OHO7vmOc7Wr1Yszqy7nzwBBzBgesF8gUB1qeV+vSR83yi5Pd0Om9+8KXVqb0W/xoY8n8qhesf/IN/wI9+9CPmeeb3f//3+Wt/7a/xW7/1W/yP/+P/SCmFf/1f/9dvX/u7v/u7/NZv/RZ/62/9rT924frxD7/i4WExpph0xCnRC3f3E9MSmXPlngMpBpYU8SlSi5Jb59qaOVMIIzk53Ub9JNWYcpPw1Yc7ii700R3JntWlnurMNNZ3o5f30qk5czjOKJVaC4GVpB7fOtfS+MX1GYeas8S68fz8HR8vZ56++znRK1MUlhSGul2YYkJbscIljjYWxF4czlUTGAvEKRh8Jh5p1QSSOBqe4G230TCdlXiPxMCcDqhpCpCWWVuni8P7CXSzSPea6U5s3+Bt8gqDh9TE9gUilnYqvRGCI06JlA52QLdG0Mralarg3ITx9c3FIx4SPkbEz2Z4rENHE8SeT5xNda2h2uliTLGcK5fL1fZZVpLt58cc8Q8xsrZK6Z1SFOd3QTeIi8S4MKcDl1Io+cR2PaNuJcUF7xN3S2KJnZQi02HmOE/mgO0wh5KRHjDHwDwb1biVhoaj5a05R67G7Cq5UTskb79ftbFdM7UJd/dvCLdcNXNp2JfnXnW4F5jDejFLCKJ7jXLRLrQOwQnJCV2UVpXaOnF6sIN1kErEjU9Ohck1fBB8sNid432kizAFT+1WbLe1QwQflOQrLjXuDo4gM198+RukEAkhItHo1x1Hi94IIeJIHlyfOM6PPLxdWF+u0FdoShpOKiLKen4m+4oXJeF4OW30rtSqg5RjkLE/RNvDiGMSmGOkdzivmfPZDv0+WG8hetIUmJcjrhoDqJdiqdTicT7RdEN7NaG1Bx+SwaHn7SYzaeJHYRA6NhE57/FTssKqGJ2+NXPvAWKYQDO9GTPVxYH2+ImWV2rJlFKJy0xKMyEERColG+vTpYD3kyEKakST3Cq5dryP+H26RYjLjA8BJbCePpLXK+v1SpwiMUwDlt9oOVuitxPm6UAMiSnsZCmhqpDiQpomwjSxXS5oexhIQEApiOuGWE0LMkgyeb2Qt5VSKhImrucLTy8X/l//+O/zz/8f/wK/NYrhbc5Svf36GqD5x3/82gvX7/3e7/Ff/Vf/Fb/zO7/DT3/6U/7qX/2r/Kv/6r/K3/k7f4ef/exnpJR48+bNL/2dr776ip/97Gf/u99z2za2bbv9//PzMwD3i+cYO9f1YjBZh6wOcZHgQWPDR2PrBN+I0eNdJzQlijf/LhQZ/mky8Pi6mnMGDqJv5kgg0GvDe8W5ZloFPw4Z6RZHIRXVQgiFmDriO47LuDg8uRTyiJeQVvG1cTo98/zywvPpmehhikKNwXY6AsEH2DOuELa6xwiIBQAqgOKTuVM4cVaQP6OCex/Z48dlsNBc8MQ4G6VvsJ+21mmI7QIp488qZfcsFNOb7DF7DYaeynBwp4oPnjgFQpxtv9UaHhOhVmx/sUcr0BvpYMtp5xPa+nD6GGF2Q6uFjo6WbqJPhVIq1+tKL+YAoW68bjGd0+Q9uZuTSeuOEHfbLJinheVQmRUul5Xz6Ynz6USXQEoHYpxYjneYJi0hrVPWzQ766KB7gpjeq2YhO8t5a6USsJ2feTaM6Ihexz5BLC2ZjrDhxfQ1MgSeFiQw+Nve9rPCHvjZR/aXGEvR+5t2LwZ/o2I7UVTsPZ+CUZ8NKldrRjDUp2xKa4Lvjl7smhDvqcUZVbp1tBZad7TsqPsoK8o8KWGxfQsUYtARwTJE+/oadTPFRgiQuuCKjqBRAYJByq1Ry0arGaGT1ZHLmVIqeRsN5Ig9cZPppbzzJDopJHpXTteN67UM4bPBdz44YvJM04y0jrRGr42qYjsqH2maDZ5rjYbiY8T7SL+u7AnkDbt/ZAilVY2o4FIgjEbJsLVOVmPBBh9Bh0i71NGEBbsPa6G3bnufaF5+3nsjYexOJcnj3IhT6h16J7dGaR3vAk767X0JU7TpTwL58mwSjlKHbGFM8N2KtjYzJkhpMfJasLPF7uZAjDPTsjAts7EEt43tfOH0fCbOxkw9PtyTXDRDjmY/9/V84Xy5EpNwuVx5/vTEH/3B/8Jv/PDH5B/8kJsKYVyjv4aB69dfuP6tf+vfuv33X/gLf4Hf+73f47d/+7f5b/6b/4ZlWf5E3/Ov/bW/9k8QPgCO/YVprZyeNmoSqsBalbvD0Zb4KJNfKE152SpTDTchb/ALp5IptZuGJhl23mrh08tKpYOD42E2lllTXq6FefLEYGm3EgwarHjKZom5VQsi3zHNkEQQviWv3fzq1szL1ti2wvV8xQmspyvnT8/gPCkEgg806dRWrSi2Zh9Sh1LN2UHHEvvheDCD0d5xWxnO8jAFR6sj7h4Lv3ROiN7f4u67U0odexcF02BZsSsdkt9DIpVKtQLQRiQ5VlyCt2gIwRbFFgRoq6zSdOeZozoyqZyMBfDrReyjjvgDb/upblqStLt2O4d3cnOWsV2w4Q3aO6Xq2IOJeS3qbsnVbpCo84lllnHIwP2cmC4nYvrE8/OFj09PnM8XGgUXJuZp5qsP79m86Z/KaeZcrPGZpogXZZpnQohcixKj7ZhayRyWxcpSUWJKNzr1tEy0bluCJbqblsf7metW6ap4L7a3QBGnXNdGDBC87RBimgDPdWvMy8Goyq1wPC50oDZlCmZZ1ntDXLJwyqYE5+jVhO/aKy+rGR37AL1mXIiIC5y3bvZNotAyWy2GUJTO3dsH7g4Ld4eFXpTTJbOWyvu398zRhLVTNTG3it2PMTp8zVCuVFmR0JGguCWRL428Ndaaua4Xaq20pujo4LdqV9d+jSvVDHFFoGbzXqydUgriB+HAe9MuDgRGnENahd4xo5mbcdOIErHPp/Y2vB4DrhT7rPqeC2dEiSkE2hA9401jZQ3Y8L4cF3XHcUu4xnZqe0iltMruteXFXoeIIzoQhhmwN28L1BrNPbxSYND5dxcRGa78Fk+j5WrGuruAcRcAW4eDG58HLhB94D6ZH2IQzxQS+ImYAnMyXeG3zog+RR3vv3rPmw/v+PFv/zbShOr9aDyUb7/5jm9+/g13xwdenp747rtv+fkf/iM+/dl/luvLb4wz95VS+OsgF/6p0+HfvHnDn/tzf45/+A//If/Gv/FvkHPm06dPvzR1/fznP/+n7sT2x3/8H//H/JW/8ldu///8/Mxv/uZv8vXXX3NYoFyVtTiywFYqZbvafgDonzxbqVy3TEhCECMZ+PnI6bqx5sy2FWY3/BW68nzN4AUfPffH+ZZ8e7pm616lM3vwybQnlcByWEjBXBBaMz/EUhslCpOMAEcwvZcX0uORw+Q5Tw7fMpe1klLkcJy5n8MQTyq5KjF4swmsjclFtFssuQt+pBhbQm0dcfLijC3nEKJEE3li+V5+MIMQGYe+LWkBpI+pAMCZs0XAvmfDyB0NM2x1CNJMOKoiqBcm516LSNcRGTGs3rq17OK9uRZ4IToxQ1uxYMXWqmWAdUWqcjPfCXaTg0WS9KE3MWKNedGpCrkpfdj84AprbrRmU/S2W9ooPH18ITcld7Vk4G7dcVelc8F5x3cfPzENFwLvI9sQkXsvzH7EpOO4lkJMZlHlu5p2RZV1q8NoFnOCD57aLDQyRiEO9l1MC+frRhuiziS7qalwzXkULnBNmZYZxHNes00HIgSFONkhUlojJcHrcNeY7HuXat5y8bXkc14L4iFEgVqNcecD52sGsQMxiZK72UetpXL8eOR4WLg/HpAQeHm5cLms/NEycYieFB0pRpoEc545LBwOE/ly4fzdR37y82+tuEXPNAXyNZNz4VI+M4pVNfd750nBGpo9oLLVajR5J4iGQaIwUoHKaIp2v9Ldj0/ktmfdtV2qlu/WoxUuemO9ZkKKpBTRUux+UCGq3eN7ZMn+/pkjypieZXSSI56nq+CieUd6LMCVoUMTr8OCTujVrm9jvBoEbKhPN3bsuHccOq7xwVT0gBOCDDMEBBcDtGlYO3VMKmlMSOdlQItK3szYV0SIIvac6i1hoxeqNq7VSCCX80bOjTQFTuePfPzmjsvTCx+++IJ5TsTJcV47P/vHP+dnf/RTfvQbP2S7XlnPZ/JWBzyZx5Svv5Ju63/7+FMvXKfTiX/0j/4R/+6/++/yL/6L/yIxRv77//6/5y/+xb8IwN/7e3+PP/iDP+D3f//3/3e/xzRNTNP0T/y+LVshumm4MoP4eDM8dwr0SqAzOUFHrHpn2JmsxaCmnKmD+aUKtI52zFNQbNoqrZPXhnMdL9ACzNPdyE6ajOQxGG8tF8qaKaWR8OhIVj0cjrhoE4WoEqOjrXkYFZgv4e7K55yzIDdehYcd2/Go2M1Qy/CtH95udb8/YIgkwXkdlGYFdFgqWRU1CGbXVxmbemcz2b7FbjLTWe1uFOPi03EDd/vV7i01t2tehZ/K+B5uYNodtDRaFwvOHD6IDm+Fq1sqNXW4uSPQxoTLcNEZtlvmStFBbW+TS6eNjZfTRh1p2F1MkKk6zGc3i9zITSm18eokzpBRQMkm+r5FNrQ+mImQZYQTIpSuxGx+k9KVLWf6eC0uuJsjhtHlRwOR1bRXzpNjYR0TF3SayK34195tHejU3rMhbt5yI5SCEzuAW3W3a1rHNeEQpDSbuGqjo7cAThWoVe3zbtBzxsVmNOatjbgPblZHDogIrhT66sjYVLGer2zXjO+NLTpIkfkxkiabRpMIZd24nM58+vTE09MLUwzUOZKLt+mg2TXR1D7LWhsSze/Q0qZt4nZiLjS+WyFD24j+sWtWVcA1xNVh5rw3ZAatMpIVrC+yvWAdhB+hs9ZihQCQVkedsTuy1d1rkJtTusJrSOyA9ff9YVdBmjl6RGdpBPtrtEBMsWlrGAbYNlpe7zHRIesYz+Qw9OFVTm0PNzox0Zslk92Ldh8aJGlfGp35KA5Q1Ha93a57t0+hvRt5ug2kpVdar6xFkZNlBM7LR+7vH8xcXLw1Jc9PfPzuG3P/cZ7jknhzd+RumU2u8b/z+FXK2K+9cP1H/9F/xL/9b//b/PZv/zY/+clP+E/+k/8E7z1/6S/9JR4fH/n3/r1/j7/yV/4K79694+Hhgb/8l/8yv//7v//HJmYAuNoJBebjhAsGzXUJpmZnv1ArPXr6PFHOJ6Nct05ZV1xRUrOpQoY3jDrHIZpiv9WGrpsZk1aFrKTJkaItn98e71mOd0zLkbJdKaWwjuyvfN4opfEYLZjQx8jD4xuOPZpiPW807Vz9+baD0G4U92sV0iiEzjlzsmiVrVaLOu928PRqtHcLPh02N2Jap92ANMugkavBghp3cyBnh6TajOINvbCDFY+Whjib0jZ2rzZHKUZyYCxXa7Nuyg3Yww2KbG0GUQidFsVcDFTozVG67S7myZNH0qtzAa2N2i3GXkuld3erxDHsB5h1npY1VOxGHTqyLXdqLyiN6M17r6ugEmjbRmuNXBtRDOK0g8TiMdz+HMEPeGm4H4h17oIfuwwlazFNzfB5lOFDZPCuBVl29fjdrUOs+PihnYlaR6dvxTkMCyE7/F61WEtKQzjfLLOtVbQbm8tsgAyOdX1QooPHq2mBVDu9Z1wTvAp+78SxJ5pCHGQVK+DQoFsISFBuwuWQxveegjU5rcOaKblSr4WeG2ka2rEQOC5H3r77guA9vVz59ukT55cTH5+euZxXdI6IU7YCUxqhrM5xWTO5ZLOJqtlYl9k6Me/Be6H3Yh6CImgrZqOrULolP+wGs9E7E+s6kD689NSo8FXH2qhCLuVG579shRCCGQXrKAQiRqaxUGa8k2GJOPYNalRwQc1E2o1cq+7o2e6TGOS2l1V1aK/WVLsdmRC0QwxCju5277YRXe7ohCAjCsjyxLp2EDWvzX2B1BUdwn5Vk4aUamnenc7kjcCjCqjZqsVufp0B24tXHLWZmfgcHT4qOM9alZd1o6pydzlZ+RRv+8/ryuXliU8fvyE/33P/4T13hzt++OEdX7x7w+PD3W3S+qXd1q84ff3aC9cf/dEf8Zf+0l/i22+/5YsvvuBf+Vf+Ff723/7bfPHFFwD8Z//Zf4Zzjr/4F//iLwmQ/ySP493Cmzd3OH9HmtzIrPG0lgf8U8wPUjw4T50XSr5S8sa1CDFZaFxrmV4vNsV0W6RW8VAKuW5mwtrFor3FD21H57tPL/CygjvhnWV0lbLy6eXC9ZpprfP4uOBKZytXvnv5Qy6DY7JEh2jl5fnE+dJGxLWjdTifr7zUTm+MC3XceNpAzZjVOT/owPZPow+vP2dgWR/sHfGDgWiLe69q1HgZB9JwFNGupGCKepy3m75atP3m5QaXb9Uovlq7te5iPogShLrWMYnZe2hx6g259tv7FuJku6iutGumi2mhzDnA39zHW67DjsrCJXNtY1mtpGRRNVXHjdlHFAyOcb9bhlYzFl6YHMthopaKrpmHebZdiQ/WXg7vRCdCSJMJV1szj0lxRBdwwaxsVPrQ1FgBjSmNsMBOKRuH6YD3EefDyOy0g0Sc0cqD9wQqtdmu0rvJSCVOcK7TeradhjrStNiuRCvbdmUKM94ncBEoBu3UTCfgXcCHSHCVWrPBajKZDZc4vFNqW8dE63BxGmdHY1vPrwQZAoKRjEq50tVIP2GaqOvGZVs5rU+U5rmujd6Udx/uwHVyyfzBH/yEbz9thGBH4ddf/4Ln5xeePp0opUBwuGqu/NdruRFW1rKadVGz99xhjVc3QZsV3d6YJ2vmdijepm+IMdnh7oVcGntsTkqRVk17VduA4BCceLJ2Ixhk86006YOZ+rahBRU/WCkjf7L113srRts3KZbxx5iaQvAGI2ofU779vg/erMZ6p9ZO8MYQdsHjJyuCNunZdWW4x35tWhpxCMkwhbFb885g6DTNVO+GFtISDuw5ndnKOYhjTTLNCylGDt4NfWYgEpEQybVQWialgGuOXpVvnk+cLmdiTHz55Zd89Ru/QYyJy/OJl5cz18tKLcpPv7lw9+ZHfHj3gfdfbXz1Z3+XD7/9f7i599/gIMYu+k906tvj1164/sbf+Bv/P/98nmf++l//6/z1v/7Xf/UnUyjblTAvn5mkwljTD1ad7Q60DlPKPmLb6Z/5ddmN3ulDH9UJToiTQ9KBl7NNUOfzhSAzWo3tdnk+UxpUFb788MCUolFbu9FgcxkpyM7RmvJ8fuHlWoghcHhzZ+dws5s4hkgIjhA8uQi5mjtCbYU5+dtFq90ubO/CSCwdkea94N2rE3Yde7A+ghLF7d6poztTIz+EITLs46YTcYg3JuZOo669EZwJCh+WiXU1B5FeMjEOs9nkqLUP+KcxTbMtjsWgnN2h3oeJSXbSBmxtw48b7/HujtNl4/nF7JWmlEgpshwmW8QPptuUJutMUbai5FIpw9FEx7QtIvhikE8IkWPy9K5MpXF0pvHxMVLrNiYURTrW3g9MyN8cx8eOQ3aHAfd6/bV6W6o7H1DnRofduLlojy9urd1IBjYpioVa9mqs0d5vnb46Yc0rN6erENHgbzETDnNHIQZaH6avo9vuak4kfb/O94NOrDkQ7y2JV3WI493oCRqtNTzVYnW6Hd5dO5qVx4eZe5l5p/f8/BcfWbeVXAoOi8epXblcXygN0pQ4LMFE6K1Tar7lTYFBdmXLtNpoKrYfmyLeL9RShqjamyYQg4fLdh0kDMfx4LishVzbQB5kRMyYOz7DIzJ4z2G42pcubCUPhqoQ8YPMA7kWQjDX9vt5oXWl9V2kO+JTvN172i28M8RkSdEOmrpx1gxW4TiDVEHzhnO2/3sz35m2sDRKMaeS4D3LMqQfahZbzkfT5qVAHYVee8PPE3Oyhq5329+KE+Zpwd8dh/hZuVwv1Gr3jIswhUD0HqfC4XAgxcTiLUnc4YgDUamtU1sjpAi5U7bKORdUYFkWlrtH0uHepl5OuG4QOa3h20okM/nOj7544PHtPfPd4bVw/Rof32uvwt466zWzxGIXjXrDawcs0hVaHUt3VXrZxp5hWLdoHQLEbAp6bDjrrRKDZ06J+e5ALgV93jifX0hSoFpn+vXzC9ecybXxePgNpvhAinfmMlYzeStWuNRYfpfThfN55TBPTO/uqUNP3nsjuEgKZmJae6PpdounOEwLU4ykZaaNtFvnPHR/g0ukXMc+xjGnyNZtf5PHTeO8EQhwDi0VreYYnaLdBM15o8ULJoD2+npgrFdETNz95u7Ac9hgzWQq85KYU+KwJM5bI5dCzRvzYWZKgRSMvJKHGagPibQbiXahXZ9xTggx8uHDe9LpShPPup5IU+SwzHx4/8jTpbDlTFuvLPNMSmZ3dM7K9Xrler0OxlcfjDKP30wP5J3j7m4B8cxdmbWRUiKmyPUiI6/LoNfWxyLZOXTopXam476P0LE1793iPgRvTDzvbeJTNSxqEE8Qh4p18ahNbc4PliWDrj4gQR+CkQwErtuVGBxxmLL2fXHbKw77rLwL5ibeLQaj9wHrOgaEauSD3pt5+e0H1JbZ86NsN2NxIjXbksNCSRkkBDN8fvv4lvl4wKXEul749PxCbSueimKkocv1glFBZh4P90RvRb3t95d0nHSaMtzjMyKO+/nIMhsd+3Q+GTMOz2FJdEZR7NX2od7zME8WuUGxYuuFaYo83B84rWZs20vGe8/DcWFKia17TpcTpRZjxzojNnSFflW8t2DYN/cH+vDfrPVqEDyCCwIh0kunrZkQJlIwMXBziS1vtN5s4jaKE4ond7NrSlPii/eP5A7XrfL89HEkSkTu7hdwkdYa19ML3gfmeeLh/o7zWlnXKzlf8Slyd39knidyg+t6BjrzvHB/XIxdKJGnp68pOdNKRbwyT7PZjCkcj0dSSEzD0HrXZu7uNKqChES9ZvL5yvTygnjPcjySljt8modcYBCPFLR3QlvxfSW5wpdvj9zdzcT5sx2X/HoYhfA9L1zb6Ax87UhPiIbbgh2UqKA+vRazKd1opBenhDBsVEpnmRy1KpfcOV1OzJMnRVCdKaWxro3rmlmCLYarCs/nK7k2XIC398JhVoNviuk3ei1mguuK7aRKY4qetw8Tv/nDO757yqwvxgJLTnk8Trx5d8e3p428XslqCMXdEjkcJuI8cXrexlK6WEKxmKtzzQ0fDFN/97jw3ckcumuulrIbPaRIb528FfJWcUdhvpuZ54mtKXnVQXaoTCEM+q7y/PHEckhE33k4PKBa0KpccsUfKss88eHdPXw6UUvmct44TJHjsvD28YHTWjidOttmO68lTRaN0Ts/+cnJAuseM1IfqeuZ8/Mnvvvmmf6QSb5zPHzB8+XMtl54/u6Mfw93h4kvP7zn29PFlugdWi0gRnAprZm2p3XmxVJvp+Q5pMTDZD/zNE08Pz/fJo31pdyYf6qK9/62s7BGqN2yw3K1PWMQYQpheF36z7Q9HU8b05PDudl2StJJQfF71piaZk8xdmMIwykdT/HmjMIg50Rvgl9Hw/Uy2HOeyS9jlaZ06o04kgsDamwWU+M9XT2le9wkjE0f/bohEkw6EBWne9GCyc+m+UuOH/7oHfePbwnzI19/84lvPl54OV3waroyo+UIjw8LX3544J/9zS+Jf/gN2lbOT55rLkQHSxQu68a2WXN3f5x49zBzPCxoiJzPNk1710hO2cZ1fDpdSdERpsjjMnO6wrVb5Mv9EjnOnncPB67bE6frxuXlyuN94ouHhWUKrOdCrpWczRYsBCMRldb55psT8xR4uJ+5OybSsqDi+O6TTS1gBIqiFsOzbo270JinxN2yUMVzdrDljNI5JHNTKQo/+/mG98JxCXx4e+SyFbRXvssVHzvOK1FmtrqxrpmPH8+8eVT8IXKYAx+fTry8nLhertwticNh4uH+gefLyjfffEOtmfkrz4cvfoN5OZrfKBvXy5m8rdTWSdGzzJFDOjIfF9MEbh0kGKagYKJQh2LRTC+nTL4Wojf/0RQTrSuXl8tg+Spxmk371uF0unA9XciXK2UWtutKuV6Jhzvg11e04HteuB4eH3l3n1juv6IuCY27MaVtU1XHAlPtFq/5xA7dzGs2XVJv9LaaVkgH7ffpDcE7lhQpDaZDYbkvvCmNh/uFeY5mHXM8mQVPCtw9vKGr43QuZHEQE06FTT3aLevXLYm7EFiOB1Qip/MzuXWm48S8zMyHiWmZmKoJeRGzX8lbJgy2XoiCqgeU5A3ia6qU6phT4LAk3j5MNIzO3lqg10r0whRsOV297QKWFFhmc35oW2Pzg1UlgkuR1js5Z0rrzKO7snwxY3PFZK4ZBk+YuDrXSlFzIj8cJg7Hia1Bmgwe69oJyeGc0K8mrBRReu28nE6czytlqyyzQZAo1O1qZJGRNXE8zDw8LDy+makieHEEL5xeTuggr4AwuUjXRiIipZGS5/Hwhndv3hBixHlP9GbUK+JoPzLXCO1mjSVjOlH80PVYcem9Upqaw0TtTNETvO1HvI8YGwOiDG88cfg03yD+ybdBAvE3JprtcGxCEOdBHC8vL6a1GvuRmGx/JgiurUYWEcDPNmUBQh27K6EMmqlqp7c8ROhirvvDnZ/euFxO7FEfAEHML1O8QWA4m0RcWjithevzL3heV9wUuX/7gD/eoy4gHQ7vHA/v33J8c0+YDkiI+GkiHhdWhQycS6fi0OBwPZCmRFG45EZZFXwgBkjDNaSXwpYLzfBDRMy3c7saScQGUcX3RtBMouMZH0Mf2Wol00sbDYZjuzZKtckv187pmkfqg+X8+TThkxnSeksetYY1W6EsdfwaCzUEJA5zaifkXKjOnGWupXNZMyl5am2sW2bbGiUbDFtqB6qhMblxXYulpkebtJd0silYwUfbE9dSuF5OPH268vR0pvXKw91CqRsTE8EnnDeT7VIsS69GoTXzWE3BHFy0dZoOf8TWxs46AJ1aC5fzM6eXJy7nE3FKeHfgsESCWEZbCp7D3ZFpTgRvZJvjwwMPH77gcP+G5Xg/kiF+vUULvueF63h/x8PjwnT/SFkSPfih+7DDUBCa2HJVcZR1HnsKJW55aDoU+ooPNrmUWpkeHnCYMO98zTxkZetC94n7u4lpCuAT/jijKNMUmI73bFulccWnmTgzPPhs19BFiYMemuaZqo6tNHDC8e7AfJiI04RPkZQ60xSZUqBkg0JqrYTW8NNuBYNNhBhMlKfRUS2JZQ4ccjR6a0usl07wFmzZ22BHBc+SIil4+zNnbgM69lw+BlPP904XxoHhbLfVzLp2WeZBElG2zTRxtTbEOabJoDgfDKaMKaCilFzxwQ7ZPqjw++F+uW7kbI7fD3cmsC2l8/L0wraaT1yInuPdgePRGohlM/jNTGU3ymZ2RXTs5sQyWXsxFt8UIvd3D8iAgoI421XECbdMRozvDc2rXWTiUGd7JNszmOar9E7tJpOYB+NRHDgf7XpTGdZhg8CSEkZSh+QqPvgbM1HxaO9Iz8OV24rFfHePxcp3fAj4OJvnnXhcNSd5xa6zPbrd6Shcgol5dRgUt6GnwdzQe4c9DC2dp1vhcs6b3ZgzcbJ5ENpuR2Jg2zKny4UmYrBhTEx3dyY67soheJaHe9LhiI7IjjjPHO7vuNaOOk/uCt7dojbiHDGyYmPNle7U/BhdsBieOpz4+yj9ItRmhAtRZQq2d2rDYFZ6uzH3WlfWnIeIfcB63Y2iUSm1s5bOVireWd5ZLoXWrPg55waUbESUvBW23MilsfnCGtxIxh5yHcHYxQMqvKzGZHVeaE25bsVkG90MfOsw7KWdOa/N3oOtsK6BS1h5ebEdl/eOyU8gjm3dqKXw9OnC+bKCmD6r5I1aM35E5ViuXDUd42ZEjDJPTNWiibQXarM9uGaDvFULqqZ9Pb08czqfhsu7Q9jNu4ftgDNf2v1ajnFiOj5weHxPf3xDnC1M9nP9ln72669Cz/heF667d285vrmj1kCcDsiUDAMfEAjOE2X3dRPmecJ0D2DAikGKaIaBzKsI74awcY8Y+PJHBon85OffEULFOUXxbIPNh1gX43Ljfcr4OPN0WrlshcPsh4mlKe1D9Ej0vGwVHz1vp3uW2Rg9811EUmA5Or766h13h5mf/ORbLErLk1IkxGRead5hpXbXawnznKzYdWWeoxWnJfHNN08jlHEUDu+4S4n7+7ubc38Kjjs/G0nDeabF4ghaHWazMVHV8/H5akGJh8iPH97w7acTly1z+cXG08sFnOfh/sDh7hHEm3ktneNh4qgTL+cNnO2Grtcrx7vF8PzDzHkt4IQ3jwd+/OGR//kPf8HPvv7EH/zkG2KMHA4zX371ni9/+CMejjOtKSEYNPXm4Qha+fhtZ1s3np/Ptr8Ltuc5Xxver2zXEzGFEVBpTgwuTsRpYb6/s4lJFc0rtVbbvA/z4j3AD61UtfTk2jpj02gMxjAbRV4crmdgNBfjVxELaPRBLFrDpyGaBdE6HEbs74d0MJf+XgkpoRKHdMAT+jRYZzYx7Pu3QLhJEnycxnVue1tGA2Lw57CG6I37e8trEx8AR3QmaPdBhqTAJAq9ZZLfuHeRH3dlrUpV4eEucr4Wcm4cW2M+3IMPnHLlcH/kq+C5uz8g8Rtq2aAXDskzpwlRiEN+krfMx5fVptIpkRel5isv55XzdcMziD4IpcM8R6YpMKfAx6cL33y6crrkIQ5X5ily3TI//fqFKV55+/aew5QILvAisOXK6ZJ5Omc6kFLk4WiWX5YuXZli4NoqtXau18y3n07k3NEq1FrZcuF8XfnwIdjfaY3nlysvmK3TupaxOw90It89Xezz8cL7xzu+/vaJTy9XLpcr6yAYxZi4pEbvZgR9/3DP8W7hsEzU0vn5109cLhc+Pp2pwDxPNHW8PJ+G0UHDS0O00mpmq43T6RPaGk/ffuTL9+9YpgmpylZHEnI3KHrdKqdL4dPTicvpSiuNL9/c01vneln59ptvuXt4S/Cebds4nzdqUbxPaLgjPfyAw4ffYvWDuboTmX7Nj+954fqSNHvqeWUrF7quiHNEP4hfHXDJItq74odmRwAJYcSGG028t82KgPdc1409GTVOiekY6eHAcnk2KyFVOsJ0mGxJr8rBdXRJHB6OuCXhn89MlytTcDcCRW0VHwLJCYtTeL+wHGYeHu6ppRCSIyTH3YOjPM6cTxe2mmmXC8kLyxK5e3dvjDjv6NX2Fs57Y0V5MzidXOXNbDANzhEmT80mWO3qCD6QQmCeJmKwA0rCTMEmiG2rTFGIc8ClwPTmYFCFCN41Hh7uub8/8vbdPWuv6MmIMD94/IJlmbl7uOf+cLQpjs792wdismwz9/V3RinvEX+YeFebaUsQrs9PxBhZDgs//Oo9n9aV03YFyXz48MC7t4/8xm/9kC++essUPLTM/HAkTQsxJtIh8f7DG66XlU8vGw/LBK3z7TdPrJdnDscjD+/f8PjuEXHBus1aLKpcK+fzM4q7mSAbju9RadR9Otc+GoaheVOLfndi1lOtKVoNvo28upTUIVOwC87i4F23AmL9K8P02YqOesdartAqjo5Xxo7NUq2Tt/2nCBZpMdilFnvP6/MOUokVRitwDWUr1WjW2hFfLaLEYU7k436Rrdp0pgaLemn4qCQfeJfekavRwJd54nBvRbzWDfGBIJCk8fbtA/ruDbXD1oXT6cS2rcSUSMEgyBg8Lme0KT9W4ZLNBR+1AMyHDwcr/utKb0ZzDxHefjiY0fEULXVbOzE5vvzqC+KUEOf57ptP1PWKQ3n7/pG3X76ltsZyTFzXjdMl8+lkurF3j3e8f3vHD798YDne4WLikq+4pwulFI5vFt798AuCCyRvekynjeCUu4e3+OQpvRFmz6tY2LK/QghMKeK1MM0L87KYPu0Qid99YrtGlsORZVl4fPuGOSXTltaN5XDP4W5hWibOTy9czpFtW/jw5XvCHJmXmXePb3j/ZuJwPHJ8eIOLgaqdLW88BI9gRsUPKXK4eyDFREIoTc0hvpikxJ2vlHricr0QovBwf+Sf+3P/HDGaYfH7H/0Gj28fjUVYMzUKc3BMPvAQhWXypEMyo+0pmpzln/oY98Kf8PG9Llw6oITWO7UVOwDcoCbbOmTER3RKbQTqq6sGyQ4u1DqgVoafmNJasYsSSBJNZ6SeNHmqBOu8XUICdhj1bplEwYOPXLbMXCKdRvLm3NBVycUglyCWJTYvgWkOxNmNDtt2WOICjkbJftjJGE0/RWGaAyGalVB3bsR/ROJwFHBAUrVMsWQ2Pvf3CzXbyO58Ivk4NFuO4DsuCD4uFNWxc8pmnDrYfxosplx7Y3aOwyHZ9x9Gpmmyi/P4cORwOHB3f2csO7XdwzxbSqyqMs3e6NoKcUpmydTMMUFzZJomDseZkOx1v3t7x5yULz488ObtA2/e3DNNAe9GDYjeBJpBWI4Tgjm6u2nhGAJtKzw/X+g1kKZAmhMhBkKYSThy2cjrZhletWGps+BdJ/pgLFMvZlI7CpbAEFwzFtoKw4FEBxRN390MhNtsvAuDaeaGoTYP6aBRG8HCCuS+dxALpEK13XZUvZvZsIjgB3SmutsQtVGkBNWR0N3ta52aNKSjNk1iZrxxUOyh0dV8KZ0oTqvdD2rRGuJtxxSCs5SE0vBVSSMFuKuSszlGuFHgw2ThpFWF491C191lPBIH09U5R5JAdI44Lbzkq0kHWqW3YD6K3nP++MR63Qwy9h0/RXwwqcjhaMSrafJ8+PDAfDjig8Ht2+mFXiuHu4W7+4OtBLaVLWeOa+VwKdTcuDsutx32NCdcjFSppCnYGZA8y+GeFBNTnGi1Wk5fr8T5SJhNu7he3xoZDDFo1/khNYGWr8xzGte44936gA9CywfuHh45HI+8efuW4LxFsaxXfJjG/jsxBcfhEMlbZqtCnBNpStwd7zgsnnmZmaaZeVk43t2Rt2zegyERfeAuGDoVfCDB2N0qWszL0ccZ8ZG3LxeSE+6OB7740Q9JIZLmhYf3H5inxXxFp5UYzCgBVebgCMPlhJsDDL+sPP41Lbu+14Xr9PxMm8TiRMQAG2mdMg6fgGNrha0Yk8hLJTohOg9To1Y7ZMRDFMzhWl8BuI5NbqqmjJ9SYknBdhlp5nR5Nop2NV86M2kWoBIDzFMw01OxfQpSLc8HNWfw6BAtXM/PgIkFHcE693xhOz3z9PSMr43ghRiVICb7b/RxOHSi60QXhvxISaShzzId2/Ew09KgvaaJFCaST1bdd+eIGJCxzG/JE2iEZEUBNdPfro1jCBzmiEN5/u4J55TjwaK6j48HpmkZNi8VaSNGRCu9GFXbewjD7VtCYlsrVYxU8Hh/wPlAcML5+YXHhwPHw4+gXpgPd0zzwjHNaDdNkLZKvTbW6+UGlYkY7j7PjvW8cTldeDqfCcMrLXo39mxCSAsZgWqaJWcSoxH2CGEyUS8+4avppHqvY9IZbifqgGJTmneoS/Rukym0W55UHZR784JUu96cs9TaZixGnE21KkIThUEq2uc7E4w70Ga7CDFBfNPhyVgbKsUMktXTXKPXbpZDNMJ4gxpKLRYe2l0n4IyCPxxJVKpR9h2WvtsMMpbBtPQh2n0jCgMmjXFAQl1MR9WH9ZYXmjZyMYLCMgccgSZQto2tGpnm7eRZDjP39wuhG3TqnVkV4T2tCz8dzhCFzhQ8IZpl0nbZuL+bmafI/d3Ehy/eMi93hDjxeH9kPb2Q15WtmIGwOOHDh7eUWihNWYuyvmw3L8qdtCVqaQhTCogEHo4zb95/Ye7q3lK8S96oebM9VPS4IPwz/8yPaaUMiYJQijUhtRe619F4KkHghz/4wA+/+oCnMh3uiWkhpTuQRi+ZfL2yrpvtoUV4/6MfWixKLpzXDJg0Js3JHH1CQKQTQ+Lt23fc398TfSSmmRgSs4+mOwR869Z8qaB9X2nYZ/3Fl1+iWyG4wA9/68+MUMjEdP8G16CHDemNS5xMB5ez6ctQes5G2KomN/qnVS4ZsPmf9PG9Llx/8Ed/xNvHA0uaUSake0JVarIbzIWItkbQCScTm650PE0cXjwpeBORqulDQPB4HlKk1I2cr7x8/DjCAJVUQUeiKBkO/sCcJioNrwXfLCb7MR14tzwQnKfWC7XZ7R2mCS2Ka43UM+fzageA87x7uGc+TqQ5UYrjj15+yqfakTLxEAPvD4/86O2fZXpzP/ZbnS1f7IR1EdJsxVCUqBUfJ9O/aOfhwUSAwXvL2hK7EWNQ6EYZrx26b0jqpGSWTL0NZwpfcGrd+ZImOyy7ctUrb96+IXpnSns/2b4mJCLNnMC1A5HSzVrqsNyzi8NrEyR2YmhMUyMdPb2bofHz5cxxnri/n7g7JPPWc4E0HTikhd4y2/bClpWtZkotLLNZCPkE23rm48uV88uZtRQOy8wmkW9eMvz0I+/fed69PRBqAyZCnMy1vfSx28z0zUETfBJm9VQVigrSYYogXrijU9pG6xXqHjMxmGvVkoxpxjC0ct/p6ulZ6N4jXpjUbsMGePXo0HTduzRiWaCcK3GxvLNEpKi5ppcmtFagdlxVmhc2geqU2SkBT8BT8Lf1bpTOQwzUXig9s64VFwrON1yz6JymjSBDoIwi3bGVMmLdAa94AsFNUDolryBCDBau2FqllQtbtR2PU+WL+Z4cJup9puTG5bKS18x2XZGrMe0u24pOkZQCxykyzQ7FvEgfDp3ZrdAKd8FBmMmt8/H0wofHOw6HhePdgeDuqCVQqoMqTCkxhc6UlTYg2yk2loOnNGXKnZCK5YE5uFsS4iKIZ7rrHO9N7xa8R+vEtXpOCmEkq9MXULNYolvumosQFGqFqpXgOxMNWbC4HvEUqSwpMUVzpVciXR3n1Zprp8GyvZLSxfLs4J7lkDgcPf68stWCc8LD3YEpMhxbJlw8cTebTnOO5hQDjpbLiFFRtKwoHtQIQnJDrByHhy/I5xe0VFxIhDgRpoVpecR1g9iDCzz8xoV3H3/OV9++4Yvf+AHL/YJKp2Jesj5n/LzcUMHPTTR+lcf3unB99+23aF2Z40yfEniH7w0VY+HEGMlVjOYJXFsheAjejenGGENbrSQPIQg+BbwKuWbWfKXl6w3LF4JF2w9yRFNzimi5gFRCDKQ08XK+MKWJKUVzDGhqzLLhx9dqpWwrH797MnaRDxxTJERPiGn4sXkro+KJPpjtEIFeh3mwE2Kc8HHCxxkNM35AP4FRuMThFWSaR/rvZ4WLQPQ6WHKd0iCqaZikmU9ha52SG6H1UbgaU5yGI4miW+SQbF+WpmQQIB6VSNA6NESmFfHDEzGM07MrlAa+ml+epxGdpzUl10buyrLMHOaJu7sD61bQLngXEbXJ1PvENDukBJwvwwllqJlqsYk5Rh4eH5mT5Ya9nK+48h2uWzjj5fpCLo3ahjFpMduhUrLpV4LHp0R0RlYp3dzxzTIBpFaqGtU/eo9Ls9nziOOa27AHGtO7Gk2oqu1pnIMYIjJc/e33xeBG6Uipr6bBIqT5gA8mIl2LuWQ4MJ2R2k52RxucQJqM/NC7slZrIgQruF6FRiP3gvThuh48Th3XUmm9mTHrvltXyM28/Zwz89ngI14CtfXbntLHiV7MALm0bchMhrtL6waROnNb6LWNQNCV65bx6ogpm1lvilyXxPEuEVNDwgTdEUbmXErOEn6HifLjwx2HZWE5HvDxQB/3Ns4RZPgGJqEM0bfXRpgTrRsBZSoYbCqdZQ7Y/zmmMRl5B945RCKtO2qDoOX2nnZ1VIMXSCNORTHPTt9MSxcw0T848xLUyhwDUwzEZPZcvTtygejaLYe6Jh1Ts01SKS2IC8zN4WrDDeeMFBnu+ZYIEYbBwDTNOAkoQpVK8MYQVDGBtOJvei5jZVu+keZsjVNtCAUfEiFNZgRcPFoyfpo5HO94fHzL/PCWsByRMN3WAehnRerXyIn/XheuX/z8F2yXI148xZlrgcPGdnFmXFlqGnYtwrXZItXbyY9FCCiXrXGIBvX4lHCilNZYS0HLiTUrpdpOxqcJHyJz8pSq1GpBeDhlmiLLZMy5ZZlY5olGG/sRwcUNtNJzZns58/Of/ILWIMTENClvtfIgyuHODFDd2CfYhWa4/Eo32NALy/3CsizMxzuaRpyao0LAaPO4QCOYWNUZMzGkCSEiGnBu9z80t/KquwWW0aFb6+RaOTaxJFQa3puYt3VlXg2eiXFocVqnN0fvZvZq01Y3+6FhyuuGHZMCpSu1uUESqHhxw8et4Z1nSpFpihyWA+jViANDaGwGpollmSyTKReenj4O94tGqys+Rg7B0oyDVs7nlV98+0JpV8pl5fzyzHefPnJdV9acyVmpzRw+tlxZkhuTe2JO/pYUG53ZKpnTzYo6Twie+2PC+cUYfQLndUBpoqBxmMUquXZjvmo3d/ZWLHG4NBz7LsshuiHeQj/vlkAIdyOPqnFZbV8W3CC6OHOrWqt9DyeKqEPVPPpOa0V6sf2vS8QA6oQmpiszv0Tb5Vyy0bXnYB55YHB51soODW65kcakUBtGJEDAzebUoZ2qau9Vs9w07zpxssX9cXKczhsvp5VPT5+ozyu0bhl3Yg4yx2Xi7ZsDd/ePLId7cs7G4Bzm09MUmV1gnmbePB6Y5ol5ORDmA70LrYJ0f2MZF3WWIqGK10JcZvM2xdGax6kVtJhe8wKagh+xRH74W/Yu1CL4nscOUqnqhgt8x2m5OaBYMoEYgUcrLgwXRRFaa9ZIB8c0HxFvE1ctYvewQBCMwVoNsp2iJwZ7HW0aLGNn71eMYo4sg4LuRIf0JQ12n8NLtClaG0pDB/oiEu3+FJu4ykiQ6F3J20YvFe8jcbLpra2OcjkjPjEfHnj39kvmxw+EwxtcvEO3bAVxuAMxJBq32rUTiP6Ej+914fp//6+/MP1OHXqjcVNZeomV+yaRGCNpipyumZxXSskINl7HZB3U5Xwi58K2lZH744jRsySbArrC8XhAvGl2limSs+k9unZ8NJ+0ZZlYc+bdu0ceH+8AI4bU2ijbT+mtmN3SWlm3K8dl5uFw4MP9A+8fPnB/fEvTwKwTS3dMrVPOZ06l8Ascz9tqGVYqfPGDD9y/eeR4/8ByPA7Xi8bsKmk52kU9MGjBIU7R2eFcx7lsouhxGJlWpZr/WR2QSu/0Wq07U6Wo0tiGm4OQqPS1U3KF0s3gs5thqXZzYHDacT4aoUWVrZpLuol7MVeHrpSu+J5tUnaeiUy/blwusH18Yl03cs5c143azKB0mRPvvvqC1irrtvKzn33LvBgJ4+Bn7t8Zs0wIzN4zLRkNB37yP/8Bf/iLX/Dd84nvXs6sa6aUMog6btywg5mqdlQv0zQOMqVs9hq6mp2U97vPo3WX1nAESh2eid4kGSGYl2QujZotfRftHJfZDosG63o1Y1k1HVIY071qt6gb75mngMnddHhTBiPJpMC6FvK2UUpGu3I8WDR86cJ6vVBKpZZO7RXvHDGGm+u+946Hh7vhnG8YZys2NZq8xBk1vjVyqTzcHzneHQDItZpB8iVTq+VreXEcljiywsZ0MU/M08RxSeQtU3OhlIIrjegCd3HCT4HgBd+U9flCvjYknglezCi5Nz5ROD48MM0z87zwzeWZGBPTvLDcvTqS924IhAMIxjDuIxIoJLMyEwsfu0lgonRLOXYG+ZYGqJFsXDB/w9psx2lNVxtC9XGNF0sqFmffuzu9/Zklm1sCAQ6MIuMoL1cYHipbrdAVr52gjTglsyTrnVPtOBdgTFBtoCRfV4M+Q0rENKN+COZbI8Z5RBnJ684eiKK4mOw9GJUlpYU0HZDYccnhe8BNk8GP8x1uWvBOUG24KRHujsSHe+Kbe5MjxYBGwamMnd8rHf7zMiW/4vj1vS5cH08ny97Z85nGTdU+w1MljGDBkc/jvTOh3UhVLaVSSud0vrJlU+KjSoqe4GBdO7tws+RiHZMT1m4ZR/Ca0WPfb2D63pFSxHthe3pmW1dyMfNSLY1+WbnmDRHhkLfBjhJUK9/94ls+fvsNT0+fWNeN0opNIeGFrM28CVX59PSRUgvr+Yqbp5sbQpTCMh8sKyymwTy1DnKZJgtz9MONupmg1qmj0m43dQODC1qnih3SBsVlM/MVE7JqN6aZ8wFpBolVQIfJqfQ+iCDGAqx1xJiII4i37z2YddRslH7vWau9Fssuww7b2lhzodZq8RUp8HK50npjLRtPTyfePCzc3y8sxweW5YA6x+l8odJxTri/u+NwmPj0cmLdLC6m1kKpBb8zFJ03B5HhcalNR5yMOXtfr1cUc0mIIZkTuiqX6za01EJo5nsoAq6ZU65iMgZxQojesqQaYxpt1Nq5rBYf4L3jmBaWeSIGz6enZ8Q1aq/03mzfoUNm5itdAzqaAB1wrKqJaUtr5NK5XK5madXG/RADoKxbwXLZLNOO0VQEj4U1qlGXnffU1im1UGtnS5kYjRR0vqysw0pMex+FSyyNGTWhbQrD+FkpecONn/Pt4xGuZSQRGWlpmRN3cwKpXNfG9XQi907eMr0WEoWHNTNNs9kOCYizaJW75WhFVkw4LL2YtCXM1AHVllzBy4B1A7KYCFxbAy0EMbaii96mnQ7giN7YsbUPGLw3pDe8mMC+Y99bBuQWXKCHQfZqO2HHEwYjTHdWEZ7gbKpf+6tJsGuFJc023Q9BsQyxeHCR5gxGLHkjRggxMqUZNwXbM7aKD5HoLV09LQkGChRFSXHG+0CICQSmaWaZDojzXJ4v1LVy/74xpSPOJ7brhRgCvRSbXIcDjQL5eqauF4sQGiuR1hp+JC+Y8clnBetXWHR9rwvXZd2Gat0PkWRny9UCAJ1RM2OMhD1RdY44mRE6fcQWtL7H0Q9oLlo0+zIZVFFKHaJc+57emV2RqhKidcNBHBoiztvXRCcs88TxsBCi5+npxaxXgDC62VLNJcCHzJYz4gWlUcvKNz/7Cd99+zVPz0/mfVbNQy+FYHYZ4yI4n0+0UtjOF2owt3h6xVM4TIuxv0IEtUC5psohJCR48A5RNXf0VgnqKW4EVOZK7m2EzQnF6c2stbVMFI8Tj4aRi6WKCkQ17L6KQCu31zO7GfFuBBi2wf4zCnTzQ0arzeLpR+HKKjf6uHZwajuL/y95f9YrSbZkaWKf7EEHMzvHh4i4Q46V1VUNdpMNNgnwqV/4/x8INEiiigWyxsy8Q0R4uJ9zzExV9yB8EFE1j6xqgp03+yFQduHXPc5gg+reW0SWLFnrXpVWt6PX8vZypahJR9VWyaEyJuX5+R3TONEQtvrZSOkhMY2Z83liHE2N/3I+WWWzGVXedBSjGWKqBc5SrWpurRtRp1RCiqSUuZxM97D3TuufTfbHqcCJx79DTtZbDZE8DqRgQs+9FJMeao0YGstqs3nDOPLtu2fePV9sYLq2g2rfuzoz07LYNLhWogTGyRTF6SO1lmPcYPdpEjEx2pyCzV/NI19eTLoMYNuqoQpRCCnZiIdX0DGbDUztjRj9EFJFglBKZXMTzb2x0RW24lJfntjtwb8ulXEcGHLk4/sLPW9sa+W6bIQkjFPm6elEbQvLemW533hZNqfDF4Zo92PIC5KM9qJq1f5lmNAYzb6nF7QW0M4YJ4oYJF62jYq6MnpCTskTs0qtK1kSKZhbd63V7VOEMVilU1TNcLJbBTiQ0Wgzcttqg/RBAlkyOojLbhkzN0kkhQRDONa4DX6bR/W9K7TNkr9aOKXRpd2g1g31XtQUJ1oyiHJb70iopBAZ80Q6jQ6ZF7ueaWRMA/O7kyn/ayfTmfJEHiaGaUaCifGexgmJE29fbtS18xvgfK5ISCxvr+g4QTdPuZAz4iIGZVmoy0JbFxPQdjsZxaq8nylo/AkzXPALD1y/+fgbnk8TlynxucJ9Kyyvr4yzTZl/eDozf/MXtNIoy8LTr7/jm/cn3p8npjDwr//1/4tPP/1Emk6st5+QEBhO79HllfPlifcfPrJeP3MtndvWePvphaWZvXXQynAaGfPAZRjR6RmlQTdH2D/77td89+1H3rY7MV0hVAhC3Yrpuj2NaOsM08THpyekBa4vr7zUT3x++ZG1FTQJIXEY4600nvOFECzDGSabvim92NNXy2wu82jEkVrJkqj3RtCG0Lj3Ox07VKQpIgZWbK3RCPSuXnG1IxmQaATaJDBmMZKCAnHwjBxElOKK/CYpKN7eVm4sJuKqgd6Mso+Ybp0EH75VGLJAE9MfjOOuC0MUCMkkYRudoslmhKLS6939ieAyT5acDJHWb9xvLzSNaFHeysa6vfK2XBnDwLcfP3CZZv7sX/wPpuXWOkv8CKUabDaPnAc7nIsm3j59MpNLhe36PdPlPXk8Ua8vnD98CyJ8/v53lBDY1o376xstZcYhM4+ZePpAud3opfDuu2/49TdPnMcRmvCv//W/4r6sxDyR5M7l+SPP3/yWb06Z5w8fyOPE3/7bf8vr/c7b9Y2//4//iRYCKQfOU4Lhwnq7c399YX7/jneXiac5E3rk3/37/8BPnz+zNSWHyul84Ztf/yUfpsj7Dx94//Fb/u7f/1s+X+98ud343X/6exu1iHCZI+fnd6QQCa0RTs8s68Lt+kLbNnKIxBDpKTCMr2ylEsczfV1RP7Ra3Yy2H4T388jl3TvGy5nr9TMxBYYc4DQS8om8VYbblRwHbrfC9eWPaCzGbJVuItJTZCTwzZMpjmTJnOPE7W4Cy0NS1lbRWgGBBslR6XtbDGJTYIMkjUbh3hd0s7nPoMKQlNILKxC3ge5MUwFeenejGCF2nMnbeWt3CNGRGSVn6KJsekMWr7zVtUalsrERGdBqG8actY1QpGqK60mtS9TahhBIGi05VDM53eqV0BJRhBlhyIOLBlf6ZnOUsdu+bb1wK5X7ttjohsA5BRa5E4IxEbPgCMLIy/XO95+vLKXxL7688pd/8Zd8Vxrn5++Iv/rOkvY8EmJmfnfh6VfvyKdv6KeJEjpxOFlAc+WMP6Wf9V96/KID1//4f/w/8avvvuGcB9r5Qo+JUApxGkgxMoWAXj5S1kK537l8+8zTPHIaMzkNjE8fuF2vvPv4AepmuPY0c3b1hvlyMvO8rXDfKtcvr6zNhWTvN0j4vJjAeHIK8ErbFr798J6ny4Xvf/qR91/ebAg5JUTNInxOmeuX93zzdOavfv0t43xyPbROyoFff/eePxu+43/47/9b+vLCcr3xw6dXhng6MOmeqqkV9G5eUslM8nB1b7Sjm8OT6tCGKkkiIQY3OnTPJYBm+o4WqDAXVmz2KQhuQ2/VlcCxmcXZVKImCJvcbt0ItupD2qalpxG387Dh7SEmg7vEZ+bA/dJkR6zMyaPbEPacM+dxJAaDskIUegj0mDifTzw9z5yfZt69ewf5TO0BYubL641KYGzw8f03nP/6wvn0zIc//2fWP1Ao+R26z9kNkdHwJ5oE1rebze+FQOwbaZwJOUMpDLMJ6N7eXilYI72uGy3uQ+GCjDN9K9A682XiNGajV3f45je/pbVGHkbGBHmaGU8X3p9G8mDqLN9+8y1bN9uY28urXU5c/T1P1K3QlpXxaWLKiSEGmsJf/8s/cLvekJwYg5gSzOWJb5+fOJ/PzKcTP/3v/jvupbCUysuPn+k+0Ba1MsyTsVEVhvPFRZ8X1mVBW0Wboinydr3ZkP84QzG4sGunLQu1V0qvzAFOTxeG08SPP/yB6/UL23qjlzdCgdDh24/vOJ+fTEWkF8JQuN0XbreVdTUty94bk5hDQ9TIRDLhZ8Qpt+o9KSNlBSwYWCPX1lZKUKi4e4utM5GdLErYC8dq+8Z+Sw8INIhpfwYUUXE7EFPUMX3s3Sakk0SMpuDPuVsr6WrEqIf4nM3wRbE2RVAIXVAPekEgJncpViUo5F0AmUDM4hC3yVeZ17mNL+z7Kicj8qRggcsCi5Ezxmjec3sHKsXIoCZgvS0Ly+1Ob7YPRYIFyXUxNIBE1Ugno5rZrhut9N1+zc4MJ2XBkZP+ox+/6MD1z/75P+fP/+w3nOKIfPhInGcmQIZkDZXS2IaTqTgvK5d3k/sbBeIw0kiUdeO7X32DNBO87Tnzq/cfmOaJYR5otXPfNsPv73ezRSiWUW9to2sz36U0UIuJfNZt4d3ThXkcudfG5emdGd7lgRgqYwo8TzP3U+bb52d+85tfE9lsGr3D5XLi8v6Zy9OFX//q15TrZ14+f2b4D39HXb03glIpphyiiq6PJZGC9fmEQCShQRxyM5egHA2qMAuuQOuVVBul6sH+q11c/byRs5lN7r08cahSMWdYq/qVHixwJonEZAeGsLu12oCrsYls0XZV5pzdlhzry7CL5QwHFIYL2sYQzFdoyKQo1sCPIDkjeeR0mTmdZ6aTyU41GaldEIncNiPtxK0znU58++vf8pvf/iXzx197/y9QhyekGZ8sJFyVwgJX34qxOVNgCAFJCUmRIQRrQKsJDa/ddC6l2/XoboWuKSHdD5vBbFJM7QJOT+/tE+fMmJLBuCnyzfMT5q7bGIaZ5tdHXJWjt04rhR5N1l96Z5iTXXc1wsv7D9+xrRvDOJLExjI0Bv78V79inCdSTnz3mz8zhmfvlPvqqh4dXVfEHReSBKaLSX+1Wrktd1uvtdJD4H5fKLURhonUrSemotRlZSsbS9lIWphOM3nM/P7vn/nxxz/w8vKJ1y+KLJVBApdp5v03v2JIkRyVPFbeXndbjzfu95Wybei6WA9RI7mbj1XDDFOTBoIGIwhEAbVAWrqiPfgpauzO2hs1dF+Dvg61IxqcJCMuYOxS3d0NWCXY2uvWlxbMiaIjJj/lHfAgkH19i8g+mWP7pzt3UUy0WrB+cQoWQEX3r5lQdCQeHqY0q9JGF8kOgqm8iBBFzHvLP0/YP3IIbsIKKQhzssFzkYgwMCbb163BuBmbeOjCfJqt/+mVoUTxHqpSq5l+hphtplQySjL37K5/WnT6//H4RQeuX/3mO775+M5Uy4cRlQFGm3ZvvVOast7MVHA4XVCJ3LZK7ZVcR/r4jmHsxDTz5fUnlq2wdniaL8RxJGk0uqwILSUuH8/0Wmmlcp8vvL5ZsztIJ0liWe5Ii3yY3vHhwzumeeDTjz/wNF0oc2FNkZyFIdlg4ZavDKcLl/e/oi+fSadIDoHffveR6Twznmaenp8Q/pztduNXv/4Vf/v33/N2vXG73YnBPIymaeT++UZtPjfk2VmIkZxPlv22hjYT9o2epYkItRVqK5SyUr2yaa0ZUaUYC5Njs4llruomhnlgN1qspZG9At0NLfe0SmhuDW+KCHt2KjSGYUJE3CZ9OjT2VAZ2u/btficmG1WY3r03p9oUGHMwrcVxJkzmSTVOplsIjSaZ2i0DvZwubFvnbfvC9OUT79+/Q4L5KpVmiuXr2phTNIoySu1QO2wqJCK5dtJSKdsGMZOHgd98PBOxILw2+HRTROCUE1SllM5WlLKYYOuQAr3AtrqVPEatFlXWtfBTX6kdVALPp7NT8zdua+HW7OtPYyJ0aFVZCtStH9qT0k0T07Jy6GFChkRA+PLlC8uysW6Nb58f1i5INDUNIuPTQFAQ7dShugsw5BwZ0mDyQN0gynSxbHxdN7Z5M+NSDcyj9ZQDBmsZW3clBhNFhsZyfTUGXxpIAtcfPhG1c5oSf/U3f8W7D+95fjYR6O32heXtJ37/H/8dP/34A6+vb7y+3JnngRQytMwf//gDqkrOifNpwhRGhN6qweTuNN3dhqe1xlo2mpNdFHNcABu6r7XaTGOMrpsIooLIo4QQseBjfaqKitsM9Z20pUSq/fg+SI7JuHl70Mg0CiFExuxmr2bKYizHkMhRSNF6bq3BIsUGmofIOI6EYNe5CuCJVMrjvmlJQ2CaBvKYGU5nNyKFhBmUpjSQ8+xjQrbHnz/euS1KI/HbP/8tQTKnp2fG54kwuLsDJtwwnCaevvmGefzAeD5bPzdHO2tSfCSg/4SPX3Tg+unlDRErY2/8SBWDnYbBZhtEBMKZEEwlfHw6UYrRb2t9QdTnIgT+8MNPfP78hR8//cjnTz/w/tuPvP/uWyQmrneDUS6nkV6qESKWO8t9MWHPFNFm80W9bnAambeZmO1A2GpnrR0ZMr3B1rtBil1MK0wr4+XJKNsRKBFlpdy+8OPrH7x8tzmdX//2V3zrlPXoRBLRznV6pWzFek4IOZuw55BP3N7eaK3SezftRHxTdCVlAckERmv+9uY6aJm2JerqNhitm5i4RLO8CJDzSGmd1pTa1PynjGpBqzaEGUL0qipZ9dIUDREJwhDMiE6wbC6MZxvuDpE8P6HVWFHbejeblGlieH5vsA72HlJSJI+QB4Nx8kCIAW0bjYQ02FpnGAMpKpSNz9+/MQ8DwzAgHyLXVVhroA/vGKMdxiGbn1VVoZIZaGRREp23l1fuy4aq8pd/8R3TyZl195Ufv9xRZ6UOycwVjU1pDLoYzFqjN2NNltpZ14WAJTRDztRSqa3xzfPMVlfu28Lb293mq1RJQcz2A6usWsMHzAMxics02QjG2/VKq5U5Zm7XF25vb3z56SeezgPvv/nA/HyxoLg21trIyaSFAtZHqaUZwzCZs3brzcZAlhvn84lpnsydtzRKs6p9GCxwxd2WZKts68bllBiGiITGT58/c71dKduKENi2BgGGabbZtHLn+lJsSF4rEuDdhw9or+QYyXni3bsnxvFETmc+fvut6YvGSE5i5KvW0WoO59qrebWJ0d5rbZRu5IreCovb5mjv6CW6C4AiKToF35CGHXbvrR/XBrF+GcEqrq14X1iUrC5u3ZzkE7MlfWID3G2X5JLImGzIOYZIKf1wlbhMmXEwI8frm8lkta6cp31wWShroyajoI+juTn0Zu8zTonTeWacBkiJXjekm/JJHjMhZEIczfjUwE/bQ6zUZnAksq+x5GiBSc/hkCjdrJhStARAS3Mps370txwp/erxjy/HftGB675sXPOd7XbjJpWNgLbKNJ9JyewdhiEhoSBbgCGxlWLzQGthHoxZVrpy2wpv94W3tys/ff5ibLxhhJi4b5WtdJuNqZXuyhdlKwBsIpS1gnZiUPQ8Aa6q3Sxr7xoY4mDKGc20/6QFY/v1TogjKduhiUZqM7Hfui7WrA3RjdouZkEhmZiTbcZthWJUYcObxVlzmSEN0KszoxpjCmasVxvaGhoTBEgyUFolNEGrwaZNIKptrCaGV2vKPsRtWWBMbtnigUvVFTfcFTflzGlMBz5YazcWWPSKKbsJooKMZ5esiQzTCXWh1W3KzPNMnkbS6cmo85gcUYpATGjKqOIGjYKqGUAGhzZTNKHTUgutbizLndvtRjxtXO+dpUBoI2XfoENkK820SGJnaZVBjEL8+e3O7brQe+fydOLcByTAl9cbL682ZxcDTEN2oVFBm2/eIOScPFN3ev1igWscRqamR+C5LSvrtnBb7ry8XVnbLoramHJ2QVOF/ugdxGyHrjZbZ28360G0aCMf9+uN2+3G9XqzAdwUuS6F22aBS8T7JoIf6l5tiLLkTOtWAUrdTGlEMB+14lVeU9ayOc0807D5vloKMWS6WsWxlep0fvMAa2o9mGEc3Buv2WhJbW7VYUogOWcbW8iJ+XRini+MkwnfdmeuBZp5yRWbh2plMeHsal5vveuhrGJ95ULgjVoscMmQrR+G2qBwsiCGCAFDL1qprFIM+o7i/VDrMQ2pHYEraXJvLDsHasjeK1OjlXdjiXaRw+AxSDABcK/Snk8j4zCQYyaGxOqjIufRVHwUYYuNNgTyMDDNk72X1um9Eybr/47jaOZN2aDtoMHUVVynMjg0rt5cbrUSSiME81GTuMOE6oohplCUUiAPgXHOpMGStV34Wfv/NljhLzpwbfeNkhO9FWTIRBGjoja3QpdOmpptwNrRZaSXYiKVrfNuPnM6z4Q80EJC88D49MQwTsQQ0dqtCR0CKcDt7Y3QDUbprdjCa8q6rFxfb6QYOM0jp9PZbRUCZYPaIjBymj5wu75Ry0q9bySJtBrc86iiZAiCxAbNhmHH85n7zfoIMkzk04U8XhimM1Gg1Y263qnLgkQLSgjM02zwgkJ4PrEV682d5pntdqNczTurx4CGgEhk3d6opdO7jQUIgjalLsWw9SiEZME+iEBvZikhgV6VHKDXRlk3cqjEnEnjwHw6odUy3nFQQragOk6T6bb5oGaLkynjR3NhlZQRGQg6cb48kYYRlUhv1eRqnHqOuGo62GGoJj4rwXsEiAfIxNu6cpkSPSYagSEk0MVUDLRStmKHZJsptdKjIq74XwXGINxrpXo1aVJGoK2zXY2x1bSxLcX6ISginRhHP0iUmka6muROyMlEhtUa8L1Ws6YZBlOI3yr1vrFcF3Qwf61tKwYVBhBpxDDY4HfrpDoYbKVeAcRkVYAG3kqhoIyXi2kqiqC109aKqGX727aaM7MYpBdDMlhtKWbm2Cqlbjw9zUjOaIhUAtV9ssKQKds+G7h3egxOL63AakxTCZFpPpsdfFmt15IC02UmTwMxQi0L27qSYrS+bE5Uba5NiIfKyAABAABJREFUWQnB5o/SEBlOH03Y1Yfw+3qnF5uT3Faz9em1QfOg3hOye6+1Rl0bPVl3VXJCvKdTtg0GX2dOImqlst3v5vvlYzLzPFoi2Ds620I0lwHo1Wbg4phdbNn7W6o2TykB7TDk5PtKSTmbXn/rnM8nogSCKuPFFERaa4w504pR9ccZdBrI48Q8n1jvN0tmRJBBOJ3ODMNAKwsxDQbP0xmGE3Sllw2JNrBPCAwD9CoE6SCLsTkSJl4gHYISojDmiPZMkIGnDxeDnZsSboOPQLSDCv+fh7B/PID4yw5c20orgzUug2UKKcXjIIy7nbm4FIqazlx25twwDHZAqLmdJjGX3+Q/W7cVOoQho3FvghqLSDTZFEgwaOTazRZ8zgOn84n5dLJyWwzrTW4DbpJLgRQigzRiGljXQnx3JuSBOCSGKSNLppYF2kYa7DZ1hFYVQkXDRmgbphrXmS5P5NPF9cGEZCJ2tPtiTWYxyZrp+ZlhmmnnJ7RX1tWUDnpr5GFAUiJPhsG3VikpIrIc11RCNLdfUYOgzk+AsFxvDEMkjKDzTDtsHYQhJzQE0IGYAzFkQkoMQ6I1YyiFFFDJ7gAcaT2QhmT3rbVj0LFjbKl9+NtIUEa+D2r6fyKm+L9LzUhIhBwIKRPFstaUxgPq7K6yUnzuTEQsm8QOmG3baLVQxXp44qoJBINc19XMMnEiyq7aot0yfPPtcrhJsR5ht8BVqg15W1VW7DCOgZSMkVnLxrbe6XWjB3FFk0bvcig3aAp+3+2/rTeo1N2YUqGu5jeSCIzTyDCYk3ZZN1pZ6SFaAgOWApiQHfuYfQhCWRe0d5LANI/M88w4jFz3wWsnAAx7xdJtFs9U0hs5WUASlMv5Hdt6pfTCOE1orZSulMWMWHMKbhMT3KPMiD/DODOOJ+q2eHVuFjVhnO2QLCvRVSnIbieCMfSqGLwO3lPF4Svt9ropGophl5LeG+ttMWsWlG3bSMm+qU9naztUU9qZp+xDyhCH7ExEJYqyLoU0DEzni0PrlV5tbjHmjMSENmHIpqxCF07vn41ftm5kd3imweVyphWryFMOrLcFEMbLGc2JkBIxD6xvrwcho9PJgw3KV2A8TYRocHXMg63J5onIflW6EZvCfSUPM0tp1HWh17rfaJPY012nMjo30p737cud6bIxTCY0vTOR/6kev+jAlWM84JZWGi5QYP0PME+bPQ3vHS0b1IrUxpADY7AqgdaPocBIRjQi3SxSohpby6bsvdOvxgRSjCgXopCDlfpDtj5F3uGwmBhloITKELIprSejyUq3wdb73VSaYxpJ40DoGzEX6xbFQPbBTXsERBIx2sGDmuJASIPRk7sSJRJTgG445RgjqVsvJKXRRHBDpvcKIRNKpdWKxkxybyjzbCogkd6jwSTBssPgw7MhNobxhAJ17YQYjj5Oa9VDi9hUfrT/Stne/+70GwiueBDMvXcfeq3NDpIUPTA5k3Gn3vvV2HtIuBDt42FagoqY7X2NiCZagRYhkpnHMzVGxpTozebT1KnPQStJO6qR2C2Qya7k0RtRIRBtyNKoj6TeSWoSWY1m8zn7e0RQF6PVnbmGMz+1Ik43G8bMEALDzmHuamhBqRCNCRqx/oK30g0a7FZtqJgcD+p6ndEq0doaWSIkZ5XGARFTiwhqmnhGGuhEduOLvr8CBKV2twuK5p01RPuTRcx6xGEmiSBBoSkNG5Ow3hwMKRsxqHqPpDdaNrUQVUXVWG4hGONN42CjEs6o3Ik/MYTD70kEJzW4TJNgFVzMrlIyGnQsxsyz+2HMwZ3dmqeVlCzB3PnjvTUkJNJgkmVIJESnzYuwrQvJlVzymLxlI+Y917uvSehSSDkzTBOh4YPslbZtxMERhv5V0q3BXKQRcjZdzt6MvTzOZ3ru/t6gdwsW8/kJBlfFCdFQJzFoune1BFDE7HyS9d9teNwHzIP183ZyRkeJMRHTniJaQtQ9GUPMwdvaARNptGHk3gWVbgmP4JX7P/3jFx24pnm2bHKrrGpzMzlaoAkRU7ToO/On0tYbbbNJ9zlPjFLJWmlFGMUCTOgZaQnpQmhGPQ6xEaLSpRhTS5VIp6tzUxPMQzAb8WlgiNaYDyHyFAcuYaKLMsURwkYNnZ4iy2LW3l9eNroGyzTHE7q8WM9LBDCljFY6rW6IZHKamMYnVCttu1PLnRBNYkV7I+RAHjJoJmogxGSLsbvukijE0dhFsZHdaDPWcujnld4IpaAyENLk/F2zFtmjxqBqvaiutNEOupgS4zTQy4K6CnZM1pAOQEr4dbOsLeRw+CAJiTi4AeZ6N98iS9EBV9IIBas97dAPCqZSaVDXLo7q+Qiq5hJQl4TUTFmM9p105DK/p4wjWgOhVe7FBHoDSqgbqRojNXSo4j3BUgm1ECQSVGiuoB1RcquMWkw/TkzyyRBWQasd/K0rvVer2MSYXeaiLITWOaULOZn8j+yzAU3RtRGT9aCCdPtw3r+jysNLSR2LwuYBU9j17xpjyoApuqc4ECVQWyNJsp5WUEo0HUzB547EJNOadKtYXPx4wALWEIUpRFIUelCKelXqRpJb6ya3RScFzMZjmAhNEIcTW1ktGVJBZLCw6YmSxNEDV6f15gy1/SDG73Yj+lC7SgRtFuCiVew6BiQ0W8uqLnrdjLrttPQ8FTNGzZk0jO403QnDSEzR5ZpsfaUUGXI0UeJsskYhuzA2WGXTqlXeIZBjsaA4TgSyk5k6ITlbNkYC2QKmGDljmJ9suHs2e5DeCmhlnE/0qodnWOoW7PJ4Js1P1vPyvaq+xrSL7WuUkEdLkHN2ooXDeaHZphYjZ7SyeQIRTQZLQKNS1SS8YgiWEKaBrBFCIo4TWpuNSGSFISDu07YncF8//pSQ9osOXB+/+YY5D2zXL4Rl4bat3N/e0HNjHE+EeaatpkVXtxVEaa2hKCeZef2stPXMKGeW+yu3ty9cP//IHBsxPDFOie4Op7pYE7f2YIu6VVRNTHWeJ95/eCZGm0l6+/yZHGGcZ4Yxu/vxRl5vrPcVtDGOkVqhlTvXT1fefvqG8yhMA1y/fA99I0gn58w0vydcRmLI+2lC3RYjIXTTHRtPJ6bzhX0epLcNeiedMsP5Hb2Zake5XQ1zVtOq66Gh1WxFJJkXFL2j3ryOpRoFWJvRej1wgxKTIMHEX8d5ssXuU5Zhx+4lupSWaTGaHmP0A8OyPJPT4pgTCSLkMXkGGq2CYM+sYZ8Qe3xNzHIipqOa6c1mVUShdEjRTDhjr2hdiBTmHBhOma0U1q2RAbxqLcCybHQJ9JwJBB+F2Hj5/AlT0o6U+4nnUyZHU3lf6h3zWEvE0YJDFLsfUg3C2yi0snn22miYXcs0nqnbQlvuaK2cR5v3GnJEtdC25o2tYD0T42NC3+jNIMelbPbcdUNlI48jQqSXzu1+o64bfdu4/uWvuTydSIM52PZgPWGTrLLrKy6mqC4HdZpHp4U3Pn3/O+gfifKeaUyUZDJm2+1qYsWyezsprdy53154fhqZxsT5PHO7vlHKneX+Srm9+dyWwaRocfcCg39jNCFhqXeSwCCCpuS6lmb2GVOGbuQQerdDV5JVUFGR1ChFScmCHb15vxRibeRxJEYh5UQcR6QZDBazwaS9NboqpZSjr5qHTEguwt2N6m8q/TY/2b1qS8ncA/KYKdX2WASG8+wiyQGR0expfGWHGKxHjFXFMQpIctkts73RomSvskLOhCHbYHAz0e9dVqmrIM1NQmlelYYjIRQJaOgOrXtlFgwVCcG7xO7TRYPeTC8RrJ3QvaeMNtq2UJa7SWoVg1H/t3j8ogPX8/sPvDvP1HXmvFWWUrjfrkbtdM27jmHajma4ZpsSx2R2C/eV09OFj++fGXMmh8zpNNsQ8GlmXaCpJbjF7TSiGNyCVxNDykjELL3HyVxWfVI/p0SQBm2lFusnBekEjVymkaobrdxoVXw4MiJkkI4EReJgM1AhAULfis9ldfI0Wl8nWnZpgdOgkFb0cCBtZUW93yBB3YLCrd+jwSXaig22ajc/MzpJ1EQ88feGokSkWyCJFm0AhwDVsmCkG9wnPuCIDUGK08Pk4MXqju3afwaxjRyxgWXkYCUdmoVOpRd4zIcch6SXdVhyYRWZfb1LZU7Kh/PENBjjD23Mw8A93FjVtCRj8o2bI5lIUaFIoNVGDDAOkfTu4q4Adv2mMTPlgPZA2swpWRVnXlpQ1Ww9APW+W1nv1GoqLLfbQhTllCPP55lWKsu1c3u9Qeg2yjEmE8UNptm4K7qnAEhkkEcwr2WlbomtRUqxzP80jTydP1DXwvXLlbYWylAMFXP4RwK22KV7haz2xRiRAFOMDhPD508LZS3cr3fzaQoGEZaY7LBSEw5u20pZFrb7AtWrORF6adSlsN1Wbm8LvQVCGsjDiRBmW8vSSck0KREjUaQ4k+LCxgotsHu04f3DKA9cURHwNRnCfm93qQw5PnPY/8TgflbBqloV9gl7VeuTh2qQqmoz13Bc2cXXR/DESwVC30tmW5+ImLqNQ427o8AeiJDdv836UirqJbujHZhWYe/iLm2NTt+XvCWdToYRrPK2JDN48tGsO6y7Ur0/9m2z92YV6FYxRy+LWrDr2OpqyEPwtaxOPIk2ftN8tnLIBkuGGP5Je1v74xcduC7nE+8+PKNt4qJCdYZfr93K31ZpyWRzhnFgGpJTehpbUb7/wx8p60Z8B+/fPXE+nRjzjKoynQamaUR0Y2ugNaBqxngpBIZsg5umAm2MsBwjp2kkCda7UZunykFJ0vyA2JWz4TTNrFq5b3eQAcRmKmI2R9UgnZAHa4T2Rq8r9bp6L6t7BcOjXxRtdkYE6Ml6aFqo6x1UrKFv2BMWuBIhCkmEvlk2tmPZ0QG4FLDfDcEZwYEdw4pBrI8mWMar4pAiyDGV70HGSRPeqfCsVZ0D4H0UeRwkaDjM6HbpHGtOmEu1HUbi/UZ5vI4fBs2JNsEr0EJhysqHiymijENCa7F+EspApRBI2a5jHhI1drYWuPfEUis5mrpFOmW26nM5pXCazJ9N1DQla63UUkkBl6YSNA7WOI+JFKFsgVIK16VTl0KOgcuYeT6PLDdhu268fXljmBMxG3tLRlsLdavOWPPAlazqSDE7Gy9RS+a+Drx8eUF74+k88fT0RN0qnzSyLaslCDIgVKt8/bntADZBX4mjCQ470zG7i8HLT9ECFzdOl2heYwIpBIdDbZ3VdaGuK3Wrpo3p7ElaR2unF2Vbqq1XGez11O6IBJt3MrUIpbIRwkQMI9pWGyNqgRDyAWUb5Ghkht0RYSeNxCRY8f6A0cCqfIInPzFCwHp86l3EZp5qe4BTJyTEwRi1AbHe9QFdWiDo0n0IG8dPXazbAxu+tgGHZE2QWF21w2x2FEI/6PlG47eh/67VB/ndfBQnSmg10o7769m2NO892WET7Zg2jL3frnuP0eZADerlCFxBDL1oxQg6ONV9J77FlKxCrJHkwStEJ3R9Fbm+Zhb+5yzD//8fv+jA9fvf/T0vnz+RWOlDJqRs6t5pJHa7+XFQYjLjvjyMJEnWLJYVDYVSb3z69D05ZmrtXJeN68uVPCbmp4n3pwFJgZzxAUqDKAZJ3Grh9fWFP/7+92hXvvn4LX/xZ39JvEx0RkQSOQd+9auPTKeMnmbqckdETcU7BNr7ifbrC9/++tecn9+Rp5kQvyUG61O0Vvn8u7/j5dMP/OH3f0eqmWmeuTw/8b5XxnlkGBNSG5vcLSgGczvWPWPE4D3D6W2hg7G0rIdkS6g1dXKC2iZzUoRN9/tBhniPgEc1JPZe9xVqZ4iwk9OCHPvOpOT2QBMSbQ92/s3WG6FXhGxAmFGebLPsG0CMii5WQlsPpu+MOs+IW6f0ldqVWhrrZj2SlMwIsm033j7/wFVt4FdozFNEaMYUzYkpZaoGBhKjFFPrGCJjiiy1c98qb19Wynqjr42yXNlcsCr4tS9rQ2tlEzPViyHx/uMTYwoMU2a+ZN7N6fh8t5dPvL7e+f7TC6+fvzBOmXFKDFGIdYQYaGu17FaUqo1C8HstvPtgz30eA/PlzNMpeTUQCN0YhEu58eN/+COdRkjKh3cnIwUlgxSHHCxYVJuNbB166Tw9z5zmmdN8Ylk+00qilcy6Xq2qVGXZCq2YGnsUhbJxmiJPz98xj5nscPGvfvWBd+9G1uVbXj994N/oxnK/8Xd/+x9p7cbpPHE6jTzlQEqJmBJCZL3fub6+8sPvv2c+zZzjE3m+0HsxqjsFNHk1LpZciq27EJPPL3qq5AHIEjIjc4RkCA369bH66NBYguRafil7EDEZqB1S9brF12LwpMwc0C3IwE7yAoMZ6c7CFXvP1hdO9OaC2LbR7JmbHgzGnUVootTCLiX2eM8WeAMgwVyuY3K6f/O+liebdi1cu9Q1CUMczFKlFDoGA1oFCr1bAh26EVNqanQVWoNP33/m8nGlP/f/4tn9pwQt+IUHruX7/0SeMy10yjhAHmjTiSE7E4nG/QWXMlKk10NRQuNECoXTqGxvf+B1XblvhddboTcl58i6JOKHC3GYCHkgp4G+XtlaZW0bP73deL3deXl54dMPP/Dy+ffU9TN/9Rd/A9pYxoHvf//vub78kW1dIT4fUGFc4fn9MzFOBDkxncyQb10KMZpNvKC0Fvnx+y/89MMnPn+58zRFm3qvnfzlC73O9DaRfQFLNGlb8bRPgh7ss5A82DjjyTJq03fTCMRHhiYhQDdoI7hrrKoSY35kb+LVnkRCtJk2ywDVWI0HC3Hf8PvPe2mF6wHi6aebJu4V1D6Rv66bNbudNBHT4H2KjgQXHa22abQtaLc+xOpDsaUF3m4rr283tlC4Xq/UCKtWnq6vnuVCS+fHe+mmItElsTEiXdlQGp0ldDYNlC5Ibdxud1pdWJc7FdzscSTc9kHgwpel7nwKfvo+cp5HhnFiPL9jzBmaCdJ+/2O1gfe1MQ7Qyxu3rXKnE65mSZO89yPaEW28LOUYWP3yw8A8D8zTwHh5R47RdAvvd17rxrqa0WQeAq2ulOXOGy/EYTRIWiJVDNREC6+rqWHU3vnxh8I0ZOZ5okvidLKh1nJf6L3QemfZOjHaPFKWbvJPMVHXzKe2cXv7wjhOiCgxmctBzJl1ufP6+sJ9W+h9ZRgSQ45MWjhdzpzOZ1Ic+Lu/+yOf/vg9X77/xK/+6q9RyXboHmsPP4RdczIY606wAFiWu31vr7AUk3SShoTuy9L6OhZXPCELQkiB0MLhn4bDpuwVlUuZPXpHNjZC6wcMGTSCVpooUL2nBOiepHkeKYaAqAtde4roDbBdbmr/OZur4kAvPNkEh+r3MGGBUhxaP2DB/fu+LwW14fJmyWrMI1ItgvbuYsZ7AJdda8P2jPWzB8bTyaj+4QFh/8PHf7UVly6vznLrIDNKpSWh6+JikEpZG6WaX1O5vVkZOwxM80fGeSKHwPpyZbl/5nbfuN0bKQ8IwtqFZdzI7UxqJ/IZ6nKlrnfK9srry43bZg3It9cfERbOJ+Hb5/eg1uf58Y9/y/3ti7GIstmGdDqhVbpmEgOBgW2zgckFMRkWL+FrEz59+sLLlzdqE+I4kKaJOM7s3ky9dQjd/LO+ygwPGMQ3ls82HpRyu24OJQQ1LN1xPVE1uC86tGGcbztsmmVoIfRj7kqCGRkKigQnZ3xNn5dH0/khv+vY+l4Busni/rNev9k8WakoneD+UvSOtgIxmxp7bbQuaLmidUViMNPJpjQyb7cra6nIEChr5bbdiDchtjsAXQKkZ4jWDK/LjTxECJkmEznbuMFWN1tnkumSSDlT1i+U9c6y3ulEcs5obNRiUkOtVdbr6hCasl0b9TQxzTPaO8PzE7RGub9xu7/RVAiSmM9nlrtJXpW6INXm38I00rbiWXpjeVvZdq+wW2A7DZTTxBNKmGeiQLm/cFvfbB0SmM8XyirQKrUstL4R0kDKGW3NLekL91ulNKOzb7dXchKmaWCanxGpqE5cP/9ErYvr/wnDfCKFQOqN9DzTJKItsi03XrD1NM4D03wi5Uxtyu125Xq7knsl0KyHF5Rc7jw9P3N5fmLIIz/88IkfP33h9uVK6wEJeT+PvzoJ93H0bsoiYAP8rp+pTgPfGXihd98L+ghcfUcP1HuqwX8nIN0hOYfRd8hbvPG69133fRjAiQ4ueq3WZ1ZP0LyR9fgQjm78HNL0hAp3b9C96cCxlx/i165a4aiJwRx4m8Srsf1ntXugxPalbz4DQhyBCa6dyFGcedAKQPePap/JoMNkIg6uVrP/xvEkx236x4euX3Tg+vDrb3h/zvRtI79/T5xn4jBwv76ZFmBbOaUBnQaIke2UUbFZlCkF5pPpfNX1ArExnyofSiDNE71XalnZ1qu5kZaVa7tzfXkxp8/1FULiPAy8e/eOHP6MPCTmU+L66ff88Ie/47pu/PT9f/Qmc+SEEueJpoXPt89s5Se0VOp9oYTEGBKD29pP0SA/lYHf/e53pBj48z//LX/5z/6ap/ffcHr3LYmG1hWt2+OiqNp8jHp/KcixoHvF+hkxHBur9+ZGg93owwnwhd97tyHuCBoNJgzJnF61Y4y0FF2HMNO3OwhGYw+uqr33AOM+f2MQmnaDLo+JepFj0++K2bYtTIEgdAtcKUYju0SM+oyShsQ4msxNYDQ9OboFMoxccLnduS+F233lfjqRh0SeB7gt3JaF0hrToOT55L2zyroumGlNg6mYBNe2ojRSGk2cdAromElRyYMwRKMZhyFRF+tXoJFxOqN+3QUlRpuHOo2DeZwFYc3CFEdyHBiHmcv7D9zXhfv9ztvLjwc9OQyRjW5Oxr3z4flsA97WgCElSDkyiTkFGK4Fc7LDZB4uXD58YNtW3l5f+PzjH7DyPKJBjQBQC0lMdHjMpqawJlPAyEnIvUC5U0NjKzcb3FZlCnYtRBraVtZVaVtlvRZq6Cy3O+uykHJiSsGo5jHyd7//W1Th10+/4TRn6I2ybUhobNudt5fOGJTl7TPbcqVTycPAMI7mwKvJBu5b8X2wK6/b2tq1cYMfpiFGxHX3rJfkxBNRm5dr2PUNDjWKGFOvd0K3YBOjSTPtx6+4jY3sFReAK5iEZEIEIY6wGVGKkH3ZB5Ds7st93wqo9kOw1wgjFkDE9+cOC4pneRKjs3P7oWi/E5f2ihTwXpjP/rV6tBd2RiGi1uPr3WSyBpOYMvg/HAEnhGz6rN0V7oNd5yDCOA6WNOj/AqvwT8QKf9GB68/+/Nd8eH8xTHseTSIoDvRyO5gzVbsZN4ZEcwhJxKi3xj5rvL/M1PpnrhsYCHlGtdGr+Q71VgAlT0/U7WZUY1UIwtYar/eVD999y+XyxLv33yBfXvnxx8+kl1e+/fDPeHr+wDDP1isbz5bR9CshZepyZXn7zG1VDMUXVCLl+hO1rvQ48+HbZ87nmb/8F/+cd09PzOcL0+VMVKWWRNsC1GKZkQjaNkJyaxdb68ayi2LVihgk8lC27q4PFw/ooDYFSYSYjYnl2WGIFuy1exCJnommkZJXhP5g/vlmCJ7Nie6VllFxd+r73rRWdmsJy9LsQIH5PDFMxuBK+ZE5o4okH3pUQaL5nYk2JAi1ghKQmBkunWXbuN/v9G8+kIeJcZoZQzWIkWDrKE+AGHtq79WpQEy2CXuxjHYPynmktc0OAsSKVhG7JnVhB2o3BUL2w6H5QRQYYiakAVC0ruxzNCKBNF3oarNl6/3P9v4+hAR1sYMFKL2BJIjJDhAxJuMUTS1EAK13f20Lfnl+ondz3P7y7TfuRSV0iYS6IC6g2sScd0uD3osJNw8jsi0OQwn6249mayHBtCjjCCjSFuvrdBe7ld1OvoCKDdAqXO+VeZ7I48Cf/82/ZArNnheB2w8s1zfW5U7Ikb9++hv+vHbq2xu//svfcn73DsQOYBOVFei+BtwjzgqM3TrHEqW+91v3gCZixU7Hfers66LxOEtQU2ixHSK04lCb93Nt8loc3ZCvyhObURQZCGGgi9LEFCWEfV8NdC0H3Nk7TmYCkAeackQpq0hF1UYFPGCoYmtTj+LJ5sG8EhOfGbQKUo4AYiMc4YD2xNelSrRWSSoOPXq7QfH5y+RM4GhnTofYA+P5HctWkOuN5289EP4TPn7Rgevy7j2XdxeEbHTjGIEEgy0akcBG9QWVUWwSPojJN5VS6bWgsSNhAIl0SUicXXxz5Xa9UrYbvRXG+Qltg0FiEtAA922jfn7hPA48v/vI+w+/Yg2/475urGXj+Wnk/Te/YjqdaaGS8sVgTC4QIttt5Jo6/WUlEcghkqYz99RM6iddiHrndJo5P5l4sFVRe7blVZA2O7gNofbD3RU+fDM8+E7ADtSpCYgGX9z2gzsWHrxntgcaO2zVtexEjKKPEw9CjA6dhMcGOxas11LqFdZ+wB+Vlnz9U4d0kvXFfI5HbPiTHf7Ux7R+axzK1aYB50FcA8TMmACfewtjYhhPjPOJKVYPzoneAxpGf5/F3quzpzoR0YpoQTF9Rw2ChoHeNhSfHcJZXgRCS36lhQJoyBhZoHuvL5gJqSQ/po1V2oEuYjYvzqgr88kqTaCTiG2xe4ewqQUFQrbDzGWSBvmKOdZNoUEkegWwQ80mchzFdfWIxL4Qukn79CDUrqzFoLdhGBnGGb2/HpV6IpLyDCFRWqOrUcgjE10Ndo4oiuko9l6tzerPLV/u1PKOaZr47rtvSFoc4or0N+Wa3HdtzFzyGdVAeRmYTtOhAAEPUoLIbqWhBzSofQe4dlasHAewrcXAPpehu5/YviJd/upgGWLrqndnw+q+r+TxHK6Esidrdh98L+EzUTsqsu8TMak5bGlbEfwP9o/DE/4VOUSK7ZceZYzsewz7uOFIGH9e6tj70OP5f9bz8h6gODvYLoFF+q+uxIGWwE66ApXEshSIJkYd4tefgyOZ+Mc+ftGBaz4/M52ebNDNYRi77p5KCUSXoTGtLJs3CDEypEzvBrf01hmHQBwm8nhGGfx7A60WhEKtMIyDERbUjOd6EDQE5mnh6fLE09Mzl/OF/nZmPL8xl4VxhHEaGaeRRsTtUYFESpm6JbTD9f7CmGfifOHDt99xPmdqWWlkbrGSgqBbobS9WRzQ7UbKo5EysgXeXXXAXqMff7SZLNa+EXtz7N+tE5B98QPSvcS3gOH+yPbz2o/XsL1lJI6uzZ9j7w1wPF8XHtChfr2/AruunzgO38WqpN2ETrF5tIOqvKfL7tXV9+DUI103tK+uCGJSVUowWSGgb4W2bYQhWh9ObP7GICQlhJldDGXfGtptWmbvD9j27EgMqJMLikN2KVk/72eHoqf0ISS69xZDcNdasaOs43Tn3pHQSDGhMVmi4QPdwxCPQ1gQm7dSxQRsxc9WC1rRZY9iiAdhU7CniimQxpnuvRZVYRzyUc11hFAjQYwCTs6ErtYDC5lhGJjGgd4HSllpxXpmKVnGHbup6qNCjqMtJ/UgIplaFKop0cQ8khXerne7dhFEK4/hKiHkgenyRBqstytppjflrS4GCbdifa4jTxLyeCb4PVPVQ4gWgh/yVuG3+tV9Dbv1jrEwu/va2XMae7W3xu5Jt7MRrYrdB3B3GoRDgexU/v2ID/51RyA8pn1dnX29b46q05PNnQ+8z6ICDg+aTJa9P9hly/BLYkotewXnobA/9vSxZ3v3ZMY+656Eqgdt7Z26lSOw99ahbV5NRlpr9j4U7uvG/Voom1CKsVof5xL/dUOF4zyRR5tFqk6CAyAb9GKQiQ+yIhBNwj+EZB5aYHM3AfJ4IuWRlAdbYAR6T1zeR9b1RK0r4zRZhebMmiiBRmYYC6fzR4bRzCrTkHj++MR4iqTQGC4nQh7RPlgQ1Y7WwNYUdOJ0/o5fy8xpvnA6PfP09JEtDmz3N768XQmaoCvbsjKcT6SQyWlGxdQlYky+mG3hi8N7Rnd9DFxKtCawNoO8eleCZCQafbzvHkQhu8CpQFBUPODtGavPsrStHEHUDoXsVUDnoW7hsJ8rqFuj18VcRX/2+/srGAO+26GA2POiSBdoRo1GlE6F5nqUrsJhmbLZNOzJpYgwSUK026FaCzE6/BhM/SREt2MIikqgY/0KRQm9HXNBBnF5kz7aOgnB7MpjzIjPyGm3cU/TZfRkxbBRJCTv1bl6/R5dNBOiM0Pj/nu+qNWrFWd39jSyayEW8WpaAjEOZuIoQjTZeg/yQnKFiTQMCNFzgE4Iz/aeMfkfqRbsRSxwtN6ReCelgZRNnLhLI26BlgNJII1nQjSh2VQ30E5ycg57Zk6gt0zrJ0KIpOFE77AuploSQiK0TE5+7xrk6T09TPS8EVPi5fMb9+uN+2ulrMo4CnFIoMmuZwZJvl60O+TryckuFA1WTTjsdQQiv4a2Bwxq11Z8CT96xeqHOH4PLQMqx/4LHnSPcs5W4VEGBRcu0N6Ob1kAM/xSuzpqYXJQveo+aGXwbPCKS7B1mPz1PPmIEmhhf00fefGxkR2NCNGG2fcKS7v659iVgg0GDmqOEHlIRFXGeXaClWlkShwMDQnJq2Trk59OI/elUlVdA/TnZ/efChz+ogPXTu2JKaK+x0X1YAQZuzMe0JT6YSBeXkdv6mof7UbuDU32Oj2Q8kBTswoJMXkFsWcrpoFmYpQuWurYb/bgCdUgmhg5EqveqbVT6mqDfjFzOj0zTWeG8URzk8FWG+W+UIvZirS6K67bnEfHDrFWC9Ri4Pxu5yH7UCKPrDDsw4b9oNmK03F3+aH9upm+oaIt2AAkO6Thi1ZNHVo8YxTfaHu0kP0Q8H7V8VWRA0axL3kVs7OwDnDk2M2WeXo/51HJGPzy9dDzHgO0u8CuD1Puh7J21/gTY1LtsjchZp8TsqCtEqlqRBJ1OnRnn/lxiZ7dJAqDWRVv/PvrEqzKCsFp0HS/Rn7/YjLlEfSoDHYjRBNK3aWAdmZmwKSyDEZt2Oe2GezH9Q0xm46cD8bijtXd98J+P+w+BYIk8iDW09VO6D531F2pPJryy07C2Wf7dkr1z4KyWFJj1yEcgWLfU8eaaNjvxoSi5JTR05PpC0ra20SGmKSM1IZIRSRQ1431dqPV/iDJeVtgn4/q3ViFBrs9kqe9T7v/vcPpO6LgBZsJBSMgdpZ43Dr2lXhFuD+HiKBfOyUfbEF1tZrHPtlRuRDCsSsANOCKNPKznz9GQ8T6aTvZ5KjH5KuPyA75ffXX1xFiT2D3ILrnRP5rNmP2uEaPX9KjRyhOLtLDTJLjvXEQRhypKBUJ5ZCI+6d8/KIDVy2V1iAPZj5nSU6jVzsQgpMD9mHALkbFPnL7YJlHzA4zqiuiI7jgiR8aiRD3hrH3e1Cjo4ocwVDBhW7tMEtppGnEJQps0/ZmHl5r4Xb/Qk6B0zgxTRfyMCESud9fKPdX1vsbt9cXVodSymx9FxEnREikl8X+rDfSdCLkCWL2zWnXyeRmbN4CcPKC0XrZDxZf+LuteEzOuNqhDI517tAG9CjHgvYSDcPvOT7vDm88HnL8/tfzJfLYPf6e93/vz2s6fyrdh3VNWQM4smDc1bl3C0z9q7mYpoVSKq2Zc7IdMMF7SVaJPA7TCF18cLrTayXgc1jdAoqKujWGcjTlZSf3C9ZPNS27mCJxt3mRgJK/Cly+ZnunameXBtK9rxIiIWYzn/QAZ58vAWqqHLVymAeIqa+nuDPpXFy5P95fq/VxAAbzuWqu1K4IPQBicHhTNWKPJFeD8sDZPShIsmvk5Ya1kh4Ehig24K76mPvZk5vuavshJaZsVWCQiLhBY/AEqouJxIoG1vXOcr8d1Y0qrpQeHL4y89HggUuCr/pjMzyCQXABYtGA848sNfOD26onY64GVbpGQuyegOqRWEgIxOhQX9+DiVealh84pX73J9sDnl0l+4rT1/2D72zgfS/oV4P6e/Jgk8lfR5+vgoPvseMVjnLwEZT6V5WQU1aOJFI8MTICVzuCHlhQou9QrNH66Y0HU7FT1pVtXTio+fz88aeGsV904Pr9v/83LO/fE2UkPM3IYDBJdQw4IITdnE2EtRaQZOKb7qvTW2dZ78YQclw6xkhTpbbGtokpQwS32naxzUiwLNVv7NvnH2m1sS0b2+2P1GaHwHQ5kZIJnbZSrJJqlVKMccUwUGi8fv6D+4ONzKeJeZxICrfhC59+98p6u/Hpd7+j/82/4On9nfPbyjjP9HJHtxuhrsZEGm2nqGDmjdvm1YKaOWXKUE1Y1+aIzXRwW+60sgAKyRhFUgqsi62SI9OzYOf1jvUkXFGeajDZrpvWd6ZdDI8kf688EIz6uy/BzqPPZhDFng0novmQYQPTqDg8CLoLk4pt5Ei03k5T0pGFKnQjtg8S0JQopfH25QsSB+oKeVCm84lpfEZioq4brVaadiqBptnMSqQT+y6mCgSDINWLuSFn+zSt08J+GgZSNPhHFWpdqZsRPGIOwEDTztI31hs2oB5MMqlTQVbmYXb3Waso12bX1OzI8pEMlFroEmlBELFkq2vgXiGs5sycYwCptLZRaiOFwRICut9GW+NBhRh9YJWJ0gqbFgLVz+WEaqT0hlQQmklQ7b3LtpKjvzcxibFqy9D0PhViSJzefYMptStaVuq98vrlBz7/8Dt+89vfMo6ZfDoRY2a6zGxl4X5zj7RtRVqn9eqjHS4G3R9D8kbWMLaqycF1RKwnawy7aJU2JqarmP5eEAN+uxtE0qrp9Kk6s9YHkbsiRO8ZNg9eR9QANU3F7s7Fe+Vthd5DxQPvOxONvt6dOAXsiK+jAjwSvJ31ugchT86PZq0rqiieLIp74zlMLT5Ssg/zW0JpyXpMwchGjhog5t4dZCeZRIL3BkPIxDTaued9+PkyM5xO7mN4NI//SR6/6MD16fvvqctKCpn6MqDJqxBn5kTBm5cGWyzFGIbWwO6+wM3SA8SzdWuomm22Uio0XxtBgqnLq+HURiVXy04RkxZaVsr6kwc4M22LMSEEWlHXFzRNu+l0YROzF//p00/kFJnHkV+lX0GtlG1lXTfu95Xb2w164fPlR+pmDrt5yEjboK8M2hifO7l3C87RLNwtq6q0UmjLSnAtuea23qo2EK2t0JuLrTr+0Etx47jwKLfULSU8I3tAdNV/1ha+QVrqiZnXuHuF4lVZ8M0r3jNT3Rlxu4SR93NaOwzsgmY/MNSb6+oBzipLlf1rZl3uRbH18Go1uDWYUnarlfW6sW0/0VGe3n/k/bfW71xbQV0E9142u3+YckbCh6wDxDTSereqoxmxojdl2yoVq+6iQO0+JiBCLaZNGHb1BolUhbU3si0+aA1ETBWkdScZPQ6gpdmFz7savzM+y1ZMH/GomuzAKcE84wJKaGavspVibspeGavDRdXPz8GHz41MYlYdJmSrINUPaqiqPsYQiD6oa5G8mL3PjhDETPF9NSTvafkpXH3OKNIYAkiInJ7eEdJAa2pO39sbby9v3O+LVUS4vb1WN9e09f41ZGWM7+aVjI9RsAvJehByySY7v5XejIAgIXiwaUcPuFcLbOokRFv77TE/1ZWm3aFKe6094WsIrfnwcwg2I7Wz9Pa96ohEbw/CDoIFpt6xXpsFhiBKD8HnHb0SwirAPaEzLlllV2RTJ+Xsz3fEE3XtSE/mW63osXk8QRQjM9n+40gQzAMuWv+1K7U2Pn9+YWvBLJHgUfV+VX0dOo3/iMcvOnD9+Ps/sr7eiSlxj0L5CucVgRiUTjgMDpdNH3jA7okEgJnFoVCd9uv3ltKh4sSP7oe9i4d5fESCWayXUk3Ov15dPbxbhuLleS+Rec5M48jpfOadZMpWuaH8/vsfyQFO08jl8kTfVrblxvV25+165367o2Xj84+fqFthvS9ETIMxSWdKgS5GFpBowsJ6MKEadV3Z3l7Q3m0/YPBDU1MMiME24PFQsYqjFrM4B9/kjdgfE/FRjOi8O7paNWa9od676xzucyg7JOGzWtGki2zverPX6fZHpOxK26xSFWfJ2b1x5hP+u7r/xm7DEQ5txhAtyejNMvKg+7IX7rc7P/74A7fbjXcf31hXYTw9saI2QLttvN4WYnLISpQc+uFvlPPkcFqjtQ3RQC2N+22lBa/MQufu+oIxRFptDMnp5yrOOAxsEjmNkV4qdS0QYFs3ylYo20pTMTCnw9KtFzJlW7Omzh2payUFJQYDpVIyc04ZJ9NibI1yWyjN3K/XZQWtdBJd3FfLjRynIVhzPhqcqE0Jx1opx8hCw34vSEB6IiWHyWplzOFQVolpYOtK7XAarWq2FmLkvi4ElHlMfPvNB6Zx4v3lQo6BstzZ7guvn/7Il8+fWZeV0+Wy1yqeTLav2HAOETtEuYvCEuPRNtjRlj34SvIT3HszFvSCKd339lg/tbpkoBGVtFuCptEO991Acl/vdvbv1Y8NNZvrQ7RkzC+C9uYwq0OFe7XcHuvX3sejBaBRHm0IZw4jgvR4sBcVm78ThyfDTiwRcfKWsFdcYNekVnNYxsUQjh6zqkmrfTX/aZWrGITs52PzwCXhxDDucOTPg9SfErTgFx64/p//93/Du+f31KqUKDRRtBckJroqtVZetoIE6wXcFmO41NZY7ldyVFJMDPkd333zDVEC6+3Gti0WEjTy05ef6L6YgnSaBstuPCuLURjHzLJVtlLZSoGknhHB4AO4AK00xmkwdtcw8/R8tn5JV67XV6YYeZom1munvvyRulwpGvjdH7+ntca7pydubaXd4dZXBl/4QeCcEuQJ4kg6vUfVhqaNhWaV4rpeefvyZgs4JSQNloVGNy7szbF2y0B7r7ReCfWY2PBg5064QejOPkLEtQI7AXPnNWUmu+YRp2NHY0Adzqh7PwEOqwQLcI61x0Ce7f0jweZBXJpHov3k3isQnEATLGMNujfAlUEyKWXGYSQ8ncnTmTiemN5Vbmvnp083/tX//P/gf/6//SvuDX5YOlRj8TWUkIwxJTFzGiLremMrK03V2YTQy4Z2ZdsKr9cbmoZDT7D3cshjtW5J1c4oNIbiQEgnnqaE1o262XPf1sqyFq5vX4yvKNZHJE2EEMhBadvNEclAaWrTQsEqjWHY/aouPJ9m6JXl7YVSqwkQd9jWuyUc0ftx6URMmSkLvW6ImD0PMRODkKPNudltF0gn90mD2opRnxGkC1H2z4lp/eUTcZz5cM5s91fqtlB6Z7nfOM8T//yv/pL/6f/6P3H55iPvP36LNIfhW+X3v/8D19sCEjl9nC2higlit8yyVmjVadl6VBPqkFur9WfQcqc7UUmNSenCtyrQmrtYt135Ye/L+QFNp0UzouyqdK0E7aYhGU2fcx+63au6XRNTXbIsHNR4cRjZK5na3KzE9l2r7TDm3K/5Ixa6ViFfkdC8D7a/ZyMPiVdGyjF3JvKAFNl5AZ2YrXIP2ExcTCMxDSgwTBdrN0hAezMWbEggka7JZxBN5eN0OfP0fDn0R/eH7Pv+T3j8ogPXv/lPf8c0/kgtSss2EBq1GjwIBFXeuh3EQZT7ts8odK7L3WATEVL8kc+fPhnM0zu3+9WdjgPX65u52IggtEMfLIk3rd1zaWumbN5bc5zGblASSGKHce2mOm5T5gOXLzNggpi1VT4+nRljsIHnWoxV2BqlVETEhj/nmWEYiHkgyYb4Es9uAR7c3gQMm6/r3Q0QV2OzhYAkN55Lg+PdckB+e6Gzq6UdSMeOtcvDpmCXnSFEU2jYdlvvr55rJ4E46eMQN90bvR5w7PHAwffAFZww0ZfVnvJgPJmMTpDw2Mjd+zTHxu37h3FI14a1T+cnhvMz+fRErZ2Pn75wfXnlb//d/4f/9+9/4Me3Oy+lm5+Sle6kaEPXSCBHMXPSVm2ubYeZmg3WVq9mdi8ys8QQo8A7WWA/lrpf5xASMU+8Djba0Go1MefS2EplXe528IiPJDi5I4nQ2mrXTMSCouVZlmAEO3xC+omXYQDt1G01oorakVfLY04uxoDEF2JIjCkYzORQJC7ZlYKx3PaKgjiYtqBf8eDrPagwREseuqp5v4UMIfEpB3pd6b2ZrqXPHq3F2IP7YWsSTo2QAs8f3tPlC60rp/OZYZxJKUPbKK3SPWhpb7AP3ju9fZ8XPIR4dzqetwtszRzL5VjvsMONtu5+TjV6IDO7c/j+8/sA/CHBwQPS3ok3xzoQAYkOXRpEaGxWQ1B2REENT2EXrH7YlnQTBTjW+j68/2AIdocdtTZDNLwdcgQ3v5m7S5dVVZac52H0dRt8iF0egIjvbboSd7JG774Gdsj20VI4CB7/BcLG/5rHLzpw/f2Pn8yuvSg9JyQKCZvSjiJkEZawwwOdpe4sGeW6rl6mW09mu93JORNi4u12pfVOU2G9Lw+oUPtxeA7hK4ahGM6/M9skh+NGBbHgFcRgnpwM3yZEZ0cZvh9S4DT4sK/aYQHW5K+tH9TimDIh+zyOYJmYuD5g+ooKrx3tlbbeKWWz/pV40Ip78PRGLVjTGX/ZrnTZq7V90z8qpGPdymPhHw3nnz0sgj3YZPa1/We1m8qFg7s/+/1DZzGIHQLAbqAp+zDzwZPEs0jbjMfGVT3u/R4qQooM08Q4nxhOZ3oXzpcL8zxRto0//vADv/v8wtJ34kOAlM04FPxAMH277oG7++FXa3NoplOrHcB7Ly/nTPTAgMjxzpva+w0SiWmhuxJE6521FvP8ao1SNg7KORxJSBNjMO6Zdler9IMYyeK4PyGwenWsau+vOwuw7/23Xa8vbNYLjY+KdT90JOy946+a7RIPY8sQfaxAbLi6JYOyLKBB1TtN4Y1dvR2Gwa5vqY3NWbmtmVahFgtuMQrnpwvLslBKJe1zd71bwPI1rs33zjFY/FiLXw/S/3yl6vGX7EHKbvbxc3sitQPe+/eNNWd7RuGh8O7/0/2MUVex+fq5v94TQewq+SZUT4j2HPCrd3m8vjqLVsMj6zz28Fdb1thSZkHyaHU89rYAGh40eYMGnXii8iC4/Gy8wZ9+x+5xQooH/Bj3GcUHZPkP3tSf9PhFB67X14UgZrkQPJsdxOZI9vnXNI0GG3Rj0VlAUhuO9CZ/rZ2X65WcE+Ngg561dZatcVsX/uFqEIECh6CmgPU/sAQrdaMqW1AUim/kcRys91U7pRWut8XIB12Z5wm+ecc8DFxOmbXZEG3QwFItCF1vV5ZtMjpbhGmajuxaBXqMtABVN6Q3arlxv30x+DK4bt2YHe7bs7/9AFbohqXb8WuGlV07oTR3hnXWn6s+0JtJtNlxfbAXpX+1uA/M3jbnnnHugOAuW4WrxisYU8rvYce8gJblTquVuC6kwVQltmoCrt0/S9oJDwLavIoIlsSkcSCmRB6MyWechU6MM01hrYVeIUlkzgNjnIGKkuhxJPvcjSm83+21YiSnwLJUtm2jtatRq4MNhYqYdmAQZciDD4tHugxEV31VhdYKgg0PG6MNctorU0WCZ/LBrNlbq4Q4Olqg5OyjC71TNNrvoGTtXgWa4HDvalBfHkkpuzanVTXmnp1RrYj4MO8OEaK0Vmh+f7qouQ7vVDc1z6YQI/N8Ma1MhBQGhsGCdk4jZb1z2wrLVij1zjhG8mCmrF2FrVW+vL3w5fMXosD95SfOpwnaRpTO+TSynEbu18710/eM7jpO75RtI0Zzfkgpe1+rE7RDSNYL0mhkBTWoThxx2UdZ9iC367Qf0MFeNXig3SWf9r6qqaVku9focV8P8tKupSYHn8PD2j5Hpl55WVuh0zjUFAKYRqIQ2AlHXuV7jquouTjsp9QecPVBb8fPGZoHdH2M/HP8v31dVBFPwiCQgvVPNZhD+VFmCoRkjuUhOhOzm+7p0+VCCwENjrT8g6Al/Gkh7BcduM7TSIqB+2qisilGpigM0+DzG50tGusmYSK2fWfEeHWGQqmBMSZjy7l/0Voqt9XYX/v4bXA9OuRBmxUxu3BN0dh6vZMGFxkFUsgH3CIxEsWeL6hVS6UaFHiaz5zPF04XG0Ku1ysi6+F+W6sxespabLh59P3QjQk0DplWO2XdWK9vpBgsA0Ws59ca5XYzvHyfvnfK7d5UxaGBdjCrGvROGgzHt2SrgVqfKoBj8x3UGYjHkvw6V7SHJZ+PgC4OMfjuZq+9HgC+PYcZE+6Dyva7vasxvb6GIqJnihg3fWdJ9hAo60LMiT5NDO8qIReIG10jW+2mlDE/8/T0AU0nwuk9osrW4VqglRsSAmNOvD/9FnIAz49u941t3ViuLw+xViBPJ9OeFFj7Zu61vSN5ZMqZKEJXZVnesMHmgTHY7FjTxhAHwiDkLsz9ZKtYlW1biMOJnDLzkJE949ZOIZmDMQY/l80CfuumcGHF7j5UG42IoZZRqwrrekWSHf5P04QGy7xb3dA0kGNkSJYE1brRW0HSiWnIJLPjppfV9lzMnKbBnZkz23olbBupVjLPPD0PjGMiClyvN3JO5BhoValVTSNxuaN1o613fvr+B26vb2xroerKPA60YTj2QErZSNphZzIKEtR9pSqIC09rB20Gm6kd9KZjaWuyNZ9Rg+N+7oe17tR4+6ZXU/+gllCXKcMObAnh6HP1vtce4vRzJ0UgHFJOey+q9YMAhu8QodPLfiJ1oiQfC/H3pdg72aF9+oFUqILkfFDnTXQgfrVT9zlBpZXNelfRn7s1tAlt2x6uDgdBSkECzc+M3hqfX99QTUB2oprv369Qwz+lz/WLDlzf/uobhhi4LSs9ZIIExgBpHnxor7N4NhMB18m2GxgjSdRlfQaGaAoADcOB01aQoRCSa5MRCNqRuM97FJo3fSMKMTp81I304IdpTiOq1TKrIH7jnIFFR7YCsjFME6fzmaeni21Ap7kG1NxlpTmTp1lATA7rdMeSRegOAdVSEEyVYB9e7F0ppRhpIXJke7tHVO/9YEW1hrOpLGuVXdrGtc5CN9BFHD4FsVGuvS/gmw84oBBD8nwzeYV0zBj/LNjJVyfA43shJh/0jN7/MGLM8XxqBo7s8EYItB3CAFpvSIPmMz+tN4ITLzQEZBiZP37kw7oyrJV4+RaRyNqEsQhlfSVGYRgS3717h2afleuN5b6ybSvr7c1nXCxrHU8XhpQYQuC13FmXO2Ur9CBMOR1aguty9TWZGcV6paVWBCNPNAXzpLHKpmyL6WqmzClnmquEo0oNLpgrWO+0LM6ATORo1WjHWKDqEj32jjOdQNkegesyzTRnm/a6EXImJ3OADsPoyU0l5pkxmWJH7R3q5lBYYMzZDsCQmLY7U92ovTJFuDwNDEOglY3GD0RMKLlpp3aDyCuK1kbdGsvdYMLeOimkIzB0n0E6oDzv68gBZe8Huq/RHW34au1wLFl5HOTCkZw+1u3XvZkdXpOf5Wk7VL8v3x023Ffzz557r9CO//9qP/wXzvUD/HEt1p9942um3r7ffoYWHe+YXQXxkVw6xP7Vvw1yluMzPa5fPwLu11Dhfl2Bgxq/txv+qR+/6MD1f/6//I8MUbgvN97qwNYEaqVmHPft1IqXxjt9E1dlGAgYq/Dp3XuQSuuF+3bn9csLci/IWnmWd3Qd6D0ZGygNaBBa30zctxZ6XRHH4UMKtB7YNmsUD6cnO0xR01SsBQjEPCHYrNZyuzM9nfj47Uf+7Ne/ZoiBHKEEdUhjV5tohNAYBjifBsugdwHNFIw6opXGTodWyNEm2bWzOKsqqhJVIU/OArJBSzvUu83UNDsMAxhJ4VDFCOyotXgGqGoEk+6b5WA/hQeR4+via5eK2vNaYw+m4xCw88PnXSQwTOaiC2ZkCVaoZT90eutHJiu6GyzumbNBOVVtLCIMkUalSzcyT4zE04nhw0d+87//lwy/+chaITz9BtLMJjM3vRD6xhAbY248X050Mdv2st1py5VWC603kkwGQWnlPA+M40DOmddNuV2vLPcrb68/IDSDB8MMnozEICQqtRlDVXtnq4Vaq1W/6YKEwUY5HCJOAeouCKzd/OaCPVdOJyNwxMg4jkyTJWdbaby9vNg1C8HubTwhaWaIHBArAjWOIEKkM4RG8Pm1YX7HECM5CmMKx/6qFQKd1hvLWljXja0HiiYSnRwrOZq785Csyvjy+RP30mjbiuQTG42lbbAZMYAW6BroTehdkJC5fPjI+d1HQxbKCpKdtp9dmsoDFvjQ+uOM3dMZiTb315selREiTj/3A1erEYxUbNFFo7vjfV85zBLxvWoMP98C9vrBzpwQ04FD2mHu9HWfk5S0oxE/l5Pag5IFOVf734ORk55CDEaP9w+5B+GjP11t7s4qbpchy+kYRbF0Jh7Yh6T4lYdYJI8ZlUAcMgQjhJjylVkb7ZYxwfvwT88nSk8M54md1OJv6Yip/9VChX/xN/8Nz+8v3H56ZQsTtQfKsqCz0LGG9u6fYw7a2yFzEtNEiomUEqfzCZHOtl758vJHfkfn8iRIGBhDBJlRmewm5wEVoZSV2jZa3WjrQi0Gzw3jwO1eWO6mSnD58K1RolEkucW805Ch0MpGWTeGbMrbKDStBxMN7IDKITAPI8M4kseBmBNDFJuO7rZwcgrknBnmmZQE7WbPnntDNdH7dAwhh+gDjHBg4iHalgiqSI5WzXmw32dNJHnfKAghNB8e5pjJsjfMg7TlE/r7ahWwgIQ9504SNOhKjkpNdlgrgJCsAvR+2A51mYKGwRSiu9q7Z8W9+VPZ9+NgdiW9C3XbSKVYHyybZNc0Tvw3f/PX/Pf/3f8B0sw6nHm9NwqZmk7MoqgWWttsps6p+20rbOv1kFH65vkdY7YqS+ms3tM55+yzLo2362deXj7TauU0njnPF+9/CRFjxbXeqFtla42lVH769InT+T3TdOI8zzTtlLJyf3s1WrgfcE1M5DgIPJ2euZzOjMNAHjNDsrm9+7rx9uXFZM1i4na7M45n5vnM8+lEoVNa535bCNNIjJExBLpu7qfVOJ8unKaBecjEaPNmrTVoekCga+usi/XGqkRGAZENoRC0UurGut65rXfmy4VeB6bnZ184tmfYWY0xME4D1eHvp3fPnC5PhCBsd+8rHhYfR8h4EJX2A/zrqupYpD7PJTgRaE+gbD2H4ASMIASJEF3R//gJHlWHP3bR5mPWkL2O2ge9PWHzf9uzeZdKvG8mP8v3jucInhD2Vr8uwb763P/5b6nKIxiL7ZHenKgBTqzA5zCDJ4SNXlx+KyVjI0pwIpd93h79dSURe/Xh5dXGHEqgDNkHq/9pq65fdOCymapEnE7EdEFJaFwIs8k05VaI4QHdNLdRV1Vyng0Lj5E8TqhudBpDNthQYyIPF6ZxRMMTPczQnQABpLLQtNLqRrlfKWsiRSGnwFpXBk3EpoQ8OeMKJHaiK1ZI7dbkD5E5m1J0dKaFRMts0jAQSyElU22QaAOtKQrjEMnBIEq6z09FcdKBPrJAA8AxAV2jFT+02kBcnkac4aEK0pRAt1kUZ8ZZw79jliFuHrcHiH3AWORYoEdGyC6uum9cfWx320PWDN61/HBYwgU8d6UNHHIw51gT0d0taSyL9uC4kz2Qg3puBJGH99GDIm1YfcqBPCameeJyuRCGM/d4okohaqDGzCygnvW3Wj1wQe2NXqMJuqoyTZkpD0R/L6rWa1KxajypME8zy/1KwZyKhyGSh0xOyVQjxKqXcl9ZSiGXQt3OTOcTwzgzjpNVkdWCkZlcWrZdUTe27AzTwDBmhnEwW5AIoTeaKkOOqERCHkjRDE6HYba5ryCkbkzWMAxG5cfnAbsjCeNAziYLlKPDzs0qleBnoKjR/BuBLpFBFHYfq27QdoqJIWVSiHSx50oYtTrRva9sCU4eB+R+NzaqIydfzwepGswdnIwARkbZyTsPWPDBqDuQLtSToH5ImtlzcjCRd0m4r6IVqu0BNVo48NjovNF9+HmHLHcoGR7owlfl4K5tuL/O/t72HIy9opNHBfN18DxeSr5+q1/tvP/sGnz1+vtz7HsGH78IbqAZggfxx7XYNSKPpNT3dwyKRB+2ln84RvC4fv/Yxy86cH3+cqURyENmlZEaRlq2Kf4YIY2dISc/GO2Aq3VDtTKMp+NQrIy0WikqqCaSW1VMaeZ0eUdN72nhDNpZm920kDIpQKsrTQJJJgKVLpXWuon3psBWI8M4IMnliMTmNETbIYlzShPL8oWYFE1KmgbaeiL3zqB38jTAttFDJ9IZI5ynCFpNTRuj7VtCpGhbIQwGmbVCb5v/KcQ0HOslRCOcKP2gJtr5WxGtxBDJOR9ZGtKgVmIWkiTvifnGJWK+PHwFPewwZ3xABUcFZ7Fpvzc0voJHvGkdDM5T9NCIa+KXsCu17CoH+yyUBYIQA9Ld6FFwiDgeCiox7j1Qg77yGBlns3kwRlf1A8HINlsrBBqRRtRGCpadW++pmIZdLdRS6L1Su1BqZQwCWhDprNvmw8j7/bc10Hql1DtBGinMpCERQzJIrtxMdksLz6eMjgmNwloXzuPINGam8UKXZAG8NZpE1gVKWek0trqgdJIKxQNibRvbeiWGRBLlcppNVSLAdXkjpoEQI9OcnDSg1LoSQySKjRR0YK2b+bqljNfuJhfloqwSEpKMDScEIpVWzeLGyEBCUEvcUrc+ZKYx0BilMUg9+tJdlGmaeOEzvW70WowYEuKh4tB9Te3CuIqSXLVmr672n1VXdel9n/eytakupbVr69l+8P5yLbvvKvuYRfc+jmkGutQTYMMA8qCsi6KuXXmMh/CA9vbRHPuqQ5t8ZQdyVFaP8RH9yrR13wM74f4wQd3JHntYUSdaKa6ib0/b1RO/vn9+Oex1xKuwA/rfFZ2lsw8wH4FYjHk45ECPQh6C29vsn+MRrP6rlXyapplpOqMEeog0b7KfTskivlZCjtZkBKQ1WhBaj5B8uj8k5nxivVY2vfO2bJye3nMaLzw/fSDOT9x05q4jUWEKNmx4X0AS9J4Zc6APd1fTKLQeLXFDKHFw2EzpyRrhViWsaIkmLD5EJjlTa+f17cp3H9/TFVcyj5ymieL9nvttY9saKtk2rxsTDtMTiJ0Z5b4RVOi9UDaXDFoK27KRp4yXK6ShuoWKoiLU2sx0rzRK3Vz70TaBVV0CVemp0kUPBpGhMEKnfhV8OBI5ceXsfYNqe2xIM3uE4AOturPBUAtsvulsQ0T3GrNAGrqJ9O7Vls3K9GNjmSqCvW7T1fQbU4K2EdpI6lBL8cPKMvOtFIKuVBaeTxMzkaUFyv1K1E4W5TJltmYGkmFISA1UDZbABDvAtrKSkm3ayzQROtRtgwZP72b+7LtnI90Eq5Zx1f9I8x7Xxlabiea2wnmaqOOAhoy0ZslZwCSmYkKc4ZinTOJMQOkxPJ47DYzRrslSIjy9M3jVh4pbFDRAEku49tGFHoJlzjGbvqIfuIuackoOYglcf2g4ZCchdW2HCkQVddZqoXeDabUXoJAEeltM5LmOFtR8PMDWdDMniNIIGgg9sF6vlPmEprwvMpcRM0q8+uILDql1P8BNiBSgm1uPQhczwjxQgtYtyOwPP9OjD7HtKAGYQsa+/veodmhy+tfDzlgWQZu67q2XSk502HuW3lXeCYv2vX12ak/Aqw2P7wzbXVJKXe5KnfGnOwvyqwAGg5Mm9gRtb7oZKc1EwE0bNCXrG6pCr9bXqmkzmbcYrNXQFoKfAc2Zqdu68bd//zskXlCdjmv41eX8qtr7xz1+0YErDYmYhLIVHzz0QUjf1AYm2yEn2DiHhEDUhKa0Tw1Zga/qYp4QJZPHkek0ITGYMKg2s1l3mIqmNFGDiug08cOr7VoW1qdYq+PHAq0GkgnU0Qnct0rvQs6ReZpJw0yII2DyKU0TKsI4nQlSfKEFVBISBkLs5nYbxYlTthKaVjr5YDmakO6O4ZuqvUq36kIwKjCwV0kdU1w4Jlk7R/9JUkCjKZujmL0HALaRbFMaE/EAQg4ID8sQ/XxwyUeDHEM4AuSOdOzPp3sAEkW6MSqdEMfDkday3uBJgs2GPyCQICYHFfJgti8hQxwMmx8m8ugza7tnVa8ErSRVUhdKLeDXLYipaoSuiFQ6lRAqijLFTorCMAa7X2pDwb2K9SR6p7bImAazH8nZDtZm/U+lod0OdUtUG/RCxGjvGsWb6w9WZtgNOdVgsj1gEsOhLbcLT9vNNBjYYKwGzX21QiAFJUg99gW78GtvliDKo3K2RSOEZLRzemf1Ocmdgl1rp0uEkOhaEW32foMp4AdRalBj7PZO7Ebu2YPITtA5IEFfE1WV2joSXfXCBqFsze2zRgcmx6NK8MUlIUDsB8y9N5t2i3r2v7Xba4sppXvM8/VuLyC787HNpzgUr8frHr3bEParyvFm/DVFcJseZ+AG8Xv7UMSwPbE3kNWDlD/VV/1he+pH4DyqO8vujlaC7gvIk0oJclyyw6lnbyMcg9UOB2r3976/HbVkRMyzLfnrhsPNlX/w2DHNf9zjFx64IiEaw6+3DSUScjRMPOwLqh2LWKJtssNsEcOuSzF6tMmi2IYPKZOnAW1KptHUpJtUoi3fXFlrtypDzelz61CaOd+aovnG27rZASRCi4HsMkUQuK2F1oxi/XQ+kYaZmGcg0DXSNaNE8nAmsNK3xRU0BmOXRYjJM95aDqJFV2fNOR2404/NEEKgx4cqPF97JFiO/VXgMpmfnXpreHeEZBmXOM2+OzQYg3svBbVN6hu7o+ZevGeHVpSYgKhgVccOVe6HAZ3d6FFV3f8JRDox2zBzEOgavIK0ntvXGm3HngbD56MFKfWgZcE/kYaZYVJaWZBg1uO9bp58B1oV6nKjY4FL2P2nsODGRqQQojCHzpAiGiK35W4WIbVRajzU7O+LEumgphgRsAy41I0geszDRB+SZj/wsYAc94PxYM4104nsELvBgog18TX4zE4tZtHhiirg6gxa7d70hPRomq0HfNWMTeu9z77LfQk0tbEK1YAMe+Wh0Kolc61RtmrutxKRaIP90QN/lG66eKGziRExIkpUv4/O3DvUU8LXKxSaCNUHjCXoQQgy08V9Bezr3vb/oRzv60HAK3KXsAp78EoODvg6CramjCwCyENBZ7foORIrXD7JMThDAzxpFLE5hT2o8JBlkj02KN5SiL5fnID0VZDbL4ZVpnJkeeIkkofZqvWoNexpiH1OzxYR3ff+nlTamA5BjwF9PCnYK8vgwXfPDx/GEd7vjjamM+aMirhLwc/P7T1W/imPX3TgCnkgjCP19UathaZme7EVtyfRRsx7ZhQ983frgbpaydyEdVuhrQyx83Qe2TZbmGZV0Sm1svUAaaRiNGUpndpNr662zlLuCMKUMyEI123hflv48nZjiMk8vnKkpdFVKGwotl5XtpcfmeOfUy9nRGAr1bNzsyOgFKR1xhg5zQPjYCyyXlazwIrWdzCPMH34B7kY7s4I7K27LYWJ7JrFiTxK9n01YpR4EUjVVp7En2duIsEMCNtm82NlIwxCzG5rf8hj+wL/WfrrS7c/CBdWcRlmLjzeh+z6hV4xfJ2B2x6Tg9It0i3rOxTC9/fgdPuY7HSrBenWe0o5klNkSImQT1xvK2/3G7/7fOP1tnBdKl+ulaSVYPw4QmtMzxem08yUMkk7UZQh7ZCqBfn7srCuC8u28bJFW4MqtC8v/FEbUZR5CAzDZIlNV55OE/OQOE8DZoc2sK6FrRTaupidfUzmQ0Ujaue2qgkaq7jNhRIFhkFs3klMVmyIwpATsw/o7w7SMWXW1ij1TgmBra60ZsHyvnV6AyHQfXbKcprOmCNjztaPk3AQGZZlY9sK12VBS2d1a5gsgXEIjIMwhM55CCQMysopI3kgZEsMd6X3tqlXhhCCmvBzq5a4uJkquJbi3htydQkLGjspYY9Z+zrGeq+yz8DxKPV5LJ+9YlFHCLoHhZ/p9emeGztMfiB7+oAP/ajW47mVYzt5Fda/8uNyUjqqwchc+6G3By/sWvfePCl85Bs7SvmowGw0RLspBu0yVDZGYkEtHJWiIERqbZh7e3lU1/6GlQfMp62jBKJ0zFrPSGDzPLIsap6AXyn2Pz7tn/b4RQeuGMzNuNWNPJzI2cR141dwRkBMO65V+gZlW6l1Iwa4byvaYcrPDKkxTzC+O3O7b8zTSEiZbbuDKCkY9NeJRgxoC3vpULSCT+vnFDkhhJpoayC0jRiVFCBGQXSBFpAWoW2WTQfovZBz4DRngq6MWQhTot83UlIIypQC8ykzjpGUIE3J2H90tN7ZEy3jBBgZIErg/vrGVhqq8RBCVZ+Od9nOI3vqwXoKOZga/m510qst7zyaCkcXCONAKVfWZaOsjXQwpnyjRTWpnf5Il3ciiHbzx4rRNntQV6Nhbz43rM8hpGEkZaOzExRpdijZfLRDhftAtxi8Ao99e+jFIaZcEmwoNoTdm83uWwyJl3pjWzbqfUOaMqbMh3dnaO0IXLUszNPMNExErNcW2AWVlZwCEjJjytbT0MAcR0oxODqMA9qKzWGNGUnJnASC8vRkKhRjiqxL4vXlTqk3H+3YkCFQQycn7Er3fhzeu4dc641CJ6TJFGVS4jIFpmxambvKxbqYrcnSKxtCJdCTCzW7ksSgQo3Wbw2S2Idwx3FgHDPTODBOM8krmJSMzm+Q5UDZKrk1crMqLIWOhI6KMX4j5keGJCRkQhwIeURSRmO09Sk2gzcMZ3KaDFrE7GHE10R3aS2jERh8f5COvkqgjgCl5jnVmw8w0w1picHXLJZYuSqHqq3XXtyzysdV/KlodZ9rdA+2ZLNcWoshEIIF26/0NS1IeEDz3pjdVT1sUXQXp8YD4zH8i5OvHILU/pB8+qrE2SvkoI8k0V4DDmaxWmJin0f89eWYM7a5OHOG380mPXo7k9nh4phQCU6SGlnfvhDWq9+Lr4giB6Pxv1Ko0FhOJq+fAq4ybeVukK9K696pvVGasiwL23ZniIHX+x1VyJeJMOwqPqbAkcfBtOPkbjcCZesPMdOq1Q/IB+QWYiTmxCkKbcuUNZPoxKDE2F0AuuKKvd4DsUFUpZNSYBozgYWcBHIgrGpSa10sg47W0xLBHEo9FWx9RZuTz3M6bFe0K8v1Rm1KTJNtdDWYQd0kUo7mlBMkustC4XARgiVNnTiYmKwAfRjY1sZ631iXwjxOjlx4E1+9UtOv8k33FDKljgKav4KmHpu49UZUh1IGG2pEbGC1l8WN/aA3zxcdbkpxbxzjW9BBo65uI2ERWnYxSyN6EYIQQzz8hHrtJISUB+bpiV4tcAmNsllPchwy6jbxkU5yokOMwfX5Mq1Zj2tgMnkt7cRkShJBlDCM7NbvY1TmeWZy6SNVIUSDi0tdCK0Tmn2G0ckISidn73/RD5q5qb0YmSXlzGmMzKPRzXO0PkRvyrKYdU3HWIXIDmcrvQUbzWhQakc1eRLQiNn6wMM0MeSRnILLLVWWZUUIjENmjRupK0mhbBuihaDF+oQhWuLlKugqBtGHmE2hxvUFraLqpDyS4kAMBdQchRugUYjSvZdk62iniuwODgc+5dWO9n7YnPTWvfKKBxP9Z4ELZy3673TttoXjDs0ZeWGvrB69Iuv70AyytT7vV9T2/W3tdHL1fuIOI4o9h0cwO/TU2Jgm6N3s+hwVo+6tqL0EBORQVXEZ++PnD/zjqwBqB5x+FeTFEY5wfP1QD3FI2tpuX523HsLvy4KmyG5Y+0/5+EUHrmmemU4zyYeCETPOi8noxFEzMe9yQcbCy31w0dLOpCdAjLIriV4L63LldP5AHk/kITNPMyVAFYjFe1it0ftA681EB/BJfZ/BChGent+R88T33/9k9hsxItl6H71D7ViGUo1FFiUSYyYOIxHY7itb3emmJg5ae+fl5UYczzx/MHuKKO7To4FaK62bUKxEpdXC9fML95fF5pieI5IyfevGiPMZLlMZAdVGKY1eofSGxo5mpanZEvUuaNiIUdii0Gvl9csb9+uNbS2Mw8jQB9Joh7Z4oCIIyWEceqfWzVyDW4ehHxmzDTZasFmvd2KEmiJUJZ/OpjyAmdm12qh131sRPQbNzaGVFFz93Ga9tvuN6mK0zJFQCmHZaNzYloVaKmkM5JwYhkwIC9OQIA/2eylifbfOPNqYQErRek89EVHmlEkul5THAXYfJDwlCMGl1YWUEoiy1sppmk1Tj+JUeGNzTtPI5enMthVSALmcCMNMTgPzGJ0529Ew0NWSi+tSwHtkRTrzNDIOA0glp4EUbZ+M02AO36URJdNSQmNmHmdisOqF3o1w1M2QeS0GQUtvvC5vdp3EauO8w7dRiTl5n8bGS7zgsNkxF48eSAiFVg2iqnVDe2WckmtpJmIY/aD2ACSRGAeiFOpWKalYIO2RINl0FVEn9PiQrVqFbvma6TIakaCBq5NYkAgOCSq6bnvcgl6tGjtk0Wz8wjKjHZp8yCftwaCtG49ICXvNxGHe6OzGPdDWYkovIRBdecMSOUMe/OlBd2PV9r/MKkRs32FBxpTzDZJNKaK10oPpD+6swkeCZ4Satm2kKT8YjR58Win238GqrLoWtDVCV1QjEkdq6Xz/0xf+8LtPnJ8Ky7IyTzMa9Xi/wg7v/uMev+jAdUnCqJ2pVu51o8XANAhJA6GD9EYrhgXTGmMQUjJ17hYCgcUOwVIpVKSsbLc3zh60xpAJqXHzAzDT6YiJU9Y7Qa0ZHvvKKQQSlbFuTFOmS0NT4TRHb0QrPUbzDcKIHi/bFdpKiEqWjRhsg/Wy0tpGrRtvby/EZs380Ar32hjHmfuXL4wjCAW0UNe7OZf6IGoYJ+pWeb3e+OntRkiZyzSxlTtbLWxlM90/EUIDZBf8LeaB5P2AECq1iYtKC10HpCl0uNWF23bnXlfWtnFpGzRBaycOyU0fvZG8z7cczVrbsL1XNxwUSAO746oMdyTZHAnJBl+7D/kaK5KH3Ql7g7mj3msx0ohDMPs8mTUSrMfVusGT62biDD06QSETNTGFSCSB2kBsxw6w6JTkgUbCyA1BTC1iiMIQAmMITDEySqRpoBYBGrJVYrOKy0lwhBwMXkSJHaR3RANJAjEF3s0T4fmJV1HaPCE5MSRLMvbmimhDuhKack4BYkKI9CichmhQc20ErQSNRGxQPuRImAZiFEoItCBMuboDrs8f9WCjHb0zItZGEjgPmVMWxqjE3siSzbKlwUgnqgvG+lqq3fQvRdvjnomYwzKQvOqSstPJO0JDZACq92hXQqjEZAiKiUMb7ByiKeczeE+24wPQ+OFrkLI4yzYgxDEhzSDWFAMx2awfeTjsXppLxkEn9m6O4V7NxH3GSYIlYbpXVUAzb63WHhJcMUZDQ45elCE14pWLBrs2RobY56bk0bdS68mLCtLscyP7dYKYIzvNvB/BzuSbdobtjtYcDga6l6I7/OhjFmMy489oPbuYbB52f1pj7YfDscA+gAWmGCKXnEhiZ2/dVW/2rQ/eO3xAmv9rH7/owBXEPsAQhG1nw0k3DT9nXR1DrkCKkU6kBaVKpMWCdIPadlgMJ0UIPmgaLDiZPYKZG/cAUdwczxvzOQkRJVNJEqhU6xoEJYnh3l1Mzy8GI0hEMTgjB2vsB3Es3bXoRKC1yiCRQYQEZuu+bdRtYxpHO5D5GgYQn91wGZuulGbsLZvtcCsKeUAUdh4Z5rGb6mn3CvJwSHVsY5dp8sVuJnZqsIlY7mYrdMf190XteLvuPS39GX6/9wB2K3LzF9ur531DNrehcFsVZ38hB2rx2Ije08Kf+2h1tH445eLZdsAkrGKIpJDIITHmZIdKsB5K1YdYM2JJjFEVus03hWAVUG9m7QAkxKqNbmsruGhxRI81GYCgzUkzgDPlAkISYRoSdcxsS6JGgQg54ornOzNwh38Mbt6VRkji8LcxTC00dCKBLAax9SEerLYmQhaDxvYxin1/BNWDmq2oQeDaCb0i3TNoIPjnOxitYn236PfP7rUJASexHnUKwpgtPUgipp7h5p2JbDlUb26nIsQkNoi+09/BF4BXtXsio3rIhhlkJj+DC81w1ethDxQh2l0Wv29dqwckex1xaTMRTO8vOlko7NCdw9EBh229byU28C8urLzvTVv4dm+O/q4HOWfBILtUU7f1LdE6ZW1/LX/+R72nexw51j//pSCxB8X9vPTQsmslHvsZPws8tqlD0Q8uPp5AubSd2Iwf3ebBWqtH3fmzx5+AHv6iA1etHcbEdDpRU6RF2+w5O0ZfdzpmBgJpjNQaqHVja52aEkJgCMKUFJXqxAETaY3JzPSSdgaAlI1SHwOiE+ttRYMSU+Y0z4ReoSyEVmml2OBv2RhyNHkpBE2DaeMNiXkckKScBjjNM1HMNiDQTPFjnoh54JIyY4AYMtfrevRqck6kIHZwtArSD9sW0U4KwvlkUFGIwQkXFsA127qJ/ick3zq9scVA7I0oQoyJMZr3VWn7ARZIKTCOI6f7igRhLI1pTIxDZhh2tQ05tOOiV1LW0xMkWL8opcEMMGN8uDFLZDqdHHYNRBJ1LQjmqxU8e27tiNWPKu4I4B4IRFCNPlDqEFFdUf8T5zODKKrCPA2cpkyvA7WdWKtJNUn0ICTWC9MKOXaymLrANJssUimFst5IoTOOCQPRjK4euhKxcYScIrUW1L/ei6IpEAezug+0I1CYvJf1bINW6Gp+b9GdnxoG44gxCiV5/7A3q96cEZgS5t0VlCxqkGEKaA5GWcdGEyKB7GrzDR8Wx8cUovvZ9UbfbtTYqcESR9FqGXnbjOrvVUNvgUY1z7xgVWRMQhJllk5ogdAjH59P9JI4T5nTlDlNE+N8JpPpxfb2VhPDYJ52KoEhDx44xERhQyQ4ZBz2eaW9aaXArv5gE4yeWz1EoW1Gcif2uIt6MEfq/y95/xJy27bl9YK/1h9jjDnn963H3uecfeIcIzTuzbjorSgoBKIFxQANKz5uJcCCKCgICmJBEBRRBEEtaFhQsKKCVhWsBIgWrIhogEmSSub13sh7DT2vvfda63vMOcfoj5aF1vqY3z6hmZ4TkZAbJ6y91/oe8zFG77219m//9v+ru9QFn/SW6EmNH/a7tqAKdPMHNAJS33tE5orsiELHpaj89HYhX8GCVshDOBmfpVSDX8H9BkeV54ehyBeS1TYUbZxK30cl1roNlGtHa9/hSrPGGUErmKpGayZy0G+zoFGEXoslMyRHYiYi0WbqtDhTsbNdV0oXtu2mEbvnGfrL4xZ+qQPX+fP3TD1xPHzEcneAOfmyxaoHWVAxrFm1EgqwFbRs5HrlNQFSIMeZ+9MBOb5iy/c8Pj3Rn1e29gR1I4sNSiqmyxe7MhO4iFBFWKISLo8WBESZVejrxvV85k2OHKdEjIFrM4iq1srDp2cu79+TQmch8yOvT3x0PHBIE1lPhFBIItzHyHaxQCvaIS8UDTw8PPP6q9+EHAlU2vPFgoFA6RHdTIsuHj/i40+K4dt5oumMeiWImmWKGURGJAeiJGYVjqfXptuYJ9brE7lZ5tR6s5IxTSz3r/jqdMflsvLu/QM9zzAt5OPRxXe7qSTUTg8RXPoJX7QNJVWj24ZWaeL4vAJpDHF2em1cLxsQONzdO1phDeC6Ne8dGSEjDj21NjaGbdyQLAjHPNF8yLj3itQL2/VMbY2Uvs716YH1fEU0IKWaHuVWKetq80deVcmckXnidHdizokYAnPMTMkOvPPDA5SNmYZkMd+ryRQUAkoVq/ViNshnErjLExklx8w8HawXlUEW5X6ZKCHSRdBWmcJk/bAc0T7tLswxqB9gNuMIdu7NebIqP2SmvDhUVAkEtnW1CswVS3LKaHSoLCZjbgIBqyhUA1s4EWMkBeHt6Wj9rhiZwiumvPjMVOcwF7baWbfGel0tUHh2nlxR4jAn3rz+KnW7kpaZOB2RNO3V3YAnn89Xztcr67qS5gNbtepRojD1Rq9qvVntdK2oNlII9O4+aIOb4+uitU4tpsoRog225xRJ07wTiNbrxashQ0LqWq0SicHgM19ivTZXhDHYMbjy/Xq+EHNmmmez0nEhbe2dthXXW8TA6K2YIeeUyFN2tqXpP/ZazQcLtdcVY/+2YElrrZWdQujJmn1YFyFwyL6FG9lCQjTylP+cSNj3X54XJGYb2PefD4LR6ePkcT4ScjCJsDwR5yOKEKQyHxbefOWeOC8sy0x0k9exI394kNAeP3Dg+hf/4l/wV//qX+Xnf/7n+da3vsU/+kf/iN/7e3/v/n1V5c//+T/P3/k7f4f379/zW37Lb+Fv/a2/xU/8xE/sP/P555/zJ/7En+Cf/JN/QgiB/+V/+V/4G3/jb3B3d/cDvRfD4AFs1qG7dH+QFxPgoq6L1g1jjpFIRpMz67qxboLDY71Wrs/P9FxIakzD1jfWXukdGtG6NeoHmDZCb1BWW94ikJJR0VHulonF4RitJtXTIyyysL25J0fl1SkhvbOezzxJZKIQS6evK3XdKFfPtKNR0JXIeq1cnlZKBOkb16czA48rPZGyYZJVAqV026S9MG8VkebsMJ+P6ca8Kq1TSmfbGiGulNK5BjMj7N0a810aORvBpZTGuhYul43Hpwu1W8UnXpExVBoc+7ZsE9Sp0a0Uqv87BDFVhmAzbtrE+lq90kthvWw2p+R2K2MQs9UOMVrGjbEKg2ejfcAcquQpEXMi9g55RkqBdUW6UNYrrTWePnzK08NnnM8rRbOxCxFqiGyXs1XvKRBFqcWgr94q/TCRkzXqZZmIRqlEW/HBYWNQtlbpRQy2bd316yK9NmoXVjZ63dguF67TGcEkqeq28vjhPSW4coVAcc82IzbkHX6ak+7EhJAs6xeUaxbXn0vEOBuTrzd6K2zrdSeQC6YwMnorW837HpnToM5Y9l8wyHtKsE2GJGxVbzYsvbGVQqnKWpW2bb4vbe8UMVbtdt24XM60siKh8f79O+aLeX/FZlJZZV1Zn97z8OGBUgoHjYQ4GfFHHKETDNrWlymL3npE6Ato8QVUDvu1NMTVZwvbbWD5C/2Z/QDaDz1Lxsb/wVmvBr2L4/7WYh29JPt+8EADQ6l90NaxwekXz23wPd7betGrEjtfbChebu/TC82dAu/7y3/Rv+Yzl06xV9/DiF+TYTf08popjk16JeizsaOK6q1zPl9otROncOuBff+F+2UwDX/gwPX8/Myv//W/nj/8h/8wv//3//5f8v2/8lf+Cj/7sz/L3/t7f48f//Ef58/9uT/H7/ydv5N/9+/+HctiulV/4A/8Ab71rW/xT//pP6WUwh/6Q3+IP/pH/yj/8B/+wx/ovRitONLKytPzhUInKRwOCylFk1fClAJarSxzZsoTMS7kJJzPZ7brSr0WthXK9crD55/x/rPPOB4OJJR8t3C5PvN4eaYVgwUlJppnJq11Wtlg26i9oaKk6Wh9kBT56NVhn/eQ5vM+MbHMM195+4opdk6Lcj2fKWvlQ/yMKXZmjUjpPD48UbdOjIHjcWKZFkQS67Xz7rvfQ+tK2y60+t6qJ7GMaDk1Qk4UEp99+kitlbxk8mTNeBGF1oih7dj+eaus15Xnhyc+vHvyZrBBBCFYf2FaJk53tuAeH+CzTz/w4eGZ737+ntevDxwPC5fnM4dl8oZ3YJkSQdKurtC2YkFrKyTV3Z9LohJnmz3qtVK31VyD14113Wi1W4CurokYzfI95GQNaFVSiMRg8FcbBAHtzMtMzImQZ6a7V8QOoXZUzojaQfX+3ee8++w9l0th04kpTXavc2Z7/oBOmSAzKQTqVrheG0+Pj7x9dTRqPIG3r48s80TOkwvB2gDmei1sq7G7puym6UEQG5KC3nimunGfdb9SCBa4SuHp4ZE1KBoDy7T4IKlSW+N6Fe/Twmkx5qUKyBQRx1PV5wUVoWskh2SHZyuUsrK2QnFZszzNxGg2Fusa0G69ulfH6JCYkO9maB3pysP77zEtMxIi50vZiQqhN9a6UbpQVMjcVCJCa/R2oZWV88MT7x8+R3vjsCys23vmHC0ZeL7y/Hzmcll5dTrw/HyhdeVNT8QpIwGSdHpPe7U9KvvgwOFNLZ6hAGfXvxSCRGLo5CV7wisMeagQgiVp+MGuNkbRAQ3W1xQPdCEHenBj2Zg8aTFYfloWu6Z5clULO+BHsLRCJLhhrNhc3y6Z5oNWccxIWpTW3gjBJMPiZAow3Z3CkdH5tv6kumOxhEiMzlr155Fw64uZMEOjbQVt3RCYmGw92vAnw5kZsdnJVr1/pYEeN0QSdWt8+r3PeHq4chcOe+/tZaV16+j9cI8fOHD99E//ND/90z/9X/yeqvLX//pf58/+2T/L7/k9vweAv//3/z6ffPIJ//gf/2N+5md+hn//7/89P/dzP8e//tf/mt/0m34TAH/zb/5Nfvfv/t38tb/21/jGN77x3/xejqFwbFfW68WFQAHpxAqJQNTAdl1tEbnWmuREzJnTdEfOldIal4dnLp9/xna+sn64Ep6uZJlY7gLT2rlvgUyGUAzH3wp1O7Npcpv7Bj3szsFzbsxduY9Cr51yvtC78uZ0x2GezNsmzfzoN3/EKPiXK9959ynPl0fqWondqMsxWHnexIRDp5559eZj8yBaV/7X/+f/zsOHBy7nM8vdzGmZmJeZ+S7xSkEpPDx8zufvz1zWjbV1PjwUTqcDx9PCaU43MddiQ6u1Ncpl5dvf/pzLZWPdCtM8cZgzx8PMJ598Qswnuk7851/8Lt/73mdc1pVOJxCRGjjGTEXIJ4MJ7l69omvwhq6CVBMrTZHD3YHkSiL58NqGT0Niff5AniKtVcp8pV8SZavUtUCaqKWwXZ7ocaJfz9a7CoEkzS0VoomN+sFyLYnpsLCke2rNFlQFdHuHqM1ufXj3BF2ZAKmdpBH6RGhHpiUQpZBrZZ7g+bJRLhvnDw+s742cczhktvORPE3klLk+Ppp8URDOn19YN3M2btuFZTaYbFM7WC3D38hJaAq1QYoTY25KxHiNhECZZwsOHpDW5+5sUuG5blg+J6yjmd47fbsyLwY9lWajFzZo2kjJele1KxvG8gsizDmwlWiyWhK4fM9GFPIU6X6gKbBdL8xz9OQnkFOyKruspGT3RcUgSnViRI6Vy3VjK4XztfDu4R1dG4dDprSJZZ6Ypsxn/+m7XK7mbbdMBy6lIyFyBU5ffcvdYWHObrMTAzFi/R+vDgb6YiHbWI9+0lpV4fOAKcedv6CjcapqPcfgiZ5GaNkYh05CsLkpMUcIscCVcgKN9N5oyebdYsq27/diw2Y7jWzk59bsWojJ748YoaSrmpBt6xaYtYE2I4flvPeIQzeMARFjVTsbUpJVVgRj6cacLXgF6+WBaw9iA+QtV9br1YhR4lJp2a9nzJDjnjimPFnvLiSv5mwA+ZSFb37ylvuPv8qyLC4V5QQX5JcRsuzxK9rj+oVf+AW+/e1v81M/9VP7116/fs1P/uRP8i//5b/kZ37mZ/iX//Jf8ubNmz1oAfzUT/0UIQT+1b/6V/y+3/f7/ptf78PjA9TA9fnKc2hs0om9UqdkHkMxGuOtV4MtrldzhE2R7bzQy0bbNrbHM+v5met5ZX1euT6fCQopwgW4lpVrXZFmXlQCSN1Y1TdI6xDybi3Re7m5I+uGbqvNgVxXztlucIvZYMPWKNvG49PZXJO3RmiVGNzwUYQwZebeyCHx/vPPKbXy+PjMt777KdfnC2VbmcvMZZ6YckYez3z2bkFVuVwvPHx4YKuN2pUlWk/j8TEyxcC1VrbaaLUby6x3tuuVd4/PbFu1Ic+hNN2Vz99/oHUl58zDu3ecz2an8vHbe+5OdxwPM3dHyyytX62+AT2/Eoywkez/MXkWGM1tVXE83wkyA3+3vk3DdAINAs7Zho3JAcE2YwzVRVxt7sfPSaOdL+ZIrElICdM81GgGiNo5nRbwObvtYuK5CvTeCHMmqBL9PUxJkMNESK9NBSMoy5JYluTESCOrhAAxBj7qycSam9LLlWmyg75L9KZ+h2rqKYo7/cbM3qOT7kZ+BgGHaj1Pkc7lbLN2qtBrMUg5CtX4fRa4yso8BZBo7gU+E2eBy7UIce+qatT/KQrrZv5ZXQQtV2tv5oCG7EhRp1wXpsmID6+asUEDHSkbU+o76UFCMvi1NWIoLHOk1Jlj6yzHgNLIU+J+wqnpEX17R+0+xB0nnlebVTweMofDzLRMdh2CUegNbgte1dhr7wtvULBHY0qGxJEy6K0CDuuJ/4j4QLHrGXavGEezbCdA8MIgEpcms97XXu0JDundXmeXiBKsAgIGm/Umd6a39x8EwZiJ1LpXLQOO/EJEEHayxU7UUHt+64PdoFIbNLYgOqrIVishlNvT+fVSGQEIt0gZ04qDKaWklEnV9Ua9JTEqrsFU/OUEr1/RwPXtb38bgE8++eQLX//kk0/2733729/ma1/72hffREp89NFH+898/2NdV9Z13f/98PAAwOfvP6evnXKtPMrGqpVQVp5T8MCVzWdJ3auIMfimPM3BBhNbpxelrle2a2G9XrlcLtRWqO2KrhvXsrK1gvROyDavMouydZdvUTG7CTvl4Nq4Xvw9x05yunN5fLY5IxGq2GySOmNHiN5gVygbkbCz5+bTTNdGJNC+feXx+cL3Pv/A03UFZ49tdWO9ZEIMrFRb3JjjbS0mwIsE7qbE+fxshoC1szZjfGkX4mS08+t1Yy2ePYrQe6PWyibCZ+8+4/z8TAyR63ohxcCrw4Gvf/IR9/evmV2u6Px8dokr7yV6BrvbhodgzCRXtw/JCRO1UYv1jsykzwkBzZKPGDo0VxOZJgjJnayjZYbSrIeHD2Z6w1ljJ+SJ6bDQYyDm4CLNB2qBlszgUXyG5/q0srYrvSp9C8hhsp5ms3mx45SRkHmdJ1pZQRs5R3K2LVl6I08n8/9KkeNdpo/mdzepq+DeYM17DNKrZf4ug6RhpxohNBvAFqH0hoxGfRDK1c6khrFCo/j8UpqcZWrVXErjMMz0XbOuY8xru1a1d9q2oq2aAO7VkCEjhRQb5bBo7JVHp5XVPo8ElNkEmFFCK+TozScVNu2U1WBiYXPoCTYC6/YGxSDxWS90lIbwdklIMJ3J0AMPzyvbVskSOJ0W5jmZ+PReLdl+7MpuHzIcvu1CDsBNR1q096ZG5NIXAcBHZj15csFbYVfjGIoQ6mze/WVcmFfVeuxxD0r+2iN6jWAwTnZe9NNGYHzxMEau7avWt/0ejqBo55G97h7McMZh716Fec/NCTT+QZFo0KSIQYbarSLbPyOjNzbcA6z60x72EZmxX/M0sa4mVL0rZ6juQe//ryqu/189/vJf/sv8hb/wF37J1z/79D3rsXOYJ/oEGmBV0z1TzHqjBOtH1QDt0kw3UDv1unItjdYgVdOp0ykQX0+0MLN14bkKtZXdabdKQjZIAV7dZe6O90jMVBLnR8tSU+zEttqbCZn7ZeawBHIONEk8b521dtaiLLEYYt6V560T1SqTqE9OXTf9OCHTBJ70ke99dub904XPHp55dbxnmoScMvcHo4/X3nl4d2WrF8D6gE2UHI1+f3y90EphXTuVZn0xk482QaNqcMVxmphS5DAnluVAykYG+NZnn/L+6QnVzhyFX/Orv8knX/8KX/nm1wnJ9OnydOArn3yVqJXQDXc3NThLLVP0gcjegeoZaADpxv6TwFat8oJKmBL3b195g9povjbrkpC82LBnq6ScEQqCSVa1rgZdpExrF3MgniyIpgx5Fg6HV0h4CwSz90gHpwMXIDvpp9Al2bCxbp49GsZPXEzyyytDhoZlmAh9fXGgCBInCBnRzQ85752E7Fn8zQUaAQ0zYNWlSAQtTozIRAqD69d7RUKGOINfb4NIiz+3IH215GHku3HGf8gq4F5QrajMSDcNTTt0i/WM0tFkxMZzt2KvGSLSryPvNyJHPhp0p6bgISP5SAfPvu0Q7e4eXDXRdLUKCaGev2vkHQ0mHI0dfk/vH9A5sK0bqVSWXJlSo3Uxf6m9sgq7TUoKrnjRAa3UF1VMLYYoGKpQjarvsPXQ0mutOezYaa3YCIwqGkyceKAiZateMdk1zTnjulG0UqwfNeneshpHt6qLBnjFZSsrfqH6SsGvwS5crXswltYg2HxcjOIScKP0czg0BCOutQZbIEyzz4m5JuOg5TuJStSeR6vSg41l9L0XJmYL5DNzYbKRlxADeV4otSKxcDid6CFxeLWQ04Bhb12uPTj/kI9f0cD19a9/HYDvfOc7/MiP/Mj+9e985zv8ht/wG/af+e53v/uF36u18vnnn++///2PP/Nn/gx/6k/9qf3fDw8P/OiP/ihvP/6Y1/dvmXPiOAklKLV2Fz1VQoCLWxDEHkhHYwnm0MldaKERqi8ArwY0DlVm9s0YUrJsRJLN4whIh8u6odJpNPsezpoLpq03S2SeZxtk7sqG6SX2DsN2ZWwKMEZcCoHUJl/Qjetm/Y0gQpTGZV3ZSnHDt0oXodM5X85UNWbg8/XqUBuk3pmnjGhnXVf+07e+S6nVei29M6W0M/HW2tlq43pdSZgB52MQ0nwmuZr854+PmCYgLKeZ42HidDyQ54MRADyjjClaRavBHIIZqtI+qPgCaTE2ZoOwYVNlVnkNM7zWCjEZE25IJg0lAJyhaBV198BlDtWG4BgzrNaV0Cwo1A5IMGmiNvTlEiFms71BnKXWHaIb79lIFJbERgg2IkFvlr+LWv8BYZgm3mCo4Nmm2szTnnPeqlHVslc+QqC3G8oQ8uQ1iO7Pv2fLt0jnX8d/zrU1FRN0Bs/wgwch75+RLcipyXNpW2//VkWDmW9qM9jIZourEw0C7O9T7Lr04u/HesuMwN4H29BsVaL3IetmSZ+IEylSpkfHHLxv3NswabS9WosxMOmTK3aYUnqrzfowBl9YnHRldCXsFcj+XH75QhjSScPodQwIs89C7eig7OnFWMD7cSx+drRS9ueIOTpsLa4krTfYTNVaDbg4wOjJKQzVl8EAxM8KY/ga6WZAmfb9F5Xj/u9+C1pehe2KHM2DfXcx7W42Ra3ZjFdIeSdnDGRIZcCwVoH2NgK2S+E1UyJ6eHikVCEv4yAdn1lvZ+toKv4Qj1/RwPXjP/7jfP3rX+ef/bN/tgeqh4cH/tW/+lf8sT/2xwD4zb/5N/P+/Xt+/ud/nt/4G38jAP/8n/9zeu/85E/+5H/xeed5Zp7nX/L1128+4s39GxM1nYQarIegpexT3LWvLlljsxVZsLms3sijZ1J9aPWmEeNArw/Q+gCzaESCyS/1rmxboWuj9sqSj3Y+tR3AJjhW3Xy25KpQqvcjfMiv+0Bna2p2I2K/V5r1ni7XYvNHQUhYYFb1+StTvEQ7XNeNtZpKRvWejWA9tCQTAKUU3j+fKb3RfPXcLTPLlIgxcV0L61a4rCth2ItoJ14T0Wnq11qc8ZWYcuJ4XDgcD6Q806sdPLu/kG/CG4Si7FYm3jgffI0xiiCuAWcjDJ71lkoImZBs9sTIDLpT9OnjYPJsHut5qE/2d21obajJoJhpYyz0sqEtuYKH+lCpNxzE4ZW9mrIh3aHgzQt9R1OZ6MQwkhB/9Lr3PZToBzYuH/XimlAcSqmo05tVcHNU6ylEEvspiQUcU+5XkGhBTeueBMl4zzuVutpnJBgioUPnr1uwojk0Kxa0enG1CvEh1c0Oy9uHu1V2rewwmPmqVZ/9svdkn9JmKXuz4BXEpIhsTmkFF58VwQKPg3SoUru5cmvzYNONcj1UYMKYd8J7sbtVyff9CS+z/LFOTfXCFPFdcHoMy/r7GZWcwXRD9UVuLES4rXn/St/Va/xJxl4YBIpx773PNIaH8f0yAM3x3AOsG5CfthfQ4xDKhhdf49bDGlCpiFeIds7sK1UsGRiiwupCzjYwnpyE4nR/my7296bsmojSbiMzvXO9XBBZGOoaL9tpvxKPHzhwPT098R/+w3/Y//0Lv/AL/Nt/+2/56KOP+LEf+zH+5J/8k/ylv/SX+Imf+ImdDv+Nb3xjn/X6db/u1/G7ftfv4o/8kT/C3/7bf5tSCn/8j/9xfuZnfuYHYhQCnF6/JeaFroUgQkYRmsnwI0gU3qR7Sm2sW7Fh1Vap2pmI9NppBdOTq3bzp5yJczP4qQM50duF3lZKrYRuDq+FDpoorXFeL5xScTKCacK1bgfa5epbRQRNC5fis2YANFqr1LpxrZ0oZskyJWG7rqxb4fGy8tFpYZnMwPE4z0w5c1waKaYdEqhbJfohsYRMnKwf0isccqa7NFBIgRnDpM/XzdUS7HStW2O9VJ6vhRyiO/QmpAX3CqrcnSbefHTP61cnftXr13z1kx/h1ZuPmeLBSAMhEuMC5YpoI6KQjeE5eiK7u1DXPQEGXDnArlVEXDwXE33VYI3xEEkxGcErAK4MH8Tkvm67w4K9QXCQvTeZ48wUTfOtPjX07p4QjSovIoS42EGjnmV6FpxTRlswQX+squ7YoS4p7f0EqQBWvZNGABHXnBIvV+J+EOHBx37dRU3djZiyevM+E6aMKaWPOaCM+L97eFGF4tYj2s2nSUewyfu1JUTvkZnWXIgZ6a4QoQppQnu0wLn3SUDyzCB7AFZNaXfoaKiepOGBiDABpv4/zA01JVSTBcS82A9G68kGcduPdDfygn3datmIPRFKJNREyHdEZqTbwRoxSw0NEcHMZEOwKi5NCYYbgFdEXTtTTrRmiWtMt97rXl2oWv8SCwItBmMR+xxVzNMeCKTUm/QWgFrS2PwgH9WxhGFg2W/rXoxw0VzxhW792BiTMfZ2STqxtRMCpEh3CNKMNgNpKNYYFox2G50OOdFqQXsnTZE4JYP+D5MPTdvIkEGj7sTdC3GayItpjqY5+Vxk3JeEsZ7zABRs7EwCMUTuJ2G6u+PVR6/Iecwc+uf9bzjb/789fuDA9W/+zb/ht//2377/e0B4f/AP/kH+7t/9u/zpP/2neX5+5o/+0T/K+/fv+a2/9bfycz/3c/sMF8A/+Af/gD/+x/84v+N3/I59APlnf/Znf+A3rznRssF3rW/UXs2jRz3zV6h0q0J6tylxt9lIGsg6EaLSG5Tkk+htM+8uL8NDgGUylYJSlCSmTWildaI0mNZK9gVn0Eknuk7ZNHu2SYAcad4sjq6f1rtJF7Hpzn68rhulFLZaKc0sFEKKHI4LKSZTl2+d6o3f3puLh5oqfg7C6e5k0k7NJGc6ykzn9ObOfrY3Pn33zDTm3SRxfyecDge+Jm+tv6GmM6e9UR3ifPvRia997at89PY1n7y553C8R4is52dCcjUEDbdzWrBNCVYchIh41hmC+wEFy367XSU7XuLA3yFOcTcNDE65Bbw6SzbQGyJBug0E9/4CQ7fM0M+anULcqw1At9ZIapVIiMHldCJJImXbQDoSG2labKg0VUKA5tenvxi8tBki7xOESGCxwzgI1bXgBKc3Ox7UXb9vVBsxmkaiiqCS9+eK6XBb+AK0zSBRsee2jN+o6+LpbXMYZ2TeYYcsAyEOlXLrS5rahFdRzaottJvsEzgzLXo1YJJCQzHc5oEcZpMXlYtaImYvr/7cndbVqwhjPUqcvMzwE7A2dq1Lsd3Tu93Xrva9eT4Q0oSEaJX697EH7eqqWw+NyiW4b5sN3bdu993Wqb/nfeG4069LNw0SxVCQMP9S2T/ry8PYcgNLZlopXsncqp5fQhYRY9i2aomDKWTY9yRYD1NveKTLqAVjLbdOcBiw71ChQ5B0L8jtGljB1PfAbFVr3ytvHZVliKaqX6vJOzF6YPgAdMVytgBi114Qghpkr3WllY22rvRt3StJz2b88P7lBbAfOHD9tt/22168kV/6EBH+4l/8i/zFv/gX/6s/89FHH/3Aw8b/pcd1W1ER5jH57RsvOJwkwSVKVMCFO8cQ4dTHHlHTE9NKw7y1ljnbzQxWIqdohIEQhYwFLrSCJnITQkjWx2mm2N1DMOM9teTZbryl/smRlyH6GlxhmRBopdDrRlkrIURyDiwaOBwOHA4Ty7IwZYMtW4eqJh9Va6XGQIrdla4j96c7cjZF564GN2kwlWqhuYTM2LRCVzESRkgc5tktLyrXrVKqzdH0Dvd3J+5OR07HI/PxaIdlh9YN5lPDcRyWGX0DPAu0xT8s1B3Zt0orBMZXZIcXfMNL8J6TupSTsQZ7F8zafkAifc/s6Vhv6uVLD5QvJTOj9E3sJzMikWGpISitbfb6QWgVg9HUNOVGYO/q+pCMzNldlok0Hf1Sg2WGMkNzbUERuzejWW+HjWsQerKjikOmLw5zxKEi67fq6PuJ0NoQLjYau6oTDXo3jU0ZTLobAaH74aW+f0wZ3irxtisseILlh3drHXrw+yiEbrRr/5EdqkvRKsDmh7dVLJjkWHNtkx6NxIGJHe+mjCH4bR39JvsjASPiBLs+zeeb+sveEewwVfffHcKx6IDcbow3U4uwpMOCsbAraOzwngdff53RQ7JqzitRhyQh7fDdUJXo3WbQRgwY/ai9EnZodLzGQA92QsyopuJIJLCE4wX8zlhL4+lHMB/VprNMh3nmGIi213wBf4w1uCcn7NcWHc/vTMrgaInc1vFAgm6PX4k66/b4UrAK/2uPb3/nF7k7HvjK/YG4HJhTpouyLEZDFhHXcoPeTJR2yNxoO1OrmhrD80ZcN3oEOUy8fv3aSReV9XJhW68mlhsToQjBxWZjVKYUyCFTm71GL0qLQhjQmIK5FCvUjdgMqy/NhhslRUKe+ejVHdtauF5W2vrE4S6Rsw3zvbm/NwgzCGlZiMno3xDYiikyrM+PlpmpEsgc7+6Ypok8T5YBBmNO9t6cOLBxOn5Or9YXvNbG6e4Vx+OR1/cnqMLlsvLh8Ymt+Vxaq8QlMaWZ1oW1BsLlytI696fDDvXIsCAPllXjYq3mZ+SN9Wa+TpsPeMbojL4AIo1elF5M8gmJ1tTGmITdD/zWvT5TkMFbTMF9fnRXrAcQhyWDQs6zH46mbrD3OuJESDMqZn73/HSl1c0qOzXNyyCdFOIOFbY2dBhN0Hm4LwOsrmQQEJtLEgtKayl7n0Gk7sF8a9XsXbw/FdNk9PTe6PWdwaHAoHsLDi3Ps6shBC6b29WECM5S7Gq+Xym6UaKlTrRuXnAWZHyote38AXN0TnmvptbNoK4YE6rbfsA3hBgSIo3airsT2PembAaapWxWbYH17CTuthkpJFqzbCOJyafFYA4B0KkVulqPNWazEonJgl0tStkKMRvJpQ1hQ3c1kM5emdgqYc9kFNug3WG74Cr/4vqA2nXvyfllp5fiiQeeJPvPtyE551DudAt6pifYiLU65XwEdhhUdrxC9dXq2op9N7rsTc1ixT6hBeHeTVhZldpewOSKwYQepMw2xXriqi6TRv1C9bP3orB5PhkapiFZL56dFoTidigq5nbBmAGbrI8ajGGYjzPpmK0/vn+yWwD879YB+X/7336BHCOv746E+Yi4jI0QXM6mUiXuLYaAKRu3urFuV8wrpvP8tLJdn02uaZn4ypvXxGyN/PPzmafzleu1mKWCCkmFJfbhyAQYmYJekVa5uiEiWNYyx0AUYesWKFs376vQO10CPUSOpzs7rxTuZkFiIE8zx7s73twdSUEopVpWpFammz16JkrkkMS8vpr1NpZlscFewk7EELGDP02JGA4gxqDqXSkNn1mqvHv3ninNhJB4+/atuUcXgy/j4k7PIdDXC0XMGbhOkRBMM68P0giVoGaENwgovbmLbLfKLEQx+m5XWl2RUI3KvrvTKr1eHUoKaLYOUWudUj3d86sdRZFqmy6Gm9p8CHbgRAlorVQitVTKVjk/fvDMUInTAUIkSCLS2OqFp4cPPH144D/+h/8DxTQPQSHNSMxMU0JThiAEaTx/eGBdV67rlYenM4Kp9Od0uM3+EMg+S9x7ZysbpVaupTAnMDDO5pRKbWy1sJ6fb+0TbYiawO2ShRAPbkFhh3xOphXZCcYgbZXLtTBnqzp6N+i4N/OLijSGr5RqRzBn8eMUkLhgneNGq3bfUwwQArVbtb9unRztulcNoIY+9GqsVRUzUxHqPiidkrlLB+/T9mJC1kuEt6+OvLo/8frNPcucDUKvFd0KbbO1U8NGWa8EiaamojZ/Vxuo9xYFr4qd0DScifdqZ8BjL8q0EaxGdWV3I+xwGi8OWx3PPYgq4/uqlOsVulHhUzJmnhEs663Xs7MV1c4ll2YKMaEd2tZAOr21XfFfu7H26J1Wi0l3eaXWXzAHh9TYcDpX10hMy+yJfHfCjn3w3cerW8+v1W7ani6yq606FNnpxaBM21/FlFF6Qq8X6mYjA9/59vd422aWu5eEnpEzjKr1v9PA9Z3vfgat8+4wE6YF8fmgUr330xpFvXcgQ1bHmE1ruQ3HrRfTaxOBOGeeL1diDqh0zuezSx9VsxDRQESYg9LUtcV8E9O9ihiT9L4bpmDyQtXLfaOcNgJWOXQCz1vhMM0c54W7uzvuDjPLnJknq7xyDOQsdJdWEVemHgsu9cBaNlqtUDuz94UGxKDaadX0/mQylQrTDzRY73Bc2C4WnC7blSZDTy+Qs83GSYA4GdSWomnJxWwkjtGnGn2KkaONDFQdwgAQn1EzdQGX5QkyAA6/cgrBTSp88n5oKgYRCG6pLmGHpYzXIM4ONFx/9Cm1WfXVwR2YvWTpw5cLg8EwckTMkZgyrStPT0/8wv/xf9J6t/5Yr4S8EKeF4+mADpKMFp7eP3C5XjhfzlyuBRGXDZLJFRIENJo0kQeP0jZaa2y1MWewBnjk/tWJUivbVnh8eLcn1CJKCBMpGJEHksE62mnd4LYQDUqtvVJbY90aUx6ZegRR03NsHdpqzNVo90NkIobIYRLUKU+dSimGYkRnfjat9r63Zm7QIaBkwA7KujUbQndngBQVI/AqMd6MGBFovr/ulsz68Su2dbPvvT4xJdPkq+VqGSgBglhPDowG32wealQZBqn6+MX3pfs7NLdXt7felhU+t0NVXvxnoG6CQdwv4bmXUOJY8EYfvz2fzZrdWLfoi/RWB3AeTHxZHZ7c4cwXkJ0HENXb1wccvEfhAfGN/bNzCN2i5cV+/CUPt4ORMPaSYBlHR9WVMMY148bmbd5ftkp4A/kvuBzrf+XvP+DjSx24/vN//g7Xy9VmnyY3HAzCeWuGpQPV6mu7l0MQEuil2kUVMQYhHuBi4N35YhtbTXS2VYP3QrC+AWrN9TGdHlLYjfdsOv2FFpd6tTd6WjHsASeF0TCFfDnztY8/4u3rIz/yyUecciIFqF1JsTHNwjIvkGaX/onerLbnmmQiXZxQUFaWxRZcbaDFJuFLLZyfLrRlps+TwTPayCny5tU9a7pwuV4pdQUt9NaoWohxIUTIIRKmxjQHpilzmA22zK5cIbupXgSqWYMgvlkNRgsJV8QedGe7P0GC27M7Z7kPmm8iTS5xIzYfF6P1Z2JzOke3ixiC2PNHsevjGzcEILoLckymWCKYiGgwV9gwmHzBepbhODMfXhPiA8/XC//rL/4nrqtVg+u6Mi0n5uXI64/fOOKj9LZxfn7muq48n8+EODk4ZfYZQzKnmQsiSnd5pVGhCymLXSdJvFkDtTbWdeXTTz+YJ5eY/Uaaj04AabTih54qw6LJKo3mdjxQFFJyeFKN5ty6jU5s12emHJmSSXBJrEhILknmrgMo59UrGNQU/b1SLdUG3WOMpDiDWEAsq5EKLNgFlnmitk5pauMKL0xN67oypcRX3ryC2ug9MB/uOb46sswz05Tp5YxgOohhMmaiqnU8W3OSQLCEUzy+6egLqqVDxpGx6kuj9x+HGoYfxhLZkY1RwdgZbSM1vTnE6CMn+PU2c1C99bYC3t9sZrPCIEk4QUSVF7meB8bRwzW26cv5R3wPBFE0CNpstKJr8J/v+3u5QZA48QnrbemGknYPu92FuPssWxQkYRVyFnzSwN+nA4n+fkf7WgTrbY8RANSsTebIPKcXQW4cxS+T1B/u8aUOXGttPK8rtVQbQhShqe5VkClcy54FlW01aExt4UkwCC8F2XHu2gSeBIkKoVO2Ygcvlm2maNBBDsZKusHSxpZSNWbdOKSiBHJ0h12RfXOAMmdr1PYmTMuBb379Y371N77O17/2NZJ0tBWeHs/kLMxzNC29PKEkukbL1Gujt06iseRIlokWGqejVaDrVpjnibJtXC+V7z594OG9sc3WDVKG4/HA/f0rDq/vufv4Iz75Vb+G6+WR9Xrlej3zdDmjLuGeDzBPgXlO5CzuyRTMq0q6ZfuhE5zablWGK5F3G/SVtu2VmFmue5+p3ywQLFEQTy6ywSPjUnvTPqh5+hqNtJs5ogyasatu+3xQkKHEbaQd01/0noQP4rIfDvZ+clrQLjy8/8C3P/2cy3UlBEsYpvnKNJ/ZWmU5TuQc3fups22bB66NnDwg7GKtYmSfkD2Zsj5mrZXL5cxWhyxWZqsH692FSimFySvc47Ig2dhtQV2t3A8DYzpaIG3SrSeoSjk/s5bBHLPnD1GI0azaczRR3WWZ6WLwaxKbyxq1h/hB75HabeCF58vFZLfyxHK4o1YjDa1xxQgXgZwC93f3XEvhsm6U7cpW6m54eL5cuKCUuvLmLqMxcrh/ZRV3q/SGD9o6oQbxsRcI0at6P+B7awyBjBDF77F9f5BLREblMth+44C2CnY4P6OWEJlOoe39cUXCkIGCfVh57HuJCXwg2oaIfU70xZErQfY1IeFGsrDnuR3rL494W79mgKt93YfvbS7DPwjs0kqBgAZLkJr3lQeRrXf1GcZBEIkOUptOYazVZwlvkOZepe4VgN40GlO3RFQb0zS5iseQb7thsr/coAVf8sB1t5xYz1eaWu9HJFjHI5huXU7J9JlGWS7DHdYuXYrWC8kxUctqMxdYQ5po2Vp0fTdz/fVZH4QpirPG8EzXYJPWOvM8O1tQyDGRgweuaHMVqGVrk+u7CYG70x2vX99zenVCsjClTMQUpU+LMOfIlIQ4mdUGkijFXHdbC0xEWjb4R6tR50WCm/VltC/Uu4Xt/Mx6uVLWFdTMIct15enhgVMQluOJw90d2ibbeC1xx7zbmyxT4DgZhBlDMhmlMIIzFsDwQ1oxOamBz4QB2xlLTpuiyQLicDsWXFtwrGsBqya6U4rVTCZxuMXnZFRdhHZnSvUdJooxEpMFxZiirZXWadJdJdsqrR1+6Q1thd6LzzYJd6cj03QgxYnLeibGiZRmkiQi2diYS0Y1MM0Lr+7vTIrIoWkNieRVCZI9ex0HgFJLIaQDKVkDHSI5zz4EeuB0fCbPmTwlpikTp4WAIFqJaXLSUaWpKeq3ZqSW6H20HhdEbJ/UbnYpKblh4VJZlpl5zg77Zls7osQ8A2K+XT07i9IktbIHrnzdmKeJaV5Yjm+5np9NvX+zweQUIylNHJeZQ4dT69TtGSODFC6XJ6IG0Mb93YGvfu0TXr954xC1QYu9Nlch9zGJL7T7g72nkRi+OGf1RWD6/3hW7ueq7Af5rnUoX/xR8YF1g6I9GHarJPbXGsnYgL5Vb7/nTyiOTe6Jm4yv3+DygQTZD+1Y8f4cO9vwZRK9/9L4PGF/fv2+4PjSxVlGktLDF64h6h1DGftzwKuuSu/PE7Op1cSUyPORHkyC7qVP2e1Sft9F/QEfX+rA9dH9W66PZ3Sr1meIxtwizYRkgUvm5FCBsk0rYxAQIGUTaJ3zwvr8SKlm8THPZlDXgSRph79iTkSJ7nYrNLGDrrtaRW+mfTYfD3ZYxsAUswcuCJPDew7RJOmkYD/z9vU9r97ccbw7QoRpysw5s9wdOUabHxMak9uyhJSpG5QkNoskwQJp79Am8jSBkwCmZXLGlBDqyvPjkwnlPpx5enimlcL7zz8zBltVDssdgvtvpcxpitRWqb0xTZHjZKSEQEZisMHeYJWD1UD9VuEMvN03UgxmCU9r9GLwyf7efBPJy5PCg7y2IUgcTLfLq4IxKNy6icW6l/2+Qa3qheCW8TFGY6iJS4PFtM/i9N5QrUZe6NDrStdOyDOffPWrQCZPd3x4+IxOAsmcpok0T0xz4v40My1KjoHTnLheO8/nJ56fH6nz0eW1El1mjKXYkTChrVBLZTltnA7QulCqaf3FNAOBbS3kw0JMpmM3L6+souxXltNrei3U7UKXA7Vc6X0zlmY3wk46dZbJ6PnrJjx9+JyYrEKaojIfDuR5otaVnA9O7KnMpzcIULcLlYObe26EvJCjKXAdVuHuODMvC/Ppazy/+x5l3WgVgjRimohpIYnSQ6aHhNYnpizQC+8+/U8kiWivfPzmjm/+qh/l7es7srNCezeygIQEQ1VEb8lNf5HoDEh+wHzjjH0Z6Oycv50Dg94u6gFonOV+0t4qn27BB26Qo3zf695+zf/WGYrpI/6M97EnX/uYwwtUbfTpJOythz5C2fepUYx2w/7qL2jt+0CIBER8XxhuuPelZUxP+gcfklZ2jWUPXiPAmZuyKf5bX9Rgxpgn88dLlbycaCLuSD3mwHR/DfusP3zw+lIHrh//1T/Bcbrn00//Ey1PSJpYDkfi6d56ISFQwqiGKik0jscj87xwrZUUA1PKvLl7xfr0yOPjI9/+9DMv0zuqFVET+2zdbuiUJqaceH06oMEGMdd1JaVx+xXivJfGU4xeWQlVldqK0ZB7ZZIGtaNFycuJlA/EOHM83bHMM3MwQ8QpVqI0ggrXJ2eXiTDf3THNi7GWVNjWK3Xb6ONPh3W1pulyXFjuT/z4r/2fDTa8Xnn36ad8+//1i3zv29/j//bv/x9oyMzzwkdvP+KrX7nn7Zt7Pv74I6bDPdv1wvV6hlqQXomaEf9csgcW6zESzV3X5H4akEy4c/QDqget1oiTJQa9K2277nNUwW0dtIMWk0gKrgAvwRWrTXTQ+2fih5Rnl0lorlKiqmxPjwbT5Qzp4JtPqNtG3VazKE8bkjboQu2NdbMN+KP/4//EJz/6P3G6e8WrN2+ZQ+ba4LxWPv3P36KpGUa2beXaCvd3J37VN75OF3sP9brxnbXy+PCBy/mMhsghZ1KM1JA4P7wHVdI08fXXd1y3xsN5payPTNNCihPtcqUnKL3w4d3n5OM9KQRirxSSmW5uF46vXnO3HFimiWuHh3efs5WVfDzxY1/7Kkjk88cL3/qPv4CEyHI4cZcX4pIgCs8PH0jLgZQycwj0NFvFs63I4cicJ1NiyZlWNnopyHLk1enEPM0UFrbnB7u3ErlbFgiJJpHzh0c0R8KUeTUlYlZqu/K9X/yP/Mev/gekV37k47ec7hZStP5u7CZvFlWgFmO+1k6pZ1fBT/scIIrBZkOEsPsM+xhIj0Y0GVXuGLrWrr4evL9UKjjLMhqLBnUnbnUfNLBAZ4TCfqtObGvSN7Pm6a0TsKFyVNA6hplvQ9qqahZLziqMKd6qo1ZMEWRAtEDbNmMhluLjAfYeTTfQ9sAtLndauRiLECXkbMhC87MnZn8vAfCkulS2dSXkBatmfbC/2RzaeJ8C1LYSohGaWiy2VlR4vq5UvZKnK6VUejfy1A7R/vcMFZIDpzd3pPnrnHukh8zp7hWH16/NBA2h7ErPnRA2slO5D5tNhKeYmJejUeURXl2vaN9MwiQeeP3qNWsRrsXcZgk+JxQjIbtd/FLJwTJ96Wo9qGbaXUbc8NHaIIhkonaCFiY6XSpdjVJqPYIjp8M9y2IBT3sjS7Qqpndke6a1QmudJd2T5kyeZtPiw5QzCpMRDLrSqcRsvRGZJtJsM2/T3T3T3Svm4z2vv/YJ8fVrni5XtlJYt40qiuZEPB7IUybNmcP9ibo9Ms0zKU22wVzCRrS7BIzj9pjKtR0UZlpn/QDTBCRb01aGBX0IdNF9Qwe3I7cm4FAsMKV3iWFvtncC4UUvYvS4bJrflCdCCvRuxonqg84SoomI5mjzZmr04lA36FBboKvR9ed55nR35HD3muP9W3KeySSWpkyHE9v1ge1y5uHhPdd371A1e46UMjIvcBJaEQ6n11yuK2stJP88PWTy/Mp+JwmXXmlZme+P/Niv+VGmlEGFd5++Y8WMT6fDa2RaLGPXhgZTnhDtLEczVpxioknm7u0n1NrMITqZFckpv+HXvv3Yqe2R7bLSg6UY0/GN35NIEtA4owSkd+JijgFTSpAmC8qtgd+TKhFk4tXb2WFjIYZIw2bMprRYQInm1pCnSNYj85uN4/v39O1Mk0xp3XuBwQ0vLfjYOojGasT7S90GpnGm6o01cOupDBFa5WWl5QPOHSMWeLkjImbEh/893KqELkIP4lJfiolT2o8MRQoAXIKJpmgdxPzgoxajuuEGKTpOcYPU7Wcl4IQwDGp7CRViXnQ6UD1nPFufD9Oqxqsa33+oOtxqyaWIkanG5w7R3a5R4jwhOVkSaiWVw6f2OnZtZCdk4YQxiYE4w92r13QmiDdbFNlL4V/+40sduDQJy/2R410ibmIb9f4192/fklKyjCrML8rwK3RrZua4sttfT7NBRa1xd1yom2mXTcvMN37kGzyv8HztbKVQ1Vg7rVbCPFkfSzpRzZPJGG6RWm1glyT7HImG4FJPivREptHYqE4USdkqnnk+MM1Cjopo8F6GBcUQz7YhaIQciFM2S3BW0OQNYwtcvRs52Xo8tqhIgRgSSQLz/Wumw4G7t2/JxxPvHt7z4eGBb3/ne+TDRFwmZJoIyWbKUp5Yn02jzHymDEIVQLp9tp3qC7DXoLe+A2ob3nT2sIUfRrDS/XfCbqOg5pbsjLFBz7WiMxo5IaiRQbzvMBoN4vbnEsQ2oar7oTndNwUXenUlDO8Tmc6cB1kRUkrMy0zMMz1kSshomAg5cvo4kp+EmITn63mv7rs6hyxGQszMKSPpwHSsPF8uRgZCiDIR8gljazUeHt4BkKfMj3zzx5hSpNfGZetoWZHemI+v0JD8unZiWpwkE8lT2INGiAvz/Ud2qKI8Pj0apJoS3/zkI6YUCL3xve99ztYaVTvpgMNKAwObGFJbeQrEaOQSkZmarSJSEWqrNFUCifl0YEqWwddmAcbg2WH1oay9MsWJyEQ8vWE+vaKFgMbgDDzTqoxhtuCsdl9CsGRI1OAvZViaRF83tn4GPLgnP/7vLxyifiAPbG8op79kRtgawOaZxRRoePHHhtNhp5vvEJyTOF7YgYjbf+xU9L3HZHtl5yL7exl9rUHrHx9jf+7o/eDxFO5/t6vaO+4oKbhAsb+f8d59f+wBNAZCUJPtynkPcurvidEPC+PftgdvGGdAoo2RHE9HztebwsbLh1Vd/LJi2Jc6cIXZlCEmPZHEKq55ecWrN68tA6yFebkzvF4iEldq2SjbyvPDB8pmlPjTcUJ7ZoqKbne8/1CYl4lXb+/5xo/+KOer8nRpXK+VTTtrrTw+PjDNkxlWBpD2ZHBC7xzCzLZtbKVCNtuG1ju4K7N5cK2IFOpVoRVyzvufNGdirMSgpDDZ4mqV1gv5uBBny7CX48m07TyTCmrzOZNgvROFkDIBG2rstXJ5erDAkxL5+IrpcCDNR05vv8lzsX7MN7/1babJMPheG6UX5sOBw92JPAt1W9FawKsr21AvW6+/dEX+EibROCR0zLDcFLAHxdgOH7MOv+0e9t5FHwcA7Hj9FzfJ+Ltj8yiyv02r0lpvRG8gB9nRd39OJ2505eHxgXou1HdXnjcgL4Q0sURlag/09Zl1K5T1yhaFbTOliNoubFV5KEKaFmLKaAhstZgrAR2IZtCYhK00U2dgJaXEclzo2mkKa9motZLcBl68mk1RyNFhrQBrrcYKi2pQmpNPLlthu65Ig/SNT1iWyQ6qz9/TW3Gdx2ABfWePuSJFF7p0KD5jpG5BI4E0Z3Mt6EoKNtSvQO2Ny9YoDYrDaqYXCjS4hEYSRUjMhxNMkVfHmUkvROnm5CyusoENzQYBYnAncxPwbdWG/zVEo5qPg/iXtFB8vb5YRgat+QHvc4JGOzXlDOTmsyUxEglmwWMww+13XfpRXNg55kSIwZ0NTOLKfEBvc4d7bIIvzGWOJbsf8C92FuDKKH6/1ccKvn9/MZiUFjBlzLe9ICA1NaFlCVZt9W5J5pBp02ZrkX4bZpaYdnsbpdNjN2FiBG0bNktgVj/1cmWLid7K7YO82JG/nMeXOnCdn8ypONGo+QRZqVyI58lsv1XNX2vboDdyGkO4hTQvXK7v0VrpdeYwZZa7hUP8iJwK8zRz/+o12/mJdYXtatPwTcOu46aSaSr0UkjD1wuhRy+pAxAmiEJXUxg4lzO0lVCemLISeic6DDihHAMcopBFidLJ2VQSegB6Z1pODOuKOVk2vC+DLvYn5l0SKGWj5YqoC/Gq2wt1+vMjW1HWtfLh8wfycUaC8ObtW7LAdr1yfnqiJ5vs11oJkhAtdJfU6b1bYAxys/zwwKAD0lALXIqire5ZccCpvWGwr25jB6qY2jY+xGhif7ZBvJl+26s+9S/e8/LvvbQzF1cND4a/uAhqIAVX3JDukFTb4U3bcJ2UIutlo2unpm6wjPcszs8XYqhIbfSycTgeON3dsRxPNkuo1Qkfke1aECrEhLrDdMyJWiojGQ69er+jsz4+MvvcTHt8R7tuVFXijMnoOKFEJJoii66k7AeLdnqO1F4QhDxNhFqhbNR14/zhHbEuzCnQnx4QLEDQzfJHhnWKH0q9N6Ik7/02wpRN7qp3aNFVHRSRxnq9OJwnUM2tIcWJrWwOGkJrdbfOuVyvPH14oG/P6CXx0b0LJ7eKkh0ic1HfXu3QT5Nbbfhh393jTVwd3skTdj9t7ZilC574DCUKX0MhONFKCDk7zdzXhR/4sdtclVGQrIFme9wizC7jhemUKkJOkZCcxICxCkdwCq7wwx7AxriMyzV54mZ6nLKv9bHPUjAUJUi4qYAALyWvbCO9TMjsuTu6a1faTgy7koeoCTZYcaY2pO9i0EH7Di8G3B4PK8JCsIF9uvVrWzhTxT36RPb3MNiSv5zHlzpwbbVQtkKTSpEZkUbKjVIbyVdD6eo6YkbN7dUyh+hDw+ab08hpIYbAlI6slwNTnjjNsxvWGfa7u+92L+zVREVxQd3osJSxdX0Buq5cU9hKo60bUldSXc2UEh85UZufSIJlz75wghgkYpCYDabik+phX/HBh9nD3qR2LO3FoDT2RR2zPmbxsl4bl8vG08N7jnLPNM/klAwNUKBVSMlf0tmBKl/YSC/KmL1awv+l+4bRvVLCDy/1pvD4TcZ1u9Vcdki9+Lqq7B5eLznz9vFucKG94vidAQ+NbPL2HmU8j6ffQwUA4q7CoGBrSBtdGopluq27i27shK5IV6Z5dobeDKURSt8b1r3ZIZhkZMB+q7rNFmrANBV9rqyVYoPyAlpWq9wVG76rPqvUG7UUdkHYltxZuCOSrb+FzVJJ7wTt5qKwbbTsiu9lQyU5hOuDsX64m3Bt98BgEJVRzP16qVcmO/bTbbC9uzC1M8q6ZQXs8iXq5jaqtFrYrlf6emYlwt2drfFeXW7xdl+GIaJKg2TPJ+Me+3u2yWO7tzqMPR1229dGv5Es2AMaeIPT9Ba792NVd76HhxcGU3Ac9FZBhfFd/x31nq8r5vMCI/P9OX527ACLM8Gv8SgNx+uOBfNyPXtA7tyelxfjJOPxArEYwV67Wi9MMfjCg2r3+7kHUr1JWTlmuu/qMXS9v6A/b2udUgrhxfzl/lZeJLI/7ONLHbjAMukYYPMDWVJCUjLLg5gscCBosInzMXewboVW/fAQIS8LOQm9KPPxxBwT85RpxdTmbTZBTEC2daLCNjIXJyZE7+/0LiA243Qpla1U1q1yuawGC4qS52waf6XQ1sLbt36oBiFNMybFbf0B2yLBrdlhqDjXYsQLib6RxBWptd4OaBHfx06DlUArnVqt3L88r1zXzWYwWmO7Xli76yi60kjOs0OS7uza8UrvxeEFNzsLh5n2w2Tf6ADBIAVVfw7YT43W7QwJ6cXXxbNS6y8YIcGviAiEocYOQr857gavPsfe6BUVd5zGzrCIq/jXhoSG5IYkvOdm76115VJM1qjEStVCxZXjg5IwyAU1Vf58OLGcTqR5ATF1/dY7xQ/qMQAdowkHr2Wjt0pEncqiJjgcrQdhvBP7/LVVtq7MdaaliqiJ/J6vj2izquMw5xeHiOnjBbGepKgx9PKUCcma6uqVadNObZVAskk6sbVStXkWLSRV20MirLW4dJ8AzSosBYL1a42YITa07BVb8EPQlMk9A8SG56VtaN2gZuujJSMXaW8mgQSuc+nOv0190D9aAufMOlpz5/ohRXE7VNXJBPj9FycAaQgQ7HOjnboVds+tabK9NJybveoXnyUTRy9uqLSvWVeRAHWfL2fP1v7F43rPwpoxFocchQco1XpL0sbnGM/tupJj/esQt5bb749kQvfgExxj90RAAOl035+tNWo1BiFZbYC5Y3tw/F7310DovTjEaglI70qthXfv3vPw+ROnlnzOctwOD1kjQP6Qjy914NKyotvGVgsyKWkJLM1xc1GbFh+OdHSunkn1ZjRQTTNBEynNzIcTWZRtW0lhgRAoRAs6rbJpQ6XRogn0rFuj7+P5OGxoN7drc3JTIIWFRiJJY5aZFDpZCrNc0LLRwoWunS0UeqrEqZMmJXSnkIdOx+jAMQu1Dt+kTjosRA8qdVuRpvQwqqzgcUuHSakRDaYFrptXm5UQYZoSeZqJkylIt1YIrSDLRAgH5jmTp4CEDlKROAATT2QHPJJd0sa/tydpCNJ8wcdECqMCwxrKHvA09IGZGMQUvZrEDkhrxHdPPgZkKL7Bbe4M788MMQwwKxfccFBCoLdGTEKaInkOxCyEpCgVpPtBGSgd1tJZ142GWYhEl9qxqZpKip2DBKQKl63x+njio+MdX3vzlk/fP6K6sZVE0bhXGbWYQosSIWRTsacbq3K+I8ZCpnO6uyPHQLmulDKx9UpRU6OvHli7CNOcGG7RMZuNSEfcr0pvycRkZKIpCHd3R+YY6NvGeYVNhB4DSwo4UOhJejTLEJTd5UwgRuuP2fU1yEoE6EbKC7hnmUQaJrIb8nD5tgoqRgs6kkyFvDXh4cmcA0wSr6KpOVSoXiFZ5duAppWIuQJIlN1U0aqFikk7DTQgeMBwnZG4o8ig5velPqNFHNU6iHSC60cGNTuhUAu05sPrhpkME1QbuUjg97s5Q9K/aYgI4+I6NX5UZGkEWEdPHEGpLqqr6gnP0C1EzLw1ijH8/DxSi/KAk0TiqD4taJi6WbjpSGIw/0g8QxDW1dwQdECEe2/wBWs3mALL3qzz6jcSmLRzmjLHZd6FlK0MHhf9JTLzgz++3IFL3R21Nat61KofE8Ex0c0wgotftAHbed5kC0e84Ulz/TTvmagZNnYfxBuT6ypW3alrx92qDCvxkbZnFuI7xJTZh8GiIf0arFqKSRzeqaB2eFqhZIsxjGpDTLVb1GCOmLM5mcYMQK9CC/U294FlcjtjSYSYEj11YrSsKkSrPJBETAHEs+owrLszOScT5Y0CxYIhOuYy5NZgHgHI1+de3gwNwuAMrV3Z4rbmZYin2gV2SrFXsKNiGwnlfhj5fWW8/u1rX8jl9jf44p8e1GUMkYqR60fTwyrnIdZsw9cDaqMHQvQha1XEVcEDwhwjc04s0+T6i1Bqg5h9VghXlfMA72/GFC1s3CKmxByUac5EhYKw1Wo9M78e3devitykmdSqHR3Q1jgswXUbTakl5cg8ZxLmOFBrowXZD2y71LeLZZDRyN1f0Ff8XuP3Lzg0nYL9jBUAcYfQApYYjb0nYhVLDN4DCtHmnEa/aq8WdA86rpR4m/j1AzH4WhmzUaZoMSoO2VeK7YPb+Tl81faqBVydY6ia675/R8U0ft/QAUuu7PPo/h4kWHthDDTvyhhemY5PdJN9wg1WXYIp3J5HdrQBhsUMfQTE8bnty6OCHl8Mvu929GF/f+yf2W7li58feWUz3z7fgS+23ICKbw9DhkbP0d3WxXpgg5j1ctcOtOaHfXypAxcYW67J5jRdvHnbQM3OY47ZKaK2SFqw2Y+h2TU2R8AOoFZWWjNVb9VErQWVSHDR1v0WeN9oh66CH/p+k1szNQdC5OYu22i9IWx0CooxB2PCJIaqwSWqruBsU0r2SX1hmT23lf55nolxJsRMjJlWI6EWJNrnN3q3WT/Y+7Xhxp4TqSaj/btFhfYx+Ahd1JutkZSyQUsx+uFkB7pyg4RG/2yIFo/zpNPtVoATMCwAdQ9ahuMPORp8s9tz2RyLvAiAersOvDhw/NAZ1uBD6HgnWo3qaw+Uo+ls2bs6HBXU2Zlq6yKaVpLBMq1aH4mMhEZrnh2L+yT1RmjddQnFtAlzRsVICFu5DXOC+MyNvb/RqDZFlQJqtiTHOTBPGTxjv64Xcx0O0VEbD7g6PosrQrwI2iO8qUJT7+0KLCmaZBdCr4lSNzRDwCj2OxKkpnQymGYD7VXFKOrIXgmPe5ODkB2Os21iVZUdNJEhOjzuoaImPZUnarL+nLkvG3MQJ8vYsrB+NGJybeZBZsr1e9B6GXCNIbG/TlfdK8OXcJV2kBRviVSMBgXqzUDSgk6w19eRJHV2ZuGeVWHnSTB350bbAz/+3F8QhR6V6giQ+3sfwdJ+0Sow3df/CDq3JOLl3sDISHuFd4MnXwatDrtP3YsMElFDJRrFEuxddX68Yvfr57Cvaz+OcSBtNnw9bFhUhz/bLVD9kh7cD/j4Ugeuh6czbds4ZGHKmTRN1KaUrdmAaDTKcGvWS8oVdFtNtSHN5PyKlATVidYt6zvdfZX3D5XWAnWbDPKqjdob21pMD08VttWUsAm00uxKijH2pvlEayutVNI8EQVy8CBbC0GFgEGWkZm8ZKIKogvKTC3uVeTPOZrPvVpwG5TWGhPVDf3qutHLaqSLmNziodPbRhDrm6ScbVC5DR8i02oUDZSu1M0CtgQdZCd6V56fLgSnWysjjqh50XkGbQhNZeTJL+VcervNocCAEAPQqM2y6xCiBx72n+vNsubaQfotRzPbikG0GHWleoAy0gzaaX6wWi5oA8g2GhBQEq3b4RdEnGWVcXl5g55iI0hFtLOtG4kDKQmVQopHcjyw0am9EYHpmDi++YjD/UekPJPyCcKD6TyqJTNdYYoz27qhdJbj0Q6QGGxOrK0sy8Sr+yNxWijXytavrAVjqErkca3chYUYoPdCSu5YXRuHmM22pVUOeaH5wTLPJ7pemILw+jQzzUdabWx947JWpnxgyjNb70xqMHXrhTxZMGtbY4oTvTe2Ulim2YZSg8344UHxeJhNVb4LvQrX5yuaAmme6C5NFgmsZd2hpZCyBfY8U8sVWTIyY6+1uWmrKKndgkDEGJgoJjStioSORCM8WYgUCzQ+jWspqlf8rm04Hm3vKSsh3CxEjMPhs1lp9HEKY+4PV9cwY1db/cNma1RmvTeoAKYuPzB0RSy5FXxGagTajjQMjfGB+RGP2548W/Dt3Xp69JE+6K7FioghUmIMSnpHiQ7DYyMyXyBh+P70PTx8/Lq/V/XNK7tkfPQ5SPusMR/obKis5BB4/frI3Uf3TNlHel485MX+/WEeX+rA1ZrZOIDcTPGSOqxncx6l26xO6520s28AhydiDAMlZww9VkuBgerDfIYL6JATwnode54l+GS5DdGGYEOnMVkzOLRk/kgKISpRlSQzGiBQiVKZJlPXJiTHhG+02RGouuPWgxG0nc8enBrb5WrOzmpU4dEbsqqy0sPInCJtMzO6oQ49GretmVq6uEVBiFZx9dqIOUFmf1+qvqEZA5KdwTiy2ZHbRuh9bEgAvTG2HFoQj1Z2PXWPUCMz7i4xg97IU7ZZzDRUBxTIzYZexobzKss+l+6QS4/GyoxVaNIMxmv9JuKtZijYerWeSq0QCiEXg5BrRcTmW4o7NSfve6uIXbuciSkhMVJKva3V0J1JaAad8EuZbhLtWtbe2VonTpN5SQ/1fHV1727rvg1WoTq8oEbA6Q7hXC9XatlIU/Kqw9wNttpM+9IHu4OOC+wH4UAW5DZ/moL1cSPmeFBLIQUhhchhMafuWs112QSLTXbN+p4WvHtre/85jCpFYJ4mlmViziasu54bQZtV+L35mjMYi9jYT001uxFtZe/3BIIlP6PCG5UhY3/fkqnd7lD1NlYhlgQNuv1wOR56o6oYdNjrTjQQsGDh0cuU2wWa2L6SG0PvRdy0reMwtQ4bIMU+11gTIxA7stB9+FvE/h72wDc+lFfzMoQRRvui+7VwwNmRIxsdcFbg2PMizortO4JhRBOv8PuN7t563wk0T09n0nR004UbIcPgZV9fX4xlP9DjSx24TGDVsrZaGhIr8zyCidmaXNYrpbpWIdnPPLGmZvKAMoQwXVCyuV22DnMj5NZzCUJU8+0aOZy4VFHg1pfaNc6CZ01d6QGESEStga2C9A1ROCyH3RE2pgm07LDES8O4GxNP2S5nO1xr4fp03mEzyRWJZrkuQWxjCR4AEq006lacnTwWsQUIs/po9FpMbibbwWML1ru82DXpzb15sEA3+mjGuhpSW3bFdwgQ6D7DZMhZIPAigGJBSPckU10jbRzYTq0edzLuwL6BUC69E4I4682qQh2zbGLWN+IQV7MiEcXckSUbrZ3WXFrLWIG1VMsm44UmEa5XE5GtK3W9EFuFZDpuo9eUXOg5xsi2rV79BZpJ5ENvbOuZHCdUjRQTtdNn35ZqdPttK+QpG1Sohkr3Vv0QbJSy4m1PYzu2Cr1Rtysixky8XC5IbySdUU72erWyrZsNvafgoxcYJNchul4nOlQdjGaRnMAjIRDoXC4bacmkOXCYEzEEVqnIuZnIrwhaIQWbNzIHg0oTAVGidlO5D0o+zJwOM1PsFCqXXg1pUDde9VGUHk0bc0DKIKgz4mQyvUuDiW8jDSPTHOMnNqdnX28DBxUG1uZySzYK0tU0P1F1hXxbq62bbNv45R26UzzhtB6zBSP7+w07uK1xYwT6PsCCkQaTsxqBazAQLa+6JZDiwabfssM9gFnQaPvXtXmyqVa94veg+3P2ZlYsrVVCnvdA06u7K8e4j4ihSq/V+3HmStBbo5XGh4cn7u4ytXiAHWfBfibsl+CHenypA1e7bjw9PJLaPaluLDVyl1biciVJNDmd8xm5XujrhS0Er6zMB2s5JGYiWYWwFWtaA/l6oWkjTZnIhJYrvaxwfXImlZJa4NLOVBUTwiymlkyIHDQa/bpXaIFalNqUq2KKBjQOWg3AEIWUeLNkTlMip2iqASEhJETU2XVObGgDbxfWh0erknozRe9kKgldhbDTeJWUbUC0FdNgVBWymmq867YgMdI2r9hEaZsNsUowFlxMiZCS9XN8ZzanOFvVY+9LPfsdzrZ2MPimVDX9NcIN/64dkineax9YuGeNLk8jasrzYIz5mEaFJW7653T8KEiLjPgXfGNbARt3pqd0JaZIyMnVJQz6aN0IPlEtiza1e4EKZdvYHj+j13eQM00OqEzMsbE9PhFUefvxG775a34NcTK1llkCBxVOtfP0XCjV1sTWO1O2XsNVQKMNtz98/oEUYPnaJzAn6uMjl0/fcf7OO9L5iQk15qEWam10jEl5JVo10CtXhRjNAblNiSidsq18+p3PiQE+fvsxnyz/M/r6SHl44vK97xLPH0gcyFIRiilfqLHP2jUx+obPGMMwRaGlidwz0iL1/QfKYaa1O5aP75kDZGlcy5m6PZhGZ0/WX/XKcO4baTPl/i6du6zMi3DMwlc/fsuUoFxn6od3bHWjlY1Ag2ZKDel4T4wK0qnN+qldOhq7sTSlonTiksxoszckiVPafa0UYTgPl2txAWcLVMbG7NBNR9RmGi0IqPerY8574MHhOhRT3xh9WYVWN0LsNrryglShvTn5gn1EQNXOipizIxHN/MC8ONx1OtWgvFYbAe8Hq8EFir8XLGnbN6JaQo5Y2yIM7YLRf0NcskkIGglZXILQ5y494ZcIEo2cFUf1iBL7imojSeXVXHn9Zub125MNv/vntHbaL38E+UsduB4e3/N8uaBamNYL62qbLy4GfeRpoq0XtvMT5/MTecogCWIiRtBpIeSJ47JwXDJzBK2NRCNIJ0fs8NYKdaOu5oyMQNdoQ6VqXkotJVNkSInQouurGe5PMOggKqhWy1rpN/fdKORg1mFJfD7JGW+BG1sJdJ/UFzGdwtCiWW+EeqtK6siwfHHljDaxRveu2N7ZbULEZtCie5fFECiqDIfalMTpxjuS5QtQ9yA24IvR6L0JOPkC3dlk/vP+PdvDIwN9STgYC1u/sPkscRgzOi8qYkbFPCCgF6/lVauJtH4fi9AfQWyeRxiSOA4Drlee3r/j0+9+m8ulsW3imo93SDpwnAP1fEZr5cPj50gUPrx/h6ry/t2Zd+8+8Pj4yPVc92thyvlW7Z5rgb5xvVx4ePdAKxfK5Yl6foS28vhw5uHDE09PH9i0073iqVbCem8xvYCSzUMuBKEUoFfKtnF+fmDbrmzXZ2YRqBulNp6enoFGbxt1tV6SWc4rLtfiZ16na4UgNBWaNjbdaCFQtyuP5UK5XjjlhcPhaGzKbXP9SYz00v1w1VvWDwZhLXMiMRG18PjuuwQq2/WZy/kRrcVUMoYJIkbOSCkZFaq655myw168gEz3wMKN3KAvM3+//zLWhPdeBlS6D+CKEbGCyK3qH4War/v9dbitXxtCdmTC2xg7x8KpMF4z2nsJL5+H24ZjsDtlZ40GwS2BGDROC4D++7sS+zgPXpCphpnrYFp6twsTTrAEg3GPhrSbZc/4Bdjvh/3d5KHom1XaZbWEf68uZb9eL1DaH+rxpQ5c67ZS68Z1NcpmEqVuM1quaJ1odaZvF1q50OrFFkmwQUIJHa2WWRynyGGJZIF67WSxbHYKznoKnUhDGDYZTk/VanRorV7qG2Mo+A0XTCYm9kZTJXYLXEk6CaOdpyDkFJiikoOSghMUffGbp9VtE+xsIsEdnu31upf9qoq0Zu9LrDEfBJPuCYFWB5nCWXnj8NfbLEyMkZ6io1nqw7BWIQRvIpsqwP527D35/wdjd2wWW7C6/9BO4x2/5IFkx21G4JP9Ky+/hb4IgLpXdOPlbkFrD577sKYrKuwSU64G4T9vtGS9bcze0LpRrs9cnh94PjfW1SoayY2QCqlPUFd63TifV37xf1e0rNyfTpw35enxA9t2QUvZvb+aWqO890pdz7R6Zbteqdsz6+WJ9/UK1yfmFChFWddC66sTA7qxY0fDXsQODEBUdyZnV6il0lqhlgJ9pWzPPLeV7wJL9ApalZQC9I2+lRsELrAnCFbYgHa0C10Dva6UIjQBLRu1Vfr6zGcSORxPZl7qa0AUqF7tjPujFaTZ++0wZyFpREvh8d330HZlvZ7ZLleisxW1NYby+qDPj+pjryScaWgvPaCyF4fy2Ek7zGYH6q63N4IH8n1Bzr8qIyEMX1z7e9DydfliaQ/3A1+87OMA+0E+ElPxvTkYhS/31e39AH7+eK996HR6cvfFYMcXIsRgBo++tDGibT+rvHid0dfr3fcEey/L5Ldun3Rc6z3I+3xaH4am+7UfRCl+6Rv7AR9f6sD1yduvsF3OhND4ytu3vL2/58c++RoaE00L5f136esTd0vg4/tXPD9vXMvKtlbK2on5NYep8iaceJ2tF7VNE4uYSnguwuH1iZwKy5z4xsevuVw2ttJZW+SM9UuYIW7FWE2ixLZCvRq1fbXD0Wz54DQlkkBsjaCROQQOMfDVU+DjY+LVkkh7P8ZGSgZ3bjRIVYwIEX2BqUBP0Z2RhZwyu9OpKlquoEpUU8MPeaZnJ1B0qwa7B+SBoyeH+jQEGhZNjUre/QDzoBhHAPIqTo27h7hkFba4tcuepIUk5kDcuj9vAh8l3Zf1YC6BPZf6NYAXyho7cZvbMeEbyEkyHfy6iVXE0QSKVQPaw4D4XWrJ/+9BfRbl1ZLRr71FKGyXRluFw6t7WrV+y/Ewc7d8hZwijc6n/+d/pH7rP/Dv3n+bt9/4Jss88Wu+NvP+3YXDcWKaJp6fr6y1sW4bsTyRTxBOifj6FRLfcP7wyMPnn/Gt//tn3L1+xf3r1/xf/ocf5cPDe7btShALZmDmfdoaOUemeWK9Xmmq1N54//yemDshK2mKxPkTWulc35159wv/V6Y5cbw78M3/8Se4rFcu64VEYNs2U8vIkwXcEFiWma0UG1jVyPuHd5Z4RbgLE3k2uv/5P32HZ4fL5nni9PojVKHUSkjBxwtMTQIMik45cmw2HtLDxrtv/We265m6Fd7evyJHk45qTZnnA/PhgEx3dMUEAlZjFaaYyPFgJJneaTr8o2z9BbG/W+ARHAi2ABFNpqgVG7g9LNkqulpsrfgeDBibzoR2w4jr+zpVHfN59vPWKxNXWnd1fOEFo+7lc/vTuK2JLfm+H/k2m+nJlyqCOXmaGoiZo7JXtCAE+qgkveFr7y373uo71C8qrkVpKBJF0WAjORISqPXxYsrmg6fdt5+TOroih8VUi3JnefMGOZ5gMQukXbB637H/HUOFv/rHfgxtsGRlmjJTjNSmTMejVRnbyldffczxeOD+dOLxUnh8fOL5fGYtKyEEtlI4X688PT2RRNieHnl6OlNbJU6NGjI1NGLKvL5/xeHUKbXzdC0sTuHOQanXStkq61YIXQhMdtAH84tqakPOy2SNcLM9hxSVOXcCrjqhGDmi2QbqvdtA8Cjt3crBO8aMZufO8BPZN9NY+FoGXODsRB1DwrY5VJyMwvixkT1hC3N8XT2z2lmCpsoh/tweNixQtBt5ZcACqn4dMMiodxes7YpWtYOGUazpFz8D9o0uvMDyb593D1zdhh/tCvWdhh5cRiPEbn0Gz6B7VJPnQZBakDi7Ark9XZoSd6+P/MSbX4tqRHsk54l1LZStonXj7rQwTxN5WjjNEw/vP/Dh8w9kaSw5kOeZsi3mLyXK4ZDJLXA4ZF59tLCkRNxJP5HH9w+8Ox55+OwzPnp94qOPX/Hx2zfMh4lSVqQWStt8CD6iboqaU6SeFjt8UF73e6boZPCqpOnAetl4lz7ns+9+lxzhfskcp2yQcrIxjRSddEBAQyaIMKdgs4yAinJcJncvgExgni35KNHIKkJkShPB5cc0CkFtgLiHF3BsVVoNNN3o3SC/y2XlellZrxdCa6azCCRV5GklTk/cr515yhYUN2eFqhJC9USsu/yQS1Z5BdPqmN3rRHGTyhTYNlNI2Up1oorc1jpjLSpVDd2x74XdGFgHDNjF1/gLEkQy6x+bjcSTzYZB216dDRaxgJI8SDmUGAaa4MQi/7q2agleD3swEZcfMxKJVccSmu0JVWfPGiIzpqNlsHP7zhEmpkCaJht1YEAo9mg+h4YqQZq1HLoia0U71Br4/P0zRz1yWHWvRp124nOcfYcqf5jHlzpwfe2j1+Q4cXeYTM2iV+r5mWk2H5mclPn1gdPxyPFwIkyFlALLnDivVxKNFAPbtnJ+fiAC5fJMaZXWjFm3bhe6y/Jptyl/YmCORhcPMbAkYdPI5koKqVuPIaTEJJncu1XW0ckXwW3kAwRpJEwjzoaGfX5J9QaJiQ9KjwDgAc6SuheMHVx7TE015FbufyGUvQgk44/s+D37c++4nNdB43svoAi9PdfYZvvD3//47g1JUNibzaPCw4ea/Tlkf4odonj5GJtYRb/wmjogoj2nkz24ghA8Y1WvwHQ33nMDvZe0fTWmVhBhXmaOp48IIdswd1eu15Vt3ShXOB4mpnliWQ7Ur7y1iuhyJvm9TZKYM4AdIO7PByGSDpkpRBdVDqQUSWJGo6GvvLpfOJ0yU1KOS6TkCV2VrFYVNgVJ0bUBIZueDwThGCdy8Kq3dmKaWVOiXa5cnieWObEsgRQbWZQuAg1nXgZ7brVDPEU70vo4pJdkB79gw9fREph5gtAhRmWKjciKMtx+FRVLIjqunN8VOtS+7YSd0ZvqTdnK6jJRNnPXeoWmxPPVA9Xod/qgebcEaLBwjSTuBKKdOeyzTuKEcGfuDe1FwSjgrY2RAF9g4cWeMehjUBRtzfQxJmJreKSYQ8RjX7d4xaRjPsraAUO6b4cxb7nYbd92btD4C/BzqKWoigWlF1t+R+HHbvF88uUYlYhdu/GaIdgAeHTzyyEnZa4ILz6LJ83a1KpVMQmsVhp0S3ZuijbsoMgv9/GlDlzfeBX56usTb77yDa5sXLYLHz6PIIWcA8fDETneo0R6b0yycXg9E94uJiwbbUL86d3nvP/eM2CHQThkYheSNLRduJ5X1lJY371jyRM5Rmf7RRNCDYmknSTC4ZhpfSJgN/7VMvs5Yofm1nwgsReWZUZqRdcVaRmtiV4CpUTrdWHleHe1AQUnWIzBWrhFD+9vjGpsLOo+KOYenMavYPR4sG+biK4HEhSri24bwuiyLg8FBsWN0PqFYDZW9fjM0UAQNZq50dztINkVnhwGkZAZc3JBOqGD+oE8nr+Pnx+fXG8goT2CN2TY58PQgsiEkEEWYPX3lZDgUkwhIkxAgi70uqJbga4utIoHosa2PhG2C7FuJpNUC00j1/bI3Wliiq+YcqeUK1pX2kWYPSnuagflnM3cM8fIVhqlQ5QAGpgX+ORHTrz5+EehVURXLudfpLsq/VbNpsf6urdsvVbrR6aQzCx0ml2ySn2eqpBj4+1Hwnz4GNFGlE7XzwgCOWJmkqJkMbgrOmTVuzJFG39wrS8XgFDYIPQzIvDRa2ivFkQ7sZ8JesZg4ETd+48KVAimz1iq0tcV1U6KwptjYo0HpigInRwDU0ocpqPtH4IZacaJEINViLgKu5h48fCYCmkihMnhZSFiFQJJb3NltREkcDgdOMZEjsGG9FvHlEntM5vghMmzNR8+vvF7os/hKUpEQ3foOzBWvNmqePTrjQQmaPCiIhn/RaLbAnlFpnhfORrjkY7pSLI3leWlc4SYzYpKQG7j2PY6khzKj75jxC1Z0o7Q6xZ8yNsq3mFvk+IEshoE6QFJW6G3Qis2sJ5z5s1x5tWrO17d3ZHS5M8f/FwIuwTZD/v4UgeuVldKuXK9PrIF20jTMbn5WWG9dvcpUmrvBpdko+WCkCeT+bkkYbtcQRspCa9eTaAJadafOiwTXaD1Quw2yS8oUxIT4wrds+VsKut1rGclhhtGbQeBMaKmfGKaTJE66MGMGbWzXc6WrSZjG5odQmUU2vgh31XMN8nvvS2E4E1btV5ECC49MyKEvhjWHV/yqBRN1HMEODyo2d55QSXsLyqiHUJQ2+ROtd/7bmN+w3YlqLlxaO8+LCmexdosnVZLA43h5y3sPROU/f12dcU6dSUA/2yt27CqaIdgM1WtVa7rRhJTI+nNghIhIHGlXCwrN13Kuju/Sow8vH9PR0jLgaenM1nVque23qDMmGntyqp2fkRJ1GbDv80HU1tVKnbtzcJdqbVaj00TpVnlUbqSmx2A2ppXQCZhFluku4zZVjbT5xRjgDIUxLFDp1VXtKgbdQztNkh52kN+nrOz/Gx4ujalNDXKfqu+dgNDvLczZMCCB4Rs90E71E4XY9uNJEfE/OSGB1b0WaGR2ETx2IsSo3J/fyTESJ4monS2rXB3MVQkRgvEaPBr4NqNtdGLHcilGs08STDJIe8lHe5OxNghJGz0zet6UWgGTfbS0BiZDkdysrm39bpRt83e9zhw0Z0cpIC6ZuZg+oWxP8Vo4qMDdmM5VrSNPo9XTa5Cv+MEYslaD51BZRiajqjti9DGznPhYzV4PozBRTWlfxOgC0TqjpmoKB1zmI44hOqv0yWSciSmUTFt9AZpeaaUMYOW3AAVm6HECzgVkno/UBt5SqRg70B7gyEDNh4iL4+hH/jxpQ5cqTfa5ZEnhS1FKkrvK1KvoJ0CFFZTkgYo1dyQ3S6+b7aR2+XMdn4G7WgSyHlMc3oWaxJA9Ip44NqXbwtoslK6NfO4kh4ZKNjIThFBounDiYxqqrrCsmHRSqfWjcu507KpN4ds9ifCGEwcDVRBer1BBXQXcTUiw1AFDzH6YCIDZzC4xzfbPm/Swk3AUwSqHV4guwjpXl0p7IF0pz6NDQzd+3BDo6zrjXbRxSrCPqo0NY+vjklzjWrQ3Hz9wNC6HwpDpdwgiu7KEGMDGVvNBqKN0dRao9SNDnvfplVTq7ADZvPAJdY/isEO0HmmrhuSktOCR19DrV8wvM+Sb6HevGfnB2hO9i2HvaIoJidllHswGDKmuAvj0m18YVwPUrT74oKvXaLdWwn7mrDPHnempoOfmC5lNldsVeu7juopRJIEm1HqhSgBdQp2CBHRtPcJrb9oLNpIZ0j1xDz5p4CQ+l5lqwskB7FZLqusTf09W+Syvs/otwJ9r5ZccTy46LWIHbo2OESvlq0HhU6j1+4tKDVpK18DvVZzahAhlZmuhpDUcltfErDr2jud5hBjJXmFNbRCNYQXlY/e9ocHmJ1MpAr+GfrQFRzIx9ADfUmz35/HKi5bmdwSR79XMgwiJbgAQnwBtTns7ogBjPUWPCx5Mrr3kjx7dOaltpGQ2j2VF4QoVVNkodr16M1n+8pgthqMiEbAzT29NYEqOWc/+m59rH0cZMdLfvjHlzpwHaTS3n/Gh/Ip5wBNhBQjc7DDuLTGpoIGGyxs5+d9s8XkG1uEWK5c1hXFvZDmmdA70gqXzTZ2CLb4TlEY/kUtCD1EG6B1aZMOLGm2gyAEOBxsyDB6gzZYj6Rdr7RgPY2cExqEppValfPliWmy7EemzJi3VYWYFlRskFr6TV9NaHuQTKPKISAh0sOAJwzHN7qfbQ7zGVJaczUQscFGaXVf57bx7ICN+ya4wY/2VwfshFtwad4k19t8VwsmNSRDQgbXN5RIqRczT3SJI4m2PLVecJTDXiKZw3OvnbL5QGoyenSQBlRasQHU5tp60hUJK7FuVoU3+x7ljHoy0MoVsGHr092JmBdiTuRkMMckMAlozxZUokl7SbMqpWzFmWOBmUCOpkKivaExmGtviES1asEOfSM1WDLTKMUkpTqCpEzoFemVUio6Ap9EpthAmzEzRU1aLN6eu3cI3lgXwRytS3OrEWPGSS/QVtbrSs423xhiZgqVKJ1WbfZMnIkae7FB9q6EtOxCrlmUVkxhpGHu0kEgUw2mlGjq+DoCrvWPNQRXsJnptZiSx3WDYBVZEgE2qsu5WSLoQVFtlq3h0lfBYb/eqG0zTT8JpFpMqUyC6UN6EiYSSD7vFoLpMjZWmtp1DMksWNKU6RJ9aRsUaKoW2OCvdoPvmxEaQowMX7wxh8luz+MDyDgCk5NdG4wgMSYcNDrzz/ehNr+/OTkcaAQRW0CeyITs1bmRMCROlpBIBN3YDR8FuxcIlIrW7iMwyRMrRajo5ewtjUYIGZVq+2VbjcGZAyFP0BQRU/mRpkhQQoflMBMTIG7Eqmo99IHW7D3wH+7xpQ5cX/3GN5jD1/nut9+xSKWJ01XbSimF7VzdjiMRQ0bS3S7JE6dgeK0qm67kZot5WjLIhNmWK1Pvt/kljSiNOg6SHO2GdBvIHLRy6x2Z+NOH7bpXPtPdka52yUMw1mDOmd5nRAJ961xCp65Xoy+nSEozEj377ZCng+HfhFumq5jIp0N9VZtrp3lwkuS9jo1em2WQIZDyss9ctWrUWNRESyU4fbZDWiZSXkghoWoHjHYl5pmU8z5HMggZqkp0pfEgpik5zBkTybJMP9BNSDcgkqlyobbCernANTLNB3t+sczNknrr4Ujv1F64Xp5NzSEljodXlLZStjOPH95xuV7tYO9mf245cCCFiZxnppyJSQFzti6tEINn9G2lKWiKzKIshwNzSswx2AaOCWJESAQ19ZK0bSAJ1UDvQpAr6t+rnl0HCfCyPzk0HUUIMZO0UwfchhF8AqbIQnItSw2kaBY4oVVjZrp/U5KIBIcHc2b3SEqBLJWgSpWAdAsakrwSiBlCJkokx0aQRiibV2J2MCaxQefYDHqz3kkgRTs8pXXAeiUGiSdbhxIhTqCWWIhU+hZN+ipEQsj2mZullbU2v9cZSR3RYkLXTQYwTKuVy/nsgTsRJKHaaHXj4YNBvCEm5vnAdl3ZtsL7d+8RIMXM6XRHyrpXxJICB+1mGzRFcz7vnZSN8CIxElKkl+IQtRLSBF1Q6VzXqz9XNuX9OTvMbfp/ltxFQhoyVGq92xARiUg0l3Z1JsYw5uxd2cqF0AKxJab5tDNeDeq0/RMl+lKyfmaKGQnZAlq0BFV7o6uRdMCS762uZjTdCikdrHCLSkjQSqe3Qr1eaNuVph7k0kRMCTBWtknqdS69MQFNA+8+XDnpHdNVb2QWX9Mi9rlj+OHDz5c6cKUlkaQyn2aaBIoY0kwDLYEchB4CEpItkNLtE6uSkqlAo0qeIhImJFjfqzmtVUNgDpldYUHN+0gISMpoitZcJVKrQVfSQcJwPzWVgSFxUlvZYTtpNhfReqHWlRASKQVixCi8qoSq3mTWAYOTq+zQSZpvor/2pA5yDEIGSqeADF8pr9Aw+nltheH7A24IiDW/A4ExiGVK6oJWJQXLzCUBEmkajAshw4trsLoE1aHXaAebyphFiTc4RAfbK0CaiTNMIVvPLGY68QuDzqpQu9C6mRNKnr2aC2y1UWunVOiS6VqpvdIbTJMJ3qY0MYWJGDMpRkIo1sBWoxDEaG7XYZ4hzl75BeetWKYtMVs16CaCOFMyYL1GdV8ls4VQNFoPQqTRxcV+k/cdg/c5UJqK6foJrqXo+nOoqXC79Jdqo0sxGrOIJwV+/b3Cko79vDNKuyo96M6Y7F75gFrmH8R95grNQHeIHlgFG5kYIE/0r6lV5dKNGNS9sG8UI834nA+BXaFctCLSIJh8lWKD2FtdreoR9b6cDSZLN2PJ1pXamvWq1ea3miMcwlhzoCGSloPnAonW1QSIRZiPi5FtnPggYjNQg67dVVhrw44QI1J0tUF8evdZKHxt23U0tq8gaTYYj0RpSi/qqJvPaQ0YX8IO74vGW89Yveu0i2MHTwQjYVqsSpOA24F5BZgMElWhV7W5Tgb0GEEd3cCCprjQdh8dMkmmyj8+l1gbIUggH++JzfdtMGfvHBLz8Y7dX01gsDVt/tvuRgjCGOceIOtAY2S8eW7nzg/z+FIHLo2dTiGfEhlsUwfLJqVmWDLFG/6EiF4bw8wuU3BpSVLIqCY7fEKgdEG7QIPZS3BtbmEgw88poNEWWtfIupqKs6IGqXhbyWAcgejHkPgh5YaVrTWqNkKamOcZyDT1xnWz3R/cgFEEWtn2zzPLbPBECEjxg1WB3onJMPJW/ZDoFtBSTuYh1TpaXBw0CDFnpmwNdiOcRBfpteBTGyYlNWdiykhw/cPWd7JETGEgkjbr4RVSiNabwb+uQ5RYrFdn6tOgYSIdJvIB2raa27NTjInJkszWKUb2o/VIWE4Ehx4vW6XWTusBme4IRRDdqK2w5CPT4cByd8cs2TkCiuiV4Q6QUiSlRMyJOE/EUfHFQOuV2pXQlTDNrpxg27M7TKop0+uVLs0O/341WCoEc8I17psdJNEr5OD2GE7/7l6xqdhg5xhxMMsVBQx+RDdbhymNQtuDiUHj7H3IMTPVabtfsAUu1KjpIWXveTYTnu2bsTpDsrWAgtRdZspgL/fG6s16REYzoks0UWRsQDum27Vubd17kCEk7+sajX0rF+ujiBlq1lpptSLq/UiMkNG9t1mrEQyGIkVxy5MQE/P9PYMhW328SnLk/vDWejbdtlbIgZgiMWVq7VQV6mpEF2PvRWoN1Nb8rKgO7frn0eLsPUh5ZvRK17UipZkVUMp2bdTYwTEY6cWG400fczx3SpZgG+lQHd4TYj46tN5Zi9uQipByptbqjgTGBjXyTIJm7MfeGwTb9zEE96nzHkAXg3y7zYRVxZiLCMvxFSCIBpoE8nwiL0eWV29MYqtu1OsZfP6rViUG9ziUSIpKjLfW25547qf3Dx+04EseuP7zL/4id8fENN0TJ6fGpuzsNlNz7j0h0axCgnsGBTq0q4lqikDrrraN9RDS5B0ioK9slwutbKQ87ZRXkW4q4SEZJNODD+IZG8cggOCzDVh/Rz17EhvONdKBSz/Nsx0UROp2pWuwd5Dc4BCTnVovq23YGM2gsEIU4VLwRr9lNpOLeRqd3LBr9aZp8+HdQS0XEXJMtmF8lsiGKM076fm8Usu6+zwt80KKiW3r1HI1eK9W5mjZV/E+gl3/yhQt8zV7Ez/mxAwXSx3ViIkBH+aZZV7Ytsq6Xql1o9OZomWQW8UGV31I4DAfqNW80i7nZ2IO5Jx5fX/Pmhp16zydn+hBuEsTB1nocYJejcJL3uGZ6fiaKSdSjoQpc5iPxk5UuDw9QCtI70zTjJJQovVrfEA8DiUFtQBQ29mYfzFQNRGSqSjQhRin3XjzZrpXCCHZDFWPBOleVcGUu1On8cN/Q8QIShKXHc4e/kp2aFsWoa3R6hXtxjJrmhhMVaSTHFJWx41NRcXtbfRlUGQkzqaqr6Z+vm0Xxlxc65ldD1M7U5pRiVQCrZxtzKAXUsj0MGH8uGZQqURSmFCZ6Ci1rWzbmaBGfirVoErVRgOWaQINbFVt9MAFqe+XO0oT1tqp64WQhZQjy3SkJoPF2/XC03Xb9/O1mFVNaxWRbpCrBGoTDw4WoJdk/aHSAcxBPKXA/XLyn+2s6xWCmZHOabL1tkNkSg6R5PdZ1WSvOo1jnggSKTquCQRR7pcjvZnf2vV69pUPh5QpGvxfpuSfQmBJ2QR4u9H2e1AOU2aKia3JjU7fG3fLEZFI7UovGzFDngP3d2+ozcjFvW+EEEnTwt3bT6wf2gu6PqMhcn585vn9A8ckbHevkTxxuZ65/zgxL4sd1oOP4XnQmLP7YR9f6sC1HI+c7hcOd29pyxFN2WcENgRnaGk0plSI1HVlcCZEmwU5EXrZ6G3zKikQp3mvrLQVtvVKLYVpXjwjtaynYoEr5Nmmznuj94rWasSPGKnXC+OOdTJxWiygtGI9CuzAydO8z0W0kmk9oGqVVa1X+1mF1C2Dk5iQbDIvASVPwQNxoNOIXqUFxSoegaDdqcFivY2QGSKcUUwsWLtSNTk2L2Y90TqBTg6K9Iq2M6UJdXOn09aQVmjdMPne1FOthmgzuKUrNINBwed3xGA/eyi0wLUm6moq4r26TUJvbG5d0V1b0K5pp+hq9PNS0V6gRlQa28UsPlrfWOsVOZtL7pQSSz5St5WyXpgmYTmcmJYD+TCR3KMtTELOVvlUhTwt0CPSG3k+0GVGxYxKNRhBImonpMneWW2kfraEQyCFyRitIVjvJEW/Vw4LarOKBIga6Rpdlsiql2lyg8sxLqArge5+cmZhEyRQeiUOlthg2vXOtj4bOUfFWIPjmtOZcnKI0qeOdLPDOwQIkzP9ArVuntsFglPZ0UZZn/fh196z94MrrVzJ0SoLITDNR2q90ttKEkFl+M9FlO7JzITMxURz2ysul4PBdApTM68vsH4ktVK3SqlXIgYxFlUez48oBkPnFKzSbWYDVL1v1HtjW1dqqZb41L5DfzEK6v6IKkoIVlmindbKDoIFTO0kaHeZLNx2xX4iqPW4CNYbsjkw16ZwN2fB1k1vG8XZqk0iYzxLAqyr9fJqvZGOVJRrq5ZsiI8iYGocrXWKuvCAV9uFhoZIlUDs+H1urJcnnNoFtSEVShXrbzEQEWMFp3xBCbx5+4acImGeDYnulfXyTF4mnh7fGQwbDZpdTgdHJ0Yf/Ffm7P9SB67D8Y7TqxPHV2/ph3t6muz8K2dEbEMabdkaoNfzs8ErwQzwUp4IIrTtQmubL+jANC/EMAJXI28btTXm5WAzPL2ANmpPaDCceDii9lbQrZOmiZgi5fq097tUZ9I0A+pOxsWx4kCaZiNE0Ok1UZuV4ISEbCZuKipknBEWMiqN3QKz2wAvBLoWYrzZJIhk72zZwKk5YEWIM8OiQXrdzSU7Ct0ZZYixq5KRPGKsDj01Qii7MrUdJz74iHoPAUvXxYJWF4yF5AcmvfmYszdttdFrNRxfxOblzE/C2ndiZoUB68eYzI4pkKdkR0kUG1jWbj2gGBUJVn3XbWVbn8kSLHBdL8whM+XI8XQgHw9Gt44QJ8vSVYw6HENA+oTQyNORHs3WJBDNSkM6QSsxz4b5l07TA0E7QTpNJlLMpv6gleTs1Np9yFc7ta2mqq2Brskr8AZifVh8HacQaW1D6KQAxXX4Qgi0VgyiCp5whGgHbow+zgE0e57B/0w5+YiEGBEEczDI0aA/EWuk93AxFq4P6Nrcn6LR3KXtlprGn2qlbs/WZ0ZAI1EisV5pdSVJR8UIITkvdK3GFsyJnjZDNRDinGwtdmVu0UgHEqi9sD4/sYYL27qi2Xqt2puTbMz/6zDPVh149TFsc0L4ouqE9kYKgZys4k5psioDG4tB3UfMBbZVTH/UyKWCEomuAiM9731pkbhDywFx9rv1iLo6Bb53SrN+EWMeFPxa4z1TMQREsivGYIE22n2PItbLFztP6D4u4exLgycNqTEXakwGrdtIQUAhWT+yI6zFFE+MwRzo20YslZwekDevSGkmp5lard1QtpWaI2VbadrpwSD2kL5vfovRZR+9rx/u8eUOXKd77j/6KiHfsQXT9zJWmy8CIjlb01QRloO5HptfTiNNpifY07Qf8q1hX8cyKZHA7GSDvBzp5eJOw5Xa5FZxEdBuaty9VFKaCTGhd28I7pHTNjwjt8AlwQKA1m60alFnv3VqsWAV8sRcD5gvT6euFTDBTqW5jmGnXlfwiXjValYkYCZ0ITp8VUnJmtYSMqSZm0r5szGzWje2GZZZp2jsvjGcrOJDrwJt2wySdaPFEJwLpzY7pq5NF2JEK2jr1G31A6RbVu7yVkK34V8ni4gPUlp1NjI2Y7eZasD/m7w/ibUvz+56wc/6NXvv09zm30RERqYTG2x4mPeAkkBCzAAjbL8R2BNLDGgkGMGEARLMEEgMYAIMYIYYwJQBExASstCT/BC4hJBKNGU/N2QTGc2/ufeec/bev2bVYK19bhioV5XpB1Up31RExj/i3nNPs/dvrfVd30bYnMK3xXNrDa2KVntOy7qwrDN3d7e0UhinHbf3L7jZ3V0dsqdpYjjekqY9kixaPThLT1H7fNPIfHowKCsNIAmNE8SRnLIxSmkEqRb8uBhMGMPeC3mjVpxW7YQObz67ExwgQJiI0V6DpdKbbi8EO5Q2CujacdaiQIfS7DlHCRBGf1yobb1qwJDxOtnUYkQe2Zb5wSY2xT0KPZw1RKFWa0B6VGrfmGtCaYpqMQKBJovx6Z2yVooHjAYZ7DMVIzCpKsEbvRyxHZdEYhrtXkMhQMyBzVpsDC982mnUVU2MnBPj7sjl4Q3r+cQ07lEtNiFIomslh5EcR6b9YM4mtTIvld6D74Gbu23Y61weZoYxM00DDJmYR2KwLDK737f30RtHku0BoznVmzvMZptmBA/Z9k1+zJrvoFyvV1t3273QtV13yiEOaHfRcBDWZbGCqEIIer32DcfxrDDMRssYzMnhOJdMYFpUs8faIGhrFo3Za+4hQnMbLFjmE60aqziOA59945uUeSGkzHR3z+F4Q0qJx3fvDLkhMLdE0EirhW9++gV59wmkG17+1kqK1gBuUHT3RuJ7/fq+LlxP79+zz0LOj9RpokXDaofs7gTzmfNTozWltm4sGsfra4EQzZ7kdn/wOPLOWir14ZEhZ8ZxMMNQtyspl5neLmhbaOXC0iMaEjEPVpB6o9VCKbYhCyGwnzIxGNNsXrqJIPFoDKqxfBqgYmFzsaOt0MJo9OTeaOVCbyttvaAyWQdEYPBukl4IYk4GEiCPA6XOmDDEDnQRgTTQdcWu6k7wwoBTsM/rTO+NxEhOWPhlacjl6To95SGZc8JmXePLctP8mFOCyCYetqnocjE6c6+duq6++2rUVlx0bJNVHJPBdDGgpbJlaw3J3Syu7rfOtBOQ7LRsSShKuay0tdJ65TTPnOeZN2/fc9hPpH1kOCaGXSZFE7oOQZCw0FulVDNYjSkxTjtidA9MOt/55Nv0ogQSpXYaVsDyMBqLUxtRFi6XwvuHJ77znU95df8CrSt1mVmDGFQowZhg3YkxriVMMTLmkTEZs+1cGkji5u6W/X5HW0+eMGvBiaEVf+wLPYgzJs1Wacu8qjG5h2FkP+yhW5ry+9OFtXSm/Y7jzYFeL9d9QxAx8XmvSF1tcg5m4KsB99jrLLIVF+EwHkzwXQoPT2diTKSc2O1G1svjtTDXYnT8AAStNMxKKDprU8TEydVl1PYZp+v1uq6VEGEcBz782lco68K6LJxOj6QkluQ8ZFBzdV/mhaeHC3WdTSPWbHVg6dSBVjsxJfJuorQV6SNRO+3yRKyjkVbAVwNONgom80DdCSd6lEp0Y9zOdU1hU9bg0gETK2stbELfbb+GN3G46D7o4FOmoRKlW/yIYLKPDcQwNwoLcaVbErYdLt6Abhoz6ba7D1Z0TQUKQcVNqKuJ7dX9V1OkLBdO54VSlf3NLYTAsD9w+8FXGHc3xGSp3b00ammspTMehLIszPOFtS3EMTMedqQQfO/qAIyf379hd1yffPs71PnEYRxphz0tJ1pThimZ1UhdeLyY47MJOIcrrLUW66pzHnh9/4LshIXSG7UUxmFkN02cH96ZsDMkS0DtVrj6OnMmocF2aHEY3aqnMtdkNkXAzX4kOQ35vHTKbIUjD4moxozqKm6CaoUrtEof92gy2nYri//OMzUeLMivmbZIW4FWCHln9GERpn1G6tm64RTtvnOrHukrPZjXW0yD2cT0Dm1lmU+ICIeUCN30aGVdXWFvhaJWKy7bTsUCGtXzkLYucyB0cwLp2liXC60YDFjW9boEr3V1dpjvBJbgljMRLc5QAlrOJr7cQH/1iQFF2ibKtI5uucyUZaX3xnmZOV1mHp8emSZLbh2mTJ6MCp8ChN6MAl4Wai8Gz2qGMRrzDSPuvPn8My6PM2XpPDzNFI0okTyM/lk3sqyc5sq7949865Pv8LXXH1HXhfl8oiZzGtjE62xkoDzaZJEzx2nPfoisqlyaEsLAy9cvORwPPLz5DsuymFSiKUkbfV1ZL0/mvJ4iKcZfW7jy6MSbzKvjC6Q31lp5f55Za+d4c+T+5R0Pbz6zPC3tpBCR2pBWkTpbQQlWWCUFdxnvXCQ6+y7w6vgS9dyv908nYkwM48DxuOf9m0/NIkiFsq4G5SIkrRSx2I0YnBUuStBGi45K0Aky4jgKl1KIQZmmzFIXm/pbYykLt8e9mVpHKx6dTqszp6f3LOcn1nXlspq9V4iRYcj02sjDyFQPlKXQ+0rvC2uZjaAVXfC9uUI43d5cYYzyvQmYJQ5shtGiFngaQiTmEbm6q3S0r2wi8u17jeRSbJKL0ey0NjuqWoxcjIvg8+AsYxOo2yJOoTWWxQwWJJh+TrrtIJX6/DtDuF4fpnkWem3UtRC0meNLNhPyp9PMWtU0W2KWYcPuYNEmBHpfabVSS6NWI6G1VlnXlXW1z+c66f23vn6jFq6f/d9+jpvdwFcPN6z3B3RMJJS5zPRSaPPKm7WwrA7fIEzRjE1notHGBW7HyeygcmK4OzJGyEFIwOffemPRxDHCsrDWBXpjQngX7KDYjGyD2ML2iWSLzl5JwOAw1yVmdF1A7YLfB1PDM2R0sYV4DMo+RNphj+aE+NI4ibKL8E4Da+nU1Tr20DtBlZIi4h5mw5SYAoQoaI7mJQeoO3+UGChBGEOyGHvgsJt4+fqO+/tbjvsdrVbaWijz4l2nFa/lYlHiltIcroy8EDO7MRPSYGiYQvMusMyzvf+lUJfCZblQa6GvhaUVZ9V1CpWcEmPORlM2yJ2TTysxJfI0XiFEW1b4vkYidFguiwUnAktdKMtKWQopRXa7Hcebe6bxQBKzFGrLyRIByoKaLhpao40jadzZzmRe+Mav/iLf/NVP+PY3v+A//vJ3mJ2BObiEIoqwT8Klw1oby7rwK7d3LMvK0+VCj9sC3frN7CSDFes8x5x5cThwNybiMMG04/a44/z0KSlG/sO//488LgulVuidHILFhNRCddhxk2Ak38+emjUb0zDw9dcfkmnGksw7piFT1x1lecO//3/8Jx4vZ+ayEtRagByE2yws6n6TbqEUBZLCo9o8HUPgay9egotQzwq7HBmHxH438sm3PuWyFC6t09aCYCzY2xSYxbiNtEbFJGNDEFrO5rhSO2uH0O3FPXZzsZ+GyEf/4T9ws9sx7UZuXh75rb/5B9ntR9IQabM1QyqK1srT04n37x/49mcnNjuswa+x3TRxezxyOs/sxsw0JE7r7Le0IMNgomdHFuyKdBsoRxls/LEGSjBrLMuxCuQ4INnYkG1dqVRiiOSYScNIEms0Si/GngwBcqLOK6WszOvsZ0skxsRhtHR3iYEYskGG2tB14WmZMWGzuWAELGR21ZXNXZ8Y0GoEstaaNWr+mgY6aQiEHHh4KlzWhsTIfkiM056UTXfWfJrr65myrqzryrIak9TcTxYe3j+xXM4u3/myKbZyDZ38dXx9XxeuX/3sDVMOfJrfwCcRiYEsgbV1Nzq1TsM0P+YYcDJ4mNafDSwfQmZZFlKKHN/vuT+MZJRQK7/8zS/cq84YcZ4AQgIuarESqsrqh1IQE/Bq91gF9ctCnM7oH5iKuAO3HXxtyy4QA8N6dHfobgvYGANjEqo4466ZozjbxLPthQCiXA+vGN16SYQuJsoOyd6rALRifof3u5Hf/iNfI0uAjzrDNNJjJIrRcAMGUZT1cvUkq+vCWpxNGDN1P4HMNH1kGkdKXW3PdJkpa6eUzrIUVoe8tJqxq/WTRhDIMRHIxJbZTEp7tJA70QRkhiSm5wxCHiazSGpKq414MIJODPDudKKHmXuNDNPOdTmVVSpVjR2q2ux66Z21dXbTDkkDrXGNtRhj5DZNfKqRZem8vyys3gwktwMLIjzQzWkjZ14ejxwP95T2wKU8ETQyRNeJDRMpYIdhM9++3bjjcPMapJLGid3xht/6Iz9ER3g6zywaTVQqCkFI08EIA+uFKdiiv7VOCxlQ23g095CTzHj8AK0XxnHg/tUH/PYf/a2knFmWwn/6hW/CYpRvRcl5R0yJljoDto+otRilXZWVTvHrVUXo6UjpZ5pWpjRydzMxDJkwTJT0nlJtv9ODYq7nkdMGXwFdC0RjNi4oOSWkNVQqXWCl0XpnrY2CsvQO7xfmAnca2N/aZJPSRAgjl1aQNDCMI1+5v2d/f8/xzVvm9g2Wy2KsziAM42AZZq1yPs1QLbEcgbIWSu2ES2WI9vlKtEG5qU2IiX61NGt9JRCIEshhE5tAIZo8RJ20FG1vPktgSANJfGKju55RKWqWV6VUzsuC63QICH3KvoMFNJhgGphSYO6rR6MElEQK1sTEZBuwppXVsEFnG6pDmEackRyRngg9MGhhdSh4N+4Yxx1DSlDOtPlgEL0kYq4Mw8o0LhwPidASvURy6GidaeXiu26HlsX58L/Or+/rwrXWRpDOWTuDRFKK9CD0Lqa2b428UTGDdSkb02YLbRMs+K2puqOzL0992aytmvB2y+eJrr1hw6ddDOvgbQA2Q9YtL8m0Wga34Ow4DVzNa8Xb5S4YwcTFqOrduU03Qmk2RZlI2P69NsOwgzO8wBwJmotuotkwGJqgBumJvw51KnuWQDpMTDmzG0aGYTRmWAj2noRypbNuoZbSO9W1LqUpxXd6qsbENEcB9aJvF6q3CqAOHUgnhmSmqm7/Mw22W8w9cY1hiNYhp5yIw8CUA+6cRB535r4uZlNk+U4mfoxpIGVlGD23CTfnrdWbis05YiCnhPZKHEYkpmtkR3DSTh5Gpt2e4/HIR69f2dRbjQadksGnSSCMA4f9no9eveTm+Irju7fkcTRSi9giP017NuOM1QvXfnfg9csPGEJnGCemw5Gvfv2HOC+F8PDIy1cfsFbLrLKMMC9c85ktzK/1TgmDkQBckK3a2U17Xn7wEUNU9vsdL19/wA/+lt+GivD+4YnXH32FPE6c5wtCZxqPDClb5pxbc9W6UiReGaWLw8cxRO5ff2g+j9oZ88iL+6OJYyXw8uHEsixoM8d3s1wJJJu1DOnqlZaTm9Z2xpzpvVHWwrkopa7UWhirTecitucadxM7D4k1OUn0oEg8niMy7Cf2ZaX1zt3dA+u4oL3bfjObdZGEwDyu7KaB3W4iSzMiTqmIBoYUnSAjVOnX82KI0RqG3mnNIkeiBHLE4Wxny1YjQ6QgSNKrr3UK1mCafCGaO4kXuSFHo/IH7EK3tphxSma0jIJT1UHY7UaSJnfsN1KN2W4JKQc/80CqIsmCJNVt4YJEkmRGt5mzpGqF1KwBGAa7xr1B22yy7PWZQUJ0lEWcTbyWZmGgl9nWCEHNieXXfAnf69f3deHK2UIhdzFwezMxDgmJQtFAbd0w9TQapVPEzWZ94blso1CgYRDBNGRevbhn2g22/J4Td8cHKB1pnaWrY8VC1MbiCvyqsEYbhwOYkrxbnEpXiziIIozZl70ihBQsEUoCadulYB2s9GaLa78I0jSauFqM2WjtVqc0cb1LQ65su04TK6oxCFPOqDZKV5aqrOtm4gqlLIw5cjMN/MgPfMhv+vgjPvzgNYebOyMPdPPjy7k+U9un0Z1DzDZqXYtdpKWxmzK92wE1eQ6ZaCeilvUUIYTEshZaq6DhqkXKQ7I4lyHbjVKsCxAxiHOczPA25mhBoZiFVRh2tNIIwWm5y0ovDWkgMRMy5I7DdL6nqJsWxuji0+6GPEw0Lc8uFjTvgI1QE6YDNy9f8QOa+fCDj1gW5TJXvvWd7zDtJ9tRDQPhsOPu/gVf+4Gvc7h9xePbN7z95BPOdTHiT1fCtGeMdh1Vtyra7fa8evWa+2kk5kwcJ37ot/4w7x4fmN6+4XdcztRmEGhOmTTsTER9OVGqdbW9K2sciG60enE4aBx3/NAP/ja+8vIlx5sb9vd3fPz1r3NZV9LbN/zo//y/8PjwwDLb4wxeuCZp9L6ivUKrrO55J70yN4cOQ+L2xccMKEnMoPjFq1dIDDxeTkzDSF1XtCu9Nprrq6TMV3ZppFOHCG4VNAyDIQpL4WFeWNeFus5cikHMaGc/mcj8/u6Gr3/8IbvdDlVhvizWv9kYjkQYpwm96Xz44StwR3QJuLTEKN8Dgf1+x/64o9fKZVkp5h1GjLDZE7XmDWlXD5HozsRUoiSTjvhgLAIhRZbV4PVh8M+8VWprBI3eDNo8ZfIE6EGYdhntNnVZuoJljaUsZhjdjfxxviwQhLv7I11M5F87XM6muYu+MsALV1cxLacqvW5oRySHgZht+kNgNw7cIoQ8Mu52plkLgTRM1vQCW0KDEdEyy9Ipq1KK8P5UePf2zPu3Z0optiMVcYKVF2L5DVq4fvPXvsJ+isQANSQ6JjrtmqypDxMlDEb3bNXcM3ximYZgMdcAeSTILSlGNE/MpRF6RBgZ9reEXonaGVYzNO3YBRsInrfUyTma15yqHfbNnKrF/f+CBHbTziaWEAjD4OymxJAyWhcLJQxGE455IIZIlEbYmYODSiBkp1hrdaPLbaDJRKfH9+jWSthl2cuFUgtzLVa4qsFqjw/vuNslPnhx5Hf8nt/GYbdDdsJpfWCUYJqv2AhtwWIV3EXabwJ13zwJnWEy70QUYo6M+0zMFtsR20irQqvKUItR1nujtZWkakU5R4Y8eqq0ELs5TRu9N5CyYfshBoZsTUJTqIjDbUYnti44UMtKbmY7FOJAynskTPQGMkFKySyeYiRPIzEPaB/pbTZm6NIoy0xXoa2QQud4uyfuDhwPLyAeaGSezg9mgSURRVlq4ubmyA989SMkBl5+7Qf4+Lf9KA+zOXssy4XH02zdqkRiHBiiMg5m/Eo0BwtNmd39PYsqh7Xy+gd/hMdLoXVlPwSaBne4aOby3c10d+jBO2G4j4lAtfy34x1tf8M6HshxZ7ub3okh8sHXf5jh8cz5srIb5Go71d3SKeAaNTY+J4zY9REFUjrQ1WKENA3EF3duGZU5/KZMqVB7gDqzNih9qyvWRAZZmQQ2fU9KA72u6OWRaV6IZaXUwlALrZyhFcYUubu/4XjcEcYd61JAF3prDMPgh7UwPzTr0hCm/c6yt7qRe8Y0uIlt4/b2yLSbmHajTUNjpdZKLcuGEyBAcZTFImlMz9a6UtRkUNHvibRptRBSTO7qY2N27ZnaOlE3WYgZ7jYz9STmgd1+h6pSVoP3ktiqXV37GBGaKvtgOWb7/QFJiY45pqT05JZhhvZYoRHTzSVLI+hrs+ZOgtklRydTxMjlfGEtzffYLjMg0lXdWxXbTauZQw/jxBADq0DXRuqVMSpDUnpbgcGlBEbr/3XULOD7vHC9ennPYZ9YLyuLiFmDVgHJtG7jag9uItkr5E1PgS3n6V/ScVlxidHdtyWRhszldEJaIHZzrtBgRpS1NtS1KT2YBqliDV1M6cq2i9E+bCtck3VXKREnU53nlBjygLRkhSsaJJiHiRgTOXTCfo8GM7qN497lwxbWpg4NxDAQaSbYTcFSZTGMWsvIWldyWVhKpS6VshRqWznuEzc3e3aHvcWaBGzZ67CjYIVFNs2UGs1900BKsH2X7f5cH+IiXnHXqqjJHa1dwAn0bm4KWcwSKaZoE1Ww3xWTW4EKto8LRjGOKbjgE59mhRiFnqyb7U2ujEPzhbOpKVzpwHK1R4rBvrf34jrf4D8n9M3xQe34UYdeRYKFFgZFcuB4c0v0Pdv5cgESkgZiHqgoRRuX2mli0SAZYXBEAAnkvGOISs6JkAdKszE+iXvmxWh2ZnmCFVSrs88MStUWbUmvFenNGKoOzQ55IFLNE5LAUjuyVuK6eHqAsUA1GDuWGMnjQJNszNWyEpJlc4Ue7dr3nW4KyQuXEtNoqQOqVwcODRFSRvLO3qvmMR9RTL/UIUQXv6vvLDf4KmZj5uURcZ0furk9DBACaUikYSLETG2VvAnbtbuMIjjhzrWFYs1KV4O6FHVou1/vSTO5Nj/HpK4b3J6sQ3it2uOlGEkp0KMizeDJJOqFywguRo/X6/Wdc6JrR5tB/4Yo2jQUJBjsj5N9YrgyjmPtDvuBNiW4Xkza5odoxCWis/865CGbm4+am4Y9fRMgx2TOHHUrVCGQQnAKf/Kd+opUz+AS8zKNeQBwVMJ2n+rXUEzJmuZWqas5xtda6bU5/MmVmMQmLfh17Lq+rwvXy5cvOR4z7z57jwSLHdcSkDhQmyJSjW6sJiYmJ1oz5+kxZTPbFqFG86sTtYIWJTFlYReF0/sHKIYNx6RodE/trmyhbho6cbJohtogD8M1/yalfHVr340jMQS7CPY7alNyjIxDJvQMCTTCsjSSG7wOUYiHAxqiFbRx79BCYxySm+cqOU1Ex5tlSCyrXXQSQMtAqStDmY1hOS8scab3wvGQOe735ME1YS4E1S2yHGzSCe7M0N3hWhUwj0Hww0K9uDnkg7tbRCIarJsOorSgVwgxRitElspiB1h0UolvpTxptjn0YTEq6svFgHeyGpxAY5Ng8MKVghkKh2g2NIg9B/HCbPsbRXohqt3UIkKM2T4MnyyfzV1hXk6ECdLYOewOBO/cL/MDBcuB611ZW+PxfOHd+wc0Zn89QhxG6mKwX8jJRKUx0SWwFBO7xmowEWLXSyca+aI1C6dOFlnSMUNlMT75l/Y8nTRkgltq1QaXuVhaQTTa8pa1VWqn1EZtFWHy7DhBV3eYEJteSJYlZxlOW9w7hJxdKtJcn9eIBPdW9Dh5POrerf4tMdsaBZqYO71yLYAIhBDRGM2418NErSmKpCF7pE5gXRam5PrCuG1Stx2TNRwEMed/th2NJ3wbR8SbVju8FZvyrYmx56/dyC/S+tU9JKXg7EObvFKAKN0LsPgOqROD6QZTipTu6wSBHLgWN0XMfd6veVvJmuIqarXClQSVttlAgn/fpiXrcZP4uutL70bM6nijoteGbUP+jTNm02PAmsTN4ku007sVzTxmy99C0F7dYMBiUmx/nwnBNKiluARpKZT1OarlSn31P/yGdc5o4Y5VJ/phZG7CpVTm+Y11mK1RFhPFBSzWej/tzK6JxrQ/MJ+fqLUiPVNWy9+hK6+PmV08cJyO3BxueDzBuRoDTUu/woMSbFEc6Iwhkgk0wYS+vnsKkljKYjsvUe53tnfaH++o1Q6uOA6EckLcBmiMHRkGQooMoTHuj0S3jalpsC6qrQx5YutjJGSi2+akcaJPxmtqAvXySG2FsU9GTCiFelj4lfMjSSF0YR+E+TzTUGoXwpTsIpZAqcVdKwxiSNEOrFoW6jKbXU4OHq/erkmzfS1IWREio0RUlKf1wpRcII4fRhrQFojDQAqRFK24RCdihsGmITuI1ufkW+xAjWoygtq6WeSk4I2LLdZ3qTMdEsMgBBYSo5EOmhqMgxnqoBWKE1laBBnMCSF0olZSgGG0UNIikXNX3n/xKdN0BISnyxNh2lFYWXTlMl84z2fO60KNeN5SI+WR2V3+hyA8rQupdfYhcfJcpyEJc10IUdjlgbJeOC8LpTWIwtjs1l9aJTLY/qgUpjFRql17PewNflIQoskR6EiE8+VsZJEQWS8XzpeZp6Wg8sQ4HZAQWPrqbiqNMs/s9wcjgNRi4nxtVFUmDZTeWT308GFeyCnRmnBZZkoXmiQLuFSDOc/LbNOcdOplZj/uQJW5rGgc7HfWQmnC2pS1K/sYucwF6Ssv9gMv94khwnKeoQ7EkBjzQArmSKKl00uzrDECY7DdbHdvS9hspjD6OgutFroG0zdqBy3m2m8LIibZLNZmYrUJJKkwCAaPepNjRtImYwlyJmKwbfQpLtOI6vEtqjRJDMb7N7uyKpaYHhJjLKRgYaCVwsZgT8kSt0O0iQ+djAzSO4niiQYVVdufBRRaQ930FzXkJHRbjaBq75sEep1p5WyU+fk9shsJYjvOvphQXLWh9cIwCvevD9wed6zliccnYT90CBcaZxfbf7lI9V9X0YLv88KVpgNxnGBuluMjQo+jd4mV0Npz9Ha0DK2EoNEMJ42sAWnaG049z5xOZ14eR1Ie2R+MRXZeV8pltotCokEfwfz4ts4wpQEVY+GVGG3iEhjGHWs13dVaKrobCCkbFJhAY4QcCQzX7jaI0pIVjpgiwziSxx05D5x6M0GxWLTINV5DhSDJDnsx66IGNjeF5Op/lwKoXq1eWm1GcojRCrcXBO3eJ4v6lGW9qwXSWUdb1kIpZt0idBZZAevuumchufzHZrjWDWoxDMd+zplQ2pXQ1DKdkCt7DCwHDF9iR/e+28yBTb+p7jNpfoWbrY76hjxsFL6NnOGzj9+7GJfUIFDYIEHLWutuDGyRII3nnlg2JZnFxrvHXB4HxnEgDRk9X0xoXRZWTVcaclQrqoiReFSV4At/ATuwS3PyQyQNan6C2j20L9LUmgPtSpUtWmZjoQY0GMVfsCV+GrLT2itv372jlIpkM5kOyaQIpTdK68TWCNgB37Guuyn0Tbiq9r12ftokG2KABvO6egPxHB3YVFndb1CdPm75cJbku5nebqSK1Zu+7VAXf8e3wMKoCmGb1vF7zT5D+zyFzQ8whs1vz9m1fdMRGXtXrp+6YibBBi/KpjW6TkGmPzPPKxf3hs0pxvlSDlOqPl9KIWxQZ3+Gy3xhdnXO8NfnTsXP38/m+8mVNXqN+dmgNt1+L34/bPvj50wzg0u3W8DF1C612RKK++Y85uJtOwvc9xCbKLV6npzv/LbrD2xfW32JoQTOS+V0WrmcV3prbOGbgjEhe29G0Poev76vC1ee9sRxJISF3is9dLfQsQ8hxnxN+zW9bPIEUsuY6bhyPw9IWGgdTvOCYvuGYbdj3O2R9EjFcOUUnJ0mGzRjO5boKnvFLErFFff5urg3SyHE/MtSHsx5OQZ6ChZxIr53CWqPFQz6SNkoqdMwuSDRLnIb6ZObq5qvmbieTKLlcUnv14iVTf0vfnBo78+HgwS/V+zgtggM2w2o+j836NX1H6LU1WLiW7fqJBSDgVQgWLqxPZz4DWVdrLqz+NXyxfde26FyvYF87yG+t1J32LYwSrvZOxtZZkMh7D1Qtf2finm3qVoxtoBG88gLElCsI1VPJd6cv3FRc6dTPX5et4Oi49Cn4f/bwZViZMqZaRwYh9EO0t5t0pGCuPEpGEStXrhEcRqzHSK1NkqZr7BYTJ0U7fVUP5C6dS++a7BioF9+T7GMqui7yZQTZe3U2jidT9TWydkeYmOJbQdj89Re7ZbbtUVQ9I3HDdTWnYG27Q2tUKxbPhT467FiVQ1fvxaH7lZESr9CUptDRa2NzVh3g64Daj6g3YqqbA2a4G2HH7C+zzGEwLz9TIJhkhVVvZI1/Cp83rz4VOUANc9Tgjiygt2Xffu+reh8uSh2tlIr2+eszwXY9o0eTbuRnK5PR65NnWJ1bEuMsPyvdr3GuV5JWzOmmxrGm4IvFbnrl1z/X/T5cXu3IE6/FT0LDj9LfNfWmuHwIVjY5PUxHYqVYH2ZW77Nxaze5osVLjtnPIV8u2Z753v9+r4uXNPuyJhHzuNM0plQKyBmYHs1cNwWq1C8wqsYfe9clVYKMZ55eLpwvhTWFqg6UeOBdTryns85SWSRyFI6E0pGSUCO3WACtaB6sA8uIVR1s9f5xHI5c1kqcRqJkkhxJI+jMcMk0iURo5ClkbGMn5ISPQQyMAQTDgudQTCnBDEqfRS7CI3l6zsEAvSIKMTSiU0YCFisvLLGhIyW/RPzRBj2lG5hmhbKGBHNhO4k3VJtzyFiBwoCdGRZSMVsfJCRhF28puvqFtpXO3mynVySShhskhIEUqLiMSBquyxNAjleXd6DLVGuN2erRs2XFAxzlwFdVrQZK1PUcrvA8rZsXzGCjKCZ3gKEyeQDMZDV2HjUDn21y4VIj57eXM3xYUoZDUoojadTI44gqQEruzigdB6XR27vDrweBz68u+Hy8MS7LqynlaUFC9cLdriXbmIj8SptgDacl5WyFkIzIW4UE8jWc6PXbWIxmjtiwmPpFWmV3laW1SZnRelrJ2eLXenApVTW0tDm/noEehPmx0JdrcPvFFq3kMfaq2V1aUNZaNWyqFTNZDdop4dOKSbWrd1ICUMOxKBczjPrMtO60711pfdoO61WLBKETusLFAVsr5K6v0aKaaBqJTaD3tZaaL0RSoBFiTlwTDtis6h6YqJViyYBnJCQrICnQKvQw9ZAmL+l0ql9tSPYU9SvWiuJVw3jVlh6qzSULm5BZvPplwqWuCu6AKaxw81dYjBuZuugYpC54s119Km/N1/02j0XU7SJpz3vMW2v5s1K8GktGMu5otTuyeLe4F5HwN7dXguI0cg04BOe77iSJzM3ayaXMtPXgYSaJlHdokuVHBPJ63gojTEO7HYHi8rplXVdWMtCq5WUMoToEgILof1ev76vCxchEvKASDCSQ0pIMiGdtkpZZkiRFMzCJo6jdSJqH3KMdkGU1YSdQ4q8vHvB4WhMsbVDqTYJDTnTYmaMMIiSsRiEFAJDCshooXhNlVESEevwqjNzYhSmYWS/PzLtD6Q82i7InRdizBarEDr0bj5kMdnvcCq4YsLJ0MWixfFpf+s+fam63XSqBoJpMPduy+voRGxfk1ImxUQKkTwMjEM2plIQKOWqK0uS3ABUaMu8DWXmjYeJvXWpxDH4otbg2d47WivocF2Ua9/iVqyrjeNkN+PlekYAAQAASURBVG5XWq+0YhlgyacQ7dZ1CibGjL40t2HDnO1RmzY30TmlU5bVKNEh0LtRuY3S71lHYqLn4Em5iAVndv9d3eHNGAPTMNjyOgYfMJoTNYrZ9aRqE0tZLT2gztAKeYwQYC0rNZpeJkriGkKLWnBh7zRsp2OZaI0YTKe29MZpvvB4eqTV1ablhke2m1dfkO62WdCjXqclu14yQSKlFM7nM3WZoSzMl5leO5fLzOn0wLqcbS/bk0G4Yq4e3Sfl3pSWjGSkqiS6RQOF6KJ8+3wjnXVeWAUeTieWeTbZggS2qJyuwRoEMfBVO7TgLFJVeq9G5XYXC2ua1PSKG6LWPIFZLDhUYrbDvBuI23qnFYuUIVi8EVjhiCEQuk0wm6jxGcITk57U7s3S82SiDssZScbSo81XV5FuUhS/Ov39fyasGKqxItl2fa0pKcTrJNYQMwZwNMfOKXOwFzXReUie/7ZBoht8C34dtesgGFO8Tsc2Jdrk3HwiQ5W1eFpxMOKIbPeIvWD/3M01RdeZDoRkMLgRcg212QpwTomchBRgN2QjwrRGWZbr1CXdXtcG9X+vX9/fhcu7G1EjDOQU0GjaqB4sgZcU7bAJpo0iWAZNSIkYMz1031EoKUWGvGdwmm3HtVMxk4eRNS/EYFqN6NR5w9kDkrN1Lx1yHK83yjqvvgezApTG0WJTzIcFm5ICaDRyRrSLPeQMIWGgzbPgb8O/e21ockqUzRU+hmNjuy9gBKPU2sGfIHRQ8zLT4D/j0MVGvpBgVFvZYAnZMHqHSbv/6/D8Ow161Cuho3bfn9V6nZb8Cbk408TZQTd4gusCXJvBglbgcEze9xg+eSIWsUJ/jnJofjDiXXSIFvPSuu8ifFrYOugNutmKPP5nxKx7OgJd6CHSS6WshWVunM8LcyjUkEiA9u2znum1uDbJQivpleX8xFILDBaZETT5ntJa3+BauKXDcj4jvTAkQWujlMp8OnN6eE8tKx0L4HQEFm3VJvfu6dvqUJaq2TdKoHahL43L0xN1mUm9sJ4v9FQ5nc5cTg+UUgymXCwSQ4LQ10J1uLbVSozFrlcFjWYVFMScSNqyUOeZOs+c3z/R6Tw9PdKLxY20YM4kFm8fKPNsUgo6WmZIJt4NCBKqLf5bo62mpyvrjNTZTAX8+ajTyGP2+8nxvIA8w87OftUrhB6uO1djBPrOVSJb1ItpLw22tb1Dv56x9tZ2VKM3X5sbjMPLgSvkfGUX6hbIaFB11+eQWLnup+z32H7O73n9UnSJbNZQBo/bZyz2efv3Xk1+Jbq8APvbxtjc8Ee9zl9+jNrZIOKvd7Ol+VIRbq0Z7d9hWAnb76t2T6pNhsHt6XJO1FZZloV1vlwTIUTjdT3xX+CY39XX93XhSrXCZYXSGQbTjvTFnDB6COigaLKupHaLXM8AKEHS1UWizeuVFTcN5uYscYJ0JO/umbrQY6L2Sqvm4UWcCPuJGgIqnd1+shtPA2m8Y5nP9PMj59OZFnznNIz0caAPA5oGbL9uKcqFZlqmZM9Phx0V4fHpPawTE2LRK6WyLjOX+cx+NFZ0TJlGYC0WXzKlwQ45312VpkSNZNlBCFTNLDHx1ICqjEvj/fsTUYUhZmIO5NxtGumR8/nkOLwwSker34gx0TzavhMsKh5oBJ6WC+1yhmXhcLyhSwdR8n4kqyLdNFfV4d0YhJAyQkI0O60etmBKkeRwjUNs0bQ8Us1poAWhh06XSg+VIBXpCdFAQ4k6EFpCVzWGotoS2uCyTi8F1W7szZQsI4pAbcYkffjsDZ9/9sibtzPfevMFNe4h7TmOE/v9Dgmwric+vn9NUuG4mzg/LnA68fY//xIPjOx3O/a7HeP+3sgMIaJpz5jsdT61yrs3n1rUyn6PLoXl/ROP3/mMN7/6K6xpoEtgpjIMGwmp0xgNSuqFYUvSFkFlpO5HUoD1svD48Aathaxw/uIdArx/+46nTz5hlUTPA6enJ6Zh9IypimJU/14XZO7XybOtO7u/cmd+WHl8/4bz6cTl4cTTYEVqmU+M04DkCc07yvJo02LrPJ0f6BrtMK0zuxQZUmKYBlI23Z5o5/T2gcfH91wuT+BQ8RAj52lCviLkNDLuhutURlDyZmem5sOpV2IRZmWkCtp4JuT4vs5JGVFGaxpVCcmYsuiWggwaOhLtwI6uD+ybRGDbgaM+rRZjNccNspzMpdiuStM+hk5io6ybgN/21S5DQa5+mNA8u6zZrsmb8hAHghhBTKKFR9pdaSsTS74OTlu3Is7O5B5RIrgDvCGiasUsDdb8xWxrBpczXPPxgBCtqYxRCDl6c7Yj5YnPHx/Qz7/D4/vPePXBB+ZfGdNzHt+v5+z/df30/4+/jnf37IYjl8tCk5lWzZ8u5p1dsH0kjNb/0JVxmHw/qdSycplnzucLocOQBrQr7x/e85UPvkJKicNuIqTMvK68e3jH23cP7N0t+eZmx7SbzIEhCMO4Y9Nd1N4prVGqMo4HhhG7wlJitz9wON6yP94g2e2XBEKLjBnGbIf4imtdSKQ0MIwTu2nk8ektUly3hE9yKZuw0nN/0mBEEVuOd9CBQLe01p4sOl0bQQbWuXBJs01gXegiVI2wXAyrd0FlbQYX5XFj0220cdtr9SQei26x4fOl05dOqGq4NpXeIarlLwewadhd3Y3otUE6yrJaim0MQg7mn2aVzFoP1GGMHqhrpa7NCL/VWXANSuvWVYeELdhd76JqAs4ekcFTdUfTcimeEZUStUHrlXlZKavF0YxT5sVuYg47ahxJCdJg8FPUkWkcmHYT427PzV3jB37gY/6X3/E/8avvZrtOcma6vXcCkXDRxD4LURTI7PMHTDlxd3Pg5ct7djkhrXB/u+d96azdIKpxtLTeHIUejEoetDPudleY51Lhdj8w5EjfD3z8wa3BQjHywUevqGuBXhmSETlaW0yL41ZEY0oQzbRYemC333mkjTkpjGNiSNEst+4OHMbEY4wcdgMBpZYD58vMqrD0lShKzgEZMrvhFhyZyFTGKE5060jaJvtGKIVEYYq23F/XYu9jMrf0EGxPqE5uMCj12eDa/tsz+3TzBd3+rJvfqGNspr80YtF1JFGHXpsxejfyg8g23Tpk5tPXdihvU0V3lKLVjmp1coIJ+7ffC9t0KLTajAUtmFQk+AQpm/jXzX17N2RCzYpKPS37+rrVmKpgCE3vigaXnxjryguSXt1EzDS40eqmm7R7tK6V1mAYFjtHNxSoFmdGCUtfbaoMiaUrp0slvz/zxXc+5atf/2Gmg2k3ZaN2yDPF47v9+r4uXDc3N4xpz5gHqBcTY+ZwFa/GmJDkHZYLW8NWuHpBW6HXaup0lFYqT09nzpcn9vOetozEXujFXM7XdSWPI13cOy9lT0BNNi1IMFfny2rO3L2ThoHkxrwLakLEaAdddoy/olZUnNoexDBzac0jFXzhq1g2lmPFqJndSq9XnN7EwZWA7QBaq2hbjdpuVxpaV6SsjOLYfe20uWzaULQqrRsLseM3iTu6d7UCrQJLW1ibUJrFU5Te6JhH49NlRUpj2D4s9SW2RLZea6O7bzYc0jZXDdtdqQgahTh6eqoYNGmdJ9cbXX0vInH0JTdIjO6N1wkSzcfN0Y3Wu+lZBJpmO/xCIMhoB4kIkmyhT1Kq4X7k/cDOqd8XdhQGUlDGwU12pyPTZLKG5vuvm8OOr338EW282B4kCMN+urLLhhY4DEbNUG2k3S3TMHDc70kRhhw57Ac+en1PPC9cirl8jGO0CJgU6XG6TqbjMPjBrKQq3B7Nw1Nb42a/Z8jWCO12IyudMQu3+xEtFXH3hySNRGCyXHpju15JF9b9VwlMOTINiSpwyHvabmSMif0YvXANZDENJE2JEn0P681C2hFjYgxKEieH9EYLGEu4rMTDyJhvqMdMrZXzZYbeyUMkjYk4eMDoM3fC//alf5ANlbVdqh3snkslG0HwS9DVf1HcNlzN4LZnSr12zBHmei3ya9Y2+vxQeF1wsfH2M9v/y7XgmOvLxozcGLJf4jjqr/kV1+J4ZX2KFZHry9Hn77PdlgVPmrQnPL9nz8/qCrGqPsOevdu+8NcMSgJbAQOuuWuI7e7W1T6v9+/fXj0mrz92Jbx8b1/f14Xrg9cviS3yeU7UtVL6St5FZLUcrCkKpRVbgKrFhudkTKZLXYhaiBSWIrBWlnnh3fsH3nzxCTFUIheG5QEpF1pZrRAIaE7sb46s1XQ9al5ExCAk6ZzrQmiFRCONe/ajTQnr09lVDo3QCsP6yKqNKpZaDIlaA7BYbHbtDDSonbaamLBdFnQpBMvdgLJAX+nN7XRipElD60KvxQSdvdpupweyXmhrgfPCUS2jLHXl8uY9w3EgaKJJMdWvNmjF2HndXz+WfgrweLkwN1iqMs8m1rQaFPji3SOjKMcxeVcZCGRPlc00VURnLP692x6yQF87TTsWniHUGIlD3raZVqzNmwYRIUWhB2N5xRTp0SPRRdH6aLvAEGhhoIVOi0pplUoj9ECMtmy2fKTJGHpAiNnIFC2i04nh1S3sKrsaGccdc8msNSJa0eWJFOD+xS27/Q564/TuC5ZLZT9kfvBrX2V/a3CbtpXe1VwXCDy2zH606aIuKy9fHMkpM+SBvpyJvXAYIz/6I7+Jb7195OF8pi4PCOazOA0DGneImGtDEnUn88BFR+7vdoxDpK2Nl6/uGMeJFEd2WdDZhLBfeX3DcF55KJXQO6KNGOCQsjt7RJJ0IkavjxFWgeOY2E8DNQT2u4EYAue7O1Kw/dR6WTgEeFhWhqWQ/bCUGDhMA2m8IaWRMeLvu9lKnFujrBfWi9LGPfvplmmIPJ0uvH33nvkyM6bIdDORDyNU/1knOogza8UlDt7zIGLvw6aRMrsv3xcXP34F3IjP5SLOQBSQYPCp7XQdAMDTwB2SsyLph3m33dpWQGz638qEoNfi4Q3Y9hheaQ0CTFeXE9Dra7M98/bY9txt9xauRfe6CCW4FRg+HQqSzMapN2/UvhSVIliT1xy6vK7TRPBdhu2fUTsnNuZkbyDR5D4K67Ly9PTE559/h1oWf9VXKdxv3B3X+4d33Bxe8gNf/ypHbph1gVaYz42yXCin9yjJOxkhjAdysq7y7v6Wr3/lQ1qDtUK/PFGWhfOpcLy5Y3/Ysz/u2IfOeDPxgz/0sXnjxUxKkcOQWZfZYKeYGDxjKYtyd9izUe96mEgY/fPl08LN8cCQLCtn2O8YtJLVPb/cQmkKFoGRgqWTBhpBK1kCYxa0Cb0GZxuZ+0Fsm/Cpo7ISuk1dgXq9OUtZLaa9NguJXCvjkBmTcD49MDBRk7WQh9sjw5CZhh0SJhfFrpzev6M1pXblybOsSm0s63ylyncSl8tCF7Mu+vyT7zDsTQKwSwPDtLPDOR5py2oi3V5Z3642TQIpR4qLirVWyJ1A9CntS8TjYHE2ah2JWfhgBJcpD5TQWOtKLwM9JnOGb7br6HTO89mX08IUPHJCBImD7YjUJpDf8sM/jPYIPZPyyGVWlrnT5gu9LfS6Mp9PfPLtX+Hzz77JF9/+ZcpioXu1d07VnNSjyHVpXXqnhMT9rdGHhxQ4n07UslKWmc++8w0oK9Tq8RtwPGTi7qWTC4yqv14ejLXVKinalYQINWQSN9TRisrDWzuMl8uFEAPL+czl8RFVOOwHdmlH4ua6kC/rwvz0zk2qC0E2iy+DCufDjv1uAhXmcSLGQF0XhtG8P+u6EgT2YyaOGWoi+I4shkAptqs918J+lzweZoBuzRhaeXV74Hhzw+6w565dyJ8knt49QKnQC70s1sAFuerAJA5ebMz9Hwe3TYJhpIqrnq53BKE38y0UEfKw7Xs6W0kRApICuQtB2jXmxMhZETT5vzPiERIIPUBX8+0UufpOmuPU9tiuiRIH0ASLIQmu4bOMFKfp+3wjJnHQ1ohiCEAeBojZCB3NIneskG9EDaV5gUrJigvuXIL/XtPlRQLRrZoWuhrDNOVEzJmckiMe1mxpa/57zDZKlhlts0GkvVNK4/J0cRsym+SsEH9pSv0evr6vC9cXn32HMndGEeIk7FMmSyKWJ5ZiF0zTZ28xgkFEop0UI7sxmamkDMjNhDal1uhCyw5rQbpyt9shw5HdtKfVamK8VojVRKkpR7N7UYh0corkHEkx0TQTRV2kOxJV6eczT+cnklZCDuQpMY2T7xka1BXRQOxwiJ1UT6CRUqAtZ/qyQlkpdSXUBCmyLoVWKq03au9MHsE97QbyGFh74Wl5os0XaB1pjRejkmNjlEKfTzDZ4d+1sVwuaC1oSkRpDhcWlvMj89KoHWS/Zz8MtNTQ9cJajG4YpDKJmqXN2njz5h333BJDoK4ru10g5ZFhiDSMcRR7ZZGF2hu1K4fdHbFbcam9kTDiiShIt95UuCI1hGifhbidTI4Rsml/Wu1oXaGZEajwzCzUTUvSlLLMTqYKSCxoqGgYiGngcEiIZIJM5HHHNDfWtaLlSF0v1DJzPo20aCSSmCYjeyBkhL4Ukx+EwLI0RCKxBZJEphQZcrCmKuJdcEdp9LairTDsJ7fKsrBUxejFrY6kS7n64tFXHy8ClciQLB8qhAZYWGRrq0kjpCGxs9vfQI6QAkPwjKnWWNdIjIXeOoGE9uUKD9UeSEkQ8QlGzJcwDcIw2aciEkjDjowydDXSTcScNkKirNWs00gMyYkOMSF9ZMyBNiTGwYyVRSANmcPNgSBKfbpcvQpNErAtdmBbmtqU8ky9FgkOCW472vYl0btPJE6ZtbTgjZH6TLh4Fltj04v/nhA2qYRfkILDYcELwuaKE8xW05MkzPXDn/umlRSnpm9/D/68N6bjFZzz5xI2uHTDS5104s/l6uZh1Qn1iVAwFuWX4cTroztbVzAZA+5EshE7rs4i+OvEXF6snrXrUzHCjL2GjWnt+ONv3Inr80++xeVUudnvSQjDLjCOA3NbaH3BZJeFHAJDVHqfKWsxZf44kidhiolpGhnznhhHYjzy8OYdp0f7K5TKfn9gf3Pg5YuXXJ6emC9nLqeFbR07BaWuC2wRBTmxC4ExQ6mm9+ox0qeR+fTI5XLm3dN7sgiHm4nbVzfc7gfOdeW0zNRyoaldgIchUpaZ2q1zv9SVViutFJZq1lBrDMznleX8RFkunC4nbo633Nze8OHXvsLtNHCaF+bzA8vJEoyDKB/sjJAQtMJZkdudwQR15fJYWNylOvbVguJEOT09cDpXqgbuxombaaD3xvoAxQWyIXYOSelrQ9eVL84XhiExeIT5tHtBylAZDV50yKRqY26F0pR9OthEqYWlPpC1+o7AIJ+NgECyxF/Tr1nDIeodoiiBThF7TdIG2yU6XCUBtFdwY9Y216scALoRXlwwbllTIzHvGPe3DFOh1kqQwHp+oJSF3d0taTqiHVLO1liEiITI8PBAzpkYA/OpsdaR2qH0wM1+Mn/GWN3Q2Jqp/X5ilUJbG+Nxby750aJbVIsfpZHpfLmaxJblwXYMkqgtMA6ZFASYCalDUNII4zQQYyeEkeOLu+uOaMyZ1lZrgNqecbwgCsOQqMujMctiYl1MTB1FaO1CHJSUhRQH9ocRVFlSIw4T2s0NJEWhS0eDkoaRupi1U84R6mq7oJCYdPAzr7POD4A5iYQxsT/uzMexC3kckRTRdfUzfyNfNN/RdPqXD2Zp1wOz92YQYXcnl81JwguZuZaYs8q24LImx+7LEMUNgU0YHIOHcF1/mf2fwdpy3bPZTskW7lI9zQHFAnp8proWFiONGPRoRKPNbmnbsYVo5InN+UUwRxZ7zH6dzDcXDXPx8Z2by0QQ2ytvz687YgFir7M1gzLYzKm3h9etlpuxdjQrlr5pcYJJMmLe7rcvNYzXxuJ7+/q+Llwff/wxXTPv33zG4xdvWfoZlsLNODINZr0jbeVyWXm/rOS8YxxHxmkgDJH5cmK9nP0g39tFWCu9XIhB2e0HdC1EKZT5iW994xEwLDgPAT0tzPPMw5uFx9Ns4lpRaq1+Q3Raj0yjpayeipLFKMBzb9xNkdaeeLq84Vd/8f9g6VBV2efG6bJS1kYSYa6N5hTYso3lEli3i8+XzPsYye6/eHp8x+n0nk8+/SatGEgtErgZPEOsd5uKHGq7TYlvfuubnJfCm3dPmPehGXsWLQQ1JRTiUEOKfPvtG3OiECEkMw8mCA2hzrMZ+rbKOMIv/+dvUH6p8/i4cKn/O7UZbLUfM2M2q6S7uztuDjtujnskfsblbCGCOp75uiiH4wHNmd6LHU5U+tAIvs/oXYzW3szMdNM2xRjNKT7azalaoEfAu2G3zRrv7u1g1o62leL0YtrKu8d30CESyTcvvQsPhCHTlzO9NWLKvHhxNLhlGOmXmVoray2WCjxkQozcHRJrFxeXCnkaQCttvVBaZ8iJm33k5tVrLu8z6+nM7jCRp8GYaAKs5rTRJHpybSaNA6HsPYQ0kkImDhYkuj69Y22VUQM3uzuOL1+xXi5c3r8nDKNPQRgtulqHXyVz3E/EGBmmCan3NtNKJCcLNwXl9PYLm4BFGIeBYb8zQX9QWtz2kxByRHs181cMaYiSGHYTeNRKITBsB6gol7cPXM5nLk8zXVfWboy/2HWTbYFW19JZ0ambcJrnmBGbTmx6Mqhu2yfZNTDts4manfIuG+VbBHowclItbP59Ei37amNBXJ1lcNun1q8+fill/MJDmz1vATsj3NIK3XRjEDU6XLvBjhipw7WS2qvv35yda9WG1hs2MQb/XmPeruvZhfyBYcj+fii6FU7dCFFGimqtsi6FNGQjuIlJRtpaqGuhh8FeT4eyLv4MAosurHOlFXicC6VA7BHBUq+N5KGsxdYXpa3f89n/fV24KBfGGBijUiSBZua+EiSQY2IaM3NNdOxwG2JmNww2YU03LHEFhJvpSA4KtVDnmVA7hzyQjkdSvKeuK6VYEGN0tlmOjVN7oBRFSyeSQDoinaUUqtOyUwi0tdC1czoXhhgZhpFXt7e8vJ2otXC6nJlPFwvYE2hDp56tcK3aWTc4QhpLs4wvUiKoUEuh1ZXalDiNpHHk9d09QVYu88J3Pn/PZakQIimNLOmZljQHmKaRicSlKu/PKw/nC5+9fSK7AFi0UzeUBLjd79mNgVArb04nzkulY4veIdmJ04C2FoYYGHNkX6OlJK+Vd+9PPF4KSzHbo/2QjB2XE79JE6tCkcBpfWsO7yHw8v4lMtyhKdPacnWFwEXMIAS1G0NDMuZUCKi4PVUyUWpII0GsK7QltnXDEgYIia6RZ8FqRNJkU3jec0AMYlWQ5IeXBEsPHAe0d1oQ70wFCUrzRNmYA9ogJLFolZhJ3t4GCV5cAm01aHTbGRxv92QqyxDI+5FhGOwgiUJb0tUBRnt3T8NEwG2Z/B4IMdG1MYeVwS3PYkwc74+UKZGT4k5CBBHyONGKRVFoSPRqO400JKIcvI8XcjQ2ptJpZTD0QYQhR4adWaqlMNl74pDYMA3UGmjNrM5oFUEtey2PKEIWIanBj00bl9SR3MzCrTTW5UytnWM+gDrxig0Kc1hMnDqg7uruhybdyRpX1lz3umNMSfx9075RD9TYwV6Iam20LhCUqKC6TXD2z5tRrhVH93dUIPQrvGiXq/3QJhRX1Bm89tykKUE2YNBp8vrM6NOGswSx59pxE4GNTejmupvMpLvYemNChiuOd2VUblKBzYax+j9IV4ibB6Q1h1eWo6pN92phmq10lmrnVe+ma0tuFO7grDcEtotv7TfoxDU/vkNGkLYaG6oqtVisRommRahro6zNCkm1cV9aJzbTFIFAU9p6oS4L54eZppFpf8Nu2tseZq7Uc6VcCjoAKRBTZT0vLKeFdS1uwWQH/bxUSm20ruyy0URrqzw9XEgpcnNQXt3dMaREXVYujzNPT2c2xEKyMl8KS2nU3mjBmEdRGktVW9SP1vHXtbCuK+vayV0YJLHPFlhZLitP7y+c1oLETB6EizhrDiFH4YZEl07MytNcebwU3p0X9mkLKqw0Eps1zZiUFOyu+PyLJx7nlQrEPBKlXynDrTWO08TNfqI2vRauh/PKw3m9Fq6ldHJs5Nx5eVlJ4wBppb95Tx4mdjd7dsdXpOkOohq5xDvG7e92dEXfTwlEtQNI3W0+KEhyWyCDVbylN3d+SYgkd0VobHCNpImQJ/Kw5xCiiVqdaWY7kC1gc7BOXzcHdLVDNdjCO3uWFkGt60/Jf872OiEKqpGaRneTsMPvsJ/MnmsIyDAwxESMyYgrySZrCeIwjz9Wztf9Sgq2bzMa9M4mVcwQen/cUXMkhM5aF1AzDJ52A6VYhx1ipFU77GMUYh6xIaMTxfcqGlh2CcWm2RiFPNjEEuNAxx09mjLtoqUhN0Ek2v3YKyKNNIzmnYcQ2mKBibWjoUJqZtFUO6UsrGvlZjoYjOc7oqt2auuwvKA8E7ANfgsbMieCNvMM7KrEuFmR+UGvpinrtbp5RqO2fo3L2RocY7qKOUvgoZTBcsvM+ACIprGTTQgtet0j2bPza3ljw3bFk0jouEWTW6VtnonqgaFddWPAX4tO3yj8/rUZ2+KU+eiykq1w6QbB+/eqBKqa1Cb2Zyr+Nrmqcs2o0xBM26aN6qSt6j8T3YCc4KbFik+x4Us7xe/t67suXP/yX/5L/sbf+Bv8/M//PN/+9rf5x//4H/NH/+gfvf73P/kn/yT/4B/8g1/zMz/+4z/OP/2n//T65zdv3vDn//yf55/8k39CCIGf/umf5m/9rb/F8Xj8rp7L//Z//3kG2ZGC8m594lJm1nklJ2Fwp26hX7HYkIypZysMy2xShRyCBaCtldN5JcTBCBbRyADzWlivzu6G62fpvL8sNDWz2+I4cW2NyxaGpxa3jePMT3M166kg5P/4n4gilNZZWrNU02Ad+SSwdOti0IBke87BHdJjCAwhMY7ZILPWqEV5Oq989v7Ed968sR3DWvjs6UyWyDCAxkhUi8YotRFVeFhWdruR1+sNYYqM08CYM8fDZOnErUMYULV4iqWszO9nSqm8OS/XQ6BqN+JK79RuPmhdodFZi4U/dodg7o57YhDGILy6OTDkkZgm9jeBFAN9qXz62RO/6es/yAcvP+BrP/ibiAJaZ6rvHsRZXzGaO8amY2suBrX9tDHPtK70ONBbQuuKXncOgraIVHucmNPz4TBMPqFF6Bbk1wlUFZMaJCVIJARLKQBBLifOy8kZeEDae+BipNbF3LVFCNPBEo8FWiuoZ3OlZIzV3iu9V3IGOe5J40hZFoPEmj1GjINr/gKlrEB1Bpu5XmyH67bDjDEQJfmUsBJDQ8YEckQfKq0uBkFVjL3pmWtNq7PtIOW97Wx6pywnpNpklK4deaPOj+SwEtNIGiZ6LdRWqPWCVrvvfOVPawutLiRpxP2OkJJxopaVtp6p8xO9XJBqNP3eV+o609dGCkrwaBXbbV3VgT5mPLMk7My2rZH6524hnD5ZdWVdbEdtDubpmjYQw3Zoi1Pb3Wuv2RQUPHnBwhJtq74dqrZus5w0jeYjSow2aXWzLTPfTGcO6n+p8eo24WxFC+9Jgn02pflKIrigbBMVX/drRoJJOqBr9bQGn3zsZKQ6imAsfbNOkxhAZ/NS7QZdE2zdcSWQ+N6vb5CoBvIQCGd1UXuyvV9XLo9PnsXWTdKjW6L49/71XReu0+nE7/7dv5s//af/ND/1Uz/13/yen/iJn+Dv//2/f/3zOI6/5r//8T/+x/n2t7/NP//n/5xSCn/qT/0p/uyf/bP8o3/0j76r5xLiwJh37IcA+8DYRp7OswkpgxCT65pUrVNyxngSG/VXLH+I0hijEsbIcTjwVJVT7fSlkqVbTpF6NtFqBeSQBZkSEbNAqWtFBUJQjpN1701BayNFG/33N3u6BFrrLPOKui5mTMknBLvZUvYbG2Gu3k1HYT8Y/XsYMtNoJr2ilRSUl7evkBAprfHpp59DM7PW/ZS5PR7IeSClkURxI1M4rSuH3cR+N3D3YuRwd09tyjRkjsNAxAIU7158bO9j7/zKL/0qp9MTUTo/+NE9h/2ONFh+mdaFtRQu88L704UhJaacySkwHo6WKxY6SYztdthnjtMtOQ+ElPj2t/8zj5cLj8uJ3eGeVx++5MOPP2A37mllNoao62pEjBhH8SUydjgFjDkl2LI4SICmlmc2jM9TyXVW8yK2wTFY9Aa90dYFkeIYf9lwnmcLnhjZXL2FQPD48q1HzW6fZ2nP5vgdYiCPpsEKAlEqEJBoe8MYMojtCsfDPQPG0ppPD7TVQibzONrPiEVIxOS9chDy5MVWxFwN1OLqpwB027VIgGE8ggTyWKGv1AV6Fabd7hpHEyRYerUaK3cc7PDS3qE4206i2yVB10hNjXF3JGZjY9ZVSLFTQ2fY7UhN3XUiEnqkSSLEwZuXwe6bs08gIZE12eGuwkoiu6v/ll0nEggkum7JD4J51LsuiY2o4WDVNqm0RlkXM7ytSpOtCNq5cU0OxsIh8emrru7K303wHaITGDYWnnAtNGqYm1HXr2eWMxgNUHSHCyt6Wj32w62jNpkG215se2zxAtsaWs2tJ7iYmG7fExAXO5udmclO1Ni3zQquupnwtlsT9ZGNRlvNLb/FwG6qaDLyk7lxdNN1qTG3dXPOkozkhMZo5wVmGiZR6G31hs6z/aLfP9/j13dduH7yJ3+Sn/zJn/w//Z5xHPnKV77y3/xv//7f/3v+6T/9p/zrf/2v+b2/9/cC8Hf+zt/hf/1f/1f+5t/8m3z1q1/9//q53BxuuNndcciBHHdcdCWdLtBsaTkka5lKU5amSLVE0hSUrEpbil1YtTPkTg6BLIn1vNKXSumFKSu9WpBadXghiJKmyJizj9UCqRgLjs44JHPE7tBqJQclea5WlcC6Nh7DmeCMJVVoIdLNkpzDYIdvU2BtCMKYhJvJXCeGYWC331GWSqAyROXl/R1rV54uC3NTktrv3OfE3e2enEdzCu8blVfoF2G/nzjuRw6Hkf1+ojVlPe7Yp0ykIV24Oe7REFir5W2JQI6B/XHHy5f3jNNESjsu5wfmZWFMARGLPBhSIgRjsQ3TxJRhEEsmPhwyY9oRUyb6jWFmnJWb2z2H48EEvU3RUum1Wmfdt8ZPHMLc4KF+ZURbZ2oalhQiaTNwVXXBqN3Usu06MNjr2qx309bhBqu9V2f2CiQnHASDVQA2g9YrRiUWy2JfCtoIJGKwyPe4mQj7jR0cVgnBXTvyQBomK0C90cpi02JT64p5Prgt5sKo0Sm5bZYKDaOvB7FJVq6FNhHyaMU9uAaoLrS+7cmaH5DQo70vEqPBPrK9XJtqg0fvWKaZImEgJQtLjcn2RfQA0cyqhUow1oGxHUP0x/ZQVIeo6KadSmIGYeZEHghE8zH80v/oRhR4hgntSV5nriu0/AyxPVs4NQ/M3ITbzw6GG3S4TRfPuJpckQbB4cfr5+Hf37vth5Sro72oXC2ntud3/faN0LFNjN0eWK7fa79ry/bSzWbKbat6V3si2+WH/R71gturT1ytu7m2c6K7PiOrPjWqVnqppn5Tg41VPOPLiS9fekefoc/tfgjR0iFwcUGwYNgtf+v6iq7age/+67/Ljutnf/Zn+fDDD3nx4gV/6A/9If7aX/trvHr1CoCf+7mf4/7+/lq0AP7wH/7DhBD4V//qX/HH/tgf+68eb1kWlmW5/vnh4QGA/+m3/3ZeHF8TeuM8FBapXE6LRX/QiRTmUlhKZy2m58rSSViEwvm8UJtBHYM0j0uA/MUjl2VlrZUPjiPrWlhLYbUUBVIK3E0ZUqJpoDjGG7Sbw0AOxnDzcT+oZYOSMrVH1to4n88kivvqKdUDe4IEbjI0gaUr754qKQemHHgxJb54ekKCuTfsX+6YYiNL5zIrn7954O3DmbXDy+PEPhtF+oO7O2OFpYH19MBaTDh8GCeONwdubiaOx4nT+cI8GwszTQK9UNcL78+/ysNp4f3Thc/en7kZOofBYNP9ODFNO1pMfPbN91yWhaaQvDgNQ6L3xsPTA+v7d1wuhS0ndQgKeMglgSXA/SHx+u7Ay9cvGXJmnRfefvIpoc9YLITd2B1naCW/CXsDnqM4uthBu2HrZb6YviTYIcpGyS2rHYwhk5Kxn9Dts5PrwXKl4OuW3OwpuT1Qq02Bm/6pd0jB4uLxf1/XQh5tl7ZZ7dhnX22qwVhjnUaSgZBHkMRWYAmJWo3ZltuerVnVa0SEmAedH6raK2Wdbd9iJ55nQkXiFnKp3UMjrUlqrdGbXNl1W4evCLFjicVeSNf1QgzmBu7LmWuSghLRppR+odWV1gq1FpKnBWgrQHVHFXH/2gZiOWNlXejuVBNSQpdCWVfKXMxWqDt0h+9TNxavemSRJwmYULa7g8ZWcT0pWSyc0xoAI1FFt2IDY1huDVDA38/eINvBnLKJlIOq5b5mm0qNhdipq9LVJAAxJSRGh1n9s+Lq2GefY/VreGuwEC90m6uFF67Nd7DVawHE92za7LGD66oQgQa9VBcKQ0rRoWTx69bfl24U+N4KtazUshqSoJlWm8lG1FiFOowQ3XG+Lj7Nmp1v75hGrwu9B2ta2uaOb4zPWptd019exH2XX/+XF66f+Imf4Kd+6qf4zb/5N/OLv/iL/OW//Jf5yZ/8SX7u536OGCOffPIJH3744a99Einx8uVLPvnkk//mY/71v/7X+St/5a/8V/9+Nx1QFZ4uF6ov4qMkojY2y/8URxvFe2MQi5mQXkhSGYeB3A0wWtfZKa+NU5lBAvvdjmEaCTmRWuY2ZxMzi4VIdpnM57ApQwxorz4O++GJHXi1KM0Pl0pzB4SD7zLMT3CXs+8lLI5FciIr5HrmbhqZojCEbrEXUchSmW53DDFAa3zyyad8+u6J81wYhoHbmwNjgtN5prOiGgk9UFYL/WvNphsPS2JdGpeHC8uyQi28f1JKLSzLzMN84jyvXOaVeVVuDjdMNweGcUdVWEu1FUtVQjcmkekhI72bQPRyrjwthfNlpqrdgEJHui1xU4rcHo6M0x0vPviI+/2BMXSoZ+hKSh2Jjo1315VE62KvWIfnHm0Hjv9bi8wIdoDkAKE331coKgmbz213I27I20u3vYwanDNMk01BOdsh5J19681pzwIabXJW636HMftBlqiX90hWJKlRksXIHrXMyJCNsJEzIQ2QMj3AUk/EOBBCJO9viMsF6gxjsuklGFRY15MVmQikjGLmry2e0RSfM6jiYPhqEEpf7dCKkeFwDyFQhhEZRySn56mgLggGMckwgXfpjHsLE4yWqqAeuNgxo+YuEGREhh0SVkRmaoimr0gJyPQ4W1ZaypBHlyUILQ3mbq6KpoEWCoVgDi3FvEU1TnQyouKkpo31ZoXeeCMmkLYdkjc43nyAFUVE6DQkxKsLhtks2fdurvG9qblu9ApijVPcst3YLkErMA3z2FQValOCowKmLU7XNZSAT5JGJmqukQq9u7g6uim0XcuKXouEYtFBqbmrRhIkWJxtb91QBYUu9hgET5gWrrl9IUYPoHVWYzdbPAJkv3aT75O7OGEkWnSLOcJD13x9T2vphBSI40DKgyVriyvUvJHYGoGrt/D3+PV/eeH6mZ/5mes//87f+Tv5Xb/rd/HDP/zD/OzP/iw/9mM/9j095l/6S3+Jv/AX/sL1zw8PD3z96183Lzufqi2q2sLjTK/hS1Q8YLB372o9noDqgXx2IZRikSWtFZbVhKPZ92OKGiwSN3LH86i/dX1XY8puoYBVjZwQgkVjtK6QYK0GZyVJXD87xwzsz8raGjG6TsfjFFSEps1udDEobjckUrDfJ47F5yTcHSfubvbkaB253ZBCToGYhIwVlu5aFnvfLPupVksmLXRKU9YKxZ0qCEJKwv5w4Pb2jsN+Z52b2s1mib1CSsGKmXukiSSQBliYpbGhvCtU67y1m9v5btpzPNwy5dEKIHZz2xJb6CFgeVwBDdtewTpTlecJCd9xbLuO4FCUkVyuc8x1QjG6cXOURqjVukP8M2SD5GK8vgZ15ljreoXdbPGGJ8sKOPtO8mAHdrT3JDisoiHRg03aXfwxNjp3b4h0f8xgxU2zMblw2FLc6VvstTwfcmLF0R9320cZo0vZ7I1Eo8N1VjTtsZwhS4DocHYMPiy4A3ow+Udjg+XsCFd3GMffRwmRTvBcsM0eyD5Le/0Rje40biUSSQNCd+1RYXMCAYtEsXvWX7thoUj3z9+JF9tO6Flf5dfFJqANmIRCQYJeD3OzWtpYb1vhssktpkj0nthyu740CXV18oL9HnO0cDr5dh0G2805wY/NCQbU9nbdaRPbY4cvPXf0S1OjPdZ2cIj//xYiKw5bb48VUiJ6+OV2P2ww3WbhJQIBKzQmtk/2OYVwfS5h20ttGOc26XsZ/jJ3IzpObvB/v96TG/3k+lq+x6//7nT43/JbfguvX7/mF37hF/ixH/sxvvKVr/Dpp5/+mu+ptfLmzZv/t3uxcRz/K4IHwNOyMk0TOQ+U/khpK/PcGDJ2w1OpHZbSuKwdQsGyuwtBF2ZbcRFDYFnOVrjqynmerTi0To7d8EM6TYUhBaIootU7VzgvnYp/X690CkttlGbZQL1ZHGTMkctqy/8h2AdrJcGKxDYFzPOFodv+7HxZGVqjRsjBWFwxJfKYub0Zkd4oofPy3jrg0pSPP3jFV17dEqWzGyEME0MeGfNIq2ZtZRRWO/Bqb9Qq1N4ovVMrtCxoiKQ0cDMMTNU8Ceva+OjVK7724Wtu74989sU75nml98btzQGhk4Lw2duTHWoijGlkmoQeLbG6Wo9MUKUtFyv8Erk97rg7Hrjb35DCaGSKbHo1W4J3QmoEIkinb7lBREQj2jdvx21fYbeKGSyHKytqO5hwEWdv1t33Yp1g68LS/OiO5qYu0feZTQluydRxsWu1wy0lcajM9nW1QxRxke3RimeMlNpJDggFJyTUpiiFEAY7XFt3GnEj9M2NICIh05rQtRKCRdVcYbOOubz7jkslOjuuO3nB4Cq9xgCAh8IZjRqPg2/OUAzJiwlOVihYqCEg1q2rdqouxKAQoskPtsiN1ohxNLZhq/67rHCl6PE4EgwqF2fWEs3sOAZaTQQ5214wmsVU106rllaAf84hbAe4h3+6LstusesmCdxpwub9cO3+Y49eaJz0ES16h44z7EyomzVjZBd1IhbXxim4tRxir98KIIS2sU8dutyaq63R8UKTNpGufqnJ2tiv7blBIzzbRoW12lUk/h4EcUs01yd6gOwweuqBm/ja56fPU49VKHs/xfaIOQ6oNp/QBFK8BkVasd6EYlbJhcCQxFY6rZCCvZZWO3VdrzKR3j1qiV9f8frvXri+8Y1v8MUXX/Dxxx8D8Pt//+/n3bt3/PzP/zy/5/f8HgD+xb/4F/Te+X2/7/d9V4/9y7/8C7y4ueHlYSBkYRRBtJE1+hJ8NFPT1CnZnLBx0V5HWNbOWjtLMbPaHhMahI/vrZsdghmijmNiGAZQWx4HVYY8EB2WuclKr7N3UuYsUJtSeue8mMWUqDICwyDQxWwTVY35ltJV9Fe6ET+G0RJJk0KqxSKw18LdfuSwn3h1s+f+9pZaGksc+fDDxOHuggKv71+zmwIpKC9eHDjNC10DQSKHw44hJBKJ3e5sguoUGIfIcDC/xHUtXIpSS6GuJlwOHs/+9OaJj17f8NHHL/jwqz/Ifv8Jp8cHLucTcmeZZq3gsEVAJJES3EmkKKyl2IenHfrK/DRTamPtVtwfz+/59G3ka69/kMNhz/6wYz2/9Q68UJeziVFDQIfB3XSMDm2Nh8GFMQcb8sQW0rjRqV7daxqiDWmCNMsqaiVSi/klti7sDvdm88TI+nBhmWfmeSaGSNNAU6FVdYcB6zhD3k60xLvzW4OWgyBSSA4xbhP9duj2ajdzE7Wp2BmGOQ8WAFA7p8dHgliBbaXT1MyVxzFbqKR7yZXo4YMiaF89isb2Pskp2TEKKWf3OqyUeTZPxF7ssd0eKEYnddhJx8Udj4IIvS6OcniStXs0qh/g2jtlLZ5CbYezMT+tIUh5MFuuFBlyIsRmu05V6jKbO/z8xPntp6hnwdWrGWCnLyeot275ZblpaommqBrlvAug9coqRP3ntZt+DOjNJwIRQjAxdgda1WfPUj+kVTvr0t2Vo1+jiGJwEoqP+9WNZ1vvrIuZFqQUyTlBMEd2Y1Z6qbWtBuvie79oQm4rdoG6lOu10mojDBmiMC8zsTVSLQxaQSyJodXmjiKGKaioIUqlcZlnaq8EMR/GVn0aclahOBpxenykabeVL510ENu7aoXixVkXtJmmMSY7P63gdlKsxNSIY2R/jIRoKFjAmv6mndb/BzpnPD098Qu/8AvXP//SL/0S//bf/ltevnzJy5cv+St/5a/w0z/903zlK1/hF3/xF/mLf/Ev8iM/8iP8+I//OAA/+qM/yk/8xE/wZ/7Mn+Hv/b2/RymFP/fn/hw/8zM/810xCsH0YGWemZ8ykuxgbdWw1xCMtZRicvprJ2G6BNVG6ZW1NErtXMoWMW8X0VorAaPU19YZ1kjKkVZtxo8Cu8EFrQitYzodv1Aa6mGSytNS6LUgKOsar1lSNIsNEI9EUYWqUFWMPr1aZzgvM6k1IkqWzpAiOWcrpHjceEwcb2+Iy4Bi1kgpNIJ0IoHU1OGTSGBkTAM5DBZKmIzAkZJAtO4z+L6kRCFIZxp31m0FmDSw242EECjLQm8VUfXD2fYnMUSOh4JqcDJCJ4ZoESrBO233imMaSLUTW2VMtuhf5jNffPYJyzIz7SaCLtzuM2kUdHiGpVDcoslPG4Uvs7/UiRZgk9hme6UbPqtYtHwz6DHmTMyJ3JXYTOi9OSqcH5549+4t796+ZS2VFjIqidADeUxXSnqT7pTswLtycYq+EoKxVkOApZRrEQkxmlu/Gjw75m1asIOrdXOYP5+ertdOWxutu29hjuRhxwYcrd59m4aHK/Ostkpy1mKIgZz8cG+N6jR72+V0qrshpYj7Jtp7e9l2M4aNXdlsrVuRC2LTWRR859FswS8bbb2zKZJSila8kkkjWveYmmAs1uzXnkqk9u609c40Tchux/5wdFd2nCHYnWDwX3TxPlWIbhDo9tk7HR3XRwk+A5ukQn0quWL4PnkGL06GAPqEs5Ek1A79Z2brBotu04X4hOVTzPXn/Aeelwf2n7o1HBu2qOruG31z/PDChBXm7SnL9THtLxOB+6pkY1SG/+L3dn+cDf5u1d1QwpdYmK7VxCeu7sSYYJWvdGsCelPWWuiqJIQUjHxk4ZeNpaw2qdf/gYXr3/ybf8Mf/IN/8Prnbff0J/7En+Dv/t2/y7/7d/+Of/AP/gHv3r3jq1/9Kn/kj/wR/upf/au/Bur7h//wH/Ln/tyf48d+7MeuAuS//bf/9nf95D9784aHx0c+ixbP3v2iQ6tfgJDy5LsONXq3f5hLLazV1PBzU6J3iiF4vIG7GuDWJSLCUqxLiyFwGBLmBe/whfoBDqzdpq3SOpfWidqIgqXPuualda701+YdbcP2EdGhiI6yritjCOxy4MU+MQYLrYzjSHMRZYiRm+ORtFjW0/6wR+uCakUVC+3DAixrFKY8kePIvBTTjEW5sqGkdUgdiYEShUU6+/2OFCMpCHm/YzeNtNp4ePMFl9OjpQO711kImTxMHMSj0SXSaiUEm7gstbhdk4dyTsSoxBbYDSb6LsvCNz75JULIpDxwf7fj6x+/5OZuRxwywdX4XY0hhsqXCBI4HGXLcTusIrVUYrdYGvW9AyrUdUFVkDQw7HbkcQcSKWv1m88K3ePbd3znW9/mG9/6Fm/eP0AeCWliStnSAaKgVB4vF2tIRPhsPlFrobfqn79NXx0lJbkSJrRVqnaW3ti76wQES8L1Pc66LA4BQq+N2u0zy0kIwUxpgzZWW6gQAqRhtK1C71yWhRx9rxUsOXk74LQVt7AS06+p7ZxyUBS3weqdxfdjBtGl666sNaP+Gxybnh1Umu2Ptv2gUOlqO76cxGQQ0QywLxdjuE1T5rf9yA/x8sU993e3pPFAayfqstJb43g8sJt23L78wIgZpdp9ZOiz3d/yvP1h2xmJWG6e2uduQ2i1yX2DHHFzgmiOIt0jdtii5ruJrHu3dPEQgkPB13Jj15IzNjugWUnJPCrNszB+qVjYFIfaVBS3nVm0aTqIPaeNrWh70XgtRFZw7czaNH0SHVbszUCNLXhWv1xE7dcHCTxbiWxFywwNns9Ab/a8yWnFU8LFGba1GnGjCxfMIac1OC/FG31Degw6b2bQsFijtPkcfi9f33Xh+gN/4A/wf6Z6/mf/7J/9f3yMly9fftdi4//W12fv3hsrrxbr+By7N/3BthjcrmhhCNui3TrwplvnZNqa4M1aiOLO1wbfqRM/1taJzo6JUUwXgY35SfRqAXa5FGo3JDfG6HsxbHew4boODW6NUevqf3G9oK1LUW4PO272E/vDyItpYndzw+39C17dv4Zubgp5HCl1pWtnGgfWS6M73BEnK5CigUEiYwzkICxD5HC4Zdrt2E2Z9w9vWdYLy9oRGel9pO8nUhx8Py7sDzeUtTCfn1hdc9VpdK22m8s7boaJYTcx7Q7sdkcE5e3piXdPTzx8/s5SoVNgf7tj9AOwaeN2f/CYis6nb584n082BccDr3XPFEfzehwt6biL3xS1+x4x0IMtmHFo05b30SavEB3Gs7Kp0knZmJwhBab9jvHmnph3IJnTu7csl5n5PPN4OfPpu0d+9dO3PJ5PhDgg6ULImZwySmden3g6nSFGxsOBZVUu84Xz+YFWiqUHbzuRiLOskh3uIUBITJN18VqVpTYiFnGxzOfrTqArSBi9Rq9McQAvItaD27UjIfteL9BDRKS6FMEOnqBYk9RnQndmmQjIluZdCR5MWHu3xsOuSituYoSIJtn2e0GgBw9ftN0enge3hSFKHAhxIEYlh0gMgkpHirIbMh+8viOcL4y3d9xOR4b7V7RWKMuZz37lFxlyZtrtubl9TS2V5XJG+xOtq+3IfNr1EYqNXr4Vq+tQI1Y4Rb2LFL1e49q3PWCAZo799jOJRDSiVe9E0et5YOeIF/WIE5Cive8O/YYUgY2F14myTWF2n8cE0r9EGnJfP/WzZTO5FjeCRhqb5SZ+tm3nCWpzUQw29/XkVHyx1xiu+kO/oHpDIpASSqS0YgSgEEhjpqPGuu5qpJNgU1rK9npqL1wuxc4wOnVZEK2IFpb5zHp+os4XdLqBslLryuX8+D2f/d/XXoWXdfVJyr6UZ7x6Y1pdv/TLI7UtYiOQxKCtITsk4r1TCBBEaWu1DigGJFrOUwoeX16boVICosVuae+2bUqDaUgMORIFenHzSseSN3NCJdhyt2MZVFVpbmYp1x2JRaRsU6Jdlg2z8LGwySTm2fdsZtPpbbXcKAzDl9YQtQK3XFZaf+R0mckhcS5P9F4JQVG13LHWKprl2tldNW2lcimzLVvVoNbzZSYtndoCpXSm3cq0W4ghM0tFU+KDj75iN4E2al2tW/MGorUK3aDXNA3skhBFuTmOjGMmhkgvKwVAxNllQDd2XMoZacrmjC3R3jcTxooZ3DrupX5NhGBXkLlgYxCYNiDyzIAL1FqprdDU9gMb8aO3RhgiInYdCsIwDLx6cU8cRh7ev+ftGzif7CYNIkxj8iIWvHvFlukxMQ3u2hCNoj3mTA6BJ7WpVfzTDcn8EbUGxpT9Pezm+uCMVonZGX1CD/iy3lCJ1q3ZGgS0mAZRgC6maQshkNRd99UQBMtFdOZsSF64AjUkl0AI2oR5NQgoBdNzqVhStbHSjOgiqE1pgjUcZUGbpZDXZaWuC2tZSGkjc5hjTKuVZb6wLrOLb93A1j5oR9/sZzZG3penoeC4oKg1NqJbtMdzrAfBW4SOXxcds4jaiBI2jYA++2PClamHbge77bDYHjYYw6+37tmXwsZYFDV4eitSGzsvxGjxJ37mGHvRJjHdYFJPpTDBN65pfP4y9w2ucKKPpmzyAVSfiSNOdcdF39dqLzh5JXjh4+qqpb4KzDlBKYhaJqEgtNI4PTxRl5Xm9l9Njdj06/n6vi5cpZgH25C+RNPsxqoSv/gk+cGFEjfFvQiSjBocglzdyY1C6sXHVrTE0s0bzx0ChhSvN+la2zXnxnwKjXYfU/RmLzBNgz0/TOAvTh6wi3PbihoLzbw0lSr+z94lmsuCvd7NvNcNFzGluxUuQnDauGk7UIspKFvhijb1Na2ELlzmlXqZbfKsgZ5M7Hx7mKituKtAQzz2I6DMtVBqo7TGXKvvOWzqPc0VoTEvndO5koYz4zSR40Q8DuT9yKtXH7KUmXmZqY+VoqsdOF0o7uXXFYZxZJgGxgS3twPDaHu1ts701bpBs9XqiGRiGEgpXX3gtgPNjq3ucMqX6fLqBc1YiSFGc9FwEebmS7cNbCJGTZdtssY/P995hgAJtT3gOPDBi3uOL275YkywzuARDjEEjoeR7BBMVxNuqrPZpmxoQF0rISmHcWRIEcpytbBSCYSUDZ4tkZzSlbE1TPG61yKNVLX+qAn+HLqlCnQYAkwRemhE7GBt2GMHEVJ3TZsa4UCT+PTUIY9Xqn2NiSQ2Kdaq12YhSrADSiLihAOJ5sSvvRvZxBussoDQ6dViaWpZWOYTSRZiTKAQU2RZZkuQns+IJJd0iK9pjH4egqKesXbdI3H90PzP3shihz9ha2aeRes2ZW0OJ/Jrd0S+szH3FLWCEb7UKG0N0hYKah5JxOgU/GrWUdfrUa5bMC8IrvvaLjaftmySfqbgq1nEW0MSbTqTKtdivbnVf9mxY/uy126F9fmixvkrthuTLefrS5R4kxjoc6PvjzvkRGsF6CRPUq+tcXo6UdaVuhWuXr3h/d6L1/d14RISQSxpmGz6lhw7PbhpZW+kaVtsdlPdAwRh2O8ZkrEPm6YrihSSOQjU1llro0WFnEjZditdEgUh9UZIVhxKbVwumdoqtVp8wzAk//Ack9ZOGIWY2tXAU6WypaJatJEYgSkLEu1GWkqld7isldoqr+5uGMeR169fMo6jUV+bsAsgObrozwqBKpSSyIMdKHWpvH37lloarSk9ZD774j3vH888zjOvXh754INbXnzwVdpyIafIMB0RDlflfwtQ14W6KklGck602nh6PLPqbK72l5lvvHmgVKV3YTdNvHz5ig9evuLVj34E5xPMCzpX3s5P5DFxc3OLTJNZw7TG4XDLOCT2U+LufiAOia6FsC68/fQNpXVaCOwOR+jR/rozvJ0gjEmt2AS7waz/M0ZTrxgUq9aZxoRNKijai7mGa0VDgWh/vXh14O7tgd048cW79zalx8xx2iMXofTG0+N7TrVxd3vg6693vPzwq4Rl5dNeWNfG7XHP8bBnt7tF1ApZjzt3kgh0yaRUqX2ls/BiF8y7sAtBMiGNpJQZc0IZqHVlqZUhZm+EOnl3YF1nai3E6cjQDRUoMlCWB2fTKfsMiUBC0KwMg4lGtTcIFgHfy5kxjz59rBQSpVVKXRluX1/Purll1nI2x4WlcT8dLCXhvHAulTROTIcjuxwpPbBUWJb3TEMkBaXWGemFcUh8dDtw2A9IXzh9/k3qYW+NSGs0CVQ7iynzTJRk0fDnlcvZcvVSCB5kidsZbQesXJmXG1mrXUNZK7qtB6Jpz1rp7gKBTx6WHH0+VWqzQz1FIWdjXtal+5RkBYpoVPDz04xkYRgSOo2YIUEzuza1BjmIpTxvRKEqNo3iDcm6LgQJNHcpiWJMTTYDgWa7yYihTV3EDQ9wYXFDa0VrQ7cxF0zcHL6MV6mdP6LMl4UmSsiRW9m0X1bNe+92XyHErEjETcIzlIpKAgkUMeRmaQvn0xuW80um25eU5UStK/N8+p7P/u/rwvXBRx8zDRNZKy1nehBbRKboMEBDwrMhpel5nMI67sjJhZ+aLN5crPMqxeiaXTtlv/ihbeFuIVg+UabRHZpcS2Hcu0ZFIeboOzcDnwMdUbt41lKuF1WvlS1iY1v+2hiRIJjbRtWFeW60Wjn3yidvH7h7eMlpVqbYGETIeWB/Y6apiKBamM8nFp2Z54WHx7OZURPYTyN9sOf9eCmc5pnPHx755P0Tn51OfPLugcenM8dD5HjYcX9/y82LG8ZsoXLrfOLh4ZHHxydO786MYyJHc2fY74yxWLLy/jzzxeOZ96cL33jzBeMXn7ObJn7xm7/CYYD9GHl5e4CkrtMRT8g1QoxFZXW0FU6PC1orQxSyrKQxueA4oh3q2qilgj6g0diA07S7kmpELMU1qBoL8ZriKpT5QoudNOEwIdCVtaysy0qtlVIacdxz9/IlX/+BwstXr4hxRCQZli+BZV3RXjk9PpDzyM3NK1588CG1Q6+d/I1vMg7J3FqGnZFngJ73RgyKiTTsGEJjWRbm84X9GBEN9GZUds3mAXiYBoiWAabrhXEYUQ86nG6OdHcN78OBWswsNexvyBhRZJlnyuWJoEoSMS/NYTTz4daQNNpuqNmUR+9omWkpe8HvcPPCbYo6Mt2YfrFWLk8zd4cJ7Y3HxxPL5UKcJvLxBqkrSxeWDn29J0hB28JyCmjK3O4nvvLVj0njREdYS0NKvWqLtIFg93arpqO04Ndih7IfquoxL9dVge+f9Et/1u4hjBtpI5iF2WYYbNC46fBseDLoTzCv0iDGzIyAdIf24NnhvdnkL6KkqxdjtNTkLSHYWYFdO7paAe1qYmRVcXsrQz6sFzcSUi/Fi0w3jZhPu73a9LlNblvDXpfFHrt3IpkrS7E1O3OwYoWfeb3b/STZkixCtMmb3mllNeRI7IX3vkX5BGbZzIZtCtBuu/vlUllWJ8P1hpKQADH8DyRn/P/T14v7V4y7Hawza0jGztNGzNE6Au02pvcOrXlsu6vO80BynYRiMe+bYSSy2BsjsBt3zhw03YPFGHjYXRBjkKWVmMI1yly9w7OvQHD3i15XiKuL8ECT29d0fHTGRI8tGsVUG7F1YjVYSbBFryK06umpKRJzJE3eZap7pOXkdONsi2EVcsrsxtGhSSE9nnlzmjmXwvta6Vp5ulz45nc+5+X9RKkVSZHxphCTOUDUdaGslky8rjNCgmFgPIxM00jQCC1RYiR+/pauytv5zPlx4c3Dez5/+4ZXNxMfvrjh5jhyGEem3cgwjaRou8no+VUp2Gcyz7MRFoZInoTd7a2NxiQuc6HWldZW5mVBkpC9q7b7c1uAG1xzdTgRB6mqwahSLfJD1SycWqsGbdRKqwZJ76eBl/dHXt/fQ96jZB7fv6UrXC5n3r8fCU/GFpzGif3xhleeHPt+NS1OihFioq2e/5X3DDGQ88A4HQi6MiwLw7jn1d2BXk0Ppa1RUiLmzO3hANEOIKkrw7RDa6WVhf3d0b0GOyXtLLU3CMPxlkE6tRROpxPlvEN6c89ICMOApGyXf54MRu8FQrb7qCxoTg49KXV3awGprTPevoBmZq7zceWjl7egnXfv3nN+fIQ8Eg8H+moG0GsHLQvaLtRygVYIMbI/7Dne3ltQphr0nrrjsMjV2UR4JlpsTu+b5qqHLXsKQue5SeG62eRKf9j2XWJTyLa/MWMWvUJ+tk+SazHcSBxhc3bBBe+G+V2fF9hws2m9jDzhk1D4EnynXBuCK60dhxq1X5//thJTh7TV2bO+0HPYz11PfHeMrzHUYR57yf7oqv6g/l76v+tODguELzGtvdnuZkps74ET1xTz49SCKkZm2UghzRKPzZGnOaoo9tjXae+7//r+LlwfviYOOy6XJ+Zi1kMJJaRuRAQ7r4xSKsJu9MZJYfFlKyJIjKyrmVZGJyDEYOP97f0tl6VyXgtatt2KMldlnA7EFJhGuL3dtCdwOhlU01rDqNUrqpWcBkI5Y2b//Rp2aFB6952BTRx4BzSExO1N4rib+Pj1PR/cDNzfHZlyY9oFxnEgD9kumr5aB6QwHnfk3Y6bF6/52A+GPEwcbu7I446YR0qv/N++9Q3ev/mc73zxhm98+z/zxZt3fPLZO07LmfZUKbESh4lpN5KGRL+cGYfAR6+P7F/fsNZGyCOH+w+RnDnsj7y8e8XvP+z47D9/i2/9H7/C//7v/5/86rc/5/O3D7x5euLx3Li9Gbh9deSjD18xHfYM+z3h3RfWGMRAf2/svK6dx/cLVRXSjg/uP+D1138zeXeDxInPv/FN3nz6KaV/jqKkcSRPk9skGRyo4KGPRoRoYkxTpaO5I6lDatS+WG6RCLUKTYuJmi8XYjuxkwv3aeVwPFKHPSUMxMn8I5sqhQv0magzo5yYpkhKd6QkfPt09m174GmeqTHZrlImdjcHdrsdt/sbPv38U8Ju4MXdxO/8Xf8zy+mRx7dvOC0LiJDGkVcff8hajH3ZauHm5qUdnNq5uRtZ1pl1XahkpmlizJlxHHn78MB8mZnigY+++oOEvsJ6YllmekpIHpjGiR4mmgZqWRinPTklhhiQ2FAarXeWJqxroffGi/uPePf4yLxWDjcTP/SjP8KUAk9ffMav/Oo3uPy/yPu3JkmyI88T+6mei5m5e0RmVhUKDXTP9Nw4y12O7D6Q31+EX2JFVnaG0zPd6G6gLpkZEe5uZueifNBjHtXk04AvLEFAEihEZXj4xeyo6l//lw41Zdc/dqO2ztvrV7SutO1G2Su63UhpQWRmt+I2acU4Pc94FhxjEnDGosTkvpK1Uc1t0gC6Kqn1kQbg+y4Zbg99iNzdtNhjUDo+HDG2WK6BC07CsOHyMBh0vQFhoCpRkNAJIRA1UobRMviU0dsoKlGdJBRcdxdSogeD5jE3dHfDoduD0q9xOLyMYhdwSrwG9cmqd18HjCJtw+dLwvAqtKGtOogmMTgJ5SB2BHFD4RCRNsIozYuedW+8dchOVIbWcEyCooEm9k7Q0MGS7J1Wqjc6ORJjwkQo1llrpdSCtU4SJQ5zZ3eD+fO+ftWFy0JG5hnWjTQnwoDlluy+fd3cZUAxghgxuVGnF5ToDgIxkKfMFjbaXml74eX1K6rKaZk5nz8Qp5nLtEA3Co3WG2XfmebFb+oYyFkoZed6vbFvxVlZKZHniX0NWK2e+YXRegU19n2QOwYZpJpQGRCiuFdcVuHb5yd+//1v+E//y/+V2O9I26Bt1LLhjhK7H/J1w7pPnBpH/tbl5Iahg2XQTdnWlX6/8Xpd0ZT47q//hn/zP/8/+Ndf/zs///TP/MN//i/c7l/Z9sq2dV5evvLjj57++v03M99//x1PT08EU95eb5gm5suFl6836vqV8nblVpUvnz/z+vrCf/x3/4HTx4/88OULX//0M5dFeH5auN02/vjzz9jPnylNOG1vPJ1nnp/OzMMPsNbOfb0zT8mn2WFq25sHIjZrzuqMgTknpmVmmiYnW6jDOoI9yDjI0fkOXpO47sZNQL17Fm8hUQmkJKRF2a9f2e53vnz+yufPV+p0ocaJUrvrnYbxZd0L6+3O69dXPt1eWLednz5/5p//8Q/k7NEuLSfvXKtR2bnfxWGb5o4F2hs9OlnkdDmBNnJMbGWj7itvr29sPY2pwt3UD/LM3iLbtrOtGyUYp2UmhMDeOq8vr7x8+crrz5/R3//WrdEobPcNXYSYhRAzzYYvYZcBfzsTUQZVWnrnXjdqK+xb4Q//9E+8vl5ptfI0X8D+Fo0zlgL/9M8/sBro0xMfL2eaiYv+1x32G217Y9s2JutIgDxlutj47MCnh2H0au1hyHy+nB7PL+SA3YZWaYh0vUcQJ2TJ+0ghw6bJjYhdr2RDiI8cm572YE+iY8IZY0kIzh11ksKYWIZF4ZEv1Xodh/0BHzKKKMQcHmiJE7vGdBOUEOLQnsbRzHrRiN1GoXEmc4wBM0Vl/QX7UEjTMPDtjaoyHLaMmNymSpoX2sNT0ejDCuq4D7zIR5HhIH8ctEfBcxKTEyqHo8gxyXWYUqD0jlglZzdnqLVxfbtT10orhdp21uKri/aXWrhu9xs5ePZVF8Uk+JWpzuRhQHJ9YHDV1EMhG+70rJ4zFGOiJ9e3NJFBO/Y90LZtEBLm4oyxhnJR6JGIK9WdM7btzv12BYSU0nCbiIToIHiMgqy7j99BXDku5t3R0L6oCTacPwBf3A+3B6c7j9dokFIiJQ8ljDFSzc14NXg4n+dcJfogIfj+y2h1p+wrL59fiTkyzQvLyZjzzPPTB/7q++/Zt4XbbeXry0a9V1ov7Hsl6YllypznmbI3UkwQEiHgXf668VI2vtw71+uV9b7y7TcLp/PMb6dv+P2nD5wmIyUlxYlWN/baWNfOrBV6dmpw8M4VfJ8Qg2dFIb5rbK3R9sq+rpRShokyw9IovLMIjxuS4d4wdE0HdfrBMh0342h+x55kdLw5wrCU2radaoVmgZaMUpyeV1tlb8UbjqNrF4eXt33l7fWFaZpcC9Nm6r7TGnQV9n141pm4TVKvZAvjCvPLeb1febvfaSLO1pMJpyf1kVTrE/rbfWK939zlf1qIBmWpNIOXry9cX1/Z17triFpj3+788MOPhNOZfCnQI7upR9rvm7+uENhUITsMFNTlAftWuN9W7uuN2/2OmHGO08Nh4X698cOPP3BrRlhXWtkxE3eUeXlF2x3qxrpXlPZg5UpyWJzw8Jgan9MgUA15itk77d0hNeFfpPQOnoRfR54mfLiPOBu2P/6IOdTWB+z2aCgHc9S6TwnYYQ7QkfH3mzh7LgxyxiFORsfz0XcnjsO1yn7xn0ErfJBIOFw1DpT7fU70vz/E4vK4xgFswJzv0OgDA3zspGRAeIc0aPz+ARPqAz7lHYIUoffq0Px4ak4oG03euEZNlByUbg3tfUCj/l438/NPVN6L4SCs/blfv+rC9cd//Cem55XzZWGTTFdlDsLe2gOX3sroqMyoBqUateEGrsEFq6qJOSuSjSDCvt4p60avlZcvX2gaPS/LOpqnIZKtbKNj62Wj3D7TykqtO5enJ5x+HqjNnQpEI5ojTe40hEkSD58ixWMT1EkgQQMhOpurrG+8vK5Y/QGxyt/+/iOXU+Ryinz4+IEYnSwyTZmteKIrqEe7I7TW2NYVw/37QkzU7c768sLP//wntuqGo3P+A/M5kHLg4/l7zh9+w7ZtfL28sX75kZ/jjZfbzrdPF56WE1NMrC830oD21DbW9Ss///iFn//0E59fd/biMM4///yV3/2r3/D73/+G/9t//I9kK9R958vLC//0D38HpdIFvv145nI+cVomUqvsZjSF8+nMMs9MeQKdfN+4btzerrz8/Jnr25V121F1Gr11p2KLend8mLuquOj0cCXp5kwp1TGht+67SJzeLKJEdbo5rflh3QsWIhb9FN3LHSWy7Ttv642QlOVy4vLNt5zOT6zF7Zyur2/UbXU6/1ui9goSCEvCrFD2zn6v1DIm8+AaINsK+8sr//SPf88PbzeKCW8vrx7AGdyB/P62sW8bdd/QIC4eNWN6+sTr737H0/kJEeHnzz/TW2WOkU/PH9lev/D1j5/53//3/wNZzkxPH/hXf7M7CcCMboUcZgTo3ZusZZl4er5AXnh9u/H2duN63ai9kmMifkpY7ayvN374+3/i7/7uv/JaKiwXPn58cpJFF0pbOaVApLHeNpDOnHau9zvneXaBeTe6Rn+dOMmhWhv6JxfEtuaZdt2G7VTKEIYrPjhRheHHh++HD2JC6757qcWndhNDqz1+97Ej8uiaNrR8o6AY/hgxEqyzbjupuxNIqZWUs5M+QvQmOQiNBmJ08eQKhmzFGN8bgYwivmMVHAXYWyUAaSAOhzwnpAQRTN2M+QGLD5WUN+0juR0b8CKD5TwK3LHz7V4Uj8LlxTdAEErZCArBIkFtTIaeciEHM0XBNNPKSmhGEndTCVEIORDnTMoTKSTmnNh210T+uV+/6sIlMQ3GS6JbwCSgOZNif5At3t6+OFVUOuhIZpVOrZ0UgkMGQMyJnBJPpzPn8xPr9cr19YXPn3+i1gHvdeiUYTdkbPXqhpl1cyqqKmEY5nYTuoWBVaeHF3VjRE+oh7p1w+XCfSTbanBdlsZxsw2hczfm5cRyfuJ0njgtmVp5wGC9C61ALQN6mJNPFh1UMxwucWOhK+NAvl2vrOvOjRvXP7yxl437uvPhFJwFNyUmvMs9zc46u79e2W47P/7pi99oISBvmT/84R/58vMrXz6/UavnrJ2mxKePT1AqP/7jH/l//ukHrl9f2PadUjusN09Dviz0DxP7ttH2gu4NiREGZNENWm3U+8Z+v/vk1eH84YNPw+J2UTIOJZ96ItBHmJ57Fap2d9cwt8hprdN16J503A7mxJjSu3v3i2AHHT1PvK47PTQsNTQE1q3wdtvY9+7muPPM9PSR6fyEvL5y31Ze7itnywPCTO6I3iulfOF8fnLGpnnywGmZOH185vT0kXK/I8md9ktr3mRME2kIkEu5c9s298O0juFGq6UWyvWVbfuG8+nEMjuhI+eJ337/Df/63/0HtrcXYshM/+d/ZsMPyylFj1rpxroWrtuGAlkNjd5jt2aUfWPbvVGbTydvHGIiLSem0wk1Y748uQFx75gaU9BhvizsL53dCl0aSdUbBjNaczeGbj4RSjjoD2AodTcahfV6RzU4+aZBipkwErdD8DVAEMMsPiYZ4wiXHK42IgQ6QTsp5yEKZ0w5w5vQRohib/SWPDnBBhNwFFHBCRhpmOmKn/x+TwsPk103Pw7EIJBwJqaOPReGBf+9IaZ3ZwszFCWpkuNBQOv0UgAjx0zKYTjIuDOPPox/hw2Udd9/RWWal18IpaEHeUyfjipU6rBwixqZYiTnyV2Ciu+pJAwY15RWizcD0tlapxT3u9yrmwkEInPKaEo0ddu8r6/OAfhlOPD/6NevunCdc2RJEe2VHReNJpKP7HYYPhYvXMFc7GnQ0JFV9P5HYkZipkvCpCAxk+YTedkemg56926Og8qeIHQ3xVUPkrRe3yHLMcKnPHnaanNq74Ol6OXOS4qq/wmB1vALbmDOcpiuShx+d+5lJiEO3DkSQibGATeGifl0BhG29U6SMdtJc9prFnSO5FNCr34Q7PvO9X7jvq683Vbomct5Ic2TO3irorH78xrBgXvbhoC3Ec2cYBIcTpUkiCN7NKu0rdC3xm0vvH59dbptDCy9keI8iAyQUiDFRLdthOMJYdzsIlDbTisbmmbCNLHEROvdPQe7h3Q6nCQPRpkBxzrC6IMZ5pZH9tiBNDDXU4ETdqz0wZbypXNMmSlNfH7ZQNzOJg721daV+21nOUVyiJxPZ+Z8JtiE3ZR1K0McrgSLbNvqYZ7SWYJDuiBoigSEJG6mTKlETUiLBPGO/pSSx+XUivROxsk8vufI3OzInBPOUbhEZYnKWf3gnhCyCJIyl2UhaaJrIMfMZXbz5lKbW5J1tyaaRMh59mTnDikGnNPiTWEHgoF234dFDZymM0s6sVahh0xSdzcxlLuIW06JMKWEVHdyKPvo9O2wOXJ4Ss2cdNDd7X0vOznP+FHfPGcuKTEHF4w/bK9sFIFhyzSmJRkXyrEXM9zhQ4L8f00jgj+JIGFYH/l+8iG3GBClDJsoDdGbR+nOsh1sQH8hAl1crGwyGHh+gR4okUOjB5ztxA7/42w8zGNYnbDh98jRTMPBambs3gYj+XDDkCPzjTFZy/jd/r50Ha5Dqu9rliF8HqvfdxgWn04Z3y+1UrvLeFpzskpQhhlyHztGHxaaGbX+hU5cT1PmnAP7fWVXH29TS2hUeu8D7ituu6JCNaV2ZyiJOrTYxYPuiAumkb0Jt7U4GzEt5JN3gTRDrNDV8f9yX1HcI05iIonRmud5mR56IYDuhIE00e5XPI21UbpQ+wiLdIn8Q09Sqh+GQUFjQEYXqabDa25YvKQJHa4hMc0O76ROXj4wn5/o1uihQ+xUcz9ADz0MRMnkp4S+AvfG3na2urO1wloLaw0sqsTZU5aTjcBEUTQtSAg0qS4DSIGYlWkJTGsiLgce7vvGtd59umiV1+vK7fWGmbGcZydVzJGPzwsxuNPI6XxiC+OmEEGKkLKiwai20/pO0Ik8L0wh01tlv7+yrwUNhkaGPeFBacZPjgCi/t4d0BDVpzBoWNt8StOIxhnKNpqfhsVIShOnPNO2r6gVgrlp8lOc6RK5v66c0olZIh/OZ+Z8IbYZroF1dUp7NyP1wO16o9VG0EJPCXJyMkg8kcyI3cgxIiGTNSMtk3QmJOWSMxnP8JLWqOoHbUA4LzPaK7RKCIGPOfLNHMgK1+AnWt53ZN9IvXOOmYTvKec88/HkJKR9Ne7N9zhRlVNInOczpp7qmzVT8JiNyO4ZoWJoaZ5jlyJP04VTfOIelRojOSQXNGvkVYQkXkBPOVEwILBtzsRV6aNwGQFDpUEvSHcj6X3fiCmBdEQbMUHK7tTvKtohFxnsYjF5wITYYfUlYDr2jhVC9CmuHWGYbmIgtAcBgsHCK60O95ORTxVGoKeK3+PmZ5DiRephDTX++d0Bw0XREoQgbk5wFDh32xCkvd8LGp1ZqKNQyTCcHl7TgDeONoT4j11Ye58i330NdTjZu4ZU5CiQAYI7upTefcLkaPx4FOJOd5F0c5/V2jq142dNraiYJwwE11F26x5qGSNW/LH/3K9fdeHq4uGEtXdM3LOvtZ05ncYF1hyqwIhRGal7WHNig6jjvntvTOL0+H3feLvfhrhP2GulD29D9805OpqxZYXH97xDgXxErPRObYNanyJlj+9OzuqpwEd3ZzZ8xmjUWjxkERcVTsPB+rbfaGWhtziMfwutuUtIa7vrT0xodeX6UunW2NtKypFApJKopdJkp1fh7XqjG8ScOT9FZArk1VNwU/auqgwLKswHzuv9TtM34pyZnp5Y5ugEkSVyfinDtdwbBA7CUsx0qlu9mE+rIvD88cJvLxMfnhyefXu5MuWF508T0/cnbwp7p75eiXFkN+XM+cNHpvMzcX7ynVfd2dY3yuYEARn7CR0prK31sQ/ySVijjvdcSPPke3D1MEDUPFsrJy+E6tEwQRs5K8tpZskJi0P4iXGeE2XJSDfqOqDObkCh9ZW93lhSJEUliZuthjExbesbtZ5JUYgJclAmhSl0puzebxpg296I2pnHTtOs0PtOq6uD3eIwcOnVTW67e1KmIA6J98qS3dT2NAtT1jFRVbbtTp6Up8VF53Uv9LrTy31MxhGZFQkdTAndyKGREsSsjwNem6JWHB4LgZDjoD17MGUIgZiiO8u3TreNpg1iJgYPiBYq+/3Np/fesXqnDdhsSpFN3dOylRWrvn/L84SN/d5x0cnB5BjSE7+YhrUXTq0XCQ9IDzrWBAuDlDBOZwk2zHD7+9QgQoj6/rtUHtOXX1dtsDzFzxELY7+qxJycMDICP/VxkxxFBiSIK2KOPW3/pcVTcfJRCIBDg4c3aky+emjbCBMdpA9Vl5X4Our9ecIgBz5SFAzVQEw2iq/vfXtzO7mD+GLIg43Z6hHG6mdq34uzMUdYa63G69c33l5fub29cd9ug8QkxJD/7LP/V124bm9vPjq33SNIUGLbCTVjtdH3jTm4WaRa9YNpLCAT4k7jeri9Z2JI/r/6htGG518ZEd+O7YM8Mm+OBFOj+iIdG6adcYznEXQiJN+NSG1j1HfoqjfvZJoqHujqDMPe24AboZbGEvCdXfck1sNAVwYVtdfC/e40/Fobe4f77Q4iLE8z33z/GzSNommdsjVub3dubzuteWpvL4UQMykLKTdaK9xuFbNXavJYBkN5u1dudiev1Q+hsLhxaBcgO9EhCdRBQzfojENehWXqtOzJrR/zwqKZ1CJtNd6uhTTvzKedD89n8pTd2Lc65BHGZImpR1nU3YXC2+auAWOSaniIXysdkaPzVr9LW6NLf5jkMiAb0eBSAnPDXIKiw/XeA7B3etnZbxs/f/6MpoVpOfH9Nx/JeSGkAiLMOTNld2UXE89Rw6mK1+ud6/XOtBnreqOUQi3Gy5ev1Dkzp4g24xwFtU/eiQ8vSxEjiULr/PjTjyQz6r5xu75RLA6BaWMx4X6/s247ocPPnz97EnEXd3iZZwIfnCwUjZBncor+vFPm7fpC3zvr7c663vGYOmPbNk7D9WXbd/KWKPeN7XaFFtlrI+Xm0Fg/fCADQY0oDm1tt1eoFSWwvn0h9EJViKUStROtUfcZ+pNn6kVDKI4+iBADnGYlp0QOAYY2qLfuROKhR/JD22Feax7DIfgEZMP3sw83dDtMorsf7DrMb200Xt0MGwnoRqeUNhisw2A5jN3ZuK89QdogHSJpHcGRYE3o1f+9D3TObGVIX7y+O/Rp1gfn4XC3HyzIdngYOhrcm9FGsyU2zqaO09yHgW6TTisjLLUWlwyogoRhfzaYk0NfVao7Z3Q11JRt291ZZSB+3Xx66yaujxTjSDqw5iLwY7KTIJ79VhtWPeU6pzSYw39++flVF67r6xsRZcp+yKg1ojVCG8GQ+06eJ0+87Y2IYeLdVzDImshjaRrC5PRyhBgnzyjCUNnQgY/bg0DzvpC1Qa7wuWeY85qhBFQTIbnYN+WMlmEIOiQQbtbpDuHtF4bO1s2foLnyXNSdxwOHQHLsYcxfV++V/e2N+33lvu68XDd++vFnQlB+87vvWU5PTKcFomCts902Xl9u3K7bcAJx14iggRiVmBv1aqxrZ9/u2NwJyV29X7ZOso2pdD48zZhlusVReLMX1iPunD46xWNXIUwZWmoEhKc0s0gkWsR24b4Zr9ed+eXOKU1McSbEREzOFNTBtrTuHSvc2dfGfr9Shzi82bDK8pMCDt83827BrGFtKCb06MwDImEcFvZOudYhUrYObaeVnf2+8fL2Sp6MoInztJDSjIY7IuKC35y9szVPH5ijEAlct52tFMwye9md0l+F9X5HW0WnyB4DvT4TND86YdXIPCVHGMz4+vKFqfvEdl9Xms6jA67ktDuTzjrWhbfXK1IHvT66EWrQCdWEJYeCT+eFZTkx59ld7Iuw3Te3VbKEdRkp3n0Y4K700ul7oY2moVlz+YfEx4EpouQcmEqkh0hZb8heEQvs9zeCOQRWAY0Ni2BtJ6iRogz9kzeQqk62WKY4ct8U23d3ZCg+1SlgsXoxeZhMu47TC03HXf+dbeh2b87Ga9bRBu24v7o72jB+zqzRaCMRYjCBu7MBXSfqP9MxX5ceFk0mD3GxNTztesQaHEUAxurrgCg5mOj+L/38OQqem4DrOCeO88H6MT3xICvbaCCaeRBnb0YvlW4BDQ5VWh3sScGZk615Q1WrJwpgPnWHRBgFsZu3VJ1DXjJMhUXpwY2XvWa77GfO2aHb1vyeCBEb4u0/9+tXXbjWfSPvOzmdfYmpgfm0OBUVPOBvWLkoGYKg3XHzWndyvnA6LaDCvMyeD9Q6MQVMGkonikc3mAqK78WaGaHoQ3zn5rweA9HVhcjzsjAvC08fn1mWEylkmq3e1ZhDOcrYtYRImiYnNATx/ZXhpI8gw4UjsiwL58sTp8uJKU8DFwd65LZ/5e3txtevL/zX//bP/OOPXxEVvv/xZz5/eeXyfGZ59kPq889f+PHHn7mtK1OaiBrIMdDFp6opF9KxmDa/8EKaIGUuUQgpuXdeLby+vKEpEqdMSpFpMvZqDsmIF/qtNKSLh9sleLrMnoyaM6eUOJ8XTh8uiFVq7/zxx59Yf/qJ+TST54kp+9+Z54kYAmVbXQdV3Pvxdn1jvb6xbvXhETfNJxdijw5b/z+IGi7Y0bGP8+KdpomYZjQ6pXq5PFFiYb/tYxfh9N6//f4bpvN3nC6fuDxd3M297CwxcJkyU0y04qF759PC7//69/zbv/4tX14m9rrz/O1fO1vN8M81dqbkllLn04Xvf/tXfP+7vwINwwpp4X/7X/833m6v3O9XXr4ooY8lfXsizk/OmbPOX/3uW7ZtZ98LNSwsSUjq0T3zNHN++sQ3v/sd+XwBM74B/tN/+l/pKkhSWnmDKITzzL/5278lxMl1h73x6btPWO8ebnr5SNTGlJTSDLNAnk5cPl58EhchRePf/Zt/y9frG2svvH7+Z3r3HfGHyzNzFM458lcfPtD7lZQDHz4885vvviEEY7tfkbL7jhqfSkLILrRe3bpq3Sv3rXNfb8QYOJ1mLk9PpCmT0mAdj1VKT+KF1aDVQil39/BrQ181JrOx3gJxQoZrHzt12ynVxn3n1l3HpOUXl73/rjoo59Z9Pz0YkK20wTZUh9Na8+J2XJ2DQSIji2ugfaNVdviwj+LZu0/hQVz20fYBHeKMXhPoFfbRXBj2sKBSCR70yfH4Q1FWG3Xd6bUQpuQJ2yk7o7pUeh0EMA2giTZSvnsXNht2UAil+d4sSOQ8L4ScqQJvtyu3247xi079z/j6VReu2Cr9fuW6b7Q8MZ3P5OczYbsRS+Vk3UWUdaOUjS4voJGgkdoqYY+kWBEJPD+fmYIgvbBJc1ugXkEbayts3ei9UIcb06KVOuz5e9uxvWCtILU4rp8jlgPcEjZP9Fzo+w3a5kv/Uv1C0DCcqje0ChqFWHfPGBsQp1gjKEwpM6fMHBNTCGg3D3KsBdQP3tP5xLefPmK4gfA3H5/59vIREWF7WWn3xtvLnfWtQjmydQKnPI300o4WI1iEI7+IQ0idPMV10IZzV0J7t4V5mp7RvlHvkI6FtniWUtCIWKNZJVgkiXCaJj6eMqfzzOWycJLfsK0r276REWcYhsDldOHydGFeJubTzHJakBDpCLlW8nlh/vDE074TghJDJM+nIZZkkHMGviuBmPPYSRhE184RIjKdkZRBA61DbVARelKYJ1qO1KQs3zyR5wv5dCE9feCnP/7M160wXS70eKaHE5ovmIHGzHL5wF//zb/n08tPtP3ON9987ySKmLlq5hSdmdpr4XI+cXn+QJwS15fPbLc719cvzLGjH594/vTMv/pXv4WuLpgtOzWcnDredp4v0+h+hZvOZPUGqZXOaVnIywlS4Pr2lVYLt7cXTqeApYxME1M40Yp38vROV08u114eJtRzVsIS+BCfOT8lrtcdESHGTIqN6+sP3DFef/7KJa3EZ6WlM7/79Duao7Vsf3VBEVKIfPN8Yb9+RelMp5lp+jBc+nfu9+0BE2r2XVenU7phMRJQJm3EfCEEJeU4pmQ/iDVG91EcUS+1ldGQDW9QBmTXmoeP2qCWO23u2GKNfbY6bNh8mnDfU7/PmvF4vEH7gIPR52+bs517G3uy8biqDztFwSFOax1NwydQoI49ko3nqiIjdmfcr+FgTvKYnvzhBys3uLzBKe8Mnagzg9E+CEwOI8au5OpSGI1CVG/0O90BgBRdt6mjotoRLWOw72Pt4tZ7MuDOlDPLdGJOM8FRVEp1w94/++z/s3/y/w++ogC1sm+re2FhlPvNL8DeSXRKa7BvlNWJCCFlQswOHawTPfjyNPaPxAEJhV6gFbBGsIK2ipSK9cIgmLoY0Dr06vEI2zYSQqvjxGtgT8o+Z9p2okun7XeseoHzrKvu36+NWjdCE2gQpD3YT9bKoAGPzB08tVYH1nCYZ8acWFjQEPi2ygNeO88zUQKlFNb7DY2J/bbT9k4vTl9HIeXkC1ZRMkM0PW7ew+k+6C+NMY0oTlOWLmhTUp5oEXJY/fuHql+VKB019Ryo7N53l3ni6ZRYlswpJ04xsU2JbU0PVmWMbr56Op2YlolpyaQpoSFhIRJ7J86ZXJcRbz9MUyWgvQ4PNs8EPm5kVNxWCKPV5lOudUTLwO+hlMLtvrofoHVKr1RrVBphTlhUqhn3UrjuO3ttnE5nQp4xTbRqrPe7d7tmPJ2fWdTQuvHp4weeLxd0mrimmVNy6Gq93ZlzJOZIrTtff/qRfb1zv74Rhn1Tmmc+PS2Y+U6ul8LaE23f6fvKkiGnhKZIkkzSjvTGvlamyXVkW1n58vkHatlZb1dn7EUIWVmmRNkHrNYqxYZPXRPq7pHrIobVjRCMaUnUNohtqtRy5eVLg9a4fnkl2MqcAiyZJZ7pXXwf2mda9QnivExsUrFaCKrcrxtlv/Py+ZXr9Y0clSkF2jxAv270zWAw86Y5j88WgroBdWsVKaPxGvda6+/7nMNtwquTQW9YD8OYOw62He/U+FGEOFxozOnzx5eNh2LwQ95pW/L4/659ssev9Xoo8ChzOCFkFD4dPMB3h4kB6w0U4QEHdp9y3o2l4RcP64jTo9gdO7JRdDvvMHp3in2MTqIRHTR5+vv7G8K4h3x/rQcjmu5huKK+5368KSCqpJCIR9zUmETtL9Xy6bwsmCm364199Zygv/vvhe8+fiTn7NRLqYj4rkM1jCiSQl0rn78Yt/srSSPn54UpRurbla9fv/q0I8Lb9ZXrunLfd/ZaCdNESK4CpxfavrHeb7D/IuGTTuuFrayUVjmfZoJ0tuuLO5l3txaqrVK6sffOtt/dBikrOYP2Dq1Tik9U1yi8vH3h/vZEokKfmbMSUyDMM8t5IsZvMRO+/e2dt5cr17crX3/6kX/4wz+wlZ29Fy6nE83cLeJ6exvas0YMiZyUFDJJnzDz3KB9r5zOaRgCd9/NDTHMsSRGnFCi1Ukq86TcBmQgouQoJA0Otm2FOSdO88R3n554PqchzhTyaeF8OYMYMWYv1CIjCiQTUyRP8eHirUEe+8PWGyFlF0q2Tiv+2VjdnHEZBVWnl69vX7Be6b1Q9g3RhEhAqSOLrXFfd9aKEwxSotyuvH69c7+uFOD29gPr9iPlP698OD+zxMDffPsb4pKQXvnhD3+PBOXl81d++uFH7L5yyTPL0ydOlwWJgDbm1P3/28Q8Z64vX7h9fWP7084/90YaFksuAI+czhNPl4tHkOAeh9tWeXvpvO2VECMSx25BPBhULGDdWFcXm1+vK71sDkmPdj/WndTubHWiVPHPfr2z7Z1aKnW7o9K9WLYGpz+Skwt+0WU46nfW7Y8EmrMqW3dvvTmS2bBpIsSJmDNJItu+UcrOy9c32u5ONXXb+a//8H/y9eWFn3/+AgJP55mn08KHxe2URJRTPnE+nTmdz3z89pvhkuJM2+vrjXK7uWOOOmnDzTMC0+w+lkelkeOkx8ktnig+rKZsjC6j2MSgFNH3/VkbPy/Bs7tG3pf7aA7ihTlD7zD99kLkBUcPlvPxHIZ2LQQd0HYfrL6jcChWndl5OLw7IWU0ubwXLsAn8ub+jnUEYj5MfW3IPAYlXcQnMhX1XX9M9F6gNawXJARCdGs5d8L3x/ckAv+lSw6stSHd09OdHm/s2z7cTTql75S2DX3YX+iO69//9iOfzk+E8K9oOSMxMqdEpz16Fl1m5mVmmWfut5XX25Xr7c513xDpRIVTDvzrb8/kkLjSyWVz4bI1vl2+YS0be90JCls3ajdqh5IifVHsY6bftke8e+mVEIQUlVPYOdU38t5AKn/zcWFbInvp1JZ8Gdp3AguesOt/dDCSaovYbny6ZP7m44XLMjElJUjlND2T53kwfrybAeH88Xd8831jfXvly+nv+fv9v1Aso8vEb//mX7Hvhbe3K9b/G8GEJMoiwnyafS/4rTDnC2Wv3N6udPNiW3unFfd+M4N5xMSLgOZASO4pSE9I3R9L4mbCEj2/iEl4mk8sOXM+LZzmkaiKR5eH4AUmHTsyZeSmiU+Z3S22aAWrI/nX3A9tW+++SxsUYQkBJBOCYCGOmy+ieXYSBjZuSu9g67YOB3nlScLDk7KZob2juiDxTFwW1reN7V5opZPzTIgZ4kQvMM0LHz994Hr9ynx55uNvfkMNytPTM6fz2eFWcZ5aMWPKrge06hEt97c3rq8v7OtKiIGUE08fv0VjHIcj1F4GPJeoXfjmrw+yzs4Rv7G34r/LYF/dS3O93Xj9+sUDKj0bmaenD1RzCyRa536/U6Nxvjxzu7tuKoQP7Oubf9aq3Ms65EZC7RtpimQTgrr0gG7YbkzLs5N1xNwabb/TEU6nxeFIcyeGQyukc0T2zLyc+fa7QJ4Sy5RYspL66hMywpJnznNmSkovG72sBHXGYZqzpzXXfbD0EkIEibghzXBEr27i3EsF6YRSXRQ8NHUqQC8uT+kdT98aLNXuuVW+Qw+EDkH9Xqi9DZazUFtnsk7oQqjVo1AG90qGlZT19+Jn3ZPa6SM5woTUDZFRWMtORAfF3YjWhhC80G3kZpl5s9788SUkcnBrtyDqJtLV4UFtg/3bPT4HcybjEhPNhI5Do12MXl0aYLX4865luHX4z7QQseLEuNIqe9tpooQp+M4xZ5+8ohNr6H+hzhnffXzm+w8fyNPkhStEkihVnLJaayd/eOJyeeLp8sTtfufl9ZW365Vb2R2aELicFr7/5iNRA3M3Qi8ONUgn5RnnE3VyUG6lspbC9brScCFgjAFbPZq61EqlOsw19jtP58ljrW3ilJ2hVYp7JnYaJo0lut9Yt0rd748uqtbGdtt5upy5LBMpeMejAzZ0HNw7vdY80iRl8SBFg3J54vJ0oWHEpzMfvvmGbd3QEPj4fMH25rRtFWLw4pKSO60rQs3pISZ0hwBGd8e4jR2WiMFNNbs4lh8H68qXBEIKwjQyy5YpkVM8BPh+QAys3w11ozuD6C9Emg+NDAOrt8GN6cOJxLO19GDixehR5uq7OtPhQBI9x+sIghXScDxwGERjcuunkHwvMBqglDJpemKaP5DOF/a3G/t9pdWOSERDIs4nys095sKU2PcbIpCnRJgnLh8+MJ8vLhEwN5Rt1ojJCQfUCnpmnjPzFMfnJMQUef72u9FNO4xXygpjf5AIhOgJxnW7OaOQTmp1TK5CXXbKvrCdFqbpYGc26Dunpw/j2t3prRNSoLVKSpm8bP755cx6nRy5CMp0f3vYHbXe0Zj8n5fkcFI3+lbJpzNwaK/cx6/15potcRcYi9ETervveM9tISVlWTIp6bBv67StUkr1az234SAj0Cq97oMwoKToCc5mLpb2LDu3PzLaAwIUMzcWaGMHWjtmlS6NkHR43fqh7oa77vRxIIL8gn5+7LF8isPNshn7rqEtlG6DeSwPKK319xFJHoQoG5ICt2PyOBJ7n676mLrM3V/0AXeOx5ExifVBW1RnJiKeP8hgOrr279gD8yCWAAQ5ThhnRPbh5dl7p1d7TFXukCGjEZNB/Tc/B1uHIMQYPVlA3HT6SOj4izXZ/e433/LpwwdiTpQYXNTWhNOHM603rm83nr79yHK6MM8XLh+eeP74zL7vkAO27wQRLh8ufPvtXyHNeFtOnKbgcFWKzPOZuCTClJgkcqs71/vKn/74J2IO5JQ5Lye/CIubx1rCmVxA7ZVt290lYQhvh8CBUjoxKdMSeZ5nujZq33n96U948mlluxe+fLkTYmJelsHWGwLnWijb0KfUxrZeaa2T8p3l43d+E0wzz999B0GJ5xNpOmMElt75/jffst0KZa/UzqDtNnaMVq7spXLf7qjVoWcZb/woOO1xo8jD+NMYAmMbjtrVPe6CKjm6E7+Im5huZSdKJGWHnMS8cMTsBsOHk3bHGVZ+4fOQHrQhLHXxd8AtbUYxHy4kXjmTv+WHa/tIsfb8wOFarcq0nNA0IyEiKPf17lT005Oz6NKJlE7o/EQ93ajbnbJv2GCKVTNg9zymbYdeCdIJyZjn4O4fatR9p1Q3wg3hYJAJGkBzIsQL05x8KujN34t0TNSAZuI2IKYQyBqJORPyTJFCbZXeIeeE5sntwvoycqIqrXwDEnx/WjYa4n581iBG6rq6Li7G4fuont92v9K6x/q0dvfdSXAIuI7PW0tx6YSBbZXdGM4UOwKUMho8Ayu+u0V9IjeDmCNPZ6WUwrYXer1zvV65Xa/Ury9se3VrJgt88+mJoIK0grQ+WJrN3Wb8jRrF5/A6bHDokA5qubnhrVXfN/vjlGEUEMYe6Tjox63Le3QKpkdv9s5YZfiROjjn9HETpLkDvY70AgZBpDeAPlYI7tQjwxnDtaOMUEx/La11ulSHBhlpyd11pq7ukIdeursX04DmfKd4/H17LORkMGsD9Hdiy3Fz1ebkjFobdS+jiI7hoBwiaGUHWnXN2rrt1Op+h3OaIQSqGbf7nde3Kx7H9OczC3/Vhet3F+WbE+gpcY1GEaNZJc87MQY+fuuTRm0vfHn74jjsMnF5zsSYPeYAYY6Rp7PjrUFmND3T645YZzlHWq+0ttFV0Fo5aeVvvs8jT6ag8ubODvMwyEwTMUZiUFqBUgf0WIsfkr0jtWLUx2JY5eqOHFH48LtPXgRLZV13Em7w+s23v+F8Pjv93jouo57BIm+ff+D181e2+4qmV56/3Qkp0WphOX901lzKtL1T1k5Zjd7c6zBPwikl1n3l7bazblemOA1XgY6pa91idC2QNt+LecfYfULRmRQDjhx4VlMdeUDfffjElGRwZhqikWCKNMN6hJ5QmXwprgkItFLHwt/xdzcvEHrpDvccbaIcETOQwtBP6fB3G3u4EIa7gyoET4PW4TaQYoIRSqgSkejGyAaEZUHiRJqeiGGYsNLQdidqQ7MSNLK1K7XcaNudtrnru+aZvHjwY55n9r3QypXWHSoLKZIGA/IwLdUoaDLEAuTZl+kjgYAgYMMXTpSYzl5QYhhLbsHYCTkSQx4BhP4++SF7wFwGzR/bi9juU3/3fYch1GnyhX8IDgs9sssm0oAKlfNgaQIovRXMXCvpXXqj7zC1Qm+C1TRSjSdaSWzlTlew2qmtQWogQlpAqstWLHT++Y8/c72+sa53pnVjioEpJ35zzpwnmGOHZixLGrQpIY3Jx2js2zomd/dILGMCisKAA92rdN2Kx3d0o2dnxYWcMWuoGUOJiFs5vScx+/c99sbGyJJCIuiRqeW0dSuNVt0Q20+aAe0OTRSmSFcvXAO6s2F45Ws2F4KFEBHzqSmpeyKW0ij1iugyNKleFAVHfFr3yVRGzMhjH4Z/du5i4jo8urrlVb2x141SC3Wv6DwPwpai0gZSIpAStXVK61y33T0Lh2SiluJ7vHAQTsYMt91pfWO7vf3ZZ/+vunDNc2ZeJmTK2BIowUPcpuAL/5CiZ2+VOi4GI0aIUclZMRz/t1KpdTDStDOfZ6w5fBGiOgZOG2O9M9VyUJocN7QBZXyog1Wjw8nhMNtUgzS6/i5j3G/OdxOcJDH6xJjU75EgblkVfTczzTMgQ7+0eUJvbs4UXD2OIsTkcNiAGdx13vVZ3QRtoxh1OGLtJTiVWVtB+qEfcay8N/dNJLh5qIrQVLDmQXxuGzSISQND9zyzkX2kwjJPHug3Ds4wKMSMg4Lxs6LH+6cD1pAxQbnuxCc6cV9PcWNiOcYyvBAdZ4n/rBeuGJVHrLn4jkHFJzeHfAYMc1CTh3BVBqFEAHrFipuH9urYvOH6MB37h7bd2G+bizWDezqGGNAYsX2j9+bFV/w1oHHsLmzc1vKuSB2vu+uxuB97WxmHwGHpc+xJxs90cymDa57CcDE3rFW6VQ5RuErAhrOBjKgOUXkw0kxlTAQjbNFs7DN9Uo3hOKwHzdpzD3yfaPhzjXK8FL/WOl58kxDG9dObGwWH6EGK0zTDqaObU8NTVIeVLfGclWU5sSwznz58cJZlcq888egGaMOIVgKoTxA+WbvuyIcIL67a/Dnl1EcxcmNrjdnlG0fu1TjizYKb48qgxfchaBYvamHElOjBvh14uqcRDzg6pTH1KwF1g18x1zzpcIUPfTRPioq7UeiAO2meHYYN6yb1gtnHfXXQ8+Uwj7YjKmU0dFHeGYZ9FLJB3HgYU0snD51ojMq9mzv/R9/9ecyMOsGy6YMU4oLuIdgfsHZrnW3dXNfWO0YjTWlMhOXPPvt/1YVrWmby5YSEjD6d6SnQm5vq6jjIRJ0ZpjFCb6QQPc4gCBKSW/DfbtyvL4Th6TafTj4yt0bbNgYoTrMylO0jEXYYZnaR0bkqpoFWDI8UEMq9jI7XUKmIxHftVz2Wk+LxAIcXGnn4+tlwU/aDJeaJVnf2+5319ZXYjJSc5VjqRswT0+mMDtajAdVWWtexC6qDPOE3bje/iQ9PtJAiSRyuiGPqKaN7jSpjOvDuratSR1PQB8QojE4/OusvqBeyaZ4RDmfv7jssxMkAjOKBT0YeAhmcBXgULg1oSCMCfchtBkTozh+j4Pkx6jCvA/2Dwuv5aQ5piFN5R0GyYQOFCRJ9f2C901ohpGV89g2r9oh4d0JBckhxBEYKQl037m9v7iI/n4jLAb94ptMj2FSctt2xf+GN1wVnHqu804yPg6A3TI88qRHfZ2OuaIUj3bmZa8IUQ6L4z7VGK5VWV9xJRAl5Gsij0evQ04iMpqY92IOt7Y8dTK+e7IuCxPH7uwdstroDnS5pDGI+Rfqex50sDnPYAeq6DGTfUfUdYswTy3ImhkjaEqrC0+VEjkKvid9MytOHjyynM3l242oRdWeLXhzuG9ORxx35DkllTOBhQpM/f7MOe4UBtT08KqMTejydYRz2MjRf/SFIwayNaBFvnEQi4XFt2i+EyYJkv45NhDgtHGa/ITBIHj41hmZAJOQh3yCARspWCGru8bgX1A4CkiLBgE7tzWH4kUEX4wDUh4+rvxZF06H3cpTiKIA6XPElgFjnxBljopujRDot5Hn2cyIGRroYo8/Duic79N2ZmTJulVYbt7cbZS9OrLHGclpQZsJDWvM//vWrLlwfP33iaQrsO8iwKDFLRPGpyEp3CrUmelTUVu9CWnNd1u4WKLy9su/VNV7TRDxNnlbcdj5/+Znb6wvbdmdezszqWV9YZytl6L8Ds7rljOyw3/rAjAVthZgzR/jkrdyhFUJbOW6sw6gyKcRxo9RqbK1z2yrX2xvT1KnlSl0L15evfP3pB0Ix5vMT0/kJi5nnp2fyaSYo7KWx7YW3rVLLnRgC0zQTnj9QQuAOfF7vw+E80DR5R5oGLGiBuAgZWEuBFGnJQ/M6RhNowanivpyNFHPXRuJMWPygjqLIPLsIuDdsqhDz6PLOSI70FCmzC3+7KkUFiZN3ykA0D5T0vjb5LmnotZopFqLvYxRnZWIDRuTR6Wp8/5neNnfwVyEGe0CUkrIf2q36Z5RPhHwmzGdCTC4e7dUbk+ANi3VDNBNzJ5+emUok5pnp+RumZQFG1pp1n1pVCdIGc7Sh3TOndOhgbEwloorEMG5QZ3RK95aJoATbOAIAxdxRHYkk6mPZrpYA30fQ3nDhlCLiXp5YR1uhrVcY5AVCJFoDXLfGEU6ogUV9WpOuxJ680GlA+43aBvrwSOhuqO1OE+8CBCQmolVMKhaUPk2enRUzU/Yk7xACy/Mnen/mw9MnLsk/DzNPI48jo41oMPmUut/BJNAFqlZi8Cm2ifHTvqPlM0G/gCZknt00WGRYRfnOjkVZTgvLaSYT2bedUgpve3kI2Y2OTDI8/yosBwmCcT37nxAdlhWALBCyGytHIdiVWnZK2WkFL6g+0mNpiIwBCeaONhq517sXziY07Q/NWIyePxhiJE8TaKS1Ttl3KoN84dxVd+8IgT4SG479lej4HPH75GhQo2Z3vAfk0+zIlSqbvlFqHPdio8WO0FBp3LbGddt4W1eKNYqNXMSslHKn7huxPfHlpz/Re2G93//ss/9XXbjqXqgCt7eNFhq9RoxIGLk9vVU0RzqRTmAKntdkAn29u+9Ybdi6kRBCb4ReidPZCx2V2/WV169fuF2vPD1VZPbAQgPu291FjQRk9ikOEcpWHhh4lPagZtdW2W8bWGOO3sXWUtnuOxhojsRphElSabWx3Vf6WIhv28b6euN+u1G2wv2+cy+deN9JpwuiSq2FEIy9VLbdY0TKfiMEZZo2DKEMosU0TfThlnG7vqLJI2GczuwHbusHbOGjv40cIwWiuu7L4VbzFF5XeXKaFofG8NBBx9zNwzOBB6OqNt9X7UMEq+5L17uNA8OoIxNKRDDbEBoH8iQSRiJxcKbgiC05ot0xPER0LKE1RNTPfu94o3hKrTYPPGxDg1I20BtaPaoj5ewHf90ppY6ASRymMt8Vvb2+UIs3LWXdYBAwWqvc99V3e8Gd5h3yVOrmBsYqEMWhSAbUFKIHgGKNUnbMxqyiwSdYc41P5ZianS3pb1wghDe/vlvB9ht78R2EDX9K1/IUrtdXN0xFCZqGAL6x1UptdUCiSvRxEEQHgcaX+9pubHt1K7RpHmhTQ/vOvu+eO1YPNp17Kl7vG+vqXoOYsExxiFt9ypBBTKnrfUw9Qhflet2w1sjJSOkOBGp12Pnw5guhOmxsHdVI75W6uwt+ud78GjYebhrWOz0r83L1kE4JfrbUxvowADymyDGxHMD+YAyOwC0vYOr73MPBpImnhIegyJh+a3GD4UOkrwPVAQ+hMHHqedZA2XYOeU8bGjMRIQaPPNIYnIgjgV6NuhcsufmtYEhzH1LVQH/IZpzYETSBemK00P2+EF8xxGnyVUWIfi2Uwl5eSCETQyBFj4Sx4SC0Vb8GDjZnH6zHXo3aGs0MCYHl8smz7NJfqDt83XaKCPfbnZ4qvQe6ebCktUqtO2GKeIJVROYw3JyNbb2z3nd6bQRgiYk4BIzr7Y2WAlE79/sbb28vXF/fkNYJTzM2eYrruq7eaVogBk9hFlX2fRvwhZEDmHp4YK2V9X5HrJNOEVEopXK73pFu6GUePolC755Gut1WSimgO7frG7eXV7b7jX3fuN/v2Loh4c5cHBK6zxMaGrV29lJ5ve+U7Shck4sjY6SrkkJg2z1GZV3XobVIzPPkB25t7KVgIYzuvmNRfSIxZz5Fif5+9p31fnPYUJScZpoIvVfutytHTMy8zBws2FYqWpVYIrk0UvLYjaBCLYOUYYb2RhyL5dY6Ym0EPDqu38cf1xD5aiPFYVxs3fPL1B50+GmaCMFthCQrhAQhEsL0EG2WfaP0iIaChpU6ZaS5u8O2bVRjUPA7gkfIv73dMSLdhO16pTDi4XvlXn2xHjQQQhtF17tbVSWKkNSovYzDLxDDhAxjYHeG8T5XTFHxwlV7p5oHfKpEUjqc/bxxatvuWpu2sZVtBP3hu5Xe6b1yvV9pHd+REojq8NNaK2UENwaUKThxpYv7TIr5xJG1cd92yihceuR4WWWtzi6rpaNdUHEo823b2fbq1Oi9sWSXebjQ3Q/ySCel/bG3LQZvL1f2+0oMzWFlCSATdjB2VYkSCdHlGa3DvlePK3q5c+uunfMok7G/MijRmFJkSokg6ibC1qlRB/llGP0yAiODPF6/0xnx546483nSQWJRNhg7SxnUfdc61TCIM4yd7FG4VIYYWIgCrfRHQTwYh6pK0kAPDgGmFHGihdFKIy6H3MSn/SCDjZwi7+QMJYQ09oHvsgPwz2Q6n5iWhWWaWIdBdNsLU17IydPRBU9L7s3Ya6ENdmdtbZwZzjL02u5BqZenTwQaOU1/9tn/qy5cmgULK5KKK7I32BpEBoVYg4cnGrQuzJYI4UwMmXW/8uPnP3G/XXmaI9PTBYkTpsbXtx+ZonDKQK+oVtCVH768YDZzPk1MyzPV7uytUqoR10QMrgF6u37ldlvZto0pwNPHb8nzTG2FHz9/hVa5XgPTfOF2u/H58xdevl75+OHEN5/OfPr4Ddu2cr2t/OmPP/N6vSMa+PL5J6xV2l4pm9tGhZgJIfH17Sv/bfdIgkZ5UFqPRXkMvuQ26y7CTYkQ84CnOqUWpjCWw6Kc50zvnb16xlbtTn/XYI/pybONfAfnFGkniPj3xo0zAjblgcsHQvLIltY8fty6fz7HjkAFnxJGyJmapwcH8WVx7wPCEB6Bep1OqbAkYU6eQRVGvAgETpeJmCIxRaYpe15UCDzN7rgRUibMCyYzteFWSKmN2HXBQnZSR/fdQ9kd7tk2lzD03gdtv6Cpct0b3H92yC9EbmVzrZq4eBzNCA4n19YJvTDZisbZD8xe0bgg6oGKMT95uJ91rq9vTNx8rxdPbHYUu0jWSreEWaD1jc+fv7Ldb6R6R+IJQ6mtcts6tILajsYzptDovN02tN5Q60iY2FulmSeAn9QnXJFMXiL3zSeqRQrNor9+xQ/C3pCygs6+U5LOvlf3PKSCzuy1Ulpj3Rv9fnfYlUhMQqmVddv57iky54kUExuFn77ceLtt3O4rkzr6kSdlLcOwWsRzxbtPeFOe2LeVbdu53nZue6X0TjWY4vADNLjjjU1QJTQeLvAphwfijA7zXPEiFUNAzdvi1gY6LR73ESNDbwlr93JgJgRrDzJQf0xcvtzsQ9jfB8kCfOosWxsMW3FgIoj/UaUwQEkJ5HjsbWFZol97wgi5HQSOmB5EIB0QoepIU1YZlnWVIEJKkZQS59OJUr145im7F2gMzFPitLjhdlBhe71Tu7nf6LbRWiMm38/nnDnNC0/LZeiOO7X8hdLhmxkWAsv5AtkQHXst6S7cDMn1B30saWMgTRN5OhPniS9f39yv7e72N2lK5GXBbiuexdTIy8yn9C2Xj2dePn9hmd3IM6TEpEacjNZgmv0QOkI93QCzsrZO3jaOhY0GpSPU3tDmZI8QhE5nLzvXq1CL6yPu686X1ze+vq6kGJmniW1149HXtzu9dV9qx+SRIPeNtVRn7gxoIoaxuxisMbGD9aR0GVk6CHlki7XeWfc64i88B6mJsBcXDpp2BkUAUfXXO6CNrN4/9g5bHVR0FfJgYoFDCDaIgA89VjP22ml9UOAFNz09vsbEFUXIMVLNfRB1GJ3663E48xYgBZc45GlynN7gy6v/PSeYeCGPQYh2J8ZEShPnD08QMg3hvu6czh9IeSJNma9f37DeCQhBsgssa2Xbd9ZtxTCm+cTTp09MJ0FioZfqxBILmMSxb/PDIoSASMJMKdvNBe9WyJJxSV14Z7UFJc0LIc/U3rndVgQX+sY8Y8yei6RKZEfIIAkJz7zddvdLBOac0ZjREEm77/HoO3G6+IGmQvj8mdgnlI7ExRshc7/GmebMtzCTl5mXlxeub69MImiYfV+iYbieV2wLhHgG9bS6+/1KoDhwny/Dgaaz7oV+vyEGIUzEGLivd15eXtj2K9vmom6ZIute2UplL/UReFgK43k6fKzm8RkH7bzV0f2bkZOgXaF0TxofU40hj2lfwfdWbUSaHJfhYOm5cPrwO3RyYWtt7C/H9Wve6DWz90ZLxaG+7iSg1hl6Mf++jZtJkOHgzmDSOrFIceJE70LByRQNGUXUHoRUurFuhcMH8c5hywQS+nH3uouHuIFBiK5Na93df3wW3VBVTredmBLzNHG+nFmWhRQCOToz1IYsZZkT1/tGK8WdgWpHS+Pteqdu1dci+51tfUVVHEn6M79+1YVr33f2nNCYsOjLRakN05HYGTMqRjRnMkk0NE2kaSHHC6enZ+73lW2vEAJxykznJ2oPbp1DIS3GFBYvRB1S8CwgSYmUEnFgzyn5WFxLQ/OEbAWJjv1WM6KZH5DzjLVAoD6gq5R9GjAGrLG+OcRR2tBIDBdTc9ruVgrX+0a3Tm6dGBr3YtzWjXWvjrPkiDtdH4tl6M1Qs8FYg7051h1UIGVqd03Ibd0dBlQlh4CpspfGXtvA3of5pjh0ccD7c/R3oxtctzqcooVTcojMEPZxEIpAFOcB1tYdsuzOwAyD3QY8mH95dJhTjOyt+/MLStRhChqD2+wMaEJax8Q9/roZbe/jsR1KO7rWvr0R1aMbLusGw3V+rX7jTdNCnGb+8Id/9kBGgagTcCRm76zbHQNOp0K8PCHNiF0oDbeKskbPCaf4+2SjEpEQoTsH1lwhhlvRDfF08JRuCYqmTJyc7Sph7L5CgOiTvttZKVQPMBVNxLz4zikmqE5qCCkzLWfi4ka5va5oOhGnGdT1TDLMZiVkdLDMzYzUdzREYpyYljP3fUfXFWjIYIOGNKEpQq9UOinNmPpes/ZOIBGlE6eT242ZEXLBkrP4cpqIaSJer9TW+PLTG2Uv9AaTzJRBZBIOpxcnQwRfnPoU3myoq7wQSXTSRE6OJpRmtF7Z66Hj8AYoDvhNBJ/+jrF+wMKHdeEhcA+HJEHs4TwT1XdgTbwpc5q434SqQh0SAjiCJse9ebAyxuOH8fcVexTEoMNvkPFrOaj//ty9kvp7YMdzPrSWdjiFyCApyWNPfWjNMCjNC/ohhDaE1uByCcyTMKWJZT45oiHQ6m3cp8KcI+t9pdf6WJW03n3dYI7UWG80K1gPtIejwf/416+6cP3zT3/ksmfydOY6XSiakaLUviEKUzKevvtEzgs5zFj9CtMJpgXLM+ff/C0tPfN1+RNy+YCcnpk//Badd6zu9LqSzrszoDDSnmhto9FdY7VciGkix4nWb7Sy0beNaX6in2/ozYV2RKWnRL584LuP4m4IbcPqzl4q6fRE10Rruy/LX66uq8oTv/k2ofnVtTOL8BRnhE7bt4deScU4n2ae5kRtRojCZclOA0ehuctEp3tHOBhFt3uh9t0LQzQmibQUmFQp5vTVfd+dvt5gsocUBvAOVId5Zjd3VPebLhC760gCLiPQNKEhkoEdt3zZqneSrYO1To6DDefIB2E4H4i4O3hQnyJ1DLA5C0uOD83eHPMgaLiEKEx5uEbgprbmBryd8RxFuVvBujM4t7eVVr0BaRHmeXLR7LbzX/7uT7S2k6Jraj5++sD5fIKukFx6cC+VuwRUJwJnXuoLrexYL1y+/w2BCTUFVpqpMzpjJE4fsFZozKzrRsqJaVlI8QlTT6ItXVyPpxHJH6g2UeloFebl4s1Ymrm9/dE1Sd0gRSRfkMmTi19LZ9JGSpkPl29p5cp2/cx93Z1II4EuC+teKGXDbEXziRASSTOv5TNaO6FunFLiVhrX3fhaGrV8RRGezx94vnxEJVFbpmP0YFQNVM4UaSAdra6JMoQYZxrDG3BemJ5O9Hnm3uH240+sZaeWylMMvitD+XhZ+OZpYZ7c1eZ+3ZGISxBaJ6BEUYIG1vuNbVu53zJrh7U0at9Qiu+jVEg4+ziHgAFZlB66Q3GjwWOwKl3k6ybHQcyn5wgpuFm0DU0++J64yjhmDUpw+n5r3SfCgdCIONlHREkxD2s31wm25KhIUEGLEMWIQZhTdEbtkINI8HtbRGgBzxArjZu18XsUBM8dHEbVS3JSDBpG0CVstbLv3fewKvSizDrzlJ/4MH/gPH/0ibAf5JWG1M48Za4GWiqHdE1VCFmYT4HTKXNZTkzRpT4v7S+UVfj/+q9/YDlnYpj4opF1LJxbq6QAyxRZnp8IYZhmWmHKiZwTNs18/vkr67pivbH3yvPPn/nww8sQBPoivqyvlG6spfLHf/ojDJHl05wGZdsj2ve2Qa9Ir9ybcX27cb+vSDBy1DFa/8gRLx6skmiUZtz2zsvnF6Cj2olUYnNm0pQTT09nUop8+/FMksz+aee77z6Rp8Q8L0x5prXMfd3Y98K+r5ymTAgRC2lMQY3aq+camWAN3l7f2MqGYZxPC0Z0fUdtbNVJIWXbCZL8JmgNi/2xREYOF4FO1z6gRafSf329DSdv45QzIS1oSB7nEjoMerwSqLVy33Y0OWwTVTjNJ+JgOKboIuYUI6qR6+3uwu4gnM8nQnTmU0xpRK8IU4pYyANu430vJ0InjsNHqOXNn1OHnhemeUZDoPVOjIHajOu9s1z+ibeXjbe3O19eV374cmeePGCvClQztnUj/cMPpGlmmWbu9ytiIw8rD1KKmacADHF0Nx07At9FaNv9tQydlQRFo5KDki8fIETutxspCFGNrCDTxZuLGKhtIwU/RGU+8fL1hX3biKPZEZQ//uFPnM9nrFdKWdlud4omqkTWu9PsVYwpwN5f6ObTQSu3YUFlhDlzvd253zeiDC1YM37khXn6EwB1991fk0ANcWjpwHV20HAbL8Xp5QGYUyQuE9u28fLyytefv6C9kQWeTgvff/PEMmc/BGdnt5kq22XHpCPRIcKkgahOe7++CNtdueTKvTmMfZ5nyv0O5kzBvQrTlJkmd4I4SBfb8BL0LWrzXeug8Pd+OKw3Eni3dZDio09idMMG5VwESi0jjbjR1eNTBEOCT5KqSlpOhEHQqrWy6Hus0GXyROgYhPM8Yep73JiG848KKQZa0JGwXdma5/v5TjQzz3kwkBvnZfZEgZCxbpSyublBGezWELlczuQ4MS8nvvvNb4dm0jGH+vo6gsaNbXUThpwHW9C86NetsZfGWiq3+8pPn38GOuv2F2qy+49/+plpTkSJfDnYO4OyGtWX9PHLqxcXXO0eg4vzWpy43u602kgxUUvlvLxwOX+FgXUHgXL/6lqqrfDzTz8PJphwzoO+hs/la3U3eaVTCNzuK9u6O3tNHf5yTpJn1UQxkppDghVeX66EACkJpwTLFMhJieYkgpyiLzjziXnKTFMYwZFnlvlMLZF12yj7znq7MU++yzDNiLgnW7NKiop0v6BiFNY1YWZcLmc6yckcvbO3mTYosDIYkR7n7cAWAIeDgPQh4Aw+UXShy4hjwA+ckBZUk1OQQ39QdYMESqms6/oQF0cVLqdnUlLicJU/nRbX8BCYb2/ubCHC5emMaoQhjDymspyyB+UxXAR6f3SAkEYYHphlP3wMLJ9YzidiSvQu1LZzX3dKuxHEKKXwer3z09cb8bYPvY5bMLk7/U7/fHVdTU4j3sJZdDvygGNSCsOyy5Njz6fMlAJzjFjxvUIIHnaqoyNWjLickeissCk5VBNpWJg94mWw3eYcySkgafLGrHVOOXG/vvmB1IXLZQFcGP32+sbWlc1caxhjIqoyR1ir7yVbrcP5o7oeLwb24pTxJSfqtrm2qQo5BcygFGelVpSqwcHVMa6rGX0siVRcy6gIOQZCjpRaWNeNum7MQYg5ElS4nGc+PJ05LRNz8sJUu5FCoNMx9Q1OjokUgjMv98mp8SFhDbQ6zFrHMkpEiFX8vpoztQwWq+CwtHjhqoO5qCES0zTuj0qr1Z10TAbFXFDtx9GAhtFQBfwaqSOANgzaP0ZMA7UMgWk54QTE5mfIIPWoKDkPu6XgDvuiyXe3yWHyEJScE1Xc2Li3Smlp7O8CGidO5wkV5b7uXC4+UYv6E6jVp+19rxyRPh8/PmNdiTGT59OjeRGa28qBJycX1+0dzaKMfd/hFOnYqJuM917Y1r/Qiev/+O9/YgpOIFiBqu6kfTmf3XW6VV9rjm7nrQzfNYNCenQxS5z4Q/gTURn2/8LpfOLp+Uy5vfL57c7rbaXUPnBlGyGFPNg+X/YRoSAQ8/zI0RHE8d6hDQq/2Mv4Ataf2/W+MU+R0xQ5T5Hffgo8nd2/LAJ0j/aYp4QlJQWDmD1ufnZnfI1CnwJLCsTsgtQmHl9xEGDznJ0yO9iHOqCLeTnRiE5b7ZUk84N0QYeyFy9igMg4gIIitOFO4buE3oyyNa5to1dDTTk/X4ijcNkQMItASGE4KFRO+wYP2jGczx+I0d+nKSfyaUY10JqRxaFFQYjzGRtFoZs7Fpg5RHqYl2pr7j6kYF1B3S2jdyPOeXTHEJaJeXGXdU0z63r1RXV7o+83bm9Xfvj5lR++XNl6Z8wP7tJwdMjdLwqNgWXID7zot8ey3HeDXiwV+O7Thadl4uMy8/V6R60TxbjVRkxO7V73Suseyf78fOY0ZfqIIIk6uD8qTKeZeZnIU+ZQHOUQCE8X/vjDT9xvK3UvfHpekBhpovzw0wtva+Vemk+xp5OTc8wopVFrY68F0Tj8Bt0tRcbe5dPpwuv1yrbtaOvE4HvErRgv983jcAzm7Hsss0FmkMNL0o3xDdAQPHV37HgWNfIpE7MX96fLiY8fnzilZZAXDVsLUwp0cRpDRwjDKq2WDZ0WR1xaJzWw0ihhJaTs+yWEk8E8+fvWt07O/r5Xa6TgZKt13SgiaIzEmGllo2yFslXykinNEwtSHI4nOENwipEUnfV3/fLm8OnYkYr5+5BSgOiFYpoXn2a2ynrdiLvrAX2vBXRvzqcnj8gJqv4c904IgTRPrHV7aFlz72iKIzEh8/y8+H389c7y/GHcl34OhVKRfWbj7mdKnjh9+ERZO+JJa0TFzxQbZx1CaY72lFapdjTnkAPDp9SIUZnnhSXPbFvz5PY/8+tXXbj++OWVqL5g7KpIVOYp8XSaEFPKvvN1Xdmr08T9oPELYO9Oo1ZRLtME1phS4MN5dghuAqnGP/zhj1zXnbU6y22eElHFHeaHkLd3sKSE4GSEbb1xXwv73sgxUPY6ilh/sNlyDKz7MD3FKLXx3acz8ZyJAZYlcbl4SGIWYcpuYSMufcXXwh1rHoboKQXD2WCw+47FcRR/rcW6C1l7p9fmDMPhTv7w5xlkWYL6MtoMiUqy4MJEcRGpqBCm6AVBjKZ9dOUdk84Uo6cMixKSw1iqPu1Z1OHP6I+TUyQHYdv3AT26kCcM1qAp7ANW6Hh3Z2NZXksdy20j4lNRUUHLhmpyBhh9PBdvYkLyDpze6LY7uUSE0Av79cXfv5TpptS9kEJ0CCv6e7pVT3xjsNGOZqg6Tcxz2JbM73/7gdt14+cvb9y7F0qwMTnqSBl2qCkqPJ8jZRdO88zHp5mtNELyz+6//P3Pnh3VKvuqPC+R2pubz+YwCCqR3//2E6fTQp7GpN0aSZXvny98+flneoDzJfP9d09MU4YQePnyyk2GA4IJOThM2Grzqd/PVM7PJ3oztq1wuzsUrGKcZ+V69aTly5z59HxymNWEv/vHn7jthb0bT7N7iIooL9c7QXyaAcjj+xqUOQdSjEwp8ruLZ7OlGHi6LFjvrPeV1Lzqd8NJMGaYGF2NvbhpbO9eEVvzgNDe3HqK4f/YzeG5OiZhPQgLIaLBWXdRjCkG3H4J6lqH63rzfLlBfADP33tEtVinmbE3tx2L0VcX/ZQp1RucjhHFQyMlQDXXKfbemVMgTALdfBc89mxRB7UeD5l1u7HhpjLo/b6vtHeiU3C2cN0LIUHdfSr0xygOHBGII7xS9GgEfcJs++4zkxjbfvdzoXs2WKnbcPyvTKeJrey08p4m0ZoHSe63jfV257q+stW7E5RC+rPP/l914dpro6nQ1BfAAmjs7ONC3mrlPuizpVR6cBNNM2fU9TbosKo4FQ2KKtMUIWdqzLxuO/etUFrzwzql0WEcQYTGXhopz6RBBS7rxjYsl0SUMvzvNByCR6e8buMARqC0RhdnjxGgh0DR4ELEGEmq3iHj+jRNfriicbgeAOpwZMjO8nG2lDtQoELEjT/HPhgNzqYzgxDd+NJdAPx3PYqfQQ/j50QeTtMS1d3A1fO3igVolSpu2mvBWXw5Te4sLV68dDAoWxl6u3ErxhCx4V+mQzB5wGYuljVnJKoMr0jXuzyMZMfz85WW+c5jMK0OSS5AH7/PcPNZGYvqNpw+zMSpz5J8T3f42B2QjY/ZoEekhY7uuboANiVO54WnDx9o9oa+rcMXrz/+vogNQalfx3ttVHNoahJBcua0uBnqurusYisNEDQW0rTTWuNtdVQh1E5snbe1MT9lptOF3itWd1JQ0jw7axHfc8g0w+yMv6KRQqGY+/btXbGu1OpTsalS6MyafJqUiNRGLzvNOsWEvRl7NyxGF67OMxYm8peVjRWpFWJCc3ankK0SAiB+sKWYnGAzZZbZnfOnKFwukzPqRAg5QwxutRVG6/bYtx5sORtwsA56uPuHErxJFWvjr3raeGuGVWfVSUhoSj5xD0GhjqZGJBDzRCxeQwyH9Zyj4S7uxzTt/zNIQb+w4yJE4jRj6mYB0h1dCAIandSBeJCphegQYlZS9qm3DzatO/QoaMIkDBZqeI88cpznEJYRNdKaebzKYFV2EwiRh6hd3H/RGK97OI70VinlSAn31UDDZTUdc2g2CCEF8mhS/X7Sx/0YwjC57g4HxxBHg/AX6lXYuh97IlBHqFvswq25C/paGvfS2UujlHZQy8BcN9RbQ0XYuyAmRA0eL345Y+cL+3zmtflh4rlSoN0ZaXuHJN6Z3GvjJBGJiRCVYjtbdT1UzH5gOHzk7ERRpWhkZ/cJRpViFYsJnWeMzqaRaELfC13dIUDSRGVEuefJTWBHw+eGwt4VxuhR7Yfzup+xDqla887O1AZ0kBB0uMM3n3jUKc/ysMapdNyNHYyYsjtWmIdtivpNrD1BqBRVQpwI4rqpaTph5sCViJGi2wXV4SpxUHfD2AUEfS9a7iCR6G5FTe+VeCyro0sheq2+PB/Qr4iv3bxM2cFhHkVtuFmLexWaVQLDw5Du2jSF3Zqb/cp74QrH80kBSSMcz/zaa30IvlVJ88Tlw4XTx0/cCkh8wVQflkSI53IBFFG20pyhV+Bt74QGqzoZ516Mve/cqnHfB71ZKzV46ON1beyDli1rZf6ycf42883ygbpe/YSNAvnEinJHsTjR8pmSF6ok1jCxSWMzoZmgLY7dI0xTxsw81ZtMipGQBUYQatk3rlW4VtibsIVMfHpieXpGpmfSn15Qi9i60WOk5wWJCYs7OkcQY10LEjN5njk9nTidJqI0IoX5vBB6R808BSIlLGeYJjw3Z/gpiu/3VJXEML82RwgsZJRAIND2gmhBYmKKid4M2T35Ic4TcZnJKY17x1B1WoaIEFMmbT5tNDrE4L5+yWUhR25jh2FfhQuOBUwTPWTCFLBQYUhddNSgmJJLOHBdVlc3GY5izMXY9+pn2FiHqEZH1oNPW32kEMgRPtnM0xPwXEEpzbO9NFCa+Hk54nyQ8Xj1KEbeyLodnFtl5Wncl85NBhlenWE4isTIpEq8JoclRR8N4ZQnjjcnh8Rpmil1Z9v2P/vs/1UXrpSj30gGmiKSItNphmElMpkHSzYJdK3D7BW/ILMvnEWEMC3koKR5MKv6hHTvZs4fPxBuq+94Nu9KPf4oU2lUM/YuaO1INGIK5NNC3Jt/L0WPZQB8Gd9pKkiI5OU0PvQRyJcyHe8ot9JgLZhAKp2l2XCzd6jCF92jizwiDx4TUsOprza0X4xIATgiS8T8Z/pIZT20HSLeKflOxqE+5f3AZzg/i+DEwG7QDKsdwyMVUvQ8Ig47HMfUHlPR1na8KzyI9YemxausaKRuG3V3QsW+7e4VCJ7fNGjCvZvv8Vqj7o0ehCbNNTkhYrU/ps2OC0QJHgszUFHMKhYhREMIPtUJbNY8UaBB75G1KI1AmhLPlxM9us2UERzi6UYridI7aZrJpw/skukhE/NCmpqL5MVZV7W6FyVauDydeP74gafffA9x5un5xLe//cR//I//E2/7zs8vL/z8eufl9U5vxmmeef7mEzEoVipPn2Z/nSb85ve/43d/9Xs+fvjIn/7pv9E2h2xvFsmnZ05hZr6c+Q//y/+dOE/cW+XWhD/844/88MNnrl9f0OlEmmeW8zPL8wlRwWplPp0dklTf83SEUo3r3jHxENAO5NNH8vkDLWYun76hENl5Q4LQNUHI5OVCyEq3hsZpeGBG8unC0/MMVFpZeVsLp6AsKfjYL4lO5L4WUgiDydcewv/eO93CKBYMCNA/dw2Z0DraHKZyR32fekSMGDMhTvRxZTqMWbGuI4jRM8rCgcIf7jDqKEgpbexpDzcLT6cw67RmlDLCWEMiacLWdZwKQ511uKX3EciIN2BpmgGPuu/iE5IPmgPed9SbvR+p0HF4jbpJQ+vlUVSplVbHnrFv1JMQtaKoZ2+1RmmNfW8IjRhg3xu9r4TYiE3Iob9rxY4cN4Pb5vf1lPP7usIEqmv4tlJ4vb7xdts9Cui4/f+Mr1914Xq+XAghgsEWkhtIhkTt7ntGDOik5FhJvfrEMGA7ERtR27i1kGaMRGmZ2iKlKmGDEE+uySgew2HVPKmW0VUEIQ7x8WEm6tHzfuBb98nGs3J4pH5qcMjs8B2L0YkRW+loCpSW0Obu3iUmas80mwjmmViYxy+4KzWgI/VVHOo7CsV7IRsmtQjG8RwyB4SmMb93r+rwhvCeh+VTjGDmFkY2xL4OrdmAv1waoIpHLMDwktNHTXU2oO8CEIf8uowiNjKUZLjO++0/rKXUH0O7s7OOKBYk+K6P4eMW3DC0Dw1YH8wmht/Hwfzyj94calXXwogdv2eYuqJAp0mniEeQhBSY58wuSlOHWKS70DgISK3kEJ00ZJ0kwpwSdcrvzgwaKQptME4/XCaez5nTlJCL503FlDmfZtKUyTHyP/9P/56Xr3dq8V1sPp+JMZJEefr2mTyCKZflwoeP37DMM5/FyTLdOq0Ycz4jujAtFy5P3zDNM3Or/NX3f03ZA60G+lbcjSUkUoiIToSo5Al3Kx+MyTYv3OKLQ0a1Dg+/SG8e6DnFzK6RHCdSmkmpYN2nRJMRjzKu3QdCYEaKkdM80+vGbdsoTWghuLQhZYfHNGGqNBFUjZADKh3TkcnWFZPup74ZRz4cmiAMpwft2C/MjXtvw+HDc7GGESEa9HHPEiBM4ZESIDE+GkZDPVpl5Kb5tSmDgNKwoBQccvRrHReG403gAZH7N4Z9GPK47hkvh26POB0daIoEOf7Br31RiAHp4pOqyjsCo+NXGCgeu+OmzUoI4z7WiEh12r1CShkN2Yv9Ycg7UJzUZlot3og1o6ti0SN/kH3cZ54SkfQQeY8IlaPb+DO+ftWF63I6oSHTTegSqeLFoVrwiUKVMCUC1d0LaqHVSmNME4cRpAnuOJYoLVFboBahKG5lIw5TuVD2Fwd10IGVi+9Fmkc7pTgCFYfqXsUhBY0KVmFMOAcm7hR776L22knBi2dsfgNVy1RL1J6ID62Ie8bJ2Ol4h3NUYhlKdd/7WZMBl4UxAfmv9sNjzD4ahyWUBy2axjETDYNa3Hqomw1bdfUld/dSaMPjUMT3Al64RqDe6GyPBpGx2fKudux7BAhetESVOGUnm4g9IhkYRSwGfy0mToNHm//+EcZpMoyK5QhstAeWP1bWgAukTQc0I+Exvfqu8Hgco0unaacH0KRMloe9kAwnfYeQ+/gIsipZhdC6o3QpMPVEHsSc3kFRmhpJI+c5cZqiW+jM+XGQq/iSPunC/+Xf/mu+fLlT9kpU10aFEJlz5vLtt5yWidOc6EVYlpOzV833qL154cppQYKQ0oWcF3cFaZ1Pz9/y+rRzfStc5y++65GAaqL1gBJIKSC1EkWZ00TLiSQ6Dh/fFYsGeoUogajJGWghEWMmxom27bTekHbIEnwkUlUn9dCdeRaT75SruUcmwbVQMWMhPfZFfdxGMYDgjvAWgiMAtPHHJRcd9UksJAgGUkHTOIDNheQaaAbTcCYRMSR26A65dRGCdk8gbt7Age+kegcL/X0SGobE6CgcIlQgavRdsXU0jdgZflm4/EXZMcqNI1qiORm2tuGo4u4mOjLqvHDl8bPu+YjaCEgNvh8TR2kYd99B7RcNwwXEafZRhFgLIu4Wn3JGg8em+DpCRsikoDJDd8uq1qFLoI9dtclBhB95fqqkUbicQPwXWrhSmkjzTG9CIflY2qtbQInDN+4g7XlHTdX9DXt/MBGP3UTDP+SIUGunVENzp4s4+6i1x+IT3LbHFei+0O3RCQtOda4INowrRxevviOJIXtBC8q2HsaiHKu34T/WBuOpP1JJDcYiuvkFbTIiMAYJ46EpG7fCUZ/UO86BKGDVL6WxQ3aKOO+Inqjhwowj3NtGcTsavwFrmLOlfGFrD/2XT3n9UZdRZzT5NOjPyf3avHBNebxvA6s/btppTCgqgxTS3Son5DTYfUIbTC8Nv4ywPybNwzgUv2Efy3MlxjTe8E61zbtRMULCP6sxHsrQpGnrlDqCPUVp1h70e0+zDM7gw22uzGDbKoTdiUHNGZzunO1Tbx37LsH/7tttR+Odt+uV1huqQoqQ53kEU5653q7sWyGnxM+vX9n2nVo2zpczp/PM+bwwzc/85ttvuSwntm3ntjnTMxfnh6z7xvW+8g///b8xnU/0EPnDP/2RH3/6idfXVyBQqtFb4e26YsHZsi8BUgw8P53RENn3jVqLkxqi76paq9T7yvXtRpoW7HShWhgC5s6R/mnmEFZt+wirxK9Oc+bttm/UUvzebG6I2zh89fzA5biexCODFE8SHqHe7pgySAEVbxZ6a8QYSD1wFxflD+tn3xGPBOOQfQIRMXzwb8NzsDmhSIQ8JS9Y5qa6rVS3IUtKbb9oTM08eFHwtUSMI06lj2Z1JIgz7hMZE+jxGsdE65FA6iQuayP1GSQNtq4yDIHlEfh5hJBK0MFe7QPUGGbPI5ngOLdk+I6KiNuUj/NIBOKU0JBdkhEO5ICBdbiVXE7C1o78NIfyW+us921kDnb2tlH6Pt6Lv9BYk9frlVQ7GgKbGoWA9nYQ4ai1eMffmwcD6vvNYabsu1vJaDZydOPcoIZaRSrYWtnfXqnrzePae32M3aXs7jl46LLwiaWLW/pve2XfCxoiPejDiLLW6j1/V9p+uLjLu1AZ370180W/qne4OUZ6q/QRh957ZxowmAoPg81joHpUiu6Oz6JhOEEUukC34YU2OkQ5fsic+Rj0F2/0wdiCQZkdEe/IL7penzhtPAHVsbdTf832UBX5Y4u/CP/+uFn85q303YXc7zqf+Chc/kiKavQbEHGmcMdZojE8dnWjsmIHZXgUrn5U0NHVOuw4yCdHtzuM6bq0h0ZlL5W9GcXaY4fRexsl0Z28NQghGEE6IXRUm3f34u7cVsfBYe44IoLv9QajpLkNASEKt+ub695aZbu+cb9urGvh57VwL4VSK2Xf2fc7t9fE65T47ruVU6jEdmZKHWU4MojDZyEqp3nmdrv6hDNNtO0V6g3td+7Xr2ieIfjUZ3g8zNYrYQ602NnjaPVGcxWCcrzdqoG1rGzbjZwDtDuBSk7Kfa2oKWrBJy8BVb8fg5jnfdWdbhnDD9zTNDFNQ6MYPGjUWXS83+fwgMHkQAKkP9AUxqcfBHerUIerwwGvj15N1dDQCcEJQwYOLXtX5hRyOXRoPOj4zZx78D6luywC86m/9qOOmaOXHXqXQTsfPoJHg2YD1ZExsOHCZv9XSjWI4sa4qgPpMSEMpjIDEQwqj0b4yLJjvB66T1aq/jmY2bCqahx7OQalHrzgW2uPJGXrY1/dG8EKSEej0nQiVH+fNBzp8Hg4bXa25pQmanYjgv9fvn7Vheu2FzKBlCMlBF/a2/AAG/sUk0HFHAxCOI5pG55hDW2e1itmzpKz5jEczaAW/xB5h97Gg+M/5lOZBMCOaADvNvoBK1p/EBVaHapzU19HAY849aOL6R6pcNBXYwhE1UeR64NZMHJLgce6ifeAO7/uDp2ZHuPVmJ1Gn/SYpMbT4FiL/fL7D3BhoBdODhkVa/yAvpc+DB5FS4MOGuMByfKAE49HNxxO6dhj1+HaRN8ykQ0ZE07FCBIJYSRRD4H08bxh3PDyL18nj97a89geBf59iH68ox1G9+77odIqtXjGWWndJ4FjqDVGM+RApHf7LsgO0Q9DX/Kbd8D9oGuPlby6U3yI3gQdInZRYd8KMe6AUdc7ZTdqqVxfrzSM2htl39Eg1H1jvQnLFLhMyhQaYTC+jm7fRpqxxsD1eqX1ylR3ynql19U1gdvqByPRs5QI47ot9BBpRSm7a4+837b3KUgcAiy1sO0rbBGrGzCo72O0EBPozXczuL2UN/2GjViNjrPx8pzcNSMeBUvfp5nxLjpAYL7TURmmtsf1dnihj6nKDkJTIA54zuPteTi3qHTfAhu0/p7HFcLYEw+Ege7Fph0ox7j67YCcx/3Rx8XpjZ4XGzNvuMblThjXkzEIT8d7qkIfLBPD6Kaj2fPd+Lj8xg3+Pooel7e/QOP9G/L+XEWdnDTONutHhcUPjTDu6Dac6wfpyww6zfdgVn17HJSu70kNOqY4w/VwEuJjxXDEFZn9i2f5P/T1qy5crRt761Dx0EIGLXzoAzzTZsB1KTnsNj623gZNVISQXWfUbQhac/TE0inx9Hwh5ch9XXkpDYluwZRyGlNdZV9dlJezZz2lpKSUqLkSs0c9dHOmXtld1CchsJwWH9NVKPvu+VEx0mullMIeNmKYHGaRIbSuA97Q4KzIAafZgDGPLusBp3Rzp4zevMvp7ujhrKL+KKoxBBjQAgat1rG3EHfACOr7oHaUsfE1OtLa3fqgN4c+NMTHc1DRB2tQOIrd+PHO4yCyfhQAoRaHRzreHBw3dmlexDQ0JDRSzI/DXo+93LHbGzCMnx9DzxbA2tGNGwT3nhTzYEuCd4lNOobr/9atOfW7drbirhFe3OR4C44OxCnHCPNpYTrNrNvuzvhWxjUpQ4unj8lwuSwslxP5fILPL/TuUHUzWEt1gWz3yXOaAqeLw969Neq2EuaTu9Tf7/zppy+k6ELfZUqEnBjW4tRSuG0bb9vG15/ESQ05UO43bvd9SEYcyu3VqdC1Dl0djdLVp7xSSDo+U3HN2xEaiAp7Kbxdb3y9b1xvt4fbuO8lHZZ3Qb7DewhexA60YtsekHlIgTQ5ISRKIEogSPhFg2ZYaYOt9342+A7Hq1E7jF7Ek+KCBuZ5ZkoOL5etAI2okRiTN4yjoLilU/F7dnrP5nKkQmmjkQxBR4EQoorveOyAqW1AjyO9Wtyj0eo2WL38S9MAf1mjwR7mykOoruPn0YNNPPbPEuim43UGcCoIHfckPJxa3O9TB8TPQFjwRgKltkbdC7TugZzBzxW3bxuhY+aNvGKOEODNyLat0DtZw6CWMHSyHly7tcbX1zdeXq7k9P5a/5yvX3XhusxuN9L2DTN52B7F4h5YvWyYxnE4N0Rdz+FnvJGnGbJxPj0/YjfavhNyRtQTZqMJp2kmx0S979ixUwLyvNCtswUX/4XgsQhpcVfy02lmnmf2rQz380jCD9ApJZY0IcGdIWoQxDp1vVO3gkZf0ktReilYiS7i7E5EMPXYDMNtd8Yow3GRqRzw1fCEOw5Z+AVUFrz7kZHlM4LsvKu1B87uWPlgTh3d0ugPH4OOqr/NMqZWDjzQbywviOMmPiC5dkyjjPf06NYODuAowOrOCYgQTYbzhBfpoO7jpwoywlxl6EqOEnsIII+34djncRxuxyuRsTJU9ZRgCZTaeHl54e1+53a7s19XX2Sru5uH4EzL1o37fcMQni4LlyUxLRO3l+BSgWFGjEHfml8TvZNT4jlnd28RGe27M1etNOTh2LCznE4sMXO+TFzLyr3e2dfKx4tryvqUSTFxkUgucMpCms/Uru7WcNu5vV55KxVplZi8AYvidOVWKtROt82bslKIUx4aQGMhMZm4a0UbS7NS2bedsjtjMMUJKcUhsgaxeKMVg0eblOZ6Iit1EIyA1nyfuDfabXdoSSD2RtBG1E4KnSUaWasHRdbjs5OjZwDhWKM9kA5P4vVvymAVB4ycEiZCE+hBh1bRr9bah/heQJIOlqUwz4nr9UbbK3WvEDqlK7V77P1R7XzV2h2eCIPRh19bpbjzzRHxcUwd3ewhgPfr1AtuK45GHGzoX8IhcuzIxmS218ohMgmjBUTdNPshjxlFDhFaMXo1jliWA6XBPJkdNTcJl2mkKrjJsIu4DdQ8JqiNJmfbfaIM+rivONCUVpxRrIMpXSul/IV6Far6XqXWQsdtVroJdDeMtOaxGTYukl7b4wDRGJiXGUVIMVH23buNVrmLUIsSo3j3oW6701rDBjZ9uEe7M4R7nol5lEDsPqGk5H6IvqjsD2jSgCpKoSDNC9e7HsLFljpwf+UAxZ084puid0irH9exHd/nASUea6qHTmR0xUce0OPf2TuAcPyXydH5/WI64phX/+XUdQCWfdxU8qDK+986vCLff+a97OkBuWEcNHlleB8eHZkeYkZFxXdbmEOybqA84Ef1Inw4Bvj3fdfWj1cgvoTngC1/8Sr8x4YDiw6qMA5r1eJejW2EQ/Zw9Jx4enAzam0DuumkIJyWPAxnu3tDDn/EXswLlzlWVNbCGjYKO29vNzzwMJAE0nA43+8b58vOlCdSiFy3O9f7nZeX6wgTdcfurp1ruBENEjMSZnpXvlyvfPn6wpeXN952N3oNQUk5kDXQ8VDH+3192H31WjlgbFFhXwOhe5SNiFH2nVarZ9qt2wjahNeXN2KMlKFdkhAgRVot7nU49iNDlYGNmI+q3qTRpyF5GLB5dy3VsQNWBrFlBKQiR/HyYvP4ZwaU75YvBz1nQNVCPaA6xsQj4HJj40gmDiEMY25lWibu6+ZNrZhDr2Nq8YvbT/4+9neHvkt+AZ/1Ou4/c+G+teH4Yh4PBObTrNjYb3pu3aOgYY//uK2TPFCbXv3FhPF7HwjKY0ct72QM/P45WJDH+uS45VrvhD72ezIa0gNklF/8GRObdYf1j9d5wOE21iPWjqkbwhAoN/sL9SrcSqWZsJWd2oFasai0kwuQaytDSzUW3ON/oXOZnnh6/oBK4PV15afPP7FtK70bb69f/SBQ4b7e3hebzUg5u++e+G7LYRn3jSuleAHs+6MIbKWxjXC1fVX2ffNJTj3OAj20UgPOUOGbTwsxysPJ3q/LEVYnQ7skB7X9cfKPwj1Ye7zfoDL+XevtYU4rY/SwYZfUzA0W3ndA7zdliMfF/l6MgBER4l1iN3s/IIL8IkUVDjweEazUhxjausO18P6cGb9F35dgYyLsqMnwPBwd9Og0j0RnP8C8o3VTgeP7CuJaNuSILMftrR74/gjlM3fPmFJExF0anqfkeVm1OmPMqsNdFnypH4/mpA0tn3fSHz5c+PnnL3Tr7OvOuhX20oZNovMzW2384Y8/oqq8rTs/fnkZVHhhnuJY5BvbXphzYs6Jy2lhby7ovK13/uGHH5liYsoOEX44LXw8L/z1bz8wn57YG/znv/+Bv/uHf+DttlIf7E9/t3/ZnNTSXEIS3Zuy1Orvr8Db65UUAlMKTFPk9e3Ofd1YX1f2vdB644soX7++oKr+3oiScmaaZrb7nf83eX8SK9uW3fXCvzGrtVZE7OKcW2aNxXsfYEACISQnSAghZDfo4TYYiZaVtgSmgUA0KAQWdGgZWsi0LCQkEJJBiEIUAoyQ/FrYDyT4wOki81bn7CJiFbN8jTFXnJvvMzzyfhKPK0f6OvOevU/s2BFrzTHGf/yL2kXgViMKFLKOuU9dlZwHDOXqnhKXDduq+hre9KZxvyx6k9SMvU7M+68i1uDEsa4rua+osZ2BKAK5XlmRrQlhCCC6s9JMK214/BAYgiUEx3SYuFyWHpKoAYmGvnfr101DfRKlqpu7FcEHe73m3rz3Vc8NSZSdDVuVsej9Lmp/A3GL6MS47c03jWKE0JtjI4ayU/iNprS3WnQ32REUAbzXiJXWVJdIq2qCYK2+jl7gcs54b67nmDrz6O9qjDYP5nrvaFE6jIHYYN6S2sIBNRfmy0JN2nw3KRxub9TSa53+nw/5/8bjc124np/P+ma2qotwaxm9w1a5UnPFdIPNnDr9UnH8GAubq1gRtllhDppetMGGK9TmxGpMe8kq5ixKsXfOYFskG6V+iumO0K0wX2LfPWnnEZxFnCVviWXZKEU1J2NQ77cmPV68Npw1nE4HdbNp4MUx2hFvRmp15O4FprzWQBZLFUPjDbyB6fTdpllR2sd1myNRjzTp2T90HRVVu80myrjEWj3YryLjXuyUAwuovql1hwxlQO3YPFhTr7YvzYSr79l+KIC8mf7arhPrWipExaW7vqtPHcjOsDL7qYVa/upLciIgTt+GRtdy6U2Ne0M9rnutN0oMaFdMFFpRbY54A1haMeS58fAQefUYeV4TIo3S9xRWFJYU6Ts6A8YJ0+R4cXrBq+mJgw98khvbpmxTKz251+gu5eH1mVIb5y2xXR34dfIspZJLVV/O0noCsO5VatNQxZwrOW2c54jQePAXPgyO58vCzXGmNOEXfuVDzpetS0QcY3DkXNhiJMaELv7155miiEHwhhS1CO/mr9YI3ioMvm2RdY0ssTMkgWotm6hHZ+2QsomJy7Iyz8u1kQm+63xaIyfdqSyDI4jhxd3I0R+4mUbWbYWtkilcxpWpWzIFcdiuzVN6QEcHalX4qqpTfC7+U1Ci33FEQH0KtQjBhnQmn+APqmEzWErzrEn1SZ4JsUcKeji/ftiwtuKCOsvnlCm1kbK6oeuBnjHVY7xl8J5Szzpt9utTqsU0hffXWeHjljLWDXqtpqqho04z5IIIxvY8OVRzqRbA2lga0c/HiXTpirIHdQXXi+D+51IRH67EGGk7xUrvy9yq+qyizfIeD1WbvJEduE6CqULJolZ3q2WOsCngRRJhXi5s28ZJRp4evgUk4jZ/5rP/c124rNVDvOZd81HIWUgpKxmhqHu6OkOnjl7ppna5zFeiw3yZyTnrbkHUxcIY7d5lp3Hv/NT+0e7TRKsKA+5fUc+7Pnz3oqAWSDotjctKzHqRlZ1SZPpz9SJTlENBQyeuEAZ8GDRPqFu+6HJVd061KmS6wyPSdihTL8g9CPD661d1DbnCZwC1qbEs7Y2nXtMCh3zKa2KnQjY6nNGuC+Y3DNfW/69dp0L9+Z1RpW/o1brqCtZJU6cL073/pHVdlAqFZa/L/c1u+//ur6d2qRCfLqL997gywdrVlafv0q/9u8I2Rr/JZCV/lFqV1dWLm35kHVC6FvLaC1frBsRG3VKc1wy1aWAInhgzrao7hLfmOg07q56Ixhp81YnSGuEwDuRciTn3gqMMU++dWvkUpVVzfQt08o19qr3MG8FHGqbTz3XfZ51lDIFNEjGn/jt+SivYlC5X+jXVWuuZZQqxCqKatD5hK2Kg0+3gnTZkIqRSiTFr0WN/3/TayKnpe7ffUb2epFzY1kQaVH9mBJwzhE4qMH0i2GUMO2P0zWXcr5Mrk283e+WNzKHte9d+DbRG7px1Y/rvRlHqOrrr3mIhFTifZ9ZlY41Z70Nju1bTUktWB/+qCIcUJY7UXCjZ0zqcrI1eI8Wk8Uet9utOP8OSC7UlhcNLo0jrjYxc7/F90qlZBdE7gqIWbQq/arRSI5c35AzVo3aovDbVbbaO1lRdZeT+e9hcuvZwt1dr0EXMRlQ+0vp7rrR8bQikSyhqv+9yKsSUSaWCsQzTCdM1j5/18bkuXJpbY1nK+WrDX0umGv0QS1Xqci2ZWvOnOeNs8ZHn3oXEPtpaYzV2xHmM6UkCgF6g7Qo97TfpVZAsO47cGXRCx8a1cDnvCc7hRqg5sm2aUbSukavAzynBQozpdPpeuAbHMI0M44T3A7mVKxut1dbdy6HsMDtv9m/7f1f64V9VMyP1zXTZdsIEGiq4w4d1fw4atjV116Y7Z1xLTV+09x1e6TR5ES3oTfpr6HBt65j6m0OQ7o6huq9a6hUilFa7DkShS2t1kW+RTjYBqNR9Yuxtxr6b26ubdDLJVTcici20rSmoaPb9Rt7tgBpiCqaprqyIJli7LsYtZd8J7MJVfepam04BIojRFAEXPMfTgZujGo16a/CDp0tcEWM4jUEFyc6Qtk7y8Za744GYM2tUSGsInjEEbo4HtpqIUa12xOhhtTcLtSgpIfX8OXEG7w2lKtPNWMs4DDSBS1yVRdiLUr+I9L3vMS2gOyANQ+1CYFS717zCpc7oezSNA8dBd76XlEi5Q840vDN9+teDVUk1KoQVIHQ5wLpG5mAZB8MQ1DH+cBgZw6AONH3SZrdyanrd114Y9dpSyFjEXK/WvblQtp+5Np8qlM1KlLKupzqo0L/2PLJSC6W9Ji7zVdcUhgHne35bRyJq39d9WoC7ibL5xmGgUrQBEWFbVz2faFivMKjFUrM22oooCs54LX4VJQU1ve8bKFW96O9hevpDa8p2rkWb97hFhQEbeCfd8UOgozq6Gsh9T5tJOZFSxjrwuWvuik6J1TQ8dM2jvRYn0HvedvlO6ZExrVW2LbPmQmqVZg0vXr6PM5VtefxM5z58zgvXwVqcOI7HI08pspVMK5FyVrNHs3chNSM102oCFJpLpSo03SotaZKnEyWQrufXig+XfHXWMAam0ZKTwoGgppStVnJSrY0zmtabEAgOcYa0RUpY8d4z+EBKSbueVpmsUFoj1QK16D7ACDejZ7CGQQz3hwODbQRbGQ9WO0MaxmSlhhvpuyyDcd38citvlrtZHa7pUIgRNc+UWrFOuFq6SWP3LKrk7l+mHZa03Dt1Q6vCvgyvRTC7WNPIFYVptRJCb4IbVCOUJJSs5cX0U1YEXcYLiBVMc1hX1V0gg7HamdYqWK+aqFYLxqsGrpa+hEZvGrF9P4Eo86+92cXtip7GvujWbrMVrm7XpbSufap9/+XJIpzFMBshdRryYFUuIcYQvCPnRCsFnOhiPG6cP/6QX8zw9HzB5IYPE84X7WK3RAhOJy0rTKPvtkwJf3vAeadu4a1QU8GVzN3ocEHp8MeDUJ4LqSfR1k/vrKraLxlryKaSJWEVc4Kq7h+lZT58vRBjYo0KL5qOwO671l2np3Eu/fpqmjTsvWonQUXKYUtMvageDlMXRSdMSYRuqGe9ZbwZ3hTVmLXwGKP7DiNMwfHW3YHD6LCmUVPm7q177l/ccXNzi5UDoPeOycpebSjcqkb+9SparKVSasaODpeBpr9L6fKL5gzHcCSmxFpWLsuq02erTH5QQ+EwXKfRbdt4/eqB5/mMdZbDceT+RYBckBYZbk7UVskpE2uBaikZ1pjIZcMaIQTH6ALeW6wVHl8/dSmHMATPzWnCGFhiYckrNVUkVczdEZwHB9YFnOxTObQSUewkMrhR75GWKXm9TrjeqLOFlrqCtUo+8t5pAaxVd9+mT7hiON0MWKf3nfUoQrB/XibgrMbCUITqCsUnytO530se6ahNAZKoL6f1npvDEW9UfRf5NZrHdX88MoUJoTBsK0uK5G0nU8gVslPL1cra7XdyrQxGk4KNCMuWFB7sOxkNXizUoh1gNYI4w/3diWXVNFsErAl6k7dR6cCdxeOtYRo8Q3BsvZg5p9HsMg7U4DCiHWdD4TELuvhHu23TWUslJ43EHsKVGELf6tRNDxfMvg/aIcuqhasf0Hpx0pejtU85OgHJLt4FrpEfVeGEnblkTTd6aq2LpncNktA6U6617jjRf+ZOwNBpay8WldpJG6DFUswOT/YPtSksa4wB9P1UMgOAipr5FOzH9bWjlGEFE6myC33fdNmtT57az7TrP1qfu3OJkW6ArGrUYC2jN9yfBmoujMETnH5NjNWikzM1Zy1gAoMzXM4z1jyxLBu1JG4mz9HfUspB/6yqg4pznrdfnjBiuL056m7UaOFtrbIMnnXdWLeNcRqYppF33nnJq/GZ87zy+Hy57v9ERBOOS7nCtEPXFr51f8N5WUhZ4c9SlPnorFqHaUyMYQhB92d9mvfOXdGDElMvkvp3x2EgeEeMBe904hpDIDpD9LYXPGUVhu6qX7LaZ+m+y1yJMEEgOKMFqxZygs0KJe2kmILY2sNFDdYpTNv6HU7PXmt06L29Edgbo8Qbax0GeTPtNtVXskXGcWCQoGhJM+TWSOumbF9RIliMunbwXgNr337rLZWsdAhvHII2vNsGnQloi6U1o6zEwXMcp2vg5DasV6i25EyKCet0qr8Zjwr5xK5nrIVSBNN0CraihStnbaRLMZigms5Se+J60fdtt9lStKHQmpJtrBFdEfQJbk+2prU3919Vu7vWXYdaE3JKtNydcvLW6fDqTF9K0yapX3+1VSUlLZkUs75W3Zr1tcdne3yuC9eL05G70y3WwLAuLHElLa4vhhupKrw3WmFwhud147JtugAPnvvDhLeGyxIVFug3rCKN3dIGZd8Yb3nn5T3nObLFTM6Z4BW68FZY54U16gEj3nE6jBzGgW3IuL6zGG3g4AWh9OTmpoS37v21LJktFsbgdCrpZI+UlLFlncOihas1nfRa56UW6buJfa9zxUdaX8xoheqbDJ1ASmGHrq9U4tYUH98LCuDsvsOq1+msdQV87Uv72p/ViFoele6orTPsXiRq93HsRU/Ad7h2Fx+3qoVOjFz3bIq/y5XdVHcOc3cMeAP765JrZ5jtAs1WWicK9P2alevz7vucZgzedQ2ZMZgQlCwjMHnDW3cTTgzbVhlGZXWKsZwOAxRN2Y3bSkzqE7cuG9ZcNMC0Fi1c45HgLE9PF57nmVwK3lrefnFDCJ6coVD08+qLuG0b2LbI82VmmgLH44EvvPcWwTken8+YrqWx1mKM47UR5nUlZaUsDP1aFDGEi2WLidStxnKpCg0lPTC9s4yHiVz0aylnhbitxXvPNi+sMbLFiDdwmgKn40TOeh0bAY9hCJZcPIN36oph9dC+vz1RSiGmhLM6SRsxjEPA0zrVXb3uslS2qJPOsqxYH2jBMwTbPShFNVKipWifrkVhBYUBuzxCSQUKxTnjtdgJ0Cwxq5v7MA3KJHaWkgoPzyvzlnVKNSqIL01RGu8th8nz8uUL9RVslfN5JnhHKZ4lRqS7bNiiO+ngLdMYuLmZVHcJbOsAK8QUabmnk6N5bzeng0L5W+KyLNedVqulm3t3ll9nMbayx7P0/VZnOet7rTtHQfr+Te8Xa7tlW28l8xXWpe/MFMkon5roG6JJ502TMFqadSdXKtNhUvJQTtezo1RdxaQtU1Kldh/Tvdh/1sfnunB97eXAWzceM97yFRMRUzl5S1o0yHEu0Azc3xx458WJtEQeLyvP68ZSN966OzJ6R14LUSxzzDw8nhkdDE4YnMWMI3PJbK0wDZa8qSloRjupcRx468Ut+fnCvCw8zTMP88I4BsbBUWPBDwPGOkqBm8kxGBia0vJLK1QSt7dHPv7okVevnrHjCM0wTge++N77xHmmlcY8L28SXK2oi7ex6sYQt37vqmeeRQtNSrEXmTfvm2ppdIdkq8IIWjS0kGlp6cag1G5dpReab3tBU2Hn1oTa+V37pW1qIzXBVP3fFV3yltqImK7s1wJTqx4cFcE0o7Y9BUztdgdGXdCrqCT5OmXtJJPcv4+mTEh28aO5atzYqf8AovZFe8F3gk6hAGK5mvLGlfPTmed55lwK733hni++axlkZBgDqejS/vb2hO3OHsMY+OYv/AKPTzOPc2R9flRHcREOx4n33n3By9sTISbWnFm2jY9fP3J/CgxDYAgON47EmNnWlTE4xs4QW1Pk8TKTSsGwMPkER4OzEzEWQvCMw8DJVrY0kkom5oQ1GSOJFzeem9MtMWXmeeY4DUzec/SB53XlvC49RqRbmTUNLt02tUqbBuGAI4+GWAeFyVsiZ2HwKrY2xhDnyM3oCM4x2nvO6w3nZeV5XtiWx2su1GkKypYzlvubibasSC2IMaQSe7fe+ODxmY/XiH/1yM3hwP2LG20KvYdi+4GMRowYwVi9vpsUbT7FkFInWlSLMQpRNmtpQViXzGNemVyjpUhbdXXw+umi0oHuG2qM4Th4bm4OTKNn8o10eY34oJPGMjOfnzhfzjxfFsIwqn7NQauZKipWNu6EdJmjeItpmhxBSiqGroWaM/NqmILnOAWONy/YtsS2RsRkAKo0zQ4bdH2w5cSxLhgxpNZYSmQtkVgyYzfa1h0aiFjd53vNVctZyU+m74JFF6E02xBnkOGImw5KvbdOr3fU8V2SOo+kmAlhYr48sT3NhAa2ddq8hZf3B955ccvL27dobaHWyrb8Gg2S/NKXv8D97S3iD0TZwBSOTvNkSjXE3MDCYQzcHgZyKdzFwpYLa10ZrY7bpSple0uZu6czgUwIlmHw+OHIJpVEwdHISXO3YtZwOG8tx8OIe3GjB3CFp21VHL7rqqQvkVuF2ykwBsPoNR1Yc4My3gr3bz/z8HQmxUSpqtifpgn6HuP14yvylpQwYQXjD+wxHH34UPFuUsq26rNUqLnDZFB6gdJdSO0kDmlF2Ym1e6N5ZSSqQVG5dnj1WjkapRhy7exEZWSgMmQN9pPrkksZlKVCLpWye77VQpE+/bWq7CkqpjOqdsupbG0XvernruJkZRBY2X0dleYtu0ei6ZtnUVf+di2r6uy/s9KuNkGtEpeIi903MFisdxxPR8yg2imLw5uB6TCxbisxbRhgHALjMHB794K799/m/PTE4+snkumstybghWnwjN4xOMs7YaTUxsvH11AbzlmGw8jhdE9KkXW50FJkGgemYWScTjxdnli2lbhu3L/Xp2UMz89P5FQoufDuO/cYUQ3UmlamYcAHjx0CIUzknDmfHygxMQ6B0zTxvjiWElnyxvw8k6o2EmIMl8uqjhq1MLhbpaL7gYf5mZISrTaGaeR4POCsJc4L3sAQPLenE18av8QaI4/zmeeHR531jZJDtqRNkRPgdtIdmoFqO/MOIdwd8SEolN+UVLDFTM0N2/OscunXm6gdXpM+UYlC7xR6wrlQWqI2LUbzFrlcFs7zwjxv6pFYCtYqFDxOI68fn7gsm1oX2ZHjcaQhPF02PvqP/7nDqJpGvKVNHSFyIdaFihBLIa0LupcWzueVEALWObZ165Nf61ouva+saZy3yOA8N+PI3d0tueq+qBWVofjWjcEl6Go6ZxLqyHM8jOrYv6ywbupPZdV8urTKZV6JW8bkSggBMIjT/Wmlsxzrjgbpy8o9FsVLw7U3pgJld6tHURjdSDSVb7TOUO7JzgV6mOQztSTm8/kzn/2f68L11tsvub27pbRANBtNMqFV/HQC0eWodegi0aptTWi6oI0SqVHV/lUsxg6EXFTVXSLOW4Yx4MOR0UIxFUmZXPr4m96Ieb0xjFPA+4B3gVOO5G2jxkSRHfLSzvs0amc9HTxDGPQQto2aIu5w4nC/MF8ulAy0Lvw16jO3zQvbvAFdrzEkdgd0jcvu12iPVbnCZV3bpE40GnNPXwqbzhyUmnvREuqndlK6D1OGlVDVNLb//VyUYVehW9sUhTcp1K7hQOmKyp7aKdaudRZfxtleCBu0XtAUJd3NUAWc7gR3+MHITotWs1d1R2gY4zS+vH/WOyRhZHfnB6T1QquFK7vdOkj1RMpyM/jqCX7EB4ebRu7v38IZzZY6TAeWbWHdVtK6Mk4j03Tg/sXbDDcj8/mZ86vXJKtemYJRR/mcoVXddRxvEDEMtwfW84IYwR8Gbk4vyTkyrAPb+cx0mDgeDty/eJdhuWFZZs6Pz9xYNC7djzw9vma+LMyXlTAGBhtwxrLV1CEygwTPcbqhlMz5PHB+OhO843iYGP1EMpXYEudXT2Q0jFCwXM4Xti0S15Xj6JnGicN4YLgMzOeFbd0I08h0POKtJTijRS54ppuJt16+TWmV223m4ThqnLzzHA9H1q2QUiZtG9IKhs5Yc7pXKakw3J8Iw4B3nrhWvU5bY8uVINpGbVktmES6Sa617FEdUFDDfYO3Quoi8VwaT5cLy7qxbRuwkxwUpRlC0Jib+UJbeeOpKAqvpZT48KNXSIdprfVv9soYbdBaY4uZFLfumlLJqTIMgwqe9x2i0Zib3Smm1ELMmWRUrO6Gsfd/3dGjIxSIwTiPFXClgHUY5wnjSG5qDaAGwPl6L9XciDmRc8Hvz2Ft3zfabphslLRlFdmhNWU1oisNjfHR+2YvVLU316VULdw5dyZvh/Vll/pUzvNCyRvL+fkzn/2f68L18sUNtzcHXj8nqnPECp+cz4S6Yq3HGM9kPPOysswz3otSV50Hb3i+FLYtdlLErMXAGZY5Y0zGzZnWFsR3AXFMPSBS3aWDV3v+53klrhHn9GCrYlnW1OmueoJbYzkcD7zeFoK3nPLIOBj8GPDjyBYb4m453d1xujeky8JyufDhhx+xzrOaqG6RlKKa9eaCl+crOWEYNdyQBqNTyrk1wjhYcu1CY6OHinO63I4JfN+vuW4tVSqkamhbD25sjenguh1Wx9H33VArrLHDHtZ0iy0NBFy2cnUOENrV7mj3V2x9xzYELZKlNjCdZdT0gCqdVOG9w9CuEOmyZZ3IjNMYdXTPlkonVxhRgsyoNOWYm2YPdh2U2ELt7tzNtC7odHjvSFkPqHGwvLi/JxxO+PGW480LxmFgDB7nBm56Q7LMF0pRdl/M4I8vOY23hJu3aE0zh6wbqc2yrgtxWyFv+msKTLdHbFjV0aVV5kXfBwn3VOfIzbIlx+M5Uu0RGSbMFBgGTwgD43Tk9OLLLPOFy/NzL+RanE/ToPuUCtsWsW7A0rgdjoh/1v2NVB5jwwSP+JHpfkKtlBzYwO2LQo6Rdb7gW7xCydPtO8iwEeKmE4NxNDEMNxM5rmRpzKng15XxdOL+5du8eP/LDMPAMI4cjje0Zim5cjk/kLeZUjIpZ2LaiNvGtq5Mg+d4umGaDszzyjzPmgW2rYj3mqEnPWamaqNlZJeUqKYtJZ1OvZ/0mqpdMrDM5DWSY+blOy94cXfDzenIsq1sW2ZLiebh3ffuMa0xNIi5XUlUp5tjtzKq5Nr34f36Ve9B/Vm2u3WUpgU5bhslF8LoOyTehexd8lEr3I4jtEZKmV/+9scMwXOYBu5uTn0C1Wws4wPjMHK6v8ejQ2auGgnjx4Gjs5DTVde1SVbLtNrY4tZRFSUwVRzWKWPUGo93FrGGbUvUvFCroTSHOx7U0ccIYgPNVGrd2M4Xzg/PPD4+sW2r7uOMBk5aX5UY6QZKKizzysPTr9GJ6z/8nz/HNA1cVohWiDSWbcEYrzonsdhSSTGyxg0nDes9xjtscMwxknJREZ9x6H6msESlt/fVyNXJO9bCYB3eecIwqKaoFraUcHR/O2sx1pFy0T1Irf2CVAy5oZRTb5vCH7b7wJXU7XQcd/d3LOeFZV755NXDG6FiVTJ3qbo49+KuS1fnVJRKqzizB3/rJinX1nc6SnWV/r9jLmocLjBYLcgNSFWZjiLK4HJOdJFflSxi6BTz1ohF4cjWoR1jNItnjbnDPXTdTYfprs+jxAvnFMYrpXTdXH/du1al79S81ZRWYy3r1aoHgnXsLMWdHi6Ckgp6gGbMBbFdwOs9gzfdmw/Va9mO3YvT5zAwBcsHx9ccjkfuX9zz+PKJIIIH7DhcLYmKMSzPF1JciWXrYmRo1tCiOhPYMGBk6MvqQjo/E4vGSTijSdolF9KyElvFGqMu3t5yOWus9laL7kxEGZO2gnEWMwaC2s5SqLpr3TZiLdwcDwwHtdU5vzqjFsDqMGKDI8eN7XLhW588KJPRKW3dNIeIRcaRQSxWFIOuy0zKma0UsOZKuilbUttBgckYnNfpfD5nPn66MAwD0/FAOAwKNTrHcHOLbaor2/JG2xZ2X73Hh0cul5nz5cJkDNNhYjwcOB5OWGdxIbwRngODdYSpIa1ia6GJvbrcuKBswJqV3dhWzTGbt0hcI3FTD8rRB06nG27v74mvX5G3C7k17k63HG4mrAht3fjgo9e0Whms43R70qJVCsuSrudERSn5panl2+g03sdYUSPafu26LhMwRiipMxFbQ5rl5nRCBHKKLKsmT0sTpedHtQ6rrEzTwDANDMeJvCykmIjbpg2LUa1bzispps4wBO9HZRV24wZNqDGqmcyV2iLZVrasaE6lEkvG0HDOk+bUNY2NHNe+40ocnCEmlUKkUt+I9WtleY4s540tbxxuTozTgPe/RoMkP/7wI8Lg2bJls4YsEJPazSAaqW06TTnlrMQG5/SQGixbLuRSablehX3UzPYpdXvjTepqao3RebxzDOOANE1HTrmoSFd0jFbMu/bkX42bVxh6N2GpCLknker1mkvBGSE4x7YtzHNkXSLny6yFq1O9PRpznmsh98NT+u+posSGaW+yx2qpuqxGLyLXI1+0QFWsKi/wbo/vFnIvGqbvh9QtvfaOMXcBqhbM1HYdURd7du/AWPp72JruXHpxyd0v8lroetRMaZW8p7r2/+xC6NYyzuxJr66nwCoO77odlIj0mBY1pvNdqNoapFYwdrfqUmaa8jsa3jaMK3pNGE/pjYXjjTnqOgSat2yt4WpBgscap0JOH1jOZ+K2ssRFdVTW4ILXwuWc2uqY8XqNbZfLtXANzmKcpeZK3jZSKxSjMRbBBKXap8QcN4zpMKi3Cn9lgRIpEpQCbmBbV+Z1YcsZb0RJPAg5RtULClRjGZyh5MwWN56fnpXZ6izjIWCrVaZeyVTje16YoaRIyiomxb5pgGop5Kb01CgWjLIJW62kWEi1kmphbMqi9NbgYr5+drFkWlo7zCycLxfmZWXdorrkG3V1GcYJb9WPUUxPlEbhcOs0nNOUrOKXPnE5+mvPhYqhxEhuKvDdpSZbVJjQWMF7g7VgneCqisXHcdBgRgNh8JSizeh0HHvhyhr6utuLSQGjiQE2ZkbfLeKcITlt3kppXXvZz4DaixL6PmqOG2C02W3sbNk9kqgQkyYa48CngZzitUm3og2RrhkiKWnhEnmTtLDvlqWqnhODOnV06F3JXn1xniNSq+pHTe4TYqOVSN4SKRbc5NWvNSdtZvtnI8aSkrqo5JxxzoLRlPPP+vhcF66nV09Kq7UTixVy33vYTiQQY0EyrlWsqBYhV/0AKwZyxRbVLeWqZtVVQLJCYs51CnYXYY5VtSbOCLZWWt9hBOmaBwDpHnR9sjFWAd6KsFrbmTb1Stm1VjRfraiQteTIw8efsMR+kAs0KRRKJze0K7POS726pjfT9U6tUWp6Q6GonQreqbSp76SqqO7KNtWTra2bzEpH2ovuDEzfsalSHmhvKLM02W0Lr3/eOrW8ye6I1noOWHfNaA1T+w6Ovl+SnereC6yIxlygUxmlquq+QG35qv8w0lhbRDqRo+riDGmVWKNODb2Z8EbAVJr0PDRRzcs0Way3WOcIo04nVoTRCi4M+HHABkddF3LNSvU9N6obaH2XlJrqZVquev2gibTG6zTYSiG2Blkn59RKL+ii6c4x4VolBIu14cp6c6ibRrMeZw3VqEfdaNWZRenNlSjdC3KLGNNw6KHtrWGoDSdCuJmU0o1QnEO6UWtw4KUh1uGHgdtBGzKVJShhJmdNpQZNcvZWPTBV3K/+mrZDXtJNk40xhJsDoapzSzaWGhvZFCqZ7bxixwmMIS4LiNq0rVsidzeV4+HAaQTnvcavHALjNDB4i6vtmllWxBKswbSs2XON7qKizOC4OVLKLFulbFBTwdeN1FZyWjmfF+btiZQOtOrxduV0MKRhJEFnOQrew+3tpIQLaZhBL1EphskNULXxOnirXomldhPeosWsNQafqY5rqrFI7WYAlcsS1YnGwBqfoTW2LbMsyhq1ftBVRFPYL6VEiZmNjVg1ob3t3pZJWa/0plIRG8AJZtv0mhBwRj0fLWCbNtCxKENQd3ZoEd42Ff+j1wa9obctk2Mkx4RvlnVZiXHrDjv0An8k1cYaCzlpY9mKalQ/6+O7Klw//uM/zt/5O3+H//Af/gPTNPG7ftfv4i//5b/Mb/gNv+H6Peu68if+xJ/gb/2tv8W2bfzAD/wAf+2v/TXee++96/d885vf5Id/+If5Z//sn3E6nfihH/ohfvzHf7znLP2PP8R7bm+PVDkweCi92x+c7xoH4WZSd3VpUA2sPcXW2jcbwxyjRqEXXRYbdtjEKJzWBZhONIl4X0parxRgiwWjBIRcG7YZLIIVkK5pyrUxVkOw2tGJ1YnMGTUcdSLUmsklscXElhqlqLdcKknpzalgi1wnodDfrtaEKv5KPhBRqp+IwbnwxqmC0h0mNL9JrAo+NTG6YaSbxYogTbUY0sCEoDCVMRjZrZsaUnsgXivkvPWuVrU1OIWYjAgl7waeQpOKJWmFK4Dr5p1d/AvQqmZzqRNHJSe12alNKOJ0Cd0tiEou3dZJN/OGrPylUijq34RxFjt0D0Fjr16UIuAkIkahsSb++rzegOlFhO6RZ2vGVNVsGT8izuvPMI2UE4+PWZsBq12td6GzPi0OT4qF3IRpOqi+CT0sUsmIKEzsvcc4JZnkGLtdWdHCJR4xFm+FYL32Ea1ijaMUQ4nqdEBrWIkEaxmCIgSlQHZJyRHBs5wvSHCITBymgeYsLmiQosoVFCEYhgEQWlZZR6mVmAq531OCimJLFz0PwV0bshAsMen9VmvDecs0BAavUDqi2qF1WQijNkbWqj7QGsPgHLd3elg7H5iGgRCCogO1YZyQS2NJqZMWDGItORVS3IgpsTnHOq+s68bTeWF+vVCiEpT2PU3OhceHJ+5vb7i7Pek5ZAyuGVyrDF4bn2AE1X5lUkkcp6B7uZTUVLdotMdpGvCDCrnHeWN3i7FG1Nmn6p5sjRk1uNapbVk2LsvGlgopHq7JEAiUnFjnxnYIiHVqrG0E7xzTOHB7d4ftguGcNQxy115ZZ6+wammZ4INahKWkkHcBSZXgerwNYP1It0VVEtO2qTsMhuMw9alXeH74hOX5QjwvWBe4OZ14a82d5qK7/ZvpwN39S053t8oxsJ6aI85fvqvz/tOP76pS/It/8S/4xje+we/8nb+TnDN/+k//ab7/+7+fn//5n+d4PALwx//4H+fv//2/z9/+23+bu7s7fuRHfoQ/+Af/IP/6X/9rfeNK4Q/8gT/A+++/z7/5N/+Gb33rW/zhP/yH8d7zl/7SX/ruXnx3uzDWkZxQrFJtq+8poSIwhmv+jPq2NUyp0NKbpWQW3U0B0tOB9x1P6wdXP1mvpOrW4Ui6Jql25poSmfp3CeraYUTTi1s/zE1TiKCp35v3Cp+0YnDFYJ3HZqMCTSNK3+0LYFP7ISpC6MW3IeTmd/45xqhniBGLc6FbIVUtXA0wTnd6nX23O6TvzuwYtHC1PhX5AYzpkRL6/jRFLZQdSKXmldz1XrVbI1mzG7J2D4PWC1dL+jwVsF1/Y+jwZvdda/uEV6klKHOwCUU0Udr0ial1MbJ05w4rSQtX09iRhu7FjNddpbGue0gKIg3btp0+RWmuvw5w0hAbOuSsTEepgpSmuyUfMDbQMMrgaoKIB1PZY1aUnm0R66nVUEUnsgr4rv8xpVBSglaopWDCoNc0Qk3dzaBVhmmidsjV9s9BjGCNAzEUUX84imoLnXUEZ6+uLdIyJuhnLt4Rr4bGSvtu3RjYO9cd/AXve4JyM1RXcF4nZusbaXf6R2g5akSGaAr4zkyzvsNMqdBSxjtH8PqPtY6UE7klSkrIOOrXw0QuGdf3vVOwneCi71dHnJVJa5zeX2kXvLbu9Cxdw12hZ6QZa5lOR1xV/0GRhkdwwRFbYxwcxuxZWg0fNG3ZlMrgnBoGtMY0DrhiSdkwDUN/rY7goaaMtMY4TPjBdUMDKOzohaFmDSm1DcTGawpFEuF0Uo0Z88oeszMNgTAe+jUOIWizjAjeBtwUCD1A1DRNKLYWXJfg7CkVezRTrkn38yKQkvIBSoWoBU0TFcC4kT1M1lpLGUu/1wyncbgWrrRl8gbJVoxREbzZf3ZvsMdx4HA8cDgcO5MaijEEP35X5/13nP3fzTf/w3/4D7/j3//m3/ybvPvuu/zsz/4sv+f3/B4eHx/5G3/jb/BTP/VT/L7f9/sA+Mmf/El+02/6Tfzbf/tv+b7v+z7+0T/6R/z8z/88/+Sf/BPee+89fttv+238hb/wF/iTf/JP8mf/7J/tuoL/sUewgZoq1uqSPFlDwZBALfv7pGSsFpcUI1UM1RrY1OC2ZmX57Lh4Qrsbab2TRCEb1yqehhR1lDc+aKZS6Rcebzp6SsI0tZlyRPWds9ot55IxteGq0cmnsyPM7hBuGm6csDVQqoEOc0rn+kp35zYiBOliSrHEbPveqGENVx84ax1QMVIwlOsBvfvz7banTXQPp/+vYXvIWxND7TsUZTwVroKqgr5mCtY6rKgGrFQ9YPpTges1dd+d4a5QYTNuZ/Rrh7jfZE3YdWHeSdeIWEoL/bm7Y32H5qgK1lqSZj2ZTq7eTVYFXZA7r36C/Tlc1e66iSUVe414aFSM9d2TUNR7rajljfcjxnmM1V3XvKkoFAk01CdTxFLrvjuzkPu+r+973HTUbKQSsTFSYiFuK+MwXd0K4rKy5UiRxvHurWvTZBvUrGJTjerp5sMYSoXDYVL4uCSCdzijAuZhGHUvZy2z0diK1hqn00mtj0QYQ4Cqe0w3jRirE1fNVbUWIgxiidvSCyzEJWr6uFWUwhvVW2U6GcpEaJUx9GJqDT54ykV1UzklLAfGYeRwuiPFFWcMY/B4ti5xcLpzab240Nl67C4YPVG4ZJrmjNO6CN15pYi/vLlD5gWyTrFBGk/PF6ZTAGMYB0NrGp7pvUaJuFQJziurNSf8GCjVk4pnDIOiKaUgxiqclgvjMPUYkQpDJXcHezGGZPouWQzDEPvvAMkHjB85LRuPD4+kWBh84P7mhre/8L5CgzESvLnusP14Iin7qXtzqkuIs55mbKfpG2rWz0dESFUtwHTSqooqlEqLkXEcoWs+xQ4KSUrPzKsOmu6MD95cm7/5MbP6RjMZ211Jcu0iEFEp0jQFbm5OnI5HjuOkpuDWsobD//BZ/39//P+143p8fATg5cuXAPzsz/4sKSV+/+///dfv+Y2/8Tfy1a9+lZ/5mZ/h+77v+/iZn/kZfutv/a3fAR3+wA/8AD/8wz/Mz/3cz/Hbf/tv///5Odu2ay308fT0BMCr86yRETax2kCqIKYRRTt8ZxqvH7tzfB/H1RJIqFuCql1u2hY9GLs1f02bLkWtIWcVtnpnGSyoU6x244UVQEkf3r2hVYtR0kMrGCLGFrCF4kBqxEjDZaFUwXvHNHnqUJGiQs/qquq/1I9di4o1CpGJ6rWsgGm275+cHqbsfi71zZQoDosSU2i5d/yG0ixGvar5tAGtpiwXFSGjNk4JwVTdKSkxqfVpshfSPeqi0mnmhn02pV29e/V/tIqW/tb/XJAq2L6jexNLYtnZhXsHXYEi+hr1KfdlW/9LumDTP2+ggbBayFvVhbnJDXF6WFgqtmTd60mhWj1w9smvZHVRKK3hLJATpEJJK9VkxCaOx0kp3DGyritLnPFOKIfI+eGssG/OnOc3PohiHff3zxwPE6fDxIuXL2g5c3585oMPPiBXaFiOoyEVjU+ZLxdsDy21g2FdEmmOPD08UK3qAa1pnJdNm4h9erKuE2AsaUtkErEahZ5LZttSd363fSqZyGtUh/Kc1VEexQVLLG92p6XRjO7Arv50GcgWmXRvucUCplw1ds0IMRdyLFTZOF9mzpeFOUYOMeLT0Nea+h7ZECApkaHWjdr1HtUKpmRsR0dA05upujusom4q0o2fB+8YhpEXL9+CU1bmJ426zYjxrFtmqeDGERs8KSd1dMnqeZhrxrRGS0WdYPpKIJntmpemWw7Xo5aEHeNzMuh1aXRXTtrz9ISSDSH09cMQONwU1pg53NyQ44oTYfBK0JE+MX75S1+ipI0UN57P8xXab7T+vKb/LIfztpt+1+v36T3YaDVTUsPU2O9fzaFD3kTFWDfgOjFHmr2enYNXk11jKsfjibxu1Bg5DoGn85laE7mWrnfNvHr1zMPHT7x6+Zrh5bdpVhmVKf2/kIBca+WP/bE/xu/+3b+b3/JbfgsA3/72twkhcH9//x3f+9577/Htb3/7+j2fLlr71/ev/WqPH//xH+fP/bk/96t+LTjDaRoIdyfKGLDGUSVqx6y9eI/c6Ac6ejHSatc2FHJcdoRB/ykFLDQrrKt2K2qSa7FVgxgLhiLajZoO5YjVuHeDpglbaUjdrpBi8wN2x7u96iPEalrp6TBgakJKoYgjy0jDIq1ctUli1BTUiLoASE0dsrRqlySdu9dq7zj7Bb2bWbZ9r2e656AWkDf0JYVbdH2qU1Xtf7eanRNi2P1wS39O/bm20197A9CL0/UhrYdU0n+e7RCOjmaFfrP311J68dFn1tDB2gkbpe0WTXT4UqeZN0m++py2D4aKMHUmlTFqY4N2hdarjX2TbsLax0S9eXUqs3S3jn2K3B9Nv2sKAYMlHzMuWKyFaXBwyLrXWIXgNbrGWXVMsQ0oDecD4zhhgdEqGy9lhR5Po6O/DWp9FVS4enPwDFS2Tb0xqxl6LA8Ijt3KMbiA702XPd50g2ml0k9OOE6FmApPa1TxqbXcTJ7q9LBMtZF64L20RvPu6lJiupO4SKONnTBAAyMcvDJAJx86kqGX3hQ8jk4CqI06qIeis8Lt6UTwgRozphRMBsmG0ZprTl01loDg0PdQeqMpV2hK97up6iSvCb/KzvTiKUvuga1Fp5aSNbj1eMRVOI4HpjBgW0PEIeKozuIsmLZb9kKxutcOFprdOX+WpooaOmkOnY53YXFvDbvbByIkq4a/FhDTxdtiucFh6rHf51bt0Jztk0/tTbljCCN7T2iF617biAW7N7fC4HQCbmIQ63FGf5/qVMNIU2i/9rsCYxQJMlrslPFsOvSnv03JmVI0WqdWXYeUqnvRkuuViY3e6pjOqjQiaIAr8Onz4bt8fObC9Y1vfIN//+//Pf/qX/2rz/zD/0cff+pP/Sl+7Md+7PrvT09PfOUrX8FaYfSOm2mivLiF0wHvAimdO921ErzrhqI9D6jf1M6IerKVTIlztzQB46Tjz0Jz8Hyewak26xACoWnkRUyNagfocQ/Hkzoh0Lt8Z60Wl7LqfkYECUH7GitY77jMF0oDsYab0wFb1dSzNCG1oH5x1M5S1J1b6vlLztqew9MLcVVLGUVT9ukRWiu8cd/cY0mgb9a/8ySudd8UXAMWG3LNuOqJJrwJgyzaCohqtfTnqRN16U9v9ufu/nEKk++vU9dLOsG1TsfXgktnvdGhkDc+hYXa2Za7sauICqVL47rnQ3QC2dmDpjM9QcDJ9de2xveuXZQo0nVjpZsS77CstaYXSNfNSPsCoxWCC1jxlEPBFHX2H5zgTrqrERPV9cmpg0swapWlmfJqBWadYTxMNF4o+aFUDk6vIRo8nmecmK71C9hpwnWz1kxQerI07KB5UuppKFDUuic4f52cKmgqt9EGozycdRq1lsF3RwSr3p2t6ufpBN2lVYUYQ0+PFlQTlnK33rIwGoWIxAZSe+Pg7iwE0ZYlZWijIYSBu9OB4Adabczzqg1Z02y0cNRDt2Ioojo61xqDMZSs5s7qlKIIhDEVSVCMpVql9AcT8HjivJFKUUPnmphsxlnh5nQgVN1ZTc4jKbPnCherzvVGGtbppFnEUcyAp4IVhb5qvzxbw6L2SHtzVHujrE2o6ztifR7Tmu5N6Xsp48B5gqGL94Vli6pf8460bn0vpu4eVC3epr0xtZamTSFVJQnO6o3eEKrxSFWxuzZiVr1MjSFljTbBtZ6gTI88SRSrJCBrBUlVpRKbGjtsUU0RtmJISQuX3QuXQhu4oHE4zlowpbfU/5ML14/8yI/w0z/90/zLf/kv+fKXv3z98/fff58YIw8PD98xdX3wwQe8//771+/5d//u333H833wwQfXr/1qj2EYOrvpOx/TcWI8nSioeNQax+g8rVhijuS84Y1+mKF3C6Xb+CtZoHSPvgJFtQclG7wXheBqdwvvE06gEkS1Ma1VNaPt9Pa0aix5rZVpmDA0bNM2qNasjgN9T2CsUIplW2fd9FhHMqqTotaue0nUZnFUNpTSWmrGGGWJiXO0TsPOtVCrdmxWdPm7dQfnhsZG7MzCmBKlKKXVe6+vrzVijxsx0qPoDRp1sMcpGLW2aRhy6U7ZoItYoTPrIhotpnHh0rVfKccrmcJYd9WmpJLJVa6dXDVWf16rBLMn3kIzlVSzTsVdFKmdG8SWr9HlxljV/fQol9K0wwtWLYx0YwZl0QAXI1CdZqIVhFo3bPdO3CeI1ndzXhpSMq1oeGPMypRbHzzNqGHsFjNLTRgKodPGiyofNM+sFYiRV/PCsqomKv7n/wQpYqUxOcNhOpCaRqD7vKn1kHM8XzbcNOK8ZaQxTOpygLXMUYXztlbwgXWL/TDJupdFd3ZbqmQaWQxvHQPDNOGmAx+/fla2oQg2Lhpd0xqxNnCjMlhRvWKqhVQKo7M4Ueq9NY2UM7lWssDNoMxNcQOxoTZEYWQ0DW+Ubbvmiu2ZV4chsGyRZVl4eHiAXAjOsA4emT0YoSAkCXhTCQYOYVB40FjcNGFsh3ubJg5LU3KF81a1cgbWbYVmVXDv1cDWGENthuc56RSSMmlLGkkvhfmyksi6s+4en7k5cvUESdew05QSTbTIBhK5JKWECzQ3YqXhKFg36foWRW1q9/8bp4ExWLCeIBMtzrQe+Do5o6Jr75lff9Sz8Rx+GimbCqzz8txt1noWWxW9JlpWCQkqCF6KQfIKtZCrYL3ePbV6fFMheabhvaXQp72aiZte79YIRzsw9Abs1etnHp/OPD+deefFC7YlKuGj/4cKda0KrTbNHrzMF7W52pbvrvB86vFdFa7WGj/6oz/K3/27f5d//s//Od/zPd/zHV//Hb/jd+C955/+03/KD/7gDwLwH//jf+Sb3/wmX//61wH4+te/zl/8i3+RDz/8kHfffReAf/yP/zG3t7d87/d+73f14qebW8Q6nrcz8lgwmx7qNS8KdeREc77rh9SR4Dpxeaf07ZqRvCmc2LRocFAyQhVVvhurMMpGw/cddcWS2tbZPkVv1M4yyNvGrmEKpigzUGDJja1rwjBCTEm7YGuJyxlTejqxsaTmOjmjdE0YPVJBbWAW0b3QTpcFDcdMDd2LdINfNf5V8sCuqap9IttjGgyyJ33Q6JYx/cA2oDTzrkvb7Y0svBEqtga1UGqmNXu9gWko/b696fhK1S5OWvsUK7FDR12UC8pa2/sxS6M1ndZqeaMRM9Lg6uSh1lPO7pCZKioFWGhXvVmT/hp2IkufZFvf++lWr+oUZ7SbRmDOSoU3teCMRr2nWnmdGrX/vrUJ1UFulVgSpsellyZs2RP7HibGVWnUJfM0zyyXDWohGGUb7rIKT+U4BIKzXNZMftAiW1NmGJx2sN6RCr1ACzeHA+uW+9QVSVEnDOtgi0VhYAPx9qDsQx/48GG+wkOSEqFLAhChyqJTlTTdf7RuiGz266NxCPp+Vxpbqbo7EYuxY09fVsJHQSdj00khLUXEe2ZnqEXhJ1c3WkuUBJci3cVDX4sbD2DUBcYWhcmldwc5VaiJlhOxQMFSRCfW9fkRSiNWYTxMDMOAGQbmRWNntphZ5lWFwblwfpy1kRGhGodDd2fkQmGH4XVHrDLDpoL7fo8E0biY2p1AcLbfMw0jQaF1s7NgdaVgADco1b25gJVK3hLrecMGNXs+3Zyoce1iYvVY1YarUuLKdtGkY/UP3AlMlZS2jmroWVNTUqeWWJmOE4ihZsHRKK2Q99dtlaIYjKHE3chYuFjHYC1TCJTc1GRXKuIEglCD+ZTzjl47aXsmLc/UbSU9PxBrZLn8T7J8+sY3vsFP/dRP8ff+3t/j5ubmupO6u7tjmibu7u74o3/0j/JjP/ZjvHz5ktvbW370R3+Ur3/963zf930fAN///d/P937v9/KH/tAf4q/8lb/Ct7/9bf7Mn/kzfOMb3/hVp6r/7osPI9U01rTSLhmiUeFwH4VLbRQTlUpelImjcIlCdblkWi141Jopt8pWC87pclddjtUqRqylloQvDVMBE8jV9TwrxYBNp1tjrZIBamF0lRCUsrykQvI6oajNkcJmGEspUbH9okysVB25ieZwGYPt8GAYdrJCI7iqdGdjKFKv4X+p1CvMUEUhw93FworGahY0J0t3I2oUfPX1KPXqNG/6NFWk6DSYNQCRxtVItNVK63/eBJUQSL5CaWrU2w9CurNHv5Gr6ZAEWjD3n5nrHnCn0NBOIMn9d9y3bVcPQ1HBp+acdcxfOtmmKvSmf2TIGDVXrgXTWrdvsmou29Qo2FqlQRurE3baIqZlbMscgiWVSiyVJSX6q8Z2OvA1K22NvfhatqKmo61kyqaHZEyZeVs4L9oBe2nAci0OxhhScgzW8LwUllKIubCtieA1cDQErwnRVmPu07YRY2VLmVQjy5IppRKCsGwKvxoniKkMccNZxyevl6vcoZbMZA3BiEaw74w4aXgbtIGiqZtF6xEYVWOAEEipsNaCYLCmMgSvwlxpPbg0I7XijTpIVKs0dIPtU02momLkkhuXHq9jRAj9s7ZCz0Nz6iPaVuKWqDlR40aqVuUpe7N1ibRUEO+5q7fUOiFSmM8PLMva3dI3UirEWJifFlLVScoNQX/HptT6XZ+ESLczatSiNmly1QZC6aGMItDsjsq3Dmd204B+jwlQc8YFjziLOId3hrhEnh8uTIeR+/tb7pcbAJbuKhJzwwWHMtsz69NCyVVdTNpuMt2Iaev7YN2nx6hOF9uaub270fSEqqhFoWjUUkUbVmcUZs5dvoIlWmFwnjwOeKPnaOrFK0sj72YM10cl9tiX+fmR+ekVNW/Ml/9JJrt//a//dQB+7+/9vd/x5z/5kz/JH/kjfwSAv/pX/yrGGH7wB3/wOwTI+8Nay0//9E/zwz/8w3z961/neDzyQz/0Q/z5P//nv+sXH2ujWkMTR+yxDrVWvOS+17BU1JA29agP1ddYSKUH6mVGp91HBaqFIWUQyLWwrFq4sIaWExKzxrqbTKxWJ5icu17LYmzQSIFeuAaX8C5grCM7FY+KNCqVnGQXXVDShuSElIp3I1uzpEoXN4I1lsEP4BalS5fMYDPeefUPQ4gxUooKO6cw4bzDBE+MyqA0NAY/UY0Wrhijbg+6JkRct0KqDSu1F0tHbFVdvFOilIztIYrF6ARG0yLk/UBtmS0vrFvS90QU9tvhkZTVFNUZGH0gonTilAqV0oM59ftrVbGzp2GNhuHF2ogxdc/ESuhiZERdBqxkrFSCC6ROVU4xqgxBDM4GmnPqjZgSrSScVVJPEnXhb61grUa4++BwoyVtESkRUyNrGJRA1zTvTDMfDc4EAiPQ1JNuXfrOzzEXdTBXl/8LMSl8EtGE3eANJw9borO8lB2ZUmJdKr/80UJs6gupU6+yFINzlKbEj+Atjw/PpAQpg3EaHV9rxTuYV006niaPHxYNm7SWp6eZWHTKqyn1wq+Hk/Eqyjao2bEzRncxQfquqBKXzMFrUvJqNWhQ94aVmwK1CrkJcY0IBSONu3EkicLfrVRgw6H7MVwnB7XKuq1XJ4+PHtX+jFI5WKE1SzVC8Y3Hx5kSE5TMVrQJq60nF88Ji/Dl915wvJvUhcM5Lk+PzEvk+ZKoDWLKGixZVX9kjAHnVXjbGlCu6EEVFb/vqweRHnApqrFLOWvCAaLTKdo41tquMFrshDHZ96Xdwq1ZfW9T0ibl7Ze33Hz8yHHS6KVl3dhipjUhDEr2mNeIlHbVTvVlNMrYqLpztwbnHU/nhWVNnJfEu5eV4zRymCZFQUSbktagRm3ezyikpxpCR7UDNeg1sraNV08zr54v3N1MPD7PvHp8IndCXC6FeY589O0Hmvwir5YLMV4IzvX38rM9vmuo8P/pMY4jP/ETP8FP/MRP/De/52tf+xr/4B/8g+/mR/+qj1/+8ENO44AplRa6ODFX8NptZcAEh60aUJgtpNSJA94iFRyOYCpPl0fdrYyOF28fqaZxiRuv1osKeJ0QMBg8tMa6VopRcSZVENPIBXJUZpkTwYslNFgviVwThMDN/QlnDbFEns8zRSw2eA7OdupUYZkLWYzawmShmkahsM4LtsMOplWsa6xZDS1j1T2cAapkznXBWIsbR8zeGbdGawvNBfDqFL7GlZgScU1dyGgJ1iqvr2k3uXYH7FbVrqgWnX4Iof9MvQCFixJLEPKWOnhUdfm8E0xaI1g9lnNK3eNOV+GpJuiL/HAYdR8CSFW7GjEWM2huU6uFXCLr8oSzwuAtB+fA6I7sIa7kTpW2tRC7Y0GpM2EadZmPWhblFoktkZ3HdHLGJpX5csHyamLSAADQdElEQVQ7y/EQlBRQK6bBsm7gVf/la8+kbrCuW7cdA2LGNEMujVgySQymGlyzPKXK+RIpDYbTwBffueFmctxMhmVFQzOto5XEw6tHHh6e2aoKn10/mA6DHkTWGJYmeGeZBsfdwfP4vLHNCbGO46QO+s5VUtnACMM08vLlPcZATEW1gJ2Yk4p+llVgWxNE5YdaBGNTRwtU0GtQdlqQrO+nNfjToHtgEYoUzvOF1nSXm9aMd0Jwlk+GDUJQe7BYEKeyhcGBsbrjGp3DGkhJKec4lafkWHi1bLTduSUIrz650Io2LTFbmtHiQm0slwS14YeFU4ZpyBzHQFwSyxx5eo607idqjSVMTpmK3Xex9cbUW0fs7icFw04lajRylasEpRXNy6vSyKmQjekrBZ126w6he4P+R8k8pUJuwtpQ78q2IzLqB7MWoeEJg+C8Nnu5E2YaBnF01KdPdR2pCEGjVkBI7NNqxQcQ77WRM5bRKMPTWLgsifO6MS+JdVP9WPCO03RgPHR2ogu8dRs4TY77o+PXffFdfuEXP+TVx090yhWlVWKJvH78GHf0uBf36v6fFvL6RuL03T4+116Fn7x+ZB2Vvop7U7gGr1qJ2gQ7DEinvkdBO8vSEG9VVCyNssHT80JtjakGStKAw23LXC4r9JynQRquahT8vFVad66wfVeUSlWLqFgIoh5w1RbOSyTVihkGbrwjeKuF62kmi8F4Tw0GikZgr7FQJCjUUVQNr2a+OtVZ0QlnMY0tJbZYSE2YnMNbIZM1nsNY/Lgp+6nDhbk0mhvADwQrLHFji5F1Xq92OoPV3VqtlZwra+4u7ygMkLvzs4SB0B0iWtujEYSMqA5I6Q3UrHs+I4qjB6dQ3bau6iJghOAMsaROnRam00SwBieieV5lX8QnvKC+izlxPuuid/COF1PAGoV1Lksk9cIVpLHldO0Chy0RrMH33WApjdKE7AJOZ04S6pvnrLDMgYM1eKn47j5ihqARECg0k0rleY7I1h3qsx7mKSspIhpNEJBSeL5snC9RYafgcNYyDoHDoYf5WU8xgThfeLJnnYRAM+W69Vbwuj9QVqfpBsKOwxS4LJnaNG9GXbyFEIwKgTtD0lmrn00rGCu4LkhPNgMa+7Gm0mFZ6UQcPY5qVRRCnTrBd6cSMcJUlEwgxpBFiFHzr0qplFgI3l4dPfBeSVAx90MXnG067QbHzRg6k1Y//zB60pbYYub184ITgwuO0Q6MY0Ca02DRuWnCQVP0IGX16nu8bNpYRZW0kPXw37YMHrV2spYhqJNK6/Eure96g9Pfo3ZfT3Wa6QSM1NEcVTcCRhu8ArWzP01rWK/yAB2w9D10AlMQYmoaelkF599AfbU1tlQoVWOVfM8YVD2ZNhoqNqavFfT8k6YxL94p0lkrGixrRO237O7Mo9dp8H2NYnYZEaSiWiyDutXs9z5okZxGi7MjY3Dc3d4whoe+kuEKpaZu5lxbZTweOBlHq4n1f9aO63+1x7c++kh3FlEXihXtxAentjOIID1ozdDYmnqjacyHwfd9iNYM9YObjgM3gyHTeFwj3/7kWRVhYrCtqiVU1VypKkFhtu7knEslZlV16A5HMfstZXIDFwLx8swYHLk1Pny4EEujijB0kWwtaq5bRPdijtZZjI2U9kBHjXDQwzvrjY3lNDqC00mzZP1e47yatXZiBkARRxVH2Ie8VjXOvi+bpO0sRi1cqafHWtv3VFVh1dadE+gQFlUnsU7EvmL+SrMHaH1ZC63Dj7WpHVZwQqy7oBT8K6/TnNCtZvR9rdbT7y9aayzrqoWkwd3B420nZMTEmpQx6aTpZIdCKWEYGJz6Rmq3o4fc1hyuB1ZuVbPaAJy1TE4YnGF0hkMw+HHCBc/RwXlLXNbEq+eZjNVDvKpfQsqNmCpr49qhayyNZhWtufBi8jhRq6D72wPYQMbz7dcPrGti2zLGwBicNmU0ak66I4sV8Q5vBCOO4+h4bXXHsm2Z4gwlGKbDiOxhiK2yXLRpWFJmHCwDjtrUizKvkZgql0tU2j5t5/9cXdfZWaK88boUEdwcGZzullKjf8Z0Y1alWV+TC6QbI3fpwx51Y50wBctxtFd7MSPCzXFki4k1Zh4vkZenwMsXR75w+4Kvfe89wTRa2vj/fvOJp1mhsPO8kqyw5carhwvLnDhOHiFz6E7tKWe8MYTRcxg9QzCU0vPauqBX+sQkTWkZwRrNiTP9umq1BzH2c8IIrXuTxq7dshRceFO4BG1CnYHJGxYpGN0wMB6dmkuviXnbmOdIrcIwCreHwBRcZ9OqIbidLK670xtjNLCVvnNDHfhTUvH/4A1T0MDUXNSqalkrMgLVYZvDtqoJAqPHkpWxbKyymGOieEs1lUrmeJp4+fLIdHOrO0GRK9Gr1sq2KmP5dHPia7/+a3z1C1+Bmnh49RHw30bm/nuPz3XhOs8aYpdyUcEqyiorV7+yRpOoMSTesvSFeO5xCMEZ7f4HT2oNyYV02diqMKfMx08z5zmDeUMAoKpzuUZ9FA1u6wdf7nY+im0r3Xo0wrnotOSbUEMge8vD84XnTanFpRVW2yHpJsryaQqzWQM19c6lFF10N31uZwyx6BTZKBz9hAyBvK2knq1laiZ+StvkfKD0FGhEhYFiHcFObOcLOSrd23ZGEcaq2HLwhOCJKdJK6/Bd6ZRxUXcEr2LVHToFOpvPUPtrbwLWuy4YVv1XGAdubw48Pj6Rc9d6WchdEtkE3RvurESUuOCcgxaoKVNyZq0NvN68zzlejVynwZFivu4j1rpeSSmaYNM/v6J6HSPquBBTUZIEjbEbxE5jYG4eExPOVt46DXz4sPJ8WTkvEetUJN2ashpjVlPamEtnQgrOGcbBq6ODFUqOpOyoTfDHI0YcNus0XdHP7OZkeHF3YAiWnDPbRZuF3KrGZowOewgcDkeOx8JhrpzPsyY/O8PhNHKKhVp0V3WJuTNLhbt33sJbj1Th41fC89NMEfC5YLK+ZzQNRlRimvRF/ZvoirI3J7kxBU3cjmtSvRY7p7QR9S9cGw+levaIkt6h20L38TSUrNFBrTW2OF/NBKTCl957ya/76jv8lt/6Nb7ylS8yDCPWWr7yS7/CJ4/PvHp85pu/+C3iecVU4eX7bzO0rG79MfPFd28ptfG8qADbOou1wvPDzGXLxNwwplAtGAyjE8JkFco1rhMxFM6OtwrJCo2ck3pd0sgNktrfalEWjbHBWiRl3aeKSgiWrDCk8QPvvHfPYBw2Nc65Mp9nzuczy7pyMwam4Mmi964Pnrv7I2VVtmssFdMSrWZayRwCzFvSCdpYxkntqm6mG2IzpFRI20qKC4fgOY4jsQJ2AhswZFw3rM4SmAbL6TTx1tsvGNrG+fmZp8dn3OWB2iJ2EB0IrJqVT4PhxcuJt14ceTkemUCdh8bbz3z2f64L1z7Wtq6lElFh5dhzXlJuNGOYxoHTNBKNFrt52YDKEByjd9weRx7PqpuYnOX9999hSZHmDeflFcZqxIkWLqvAibHUPqYbaWCMij5TgaKOCc4Kt8HprmXLTIPnnXffZho9bnzNeS1IUlpv8N2aAqHJ7n6g1O6GHhomZcjl6gF2HDyXJXFZIsYYXry443QcuSwzj88qfHa+OwpgOptyvBYuTSbtS2WrXVZyhhQtQ2dC1qZq/ukwMU0DW9pY1kRKhUZnEgKtNLD+Sg/eCRMNDfSrKdJqxXvH7WGitcbT84w1wu3NkbffeYkPlnneWGNiHBSC1GpulGkgohCLNEJwTNPAw+NMWldK3Li5mXh5d0sIHj54QAQO08CXv/Se5k49z3z88SNhVIquAOtWlSiRlSwRnCEEx+F04PHxogSeEjkMnrubE/d3t6o9axob8qX3XhCOr3h4PPPhx0/c3A4KqdWC2IHzZePhaWaJkSk43UPdHQhB7XS8qxwnwxCsFtJc1f6qQzreWcbgKajT++B14q7e4krFWGWW+uAZx8AwBsZxYJqixkaIGt+Og/79WhvD6DDe6XvZhDAEnDh18jAW7w2hOKYhkH29shzb7i6D9ORfPZy9mC5AVnuld1/eIFYY55WHp1W/T0dvlYyYPulKz5iq2tTUnmFnW+M4eu5PA0Y885pYtoihMY0e7wxT8Hzpvbd49+0X3NwcuzlyjyPyjuNpRLxhOo7ky4LUxu3LdzB5JW0rT49n3n7njlIaw2UDZ6mtUXLm3CfLUguDd9S+hwrd9ELF0ArBeulwdrPqSAFEadfJfSc0KHRW1eHG7oGzQuv2aONoaclcmYxvvbxl8gFbhFOG+Wbmchk4P184eoe3hnnL+HFgPIy89dY92yWxbpnLvGlDXiytWqYAGMG4gg2eaQoMw8BpnMh4zfaLgW0xjN4zhcBlzYTDgXE6cXN7wjb1wbwsmeDheBy5u7/DlJU1Rmp9ouRIKWqXRVM6vOl84Jo1/iStM5dZzb+TjoWf6fG5LlwhWEZvqakqVi8wBs/L+yMgXDY1Ob29OfLyxR1MgQ8+eeT1wzNCYRoDhzHw7t2BX/jlT8gpcTNYfvP3/n+IdeP+g2/xyeOK8xrlbq1AsdAMGaeOFYCh4gbHlgqXJSEl4b0west7x5HahKfzxs1x5H//9V/j9nbio48/5OFJP3TrdCqQjo3narvt0u5vpzDkvKhOxVkVFb9zd+CTh5lXDzPeGb7yxXd5+eKW5/mJX/yV18SUmCbbITvTD41BM5kaOGc1A8pZWrOMBrZtIcXMzUENN3PVZe/NzQ3HmxNb2Xh4uLAsEeu6BxroHgp/pZ8jVmEUgS2qyl5qYTyMvP/WPa02fvlXPmGw8Pbb93zlq1/idDPwyatnHh8v3N56OqKE6GocFVUphf9wGHhxf+IXf/kVy/mZss68984d3/OVL3JzOjGM3+J09Lz//tv87q//TmJa+OYvfov/4//4P7m5U4iGWnk+Z879hs9NOB08tzcTX/zy+/yX//Jt5vOFvJ05jp4vvv8uX3j/fT78ZIFWGIPlN/xvX+Gjjz/kw49e8fP/8Rf5ypdfEIJQSyIMd3zrgwf+yy99yGXbeOdu4p0XR77nq+9R8JTWiHkmzWe8U2eNZV6wThOZQ3AcJmW1VavF2lndH7bgyLUxRJVbjKPncBgYD4HDceC0ZExTYvIQLIfBMQRLbcLxEDBDUBeI3PDGaezPzuJ0Fvr1WKRPj0XNrLWxMkqPLiqRGESYN3XOuDkM/G9fe5cwOD55vvCf/+vH5KwhjfQUZ7GWhtXA3164zE7+yQUphRe3A19458RhOvHBJ2c++uQZauadFxMvb0e++PYt737xPW7ubzDW8fT42LPtDA9PZyQYbl8c+c2/9Xupy4WaM5hbtvjMcjkzfvAxb71zZFsLtc3I4Ni2jbnobjfGRMyF2+OgKIE0QtBJMzd1q3HO6L7OWOKqad5WhFoKTvYdD/igTVerFWqHH0UIg6MVwUhlGBxVNCfQe8vNcWQaJ6xYxmg4niZu04Hl8Yw3eu2mj544ToHjaeLu7sRZVmpbuFxmvHcaXFHBj+BSwdfGdNB9oPce6wWLI4inTYHR7ysBSzlvOKM/9yu/7nswRmn0H377E7yt2iSFoM2w8x3Oz5SsacilY4UNKKUxnxfOj488vv6QrZ0ZhxM12c989n+uC5cxg1LNXeFSKltrpFo5+XtEDDGdsYcb0vGWdLzH37/A5m8RquPu5R3z5cIK5Nv3yB8tNBOxtxO3X/gquRWe5EA4/IoukAePOE8lUKs6bxs/KuEhrsjhACnjzMIwenKObLWS7t4hf5Ip8RlOd8jpBe7ujqM9Em4+oMWIG3wXJQe9oVPGdYueHFdM8Jha8TLjnFWdUK3I/fvY8hqXDMM0Yo43tOlEGCbG54rNienmSNwirRkwnlYq1nusdeS4Uox6+JW4YaeJ4DyFFXu6VyJIaVQ7somQl8JwvGM4euyQGE4HtnXT8LvmMFGX/2It2zxrAKc1tPJMO2peWGkNbt/DiME/Z6CySuDVvJHcARkKbqqEuxfUUrrHZICiDvl+CKRto9iR4u54fv5lUq7YMCHHF9gXX8Td3lN/6ZF6OsLpJe70FtN45C6fmN5+hTuOHKeJ4zjxnjupjs1ZjjcvcBSOh4mv/bpfz8/93L/n8fUr5ssDNUVuX77F3ct3OQ+/hBgYx8Dt174KL95HXnzMB3Pj5fd8Dy54Utp48fKrlBe/xCX8J8Jx5Nd/5X2++oV3+MI77/Gtb36T56fX1PbMq4+aUpZPw+4CpTtEG3CHE4MEHpYnmliKCAuW8XTEuwQbbBVcrlxSZik6DfhgeP+de86XBbEw3RwJ50xpEI4HjLfdzVNDSHUnCeNppJVBdzmtEavVaXTbdOlP6xPvQFw28rYRjGWVi7q2H2/54v/+m7m5veH2aeGXPvk35HnVA9morASjLuxmHJXEsS4cw0TLmcfH10yD4f7+li994V3e/sIXqf/pF3h9SZSycffWDe+9c8t777+AErmcX7HWR91djoHpOFFawVYtMiLC4fQCqYZ1zXgOuNzYhjNGPDElXj9eqMZ2L8mB+/sXVC5sMXF7PFC6rnEIQtsqHtN9Q/u06wx+27g7HhjHwPPzGSe6s0tZaNZcd8xq/6Tc2cMpUHJGamEY1e2nFoWtz08Xdd1vhvPzgrENNd1Pei9X8MaQU2abF7bnZ03cLglTC61CTJG0RUIWLnNU6NtGSipYG3kyKylWnHOMx4GyKfuy5cY3f+kj3EcPnL79AYMk7l6+ixiP1JVlPpNnkHVgGgS2Z7wUyFBipaRydV9pNDDCdBg4HY7cTLccQsA5z5rrf+d0/+8/PteFyzotJlLliqEbwAyTjugxa06RrkUpuVGwYAPNuO6U0EhNwDjENoz3YAOlJLKG0agHXtHOqeJUI1I/hdyLIzeNVME4xGmBqC2zdsbaLvpNxbBlWEoDFzqhwfSiqHEj1YKuvdWho3aTWYx742IPndhhesSGQ6wH48m1aVy8GIz1GAe1me5oUZQttUuARZ9beixJq4LYLgLq0epi/NXotGDAemVU2YA40Iwuo+6poMwJsex5JSKu78J0J5KaxjDYYUJqQpxXQXfL1G4EqnepVc1bddcE5iYaQVKaIZbWNVSCsQ4/HKjGEyuK5z9fGIcnPnr1GjNsfPT6gdfPM2GLpBsNQcFHhhBo1mBSwVtwVUkLly1zXiOXJepUsGVk2zjHgojaJ82xcN4S5y2xNeEcMx5LrZanLbNkyM1SY2KOmfOWePX8zOvLzLKuBKOJzsbqNaAzpVBLw4WBoX9OLmgXrdB4wgWPb4J1K67nW4HlskZN3rWWw+S78S2Idz30s0/ydk8z0LRefSMrfgh97weUiqkWaxTi26nbRhrWB21q+n6wiekNVcMNB4bjHVMLhMORLTdybhjnwFm1l8p05p5eT+I8tI4MGEsYJo63L3HjhPFBd8pZJRHiHEWU/GOAlismdOca1B4JoMTM4+ODhq82g3EjvhVKKWwlM88r87yyrlEZq8eJEAIxVLyPCqV2bZUxgvOCSRljHeM4qmlxTiyr6ieN0Wy9cRqQzhDO3RpMRAjWsvXDehdVX2Nzrpi76vhyytTSKKmyrlHlnl737ClXWtYdcSvKcqbR976WcQyEoEvzljPU1jWZqE7Sq51aTN1PcdcDAjVV1WoaQ46J9Tzz/PQE4jE+qN6yFDW97iLxVnUp2TpD2FllqO4M1FKaZgw6TxPD82XF2kjc/l9wh/9f4eGsmt9KVSNRK6gTdggIBhcyCUNuQq5C3jpLyjhK1VgRUMqnMb7vjhwNq87HKYNYSinUzhZsaFBiFdNZeE2/v9NvVfSlhaFWYY2pm78qm2hLhWXLzOsG1oHJ3eG6B/a1njR17Vh254suSu0sq1aFLapw0jqH6c70iCUXdaG2/RAwVv9+pbO0kM7eM9fiYq3utFpF3R/EdEGkVbdptEsstSkMaLUwGeOotiqN19i+D1HHbnanEuNoJXfvNt2HNGfwYYIsOBewdiCXi04B1sEebNmNYPuGv7v4K26e+ngiYjHGMo5HwBK7jc+6LDhj+ODjT8A98u2PPuTVw3O3bCr6PrvCNB4IIeOWxBgcKWem16/4+NVrXr96YL484IyluEDxgfMSoSZSMjxdZh6ennl8vrDEytN5JYSGsZb4/KystgxpvfD64VkJLuvCxw8PpG3mbihaQHvhsqh5bK4FHwaMcQiWYQgMwet+q+pB4JrG4uyCWsEyL5FYKmIM4xg0Hseg8JyYK3tPyQhq6JpS1UU+4MOgrhFF2yZl56q+ic6sM2hMiXVVJ4Sc2b2x1Kg14PxIGBvDOLGsiVI1e6pZSzUGUx17fIbpJKBmSr8mBR9GTrf30NPMjenXvtHCF0tRiFNE9ZhWUQTBEgZHSYkSE69evaItEVOFm5fvcvROXUtK4TJnlnkjbprYYA5C8APWZbz3nypcSkjx3mKd2nIdDwdiyTw9ZeZ563s8PX/GcaDGSG6FhhYZ4/RA39KnCldrWrjYHeTpy4LOdkyVdVEbJ1+7bNlCS5Ua+3lUtWCIsX2/5xnGRggGWlU3kaJCc2MsQwgMg6Znp6SfSfBeQzG9o5hMKsIQgu6yt8x8Wag8YP0AJuCa3oy1w8s7eaZ1Zx7fNXGqr1ZphbWa7F2Bx+cZkUra1s9+9n/mv/m/wGOwMLVMapnQi4mDnr2kN6sVteBZ1wuSHCZlvLHYYvFdn3KsQgoTjsC9C4wF6lYZzhk/q5N3tRY7GMSiEEpS0p3sDKmkFi80YawWjb8qmHVlFMF4zwgsrz/Bppm6rQxJM3+KsbgCtlVs1e5UeeaANGyO0NrVrbmWol3RemEoqoqfvMOVCMuZaVu102mCyZVQu2Hu7qz+qdweX6smX7XOiDIaoeClE17YdVpAq7i4crWJj4IvyvKKbfcq1LbRWzSnrFRiLaTuBSkCftvwrWGtwbuBwVp8jAzzjGyJUGBI2iWKCLGz12j6HmFUTzXl2H0qhEEc793dcrJCTZEjQhPLVAW5XHAhMMXMqUJpBhsrsq5seSPWB0AbgCE0ztOEeX7m4//6XzlfzqSceOv+gE8bbls41USpGbs1Hn7lv7I+zfC8cCrQzpniBeMhXRbq8yM2zZgC7XJhew1xO2LniK3CcLgB0fSxQQbECUkqSGErkTE4DtaS708YZ9TqJ0ZSiogIt7ej7qQEyraSuw6xtaZs2qqdr2TDwTiKVIIxxHnFj5XBCkNwNONp1nGJRYWvUslUvJgeSwGSoBYlUKhjCwydTdvCQDIOcPr61gW3bYzNEHCkbl5MzZjWDbzqm+sr0D3yAI/lNB54+8VL1vjEyQu3Y8CHRhi1SXMyahq4s5jBIcZjcHgJTOORbCJbW3l69cTj6zMlFd7ZGsOXv4CfJl68eEF8mvGucXMozGtVMkPWBnEYghKJbidaVRbrGAaMWbtebmRLiTNnUlI3EGPBDYZihCaD5lXZwDxv7NvwvcBZ0V2WdFKJVJXLUBvGelq1lJTZVnXxGcaB6WbCSGEjk1vlODpS0WxACDRq12gJ1oPJEYxQssX5oScUB3RlWcmpEQY17BXnCWLJeGoJjKeNrcyUUhG0iEspSI1glXhSWyJrD9fhmNpJGWY/uvqj4nwleBicgW0mlY3LMn/ms/9zXbgE6aI/ruF/gmq1kEbu4YGtVkopeOu0AOTS7ZF0UmuldcFdJW6RZZ45ny88nS+sMXYGUYfXqn5fyTrmqhtEQaxCJZromnVKq7WzrxQuyLlwuVygFrYUSSldYQTtnNTPreSsE5TZWYtaOVr3H9uvB7WX6cvzWskxkYym1bbWRaHN7FUHI0KpWdk+Rg98Y1S4WFOPOugFRbPMNHDOms5ybPocFWWY2Wr6ElatbXJTc15jdiGjxWAocetLfvQ1QX/dpeeKabprq62/D2olpNCWdtqaeot2bdX030s//7q/xyXrYjhreKE0PWi3JSrb6rKQcsV57QhbgVZKz2hSuCWWgqnwOF7Ytk3DF3OkpJG0RbZ5IcZN43Ck8fyQ2VYNACwV6qau7GmtiDO6j0uR2i2PlotFYoFScE4/X7Gmmx13EatRWGaOWUMXU6aJBvoNMnB/d8vhMFBbIxVlN9adrm4dpnL9Wuva85IK1unnYa3hMkfNUxPD6dZDFTKFdVmJTWUCeUu0brXVKDhUjFtSJrZNw0lrxVur0FJ38pufzzyIcD5fuMwLKWkCsjEejVV54ze5x8M0U/V7hJ4okElbJCdt2ry3iCicnXPh6WlmGtSlwyCQ9HqCjdGOiLWE6cChwjIXIknj6K2mHSuqoujBME5gK9ZaYsycLxsxqs/kkIruoRBKbsxbIniwvpCiatR28lPryQw5FZWwFBXk++C7mF/t59S8uYvHq2oNdzSjNVGJishVYuO9Onk0UdZpTJmcKq4JxnoVkzc1pk5JtZ3N6PSbs8b9qI2bMIUArbviQEdG1H2DVjRPqzcU3jlcl7WoZKRCU5cadeYQfS36JijRy3T2KLuAWq2hWlH/zm27sMa5py/IZz77P9eFS9cbchUoYnoSb6k00a7COthd0QW0ANRK3gsPetPT/602mOeFeZ6Zl41UMsZ7nO22LfsP39W6/UC3vaC0pl5yrX/vrnORXnG2ZUMapJyuejOzu27vT9122KAXrm4BX6Q/l2lIVRhQjGb/0H/vlArSD64K13xjhdT2nZO+XwWu0SF7fhaihApjei5W273V2tWlQZ3a1b2jC3r65Km/sRGFUzUSpvWfpySAhvq57QOl6UxBTZ3tpATap96Hiojt76MWw6Y21QC9odDir82B5gEh5ipCXzeNa9hiotH6rshci2jHXrV5KZUUM8uyKJbfxditqnN42jZKST1yorGcN3IWcuo6pprJFYXGgld/y1b7dZlJ68YcE951mJV2fd9aqWqBZPRzKN1js2xZ9w9iMF443RwYBksq5fq7tNKbFStquFnV+aLVBqKwqnG6N21iFCoVwbrM9YQBYkq6r22o9k56C9MKIhpVQyvkogGqhop1TqM2OvFimWekVR6fzlrkq2bKqT6uuzBKffNz+z2puxjpkHAlxUTMOm9bb/FeIa6cMktqOOcwreJqo9ZMKZrzVfH4EFTq4TzGOJBCruqQb2wlRoXiWhNcCMrAa5UY8zVyBoFly5SUEKBkdbWpTXBJvSdLqezBcKW7dKSYu/ZS7buMVYg+l9TJRgqjlX1x3BvL0mF8EavayAa5NJzvGXdVX0POu4DdaTqxMW9+dlbNYBUhZbWh68HRXSLqKKmoyUGDhq4nkl60lFw6jK5nA1dpQO0iclD3UENrb5w0jNXPx1o9taTfn9fIopxJMRLTSi5Jr8PdguMzPD7XhSumwibqaGycV2Ff0e4cq7j0zSEoRFFWbHdGKFYPijAGQsddZQgMZuDuOPL64wcuy0KOBS8wjp7pONDyShgOBOO7/5u52kkZZ8nd9RnpKbc0RBzT4UgYRpzRzKZStDt2ftBdg/fUvOnewFrEevYAxJ091Bo00XwcS8OGCiZgvMPbhg89EyopvblJj2ZxnkbSA8hoZtluompa6ZMXJATjJwCMyeBGHfVNA+tBClKLdpVdIG2MOsnrjizgOp4nNIUpOnJfje7LTMe/nfM66bmKCZq2uywzuZlORFFLpVJ0ChzGI7bqoaXdZ+vpxo3pdCRX+r4mKBlHhOl0xxBUeP68bLoD6vTet999G6mZmhPHww2ld6DBe/JWMa1StgthUAJKraq3sqLxFs4IwWso6Po805rB1sYUBDc2pQQvF0z0jLZiTwOtwWgarmyQmxosl8B2PGCryjnmy0bDMKfCecs8Pl10Gmxqd7WlplPXjde8J6m40ZNSo5gGGLZaKAYy8O3nhWl0eAvLVjR7SQxLhdQMoJ6IsYK0SqUiXSfX5Vr4nlZrG3iB7KR78r/RHeI87jghU2V0gfnyzDqfucwb1jQOk8f6QFpXZSZa3ckZp/udoqwAaErtD52qXdrGY1pIrhFuBg7TSE6J52XldjhekYg1RlrKbNvCMl9wfmScRoZxxInh4eHMumycn2elzTtDjhFf9DMP44hk2NaNZYmsqyZKtAa1nFWTJ3Lde+WiRSSnqCbGDaQ2LpeNXBopRmpqfc8u12ktp07Esg5rPWvW97BVoZVCyup4nxkhwrLCZS7d8UaJMK1aSu5Cf5xmweGZl8ySKik1UmqQKyVDbq6nRqj28HFOlKhJ0KkKNjUKlVwydOPpFBO1OwzVBk/nhRGFv2kFa4NGI1VdOos3jHZkHI6Ew2vNDjOWJj1A11vO88z5MhOXjBdH7pZtn/XxuS5cuakyXXu4vqcxHb7qUN26rtfEUBO3K5Qkg8aN59Jhu6id3VONPD49aZ5RiojpIXHzRTH5CogSADSZWA1vxRVd+uYC3R1eWiUb7bRLKbQM66opoKU14ho1DTgnhRuNThc512u6b089AVQfVXf8GOmQnwE0/4emC9hm1RW9oesoGpq1JAYRhTPrPin197LkoqN7n1L60aWOBdt2teMBNcettXYX69a7xNZ1KxqN3naor0+7TWxnKGoYZevz5GWeKSmTto1cNc6i1dohIkDUOYHdBDZVWrdLygYVdYrpCcXS7ZTUkWBbEyUJRq2sWdeNuG28fvUaaYVWMiZEfX2tqdQgRwzCOqycZ/WvtM6QbKNtG7FC3CJbbUgtlG1WB4ra1LF7W6FVWooYv9tm6bXgB68ZSj1Y1DUY1oUgDVD3ghwba87qopAK3mtDNq+JuESgYW2DWtQ5o9LnYe1umzHkHs+xXVZy9gzBMgTT7ZoUZkoxMUyB481EjJG6ZeqW+57EY5pQa+oThTZRlaqHaC5kdDoyZhcUo9qiuLGuW49kUXp1aYVc9R4ztmKclr5Wbb83tZGr3fIsHCzjODIdT7hyUfukpjuZHfvcd3zeeezgkeBwFmiFVJSVR1lYgHXbmZZFfS2dIzhLuaw6qcTM5aLXm7WOu7tbRUOa6jevCABdAG/UcJYhaHpAcOSYGEJgGgbNBEzqnGKsV3q4BTuOmOpwzunn6u11BVBzAlGXeWcUqjcdNail9JgknfJLadRUcVZt32o1lGo7+CE6ybeoqxTrqH33XEslLhut6nm0paT2UFltnEQaaUvEVXPcctbiva6J1C7XXEJpkLyaPJu6XlcFyWSVlUxD/8zo6wptdmJpPK8bWzXQd/Wf9fG5LlxmP8Q7RZx+8Jr9v6UnHutXyLn03VPBd+hO2TB969IL2fNl1gO073sUMduhwZ6uW4oy/Tpmb7JaSZWcr44PClHS90P6mlPfvzSadjntTRSCQUkZGsXdoVD03xWCrMo+2/d54tgjwpHO4umwV+3Qo7m+W9J/Ti9OTUf13b8wl6oGtb1wmf5cujuiQ2aAUSi0tqai0T5lffr90QKmz3v1SNyNRo0KoQXdUcUtXbs8TC9ynaW0w4/770fbYybbtcutrXu1dWhTPnUd7BZCMWdMVf8+gFpy93qs1H5NtKYWVpQeiSOizYAITtQlpZQGRrOKaslQsjYlHaJc1wRFKfy2vxelQ4xQSVmvl72Y2dI4bqnvNOh7l6xde66U0nBBO5dcExqRonsrc2UI0q/PvstqQq50CEfZg8YFhiEoiYJKqQpZGTEE51iX3oWnrI4OouJjabbjS2+amLb/INmbp/557p9ra+Ra1b9QFEKyTWFO570yVY3tB3WldSE4Va/vXLrbhHW4MOHcgDEBsAoxVQ2jrGhOnbemB4ca8I4yjJBaD0Kl57ApxOyMwxvbEQmhGo0eSakQt4SxBuss0zTpvhAlE7S+ny1NxbSmU76NQb8GrBWccbiOLBSgNb1HS9OpVZyhNWVzavDsm+u6iFDkjexAERfbtXNqM2eaUFvftTcVj9fcs9GM6b+ncjVrgyoFYypWnNLyW9PntgFjNFDWibKPnShRBAfVQauZ2lcC0hGf2rgGyup5SZ+8q743FcR53DhqE/UpGLgUPX+3bVXlRUvU9Gt04pqCw/VNUt11SYjSZI2l43lKmCiZIXVae20MYvWDQHOUqhcsGWMzHz0+4Z3BOWEYgupFXKd3O7VMSkUprlpQMqbqjqLkine161uUgo4BwWJNY8sFIwXnNEreiuhyvSgt2PR8pc4mp3YauXoVdlcD0TgH5ydyKpSScF73M7W98doTo4eFdptKMNlvSKywbRuUbuCbNcFURNTPzuhyuXS/v7qTTTDXzC+9LitIwzRDpXbTURRuaHqA5Jwxzqh7tQtYLFKEEnVfEbdIjBsu6A2pBJFOwTdqrSOdbu2cYalJiSJFadvWGIJ1NFSfYp3B2hE3VIxRXYoz6kwxjoGbm6M2ILXQ7KB7naJEkVrsdSdljDLYBq/uCcY4nHFIcNSiRqa5KOEl1sglznhGXWoHh3iNwCnoXugSC3PSQjjPG85a7g5HcI4hOE6nO2aiJmiXlVxWJCm7MxYYfFAdV6mMg6MhbLmwZWU51p4blXIjN2E8HLh/+ZLb05Hb8cgnD2fmdaWahSYRmsFmocVKjo2cwIcjuVlKVq2w262UaJ3Noot4b72SeIweztaNiBSC1C6lMEzT2H00dfJA6AnUjYfXr5UE0KfpmrSYb7GQs0pMbDgQhnusXahtIZeZuGoK9enGEZxTllrp+2pjMdOJMEm/Fwtl2Th4j/GGEAYmO+KMJxfBiUbpbNtGTAnb9KY7Hk5aiAGp5Woq3cN4sKiNk4g69uMdLYkWgdYLjTjNIev5XqARNIPzWsyN6ebCsDvw2NZz1qrrDVNgsgcAPB7XAg2hiKWJhkE6qybHYiyDG3mzWS9cBcDQ93Gax+a9yghy1p/nrWEctBQoWFW5zDPzupBL5nRz0PWFtWoVNQ14Z/sqo5K2Tb0OjaeORzjeaJIzEU210OzDtKyUyzOOSqmRvP4adYevtYGzis0WhcdKq6SmOhfvPDUrey/FyNoqMcUeEDnjfFCtDIacE6YmStuu0D2t8vGrB4ztnn5uQFykYfTQ75NYKYUg0u37EyEPV4GnFTVFbbUiVjtWY7QDrDl3jF9vZpvVGDjnzD781FKUkNCUNVey+gqaDkfmHElx0y6rG50accp6NILLmgnVOvRReqAmVGJcNRQQoKkhp2rJoGTTGZJJl6sdmpJqu+anUYvr5qrKUiw95bfWwrrMyjAUIaeIuS5itdBTKiku5LiR4sq6LLRVg+xEwA/amVvrkA6vaeNvieuqjEFjrww/I41Skn5vZ422mhGK7pxaJeXEsq6UqrBQrRVxA7mUTkSAbV1opeIwxB60OE6j6l/6P856allJceXx8fFq/KokEYXG1q0wCAiVECwpFoWsUkKKcF5WjDWMQ+Du9kihUi8KN5ambgagQXxWYDqMBKs7hTlF5iXrIdYEP3l8s7RSdHdpRWGc1giDxTrh+XLh4emJXAtucNze3VJL5pd/6QOeL5vuloaB6ThyvqQrjFNyojSlxrta2Db1DbTjpDCZ82Bbz35SgkijXqMy1mWlicF6lW0YH7DecXM86A6kZuJSGYwjSuIyL1yWlXldWbeVnDNrily2lZzOWtRr4ZHCx69eE/OR42lkHAYG7zn4AXEjKW7EuOHHjSAeJw4Rpz6mrZFbwnnfSROFw2HSXa1zOO/xPqj2iS4/qZVUwOWsuWNetYlS6DB5YOrXSSyZKlZhemmIhH5dC+L+L/L+ZUmSNNnvxH76XczMPSKzqrqr++AcgCCAoVBGRrjhAnvsscFj4AXwDPNg5DzArCiQEXJGQFzO6e6qvES4u9l3UeVC1TwLsyJqViUdLdlVlZnh4RezT1X/+r/kOBsySWogDIAlJPUwNnCAopTEdlmYY5KS77U0GJY5JY798AZLhFKKJyiHubaIBorg7/uoM6jtbk0FQWxSd/9Y19XZvDE5zxkENlO2dSEvK6mUp+7LYWK8CTVFdHK5rKz1nSL6jXcDfj8Z1CSUgp+F4gPDr/36TReuM5mV7N2d1Orje16f+5WyXuMDHNTe2fvOmIOPHz6Sst94L9eNxwHJEpfsAj2LovD18aA8RZ4Vk+JyBVFnOYkAk9Q7R3Nt1HZdQ/DnTuWexup6iRS7q5xcDpFKJq9rmL7m2P0EJd3bIWrAQ9OS+6GVRFnSad6OFHGqs50XpifOSkrkmpDqGLSIT0A5og8uLOSAS9UCconnJ6j//RypqiIkM0om8nbEdWzpZA9FoTVxY8/LQgrIUxiQfILd1kQRD5gzUZ9M0kpK5jowFAQul+3JblxqYqhDFNu2ksTDKbPB/eE3U62ZtRIFyUjZWJYl9h7VDYR7gyy8fvj43MmZVHfoV6XkyhyH776G8miNlBOXdaPWzFIXlro6e9Uy67a6FU/sXSbKdv0ICGO0YGY6PFdS5dgftONA98HlfgcRvv/uldeX1dOFS/amS4Vs7qwt4nBvLq7Vc4mCBmQNw6CWgqBQnCSSgCHCKsLrWrmuhaGDJXs+1/VlJVll7A+OW6MkNxe+roWPrxujO/TpotccxlBCxW2Rck3k7eKTbcqRWG2YCjWvXK5uICwmPMZEJZPrRs3JAzJTpm6FXF1Qfdy+koZ5JL1NtnWhFBf+ppTdU7NmllSZySgY33+48uHDKy+vV7atPrWIFqLbqb7HzSVR80JN1VmRZ/JCRI+4FCFTpAb5wSeOXPx9d+Rdn3IJiZ8zA2bX2PG6gN/ZgCdqDnBKdoifibouzicul4+4tsvCkNYhyaewWJw6f+6dLdCAUxZzQngn+/XEH889MycDN5AMQ0Nc7k2xnOQQ1WCOfmN66rlKmJ6engVKEscEldjJC8VcSJ1LouREze6ME2RZn1azRF4YtDFQnYz5VwoV5qBypyx8/OF7rh8+8HpduPfEo3XeHje+//HvWNfKUoSt3Xkcd5p2fvjwe6b6zqMsL/z89oWUhB9er/zxdx8xbeyPd2aBsmys60bN0LrDfXVf+PDhI0stlKyMr1+57Q++Pg5eX8+DUTmaYMUvru3ygSUskpiDUQepVOq6sVTHz8c0xsjUXD2nqir58KmCKk/LlnUriCVGWDmt20YWj7NPolAlDoiVWlx3pUOY1U1B11z48KFiR2d2j24B7/RygdmVmQzLQraTEOKwwsShyFQzKTmIYiZMj0pESHx4rWRVZEzedhjm1lTfvWa0Gw1FinG9vIQA80o79tDeCT/+8XfkZHFQZ47pmrPvXj+S0hWZA90HXRsSr//1JdO73/R1ET5+94HLVlmrB4Du3RuRH37/N+TsyWGtF47pdPnXyw/k3Eg6sNvOl/2GIFzqAjYc5iwrt76zLReWWin2O1aMnAwrcH39G1SVx/0rj0dDzd/bP/zwj5jtQT/uHF9ufHp7x8T48fe/Qxi+c5GMvr0hfWJjukO/4gv7nHndnJm65BK6LeWYLn51WyKjdP8UZkr8sFV+f924XFasJvZ7RUX4/vsXCkq7GXc7SMU8yPKy8uP3L4zDJ1BNodESKKJcqtP3O4qUl+dhPGdFpnf618srH14dSioUdFtQFlJ9ZcmTQ6GbsV0zLx9+RymVef+Jfu/c3t6wVfhI4sOHK7Vm6rLycr3yw3cvLNmDVZcs/JMfvudv/8nfsW4rOge3L2+M3mmz0dqMHY8bxvruqgRL0BGSOdRh39jR5VzQPhhj8ji6W6GZYb09XV80ipIlCf1ff8pYUnJosA+jH0YS5VQsSsCjY0xQHDER35lqoDGWcmR++fsj4Tgxw1oOTieKbztzNxnwIjp6BymksOeafXdChxk2q8P+anQd1OTNcesjGoxCc3iHVCapFEaf9D7ofTD2gxyWcDln7GjekMlEslCAmn2QKCWxhn9jSp5CoUlIJWQ2CKMf9NHZH49fffb/pgvX1901IqKDR/0z1+PO/fqBlhf23nn/+oXHmKx1ZasrP/6wut4gCV/2N96+vNHHZH155fZ+x2bn5zT50z+8UJdMrsL7bef48k6bg+O+k+riY44Jb29vTzjvurnDtpB49MeTVivnhGawPx6xqPewPLPsu5/6HjCfY+FmnnKaHf9jy2egIqg+6DOxt0zKjTF9QXvXI+AdpSwRJJeEprsLrCWTUokLCWby/dWZq7XvnVIziYyOHEzI0EVJMO9UKYsLNw2jbD0IFF7tbHgURym+O7QEVtz/0HBSiuujhNYnozVX4uP7wY4vy0Xh6+2LB9apsawXNwdOAnP3540HUKKK5I4ZfP70iWMoR5sc+53Pn3beYlNdN4/0GF1p9l8Y3cXK6fIacEuij0HBc86ul5VLUO4lGce7U4Rnanz9/E5d3lhq4prhsiWHUyf85e0/sR+N29cvLJeNJB57P/f/wHHf6a1R6sJ6vbAuC9vLhS8/f6LrREtmmLnWKWWXOAxPEH48dvRwMe6jn9McDHWXEvAisuVv9mP3x47+5RN1cWnGbXfG3z/853/gGIPvPi784XcXlmQ8HgfvbztfHg9uu3F0JzaM5FBYAeTV93drWdmzed5WG6gNLxbB4v36xQvFslRam5A6FKdbDxE0CTorOVeuLxe++/g9fFB+/PE7/uk//j3bnHz/8QPr5crffP/Kj3/4Du3/jKSfGPuD2Qc2lfVyoZbCEHi7P3jsD47eggnqCEleVvS4k3D3iuKLNqbCMR/0PmhHZ3T3GxyqPL68s60LS/XUc4lpZwI6gSANpZyYOoOMYtg6WYpPXYe6k45pRBOpewo6i3Zi01hyCn2jE2oCzfc9VyrM7iGMpSQsOynFJHM038nNMZhJGGL0JBw9GhgRknmStZgXKD3F/YIbX6vyuO8stTLLwEb3iRWYAo+bx7+M0dn3Qlej7JW+di4pkcUpBD2rE18ks399xxS27eKyHkmu8yOR64bllX0mvuxgbdL2v9KJ63HfGToc1svC+77z6fMbGoSE4zhIt3d/Y3Pm86cl9jkO6xz7gSqs1y+0o6M6YDa2ZWFZC3XNvL092JvHhY/u5qYp9i58DchmKpfNHd6FhCbozbu3XErQv3naNYlAqe7WLiGcPqnfDr0VnJfkThZbEYcWcCgyhZNHLjU6L8BcFCsY6XDSgAH2zhMHd0drd6ogXA+ynIxLD4LMySPgz7j1MXzRe9LWyvCuUs0ovT5ZgohrVXxEiKRbBzd43BsThxPG9OlvTOVxPzDzYqVTmYwn/fK23zy+w6CuKycBKycnwOTkkRJjTFL2CPejNYaaR8DcG2/v06eC6ZCkAXOC/eRi7TknZbtA+ITk7NBzSYnLtkTeFKRkaOtOzRfh/W13SDV5cnWkVjCHByX2Pmj7wXp1M2IMkk764bujy3Xza2ypbNeFdn9gYqQtnClIbsw859OktA3jHt35UKMuDqWpwkjR2wtM6dEoGU07tR1ebJbEbW/c7wdfv7wxzMiL8T0bjzb4+v7gfj+o9xtds2vqTIL56jDR++MWsfCZHadR63Qyxhw+HVh4zpfsuWaqCRXXGyWDmcBS4vGycW+dbVt5v2xsi0f7/PDxykcxtjXTedBb84lv8emd4gewDg3MXUgmYYBdyYsTQFycX0i1krWQKJRc3BLOQKYxD/P9zPTmQnIGy1wtsS6L+w6WgNI5Wb7yJEuVpTrBYcS9VAq5ZkRx41sxVLzx4WT0ckJ+EJ0uaEB98o2oEaRbhipMQldm4esoMaE7BJdycvSD6j9DIKk+ZUDD+TSc7hepZEzPvYDD8SllX1Kcwv46qNPPtGVdXAMqxZmOOVFSIEf+wEwbjCN8V7PHuyTOWdForbMfjcdxMHpndN+V/tqv33ThasfOMZy91kThIYw+n2m5flD5Bw5GTcQhC6eOKOXEsnr67JyT0Q9yEpYls66F45gcx6D1YOAshVScONCPFu4KnnmUstOCfagKksFS3EAUP9BQF+4uS4bsP1fV90b5jAGRwhwN00kCL1w5gZQgQiSPU6iny7vQxsGZuuzU69C5xfJVgr6slnzhPjpZhCX7tGBS3NsxZZbF3e1PNf7UGWeEUDoevGhGOuqT1ium9OHhe3MOivAsXG18S8o9jhZTqnEcfjFrOGlj3oEZQvoc+x0RSnXxsJrRD0+9LimxLTmc8T1T7O3t/UkR71M52uEMyGnk4o87Vdjb8MMrPk/DDZB7OwB/nZc1P7VnWaCG2SrAvg9G7BD8Pf/G5uvBWgVY1hQu2sbjtjOHNxYfXtfYmTqkkkUoNbG9Ok3aUsFyYc0ebWPqP7PtD3QqkgqXmUmhlbEQg+eUUZt4TJbB2J87oteXwuOYvD8Ofn5/kAReXiv3Pvz33t75+vXu9kG5OlSWMvvuvpdJYAkHFyVxTJ7dvaSgX6szSL3BEJaaQSpKZpqL389E5vtxpXx9o5TM9bLy/Wvidz+88vsfr/F9k3v/yu34zFISaxFkHBzd2XQ8lA/T2apg1LUi1b7R7U2YJFJZSHMhWWVbVzL+3shwb0TFSDodsjR3mimysdTqTu+LyyKmhewlJ3f1GIOybvQ2yYcz9uqysCyFMd2FQqai05mtqj7V+57br2dX81j8z3WPXncMyW6OPGOJ5TaAfj5IzpDcDEBKJtdMWQpZVj8PTEnz2776G9sMxmxueDDVSSJhelDDzNgCIRhzokx0JpZ1RcRNA0qtLDV5eK6NoLt7iruOoMefO/GQsqgqbT/YHw/ux47O4ZNc/ystXNelOmNrDGStjj1bfOhxIzmRABBz6O1k90QBkxQ6IQtCfSQXJzwSwBk9sC7uHVhrIWX3civFs3YAtsXp29OglhPb9rDLaa7FKsWX3cGg9QTQYBRZPKckxtRGCpKCJFiqQ4VdJxIKeDMjmzBDs5U5GXm+nO94nIF3YL50zUgsZD3oLmV/rlmENgdM38uNHvg/zhQrpxg6+d//ZQyG6Te4UBju6hGL2CJ+KIt0xuk7wyCRvNtEKdl3cZqFKn7DTDVq9R+akpvA+jLcp8KUYcmJa/V0acWwMelP5Ztb44j5RGmhjPADZ1ICnvGEYZ8CFeW/sq+yhI7msF3O9Dk4LbhOj0knd9hznznHt+RXt/hSD2ucLia2MBme3T0Iz4MKc8/M8rOE40AKy6zz5ndmaMmhg0uZY/fvdT3wjOeNC7WDGJDFQgaRuN8TbZjbAeGJCD99utH7weMx2A8v5so3WcW0/mzMfBrwQ38o5GXzay3Btq3xufnUAQT1O9OnepzQMDS57VTSzH57w/rATPlchfbdSr9dSbrzH3t73of3+ydaG4w+yTTamM7Q/Lnxz//Pf8uPv/+eP/7xd9zf30nJqKuTolS8JKTq71lJhcvrCzUV972M/UrJObSOxWNKppJSYb1sbNvKy8vC435jDt9DLksNirfvRTGfrmqGDx9fuWwb++PuEPsMwXY4U0hrvH5Yn0LlbUn04d6W4KbQSEKyM3t7T8/J9eWy8nq9EHFejriIew/6fnIj5SsSGq8qW6AXxiAAEzNa80ZjArkWcnGrpsvl4qSV0EP21hjEeYqyXpyBvdSFl7WSmMx+0NvhQZsIL5eV90cjMdki9LQNsKGMvYXJwM7luyu1eTTNr/36TRcuU19MmxraJxpYcjpFuomA4YKqbCOYRyGOE3k6VaeAu1KRp5pfp5EiMgPJuGWmY+Q5JaR4OyP4IYGE7yD5OeWJZWfxBSZMTCGYT3suLMx+kJufnafDxVmIbPreoyR3uz+jHGQ4Zp8l7HsshJw2yBRnv6k4VsDpXeh7LBOHf0T9ta7i9FxMkAlpOiMwRxSKhCbLpof0CZk5k0t7MIzhwm8LF4fQkKhNF2Um392lmZ7JuYuKPz5AMsR6TFlGovjkov74IhLvU3w+BjpcYJsJRteI4mNGwR3X/XMOCBOPpp/kYJAZjoQ5by6Xb5+Ts1Udp8/ih52zvJygonL6X54Fz6NkiM/e1AsE2RUbV1mf12GW0xvSC/Mc/v0uw5JnQu6chJehWz6p+XtoMVGd/pwEeUZjjyIpe8Nm/pgePaLBbvVJjXCieHsbHu+TFvIaAmdLz8m+yHxe4xJNSZIE6dvrmcNh7AQkC4h7OlVf0uI+n+LMR2e2evyFrCuAe28iT5/I3o0sbq319rXzeBwcR2cpTrqY09iH8qevHgT7UMNm94YwC5JOmyO4vFxZ8sFSN2fwSkGn8tgfPN5vPO4P3t9uICHaN+Hl4lO0agONQjQnJsb9ntCwKxJJLl7uSknC+jjc9+9wXeAcg6O1J8NPdZLrxhxwoOjMjNGZczqzdbo1W8oeITMPJ38QJIweVasPT2i+3R9PQ+taB9slTA+mJzVg7qxhOYXNnDJm92tDo2iL23cNi2nJ/H5ro9NVvxFB4vV04EjiE9c016ie4vNlwQIu9JvIbyQVuO0P7rvv+MvVd+yne8+v+fpNF67zhvJOMExOLRw1xNXeOYUJqyk5DCEtZomny0K4jJ9U0CTnAegQjOQKktFwVj+tiyS5hW0Sc/GgJMgZozxthNzFI/sY7s/WC4x5Ro0XuexU1NhpuVjT/10cMPeJKXlswzn9J53xvDMnVVZxZ5AcWUWQgl0UP7MEXGOxImCQiWBBKpxdVvizOUQXb7J58rIXYncB0CgUZ1Gw+H7/+w6h5ezYuIk7SseJTJbszQZOANBwOUgCkurzPXSHkoA7I3co4dtsZ9NlRCp99meBldgDnBfIZGLJO0MoMN0fUDX2D5Ioxc57jYw939ssha7DD10gFXlSoQmHAcAdNsQ/+zk6kk63d6FWfx5m5oLZgH6KxxP474tiz2sy3lbhOfV5WKNPvIrF+yBkyc/P4CzCpEyyYNfFTkaya4FKSuEMM2lN4dQc5uTTm3lD5Vluk9MATMzJN6QCtgRN3Cc8P7xiIozP3UNJHWKqTlX16xovXDkCIhOTnJy2beoEiDP08jiUx3142ONFwsVBsJK4jwGPnVRKULBP5CH7FK3uXDMWZW7GsrsMQKfSjoPb7cbt/c6Xr7doFL0ol+yZ9zo7TOU4XEIzg0o+g1FYssOCfbpd2O3+cLLU7MzZ6b3zuO+uJ4z7reL6yNk7PcwRdDps2frELJiQJHofvvtNjhQcza+zo3Uex8H7LQqXGSUVcnKbpzEGWR1ZsbBmcyeWybDh11ycewQ7tfWTCm8oSms+CTqS4OkNcyojFz8vBMTcTMGlMBmF2MxHLxXDgSXYe+do3XeCgbn/1RauXHy3cWhn2RJkoXdlua4YiT7wZFQzZE5KBD5Odez4xGE9XiI0VoVwTvAlyLTsoZGAdrwrT4lJOLPjOp5CJP6mCjn70noquQiSvPA5XuUFYDIhrShRGIZj4c7BWFyrhMd7LMldHVJeqFIcjjIlJyWJF9CJ71ZMXZvhiVWBK8zsxVVApOAbJ9eQLBIMobzEAejEhXpazZA4zHxKCjjVjwdf7Nopaswg1Ji9pod7WhR5WdDslHkBlrq52p+E5XM/ohjF92RTkLWER5v5oY+/7ukZzCRmdPeLu6ScE905LZEgYkN0urdhMkFG4K8JZBipJodqEQi7nBz7UCgxcSfXv2XfNbpztxNU6A2yH7RqGU0ePDpbpi5AdKM5eefsU4X/bMyLiC/FDZI661NxDQ4QI2jog8JOy5xxaoHY5nLCm0KqESqaMzVgo2eDF24PCZjFEQS3XaqoxHSn4rqwlFHLEYXi70vJ57tTmOYHMFOR5bQhEhabSJgjTwOS34tnhIoEx8hfmxNcshTWi7BdVmrdmH13WUaFXEPoKsLvP25I9hTdhrIuK9dl4YfL5rvkKDa9+wQnyYk2znATHq3BfnBG5xyt+c6sd5JN12KVxP2x0/ug7hm7+KQxdLKrT3/aJzYn1+vVY0zMaD2Fk0WKBsBND2633aH55MJdHs0bXvEdrcRk3G161MxQ3z2vm+fcHZ0xCu3o3NI7uRYe+4P7487nL++0x43btrLf7nz6y2eXpajyw9WNwDHjoc76HHM6nFoXbyRN3PA3JWpJEXHiye1fv9xCwK+8z0kb3lgsy8J4vVJDxCzSXC8qmdR3Tw1IZ/BsihPEUYSm7lV40R8YmrHx68/+33ThKpKcAbZWavU78jFjuRU7rWSFM6sp10gJxTt3nU64uKwVNadY55w4jljGhmCPmOB6dyNbS4pk3zdhnh/kXTugg0KKCOxJwn3BPL3jzLXyduQ8nNw9ej7H7lzchfzs0BVnY0lV1x8FPbdIcYeEJMzpxWsCotVhyOiqumlMLUKpeDtk+fmaHfgTFokDXIwUu7gkkNShBJehVH87xHdSfZ7ehEKpiphQNdN14Ce6k1aKt2WYOeRZzl2i+Y6paeMgxV7KyCS6Rey5emYYAqLZYZvwbUsSdFvg0dz4OCehZsPGSRhQGvosNpqrG4v2QdGM5IDdNMXO8Nwv+gJ7kQrJnkSJlCJ3zGBKYhJiYB0x6bl2hfCzO0dkJTQtdSEn97qsuUQwn7/X87QYUg2DW79CziwkL1bOqrSAnnWek7xRDC+C+ERJ+EJKMFclpmc5iyBGWux5rcR6zK+VQryzDsv3rucF8Q1mSpAtsuMEbCSmeo4aKSPVjYVd2Dt8xyuJZV28+iaH2S/bCy+XC9frqyfE4jDU3+Q/8vryzuP+4OXFHdole+FctwtrLbwuEXky1bPLLm5UrdNYLxdKTH02kwuLze+fj1clW8aGYdq9uZRIASc5mQSLQNpElcQowmQwpdOmPWnm67pQUqbmzLZdMBv0OtwnsHvSb8qZWpZYBWQua32a0dY5YFZG8c+/1oWsFu9tCX9EYdsuLCWz1UomsxVhXZx4stVL7LEmSy1hlQYyBzUNxpyerJDDGk3qU+tWagmbNU/D1qmeI6eDlIUt3sNl3bhcr97AqSdWP7MEZyRQLEYtwbIOclIfSjsGj9uBvd+hH9B/feX6TReuJL5rWqtQi3etLTpHgg2WkoRnoBcIiQm5lMIg8PbwDRMcZppPS3+LrtBl9CdtG/yxTzjSg+Bw4kd4yZ2+hTN5AXIXiaDFn3BlHDDnQhX1fZuFoj42qk/PP0sa+wC8UD47GiBmIbfcTdHleKc6JCYvO5vdc2MRb8Yv3k8QBifZIqCzyK46A+/OrlkkMTX8Bf0pPeHJmU63AYtn549p4uw3X76DzHDfVguCiosja06YOrHlJK0Qz8/d7U/3aQ2hst8gLuIUVPx9RUN0ShQtm74PiwNHp3sBWvYCbjP2TbGHFJw8wvNzI16vX0sasEd4EjxJMicX2T1qowkRYnfkOzbitf3SfeQElIUQnPLLj8gf8zQ5jf94fn7nNJbsFG47oeYsWs9I2vMf/rbHZxOH3HNK9kDDHEGkil/7vuezYKL655lUnvCPRJPncFHsNgNa1oB5c0qUZfH3I7ncYF1WlmV1lmqpxF3MWq6OPAjUxbWGOTlbcbtsrLWw1uTTzDRMhrNyiwtuL9cLSXwi7Grk866RRFk3dEz2+oj1gT9XHRoUcSfw5IDikxlYYpTBHI46nIzYnBxirLWyritCZSkdUWUXTzaQlNiW5dm41ojaQYQyC6ZONBs6wlLKGEFbTwlPDI/Mq5I9IblmWGph21Y+XF5QNfbcWRZ5Fq6smSzZLZ+yxWtL5Lx4mG52T9PiNjOYZbY+6LjRs//clZIrddlYtws5eSNicX+pehCnw8s5TIjTt8vNfCc8+wAdfp2nb9fuf+vXb7pwqSilJqpkcvVuNYtATlhydk4plTkEGD4G4wtw/2vRqRKZN+au0/eHxx24HiQ6zxy6GdMgJIRAGDzdkzhDLJHFXeZPtlAKzc9SBI2CMqOYnO7n5zLdF+xOukich5E+owH8AknPi8IjP3yvdx5nyZdX3kWLUC09i4jGTk6I169+U+mTpHJi7OfB69Rz4xcHqPs4IaU8xYyYN6xJkruKi3su6vw2tabkuxonmfh7r+Z+fH10qH7IihQul5VSPdRODSTFns9V2e70P6YzCuOw9/fDYc2pylKqfz44ln9ajkoc7JJ8kjGVIL+ES7t6EXIXdvfB9HJqITg1lpR8T5MzKhqPE8M5QjmbkZPiFxCdgP+L+uftoX0+6Zw+dRbfkOSE876534Nfi2Gp4QGO+H4TwosSiQYqYJsk39IMoumymK58P5XjfSe0TCnMjX03dfppjjb8Beb0TOnFDDsTaMD98pIxzSHlANNBCmVZ3eosC3ld/XWKUBectVazX9819lhmvGwrozWOowE9GKCTpVQXCK+L20GtFRnmMCbJ7x9JfPjulRRyh9vjgBkSi5L9s5uDWy1IwKOIOIQlkLJDY8vivoVGol9HxNI4WacfnX54MOKyrCzrynbdWJI4YUSMUuIeTvB6efW92Jhhgl2eO62S+7NwSfYC2sxfcwrSRi6FNRVHiUanAMtS+PjdCz/+/o/ohPvbzaH0aKIMo6/O1k0nciFuU3UcnoCQS6VUX5cIUWDMyW/LVtwlaNnIeWXbVr8memN29zFVVZbrRlejHrBUJwjFxpWaXPsFg7wJopVLv/zqs/83Xbh+//KB67aSUoWl8hiDP33+E5h3FpKMlpTjaDzu7yyCj9TrymupHNFBvpQSBryTvU236lGfXUop1C2z5EpZS7CAgp7rpChmH34ohS2KKU9fFl9Uu0tGex4WvucKs5hzkEBOPxcIWyXxC0/V2UpdeWAUOS1WMipGUAPoFgeGCdb1FzsEp58L3nEKfuiYOJ4eAwHq6ZvuQRhyAafEFrd3scmGMsSZQlZWchoQzDpLHi6nPfEYzZ/DmKTFGXHJ/H3MJZhmuH3WMGWSqJaeU5toceJBcrNYYheEOB0+x3TqNPbsryylZ3EwoFvEncs3X7kxJnlx9uSz2AsQejoXc5/TVbC54hBzGr8nQHfLeN84UQ1SQZ9YCrkF4iCbnuzKs/CH2DXsg6Z9I5GIxH8HQqBizwW6qX2LlIgqLTGpqpwTdOzrpn9/wWMxUhJsGjoDrozd2BkGOJuRshMfimd1ICqUgefE4QzTUpYnq8/EKNU1YqQc9kM+IcwUDDZVRmtoSlhZWC4X5miM2Zj3nYn7BV7TAuWFvL1QXlZsf4PRHAW5XJjaaf2gW6fWwiILub6wXL5jWZbw/hRmVnoZmKyh31SKwmXZwtl/dWGuOZKwXgtdYGk7eXGCVk6Zy/bqVPEsLPbNrPboSi2FmhakFNa1OnfVEsOUbIF7BHNvjESdk1aELErNwne/+6MnlY8BY6CjoXN4AngWX7Kn4ikQJiyvQlf3F80pYaO7iNsS+XKlzc5MQp2TXqpHp4zB43EDHYgFwxAn9wwb/jxTolIYTwcWX304hX/wfhw8joM+Dq6a2K6vFDldQKZ/NmOnDM/pyusCecXmIE8JTm9oaQnChgrWEu3REYP9+CuFCr9//cB1u6Ik5lIZx0Ef0Z3Ac5Lxozq22dF1llLCtT00EUFgcHfr6EQhdg2+oCWmophlsNC7jD5IkqiJMNuU5/4h2kpOaE75xfdzqunPr5OxKLGDCFgofsnJ2iNgGr79maqDjnr+ecCIROcpQTxIMSZK4PwnHd5BS3/KKaeATfznzHnqrk4NHP4ak09WYj4FEU7zDoF6kXHkKAStEoccCY2uXsHZhpKfUCWclPATFtMnTOi/6QUE0lPX5KbKcDoPKCdFPKLLT9wOeX4mzyJ5vp5zwfOLv3M+5gnbebk989++fcT2X31fPNPksKmc7268BqfBx19UcZEpxJ/77srCuE6CXEEw3jwsMuBhIYq1/4QkhiUlBUSXgi37bF7g6XF4Vj+fmpztmQjoMn6Ok1KCSUlcfxpH0Ql1nu+K+LvlLEaJf/IU2DtDdHFHEAVrA2W6JrIX34tJJZcLJjuWLN7n/CywmUzOK7ksSKqIFJxm7zO3GgzP83nqzqYKM557LoK4maVPsgEFnjDns3vIHmOUc8LaQWuNPgZ7mz6dhoaqmke1JIFSFzebVaXPHvtxvw9SwIGSHAlKkigStHp1avscE0meWn7mm51nhmeJ+Z54Hx0bbiBs+GNK9vveGXveyKp5cbGg7p/mBimdzWH2RpsT+nYkR/Xb55pSisnU0QOdiuYTjrdnA+7RUOIEDiXOA3leYym5aNrE9YjvtwZq3G47v/brN124fvzh97xcP3Brg7FkWrrReqckX1zmlHzcrwW5XMjTLZgIBXgeA1XXfaTsY3RKg5LT8xCfRiTqGoxJLSUOy9P6f7If3TOYVqGujhtDwFY4ldskx7P+dmCcgZfnVwo4TXICnJl1FizPmapPuO2kwEtQ7eecoVTynR7pFwUPf9yaEqmm534n5j0wh6tOjbAQLDbJIAVlhjtN7MXktHlKjg+aFy/JNaCtQcrF/1722HYlbshcmZYwTUGRn74LyZVvteDcn5wDR5T3E6oFf+wU8e/Jl+rfVmr+uk0j9PM8qON7CIiLeE7EFHNCdedzcIw3+3NwTYD/L/Zw5w7yWxXJ8fNP49X8/B5HS6MxmfhnaSATdDjUdE5qkiSkEEH7Fy+WKXZPxGQkoQqX53MD1J5JtWm6j5xkcTKIv0jfdYgzajEvfu6y4AdhTsUlJVkgwje9vsX0S1w/qkz1PaI3UuaL/Zhu1fD3BCKSZzxNblUH2MByYhSlRYZYThck35ylySniBcz3Out6Yd02SOlZFBFjqjvWjGGQvW1J4tPnnBakhMo8GjYmJuo+fzMgZ1VSNjSDys7FQHNi3m68vb+zt87eB+uyeYRILW58EI3w6+tHbxJQNxYIezdT9SZUvLE8joOcKwmH2PbHweOxM8dgu6TQAipq3iT0NjwlIMToqkZvDR0DJFOKPH0B931H8IgmicDcUxsnSyEXYY1EiyTZd1bF9Z9ig6UW/7jnZIkpysi+izNhjkEpSzQ4EX37i6bwOA7U8rMZPweHnByaleQpyH/5vKO9s7/ffvXZ/5suXIlC3+98ffvMsm7Ifji0od4BWocf//CDL9/Hzg/L4l5iwWaa9502jCKFHpTVy2XlcvmBKlAF3o7OY+88jsG+37GlUnJGRVwRPgatDWrKFIMF4X3vjIerystFnu7PmhJm/QR1Qt3vHS/WvXBJQnLEY6oy+86SE6UUFhU0eyy4lo7mBcVj4PuEMb6xgFy4miipMmd3y6K8YD12WCI8jhtZ1RfWS0a6YHi8d60Ol5RlDairgXaWDNMKk0yeldkfmDpcqKmDJapWSoU0BmLD2YgBvaENzcUPnqH0Nt1VYZqHV2Kgwn7vDp+ospXqsFkU8f54+EGDIFOcgGHKcXs8s46mKkqJTrH53g8AQ3vExNt0JwXc9w0Sc3YS5lE2ZfHufcLxuHkqb/UkYSKChrkjyaGzMR0OIUggeXiRdNhOmOLg5iJhDxYEmOO4e2E8LcCM0POc2y9zaUNAm9CRMJm05HopxWMp1pN+YC7Y1uYM23PvN6YFO1CfcpIxOmYFzYLOxuZ+XYzunXgfnft+d/uk0C/mWjBT0hh4BmEiKpTvPnRGkT+n7cR+vyEhjM25gsby/lD63Wib0rbB8u5SipwSX7585fZ2p90aWgava6bUlXEM9tnQRbFLYmpzUtWY4ReoJFNmn+y39my60hzexNVCuz94f3vn/XYnSacsC2XZYEwet7vLYsbO0adbiA1l0pwRd1fk9h5oTubL24OP14XLUshJ6L0x5qTp5Ovta4Sv+uapVPf4HLc3bvuN/WjeA42BqGcGllqZKvTDGHrn9bry4RqROs7UQFLx3S/eoB29eX5d9uthzEHvbq00U2akxJZjghJCJB9Iik1qicnKDMthaBCw4lRFhu9RTTumHR0PL2Bm9NnDHaUw6TDc/SfhyNT9/YC0wAr3P31mjMbe/konrv/vT3+hJDf/LPnOo3dXoHchm1Ky8f7+HhqaDr09WTyI8fX9Rh+DbsreugMOWZxa7/hIGGdCUYE+nlCLSXoKZHNYE01VHvvhSv/W6H0gqZFKQZJB9gNe8MhyPSmOZh4nL8EHrJGZBYCE0aovdFFBs7tbzxy7EHMPvjkdQpAnQw8sRYcbP1NKpRRnQbU2KGZoElartO5dcesPaoWyTHe30IACAwqZyc8cKfWbIHYM+nOGq1yvi+/NxuRozfcixpOlKCfENxOmbrQ70jldhIvCiIBHZ4IHfIULNee3NF6J6eqxH+Qyfdo7py7wPVOQFzSgxzPw0sSCMOOJx3MGHX5O+vTij4WhbEzgPlCHWHj2MyyASXIGIZFY3WdMvudO0c/2GexT1N0RHkdzSyETugHi0+i2LU6kOXsbTqjRr0GRb2xZU5+0hwUkjMReASBc/i10YmanHt3f23CG8anVi5uqoYJ3ytl8Ug7pQxI3SRYFEYXZIvE2hcN5wNXGN9H0VHQ237vowJbCCeiPaXz99DP9cePt57+wHbvbVaWEHne/l0b3IjrVvQDjMccYHIfbXn0jCX1LVj5ZbDHSksNUwFMlWoQletyHjsSkYRLidpQq4QRBZGgR7LgZ4bCWSLE/Kky0Z0qWSFdQesSDDPVNtNoMJm7YRs2B2SSXymkdpjoZA1QTU2FMY9/Niz5OuHg2tjp9z61KKqsLjxG0NUbYSZk4VDvm5Dg0pmufDr1t9RiWLPrtMb/5CgQ5KWE5ZBrK04cxyzfgoZQcJDXPfTuNdp1RGN6eyUiLS2rmqVX8FV+/6cL1//77/0ytBeJQOeagedtL1kyt8OnLp0CClE+nSBeniR/dSRi346CFy/hlC9ue7B2yng4CFcdpn8tpJ1KIuLaklMI0eH8c3Pad3nsUjOaBkVnIwfRxSMzJDFhcgNNPEglM+4SVUvakY+9qpkNsQXPu8xs0aHYWUsWYriES/CaYLgg+tFMWpc5CSZnWJxOjJqHiGPVxdO6PB6XAshkbmTWtXnAknmsWNHnMiEVf1aexzwH4BfuhvLrNjDUerTG7X+jqGwdIQsqVKmvciMrpqWjRBPQ+GTqiAPjhn0VpbaAzwuieZArjfjTyUFKeoVU5d4jnjskht3PZ7u/X9GImiZL9MDSdNO3Y3oPe695sSQ0Z/gp+OWEk9YpsiShcXhSazucOIuVzxeoHdcpOzjhaZ2/Dk7l7pEwnh3FyLRHcGQVATrEy4YHnUHTi255tTHc2MXFizbmLaMN76+feyZ86FgXCoT53P2jTJcMSDFA3OlaOvTnD03h6T54EllxdJnHG1ENoe1JCpx9+OgY2DpgdlYWSKlihD+XzT3/msw7mHFxToiafBq/nbqYkFtw0ekz3zzT83+fhO+iTKSdBwFBTxtDQaRmnYbKncg8yPZi/EeFiHZkG4tdAwpAlgh1PRmvAxvOEXE0QXOD+sMHsZzk+999euJ4T6JPs4cV2hrD/NMK2+LwcTlXUXC91HIPZAIxtq9RafMLRzsk8LXUj5yiQrfnkOweUQCDaYAzvVnzPOlBNAeeBjUaQlZ3Nq9HdhCtQstj3i3gDqx7YenIC6uI2bQl3EknpZDqby0ximKiXC3PU/2pN8t/69ZsuXH//5QslO9wypl/UfQw3GRdBZGdZe2DPDu5M9c7zicOK0IkOzGB2470fDq1Mj0e3uLFJCZ2hqRJjvWys28LrhwsLhdYGt/1wjNESSMekOGTlxFUm07vB8yOV5NT4TFghnbTqhAVtfJ6dtol7is2J6SCFC4Y/WsF5vD6JaHLqsjIxdcyboeQxHPLJBbRRUw4bqQW7fk+6wOXjESLmyigLlA+UZJQ0Gebwh+uiCjktpAL5WsizgwlJE5/2B/SEspEuK7veOPqd2/3dJ4qUKcukhGVMEkWOFhMQbs5pflOLmruAiwunTbuH+40Rjgy+pO/icSASwUkSxe7sUP1tNEaQCMxwwSr4c8qCmGJz0o/IekuFXJfQzhTPRoq/77dk9wgLdReOY8y4OicL3qXnlBxaw412hzo9WGpF6guvHz96hMuhUGJSUUHnA8vO9JTs15QCiYHJmRAsz2LveGeJfUYBFYYOpikjnGFOsoXgu7/jGKToqP16nD5FSKLUxGDB+6vBmEfsMpVS1jiwjLY3ZA5EXHsnzxDF7E2W4MXbIqB0dKQrmg7/w6Ec0em3djDXzUW1aWW7vvLD737P999/xOwrda1Y8YNas8sTbrcb/XiwrSsfP35kaNiYWQQsBuHAyRvuJamjke3gOBrvtwdt7DHVJy6Xq0/0gOpGOw4QWLbNs7R8eRMpCy50NlNsVLokmIMU00vryqFOc++988P3O5fNyDkzhtGa78mX1YvFNLehbrsbfM/htmY1FygZ651hEz2Ex+Gu7HMOem8skrlsnpk21Ohj0o4WcogjnEwAc4bqul7oPVKMc+IR/D+zyWPvDHWkZmHyw+9/x0tKLDrYKSBuikAyclZKMSQXxnRhdlejmdJRCrAfjetQXuqVy3WlzfkkUP2ar9904RrTGYBEQVI9KebBpzsZeRBTTiw5OXcF/jXVu6Nf6qZU/YLUuOJNfMSWMDOQlLhcVy4vF14+vKC7ki1RTVhDjDdGQ0+XDCQEvCFGFD9oTqKbhMj1ZMw9jVp/MdmBM5EInzk1C10apOSdkUMJZzeNH0SoL91rJpWFXGpY+UC25AfyslKWV5Z14+W6MebCnIQP2ws1K0WUMRpLwGWW3aEiRRdrp9B1GnP/ynF7Z+/v7MfdYRFT1nWLiAafGrq1WOIqao0zUXYGgUIwyklECeJCTglLBQ0yg8NcGWML/Q/P6dNXY0FMgCdEa0HykG/CFp6u7iRSCWutk+Elfi3MyJ+CuPbU33MSWJ+kWp4sxSxBkkiZnOUblJaTpynXjXW5sl1+74QICut2pfXJ/fHg89//b/55Jm+eJIgfCaFosCGTw5Mn884IR3nHkgB9MhPtG20S7Nu/+OEY71FkqUlICPqxxw7FnUbSuSPJw53nU6aJfpv2p+9cEHEfSstMfDpm9uje/dOcw/VQE2W9rCzLxvbyEgXfP6/jeHB7f3P4qe7k0V0Qm4VSF39d04L2H/FBkeogczqSwXnPZpZTHiD1uYvr3c2dc3KdVBIi9cF9M33SiuDIGa4p4PZeOAwmCNtS2arrq3rb6dP/LItgOfkeUWfsM8+tm3dQY8wwupWYgNwJZ/RByZV1K3y4XujHCa0PJNCSkkpwsU4Lu8JMnh03A704kZBaS5yQfgrm7BOX6xIjyWAMdE7PQUuJJYXpbzjeL08CVHZmqPml5qkJfs9otEfeYdhzF/Y4Olqc2NL24///w/5/9/WbLlzqJ5S/qXYastrzAHLz1TOLSp+Hkyvn4Xn3nk4I8GSj+cgePyPo3Wa4311QhZd1ZV1X6rLQWkey5z6tm/uV5VFcuBnREPGjvv0cnL33dC04DYGjm8ccDjmnBf99x7kxex6+59sQWw1Ohl08YSBEl7kguTxZURkh4wSOUhfWy4Xrywd+/OF7hm604RdaThtLVopMWm+0oBhbFpbiTt6iCnHYMyaHDWZ0e/0pIs4sy4tn/Vhg6SN2fnZCI8EazOd7ERT+YNPl8EUzTb9gaoZVD4vrqdSwU0X6vzuw7WRcntdAys8GJwVZwvAE3ZP1eSa5nrqUb3Jnf2yJ68PPo5NiHTKLXJ7U6vDzBctB9KjUbePjx1fqslLyxuX6kf3olPc39q9/duKLgEqOaSlstcKX0U4RvanvREy/pSOc4ogT5o1nHStev+ZFAhIKmNMMCbNhM/OJ9KSPT7+HNFzHJfnOUSR0YqrY4Fm4LBKCnTiCT8HmHqFZUjSbLnLNtbJuG9t2ZVF/fB0DnY1HRJAsWyeV8ixctZ4m0xaEo+xEnaHMNqC7dVuKzzAXcYalJCiCDr+n51Bq9fsjlxqTfVxyUUSI5zw4NZGEI8cMCYZPReuyoEmYvfufqYfGnrIDi11v0AzP7tInN+9gw2AgI/j9oWLklCNPzOjN0aWEhfO+P5fTR6ekyiAE8pJQLK7LxFrDSBsByyB+za7hwdqbMcfwHXt2942lumG3H6/ntRUkEdwjVE18lYFLXizOr3PSPc+ko3c4Fsbo9L9WHRdGZAdpHOR+a35zea6UtEC4JDtBwQ+jWl39nRLUkumqsecoHOGKDDwvMp+QXKd1TiiJFe2Z/b0xj46a76S2/IKtV8wmkjZut6+01jCt2NwRUVJJDDOHFMno2MOJIUEujvH7q6EUP7hnSqzlGvqMRk6FYRbRWILOIyBEib1NJqXK7Hcf6ZOgycP1at0Qdl6Xja2usC1ctheWumE2eb1WJC/MnBm3RJZBls60K/cpNBWgklMjMyk2uIUuLuGBkVN9T5K2C9vllRL2XNhkzMH9eNDvD+Zo6DOlOMJj0oKqL+SXWgj7Eo91YTjcaqcFVwm4kCelvPXmxU0VdeawnxUiSFr9YNTu0gdxyDazoGP3olP9c3jaYlnzyamUgOn81pnN8NxSt8qq2xrP6+CyFvKyODQr5nHqBjm5UFRE0G483h8caQe+8PPnn3ytMIyPP3wHUcibOOzmU8Q7L+FSosmhqanh6LD5Dk7xvKUe9OY1Z9eLmV8rR9vJ2SPij+GQZhKh9cN3nlkYGIQgeqqx1BOxcKZs7x16p0hBRN3oGY+tcQ1geH5KdZMAUUpJFFlJdWEWJ/2UKvzww+/ZrlfWy5U/XK7MMXg8HrSvX2l9cHvfeX+/s24rtRQyA8oS2iTh44cPVCmkVJGm2BB0uh8p0cROqif8JH/dWTeyDsT22FouJKp7XJ6SFo+WdCi1Z9LwRkHcyRqGoUPoR6aviZEAK4gupOgjS65uSy2GjQUdC5pXZkuIueHt7JlpwdhMhZozMwloY7bEOGAeRhGXAkgajFP8T2QN6hKPt4HeHLbVwiJnYGRhXdanRkzVC07JwrokavEpuLfG42hxfhnr4td8LgvL9cVvNVOqgGhMuad2LxUnH82MhhRhmq9ydDhUU/uBzRFoxa/7+m0XLuBkLz2HJ2JKsoB1iDwcc/aQ29s4tupsQL/w+4jOLwUj7dyBqGPM3jGdUKLvSB6PndYOZwMNdRp7Wf1AKBWRytFdYNiOA2ECPaAXQ8WL1jnlKQPUu0N3VLBvuhARNBkWOz0xYQylh2NBTYtPl94EkYiDPhewGnDEwJKy7zvHcZA4OOTmkQiXDywXt635coHMn5C8IcsVZiVLJ8tBb5PDKoMCeaWknWQd6QeP7mGK2hv397+n7TfasbMPnsLHJDPIJs4Qy5Kee710wnjihJgzHmNO92jElDEbgkNOOpU23VpIKEw9ni4gfU4vEIhPLBrkBHEjXzVnJg4b4f4vtL6j8/DJQEBiF5jL4tOW8WTbuRWhf1ZmJ378LeoGy56GnJyIUSVhAROjQBjj0ht18dSC3hozryeOikSQoxsDr26hY+aFZw43+60LpsEyHRFYmTyfzCdE3zc5USj2uvi0el7L7taQY8RwwothyEkYOMXtwxEF1yD59WkGo/endku6T2eKJzAMqQ5zSnYI2WJjuyws2wvLuvDx+1deLhXJiWnGn376mX4cHPuO9IPe3YXj48cUSIVDWuDkghyWVj79up5MUiLH9OyflbnjjQmWFI0/TymFv6CLjlPJJCn05mGhtVROj86SsgtwJZxGpiLU8PJL356XuasIVPo0h+fMEFHqUiLTjGcoJYIXXE1wQuECtSReLys9GucxJiUSCoTihJtzd5GEda0saw1tl59rCD5liUOppRTi0/UJa2isJUBnfN9ldfbsbLgXqCAlU5dCrSVY2o7ynAhRTpl1WdinU+unzSCiELl+/pphYLn8Aqr+dV+/6cL1jA7nG7T3PETiUDn3F06WcEjHYT/X4jwhRWaweZz9dibunrEQGtTNSUAjsfidI+A8FXJxPy4T97/zBe6MJW53l4No4EX5lllj9gtGIKRUGGJBJR2Ihp9dOt3hzZ+vSpBNfN8k5rsvNExiZaLZIRcxV9Sn5B5kZkZK3dNsU6ZopnW/sPe7kW0jlY20XEnpSpZOotG7hd1RRspKSQfJJjKm2zdN1/G01mlt0Fqnj3PPYED/xpwyo+bFocLQ3bjxqvkbFJ+h2+Wen1uY1SqRjXRmWI3wdCSYn/qEyBzGO/0rLAqlPsWwZ+qrdrfgMVO/rlTwPuZ0eRckCBKnP6KQ/P1Xz/zK3Xc4Oo1uimV3bM9nCKSZawlOhXsUYCMo6+q0+HiBnt00XYLgpUhJ1l2vF5lbElDxnMIYfv2dF5p7EqbwDoyJy3yqVfPnqbFLPNGd8/WUeH0SxdbCzeX8XIJP5nKNELVjJw0+rmlRJDK44PzZPlenQC62y/V58Pc2OB477TjoR2MR6Ood+xkP5Ay/7Dliktz78HkWnE4x532q4UGZSOoBiAm+OYIkf6ylSGijhJqzay+n+uSjXmyzBKnGdeneXBR3jUgnQmKGBOVeSmapxb0+w8uyJNw6CQ9yzIGO5HiObkjsusQCWC3hr4ibd0s85/h1ziwSsGGJyTmdFml2muq6U4akBHGfkE6fgtMhJrZfp5uI8fTgzFJ+kQ5/XruuD3Temtt/yXQLKz+XwhsVwk7LPyuXhdj/odr1my5cS1nCdNUiZ0tdNZ4SORfqskLe8LtuxuHnx05K3k2VuvD68gHeP9N652iN1pwmb3pauM5nUZwIs0zPDQqrB0Mp4ruMIoU5G0FKQlvH+uGMwZyxnDmNL/2g8O51jAFnt4Yw4pCb44EFZfckmjx3YuIZRBYH0bn3cmJJh+g8JXD6nCvLdDzcp0gnM+YElME4PvuNJ8qH63eUciOVL+T1Dx7EyAS5coydMSc5VzSpi6PrlcQeNO5X6rpSlnfS7Z3+/hd0+GHrA1AcetrZxxGF7BvsgRi5Tn+MWtEntHaG/K0OAeHFVBWm2nPiSSKYNEwyM6jhZ2Og01+HjsEcLZaDvltggupZIAHtyPSFdN0uZKlARWfzuiPJ7ax0orMz2jttP0KjJsy6shbYLLkLvrqP5MKCqDx3kj2+JwX1uSv06QfHbC4EPtqnJ6U4yXTBe07UdZBkiT1dZQ6Ys2PW6LgDOWfA5XSmZJ8z7hlljsGcR2R4BY094UbIaBRcwcmSIWxWKGvlTJGmQutOvplSnuiGGy4TxAfiXpGAMhpmTgJo9wf58oKRaLt6srUlclk9Uv6xo0fDysbMvnu5bFdqXWPnKVwvlbVUkgjXunI2BTYn13Vjqe6zeGaFuT7QC15NOZKT/f7aaqbga4hNCM9Iv15rqnHaG8zBmhJ5rSCVWlJkYHlxomTS5nuwORXGYFVlxagizFQY5lrHbIOaN9wSTZ0NOZU1CGHF4vX0aFLFGxlvyNRDHc33Xp4z6G2OuN+WWzedptOxBklS/Prwk+pJbhP1hq6NxhzNE9FzQlhZMlgb2OjIaIzjRq6VWkBtpbfGcb97jticTHMrqVwSdSlsi5/HPpX/le64/sU//e/YLq8sFIYM+uzc3t4oH76nbi9c1g9cf/xH1JxYmGzr4rqWObjvP/HzT3/meDxIpXC5bqF0V47HDcmJvCxctg3nGww+/+UvMGNmKyUCJ/GFpLo55eiN/WjhzBDRJqP7gZ29S5L4NQ3XMpWFy+sLSSMBuS5o7+jozFEo2ZmAdbmEG/vERiMvG+t6oS4boxTmsXtx2Nw/QUSQIvTbOyVltvXKh+9/D+eO4vGV/jiYfTiTWr2YLUmp+ULKFSkLnUrJ1V0z5IUlfe82TaVQ2EEnc0JaFnJdWLcrf/zuFbNJn4NHa/TjTm8P9rcvHONgDg/aO8I6CO1YTU8ITrMx++EO2+YHhdPEnfSQkssDLKx/CidxJQ7GlNCIq3xqnWLSk2XjfLDnpK4OwS1L/UZuMIfPJEnsvk67rQ9okBS038nbK2VZWNYL63V1SPN4kNWQ8IdLE6erWyJPQh9WyGVjW92lYG899in4HlSEvFbWbeU1f08pxQXJ40GxGeQSJxXUUlmr05Gf3XBr9N5ovXN/dKibJyj07oa7OWFLQVhIxSn3Ojo55acWSdT3iVtNdHVmXUkh5A3m4FROK8t4Xy0aFHznpcYYnRziWkyxWbDe0dRQu7iOMmVq2Vi3eEBx3dXROrsp9/eb53jVzE5HUiWnzFLOvC8XJBPwM3NyOnYayhhGHh6OmEOYmKKpmc0oi7NtewjmBaHEXlRjbUAEgprqN//H6YhIOdEdIZrek5Ax3WZqagiTJylNRP35eSKxIylmkSkWP0OHMgbUJGSLOJlzolEgTJBFhHb43rukQsJYcoK6BBEnRMvzpBbF6sNxdEd2sv/7JMT5M36l7Luvo7E/dvIp6o5hQYZCmzz6jdEVIfPo3f8MvzdfX164vrwgdePRdlqHOX79zPWbLlz/7O/+CdeXj9S8YosH+X39/JnLDz9S1wu5XLj+/m9YSmYV48N1DZ3O4HH/gX/48ML7+zvdBjoO37WGDqOsC/VycQ/CYBr99NOfsYfHGHy9vbHf3+k9oghaRHBLY4TwT9X3XilYQqnWbxaC2W8uyYVcV7JoRGInyraRjRCPdr57/cj1cuXDx+8QybS2s99vlMvK9XLlcrlg68UvJqBcN09+TUIumfvbV8SgpkpeL0/Hgb6/sX990B4H7487x+7aqMQIuG2CNaaUZ86VpcGTpGcRkR6aN8k5XLUTqVaW5cJLyXw0Y7aD0Q7etiu77u4Q3g+O4fCfMEnr6XenDJ3cb1/px4N0moqawze+xwvn8/nNJmkOfsF4EqeI27nf8uPLzEjVbf0dHiuxAzWyVLbrlWVZWNdLFC9/fu9f/hzwlkdAqCTUjLbD9vrCcrlwff3Ih+8+YjrZb29I0K3nnLA3P8w0kfHInZTdT/NksQo8YZykEXGfkheLpbKuFz+4emItsTNIwhKFPCdBbKEUd28Yt4Pb48bj2PEAW0M1x77EbaokWZBR3IaqHUaOScnME7jPDjmJi9pPOMynUocH/ffsCdufe9jzv9HTPeFM0s4kS2SDbB6KmqRATuTSHQ4vCeb01wVPUa5DrlAjzmTJEjCXhyBKzU/JiKtL/Pl4wG+4aqTkBQjfdw5VkmVyNEinN6CksJCITC3XtEUHlcIeybwRcRRFwmfROIM67YxBiR3Y1Ek2txw7ufUngGpRNPzneRqxBmtRAlHw0fFkFPvnQ8CiZ8Mspr+g8hPNckDc5xl08o4ApkX+2EmTd7kDFvBe/CyXq6iTU5IjOirG0EGb063ndAQ1/pv9RokMsZTLNzeR+Vc6cf3f/rv/Ky8fXpHtQv1wQQU+ffrE7373e6QUjjlYLt9TSqaWxI/XDWGCDXT/HX/68Xd8vb3zdnxF9OEQz3Ll5fWF7fLCen2htZ0PH7/ncn3l89tX+s833j994d//r/8L//Cf/gNfv37ly9sbsx3PncvsnTHdKuaybd7B5wLL5hd84NSMTiqZWhfMBjW7P97l40c+Xj84/bUK/+xv/zF/+OEH/u4f/Yhp5evXN/7y059ZPmRerisv143t4+9YVs8O2i4bNeOTZln58v7GODpj73x6/8r+2DmOhtrg8fOD2+cb//lP/8Bf/vQTj/mgtY7GHkW1IxV6EnYBySNugoyUV/q4o9pBhrPOZDCXypdb4rvyge+2C9uSyHrF+uSnlNnzwZQOtjOaNwUpJ+qGCxjHwXFrfP6cuL1nOA6Gdj/0pjJsklNhyWsUBmcs3e/dm4OcmVPQ+c0I+RwGwMh5jYnAyOXq0BbGsrxy/fCRl5dXfvzdH0nFO9RxTP6zwaSTqrGsyXVAJjxuhZePr1xernz8/gN/+MPfoqp8/foZe9w5jp3HcWfa4ESDa6pIPmNYEr0fcehlt5CakIeTdVIJzZJMrtmZYd06Hz+8Upfi6bQpMUbj6DuXlHl9vXBZF/Z68HOIvZu40e6cSsqZ1jRIBoAYy7qQS+ZNPJZCzJjm49RUtyzKQck3HTDl6fgiVp97w2RBVtEoZMEWcnJHdz8+M5aXhUUKVQoriUty9qVJguH+j7l4unRJ7uwQ3dNzbX29bFwuK1XcLxQUpVNz8Ws39TAinjGZhumx+q4Ic7hqWmNMTxt2hqTLF0oSkngTpREOKvm0avG88TktdlcK2d1TNAq1mTnRxboXrhTv5ewkTUxrWJpQzHtO8etUpUNyHefQjgOACZGJZIlVAxiTaS6PyemkonhDYviuNRV/s1LxX2r2rSi74vpZvEoNw96caOrvpaZJrcmFa+JygoQ9HVkKHvbardOPyaGw953RD59EwyUk4Xu/XCvjaLR20Eb/1Wf/b7pw/fT+hc86+Pof/wt1XdBkfN5v7P/+3wfrSHn98I9ZryvrNbPeO4YL6354vaLFzSiPh/t6uX0TkOHr7c5x/AOf7l+4bi9c1ivjWrj//Rfam2vMt8sH308BtVxDWCsYi9OTbZzmfO4Hl1fvOuNv1a0gyaO8+34w5o2cEsvLhVwSL6+v/PGf/C0fy4ZI5acvNy7LK+vLhb/7+I/58vWNR288vryx7Mb64UKuhflfpjtnYKQhyFU43nfe/vzG5/vP6DFgGMvHleNTp70N5kxcX/9AXTvH8cbRuh9QTI5x8e5PJhqQjsTkUdZXSklcLhvX15VaFkq+MHLj8+c3Pv355zARGejo3Ps7j+ONoQ1kILr6Ib5kEn6j9tmYbfhNOwfSJrlIUHozMsPbsI3QiDlcKKngkP4M6rd3qpwEAxFM8nNCVG0kaTFtFKxPjv3BnIP2fsdKuGhLxco3+EwtU5YLdVlZP370OAtTPn9+43j4Hq9bw94ffqOXhXJ9JQdMxF3IZUVSRdKCaXHGWxuoFe+9Q1TsYlpFW2PfNQIlG6MfXC4XXj5+ZHvZyHVhWVfG7eBxmEO090aTgpaVMR+YOCU9B6FAdbgLiVhkiwmUSmsNprJsBZvVp6+hAedBqcXd3Kf73zFcV/RE0kIVP9XQ7OLlOULrN529q1lpBjqM296RtJPzYGCsCDLNu/Lx8J1cSqzrEhEbSm/KY38AbkF2HLsLp0t2zVtMFnMqhx6MNFi2DZ+6fQ8o01mbvtd1mG6q+kpBTpuC87UpKYpaKS57abebN05DqcvK6cYz5qDgTOHepwcoJnGNm/h0qjE9uozBp1kf3Vz+Mubpsu/LcjOf1Bj23BnRYhqNnfe6VdZtodaK5YrO6RZWkUzsVHu86J47M3OtWl2cDX2aNyfEtV852MBJvkWjBENUR5ByEBKF77678OX9jo32XKN4JQamw80//vGFDx//Ocex8/XrG//z//z/+VVn/2+6cH3+8pm0P3i7+f6h6+Dn9y+0EcUhw/02nMa5JPLenmP467J4hyQWUFEDcH+2fyiMiQtwx0EtK6WsaIH90425N4SJtkFrB/v9zmwWGVKelOpkEMWm+KQgE8LQ8uz6XLznRWOOho2OAvvtK327MtaN4+0zX4ZwT4myVtb1A9tWuFwSevhifWpnf39gnxz2eLzvzBTebRSWizCOwePLwdvx5he/wdYLehPmbs5cHKDjwPo7OeLYn/liphiDYTh8IoaOB2k2UCGV6TY+Ouky6XpnPG7M/eaGvBOYSp832v7OmA2TicZejSzo7J4mjIYLRFg+dcNCIKlS/DX3yTgmbQz3cyMxx8MJE+LedgTkadqdXecoIqqHM59m88lypIgCUUZ/J6XEgZBqJedKyQtj3HCyC8gOabm7u0Ys6b2wK4/i05zKJB0+MeWaKVNwQaqRcBq0zU5/DFr7EhHwUNfNCTvmWj039RUg00kMEcwelJNan8Vj60WZ82B//8I9O6usvXeGNtpojP3BTO4QM0fovmZ3Ikc20uH7vDYatvfYX2TXjY3J3jqzDyc+dfdSHLFryVZcZOqAHiIB65pgs/skSfqm3UniO5sslCJsxYNRJflOeExvmvzwdnlCFajZWYFu8dbZ9weqgyO5SfWaEzUtjIPTwMqhxSxYySxUpvkuuo9Bmp5AMEZnqdkL7OyM4d/dDdp00b2nEXRsbwEXC+/3hxtuA2U64zGp0EZnFYeAW+9YwQs5ygwz24kyzIIx6c209u57tyLPpmDYDPs337WdMKU/dnNINfkGa0x3AUGClRl+hYzJ0RRyQYoT1Bxtr0+vwuKWr0hyKPDr17hHdfCyZJbq5BMpmdn8FJukoPM7xFhyiqIcTGfOyZAIszQu60pJbp32V2uy+9OnT+SSebRB7wf7sfOXTz9Bqe5WUAvHY/ddD4b19hRqygx7GhHKuri3mDv7eUduwpTsiaJRjLQ35qNhU0kJLsvFl+r7HY87L6RcmOpeZUkMo6A2QvgctGoz5pgkc39mNXXWXW8MnTy+fmJfrzxS4ovd+XL3yJPlspKXV14vC9+/Lli5MGZjTN9R7bcv7I8bX283FN851XrhWn36mCNzjN0pxCmht0maK6KujB/HoB87c/9ETldPKk5LWDkpaOOYrrNSJr2B6Y2UjalXGlckryALs9047p9o989YFrJ55858MI87c3YUn5jMJsKkzR5wTEbz6uQAFJkJK35zCIXZd/rRedwPjtEJbiQ6Dy9aubBuW7ieA4RZKcQkI753mA0bFnRegdxw2yzfEZT1SikLuSww7jz59eIxNZYE0f40UJUsSFljf6AUsicn58y6XMnJNUUlNFBzwvuXxn77E6aTnBdK/jEIJ4ppC5fuRMrGmLEzmneOIIdMG6zbBWEy+o23z38OmYWgD2fvTe30vWO42WsfCuYHdhsNsiduu1lzh+4H/xweYDinZ871I1xpkri+KaCgmraAn9zP00naTnYJoyxEsmdIoSCZRYSSoRa4VnFWGpBs0o+d3g/62MO411O/c4KUflG4jp0xO2KDEq7js5jf37468qmieq4c4qbNYw5a72Rt9OHO804imczR6GIxuRvaRmjEHP48mu9Yc03sx1loEmW6J6kgntOVHWY9evPCHRTwKV68EKWb0sM0WMUnWFKiRkrBUKXrZMnF0wdOl5Tp+/T92N26LTsz+Wgej9JH53g8fNfe3b1mzIcbJGwuhs45s2wWe2HIJVxfmKgNfv78GT3tuWwlv1zdBis5wuR3pp8DiUQ+kx3MnIRiJ0fYP4ipPtkuacFKw6isl8uvPvt/04XrT59/hlIdNni8sR933t6/kJeNZV15eX0h5YVtrWxV+PLTZ+ZwIeLjcX8uYvv7u/t/4eLSLBaHs6vCn6Jlm37QmS8bZ/7meTjVw9g0qN3nY03z6AKX7WiIAr2IzcNzrlSFOQ5mO7DRecjkz+Pg858LOhqP+52EcLk4HLmUxHWpjIB+kImUirY7s3txUW2BbS+8LELJCyldyItj/SUJu0y0ZaZmNGceh9OtL2kw+oPWD2xPlNc/UETJZry3B0piGNyOr1Tu3PrOf3r/ynq5sr585PLd7/l+qezvn/n65Sf67E/GWbYRxq/TO2sLSyL0KXhFBC0aB5Ww5AtnDZpzuAOFjifz6dwZXtezWDnb6+xGBXE3itg9zH73KVsn2n2BbylhaXCmxs45yfsjGIyF9KSTikPAcYAnfEFtMZXmdfWOXCDXzSdHFaQUv6HVXdaH+u7t8X5g8+7aGxF6P8jryrIWcl8izTaFiNd3T2Iw94fH9Ghlf1847u+8ffmZx/t7aHwSYoUcU6sTcg7vyqdfqxaRKag+r2PBgvBQuF4KNSV669jojKP5vtAMHWGOnBLTJkxPdXbPRS9d05Rj9KcmEuuhV6r0PtHpsNKxZrqvL3nsja+f/sJ+3NnbTimZZXFrte1lcWamCJfryrJVas6Rb+YUdAsSiGuq/P90DAbK/bEzD3dpOeG6GXIHZhCpyPQxvGFQi/ywb5qvc9qxadSUPGPNlDmNIjO0ZIRdlRcYGwFTx55vZp9AnTnsSQemRtcQgVs4jkxnKYtk1pKdfZQSrfk0dRwHqxVQt1l6+/pGLZVlWZDj8MeOzK0xvdjUpFjOKEbbd6b6axId5JIDAercbnfWmtiWTJLEcezYm5BTdYo+J3s0pq+hfLp9pjcl5+LwqhFa28Sybqhk/vzlnduY2Oi0x19pkCTHg/32xq0Net/p010yqhhL8henrdFmd5hk7M7SwViX6h8YwrYVunrQnk73zZvmrCiXwfJkWS2B8UoStuq6CExJSwo2kR8YFuarZb0wzYMAR16iQAIiDPVMI082hZzludc4DneoN+sOoQH7IQyF1uFogpTtSa2vaozjYPaOSghtTdAxeJiS0ySniU2PDc8ifGkPEo7bW65AIQt0nZCUaUJX47gbSTtoo3VlmLgDwYSud2bfGeMBB6Ra2PqVWQyRQS3hhuGDDFPNM86kkGzxpb5N0EGp6RnfUZerMw0FllwgdFxrFfbHgMUZmF1XStlYlitrzSzLRkqFL493ju5aEh09fAcdKivZ4zvM9Jumzswn4ChcJ4nHCR3++zk8Hk8dHCKO54f+R1P4xalDfcogqTOztA1G988naSHXSlky1+8+MA6vtWVZSctE5UBHo4+HsyIRpjirE1V03CmamTkztbDk/HxsM8/TGlPIqgx3lSSXhZE8yTaHGa7FtT1Unvltgvn1kZy5p9PRgd46SxGu28qyVF621YW/KVHk6pKHMy9OeeavefROSI6fTMTp2sTqhAO0cVlfIRVqWZHRWGthaZXCdLp/FrR1b8ZSIteFNPBdSjZOM4Ik7r/pole86ITR8elNkJLbZVkEzk6dsZdyA96Uqjuwo+QiQTQRMsJSU/iXnuxC/DVPg+LFrYqE/MGZepzEEtwhQ+P6GOoT8FQNeyh3xnanmJPIn7E4h0w0aoU8xbwl9l0pJ5bFd8y1VpL4NZCGvy/OUU3UtXrkSM6kvETquZEY1Jrdab4d7MegFmGtmevrhby51AXcNSglZyyKVW+K1AX0imDh/+kE1HBnia+kwouF12kSfu3Xb7twjcZxu3FvjTPnJuHqdhcVZkSdqjkiwdf3FEJNix9QAktdSTGye4qqM9icRP2030UgaObpm9odmClRi6cij4j1cPBIWWplijAlkWRljMOfq5wNvHeQMp3E4Q7UgVWrO2WcC+Whgzn9UOhD3SE8Z78xRTy/KhJeVYIGq5OmgySDJK4LS+KakONxo+biNlelshQXdDqbzaMR9qHYsWPTU08R1/NMc4WGjQdzHJg2xkyMvjPbzlwTMElZ48ANqMS8K5eUI6vXMO3M4ap8FXd+z3V1anPohSzcv6skWsqU4gWoIizLK+vyylJcmJpS4dDhoYnTp95TX+RU7UySGU1JUHZNAhZxI1t/z93s1ZIXrmTnotoPQhCmjOg8/Vrx1+mFYVpz+rlmujWO/UFvB0sqbPlKLRtbXegsgJIqdNuZHYbC6I+gVbtDlKgXrt7vrFJ9Sd4TWX3vMcN5fIb9UglKeEqw5vosgm54Gs4Z+IKdIBCc17kEuQJVRlh5bUvlcl358OGFj9eLWwulROGFL7cb+9EZ3fw6GOoNURAkRoQjZnHrpJM8EeIiak6UslIXgdlY14VL2yhzP+mgIVg2NOFm1/MJXnjDEGScLG53dJ6LkqLRUJ7pECTBZg7XCHv6nUqCUgoWBJOSXJiOQSGxlEK4njrEH7u9MSZaE1J4hihOoJQZritO3CqloqRwfIlijtvKJXMo+xRvp3DkCLw7GoBwoSglRMV+3+SS2baNWhZyiWTkwdMJBJycUdeFUk4njeUpk8hJWZbMHJ3jSFwfOzlBrYl1Wyjb5oG4ImEz5RCpaPVm/DS1lm/ogD/nuB5j2SVmLBhT3Pzu1379pgvXvR1uMhu2LolMzkZdNrbthZeX35HKC6o7c7yFijvci0cPVo36jmz6mxtQNt9kemFWY96furXNZJjxNu8uB0HZe49pIaPdDSrVjLe9oWQkV5bX78LVICx+DF9gazg18LyTOY6dIXC5rCjhSC+FpodPKHig4ilktfXixVYdtiAX75hVQ5flEMew9DyYTLvfzDjI7Te+IeIJqB44KNTlEgf8dHufsBHKeQU7QH0PkGWwP+6gf+FSf3S92dF436e7YquBDQ+2TBlyZVtXZygSOh8RVKDvB6C+K5wah85kAGN4SKepkcrKvu/cbgdjPJ67iTYnOa9xcB5+sNi5Lo5wTu3hShKxC3gXm6zQuqcSw4DmLg/HIaR7AnEX8ZRzkAdC3xKRNKe51COmA0mZdxPGOALqFF6Ojyx1BfvkcRI2OUbnft+dJl8LNjv6fOwcaQdONrmfTBMSn9MnLtvK5bJxHIfDX+pC1kTsHt7uzrQUd1Exa89ufwZF+nR7V5mUlCJBwDCbnjt3Wfn48ZXvf/iBdVuC4DLd466ubGXjdXvl8bi5Z+VIbC+vaMoMhf3dI9vNJuvLS3iJwqS4B6UkpGx89+E7aiksdaHoG5++fOXr+xvrVXh/PCKRl3DHKVxWLz5isViRwrJklprj4AwWHebTSHj4lWTM3nivNSaYRC2J69V9IUfHm9/h5sirZGr1AMSU4dEajzbY2+B2u5HYSLJyfblwXd2UIAeV/9yvfvx4YQzjOBqM7FomS2yl4hFIPKUAtfgU3FokKACgLEuhkOl9PL0LS8387oeP5FyZQ2nWg1lt1KWS0kJKhbotz7DI06ZLstPUU0k+SSVjW6rvoQNGXpZKWRametFIJ0M+eQRQJnF5XXh7uOl2De0dYc1mPazv7KDj12fXb5PYf+vXb7pw/d//L/89ay48RqN1Zwo92oPt9XvqtrFcLrx8/NF3JXS07TQdDBvQnS3UpzJw0kKbk705fVdPlbs5MSKJMHXwcbmyloLKZA2zzJQNtczQSZ+Tecizkxpaue8P2lQ0Gct6BXw60uMNPzQTsq0wV9/BRAbXslT+0d/+DYvUKKDDhaM6UBsgF6QkUk2sZXMfQ1Pmfrg+BI90MOZzUtvHEU4V7iGX1TtVTa5+J+DJcznc5iSlS0y0E/qZeQZLXhgqDJ20ubG9XFm3Cy/XV/7ZP/8/OSPtOPjL1y/c78NTXLWHkDJBEXK5eDQG7iygTEyUslwpS6WUyppWyK45WkoGPdDeGXvj0R/oEHei1oZN0KkcY0cpmAnTOsfRn59nzdfodiezTUScbv/h9TteXzZKycwh/PzlE62POGBnNAkZTUIqK5IKyECPHv5sjRT+lyKQfRRwDVFQsE0HeSZePlxZlsoqhaU6pHIM5c9fPtOH63+mSuyGHPrNEeMypsOahJ0VCGldWD+8cH35IXQ8jtP5vlUxCuP0fyQDzijsrdPm4a7tpVDWwppWt5Ra4Vqzk4ysc5GFui7Uy0o20OIn4CYvfPzg+ETNV+7Xik4otpKLsGwvrNfvWEri/e3G2/uNr/sXvnz9RB8NY6WsG6Usvg+dnZQqSxK+u17JNqkouzwCfnJYdponHLfsZJZwKgRJjJmpKXMczenjyZMfzt2cAVupNDKPaeQJRY3FINU1YEhQBi30mY2Y1sPE9jCBXFm2hbQK2+rOG/uuyOKWbbfhhdPvRfi+rJ7FJcX1THQOneh0woT4wtf3ctNomhjJo0pqquz74Y16duZrU48V2lQZuSC1Ymly3IxjTo4x2G8PUh5u+YZT6JOrzp0QMo3HNGpOJPFd5Jf7HbVBKcLr2NgSbrSbCjTPaEsCOhtiULJAWtG7J3kbYbUmbkc3zAMrt7oh0ul5/B8xh/9tF65/8Y//Kd+9vHLMwWM/ONrB47jD+oLlzEzw4buPjpcXoz3u7H3nGK5TOdrhKaGW2UfhGBMpDhPNoAEPe5AInFgnr9sHLnXBUueyuLB5WTJDE30O2uj0B6HXUvpcWLeVNiYtreSaUYPW3PbFTB32yOk5fU3xLueybfzxb/+OxVbQSR83poblk3UsXZHq1O8qC8viF968HyhOlS05OZ4+oXXj3u/O7tLhJILpybSWFNt9AjFrfqCNSZkdTvq2ZmdfOo7CkrInrVqCLNTF8fVaC9u2UBFsWRkoWTqlOAWd2BGSQco1IJGThebSgWW9UtaVUipLukBRSoHLWl1I2xrH+51y/8zsePGyxaG6aRyjMs3f62mTnJyBNjVTk6f3qqkf5jLI2di2le+++8C6rIxZGBjH4dcI5l6T5Oz2WHmBVEjJsOr2XGPuASf69JJxuryJs+Kw4l34FK4XT/m95spSHZZLbXA5FlJX94cLcasZbuBLaH0wOO2sEk4sCPhole3kgiOLYRHOqeRn4XJzae/I69pZ5kItyR031sKatojuMV5Xv6ZUG2Vkcq3kpVJmTJjAQvlWQFN1X0tNLFzIyVi2C5frC+tamVPYj4ntX929pTfUedguRUlgfUeH0ZvQS32y+sYzzt7hpx5p0zlF/lyY65qZs/RQ9mN6Uc6wmCIay1YvcRzTOLqyFvmFDvN0vxBs+s8ZriT2JtjMc7Gm2xtJymx1ced0gcfjQMSjlPbm8L3DcYluAdWmEgSw9Nwle0FLoSfzBqVNt6k9Rch9Gin5lNzUYe0M5Gz0abHvc33qMDcnnrNTNCypZvYstzALDpVYxANBEidoHWMgos/r2Yd713E59hTTkqlDgOJngcYUF6sz/wpSkycWFCSpW179eqTwt124/vv/4X/gxx//Dp1wP3YXEfedP98PPt8f/Pzls7NglsrrpfDpfoOhWLiVlwSWjX3fkTkRDZsUwv4kJxixCwgmoXckijbj+t2V15eND5crB4lhk6md++fmVGubDDZy+RvIC0e5cLu5mW+bBvw+fM+Mvr8xNaGWOHRQS+bjh1f+xT/9F4zH5NjvvN2UOcXNNKXSWCFHQi+ZNVwWZsowFhBz4a4ox1DY3QFgyMEcsEa+kpgEMSQjZZBIfO6ux0k4kSETUFI+zWKd3OBpuZmREvPo7GMy+8Ff/vTibC+DmVw7l8X3B5IdBwcgu6BzKT7F5FMPkuO5pQTmYud1yXz/cWOtmf2x83kY22jMZFgRjBrLcrjalZk8T2vOTkrvfkjOwx3UzR3b0yL0bszRub+/8f3HF1gSk8Tl5YW8VPrewbonykryKE/JrkfKAusCS8VG5Xn0CRAx8S56N2rObr464bIsLLWw5EpJgz4b7/vDn1cuziKz7JRsI2jfPiqUnDBKFF9D7XALpjFRdn/vsoRRrtshNQKqBUiRclwrkleHw9JZEAdZqhMiKhSZ6Bwc+8HbY3C5XPm4VLbLitsTKf19uG5HxBMHpk8/iFDLC7MnPv30hWYPPn3+wuevX9iPna9fv6Kzc902jmNQ1ysfPnzk6/uN237n89sb/6AH+354DM8KPVKe74+Dkqf78Y0EufqhLw45j97JWWhjchyKJGEtBemxM8uZ2eD2dud+O9go6OYJ2nskG/Q+sGNnfzSfTEi+nxWDR1guhfzi+8sLa/HdXev+8+ecPB4usUgpYbVwu+1+DxlPi7cs6TlZo7jfKD7lHXsjpQKrMyXNhHZ0mirt6D4N58TMldv7jbEOllLcB/EUAU930CgpsySh1upoQaokcRiypChH5nq9ZI5uXNfK5XoNcoujFEzf4HuQa+yypnHfb2ifFElPuycxbyxyXbBUeUxAi0+Uf61ehf/P/8f/xFKFoz24d6cYg9HL5saYOnh5+Y5l8UOdNDmOndYP77b6pE3lPmH0nT4crz7tmiaeSRN7faZO/qx/BjXGaHz4Lxu1+OJ3WTeWtbCthdSzd4kYf/z9H7nkSZHBapnedmY/wBpJJrMrxzH4/OWTm8OrTwglFx6fC//Tz3/Ph8vVDyvrvFxeABiqPnGJOR1+Gi2Y9pZ9Z+D0eziaExXm9M5ZQ9/xRiy5AWNguzMZTyNUDVr4nOEhaMoSLCwzZcGL+jAnE7TIfDIR3r78xGVZuC4bL68vXLcrH9fKOG2AJLnNAtMZ/cPYLleWxfcTZbnwaJ3WnfI+9UHrcB8Hn/ruUOaMyAobzNZpo0d3aPR2Z9+HT7qj8+VxD2FrZz882t33geKwqzn9/uef/+zJxOsLrx9fKdnJLI/7PcI53ZvNwmmi6QwGlb+W0/pojBE9feQwSeIeRW3LK7NkssDX4aLx8N5nHDvTvI/W02tPcGJR5OCYhBeI8aR+j33ny2i8bFe2bWVJK9c14EQ8jbvN/nR0T6JBWhA8HskPz/s+KWmQRUl7J+tgDBf7GoV9HOz9jf768ozRuFhh32/eGPQvLtqdcOse5Ln3wW1vtH7naDtHb7Gw9wNdbcCE7z58h/74I8fxcJbw8Gv1vh88emNLFy6XlXX13ei6rcGqcwIGAdFaqtHxG6l7jE8SYds2pGcv8jmj/eFsOFOaGSbeFCzVgxzHWrjrQWreNBhCWSpCOF6Y0YfDzbnekZcLa618+PDCHG5ufEzfF5el8OHlSq1uTo0Z+5vr8Fw9Kozg/k2UXDI6hDYHs0+WtXDZVrZtxUbsXyMiRGphe9koNVNqZl0r+ki0IL6kXGLCEkiZ9eIT9ZygWgJ7HeTiSczdYO/+TyvuO5pFKHieq0ZOYBEnpo0x6HOGzMP//Jn4Lv7wY05IxuXlgraDZtkb7F/59ZsuXP/Lf/zfSAzmONxby3B8eLmSQqv0ODq1ZEqBuiR6b4zhjL1jTNo09onrqHTSxmSMEYwrvMPAc43GHA6lTfWdRnebKDOlLgvLUtnWSmXxmyYJa11puxv1jty43955jIP73BE6oyvHPri/v0V37aLNkgotJe63rxwvLyxhnGpjYAh9KqTuU5EoSZ3tYyKQCmrdF9Zi7G0GS8r3ZKLhVG2KhAv11A6Hi6vNlJrDLcPMVf3wXA4/ybVmT9jA9UUzCCDQ+8FcFnTtrsXJnudzOkY/C1fgBZKM4/FAZ2bOTJ7Gow9an8x9YPogY7RauR+7q+7NyR7WJ9o8CyxFNMfod45jOhQ8Osfx8KwrHRx7j4I8Q+Drr04EjnaQUmZZD2BS60LJlf14OGFHsvvIRaTynONJIzc0LI/8GnIKPmH0mh0+jgmsnblG/TRadfcOHTNIMc4iA/x9ekKE/g9vJPw/kviOR3unyeHenLV4A5J8BnzG9Ji5MzzBmPQQ42ch3kencop3G6KTOUYkHnRy6tzuB+1xUEum5sIrC63dGb1j0zWN+1A+7x6NsbfObW/M4Z6TZ+gjkYV1E+NL+Rwi7ESme7K5GqKhoQqC0lIL123jw6uHUEry3bMFwSYlwbLrLz0nbCLqqQNJcBQlOBz+MwIiS2eobKLmhCULGNB3Vef9fKaRiyq9hS1TJEDoXLES1PxgNcp5qWchZQkqusS9Pp/yi5yr73rTk9Pqu8lAe+acQWoKtnDs6RLyFNDnHOSi5FO2N56Dui6OIEWj6b6Y56wEp8HzCe09n0PApL4/PK8QT3KW83o0i3+c+YHe4J5Q4pMSH9deykJaCyoLua2/+uz/TReu/9d//l8B9zZLqTi0JDDznZSdDl/eW2DcRiluDKqq9N6eqvU2v4U4Gi4wNXseG047luTR6H24mSget4A5I4x9j6W8UPNKjRC5Y29+gUhG6gVLQpudW9gezaGMPmOKAXB4rEc3DEo/HmGYW3jcdkxgmGJWIjQOalm/paEiTyGvJcKdwqcrxJlSpRQSyjgaOkbEsE+PVUk8LzuRxFbX8zbCxhEGncpiEaxpuBBTxD3MpneSJ62/tcE9N7rCRHFHUd+LSVJ3yxBj3vew00mMtLgeTZX29mD0O5i7COytuV3R6N55mrs21BKebAIyj6c7/IgbeMY0+a1ofTu4zi+NLCKdfmCXslCWFY9MOSdFCWJGdoPhWL7HOwb4oXQetqKCFk85nnNwHI/nz82I5zjlTK5LONmnuOPlyQYVOYMBJZ7nPMuYH67qbg/7ccSuUd3ZIYcd0DEZBCs0NEN9HBzt4QdTKS7ArZmmHTFDtZMsoMLWOB6HM9EM/l6EWgtLKVzTikSysQeDwjEmP993Hu1BG06cEnDm63l4Tnya10kJ8fXeGz9+/3043ScXGJcFwvh2W1deX678+Lvv3bBVJ++3W3iNGkkc2k7BkGxhGEAIehMOvbY+sN6w6Q3GUrPTxHNiDTsii5XgGL7vrmul5BT3h/IIhMIjcdztfarSu9u9iZ0kKPzn22RdvPD17tZTOv3XdV09NVmcYNJHx6ZHsKT4vN3OSciRIWNTkRoNkBF7yuT30vRJefTOy4cowELsFcPcdibGDPp98pgRwafOJOJpFw1671y2xTWPdiZK4/vkKEhiwloLbfjOMsxbgk6JN2RTkayUbYGa2P5a3eHf9gcpCV0EpYWIUrDUnKaZE+lx51R5+140Fud5Cb9AOA96X6r/kg4f1jwOPDPVacI5Z+qS+eH1A2bG2+Pui+OguV/qqzvCJ9iberCkKqRG13DXIFh9uGnppLjNlCVSFWr2rCGSRqFJ1DWBuJlnwUDLs5tb8oLxDXu27J2aDiXV4kLnKVhSdyJYKn12SqmezjwLRTMEmaGO7i4cbQftQTwZLOoTXsaoEfmREVYprLWStkyqC3vbI7Jl4eW7NZy/i9sYhadjqkJKp/FpQ6WiyejJOHpMjMC6vZCWgqAsqfLp/T/6BDVaQGmFlCr77MjoT6q/WHKGYUxb4F33pVa0Fj/ESSAW7NDinXMIZfO6kOtGri+ksCXEwJJhyecSm0fULPOYh2fEx6BKjmlLWJaVY98Z7UC7R8d7vtcCRYJfXNCh/nqkcPQd62Guk+D0aVGDrg4bSo6dBT5RTYQmnZwaatU1rQZzZswNGxAS++Gw3X4cPqk358ydpJIkAslYckYH3CPOR2PxXkrhmAdC45E6JejRNm/uzjEmj9bdaw8PbPS1nwcc5mieck7UlPjhhz/w8vLK9eVDwLc+oWCTo+885kHWxPflBdm+w7bvmHmh98bd3F0/50xdV/bD94m1wPF+Z3ans29pQYa7frTeGK3z9d74ctv58N3CoYOhjVkyhuutbiPx8LUOSY1xPzyiowr3vfPYO70Zkisprcye6MeByaT1zs9f7qwvC+TEVSdD3WllUji6cHsMjqO73ks9BNeyQ3X3o3N7HGBusdUXN1kiORL05f3O64cLZRHfUSYhl8KybVgqDBNaEHxad1/OfL1Smkel1OzMWC+VwhgNyEwr3B/Nr4ucsGl+b+YVkcwuPhPm4vCyJTdTTtkR7c4jfBUJ6YBPe9uy8Yfv/4a6uPvH+n+AnfGbLlwzls0zERoVfEEL3kWYueMx4K7egHknpzZinA2PtdM5ICWyOBvNxG+cs4+WDMU8+M13McV1UnvEXXNitmf2kHudjdG8WCWLySp0M2G5803Z7t9vIQ51ssg3o8pThMzZyX97ZpwUdfwlcu56JTQeogkZgqXp/mYpBbwYxVy/RbF7HENogVSfv6dTGXYaYTkGPg0XDedz1giowJ8WTwHi6KH8HzidMAHuQnC+ejWHh8zMSSjZxZY1Fc9REljrGvBswJSng0XYGoWQy6cFvHC17sw6OZlRCU6sRJ6YiT9vxK8HRSLqPBiQv7jHzh2dSSJZDrTEQKIREkJTWP0aE6PUyhid1N3wVfCpoOQcDlUuoRjT909kC11hNF2/QAA0oOv4D9fbnFlJgnfKfTCZ8dyT206F2N3fqxGTp2IS77tCKg5Vy3lNZQ8RbEcLXRC/gM/0SePvye2odIQ2TF10fF6rKdpvEScT1bo5Cy8JJTkjtZQltIEatPCwcIrXeyaWp1x59EFRz4MTSZAqpMQUp167F2IGycwTntwbabitl09G7pXp9lP61C4eAWX2YU8ikpojFzJdBuDXoDCnRXJ6Z46JFX/tbXig7HF01kslaHk+eSYf0uW5p9TwTsyupZJgFyocRwtixAm/CX10RzJ6x+bmJ4D4lDhnTOjI83Ha0VxaQaKY+iSv0NVNk5/aczPGdN/XY+8e67OEPZU561LEmwq/YsPqTLzRd+MGh2xHsD+Rk5zh99II4MLModlf+/WbLlzwJOI4Zm4gOUR14lMNuURxiDdJzhvZnp32iRnL2R2YHyyKkyWe05gkqkXcdy1hkQJPT7xz4jvDFVXpzc1MzQwp9oR40vnhnwtlEpbcBsVmfOjJb44kwhQjDRfTivihWlIhthHu7HBi3zExSHJFfV0qYs40MzQcD1zSqJFx5DfiCMgpnB/iNVhQ4NWMruEagIWtlT/vM4PoxL3dNXpi6q4CpIY5pcC7Ux9deOYGAUrsnOKz9Z2COAQ4fcF8uXrkS86+b5LTWcC+mY+aOryVRQL6c5utJOdh4bs1k3NM8MKjczw/wxTCbt8pnMXDb9azFQIJckHsmyKp+TxISil+DZqSayY3j52XxT+3JOLODPg1O+dkjNNp4dtu5aSAS5Qu45uG64zOIPYPzqL0685MI4aiIITbRzzmmW57OkZoQF5elM0PZZ20mRxKbocX5NPOJxHCeXNY63yuM6BA80O2pHPfE290cofxpa7UUmIn4/52OZ3PMxrQ5O7y5+7FKeceB/PYG7UAeBKx5RxFOfaoItRcEMvuNNMGvSllzqe/5AnT9zHRoVgc7nsbYIXRXU8pJDD3loyR2905SKhC75OjjWicArLde0h0Zhj+JpBK60rO/rMiixEU35eVQbZMTcnRFhNa6+TsTWOOc6K3yWM/6G04FGkg5CdhaU6/n1K4iByPw6+ZXHwVEF1lb90LyrlnNk8O8Ly+zmICWt1UwXxQSGfQpneB8cuvodYaqkYi0eeM+8XdhupSkZw42mBYxi3VvjXb/61fv+nCJZKeWoB8mpAK1BCK5lLZti0OLIVSnl54ouL7CZQl6TPyQpLRhsNKBpzrBsxxY7eSKrxuCz98rBzN+OlLd5uV4loU2b0Ts6nU9UzhNWoRpuXnZKMRiYB5t32W4dPBHMWzrKwyZ6LPwrJUEFBrXFLm5Xrlct2QaWHmq7BmZPUbPNnCpFOARRKjZJacKQKfvzTQy3Opym13xuHxcKupoOrXPGjSXOBrSsdIBq/g8GTgUTOYV4gwLRJlzUjVramc4TapCUpN1OtKkgpM1BpXE/dMzBUbCUTJWfhweeHWH5Ra+cMf/oY//fSfyKtDfUMyjIn1Tuu771rM2ZrXy4pOpY/D4buYrCQmIxElAor8M4mJww/7xHKppFJ9AgvH8SzqgXy4Y0sfioTr+0TIMSWpDi98JSOlsFwrfSaSZmq9OnUcqGr0HtOMTaYemCXEJn30eG7n8jsMXDFSns9r1KdJ14ulp3bML15DmChFGxbpx6JnzIQ7O5hkUq64JlW4VmedWRG0Kfv9zuP+cJuhpVLXlcvFiRGmyv6Xr+zHwQg0QYOGnZKbtLotlBdityEvEEw6NaGKi38ZSjt2Zz0m9+6U1rHe0NlpxySrO1i0kbERmiKrZIlpbrguqtiKzsLt7eD91jiOxpzCy+Im1WVJjF7oPdG6cezCbIXUL+T9hZTdBk7mjaKKaXf25lBOQ5U5quv3RmG/Jx6bUVD6AEaBsTBbR0cl6coqF8q4wCzuV9gWGCtJDZkVLAf8nyk5k+mgK3szHlW5VU8C0FGwUdh317rpyCQyi12odiHbSpoL2RYKDbGMSxET41DSNbMk1+4JOQqrUvKKJvcY1QhKndPPkMxGSRfIi2f8odSUMFaGdoZ22sxYLsgaKdrxvwx8v1Z+vCz88aXCOOjz4LMdv/rs/2+a1f7H//F/5F/+y3/Jhw8f+OMf/8i/+Tf/hn//7//9f/V3/tW/+lfPrvX89W//7b/9r/7Of/gP/4F//a//NdfrlT/+8Y/8u3/37xjjv31R59HWLsbTuGEcogiYy5QzKvtcus/YVT2D2qar7z1O2jveGWwjnzL0Se1UNUYftNZpffDYd+4PtzXqrbu+4ujhGfhNPHoKJvX5y57/bs9f9v9r791jLb3q+v/XujzPs/c+17l0bqUtpSCktiAiNBNiJWnTi4Sg8AcCUTAGQh2MXCQEwt0oBhNjNAT/oyYCKglIJEgsl5ZvZahSIRWq86O1WGhnOp2ZnnP27bmstT6/Pz5r7+HY0hul49D9Tk5mzt7P3ud51nP5rPX5vD/vd/435tqb5GPMfWQ5hTZbEaWYiFn9WbJOXcoSVhJPz2aSUSYPiDoztx113TCZ1poq6Tq6NtDWLW0baNpA03Y0rTL6lJWniuI6rtkgUGQuCZVQen7M4x+TWjToTDTSdF1WNon59UDTtEynNdNa6yxNq1YMzWRCPZkyrRvqpqGe1mxubjAejpkMx2wNN/FViS9LQkyMt7YYbW0xHo3yTFG/qwt6XmNK81SeZFKAiMzPy2xlPJdWSmmeapulZLpW/w1dR9e0NHWT/Y4aYqcmpGoh0c2vnZRXPSGnkGZMVTC5QdPM/dtmWnqa5jY60cnXXcrXRZLZdCenhmervJzenq02QkzZ3C9fdyJZ9FZXDLNzriy1NN83Javod3YhzOn8rijwVUXR6+EK7R3rspqIyTWloigzmzOnX3NK0jAzYZR8THofhKgOAfp3lLnWdi1NN2XaTKmbhkldM5pMcy2uoevaTJNX88fCz6xCmI8bMsvoaoD3DtbXl1lZ7tOrCrqcMhaBrst9RrnCE0Ocq7mbTECYKW6QWXeFtWo/b2YszYC3hqosMMbMiRlNq4QPn9M5EmfCzYnC2Wz+qA3JNk9gSpeDlTWQEpZI5S1rywPNjqRE2wXaLre5GDV6lOyQYFFyRlk4ipmOYZZd6lclVVlSOE/ogto5ScJnN+VZClIEnHP0yorKl5ofiQGJXZaCUqakd0qa8dkl2luLN47Kq1WNsykvFk5nDCTmzIPTckHK6ejHi8e04rrppps4dOgQL3zhCwkh8O53v5urrrqK22+/naWlpfl2b3jDG/jQhz40/30wGMz/H2PkpS99Kfv27ePrX/86R48e5bd+67coioI//uM/fkw7rw+iGXXldBrISFa+zj0Gzv1ICi4/NDTrMnOUEYKoYqcVl4kU6OqMzJYzemJDUAp5CFp8VQsEbbSbM2wi5PzTtiAVQshqA6eprpjTp09ymk1ZALMGnhyDMgFA918ZSl20tGWLL7QFftY07awK7xrvMBRZaTpA0Idyyl8quXaQotA1HdJ1yv5J0IZECpHQRSYW6i7bYeSxTkA3I79h1PAw3wCI1hxn56LtVCXd5LxIlMwmjKpabp3BOdQB2AopN8Mal0Vg61qN9crA1tYQ5wsV4ZWGejpBQtQ0pZH56jrFoLRm0UA7p+fO61uaDkNmY376+tEFZMSGiIjJwS6eDniZ5CJkIz3J9GoEa4t5Oi50AZsfgm0OakLWbhNtXYjzZb2uHtKPCGammGZrwUxrz6kVa+b7DEqoQCwis1pNnljEnD6XRAoyn9CkHMRinqRJlgBK6Ge6GCCBqyp1uS6Fqqcu2DPB3Bi1N01V7its22CsNq/zIxOvWfP+7BJWBRYAVUKf0ajboOQqJWjmdC5CoqOLHSGoh5aSoKBXFEQJWRTZzg0ddZKiY+K9YX1tOU9GhFMbQzAFCQ3kzOqGxmS2pQZ6g5YMRFCliFzHsU4bjGfWKSlpn11ZqBZjEpnLvpWZlAOnnwEzAgkYTMqlgFnwtTlbY7QJOIngnGFp0GNzVGuNLSbsjLGXJyt6rrOqh3casAqtKZHLAUVZIlYgCF1m0wo6oZXErNaiDGFr8aXHe3XlnrkwW6OZiJRrVtZoyjHNUutGdR6DxHlgnT3Y5teAaNCKEvJ18CSlCr/4xS9u+/36669nz5493HrrrVx++eXz1weDAfv27XvI7/jnf/5nbr/9dr70pS+xd+9efuEXfoE//MM/5J3vfCcf+MAHKMvyMR2AMbNiu1IG4mzFEpPOmGOnXj5Vj4TJszdtKNRZiQVv1KoetdzQgOEwLj+MRWtSKWiAwqgD6vraigakmPD9Jeq2ZWs8IbS5uGx0dtp0euP5mFQyx2m/iKBSPdZ4Zr0UcHqtdbraMxei0Zx601FPRkyNY3O4SVFYVgZL7H3aeazv3MnS2hqmD86X9OwKo+mQ2EWkTYzjEJISVBqB0EFdN2wd+z6SBOcKlpdW2Dx2L6Npy2g05ASn09GzhlhrDWOf6PcLVfYWSyAXBK2jlaR1NSyTpkXJD4aurXFWrdGjSZTlEr2lZZbXd1CulATp6KRlyfaxXusWsW4IzSZdqBluqb1C0fMMVnsMR1sk02GSUPUGhLahbaaMRxPqyQTQxutceMJYFRG1XunV8ziWayIpk3hMsppSchaLpnZmddQkLTOpH2s09SUk2m6aUxgWY7zWTEIipZpJl5XNk5CINNMhKXY4DEvLS9r8O24ZD8ekTETRptEsuWMh5V4v54sZjQcjmhrX79Wid+wSnQka/5IGs9AKTTvRhy0WX5b5e3MN2KrvUjdtiMYiBVQIRVnlupLHuoKmnjIZb+o9gcO7Crfm51p0MaiI8sypweQ6oPeOIEr/B0h0kDqMqLRR7CoV9HWdNl8nfdDZotT9cR5bLSGuB7ZHf2kVbEMILV2qM3FI054UDlOUuKpi99oKfrCK629y36lNgvdEY2iajraNjLtIkxKN8zTG0RmLDAZIoe4RjS9onafDYMp+brLWnqo6m5iK90iMBJtorRAsBGNorSUUjtp5pjjGAVZ8H8ESJdBazwTLSAxtNPTLAmcz2aYLxGToyh6dt7TeUjuHWA8kghUmwMA6JsYyTkl1EMsepigIvqC1+nerogeFruRSOyE6Q3IWCo9DV3NdCPNm7MYKXSFEa3GlpzMChcdXJWKcOi9IIhhoJVsReU0Dt3VH3XZqm2JtbncBsZYQI9PRCGyXrXLax/Ss/1H8RDWuzc1NAHbu3Lnt9U984hP8zd/8Dfv27eNlL3sZ733ve+errsOHD3PppZeyd+/e+fZXX3011113Hd/97nd5/vOf/6C/0zQq+TLD1tYWgD44MjMrP1PmN2HhHFVRUg4qiqKgqipWdu5UySED462a0WiDrq0xRqj6Puu9FarQXXhcrwILlSspbIGEBtN1FNawc+cS5567j6pXcf4FF1Dt2kkXE/V0yvF7Rgw3NxmPthhubVGNLF3bYpzXxuHMbpuVtXLFZU7wUOUKQGR+0+sDKz8KSo8zA3bv3snePbs5Z/dOVpZWVfamKChXlglW6Ts2VgwkEGxLR0s/Vpl4p2STwa4Vqn6PSy59FgQDMZG6lhP3/jdbp46zcf8x2hCZTBrquqVcLigKpwSVxFx13YiBGNT4EMFbR1GqTuOOXTtIyRODUI+H9JaW6Q+WWFvfCa6fa4CRanUZW2gbQxF7tK3agIReST/4PGMdYL2jKCuqpWWe/0uXEttAO2kZnjrBeLpFPR0yOXWUwlvaLnDf/Q9gSmVsOZdZpTmlaVEyyywJ54zDGSV+KF3bMzNgIbOnKlPk9gVlLbqBBtm+DCi9CiWHTtlkhTf6U1bKgjWW5dU1eoVTodqmYzTcYjoZMxoOWa601yYm0T5B57DOzpmgoPVQN8805JWkUfuKsixYWlmmN+gTGu0VUmaiw5qdOlN3Bf2qjyk9UlptohYgCqONB+j1e/QHfXads4ve0gpgaZoOt7JMDB1tPaLZHGYJrUBvxXPBubvxRoht4N57jzIaK91+NGnyhDJf5TYz02b943lO0YaOhIHg1UnaqpRSl1ep1hWqgtNbxvgeTZtogxIRtGnf68rIqi1Q07SMiIwmhlMbWzywuUUXAkUwedJoclpZVfJD12nKMupkNXQtbU5nzzQS2xgIXcgrYUBcTs2qColObLT5a5b+DmGmpiKZtSjzEkaY7X+Epm0pigq8Ej7AErrAaKwSVc5YSmcpipKmmdK03enyR667Saagh5AITUeK2kTd1E2emOTJulNyUNsFrWXqDahMw7ZlPB1TTxucFUzpwJSamUmzrBCQbY2M9xA14TpqO1IQZSvnZ5rNE0Ksow6J+05uUlaq8Rnj9h7Kx4LHHbhSSrzlLW/hxS9+MZdccsn89de85jVccMEFHDhwgNtuu413vvOdHDlyhM985jMAHDt2bFvQAua/Hzt27CH/1oc//GE++MEPPuj1mYzJ7ELU1xy9qqJXlAx6PXrLfTUu9AW7ztnJ0mBAVRSMhx0nTxxjMhlmVe8A1mF8SddFjHf4ssB5Q8/3KV0J0eNCoLCw0l9i0B+wtDTAGke1Z7euDrrAwIw4URU84AFRx97Oa+FyUuciNvOVtF4MczZbpjqbHz1O1RJ0xipteGAp/TLPfOYzedqBvezdfQ5Vb4WNzSGTtoWiwmbKq8FQWadjIOBTnuEmJROsry6ztmOdvbt34cSTusB0uMWOZZhurTHd2EHbChsbW2xsbuEGFqeZNsKkZTiezhXUjbjsKaSme1XhGfQqVpcGeK/jFNsBy2s7WFpZZdfuPUTTV+uT4ZBiRRXhi8LjWs94tEldG7roSOJzTacEa+kvL7O2ezf7d+8gtUI9bjh6d8lkukzbjrC7B/Sqgum0wdm76bw2Ojtr6No0r/UQcx0zpRyc9KHpXKG9Rrk9wmXO8ExSKiRHlyydqDKLK4usiznQVGnXMliuKAtLWViqnq74jfXs3ruHHcsDFSket9x77w8ZDjfp9z3nrBSkIMQgnNjYJBrR9EyenKWk9Gs7S6XlpbDN+1ZWJUv9Hv3BAHoO1ckzVOWAQU9Tf6bo4YxHPEQPbdvMTSonS316vT69fo/V9VVc1UOpzkJv9y5NlYWa4fGTjIabTCdjenh2rw4YVAUmgYTIAw9ssDncpGnjvPdr2/NjntfTZGgXAhi9TmGWSXGELoDR89GrBnhXYYwns9r1R4SspplrXbqCENFgtLG1xXA4yg3gaU5vnzVGz5wQQiKv2iwxqkBtCAlQBmeU020mKsKLikyHSJHFs7WNRqnzXQg5ZQ5a8VFquaabyUFPnZ/VLihndgBE1XGmdasZAGNwzmOyCara0XBaN9TkhnixdEGyTZNqi8YUcxuCyQo8WlsLMeHsrO6bMgkp0rYNbReovOqYMvNvSzlFSeYvWBWdBkGSpU0q7JvmrQ/K5vbOEiQxaVseGI5YkT5FbvJ+vHjcgevQoUN85zvf4eabb972+hvf+Mb5/y+99FL279/PFVdcwZ133slFF130uP7Wu971Lt72trfNf9/a2uK8887DuUKfoFajuneOXq9k364devP2eyyvLJOcIRrD6uoyO9ZXWVtZZVDt4NTGfobjTUZbG7T1llp/UDHa0ou8SFAlKLF448ELg6JHz3sGviCOItNWm+3aBP1eSb9Xcf6uHQxMYMlFJDUMXKbjJo8wzKr02gUvhswAS3MyCzO2pNWagBG1H/HOsW/PDnbtWmPf/p1c/StXszTo4Z2jmRQc+e//prv/fsYnp0isscZQ+h42JXquxC4tA93cvn3aBXYNBuxeWeb8XasslSvEEDm5UXDe01ZZ6RfsXu1RxB5H7/kh995zNw8MN5iORkxGY+45dhLsAwwnNaNxrQ3gFgqrvUKVt6w4xwqG/fvOYec5u9m5VrFr5x56/SWKsiK5HWyOpxw7cT9tq3qBhQPbJTZ9YDxVTUnr9OHXdJrO6PdLdi5VrPU9vueQXkU7XmGXGVCVlmeeu86OwTrj4YRv/vs3uWfjJHVWIj+5MWEynTKtp6R6NqPOk4c8EeoVVQ50qtzgvGTKtiPGli4V+OiQEPExUgRDv/IMyn5+uERWByVFoSuu/mAJvKeoSp52YA97d60xKErCKNFzsDVaoW538PRzlumZAlrHf9zxPU4NNxnVE0JQpfGmi0zqKWS5ocDp1K1zlh3LS/Srin5RsrZ+Dv1+wWDQ48A5+9h7zjnazO2XOXbiPiaTCZNaV0bOeg3UBVgKUhSG4yHj6QQByqpiR7nEYFDRKy1Du8QD/VMMh5u0o5p+2WO532fX8i7iNLJU9rFRaGptXA+5rpJy7W6e0s+Bd9o0iHGsD9YJOb1ocl3ZO09V9BiUSxSmwCa9aVywpABtihTFLMWvFPAu1NTthAc2h2xujZlOG02z5/pb00XqoFqWXYh0YmgxNMZi/ABjIjhIrsBWgsv1aF9qTTjETldsKdKFBEbokgrnBlTUuAOiyfrtpsT5Pt4OsnqPUHeq2tOhdPZkC5KzBCxdTExiZNxmqx7nML2KaLI+oNWUZzD6OdcbgO8TjAoKTESIhcP1KzDaUlJ5R1FC4WesVENyOXKaSK/nmQToJNLEVkUamBFRDOApiorQtYgRjLdI9DohMInaQV0Y6lIDvc39Ob6yjJoJMnR0ZYEr1qlStlR5nHhcgevNb34zn//85/na177G0572tIfd9rLLLgPgjjvu4KKLLmLfvn3867/+67Zt7rvvPoAfWxerqoqqerCuleoIQhSLUU8Cmqbl6P0nlRFUOJb6A1zpcZWnOnaCoiooq5L1pR2UvQIxidFowtbGpqo6J89k2pBEaLtAUzh8LVhTE0KNiypqWpUlx+6v5tTosldSVp6yKpC2om5qpvWY4/efZDydKolD7Fz7S9XilBGFk3naBLR+ppMWmUsPac8PNJMpQ29wLnHz//sqTRYhbeo+o+mYtmuxwdIrPFVZ0V9ay7qF+SLylmQdyVmigRPHT7B58hQ//J/vq+8V0KaWbnQCQ4vzifGJmo3hFhvDIVsbQ1UdiIHYKbFF0x+n2WSgM87ptIEAAUMrls3hkPGeNe655zgpQRMDvn+AaD2dBNI0qm2ENbjso9WFltFwjGQeUjCe5ITRZMoDJ07x/QqIFumgbsfEZoKEljtujxRi6dqOYydPcHJrS4v7KRI65sV/Ty7mu/zwkJjrlmoJI8Zo7r8JWKMqEG1o6JInJEPb1XSdej5NvGEylVybEyZbSjrx3tDvDxA9OO6/5yhFT11ybWOZdjXNdMpka5O7/r8OCYK0wtZ0yrSpabqOLtemMBaxeuNqs/ysuRcwUE/VY27SNEybSH9Q0SsLtu7f5M7+Xdqn1Fg2xg/QtSqZZQtL4bL32XJFmHS0bcu4nijxyFlcv6L3g3spSo+vHGmq4rUpBeqTQ47f12ERSnFsjreYTCYMh1sqMgsY40gpZFah6kdKOs3ybEJi0nZMmhZXVHhXqCJIMvSy1Ufb6qRLgF6vYhIDMUgWzjbYqsDZHsaIil2bis3hBkaUGRe6lt5gAIbMrjvNGFaiSkAk6iIi17GNhZgb44tSXadNUWBSyWg8xpJ7QbNMckqagjvdL6X3MKgtT1V5RNTEtm2nhJxuHZQDqpn5pXi2xhOVRpPtjOOYx8tlPrgzyvZzWXA35eZyyeSRJIml/oDSOQpnqQpyrTyQkqVrZX4M85IF6hKt82llgcYZocM6nNOMmwQl41hf4K1l3651HhiOmNZTSucy61GQoLqOIXSk1BCkw4naOD1ePKbAJSL83u/9Hp/97Ge58cYbufDCCx/xM9/+9rcB2L9/PwAHDx7kj/7ojzh+/Dh79uwB4IYbbmB1dZWLL774Me18SklTJEkQm3IzoDL+1IJDu7196/GNY0qDcQbrHaNqSm9QYa2laWpGwyldFwjJUNdKm7XOUQRLdGo337ZTJOhFWXpVWHdO1cKLuqIoLEXhCI2jCy1d11LXSjfX1AVzqrKZNarahBo8Admygfzw1gtMKcsGcN4yGY+VTpo6pE5MphPGkylt15urcpSU9MuCsizpT1WIN5GtxJ3FFAUUJa60TGf+9gT1e0KI0lFvniTFmpRaxg9MGNU1k2amV6dajoWxKlpqdDY2s/OwRme2oeuoE9iJWoW3Xadz0eiVuZgitrQY57WFpc7SS1ZTJsaqgvhwqMruCZ0BzwRKlJkVdfwSCIFY16S2JskUOqV1D+spo0lNSDPl+0yHNKhlhNGUiLVGm2rJmop51hhtwEjI5SSjdHARQjLE0EEUbcIOBstYa1EGUhZWdQ5i0N0UoLYWTNTkUbRa6M7+Yl2c6IQgpLxS0UbwIBFns8q305qOEh9ycytAFAKiShgSgYaYEo1vmUjAlJaYoG5hUg9JQZuOXWnxTq1M/MTTTlu6rqNuG6z3WO/xUahN0HpbYbAxC7oidHUkRLXySW1g3EyV3h7SnNQzU1CZ/UiaMc1yzQeZp9V8SngXct+kh1ThLDgiJnZIaPGmj8sq5fqQztYducG+VzpV9peAQanoRnRiJFbQ6ZQq01hntBPYRIQO4wLeQRG15cy6BDapeLE1GrzE4bxgO/0OTNYqnKnyWMFaye+pEakQwUbEdMTUqj+cBDCRskBX9YWyGplEhABENQY1kWS0tmZcwmSJJfEG8SBeSFZZudElooPodIXrK22Gt95iPEQHZNGEFPPkwZhseZRIJuk15nTbOnU00lJKS2Eq4lwWL2amsPZpDooBm5MJMetSWgMu99ZKisROhclh1sLzJClnHDp0iE9+8pN87nOfY2VlZV6TWltbo9/vc+edd/LJT36SX/3VX2XXrl3cdtttvPWtb+Xyyy/nuc99LgBXXXUVF198Mb/5m7/JRz7yEY4dO8Z73vMeDh069JCrqoeD9gbYrMKQiCSCckuV1uksXakzkK4ORKMNnUaEU7KZFY4N1pcQu6wUEBmPJhijxnzRQq/UK7hrGkLQWVprVbDTZwprNBUhCl3bMR1PVOAyRCQ6XHIqh0PMenKAtViJuetd0xASBYm5+dKrovWMtZhiAAmErmU8dmxtFJzqTWnrhqauEVH5KYOl8H1Kp0GqKgsqXxAx1KLB0Pd6+H6Ppf6ANkW9gZqpSuHEQFtPaaYTQtsQmikxZmmcEPFFgTeCs4L3WWZJIy3WJLxoCOtSVGpwF7E20XQdm8Mh08kWxq1iXYX3npBO5hmlrnY12aO/+9yHMmyyurskZUKZHN2MxRJyDFKvtNRFlZfqJrRtTQgdbQhEowzHIo+1zkwFcTZ/XvCFm6uWtCHiuoBxAVyXGeiGlFRJQon6kNoOM/Myj0KXRnMR0pTlqayFmLzO8FNiYo2KumXm3azgn4IgXZgrgTdtq0oT1uBzeDIiGiiNIZmZ1XquM0giov1gRgwNia5rMKim3EzZPIoltMKsjVPqRDKRzkDcGNOGREgCEikGlWoX1pbOJIyJOJNwttKHvoiqmgRPipFJWzOtM209q4NoP5myfGPShymQ6SWZQyvZRyso00xsQEILvsT2B/Sspe8SNkygAc8ShVFnZJN7F22y9Gxg0Osx6FmcTfjY4STgiDgTcbnWWbiIdQHrVHPPVgYpIslMcX6qZQgr+B74mEAivaql36tyLchRllkgO2qqMKAWIcnk75Ws3+cSwXQ0cUqQCV1q6dKERloSHdZGql7ClR220JWZ2WyBFiGoOK4NdC5kKrrKrtnKIhXEnhDKQPA1OE+0ibaCNgnRJszAYCuXKfKiUk8IpS9o6pmXGogJ1CbQEpHCkkpLWwpbccJSGmFF+w2DEcTp9eFJuV3AMegtkY6fpJ42mCweYIylKCzERGw7mskUZio83eO3QH5MgetjH/sYAC95yUu2vf7xj3+c17/+9ZRlyZe+9CX+/M//nPF4zHnnnccrX/lK3vOe98y3dc7x+c9/nuuuu46DBw+ytLTE6173um19X48as9RU5mhboz1MKadOdKWuBUrvHKq7FzPrK2VplTwjsMow89l6XRlkclrqBJktnpnJ2aTcC1W4Qm/MqL1aXfgRvbAsymtn1HfrtGnXGaxoCtA4gy886qvq9KGdC6hVUTLJgrNqeyH40rO2vEJ/aZVpMcKayGjY5SBi8gPdIKLFVlcl0kx/zwgpWqRz2CpB1HSPSKOrqa4jdvpvyqmTwnu0IGspeiXeJLwRSq+pKi3SFpisUZgndIzbSB2TinGKThh2rCxDsQRGbTeGw0bZT7mJeqbtRxTKqsA7R0fFTOi3E8Fbm1dFklefymosC0/MvWwxoJJC1uJ9SSz04W5Sl4vkOtu3tqfnBr17C1cRRahTxOTONBFDWRZKNY/QpU6DmBhcVonXrIf2+JDrTbM+HhHJq2Y9NyHlh3KarRZnOleamrJYCqNFfHVd1gBtUfkkZy3OVnPlGIc671pjaJxVmr+zBPFUpUo9xVhSeDWnCMni0RRYRPAmr0JFmYlilW7vrIArsM7jrUOUeqj3Xu7VmffrWIPJTFXnCr3GU8DqUljNT7P8k3OOtV4v2+BEUohstiEzCJWUAap3V1louobN8ZDB5jIhJJouErKPnFrW6IPYZ4ZfioEQDTEZQidZMKDVZ0R2Euj1SuJSLzcTCxIg1JF60jGZTijLPqFTdp5FpdP6vTL3Bmp2xxt9fjgLzqsChUlqwFgWWvuRUQtRaOvAaDjl1AObuUm5RYISIqwzVKXH5wZfScz7q2YrF5OAIJSDAlM6ysoxHE51lV0HpqOaemlKUZSZ/JHy9eLVfSCrBYWZ/Fm+h4xqd2njdbZ06fe8TkoQVVlpE9NprT51vsLlJ6H2Mc7aPAKtK0lRcFiWBn2aTkky1jglFxnDpItMWj1X3eNnwz/2VOHD4bzzzuOmm256xO+54IIL+MIXvvBY/vRDoipKBL1o5nO43N2ugQxcUarjbmYPm9yc62dkCGupih7OVToLCELdtHN9O8hU3mzTkbL9CQYNBsbQIYQ2gNGEXMhClyLKqjHOYm1B4Qwm6IorzW90sE5nzTGZ3MSsbCPJZAHzI4KKxhqMV6r+8sqaKr1XfXpVR9O2WQUBCj8T/oXkwDirtP7CUPT6+KqPLz2uSxTRY1xPNcY6R1trYPbeQVXgjMtCoiHLISWsFYwDySKuBg0YWo81OCnwGHxI+KrA2JKq6lOtrlD1duJciSGxtKz1sNB1jGtNuziE0HZ6w1lLYcGYijJ5gnG6shJldHlbZcULKEqPi4JEjxQpU3wTXcqmeJIw4lXdYpamiomU1QNm1GwxMmd1GoOmVZxm/nXyUWlfV4JgJa9ONEUXMptLRM9tDl1I6+eSUyFGkJADVmZgZU1K6wvVsRSldktmOtoshmpQRYcZs8vm5uHZA3DWKGqdxVuHrwplSKZSZ75YvDhCZ9S/LEYNSjE31gZ15fXWUZZ5QpIDjkRlp1mjcl42p4WTF6zzUEDlDNE5TGixockOzJEkDl95Cq+11/0711gdFPRKT1n0GLeephPqVlPrddsybRpWelrv8r5kebmiKJ2mu6SlcAXWqYST3seaXShckVOIBl9UlK4kOJ0QlbmtxPV72NBRGJ0kFKWmYSWJ6jLmSYpzUFr1wuuXhapPBEidod/vkaLBpA5flGpNk2vrVVkorT1qK4W1lpAS0+lEafEx4LLqhvOWyheU2bR0ZiTrvVeFECyV96r5V2gQKKNldWlJU4DG0IWgLUMiOZWZlTl8oXY1TicwqYt5Um6JKU/69SmHClA7Kl+wOuhrc3VumG7bjsm0ofANvbKf0+EJk9yc6t92QjIeW2k7xVLUVZUvLEW/wnpHso66DRQuELonKVX4fwWzAOqLQldRdqaOrplkn/u7tL+yQIwQsp2Iy/lYZ5yqIRiL9wW9fgkY2i4yHI2y1I72JUkIBCSrY2sACZlOLgBB5ZGM0bx2CjPjNChmZAOrXe3RZDFTbctn1ouTRC/mLpz2WcKgJ1uzW/m4NVhGZ6l6S5Rlj15vwKCfGE1GTKdT6kmDK3R1BYnOJryDqioYDAp8NcBWar1OUJ27otAZvG0dIXW4NJPNUWo7TUOgzl33uhYxs+Y5AZui1gOy+nryFlJWQS8cvuxRDgbIYEBvsEqvGOAsrK57mrZjXE9gs8558UQ9nmCM1j1s0htIcCR8NiNMSICy9LlOArawqlqSLJblnHJM2K5DOi1Ykwwx6g2u1PImB6d8KnIdKorMA48xmuZVEWbtKZKUVQsIkJXTk0m5wRc6a7AhzFOFNuqDc6bkYY3Mg5qeamWuWu+wxmGxOsHJrB2Lz1VKcnOu+uX6Qmng2KwDI9qUbAStP3idODkc1qsvkxFLsh7bqYLLzIU4pUAgYIwq4muQKDSNTcTm/nJntcgxs/xRY2YLxusDF0FaMDbo6ts4IFEBvUpT1Oc9bSdP27uDnWvLrKzuIsU1msawMRwz3NpiYzTkxMYm671KVVNSot/zRANCRxcFY3WSZ20Cn9OmmZMe2kxqwuFtQWHUsNOJoL2yHqoSj6GwOtaI+nQNh2OKosuTk5jTsVoGs6jWY2oTRVFQ+ESwidJl2S4M3rrcQmHoFzbXVoW6DWxubem5zR6A1lt84TGi3ytZVk495lxeXefewszCtEkT6sv9/pwRO502bG5t0StLyqKkbVudcBlH06mahbPQNjGfL1EtRMnU+hT0ngjqSL5c9ehSyGMS2RxOqdtECI6VJS3DYEQ9+bLqyLQJTDuIVtVUegPBh0g0FtvrZ5Z0YDSa4h252PbIC6KHgpHH86kzjB/+8Iecd955Z3o3FlhggQUW+Anxgx/84BHZ6f8bZ2XgSilx5MgRLr74Yn7wgx+wurp6pnfp/xxmvW6L8XloLMbn4bEYn0fGYoweHo80PiLCcDjkwIEDj9mb66xMFVprOffccwFYXV1dXDQPg8X4PDwW4/PwWIzPI2MxRg+PhxuftbW1x/Wdj786tsACCyywwAJnAIvAtcACCyywwFmFszZwVVXF+9///sfctPxUwWJ8Hh6L8Xl4LMbnkbEYo4fHT3N8zkpyxgILLLDAAk9dnLUrrgUWWGCBBZ6aWASuBRZYYIEFziosAtcCCyywwAJnFRaBa4EFFlhggbMKZ2Xg+uhHP8rTn/50er0el1122YOMKZ8q+MAHPjB3TZ79POc5z5m/X9c1hw4dYteuXSwvL/PKV75ybtr5s4qvfe1rvOxlL+PAgQMYY/iHf/iHbe+LCO973/vYv38//X6fK6+8ku9973vbtjl16hSvfe1rWV1dZX19nd/5nd9hNBo9iUfx08Mjjc/rX//6B11T11xzzbZtflbH58Mf/jAvfOELWVlZYc+ePfzar/0aR44c2bbNo7mn7r77bl760pcyGAzYs2cP73jHOwghPJmH8lPDoxmjl7zkJQ+6ht70pjdt2+YnHaOzLnD93d/9HW9729t4//vfz7//+7/zvOc9j6uvvprjx4+f6V07I/j5n/95jh49Ov+5+eab5++99a1v5R//8R/59Kc/zU033cS9997LK17xijO4tz99jMdjnve85/HRj370Id//yEc+wl/8xV/wV3/1V9xyyy0sLS1x9dVXU9f1fJvXvva1fPe73+WGG26YO32/8Y1vfLIO4aeKRxofgGuuuWbbNfWpT31q2/s/q+Nz0003cejQIb7xjW9www030HUdV111FePxeL7NI91TMUZe+tKX0rYtX//61/nrv/5rrr/+et73vvediUN6wvFoxgjgDW94w7Zr6CMf+cj8vSdkjOQsw4te9CI5dOjQ/PcYoxw4cEA+/OEPn8G9OjN4//vfL8973vMe8r2NjQ0pikI+/elPz1/7z//8TwHk8OHDT9IenlkA8tnPfnb+e0pJ9u3bJ3/6p386f21jY0OqqpJPfepTIiJy++23CyD/9m//Nt/mn/7pn8QYI/fcc8+Ttu9PBv73+IiIvO51r5OXv/zlP/YzT6XxOX78uABy0003iciju6e+8IUviLVWjh07Nt/mYx/7mKyurkrTNE/uATwJ+N9jJCLyK7/yK/L7v//7P/YzT8QYnVUrrrZtufXWW7nyyivnr1lrufLKKzl8+PAZ3LMzh+9973scOHCAZzzjGbz2ta/l7rvvBuDWW2+l67ptY/Wc5zyH888//yk7VnfddRfHjh3bNiZra2tcdtll8zE5fPgw6+vr/NIv/dJ8myuvvBJrLbfccsuTvs9nAjfeeCN79uzh2c9+Ntdddx0nT56cv/dUGp/NzU0Adu7cCTy6e+rw4cNceuml7N27d77N1VdfzdbWFt/97nefxL1/cvC/x2iGT3ziE+zevZtLLrmEd73rXUwmk/l7T8QYnVUiuydOnCDGuO2AAfbu3ct//dd/naG9OnO47LLLuP7663n2s5/N0aNH+eAHP8gv//Iv853vfIdjx45RliXr6+vbPrN3716OHTt2Znb4DGN23A91/czeO3bsGHv27Nn2vveenTt3PiXG7ZprruEVr3gFF154IXfeeSfvfve7ufbaazl8+DDOuafM+KSUeMtb3sKLX/xiLrnkEoBHdU8dO3bsIa+v2Xs/S3ioMQJ4zWtewwUXXMCBAwe47bbbeOc738mRI0f4zGc+AzwxY3RWBa4FtuPaa6+d//+5z30ul112GRdccAF///d/T7/fP4N7tsDZit/4jd+Y///SSy/luc99LhdddBE33ngjV1xxxRncsycXhw4d4jvf+c62mvEC2/HjxuhH652XXnop+/fv54orruDOO+/koosuekL+9lmVKty9ezfOuQexeO677z727dt3hvbq/w7W19f5uZ/7Oe644w727dtH27ZsbGxs2+apPFaz436462ffvn0PIvqEEDh16tRTctye8YxnsHv3bu644w7gqTE+b37zm/n85z/PV7/61W0Gh4/mntq3b99DXl+z935W8OPG6KFw2WWXAWy7hn7SMTqrAldZlrzgBS/gy1/+8vy1lBJf/vKXOXjw4Bncs/8bGI1G3Hnnnezfv58XvOAFFEWxbayOHDnC3Xff/ZQdqwsvvJB9+/ZtG5OtrS1uueWW+ZgcPHiQjY0Nbr311vk2X/nKV0gpzW/ApxJ++MMfcvLkSfbv3w/8bI+PiPDmN7+Zz372s3zlK1/hwgsv3Pb+o7mnDh48yH/8x39sC+433HADq6urXHzxxU/OgfwU8Uhj9FD49re/DbDtGvqJx+hxkknOGP72b/9WqqqS66+/Xm6//XZ54xvfKOvr69sYKk8VvP3tb5cbb7xR7rrrLvmXf/kXufLKK2X37t1y/PhxERF505veJOeff7585StfkW9+85ty8OBBOXjw4Bne658uhsOhfOtb35JvfetbAsif/dmfybe+9S35n//5HxER+ZM/+RNZX1+Xz33uc3LbbbfJy1/+crnwwgtlOp3Ov+Oaa66R5z//+XLLLbfIzTffLM961rPk1a9+9Zk6pCcUDzc+w+FQ/uAP/kAOHz4sd911l3zpS1+SX/zFX5RnPetZUtf1/Dt+Vsfnuuuuk7W1Nbnxxhvl6NGj85/JZDLf5pHuqRCCXHLJJXLVVVfJt7/9bfniF78o55xzjrzrXe86E4f0hOORxuiOO+6QD33oQ/LNb35T7rrrLvnc5z4nz3jGM+Tyyy+ff8cTMUZnXeASEfnLv/xLOf/886UsS3nRi14k3/jGN870Lp0RvOpVr5L9+/dLWZZy7rnnyqte9Sq544475u9Pp1P53d/9XdmxY4cMBgP59V//dTl69OgZ3OOfPr761a8K8KCf173udSKilPj3vve9snfvXqmqSq644go5cuTItu84efKkvPrVr5bl5WVZXV2V3/7t35bhcHgGjuaJx8ONz2QykauuukrOOeccKYpCLrjgAnnDG97woEnhz+r4PNS4APLxj398vs2juae+//3vy7XXXiv9fl92794tb3/726Xruif5aH46eKQxuvvuu+Xyyy+XnTt3SlVV8sxnPlPe8Y53yObm5rbv+UnHaGFrssACCyywwFmFs6rGtcACCyywwAKLwLXAAgsssMBZhUXgWmCBBRZY4KzCInAtsMACCyxwVmERuBZYYIEFFjirsAhcCyywwAILnFVYBK4FFlhggQXOKiwC1wILLLDAAmcVFoFrgQUWWGCBswqLwLXAAgsssMBZhUXgWmCBBRZY4KzCInAtsMACCyxwVuH/B5TKluC+fASLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name pix2pix \\\n", - " --img resources/input/translation/gt_mask_0.png \\\n", - " --result-out-dir resources/demo_results/translation_res.png" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "img = '../resources/input/translation/gt_mask_0.png'\n", + "result_out_dir = '../resources/output/translation/tutorial_translation_res.png'\n", + "editor = MMEdit('pix2pix')\n", + "results = editor.infer(img=img, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -247,22 +671,48 @@ "source": [ "### 3.6 Inference of unconditional models\n", "\n", - "Input: None, output: image." + "Unconditional models do not need input, and output a image. We take 'styleganv1' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth\n", + "Switch to evaluation style mode: single\n", + "Switch to evaluation style mode: single\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAACtCAYAAAB1Le/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ya8tW3bei/1mGRGr2NUpb5k1mRRJkXqkRFvwg98DZMgG3BAMGGoK6hg2QAEG7YbohgQBBtQyoIbU8z+gvhuCAXbcsGDhSbLMJzHFMqtbnHPP2eVaK4pZuTFmxFrnJiVlwvDLTHDPzHPPPntVsSJmzPmNb3zjG6qUUngcj+NxPI7H8Tgex+P4GRv6p30Aj+NxPI7H8Tgex+N4HH/eeAQpj+NxPI7H8Tgex+P4mRyPIOVxPI7H8Tgex+N4HD+T4xGkPI7H8Tgex+N4HI/jZ3I8gpTH8Tgex+N4HI/jcfxMjkeQ8jgex+N4HI/jcTyOn8nxCFIex+N4HI/jcTyOx/EzOR5ByuN4HI/jcTyOx/E4fibHI0h5HI/jcTyOx/E4HsfP5HgEKY/jcTyOx/E4Hsfj+JkcP1WQ8s/+2T/jq1/9Km3b8lu/9Vv8q3/1r36ah/M4HsfjeByP43E8jp+h8VMDKf/8n/9zfud3fod/+A//If/m3/wbfu3Xfo2/+Tf/Jq9fv/5pHdLjeByP43E8jsfxOH6GhvppNRj8rd/6Lf7qX/2r/NN/+k8ByDnz0Ucf8ff+3t/j7//9v//TOKTH8Tgex+N4HI/jcfwMDfvT+NBpmvjX//pf87u/+7vL77TW/I2/8Tf4l//yX/7I88dxZBzH5d85Z66vr3ny5AlKqf9BjvlxPI7H8Tgex+N4HP+/jVIKDw8PvP/++2j9X07m/FRAyps3b0gp8eLFi3d+/+LFC77zne/8yPP/8T/+x/yjf/SP/oc6vMfxOB7H43gcj+Nx/P9x/OAHP+DDDz/8Lz7vpwJSftLxu7/7u/zO7/zO8u+7uzs+/vhjfumDLWeNxjtNYxRKK0BRSqHkQiqFmAoxF2JRpAyg0LqgAaNAAShFLoWE/B1zIRdIBXJNhhWlQCuc96Atl5dP+fZXv8H5+Zb1qsV5g7OW1juMNuSUiSlitCPlgvMOrQ3dao02Gtc1NOsLrp68jzHgrUGRadqGkiCXREyZkguQSCnROIv1HcM0MfR7Dvs9Qz8yxYm312+5uX7DFAJpHBkPO8YxcH6+5n63Z5wy9w/3XL9+DRS0UbRty9nVFc/e/4jzqxd0qy2+W2OMxWiLdQ5jLUopcgFFqec3U0ohx8gwDgyHBx7u3nL95jPevPohb1+94vbmlr7vCSGjFRit5HwroAiazgVSlvOdciHkQkjy+1I/SwMhZXxI/M++9j5aK1AaZgSuFAolz6+kmjr5b0EBGXl4PoDlqcsoJ39OH1NaYVR9nVYoJfOsaCOfahVFKXJR3MfMq7sdt7uBMWZyfecQAjnLtcwlL9+/1L9BvXPsWsu8k4/U8tpSj66wPF+BHNPpl6jnV8mtgFbgjEFpjVIKq4W1bIzBGI1CkXMmpAhAKhmrLSEnvHHzxSKh0EphjGHVOvp+JMSINxoUNFYvj1lniTHTecvZZs3F+ZrOG1KGECNGw8XlOdfXO6LSxJLJscj9kiP/9jvf53/6P/9f87/93/zv5PrN579+ZzVfh/laLn/PF+14BdXJP+X0qJNH8snPf17WW35fSnmHsVXA6WWb15uSMiVnUoykMJHGA+FwSzrcUKYdKk9AQqUMKVJKRtV7iVwgZ0Deo+QMOVNU/ax6/ct8BPPvKShVoMzzva5V9dgVClXvp6L1MkVOz12ZXwgUpZd7apmMKEqBnBM5JUoBow3WaLRWqFLqkZXl84tSy3kqxwuz/FyQ019K4Xf+L/9X/vf/p/8z3/zwBX/0//i/8fn3/yPX12952B2YYiKnLOtDzISYUVrjrMVaizIGpRRGG7y1aGMpyrCbAteHgRQTnTO8d7nlxeWa7aql7ZzMfaUoaEo951rlOlfknGQglwIlk+uflApTysSsiLEwZRii4nY38vpmx5gS/RAJIXGo7L9CgzYoBZtVR9ut6PsBYwxNu0KXjHOWQ7/HuwZjDcPQo5TGOYOzhlVr+db7Wy5XitZpWXtyJoXANI4Mw8BhP3A4HNjtJu73BzmOVIgpy/6WZc1JuZBP5/G8rtef4jwd6+/maxczTKVgtOX5h1/n/OnHWOOYQsA7zdXFGRfnGzbrLev1mqbrcL7BWFkTjDH0hwf+j/+Hv8fd3R3b7fbPued+dPxUQMrTp08xxvDq1at3fv/q1Stevnz5I89vmoamaX7k953TtN7gncZbjdUGFBUgZFLOKJVRCVQ+3pBGyR+t5sUOUlGyHue6kJWyrGG5FLRSaGPwzvGVr/4CH338TdbesrIFaw2rVUfXNLStx2iFNhZjG1AW126w3RbnWxpbONus8N2a3b7n7u6e9abFNy05BrQ1JAUGQ7t2aDT7hztSmFhtr7C+o82KcvWcu+u37PZ7So48efKcXCK7/Y6p3xOnwOvPPyWEgbbtOPQD682Kq/Mt+/0OpQzdqsG2HevVhq7r6FZrmm6FNg6jNWZeCLRmVi7NC2YuhRSD7IIlEUJP23U0jcMagyqFlOq6q2QhUwac0mhdt4gC6QQRJOovy3EzURpUko3VWVs3KF3/fHlrKQvonJdoeVzPD9fHj4s0pVAUqOPlfmcoBapu5jNIQSuKVmSlULmQVGECXt3teXO3J+W6Z+RMqZ85f658mCwJSmlZ1oscT90SgSKnte4oRmvZKOuGuWza88/UuV0XHK1lTpt6jrRReGcw2sh75Yy1hlIKqWRSBYzWWjkfgLMO7yxKQU51Ay6ypI9TAFXYrhqmEChFFkKlFFOI5Fzox4n7h0zfjxz2DwLgu46mESD/cHfH5eWW3VAEWOuMzQqVNcYZvHd0q1UFpEdwOAPN+b5VWi+g9Ihl1DvX753ryY8C0Xdm0CLROwJHSjnOx3cAj4ycSwUqWTbyGMlhIg6aYCLRjBCANEKKkOuNUUEJOUOpAUl592e5pBXIzGCgKAEvGbmv9Aw05PEZaCzzag4M5huvqDonM9R7W36tFzC4gGGtQWlKTuRcSCmB0lilsVqhDRWJVEg+gx5UxU3HjW75u4KoUiNAayzrzZqXH32d1+99g8+/92dc3458fnNgTImMLDMaAe3OFtBQUkaXgqlrQ9c1tI3HWst5KpytGqYwsW48zy7WnG86Vp3H1w1TaZkwORdyTlBkW871WHOR71tQ5FjIRRNyog+Zm33g7W7iu6/3dJszhmFitzuQCqQK+I31+KbBGsdmuyaGCVCM44R1LY1vGMeBi4tzLi6vGH/4fVzTSWCoDdvNGdM0YYymaM1//907np8ZvvH+OVcbhyYzlsxhF7i92XFzt+dhP9KPkX6KTOkYpEtAWEGX3C1oDUapuhYpjJY9san3V11x5PuXGugXaLoVV09esD47pyRQTEzTwM3dHorCaIdvOhoURluc9XjvMdZSclrunB9XqvFTASnee37jN36D3/u93+Nv/a2/BYjO5Pd+7/f47d/+7R/7fazWWKNxRlC90Rrq4l9jEnRRmLqilKTIczRWNzStK7qvoGRB0PX1coELRsPzp0/5xW/8Mi/e/yo2BzqT2G42OOfwTUPSYJo12/UZXbeGZk2xHa3XbM42bLdbGqchFVzbcTaOPHv+FIoiFbk1Cor7+3vubm/o9zs++vh9Lp484ZPv7fijP/4zPv7a11l1KxRw+fQp1numEMgxUZRic3ZJTolPfvhDvvatS5IqjEPP7vaGlCKNLYQw8vlnr7l+uEcpjTZaQJgqdcLW84V8d/WlRfo08pqfq5RCa4OuEUMqMMXMFBIgTEqTFdiMq0SIVrKQWa3qBnjc0Msc/WV1Ai4EoGg1s2bzcZW60KovAZDj8apyfPNlo6ub/Lwem/qi+eacw/BSFmwxH9gC2qI2PIwjX+wG+jFVQJGJKS0LHaWgUcRSjptgRUbq5HiX713RiWwu+Qi2FChVI1uO0b1SYK2BIvNZL0ClAjoghUTSBa00mkzJcqy5FFL9PjElOb9aSZSWJUpXSknUrBQ5J1SRYximUAG8gAVdmczDlGi8ZxhGbncHdgfNxbrlMEy0XcvZeoUuiRACq805OEM/pncAgmwcWc5RqZsler4Icg6KQpUa/SqFpgYa6jhfvzzkkZmR+NJj88SuC3eZw81lVpy+5xx91v+VfPyTMylFcg6UPEKJdUWZUZQ6zqeFjpnfs7yz6S8sxfy7cjwadH1FmWdIqedo5jyz3D8LmioLAzmf6xkIz8GHqiCmzN9x+bwTHkcpZBrOj+fjccvMFSalnDKcM+Oij9/z9FwqRbNec/nRL7D+g/8P3n1BUgN9llO2cpZNY1k3jq5xtN4Km2MN1moa72h8Q+MtzjlShotxIsSINYpV62ickQBSq2WtKfP3qedEGN4sG3qOxBQpOTEOE7sh8Op+4E/fTNweJnaHkZgLZ0kzTiNaa/b7B7RxKA3vv/cBX7z+jEPq6/oOMcq8P9tahiBM9Lm6YH/YV+Y/0/c7Xr7/gvPzS96+vYZSaNoVShle3z9w19/z/NzwwYXFERmmxL4PvLkdePPQsx8zoUZcMUkQIkAbjJa12Gq5TkYrnNY4q/FGgKfVCqOO86ig5NgKhFTQqzXr7QXb7ZacoGkm7u+EQdwfBqw7oLRbgFEHkoWgkNKfFwr+58dPLd3zO7/zO/ydv/N3+M3f/E3+2l/7a/yTf/JP2O/3/N2/+3d/7PfwVuErQJHIUyKPlHO9ORRaaTACQNK828yPGV1ZgrrgKJhDWFkkZfPLqvCXfvEX+aVf/CtsV1tM6nGusF5tsI2hW22wjefy8hmrsyvazQXGSbrkbLOhaVdA4eHuhqI8680W7RxWGaL3KOuIKXI4HAghcvHkOdvzK/7sD7/D7/93/2++9Su/zFe+8S3in/4ZP/j+D3jx4gVN43G+wTeNpBusHKu1Fq01v/JrzyUKKJEwHujvb+kPe26u3/KDH/4Q41u6dZJ0TKX+tZaNaE5vzGubKtQott7IJ+i7xjcoZTHWYYxHaUMuipDm9E2RqAuN0SwbHvV0ayMbkc7CWGU1b+RIdDgvfuqE/Zp/UerGo3kn4p3ByLK5LF+mgoLCSVg8I5gyvxAlcWbFKWXZVJRWFbwm+lK4HSPTlNjX6GVODyqlhBpn/oiyLPLzXqzq89TJx2ulyPVgJYLJ8r30yXdG2JX5O8ybXSGja1pHq5r2LFmo21Jp/5LJCkGRSPQP8nytDSnLRphywRQBNaXIEZUKHJwz6KKJGbQqmAqKtNakLAtj13rWXcs4jqSUGUJgYxTDoSeFxNlmRdpNWNtjm5WktSq4UHpO2aaT9IOwOGqZm3JB9JxaUEpSUnpmEOqcKQsdUufrnw9Qlv349ALBO9dGcOXpXCkLKMkp15ReIsVACgNxOpBCDyXNKGBGoQv4UHMqL2fIiVLywrIU5Hnza3JO9dDqd9ZmOXhJSRUyM43Hcp+WXBkZJayIBB2ZopV8ljqeo5xVfZ68XtdjLln+oPRyHud5fQpQltOzAC6W45GTmet9ebw75RsJc3v+9CVPXn7AB29eYVRhTBVkdI7GO7wzeG9xVtLr1hi0EcZX1hYJlFLKjI2RlHlJWCUbsp6/kzqZB0uAWEFmSpQk1zFMgdvdwB99dsubA+wT7KfM9uwCpreEvucw9PjGE0IgxUyKI9o67u/uCKEQhp4cA0pbum4l37woVl1HKcIsSGCtGMcK/LXn5uaB/tAzToEnvmN9do7xDfc31/zJpz2fvEp8eG5YGQlktLVY47AmMMYoAXbKaK1qpkHRWE3rNI23eGdorKSTnLPLzwJU9EmQI4FaiJHbw8jQXHB2ds7Z+TnGGFKMtI3j9vaWFBP73QGtDKBRaAlejZGtNf+5d99/dvzUQMrf/tt/my+++IJ/8A/+AZ9//jm//uu/zr/4F//iR8S0/7nhTKX859QCZVmQlxtKF3S9gXSeNwpZzFSN+k8DmSN2nKOVzK/9yi/zP/rNv47XnhIHum1L6zuKNaxWGzZnV5w/fUHbnrFar+i6Nco6CokpRToN27MzLi7OiFE4GmsdPYquPSPGyJs311zf3DEOA+vNmrOLCz7+xjcZw8R3fv/f433DL3z963zx9gumEJimwsNux8XlFdY1lXJPGN9QcmaMka7thKaNmfX2kjFE7ncjFENMCmNaVhuPVjO4mSnzGh3XDVCpyjhRF7UyR1Ysm77SGm0c2nm0MZVFmIGhLF6pQEhgtLy/XkBCfSMULFv08aEjs6DfYR4WnLGQEzOzoN4N1OZRI7rjQlpfq9Wyni5r6wmuKZW5mXPtmYL2njxFphjYh0SoG3iqm86smdCl1NzucXM7YqTj96i4uR6mbNJmZk7U/LoZqOiTcy83/rzkxigbnXcWa6wwYYCx8r7zRq/qXmStO24aWlGCHK2uC1RKAkByjhglQCSXXAN7iZKNVZXFPOobnFVY01BywrWq0uaF1mpWa0fTWEKIXL+95dlzi0FJuq8u4LO2o8yLZZE01QJSTihpahpIKVXZjyOgW+ZSBZ7HiXCcIOX0B0Hix0zayTzg+DDzpM41NXNM9QTy1BOHe/JwT4kjqgLNmQ0RvUkFDznV9E+qv5//zifsn0ajsNahbYsyHpAAixTJJVFyIJPQ00jKiaxNTRmlepwIK7UgrgJlTgsdGZ75RJQ8MzUzE3JkUeY5SslLzCdrwul5PdG6qDo/swJd5hm+nPICSxq3WW+5fPER+y/+DKcjMUwYC85brNFYZ7DWYa1eAIk2FqsdWheUNrLWpIQxhZASMVJBuARiwhCURQuUswQdKUVSDOQUiTGx3w/88We3/OA28Ho3YpsWYz3GFQ79HkxLmO4oWSpWY4wYayg5Y5AKlq5bs+o6+cxcWG3OcNaRUqLve9q2Fc3IMHI49Dx79gJK5tWrz0kxstme8d4HH6K14XDYYYzBtytGNEMK/NltZq0TbbY4Z1l3HmsMVo+MMYES9qgxilVj2bSedeNpGof3Fmt1BSmOxkpWwmiN1ZKZ0MrUlFAmpMyr24kv7FPapmHdNfimFaara2haz/Wba6Zp4nDYY6tcwHrRNhqtST9PIAXgt3/7t3+i9M6XR8yZkBSpSNSbq54BrZHbulQkWIQCXuhJZPGptF9hzncWuY+ULLrKGH7pL32b3/yvfovGOB7u37Jdd6zWW84vn7LaXlLcCqM1m+0lz569oHGOmDJu1XF7fY02hhBizWlmtG/Z7XYM9wcuzs8Y+wPtaoX3jmE/EsKAJtPv7+lWa7769a/yb7/4nN//d/+WX/v1v0JJka5zFBTX1zt829Ktt8QQl0jOe0+/Hxh6oBSc8wwpsb14ygdf11zuX6BUIYbAm+u35DDirJGNCVlC5kV/GSdaCFXmiLayKFqjtMEYi3UeewJUjgy+bLwxF8YgDIypb59ykQg8F3JRdWM9simiw9DHz1w2n7o163pBT5HJu+vl8denO87JccnzFTOFXepjcyphPqKUM4FCCZHdlBhSZoiJECOFgjVWNom6oc45YFQ9zBO6fT7XZZmX6p3jTpXJUJURFEBdsFrLhl4vSap5SokSQSmJJCkRY4zICuqOq2bB8QzclRJ9ysw0Ko3E8MdNScSdqv5e9j1nLQXRdpWcwMj9N4Uocz5lGiuRc0jCQOyHiZhEC9UPPV23IipNvx/YbNYYI5qWGRSlGKpg/SSqqymlGaTM10epkzm7AIvjxntkYP6ccRL9L1PhZNq8exscmb1SwUcpmZwiKQRyGMjjA3naQZpQ5CVSX+ZbPf8inK2fmeVaW99itMNicH6FbdeYbo3RDmUc2jUoY8F6AXD1s0uMlBJJw46YRsZhx+H+LdP+hhSnyuoZjJ5vCmFxmM9vqVqWcvLtc5FJq3T9W1WgO5+cGrQgqWZmKl+fJNSWk6eOr6lQKdePWjCQ1ti2Zfv8Q66ev0THnhgHrAZjtYhdjUEZi1E1QtdamGBthBlXWkBHVCiV6k1XA9OqQ5mvYamasZgTKUsaJqfEcBh42I98fj/x718NPIwJ33ZkZSlZ0e939P2BZn1GCAnnFPvdDqU027OzyhpoQtVrJe0hTljjGIYJvXKiS7GO/tDDWpNiWua0a1ps9hhj8VVjc393z3q9YpqCnGalaVYbTF1vru81MU40DTgrxxRjQgHearrGsukaNquGtnE0jWhzvNNYY/FWUmdOm5NCh3knkHMYYuGQW+7V+cJKeWtkv12ug+bt67eEENjv9gKYrMFYg7WWlPIpUfljjZ+L6p7/1AiJmjMvxJzJKHSRSN1oARpmFjuqvET3BYUpcrMcl4+qUVEaawrFwLPn7/Hf/PX/hs12w6vPf8jl5RkX58+4evICszqnbVrW51fElPHtit3DPf7ZM1brBoXhxcuX7PY9WivuH/bEnLB+YLM9I6bMmzfXOFM3yZJZb1r+8Pf/hGbd0HWe4dCzWjX8pV/+S/zJH/1Hrq8/RxfF+uycdr1m1Trur69p2g5FJk4D3hpyHHn1+ec0vuHyyROmmBmmie3ZGe+tNpRcmMYDt9dv2XQr7u9vOEyVSlaKuYBm3pqXeL9Gg6exkqoLzywsds7jvMfZ49Sa16ZS171YQKWyvH8uECpQmdnjXI9lYRdmBmUmXI7vvOwq8w115CxOx5+3PR0ZinfYlQoG5vRfUQg1TiEUOMTCOE7cj5EhVFqV4ybqtKTvYkxopUlkjNJV3yMfkWuOWtIpAmAzHMvJ1ExaZVRRpHpdhKGPOGtQRi/APJVK39dUj4gJTa0MEm2MMDtqYQxlYZlZmUKslRRz9Yw1mikmUs44o8i5UvRFqPGYMtoqnLE1vcSSegGFdpbdECi50DWOUsCj2R0mnNVSAdR1xJQIYeL8fMvDMAKZkiJhOtR0j4BgtYAVxTuMCu+yK6ds2wxoFiblBKicXvN3fneyHryDHef5PwOVkmXzz5EcenIYybGHMEAOqDIrx09A38z4gICRpqXxLd60NM0K61sUFrRBWwem/pG8KKoKz4txC6iWqVTZ3xTlYHMmhZHp7gse3n7C7uZz+n4nYFZXtqoC3zkAUQvrUZmOeo7lax9B4PyaMjNN9YcyT+457JvRTJkJm8rlKd4Bg9QzpADbeFZPXnL28qukwzWhl6obXat40IbCkRVRVQdnasoaqEJiEbrqIvO51MKJmcXMCVLKpCQAZYqBME3EVPju5w989+3IfSjQrPAqEHOhbSzKbUi7B6YQiQ93tN0KYyprpTL73Z6m61hvNhz6AyZFhv2BFCc++Ogb7B9uGXvRdrXrjnFMaAWHcSLGTH8YRFu42YjO0hjubu9QlLqeKC4uz8kpcXt7h3UWv9pw97Cj+CsI92ybidZJOthWgLJqHauuZV1BSts2eOdqesdUEbQ+EdJSGUC51ikmYQ0rG5LSXHFYAyNjaNuWy8tLSkpcv70mTCP7/R5jHNqKgPZdtu3HGz/fICXDrPqLNbeulAhlTS44UzchrRZwMi86M/EpVcnqZMWSC3R2/oT/xf/yf8Wzlx8QpgMvPviAzeoC022JumXlWny7whjNs2fPcFWDEmPi+u0t2lh8rUraH3q88xBgf/dAGEaunlzhTGHoD1y/vWWzabg8a+lWnj/4D9/hm9/6Cqt1Ioee7bbjg/dfcv/wwOHhgfbhgY+/+jW8N+x3D9zfXrNZb8hhJEyWkjT9YUfbeLRWxFRwTUvOhVAV5sY2PHn+PjfXrxlu74gl4vVxkxc2QdIycKS4Z9Y6z7+bwUSlXY1rcG2La9xJ5QXHeVk3sJBklTL11M8Jtvl6nEKK44ZziiTqY8uxvfsxX74NlkX3R8Yp0DlS0PPGlBWC2IyhGENOsJsm+hAYU6GU01SHbF4iSDVoLeDDlMoCZUllZSEYyItORQDOu5S6Qpvj8czf0RpDjIkpJoxVC7BOOQmVqgpaC3vnnaVpPDFUZqdAqbofa4QGzrlWI5QsOixAlVr9hoiJ88zCKAFZ2uq6SGV0XUKc0Ywh1+Ohikep+qTCFETgmouUMqqYsTqRU0DZlhgDKQW2q5bGW0IYmA73YAwo+aONYWbUFmZoASv6R0uTZz5lflzNM2iG3fO5P5kOldlgBjqnU24pF07kHCkpkFOAOFLiQEkCTBSStpH7pZa/1zmttcE2axq/onEt3q/QpqnHNx+LqsDsWGqvtFoCB7RC6XKc5PaY/qt5WgC092jf4i+ec7G/pX+4Zb+7pd+/JYZeZtYpu7ycjwo6OLkP50BAzWsqUGaAKBui0noJaeT5iuM/53NZIdApi3JyTbQxNGfnbF5+lfH2Ew5venIaobLcFW0gSqiTQElVdlLr5XdzNdiiS1LChArTUjUncWKYAv2h52EYmZLl33+24yHI97IExhCxVnN/dwuqxzknWg8j+j+05eLpM3KYGMcJcuT6zWus9YyHHWEKoDRGF5RxHA57vDM8PNxhjOH2+sD9/T3rzVZ0RzHgnYNSyDHR73c459nt9lxeXtA/7Fmt1su8zilhfEcshWQdgQOr/EDrtICTtmG7blivW9ZdS9M2kg6u+kVVU8soI8UTIl4TkF0KKYrOKaaJPsraPQ4T0xhpm4xyphJhGt+0XFxdkVLm5vqWoe9R2krwpA3O+79YTEoqBV1z1bHy37OeEC16APIcWBz178eFR9Xa8bJsuiUD2vD0+UdcXj6n6VYElXDNBqUanlw+Z4qJscCqW7Perrm8OCflzKvPX6G05vLJBW9fveawV2w2a96+ek3TtmwvzkFlKBNjv6OECWMKY79j7O9Zd5b33n/GD77/XV6/es3Z2Z7zswtur7/g6uKcw37H9fVbtjGx3z0RWn86cP82Y7WuUVUkK4PR0HjL0O9RWsqIpyBCsPVmSy6ZECJXz9/HdFserr+gH3rx/zhZmaSyIEsEdMJRzGCmqFnMqtHaYq3DO4kOrdGMSi90dylHxfiyLM0Lc6WKj9Fr/Zxl9a1/l6MQVtVUzSmEOb5zqU+fP4cjEP3zsMr8HjMo00puYu/IztG0LX3IDLuBjBYmXM2fWjCV1YhFqG9jNClrdJHF01pLHkdSmSsIJBeulCjudQUMc9SvZ9aofqmYj99Oay157BApCHApSLVbU5mNKSpCiBijONt0KKUXEet87lIRceq8paOgpCxeKU5Ak1YzqLGM08gYIq13rLyndabui4oQE85byljwVtM6g9ewaRse9r34qcysFIYxBRql6McR6xwlZvb9wIWzNM4Sp55hf4MyUo6JNmhtKxiptRnqXWZlrnw61ajIVDqyF5XLYKa0ZnZlZkmWGTTPr+VVVcibI6SJHEdKDEBGkziKYxWlpHrp5so4cLal6Rq6doP3K6yxx02/LkyL2Pf4izmsWoAYANockavSFCOl+YIKawpHgSkK7R3FGrJx+HbN6vyKsX/G7v4t+/s3xHjgFJyUem7nNNr88+mts0BANR/nPH/qn1yWX7Gc63e9Zo6LzJGxmX9vmob2/DnrJx8QD18wPIjOZrYSUFpT1AmjRYFSRdbUImIlOqaZLZRCCFBF/HimaWIaJx52B764feDtruftbiL5lvspooxlnHqmqDj0g7wuRnJ+oGkkFTONI2Ec8b6h25yxPb/i4QffZdhNTCHiG1fnq6HbbNg93DH2B3LO5CRp1rZbs98/oErm7uYG33RcXF7wcHdDt9qglKJbr9D1HghxDkakmq1tGg67e5RiYXU0Zwx7w7YZ2W4azjYtZ5s1601H2wiDYk+q8SBXW4jKrFGqeFjWA6XEY2UMhaF4MoYYYZoCIYQKoOW+tFbTrlZcXF4SxsjDwx2H/V6mqjGsN5vjovZjjp9rkBKy3Ngly4Ir51fV0jdhTyTZrqqgVl4ndLU+moflcoyelUL7jvc++hrTNNCHFSpbnNEU5/j85oGnz57ywfNnNM5xtl2D03zx6Rfs+wPnl+cMw4Dzju9///t8+NH7uMZw/fZzdocHnj17xuvPPuPi6hJnLIfpwDgK2r59O1AoXF2d88Wbt4TgiGHgi89f0XqL1RCmgdubt+zun4NSpDAxHQam9YopjKiUSM7htKKkxMP+hu3FFcY6drsdlEx/2AsLZD3Od7Q+otZbOufYh2oixywK1KBr/lzV9NgcbXJc5CXNYDDaYazkPJvGs++no2awvk4CLFmUKgEmYmfm95wXa402oGKeL9wCXsqSOz9izuMSWOb/L49Tqv5oeQ955GQbkLx63TO0d5iuQ68aXLviMAZ2ux37aWIMI7kcdSdam3oOCl5r0lK+KxtLKVk0JUajojAK2iiKZgFZIradN8ZTMK3mk1d/lHNhjV7ATslZSgmrQVVCAAsUYog8pAOrtsF7JwtLjFJxZSTq1MCUIgUlniraYJWYdykl1ToQpXqriDg364BzhgzVj0iRhgnfOIytaS9vWK0bqVDIhRgLoSQyI2vvJLBQMEwTZ5s1/WFk5t5Kmkjjjjn3qJSposeZTanapBOWRCaNXqL7mWU5kmjvgpb6D+ZHyjzHmK9D9c4oBagAJed3mBJ1SjXWVOgMNjSKpl2z6s5ofSdpMUDNolgKqgZJ70B3Jd9T1VQXWkt6R8mGUpRC5QJoinUUbeR3RjbwXDcbVQoqJ5SK6EZTnMG0HufFq2azOefh4Y797i0pDu+wMMdzcMKMcAQwR/BkauAwhzClCm6Pabi5/FqCxznF9G6kcILH0dZguy3N5Xv4ux9KQDfO53sGfrle97wEmZparVbvI2UqUFGaVFNzkBiHkf3Djoddz+c3O757vefNYQJt0SEwTBGlI/0wMo4Baww5l1qaHwlTwHlXP1tByexur0lhkNSStXTeE0MgpoD3mjiN3N9eY63j7vYW3zQYo5nGiG9XrC9b+sOBlCK7/QHnLdPdLcPQ8/LlB2w2G97e3DCME10j7zGNAzm0hBjwGoYxMKlA4x1Zr3kzwtMrz3a7YrNuaVuHc1KybWYdiVYoZev5l+9TUlqCyVzEa2UcE33QJNNhTEfBEqbCNAa0NvjGoJAUtNOG1TZzEQLTNNKPA0N/wHqPMX/BmJSYxGMjFxFcnlKLieqjkOaTLzdOqRGIUO6FKUr5llIiPFfW0G7O+cY3vsl21dHfX5OzZv3+x1w8ecI4JZ4+f0LXivBIacWrz15xf3/L21efkNJE07Rs12uIA9fXb2is4ebtW9p1T8kBpRR/+J0/4IOPPuIHP/g+Ty/POewfsK7hzevPcF5AUUqJoe9JIbDbHbBGXFunceSw33M47NhstuQ4Mg09+8OBkkBXPcg0DoShZxoHEoqHu1uMUbTdCkqibTu0UazaFhNXDBr6tK+5nJl6rovvvHmWUp1T6wZZz7jWImwzVtJe1jlaZzFKkWekfRI8zfqULwOFeZNWsJTCRZ2kGoJ5MZvRpvrSWnd8dCEiZkZb1Ue+xKK8Q/nXcDEbhbIWnKZbd4ypMIRAIeM1jIibsTZWqFKtqvhXFPCzXkFVMJaLopSM0UbW9HoOZl3KXOqu6vwUL4GCMaZufAVr1EJlz1Ev9bniVTI7g1ZBYEqkImZNXaPFtTNF8bGp59YZK4LzKL+PKR8XLsSJ1mgDuRBSwDeebdtIJQOgihIwXAJTqqmoEFEYxpKYvDjPuq5l2PWgNCEK49A5R0xJFtScGYaB1XqNto4pJFTJ6DzJJlABxsKwzXNEKagahzlFscyEU2ZlnhrLTJtByuncq/8tJ0zGMnnKSWmzOpbgo5g9RY7zR8B1161Zry9pXYfTGl0SpChgegmoZGs94qdaUryAMHEqnRF4AdEJZEVOmdL4k3QYUpFTDdrqzDvebAsD5TDNGq0M1nnaZsXm4hkPd285HN4IE1vycp7lO1ZGswqwFbJ2yrmovqSlPgFY6OxZeDKng+YvUs/fslfNmhjAGkUyFtu1+PNnuLMX2LvX5DBVsK9Qpp6b5epKOqKUClqqV4w2GlMgGdApEImM48D1zR0//Pwt33974HosjLkwVRXvme8oQ6Q/9ISQ6v1gKEWqJVMpjMNAjqmWPvvqKdRzf3fP+eUF1licb7m7+YIYolQhoRiHgWQDxmjCNIJzDOmA9w1nVy9w7Y4vPv+Uvj+wPb+gbVuscYQwknJHnEb6IZKmA/v9nrPzM84vL7nf9wzjQNt0M/lF0prrHXzyYPjgvQbfNjjnsMbKOv1OerSuK0oIQZSWVHWt5EsxM4bMoNfo7gJfHBpLzoVxCBhjZM031fJDa5xrWW03nB0m8u0tMUXGcRS2/idEKT/XIOV0LHrDenOkVP8NCwuwsIoFYhaaPS80Zt0EbMv28iUvX35EZwK3U+Jr3/oWz95/H2sNOSW0Kgz9npIcN2/fcn/3gHOGu5tbrPUMTQspkkph2B/oS+SLzz+l3awI04BvW2KY+OyTH3D79guG/QPnmzUxJPa7nteff8qTZ88pKdIfdjijODzcs9pIHtI7SwyB+5sb1t0GSmYaBzSKYRjEqMt5hsOecZpowsQUE31/wHnPOI5V7JUJNd/bbLYEFG6cmMKwbJiyRlW1SFHHtNhCj8/QQRYObQzONzjvqrOjgizuhvrUwr2ywPMGMTseSrWDXpgBo8FGDVNaNph546oxd12H5Q1VeTcqAxZ/i/lIj6F1fWY52biMOJ7a1qNcQyzQDz05RYZhYBgDBaluUUZaBkwhEmMgJjFxm8uQ30kVFDF0U8ZSKuU8C3bnCFTPpnbVc0RVFqUUiKmg6+ahlYCMKUYBh/O3KiKGpaSjGy65Cu5m8J6Y8/TCmEkuWeVcK3UyyhiKVjTaiCAXAfVTiGy2jpw0IWd0znTOy31RjbOUlaNJMdMPE6F6bG+6hqEu2Kpk+mHEbTowGm0thzFQ1IB1jmEMKCGVJZI/8TqZxQyzER/ztZ1TPydXXh0nCUcGYN471bL5KxbEzCKync9/rq+tpmgln4hHAUpNYxU5Dus82/OXbNo1Xht0TqgcUDlVt80Z/Bh5X23rdzxCcIqWjXbxxIcSowCSOl9mxkaRa1UONfWqj0BuSR9q0AmKRmHlxnOt6OZcRE8j3rc0wxV3d59Bfy+M3WlUwXGNXHQhc0mzgsWkbU5JVXCi6t9zgDDzVgtrNXt71etpNMLQeY9dndFsn9GsL8njnhTCO8ckvlhS4VQwtQBJLRVsqlYrFSd7wBhGbm7u+d73XvPdm543U2bMIjqfQiAXRcr37HY7FJLCdd7PX4aCoWsbGr9iv78nhkC32hLGAV01J1PfE7RlGBObs0viNJJSwvmGcHdLCFmqH7XGWE/TtADc3VzjvKSRHh7uCUMPwNPnL9mcnxOi6Gh2Dw84C8NhBxReN2/puhV9v2ccezabDYf9XgIS67kZDZ/dG5498bRdK1Wrda3Ri+O1glr5VRAfpaI1BohB2JWIIzZnNH6LSoYc5XrGFJnChE++2hmIx44xjrZdcXYhxnj7naR8Yoz8pOPnGqTMmoBcjkLOlDIpzJEVQLX/lbVE3E1RlCQ3mDFm6dODMmwvnvBLv/orXD59Sn9/w4uPnvD8vfdZr9YSudpEipF+33N7c0eKE5//4BOePn+Kbzv6/sBhf2AcBobdjs177/Hpd/+UXDL319esN2e8+uz7vPfhe7z+9BO6dcv19RvON2uur99itGI4HNjfXXP55CnTFFhfPSXEwNAfKClgbUeJhRwzYYqMY0A9PKBtg7GFEBM6FUqJaG3p9wNFZaZhL46j1WztcOgZhh5rDOM4EpOYAC1RaSknm+3Rwn3uuyNk1BH8aa3Fet16nPPHRaKuqgopbVsWtlKO/Xwq+JCnVnM5U3URIVFGSVGYGp2pIotk4QSwLBv+aczM8uEncXb9++QFpdQKCo12nv0UcMYw7CLjFBmHwDAEYQJQUtETp+osezwvcrsXipHvk7P0ScpzBUYVyM56Goqck5KFfhWgIYcUK9IWliQtz6eay1ltSFkM42YNS65gyDvDVGSTLyhx/i2l5qOlnDjnjHdGhHHUdhH1ZnHGsV11HIaBEJJUByWp/plCZEyZXFtCbBrH2bpldxiX0kRlbWXbxBfEOosKSez3tZgvemuIseAbg7aaYUqYfU+sbIta0iAn6IITfDn/JaH9MgcUFbRSGYDTnznOt3nDPEb8as4OHctzQTbePAs0FaIGkPcs1dVVAb7dcH7xnFWzwVFQaULlCLOYdu4hpSpjos2io5hTReRCUZlSAtoBWEoWEeOcHly8irJYtqPtKfqqU6TOSTQYJ1KV+aRpIyZyaLKy2EajYuK86WjPLrl580OGu9fkNC33vszZE4xg9IyUmDVrYh2glnN5DADK8s/Tu3CObd4FQ2K6ZqzFuA6/eUpz/pxpf03OD5T6P/lMtYBESaeqmhIEWa+gmIItEPXEMAy8vr7ls93ETVSopqUMEynmWq6rCGGi8R7jXDVg04shGiqz29+z7lZ4Z4HCYXdP4z05l6XVhFaKFAdycgLgM2hlMdYQYyZOAesclAm6Lb5bMfYHHm6vAfBNyzgMeOcpGQ77gZgUu/2BoX/Abc8YhwHI3N7f8o1vfJu727eAlAT3WjHsei4vLmnalh9cR55fRL6xKhgrpppHZlBErXIptcyzJP5I6II1idFYaDq0v6Sxa0zSTMNIigK6xcAukV1Gm1zT/hY8dBupBFJKM8XIAlB/gvHzDVK0RBxFSY15ypmY5o2VGnGrY923VhSjqshUMyVkM/SO9fqczdVzvvkLv8zXvvpNpnEgYlCuoWjLultz//CAVvD2+obrm2uu317z9NkzjDXc37zBNQ1N26LRjGPP6uyMV59+ysWTZ3z6yaf4xhBzYto/cP3GkkIkxUQKkRgCYz9grePDj75C3++J00jXdnIv+5bxsMc3Hd53jGOPsZYYA9pY+v6A0pGuWzHFTM49znuUSTx88YqiDd2qZbNesbu/xhhLf9iTixjL+abFNQ1bveZut689OoBlsSsn4KQuqvkkFz2vYDWS0dainRERY162g2q5rKpHjUQrWlUR5xzaalMpXQE4NgQCzMz7spGAOknlUJ1xZv5i3pE4BuAcf3WCZo5SF+T4Q50/KQQwooVQ1tK0DXmcSGnO9YN3tjboy3Xzn8FbodS8b0EtAtVSF3JbLenrRwrDsWgoarVaUcx72FxeKe0LJJo3VqPTbOA2My7CiHg9U6/yncVESVJSXdNK6bsSa3uUwllZlK21aGdxxtJ4h9FKnDSJGApWw6ptGB4O5JwYx4nOO843KyltF+csuW5Ks59GuTJKse6aWj1U8E7st4cQ0RRCkYWOUqrGpVYXCCJl+SJ1HrwDUuafSl0C55QEc1plucDH4GVJzbAAXebXfHkVrWm5hRkgIyJweR+lYLW54uz8OSvbCHuSJsgjkJbbaHZyFYAq80JVRmA+Z/MGXNBVfyTpm4wSAXGMEKOIdrVG+SI1/caB0mRVeTVRPR6bDRoLOUpVkFZgpKGpUZCL6KV0jnjg6sVXOVw85ebTPyGPErHXKKR6qqil5Hau4Jnv3uOdWM+uVsd7bb43F5Aoc3259VDLPFYoEeKvzvEX7+HvXhOGA+RYn3tyTefKJz23zFiu5DLnh2HgO//xe/z+997yasgiJh4mQtVoqRo4hMMeYwydFpbA6QVdkcKIpvCwu5fS3k4qNw/9UNc96U81jT3kxHB4wPkGbR3KedZnVwy7O/ECUgrnPOPhHt94tHGktGe/e8BYS9c0FKUlvRQiff+WOA1QCjkFuvWaaRyJ40AcD6Cg9Z7r21u8taxWK7pVI1WlxvIfPunxVvH1D87QpoZxqixrrKrrivxegYasJZWYi6U0l/jVFUY7McdDSxoqydoTQyS6VPV5tWeYNjSNJ21WpKIwkwQ8J0vxjzV+rkGKTHg5uWkWZ2WJ1soyU8vsAF43BYMxCusdvttw8eQFq3WH8y1P3vsav/GbfxVrLf04cXtzS7c9Y4qZPkqnyrubG374g+8TQ+Tu9pY4jtzf3eC0bFTbsy0ff+2bjLc9bc0D3t/dorQihom3rz4nAfc3NzJJh5EcQ0XYEzknNusNTdNy8+pTzIUmpoRtN6QQaVYrYhAjJpMLYz9KGaSWipLD4YCyht3DA+dXTxl3O1JRWOPJIXJ3/Qa0Yv9wj206rLM0qzNcZ3G+I6eEc5UhKPMpLCyNjYSnXaL6RQw7P0QtXdUGX02CppIXB9s5V+yMwVlJ56CkcVWehVvITTIbYWpz3KBm0DHvJEu3VeaFckYlLFElsDAvx2fPv6vvqTQYRTJiRe8bT8ric2KtJStF056j7/ccDj1GKWLOS0M9rcCaQlaFVCt1Zlv8rMRHJM9RJZWSzlLKmXM+LtgVgCjA1Mgw1Wshp0/OmdK6WtqzVBbJAiNpNWdMbZUgbIZbBKgC5JyvjTC1ZgqRFCNOazabDTEntC6g4fZhx6rryKUnxol9P9I0rWhJUsRbzf3ugDWa7brl+m4nOhQrS5HTmjEk+rGwWa8Wsa7KiaQg5VjdipUYrxakwdrCokiwsdjIL9dbiT5j5gdOkUsFDketxPHcnkzqekL1EbTO76YWeLPM97mE/NQWfv7EdnXJ+flzWuMwc0lyHpk9dEXzVq9Xgayl864q6qjLMlJyKoenawuChM6WopKkeihgDLlkFJY8TXJMxqKbgrLtIn7NuaCJsqnPSFhpigbsKVuk0bV0XUBQoKTEevMM8/Uzrj/5DmF/PWOPIzBYvn0BzPF+nK/CzEyeAsCKRuaHyvHt6mtni4MaAGmN9ivs+jn+/CXDwxvSeFhYW6n6Uihlqr6C+u+aepKCR3IWAWt3vuKg7gh5Ik2RME2i7ak5pyUFkjPTOAGQVVicsedrRcoo40hx5OJsze4wVjM20YNtzi7oD3sgE1MUEe24xyjFZntGPwhDlZJUx+xuv2C1ueD86im5aIZhT0bReM/+4ZacIpTC02fP0cYRhgNt12GNY7s94+H+lrZpuTw/4+a20B8OxDjx8HDgxdMWaxQhO/7d9/dgFF97ucYZT4qZXKYKCA2ZNMuHKDVYCCERsiF1l9hmjTUOnzPOWsJkCXEixbR4HaEUJs/me2Lw2TQNMVb2mJGfdPx8gxQlkevc+CjnUsFJqRFsjVwrQDG54K1ne3ZOu9ny/PkzVqs1Vy9est5ecXb2hM4r3tw9sN1uMFbTHw5Yrfji1ediPx0nutaxvjrjyeUZ3/3u9xgOO5IXenuaJj75wfc432y4vr7mYr1h7Huev/8Bn33/T3HK4Lxm7Pe03qNLxhvFGAJOa8I0ccj3bDdnGDQ5gVEGqzSNbfHOM4QBbYSRyGESnZrS7HYPdKs1aZLvv3u4J8UgIq7r11jnOD+/4OFGcqNqiNim4eXmCq9tdbpTbLoVJSWGaTpSc6VGTWVuPVDBS+3auojrkIhLVxDinZby71NK3Rhs04jLbeU+FFK+m4v0QMlzZFxYIlmRI9SFlWPb+dkoFk4iugXMzCzK/E1OwuTTALoCAKsU3opOwPmGogq5JFprSEXRtbXtwDASohyrNXqxsJ+CWJ5rY6orbNWf1OhSmuVJWiWTF9t668QlVlfq9ehjUkXLdXMVVlBEbyFJ63ijpQu4UlXsiiKlSNeIw+XceBNE65NTwhgnrykjZEXIGu8MzipULHhrhEFJhcYZ/MWG21spdYwpiqC5zG64hXGKXJx3tF3DMIw1/5xwrmpwMoRpAmtoG4dxvoJb2cg2q5aekZSOxAX1/B1Lc5kLRVjqTmY9EZwAFfXum8yNHBdd0gxky/J+MnX1QrktpcGymjCnUiRRZlBI89J2fcnZxQsaZdBxgjSI06yabe1lAop4v4CxwpCUJOzJDHxq08f5s1WtkCkpo4ykdgmR2d2z6DqjtHj5yP4ZUTFStIc6bykZlZEKIUBXdkVp6ayrqmmPRtU4RAzQ8jjQdBuefu3XufnBHzA+fMGJgOSk4eZMpszC5vmXHDVny002t7WYT+185yvm1HLKhZzk74JC2wbXneG2z/HrC8Y01muhTwAjx/uLUrU6NSgtiZIiD3c7PnvzwBAy2hkp3y8CULTW5JxIKWO8qRUvBaNMTeyV6pBQRaZa01jLVMH85dmK69tdbR440rQWo+W651J4uL1GGY21jk53XF49YZoGpnGS7xwjdzev6VYbzs7P8E5S8r7tGPY7dnfX0h3ZGJ4+fc797RupzmlbNuu1nF4nGkNnDW675XDYseo8h74XAT4wGc2/+eNbrEo82do6BQXgaeukp1ox4uGUEnGcCCEzqTWq22CcOMcq5XHOEr0lBEeYUm2mWYihsrpIOkwbI8DGiz9NmMWiP8H4uQYpsVY2hJhFI1AnUql3wXxv6NqA0Btou5bL5+9xfX3DD374CduzLefP3+Mb3/5lSszc7waMUTw8PAga1IU//qM/wCjFsH/g7ZvX5BC4uDznsNuz2pzRNi3We/rxACgebm7wvmF3c42xnpubW4bDA+1qw/Bwz2p9RrcSwWscpOyyf7iT97GWHBNpijy5fI52hsP9DWiHc47p/gFjHWU8iFQsJrCGMA6YUm9wNNYbKVHLBRUD3khDrqnfoYDt+RnNak3TNpQ8sdvfonollRupLL184kxDFalGkaxBWYSGedatzNoVJRoKySk72VBPItgyW4SrItelpkik1JPaDC0vwmdKJuaj2ErV/53KYAWoqKWs892F8ZT6ryvrEk2zACeQTYxcMKqQ9Vx9I0+yRjNNZemKOlOkq8aL0C+LSZ6kK7SkGq0l54TPmd0Ql3JVWxcNhYhbZ6tuU0FGYU5Pao6dqSuY0er4XagutDLrRTmgjoxS62319pBFR+ssC6/WwoI0XZ07I03raJwjIDohp6APAWsU4xS4uNxy2PeMw0jnDbka2cWUWbeeYZrYHyYutyvexkjK0gJBK6QxHFRtRSaEgNMOjcZawzhOXFyccXe/w9c2EqeXcMnWqOXqHgXSMxNWL7paNsl6cdVxBkB5F8eAAKA8e3hUIK7V8fXzc5aZdJxnzfqCs4uXNGh06IVBKeG4Oyt1dO5DKrUo1Os9V2KJJ0eJahEDS9qjVs2oXPGRrunVREHK38kFVRwg1VDYRl5vodRqopJSnQ2yGaWUjsxRBb+q1LLdArpobKXswzTg2jWXH/9lHt5+j8MX36Ok8fSEL/2yjiLx5bard87xv8ffqOVfnDBmIPM/xiSmZiDpJddh11f4s+dMh1tKHKpRWxZ9j54B5Awua/l4yuQQGA4HfvDpW77/5gBW02nD3SjWCDNTabQ4ZoOsX7LG5LoWimhcGYv3DlXTmlopDvsepTTOKJxrSbkw9MPSm6zpWrz3SOAMRlnSdECXwmq1pmk90zAyhZEw9uzjhHUdjVcMw47Vas0wVY+ifkehl1LqlPDWkmJktWpZdw0pJqZxpPGOrusk5WoldTuFwMPuwG2c+He68F99fcu6cZLBq9WHlJPmr0W0JiEWgt2AE9bdGCOVYdZIOXOwWBdJ2ZFjImcN6MqIybzVDloaCeLj9C599mOMn2uQMkVZvL+ccjjSiUJjFQrrruGjjz/gva9+nV/59q9wfz+StcY2nqIsd7uJzWrFGANf+8bXmcYD3/3jP6Gcbbh+84btZsXD21cQJkouHA47Docdu90Dl0+esbu7Z7vZkmKUXgs3b+naFdeffYa1hm59JlbIK0McJ4m8ncX7DlUS3reoDJ33mM6gSqHzDTkn7DSifcMAWC9q8GEa8E0nJm3DHqcMc7WIsYZpFBpv3TYorfGbMzTQ7x9I48htP9DFyJk6l9dNo9DIykqs6BwxRMmo53lHyAslPet+hFLJC1CZoxxde/m4Wu1x9FepCyMAc1WPmKOpInRrrgtnKVFA14nRG/V1qONCt/xUF1oBPbVMtO43s+X37JJ5UgDJwrzUGZSqAj0riT6tF2Gi1YXWGEzTkGKmZGGLnNOEScRxvjW1ymemkA0lR1KSHjYzAJnPl14OUI5pBixKCRsiQETh50ZHFTCWqoEp6miXr5grWKRU3TsD2YmRVZRFXcqSwWox+2u9JYcABVpnGMeIMeKbkGIUo8QwoUvh2dMnvP3iLa0VYePdfpTvqcR3YbcfRMdiDCGGyk4pjJXKi5RzTXtJY8NcEp13lJKltYOqJnmz98hpCud4ietmXit6gEXXUE7mxmlE/+U3OB011YGqKSWF0PmohX1QyHekzmGlCsa2rLZPsSmhUi+bdwmIwHnGQQWKFl2TEfZDGgpmSfelcux9g0xc5YwAi5kJKlE+e862TgFl9AI+lU1o31BiJE8Bu1pDjmKP7xyqFPI4ooqjWIc2VjQtSDoFleW+TwJ+5JrJWqK1JsWANp7106+jlOHw+o8hTYuG5p05uQQC+hiULCDyNLQ4sRNYgpdjsJOz6JPm+8C4Bre+xJ+9wN58SlzYlBk01nuo/plT0WLhMPHJD9/yvbc77qdETKDn50DV1lQopaWJo3R91xhTU7YJVs5TlJgzqsoSxyokT0V0Q3rWH+WCsiJq92TOzs4Yh4OYMIZAmCJt2xGj2ENY67DGg9LiDh1HKBZFYRwPNI2j686ZpgnvDK23aKVpnJGGltFgveRpGmdRShp5Ki29dLZnF+z6EZQFMjdj5A9/eMdvfvsl3jd1vZA0sshQNAFNMYaoDKHZUow0LLXGivWC0pTs0DqhbRAmKmRhg7VBGwF91s5zSaw+hnH6kVvwvzR+rkHKLFaUrUUtG6fSCucsrTNopIdJt1kzThM/+JM/wgw7fuEv/wa/+hv/NduzJ8IYFPjks89Zbc+IWbE9v2K9ecU49NLVcScllTEMlJzpDzvJ348j/cONCJRiwhQoccK1HbE/0LYNeQrkMIK2rDdnGGPJMTLe39GuO5wzeN/inMcAXdOiUloi7sF6MoVVaAhhYhx6bAyUkigh0jrPNI6gDcPujmQszXpNjhJJdb7DpkyYeobba2IKpFzoS2a9XrG+uMI5MReKIZJjghIxzhJSYsrHm3/OFy+gsOSTP7L0iK5C0hW+di9NNaIT7xMRzWoSRpXZD4pSINXrp4tQrLnSv+bdveq4F53S/dSFcl4kZ1HYCT29MA11lVwC63n/KpXtKRFjpKlbLoVpmEhFMYwjIURUgVXj0CoBmcZ5UhCA2nlx9y05iWlbNqRgGWMhVFOocRaQlVneJ2kcXZv5QXVBrnHnbFg2i9sqBGeOYbVS9RzVBbcUrALXevohYFpDzrWfUL1jphDonON8s+HQ9zRWsdZSqeC1weuJyUiKSANN69BPLph60akYbbm+21UzthW7fU8/Bs7Ozii3t4QYpS+IER2YCkk8IkIg57g45/rWUpRovpjBbwVbC6CdcUu9zmouRebkOs5s2oz76tmZy7/nufNOfUGZP+d4rqVqrF6buWy+AmxFQelC255hQ5T0Th6BQCmxfoBEkuJXkgR8ze0ZS0FVbw1V1MIyljjV47U1U1UDAq1RxlXnTwEAc1m2glrpIwhGp0QZB4p1KN9Q7IpSBhgGMZ8zHSWFI5hPtcHhvHbmwOL7Qu1+naJsYtazfvoxaeyZbr9XP5clCJj/sai+ljSMOrl+x5t4TsHPfTdmlnHuTLx4DSGbnWnW2O1z/PYJsb9HlVTL9OfrWK9pUeQKFGOKvL2/4T/88IY/edvzMKaFqSmI9imliF4OQyp5nLMoI6Ddec+cspsN9uQWzHivGYeJXLQAGGMYxqmW+VZDxZKYpj05Tkxz0GEcfb+rzIQmhhGjNecXF0xTZJwmcoq0zuGsJ5XI1fmWfhgYh4HtZsPZZs35+QX9NFawl5nGEa0yKUQOY6JpO9p2hSKzbhu80UxTj1aeN8PI7SHywdlWPIlUFR3Xa6GUlKxPpiH4LRqDtD4RRt+Y2mDUZWw1h8y1v8+cEtM1t6cUS1rT+/4vFpNSchGfhbqga6Vqozcx1xqCqONVCNzudnRNw4cvn3J++YSLzZppf0tuO86untKuVrz37Bn9OLIf+uqY2ZBL4NnzZ4Shp23eY3d/i9aFh5trusbjzy8wKLzrGIce03Q4YwjjgWkYWfkWs9qI3fh4kLbZrcdvnqFfvEcOIyn0WGW4evoMWwqbboWr5aXTMDI5EXGO00gYB4KxRN+I8GqaiBQa7ZhKwXtNohDGA1ZpPNDEgZwC02FHDiPTODGGgI8jd1ZjvaesQAWJtu/ubohF2ICu7TDaLAyILNZHRiXXyOeUzZoZEm00rXd0Ne2glKL1hsZqvBYxp1GQKZIbzUfaY24ct3AuFcQcaV1OKnaOQEUElfOv51W0/nsWXZaZFmZJo+iqbwIpfS25EKeCaTQRzTBE7ncHbu4fcM6yaTs2bUNKowibnUM50fXkHLlYN8zdccep4K3FWsVhCsIAIlHPFOM7PidoQ6obwCy2LTkvFWrC6EhUn0pZau+d0XRebueiFClExmFi27UEMt41aGXo+0HAQMqkGNiFwNXVBUZlOqs5DEHs9Z0hd55YClkZUgy0bo1aeXJ0TKM0BDRacXu/EwFizjzsDpJP955UPYVKSRjl0U6JOBGp6mrbhmEIKLRoaZyjf9jRNs077NgppvgRNmSOgmdIUhmReY5QyjuEzMk2uYBXAYpq2XFPe0Wp2ZNnoWoU1m9pXYcdAzr1FCZSDqL30HNPGY22vgKWInoSpWSOpCTpN9RSlVOmEeaCoRBRxsjaFQGTxaBRQZ4F0IXKyNRjNgq0E6AVA1gnZcY5YVIiW1Ofa+Wz6jwpKcEwyj1dy+TFk6VqClQhEVHWCqPy8luk4Z50eMPCVM1WAPMpmu/PPJ/fY2n3DFbmsn3mgKccb3LBPLmmfuU+18bjugv89gXT3WeU6fDOdYQqvK9psZQzn716w7/4f/4Rv//ZoXqhiFvs7EeU631VFbfSe8Y5rNU4IxUsRhtxl0UM9qwRPZJzCushTpGHw0jMYI2lc4YxRGG0jTAUK+cIJRGhaiiT+OPUINJqQ0yJh/s7Gt9S5j5cwLPLc1IR5pM0EYYete64vDyTwDAnDv2BaTS89/J9jNG8evWK25sbHnYP9P1Iv95gvRRxrFZr3l7fYI3i0+vIyxcFqwzHdL2ci1IgFkXQHUVLHzatLcY6nG+wrgHAFxH+p1woqSyOv/Ofuf1HqQDNWvsXi0nRugoW6xKVdDkpVKx23kVEWKpk3nt5wa//tf8Jv/jtX+Xq2Qvc6oJ+mLD7e+73d8RpwriGdrUiFnjy9AlGJfYP90whsGocL997xjgMPDnb0nQr2qYjhwhoyvZcqlYaTxh7Skh0XYtvNxjryGFk3D1US2WFazqa7hm5H7AKNtszvLaiCWgaUUzbntg0xBgIYSLsHUEZpmmQkutG+vFMMTKlhLKy0h3GUksGIyurcJ3HmDUxTvTDnpwGKJa7t1/g24bm4jkPhx5ypO1ahjEChUkHrBMQQTX2IgtFXIoI/8q8oMyMSr021jm8d2y6BlMhQOst3iqcBaMKkFBZwBFZIjujCtpKbrjE6n1Abdg2R2ZlWe+WPWyhkI/x3ElkPj9xXtDqZjQr9zlWjhilyVWgKOJGuDv0fP72hsZoyBlnan8kJ+Z4CqlekQZzclMaawlRk5PCGAQ4TIGYoWscIcQldy1C7wJFgJus36UK/OrxFZEHhiROsDFGrILGWlatBwUpJmE9vJVu00ZzcbZimGSRWHctpYiDra6utGPfc3V5Rhgm7FS1EGRaoxmMJlY2wTtNioqryzOGYUA5y/MXzzg733J9fStN0RQM48BmJU3zjLE4XQW7dXNy1uCMLPjDuKMoxb6CmzEkhmFcdrTZ70PYEbl2agYu8wZ9cs+f6hsEcMCivTidJBz/XkqQ1VH8vbxnRThzoK6No11dYKYJFQdgAiS9EnOhpEmgtZMSUrSBaRIxpu+koixKGVNOEe1AKSm3yQV0mAQY5SjpoNmjRUtVELGgjJeDMVJiXuIk38I6OdYQgL3M7zCQNaixR+VM9o2AmIq8SkoCJGIAJSkGcqYQxBXaeVBG+gLphPUt65ff4v57D5TS19NYy2j+HIZq+UcNDMrxJpVHFtdTtbhaw8zY5pP4QolvyvYZrjtnCuITArk2z5ytnIPcLzlwGAM3Y2aMkZiTADJKjfbVsnaYegymak6cyTTG0jWt9MVK4IyhrY0FnTes147NxpOmwMO+5zBMpAxN47k/jByGiTEmnIJt19BdnrF7eGCcAkNIZCWus7Nh5bpta3pG4U2DNgatLNvOSyfyONBa6C7O+eDFM1orbO3t9RfkovjwW9/iw48/ZoqJJ89f8Id/8B1ub2/ZDwNlv2eVC03TUJSh6da8ff0535k03/xgzcW2Y+a9ZlYupkwsluS3aOexVv5439K0K2mRMVeSzSxKpgasiUwRr5WUa9ApyjlnHT/p+LkGKUvUUwHgqZhuRoVCZWbWXcvZ2ZoffPePubpYY9hx2G3Ynj8FRtbbLcYqrq9fo24tz5+/5OMP3getePP6DZ13tFpos2mcaF3D9uycNA5Scqk13jfM8nXrX+CdZbXeQiq18iISemnoVVAYbUSgeqHRuVqSG3eMAm3BakNOLTGMxLEnAsFqwtgQUySlRPCBkGRi2NajlRJQkwLjuEepDLqwahvi5QWJRLmDECZigfvra15ur7g6v+DN27fc3d6zWm9qmaoB5q63x5t8SflkiUiWqpwstLg2Buc8zhqydxWkpOqPoWvOUr6oGIslrCooC8qYaqIERmXGITPsxOl1rlOpRTLHRU8mxDGiO1kwVZ0rR7By3PjUHDzM0RyIWyvVfqvA3X3Pzc09pRRCihglQlqJtgrb1bpuxIXGeYxSGCv+IofRSDfjPBBj4HwtmqJ+DNJzp4Kk2S0To6urqaS6Ukw1wlZiga9E3JZTRJfCpm1wVqoTjNJ4I5oPpRWtNsSQarUB4lFgDY2zrL1lnAK7w4A2mhdPLvBnDX0u9LsdOWdW3hBbR5+haz05J0llpcLF03Pu74aqJ2n44MOXvHr1hkM/EMaJvZKUayrgFt2MlG07b2m8+M4UBARO48Rme8bDnZP2DqfXcDYzPaIVQETHpzSJqozIXAV2jLHn0u6T+VFfJxrXCmqXKXP6nnVeqaoNas9xIaGGHSn3FEQQLWJqYbZU0VAmaZ2QM8a0FO1RRYAqKZNTQMdAUcIDl5xQqQIRVd8jZnHKV5oUgtwXSi/CUYympALKkMcBXQDnqV0tUWGSkuJaGlumEZ0zJc3BRqGECVKghIB2okOQ+zqJzqWKassM3rzGrp/SXHzE8OZP5rvxmGKtzz/eeHKTzUnNpWmjOgYbpyjzeCsXClnYwlK1QdZhunPM6oqy+0IYn5RqWqG6LVfwNU0933t9y20fFwZYerTJvZ/m8v1aiWiMEYdsVWidoXWWlddsVy2qaFSWTt9d12CsYrtpWHmDImKerSVNEwIpGw4Bdn3g8zdvZbMfB7ZPr3h6viaGiYd9zxTg4f5G9grrUNYtHZq3646uaWm7Fav1hr7vWTVnGGe47yPn5xtevHjJJz/8jOdPn/Lyw6/wS7/8SwKolOG9997j6dMX/Mkf/SF/9qd/yiwMMqbB2Ia2M1w8ecbu5hXf/eSGX/2FRq5LNTAsJRFjYdQrSntO07Tio+XrH9fgvKSqVAUpKVZ9TsqkLOn9ue2DKRmxFZJ7/51Gkz/G+LkGKXO6YfZ/PG2IpZcbBHzrOD87IwS4ePE+Vx98lfOnz/j4K1+jXW3w3mNdw36/Z3t+RX/oSVPP6uwJ3nnWzkC6EE+PKaByprGWxjmmYaIkUXr7poW6GKMtTdvhNhdCP/aSQiqrlRyWtmLSlLL4HYSIrtUwc18co6q3R5KSRJUy2skiZ1Bk1ZJrfbrkrqVapsRIzpaYHGXVEnIgpAmTMqgWY56htebu/gGdIYWJw/0NTzdrLi/OyJV3br1nGHpiksirLCLZmUnhGPGciNFkQ9K1n4Mj2VCrVCJGC6BzzqCtXK9EQmeFrTlqrQ1JaWIsUKKIwqjLYQWmsxB2bnp4WkUwB2oyBdQCUE7hy/Fxob2VKhRVFm+HAhRt2A8Th75n8ehQCmsMjbVsVytyHOmajvWqwWmFVlKSrI3iYT8yxYHNqrBqLaZS9t/94Wt2VZQKCqXlRnfWQM6EKN2NY9UhmPk7FrHj10BKEWc0jXfEmDkME9vWzVOeECJRJVZtIxVLQFIS6TS24XzVkBvHfpzIMXD/sOPy8ozVds1wmOgaQ6MLyRjSONE5SxgG6S5jHEoZfOsIUwRt6VZrrq4i+e0NYRwJU+T8YkuIYcbtUq6tpTW8UtA2jtV6RckSYU3TxHqzRmlzvFbqCBRm4775ss5pmgVb1N9pTqLychS9UufM4v5XXzl71Mxv/GW9rny2+JA45VGHB2J4QJcgTIaY4tQ2CYbiLCiNniJKW7I3UtabIsUY0jSgQkBpcftVqfqZaAMpSLVPJwJYVQGSqvc1VRuAEf2OygWMnAdVmchSN5wSAsRQU26SdsuxanSsJ+eJMg0QB7KylOmAci2ldtyV90So+iKgWVmL1ob2yccMt68g7imzqpd6D82TcC7nhqX8u3xpg1qAysyezOnjypAchbWImLXZ4LbP4O33JPWxtDzJoplQCqUzn75+y//rD99wc5D+T0ZbMIUU6xpVqVjBs6IzckQ6Y2ksrLxi2xoaAs4Kq9K2ns2qYdV5Giupa+8VKiWUliYOY4LbfWIcJs5azeubB7LSDLs7Lt9/zsX2kjgF9odA6NcYbTlMgaIb+uHAoe+52G548fQZbSf+XVAw2rDrey4vW548f87F1RWqKM6fPOXDr36FDz/6QLywUGy3Z3zwwYd89PFHkBN/+mffY5ymWjEIJU08uTjHUPj+61u+8XFk1TpSkeCnFMWYDJM5w3Qb2cesx1mPMW4BdcZICtEU2fOCSgsDLIAUmXuyyMreqA0/6fj5BinAjJzrTyglduraWLSSUsq7fSDGhG9XnD/7Gr/0q3+djz98n1W3qh1tYdV6npxfElLiME6Iy0Vm7Hu6xtI6T+z3hCkz7O/EKrlb1Y3YYNsVvuvq4YjASIRIkt/V261sgClSlCw0pWRICWUt5XCoxl4BbSolJn7KkA1aF7S1FOuwNpKzeCZkDca2izPqfNdrJLccxj1T1mQcTQoYBhFCPnmKNYaHw0gfMrv7B56+jKQUGaZE07ZM00gIk+QbZ0acIyjJWcSts0blOBTKSIRgnMNGR9EFXfUBzhg679FOi/lZMcRZ6Vhp34QimIJShsZHdpwEZsyX/CjUk299+q/jJCk1up43u2VxKseIrqoYxNRIIbbu2hKSREilFKaQ2HZ+saBftQ3eeLqmoevamsJQi5bEuI7VWUJriEEs6h/2A5+/vsZpcbbN9ZxITxQtjf+cJZVCPzdxQxZ5bUVhHEJAlUzbtAz9wGGY8EZhlFTySOpMovJ9P+J0JzoRq7nb9YxaMbWGTet5su24P4zc7w50jaPf92xXDRsrJfuqaGJOqJywOVF0oWSFLglnpSzbasXu0LPerNntDqRQO0TrqkHRshE4a8XXI8vjzmguLi64vb3n0I+cX5wxmsyL51f1Gs3gQeZWVqdX90jXM0OV+VozM6snkHVmX+AEkNTrPs+9U7Dyzj9ndnQLhz15vKeEA6UEYkpobdHeQcyo1kOcMLGQnCNZjRkOZGXQriGVAdXvKdlSvIJ8EIdabSklokMQQBTGpSSfJKBVVcfXgjRxLPO1ri7byjkoCYxFpTn1lJdzoAowjRATucmkKcCwF4amCMOSc6DoAs5J4KOolUVJXKBTQhmD9h3+/DnT9XdPrpOUOh8pqeN5X8KEk3NdFqBY15KUJWhLFaAsr6/VVkqjfYvfPkO358T7m0XYq5T0i8klc3t3x//9v/suX9yPIrwvIgOw1i3rljFWXqPEy8kg7SwMiUZrGgONg84ZOmdZtZqLrWe7amisBDXWQtNY6fzuGlKR9NvVuWKIgQ/fv+KL63vu+yDXaByw65YnT69ER5kjxrYoZRinzM2t9AM626y5vHqKa5pagGCEkezWPH3xEtd1rDYbvvWL35amnxcXbM6vKrgXjWHbRb797W8Rhh2pZP77P/iP3NzfsO46QsgMY01T5cwnr3d846MnCNehpesxDbE5xzUCUKy1GGOF7Z/7ZCnFsc2HrnNN17T/rOme9wvRYS1Vaz/B+PkGKVWsuUz6+juvofESDfSHkVXncV4Q4C/90rf5+KMPOD/bklOmNS1nmxUpJkJMOG142rYYYIqByXqmfkccAnlKqJjwBdrVhs35lXSVtCIsUlVXoJSurlsWMFLrb+TvUi35q9AAkxM51cqAMVKslfwwQKzmTABJ6HysgyaTdM0nRzHwQSuUEZMvPYvuiqPxmr7fE1LCGS1+Kf1AiYm4XtUuuolhHBgOe8BSUiBFi2s7rC3kcSDUhnhLPclpymep7KlbRmVDjLX4piHHCZCKIa8tjbM0jdjmZyNLUC6lGpyJ702o1GxKqdK4zJraucfcEk0vm82pSJaZLZHH9Ynj2/Iesx/GXMNbPVt0FcGmWBiHiWEKjFOUkl4EhBhjWLWeq01D0zY410jlkhWzrgSstIJSKwpSIsTCNGW6pqF1A0NIOGOqrb0wDWPMGK0pStF4RwH6KdTFOsnGlAtOgdOKYQx0RvHh8wuK0tze7TjrPEPKJKU4DIF+GIXKthLFpBhr/w7Lpm0lDaQU9/d79rs9T6/OWa9XeAUpFsouoTCsVi0pTxymgC4FqzLn2zW39zuUdUxBsz3b0o8TJgQoWSrsjMxVZzWxSNm1qWJB5zVNI6WyWhusqnb+p5j3JFVwUj/yLhytgtllM67PXK45CCtZTuZGkc3muH6csHEzHVdqhY8/wxSLGm/JoYfat0n67yjSYahNO6N03m3W4mexuyEr0KtzMoE8DHDYodsNTHLPlhTRjRZgoTQKTRknilHycwLtFFllSYdGKFlVF9pcU0aaMk3CgOgKwIOYhWE0KmYRlqYkzx9H1BQoXtp+5NrOQPSaWZgd48k1p6qUqSmihKomRn77jPH2h5DF7mCusyzzvXmEJswC53cu2Wzso2YhayJVAFvy/F6ZWcwpBLXFduf4zTN2X3zCNA1QslTJpEKYIt/5sy/4j5/uoW6uFAkycpLSa1mvRC8l/lnCmmy8ofMO5zSNhc4V1o3ifO04ax2tB6+mpfeNt4bGGWEWnEW7hqIcpWi2xqFIPLk85/ZuJ/os7VEKmrZjtZJiiJTBNStA8/xyQykCptbbc0n9Gwfa4ts1q+0Z7fYM37UYZ5e7wLcdqopadQVfZAkSP/zgfb7yla9w97Djs09fodA07YquWTOMI4fdgR98seeD95/UdkyGUGDQa4pfo41Hek3J3iZeWYVcZC/g5F6bU6pqvsNKIudY9SrSiDDG8CPz4L80fq5BClDppWNkXFAMITHGAVfzfEob+jHx/MX7PH/2RNwya3Ok1jv6Q09GJl3bOHksF9FOrDpsSaReIgjlW8xqi7UWb0XgVH3gAWFy5gZgS+Sw3OTUvDKUKigiTag0kStzwzgy9xySdMBcTZPnJQClQdc6/GPXz4Imo61DO5moKov3QRsd5EA/SVmsU4W11ai2IyfYH24Iw8hhtyNZz9BPoAxdu6JtW1KcKKEWUaoZJORaeVK/4jz1avmZtI831fLckLPCFoszhbZx4kRqNcaIVXdR0lspx0IugViy5NhrvnkOaGvB5AnFf7L4LemAL0XH9czJHKkbV31RruW187MyGW0NuUhL9v2hZ5giRmusscKAUWiMYt11nJ1tao8bAWXamqMnTN0UUIqiDYfDgDO3qJy52KxEGFwK+5wJMZFTwRvDFCJFa5rWMowTTmlMI1FsHwMbr3l6tibkDMnw/pMzzjcr+mFgfbXBasU+JPZjZATiJMxLyZbGiD5kdzhgjZzzddcKSJ8mzlYtl5uGi02DUYV+yDKvlKJbNWjtyPc9JieU1rjGcHCWfhjZH0YuthusdbTegZJGh8YoijF4b9FZDKKKqq643YqDkWqC3W4PFKZpXBhB8UGq17He6HN6jhkXn6YYlKqmcaVWs6jqRcLy2gXgcvLeJyuKQm5FSVMpitLYdgOHgVImUhhEfKq19HMJko5BKVQsBOOg30kaIAJNJ6XBRTQgKhYxcSsFPUSwlqRESqJNI2X4OaOVJdeDybXhW54CWhlKGqXjtFKgkjAfRVW/E0n9LAznbNZVGTico0ySCiolUggsculhBOegaeVx5yhLF9B63quDsvErtPaQpyNhNZ/cWeQ885vzTVrvSaUq0FqYq6oZycuCUoHPLLatWjc0punwZy/AdgzhlpxC1WkVdvuef//DO8aU8UY0X6ECoBhjBVDi3UPJOKvZtoan5w3nKy+paK1onKFrLKvGsHJgdSLnQowKrRzWt9I7y4ohoW0sxkkAqu0K7aR7ctt4zjZnsm4oh9GlBrQWrQoxTDjnBUxuWlKWx5puA7oBbTGuwfgW33bSfR2W/UDZZhFen7JSuWRyHFm1nm9+7SM+f/WKMAVefXHDNhXpUtw4Strw+vqB+/3E2aYlF8WEJdpzsB1gpYlsTtQuDwKEKstmqjdEqYxVqZGk3J+ivYpxYqr+MCHEd9nKH2P8XIOUuv8vm3c+ZRQLtI04/Y0xc35+xi//5d/g/OIJMRdUkHyvM0aocK0pqvBw6MlZxFM5RYbdPWXc02hD07SUVmFjRBehvOVuEpaE2ihsRpELIxIKJXUU04AylNqFlJIoYRCnyhhgypQYRahlneR3yxxZyGM5jNU+e8arRTojNx5t5RjS0FcNiDgu5hTQOeONkZLEkumsYZoirYLGGtI0SjlzPFq+t01D27WS3sixNgFkSUGUBaTIhFyAwJwCWqJSYR6slvOttKkaGmkkGHUhkonV0XZKkWmKhKAkks8nF1yd2OEvM+FEjFcXtKXLMHOFBxXtM7v/CzipYg+xnp9vQENMkcN+YNeP5FJovSelTOsNENmsW84vztmcb7Ba7KWZwaKSTaHkLN8TqfIoHXhvWTUWZxQ5OtkAnSNNEwm43KxIOfMwSgPDnETQN8VETJmN03z95RVPLrZc3+1onp3z0cvnKG3Y7Xc0Wj5/N0Q+e3uLpnYpzYUwTdJ6ISQOiOOmMVrKHXPGW8OqcazbhhIDpvM4nQWQOydCQduQMkxTYJoi2lppGFkgTYFpmnBWzoOtTs+iYxGTtpVvGWNiHAdCiGy2mu12wzBMjHUB65fqnnp7LT8cmbA5XH83xVcByPziE/Q6SyFUqf4zVZy8uCEvgJZlHlMqs9GcYbKhDHvSuKcEKeFNU6CWdIBSZAOgUXGCg/gWlXYthn5BDNvyNKGVWfo9JSTlQMziJdRaVBSQApLeQRUyUcjIXMhaCbWfs3wvoyuoCke/kRRQUcSLJSZZM6JU8uiUpa2EsRAyJUTpJ5QhTwG8Z7Z8LiqL1qYCEFWk8k0hho92dU56mMuB652YC6eXRHECXo6X5B0hc16YkypunQuG1Ly+LC9CW49bX2HaCx7674tvlDFMIfD2fseru+G4LyyB3rwWCNupkVO78oaXFw1Xa0fbGimz1YrOObzReFt1HCVjZvNAspR8l4wqcn9oY6FYqELy2X7SNC1KO7T2aN+gSMRxlJRZLbYwxgKVxVKWgsG4Bm1blLFiWd+0omkrmZKCNJK0Hut8NSxFgKyqqfjaS8g3lufPrnj25JLb2zv021t2hz3WGpq2oy9wPxQ+/+KOrmvJGCY6iltjqsFcyZmYQecsCgRjMdpWn5qyBI/LtaseP7lEQhgZh5FxnKQP0HR0D/9xx881SImliNgSFsWw/FfQbUoZaz0fffQe7aqlH/diuoZMXuvt4pCXSqHvR4yR97q731HCxHrdYduWfNiRwgAhiGrfuoqQRMBGolYhVAfJKHR3qYxGHnsKBt104DpKGOVPf6hi3GN/iCX1I8saADlF0jTV96zRoZGNvqQkx5Y11llKvREpYtylVSMb8ThUG/RCnkZMnmjIPFmvuN8dGPqRIfdY31BKEupaqWp6lJjChFJa0PwSLR3dU09TPiDRpbGebAdQBouko3J1SkVBJhKqhXrOmRJhnCLjYSJGKMWg4uxgIkMvHPI8qoCy9rlZtinFkho4PrPM5EwFMzP7MrNEqjbWiuwOA0pJL5+YpYpAK9g2De+9eMrmbEvTdZilMWINIhHdRtGz/b0sxi47zrZbPvzwPT7/7DW3d3t2Q6BtG55cnTMb5eEcu+lADLULa0r4kmgay8dPz3j59ApjDMMUON+0WA3rdcvZyhGGnpgzymhyPmPdHBiGiayEPdxXABBCZJhEvOuNlGF2F+d4a9nve7rLDWPM9Ls9jdZ0XioaxlLwEYxpURG8sZQyiMg7J1IIeKPJJdN6J9GscaLV0Uo6vqa6KSlTKx4zXdcQk5z3vIBSvvxDxRJHBDODiePjch3JC0QWMFMZGfUlEHMUXNcXURFtnkXZGtdeUPoBQk+Jk2g3UkR7j/YOpaRzdEkjKgdKLKi2rcxGJClFdSYkTyPYFp0LiYCOSTrnWAfaiJbnRACrtLBtRc3sakKhsO2qVoLVdSdJo0ZyljRPGMkxS3NOlSlToFQb+Xme5RgFoMQJrCcnAUAUKjiSuUctU86lbsxVJ0EGbVckpVFFOljLfSdrw6IbmyutZnZsvgKzgLkCoGWjq2n8fLxSlTmQMnYxd9tguksSjle318QsOsS3u8hhipJiLGJFb62tjNxpiw5JL6+85nzt2bQGa3V1YnZ0zi5tKWIIZI3MYSSlR4pgGsCgbQM4lFlR0kQcerT3kvow0mgPa7HeQbbMJoUArhE7ipQzqkgKllodKXrvjLGmNhudp7NcZ6Pnrs/zGpxJoVo1xJEco0ga2pYP3nvJJ5++5tmTS/qpMEwTTdOSKQwh8cmrW148e472jmBWFNtWjUttjFpTZGjRQ8ofLevz6Uq8GHAm4jQxjRPDYWScJPUYKpv1k4yfa5Ayo8+ZDoRjqWMuYna1WTXs7m847B1PLi9Zrzu50bRlmiJRwTCJIZe3Cl00WVuaxqOcZRwnpjBQ9vf4krA5ixOsVtJRFIT9cFqo1lLkpg+hGtjUhdIYCooYR5TZQwjkvqcEsVTOSi+U2eyfrubFNdUyOuT9FJqsMgVZsLR3gJFuptUbJsYgbI6iCnAl0tc54Kto08SAVwVXIpfnZ9xnaTRWaklxDBMxjLRNh3OO/WEnrBEs+oZy7DZYr8lcBVMpzdoJU6lS00+ZSCGRSSmSkyw8ZChZfCCYNGlMhCmL70g6gpR58f7yPACOGpMlfJsVNGreepbIba49zifvMUc/zlhi7AWMKkWqi6yzhlwSq9WKzWaDb1ZYLyBl9geoX4RUa87kXFQcmwqbzZrnz5+TEiht+OL6Hus8K+/wVTB7fxjxWlGMwtforTGO956c8fzynNnf5aP3ntE6ifwaZyCBbVspk3YWZx3PrzY459FaM/QDt3cP9OPIMEX6MRJCwChYrVd4L+66dw89RWlcI7ocbw2r1qKtaBvW644xZEpQeN9Rbu4Zhl48i4oIZpsqDLdOmjXmCvCcVRhnKLkjRvl8XVvCa6sYHgamaTpeo1Pc+84lr+DznZRevfRfBi3IZdH1Oe9E9pVVmyuOhKSZq1UUut1IiivcQhykGqYK2mPoYQTrWnL/gMoRbIe1jaRVUkIXg64pjJIyCi2PxSQusFpRtKaUINc1QklJzNs05BgkSp87gVfxbCoRQhWxlnktVKJhK5WRBdIUa3pZxM/CoUAOiVwF4UUbccWu4EDnKnJUekljzUFHyQmV9aJ9ce2KcHJNZifgqvpdgoaFCFuAypcua2XHZm3KzJ7MoCJXJkUaNYLxLc32Ct9s6KfP+OTtHV//4AlRaUKStgNTnlBFemWlKFpBXUGY0YrWwpON47y1rL0EeM4YrJE0pa5zLKfErLcRVGhqaqraMSA1iloHSSfXdJv42whI1CRKFldhbaAUu8yzOS2nSVWUqlFKUmpyTgMlG7Gqsw0sn1nqNcmUHClGGs5SCikM5FQF7BQuz7esuhbvG7Q1hMkzTjUNkzKf3/W8uhtYnW1R6y1We479rGYigDp71HLrHVucSLRXCpSUj75eYWKqf0szxfSfuKH/0+PnGqToeZE5+dK5KtE1hZA0+0PPqlvzq7/2G/z6X/kNtLbElDAlEWsfHuuc+FuY2jdGyUKQS6IfesbXn+DSRHFS+tdeXEoUQxEjpQKoICV9JVOmSdIyqZbm8qXAX9tlcy9Kyr5yilCpsExVT6e6iCElp0IvFgpJ3jsn6bBbmYFURJ0v9KaAAKWKIGIt0W2IgZSD6FpAWIoUySGyO0zotsMUREQXRnLwbJ++IBbYP9wz1L4fttjqoTK7R57ocOoQEW9lT5JM6FgiOWaBV9qgsZKLr8ZwOSR0BJ0gzV1CZ9DGyXZ08lHq5D+n3VnfkeqVUjHLjyyPy+tT/QRtdK2SkRRFjOKQ6qwhp0TXdXTrNb5p0FVRr4h18slWaPS8sMvNPbsuOtdwcWVxruH582e8fXNNSJHpMHB//8C+F2Gq0ZrWSrXCyhtePrngYtOxaoUeTkXs5B1yHa1WEgmTFx8UUz13bG2bnlPh2bNL+l4iG+s8wyDzd7c/kKvwdxgn+nFi34vD8Xotab8UM3E4sD6/wriCj5mApnEezYHGKrwTHUWKEWct3jiygqwKzjvatmG9PWPfRz795HO00jijyRi26y3DrpfmeZxeplMm7OTazqXFdSKUep0F3FdAuwQw8wvfrQhj3oPzSRUMLM9QdiUC9iy59ZKzbOg5kUvCOg9JbMzJCZsHYpDeMqYYcC1UzYAqCd10FTTVsl6tIfSAqrS/3LuqOKid3VEFggQqWRWSzqhpklSh0ZhmRc4Fu2opw0RBU0KUlG+uwU4Sw0llNXmqDEoKZKPJlb3KMaBWa+lFE4PspqaaOMYs1VVlZh4V2Vhsu55/cTLqzVnm5x/BpPxbLc87/jQDlFyDpDnwKcvj8p7CWlpvabZXNKtzQrbc7EaMGri+H6TnUEmkJO/vvcO46sacU63MUaxby9XGs2q0OGE7I0aOFdXmIlYKR4Ql5eyqCrtzlmajOSeMUcTpIDqzGTAaYbUzERUzKktaTQI4YceFba32/4ImQUtlVskR7TtyyHVOR0kzGalFSjFgEVDHLIqOgRID09jP2XEoBe88V8+ec/vQ87Ab6NZbDvs71hux4Ng/vOWz6wPvn69ZuRVmEcwKGNWqpnlsXfcVAsgqkDTIdc1KOhjlJO0HRIcSCFHMJHP+C5buKRVhKyoFRkXelU4bhxGrLU++8pL/8X/933J5+UwMb0rm/v4BqzVX52c0jSPFyH63435/IKdMt2qJw0Dc7yhTQpVIUmC359LdtuYJUikQAypPlKoiL9NUUzChll2pKjSSqoaiAiUmUoy19A/RjuRqSGQ8qSJi7bxEMxpylF49CsXUH6SVdpzkJiGDzrO2iZIm0iQLprIe6wWExShlxiUJjahzobGKhsDaW2gatG8JKYASvUIIicurF+zv3vLZq88Z4yiRjimVjqYyPUeCVjZ4YVMSYhCVYiCkAwWNNU56Y5iCVSLMSikzpUisGhqVMlNMTCHWm0JuhCMooUbCSzgMX3psGSc0L7AIKGv9L0VpYgZXe1KIp4ein5JoLmCxzl+tOtq2FSO2UpjtzJfPmSOgeQNEoZRUT6gsm2fXNXhn6RrHYbfnweyq3f0t3huMc6SUsFpzebbiydUFbdPQOIczSnrhaDE0KznV9J5YVWutajm7UNrOWbQRkbLkzsWDRVtDjoX+sMM2DfcPe/phoB8ib29uGYaRZ1dPKShCVBgTaH1TzcBEzzINAW9FQOd9gzUWrCEpRddYnJW0V6KIr4IF7xQFh29XpGJRRRPSwKppF5fi+V4uC/CdL6ZaNEY1lKu/nVmXZUE4eaxOBqXr8+p76pPNdQG85WTeaJRtapO5IGtANU1MJZGmSZozKin5JxeK8VVGokB5SuyJRqFqNUkJU2U5BKQTBZwbbchYtPfCM+YimhIgMUn6sKSa2snE0KOsJSmF9kE6ow+jtAnRfnGRVSWjWwEvxnvxZyJKlF0KaRjFnj1mEcmSUUmJLsXJOqcWYqkawZlMmQZU24F1FG0hhSOxVc/3u/FA5a/UCaCc70PFu6aQRUzBFMd0rKRI8uzcj9Yatz7DrC8JqsFoxUPIvH0IIvCvKTOxc1dYZyAXQqnpMqVYNxZrDd7p6oQ9m5MBJdcqSYU1tq7jMGvvRBcoWpAYa2CYZP0uWnxxYKzMviEbaSsgVTitGPrFhGnMkiZPpaCU7AdKe0qRzR6lpY2C7yhDxrQd6IIujjiMKJOPS08Wq31yJuckmrsiBJz3Ull5G0f5floRp4GxH9DGg7ZY6zHVD8UaJ9WrRtgTrWUOG22kpUNZjBsAcSW3uhCrZimnREoiWI5BxNkh/AVL9wj6PlLq88LlrFz4s/Mr2tWaD776TZIyZG0Yk3imnK/XdK3oU4ZxYpwmbnc7bO3gOBwOlb6Okg/Eo5qGQiFOg+hki6pzNsqNnuVPjoGSCikFcozEJGInlZWIRWf7aslJSXmyMShrUV5oNmWUTDS0OMROE/HulmmKJGrvD9/izrZirKOE/ssItRvjJItayaQgjRHDcCCGIJFS7TjsVKY1hXOvGHOg15AVdE1DDCOTaxiHPevtBRfPP+TN27eEfpRAC9BFyh/zrFSrG7OqtvK6grMpRob9gZQmrHZ4L94EjRIbfGGWEiZFdI6oHFFIVDX3spnpXopeIrqFapw3pjpmIHO6xakl4itLxD2zL0lLmg9tah+aukHkglbSg4hSMFphvZf+N5UCLnkGRwKUdU0lHUEKTOPs56DIMUhOGYWyFrc9x1uPdRaUIpcolU4J2q6haz1d42m8o3EOW30aRI8g/imuMlbH/koJY0Ww7Kx04TVWY6wARq8c7WqFNZ4wbhmmnrPthvvdDt94cvqQ11+8kUobrQkhYlzB+lZMAJ3HNS3OZnIMWCW6GKUtEfDas+68UNlaVX1pIyXwRlWDqBumENi0G1IOXJytubl5ED8V+NJipt7FKjNqXdhUuf5L0q7MybuT18wVEfNUqXNq4U9KXnCPUkq8TYyReztMpHGUKpGxJ06DvEprShK/FGM8Bk0MBZUVxVAXcunkq7VUjRUlotcyjVJiqgpxHDGuhf8veX8aqu2a3nWDv3O6pntY0zPtsfbeNWRO9E3eN9gqrRjQ2A1O0AT8IAoGhAjiB0FQxCAI6geNH7QRGhWUprt5FaTpgCi00B3SmlajppJKpWrXnp5xDfd0TefUH47zvtezE+23CoSm6AueYc33uobzPI7/8R+OiBwDKCFNHsPZUvTEJDYFtqqwdY2uKtBSFKZY7sV5J15LPsn9cejBB5FCJzlZsbjOpnmWDBtTXE+nCWUqdJLxVIgB1zUSBjlPsh0FyNqiUxa3VO1I4SCE8XRf5OUjsfm1h/DUHBzx79f4bKlsrEefFDLiTP3a5ea1MZBrOrqzx6iqZh81v/bpwKEXQvZ9aLigvIJ0gVEKZ6SAXnUVjVU4rXDWYu0xZK8UDGUxM9oIWZn7ZjilKNLaEInTRI5ShAfvCSGUghgZd9sKVy8wJLQSk05RZVrCOKJVEoSh5DipguYqU0satJKiVYcZVdXYnNF1g3IWm7M0nSmikBGiTBoDKCP3ackcspRCpe2YpgHvB1SGYRxlrTIVZIMzFVbbUqSYwhQ4ruUGoyS4t0y271GyIwapjntzKrLyVP5kgv//s3EPHDfEEzgrMzilqKuKB1cXPHzjbRSK89UaA0yT52y9oq4M4zCglXSVwzCRQ2JI0mUsuprKGkJoJCdn7LEqsQuTJEo20rUeTdkkOl1uWFDEKMhAjIk5BPI0YaoGV1UoW0EGe0xBBVQ2911E8DAJSTfFQC7plz4nzGJF1a2lCIjxVMUeu7oQPNELu906IzwClBhO1Y2Q4I6Vf1ZoJX4XjYEuzwyHV9BeoJcrXF1jdMbPIynOrNfnrJdLxn7LNMkiba0rkOhxFSrV9XGHVlIMqawIcyD6gHbCtUlZE7JAmLnAvJSuVSLtxRckxvR6i8ax9FAZ0Pdo82kE8N8o1Y8EVpnzHhEVMQkLZFnoXyuwrJGFRhUDMmMk0ddZcVu8fy28NpvlJM87hiTGOIPKGCvESGMga+SBTeJQ2zYVWa0w1uC9FNI6x8IVqajs8fUkVIGhj+F4ZdkUxUoW90xlLDlHdHkd1oqXAzlhrcNVDufkd1kszolpzTxNPHj0gL7vSTnx8PEDrl+94nDYsR+ERHyYZsZpYlXXWKNPhfB62XJ1vmJM0E8e5iCqJO+xVoZS1joqJ55CTeNYLltuN30pYBqaxrLomlORcl+UHIuR/Fohml/7p2xcyPiUnF+7vse14bhTvnYHHQs6Plffnq6nSDANKo2cIiGK/4urG0kRVjKS0daV/CUpbLMPpDkWcr5CZMKR3A8obSQVPWZ0q6A4VsccUMlKI4MShE+LVT0KslPoLIWsrmuMc6/J9DWqtlLUK4ghkeOEURY/zdL9pkzWUlTG2ROmGV03QhYPHoLIxrN1JCUOtzlnwjxhK2noUkGOTePknFsjhdQYTy6/6jQKyMc7s/xf3yt/yr1bgIn7MU+UMdqx2MnHWYO6v24yxlC4qqJbnVF1C8Y5Mk4z8+zLhqpOY8OcM372NE54X85oaqeo7NEETmOtjEVltcySLFB+lj46ecdwehEpyXnRWonAQE+Egioj7YeMgpXB2Jk8R2zTCDKOpmoX2MqSpiCqqwyoWAi+iZii8Bq1KCCj94QxYtoFSpfGVWniNFN1S7R1pARxnmVMo6ToTikVGpOi6xqapsPqLaqu6A8HILFcLtgfDoSkycZx8jyhcEwKAH30wjnygsiZFCAUTmKKkRA8YfakYuMhCPT9U/db6ITfxvFdXaRopcpCiVS8xuC0IcSEqxSH/Q57/ZLf8Tv/1/zgV76INppF1RJjwPtM2zWM48g0T2SijEa04+rqASTPtNvgt7eoOKN0ZhwORJVZtBfEqDGmJhsl451ijQ2ZlBRkSSMO00CaZkEDtEWPI9lEjBIXQW1E4ZCmHdF7yQipHCmMqCjwqrKO6rKlse40TBFALTINB+b+ILPIVOao1qCMwk8TqQ8FppV/Fao4M+YyTxXeSuUUy9pwmAKbccMcPK7uWKyXtG3LOOypmiXtcsX8aWQOc7mRddGY3vekrwHzpwhwrYWnMYfIFMXfIzlF9Kq4tEo3FZJwUHIMxX6mmHtRPGHKXvNbJI2UiqVgzqcHS732yk7NeH7tyRGlUVBG8lW0LYXu0VXxfmuTYD7hpujCrKcsmNJhiSRUl7nzkZxLMoJY5JlcipWc5QqGJHyGnBJNU2OdJXiJPleFU2S0WOMbfexWjmc3nxbwXJ4H4SCV+VMWomMKWcI3jREEKnswCmu7cm0U2joWqyVKwfp8TYqReRro2jfY7VfcbnZcX98CiqZu0cYQ04yrDOv1EjIslzV5ghAzJCH0VlbTrpb0IVM3NU0jVvCazBtPHhD8C0KYUVWFsZrFoipIUdnJjlUilNdeUKp8unry+x9rmGPRcrotTits+fxTiftacateQ2SOxYxG2SWkRPYDceqJhfxnrBWnU6WkqfAjBkGQlKtIcyKNs9yPwYO2eFQJPC0LfQwo12CjGLLkLDwso2TjF+QkE4e9jIaTBy/8Id22sIyidFEGZQ22qUVSfPzdtUYvFhwToWNMmELSRVtiHIWPkj06KTKaPI2oqobkMVSgRR6fUsRPs5x3ndFG0pYpo5NsamIQJU0u5+T4TL4el5GPcwd1j/gdz3nwsrEdM8COfUZK8XNW6q+XqMY56uWKi/U5baXZbIfT1T1+A2cliNNZh9YyJu1aR2MydUFOjBE66FF0obU0VWRJU1an9aNYC+RIjvJ7al0aHmchKOFUa+HZCXlek2xJwlZgyficZQRVNSgFPvrim+NIxFIQyzXBaHQyIioA0rADY3DWyt6SAGMw8yhIvELgjTLGNlYKV6WhchZ08SECFsuO65evEEFhhXUtOaniopFl1JQzZC22VyV/TSlFOF7XYuQZQyL4SAwz4fjHz0UcIWw/cZ/WfKfHd3WRchr1gCzw1rJadmKMhSNksK7iK1/+Ml3X4rPC+4mu7VAq8+r6lrvbO9q2wzmLqWuaqmEaB3KMIldul4RhxzzuqZTCLirCPKNNLV3ONBT1TfETMA7GQUhVXqpdd3YBU4/VDcpQ5roF5dAC09tmXfgsgTRPstCjSh6IQilJ48wpgTH46AnTQJxntLHEwlw/dgIpymxW17U464eZrBUmBuKw42hrrLUQcbXK1JVhrWDyiuvDnnw4MA1brLFUdYutOtYXD1l1HfPNgegNsbg2nkiMx0ZJaSHsmjJqMBZja2I6MAWP9wrvDJMBp8GK+YV0oqVKt0bRKsUUNINKxTr+82S7+43sfvuBI7ry+ufK56lS0Mo/R86+IqDxMQgHJ6VTIVQ7i0+JyurihCo5GkeOkRQjx2KoSBwLugfCI1CKkttTDLNOwW0J5xzZWFSIhJjFi0Er8S4xVsiWpUNLIYkyhoLcKJkMiFtreR26GORx9D4T6Jjyc7W2ZMR6PHqPqYUYaZXILaumFagZiixYZPnaKFxdYa9vyShmL86qlTGsVx2axMXFmvFmwM4zZEtKIv9s2xYVMs4J6tgfejKJ1fkl3aLh9tUNbVczj4GHV0uMOZbi5e8T4vFbkZRcKrTP1atKnWT6R3XP654b97dKef44FpmcMmaicqh2LXD1NEhOTLkvQhA0UltFmGdpMohoZcqzOIsRm5/FuLXV6JwKTy1glcIuFmRl8NMoXhfO4ScxTTQJfJxIo4x5xXUVdOvQWgqEFDxKVSgnoaQhBPE4CQHTtGgjhZB2dSk8Col4nqTjBpJR6OLPgnPkIKM5m4V3pIvxWIqxFILHEalwPkQJCMZVjDkUG3S5ENJcH5PRMyffNlU23+OlSlKUzONI8JL8LAjV8bKrQmC9bwTKV2Irx+LsnAeXVzxYVtxtdqWAlPNlC6J5BOBEBSfcE1v8ROS+EdTjiMCQizcKRdobfVEqChIJuVBdlST9EkihIEUorJMcNTgmLmtRhvtiK5ECqldELwqeRCnGoCisUqFWKdKc5BpqWwrpSJx7jK8hz2RtCYMGV6FJxClg61rGkMXQT6wgZK13RtHUlpubO7Q2tE3D/jCgjWYYD4QoUShaaYJPBWkykrWmIinMhFkaq5h84T5OxFk4lZLzBso4gjL4acb7CR/l/ISTv8C3f3xXFylyE8gdOM2BkBJ6MFRNg0qZ9z/4gD/0h/93fOWLXyr26mIDPo4HDoeeeQ5YY1ksOlKKWDQpzNTtgq5ryNPAbjiQ55nKttS1A5MIGSoyyQ+y1pXk29DvSEHm02EcydqhrZURkLJEohDEjQUHfhrRSdz/wpgLsU6kvzHI/O5oRhQLVVspiCkwH/aobEpXEvF+kAfIZFQufI6cT3Cl0pZsLSp7tNWnmW/JDBR7aKtYYAlVBZVmDKKq8eOeHCYIM84YjNaM40ClimW4akq3o+6LgaM1vhF3xljPuKbG1TU+RnwC5kjUmWSUzM6PXA7AKoU0EobaZlCxQPdHwyA49cXq3g1FlQXk/g5R5e8syALHAuYEP4gaBUXImoSMMLRxZawTxSq/IBmpdEESIqnL730MOTtuq6+/roKoHDkSORcps8GnSGA+dRqKLCOunE6bqkDGsj5pc1xxRZp15H+qU4FCGelkUij5GWTQ5gTXy6IlnXqMwgNAWVnISuHlqoqMqFMqpMiomy0hPGfRNfSzjC3IEWcs1bqGOLNcL6j2nspqMg5jFdYUf4koPCfhb2S2+z3r8yUPH6wY9gfiPLPZeN5794KursrlFcj6dSrRqVE+3QGlWDlyCKBUZ8f5wPGukGugtEJpJyNXJbbjpgQmSgGcCH4i4TCugrGXuX5OxXBMNgmtLPM4y6jGGCFEG/GNMFUFOYAWG4SYkIYlesn8qmsZB6dInkPhSmn8NJHTSELQXq0kRyr5AEahkhMEpqo4qkG0KfbopTiIPpL3d3L7tTVpBdaaYk0gI5AQ/EllIe4Exa02pVNhYIrpZIpJ5NBKbA2O2TeiPJExzTxHgpfuPUVJLj66noq4QQQOkscDR6K6AlQZi/e7O/rdVp7D4u+iijFIThnsUQJ97/KmjaZbLrm4fEhbV0WBIp8vWgOxaziiqVpDXVlyCFini627qGNO0+lys+mTP40m5IgPnqqqxYsp6xPv7lgFRbLcL0V27TMoldFGFHchBlQUGXFUGjXO0mAoI947yZOMk+dTKRlzKY1SlhSLQ4wV99mcAn7oUdahLPipL/uCxFeINf0R0Tphx7ji7dU2DVVdUVcNOR2wLjD5QAyecRqY51GucS4NjDUYk4lzz7zd4Ps9WgW6ytBVltoZbCN7UUziJD3FyD4a+uTx88AUFDEr/HG09R0c39VFSoITLJ/JhJAZJo9rFlw8ekC3vOC9t55Ql3jtFAL9oacfRhLQNBXn6zNs5TgcDgQfsZVA7kYbfBR4Xy3XRD8xjnsqH3GLlnE8FPjQgJ/IXtJkc92S0SijCPNA9BMpBhziLWKaJVVlaJqavDxDa1cWmcS424rFM8KQRifRlYdILP1HSgKNxgS5dJzaWdrlFXXbitxUBWIYRKc+jPSHA3HomfyIrUxZiANHkyjpgIQNbzUYlViuFjRZSGPSQXjGccthGNkdNvT9DtkCpcNx1snmx5FgJpuedY5U1aTQ0HRLUhCDuHEYOMbby7NUPG7gVDhoNBmDNRlJ82rI01R+rhyqQJOUwuPzBUzZzMrkoKjx7j+mhI8S0cSsyEoWcK2kEDHWYrU/dWIpJawR+bgUYOXxydzbresjisLpdRitpcgsb2tjUSmjaiNFlVKEEMUK3cgCTkqnjffY4R3PqypFkjT/+XQeci5dfnGQpRRUQPFLkBMQsxSXJgViMKSqAmXE3dIIpK1dDSmgMqQcWK4WXM5X7IYJa3sWS/EbMsYUo91CrEMzjxNdU2MNKCVwvbVgrOSr2MrQ9xM5JZ48fsBuO/Dq1R2tMfS7DbX9PFpyf+TTP/fIybEIVZz4JQV5Ua9Lj49Fo20xzRmmXqNsh7IVxhbXzxzJ2WPnAZ8gmYp5viHOA8QZVCwzf002CYJsAvmISioDKVJ1HWZdF2dlS0yKNHviMJGmUYIilcE4VaLthUQbh5FMIjuDClE2n5Awq4728UNM69CqmIGFSBo9HAZyXZXiU2NWC+gyYb9HbXaEvidenGGsIw0DMUSSEqRVOSFHCtk+wDwLqT9nSeDOCVUUJrl8jTaSJSRFnuzsrl2y8YEYJNBvjlKgxJxPhbBsejLaSqWiFpQi4EPg5vlTPvvwm1TNCtO0VE2Nq1zhgyn0ETUvCKWMnjR107C+fEw2rRBcT8URoDWNs/h5Fi6ZNszTzKIWPoorVIFYeDJHpFT6LCWcPS1E+JQjJ2FClhGplB9y3bV1MlrJCWUrNJoUZ6KfUFYhmWgZnCGbGh8TZpo45lGJx0hEIkDENgKt7jPGjMFUHWiFrmpyVoTZU9edPPfeYyslmT5lLKWOX5sFAXPOcnF5wWZ3kMajbgppNrFcrBhnz2EYccNAVR2JzWB8Jk49YXuNHfacVYYH52sePLzk7HxN07YSxWKEcxT9yDh7NvueT15t+DBMPLs9MMyZvvf3FgPf5vFdXaTITFjY0lXlWC47lqs1i/UFD68e87/5yZ/k8VtfQCtFCIH95pbnz17gXMWDh49ZLpbCS5lnYgi0XSdKGWC/2TDu7khjz9xvCf0dlc7Ui45x2hNu9rRNQ912WONEneMcue9J08icZD6nlaZtaurVGrdcYlKW7AfXoa3jqLknJZyrpNAJkW6ehSzb9wyHQ5E6it9FrusyQ7RYLWROrRWmyIyNBtJMSCL9Ooueedrjxz27zR2qqnHeMx12MtrIkZz8cUQMCRqnUa4RGNIamkrGUx8+f8puv2EaxUW2UaZ4hUgdcUzFlC5PnH+zq8iuJtee3C3L5heZ50kWwiINNapQLMr4JinR3TujWF1e8c5v/1FefOM3GG5vycUPhnxiory2KZVf4ghNK3Uiwh13t6O0VWUKYVYYuCFEaifXJGch01FmqUapYj1dUI3jYpZk4co5Y0oHVQwKTnNbIQmWogNDzIWRrzU5qFLoIN1PgcU1ButkfEPOMspTFEhaFjOjxdMll65RRk7Fp1iJr0Y6zpW1xjjJcYp+JhpF1Io4Qa5s8bVxZdxTUAcMOVkUI01Xs1guaHY9s/dUdSvKN2sI43AaBSiOaoCCrWmLUkfOlJaRalHI1Dbw8NE5r15ekyIMu4Qt0gxVuBpH4AsMfO4a89oo6L5gPTXbx68rn2Ncg1k8wjTnmGqFrhaYqhBQ9bEwFM8JEzzDdsc89GQ/M/cHTBZIXtc1YRqlaDyGCuqKerGQJsfUoqxRgnColDHdAtZngooEDylKurRR+H4k7SZwltx1xCT+K9X5BVXTUHU1xmgpvo62o9ailqty/2ViCmLQNnuSNdjLM0JdETc70vMbcldDijLyq2p0ZVFOrBcMokZKx3FGmEjBYKhOSG6KnuAnrHZkJaOeFIMgMzHT99LEhSAOpikXNUcJDIyFGCuWBfK8HYuU2QeefvaM5fJDutU5Fw8esL44l1GDc5ClOHHWSIF4bApQ2LpifXWFbltCLPlix6JDy7pvjBKyeoHhKuto6vubJB5RxxTv61kjiipxf7WYYmJ2Qlx04QOpXIqVhLKyRsi971A4SBVoh3Ittm5RpqhfsiAyoh4Tsq86joSzjExkIqnQ1kpmXNOijJD2Y5J1R9vqNUgVQhC+iZwDQXpDDGWkFGhqcX8+jtcWyyW3mw0xRxZ1x+wzh8PEFMp4MEVymFDDlvM08PbFkjcfPeTBgwvas6Xc822DratC+JbxXQyRB4cDVw82XJ2/4r988zN+/dNXzOPhtUby2zu+u4sUyv5emMV9PxJDplus+IEf/mF+7Mf+B7puyTRP3N6+5KNvfIO2W/P2u29ydfkAZzXDOHDYbamqhrqq5MELE9Phju31MyyRNB/QOaBdxaHvyeMBR6JbrDBVizZWzHd2d4BG1RVNjmjb4ZoO1y4E8k5KsAelIYiePRf0gSQhYjnKQqIy0oFrQ9N2VA3iWqsKg7tIiMXNVTb5XMZD0ZTNIZeHRWlqFFpJV9fvtzjXotcGM+2ZZ8heziE+QpI5Y123uBJvblSmrhyLriOj2By2uHnmHE5jAlDl9agTScoaQ3YWKgdJ3BJVjjL2MJo4eyT7WDp9DSdkTN4WXsF6veZ//D2/l2+9+Sbf+tWvcv3JJ8zjXuBV8sl1U/6Wrvn4Ln1swGXcLAWLLtNt2WmIGUF2YsbUQkJ0BebWIWKNZhrncq7Vfeeuyv2XJNsjA7lYEecTObkYdB3dG3O5Bwjl8+XjWitkLCiOoZzGPELkU4rXEBYKVH0shBRJZ0wZ51hjxBdnHvGF8W+thpgxVhCP6BNZR6IOxCBF04n3USB1pbQkz+qOJk2sl0tu6jumaUJAaDApUzctCYPJUYiI1lA5+T2N0eRZYHyUYtE1qNShSMzTgbP1krOLJfvNgXGGcQ7HS3lfZFA2mXyPGt2DKcfCUxaEI+IkxM7jhMxAc46uz9D1OaZZYtsOW9VFqVVGZGXcRjaktBFb+Fx4Gymiir2BcRUxK5iDjHpqA1gMwi/KPkLURa0miIRBMfc9MhyANPnynGbs5Rq7XIisc/ZUy+XJOEuHJDW3lVEFKaFtLbwJp0kqYpQlhygqj+AhZUxTo50lHXqiD1KIO0vU5X6cxSMl+ohrFlDJRhPJ5P2dFPd1U7pkg6Eut68U3imKFUICdvuBaRjop0lkwFFI/DHJuYs5iRVD+fp8LLZyZp4D3/r0GXOyNIsVH3zwJd4pHJFGaZLOMsq0RxK+Pt4NGGtZrFYsVxccw+2OkGaIidpJPIqwWRJt17JctBgT0eao/klFtuzu5dKxGKTl4y0m31cXHpMpkmWxSQBjHFXdYF2Ncw5X1TJGKsWDMhZblyyebIgxY9sFOnlivxEOoxYuS4pHRLZC2xrXtuh6galXqLopiiJZMbWt0NqSwkQuTalwwSqO3jKvk1WD97im4cHjR9xe39A4zdXlFc9f3eBjZvYRPc7oILlpcR5o1cgXVhVfeeMN3nh8yepsRdU0mMpimwZbWUzlpADTBV0k064blucLVusFZ6uGttL8vw5fPz3P3+7xXV2kyOw7F5mqQuvE+uyMywdv8n3f8wPUrma33/Lq1Ut2N9e8/94XWZ1f0rQLFDD0B67vbtne3fHw4WPGw56qqhj3G3a3L9F4xK46YWrHYd/DPFBbQ7VaYusWigQ5zTO6asRUKwVMs6ZanaFcgw6jKHy8BwSmxJjTtiyNt5akyUK+zEpIs6akm+biHeDnmRyiKHTIUnXnTIozZCUPSFufnAbV8QY1FaYGlzyt1sRplN7b1MWfY0SFwJxmnIIUPX7q0UaCpOaxZ3F2xfl6iZ8827sti0VkdEVLryXPQyBZKbx0kU9WzqJSJfwYpWQjzZFJgVeQvRcb/sItKZaPEjioBHquqoovvPcuy0XH+cUF3/iVX+HTb3ydfncnyqayQ+n7rUvWQCBpMAWpUFCkkmUMohWxzHBzCdPKUczRqroijpG6UuUceypXoyhKmRJlkLMuBYuUVlI4lEC5GMSTomx+6bjIa9k4VYoYJ9eS8nkKUIWoa4wRKLicT6WOXhRyr+QC5Z7yUfJrdtnkgoxIsKQPCThmr0iJH3PCIByDhJCyVSlwKJCxtZYUPFXKXF5d0pcAyrvdDo1iuV7QuBYfIjHPNJWla2qcizgj3ixaiwunyZl2sSDlSIojldHoKrNeLdhv9oyTZ78XGf99G3KP0ACvFS2vjftyud+Pn3/6nHLRbYNyMuLRVYtpWlzTYpzc3znKuclZy4hViYMsKYo8NwsEn5AmwWqLcRUpKIxtynhMXFlzTqjKQJB7QlUSDZAxYtaWJqKfhTOhNaqryFosza1y2MWCwrRE1RqUBN+hIBdjQ5InzBlMLfd4jESthHidkhSdWYp83bZk40nTJPecQoodsvgcZSBGsdS3Bp0cGCd5YxnQrRhYZi9IZ1GUqRhQWtEslphmzbjbsz3MbDY7hskTiv1CymIj4MvYR1TFqvxOiikEPnv6jKEfcE6Ro2e1WFE3FbZy4rCs5WuNUyeEDcAYS7da8eTJW1grqAEFUwRkVFWaAKNFdh+jx+dM50xRD8qYKMYMKZeg1qNwTt2T4ZGRvTYWVzuEjibPadU2VF2LqVpxuLXF8yRnyEHCGKsFSst4UVAOKbpiXRP8IH4nlMRrpBC29RLdSPyGbjpBU7QWIrQSVV6MEW3Fx8YcbS1ykjE95f+ANRrvPc5onFXMfuLwYkfdrjDGkoBpCmUE5vH9njMb+NLbV/zgV97iyZuXdKuaqqqkWdPSwIj4KkAqMTBFNm2cxdYrXOOoW4nWMPHA/8kopu9gn/+uLlKUgrqqSlZPZNFW1HXH22+9zbtvvcXm0HN3e43KkS9+z/dTNx3GOZqmIk4Du+2WD3/917l8+BA/T1TLFeM40B8OVHWDrivmw4Zh7ElTj84BQwBTUS1WzH5m7vfUztA0C4xR2KbBNAtUe4YxmRw8yl2glxX4Eo9urMwUx1HSmGMiBel2c5ZrneYgm2YWAx1UhgBGWXDHJGF18maxrsK1jQQf2gL5JymMgh+P+jpss0RVDb6eSJvrogyJOOPIymEj5Mnjo4LJY53EBsQYCH5muV7i6pZhP6KTonEVtauYrZU0UK05xuodJchJG4x1uOpoACdLttWKUSvmsSfO4HMogYyykYcsZUdMgrosFwustTRtQ9t1tIuWT379a2yuXxL8LAoKXuuwobAViv/J/dzgeAeVzUN9bk+MfqZxHZWrGOcRow3TNKGVzLG1loUgJlHJSOFTCpQYEQ7jcRZfJJVRFBFH9CHHeCpYjrZjxwgBPwVZwCQesnA9ChnQOumKY0JbJd8nlVl/FEdOlSDPAWuNSLtVpnK1dIxzkLGTk0IkZkGxsqbcb+LVcxwtKa1BGwwKHQLOSnbP5dUlt3cb5iQeQ8rW9IeRMHnaboE2UFlDVYnbsRpmSdlOEaWW2KolpYBzhqoWrwpjNHOgBG2+fg0pHek9J+U4Zz+uAyf2iVaQlJi5lQImK42qlmjbyMinarBVg3FWXHCLlfkJidFFVuknkh/EGdo5QWSiF45YTrimkdysqiYOI65yhbxY7jWrICZB5qIUgq5tSUGUbskl/LQvm2ikruTZUhriIGaMouYT5E8rg+k6IZiXEUBUQExoK6m9OSes16SDfG1IGXxCxYzRthhMerS1kvUSohRbRkP0qDGTtZhKgpwDojvJ7GPxZrJaSKAZjXEVrq3JxhBRTD6x3Q8Ms2cKsRBny9iR4oiswJ4I3InD0Jc1IfH002/xwXtf5uzqknaRUErQmBQTqjo+x2UkqxRt1/LOu+/R1BX9II1NLuvMsWlIShBfU4wJrcmQzX1Tk+4zenJSJDyUIEWtFNoZjnb2pngOGXOPHmudSL5HxZmca6AhK4upllIy5YyxFbY+w3ZLWRfDLPL1rsNERwgTMdwTao022LrGdUu0a1FVgzISSJiUpFADwjdKEkwZj+takuuvjUMpkVJbo1AkhqGnaVoePHjAi6dPOex31JWFCMln5jQxjxNN7Pniowf80Ffe4Z0vvcnifIEhcmKy5wxxIvmZHAeIExiFqZ3479QdytTYxnH24JKqrlA6UNeO/X1w9v/i8V1dpFgtcGosD5BzNa6q+cEf+CEO40hnHev1GevlqqASFj+PhOHA4bDj0299RN0sxNTKGXKcSWEuktmaHGaGfU/2XgohL1C2axrubq/RKVEZR70WVKU6v0JXHdktC8EropoKMBCDEF3jTC7SYUImzSJLjJNYzZdBQZHRicpDFgNZQUVBkE/dk8gMXUllhpgjaRyL/HESYySOmQkZ0zjxVTCG2K3w3hMHf9owlVYy+leRkAw6ZuY84SrHPA7oqsW5imkUaWTdNFT1hLEOa23x8gBK1y9Qo3iPGJvIyaByjSYV6bHikGFMPSkqfCHwkhKRIrMtLbO1hk63VM7RNg1t29B1nYx/nj/DT8OJICod9T2ucrTflqOYFCkhzqYyb9ZKoXOEKJ2XNbIYG6sZp2KtohBYkzLmKXwTXbgfKQZZRVMshn5BNsoy9tFGn+yiU8plxi1zZwlCk0VOoSSgTmtcZU8S0hTLzwFUysKPLYjcMahMpSySVB8wVqBxPweaRhas4OcyTzeCyuhKIOQyCz9GNSgrc3KtLWiLy5HkBxat4zZNXK2X7PseBcxzYL/by+bjFHWlsVZTdx26brBmx+w92XtymKmcY9cbgtaE/Z7loqVbrGTkou7h6XtfGHkL7sc9x1l8PhUwR/+U4hBWKhetFdgWbWu0rWXEU1npilVRaKBROr+GPkpKsB8PsgjngA8ZEwIqZmxVEwuBMk0zxjgxbux3JapAnlpbNVSqAhQxjFRaEm5t7Rh2B1LWxHmkqoQPlxB9sHaWHDzx9o4UwF5eoJYLtFNH8hchBsIkEmjtDAR9Eui6SswmY054ik9TlgIVIEwj1tWytswjzi7JaEHy5rFA94acI3EaC6InKEMiE6YRo4x4PxXVW4gTFIQkpMw4B0YfiWW9ojQJqrhjGy3jwKNaaPYjScHd3TXb3R3zPIupoTGyHhR+jCrmkRlBV1xd8f4H7/Hk8RUffvQZJqtijFmQJCUogjHg55mqtqeexBrJbsxZVFhaaZKXhGGlZR072uOjFcrogqKKLYQuHJGjg6xW8lyqJBxBLQu4nJPJk7WouXTdSUE0H1AkTCX35TyVoljdy6KlQL9v/fJRvZYRhY9SKOKJXxWDPzW3QuaV56NtWtqmorKGzeZWxvGVY9fvwVSoLMKBPG1g9jxeV3zlrXMePlxQ1wpdHJlTzhADcRqYD7f4/S1+3EGeUdZQNS3N+RlufYHt1mhXYZylXa+5fOPNz/nefDvHd3WRYsqGXVkjxCygWy752jd+nTfeepO333oLU8mCb51hu73DKBgPB+5ubmiXS9mYkySCHoaR3d01aR5Zn5/jx4MQo4xh3m9R0aNtze7uDjUPWGupzy+xizPc2UPM+hGYGhVG6biUQWzci21+jCQ/E8aZYbtj2h8kVTXMJ8g6+xkKidUYR0qCYGhbnzb/VCrlIwaZkgQHBj/hx55pGk6bU0wJ5SSPxlaOFLNUw8pIB7RYM/tJiqTi/0GMzNOBaDM+Jpq6gmyJCcbdHWfrpfAaYmQeB4ahEifHSvIejiZCEmwoVFFtbOkKJedEK8EUUorUMRBDZM6yUcYshkES8pfLv/cqF2MM1hoJrOtaFssFH/3ar/Ls44/o9zvh1lAKlePoTB3Nu8q2p2TTV8JERWVTSJPyEEbvsW1DXTmZ0UfhpcSUJZ9GFYmfEgJhKGZ+KYlnToyRGCLez0zTJDwcVRY0xLZaIWZ+WktCtra2zKyBKMRV50RFdCSbpRiLO28+BSIeoe9cQhqVQlwqkwR8QcKoLMRHZ8Q3J2tSttSFuK0LCqZUACXkWV3OmzJaOEPKYuuWtXWc3WwZ+4ldf2AcR+I4s91uMUpJV1ZM5axzDNNYwionxmEgzGtMW6FMzTgGNtcb6uWbRDLOWaZTCvJrD/uRHHg6E/ej7d888jlVJ0WCqUyFdo3M78tCfuRO3ZvG5eJSenyfBH9mPwMZPwYMirqMYnIIxFEsx03bkTL4gyCjxIgPQTbgoFFObNKJkeDFx6Jad4QQCZPH70ZMrYi2QXdwNPpDK3TbwDEKY+zJhwhOEydPJKFcLddtNuAqKWA00vWnjEZjaydrUFWTphnls7z+6OU8VJU0MUHGfTkFmMWtNlsjiFIf0XWHUY4cxMyxsg7tLCiLrRpSSPh5IpFKCJ2EtMaUT8UTBWVUimI9LyRbcU+RpmzoD2w2N/hJBA3JWVSEEIXLIzJjGR+mlKic5dHjN/jCu2/zrY8+k0YrlBwdMrYgKCmK6disPItO/FKc0WjpiaQpPJqD5oTE5snPOhpXqiOCI9ptlCoGesdcKEp8wNHvKAqPjZKZlcY7cJoUxDIiTpLvk21CG3Va53LKp+IoJ0lIJukyUtGne1Rri7IObRPZWFIQ+wQpRlUpqCwxCIKx6FpcJaagTeW4OFszTYGb3YBnKqMvTcvMurUsm4xlIk8HQvLis5TEhXy4ecbmkw/ZXb9inAcSEVtp2q5hfXXB6uEjFg8e0KzO0K4DU2Os+fxz/W0c33GR8m/+zb/hb/7Nv8kv/dIv8fTpU/7ZP/tn/OE//IdPH88581f+yl/hH/yDf8Dd3R2/83f+Tv7e3/t7fPnLXz59zs3NDX/2z/5Z/sW/+Bdorfljf+yP8Xf+zt9huVx+py+HqrL4EAkhMY8TTz/+mN/+o/8T77z9Ns45QVCswc8jRivG4cDt7Q1V0xJDIEwDlesIYWaz2QLQrs7wc2S73TEdBpQ/wNxLcFOYwDqqqqJpFnTLNc1yja2a4s8gG132k5jY9D3z7JknT5xn4jyLo2iSlF/f79FlZghiqGyUwKw5KjF8UwrlpD9MMYoyY56xVSVyxpiY55EwjuIe2LZkI4uADwkVIkklQkg40xQSYJCZonOYuiWOA8lHlEpYbU/y4H63IYYFTbfExYmcIp1TLGvH3e6AOvTUVcVcVbiqxpipbLzHWW55sIu5m7VOCisUOiVcm05jE1TGT/J2SElc3Qp2LojDawRdrbFri7OSrLtcLekWCz75xm+w3W7KTD6VZeN43D8dxxHPMXYHVZxiozhI5pSx1lA7y7bvcbVjPoglunVCRk7FqC2jicEzT70Uil6US0PfM82euaRbh3litVxQOVfQIaidxWgp4mLKWCey5JzjCRbPRU4sTrQyxojp6NuRicETQ8b7mVCMt7yfmbwkZ4/jhDOZZVvTth1aQV072roiLrIUFc7gmpbXc7BOknKlyMZStwqVZ7RRnJ2tub27o6kX7A+3jCFxOPQsF4viLDyha3n+pt2Bpq5JnWIaRrJS3G03zD4zLWp8NjiELdg0zWmMc0JOToVJvn+vun/P0dFUxm7HfTDf++EYQVEwjRQoVgIXj1wD+UaiILnPd6I4AZcgUGMlbK2WHJv+2Qs0lqgVeRgh5TKW1Xg/MfmJNAfqKcnIrq4hiY9NzJmoBSH1UbhCWnnSboeaHXlOWAWmEs+V6GfCq600QBH02ZI8Byn4s/DbcKIiwifhVChFSOJeamyF6bTwiqyR1GMSafIkHUWxkxLJC8eELOGeMc7EpKGq8MNAVbcF9RDbgOg9uEB2Btd2WFcJYVPNqDLiNRHJsknCfzraJ55I54VLfoxvyDkzzZ7dfoP3MzHKOiQFRj5xsNAKFdWpdu1Wax5cPhF0PeUSAJtFfaYkJVyVwsOQaCpNbeXePyIzIrUuvDQlRb+MPq3Iy8saJsVBhdYOY2tyjhI1oAXZVOWeNMGjXSUFsG0hTxg7yL1VnjXCKNxEr1AqluYzo00tvCWTQfVklVBG1FbK1gXFqdCmEe8UbYoYQ/KlcvDFIE6d1jZXVazXS7pFS34Vub15hXUtSWmsrZi9Zg5iElfXnhz3HLYvGG4rdJ7RrhG34uDp717x6pMPefrsU57d3nE3DszRUzvL1arjjZs7Ht5teLDbcv7oIc3qDFMtYAr33cW3eXzHRcrhcOBHfuRH+FN/6k/xR//oH/0tH/8bf+Nv8HM/93P8o3/0j3j//ff5y3/5L/P7f//v51d+5VdomgaAP/7H/zhPnz7lX/7Lf4n3nj/5J/8kP/3TP80//af/9Dt6LSkfq0lwlcU1C9774Hv43f+r381ysSbEiNWB/jAyTQP7zS0vPvuEdrHE1TXzNLJadsw+MNzeysim7ohx5vbFZ7z89GNaq6T6HQ50XVUIUaB1TbVY0K7PccsLVNVAjuRpZNpvObx6zu7uhl3fE5Jiv5eMEk3xt0gyss5+hCDZHSqBSQlXEjujD1RVg3YOSw8IUUospAMxlYReI1EAAUWMnjD0pDHjUyBqI0ReZ9EpYmMSuXHygjAZC67Ddolh81IQqcJsn2YPWYkvC5mhP6CMZbPdcNY6bm5m7nygrhxtW+PGAWuNdOvmaHhWlDpH+NJl4dLkDLbCKVDpKJ6FPmVCkPjzo0omvrYJnVxeke+3XC6x7m26bkG7XLFYrfnsW9/k9vqaYRxkgSwukbJnqdNWl7KMe06dOaUQLGoxZyy5qrDTgA/yca00TSPzepnqRCHi+Yn9fsdw6Dn0A/Ps2Wx37HZ7mqZhuWhICebbLRfrlRj+xUhdVTTOUtWujGvcybNGafHDCKUPTWHGh0BIMkaKMeJ9YBpHhmFimiW7ZJxnvJeIdFWs8EmBpnK0jaNbLlguWiqbOPMdVWU4Gw/oiwtc3XI0nkulGEwpoaqWFAN1u2TYvqRZVJyfLdn2ElA3DJNsJDERw4zJ4CrHNHuur5/z5pM32O/6kshccXt3Q84OHl2xas/ZHgaMVixXF9RVfYLjc7kwR73X/dVS5PIcFeXz59Y+dSSqKA2uFcKik+dXW3OPoHxuhKSkIC5fLyM6gdq1AeUcKEuaRXLsKof3EbxswllDGD3DNOCjJ/ae6dWBZcqkpNE5Uy0aVFOT77bkHMizJ2x7chVhmMpvJtELymSUURIImkDXnuriAlUKWZOBlPAlbtgikvmaStA3FZhDYA5JAgHdfdaSMlpGS0mfRqQ5R1SWkaPOoJwUr5SmwURxukWBqRxxnlB1h6okBmIeR0KYQUFVVdQRQlZEFD4EUdWl4wUrfDB1XMtzMZYUhdp+v2eahEx6Wu9TOuV4HQmtglpmXN3w5M13aCrLMKeiHpIfZY2cL1fCLZdNxao2NFbsGlKW7KV4RLRRUrRmQU2MKQ6yxTNGWSlWtDUI2GEJRbUXYyzj0oS1AVvMzUxbuE9BPLpSWT9UnIVwlCM5jEJYP45DkkiIc5zIcwKXxUVcG7KpxCXaFCTLWLKpyV6jcyQZK0ToIMaeRyfq5aJj2XUsugX73Z6cRpbLM253NwyTR+mBi3rinXPN48sFrqo47LaE6DFVQ4qB/XbLs6ef8fFnn/Hh9Q1Pdzvu+pE5JLRSnHUV7z5c86Vdzxf2A08OB64eXtEuzvHZ3BPIvs3jOy5SfvInf5Kf/Mmf/K9+LOfM3/7bf5u/9Jf+En/oD/0hAP7xP/7HPH78mH/+z/85P/VTP8VXv/pVfv7nf55/+2//LT/2Yz8GwN/9u3+XP/gH/yB/62/9Ld58881v+7U4Z1mt11jn6JYrvvL9v52f+L2/jwdXlxwOO6w1bLcbZi/pxE8//ZgUI1erNeRE09b0+x0xBpqmIifPsJvY3rxk+/wzlIb9/hZz2NBYTZpn0BpX1bTLFc5VuOU5mJrgE/5wR3/3kptnn/Li5TXPNweZyabMOE4chgmVUpEWaipET27yjNOarqlYVCUEC4WKiXEacNZhbfEiqRqp0q1AenOQyjlmiCEyzSL/i1rjcyIZQ8rC/nZ1JaqONDNPAyhFU8uM0lQN1eoBw35DHveMfU8flNiw50yOskgM/Y67V9f4aSL4wBjh7m7Homuxzol3i7VYbUlaiJvHAiWVwbRSCXPsnmJRN5Fk7lyg8hDiKYn0yNU/IilHi2zZWETm3FSCEqxWa84ur/j0W9/k1Yvn7HZbpr6XwK6ci+25IlKIotyjPTnHos4owO1xtGRM6bCF3OpKnkkInmmcGPY7xv7AbrNhuzsQQmKcZ8ZxkiJjnki1pVsusUoRgthKay3EtxC88CGUjIGc0RgFMQsR9zj6SnEmxMA0l9FeCEyTZxwn+n6kH6VI8UE4L7IWeI5hibJhGKaYcSGRtIEhUm0HLveTLMDGliRYRHmixPvh6PwaMhhbQdzjtKK24oUzDCPjNNN1LcNwYLVYYJ3j2YsbNjcH3nxDuDW5q8nKkpJhHkb6w47zswV1NBi7w1SGR48vZZ+QVUWKkbKbveYrK9yl8kYur/H0vuMoyFiwjaicrDhAvx4AWe7IgsiUocSxdkmJMAu/q2oqQpzxsyVPE3a5lPNiAgkthXVI7PsD++2Wqq1RzhB1Fr+jwZP2E+3lGt1U4JyQ5afEtNlhC1csZSFZG8CuJdslFJ5KXTUM44Hq4oJ6uURFIa5m4+ialrqVZGqNwjiHwkohMxwI8wQaks5lg8wYZ/D9KITSboGuG5KPZD+R4oxtWuG0ZbkXskJUUDmB0cRZbOx1Smy2O16+usYqh9MGV1marMBajAuMs9y7R9+VY5ESYpGsluLAGI3VimE40Pc7YixhqIgzbAyCVB9H/TnJ11preesLH9DUNXPwZK1OfkJayb1iySxqw/myZt05FrW4Zwu2kwoCU9AaI2Zqx2LW+0hWWXJ5ynrpGklD11pjXSvWEIyFhCsFVfZicJeGHaayMspLBylEjEb5Uda3FMT+wsjo19hJJMsKdDRk6nKjR1H9aUOY5EY3TYZkZKRpHCkZaXKs/P5HRZjWhqauOV+vaBtRGG13O2wtCdtVuuPd84n3H1/wxbce89Zbj1ivl+iUmceB3cunbDZ3PL/d8NHzl3zrxTUf323ZDDMh3Fsj3OwGXm4GXm56bvYjH/QH3tpteHh+Cd36/jn7No//rpyUb37zmzx79oyf+ImfOL3v7OyMH//xH+cXfuEX+Kmf+il+4Rd+gfPz81OBAvATP/ETaK35xV/8Rf7IH/kjv+X7TtPENN2LlrZbGcsciZWr5ZJ33n2bs87yta/9J1YXKx5eXdH3IkeLMbLb3BFT5vzqUgLNyIx3d7L555lhNzJNnpQU427Lfhylyt3fUpOwS9GGu7rGNUvqbk13+Rhlaqb+wLi9YX/7nOfPnvPNT15ysz+w2R7Y7Q9s9j3jHCQhMiZSguBnFInaGi5qMfRZNxUPL9csFwsWdUVXVdTO0boaZzVWW8I8ikGPNsUu2+D9LNbuKdKPM7f7nu04sxknhpTwKVBbxaJtaVsJedMkYgxYq+gqx9lyTV3X1Ms1TQbbjxz2O7rlQubNyZNmUZ5E76VzTrkszCOH/YGmqfB1TagaYh2xKYMVuWEGeTCVQRmpuJNRpCC5JjpFXEw0QTbhafIykgJeL72PHdTRiwUAo7HW4pxwVJZnZ6yvLvnsww958dmnXF+/ZL/bEmcPxdchH82Z9DHpuBQhqaQ2lw3MWpFYxyiuv7XRNE1NiFHciw97/NBz2O2YxpEYEt57DruenDMXF2ecna1oasvspRjWWjMchN5ui9X9MTvmiIanmCRksDhb5iTp2CF5IRT6wOwj0yT3bShutVVTY6LwJ1KWmbRztpj8laJLW4ypICuM7fBBc3u9YXF5R71YYVxVPFvknCSlUWGSsYICZR1NXdG0HRfniZfXWwmvA6ZxZm4UagWHIXFzfcf+MDMME21dY7RhN0yM04xG8eLlK4yOuOYcoxKWicvLBfKDBCm955nIn/y5tznuefJfgQROrx1doUwl9vfWyoz+yID+Xziyn0SGnBU5QBgmVGWo2hpTd+SsUAxQiYHcEDxjDATEMQWtyJ3hMEyQEgMzY7+j9pUYLqJIU6Tf79D+aNIVhEw7TXRxCVpLirFr6M4rqvUl2AVkhS7k3soZkgp4It5PUsbNY1F3Qc4zZEnixQmKpJ1FA7GfCMOAaVuOae7GNUSVifMkp8kZtKsEadIKEqTZY+uOmDy7ZzvsHLhaLNltR5q6JioNJmFjpukkaT7EcO/rgxScscj9c5ZxUEjiiLzb77i9u2MOMyknGeMgmVa6cN5AzNpkadFcPHjMerViu9+L+2yOp4Lfagm7XDSGs87RNUWNiBSnOR49U47jqPJ/ZZhTxnsZHbsaWmtQFikqEaSNSpyAtTaiKoqxNDJieKdzIAWPMRXaGYwXAnaKSYjus6ibVOGhhHkWd+BUXJ0BrSvIMjZWMaHUAWMPqOLPUrVLURoZR1biVRRj8V9RIrrQ1tC1Ld1iyWK5JHg532et4e3HNT/4wRPefestLh88YHVxTl03hGnmcH3Ly6ef8snzV3x0fcuHL675+GbL5jCVEWAqNvyyJ3sfmL1nP3pe7Xo+uLvjvQc3rC+vxDTvOzj+uxYpz549A+Dx48efe//jx49PH3v27BmPHj36/IuwlsvLy9Pn/Objr//1v85f/at/9be838+e29vbE9HqyeOn/OD/8DtwtmJ/ONA2DcEHQVNmz/nlpeTOHHrxAFFwuNswHPZ0q3OZQabE7c0Nu5trrFVUwdNUjhBm5knTNK1svE78J+ahZ9jtuH3+Kc+ePeXlq2te3u2ZC0cmBo9TEaUDsw5MhwP9MJ8MhlRluR5kselrxxQ93WbLwloWXcvVxTmh9TiV6eqG2jqwjjRPEkhmjGRlKJi9567vebHZ83J34Gbfs/eBwzAKoTNFVk3Fg7OO87MF7bKj6zo2h4Htdsvji3PqpkNrgzPizZCzFc6FD1hdMXmPNZDykZwK3id2uwPr5ZLU+sKRiCSXMFmcG48mYccIcGWPcG0mK48yTtw665a2CcLhSSUVubiufa77fQ2WP27w2mjWdiV8oa6jXa1oVyuaTxa8ePaU7e0N8zBIl6EUx3zT4/fSJYtDl84upUTVVFhrSEWdUztHXTdMU2AceryfQGXWZ0u6tmEZEoeDFJJaKbply2rdSZEwjczzTFWL5fc8SfekjeRepJBkYQlRPDQUpwUgF41XDAFtRCqYEZi66SwVpWvKCeMclXM0dU3btjjn0LpogJRG5SSEO6XQVUVlE8ko9rtbzufHNE2HcZXMx4+hclmQvKwVxrbUzcTZhWecRlEMaDEa68eRVZTF/+XNLfthph9HhqGnWra07YJnNztSRAjZKrPb9SxMy9RPhMqRfIT68wyiYzddLr6QiTIUGK78X53el8u9ga3kWhjpgI/BkKex3/F7cORE3P+kFDNpSpLtozVgwBqiUkx+JqMJ3uNnz+RHhlHs9GPlmHUW0ntKpDniN3vQilkJabnRmpzATxP73QGjhHxOgn4ciIcJnzymrqlXS8yyY0gzt08/wX6WaZYt9fkSVzmSXTIdMn5zQGmRShtncdZQOSPhmAnheMV48ujBZJqz4oKbIU9FnuycfL6PxNCjVjKKPG0uWaOCJ9rAuA28+vRTzpsLFl/4UV49+4i+qbnptxzCJHlYWdQ/MR3t6gshNAvvp2lqJh+JSPOoteHVq1c8e/GC75mEYKr1MbTvyGHRYOX7HkeBy7Mznjx+xNPnz2XDTJIernLCakXXOC6WFavW4bS464qtvSoInBipaaOEDpc0IcB+sxMitFbUbUXUEFSmmjwxJKZpBiWZcZU1WKUKQfSI0nAaIwbvsUZ4RtoKByrGQPRiQ3FMNQ8xofUB01eCADYTugkkU5NQ+DkQssG5GmUrVFXTLpa07YJ2uaSqWqpugbaNmIZm8T9RGaqyhi0WC4Z+4jDMXCwqvve9R3zw/jtcXj2g7ZbUtTQrKWb2ux3PXt7w8as7vvXylk9vdmwPEyGk4kWTClIuSJuQhiM+RHb9yLNrx9OLa968ekUM9yO8b+f4rlD3/MW/+Bf583/+z5/e3m63vPPOO7gyT5xmT8o9L/UNq7Mz6iK1ikFyIdq6oapqZj+z3e9QKFbrJbubV7x8+hm6aWmNIs+R3fU1u/5AVob5sKOr5UEgIFbJWcYSKKRw2R/YvHjKixcvef7ymt1mByHSOkNnHakzBG8IKTLNkWl1ZMHPzCX6XVxEK46eAT4mtn7El7TctF6zahw2K2wnzpIgMHAIiZjl/8M0sx8G+nFgnEYmPzIPo4wcYsCnxK7v2R72PDgsOb9Y0S16VPRMyxadI6vFAWUdXdti7ERImXmaiGj63Y6vf/1DfvlXvs7Tu/HetiIlDsPEYRhoF50QPGOQByM5hDjw2gUV6AKFRkVJjtY2Qo40bUeKSYzc0Oz7Hv86u5XSJH/uexX+i4KsNY1SXD14iKsqqrajWS6oFwtefPoJr148l3NSmKuqOOO6MrcmWwiF4Jdlni3wqoxMqrou+T3yIHZtg1GiWEoJfMhcXj3knZwJ84G+74nRo63wBKyRa++spW3Fu8RVFVXdCReoEOfyycc/ow1lfi9+DXFOEsdQ51NCLEphSxy9cw5nLdYaKiejQmvkd3BaY3TGWUtdVdTLDtc0+BDAbxl216zOL4XHkWRxIxZnVO2EV6A8tmpw40BlNOfLlvWi5m4jzKKcNcOcmA8jOWaaqsLPAT/PdMuWcZolrA1NPxxwrmalxX58ngJ9f2C9uDohKPeS4+NFvyfSqmJqpUqlUq7q/c2hpZlQRqTU+hhaBydz0mN9A5y6fABTN8JB8VEC/pxj8hPTYVvyiBwxiVvpbrdn7AeGyZO1ZtodsLaCmLA5odviCHuY5RXWNSpnQk4MOaDHhHELMW8MkVHLi3NGeGaHw45odCHaBsywxd6+pO5a6uUZ1lQk7bDtgsV6hc0REw1V0rigcEpLNg9gaodJuRC2VTmHGeUqiMXELiqCn5hDoF6siEH4dspYTN2hXMsYEp9+8iEf/tp/4Gp1zlfe/D7eevML1KuG0SS++tFv8NmrF/L8Flv8mEuBpIxcp5xo6prNocepirapqCuHc45x2EugonotgypTggrv5fupGPG5uuGDD97nP/3n/0zIWiwDkHGPs4autqwaR1MZjiy4EDxJycAvlpGFQRyer3c7nt/0DFMgxUxVOVxlaF/uOFsvce0CtGboB1FpxcxyUbNsLIuupq4qTA5YArXVNJXDulpM8Ma+IHuWME3MY4+fZ4kLSIFhnkgYYlZMEYJyDNmC7VCuBjTz7OWZrqTpOT8/Z3l2zmK1om2XnF1csby4LMKIQymWKCMqoWstlx2HYWa1aFi0jdwTKkPw+J2Mjm9f3fL1r3+db3z2jI9eXvPsdse2n5i9hEPmwsfJ5flRJU4gJhjGQE4D/TBwvdlz8fSG2f//sEh58uQJAM+fP+eNN944vf/58+f8tt/2206f8+LFi899XQiBm5ub09f/5qOua+q6/i3vt05iuUOIKKUZhoGv/+qv8rt/1+9BUUu3lCI5BWKOXL94TvCe1cUZm7tbpn4QPst6zfblS0zVsd/dsb25YVkbnE4MU8AZIxkydYd1rcChMbK5vmWePa9u7tjs9szjiGscy6aDFMleMlK8tsxR4YCFkco2Rcs0G7z3p4cuJSGSmRJuZ4yWAK55xBuIzjFOYwn904ScmENkioHRz/TTzO5wwM8DjQlcNoqVdQwzhAijD+S6JqTEZrvn0B+4WHecna24ub4lzjWT72ibhlQ3KAPTPMuoYhy42+z45je+wc3NNT5I5LwsAiJ9HccJPxckJcqDLSRMXciPnDYRpYQgpnQqRlkJSyy8jGPuh6L3EZ9GPgfvw+k7nbakE0qTwUDlFOv1WbGwliRmV9VYV3H9/BmHQy8dmSkBilb4KRJQFsXDofiOGCPOlEfZs7PixlrXdXG7FWhXa03b1tRtK0WLl+44+FmcN2MUVKPYibvKUlUN7WJdMjgSYRqKxbUQmHUZa2WlCJTxTSPJvfFI1CtnQXwVjsLJ49iKUmAZKV6MpnIaqzNtbVmtOprVCtt05OiZ54MYxWkr3glxFkZQ8hyLTaUVWVe03Yrz9cA4zNw9vORus2fTT2jtGEbP5CN936OVYZ49WjfMPrDZbFh2a0Y/0zpF07SkokRzOnF9veHJo1NJytHuXPac+5yefKrjjtwU4VrkI6FFi3cFiCeMMvo++6YgJqc7KB+/nvJT5dvGHFE6Fsm2YdjvGIZB7nudmedJcmuGgd3g2Q4zhzkSp5l5HmnrlotVR2strW3ABHKYSApclGtmm4o8BnRXEEGl8Qox3ps2ZAUTGa+1cKlSlFws17JcRNJNz2rZsThbo7PH1IrFcsU8D+zvDlTW0bUdOiuYB5Z6VWTvkh0ENSpHUAnjWtIspOwweVRbM/mZIUV0SiwWKzKZKYjN/H53S/ADu03ktn2Be/QW9aRZndX86A/8CPWHv8HN7q6seUdvIEn3FW8RqCrHw3rNV97/Au+8+YiLsyWtdTRNQ2PEwkFrGc2KM2zxAzo6MOdMCMKn+sL7H9DWlsELlytMM7Yy1NZQV0YMzQripo1GJQ1Z+GixEHunIfBiN/HJiwNTyMQsxoR6kvWpOniebmYO8ytSykw+i9llTLSNZVlbVq3jrK1YNYZGJxqjeHi55uLiAqVGkjLoMoJM80gKgh77lPEhsO0HxqTYT5Ht6NkcAs+2IyEbqrotKqxM5SzLrmW5XLFcLjk/W/Ho0QMurh7gaoerLO36rCA0hfBr9Cl+JedE0zrGCM83Cefu8MNMV8kUYr/f8+lnz/no6VM+eXXNi82eu2GS1OTigi5mhLmsp0LmNSUdPiUZS8eUGT3c7YvB4Hdw/HctUt5//32ePHnCv/pX/+pUlGy3W37xF3+RP/Nn/gwAv+N3/A7u7u74pV/6JX70R38UgH/9r/81KSV+/Md//Dv+mW1dMc4BozX7fc8wRWIUSDX4iRx6pnFgs90z9Xu0tRzu7kCJmZC1ipvnz6jrmmFzi5+DKBwYT4Qs17R0yyXN+gzbLgHL9m5HTgKD3d5cM/Y9SivapiaFSWaRsSAdSdj5tvhhZKXJSkhbwTmCn4t9ejwpO6y1VM4AAR9GxglIiabpcK4S1+4UGf3MME0M80g/TdKl64jVmUprUu04W9QopaicE6lrzkx+4u5uS98f2KRA3db4MDKMM5fnK0wQiHQ7DYTOMQ4Hnn32GR9/+BGH/YBVitoYmkJgs7YUVH4mzBPRe2KQG9mo0u0ejd4K30AV1cQxd0drQBuqJATNNinaKaI3wt84+YHw2vf5TcfRz0AbcDhWq9UJ+tdaSJ7OWV6+eMH+MJC0EA+zEdfGZCMmC2vf+0BbOk5rDCGDc05IqAHJ9jG68BbEB0WhMFkQkRTF70YsVFLRO+diSa/EdMlKcq7RiNGYBd8LoVqyanI5XVkk58FK0lGUzwkhFGDKYAGlTNmkpbsEyaXRSp38aYxSZRTUCOKiNJYElcW1lzLXVopsNBIwWCTkJ9IjBVmoWV1cMPvEW2PgZrNl+/Fz+mHEx4pxklBB8T9RVNZys5849BPQo3Kiq2oUFmPbQiTWTLPIFE9y1RNughQrZVE8Fqfcf5RjAVLmCsWrR59IwMdcqM/Xu699/9fRupQwtiKlkRgj0yjI2DzIqHWaBw6HPdMcCGR6n+mngA+JcU5stx6TB54939JVhnVbs6wbFsqw6hYs604UN9FiZo+Oojgjieps9J4we2KMDCHQz545iXS3rh2LpeQGVbZmJNEtahbrBX6/Ze+9WArETD9umduRdtGhs6fa7aHtUHUlv65VEC06ZfI0EfuBXFmoLX72bJ49xTctb77/RZzgDFTnK7bXr1gox9pe4GIkHvaM22eMXJKCol6teOfJY7G0L8aTJwTzyPtSglb+b3/3D/EjP/y9dK3DqCivY5rx8QaV3hBORSkujrLko48PIC7KSvPwyTs8fnjFx89eFWNFMXKrnBFPFFVQlBLhYazFYGTPSImQFLs+cH07MAe5I2qnaWpx3V10FXOI3B16DpMUQkZrxikUlGtmHCybneLawqK2XC1rOqOYfGYOcLZeULlK4lkKyhfTyOw9m0PPfpjZj54hZPYetpNndxi52U34GEXerRXLxpHrGj9umeNISDPD1DPOA5mIs6LoqZpKmhVrUWTxe5oH4jwS5khbt+w2Bz58OdHPlpvbgYVJzNPEZrvl1WbDs5tbnm97NoM0H1KgxDLCKwWKNhhb4VxVzP8g+IkYRxEuFBO/o/Pwt3t8x0XKfr/n61//+untb37zm/yH//AfuLy85N133+XP/bk/x1/7a3+NL3/5yycJ8ptvvnnyUvm+7/s+/sAf+AP86T/9p/n7f//v473nZ37mZ/ipn/qp70jZAwItpZypKktVnPWyqQhKSFP9bkN/95J5ntlt90zjLLN/FBfnZwyHA9effcoUFU3XYa0ju4p6aWE/oyuxXm+7hnYlpKQQ5QFK2uKnif7QM4fInABjxeExJMASswdlMcrganPiOeTTA2upcpJCJXj8NIrjX07k6AXy1wo/J2Zktws+CIRfORl1+YlxnugPB2Y/y/y1LMTOKlwlN01d1YU0KEXF7Gsuly39OLAfRhkVHSSMTpM5vxSFjpzoRPQSBHjRVbg4Ca8jp9PDnVIQP4d5IvhZ/gSPixFtbPm5FIi2QLVojJWCJSqZOSsjs9y2VP0JxfXu8No1P4H1/1Xu4+sFyXERXHQL8oOyBenSTTiHu74R224tBUiKsqFaMlqJkiD4gDFWLPLDRFPXJTxROvBcJKqKY+5PIkyTkKSDoGSp+K6klIq8WgoIY/Qpp8M64Uxk5UhVhUKuf06SG2OcIaGJ2qJSIqSZyXuCFyRFzqMubrhFXp2KrBNd5PqC0rkSRGitKQTEUggZyYdJWbhECkdSDmXFNyP7QozTUmDmnLH1gqtHCu9ntptHPH21xWjDOM9Mk8cnRVfZokRRPHtxjVaG/X5PU1kmbxjGmS5mknG061Up9gqnJOX7sU/+fH5qPmFzn78DjtQU2QzF14LiLHvkoSgQ2fCRQ5spOUxF/p2SqDWsJexmEorpMNDvDozDwNAPbO8OjPPIlAJ7H5hjImKZQqLSlqVzDCFgSYxjIs2e3g6cNZ3wrKKiMZ7GLVi8dYXSgowZrTFmJI4j4zhymIPcpymf7qUxRAyayqeiwukYzA3MM+1K8rVyUlR1R910DENPjDNn50tCjqhxRBXeilIaNcykmAnRE2orvJth4uAnzPqcJ+98gco2xCEwbvZEdYOaA4/qNcqdk8Ierp8xx57rw4H8ySc8ev8LrH/g+1l2DfM8QdInhCpTxjFllLM0ni5cw93M4XBgnmaRXV8pqocfiBOucaijO2xMaH0sVDRKCRl/fXHF+194m299+pycM85KsKazCmsUPkZikjwxWYRknTAYUsx4YA5gjWPRGOra4pyhaRyLtqZpxOhwmKUY9SEyzJFXm54YIrW1xfxFiLpWwxwzbe3YTTPp1TWzn7i6uMDVDcoYrKswITDebLi+O3CzGwhZ4XNmmOX5XjSWBySc63CuoXINdV1jXIXShrpt6BYL6qahdZZxN7CxGxbdGd1yTV2XvC6VBBWdevI0UbuGKSacjqTQsxsM2Ueu4yCKnv2eu/2OV4eR7RSYYj6tJTIaLTIEpakqQ1VJYeSsmNt5XTFNUda9mDD3tn7f9vEdFyn/7t/9O37v7/29p7ePXJE/8Sf+BP/wH/5D/sJf+AscDgd++qd/mru7O37X7/pd/PzP//zJIwXgn/yTf8LP/MzP8Pt+3+87mbn93M/93Hf84o8R4KIthydvvsl777zF2aIm+ZEw7vB+5ub6mtvbDdZVtIsFzjhiyuy3G2HO10IwSmSU1VgCql3QVIbFcsliIXN7Y+RGnpOMBqZZcnhSgeEzEuwlrGwvFyWLt0lOmdl74ZlECWNSZVZqy81GhhyTPEhZ1CTKKEiRpnbUi5rF6oJFt8Q4Q7/fM92+YvYTIQY0+fTQG+NEmVI3WCczXjGwknNX1xWNn+lqx6Kt6IeBm9vIOMxMVUnOdQajYJ4nVIavff1Drrc9ldJoFQmRQmyVEUmaZvzkid5LTouXsY/JDpWPP/u4Kxy7XMq/hhQLwdHVKCc20VobVjd35YofSQTqc8QU4RfcjwHUCakBg6GuKvJiUcYG8jHjHHXTih9DlLGZn72EHGqFjVJ0+RAlGTYlyQlpatnkCicFZcoGJ8SxdHSbjaIIED8UIf/6KPbxMQQyshkdKzdbCcoVYhTvmhriHIlZkXPEGkdIskCEEBiHiWmcT8myOiSqMiarrAVrC5cmkSygNNo66rah7SqsiphKk7NH2fr0PCltSP1eUnvbNdgabdoiHRUfCUHFRDqeAUfL1eUlbzzY8cFbD/n01ZaxQPvkRNc1WA3THNjshDje1BIXMU8jMa1QKMZ+h7poubw8l7vkNSLKET2B0ykr90I+3QXHAeDp0EJIzqeu/UisPaIynH6HU7FTbiIVI0wzKouCLQZ5NoZhZpxlsZ60RtUNMk/NjGMkGwlwjMqh2ooca4JWMA1CcI+JYZ5ompph3rPozlg/OMO1jSg9QqBOMwsFBz+RZjFHrJQhuxrtmkJ6VTSLisWy4epsRY0n+cBwc8dwGMBWGFdTNZ66bkjBM/Z3hGHPommoq4ZlSqjzcyqr8SYSVSQbi98H5rsbpq7i8r0PWKwu0HUDWTP5nsPL51Lgpog5DJzPPf32BZu754yvFLsXe1b7RB1mHjx5RL2qxfPoXn0M+RhZIQ7Jw+YVm888wXvm2ROC3OtOrWjfES8eIZPrElgYsaZYxSslaGXKmKrlvS9+QP3v/iP9MFLVEleglZBoZx+YvaKyDlCEEBFAVBONYY4B5Squ3n6CbdYsuw7tWqYg6O6YFdoobC2j02meUEPPG1cjKXkx+wziIt5WFRZI4x6tkgTi5szddk9TOdZna3RlBUGNHjLs+xkfM7Y2JCU5Zbo5Zz/MnLUTSmXq2rFan1NVjSRbqxI1YDVV12Btzd5rhs3EXO3YpldcnC+5PF9gSEzzyIvra27ubri4eoI1EmnigKQ0QwjEcWbqJ3bjzGbyHHxkipCzBCpmrUsWkJxXZy1N43BVVZ47Iehbo3G6oi8ITE6nB+7bPr7jIuX3/J7f8zly2W8+lFL87M/+LD/7sz/73/ycy8vL79i47b92aKUIMRYCT+a9D9b8Tz/6QzRO8fz5Z1w//4S7uw131xva5YqQEv3hgGvg0A/EeSIow2p1Dkox7bZYV6HTTA3UWuEMdIuFpESGWGbCIudybcs4B6ytsNowTj1ow2J9Rpg9t5s9N69uUDljdCVdWUqiCgmBNOyolSBB3XJBXcnMOo4jYZ4JBpxRtG2FdYbV+Vp8YbQpDq2a2XumaUQhM2WlJJkSZZhjYnt9I7bllHwY56isoa6skNTqGms0jXM01nFzd0cmM/uAMiJ/c9py2PV88vQVN7uRo9lXjhlX1BXOiu33OPZ4vyAeDeeKFE8ZGYVIh1xC83Rxoy3+RbIQyWJUNZ48D1jrWKxu6AN8fgvKRQJatpgjQ7/sPEcY+JgkXFWOxaI7kby0UlhjqO9uOPSDdP5loaKyME2MSYyiqtqWxFLDYrEo6IR0DzElKMWBOAtLOJd4vZQEZGQ0531kDuJgmqKQGPWRwaZk0bbOorIlhyxJ2UEKAq218Ft6kfz5kJhjZpjEK8V7j1OKthIn2bapZaTT1OgErXVUtqKuG1xTUztDu2jQKqKyFNQpZMI8k4OnTQHjapTSRIorp3EQxXW3kF1QCLegW5/z5I2eV7e3PLvZCUoRA7WzuMZinOEwRVKIhDnQna2Y5pGoAaSor4xmHnoePDrjeLVPBWj+fEFCyuV6cyJR/tajdNmokiX1+YL2SGo5dfcFmU0pk+aJuNuQ5oBCMU09h3HCVwsCFanSLC4MxiSWw44HKPb7mUhFU1nmMeLqhpgDsV0TGsPd5sDuG99AzQNhCJi1KLOahZEQR2vAGdKs0fSAwTTndGdLei/XxRh5jdoogh/59HrDJ5vnLM8WLOuWlVaYKRL2PTkrdNXhVme45GGeOOQtNyFzsTpDf8FBO0vsg7Hsdz3Di1tMU9O99YQn5xc418nGpAUt9IcD+7sbGqNwxhHutuQ0YdqK+HLi7mbHcDPQxobtp5+wfvUS3T0W1KTwKKRXSWU9kLe3t7e8qjwJRfRJDOgSdG5LCtOp+RDFm9gnpGxOiswYAykI6vnuO1/gnXce89Vf/ZCYMtEosrZMyaBiYg7Cz0OZggJnEopx8hxUy9UH72GtYb+7Yxxe4WZoa/F+ScoQ0CRTk02Frmuq6gK1jIRpKBEYXop/pbh68wnzbiDsbnB+S60DOge2uz0Pk8dYg22lCQgoDlNk1I6YVzRdi/YDbr7jUSeeSiklnEvU6kDFRFt3hJRouo7zS/H/Io+YtiKonuH6m/znj36DW2+5evCA977wFnq6I9uaOUqcytvvvU30j3j57Jm87iw8nCklphAZ58hcPHnUkTOpBPXWKGqr6GpHWzusM0Q0PiZ8UlQ6kbRCZwfJy6j+v/qs/reP7wp1z3/ryCC+FDFx9fAR3/P9P0TTdrx69gkvn37KOPTkEFifnzEHITe1bc36Ys1wmLjdXmOtxQ8Hdps7MDVtveRi0XFWKc7aikXjpHKMskha60SeiWJOkufSVFbsiStLc/WIw90rPvrwq3z88XPWiw5dWZ7dXXMYB+ZpIqXAsulYNiWAaooc7p7TLlva1YpcdSJPHWcqkzFWfAHqpmV5fkG7XAsB7eULbq6foSjdexI3xLkf2d5u2e8GhpgZYiYazRRkNty2FedtzdIpzpYtb775WFCXyrNYtoxz4Tp48eRoqppPnz7nMMwnSXAuLpVJgVOyaUY0ehhZTCNN8KcC5Vg9qxKudhw7Sb6FPcl1hRku5mnkQPYDVV1zdnVD/3zD50pw2W3KEle67hPf4L540QowmpwFnZCvzSfOg4T7bXHDgFWaaZzI5jjnjmQF1shrNCbTta1kV3iPjlJcxJjx08jd9TX9QVx5E5IIOw4j4yiyZ2d0MbQSsq21uiAoBvJR/iqvPB3JaDFiFGIX7ypCyuyHmZAEmbi52XAYJkIQ0y3nRLWz6BrOlh2rRUBZRdMY/KTRakmeRnS9wNUW42piisQ44eeR/rCHKJwW7WrMUhf5bSmmSraTnHQtuWcKVK44v3rIu2/u+LVvPWd7GCAlnLPi5GkvePFyQz/NBBS1NaikSH7m9uaG84szFm0NIXLz8ob1m2eCmL1OS0nHIU46vfN+/FfGb9yfw3veQyHLFoRNODu5ADHH71H+nxIpBobbVwybO0KO5KZm2Ctm07C5fUm/uRNjxyjNzrbv6UPgJhuCa3A5MowjS2dprCH6mbquePL+F3jj+3+AV1/9T/TMRNuClUXb1Zbo5XeZ88w4e6JdcZhGNs8/ZdhtUYiiqE+RfRJewN0wE1SmNhmnM8um4p0HF6y7hlZpTL6jfZRYPHoLq7eo4YCPgeuhp00i+X1+e4e/3dBky9V777I8X2PmAD6RdUS3uqjglMRvJMnsSlox9HtJhzewfPiY3aYnpcxMYL7dMmyuifFCbOVfu5gnx98kD/P17Z5VJeM5QcgRVdo84OdRxnDqXuklzsYlpyqLD4lSM8ZEHj244kd/+/fy1V/9VvFd0Xx8N/ON64nWZhYuc76quTo/4613vsR++xmr9ZrFeUe9eETef8j25prDfpR1wkIVaoIx7GfYDZGbg8dnS8awbCuuztacr1esGuGjxRjoh5HPvnrLGDPLi4fsueAsbVnqTFSam0PGTQ1ttSK6FfqJ4/CNHQ8fXmFU5ObVKwl1dZpWN/Q+ctvP7ILF1muWXcMXP7ik1vDy5TOG7Z5HT67QtibpQOssl+sF77655Jd/9VM+/s//kU+/9nWSjrz5pOOtt9/lK1/+Ap2qaB89gLrl9pNvYgHvDFlpYkGH78enqpDzxarBKc2ytiyaiqoSdWEGvIY5SCOpraZSjhws85z+a1P6/6/Hd3WRUtuaZBIfvPsO73/pK1y/eMbNzUsqHdnud/jZgzZEH1itzhiGgTTPhP7AuD/IwzSL0VTSjqQqVNbsNlsuH1+yOjtjuehQGeI0kXygXqyFCR4jxhmCdajFmrO3v8jNJ9/g5tOP+PibX+db3/iY3RTIOvLxx3dsxsQ4TUQlHgatN3xhfU66e8WlSaxXLbvtnt3dlmbVMZWxz34UPfxjKlzdobo1vm5J44iqG7xx9HMsmT6R4a7n1c0dPinMYkmP5dPNgEaxH3rZHOcBd7vn3Qdr+hC52Wz53u/5IsY4yefAY4wmIvLEfugZp4GUi5V1CW5LORGy7AEmSz6ZDTB76ZhTcXmVQxWFhQTqKW0KcVZM2IyxwlExYrIkDLklebFkfX3H02ebk5rj+Oc33+wnQqQ6/sTjzy3W1liogGX57HzPUzGi80UrRfQGjEVbjZ+lI6qbBp8nuraRvdpoQkj4OTD0PbvNLYfDnmwdu+2Bu/3A7jAwzWJqRAyoFDEkVouKy3XHZbembprigioopFJKeD4xS0DhHLCVoesasJZx9qKuyTAcevabPYdx5m70bKZQDOA0ylhBSwysFjVPLtd88fEZ7719xfd8z3u0a8eLb36N1eUl3dUDtOsKcXNDNprDPKK3r2i1mMApbbnPLpEiLx8RFUAZja1rHj6+4ivvvclh/Ijruw1aa1JITJPnsN9LcactN7utKC5sReMMrm4I8RYFzHO8576m8p8jNyVLMGU+XT91T0868UvudTsSxvb6uEcqkhMy8xoak4sZlZ89r7Z7rrPBlK55Nh3DcM203zHPQQLv5sA+wl22PB8jWw1+HHnjwSXX/YwfMl2V6IdEO84c/svXOT97QfPW29jdK5q2olq2qLbBuBZTO6Y5kPqJ3tf4YcPtzTPuppmkrKReTxOHFLC1Y84wWMUwR3TSrFY1mzGgDxMhRhplqLBM6SnWOczZiiHD4nyFWyw4VJa7j79FuNvw5IPv4Y3LKxqnYPbM+x5lK1zXopwRdBZDSEmcgw8jU07M80BjFdo4zh49Ybc58OL6jnnOpLQgaknn1vq+SDmN13I6obIv94GHl4nWWYyxuNqIg7WGGLzwPJAi7hTgmQJGiaW8jRPMe/A9sdK0qyVdXTH6wByFG/b4rOWys8x5ZjKeN3/8d/MHfupn+J//D/97iD3z7o5VuGEY94xzQsVM21isgetNz2ebmSkobN2isGyHmXaxJGTNq/2MqzNhf0DhSXN/MqUc5xmGOx688RbVmz/Mh9/8KskHPvp4Yrn5jOXyQAoz4zTy4O0PeLQ27O9e0ThDpWqcNUxBc9AtW78lKctus2O779nsd7R1ywfvvcftYcuzX/513nxywcM33iTbTBxHTNacdxXfmEa2N7fUi5qr73tI2I88Xhhe/Pv/yO5Xa+o33seYDDFzpN2fOF5HBEzs6yQPSSmcUeLF4zTOcJKKGyRRPiuDU4pKZfxsOaTvTH4M3+VFyvnFOQ8fnJFQfO2//Ae+9OXvY3/YkuYRdIOPkWFzzTzsGXYbwND3B2JKDMNITBmlDc5VzD6zXK7KQ1KLhHTs6aPciLZuULVkaoyHEaUN0VpWF1es11fsp5nnH3+Dl59+xMtnz7jZHcA6+qQ4RIVPiWGaSDlw3j0A52jPrzDdisPTb2EPPXVTMw0j++2OwyzdVAL6CPbZjshHvPXywLppSTnRH3Y8/+QlH316TVUb4hQIsydbx5w0SVVUl49J00vwPdvbjTy8Z2fM48DtmNkfeq4Wim996xPee/8LGGWoa1HB7GNm9AETMyEZ6qZmLsz64MNp7JWLO6lWJTn3xB05zh/vCWqKAh0bIwFdxhbOTIXRFmuFP6OUFo5NnFifX4H69dMI5zdXKDIWOEL3x7fumf/HQkUVGXHKjq7rhGVeVCASiijOtX6aRCIc6uIDELHbLW1MtG2N0YqkNcoZxn7P/u6WV69e8vTlNc+3I7eHiU3ZKGxVgXaCUKSZxlmWreF77RMePWmouw7nhAwrJiRiJZZLTkkIAbsQz4WgFFqLJForhdKObT8zTJ71+Rn9biDFgFGJ/Zjoh8DUWgYCeuk4vJz599/4FR78v3+VL33hgi+++4R3/Y5u3HN28RjdrHGuYzYzMY2ENBGHnXCE6q6YjapiGBYk0AyZh8vKZWgXLZfnLatFhzOmBDVW9OOAUZqUoTKS3hqS5EEtF0sqI2hHiJl+8nKZTxXpseBQpcB4nTB7wtIK8KJPN0hWllyC4Y5oynHMc1JOHdVT5eellPHDxP/1//h/od884ytffAeVA3O2TLZhPwUJ8cy5hFiKOdqUMklnglY8vb6jdZYVmncfrtlu9oyjFLvzfuDxxRlf/MobtPsDsV0RmnMUNcrD2HTEhw3zIeHHW3TlMFHI1ionskp0RnF2vuKAZnN9DTmwHwLaO9qqImdLa1v84QApEHyg6V7SNTVN03I3jXz84in261/j3csHvP/9P8BFV2NzlPiL3qPnIOe970mLFaaqUEqTncWnhDHCv+seXeJ8oG0bqtUZq33Ph1/9KguAZUPsaihE6GM3fiwMBfcUOfFno+G9ZDirK7paGgRtLVVtihnZvbLsNN6JgvKNm1ccvvGf8NefMPdbbvbXvPrmx1wta273mSlHTI4sbeJBJ74stnPkp7/O1/8f/zfm5x/y4vk3CKbhe9+/gCRFee3EFuFwmPn4uqeqO95+cMZIxXjwhP3IOE08fnCBrlq+8v3fy6tPPuGbv/6rmDRDTjinQBuythwOB5bDlu99vEYTGLY73DzxxtmS7uIRd3c9L3pNpbZYozhbduKCHgKuaTivV2x2I8M08fzlKx69+ZCqOWOzm3n6yWd0iwq9vOTXv/mUbFrefqeV5nWeWSwqftsPf5kf+ZHv49d+/evstze8dbkg3zwlffwhCsv5Ww/YucScsiCmRfBgVMYI0QFR54jAQKFODsExJXTSZRQsyLYR+BNNxqpMbSBa/dq6/O0d39VFyt3dDWO/QWk5HZ9+65v8cm24ePgG3/9D/yP1FRxeduzvXrLb3TJPe84fPGK1WgMS+jfPAVdL5x6GO242ns5qxjyhWgmguv7kM7JyLM7XLCpLyhplHaZbsX/+kutPf5nnn37E9sXH9NutWH47h6oXUC2x9YwKBxarJdZZ6u4MrOV8taQ1ju3cs/3WN3BqwNaV5DdoJbJebXCrln4z8IUffsIPfN/3sHpwhbKWm2fPOeSBjz77mO0QStigZt/PROV44+2HqNUF9as93aICoOkWWFeRqpbzRrN/9ZwUEzfbPQ93O5rFElNg1egTow8sWkO9WNC1FXfbA9yXIYAUBkfb6c5ZrC6eI7lsakf5sdblXyVeL9qU4kCsnKuqpqoqnHXC1cgZlR1tuzhd88+xUvLn+LOnEdDxs/Lrr1AdbfQ11lhSVdEdpaxKFx8Gg7ZOSMM5iTFaVWM1jIctmxyprMUohc+JHCI5ziQ/Mx56truRvp948PgN6iny4tOPUDmzv9uCkcJJa83FYsmiEd8Kq7IklWaFhEreh5xFH8kxikOtc/ipR+WZurEYA8Ya4hyotWah4cn5klebPXWlqF1kmAPLrqXpWr74vT/A4/OGz772NT756BM+e/Exv/JrH/Gld5e89+YFX/6RH+Pigx8mtmfEu2e42pJixMcZPfXiOeJsKQI1KIfSktZ8Ovk6o5xwnVYL4cNI1o8TpVjOJD+DNThjSTnR1hXrZYfJU7Hp9gz9SEyyWOYkC+NRxcGRIF24RzmL27LcD/cxhJKN4shKYOtCajjdJp8j753ecURmFPP+loXNcNhwzMoy4w4fPSlkCF4s5HOipijCgM6A1RqnM+eLjvP1Cgts7IF5lhHN9b//ZbZfeZsnb73Bw4slZ1cdbbNAzYnN9ZZXdxtUHplzIFoDtcMWzyVNZlHXrJqWRdPyfLulqjTrpcZZi86Ji0XH5fk5k3OMfc8cPdu7DWdXj1ldrsh3d/Dsji+89Zi3zi5o55k8DkSjsbnCKsOMpF3nSjwvnJECsqpr0jSRdntylVl251S5wWlL1S1pz1bEnIVYebHCN7ZYD9yjKCd1Xr4/55NaMuolttbF5VmX5F5DLm7ZR/QzZYhKSOk5RT79ja/xi//z/5m4v6O1kCuRNX9wVfORhc1BxpcPz1oenFdYLQ62Zv+Sb/3f/ykXMXL5sMM0Hc5ksjXMKpJMKsGchi+9dQ7aoq2iRfFihDcfXjDNgX4/8vDK4XevcExYldkdDjSNpakNq3XHrByqecB8+xGH3HN2tiSOPT4qNi+fgvIYVdHUV6yrAGnNvFqzPwTG3R06R1FrWktlNF96+5JuscSYmvfeeYPKZIbDFldlusvHzEnhQ2LZ1ri65uJsyVVV8c57j/Fh5Bf+n5/RPFkzfPopZr9l+f576IcrNv2Gl+OBeRb0SdZNMCoJMlJUijFHQk5ELQUIKeFsFNS1rMBCtldoJYTxFGMpXL6z47u6SMk5Mk4SuKSNYRp2PP34IxbrNZvPfoPL5DGTx0UF0aBtjR9HNq+e4SOMuw2Tj9SVZdk2hGlCa7BkXE64FFgsL3n43gfs7+64ef6c7fNB9OarNXpfsbu55tnH36Lf3hKmSMLhFhc8uGip647KOFZ1x6evbglKjHQaY3iwXPAgZqrQ07YNZ2+9y9D3DOMBozNnyw4fPLPVpFTRtRXKe1TI4MHWFcvVGU8ePeLJ1Tn2MDMNHrTlyYM1tatZaoXLE+lqyc4HzqpGNl40Dx5e0djIpta8fP6UbDL73Z6m63DWQE4ip0PRDxN3h4nNbjgZ+AgikkoMOjROUzuNM/eBgMfiIFEIsur4byGDGtm0tRb4UOvj2/qksweFtZ838nu9MBGwJp/kxqfxA9zvOaetS8yjjNHYZMkuQ1fs4rUS9VfbEmNEG0NdS9EU54HnH/4Gw24jD6ESv5GsMm3jePDkEe1qxeXDO549fUX1+DHffL7h+rmjampmH1jUGp0SV8uOLzy85OF6TVc3VMYVUq44TfrRS1iXL+GTStM2LQbQOVE7S2XFxGm9bPmer7zDZrPDTzNrEnbRMOdMMonOSfJvgyZ+9iH7l4YzP/HkS094642W7/1tb6GrxLd++SO++SvfYhdaurMHtKrFpUzORkLPYkDFCWUzOptTci1aFf5KOeEqo3VCIcqLRdey6UUptli2LJcLztYzfprxfqJuO7RWvLrds1zdoE3HuutYLzu2+z1PX11jjNxf5jh2Qq6nIt8XHYXfoEq7rrVGWTBoDEJKPZm4cU/IPd1P5T2qQCpV1/D9P/j97D79DZbdknF/IIfIUsHaKOaQQCsmoFYy6nqzrfl0mvFZouDeXK1442JFnj0uZpbOkduOYZ64PL/kYdugpgntA1VWMmatEm6aaHpFtplgK7StqLUia3G8JQSWXc1Z26C05stXl7zo98QcMdbxcHXOD7zxBl2GuV1wOBzop57VYslCV9Rj4s3LK87ff4fGOSFU1w2VqzG7iTSN0FZCnpwH8lSjZuFA+SwxEbcff4pTd+QpE8PEwraszi5pzi6orEOHjKpr9HpB6hrh3RU0TEZ1pxN/nCmQ7YJZrcB6bC1eRPJcKFKYi2mYcFF8koI0WilU/TTw0afPsH7m3BlWZxWXbzTU7YpkDfvRU2vFotF0FVglHX8IPcln8U4xEZcMXbME7xl0Yo6J5bLBWFVSpR1T0AQ0RlVMHlK0tBU8WWemVx+RfOCdR93/h7z/6rIsy7IzsW/LI64y4Sp0RGZWZaGASqhqjGZ3kxw9yAc+kHznTyR/AZujHzAwCIANFFDoKgAlMjNShHJl5ibuvUdsxYe1zzXzzAIq6zFG38wID3c3ce2cffaea6655sR9uoM8o5Tiy5cj315NYF/z955Hus5wttlgRkUMBe9aYlB8/dXPuFLv2P7oA7Rp6TpNma5ovGacAmbe8/mFtPSeXnxI369Y9WsuLi4wbcv22TNKVrz++teYNNP2a7r1itV2y8v7wKpbkXOibdsqvDfEN28o00T79By9btntVtze3DOHPcM0E2sUglUIs12SeHpVz6QQCzEGxkl0Zotzt4bTuPwijg7VhO/v+vp+g5QqpMuqgBIX1XmeOQ4HLv47wxNVmL76lps5MbUr3PmK1eYp4zRTgGa9Y+095xeXfPvN15QYudhuMNMIx1vG10eGt68wT6/onn3A5edfcHxzzZtvvubd3T2maWhLlghw32I2Br0qnK83bHdndK5Bl0yaJ4bhRRV0KmxJFQgo5lkxqjWDd6zPt0xhJAz3WANzDHx1c+Rs03PZN8RhwvoGv1qLGMk7npxd8PnHH8DrK9JG03YrnJPNuWSZDjp/vpXwriRCM+sFz4YYcWpLiQOtU/imgRSwjcFYx85bGu+4v9/LqO48A3JIaC0/izOaxmix+E4ZHRJzjKS8nFx11HCphBfB3OnPHrWCTjKC5c9EI2IrWFKPQEhdAfXXk/rkPaZl+ZBlYlmIlsqqGI0pFkehQ4yIXOOZpx2FauDmLEoZxvtbvG+ksrOiaFdIWF/brTCu4Jse5xxxCnzz66+wQ+CDsy23h5Ftt+LTyzUbm1l1LRfnG843PZt+hXctzrRoowk51rTjjCqg0VjncU1DjgmdC946Vp3i7GLHcYwYVej6HmMcYU7snCIqTdEWYy1919AazcpC3ztWT9Z88HzDj3/whE9/8Ay38rTqjL/8szfcfrNnuiuE3mDPxUpfpl0iOmaKgWLq/ckSAyCMV4QqrlMonLf0jWfddRyGkRJmDrd7Vpuey92Gm9t7pmEghkDrJa/m1as3PHnylKwVz57s+OkvvuZf/Zs/4eJ8VS3GHUYva6JObWn1aCnp2gYDo8WAcWXPMSseMSmVYavMyQPTtnTfl/aP5uziknL9EmU82Qd0CnirOetWTGpiGEeK1cwx03nDB8bQW0UwClWgHUb2c6ju0ArrDHOMGGtZn3c0lXHZbndsLi/wqxXZGtIUePv6FZqEa3u6eWLlW6b9AeaAcRZlDWE8svKeP3x6wT/ZfIruegwKmxLlfiROM16DaRrOfIMzFh8Cq02HW61Zna1xxtB50YDYmNB9S+416faeWAK5GOw40BgNSlK4Q5qJNvH1X/0CowJPLy/I/TlqjrSbc3zb0DnP5mIDFzt039f4jEVQtmTt6IdWMNKmm4sjawXKVo223LMUF6PLQiYTozzUMWqUzXR9hzOaNMyMKDbRQsp0TrP2wtv0naezGp3LyUuoMaJXKkVL5ARUMJVpGs35disW+kmKMmMdBUcocL5WxJAf4i1SJmVxti14rNN417E/Rn51vef6PtDZEf+8oW8aOm9JvceZFauLZ/inH/Ly7TXz2zd8e72jXH1D1zvG/VhF9wqjCi/Wns/OvExg7XasLz5k8/QFvvf4viNnw4fPLxkP91irSNPM3THwZh/54LMdi1j5cDgQi2b95II3v/gl9uwM6xyr9YpN36DzxM1+L/qUGDFa0Zgi6fSI91OqQvNjFLuFyWYanaQeqOP2IOaVi93CYsT3d3l9r0HKXFmQQvV4sIYpJCjwq1/9ms8vNvjrl5T7I/umZ6NfEHcbctaEqLC+oV1tGI4jrWvYXVzy0YtntMycG4XXhZQU01h4+de/JBtLs9vSPXnGqszkkDBZoVLGaQXW4nxD550Y7eQMMZK1ZUiaOE7kJEF91rQkpdEY8WrIheN8RKdA365YrTtiPHCMhm2j2TSFJ8+e4DcrTOPJpWB8w/bsnE8++oBDDLy9uiOMR9KksEjWRMGhlKPRisZr8UqxhmI0rXb4FhoH+/t7QkoYq+l7TykRg+HZWcfdzRU2T1hdOOZc9RAKjQYFxyibvNaFtmjUFOnmWOnY/EC1P1Y3LpWVeqhwlzFQeZWHg0WJzqAUHnE0j15Kvf/rQt2/R7m8/x9aKTnkjAVXwZCz4hR80qoUMXiyjsWd0jlz+rLimp9QRRxp26bl6bNLoLC+vedymsnnPW1jcVoiGrqu42y7oe9aydCo1thqsX2vxngqJWy1MzfW1/TsLK7B1lFsy5wU0zhT7g5oZehX7sEK34gRlXcVqHhD13nWq5bNypFC5vbNkW7MPLm85MWnM7d3hRwn5kkz7MXB1lgrHjwpomKUUV7EYt7EWW6IqgZWSnQaBiQXyDnQ4nQ8jiOrsw19aymxZX8ciCnRuRZIpLlwf/MW/0QzDEe++u4t//O//nPWneN807LtHI2XUfLGW4xRUrVVykziAzRWa1rn2Z5f8mH7jOaswAkcL0vg/U1ymfZZ/lih0CVTxoloxGrfOIUtjrNnF4z7AX1zCyGhyEQtid4+Z5mIUYqklJSfRpMUECVIcr3uebpbU+aZ9WrN6uJCHKSdx1jL6ukF3ctvsWGkdxrlPW7dcD9LQJyuabZFKcZUSDf3hPsjzjpUbXeZupa9a+m3O5qUUSGhesvqvOX+6p7h5VvWusF3LW3boL/4kGI05s2BXNt2SmtKLsTxgB57VIxYVQgL+9XA2Toy6YnD3YHu+jVufcnzD5/w7JOPsS+e1cmwqkFRCyxcAIqIoBdxZipaBMLGSPhebRHLBvmgY4EsoYU5U4rCr9esu4bjXozPXKPpVx2pRBqjsdWdtXUaYxSU+jXFGUvuuNZQgkwe5kDnFX2ra/p8Q0mVi9UKv1CJncP5BoVhmCRscxpnlDF0ugHnuRkTx2Hi4w96WlXY9pp+1eK9Y7ddsd5cYs+fsP74Yz67v6HwU7CODz77AkPhVXrJeNhjlD7liKELxhSsOuLsiGEkjzNznDCuo/eW3cWneGv55ZdfMifZ95+cbYnzQIoRhaZbrXj++z/i3Zf/CbcWm4u+85xvO55uPN+9mrk6DDjkfGutRheNKYkhZ0Ip0vYuhTkVUizMtT2k6l6ulcIYYdCcKuIR9nckU773IKXKDPHOUcaJthMq683bd3C+olewKolboOvXqBgoc2S92uG6Bte1OKvZbqR/vF6vMeM9m4sLjFLEKWAz+ItL5uMdd29vub6/J6mRy+dP2LZr/MUZl08vRBg7T3htJBchBEgJFQNeZawtxCzuoKok0jRBSmiVQCVcTmjjaC/O2bSWOMu8OlPgbLui7zu0MlWwakR97zu2qy1Pz7fkFLm7HbCuxSATSXE4PohTvSVL9hOJzBwmMIbzsy1nuzWlJHqn0SWhnccqzUfbhr8YD8zTVA8CThVRRoYulFLVAkERiozGhhjEFn7Je3kETE5KRUA2qCperJtRyZmstHAwj5iX5VMWrPMgpF36OhWYPBZWLr/UNMTH59MyTaONxlS/D2PMCe3nlGpQIhgjRkVaO4yWQEMxlao5Ioj9dtt4zs+3IrAexQ5aNBUa5xyrdc96vcI5j7Ne3Ca12PDnIC2uFMSYr2scm7MzjHWkMKGKxhuL0YpNSXDWkeJzjH3H7e09KYuo1hpzSsBtvaVpZEze18yOw6HwXQjc3u7Zbhr6dcvT8w2GI3OM6KKIcyIGh42PJrS0kRo4TmAbirHoOJKrnkflRIpz1RsVnDM4LSaHjbPc3dzS9Ru6JmB0xzgFhnGg9YacHF4ZLrcWncVW4GY/824/8fXre7HzrwZSjZODRxiVRa8i/g1Wa/rG88nHL+ie/j7b57mu0ccsXjnJIU4ypmVh1X+s85K/oyK0HevW0bUN8xxpXItThlTN3kwuoDNdb7HVyA9thInTkmqtFFhdONv2rDV0Tctuc0bnGzQKYz1YBy6y6nvOnOf29h2XqzW+bzFz5pAzKSdJ2VWgSkIZTbLyqdYZrPdYY2RSr11xfnnOru/oO880ynSfUwltFJuk8EFjX2zR217MBJ9p8jwyHw+kacJ7TxhHyvGAMpp13/Hi4gmv1mtsGokhM7mIGkeG+3t8v+XDH/8e6w8+ID05k4t5YkyWZ3ARO5dHZMri3qyqqF49OBvnpQiSZ05TIKvq3GxpViueXG652b/FGAn9bNqe4/4djS1crFvWrRhTGm1Oa0GRJS1ZC3NTcuC4Hwh0rIxErWhtSTESY6hGchPKSBgsuTCFyDwnpnEiRkAZDIUcNSkUPDPrTnH99h3/8PNzNr2laay0yRtL0xncuqdZb/n4hz+CPHJ9gI9/+EP0fE/bOL796humYcQoBc6TV2tS13KMM+r6LXkaaNoVpl3TnHt22yeVbgTbbfjlL7/lR7/3BTkN5DlKa3i7wRvD4XjH+tkFvl/hWk9ZdaTdho+fnHF3u+d42DPNAWs9nXOsnaE3cNCF45wYkKnOVN2QQ86oyHt+VFqJ8663ilasuv9Or+81SJHKU9TGkYCyjvv9EaMNJUZC/ogVWlgEa/CrS45X39HsdlhVUEX0J7pkmYV3mtvrtzzpHtJkjYbWOtngcsNmvWJ91XJ7e8Vwf0DPivPdCrwhDPdM00AyDTmKKrvkRB5H0jydqvGcZuJ4JCt1SjXVYaLEif78gt12jdeJ7HoJXWtbdrsdpcZfxxhFLKw0yjc0TcfZaoXWiq7Zc/NuT9Ot0StJFJ72e6bjgWmfwRTiMkliFH61hhxZb7Z0jUPnQCmF/f2RaT5gqh7g3X5CAZ3TzCFXnFJOB31lEQkpM8wzIaTFHZqHSooHIuV0E6tWZPGvqF4npVTL8sdA5RFjcmrtPOoePUboYvS2FGwPVfIpDGt5TwsjtKwoJdVYzjVyvH5P5yytc/UAkKpdHIbT6cBbHFu986zW4L14kIC4REpWjpFxa2XQ9kE8bIxc51JSrXQKrlvR9yuMMqQyyrUpBYnZUawaxeW2RyU5hKdpls29tsmMkYmXlJGohhLFvCpqwgzzBMNxoLkxNH2HMsK4GKNxXoHKQM0GIktoZlIknTElgNZEXaewEJF0igGtxI7cewc5oRAjrHkKhHEgovDe441hnEbiNDLnSGoslxc9lxfnlPK1fNcsIDDkDGWhimvMwDLx8ah9o5DD7HqEH/7DkY8L77V6TstkMXJb2oCnHUWYu6IM3nv0ukednbHWEvMQw55Vv8L7nrEU4ncvYZpJxtBbXVndAhgKmmkK0lq2Bue1bLghsm537JotGou1Dda2JGeIxwNaKTbactl0tNsttnHoUlAxcjguQMOdtFEaKCmTTZY0a+uwTpgnPQ9km1D9mt3FmrAfOfu9T+i6LSSFUg67biR+IyXmOBL391AKcQ6oMOO1pUwB1Xpa1/Cjf/ZP+Oo//yemN99SgkwPBWbm4wGlM/35GflsB41khknN8PBwqtOD+lBIKC0Oq6hUQ/AexNIpp9M6KCdXddlcSgHX9Tz76APy25eEMGGskknEweGM5cV5i0NEnbrGYshzrVEpkZGCxVmNM4H2k79HuP8OHfakIBYCse7lEn56rLlshVwkjsU4h/MtlFJb+WIhYFXhDz99ytXVGz698BJyqBVGZ6w2aBVonASdXnz0KdP9FeHlNak/4/J8xaoXw82XX7/iuD+QhwDzDSr0uLOn6H5HNqDaNe1ux+7JU9rVlqINc0jsdjt+9CPPk11HmGbmMTDNkd5b9levePqs57jqKRq6rscBJkTycCCHmXka+dnXbzAqsfEtu9YTQ8MwDhynkWEODCExR0VMEh4YUqnhsqJjcSazbiwXnWfdOv7VzxUh8Tu/vtcgxZhaQalqDIZUkiHMjKPiZgg8MQ6UZv30OSpO2DLTVyv60ohw77C/5fLsTLIijMzn5xhQVqoh13eAgdKSs+EwHelmx3h7z9t3e+J+xSc/+oiPPv2EqzfvmIaZcCxoLWGHpmkxzhJCENfRKRByIKUgDpypkLVi9/wDdmdnNFZEa7E4OmvYrnY0zqIUTMd7lLN4ZYRqNxZdD8++EyHmqukZYiaEhNIaf7EjpXW1IE+4mrKstfh/tOs1xIk0iEumdoaz847b6yuOw5Gz3nO2amh0JjkRDk4xM4TMaa0VapskE3USu3YNy8a/GJXpE+BY/mpp5zw6RB63ZhZvCx5vcu99+KNyWD3SGah6flV25vS1K/e2/B2PGJU6/fPwPsTAzTcN50+esL97h/UehbRiwizq9ZKlRZSijKcqLXkczkvQlrHSdjFGQ/UJMMbirOgBJKl56dnmetCLFkcpA6a6kaoWckTrUjUxllWjYCMGc8dhru9bxqZRCPVfhcmqhvNRMioXUihMxZAKJCLeg6KhbTx9b3FtI8Z6KpCxqDyILbtqyMqL0DlFQCy9xeBPwL3VCmtEN+KswVmFUp5pFtAyjUdWjWXdWmy/oUwDl2cN282G9Xp1uienuZBSI1HykriaJSvpMUgpNRtLKb67uuX2MAlY1Xr5kBM4eVhi5bSE6mI4XVvrNMZZsm0Y5gGdskyaZREz+ydPSO2Km69/ic9JnGxzJiKJ5tOcMEDbOPn5jaLJkTQG+tbi1i3KWrAGVJbWyt0t8e6e3bojastEoe9b+t5jLbx9KaGtcwl4Z7HO0/iWpu1wrcc6S9v3tNUF1GuFypHD1Q3R9tigsdstru0pCnTnUcUQD0fGb9+Qx4lkMmrTnYoJlRN5DqQScdsVu9UFn/7Dn/DlP38rxobTjDcyGWdr+2PyMiZP1YAV9QhgnJ7ph+uvlCYpU5lXEdObqh1JJ3CaKWXJ/1ncgTPKerYvnnH9V44SR4zJknmVCznBpvekeRZN0/KEK9FT5dqC0Fi896gwUK5+gW97ku+Zw4hqHR0ZlZOk1qfCHBM6ZFLRaNvgXIuxBqMURgPG4NuW/vk5vHzNMz+yacAa0b7klFDeYr3DWo0hod2azdlTujdXHG7v8L//e6zajm61Y7vZcPX6irubPXOUFvN0u8cYT//Bh/jtlqIyGUXA4H2HZebp8yd8stoy3l9x+/Y7jgdxwz5br4iHdww3hr5d4Yym71uy1ZgkMgWjIOXINE+8uzmyaR1Pz7Y01hDCxDAcGceRcRqZZ4l8maNMXaUk4xLOKHrvOOtbnl+es7s44//57/+a498BpXyvQQoouq4BpcQfonotWGeJKbAPMziHanounn9MmG5ktx7u2Dx7QXKaOWVaY1iteqYwo1IihpnhECEONN2KdDehlCVkuL+/g3lk1Xc0Okqfs18xpURb04TjcJBwQOugKEKQdOIYg2S35EQKM3OYMd6zPt/SdR39ekfTGFKcSNFALpz3K84uLmmsxbaNVMIJchR/Bq0MxrYY5UhhQGvD2XbFmevZD4Hh/p2EeykBJFR3WlWpzxwS47trCS3sOiyaxlpSScx9wxwCm7blxdaRO4ghMY4T93PizaFUu/oaZFdbQEulqtCPQMkiaq09YGrfqdTD88S4PLiJnsS09VV+A6ywfMrJebaglvCremiJ3OChcsu1Givl8QH3GKg8BilFdCObDS8+/YJ5f48zBl3KKVHZGkXCQIwifShZslYq3e9bX1OFq2AwGUkjrvolZ0WToo2qB6+sDWtM3dwr/e0Xz4JGDrMUUMi6V6rQL87IKEpdw6VI9WiNrmBFcjZO7QIUZEWKkEKhWKHDFBlnHF2/BqPE4p4EFpRxIhxOo4Am26JSASSLajF1c0ZjtIwxe2spYcZZQ9JQVKZoEV+7Urg437DdnLFZi47KVUdnpTX6JMCTg+1xWOPjNfAAZASEHsaJ4xxg8UkpC4v2W4vn9N+nc5OCdpIQrFXG5Jnbmz2dNfTdilwCcTrSNi3PzjfM1x3T8UAOSZ6DVNsy1tBZh3OWXBLeWXaNZ2M9m/MttApsIhtF1JaiNHlOpBhwjWOVFWkcIMysztY0/hmugCmF2+NeHKxjkPZUo2mxNAqaHGlwqDmA0bVNaSmHjNKFfrOR38cMU0ZZK4nJuaBaR9GZOAcpftqGeZ5EOH2EYAqmWF588Tlf/9stKkwYwCtNt9oIENhsmNpm2aJP13eZvnp/C69D7UsfWS8t2KVokE9KKYugXJ36zfU5LljbsL18Qb9u0XHE+wZSZh4nUiq0a08iiSZmsR0olW1VC7sia0frwnDzBqWdsCPGM2M5FE+ImZi8gBsj7t5LXAbGoJwF41BWwkKVVsw339GFtzR9RueMUZ6SM2EacU6sJrBOPs+0rM+est18QzKJ5Hv2+z2mbTj7dEf/9MDh5h3DMFO0IZaCXW/YPnvOansmE4clMI9HSsn0my3GOJTKpBSkNXecmMcRqyLrVYs3MKaCsxanNVhLaVs420KJpBQJc+Cvfv4Vlsyq73h6cYZ3mhAD0zRIjthxZA4TaY7EEIBCYx1907BZ95zvNuzOz1B9W40Bf/fX9xqkjHMkpnjSAlgtgilnPeTEnBN6tWLtd7SXT5lHDfoMCDQpkKyk3HrfkBLc393SGM0E+ORpLIRZo7QjhSNTgTIe6S+f4rY79l/+Oel4JN6+5dW7N/TnG7rVGbvdGWzFjXSeJqZxZHSG8TjIjH+K2LZlc35Gv+5kBLCVNMsYAgWDzpFWFdarDedn57iuo12d4bs1yvrFM0cqqdWW1faC/XFPJqOtw6vM+mJDPFsxToHjMDIdD1LtKoMqWVTXRmG9kWwhqGmhmhwCJS2UpULnhNUF7woqw36qIjWjxCa/iGDPmDqK5mx1Kq0tjSV9+JROXIGLgnLayR7BmKWSrh8nLc5MzgqlMiovlfZy1BShf5f+duFUcZ1aBOXBbv7xblkWbUJFRLpWXFiDyTI1sr284OzyQv6u6Kr9sHjviFF0J6UUis3oDNoanHMyDaQ1IBM7qo7CiuuuloFMJa2iEGS9pGkkN41oG4yIdpVxqBxIZMS3VksuzBxIc5DJHyNhemgJVpTMFancFFn8O4wR5nEhr2o7T2CjTOZ03QrvV2BbjK+hj7YRkbdyFOMgz+g4kI1DWQ8kKBUMWckZarzDe0sshdZYxnGUibxc2HhPY2DTdlxuG/7ov//fcXv1JdPdkXBihB7INh7dsZNN9yPwebqntSVWqjsyj9Kw/+ahgsdAZWHaQLetGGkd95zt1vgXz7l+dytsLIU0z2gFnkjnLfmoifXrWavw2otjamUNtXVs1z2dMZyv1jQXW9FHZAtBkceZ4ix6vWHz4jnqsGf69WtWzhNDQM+Bs/WG9lNH03hWb2+5ub/jOA3c7g8ch4F7f0dvLa2zoktqGrabFWe7MxEbNx5/0bHEQRStyCFR0oiymrJtifd36BqaqpyjJCQJvLJv011CDdIe7ldr8l7RFrjcPeHixUc465m6DpxkdZ1abY91Yo/bs/V6i4YhPdgcLc/+wrouwKQU0b8pLaPNiNvt9sMfsDrbUYYRpS3KesKUeHc9cb5aY80SlrDc8crwFHVi4VOYwLsKkKQ9anKhLROdNqjGUlpNIVEyxBSk3Zshx0wZIFG9oXIUQKcSrUmonIQVTJL/pqw4OGvn0X5F4zts05PPn/LiB3/A9cuvmd99TeMatJfpv+7iCeef/YCCIuYkKesxyEOcIxpxA7ZNi29Fa1lKIYwD0+HANE5oo8k54pzm7OKcVgeOGWzjMCVRlGSVldSQ85aUIp+GQJxnXr66BlXo+57d+RnGahKZaRqljTvOlBgpKWMAZy2r1Yp+vaZfr+hWK44los1DIfi7vL7XIIU6ZRIzHMcZEB1D20KKkSFH3NlTztw57vwMFQ06Tww3b7n57iX+oxXGaLT3XL99y/7+jqdnK1TbghK3z1IGigrMw0BOCd14XN8S33yD0wq9W4Mwi2TbUEKgVHreOkXJGlSDdnKghXFgbD0UmdTw1qJJhGGEHOVRjDM2Bbp+ze78GeuzJ7LwVmf4ZoVy7cnsjDDQdhu69Rld85phOsoYplE4lfDe0jaeTb8inl0QYqIUhWTjTGgyxjqU1qQwUfJMSUisetEn1mGaJlQIQGaYE8dJqH2vClEh2hWj8VYU4q13MhJagwRFe7EEC6o6XaOrSy3UsxpYgAaP2jSyOaWUTr/X74GYuhz47UJNvkz5rX8AqdrgQXfLw9d8oP/FbK1fb+j7XgBSWUajNSUbqdASQmlbjSpKnHOtlp/RiGumeJHVA3NhjJaWRgpM88w8zdWLBkKUqprG07SSJBslGoSiEkxCq5aY5HtqIyCsalLQD4zJAoowSw6Lrl02CVq0rr5n43Ftj2paqazRGN2iTFM5sMpKYMlOyUSJ0mgdUCah2g6TZoyVqbGLzYphHum3G5zTjMeRcL+nIbPrVzw52/LJ55/wwe//EbvDM77+X/4l8zjWG1efq1xODMlv3t+FDVuYlGUlaK1rS7MyKY8+/gSFH0RLD7+COBO3PdPxSDGOfLinWW9ZEblPlnXboOcRlSasgvW6IxyPKGPrpJ/GV4Cq0DhnWXUdOUUabdg9Pcf2Hdp0ONfhjEW1LSEnSt/Tn19gNisohru37zhME+OQ0OXA5vkFbdex297w9s0Vd3d77o8HUorEXLifZo4xYLVhoxVdWRGjmO75ztLsenJKFCJ5qIcsiaIzKcwUjXhjKLGXSSmgkqTGO28keBRNGgfOLl+Q5lecbbd89o/+Md1HT5j3e0YnEzqPEaZaiofTHVqewfp3VV+UT21hjdKLriGhVEZcZ7OwY8v+X7VszdlzVk+eE2/uMLohjYnj3cybl/ecffEJOt6d2lcycYiEVFY3YmEhEjlE2VtcRlspXLS18mfmVPmItk9lspL1mWIBvQiyC0UllC6VQRWQZoympAymToGuNzTrc5zv6jOq0K5hdfEU2/bcvPoGtSrkOFNyITmHsq5qakRArFJCOxmMMMbLQIWWPbXEAFjZZrQizDN3t/dY73lx9pwPP/sYMx4Y39zh2hXEGnpaxOfINw39es3F04sTO5ImSV531tNt1ihnySUS5ok4BVSRVralYBFbi3bV4dsG5x1lHni/V/+3v77XIMUZOejE3l4sepkjmhml4W6caHY7fHeBmu8Y3r1i2l9zd33N7ZA4f/IppnVMw5HD7a1oB4zBKkWOiWG/l4WbIhiP77co44mvX0JOONvgtEGtPMpZ0pwhZkoK5DAj+bGZogrzfKDESKotJUpGG4UpBqsM1orRWVaQg0K3PV2/od3sxO3StljtxZ6qUpG5UF4EUQAA2ulJREFUtjnadWKdI8P9Ndy+RXuLtQZFxiiNQWEMOGNovJdwwtyAbyk5iu5BF7JSzFNmGidJRgVAwqRkW3igXY0CryuDUnPnnAHvNa03OPOo9VwLokUIt5jvnRxoF6BRN7LFVEspagKupAgPo7SzlkygE0hhYSg4tQRANhhTK+mFiXnM0JwO6zq2S3WeBWGAUIqSqzDReXzboeLhYSySLL3zlLEGitEUCgbR++hSqlOmALpSqO9FWk1KicjTN54cM7EK9HJOpDQzx5Fpuse3O2xUKJ2klZAUGcM8zQzHgRCyTH2ViK4TJdZ5BDnJgXCy0l/M9E55NvV9KPGBkI00UOjBCNAsqlDUgHhKeAoWrZ2Mb5cMKch1UhqaHhNHnNFYMq2z5Bl6B81qy12JjAeDyYXz3Y6PP3zB8w8+w5iO3dPPeG3/HXEKpzbebya7/00eCw8ApR59qk45uUbW2ImKWQBNbSeyFPiLWFudDr7+7IwYM2YKDHf35Ntb+sZDnrm5OeJ8Uw0IoV+vSLFu1EGExo2TaaDWWJz3pJQ53Ad22y3tZouhMmTKYLxHG6n+mRPRdui+hWLoNmvu31wxZM3tuzv2X7/GPrlg9+GHrM933L694u72luM0EZOkbi/MF9qynzVc7Tm/VKzWK/I4iL+NL8xZWkVpmiS1fA7gII4T2jSkY0B5jdYzIPuraxpoe46/+DVPnz5Fr8958vwFZ599hOoM0/09kvEkzxcnl+Dajl2e8YIY1JWaUEkhJ1X9lXhoDyslh3F5/Od1suvRM2+aFe3TT3nz8y+ZbvaUVBgjhKQ5BsuZloyfBy2SItfIC+Msp9iEgqzzWJ9vJ5pHU/crWZfiH6RLlp+xKIoRRP1QBGlUeRDVL59HvefON1jfSqveyVogRbQ2okVbNXTbM6b9jbAvcZa9tulwTYtShlzEONF7KSiKq61j1ZDmQLGaXGaRDwQBHsoYXn31DW6t+Oj5U/qnn7D+6IhxTvaq+j611ZhkcG1Dv91wESUG5c2rK8bxwDzNrDYa71uK1rgmklcJKiNrckalWc5oB9qCjP38byy7RypVdZpoKAW8k/7/OIy8vduj1xts23K4/Y7j66+Zh5FwnFHTzP6rX7H74gsO00DTePq+Y7taYZDo+qIywoc3+HVPjgl13KO6FSZWMaJvKQgw0QoSkteiili6pxQwJaN9R7SRlXeC4KumwXuP6zpJAc6JEGZSFHdFrTVhnhnv97TRoLPDdkIRqqjEllzLAd11a3bPPiaXREyjsCMpVUa/YGtWijEi0tNODpicHMsMZtaGUoqo2SeZp885U5L0U3U9sBsFWwchyyESMkJ1KyQBNE6kGB5GO08Pqarhd0sLaBkHrNQwDxqUZYNaQPcwDPz8r//q4T3VhOIF0EjlteQDCSByvpHNwDmsFXMza+xpw5GDzIrgrY4BK1W9N5RUc6WORVvr2F0+ZXw7PLQTqm07QMmqilvr8Se2IeSUiCpXa3DxqDHG1QkGGbU01lKyVDqlCs4oEMLMPIykVUdyFosmpsI0Zo53txzeXTONM2Rd/UoUOYpfkKotHE7TTHIAL0xW0ZVdQcTi2lq5FsaiS4E0oZGUV4HPXu5fDgJqXX/a2NFZLOhDkHFu43CNQ+covj9Wc9YrdqsWfTS8ipl109OhWDtP5xpyNqio4BDQUSrdXAHFcj7lfDpi3ltWJ53BI6AromM5xJaD4vFnv1fLLQdiWQTVsDo/x5+dc3/zLYpIsZbp/ohWmhWF2Kw4GiPTNabB92uc8zQoWmtojcY7qdJjLgxhxhbFarWSyZwpUWZhwUjSQsVqVBKH5VgiZYikuwnjG8zxyNoaonGEq1vC9Q25+lZ0qw2maQipSGo2YlTmjaLzlq5p8I2BeWBKidlGfOuZjwOma5mHAyppYo7oBGUI6LOOIg8EOSVA40wjGoVporz8hs/+6O9j/QVqnInjxPjuDmUdue7BLCDiMWlFZYCVtFRVEfiSc2ROhcySYA0oaVeoCm5ULYpO97k83FSlLP2TH3GY/iXT/hajPTlbnHe8vB7ZXRrZM7IIc08uxRUwSdtI1oGx1W+oxKVkAnLVayl5vnIGY2pLMmOUoRhDylJsaK1QSc6mFCLGiCHlYgjpfIdSAvgF0FTjM+tJGOJxQMURjYiAU41hSGkmTXuUsiL4tQbaCXKUwtV7VIooLMbNFIqwbPPMeNwT54nXX3/F7rLh5lct7WrL6tkzNEdyjnJaVKsIa3UtoFrW27VIBJTm9t2e2+s3dE2Dcx26sRjnSCnKPUmBNO4J+3cEAmzX0HiSUgzHoRZuv/vrew1SZHpAC4qk1CjxGeMdWilCKATfYZ0lHA7Mw0CcIjkVjLbsX7/k8kc/5uKyx3rPuu3obSEPh0o5J5LSNJstcZxgnmlWKzHESQnrW6y22DhSMJTqPitGmFJt2+LpV4585lGmjmtqRYm5UnyyEeeUydUnZRyOHO/2TOOEMfd0zZpVN7G5KDgK1juyThSjRXRqHSYG2qan25xz3L896RiM8afqWW62bAJiCuVQjYCVkiMxjIwatO9QKZGOo8RDFSNW4FGySigZDThV82gVzAnmlHG1RTNPEyHlh8pXPYwa6zoCuNheS8H1qAcNLJMd1M+5vb7i3/3z/7mOApbKtCyHrj6BPjH0ktaa9x7Xr/FtT9uvaFcr2rbDeY9zFtd4mqat2ThemBUZSTqBJb3sjgbazY7pxkl75WQ0ZSglibtjlkosp0QuilRKdZCNoKhTPg3WNeIcqhTGiRZpGiZijJUhkvcQY2Q4jvjDgO82zFNgvrkjhkwcJva3e7nmxst1s8KalVJQWTbIopRQwyfhskzJaCN28UaBtZa2cTTOSnWaFSoGmUQKQb628WjjyFrak+IyW7ULyqCMAxqZkLPVT4VCowuuabm4WLNrO4Z3nm9jRqcZfzyg3r6knK8g/wFFtdgxYYHFCKqAsHoPqlZhpR7/WV0vp/9GhM3a1Aq5ApcT6C3L7xcB5SOtRJFWZLdeo7yIlA+HA9Z3mKJQGZx1uDKIUN8IGOy1QXc9Dml5KgAtHi0p58oORRFiz5KIXZQia0k2pl1BY6X6dY7h6o7jm3fcv73m5t01IY6sn57TtivRMWgrhdHKkYqMHo/DQJhqxW0ldkKVTAoTIWvyHNF2Ahzz0ZBTgOORlMG3lqIgJkXUCmLE9z0hB7xr0I0nl0DJijJPWAPd2uG2O6af/Yp3v/6GuGlpP/8hRQVp1VSwv3hmqIcbJPcrFwELStVAzcQcJV085fKoDZxRiytwyY9rlxNYyUD75GP86gNubu8ZxoDSFkzHzT6SnmhMZVnrtxZcX4HUA2QRfZi2GmU8Skmibw6RrCS+QAT/Gle1FaKREn8lHSPayVtLBQEsC3MM6CosN16YLmWMMDwlkkNAtSt01Rxq5cjziNXQbM8oKRDCJDnESouhXRiJCkrWGD+hYou2Ir53bSeTqqWQwwR5Yrq/Y+OgVYXx9kiOiqgiKs2kICJ9tBHHXyRwtfENqk84pbHW433D/vqO/e0V3rU0ZYfylhwnchxJ88B094rh7gpFZr+XkNWA435Sv1Vs/G2v7zVICVEmDoSik8XlrSHmIiOQ3qD7NRpIMclUTJEln1CEmFjvzlhd7tCIQaRK9SEvME8DKQbGm3dQEl3fi7FRCDjnSbYhDXtSvanWOpSyWKVAWbFzdx6jHbZp5I3mKGInI/kHMro6yyhymBnub7l+85rr6ztSLmzOnuDcWrwuwkAKjjTuUb6nZCPlusqnTd35FoVm3t9Ik8a02LaXXiaVyrRS7VKr7ZyElsws+SiBUmR8OeXCHArvRgm7E8OuwiQFIKh6LTPkWlSnLCnJS97GAjREi7JY4C8tlmWD0Mue9oAQTmdKYbi95Vd/8qfiO5MrzVqZGW0eUoyN1ljv8U0j4KPtaPoVbrNhtdmy2u5ou55utabfrInrTX2fpX5+eQBItUVFQUYKuw7jPSkMj9pMUoHl8gAGCpyo35QyJcnHQR0pBqijk6UkpuOB8XB4+LlZeufSJzd+2Ugjq17hcsM0zxzGIykAbcFqjVViMiUgLpKKOl0TU2MMllykJbFaG3DVGj1n+Vm1MWjlUEXXrlaA4im4Sm8/0ONKW3SaZG1rJ/471lXmKNJoWLUtT84azrYb3r20dI1h5cWKXc0T4+01zfAOtXqOTZxiB+SHXmh/TvrLXB63gZZ/l0fX7hFr9PhAe4RF5PfL93hgxIR8Khjv2b74kOH1rxmHiWOYaIzBG0PJAZUsmSLTRxRJ8UaJA3ZMpzUdYyTFyDQONF1L24ppmtp1UOMpYgyo454SZmLJzCWLdqeAvbikK5F3v3hLtplnm57u/Ix8GIWJaZ0QWXYSV9uUmcJEiZmi5JmPOUoLGTGNTEU0BUqJ9YEyDrQjJ06WBlkZYs4i7i4BggjyU4Zu5VGffsT++i0XL75Ae7E/MD/4Ee+0piCTbqVefGEJFhWKgI3FBPL0p6WQ0jKxox615eCkoOa0JOrz/95txa23fPSTf8rtu1cc0xHVOHJTuL05MERx4S6IXlEVjdW5MqaGXGQHKkXSe3NOdRjAULJCK0sIkWSkfWsXsz5jCEHSwLURF+sYNCFmQgykmGVNFAkEPbWTiiQ5x/HIfHgngKoYUtOJ6CwjbcKQCMMNm6eWZnOOr4Cn5EjOMB9lkqfUMycFad8rCvNxj9nsyDkS5wNta1Bl5sn5RnzD2nNwK8J0izVyRqqi0LYykEqjTMG1DUqL0aX1DdZ4yIXD3S32StGHAdt15DQxD++YD/fs795ye78nlo7iHcFaRqXYh1lkGX+H1/capMwhiR5FSQJvSpmABqIoj3OWNOJ5JqdMSpCyRrsGry0b33P25Jk47eUZnYP0KhUkreUhL5EcI9Ya+Rpxlgj6okjTKLPkWtGtely3QmeNbxqMdijfSiVQpz9ynChxllI2I62REJmHI2GeON7dcfX2DVe3dzTrCz79/HPWu3NB/EkeDjGUSpQiAqRCrG2bSAwzMSSy9kxjJM8Hop1oM5i2rwyTPCC5ZAhi3JZTJIVISlIpqawocyZMiTCnatiTGafMnKihUeL+qLQ6pdBCBSmnUdHqNqsXUGJO7MkDUBFBizLq1KI4tXoevVJIjHd7+du6QS2bII/bPlTgUE3TtDE0XUe32dBvN6y3O5rVmtXunM3FU7Yx1UpIWgTW2tPki34MpkqRB9S3TIe7ulNWACMlkhzmIPdWldOhX1RtvSiNa/rTGLMyLWlOHMcD4zBJq0YSEAVYKIU1Ba8Llx9+ijtrUGki7A8Mf/4zpnEkpfo2jEVXATRKVfFsHUkuRbQPxlS2Sa6VdeJ8qYpGKdHRWG+kiqzTGTIeboRCThnlXQWeIkhdvjc5oou0fTCtiHEBb2DXKc7POjZPz2lby9m6o2+9hFFq0P0a6x3KW5w2GOfeO5QW9uM0wPNoeZSy6Erq75FquyztxZNo9nHPRz38/gSGHr4+gLaW889/yOv//KcoH5hiFlGl9phsKEE8OIqWVqKKGW+dVOtK2gEpZuI4M40DKUTOP32CipniE6Uk0ahNAQwwHEkhUJqGQsY6R392CSbSOLi9fsObb1+ijOaFdnTrLdlbSi6YvgHd02x35FIY7m5k2iInSkzkkgjzLCyXUpQSyPMsVbZWlDKTJo/pHCqDbZqqbQJlBXSFWPV2xjLe7vEBvv71L2l+9Ee4jz+h0ZDPLpn2V5wQJbLHPUiepZpUC+Yo5eEuKAVkUlHkkkkFTJ0yl9DKysSczjfForcSAkxhvefDf/rHvPv6Z9x+85dMIWF0Ik33aM6BQipiAmcVlY3IJBRWVYO3gui+oqSgJ0TLYozF2AZVNzthWmRtGWOE64nC8KWciCkRg0xGWm1kU1AabTvAkuZE8TLqbedAmmeUy4TxSImzMNVty/nTF3z3F99xUN+hFPjNRdXQeCgK17SUnJjmQRhu62UfdR1pGgnzUZ7hPEAOxDCzalvaZs3mw89F6xIPFKfrc1OkgKqCc13T211lqrNPaO3IufBy/Iarq1cc72/qFF/i5jBxmOFQ1oxpRVaGMsN49040UCW/bx/wO7y+1yAFOBn65JxpG8syCiomWo4xzLQalDGkoogYGt9j245ue07TeFmcRosOJQZKiZClGtDagHfkJLPt1ojQK2VRmyftaaxFNyu0djTdCmUlcIpxosQglUROkKJsTkn8FGKQqaFhf8fx7pY3b95wsx/ZffAZf/CTf8T2fIu2hjCOzMORFBNRKeY0U+JMThLfXnKiGMM4TQzHkRgKrjsj6Ylx/45QCm3KmCCH2GL3rEo5fY0UM7kkoSwriMhJhJpziIScCbkmwFaxLNQNpzxyh63/LJWpHHT6lG68tHV0PeQfaPpK+z7+s0dniDz8lQLOCFCBk15hwQy5FFQuxFRQBFCK4/HIfn9Hd9Mz7HastjvG+z3zONV+O1hjSV17qt60egSaquDJWIey7W+1D7TSFL1MChSKMjIZowByxTKqbiod690ZaRqESVOJPC55QbVCzBq0wbeSzeTanrvrN6xjS2MUvhScthJ7UDQTCm091iUwVXhXTem00jLBpmWCQWstzIkVAbN3VsaSdcE1MjquncVqaUehhdkogCqBEmZwHdRNXS6FAduK2FApqFqbxhi80my7RPfsBcp6VMx06w5rJA9HO1BWBIkxG4pvsH13urcPrMl7R93DmjmhFx7WzPJX1MPvMeA9gZvyaJ2p0yeXuuiU1jz90Q/55dkZ49uBmOSQ3h8HWDfMseCNR5uE8058cbSWillreb6nkek4cbc/sL3csVnvyHMUB2rtCBHUBugVJE3WCRUiNmQa19IUhd9uGI3j/Ow5P/vyS8ZffYXRmu3uEu9aMZzTCtt0KFfQTYt3nhADh3c3jIdbSAqjLFFFEhGVJKgvkSkZbNuQKKiQKUy43JBCwDWWHEWXUYympILThZuf/pznz54xpczrX/ySp5/+Pmn1jBnJLJLbUZ8kpchJSUuZ2l57jChzvX+lEBOEJKzksldQi50UAzmnKliVVqJWD/uJKgplNJvLJ/zh//X/xl/9v4+8/eWXbJvAH37c0WgoWVoNWuk6Jkzl1EH5BjB1IgehiXOS9pYqZJ1x1lWcVd9fHXPXSpGrHijHSAiBeZqZpgnXtRhtUbpIm8eKsD1nSQ82VXCtD+/IMZHmg6SfG0e3e8ruxacM11cMr78k+mtpFRuFbtaAJlXE1/ZrwrCXTC1XLSqahpIjh9s3aF2vYwbn11x+8AW7T3/IcPiOHEdyaurWbSh1OkiKAY22RfYka8EXlGvI2jANM7++vuXqzVvImv3qCXs0c0mkOCDC/Yw34ia5aiyxThD9XV7fa5ByEsRlSEpcAFvvWTViGf366i3XN9dcPH+B7TcY85YpSqWTU8aWjK3VQk6xWojLwQyilUiqLr4qGipKDOBUjNVZsIAX07aiLPMYgAhhgjhBDJi68ZWKInMMpFKI88x0PHK4vuL23TVvr25oz5/x4z/8B5yf7XDOCnhyljIb0hQZjgOxphGneZTqSxuyMQzDkf3tNfN4wCAiPasNb779FaMf6LZrcb+tRmE6CyiTMc9MTqmyIEJFoiCTGaeZkApTLkRKPf4WwVu9GXXcVSq1hW6XHufpwNeP2ZOlpaJqRf4InLzXB6ofV4vgE4hZ2i2PtBYCKOqnVa3B4nuRUybOkXkaGY8HNsNR2lc1uKvtWuJ6fcoJoQKpRSejlGzUzWrN/dvaflnGO8oifBNFv6qVk0q50hzloQdfIKvCzdUr5jmivaWoRIwzKQVSSGJy1rWcXZyjXMurl9dMd1/y4mLD0+dPMU3L/u4gLcBSyCFhU8bnjMkyqm2r+E/SnE11gDVy73KpruICOJ3VYtmuHVoZiYzQkmmkcFVkq0HZ032Rn93IKsgJZXxd5YESM7oorFGsjeHsk+fYy0+4+09/RrvecfnxjvH6JUpFeVZyhhQFfHYrVNfx4Chax4/rc17kX6c24MKM/NZw8unPH70eOgTvaVge/fXp4wuK9cUlzcUT2ptrYW1RYhIWkwA7Y2i8WK+7zqHQlJCJcSSMiXEYOBxkmub5Rx9iqo17yolwHNBZk9peGAobRVCPFEF+3WKiRa8saMfu4ine97y6fcvqzRuImrPdJcb24sQbAmquSeTO4rUjb9ckA+nujjQf5RknyxpVUEKhGEXOoWaI9ei2lakmK22XnBMlFfy6JeSIWW3xZ894eTiS26e8fnnP3fw1m2c7TA6EFFF1XS0TdTnHk639CSRmEcTqsgBGYfNSprJ/1cG6ri9qvMQSzyU3bIGstUWrRU/x9OMfYv4v/3d++v/5f7HeOnTjCOmeaawtfaFGpZWVgBTIOVKoAEUtWT7SKlPaYpQWl1glAvmTrb7ipLnJKZ3aRDIFWXDW4ZsW5y0F0QdNORO1Ic1HjNaSj1QCJc/Mww25OMiKfLhj9exjNh98znT9NSonCCNptlBdlJV2aC2aHNv14m+Vg+jH4iwJ0tPIHI7c3CeOdyOXF1s2H3+O7Vv2373DlEIICY1Gqwy67l2akyRAWy0tKRSYTKc85x8qbu8OXN8NDKpjXzIxJ5rG4awlZ42zwtbmhYkO5m989v5rr+81SIGaoVIyprZj5iCLxGmFUoE3797xB59+Rn/+hObqDcd4lEWVIm0jfWS8k2yKUqDGUGMMpCyHT5EepdKFPNe+nWslM0VrlO2YQyYebwWhx4AuWeyFU6wCRk7q8hQjcRplcud4YL+/4+Z4ZEyFH3zwIY5EPO5JsyVSmKYj4zAy3+8JhwGVs4gTa3VSlCaqwjweudvfMuzvsUVTdiOrszNSsdze3RFSxHcN2knsvcnIk1ivYY6ZohUxi4h3MX06zjNDkNTLjCIXGbsVgKxEQKbkUHNaSRicevBBWXwqFhAhG1WdW36vvfPb4tnlPi9g5gRuCiefk5M+pP77PS8MKjBYRLxJaPs0B5FRGIt3nvXZjngWHjFAvAecFj2H69bCHKj6Z0qR1eIFgyTUUmRSiogukFIiU0g5M9zfk/LEVz//KX/5V7/iepz4yR/9Ppe7DcM0MgwDbetYrTqUMXz581/xL/6/f8LVqzf8ox+84P/4f/rfg235+V//klisuK2UQoySMaKsxWUtgMjk+r6UjKVqGXU3tVIy1qCKIsUoZl+qiG23kZFYXUWnWst1l8OkHhxKUzDi2QD13lgB9CFgrQRVbs9W9C8+JKuGt1+/w3RnbLeecf+KPEdKqdqsOVBCoOk7cfCVvs174tjlXi4M26PhjofqbGGtFA8f8IA8kEblf7knrlA1jLLqUr74gsO3vyYPR9BKTPSSjN8vGgPTOIx15Cgj53nOzOPIME4cp5H1sx3eONIxYGrPP+nMTIJponiZKFPGiJP0ccJ6A11LUorsCs3Zhna9Zrx+xdube1oaVr7DNgrlFSXUqbZsUcVThBzGe0fqWlTM5DSRR2EkFg1fDiLGV8aChmbdUYomJ0kEHo6jMENxQmvN9gc/YLwf2b+OvJluuL/9lrPxLX/v4h+j9ok4T/K41z0zZbFwSLXQo7Isp2eKxf+oXtuyBJeq02SPrIP8UNRUYFPjteqEI1WEL2L051/8fdT/8D/yy3/1PzGMI/FYwa5W5MWjqICuDsqVKhSGHCVGe9qwuGYu791Vz5RcHYUfWhfi4VJyEjCS5LlZdRItkaIYj4Z5IsUD1nqJq0iJfHeF61a4syckvPwzHgllZrz+Gn/5McbZ6kYdZVAkTCjrK2CSZzqGkWwNKUykeRKmPxdxhZ0nro8WkxXnH3zI6sULxv0Vw/0NXSM/oy4FWyoQtFRnWGFGizYoYylIm8u5jpVuefZDxdt3I/urezCKtm2xRljYUhIpZ5RVlDAT0oh/pCX6XV/fa5AyxoQrRQLRrDhsliLVBEUTQ+Tl2zdkVbj86CPcqmf37h5TNGU+svn4E0opWOOIUMd/0yNKr46Q1THZlMV2XRZpYFYWbyzjdESPgxyPc0alVP1JZAqmkCklonKmpELOkkQ5DQPH/R13hz2HeSYpTRgH9tdvOd4ZMlnGUMPMPAem48A8TWLc5WUapZRE1popBKZxYBiPhHHAK9BMhBIZU+D+cMscA+3cVOMfi9cyfqu0ltHeFMDYOsacSVWRvJ9mxlgByqJYVBqnxBsFKiWfM0ErdJGwspiFLny8Jpf2iVIPQOLBs+MRQ0ItvPTD7/XSz16qod/4exYhXqmB7qoyKhVQqCRanDhFhnzAWEvTdDRdz/7mkvOnT2to3enNvg9SlEJbR0bLdViYITJKW7LKoBLGyLSWTKBUcKQVaFX1R0eU8VjrePP6FX/2H/6Cn/zRjwnDxJwiXnve7Qemounanh989CE9sN9H/pd/8xeAJiuFblrx4aEQi6wVae0oTNGA5WQFX9SpAlWLj4iRPrPrDE3f0jYG2zYySq01WP0wIaQXJqim0BY5VqjAfqHUSk5k8c9Ha1hdOJrVOeH2jturI8Un7HbHnCJtEnYRDSUGzHSk7Vf4VX/CFoJVHmzcFmHy0q55b8pnqbLrz7y4Cz/GKf+1/fH9VpIAmmdffMY3/1Zszo1W5KOkgTu3OAFbVBFAXjQUHQgpM4aJYxi5DwPb5inDzZEcJa1dTTMmWxL7CnwidrVFaUMZZsL9HaHxqLGVZzMcGcY7isrsVj3jOHN7PNDf36Ic+FLwbYMuVL1bAm3RTuGKIuLJzYweI955cjLEKGGUS7SGVlpyWoYR07QoY0kx4Z1MjqmYcWcbbl9+x5evfs3X3/yMq7vXZKPJrnA/HGHak9Mk9v5ZtHwhSd6NtGvKqYDQlfmwSslUm5V1lHJ1sGZ5xgWRLp8L5bSmdYFcEqWIk5NsCXIHfbPi2e//E46vvuTtr37OHA7sYyHbglLS7HIGuX9K2nQxzBXML4zPQ5BoyUkOaVVqy6jIAISSvaCkgPiwLC1PTWsbMXxMkXme2e+PlZmAFEeyURzuD8zDjBkjei7EbHl7s+fVlz/n48uej37wKWdtJ+2oIlEXddXL+06Roqzsb8aJvQEQw0RCEcPEOElS+fE48eLZEz75p39MzDNvvvmKOB6YMphJwB0+gcvQeHIC5SRs0yhDwQBG/JOspXFrdrrn+X3g3Z//OcZo5hhP+6Jw7qGKhmVIIM3Df+UJ/Jtf32uQsvSryYXjGCRx0UpPTSlFKpm//OUvuT/sebo956Mf/z265x/TaMPbP/sTrl+/5Hj9ju3mTBZgLuSioC54pSTptWhNSZDSjC6ZYhwmJZSFNO2Jg9C0JRU0WqLqi0Jlsc42SgNZqvgoAtVpODIej9zv79mPE3MuzDnz7ddfk4YDSiumeeRw2DPMtcJXlmQ0tm1p+17aLSlIS2YYmI4TYZ7IeaAxhjQfGELgbpgZxoEYxXq96VqMscxGSQieMiKwUwliFsQfA6nqNeaQiamOC1YaPQJjLkxVjyItFoWrBkdt1QYvrYGH1s6jNk01T3vcUjkxI/Xj6rc7vU4H7fI1WLiY8vDv+jEGyFpJu62AeACI30YIgcPdHU0dTz68e8c0DHKd6zd9/D0A0FoEntqRUhHQqeqbyglFfuS/kE+FvNYGZTXGSGJqCgnrep5cXvKHStNtVzJWaAzNdsv9MPLu+I4vPmn44oef8fGPf49f//rX/Pm/+P/x9u5A61u6VSspysLLo5C8mBgDJmiKNVAdTqBWmjXwbwHgqibDNlqcj03jMY0X0axRdZRY2g+lLAcaqBrLvlj8y/3PlaXQKNugjWFzuWH7bIN1K26/e8Wb1zOUCb+dSVMhxEweC60yOFVQN+8w6y2m6VlYk5MHyuMHv4LHRcDNslIefVBOUsWX34Ad78OQhz9/+LhH/10K680Ou16R7u7QIaKsxtcx9lIUzjX4rgENMU3MYyDkmTEHbqeBfZwZpolXhzc4bemaDm8t3kuuUxwn9K1Fu2uKbTkORxKZxnfkbIhxAhLDuGeYB3ablmEfSMAYZ9o5gB4hZ2zr0An0XMAW8lxQrcGYjHEeG2TsuSiFDlYCTomApPiiZR+gEa+QXBnbNE+4Zo1qet5c3fAf/vpP+ObbX9B4x/nFC6xbcXN/T5wPhBRIGRHyx5k5yAGdo0yjKKURTaZU2xoY5yAmslkRa4GxcC0P92UZQV6ATmVJ88NHLKaNMWUKmm73AR/9k/8zfvuM/Jd/wvXVNaUoYkhoY3B1iiWlamhorEyxaE2JSc4RMiUp0d3V1oewzgLUtUHavUqJnsUobFE4AzlkxmFGo/j6q7f8+7/8BtcYPvnwgo+eX5ATzGlEm4ieEmU/89W37/jFL7+lizNNuuTig+esC+AacqwsTZwwGrIaUKqTwql6phjrwDnM7InzgDOWtlszzhPPLxy//6Mf0/Yrrn/9Ndev32LiPXEChUx8dust7aYn06KUp2SHSR6NxWBRxqJpUMpQrKU92/H8h4Xbd+94+/aNOBanOuGZowSxhpmSg7SbH7k//66v7zVIMWrRINQDTS2Ok2LVHXPh5dt3/OrVG3b9GnP9hs0Hn6FdQ3/5hFgi96nqOrKSxaqrk5+S3nGsyZcxBkp9aJWBmBU6FuY8kUMWo7dcMNZitMWiMDlVZ8SlRSHz62GemIaBw2HP/TAwloJ2DY3KvLq64nB7T0wzV+9u+frVNft5RjnNarXmyeUZL55dinV1FqMesa2fGQ8Dw3jP4f6W3jrOLi7Q4R2xageGeQa0UMHO4oyuP6uDnBHFSSGVQqjlTCkwVzv6RRuwjNpGlEwMLGxG3TCsUjX+XL8HRk5hg/XQkw6Ofu9woYKC09TGo0NFwwOTwvsU/zIVpOrGtohVzelrCchSlfHJpRCmwOH2ltVmx7A/MA1H0eKcDqkHoLJU69Y6tPVySFeArJSWqYRcZCQXoPavtdL1wK921miUsfTWcaEN3dkG44XVaPqnlJJ489VLxKVAczwe6XzLpu/xqzXj7UCxhmJUnWKy1Qgwnto+RiuSE5ZEHGXlAC85V+tHEapa67DKyAgr1QbcKJSX1tCiJxXmUEmAWhGdkqrgTI4L0QJQEtQIhNWz5xgMvgsY79n/6ltKdGgdCfcHGqvxOtN98IL+vEPNN4zvEs1Hn9UsILn3C0NWysMiUY9/rb9Z/n6pMFNKkoP1XrvoRCWx0P2PV9jpcDy1mWR64tmnn3K1H4j3d6y3K1Z9CyHgTUPjJeB0nmemMUiE/eHAYZy4m2cCiru7A1d3gc57zlcbusbTNBZ1y6kQiCEzKUUwmoDmMM+829/ReM+T7ZqSI841bM8vMP6GMhfmGBiHgRwC9H0NbYxY79ExoXqHKgXbOko0GOTwjSrgOgFI5MQUI6Xe05wFVJumkXtrDMbLKH/ylpdfveHt9RX3x5G27dmsL9lunvDy1bfc3LxjDEEyp3ISF95Yk4NjZDEV1FXPU4qAjMNxZNNrivInLceSdgziQptOnkuP2bwHgHoyfCu1ECmKVCzu4gc8/8kzdLPh65//lByFLVkGLKRNLc+QMfpBw6bEnTrljK3gJ6lQhymKhLMWxHxRy3vQRmORe+qMYhgLr9/eYY1mfzhy0Ymh5t3NAWctTy52Yj1RIoyJtzfv+PqrV5ic2FzuaHfnbD78A9puQzSWPNcJnBjA2dqJkgLFOieSgpQw3tO0kqM27G/EfXzWuDhx9vwZhJG7u1vm6R4miXuZY0Z3l/Ttmo2+xKsVFAvZQLCoJCaUxhhcsaenRRmD6895/sUXHO5uyFPiNswsmUjDOAgDzTJMsbBjv/vr+w1SqtPsUl0vy1q8NGSM+P448C//9D/wkx//mFwM4XCPWRWUcyRtuXn1kmP6SsKpiugLSo3vTlk2/ZQyqWY6lCILN+Okv5gScUpCu2mNyxmrRF4aS8aqarimBFDk6tg4jgOHeSQaLfbdSuLcS4BXr6+Y55lAYX22ogmOkDI5B67evmbY3/LZ55/Q+JaSpHqPITGEiW9eXjEdBzarHreFtnUYq8g40hQkNdVonCoizioZpZaKswhQKTLJE9ICWAStiBBfsmsiYkS3gAPZ0+VhFo+rCkxOtuSPbhQPLZsFxDyIVaob6okQqfyIUlXUtrAoyAH8qJZePvq3SP16JsFyiKkT6JrGgWE4Mg8DYRiJIVTBXjkhoaXls2yySptTpScMEDL6p8xJNLf0HpRW4jJrxbk1yw6KotCtOrQRdk0rRdf3pHnGWcs8itvs/v7AHAvjONCsOvxYbbyrTmTRloAkIpeqJ0op1sgDqVgXV81CqUJXh0ZoW9UYaB3aixGhRiaUdD3Ms64Om0gVXpXWKCtXP8dJDKCUpmgDtqe5/BTnN5T7r0n31zgb+fjjjub5Bc35c0rY077+C9YXK8yvfsrt/Cvcj/8Y3XXE/cjiVfNeq6a+n4Kq4+3qBCjKqdVDlUCVmr3Fe5tiqVfh8e8fflNOraKlVQeZzeVTbppfoEPH9mKHpTCno7g3W5hjYh4D03RkmI4M88h+GggpsdpshOpuNW9u7hhTZOUbTBXvh5ROud/Raq6nwC/eXPHuuKe3jk3T8fxsy+cfPOfy2Qv6VUNWisPVDSEV5hRxjSeWBMOEbZyAYmUoxVEmid9ovCMVRTIBp72kxjeGEEa8sVhvKSh835CVMALzNEs7JReiUuAt++lISrBqVzw5e8qzy4/ZjyP/+t//e4ZhkoyXQl3rmZQyMcnUYCnl5G9Eff5QisMwslGaoi0xx9PtKuiTeLrUacpS9KO79qgFdAK0pbb8E6VoUna4/pKLz/6I7e4J16+/wRjZx2KMOCc5OCkXUA7rbD1HC1S/myq+o4Bo2YwGkzFu2bvkWdBJ15BOI4JWZbi7O3CzP5Ao7M5XhCxap3GKvLsfsF6MMqeSiNqxvTinc5anT57wg3/237P97PchzRhVZK8Ig+ydOdd2TxbWLEUpFJScfyhhw5yXOI93N0dU21HiTBgOhPnAPNxQKtN1Pync+pLkX0DzHKtc7QyoU2vOFYvDEJXkfpUUCcNMShrVXrB78Yzxl1+y6Xtu9vfkVCcel7FjVfVt6jf257/l9b0GKctarfIATqelUoSQsI0YV/3FL7/my+/e8t/8oz/GdiuO795yuL7i7vaO8ThBN9KVnXytea6be530iRFydQ20BpqWME+UNBJiIEwzKUQJH9SarC1FO2EUUGSlUCpXS2Pp007TyDBPzKpIwqVt0UoydVZbD9ry9u1bwuFI33XQteJGqxTaiTDz/vYdZb2D6iY7p4lX1+8YUmJztuHJ00v63QbnHUZFYskkBykEwjyjigVrqseJpMoWifMkFzFrG0NijvXY1wpdlfeL22rJWUbbqLVMEVMxox4mfZbWzW8qussCSFiEtY8ATAU8p0+p91n6w6Uensuh9ZsL/qEFsBxpy8eWUqqCo45C5iJ09GHPdLhnOhwqq/bwOQ8TR5zaJMaKDmHRY8h5KZR5jiIEXUCZNotdv1zDEqUtE6ZAiKFa/Gds47FayeaaC/M4cXAGc3OPnwIhZ7q+Z5xSHa+vDhHqYVRa3mciq2oUlQIuWQEORto/JRXpi6s6c6YS3mmaxuK0F8tvJVqnpe1ZchHhXClSIWnEEyZHspYeuJTgSnTYrhHQslHo+UC8+RVnG82zyw9pPvyQ1J5zuH3D7X9KjD/7dwTXkf/xf8PuxQcEeu6Po9yrKlZcMKbgI3V6xqn6IWklPtyzE3BhcQN9aBs9Xk8Pa+TxP/V/tcovOdOsV/h+hVIG61t0ijjfYhtLJhCnzDCPzCEQ0sxxHjjMM65xbDc9q7ajNBBK5uX9PW2Z0VMhB4gUoipo78lR8/Xbd4zTxJPNFltbcevtBbvtBdt1T9s5XGP5dhzIRwmYnHOAWCjZypSdMQRdUMMoibMJtPcSIukaCoYUAgopyEqaQSucazGNRbeNAJQpYBvwbQdNi/ItCU3XrrncnfP04hNwjv/pn/8LfvXtK1TJp5H+h8m48v4zWumvvLAY+sEMjQoOc1Esw0A5V6O3KHssylSGtxYMJ81VBSxLxEfKp9gNpQ3d9inbp59w9fql/H0umOVzKqjSWphdaS9WFlWLE29ZALPSp4lGpevEUXWtLTXqwjuNjVlaqNbIs902DONMHAOx9sHHkEghUbRlfXHOenvG4e6Ovt/wo7//Ey6/+AJKohgnBm4KcSqu007KGiiBklzNDtJo5+RaKC0akDADhjFkOm8x7RnkyH5/w1x1lNNcCGqF9Vvc5oJ2tWWOijBHyAmrFc5Yipa9RNkaHuvBITYWMp4tidCvX73kyfklx/HI4TiSg+xxRcl01d/19b0GKQs1q9TDPEeuC9c5C6pwd5y4P17xr//sP/HH/+3/QBgG9q9fcXd1RZgjrl/VgiwTpolwHGQO3comqMqDxTi5kKdRvElSJIXCPMvYqMoZ6sERYyCRCEoObFKWj8+RGCbmMDHMAbTBKStGQjXLJmlNrzTPfcPd/l7o3Fyt4HPCOmkfDPPEfHeL0iLoHecZ4y0vPnjKpmvZbLf4psMaSwkHVNEYI5tDylLBiapXUZSowHPIkrtAISTIRcbcqJ4oKKpjbN3cK1OwjIsuFvdGga8CzmW8eDnkleKRDmW5keW9+1mPeDmL4ARYTm0z6vv5rddjcFL/ZPk+9dDSaBG4Lt8rLXqeI9PxSI7S7jkV32X50dWDF4xSJx3Oks6sAZwSL4EYELG0UNSmbqIpido9ZdH9pBxPhnfGiKW9ZAw5ijLcH0ZygU0NOzRa0bYOlNxLpVUFh6o6QqpTH33Z2GOKWGPJMZGXIEsj1aLSCe+lZaGMB2NlkzYejEIV2YR1pcfyyaG1HigpUscApIKr2R3FWFCKrBpK84Tp/i8w+RZfGsz+HqVa8i/fcfOnifRCsfs//EPO/sFPoOt5fVCUrjmtqWV5PBAivwE23rtPlfFiCZTk5Cb8WHS5aBcer5P3KJXTehShdbNa4fqOOEs+imktyinxPAmJEGcSmTEG7qeZ+zkQKJxvVnSNxzcOGo2bG45v3/Ld/W2tTOXZmdHkKNM0rves1i3eOTrX8nR7yWcffMjFekXbe4wC1zh2T59x/c13jGFCzVrGvlsl/k7BYLyR7CTlMF7M8YzzkGWaSzkrJ0ZQlLmQlRZ3bN+hMSjbkKPo6SSx3JBVgRR5urtktVrTrM75l//uT/mrn39VBZ2VaeV9H6SlHfywdpZnXIHKp70jFTHbFBP8WrwoMassOUgRpWrhUR6A6elhPYnxH/78lLzuO9YvfgD/+U+kLauk5VmyrO0Tq8tiBCji32WtZDSkDCqfWrcLiFK11SvmoRYJLwSUgBbnHS4lceR2jhgL1jUy/KAM2jesnnzA5YefEfe3WKtZ7TbMh3vyEtthHbk0cr3me3KJ5CCXwJnqBm1zjVuQ4qkg3k6YyPXdxOeff4hfbzm8u2I63NZcMrHOwG9QvpPR+iKJQuKmIzpLbyzOSCtbJjoNxonpZM4e7xx9/2O6foP3/5Hr717SrRouzzUv37zicHtbzwP7X9i7/8uv7zVISaVgFrvJItMnEqktiuuQC0sk/bfv3nF3d8PGaFFxW8eq35Dv7iiGCkxstfeVzb3kDEbL+BeAbZmGI1p7YiikLAdazAFdZ+YDkEoWR9GSRGibpc2TYiSEkTlKmJbTLQXxQUBrtPHi/uk0NA0b72jGiZhmYgyEMDPNgWmemKdELPKAW2Np2oYzv6brWtZtJzbdRiY1cs5gFCEF6bVqWYApIxsUgrxTNd/RihOAialIpEB1yS2qGqpWLw3Z7GsrplarGfEUWSLDHxiJ+k/9nAczsMUSX5/U7wutT/0srTWN99WmXqrsnMvJLfb0qgeaqr/KXy28DRQlE1pZpKqQYR5HyRqaqr076gTETq+6J+pqMJVzQZVci3lTq686flxyHbmsP3sFZTElQkg1u6KcQNsC4nJtpTVNg2s8JUfQkoOkjUEbjW9steCvB4BagAonMCc/p2TGpJjIJpFsFrvvkqUdoOXhb3yDafoTVQ4ZnSJFeZTr5GBIEWFV6rOWC8rKz6pSqLfVUVdCvZ8CBJM2hLsD6eaK5llLmR069+g4kduB1X/7h6x+8g/RxvGLq4zeOlYbXy955cIqo7JUvacb/Vhb8hutROAEZspJ4KRO1/oEdctJkvlw2NXPKZXlcm2D7VrKMKG8R+ksOpAs9z+myDQNHA4HhnliTJmm7dht1jgtacwBCCT8psEfYT+M3E6BOWYOGbCatXc8323Y7LasuxWX50+4WG0573e0jccZGXO31rI7f8Zhf085HElpJuKYk8LOSiIvMLWlBGqK6MYxx0lEviqLADKDbQ3FasIwykh1Nsz7I2arcZ0IoLVzpBggFzrf0a93uG7Lv/6z/8z/+le/IKXMaeJkAfEPXERlScojTmUpbKqzaVnuVSZmscePuRCjXN9Mqd5Vj+7NglEqcF0WxsKcLq7aejEdNJrNhz8iZo0rUuyBktRopVA6U9Is7VFt68QjUmCSKVlCCZWTwk1G/0EXRZylnVFQlDChEQCjtTDpRUlBZ4yGEmkaT9P2KOOkzWQ8Kidab1Hn52I3MQcUEEJl89tGwnRrpHCc9qANVntSBVOkQlKyr+SSyWEmpcw0Bm5vb9FpYrp9y813v2Y+3opYOiuUUxi/Ei1hPaessiIjKAWrwDmNt1XqECM4g1+ml4omW03JDu8+pWt7duu/5OXPf04umt/77HNevnnF1ZvXdXrycUXwt7++1yDFvHf4cVqwqfJxzmphWoC3r19xe/OWZrNhmsZqpZ3J00ECnVgoRFFQC4UuG5cyouI3vkXbwngYiChCDMw1uRZt6miqTADprFBJRtNymuu0QWScJ8YQUaYBZbDGk7WX5M2mQxtLDjMmRBxKRglnOaCU0VLxGFPjveVH1tpgncMZTdu0WN+hjcM1jQjMmpZAJs+ZjKkUaoKcTzkKmUQqUdpKRZiUpDLTlBlDJD/sMIIzlsOwbj1LbHoqMKfCHDlV3vV4WJjeasjGSYui1AIj5ANO+4562H6U1ui+O9nFq5xPrasFEAgoeai+T19ALWJaEZ4pVdBFnVo/OeXKjgkD8rDhPfqZH1Xsy/vLdbpEL94jRjGPk+QWnc5FLZqRymDFHKHo0/XTVXsRp8Dd+I4QZobDHquLVMAUwjjUQEBdNzp+Y93nE5tSVJ2wOW3WYtN9SoA1BUrGKFkfoqcpKGsfxM0lCo2eoGgvPfkFfNSUaBkdrsxLiBTSaW0seTbkyHx/xXj9DV5nQpgwc0C//Zb1U8un/49/xurzj2mU5+18ztCfsVmcexdm9MSi5NO1L49vwoIey8MCLXVU+lQpLwzMo09ZXo+JmPLoyy5foxTZC5rNhnwYZBamFMI4QpxRWcL9hnEmlkCMCW8tzy7P6buWrCyl8Rz2d0x5ZnOxQbWeVVozDjMhikmcUpr1es2q7zm/fEqvLU8+fEEzF+y6E/CXE8pZspIAxM3nX/Dt//qn7LIHJ8Z+JQd0kJZDQCNDXhaVC9qLlknMK+U6W6XIxhKMFFMqznS7LWa9IoVRWngpi/V7SKybDYdux5ffXfNnf/0zpnk+oeLHwPkh20o/us51KuwEXhAgiBihpRjIqZCT+MXkRciqqKZ+GWuWe1R4T8pWgdAJ9FcgtHjeKK3YPPsY26xIxxsJz9OaFJO0L4vCVMMIVQMDlTbVpTWLF4s1pFj1H66y5kR59pRCGTF9U0b2nZgjc5gIUSgPrcC2nqbpcE0P1jGMM0pracWUiHEtJWdinCvLKi3hMA20bUPTWIzviUlM26CacIaAtR5ykOEPpcghEVPhOIzcXl/RkHj95U/56puvAGEFSxHtmW28eCjVn1+rmmFE9dtx4kbNFE86I6UkUBclQDcnKdTPnr6g8Y5Ga95+9UvmKfGDjz5n1a149ebl+0Xl7/D6XoOUmMWxUOsFpSaWgylnmVCxVcC5XXWokpnubwjzIMZv97fcX79hu7mUfJVaxWttUCVi+o049+UE1stBkSIlzcQ4EVOUN6KUGN4oTQkzqhRSETIilSq8TYE5zOwHMeHRSgvTkwrKK5QS8yzTNnhriSZSZG70dMhCrUtKEpquVilKaZy2NDWXJabqelqK5Es4jykJlWZI4oeQU8Ea0OrRQZ0zpYrcYi4kBSgrs+/151yo20WASt0IFtagDqVSkjAVS5bMiTVYaqlHehVQp3FW+RmXP+dE+0cUe8QsrtWqBnwZtLfECgzSQ+pcBaHlfVZl8UCpVL+qrJBUB1nARUyP3sf7bMp7Epi6MZrFqE8lUirM80xMqWYXgfVyiE5zkJHbXE4sQ6nvRytFiWLUNI0jrmlZb9t6rTJhnmWtKShGoUs+Dfwu11SVZYIMlKkarZKryLXqK0r1eyiSIO4bi+5b+fg8o5OluLWABIOs+VKk7acfWK9snLQ3c6Zo+3A5lh4LpW7uiauf/Uf0cEN3tkOfXxIvP8NcXRNdw/qHn5HvDtzvXqB2n/KFMwz316f1Xh6xG8vBdLrBjw6mhz94EL1qIxNtuTwCJycNwiOxtVziB/BSHkkxTx43mnZ7xvjmmlQqDtaaaR5RudSx20AIEUXh7NkTmu0OWk9MmfvDgXmKaNvgKLQNNKoKpWNmGEaUdaxWPZv1lm61prFWxJdrw5AzdtMyT4FwN9KerUDNdOsd7ulTbr/5jgujsM4QYkLriBoDNMs6NhRTMFkO2VKUaDaMgGXtLT60EuegLVmDSYk8RVAB61uZGlGwW53xttnzH376bzgO0wOwrW3g9wBKZa0eGC25EY+ciEQzQt1XqqYhF1uXUqVu4QSyJT4ig5afYwGnD4PIv/1KSZ6W1dklFx/9kNd/+W/ISVMqM1VS3SeL+ICIpKyauAEKvTxGspcVxTxHilLMdaLRe3kmjBPnohjnGiArz5qmoJ1me75jvTmnZMM0R7zxoAxnuzWbVY92LbOFOQRSyhjfME0jgcx4uMN7w2a7EW1RkCw5CoR5prQdOdRMNWvRxjNMgf39gWnOHA8Dr777ilASjRVLgoJBZdHZGasxBpQ6NdwkJd3IuLy1Rgw/SyGn6qpb8inyRC+McDLYy+d0/YputeHVT/8jt1dv6NstT57YU0H7u76+1yAlxIw1uhr6FIx+eCgUBbJGWVG2v3h2SS6BOSaGYU+MgfvrW968vebsxyugyLSEdZScUUm0Lqpd1ZtRyCWRS0WOy4ZZfUGWsCmlraT0ZjnsUx0xm+LMzd0duu3Q2oH2zDFT9kfIitIWcIY8DmgrWQ/GaHTbYjRYlYlTZoqBUEDn6nSaszQZYiSpCgp0JGtdxbayGNGGYixKZxSSIZSTUP+2WqALCyWgIuqMtZYS5RBfKPRFgPqgM9Gna2GVonOKVaPpbamJwg/ApH5CnZU/cfLL3zwCAA8gZSmfQy5chYRJipVRrK2hVXK/bG/Q88w8TeIlsBxI5QHaLewPp42mMhn120ocQvotMPUbMOWkTo8pY6mS45Ip8cHCPS8aHaOxVsZhU1l+pFxBWz0KSyGESJxqEvYktvjDPJCjbEKpUr/GGbQ1WC9Ga0qrU2W6LMfqGYdUhPIclJzFXK4yjMZqrNdYLVksBcA2skenQLEt4MCIc6mKEYyXa5oSMsauUClQjPTnyQmVUk0plkm0HCO//vlPeaInzppGQLy28NFn6GmEEuGLn3C171hPA8M4cX1zx/5w+8BmnLi0B4CiTofSY4DycPQpHiaDcgVOj1kx9ejfD8DnYUpIDsdMKYklrLDdbrGrnhwm8iwW/jnV3DAiKY6EY8B0Pco0BG1ItmEY7ihAs24JBPbDgLNyqGtlOMYRlSKr1tOXgjcG4kRpLanRTMaB0UyrlqIUx8M9h8OBRoNuDdsnz7mbJ8rdiMpi7DXNMyrLRIY2kv0bY6LohIqS2F5KPqXCy0SMgmSwvUX5hpik9aiVFWah1DgR1/IXv37Nt2+vJcBTPVzzh0flAViWRQFLBSvvAUHqc1AFzkUMIHOWAmfxl8q5VJZF2ucLGD19pwUcn27psm4EbOZS0Ficb3n6g7/Pq7/6dwIAYka5KiDXwlRm5NksKRFiRGtzmsjLgDUL8wtzkOnHpm+Y50Apcy2EhBmiyPiya4Sp11pkQOLI7Nhtd+yqELXfnuNbIyZw7ZaYIuNwZAwj8ywDF3ke6LwlpZmz8y2u7cnzQAwz8xSIJWB9hzj9TxgTiFPkuL+j9Zaf/dV/Znve0XatFOILK2vUqdCXDmqs8oMa0mCLABhrxdOltt5iEi2jFEWSAq2NkzMvJfxqy9M/+Ee4xmP++t8yDNfkearO7r/763sNUt57JhahXZYDzlYLdRCq6vzign57xrbpMF3PzZuXDOkKtTnDb7ZAPi1Ia6QUzSlDkVHOEjOpiF9IMQ6UkTE/bYQCN0KTF11bRlUQWZSY2tzc3pGNwnhPSJwqj+V+pZKZ5gkH6JSwxmKNQZVM03cob8ihYW57Vt3EMM9iWlSoo6j1BF7YjEpV57pZJw3K+bqYNHkeKWnGWmEnag8IFCRT0IJ4mOaZVKTbvOhBTtkXCsRtVRZzYxWNXYz0lgd1oV+Rw/nRoS90rH4PDjx2eFUn5CKbwX7OoAp7pTi4zNY7eqNx2uC6jsZZwjCQ5njydFkOH8qipan7mVpAylL5ycGkTZ0I+BsZSanaHihsYUtKTQ3VWgCAiuK6C4UYxIE0ZZmsKimJ/idGYoiM+4Hhfi+pqKmQq+31qfegYJnHXv7TeovvG2wnFC0KkqI6YaqK6x7uU1mqzyKUs7eKrvO4rkHVwDPtLPhO2gElQZ4pyVBsIw6cRSR0mHqttJPvEScW3v2BsRBAFA8D45D4eh7Ynu15kiZKnsimJ68awu4JtJc894owDVxd3/LTn3/N4TBRkLHQRxjigezgASy/d1/qcpHPTSfAkX+zyq4g7sS6PRBAJ2CbH7NPJWO8p2gtNHySENKsRBc3jpH9PmC7Dd0nHxHGgdQYjsc9Ic6UUjgeR47H6WT2l8IMS3o0WTyVDGid616k6qEd0b7lOE8UlZgah7WOeZrp0PRPnhGU5pB+hisZY8V8LOaCihEVrYh9rSfPCd0aEvLckRLGejk5bUI7L895KVijKVbLejWeYjVD1KR+zS9e3QDiCbVcvN8UqBeKMG0lV1xSH7rTNX/EcAE5TqT5njhbSpaIBqNkEKJkeS4EvJST+NxUp9j/2pG37CaliKfHxac/AteSwki2hRITxjqmGCXXJwu4lx9CkWLixNVUsLQE0oYiWrkYMhQxRpznCYXC6ELfr/CuYTwOjMeJeY6kNKDLnrbt2Z2f0283NL1luL5i//oVaGg3O/rLS/qVx8zwbrhlPIo9wnhIDOMRZzK7s22dGk2YxpJjYAwzGI9uOvHuOYyM93vWdmaaj0wj+MaiVHVQLsKmo5Iw67WoQdUWci36cx111lbJ/oYMAoSUZPKzWiIolIAWRMtofMP5D/4+cbzl9pd/ipqO6Pe4tL/99b0GKcvI9dLjVKctbGEJa8WlNf2qZ707RxfodueYtqM9e0pG07SeMB6r54RDUUR0pjMxQNGFpMLJrAukD5tzAlVHUpUkYeqqAQAoJZFIHI8HQkmsNuekYrFGo7LEf8uGOsEc8U6RAljrMbpgrWhWSoqkFElZYWxDu25Y58Ic42l6IeeaYkztJzqDVmLDn1JhDhOH414Wm7GkonCIxsEoRaw6D1M0OcoMfq4tqZMAVD1UEYtmRyoeASk5Z4a5MGZxVy4VAMgZ9vjuPK6LH/2+HhLyezmgMg+HSKgVzVzbPzOJlSusjZYWkHXoToGeYJygCovLo+9yqsDqr6puTDnEuqZEX6KqM+KJNXr08dZJZZSyaFuoOo2co8QqIOwTuZC0IqUqYk1CX6cQiCEw7Af217fM44TMHdW2jao8gFIoVYV9anmzQl9Ph4EcZ3znK7BSD3odrShZ6HOrvIjH0RL/7gzeGZq2wTS+ulRKa0SlAKanOIcZbihTNbZ7ROE/DHgXUBKAWYK0F4vS6BJlRLJk7u+vOaTIxflz3gwzbbui847kM2p9iemeYn2DU4UY96gi/kYxPhh3PbAnnA45pZb7+LCiHgP+BYOcAuqWg+y902xhXfPp+5QToFv+SVWfAK5tcX0PIYgwsgmkuzsxeyxA61l/+CHHlImNZX93w3AYCfNE6x1xmsgZvLOEeRZH6jr55pz40DQWWqcpKmNU4e71S3JKrC6ekvsVtu2IxpC1YlKZu7t3dKuO7UcfoZqGw6/+kl1dt3PVMUUTCSqglUMbVYWggBZRvMytPBR0KWbUPJFibQtqmSbTvuOvvvyWsxcf8sXnz/nVr1timKiz/A8Xvz4zSyvzxGLVm/A+oFBV+F7IORCmPSp1OLXGUqfKSjmltcteV5mWXBBrB1VH5Bew9Nu7i1JUzybL2bNP6Z58zP03P8Wkctq3oOpTUCd2qMApWmFZD1TvlnEQF+6m9fi2xRlNyJGcMt4a+m7DNAWuX92wvz0whQymwboeZ1wFTQOHuz3eWwGsldXyzQ32u29YP72gubyg6zz7m2tUUYzzQC4T+1tN2xhhU3MgxllYlGkmhgPOGFIoDIc9pUQ6pzlOibvDTNtnvJdcOqV0/Xnl3FCSrQAkWCagSvVdKk7smaqXW0lZ3HurDEApkSbkur6cN9L2Vw3nn/0hw5tfYIfDI5b8d3t9r0HKaR0KRnnYyCr9fYqZKZmnlxc4Z1EJjHPoGPFtSxB+EV0Ro1Srqj44VRipDZEKUpSRSrd6SSlrZTYdJcCmtljSNFBUksj0caTfbsjK1oRag9GGksUiPySDanrIibZR2JLQw0yMiTkmxsORcDyKUVLmhFqlZypeHzFFEYmZgvNWRE5WExEL+5AC0ygC3lJBllGFnKC46n1RdB0BRKh5FOMca6vidIEfaPNaPefTvZBrZpWSg+q0WTzoT5ZfzYkxKacKVjYCdaqYl5tcKgPQaAlWj0k2iCNJ0pltpjea1ihc0bimFZAxjqhUINXJg0eb5GkS4REoOon+Fl+Tv2nJFbC+kUkylPhMFNHgpCgZJTHJRSlIumgp+sSMpBglxn2cubu95/5uzzjOpGlG54LTBu9E0JpjEBHbcnguRlgKabdYJYCj8zR9i208TePxTUNSUvWlbPHaY6wIfK01NE1z8m+hZGkZpoiOIkbMZkVq1nL94khRlmIbuV9L6JjSkKO0VI0+sXDSUhLPlNurt4Qpcn8fefLsCe7FTzBnz4jxQLt+irE92hjyPEFWdH1H1zrRzVTmLi+gcnnQl5u43Jwi5cliwLf8lVympQaud/h0gFVw8+hrl4d/PWr7pNMHaA2+X5HGUVgUwFjLMBw57o80588w3qNiZgyJkDVTLSCmOYjTa4gQAmkKWDRuBbtVS+kaVAHftsJqzHt0crSNZ8yWu+u3vP361xKGZxylwPrJE3JMOG1IObF6/hy19hz++qdsnUY7GXO30ZFcJoaALtKWKzNgFNYaYQdquKi21Ym6bUnvbjC+oViDXW24S4ovv3nJD9sN/90/+2N+/suf86tf/HU1DtMnxmkBe/L/cnq+lgu57BnwIJ5XKFISk8mNbVkbaFRGZ03JtfCLoZrzSUGmcyYrfWqtLkXqbzI0LN+jhmU2qw3PfvAPePvrv0aFiMdIW8fY2uUolS2kFn519VRRilKZWGCcogjv50KxyLlQRKsRMLx+c8v+es+0n4mxUIrGGQg6MmpD6FrGacZphVvy05KYsCkn2kL9zXdsn52z+eAZpIHxMGKdJifF7V2m6RvariPHwDSNgKl5ayI8DmPgcL/HOYu/2HL77chhUpylQv+oCBDCdUlwrtYJ9d6puunl8iBKPpFmVbQbI3U/EeH+UjhrIy0jyNj1Oe3FR5jbN//bAimSs/BQpXNKaF2qpIKYhRk2q5UgRSNsRc6JeRzAeFKcpddexJgnp1oFJ6GMc4gywZOpKZZIyJ92ZFXqKFd9SA3krECLG2CMoshXzpOQMeeYZkqJqJTI40TRTtTeIXK4f0PcD8TjSIxFVNrUQzxnSoiiVUgyFpzIMo+kKnuklWw01mCcJqlMQsYfQ6oaFWewSmO8tKkW4WxOYjKWomxc5MJxnh/XJPXyPrQRcpYgwiXpWSuELo2BOA2PKPmHc0XXn0ctle6jygVVaqvqtJUBouPcaojAhCIiDE/ImRKlvRSLxmtFW8A7LwFki/YhL+zMg5dCQdo9i3DSGI219vQw/ubDJO9P4dtWnImXe16rrMX22RiD1hJVABrnLSFGUsjVlOr/T96fxViWnfe94G9NezhDRGTkXDOLM0VqoEiZtGxJlm0JltuNvla/2jLgJ4ESYMsPhg0/eIAt2C9+kv1kyOgGBKPV176+lg23BkuiJmooSpTImlhkVWVV5VAZGdOZ9t5r6odv7R2RlLqvqIaBJnSAqqzKiDhxztl7rfV9/+8/JIZtR7fZcXq6YvXojBqx1O6VFD86CwwrsQpMhUlUMITEtus57Tu2IZI0PHf7kPc+c4v9g32Jlc9ZfHzwNC4J+c06nLHC3YoBnYxA/CqJVNJ73OYUsoGmJTdzcvKo5CE6snNTd6Um+H50vCgdNRG0ONeG9Sl7C8f9u+9y+5lD5osFuZoT6wOSabG6nYrfpqmx1nFwcMZ6fSmEbERKix+P1BhqKvou31sjyjMxkYpL6PRzX9PHTxd1KnDGAmUkGcs/Chmj1fMZ26MjQgSlDaaS+TuzffaefC/d+QNUW7E5PSaEiLVirhZ2OxwK1Q+EUFR2CXLnYS9QzVuUq8lktkePiJsd/dlGVH/zJSEFQgj0uzO8l6Jg8B63WGAbS7ucEf3A1dtPokOke/sOy6pl1/VEnXCFQyXyZUfOUrQoowtKJ/eyygpjnTgak0khYpdzzHzOmw/OSYhYYTZf8L3f9b387+tzjh7cnapCqU8vkKmLAuUSwl3WkKJ4DU3FZs+8chw0ikpldMriqpopxWoqfLMRNU6TP8nlsd/U7EzIrzStaRr5Km6+7yN88XM/S9evUUqM5GxVUPIAtrywccyhSpM28g5zyNS1wVUWYzQxQ997/JBYrQdW61OGdUerNAeLBbdvXmXWtLInVY7gA0pbfO8hCipU1S160TCkzPHqhG63RuvAm/cfol97k4ODBqs1lRNlZ+h7mqYVt2qtJa26GoTuqjVkRfADwQ8slwtitFTNmgeniZtdZN54UmVRo0dM4Q+SLl+3XM5U4etlLhRVhQBASokQQOkgZwBMn3Ug4awgxKaqWdx4htMHX/1TVqTAZCDG5YNlHEkozd7yKh/4po+zOluPUWuiPAgDWmfiyDnJ8WLDykULXsiGKiHduBepVxorXmPRCByPFdtp2cHGjkw6yqrkYOQsm00IAastDIHUiUxsWB3xsO8lJDAWuWoGpRLGGSF4BU/sBqwSYy0fIz4GYoGkjTGTn4ZSStKWcypjqYSrLfNly8zWuKqmcgprZAadcxaZojbiZJgMUcHJeifkqLLg9ehXn5m6mJG4GUo3nXKmD5m+zJEntCIXeWq59810s5YLOH785c9L3vgYMvOcSAoarYrvBIQsDpUhQVcKF4CoMtZabK7k8CzXV8GlAgjxTQFUyjjnsM5Nox7UH72eqqZFGUdK2wJHJzm8NRL4lxIhl6RhZ6TrNpow3qOy7lmdrBnOdtw4vCHKLO+LhEDktrpwE5SWoiCXQjSmyKKtaHaO88Fzut1xfHxO5SSLCSUjKaU03kd2ux3zxRzXCsIkG30mdT2mVlDec64X+N2GanNM0leItiW7GTkFdBhIwZBNLYid0mL+NpFMC4LCWOh7cthxeGXBV76y5vT4EcP5XUndnj9LTmLHr7UmonCuQinF1YM9rh3uMRIeL4APdWnz/MMbweNfEvRz4j+NIN3EUxrLqrGbZPq+y6iemNOVoEilcE1L1w2oEIXgagy6Mty49QQp7lDtnG53Trfd0HUDVeWwwO58S1htyT7T+8i284SUaJ3ldkgshozRnm1e40Ngu/OcDyd0Pk7uzu28RmlwtUjCQwws/BVU9sSUWV65gk+K2e2nGc7OICaWbSs27ll8bcaRRgyD7FcpobVDIYhFCuIKGvtQ7uEBYx3eNbz01T/A6AYUdH3Pzdu3+d7v+cv8l5/5j+zWZ1OBN62rx5qMy9DXReEgjaWscY1i2VhiSpytdtRaM68tSkNQhtjE0khJgSej96m+ZCpN1SUQZUJuRwmzyIddu+D6cx/i7pd+G6s1KojlPDlMTYu1gnorRC0JJYzVKHSOYoFvNM5oYu/pdj27LtB1A8vGsbd/lavLBYvZEms0Jit01dIu9zDGSV5QFsKwsTXV8gp2tiRbx259xunxAx7cv8PZW2/xzpsPWBw5bhzOmbUV7ayF3HB2/AhiZLZ3QL1YEkIkId5e+MDQDVijuXLtCtvNltmiZzg642QT2Z9rySWy5RLkwl68XNxN60r4hTk9zj1SWhqB8espmoIsy4UICUzOxZ4h4fauY9uDi3X5x3x8QxcpUD5EdSF901pJsZAVV649w/s+9DHQmtUuihtfzgWmjoIc+A5lm5E3SS5pvyEmQU9CcQkNqQRnSRFjtJPiRlGg7zJAUE44IcaRdaaytRDutCZ76QCIsN3sOD46Y7ce0NmgY8Yk4UNsh8CuHyAlnFEYp9GVJakszHCjqKyRKj7JwjJKo6KYHw1DYJMSx12PUnB1XrM3q9hb1iyWLYtZS1s7GmOpjSGniB/keZwyDBF2Q2YXMifrjUh7L20yEwmu/N1E2SgdWVCKdciEpIoPwohqCUNe0AE1Qb+TpwWX6kQ1AmPF4wSoi5tcowRRCUrhFXgSPitS0gRgUEhytQasK8hML4jK15xzqvxLWUO7WGCretpkcxIkS3/NmrJVja0auvWZmIGVDVNBYczLG9BaRiGKPNl7d/3AsOvZdT3rbceNm7fYX+6Rh4GwW5UYhvFlmmIEJxuudTLnrec1rm3AWoLSrDZrTs5OOTs/52S1wtUV84Wmcg4AP3hC39G0Fc5YySdKDj+AXXVUB2LIpE0mzffod+fY3RnGDWRXE92caGqIHhV6UUIYQ1aG0b9krAS01mAqut2GzXoNOTLfn/PweM3q+A1m8wNcO2D1AkUl3i9Vw/nRXaytsQbm88WlJrzslOM1mBCxi0t5uUC5CI0rTqOM3z/SZ8dK5A9vJNP3ZQpkfdlADKpZi21b/NCj6wbTVczmSyoHXYgYrVkdH7M7P6f3gc3G4H1kfbZhu+mIKePHgsc5jn3k6GjF4S7iyrrd+cB28IJY1BWLeYtTELpBJN2PzlkNPVXreOLGKQebK3Tdlma5jzYVe1f3sX5g8/prLGcLso+EIQjHjEIIVoY4eExTQcz4HBhCxM5khWbAaIdqLaqpuXtyztn5hps3lzLOSB1VU/Pe972Pb/mWT/Jbn/tlou8vfdYXPLDRsRXyxMGZfHAmVFYRQuLe2Y4uRI63HQcPz1hWFcva4irDIi9YDkOJkShE2NLcyD4im1ABead1DePof3R8Fhv65sb7iS/9Abt+g6osDBFbKZLE3xBDmkC7cX8LIZCTKKYaK+ix1VAZULVluZhR15a95YLW1WI0GgpaGxLEjrBL6HaGVo2ENwLaRrTLKDWQw5Z2ppjv3eb6k/s8/fxNzk6PuP/gXc7WG1bbjpgTxhri+TmL5ZIQE6QtxtXEoFDWEIYOPwzsHewxWy6J2dLOdpjKc7yFG31iERLOFWQbCW2ctnUF4n2kSCkS4iAmbyW0dPxHrmcuCezSoEscgazFmDLWCmLnZktMu/c/F0n58R//cf7jf/yPvPzyy7Rty5/9s3+Wf/kv/yUf/OAHp+/puo6/9/f+Hv/hP/wH+r7n+7//+/k3/+bfcPPmzel77ty5ww//8A/zi7/4iywWC37oh36IH//xHxd49Ot4jFD4uIkL1CTV6Xx5myef+SBKaTa7wMOzNTlFYdIXt1FxOJVNWyUxS4IE0kAJszsFhiEQvITz5aTJSYqDPHpTpFFNXzT5WYyvjLPCzwhanGdjJGVd1BuOtt2nMhmTLE07Y29xQGtbKlthjcFpeU2+XwkpcxiIQ0dWCRWjmOzULVXdyMgpQ9JGJM/ZswqeZDRaR1QecC5Q15bGWWbOUhkLCYahB6vR2WGxhBxRKrDyA2e7TuRopU658DxIBf4rdXEWRndAXBy9D5J+ehk+LF3qCNGO5MhpcwMuTiORRY6/TwM2ieU2SuGUIilRL3mlGHKiz5mUDVGpQqwrMkzr5DOPZRwxFkHlNSnEjr5uW/kcH1tEl4i3pYJy1lI1DTu0+JWMLV2BsY1RxJxQSSBQ6eAi2+2WRyen9Jsd2/MtptI0rVigK2DdQed7ccHUIvlz1lJVlmZWMV866r0WN2/QdYW2Dqxjb7vP/GSBfuceqfMMKVLnSKUqsTNPnpQTziqaxZxwckYu1ughZKxP6Erem00dvm4IxSBODzsp7t1MChMUOXpsSsTCD5nqCIWMOY2l6xPb81N2q3e58cQT3L1zhxw7jK3Ynb5D+/QtlK4BizaDjCCGHrRn168fuz8uj2EulSaXhghM8Hy5OWU9mtFvY+QpXKpMxiK4/P1YLI+S5TESY/yxDKAts/0Dzk5OJddEa+YHB+QYscBqu0KnSCxp47u+Z7vusVnz1N6SijLmGAMhU8anhLaWPARmxnDYNuy1c/b3lhxcuyG5ORpCGEgE+n7Lw0dH3D095c7b93n36BHPvy9w9cmn5fUtFsSD6/R7j1DWQd7JeC8DSVyllVaYypK1JlUFEeoDfuiZpYWgR0bhFktyPeN3X3gJhRZr9uTJKCoqmrrmW7/tE3z51Zd4dHQXX3xNRk7KuJQvAkZhmhdMHbsuRYFn6A0P+oFHZ1wcbMZypbV8vL7KrV54eimbC0SscOekWJELexEXUbZmylg6BPzgOTqLvHx3QM0OiedbfIbkJR5EF3VUImGKc3kqCDEFxVQqUzUOYzWVMaKObBWucoLeWlNcvDPaQApBEIcc0TGSfMaHAaUMxlmUSqi4LkRWJZyYYjnfzipUXuAqaB4dc3Z+ToyR9WbFwcEeCRiGHXEYaOagixncbhdIWXFw7VBs+V2krme4qmO169gMiT5maoodQhoJ73lCHcf9WhqxSIhe/MhQwEhuL67BSXxTlMolY20sDJPc70phXIWd7f/PLVJ++Zd/mc985jN88pOfJITAP/yH/5Dv+77v48UXX2Q+nwPwd//u3+W//tf/yk//9E+zv7/Pj/zIj/DX//pf59d+7dcAibH+q3/1r3Lr1i1+/dd/nXv37vE3/+bfxDnHv/gX/+LrevHLRspAHwshq2wydbPHhz72Z7D0DOstScHDo7VEaFtdTGpk/OK7HTqAs40UKUW6CGqKexfS1kD0PSnKjepDX/T3Uhzpui3ma6nEiIuaQxspUEz0GG1wrka7ivmywmiLUQatHVZZWtfiVEWlrMwfrcXWFm1F7py8J6xXQnIscJypa1GbZCHmDSkwxJ4+9RxaRVCyIFLs0HSSiKo1rRMoOgwerQyaRFKxhGlBNopHqzVdSOJrMlbX46ZfNgmJ4QY1Fn5ZbPHlNkxTZ3Yxw+FiDl6uo3Qs8gvEzlpLgJ+SUY400jKnHtskkR8qslZYNFUGpzJdioSsCeMMsMjjtLOo6CaOwTg+GVUxdVUx29uTGPevmWdfjGjlfWtjmO/tc3L3LUhJxlZKlY1IuhFrFX4Qt+HgA7vNhpQis1ZcgGvr2FsuccmQhg6/2xJixM5bqtpStxWuMkJ0rSxVY7G1QRlDVFrUO0phyFR1zf7BPl3fs1ttqWsnYxVdXGK1Ll1gotmbsR0GfNfL4WU0BFGBqcoSBl8SjzU6dGRTy9GakZGoimDthanW1CXnMgJyYBx+u2a7OkYrODi8yttvvMYwdOiUUMGjlagJIJKVoW736LoN6/PTQlC/GNWMDzUaez12Ao5fewwnQRk5LMaObvLo+COedyQJXhRCY4+uUdhSfFmMq1kcXmd37z6hW1PZmqapWB+dkFOk223odgNkg8uZw6blZjvnsGmo0YQhlNchWTuy9jXW2ZF3TNO2zOZL5gf76ErylDIJHzUhRXTjuFU5rly7xo3TY966f5+3v/o688UeB/tX2NtfgDZEDEMfcHVL3G1luKVF2aczJA1uMaeuG4ZdT700GEQNUhknxOym5a3jc96+94B2tofRElCZy9omZ65fv8rHvvnj/MZvnBI3azGEHK/XH8HrGtGTyW36YmlJ3AMUawX5QAZqZvaA3QB9EROgzWNPeHlPmlDPaewgRUaMkTD0rNcdX3rlPn2XuHXjaR6dvIPyYmyJlyLFWiN3RYxiA1GUUDmK/bxFDmBbthhjdRFCJFKQUZ7SJeuqILIqiXIoJ8jDFh/Ge1zTtC2L/gRVydmgnez7xlhy8liXmSnHQWrJqi+cPoWxSLGjNa5pGXzEEvFhR0iOvf0D6tlMzicr95mzlu0A5zvF1UE+I6OVpE8nT86xWNcj+0ccibWJFAMpV5cQ8DGVWpXRW5xQSCHlS6Mp2UwyCq/2rgD/E83c/vt//++P/f+///f/nhs3bvDCCy/wXd/1XZydnfHv/t2/46d+6qf43u/9XgB+8id/kg9/+MN87nOf41Of+hQ/+7M/y4svvsjP//zPc/PmTb71W7+Vf/bP/hl//+//ff7xP/7HVFX1x34989ZiNfQhyWgBRUDzLd/xfXzwQ5/k1S/+OvM2s9qcc2V/JhJhW7gbWpNDFPWHSmAu5KEpKWIa1REZ33fEEMgxFFOsjEqi0U/lMEyDRyXIMZGVeEoobaGYX4kFvsYYi8oyBzbWSpS2sTjnqJ10vlZbcaINPUYHdLYiWTQK1wi5SxmDMqIwUBqGIZKyBxUxLtNYSzJFFl0btKlJsaYrUmsQ+DKWw4sss+9ccnpiyjxYbUiFsT2e1FO3woWpmyJL8BSKqHJxW42kIITjEXVJyIwS5OtZaVTZb0o5wHgD5/L/43EhZ2JidFVJOopVflKFYCqvSWfY5kRAE0pTLORqLWnA2mBSxuY8xhOJgdJ8wfzwUFyFxxli5tJmJ69qxH7m+wdkLd4EzoxqoDxtykpJMeN9JPgBawz7e0vSQiS2FEJe9JHcBbI6RFVa4gmCuJeKfb0CLfdZyKBiRmdxhMzSoOCsw8wse3t7aDTOyqhHayPmnFqIu33fQ4xUyznxaCdEXhUQJnkFMaKcg92OZCqwNSB26cQBTDtdqaRFsj5G2Mt+q0BblG3p1mdszs7YP1wynzlu3l6yOl9xLa9p5ldBldBMLYdRs7yCtpamdjRt/dg6n5yNxwuWYTQBG0/E9BgSlzFGpP6Tb0weL/bFz1yWlo8/PQ6ItDZU80Pc7MrU/Vur0Tjuf+lLxBDoug1NbUkk+mEgDF7GKFnR2IrZfE5jLbPaoGJCzRoopn8ZIbFqY6mqCucqcE4CKp2lS5HUdah8kZ6uSlG5XO6xr6Cpapq24a1773D28AEn99/i8Pp15nuHqOU+q0cP0f2aSmmRUmuFci2VEwK1q2vCIONHW9cSqGc0ve8x8xmDsvz2F39f9galpxRypcXZtmk1lav4lo9/nOOTh3zxi58X/lvME3BygZhQxvF6Kp6BElhaiLG55IblMlVXioO9Q24/9RzRRPreF5Txa0ZKFzcK07xiLFySqJxSiux6z6uv3eMrX36DT33bh+hPLaevf55u6GjKlU/bgWZWo1TGldHtWECOqhWloOsGwKFspjKWYos1nQ/GCM8npASIWmcoaEPwA9shs+2k2Ywna67szZjPKuqmpp21NEFiTrQ1oBLGaebzGWHYiReLEdNQozK2oL+urolRkbMihMhyrxX1XFZiwmYsDoWPms0AQ5BCyiqFTlHc0kmTiBAEXRpRv1GsobRiTMEYP2M9RhgU1MqoC0+slHIxetO4xcFFA/LHfPz/xEk5OzsD4PDwEIAXXngB7z1/6S/9pel7PvShD/HMM8/wG7/xG3zqU5/iN37jN/jYxz722Pjn+7//+/nhH/5hvvSlL/Ft3/Ztf+j39H0vG2x5nJ+fA9BUlsYZ2pQZImRtmF17nk9851+jNnPenr2MGd7l5n6Ny5nNZmCvWWB0lE1cKSG/WkPIkRyD+F4UgpXRWqzM0UQl6bE6RyGq5kxKkRQGYYTbStjmZXyQk4RO+WKNnJVBW4vGSkZEzjhrqJzFuQprHbaQXrWFHDNUggTk6Bm6DqsNqkJiubUs6ui3oJTMBHUkGznUlFJUSuHaGuM0SiWiN6gU6PqOfvAFTZJjVytFjIIuxAybmGXUc+mGmvqeMovU+SJYUJJSFSqK0Y/VSoq6FKYudXyW8TH2rAIaMo2M8gjZTDudfDGnJN+nFCoVyLHAu1opHFJQtUoLoqI0BdcqQXKKXPJKSHLzS2igYba3R9XOphFCzpBUvoiFGV9FFnB5sbeHa2cE35EKOQz0JSm7kF61MVjXFKdfBUhWRi6+KSEl8r7cD9EPhL6XRFs1KtMoe26We0IniVxQmehFtWOcsP6XiyWxlxGTtRarLTnKJ5BQrM/X9NstVhtizHg/oHXF0HuqaiAZSffNTSNTMZVB2XJIa0amv6BceuqoRoRizC/BOLanD6nbRNVkqjZyZdmSeuhO7nHl/c+jspiVjZuhtg5XL5nvXZ3GLwLhKy7HGYxjnrGkHSXJk66n3C+6qJguQLCRwF3uuvEzHUcTeTxUpeC01QxsK5tzFl7aEAJRGcxsTn92hEX2ir7v6H0vzsGlWZlZx1wZKiuZNzEKqdEgSGIInj5ksrHElRQQWgs6GIYOlwxVcgw24RbihWO1o10uManGuJrZ4SHXF3OyNZycnvDg7TvcfOY92HoG7ZLUrsjnvSBfAUzToOoaXYlrdtIWpaUI8l2mdhrlozRA8wVfuX/EO+8+op0tMcZMBYDWZgoGtFpx5WCfT376z6O04rVXv8h6tSKlKM2L1mgj/DljDNY6SeZFGsGcYjFHzNN1T+WgG5U8TTNnO5yz2Wzpuo7Wuoux8XRHlHZGXXBUZFQjn733nte+epfPfvYF9tqGw8ObvH73FZq24XS7w1m5lULMqJ2nnVkG72HwzPdmZB8YvGcoYoAhwDB45ouGVCPuu6kEyxotpozFxTVdKpjICWMUba0ga3xMNE4TYk8/RJQOOBsJuoLKUbkWY2p0DiSXaNs5ShtC8GhnCCmg+h3WZVLSDF4xBEXTzGgbyf6SvK3CBzKKiKPzmSFKkaJB/I1GlWtZL1rJWFJUTrEoE+MknhiRlDxmh5VmIsYoRW0Zl4UYRSiiwNSLyQzzj/v4ExcpKSX+zt/5O3znd34nH/3oRwG4f/8+VVVxcHDw2PfevHmT+/fvT99zuUAZvz5+7Y96/PiP/zj/5J/8kz/093XbUBnZ+FtloJrx1Ee+k/3DJ1BR874PfoLP//p/5FMffpJUNn9jpQK11gl8mSJh2IGypBioNBhlZFNKEFKiDwHfd1N1LBqGKDNGIIWyqFS+QB2ymKiNEd5KCaFJY7FKshyctVTWYrQcnDkn4iC68zB4udhaobLwUawRX4sUIlqNRZIv7GmDtpWYNmmLVQZnLbaW2WmOEYyjqmeCDg0bgQpJZXYom0Y3BHyMPDhb08U0dRH5az57RTE+U5mc1AWBVFHGQ8XPpHgbTEgDF5D8ON28wOinPy66osvwfB7BjfI8F8BFgZGhBskp0gqfMiFnsdouaA9akbIiIoqhnEEZTbuY4aqqnIOjlLGMF0rBlPPFxllVNYvDqzw6Py08Jx4bJ+RxE9YGLBidZKGWzyprMbCKQy/z8yScpRyLe60qnB81vsksqA5M6IDKoiwyKlNbzd68pVtthZysNVpblCpZQVqx3XVszs6ZtZLXE0MkukBKBQk0PYoK5bTIjpWRebK2oMr4SBdLfNRUEFCulxwQ4mC7PXuX9gqYmeadN17nyrWGK08+yen9O1z9wHfJPVHMxSCDAeMqFvu3qevF1HmPnKZLYNalP/LjN6ZShSRNUWJcUviUz488AiOjpPnimNMULsGl8UGimCH2A8NuS1O37F27Rndyjxg7fAmQi0kM+7z36JyojC4W94mQIiFFul7CMCVfK5Xr2REG4bo5IxA/WTPkxMYMWG1IvaeqEMmzj3S7jhw8dtZSNRVXn3gKd3BABs53W+a+R1lNtdhn6HuGFMFq/NBR1RUhJVwtIx1bN7i2JvSiWhp8x2x5He9mfP7VlzGuxhpDXTmsVlhXiT26tYSccTlDDOzN5vyF7/7LPPfss/zO7/w6JyfH5Ixw65ylriqquqGqaon9KFcm+MA79+8KCpHLGLZcjwT47Tlp2HFyfs7xyTlXNztcM8O6fGmPGIuTaUeBXDK5siAp79x9yP/4hd/grTe+zA98/18hZcNu09O2DWtr6AfQVUIbRUiJoZf9HWDYeYxWgoKHVCID5HDudgN952nnc2or6zF7yYxTSqGTjEEmbp4CrQwmR8QsWuFMpq4s1mQqp3F1hbKWrDL90FE18ra0dTR7C+IG6HUxh4zE5EnekgbPboCM5cb1VsQJU/UtfBFrZJQesiaksr60RhGZpPdljxPS/7i2SpBhjKgCf4+FVxrR48J9yoiiVBsjjbqHyootgR19lr6Ox5+4SPnMZz7DF7/4RX71V3/1T/oUf+zHP/gH/4Af+7Efm/7//Pycp59+mnY2RxdugnE11Ic89dxHp1b4xpPv48azH+X47A5PtoplpbFGoGprDa6qyXkrYx8ts0Yy4qSoJZY6+E7C3XLG9wNZyaSaGCHEMofTxNiXxM3R9Fcu+sgoHyttpUvdXxwQldbi35IF/vZevj/mhB8Cw9DRDx0pBMnyIeP7XnxQjPTIop9vqJVAhFZbmrrGWiWFVIJsNM40BD9QuQrVZuFBDJJ3k7K4y/oQ6RPcO9vIuIQLKPyiK5U/Uxa4XnwMSqdfUJDL8KB4Tjwu/5xQEnUxRAGmTB116XgZ29yEBEoCJCWTggToogAmy3jIaY2OotMPKhEUeCWx47mosy4ewkmZLxa4ppZ3O26UeUR1ZOGNih+QzunazZs8fOsOMexIlK6J4oCZpMsIIZShVfEX0TKXTjER+oGhH2TvyqXbHz8HNeHl8nxlEzZGNuZxA1JZMqsqp7G6kY63mA5KB3uBVXU+cnJ8hr6SaZwjBU8Kgxj6ZYfyXnxzlJX3XMIIxefaFJa65kK+e6l8zZSLIMTwemG58vTz7LoF7zx8A6u3vO9brrBWHfgNuEDOAaWkaSB5tIV2vmS+OHis+Bi5BSOK9bX34eXbZLyvrLHYkuwsf3tZUSI3Wkr50rOpSVKfU8lfirFILxNp6GmahqqpaK8cUs0XZJUZhh3KOEK3YdftCClRlbA/jGJcRCmBMoI++JSkeB2jO7KTMV09w1mLL2Mjub5yVupy6MXoidlgjKHbnlPvL1nsH7C8doN+9Yj1wwes50tJbVeabAyd94Inxoz2HmUbtPc4PRaBkMJA5yPNYka1v89nX3qNVSfjbqWlSKF04srImtFal0NOcXJ6yqyd8eEPfhMHBwd8/nd/k/Vqg7Pys23biNFgQY211nJgAi+++kX6wU/3dLrEedttz7j7zlucbU956tYh3XZDs7ck1bJWUhqRsRIQO6Io+QJFOX50xs//wm/y0h/8LovlksMbN8kpMgyBOin291oePFjLCMwImZkgoa1aZ3FAtoIeVZWbUGFtFH2IGG3QnUfXwmXR0+2Y0XkMGy2Goch4OmbY9X6Kfpgv5rRtRdVW1G0jSJ/WbNcr+t5jmxqMYRgCfTfIHuRqYsoMu164YLoiRMVy7tjbmwvCm8eFIUWSYFYKnww+ZuHamMItS74gwAjqY8p+VbhnMQViCtjCQ8nTkLUgkmncsi4Kf6CkJosTb9nSvq7Hn6hI+ZEf+RF+5md+hs9+9rM89dRT09/funWLYRg4PT19DE158OABt27dmr7nt37rtx57vgcPHkxf+6MedV1T1/Uf+vvl3hWutC1bHwm24cqT38zNJ56ntpasEsOgeP79n+Tl3/oq79lvaJu2GAQljDbUdUPlLEPJlxBLD4Hkoo+YFFExQBIvEsgyG7auNGCRnBQxhbLxCYQdUySriARWUchFmpxAqUjWmpjAhw6VA9pptK0hRRTi/DeSc0PoCWEoEucISarU8UYxukJrg3VihlVZiyvoi9JWoPksRkVKW0wVoOtkw7cGnYQEGSIMMRJSYuUjq74f0fULWJ/Hpj/j3wjsGhOmnKux3PwxjeZLuQSIXS4OLkZAl4uRC3mpFAgXKAaT+6PJ6sK3T1+gKqhS5OSERWNyljwdFFXxLgkpi6levngzGsVsbw9jq2lscLkDH19TWefTZ3Hl6nXm+wdsj3YyTx8LqBQlfKsccmiDGsdOCILh+x4/dLLRl8JOZykQVAig4tRdRhC+06XyTVHiCLQULNYoTNXQ1rWk06KEKFdJ5+K7HcEHVpsdzhncwR6VMzI2jFFUG8nC4OX9OYGIR7Th8sZbSsML2GtUJUwcJU9fzbk6/wTbRzuaZ6/R7R6y6Syz5Q3689dpqlugayEMjR1Zzmhz4VMz3R/TWPJy7ZIv/f3FGHIKu7SScXMBLY/3mmKEsElFGh7lns1pVJ6JF0csay0GDySqtpagPltj5zN2u40Y5ymFD56u37HrOtrFElUZAhFjlHTVGhlxkYhDKlwhcHWNbip00rjZjFTNqHc7UrchxoKSKhljZiXIWoqBebNHjYW6hrpicXiVfGWfB3ff4cHbb9K2C2ZVjSqGdGiDrh2USIcwdITQ47TYBhAj3g+09RXuHp/xlbv32fYJ5+rJrNFZJ+hiLryEgnwa6wjJ46NntbPcuvk03/u9h7z99hucnz7Eak3bVNTO4awV3p3RxfwrU1dORitjg1AMAsmi+nn48C5d6jk/O2GzXrMYBkGR08WlndZnKepBxlhnZxt+8Zdf4Au/8ztsNyd86CPfxGIxJ/Y7qrYhnMq4xehEPyQh2OtIyEgiemmOTAZrhGuicpzQmxQlV8znBEPCGYPRo69IGT2FNNnyiwRc7snZrAVthIdpHJKn49DaIXi9AuXY9YPEBLhKiMnTZifjmpA1KWr6XY/RluuHByVVekSbxjtf3Ht1KVKGEPBDImlEMOIHUpR4kJiTGOopyacSrzDhGcZLwZIj2Vx2zYvrdnljz6X5lTDgr0E//xiPr6tIyTnzoz/6o/yn//Sf+KVf+iXe8573PPb1b//2b8c5xy/8wi/wgz/4gwC88sor3Llzh09/+tMAfPrTn+af//N/zrvvvsuNGzcA+Lmf+zn29vb4yEc+8nW9+HsnnmTm3L52jcW1p7n63HegjLjobTYbctLsH9zi/R/9bg706yKfGtNgc6Jyjrau8cOOEGSRqKyKaY3BGKlWjU8MaStQLZkcfFEBZeFcxEgSvFgWCZQOJcr/KyEzoUUupwzFlyWStGIYJMSKFIW8loUNrvIABAxRwg39JYdTZSYoXxUuxGRTPt4dSYYcMUgqbTYQtUFVFToNeA8oQ8ITUiRliCjuna0ZRi7NZUTj8uRlXENc/J3WWpJhC1wefCidDuMEbPruPP5dyhN5dvz6VPyPZ8+lbj1TUJTyF6ooAsaY4ayyFIOlrLexxM4r4bvYlGUD0pI3ZLK87tliOWUwjaTg6U1PL2h8+YX46By3n3uO104f4WM3Ec4EQYrSJZUCJGbIOaKVqDxSTlSzGVobxsFXDBJvEAozXuVIzOI1IJ912WgKmqeVxAuIEszgKsdi1hL7MCF+zlWCBGpN6BLbdUfjLPOmxs0qQMh80QesE7t3FcexTi4mTxGU8AhEWXHpqo9GeeUiaqUJsWO36TnrMvfePaLfeq7fuMXpycDe+65ydvdN7PIjmPYA8iUfnRQZ0ZkRzZIN8DJ5+fLNOHbRj6N0GcSYz1rJQ+IyeVNed0rj+45CII/lPk2ZNOrTYiJ6z9Dvypg4M3Q9wSds3eKahtXqlJ33bHdi4KYBN2swbU3Y7koxosEK4lfVTu6HQgJPXuS+RltMcuioUHUl7vh+R98PYmve1KUgNWgUw2rL4tZV5k88jZ7N2W43NIsFt59/P/fevCOmaKcnLBdzqqrGD4G6kqJQoTh/dExTz0haC5dCwXx/SbA1v/n7r7DpPFo7nKuYNa0UjlrjKkGDNHIQB5DXV1XUTlNXYjO/aBd800e+hdXqmLNH9yEOWF3ypfQYiyHX1+ixeCz4nBr3i8yAYjX0qOw5Oj3nfLXioO+YlcJRCvnRWHK0Q5BE5fPzDZ/9lRf43K/+Gquzd0Ep3vP8e7BGkXWmns048Zm2StSVZruL6A6amS1IDGVUo1BdYL6QRlJbLXutNSXlPImLrBVLeDcieDmJ4E1rMW9zlUiQswKjmbcVTdtQtzPq+R65SHy1dbLejaJBM6zO2XUDhFiMS0WAobWmHzKZil0XCFHxzJPXmM/bsi7L+ixp0rIAZF/xwbILmt2QaJRkw7naF07KhSv3GFswVoEjuqj0KAMfR+PjsiwIS9nbxyYv+Ig3Zmo0v57H11WkfOYzn+Gnfuqn+M//+T+zXC4nDsn+/j5t27K/v8/f/tt/mx/7sR/j8PCQvb09fvRHf5RPf/rTfOpTnwLg+77v+/jIRz7C3/gbf4N/9a/+Fffv3+cf/aN/xGc+85k/Ei35//ZY7Tzx4Tkn657n7E2eW15Hoel2W2KKpJipasvN5z7BbGvJcSAGdwlNUTRNSz8kut1pCUYy5BgxpevBVqgqEvot3g8S6+AcIUUysagMSvcVpYtOqhiQKS1qknGDLHHXRmtBMSJCaA2R1G8xWpQlMfSiuvEeFctstIRXpZhwzk3ddC6FUIqebBTe92iVUNmKT4Q2UFXk5NmuT4lIxSzcB8ReXmmCygzJ02fFw81usuLP00EwbiFTYS5FGnLEGq2wBT42WpAPHwqScOmmF5n4JZVPaYMkn0cO9a+lVV1QJSnpwogHAeMoBll8pXAai4pcRkAjwqKT4O4mp8ILkVegtKaazy86eLiAZrjcwedxmlUOT82NW0/w4PrbrO69hQ5hkiLGNG5y8npT8clBgbEGp608hxIjtcmcKmcwCV1JsKQEwsWiipDXYJQoh4zWWCMRB8466tqyvz9jd35OylKEEYUQbpyjX62JPrEy0FaW2inhxZIxPqCDl5RT5UslqsjZMHIEUONRcpnImqbrR/meza4Db3l4fILfes7PNwxJMdtfcvLu25A1vjuC6hZGWSalRsokwsVz5ctoydc+8vTndLCNjVxmQhbHe1ecqQsJsHggxRLQKcVKupg1Unw1SmcZh4CxgqJ47xlCQNmaoDSbzrPxgdP1lsEHXO2wTcW268k+UCmNRgvPJ2YsoNumIDkSw5CVw7qa2XKf6889S3KOB6++RH8uUvVag0PjdEXdiAJo0IoBw9LVzPavsDw85OToIco0XH/mWR7du0vX91SVxbgKcYBSpAhDGCBb/HaHaRzdZgsZlnsH/M5X73DvbE03JPldZFxlmLcN1sjVt9ZO3AVFBmewWnP08CE3b9zEOkcIUjgsF4csFgfsNqcMm2MYdmgCE7aoRzOxiyuqlbihgkhXJd0+cnx+xma9Yug2pBgmo0hBc4v0VUnjuNtu+c3PfYHf+vXPsT57RAg7lvsHXNnfRxFRGpp2RhcUus40tcaHSAjCR3FlpKWQxkspxXYzsFzUBRHXeO9p6hpdUO0YR5VZKgiaNBBag3EKrWV0ZtBUlSjnqrqRuAKjULbFOYupHBSPlaw1s5zZnRwTh0RdW5StJaQyKmKq6QP0PnL1yhVuXj8QU7YUydkydYNlPRlA5Z6uV6w6x2oXqVKPzh7dd3KOpFFafBm3zGVfkwZLo6d1n5TCmIvvvOgpR2SM4p0lrsFf7+PrKlL+7b/9twB8z/d8z2N//5M/+ZP8rb/1twD41//6X6O15gd/8AcfM3MbH8YYfuZnfoYf/uEf5tOf/jTz+Zwf+qEf4p/+03/6db/4mMBHRdxGQm4AgYoTSrp4lBiwqYZ0+FF26RE2FB+UFFE544yhaWq2dcPZ8bGEBZaDVKXE0PeEENDGkLVk96TkpxBCUZwIh2R0CJOo65G4KHNSWzq7ShusrQBF1TiIieQCyXuReo7QnDZoQwktzMU0rMD7yhSE5IIPMigvabhaE2KUeaW2JJUkWh6BH4btQPId2Q8T632ICR8CISbWQ2Dd9SLBzvnC8Eoh72/sbgs6pMpGIt28MNmHKCiCdBi+QOhM6Mhohz+6e5Y65dKxMx095fsuLRaV0UlNSsOp+CFPM1ExUlISZaCY3GvVOH8v70dn+clmPqdZLKbCa1xnuYwxpOl7HKYcX5Oxlmfe9wF+/+gh/W6FLdq8MbH1AjzKoIrORuny/gpPJaeSF1XyYqb3K4oapUUZ4azGKoFgTZGzW20m1YRzhms3D+g3G3bbHl/UZ8kHiZb3nhQ8OkdOjaJ2Gr1wkDLGRGyv0c6QtUbZhFIJZfKlMYoUNGp6/6l0alkIs0rE6LvtQKUbTrsj/BDZa5b4BKv1wJXeMrsyZ3vyZZb7H0BRT2WpIHSJcoUKcTZdoCgFvh4Hche7YZ5qyrGAdK4WouOIxpX7JaeMj1HIquMzZBkroEV6TFFfydgniGOrC2hrQWtiipxvNti6Fsg8ibtyCJm9K3tlb5KO2mahpjTtDNVqjNWEkFDW4WMkZ0VSUC8Pqesat5yj6pbnPvmdPLr3FrnfoaPH5YBLCdM0aDfD7i1we/tUs7ms+7rmyhPPcProGG0N1596jnffusOuX9PUknidy4HVbztW2zWVBqXFRO/g6jXeOd/y4tv32XkxiZQiD7wPxf9kPHAEDXB1JZLjnKmriq4f6HY7qhShadAjsd9VLJbXsVeuM2xPGM7fJfudhGeW+3nECS8vMq2E5zUqXs/Pzzg/OyVut8RQRhPjQZmyeKjkRNdt+e3f/j0++0u/xtnxKcH3pOipKosrKIhSMF8sCFniI2a1KN62fSYGGf0pLSpFpxSxFO1DyFSVRidN3wWMzcLtyeLXJfxCjdVgnbx+VTadmBNN3eL9QChZOC6JDUaKEVc74S0h50zVNti6ocqJatewXq9AOZSxxCHhg2XbJza7HdevHvLcUzcF6Y9y9ukyMZB2JU97tcYTBsV6Z1g1kbmK1DYJATcM4qSOK0WfGjfVopZKYh+hzdTMSaEfhW+Z9eX5/SW0BUIMxb3863t83eOe/6NH0zT8xE/8BD/xEz/x//F7nn32Wf7bf/tvX8+v/iMfMSYGH3HNguff+834oGgbc4FgaI2PnpjhzqC4OZ/xoeUprqBfwgPI6JSorSSE9hs/oR9i5COs5EpX5Kqhj+LMFwuMFkruj5DtFMY5rBMVkIwPhAlvNVilcFWLK+F3YnmeQVmSqUjBi829tmgf0FZCvox2WD0I8U3riWE/hl6pnKQI0hpX1xgrTqghdNiqJpAZhp6MMNJTFn6Lj56QsxBmk7jF3jlZ0QeZycZCIJxuumkPUeUwuVBd2JIcfNlUScKnfDnIynfnqVZhAucnGH46ZcprHcuPxwuEsTiZ6qc8/jO+VlVg+3KUpYvfrcv3jkVK0go3m1O1M3JmWpi6KAVG5Gc8KdVUYI0HpOLg4JCn3vsBvvoHv4eNvXSICUbFixiqKSE/oCekRZEx42cZC6JWfGuEMpEFiUkisNHaFJWBEGitlbm+hokz0LaWp597ktNHJ+z6nvPVju1uVyTJhvWwRcVArTOb2tDaGabRqBTlJAha3IeNEPUoackjipMvwchy7QqMjLzWjHi/+CAHW2UMKYonSIgw9HDz8DrbQTEMnRRetpVxUZ4u/yW1RrxA7qaSdHwtl3eDixJ3lH7rQu7UxcsoJxiCx3eDoDRl1JbJZJWIvWTVKGMml9GUSqESPNoXxMtW3H94wq39BoxA+TGLw20MUfKbsqgbnLE0WdFULVYbFvtLNpsNAbAxsd3tSD6TcqDrhMAfdzs2Q+bGk8+xaCuqSvgRu+NHzJb7RGcxdUvQhvnhPnUzY7vrWK/WuGbGer1lvVpTL+acr47Zbja08yUohXOWbRbUVSkIw8Dy8Ao7U/E7r7zGqosiTQ6RpqlwRTqcEIuCFD1JaWZVQwwea0UVqbVmvdvhzs+ZVTXLlIgJjFHU1UBOM/R8zmz/NrPlNYb1Ef3qXVTYTWO48d66HBjYpEyrAphMjD3r4weEzbOCMk8RBmJjn1Qg+IHf+70/4Jd+4Zc4PjqWSIgwkJJ4peiiylQK6lnL4toTbNfHtFYTnIzjQ5TmM/iEV4pkNc4ofIicbzJzVdPWFm2iODZXQspPFF5jSuiCmsZI8ewxEjhrISUth36Es9MVrnKEpGnanqqucFVLUolhGKS0yAmrDVpDUhoVNRHL6dqzXnuaZsbt61dIcSApRzTFXO4PRUFktEpYFYnDltVGs2oU+1bCt1OMhUwfwFYiNzam9KcXzVqMCWMutwllX0iq7M0Xo1oK4ka+VOQ8tpn/Hz++obN7fD8Qo+b2089w7fA2xlWSvhojVVPT9wPB97hKMUTFF+5ZDtDcanuRcQZxmNUpUlmR0267LVlLYRGTFYhMi+9CshWxmeG369KVRVIepVtyKBo5k9BlrKOtxVU1qvBZtBbym3WuyI4RVYzLRGsxJf8guyTx5U5BIweU+KhUUp3rCxg8+kHIk67IRE3hZEQxmEIblLbEbgXZI1wZCDnhY2QIGR8yp73n7ukZCfkMR+LrVFXkEUVhCvIrzS0xZ3pf+CjI10NME6R+eW451Txq/BdlDY2BhRRmwfjvi8PJTPPRsUXOxQOlFB8JCstUGgAlXAByFvVVLoVBTEQlz708PKSaz6euYHKc1aO19ghtMxFEx0cGlNY88/x7OXl0xNEbX8EkkaYbc+FPICIECQZJGaL38vtk9YpTbxAJcpliXRA5U4RU0kStvUBVnJb3WoodXSSGi70FOUYW0dMuavxuR/AeozIpSH5QrzJhbskHCWVrMFZwd+1QphZW52XjrZTlvirEciHLloIyF6WKkuRvaxLoQGVBBUHXQk4MXc+mnxM6xd6tj4DbJwYv4yWhMyPCcKY1denmuLTyL+6li79+jNWArURFYoyRMSqKvhsYdh0xDFhXoU2GpKZQxpwTvu9QxpHJxOgLEuhxqqCbSlG1c5RxvHu2xc73UduOqmklaiBHgo+kYaA5OKBZLGi05uDGk+B7jHPkroOQ8JsdTWXoSLR1hXGGugKzWOI2A4tZg9aKZj6HlEX5dGWPXR/wCZxRKOMYMujKYauK4wcPQSnqpqHfBZZXr7M7ORJX67ljs97KKLbrxW6hbcE2vPD627z56AyfFFVjcc5QWyeW6lbUkCThmVV1hfcBbRReiG1oYzk8OGReCZdpu93iXEVOimEYaII4mqZ2TtO2NAdPUC2uE3YnKNuwXw1sM4UbJPvoYV1zra5ZOoPVii51tMMZaXMGQ4ciyd6sIKVA9AMvvfgKv/hz/4Pjhw/p+56Qyh6Uoe8l+0cbJUnG7Yxbzz3PW7/9+7RzcAbaDAMQtCYOkcFHdn1k1joaoxl8ZDjvSMuGypgigsjshijFXErQQ04K48EVWTFIEG0/SCGcsiIVkUXqM6gtfujFQ2UxRzuDcjXKWoZ+EO+VrNh1ohY8P/OcrjpMgg9/6IPM5w6Knw/kqehTXC5UxDPJGSD27DaaVdvQt5llo8RRvSApRl9ef6o0joXOUFSbeiLWM6Hr48Yu3ipSRI48sfH7vt7HN3SR0vUDi/qAj374W+mCYgbFaht2ux3WCaN86AdiUmx8zZfOD2nUA5ZmgJwwiLeCU4bFbMbp8QmRiE2ZSCgcEoVWEXHjE1O2GCDlOHXMVWUlF8NknJWU0uhFnmaMxRmRG4//r40uDqoaZYshTso4W4MR+FyG7FaSebUtFvuF45ACRAnMU3WLLnNMVMaIlSkpVvgU8WGQ0ENnUH0uBYQUJjuf6IbAkOBos6GyihBhV0YQl0cPI+lwlOHKASy/0wc5mGMqB0zKhZB4OQn5wv9Ak6eDSBfUQIDOS1ghFwVKeQXyw2PRXtCQsSCZYP88IifqEroi4548IjfIz2qt2L9yIK6Nl37juODKlICRN/HY6GkslpSiqio+9M3fwgurc1b372JJZTwnXh2qoA1KifNiNrJ5hhCnIkUpxUijSXnkyo9diXyGKovCwFYNtlaoOBR5d3GKzKIome81DDuFqy3xKc/RvSO0CoQm0++K4Vs1YGpDtVdhaw1WkatMNqX4UlI0UNQlKgu8Po17cpzQIkE75IOdtRbdeurWEX1PrR27mBh2a3LYZxgSM11hjBNX21zeY4goVVLFYRovTJvc1yJq43XgotYlSyF3/dp1mrpBqzKC7D3B9wy7TTGjUpjMNJpViI+R3+wgSrHqw0AYemkWCtol4c+WgyuH3Lv7DipqhhBo5jNQmtRtGPqeqhZlkc+KW08/z8H+AatHD0mDp21mYhy23mKVAa1o5wtUZehX57gmMZ/vE/oN+1euFKlvxNYV2VRU8xZ8Rwa0q8SnQmncfIlzJ2TAmhqnYR0DHosPGd8NpDzguy3DZi33yXzO57/6Jq8+PGc7BKwTx+/KWayVcWPKiPQ5OXRS0mErRdblULbQDx1Hj47o563IjV2F325pa0vT1KicCL4nGMVARNuaum1YLJ/D1QtuV5l7q46TKAV9W2me2Ztze1azaBzaatY7RQo74voItVtL3IiSEYb3nlde+Sq/8PO/xPGjR3g/EGMgxjFUVs6EzXbLjRvXiaGjriuuPfEMb7cH9P5hISZnjBZ+oTEKm6QI2WwHvNPUVuIGHoUds0YzXzSYxmCsENXFhUEz+CxKzkq6pKwTzorzcEiDxFZkGQv2KRKVok4OYyCcRbxSmLqlaWti7MUTrJ1zvg6s1htW20jfBd5z+zoHyxkqdSWzaET/1AWKMe1sxa7AgNWiWusHRx8yPmaqNBC7DdEP2PZiLx3FBEx7k5xVTIIHWS9QePW5tJn5QqI8jY3+tBUp2rZcu/E0N689yW4XmC3k0IspM5vP2XUdOktYldh0Zh4NLV862+ebFw+oiRCD5Nb0HbV1WKXZ7bZkRA6ZEV5JGlMxSeLImDKWjNJOLtr4mig3A2K+pECKCSNjGo0utvnSfWrrUCoBDgaPqwTF0dZBFHXRmPEwqhhSjOAzyondsikFkPi0yAFEtIShxxmDjz2x7zBaCp4heHxKDCnT+UQfIqdDZLXdUGnoRtQEOSBGPqo8lLzJeNHtpsLOt3JKokI5YFKR4k2dai7V/cXhPuZ7XI4Al3/UxYiIi6IChGeStChzVPk7dek1jrLZSCp5GXn6/cKNlIPYKLDaUJXkYyj+I0ZfjHXK79d6lMWmaRxx8buEqbFYLPnYJ76D3/6Vz9IfPxROh06T9bfSVvg4ScZzpETShhxzUQOUEY9cbYH+peqbjJTIVkaUSonLsREvBolsCOSS/uushUo8Pm5cP6C2ic3mnMU8kpLGucDyOixuLZgfLopc10G2RagzFgRKij2VmG6EXAiTOTNGtU93h4LZ/CpPPvsUx91DTnYPUB5qrdkOHauHx9wND4mru1z/1h+gmj8JWRNjgErIyJPkPU+TpIvP+uIunDa8C6Qto7SkKD/z9LPsLRbkrBj6QfxqohAq5fNvEPdcUCaVa29BG3H+LZ93SlkKnSDJ0eMGPJvNcSgebnqiF0BLl/vIakXTztB1zd7128z2r7EbdrjFEvxATJ7+/Jx63ojx3WbNybsPyNZQzxdcv90Qzx5hqhm7rgNrZcQ7a4Rv1tSkQaOcBW3xMeCsY+gGtK3wfUfwA8kPuGrG3pVrqGGLUok0eEmzzgFbLXj7dMcX758ylMs9RoaQEnVVoYwWTou5yEEStLHcCimTcqTrBiHKo/AhYJSmsuKtst7uWLQ12RrJf0kGFcD3mbrkK+0vZ3Q5cz4MkGSk2VjNvNYsZw5TWbQa2PRbhtUj0voE5cXCQeXI3bvv8ov/47OcnhxLc5RSQYJTGUMq+q7jzTfv8Pxzz2CsGA8ulle4/swHOX31XWYmiccQ0ryYLKhDztAF2Ow80UWsNXRDoE+WqCNDSOwtW7lRS/BsBFLIZJ2JOUwrJEUpVnIZS/oon1k3eEZn16wUuyGS1JprN69S15nQDSRVETDcOzoiK8t+XfHcs0+LW2z2oKtpzJLVRHeHYuSmlDSHTouBXAxiRrfZKTonSFK3WdEMPSkmIgpT7DoETM1TbETKUfgn41ZRzoKc5D3rYvImzZ2a9pM/ASXlG7tIqdsDPvZN38qQNM2sxvuBvDVC2AyBpm7Z7baiySeRc2C963ltWzNjwfPVETZ6bAatArnbMKscxyeP6PsBWzfYlMiuKVHpoZgpRWH8K0kilke5GFlmb8654gMQydmTVYUqvglK28IzkNeayRL5XQnXxFjpZmwlBNsc09QphhAgpRLSV2zpyZATOo9QnwLrBPnJiSrWpK7D90KgFV+URO8jQwjsYub1h0ekVPgjBSF4/H7Kf+g/cxYfEpT4dDir0THTq0Qsv6Pr+gtEZryRJ+SjFA6M8EcuWREX5Cv1Nb87I9SJ0uMDIwH28UfOxdsjX5BqKZ25pvBMSup4VZXxxlQeiGOuKriPHuexKEYlzlSE5YsZq0Jx9dp1Pv6df47P/+qv0J8+IucB57IgaLbwO7IUncZIJlMqWMHQD8SYS3xCJk5dSClMY5Qk7WRIcUAlCQ1T4cIwL6VUUA0mH4qmUbhbexykCh/muBaamaKqHVVTl1wNC9mQgnRgqnSfKuXyAZcCNKULMvV4QQRiKk7AGWUann7mm3HbV9iebPDrHhPBJc3q+JRZfchbr34Zxf/KrW//P6Nnz2Ow071xudnKE0R8aZJdbqDHXsZYzCjNs89/iKeefoa2acjRE70iekQ6ihaX2EHGwGRK7pN4OBhniX0olusF6dNiomZjlNsoZXE9VeB9z7tna+Yq0jgnBVe2zK/eZt467GxBFyOh24mbab9lu9mwPTujaeeMQZG78zP0YkHnV+xdHWjaGYvDQ3a7Db0PXLlxHa0Uq7NzXILKOXofqCu5h8+Oj2UU01b4YVduAIfRXpK9o6NuG4xRDH6Hs5ZTn/jd+w858wmlLVXVoLU45TZ1Re8HnGmKAk2V3Bw1maRJQGcWYm3h6uUUqVxL5SwhBhotXlQxA8NQuH4WZTVp6FnFQAyeWVNzEGe8cx4haPoI5yGy8gHlPY5IJGGNpt+sGNan5O2K1C05frTiF37+Fzl6964IJvLFtRvvKdCkBK+8+iqf+Pi3sHewJAZP0zQ888Fv4+irv0s3nOG07Hw6lwBBDdjiUh0VXcgQPLNZjTKK1abHp4qsPXUl3K0Us/AZy34SMwxBLB4oPD8dBKVPWdH7gHEyB44xMQwRHzOusSICkdqHs7Xn3rtrvFpQ6cATNw45uHKNHIJwFy0FVRU/bUG5RyJ6RilRtDqlsLpIkftI12t6r2h9xHdbQr8TZeFohYAiZlHFKYpYJCW0yZMJpQwUVGkEC/F8RKMVjCpHLo39/7iPb+giZe/wFu957v2cbgKzfUBJsJJC4aqawXucq4opknSmxmqMqnh1cwUXttxWW2xO2JIF0xgZEXTbNbbrMN0OtdyTmyx4ANmoyybWe2GUpxLg5UPARI1SNRZLNhZFJEVPGDJ2bieUIuZEDB5jrLjSWkfKEWuUjIHUqKIRWHpU93iZNZXQMBnKChfFkFHEGIrcNpCGAWLEuobBnxOCl7C5UOatPvLG0Qmr7ZbaCKot2cVMY5PJIXasiUubKw6RTIfiOKIYZzo+RHa7XZEhj+jKZX5Kng64CTy5jN2r6V+A8BrkbxQ2F7j+8uHF+FzyvGO3PWrzLwmMBZUZD+EsktTpMCzz1OnNXuoAJrfVAgaNTYJ8UYqZGzdu8snv/h5+73OfY/3gLqnvqZygatMoY3qNIo1NKYvHDIK0SOCacH1EgplKKvcgLHqVMFZhbSOKgKLySqWbk3sngpIuyjhNrR04jakyVe3QzjIG/OUsaKE4pAa0KYTY8TMyxUBPvplRSjXa0EtRI2hFRqHdIe3+VdrFHt36IRqNwTIMngf3z7j15NO8fTewuP0F9p9fgL4pnVkhvU4F7VTAls/5cbnZxX1Vrsf1G7f5i3/xr/DE9atAwgcv57XSJZVcyPDb1RnzvYLaKI0uzrcxZ2kp0yjFBJQRNVzwst2ngHYVs/09mnffxljF3aMzbuwfUGtF1bR0255h22GrGf2jI7bHR8xmLdl3bM7PqdqGnR8wGIYQiUCOiXpm8Ckxny8wTcPq3fsc3LjNuh+wObPedRzuX6FPiExdgfcDq/Nzcobt+qxEVEiTM2w6dIo0sxkmeYbtGcYo3N4hv/nlu6yTVOoxiyt2XVUY8WunKiaa1sroWdROcv9OyF+Scctuu0V4RdLkhJBoKhlF+SEwb+viPBrY7nZUTg7pbAwxRuracqAMtetISRHJHPeBlAY4X2MVzGvLrYUjhMB2fcawXTEcnfBrv/sqb735BsF7QXNyunC6nooUQQTfuXuPN++8w7cefkQS1I3m6s0nefKDn+SNF36OVicJ9lNQbKzJJJxRUGm2PhGC+KLoKDtK3w30fWA+cyzmgqxTFIghBnKAQYG1GacNEaEZRO/FrDEkdBJ10DAE4fvYCkWm8z0+gbKGd+6e8O65p21qbl/d56nb16maGbq+wuruGZZM1iIznwQHFBReK+FKmoQpRFmdIjErQhIduLWanLygcCmiTOGgZFPQVFl5qZgcjgj1Y/vuuCJHlPMxGebl7/njP76hi5Qnn3mW/YN9dmFH09Ssth11K5bLwzCUrJ1RHaAgBYxy0qO6OV/aXAO75lo+gRhkk0yeZeUEZiUTtltWfkBVNSllKiWqimjEVVUWRBRlRulclQeVFXWtMVaKhrGw8cMg0r6cyEHTDz1to8s8MxKHBKqT7j5EjLUT7K0UQvTVAhvG5CXkL9tCj8ri/ZECWQkRM/iB0HeEFEgqMIRA5yPdENn0njePTrn76FieU7CXqXCYHpcP4xECKd8isK8w/00ex13yQ4oSCxD8VJzk4u57UaOUpTTe5BMxNV9aGOUALmMRi8IkGfuoRDEdkxIqZ1ElqdIBTHNVLmTT0/gpIb4hj07x/YBvfOHZSIE4dtMXoyim1zMpmb7mnpS3oLl27Qaf+p6/wBdf+B3uf/lVcuehApLIXHOUeybHWKTHeXr+UdInDinypD5nfAolHbtArgg/Yj6vSNqKk+VYP8VYjNgEUVJDRjlwtUMbjdI1WStQkew9uQ9kn1HZoE35YGOUmdrI7ckghKA8VpNTCUtOqBRIoSNl6aqNaWnme6R8jIoKhyFmxep8x9v5hKff9x7u3bHk6g7t1TnG1mzXG04eHU8f5oWb5aVihVLkqYtb1VjLs88+z//pr/1f+diHP0hTWSG2K8gIKdh3PUqVtNhhx269ppm3ZK/JRrw2cjEFlFRXRdbibRSHc4L3cgjkiFKKql0wmy3Y29vj4cOHvHt2zvuefoa9vSUqJDa7yP2336Fqaiqt6XpPt93hU6aZzVidHKOIdCRWux3DesPy8JB9rVF1Q58iejZDVRXKKLbdQD1fSHq4coRhIATPdrORrLG+4/z4mLppscaw3e7Iw0DYnEnMRhxwKbGKid9+6yEPu8CQvHCijWHWWjG4rCzGuULQFkQ2pyjJuzGWw1d8ooy2eD+wXp1LYGlBeI1RGGexWqEt9H4QtY+CbBLb4Ekxsbe/T0Z8lppaYj125d7aRE2Mnk1SWJW5pSy3rPg/bbc7TtcDr73+Bl/84ksE76cRT0yxOFxfWrtyi9Ltel758lf4yIeep6qlYXSu5vlv/hSP7r3B2ZsvMnMl46bwo4xWOCsdVJMVXhUuDoraaskoI3O+zsQkAETtZFRUO8kuUtrSd56oM8FLExSKlLtuJWdqvRtIuSjhcqatLCErzs93ZAsbn6gqx42l47nbV5m3DSlmrn3g43Tn98nhGGUcScmIPpWGTxV1m9Zi8CymeuJTkxD38xCh7z2orgQNBrAykdBazOXGUU9OokS0VuwULtZhLs7bqhgiwmhNMDWif9qKlOu3nyBljasE+rRONO/90FFVlhAElRC4MolCJ0WsE68DVe3xYvck7007DtOGHIPkOTixlt/2vRgX9R3EjK0cIWXxKVGQtSL4yOAHgfAy4sSHkHqLaIemrohK5oQqBpHGZoXWUlCFJEPt0HuqqmIoZD2nLSYaRj8ShRRdMYTS4CfxAhkhtsIRSCkw5cDESAgdu6Fj5we2nWfXy9jrjYfHvPHwiJwjFRqyLeMoWdgjP0Jd+szzeOPDBSclX9z4YspWGPcZgh8VEsIIT+VnZEp0YfEOZcA0EValKsuXiiJgQlDGQmfkmcgjFdtlsZi/qKvKtRkJDmWxZKXoQ+DRuw84PzvHtQ3GOHSKEweFS69wInLqcQwxlmLlq9PvkD+Xe3t84s/9Ob40n/PVF16ArieZIBwihOwnRYqMaVLxToghFjt88aoZCXA+Ciqii6QhBU/Xd8zmNdrYsmFoSJE0JFQeSqGS0CbinEWnCqIlDuC3HXHYkfokagRt0cZQNWL3rZUUUAUmKyOlgqCUQk0UVbmUTAHoIIvZl9Kadr7AKI2zBofBGSEon56ueelLL/Os/yBG71GdvoY2DY/uPuT+m2+WkkRURHm68bi4oqU5U0oxm8/5jk99F9/95/8CTz5xm7oyQixHkljFb0WMpGxl0c6Aqokh0Hcd1jqyj8UtOU8W5tlE8VEsRG3hG+iCaoqCr1ksadZrlss5b711j6adMWtr5sbQ1I6z7Y7u6B0Or1xhuVyQbI11FcfrHdvVDldX+JSo9g7YrtfQzMhVxZAT/WqFaVqoKtbbLdZZspZgOLInJM/67JRHDx4Wn5ABcXr2Ml5KoFNiXlf0p4/Y9juCsrz4cMVbZ50EqMY4SbVjMQ6M5VgYg1Gn1qPsoUD5/khlLWerNd4PzNuaZdvgVEIX4n9GMqT6PhKjZ5e8uOZqxf7+wZSIbKzBYqitnsI1MZKfs58TKisqLeaHwqvrefPdDb/30pt03a44M6cykpcuP6di318wVKUEkX799Td5+PAhzzzzxDQenc2XfMt3/QAv/HzH+TtfZV4JcTaXfCWrZSSYc8YaSu5NYpczldW0ThOBzbaHrIhtRVNRBBNO0pORPSekSMwQ0MQUqI3FZ0Uy4uLaJVlYPsEQxLvFZsOscjRO89ztAw6WLa6q2Wx7lG7Ye+bbOHvlFybDuFw2YTk7dPHd0hgtaI4xBmUDSSmGnEkYrM7kFPG7LdEPuHo2aYOMNsVJfIzrGGNO1ISspyTqVeHojY1snlbtBbrz9T2+oYuU29evEdDUTYOxhjiIhXFdiV+BoA9yaFjrsMYIjFXsyU1dodwNvrKGzbbjYDgvHW1m5hzbXUc/RJw1JN/LAs6Zrk+gUsn0uEBTkhb+CDljncWnRJ1U6fQMKgaGJEGBtlgbG6VJg8ZjqOuKXb9DJbHsj8qUADmB20bHzBF6JSMy0Qx5iIKejGSxJFHhMQwMYSCkxK4PbLqB813PWydnfPnBESEGjBK/ECieG8jI52JkIv8aUdPxPhsRqgLsERG/FK1KSFXO7AppMU1y5sdv3scf45hnLFTGG14KBY1k7ujxZyfER01z0ZHbOdUjeSTLlqqpdOaj6dwqJr76hZd4zxdfpFnMhUCqFLYktV5UUJdLtYuy6Y9edGr6BmcrPvbxj0NKfOWFz5O6AavDVDjHcCnEbswKidIRBsSi3RQztZASLmn5U4nRVLHaxAgURuwjuetIw0ak0CmTbaZZOFAaH6E/79luV2w2K7KPaOMwtqKpFVWdhVRoFFkHkc4HX4rS4jxTUD2dxYuhKJEZOVlSAIKqrMQNNBYXFQ6NGgKNVdQKTk7OeOmFF9icnPLsez9IyIZXXvwDzh89nAoQraUzv+wuOnZ11lmeeuppvvt7vp9v/dZPMJ83EuJWYGylRXWVYhhf8HQ/55zLJp7wg4d8YQBpnZViRmuiklyjkBMqDCjt5BBETPa0Eev4veU+Wt/niy+/yL177/DhW7e4efNJ9uZzFLAbAtuTU+GeOUMKEa8t3gdcW+NjYv/GE1SLPVabjqBOqJuauqnJqzVoTegHIkK277uBIXQ8enCfbtvJiCwGYt8xrDeoFJk3FQ5Q/QabA2s0v//OMW+d7wholHbUjSMnIYM6K0hKVVVobXHWFcdUKUhHelKMiexDSXMO9H7g9OyU+axlNltQGYO1hspZaVSSZGYNw4CqKqyG+WxO3bSTD0fVNFTGMmsqTjtPSoJCXJm17FVgsscSxZCtEr7LG2+/y9nJCWU6OI13pCGKF6tRMY18cw4cHT3k5Ve+wo0bV2nbwv+zloOrN/m2v/DX+P3P/neO77xCY3IZk5iRL42zghqTpXAZgmT+5JxwlZNSPSeGwjkZsmJ7viWGSF1ZjE0YZyUaQwlStx0C6EzdVIQQ6QdfEtkN3c6jsyEMAwctPHF9n5tX92kbhzGOB0cbnugGlk98gOMvfx4TzzCVoBepqNRUzmhjJ1K01lqmBjkTY8BHLYhjaTLDsCP4DpclckWpQpCf1J5qQr4f28ZVnooRdYmDMjam8sXH99E/zuMbukipbE1GyErDEMhKoLVQUkOHviMhzo/jLH3skI0GZwEcfXvIHf9B1n1gP6/Y7jpRKdSOdT/gJyVLEAJYccVUORUXUEXUQrwLQYhbWEuOEb/dElLEVQ5tLWk3YK2lqR1WC5zoXE0MvRxJKaFjJg6dkG8zU3LuiA5IlklC6+KLkiGWkUeIsYRERcgw9FsigT4p1l3grOt54+iYl9++z7r3aCRF2Zmx8ii/IavHDoXHMQN5TFbuSsRTJmWULbPPUpylWJCmUjylQrpSWiR4eZz9fo3KR252NakIKGMLXW72i7VR0ByEv5HJEi44PkceX/tFfRUT+JxY5UhUGnW24eX/9b9QVY73fscnWO7tMZqJaQVRSYH4eKFSuoJpRFX++mIyNH5IKGX46Me/naad8dLnPsewXmPKAk8plwiH4iczjcWKGV2xIp9CC7OR9+asbBo+ELY7gi1Bd7uBYXWGIVJbyUlp9yqyN/THG1brHWenGzrfE1FUdUPTatpGYFtlwIYMxkv3FSN0naA0BekafWSyzqJ0s+UzVvHiAzAa1Wjme0uuP/kMx0eP6DtPn8ErA1XLXFcka0lRs1ttZNwSIsYa2qbi1uEetTHElNj2Pdt+IMSE1pq9gwM+8YlP86k/813cuHkD5+xUUcfgqaqa+Xwu10/qEdmgS6DheFcIh8eTQ6TbeYyp5D3ack1VUVZlReoHjJU0WImV0FJE+0hbNSxmc+4dPeLNu++wOz7iuftvc/3Gkxzcfh5TL+iGnsH3xCShpdRzMpE+RKp2Trt3yPzKISkOdIMnKnnvPkI7m+F9T0yJ09NjUoLN+oz1yZmMWWIkldgOnYvbbejpzk7B92wCfOnRljunKzKWpBQqR1RMNG1D42RP0roES5IL8ZoJJY4piYuNQsZ7WYjgD48ecWVvQYiyJ/qQ0V7cRa01EkAYfLl2hrZpadoZrhKHcKUV7XxGaw2L1uFWkagNzmlms4pFrSAYcjGSQynun/e8s3042bHLGFkVBIVpVDs2WHJ/yn7ih56XXn6Vj3zoeZ559klBB7TB2Jqr15/i43/hr/Hiby25++oXcKEr6ISCkjukpr1QMohCFn+XbteD1lTO0laGxom7bfASMroZIrsgFhXGKGJWxGyIPomizke8j6I2VIrGWLHnr+UMuH3tCovZjLausNoQQuStu0c8u9rRLq9w3ryPg91LuDxILlSKhOBRVkJojXNYqyUlPoviNWSxj4g40BZFIsWBOPSCRpa8HZ2F1yWFiKyflOLkBTUVIakISIqXgvDVuGhe/rSNe043O27cqIhdgmzEw0QbdApACWDTUtVrIxCwHrtABcGLcZOtHGl+yBEfJqSMW3+R1O9QgNOKzns5/McfLIeeVVKRGouYiSphdSeVSrEiCzymSB1rlDE4V0EMdD0YHVBkbPBoowm7SAqR2ok753a3lUAuJTwBnbJsSEkWpHZjNgMlnFTQnRhjUSEFkhKuyflm4GS94/V3j/jyvXfZDB4fC5fDQEjyfWbsVCdFC9NmPT4ugSlSJY+mo2VMZLSWMQVioT30PcF7XJUuDvbyxOrSc/7hR5mtTN9TKvXRnh+m50rlvw0KW2CU0RhufP7xvxOZgYQFrihNpeD87fv87v/t/8H53Xt87Pv+Eldu3RRX3yn+fXyOy+Moef/qa0YR06eTL3kKKM17P/xhtLN8/md/gXx8QqVk40uXcmQgk6MQZ2OWIb74QAR0jJMCLPiMri1BA+sN26NjvA8Muw6bJe5huXTUreXc92zeGThbd6y3AyGDaUTtMbeWGkPOhhg1IYIfEllHjAooxPXSFIv0sSgbPxdtyyit+ERcFqxbpRmWjpvveQpcxaPjFakaCJ0nKiF0LmYNbdswbFfYquH6M08zPzjg6esH/Plv/hDOOLwfOF5vuHd0QlKap9/zQT727X+OZ596Rjw4CvlXKZEyu6qinc+IKRZTRVn0psRGpCjk+nHNpJJvtN1tqK3HqgSqwjiRJKM8Cj3Jd7OVJGKSjDtSPxD7gXb0ZUmRfug5Pj2j32x59O495oc3WV67jWlmBDLaZEFJMpPho64XdOsVp/fu8OjRQw5v3mK+t2C+3MfaitVqTVXXKKOx2tBvNkWh0ZG9J4ZBxmpKXE5PN1tC3zFox2urnjsnW6LSoGKB/g1149hfzKmdlUiAEbnKGR8CdQmJi2WsYcv4TCHoQ9dtefToiL35jLqqqZwT1BhE4VJmo91uR902kmjfNDgrBZExBq00TVMxrxzz2hbhgMPqEU0zWOfIRrHONfc3Sx6sEln1RRhxCamlSG1V8SxBSL5pRFUV5Bi5e+8B79x9l6eevIW24yhLo1TD3pWbfPTTf5m9w+u89ru/it+eCSKFCBU0iLRQa0xS2JTxSorJlCJhyJwNgZ2z1M6y3JsLp2jnyQn6PtG2Nctly3qzwxgrayzL63ZKcbCo2Gtg1lSQI/P5jLZxNE7QLqUVX/3KW7z89poPPNpweAvuriu2PMtt/watlaYw+gFtKpRrcFVFVYv82CBnVkyeIViGqCSJOfXifO47idDQ9YUHih6VjbJPpRJKaybQpBiacon0nqVwvdh9/5QVKb/9O5/no+/9AIOxNFXNEBJ+EGUDOdO2Dd57oh8wui45EYq6dsSYUMqQiKAztnaEdMCZ+ibaBPbeFzDBSyaNVqSQ8CGirAVVSHZWIPYQpEgIhVWttCb6IDp9VMnFkfwfZXtqV2ELIc/VklKr4qhjV2LbLTICbAmRS12aDh8oDpA+kL0gJiPjOqQks88sPiFKa7Z9z/HZmjdPzrnz8CHd0NOFJFkTIO6CjESrIu8to7ILeS2P31+X0YzxbC7HuDFaghGVdDTDMFxSz4wjnUs/Rr5UBMAFhqMeU/uolFGpBD+OhVkWcqkqC7xSupBPuZwXN72+jHwuPmfarJkhXY0fAsdv3WP30z/D9vW3+eb/5a9y8yMfomoaMfwrG+bFP0zkTS4tSlW4LhQ+Ty5Iyfg6nnzmGR6+/wN88b//HAtlWGqHTolh8OTgxSE3i9SXEBiCp0eK3lppctOSrWVj1pypTE/E6ox2cujoMqoyznC01gwJhgxJaSE1ajDOYpJCRwppTrq6rAwxGrwX/lTKCZV8SWWNj0G7Spzw0CphtJCmycKBECv/hM6R1mrMomb/xhJdKdr7j7j75dd5+IUv052vqDTkYSDnRL1YcP1D72G2WbFoK25eWTCbz8hZcWPwPPHse7j+9Ie5/fT7mDUt1ioJYSt3SwgDTVNTl2IBLUZu4+gPmDJ5MmJQNhYsygi3bbvesqgqSRw38sPaWmwWmD8OQ/GvEav8cRQ1bDspkrWMJzNKNu+c2a3XbDZbTh+8BcaRtSEqU5R5GldVzA4OaWctm9Mj+vUZzhhMTpw9FAlrPZtjjWN//1DGCkbSi+PQE/otqYxtjXLonFidHJNDplOa11c77m8Cyjl01oXYqotlfS1rUYF2TvYXpUqelIyBrDZTO6GLLFXGoXD/wRFD38FMknf9EDDGEKJCxyhOsV2HczL+qZyM3cdFOfqv1LVjOXMsZxVGb+SKGuGuWKPJ2XGmD9hywG5IRN1RVa64vMayJ0/D3kLgldwcpVQh1hfDRJXZbra8+NKXed/zT3P95lXxmSpcI1PVzBcHPPehb2e+f5XXfu/XWD14A5tGX52y1rQSSD5nTFS4KCNnHzL9ILy/zjn6QUJWq6ZCaYN1lq6XVOgK0DlgtcVkyb9ZzmC/tThrmDknqqumoqkq2tkChaPre37td1/mLN9gvQsobTlfdxx3Gr//JE/qB8x1T06BFAeM1iWt2mBMQsWAHyIQiNkREyQEbUllbJj8gK0vb8wapfPkV5WijFZHqfF0LuSxX5UGU3x19MU58nU+vqGLlNdffYnff/FlPvD+b6LrvWjovaepHUrLLM45S/D9VF0bI7C1dZrKOTlAU6GLOccQFxwv30s7BJp3v0jqT8gp4kqw2Bh7nwEfElFrTDJYK0SrEBOhEB91zsQs1s1DGMg+Y6oaHzwGJZ2U0RKiZQxp6DHlYlpbiXV79HQRcsjonCT1FoX2AgXrcTQQUilQZBElmJjuZ+sN99eBt07O6IZQZMZaDnnydJONxY2CkglzQZC9PPaREYZCZbEU11pNvi2T+2hBslLODIMXH4VLlc0FHfXyvy8xPMYRk7r4uirdEKViz3n0Y73oQAyqkGcvwJ9x7JNJ4sCbEg2KuTZT5pB2mm3ybNYr7OdeoLtzl2f/8vfw3u/98xzcvC7kyizEsDELhsKZmMatSa735eTey7K8uNnw6Esvc/Yrv8Xpy6/zKMMN23KlbmRuTBJFWlnpKkRyKKOBKDLVk3SOz5FVjhyHgSMGdinSGsNhU3OwmLFcLqiaGqWVBJTNWlwtXii6EOpUFifNGBIhpmKYLRktIWTQkUhEZ4MpRaEu6Ik4tGoZDRhBG9IEtQcUwtXKxRsibXek117j6LO/zb2X3ub8dCOy+CSS61jGdd3mhO7eCfdWJ5j3PoGtDM2sxVYte81V3nf7/VT1XNZwLkVw+eyNRgL6qroUFqa4zUo3V25k8ZLxwikZ+VRS9mZsZUk6E3xH5SwKcY3VzpUkABkP5UHylWIMDDGQtWLwA3HwQs5HMWRNpNgDIFyvlECpyBA8Q84Mo3MzmUdH9/Bo2soxdxbXtqQMi9keGc3q9Ejyl8qI2eSRoK6loC0RHbvNitwPZGXZJcMb6w0POg+mwkRpYBbzBQcHB1R1JYRQRcmF0jjnCFFGi1VJ19ZGS55NWX86J/ww0Gd4+523UQhiuOs62rpFIRw88aeSQEdQtHUtuWVlnKQmI0pFbRX784Yb+3OMOhLL+GxJpiY2c1ah4myQMMqce5xzOFuV7UjUR1Aaq1z+VJrR90kVV2EJDYWUAnfeept33r7LwcFSRk+IIaZSYsxXpcy1J56nXR5w5+UXuPvq78GwhZzL9UzT+NM5STuOIaMtIjWuNFlpYikS4tAXBL7CKI0aIm0tad11VYir2VDpitBHnJOxUl03WGtoZy3WOMDyzoO7fOHVt3ny+ZsopaWoNXDv0Qne77FNT/NkOuJwtkLpXgqHXNRGJgI9xAGrK7Sqyji0EKJTIPQS4qiLo6/UKAqNKfuuFF4ppRL1UuTao3leLo3MhHoXteXXd8TLWfgn+Jn/v3nUDl544Td54olnaZbXS46EKeF+hhB7KqdQriphgWM1J8SeEAKztsUHCTLP2WOdxe0f0tsPs+sDtf8ioT8SJrux5CioSC5wosrCio+JSXUhG1rCGgkWBDBITk4MPbsgVtzV0NH3HXXdULcNvh8wSpJSBz+gMMTQS/5Iadr7PkoGyyg5GIuUJIeNKr4pUkRFtl3HSs0Itz/GzN1l+9bLxOGETJgQgZEPAmVsMnJDRrSjHMq5+JRI03wxm8zl58bzWDa98nxJUIAYQvFLGcXSciXG0jszZuGWIVBW4ppYNpzxh8aAxDSOoBSYrKiUwKViElEO+TLySQXRSYXEZYAaTa2U8HxSed1Gs9GeTfCc3L1H9x/+N979gxf50P/lB3jyYx+mmc/JxpCyuvSayripjHbkXZXPrsDPpMTuzbu8+tM/w4u/+Ms82JyxI9PlxJlSPGHnHChHIhGyEGZlI1SXDtdUDvOMLxvplRhp0TzKmQcxcDJ4bqTEYYYliqapaQs8PyZnA2QJLcL7zOAj/ZBoikunLfeSH0aCeSKpiM6KbECParlieicfQRLpbsqCLsSATpHuwQlv/dYf8NVf+wNO3xGzsaAgaoXPUsqEnKfRYFaZoBR9hCFAl1uuXXmWxZXbmGZfZvXl/k6lWPbeC9/LGFxVYYzwz0KImMlJ1pCSoCZay3UeK8vJ90apEt5p6XYddT3DpBIloXSJrDBEKob1OaOsUvYC4WsMfigFtLy3Xda0SpdCWA5JZ+00As69p3KOveWC2azh4dEx212P7j2VNoSup7c7XN1gtWVzckLuO9qmIYUBBczmc4zWqBAI/Q7rLKaq2Xr46qbnuEtoU5OVkJyttRKsqGQsKwhhIfEbKVRq59h0spekHMmhyPdJDD7gjKJuWh7cf5fddsvhlQOMMsWcTJo358qhZgx9P1A5Q+0crrJSVBohpo8+GgZYtBXXr8yonCalGt3cJCwOOCbRBS/xBEqhlME5Jyq7mKZ2Z9xOoBRvpUYZH+MhmQsR/fj4hFdefZ2nnrrN4fVDuXYFQUoJtKupkLXz/m/5c1y58QR3Xn6BzdHbpBSksdAGbUvwp9JEAzmX9O6UJ/GG1kb4Jc5Kka00bW2pnaaqHXUlBZcPueR6ik1BXTmaWq6psxXaCDLzwot3SKqmaRe0TYWzopBab9YMQ2K7m3M0P+Dasub6YsPV5UDrFM5onEvovCXlgaznZN1glfATIRFjotuuab1nTIzOZYymtBa+Ty5FSeEYSvOvC2FZTgRF8YUqIz/ZK/6UjXtIkUcP3+LzX/g83/Ndf1kC+rRo67XOVHVNTr7kUBh88NSVZSSFKQUhDCglZK6UJVRsN2TWfWaYP4XLUOcXSef3SDmIq2oWVnfKErgFoAI4JzeswlCVsZBSMsOrjEHc+TOVUQwx0Q8d3dCj1itmdYurK6waZccZW+DmoQ/YggCpDMSE9x6jFCnEogaRQkkVC9wQAl3MdLqBm+9H19e5ffAET73vW7j3+ou89tLvsl6dokm4cviMnSWMkF1BUi77YuRLmwIXiIgCjNHigzXyUYqDove+KHzkdY4eBnoaEU01ktzYZGGUF7TiAk0s3dxoIpQF7bFKfGbG8U8enyjJoT6U3+tQ2AxOa1GaKNm2tJLnabRmG6FTCZ8ThB273/kCR6/f4cN/8Tt575//FAfvfR5dVRPhTxweL3cJgkxJ1yYH0fHnfpeX/u//kS+9+CVQidZqUd2kxInKvKW2QM1MaQLiahrUCE3LGkeP4zd5axbpfmcJ9pJhqRKPHNx833PoEEA7krMkbfBJun+lZDOxRpVrAOgAasA5g7UBpQ2VM8UzSKFiJiAqIWMzKmqUFk5DSpoc9ZR4HUMgbLZs337Evd9+ibd/7Q/YnKyJJhOtJiikMImJkMVbIiSRWstUT4ldeoYnnvkmPvDtP8ByfyGojRHJayok5hQkYdvawmsw8ucU8jbCy4VcHocgd9pImlVjzIQRHCUrlAqQE6vtjtnCU8UKlcT5ylhLNasJq0Qwjr7vUcpIRkwhhAsiJQnaWSl6Mh5JEbZKEnazVjhjiL3Y7ddVxXw2Y7bYgy5x4k9IZIKPMnKKkdjt0DEy7IR7QozUVUWKnu3paWkIEvPZDFc3rDy8eb7jqPMoIyOGmBKLdsa1q9cF7dNaPrui3jHaPLYItVbMZ20p0C5xMXIiZcNmt+ONO3cIUfxOdIUUYEk8ZmJOKB8YBg8katdIURtTWR/j2SXXQ8dIrR2zWc1i/zZX9p6mni1IsWfot4LuhCBokpVxUQwiNVYUiaxKRCJGC6Ktytgn5QtbeIWsqawzMQx8+atv8NGPfIDl3hJl9GSsGIurtzYOUysqBdeffD97V65z+uCr3H3ti/RnR0LsSGXP0WpSRlZWT0iyLp+ptUWKb60oyLTsUXoUFMQyrsoGbIXCYKyMYJq6QRvh8ay3Wz7/0h2Mbbhx80nms5qmEnVoiAGlOs7XPd1O8e6RxVjLooXbB5FrFlK2aG3RThR8Jm9xOaNjUdDFzLDbEPuOGDy6EnkxmUIWL4q+spwmQqySBlNNiLs0r7pwgf6kj2/oIiWlRI4DX3n1C9y+9TTvef5DhIyQ3crXna3EqCwXWW+KWCdzTKvlz7quCDmzWCwI8ZQYezJg2yXJPUtXz1H696nO7hBTECJX+dQjGZ8kcCsNoGPCuVTmd6ZAsnLhrNGYnMhK41Sm1pa+ZOdsNmvyTghxdV3LgrfiTyAQ2rgw09RBpmIIpscOIUH2mZjBJ+h1Qzp4BuUOUAq22452vuTD3/H9PPGej/Dq7/0qj+6+hko9RpdOI6uJPKdKdzmlGE9H5GODGUA6l9HV1xmZ+8ay2L2X+X2KApNPvICRx/HYM+VLM0516Z/C2C9SY13mnrYc5HlcEeVVkgSQ3GXZyFyW71Vavt9O/rOCqiklhFuHplORjEgTg8k8evQA/svPsfn9V/jw//JXuPLpT2LqelKKpRRRSqR947vJMRJ2W97433+Or/w//ytvv3uPRy5wgGNmLZUCHQ1D8myi56s6cYOKK5hCRFP4MoYwWQqwRPlMEc4ISqGNorGGp6Lius90Jyuq995me7zDmVHFkRh8lINYK0n81orBSixCCLEgXrC/r4gzcJXkU8mhWBwrvZ/uC6PEc8EUGe+w2XH05bt89Ve+wKOX3iLsBjCZZAVHTgpJpC1S4lwcS1W5YKPPhU7y31du3eDJp5/A+yhcMF0UdL6n6wJay6E4pkJX1k0eHiMXocCEDENHTrlwwqw46JbrJkGfI74nxYizjt12R13XqEGI6yiRZdtKU6UZfuixthJCsVTyhCL3HAn1KoqyKCfQlZFDKGdqbbC1wqAhZbarDTlIeV6VcfDgA/1OvFGSMjKyzpnee9zg5XpEya2pm4rFcklVNayHxJ3TFQ93kayFkOm04fqVKyz39slJXp+zhsoIL+4iqVsuiHOWXV+8jsS+FAopX1lDUorVZstut6GpJa8ox0g/DGhj6YcBa+Sa94MnhUBVCMwxJlxly77GNM5ddQN3zgdeOl9ycGOBso5h2JGT7B3TuLGkcovhYRnlaI21ttzDZS0WThUFlb3AbqWdUEqanUePjvnK63e4fuOQ5f6SPCICBS1XWsaa2dXolGjmV7j1no9y9eZTHL97hwevv0h3foxOxZhRKZy+UEdZJeoYZ83UFKHK3mVdQbM0oRRcORd+memYtXMMGVfVEsaZNf0Q+J0/+ArHq54nn3mW208+zXxWi4twJd40ikCImRgCfhiIMXJsNHcfyHmi8m3y/m0O5mCSx9WB7Ho631OFgUzGhw27s2PmhzdFinypUSxAr2DpORWOyrieL8i1I5E+F/22GmU+X+fQ5xu6SJEPSrNdPeTXf/1naZqG20++h5SV5HQkX7wMVJF4RqwVYpAxmr4Xol0/SNS699KZ1e0MpTV+GNhtE2l2Dfvsn2H9VkN79lp5XjEWyyhCAh8lFwEgGfGaGCEuVeam02gjS5VutZYubeRuhESKnt02EJxhm/LE9RhnryldLDCNEMJikYClKAVK5xNb1dDNr0OaYbYDrhJpXAqe9XbH/s1n+eRfeoJ7X/kC9175LYbVEZTuOqd0oafXYqTEyLMYWduMYw3pCI3RGK1L3kUWZCaL4dHgPcGPgW3pouiZbKvTha6ey1ySCy3+yByX30uJ1ChqpHIv6LJwKByHbY50ObHMmnpEPsqgQpW9y4xBhlmUQVoJOuKJWAwY2OjEu7sN7Z13sD/9X3iu0lz7xCfELlwp6TaUKgGSiqAU3fExr/xv/5XX//PPs9qsiEahCyoRk6GqLIeVY5FqzoaBh2ngHTqOleWmqlhqQ00mKFF0aaUJJbAgTQqaTNbCDbK1oUoGHm5JtzwH15dsTnbivosgWikLxD9eXxcTKUgWQooiHfUxs/QL2rnCuAyFSCk26MV0LuWCdiW63Y63XrvP27/2JYav3BNnUqdIko9JzKmMC0q5WbpZFeW6k8f0ay7NCxHFlNYkJUFlKSW22y0pB+Zte3E4FVVKUgpdGgBAXFkRonDwA7YUMMFLkJszQkjMOREAlSLaWOqmxZiK3XZHtxP+QVYV2gq6aZzDJKiaOd32HNc0WOdEIRLFRLAqhdAyW1SErBM6jeithSD3YFtVhJTxfWC1O8GVLtUqXRxkB9xuS920ZJIYv+06Nrstfb/h4GCfK1cOaKoKpS1dVLxzesrD7UAy8ndaG5Z7Cw6uXEErgw8BHwasNeUAloNLK4M1COLsB/lMY8YTCgdISK6giDFy99591qtzZs0NnNGgDLWzoDV1U2G0Lq60mb3FbJKIG63lWpQCchyR/vyLHdeP5bPOaiD6XlxP0+iSJGOenIHRkr1srrmo4pQW0nhM8RI/Lhfundxf4/hFsCcY+p6vfPVN3v/eZ2hnDaboeJQSDqIea11tsHVLCprooVoccmu25Nrtpzg9eod3X3+Z/uwRyUsa/OTyqjJGiSrKFP6bG50uC4dQ3pIU8EIuhrax1LXD1LWgXNrik+LNd474337x91CmYbl/RaILKodR0FQSwWKNJRQhRsYz+C1+2xUCcma3jdSzQ7RbYOs96rriTjC8u80Y5WlNzyK9hVltuFaaU9lt0pQNNI7dZbnqi6WrZdxFluBZXQr40RAwjajT1/H4hi5SpBqtyTmyPn3Ar/zK/4vv/p4f4NrNpwg5U7sK0X2nQvobN0Y5zIwZZ4dJTM+GAe+jEJVcxdnpCa6dMXSajQ/UT34rKzujefj7uNShAKctjYWt94QUBUEJTF2uNbpgXsUMqSwAef1CrjVlJmuNFBmiPNKiPAK5KQoUp1S53FoXQpM8XxJZCKe7yGuPBnb1gpnVtNbjVCDrRMyRykK/26GUoaoqnvrAJzm89iR3X/kcZ/deo+92ZSEXIyNGCd8lFKXgfHLoyAFmrcZasZKWXUEVv4JE9J7BizQ6FdfSlNIlTocUQRP5VuuLMZLsLvJ7U9HrgxzcFOJslkNt5CkkoEuRIUZmKBolM+OLIqeYDSnZwPS4wFLCFWv0aETWXgEt0BEIOXH26Jg7/+XnaZ58ksXt22gjSg9/tmJ49Q75/gMexsAXfuO32bz8ZXwKwjFRiiorcRKNERM1JsPMaBpXswyGVQo8yJ438o79ZLmhHW2xndZGOnCHZsgRXzoypYSalHLGmEwdFaev3EG/7zZ5CAxpIDtHEPNWQvkZYzTZWrC5WBrk0vFoYlIMPtHMwDhXNvxMiJGuEx7Vyekpb7zxgNMvv8PynVNa7/EGUnUJ9SJPvCcZqRVuEGm6rhpBI8cCRopv4Xj4olRLJLzvaZuays0Y4xNGJEtSn13p9srXlCS39tsz2WBzofqlLLwVrUGDURaVTZGASzaX9wND35FzEqJnDGXcJpuwsQbXNjjXSFieUljn5LDQGqcN5Mi8kSwuiWkAZ830ekMoJnzlfeTxQC1eSEYbVFbEPjDkTvxylMHUDVjF/7u9c42x6ir7+H+tfTuXuZwZhplhgAFsa9FCG1papK36oUREXuvt9Y0NNniJpkojqKmtNtUPBiGamKjRekmsH6wlNmmrNq1KoBYxlFuBQmkpLbQzpcwMw1zOdd/Wet4Pa+09c4DaosAwdP2SYYaz1zln7Wevvfezn2trews62lrh2g4YGEJBGDhRxGC5BqnVPtu20NjQiKbGRl0BWqreT0xZoWzbhm1ZELFQ5wKptOKRYhmO5ajzVN/QHd3BmDGOcrWGgf4+eLaDXEa5cQDVaDCbVanDkiSKpRJsS8WiJOmrKk5FjRdxDOYqi2UgLISxCrpWFnKBKAz1ea+KG0If3liXYEiuT+BMpzMrxUUIG7EO4IS21qSNNym5ZioFVkqgr1+lI09pa0WuQWce6fYY6W1Yu8O4vj6JOAAAOJkCpnblUJgyDcWhAfQfeQH+8ElIGavms1opStzWtm1DkoTNLe3OZXpNqOu466p15DjqQcayOIgsRLGFgcEi/vDkTlSqseqAbWVguRndzBZozKv7XRz5yOVyyuUrA7h2FlLaCIIQlVIRxZEhuLUimlo6IEIbFHoIuIOyZQPMA/EGMOsqvM4deCN5zGr0dOyeUliSh8yxir7QVrEx9z9BB6kD4EwHrvNENTw7JrWSkrgOGLcgRIjB4y9j27/+jmX/83+w7UbERCoaWepiPCAwi6uWJFBPeZypOic1P0iDH6UUcFwPTYUWlMsVxJKQ4S0Iq0XkZs5HmGlA3LsdXlyCZQl4tiqFXw1DhHEMCR1TYnNAcjCLgQl9sljKVD6m2RP0OatueJJAWn2XfMwlkTwFAKRLnTNdtdZCTKpLZymU2N1zEieKATKNFpx8M7xsDiBVARacIxQEWVNP2JGXQeC4yDV34PIbPoLhYy/hjcPPYrCvFyCh3SDaBwkg6buTWFATtUWlCVpp2hmDWrzpE4s2zUptzpSJdQT6w5jKfyAoP+74TCEkv6FM8oypYFcLXD8paDkmvlEQAikRSIEMY8iOU1Ck9l+rC4N6QktiWRKTpUPaYpFYvGAhB45REiruBxLFnmN45e+b8e5P3YpcYyNICJQOHkL1qd2oDAzi0Kuvoac8jLxrw7Vt1ZwSgNDGoghqfmCAJ5X7qdG2kScLBeFgUER4HQGKJDCDXLTCVgGf2oTMpMqaELrCo2RApE2vFjG0jcYoH34dozkb3bM6IDhT6xs6doek8uvrYFe9yBCxGFWdSssiiepoBaEkCBmjJgWqfhX9gyPof2MQ1nAZbaMhWmsBJGcoeQw+I1ik0pGV9RDa3EmpiT2xlyk/vVofNjFIptsAMFXTIo4FAt9HrM9x23GUyRzKbZMEp1u2DdtyIKVMLVsqw0OiUioCpFy+SVaS6vhsqZsl1xEEem3GOnZKWRAtlEtV5LOqCrGEALO5Dq5VNzAn3wBrxIabycN2XXCbw+ZAxNTDSXNLDkHJRwiRpnRzrta+NmAoS5O2+EAH51pgYJYKdAVjqFZ9hACE48BuasbM2bPQkgMyGU9ZgwTgF6s4OVrWBfpcOF4eDY2NyGazKigTTGX7xQKZrKtuhIm7ASp+zLIcfUMnuFkPqsOc9p5z1edKyhBDw8MI/BpaCwXkPFcpapZSRFzXA2dMu+hs2Jat4imYun15nqtajZBQMWyOKlxGMoYIA+XCgXbbACorkLTbSSsLSdcZR8cfcc6UO4QxQCrlTIikQWvyKKMe9pR2zHVWHoNghEqlhMMvv4LZs6bDTuq8MDl2bUofniyVFm2p5AYSNqSIwMgFtx20unk0tHRidOgEBo68iKh4QvWzAqm+bVJZH9U+UBpbpxR09ZmWjpVk3ILqZOwiih30Dxbx6NP7cLR3ELbtwMk1wA+BMFaWKU4MjU15cMYQBDUIGaOpqRnNzU3w/TKiUDnWLasFVd/H6EgR3LLQ0NiEKPDBLY6IGAAL4B7AsxgIm7B55xuY01fEnOkNaG/NI5dVrqWk6zogdTLCmNU7UchA6qFAcl1LSmcUni2TWkkRMkQYVMEt1emYMcKx1w5iy9NPYtmHPwbOcxBQOf2qvLiqb8KZSrPKuC6COE4LFHForZdUVUDGHOTzORAYwjBQKWZhDU775QjsLEpH/olsNATPBjzbgoSDWhCoLCOLQwhVi8BJFp+lk3otK73LW+DpTV8pANoVQQTSFxCFVlKkSnG19cmS3vjB8HrJx2ClBmIcceSjUhpFJt+AHJdwHJUnH8Yq/bhaCyEkQwYMJSHgOjYap8/D3M7L8MYr+/Dy/mdQ8gdUammqAGjTJ+lHSlLFSCymakKoMAPtGsKYEkKkGuYlvsxkzonLQu+2PkH1I6t+LxJlhikTKiNotwzSeiRp4yuo+66AhMMY8rB0nIgO/AKNWWB0ifQx+SrF1WEMVQ4dvqrGNMBGEcoKBKE6xp741y6UI4Fr/vdWcJI4/uLL4H0nVGNKi1BhBI8Ad8wzA49biIm0/18iJOUesBnTNRMsWIzBsziahIPXRIBepmqntJGtspCYDhTUSoAq1geQvsk3AMhzB1N8hlFEeOmFXkzvaAG3HESSAbYF13VS152QEmEYApCwLAbbF6gFPo4Pv44jgyOo+D58KREKAotitNcizAokrFjCZ0DN5agwiYqIkZVa7UuCnvVRSYy9PJG3FnriduMMcKAsjzGpYyR0fAG3LEgGeLarbu466BcM6gaXVJBOCoeBEMcB/HIZUkq4Xka7Klla1G3M/KxuYqqsOsF2HFULRVAajzFaLAEscWFAP2Grhx43k4XrZpBvbIKbzcFzXWRsG6EfIus6aO3qRKn/BGK/BrItSJKwbJXtIwmIwhiRVlJ4cpPSiroggmBAOQwwXPMxGgnUYol8LUbXe64BGizY+QxsxhH4EQZ6BxDGMXK5HJxsI/JNzcjl8rAtKw1cF1EM13NgWzZymQwcS7XdUPE2HI6jegSR1A32iLSVykalUoXjZFCrBqiWyuCMkMnoQl+2sqbmchkwzhCEEYZHS7AdFw2FAhIzfybraIVCxZR4Xia1bkRhCN+v6euvTC23YRTqBaPLHWjrlsUsta64aqFJUA1fucVhSV3SQdc9IW11IZGkIOuHHa62kWQ42vM6jg+cRC6fg5txYTt2OhdCEp+nLTbgYLAgpQMiXS06dgFU4QjC1Gmz0Tp1OopDJzA68DrCk8dRGx0BCYKMANdV4QhMK++cq1sC56oHmm3bcL0MHC+HMLZx6NDr2LTrMAZGyshlM6jUqsg15nHl1ddjWtc0uK7KqslnXW1lUmUfBoeG0NrcANe1wXkWtdFRNDbkMG36DMRxL6JIIAxCpXwxmYZPEFUBVgKzighqOVSKeZw8UcCUQhZTp+Qws6sFjfmMvheoQpTqvCZ9LvL0CTY5vsmDNiUW9LNgUispYVAFZxYsqRYSAWAixME9W2BZFj60ZBkiSSqCnTHYlrpZqYJLAiFnICkQAACRCvziFoSIUY7UwYujSEdwC0hwBLFEXKuB2w3AjGsxdPQZOOUR5LIeJCmFKAoC+HGc1g8JONOufZVLn6T8qQCvU26V2rlH49wc6saklBRLnyyRlCChSvBHkqESA6PlGsJQR/QLAT/wEfg+Ar8Ky3ZAALjlpOm4pVIRtVoZGS+DmsXhZ3JoaC6g870fRGv3XBx5bgtefGE/BgcG1ffzsRsPAwO0jxXanBpB7UosaCzlVxdzC/yadqfFYDwAdFqnZTuw7Ej91tkZqgFZUpMDCP2qijGJBDK6fksEUgX1dLXbxO0T6/LxWW4h4lAXPClVaXQoawbjEpDaMgFlolQp/YSQJIQk1DjB0enT6ikU8GOBci1Sabh+jOLW3dgWEgqdHRh84VU0FEuQkbKkRWTBJ4ItJQQYIilgcY5QNy+UkmCDQchYZSdxdWwBZU7O2C66Iwu9cQ19UQgpCTkrcW+o4yBIuaskA8A4MtCNFSlGNnZwTexiZ6WEvuoApna1KWXGteE4FoQQiIjgRzH8WMD1HPBSBZVKBcViGQOlGqJYgEuJ5phhmuToYjbyMVCLBYaZRNUGQgDlONIdsC0IJtJ1wvVClkhMwQoLSeaYalmvFBg2FhjMVNacXwtU7AQx1EJ142JMuQu4pdwyidVEZaeoEva+76sAVsdF4AdqUSb1L/S6YpynpnZJqodSHEVqrdZC1Co1BH4VfuBjtDiK9mnt8Dw3ddUKQQh8H0JyhKFqZ6/u11wrWQSvsQUo1gBBiDI2fKEaf6oAYpV6HUt1DC0pdf0l5S4NYolSGGIk8FEKI8QEeLkGXHf9Ylz+rneDoiqk8BHEAfpPjuDoaz26g7EHN5OB53rgXMVcBEGIQNeDsh0LjQ15uI6FKKhC6k7rZDnKHRSrAm6+X4OMYtiWhUoJsF0XQVhBcbSIgYF+9bAEptN1VfXmKAwQRjFKlSqCIETb1AwYtyEEEHNl6atUK7DDUCkaQQCZ9vWSiOI4PV8TC4nUGYLKXQSIWJ3TjmMDIF0nR0IK0kG2qheWNrUhqZOi4lbGAvbTPDlS1priyDD27X8ehaYs8vksXC+j452UBYhbXF+feOoOB6m+Tup7dXNHWIhrAUgK5BunwHNywNQulAbfQHF4BKMnhxDUBFxLqK7PkuC4FohxFbuSzcPOeIhkjKFiCf/acxjPvjKAahCCM44oUqUCqpUKpnV2oLuzAIpqKBZjxH4JURhABGVw24aQEqOyBsflqgEpCMXRYbS2TkG5pYChk0Pwa1Uk7VWEUCXyiZi2aKlzqFbMg0c1lIY9DPTZGOjvx8zprWhpzsN2bXiuasSbJFpYtn5sTKz/bMwl5NeqSEpZvF0Y/SeJyxPM6OgoCoUCAGWWTSwQCvWUblkOsrnsuJiH5IE2ecqr3+3xOsEpf2K8hMbMXGqhk1CLlKfff4qCkaD9dafB2KnDcNoh0dNlZ3h78k1ESjmI5ZiZkjOWLsDx7pNkaqmrRAd5JRdvADqANEYY+IgjXYitbkJAYmlIzPZ1c0osL4BeuHZaljypjcD0Y3Xyu14kY/8XcYxqpQxXf8/4/j7pl9S9kMxy3Jqo+8RTvq9OlmN7Ot6OJbUVpm5PmbKKMc4BIVRRLVJjYynTmCFKJ8fGrb/Tvzt98hi3JemGnChTdZtP2SkGba1IdFuuUt0FSAU9suR1XSeEJYXodB2MxBUn61sKWAB0u0UwJAXUVP0ZjJvGmyzP0zjTuPGHMCSCnckgk8mO6en6H3qz82DcKU1amTmrCYx7LygxXVO6pJQLoP7NJFVpcCHUjVG5JigtJpjxXJXxQcqsL9UXjL2fxq/W8fs17lgkc4JyAXiepwNYoeeprJRRFGkF7NRz/fT6FJwn7g4a98TL9HoYP79xbSW0dTRRIECkM4PG3gv9oJC8Nwm+x7jPSH6PPz7lcllZqHhybTr1WkOn/X3q8U2uuem1N3l6Twckv8Z/1thG0sc443lj7p36g4Iz/Pf076KxOTAktaUoPe5Jh2ZgLCU6uZErN89Y0TkpAT+IT4viULE9FvINDdrNrt4bC4FqLahbY+PXFACdPGKPZUedvjf1fzCkysf4atsWZ+k15c2uq2eGMDw8DAAYGRlBc3PzW4yfpErKkSNHcNlll030NAwGg8FgMPwH9Pb2YsaMGW85blK6e1pbWwEAPT09b0sTM5xbisUiZs6cid7eXjQ1NU30dN5xGPlPLEb+E4uR/8Ty38qfiFAqldDV1fW2xk9KJSUxITY3N5tFOoE0NTUZ+U8gRv4Ti5H/xGLkP7H8N/I/G+MCf+shBoPBYDAYDBceo6QYDAaDwWC4KJmUSornefje974Hz/MmeirvSIz8JxYj/4nFyH9iMfKfWC60/Cdldo/BYDAYDIZLn0lpSTEYDAaDwXDpY5QUg8FgMBgMFyVGSTEYDAaDwXBRYpQUg8FgMBgMFyVGSTEYDAaDwXBRMimVlJ///OeYPXs2MpkMFi1ahB07dkz0lCY969atw/XXX4/Gxka0t7fj4x//OA4dOlQ3xvd9rFq1ClOmTEFDQwM+9alPob+/v25MT08Pli9fjlwuh/b2dtx11126k7DhbFi/fj0YY1izZk36mpH/+eXYsWP47Gc/iylTpiCbzWL+/PnYtWtXup2I8N3vfhfTpk1DNpvFkiVLcPjw4brPGBoawooVK9DU1IRCoYAvfvGLqoGe4d8ihMB9992HOXPmIJvN4rLLLsP3v//90xoeGvmfG7Zs2YKPfvSj6OrqAmMMjz32WN32cyXr5557Du9///uRyWQwc+ZM/PCHPzz7ydIkY8OGDeS6Lv32t7+l559/nr70pS9RoVCg/v7+iZ7apGbp0qX0wAMP0IEDB2jv3r30kY98hLq7u6lcLqdj7rjjDpo5cyZt2rSJdu3aRe973/voxhtvTLfHcUzz5s2jJUuW0J49e+iJJ56gtrY2+va3vz0RuzRp2bFjB82ePZuuvvpqWr16dfq6kf/5Y2hoiGbNmkWf+9znaPv27XTkyBH629/+Ri+//HI6Zv369dTc3EyPPfYY7du3j2699VaaM2cO1Wq1dMyHP/xhuuaaa+iZZ56hf/7zn3T55ZfTbbfdNhG7NKlYu3YtTZkyhR5//HE6evQoPfzww9TQ0EA/+clP0jFG/ueOJ554gu6991565JFHCAA9+uijddvPhaxHR0epo6ODVqxYQQcOHKCHHnqIstks/epXvzqruU46JeWGG26gVatWpf8XQlBXVxetW7duAmd16TEwMEAA6OmnnyYiopGREXIchx5++OF0zAsvvEAAaNu2bUSkFj7nnPr6+tIx999/PzU1NVEQBBd2ByYppVKJrrjiCtq4cSN98IMfTJUUI//zy913300333zzm26XUlJnZyf96Ec/Sl8bGRkhz/PooYceIiKigwcPEgDauXNnOubJJ58kxhgdO3bs/E3+EmD58uX0hS98oe61T37yk7RixQoiMvI/n5yqpJwrWf/iF7+glpaWumvP3XffTVdeeeVZzW9SuXvCMMTu3buxZMmS9DXOOZYsWYJt27ZN4MwuPUZHRwGMdZzevXs3oiiqk/3cuXPR3d2dyn7btm2YP38+Ojo60jFLly5FsVjE888/fwFnP3lZtWoVli9fXidnwMj/fPPnP/8ZCxcuxKc//Wm0t7djwYIF+M1vfpNuP3r0KPr6+urk39zcjEWLFtXJv1AoYOHChemYJUuWgHOO7du3X7idmYTceOON2LRpE1566SUAwL59+7B161YsW7YMgJH/heRcyXrbtm34wAc+ANd10zFLly7FoUOHMDw8/LbnM6m6IA8ODkIIUXcRBoCOjg68+OKLEzSrSw8pJdasWYObbroJ8+bNAwD09fXBdV0UCoW6sR0dHejr60vHnOnYJNsM/54NGzbg2Wefxc6dO0/bZuR/fjly5Ajuv/9+fOMb38B3vvMd7Ny5E1/72tfgui5WrlyZyu9M8h0v//b29rrttm2jtbXVyP8tuOeee1AsFjF37lxYlgUhBNauXYsVK1YAgJH/BeRcybqvrw9z5sw57TOSbS0tLW9rPpNKSTFcGFatWoUDBw5g69atEz2Vdwy9vb1YvXo1Nm7ciEwmM9HTecchpcTChQvxgx/8AACwYMECHDhwAL/85S+xcuXKCZ7dpc8f//hHPPjgg/jDH/6Aq666Cnv37sWaNWvQ1dVl5P8OZ1K5e9ra2mBZ1mkZDf39/ejs7JygWV1a3HnnnXj88cfx1FNPYcaMGenrnZ2dCMMQIyMjdePHy76zs/OMxybZZnhzdu/ejYGBAVx77bWwbRu2bePpp5/GT3/6U9i2jY6ODiP/88i0adPw3ve+t+6197znPejp6QEwJr9/d+3p7OzEwMBA3fY4jjE0NGTk/xbcdddduOeee/CZz3wG8+fPx+23346vf/3rWLduHQAj/wvJuZL1uboeTSolxXVdXHfdddi0aVP6mpQSmzZtwuLFiydwZpMfIsKdd96JRx99FJs3bz7NTHfdddfBcZw62R86dAg9PT2p7BcvXoz9+/fXLd6NGzeiqanptBuAoZ5bbrkF+/fvx969e9OfhQsXYsWKFenfRv7nj5tuuum0lPuXXnoJs2bNAgDMmTMHnZ2ddfIvFovYvn17nfxHRkawe/fudMzmzZshpcSiRYsuwF5MXqrVKjivvx1ZlgUpJQAj/wvJuZL14sWLsWXLFkRRlI7ZuHEjrrzyyrft6gEwOVOQPc+j3/3ud3Tw4EH68pe/TIVCoS6jwXD2fOUrX6Hm5mb6xz/+QcePH09/qtVqOuaOO+6g7u5u2rx5M+3atYsWL15MixcvTrcnKbAf+tCHaO/evfTXv/6Vpk6dalJg/0PGZ/cQGfmfT3bs2EG2bdPatWvp8OHD9OCDD1Iul6Pf//736Zj169dToVCgP/3pT/Tcc8/Rxz72sTOmZS5YsIC2b99OW7dupSuuuMKkwL4NVq5cSdOnT09TkB955BFqa2ujb33rW+kYI/9zR6lUoj179tCePXsIAP34xz+mPXv20GuvvUZE50bWIyMj1NHRQbfffjsdOHCANmzYQLlc7tJPQSYi+tnPfkbd3d3kui7dcMMN9Mwzz0z0lCY9AM7488ADD6RjarUaffWrX6WWlhbK5XL0iU98go4fP173Oa+++iotW7aMstkstbW10Te/+U2KougC782lwalKipH/+eUvf/kLzZs3jzzPo7lz59Kvf/3ruu1SSrrvvvuoo6ODPM+jW265hQ4dOlQ35uTJk3TbbbdRQ0MDNTU10ec//3kqlUoXcjcmJcVikVavXk3d3d2UyWToXe96F91777116atG/ueOp5566ozX+5UrVxLRuZP1vn376OabbybP82j69Om0fv36s54rIxpX0s9gMBgMBoPhImFSxaQYDAaDwWB452CUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUfL/bP/nAMd3xKMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } - }, - "outputs": [], + ], "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name styleganv1 \\\n", - " --result-out-dir resources/demo_results/unconditional_res.jpg" + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "# Create a MMEdit instance and infer\n", + "result_out_dir = '../resources/output/unconditional/tutorial_unconditional_res.png'\n", + "editor = MMEdit('styleganv1')\n", + "results = editor.infer(result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" ] }, { @@ -271,23 +721,45 @@ "source": [ "### 3.7 Inference of video_interpolation models\n", "\n", - "Input: video, output: interpolated video." + "Video_interpolation models take a video as input, and output a interpolated video. We take 'flavr' as an example." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/video_interpolators/flavr/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth\n", + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 35/35, 0.2 task/s, elapsed: 168s, ETA: 0sOutput dir: ../resources/output/video_interpolation/tutorial_video_interpolation_res.avi\n", + "11/17 21:40:25 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Visualization is implemented in forward process.\n", + "11/17 21:40:25 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in forward process.\n" + ] } - }, - "outputs": [], + ], + "source": [ + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "import os\n", + "from mmedit.edit import MMEdit\n", + "from mmengine import mkdir_or_exist\n", + "\n", + "# Create a MMEdit instance and infer\n", + "video = '../resources/input/video_interpolation/v_Basketball_g01_c01.avi'\n", + "result_out_dir = '../resources/output/video_interpolation/tutorial_video_interpolation_res.avi'\n", + "mkdir_or_exist(os.path.dirname(result_out_dir))\n", + "editor = MMEdit('flavr')\n", + "results = editor.infer(video=video, result_out_dir=result_out_dir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name flavr \\\n", - " --video resources/input/video_interpolation/v_Basketball_g01_c01.avi \\\n", - " --result-out-dir resources/demo_results/video_interpolation_res.avi" + "Please check the result video in the output directory." ] }, { @@ -296,23 +768,48 @@ "source": [ "### 3.8 Inference of video_restoration models\n", "\n", - "Input: video, output: restorated video." + "Video_restoration models take a video as input, and output a restorated video. We take 'basicvsr' as an example.." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "vscode": { - "languageId": "shellscript" + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11/17 21:09:41 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - local loads checkpoint from path: /mnt/lustre/liuwenran/.cache/openmmlab/mmedit/spynet_20210409-c6c1bd09.pth\n", + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_reds4_20120409-0e599677.pth\n", + "The model and loaded state dict do not match exactly\n", + "\n", + "missing keys in source state_dict: step_counter\n", + "\n", + "11/17 21:12:44 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in visualize process.\n" + ] } - }, - "outputs": [], + ], + "source": [ + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "import os\n", + "from mmedit.edit import MMEdit\n", + "from mmengine import mkdir_or_exist\n", + "\n", + "# Create a MMEdit instance and infer\n", + "video = '../resources/input/video_restoration/v_Basketball_g01_c01.avi'\n", + "result_out_dir = '../resources/output/video_restoration/tutorial_video_restoration_res.avi'\n", + "mkdir_or_exist(os.path.dirname(result_out_dir))\n", + "editor = MMEdit('basicvsr')\n", + "results = editor.infer(video=video, result_out_dir=result_out_dir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, "source": [ - "python demo/mmediting_inference_demo.py \\\n", - " --model-name basicvsr \\\n", - " --video resources/input/video_restoration/v_Basketball_g01_c01.avi \\\n", - " --result-out-dir resources/demo_results/video_restoration_res.avi" + "Please check the result video in the output directory." ] } ], diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index 6025294d82..f4b07aa483 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -1,9 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. +import os from typing import Dict, List import mmcv import numpy as np import torch +from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from torch.nn.parallel import scatter @@ -86,6 +88,7 @@ def visualize(self, result = tensor2img(result)[..., ::-1] if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) mmcv.imwrite(result, result_out_dir) return result diff --git a/mmedit/apis/inferencers/restoration_inferencer.py b/mmedit/apis/inferencers/restoration_inferencer.py index 3200656a1b..a04bfa4bf5 100644 --- a/mmedit/apis/inferencers/restoration_inferencer.py +++ b/mmedit/apis/inferencers/restoration_inferencer.py @@ -1,9 +1,11 @@ # Copyright (c) OpenMMLab. All rights reserved. +import os from typing import Dict, List import mmcv import numpy as np import torch +from mmengine import mkdir_or_exist from mmengine.dataset import Compose from mmengine.dataset.utils import default_collate as collate from torch.nn.parallel import scatter @@ -105,6 +107,7 @@ def visualize(self, """ results = tensor2img(preds[0]) if result_out_dir: + mkdir_or_exist(os.path.dirname(result_out_dir)) mmcv.imwrite(results, result_out_dir) return results diff --git a/mmedit/apis/inferencers/video_interpolation_inferencer.py b/mmedit/apis/inferencers/video_interpolation_inferencer.py index 44410a060c..4caa13ebda 100644 --- a/mmedit/apis/inferencers/video_interpolation_inferencer.py +++ b/mmedit/apis/inferencers/video_interpolation_inferencer.py @@ -179,7 +179,8 @@ def forward(self, self.extra_parameters['end_idx']: break - print(f'Output dir: {result_out_dir}') + logger: MMLogger = MMLogger.get_current_instance() + logger.info(f'Output video is save at {result_out_dir}.') if to_video: target.release() diff --git a/mmedit/apis/inferencers/video_restoration_inferencer.py b/mmedit/apis/inferencers/video_restoration_inferencer.py index f6c5ed86ce..5f71a2c3d7 100644 --- a/mmedit/apis/inferencers/video_restoration_inferencer.py +++ b/mmedit/apis/inferencers/video_restoration_inferencer.py @@ -173,6 +173,9 @@ def visualize(self, mmcv.imwrite(output_i, save_path_i) + logger: MMLogger = MMLogger.get_current_instance() + logger.info(f'Output video is save at {result_out_dir}.') + return [] def postprocess( diff --git a/mmedit/edit.py b/mmedit/edit.py index 429cdb34ac..13fe77a818 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -197,3 +197,25 @@ def get_model_config(self, model_name: str) -> Dict: raise ValueError(f'Model {model_name} is not supported.') else: return self.inference_supported_models[model_name] + + @staticmethod + def get_inference_supported_models() -> List: + return list(MMEdit.inference_supported_models.keys()) + + @staticmethod + def get_inference_supported_tasks() -> List: + supported_task = set() + for key in MMEdit.inference_supported_models.keys(): + if MMEdit.inference_supported_models[key]['task'] \ + not in supported_task: + supported_task.add( + MMEdit.inference_supported_models[key]['task']) + return list(supported_task) + + @staticmethod + def get_task_supported_models(task: str) -> List: + supported_models = [] + for key in MMEdit.inference_supported_models.keys(): + if MMEdit.inference_supported_models[key]['task'] == task: + supported_models.append(key) + return supported_models From c05d212c575e138ae031f68fbcf9004d80215923 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 18 Nov 2022 10:35:02 +0800 Subject: [PATCH 50/68] [high-level api] add ut for test_edit modification. --- tests/test_edit.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/tests/test_edit.py b/tests/test_edit.py index fe2a764334..1bf3cf40ff 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -16,6 +16,13 @@ def test_edit(): with pytest.raises(Exception): MMEdit() + supported_models = MMEdit.get_inference_supported_models() + supported_tasks = MMEdit.get_inference_supported_tasks() + task_supported_models = MMEdit.get_task_supported_models('translation') + print(supported_models) + print(supported_tasks) + print(task_supported_models) + cfg = osp.join( osp.dirname(__file__), '..', 'configs', 'biggan', 'biggan_2xb25-500kiters_cifar10-32x32.py') From 5a16055e69c31d43f747b50b28235f62bd0b0e5b Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 18 Nov 2022 11:32:19 +0800 Subject: [PATCH 51/68] [high-level api] fix task in scripts and metafiles --- .dev_scripts/update_model_index.py | 3 +- configs/aot_gan/metafile.yml | 2 +- configs/basicvsr/metafile.yml | 6 +- configs/basicvsr_pp/metafile.yml | 12 ++-- configs/biggan/metafile.yml | 14 ++-- configs/cain/metafile.yml | 2 +- configs/cyclegan/metafile.yml | 20 +++--- configs/dcgan/metafile.yml | 6 +- configs/deepfillv1/metafile.yml | 4 +- configs/deepfillv2/metafile.yml | 4 +- configs/dic/metafile.yml | 4 +- configs/dim/metafile.yml | 6 +- configs/edsr/metafile.yml | 6 +- configs/edvr/metafile.yml | 16 ++--- configs/esrgan/metafile.yml | 4 +- configs/flavr/metafile.yml | 2 +- configs/gca/metafile.yml | 8 +-- configs/ggan/metafile.yml | 6 +- configs/glean/metafile.yml | 14 ++-- configs/global_local/metafile.yml | 4 +- configs/iconvsr/metafile.yml | 12 ++-- configs/indexnet/metafile.yml | 4 +- configs/inst_colorization/metafile.yml | 2 +- configs/liif/metafile.yml | 4 +- configs/lsgan/metafile.yml | 8 +-- configs/partial_conv/metafile.yml | 8 +-- configs/pggan/metafile.yml | 6 +- configs/pix2pix/metafile.yml | 8 +-- configs/positional_encoding_in_gans/README.md | 2 + .../positional_encoding_in_gans/metafile.yml | 68 +++++++++---------- configs/rdn/metafile.yml | 6 +- configs/real_basicvsr/metafile.yml | 4 +- configs/real_esrgan/metafile.yml | 4 +- configs/sagan/metafile.yml | 20 +++--- configs/singan/metafile.yml | 6 +- configs/sngan_proj/metafile.yml | 20 +++--- configs/srcnn/metafile.yml | 2 +- configs/srgan_resnet/metafile.yml | 4 +- configs/styleganv1/metafile.yml | 4 +- configs/styleganv2/metafile.yml | 32 ++++----- configs/styleganv3/metafile.yml | 20 +++--- configs/tdan/metafile.yml | 16 ++--- configs/tof/metafile.yml | 22 +++--- configs/ttsr/metafile.yml | 4 +- configs/wgan-gp/metafile.yml | 4 +- 45 files changed, 218 insertions(+), 215 deletions(-) diff --git a/.dev_scripts/update_model_index.py b/.dev_scripts/update_model_index.py index c33075d452..60e8f8fe65 100755 --- a/.dev_scripts/update_model_index.py +++ b/.dev_scripts/update_model_index.py @@ -156,6 +156,8 @@ def parse_md(md_file): collection['Name'] = name collection_name = name is_liif = collection_name.upper() == 'LIIF' + task_line = lines[4] + task = task_line.strip().split(':')[-1].strip() while i < len(lines): # parse reference if lines[i].startswith('> ['): @@ -202,7 +204,6 @@ def parse_md(md_file): j = i + 2 while j < len(lines) and lines[j][0] == '|': - task = get_task_name(md_file) line = lines[j].split('|')[1:-1] if line[config_idx].find('](') >= 0: diff --git a/configs/aot_gan/metafile.yml b/configs/aot_gan/metafile.yml index ce2e9ead1c..e0cb08db51 100644 --- a/configs/aot_gan/metafile.yml +++ b/configs/aot_gan/metafile.yml @@ -19,5 +19,5 @@ Models: PSNR: 19.01 SSIM: 0.682 l1 error: 7.07 - Task: Aot_gan + Task: Inpainting Weights: https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inpainting/aot_gan/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth diff --git a/configs/basicvsr/metafile.yml b/configs/basicvsr/metafile.yml index 4ee7693d55..5428476b32 100644 --- a/configs/basicvsr/metafile.yml +++ b/configs/basicvsr/metafile.yml @@ -28,7 +28,7 @@ Models: Vimeo-90K-T (BDx4) SSIM (Y): 0.9286 Vimeo-90K-T (BIx4) PSNR (Y): 36.2848 Vimeo-90K-T (BIx4) SSIM (Y): 0.9395 - Task: Basicvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_reds4_20120409-0e599677.pth - Config: configs/basicvsr/basicvsr_2xb4_vimeo90k-bi.py In Collection: BasicVSR @@ -51,7 +51,7 @@ Models: Vimeo-90K-T (BDx4) SSIM (Y): 0.9316 Vimeo-90K-T (BIx4) PSNR (Y): 37.2026 Vimeo-90K-T (BIx4) SSIM (Y): 0.9451 - Task: Basicvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_vimeo90k_bi_20210409-d2d8f760.pth - Config: configs/basicvsr/basicvsr_2xb4_vimeo90k-bd.py In Collection: BasicVSR @@ -74,5 +74,5 @@ Models: Vimeo-90K-T (BDx4) SSIM (Y): 0.9499 Vimeo-90K-T (BIx4) PSNR (Y): 34.6427 Vimeo-90K-T (BIx4) SSIM (Y): 0.9335 - Task: Basicvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_vimeo90k_bd_20210409-0154dd64.pth diff --git a/configs/basicvsr_pp/metafile.yml b/configs/basicvsr_pp/metafile.yml index 0bc89d21a6..c974808abc 100644 --- a/configs/basicvsr_pp/metafile.yml +++ b/configs/basicvsr_pp/metafile.yml @@ -22,7 +22,7 @@ Models: Vid4 (BIx4) PSNR (Y): 27.7674 Vimeo-90K-T (BDx4) PSNR (Y): 34.0372 Vimeo-90K-T (BIx4) PSNR (Y): 36.4445 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_600k_reds4_20210217-db622b2f.pth - Config: configs/basicvsr_pp/basicvsr-pp_c64n7_4xb2-300k_vimeo90k-bi.py In Collection: BasicVSR++ @@ -39,7 +39,7 @@ Models: Vid4 (BIx4) PSNR (Y): 27.7882 Vimeo-90K-T (BDx4) PSNR (Y): 33.8972 Vimeo-90K-T (BIx4) PSNR (Y): 37.7864 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth - Config: configs/basicvsr_pp/basicvsr-pp_c64n7_4xb2-300k_vimeo90k-bd.py In Collection: BasicVSR++ @@ -56,7 +56,7 @@ Models: Vid4 (BIx4) PSNR (Y): 26.4377 Vimeo-90K-T (BDx4) PSNR (Y): 38.2054 Vimeo-90K-T (BIx4) PSNR (Y): 34.7248 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bd_20210305-ab315ab1.pth - Config: configs/basicvsr_pp/basicvsr-pp_c64n7_8xb1-600k_reds4.py In Collection: BasicVSR++ @@ -73,7 +73,7 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8444 Vimeo-90K-T (BDx4) SSIM (Y): 0.9244 Vimeo-90K-T (BIx4) SSIM (Y): 0.9411 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_600k_reds4_20210217-db622b2f.pth - Config: configs/basicvsr_pp/basicvsr-pp_c64n7_4xb2-300k_vimeo90k-bi.py In Collection: BasicVSR++ @@ -90,7 +90,7 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8401 Vimeo-90K-T (BDx4) SSIM (Y): 0.9195 Vimeo-90K-T (BIx4) SSIM (Y): 0.95 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth - Config: configs/basicvsr_pp/basicvsr-pp_c64n7_4xb2-300k_vimeo90k-bd.py In Collection: BasicVSR++ @@ -107,5 +107,5 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8074 Vimeo-90K-T (BDx4) SSIM (Y): 0.955 Vimeo-90K-T (BIx4) SSIM (Y): 0.9351 - Task: Basicvsr_pp + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bd_20210305-ab315ab1.pth diff --git a/configs/biggan/metafile.yml b/configs/biggan/metafile.yml index 5d992310be..d70d3070c7 100644 --- a/configs/biggan/metafile.yml +++ b/configs/biggan/metafile.yml @@ -15,7 +15,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth - Config: configs/biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py In Collection: BigGAN @@ -25,7 +25,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth - Config: configs/biggan/biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py In Collection: BigGAN @@ -35,7 +35,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_is_iter_1328000_20211111_122911-28c688bc.pth - Config: configs/biggan/biggan_cvt-BigGAN-PyTorch-rgb_imagenet1k-128x128.py In Collection: BigGAN @@ -47,7 +47,7 @@ Models: Metrics: FID: 10.1414 IS: 96.728 - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_cvt_BigGAN-PyTorch_rgb_20210730_125223-3e353fef.pth - Config: configs/biggan/biggan-deep_cvt-hugging-face-rgb_imagenet1k-128x128.py In Collection: BigGAN @@ -59,7 +59,7 @@ Models: Metrics: FID: 5.9471 IS: 107.161 - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan-deep_imagenet1k_128x128_cvt_hugging-face_rgb_20210728_111659-099e96f9.pth - Config: configs/biggan/biggan-deep_cvt-hugging-face_rgb_imagenet1k-256x256.py In Collection: BigGAN @@ -71,7 +71,7 @@ Models: Metrics: FID: 11.3151 IS: 135.107 - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan-deep_imagenet1k_256x256_cvt_hugging-face_rgb_20210728_111735-28651569.pth - Config: configs/biggan/biggan-deep_cvt-hugging-face_rgb_imagenet1k-512x512.py In Collection: BigGAN @@ -83,5 +83,5 @@ Models: Metrics: FID: 16.8728 IS: 124.368 - Task: Biggan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/biggan/biggan-deep_imagenet1k_512x512_cvt_hugging-face_rgb_20210728_112346-a42585f2.pth diff --git a/configs/cain/metafile.yml b/configs/cain/metafile.yml index 19277eade9..5a866fedbc 100644 --- a/configs/cain/metafile.yml +++ b/configs/cain/metafile.yml @@ -18,5 +18,5 @@ Models: Metrics: PSNR: 34.601 SSIM: 0.9578 - Task: Cain + Task: Video Interpolation Weights: https://download.openmmlab.com/mmediting/video_interpolators/cain/cain_b5_g1b32_vimeo90k_triplet_20220530-3520b00c.pth diff --git a/configs/cyclegan/metafile.yml b/configs/cyclegan/metafile.yml index 482fd9f12a..6c54aec4aa 100644 --- a/configs/cyclegan/metafile.yml +++ b/configs/cyclegan/metafile.yml @@ -20,7 +20,7 @@ Models: Metrics: FID: 124.8033 IS: 1.792 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_resnet_in_1x1_80k_facades_20210902_165905-5e2c0876.pth - Config: configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-80kiters_facades.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -33,7 +33,7 @@ Models: Metrics: FID: 125.1694 IS: 1.905 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_id0_resnet_in_1x1_80k_facades_convert-bgr_20210902_164411-d8e72b45.pth - Config: configs/cyclegan/cyclegan_lsgan-resnet-in_1xb1-250kiters_summer2winter.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -46,7 +46,7 @@ Models: Metrics: FID: 83.7177 IS: 2.771 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_resnet_in_1x1_246200_summer2winter_convert-bgr_20210902_165932-fcf08dc1.pth - Config: configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-250kiters_summer2winter.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -59,7 +59,7 @@ Models: Metrics: FID: 83.1418 IS: 2.72 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_id0_resnet_in_1x1_246200_summer2winter_convert-bgr_20210902_165640-8b825581.pth - Config: configs/cyclegan/cyclegan_lsgan-resnet-in_1xb1-250kiters_summer2winter.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -72,7 +72,7 @@ Models: Metrics: FID: 72.8025 IS: 3.129 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_resnet_in_1x1_246200_summer2winter_convert-bgr_20210902_165932-fcf08dc1.pth - Config: configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-250kiters_summer2winter.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -85,7 +85,7 @@ Models: Metrics: FID: 73.5001 IS: 3.107 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_id0_resnet_in_1x1_246200_summer2winter_convert-bgr_20210902_165640-8b825581.pth - Config: configs/cyclegan/cyclegan_lsgan-resnet-in_1xb1-270kiters_horse2zebra.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -98,7 +98,7 @@ Models: Metrics: FID: 64.5225 IS: 1.418 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_resnet_in_1x1_266800_horse2zebra_convert-bgr_20210902_170004-a32c733a.pth - Config: configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-270kiters_horse2zebra.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -111,7 +111,7 @@ Models: Metrics: FID: 74.777 IS: 1.542 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_id0_resnet_in_1x1_266800_horse2zebra_convert-bgr_20210902_165724-77c9c806.pth - Config: configs/cyclegan/cyclegan_lsgan-resnet-in_1xb1-270kiters_horse2zebra.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -124,7 +124,7 @@ Models: Metrics: FID: 141.1517 IS: 3.154 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_resnet_in_1x1_266800_horse2zebra_convert-bgr_20210902_170004-a32c733a.pth - Config: configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-270kiters_horse2zebra.py In Collection: 'CycleGAN: Unpaired Image-to-Image Translation Using Cycle-Consistent @@ -137,5 +137,5 @@ Models: Metrics: FID: 134.3728 IS: 3.091 - Task: Cyclegan + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/cyclegan/refactor/cyclegan_lsgan_id0_resnet_in_1x1_266800_horse2zebra_convert-bgr_20210902_165724-77c9c806.pth diff --git a/configs/dcgan/metafile.yml b/configs/dcgan/metafile.yml index b4f16cb37c..62d38230c5 100644 --- a/configs/dcgan/metafile.yml +++ b/configs/dcgan/metafile.yml @@ -19,7 +19,7 @@ Models: - Dataset: Others Metrics: MS-SSIM: 0.1395 - Task: Dcgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/base_dcgan_mnist-64_b128x1_Glr4e-4_Dlr1e-4_5k_20210512_163926-207a1eaf.pth - Config: configs/dcgan/dcgan_1xb128-300kiters_celeba-cropped-64.py In Collection: Unsupervised Representation Learning with Deep Convolutional Generative @@ -31,7 +31,7 @@ Models: - Dataset: CELEBA Metrics: MS-SSIM: 0.2899 - Task: Dcgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/base_dcgan_celeba-cropped_64_b128x1_300kiter_20210408_161607-1f8a2277.pth - Config: configs/dcgan/dcgan_1xb128-5epoches_lsun-bedroom-64x64.py In Collection: Unsupervised Representation Learning with Deep Convolutional Generative @@ -43,5 +43,5 @@ Models: - Dataset: Others Metrics: MS-SSIM: 0.2095 - Task: Dcgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/base_dcgan_lsun-bedroom_64_b128x1_5e_20210408_161713-117c498b.pth diff --git a/configs/deepfillv1/metafile.yml b/configs/deepfillv1/metafile.yml index 58297d8d55..968b448d38 100644 --- a/configs/deepfillv1/metafile.yml +++ b/configs/deepfillv1/metafile.yml @@ -19,7 +19,7 @@ Models: PSNR: 23.429 SSIM: 0.862 l1 error: 11.019 - Task: Deepfillv1 + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/deepfillv1/deepfillv1_256x256_8x2_places_20200619-c00a0e21.pth - Config: configs/deepfillv1/deepfillv1_4xb4_celeba-256x256.py In Collection: DeepFillv1 @@ -33,5 +33,5 @@ Models: PSNR: 26.878 SSIM: 0.911 l1 error: 6.677 - Task: Deepfillv1 + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/deepfillv1/deepfillv1_256x256_4x4_celeba_20200619-dd51a855.pth diff --git a/configs/deepfillv2/metafile.yml b/configs/deepfillv2/metafile.yml index 42eb7b9e7a..d84dab7739 100644 --- a/configs/deepfillv2/metafile.yml +++ b/configs/deepfillv2/metafile.yml @@ -19,7 +19,7 @@ Models: PSNR: 22.398 SSIM: 0.815 l1 error: 8.635 - Task: Deepfillv2 + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/deepfillv2/deepfillv2_256x256_8x2_places_20200619-10d15793.pth - Config: configs/deepfillv2/deepfillv2_8xb2_celeba-256x256.py In Collection: DeepFillv2 @@ -33,5 +33,5 @@ Models: PSNR: 25.721 SSIM: 0.871 l1 error: 5.411 - Task: Deepfillv2 + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/deepfillv2/deepfillv2_256x256_8x2_celeba_20200619-c96e5f12.pth diff --git a/configs/dic/metafile.yml b/configs/dic/metafile.yml index 5323ffe007..51d63d50d8 100644 --- a/configs/dic/metafile.yml +++ b/configs/dic/metafile.yml @@ -18,7 +18,7 @@ Models: Metrics: PSNR: 25.2319 SSIM: 0.7422 - Task: Dic + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/dic/dic_x8c48b6_g4_150k_CelebAHQ_20210611-5d3439ca.pth - Config: configs/dic/dic_gan-x8c48b6_4xb2-500k_celeba-hq.py In Collection: DIC @@ -31,5 +31,5 @@ Models: Metrics: PSNR: 23.6241 SSIM: 0.6721 - Task: Dic + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/dic/dic_gan_x8c48b6_g4_500k_CelebAHQ_20210625-3b89a358.pth diff --git a/configs/dim/metafile.yml b/configs/dim/metafile.yml index dcd401073c..83293d2c9c 100644 --- a/configs/dim/metafile.yml +++ b/configs/dim/metafile.yml @@ -20,7 +20,7 @@ Models: GRAD: 32.7 MSE: 0.017 SAD: 53.8 - Task: Dim + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/dim/dim_stage1_v16_1x1_1000k_comp1k_SAD-53.8_20200605_140257-979a420f.pth - Config: configs/dim/dim_stage2-v16-pln_1xb1-1000k_comp1k.py In Collection: DIM @@ -35,7 +35,7 @@ Models: GRAD: 29.4 MSE: 0.016 SAD: 52.3 - Task: Dim + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/dim/dim_stage2_v16_pln_1x1_1000k_comp1k_SAD-52.3_20200607_171909-d83c4775.pth - Config: configs/dim/dim_stage3-v16-pln_1xb1-1000k_comp1k.py In Collection: DIM @@ -50,5 +50,5 @@ Models: GRAD: 29.0 MSE: 0.015 SAD: 50.6 - Task: Dim + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/dim/dim_stage3_v16_pln_1x1_1000k_comp1k_SAD-50.6_20200609_111851-647f24b6.pth diff --git a/configs/edsr/metafile.yml b/configs/edsr/metafile.yml index c570a839b5..481e6ef5ac 100644 --- a/configs/edsr/metafile.yml +++ b/configs/edsr/metafile.yml @@ -22,7 +22,7 @@ Models: Set14 SSIM: 0.8874 Set5 PSNR: 35.7592 Set5 SSIM: 0.9372 - Task: Edsr + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edsr/edsr_x2c64b16_1x16_300k_div2k_20200604-19fe95ea.pth - Config: configs/edsr/edsr_x3c64b16_1xb16-300k_div2k.py In Collection: EDSR @@ -39,7 +39,7 @@ Models: Set14 SSIM: 0.8022 Set5 PSNR: 32.3301 Set5 SSIM: 0.8912 - Task: Edsr + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edsr/edsr_x3c64b16_1x16_300k_div2k_20200608-36d896f4.pth - Config: configs/edsr/edsr_x4c64b16_1xb16-300k_div2k.py In Collection: EDSR @@ -56,5 +56,5 @@ Models: Set14 SSIM: 0.7366 Set5 PSNR: 30.2223 Set5 SSIM: 0.85 - Task: Edsr + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edsr/edsr_x4c64b16_1x16_300k_div2k_20200608-3c2af8a3.pth diff --git a/configs/edvr/metafile.yml b/configs/edvr/metafile.yml index f05cc6470f..dd7ca2fd59 100644 --- a/configs/edvr/metafile.yml +++ b/configs/edvr/metafile.yml @@ -17,7 +17,7 @@ Models: - Dataset: REDS Metrics: PSNR: 30.343 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrm_wotsa_x4_8x4_600k_reds_20200522-0570e567.pth - Config: configs/edvr/edvrm_8xb4-600k_reds.py In Collection: EDVR @@ -29,7 +29,7 @@ Models: - Dataset: REDS Metrics: PSNR: 30.4194 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrm_x4_8x4_600k_reds_20210625-e29b71b5.pth - Config: configs/edvr/edvrl_wotsa-c128b40_8xb8-lr2e-4-600k_reds4.py In Collection: EDVR @@ -41,7 +41,7 @@ Models: - Dataset: REDS Metrics: PSNR: 31.001 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrl_wotsa_c128b40_8x8_lr2e-4_600k_reds4_20211228-d895a769.pth - Config: configs/edvr/edvrl_c128b40_8xb8-lr2e-4-600k_reds4.py In Collection: EDVR @@ -53,7 +53,7 @@ Models: - Dataset: REDS Metrics: PSNR: 31.0467 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrl_c128b40_8x8_lr2e-4_600k_reds4_20220104-4509865f.pth - Config: configs/edvr/edvrm_wotsa_8xb4-600k_reds.py In Collection: EDVR @@ -65,7 +65,7 @@ Models: - Dataset: REDS Metrics: SSIM: 0.8664 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrm_wotsa_x4_8x4_600k_reds_20200522-0570e567.pth - Config: configs/edvr/edvrm_8xb4-600k_reds.py In Collection: EDVR @@ -77,7 +77,7 @@ Models: - Dataset: REDS Metrics: SSIM: 0.8684 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrm_x4_8x4_600k_reds_20210625-e29b71b5.pth - Config: configs/edvr/edvrl_wotsa-c128b40_8xb8-lr2e-4-600k_reds4.py In Collection: EDVR @@ -89,7 +89,7 @@ Models: - Dataset: REDS Metrics: SSIM: 0.8784 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrl_wotsa_c128b40_8x8_lr2e-4_600k_reds4_20211228-d895a769.pth - Config: configs/edvr/edvrl_c128b40_8xb8-lr2e-4-600k_reds4.py In Collection: EDVR @@ -101,5 +101,5 @@ Models: - Dataset: REDS Metrics: SSIM: 0.8793 - Task: Edvr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/edvr/edvrl_c128b40_8x8_lr2e-4_600k_reds4_20220104-4509865f.pth diff --git a/configs/esrgan/metafile.yml b/configs/esrgan/metafile.yml index c0e4da18e8..184485f817 100644 --- a/configs/esrgan/metafile.yml +++ b/configs/esrgan/metafile.yml @@ -22,7 +22,7 @@ Models: Set14 SSIM: 0.7447 Set5 PSNR: 30.6428 Set5 SSIM: 0.8559 - Task: Esrgan + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth - Config: configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py In Collection: ESRGAN @@ -39,5 +39,5 @@ Models: Set14 SSIM: 0.6491 Set5 PSNR: 28.27 Set5 SSIM: 0.7778 - Task: Esrgan + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_x4c64b23g32_1x16_400k_div2k_20200508-f8ccaf3b.pth diff --git a/configs/flavr/metafile.yml b/configs/flavr/metafile.yml index 6caf254f08..0b0d70b430 100644 --- a/configs/flavr/metafile.yml +++ b/configs/flavr/metafile.yml @@ -18,5 +18,5 @@ Models: Metrics: PSNR: 36.334 SSIM: 0.96015 - Task: Flavr + Task: Video Interpolation Weights: https://download.openmmlab.com/mmediting/video_interpolators/flavr/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth diff --git a/configs/gca/metafile.yml b/configs/gca/metafile.yml index 4a1cd1afbf..01be20817f 100644 --- a/configs/gca/metafile.yml +++ b/configs/gca/metafile.yml @@ -20,7 +20,7 @@ Models: GRAD: 16.21 MSE: 0.0083 SAD: 34.61 - Task: Gca + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/gca/baseline_r34_4x10_200k_comp1k_SAD-34.61_20220620-96f85d56.pth - Config: configs/gca/gca_r34_4xb10-200k_comp1k.py In Collection: GCA @@ -35,7 +35,7 @@ Models: GRAD: 14.96 MSE: 0.0081 SAD: 33.38 - Task: Gca + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/gca/gca_r34_4x10_200k_comp1k_SAD-33.38_20220615-65595f39.pth - Config: configs/gca/baseline_r34_4xb10-dimaug-200k_comp1k.py In Collection: GCA @@ -50,7 +50,7 @@ Models: GRAD: 30.21 MSE: 0.0144 SAD: 49.95 - Task: Gca + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/gca/baseline_dimaug_r34_4x10_200k_comp1k_SAD-49.95_20200626_231612-535c9a11.pth - Config: configs/gca/gca_r34_4xb10-dimaug-200k_comp1k.py In Collection: GCA @@ -65,5 +65,5 @@ Models: GRAD: 28.07 MSE: 0.0129 SAD: 49.42 - Task: Gca + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/gca/gca_dimaug_r34_4x10_200k_comp1k_SAD-49.42_20200626_231422-8e9cc127.pth diff --git a/configs/ggan/metafile.yml b/configs/ggan/metafile.yml index 8db4dc0f3c..ecb3a36221 100644 --- a/configs/ggan/metafile.yml +++ b/configs/ggan/metafile.yml @@ -17,7 +17,7 @@ Models: Metrics: FID: 20.1797 MS-SSIM: 0.3318 - Task: Ggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/ggan/ggan_celeba-cropped_dcgan-archi_lr-1e-3_64_b128x1_12m.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/ggan/ggan_dcgan-archi_lr1e-4-1xb64-10Mimgs_celeba-cropped-128x128.py In Collection: GGAN @@ -29,7 +29,7 @@ Models: Metrics: FID: 18.7647 MS-SSIM: 0.3149 - Task: Ggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/ggan/ggan_celeba-cropped_dcgan-archi_lr-1e-4_128_b64x1_10m_20210430_143027-516423dc.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/ggan/ggan_lsgan-archi_lr1e-4-1xb128-20Mimgs_lsun-bedroom-64x64.py In Collection: GGAN @@ -41,5 +41,5 @@ Models: Metrics: FID: 39.9261 MS-SSIM: 0.0649 - Task: Ggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/ggan/ggan_lsun-bedroom_lsgan_archi_lr-1e-4_64_b128x1_20m_20210430_143114-5d99b76c.pth diff --git a/configs/glean/metafile.yml b/configs/glean/metafile.yml index 8c36d7b0b8..cd62fca475 100644 --- a/configs/glean/metafile.yml +++ b/configs/glean/metafile.yml @@ -17,7 +17,7 @@ Models: - Dataset: CAT Metrics: PSNR: 23.98 - Task: Glean + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_8x_20210614-d3ac8683.pth - Config: configs/glean/glean_x16_2xb8_ffhq.py In Collection: GLEAN @@ -29,7 +29,7 @@ Models: - Dataset: FFHQ Metrics: PSNR: 26.91 - Task: Glean + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/glean/glean_ffhq_16x_20210527-61a3afad.pth - Config: configs/glean/glean_x16_2xb8_cat.py In Collection: GLEAN @@ -41,7 +41,7 @@ Models: - Dataset: CAT Metrics: PSNR: 20.88 - Task: Glean + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/glean/glean_cat_16x_20210527-68912543.pth - Config: configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py In Collection: GLEAN @@ -53,7 +53,7 @@ Models: - Dataset: CELEBA Metrics: PSNR: 27.94 - Task: Glean + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth - Config: configs/glean/glean_x8-fp16_2xb8_cat.py In Collection: GLEAN @@ -64,7 +64,7 @@ Models: Results: - Dataset: CAT Metrics: {} - Task: Glean + Task: Image Super-Resolution Weights: '' - Config: configs/glean/glean_x16-fp16_2xb8_ffhq.py In Collection: GLEAN @@ -75,7 +75,7 @@ Models: Results: - Dataset: FFHQ Metrics: {} - Task: Glean + Task: Image Super-Resolution Weights: '' - Config: configs/glean/glean_in128out1024-fp16_4xb2-300k_ffhq-celeba-hq.py In Collection: GLEAN @@ -86,5 +86,5 @@ Models: Results: - Dataset: CELEBA Metrics: {} - Task: Glean + Task: Image Super-Resolution Weights: '' diff --git a/configs/global_local/metafile.yml b/configs/global_local/metafile.yml index 42ec88f3c5..e123af05ff 100644 --- a/configs/global_local/metafile.yml +++ b/configs/global_local/metafile.yml @@ -19,7 +19,7 @@ Models: PSNR: 23.152 SSIM: 0.862 l1 error: 11.164 - Task: Global_local + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/global_local/gl_256x256_8x12_places_20200619-52a040a8.pth - Config: configs/global_local/gl_8xb12_celeba-256x256.py In Collection: Global&Local @@ -33,5 +33,5 @@ Models: PSNR: 26.78 SSIM: 0.904 l1 error: 6.678 - Task: Global_local + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/global_local/gl_256x256_8x12_celeba_20200619-5af0493f.pth diff --git a/configs/iconvsr/metafile.yml b/configs/iconvsr/metafile.yml index a0ea7ed2da..8b92f4ec08 100644 --- a/configs/iconvsr/metafile.yml +++ b/configs/iconvsr/metafile.yml @@ -22,7 +22,7 @@ Models: Vid4 (BIx4) PSNR (Y): 27.4809 Vimeo-90K-T (BDx4) PSNR (Y): 34.4299 Vimeo-90K-T (BIx4) PSNR (Y): 36.4983 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_reds4_20210413-9e09d621.pth - Config: configs/iconvsr/iconvsr_2xb4_vimeo90k-bi.py In Collection: IconVSR @@ -39,7 +39,7 @@ Models: Vid4 (BIx4) PSNR (Y): 27.4238 Vimeo-90K-T (BDx4) PSNR (Y): 34.5548 Vimeo-90K-T (BIx4) PSNR (Y): 37.3729 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_vimeo90k_bi_20210413-7c7418dc.pth - Config: configs/iconvsr/iconvsr_2xb4_vimeo90k-bd.py In Collection: IconVSR @@ -56,7 +56,7 @@ Models: Vid4 (BIx4) PSNR (Y): 26.3109 Vimeo-90K-T (BDx4) PSNR (Y): 37.7573 Vimeo-90K-T (BIx4) PSNR (Y): 34.678 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_vimeo90k_bd_20210414-5f38cb34.pth - Config: configs/iconvsr/iconvsr_2xb4_reds4.py In Collection: IconVSR @@ -73,7 +73,7 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8354 Vimeo-90K-T (BDx4) SSIM (Y): 0.9287 Vimeo-90K-T (BIx4) SSIM (Y): 0.9416 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_reds4_20210413-9e09d621.pth - Config: configs/iconvsr/iconvsr_2xb4_vimeo90k-bi.py In Collection: IconVSR @@ -90,7 +90,7 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8297 Vimeo-90K-T (BDx4) SSIM (Y): 0.9295 Vimeo-90K-T (BIx4) SSIM (Y): 0.9467 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_vimeo90k_bi_20210413-7c7418dc.pth - Config: configs/iconvsr/iconvsr_2xb4_vimeo90k-bd.py In Collection: IconVSR @@ -107,5 +107,5 @@ Models: Vid4 (BIx4) SSIM (Y): 0.8028 Vimeo-90K-T (BDx4) SSIM (Y): 0.9517 Vimeo-90K-T (BIx4) SSIM (Y): 0.9339 - Task: Iconvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/iconvsr/iconvsr_vimeo90k_bd_20210414-5f38cb34.pth diff --git a/configs/indexnet/metafile.yml b/configs/indexnet/metafile.yml index a27b24e03b..7330abdc8f 100644 --- a/configs/indexnet/metafile.yml +++ b/configs/indexnet/metafile.yml @@ -20,7 +20,7 @@ Models: GRAD: 25.5 MSE: 0.012 SAD: 45.6 - Task: Indexnet + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/indexnet/indexnet_mobv2_1x16_78k_comp1k_SAD-45.6_20200618_173817-26dd258d.pth - Config: configs/indexnet/indexnet_mobv2-dimaug_1xb16-78k_comp1k.py In Collection: IndexNet @@ -35,5 +35,5 @@ Models: GRAD: 30.8 MSE: 0.016 SAD: 50.1 - Task: Indexnet + Task: Matting Weights: https://download.openmmlab.com/mmediting/mattors/indexnet/indexnet_dimaug_mobv2_1x16_78k_comp1k_SAD-50.1_20200626_231857-af359436.pth diff --git a/configs/inst_colorization/metafile.yml b/configs/inst_colorization/metafile.yml index c13dabfb11..eec9463695 100644 --- a/configs/inst_colorization/metafile.yml +++ b/configs/inst_colorization/metafile.yml @@ -15,5 +15,5 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Inst_colorization + Task: Colorization Weights: https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inst_colorization/inst-colorizatioon_full_official_cocostuff-256x256-5b9d4eee.pth diff --git a/configs/liif/metafile.yml b/configs/liif/metafile.yml index cdfd1d7519..465ba6c525 100644 --- a/configs/liif/metafile.yml +++ b/configs/liif/metafile.yml @@ -52,7 +52,7 @@ Models: Set5x4 SSIM: 0.8509 Set5x6 PSNR: 27.1187 Set5x6 SSIM: 0.7774 - Task: Liif + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/liif/liif_edsr_norm_c64b16_g1_1000k_div2k_20210715-ab7ce3fc.pth - Config: configs/liif/liif-rdn-norm_c64b16_1xb16-1000k_div2k.py In Collection: LIIF @@ -99,5 +99,5 @@ Models: Set5x4 SSIM: 0.8513 Set5x6 PSNR: 27.1914 Set5x6 SSIM: 0.7751 - Task: Liif + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/liif/liif_rdn_norm_c64b16_g1_1000k_div2k_20210717-22d6fdc8.pth diff --git a/configs/lsgan/metafile.yml b/configs/lsgan/metafile.yml index bc4588de69..43aa2678b8 100644 --- a/configs/lsgan/metafile.yml +++ b/configs/lsgan/metafile.yml @@ -17,7 +17,7 @@ Models: Metrics: FID: 11.9258 MS-SSIM: 0.3216 - Task: Lsgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/lsgan/lsgan_celeba-cropped_dcgan-archi_lr-1e-3_64_b128x1_12m_20210429_144001-92ca1d0d.pth - Config: configs/lsgan/lsgan_dcgan-archi_lr1e-4-1xb128-12Mimgs_lsun-bedroom-64x64.py In Collection: LSGAN @@ -29,7 +29,7 @@ Models: Metrics: FID: 30.739 MS-SSIM: 0.0671 - Task: Lsgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/lsgan/lsgan_lsun-bedroom_dcgan-archi_lr-1e-4_64_b128x1_12m_20210429_144602-ec4ec6bb.pth - Config: configs/lsgan/lsgan_dcgan-archi_lr1e-4-1xb64-10Mimgs_celeba-cropped-128x128.py In Collection: LSGAN @@ -41,7 +41,7 @@ Models: Metrics: FID: 38.3752 MS-SSIM: 0.3691 - Task: Lsgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/lsgan/lsgan_celeba-cropped_dcgan-archi_lr-1e-4_128_b64x1_10m_20210429_144229-01ba67dc.pth - Config: configs/lsgan/lsgan_lsgan-archi_lr1e-4-1xb64-10Mimgs_lsun-bedroom-128x128.py In Collection: LSGAN @@ -53,5 +53,5 @@ Models: Metrics: FID: 51.55 MS-SSIM: 0.0612 - Task: Lsgan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/lsgan/lsgan_lsun-bedroom_lsgan-archi_lr-1e-4_128_b64x1_10m_20210429_155605-cf78c0a8.pth diff --git a/configs/partial_conv/metafile.yml b/configs/partial_conv/metafile.yml index 7554af57e1..00ce2bfdd8 100644 --- a/configs/partial_conv/metafile.yml +++ b/configs/partial_conv/metafile.yml @@ -16,7 +16,7 @@ Models: Results: - Dataset: PLACES Metrics: {} - Task: Partial_conv + Task: Inpainting Weights: '' - Config: configs/partial_conv/pconv_stage2_4xb2_places-256x256.py In Collection: PConv @@ -30,7 +30,7 @@ Models: PSNR: 22.762 SSIM: 0.801 l1 error: 8.776 - Task: Partial_conv + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/pconv/pconv_256x256_stage2_4x2_places_20200619-1ffed0e8.pth - Config: configs/partial_conv/pconv_stage1_8xb1_celeba-256x256.py In Collection: PConv @@ -41,7 +41,7 @@ Models: Results: - Dataset: CELEBA Metrics: {} - Task: Partial_conv + Task: Inpainting Weights: '' - Config: configs/partial_conv/pconv_stage2_4xb2_celeba-256x256.py In Collection: PConv @@ -55,5 +55,5 @@ Models: PSNR: 25.404 SSIM: 0.853 l1 error: 5.99 - Task: Partial_conv + Task: Inpainting Weights: https://download.openmmlab.com/mmediting/inpainting/pconv/pconv_256x256_stage2_4x2_celeba_20200619-860f8b95.pth diff --git a/configs/pggan/metafile.yml b/configs/pggan/metafile.yml index 723a9bba9f..025278cbd7 100644 --- a/configs/pggan/metafile.yml +++ b/configs/pggan/metafile.yml @@ -16,7 +16,7 @@ Models: - Dataset: CELEBA Metrics: MS-SSIM: 0.3023 - Task: Pggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pggan/pggan_celeba-cropped_128_g8_20210408_181931-85a2e72c.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/pggan/pggan_8xb4-12Mimgs_lsun-bedroom-128x128.py In Collection: PGGAN @@ -27,7 +27,7 @@ Models: - Dataset: Others Metrics: MS-SSIM: 0.0602 - Task: Pggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pggan/pggan_lsun-bedroom_128x128_g8_20210408_182033-5e59f45d.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/pggan/pggan_8xb4-12Mimg_celeba-hq-1024x1024.py In Collection: PGGAN @@ -38,5 +38,5 @@ Models: - Dataset: CELEBA Metrics: MS-SSIM: 0.3379 - Task: Pggan + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pggan/pggan_celeba-hq_1024_g8_20210408_181911-f1ef51c3.pth diff --git a/configs/pix2pix/metafile.yml b/configs/pix2pix/metafile.yml index 522bb5b86e..48b8c6db13 100644 --- a/configs/pix2pix/metafile.yml +++ b/configs/pix2pix/metafile.yml @@ -17,7 +17,7 @@ Models: Metrics: FID: 124.9773 IS: 1.62 - Task: Pix2pix + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_1x1_80k_facades_20210902_170442-c0958d50.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/pix2pix/pix2pix_vanilla-unet-bn_1xb1-220kiters_aerial2maps.py In Collection: Pix2Pix @@ -29,7 +29,7 @@ Models: Metrics: FID: 122.5856 IS: 3.137 - Task: Pix2pix + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_a2b_1x1_219200_maps_convert-bgr_20210902_170729-59a31517.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/pix2pix/pix2pix_vanilla-unet-bn_1xb1-220kiters_maps2aerial.py In Collection: Pix2Pix @@ -41,7 +41,7 @@ Models: Metrics: FID: 88.4635 IS: 3.31 - Task: Pix2pix + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_b2a_1x1_219200_maps_convert-bgr_20210902_170814-6d2eac4a.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/pix2pix/pix2pix_vanilla-unet-bn_wo-jitter-flip-1xb4-190kiters_edges2shoes.py In Collection: Pix2Pix @@ -53,5 +53,5 @@ Models: Metrics: FID: 84.375 IS: 2.815 - Task: Pix2pix + Task: Image2Image Translation Weights: https://download.openmmlab.com/mmgen/pix2pix/refactor/pix2pix_vanilla_unet_bn_wo_jitter_flip_1x4_186840_edges2shoes_convert-bgr_20210902_170902-0c828552.pth diff --git a/configs/positional_encoding_in_gans/README.md b/configs/positional_encoding_in_gans/README.md index dc3728b3c8..4301a696f5 100644 --- a/configs/positional_encoding_in_gans/README.md +++ b/configs/positional_encoding_in_gans/README.md @@ -2,6 +2,8 @@ > [Positional Encoding as Spatial Inductive Bias in GANs](https://openaccess.thecvf.com/content/CVPR2021/html/Xu_Positional_Encoding_As_Spatial_Inductive_Bias_in_GANs_CVPR_2021_paper.html) +> **Task**: Unconditional GANs + ## Abstract diff --git a/configs/positional_encoding_in_gans/metafile.yml b/configs/positional_encoding_in_gans/metafile.yml index 5a300369db..d649dc171c 100644 --- a/configs/positional_encoding_in_gans/metafile.yml +++ b/configs/positional_encoding_in_gans/metafile.yml @@ -20,7 +20,7 @@ Models: PSNR: 75.92 SSIM: 51.24 Scales: 256.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/stylegan2_c2_config-a_ffhq_256x256_b3x8_1100k_20210406_145127-71d9634b.pth - Config: configs/positional_encoding_in_gans/stylegan2_c2_8xb3-1100kiters_ffhq-512x512.py In Collection: Positional Encoding in GANs @@ -35,7 +35,7 @@ Models: PSNR: 75.65 SSIM: 54.58 Scales: 512.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/stylegan2_c2_config-b_ffhq_512x512_b3x8_1100k_20210406_145142-e85e5cf4.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-c_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -49,7 +49,7 @@ Models: P&R10k: PSNR: 73.84 SSIM: 55.77 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-c_ffhq_256-512_b3x8_1100k_20210406_144824-9f43b07d.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-d_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -63,7 +63,7 @@ Models: P&R10k: PSNR: 73.28 SSIM: 56.16 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-d_ffhq_256-512_b3x8_1100k_20210406_144840-dbefacf6.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-e_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -77,7 +77,7 @@ Models: P&R10k: PSNR: 74.13 SSIM: 56.88 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-e_ffhq_256-512_b3x8_1100k_20210406_144906-98d5a42a.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -91,7 +91,7 @@ Models: P&R10k: PSNR: 73.51 SSIM: 57.32 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-f_ffhq_256-512_b3x8_1100k_20210406_144927-4f4d5391.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-g_c1_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -105,7 +105,7 @@ Models: P&R10k: PSNR: 73.05 SSIM: 56.45 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c1_config-g_ffhq_256-512_b3x8_1100k_20210406_144758-2df61752.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-h_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -119,7 +119,7 @@ Models: P&R10k: PSNR: 72.81 SSIM: 54.35 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-h_ffhq_256-512_b3x8_1100k_20210406_145006-84cf3f48.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-i_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -133,7 +133,7 @@ Models: P&R10k: PSNR: 73.26 SSIM: 54.71 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-i_ffhq_256-512_b3x8_1100k_20210406_145023-c2b0accf.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-j_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -147,7 +147,7 @@ Models: P&R10k: PSNR: 73.11 SSIM: 54.63 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-j_ffhq_256-512_b3x8_1100k_20210406_145044-c407481b.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-k_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -161,7 +161,7 @@ Models: P&R10k: PSNR: 73.05 SSIM: 51.07 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-k_ffhq_256-512_b3x8_1100k_20210406_145105-6d8cc39f.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c2_8xb3-1100kiters_ffhq-256-896.py In Collection: Positional Encoding in GANs @@ -175,7 +175,7 @@ Models: P&R10k: PSNR: 72.21 SSIM: 50.29 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-f_ffhq_256-896_b3x8_1100k_20210406_144943-6c18ad5d.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c1_8xb2-1600kiters_ffhq-256-1024.py In Collection: Positional Encoding in GANs @@ -189,7 +189,7 @@ Models: P&R10k: PSNR: 71.79 SSIM: 49.92 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c1_config-f_ffhq_256-1024_b2x8_1600k_20210406_144716-81cbdc96.pth - Config: configs/positional_encoding_in_gans/stylegan2_c2_8xb3-1100kiters_ffhq-256x256.py In Collection: Positional Encoding in GANs @@ -203,7 +203,7 @@ Models: Precision10k: 75.92 Recall10k: 51.24 Scales: 256.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/stylegan2_c2_config-a_ffhq_256x256_b3x8_1100k_20210406_145127-71d9634b.pth - Config: configs/positional_encoding_in_gans/stylegan2_c2_8xb3-1100kiters_ffhq-512x512.py In Collection: Positional Encoding in GANs @@ -217,7 +217,7 @@ Models: Precision10k: 75.65 Recall10k: 54.58 Scales: 512.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/stylegan2_c2_config-b_ffhq_512x512_b3x8_1100k_20210406_145142-e85e5cf4.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-c_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -230,7 +230,7 @@ Models: FID50k: 3.35 Precision10k: 73.84 Recall10k: 55.77 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-c_ffhq_256-512_b3x8_1100k_20210406_144824-9f43b07d.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-d_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -243,7 +243,7 @@ Models: FID50k: 3.5 Precision10k: 73.28 Recall10k: 56.16 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-d_ffhq_256-512_b3x8_1100k_20210406_144840-dbefacf6.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-e_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -256,7 +256,7 @@ Models: FID50k: 3.15 Precision10k: 74.13 Recall10k: 56.88 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-e_ffhq_256-512_b3x8_1100k_20210406_144906-98d5a42a.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -269,7 +269,7 @@ Models: FID50k: 2.93 Precision10k: 73.51 Recall10k: 57.32 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-f_ffhq_256-512_b3x8_1100k_20210406_144927-4f4d5391.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-g_c1_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -282,7 +282,7 @@ Models: FID50k: 3.4 Precision10k: 73.05 Recall10k: 56.45 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c1_config-g_ffhq_256-512_b3x8_1100k_20210406_144758-2df61752.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-h_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -295,7 +295,7 @@ Models: FID50k: 4.01 Precision10k: 72.81 Recall10k: 54.35 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-h_ffhq_256-512_b3x8_1100k_20210406_145006-84cf3f48.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-i_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -308,7 +308,7 @@ Models: FID50k: 3.76 Precision10k: 73.26 Recall10k: 54.71 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-i_ffhq_256-512_b3x8_1100k_20210406_145023-c2b0accf.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-j_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -321,7 +321,7 @@ Models: FID50k: 4.23 Precision10k: 73.11 Recall10k: 54.63 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-j_ffhq_256-512_b3x8_1100k_20210406_145044-c407481b.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-k_c2_8xb3-1100kiters_ffhq-256-512.py In Collection: Positional Encoding in GANs @@ -334,7 +334,7 @@ Models: FID50k: 4.17 Precision10k: 73.05 Recall10k: 51.07 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-k_ffhq_256-512_b3x8_1100k_20210406_145105-6d8cc39f.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c2_8xb3-1100kiters_ffhq-256-896.py In Collection: Positional Encoding in GANs @@ -347,7 +347,7 @@ Models: FID50k: 4.1 Precision10k: 72.21 Recall10k: 50.29 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c2_config-f_ffhq_256-896_b3x8_1100k_20210406_144943-6c18ad5d.pth - Config: configs/positional_encoding_in_gans/mspie-stylegan2-config-f_c1_8xb2-1600kiters_ffhq-256-1024.py In Collection: Positional Encoding in GANs @@ -360,7 +360,7 @@ Models: FID50k: 6.24 Precision10k: 71.79 Recall10k: 49.92 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/mspie-stylegan2_c1_config-f_ffhq_256-1024_b2x8_1600k_20210406_144716-81cbdc96.pth - Config: configs/positional_encoding_in_gans/singan_interp-pad_balloons.py In Collection: Positional Encoding in GANs @@ -371,7 +371,7 @@ Models: - Dataset: Others Metrics: Num Scales: 8.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_interp-pad_balloons_20210406_180014-96f51555.pth - Config: configs/positional_encoding_in_gans/singan_interp-pad_disc-nobn_balloons.py In Collection: Positional Encoding in GANs @@ -382,7 +382,7 @@ Models: - Dataset: Others Metrics: Num Scales: 8.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_interp-pad_disc-nobn_balloons_20210406_180059-7d63e65d.pth - Config: configs/positional_encoding_in_gans/singan_interp-pad_disc-nobn_fish.py In Collection: Positional Encoding in GANs @@ -393,7 +393,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_interp-pad_disc-nobn_fis_20210406_175720-9428517a.pth - Config: configs/positional_encoding_in_gans/singan-csg_fish.py In Collection: Positional Encoding in GANs @@ -404,7 +404,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_csg_fis_20210406_175532-f0ec7b61.pth - Config: configs/positional_encoding_in_gans/singan-csg_bohemian.py In Collection: Positional Encoding in GANs @@ -415,7 +415,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_csg_bohemian_20210407_195455-5ed56db2.pth - Config: configs/positional_encoding_in_gans/singan_spe-dim4_fish.py In Collection: Positional Encoding in GANs @@ -426,7 +426,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_spe-dim4_fish_20210406_175933-f483a7e3.pth - Config: configs/positional_encoding_in_gans/singan_spe-dim4_bohemian.py In Collection: Positional Encoding in GANs @@ -437,7 +437,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_spe-dim4_bohemian_20210406_175820-6e484a35.pth - Config: configs/positional_encoding_in_gans/singan_spe-dim8_bohemian.py In Collection: Positional Encoding in GANs @@ -448,5 +448,5 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Positional_encoding_in_gans + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/pe_in_gans/singan_spe-dim8_bohemian_20210406_175858-7faa50f3.pth diff --git a/configs/rdn/metafile.yml b/configs/rdn/metafile.yml index 60f784eefb..0a6c9f2055 100644 --- a/configs/rdn/metafile.yml +++ b/configs/rdn/metafile.yml @@ -22,7 +22,7 @@ Models: Set14 SSIM: 0.7423 Set5 PSNR: 30.4922 Set5 SSIM: 0.8548 - Task: Rdn + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/rdn/rdn_x4c64b16_g1_1000k_div2k_20210419-3577d44f.pth - Config: configs/rdn/rdn_x3c64b16_1xb16-1000k_div2k.py In Collection: RDN @@ -39,7 +39,7 @@ Models: Set14 SSIM: 0.8077 Set5 PSNR: 32.6051 Set5 SSIM: 0.8943 - Task: Rdn + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/rdn/rdn_x3c64b16_g1_1000k_div2k_20210419-b93cb6aa.pth - Config: configs/rdn/rdn_x2c64b16_1xb16-1000k_div2k.py In Collection: RDN @@ -56,5 +56,5 @@ Models: Set14 SSIM: 0.892 Set5 PSNR: 35.9883 Set5 SSIM: 0.9385 - Task: Rdn + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/rdn/rdn_x2c64b16_g1_1000k_div2k_20210419-dc146009.pth diff --git a/configs/real_basicvsr/metafile.yml b/configs/real_basicvsr/metafile.yml index de719fa41e..2ff2d21612 100644 --- a/configs/real_basicvsr/metafile.yml +++ b/configs/real_basicvsr/metafile.yml @@ -20,7 +20,7 @@ Models: NIQE (Y): 3.7662 NRQM (Y): 6.0477 PI (Y): 3.8593 - Task: Real_basicvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/real_basicvsr/realbasicvsr_c64b20_1x30x8_lr5e-5_150k_reds_20211104-52f77c2c.pth - Config: configs/real_basicvsr/realbasicvsr_wogan-c64b20-2x30x8_8xb2-lr1e-4-300k_reds.py In Collection: RealBasicVSR @@ -31,5 +31,5 @@ Models: Results: - Dataset: REDS Metrics: {} - Task: Real_basicvsr + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/real_basicvsr/realbasicvsr_wogan_c64b20_2x30x8_lr1e-4_300k_reds_20211027-0e2ff207.pth diff --git a/configs/real_esrgan/metafile.yml b/configs/real_esrgan/metafile.yml index c08a1b4cfd..f58b4ec7e9 100644 --- a/configs/real_esrgan/metafile.yml +++ b/configs/real_esrgan/metafile.yml @@ -18,7 +18,7 @@ Models: Metrics: PSNR: 28.0297 SSIM: 0.8236 - Task: Real_esrgan + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/real_esrgan/realesrnet_c64b23g32_12x4_lr2e-4_1000k_df2k_ost_20210816-4ae3b5a4.pth - Config: configs/real_esrgan/realesrgan_c64b23g32_4xb12-lr1e-4-400k_df2k-ost.py In Collection: Real-ESRGAN @@ -31,5 +31,5 @@ Models: Metrics: PSNR: 26.2204 SSIM: 0.7655 - Task: Real_esrgan + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/real_esrgan/realesrgan_c64b23g32_12x4_lr1e-4_400k_df2k_ost_20211010-34798885.pth diff --git a/configs/sagan/metafile.yml b/configs/sagan/metafile.yml index 0c0d29ac0a..1eb6cbe472 100644 --- a/configs/sagan/metafile.yml +++ b/configs/sagan/metafile.yml @@ -20,7 +20,7 @@ Models: Iter: 400000.0 Total Iters\*: 500000.0 dist_step: 5.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_cifar10_32_lr2e-4_ndisc5_b64x1_woReUinplace_is-iter400000_20210730_125743-4008a9ca.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SAGAN @@ -35,7 +35,7 @@ Models: Iter: 480000.0 Total Iters\*: 500000.0 dist_step: 5.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_cifar10_32_lr2e-4_ndisc5_b64x1_woReUinplace_fid-iter480000_20210730_125449-d50568a4.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_wReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SAGAN @@ -50,7 +50,7 @@ Models: Iter: 380000.0 Total Iters\*: 500000.0 dist_step: 5.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_cifar10_32_lr2e-4_ndisc5_b64x1_wReLUinplace_is-iter380000_20210730_124937-c77b4d25.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_wReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SAGAN @@ -65,7 +65,7 @@ Models: Iter: 460000.0 Total Iters\*: 500000.0 dist_step: 5.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_cifar10_32_lr2e-4_ndisc5_b64x1_wReLUinplace_fid-iter460000_20210730_125155-cbefb354.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_woReLUinplace_Glr1e-4_Dlr4e-4_ndisc1-4xb64_imagenet1k-128x128.py In Collection: SAGAN @@ -80,7 +80,7 @@ Models: Iter: 980000.0 Total Iters\*: 1000000.0 dist_step: 1.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_imagenet1k_128_Glr1e-4_Dlr4e-4_ndisc1_b32x4_woReLUinplace_is-iter980000_20210730_163140-cfbebfc6.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_woReLUinplace_Glr1e-4_Dlr4e-4_ndisc1-4xb64_imagenet1k-128x128.py In Collection: SAGAN @@ -95,7 +95,7 @@ Models: Iter: 950000.0 Total Iters\*: 1000000.0 dist_step: 1.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_imagenet1k_128_Glr1e-4_Dlr4e-4_ndisc1_b32x4_woReLUinplace_fid-iter950000_20210730_163431-d7916963.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_woReLUinplace-Glr1e-4_Dlr4e-4_noaug-ndisc1-8xb32-bigGAN-sch_imagenet1k-128x128.py In Collection: SAGAN @@ -110,7 +110,7 @@ Models: Iter: 826000.0 Total Iters\*: 1000000.0 dist_step: 1.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_128_woReLUinplace_noaug_bigGAN_imagenet1k_b32x8_Glr1e-4_Dlr-4e-4_ndisc1_20210818_210232-3f5686af.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_woReLUinplace-Glr1e-4_Dlr4e-4_noaug-ndisc1-8xb32-bigGAN-sch_imagenet1k-128x128.py In Collection: SAGAN @@ -125,7 +125,7 @@ Models: Iter: 826000.0 Total Iters\*: 1000000.0 dist_step: 1.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_128_woReLUinplace_noaug_bigGAN_imagenet1k_b32x8_Glr1e-4_Dlr-4e-4_ndisc1_20210818_210232-3f5686af.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_cvt-studioGAN_cifar10-32x32.py In Collection: SAGAN @@ -141,7 +141,7 @@ Models: IS (StudioGAN): 8.68 Total Iters: 100000.0 n_disc: 5.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_32_cifar10_convert-studio-rgb_20210730_153321-080da7e2.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sagan/sagan_128_cvt_studioGAN.py In Collection: SAGAN @@ -157,5 +157,5 @@ Models: IS (StudioGAN): 29.848 Total Iters: 1000000.0 n_disc: 1.0 - Task: Sagan + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sagan/sagan_128_imagenet1k_convert-studio-rgb_20210730_153357-eddb0d1d.pth diff --git a/configs/singan/metafile.yml b/configs/singan/metafile.yml index 23a50f388d..1f83fe0814 100644 --- a/configs/singan/metafile.yml +++ b/configs/singan/metafile.yml @@ -16,7 +16,7 @@ Models: - Dataset: Others Metrics: Num Scales: 8.0 - Task: Singan + Task: Internal Learning Weights: https://download.openmmlab.com/mmgen/singan/singan_balloons_20210406_191047-8fcd94cf.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/singan/singan_fish.py In Collection: SinGAN @@ -27,7 +27,7 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Singan + Task: Internal Learning Weights: https://download.openmmlab.com/mmgen/singan/singan_fis_20210406_201006-860d91b6.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/singan/singan_bohemian.py In Collection: SinGAN @@ -38,5 +38,5 @@ Models: - Dataset: Others Metrics: Num Scales: 10.0 - Task: Singan + Task: Internal Learning Weights: https://download.openmmlab.com/mmgen/singan/singan_bohemian_20210406_175439-f964ee38.pth diff --git a/configs/sngan_proj/metafile.yml b/configs/sngan_proj/metafile.yml index 32619c8214..d772bd7807 100644 --- a/configs/sngan_proj/metafile.yml +++ b/configs/sngan_proj/metafile.yml @@ -20,7 +20,7 @@ Models: Iter: 400000.0 Total Iters\*: 500000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_cifar10_32_lr-2e-4_b64x1_woReLUinplace_is-iter400000_20210709_163823-902ce1ae.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_woReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SNGAN @@ -35,7 +35,7 @@ Models: Iter: 490000.0 Total Iters\*: 500000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_cifar10_32_lr-2e-4_b64x1_woReLUinplace_fid-iter490000_20210709_163329-ba0862a0.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_wReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SNGAN @@ -50,7 +50,7 @@ Models: Iter: 490000.0 Total Iters\*: 500000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_cifar10_32_lr-2e-4_b64x1_wReLUinplace_is-iter490000_20210709_202230-cd863c74.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_wReLUinplace_lr2e-4-ndisc5-1xb64_cifar10-32x32.py In Collection: SNGAN @@ -65,7 +65,7 @@ Models: Iter: 490000.0 Total Iters\*: 500000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_cifar10_32_lr-2e-4-b64x1_wReLUinplace_fid-iter490000_20210709_203038-191b2648.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_woReLUinplace_Glr2e-4_Dlr5e-5_ndisc5-2xb128_imagenet1k-128x128.py In Collection: SNGAN @@ -80,7 +80,7 @@ Models: Iter: 952000.0 Total Iters\*: 1000000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_imagenet1k_128_Glr2e-4_Dlr5e-5_ndisc5_b128x2_woReLUinplace_is-iter952000_20210730_132027-9c884a21.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_woReLUinplace_Glr2e-4_Dlr5e-5_ndisc5-2xb128_imagenet1k-128x128.py In Collection: SNGAN @@ -95,7 +95,7 @@ Models: Iter: 989000.0 Total Iters\*: 1000000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_imagenet1k_128_Glr2e-4_Dlr5e-5_ndisc5_b128x2_woReLUinplace_fid-iter988000_20210730_131424-061bf803.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_wReLUinplace_Glr2e-4_Dlr5e-5_ndisc5-2xb128_imagenet1k-128x128.py In Collection: SNGAN @@ -110,7 +110,7 @@ Models: Iter: 944000.0 Total Iters\*: 1000000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_imagenet1k_128_Glr2e-4_Dlr5e-5_ndisc5_b128x2_wReLUinplace_is-iter944000_20210730_132714-ca0ccd07.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj_wReLUinplace_Glr2e-4_Dlr5e-5_ndisc5-2xb128_imagenet1k-128x128.py In Collection: SNGAN @@ -125,7 +125,7 @@ Models: Iter: 988000.0 Total Iters\*: 1000000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_proj_imagenet1k_128_Glr2e-4_Dlr5e-5_ndisc5_b128x2_wReLUinplace_fid-iter988000_20210730_132401-9a682411.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj-cvt-studioGAN_cifar10-32x32.py In Collection: SNGAN @@ -141,7 +141,7 @@ Models: IS (StudioGAN): 8.677 Total Iters: 100000.0 disc_step: 5.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_cifar10_convert-studio-rgb_20210709_111346-2979202d.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/sngan_proj/sngan-proj-cvt-studioGAN_imagenet1k-128x128.py In Collection: SNGAN @@ -157,5 +157,5 @@ Models: IS (StudioGAN): 32.247 Total Iters: 1000000.0 disc_step: 2.0 - Task: Sngan_proj + Task: Conditional GANs Weights: https://download.openmmlab.com/mmgen/sngan_proj/sngan_imagenet1k_convert-studio-rgb_20210709_111406-877b1130.pth diff --git a/configs/srcnn/metafile.yml b/configs/srcnn/metafile.yml index 53a8efbeb7..39ffe96499 100644 --- a/configs/srcnn/metafile.yml +++ b/configs/srcnn/metafile.yml @@ -22,5 +22,5 @@ Models: Set14 SSIM: 0.7014 Set5 PSNR: 28.4316 Set5 SSIM: 0.8099 - Task: Srcnn + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/srcnn/srcnn_x4k915_1x16_1000k_div2k_20200608-4186f232.pth diff --git a/configs/srgan_resnet/metafile.yml b/configs/srgan_resnet/metafile.yml index b8a8f8c063..bace23e8a9 100644 --- a/configs/srgan_resnet/metafile.yml +++ b/configs/srgan_resnet/metafile.yml @@ -22,7 +22,7 @@ Models: Set14 SSIM: 0.7369 Set5 PSNR: 30.2252 Set5 SSIM: 0.8491 - Task: Srgan_resnet + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/srresnet_srgan/msrresnet_x4c64b16_1x16_300k_div2k_20200521-61556be5.pth - Config: configs/srgan_resnet/srgan_x4c64b16_1xb16-1000k_div2k.py In Collection: SRGAN @@ -39,5 +39,5 @@ Models: Set14 SSIM: 0.6491 Set5 PSNR: 27.9499 Set5 SSIM: 0.7846 - Task: Srgan_resnet + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/srresnet_srgan/srgan_x4c64b16_1x16_1000k_div2k_20200606-a1f0810e.pth diff --git a/configs/styleganv1/metafile.yml b/configs/styleganv1/metafile.yml index dbf888ffe8..d1a62f0f92 100644 --- a/configs/styleganv1/metafile.yml +++ b/configs/styleganv1/metafile.yml @@ -19,7 +19,7 @@ Models: P&R50k_full: PSNR: 70.228 SSIM: 27.05 - Task: Styleganv1 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/styleganv1/styleganv1_ffhq_256_g8_25Mimg_20210407_161748-0094da86.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv1/styleganv1_ffhq-1024x1024_8xb4-25Mimgs.py In Collection: StyleGANv1 @@ -33,5 +33,5 @@ Models: P&R50k_full: PSNR: 70.302 SSIM: 36.869 - Task: Styleganv1 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/styleganv1/styleganv1_ffhq_1024_g8_25Mimg_20210407_161627-850a7234.pth diff --git a/configs/styleganv2/metafile.yml b/configs/styleganv2/metafile.yml index 30209dfb69..e8c2a5f8bf 100644 --- a/configs/styleganv2/metafile.yml +++ b/configs/styleganv2/metafile.yml @@ -18,7 +18,7 @@ Models: FID50k: 2.8134 Precision50k: 62.856 Recall50k: 49.4 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-ffhq-config-f-official_20210327_171224-bce9310c.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_lsun-car-384x512.py In Collection: StyleGANv2 @@ -31,7 +31,7 @@ Models: FID50k: 5.4316 Precision50k: 65.986 Recall50k: 48.19 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-car-config-f-official_20210327_172340-8cfe053c.pth - Config: configs/styleganv2/stylegan2_c2_8xb4-800kiters_lsun-horse-256x256.py In Collection: StyleGANv2 @@ -41,7 +41,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-horse-config-f-official_20210327_173203-ef3e69ca.pth - Config: configs/styleganv2/stylegan2_c2_8xb4-800kiters_lsun-church-256x256.py In Collection: StyleGANv2 @@ -51,7 +51,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-church-config-f-official_20210327_172657-1d42b7d1.pth - Config: configs/styleganv2/stylegan2_c2_8xb4-800kiters_lsun-cat-256x256.py In Collection: StyleGANv2 @@ -61,7 +61,7 @@ Models: Results: - Dataset: CAT Metrics: {} - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-cat-config-f-official_20210327_172444-15bc485b.pth - Config: configs/styleganv2/stylegan2_c2_8xb4-800kiters_ffhq-256x256.py In Collection: StyleGANv2 @@ -74,7 +74,7 @@ Models: FID50k: 3.992 Precision50k: 69.012 Recall50k: 40.417 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_ffhq_256_b4x8_20210407_160709-7890ae1f.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_ffhq-1024x1024.py In Collection: StyleGANv2 @@ -87,7 +87,7 @@ Models: FID50k: 2.8185 Precision50k: 68.236 Recall50k: 49.583 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_ffhq_1024_b4x8_20210407_150045-618c9024.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_lsun-car-384x512.py In Collection: StyleGANv2 @@ -100,7 +100,7 @@ Models: FID50k: 2.4116 Precision50k: 66.76 Recall50k: 50.576 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_lsun-car_384x512_b4x8_1800k_20210424_160929-fc9072ca.pth - Config: configs/styleganv2/stylegan2_c2_8xb4-800kiters_ffhq-256x256.py In Collection: StyleGANv2 @@ -111,7 +111,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 3.992 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_ffhq_256_b4x8_20210407_160709-7890ae1f.pth - Config: configs/styleganv2/stylegan2_c2-PL_8xb4-fp16-partial-GD-no-scaler-800kiters_ffhq-256x256.py In Collection: StyleGANv2 @@ -122,7 +122,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 4.331 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_fp16_partial-GD_PL-no-scaler_ffhq_256_b4x8_800k_20210508_114854-dacbe4c9.pth - Config: configs/styleganv2/stylegan2_c2-PL-R1_8xb4-fp16-globalG-partialD-no-scaler-800kiters_ffhq-256x256.py In Collection: StyleGANv2 @@ -133,7 +133,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 4.362 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_fp16-globalG-partialD_PL-R1-no-scaler_ffhq_256_b4x8_800k_20210508_114930-ef8270d4.pth - Config: configs/styleganv2/stylegan2_c2-PL-R1_8xb4-apex-fp16-no-scaler-800kiters_ffhq-256x256.py In Collection: StyleGANv2 @@ -144,7 +144,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 4.614 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_apex_fp16_PL-R1-no-scaler_ffhq_256_b4x8_800k_20210508_114701-c2bb8afd.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_ffhq-1024x1024.py In Collection: StyleGANv2 @@ -155,7 +155,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 2.8732 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-ffhq-config-f-official_20210327_171224-bce9310c.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_ffhq-1024x1024.py In Collection: StyleGANv2 @@ -166,7 +166,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 2.9413 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_ffhq_1024_b4x8_20210407_150045-618c9024.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_ffhq-1024x1024.py In Collection: StyleGANv2 @@ -177,7 +177,7 @@ Models: - Dataset: FFHQ Metrics: FID50k: 2.8134 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/official_weights/stylegan2-ffhq-config-f-official_20210327_171224-bce9310c.pth - Config: configs/styleganv2/stylegan2_c2_8xb4_ffhq-1024x1024.py In Collection: StyleGANv2 @@ -188,5 +188,5 @@ Models: - Dataset: FFHQ Metrics: FID50k: 2.8185 - Task: Styleganv2 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan2/stylegan2_c2_ffhq_1024_b4x8_20210407_150045-618c9024.pth diff --git a/configs/styleganv3/metafile.yml b/configs/styleganv3/metafile.yml index bfdeeecb31..9389454d6a 100644 --- a/configs/styleganv3/metafile.yml +++ b/configs/styleganv3/metafile.yml @@ -16,7 +16,7 @@ Models: - Dataset: FFHQ Metrics: Iter: 490000.0 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_noaug_fp16_gamma32.8_ffhq_1024_b4x8_best_fid_iter_490000_20220401_120733-4ff83434.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-t_ada-gamma6.6_8xb4-fp16_metfaces-1024x1024.py In Collection: StyleGANv3 @@ -28,7 +28,7 @@ Models: Metrics: FID50k: 15.09 Iter: 130000.0 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_ada_fp16_gamma6.6_metfaces_1024_b4x8_best_fid_iter_130000_20220401_115101-f2ef498e.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-t_gamma2.0_8xb4-fp16-noaug_ffhq-256x256.py In Collection: StyleGANv3 @@ -40,7 +40,7 @@ Models: Metrics: FID50k: 4.51 Iter: 740000.0 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_noaug_fp16_gamma2.0_ffhq_256_b4x8_best_fid_iter_740000_20220401_122456-730e1fba.pth - Config: configs/styleganv3/stylegan3-r_ada-gamma3.3_8xb4-fp16_metfaces-1024x1024.py In Collection: StyleGANv3 @@ -50,7 +50,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Styleganv3 + Task: Unconditional GANs Weights: '' - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-t_cvt-official-rgb_8xb4_ffhqu-256x256.py In Collection: StyleGANv3 @@ -63,7 +63,7 @@ Models: EQ-R: 13.12 EQ-T: 63.01 FID50k: 4.62 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_ffhqu_256_b4x8_cvt_official_rgb_20220329_235046-153df4c8.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-t_cvt-official-rgb_8xb4_afhqv2-512x512.py In Collection: StyleGANv3 @@ -76,7 +76,7 @@ Models: EQ-R: 13.51 EQ-T: 60.15 FID50k: 4.04 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_afhqv2_512_b4x8_cvt_official_rgb_20220329_235017-ee6b037a.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-t_cvt-official-rgb_8xb4_ffhq-1024x1024.py In Collection: StyleGANv3 @@ -89,7 +89,7 @@ Models: EQ-R: 13.82 EQ-T: 61.21 FID50k: 2.79 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_t_ffhq_1024_b4x8_cvt_official_rgb_20220329_235113-db6c6580.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-r_cvt-official-rgb_8xb4_ffhqu-256x256.py In Collection: StyleGANv3 @@ -102,7 +102,7 @@ Models: EQ-R: 40.48 EQ-T: 66.65 FID50k: 4.5 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_r_ffhqu_256_b4x8_cvt_official_rgb_20220329_234909-4521d963.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-r_cvt-official-rgb_8xb4x8_afhqv2-512x512.py In Collection: StyleGANv3 @@ -115,7 +115,7 @@ Models: EQ-R: 40.34 EQ-T: 64.89 FID50k: 4.4 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_r_afhqv2_512_b4x8_cvt_official_rgb_20220329_234829-f2eaca72.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/styleganv3/stylegan3-r_cvt-official-rgb_8xb4_ffhq-1024x1024.py In Collection: StyleGANv3 @@ -128,5 +128,5 @@ Models: EQ-R: 46.62 EQ-T: 64.76 FID50k: 3.07 - Task: Styleganv3 + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/stylegan3/stylegan3_r_ffhq_1024_b4x8_cvt_official_rgb_20220329_234933-ac0500a1.pth diff --git a/configs/tdan/metafile.yml b/configs/tdan/metafile.yml index 802f708553..a4fdc1c8ec 100644 --- a/configs/tdan/metafile.yml +++ b/configs/tdan/metafile.yml @@ -16,7 +16,7 @@ Models: Results: - Dataset: VIMEO90K Metrics: {} - Task: Tdan + Task: Video Super-Resolution Weights: '' - Config: configs/tdan/tdan_x4_1xb16-lr1e-4-400k_vimeo90k-bd.py In Collection: TDAN @@ -27,7 +27,7 @@ Models: Results: - Dataset: VIMEO90K Metrics: {} - Task: Tdan + Task: Video Super-Resolution Weights: '' - Config: configs/tdan/tdan_x4ft_1xb16-lr5e-5-400k_vimeo90k-bi.py In Collection: TDAN @@ -42,7 +42,7 @@ Models: SPMCS-30 (BIx4) PSNR (Y): 30.42 Vid4 (BDx4) PSNR (Y): 25.93 Vid4 (BIx4) PSNR (Y): 26.49 - Task: Tdan + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528-739979d9.pth - Config: configs/tdan/tdan_x4ft_1xb16-lr5e-5-800k_vimeo90k-bd.py In Collection: TDAN @@ -57,7 +57,7 @@ Models: SPMCS-30 (BIx4) PSNR (Y): 29.56 Vid4 (BDx4) PSNR (Y): 26.87 Vid4 (BIx4) PSNR (Y): 25.8 - Task: Tdan + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528-c53ab844.pth - Config: configs/tdan/tdan_x4_1xb16-lr1e-4-400k_vimeo90k-bi.py In Collection: TDAN @@ -68,7 +68,7 @@ Models: Results: - Dataset: VIMEO90K Metrics: {} - Task: Tdan + Task: Video Super-Resolution Weights: '' - Config: configs/tdan/tdan_x4_1xb16-lr1e-4-400k_vimeo90k-bd.py In Collection: TDAN @@ -79,7 +79,7 @@ Models: Results: - Dataset: VIMEO90K Metrics: {} - Task: Tdan + Task: Video Super-Resolution Weights: '' - Config: configs/tdan/tdan_x4ft_1xb16-lr5e-5-400k_vimeo90k-bi.py In Collection: TDAN @@ -94,7 +94,7 @@ Models: SPMCS-30 (BIx4) SSIM (Y): 0.856 Vid4 (BDx4) SSIM (Y): 0.772 Vid4 (BIx4) SSIM (Y): 0.792 - Task: Tdan + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bix4_20210528-739979d9.pth - Config: configs/tdan/tdan_x4ft_1xb16-lr5e-5-800k_vimeo90k-bd.py In Collection: TDAN @@ -109,5 +109,5 @@ Models: SPMCS-30 (BIx4) SSIM (Y): 0.851 Vid4 (BDx4) SSIM (Y): 0.815 Vid4 (BIx4) SSIM (Y): 0.784 - Task: Tdan + Task: Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/tdan/tdan_vimeo90k_bdx4_20210528-c53ab844.pth diff --git a/configs/tof/metafile.yml b/configs/tof/metafile.yml index 28b7c85686..4f4bfff379 100644 --- a/configs/tof/metafile.yml +++ b/configs/tof/metafile.yml @@ -17,7 +17,7 @@ Models: - Dataset: VIMEO90K Metrics: PSNR: 33.3294 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_chair_nobn_1xb1_vimeo90k_20220321-2fc9e258.pth - Config: configs/tof/tof_spynet-kitti-wobn_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -29,7 +29,7 @@ Models: - Dataset: VIMEO90K Metrics: PSNR: 33.3339 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_kitti_nobn_1xb1_vimeo90k_20220321-3f7ca4cd.pth - Config: configs/tof/tof_spynet-sintel-wobn-clean_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -41,7 +41,7 @@ Models: - Dataset: VIMEO90K Metrics: PSNR: 33.317 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_sintel_clean_nobn_1xb1_vimeo90k_20220321-6e52a6fd.pth - Config: configs/tof/tof_spynet-sintel-wobn-final_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -53,7 +53,7 @@ Models: - Dataset: VIMEO90K Metrics: PSNR: 33.3237 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_sintel_final_nobn_1xb1_vimeo90k_20220321-8ab70dbb.pth - Config: configs/tof/tof_spynet-pytoflow-wobn_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -65,7 +65,7 @@ Models: - Dataset: VIMEO90K Metrics: PSNR: 33.3426 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_pytoflow_nobn_1xb1_vimeo90k_20220321-5f4b243e.pth - Config: configs/tof/tof_spynet-chair-wobn_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -77,7 +77,7 @@ Models: - Dataset: VIMEO90K Metrics: SSIM: 0.9465 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_chair_nobn_1xb1_vimeo90k_20220321-2fc9e258.pth - Config: configs/tof/tof_spynet-kitti-wobn_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -89,7 +89,7 @@ Models: - Dataset: VIMEO90K Metrics: SSIM: 0.9466 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_kitti_nobn_1xb1_vimeo90k_20220321-3f7ca4cd.pth - Config: configs/tof/tof_spynet-sintel-wobn-clean_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -101,7 +101,7 @@ Models: - Dataset: VIMEO90K Metrics: SSIM: 0.9464 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_sintel_clean_nobn_1xb1_vimeo90k_20220321-6e52a6fd.pth - Config: configs/tof/tof_spynet-sintel-wobn-final_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -113,7 +113,7 @@ Models: - Dataset: VIMEO90K Metrics: SSIM: 0.9465 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_sintel_final_nobn_1xb1_vimeo90k_20220321-8ab70dbb.pth - Config: configs/tof/tof_spynet-pytoflow-wobn_1xb1_vimeo90k-triplet.py In Collection: TOFlow @@ -125,7 +125,7 @@ Models: - Dataset: VIMEO90K Metrics: SSIM: 0.9467 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/video_interpolators/toflow/tof_vfi_spynet_pytoflow_nobn_1xb1_vimeo90k_20220321-5f4b243e.pth - Config: configs/tof/tof_x4_official_vimeo90k.py In Collection: TOFlow @@ -139,5 +139,5 @@ Models: Vid4: PSNR: 24.4377 SSIM: 0.7433 - Task: Tof + Task: Video Interpolation, Video Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/tof/tof_x4_vimeo90k_official-a569ff50.pth diff --git a/configs/ttsr/metafile.yml b/configs/ttsr/metafile.yml index 4450bef023..559b4fe754 100644 --- a/configs/ttsr/metafile.yml +++ b/configs/ttsr/metafile.yml @@ -18,7 +18,7 @@ Models: Metrics: PSNR: 25.2433 SSIM: 0.7491 - Task: Ttsr + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/ttsr/ttsr-rec_x4_c64b16_g1_200k_CUFED_20210525-b0dba584.pth - Config: configs/ttsr/ttsr-gan_x4c64b16_1xb9-500k_CUFED.py In Collection: TTSR @@ -31,5 +31,5 @@ Models: Metrics: PSNR: 24.6075 SSIM: 0.7234 - Task: Ttsr + Task: Image Super-Resolution Weights: https://download.openmmlab.com/mmediting/restorers/ttsr/ttsr-gan_x4_c64b16_g1_500k_CUFED_20210626-2ab28ca0.pth diff --git a/configs/wgan-gp/metafile.yml b/configs/wgan-gp/metafile.yml index 034a8f3cd7..0b088dc713 100644 --- a/configs/wgan-gp/metafile.yml +++ b/configs/wgan-gp/metafile.yml @@ -16,7 +16,7 @@ Models: - Dataset: CELEBA Metrics: MS-SSIM: 0.2601 - Task: Wgan-gp + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/wgangp/wgangp_GN_celeba-cropped_128_b64x1_160k_20210408_170611-f8a99336.pth - Config: https://github.com/open-mmlab/mmediting/tree/master/configs/wgan-gp/wgangp_GN-GP-50_1xb64-160kiters_lsun-bedroom-128x128.py In Collection: WGAN-GP @@ -27,5 +27,5 @@ Models: - Dataset: Others Metrics: MS-SSIM: 0.059 - Task: Wgan-gp + Task: Unconditional GANs Weights: https://download.openmmlab.com/mmgen/wgangp/wgangp_GN_GP-50_lsun-bedroom_128_b64x1_130k_20210408_170509-56f2a37c.pth From b6a930799baaedd52b77dcead31e4e3fad1d21b0 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 18 Nov 2022 14:01:50 +0800 Subject: [PATCH 52/68] [high-level api] read task name from metafile --- demo/mmediting_inference_tutorial.ipynb | 46 +++++----- mmedit/apis/inferencers/mmedit_inferencer.py | 16 ++-- mmedit/edit.py | 96 ++++++++++---------- 3 files changed, 81 insertions(+), 77 deletions(-) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index ec03b2c2a4..a26b9e9b8d 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -16,21 +16,21 @@ "\n", "- Perform inference with models of different tasks including:\n", "\n", - "    1. Inference of conditional model\n", + "    1. Inference of conditional GANs models\n", "\n", - "    2. Inference of inpanting model\n", + "    2. Inference of inpanting models\n", "\n", - "    3. Inference of matting model\n", + "    3. Inference of matting models\n", "\n", - "    4. Inference of restoration model\n", + "    4. Inference of super resolution models\n", "\n", - "    5. Inference of translation model\n", + "    5. Inference of image2image translation models\n", "\n", - "    6. Inference of unconditional model\n", + "    6. Inference of unconditional GANs models\n", "\n", - "    7. Inference of video interpolation model\n", + "    7. Inference of video interpolation models\n", "\n", - "    8. Inference of video restoration model\n", + "    8. Inference of video super resolution models\n", "\n", "Let's start!" ] @@ -365,7 +365,7 @@ "source": [ "## 3. Infer with models of different tasks\n", "\n", - "There are multiple task types in MMEditing: conditional, inpainting, matting, restoration, translation, unconditional, video_interpolation, video_restoration. \n", + "There are multiple task types in MMEditing: Matting, Inpainting, Video Super-Resolution, Image Super-Resolution, Image2Image Translation, Unconditional GANs, Conditional GANs, Video Interpolation. \n", "\n", "We provide some models for each task. All available models and tasks could be printed out like this." ] @@ -382,7 +382,7 @@ "all available models:\n", "['biggan', 'styleganv1', 'gca', 'aot_gan', 'pix2pix', 'esrgan', 'basicvsr', 'flavr']\n", "all available models:\n", - "['unconditional', 'matting', 'inpainting', 'video_interpolation', 'conditional', 'restoration', 'video_restoration', 'translation']\n", + "['Matting', 'Inpainting', 'Video Super-Resolution', 'Image Super-Resolution', 'Image2Image Translation', 'Unconditional GANs', 'Conditional GANs', 'Video Interpolation']\n", "translation models:\n", "['pix2pix']\n" ] @@ -402,7 +402,7 @@ "print(supported_tasks)\n", "\n", "# print all available models for one task, take image translation for example.\n", - "task_supported_models = MMEdit.get_task_supported_models('translation')\n", + "task_supported_models = MMEdit.get_task_supported_models('Image2Image Translation')\n", "print('translation models:')\n", "print(task_supported_models)" ] @@ -411,9 +411,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.1 Inference of conditional models\n", + "### 3.1 Inference of conditional GAN models\n", "\n", - "Conditional models take a label as input and output a image. We take 'biggan' as an example." + "Conditional GAN models take a label as input and output a image. We take 'biggan' as an example." ] }, { @@ -571,9 +571,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.4 Inference of restoration models\n", + "### 3.4 Inference of image super resolution models\n", "\n", - "Restoration models take a image as input, and output a restorated image. We take 'esrgan' as an example." + "Image super resolution models take a image as input, and output a high resolution image. We take 'esrgan' as an example." ] }, { @@ -620,9 +620,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.5 Inference of translation models\n", + "### 3.5 Inference of image translation models\n", "\n", - "Translation models take a image as input, and output a translated image. We take 'pix2pix' as an example." + "Image translation models take a image as input, and output a translated image. We take 'pix2pix' as an example." ] }, { @@ -669,9 +669,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.6 Inference of unconditional models\n", + "### 3.6 Inference of unconditional GAN models\n", "\n", - "Unconditional models do not need input, and output a image. We take 'styleganv1' as an example." + "Unconditional GAN models do not need input, and output a image. We take 'styleganv1' as an example." ] }, { @@ -719,9 +719,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.7 Inference of video_interpolation models\n", + "### 3.7 Inference of video interpolation models\n", "\n", - "Video_interpolation models take a video as input, and output a interpolated video. We take 'flavr' as an example." + "Video interpolation models take a video as input, and output a interpolated video. We take 'flavr' as an example." ] }, { @@ -766,9 +766,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.8 Inference of video_restoration models\n", + "### 3.8 Inference of video restoration models\n", "\n", - "Video_restoration models take a video as input, and output a restorated video. We take 'basicvsr' as an example.." + "Video restoration models take a video as input, and output a restorated video. We take 'basicvsr' as an example.." ] }, { diff --git a/mmedit/apis/inferencers/mmedit_inferencer.py b/mmedit/apis/inferencers/mmedit_inferencer.py index 15b8c83c39..1a83338d70 100644 --- a/mmedit/apis/inferencers/mmedit_inferencer.py +++ b/mmedit/apis/inferencers/mmedit_inferencer.py @@ -35,28 +35,28 @@ def __init__( extra_parameters: Optional[Dict] = None, ) -> None: self.task = task - if self.task == 'conditional': + if self.task in ['conditional', 'Conditional GANs']: self.inferencer = ConditionalInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'unconditional': + elif self.task in ['unconditional', 'Unconditional GANs']: self.inferencer = UnconditionalInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'matting': + elif self.task in ['matting', 'Matting']: self.inferencer = MattingInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'inpainting': + elif self.task in ['inpainting', 'Inpainting']: self.inferencer = InpaintingInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'translation': + elif self.task in ['translation', 'Image2Image Translation']: self.inferencer = TranslationInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'restoration': + elif self.task in ['restoration', 'Image Super-Resolution']: self.inferencer = RestorationInferencer(config, ckpt, device, extra_parameters) - elif self.task == 'video_restoration': + elif self.task in ['video_restoration', 'Video Super-Resolution']: self.inferencer = VideoRestorationInferencer( config, ckpt, device, extra_parameters) - elif self.task == 'video_interpolation': + elif self.task in ['video_interpolation', 'Video Interpolation']: self.inferencer = VideoInterpolationInferencer( config, ckpt, device, extra_parameters) else: diff --git a/mmedit/edit.py b/mmedit/edit.py index 13fe77a818..23f83e0627 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -38,47 +38,34 @@ class MMEdit: >>> # see demo/mmediting_inference_tutorial.ipynb for more examples """ - inference_supported_models = { + inference_supported_models = [ # conditional models - 'biggan': { - 'task': 'conditional' - }, + 'biggan', # unconditional models - 'styleganv1': { - 'task': 'unconditional' - }, + 'styleganv1', # matting models - 'gca': { - 'task': 'matting' - }, + 'gca', # inpainting models - 'aot_gan': { - 'task': 'inpainting' - }, + 'aot_gan', # translation models - 'pix2pix': { - 'task': 'translation' - }, + 'pix2pix', # restoration models - 'esrgan': { - 'task': 'restoration' - }, + 'esrgan', + + # video_interpolation models + 'flavr', # video_restoration models - 'basicvsr': { - 'task': 'video_restoration' - }, + 'basicvsr', + ] - # video_interpolation models - 'flavr': { - 'task': 'video_interpolation' - }, - } + inference_supported_models_cfg = {} + inference_supported_models_cfg_inited = False def __init__(self, model_name: str = None, @@ -89,7 +76,7 @@ def __init__(self, extra_parameters: Dict = None, **kwargs) -> None: register_all_modules(init_default_scope=True) - self._init_inference_supported_models_cfg() + MMEdit.init_inference_supported_models_cfg() inferencer_kwargs = {} inferencer_kwargs.update( self._get_inferencer_kwargs(model_name, model_setting, @@ -97,17 +84,6 @@ def __init__(self, extra_parameters)) self.inferencer = MMEditInferencer(device=device, **inferencer_kwargs) - def _init_inference_supported_models_cfg(self) -> None: - all_cfgs_dir = osp.join(osp.dirname(__file__), '..', 'configs') - supported_models = self.inference_supported_models.keys() - - for key in supported_models: - meta_file_dir = osp.join(all_cfgs_dir, key, 'metafile.yml') - with open(meta_file_dir, 'r') as stream: - parsed_yaml = yaml.safe_load(stream) - self.inference_supported_models[key]['settings'] = \ - parsed_yaml['Models'] - def _get_inferencer_kwargs(self, model_name: Optional[str], model_setting: Optional[int], model_config: Optional[str], @@ -196,26 +172,54 @@ def get_model_config(self, model_name: str) -> Dict: if model_name not in self.inference_supported_models: raise ValueError(f'Model {model_name} is not supported.') else: - return self.inference_supported_models[model_name] + return self.inference_supported_models_cfg[model_name] + + @staticmethod + def init_inference_supported_models_cfg() -> None: + if not MMEdit.inference_supported_models_cfg_inited: + all_cfgs_dir = osp.join(osp.dirname(__file__), '..', 'configs') + + for model_name in MMEdit.inference_supported_models: + meta_file_dir = osp.join(all_cfgs_dir, model_name, + 'metafile.yml') + with open(meta_file_dir, 'r') as stream: + parsed_yaml = yaml.safe_load(stream) + task = parsed_yaml['Models'][0]['Results'][0]['Task'] + MMEdit.inference_supported_models_cfg[model_name] = {} + MMEdit.inference_supported_models_cfg[model_name][ + 'task'] = task # noqa + MMEdit.inference_supported_models_cfg[model_name][ + 'settings'] = parsed_yaml['Models'] # noqa + + MMEdit.inference_supported_models_cfg_inited = True @staticmethod def get_inference_supported_models() -> List: - return list(MMEdit.inference_supported_models.keys()) + """static function for getting inference supported modes.""" + return MMEdit.inference_supported_models @staticmethod def get_inference_supported_tasks() -> List: + """static function for getting inference supported tasks.""" + if not MMEdit.inference_supported_models_cfg_inited: + MMEdit.init_inference_supported_models_cfg() + supported_task = set() - for key in MMEdit.inference_supported_models.keys(): - if MMEdit.inference_supported_models[key]['task'] \ + for key in MMEdit.inference_supported_models_cfg.keys(): + if MMEdit.inference_supported_models_cfg[key]['task'] \ not in supported_task: supported_task.add( - MMEdit.inference_supported_models[key]['task']) + MMEdit.inference_supported_models_cfg[key]['task']) return list(supported_task) @staticmethod def get_task_supported_models(task: str) -> List: + """static function for getting task supported models.""" + if not MMEdit.inference_supported_models_cfg_inited: + MMEdit.init_inference_supported_models_cfg() + supported_models = [] - for key in MMEdit.inference_supported_models.keys(): - if MMEdit.inference_supported_models[key]['task'] == task: + for key in MMEdit.inference_supported_models_cfg.keys(): + if MMEdit.inference_supported_models_cfg[key]['task'] == task: supported_models.append(key) return supported_models From f7d8edddaad9dae73cdbb00f03111d3f93e0deb1 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Fri, 18 Nov 2022 16:14:53 +0800 Subject: [PATCH 53/68] [high-level api] reproduce nafnet metafile --- configs/nafnet/metafile.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/configs/nafnet/metafile.yml b/configs/nafnet/metafile.yml index e1cfc67037..32f8520a3c 100644 --- a/configs/nafnet/metafile.yml +++ b/configs/nafnet/metafile.yml @@ -16,7 +16,7 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Nafnet + Task: Image Restoration Weights: https://download.openmmlab.com/mmediting/nafnet/NAFNet-SIDD-midc64.pth - Config: configs/nafnet/nafnet_c64eb11128mb1db1111_8xb8-lr1e-3-400k_gopro.py In Collection: NAFNet @@ -27,5 +27,5 @@ Models: Results: - Dataset: Others Metrics: {} - Task: Nafnet + Task: Image Restoration Weights: https://download.openmmlab.com/mmediting/nafnet/NAFNet-GoPro-midc64.pth From 6ff01cb0ed8c17e39cbccff2c61c2c02980688ea Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 00:39:41 +0800 Subject: [PATCH 54/68] [high-level api] put good example to inference ipynb --- demo/mmediting_inference_tutorial.ipynb | 94 +++++++++++++------------ 1 file changed, 49 insertions(+), 45 deletions(-) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index a26b9e9b8d..cd2da27f70 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -307,7 +307,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -324,7 +324,7 @@ "# Create a MMEdit instance\n", "editor = MMEdit('pix2pix')\n", "# Infer a image. Input image path and output image path is needed.\n", - "results = editor.infer(img='../resources/input/translation/gt_mask_0.png', result_out_dir='../resources/output/translation/tutorial_translation_res.jpg')" + "results = editor.infer(img='../resources/input/translation/gt_mask_0.png', result_out_dir='../resources/output/translation/tutorial_translation_pix2pix_res.jpg')" ] }, { @@ -336,12 +336,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S69sS3IeCH7mj7UiYj/OOfeRNzOZmaRKperuItBilR7sHyBAU800FDSnUAAnLU4kaKSpBtI/KDSgf6AJGz0TIEBqNNDdJVGkxFRSzLx5H+e19461lrub9cDM3Ffsc5KV91JN4oDbL/bdcXZErIcvd3t89pkZiYjgaTyNp/E0nsbT+EBG+PO+gKfxNJ7G03gaT+ObjCfF9TSextN4Gk/jgxpPiutpPI2n8TSexgc1nhTX03gaT+NpPI0PajwprqfxNJ7G03gaH9R4UlxP42k8jafxND6o8aS4nsbTeBpP42l8UONJcT2Np/E0nsbT+KDGk+J6Gk/jaTyNp/FBjSfF9TSextN4Gk/jgxp/borrX/yLf4Ff+7Vfw+FwwG/+5m/i3/ybf/PndSlP42k8jafxND6g8eeiuP7lv/yX+O3f/m3843/8j/Hv/t2/w1/9q38Vf/tv/238/Oc///O4nKfxNJ7G03gaH9CgP48iu7/5m7+Jv/E3/gb++T//5wAAZsYPf/hD/IN/8A/wD//hP/yzvpyn8TSextN4Gh/QSH/WJ9y2Df/23/5b/M7v/E7/WwgBf+tv/S3863/9r9/7nXVdsa5r/zcz4+uvv8bHH38MIvr/+zU/jafxNJ7G0/hvO0QEb9++xfe//32E8M3Avz9zxfXll1+itYbPPvvs4u+fffYZ/v2///fv/c4//af/FP/kn/yTP4vLexpP42k8jafxZzh+8pOf4Ac/+ME3+s6fueL6NuN3fud38Nu//dv9369fv8aPfvQj/N7v/UdcX1+BmQFhgAAiQggAEUCmxQORanQiQAgAQURfCwDh4bUxBKVVCAxBfQSk7v9Ju/8JM0T6t+zPdlwRfU8EJGxHYUD8eAKAxvGI7F8CYbGD7f5OeOe3Hob6Bb4PASaiCw+1Mb/3Hh8Pgehl/TIfto+0Vi//9Oh6RP8IIYJIsDNgnEcuPxvI7wFgFkAYIgz4vIuASOz+CAH+qAkM6vdKgTDlCSHYvIl+hoiQUrJrGHMqLGjc0Frr15RSQowRFGjcp4jNE/XjBftNIegajBFEhFbH3FAI2NYVpRRs2wYQkFJGihEvv/4KW1lQSwGLIOeMaOt4XRaU2lBrAUTQWsO2bfjjn/0MX3/5JV6+eoVXr16hbBtKrVjXFefzGXUrqHXD7emAlCNyTvjoxUf46OOP8ez5C7z46CPkPCHEhJgn5DzhcJhxfXsLZqCJgBmolbGVgq0WrOcN521FLQWlbiCgXw8gmPKEw+GA65sb5JgQkx5znmbMhyNePH+ObSuotWFdN9Sqe4RsvYtOL5gbnj+7xeF4AEgwVjLA9iERATP39YVHz2H/HTJ5QYEQA0FgcoR1HwsUDQoUbe9EiO1ZEWBZNrx68wZfv3yJ//Ljn+DVq1e4v7vH27t7NG4IIeIwn3B1c0QIAEtFaxUBASEE5GlGIL2/0ipKKeDGgAjyPENEZVEtbGJBr9WvjUSvj5mxLAtCiAiBEEMw2Ue+mk126DFK2cDCQzyBIVxRuYClQdhl1BjJZGnZVrx4/hxTSggiSNC1uJwXnA4HLOcz3ty9xR/8wR9gmk44XV/ju9//Pj75zme4vnmGm+fPsK26bl6/foN//H/9X3Bzc4NvOv7MFdcnn3yCGCM+//zzi79//vnn+O53v/ve78zzjHme3/n71fGI2+sbe6BjIeqiB1z+MDOYuQs1X4QQU2CgLvwAIOU8BNdO6fj7+9cAujIQEbBIXyD74RtKH//lsfQveLSp6L3HeHz+/euYMijErgQeKwsyzejHrbXatfgV/KKh7/1yiks/xaZQ3nf9j1/rlgq7zRl253KFD1MODGltCChpAHQD5xA75ODvN2aUVlXx7OYhBJ0HVXimuALtPmNXQABTQNvdd0oBMarwoTlfrA/eKVJmhrBAGlBFEGNEjBEB6K+naYIcZrTWUEpBCAEpRaQU8emLG2zbhm3bsK7rxTorpaC1BmZGjBE5Z6SU8P3PPsMXX3yBr7/+Gl9//TVWU4pdcdWCVja0sgAQBCLc3Fzj6jDjmBMmCkhECASQMAI3SG3gbVNFljJCSBABSq2orYKvAIoRIQbknLFtG0rZsK4LmBk5ZxyPR9ze3mKaZuQ8YZ5n5DyDiHA+n3E8HkxRhX5vtVYQEaZpwjRNOB6P4NrAZkj4/fvz8rWzNxT3zzfEiMsdhYvvghiMsbZ0XSXEFBFiwpRmxBRBFEBEWLaKT7/7HTADv/Eb/xPu7u9wd3+Pz3/2c/zxH/8xvvrqa3z++c/x4x9/jqvTEd/97neQgt5joAARRm22T0RwnCbElDDNByzL0u8/R10vKSWklNQggyouItL1sZyhJlrQfSMMonCxlgkBBMI0zSDaGcTCplQjmBtYmu47XWzYtg2NGcKM1hrmlHE8HJADQZoqe+GG6+uTGlTrhloqrq4nXF/f4NNPP8Xt7XOkaUIpBQ/nM1o/z7uy8pcZf+aKa5om/LW/9tfwu7/7u/g7f+fvAFAh97u/+7v4rd/6rW90rLvXrzHFiGmedDFz1YkrBYCoMMtJBQyZoPFFHCKAsPO6xoNSXSYXMtoVS1czu/dcAHYlsrNu9JA7wWZCV3WILiQVpOFi8/n3Q4z9rHphrkQIROYLqcYeghLdzhpegH5JF6/dXwBB7OuQMM4Dsz4BkOiGvhgyPuMWMYTHDPmxDbYm0c8KkU2deUauMEUQpKkHBYAb2fF2AojdEm7qdZgF7h4PgSA+VyKojVFrAXNDbYLGVeeGBWzerj4bvW6da0ItzZ5h99vAovPqc5hCQohq0ZZa3nnG41mzflcEzGKCJwJAVzTzPNv6QVdCKQXEFFAstruuKx4eHlSomPAopULsumKKaHa/b9/e4eHhHufzGQ8PqqhqbSjbhrYsaLWg1YJaVnBT4VGWFQ9393h9eInr668Rc0ZMETFOiCkjxIiQIqb5qNedJ1CIfRuEqMJ2mibMx4N6da2iFfW+hIC2BawP92jbii0mrFHvXwCc7x+QpowYE1KMqhBLQSkFAmCeVNFJvepCXg0E3396DYGCGgUpmZEmaE0MgQm2590YemQ8mSCXEMAQkJjHYgYOQdDailrVGlZvLIEoIEY1gI/HGSEAwp9AuCKniPP5Aa9ffYXXr1/i7s1LTDling6YDwdcX99gmieknLrnJcLYzmd9XuyKOUBaA9eKjRQp8XmgELoS93sDVJ6IsK0tM9JMFgyPSg18gUDEDQH98f3vg5t7YkCeMg6HGYecUbcV4AZww+FwABFQtqJKF4IYCTlntFZRzhVbKVhLRcoTUvz26ufPBSr87d/+bfy9v/f38Nf/+l/H3/ybfxP/7J/9M9zf3+Pv//2//42O81/+8A9x9+Y1jqdjF2Jn25wUAqYp62KieKm4QkAM0QSTKx0YDCCoTRUfsLNWXKns/r0fj72y/WfHe0Ddii4AIsSQQIHUvY8ZwV7rhhBTsElVgysd34QUECKp9QcCYgCzoJmlRBIMKRAExI7BRZiOgtgLV1ABYptXlZUbZJee314R6ganDpMNdNU8pC4kdNMIBGBVhCIwRcwI/TgVzCrkRdqF5wJTyiwVKUSICFqrqLX2OQ9EEGEwN2xbRS0baqsoRY0aZgY3QRNXYrANancUgLLq5xAEAcHugNH3MUGfmwma88PDgIT1YZsAcuHKdj9ysYbcep7n+SIwnWI0pRFQthXFPK5lWbqHUWvFVjZwY4WkKHSosbXWFa0LtFYr6rairAtaqah1Uyu7KXTVtoK6bVgeHrA8nBGSKuYYMkJKakiFgOlwwpTV+wkpGSwaQDFgng/IecJ0mM3mU4g1hoCUEuq2oa6rHosIkfQ+QYRWKlLOSCkixwyG2LNqABEKV6AVoBWFwcjWthscwdaXBABB91D3otSrDKQKzB+iON4H6IomAQJBAkHI1ziZregygtGa9JBAzgQKXR2oxz4lPLu5QqsvEEhwf/cWd29e4s2rl3j7+hVKDNjyinVZVPrIFeLhgDhNaMLgxmo8sSkKZjX6QGgQ1EeeZozR1lrTe9hZ1G4QEQKEBmSoUKq4vYu9caY/3BVXN9gNmifRNTrlhHmaECDgUtFKxjRNCqEbHF5bBTdGDIpQgIccdDn3bcefi+L6u3/37+KLL77AP/pH/wg/+9nP8Bu/8Rv4V//qX71D2PjfG/+3//V/xc3NDa5vTkhJYaIYI46nGafTCc+fP8fz57eotWFZVlvkwXDr1KFDACbEAJGG5eEBAl3ofsxgG9Bf+wMSiy88hg+Bxx4XACEsDwqf6DEyYlRoKOcZMToElQzKAmAekiu3nFXgKdySNR6SMhADigiaeYx+fxSBFLIqyGjxF/OMSlkNb3Cl6LEZc+JAttkvvTHs90f3jC69GK6uqqR7WSLjNWCOnLDGGFJEaxukNrTaUOvWYTdmBppunMYVtVTdGHXrwrq1BjCjlIJaC5ZlxbouWNcVr9+8RTPsnitja2W3QQdiwhCUtZjicvDyEsYVAiIUl27MePXqVVdGviYew7y+Lu7v7zs71tdhSuniOzFGJPvx1enr1oVUa60f63w+G8Kgx3z27BlOpxOOx6N6c62BakV7eMB6d9ehx9ub6353rTFKayjrgvPdW1RWyJubisyUEk6na/W4DLYLMZuRwdjqgC0bBB8/f4FpnhFSxGGaEKPCbRCYF2FweiDkacInL16ASQ2PKWWcrq9wPB5xdTwh5IhWC7b7M958teB4PGKaJlP8WT2LQKhQBcYhAHnq8gBscdQQQJIQ4zBefY9SCEBQ24QVtb6IczZW77k1NQvZ1nWrakSKAK3pnAUAtzdHXF99D59+/BwfvbjF977zEX76x3+M//z7f4DXr17ifF5w9/o17l6/wvPnz3F7e4vnz59rzJR1DcYYQbb2q6BDpwr3qnEVU0I+zKYoCoTDWCchdeXb7/ORsU0hGOzI6Jb7sD4B8ECZRJVaBJBj1LjlfEAKpN5gq5inhKurI66vT9hKwd3btzgeT4AAz589Q8wJaym4e1gQU0R9FAf/JuPPjZzxW7/1W98YGnw8/sP/9r8hp4hgMYcYAlJWOCbFgJgSYhrKwz2V/rsHMAGFDXVZknD3coJDd0SIu9dhmCsKWwkPwUxD4IDMNTdootamVhAFFYCmLKLHZmgITFcyFAiBglrjU0ZOCVPKmI4zcspIMYFSBhPAQeGNEFzZRo1LxGixk9yF5mGex725Qg42b/ZvnaedVwXRHS5AQ7PXggYGufKHoJbqagvEAIMvXgOw7zLatmJdHtQrMIiolGJWnlmDTTF25orl4cEsz4pS6oA3aut/X5cVpRa0pvFNMxsBFmy17KC/sb2rWZSACrtoMKwAiA7l7FaMiGBbC5xEoM97t0B3CvtxfM/XykBx9bvDsCLUsvVnMqXcGSpcG+7PD1jXFcv5jGVbkS3ucP/6FqfjEfM0I+aIVhu4Nay1aKyKGU0Ex6xQUikb7h7OCkluGx5MEdba1LsAYZ5nPHv+wtaKQm4UHa2gDmmxEVmePXuOaZoRp4TjNKmBR0BdN2xmiROrgZVyxPPbW0zzAYfDAc9ub/Hxpx/j6uoKN1dXSJPCTK1UnLcN9/f3qKVa3Gu2dapP0OHeKR+QUkRMAcKEGMnigDNyjhZfzEg5IobYFWsVRpVm+5ow5Hzox6eYLMYF3N+fkXPGNM04nq66EZkDgBiQwwGJPsLVnPH973yC//5HP8LPP/8Zfvb55/jpT3+GH//4D/Hjr5VlfTwecXV9g+lwUIWQE2KwuOGkyikRMEUCGqNwRV2rKizomg6+Z2M0pIYuwhGqvMaedoRHQw4CZttL4rFj6YZSbdWIUEArG7gWCGclm7Eqrm3bEENUWLdVQwwWsFQl4xwOmJnBMI95ZDh94/FBsAp/0Xh4+xYhKnymAfOIacqIcSirxvXCQ9KHGHqca4gt9yoEMQhcTDlcphAaXCMpHGKLIRCBuzAyYb1zzYXt7w5J6lUg2DEU2oMeAwLigTBHUvhCF25AyAkpJkwpIc0zcoqKFaeMBjteGJaXQ1IxmkJPqQvHaZo6fOpkAf/JeSg4xctd+HK/6IYGYrXJVHHpa4aAS+uWqSqr/euhxCCMWjZs53uUbUWtBaXsIMBOyFAIkFvFtir+78FiJ2mwfaY1tgB/tXjiztpkxlarxgcAwIkgIqjMBkUNZeV4iqNMDIAcYjIv+h3Y2LxMN2Y07igqiGwu9ySOvsSIzLDSPzBXhYQDoVHUaReBtIa1aAAcrSIwI4j+SN1QF4BqhQQCOsmAkFIEhazw27oYjFjQDMZzOK/WAm4OeUdIq9geHtCwg3jNOHJlhl388v71aywpqYVtZAIWQds2lNYU3hTdciEG1PMDjldXOJ2OCFwRI2O5f4uHeQaiW/SMwg0vX77CsiyYpowpH1RxRQJBFVhXXFnhVmFCNMPWFVeKCSlNyJO+jjEj5oTKjMpN18Ru/3qYIcaIlOeuIM7nBTln1PkAcENOGTElbNFjoAAJ4+owIeMaMxGmSDhMGYcpY1se8OWXX+Lu7R3O93fg1pAfJqzzjDxPfc8eDidVrlFjXVIrpNoeMaOA3UCKaoAjSH8uY/2r585icfUYuqwEqeJyqF3QDEm1WJqHQNCXazfqoxla3BoC2Tozg50b9/iYOg8wRi8pfPgtxwetuAiCIIJIhCkG5BxxmBIoUo8FtNYQA2FO41Y7NAOXS2ZRedSLlG1n0kcVSo+x+OZVAR0oIKeEJu5u7zwux8h5WN1DWcKOZ9BDbWjMaML62hZK6u68eWJRF0kKUZWYxeskJhUKImATkHvl5QopxdhhEmctKQw5vCxXdgMmJUMSGCCLR0EVkL8WEgQjujAYUsUUlICY3n0tehyRBhJBAKNsq1rXpoxoh7yKBY5rLWZh+xtD+Osc6yYJEFAwxdc0DmT6AELmMhrWjh6Pa8ikHq7aKhYHCJ3eMhSRiEJdedpdyiWZpPmSUIdVDaKg18rksbxxk279qrOvlOh+3NZQzWMSZkxEOBxmxNMRQoQUI3JKRkwgQBpq4f7349UVrq+u1CCJEf/hP/5ehxiJBTkEUEpIxyOEjgARUlKWG5tnKVVZcK1p0D/kjEgJh8OkVP2oa+bNmzvUZQOXCHZFLQLh2hV0igGggCCMtiyQKUFKQNvOePt1xRsRtFpR2mbzAcQU8fLVa5zPi63raZBZgsLuMQXkNHdlJazKLMb93xWFyFM2JZYRclJIkDXWNbzL0L2YnBPm+dT3E0JESQklP2B7uEOgCIDABIX0Y8JkjOiIhkSCzz75CC9ur/GD732Gj26v8V9+8kf4/POf46c//SmWZcF5OeP+NWM6HvuePMwnzPOMaZpAMXREYltXVGH17o4H5QyKo/8B5CQkCXY/ALihVjZZBIOqAZDHldliYA0GDSFGN/LVvE8xIoWIHJOGKHJGjgkkghgUSnRIVoRRtoJlWRQRAtC4XhCVvs34oBXXr3z2GVKKam1LA0SFYwQQc0I6HXWDQDcOMAgHcDXlrrRZ3oGgVjTc67LPO9hLl/i3w3zMHs+59Li60QJTfk0XhMaTdkzCbrVLhxUdW3aJ63EBotCD3m79UUpgkFpgDjaSB69DV1C0s+j35w4dXtTfuvBCp42PqaD+fWDkTdFuXkSAVkcu3CC/7GGz3Wvz5MSweyevOGQGAVpThmDbavekxjEsqF1rz0NxhcDMKNtmMSO9uNVgSH0Ooce71mpelt3eCPA78cPkQHOlw6jrw84KNVjX5jYnX2P6XmcnEuBMAcIu7to3u3RY048siSCiGz3FiMPxiClPmA9KLz+fH3B3d2cKZMRh52nGNE+4vr5WwWesuR9+/3sIMeJ0pbFgjxuJQI0nFjRTrA8PZ/z8iy8UDhRBMzjAIWwnAYgJ/mdXV6itdYjKBf/xOON4cEbdCTHpd6uxgH09NNY4Y4sRIgd0AhERTt/9FCKGAMBjZRZ/NmgthmjCmMZz8X0QHGOp+hylokkFOKGTRpAQzSMIYQj9wIxQNhA3IESNJ4eAFgK4ExOUCLHyWOfKPExIUfPZcs44PrvBx//TX8X/+df/Ryzrii+//BJ/9F//K7766iv87Kc/w1cvX+K8LDjf3eHVl1/qOokB02FGMo/Of4MC2raitWJGbAao9vUriEZQMflg3rQkglSVRQjqHUIsVNJhbiU02TaHgFDLaj8TIgFcK1opaLUihYTr0wk5BrSyYTk/4OHhDqWsmA4zJmPRxpwtHefbjQ9acYEbIpSqq3tdcfuUNbYzTRNyTpbP07ogJI9vSbiMLdjDbUUt3xhCx8+BSwvZN60qJOnCqRMyTAHph4eL3apT9YeiGCSRHQTV8eVBS+0ylTywH/UYRuhwxaWU951iCkbIcOVlF+RBcth9B90DCEEQgoCIh1I1+GwvzDuARo+uD4SNZSjsocI0vtV19DANIAFC6SKRu8M1ojCbMIEDoTWPRw7vRhlfsb92VFeYUSalSgMK800tD+VA1L22oxkVfjPBFbS9FoNz4QwsEc97t68QeszsEXwIUI/ZXRoPAwFwA8PXANe6ez6heyue/5VS6r9JJnCzmI/FMFJKmHJAUumCWkyZi+D6dETMCfN8wDxlTFO2BOeoUK8IWlUoliB48exGyRgiYBlIhXvvCtMqBDpNybyyQW5KKeF4VMp8njKmKdnUaypEKRvYYpYCy83TB2YTrGs15qRrfa+4aCAD+zkEYIxNV6Dj70SiHgkASDXdGKAJyFCUpDFEufTqNRMBsaKZoVFK689t85hUCJb2YWve5I3CfjPatir70ij+OQWkdESKn+IwTfjed76DH3zve/jZz3+Ot3d3ePvmDX7+xVc4PzxgWVds5wdstl9jjEAMoBSRDkekwwxNTw1wJqLuf9g9EJooShS6UnfoX3czkxpenVBmgY1g8zelDGFGLQXbsoAgaLVZQr4eMQRC2QpKa5i2GbUVbNuKQys4pBNaa4oO/EWFCrd1RQ6EHDXxVrGloNh1SpimhJyz5b7QRbzHF7TLKVdSMRC2RRBI42YpZbgSqaWOCgy2cEQY21Z2Vu5IgN1TP92rqVWrCQRjExINK/sxpV7JHJ4nBLhic0/IPSMnUbBtlmAe2d6r8+GVFwD0fDdfbO41BcO0yaAHX/QqAMTSGGkn9O3g4kIYlpelx9nfVxiqakCmMEVPgESPp1llDPeMRJVmTCqIL+bKPuseSafHw72AtvPsXPlIP7dei77m1hMKHhFwjJqy+y4M7nxXSfnbe49zDwkOw2L/OV8jPjNl23ZGSsLwnIcHHcwbmKaEKzlcnD+loI6dNGzbuRtezIzjzQ1iVLZp3TaQKBowTdm8dhjcXkAQXJ0O/fvdgPGEb9HcIk/0nydlHCrtPxgLNvecNSJCbQWNa2fLrctDp/THNGKuYUdoJSLkoGuA8f751CkdOV6B9sZBT83XJ2zrU5UVAa3py6AelbgS0pMDAEoc51qXraM1oXtn+vy6p2ayhowE8hCUIJWzJlRPhxl5mnA6TLj+/vd0vwL42c8/x+vXr/H1y5f4/f/0n/DFF1/iq6++wtdff20VNixROhBiTjjc3uIUbhAmANFQBEOVYlYUBqK5jzEpYUY9rIEokHjFGbIkEZ3EaGssxYjj8QhiQd0KVlp6MQCVrQHNEqqXdcHWKqZ1BnPDui2orSBPCaUqVIjw/n3zy4wPWnFx3dBqAOeAaLkbIRr7z4P+mzJ/5mmCxg80t0CM9+rCozSHZ5qygoLm1RUu/XxDSOrSb1VjVsdD3imWAZGgy7y2g15MWQiBW+xykXcb35MriWCKE92a0U2oy0qNXdtsVNGayfkQACtTo2aUKhcGI3jGcSCc5oPFzzRnCWSZ7BrthZNZNJfFJUGAqh8CiE2vKIFinztGEkAQi32p9BFjtAictNBFSJ8s2isFeA7LgGCB4bX6MxnQ2mW1jga1+rN55BfwJHDxWR/pMAgrPt/75+/w7R7Oo4vPdXfy4hxqhFS0xo8g28ux95Sn5EJSLfZLNbtLEJWGFAnxeNC1ZnHHYOkc7gWCBvq4PNzbM0QXsg5XAkamqKb0dSa6h8viStY2CmRUVmC2XHSFmmt0KDTiwY06AMwK/QKCaZrQ6gJuFZAK4QBGAyH2cmx+vrI+oJSg6MKFMTcms//ZFdZuXt831yEEJEogiQgSVH64wWdTLYCu3+6Bm8fjnzHTxw2DjvIqA0WVQXAPQ5UEAvrc5CljnhRGzNOkCoCAwxzx3/+lX8Vnn3yEl69e4Q//83/Gz7/4Ai9fvsTrly+xlKr+aU54/slHuL65xYtnLzAfTvBKGSJiCe8Zh8MBq1XlyHM21IYAUmXUrJCDkoJg5bDU+M4pYE6xe+hTSuBIHYGIMaKWs6WyNASCpfso/2CaMo7zBBHRsl14zwb4JccHrbimnJFjROrUTrUOolM8mcFts7wMhaG4y19CoNQtKjbatHBDnBMCa/6Gjy6OZLc4mdWq8oCm7MTwjpmkC1nZOjEPqxo9RrRXXGIbWuWiVyq6jIWpoGQe+kQ9hKTJ1lbuhfx6u6XMPT4BAs6Ne9JxcIoq9LUE5z4aROixNCtZQyAwMTSGK2A0jFo0GgdyJRYQzaMSwMkZvYqFmMWaAROOrhhYPIHX4l7utV2s93eVjw7PL9PcoRETw3t+j2O1rXUYbw/x9mdvD0bMC/TY2f47eHRM/y4IiIkuFOPje6BHQrNTmMOld9av3+5TLf5ocLkfS0AU+2s0M4A4IGQtDab6V+fGKyb434bnK6ZsHJ41Z5v1HvYsycY+p3rdIgbPB0IpDqEZEcCgPuGGYlVOuDGcuSrsJYGM+ZqUQAHyai0+ad3swd4UAgZMrtNNFzPeY0AUdJ1Kg0gwVuEII/Q52ikupoBaNp/oncKSnmfVbTDSXDMxo88gBlRfl0RIMWG2+Nc0zZZLSLbvIrgVHKaETz7+CIGAwzwhx4C78xlL2XC3bnj96hXu3t7h5RdfYT4eMU0zDtMRp6sbHI9HHKYZbAhGICjhZysGJaoRpu+RxXr1+aSo6y8ZohSIEGztcatGXONuiCRTVrVptZttXXF/d49pPuB4usL9ecGybr8QqfhlxoetuFLSPC51IOzHSBWi3g+kQaRCPEfBlJEuJO6xj1ZdcVRwdqttJNU63KCLWJlVrVVd4OK07ME2i2bBgmjQtLkik9FahQDEC7joHYo0NPHwkkRh3suFcNF/T8kmgbxeGdCL+TqcxoDvnK02OHWPNOPW8OzQN6lDglEEFCO8noT6Q9wZk00GC1CLYLDXM0akAeyQaPCfLZbQhBFiUqhX8/D1/iBdaWkVhWqbg5GdOQe/l90zMkHqQ0Rp7nBwaQ8RPpprZ7890mbjfZtT97YIBOnlhX4xZOjHDgZHD9/Rr0X6beh63JXPgj5D7uW+xBjuFsfz4tImpCE+B3Z8e44OxQK6PBzSgliisbNi2edP+lofxtogHNiRdvNmhA4I2I2tEBB5ECUuvGNfd6S0/30SPxHZ/Y55I481PSpF5PvinSfmRh6TnRvvfE4cCiZRj6jDhparRsNA7NrGUBoJclH/UtdZs9Jb1dI1PL5rFTlCBMyQgIglbuueDCFgPsxIKWOaJ9Q6EvPneTZGcMDHz59jmjKub65xmme8fbjD2/MZX755jdd3Dzg/PODN+gpxyjgeTrg6XmtOXtlQ5wPmWjVPLEbL6SsdmUnmSQIBnWwLQephFPNGbTrEqq843X3khGrOabPcy21Z8XB/jzzPOF69xf1ZcyzRPdBvPj5sxTUnpKz1x5RGLajNsX1CiIKUApgbzud7XfRmDSp+Xrv1y/YgIA3LUrsCHIUqASD0eIkiU80sY1V4OszTQdx5X2rdcSAsixY3VRd65FR1NtluaIwgvaO4HsdG9DdpMddaEUMGIo+NZ9crvD+2Msr8PJexk8u6jmSYt2APEV0qzlHE2GbhFyzK/TUr7VZjjSxqTJiTBpbaP1NrBbfUFZgmJ8sIMHscA3uRSp1kUNv2/uvYwY9+Xc4Me981uwerTqp6jPfLfT9rxGXqApOXvjIv0+HoSF5SWMsLGWQqBES39EFG/dfriWTJ6qZsPOUieK4OOWsMcB31OC2jM8UAVEFn2nppKlVWjgToXYx4EdnrS7jVv68GoX5/q6Mc0X4d7Qvi7t9TNqPPP6GzBndry+NEYjr+MQnj8RreQ4PvW4s9Dmrx4UAR8Oejn+jHiNHvH6BdjCvnYXg2CCa73uFxWVyU1HdhISOXjNxI5rGPvKYqxWQMWTXwyraAphmH+YhPvvcR/tLxiDxlEGmljbVWvHq4x+//4R/i85/9HH/0k5/gq5ev0CpjWxf8/POf9rh3TBN++IMfacHjOWM+aLJzyhHR4uQsDK7FjBlfQ2ZrqOsN4YpWtH7iiF/72lcPX6Shtg3LesZ5fcBhO1ptT5MVf1E9rhfPn+N01FJJA+ZoyFMyXDX091prndDgbSb2k+cMOYKgVmXLeJmlvaXrG9xLMfnfiZyEERWWMU9lKD+VIirgYXkhmuQ72hA8GiIolmsF4L0bU419g+8oIlC0UlLxnc29w1AAYAgSOPtobP7Q4SpXfmYoRyeU2KzI8EL2cBk337hWssmVp0FmHdrpMIto0qR7eRgwVZNmVp3Cv30j+XFcce28sICROybS+uf2wxVRF8HucfV/7gyDPUxo5/A8QldcAQGaWasxDLaSORACo3XmHQWHZs2D2MVQYo+7EkqpBmkbxduJGyJdyXtun6ZasP7dvC1NljaVQ7sSVgSUavVL+pQMxfPua9gaHqWBOlHjPYqsGEwcYux1HXXB7JVBVBjM1xhg1RyUIQiMcmpalzMgZ439sMggPewU1Dh26GvUc8762tyhFfvvJAoKsDRBDGlUl3hkxOhj0+M9PJzhy4p9Le2RE5trIiUt1NaMSRwHmQNk62MQX9zbxM43dwantplRWv3t7S2m4wEUIzYBfvUv/SW8fXuHVy9f4cuvXuLtm7d4++Ytfv7F11q0tzJC0vwybhUhzDhYfljKEWxEGa0NKv0+pWmhX4reOkgVfk5Rl7utF43NKcMwhZH/6d0J1mXBui44L9pq57IxzTcbH7Tiev7sFtdXWruMReEg5oo8JeQcME1qSShzqVgtwNQ3RneGBV1QUyAsy90usJjtbDLKB0E6o49ZUErtSXpagdrjBIBaFyOZkY06H0K8yLl5H8wkou0r3qe43vWKIoiSXdc4rhMB9ABuoeutq/eHfux3f/RLHSIFacmbMISFQ1KyE0qALtYe9zClwybkHX7ctxbh1rpQCK7ZuuIYhWMVovPb8WO5ItsLWhNSlmy8vxd93zwRjHgXgIuUh6GwBhw7fDq9l0TqiahKuYRY2V1cUTXCFtfTR6DPQSCmuHxuxjOtO7p1cjYo0ajaAqPshzAqFLgyFwMTd9Coz6sAqDvIPOzWnsODwOP7Df0+IRY/Fulw2B6Dq4YAeJrGu8olGGvQmb271iPGoPT941C5V3OpjdFYYWuvhuPPan8M97L8+37ux4q2KztTXOCd4uqG7ZhDsylABBzu7zsKMebOY7P2HbtfZkYtdScLqHv37hF7genGe4WlnrGmIuhJspW1m6aM42FGmmdQnnF1c4NSK8pa8PrtPd6+fotXL1/hj/7rT3F+OKNsBUIBb16/Qa0NU85KfWcGN/Q4crATsz9XGa2anMkaDTrstE+C5cyawdKRC/VAS9mwbcUKRp+1HBtfwr7fZHzQiuuz730HL57d4urqapcTwEhZabjTlBHTgKUGxdaYU7sirnuFsJzvQYSeCwagC+DRp0c3mDdx29OV95+93FAJ52UDs1hex+Wmfsx4CyFYq4DLDfm+H1BAqZocGlJCCslID4SA2OMakRLcAdwWgwO6K2bbRXaxBGeopaQVwXfK8/HY38v5fO7xKZ+Lx72TuuARgbRqle8HNb9Xu+gn0Od7vrt/FF/gXtrIj68X7dBY68ImGOSmScI7J1T1B6asQqtBYT4XRO5VOqGge+Fbgcfl3jf2z/SxseHv739fzCOrZ/Y4peHxZ/+k8z6OHfWfpB4cBYMhbTxmtz4eZPe/Jyj1mJzBlk18j+yKDrt/uFvLfu1eyWEPIeq1OEJhCi1PvQDw8MzGteyV0S+C3/ef3881IepcYx9LHnMiItaTzauqE043N2pIhMv9qyiBrZX9/bN6L+9fE7EjGMyCZVu7YO9dDRr3uWWuePnyK7x+8woxZxxunmE+HnE8HPHJRx/jL//la4gAtTS8fv0G54cF67qhlIbf+73fx5dffomXL1/i5cuvsG1a0Pp0sjy7nMGJUOoGYVYDPkfkHDHnCXNOyCbvmOyeWfO5KGglIZdtCp1u2Fbtz7YsD7i7ewuhgFrHHv6m44NWXNdX17i60krSwSibFIApa+mXlCJC3OPfl57FPug8BA8hRcfhQ++KC4wFPALturhPp9M7wvx9lh0QcHOjVPUQ8jsW40U1dMCUZ95ZOrFbql5ElwwzEwpASEDQUjSRLMHTWH2uFLyVCgVYBXcrxSRBq04AVpbJFpX3K/PZ6fXp3i94Hb483ryw++fuqY7A/E4RQ8Ctom4L4AnP+hjg0Z6L2k8QnI5XZvFbxW5jg+6ZXHotApaGrW6qrMi6w1qcIrg2g8Fpdr29tqQRIKTT+ckUlyp5IsF8SiCrLrwDHftmFvN6ZPd+h4hgipWdjOGwLWyOQrd0NWHevUB0ZepPxmsaujYmW6+BxvruyfdWEk3Eo2no1994GFxuNQQK1kBRFRcAy4/zfmNN2awWo2FLAMeuMoxeX+xeDNnaAgjTIY71A6Pki3r5Q3ERUsoahoKWKHN4XXwd2Dzvk/s9/utbcw/nwWec0Ms16fXtqPAyak4mEcAT6InUePLPuXfrDFh7lr4nIpRyj+7R7714DO+OqM+Bt6TZmiI6E7myNuW2rlhLwdYqKkWc1xU5PeDu7T1urs+Y5yPm+YAXz5/j+lSxbdrE8df/x/8jXr9+gx//4Y/xH2vBmzev8fDwAIgWXZisf5ZwQGOF3VMIyDFhnmYcj9qXLRJhEUarStBorMnqWppNi+4G1rqhKSdc31zje9/7Hj759DuIKWOrI9Xom44PWnGdrk69zYGtN4REVjwzImZlx4wyML5KYPCIgkW8VzIiEMvqV0Efx0bDZfKqL/o9FAcM4d1hBvuK0o8TiLTYaYqxf0d2Vu5QeJblbkoyPqruPixZzXinlEExQSjsgv8MSLD5IcvXMY8nhw5RYQdtiUFb+mInYMUUV4dQLj0KHwTrE2Tvx8h9k+5jYao8RGutRVLPqM+Xs0MB924csMlzMuHTrCBsAzeyyvvSjwF7Nl1Y9nylUV2iCzU7DzeGEGv1cq0O22seDiljngcBZD3RYNc7LlfGHJIJKF9n2M8ftFq2Kz3qAOjOlPJsKf0L755aV1JW5Jh2XirvfEExjygY69R5ni5zx7Xsip3ZOpZAo1oGqBeE3h97JKgTnDnn99nn3WFm+FyMdeC5hpfQ7SMI097rhan3K87/iH1RZbL577/6YxyPUuz6XQaQQbm0mxef9/7Y9O998oYPzqQ/l6aWXjtL67F1hZKl5x6ysCpMO4ezh4GIRDuR4woP0pl+TbQYQxJjiFpuoeYNVm0tAli9xohntzfa5PLhHm/fvsJhznjz5i1icjKYXoOjWEpI07+nqEjWnCfEEJSkEYKWeLOLV4NBq2uAGeu6olWNVc7zAceTMidL+wvqcT17/hzXV0dXPwABMUdMlljnjMOcvYJG64swRLUiHN8fsBYjmR7qVqALup2wbs2ZWAAwyvkAo8yNBok9jwvQtIYIwD2u3S6waud7+MX/7d5isoXn7CMB0JE+EetZVcFE3dpnuzfdzAaVmreTp1Eg1m7Dbxy9HI4p+wAoq424Kx4AvVrHY+XFOxhAKxTQ+NxOILAwYiQc59mYhF7hvfX8M2UfetxFtN4ZFM5T5qB/Z8TVrIiKehFtX3cSow+Rd4Y12SMgUApKuLBEWgkuXEZqhEt7IoePbH7hSkWGEuhGi1h5KEKTXixLo0beaNOStV0eavUJ83K4uwxwgGCITOp5NBcwJNCtfxAhEYEREBDQDN4LCF1x6mE9qVZAISEEvY61Fv08wYoj7zwuCEJQ744SKfsPSugJpO1hPK5FYQT8vTwXN4aY0cGMHhcD0IUwBUJhTzkBYtImlQRjj+7IQDkmBNbYci2le0W9A4Of0xUxAIrqXTSWC8NwP5Ro0TU4HN7U6R0s1sfFkwHrQ1YbpqQGawhqNDYZcDqCN7xt3VAIKSGH0CuMLMvoUxdTwuE4ozbGm/tzRxJaI9zdvcb5fI8YM66vb5BiRghKgU8p4+r6iF/5wXcxHyJev36Dr7/+Gi9fvsS2GlUdYrVQGet6RsoBItrn7DhbzcWYkBJp4rKRyGprOC9ngLTfX1uBN2/u8OJ8xrYpS/Z0usLx6vTOHH2T8UErrod1wfHqgOPVSRdmCIgp43g82CYJ2LYFlQKAhNI2eOA5UUC1st3M1QpPauC8GbaucRQrWxPVfefmQekACmlYcWTQEjO4MKQUPbZVWVaLOwBhQmsblvU1bm+uUWvBer7HPGdEUiFf64b7uzss5we8efMW3/3ud/Hs2TMcP/oIrS64X1bc3z/g7v7B6skxWiuAueoa17LgtCmKECJSzIh56taokLaQzzlhmrLlyrgXZXEpEbQ2itJClD2UjNW1bl5+RoOyLtCO86l7NNw0v6WxCgxnkzlcq00uNY3BBW+v7s/avsFNTqKAeZ56LIS5WqmggnVdutAIdn8hENI0GRYPQAhXN1doTZsfXt08g7dC2UrtsTMtYTPZdQp6chLUgPCqCffrPYi0tYZ21VaI0BtfUlSIkmLAtmx980aKw2jqnhjrmgpataBuq3l3e88RpkjtYggmkPbW+87kdzAgBLBBy0wE5AMAgdZb9QC7er/doaYI1kAfKAySA7vSYi+1BasMQRqsJ1UCW9kA0jJqiQRyfgCBVdVw0+fVqqYAiN5joGjFhjUQW7eGUnfQUxix5Ojl0mjPmDSjwAyRnS8LEos9ORxsrMEUgsb8rOj2MMQGnDemdCiznhbi53tkxAkA7/jt33TUxz/ncVTZoRsDvtb/ZP8ZjFSAxFqDFSHgeJyxlg1l2xAC4XA4wGiS+Pqr+6HwY8TR2qRwa0gRmDJhyoTjIWHKBBFNgK5NC2V/9t2PMBuT8fnzW1zdHDElJXa0GhCnBMlKnnl7d48Iwq/96FfxcH/G3f1ZjZSqnSRyzPjRD36Ew/GEZfn2Dbk+aMX1059/jlILrm/XCzjidDppK/CcjY2mm2wrq1mgjOxCUrTyuEM9ivpI/x6gcaEY03Dvoe3b86TlS8q2YTDPuCdz6kI2xWVuv0hErQ1nS8LjVrAuZ1xfaTdRgoDrhnV9wLI84P7hDe7vjtouIGlAc1k33N+f8XBeUMuuY/C2QLhq5RD3iOxao7dviMaSJM3K12ab2rJBe5t5jx6H4hrW9azQARGYm5aPiXrMzdiDMMXFbC3jj9dw4kVrHufSWUi7TsGNmyqupO0pvEKHGHbe7Brski2OIgoFxwgWhQtb3VBrgXc1dh+rBe1UHJLHYCIghK1seHg4Y60yqqYgaECcdIPH4E0iBV7aSWtYKpWbAmFzAQeA0Mz7M9YdYN9RuKyWhtaAwIJAGh8R86x8jcTACEHX4Uh8BWAxR/ei2NxEAhCidOnZq6RcGLOEXjg5kJUz21f7451HuqOPk/7djQjHL3ucyBUAdnlVUWNCTdR7yTkqyYKAsm6ANAANJNrGhlvrtGpVXA1RnJEWUFtDqdr1upSCQK1D8528s1vv7lkNZE1dF4c5h9fviovQKICqrg2t7j6m3eONjuGR5R0CPocO4A4v98I1t1OpHqaum3zFgNDbAfnnAfRuy+QwKHDhAfZnZGeOgSwHzolj0SoIaYPUgRgQzuc7A2gY93dv8fBwh/Nyj1bV0NDvZrBkCAGn6yPmw4zD4YCrqxNOp5OSMwSA9cGDCKZpBkDYtoJnNze4vblFmg74wfd/BT/60a/i+9//FXz04mOcTleYpsNFAfFvOj5oxfXjn/wR3ry9w+3tM6WhhwCKEYfjCfPhgMNJ41/btuF8XrBta29/kq10CQGQVtXaBUDBmVhslruSKYjIyhipwD/ORxxOR3Bj3N/fd8UF4V1tP9F4SX8d0AqjlIZlWXFe7kGw2ntyi2xFUQMX1FbAUsFcsSz31m5FBchWKpZFvYxaGbU21G3B9nCHVleFbHqfLGDKJ0syzAiUOrx3PB6teoB6JtF65ExzRgiE1iq2suH+7i1ySsg5opVNPTdjRXrDRycQcNP7I1M2XmWcTaHEEME7xtFWq3lFWWOSphABHp11ey6Osb2YIWZgKIW3oRfkhVe81zUizFi3DfPxiGRMUPXEC16/eYvy9WtTqIRpPoIdgiNccEICBrmjQ14xIM1JKyawKtra9gV9H+UZmdCjLrz0kkfclDq8TKRwtkdI3Pv1osFsSVgeD/FUDC2PNeI1gMdMzJOxOOe2esL8+Aws9vIIIUNrDet2WaJnHxMGee6feZauzCJwPJEiCWCc78+AVJA0TJGs8jwjeUkwcTLMvtIF64Pwah884E/26hv86IJ317hnJb4D/7FASBuiBlGPU2wOBss4DjJPcOWmz3TdNl9tkEfMz/5aLMncFUuvdu/rys0Pfxb6el3UyFbjejAcfa91On20fMBASFmZkSlGzHMehjk7GqDV9e/evsW2biiNcf/2Le4f7nE+34Nr087LKeM0zyrHAmE+aXfq4+GA6+srXF1fI8eIIKLkn664DsjTDAHh6nSFZ7fPcCXA//BX/gr+h1//dXzv+z/AZ9/5Lg7zseeDftvxQSuu//zjn+CPfvo5wEBpCiksWwVD86yStQ8IUSnQ27qhNS39lDwAC4E0tex14yg2LqIt4KUJvKisdm3VDTDnQ+8toxXFAbfz2e19ETBpk0QfrTK2UrCcz/jhD7+HF8+e4ZOPP8Ynn/7PeP7xCzy7vcYhBTAXtLLh7q31WApKuNgrq1Y1QXmrFef7e+D5FcBVBY8JthCDNr/L3m+J1ILlhuvTtS6gYFaWtYZIOQJBcfmybTifrzGlhCknbGVROCdESwfQ+/JYUS0F67bh9ua5/o0FtQ2685RnbXYI0tjJtqg3lyNCGgKYgse3xOBdL6Icegkcrz6gXZM3bNuokKFCD6it4eH+jKsbbQ8/zQeU1vCzn3+J//KT/4o/+E//GffnFbUxrq5vsZWGatBmLSMZ03PiOjyl0wtJ0JyUVrGVctlLLKSuBJilk0K8krrDQ+4N9Pw40utXtreuI1eM2qKHTbCHfl3MGpjvrED2udPzd6Yd6XlaM1jrPTJ/762JCHJSFAM0RKzYBwV+rZa0HoLCjUEh9uM8g8BgLpBacHt9wIvba/x3v/pD3Fxf4erqiE8/edETpTVNgUxBWFkig8NrbVjPq+VDDWW0T3N5TIV//fp1f98T/n9RCsFWCrZa+jE95SXEfTfwwT68IBfsqf+7uJe/btyUXm4V6mn3/qDMDzr+hUG4U22XqRC6d5sIHtYVbvhka5kCqJKf1qKICBHyPOO7n35i7WuA9bzgvCy4u7/H+f6seWC14uHuDg/Lgtoa5lmZhMfjEaeTNrWMQWMqMWarMgRLHVI6fCkFpVZM8xG/+qu/hl//9V/Hx59+B1fXz7C1gYJ92/FBK66tCErdsG5FcfDG+pubwQPaPjxaZ9itbJZT1BC8kZIwuFaFm1jfu725hojSOGup8C2lDENb+PLQPYhpmjpgAHFKhFzEuNxynsxLefv2LY6nA0KIuLm9xenqGrfPn+PFsxsEaG0xbrpg1IETSGXEuHXoTZVQQykVUwrI4QZmgGnIgjQoPk0HRNuAzKrsamu9yaBm48+dWcVS1ePjhjplzLMqrZwitnJQ6DFEpJws5qe3zk0TpvO24ebmBmSZ845SEKBxoxgtVMOYtgkgQUha2T9YgiZ2HYK1nJbBQ4GsNY0ndDMUgk2PNrXCMpETUsw4Xl9jmg/I0wGLxZm2UvH5F1/i5as3WNYNp+tnEAQl0jRGMcXFjXc28Q4SCkCcorbn4IZWamfraaL3oLA3bsh5Qoq5d+buXQDMyxGQQZ3639XpoF6AWDfgUlSp1qrrENRZglqtQNvPwzzR5hBkR6UG5JWSEnN6CoDHcnaxFPf3vP9XPwZ8qUuf69F4VGMeweJ0OQWQNIg0nKYAkk9we32Nq+tbPH/xDNdXRxwOB22lA58Lj3FZ6SeGQdCMHBNqqT01ZK9k/PU+3cVzNH+R4tqvmanpvtgfTz300X6oBw0BxFoHJLlTXD4n47XCcjGFC8W1vxZl2LpHTljXtSuux3l2ft3k5b5EMOcMBPWscs5WzxPqVYJ6m6KYIw5T1vuKCVeHA2preL49w7asWNYVy7Li6xQR7yLWuuFk+WFHKwLcy+QNqWfyNliT0Bscjydd7znj+voaL54/x7NnzzDNR4SiqMTe0Pym44NWXAIt5LgW7hn1TYK2r3dhKYwkgokIxfISuDkIrg+Vq2Bb2SztgtN1BOw4GzM6+yzo34WBUjaUrSCmjGuagAvFZUQNEyAdRkRDiBlN1Fpb1oKtNAgIx6trXF3f4HR9jVa05BQHbcktTUseVVJBGqNb0gG5sfa3icBxUjgvBMfiARAhu7IISes5muIKIeB0Ohl2fYUmFbVVLOsZ6wo0Dia0VGmlFJBqQo4W48rJvABlunFrSEW7Mh+OB3iRYSO9W1jBrVa1BkOMCqdGWGzNhY5XyncFNkpsjeabyuzT2xxJo53gATHhOWnl7Uk7sDJFxJwhINw/LHj1+g3u7s84LBUpzwBFVcJmINTWjGwxqNo6/YT5OKFZ12VurSeIkljkyEgTVRiH+YgpNy2uWtx7MiIJjL5eTAkK4+MXzyzswdr/aNvUuysFYpBVtJjMlGcc5oORcdxLk543xBanAzTedDrqimW/bo+bsedg0YVXEOgM7ISse1yAxh1j90gC8pxsDUJjeWAEMPjZCY2BlGdc3dzi5vYZrk4H5AAQpEePqOdUhe6VqgHESCFooivFCwVz+aPryIVjv648+vDp5bvY1d9Zpp7cvP+hEHff6dt89OrSSeixNF/DYy0KgpBmCXSW7nu8s5G52D0ubW47qt0Eok7m8RGIkFPsaFCv4g7SWClgMVqHjTUmFmLszGKWE2opWNYVDw8LuBSABMuWcXW6wuF0xGGeO9rh3rYeUGFwMiO+NcbxeEJKGlLIU9bq9Ac1oBv0eb7Dav4G44NWXFc3HyHGhBthbR1ABBFSphQFhDQhzZOWeUoJ3qFVZJftD2XNLecFZduwbot6PaSbutQhsNTT0kl3emrOGTc3txZX8YiuxxiUnTfiLxVzTmh1w9s3L/Hx7S0++ugFnn/8HRyvbhBiwlYr7l6/RdnO2orbhEm3ouvI+A/GaswRCIfJ4L6gOHUccSSC1bkjQgoExARibTYXckDIAdBKVdY3jA0yKKi1oLZNWxVEy4WbRPOXEFCMnddU8qoAJMFWVvXyUlQatmjWP29WI88s7MqsVH+yclhwuXvZ5sUVBoBelV8hMo37eY21PfTS3ItgoIhgmgtOAuT5iJvbW3z62Wf4wQ9/hJCPeP32HiEfMR9OiClrgIYCmKGe/FYN4jMKdFCL+Tir4mJhiMWCaqtopaJ5rioIlCKujleYpxlrLWibzltlFdgsanxty6Lzzg2ffvczUBw5MedlwVY21K2ohQ+t1s1Q6ztS7CWctFajWtoCKyNka7+xWG6PVrmo26ZQpMGiHgfLcUfYsYojTjZBr4kIhBStnVBASAFaNVh/UmAjFhG+/9lH+LVf/SF+9Uc/xEcffYI8RV03jRENp1C6RVUh3b0b6vGQ0+mkyMdu7L2Q1mqvxCEimKZ9TUNdQ57GclkcAP0egEtvaBTWviyKi5D88uCIihuUl1RvNwb6Et4Zs7uxC3+JF+0m78VAPQ7o8kCPvMv7k6atSrgp1B409SHa+mJmLTpQK7zazr7UXTD5OU8JH714huPpgCqM248/Rpom7ec1ZTXKWsNGpDC6oVHzPOsshGBMb8KyrXj5+jVevnoJCWowlqZy6c3bt/i244NWXGE64Hi8wnSYLV8JWLeKKkCICdN8xOHqCgihwzCA2ctESnEnXRCquFYs6wMANpZOAEnUTd2a1o6zHKopTyqYg0OIZnxYjKLHu0isy6oAKGjrGVxXzPOEj58/w83NCfPpiMaMZd0g0rBspUMJtWwDnLAYj1s7IppTRaQxKooapIUxLL0UjRUBVLgDAUk0ahetIgKDsRYlrmiH1IA8JTAYW92wrCui5ZEFw9zdQyjV2sWIVR8wge7B9GikAG4AiYDBIy4GAJ4X04/o16xS3wsXX1iYXRANwsZjb8vuGs0qd6AUhdTSimgVBZ4/f47vfu8HkHjA8e0dmDJAliCeJ8SYwaIVuLfarAGpdKIDIFjXMyANZFBhkIQYGhAaUohKakkZ+TAr242BGDIoMKIIMmDJ8ToDdStG9qgI02QJzkBIDRJnpNbATZCszmUKsecxtSagGLR4EZHGL302jdjRk13h1ckZda4WNzMWrceEUuopDrWUXpw62NpyKFpbbuicxBhQ6hnM2lIoQuPJUw64unqG6+vnuL55hjQdlChVWdcutEeUx52J0PPFhtdH1vJ9wMJiHtIgYgzlAuAXllV7DCurF6nejBt8sn8Nr5wzykjtK984RCxdQ6GfTxWvg+Wy+/slVLnrPtmP/Q60idbvV8ljfbdYhQ9orL5ViARIcC/OYviNNXxiz1XZrwKpikJ5qkMtG4RVwV2frhAMIkwxaI6mXVs0WrwSRTSGO80zXnz0CZ49f4FSG46HE+bpiHk6IOaMbLHLdf0LSocPccJ0OOHq5hosQG0CShUM0vpdxxMOV/peae1ykQRN5k2GzU8HZR1OywOW9YwYrUgvTahNA/ZlLUYhjzjOJ0zzDAiwbas9yGGNhp33pb8YhILlLoBrwvE44+r2BvNhQojaznorBZCmJVKSV/ew4fow2OZg9ebcGvVGgyBVlk637fvILU4iI2lp8zoitSi3rY3YHAYZARDN5zBLMoBQaukeXGmlU6IpGrHASw8Z9dpcCgVQPe8HHnNxS5UAcsEADI/YBeSONOBBgo6wj/pxeyHVoaxdvKNabCmEiGk+4PbZM9xvFRwzqkS0puWzQp4R4tRjXrFa8ivDCjUrZb8CIG4I3ACqSCEjMCMxkKaMKU+Ypwnz8YhtXbGtBcINkgbMlqPXlQyQZqWspKFuK0IkY9MJaNqMwUWY5hkpReSUwSKWx7ZqYVuoAAkp9sD+vmAqQ0b8jgXxUV3NmGKPlcSoRarXdX2H/NAJK1a4OpriwgqNS0pDkIpIlvCfD5imA6b5iJRnSNtA7k1b5WCyNdex5e5pq4HzyEe5eL7vY/V5PcO9MvqTxjiE7R+HxPox6T2ffd8YMUOYOaYxX1fMxpzE3vuSvqT3ZdXo4qiX19rjkETWHscM8z3xgVz+8DCixRP8TZl7CS/LDWtWkYbIlH/PrRufV+jSammaB6fsyoiDhSBCqUYMy0Z00bXSWBOov+34sBVXmpEOJ0yHGwiASQjTkZDmA1KecDheIUwZy7qiPSiZgl2SEyHMs5VRigjzFVLZQNMD5rZ1WniiyWCUBmnoZZfm6YCUEtZtw6uXL7viisEUF9CVlkBs4VTMzCCZkSPjcNBSVed1w93DgkBAzVEVaAvIURk62C02Z9kplDagKI7BrOMAYe1XhWb3SQkhiMboUK36tCg914qWttbUAoaXZGIwmnoGUQwTNyXXVrStobTaYZoYM8hr+5EAURQyNcVXrZYZwxmYXn1aK1RYJPlis+8hIp9HYFi1bh02VsNCZdv4fGNt+Xs4HtXyDNEa2xVLNmakacZ8uMKxBhQmVIlgCpAwwYISAGv9ShH38JIpdcZBHEpis0T1GmJQy3OaJkx5Rp4n3L29w/nhQS3cZvcXAuZJvfecM1JI0LiW4OXXX2pis5Xe2UrpRJHD6YicMlLMYAju7+7x5s1rnVkaVGNvGwK4N6PS7uHhoSsrV+r63Uu2XggBgRlI8zuGQf+3paEgaB3IxMoiJGmA/W7CqI3AiKCYcTxeg7hA6obl4a161ySItqZh0KYPZxpyk+5d+9/347FiqlbRYcB+ox7oO1BhTl3RXY7Q1+xejWyt9PXoenZ/HRcoQQxIMcM7UsO6RGhYQW96pFGgJ8IbKm1Q4OV17+cg5dQhVGG/VumJ82TeGUVgWx66or+o3m+NIVut3fMPSKhtA0EbvYItx6yxrWHYeiVU61CwLFufsy5uzbD2og7KfP0Lyir85JPPcHWj5UyKsWcOMWM6nkAhgSXgzRttPRDTQQUGj03KQlqCKSh5IUhAmhgBk0E3hMIqCGLKmE6HXvS21ob7u7MmZkarRkFkbQx6bXUoSUPb2gcxAFG0ZcWbekaAZq83FsQ8YT7OINkQDL124a74xxAuapENiyemCEoK4TBGYVUWQUpOsxYjG6jQ1lYsBkVFoBW2HKFq162Voa+uTsoqzKm3QtFFD6s9pwmPOSs93nufgVjLOFnczHuRURyWW7PcuGjJy7hQTgD6TA6B4YJ1D7fEKBAeglUJCTpaKxAky2kRNDzg4eEeD2el/4KstmLMIGjwuEpAbdpbUFuAjKRYESX5EBGOpxvLDZTdtcUOtzkGuJWG+XiF+XDdmYHu8Xh7dmWojJjMx9/5rgbZo9aCOy8LSilotVkcLqAhaKx1PuGTT68M8tvBYfJIydg6neZTzx/rn7+YZZ92hdhzayP+Yg9IbO77cY0UEdKEhIScYKWzCtA2MDQ9YVsr1vMKkgaSZixVqGcWyLo6C2CsUTfOvJWJlksaXpSvgfe9zjlfKK4Oke2U9biH8M739X73MzMg6WT1OAGvmf8LIEBbvv1v7mnJWO99hV94itb7CgNucOKSfm8QlrhWNXBsX7Zm0LaM1InOMs4e/x7IRG8e2RRODATN1YpJlRTImpGa1xuoF1ZWHEa9rdPxgOl4hRcvPsLNs+dYt4Kbm2c4XV3jcDigNgZCVOJZzvi244NWXIfjAdM0o1XvvuvQki6uWjVRMwStEFGabqLWxKxYjX1pBjdBmUGK1/vibT2B0ZWOrqFaG7bNCQGaMMusiiYAHUZRRWl5PCIK+TgLzzYuWI/XrJpBjAlo2nKEBq42EmLd0NkhcmQenwfNdzVHe1yDlNtl9eXcXet+jOHwDjPqv2PUtAInfvjG9+EMP1VUgDaacwBDrclOubYdS10QOLy5uymMe3s89pDQsPqDnVNGHpSBY4q86Ht6fl0b2rtKrcNt2yACgy+cXhwsjjegIjLMk0iVkViybE5Jq+9fQJWjer9+Xw2JFJP2eooNLWpLHG10aDZ1j7MYCSKkrrhCiKYsIwpVjFb2ui5DjEgxIQkuBPPOiN95J6KJomJ6VS6FaJevXakxQuTu7XtPOerPyT06XWchJMQgiBEQaNkuZtFE+ersXWUakrChxXox3SvEUB6DIk99zfdzdpn+eHPsrs9v25elLztfp/28gsf6xufBP2fwgP67x4/ePfheqfa30csw7957zwntuqnPK3pRg3HrLuv8fmX3PsEbPnrMS4fuld5EwK5B459qmASClu9qVQlvbtywQDqUb3SQruxtX0ALCCRStnBKCY2hOWUifZ+5s9lD8N9ifNCKK1m+wro8AFEhllqK5VcErFvFNM8IKSPEiMYFta5Ytw2n06kruHVdTSB7cDrBS/N748jWGNyWDlO02rrbG2M0xaPstpi0VlgISeMgVTHjgAqqjCCqOFurar+JJhYvy4YpBcwxGsas1mYko8oGLbmk7KIBQ+rOZ7OgqNebc8HdTIEIW9meoBsr51FbkA1SCMYoA/QU2rFX4zmlNAQrugqokhqtKqxeIsgEdjMGnleL03lUQknsgkXzf8TOP2JsevxLqFCvydlhgG7tYM0UfSPrm7V6PE2LhTYxRewUfZNo93f3YNIqINsmoxUJlHHFZKXATDloVQ8a1VVYkHKCVzJoVreRm/TKBxrLCPA2HhoTysM4asPrUSfAvaaClKPFspJ5+xGBUm/jASgphhAgQp2MAKjV7aW2APQYhhpboRsiOq/vj//4HghBrDnoqEah+XT6/DutvhaNDQdCoIaNBWWr2M4L1mPCtha00gxes3O2ZvvAbRg18MRLAoWRI9ap+GZg9WveGT97oe9/35enet+9KqQV3tEjaih1lQ7AY7C0+6wpPWC8t/u+PqNwacjslPLeEvVrSzQ8OD2uF5ruJwHQuvGRwlAyBEIkrdTBpCWf9O+sFHlLrGxVc9yENZc1JYUbGwhv1wUSI1Ic8eGRgYZ+vSxK1xdTYCyiXnXZemrBNE04nxfkacbp6grN6rjiLypUWJYVxRI6o2HgwLC0YtD8hlILzucHxJRxmBKmFHC8OmpbEeiDDUEtcbLClIEEOZL20DHR5bRlEWUKKrQRcMgZLRJqC6hBE2mnGJADYW2CYNXLIVVZZiFiSsD6MDoDT3nGZIoY4oVYBXMOIE8QbQ0Iew9JSxBpa3ONMcieGOEeHi4htMu4gPQfgRM0FN7slia3nYMk1ubDv+8MNcBjVEADKHWU2612P55dkZ29dSv7HYhG3PPbQ0Lm0ZB6y4zak1OdYabxmYxDMCqxKSkyz7uZp+lV5YUI7ArWmVlBe4UlIpAQKAUr92SeOpGxMFcEUbp4Iu0DB/fS3JKn0BNh3TvukQsRNBrw3mhLogVhs5XhCjEhUkAjFfJidelYsIsVkFaEseMHAVIYe4ItXaHVitaK7hHbK2LSWVwSAqbE3SZQSj+T1n+Er41mSbh9TwS0oi0uUgSoiSW/AtIArs3qDlalyhNpjI8Unoq9iSlZestQNvt0h28yfhGM+J4PXrj64zuuluAarssAtxAF717Tu2t5xNj2Hpefcni4DSLe8sgT0l3u4J3rd5KTG94eix1GqVXNFDUqxzX45/Vzij6IGeHN6nWGfp36y1cn7dbxQAxg8c75eIXnLz6GALi+ucHhdNIqRmHAte+PJ/5y44NWXBCNA3m7DwoRLIQ5J1v0rHlLKQASMR/njv3GaKRuEUQSTIkgMSEgAVz0OYRRBRzQWoXNoL8YNEGYQCDW+mvR4DCthq2YfSSFRDxmJbWCg8IMdStgLpDozdqUzYVq1GMk0z8uUDWorxa8C3vqbb97byhC30iPN7kKU3+9h1m8LO3wVJwEIsxKc+8QIMxj8pI05vHtoKkYPKANS+kZNfQGuwodelHKu/3JrdELwbV/jx79oJ/Xpspgw2DgzKilGII2bFFmlMYNXc+nENCawV2uNAGAghkp+kwBK/otmjeEFBCEzHgCumDbxRXcoCBQjwvC9H+kQW9WYgUAEtQakIzwE01hkJhA96okAuzrehixU6/d4pdkXrBW6AcqAqRpKbJI7iHD9Wj3AZhY4SHzNDSZlazYsgk+GaaIV5dHtZhfTyymXrKsuyW2hiNZ0WVUkOUa4VFR2L5GfY4uYMG9EJdHv81Tse8/VmDvjoARUx17QzAgPvT9Yp/fIx/9e49fm1/lhTCHa3b5Pc/PElGCk3/icdxy9x19ViYHHnuR++/Y83UDCrsj7BmXCl+rl5362ujBA/iB/Lxq9Nh7pISpJppcfH19DYSAw/FkjMIRQwTelU3fZHzQikstYmBKAVNWq5SFcJyzsgdZFVSKEVMKuL46armjWlG4Qar2f0oQHNMMImAOE+7enkEByCljnrVmmgDGpNMEW5UIar2UbQWIQcyI0hABJBJkYjQwknkxRGyV5BkZGeuygtsGThqAjdZioZilrB2CGRW1M/8cPlGnwIQw6wadsimmQCOXxdfyDjlRA9oVm8W2xDcNX/wIa7keEoW6aGchemAYAHoHYovf9SaZJABbKSNPpLYr0c3Mu1YaAx7x3w616b8xKLw7xaxworPFAARBYFj+nnm7abRSccEhrDFEMiNFsvZvUmhNYRVtmaFxATVEVLA0NFQ0cC1AIlAkRNox3mQoz+BBf1+3+8CLwAoGq9Zww4MIICElLQT17okEjaCluci/A7TdXIT+TAYi4LBgI0Jt0A7XBoEmUkXkMZS9wGzCALGJKoFEgInAROqbO8MVeyVNqFVZtEEzza2Qc+zKiwQIohB4DIQcozYDZU1slc6Ew4WQ9bVyqaAeK67HwnsQMH4Zr6sbVP3futdlty59rvvC3Cm29ykPj6Xr+vet5gbg7lq60hZIcM+dLfXF/r4zMnsVfCLIo1zH/X12o0jexwod97OHkn3vaVJygyBauapLQeJmpEcpGiv0nS3VJMRoVTQS9uSXP+34oBXXzXHGFASv3rzEnVmiFCI+koY8HTDFhKvThPvzGW/e3uEQDfcvBWVbNEYlgpQCMJmFX1bcvfwcIRCOhyOy3FjzxYC6bZCi8J7Xh+NSsd7dYW/ERMqIkZFiwoSCRgWBKghaUaJBIFMEbwWtbaBmVrURK9q2acHZSKAIbedjPW2q5VY4/BVciJFbQAGCxwvjsaXp/94pKTA6VCgCWBkjjVVVLawL2mdXqfK0Y7LRwZlV4E0xWyPcsFOEroHYvI9LWvOAMgMer233LgBCqwwxIobqQgJ57pKV51EygBomGotjbQoJh0+qUrahjUNjImRKWB8WUNO0gEBJ/QUhhMoITStWAFC2XCtY71+D5AjwjAyGuIIEQRuGKuvK+0S5pWoiHA0CYnafVWtoQpVzQtWcLNGEcWZj4aH1hFedG22qmGLa5WsBDYKEaDmFAo2JNDTeEKRYk0c13ARirDGY5yV2dcWeM6FZZwW1Dlih4AB7lq0LNSXE6Z1yU++VSOHzKQQkECIE0Sp/EBGkMVop2JZV75M0LuS5ZH8a6/yXV1oyYNJHXtM7O8oWpMbcTLW/BxrU4bmLjirI/kDDhhHu3hV7PNo9zV4Z0BUR+u65SFDenXc0x22u4Xps0hUVzBvf13h0SBZ2HhElZui4jDkTtMKME9vYIN7j6YRPvvMZUspa7cRgQa8/+m0g3/34oBVXzhHzlHB1PIBisooGCc+urxBSQm2MiKYCp66IaIhRMIWA43SAB15TIBwOWR9YYxyz5s4c54DrQ7KisAEJjBKMai4BKQXUECDFKzfooslTwJw19weVUUm9LYBxmrXl9c3phHo6opaAELT4rvcXYvPqGISwo/NeWEswwW810kD+N+oLHICxCQnavA9WvUH6xvPfsIKsELWWvV0IuA2tIdy9NYcVnb4orOVmfOOpgCMgDPgDsPPEYAxJz29znNyV1vDqdPfae3ZXIydHW6Yo1X7Q5BV2tIoAop5KtMoOIQSg1l5bUL1JgW0rRGKLtwxvQ8xD8CrYABDMi55IkEmQ+vdGySW9HvV8hNDb6KArNsBTYVickeqEBJ0LNV7GDDFpGoe4wc8KNcYQkNPoiq3GBEbR5SBoRuJhNEgQhKjv54hRd0/Grwbq7XEiBa3dKEAjnVslWFLHnL2zcEoRYG9Aamxag2KDW/m+nkQrzzQ7hpfw0vgtEKP2EXMo85uOdxTQnwQV/u8K0uFhjX+7PzqQkHe0XD//e07p+Ozu/e4h2RGH4hSLWZsCs++LsHpcexDVvqMVNcb1N2Ez8BU6NgBB479BjxGiPt/KjGhsQ39kj5+BG9G9koolIh+PJzx//kLbH+UJg2SlHACikZ/4bcYHrbimFHCcM26vrzDNs5YfSQnXNzdgAc7LWS1qEswRmJOWTApG73YeQyTN4q6lQCrh+pARU8DplHFzylYTkDAFwZa0cjhEIciagMDzKMUkgpgDcg6IgSBVUIOAguL2ac7IKeP6eEQ5nVA2hblSjIgOYzFDrIKDW0mdYNBhIa+ibiw5/ePOettvAIMrOlThVv1QVpc/3C1rcjhNHKIYVvlAlUSvuVuM7mERhHupj51i1OuH56PsIBc7oCkcV1p7hbyDFI2U4YV4NZnSjYhgeXsEULPSXFaNgEUVLTe9R4s/BmEkAiRC2VQGU4odTZWSWqktaNrDaUqYsiqNKapD5sorJrNmO/wXdgnBZHJIendmljG3IOrKlswT19hS6FC1P6rUYCWaoiq0ps++ibHI7HTFMDoODEoKNWt3b5vP3TNVf4vh9QJTTAiFUcGodq393gIZ1KctbHKcIEFArMQNIYVNUwyqSGHQVyNIcNasPn+PPTqBx70LcSPpv8H4dlDV+77jD8ve6y/ff517dHEYoK4U9seX/t6AIXUhdoPx4pqow5n7U4+5G4Pdq6Rg8SiPT1pRYQEoNH3PvTU7VYcV+/3oeUcenxmOIMzzATc3XmXmsuyWt9bp1X6+xfigFddpTnjx7AYfv3iBq5trrTZslb/XteDlK3WXn129QP7hZ7i+vrL28Q05khYgNZq4Utorrifg9qAJtfM84/p40liJAGUpWEtFreZdBGv9/ckLSBDdvLWBjSEFCN6EDZFXFCvYKlErbxynGeXqCjVHQKpCRNyARsjR8mBAWkW8CZhNcbnAEnPpQVZiyT2hdxeDb/zhJ5niatWgQPOumnoRpj3RiQ16FFxsAWcXmZXsSltMAju93ks3aezCrFMWwz+1xJEQm+IbMIge+/H92MI3Q2JAmdxTEzR/yusBKo2fZTNmHrnLqcqblZzgJBoC4fbqAEFASjMI2glArIVM6EVJVXkwCT755KZXXNiXFyIia9ypyZla1X/0jHImJnuzTBPYcEVjc+cONQC0Fgz+iT1Wx6yU9T3cowpgVF9ww6ZGoFZgixnM3hQzvWP5Djp9RK2xw0vrSqg1ohSryrGrEemtWlYCjlb1ew1ADYBIAlHDaZoxWSUO3la0HMGUzKf2Rp2kpCca1f73sdpByf42ymdn9LxXedF7P6cvHQqki/f33/yTr8iNrsvzdM6eeN6VGYj9c49ZvBj6cnetnku59yr3KM374l8qP1o39i4LC7OlU7R+LPfKvcRT6BVTIhASQPqbQNYHMcE7Qag80M4OAume/LcdH7TiikFTast6xh0XgAhraZiPB4hoTtfxeLJcGALairKs2LYVi5U3kaZt7+cpQ4SxlRW8bag1gNqGh7oBFnOpW8FaiiY2V7aqFAmnw0lbljNDajXIVxdd4IIkDQJVdJUbiAO4Fi/IDhHB+f4BORJknrqPAQC1GvNNvJioZtQ7ABgswEVGgw6BAAkAWfkm83DcReo5/oIBD3bihFPhh8Wn/iDbuczn2W8C9xKYRz00qBKHaDRHhIy84dLH6puRVVu3hOC2V37dxxq5UHpqjV8FUqE7z7DE1orWgFIaWhMEGjE7QYEQa+2+YLEiAClFHA8zTqcj5sMRLFoyS+OXGWCrPl8aWrWSUlDhwxBIANJpVmuXAGHN5WO3TrnA2Z/N2sjsFZd6XCOx1xW7WrIa53AoRmTUWRS3koEeyyP30MKgJwtzl3FE1Pu4cS2q8IkQuIBbHA8TLpRJ10Ot0KToCuKKKE3XEQEheNK6vm4CSxvQJTKliCkcoKBjQwoErg3r+Yz7u3vMUwRPCYeJULbV8gD3BWa9UobFUXzQxeX+UuNPUlhdCYXdazuRxnf2XtGFxnjPsfTCLs4ie8VCfc7g4J6l46hxZIQgCt1DI7uADpbvYQ+r7xgoagy3w/IwA9FvzF09Wx9WU5DC6ByhzxnaGsdSbGLMth7HDQ7vaZCqgnlcfR5CxBQ0zNK7cpPASUgS/gI3ktRSSg3CpbeduD+fUbZZy8UIcJwTpDbUtqEV4Hw+Y10WkDTUUrRB37ZgnicEAppUDSiHAK4RUhbAxH0tVuOuMlrR9gEpJkjdEKz9hPaY8sZ6BNQV4A0kFUTRKn41gCsiadyhCWM5nzHngICGQybrjeQlcGCCgiCiLv5QRmNTOLNrT6LQpeTic/ytK6B9rKvDdtwtSNp9dzfzQwB4iQ6RDikSBOjFU1XZSBsKUS9dN4fwWMSqR8e16H7ZscqM8tsaaxX0GJHzBCL1tlrdtM6azY2gQagB1CCBETmBoucDabX7w2HC6XjQeoYS0YweFShCWBPNSVi90d09ExQKjWTtWqxj8la27iHEFPuU1lZ7Eir6fema8YB1V9gWB2pcOvqrMFztKQdOChDzuGDCztlbrvbF5Vwwj5+N4CPaTkYCdavYn4/CPeO6AQHXOJSmyE5wWfxRWKHWAICrGjqkxCe/BxJBLRvW5Yzzwz2kRQhnnJcANiKNdzzQjs3BEuJdUHa3C5cIwCNltEfQYEL/kcIaiczj4wE7/SiPV71bI493gik1oh3Lb8Rjd5bDMAj6MSyRgYIafubVDJTBvW+y0w/8w39JXy9qCNrF2JsmBTwEYfcN/3zQqixdqWMXEyOr3JLSuGa/B7+mR1AheR80OOFjUOBBwwP0+/nTsAs/aMV1//prXB8TpmlCTAGlAQ/nBeeHe8veLqjba22bXbShnPdumqz+W60F9/d3mPNkE8+YptyhCqcTAzrRbn23WvV102ByyoMOfJgypmlCSgm1FWzbpvkTKSPno3XvXRFjRQwFjBX3968QaQXXGXSaLf5AOB1muy69hhi1b1Uza1p7CEWErC0HlMEG/Q2YCrtIE7Qtv7POTFE8zhHx4Yu920e7BbeH9pwcQmJssqC+ISRY3TT9oJIy9Uqkab5Qa8aUM6EvILtggXgJJlNI27YBWevQzfMRtVZsmxYnXpcF27ahlIomFUSCOBHmOmmV6nwwj0iQc8TV9QG3z65xfXUDIOD+YUEtCo+0WsFUwHxGqSukKswMVjo8E3Cub7A1bXe+nhcs69L7WmkSnlbR2GoZTQGDGhdwne+VMzC8o4H/j2czKrkMz6A1uYBznIU3aOTU17IPZvfgrXJJ74YlADQ26+ZKraX/XRWKCaSAUTXFr9yEfd3UyIgxIk0Jnm5RyoqHh4JIK16eCMdDxmGeQFIsNqgtXpJ1702J7DwCmFAO5OJVdj99NQ6FYZJ9p+4uvKl3eYK4rEFErizc7emaYrxvZxCDYgd1Z38cGcprZxA4GgFj6zlVXSW8d1w24U69WV43WIYyMaXpiqNrS9MrwaBG9pxEf+4W39wxDCujx7bEQi5pmtTA7NLDDux5ifqALE3B2i5RQIb0bski6F3LdQLepe5/0/FBK64QC7btLYgyGqs1fpi1izFzw5wbAt4gREGKOlE5OesNkKx5P9Ph2KEAEULjxTzqYDitQVsC5GQBTw5K8RIBS1JiBQCAjD3FCFTAseGUCALrm0QrKFaknHA6BsRwQg7XuDkBxwNjnhghVrPolUji+RvS8znI9kEwb0MA1iRrWFzGIbxkcIcrp+jrPQS7IoMPyQ5h0pSFLGdHczOUbJCwlcWEHUFa60U2c85Y6hkEXOTrqKUVtOUJ1NMYdRTJOh8HTDlgLZvCQyGimKUfYPGVUow5GJWtSQ3rtmBrqz4DZqSZcIwZ0yGoIrTyWLKrn1jbilIbYiLcPrvWJoiRUNui1SmSwqW1FjAVUGTMByClgFYFrUJlCGkx4w0LJDBCbMhRMJ+yCSX01hTapdjtaGVrdRIEwWKCKjCUXW605Fa7J6YliyzVoZv5bndoCScnCPWYR4wIO3PFrycYmcIhPyLvaOtrTqFI9cS8p5dZ9DCmIXmejzIfw669PUkGBa35mZIqOSJlFU5TwjxlXF8dkZL9+5TgEDYBCFG7EiiLNSFY+S1Y5RIKSkLhpmu3e6w2N+SYgugesd1jKQTu9b+HzICh3PrTEumGKwwF8aNEXYjwxIH9wdiP7XIhRsScwHWUCkN/m1Twi163iCIKqoeMtm4hAY91C4BgBW91znQ+9upTE8BJicEdTQG0Mod+p7XSK8rwVhFSwuF0Bby5QxHB1hhVfA2FXkVlzJDerYimMLDh5MwVpTJCTJinSQ0xGiiAztm3Hx+04rq5PuLqNONwnKwYLNBkRuPSg96diNBxZbdyh7fggXEXELVuIEsmzReKS7rSg6gN4tXm94/SHAU91y4vRxubiG7AnLTielI22OEYME0BOWsejCZfdue9u9ajEoBGn6wQlSlTg9ys5YD0mJJpsgZle7kQ7bT3sagv4lewbeAWliU8e+4N14GeaKKidCuV+kQL2MpH6SazmIHHecjhELXKveq9/9vf7xR+aC0GEc3wB3OXFyEIkExgN4M8BN06FDirSpBSxOmkrcSdwRZiwuGo6QjqtZVRtcDiV61WI5SoMCzUUMXJFQ3N4obOHnQ2o1vbEEFp7WKee2sZbgYLW/233jNJRiX3R8/IBbbDkI0dfiLrWO3eqhiTy5s9ajyJzLBwLSieZA5Y9W9/FDvvxhKLnf6cdsiEenapxyBDHAWIc7S6izliniarwRiRcuxrlFhzNvZwmasKsvJicO+77wcz6rpwdosJ433bi499tf1y9/3dvawLreZWwvCEtVL67jpNE3akrl8/4LlOQq1Po7/vuss3k9DwpMZ1UN+LIg7277zd/bV2j0vVcyBX2n6l0j179vlyhR0iYg6gmEA9tkhj3l3SddjPzyzde9Q5ZS0WLayVcuwSXWkNr/HbjQ9acf3gB9/H82c3OJ5m5JyMNaZB+Z5kCusD5XXOQuwPSRsDevX2AWXV5opLreUhiJ1BZ0tF0CuMu+LyumzGutDNwV5vDFb5AFYtwplUwJwnU2QJOYTdsqzdYtQltttpTIYgeuxHLanWNCajbdq1O6/CHVryh0grIJCoNcrCqlx6kiOZYIZ5TFoHURWAFtRUMUIIrIqFMQQIkXpSqkQFtXpXX1Vs0WrvpZQRkhbqdA/Jt2BvpSCEEIw52GEyKyhK3v9qbAAVtNKNB6KAPM2gFPvcMBFCFEyz4CYmTaMw2CtnY8StqxWVNYEqxgBs1WBNFbDpkC1fzHqa7daRXqsKdxcUur7arr6gKh8vXguM+E4Ko0vBL0qgfXyui4aQO8iw10q0n23bVEG4F4axJ1yJufGlBJXiJ8R+CRIRIkZzSSIvNKwxki7PbaSokPY8z5gMPkopKUtXmgl9gdtL+ozNY2KBsJbxahaM6axW3s9N64K1eGFdm6vWr8fELaFD4ORxKjGfxua2d2joxqPtoZ33pefQPQFR9MJPILRLk8Tld0guvy+mcFksuiuP3kNUz1cEII1mk+1HlxgjXq2EKRMR8AiZGznM3C9AFVgwogcZrD4j5RmqqMxt7s/Zf4yo43EyWzSq74Zy26upnoP4pxgftOK6vn2G0/VJGyJCS42okipgaWgmjHW+I0KySgbWILAZDZm0dq0NQWj2O1jJGVdATXN5fNZ7JbxhhNmiQ3e5fBEJBA0AeekTGousVdEkZVTzEExYkrYq757MbsX3xe6bC6TFU61g6ygT0zrVXD00F/7ollsXjiTmPQEChS7UT2lQ8eQWvFth7sUQiEnr/DVPUo6WCiaowr1PFETnHdQU9uAING0FXmoDR4IQK/vS4iqdmstOORnNASl6WxO3bHfKwqCUbdsQWJMrnYXHLBAEzClZh9dkrWb0p7L+QNC7WpM9cxUqquaXtbpPvytHNTamWr2mkMxYqeYodgkIAGLtTMjPErFuuh7cyxJ/Vr2CPex9hwfDLgZmsUSD90SMBWiJx0utek1BK/y76GPrwCwsPe+PiBBD6se9UFz2f7Z7gAAUpp42ADKaiNjFWrxEkCCIoJAwTTO4bmiNrPeZJskqvBrhpa1YoB5LUMUlpg1ccfl+IB5rwepO2TMhg8PNiCD3BIbS9jCXyM4f4PG3XhkNtk/sh2UHD+436KOZGgR4SyFxLwuq7M3V6miBAL2z8RjGEhQ1FACLezfLo/R0E2ML1zpSTaJVDxIAlRm1CDTsGhXBCLHT3rWgg3d/QDfguyHvr/veu/Sgwv69/8bjg1Zc0zQjpQmwenQuGN1ySJTMA3MIIGJ0h1XMnrpiM6s4AIAGMhziUENG0CuuizPePI4zmDOyw9e9TbY4MxCiVQ+wc+5d65Fi96pgU2duibs9kN2eeHcxjDjWiFt12253C10ImiCTnUD0zcXdutOzqZCM9hOgcQ+1/nxHMWCeq33HN1sgRIzeVG5K005YeJ1Hb5+hlrVab8E+wzKs64siocw9qO65TR1etHvtD8cgjpRyt4ApmMi272lzUUuA3SdRuYAjIFgLnQCAxYLoXcO8Ozy+JoaVaOUA6fCdQ3kRGk9xT4lDG+d2a78rSAN/fErt3hq3/jome05EANigP0JIe+Fkidl2LK1C0i4UV1/PYxbtsqivrb1n4MJUp9QbnmodRe/fRsG8eNI4Mjdva+Pr2yGzvYHk2kv66+5ldW/okeIalwaR4dHsH5WbfsPgkG707D/UtxjGXvK4uG/T/RrvF0GqjHrVM0Hf9+JU94vjk6ZiXARCgR0fuB/Xod5+Xf6Jfjy6OK4zc9kNIN8HppTNUrO/SzdcsHvmXXm5Itv92w/R46y7z+1n/ULhfYvxQSuunDJSypb/4dZ47GVyFJKCsc42EBLcbnaWDIFAAYiUdFNHgNsGEVY2jksNQNvROzsHFuQWAqwIrwsQe2kbWunDAvXqSm9uaWEjE5Cas5IRs0FoO9WhYUyXEOh/BR4tABnWJe0+PtYHDQsegLCnGI/FThgVO3zo503pm+cFY0RJj79p4LixKWhj1VEImFLYXQgZNKnCtwlbeMNrtDF6iR9RNHRAuvrHPa2ezLh0Gdenos/PsK493jOHpBUrxEgoJrFCiKZ8nS6c9EjmZQuxVXoY0KlYIVpbIL2UISTY+gG8JEWzZqGg4o/KPm+Kg7Q+ojePZAZGzo/HMt0oGB7syOmBNie1NRWTkRpMcQZShRhTMAhIFbcTizzVgHsVFD0314ayroBBikMY0YWH0teSxO6dwCjtMWm8WIWcjGC9eWZCnkdkDD0Z77tGUWdMjTPuJx3wPQQWkxyGCKT1tdDhNN8cjqGR76eRL9if27g5rcLSvUfL8YIruD3Z45LR6a8dHd6n9Pu96SlcSZsi2lPy+3Me8am9cuxFwQi6HlmVFO8MUv+s2bdjnvp50fNC1S7wPbffQ7oG3Dhy1eXKScHLQRAafdQuJOk45rccH7Timo/XmA9HzdGyHBcWBeU8UMtNN3fatycRoMGNN4O+LBFPZXaGY+tjdJPEbGeLzQih2ifIEgj7Q330YAgBMWhxUi3/I10QhJT0x8qjjFUNDEtL+nu6L4cNDAC951XwDWgrdKgmdGwDUMvY4UJIX4T7Y+pGCSBkkCT9TdlErSlUO/Z+oSttRAVniskgPYvFscJ+HcLo92KbT0xI26XK7th6+6EbCKOa94j+Xep3AlmDR6UCR0x5AovCUudl1TsPQEqTtpwhLR8V87DcuRSgqTcSQ0TKGULA+e6uC0KisKsLRzo9e0NBAphDF3j+bMPQdspitZqKxfOhgnsxHtuAQsD2fSKFaCs3E45O7lBWqs4VQyiZIiAIJp0xtst0hdhgELIJJSIgMCjHnTAiY5P6v3f3jJFr2BprWkfURphTDKYQNY+RRdPjSgNqIzTW/URuQHEAB1dk9qxZhjzfeUBwpbZTBOZSD2Fp8c/hEblSp92e82c14DDh8d4ITZKxS/e7i/rx3tlHdtHCu2T6fjK9LGVH6nW5J+8K0l6ZYUndSNa6gwQy7zqI1jklagoLc0Mxha4HCSDKCv364w0RMU+273wNh57U5V2/OxljBxXqv4cB3acXXmnGvuOGJPaG9LcfH7Ti+vrlK2zrphuwB4AsziXNmIWjYoHZ66q43BWGKpQQgmK9EdjWDZAGjZ04BZmNXGAJoNANW2vFsnqOiVnqZCyvriPcMhHwLj7E3Iwnpey0rvQCAaIKrpfjkZ1AprEQxiZwBiWD27D5AEHwALUJpzH2Fhu6y9Lx/66UBLpUEoBsvwmEhK4YRaBQonpEYZeR39jIr2RWPcsOjvNFH3Y/BtPtLEHpm9snYMwL/Ln6Fe8EkKI0mhysxmVD6xtUr62xKrWGpUO5A6LV0Uo1b6QhBSCxCm8Lfe8sZLPOIT1Z2I0otyXazoplEKizPwWhseY0BcH9sqlRE5Tx6M+CHcYDOhTndeXY4oVEjMTR6Mu2DoJ0aHAro4NyXxueaG1rwmt5Mgu2rV4YZNQL5g4r3JUBBdUhreq+jE1bdG0EMGu1mgDtlZdTxJSrVgVpViwZFo11L9s8nmYEK/i+svc0pqvz5x7XvuyRygdVerD8QfLCkEZUFFMQbN6rxuVM2Lo3t/tRI9KMCF+jAZ1x6bGrvk+JxtqFs+rGATXm6Qpyx5w0o2PsV4OW+77VfSrmYYmlBYEcElQ6PBt5hYkxTea3uZ7vCjaMfWbVbPbVLZz0o793u6MbCbS7qqHMXHkNY9yNBXzr8UErrp/+9AvcXGvJ/JicMaXVL7zOVq3FKixkLQBk2C6b5UomBE2/gEjQ6gIXyGoNm0JsTniwxU1A44ZtK7bJLRud0OvaiVWI6DYKOT1YQFYbkCAg1jwxEoBSQBD1ODwRVQWyKaC+8PU4A6bRHJEL3QT0jT+ShXdWrG8CGVn74sV7sVMdlOwnAnAKebLrcLhMrXyIaCkZstiEK3xTauzC3MwvZd3ZTw/qy7BSdzi9BuRpCBVypWEfd3jOhLXCIlbqyIQzoxi7NCoRoyn7sq0FsCrb7DCczVOrtW/kGAqiNcYrO3h2zwBUuj731y7sBCoU3NDR+oZm1LBYpQhVCnfnB3gvLS9UqoaZB0t0AtS7YivpNJiWTof3MysxSWNopZZHHoYrAB4KympxttawrWtXGmpc7RSXwY26lyIoKlRYq9en0+ry4Kr1MZkxJcIhJ/CUMc9NW9Ww9KoNJKpDycg+avCMDshDcekDol28a1Qi0RxBfza+HilYWIFdBgBitSchezq8Ki9fUi78fS91uM46ObgHRqQGYkc51XoaXpn99lQZ9PXtOWe8+9zld4bfhf4aovB2J45YLM/3TWNYkwcBoF55NOUuYwp3xuFguXbF5Yqpr5muwXf/1M/0q9tByntR5Pv2T+N4fdCK63f/7/8PXJ2OOB6POJyOmOYJp9OxZ4MDivk3ZtRWUR27NyGiQX79nCo6zQ2KxL2qQIzZEihdWOpiZxA8/uCvXehqVR9TVsETGMd5AJiYZkQS5KjFXW+ujrg+HTHlI1LSElTcGuiRKtLF7Za+BenNLBT77Xk/eoH7Bee0DUJtsvu3XXPUzstwBWLXSUE7KJFMgL0PYmjClCvz3C3cECY9qpXx8c7CADp70b0FsrppEkSp9rukUb9uNmdAgsKGHn68gPBF75U6HqHkhxgj4lFZg60ZRzJOiCkjToRXb+7w9v4Of/zTzyFQZbaVglqH1b73dFynCvRzbPO9b8LnTMi9MquloD4qXNo7zIqyHWF+o8o66sV7s7W30bkYlHenvfvwcwKjRbpfu59TPz9ozU52cWsaNqVeLy8EhXt9iuGic2dRj4K72giVRdMHemcBYdT1DBL1tD796Dk+fnGL25srzPNsEIgbaCpom+w9LvMIe9I0DYkLaI6iz/XuteqF4Q2qcra9S9TjsHrQrLFL00CuHLgrSOw8kKDXbGkjWlosdLq4ozQ9HYG0M3pfrGZAuoevNLHhjUhPULBz9bkfXtZQXrb0JXTZpm5kU2avoMculYE46PmtssXpGaW0cTwxj9Mpk8FRGVyMx+kZ+/GLCBgEM9Df+61fbnzQiuv//f/995aZr9XcY0rIVv6p5w9IF4FDkEDzV6J5BSyCbV21M3IpmFJUpZUCpmm2Ek1hB3+5sDUavgsR7IWxLdK+VvV6tLWDVubOkTClgNOc8elHz/DJi2eoz28xxQiaMlIMcMhwRHD0WCOl0BY6MUL0GJA7HLRbVH49ZgEJdbaemf+6JcQ9n9iVl24TFUoCr6YQAFLPS70tVaYudAFn2wVQbOpJmMfl7eDp4vp3XhcCNPJiG5YHy0mVA6BKyUSooD+TcchhWLTGSDmbNwmUUrXkkRAoJJyXDV99/RL/4fd+H6/f3OO8rDifN6ylmKGp66tfQ6kqVCF9/eiPew3jN7qXK31tNIfjTCl40ngpRWFLG11xJa3JGMxMHc34MNal2VS1Ky6DuXfeH+x6NQlZc9dUKVm+lx/EV4zs4Bwxg8kta1tl5FAmKZNX6dQJMO8m6gMEuKIs90iBcJwSfu0Hv4Lle5+hfvoxPnr2TKtxCMGrXqhn6sbLUFwUbN1YknJHInbKitvwijre6UcV6usDljJBLEa28TXn10IAXMrDFJfPj3lFNKj7Vm0aHl6wEoQ6lzRic11gy9ijYq/1w6ETpPbRUFVHOwjR7ks9d5tzcbNWwCGiUUWq2Qg9mvwcrHDxYLU6ujKMkWh5limli+fvTGlfJi7eRJSJ2UWdy0O417WTSxjf/bbjg1ZcP/viKwQis2B1JkPKPS7k0JTDGm2sIqubRV0YbtumXlmpxlaMyDlhnuYeLA+dwDE2qoh6ACml/iSG0jSWl8dtAjBPGcm6HZ8OE06HCTdXB8w54TBNOM0HLS2UBDG4ffv4IVuQ9p0ZsZiRsC1Cs5zh9wr0XJGdFeebJnTB4Tlb43NqwRFACWq5EoBkeW7aGgZducnue9zvH7bwvYTvgFtGPEstXDcAhhDpCm4Hb/gEqCzyeAs6hKOK0+JBRCCKKpZqg0M3LMC2VTw8LHj9+g4/+/mXePv2Hm/vz7g/nxXWg1Lo/fytaEFnhvZx05iqX4x7W2yyhTr0lJJWkujXAxX6tWnty3Xb0JolYROhEbrHNU0THBcdSshLIIWdYjEh77NveVmtti4EKQRM+dC9JC3Jo8fpUKOtG/d6HalorB5jjLGfMzmMaQKc0mSJzQFzTiBhSNtQ1wfkGHCaMq7mA26ur3B7cwNmT/RH99B9lfs+6jdk7DoRE+suUPeeTFeuY4HrEh8Cdxx491ouz6VGi/QYF3vM0jekQY0eI3Pp3NWkKX79vF/f2LdeGJccEvcLNqay75+h0Oz7/VapK+AQoxYNsFCGlzBQuDShGfXdux77xXYDXAwZcoMjpkc1L4dc28/xO4rIp3i39vdelxsPHuL4tuODVlxCCRQjSl1wPi9ojRFj6VZwNeu1kzNEkKfJCpEC5+Ue26YVEkKMFmuJWErDlCNmSWiIJohMqOzgGQb66+fPjwDQz+lQ0f39PeZZK3vMh4StFBBpp9vD4Yg8n3C6vkVMM4gyQJqQuV8wvfOu7Kqtkdumg3rr9S7Fun6HEJCTehpawUJbftjXEfMBZK0uFIYLICTtRdUrLmgLeGFtGhjTUcsecUMMGVNOADOW8z1CyGgkRoiZoL2yZGxci9epJa0bdzApI4BmcZGGw+GEmDKAgG0rSKlBpKBamw0XD1rVA50I0juxmqEAgracaWoB55yheiuChbC1hlIZgoSPP/0MGydQfoONv8br+wXnpWJbC/bQWl9/AIQq1nUFM2Oe9bnVWnE+n5FSwjzPOBwOmgJQyfJhrbhpCKAYwXXFVhvOi66dlNTa1XQBZdcFjl0hLssC77+VUgJz7VU7jsejFcHV61jX0uO9I8YJHGaD/kTw/JmWTAMBb97c9zV9PB7UOyUt3gsA56Xg4eGMjz/+GFvZUGvD6eT90QTLVoCouW55mnBzc631V1sBjleI0pCD4O5hASghT9qCSD1iQStatDo6VE+jIGuIBHICkrBlIZjSigo1iDXKdCUzTL4RjyNSzxBhL1gDUswIMaMW87KAXlBYeszHPc1gik2NvRCSsnkdaXF/g6wEmRm++yLJyYoLtNYgmxZu9lBSNE+nVSUVkaE0hNBzGgVAitr0FsbYZBarOgM7d0KcJkRW46VWjck7gSWmCY5GpTSp3GxVC+Sace/rgRxa7dCryjnv3K5rrqEJI02TVejYqbadxenxt287PmjF9T//zd/E6XRCa4x1XXvsoDbr3skNIWgZpZSytnPQ9Y1SVizLGdX6JF1dX2OaZkx5BkSD4TlPSCFq2wrWyuDeldaD6o0ZZdtw++wZWFgVk3lkIMK2rqNidxSIbGitoK4PuD5OOEwJpzkhZ0KaZoSU0ViwrRsaCQ4HtfT3ZqAHmV2YurWma6kni0CgDL64hxccYPGkRVJrDUGVCEVvAW6COhFSr+igyhHB2Eoi8LJ7TQJAESFkEAKqW3ggTaz29gkESIgW71KqbaBoFp6XPVKPzS1WPW/Uyg9Rel0830gDz3JvTcx6N4UfAiozggBCQXPpIGq5hwmnq1t8+klAzCd87wf/Hc5LwevXd/jq5Uss64Z1K/AeYpoHlXr86KuXX/Wk6MPxgMOsngwLY8oT8pSRc4awqFdfK1JKvXI2Bep/r6X2eFbKGV+/egmvLahVMVpXXl5iKZjXv60rlmXBNI826V5v0fdFNLJGCAFlq13wXh2PiBYXXrcV0YquHuZZQxysymSe554TeXt7qy2C1hWHw8EaB0Y0BjYZ6Qunw4wIBklFW+6RgyCRIKHi5uYGMUZVxJg0n6zBkGeD4WmU0Uq6ktGzD8V3hoxlv4u5DBvjEvJ0z8AhZv2sEU6M4AXz4mOMVhWJbc/vFJfFhN0A0SwCAiSAg3q20QziGCNSTKO5J4YHE4ImYWej7nuLIkBhPYgZZDHoDHg9TOjfAWWqiudxGSu5k5HMg4spYwK6YePrVgBIs9w6ASIScozIISKFAGnKfqYOS4/57CES88BYGOIl56LlAu4UVCBnK++fzzcfH7Ti+iv/h/8Tnj17BgrxouVDbSOQnrJBLKAOGbAwluWMdV3ArPGPm5tr5GlGzhNaVUs+xqTRFmfXsGjZqBh7Xphb19fX12itYdnWbqG41etkEZEKlhW1rlgf3iCCEdEQ0UBUFR4whVJqRQNjnjMY3APcztxRBG3H19kvJNPOPSbjkMou4EzQEk0+N8oC9PIx6Bs3GFOyL9BoVCk0zcexvCAypYVIELsPKKrTg/fqDVnZY6a+qYLQgFN7XAbWfI7Gwif/nOU++RzsJ+GdUltQViEr/T4YY6oZa5MISHnC6foGcb5CnI5gJry5P+P1mzusm/Zg4+a5d65Y1Fr+/MvP9XkHjYfOhxnJYJaUk7acCeobn89nbFvBNE/IKfe/a2xLN3nOquhSSvjy668MKgyd7i4iGpsN/oylK791WTuJQ6Bx21Kqeiek5cO8ivvbt/cq/EK0v2tCtbIm9ZrzNCHYuZfzGVdXV8ai3XA6nvBwPmNZFszzjHmetcI4CEUItTFK2SxVnRGkYr17iSkScgDa8hYpT2AWlK2gRiMGPbbK2UpQiYBbX/oAPapusScJCHZQ+ljxF97X/tUjT9qV07uvMaC/gQnaOpOubPfUif32pN3n9ZI9XQK9nmUvk+TrnlwZOdPX17hDgbRLzEaHDr3/XScM+d3SQA7ckNwrFv27DMIN0c4Y2CshI4m498esRqzn0l48D3nPHO/37TcfH7Ti+mu/+X/Bp59+iuPxClrKyVox9GcYMR0POJ8X3L29x+FwUDkrjMWKqIoIptnguagC9+5uNSYRAT2xU+2EaIrLmVylFNzf3+N4PGLbNjw8PKh1aDXwRu4DY1keEFNDqQvu3nyN7f4OZb1HOd+BywPE84tYjEDQcGoNDHNr2CtokNG+pccSehUAXP7u5JQ+JwqLAIRam5WZgkGDTp8VjZNF9OO7NZpSAgct0cNFUw1ADI6MKVdw1IaAobexHyQCCkoqoQYADR5IJxo0aJNKhsmr98W825eIiMFagu97VnVk1QsF2zu2qZg1rsUakjOPnEHEiCnjdHXA8+M1vvPZryDPJzysG85LRakNtVSU5vl7oXtMRMDLV1/vDBP0orHTNClkbQoH0CampRQcDgeD3git1YsOxt7HLYSAN3dvu7fuRX+JCKfTFcg8oVJKX2fMPBSXDA9P8+pCPy4R4YuffwURTT4Vr0+I0X3YR55nNG54eHgYxplBlcuyYN22DonGGFFFEKYDamPcPdyjns/KnkXD6y9+ikMOmCPh/tXnCCTYloJl2TDHoHsr7AxMe/De5aFB0DkkJPA4bI/riWiRZ//PkQnydT+s/f0gjyfJOJejE421moRX6ddTqREE88T64uvePwOknppWSPd14M0ylaihoYdRrqmHB0LsIYF9KIAQPKcdYqCpCEAsYENL97uADR50GJlFev5qT63Zwcd9PmD60ue6byZgfNiOwXpMJgBWSNuf3YXyIjcS3pVS32Z80IrrdPMMh6tbhJQ686wZTKVFVBktMs6b/sSD9SciAaJgSgrrpBxRSkFZK8pWEOMMBF20jYvSTKFJxapYTLBCwExI0xExHaAdCzY0rlovrXVjA8yw2EqAcEJIR4RcQGUDS0ArjFKVNo5gkJsY8YS1yjNgeT4gJTuR5q+EYJU8OkeFxkKBxu1gqBp35aT5S9EKDsedYwNAob0QIQhoIljPK1ptOF2dOizgsTEwo7SGtVTUukFaRQgnFUJhwCouDEKcEEmVplbDMNp9SN2i9ULI+sMIIXVcXqucqMd70XDRSzDBYwAaD/FYG5zZFSKYGwozZFnROEICYaKM81qx8YrzVrGuVWHnBpQilqxcAWjfsBADpvkKacqAMM73D7hfFsQQcDwwmhgFvhQE78XEAkS2TsmMtWzadJNIG/ctpSuhmLRSCQQ4PxSUWhBDwOmk8BG3irIZ5VrESmfp3AQi5BRAGFBbq0AzTC2nY4c91/PS86tymrWSf2OUWiBRi0JP0xGgiK0U3D+sVigZoKDFcrcqQK04bxvySdmmLAlM0WIdCaUxpkigpOQQ2R5Qywbes31Bii4AusYtZy0AFqdWIkyMv1jsDaKO98navzksf88xcshQ42a1LyeV054cfHkcJ9iYlMa+nJTnfkpHSZTaT1pjbAcg7D05V7KDldsxzYvPuocojqjrvy3O66XiCswYFAY1hfuasKVc6Fy64lT5NJjRoNGOx6Fr2c1b79zQKwtpRw6Yp+jx8b2P+8hx/VOPD1pxvbl/AMXX3RlRoz1aDon+e54PqLWhlAo8rN3yWdYzpmlCzgnTlLGsC0ot2NYN80FhisbKIHPtE0JAaCO/ogdaQeZJsQrDJlCBqYqHjHnHJshaq5pcGZLWwwtKFNBmgsZGCgRihUp0Y4gZdNS9IMHI5QmWf6LBYysY7NCa/VsCwI0uLSEfu0XnjeXc7GrcTJhVw+CDsgND6E0SkwwYqokqxWAwoKMb3mYkRIUmFSpkU1b7FvLq2bgH6IFtVVxqDQ8ydMBF/yZS+G2oYdsxDp0yLAndPC9SoSJmOa6lgipwv2x4WDaUKgo9V1bL0i1U0vylKUdMsxIXlocz1rIhWs1DIfRu2VElIyCCragxwsxYygZiS88wweZduo+HI1pT7/3+/oytbIgxYp4XgKxqy3kBs9V/bIytaMyWQCi1dAh9bwEzM7alahw3JSzrqiQAEYgEa0GjTFsWa+8OQFCxrAXLuqG0pqhCTKitIhrhZisMXgsQNN4lnsxhuXy1NtQI5JTAnBC99LljZuY9+ZPrveSgMBqLeWQsnSXocVD4mt8prlG1bUCCzmTtsNlYJUNBeHoI2TYQjzs5O08gwxYzL1D3bXCWlJ1LTAGJeAL12Jsg6muXBX1fevHlPg9jo/b77VfuNQx9D0M96RhtwSclhQSPH/s1B41Z6x7T2JpLj0FwGqlFEE376N7rTpn2uFW0xqN+H/s53SE/vre/7figFdfnX3yFN3cPWJfS2XIxZXjcBSDk+Wj5CBlrFSzLgmVZcH++w+nqiMNhxul0wLIs6nWVgsNJLYrWlKHjZAunvJNtMLYqAzklCBG2UlBq08CkwV3bthn8okLvvK1oTUtKRURQyAhxguxKEInBAkRkWLVW1xDbFMqA9OZ7Q3F1KmxwxaUxmdGGBCbDDfbaxYxot+li1vkypBTezruJCdiYTImK0pgh4EjYphXaiLOhWqnHIABCLwEKilEbK/pm9mofPBibRFYFwDeDaDsGWDEg2S16tvvQ3fzOFgcQEILHusxLbGwtbQAJWhxYoAps2wqaNLx5+4DXd2dsRQ2SfSuXtquPCC44HGfEQChbwVaLMf2gHW/ZgtXRBbOVj6rKBNxKsSB7QGiMsm5Y1xXbtuH6Wr3YlBLu7u61PUsIiElhyFqrrltLLr2Mp2rsrNbBONwnRteFO6Q5+o4BxbwcTxFpzeDxEBAqY1k2nBdNpJ5ntda3rSBG9UAqC8paQIFt3UcImrW8ERQ0FGIcpwmghgjelQQaBZfhz9VcH8cO+hNmwLNYRZS6HzwetF8DZmToPvFE49A99ou4S19/ZjjZyaLnB9qJPZG3l/20paEGmRG3LGYIoCsuZumxb4dsEUYtReKRnkM7gkZP3bjwvshII+7VDSahXot6fWSgYq/27xvRUx7tfgVqUGpMXJVYCKNcE8G8zxFzQC+7tlNcF50bHg+5fPkXVnHdLyvWBtzf36vXExOurpSRFYxsEOejFS5NkJhQsWFjQaOAOB2RD0fEaUZoQKKMkBlVrLkiCcg6tqaUMOfZ675YCgd3BRlSQBKPUWg7e2HG/f0dSiHfeVjWglI3cF2RA0NqAwuphxOUSdcqA62BWsN5K4BoAu80qVCKpry4jYRQ6TRdY451R31s2hAC2DxBYfUOSczCQgRC0vbLgVSgi5IYPLYyTQdM0wEpqAhpjZFTQgy6+Lmp4RCDztdI3L5Moe55KKIBXa2xV5ByNOETwEawUSt0z4pE39wOkdEuz2UY7IOh6BR5gaC2hm3dUJjQEDHNk0LNISPFjJvbFwAlFE64e9Amnk1YacdRCyHPNMovlfKAq6sT5knf94alnn/VvdudXq21okZVKNPEnakFAtawIsSMlAuePXuOw+FgCuagzR8BTNMBABBjRkoTDoe5My0BrwJTASy6B+JgIeokEZb7BSFoftrhoPNFBlc6GeJ4AvKk8bOtVBzmE3KeMc1HlFKM/h/x+ec/69+9vjqBrXtuDAF1O6NtC0rZcDicgHLGtm7IV9eICYhiZaHccRiP0lduXznOpnOvpFkl/NHEkrrS3v8A7onBEAVFIfY+uceKBuQs/XkxdmWw/Byw2qWkCzpEo8djeFnjOsXWKfr3fXSyVb8WXW+8aTdwbU0zKqNoBoDAFWFrVZublhXHg8ZHc4qorSj82xRapQCkFJBz7kaOGrkKVTEzWhipPLVWWO06THWywnRD94xO5SZ/7Df1Kjq/ePwp9FUfH7Ti2raCysDDeTF3N6FxRogb3KTI81ktb9Kuq+flbHk3DfO8giiglIr7+3sN1kf1PFhFPBIlzfnxXkHsBcGMdSpqSbLleSlt+IRAAVy1m7KWVRFQJJyXFeu2YD3fIaEiSkOUgjlmzNMBh8MR8zxDKoMLo57PsF7DgFhCakqIMWnLePbN6cw+s3pMgHsrkEBeNSEiBm3PISK9Xt40TRCzFJXCS9YyZF9Sxrr8Vt0sy7KAc7Z0g7TD+QPm+dAZcWRKsOeZWB4Os9az8ziGmKJUhTBywIh2Ma0YO9Mx7KAMl8k6di1QbCJCUJp/Zy3aJ0NIEOgzFrG2MwDWrSgstmxYzIOgYLl+FvMkCHICUoxgERwOAbXUnsi+Z27xjsJeSkFttbcN6QxBKCmHrUNyLQ1bKFqup7m32LCt5UI4lFKtPJNOQGsNtSmMqE0DxZ67J5sqhKleG8OrKIgw6sOicCwBFBLiqikfy7ahWE6Rkloc9iGclwUhFMSUwRRRqHTYa71/g7o+gNd7XEfqpIEUI6IwIoDUi1JrxwQELQ6cPDfJySO7CtFsRldXAnGnFBxyszU1aOejHx8Z9ZwNwtP13ZRX4YhNh+48vu3lkLTCvSou6hVDQid1yO46R6kzBRo9hOALUNECNSrdKNMYI4kWLM5J177D466QGyuk3GpB2VZMWVNKYNdYWwOXChEtvRVCsHSJ0Sl7QIe2X/r5K6iFUZ7Mb6ivabIaxYbGNJUNGbBalTb/75Hb9Oj3txkftOJ6OJ9BYcPd3b21pI8wo9TiXJpw7AL8eDpZDTplw03zrAoFgrv7O7AI8pwRkva3ZTASJeSWkFJEjcXYaWrlx6Bso1oqlhhUELHg+vqoKEEAWiuaBMoNlAjLuuB8fsDbN68RuGCOwCkHXJ0y5sMRx6srHI5HSAEqMda7pgoy6AZUi0o9yMjafM83pwsmjQWYgmAYzAiFEChAosaePH7kkJGE0PsjIQSl/5sibCKd4dVqQd023N/fQ+YZbZpwNGvfqeo5T1aGK1pvKYXnWm0mIBpqVUXmjE1AhTezJkGqR0lIXsKLrFWCK6+uuOzL1hfLC/C6bO/EGtKOu77pFKnRwsBM1PMBKxPO5wXnZcH5YcF5KRCsva5cqwLmCoLg+npGKSvmw4yrUrFtK5Zlxd3dHUDQnCgrapuTMgS3bdPSTga9uoBs1gyVBErwmA7Y1k0TQQGFBbeiBoN7dil2JqCzttgU3GLpHsCowNFjgTwEYIqTer/ccP+wwL3UPM0AqZd6Xlc83B+7ATEfJsSYkSfCw8MZIlahQQhnI+uUbcP966/R1gdIOeMvf/+zrkxSSogiiEKIaIMMoBAAYiRkXzeovZahC0KvYdiFX4QJ1QAxVpQzAfvnOizu6IOXMHJFBzAa4k6kulITW9u+nnSdWiV+EEgaIMHOAXh1jw79GdTvysH3rfcdI/PcLFkErVUEiUDS/oKD4ucMRY17t6byTD0orUkTQ8AmAm4NpWivwmzox5ymTpV3KNHPT+RwhSlzHrLFNpgp2WEliq21UvRc1JPiuc893KskulBW9KfQXB+04vr//L/+nyAKWM6reQoZp9OVWS4qmKfp0GfodH3bcf80ZdRyxvF4hIjmpqSccH17jTd3b9BasXJNqixiiAigzoCCAClFjZuUapiwNss7TQHH4xFEhFYXlLJoAJsjlofXuHvzBl98/lNwXXFznBGe3eD4yWd48eIZvvOdT/HZd16gbWec797g7vUbxAikHDHNRxyO150yTSlppjp7weDdsIXXuIARkP5/5P07sGzblp6Ffv01Xpk5H+uxH+dUndKR6qqk4F4uNxREUQFcg4AgMHCQJQMLFwwEDhbIkoklPAIsQgE2HpgEcmRJgdALVZ2qOo+911rzmZljjP7CaK2PzLVLgntOlSLujsoT86y155ozH2P03ltrf/vb/xuHRSEcA5iC7zL9uGOadhwOtwpviKV31Z5cKpltPWMYho51znJ450iuHiz0fRCiS9/RzUGy8mKFoGG8oJBA8cL0y7lgXJTKryQoGR/sNpNSI5TmEKnD4E59vaxuIIxUTAr2bD0+o1T7NoZQcpEA6gPe93SnSE1ilW6ppLb5a+T4cmKNlaenV14/PXGeF+Y5cp5X5nVlnldeX15Z14WcIqWu9EOg7zsO+xvm5czxeOTh0wOh84zDyDhOpJwYx5EudKxx0WBtsE6gYamSIs4FuhDoup4/3InzgXiaOU7zmfP5zOOnB7IKuPahkyHY1utsfwepXrUqsE4SkZbEzWeZ8RKEYKRWIYU8Pj9htJ+72+/EUUGho9B1GG9xPvDF+y/5+gdfc3N7yze/+DnrulKBYRr59tMnTqcTx+OR18ePmBLpneGHt/9fOlvpbGUaRxwBUyJmnRWGFcTAU7axAkomxhWICrkZhbpF87FV26p3S7VNyquSiuAkruH0hm2s4zI4q0lMFT1O5xzOXOTbAOlFmzabyQZHWpVWs9bhncX7pmYir5UriNCt+pJ5j3ct0apX1YwohMiojty9nAS174Nj7MPWG2uEr5QSNa8qWF2ozjAOgXHoGIeOkhfyWilllU8fOroQ6LtOSDdZ9vXQdbRg6L1IQ1lj6ZzFO0tnDd5eB86W7LElmHlZWZeV03zGOUsfguyvrLOe/xwef+KB67/4L/4L/tpf+2uffe+3fuu3+N//9/8dkKzxP/lP/hP+5t/8myzLwr/9b//b/Ff/1X/Fl19++Uu/1unTNwzDwOSDZoIFVJ6n2Td0pmoTPFFCpvOecfS4AGV55pyOIn5sLQXPeqosL49AxXkn8ylULDK3VGOUQ8caDEEzuSLsQ2upNXA6PpDTWajrJmJtxJYEZaV3iegTvVuBjGclLq+cjhPn84F5WXg5niBHYq5C9zcV7yw29FQTxBDQilyOcwKjCCNPbTqiHIKVrL0GgbgKVgNOU19wpJQ5nxdqfd4WZhOPbbBAsKpc4Rw5yoFtamW3mxiGXnBzCjEnYkqbQklRuGJTF7BqG1+FMNEbgRIlqxXvtHlZWJaF8xw31lvXDTgfZH7OO4auV+JI0XstcFstReCsFAVqRQ6ZflBn6dARuoHX00qdIzUm0jLz/Hjk6eXEy+uZWj2lGOYlcZoX1lUkn9Z5IcUos2vzSlcSpSaqzXSmEGqmLJWynLF5YfQZawq2VOqScLZS10QpHt983qoSNRZVzsiRagN4T10864tV5qscODFG8rJAPFH1ZDMkej8I9OYc4kMnKi8pxiuqeeu/yJ+9dfQ91M5hTBKbExJTV3DO4Fwh2CiOa6YiQOtKzYZSFh4fKqWc+fhh5OO3P2XcTXRdR1oie58YBthVy5Q8OQnN/Oe//4+520/c7ieeHj8xdY4+WHbjBLbFWEc3DATvCc6T06owpyfVqjC+DHOXZVE4SglFIRB8IKWIiQlyUumsVltchtedc+RSZDjaODxVKnnntoodIHRhq8ikepK5wxC8iiiDFro43SteP4tFEIvQSb9X2MuLQHhFqOjOOxlJySupkWxyxpZCLYalREpcRD81eKxxF73IvDIGmLqevt9LIl1XTq9nlvMJSqILlmA91hpKSZxPq6KDArubKkQM79xWDbta2Q/aR60Vo6afFe2vG5WqSon92FHiysv5yMPHD+R1IS4zN3f3G1Eo50I/TRgNeM3y5Y/z+OdScf0L/8K/wP/0P/1Plxfxl5f5j//j/5j/8X/8H/kf/of/gdvbW/7D//A/5N/79/49/pf/5X/5pV+nq4nRVqZRdN8qoo5dqlDQg6t4G4klUU3ElCOegeCk55PXlajeNSEEKJ5zXinrWaELT8DLNH+GHGdqSjJX5RwofOeolBoFk65wOj6xLkeMgXU5bgeINQVPpHOZIYALDmcqOS88Pz3ycerpg4M4C15esg4iF5y1SqE/ETpP6LxCJ22+SyqPUgzLEiWrUhq9d01AE2LMQtEuoou2rAlrz9tw6qWSUXkj67DB6yCs5zzLEG3JGavzUClFzrWwrkkql0WgWJsz1iZSyToXZrfKUAglhub4KhlqJabKsibWNdH1Dq+MpSbZVADvi/ajIqVcGFCNSRejwLMVMQMt1alzmMVYOdDjurIuEbNknh8eePj0xMPjM7IlJLimIkGemLAx4rNUhs5VqgOsw3UB3wscao0ozvfWM/oRY7mCNA3eVZxrM0j6flPBpkKikkzFmowzks2XXMFmjMlYV/E1gy3U3pKyZOB9bxgHp8LQQk3PSaoRVyEhkFHRfma7B0Mngr/GSB9jWSurr/Rh0L6k+GoJl0MO/VIF7o05kdYjp9ciA/TrkcNhoA+GFGduBgtdIIXCaCZSdOS0sp6eSQHK4Hh+fiR1jqELuMOBpSa8MaQu6L1UVQjV1yxa8Te3guZEUGslZWGyNmUJ8VeT8QZv7MaSbCabrXd6bTsj614q94vtDKDeYteEBqm+lE1bqx7EhpIdxRqKacxM7W+p6kXNsM4nVh2J8V5QiuJkRlFGF9T2RnuxQkLyBB8IXbjAcPrcMv/n6H0v2qvLwnk+a49V1h9WRyJyIa0rXeg2gQSS7OOtvaBr3urAcimFvC5b4MJaEU2ulZoS/W7Am0pNK3E+c1RUylrLOE7yGrVQ6/iZIecfl6HxzyVwee/56quv/sj3n56e+K//6/+a/+6/++/4N/6NfwOA/+a/+W/4i3/xL/K3/tbf4l/5V/6VX+p1/l//jz/DNI5Y79QTSRbXmi9utZmIGxzOTZzWSFxmTkdprVsXMFb6Rel0gRfevb0VFXdfMOm0leZpjVsD2OIpeQErfYap88qKjTx884csy3nTT/Te44NnGDqoCUfk3f2O3TAyz2eenx75B//w7/GT3/1H7IaBt7d7xqEneCdBsyScEYHY3TjQdYGuDxfKqm3q5Z6ClWHZKJsMa/BN1d4YqbaK9DOW84yeB7jWO3ICd1ovEJXTSqkbBkLfbfTq1qdo8kTehe2AyLpwt37CVfW2QZoVhFJc9PueaioxJaGk54xJmUoUYkAU2rxpcGZKLMvMskSEEQcXEdNKo8GXmjgvJ4FxQ0ffDzw+vrBGgTu9Dzw+vPL8cuR4OuNsh7UiNNx56XcSOpikV7rh9Fbg2zdf3Kkqd6XmfBF2xmC8qFLklDgtM532uGJKKlRcSLWoAp8SBa6UDqZpj9mu1YV88Bmd+mrPNRZjE9VtQbzdl4u+oWW/v9ky4lJkIHpNSZyRDRsZoAKh69jtD8zryul85uX1yMvpSD+MhL5nP3lub28J3nN8yXxxfyA4S1oXlvOOpPT/zluCczhr+Obnf8h8PFJz4vaww1kIzjF1Hfvdjr6T+cqgMJxzFh+CMO5qIyBcYMxPD08bYaUJEDcR4nY923Vq//554ELNQZ0GLkkuvJddLb3YBArJOmcJoecyyuGkp+tk2DqlVc8gnTdTJYqjJn45523vNH+06/dJNSqIu+p+Egm6rus22FA+i8DNzhl++rM/5OX1hePxyDRN9J1Iiy1LZF0W8irmoW/v3zIO42VsRqFUAzosflFZ8d6rssuF2ei7sAkHlzhgqvTQ3tweeHp+5enpiefnZ3bTjknJZpfpV4njfyxmBv+cAtc//If/kB/84AcMw8Dv/M7v8Nf/+l/nRz/6EX/7b/9tYoz8m//mv7n97F/4C3+BH/3oR/yv/+v/+ksHrrd3O/ouaJWlGlnOkKojV0tOEGuVWa3dnpfTiXleWdcoma4zOoNRBV4rmZojT98ecc6IBxOi0JxUTXYTzNVqQ7JesT4pKZPWyNPTEzHKwu26sDXPS82EvlVGkXM/sJxPPD8+8vHDt3TO8dIFHj95vLU4A94Yalq3xmvXebxz+CCDoa5VRj5gjBdQs6AaSVWGgzcfMSODrwod3d3cCuxQCqUJzyKQR1Ucn1JIquLQDkY5L40eDE43VeDi1myEvUSzAm/plQJWG61YqtbNH8pf2bWbKn0t64hJ7lktFWOlUks5sS4z87wq1Fhx1rf+schCOYFHjqcXDBLc+35gWSO1WoxxhNAzn1eWOVGzeJp5Z+g6xzgMAj9d3XPrrJJjLNYbxqlTu/eKKReY1RkrIwXKwjwtC10IeOdYk9KUSxGpHn3TlSr3QU1N+06p6Y0ZqoPYnVLv2zVtRI2LzuPlQM+axLVKQXIIy9CPG8mlFFHJiEmgXvEWY0sGMRZnVvxg6Fyg9xNjD13XE7qewsDhcMAHz2mEXd/hjcGMgbTrpcKNEVOzahFWavbE4EhkXo6vOGFe82otHx8/SZaek0DwkuvjvRdIsu/ESkXJUTGunOdZZ+MKPviN6RpCJ5RxXfdNf89slZcqdlwxVFuAAoPzighUpIJv/S5v6LsJUfLI1CIJpDBErfTIlW1XbdnYh0uctwDlVexWCDoqK6V7MPhOnACWmWVedOdoQHGXVohxBuctfd/xzbc/53Q6cT6f2U07CVzBs8yRuKykJG2On08HuhDkOug4j6xZt6lldH0nwr+h4+27dwzDiFfB6MPhhn7o6YaBkiLLfOL0+kIphafHR37x7QeWdeXN23fs9gd2t7dss3n2EgC3Y+FXePyJB67f/u3f5r/9b/9bfuu3fouf/exn/LW/9tf41//1f52/+3f/Lj//+c/puo67u7vPfufLL7/k5z//+T/zORfte7TH8/MzAFPn8B7IiVwFUsMII6lWKM4SC3TB0NnCGCyuWIJxrCoZ06jZAkJlILEsJ4o11C3bEqKDzGdkanVUa6V/YAyxRmHepSwDpKcXZY2B8SDiupVlXTifZQOkHDmFwHKeeX1+4nw6UrsOWwtpnTG1YEGYVSlSS1vsWmU5i3NmW/jCGBOvrILZZmKqMdvBiEH9sCR7n8+ni219TEpFR9UwuApceWNiGWUVtf9upBRrL/49LVNrJnlNdHOrHNrvq8ZiC7y23bcqvQHvxScqpZV1lQrSOdnkKQuDb12ERCMzKU4PZiOD11ZYYct6purwZwi99imcVFahJ65KNsFSUsGHpO/BSB+LTCjS/7DFYk0n6XMyHF/OOrgtjMfmU5jRWZ42+JkjhULOTtZpFUtOoyzC7QAtCoLZSo5ndJHqYaswTarUmraKy6Jl6JYfiNakrYVaU1vlavRnMKaQ1zNF74P0VZIwPpOaZOpXrjIWUs7Q9b30x3yldk7msKxUaN5kvDEMnYOSqNZIX9Y4ZAA2kaL6ltWqclkBKJxenoWubdSdpBadTZKmf1UGpnMCP4W+UyRAZiWl+l62StN5v/X8uq77TKvP6NqXy3Q958XGfKs1sc1nOmhzVFX7Ye1+d63iqpmmNy3sQEsuSc8NIRmJj5+s5VyaUEATADDbXtEdogFXhsCXZdkO+et5PNn76LX0vLw8s64r67ry+vwsgdt5ci5S9WoSc+pfVeTZYDe7HofXPS3VZIexDh8C83lmf9jTDwN9P1BLYYqTSL2lyOOnBz59/ID1gZeXZ54eP/Hzbz7w//z4ka9+cJISa2MXtjX6x0ML/8QD17/z7/w729//xX/xX+S3f/u3+Y3f+A3++//+v2ccx1/pOf/6X//rf4TwARBMwldYo5AZTJWhPd8FjNeFjSWVxHp8FNghGMYQVL06E1NiXld8kWaqd5lqVtkoRTMc36byDdCgKENwgmWvxyPBdxLccmbwdTvYhyFs8FleMx8+feS8zGJ/QhE7itNZ5riCx3lLzVGYVLXghl7nJAqlJNYr23eBx66UM8o2wk+rfTBc9NGEjavEicrv//7vXyrVZnxoLd46rFfRYtpnlkeDYOyWneqMirV4H7bGd1T34GtKcHvf7U9rXOtqa7/FfPazDa64hrr6vt/gsCaNdD1kel1xFGVzhc7qz8khJMofjRpvJRmsBms6vA84rczGcZSGuPd4aVhhrBAmvPY4Xl+fGPomHTbQZLekytH+gZUh9tZb6Tq/GVOWcoFGS8ny+k7EZl+eH7ZexBC6bTC2JAkWjcUahl4YpFECRlN2SaImvAUgp+uhGkNaVl3JZhtVaFVamyfKGkyTuh7c3b9lnCaGaaRzllJm4qzDqvlMULbr8XTCGsNuGi+Jx3Lk+PKyrdWh75h2E95bvvn5HzbJPSHaVCRwJYU6s/SVAR6eni49q+8Mu7a1df39tl7+iOgrfOd326Ha2Knt+0IYaUzAi5g3tKT24v1Vt5+vNev3ZCbUaEuhjTy0n6ft06vHtXjwVrXpG2qvJ+//6jwymdAH6WVXWJZ5mxMcun57vrSIlNhWkfpuG9mQ06O9l8t4y8+7n3F3d8c4TgzTxBcv79nv9+xvbsil8Itf/IKf/vSnTLe3fPr4iYdPn/h7f+/v8S/9pX+ZH/z6j/hRi1JXRp4VqJ9/7F/q8c+dDn93d8ef//N/nn/0j/4R/9a/9W+xriuPj4+fVV2/+MUv/qk9sfb4z/6z/4y/+lf/6vbfz8/P/Pqv/zrl/ATe4PJCzVFglQw5q9yK9mfmeeF0PuPCQHMxTqkyrytrTCzzSmoqFFTOy6suPGEPtcNEMqCoB6KT7KPK7M807pU2b3FlkWpgjbzC5q80dYHbw8hu12O8w+TC6+sLD0YCh/PgvMGHHjeN0huqBXqh4hRVGaA12Z25TmB0UFNxaq4YggoNFiqOptIubsxVVS8+o5hXAzr34RWSkM+zbFYdm/uzDrgChNBvfQVjJgwXLbZtiyrMKOeABSPJhtHXizFpb2bVwKVDzKYNSvdCRdceZkqZTXF7Y3+VC0uv6OGdpKKIKWGNMMdKhllN9eQ9+a0v54K/mD0aYSy2z9BUQQyF5fgqyirOE0KvUKa6FJuizMiOfuiIa1T42G/VZKmZuKosU82q0CEU5OPpedPSHIdB7mER/7cWyLvQ0Y+DHHK5zRXJNS5K4WpV73UyIxW2qpNcBYEWzECgrcbeXFPk6ePPJeseBzCOeV1Z1oWUMr6T/svNzQ0hDPjQcRx6Yky8Hl94fHjg6eFRky3LOHRyNNZCilHp6Eg1ZsQTyxmDDR6rJpPUrDzeSoo6C4fMyjV/M2tFW7MNLQcftnPjuwHsOom6Klf5TMJDodJrmFWfTBMRgalLGyaHy3D8VsHVbV1iRG1HwxBNt6YF9FZNnQSa0b5Z2N5rm9+SKlxMVEtJzMuJaRppnmvn85GS5DwY+kETLUNeE/O8UEvBWei0f2idFb+67XPlbd2c5hlS5Nig4XVh2k2M044lRj5+/MiHDx/4AihrxFZ4fPjEw8cPvDw+YEqiutA2/5b6//9VxfXdx+vrK//4H/9j/v1//9/nL/2lv0QIgf/5f/6f+ct/+S8D8Pf//t/nJz/5Cb/zO7/zz3yO5vfz3UeJZ7CBzlW8lRmgUivV6NBgzaIxaTK9N1QSNSdKquRUhCGYM6YkjKoVlFoIpuj4cVYpmgrFYYoY4lkqnbMMncGYQB8sQy+UfIMhx0oyRU0IwNtA5y3D0BGRvkbX95SUqCVxOnbkGPFeG9HGEoLHGsM6zxuM0RQbNkhj2xQaQHQllG2CX/XNPksf0T6QwQW/kTasaWKodbsOFGG6VSNQkwgPXilhA03F9LIkrQaO1ne5gkMwbe1e2EWmYqrF4rZMVaqQmZy9wnseMKRkrpreErhiTNvfayspqwSOlFaBF43drE1ySuAkWy1F+pft/eVShKxjrNDpVSm8UjVwaQ/QXVQeyrqSYxsA91sFXKtAR846kltIqxMdylJJq/3MPuTSaylkVhVTKKQ0Q3HULHTpttFliFsClyi2KIxeNanR4CWyf6pKQlsCF5isDbK2HhigghGaxCAJoDOGsXOYGklrpZao6iIra4xCGU+Z6iq2Zobe44MDCqfzCy/Pjzw+fuL19UWG3UPA2rJVUc4Y6fnpMKvA8uCtxfvLdaol02KMJKpKxjACHW+s1RYoUJWPtvZrVd+zq8HaLdBfq6xc1qr0D+0GQbd728Se2/F7XXVdk2cEldAefKkYI3tEoRANWqLSLwWJwIalmd6qsPS2t1XTs70/Y8A46XHJfGRVvUcZHRCd3UymaHKq2gLtkrQKs1xEflul2MJrrUIwctZhQicSb0BOkfl0Yj6fmOeZdZmxBqmmxwFnNfHWvrhUWHrd9LV/1cefeOD6T//T/5R/99/9d/mN3/gNfvrTn/Kf/+f/Oc45/spf+Svc3t7yH/wH/wF/9a/+Vd68ecPNzQ3/0X/0H/E7v/M7vzQxA6CmFdtJIx2FnUrNOichvZlcC2NnmYaJ8yxutjFFSsyYUvFUjK+YnIhVcOBxCBQcuYK4V0spbkvFBGGvTcPAtB+3wVixCSjEmFgXS3KG6s2WXfa9ZN3JVrCWcZqI60pcZ4YukIAuCNnBVKXbVmHPCU0doNFvFborjcwgpJCLgsLnBxRcbTpVT7CmVaWycTDSHM6lfOaa22CRJtYZa77KDAGadhui3J0LtXpOp9Pl91uv42p44zP4UOHdvg9y/daV1+MzTg0Z+75TuESU/Z0Lci1KVmv6pNp8doNwakXmeQwModNDQAKec5LVG2fwTl1urWONWTLcNhaAbK5SN1te+Y6OUNRqGIKTQeSctyrRezFnlAOvQonEJW6N9Vob6UCC4OVnrQYS+TxdEGakIZPSsl33EAzgts+U0yyHX7v/rfdVJemoXHo77bATcpEgD9kCXNRJNhjHXthrXd+zxFUh9plVYTxqZX+30wSjYz/13N8fsM5zOi8s85HX4xPPLw/EZcXaEatVZdIA44wjlbyJBi/rsvW8mr8YQElxS5nsP+XQa5/9u1D29XrNOhrQKNvbPmkeRPUSeGSdXgtZf55oXK43W+X6+ZpXpRUlalTt3cKFSGN1RrLrOn1NAxVSWmlQpHP5s8p4G1Vx4glnnaHvAsfzq0iOxfzZNchxVbKW9I2hSlBBg1otlGI2Jf3W87IKO2eJcBhg6IKwPhsEG1fSshLXhWWe6caJw27ii/fv2O8mSTo3SLbqqJK/ura/2uNPPHD9wR/8AX/lr/wVPn78yPv37/nX/rV/jb/1t/4W79+/B+C//C//S6y1/OW//Jc/G0D+VR7T1LGbemFZBc12bSVqkzalRCzNc8bx7E54U5mrZHvVq211FVfWmAwxFYrNOGfonafmwhoXYkqYauj6QeCbYIjLiXURLUTvu03A9eHTJ1JM1ALTtCOuMzEufHr6xMt8xjjL7rBnXSPPT088PH5k7HpK7ahkzueZ4/GSqdhqNf8xRGVIbRml6tIt68zUDQR/GUK9YPqXjXe9KZdl2SCKRsvd6Nb+IiFkQSsW6du0hxwSXvs4lpQisrxXaWprZtgCX+uVXd5X063zeG8Zhv4ykKxfxji6zqukTGZZztzciKisGG9CSpBSRQJXm+mSuamSMutyFlaUsxTvGHuFjI30q7quxznP6TSrYK0Th+Ta3Jw0Y6zyGZJ6pFljuNsJ3bvR8JuqifSwrpv/ZpPBajqK0JiZXkcGmkCuVJ1dsDR/sXZftp+3bc6najCX3l07SFv2v9GruRzsrcK8VKz5Un1oEBE3AKmaU86czq8YbzWAR16eH5iXGWrl7ftbSoqseeHpMRPzSqnwcjzyk5/8RKGkj1hjuL25IacbSt5d+pQxbTBhzll8wBQ6zDRiCtSctsBl2rVVOKtVm9YYFdm+VDzCWJQ9lKoOZ+csnnltPZYkoukGrfAFUpcLJz3rpilprAQ+pwSHFiBLQauq1ntmk51y1tJ5IQw1tKEUMVx11tKHixlpzpXbw17FgM1nQYsWmLWXFXMSPcPg6FO49oHAUJoq77b3Q3DbWIbMoF6S3et14o3S3XPheX4lrQvBWYYucH9zg3eO1+OR+Xjk9emRpw8fqaXyw1//Dd69e8/v/Mu/zV/8C3+BH/zgB9ouE0ShVNFdbdagv+rjTzxw/c2/+Tf/L/99GAb+xt/4G/yNv/E3/kRer9bKGldsSUr5rpu7rfQ5kvauUBfZlZSjSjrJAsrqgVS0Uss145Ql1yzIz/PcGJ1CyFhWjqej6O1VePf2PT6EbbHnXEi50JVMzRIg5+XM+XzEec8w9TiLUK+9LKjgRAVCoAyBOBrZQfHCje1XAaxMpbucwAqWHbzTjD1/1si9ngFqWWaDX68PxfbnNdGhlkQ/9gxdoLm4CmJpt2qzHaStz+T9JVM2mrEBeshoxaX9lxAC/ThyOOw3G5jj8WWbW7m5udlmWqyFSZv+UAmhWXdcZmyMkesfVwNBDo39bketIp7bt8CFJca8MaiMMVvmK7Yn0r9rVUpRcVUTKyXJ4lmTSuo4odu3399gJq1ouy7oWkvbPRUCj0BBzROsAtYh6v9clO19y6C1HygQl8FZlDykfmZXCG5FqpaW716o4HaDh64igZA/kM+daxaLHuR5fPDc3N3otakSXJ4yyxqxBpYsVidzWpl1GHiNESGoQAh2O0Rzlhm8VtmXUul05MB3Ad8FGgvVKvJArRRT6ZwE+ZIvxBwHnzFar+XPGrllY8RGmZeyaqgIbLbzXqvfvr8kcdt1031xPScn6vh22yttLqz9TgtoMa545xiHVvlrwtGGf5Xw086zlLKuUfkc14mO10FzSRQz8yrakv0Q2O0mvb6F0+kkCVXKkpyFTpwcnCe4Sz/QmYtEmLy+vFTz5Mq5kFcZXm6SUX2QflXJmbSuZBUkyCltUOGfuf8RX335FXf3d7KgFe4Ua5e6wbm/6uN7rVVYqkj8FPI25Iqt28R3yokYE7mqMV7MRGVvlZKFCp5V00whhCY26oKqIVjRBluWRQbxrCVlIQV8/PCJZZUAOE57dtbSdT0VSCWzpkQqMphakXmTuC5gKsEZrPOsXScDxQoTBmdx9qIebW2DsuzWe2h9LqtT9GLwWGS2InhqLcRVFMjjGgEE77YX6wuZW7mcatcQy/VgakqJNRUJIHcHDNKHKFkyzFapBR+UUi0VyTbguJE4ymUm6arfkFPCB08/dOz3+23sodl59H3P3d3dNhJRSmYce5krs24bsk0patItWzAlHY8A9tOOm92eimFNSQ4cdViOMWOd9NCE1acyNSWLDqM2642pum4MFekZlFxZ4iLMPidqJr5zmiVLl9Qai/OG0ItGXE5ZZH5UfLhJ55R8BQNpwzzGVZQRrBWDPne5f+q+JJm0c9tBU83WdpSkpfV85Cark60ka5L1CnvQGDDKMI05EbMOI1eBncIw8vbtG1nfxvB6emGJYihZdR/O6yq/l4pUPU6q5WHopL+7JEVgCzGtzPOZlDLOBYZhIHTdRl+/JlBUJeJAkWvsHDlelCWkmpUZo67vLuzInAldoO96tQeRayTIQNPc0x7PWuj6jqHvN3sQay/O521fyLmRSTExDMOVhmDdksW2lwByycznM11wCp1dbEXO86yMPs/QDxv7eF3Xz567XQ9jDNO03/5tnmeeXp5IOdF1gfv7202l6Ntvv2U+z6Q1sT/smQbRyZRqrblSmy1wAZeEsqhbM4acMutpIS5JNDRDwFkrYg3XXm8aiKlCaPvqyy95+/YNh/1h2+9/3GB1/fheB67H48yY8uYz470cHg50NmmBUjE4vAE/+q0ZbY5nUdleI6wVjMMYlcUp0PUD+8Mt7AprrpyWyOtpxvqVXAUiC+OI60eC77h/85YKHE8zr+eFl9OZmBJ3777cFOmXJNPy93e3/Lk/+2PWJfKzWnn48C05J/oucHN3YBgGvvnmG06nE7kEbgfRqzPW8fLyohYpQvZYV5F3+uabb6hv3/Dm/o4f/PBrjscjz8/P/OHjJ2qtdF3PbjddaYRV5mXe6O1911+qAGcYx5FShDH58PCBvvfclIk/95s/ZlVl+H/yf/we4zCy63e8/eItx+ORl5cXXp5fcMFxs7vhcDhQCjw8PHB+nalUbm5uMMZwPB75/T/8A2KKdF3Hv/qv/qvkknh5fWZZZ0oVhZB379/yu7/7uzw9P/L6+ooPjreHPV9//TXPz888PT3x+PjIPJ/p+56u6xingY8fviUuK32QoDGME29vb5mmCWe9wGJJVNTnZWGXRw1oaNXRBkIFrhPiiHij5c4LmSDFi3pIHzZav8XRWcnIvRPllH7XXypfY7fq6JrCf10pV+fIRk1trMOGDuNEnidfQYAo+9FZUfVvBRSq0NGSuKREI2tVbN1YkRsykow1ckRSy46C/EwVDJP3X33NOE2UCh8eH3h4fiU+v/Dw8kJVB+/zvLA/3HJ7e+D9+/d8/PiRX/zCMZ+PfPj2I9Nu5Ob2QM6Z5+dHXl+P9N3A119/yX6/xznHt99+S0oC8fd9z5oza4os5zPrMjOEwLt3b+BF1vA8n1njwtt3b/nBD7/m48ePfPPNNzw8PPDVV19xc3tgt9tRa+X19MLr6ZVlWbi/v8dZR87w+O0jN/sdQ++ZdiP9IPtBkiVVd3GGuGSWdeZ0OtGPHf04qlC36CfGKEFkv9tTqby+vvLth29UUqnwL/1//t/EmHh+eub3/87fYb/fc3t7y7sv3/H6euR0OhPnM65Eht3A27dveXp64dOnTzw/P/Nr48C7L99xd3fPL37+DT/5g5/w/PLM27e3/Jkf/0gGwZ1nXdfNJPSw2zN0A33XM44jTgNtjJG0ps3nrEH7Tj1qW0ArpeC7QKdWRa+vr1JJLgtD3xN8oNbC69Mzx+cXzq8iPbWeZ+Ky0E07QBKF3nmiJt7e/urh53sduA6399zuJ4ZxpOtEpkiyAeUEak8ma1O+os3vUpjnhWVNJK0QGhZdTSHVROg83dDz+vzCMJ0Zz2JrsT/s6fsB7zvCsBOhTuPop0k225IwLmB9kMPJWQwCbwTEuC2EwLIsHF+PwhqkMvbSqwvOE03cMPK4rpuNRVNLsDpPdKH3lo0U4DWLb1Yl0zQp/HaptFrWMwzDJavVw9NaNimnJhskr+0YxmFT16+1Moz91jxvztKikZg5HA5M06TPUyVYOJFk8t4To9hzzIsoCRhj+L3f+73t+2/evNlgxNPptD3/6XTi3bt3m5rFfr/fMu6HhwfVKVw2SZ3m4OpCYBgHbm9vNXDKIPMaIzdG/juEoOMOeRvAbRVX3fqGck1yy46XRapO7+hCvzXlW79FKqgmBdS8xIRtKKSYC7wqFV2DZyUIVL1nbe6mqb83ny2jfbJrUkZ7FH3ORrppPSEMWsU0hY14YWoqPKq8bu19CVkjY3g5njnPZ+Z1Befox1FEgVOhGGGqHg57DUJ2g193uz2Hw0TXeSXZKJVdE6d5nrf3LYQkp/tM1kpOgnqY4EnWSIL08qK2HRAGgb9a0G/wdykyxNuSi67rGFRANmlQj1EIW+fzmWdn2R92my5ggwfhc6LT9WvVK0JHQ2iapYwEs8g4DuwPh+2a1yo2S13fgTG8Hl95fT1yPs+czjITl7JUZSlJD3McRT4pxsjLywtPT08sUVV1rNGZTB203sglAus657DJ0ev+s+hMmINqLh6DrSrKWkWllKR6Nk4r2n5LamOMHE8nubbW4bqew+GG+/s37PftnGzjCApRX8GS312vv8zjex24pv0Ne82mQifkDGG3XeadrDPk2oKTQiSlaBVUt/8W1nBVGChhnDbLU2WazszzirVBJ8ilyvLdILbpuRD6QYR8/YINAdd11Jw1cAlm7Eyhc7Ih1nVlPp8FKnOOYRjoN/FLS9d51tWzzrJpk5UN6ppYrXfKFJOGct8L5Oi82xhPLXBBa3CbC10Y6Lvuaor/guMHDVwN8jBGhid9CKyKZwOM04jRQcUWtFKWimQYB0IXNlJI3/ebPlyDGBadRwLJxj5+/Li9x7u7O06nEzFGPn36xPl8lkFXuNi6GLP1GSTorDw/P29Zctd1VO81IZHN7L1nHEesddQC1jsVO+053BxY5lklxBqxUAJXKWk72HOSHlDOhWVdtsPX+w7nGvlBGI7bXNh3vt8ksgRFUfuVkmkzPrXC8XRurY2NfNEC8dZPMWhC02jMl+Y8G0LTKM8XiaPaAlUuKlbckruLyoMkgo5KVZNVzzLPHE9ncpWRjt3+QD+MpJSxKWO9ZbfbMQyDkJacOCwcDnsOhz0h+I3o452n78RuI0URas6q7dh1vbD4atUelPRQahBx6WVW6DgXSWL0oE7aNzOwCdLGNbJ4gaB9U9NISaWoEvMyy9+d3RK1dtBa02DAAlVU9JNCuykmnTtMItKttW7OmWVeRA90bhWbmDgucRXiVq0M44DT9/j8+srpeGJZFta4kpM871mTVu89gyqsn85nzvPCkw5jW+/x+vqlCvzb9nutlTUlrE1YEzeWsvSvVGy7NfvrhYQVV5l7FPHi1jgVWFoU98Xr0Dq/BSCxwtlze3snZ7K6i6Mtjksz9bNV+is9vteBazzcMez3eNUKxABFBCGN9oaCNhKrNstzuQxdcqWlJ3MMMq+Ua9aGecbUHkxH1+85n890Q6/ssMAuF9aUOC8zYRgp1hFiop92VOfU0sODTtE74xkGCQpxWak5E7zn5uaG+9tbDvsd0zioVI5hN048fnrYKsngLN0wbgdlqRVvoLOG3juGsacLgZqzYNHThKmVR80ORclj2IJFg09a1dWCVwiBPgS8tdSc2R/EvqTBe1JheN68ecPxeBbo8PkJkF7aTnXrKsp6QoKe855lWXg9Hnk9Hjmfz/gghIbbmxteX1+Zponb21u+/vpr/sE/+Af89Kc/5Xg80vc9wzDw9ddfc3d3t1WLLYM+HA4bhNky6f3NAYD5eOb55YVcKsY69oeDZIMhUNcoivl5xYUFMBjr8S3IG4SwUBxN3scHHUugMrAXeNAK5d/5y4FnGvW5za2ocoYPFq8NcmGZmS2gmE2Cx+CHSYORsuOUpt/6KXDpTX5XneT6fsIFjtyqdJ3dEjLS5+ojTsWWXXCfPfe8LhTzjJsXDjd3hG7gzdvEMA2k5imWVm7v7ui8rMP9tCM4z36cKDFtc1reWO5ubrb3XEtiPs5qsVPpuoWqlfiyLOQopJ2h7xm7TiBaJyZvwzAQfCDHxNPjE/NJmL5jP5DWyPH1VQLabofB0PlAdJ7Xl1dOpxOn04k1Luymkf1+z246MI07Qgi8xszpOHM+yzpvhBJJvirrmohrYpom2lxcjImcpeqf52UjDKWU+PbjR9UIhN3NgeW8cDydeTkeZcawVoxzvJ7OpAKpwn6cGHYStM7nhW8+fOR0PjMfT/iuYz/ecHN3j+uCWCsZcJ3HLo6CYZnFhX1do95LXQ8KDW/VlnrLlJw309KcMuAw1RJL5X6NrOqeXaqRwD+vwsiddtzf3fHDH/6Q8eaGME6gCjHaZOXzwPWntOLa7W7woWNZE9UkMGIZ4ZzFFPHtiXnRWRytrGrTn71ktlK6Xxhw5/koMz5BMohqDP0w8vz8RG4WPMZpM75jmHbsDwdyLuz2B4ZhZFk1u/Fus2O3FExZ6YJntxN1eIECF6ZhYDdNTMOI2R+42e05vh5ZjmfJoKwoa+9Uhsg5x3mZMQS8s0yjHOxN1HeaJqy13NzciE9SEm273W63Xb9WBTVWUzsQY4xbk3eaJu159XjvqTWz3+8Zx5EQAh8+fOR4PFFrZb+XxvEwDOx2h63BHXy3XecW+Pb7Pff39wCbsOfLywvTNHE4HHjz5s0GNdYqfbH379/zm7/5m7x7907fizISta91OBx4+/btpmW53+9JKfHT3/9DSimM48T9/T1ffPEl07TD+8C3Hz5xPgsc02SqQFh93qEaRDIrK2rpMljbeoXrslKTiqi2YGHMprjBVcXTYMAmAiuMsouqCDTmn1RmyxIvTENrFF78XBbLWKMK6EUhJbWisRbrKkarB1q/Ts+otInXGozS8Te6fKN4VxX9VTJB1/fc3t3RjwPD48gyL6ScmKaRRm5Zlpmx70UF3kgvWFiEC9Y6jseTskMvJKBlWcSktVbiKkK/LVBff15TC8fXF+Ky4J3j5uZmI/A4reyGYeD9+/cbu/PTp0+XPq7+XK2VZVk4HA6cz2LOucaFu5sb3tzfb2vvmlm43++BiwwZSNXbEqdpmrb32uD0tqbWJOICwzjggmOaRqZxBGt5/PTIy8srrusYh4G+75l2O6hSSYeuY9K9Zp1nPs2Exwf60wnu73nz9p5xGumC40YV+o213L15Q9cPDNNMjlFIIN4x9QMh9CKunGT0IKdMVvm7tEbWpbKmyGkWjc8ffv0jaqn0/cjN/T372xs5K6qo5Vgr13QaJ3a7A/vdARd6rIoTX7SdBHtqj/qnNXBhhJq7xqROoOCxVGOwBj00shqvSS+o6DyUoU3AozCAuTRgY8QW0ZjzPjAMsjFTTCwxaWNchgyrMZTa6LjCVBt3ElxSysSSNdsWtfeyirtrCAHfibNt61N4ndHx3mNqJfpVs6GyNd/77qJWLvbelWwNznvGcdAZFIEOvRMXqkVx8gocDvvPSvv21fcDOctMzXkWPzKZHauUcoN1zZJE5pG6rt9moER2SYLLOE5M04gxfps5ksB10RcspWwDjC0AFe1JdV3HNE5YY5lGqb6ssbx985Y3+nXYH7bDpwUDYwz73Z6cC8MwCOtrHFjmRSqrItBG1/f0w6iNZrG0QRmbTbdPkk8VI66yzlSxVxaVlf5VAawpOuR7LWNlBEKtl95hKfrcFWqG0gCCzxe0ogOWhgYog1ygS/kJOQu0ijN6GFT1yrJW1qTglJcxXa2nlBjCFfxjN7XxFrDk5zXY1mbEGuk0QfDeiSNyCGRlaTal9hA8tgo07Z1jHCcRvnWew/4Gg+XsZklWvAyn5lzovVage6sJRN0Yfe1Rc2Kdz6RVlPb7vr+s4eDpup5pHLm9uxUx3vB5QHa+MQBlfzhrWZZlG3qexpFhnAhdJxYnVqxUhnGkUxLCMA6i6u6sIAbOE7rA0A86dyU+cdfBK6v4tzFgvaHT4ORDUOFhOdtvDjeM48j+sIditiLFq0p7CJ2o+nvHqAP+b97e0w891CLvW8k707QTP8FuoKR8UX1XHU5nxXKn9Q9TTKzNp04TEtkP8ObtW1Iu9N3Azd09034vEHPM22saa+mHkb7rta+l4w+5gle8u63xtob/GATD73Xgej3PDFmat9UIsaBUpxWR/EzTrWtNXKEDW22uqv10ErsC6yweKwZ+VEqWCfPgAvSGOCXsuhL1oBZqvBz0Qv/V6UJEssYYKFH9oqzojsWkEi/OEZzfVOdTuthPUCtxWTmfjsznk2y8WgnTxNS3gVlHyYmoWLXvgnh4BcHMu3CZX9ntxq0/dNjvPsskWzY6DEK8iM7Shoy3hn+dhMpO0T6Y34J0CB3jaBjHHW/evNmqn/m8SpZnL9R6weoD+73fXhsk+xfKcL/BLcfjifv7N4yj9Oi6rpPmdCf6d8uyCMNSe1nDMLDf7+lCh91ZXl5emM8LLy+vvLxKA7krgJX5qJgya6rMy0pKBdTiZCnSk7AtwVFVEaNGne26WCua4W73uRTZNUwn6+/SjG9/fj5b1Egzl6a/saJqUnKjvV8gvFbFlXotbuwlWSsFF7qNiNCue3vt6zmnP0oquKiztDUoQVZ0HmNcSEno6kM/sBsjnfcbtdwYg3Hg7CjQnKrM1Ks95n2Qe5zlM8VVDvjT64mwP9CP/YYINCKMc06DW+Z4PNKFQA6B/W4ShpwSfrquo+979ruJt/f3Ah+GIDqdjXCg81cA9B37adrOhvNZkA2UxZmKKOxXc4Hnp2lit9ttpI11Xbf7fg3LBqW0tyQNZMQm5SiBKHT40BN6QWtKNYy7PW/u7wXJ6DrGfiSmzPF0ZD6dBUT2nrdv33H/9i0xRZbzLH1kqymQkfdvnGO3PzBOe0qR4O91aNkidjTOOqgCX1bt07c+Ylwjdw8PvL4eyaXyaz/+MWlNdKHn6x/8kP0wENeVWmCcdnRKwtgfBN0xiCxZjQnWBL7TqL1toT/243sduH7yez/h5rCj7zsRnLUtu1KdLpXzabNOwl6Tg8GHIBlxkZJfDBstpVqmfiTXzDovvDw9E9UOAAzeeHwnVUIsCapl7HphNerC7byj04NjGMVy2zvRaKs6m9MFcR91RnDloet4c/+Gu5tbSs78dBGdvRQj0ygQ4s3+wK3aC3QhSEDSuTRjRRrJBznEGizSGHftoGoQSPtqm6sRM1oQaFBhKYWXlxdVt7Yb8UMGJRO73Y7DQcklOtCcU95eu7GPWrXR5m1qrVtPqvWq+r5nnqWf0MzwGmyzrut2ALeDue/7jT7enqc998vLC4+Pj5zP82fN6NPpxMdPDwzDRPA9XdfjfS/U66HHWK9EBJlNM/Yik9RqHalcJGNcVxn+FhktqXSMzlKJHlyVShtxlq3aWy3ZbBbmUgApJJkr4lt8rQhZxX7iatfXoqoepZLVD8xbJ4WWlmjVXggZpSSoThRjrvpitOeo8pq2sslEWcA4i/c94zgwL2fmnIiLxxqYxgEYeHp6pM0WOuu4vb2X915Qs0WDNZ53b96TbkT8OMbIw8ePvLy84I0lrZEFmStqVV0I0vts9iUPnz7Qe0eMK4MmSI25dzgc6JXx1liDy7Js5KQ22tHWUVvrbY3O87wFrhYQgW0wuPV+gS3YNdTgunfYko+u67a1CIqWmcqyynpcUxQ7GO+159pvcOO6rnRBqti+Fxuetl9DfxFVPoajWA5ZgfJTWqU36j2dV4f0aui7i39ZWlaa2ny71vIwdK5JMVVu7+94PZ5YY6KfJnxXGPphgyOtD+xi4s3bN7x59443Hz/xwx/8Oof9LaI5WtHKoPVW2BTnrwuwX/HxvQ5cjw8P5Lgyjr1awzdmYBEZPicinY1qLItW6cVtCLUaYs6QLwSF0AmxYl1XTqcjUUVNQ+i2wcqKqCakJDbz83LS92B4fHzcDmghJxRNPbNUYKVwqpW8rKJXuKyY/X5zxa2lXL5fZaLfO3GObcaExQls2JtOmcuWoNJXzgdVy5bV0Xfd1t9oh0KD8cRS49KcbwOIPlwCl9FraXUzt40KVcYCggyQNhv4ZBNd1yoOrp7/c9kjayVwUqHT52g9t2VZNnHl6/5bO4DaIeGV8DHPQqu/PrSae2zXdzRViWVZ+PDxI1044n2gFLMRIDDyulkdba3CLlJ0tZ1WNvWPxuRrckDOXOaoUHaXBB9VPFGLkabYL0QQs4mfSolet3EOYexLEPHW6wCyNPZTketmMOLSjJGk24NF3ne1Ej1rhVyzqP7rZ7jWjTRVKfIGHPKnsFXlfVmFtp9fHgUptSJdJFCd43R8pQV0JehrtVYJvmNdF06nI94GatsLCtGnKFn+6yJ9r/P5zE57On0f6L0kfkYbjZ0Xk9XQyXpBYfq72zuGQdbLjfabszJcK0KM6btuIyhYKyw/q2y3dVp1bg8GZaqiyU4ba/BBtOnbvJ1XhmNtVapcTTYJpQbl2nZ/K7MGLjGDDUiuJyzcTgOdMDpFvzJ0HSH0khQ4hw8CcVZgrFXXqqEfAjEJ5OuDF3KMEtEGJSJZY5gxBFFSFrKPEjWoSH9M2wN9jMRcqCaCdbjgCf3AsJvUlVrQonuF79++fceXX33J/nCQRDkXMY20F9Wf7z7MH/3W/8+P73Xg+vjhA8vpRN+HC309y4S9qB2gmb/cnOPxqHAcDNNA8B0GI03JmDf/mtD5LdAdj0eh0tcq2dw04pQxt8SFuEbmeaEbOrG7d5aH5yd2ux3jNFJBe1I697FmUozMpzNxXoRaXir5/Ttpzna9BLbTifl8xhpRyXbWUEvmfDqKqGsaOBz2W2ZnnMUGjwt+I2a0fojfJKMu0FL7aoog17YdDc5qzeYQvPZCtEqLIu+TU5JZlNDR9R3rIlVt9pmu67fnumbAXXyoJBGwKgfjrJXrqw3219dXVRG3nwX0XArn0wlaZtl124zXy8uLeGh5vwUy6yyDwo1UmJeF15/9jIpVBp8jZ+mzzDrMnXOTtFKo1Dbo7wI51SIjF30/bsE2WCf9Ja14cnsVY0StWaufmAWegSrVjwaRaqA2qn3JhF4cojEQbMAGHW6uhlSFDWaqwXg9CK0nIeupFqi2arAyFFNU8V5o9xdB5gZtsgVf49oMmrIbg2cYex4fP20JhzF1o72/vD6DHnhrTKQkSikpVfrQsy4SuPbTXufZDJ33zOeFZV5Yl5WX52fthTlu9nuRFuo7sipUhBCYz4vsaetwxtKrEsTQ97x7+5a+79Wh97AFl88TMqHayxjBRSnGWtHOSzrjeZHt0l6wkySmVVCNwNQIT+3RXuu78mktaFVTWWKk5SlOg5O1jr4TOK0o3FtKxTuvwdlsZqzOX3QYrY5BGMm5pC/npIpyTbA5ZUInbGNjLSlmUdBQok9JF5hQ+u0SiOV1PNaI10QIgW4YmPYH4RF0meCkR/f4+MLL85Ef/NqvcXt/T9+P1JSwvkO8mtwlG9LH5zSNX/7xvQ5cf/AHPwOK+DOVy1wLRqqupDYWwyisn4eHB9YlklNhnEbRAzOOmCKn01nmMtQm3lqDVwPJBiH0XUc3qHyMLsKkuPkwDPg+4DvP8Xjk7u6Om9tbRJJHVAWOryeGfqSkwvHlSEkr3lmGruNmP2/Dr2PXcXvYcT6O/N7/ceLkIaeZ+aSbWwkjP/zhD7m5uWW3PxD6jvPzC5XCrbL12qMpErRemte5j5Y9AnjrJDCom6z0K6RHZUsVRfCc2d8csBVcFXWSsqwsa+L88nq5biHw+PwiL24u8jcCD0aSsvecsyJ1kzPzcuT89LSJjk7eiyzOsjCfReVkWZYtkeh60TC8v3/DfDrx8vzM49MTt6qMMQwybGyM2G8IK0z8vv7xP/k9vvnmA99+84mnlyMpyaG1prKxspouZaskZPxNCD4pinSTiAA3gWKvUFKDjYQY1A4mp1qG1jrtF8mwMVwGy6EKNT9FUo4YexFsbRV8u495o2jojJ0PBO85z6oBmBIWc2HBGRlmjzGxrIvq5Anrb9DeaBs8b7YeULWXJkSNy/voJBDtd6LGYgw2CCT/8PDEsoo0FtVye3OQ+3g+sx8HnBebmvdv37Auy9Z7Flt5UcEZepnTq6Xw/PQk/c+uo9bMMs+UnCS46J4EOL2+cnx5IaXE7e0tTd8zxbglIC0ZA1S2KSq8qaxaI5VxynFzlZaq7SL5dE0yaoSpa5ZhQwUugtaaOCOJjHHCFnTObwoWpVaeS9EK3+KszHliDCdr5czSMYJxmpSRajWhbj5qwqruQmCcJknIYySuif1uxzSMeOc4Ho8XySfXzCO1v9pP2zo4DAPkgreW85pxQYbgu64TNMGAyx1hmAjjgB86unGi2+0JhwNlXbHjiJSU6kTRkmdd7X8ctPB7HbiO5wXvLGtsrrOZ8zzjO68meBXrOmIJzKuhuhHb99jesLu9ZZlXYi74sGOJZ5YlkzLkakUd2YVt/qsiEAzV4ovoz/mhw5UqlOD9Hqwc5phAN+zYH+7pu47nlydinLGux7gBSibVmdfjwtAFujDw/suvuL+/ZxhGjk+fOL4+s5xPeFso68ySIlGDqHeBskY+hp7T65l+eMIHz7zO5JIZvvmwZXxt4PKijlG2auvaVsArzFeUQSaUb5lNKqguWcqEvlOLHUkOnMq2tE3biCdr00hU0kFVWvilYY1i8UFec5kxetD64KkVqYSzNra1r/B6PBJTkmHO85mXp2fpZz09saZI3wXGceDu7g3TOJJz4uOHbyVJ8IFx7BlUfeDT4wPnpZCyDqJjSdVsQUbUuAUymxcRM8VUHSrNCMQzUq0lU0kKu6KrpUFyxmT6XqAaOSyCQHxVVL3neaVZmRyPZ+lZUhnHgd040nWB4+lIqQlUUbtQN23NYRjpOpmrWWMhrjIk3Xc9y5poIq3n01nucRVoufMdvpch+lgyZil4L9CT2Q7qi51LCF7go/nMukSMzxhfcc6yns46AH6iVOnhpVxZ12b4uVJLpes8XfZ8fHig86LPeTfdiavDKiza0Hl6JZkIOQNSXHl8eGA+n8g54X3YBpWh8vHDRwkWxvLx2w+fBZNWCTUh31oulPU2ThC6TipeC7nW7bkAvddsQ86tmoPLoC/1ojbR1PbN1QhD0STAWHH+buK6DW6upe03QQHWddH9Y6UquiL2XJOrZG9lYlw26bsGuTdN0a7rlO0n99NZv7EMrw04x26kUyGDuCaeX4+czyvV9thbQxomUYpxQgBLVb+oJGP48PzMeH/E7/akUvBUXOsLt4l+4y72Kb+6q8n3O3DFteDGALYT59maOK9HBtdJpeAcw24njUnnmLq9LFTneffuHd/8/BuWeWF32PP4dMZkRwjQeTZxzlLT5u/Vhmitl+HMcRi3pv/t3R0xrZzPR3K17A/33N+/ZxxHTueVXCK+G7B+JJcEdmZexYXUuI7377/k9u6G3jt+8fLE6fWF9Xwk2ErNKzlBKkZwY1cwpfL48YHX51esFxggplWatc7ShSAsrr4TokARIWHjBMt2XnykNrgILur4Oav6iGTeYm+QN3t3Q2NGNiq2wmdcsrek6gVw6Ym17LL9jHOizFBUDDgo7u+9l5meJJp5vpPqMOXM6+m0mReuy0wpcDydRHpGB5kNlZvbG3bjwLosfPw2s84nGEamYWQcBmReb6banmIMxYJ1HViP8YF+mshF+hveW14eZZDCWUNOkYqI/B7u7jb5rXVJlFWkiwTGEQsHYy1h6OlGETrFNCarYRh7Pn16ZJ5n0lrJgHGe4B13d+949/aecRz4yR/8gd4XgXbQoJWyJGfGBjCe0FnA431mv9tLwFubMoYBhNQyTDvGaWLa7Xh9fWWNi6hJaP/DYvFOaNYG7Rd3nWhuLjPVdFTT65fjPJ85nVbmpWBsoBQhrsQ4I2JRhb7PAqeXytPzC7eHHV0fuL2/xXlY5pn5dBZiRucZB1FIj8tKnCOfPn5knkVtpq3J1v9MMQp1fRg276nWf0o62NuUaVqftEGTXddhvLgJV1OZU9SessUpGaQlW01gNueMqfnS6yyXNV5Lo79r4NL10Wxi5H+qgAP80drDCmuvat8d99keou0fr1VbyazLia6TfmCvyjKNQdSqzUZoasGvKfY4/e/O93TqHVhy5fn5yHmO7G7e0vmO3TixnGfMMFAqpFJJtZCNIRvLx+dnbk8nxmWmOsfYkh4D5HLp/+q9aQHsV3l8rwPXdLjn5uaAUwHalDPTzQPjXuRG+q7n9v6ebujp+p794UAXOrwXFeif/O7v8fr6ym634+27H1Fqph96hl2vqgGG4+nEWbXykvY2GhW5MfBub2/ZH4T5dnx95fnlhffv3/Pm7RthBHWfMC4ClpfjSimVfrrhiy8s+6nn/ZsbzueZJwOdM8R5Zeg8N/uRT87Qa6borCdXp1m8JwTZFKYiZb0Gk0IVu/oaiaqSUEomZ8Hk16ZArzANaHApl2HTBrsamuWJHNQyxC106e9SvjEXfb7WS6g0d+arVarN62SaX5IlWEtVVYLqnEA2SaoDi2glOqDzlhxFcT8u69afEVuHPbtpouv6TWV71QPqeDxiXo8MxwUXAm/ff8mPf9OA61jWTCwQhgNgCF3PmzdvBTZRpfaHb7/Bmir2M9aKpFXfUypiw4EQP87nswZ3va6aUQfvWfQw+uKLLxj1wLDG8Lu/+7scVd6qC4Gbmxve3b/hN3/8Z9lNEwb4u3/37/L0/MJ5PnE8njbPrJQz+9sblnnm9Hrkiy/eMwyjwNrO8+2333B8PW6Z9zRNvH37li9/+GvSD+wCP//5z3h+eub1eOR4PLIs5+1Qz1nMNcdxYhh7UpKe7rouOvAubDZsRxhmpiijJS3pKSUS40JcZ/Z3e/a7kbHvOL48sabM6/HEfj+p+7Sw6GJJLC8LHz98kL6O9rTGYcDSXKtFGUOGrzMlaa84JopKKjX2YFOkSJhN0mhdFmrKFGupMVFtlT65MyxxZWldB1u3/dDIW1WTwKBwe4Pca82fG72i9iC29Ye99kD1yxhlnl73fiQZbFy/Uj7XEdxEmGsVOaUQcNYweo+zBluruLk3kodSYtveWnPmrD3nxn68fv1NO3JZeHh4Zo6F3/jxb7EsiXWNvHnzjrfv3+GDtE36/Z7xcGC6u+Fwd0sYeqq3Kkt91cky105h2+b4lR/f68D1ox//Od69e8vh5o79QQLYsi5C2eyFAbi/uWFZV47nE2/evWPoBh3mC/zg13/Mui68ffOWl+cXDDBMI4fbPb4TosW8zJxPJ/UPSiJIWrJSvi8N3GHoWdZFFdKfpcd1c8P5fKbawOHjRwyGlIpaoXesp1fGwXN7mBh7T/AWa2VAeZomDruRP/tn/wxWIbbzeebTpyfmeWVZIhhROEdhvuC8JjfqNdQO0FKx5XopVRySDYIerkWax8Ug8KDW8a068hpgEkUo06jDrma1Ov8tbE6kd9KgycyFubQxrdqfXJrZrdndyAylagAuqq+mPRYZeHS4TnpGgxmp1nBzuOPu/p79bofXORXrPIe7e9Ysn976nq++/JKbNz/g1368YPuJZa3kYpj2d5yWFWMd9/dvdBZOhIsfPn7AO8PQiRzWOI10g+D33ShyWMuy8PL6umnlXWwz5IMvKij89u07GY7V6//Vr/0Z1nXdRhd2047bw4Gvv/iC3ThhjWF/+5Z5FUPTNa4y+K5JxribWBfRvmwCxN57vHVSpZzPQrowIni73+9588UXQlDqAt9+++1GBlrWlajCrSGE7RA2VtwIkvZAz+fzlrnPy1k0IueFWirWBO3rBVKaOZ+PnF5fuL3dcdhPjH3gwzc/4/j6TIorfWcpKQk9exQJNO+srLMqYwRpjTx+euB0PBLjAqWIPbyTvmVR9MDJ7LaSAawkH1YCVlA2bSmWGjx1Izk4SpXkSBiaVSWxigYskVEStqjEEZHObkPnss9qlcBRMMKcRCgreopv5C+a2KwmcJf9cNmhQefXatYZUw1+qVbpq5eCyVlQIGvBttGNS1Bs86piz2RpBqL90O6Ppe+uPMWoOOeV8XgmpopbNNmNYkNzOh3Zrze0gf0YV9Fv1LGcyueBWD5vY1X+cbpanz++14Hri69/ja++/IL7+7e8efeWYRqpFW7f3MtgnnMM48TL6yufHh949/69zu3I4bfb31Jr5auvvuL15VXw9aHn/s0tXS+CtTEllvnMui5bn0Uo8CtGWYzLMm/CucfTiePxlcONqKM/Pz3zfJxxYZRFngveOfZjz3x8Yew9h91APr/SB4M3hXm3w5vCNPb85p/7MTlF5vPMw8Mjxv6Ul5cjx+OMDBBJJpNSUpdXyNls0EYLENXqxtKGsZBGQMKObKqq6uTFZUpNG/SHBjlr3cUOvnLl5iomf5saur1o6n0m7lrrtqi3xW2azJC9wIde2JEy7C3KA5vKeqdSQU48qpwLouUYAjc3d+z1ugdtxDtv2R3ueD2txFTBeg63b7h92/MFATfsmDVw7W/ueT3NVCw3N7c4Zet13nFz+4bOO4aho1OVkq7v8KFjUBbnsorwaU5pYz1SL3JjIgqbubm93dawAfpxvw3RGitsuWkYeP/mDbtJbChWHUausF2PUkUXL/TiYZVjUkKKHIjOOZ6fnojLSufDlhgE73nz5XvGST7D4e6edZlVQLnIoCyVLnRcq2cMQ09OiXlZOJ9PmyTT8SR2NiLdZHG2wzlP5zvWOHM8PvPy9Mjt7Y6b/cTQB/a7kU8fvuV0fCHFWVwSnOewm/jqq68Yh4FBhZ6X88zpeMIZsahflpmSVnZqKLq6haLuyM57ihXVF2tk/EKqfxH1bfNrjaWLBpCk9HbfObwTHypBKbLMCMhSFdUcRTGCsvpQS5dqDLVePL4Uq6RJG5mGOrQBvlqvAlfbaRfXc7Y9UwlWTC4TsOSMqRVvDJ3ulyJyJRsRpSWDbezl2kGgiVRfy2A19KRBil3fU6qjX6IM9ndBE7Gyva+2rrfPoYFRVIkatalugfmzxx+j2oLveeD64Y9+vKk1DIdbhlF6TsNBhhaXGHmdV4oL3Lz5At9PxJyZz6qOYAL90DPubnl+OXM8nZgfnllSYdyNjNOgEjodvu8Ig8FHEdosRvT5bIB+ugNT6XOi363cvskXhWz3LXdvnimIrbYHgjX0wfHqBCp8e38gzztu9yO7MfD45oC3laHzfPX+HXFdOB1PWOs4nWf6YeJwE+k7kZnBSB9gXValykdKbgQKGXK+Vn9v9gtVK7KWSULZ+lWf+ULVi3V4GyRuTLs2Dl/a7NOmeC73SBhqrQktKvxC4VWPKZ2zS0Vpt8rc7LpOhERn8crq+l6yy67j/v5esmSDzJGplNO0P2gfUjeilXmiLu05zpXjSURcl1jFvrwbwXTEtDDHDHPGhgljPWuxLK+L2qp3xOwxvsPTM5/OPJ/EKuLtF+8hgHOGNRnmFVJS6xkXtky2IMQWYwwxm00M2FrLkized/h+JxX765Ganxn6PbnKNZ2TmFFalQjDak8yLyyp0ncT+5sJDMznmXVZcc4QswU/4Pqe59MT5/OR4/GV39rvKM5RrKfgsN3AoCMMjUDTZMW8YRs9yDnjl4VeB9mttYTXV1w3sK4Rbz3B9XgrA/cprxyPN+x2e+5upOLqOkdcZgnaQ088y2iItfDui/f81p//87y9v+fuVowRnx+fePj4iX+y3/H08Inz8ZV5PjNNe4yBeT6zG3cb69EYKxCvFdmtlIWx6Kzoejb2pqx3WavLchadR624UsxqRLt+zkbU4F5Lklm5z3pPlQsdte0b2Qc5iy6grv626zYDUNlRV4o2RoKhLTKHKQP+A7XK5xWTUc+0nzDOcEorTtV7NkcHDVpNUOBakKCdBW3YegtYKgSQc+bx6ZWYCr/xm3+RGAtdP/Duyy+4fXOHNY51TYxxZbfbcXt7y92be/pxaKUjteat8sReRa4/ZtCC73ngWlPl9bTw8HTk48tRCAoxCmXbe3KR/sMwjUzTjpfTzHyWgzCuK/vdnv1ujw09/+T3/oBPnx54eHjgx7/5Y/aHi5BsazB650WHbI3S9C6qrKyVV/u72IU4lrXw+HTk5WXm9bjSeYtJEUdhMZXT8QVnCukwid9NJwoF6+6AKZFSIj/5/T/EID2qQuXtu3e8e2ex1m92EnGNPD0+khexHDGqzSgq+OmqTyWDgy24LOfzBgU2xZEWpNqsVoqJlNMWwBp0Iv5VjkbOKCXRsHs5TBaae3PQzL1WoZ2jzsDed9IfsiKzgzWCm+tGEwX5mXld2O32DOPAsNuJdqQ1KvIpM2Sh7/GbCgDC3nKBmCvHpxPOD1QSr6cXfv7tA90Y8f2OQsfTy8x5TQy7mdCNWBfAOlXdMDJPpIzFoe94fX4kJqH+f/18YrebcNYxLzOPD4+kLAFpt9vJtULZpnJ1NoUQ0Y8Us0FjDMMwKPMv4YCvf/BrnFY5PP/J7/6+wFgGUioKaamtu2330NL3wghLMWFNlSQtF8ah4+XplWWZWdeZw5s7DscT/dCpdFbeiDPLIlp1BiN6mNoLcd6RcmRdVrkuw0DwnuPxlefnZ/V9C9jqlNzhMTquss4nrDXkUumD5XReqNXgbSDbFWMEotrvDgQv+pePj0/iT7cueO/46quv8BZegyOuAzeHW5x3lJJYZ7kfwXtA+pLOGlVvX5TxKsoi1EpK0pOSRK1yOgnjztRK3wcdjM7EtGyVMLUqHV9HIeAqaAEKoMlAue6lLKSMopCnxKtL4Nr+y1gRpdWKpSRhg5ZcGMeRaZoYVcNzPp8FLi6VfhxF93I50Q39Rm66rrzGcdyqrEZOQfd9m1n77hegUmKVvu9Jedkq77SuYCzzLGcEhgtxzcjAd7NMySXjtx6BurfXxjD81c/+73fgWsVefI2JqPTg83lmLQXnhbDRTyPFWKoRTPd8ntXLZyWEgWEQuf9zsxd4PfF6PFONI6Wq8yA6mOw9SYcPz6czZTMXrKxx1cNYaPQpFawtLEsSdlyuVCc25JTEilYvanUBcLmn4nCbo9h+6xgO1loOh8Mmthl6EZE9nQTKJHSQC67KQG0u4tBbqsJ4zhI0cAGYUmSOwxoNRvImailE7TmtxhBT6w8L9GFtG8h0GKwu1CjJVcPqiwwV+yAagG2+KSWlEVsrKhp9J5WRFdPNrhcijfQd5LW6oRcB32lid3OgqrJ/oRK6XtQFug7ThrwVknQhUEyhVEPoBpxfSQXO80qxkc6I99qyJuYlUV1kTRbrxI5mnqNCcpaUVlKuxFx5Oc7EuGKsYf96UsKUVSv1oxAbrCVlPhsEbwfGmEQZJRcB/44noT6vUaSHaikEZ4mpqG3EmaeXI9bJ515jouulR2aswzhVoUiZcRwE5koZZw2n0ywHcBSqfYyr6GsuK26eSSXxug3my3VbVh3eNgJHGmBZI8ayweRigGipasa5xMi6RpwDUxKmWgwRayoli1FlUg8rg7gOOyc+aHGZkQreXelwispEdm7zf9vvdrx0HYv3WFPZ7Sb6TuTe0pqUPSeqLE6JCesatyF7ECiuauACHaNJYmtTUsLUym4YSL5pnF4832qtuAaPfacPBmzyXe5qWL3kQtL7bLaT2mzwofwXyjAUiNMYVcjJonwxjSPTbmI37bDWsfS9ti4yru/IphIdompxJakGbAlREypogavd6+tqslVpLXA57yimahBk+xmJ/rLRnVeZODXCtc4qPH453y4l1tVkZGuK/4qP73XgOp9myc5Dh+88pRbmRdh71jp8L86rpVaOr0e6od+kgpyTimWYdoQgh+U0TcSYMcZTshwkrHE7YPxmqicHgejPScVzmoXGOw4D1gWhJ+PI1QBON2VHyTojVQq9Kqxba6m5ConkJBbg63yipEjvPVwNf+72e8ZxYrfbY4zj9aVp/QVC1+GxBOM2uG9dVxUDFaHfYC9wRO17wdMNnykF1Frx1pCilbBk6meZmDR2ZZDUGFHbzjmSc1ukAgsKBOHoumGr5uRn1Fiv6yVwOScuulbo8CEECpVBoTTrHXdv3rDb79jt97y8vErlZg0+aJapElVJG+MbVFKl0px2PeclY53IPBk8IfQ409H1kEmEMCDktEoXPH3vN7q0KHg7Cg5cjzNeyDnWU7GUaqhFxHhtVTWGaqhZpZOs2TZyypV61XAPQUkNLuC9BIquC+RqySkzL4k1JrwR6DHVSmcDTu+5tVYUP8osr+9kFqjrOnIxalbq6QZRZZChZ9HqzBlSlFm5CgQdjrXO0QdJBnKSBEoq8UxOBTM4vOvou4E1rgQ/UzJ4F0TZvIjuYqmAcTjf4VwngbYaqbatJfjAMs9UVfgQmwxhCi6nmdhUPAwMfYepVYerYeyFaDKNotnZqoxVPbAApqmKt5QaoDYIPARJIpqW5nyyFO+wVA67/TZkvCwCtVkrti22XsSJ47JeellI4LLWEJR000ZLYk6b8oY4BvzRs8xav6msbGSJCjWLYk+rupwLrPPCuoiRZraGZCp+PwmbWoNT+5xNB7RVXA15+XwO7FI1Xge+ECLVaIsAtp5YGEepnowhjD3nZeW8ruz3O0kc1GQ1K2FDsvFLx/wzl5Nf8fG9DlzBG7z6lzQDB2dB1J8KKa2irt4WQpGmpgUoCWqmpJXj6zOn4yvn84mUVmyVmR1qoapCQqkVE2RBCgyii9M6vJHGfLAyOLkbJ3aDNI69FUfh3gf60FFSFEfmuBC89CtqLpsu3zB0DO/ecz6+EJeZmiPrfCYqMcQHYQR5HzDWU0wl9J77+zvKukKuDL7bsrZlWZiXWTIfo/I1mkENuwFTBd7YFlEV5fHcO1JMdGtHH9eN1FFpNFs1TVSoMGWvg66STUk/RyWmXLjS+7NYdSN21otDtPNUH6hGrC6896SShbnX9/RDz/6wJ6iI75b02dZnE9jHGJVE2gZHxa5mGkZScTjzwnyecX4UIo5znNfEejpzOs7YJYHxON/hXVAlBekFpjVSXKZmkYiyGGy15FiIJmIMFFWrMNbiMOSoeoK1YrzbZKvOxxNpFemfcZpElsmIZqHTjNthWOYTKUXWdQZTZG7OGuqaWZYzMa1Ypa7Lw3A8yqB4LYX9fk8uUdcvUm0lIV4IQUd5cfnSmqlVKpBSK64meb2SN7kqU8EhlXsXgvQKjcdbqW5lZtJLgDZZ9lgu2uowNJPXahy1JoyxHPY3oh5SDRaBtoKzlHGk0zmqFCOWIgSiFNWKRXQ85bB227lQVP/SKHRojREEYV2lr6dVUxPgjjESz2eMgRA87754p/2tyOl4YuwlcDX/LWNEFu70ehIm3abUr5qG1kpfU59bfNIEORC7krqRmgRBExFiZy8VV3OQrqXifaDvO/peGNE5TqQkivZrymRruB06umnSpMOKCk+W+xiC3wahcymEvsc52bfWXN5rrRq4uk56m2El5pWHhwfmmBjGlWWdSbOo1Z/PMy6EDTZNKWGdBGCxdMmftVB0if6JPL7XgavvAsZU5vORnLyoXOSIsxCcpTqLM3owg9gU1IKpYuoYrFG3YbCq4i3/XWV2iLrNXVgQWi1sB7T4BYEJns45grP03itlWkpwbwzBGoKTAGb6nkQmLWwSS+u6MoSOJg8UhpEUF2FCIeaNKUkgMkoLxyhjx0gmNIwDEahJ5JDapnSqn9j6F0LDNhsjkiuWUGsw11pJzuK8GGG65LfAVdoQpbn4c9VasNnodZFg0nTUgAuLUefBjKqpG2MpGIzz2C5QrdfA5XDtYKlV1PC1sogq4SOuwxcWFUhAc0ZgmMZ6kurRClSbM3ldccAQPPtpwJrCsRO5LesdBYu14BCYxlgRhbVIwiN0f8V0a6bmRM26G0vBK3ZvjSVrdl5LxVW7zb+ZIqaIBvFos3rN0cTKOyvuATVDkdlBo2tNcVj5EqF5zWpRUozZxiC8NRTtBZpaZdjdq35eKdScococoNNr6K0lG4dBRXmrVE22Vu1UqPq59wTnZV1bizeW4kRRvzYvKY9UoYiwcPAy1N8FQSZyhByNXA/T3Mj1NVSwWGBDS7FGGYuNYHSpTKwVNl97OGe39xlC2OSSuCIbAZuEU3COeRhE568P7A9iQLrGlVLrJrrbelSiB6iSaU12iWZtYi5STiXjV69Gkp5+GPQzKitXez1SkAsqYzSBGXRIXsYLHEGHi0OvbhN63rFGirX43UgYJ9kX2u+8VttolVWJcavKZM9cjDqb80JjXjZLn43q/llPQxLDzrnNG63t0aboIgmT2CFdcSv/JI7+73fg2o09hsrx5VHhEUu1Bm9v6YIoLIcgJbc4qCbZJCVhKXTeMgQZ5B2CZw2eWjIOkSrxFHAGXyUrCU6fC5XcKXlrXA+qwdYHz+QdQ5BDvXcIldVaeucI48BqCufXZ0pOIkB6hN0gt8IaeR7nPb54dkMHpmxK56HvZOB6W1xKIR8HOYxcphuHzYIh9xHfq+o0hq4T+Msaw7KcL0zBrH9q98gFgRtdDviYNuz7euMba7YKzabL+zHW4LtrFuKVLUPXbdI5IjhbsN5JNeWEBi8HyqUnFAZxWS1FrgPO4lrgNNLLsO2wa9CHBh7pyRkokRIjeV0I1rAfe97eHBiC9DipFdfviEk03YOVPogpYKvDG3DW4K0lGoHWSoaaVjUxlYARpGEhh2oSlfei68kgowTWgPXyM71zLAo/1ygBLTjP0HtxzCZjkDUpY50GW7Mc4sbgDFQnSU3N0ptzVvosQ+epOWLFFEvmBI1j6AdqSpRVexpUZZ4agX9rIWeD13mHjAYvY6QXaQyDC/TO0zlP7xydc+A8IXhSLKI074JQyo08R98JHD8NnciYzZ5VrVIURNr6QkUTq+K1QlHSTwii7EC9wNft8AU5iIWAdNEX3AgJuh7hMnxLhRykj+i8k+pe9RUX7UMOvTgG51LASl9Hvtdc1TUhUZkor73WXKSX6dYV572O69SrwNWIGS0Iy5doMMpsoJxbGqy9E6X8tsatobiFYgzjfo9XM8u2D68D1zVbuEGH162BBi22fXqp4i/vr/W2jVGEwEoAH8eR/T4y7XfElAWdqFlXvgQxY3QE4CpwfSZK8Es+vteB64s3B3a7He/e7Hl4eOT1dOT5+MrHX/whwzhyuL3FHw5CppjP+K6j5kpJhZQi3/xh5fzyiffv33O767FlZT0/E2ymM1kySddtmUPJs0C1tdCZQixRko+Y6Z2I4+4Hy6dvfsbbd285HA7sOo9JC3l5xeyc+P6kyG43Ymrg9PrC73/7C5z5Abuxwxz2/MFP/5BapLFtasV3Pbv9frOiX9eVl9dXUYFX91rnJIs1Su7Q9Fto/LvxQmevSaCSCn4cNFuFuEjTXmAkIEZqjJhV4INGULE4nXEpCpl0MuYSpQkO0hjHORxi335tZW+sOPSadhAhxnc4sedw+tX6AaVWVoVJKxUfhJDQusXGXVTM3VaJSvXnzcUba64JZxJjsLw+fEN694bRG/qbgceHQl1fOZ5eEI9DRwrD9jrxKM9bgJXKaT6xLjM1JzjtmaaR0AWCD1feY3Wz/XDBAwtrWoU00QWxD4mV54/PwjiUGMt8PvP0YSanyE0vbz6nxOAq6+mJlKX68xgJbDlBkoSMUojrSViMxvKYZowGgrisLKswDJ9r5Yu7HdYJQjFYRy6JvGbO59N28EEQOLsKIWTajQI/rytPHz7gcibc3fHF/R2+wvPzC58eHohF1MV3045lOctg83zmZurYTx3OjuynHefjC/P5TFxXutARnHjbNWV6GxzLski/sRs5H1/oOhEC/uYXv+Drr7/eejLtoL7AeRcmbRtNmY+nzfxx89aKsra6QUYqunHgnKOQoYLn7u1bjDWioL7M2CKDvsWCmwZMzpAFwmzrHGcxpWKKUO5NLdjgsX24QGe1Qe4X52kppCWJ2e8GSdZy1qpL5N6yFaSlUqkebO+3PrAM6V8C+bVC/rU+aAuerWcNF4ZhC2bt94z+TtTEtg3KWyfyUS8vL8TUXMcjRRPOjx8/cnt3j3eOGCNB2wUyOiMCxZU/pYHr7mbH4bBnvx/YjR3nZeY0nzHWSbXVdTgPYz9wf7ej6wZlWEVeX17xtlDjQjwf8QamwfPmds9hHOi6oKrdwi4qKUrPQheNAZzJeO+Zpp7eV8Zh5LCfeHl5oaaFtDhMjQRXCQ5MEc0259SO2wVMTaR4FqJCkGFaYy3OBbwzdH1HTovMn60rWTFzQRmUMGEvAqCt89uSmSpuGhQjX3nz3xFIqioDSlJ39S6yZuvvlCsorkF/2dSNbeQaSqbPD9Lj2oKnPk9Th9Ye/D+lQXul9dbevLn8QG2fSeFa2uGqfJCth2ZUjcAaTDXqYO2Yu4Vp8Ox3HRhH5+X+OecYO8N+8IQkOnvGOIwLFC7VehvuBIO3PclDLZnD1DGOncpDeVYr1Uqtha6T7NvqPehHsdERwoPYupcYhWPWRgdsTwyGlDw1LRLIXcXtepZohWJcBQJuh1QXTKN9yr3QAytHYSt6Y+injt0oPkk5Jsq6iO2KtRvRpFpD9VZhHu3ZILdx7AJ7JTd1TnzLyIm0nFlNpqaIozJ2gbpG1c87c3x9YZ1nUlyhNMi1klNknWfm05H1fCLFFW+7jQzTdx5LZrWGvg9izFpFFd65C937j6g0XD2uB97tVXXx+Z+Nhep0qF3rWsOWHFVd87kWclUIuRR86MguQ07kqJdfE5xquKx7KYGlldH+vZ0kpm4K7fI7FwUbY40C1EVRHjHERWHwXIsO/kMb+v8jA/7feVxfN/Oda9KIa1sFaxTGV5Pe1gsrtW6kLYywlb1Wt1Xp8bVh143Ute3levGV+7+4d/93j+914NqNgWkIjHimMQjbr2RKEYXnmBMxSaZ4uL1l6EaRzFkWPrhKXBOUleX8IrivhZv9QOfAU7Hqi1SiBox1hXZgW6vDxJUhWByeafDsxsByqpBX0gLklc7Jz1iKVFFGAs00So+llsg4ycyYdWJY5x0EbxnHnqenmXWJrCptI/CX6sFpRWO1p9UO+KoVkqBl0mO43nhQsPgtcBRr5OCq6PgA2xequtGayUWfzxix1zC0DXkJONZqADHy3K0/U/T7yqbVRa5v+gpa3HQOW0+gJQzyw5eK6ztrokEvdXsNpVl7Q985dmNHxWkiIU3+qTPcTIE1QeiEFVqwJM0yU85U3aBCi+7IuYNaGAfp2zgvenqLq5tYse8EzjMGUikMXb8xJtelspLJTj6O0/6KswOlDCLbVRZcDfjgsF1H31lSEZYaXPqMtSkWWEPnAzEm4rry8rxIX9N59ocJb8UqZJ1X8irJkA8e15lNUNYY8aKTCh2o0l8bgmNUyLlzRuD2mknzmXOayWvEkdn1nUBkOZPiwnI+in1IFXq+wJuSdecsFjcyZ5Wo1W9rxzu5noZC1wW64CipuzDi/mmHXjt0uU5+2nozijRI0tYqkNLWljGg17Gay7xRe5rclNC1f4jJdEOPKVZdIcpnSVfVPVFls+tz6j7R91GouCrUMkkfZVNkg+4rgQM3P65yod+3/y71sg4ugeD62lygVqifBy1FZWT7XSnbaOAyxmKd9gzb/lUIFG0rWGflTER82zKi9GFasDJcwYtcoHv+FAeuv/+//R2CWmAMu5F+Grm5vSF0vc5xSNM5LSc+fXtit9tvTcmhs5RVpJSeHr4lrqsyYRJPTy94FxjGiZvDgb6XjHqjlDoZvIXC48cP/G9/52+zLGfevn3Lr/36r7ObJsZemGGdy+zHgCnCRoqzWI/Y4AlhxNmB4O+Yxh7rjFo2OLrO0Xeefhx4/v3f5+HhQWR15hPBB3bjji+//JJxHNWyfNiau7ChEYDARsVU8mfZniVvB4DUkEUZRs5YqvVg1cXUwFVYolp7+btuSNmUV9meZoDbV/tv/Z3rRduyT8gy/1MK9uogSEnsZ9qhcHd3JzI3VweL/FvZMsKcLlDJsiw8PD3z+vQE6Yx1PXF+4eXxG8bdgcFX3t2OYBz9uMf5QAFiKjoPl8GIkr2QXRwg3z8fX3DeYE2llgQuSl/LFOlJVQSejitr9pQoXmi9MwyTZT/uCOry2/U9FqFdx5h4ePhAWZ0KtArZY4N8oUVpmlzUMAwMoWPqOpg6bsew9XmmcYIic1TnzvLw8Ym1ijZd7AZCcJszdtEB9hgjUTUAuxA427xBy95kjIra5pipyrQce08ploKlG3re7nu1+yi8f3NgPwZ6b3h3d8Oh/zHLD77idHxmXV6Zzyd+8YufUfLMNPSMfcA5I6rnzvLy+MA3337Dw9MTx+NJncmFCHTdxynpQgW3Vm3kc6Eao4lb2QgsuVZZty1xayhEqVzPaOUitiVrShgNLLtmda9BPjeGYb6syVJV8d8Y8gUguCSYpWKtQIHyTQmg1UoFLA9HzYVU06ZqUqvsU5njsxgXRHQXhUyreBNo508qv0bcUeYnpqm6KH1igzVUb9EIWmAV1ss5Mi8n5uWML2J2WbZC32zXvxnvxgbD9sNn53bO5TOY8ld5fK8D1+ODePCknBh2E8M4cJ5f8Wp13bIa8XVK9L0c8l0QFQCZj4IUFx4ePnE6Hnl9faXkKk3gYSDHswSHodd5DrngKUXpnZ1PPHz6xDff/JznpwdKjvzoR7+Oc5DizDe/+CkfP3zgpK69MtEvB59B4DrT6yxXLeKOK1gXOVceHp/5+PDA48MD5/OZtK4MQ6ULA+eTeFgZDN4FnAfjPjdKkMqjUbSlM9IYP60fBIZqLNXo9xpWrtbb1kCpQv8uFKXQX5q2wAUSAIU63ZYBN4Xq67+391iVXWjQRrv9HMJo8zRJKdoAj4+P0tOoosTRAlzLBoWGnFUNQv798emJl5dXTqdXrFt4eLDUmpmmG8XlDVjH8/PTVebeBkUrxorBpECz2hwvhRiXLfkvuQgTrZStWS/+TEXEa5VgM0yjKpsH9Z7qcd6zBKGR55zU8NORsxh1rstK0pkh6zR4ava+xrgdsF0IdKGj7zpRoHeOaAzHlydyjNLfzRmvPmq1RpY5si5G5pCMrI9SioinRtH5A8PT08UxuBlK+qZcsYr6eMEQcxIHXbPX0QSxyXl++Mj55VFEXI3RAXbpqZYUOZ9e+TbOnF8fGfqOaewYhp5pGhj6jvl85tsPH/jw4QPH5xfmNZK1V2SsMCWNKRsTWJaaA4SN+xkxQBmZbf0J3CbOC23fVMyGXGwlB5e5JyE0CIJRUEi+tHWtFVsTilc4T4aRzZYG2oY40KBuQTeMNRvRokGPxllMVcX32qonhzFObUwuCeX2aItTf75+pzpriRAYrDWf/erWC/M6woBUlrlkrCJb7XNXIJWmOi+JlsxzJX0LdVtH1/v1V318rwNXyiu2IJBHdEQnsy/ruirMVCnWbOK48zzrrNTA4XAQPD2I+nfJMi9zOh3pQk/OkbjC6WQV1lglo9ZyWRx5hUYd48zT0wNQ2O93vH17hzGVs/d8++3PeXp6EldhY5imHXgP1RHXRav1wrKcMbYQ08IyzzJkaWCZT3LgzjKL5bwMzoouY6Ojt0VGw90QHSC2vSr+P23jyVfD02RvXqbhG5328sWmy9YWnsAllqZwLqr2YhvXBpTbZt/M9rbApa9Lg0cEj7TWXv173SCfopuljSE0FQSB8co2l7Mxp4qoSIjMkvRxZp17EnfszLKceH62xDVirQcjQTqqKam1Ml/WmGI0mjHSp2vw5VYvqjxPTKv2EI0cjKWQU2GJojcZ10iMI3nc0Xe9QI45SuUTZRA95UTOmbv7O3ISyO10fJHAZaTvKQeVHCTLIqrxIrQsdh/jMODsPd6J0O88C5zXIKDh5g6qWMfEuG5VkfQ3JLFpScPW5EdMI51z7Pd7SunJ2avVyZkYI2sUz62u6+i8KlnkQkmJ5XiphPrg2E0jXfDkHEXkd57JEdJyIgTPsQ8MYycOvtMgxJKXF56entWupsg6buta9/zW7tM+8AYtb6y2SwC67A0u632rVNj2BPpvmMu+yaWqODVXSY7++9XArayay37a6ITb85ttbcl/16vXqtv7N+pabFS2qur7sNrrlpnDPxK65FWu0JD2dc36lT38eRW0Ba5tYFnRlbb2r1ETTdCwzZHb0UhtbXxHf3ILZH+cx/c6cH399VdM44DvO8ZpEjt6ZzkvC2tKrCpq2YZajzpRL8OAHdMg2l+7w45pN24VV9+PpJSY51n8idYTy3ridD5Kz0YHC9d1IQTP27d3PD7eiKZdXvnFNz/jm2/FOvunP/3pRjHtuo7Hh7Ni1ZVPn5oUkgxqOvV+KjkJc8w5bm73vJ7OhNDz1Q+/5PZmz83hhrvbe1XjNp/Zh1+AiPbfrbJqtNRWSYicj60iSWSxOP0du/3P4Yzb0D459CEbt2VLne90gxmUkicqAQpFGNPIEnb7+9Z3aO9YZ3agWZyYy6yXNsxtUYAcUVfYmFP6HC3YtofAaXXrdY2HPefzzPk8i06dYm0V9R4jQ3bCFKwVcGDUW8payHHLONtVNtYwTZNAg6VSErjg9JiyGrgkoHUJDrte/i1YgtpQYCsQNRuVwXbnhMIwDoFak0hHObWmMQZMAdPoygXvEBTBybr1zuE8VNTexoDTQfVmJtiEVJclMy/rhiBcr6GWCMhzVGJcyMXgqydlD2skJsu6is1Jszu5v7+nmMTzp5MIP28MNSM9rSi9rU49pCqFjx++hVq4u7vHGSg5cTq98unhxDSpVl8/CCu3VIEHux4XOiqWZU1ama9oK1ZZppLAGduqZhUp3r5vhNGqlQtVSD22QjMmsUjy1gatJRkylKReWQW8USk1U7bAVRXxMdXgrcdaj7dg9DXaurXG4kxrP7C9qlHllZplL1hjNw8wKprg1M/Wf/2OrfB3+0gXarv9TF3DGLMxLdvebpV3+/mKDlh7rfCqVKq5VEqWPd45p07jI0ZhS5y7egdVr9N1MPvlH9/rwHX/7i13Nwem3Y5+HHHeUa1op+UisyPGXXxo5nWRRW1kwE9EQA1jHDWDlBvV9z3LsnB8PfL09CQX34jkTGsOi2hmsz5IvHv/VlSS7+5Y5jPzMjMvM9Nu4v7+nmmaRG2jCnU2paiLJ2nGerzQgI2oUOecyGlld9gzDSM/+MEPmKaR3bTjZn/g6fFZczRZAY05tQERjZhRVFCUZssgMIatqLVJy0FVowxHJVOMbFqh4hqlsxZxVFYoxlknlZNzlK36cmpBrsHHNEDzqrfVEAza5pJK5nq4uW6BKlxgSGNE8eEqcF1+52LdsB0a1uC6QDcOLKsIxErlJjNNoshtNSN2KhRq9TzSrLZtTrVoEeX3Jtnkt++3Obg2/IpWZiULGyx0HcEHTQQaJFUv18jKDJKWuIwqZdQqn3zV1C869GrQHoT+m1dXXKtrvskIebWKb/XGtN9t9ObT6bTN+FwedSNpAJtSfJP6ErarvK+oahy1CmNxv9vhjDgUn8/LptrSe7FFierp5a2llsrp/Mp+GvDB8YOvv8BZQ0or6zzz8dO3GFOVsBGoFQ43d6Q18ubNm0278xzPDaJf3AABAABJREFU5JJJuWyuw8ZKX7D1juQaO02IBKaUra1Xshp0VI5S6uZkbLU/5HSH1CrBJy1RK59yMY9sdNlW9gnbSRVHhKUrmKxcY6v3yl1Vg9InKyqbJY7XG/JhjYr4gkwHtn9zn9Uw16y9z33hru5wvQQ9+1nyy4VaX8ULUMR07UaaEthR37ExAlgoM9aYCtawrCt+Xi7XowWqbe//KYUKDzc33NzdMk4TLkgPolBFhgTp1Vgv7LtKpS+jLmDJGmjNUe8YhnGbhwreMy8L/TDgggwvGqBvgav1OKpUXqfTK+++eM9hv+fm5oZvvv0WexJTunEcef/FF+x3O1UvMFBljkyIB5E1Lry+OA0Eorq+qIJ9nM/kXJiGkd1uh2taco1VqIekyLcoFEdbYJfFWuTDftYdbtBE+/8GVjSxTwlaegBuCZLFmrL9RttE7WflJ/Q56xU99zpSXf+5VXMXeKZtjvaQOS0d0LaijN8epSqMgrmCNLh8Zu0VuBBofrVSdYsTttuClkhQha7TYVPtYeh1TFfZafMME0USsyl0XKtubwG0XARHQwgamNBhabYg237PWbe9Z1HVr1t1J/0E6VHFFLcDxIcgcF5KWx/WYnRmSBKaPgQNyJJw7fYTpRb6FAh9YxJuWLNcv6Jac1zepxCHJJEQuHwlVK+yQgaKeEcZ3VtD120ZfeelysspscZIcMJyfHw0lLwSgufu9hbnRGYqxRVjxR9MfKAsYBn6ifm0MKrbtSiwaNfYmC1oYWVo2KD6gMaAuShLbJ/1qkpphAkUBtxgrcZq2qQJJbC3Xhbl84Xd9l7VJJEqxbVFEA9rGnyoUJ+xtHEUqpG3pI6trTrb3qq9VGC2raXtlS9QaPuMGzxZqj6Bthfaz2oi1fq57VpZ56TyLEVd3y97uK3LqpWT2fap2dDUGFfWdVGR5JY4XBK2P7UDyO/ef8HN7QFjpMqKKRNrlotuncgOtfkGYBpGNZEUof24LNJ8RrI574Q5WEoi1Mowjhsh4JqIUGshF8H+bS0Y53jz7i03Nzfs93uej68kUVcFxFU59B3rfBZIx3q64jXwWayrnM/qbRQ8u0ma6jkE/OEGa71orlnP6XSWDAzL+bzQ+YANVjaGKkrUBlW0zLwKXFGrwVQhJbT9uPWePwtcF7iwOeeatkERkgb6+1Y63J/BHxYrzKq2h4CqYwTfHTqs+kYaytfoypfsvx0eulHVJqVh9NfUebk3dfszIyr58+nImoXgkaJYrk9dTz8O9D5sz911g8rdoG7XaQtIxn2uRBA6SWKSss3K1Sa8DkbXmW5KifN61qpF1ptTlivb57gcPzHGq8FtgRCtBuomJ2X0gKkAVsw1W9UVyvXhcOmFFoShBpVqhLZfyucLQj63kFak4lsly7dQrSOWxBxPnJezKCgMe3wnnnPHh0fIRdzGdT4QoJao5o2FvgvsxxGoLPORF2tB+3UhGIJ3TLuRN/WNKtpHUiwM3UiaMs/+RNePWB8UEXEYW3G+mZ7KgoqpbP3ZDZKW0qUhz9Ino27silpl4FiknCrFXSDfpjDT9na7d3IDFDrkKnDp9d6Sk9oSu4vuqTV2C2jy+7IDTVUMpL1UhZp1L4NUaSrhJa9jtq/aEiNZkPK8tlKzMA5FU1OcBdC1k0uDh+V6htBh3UXHsOWEDUJsrMWqyXJrBTSIOa4LFRGAbqobXhnJf6rJGcNuZNyNgqFbMNliCSqJJBcyZlW9APmeF+WFWrIw4ZzI+QQvDe8QAsb2+NDhgvg81VbyG6EqU9Wl1IkAqO86+nHCOM+asqgG7MXPK5e8ZYZtfZeKGrsZbAgYH5jmiA/isPv2/g3n05FlPnM+ngheRDKpUGIGL1nt0AeG0NOHXvoT9WJcp0xsQCFEY8F6KBXrZPHVXKTFYhDx4bpxDEWvsWVSoLCjXIeatZHfJmv139vfq5HgU1t/y5jP/n79qFpttfy34fpZA2WbozIYiqk4DN4pM0vhnKpZ4nUDucGkIJm+dYHVRFI8SWVRRdKoIm63tWawAa8lYMFITwRETLjNNtWCc1413TykjLE6H9Sy7RYgNoddyXpDcISANLAVwm6nkmx+aYSLHp+n7wexAilFho6xWGfofcD5fhtClf6EBF2RBpPrOI5CQ66lsCyruDkP4t4s7zmTi1Ks2z4patlR2wBEC6QSoL1zdKETGxuqyqp5MSS0lvU8s9sf8EZUMKAxK+VeNJ84ay3jMFCpjKczN+uKtXBzdw8UrSTA2KPsRR+YRsfjpyfO54Xz8cT59SiJmzHUlKWi0Qyo6RO2Crk9rodrGxVc7lkRGn+ucm3yBf7Lei+3oXElsUz9oNeqHe52q8DMpZjB4HFc+mcNfWioxoZ56AHR9AmlNy5KP/Uajq5N6k30Iq0LugUviUr7nC3hviZhyOeVv19fm9bzyqq034VO9m3X0a9RkSq/oQ01tzRLYXYXFF6U50sKccv7aaiLtB5EEuxXDz/f68AlHklifeGDV5FUREKoKTVYw5VSnCwAU8XAsEr7uqS60U9Nu5FWlcqLQB3tIDRFMGiDsGekr9BhsDRvnzbZX50cAN51WOPwvpeMpBSxqahQq8XaQD9MhODouos/Ti1Vel0xUU1mOZ9F1NI5XIXeeWwRKRoRAFVYzAcwZZvHaYQU6xypymxS0c11GbSUTFiqVQlutlZMvkALDZO/tgHfvHuuMPJN+oY/GqiuH58NQ7YehLyMQplSQRZTZZMYZXHlKpnyNkRyBWHon6XBNEYqUXKFVDFFNqtrvS3TYFfwYdj0F62rlE2MRKO7wq3y86IeKO0oGYy+VvyoCtFsUF/7By1AmvajUThLAn3d5muKMWoJYhWCcQoRSxJiTCGXqsLRzdzT4b3BGVEysDbokKq8dvsZ6R+WDR7FW4ot26FVFFK+mgICA842mSDpgRrrcU5MQRsKba3DBSdEn9Z3aaomyPCxqfo8LkAt+H6gn3aKZMiLFYNoKIYBV5pvnYgGLOdZBAFiJKcoyV+7PbpGswZiq/utfQ6nYr1yX9UBvBU6V/fIOnepyrhcvwtET8O4AU3iqg7I17qRJEypOprlpFylic1eDFkbHF+1YmuybY0Or8XohXghTdINEjXWbvf4u3vuGv5t58D13r2Gt+Xcauaazfi0wYBWq363BepSqirvXO1BWfwyvhETpWsQo44amKvAfUWm+mUf3+vA9fzyTAiOab/Dd0H1rwxJvYUwkp02vPv1dNRGqWXUobgKrNovaHcpxaxUW7YBxqoQlrCGpJdG0QqnWslyY6HkKpkH0ngOXScKFUV0D611rGvkeD6Lir0X2GicbvDO4Ky4B8+nmfNp5nQ6MZ9OmAqv1vLV+y+YuoCtlcE5lvOZ83kBY4VlpaaKJSVqgrQsm7CuU9p/ypJdeWclGNRMKcIos0aCtzNocMsqIC8b91psF9gGuhuE1g7vxlBqj+/ObmzT/s6CkY3Xqko5gVQsVQ/wlKIcXqZSrRy6ilPwWWzU21RLlWCl1WRZIiUmTBSFfG+csiYDLgjJYpoOOtQqQju56jBnyhSSzvRUZF7GUoocGq5BfNfv44owUagb1VyqOenDyiFiyXG5BD3nyVWCcynKEHQe310Tg7QqtuLrJuMAlZQqQz8RnLgJl5JIeUUkKIWIUqsYsIq6gUDq3qnhpimUGkUXjEtmX9EqwAppJeVKjJVaHdZ4UqpAEn8tF0RpvsISlUBiLM0Kp6pSCNaSkf3q+4luysR15Xhesc6oQwN0YdJ+WVHroZnT8SjEpSzQozNBVfALJWdJSouMRUhSJIexRZTgi5EALdGgKHJot0QCYwih0eIrSZ1UrQt0/UWQttKo7Rq09AihVEoD/xoiaSXR2RapXARVhW+KHVarwc8FaS/BAXmdNoelyTZbe6D9UJMqu+y59hreh6t5tTZbJfuxMU2NsSzLekFsriq3be8nIcLYEFqNQCkFZ6RIOB7PlAL9IHJajQhFvf4s/+yk9v/u8b0OXD//2c+YzyfG3YQLnQaui1YYSPXVbm7OAvN473l+fNl6XGtMujmUxaODrFkn7MRCQbPlBhsimXwtdWNmAdRcmOczRRu7XdfjNaOPWcQli/7ObppUNNSR1jPBWbpgGXrxtrLGMnYj36wr8+nE+fmZsizc7g/c3tww9gN5XUjrTCqVXrH78/lM0Qn2WDJ1yVtfLq2rMIEtzMsCtcgA6XxGxC9FG84YuRY5JbwPMrmf8kaj3XpLei3anFw77Bqc0h7XPZ9r5l/b3BiR+GlRqCIVU6qFOK/qnGxw1ktiYAzkTFTvqTbj1Tao06HMUosMRqaCSQVbwOKoGeKcOOZXlXNyFDzT/kDwQe59EsV1ShYYSANn0UzbYPQ9fx6zZOGZ7SCzrYzUSjDnSFbrD+sNNOktYyhV9Qhz4TAo7R9DXAuxNdYRq5Ky9aEu9yLnFWdk6NOig+Z6qEY9bGLKKtlTtIpl69OV0qbTZBRBCwm9nwr7VKhF+n+1COweYyWRWciQWnUjxqAGiykQ07qpkYiPVodzFj+MDAVCFyk5cT4dOZ1PHF9fcAbGsWccBqZxhzMeqhiievXCM2hlkzI5RqKxJNX0NFeJ1XfX7HcfjXIk4mzQOrJty9fvPE9u08aK59B+9lKmbX8ruYoBp2kuBm1fsH1flo1Q89seAz7v5Woy1JKgamRPfvcgb+jHH0kUr/bmNWLSvp+v4L0WyGW8RWxXGuJiraMWYfg2J24hjjlcQfdo3ZT6jXG0Rnbjq3xGYv0lH9/rwPXpwyfSGunHQeExo+NEl/kdmpK4gVoukFmthrisF8YLRh2Do2a1LStDh1Avh21rojc2X04ZjLC1ckqcz2dAbnw/DDhdpUuM+K4dRnB7c0MXPN5b1vlIHxxD33FzGEUfcVPnELFSkniIxWURBY2uZ51lYDmVyr5UxloJVBp2Is6tRexTzkfOx1cVdFV0XbBLVXWQA6+2Q60IFTcEpeZqn+KfdgC0Bd8CE/DZn9c/+xlV1ygbrCbNJK9msbTnIvM5Zcv22mbMOetIQt02Y60Xu4ttsLJqu9s01qXIzsR15eW0sMREqfD8OvP2iy/ph1EO+JiUwXflR1Qv7ClrjJg76uO7h8sWrFsSpYfEui6bCod1bnMfbmrhKSdSTLz6V82YxTm6tHWN3Q7TUtkOMusudPcWMJ0mXe6K8QWVuMzkKooWOZWNao8OqjfIWe6J/A71ctLYi64R1KahJ6MWzYReqjm/JY4pycB4LkWqsxBkHVrD+XSEUvBWiBneB6ZphzV1swl51VmxnPL2WS/jBnlbG00rsvVIv3tv/lkBrJZKSVlIDI2kgnxPxgXKNjaQc5Z8Q/fZ9cjy1YK47A8yNbJVzf80inrbF81W5J/13q8DEKZAkV5l0b1ZlBHbJKsazC/9Pqu6kJLEt4oLPf+yDr/nnNWQ90LEaqvv+n1vQJR+L8bEvCyqwm82+adaG0S65aafIyW/5ON7Hbg+fvOR5XTG92IJ3nKkVC9t5aarJ70cu836NCHSWipdEJHUnDPzPKuBYSHlJCwe3fCN3twUpe0GoxRlPUXiujLP83Z4tkG8WirLGul1UNoFz7L8n+T9S6ht25aeB379NcaYc6619j77nPuMeyMcJiMTFTKlTBkCIRckFIktV/yqBLggJJBAEALjgkBgYxwYDJIKUqgggSu2warK4IrASAVVRCAHiCxYmeB0yHFD93nO2Y+15pxjjP7KQmu9jzHX3ufq3iMZ8qBxWGetPR/j2Xtvrf3tb3+bGbzHWpgvT9KK/DBB+QhTEzVH4izQyNPjE3mNBANxXojzwhACcV5ZF+nJU72nWsNoWsNIKWiW3kIL79694+3rzzFGegqdDke8lwUgp7gZriowVVE1BZkEmpzh/QkHwpjrhaa7xDDcYu57z6/BHTVnUSp3DmtvjWPPu+wmcUse94VqZ7isRrS9fNRsOTdrK6qUJNFcylzOZ96eL8zLirGfs+bK4XRijaJL17XXWq7AtHo02bnfscsaVCXnXHq7EpBb5/WZLPMs+zFG8rJlZ3iMKr2sAtm1RWRdo+o10nMFVXecaunEoqoSWC2fMwzSmLN120YxifPjo4zZkoir9E4qFaz1IhjsvORunVVHx4AqkYDku7rXXgulauSbM95pmUEV4yX5GGG1NjHarSGkxZjK5ekRa+D+eOQbX/+EcRw5HScsolW5Lgtv3rwRBZCSGfwtqaD9PFeD+GmG6/lWi+QNpSPCtki3/W5dfWVc3LQF4RZhkNd0QTdQs9H0Q70xWvtoal9LlVLq+3vOUG2fzTkLvJhFnb+07g613twH+bE6tzbo8L3rr7Ubr1Iypsh39qkSibLFcRdW9e09XaPov0r7E6v7EnHxjrbo8T5wCj/z9pU2XP/vf/L/YWxdN9UfSFXELoVxpcWapVJyZc2pwyrLspDWiDWG0+nE/f0Lbf8tMN6aImtaWRcprgQtq9g9pLZQOudECFYXnJhWqQnynnEcMEbyZDEljA+95cqLFw8CxZREvF54cX/Hq5cv+MXvfgtvJfFuSuGzzz9nvV4ZnGddV55qZbleQckbJRcOpyPT5YQbPDZYjBn64FyXmWW+sixXzpofMAbsqyqF2Lro7buixhiJqxh3a1fxwK3fO5FbXqBFT7soZ2MT3cIR+8+CTjLoEe6mm2a79ykdXFuh5W3dU6PGt3+3feZcu8dpjDDYsr4epiN+mHAuMKfK63dnPv/8Dd//0U/4R//4/0XMhZhFSqxFTj2pbW0vKdhYXBKJZXVgchbafa+BQhbuYVBNwnXe6uOc7cQa6wX+EsMXyVFa8EjUPasuIxjT4G/Jg+RaNApUb7pIBOCcYxqCkH6CtC5pW1yuXcNzXVJn13k/4FojU6+SV1p0LNci6t+i7SdOwV4XgVo5jAdN0C/EJDkT5xzjYboZM73EwlSulzPHaeKXf/E7fO1rn/Dyo5d8/PErDIk3rz/ns09/wqevPyXXxHSYuD9Kjy2Ze2nnxGw9qD5kpJ7Dbu+/1//VX9+z7fYRSXOg9hHXfoxXkHsj3q2sTyndzJnn57D/9/PPPb+GBpdXoJiECHnc7qvdkzYPvfd9v+39/dy9MZKaLnluJNq4376v0Lka93VdWdcV30oV/g/YvtKG6we//wPRQtth0aUVWbL9tJYcV5WLqRX1aleocJgmXn50ZpomxjHw+s1rlmVhieLp9YFkGmwiHvfN4qsFnAInRGFXWUcYPGa3wGC9qC44z5u3r7XRX8SUTPraxwRvWZZXJCMN6IhJ+xlFBq2FcF0LUBS5CXB3d6eFocJySyr2uq6rqhVIy+77h3uFCjYPz3svRA0d87LoebKVJHE1RuvAtoG9Nxb7n32k1bYPvdY2Q5Os8j353/bbPPIGQciivSWJxQvceb3PJrmgRbLg+FGiAAbLcDhyON0zHk646cTjdeX1uzPvzhd+//s/5PF8IRVkIQCwIsVkFcoU51OgMVlENkgm5aiOkhAcWn2Lc0aMgnPEtPZ8gbWGFKWHkXWWMYwKcWVKTpvhmhets9G8gmsMLXujolGqsPZQKNs7K52bfesNplGdQsMxZ9aohbRGz9H7rknYI8NucBphVw0YAp36RuO3DmcE4kwxkgvduWvde1u0KvAteC/nUx8EjgMU/bhAVdhK9RFX5zC5cH93zziOOCfNWVtnh2ZM9s7lfhz+tJ/9GKYXaGzz3FlL3i/wjTEIW52iRiYtrmjtf4yRe1S3k9mcujaXdu+16ObGU3y29fMuykSstUf4LR0h59SiP/nxTdmmVpkkyox0WvdarNaV6fGFAu/6HN0jJu3fDd0JIXQ9WOe85PhVjUaIMi3HVbtc1ZfZvtKG69NPP8cpm0hyWgas69XcFe1rIzgf5/NFC1zlxq2LQIXXyww4jsfI8Tjx9u075lnw9HlZunCldBtui3Qr/CsSSek5VURxwCh91nmtijdGG8u1omjL9SKee8mJyTvu749EzViWUoUUkBI5ZWG2ea0ha9IqFnACWTbvUy9dFqW4cr1c+kLug+NwmNRrLDeDkL2SQEsQ6uuNyvzP2z4Ev8hjMV/4g0HzKUoDf0a0aIueRFAfXoza781wtfleO8QTuuqJaEYejkfuHh4w4cDdjz5lGEfmJfLZ52/4/O07UtkpMSjRo3eXVYNYm0ahtrMopWpri6qVBTvKswPvRHEi5bRLWkt3YRD47DAdNXcj4yJpa5HrLErojaBiVMHF7FRSmvVqPctkDNZubAbvhGjkLDlmJYFk1rTNH++Lqs8rrN6GQxV4ueXMjEpIiJNjGUIgeM/gg+Q6i0qLdWmsgllEAaNo7Zk30utpGj0lRQ7T2J9xTFEIT1WiTmtEAks6DmdtKCmx3t5obVHQzz5Wb3NHjTFbu81oHQ3qzmHq329WoY3B3Upgdq/fMPJ243WPSLTXe0Qlntp752y2Havx3J3LznDpX5vxqwIht3yvpC31fDQTr3oeYjg1WmsOidkZrP7Dfn5bnBNIPChr1rfOzPs7U/dz9MttX3HD9ZomZlm7TM4obayVTZhRRXU/UNDJ3geLV2JFYV0SxiyaoDZgnDYT3IXTpXYP1JiC0b4/MUZhYPUamW1xIxUlQRipch+sGk71dGuCnBhevGCajrx8+ZKPPvqIHGdyXMlW9BXXNVJi5KSFngdtSiiwkIxvKSZdKTVqcWkkJtEK2+PnTXZn8JN4xhreN3KFM0YjtUwtVuS0qH2QAu8tDnuIpr3/RTDh/u/2b2t3Pb6qYO0NupT9b974fsGK6ybFdHtcjyw+GnENAxWD87IIiTc4MSFF5sYFUoZqPMZJAbvD9gaDZdfrDEcnSoTBkUqSKHaNVJSG59Tws8FGWWu/pLP0Vg+0FSrLmLNaX1aS6iVqNLYl0iViN3ZXG7P3fpVMUXf5CmohI/2aDBYbApSKcQXj667Wy2heS+qw5HIEau9GuDUDVZzDOov30sE7jCPr0xOYynSaOJxO3Tl6enpiXQQ9MAYIHm8dh+OJ6/UJ1Ald1oWnxycu5wI1CbGkVkJwnHMizgvreOB6vWKM4d27d7cQ3c4o/LTtp+W7nstf7cfqe39vodJPPdbzY7bz3P/+ovP50L4aOcOWJuW1i7zbZ1tBMVAa/N6ML8IGroDNG2M4aq6+wE7Yebu+Bo/XqoSeUrrBL2UrlN4jKFXPbP9Efgb/4gu3r7ThOr38CNH9S6pRJjkPG1rvJEdCmsk55zh2Ro8m8Q+tFskxavFpqYXD6QEbVmwYsX7ccNquUdg8brmBAwbjjOirG0tpCtG1g0V9QSimwZdF1BiyePXDODFOBw7TAe8H0jJTUmP+0JOcKcUbDF8gpcy8OoItVJMZl0DLIUjbCDFUS4w8PV26TuI4jiqQalgXwaUbjT+nlt+Ra5U+YrcFi53ZxGa4umr8MNwYrf22x72tAXLBuNITy21r3udzFet2/UKcSL2EYfOaxbFoXq98JymhwVCyGOt5WTlfFtaUwTlefPyKj58u+MORjJM6LgRN6RT4Zoy1eCVYy5KEep1296/BuUZDlpYzaI6OVRo3gGEAxCCHYZJ7UqUnXM6JVDLDKiQRdaFwwYtCuspGNSFfEQkWr1oYdklUYkreoGFnGMYDQoJpAsJ6jmYrbHVOoOeK0Lm9FzjIO1Hwt0bqDofglR3rGcLA01GgwmEIjLsedsNwkFZAccHUQvCWcQx8/MlHfPpjEXFd4soaI6kEgubQapWyjPP5zOVyIS0r8XDqrYKWZWEcxx6d9y7J3BqMn7a152OMUYJLYV/j1L+vXO5aiqjwdJhPx/T+MPV2/80xfD4X9oarn8szdOH5dWz7EUjaZilraY6sDV71Fgs5RWWZGoqFnBoyhaQjQIxNXHsLqBzXrbN2VUKG3RtdmZfWaRGBEaJGI4LFGKl1I20ZjAJNTkkZt4zcn3f7Shuur33t6wAs6yrJZWNUQUPgOGMMqXlf1jCWohGXKpdX0TWbDhNBE4nLMlNqxcWIHUZcmPr4M25XVLqLLiRCgybW2nvxNPRm5xEnkk4KgTxKjpS8Mh2PHI4HpulA8IEFzaX0Gh16xNP671hrlc4vWy2yvxRXiUqqJNGFlCCK3FGLXQVbbwoTQv1e19iTrV10tUoeIwQH3pGz68bgueH6ohxYP78PwDOi+yYklAZFNMfieYS2qU9vuQjvHMXYmwWgPxP18qy1kvspRWo71YDlIjAvxjJOB1598gnXWDhdZom2qyEXRI+wVoVNbe+CbVQwedEJn5TIY60UlQ/B97HWZJfWZZEFtyFMOrkN4J1jHEfNb2ScdsQW3bdMzFlLPQxOyTQhDFp3lkkxCZzX7490ItBaBrmveh+n8SD5y9ok+hqZie70eR9wXmtvcsU50w1X8K7/PSpz0VmLd577h0uHovvzAo7HO9a4aDF5wllxrF68eMHT41u81tx29fv9wo/OufIMLmOLsLYao1u62nPD8MXbFy+kW3SlrNLmjOrrludFwNxgYS0nhrmdGx+Cuv95c2b/71IlF26RZadBxh09BNB7Wc2Wt4K6QaB66d25amubaSzAVkaxizZvkiPPtrr/Q8/ZvP/Jf2Ujrv/r//3/gcVwnq+illFrozr1GxW1gr6U0nNfIA9p8J5xGPn4448lab5G3r55x9P5iSUmljV2FpC1Fh9EkLWyMY1SyszXRYgXuj1PYDY2nLUG6f+UgZa/Wilx4ZOPXvDRR694ePGSw3RkPj+yIqF8YwWNgzSQnA5T9zANUJ1jOgxUI3mXlBZKFSiqQ4ZxZVlmai29H9PzCbJn9e2ZVKUWSg3Uqt58NzD2PWr6T1sc3vMWjVFjsjGb9lFNgwpFWV3Yg8Mw7PaHQrLbMTdm2SZb06IG+duICoWXPFHGMB2PfPTxx/yKG/nGt3+RJWUylpQtqVRSKcQGlTnHOBzwg8dYOF+eWNeFnKSFvdcmiofDUcWSvfZaKrz+/DVv377jen6SnLheQM5Sbzd4h3eD1APmiDT1lfzmskRiSlIYXys+DPgQmKaJMA5yH3IV1Qk1/E6He8trtPpu8aKNjg+NunLWVkDNKxYj6gft0ZQyRhx1nLMcxoEhKHN2EN3NNp7WNfX6w3mee1cEaX6p5SR5pZSIoTAGx/npDZTEOE4dCm4Ql3MGZ6QWbRoH8IHj8cg0ifrNMAydqNFyUHtH5jkc93xMttek3k2ObUqlfsCQFWupOwP53lLexnh/VX83o9bh3FaMu9Ul7o3vT4M5q8J3pYjBavsUtRT5ntf7YGArkjfamkXhQu89RZWB2maN6Tkw67ZclRB19tdte854T9DwXoTKm5ana7lcvT91S8PxU5aKf+72lTZcX//Od/n441diQLTdw+V6IWiSd41R9Qtl8Wm02VqVBq4e4vF4lEaT5wvF/4BoPKOx+DBIuwa3NeArVSrmm3J3SpnzRWjm4zRyd3fPu8d3oOSM/UMNwVHzTMkr6zqTlyuWijcGmyN3pzs5RqtNyuJljsNATSJvsy4L7sULXr58qQumUwabbNZYDocJp7TqZSkUJ4K8xhyZZ8mZxRgJYewGynpHGAdRElmjiA+HAWcdOcc+kbrB3EVbQB+0+wWjXfdmQG4/U0sRRfZBFmGR6AEwSoE3/XshPIPq2KCttu0j4KLQGAactyxRJJsclhSzyB4FSfr7MHA43vHN4wv+Tw8fYX3gGjNrrOQKGUNG1LNTSSzXVducZD6piTUKNLJeVz7+5CM1so7TYdT8YcRbwze/9QsYY7k+PfLm9VvWZcXYKobQe4KTot+4rCzzhVKiLGy5cJ1nfBgYxomHly+JMbOsK9frRRXhA4MLxNQaNxYG77g7HZnGkeNhYl0X1kVUXqyR55C015Pz8gyGcZQcbZVWLllrxO6PJx6f3kltY828eLjnMI2MIXS4XkgqdD27xoiUqF3yi0KBL6S4kNNCigtPT6+78v/D3b3ksExlGkSeSaDgzPF4JC+JknJ3vKy1PDw8SHPKlHa1YbfjYjNO9saI7YkGzYCDahW2nE6DovPewWLXygRo1P4+AtHobJsf1r+/3DrUWPbzECPnrCz1VVf6LVLaGUMU4tPXpQ+bQos7BGRQ+bU25xrUOc8zrhGOahV434hhOz89Ccqg7x+PR1rzvhQFdk9JNFt9ENbq5jQm3r17x8uXH8m+zmfu7h7knhqB3v9Foi34ihsuaRAorUdcrbiSyFY8aAz4dZXeXKZqO/ctP3Q4HGQyqWfpnGPNGTsEirV4HwS+OxzxoRmuSTzeLDRzYx0pJ4wfiAXGaWQ83RFiksVA6etWdQKDt1ACJa342RGtwRkIzlDmK051xJp6eTN8wXuS96icYIerUorgPNYWrDNKveXmh+Z1m009QTzSPeSwwXHGbsZCKNFeI8QN2nuPWfQMpnlOlHgOgdwkoXcRcNEkbyt6fA4VPk+4b57182iubouLYceGstrXSuHeWrtUjTSrHDjd3RHGiRAL85qIqbLmQq6GXCuhFIzxkgdIiaKK4AZDSZVxOkhUWFt0aMi5KlVYHAGOmfkqBZrOGQ7TUbsFWIZhJI0rwyDdj6U5YsKFoHnQiRcfvWRVwxWGEavMVYPFp9DJGCE4TqcTh2nkeDiS4sqyrDLOcFp3Jl2evToPwzQpfCj5ilwKzjvGaSIjpR61FKbDxDSOWkcJOSqkmRLBS1QcBsm/yvjTglOFL+PiSNGyWrCXJpullPG6EYGaQaFuKu9tUf6iGqRtHGxw3BdFWrfvbeULN599ts/9xNlcpdtjGGMaUt1euI34nn+WFh2b7bdp6YYdPLqbF01l3dTanYb9tX0IAdm/V3Luhm5fB9fzaw1DBBoxp9/3dl/b59UhMZiuEGPt9ndzOuuOrfkvUuL1lTZcEViyQoHIZMM63DjKAuWcJCkNeCN5q2a4hmmSQYDBDF6YXs5SnSVWxeeHkcPdnShdeKlJ6HIvTiSmTEoMxWDChWKdaMgZ0ewymoewLgi92BVcleOg5AxrKkFzGa1upkn4OGfxGnYnP1Cq6fUQPaIxBqrDBUvKwjJqXmNbxFsypVG4ZaHd5wG2Cdi27RjqYVbxeiXpWjt8sC9m3Ivs3sAPO2P2nMRRFCqsKfXWIPtFae8Z97PVidVyP89za3LefovMTO1SX6JJ2K7Y4LzWsfkgbUyMsOlCCKy5UlIUCZtUeu7H+aCswkJabid8L/jE3iwGRbUhRd1eIikUdm15hlK1e+8wSKRoqhTBx0gpMCh0VwHrHaOdJFLyvmtFuhDweCzgg3RNaHqdrZO0c45ShJSRst4HtylmtMXQhW15iFpSEGqQwngrpKJqYJwmahACRZmvwng0FuOkbY4xAlMKYSSKYkdeMbkt0vux2BAKpVLXpmlpSNCNY4vmxIFL7y3SbUzsRaD3v58XK0sux24KD1bmBVWhzf581SCUpmyIGrD3DYTamZvz+aLtubF87vA9J2v0cW6Evl5SopVBt3nfo7FmYNs9aGmTHUuwKJuwqjNTa1M3aU4BugZoU8lqxPDY3ZgvIgDsd21/nLOKntxChLsA8kttX2nD5YcJfCAtCzhdcLxnuruTpoppFWgKibjCpEkRI7h40XqTikzMJUWuy8zDyxfc3T3w6qOPuTvddw/dGo8b5AGEg3odpXKXC0kXyTAM3CEwWxiEfuz9oDVgEVMWavI4W6GKHtjghAoegnTfLbUqvjxSkc65KQRyrZ2K3AkWyMLgg1CpSymkZaVqWG4qXcst59Iy8YqtC7wjBazSVkF6lxVyFSZQpSIi2Jv45z6H1yb0fvEQo3urybb35PYswZySRj23avL7hUh+b1DhfpK32pg97HOjOICK0BqrupWWGDMuZlxMmDD2epNSDfMy4wr46UQYJorxpAI2FY2cvTTi01yAQ3qXZWcIVuBBgVycLILZkp3BO6O6l5bD/QMvXrzAWsvxOGGwpJxZ5qv8nSLVZM5Pj1yvV9F9q0YYgylzvV5xYcBaz+EwgjGEQaLFYRiU9SdSsa0YWW6qhD2DsTydr7tF29GUSbSnBl2P0UqLkDWtnI4nHXuZ6/lRtTkjwxDUiVh58+YN03hUPVDUORTDJapRkVIi67yQU9SID1FUr0VyaXp/vZEuBVnzmKax5FQXs+VX9/DxfmtzpKEEH1z4rd3m0o2fp/+o7AhSUlvVCn2Dyk71hb2N0l2Cqy/YH8DGnhun/b/3hu6LjN7eoHUntRmq/XfeixSLdMlAI8Ud+7TNT1HSl7xrP0bZhHgFjgdTbI/eMJmUReUlxsjSNQu324lG3saAc3zp7attuLSbsbFxk/dnp2pspXGkraI/5nXsWDVc0RiyGq9cREU85cwQDozjIFDINPS27c3jxoh4ZKnSLC0XUT7oC7SyolLK0qI8JFE6qJHRC7stl0ouFbrauDK8ing/bcLXKirxTrLiMrDfmwO3WHjvpaMDezMU5b2J0X9AmVxFGYWGUgy5WEoRAyuDdYuExHO/jTjatientM/3s92dQy5Co/WmdXvd2Iq3yXSB+kopPf8lHmej7O8np7Z1UE94PyakzfsmWCsRlJdIpWyFlnV3rt57qrQJkONWIRsUZ0W4uYnSjoYhBMYQcFaajDZGX0lFG1YKQ7MpbLd8UE2ZmCKmQkxCpmmLcSm7omAnheINfjMGoiq1eNs8XId3Ah0WLRdo7MQmnAxbgWzrFmCswDv9/tQmn1bANBi6asuVrPde4FeRmJToZI0rJokDVpIaR4r4ljLSMFQd036DxMpurAp7RY3JZiwsm1Byez57qLCNrQ9B2u3z7e89tG2tpTUw3lyeW12/WjXng0Txt4XD2x+9q7hC9RX62Hs+d/fns9/ffo580XZjiNkimmcf6u/fHpNupPdjfX9ON/euzaUbg7rtv1Z1iIusH0Afcx02rfXGgH/Alv/M21facDnncAoJNcNVdo9v7+lYg0gtGfHmQhAvsVip6yk7mMcp3TcEhw8iApozWC+5LzCYZIg5Y3JVmZ9ELZCUGFATpJx4fHqSKn9rKCXycBpEkikJQcBZ6TzsqraoyIUsoohCb82itu274VLOsG571lS78pzyzesN3qxlD7ndCnE2OLHUQq7S5sUUgy2iXt4aGH7IcO0XjRsYcwcjflGuK+eM37+vs/25YW1RAbDbrwTa+/vRI7lcddHVe2SdKpFbcsurIUl45wMhVPFCndS3pJRYk5B6GoZfc5aoNIuqOqZia9F+RQicHDyD93hriYvkc2qJpFy13CDjvSUEUeaO0auI7so8XzHIuEkpdZkpydOJ4oWztj+rBv+u6yJGIEDKkiM0xmFRg5Uya1zIUaJierSuXaTbf7Vs46IRLnYLVsoikVZyJKWIwVGDCCNXTbi38yn6DETIWso/nAHvJJE/Bi8Cxarm0a6lqGGtInuvCyK9fMAabSWzG/8N/mz/buPti/KxbQztF2GpzUPZlnIde0ev3XJjS6eVP1e80D9uIi6oXeR57xBtF8B780LtnRi8G+ft+Vfb94Q5mNs83q0FfWaYHVHE7EhT3bAZzZm972janQXe7tnOvOvxaov29PtNTb8bfprj0m/Vl96+0oarPwhti12rsL7mecFY8URBJ1Sj4bZIJmeWZZbCVGDwluNh5OH+xHI+s5wt6zQQeoGdFdaX0YUsXVmvM8uyMl+ulHilEQvGYEhZ6PRvXv9YxFWdE48kTngLJa08Pr7FUTl4xylsWL2MpxZJaLPGcWAYPOMUBA7SqKOKrje0bq40j3zz1tPS2o1bQpDXY1vEbrba95dKEjH4bCh5hWKpxuLM5qG2xaEtEIfDoUOE+30/j8SawZPCaCmOruqNmd13boudbw1en1jqzT1fkEqRzrwiiyVKE84P+HHCWk8YRoYwMowThwzVejKOz94+8u7pwo8/e8Obd0+sSWjiBaNkBsmXDUFo4C9OE2ldMMDhdMTkhAleyytmlvnCfL12dZKcM9eLFIEbI1JdVqHiUgoPDy8IwTONg8onrSzrTIwL8ywwIsZiXexO2bt3j7QyBueE4OCdOF6iAym5SmfE8HnrGKfAmhJrjJwvWxseF4bei25d153I7xXrTI8gja3c393xcH+HD2JkpBZw5iefvWaeRXklrVGp9glvUMFfx/3hwDR4gpdmr946Sk6SJ2k/tTlwAlMPPuCdI+6iqr1x6uvCznnaG6zn8Nu+kN9ai+96mVL6UKvk1JwxGiMCVpCIWmtfSxQq2fa9m09tQAsR7AOR0S4SqXlrNiptW5qBvHXkbq7XmG7AbDuVCqZsRgQQiFPRGoO+n6UjQNXvBic56oKgCikm7LpKtF/3ssNfsFURNXB+4OHhnqI6leM4Qm/utJEydiWoP/f2lTZcIui5r6VACkwVVkCryAUKFIZUazthjPRFKkXootM0MXjP6TAxGsNxGvC2ktYrKUkxblwC1knEJdXh4s0aMqMuVqKh5llT4roYvIXBGXywUC2lJKJOypiEbmxL4aSK3MMwMThVjCiZWLWg1YuKgfQq8l2VoVQZtu0ca6kK+8hdyTmzqFBwCIGg+YjmWXejYnhvAZBBnJWBV0T30W69ty6XC2/fvr1RvN7ntp7T5tvi8ZzIkLN497bXr7xPtd9EaXfSMlVKBvol9PNXE64ebq7C7MNWke1q6Yx9pGqEYdrra7SFh3ei7mCc1yaMwhg9TANjCJiapQDUwugto3ccgmecBgZvic6QnBHHKmg0ZIUYITp/QtcXI2Q5HiVHFpyTgmILlsoyXxUmDfgw4oMaac0ZyDlX1rgSV0EYQghMYyAEkTybxoHgPcFLPtEkqaear2dJ4htDGERBRtZTkUNzzjAdBlnoc6EYUcU4HCdOd0fujsc+Bg2G67zinTRDLdrLTPQ7K95Jv63TNDEGi7cV0iqGywnEKVCnk/o3DeWqkeisjc/mCAA30dZzKHwfWe3h5yZttDd+wQWCD/r5nYhyzluD2Rz7vtw+r5ZvVTEaitGmk0dylPrm9hl2kVVbw0wT3+VmvuwNb5+nxcAX9IS7MdS7+1NLoVp7M8eeO5oiH5WwKeGMxZrbgvAtItxea2msdolNJV7OQQS7zbPvfNntK224pAvqrQhsqyBnW48pRZo9piSipUkbqcVV2lObWpnGEW8Fwjg4yziMDMEKA2pdRek6eowTMdiUBIYSLD4TGgQyCL0+RIsh400lOAjqVecix7bG9HzWmjP1dMBp8Wqw0iW3phbdGCqi8t0a73VPEl0UmyHKWdtki3xVjKn3B3PKLoPmcTbFdcn1tJu2TdymvlBQoqtEHnlrt/H69WvWde1tUUIQuakmgrpnFLbfPdrKWftRacLXKGXdcGPsAFpR7d5wlVJIcTO+m7EUGr8sUnqfETks60tPCvd7dgOftfMUVQ7jHNN0wA8jMUlfLAwcxokhOMpyoWq/qmkIjINEYodxkI7W3pK9FCCDQNUYKF7GbRi8FuYa9VgD4yDGZq4FH2QxryVLtAX4MPR26RgYxqB5rEqNUueUiyhdSNG4GItpGBj0R56fwOC1tlb04Irf1MODxaoBCtWpfqW05RrHwDQOTNPINI3CbMuS3z2+GXvkUJVQUUrGVKFfey0kHrzBmSp0f2sxyiQMGjFK3qk3DOkC17A5T80x+lB01cbac6JP+7lpCgkQ6FFOG/e5iLFupJDep67WLef8LOLaj/WGajZh4S+C/Z5/9/n57o3XfpM8r3lv388N14def/7+/lg5S7uUvIsCUci4kSz0DNpk6u+3e76oSkxj2WIFCfpX3nDdHU4cw8i1Xiia/3PWEoxCL9VgC4KXx9zZM1m1+tIqxZHZWkqM1JSgZj7+6IFR1a4vlws1Cdspx0hZBYjDIN2Ma2GJV0gZTIBiCH6EYogWSCumeGkLghEJHmNEt7AKq04WVaSO5jAxlMyyLlSs1Avl0hvSSa8nUX6vtWoXWymIXuaZnJIoxXtphPn0eObNmzedFjydjhKFrSvEtXt3gUH1EKXAVOay9rUqWRCiaqhWCheXZeGzzz7je9/7HsuycDweSSkxDKJw8fLlS8ZxvNEsrLV22KmxwnzwlKKLkLUdEnxeyLyff/sFJ6ftDclPbs0oMdKnN+YsHZR9phrHaEPH38s8s6yRmAqDH1nmK+v1ijOG+7s7hnHiqC00YpL7lnMWbT5rYDCsg0BwL+/vuT8dORyPHI9HDtMo8BcQkud8vWiOy/dWEXd3d90YxxihNeOplePxQMkv8NZKB12kWPr+4QVDGCXniETSpQgZ6HI5CyGiFMIgHbUHjbwO40jwgRACh8PYm0wa63prlDBOXdKqeekxRp6enpgOgRQTOa5ao1OhJioim4VV0Vd14qzzNDxEnKooOUGDKHw427XyQByPwQfGIDCpt45Uazd+DRJu46P1fGuG633Fmk3X8r1IhY2R2rY9PF2VyMIOpWnsuR7NhR0T1tob4yUR1DY2exTFTzceP237os9vUmnb/n8WI9kQkhtjVTeCzI0aPPRgoGhaAnZOacuDxsi8yhx/fHzEWnF4nJUcsORpFZ58nwj6M29facM1BtFlqykpRggGUZSmQk2RLGgCg3N4bxmcIZdAqZlVDUGwYGsWZfVlZrl43DQxWLg/HjiOoxYwizBrjJE1JoESa2W0FWsrzhRCzYxGOsRmWxhNZqgJX42od0SBPqwJlPVCmmcxRsuJEldQ45HiQpxn1nmhpBVTC8UacoJ5XFQBQ2uh1HDNy0pOUdhng9T2XOaZp8uFEAaG6aBMx8SyrB1KkUVK2IOyoEu+BGWelSyqATVXBq3zKaXw5u1baXK5LsSc+GRZ5Nqs5Xrd8ibDMPTJsa6rNPHUvNbEEWMarX/zqPdesuTENkB8b9S832CirhoA5Bylpq4ZMI2sJPcFzpjec6jJTgUr0kLBWU7TRMFgDdS4sGq9IKUQjMVTCQbCOGCLqJ0PzuAo2JIxOVJjhJSoOUGKuFLwVJw+M1ukDrC0a0oJj2X0gWkcZSGcRmzJXK4nailY5zmNgUoll0iJ2hSUiquF0RmwDmM2o+Wdkwg/imxUTSt3d/eYIcBhpJRTj7gagaBoH6xcK+TM6AwmjGTvSN6S44orBZOFdBEUFfBoiQAFW7OiHxVbROy1ovVrDlwFS2FJC9SMpeCMSDw1VEFSaqoiU4vWd/kOD35o25dD3IwjNWwYyQNSq+oripEe/AYVUnyPsrbOyomSN+ix1SftI679Qr7PZoUgUXRrTFrLTo+xbuoXbRuGQUW/G9xauoqKGAk9rqE3/cxFiCNiZASaY6dy3yBxrMjiWe+wWntZdByKOoyUjzgX8D5QO11kI2C0fLgVrTE5XkUK5T0M3mv0CpZGzthyfvVnyZn9lO0rbbhUjQ9nNKTXhZYirDpnwNSsi6nkh7KVpGBKmWLBVamxsRQsGUqS6Ct4TBEiBM4J9d3KI1itwbWBWQuBthjCaMCXRE4LLDOhZlyOOFFJUSKFwRWLr9LynJoZrJxrSSu1Zkytvd6hsXpE400kV5ZlEVgOgTdarqcgbEeviVdjLQVDyoV5XVV/MXdhVWPbviGnSkqFotp5ennCdlSvN9kCSiIx3uGHIDqNRjrlOs310XIJZTOC7ZYZ/a9Su56ZwGUb68ruNNQa5t7YUE5bjIjgqt4BI+SDQu1tFWqpVCPt47f6G8Xbi4gcG+NwGLy1BGsZnGXwwt5Mun9TCpRI43M6a7oBCtYq7Cd5JVcrpmRqjLgqjFGbCyYXXK34KolvU4QiXmISRhcwGMtgHKNxjNpXrnpHDZ7jEDSXKMeWyjtZxByqZF4Lg92ILKOzYozbOGqAbxW4zjpLDZ40SgRadSFNpUiPu5oFeq6FYIXBmauRHFjJktdJcp3eGIoRI+cQA90oDVXHuS0ZayveGoKt0uW7yLwbB4+tUhBunVDsMcjC2mKXVDvkbVX7UKKm3Ps+WadRu46jPSwl+RWtg+yRfBsT9PwaoHkto2uKUadOR+fOoZJjVWo2vdhXPlI6FG2s2X6qQIstHjPaHNRQNmFcw1bOY2SFr8ZgikG4omokpaBQWdWmoXVyodZgClRLFyZG14qKdAPQggNqTwvb56KWghJVyb/Sul6oUrzM6UytTtYsYztru6cwSktl6Dqj53Fr1n/+7SttuGpeqakyDZbrEqk5S5fXlLDBEiYvD1kf9N00sq6ZpWaW9YzJEYvhOAwMoUIsBDKuJlzJuFoJSEv2msW7PHrPwTmitZwvF2qKTLVglGk2DYG6XHl8/Zrz69dMecUtGZc9p+OB0TdvLPIwWBIeMnzycMdoK/H6hLMwjY5gD6xPE7V4Ss6kdYEqgqeXpytf+9pdn3zrGhnGI7ZE1rQyFClifvHyI16/eceyrDw9XRiGRwnTncfYKmoMPkA1omW3JkoEF8RrB0MtumTbKuoFmsz+5ne+gx8nrpcL67ry4qNXnE4nibBya4gJOpNEoT+MmGp6juwwTUzHI8N0ZMlb7moYJ8kxAderFMt657k7njo7b6/AYVoEBVRXyVRZLAHrLEmV0YMRlYG4LFjjOdwFDsEzGccYAndDoI6BNUPqzStBcaoNlqFiizgcfpB8mi9FopB1ZVlXJmdJRiLtnBKhgMOSU0GC5UpO4oAMw8DxeOTODQzVMxaLDVYgZQunYFmrEiaWq0CwzmLDQFXqeq4Z4zaYzJWEywWH0O9DGLTY2jM6SzFgiqdEaf+TkpgIq8xSTyXJnZRmhRVMSZS8siwXCplsIRSZJ6kU0uWJUIvWhIkByDWRcsSrGvwYHIdBCrQLhezh6x+/xFCYpkAYBEaVYu37Du8v1yvuPGBzwgfH6e5AKYV3795xPB060zbH1COYpuYiUGMRIwBKNEnCkGxZNA1GnHMkIzB8Lc2BtJ1NCCJmLGr5YjBTSp2g4fXf+8aWhUITCDHaNtlgqUbSALYxhvREunybk07nje0XvIdadE1Kkpt28vyyRmW5Fo2cRXCgtAhNEYSYReWiCSu36HQaBomCbcJYT8qwxpY2cL0MoZYiyJYVogcZsIYwSX+/HBMlFQG+MrJ+GNPh/hav9QaYX2L7Shuut28+53Q64o3h7jACSBM8p8SEtLDEpQvkmpIgR2ExIWwpZy3TYLk/HjmFgM2Jy+OZtC6s1lGjUIajykV1tWRjmbzHlQIxQsn4knBZGHan4CiHifpwJ7CUtdjgeXN+Yl4jy7pyefM5zsDxMPLxywe+/uolH796ic2ZHFfmklSGJXePb2i07jASwrgV41rDnBbWtLLEmfFwFPy6wKtXX2NVsdO7+3tNbIvad7ueWsGoMkYphVFzHSF4iqks88x1nlnmq5JIRj755GPA8vrzz/nhj37A+TozThP3h4lDk8eKQihoEZAzphM4ZBEQokueZ4rZMPNeY1Kr9AlLmasVFYl9gr7VpllrhHmpsJjAiFb7S4HzRrqzekNwQgowNRHXC0vMpFKZlwvz5ZE0L52h2b3Y5jGaVkIrUfZ0N2m0bhBCvRhLwVMjpkRMXilp4TBMhDDQxIKMLpnOSgfo4MClBKaSiXg74MkMrnIMgcHJyTgbtL5QFrtcC4Mx4Dw4TYCro+F6Z4JKoOIUUgxkbQVURNmjipCw3H/5nbLRaLt0Ads6euphZB6FjDNNI8fBMwye4h0f3Z+oayQqhNmi+AiUnHEKiaayKqyfMUVgd4NAtRiBoXIFSiTnRMyJtcjvlCLJ0uHmlFKHn0Ecu7at83IDF9pWQFwqKUV5zqqxl6MwFZ1z3fAkZdWhuZ81LhLdF0fNpUd/jaEICEJTmup7wbA1NZWoTMdQO6/anFkdZ1UIK4WKrVY6XHQ29KZekUrGFUEEqsKNpYOUtUdTpYdhdDi4wak+jH1+lv69qs14R8IwaUjW5oDe2yqkNmPFXRTjWzBWOgYE5xmnUYhNPmC8SKe0SKtpYX7Z7ec2XP/gH/wD/spf+Sv8zu/8Dj/4wQ/4O3/n7/Dv/Xv/Xn+/1sp//p//5/zX//V/zZs3b/ijf/SP8jf/5t/kV37lV/pnPv/8c/7CX/gL/I//4/+ItZb/8D/8D/nrf/2vc3d393OdS2ui2CC4SsUUi6lCJbUGghYdi9cGtWRZcMaBkkuHFlNciav8nB8fiS5AkhYg0hpcIbaUOlbeWoanKAtrSUK5cs6T4wolCZypGHiOa2cuWgPpdMQZOIwDNRfm65XHN1BzoqTIOs/MywIqxVJzwRkn8kDrytvHJ9UqrMzrTCaRa2JJK6jaRimVJ42ISini/Wsea5omYiq9TmRdt6aMa8xdZBcjNGup61kZGPBeWGzzsvJ0vvDZ559znE7iYVrDMh6EdlsKQwhdjNNiOpX5cjlTtKnhMB2watCEjVZU07ES48q6rGrEFi0Cb0Khkii2VtrOSFG6UtqV0IJzzCnj/SCeqKmbZ5olmbzGjPUDb9+85Tovkh/TtUTyZ5taR/e6LViz9uPbmkUf0Htl2a3UIuPAkElppuZItQ33F62/jMGulrg60nxV4oJhOAwscWFdF67nK7nKouFtwHo1pLmSStQo0IITT95iqKZ2A2m8wdvQx+7T46AGKbLMqxRr7/KIMmSVyl6lW0HwvsNSOUVqiVATb9983vOYl/MTOS4K7RpqSXL9ChXK4le0jCMLWzIuFK25THFlvpx7bRw0iv/Kusy8e/OadZ5J0yg1cLu6vX7uuyi8w8bPCQu1Qde1w2ulFoWPn7XpMbXvb19TuB13V8xca9cyuq0ne05k2C1kiqQL5L0ZmNt82e3W88G7cxHjWLfPG3GQ9n/viSu0nJ8eqzMC1aHcF3bvTlKPv8Gx9DNWBrca2dY+pd2vPVT4L7r93IbrfD7zB//gH+TP/Jk/w3/wH/wH773/l//yX+a3fuu3+G//2/+WX/7lX+Y/+8/+M/6tf+vf4n/5X/6X3j/nP/qP/iN+8IMf8D/9T/8TMUb+9J/+0/y5P/fn+Nt/+2//fCfvBANe15U1yeSrBoZpIGj31fEwsq6LqBJUYQEF5xiOEzkm9daEBDFfZ15/9hmf/fAnjMPAev/Aw8NDf6DSKn6Rg5ei4qfa1XZZcdYyB2FtNRJCTqvqsAmR43D/wDEEjIGH0xGKJDiv5zM/vJ75MZWSI15YEZzPT9ii3mibAPNCzIW3j2fRe4uReZ0Jo8N4SyqJ4+GIsYYYE9///veZ55mkjMOWD/va1752MwFT2nTgxJuVS1VbIpR0bzidTpRSse4NP/rxj/n+97/PP/3fv8d8Wfn89Ruenp4Yh1HFNj2vXj5sbK5SuVwuXC5n3rx5zfHdG053D7z46GMOp+N7dWAg9XaXy4UUt87NoD3RdiKpTfjXWVm4C1XFkw2xVoZhIqaFMZ3wYcT5EVzgcp1Z1kQxlh/9+DOu15lqRTLJaA8i7wc9pyaXIw0254t6rt4Tj0dKWQmDECJSPJPTTK0r1kQu53faVcD2koXakvvI1LcINIQBG6zIP6VIXCKtsZ93QWrRtMxjTSvOOoYwSCqClsdhy4CrsWzRadOuFI3BTbPyiwgyQrIJSjIIfaE0xnK9vOv90q7XmX1nA0rWBqfKo9e1PWtep5TEvFxYo/Ttmq9nXn/+GSARVUwr8zwzzzPrfGW9XKg5c386cTgcGMfxPbZdO3+D5sl6UbEaEQymiem2zxrTA4uNyaq5LCuQdY+gtKFpjunmfrXJshksAwjF37VEY90v/ubZ38/21a/iffWPdo6tLcn++/t9NAJWS2Q9Z13ur3Pfg69WyX+/rwFpet7wvVMFcYSWtdeOok6A26nub3nsL08r/LkN15/8k3+SP/kn/+QH36u18tf+2l/jP/1P/1P+3X/33wXgv/vv/ju+8Y1v8D/8D/8Dv/7rv84/+Sf/hL/7d/8u/+gf/SP+jX/j3wDgb/yNv8G/8+/8O/zVv/pX+fa3v/0zn8s4Bk7HieNxYkkrWaVyXFAlcKPhLCKEak1VOrDn4eGedVmYr1eW8yPXy4Xz4xPvPv+cnCKEgDOGQxg0IkGp0EmUlLMkom2F4AI4YVCZVChEakwQMw6EuIA0dUxxwRsYpwOnlx9RciIuM59+9hnz+Yl1ngne8nA6EpzjenkSevAwcBgnjHXEmLlcFj5//ZrrRZQZljhzuDsyTOKNH6YDtVbmeeaf/f73uc4ifHl3dyd07BC4XlfxrNVTbPBFWiPn64Wkhr2RXrzzfPs73ySlyuWy8Hu/9/v8s9//fd69fUctEkmdz2d+/JNPefXyI148PHA6Hfnmt79NUM/tcrng3jqsKuLfPzxw9+IFrz7+mNP9nRApjPQLM4qLj+OAs5Z1WYlpJWqn5lwES5cFRRs9Ns+yCkRSLeAlykrjhHMKw4UJHw5Y75nnhXmJVGPwLjNNTVapdV0WeNEqoUFru0kp8cMf/R7GSO7hOB04n++Fwek9S4pyD9dIKpnL+XHrn2VV6shuzK+CJuvVnW0NUJ8rRCS9l92ZasdJSReTnfFRtldfpNX7fXH3oi8qWfUEGxGheekCP7V6psRF4dhhHPDOKVOzcn78TKJMY0mxEIZRirmtFTFptVamQtFco3OCiFALwVumUXJ1mML58tQdynmWXnfX61lUOJZVKPZ6T1p+8HA49HO2u/MftLP5jeEyBlM2YehGp28wW5eD00V80JrAnDMpe1on7pxyh6Wds33BD/ueczXjBuku4axVw7XL99wY282INsdNOplvEWArfWjn5rxobRojY3NP1buJMneGq/3sDTdshqSde3NsmgFqm5Bc9DtbTKfXuznC8mxCv8b23bq7xi+7/UvNcf3u7/4uP/zhD/m1X/u1/tqLFy/41V/9Vf7hP/yH/Pqv/zr/8B/+Q16+fNmNFsCv/dqvYa3lt3/7t/n3//1//2c+3g9/+H1OxyMYw5JWUhK6r3WSRHfeYZwhZ/FavZO2IN47Hh7uicvCMs+8/vwziVquM+/evmOdF9KyCBa/rDTh2WWJND03U60kyo3sc1lmqAoBmcq6rKyrtHCwRqKIRCGfXZcgGoITSCxFzu/esVwvpHXBWcN8fpLFep45TtLxeD0ctY1DZpnFcC3LQloj1RTWnHAXB84whjO1wrwuPD5diClq3VjFOqG9/uTTz3TBQuWRdOAmYSAWLbxEJ6pxnopljZmYCm/fPWFt4OVHr/jWt3+BT169lIJUrRc6no5MhwNe2Y9Cua5YbwnjwOnuxMPLF5zu7pgOI9M0CBctV0qZNcXVchGiD1hKJgQPtVKqow7oYlBx1ncIQ4AoLZEIhowQUQ7HET96Nd4WNwTJJTjpBuy8U4ZdpaNPRhijxorzI5NWIq6PXt5rNGqZhoFxdHgviinViK5ecI5UDM4euTsFYWPq/TbK3pQ91h4ltGR2qRuMs/eSAVrNzX4B/pDHvS0c4i1bxLEBjdp6L6dKA5fkn7V36JUaP8nptKhrX+/jnXJ8s3Srtsr87IXSiJHr/DJTW6Nyap0wVuirh0mKl1NKTKNjGmWeTKOnpMx8vlIV5j5qvdy+HinnLB0W9F7cFpXTDfOHooV+73f3rj2XZvx7Mb4xeh23UU7PBvUDPIuSZPXYjnlzItt+9jVpz8V3b8SX97VrH9jnZry2o+wL+fevNbSjX3fZWiR19NGyu/Z2PBSKFKPd6jexA9M0bZ+XE1LbXbedfontX6rh+uEPfwjAN77xjZvXv/GNb/T3fvjDH/L1r3/99iS859WrV/0zz7dWgd22d+/eAfC9732P43ESwxXFcK0xirSPVRq0N1CFbVNzUojHcLo7kmNkXVee3r0VDzIX5svMMs/M4cJ8vfD29WtSFMO3LFFouM5xGA9438ReDctylYQlIuu0qOGqNROcNoi0MGudREx5o7tTSctKSZGaE4bC+Z02GkmF+XBgGkeWoxAT1iVyvVx5+/iu53iGaWC9zNI0EyFB1FpJJbOskj+w3mN9wLoBjOH160+VvaT5D++VsiuGDSTH5YIT6HUcMdazrImcE0/nK6fjHS8eHvjFX/oOH718weAl0r1cLtJ593jAOtuVS3LNOO8ZpwnnLC9evmA6HBlHgXdLrkTt2VSyUPPTrqtvrYVxOmgeq0VZshAFq+dvgGopZMnzeEgU/DBwOB5UtzDgwkCYJiGbrEHTHYZSRTEgxdSjHthN1DbfvOX+/hP101UjsN1DDIMq65fiVNfuIO1QtPGjNVJPs1+6rDa7lH0IqbxP77b4NcilNmmwonBuW8SgJ+NbrRDbgmM1IkVzLf0zz3IwYvRKzxOtGgU341XKpjqxifZmghtuIDj5Q/KqtWSBD5XQ0iC16RCgZgaNVkpOpCRF7deroArUytvP3xGXldPhyOl04nQ6dYO1RQf0+7M/h628Yrumsnu+Ve9bz/Xowt2iCom4EkbZhdZYbRuzN3Lbvb6BL3fPb79e30Qjz6DD94yi2XKs23vvQ4VfVHjcjrff5/4eee+3e4h0BuidJvT7zdkwZpsP8n2JqkNwVCPGy4ZpM1y7D29lA/9/Yrj+j9r+q//qv+K/+C/+i/deLzWrfFMlrYuqaotxoUkjFYHoSk5C09QOrrYWUpSCXVIWeMd5BmN5LKronCspL11sNKeE8dIkz1vDqLh+KQWL5O+sMeQssEDQ2pJpGKTflHPUMBBL5Xy9qqqCEkRi7jUQNSfm+ULJmeMgCgfOOixWYZOZy3WmGsd0OnI4HHjx4oUs+GXlepWcgBAjBl599DXGcdROz0JsyLlgjXSqbcZ3P5ElrxNE+moacFqr9PjuDRcle9Sa+e53f5Hv/MIv8Af+L/9nxnEQyR7vyHErkPbOsTJTKTyMDyoyUFjmhdP9SfQZB4m4chblhSkOkosrlVo9x+OBWhVZy22yVaz1qr4N3gh7S+ZII3UXqlUGlhc5poLFB0cYPHf3R47HolqGnuPxhHUS1cZlVcHZvGNqNNhFvM9hGLai0t0i1mCipigA7Dzo/SLVrgVAICdZjBySsFJTI34ENKNjNBIoConeRFzyuUrdaniswbEtdmgUYdolobVhRYhORcO9UiveOw7jxGWexfEzBuOdEJJyFrk8K+eYUtbFytLV1dVgip6msPUoEuUaI07Cw3KCWvDOEOMW7VcK18uZ6+WKKZXjMHG9zFhEvLU10VyWhRgjKSWOCpM3KHUvl9Tvey7vaRWy69jbWMQ5Z+kRRsu5iQPdmMUtehFUQMa760ZhU9sozvLPaz8l88X0NUUHXD//ff5pM6yp65KaHiq3/W2Ei6plKft9i1G6jd7bMWIUFAfrn5Ew6LnWTv7YfSAXEVlY48JxnPBeIFRbWheADRZthclfZvuXari++c1vAvCjH/2Ib33rW/31H/3oR/yhP/SH+md+/OMf33wvpcTnn3/ev/98+0t/6S/xn/wn/0n/97t37/jud7/L4TiJLM8wyGQrRSCxIg8g5SyafxRggFwpJUEtHMcDMa4SdfmVwzRCrSxmIQ4rBtNZVCF4ckqqqebU45QHoWukRHgotdkYTK1a5OkYhwHvPBnLXKQmzFoR9URpsnEVkVnvHGEcMEYkqTpkVYUROC+rsuASWEvFkEvluqzkmsglEVMmarW9tdL3K+YMaySlRRoA6mRo+oW1CAlijZF1WQQ68IEhDPjgGVWs9XydKaXiXGAYD5xOJ6bDAaxljSulelmQFJuvylLa+l9ZrJNFNdciecMi8lQVYa+llIlx6Yar1CzD3EpbmaLeHablM4SOm0uigfxSaSWCsKVkUhXtNRsjWQsipTAZFdc1OD9oKxkhFBjEw6xGWH6y44okzmSFaEKv0HJCLV+osVLPOdUu91UR26fLW0t7yCJQjdaKtZIFKYa2HUJko+mDFIMaocC3Vu4U2XMRq0aDAKtC1gY9F3bHVehTDJpKjCksXkshJSMsQmTASxPJrAunpdZW85eIcRFnqGwRsTXNMcr92FWZlVJM7KCKHFBU4XvjVGeyqOpGLr0/WE4S9Yve5ibkK8ZSIwudW50kvo8SjIpRs4sgrKjI7Nl0LbKiRyo7ltyzqKhBeBvhoT1hHZHG9BTUrXG63fb5uKYgwu57+4iq/eWc02vcjFM7HzHKMujeJ3goJL1zWkU5BxoppB3JNHal/s+a/RnIFteV63VlnWcOh3uoomIT2OSx2vffJ6L87Nu/VMP1y7/8y3zzm9/k7/29v9cN1bt37/jt3/5t/vyf//MA/JE/8kd48+YNv/M7v8Mf/sN/GIC///f/PqUUfvVXf/WD+23RwvPteDxyd3/HYZowuhgmbevdajuW9bp5vIpRQ2EaRoEHXcAZx2EQenDNhaDJTu+9qFQXR/GOnH2fhEJDlwoJoX1n6bKrE8ZZA1Wwf68DMGfUAIoHZL2TSdUSrcZAZ8Y5kokss3h41krTwpiEDVYxCktZCkhOqiaR6lFjIdCXKpGrevx8XbsXGsLAOG5sn5gyy7JyuVwVEvIEv2KsYZpGxjEQc2YcWsHsxOnunulwwFhLXFbNWYS+QFRdRNrwblX6FXrPp+YZSptwyEm91Kxec4444zDeY01oMwagq2EI3b6x4OqOnVepRpW+jUr4FFHmyFkUSpyxVOs0T7OjT2s2wmqjxP08qzS9vLyD5vaK+7UvcEYnuDyPHVV7tzfNWFMKmCotaFKMGBW8rRqt9fGmxlGFWKRY27bprAvijhVoihGpGZrqeNJltScoVA+zYlT1QZQvxFCmCFVFctHXSo4KpanvbJq6i9TnyD1UJqy1mi9T2r0xmLqHvlSZoRuWzaCIdqaKBys5qhmujcLf7vf2UzWc3C+PPadoG+tvg9ikUef7hsspfOico1QxBs45aVXShaSfS5QVeZZmywftCRHCd7hduD+Uh5KfW8bkbU6tkUOc1uWZ3f5uiR/PjWxrZrovJ2jwsDEG4/Z9ztoQNf3ZbP/fTrx1wo6qA2t0vPb7f3vFfNnt5zZcT09P/K//6//a//27v/u7/ON//I959eoVv/iLv8h//B//x/yX/+V/ya/8yq90Ovy3v/3tXuv1B/7AH+Df/rf/bf7sn/2z/K2/9beIMfIbv/Eb/Pqv//rPxSgE+Phrn4gQqSpn90p1ZxmcMPHuOAkd/ipN+kpPZNPljECUJKypeJtwNtDUNmIqiuUnlXyRyRyNqAOUItFSUsFa57zWjQmOHoJjth4wzClRbCBXQyxS+FmyfPf89MgYPOMwsHjH27dvuZ7PXM9PPNzfM00T03jEDwE/DNwZ1QBEDNM8X1njQqmFcQpSs6TDxDtRD1+Xlet16YP+zZu33N3dMU1Tb5DZ4GdhImUEJUs8nZ+wzvKd73yb7/zCt3n16iOOx4lvfOMbPDzcczgdoVTC4JmmiWW+AEgtmIGYKqUmaQWTZYGzFo3kBjWi4zaJTOkOSEwSTRpdo6xCZmA6hFdrW7DEK3bGSq2TNVQLIUuE6nxgTVnzE41BZ7qmnvMBbyy+FIqru0m9a7zZfoO2m7H9fESkuCq1/DkkuC2uIosFPUI07do2R8I5f8Mua6/va4z2i+Xzmpycm6iPbE0iyVpLQhUbdmUHbd97iKnvr1QG77ryRs6VRRff9prk2KRIH+iqEUbbKxeN3JpkunRaEGeuRYWYViRscc6QsxKD9BRzlk7RrXdVu6ZWIN1+dwhQxaW3e6p9ocrtvRLD5SX/6dyN6oW3omsoQtDb8wv6WWstrdsvVQgK8n1BAJqsWTu2FD1v0dN2DvTXmxCzUNk3MsXzujWrbY5CCGAMWeXu9tCi9/4GKmz9/GqtgmCU2tuPNAM9DANhmJiOhw8tvbQZqHuVDth6n5s0W2N8imhzf+yUHDsk+2W3n9tw/c//8//MH//jf7z/u0F4f+pP/Sn+m//mv+Ev/sW/yPl85s/9uT/Hmzdv+Df/zX+Tv/t3/26v4QL47//7/57f+I3f4E/8iT9BK0D+rd/6rZ//5H2jBav2VoVc6ZPcYFiWC2AZxwOWSg2l4+feOhgqxpygiFK784FUm4BrYBinHvCXIkQK8aDEo5d+V0qsKJJ4LDlhrXjR1hmslUl9GEbmJDi29BGrVCftSoLSrA0Q1+UGLqAtxt4zuFEJCALHlSJaeDkHjbakrck0HfqEBoP3A8ejY5pi97o+//y1VLXrouK953g4cpiOwgrSe3u5PpFypCJRkURbB168eMBrMn2eZ3UgYJ5neUC1yiRF+x35oHBDoRTT8xNQdWJ6/VrBGIlajbOUIUg7DC8KDVZzNLVIUXbRFiwNbzeYDpv1on+kMN1UxzSMovJaLcscxdCHAeM843DAGMs8r6BRiXcB66y0DikZ42qH/NZchIaMsCGNSX3xrXVLdIfger5rr61nDPqMpG4mNG2+UrSHWysoleffDFtWKDgX6YHVdPr2unRhoIu5llJEjNU5QvCkBjk1i4+MPeeDPLda+2JsMLjg1aFQ4o6xhDBitflgVTUI5wLOB30WSc7HGOj0eIspAgnToDPjVB9KnBs/jDLPTBUafNp6XbV58eLly774ppR6bVmTAwN20dCz/CMaXdbbSKa9v2dpCh19i16c2+C3D323FJH9go2p19IBpYg0XIMy22catJdVEGGLhjYnZoMON9r9PmfXuyVomqQ+u762PWccCtQtzkFTpWkOgHUbk1RnHMYoMsS+6Ft61LlahMi2rgw+sMxSf9kIhCVLSsD5XgvBl91+bsP1x/7YH3vvZuw3Ywy/+Zu/yW/+5m9+4WdevXr1cxcbf2hbVgHDZZJYpE2nqCK3fFERawJUpIGrGK0URaeMqk0dl5VsKsY5xsMBaw1DCIRhpHnLReXGhOIrA1L61liK99oTqZBaXF1lTjrNUzjnWGk9sCxQwAa8sxCCEEiUbBK8x0wygcdxJAwDYdj05qwTMThpwtgKBoUJNAwD9/f3WGs1AS1itq0PU4sQYkw3E0REe00XvS1a6+KcYU0LpSbtH9XyfJtnnVLqkF3OGdcdqhZ9GM2F5J63kO9K7ZH3idaNunmKHXbTxaYtDLLGbb20+gTVsaCmUiJHxWkk723klnvRLxehBPH0rQtY6/F+BGOwWl4AzVMU9XOZbrVHsyJUrIarFkrVxcaIU1E1MvPcto8AsZ3WGGJUeNPRFzVZMLYIyBgRTW7P6vniaiuYsnXlbQudwK2VlDOlQHEyd2XMbJJD22a2e920II2h7uqUBGkTmbBaIDV5LiRqabYz93O3YEvPpWR1NKwaq5QEvUBJVM5I+YE1LWrczZcqrMjWPqcRMPaRyMYC3QzKfqFv8Ofz1xvcsGfWSRH1h3th7Qu098e+hd3k/jZFCbczpO3ZbZFXE6Smf//5+e+P1R0PPZdSNxLH8+8/3+82FgWW7pqOei9u5l8fGbqXWnUW1L5v0wym/mA2ZaNNJFyOKSQq+rl/me0rwSr8ou2HP/oxD/f3vHz5UpQQqJQ6S4HnMHA6nfgofE0ZhapxJ8kVkkrIpLgyX2eKEeWEaj3f/s531YuWRbmxCksrijUbFk7Oov5tHcZJewzj/QZhGbpeXLGWgOuMJqvGYgieklbm+UJOopV2eLgXA6EDrnlh0zQRhoFhGnHOabv0yPl8Bu7FAA2D3JMOWTTIxrEsSzdWx+OBGDev6nQ6de3C6/XKukoV/IuXdyzrlZQWDqcDPjhqlUZxEkFJt18o6r03TxQdtMrwy4WU1t2i2/ITZldwLBO8sSKL3quqsFZKCb9bpGq+7YG091IBSbiHQfNaBmsqNWl9l7XUKiqDzga8H/FByiucK6zLWcg+eo4C3zjymsi1kEuV9jZDUCMBlUYP1zY5Ovlj3CKYpLWGjWUV43ID0bS6wVpb8bdE6BVZoNZlEWNhpN36dDxozlUi/paHxRotKcisKUq+zogCeylJcnjGICUcpRsBuZ1GyTACc7eFp9Ytr9LWzecLfYzNkbIdwsJAjFkMaK2EICxSYwyX65N2cijktGKpBGcYg+RgQhgZx8ycLjhjyDpOWiPJ9rtBy8VvRIA2dhrca1rHdHXK2kItESlSCrK7nlLE8a2l9f9qi3LpBr+dS0pJPsfu9ZxlEbCGnFXxv9JrBdsxmn7o/rwbhNvuZ/u5EfDNFps3o/HcmN4ar+1YgO5na6DatAP3x6pVmIvdxKiMXQuj9K6KVJZ+X8bAwtE+aM83qa+UnKDkOkHJQ19y+0obrv/td/8pwxA4Ho8M44ixlnVZWJPANU5hNqvQkbha6gGlxDovxHVlvlyJq+ir1Vr4zr/2XayTHlCXy4XrVRonruuKMyK9tE1o2Ro5oCXs23Fu1AiM5RojSSvSvTW9lYIpqlZN4X6aCMExhMDLF/c3augVXdCyAwvegZs8Idxr4ltgJYPkqHqvHARuHIJnHFWJYxpZFkmkppSwQIqiwr2swqw8jCN3D0fWOLOuoqM3eEutiWW+YEiYmkihQXSVWiwpimahdcIJKIr5x2WVnlBFFMdlwZdke8IpGSORVmWe6eJYchWDbyLFWvViN9UMkOddbVu4tUWKKdQiauHFFmq12IxEXCbjw8wQDnifcd7KcY0FG3g8L7x79453T4987/f+mUSGwXE9zwIHOsfp7h4fpGdRjInL5akr318uZ6WAZ8IQOBwODCGwRiWxKBP2crn0PktSSJvJRZtKVo2MciFpXU1eI6lKvmPw0nwU7abdavissVjfYK7S7zkgBq1EGixQS3N+xTBZu+WyJM8iBkTuteCvzXC1qLzlT6RAvpFblF1qhOaS88YwDcEzDNo124vChqVia2YaPHfHAy9f3PHxi3vVM8xcLjMgzp61pkPTy7JgrVM90UipQ3dSS73N2zUIn9KcA7lm55wsvpW+sINGXHUHvWlrGHRMtxWgGZNaa4cKWxdl1DHIOYO1ijhskVGLcPbH3ecsG6LStn0jVVtcd4ZiSh0WluPvSwLkcW/pg9tc6XO2YidyoGr7LUdr9Zw1rZuLID2CbqxcrpF3j2d+9KMfMah2aa0Zkojseu/7vtxu/fx5t6+04frRj38CQBgC0+EgTLwUWaJQrKminO0UphPvSQdhKaQ1kbVzcFOUtsZQB8lp5Jy4XK6iZagLrtRumI59G+0LVNXoCY67M1x7oVPrWGLsXrEzAswYKsEaxiFwnKRI9nA4MB0mxmnEa3v7WmuPiLoqPAhEZlsrhUJMpdeQqeNNS3y3/F4pYtCGIFFEzVXr4BK5Sn7JOTGew+CxNmCt5J68F9oyRhiarReUQHUCVbXci0HY2XtIqp2z1K0pc8rsIqW6mzgN7jFbLsftenXtJ1wTkG2RV5uGbZGVHW1CooXavfScJYIiSWuQMIxY60m58vh44X/7p/+UkgvOO67nqyzqw8Dp7g4XhNiyrpGnp0fRzlxXrtdLh1zGSZwF57xGl+10MtfrrIuW1KXVmsglMgRHLqnrUTa2qLD/1FBYuzUDzFI31u6lVTKAeP5JHbOqAVSDlsTZkfEpOogiT+QUxmoFrq5HGbXuoZ/aI/pWrlAVsRe1E2WjWGEXNsNlUOKOt9KLi4IzlcEZXr2459XLB5yVrg3OSp7YWo/zrdXIRq5odVgfgvO+aLulmLe/vui74mbIMXaL7S7i+tBx+0um/+9nhsfey8t1w3urBMIO9mtG60PfU3TvA+/tr393xQ29sEKkEqMtyjGlytQXCH3L35GlTGGNC09Pjz3aFei5YKqUnVB27NEvuX2lDdfv//4PpMV9rRxPR7zmXJYYpYYrSRsEp1TndV2VZr2TMWl5HGTx9MHxdp0lHVI2mFDC+LotjA1eaPBO3mjtN9iwaYWfFuNchwAOhwNNlX5dFu4OI1//2scc7+745Otf4zgNhODxwXE4CHV/GIZOmmiJ1XYuwziyrqIcMi+RwyhK6NK3R+vaSmG5SLuUNTpKTBxORw6HidGPXOariGPmJC3cnWPwAWtE0NgawVLC4PBBDbitOKtsOR3YFog1YwuUarTsqehitWH6loqxTju4DjcUZHafHYaBElN/zdtNq29/r52VWqbncCFoby1VpRACTSVVgSGjwjwuJXI1eOM5PDwwHe9wb99xnRf+v//b7zIvK8ZY4rwwHY+M04h1wvLEGuKa+oSNMZHS2s/tcDjsjGTWSEao8l1KzCgDtEoX7Bf3J9Z1FnX466zrv1NnxquDIIvF88Wzs/n0fsq4zH2R8aOXAn4tnG3O0OFw0ojGaQ6wfUdalGwLntkcAG3v4ZxnCCPWi47hMq8sq3RQtSoF1OFO1f2sVIZgqWnBW2lP9K//4i9gjeP+dE8pELzHOcNhOna0ZM+y3G83rxnJjVk95uYMgam3ArPGbN/d70MMxZZjVXrezec+FKnsX7NmV4/VnM2GxDz7afv4kOH64HXuvvfzGMUv2vZ0+U0aqvYoqZSCLQhbt7acF90hbMXLT0+PpBQ18pbIHI12jUb2P6uT8aHtK2245iWxLolUEmsWTD0mgZpQQdAQRrKBlCrXNZNiouSENzuP0jmi3vwlFuL5SqtXEG6HE/afcyIV5CzOONF4K5U5Z0iidVeKVYdig06s2zxYN0i7kHEaKSlivVBlX338km9865v8wre/yXd/8duM3pNT5Aff/x4P9yem8ciLh6O0XNfcxdPTI+uyqs7iWeEAIaEMQSiy7bPLsvB0fuLHP/4hl+uFZZHi65cffcTDixd86xvf4nR3x4v7O9zXv05MkXVZuVwvvHv7Gh8sw+AIwXJ3GCXX5ZwowHvPNIp+4BAsYTAYgk6kBodIY8rBux59CVwokJtXfTtrtSuxK1JDZwQTT0aYd9aKMQW6l9eEZK1tC4MuHgiRo+X6MAacF93AVIilMjgnRtlrFG0txjsYB2zwZAzneeEHP/mUx8cnKT24XhmnA4fDkYePXjJOozA8c2NXCqRWXWvVXrhmcVGLD8LKCB5jlRKfmzRUJqVKzqjU1ZmkebGcjPTsMh7Moct22VJIRYqgGymj50Ka8kMplGzIRerkhI0ZVVpKBJdtkHFa7UisDpON6iRauefjKGQTem5eQQXR7RzGkRACh+nIdVlFei2s2FTk+Q6BcZz6AjcvC0ll2uJy5enpCWcqlkAY7xkPD0yHe6oJVGQcj+NBxITrMwMFN4stbIt9CL5nUlrE0nJce8Zh79r9bJ/99weM2j5U6QSP3TPYf0xSBfu6tfdZiR967Z+77T5vnetsyT0lvlbRhayVDzp17ft74wkaUNZWQ1o0oyXEGjTXuX2yYClM48D98Y5pGAnO41XazDjTb1dzhlJa+bLbV9pw3Z0euNgL5+uFWq3cUGPxYZTJ4r1QhEFqeUZwTm6at77Dbpatt1ZMK24IfRHcs9ZavYQUJstC3cgbwqapndljFdYa9PNOWY6N+uy1A613DjuNPDw0sVlt4Dh4hmD5+OOPOR1GEa89qPyTk8gieCMR4RpZ1ogoM0sh8el4xPnG3oFpGhnGwOPbd4znwHW+cnm6EOPK49s3OGP4pHzC3d099/f3GNuKiAvWviCXlVojzhmcNwQvuTlpgmhopK+2okkxcYFqVVwVjJHkuPKRQKPWzdhY/UyjQ9DPf/M6923x1Bfu7+vsbNCkUZp826cRAWRrpUzBG20Vb82mAmAU+ogra4rSuLAUpuORjHiO1nm8D7ghEMYRP449B1RVTcVZJ722kihMFKqokDhHrkXrvyRynIeZlHJ3hHLSaC1nhlA3iFTZpMMwEoLv9U4ioyQQtXOirFerKBa0vFJtKvFUIPPm3RuMMwxj4HS6w4dWZ+S64bdOxzmG1lhTWS2YnVyPMa4Lqx6OJ3j7iFsjw6FK7ZxzuBBwSp0vJXPIAlWXnJjPj7K3kjndHbm7f8HxeIcPIylVHBmyoSZRP3ke6Tz33PtY+YIopUcKz7aWw9obofc/I+PkOa28G5xn+yul0HVWviDCeH4d7xuw96OvzmDc//2MBfgcKqz19jX91AfPo7UMat3OFS2VY9eKrWYbA0ag4xa1trIHgQ1XckriaEm7Dt67UV9i+0obro8++hiv2n8VBGoZHH4YNTryW5dNYwjTAWrFVIMPnmmY8M5jnWOZZ5Zl5nx54nCaOoxTdsaoF+Z5z+Cl3UnOmfl63fTqStMrE+9vGGSxEijGajffJPCdtXgHU/C8ePmC0+nEOIySK3BOFNa/9S2CN3hnJG/lBLYL3nM8jKoUkqSHlA7OmCuTklVyzrJAVri/v5Ni5/OFy+XC55+95t27d5yfHrmcnxCFgsg4yqLqncUdJu7vjzyd33K5vsU5I+rnek7SRVrGZKun6goLRmjo6qfLc6i1e4WlFEpSaaQCz8Xcmkd/I6DaIjU06d4X1NrrYLZFpZEJ8sZ/qpKvsVbYoc6JdmDruksVFZS4XFjXhZgE6vr4k0+4W1cwhutloSKe6OnhgWGSZ1ZzIRahPI9hAGdJa2JdVua4cjqeOIwjqRaCG3oebr5c5TnmiimiFBLjyvVyJXinhZyTGmADWMkzqp6kteLAzPOq+UgLWHJuHX5rhxlljcmsv1cxznA8Hfjo1cdd3ixGMXDGWlFgP5zIufD09MTWZ8thbWhpU6yKqg7jwOF0R+FTlpikA8I4Yb0oweSqea+ixJIgVPPzu7fCmkwLD3cTL16+4nh6wPmRFIWwUS3QRXRVh1HHWydfPFuE907nTQTE8wW89u8raAE7w7zfZxvHe+P2IRhvb2D2RvSLjO0XbT0/xWYI2z73pJOcc1+nWmS5v8ZSGwlnywnK958bODmeRP+tiHo3H7WwvhgDpSqS0oLPzRo551jjwnwV53gcB0VB2n0zX+gc/CzbV9pwfee73+Xp6cxwOEprheA53N/x4uUrwhAw1vJ4PvdBJiKzIqGDMb3F9DCOLNcr11kU11NeRRnHGkwV7byiNN5mhIYw7GCJnbr280nSQnCE67dezyKJUwslR+3SbLh/+YKHly958fIlDy9fMAYnlGDvhCacI8t84fXnjxiEBv3q1SuGITCNDh+OrGsixYIxmZIjcY48Pj0R/MDxcOTh4YF//Zd+iVorMSb+99/7Ht/7vd/jRz/6Ed/73vf49Cc/ZhxHXrx4yUcKIX786hXf+oVv4vyJ6QDWVaYxaCGmyAN1/9uITJCIy6rXbioo66jR1/OOuiuJXm1DUQymWpzWPNUixI6i3I9GK24J8lrNjhHXoI7dgqMRY0qrPFNjVOx4QCvyqJpPSjmS1isuTNhaWZ4yWMPp4cS3f/E7/Nr9/5MwjBxPJ4IfyLWyrAu/9/u/j3Vyvss8Uw1M08RHLz7i7kG12pJAY5enC/O8kGthHKbeFy1HZeVZIcPUKnnXH/7wh3jrlGgjOdqUIuu6qbR7ha6FDDJzd3ckhKEXhjf1jK6+YaXe8Wvf+i7YwjgGjqf7jcEW5dk5K0Xsh8ORWmFZVpz1nXHous6mPIcQJAodpgPf/aWFXKtChCONgr6mlmcThZVx8FALbz/9lK998glxvXIaLd/89re5GwODM3hfGIJjcIa0VmpJ0q4G0bCstZJLpFSN8E1RA1+pptJZmT03Zfr/pY+CzNXSCCf/nFBgHwk9h9ba6+1zfR2om0ltEdTPAhV+cdS3i8A0r5SzCEk/P8+tJhIa6ekmQjTvH6uUQowJY1W6yTQSj2ihlgq2GHy1GFsx1SkUKs1oY5I8/tPTE5+/fs3j0zv86Yg14plKLru1wvly21facH308dc4PbxkvLuXh2PAhsDp/oEwjiIjdLwX79hZTsdjh2fWZe4MtcM0sIwjwzyKl5xEn895p2rv0mwv9noolaHBapdQKUamtrqHXV2FKhy0VvHFWqwNjEMgp5kSV3JaSTnhg+V4EkUKZwqmSguIcQhQHYOHHBdJ8BcxABiD80FLYx3WZYIqeGAt9nIBA9Zbhmng4I5CFa8V6x139ye+8a1v8NGrVzw+PfYILYzSS+d0d8fxdKQykPJIzkuXcWmecxciNsIUs1ZgVGndbVQsVQkiNaJ4j7IJHcY5YTJCm0lSf6X5CBH8laEavETI6GfFX5BJuGcnCryRgYxBDAMYadJojSTnjRGjilKj8wrWqWqEeLByno67+xeM08TpdMfxdE+plZgj4+HY4eK3b9+wxsg4Ttzfv+Dlq1fSGyqLGO/8YmFZtTecVakoY1iXRZLXRiLpWipDKfzf/uA3ez5mWYSg0RiLLVfxPJdxf3/fn0/KubdmQQ2JBmx8/VvfVMA2a4sPET2WtU+gW5Gckjzwnf67Fac757uWZMwZpzljP47cv5S+alkdk9aaZcpokXbBWYnaa0kcTgun+xekJTB5gZNTLpicCRo9Wi2BMMZqk8r3Ia69MdnLWH1o20dn7YqrOpgNvTFGIfD2ggOTNyNj7K6NotEcjoS2MjaNoudGGJt0x0qg687c09+lvE/YgPbeRp1/nmfr8NzuqvbEE8nlF4VIN0hvt4v+0+H42iLajKmFrZN1Kz8xUgOGPpNSqbb2TtyHoyglSdQvxLbmvBrbagD/FY24jg/3nDAMx5P048qZVGE63jGME+N0YDyI7L/1ntPpqAyXwuX8JJPZWqZpwIeAGzyFwrouCgsGrHPkpNJOKfUENQi2b3pNF2q4tO9UTiIEaqTHVs0SBUnewDAeRtJaiBRyXikUnDeMU+B4mjAlUUsiLZkQlPFoxx5yywCwGNVXMzhKMJL4pyodGcIw6MLvsN4xjlOfLF8fpNnjx598zN39C37ykx9zuUhUcLo7MR0PDNMkuUAfMGZgWS+01hs5JclxqZwPTphy1lpKKrQ2EQ5RDoekeSaRIHHI+Vdj2Y9hiXSViYXpbEMxwNIcdEsOO1kWqzgnfeHqkZeB3PJbqn6hC4jFdfiieZSmCDSSq+3ZNOckb+rDiPMjPhzAVEKdGIZBo50rKSbMMjMOI+N0YJpOGCMKHS6M+OnIlAtRZXbaRMaK6kpRGEzyio5f+qVfxhrR8nv9+jXnp7P0eYtxY2Ai7zcq+v39Xa+9yjUTV81VyME0twjf/PbXwVTWuHJ+99hzeaJ/25AEPT/j8H6UbrvKAnXW9XqkOa7qCEhjzvv7FxiNENc1CUSoC1WtG0PNmkLNjjAemKYj0cDgMq0lSi4JqpfnqwWvxqBOjRqbHr3QI4q2KG8akvtoZou4Nn7fLj/VI6L2oQpIlGpUOLst3K3vmgQbmxSUUeNlimLozWgpGUwiYDnih1iF+/0YsztO2V5vVHVDyyvJ2NY47OYePKfQ3x6ntQFqWontPjfDpQLiLWpVdEnS11WjL4VpFdly3jFNI2tuBe36xKuQjqw+rx1B8+fevtKGa6VKvdMwYNZELhXrAqe7e8IwMoRR6ri868nsZb6Slhk/jJSSZEx5y4sXL7hLB0KAxzdvmYaR+7sHfBiJKbGmzBwLa0zEnIkZ0THceUPOSsuOlKWzcloX7En8zVIS18sTY3CYmsnxiq2O0U8cTgOn+wk/WoxL+FAYrBfIbLQSkSUR452mA4fjHT4MHKZTX/hTzlg/4G3her0i66Hn4699vWPa13khxg3LPp1OHI53TIc7vvb1b/W+Rm/fvuXzzz8n58KyRl6/eeSjj+54eLhnHAZV5s5Y51Sax0quyohXnGLepbSKyi+psDHNeADK6HTOYXdqB1SBqloDUJy2bahV+mvt9Pj2qYjcNS4MZve3xVOsQroFfJXiXOcDxoHUTa2EEEhpodrCcLiTaM85humOd5+9ZV4Xns4Qf/AoRdzBQl3wTox4WgtlNVTvsW7ifIks68p1XtTBEPi64pmXVXNyhnE84YCaEu/evSPFFau5hIf7O5wxfPaTH5NTJKeVUjLTNEiRfAXGgWEYGQdxSkT15MzhdNQIacB6x2effsqyLJSa+da3vslhmjgd77g+XkUr01beXa+MY9DOA6olaSzWS9+xuGbSVaAgHwbJIxsncGctjMZxnReJyIqU66acpWt2rruFV+HlavBhZJgOWFMZTBLD7wsBw+AShkhNEWMiVnUvh9ZluVaGgDgNRuq9Uio9WhFfQCPNPr5kkRUC0W0hsHEbZNi/orlFFxzV7nJqBkVcLN7Q90NweGcgWfKKlFhYJ/JxamCdddKtQvNPGNMhZwnwlCVoDNYJI7aYigvqrGYjBfzOdOPj7FZbJ8IDep0aTTUih9Ei6pTEASq5sOYoUboiCd6BMwVKYl3PUuNYq0reNWaipebWyqdgrKRTck0c70+8+/GnPF3eSdpFc8ilFEwVtGYnFPJzb19pw3WeZ1IRFt2apClaGA0hZbCiMBFLxsaEWxMhOOIapTVIykJHtxCCLKTeS81Uvk4MYVBRWPHMLW3SqTdjquDiRWjG8mAMUkppqTLFpCi0COlhXlaenq5QEpaMJ+NMxdtKrYM4Z9oAE8XfhSUmXYVthRAEunJhZJqOYJxMMmWipZJFC47mnVmBxxqsZqTavdbCovUW1+uVZVkZhkH3HTjenViWVQ3ZG8bRcXd3kIGqYhy1GBHZblqQbss/OUsf3LI1F3bn8RmBZxrc1zzf95PF9SZP0Pb4PL3dfOlaN70+QLo+F9ES7DJHDRuB7i1CwThxPrY6IdPzbcjjJqWCtQqxxYUxSE1UzSJSKxJFE9YPxAyYTMVJO5tURf6nWiUrFNAatZQSa5SxaWvlfLl0h/3t4xPXy0XU9auo2FtbJJKqsKyJixUYd14W+ZwRKMtaQwgD8yq92kotXOcoDoSFeYl635FuAFp/Z6qUeNRapZmidSqLZkTYqlZyrsRcye25V8OSsnrhUj+X6iYN1CNeawWmzXBdI5dlJc0L2SZSGQlVFRm0R1tu9OlSO9S9Jyfst9ouhp0xeT5Wno8v/WZjyrUhWpFu6i3Cb1Azu9omqnQarw26b2kBahd6LqWSYpPTut2en8eeQPEcCt6TM5oz2KDEPSGk7afdg+dEDrlLBREA30OE8mMMOG8JweFVmqwUqEaUWTqz1DQ2cFPJF5HxGFdKSRQypkfLButbQ0nb0zZfZvtKG651lcm3arSFdVgvuLq0nld9MWNwNoORDruNidZEQHORxo7OBKZxIg4LwQe8c5qs3RZdmqdRG36vleS0gd062Ao2L5IzwnjLWk9FSQSHJDZNa3MnO2lsxlat3tuxA3iBW6T1vOR6KlIGUNG6mxtK7PsYcuNO5ZJZ1oXz+czT+YnrZRZW4zgyTQ1OVHaRkgJaU8hKYzpVmZXNAFR0kG5EiT0F+WbO7m/rzh3+IrZV/YK/bzbz/vVqskLORYBiOg7Uo0JdBLRI+jbBXhQCVuNplWma5bnlVCg2d8gqOGlNI8W2HmsSre4llyLdCzp0Kk1Am25d6uoHcsPWmEVIulau88y8CBxejZF8a6F7wnLbRFdxiUki8JhkwbWWaiSPmBWyi6lgowgcr3FrP1LUWHXDhbLTcsE7jYpt8+oNpoqRK3p/C4ZUCq0iKlUt+FYHpc0fTFNlyMSUWNZVWwNpWYBCcI09WNA+XtIpcxfBP6d2qxMiiF9vL7OfC/JW3Y2k3e8WSXVU0XQjuD9Gha0XnKl9bpgWQdVt/80wiMG4HaNfnOWpakBarmpjQOrg3D7ZDd+OXVm3/dyeOzS1FFlfFJ6ubc1pRJaqkm3mZpq2w5rt4P22G1CySCKui0pNKdtRv9/Xsv2a+iW2r7ThSilRqukGrHEk2u2otXaZm2KkGPj5+7UKAD/4gTEERh/I1yQ5Je+1j1TVBQKo2q6iqLRT94pkn0aPU7yjZEeq9gbLlfouxxgc3hRMTVB1gWnyR9ZSk3pOrsFq8r3ax20Rr6aKcVzXFbS7c0O61Zxp7KfQh2oi5hi5np+4nB9ZriJ5VXOmpERcFq7ns7RDXxb1fMXAo0WIIvdUu7HYR6Mtz9WMX5t0tb8vXq116P3T37vn8hzvv2VCvZ8P2G837703asTQSy2KEGmMy+TiICW8bV2QEyVF+clRuvZaBzTKvTgqXRXFVFE2GSfuTnecDkeWVWp4ShKNyahRo3dOM3NGCqibd5+FoVl136Va1iSaeJc5sqySY8V5QgJrhR0KdMkqN0ykCqlKy5VaDbZK3U0xIhxpgFTQ/maFOWatEYNiHBmnTLFm8HTf1ovBqQJrFixUq8XQuihaKeY3naIuoy9jqFKVIQugQSMXQ8yJeZ2J84VqCzGfKHhtDmsUeyi7CAdS3kRoK0VTmEqmaGUQtGj6dmxUPbSstLeLfK2Zm68YI9RvHZdd/bxWJWcIs7b9RudYwxqcQWS5TO2KPTfjt+Wx9O82am/8uu4+736bffpM7o+6lN0vQy/PKlZYimQFWxfp7f7UXsSfciTlSKlZ72OL8mqX6+o71r9tNdJKtIgSzTIvnB+fuF6vjMfjTVua7av1C6Phn2X7ShsuaXArN60iCtrOWiU6y6IibQT0IWPIO++5ORsNt3XO4Q2iaF0BLDHOxBhZYyIVLcREGX0azaETxmS2uiYlLUi1qwdXCS4w3b/AWxi9oaSZtF5Jyyo5glywWIIPMqBKE/FU2qkTT9co6cE7ue5coHhROa+leaS3HllnHjntsmu2PkaNVn2YpBfVvqfRNE28eHnP6Xjs0cfe+LR6NedaDyGz86qapyiT1e4Wgb74KytTusu+70V+6O/9xP9pRutmX7t/211UbFRDrxXdikGS78SUiOvKOi/CQnUCJYlDqotWu9YKtlp1gCTfFNer0P91nNSmPOELJVeqSGT0TsDBOrLz2m25ig6i96zLQq6GrCr7zhgxKLqUVWOpTsYIziMVCAZjg/bDklyidaFDdcPhiHNW8mZFIDBnZCxlgQkwGIEzMbosNuhUoizpAeaxxmC0OSLW4DSgbOQWq3hZyhqhUMSgVajG4AcRXk0ls5Z16+BtrIi4ahdj450UIZfbRe+LxgIaOe3f7/Dxe6OEm4V5T27YQ3b9s6XctATaC+S2FiFtjjSyzB6B+KIxvGcCNudv60K8QdiNoNX6sO1ZhO9Bp7s5s1fO+BC6cWNUm4FpJnH/+Wa4jOnvNWOUUuJyuZBi3Lo39J+WGvjAA/g5tq+04ZLGfVow2W92VSiwCBPImO6l1FYNrm01mvtnGu6u3rNVMVB5ELlXkW+snXaolpcxkMHaTMlWvOYO4bTprqryBrxF+1UZKOJpS2Qoi6azlurENbb9gQvEY4zo+1knhBMwuogYoZ7mLelcNfxvUZAYF0spVmnrpv8OQZRGMAZfhFHpQ2t/cuxCv3tPqxkeo0oUzrWIUSe5eq4NfqvGbK3TeR/Z28OKDd7Zoq/63nfE+OndvdlZvf3T7PYNPaFu9Mfuo8RGpweoRQsxEzlLVO9yQCCyTSW8F7qWirOW4KQ7bms1QtG2N/pMpAV90fxn6YurNM9Uwoo1hHFU+DkKpKjGoYmUGDUqxkj8VrVRREE1Inu8qX8bZXk6KyLCRpXGG9RTjUbWVXNJ7elBg73FO2+LXmO9tW4E9DISWn8trb+TjEhVx08GulFmYBi8wIYa1Vc0N4TWIWldltVoSU6jdIdoh6FQd6e8jYmWl9axsPvGfrOY3fjaSCTSwZltDiJrhiiuNBar2aEP8vGCECaclXHfPtOiq9soiw5gtKh0d8r92m0LFavRaGtzuKAZqfevbbtXmjfvxrY9x+2etf01g2SslfGuulGtjANlA98YYf1JKfW1bA8PNnRqm7tfbvtKG66chDrbohAq3cO1xlG8663/qJUUV2JcpU5L/UHQRayqVM6GMkjeIbXOokUp2+qJGUg7L0QUtrWlRDVdLqWF2dQqfbmU2VD1/Esu1FxpkbkYT4+1tUN7rWllk5ewqpko1HjRWMs5c7lUlpI7fVZwdbphaQ0gJT8g7U1gJ8BKwVnHOA08cN+NxjQNGFr7itIhiubSGh3I1mmHW80D7SH5XhRqt9fkJrN7YYNcn3tkzz3e9vn3jVbbT+2f2FvKJsIr6g9+kySyIt7rrOvXY2oTTo7kFKnVkl1EVmUh7lQkeioKI3krRiu00gAjpBqL0RKFIm1Jcuo5VuoWAQRrwIr80jgMQuioQghJWaEgjYoE9lIIWR2xlt/NWcddGzm6Glrr8MEzjhO1Cmu0FLkk0z8rOzL6oHU0SZSoxkX9QppJMlpXZZ3Fj4MshGkTDwaDN7YbJl33tBxFBJ2N0cjObM+5NHjaVobu2DRSQouKtqhcrqHlmPXqmwXY3Cg+tHWjwH4B3/qmVb3eYqAYgQdtZ/TtTXxtYTuV2udL6558u91GSe0abMeRijgQRvfVocB6c/yGbrBbk24Nd8uBFWGZWttzWfKdJpQsajhQpW6rZPkshtZjcN81oMhD7zVtXqXtWkQawsCgJLdG1jIGamnlCl9u+0obrrTGnhz23mB7HkoMhQGBP6oQIypZ6MQpErzTNuZO6LchMPhAMUZEjEurPSjCGCtZZ0jRB5jFKDYvylSlhgv1FStsvoLB7aAu0a0TSQiP1JcN04HTNDF4gXnyulJLhJrwRlLeIoyq0kfGgJm5Xq+6eBpyydp6Jd7AFlvPKig+Y2vrDdTUyzf17+v13CdrzpscTEqr3C8v9TONKfW8PiRbqNXh2FhOspqWngzun68q2Vmrdu7dGIltew53Pt/2kOVz47XBizIB847yjJVnbHukU4AMLoFNsmjY0guovTPahw2CBeM9hykwhsCaonjCFaqzHA8Td6cjD6cjj4+PmFrJSVh7plYcFXKCJI0cvbV4U7uRDEag6sPhgDOWpMoeOWeF7/T6SkYUDcqmzm9Mhx+lZY0la/6FEiXS8p6H+zumMYgivhIkLFbYY1rvJ9G5lFSUUok1YU3uDoXoVRqk5Zc4bM5ZpuNBmm1WlQtqeRBVR3dKNjAGvJXrHjx4V/FO6NaHKTCNgRAM85ypJQGZ4p3eh/zec98z7lr3AOdcb7nSPtui6fL+cHpvbLXx9byFSvvZQ3j75pN7FmCbi97zHovup8Hhcs+sMvVyP2aDBNu/+/XrOvehefL8fNp6sO9kUUrRXmqq2RqjkM6cNqNt0b7dOQQYqQ2UKY6thprFgcop4YeJ4MQJoxSpp3SWvFXLfOntK224SkokZBBaY8AVHGKsnAGn3kmphVoSFZ38tUoTR2t14bCSH9PuaD0Bi1EjKEV4hlbxXXThaB6/U+kjWYS8M1AsOEexhmottVhonj5GlLCtF0/XWaZxElUI046vUJttLCFZpLJKT1Ui0UQ9PVEC3+PMfYBV1S3QhbEYbdoYIzkJqyx4kWBp6hYCjUIbXjlXjBlwLjSYWvV0dcQikyBZxEjjtqaF1J7M3mPhLdHduh1gmgTThyfe861N2P3kff75/bFa9CHeXpXiSQlPpHTCiIirsRlMxjRh4FqhZHJcRTWgQjULthZqCCzXS4dBMDKeBu8ZQxCnoxYhwzSfColGKQKlWGsgRXKtpBjFSA5O6/1EPcLkLJ+vSgYqiZpWWaxKoXjJ45ZcKFbmheQjMyVGUdePomXpzYHgDVYwajEKJUnBt/bEskhDRaHEGkytQiLKUt1kq9RLOYRcVHPBek+wgdM4YJwhZliN6XlaQ1MoL73uhxZRUJXEYBis4zRNHA8jBw/rWWuFSlH5L3Eine6rxTmykIu+nnG1U65Led9w7SPc2zFj9sG5OALWUW2jl6MLvRqNBhZrJ8Va6ja+NA8nzSYNxWSKzc+OqfOjPnO0qkR07VxK3ukT5p2qRakUoyK+9XZu7bfn+obNYIlKzmYIW8ud1qHc6nUICY5+rwUatWDUIKI0jmq6mkpKCT/QIdJOxrCNjf0vZry+0oYrx7Uvft6IcoMz4I3BGymgq5g+QStZDYwYt2a8nBEih9WH00LkDk8VrR4HhYTEi5dmflYXuNQNUnBSNW+cpVjpylsbCcB7bM04U/BOiCUOz0HbAIjhqp2JWJvhAbpyuer95br2v+OaVLfObbi0ESiv0fWpRZXHo0KmUeWB5HvLslCiwGJlp21WaiJ4gcfknAAjTTqpG+PPGKiubnk52jU0SIKuUbh5f6oi0OHQ9w3V838/hxieJ7ffN1y6dDZYV2eaNXI+prU8yQWbk/YIa2xMYWHG5UquRu5RqeRlZggDcZ7luVtRgHBAcGK8nEHYdSlSTekGv+RGdRZorUTpizXPM9MYMNMg9zuLUSEL89SgRI4CNUl2NZdMcWpjUiHVpHRyqHkhLkIuylmYg8FWnHkJJUJaqWmBtGK8wVaBkcVoZygSjVWAnKjFS47MOGlXURMmS7lEMCO+Ok6TpxiDiRVvECNbEZaiA2rG6vySPFbB1YKnMljDwQfuD0fujyOjK1ycI0ZdvJWZV0vW5qTicEGhlNSjBWsCrkot5T4X1oaR4WZ47gYa7CVcjDHgUMKTbHsDYE1R9KNsSI86u835zUnGUMZgzYcrbj84Zq3dwD/dV2c17hy/aqQw2bTcYDMQu3nzPFJMqrRyE7E9M15F9weSr9rKglDosAkrbCUyRcGokrMQM6rU3Flj+7w3pdCai/4LKD59tQ1XnK+ANLizdxlvgXqHo6g3qOK4cSWvQusmC0RjiqUmpJne7IjLFVuC0MWjtJTAGJnceaXmSC2t7XYRFqCG/lEHkykjgzXY0ROQgS0gVKGoZ+kbPb0UbC04J/TowVkGZwlW1MC98UCh5BXnQu8IMI7iDVXNl6RSSLn0ppIN3pCaG6NQn6gKtLbqHVLRNi2tcWCDP6ZpUhkr8aDOl8euQm7M3nBonrB7cnIfnKsfWBkasWPzAMW7E6kr5+G5D/ahSGu/PafFt9fad9v7rft1o9I4vV7pPyXaiiJMJQZIGlLKOZcUWa5nPvv0R1zmhRgzl8si/Yb8gC3SlXocRx5evOTb3/4GaX2Bq0lK0WvGKBwbo3TR3ncMJgdRZplnzk/vuLu7YwoO++Ie1jN1XajxCZMumLYgFUtcpS4sxgjxQMqZuK6EMGg9msHVmXfvHrleBFYex4H46hUvT4H1JFJV6+Ut6foWz4FsUxeTrlqrZr1A0bWgEKLHuIBl7Pmu6/mMOd4xmMRkPsaFkaFWkjEsGsVTEq46iepzgrSqFmRl8JWRBA7up5FXDyceTiPBFJ40PxJrlcgrqeyQ2+C7fSQhhstovmaD5jaSz+22jbFGzmqLc2PvNYjP0Gj223c2B0pyOPTXmzYgNMTiffr387zth+DCD0VQt+f90+fI80hsv7/eBLfWfi6NdRiC1LRO03Rzvh0+VSau0/IIQRQqprbGOBCcY/BeWZW2k6Kc5hz9l68//mobrsc3b1RpvJLiQlwXlZIRKahxHCkls1wvPD0+SnJUw/ESZ+5PJ8Zp4NXDPXeTdBmuxRCclvQDjoItRbxEUxQ2qVKDZSSHkOIqE4dCdgZXD8LsI5CuV4EVa+agkJwpKihbC7YKzi+tUoL0aTJm0yGrXhKwoElghzVOoS6JFqwxWAYN1zWqKBuM0iZw86hAjE/aLaIhSAuWWw9MCQfe47wTZtw+t91o5DRWnuu5jD0BXc5dWRmVHt1ozXifNPUZHLE3TLeTzvSfLemrCWV9f1sUpIQht6SG2eCgWoSHZ5R9Kp0D9Hi5kNbI9Xrh3ds3vPn8U949nrnOM84NLNqranCh1+a9e/uW6TDx+O4t1/OZN4+PvHvzOcvlkZhveye1Lc5VlEvmmcvlifX6RFourJdH5vNbSiks68JoMtc492dmlXVKqSxPiyqEJ4I5EJRKvZ5fEy9PpOuVdL1i8sAjC79vVuryKAYhRg6uYtJMPK9d/cForleYuxbvPCZbKUrOljmazQGJkaXMEM98rywcDg9UrChyLNfuxFRlp9laVCx6FfjTFlyO+JKoS+azH/yA6xQYbOH67pG0zpQcwaI6j0WJSeJILouIDwOiUD+MWCu5OTEa6JjfSjXMs7lSa8VrYX8jFpUqtXKN3yGAp6FSOtrS6CCoCkmtMtZk+hmsDTSdQ2OfG06zMWJoHBKNDI0QVUyVVIJp97B93AgZCs3ZWc2/V7NR5dvWDFOvn9TfpTk+fb3YNpFkShpttfOTOVKL1NQ1BZOcCylVhuNRiGYaenk1WiklRpmVfT0oVVRVvuz2lTZc63wlqeBV8NL+IS1Xalqo2UGx5HUlr1fyOouXpvkW8sLdGPDmyN1xYgoep+GzU/JB1QRysJVsKrLkt2rzCqZIyxGUvJGhRofJIj6LAZMTpIjJGe+FAShwC9Qsj9IBg/fSsdl7Ov27ojmxLOtt3Ty79xK5QWrUJAeau55fG7BbglbyX21Ata1FZL29RUpUNd5eF2n3noukE2KXxN7yCfI+tJqi9pXapjlG8423xme7pn3dS5uyLa9hTBNQvbGkN2cnBlTh3T1MhBBB+n1sx2s5jlIpqEhyjKzrLHqR68w6X7i7C1ATJRes81BEEPYcV374z36ftGrE7hzX85mSFtZl7TVjaGuPxliczxfWZSYtV655lc9fH8nLkzhbBgYjNU4pCpxrgu9U/rwICcJRcdXhjccZyzKv1PUMacGWBZMi62Xls3TBl5VhGPHOM1pHKpGctvGB3vuaRRjZDiNaoyoF+dqhoC14y+KIZ8/l3WsOx5c4N1CNa09NxoFC1waRyspxoZaEcZWAsg9j5POf/JizNwRTyfGCqVmMnalaE9ciIpmv6yqtXpzz0l7FCaux5ltH5nas7DeBG5skVVXor7ax0p2kPuppOc2GELaRjlElFCUvmAaVqMjz8034mlvU1+eOzveqzVd31nY7a00L9P0as82EDo1u6wA0RuBm3Pa54kYeaU7f5mTVPh6cOrzNkd7QlqxkGC02rrJuiBZivjkHzOYYf9ntK224vvXJK1KSBOOrTz7mxcuXfONb3+Tu/h6AeZ75/uc/5jiOfPOXvsOyLFyuZ5b5KpIk85n14lie3nLwBhuCJKdLxKHspMPAYGEdPAnDmhNrilyuiVpXRu94ON6zLAumgiOzPr5h0cl9ffeWtAotuHrP5CzeSX5NusKKVuLpeOAwjaKPWKTXkKmSB9v1VqBFFXvKazNmTcg6ZifJXd32kIlzoTOgXr58KXustwliyatJgbM1Aic473Be6N/UNllLm9K6d134jRZxtwio4/9Sa9SNaBGY1w2OcTy8B/u089yzu5oS/4dgwg9t1hiMQoXte1b7UhljRXypSg4lRWUI5oJxIpR6f3fiu7/wbe5PdyJLlDLTdCTFSMmF03DkME1YY7nMC+8enzB15bNPf8CrTz7mODmCu+fzt29ElNZ56asVV1KuZGM4vDxizBEovaN1XJ74/u+95niYOEwjx+ORlydLOYzkPKgagjyzGCs+BMZhIOZISgtpTfiSeZigjgMw7O5v5unz7zMOI4fpKFJfxsjYKbkXjWateawVorEbMWiXp9w28fRqtfzuu4WCYzrccTweezGt5F4lp+m90L2dg3Ea+Og0UiZDXmfeffYTcpypaeWjhxPTIEb6cjkzHEbGw9BbqxjTaNx+F0lIErPWirMBu9PNbLJIyi7CWss4So53vi48PZ5xQ2AM0jDWBa9KpVIgbUrpoOF+aLfAqf1d1PJIdGFkjKlEVYs7arOOqIFqfeb074ZcbPNL7zNVHQCZgxWjUl4bPLk5ts0Z3L7bdAW9z3gvJTGSTlA2rXUMw8ThcGQ6HrU8xLYamPchzVxER9VYshFlV28dYxiYhpHBB3HwtMzEafT64fKAn237ShuuX/7F7wBy88IwEAbPennkaopQioPnF775dU6nIy8eHrheL5zPZy6XM9fzE9M4chgcJq/E+UmiJSrnN59TamEIg/T4KoVgYRw8U7Xk4jmOrg/cUmEwXmpfSsUWgVxMyRy8pRjpT+WtYfDCPAve4izaUdgSnMh7Cgut0GRJm0FpI7y3YO9Gpr1ldSCIEnuumluodHkXEOinnXgICosgkj5dHqsI6cJUgzNOG/LRmxLKeegOm60yopXYDGhuVa0UTW6r4SpQi0Q8tYrx2PJwlp4gr2ger03SlsxtChRNsmbvQ+/+6t4xVDQvqB5wMEbyak7YUUa991prVwKhQvCW03Ek+Fd87ZOPaZFeCAPzfGWZF8qceLh/kFwB8JOffMZ1WYgpcxg81nsqIykvTOPEMI4K2a5qmAuHcSQEzzB61uvM9Xrhcn7k7evX3J0OnE5HHh5e0Gp5kjZkbGUN8yoCydM0Mc9X1ih1YpJv3NQdYorkJD26PvvJpxQi1Vdscb1XV1XqfS4ZUhaY3FqGYSSn5oU3D3rz3mupCv8YUgCM5f408vBwwjpLNZV1WTS6qAyDYfAy35brOwYnTp8l8ebyyPX8xHo9Q7znMA4MIXC+nBnTgTGOFCreDZRSmJcLcZX6xRA8g19oTtMYJpxrBcCeoizIkiS/Jp2+PWEYmOeFeVkYJNQhF/A6V2qtpJJEdF3/M0E0rKpB+BlGDcVmjzZoEUObPb1wXeeNweizbRFJ7cXeVZ/59tZWhC1zwvbobF8j1SMtmkeLnlcVWLUiTSGLrBcpRUTdRARy4xrxPhG0n+A+WmwoRalFiRiZdc1cL1eSlu042zp0e+1dqNdTCtmqhuuXD7i+2obr4xcPhCEIxGck3F1TpMYFLAxT4DCdOJ6O3N9NBK0VGYPh4KVYLniPJZPXWQZWyazXC1Cxys5qjd+tq1K7pTkuWtFzFeNDFcPVasDAMIxB2FhVhrB3Uk0fvFdpKKmJsVXrjbTg2Uh1Z/cebyItHbk3iV1d1IXlWHvuae/VyQfl3y1Sat6f/FsiO3GstopKoeTvj/fcA9TP7f5uDee247eTlvtldJJJcbXUwTQlAEC9vw226LJMNImZdjk7oGX3/T3s2EsF9Ea5RvW1Wl/UPluU7t2MMPR6v3GcRNzYCaR7uZy5Xq7M7y6cjiPTOErbCgrn84V35zPBy7PFWk5TYBg8w2AxxqvGpDgWx8PEOATGw0CcJ+ZL4DxZXI2cjhOn45H7h4MuaJW4JqIavpTEgw7BMgYDRTrLip7r1gwVIEbIyRBt5RxaXVrF2yL3GkM1GaM/zhaKlahoCoZsVS2+OIWNXIeXqsLUKUNdA8YEHo4DL44jxgkD9VpXjTpg8DAEWWVjXbHVYihYVwneEB1EIzVw2Vlyy3nqSM1ZmI9FGbhV/JstN1s3nT0wsn9XNSpsZS3iHWUKJkk0iUYXFRkDqRRQByrX0qMijAgk60Gh2K1wupjtbx3+Ir7bDI7+v6GIG1DRvtKd1arGpqOT7RM7x8xsfu1mMOuO+HFjTDX/ps+rtnxeK78p7bvtSLruINde6xYxttKCnDMxRubrFWNFD9ZZ27vFu6YB1uZr851vIvafb/tKG67TwfPq5Us+/vgTCpLE/smnn0pvGZeZAhxPI9ZW4nzGmcxptBz8AU6TqjtDqYl4eZS26MsMaQYg18S8LsQUSTljQtCiYhnEUhkeOBxOjEFIE84YKCJqahAoCq2HkALiFWsRmRtAVDSE4LFcr1wHz2HyKrekSdaa+wCCRr1tC3wb7lmNwS6Ev3lfBsu+m+q6ph1TSNraN8WNto9SlRlZ8o2W4H6/xmyTrvmDKeWbgdkYWoKNC0nF2tY0UBZj52of6HuiyP56gJucXXtvz3jaf68UaSW+30qREgJTtoJOUyq5pJ5Ylo7I8oMSfrpcrLHSjsZUnCus8yOUhTC84OOPHzidRvxrwxJXai04PPenQYq+NToag9M8DXhXcCZicmHwBXd0jOHE5GEIniF4vK/ELA1KU5y1J5r0aCspsiRY5/YcxZCJ7qlAmhLhSSmFqYVvfP2l5C79ILlXvY9SkOygOuHMOcmjOWMpiOfccpotmutPvkLOcDdMGDzHuxPH4yBRYo64bMjaBdmZFac5odPoKGnFmIofPd/9hW+wzC+4np8oMTKEwBAGXo0DXpu+hkFgV2FrRlr3YOea5kTt6ITT+knvPT19nEvPx1S1CIfTHXfOq1qIRN1FJX7R7hHO+C5zNl+WHvl35xJ2jprcF9qnmjD17vUtlNpHYntnU8thTJtndu9T6vubydtStg0WpkOI7XVpXyRdyVvftD2U6lMgrpkQpHazlLIJP5ciFHcraMyShaq/Lgu5VKbjCYzoMw5hEMg1BFAHNNcqvOrd/P0y21facF0f3/G2Rmpa8YOnIt6jLN6J+fyWp3efad2SqEkHL3I80zhJkWKtxHVhnWfSGlnjysNh7Bp+Z1dYVuk5ZIPtOG0BfAjqdawEAk5J1bWWrs0WjOi2VYMUmRbRXBucqDJIDawws+brBWvE4xyHgNfeNW0gSy5UWiO0ZHMzCAC5RJ5HQ7fsvGcU4rwRI5oMUvu+QFEVo0SCRiypbeK3I3SssvS8gdhVgUgazt8nUlUWVxF1/ZxVSdvYTtu31kpJgMIMexZUK5ps17Ef/B9S0WgU/8axrNWQknSdjjHRuuSKh125XC7aMsZyOV9E2cMKyQe90mEciMtKTom708T1fOZ6mSl5YZgOrDGR04W4SENFMzTjUDAmk/MZqubsnGNdE7PCfgZtsWMtzkrd0pIXzjkSk7QryUqqaUXGBiGHlJwFsjQFlfSXmid1mEojKxiwxpNzlFybFpxu+U2lgQOmNVtMWXqVWe14bXarZ62gep8Wi6kTxgbitXKOTxSkjU4uCYnoKzUXbSxZGQfPnKMY8TDwcHopi+H6kuvlCa9GZzqemOdZ2qAsKxAVdo29FKNB01VJBYfx0KEygyjgW6Nduc22oOdS8GPFD+g9VhisJonWjJGGpkYczmoqVmsPK3UzllRRpzEa6SHRl20iCGZDQ6R4WMffs78dXtOGVetLdYzrIGz3uh1frr85cqbn8prhao4FZOZ5ARBWp3Edcg5hRCKyzOUys6yRaUncv/iYpNB0SlKvahUGpFZWH0W8och9CM5K/nQcGccRQtAuFxYPJCv50H9lJZ+srcR15vXnn/Zkdaq5U0+NgUULMGOKGGM65TwdDrhmuJZFFqIsNSbSlVdUl+N8FZWJIjp9xjdc32KKHLMqmQL1y8mZgihxeOsF9gINt6WnkKnqcffYvpBTZF0N14snJ1m4x3HYoif5oPz9TGkaul/Xt81g7eKhuhkumXhlux6T9TO7gsUqzQqNkiNu1d2NGtTbYxiUCUXzHht8I7+zRrDiUIh6hzO3zfBajVn7vS9abgSNZsi28WBvJkNpnqa43Xqe7bxQL9b0+5Jr7ZHEMI2kmMAKkYba7keleKEeNydjdbI45P8fef8SK9uWneWiX3+MV0TMx1prvzLtdDqdvkcHroACSAjdCmCEbUocu2KJAg8JSqZCAQlqFkgUoAIUoIZcgCoFKkZIyKJiIbDE4R5dhLCPn5n7vdaac8ZjjNFft9Ba7yPmzvQ95D6Hq7PlSM3ca801I2bEGL331trf/vb/cSUGI2xDMp320ZxDKN+9VJohrFgjz/fOtiq+JBmbsFicUrerAoOoj8hzjK+K5Y5SHC4nSvHa09J7qWw268Bng+/q4LMc1M52lFjUrbpQqjDyVf5uyCp+a6Tq9E4DqmsQrqx9VZHQyszVZMioK6Wue+8UmtUqN2URefUeneMDY4sEXlswDlzvqSr+UaF7YwxR/e2ExBOu5hMjOZbWh+tcT1W6kGF3ua6963DetrVblSGqIkRlAlplaBpjMQ5MsTU1k9TUVIEA2eFS0amgLrV/pecEVUqg7hdLDWOaJrTvbzCGGsHWY0J/urEdtUWgYpTXu19+vym6ThSSLNVNnGc9ykp1NwZytuqAvSW1aCIbYxSxBgzFl3bfr9m/FU60ZhMhbnvuC+/yyz6+0oHrMPUs88wnn30kjeeSwcI4TXSdx3nLuix6gMkivxjJci/DIPYQpRAWdVZFCqqH40kbvU4UJlIiUejHAduJgSNYUt+1g3LjIhRIWaov6yi+p/O9DLYaw5KCkhfA+0F9gSwFmcNZlszTUxYYp/Pc3BwADUL1v18IWHWDNMJGWxlG8estIKS4MYJ2ux1QKxeeBazncKEMn1rvKFcMP2uFPWSfwYBGNryKeGa11M1K/ghBDCxDWCV7DgEDeGfF/yuEVnmJqodvsGF9f33fyzW/0lq7Hp6s/5Y0A7VWhF+d8+IpJZdmQ2OurlNGNvbhcMDpcHanyUrO0ovrnBNmVBG7+3HwJKd9kLhQSqHvLOM0YawDY1ljYBpH+s5zOh1JWRKpafAaoBIxOGJcWyUGlpwkmzYm49k0+Fr/DyEN1EZ4iEsThcZsGoGV/lyTB296UiyCMmg1Wa9VlRwr4nPcKuBa/Yr7AOSoA/6NsSlBP69GCTmq4YfAcd2g84DOknMkRIGrvDfk4ik5Y23hPB91xigiVYvMFC3HI+MwCe16jazL2maN6nxbCIG4hgZp3d3cNe29OqTvrGPse9GDVCse5zxe3atxiSKkWIxFGItGxaNV0kgq3KvmkgaRBudVeO+qKpLHxm59Drd//z9fPxq4WEcVatAAUSWRDat/cN+3h1RKaftpXcW+KakDxjRN7TyrPm++7T2F3XNWBmPBWy/vSKOisTJXJ/qamz5pSalFmg0B/X0MFb736h1yCuzHTg7DGFnjgqnDmSWxEhl6zzBMLMuqJAlD72g2JyWtcvRbS995xrsbrbgM83xmXldCChgSJSZi0mw/CJTVuZ6Qoqq8C0zojaMYT+gitosY3+H7Hq8N9hhW0T+0suCdGkaWBMtl5lJEqb3aklRo4NofCK7QmjbFLwdTXTgyHBh1syVlRcnmWPZLg+O/uMaNqRtRNARNKpgkEJT0oYTSXICi1a25ChxV69EYR7HX+GKBYshJqPCyQTIx8Cxw5ZyZ57lVXNebWaj2W1P4i/TcOlgZtIdhjGF/c2CYdux2ezovmHuFUiusIqaSrvUBbRZ5sE5ZZ5ViPU2TwD4pEuYz09Rh1F17jXrY+g7rnWapCecLzmZKDlKJFaeVJiIQbRz0AzFujrc568FkDdYNzXCyFdFaTXZIhuw7D6FgQtCqP2OvfJ2y2sunLMox1mVs5xlcRSh0XaWrZEAPJOevqTzaV/RahWRzdW8zfX+tBq5uBGSsdxhFRnJG/+zZTTuW2KvlUOIyL4QUCSXgfd8o+Of1Alic9ZxPM/M8P7PmyEosaK7hxvD0dNLAFpjnpX2m3ndM06zKMR7jPWtMLDFtmqJW9UtTIZkEaRvKzyXjfdf2XLWWqVXS5gQuM2KtEqkVElsyijFXf5b/a6K9ZQuOtR7Oaq1i20Kg3ZfrCqqiIl9EZxprVK0aSjGkKEmt8RWqH3De0/WdoA7qLOGtCijonGpcI2ENxGUVmapiCClzOV+4XC7MlwtxWUQJyHnQ0ZwvT8uQx1c6cI1jR04wTSO+c8QcSXlQXF4nv0vNRh05e7UYsIzD0Bq0CKqCc5ah71REVCwpYgr4IjppttIAFVapPS6DFVqplfkNy2arkHKWA9SASQajtPdUEnGtw5SGfhhULaNAFjZTyoXzPGvJrb2FLwQu4MqXSRZrqhVO1lmcq4OoDu4aY1hjaou9blTpYXwhQFqL9V5nMa4qLrfJIxmBrbdHZQ4CWFVccE7zZ2Vr5kylRFkks62Zs1RQGwng+jNXo77a7/qiiChcwacKf1nr6LxIM0nFViHCbXYMA06n/cWaJckaSgFfNgkgGaszYr6osz7GGFIOqCwixhrNZKWX13UyPxdTlN9R+yOlEJPApdYULdoVHlS/o2KM+LPJJxJ3gaI5vN67RCGFKIe3VsFoPysXZLi4ztCVrZIu9f7oaADUVqWMBlRWYlWFKE3l34BDe1pywBZ1TghRBoalR6mJT7li2snblv2EujdU37ucBZZ2HlfKNhRrZQwBpVKnUs0mwakNDECvsGpdL33X4bzDp64RDeogre966WdqkoGtxpVsZMFS2wDbWtIbTEy61p6RJwyYvCF9psKK8qGvXqHBhkavudV9U2NRC1llG1KuoJtpzxV1jZJzC2ZVHaQZpl7tZUlIDTbXM6pglEjlvNxv7z3TNNH1kmw3U0tjGfoek/R3YcghKpoVxIvQeh2tiW1kQ1jWm4OBrPXNLubLPL7Sgct3lqL+Ub44Km3UeUcumSVGOSRLFZ2lsdYOu50I1KaE67zAe9bSq/uxLLyCzwmPbpBO5nJqk7rrOgo0aKtmY86IArwpovGWKFJKlUjnB4yBEBbWuErgMhbf94JlXxERSi7M69oCl7fVSZW2ALWJQ6ZmQUY3m/TeBKrZ+h4N9jCGqAe/sxbfd5sbcjVC1AVfDDjf4XzXhhC/l/Gn/Kur6sdoRlB7fFXGqqOX4G+ELm6KyMcI9X97Ps8Wey031GizSDVZBWSzBok6uGy0UqjeUX03MAwju92OcRy3pnxKWwbqEFjXOayz6oEVWcOqkleqVFESIj6bsX2H8fp+KMSyqcov66K+WJlxGgWyipFp1zfPozUEUliB0shCqZJQnKPRkmvvTv+95ArPGH2viRAWSUCczKZZiiqLJ4LOjElVpMaPuq5NHS61AodmHfXwrqPru2YgGJOYxhUN8q3CLjLKUXtJ66IIhhdDTIzc45SjzDoalBknwXuNAvslibpY6/HObOtWoap+MpCM+oKBcTrsqnCyreuswtnmCj7PRfzM6qiKJqrWyRyX9Z5ipHdWYTiZq9wg1joXV18/hA1i3chSskg3by/xKhNEx2BMPfQVqaD2rNjkxoyBpKLeNTCV0v5c77vT/nQpkrTU9emtmJHaUvBF5OXqfrCaVBkr96YG1KToj3UG5y3jNNANwuBMWdVzvGe/2+nIj0CA80lEddd1AeMwzhGzMLVzSfKlRBnxd5N7JAn771NyxkeffcyLu1sO9zckzSYxCGRiJJPb3d00NuEzKCttzsZCEdZMyFrBuzv5Op9OnE4n5mUWuMPWIT8R4fXeM40jUZXOc8ptUr5CcLVnkHNm3AmbcdKhPsn8OsZxlI1kpHdQ4TJjzdWBLp/bAPXkbUoGRRiLRhU5vPZynJIwfGUBWSeBLWVcZahZy82Ll5jK9lpXdvu+BYhlWShrIYUkg8UWihFr+3m+kFKkokV1gFEyYMnC13VtA7fWGPqub7BDSdVrLOJtR6+D5ILBL8K0MzRCRoyBZV1EDHgamXYjy7IwX2ZiXJqX1YsXr8glc7nMfPjhxzw+HompYJ2n70eKkd7QvMytghz6HleTAw+3h4PoQlL49O3rBjONp1EDsqEfeh4eHym5cHf/gnkJ5FKwNnC5XNrIxHFZpHLqep7mpUFw3nmil+RnXYJUOs7hup6gzLYCjF6gG0ohroaE+IV554kGincY41ulZq2VvmTKQusvMtZRYUiDSAa5XioNpyzW+TwTgszydTc3AlXr3GFeljYu4LwX1l1KnM9nle4y9MOIKZ5SYDFGxXHlHqewwV/W1BEGWcrDcGiKJvO8kFMg50W8m64YckIPtYy3txy0Gkspsc5noXfrXq9J6fU8UzEGXKdJT+R0XpUklEkls4SFNQgtvwnJ2k2TUaSOpIJxVmDy635v6yM3wpDBWd9o+KXQAuqzxBOp7Frg0v3tnJh+Oiu+YiFG0WrUZKPvOhnuLoWwSs/UOSuwnldNwSxwurMW5z3j1Gu1Lr+399e6hUtLyKdhbC2HuEZ2055pmri7u6Gz0j9LayCsgY8+/IjvfvdD7u5fEIthDpHL5STuHTGSw6qD0jLruoYof/8/gRd+pQOX7zu6sWfa7apOuXx/6JsA5T5VKRO7iVwW7W9ViKmV/Ggw6puwbDdO+HFiWC5AzbjQDa2Nf9+JQWSu7DnaTSnFNCuCnDPTNG7zWVouO+vkMNd+V4oJn54rX5RSWsldMQRjns9toH0K2/kGseSs1gJWBwEr/TUnWKNAjNYQKaKiHyNpDcyLxysTzxgRN13XSCnqkGoNMScNLomi6zDlRIgra9jmzqTSCOJNZORnXM2IozgIl1hwxtFr5WcsLXBZK1W0QaDbGKNqLa5Y67TxHogxbJCK6sjFFJnnmbIurDHKDF4StmAucpAO48gw9PR+xKtyPKbIwa/Qqte+mjWOTgMfBmzX0w0TAP2wA+tbX811gwQIa1XeS6rYpJY5VqG4gjDsQhBLEiNlOH2u+vtlc2YGOpXHks8pMFKFiHJdEFJYiUpEzrh+JEWtirTyElhIDsWukwPWdQNjDFgMu92erO/HO4dxnaz7IkGPLHNh3m/MV4FO1UrEGhWT1uQqpBaELCrHpetv6AepMI2l68QQdVyD6m9KgpbUD01gfaeZ/sq8iOKFwGVSHVRIs4471L0o4xhyeC5r0NGIpOzZRC5K2S8auHT/piwVp9FB3FxEA72UjNin6H77AlwtdZI0EK4h7wYVXgWv+hzZt9fu6WlDBtS1wphCAEzaqpY6ckPOMgRdtM+tVWZJkRBMI6uVnAlW+c45sS5zmwNc+ovAy7nQuY64Rs6nE8vlzGG/V1FwrajJrGHhfD6RrWNNYr5bIXORadwORblu3yvs+4M8vtKBq+s7umFgmCYq7AEGP+gh0XnpB2BqZ1MehUbvLPVGXzU5nQYu3/BvT7f0VMqo1ZtlbEWobevLtMBVH2XLxHIuTOM2/Fd/p7VGYEBFF1JUIkVR+5LGiiyUyq4opkkYyuZHGweqxacbIBUBPawR+IBiRG8ty8C09RvLLqiobE6izJCzUvq9FxbYumCMw1jPRiTeLp1V6rRAV5E2P6ObQbckGOnTlFRkc6RCDkXEivU6WYd6hkng8vVgyKFJT62rZJhVXsq6ms3qTb7qc6Uoth+Xy4WucwJVAl3nGM2A77z2SrtG1/aNZGAZjV5HK7Yvegtw3rPTKzHu9vg46GFTGIa8wcfOicqL8zIbptel2mfILI5k1TlLBeAUOjbGqPCvBMTOeZUXypQoEK2owHRkrZrrkHVxcvh4SkvWYo4UMr5z9EPHMi8NIh4GJwgEMPS9wnei9iKqCKUFY7kIBd8NGxO1GJwvrXfmDdos0sCl10bRQoxRBZuuwxgJXM5JJdT3aghUIGVNOLI8t+s65stMG5KvIwNAyaFBdq6NZRhFQEQ8IOr1yRSlm0tVaZ0XCNjUPWPUyFIGwI1WTcZZyAKtSfLZURQVqZZIxpqGdFjrcMZr0NG+1pZ1kktRuw/5ylGhP3UsqNBxbQcYI04RssGMJkB6BOh+K9p3dL7S2g2+81RX9xyCjDuU0vqPYk6ZRPZJ71c3dSzzzALkGEQRY5rwQy/ea1ZGQJZ1AeeJOsBvTK1Ia0ujwlrbvfiyj6904OrHiXGaGMedLvBMSJsumMEIoQCNTeTW/DSqEShsvQI6KS8X0zY22zQZPawmfFdJC2gfRZrHXdc/w8Hl/lQSxEZLlX8TW3XpN1RWz/WfC91gaAoZRqjDlSGY1ZhPcHSoKtnWsonSVq8ixOC34uIYS8lgspj8vfvqpUCbKZHCwmNOBGMwKmBKSaxhpuv3HG523N7c4H1PPwpslUrmfL4QUiCTW28xxiDNbn2UlFWVIm16iCmRQiSslY0pC7vrOq26PDEG2QBWdBUlOU0ta31uq16ZWFsCWzAsiyhVpFLo+o5pt+NwOMhmA4ah43BzYLffczjsNcOXLNz3QyOtrEESDee8DFWie7H1NmTNXC4X5nnmfD4zDZMEzBDoR4FeYpDg04gRpKtMvFOTyEiMiSUu7HY7+nGgmEyIEQrCcDSS/AQCfW2eC1WCYjLJyJC1JC2GzjmyEXJISpkYIkM3sRtvseks6zcWnBugREourHM9WIyOQXRbspJpuo79uGvVwByWNpuGQZVjkAFbJ+xCrjJtOcQdJcuoRTEWY3q8K9hqvlnkK8YIOeGc4fb2hvPxRNd51rByf9hv2niGbQbQOZLmpillHeLOxMqqM9LvsZa27qRCMi1wyVvO2uOjwbzrHCR5tQZvuw3z0QPaWNus64tWesaY1pZIAqdQR1hs7ZFZK8K02hMyWjUlNfkUZEV6RTFnihFixfNh/O2czA26ZBO2LWIFVbUnU4qsOpgs6zMyzysxRHrXcz6dSCnR+477+3tuDntudjv1eRva64YQmEO1S9pknySXlFlE2ce/j+nwn3zyGTFG9jez9K80i3Y6a+W8sOByEkvvpMHAQBukdDqXUiUhpNFZTRZ7PcSCBiaFCcmNhl0ZeVsTuL67rTlbK76C9I9Kya2f1vDmepAZGrZePa5qL0sO1don0DLcpPbzziqDqP1eLTrM1fsxmz/R8XwWLbiwMs9nzscj5MxuGMhIs/98OkoTWhvcfT8yjFKZZArn80Wa7tbQDb181JIpK5qBFmIQeaKUEmGRKirFSFhWwrpKhRlElbzvhfm3200Kw0h11XVVRSQzDIPAjHqlK3uqBvdK0igYYoxcLmd83+GcvO79/Z1ChQJlGmMIYeV4LGoy+UUZo8zT05FlWVnX0GarcikY5+m8VOMhRh4eHjgejzy8feBwOIgtyrIyHfbNXqVlw3oYOl2rXS/eXkkt6ENYuL+/l9dJiePpSIyJvusUOpMqcpwmtUhJCmnKvVrWtc1dDf2gFV3gMp+JMXB7d8urV694enpi0Zk6bx3rurY+jfRnJGvufJUpk8OwBophGKQvmxLnyxmj4waFQol5g+WjDiSXVoxTTR8rTF9Uz6jSuIurAr5qB28Nw9Dx3nvvsswX5vnC+XzmdrfH+46h76QyQ4LN2+NRRixC5HxeWGNQNRRHP8g69p144KXoic4pXLglR896V2X7/qY6Y4h2O4SFDCaBL6ZIdirGm7dZwwYXltKk50ASIVMMc1g0AJrWwy5FKus64pCKQOEJIcukXCFAIfpIH00JHaWC6IW+6zHAusyK7Ai5JqxBCyJDSoH1MhNiwk++3eub/YGbmxupxlPi8fGRx8dHjscjt/cvqGae4uOVdQ7ObRUXVXf093Hg+uiTT7ksC/vjCafki9aU1kM8G7QHshAVA68YufhMqTK2Rg6Zz8p4L32nUoMFcqiild26LNRG93XpW/J2oDZudFNryIRFFmR1A5V/0KAHUvZX5Q57pdqN9Dsa7FiuxS63IVFfzeVUKFSbDfp7oCpZSPPXEMOqh+uFGFZ67/D2DmM88zJzPD2xzhetzDLDOOqAd0cGLpcLuYgv1VjG1luETRMwLDJjF4Nkdesq81rrLP9NIRCWSI6xqZyHcKAyXErJdJ2XDNQUQhgxpmawYK1vsEntWVS78Rgz83xh8lIp933HNI2yNlBVbKW+z3OiL0XhmS2piDHz+PDEw8MjD4+PHJ/OrKtAll7ZihjDPC88PDxwOp14eHjg/v6edVm4nM4Mu4lWmXWeynRbQ2gw4jhNDF2vS0LW2TxH9ns5oN+8ecu6LqovJ6Mc6xrY7/dtpq0OZ5dSGknG+47dbkeVRzrPZ4wxHI8zyxz5/PXnnI4n5vmCM072SpQeRdd1TQmj70XLkqqgoBDffi8GgjFFTuczbhjk8Mtixpl1xCGF2A5RU7Y5I2+32Z7C9biFpSg5SaqCQOcd0zhIwpOkr7nMF/bDCPRyX4OovWRjWC4X5mVmnhceH56Y10Xk2nzH7nCgHwY5yBWy9NaSStRt/X0CV5W2qiSLq/9e77FKwKhjIzXxuyZzQE2WNYCZbT+LH56eSVd2JVJJOk2WRYcz5SyjOGlzN5fAqe9BK5x6vnWdxxRRFZI+upwHMW1oRkpR1N5jwhtZr52yN/u+FyFnFRGY55k1hK0/p0nGRoPfIPt69rW/f8nHVzpw/a//239hN4300yhVls78CEQm81NrFHbX6XSSmyTaLnLQO9/k91vwKKK3VWnz21xRpuscBSmt13WlaHN/gwIFsiqKhmw35orOrQQF57dZqVatgZJDNo2+LQgbVewQPLya+F3f/LEfZbi2/lbze+iB1UZpTqQYoGS8hdv9jhf3d5Qf/QaH3Y7z6chnn34imL1et2EYmHZ7un6ggODaQD8OZG4le/XVElzdceeZZVlY15XlrAt9XVlmcfQN68p8vhDXwDD0TLuJXNbWqyoKp8n9NTw+st0rJcd0ylSsVihCfhGa+Pl8xg+diLt6yzD2WCfsyhBNu5b1Z4119N2A60ZySVzOM7/929/ht37rt/Xrd3h6OrEuK+MobCtjLJdlVcFXuS8vXr3k6fGJzz/7jJgTfScK8v3QN5r1GiVw9cPA4eaGl/f3wqzsPHd3dxyPEnw+/PBDPvroI06nk/Yc5XBY11Xp/ZuqSL02IQSFXnvu7u600suEsHJ/f8+bw5GPPn7Nb/zGb/DmzRuOxyODzpu1eScnJAQDEhRLVUAJLXDd3d2Jon5KHM9nxv2EseKuPM+z+IutKylcsXdB+0iy3huBCba1b62SaerIwoI1ME093/rmD4sdTO8Zx4HDuNPejuFyuWBKxiCVxDJfOB6PfPrZxzwej+QiVfvd3R39MDRySSWLcLWv6kH+xRlBY+T31L9/v8dWmZkGP9dzpdnZX+//q738/fQ4JXno23NzFsZuLhnXubaOr3/+mau3Bt+4BqIqiRRNgI0m15XEVYroduac+aEfinSdJD8v7mUkIhcpCC6XC2ENlCzXNFKwK6zrKvY6MW0ElJZw6zDG79fA9Tu/+136vhMYSCsujMzZhJRY1rVRp7u+a7NRkr5oRgJazuhhXgo3+1uBonLieDxKBpoC3svGF/+apBWA3JQ6xwGVPquZVIZt6LcobViGL9vi1IyoQV86iyN7KOM7+XxeIVB5uwIzbQOhQnu3mA1Lfxa4CpXRZVRfbV0ulJTwzvDqxQ3ugw847EdijmAL1hl8Z1nC3CCNGArLRebQUk6c55lCwZ87YlrwvsM4z6t3XpFiZlFCxLIsrMvCrIErBDnMRGrLMA0jl5yxzmjvUP5bKIrRP4do6meqUI2oWoAoexglWNAClfdimyGQ4AMYSyqFUqLKMkkAkwxaNq+QMAwyW+RIKXM+zzy8feTx8chlXjDmrGrblgwc9jfc3r3ggw8+4P7FPR9/8imxWD797HOy6SjGk1AlEAeWTmHtAd/tGKZbpmnHbrfjx779LUIInI4nlvVD1miI2dPZkXGUw7Zf12dsWWOtiupmHZbvsW7AdTsO+4OuIcO3vvWjWGuYlxl+8ztgepybGKe9MhgF6goxtH3TKZGn5AJ2FR+rrsN1O1F5oTDagcPtDcYalnXF+DN+DfhlJYXUoHrDNjBvr3QqTSlNpaMgAtghyX5LKVHiSlgXXn/+hvv7O27snqETMddxGNiNAw7ppUj9VuHxzNPjwLJeCDFDicS4UEpiNQvLutBZ7YnFqJJXKpml76W6il/D+fX4+OLDYNrweFWrCCHIPnaOHCvSIy+QqjdLfT2FlTNCwKkzqr3vdabQEEOUxNEUpv1EUpgwq24jZnMLkLNIfMgEGpWeGlfnhClVgaXDFrBFCoBN7msbLRCPtp6bmxtubm+4ub1lt9tRrGVRmHuZZ0Gmss7/KZMRd22A9OUeX+nAFVKCYMnGivCjY5usz6omYR3GeYzrsHZrhgJbYxQNGgVVPhYsPycZWoxRSR+FLXClJHpyprTstG7J0mjxBfGe2rI0EaAV2LBoU0vscq4a4Spsi5JAsrV4Y8GDdhl0LqKIV1ap0psCDxYlURvZOfL3nNswoLDuJWumJKyVPsV+v2O3nzQZ8PS5Y7ebsKrUYBEWX+flsF0jdFGGfEXVKTc2UdGp+Zyq6eFGhYatzyjsKGniFjLeW/pevKskPhVi3Jrt8m/9s0qyNAi0DqxWEVdJILz3jNNIP8jgb86JYpL4KVH7Bs/136Ao60vuqdjCD0zTjru7F3g/Mi+BNWSck+thnePu7p53332Pb337xzgcbvDjjlDAdtNGHnD9FVwiEFXf9+z2O25fvMNu2nE47Png6z/C6XTEujfsb+65C4lxtzKNI+M0AoYUIqkyTdEcTCumkKKohfQ9dy/uub+9E9r/0PPNb32bmBKPDw+8ePUe1g8s88Jhv28Vv7OOeZl11CO3HlcpG1QoQ6l7QQMMrDFwuJHANa8r8/msFVeQHlc9+wsNUjZc6WlCG87OJTNfLqxhJYSVnFZKmMXUdRgZh4FxGBvLMyk9PidRczAGpnFgHHtiHNnvJ9a4EIKQYfrOt7VCTi1pqSMItRenPBOy0e9pEupMJVTplTfoPtx6y0b/LMok/kqoWIkf5eo166+1Bm1eSHvA67UxCBFHtTMthVIkgE6DMEqzBq6oDgK16pK4aElG7mPtPxg2SJFiVZuzE4YjErj6vtORms30tSqzOCeehp0iQ10nezRGGdxfwyrno56ytb/Pdvu/1OMrHbh8vxMm0DiIP4/K79B6Qsif85aBXEOCOW4irZXmZYGbm1vJgmIkpoLvemIMeG/bAZxSEgqq+gG1yXnEhO2aFm9UAkogSaH5CWFoU8HQGNMe9f3nkvXzdQzj2HT7CrrZ9eccFu+0uR83y3uBKRI5i3RRSqFNzMehw5jMNPR84xvf4Bvf+DovX9xxe3fDbuoZOoM3mXU/4oxM5FdbCxC/qeHUCdvKWoZpEJJEw+6T6DGWjDOQraXzjpK9CBw712Z4dtOk8Cl479gfdlpJFVIaGMau9b/u7u7olERRD6t1XYkht4Y5yCEq1HRHr4f9NI14L9VWLgXnLP0gUCPAsiZhoOXIMi+AIwSxfLi7vedrH3yd3XRLTBBi5vHpBEhy1PU9+/2BD772AX/gD/5BfN/z4tOvcfvyXT797PVVM3pr0Fu7Nb67ruP25p5pmjgcDvzIt/4fvH37hn48cLwE7t95n5giQ9czTKMEb+2TVe+ppFltUfp8pZofbm54cXfPtNux2+/48R//MZZl5rPPP+Xt8cz5fCHGwG6cGpzVdR2n06kNw/sKGyr0VaH5cRzbCEYumd1+D9awxiAQcNWfjFeH/FUCWXu2FblwfpNsO59O6vCwUMKCyyvOZPaD53DYsZtGbg57Ygicjpn5csIg81bOWjX57Ch54tXLO7w3rEEgsk5h1RhFQ7L3HUM3kJxtSvrObzD/NZx33fuq3Tm4ggflL+25zgljsc1aYkTDM2tCbGgwKs4yDWOjqtdRiAJ0VgIXRuSW5nXBWMPh9kAlQ6WYRDRAE2MJSjo7FeV95pwJXU+zZzUijFzXobNSfaWS2Y0jBZn7q/BkyRlbVPnfFp0tFmmzcRSVmGVZWBaZ8/R6f4WxmXnuTfYlzv4v/cz/Gzy++a1vbw7IyKYNIbAmObAyGRF5lePdNmsLbX47DVpJy2quDPOMyEQNw4jvZPam7xxJrc3XZcE6WVjOxpaxW2PJ2ucSrMG0mRBrLcPQi6CuRSxPrNEvT7Vmb1WTMTjf0Q+9NO93O7qhowrfFrNZkjjrVDcOQriSWaGogvbaGtrWFEzJPD2+xpvCYTfxzR/9Bj/0wXvsp4muMzgj7Ex/c6DsRlFfyAVvZEDbWsuaRqGtJ8lW+1FICrnA2HttCmdKGjetvl4WdU7SCHRelA6GvifGGRBq7zgOm/Awid1uYhwH9vsDzm224HKoJkIo5BJlVoaNip+S9DgyBeMMY1joeqdbJmNtdzX7BfvdSC6GZQlczhdS3gw37+7uGIaJaTzQDzuM9Xz69omMpYoPL2vg/sULvv4j3yLkhJsO7O5e8WMl8/DwyNPxJJUuG6Gm2k6UUuj9gOs9peuJxkM30h1uef8b3+R+kcHcdVGpIc3wXU4NWjIGrRysBnfVaew7djc3jNPEbr8jG0+xPX448MHXf1TYZTorJYO2RqrU/aXRqWWA+oqQoGzD634NttBrBSQ9uLDBfOnq8K8D9vq6lZwg68GRi1C0j8dHVhVfNmmhLEdKmLFxZTcJOuCc43y5YMk4U9jvBrpO9vBnn34MeqB3nWO/GxlSJ9WC7usYIiYnet9r4PJN39NZlKl7DedXKbIN1gNaElrbAK0/hgzQd11HMaW1KyTJsK2actrzM+65JFdNdAvQeaMWTsLALMhget+7FuhitKCoUFZdwQ2bK5JoWEuISV2NhXCTc1GVfEmmjPbRhmEAg6IOSlDLsSXI1jr6fmCaJpIxrFoohHUhrMuzNkhFuP7PPr7SgetwcyuN/Jxbz+c8z3gzyoXLQg+ujdFxHLbmpU7CUwpe1RcM4I3FFWHimJJJUSCXXLSnZQ1GmVpRafIGhx/6Da/ONLO9pHCDNSKk653FKRyWgjRV+6FXPFuHKYv2wJyIjY67ka7v6ccJ6yscpgtcg2KBFrjGtGHxMtW+EoP0BkJYJOPJiXUZ6J1hf9hzf38vDf240neDQH61H2bBGKcZYWk9JG/kMKieTVbHEeq6FEkiy2rQIURLNolB+43LZabvOjoVYx1HMbJz3mnQ0kHLq81Ue1lS1aYGCUmFoApz2vCuQp6NyWWuxEo1s5eEQzJBSTo2ynqItYFslFFmpIdXe5bWc//iJbGIjXvMieI7bNczp0gqhWQge0cMBTeMTMbh1YeMAm7oyUkJQd5RYiEUg02ZhMX1I8OUKI9PhLwQcsH2cp2qjJgfVFk9JdHSRA7bfpqoorX9OJGNI+TCmjIRQzYWnMf2PSkEmbWyFmdVBLmA6wesBps6bmHNNuQu61AH3o0RyMJ1Cq9ZTBZfrmIT2YHR60tG5ycFKhbcymigMNiSyNbghkEUDS3kkDDJY+nYTYME/ZJFWssYer8xNkEH4kslV0jF2HedGLhm1S8tGZzC09bjraicFC/BBYUHazVTt5WxhcYKvFpTxlRZJ9uChbAMBQIVbzOFBzMy+KuBy17ta9taAvrjGhSdGtNqs0G1ByuCo6K5yJozFO3jbm0I49Ql2lgZVtezyXoVQ64oTdoGuqHuwY3JmK3FZrSyK/R9R86JWGgwMtBo/GjrwxorNjoqWfVlH1/pwDXtD9zd3crciWL6CeiGQUR215V+HHUuJnJ7eyukgBAwuTQfommcOB2PlJxb4PJWVRlixoRF5IRyBgveOIau53SRoTxnYVJvqxwTIRexrPYda5T5FWMM+/2eXEReZ7/fcTqepLd02IvcT1XJzoV+FOgTY9nf7OmGvn0uEMKHH7o2w5RSwhSLatO3odZCYl1nkWxaOsLqpP8UhXE29J7dbsft7S2nxwdSWNmPHTFmzeekv+WsFaqwsiINqt7uxPu1sijrBheFblVc0A2G9r6GcSSnzCXFbUDRwDBu6iS1zyTBYlP/DmHVrE/w8qy/R+aNqlGmSl05iysO72Ww2bWfEYjQqsM0RmBNjEXs3EXotWbQ3jui6jSWYrhcFpa14PrM/uUrTCqUmFjPK9Z3RAMP5zPGWk5r4BwCT8cTznf4acLkgXA8SVbvOmIULblxmDjHM8RExhAy2H6gB0KGo44PHA4HIYOkREirzBsaYd1537VKxvYDsXpQDSNrlsHjfJkJRejixYo56JrkQOq7nuJldmiOwiaThEx+vgaoSoTCGHkdU6sAbfpjpOeiB2Q2haRWHzwLfFt/t/ZBoiZvGcQqwxlyNMSSBXa2lpubG4wxrMoY3I8jQyd9r5RkXzvrWu8016o0J5JR5X7EXbhYw9B58dAzBtttyjMlR53Zyy2JMTURoyZCWwWxkYXqQwkpRcxFi6nQnOzhYiuEdk2WAN+ur35fiWBW4eAqBWU04aIGMa3aivcyH5azKstoT8la7V9p2ySX1sbofN8S+zVE7QVL0ib9YUGc1lXUWzrrWuAahqENeK/rurU0ijod1H6atSznmW4YdLzoyz2+0oFrtz8wTntyMULtxoD15GIIMXOeV5aUG14/TXu6TvxjlnkGk5pvVIiJ+TKznC987dUrdje33N7c4p3n4VGGSkNeqAQMcQHSBeAMwzhqAMnk8wzGgXX0vScYgcaOlzOHw4Fxt+Pm9lZo3H3POE2sy6J9F6kUnR7Wvu84HG5ET28aBV7QLKYbhnbICwUcKDIX0ybkKYR1JISVdZ1Jy0jJkRgWPv3ou3TWXEnl6GunxLZvNKtMWWekMsXRZJHSKvp6kubpbIraGqSUW2O/6GcrqqxeD4LcDgbRaKy6ZsZ4Va0QhROBB20LJtesSQlEhgoRClxSrX8Eu7c6mC227koxrgllQ1ICxigppL5f7VnqpaTatfiux1jHdz78CNcPYMTmou9VecT3PJ1PvD0eefPwVuS0KtMUy7qIoSjOk7LIO9kYOasTtzHw6Zs3UoWaQraOUApLSrgQZejXWBKGsxonpgIm1X4uzDERlI7sZkm+QHqI75wvWGOIWcSZL8uiosCzDEIrJTqq+n5Y12feXq7vZJ1pheJMs0/keD4LcsAmgVYypFS2tZCDHtiyVlwduHcGbwyURMmRNUXWlAhZ5vwIEVNiU3HwzjP4ThIg1XN0xUkCqkFAAoWSuIxA7NV5OGnVkRUqKCU9t+eRBSWVItV32OghvPW+gC2oUyuyer9VVFhfC/2dpvYj6+/WoFZZrMZU7cPU1mrRYID21qz2q0sKRFWepxhiWtsojywHPauAEIP8TAyQDFhHMgZKaIGmOiYUY4QNGZQ85aoSkPzu3W7CWsM4Dky7W94+PXEJQQaa40oIC6L8E3F4HV/xGEyzhfkyj6904Jp2MkMTYqTEIMZ/dbJcsVfJmDvGcWJ3uBEVjRCwzon+WYxY3wE683O5tMCxPxxY1guny1kFLDOmZqoxKZ9DFpv3HdZ5fC7SE7EChDhnIYpKw7oujNOoiguiEygwm+LdIFBkMe3w8XQaeGX4Tw5AFdu8amjXL0kHXaPsFLUwr70wY5UgAk2UtHp9VeJKTglXm7pGyS2KmojQqcHYKnyq/QsDGIHTmmJ9isQgc2Ky+aWZWzT7tfW1jc4GxbD1tSraaTaor0I+1xP3z+dftmHO9v0iJBhQ116FlY2eTqYdUrJhnYja03zMsqUUdXZNiRQK4HAqaRPDKvfRbzCR95JwpFNhCSvneW4qLqZIb6JVHE4Yo00EWuHMUpDh2HFA9OZkva4hYpd506O0dpvfKVKtFGTAN+XcyADiHiB9xazrZ4P4dO5RVSWs3wR9ox5gqV3rLPBbySShw4qlCapubsQup+j7EIFcDVyVbZtrhV4pB4DqcpZaxWjgijGIukuM5BQhBqKKzpqub4xMa60WEQrtaZKht1Zg7wrba/hJpWwmmI08oBjeVfCqkgIKEKNtpzYfhTITjfYKNrSgtAQIvT713laot0EERX8B5uq1DbZscF/tYW7v66q6zQVTK6tcVO/0uXZqGxDOsocleavPz1hTrvbORp5oiVzOZK3AIkqXb/1PR9dJL1XsnnRmLMW256zChc7JfF4IC1/28dUOXNPEME74eZayPyUJVhq4nN8ifGWklZxJKh46z3NjG+YiJIbLMotPlXP6+qOyB0urGqDSdzVwGelFifVGFbJsS1f7BdJrSjpNbp1tHk8FFdzUxreplY/OY1X1g15llkoszwMXQMsAdT7s+vTXRyOP1NVflOJe6blF1a5TqYWlSDiqKnfBUJIG8GxkODTmpj5tVPamBr8UIymGK6PBok1u3cg6fyUsvkx1s61swvqet7ktWkb4xUfd2M8Hwoven6rkXTPYzS/6eni0NY5V0Dg3QcGqoC3zRFDwutYoWfsLRgOfaeK1hbINCSv1Wg6m2oBX+Ef7cJqjS8ChMIxieplyEhUJiqplGIZRdBS3xKIGJNM+V7pKWoq+/5ySQJu5tHkauS6qxXeV0RdEyb8mUbSaQwdJNQGoiUiFEqvsUP2dilg1VKBVYXVN2Lq3ajATNmrJErBSimLvksWGyOSqhVf7zb6iatt7L5uyyhYctFlUg9rVJq2KHvINVTo1dWfV7VRJPOYqaPAM6qw/X1+rlKuZMqO/m/KFKp7tz/X3YbZXbAfJ8yBUIUcJPIJUyAeX6rY8YzZ/YZ1XVmfZKsbrPl79pRX6bC0AXWeRAs1dfUue62xfXX8NcclVn1X2d/XS+7KPr3Tg2h8O7Pc7lnWhXAwx50blxYhXUr2Ia9j8kSgyfxBDbKKoT4+PHI8nLpdZ6LFlo7y2qqKURg2Gra/SRFm9ZBvDMBBCJISoB5dUHjlnnSma2N0cmsoH1uBSbIr0NYMGVLdvx2G/53A44GYZ5q3WEt6J3JHDaAXnMA0yy8QEHjlcHRCK9Bpy6tS2vGfwA4MfZC5NvclIUIzIPMUQccaJ9E8pwmRFgngKCikAhkgxRf2opAm7LAve9c+gvXpdO+0lpJxb77EU34Z9rQ4R10MIks6JmWcBB7beQkswFAKW6yAHp21nSIV67Japy0+SYtAKS/sFVijrMoQZWUnqQyUzUnc3N/TTRAGeQqS3lqnvuDvs+VyZlTEGFUeVAJ+iBsCMMHnkV0OB09NRm9ewm0TaKoaFHKP0HBs0pM/L2rdRJYRamVpr8dbI+neOuEIKqxwkMdI5gzcI8SgESAlnDIPzeIXAckyimqLVgrTv9cDWhK/oxc0NwhV2nHEq+lwFYlMmJyhKnpF2iyQESd1y5V8zuYRWcZUYKClACRgEISlRxh8Mos4/DAMxBFkrqoeYQyQ2b4ir6i8XilZZpmgSkSUhM8a0+brr9VXf5/WhLjCeDNa21dOEShVer3skZ5yiG0b7gbK9N4cIec06XK8ZY1vblZRUA+rVupdnauWrQanNnG57QwKd1e9tiaF1RmFaQV2KzqV67wUhqcpC7fPpmRhFgquqb4BRUoYysZ1rKEphs5BKmgTVMZYv+/hKBy6pPC3e93R9ps+Fvp8xzlFSxLkO1yjnjhgF3nHWMfSjWBgUVDZF9Mv2+72YOvpO4EHdoAI/ekoKMuWOmLC1qfgUcMXjrVitBLVsl6pOFpR1TvoBGqBW79rqstaq0GpPhw4eKwYubD6h6xuVyi6qjFAZRUUrCr0o1IVetcjaIKIuyGTV1sRcHSQYME4GJZGM2urGVhwMYfEplq8wnC3CiKy0YSjENbLMK8uy0h1E404MCZ3McBkY+k4rog0SvJ6ZqRp1OTtlEJqWUGxf7upnaxYvESpnS9RMXhhTVUlfzSKrhmQpzUdJPpuq/rtOroWVyp1SSDmwLImM2MAY15FiIAPrZcHc7OmNYd97BmcgrizHJ8IyszscGMcJS2FwDpyMXzgjzgQxJHrn9DoX1pMEsePxiafXr8nLgsuZzhUIKynI+swpYYBB4T1rpIq2emBaY8jLAjFCjOQYSMtKzInHh7c8fP458yy0d9cN5DUAgWUN0o9BhvGNpV1z6yzZCbrhKuvUyFBs1nNR5h2VSJCLBK4iqvzP5X4yzgqRxzuLtz2GDMWz2kIwiUgiBVhiICwL8zyTcsY7GacgpQbdtSpSTSirUsx10uJ05AUjTMZkU2P1taEZU4PWNjgvUOnvdSJta1kq960ClH9WGEPLKAlU8mcRe96Ee2tAM0aU64UwpOM9rT8MRX2voLYHimYXdjs3bPUNMNtQvZXE1xSjCivQOPcYbFHhcU0Gc0qUYuk8m4yUia0wEJeMjmwi3os5bg1Oy7Lgd7oOYiRjW7L/ZR9f6cBVN4U1tpWoXdeL75S1hBBl9kQtumu2USsV7wS+yVmM+sT+W6qc6qKM9iGcd6Qi8zpoBiNQpGmZVS2tfSfBMpei4pNKW3eiAu68bz2KugeM3WaTgBYQa4XXtNzUhiQngY8o1c679m/Aunpwpy1wwQZJWavCqWrlkgslbU1nZ0QeyZQtMwVTW1WyoHXTyXC1TJRUSM8ijM11kS/2OxQVa2oZFoP1jpiyKJyY51+wBa92n1sSev2zyqhSdFSgKe03GWmKX2ez1qj2I5sY8DPYylwp/pstuCXVvVyWRVTG14Dzs3i3DT1YIfiYnHAGESs2BpMTcZlZzid551ngtuq0XJCst+RCiTJPZIqMa+SwspxPnJ4euRyPhHkmpYgthaCZa1VO32YIsyRuRej5NkvlGlPULDkSw0qcZxHcfXzk9PBISALblGESn7SSiUvAeoWykzBqs6mmpIasZIjkwLIFLqNfVIiwHrJJKPZVa5NSWahZnHidxfVeT6UiVVdYSetCmC+E84m4LpQYpTrXRMN5Tw5ByBjW6lrUNVvhaQ0EFtuG/S1FrVRUDIAqAyfJSw1C6BqHWvmjYzDfW/Vvz9HfrWdIXc/UBJM61qKbV99dBQq3flZd50Xfh5XgnyUgV3Sz9sQqvGj0WtSE0aht0xUIL98vps2StrdxVT1zRUCpJC4JXBJMK+pUTVKtth2cevLVIeQpbYl0Nhsy8mUfX+nAdTmfGfpeewtOZYv2uM5LNqxZfNX5qxYMXdfRe1XjViFJZ6zi6ombmxumaWpT5MPQM4y9Utk76WN4JyrjxjQ5om3eqDolb9RrgQHF4dd3CjHqzasKBA3mhPbcKk5bM5d1WURhfV7Ue2kbsA7KLHNeTomcMynGplzhTA1culBLIYZEWALLvFJSVoUMcbc1CveLlhzEkhRCr/i6VG3OIFUKlmKkmXw+nzmdTszzzO3tTZsdkWBLmwVKaRbIx3isyS3rBW0iU4ihbhCrkk3ap7K/x+Ivz/6DUzhVDlztNekOznnD9mV4tNqfd8RkxBdrXnn78IbXrx94eHvk4e0RkEAx9D3jtKPrB7ppwOZER6HD0BmwOZPXhcc3bzk/Hun6Hus69vsDXdfjrWc3DJRUuJxVdFgtc3prOaYgwevhLU+noxBYsLhOPsvQ9djOkaKIp4Ycle3nWFNgUOXzeV2Q8T3puR3fvCHGwMPnn/Pw+WdtnY5W/KiS9vN8L4kfGIWIIWFI2vipEOvWnyl0sMkIId5cuRhShpiENFDFiMV25sTQd/TeMY4dfYes3xQ4Pr3l9PTA6fTE5emRwzCwV3X4Ki/W9z3EiLMiiWScazNiqHhShdc240T0IM+UHHEmbZUWNYmTR3UTLyXpf/Xob4Gl/pxpRRVUSn3GakCqhqcbDFkDV+F6aL4GvdbtMjXI1SAi3885UjZEnI0OqX13e0Xcar210t6zaT+36aZ+8VHP0Bxju6JWKfXZZrzOTkoBoAxW7/Decr6cefv2LW/evGF3/y5uyILOlE3Z58s+vtKB68WLF+z3ex4fH5FdaRjHkX4cCClpP7PxltpGMUXw+9rfSqqnF9fAPJ+bZYgoXQxNXkgUsS19P3Fzs38GWdXe1jBMLMuy6bjt9/RqSJiS6Ljd3N4y7XbNCkBUJaLAhF1HVqUB7z3ruurrDgx9z6WqS+vrV7O8XAy9Ei+s9+RsGvXYFqMBSQ02UyQakQuqCt7zPBOjmhpiyVHhgZS0P1Ab7FlkcBxgCyFIv6eQMDEp0zByPB45Ho8sy0IMAVM8xom+m7De5HATwkBWGLC0IFJtHWoV1XWuUd5rv7EU8L5mqRqEtPkfo3qwJSjZtUpx65kBueDVL8grHCjWOELmYS0tkCzLIkQTI3qKJUvV2DtHby2Dc0zDwOQ9HZCXC4OzvDjs+aH33mUaetHL9B3WyohD5ztKhv0oflpzP9Kp8rsxhld3t1itOo7399iSOJ8L6xyEZeocu2EQos8oKEJIQYRYnWNeZ6ZhwlrLvFzovKi7xxSZuo5QMvuhZ9f1rOtCjoF4uWCcHNquQAfqgt1RjJ6SxYgCRN1X1fS0gClZ9PRqNZilt2UUunNFqk6RPHKY0fPO3S3eibJ77y3eSjDJaaEvkdEUdt5y8QaPpbtSWJck1EKMWCPrQWjm0uuq1bMiwFDE4y2XSsQRVCHLGN8zYtAWEWjfq9V5zhlbNgZsrX42+O8K/i7bmjZfcEFu/JCraqjkgi0aPJ+d7brOFf6u3KGCjDVYHf/QD3LVfjPNEinEJFqjlSiErPnKeG2fVhMTo2dbTKl9btiuQZ2jNAWWELC+MjwNDw8PGNfz0Ucf8e7Xv8m4P8j1TVItyt79co+vdOB659VLxnFkXRcWNTv0TgRbQf5c9fwErxbagqGQY6DEAFnM6SJQciQsMymIUCdFMPQqKJlCwHciKLmbpgbX9f1ApzNZfd8TV4EtnDVM40jfDxgDl0ugc05eU9ZKm1Oy1tM5yWQKdUJMsmBnjYrYFkiJUllWKVKSI1tRbsCokWRJkCXoZLUtMcaQrSXHVc0jg3DlkjD/YgjS1LVWN3Jujfw62JuV0ozJTYU+xqieQAlcasnBMi9ivLispJRxVmA4Vz3lNFvNuVzRdqUPUTLEmFqzuxI4BKZ5bgOxQSrf/yEbLOlmz+0wNVk2tlEleMkSPSlrf8t30lR3cu28dwzjgDEO70d5LobBdQz9QD+IAG/fiQNvjpHeWW73O95755UwWo0F48A4DvsDznrCEthNO0ou9MaznyZA4MPOWnZ9x+1+4p0Xd5ADg3ec3ZlhrIroYr3inKfzHX1GrS86Oge73YSzjrEXF29JFhK7cSBYWHc7DruRE4l1zdIbVgjQW0OnzXtvzQaTIz2SVrka2qFnKHTaK8kxsa6RRBLiVKFp9NVREKfsXWt0fVhwRhMT08E40pEZvWXXWRmozkV7WyIP1XtPcE6gYe1FVqLCNltlFAKrjL4rZmOt4Cus98VBLj1ASqta2NZqnc+ytH1iWsUkzzP6nJQyxmaaF5dWrO112+8qDe6u1dV1EK3JlwS97TWqeD0Vzt/efOvjppzpGkxJ6yvXiq4kuWZFIXNjn0P3mxvFdTVots/c4HuxfXFPTzw+PsnIUqkwaoXjf58Grh/75o/grOVyPnI8ZsiRRMGr5p8roqlVqxPnRCjWGBFgtTngEQ+jJct8SLhcWOYTcb1Q4oo3BqcBI64rQ+cYvOdmtxfjPWfZ7/YNLvTeM5/OeCvZ49CLTl8phfVyxpaEzQligLhKczsLfd8os0qCi8ytuJIkEKVIDgtxnQnLhXWZcbbIZ15FDNN2nRJOrFRtMRLnWTI4A94YUpwJy8JyPuNMlgAXA2kNEgytVGIxZlGL0KpQjCmlH0jSyqqIy+4aVjVupDEE58vKfBGYM8VCspKtW5XbKUYqnZgFQqlfsqglOKYU9O+QY6Z42uL/4ldBhT414zTOYKIcpCkFbPK4ZITokaRPQ5bq0rtOnJfHkcu8UIroMfYlkxL0fZTB8WGHQDrS7KYY0rKxQfthZOx7LBDWld57Xt6LIHCIWWeiMjHDNEyYYjg+nRjHnWTDfc+L2zu8dzhvKHFh8PDiZof9ofc47DzHpyOPT0+qeSm/93Q6IX0+YR6OHrpeCAg3O6niQ3Dc3NxIUlfg/mZHjBLcTo9vcSZzLAlnEp21OG/a/KAcbln6iNZgnGlWF/WrSmo5Y0EdqNd15VQurOTGTjTOiYzZODRFFOnraqKShVFoTME4S78bKWNHSQdSuuXN689Z5gtT7xl6z9h7OudZvQQsa62gBHpIVw87eF4/AY0gUL9kJKHqBMqjBgcJAKYRgGrvtbFlETTDWoS1SNFhdwNZgMtUCsbJa1/3a+t/NwJI/b69+vv22P69BllFEtT6qrpCUK6CVp31a1XotdCzDvcX7XnX69j6dahws8AuJhcNaALdy713zCmqTqOBDOfzmVgsb988NPh7Y73+Pg5c57efMY4D79/tOXRwmT1Px8wcxEju5c5jXN8gM+eg7yzOevIA+x/7YaFkFkQ+Zw2cz2du9nvJrsPMoXf88Hvv8Opmx//0zW9wc3PDOI4Mw8DDwxtyLvTDyDSOgNz0yVq+9vIeEPuFpH2FN3cHDoOnz4Eurrx7exBqdVyJKYhGmXNMphBNJJRATBd8POOzpbeG3VCwxeKwdD7jbMaaBCVgc8IZR0/PmldMWilpVjkoyc06A6SZFGc6IxDc4AxvP/+Ese+wJfH5558zDQPGOqwXCNR6RzFGrLqPTwKbdl56XyGJurg2X1NKnM4LQhryfOe7n7Df75nGiWmCcRzxfYf1Azc3nnUNnM8zy/okwXZNvHp1zyXJ0HYMF17dv6T3nhwT4yieRNYJll7lh7JmlbkUjO/x40BYIuvnj8RwFs283mKMF0p6EK8w4yxG56RyEZHgnD4i47DW413Pt7/9bTCuBe/ryvB0OstIxenM57/563oAWZ1LkkzaeGG41kw0ruIQa61ltzvgvTjbvllO+pzE609+U6rZJFXv5XIh58SLwyCK8GEhRsN6fmprPITAI3KA9V3Pet41Y8r1/LYdwZ9//DvMl5nj8YmcC+Pg2U33hLjqOk6UtPD2s0/lUDei7agJs6iATxOjqrfULHrwPcsSxCtqESmrpJX/tBuISQwli1tYV3FxvswzL+5v1WZEetcWIbjc3tyInmXn6b3h08Hz9PCGnFZcWYnriSWlJugcQ6ZTxRp618YNas0iyg92GydQnDDp7y6lME4i31ZyIcSFyvwxFFwCa2RQ3drN0dirh1ntkeWSRAvQCGMS48BJclMDiUCHUAlAtQLaxJGVVJa3yGWdbWr7JUPXDUL08hZj1Vlb5y7rcHmMEYxIYO1uds+C1nUgG1WKLYTA6XRqVWsOkd57rLHsxl1zrKbC7hSKLTjfU4wjFikMsJZYMt/96ENWdWq+LAvFeq77ol/m8ZUOXI+vPydMsonXeSauCzksJB0ijim2fhVGpG5sThjfYSlMnWf0qtOlduhhrUOPiTBf8N4z9R274V7mFCplOyV2w0gpWm7rwUEp7NS6vJIuYnT0TkkMJZPDysPrRRQWVDXaOWF+hWUWR1Nn8QYGbyEFUpgJi4EUMDliSiKumWRDU8OICiFW8eDOew77HZ0biWFlvlxYLhfSKrMxu7HHAb33bbHnVFiWdbPGyFEkYZaVECNPT09q+V3Yq9SO+GA57c1llXIxoBncsgQ6H3E24btCXywFjzEdzht8liBcilRfxSAVTyc6bzGubZPUbNckqcqqv1hlU4lQsVCyJfEsAsC3QdCspBY2OEeeqFCKfqXSBGW97xingyr4C6tLiB1FKjQLtnOSca+LKm4oJFWZZrbqLRrInkAhJ6lqhs4KhVjHI4QdWodwVyEPeE/fGcBzOEwsi22HjiG2bDoE1/oQfd8zDI5OXx+2GTdhftHWYD/0dN4TghquFq2SiqypGrjqcLFzht4VvBEWZM5VmDfROdcqUucsLsnA/W7qiAligmEQeDsnsMYx9uC93MUyCGTeeS8Qs4pCGxzj0JH3I2GFvhPYvSTpb4nElGgQ1htrrg/9a7itNuX0qwpEV7hLztUNtN8wUaFwiApGkjVeRy2uXp0iMlFC4kEYqsa18Q2B2dIG0TXCh21kEK4p7O2ljfaDjb62EKSq2HZGdCGtqcGwcoUliF2Tv744D1kFFnJVX1HiBkXqUGu2r6KvoWlZe82kg+zVT1C+J++nGZ7C1mf+ko+vdOB6+/pTLl3HEiUDiSmKPta6sIYgDsjLIkFAWYVlWMldz+A7sUFwlt1uZD9NorJeCq9fv+X4dOR8PlP6nsPhIJL9KXE6HVkvS8tQjJHBu/VyaYtvHMcGn+ScBW70jvHmwOl05Hy68Pr1a5w33Nzc8PLlS9E0nFcup5MKqe5a4znHlfVSyElUxWMI5BCkr6ebyRrD+XLmcrnw9s0bhr7nxf09r+5uubs5cDmdWY5Hzo+PbTZsP06Qs8CnrWeVyCFyPmfto8kQ8zzPnC5nzpcLxsjw9W5/g/hJiUleTgIL5lyQbqKQOsJaWHzCmIDzia4TeRnnCilBygZjPDFmmRdyMvTbdwMWw0XtGZKqVkS1U3DFNkV3o8ST2stKGqsqM7F2A4yh9TKMU8sJJ4PbtmRKEDIKFpzv6PpBTAvHAWs9WE+dWco5qxAsdENH13esqhsoEkZX4FQxTUZpGjxhjRp0pUfqnCjkSwBK5GzwHfhQSBm6ridGSYRubw8sS9d6OLtd/6zi2hAG1yC96l1WA9xumsSHrNfA1Yt8UlRvr+pWOwxO5rusVVX1rAyz3KC+lBIpqhpHCex2E8ZYllXYZjFF+mjZ3wzE6Igp0PUdKRlKcTg7inEoQC6M/aQjLlbue1rIESwd3hl208BqM0MvVWpOwpqT4Xd1DK4B1tTeG23sAqAaqzZpI1MkeVHiBtoLlT7W1sMx1GREND6FTKHxq9ZbKoslL9uYGlQFl5bM4K6Cxxa4qrllPdxrwmYwTdG9woRKr4CiEFxR3Q+zBRN5T897wV9k9eUsQgNNTg5a4r0Rb+T+mGIawrl18uSRqppGHZa2cvaJ44OuQ02eqrLLl3l8pQNXCIF1mXn95rU4bZaC7zzDNIoZ3+0BYwyr2sdLZiO9kzlJZUWBy+XCqcqUpMzlJFJQQ98zDAMlJy7nE+saFIKRy3Z8emyKD5d51iG90liI9T02dp+1xBioWnGlwOPjI5fLRVmLK1FnhT777DMAfO+Vwi3ZzUW9iUSzUJ2NswjgTtNODRENcUl89snnfPbJ52JZoeKrfecYe1Gun88nnNUBzmw4n8+sy8JyOsl71D7ZME10nTIeAbTZ/Fu/+aG4xRrZPs5tQ8EhhSbKe2Hl9eePxCgq6ZsPkyOlyND33NwcGIae/X7HzWHHRx99wuV0ZF0u5JLUNiGz20+EORCtWDFkpGqxzpENTdw1CYbRZk8MWy+iSWLpe/deDvdsYBhkEikXQzESpADOp7NYl6RMqMoqznK4ObBzPWUUq42UtupHWpaVdGKULm1IaeJaQ66KCRuj/ZmcKGTGvRCPQgiSdOkaurm5kaSqranYDpnKuKzKIfV31qAWo6i5DIP4ovWDl6qyEwp9SaLYXQkD49TL59ztlU2Z1YBV0IdrM89qLjkOYjw4zzNgCFH6oIe7mybe6rwjhJVSMrvdrpGhyKI0brWyefvmNfNlIa4BawbWVZCVsEZCkKH0EBIWQQsafJW2ucb6MOXqQC9V9BcNMlJNUkpT/Kh764uzhV+E2YBNgkohS90mUqdJDBMYXIfLc9HBcU1umqK/wo7t9zh53vYQdKTBgZXGlZHkoWRNHuvPF2LYhn29qwFSg3mqyIMkxrXflxNKIrNtPZeciSkQoswfhhiJTcnGsqTMmooylIUVbI1t7E/vvaqGbEK+X/bxlQ5cKSacM0y7iSELPOf7Dj/0zc8KaBffKPxQ1RuiZsc1KBS9mKUkhmFkv98zDAOLTurnnJTeLm65lUpfShEdQefa0N31gF29SUGz2a7z0ij3ljWsEjDWtR38YJjnixxIfhMRzTlzVEfalBJOvYdyzlwuKyUbdjsjFVzXsSwLn378CW/fvsWCzBwNPRc7YymEeWGapD+3+p6npxOX85nL05NmspJdXxYZ5HaqLOK9ZPuPj4/MKvnSdd0GsZRCSFF7UJ5xnKTnsQYeHp6aRlmnfjxzJ0OK77//nmZ3lseHJ5bLmZwi9y9u2e0OTLs9nfcs6yynkzVSoVWzdbu11dt4jN5/e+U1VGc+r20kasO46MyNQ3oGxjiM9cg5IXMo1SuswSgqi258pdvLe6oMSgpkkxXOUcUCeZft/TUGV7aU4igUdocd82wJwTe7EuesVv+iEbcRKCSjrYemvI+qxiDvaV2lXxZC4Pb2jpRiO2Ta8KhBZ+nkNZZVKPTOqX+SHrg5uzZsmnPGd07nqiz7nUhg+V4C5hoMLhj2+1Fte8SvaVlEC9F3huIc4DClMPRi7inJgdF5JKGxr2FhmS+kEJvcUAgBr1VKVqp9uwZXeFQLXIIJtsP4mqUqz9uC1nXgqgoSVaFDNPrkOQm+J3CZ2r1qs2PX6vibGgdsYrVFAydsQfZam9Neva8acOrzKnxdGbrXz6+vUZMLmvwT2/OvfuezkkrXT7l6rfKF1wVpEcT0XCJPIMXy7BpfX98v+/hKB67z5czY9w0SkbJUYB8Mz25W3VTXN0jmk3ThxtI2wbqIV1WnbLHz+dxmnaZpagt0XSWgVVhGbkrmfD4jvk5FDxyZKTqfz1Ay027i9vZWBnDnxPF44nQ80g+DminC5TKzrAsY8QszCtMcj8e2KMbd1D5fWFac7eh8ryy5kbBGTsczb16/xTvHYb8jhig0+RTJayTdikLG2I1czgvn04Xz+cI0TrK5U6GkCCZjbKLzu7b5j8cLx5NApOPYy3Bp2iwRhlFcUftuJGfJiNdVXHEF43c6YZ+Yy6IbGmIszKcTOa5457i9veOwPzAOE6WktvhNttKHMyLUWvu9tTNRcXgJXM8lpSj1/57rH7T+gzVtaBldT7XPsdl7SMPeCv4oRVxIUBKlRKo3Elrpm1bh+Wfv5ZrlJULcArNWY03rhPlYijDf+r5vFahzHvCtH2Gu3mcpsublc8mQfkwJ7x23t3tiSnSd43K5tPcxKKQuA/IZv1hZKznS9U4qk2xI6UrrEZkhyslRLAxTLwe6FSdy4zLFZvpR5gtTluCdS8AkuXfVk016ik7bkhnrDXILpBEZo+jj5ZiU3GCUEcgWfMw2MmG2G9uSCtk02u+7Okjro/X4SnkWuLJWm6VVsbm9puH60H9e5UtMESuV3ytwfU/g/ELgef7ergLA9YFY2ga4elRPLH3tXKiOAe0ppf6kquBYK/v++npdvWz9vfW8q9ClBKzSIOna868Bdnvf+Xnf7ks8fuDA9e/+3b/j7//9v8+v/uqv8uGHH/Iv/+W/5M//+T/f/v0v/aW/xC/+4i8+e85P/uRP8ku/9Evt769fv+av//W/zr/6V/8Kay0/+7M/yz/8h/+Qw+HwA72X//Af/r1g9XrYlyI2EqvaM5R6E3JqgUQcdzt674XQEYWm6eoNTpmwRjVWUysRhQPnedZDR6CdGkSAFrikD7bBYZUKn3OWYdwolif/7b/9N4GnKn18niVTM6X1JSRLXhUb3oYRRWLFMM/n7fDIlhITl+OJ/+1//X9jjQxMPzw8yPvDEpbI28/eKBSSCZeF4/HM7c0BWzw5FbzrmSZhTlo9eHe7QyMshDVxPgdR0p8TOVdh0I5lvbSN7v1A50f6bmKcDuSc6fqgMFtRV94Bh6HvPNM0UkrizetHPvvkNSHOvPfuK169esE3v/mjDENHXFc+/fQT9jcTvt+8t0rF37c+MaA6cxY67wXKtNeN8KKbp5CsE4+mggwsY/SgFDKGBD0wRqjcxkpvxVpDyqt6n2XCEklRoL0cY6uUpR+i0l0JjB9lVqo10HXG0HmqQaEESISWXoQYIWohFusNvhdmlve9fJYsc27C/JOqUZZgrSjFONOnROwM1iOVqklc5mODdirKYK0hx024dxh7xmkQKC0m1jBrv0YPSwv11AzpItVRFsh9iQuX9UK/WBLSWzLJcFkFVRgYuNkf6H2Hs1Y9wGS20CqhR2acI9YKoQSVaPPeC5LBduCnslHcuyoQK4sFrv67QboypnAdoCpUWNdYZQHmGKQyLzUZVviXreJq/SrQZBmwXt22t2SlJiw1SH0xWP0fBS7Y+mu1f2pU89BeifRK83er/oWTbCUJVCsUay2d78jZYUog5CTM15Txu+8NE9YanDdQhJwFoqYS8krK2g6pXyk1wXFh5V7diy/5+IED1+l04o/8kT/CX/krf4Wf+Zmf+b4/81M/9VP8s3/2z9rfh2F49u9/4S/8BT788EP+zb/5N4QQ+Mt/+S/z1/7aX+Nf/It/8QO9l3GaGHdTm+yOSVyEM3Ij+96rM2cihJUQ1sbYCSkRkl7MnMFu3kRVKmlVuSWgBZigc001sNTAUTF+qT42anxUfFqa6retxF7XlRBCy6AHdTeWhn2lHhuGYdD3IHDNzc2NyEb5+vtFGWAc9xjTEUPi+HQixUhQncPbw4HDfs/t7S3ng/T9DIbz4xPD0LHb7bh/8YKuexdTCnENpBy1BWR599338a4nZ8P//r//JiEFrPO8//7XGMedzEANPW8fHjHWMAwdH330EdY6nTfqGAbHfm+anFY/9Aw6xF1ypsTEJ598RMiStd3c3PL+e1/jh77+NV68eEWKKyuG/f4G75XdpMw1Chtl2G7FkUF7Bt6LdNXV3EjORcWSDSYlRA1CgpMxBnJVLQfsZnMi2saiNek7x27qcaYBNjr0HakWLRWGlEOpJh2VYV17UYU6PF4dAwqGrvcy76YkiGVZdF1lhaTkoKyvYVUFZKuyUjvgRD1Cfsa6jt1+IqVe4Or10tbvfj9pwDXEVZmOVEhSFEiMgZh1gNXUeZ9CzuLouzuMWAN9ECh7XnrcxbG/2bUqp9K+azLnO0/Xd3hrxbE7RTW+TOJSQCatMjxfcsYpS7M2/GsPN2eRb4MtOLTHF8gJ9b81MD2ryBtZ4nl/q4o9PydUXNfsz18/lywVmvbPrgPPNZvwGnb7YvX1/V77umoTUoyasWpbojk0F53J1AHgGDPGhIY+VdheeqRR7UairjW5733fC5xsIDirrtgKc5vaL66owSacRbnSJ8yiTlSNe/k+1+wHefzAgeunf/qn+emf/un/nz8zDAMffPDB9/23//Jf/gu/9Eu/xH/4D/+BP/bH/hgA//gf/2P+3J/7c/yDf/AP+PrXv/7f/V4OamtSA1dIEdv5VtV0vWccx+aJtK5zo7ICouHnnLCnvBAqDIaSnqh+V5sl/LZQjMI9VRm56hLW6qsGLuk9CQxjrVWY0RJi5Hw5i6usFSXlvu8bI46UqRZUAgdJJeO91UHYgX7oRIcQCdLTtGeeI+uyKjNMWHTeWXbjyM3hwP39HV4p3tYYOoVlxmlkt58YhxGDkQHl5UJVqhinCed6UiiEIMmBsZabmwP39/eMow5ZYzEWxnHg6XgEaMwz+bL0w8DhIFl9P46s60pcAzGvhJi1b2DZ7fYcDjcc9jeiMJFXSpFrW4gNVgLd3KI5i6IWG3tLr30p2yF0jbNX+EaqD0SguaCsqAwmCsMsqcJHQQZL0b2Xs6pqV4X6/KzHcN33MHU2p2pFIhAS+idjVXBXfjPOW3rTkfRwDjGoPFYNilLx5Cwf3mngawPZaYN1jEHlrAymlFYxltKrd5gceF3v8F1VUXDP+hM1GZB8oTLshNFpvRUtQ4vM2FnojBdSQkn45HGdE6kshdZDiM3Cx3eiJ1qVYzZPLw0YSOIY67Cw8Ww2IGwi1DlTnYnbozU+zRWEXCuQ572Xtp7YAlLtL9d/+36B6nmQ/AK81lCB7/1d12fL9wtc37cyuQ66ubSRj3zV45JKuzQUKaXt+sSYEZ1PUcjRy6BkKmlr1IBW+/MpJbKhyeNZlW5Dk/1n9MIal55dpg0mhDr3970f7b/38T+kx/XLv/zLvPfee7x48YI//af/NH/37/5dXr16BcCv/MqvcH9/34IWwJ/5M38Gay3//t//e/6X/+V/+Z7XqwrD9SHahPD1H/4Gdzc37HY7XOfBwBpXlnVtyuoF0WYLza+oStgI9TfXYDMMIk5qLL/9m7/VYMVxHNtrLcuiw5zCkLnub13Dg9M0PYMNa2W22+1aVrSq/l0NhsMwSH/OWeKyMs8XUpJqLcW1Zdm7UaqVcezprFKRk/SNPvrwO7x580CMmVevXjUY5fb2wN3tgRe3t4TLRQ+AzDBKr0RUDBxrWIghcj6dWNaLaP3FzBoj59PMw8OJ3/6t3+Xu/o67u1vu7u6Ydrs2FnA6H1mWGWsth5sbrTDAOUMIK5dL5LzMuM83T67T6Qy54JBrOE0Dtzd7DvtbmcZfVj7++BPWZcZauLnZk4uRnhtyCAuNuVQecFO6tq5AzY4rzNpWkR6KubQ+mfTIVJuxANmAWnhUKw9jLd4NSogwLPNF2HYUwhqJQQ5cg5h/XrPOOtfjeo+pBqL14AGtsj2ul8BZiiAGRQeiAZZ1JmWhLDdozhRCWhu07bortQVbqzMDCrEZA64I+UcOl4x1RhKlLDAbSvYKcW1BN8aIj76t62VdN/uUTn14pefPZRaoMOYIWOZ54XyeqYSAUiShuVyE3DSMO/p+pOs85KI9RIe1ieohFWNkCSvzvJDWjOHK3FXZnll7K87IvFwVhzbtzl+frnUZmKZveR2kjUKs9ioZEAKNvQpSG9z3XKhW3YWLrqmC6icWKJuGqlFyD0VIHyklcDJ+cB2wGl3CXPVj6/O0d18Hldu4Yk3qsrAnUyx6llTl/pr01erIEENSbU5Zx0ZlrKKaedbkPMaALY5SEwRjoJjWezeaGLur69ISOAriMF2+ENh+sMf/5YHrp37qp/iZn/kZvvWtb/Hrv/7r/O2//bf56Z/+aX7lV34F5xwfffQR77333vM34T0vX77ko48++r6v+ff+3t/jF37hF77n+y/uXzAMPSFFlhBQ+UzJAp2lc71k0WGzba9ZqdeeQcqFqEOj9SAMUUranJLAQkr6cEkyjKzWFL7rNCMpTLsd9U5kcczDWMf+cOD6DglFV/Js13d0Rpv9RizYU4xkYxh2AqusyyJEDgMpBY5PT+Qk9he3775DWBdOp4Xv/O5v8/TwSFgWYsx4W9iNHe4w8OLulsN+xzhajM04L2vncryw2w3sdhPD0PHpZ59xfHri6fGBcRzISQLsw8MDp9PM+TSTS2IYJNhdLmfevn3NOE0cDjtAqoEQAuFxaWSTcdyxrDKcuCznlv1Za5jnlRhELeP2cMP93Qvee+8d7u9vGMapiYFWejegXC1NmZNk/2QJOZWdZ61DDVNEjsd8IVMuyEzKteqM2bJsOQTEh0MEWDPVz4uyKUUscxCVBmPIySFECXWtdmOD8lIGj8XgMYh2VdF6S2CvDuc7fCeM1VJgWaMYg1qDxcn8S5G1V+HDvhNBaVFjF3FVA+16tAFaZ3G+U8slS4prU8Hf73dKkgmMY689uUJJvgW7Ugy7wwQFmfcpubH0XOc2oTwrg8GCtiaM9Vg3kHFMw6TVlMylGduTYqTzHmt7adaUjLc9dHKfQ4hQDDnJAWyMyFGJhVHXKvpQ1lYdZLsFNZNLO/BF0mkLYdcJTb3mrRKCdh9r4PLetx6X9Ke1VXCFurRKTteQiPoCepCXK7PTBnNqYgu031dbDG1ptur9OXRZK+G+7zEpY9WA9dqdorKg658rOaiOT9SEu/58SuqC4a0olvQ9Mco1bBJP1qo9Z30fNJTKaMa6GbFev/9nBfCXfvxfHrh+7ud+rv35D/2hP8Qf/sN/mG9/+9v88i//Mj/xEz/xpV7zb/2tv8Xf+Bt/o/398fGRb3zjG60vQDbE1gzMomOqF68YlKYpc1OpQkRBKok60Gs0zTRF9PeKCnk6VYQ3Rv2/iuruqcBo1mywyr0I9JQk8wE0jZfAWbJKn2zN4KwrPaYNBqkzUVAljOqBKtkPCl103qtqgDT/rcl4b4TKvxvZ7Uecs4y9DAnLzxRwYtp3LhFjMsZkQlxYw8waZmJayaUDK2yxlFX93QrBbhg79oeJ3W4nhoIlMC9nrNrWpwRrWCnFI0aEmUwil0i1Zq8punUGly3FFcZpZNpNTNOkbMROYZpq/bIRDSobo9KRFRxpMJy1anZXTKtoWvZHQzQEWkkZTMZ5pywzeUH5viCBm5iPbvBMq8xikn8JIeFchzVOg6Br99B3I871WFXfENjN4lzBGY+xXmbHdJAUI4LGVu1ismboxrm2ruvAta89B01+DPL+JJDp4GpWDyxbFQw2pfx6WFaY0+owrQTH2vfRZAG5b875K/LCdqBaV5UdCsUIC9EYj/MDpVgNvJCLw7kBazu8lQF0Y6wyDHsZczBZE0d1xY7S5EfXwzWFvPYPayAA2kGpf2nfqwiXWPxoVWAsm/2Ql5+5OoNaZaWi2zWo1QDwrKrQAFh0bTon962eSdt72wJQDTTXZI3698qevCZw1EBnVTHDGGHB1nXq9N+LkRGgCo3XxL1WQyUL7F/qc0qRsR7nVNy7wqVORcHreqjhp+68onqHm9bI9UOErtUbLta+65ePXP/D6fA/9mM/xjvvvMOv/dqv8RM/8RN88MEHfPLJJ89+JsbI69evf8++WLX1+OLjPC+4vsP4ThUeEusaFPOVixyzaBCGdcU6KEnhBYUOY4zaK5LM3BnD0/mMAQbt21iFnlLUg8waQpfpB6m45mUVi2qFBnwnC6gUgVsqFdV4y/kstilO4ZBCISrxoyke2A5bz4mUifEJa6CzEEPA9V1rbucU6b3j7vaGnCJDF3j17ru8++5L6ZvlRGcNJQvM4t2V4aNN5LyyrmcenyIxzhib6QaP9aIo0Y+d6CfuRtY18fr1Gw63E6/evedHf/RH+fzzzzkejzw9PdAPDt+LNmM+BpwXPbclzizrzBoWfGfoXN+CyBCyQHLZcnt7z7SbcN4z7Xb0gxycIUT6rlPLCmWVGa20riwqrLM4r4eLlaVdcmGNgaHrVA/Qb5u+iBaiyeBKwXmnxp3y2aNW3F1vcV3XDvqh65XynzHGi/pHypyOC4fDjoKwQUuWQBISHPb3MpOkm77OVznfY5HPE0IBkhiNekfKBe8MRodsnevACB09pgAxE0Nh2o8Cd6UsVZqsNhFcNnINljWQIirv5CgYJZyExj4Ew+UyN2+5zvdbYlAM86LSWxlEi1FnepIkUc5ZrOtl5jFV4SUdAjY9l1n06grQRacVk6i6GzqMcfTeErpIjoUlrTjb03UjXRdYFtHQIxde3r/kdDq1g91ah+0Ufq3ityh8WZs4+njWjyqF4jKuZPpees2+7xrZ43qmqgoC12qsrifX5vLab1CoUILS0PcY68ilmlhufS15C6UZyFbCxHVveFmW9vuvh80rqcWrFY6zvjlZXEN24zA0zUhrRGi8BXj9Mgj71up1iyHI66gSRtd5FSu/YvNqY7lW+mM3kOb1CsUoLb7Ns7QhdjvPZb0o5O74so//4YHrd3/3d/n888/52te+BsCf+BN/grdv3/Krv/qr/NE/+kcB+Lf/9t+Sc+aP//E//gO99tuHR5lL6X2D3/AiC1Ndj3ug7GtWlhsEOF9m3CxeUWFd280zFG7uXoCRTT74XuHgIkFPIafe92LmB7h+JJbYKKfFZJLixTEHqr6Z8ZZ+t5PfpVVBKeAL+CG1wGfVrrvixCWJGaRVvtk09Nzd3nCz39FbMDny8v6ew24CY7h/ec/L+xdY51hWMZw0uljHUWa9nHMMfc0wO4Zh4vb2QM5ymJ/PF6JKae0PEyULvXp/mPihH36fr33wLi9f3mJdYX8Y2O17LvNFSA2lYGymH3qmace025OS4ORLWKVZnCXJuJxnKAZPzzCIuGjKkct8xtBB6RjGXlmEciCczwvGCsTceTEKzDmrnXsiA53v6Yde/L9Sph7n1dE1KySSY8J6Q8miq5jWINYtfSXgDOynHbkY5nXlMi+EVSqTlDLH0yw+VyAaj0WyWAnUufVXu76juupemS8LnNea8aL8YvXA6nzXaM7zPLOuix6kVW5I1ss4TfS9uH/XsQ/5pzoMmgkqD+asofMOyqq9DukBR1VjKXlT8C4FYpZ5tL7b3osB1hTJUWS4Yo6bs7S1yuozSjvRDN0aSiWLlIK1Z9FJdJ5pHAjrG4wp9N5K8FpmLqcLb15/yroshHVhGEaGVwPeOOkXX42S9F7MQiuEV5NAb+yzmaIW0DCtxwi0ABhToktxcxrPuSU6IQSCDr9Xko33WzCrD2MkcamSaakIazlnIxqa7X5/75/r4zpwXS6XRgarKvbGiNJNipmuG3C+199RGYRb1TbPc0uMt16/BK7rnw0hNKGE0+mEMZIMGm/IJZKcgyLJunUyaoLOMhrqXJyyCLVlY71pc4dOg16KkWIMa1h/oPP++vEDB67j8civ/dqvtb//xm/8Bv/pP/0nXr58ycuXL/mFX/gFfvZnf5YPPviAX//1X+dv/s2/yY//+I/zkz/5kwD8gT/wB/ipn/op/upf/av803/6Twkh8PM///P83M/93A/EKAT4+NPPeTwecZ0XG4uKrSpcZNx1wxRAA1fMzMuFdRaJpRSCEMj0YLnMMyB47sUsappXIFWfGuhch1UjtBwzSc30TBGn4BQiMUQu66wClRbfu2cGiWIVYppFiKzbgimuvRfpd4sz8eClQqsU74qt933H/d0t58uZUjK7aWQceiUAJO3lVAjNKCXaiA+Sk+xNqhuv0AGEGLAOoSl3At3kVJimQfogtnCZT6xhJhMaRbIAAQAASURBVKWADCiDV3+rXrX7fO+VyADGSp8r24zNtmWOZIsrXuDB3mNM4TKfydGydo5d2sHUUzpRV5BrZK+8geRaGqXGo811ZwQujGXT6PuiUsIXs86+66WH1PfkYtvYw/F44u3bB16/fUuMSqdPhWXJ9MMAGNHF9NJcX9YF3/cid7SuOK8K45ZtnsdUYd86jJpxXT2Abfu5UgqXy0ZZd1qp1+A0jiPeyZxQrqrnNTAmoSLHID0Ta4141tkkoaVIAE5RKsiKVNQ+V2hzikp11sMwZjEAlbGCqA7WorLvrJAjUtYhIw1otlTiyLXrt2XseublhDWwnwZevbjDmYqKhOb8HdeV2+nAbpyYJh2mLxKQKzRf9Jq220q7vZJYqn/WhlIZ/Vzb+kjJft910tZKPU1yJmej8L6+mpH9df2crL22CkHL+uXq9erPUn9AZJ0wFCP3tJhMcVm/L+87X40A2CLIRVHqealzYMboyMkmY1X76MZUOSkJXClZ1Z2MVHdp6dHKiIoBUl0bcjGpQ8uY2ibZKPD1emxjC0rPT5FS2x5f8vEDB67/+B//I3/qT/2p9vfae/qLf/Ev8k/+yT/hP//n/8wv/uIv8vbtW77+9a/zZ//sn+Xv/J2/8wzq++f//J/z8z//8/zET/wEdQD5H/2jf/QDv/nf+e53pLz1DteJXp11CheA9KSvXDZrhpVzIqwLYV1JUQwXa6PZWqGF6pLHltqEzJhsZNjPgDcSLEsppJAo2kswxRBylMAVE0uYcdbjraMbPDGsSrWm9V+kWqx4Nzp4L38oKYkHWCeGgrte7BcELhP17WHomcaXuLeGdV0Yh55O4cpgt4FbozhPzhmbhVVYD5B+kKZ8ztJzEnqyUzbkQebCVsHau94S08Kbt59JNqcCx6LO4BmGnm7otYGu4rFYyBvrqM6H7HZOoMIkbEyn1PLT6YlzyXgL63rA5ANlHDBmYOi7q0Zy1qBs8U6Wcy6FznX0vsMY2nhAyWUjETw7kADtG+x2YhOB86xBDt6UEq9fv+Y73/kuv/M7v8vTadas3gA9w7QDY7hcTo2Buq4rWNHJnOdZek16gPveX1U1haDXBVPwTZXDSi9Q1+35fJb+DiqvVbsZBvp+QDQ4t+t73S+RIKvCqQa8tYydJGoi4UTbMzWRkbVAg0Rzyqq4IJVGRhhs8iTUQdphO4dVJmSMSVh91mGso7PbcVMJDlb33Hw50jnLi7sbvv2tH+GwnxiVVZlilur8dOLl7T03Nzfsxr0yjQ2LXdvnlOT0KlhdzTPplpauTGPEQVUdqfNGtMB33SurPVLX+mM5f/+D91mvrZJDrGmBu51F11/6v5pxSHCV1kXtGjTPL/0ZW1eBqW1TeY1Ku28HSkVBKGpIm9uap55FIKMdWWiJRpPrOm5hKqKfbRvSp4h3mVE8NtuiKiubcoaB1huU9S59ylwgrOH7Xr//nscPHLj+5J/8k89K2i8+/vW//tf/h6/x8uXLH3jY+Ps9fvfDj6nZSj/0WKUZL3GRMr8ItbbiySILJIspx6SsH5WcMU6p8tr81sn4nHRBla0vYazYCYCUxjHIXI085ObkjCoz5CYd5GdHWhcdYqw/o28J25Zujlol6UK7OUzc7Hfc3Oy5ub/lxYt7Xr3zitubPTkN5JR4+eKO4/EdlmVpvbxlWVlnwceHQeSXduOeQeeuvvvdDzkc9ozTjnEamedZdRaNwA9uM+AU6CTr/I9o4j09PWG9o+sd0zQwzyt9P7DfHwhZLMKHYaQbelZV6q+zIsYY+l7eU06ZsAQOh4lq/Pj24chyFq3CZbll8ND3lq7bMepQ+eVy4RTmJvnlfU/negno4iop52prKMtDuAdXdF09rLuu43A44LuenOE8B1IqxFQ4nU68fv2aDz/8iMfjWfqQrsN1E32QKvrx8ZGjjkU4TaIu88zpdOKyzAqfQD+O9CpVhhaJFU4TooAcVCGEeu6yLmvLYq9ZYqVIIFvDynyZsS242Jbl1oNbizxppJMaVLjJ9hSFlP0WPI0lJVF9qe9V9pwCbmabafTe4zpPCjIrtIa4MQGdxepcFxQ6ZyW5MrDOYo7adZbHFzfcHHY4+y4v7t/jvfdecjo+8fT2Lb/9W7/JuqycjifGftoMWteV9TITU60qRSXFe4/VwGqMEZajBqFraK+wKVV43wkpJZdn17dRwb2EDekxra2aaDCkocGHFSrsx0FIO67TCnALLNfST9ffr5+j9q/qNY5RVH3qc8dxVOf1gWKkwhZpLzWARYhMPkpbYhi7FquMlUpa1l+h70Qk2ljVNNSWS+fclRNyrRBpPTBp0hiSyVJlA0XVS2KKMsKhCR1GxRpKEUm7L/n4SmsVni6XhvX3KjprvRPFiGpr4DfKpslF4byaZXMVjCToVR2vojBMlQWSJzqdEZISnlouGyuleNFgVeR1LDXIycGZDQJfGglYSvrSQ0NhFBRCzJL1WCOU/TUEjuczl3nSzHtzG84xiMpAKcowFHuQHLMoRjjt36TMsog1inWW8/kCGGLMTWUjpYJTQdcCrCESL4GSpf8h+nnCUjtfzky7nVYHshBDFJv2eV6ILhFjYVCJF2M8w7hjWVclEmRSumgVYJAJ1qLYOs2Ftx9UVUFx/1LqIGPR3or6EdmqOgGVQi3xQOFFXTd1Rodnf79yhcXoa4sShIO2acs1DdxZrfYqLCWbuB867u7u6Iae0/mM7zvi27dq41Do+oFu6KWyqwdphbivmuu9EfaXsSKhlZUx6LtObTlqMuFxvqfvdy1wyeepn6XCZ1qK5IQrSQNk4fpi1Ey8zSxpH7brxnpkKfxVI64OPlcpNOeFvVoyLrt2D2WQvzIXMw4xdTQW6AspLC0IXS4X5mUmxBXrdgxDTzpM3NwcSDFxOp/YTfutLxV1tk3vS83ypT+8VRS1bVBJC03y6YqEUX+mfs5nkJ/+rGnXavv+Friu9AhL0ftUsLXiu3pcB6nfq9d1/W/PIEv9frNmMbVWK20P1QHxdn7Vz6Q3bvv5ugTqgEbWPyN9KrOtiWe7RiuyraLNmhzJXqkQtSTEs0DmRirVlGlzql/m8ZUOXMsqmlhgyMbiixwyqVlGXGVWRlqI9drXnpgwCa1uIkNtiZWSMVnmnuqhZ5r9hAareoiVIqSAnDEpUxCKqrW2NSQlrUtgRCzVFIEVBZJQTx1NabPL7ZBxRt7LGiKn85nzZc8axNG0GJWiUhIFReGEopGx+vUYkUZKUQSA5fPB5bIQQuJ0vjCMA13XK9wqc0nXg9cli+2E0J1Vtios9GlolhuiFL+yhMjlfNFMe2FcI10nFYbvBnIxRCLrmohhpfeWbupa4MKISogZOqyRYClWMVLpiYKEWH846zYxXJ4fwKX29nQjUZ4fCtcbsUIz8tyyfdPUQdQryrcRrUgZ3N2GdwuC9fdDz8tXLxn3O8bjCZzjuMytYhqmsQWuoq93PcBaD1Kbt1kfmX2rVYFvvauUEqJxWKuaSrU3z87JCiXmlCkpauAqOvisVG22Q7cUA84012agmW8WBCYtVyhDDZhYhykrxuiIgVayXddjrWuBhpzpOlXLN4Z1OUNRA9ewsK7CRI1xxZhC1zl2+4nzw4llkeq9Bq5VE6FaCTXWoDHfEwS+SENvyhAxtcThi0GiBjVhIEvyIfdqYwVeBy5rade6vn7to10H/y8Gxfpa13DvtYfatbpGXSdVSolSNhIZFQqspAk1h2zVdQ022z2UuJpoEk0lqd6hQpFm2y+1sjS1WXh1iWsCVtdSPT8quaivSfEVfP1lHl/pwOW6DounZCFiSBXk8L3fslhnmocQekhIP0TUM5wV/5s6r2IsrCFgS8aWhNN+k9woYfttcy2SUYWYsFnmS3BFN1qvbL1Osv+SSWEhLRcZbCVT8LWTJay2qzVQMe2x67gcH0lh4e3DA3eHiVTeYXc48N47L5nPJ5b5zIu7O3IspLhZqAgtOVd0lBQyjw9nZRhJZfXxRx+Jq3FYee+997i7u+PVu+81qavOj9zc3EEWhXBrxchRvMlsW5x18j4XGdj97LPXzPPCukYwhtvbew43t7z73ntM4wG3d5RiyDnI/JlNGJe1JwCHww7HDu8cu/1IIXE+HzmfH0kKl4zjyH53I4d1Lsxhbpu+H6etV1PVqgFTLRfMVYCwAukYIKwr0SYwTowtMzJfpTI61Vk25ywDXCZSgiGmyHk+cV4u7G523L285/7lS/q3b1lTwHzyMdM0CpGi7xA3ZSGreKf9We9b8zyEAEEb7O33i9OudwOd34ZFr9Xmr8lI2wEoK0oOU1E+YJ2l0nVWAqlCfQYdSi3Sd7VWZq9EJsjqLJn2wTTZEufhTVLochFGqg2RrhsaTO1dzxoW8RhbFmmxkEATb2N0sLj35Bx5eHjLfH6rs2wFawuHwx5bfFOuWZaF8/mMV9+nWvFUXVG3lcOSvlwFsiplFEJgDeszcevcyCebhUgIgbBsEm7Sp6tEltyq3JxFsSYra1WsWwb6Tvf6FwLWF4MXbLN1zrlnOqiVDg+iKFSx5L6XiriK2lYB4O1zRn3+NVnNaeIv175Vr/XnjRAvSumpvfFi1BeuuhE4CW4VmEqIOWq1u1nXlYeHBx4fHzjcvcD24zOY9ss+vtKB6933vyb06aRSNQr5OW8bRJeN0lqT6GvV73svVZbT4FU9iAwFqwQKUQxvgyBIsKpsGQco0SFmtuzLYExpMx7DIMaOQuKYWc6GnKJ0tHQRpFKIsaoioFUSlJx5Oh0J80KOK0YZanVTFFNk6Nd7hmHEDp6SC/N5ISyPLHPg8eGkQcrju46bwx3VePHh8YmUCqfTwiefPvLwdma3n7h/+Rm73Y7dbsfh5pb3338HZwUvD2FRLbPIsqzEVKR/53uWRYKZ6WBdE0/HM0+PJx4eZvr+U4Zx4OWrl9y/eMlhf+D27p6bm5Hd5DnsR2ClZNnszhVQWCalwJJSq5yizrlI9eNbAJrXgHf6OY2XStpLrykrXPkMZrnOZPX7awiIFqJjjUWzUu1/7fe8fPWS/f4W6z3GeSIyRD4vC28fHzCLKLff3d/y7nvvMEwD1lkenp4Yp4lpGsFZCdpFGIVdP9D1PeM0isFhFIilt77ZdxyPx9Y7OxwOOvcjw+6VWCDVl1SetZi0mpQ55yWb1sAVTyeFt2XwWqTMenynTgsUJVYIYy8kSfyMEhScE8KFrSIA+ijkxqQ8n0+kJD2icRwZ+pEQAyGsLJcZyKS0cnzMWHuLt3B7M3HY7+n6jkKSJBIJXKYUejPh/aZmAZqANMhLw6mpQ8IbMeMZ2YLt79eyRNvji9BY/bap2P6zCuT36vo38k/5vX7i+qXN8/d4DV9fVYrPkIJaWQotmiqkfP12Kwwoyjb5Ksmp/c/t58zVYL+5+l1Ff6gSvYrSRK4/Y+U9GaP2UkaYpdUSSkYyBEXIPLd1+UEfX+nAdXt3j/eOEBNrXLUxaHQWRkvtkhq1tcriCAljg1ZkRggqBuyNlvNIY7mSM0pb/NqgQrBr6ySA1AwUssziWEd3xYCLtpDjQk5WK2ynVFmZ9TCVXYYa+Rmpboy16tJrVIpFM2xt5nvnGPpRDsOY6bosRAXfq+kjcjDuduwORrL+rqPrP+N0OrOsiddvVuZZLGGWsHI4HLi9vcO6jpyySuNdM9ekt1HZXKL47WRwtRvYH25YQ+JyCazhyGWeMU9PnM4XTqeZ+/sXWOs57Ac1mxwBI+rqXvyVchCX6mqH4LTJL3JKvqk9rOvKvCzMy8rQj4yYRv0tZauS2ja52i8N829Zb+1/inNs00U0YlGzm3aMPVjfgXMsORNyJhWBJSsBYBgHbm5vhKyQM++884p+HOgHaaLHqIKnOTFOe8ZpYn/Y46wTh+GYuN3dsirM8vnnnxNjwlnL7e2tsEAxrRme1OmgumXXKksOeU/f6wB1Fng2zwsxrMSwkkpucF7fZLakL2YwFIURU02rTNWgUwNL79p6lJ6XYQ0Lb9++4Xy6aJ9yYBp3+j4D83yBkohhIaeZYXB0znCzH3BeIeGw4q0kaIJYJIxz2OLIfoPW6rAv6KF5FYhacKv9PXnSs0Ajz3GaFpUvLJStB1TFqWnQ7hcDC9SAZ41pTOEKs10TZRph7PsFR+rP2+/7VZ9T1dht/d3Xv6e0iIW25SVAKXpkbX0/10ojzzeIMVwFL6Hwt6BVai9WEZ1rJqepvUIdqdDqV/QOZRTH5Gfb8Ad+fKUD183dPV3fs4bAeb6InX1K9OOgNxmiKsBLhloXLleMqkJJibXqE+ak2oHbgpNZK9qcx/UVd94x7frm5gtSzmdV8JabKRp+pRSs03kXHdKMOZNKIuelGTFCwmnVtTscuNlNTL1n3znefXXLB197n9u7G6HEdw6LZ3+7583nb5kvM50fePXeO9y/esk7779H13X0w8i421EQJZK+H5jXhU8/+YxPP/2M//pf/yu/+du/w5u3b3l8fGwNb1nMOvuRxepgGgec27HfTaqK4LCuJ4aE8x3DsON//gP/Tx4eHvnss8/5tf/263z86ae8fXjk6VGy8BCiuEDbdxm6nmHo8VbvUclcTmdO8cgaA2sIIi48jtzf3nGzPzR47Hg8E0IirJGSCs5a+q5n6HrpfRmLwxBrtqob6/mjSHVtjEptiUxYWIUFGXPhclGnYGPoBtEVNFbowGUNQGZZLpxORy7LmURh2u/pNUk4XS4sUYaBU8kUE8TrqHh2hwOHw4EXL16IvY1a0P/4t36c0/HE48MD/W/9TnMauLm5aQ4EdbAU9AC+qkSABn81JmLO5Bi4nSbWZeZ0fOLh8UEOY+cYxt0zOjxAP4zc3N3J4ROTXO8q7motwyAVo1M23XvvvUsIge9+97t88tHHohTjHftpp/2XTAjSNw3rBd9bbIkYIpbA8XzifEk4W3j18gZxVim8fvOAzycGN/DyPrUeUClCXrJRRhemcZTP3PWCkeTN5Vy3vxI4wCBqLIPppE+dErkmZJqg+Urq8BlKh1QNtvUmjTEkPdytAV97fQ7IWXvoMmJSi69raPX7ES8qEalKUNWvUjZdQ+89nXP46yBd2yFXqhRVT7EeWzWwO2ufVZ414G5fW6++VmGYLViVYkDkPGVPF8hGTECrxmtWeDOElZRjk40zKdMw4i/x+EoHrmwc2Tj6qWMphWQCxSf8MJEpnNeFNUSszfiu4HvPMguMQU5CJfUe53rm9ULJclMfPvmEvvfcHPbc3b3QqgvCGht9PakitbDXHMlayFmw4RzpBk/fe/pOZrdijCRTyIsjamNyXQMxZ1W2BoxrjXZrlPQRBL57/52X/E/f/AZ3NxO7QdxjU3IYm7A+892Pf4dlXkmpMJiEnzzjbuDw8sC6LLiuox87PvzwQ8yTwRiZyHfe8/Lde/5f7/8J/uDbP8jD4yMff/SRqLYjgfn49IawnAjLmaF3fO3rX+ew3/F0jFwuC1jHNE2CxQdpBJ/PZ4ERveWb3/om777/HufLhTdv3jDPMn9zvjzyW7/9G3znOwXKym7qOez3HA4Hbg4HUjKU7FguCUvE2UwqjrsX7+CslfkoLnRdz+FwA1iGfmAYeqUmyOxWChlvnFD3h07py0mknrxacjhDRqSDShbIcBg6hsFKz47PKTEQ55k1LXTDgPGep2WmnyY6JUzM88J8WViWlePxyBojD09PfPz5a0RbU8Ry1yD+SM55QoDTaWVZPqeKCfddx7d/7H/m9sVL/Djyn/8//7WRMx5OZ7L6x4U1bEobXcduf6AqR1Q9v2QM+IG3b99yOh45Pj7wR/7QH6LvB5Lv+PTpJN5248i6RobpRu776SxVbdezGofpPa6X4B/OZ07nM+uyMkyRdX2LdY7333ufb+xf4lMim9d895MHnLPc3t3iOiEEpJSZLwsGmfnxw0Raz1jr2B9u6d09Yb2wXo5044EYZsIa6YYJlyzein/dNUX8FFOrUro6atAqptwqjUrWMUW0JSsxI5fUAholSbDR/l5O4tmXcqh8HQyFrLqhVlnF4j1nCcva+j8lWzrndShbHsaIuEFKAuvVimWrEGUcp5JepGquhIjNDqQmlVDwVgV7TcYWRAWlKOqQhETmjKV3Xg1VpS9ce7tC7hF1/mwioYDNAs+SsogwmNorzBLwTRYRZYzoAuBIRYhSg+8pybKskdefvSaGFVNE/Pt8equyd/9/nOP6v9PjeDwzTFWZ3YJRFXiMUsi1kiJhQqTPMmu0Los0U30v9HTXgU/YUug8it071f5yzYokhLzNXRWjcE9inledt4ikGLA2szdTc1u2RuYlojMs521YMqaiAsAZcBuU6RzOIA1RzSJzFphETCRlNkPmLDx4gdiaeog3GG+wnaUbPWtawUpVcanq7BlOxyO+6+m7nt1+zzj1GHsrA6Hz3JrXy/mJHAyxZDrfMY0D+93Isi4sq2w050SqKcZEmmceH0+AxTrPMEzsb/ccbg/cv7jjfDo3eRljiph8LmdIIh3kfc9+EnUMobo7xH9J1D2875UBuCr6o9etyg4pdKLovMgYOaMKJrrrixxochIVhaNSs7iIKdB3rqmeOCvDoPXAyqpPF9cV1/WibZeK9Nj0cKDICMK6Bo6nk859ySzPskTpPbpM38u8WCliXOqsZRwn1iC+cqkUHp/EI85Yy26aJHAaQ1hlPdUB7IIVseaY6TpPUzB3HefzzOkyc5oXCWbGEAs8nS6EVAhJBrpt1+OTZ14D1mViMRi/tioTDKkUlpC4LAvJWi6XGWcd9yERYiGGwvkS+fSzt1hrWGMhBJEByjlyPj0gwtaRHBfiutB3ln0Z8TpQHdcF50VBvuha8sbhncgHWWcx6arPclVxQB1NqYoYsnFt7VkX2bvVpTcXOcBF29FQnPSaKxzWqPAKB9bnl1Iotqg9kgQVqSw6GhW99ZgqnrlBag2ZbMheVbTIom14/b+ic1Ia4Ir2iSrU/ayPVoOW/pdy1bNSFAikAq+9qyqH19Q4dA0/a0VV+JBNIq9e89zYZSJnJ/Drtfo8ut8XCoWUfp/Ocf3O737Ize0t737wPjEVUjGkDPMig2/zEglZrDnWdWXcTWJaqGrLwwT94HDdyOh6vLXsOgch4C1MfUfKhXmW/s/xvGgD0mCMzNKs68rT0xPOGx1YDoyj51W6xzvPzc1BhSllMZyeVspac8Akt98kQOEFW72fjHj4pMjDwxMlRkbvMd94n5f3B3b3B8bdhLdgEcWFeV4IMeN8hxscxWXWtLCmRfoCRjT0lkWsRN68eSuKDKvoKd7e3rLf77m9vee999/FKhTz8PpTHl57jo+W+7sDr169YH9zw7yuhJhIWdiba1g5ns4cTxd+4zd/W3prXc87777P17/+dd559Q7vvftuozA/PT0xH4+EdSauFxwCY3bWywFj5fnTtGMaJ6ZxxzjsRBy2btosm1xUPSLOGoq6R4tgqNEZJoVhcqEUybBzTg26KjmRUpBKNhdiDvikUmLW0nupnrvOkdYks4CqLL9cZpbLBWLi7vaW+7t7duPEOE7EVDRJOOO6jq4fMMZxPi+EEPUo24RSl8uC9564lwHv08VxfDry8ccf83R8wjnHj3zjR6T5bSW7fzw+SdWQCoebmyYePY47hr5nHEaWNfB0PGmFJgLCa0g8HE9857sfgjV0fc/d3R2PpxNW4cKUC30/cJcS3TC275+XhTmsXNZANpZlXXHOs66Rz988sMwrn3z2ht/67e+SUmR3+Ix3X92pkk3mdHyLIWFMxpsIJbAbe3rv6Ls9kgw5nO1wrsf5iMnQdwODFzmzmBJBe7KxJNR+TWhSelhnSjuMAWzeiBmhahI2irh+ZfAyLg4IU69OP9URmGKM2MnYIu7GOZKS18Al/WoUEkwlioxbqUFMNS6MqlHo9wsavIywTckJm6K4gpeMc/Kei7YwYhZxYHfVe64s3yotdw1HgnSoqtRSJfXI5VLq+rqyzPPGXtQ9JqMC4GyRJE57zVjT4E8aGCuv3XWesYj562ZcmtQJI3C5nL/02f+VDlz10EqrMJ6c8bheVMBDisSUsSlhkeppHCeSFx3BnDOH3Q2H/YH9TqjTvffshoGbcRIoicLpPLPEE9kUEqk1qq1xZOewo+fQDXJDgrgsFwe4AdNN+GGPOJSIer3rzrjeUkwiZkuxST4Im7J57wQaoAgt9XI8Yww8nc+4YWR3uOPuxQuGccCUCDnRDz0Fh09ZPXdkQn5dV5Z5wWAIbqUkObxrRrXMM4+PTxyPJ8ZhpB8G9rsDh5sDfSe9uxxlgDBbiKXwdJmZU+bjTz/jzcORVGC6LHz8mfSx3rx9xKqCvfdy+J+XM5+++ZRPX3/K6zevOR9PHB+fKCmyG3peHPaUGOi8px8GlvOZvuvbHJyYf4rozTyfRRqKTNc7uuiImnl3g2eYBqb9RJXdWeaZayZZudrIphFxKt1XXheK2LkUgESdMStFrmlMBeMcrkBcVpbzzHI6c/vinrvdnsO04/7mlhgieQ08vX2kH0emXWHa7SFmSpD5m9F5+q6XQ2SJjN3A3e7Avh/JJXHOibTMnB8f6buO293Evh+oNutvP/0MiugsrtZyPp9Y5pVyE+lubsE60jwTzxcomcNu4Ifef09o2taQUiDMgRQDP/z1r0kyksQna11mIXTsJu3jSmVj1Hutkj0oqYlD78aBwXte3B3wDtZlYblkrL2j9zIs/hhWSo4CO7mMIZC9IceAdxZrO2w30DmP8R2mH0gYHHJYpiJCzamIvuO0m+g6zzRO4tqgc24iISqq7GSVrRLKCa548VlrQ8WlERxqvwhkUPp69qqWILZUCrxqRDorX1ZtTJAQZTsxDxVMTl63VnOVKFFHF2RNmk2z0nslUggT2DiL9YLO+L6jG3p81wlTVZp2UCzkqulZsH0nn9EYumFowco5h21VmVSQOAteevzdOEii5TZfLecLvqsODNJCqezYmISklFWdv+s6EtJfrWMKMUaWeWFeLzw+Pn3ps/8rHbgOuwOd70W13aJwSU/f99jo/r/k/cuPZVuW1on+5nOttfc2cz9+TsQJEjIvpXslVD06JSEaNGhAgx5/ALQRdBANJFpISCD+geohaCEkJHollRASqkaV6FQ34T6gKAqRmRHnHHc3s733Wmu+bmOMOdf2IIt7IxqojmJnWhx3c7P9WGvOOcb4xje+j91nYMcYSwiRKc5UVyi+kPadKUxMYcJbT3BBsGjnZSai+8f4igsZHxux2FEgg/hEGWtwzlNbZt9X3N1jTMGFCesCpjcFULEv68FkQTZdwBiL6eW/zskcC7BhjNKOncfHSIgCpVgXdNBYBpmt9ThXMaYxxQlrHd2wkSasqj682g/tWe1iYhCYp6hqftqlIlqWRXThThPWNUp2uCDZet4k2xYDT4PPWY57oV+JJ5o1uqGasD5vhdv1xvfffy+zPnvisoj78hSjZP1eDvG5W0x4T0MgOGuNVEY5gQq0hhgJSSjWPRg/egaJqsDANwbsMnoVnYVlHmSR9DASSngZsEo/yyQDl0DorMdg8MawrxstFyyGyUcuy4kX90rLlbon9qrZvA2kdSXtSRCeXMBJQkFtKqgsSVSpmZv3eGOYlX357nxmPi3sW+IOmFKkr+A8k/dk66jWMjnHEgNLjHjA6GzPHCLzJJY3pylSUhKomcYcRUZJBOmqQKHW4L0VVXnkoLIGpagLvOqMqM5PwRODoxrDMs8Eb9XXCU7zzLxMGNP45D05ZSFGTBM0o6aVouhuqFRjhueXNcJu3NaVtRy9mW6TYoMb8GGlSWArBW/dCFYYmYMbPSJVerC6PvqakD93uFl+r2N6cujrkHBR4WFl5xn3+KWahq2NgMMQVx4j8bLu+oyhnmudZOOc9GWNc3o2mGOWzqpIsfc479FJbgS5saB2ONDkta0SLoIXFQ+MQq1aqTWwVWDprOvEBY8LCtXbHnPrCOiAwqiqh6kzj0On0FislbMm62xid1POKf/XVYf/v9Lj/fN7OYayBi4PwUamOOGswBa1VjGE9J5pCnQ7inu7MseZyU9yAOFkUryJnJOwPS3GRVxsxOpodhKIrwnjKpeM914sFlph2274ECh5w8cZ4wMMrLuKwatx+mXAN0y12E7fku6x9OiUiixzaVFYgcuJOM0StLCkXEa2aKzHGtFjDH0Wp3XWTj/ERUn8YFkaHRYtIvuURA7qfn8bQ4/n85mn52daXSh5o5REbpD3JDRwff7WGi5E4rIwF0kMenaIgy3vtL3y8eMP/PDxe1JKxBg5Xz7wdLnw9HTGlUYMgWmKfPX+nahtWNFdExahKFXn4UIbmKdJLDmSQG+9v9U3lMytSIIhUvvCjOqHk8MdrKtWpTo3huqcBJzWhnRUV1bJNSOj7hYfHM4HVh/Y7yv7faOmyhQmns4XJv9RCCspk7ZEWjPRBbbrlW1PNAx52/FGm/e54jBMIXBZZO7pFgLRGJ5PJ2EfPj8zTQs3c+MViFrZnqaJ0zTRUsLWxnmeeT6dmGcZTrVNYJ4lBoIVN945BPIug6zeWWIMquouBKK8r8QgicUUBc7cU8YbcDRsK1AqPkQm71mmyOQdxRiWKRK8JXhD9Jany4XTacJY+H6K3ItYq5yXhdbk5yTXMZhqyKgFRl/jxvD29sZ238iXRIwTfYZKhJHFTl6yfzkgnXNSbVlN8Jylhw3TnAZEgQVlTEZo/13A9qC5a5X1wAbs5pBGkQCj7wFnMV5ex9aK8V0A3Ok2P4KXMTIH2CG23kJzD8HLPb7OIzVe93GXDsNZMCIGjhOYzzSD8Q5TdRzIO5w5rGZMlgTNAlSPcP0qxSSsPrcxFmeOHlV/iH1JH9ZulAJFNQpb6xJrZoys9BlUuT/lv646/P+VHnmTi+Bsw0WH6+GnaCaRG6ZIE7OUTMZgsdhmoDR8c3gcNQn1u6m+3329q4RTY8uJnCqlGrCHrXqphVwN+7rzdr9LWZwTaS+UAnsxpOpo2kh21hCnRrMfyexUIwPIIuusjVKk5K5KkTdUrHGEMOFdhOZ4e7vhjYGSeP+0EJwhOCv9PYQM8Pp6VZw7sW27DCfr3Mk0LVyvN+73O9Y6rterlO5afXXVARGcfeJ0OjHFGQjk6kVEtlmqtbz/+iecnoRpaZyj+sB0OjGfz1KtaGUnfjxCqJimSDwFIX/kAqZQ8k5aN2IIzMFzPp949/yE9+Lsu+33MYNScuJy/sCyLEzTpKLAhVJ22YBeZZh0rq41qKmIwHKX3NH0tg+oDtkmZO7LGEtwcnDWKodXnEXRwXpLKjstJZzNPMWZy3RinxJ5S7x8+sx2u3EKE+d5IVhL2XdslWFmj8FVMKVBLtRcyfeNaoT+fJ4m3l8ufPPuHQHJVNu+UdaVp9PCu8uZer9TmiHf7+zXN04hCBHkfic5S77dqdtGS4m6bZoIVdjFhHS2jrTeVZQ1c7+9yX32nrSu2CaaLuv9RisJ0yrBGIKBrWTyehPC0L7R9PAJMbIEx2ly2Cbzd+SVlnZa2qRjlDcowmYr243t9gotU0+R1hKlwn5Tih0yN1S2TXpITdhxtTWqaaJIHw/BZxk1OeSurBPdys6uQ6E48zDXVzQ4l1yoVKkorZfDuHUCgtERCgUTVXqrNRlrsCr9VkojZdGqzKVg1eok14IpBayT4HDM2Uj/yGpFV/sZoGdb07XYqo4eGCziJEC1OP2ZVAutWnKTJKKrqaSS6Ys9FfVZMwZXMkUDcjNQtM9qrEjfFa1W17STa2EPkafzk8rodqZuFdKS/dJt2llxl5AzsvcEZY7rdrtxv93ZU1JDSj/Egn+dx486cL18/ISx4pwbVaVi8gFH0xvZiE7hPWMI1or2mjHkPXCaJ87zTMob3kXNhGQxVho0xcgb4yb0g681uVn9xjjXb6Id2ZG1YgY4xSCQBeggsRusoENSRnX6mkAYHduyxtDsIZhqmkAbXp/bqDr968ureBalRE6J9b5KpuosP/n6myEr5GxjtaKbV7M0kK0To8DaGiVn9lq5326i4LBn1vUm2oEWbusNH6Jk2POC81EsLGrD+x3npal7f9DmM+hQaPBMc+T56Yl5lkppsQ6PHO4CDRUVQ1Z83qD0XTNmc2oppLTTmkzl31cRZd32bSi9n9oJ70UgNpc2mFsHRwuwQhE2TjJ9qAqLqNKEaVCa3mtGAnS7XanV4N3E6SS2H13yR7yPZJ6sZpkLosnf79c7t3LFGsPr6xvbvpNT5dMPP7BvKzFOnOZFaNa1EIMjJ4O3hhgc53lmjoHb7UrKifvtTkorzjaBjClQElT5fUpiX++qkQnUrAzNxhQDzTRicJyWmdNpZpkjJe3KPJOEwhlwpkFJtBJoOVHSJkxL0+TfgODEADI4pI/VKsEZ5uhIweEc7NsNQ4ZW2O5X9vWGaYW0rxgjlWarjuhV0aYWnJHemVjCNy7nE1MMnC9nYogYxDuuZGHc2VKwusesscMktm/cZhpVp1+7n5gop1SqFfi/e3Z1JEF4B9rjGrYnste1LXaQH5Qx3GfHZG9LG1uGoIcC4AiorUrC2gu7Zji0ceHL2cNOuBD6q86e1tEnG1qHjePv/YzBqInjMZCfk1DSjbXgHKXkITkm0l9wWqrG26bn43FJpcVhFKk85r76nJi1XS4ri0u8qr90Dc5f9/GjDlyvnz8Rp8j752eid8zBMwWRE7FqFOK8wnLIXIYPsqBz8Jzmicsys+3gXQDtX+zWc5jOWc00OryAsIM4eiSdair+OQ5sGcoc0cswrNdyvmvClVKgCUxQjQw4d5KGrX1Rg23SD3OKUTsjcyFTiEQfybtAZNv1qk6xO9fblfv1hgHm08JPPnw9FEIE1lABXfWpssYyxUguqjJSZQ7rfl+5X2+8vn0mzuJiuu0b07KwnM4spwvBB2Ff7Vlp4DpflNKg2nrrqMVTnUgwnU4LUwnUnIkNXK60VebfWinULK7URntWrRaBLYzBOzfgBucE6rzdrtxXUZ+2ToSNBcbtdgyMHlcPXqMJ7x6qLhQu8lY+lypvlwdfrFIz+75Ri6E+6AXK+9GNq/2RnGTI2FmjAfeV9XbnHia5Vymp8PEVyWQLS5jGIS3VtASu0yIjCHMM7NudkhP7KsSJYCW5EejzYH1ZmlSzdJkf/TcLMQhvzjvD5bKwLAvLHKk5SeVSK7Vm1fSEWhLURCviRuBjxFt5f63Ke43O4AwEB1SDd41lCuQ9YizkfYW60/3wat5F+qwVnDn8p+YYteJt1CrBU2C1RlsWyjSxLDPWimknSRIKUy2mNYJTC3pnKbq/+t4dMkNdWaV/aQBptanR1WMf52DnDYkIFEp8OI++YCa2g2PX2rGfB7e8/1WUDQ7CkOQgOHMEuNH7QlHukT0fwQ/6980gIkmNdHyuRhP/QdtG0j1U8Zu4v1VFAUrONJ336gajxupc13h2ZN01pJLt//cAZdoi762oOEQfoO6i1b/u40cduGpaqbZA2XAseFsJVth/xVaiWmM0xZCNkX93DqYAz+eJ988nts0QwwQN9pygZVJypOyxBpKTWapdKcelatnsHM0blqi9gZJJtpGSYXKW2XtOMTLHiNfnmL1j946sZX9p4p7stYdiDHr7oZVG2gQmCRbOU+D98xMf3j3z1fOFyVuu64203rnfruzrxr7t3G439nVTxYSJkivr7c6270xhFi3DNfH6+ZW8JxyiapBLwRnD/e0qS7NWasmU7EirQG7NQEuNtsvIvHFSEU0hcJoXHcJd+frdex49obqK9batQMM7w3SaOPuJUMGnStsTOe18+vgDL6+fNQAIFj8pNHi+LDw9Pw+YYd031vXOut4FVjMCs7rg2POsRpYO45V04SRYda8hF7oygPQ2Y4w62zaR8p3WCnvayE0+u/We5XLGWVEIef/1B9Z7Ys+J9+/fc3q68O7DO7Bwu90IwfOzn/2M3/md3+Z8OXO733n31QdEOcVisJzPF0IQSvy7p/d8/eE933zzYRBDYnD8337nt0d/MqsFjVsmYvgpt9tN+5ZCaNn3nVKq2oBIxm+tlf7TPGmAymxp5fb2yk+//lr0LmMQUkTO1FKIVgakJ28peaPViKHgTOW8RCwVb6vA0QG8rbS8sV5fJJNPdz68O3OeHd475uikam2Fr95deD4F+Wy//dsYk/EO5uD52U++wVlYb29s97fBrfGboRUhDrWSZfwj7dyvb2xrwlpBDjgXnadzLDGOecSaVfWmVlWdrpjatMetc36Svkjg0IqptiyKNqqaI4QNNf1UhmCzopBhtB0hzySoyvE3RoVmtOXaRzVGINWzzQWpSgRZkWPaWEt1biAQGQlWFlHr8E6VNUDHc0RrNRur0KN8Zq8iB601rH8I5r3925okyD4MRSAhv5mjf2eNsCc5ArA4eZtBbgrek3XtlU7T12SupELafkPJGcssCgjr7YUYwbRMcAiLJidMWWlY9pRY9x2MzKSIsvSdtF2pZcZQCK4dGU3ZoWRMLfhWMVSKpjoZ+bvMAomdSUk7pe4iHrpKNlyXiC1nPJVgqjY3K7ZmTE0Y7ZO0kmkla1NWei1OSEGI1NIufYa8Y0vCtYTRzLc0oeROzjE9P3N3dza/M8VIUTXv7p91v618+vSJ8/nCfV0pWYglKWeMEQsGgbREBcMqs9HpRP40z8PFWrIpT153Sq4YKw1pi8E1MLUx9yFRlYvJTWavQgjEGIjBM0+R2XoWH3n2E+vLG+u2sm7bMJt0zjGfFp7ePXE6n3n37pnnd+/Gxtvzzr5vbNvGfds0OFkd1BZWlvPK9LIKZ7gmlGIvsyaHx5pR4WWrm60ocUWEbJdl4f37r/ijfzSzLBeW5YnL+QO///u/IMTAV19/4N1XX/H+w1eEGKimcXo681t/7Lf4+Xe/4Pmrd2wp8fXXP2GaZ4GNrRyZnSocQ+RyOROC54eP37HvK/ftyuX5JOMBCjPnLMPJMUx89913OmjsmKeZMwvGWJ6fn1jXfbz/WisxBuY5st7fuN6vvL195vnpPOZupmlS5+LC5TQJHds5KAlHxZmGtzAHB8XRiqfsK6Zmat7Z1yvX14+UlCn7yvvnE8acuVzOSggSy4xvv3mPoRKC46fffE0tQqk3tfD89ESrmZp29lV0RK0R5mZwDroKvJF5SGcdU2hD2moJwlR11uEw2j9S/comfbJWBCpvw+3XjNk816E6PQ9a0f5ayUBXsJDqsrsRm6pBpDLYodBk/KRUjGvyXswhz9Ra7V20o3Jrx3+NQn60h16bBjkMalFTaVZ6uyrMRGdBGiMzjKb/jsKLTte5MZZsjnmv0p3gG3jriD4ca84ZrAPvG96b8RlqFYg21UJK6FxXO84JPT8kCRbIMukc57b+hg4gn+cgjdV8Z7tZDIUYIEwyV2UpcsHyRtpuSsDYKT6Q0862vrHdo8AAXvtJJVH2VfsMYJWdRBGvLVOr+CSpER8ts+eNUgwlyevUlMjbTF7vkDdslZ6JoWLJ2JowdcfkhClZ+ge9hHZWGEUNWsmQNkxJmOSh7NLDyImWM9XK4KMzat+epT8XQxDnWcB5S0mFfUus6yaLNWehExvNBDuFVXF2UfxQjyc9JKZpYoqTQiZy/aVRXaTqwuDQ3pt1xKHJKDmZVWdpa2CeJ6YoChzROM5x5v1y4a2rkaPuv9rEPSmb7nw58/T0xNPT07CfSGUfthSTqn20VrHq7CpCtmLIaTBUIxRuUwu2GEpO8ppG7DmcSzgb8GHndr2xbjvblmhVssx5mXj37h3zcmGaTgKPekecJz588w3vPrznfDmz55232ytFVTsuzxfcJH3Er776mtP5TNQDtpRGTpltlb6g85ZcEp8+/0DOiX3fmOc4GtrOeXJWaZ1pZrlNpCRGpi7YYew4LRMYRKjZWErJWCdzW58+/cDtfuX69kqMcq+9c/pnqEWNUJ2o0eS8K0SZBS4sCUPFmyYEtprJaeV2fcGpweV6f+O0BGIIPD1fHmSYKu3pJNR3b7mcTgIll0RNMgCb9pXXz595ffksdHznqCWR90TRvkwtBWrRFoC6McSJqLAytZFLHhVkVS+tLsB8KMOiEaoHCz3sHwPFCEYM/E7gZT2ksdKbRSSXTD3gux6ARpDT73dUEsA1Q3mAEgf5tbXh1WdaEx6XkowkIMnn6BM3Ui9KAKvNjEA0iJG1KaynCiOaADYN5hZGYHsUK+6ivNahMB8jMIL29vq1M4/2Osd8Wmeq1lKHO/Kv+/hRB65vf/JMrZXXt1du1++53eB++4Hn9+9k2HOKVPqshuPz5zdayrTm8cDHX/xH9usPwgh8fofBcL9v3F7fAJFT2m837ptoHoL2iNQuYwqRvRX2dBMlhn2D9U7e7lw/Zj62jbevn5jNB2Yj4qUzmbXttHynNqm+Wt4pe8JqNTI7odTv20p6+4SjUH0l317J1ytljpglgoW6b5S006xYbNvJknPlfttEoWLbSZtgy3OcWG93xcANadtHsOr2Ga01glcbimlinsVDSnDvMjyATC8NjQRb7wO5VuzUME9VDphaqCnLrNi84J2FVvDeiTFgnPFW5pOstbjgmeZ5UH7jNBGivJf5NBOiwhYd07eGaOVAjzHiQhi02y0JWUPYnxkfD8+qbb+JzFRKopahowIFofQaHHGaMS6gpG9kBEJcla13vLy+sH//iVQMMS68/+YrPnz7DWGeiDHyv/3H/538f/zvMmKgzLt5OcvzepDOmfQFpykQaiBEx8vLK6+3F77/uBInM/pdLthhXIkVKKnWyuv1M9YbKIVt3ch1G4KsuW4EVZloVLZ0Z7/t/Py7O/U/lHEdrbXiBWa0DwXQKusmlWzVpOr18/fj5/f1bQgdRw95v7HdX/n8w8+lX9zEByrGSAyGVjZKkyF7Z+Vz5LSxXhNvn3/AO53dShv/27/9N7x8/sin779jX2/M08Rpmfnq/TtqkZkzWheLjrpG5c/TNEOD9b5yu914+fSqRAGB3LoKPK2J+3gVSL6qo0OwTgJY6f/YVG2jDxSrfFLvNal2YLSOliq5NTwecsNaQ/BBxiaaETm/Cr0P5pAKrVYFjZvREY5GCEb6Qy2zODFfLKXgG9Rd9ulkHK40rK24hvjD9fupDMFcJSiClV5/ruojZ+UzG93LBgmI1oOPOH0vad9xccKGgPUOHwydDNhatyiRQJJKVfV+SwiBlBPrujN3FQ4jLFlM10b8DWUV/j/++B/jcj5JhdUbqkaka6zOTmDhdL7w9PzMDx9/IKXEtu/84uc/V4FdwZK/enfBYFjvkeclSuLTDPdZVDhKrfgY1Hgu83a7keuN2TW+/XCi1UreA/vm2ffAsixcThHfNur6Rqo72cBE4hINs42Yk0BvxkDNWRSknSVY8b2qZaF9846yb1yWmd/66dd8/f7C82lmCg7vDNHO1OCJcaHoMNt8OpOSSKp8//0PrKtYSzw9PfPhQ6TWrH5Jt/H5Ozx49KUOxs/IxJynOXGcNjpwienzJAGvTM6aM4RJ2V7qkWWlkrRI7yFaz+SCKG9XIVk0A3GemBYJml3Z3AXp3YToiVNk2za2XdlvCqkKZCHwYtBN1qikkrnerjjnhbBgLcaKCkSteUBHIg3UlJEm0kw+TKLg4AIhyPyc2LwYUq7UaojTmRBnrBMadQMJ7NZy33f2XdTtjbW8e/+e8/mJrq7NgIisykcVvvrwnpx2Ulq5398waqkihoVqWtgebOeHtpzMJ2KUNGC6crkE3VIyNhhiCoRNhoTtgKa7+7cQOjr8k9M0kpkOT3ZDzl6RWyNzU942SpVh2ui9EoAMUwxy3b0QRVqCoo35khOtVaYYqGUXqHG/4yyclhn3zQfydpZBYRr325syTQ0xeKbgZQ8bSy1FCAAuCfTaTTNTIqiep8eqGK2GoCrD083I/XdYOdidilyrpZGxCAXciWKI3DmZ4+ztIVrXDJQ/SzaIlE5KoBBlNx1d70UIClPTC7nDP+yQOnysnJQupiw+ZyzeiOrPL5tSNr0G/ZphhN1rdI820MAl/3ZUplKlFhpU6c2TDFUl6ixdsxEZdtYkf5oMuVpq2Uk5K+R8WLd0i5NuALrvv6E9rq+/eub9+3dcnp+EzmkQX6s+Xe7lv8/v3vH+q694/+6s3k0rk1cIC+mjPD89AYZ1WinL1JMt1lMYBo9hjqQ9se0bnz6LNl+H0YZz7S4N42mKLPPM+8vMol5DtMrX785cZieBynupVpyjlTLsBJyFvG9qFb6zXq/MU+Td+cRpEsYVaiDYTducsTKE7CKn5USJYrz4El7FIdYJAeXp6ULS930MWJqRpXfTQWg6fFsoVcRvnbK+6KQJjsPUqltqtY5gvZAxMHRepkN+12EIqrztdeO1KtJFToOm9/6LQIpm6H1rD4jBot97ECDlwNbFSsuRayFEP5ietXn6LI4x3cCzUUrDh0lNNye8n1QnLxLnk8zThQljPKUKFGNdxAepEsfga5OBVr9KpZ6yDHO+f/+O8/ki9jvpEDMVxgs05CCuNZJLJESjw9NqSa/AVC1NyS5tVE2d4yaU66NVAvLcuWTiHMmq27nEMOAf5yx9ILabTfYMv2owPJx4i9Kvuyi09FpKPXzvgpNjpZRM9FHvoRVx64f+h7M6FB8DaYecwLSC5cQyBcplEYWRbZN9td1VXxJM8Dhn8DrKIHqT8uU0oFpjKClJ0qVEAmvMgOxqRaniCpUZqP0gf4DDJMeQOaru3GeMkfmsh0cnKvTfO/aF8gNbk3ttUFULoHe5BqzXBrQIDAbz42sc/6uJzy+T8zrNvh3Cuj0N/YKC3g5twYPu/2Cuqv9aa1U9RoMtqIqjqszgtKfWk6p27INyBK7+bzlnUh9E/qXr96s8fuSB68JXX4muHtaK8WJ3anVODqsQBHJylfdPM8Ys1PrEeXKCDWuGviwLtVRu1ztty4Nq2pvg1luCDryu68qnz5/HoO7T0xND606V3L21yqSKg1FUSuHbry60JrJFvaqIwQ/1as1NKCmxbyvf/eLn/PD9d4TgeXc+Matky367Yacw3JtrLpggfxdZIU/0kWADLTdwEJzjcjqzro6SCkEhCEB7gSIGSu10WaFEt1qOjFw3yeOmfgRSitp2i1BnElq6EZ6k14AVrMOb3jjXOZZS8V4qnWmaCPN0NI1rgS4p5Q7svBYd2mzHAW4U+nDWYbzFm0CIAR8lKHsvv29ND3BGLBsUf3c+YtXqxtkoFZePTPOZOE2iXOInwFEqfHq54n0ArUja3hXmq2q7GbCeOE84b8UQsWZS3gfbzeJGpRsniyHS8JxOqlOns2k9ky4PqgOGY8atEzCGGebDQwbL1W+qZIJTM1UVdO7Xsb8nURQ/NO2meWLfdnLphoBm9GoGVbwdZ2jVtRNMkIDQGtfrddwra6XXaoBlDmzbIvY/+yZzaAhUd3974+31hevrC58/Zu7XnVQL59Os71/GVWopQt+mEZyjekf2TmbEkKryoTiSZGnfZVYxC9EqxEAk6EzSMajcD93WKx77pUnloJ+3/j9Hnyc4B7pH2+hRcTS3frkHNb6+pO/3iksA1TaSzk46STraMhIZcySlj2K6xx4xI1nBmCNwPVRsPXCVTmABYWh3hmLrgdXQsNRmyUXu69bHPcrhuNxaExh/Uxf3+kuL9Fd4/KgD1+Shpjufvr+PrNyHiJ8CtllSdexb4/vv1kFNPp0vLMvCeQkEF/DOEYInxIlWKrM33D69YegN4SDGfzRaTVQyJjT8+zPTLIK+3j8udl3YyO18nBeprVBSomTIpmBNxtUKOVP27vWjmm0INPHNu2fqdsN7x7vLmfM801pl3zKmyUC1c55cBDoopfHdd9/hnGgPhhA4nU46PxZozYyFKXBZhxeOLBvQxSbJlPN+qHJ36jh0QgMY2yWkZM/lUnh9fYUKwQq54jTPhOCgiiaeMaLyIRmZJc4LcZrwMWKVglsVmKlAtV+a4R1TS9ID6uojjzMkxh7CplapyjpaRjNCUvbeyTO0hiGzLGe5ThgwAe1GU2mkUql7xhY5eaoeVK0JZJRLkr6lNUQf8EHhQ2OY54lSG6WIZX2MkqVaMxF9lATEifJL77Tf71eZnVFItGlAKkUGfnvS0A8iYw21HFbsHR6VQwM9KPQAbr0efmie9+SrExPGIdzXpaHVIOiA6xWFGdwGDArbZYXUd4UqNVi5g/ItgStJ8lEbp2XBLDPGFCgi67VvK9v9jUYl10xphbgEvJs5Xc4sKo4thByrFkVWJJaK6AM2dPzBK4Ejij4opUgAsAVjZCwFA6kWQhPPNAXypILWr+6W7lHxvv4w5oD1LAdBQdGfpmiQRfbVoMdb0/kq+me914YRoESFRoFog0D0jaEQU2nc1lWvq7AsXfAYtUqyrdIUtiuAN31ESG+aHDzyPWtoThErA9Ua7vvG5BrBBaLxWB9kzzVRBslZINk9NbCigdnlnXL5Mhh2g1pgmLb+Oo8fdeA6LTMxOFLR4U/vhAQQhcFWK+w1SXvdALVQ007xDhe9/J1G6ZPyVSwKpvDlsCtJKJxZbUtoFe9g8hbrgJpUfUEwdKeOrbRGpau/N2FgBUs1Yj9uO4hdlVlopDfikOrRWNTmQQJs1OAj3j8iblubxTTBoY3wc0l7orqHrEjholqEYJFTIScp2dHDx6tETlcHqMOv56iunHe46mgKc4w+s0HYeoq9A2PQ2VnpOXrtdeS9Du+irjDgvMdFkZESg5deMUhWaJ1YxBtlJsoLaMaPfktfvwcuH4IcXEYZX9aMpkHjUV7Hjoy5WY65HI6stFOYQQ7/xqEUb9oDzXffSCVLxefjwTpT9lfNWQZAafqerFKqFR6qhdadsxGNTaGKPaqSC4uv31P0nlntbUnvowca7ekhjXYtIPTgdHqg1NGfMfTDRJliqvqArgmDQKs4o6MOD1WHflnnoBpKNkDu24DWIAYhuui7GK9dm+xfZ6VXSi3k3UKT5CpojzPOE8s8Mc+R8+nMaZoxBvY9gUnCgA1e7rsVunxqBVcKvhaxPsHLqIlzUlkbPaRbUy1LdFTCHQrvpmGqwdauiqMZHQe5oJkDujMqFiCQo9ULrn+29ovvm97/wulSM5hqRF+wkya0x4hCuz1564ICGEPtQsB9zeqIh7EG0zrLUjZz04F1kTvo6xxs8DiazpRavIFi4F7rgNN5gEGlAhTGLqYOT7O+JjucLVX8gRQ0Hb15GAL4lR8/6sB1OS1MMZBLVTgoMJ9OwrarIgZqtoqdZ2IIpH2XG5gz1EoqUq46Z3HGDfx7mbw0cY2llZ29CoSxl6wHiyxu0wrkwrYnqSacwwYPzek0vE6mt15MNxkmDMK8MQ/QT6tZm+Myw1X1RLZGIL6+eb2PZDKYnar+Yw1IuWKDMKVqaQIoNIHTalEOmwartCfSnrldb3IwKHOvz0aVkoYlfKttzLA5bzFVh3U1S+ySOL2KErW2JqrSTfonYYo4TQZKbaPh37P1YB3BGDri3WdpnMrHeIXKrOtK3PI4qLpqu2DsoPB67zFBEoBURb6pe2/VmnudhhwZdmx0iTGivdKDgbyOG5+7Fk04pOE07mFaV/YiLsqSeWtPqjV2/ZlSpDfZjNDZrQdUVq6gszlNruK8TNJnrD3Y6+dGqutmYMiFtZ7JN+07gu/4U2viYturCGeUlSh9vaKDzsZ0eS2gVfUse1CX0Ey506Odig43hYvk+2IDUoyYSeZyVG0x9GpdOBDGJnq5IWLSMktm8TiFpOZ5Jp0Wocq3zNdffxhzbs5qwrauEkyt2Bo1a6nOUAzsJcs4SXZMOWGCEoWsw8SIq+IAYdHAZcApKWj0g4rF9Eq0V0sPVHi5KHVUv49QorGa21mDcZ5DLNccB3fTe6KvQ61ihdLXuiYPNKHa06+iOSjtzjqpGnVZNmcHlGtNg2JFFV4rPFlhPWjpGI414C2maOvCidj3+voqe0PfygiI/ayqDVesEE/kjT3A2irWnJOKeCcdY+iJ2K/3+FEHrtO8sMyieOGCsgiN1ZJc4JoQxVI9p8w+J1W+lsPx9iZOvME7nJG5heA9z199IHoRxbzdK7UkSt6IQQRvrSpI19IP94xhkoVYRAm55Ky+NGgQlCzo9fNHailYI9PpWZXU930X65UpUq0fz2GMwp9xwrhIruJUmyvqQ9aATCkNFxuz93zz9U9oVLZt5YcffmDbNqH8l2OA+JGK2iHK/j1JDA8BTWst8+nEdDnRkj/O7AopF4UoPA1DtRbfKk8qaGaMIU5CeDCAC1FhPMMUoihYBI/Xn+kHhtf/jveq1dmWEnOIku130sKovo7AU4qYRBpr8SGKR5qRzV9KwhqEsBLj6BMaYweDtBd8ToOWtY6KlcCrAqrWwBy9sNdoZCs+bdaJSgTOytrLBSii9+jdcahhMKbhKPS6JTgYqX9NmgAVoYCjhAEnxqRoxdfU5sXgRQnCtOGiLQiWCKeaLt2DVWYdWvXmESxblcy9tSa6lzmLOHKIDCKONUIc0c9QitqzNAOtYKwTyI+iSYJ8NjkqJTrUlsl5JZeMxZHLruMGlil4nLdcLiei/5bnpyfu9yuvby+cn86EGLTXViAbXA149F55qWpcDYRlJlxkDIXgSa1icsK3hrd69Gni1Wj4EAiTeFv1AAuIRUi3sedAFmSOE3rw7dRy4/p6Qu9TUxhOKpg6tBDRV9Ya3qK2QJZqFTJUHLbra5oO6yFJbbUyszefz2ogKkEi14cZKQMmWEUCHFmTUoDW95n3eDP1D4RzXpm54E8nlYlqGFTDsB6MRFGg8YRqqNVCk8RUzqqihDgZrZi7tUmVKuzXffyoAxdV549KpaVdICtkPkEUvz0+OrZ9535fCTEIlbRBWjdub1dSSpxPCzao/1KpXK9Xkvd4Z7nf71yvV263Kz4GlmUevYuU0zgknTfQPM0U7ve76tCVYVDZmU732w1qVc8iO+ihKSUlioj/VKmFpIKtpTZsrWx7wlzvpFy4r7v0qwCQA9P7lVphCsLy2jZxO4aj8b6qu2m3OOmU6c7yEejnMMgb/j/OUDrhWxl+DQR2aFIhNuS/VXH4WoWxtxcx4LQ66Iti6OLVJclXzoVmrKiBmPpgUaK/p1l/Sol7l9pRJQxN8qSBrSeCc1aIHNaIaobOQXUGmtgjiVq9U5txa6VvpTWAkisavhpShtqMbkboCfqKMK5KKdzWu8w8OUfNAv2KfYMkGJ1dNiAlkKy5f9eYw3LCQDVZKq52iLbKr+j1bx1uFT8u7x05H55kWaE0mccR2E76wI5ts5QmQ6B5T6rL+CjOKixZcQuXqlgCD1rRdki1Ka1ds3tVfckqRpxzHYl1qYd4dCqZ2+1OTlkFzjTJMxq4nBB5TGvKQhM1lc+vL1TEybtq/7hmGVGxRhIe54IOdO/4KMSZQuOuqInQyCVJG/B4a7jN46NXCPzL4AJSaXWY+Yt/Uvih9/zsF8lUk35Z02pEn7QHv66G0V+zIxheg2elSZ/84T10ONAZeQ7nA8u2ydziL9mFfEEg0eS0i0IDXySHIwk0QlhzOvIgjNlMqYmS79Qqa8I7mY2rDU3Qqij854Mo0s+dzjjt50qjjb366zx+1IGrFlFGX/ed0qQvU5rqgzmLC5GpTdzvK6/XNz589V4PD1jXjevblX1PTD4QXBSyQa28vb0xBdFu27aN2+3G29sbLohkTawyN7anfQhHxuxptlEwXG9XYWDlLCoWKrJrgPvtJrBaEy+h/vwpidZaiJHamlqrJ/ZNdPBKg+v1xrYlUq6s+66K09KdmGOk1ca27kTvZfh4T9xu9xGQ9n0TOnETuC7GOKiv67o/LG4zhku78kUqYq8hElGCqxetuKoGm2oMKcv7NfWBodYaWenoNWcJOFRaQnFzg7EOG9LYaH3IVKoeM2i6wkQzA5p0v4STd7KBtRbjO5bf8LNIQAXvMLap35GMMnRdO9nEYjWTW8O5hvMVX8C4QmlS7abC6E2QNqSlWVn3bQSutG8yAKqD3VL5HNCP1f/CoahgrYg0Sz8DpI4bPzauDT248HDo6sGTk1pgODckulpt0gcCCXDRk00T76SmczsKCw8lcYVAa9E5rtaOwKXXrr92zkmhLPkM4tyduN/vDwxHQ851QE65FO73lZw6g1er2CZK+MHJvQrOS6O1VUrLvG1X7vvKbb3SmiYBTexLDOKS7VyQhC9XSaiqVn55VxKOJHrjHGnyuXtvK5VDAV4LnEG8GvWZXnPp//XAJRCgG/tG1kmpvZdYJKlDAlbtgQvtkY3qT2ByEEiPUvvEBN4csLbrlZ/zLKeznBMPcPQIEhowvlS04ItAMuB1hTKnGI/g5QJb2shpY9veKDWJcLQPusbUnzBXcq3sD/N+rR1rtAdOERyXCvnXffyoA1ez4ti57btkLALXUhrkVKjpxnW9S4ZhDKcnUdrYto2PL6/8/h/8Afu2y+Hl1dakiThqOc246GmusdXEy/3K/nnnllaW08xyOo3eQ8pJ+jg6bPjy9sa6yhzWsiykUuRmtcbL58/QKud5oVZRYX95eSGljffv38viq43b7cb1euX3f+/n5FpxPnA5f4cMk4pNdofFWmu8e3qmZhnCvF1v7PuOc5bz+czz8xPAoKlaa9Tyo6lvV2ZPq2wGa4nR44OyBGtjb0UHui3pYX6sYdg1k3fOUxqkJOKnS5wGpi0QbKBrlpWSdWC0jMFjG7xYkAO0Ju7AetRPIQrRQA+DWspDhXJAFt4dxnshBFxwYBqpVpbzSWxvpokY+wyQZZrjGEQX2xcJXKU2rJ9xIRLiHednWVe1kYtAfNTKfn0lKMU+lazjGEJS2Ese18B6J0PGrQ5as0HvXznUyfvcTjMoQaf3Hw7Wplw/zfyNVJ3ee4Iqh/RA4XXMIpfCtq7K7LP4GEljUEgSk6ZQbFEn6aYsNosmiHkf8JJUXYykJ+d9VJDC8tuHNYa8hIVm2JPw5JpCYPuW2HcJcDKPpXOCGqiolTkEpijOBPMy8Xs//098fPnE9XYbh65zThQ+SpVREIWlZT8b8i793X0XFqO8/8fETPt0Wunu+csZJHFxPkYSekX6+PcOi1tjVCbtOLSLkpEk4B29ymMGr98K8/Bn+8Wh3x+P/bMRhIyQKfr7dc4NQeajb11G9R5CwJjDqbg/b3++Ppsaw0SIkcvzEznv0qfa7zgrtjjn08LlcsEaR2uWNRVSMdzXxF4ELehkLVHd8CxxwloUiUj/xfP9v/T4UQeuRKEaQzhNZL0xKPZcpYtOnCdKH6Y0jfm8cLqcuO+rOPGWxM+//znzMjGdJp7ePQt8ZeGWd6bzma+//ZblcuHjp0/44AhTZD5fMAj8kfaduJyGnMx0Xtm0d9X2Hat9neA98XwW40oMYZrxpWLjCq2A9zRr2dLGbb3zenvj0+snnYVwAjMaw74LvLhveQSbH8IkMGDKg5Lvveft7ZWX109jU6Qsc1mtieHdvm108dXcdPAw52EjYo3BRceulVTXhLOaNOTcpYPc2GyltgfDPTlIRElbho37wTtUu5uYA/bDoCvK55TVzwpiDIN40TXjjDEyI6bsNsuRPYrKuzS4cyn48IL3TsV3ex9HyPbTPDHNE09Pz8JGNJZcG5fLV8R5IUw7Hz//HuiQ974XrLNCDKsCY2FgOZ/wQeaWcto0CZHrs/ggdVWB69uVeZoITgLmfd9Gw1rgTqMUarletsJ0luvemiQ1ckDZcQiNiiurxJm1PD8/891333G7Xtn3XaFhWQfRhlGxhaBJBY377U5WqCcEyY5ba0rWOcgaT0+X4YWW9jBecwpeh+cTm9mZ5lmgylyYFpEFq7VxOp1Jex4V6fV6xbTKHCMxeLb7jdfPn3n5/IKzd6X1I/Jut5XXtzdinIgxEJYoyg5JetnVH8oOIUzDRXmZF0oqStUvqmTddOZO4E+p1MXBubUjUNMYQtSD3q3fl5hnh/BBw1KyWN2IOn8RCNUZ7escc3ZNe2T9+6P/adwXielY4/aAw4WLITNx0xRF/d4grhImkY0EzG3fx1503lOSBM+c8zEeQFF3CumjXu93gpc19/3Hj0wqjH1aoviuWVEZ2W53nA94PzHPC3XL1LZyvd/ZciFXIcis6zZc1VsuMmj+m0rOWNOG9w7vvDCkVL7HOKfIhcHFIHMXgmfho7DzLk8XTpczt/XOlpJ44MTA6XJhz7JJMY24LNgYCfPCpg1/6xwhTuJb1JDDTTe/MTCdTvhtw+yJooSF5jwuTEynMzUlWi6EeSa2xrRtVBrWe6o1bDmRih56Vvp4fcO11ti2ndvtyraqnJL3JLdyv4kI6jSJZJIxsO8rpeVxoFcNHCLeurNqJn65XEhaIay3u8zCaOCaTtNQbV9Oi2S0titFFIVK7KhWDIa1K7VbS3Dd2M9ohl7GIQhoPy9TShq6gzFGGRBNWXH7aVRUNR/stqD+X50o0F8zpTwO9VQERrLOCvzkLbVqfyfvzMvEfJrZ14QPUT9bo1XPlApxL/zB7/0BWEcIkX0v+OAlifFwu7/J7E5wTE7w+1VZVFUz+Ukhombk/oYpDhXyopT6rpjgbFfJMHowGqz1AoE1udbGNJ2fCyPQdY1HY8B5GRpuCJRX65cqBc5Y1Y2tOCP2GRjDbhNFp+eskRlBbWbKHGLOFArTdCLnhjUZa49EwrqAc41WDc42YliEWdaSyGblQqmNeXnGe23Qt0apkpBcTuILdnWR9brxefuobMaqQr87255J94w3EZzFNY9rXqvZIqMGHWbGkHVdzNNENtIPy2lVMk+TkQ/brTgcvhqqGiAOOLZfuKZ0itZEAu0BBhtK6FaYp9KDPPrBHXZvI9j1wNlGgDqgO305hWCPn2f8fp/rE+jRHH5cIP1/JHhu69afAGMshTKSEes8xtbBMemvcb/f8T5JBZ0bT5cz5rRgTzPRBx3JgJqrsBZ1zstaCehbTuRaKU3IcuVhv0tEFsTi1338qAPX7/38FyyzKC3sylSprRHnaWgVVgzL6cSyLAA0zabn84UPP/kpfprZ9513X3/D5Z34KcXTNBZqrZXr2xtrLjTntRx35CYCr8uy8PT0pBCNLMCnamku4qYT27bhpgkTIvjI01ezMORSZpkC83YmzDOvry9YZ0hK47ch8O6r95wuZ14+f+Z+W7nd7mz3VTM4y/myKLNSvKpqaVqdxHFow2OPxI5srdbKy8sLqyqSL5ez9sV2YWdywBylVkKIxDgRpp6dS7nvrR3QlDWe3n2u2Y9N2Cs0vQHK7TCodd14P4/QhXMOGyNV5YPmaRrN4+vrG1194Qt9xYeKq8//yLR+kqZ6rbJf9LOJFYUqs993Xv0rrSrhxTmMjUzrjg93fv77v08zjjBNGBs4nU8sqDWJ82ChYVn3XXD+lMl0eAbctiG9gCYQd4U9KzSXhemnia/0+3wUMNHJYHJplpo04CNVrWTYEqCpktk3a1Sqq3Lfdpqx2BDxzpOqiB+blIlR+hKlVNJeB6S0rit72pTw8SDjU4QV2dfIngRy37aN1oqu/0oMnuicEGm2ndZWSm1sWSrbVNTt920jaVUCUPGSVEzCGpxiYZ4vWB/Z7jfStolqvFZ+wU4s4cQcZiY/YWdLiTO1Zq2q/ZCpksH8In0b1/C+z5ep4gfd9DUwBZE760oZADzMTg3JCyN94MFgbdAH5WTUw+NKxbuKiBRKj6tf5z4LCTx8T/eRdWP/jvfQDmhRApzOXTkn5qAIScPo+wohkGuBlkVWTZnCU4xyvfWe9gqvV2RH31J7j9UQQsSqg3sr4oAcfBDSmZN5N5yIPneYvGkfHCOu79M8MS8i2F32nVISZf8NhQr/3//237MsomD+dpO+zp4zy3lRgV3LaVm4qBXG7XYbWLW1lrfXV7ZtUyjB8PHjZymLpygq1s5yu995eXnh9eWFj58+DZmaaZpYTidRp54m3q7XUREdDsJ37usqPRTvmXzgYGVXlhipTRQGbm+vlJqpVbLaD+/e8fx04Sc//RnLctJDYpegVyqlNiaVR5qUom+awWAHxVv6IQfL6LEBW1vjP/3efxoV19Pz89iE2yY+OVVZfNYfAcH6Y3OODavPbfBj8X/69PIQuLQq0CZuD1DSwBUSyn27U0piipF5mrmczyPwDvX3friqwr33nln9gvo97ezA3rcCCbANGT/w3jPNXkUPxBbFah9pXiamacFaRwbm5ULOlZe3O9d//f/k9e3Gtif2VJlPC9M84YOjFCGVLKcze01aiTZMMOQqDet5jpQia8MZCDZAbWzrjZOfBUZ2ju224YOICV+3bcwnmmZpRijXIQTN+oHWmJdZRz4S0zyJrFNrzPPEut6ptTLFifuqZAksMQqEN6j9D0Hqob7AIAzBdV25XC7kLH+O3/1At7z3zvH6+sq+70QvQ9WtFPY9YX2QEYLamOYzWQ0HnQ2klAclWpie6hRgKmlbWa+vvL18hpKhidDz+XxiWWYul4sqwggDUQSARVfTezfk1MQh+0bOmfP5IushV+43kSTr4wrTFFmWiWmOvT7S/zcPEJoBbKeDsu9C7ZbKvYyr1qq0EPrQrpJbRYM0b3RtxEdFE9mj8rpd3b0PwPd50NIZqkgS2hPU4L1qT2o/VKXfpHedBFq2Buc8p7OcWdJy2InLfCQnYw6scbvecN6pU8SJEBzRO05T4DSFB+SiSsugVjaR0RGhAHrCLNevz6H2tZtzYf1NNZL8T7//B2JGuCxcbze2tFNa5WkTh9xqIIbI/PmVZZl5e7uOwzROkbztowm77ZnT8sIPnz4zL9LAD8FzvV55eX3h7e1tbIBa61BUl8xOeklde8taw7btqoC8Dekdbz3UOjx2xHFWei3b/TYCVytC6jg1MM7JDJcVN2Pv/CBTz/NMDFFs5msVnx0jh3aX2hGFdiUMPJAkaqt8evmMU5LG5XKRgdmqVHRrhHiSMsb15q0ZMjdHtnoENfAPm+yonEbgMoZWj9/vUlNb2gh3UWuPIbBMM09PT19UT1Gh2FIK6ySbLYTAaZq/CFw9eI1mOm3YivQ5vXkJdE+hXESWyDpLnIL2uSKpNlyYuN031lRJaZd+4duV621jmmfCJAdAUymgOM3c8zbgQT9HmWPJCeek71FrY5kithpaEVmnr5/eM08TUwhcP4tdSJwjL/cb0zIpbJo1SFienp+1uS73Z1kWih5ST09PCgVnnCYZ3nkuT/Dy8ibXwjgMV+3BCKFkwLp66Bl7KGjkLOzUPrawrnc6/dsYyzxNfH59Y73f8d4SrfTm9n2nNMRvrFbm0zaCWOuMVIUKZWypqRKJGLm2vEPNom/ppFp4en7i6enCh68+ME2SsNWax1hA0UH+eY7DvbezUUW42VByxVk35p5KkcRiOYk9isSLI1hZbSyJwroqXgC3+6oq6HmMmAjkZo5ZQBhCwBK4dlkfo3piJBD9ezKD50bgkn0o9jhpP5LQbusSQ+A0TwetPUhy2qvjDu075zidTmodJIFrWhbZ90rc6FXdrPsqhMDl8qxjDobJW2Zvcc5gjSav2kOUfjfQIdj2iPbImWVGIK4jCP86jx914Pr//Lt/L4aEp5NSkSthmjE+4rVUrvU6mF29kjBGBk+HuCUCRfWswHo0A5u53VZutyvrutLN+ErJ7HtmmgId/tn3FZCsxlrZlDnJYKc43Uo/LO07pjUZerYyrS4qARnnRI2AVvk6V3KDl+tNB5Yt82nitCxiXmg9s1K5rc5htaqMNSsDrK1WMJIRGysCs95FjIVaCzEGqkoMTZNUD0I4kca8ZIJl8HeNQnw9QwOhV/fA0arMbqWUeHu76vVwCjV0BtdDNgk0Cuu24oL/zwJXh3v65gQ1mNTqbZomTvMsgUphxBHAlKVTdKzAWp0x8qJ+Ly2dJlYlmqn6EHh6fse0LMLaNJ7GFe9f2NPO6/WV73/4yA+fXohxwvlAygfcYpznvouKQ5xnTk8X9rRzu9/H4QbwfHkSgk7KbPc7+Y8ULuczyzTz/R/8YojavmxXFs2QX19fyVlgwT/yW6I6knPmdrsJ/KKVdSqNPYkrdClFdCJPJ+bzE6+3lX1PGAzX66bMLnmOXgE8PT0py9YNrnbOmfv9jnGi+r+ud7ZtG5BUxfD59U1GRpzjaZkxiBTT9XaXw71UljXJzE9t7KkM2wtaxQGlJLb1TlpvBGc4xcBX759YponzsvDh3TPffP0179+946c/+UYTmcztfn2ANOUadwfs2+3+ACdbhXbFDFXWiwSuZZnHVyeayAyTTt0p7GWNoztmG+fHfc1qE4Ku8S/ZerLWTKuUmrQ3JYePECj/88C1TIsSPRpp29n2nW3f2FcxPpWfmQkxErxjmacRZB9dsjulve+NaZqI06QVmLiLG3u8395L6Hs6xsiHD98AmnC3glMZu1blcydlbN7XRHGB3pTr1XtrUmV3RGeQ5X5T1eE/v4ifVFyzDgF73k0B42eadWz7nZeXN4HZUmKZZ1V8blw/35Sx1lQz7obIBoENAhstp4VtTez7Si6JeTrRlIV0vyfeNulrlVyJk+DqGM91vbGuIq0UoiM0izXaDNXmO81zu2/KXGpQE0+XE+fzItKxNlCw7Fl6M85Kb27dEoYEtbHPszi+hkinU0MDzexrq6rsLjh4M5DqTs1iO2CdUVozQB1VksA3dcCBxh0jsz3g9EDk3KF2kTulWiHExwPg8fFI6RXJLafKHlIddMy/03s75i7ElG1UhK449pwxpmDykR136a4xSFsSWGH7YZoMUzbVK2gV5x3eeLyFP/jF7yOCWRCmhfuaeLu/qdeXkB5ExqfboVgwXlWzoTZH8BNPz1/x/sMHbrcbtM+83a4S7JzjdHonOL/PeDfzzU9+i3dPTyzTzL4JIy7OEz/96neYlhms4T/+H/+Rzy+fqdLcwHoP7BQ2qvHgZfB2vjwTtVK+r3cuz+94en7iw09+xqfXO4UbtMYf+e2fAZBS4Re/+IUMzeeEDRMuzjjvFeZyNLNR7jvNBowN+Mmx7o1qLNV6XFxoNlKNx2KZz8/C4Nx3bnuhVSMDzkZ80owxJDYRGm6NnDZxU2hRpKiWyBw9T6eZb756ZplnlnniPM/EeR6KDlvaSWkXOD6oTYt3glqYqkEy62tL/6WigrkUmml0vyzxmpJgYtworCS4cFRHjSJagkZHIlSyUGbDVDkDqxXXQVpxzuJ8wBYZi6A2mjUyu1UbpmRs6wHRcjpdEHZroTXpfZOLaD57TRa99Kt6wGwcEKV5/LPu2VLr8IYz1sioSg5f7k8jPP5HH7bb7aaahg1vKqZmTFNmsv6cUPADWwNjsqrgdHJRG3Y6+76ropAZvfRf5/GjDly5KiNrE/aWw5BbY88VUxu3+8bL65Utib1GmGaRxWyw7mlQraU079CHUIVtbthU2UtlF8FqTK4KTRhR6FDxyH0TyrszjmY9qcCWCtueaWobITNnyhTDUnDsVWACWiGnnem0cFZ8uCAzQ6lWvLLGnBMBUWrX3Ts2hjDL5MNVrbSoomfXs6ehpK0/023grRW7+NHjaAJ3CqJhGSrO+j4eA08PWgdjSr5iDFhVjff+cC42fDmhj6m4qnNXzhCUJfn4GnrLRjBzunG9aso9VoD9fQrw1JSM0XCmDcPAVBLoASa0ANEytEVIExL0oRl/6Co6ORSdFwWOPhBqrDanEfgVIwFkmk/M84lcKt7fsXbTfp+ToFCaMMBUGT9MMz5ErPNyEFnPVx++JswzlUr4xffw+kYuhTUlIoZcoRpDNQZRUWmieu8d3np8rfhpIkwL03xS4V/ZK/P5gjXilv3p5ZXbtpPLzp4LJheKBn7vDQWLCxOmix27gN9kzq5hkdPUgfXgLGE+iYGkT9jwCkV9rJzDKWtzz00TPcA0RRoczhtMFZLEtETiMjOpG7ePQTQvnVPJoGPeSta86E4a02HsJszP6HHVqoP2kXj5Ib/V1UaMVjMCufcDveeDfQ3LGkNUWeqRMHVobyi8N6BVFbryo/IZKhJWAndTwo7pe9laYfsZVVWx3dNLX1Op9xgVtTYyO3bAjw8sT2s1QDy871+CQh/nxx73muy3pqokktQbW7FqcyJJtyjbeGuZQ6DmgnO7ni22O+Mcmpv1UOzojhK/zuNHHbiadTp3JJmFtyLquSYZfnu93vn0epXZJeDyjDCEKqy79KoMEIzYWhsjPaXJRbCRipOMzFZqkYDo9JDCB2qCVAr3PbM0RzMe4wK5ysbcUsEFCLq5m/VUNV8sWPaqrKEGty1xKY1mZfaoYNhLJZaK9R7jPD5GgrMqmvulXIss0mOotRNFaq0jEDwOI8qcjqcUrweUfwhcbQxX9gXWG832i0DV1cTNf3Zv5nkZlZTt90miwXi/AA2BUmcDtWaRkdEqruPi6P8qF4F5ng/avA/jc/ZgPN5fPYRBFbQQam4ph5qCKkhUqmjSWVG/z7XhHjJWF0QOyEcx/8SIKocz4orcmgwGG+fwITItJ6ZlYUsJp6r+fZbPOo/zIgHlfRsBqxpxK64I+/XdV18T5olUMnE50axjT5nrfZMkqDWqcTTjlL1YyFVkw7w3+FJxYcbHiTAv2BAxTgg+03LCu0gpFRcWantjSxW2RDUOl6smIJLExHnB+jjGPtY9kdKuti0StIwLGO+ZlgvLPONjwsaP2ALWFowLuDAJeSBXpnkWNYpWJXgYcDYSDARniF6GpcMUiVOUJCiKjuGAm5TmX1sRAovyumXcQiB/EVYWskopXcEhayJX5Ro4qQCc6wPffcheSIENIdb070nSYjGuYZpVT9MRFQZJiSaSTw4Z0h+BC8ZAfWsNU+QoFpTCDeuSLrn0+Nydut/Zjs1INdedCLoSSH/44B8Sux5k7SCB9AA9qPcjSsvn2PekwsRgXUOE9R6hUGEVBjdT9kRYN7VREjUI2wO0BsI+OhB+UwOXsRPGQZwiWIuPnrCc8dMJjOGMw4aZ2/3Obb3hoqhVyHxUwAfpM3kvavDee6ZlkQPNOZqNTKcz2JXCytvbK87JMLDQiwuleaxfqCZQCVQTcPGEixVbDM1EjJ/FIHG2bLv0onYaxInoFmL0bHvGxQU3nQkeXJiozfDz73/g+bRQTifmSTyturaeixHjnFiz5Ix7sJmo3ZK+VWpOSoSSod6cpdG77zvdf+ugxcqC7EHd6ubpHkuPE/ryc0d2V0obGdUxj3JM7/eK7PHR1AohWKHQ9soQrD63QJh90dcGOSkESqHkrj6dR5AepopNvL8kS7cDTgE0c3VaLIhbslRXImGVSqVZR8qFPe80a/AhMC8nLu+esTbiXMSFM8YFaoN139nTzuly5vn5HdNyJu6ZEK+cn+yQu5lipEVVyWiA89qb2thrVXqxiD0vlxMNeLuvNGN5e30jhMg8i+vyGTidTnI/muXp3btjFMK+YP1EI2LcwrQ8U5ocnr/9x//vLMsJ4StHlssTP3z8QfqgStCorckYSWts24oJM2GemZeFrTQdp7iz5UZqgiJ443n+6muen58opfLD6414u7GnRIiTCi47ttpYTiesNexlh1oIwfJ0npmDo+WdklaabfjJs1wWTjFyXs7MSv8PkxiETstMSjtwuEUPB2dELaRXzCkn6e3VMogoWJWU0jEGZ9yoiAb8Vr9c28ZZgo/DIqTlMqrw1gwWYTU3HW42TnpOPWkEHgLGKJbooHxtKs/lA1NrQnJpwH0XGM57MTU1fbC5jIBkDIME0+1ERmVl4e12pxaxajqNZBx6VdYaXN9uA9W4PAmprIqkpLBbaRjTrY/EQDcbwAhU7lwQxfrazVMc3fT0aB/8hko+LZcnyQanSdSvnaXiSKqJVmrD+MC0GGyIhDiT9l2ya+tGY14ybLm81onVuxVjHublhLEiiPv2dhsVk/UBcsF4GYJFf6ZhJfO0HoxjL5WUK85LhWOsqHGXmjFqwzAtE1hPaYascxKpVHJVOMGIIV5tKrgLR+X/UO53bHsMpD70iCQRVQz/oVIbsjZKfnikz/e+2Rcb1nypd9b7XkJPN4Oscb+vA355nFNp8EXFVavQn7vn1KPYZ6fNPzIGi8o9efdgXtnaF9ehM6hM65UWB5OrVW2WW7FNcVpp6+sZZW0KRNNhG4GVwhSZS+WSn6Ry8BP+IXCFdWXdZUh7WmZC9PI1BemjBX+oiPQjqgqchRFlBuMsLjjiHHl6/57L8zNOPedqg0+fP1NLU4UPOSmXReb4jsFzqcpv60ZtVt0EGhiPdRHnHafzE6fzGWMcl8sz8+mFcLtJYm+tiCUXSRSscwI1Bqn653khzgvudqMhdjTS67M05wSaXM7UKmQpr9CjcaIMUxHWXa8JUpGDMFqrJq8Tabtxf90lyGigyUVmNXO1lJSJ6ghhnT2sWSx47warz5aiLDuhj+dcsUXWTlSdPSFHpAFFChRth3WMMRK4SlVFDl1jDwjiQ2Vvxr+LjchBDBkwsJQ1IsariEJpbXhjGWcfCBxGzGpDlh6ZU9UWXf/dXqZxwPi2nwUyqCfVoZRyGqTEacAp0vIFdK/7SQg6fgjtio6mBElnLM40+uC5GL7KVw9OBsZ+18NjELuEdch/lsT+Ko8fdeA6Xy5YJzTxVJJWGIaksyE5S4AKkwYva0m5UkkYo8aE1qk7sWQ06gk7sPsQZyoCu2Dd+DdrPcYKo88bi3ESqFozItVjpGpIRWZ6Sm0EY7Xr66itiBmfj4L7q8pyygWDFVZiEdquGChapRbLhhTC17EYHocVHxfho2V3/7dBm/0lOPCLTLCzgkb/4EtSxYGLP9CGVabmsdJ6hCglgD5mXBK45MCR1z4qLr4IXI/W9aaJdM0jRj6wc+ckSDgvQ7tKUGndGqKJfpoEVDMo4x1iMdpDsHoQGIdAR170G/0UWQq4OOHDhPcncHLvjAPjYZonwuS1IS8eUyYaZbpJwAl6aLUigtAA1VRscLggQW5aFs7PTyKb1AxbykzLidt1PZLV2ojzwtPlwvPzs3yUKpqR1n+i5KKUfFHfN04cbF2Q92+dI04LPkZZw7oXWhPSTiqVYB0xRPXxCmoMOmGspzUjlYA5WA39+W0TGNT5HVuauu7KASezPwXbZNbNGUk24zQxnxYslf32JhYdKcuXFbKCU3v4oD0qIQKIEoixMt/XTWJNtuobpj1RL67jPhfCFLHKALTZav/S6doSKxuxL5E9YNVV1aDizUVGUEDFcLvOvwYuCefHfrPeDzFdA2Jxg9X5y6qBC7CWvOtcmLX6+bwELrsPlZTHJA9V9BGmsiU9Vlmy8b9IOvv3HxGKx1m+0QPX4OW0x+UchM7Q7YGrGXKD0qyoliizpZ8fo+f28Lr9fPl1Hz/qwDWfziynkxxuOqC35x3vRfU8lZV5mh8OyYp1Hh8m0l5IpWFrIeoQnzGGt+tKiBHjIsY4Xt6uAjXebpq1CjPpvieMk6HRKUahmCJZxLolmVExlhAkMFkfcT6y76JCfV7OlLqRcuL7H+6cL880A6+3Gx+eL0LMyJVKlSl0taHPpQhebiy1CKMxd0sIrwsweHhwHOUhWFX1x+kwSohRxHNVELXVitPqDtDsT/ps3h8uyf3xuNBzLmOO65E0MWCbKilYt3AZlZs5GuYS8I65rMe+G0AIwqTy3st9MgaT1D06i+KI0UOiU3hbs3iP6gtaaCohpHNQ4lot/ZRatSqMQYSPmvRSc22s+871duW+Zup9pRqLdZOQI3R9VSQA3W4zKW3c71e2JJTshjgcx6ieZAh1/b43YdV5h49iIfH57YV/++/+HT/bdt5/9ZVk/A1Sbdzud9aknm+5YEPgcrrw7vVKnGe8k3m6l7eb9tQqn17eKE2y4/uW+b3f/znTPGGs5buPn2Sdrxv7uhHnKCQSHNfbinM78zTjo/Tv5iKQ2p4Le5HPXJDDqyoF3ivTVW65VFlpzxinChlBXBuK+oxhDKVV1nUVj7MmZorbbWVLG3v2/OTr95LUWMvpcsa7DotVUTQR3hPdIkVcy9ZxAGMM0zJjnCPnwrbvOOtFky8Ecs2kbeUcn/BxHoO6TaHq0h5koBB1jJQS+y7iAN2cVB46ZNw4iE8omUcrkv6GhcshPa2K9IHjvIzf6ezVpuSzgJE1HoJUgVS8ytlZIwG1tKrtE2kndBLLI1QZu4pGVy/psKaRGdG+R6dlkV6YAW+UDl81IRQTKUnmjaXb60j/rp8LB4kGFA59GIn5dR4/6sB1vd6Fym0lg5P+VVV5fZncN86NheZ9ACPsvNpgva/DKG+Z5iETJBpbQmeVQcVEToX0MLXeqpTxMr8E9BvRZPYpZRHyzKXh/Q4IVLCrjQOg1UADOq0cbVY3EeksIl/TGTrWiuKDHdTbI6Myqj3XNFXu16LIbgCaZo5HEPAu6GH+ZX+rZ4193sr47j5sx8Z8fF2QRe/UQgSQKmMszk7IqNTCf5bdNdUy649HKvzj33+ZONI/f0pJJL9yxnM0xTsYZa1khVQxw+uEmKZJcm1SwRo5M7RDLp+lNIGIRAdT+hf9XlsMpWVCmId2o8wTFumv2YD20NUHrJCyMBR96Wr3ovVmrcE4I2aTTa759X7jepNgVFXRJKWkFGlZN1hhhuZSeH278mQddpYseVkWnPPa83L6vh3WNt7eruxJNBdzH1/QlnutTeTDrFSp0g99YZonrJXZnn3bVPpJ9kbTatUHz/V2HfdmT2lIse37PpKvVLL0lw3sW8O7w4vs8ZDryhDOOnJORF2zgyTRoBZRszH26BHRUAh8UjJD57grTOxF5UUqIUcqDecDwUY9H9ogdXUcsBmjVkKyt2pJpJRlMDhllHbHUHbHqBalBB+LQOIyPyrQnWkCsLWOrXXo8JEIouvSKEPQ6FymsRah8nRiyQHBS4KmPeQm7Me+bx+rrr6P+uPLHpyT9bt34W5ZE+L23LS+FPq/NZZmHa2IgIH4+8nn6fOxMU4EH5XsVUfg/HUeP+rAtW2blOQDbz6G3fpktlWGYamV5dT17OTGl1JFx6419ecRPDknGfJz3tM8KpMji60f3P2wK62y1X2U6RjVo1OvLKPvI7siViu1DeafAGeSfXiVyrH6+zLU6DHTpIfA0XiVx4EVwwOeXL8MXFX/wSi7qel76wHAWFUEaIde2QMwrQed5Q/LkL4MnD2Q9s1x4OZNDxHD8e9fYuroJnsIULV3A9oX36+1jn6c0eCXuhxOlZk3lHDSqNrTc4PSbOqhzt0Plq7ybfpsjWE0yPshlfvgpMKddKyephCTp5WMSfJCsiz75xVjQHn/yoRr4t8kcKXS+7UPZgHj/KiY9ySzL6nTv3sFqkHWqj7hlhInPfQ7/NshpnFPbMPRuK8rtUGs8YCTjRpDqg2HbT0TF+WGrraw70fvaRBj9AB03rGrOapzjlyzVu9y75Lux5wLfgp6yFdxjh6s2D6Y3Ag65Cy6gA9ea0ZHAFr9IpO3/dbod1wIepm+TLp6IOusvVYOKE2CbMaYLHBjD4fGDXJXHg4HdVwHsJrzmNFTlj0pt6rRXYR7Z0shQ91y/XtNsgd5s7b/7MEm7O/ZGA2UNA3KdqwJWfjQZxIft7UEPMY66oHqER0BgQVbM0qHF+UP44QA069zT0wHqUQRl9wDoDFjJOZxzKXPvP26jx914AIz7DGOG/blDek3IqXEFGRwUyRhZkougoeXyrIsojs4z9z3e28zEpzHxt6QPDKVfuimlLher1hzmC9aDMH7QUn1KkFkEG8pa2Ug0fQi2zRmbzT7KpRU2bdEMI46lUNJuRa6sw8YclZfqr7qNbWXw0fL9FKhGYFetPrK2seQYC0qAoNtWSstS1S2tmlVcPTLfrniauNwO17zsVrqjx5I+1xHD5zHnUSzAdngQlD/clP1P2dlMRndYKUWgUb0d9X1SasIef9V/vEw7qO/D7rOL0mhTGrF0UitsKfCfdu5rzvrtouTQDOAG5m8cdILazrnF6MXp2zvhjTOeZmHy7Q3ELzOsUTPeTmNXkPK4qflvPhP+SDKC53xeDjwHte6FLHk8N5TamZd7xhjRYsuCuUewLlAV3VYt7uopphKbZlGxeiQ/L4rQ88wINtuNWPMY99U7tSeRGjXqJCrcyIYLBJmUmX4cPQuc86UlKhB+k8GgUq7K3HeEq3IkP1ymjnNIiYdXcTrV19TVQ9m6JWMjmcYI69rw3EWIJVLs9KHs9YfSRSFtGfWslM5WKpVURdrhXIu6iQqr3U6S2BofU9IdY/5cr3W3I5/a32bGglo+lZ7HtLXZg8eWIPDyZyXD9J2CF6gcLVR6tqKRZ+vVKny+kxiynVIa5nhPCCVby0N56DbqKQkdkw0CKHhgiT9fY6reUNzau5qJVA3U6nGqWGm7jdFdqyyDKMK9eb8gBykw6n5V338qAPXSVXgtz0drDEjgEelZ2fgbCD6oAtExgHPy8zT6azxTqCRfnhTD2w2PMBSvQ9mjLDaWg9WQJznoY/nvRf7h66srkSC4AWWMU3w9x5rDNoLKhmKOAS3HAYxouTjq7vlGhrVFG1065M5C01YXgJDS1CSda0BQJVlZGCVAwapwiLrQh6CXIgoLt3xV/t7jxBDr6gGa/Bhwz7CiL1R26ntj7NgcFCD+8OYQ0W+/32k0ubwn5IhUDtkax6HrYeRXU80jAYsUyUANAumKZlGFQ8UuumHYGvCTk0pS19nT+RmZBDTeU7nWQgEW+V2675RVryJqmjx7evOHncVlZUDKYYJa5ySQwSCyk206OQ9Wp6fziMA7mvBOUuMgafLQkpRILd9xzrP+bTwdHkS5l6Vg2qeZy6nC/O8MJ8WqLCnRMo71gYdwO3rUCq34LwoTbQe7Lr+o9zblBLr/U7Ou/iqZemZ5iRSaMlaaKJUf7+vXF9fRBzAy1yPQF+NnHb2TfTvKJWSMtka9s2LkHMVg02K9FyD9TIb5j105prpy9phTJMkwUqAPVRTHkkA0lMy489KxLEiDDsvIthcTVXTT4XUh4W9E0HdJIGr9EpT12Rn1I0aynQYpFd5RzVvsMd61kffj2OOCkUeHiB6lOlq5GDDiGK3JnmVI/w9PO/Yj8cMZZ/n7FXnMbKisGY7YEVBTxjC1Ed9pVBtaxQKqTVwQUxzRy2pLGKN6L3v+Ye9z1/l8aMOXAZUMkWyOrkWTmCYURzLVL5zko2iDLkwiQq5d9LEv99Wtm1l31Zy2nWwUfTF+s1ptTAM41rrjQu9URI421DbNphmewSg5CSzDtpTowScFQNFC5BFXLSVjA0Pn6FXAe0LCPwLeK0pCC7MOX0MBYiGqUYszLXiEqhQr6Auxr6JUXZXX6D9tNec4A+9C8bwcDg83h345crr/+xO/jJsYHu/wD6woXrwacoKfKDxdlHhwZDqah8K14zzxIBqNiH6i00/t9VPLH+2ztOaxVjp/xTF7veUyRUwMuIQJ6Fqp5y53e7E6CnKDHXac6mVYVNfqhh1eiv28j44nBF2am2Ft7ebrM+UeXt7A2O53W9cX175/PGT+JxpNl1yJqcdshBMphAxrtCKWsQYYYfWkrnfb9yuV7Z9E21I53C7Y/WW189vvLx85u3thfW+Dfkji6FW6a8WK5TzWgolJfayy37ZN/zqxZC0SNP+druS08b1duP19TMYS5zmgRTUWkn7hkGkzFLasS1jWyVFRzSTwJRVA1qSAGkwdEvd/lxH8GGsA/l+HfftWIcHQNdaT7hUzaZrPCkrD99p3ZqcOlkXLiecK6JLeb8PhqDs84fX0L+P1W9kvdpR8psR3x7Xqby/rhx/EJNaX8SjZXC8X/HhamN/AIOO358LK0PSXUCgD1MfwUn69tbooIZhQJOSLDStFAVVMPZhb2vRcKiKHEGtJyr92xI8xaE6/Kb2uNK+yQxHFt09yUTQNECgtVYs1num4Lltuw61WrybmCexbc858brv3N7e+OHTD8o+tLi752ZFYVwclZvI/lgrmnrK4vPWkUuikwLkJJf3kWsh7+mL+SiRR+l29GBNw7RCrQlawV0WaCec0bE9XVxOmT1CzpCKRpx4dFCyaT+uVglQrQkZggcornUJG92sWl4JLOSlCCmqktEPgsqA0J0oKY5F+9gMbg8DZj0wPvYkjDXY9oDT9+fgqM4en7dj+TLAqeKmMLDzHpwsnXnFF683xipbG4lNMxrxjcGofl3PYkGugfWOOM+kAjbLh09ZHATW+85eKq0ZJf4YIQKlxNvrjTh55mkhbYnL5cQUJpxxfPrhEylJ78YZ2Fcx/IzRs84CzaW08/OffwfGEGIgtSbafNby9vLK7X6ntcbl/ITzgVKq+LMhDfDv48RyOkslZx3TMtNSBmO53q68fHrhfl+5ryunsyiE11b59PETr6+vXO9XWtGRACvu0mGSysx3ari1ItrsxBbofr8L7KPuttbC7wdJLG63G9999wPOB07ni6hBaHX59vrKPAWcNWzrnc1CmiLRNk7e06Pz7XolGIPHcJ5PGKTieqy+rfVHT1GrraJzV3vKx+HsQNh5ChuqdBoaoPY9U7edMIuRaZcsO8Y3DNZWrDO4CtamI14hR04flEcrwqZJoPUiPWX4EpUYSEVHJRQed7b7glVKhS4VZwbJRAZ4OyrhTBv7wdA1NQ0Ug1WzV2uMsIiNKM6HELAamJ0TUeXqHHnsBTfIPcg2wZFxjkGPR69jZwz3z1QVXal0b6+uFOM5LQvQfnMln67Xt/HhnZvwVvyinBUVh6Kq4GsprLe7SPJoubzdnVhIG8O2bXz+/Jn7/c6+bWK/XpsEHNLQ2RKM2I4sZBzIQCp5pBg+hiEWW2qlpDQsJDoQvWeBRnplWOtOywnTKhONdLlQT0XgRzOQe5n1aFJp1lopZFrVzegsVQ+jHjhbz8b6qqq9vEeqw77/v8gA5ZsCM4pnlgRLqwe//o4xdJaeLFYzmrO1HnNfj4zA42cf+mDmITN9eIwhyvENRgCU99e7GzxkeQ/ivPqkj326o5nwABs1OUyxHEOUCF29VWnUv13vvL5e+fT6JhqUyGHy8eV1yGUJfr8zxzdePr/ys29/Rv3akLbC2+sbOW0yAF8rtRpi3JimyP0u39u2je+++x5jxbICa5TWD9c30SkMPjD5IFV8VSNKDPu68tY+8/7DN9pTdeRSeMvik/WLH36gJnnfxhqCl+u758TLx49iC7RveOuxXq5xRqD2khJ3HQJuurbmZeJ2vXK/rdxvb1IVFXENT9uV4AWqvV/fhKVXsqjG6MF+vd64nE9459nWKw7Iy8QpeOrTBe+kaqhbJa87m7tzfX0T0QDn5QCn95obB3HJqK2LkqJyp3iD0R6aUQivjbWrxpy69r3zhDARQhz3dqwzBCY2xvF6vdH6+mpWZcSEBNXfi1ROFVc7XHLsn6MPf/Qr+/cMbsB51h6Q2+Pc1agiG4MBa83j8x6K7DRGcga9F+nG0LMkuYfLeq1KXMMS/CRBrUk/XgGesaceCy95zaKtFrGzud1u3O53NRvVqs/ILOav+/hRB66Ou0oN1REugWJKTpSSdFhRPKlaE7km5x2rsey7WFrv286+rQrhWIKV2Qo57wWye6jC6RCi4gHyc3qIWkRw0rvDF6pamc5vMZLVRluas6og3QpNZf5tEx29blHSD6HeIDYKhMtCk0NEWuRaUSDzMINKRBXIq+ON1TwsbP0soLCgbCqrgq19hVaq+GhV/pDAdfS4yuir1ZF9PmLnv/x4HEx8DDyjh8YBNfQDc7Dj+vf/kEUh8zNNVQ+MDr5yYBcGDbjC/hsIrNLlTet8mEYeEGGSr10OxZEK1EbJ3WFAMvdaGut9IyWhIgcfscZjcZjmRJ0/FayEBkwTGa19S6RUcA6qr9yuN6yTavr29ia9hBjFCqUUSi6s9zsNq+MTBe+jDrQapuVOST0gfidqI04UQDYn6hVb2ljvN/ZtJeWE8XqAGyl6ZM/o4djkQGq10iavVUIlZxGs7pB9Tjs0tbEfiVkRuLxJwKwlqSnrgAAE4iwCdRrVdXR24TzPnOZZJZqckCq+6InWAWt/eYj2XmqXF+rdmR7oDnZi1ywU+n/BpExrRu1G9FWafo4i66JXVnIOSGe9NvMFeUU+u7DyShWO32PA6n/uc45HNVZGIJACS96580FVOLTy0ipN///oLPTrXCWAmwa4rhWI7iU7zrRapC86xiw4ktA2El/db00+s7EPF7u/h6rX5eEeJIV7SxEmrVeSzi/3tX+Vx486cE0641SryCSZVim5kPeNvO+kfcN5+4UX11Bh6MZvVezM+0E5T3E09kurUmobOchtQ+nSBq9R0xigNpqTuRxv1X3VS7CpegBYI3MR15dXShZ7k5x3RsrXc3g5Leg68sF7UUzvcxpVNnhf1NSmA6CyIJuzatltRuCyulnpwVYP8B5w5PV0Nbceyo4dUDtnvJa+dEfQGpj+CFydtv6Agf+h9dTxeNgSjNrroTc26PEalGwTuPKhjlSTPwbUMp6Y41Dp/2a0t2WNBm/z8DxUsHU4F6dcZdB2l6BSSh2/o9gjKRWMaQSF9aiW+23j+noj7YlWwRqPt4Fqm1DEkzAnTSu4JhT3skuCYDTpWW83jJN7cb9dJSnJmev8hr078cm63cE6CVxZfl+qn8pyPlFLG5Xc+XQiThNLXaTfWjObDkl3irvXK1WlDCHnJBqeIdI9paCqt5vFK4vVjRmmNqjSTtmzXVZLKgeD1YSBJpYd3kk/RioX6RM7PHOYeFomLqeF87IwnRamaZZ5TGseDnl4HNfo/SuQfkr/90FXH32bo9cl91Zp+M5IpeYErnucfRyzomoB1MkiWANVyD4jACmEVuoOVKYp0G2Mfnk2sVsBjapl9OAq1jeVJ/N409msEnhre0AkevDSqq+qVmFKWZKxKqy+g41ox/UqtQeufi2P9/LFXm19lx6VWt/jvaUi4x6S0JfSdNbtGNOwQQSB9/Qbamvy4VmsuG/XGzXv5L2ypp2WNjHTu77ijRzDUbHWlnYyUIyRgKMLKDgZ2gzOkvb7F6X7mKOyHlv7nKGoh49yXmFE46DtO/veAGEmjgn0GPAt4YwOqLZNmrumEQPgPdZ4zktkmQPL7DktgdMSWeaJ06S27KVQEge1W1d8nw0bMk3IJq0UFXStOlMi18Q5Pzbu8PLSx6gwdaFanfeqRmBDtCfVZ1ZqFQkYYwQNdRw9B9Mks7PW0GzDaJA36MByg6aDlBIL9RDqosHGHErahkMi6WH+SBtlI0QeG0oy3n5tJNPUQWSLUqWkWq00XLWYqtbjD+Vct8GYpsBsgw58CpX9u+9+YN93HPB0OjF5x9vLZ/5f/+Zfk1NiW4VdJwmC+oPthZL1AK0RWqOkHVN3vDEE11i3FennAC3poV5Juxg/ppS53zZckH5XyZW316bKKJUQLTHOODtxOk1SyZWd2zVxX2VGrdZMKQlrK9Ea4mTl0NODzweLMZWt3ISF6ARVOM9CoJB7bkRU1VmCt+S06gFdMTVhTSOayOnpRIgTzjo+qmmpNTCFhVYL0TuiM1AT1kaWZeGP/tHf4qv3zzw9XXDes6UsAsgGai7yGRAlmb4OOgPQuEb0QYJwXxjWYbGEgFZHYvia1Poo18r+lkaS02nxsjYlKSxFAsK33347iEAiPn3oena1CHEhXillYopCBOvr8/FruCdwBLL+cyKM4AjBUl0d7QlroBlRgYlOtEJpspOykQF8eX4dMK+CXDTQe3aM+LTWpM3iAkHV5BuIW8Y80YwMHriu0mENwek+K4LKuNZYkyR52mYfIzrdMeHy/J5OOrTX63/hdP8vP37UgevdSeixlymw7TspJ6bNYL0VT62nsxyS1mJtJOUk1Yr2q/o5bYwI5VonttdFjeAEjlHTMyuQjwzvKfCmZbedojqgapC0qgHmH00UJRP1i6fVTNpXco44KzR77xRiqJXzEnFGJ/OVdixzMk27MkYyc3rQAkqjmUJDSAfG9AxRYQKlEnYiayc0aO0v+VIPgP3nDOO/MqAsPa1HWFGCOzqj1cb7sZ38oM8/mmvI9ddxTWleK5wHDRnwr/qeO7TT2X6AMWPYlceKr/aqrY2AYzTydqjDPASzHsRoTQ8eJcB4mZFxzokyvpMN/s1PvsY6x3y90pT8EHzg3eXCZY5iyqfVtg+e4CPRG7xxOBux5sIUI84ZfvjBCyxsDefTictpwRhIaed2P+O8yIhV96SMxcSLzmlNceL9V1+zrhvrumJp2ODxTnQQ13XH6dD86TyxLAsiCt0DfR8UhpxFrsj5Hpgt07zQnQVKLdKrdRJgt22jqEmpj5530zPv3r+T5KVDw6ZSchAoMG2084KzjjgFTqfTcMN2VV7b0LhczuzbireGZQ7ksnO9Csv26WkWiMs0ltOiQ/VgnMVHqaKqUTQEo4CCaALa6oiqAWqMYY6LKKBUIT9UY8WlvK6czidh3jnDmlZ1UZA9XfaiNPgi1bDzLHHm3bvn4SlWah1QGYrkNGVhyrKV1RmCp/e6UkoC0bU+KH9UOV0CLITINHmMEcNNaOri7LCmivN5K+QGIXQvMUNriZw3IbCZJkHKWVqTpMCrfUvnKtXaaHbAMLJHa4WSue1XeV4ajkI1kPtXyuQqdlItzEeSb2SUJJXM2+3GVgoZI04ITSxl3DT92mf/jzpwvb+cWOaJWs9c7zfWfWdbQweFeHeeue8bwQfiNMkAqM5ftNqGdJJzTjM25LQLjtxE9j/tedyMaZqwSrfNpZJTksNsntm3TeZaaiFEzzyJfuE8TwK+1ErJidPkaC2z3qWvEbxnjhPOG0pS2SJn8RaoWasFdXFVyRixUdbqoWdtGkBG4W56NteHD+XQssZhkcqlkxjGga5abL33ZuizJ7IIW9XKxxhVnNC+hDK4pILV19f5N/q8VIdIauEIHwhs0cWO6SFFpbW606y1dLI6fdaq/WFQpQ5t9oD7BQvxy4qyjYAt/QOr0j/Wi9W5dQ5X6xDK/fanPyXEyPL6Rm3i1By858PlTPnqeagFyOWxClF1RX+pmp+fLsyTVNJp37DW8O75iefLCWsMOe/s2y7X3ljieeG+bdzWO3P0TJMEovdffc3Lyytvb1doon25nE6cTxe+//4jSUkYT88Lp9NJKsPLos3xOsgZ+75xv9/Ykwbb4EVeqlviVNER9CFwWs58+vSJfdvJuRBnz/l0YZkWrLWkTfZVyTuWmZp3tvXKrAe1c47LZZH+hjG4OnO7Sd/5/WXmZmVM5LRESt653leut1dOl5nSRDXkqVyGMnpwEa/eYE3XcPcyU7wLW0V5Q8R3ZbZuz0l6WUaU6kGC13I6E+dImDwvby+s6yrXyzT2vFNSYc8b0U547zidF56eL4JoVCHl1FwonXDVeoIsPUIZ70CFciVw5ZJpRayHrAoU9D1rLcTgOZ8XvJeRgX0XPVEbpFcp+1X6+cY0WDzWOIwz1B640jrQAu8MrSasDThvGA7FVdmMmsCiEGVF4L37fsUHjzPgtYqT9kRlXTcZdG6GKYja/ugdArlUrvc7exHxBLxXcQVDC7+hdPj/5nd+i6fzGWutVlwy1Y458NZt3zlfzrx79463tze2+yqHQ6tDA81bR9Lf39JOPJ+ExllFpqk/rOnQWtOeRyKEwPv370lpV5kmCV7WCTQWosdZ1QOk8uHdE8FZStnpDEdrHSXtrOvKuq5smyh3LPPMt99+K+od1nK7b9SSBhTYIYMOudV26CoAijO3oR+oANsX/QAz/gc98BlsvNGc68PLnfNhuqQSOtB8VFpNX7eL9kqQs0MFo5voYZTT1zrxwlLMeBtKoOiBEtqDPl3JRTNU0XrTwkmeS9+6M4cclviIKZLUcXnTxthNp1o07bMYa8hFej6YxrJM/JHf+hlfff2BLSWpbpwTAk6rx7iBscriqqRc5F4m0fNLKfH8dObpcuaP/ze/Q/By8Kz3G9SMc4YYxBeulEKqBRsn1YcU76tNxzmsDwRvWZbIPKvocJiI88JPfvKNrn8EvnQBHyLn82VAX+t6Y4pirS4W7jvbtskeqgWrqus5Z663G9aKLfu3335z9I6M7BvvHNFPtJORBVISX707MwUZCr5db7y+vvLp80c+/vBZ1DqaWr1PXg/xwrKISeXz04Xb7SrvZ1v59PrCnjM/fH7BOjifZ+Zl4unpwuVyYYoTcYpyYCvRQswtGxiR6JI9Kb2crEkrqmKeciLpzMhedvKWRAHEyaySIB5SHZ9OC8tyJsbINAWu11d69VRKI+VEbSIgIIonHufl3713ik4IoxRtXaSUxpiMBCJhAToaxVtaK4QY8GEmTt1h2Cq7r+KdwTaoNVHKhlWtxZ4wG9coSRCbVComN6ZJhsGtlQRAelF5uH2DYZ6ncY6uNUubwzuiMSxBHDGCMdxud9WGhXB+Ir3eKXsi56IQrcV68TU8PT1z+eor0mfIrXBb1//fh/z/yeNHHbh+54/9Nk+XM8YaNl0AqeYxmAqQamFeFs7nM7fbjW1dSfsudhLW6sAdpD2RsjDHzu+fwXZWTcekpRE/DqYkMlLOWZblRNdMK6VQSlL1gUfVdmlCn5ZIcE4gQjWys9aKkoAaEW7rClUGm6f5TEmZlCq5SODqB3QPWgbAmqFN2HpQ6E3gdpA9vLEUI+aNpZTDYsEYWikKFVbsA4xqFFaw3qp2mh3BsitnV5paPEigKX0zKszXqym67qORZ2muKaRSKcroA2j670ePy44/i8SVfn88N0dTysjB2mf6SskYe/Q5pJ4U9Yw+ztaHNBnjDoGG6Fm2Vvnw4b32OcXiY3iG5V0VU1S8uTZyEZz/vq6kUkQ1v9UBD/70pz9lniKmNa5vL+S04axlWSZmVfxOJZNyZVoWQgzct02EcbddZpT0eXeVzalNaDjv379XmrHh9fWV1qSXebk8iWZjKazbnZI3qeyDp1QJsusmvWHj1B+sVtZtU2jNssxSvVlnSWsasFj0k3zfGEwtONeIUaqFr7+RAerPL595/u4HqiqKz2FSQoccmtI/nHj//J63txfu9zv3+52npwveSYLZTMF5Dcop8fr2xtXe5N6NClzUY7rsm3NBAn6pxDANNYzOMky7JIw+OAlW2n/Zdwnmr6+vQrBpoqa+bXf2feN6fePTp08PhBAGuaMrpPQ+OShUFzyn0zzo+eu6jl5YVyeR52rUlEd/LWuS27TH+aj12aqIce/bSm0V51asdUNTct9F8X9odTbYdkm453lmigLXlVxIWtEZY5gmCYA4S3pQy3HOU705xKhVXadq3y+nPobQg2AnxjD2355keP3Tx0+/0nn/+PhRB66v3r3jcjnTDGz7Ti6ZVMuD+Zk0mn0MxCnKUOe+CK6tNNdeLfQFlHLm8u6JYRSnEETnNkhgOm5Oh0H6PElrkIv0pXpvquu3eeekyao9jG65YoyhlqTPnQf2LdWIZU+yqLZNNeFgsH5G8HJH4PqCzDB6S/JzRXttGEj7TgfbLIbWVO5KA5fpJVifj3M9cMlv1R6IRiA9ZktySg+VldNKSEsy3XTWCPOqGaHzDxCxMYQFpALswfLhg+t7O8aMOySoodJ4pbqrlNYXgUv6Cq31rFB3tVWWljF4H8VLynmcVgIxzsRpYuqVUGvcb6/az3R4F6hN3An2lJj3XRVX5DC4Xt9IaWc+CcRtEMHStG84Z1imiTkKmSCXwtv1xum0MC8Ly/miPaxNRE+7kojW0eLUXHj//it1QRBripxF7UUgw6Br/cz17bMMpAZHBYG19bAeFTdwPgvBKO07z89PMtvkHPfrnZR2SpbZshiizFEC63YDYwnTzGk+M5/PzOcT03yW9WtgmSbtuTTW9U6McpC+e37P6+tnmf25XZnVGFPWfIUmFHpr7Tgc5YDXFWitIiPy/q1NGiAKMezAwThsigxs28Y0BYGWrdiQ9IN/2zbpbSk6sm0bXQ7u4AYdkLS8n8M+ZMDlRgbmt20a9kPdXqhpBSqCBLK7Sn0Qlm55nBPtQQlEZrqOZHrdtkGbz6WI07mOcVSF8a0xrFvCGsspZeYpjSQ2bQpFWm1jhIj1juJkXEDIWeow0UlZrY1WgSniatGp7/1caApHdrZlyYV13bheb7/Kcf/F40cduFLa2e6WPWfu610gmZJF3cJ7fAjgLOVN+g9BMXFjpJ8kzeasHlfaS/GOHz5+BBizIof8CqppeLCBUsrc7ysx+qHwDY1Ss5bfabxfp+oXIUijel9EYsUih2oIHh8W5uUJGmzryr//9/+e6/VK2nfynobYqTV8sTlE2FRnZ9zxvgFoZShiWd3cRr/ff67DdtodHu+5a/zlkslFrRs4YLjHGa3hfqow03hu4/SQPZ5z9IF0xKZ5M+DERyX4g4Z83Pe7Kkj0TLsfQo/vpQuoyqMeUKG1oNVWbZWi3lzj97SHMk0Tl8szp/NF+kpPT8waRJwLNF1/3//wByK7owzIqtBppYFxqoottg42WO73Ox9fP/PpVZhwcwy4IAHltm3c1lUEmY3h59/9guX6xrIsWO+531fpXzV05CIQ4iSHYMrYbRMZIrNhVaXAGKkaX15exgBrjJG8J9K+SZ/FMJyEDUhVV0SAej6dyNayXW/kbYNSqM6R9rvOnWV2s5J8GJqcn14/Y4xhL5kPH8RN9/mrD3zz7c9UKdwz+Q7tVbZd+jDBB86nE6+vr9xuV67XN1WMkaDxdD6T852Sd/K+i2CA/reUTqKydMFYqcIOE1KjrdYOx8mQslQ20xQFkqaN7/VKKIRjjd1uNza9zqfTmS9p+H39HtWX/F2kvkot7Ps8bIoe16xYz/hR8TcdSN/3nbfry0jErTEy1+kcy7KwLLNY2DxfSGnT954kmGXRSsUKYmH17Hl7vZJzxu/CHjRALYW8HwINIQSaFfmrEBR9qCLsUIuQqEoTUkYpja6mt24SkNKexjwXwLrurPeNbU3ULMFrtBN+jcePOnD9m3/9r5liIFUxhcs5k2uGbm0dZMJ+3Tfu60qcJ7FNd6KaIRRYqXK87Y61nrf7bRyM4mtzwAFd/dgqaaCUyrbuhHhYUzjXxSSFbvzoArreNoyxqkYfhNFTBEoSi27Z2EatTV5eXthWWZBVD5MuMJpSkvLfiA9S1Sar0QUusUiHcbXacTB+f+iVYR401Bpd7nq0utxA5mhj6FB7XA8Bpdt0iF8ZR5/KPs5rKOynyurWQTVdDb6O2Nk67Kk9MEVcaLSHCle/tHIu9bG6dKpQXrit14Hpey+ZrdGGudFehiCF0ivtmXipvZeZ2dZNHXTFJkN8ugr3fVWmWtVZFYUtjcCN4iDbD/UAGD6+fCZtO9YYni4nYgi0UsYQvBwcwuJb15WPHz/CwzU0xgmj0Dpt9ttx2z69fNYZOsvT0wVrZCbxdr/RmrBdT/MsRKCU2feNVLIo3CvRYN/FQ8taM6TMWi28vnzW12cYhpZcqLmw6sxWCNIbqcDHz594u12H64L0pKKQXKZIUOHrdZNgUIvMHH7+/Inb7cb19kZTgsU0Tfz2b/0W1hZohZLFB6u0houBaP2gpudUB2rx/sM74m0SYoOB+22lbIX7fhd4q0oCY73l8nThdF643a4jKE7TpImeKNJcrzeB+J0T+HUkR4+D/XVAzOKYkEdPVhJcRYMegptV0YLujTfPy1iHtR0q6t1kdShodHfuyVMNVGMFBdGqCCs+WUIZkSxxXk4AAnnrBL4xUqlao0LhTixnaI2UqqgM0UitUqaJ6CzRGd7ebuQknzO6yPV65+3tyrruYkBrnKzBXCjq2ybVv6U88Ad+1cePOnD9/Od/wBSD0DNzHoZ/XXvOejFd2zRwuXDIpfCASYt+nBlyTvdtfQhcj1k9oFVFV01urZFTIRc7IEHnDsWAxjERD43rbRXIrlb85jUzytr/OJx/ReG7DJuJoooC4pwrm+WYETPEEkk5HwwlhS6BQdKQd99GsKIeePkRuPiy4kIDVx+27oFLf/YI5ofiu1W2Vmf2dainh5QjcFkZsLUI5VmkOQ6ItrOdFOZorcOBdgRS9GdlhqaMnzEGVcAQk5OqyQbWYpxALFYZg8L6OgZTj4NEkoRaC9uuyhJGAmXRqqo5M3yy9qSQlfbCmmaltlZSTswTKsXU5/ukV9MaErh2GdfwjcF03LZNeizGEKNAl8b0tdtliuRAM8aSUyLnqlDhRPD9msvBKwr9WTJ+76W/qGzSphX8IZGkMCvSp90VJmut4a3DtKpD3Fneh7JA/TQBTZVGNrYtsKvU1TRFYojkZWIa7ts719tNoMc98/HjR+7rjfV+o7bGFGSma0tfM0dVkLGqVWnANqtoiv4bAiEWUzidThhj8WHXJHOj0aG8A17GGGIMnJaTMvj2sRe7Vl93arCqqD7P0whcXSnml+eypE+esdbgglNFftlL/ewZM5edBNXaWIe1qoWP7tPeEz9eVwKvMarnWYrqGSoDWUkqTZPv/NBKcSOgaXuhV3XK/BSEqVJbEdeMJiNCtjaKsxRnud0Ehi0FatjYt10MdHMPyLI2W4c+q8ylGeB0Ov2qR/54/KgD1w/ffc88RXwUu3asNA1rkYaUaZVWJKBZ7waLp7Um1te6AIx3cuirGG6MfjQUD0kj7SX1g14PO2PEEba1RwffqrBU0wzm4U1fHMY4pmkeqh8iUppG1bCnfXg3Qce7FaLsYr76cM7hsGqdLlI0Dp236gf7Q8WnMqd6AB9GdmMhaP9o/Lz+XNWg+EVjuDVa7fJQfPFv1vlxvR6lXfoGGsKlFsLkmZd5xMTH5x+/dxRTBwurP19rulH1INLg1gDvA5f3zzidx5LZGHHR7d/rdGXvzMiwJfi5433SK8xjk2MRFfFsyMVinKWCVnYRY5USr9XJnnasccQ44TtuhZVZQRB32Flp6cHRTidePn+SQxbpWcU4idlpd+dVfy05tB3LNJNcoejF8iEIBHc+j7kkaATAnBYhiNzvrNvKniQwew0orRVu6x2AeIq8Uce6jEGkl2iVzSi8bMB7g/NScblq2Etl31dy3klpG264yzIxz7NWopZtu7NtG7fbjU+ffmDbN3JOev0NsUWMM5zOJ6YYyMqELKqv9xi4rMmjT3O5XPDes+8767qr4r7IV1kj6Ai6X8TU0z4EniOBkyrE0xYGseGRmDGCoD4eFWRKERJXmEJftV8EuKNKOxjDj3vENjsgvP7VK7b7WvDFYaOX9rGz2OAwVSokgXQsNUsivJXC5fI0DDabVoY9Ue/7tdYm4w1ANkq2qBVXC5RMco7kDK+vb+x7IdfGiaDGvKLKL/mAHU7H3W6njzGc5v9Kgevv/b2/xz/7Z/+Mf/Nv/g3LsvCn//Sf5u///b/Pn/gTf2L8zLqu/I2/8Tf4J//kn7BtG3/+z/95/vv//r/n22+/HT/zH/7Df+Cv/JW/wr/8l/+Sy+XCX/7Lf5m/9/f+3q+sFvz8/CRZZYySbSh5oKpig3UOGzwhRuIUxQSwl+c949eMI21CqEh5JwbPQ4lAh6Ra00HYnqWgRAArfa0x1MqR7UgAMaPK2dZCbQ9+UloVVJXpKeo22xvP1vhxINdSx2yNMcpKVMaVMTJ4LSaVToOq1mYP/SgZV1M4YproPkzeHpuwbyxGMtoOcobrwUmf82GWu+Plsvi9kDDg6Dnw5XCwZInS5yitDDmtQ06KA6+sD/5hD0Uf7egVFK24aKpF1z8TMhfT3Z6tG3d0CFMYY3BGJLYwItRK66oQdgTSWhsWrRSdIWu26pwjqN2FtTKAbH1APM3EBr5L6lyWE/akyt40TFUlE8uAkENw/Pznf0C33IjaF5UD0z0cNFYTHOGNWvssslRNPkucZoK6z0rgVVhzvdM1+07qJReCzFKFSQJXrpLJ1yoZ/7IsxCCUbKNDs2BZpoDqret1KkKTfzrRSv0iuCzLogE40Gphu7/x+59+EBSiiMng2+tnck4YA5fLBWckYbu9feZyikzR0aiqyi8BrL51pgSCgOj1XrdtoDGtwcdPH7nfVxHT9pGSC9u+8fHzRwmWJZPzjrXgfb+28rlijMLCLEJAmKZZluZQ2elr+1CjGEGpFu17H9p/jwmaJLAi6ZVSIqn9kbWW6OL42Q4RDl8tKs55Idf4kwTl2kir2MyUWsX9vFRqLqR143y6EELEgcyRVTlXLDq64xzOqBEl0LwILFArrhUu80RwBm/A4LndVu5bwllPjDPzvPTNKazrScYI5vmkCYYRyawv1aR+pcevFCn+p//pf+Kv/tW/yn/33/135Jz5W3/rb/Hn/tyf43d/93c5n88A/PW//tf5H/6H/4F/+k//Ke/eveOv/bW/xl/8i3+R//l//p8BgTj+wl/4C/zsZz/jf/lf/hd+7/d+j7/0l/4SIQT+7t/9u7/Sm5/nhWkS+Z0etJoe4MY5yTYnGVT06hraS+vyS2W99Q61YhJa7BeH7KA1yEHSeID/JGTZ3gAdc09dk6zqIS8LL076HAqZSTfG0ayjVllozjvdaDow7DTAat+s49BTZyUiG6xXEVbp9kfA7I++WeQzBe8HbNcDF619GYSa/I/AatoT6oHFmAHj1fawcTF0X6TRi9L+1JGVKnTnzBF07ENQ7HAm420pjKj+R/SmmxnPW0uXdeo9yD7Pd8xxWdXT61Cu6YwvDVzOdrknGSHow5sCtR3CxgJxamB0cj1F4qYbL9rRH+0MyWqFYWhBLWoUitYBcbkc8rvOuvFa1krWKtI/4mLcM2Pn3GC3YiS56AyybnlvVUndGouRuMxdh+VpVWxKppkY5VoYY4bU5TRNg+26TDMtKIS9r+pCULHRYwbMJUamxhmmKVByYd+FKGDxxGA5zRHvHfd7kjGQ+00JKBbTPMHJmINzlst5Vgjd6oD2yuYtrVWtoGVPZ5NH9TK+kNkqQPtvkZwl2S1Kj9/2jbe3NyX8FFLaiTGM500p4X0cVRYw4Pt5Wh6qpR6Q+tpnrKN+5tRWFPE5+lo9cJVScBYx4tT324W1e3vTIHu231fvPRU5u7z3+CmO57PGaDUlPeGmGqfburJMJ5G46/0wXdcdAnVW13ttVGPAyxpoteJb5bJMBGuwrXJ7vZEL7EWTP213tNoTX8MUoxJJ5AsaNlnVgvz1Hr/Sb/6P/+P/+MXf/9E/+kf89Kc/5X/9X/9X/syf+TN8/vyZf/AP/gH/+B//Y/7sn/2zAPzDf/gP+W//2/+Wf/Wv/hV/6k/9Kf75P//n/O7v/i7/4l/8C7799lv+5J/8k/ydv/N3+Jt/82/yt//23x5l5f8/j3meJAPs+V5T6X3sUMQIMdCMIZUivS9vcc1KdaXQYErCwjHI4GpOiX6w9UOiVxGiINFUr6yMzDcEp8QJj3WdhXhYFvTn8kFw8aIZRw8ixnlqc9hW8bXfFjm6ndd5LydNeOccMQRpsjapWNZtU7hO6LwypGgfKix9xmH/0AZ23r2+Rl/uAfLQlo5UjlYOJKFiP076K+X7QeGpV6TtoeTrh0l/NFzHYDHqH9Qr06atL5oKCOtJWsfTGZqxQ2pQgkM/MDTo9WDVDMZpz7IHPHXUNO1oiPcqkHaovTsdYfBWYN1i1fpBX8d3TzBjyA26KJdtDasHGVpZGk1Ackris6YBiZKpWV1190QxQqLpzez+cz14tXYErRhFbsqoCKuw1SRZmCZZa/0AtiovFmOAnGToPiWctUxTkISpiShvyhlqY55mmfO634WajthfvF2rmqMixCQjCZvMoEkVsEyRjY20V3LamLwjOstpFqjofs3kfaXmnSlc5LPNkbfzrH5Rng/v/r/k/cmrbfuW14t+fllPxpjJSnZ2TpyIUJCnL254UawYWLEg+gdYFgVLElcQa4IVBRGsWBKL1qyKEFgRQUQQ5Pp4D7QgyNUXGp599t4rmXOOpPf+y26htd+vj3XC67tnPxA3MYIVZ+215ppzJL3/Wmvf9k0eOkknq3havD1DLyhjc8VRb0DD1qE08fgbCGHg7u6OV68e9T0VduXlcuHdu3e8e/dONU1CHhgGKQLrusoErRNvI0xcr1fRhem09aluSRKDG3woDu9ixyT7aimytzD0tm0sThIrrLWMausUgrhcdPah90zjpCLokdrWI6ZI1laLy0Cma4uRBlcb321dCS701AmL3Aol69nRdl9GgUZjwU8yedZCoHI/jyJCSYnnpxfWWAhSuXrhq0XPBMRx6O54x/39Pff39xKma1fGoUGnv/jj/68d19PTEwBv3rwB4N/8m39DjJE/9af+VP+aP/SH/hC/8iu/wr/6V/+KP/7H/zj/6l/9K/7wH/7Dn0CHf+bP/Bn+0l/6S/y7f/fv+KN/9I/+rp8jKvq1//fz87P+7wvzPOLGQXU1kCjkRfH/yxn74shVnL67aA52J4faIgXUoqU0rYj6Q3Za9U0nVVG20N7hNaaRpKXqF/UiUHuByvWk/6bl6ziFcoZefDviaAzBOarNZAMWix8FGrTOEkvS6ImK8RJQaaztThlVDYabw7gU9tRFw845DIVSE6nuBa75IbZJMZNvuvCqprlSGHutsEbdyYVk0SZBeRk6cnA7RRk6WxNx4rcm0LKzKpWky4MC3U6q6J/JHs329JbuEdzpyaaTDoyRz8sYTcO2LXzTkEvEJI3ps8JwlH/e/h5qzCST9gk93bDBvOv+d2SFHqsUxloTOVdSLCzLwjTODGEQ3VYYGcbAq+M9phaulwuX04Wvf/s/s24LOUXG+yNbEn1iKaXT24/HO5Zl6cw3oB9kLy8vONVVTWPoFkA5ySsuaeMSF7E9o2AdXM5XSs246oU8pF37ukZCVbeTXLmc1Ty3asOmTUBcN9YicTy5Zu7uHvDOkK8X0nbFlsRxcNzPAV8T2+XEsiy8PH2Uaef5I081M40j8zzxS1+8lbBWLxBYKUJPvywXBv+awzyTUpYJ2XuOcxCoRO+Fy+XC+XzmcrkooSLKLm6xHI5HxmFkHGY5QKnkeA8l8/nnn/P5559zuVwUIhVm7/F4wBjD9XrGWicxHbpnvaW0t0LUsvrk71HUxajPoVOq/V68OgXdW1KaSCkRlPhVSuF0fhZpwjTx+37f72eeZD/+/PzMmqIQ0pDihzZnXptdp674PbakQDWGVCrX7cLhcMDKKUCJBTs4XFBo0qrEJghhxVS4n0eCAbJkDN7d3ZFSJqZCrI7r00een1+YpomlrJSS+PDhieenJz6+/8C3P/uGuG2ydrhpkH/Rx/cuXKUU/spf+Sv8iT/xJ/j1X/91AL7++muGYeDVq1effO2XX37J119/3b/mtmi1v29/9996/O2//bf5G3/jb/zuJz8MTPOBw8M9gxI0MrBl+TBTzuRm6KPL9A5xIWy1UoX107JoaskYMs04vBWuDhc2TDrvXn8Nc27ju2ltzM8VLkDoqa0L0w5Fil3oEF1tkwvIiWwbo0gc7J1zkpC6t3Xk6mhlwHDTdVk+ydDC7NNQobGVel3R76BVQKoYVmMbqoVmKlVrVcdonbxapTf6Q7Vjo+3+bp9Tf562/65p5vp7sFdv/f5Gv1KnRp04DFrMik5uZv9epuikaAym+R9a1ChZmwS8OFsh8Iy3rk+kpv88OhRGrRTjFGaDMHhl96nLihEdkez4rAi+a6b4II4pxuKNkzidFFkuF5w11FKYh4HXj4/EOJNKYnq4E0uiHPvU1Q7HcRxlRwrdYaHrYtrOZN32zKQiRrXNM9PQSDMV563KONriXw5Nl7I6VliGwYgjTMmUXKX4G9n51mLl77KBDEGztKS4DRQv2V2HaWQInmANxRmmIcBhZnCWeZ4UBnN66QmDbnAOvKUGifa5Oxw4zjPLunUYXJq90i9gr3CakKaq7oUUYlPGr5BFNjCV492BEDwPD/eicUupF65pmj4hYoh7eu67pg4F5jZtmU8mqUbQ6LefaTto0/+7fW/vZJ+YUpKCo0XRdYNlmajazrAVvva6i6LyzYPV0rLIdu2mHUa89dJ8p4SzLRC3yLmnPp2AEpCsskMjzhhyCXhn+oQvhr8yQbtuQLCjX6YdI3q/OitsxKZl+76P7124fvM3f5N/+2//Lf/yX/7L7/3D/+8+/tpf+2v81b/6V/t/Pz8/88u//MsM48B8OPDq1Wvmw4wfxPF5iSsxRZYtsqYVY8X1vWlVjLFgShcTp7xRcqNdZ5wRmq904XvhagmqsuOSA9NaWZzfFq9WuOTwbfsuZInvW7Kpsh1NY9dJxlQpwtQDPjmMRCO1HyzWNsqqTDlWF6xV2RLV7PSRDs812K/vlfTnGxE0m37GtZuQviBuA5JyH7Rggq0N74R+yjcoDy2C6txe+1TUno7evEoogdbB6puMNhqaRtz+1BjbDwdjjNL6K7V+SuyoisU6Z5U2rnlnN9OfvjSZZjXWRr5lxdS2mAf0epBDtWCyHATBB/3MKllATS1elirjF1gYvO8ibwtqSBtJ6yrXjzEEZ3l1/yD0Ywr+OBOzxG1EjaBv0Ha73kIIXS7RRLO1Ko05pv5+yDJfHRK2VRKWacV7h3A7YUDvtVrl/fa+kWBagWguFbbDwQZ0ya/sVWtxQ+gTyRDk/W2vdR4HBu9wjw8MIUhMRy1iblvkfQoqL7HOMI0Td4eZeRq77VWtte/4mo7QWtOF1p1UoTT0VqxjXFm3Feccx8PM3d2RIYgIuUldrEXhWa+FrOBc6AWj7cGKZl7dQuz09+92l147AvC7rmEkv6yUrEzhvbBN86j6Q08tlTWt/fO2XmDaHqWpl3fNhWKEEa12A7rjtDijUB4397PewwXZN1MqRXdV52UVqNlAsFWaCMCUou2dNuhGd8v6XrW3w5rGynT6nuWe0fZ9H9+rcP1v/9v/xm/91m/xL/7Fv+AnP/lJ//OvvvqKbdv4+PHjJ1PXz372M7766qv+Nf/6X//rT77fz372s/53/63HOI79Rrt9xFKJRSjgSTUCODl4U6nEkklZpgIKYkhpd0ZOsaV7ERYK1cgHMQ1OD8LSD0OrnXS3qhVcD4k/z9hSsDnhcpJ/+3MTVzuIw+A7Tr6p2BUES94v8h1OM3YX23a6rxVRH9boElRuYh+kk5MCuLOhSnNZ1wOm/ZwtKt3YGLzfO0T5yXRXdqt7sloE0mvsuM5sA+2+Wz0zDD6g5/Qnuymzf/cONVknLic5y8Tblty33WR/B2tl3SKwW23tcM2+j5TmQAxT5zkQk77XhX5QyEFbuidi9Fl2NbUxxZp4PNOstmSayQpdtj1P00dVch8UrU7lCnGWorsP2Tmty5WoAmOHIQTPYRSBfKEQa+aaI8bL5xyjWBeVLGSK4/HYO/7z+QxVwgbblFFL7Q4K1jqOx0PfxazryjyPN/uVyDBM+DBwWTZCGAAjU40emEMIbNtKjpskHJuMswav4vSiFmcprpwPL2Jg3XY0WmQXe9VJYD+xnHPcPxy7EDalRKxilbangHuGZj+UMueXU5+4WgGBqq4SlsEPWhjDfq+XwsvLiyScDwM+TFgju7hpnFjXlfPphTVG4qbQeIVlufLyMgC177saGeP+/rG/p02n1hCTdi+14lpqVS9B1wXIu5mAXuNlh6PHEEgxcb1e8cExz5O47UTxXWxTV1oX2Sum1FMxumZKG0hnbP8MBudZlpV13Xh5eeEwHXrx3LatdSrkLYrEyAWMn1guV0qOjLYyGGkoRufYlpXz5cr5fGW+e1StXuDTmlSJmwSWvjw/cbmcABHFf9/HL1S4aq385b/8l/lH/+gf8c//+T/n9//+3//J3/+xP/bHCCHwz/7ZP+PP/tk/C8C///f/nt/+7d/mN37jNwD4jd/4Df7W3/pbfPPNN3zxxRcA/NN/+k95eHjg137t136hJ2+9J5fC8+nMeb2KkwWGVJJAhVVFrUQwC8MYxP3ANY8vnbji1q1gDAVTBP+XSBGdDIzFdlr3rtHd8e1dAyHXoW5fzKfFa0hyE4gP2qZO1YgBKrvQVr63aLhAOzTjdvGg8wID1QZHlM4kFKhNtWT9ObUbZH8+PQUWI7HiCv0I3HbDHOy7JTSZtRVZaJPVnrgsz/u8Lf11fOJGb/bva3Saser92P3NdJJtj1uLLXl90ki0zndfiv8clV5KqRTbVnDzjQC7oktn+bcxtuwyhdS0cMkkmzsklXPqeUs5yv5kR6usdqHy2TXWpV6xWhQz27oSt431elHjVDhZI917SWx5YwPCNOI02O9yUSudnJnnucNVOQv9fAxDPyyzwocNkm7X3G4JlLTJget1IQwrzg8sy8Y4zhjr2FLCB9HmXLgSt7UXKEvBaXihswbUVLqkwsvprOxI16edEMSctwWIBt+smOD5+SwJCHqt5bSHuF6vKzEW1jWq5GUBAzFnxkHiWFrj1q4BMTu+gdIq4v348iL+oOPIOAbWVYgy55R49/49W0ykXMip9ns7anPXft90c6UUPn587kWsEbzkGtkRk06V15l212LZT67xHe6Un32cJIbm+fmZeR65f7jn8eGRELzKYuTn7o5Bu/3b7qUoMKWztk88IQSu14VlEQPh++N938mJS4c2tcuCseL6Mt+/lqYpRa414mslWMPsPXFduS4ryxoZj3c0l/mk94jVzySlyLauLMuVdVuQRuB/kDv8b/7mb/IP/+E/5B//43/M/f1930k9Pj4yzzOPj4/8xb/4F/mrf/Wv8ubNGx4eHvjLf/kv8xu/8Rv88T/+xwH403/6T/Nrv/Zr/Lk/9+f4O3/n7/D111/z1//6X+c3f/M3/5tT1X/v4axoUy7LQl2KjLlVpidZUHmMFzGcGONKxIPslCT8rpRKSVELkRQuqqfWRMpRhXQNJ/b7IXqDW1f2wiWFov1plUWLflWjs8vUsLEtOgUYMMZ3aK2UHSfe0o2foPG71cvNAhi0o+97oQZHsO+CbpZYLT58nh0t1EMMXxsb0yoBo007O0W+qOD3tlj096FFplc5JBsqaK3vDhr2prB0WroijeJij8B7SraR4p3ZGwSrxVXZT/bGZ/CmcShqw0QtbLEQoyQClE8KV4u52P990QmWIn6TpWadAjMtKDPljVoy9MKlW7xqFcIV8XPKzSRV36eKdMNZTGtTjGxx67ETlELaNrYUZU/rLGEdcerc0Hzy4rppQRCGoLWWcRipk2Q/xS12V5WmwTLGcLlcpKDVrLZXtttB2S1hnWe5RqY5Y10g5kwIWaFT2cm1CdRRcc6QshH6et+jGuKWiTVjjZBTQvDkXH5uwtjZrfGyMPpBrjsrsG6Lrt+2TErayNj9eixU6lwJOQh8topuqVSJEEGbrQZv5pR5Ob1wPBwJ3jEEz7pc2fS9+uabnxFjVrH/fv/dJhHL9HQL44uZrOylMk04bLA3RUQbMr2H5P61n0Djt/dvazZPw8i6rjw9PXF3f5DIlCLTdpu4aq1iIJwb07Xt7SUrsPkKGmvEYV8L1+Uq8Umn04lt3cQg2QdpaHQ6XK5XjBFLsYjEPpWc8SRckcRl4wPrcmVZN9Yt9ykwq5PMfi4IwnC5nDmdXli3K9TC5Xrl+z5+ocL19//+3wfgT/7JP/nJn/+Df/AP+At/4S8A8Hf/7t/FWsuf/bN/9hMBcns45/it3/ot/tJf+kv8xm/8BsfjkT//5/88f/Nv/s1f+MmHecY4S9z0ACgtHdVgvSMMAq8ty5WX5xN+1AA6J8w/OdcqlJbXU4DMF1++oVIlNmLdzWKN0UjqUvsytnU37QBuB6cIgGXigpsLNN0BsKyLxiVUdVwXrU2tAoF2vLxrQgzWVmGHOdSqiD5hgcJWN+4WAkcYsi39kJCpTlhwL6frJ7ZXzbIqBN+7zFqLxnII/6GyF+im4G+FqNzY3twaGjvXFtb0HUMrcBWJgUlJ2HHeyVTZaN/7DqNZMjmu6rt3W7ibXKHZNEmBWSklUvNGSrtTe9vNSOHKevjo59Sa3goSaCn/IU3B7nAgHX2GFBVekfgQ79V1wsgBrnIWKSI5kdSNvCh92hnANnZrJJPAi+OFd46YM1eFFPvEpDIOZyXDaxzFhSLOB7Z17mzD4/FIVXHzer3y/v17mc4GzzxPGGtJOfPy8kIuIid7OS2M04xznpQQ78zmFNHfZzFZFUKKoQTZX0kA6iCnSgVyRsxZHbY4bFWxvLVAAOOpxggF3ADGEVzzdFQZSalaFLIwYnsJKGR1ya/Axw8fNMtu7b6hgPg8sqMSl9MLDw8PHA4HvvvuO65Xcex49/4j65aISfSETVjf3G3a9d4Kl0zokVtrp/Zo906bihpVvuj3a24g7WvaPePsTmK4ns7dq/Kzz97w9PTEw8MD2yIM65RSt4USjVZtAAPQLPBqR2xuGY8n/d7X65VXr98wjRPjNOkuV3aW6+Wq6eSWbz58FIG6c9zPI7P3BOPBSIN6OV84X1fuHl+zxtqDTGXQz1yvF37609/BB4cPjm27UhGm7fd9/MJQ4f+vxzRN/L2/9/f4e3/v7/1ffs2v/uqv8k/+yT/5RX70f/Px9bffEYJTpwBNWWowl7WYZRVdC3Q3ADA6uhs1t6j6+6qwG6zrRi6Rdb2yXCUKoZEjukdc/nlvPgR6qkUvSvpSv3Xkkl8kXSXVUXISCC5V3YvJDRBTEyxWFMnik4W4pgbfMniEpNF0ZTtEaF3TZchTzCi9WTN2hFGZuxN2F9xa01NwcyrSiVYAVdbrTeCc7+9Dgw9FqHu+KXCy3DY6WvVdXoFKlMKVJZa83VzC5FKJQ0r9uYUQOky7F215OBv6wbBPRpFaNlJa9eeK+a2Yf1otXOpKohNR1WuhcU2MBdeWyXrANihVYi6SfL0tjNVgigjiY079fRP6b6FYWHMUZl+V3KrDYVQmnvxqxryXbePDxyeenp+5XMTcdRxGwoPvjg5WId9pnLrAszUj8zxDReNLAqfziZwS4zTy+OoB66UwbjGyxcy6JYrRDLFcWZZNfO/YD3GRE4j7iEUicrw3DF7o3CEEpvHQodxy03k77+XfKqHJagRHLYXgXbfjkq9r0/l+vVCTXME1U0rqLEuAp48fu2xGNGky2QQfeHl+5rpcKbkwTxM5JYzufqyRBGRx09dp2Ro5fHO9ua5rh2XbtdfIMEX3m5/C2c0NI97sueg7t1a4Pr1+5c+dU4NwvYedl89AokakIey2UHqebddNmjFFL7zzHbEo3Oyi9f5qTiZCJtNCK38t97OzilJFLi8nkVuEQDCV8TDj/Mjh7oihSmNziHz15Rf89LsPpA9P+h7JMHA+n3n33TumeeLVm1dYJ09s+R8FFf7P9nj3/j1e6bPtlKlG3B0aViZ6H6fhekC9sSVSMKwClObZVQiTI5eoRp8re+HyN5ovOllCRJ83LBrLfsjRcG8pSuNwwFnLclm5XK5yc9faD+lSNc+nFCU0qFeiTmMirLVdt9YhyCLWLg3YM0bpD+rC3opZ0X0PejELvCKFa5/UHMbu3zfnqvCNwCB7gQsy4dx0kA2qzyXLzzfaRNDfkE/McwuJWiO1RiVTiM5qnmea40N7btZZYX7p92rfox0A3u2FS4r+Rq0JSyJ+UriGHvMg2UlVWaW7x9zNJaUsNY0ucV0AQK2ZbbmS4taboXEcxafROlmkK1W+sdSoQqZIccMamOrAOHlGPzAdZo4HIUk4H+D5RROIpTFoNO/DNPeiUDpVPnQX9m0Vnz/vHRZ5P6d5YhwGopUiNoyD7EuzFLJqErm2NATUMzNSisJHOXc6s7NGHGZMxZqKt4bg27QeOM4VZz2lIvCTWpn1g9gJdNVpN6VindFmKIhzhfM9aaF9mSGJK6cpVDLHg6QRhyEwDoPA0sbgg7JvjcWZIiSHy5VaCpfTmXEYyPcP3RFFClnVad+SQSFjcchvB0yDXqHt0hyN6SnFdC+yuw1U7feFHD9VD3T692mP2/1se/7t0fZo0zB+0rA5IxqtGndpCkaaimZYXapOqVU27yHsTM9GnqnIPW5Bo308lEQl9z2fMyqgHmVPH4Inj4O4/BjL4TBj7ZPYpSHIbjWy041xoxSBqOfDiDH0gvx9Hj/owvXb//k/94unUd3lpNnpvP30QR21c+6EiNAKj7U6GBUKid/HL1Nq5nw9c1FBphzWbTEqF17zVpRFaIMDFOe+sRUqWhTJsC0R7zyX04XT6SxRGLUil5qyj7K4ihtjmaZDv/hzRS/G3UH91qRTKO0Ndtr3Qp1R2M+A/ebqhRV6EW1w4qcTtqVn3XMLFYoruUyR+00aQuD2Dq1K3mgFYf/eGecrwReuy6k3BdM09e6y6lTcpAONJSYw7X5ANJilT1xpxZjKPHu27aqQoExmjTCSW55QYwCW+sn7Si9cXhxJvMBZ1jYYOLNcL6K3SlmnAJmIY4xKDFGvOy+HUYwbOUesMRwPk+xBHdyFI8M8yw1tDDHtKbhNxzVNE/d3932XEDXJwHtxkDgejxJVEiU2JThJbH79+Mjzx48s64oTy3g5PJwXzz0TQSczqlV7osy6xU+6e6sTF4BV2QhGfBbb/nKeV9H2mN3YelmWPtU7J44NctgXbQalIDi721uN40gIrjMRDZkxFAYP4+DxP/oR8zTx+dvP+PLzz2kaqNZcppR4enqS1OfLFWthuV5YrxO1ZBHJ2ou8h6UwzgeG6UAsBTixsiq01QqO6cJhYwxv335+w9SMn/zsdv206Ube8IbQNKay6WeTTES73tNhqFas5FISp45SCsOrZuMl13hQlwpbDOT9vsp6j+9niobM1sJBJ/MYI+M0UyvdispYK1Z5WYpcrkVMl62cT9u2sG2elMRFpctzTO4TqaAQck0YB94axmng4eGen/zkl/jqR1/ivRM27Pd8/KAL1xIzZotsWViEFUA78waTtXBFi2WLq7KtJIp81FE5hKAKc7nYzpeVVCKXy8LlKmxF6xze7lqMisEr41ASQBuLSJb58lAsXn2+pPOUAz9XS8yGmOhhb0ploNDEvnBdE0kPv6osoVoRnVb5tLt7fLhnGAfpcmMS1lvHGnXmabCmFWp+YzeJ8WUSb7m4SUYTSnjwQeE+1zH9qnTwWxZdbWJvKsEPCr3e4Pj6Cp12b8ZanK2Mk+d4P2A+uH33J4s8jHNSRDMkxJB2miexRCqFumygZqIN16tGDt6CHLI+jOS2I8kSKopGqKTc9HzodSFMy1xRIoP6vYUgWprgKYPY91gLzkDMhWVLXNeMUyq1sYYYBWKtVabwWgSeHodKCBYXJEtpPh55fPWKL3/0Fa/u7iil9B2ENZb74x2HeWYap+5XuK4L27ZKLEnOBE35fni4Z9MAwjY9D8PA4+Mjj4+P+MuZrGQFrOh6whSwwePGkcdNJoeo0GG1cn0LItAs+lWcbRwtPTrX0neFYRDihg8B62SP5VJmy5WCWFIZY5W8As4P5Ch7wzUmUjW4VFhTUnmCHLilrHhg8IY3r0d+8iu/xNvP3vAH/5//j+7es20bHz984Hw+cz6dJQ5lXXl8fOSzz4Qwdnd3x9u3b7v/4LZtTIej2K4ZSYqYwqD7ssB1FkhrnmfOJ5l2jTV8+cWX5CxpDpfzIoSb1hw39EFh/Jbf1qKTJCzU9kJVNXJGXmfmMM2M08hhPsh9qYSHaRh6AzdOI29evWYaRsiVEosGVmoz0H5uVrg/Z2JODNOMsZaYEsMwkktR2M5wOB65u78n58q6razbxnXdhCVqIJjC6/sjbx4e+PEXn/P+3Xd899173r37QCoZPzjm48zh4IkVlflkSt608ZA9mfMO8p7y8Is+ftCFC2MwzstNVGTpb6zlcHenIY9ZdCjOE1xgyLFjzt7ZDkccDgfISm8uiddvPxe3Av/EmmqHGq0JEkeBWAg1HLrqtJaSpMpadZCQQxqFbhI1F16//ZzDdGCaXli2DC7ialVXcYk8yaX5U4CxjlR2imvtGJYEwW3bRtw2oPLqs7ccDgeu1zOX81UMe/XgwUgRynX3SGsiTVlkK0MpRUJMHRd3xojDvpc4jVKK0oZlxyLEDTHhTTfUcq8GvtbYT6nZGA7zpDBdxDo43k28fvMAznI+n1mWhcN8oEWcg5AoQHKhhFEnTcfHDx9FzKuMsuPxyBCCwHFpYxwDP/nxl1wuJ87nC09Pz/171iqEkpxVA4gheAk6PB6PfPz4oS/gtxQ5Ho7c39+TcxJ4agq8fX3P+w/veHp65qc/+45pUn2UMTgbuC4r18sVY2AIkkH1cBeoNRG8482rBz57+5bXr17z+HBP1fgIQxWyTSmSmj34TpqRuA/TIVHrRWAfxqEXMElIdn13JAJcIb8MYRAIh2YYLCGGuCpCfXUFH+aB6kyP1bFqvurUZb9mZSg6R1wXck64Cg8PD9zf3/Hw8MC3375TFUDFhkFhK4XaBiFhGGNwIUkaedyYDxMtbmb0nhTF5UImPvCD4+7+yN39keP9kbu7Y9+FCZwrkOV8mDD2NdflyvHuyNu3b/jss8+Yp5kQPCEMXC7XPt2VCinL3lCcc9Q+Sfdto/dE78hFiqm3hsEPjIMnbxGKmCdVu+sLY4yEMFJqJWZtmhursO2daLIcQWacrYyjY54Ch8OAYZSzJUVqzkDGWhgHxzR55jEQrJdE6i2ybpsGyxZt6LzaVFlCcYzzhHVOwjURv80QjuRcmIZAsFZiUYbAEDyvXr3COwe1kJcLrx7veXy45/7+jmW5MrycutVc40/mUpXcIT15TpFtvbJcTsRtwRAwZd9//qKPH3ThMpqM6krub5Tzni9/9GMwhueXF6x3srieZqw1XBfpVIfBS2ifc7x5/ch6XTSEb+P3/4E/yBY3vv32W65Rlso+BGqVSHdjLYsKNdty2Bg65VMOL4EEpiHw8vTEuq6YWvnV3/8HeLx/5OnpIx9PV9Zt1dDLQXcbnjUmZQNZ/CgdUROOorlB1lpev37N6eWF0/MLzhl+6Vd/lYf7Bz58eMf79x8opXI8zsQk+ybrDMuydIdpjOF4OBDUqPX56amLor3ayzgjti/jPDOOExU4X65sMeI0AbXUwjCG3uU7JzDZEAaGEMhKOW42SZ+/fYs1lqenD1hneXx1z1c//hI/zzw9PXE6nUTArtR0HwJRv/c8iyP3PM+8evWK//Qf/+NeXLaNr776iru7O37605+S4sbjwz1/5I/8rzw/f+Tbb7/lP/3H/283n60K0Tb9mNjqTNzfP/AH/sAf4D/8h//A+Xwm58y7d+/44osv+KVf+iW+/fZbjscDj68f+PVf/4P8zu/8F37nd36H+v/+//D69duedPz48Ir379+LbKQUPnv7ljevX/P520denj9iqfzoy8+YJ8/9/YE3j4/8zm//tpBsMDI1Z5lygm8BkgIbHY/Hzmw7HGcpWNOIU3+/eZ7xzkihGoQIUTTQ8P7+nmSqJCTkLNl0zmOrYn6mYqpjOo4M80jKhXWLTJN4LU6D2E0t1wvbtjLPB16ePxLXBe8sP/rxl3zxxef85Mc/5l//7/879iSZaxjPuiW2lDosKYVY0IEUE+v1wpu3r/BOisBhmricT1zOJ2o2TKPh7jDw4598xZvP3nD/cIcfPO8+vOvw+OVywQDDOPD46hHrLNfrlcPhjl/91V/Fe8/Th49qbCAxMeiEHTdNRY8bJUbJNdP3yFR1PWlwYIpMh0AIIy8fP+CMmBgYa/BebMHiGiV3ysAajUC1DkJQgoXuv62tbFkMeMW/1BA8eFeYhpGcDTEanl8+6unn8P6AMRFjPWEIwr6sK8t6ZpomWX3kTJjkMzSm4PX7Cj/McD5fxO/x7o7LZaHEyDW/yDmhbNXP3r5mnEdKSrz/WeLueOB4lIidcRxxPmgjVEklE1NiWTN2EGd77w1pW7ieXnh6/x3nN4/UwyxSku/5+IEXLkd1hloMVWHBMEwEPWCd38AarB8I04x3Eh9i/cAQnHp1GewwYlMLPoNXb95IavK6Mh3upbsPQRb7QRwhtmJxYewTlw8SkV2N43CQ+AMDDMEQlk31T4UwjIRpYoxH7h4e8FsUfruxWO8xzlO9RJKXBvE5oRAL+aI0xgAmeNwwMMyThDEeD4zHA9O2Mq1C/54OB2yMAvs58Z3zQSjHKUZwXn6+LVTnwWs2VNh98WSCcKSqi9shEJwww7KRrn8YB8wmugxnLTYKnds6p7EiFlsMg3VMdzPOOrYsTth+GEmlyveyDnzA+tB3ZjhH0QahLc5jKawpi3NKBVMNzg+yW9FfrlasE9q1DxPDdGC+u+N4OHbWmfehT1tDCFQMh8ORh9eveP32DZM6Tvhx5PPPv+DzL78C55nnkYeHe95+/iUxZ3I1/PK7j7x9+znDOOKc59WrNzx9fOKzz77ElMJXX37BZ2/fcDePfPvt16Rt4fF+ppYNh7gVJJ3Om51Y8AJ/TlqUKsL6mo8HXPBc1wU/BLCGLUWWuFFNlethHEUErNpF5z2b7kuqFw9AnKUUox5NknJQq8UF9b5D9hZu3RinSZsR9Uk0QlAaxlG8Nk2kVPjiyy/4pR//iM8+e8OjurtzXWSaCS1yx+K0cGHV1tlvxLzhh8A8jZL+YCtxu1KKTGOvHu95eLyXw7gkTtcTP/vuZ5xeTjjvmaaZh4eHvg/80Zdf8cu//Cus6ybEkeOR6/XKh3fvWZaFGBP64hmHkWEYhYCgeVjeO9bdylnqenAY43l8uOuU9CE4gp91v1x03yPPWf6d5/4wI+GlgvTEuLuuYKCM0hwPITAGjzOQ4sqmpLGSM94KDN74+o0tmPNGTsKGrkSMHaFkYe1u8n1iyoQwiNUYieuycrmccE70C8uy9Z30x48fZR0yDORaeHx8wFlDXBeW64Wrd5zGUdcYmVwTL+eT6jczzqkbkRLIjscDj48PPNzf44ASN7b/UXT4/9keXuE1a1GmnesU7QLsuTgqjDV6w3TPwhuXhRsKeQihs6Dk74wuJ3fGmjzkwBNqud+NdoMeujeuFw3PzioeBINzAe/lue/P17QngzG7Q8f+XHcWEghxwHpN1XXNVaN5gqnFTNHIlqbat8IOq7c6rM74Epe0tgDeC5dRbN91V3gfBrym6nrv8blBPxbnaifLNDq/rKBMfw63P6N1n5KLpdEI3d39hm6v2ruSRMeTlWzTKMANzhJoQ75/kzBQxZOw2Vy1+Jt6syBPMbGtK9fzLvbt7MXS3DdK/7rT80sXBjeiQc6SrltyhipWTMYJ++y6LJiSWK5XifoIBkrE1kKKY4dwAcZxIBV976zTNln2q22XUapYnuUi+8WYdN+r+75SNcRQF+/GOsl0c74HreZcpQnEaOCkFb6I9xikaRowBBWqtusreY8PZXdxQaaR4/GOh/sHccMfRnGr2aIGUzZXFDVD1h2p8w6nO1OMYRhG7u8fsCXx4p/lbquFJkvxzuOtx2LJMVN0opBrQXRYkgUWRVicC4bEy/OJ0+nE+/cfcM5xehERrrWW+XBgmsQEoVlnNTf32iej/f4ax7FT3o0xnZ6/rivNrUSyqYR8430gtHvSOd2NJ90TGpxxoDvJcZq7d2FKajeGnkOqIW2vVYTFAzFkQpbi1Ni3zQ4v6Y5LGP+ui/V3G7kmNVEJTBEbqS0nzucz8zwx6GpEObWdsCKSG4mKajpSKVxN+1m71lCy0BIlRy7n/0GWT/+zPbySBkpWmrJzoivSd82og4FM+wXv99TY20JQlWbejS9vEm9zLjgvF9bPO1U0IaS4E9APHe+9+vkpCYBGdrTEJE7LbeHtrAN3czG2KaPFNKj/onyPZm90Q7E1QncOftgP5FaA2sVpdkHyrf3TrYC4+bzVdhH7XZ9lrSNzMwFiO3VZLvbSi1HXsbSCSGvibthTprHTvAqpjYYmNmNjeS5FzXmd2S2aKEULSCbFSE3KEtXn7KztFHCs+BBKZyv+ggbouvAqVOxGcsnGsC0rNVdOLy9cz5cOf+Yowt/meEEtLNbw4f17np+eOZ9PamkjLL8aqkBp60JOG9Y6jdlIrMHz/PxMyRFvC56MoxDjRIu6McaJqLi0m1/ew1LFHDnlTCqSfZB0vydMxCiwuWx+5eArQkix3mG91alNiCYSYVEwzlFuC5fqFG1jjBp70yjugYOlXUO01ITMPB84HI66h1Rij9UdtGnarP2eK1UCPKv1Xf7hfeD+7p6yrR161X8hhsg2EHwQMk0j8Ip/ACVXUk3UUnl+flHbqIijCa6feffuvWjbXs5sywYGKVyjZE81NqD3vpsYN+aq9555ngkhdGE4oCzI8AlhyjnXG13nPN7lnvCQUqaYdo6AMQ7rpGjPk0xv63olp6JkICk00uTJWbGHyo6kKAVnSIVhmCjVYGImJ4kgEdMEpfFbh7NJLfDEIcPY0AsxSp4puehkunUNXi9e+n6059Ugd2PAe4iJ7pvYYndCCJI7lxOn8+n7n/3f+1/+T/BwNkh8QlfOie6n5KoLZWHr5VyIW1Y8XXQ71moMhXZ/1gWCsdTquZwXTqczL89nLudz1+H4IL3GbfoxNApqgxrbZCAiSfE2Q36GdTw/nchJ/v2quxlnrD5f0VSlWMBVqtEcKVynk98GU8aYyGmPTfhdZp83v9rzvP3V7aO0ILeCt8dbtPfGq45m/xrQtF7j+hC4U+xR5lhDoEzTYffDTcNXGFyQA0VhE0rtGWNUYREaC7ayE1Yq1CyxHSW3xkCSVq3ZE2BbZxnXtR88t+LQ9qtNZNZa1edlLpdLd6poTQDQqenGQsobP/vmp5zPJ67nE1DY1islJzazkLZNrHXOqh2KK9ez5To60rbglFBQ2ck34zjoe++5u38gFglmvFwupKrsPSpYhw8jh+O97BGGgVQKS4wS0aJpCLVaShVSjg8DPhdSkYPDFkew5pMGw3tPLlLwijI1laqgB1NSQ+EsRVIP99vHZVl4Op24Lgvn65Vllalni7m1caRSMblgSiXGzDBoh14K2yKkgePxyIpM0s46/HzA6L0CcsDLvtLhnEgccpYcsUax37bEy9OJ5boI5KuFaFuTELqKfh8/4I3nNkPuVl7Rrusmjr+/v8cY0TWdz2dqlQiUeZ77dSOGsyMxFS04wsS0xuFdwLtMdVWLkEwpkss1cjjcde1Wzkns3pycdXFTJ5GsMSt+wrsJ7zPBwxAqfpzwxeC3QjIV70acrRzu7gA5Bwt78y/Bmr6jBfN0oGKIWXbr5/NFEIQYZYrPmW1ZWc4X1u4eH6QhMZIHVnVX3+zHjBGk4HK5kra15yp+n8cPunDJASwFoTbYoapFTJUDXQR2QTtFj7XNeNT2X856jBPqJqaqe/LaTSdBmdboIWzp5AuZXLQT0g/t9mEUJ6cGhhBYNeHUarRAm+RsbV2odqVWuE3FSMGlSpdclQnWnLM7JFnNzSH88xqs/bncTl2tYN0q/m9vVn2XO1xn9b1qBcjoJCTsQye5Xfo+VYr8mQpei7VQdHoyjmYa7L0XfD9FzYqRX1UlBKDBlVoEbcvMQDz/WtyUNZIDZfXPKRlroOTM08cnjIHr5cq2bgQvZAVAdxH6fhW5nrJJUrhawfNBJ7wk0GERI9ZaIOdFqOnriqmQomS7mSqODOu6si6L6JacoRZ5D721jMExBpkyMEaDDRUFQKMqrMcZLVTO4pA93N3dEYxhPhwQdmdk2+SAGLwccs4H/cxkgjMah2NK5nK5MtSKcY4YC1iZuMT2TKaynDNG86uoGsxZKsUI7T2nXbguk6KkjT89PQuU5xyn88K2JUrRAqiIB1n2YdTWePUwFNkZdgq+plH7wOAcgx/w1snzSZW4Ja71qvCcJfvKPE2qt5Rup6RMjsLoE+d4zziMlKjZYkZYs7XCtm4yuSSdULyoaIVfKObWQfd8KWXilti2RPBexdMT3gWBtD2MIzhf2JEd0YMKWlEw1ZCN7IGtzbp3HeQzqEX291XeG3k/RE4gforyvSqW0+XKdVlYl43rsmHCJn6o7QxraxI/EDfRHJaCiOWdp8XxYKrkr00zxRhCTkLkQu4li0T5BA2qBNXejQPT3T0v17U3tsgt1dmNrbEWHWPqzcD3efygC9eeb7Nj5W0iadZhrVuzuptp7udguC1eVq1eMGLY2eABBaloxNV2MFu7G+vKBWR2493a/NT2YiF6sYEYE9ZseBe6Y4axFlNq6/V0CGxQX+2FSxTupU8vDT4zIKyoXHqn9/MTYet4bn+1v7v93/Z8P7WTEksqKd5q07N/9/5n1rQCK/WnQ0pOHBywFVvRiJgdYqg1k5Pq32SJdfNL329FCq3uzIxOta2hsEYcx1GmXNXJqBYxDHVOaPl1F8K1p79/tjfvV/y5ybU1C10Xp2am27aId6F6B6Kas1J3OFN0PYWU1CrMZNwYsFagTXnd0nB5xTFrFdinWt9RAeeC7pKE5WmtZVAh8uUKaVnx2VEcei+U/j5XhJfc9lwxRqx3vdlp2kRFovep1Nb+7ty+F3K97fBZO4yxjtPpolojx7JsxNRym6QQi/9m6kjEvgM1OjU170iZjveCIY4b0vTRkZSSVrYo1mzOZhy26w23IXaaePukrXF46zhvKynKPe69TAsyLamtW6n9ObbzQvbDskePMYplWMr9ebkmyNcmD2+wTiNvUtFruL1fojswGCFvaRPrrExWJavlW5GJrBX2Wk0vaMZ4ajVcF5ls101yCN26sW6RLe4+iYI2CASYkhRtqzlluRRcKzS1il9oCVi3x8Y0FKQH5uoZYZ1jHAbu7o6MTy96TtHXNILwC7zd5Ei33o7f5/EDL1y7/qZ1rbRdTBUdzTiIZsFqq75/6CBeAAovNrsfMi8vZ7ZNdhVjCH3fU0rGFD04Qa6oG+KALMITOVmx4ym5ExBMBe8CW0zkAsOgQY5eIE5jBU6zFXAF2+EpIV/IOks625IzNRdlCEl3CLCuKz1WQI1p24UCewFrj9Ytt9+3v791n5BpTkXHFKo3fVkdndObsQrkAb3o3SYGm9puVtmlhUbw0PexlELaIiXlXljqTfE1CCxZZfuiAXlV5Az6/rfUXWrVHZQUW6veay154O7ujru7u5td206H16fbD/tpEnZoCIG4ZcZx7FBRrZlSIzFJ8xFC4HCYaZ2xMQI7Nq3cfBg5PT9xPp+5WkO+P0KZmaaAKUnYYiXTHMxyqTyfTvhhwoWBVCRKwukOCuuoRiLXr9vKlhLVOCFqXFcudaHkyHE+ME8TQxzVgNoxOIdbLoQwMo4zOV+F1Vkkf65o0UpR0hIaOaddQ1R6YUCvmRACtUw4Y3h5ObMq4WHdIgURsVNyt8Oq66bv1e7ob4zZrdn0em+74OAHvKe/r1KMMpsTo2rp5MWl4zQfZCLMhffffeB6uZBzi4IZqbWyXCLv33+8gbFk55S3RK6703u7Lhp5oVkktXtLilfqEpB2b9w2iN4Fas2sOWvPY6AqAuSkiTLFoKIVwLIuUSFN2ae2QliLJE7L52CpxZBT5XqR17+tiXVNgDjAL8uCaEObQcOTNgbiUOOtlf1XEef72EygS+n3hVV3jpwlr87p7rO9N4OyNR8fX3H3dGIcJ1LJIiXQ8yRnMTZYtlU9Ls3vgph/kccPunB5L11r6860n8LiekONTmEpyQUelYlmnVpTaL8nLs7il/f88SO5RWj3oif/FmXGUZtDhnRmJUGOkRQ3nFHIpVYaT1C6j6qao9qXmZjbzB4jHU/bARntmose8lWsYIzu8pzVSabIlBHXlRxNtwIyxlCco6Qo4E9xoM+5sYKSsidz3DBVItm92vrUCknFqEXNaF21MtHsLwrp73X3pGW9KIkiA2nbBMZr8ekhaC6TaGdSiupl1ggaphcqEAiwJIltcBglHzSYuCU42+7bJlChsPlqLrx7947DQXYPT09P/bBq00JSyAtQvF92fNu20ViJ25o+KfKlJHLZWK4vOh1l1mUBBNYKw0jJ0mXmlNjigkPcF+J6lc9IDwlHpVgj39MJVLZskct1YcThq+W6rBjncEW9LLVPSznz/PTSp3dS1fczkbaFYZw4eA/ekyvC7APGaWY+HNRZYut7Lzl4DTm1pGUPpuXr7o/uiKIFrHXjWEuuwnQ0WeB3o/vGWjLFyIwlgnLTi9O6Jb2fGllI9ladqes9pWykVInRCMEpy/Ny1lGd7H7W6wpJppuUM1ctKFRwxrGOqyAG2qAIs9eL5RfqK+layGPb+coxOQwtfNN0ZnC7VnIuN+Gw0Ka0WsHURmhyYuVGM+VWCNLU3uy0Jrr2f28oef9FdbJLMiJj2NaMMRmRfDgqjqwNk/cZ5zPei04zZdn51SoGByVXbIFaC3FLWOvZtsSyiv3TukZKThgDdR4YvKdaw/l8pqSEM/YTdGrbNnwIHO6OnyA4g+5fN7X+Gr2jGLkWv+/jB1+4hFaa2wIKg6MZ1sJ+g4lPmuk7oAYRdaq1fm1KWXNi9qgP2xfzmVod1H3/Q8P9i7qzl9KL1s6D+hR268WqVoG8PiFPyKhuq3a/pWBb99fo9Q2zbk9B7XZMFIFpKeL4LofCPsU0Mn37lVIC7R5raWtzOsOw+R+C6KfqJ99DXTWsTkL6PtL2dPo9a5VdiDcW4wXqCd53aFHyqYpChdLNN2Zk+3niwGFuZAhIsTbqn2f2X82Xrf27Uot2wuGT/d8taeVTQ1QwN81EmyArtS/L5XraJK8tZbIe+sJAVFp5GLTw1v4cjBePvjVuuNVgDSxjYFQ9lTWOYg0pFaFxp4zLBZy4lYSUKEZcRIzX3LFSiAq9GEr/9ylLxxuGkWk+MowjFXT/m8V8uTVlCjOLu4IQim69LuU92idS6o2fY9urqu2W7GYVqtT9lHR7Rqd2gUVjzlRtOFKWQw0tgsbtrEVh+YoeMG2FUoSAkfr1onRs5yWS/tZPEyFq1Wp0sq+kmHfSkfUYU3uTIjg2+nM9kDs8yCcTghC+pGgJbNgy/3LW6cjJz0/sbjLOCSIg19Ttr6r79xsDcCVxSDFrsKk05rIjFsAnRslRA3U/wZBTwXlx4MkVxnHCrhsuRagizaj6GoZhVKmHIQzibOLVoSelsp8t7PdlaSuJBuW2+7UUfPAdqUCOZGVW7jsuZwZtun6PWj5N00hjEhUtXNa4/ibWKh3prdaiHV7tQvLe42zAWnGBh8rlfFb6qekuzfYGsG3suh12ExJBIy20lNddK2F7YWhf0wLb2mWJ/m9fvehU0ViC7bk3UkGD2HLJ2h1vinc3p/pPYUH43eSM24iGnHNnz92SM4yxIhi0lqpODFWhnSE4cvGCiXdtSgZTsdWKP2BOlJTAe5wxTMPANE6ClbtPc4tqNyhWyq5OX/091K6+3hQfXVv3Iirv8Q7vOBXvNvpyKYWHh4c+cbVueQ/mW/VQ2qGhaZqwxqmOyet0XHBU7DQjBgB6IFmHD0EiRUCnlt1sNm0b799/4DINHOYRqLy6P2DGgcEOuBBwBYzNanJaoUjh8jHhdeL0VQ5YcXUZuVwuXK9X7g4H2aN4ed6ff/kVn799i7OG3/mdn3JdN67LheNxJiXRCK1rZLmuLOsmKdDGkXN7D+XwbJZbfWmBTJ5ZDyOB6tSQ11ih1+eKsV47fMOmky7GsGyRoE2K5ItJzAs5w9BSFzTiJXhJO79WipObJEVBAKTRcMKIS5lpnLk/Hvt1ELf8iVFxZ5AaxziM/XN/enpinAfm46TMPsjZdcFwY8qVXPt+b54OxFkkEpfL0u/t4AeMspZjamxEIXFFhfh7qGY1FC1ORYY4vB8YwgTV4v1CzRG0IXfWYq3AejmjsGASHZwiUAaZvkKYGMco7Ewlm+Vc8ePQ34tpnMlZvDGP93esq6RW1AqXy5l1vVLyxmE+ME0Do0Lf3gnZyo+jVCdtMKZx4nA80HRsbW9Xb8gZYtJcWNb1/+5R/7seP+jCtW0RYyzLsmAHXVJezyxxE++sIj6DSSmdLy8v/XBcV7nJ5zpxvV67s3OMiUSlFOk+c00dqrDBsyxZ3OerBP+1Yvfy8kROzX0+d2bX+Ry7Riul1Bfjp/OJbROxKLqUXmNmSxJq6RSqaPsqOaj3QLvgPdfzhZIyzloupxN5GnDeknLUaclyXZSNGAspixuA83ITrNsieH2F8+XMEAYOxwOvhkcp9mnjfLmItiUVPSwU4rGwpYWWMrssphefWvPepdE89QopR6BwOb9oF0onZHgDa0lYU3HeUnIU4a4xbOuiS2HJV8opdpf/NUWFkyxU8WYMzpKMMj+d7KpOp9PNZxy7FED2gqUXsW2LvVlYloUQAvf39wxhVGjadk/HlDdyvHK5iGNALIm7u93RPurPo8ElViY36x2rshOPhyOPDw9gA6UaLotEoVgfMMZzvlzJ9dKZX01L9+HjkyIAYpbsh4FZIWR5Hyxv3rzl8eEV4zjz4f073n/4yPWyME8z9/f3UCvv3r1j2zbm+cDx/oHT6cL7D09cr6u+1iu1G+O2iVomGue8uI3UqjCa0/c24P2AMZl3HyWgMeXC8e6elMVI12AJmuKMMXgrcPX5fCV42FRIfXd/z7vvvmNdFrwPootbFwyFj0/PYCx3d3cCcQ8jX3x1R1EvzZIzd3eHmwZOJjVxq9/YtqjopuXVq9cYJ2sAkUTINFZrZhimzgT2g9d9nND4DZZpmglhZgij7NadZ9vEAcVg8UPA6HuYygY3758z4rXaGIQyOVsJtKyIiNtPncWck7hwGJwaWYse8vH+UaOIoEwy845DC7isMAi5J6dCaG7vVWzyrJoBBDfgJs/gR06nE8F5igtSBJ0nWM9xmsXAwVgwkrRsjeFwOOCmmZO65E/TxGVbiKVwWRa5F4pIOVLO+GAJY/jeZ/8PunAJTVMOhenugHWeaYo4XcTnXJgP0vkeDgelYMoHOQyeu8OBaRwZp1Hdbwy1Co0654R1G6XuGLsfBzltG8HQfipmbq7Q0zASnDLGalUBsTKGQtCsrSruBd4ThgFjHNgkAW6lqujyNqBRCxf0wiUToaV6R4yGELwY/+oE3qaG28j0NhnJ9z3QEl5jin3CGIahT6YhBMZpxLmCc3kPsDQGjLLFaqVQKJpLVqolq9q/kVgkHVdSVK01UMVstOaKs5Jj1ZzGjRH7Je+cwD06rVorkRfOoHRnmXTb6xxCoDjX3/dpFJukcZ4EOlFD4MPx0F1GfAhdC+a8JBi3OJHz6YRzkg3mrLwvTbCJqSIbDAZjDWOW1NfD8UBQ4e0tvDSEoHutjRb6OXjP6zdveHz1mnEIOGOIaZXDK0vTZRAEKwwTk7pqy+4xI+iaNBLeBen0jZFdpbFM86G7XQj9eiQFcVY4HI4YTQTwLmK9WH+tq9CfUyoE6/vk1ViuspfRa8mKQau1luBEA7SuK4fDQeIygMsWCetGyoXHV29kzxIjwzBzd3/EOcvz01MvXM7C3WHkcJjlGq/06zpYR7Uy6Q7j1F9bc5p3GIwR2DFlCYK0VmQat9INg+lhs41+LAQUeanNvd4Y+X1LUPBeYDr5mp35aIzDe6Mrin23VRUibLurPTuOvsow8Ml/tz/tBgO9TTBa/ARJEvJJ+6VEipz7QNwa9KpEmtxTEITU1O7bXFvkirlpkNVRXs8AP/ifcxoyHdIsehYYva9vSU9t6qp6j7bUDmhJF5+86F/o8YMuXA2OCWHgzRefMR8O0rXown1ZFsZpIgyDHsapw2jNAFfC4wzbIlocr47aYrUSKTpxuRDEEw6llSobwViLd6FTrasKWVt0otCnpVO1VrrMAkzzQUkiGnJpLFsqxJRJuejIr64PNzuFNlV467AOUpRgv5wHjocD4zQSs5hX/l8Vrga9NXZdU/hba5nnmWmaaGJNZx2Hw1GJBkXxdd35GdnD1SrWNc1NJJPFLbvKBdpSc8cQmMZRCkytQmZBE3yngSH6DnHO84y3e1BfuxlCCLjjnUAPOXeNiXfiZtBgR+8900HMZ13w3D3c664PhmnscO6W4m6dE8RCqFaxTnp5fqZWNfldxWUgDIGcxMAUUxkGRyV1KMm2RiBGnHqxOec4Ho/9ub1+/Rrv5P149fjIw/Egzv2lsFxOpJTZYsK5D4xeokGmwx3zLB6BBbnu1nVjXReg5XENhMGLo7lxTNMszZH1HO/uefX4Gu8CmMLd3QPzYSIMnpfnK9dtY1k3vA8cDgd8GDFWChigexQ9snT68nY/1IsSXNZ15fHVKw7HO1wY8ONBYnJS4u7htQZ8Ckng/v4eaw0//a+/gzeym92WVxxGz9u3byXNOS5M08jxOBNsxR1GgrU8Ptzx6tUrjscj1jku56tGxoturqhsISvMbq0l6PVkrESuSNOyZ3dZ3TM20ogcsrsY3znX78OdV9AKk/y+/dt9k9z2U/VGqnIjs+jMaGm0b79PrbfJBa2Q1m7fZIyQcLYtcjqdZd+upKva+mvdmWfdH2a1IWui6qz3bDUG5xICWZaeJp3Shj0MWmD1DCritCKuHbooMfJ8rZ4x6BkhKGJrLOUcRuOW1u33KFT4zTdfK5MnkSg8PD4KdbmIYeTz8wthHJjnmePxjpZmqpAsaWuHOMR1I8VNxaQS0ZBzAlO6RYsb9sTOljwlh65EcLQLJaqrd20WKFq4cruAkJwcavPy0+V11RyoIuJAY4xSr9tFvgdGOmtwprHyEtf1Qi5bn6BoF4wSWH6+E2oU8cau3BbxV6u54O1++K7bStxi79oa/R9uChdV8q+KQh61cJgP+welU4HQeDOlGErKYti5XMhFrLEWdaY3xnBZFrzdQyMb2SKEIPu9Kg4c7Xl777t2Sg7GyHA5U42QIXA7TUb8jqXNzbXQ/sZYy+vHN4zTKBeIHnLVGrYciTWz5si2LqorK3z37okQnDZAgZhkqlqWlUWd/8WSJ8jBlTPTGCRfaxhJOfP0/Cy7zlJIm0wnMWXW2CjMlWV75ulJu+F6o72qFRBdzrZFhsET1Mfver1SYpYEgOC4XhfO5zOn8zPHw8hn9i2H42tqvfD08SPfvf/Ay8tJXRUMzo9sWxL38KM4LjRyRkpJ6NumEX1k37VuG9+++8BxjRyOR7GbKvJ6rssiU441hGnEjwPzNPG//PqvYyiIAC5CjsxDwHnD5bx0iDmlzMPjA/d3Rx7uDjy8emQcxRT3fL2INdG2yc9BdoCPbeqB3ZYMBPrWRiKnRImFYRoYvBVRcN5z5HJWDaMxfR+ac+ZwOGgj13azrk9kxjisbcQQuV/kfhRLrxCcFtr90e5TyQd0ZET/VXPBDR7nAsKklZDPLkkshbRuEmKr37AYeixLVrZk3yFDf0591KsVpWCJC34tGu8iPz9RMbWwGcNqoTivVHohASWgrOWTXXlVQokxBj8Ejd0ZWJcLW9w4/V71KlzWRZaJ5yvj+wPrtopljTGsa+RFHaObp17L+LEaPR4UVnJODtKiUE7WEMZSM9Vofo76vCE1SBluO8wQwqACZ0S8mqXQtAVs6+Kr0eWOEzG0fC8Q1bp0KhIEJ9/7chE41FCVQVixhk5ZL0rOWDe5aa2znczx89Cg6V3Q/vumM2vklRBC16O0KJVmJtoX71pohbHS4sFbWKTovc6nF7k1SmVZrjhjCN5TYsQ7WQyfX86crycNeSzqLC0PgQRvJAHI5+adv4FOxRJKTEZDT9ltnb/V6eQaF90Zyo0cVbVfi+Y36f8VKt9++07w/nGQA8M5hmnkcrpijMAdy/WqTNPKupzFb1HhoC3FToHXsqOwbOlQzPEwMU8TYxgYghwArpFmkKKaq7hCtKss5cKWhHZcqrDGmrDdmNatR9alMoRBobtETYXzeGI+TBKueD7z/PTCu3fvadlmz8/PfPz4kQ8fPrAsq4phLcbJASnSDaXb1wbz7DtM2Ika67ZRMLycz9zd37HFzJZEGDtcLt1LVCjaG8s08Xh/h6HinWEanFofqW7SiNnw3d0RUzLHuwOHwyxIyjgSBskWa4w4EVjb7uEXBomZb6SqqiQqYfW2X1WCWRs0ZxqkxSds0xYn1Bq/W6eadp3e6r+aGUIuuU8rlZ00VVsDoudEI5DIz91ZrJTaUZPbe3lnfSqSUncCk0QCtvLUrm4LamAgxCcV9MttLKsS9kaxsYPlO3ADtSLvZFVGcK1SHMvPadj0H1b6UfnJa2ta0+/z+EEXrqabOF/O+PfvuFwvcmFp53s6XYSeq5iw97abuloLvtnoOIH2UCdtW6AzBe2NkaQ3ivrtHUzKmW3dlHkmtO24bVRpXuSCq4JvrzGKe4SzuFH2WrVAqgWM6xqiikxtpexUU2EpyuuWcDtwXg6Skgvbtsr01BfRO4tQLnZokAWghIpFQxnlMmiamev12ovXtm0dIrm9KMFgnN5A3DIjK9WI56AYkVS2dZXn7Bzb9YpVp/TL6cKyXKVro7LFjSZw9WqY2yAKaDR99wkbcvCBYQiMw8jleuk2RMu6yIFfC0tcJQhUv9+iAktq7fAgFWJObGvEYJiPB7x1DOPAfDiyXJaeXnu9XGhrPkqiUZZzzqxp092GhD+2A0sIHXKj3h0PTMMgsS/GaFGXIjKEQHOBaY1MRdxcztcrMcn0KzBf6I7kpei0mSLjMBC8J8fEel4Yh8Dx7sDLywvn05mXlxPffftdP9jfv3/Phw8f+PjxoxYoB8ZRTVSo0IiNUDuM9OBXtFwp0kKH37aNy7oxjCPn64WUqxauDT9I5pyEdY49uy6nFQtMY8A/3uG9pdKgaRingfuHO2yR2PlxHORzcxbrHZ7AOE2YBsVPk07A8tl2J5nmqpNlx5yLHLqy8dmP+Fvz6fb1reDc+lY2oW4rXB1KY3f1KaVgdPfUkJD26IVPWay3RU92aNLsdKcc0+zY9qBK2rWmJBlaU8f+oyp7oTZ1/wybJEU7kH6f0+7z9nWK3rjWYN2gLu25CoC0F1LTRnFqbxBud/WtoH/fxw+6cAnF2au4OLMsF1IqzHf3VMA5efOE9h7wYX/Dc476wYo3m3WiAbPVUraIioSUgHHzISGHM8iUITeWMG+sTiOGAYvAEsMwCOU1F/y6ct0uVLPDlUUwRMQvSgxlQf5OYIoEqNOEkY5JTs3dbdt7B8brUnZvbeQiUYZfg/fKrlFaFsk5am4AORtSsmpjVLogFbQItkVsE0vavZBVe3ubiMOF0UYhFK83A6p5EpiPnLBqQGgMVBP2Q8Yg0ymm34GtaVi2ZZ8q5wMmG0y2xCXtOwhlL+Xmw2WMQonSbDSNmFcdU0uodd71yI/evTsrh2CLw7HaMOi+oWn+YozEvAmkOYwY5zoUE9s+0zmKMSwxUdaNbV1xCNTZ9n+3C3XZxUi3nWLqe5C4JXIqLNeNmFZh1TnHy8sL0yDfh5pFtG4th3nmcj6z6i73669/Jplzy4V37z7wfDpzWRZx0iji+pKrkBNKqcR07VCbNc1k2XTHcKdaK2stsWZyzVy3lZJR+DSSasWX3dl+Xa+cXixPH97hneF4mIjrWx7uJgZnCQZcFfRDUpctl+XKZTljldkrAbGWmDeMg3EYoJjOGm3FQM7mnaVbLhfMhuyYEO1V20MdNN5ECFKfusq0e8Vay/v370kukX3ucHWXlFi/TxVWrj2bE1jLOMqup5SMqSI+l/toFz0PfpQ0iRgx1XI4HDke73rBEgcdGIeRwzTz2du3vRmjyASkXlECLZe9WBQtpP1sM0b9IH2nrcd1IUUPNWONkKXmMXB3PDKNQaBy3c05YDAGMxwo11UBJRkQyG2neSuZ0Ia87wZ/8ccPunClHDFG2YVOYbeSESW6wEctgr7SWEDqGKFuEtkYvE/U7HYsvMMBqK5Kpwjoh3ephWp39lDViAmZriQPqRTVSpWdUeSDxzhDGISQkcVEjIz8PIPUpBatIgGAtmuS1HoVi8TYNxKIr9p130xU7RDfNVmfsn4eHh4+IWvcml7KVBp6Fyb/Tv6uQ4UN9mzT3E03KQynhu2jujSVBKBdbFU/QS3a/d/edo23EySyV2sCx1pqp1Q3XYr8PI2X0f0KKapTutpPOauF1HY5ACpEdbZ5W9o9k2jbRDScnQo7uyllj+RwEnQEqe38xD0CY6jGEqZRPlttQDpEBXLIlMIas+yXsljwlCKFKwQVuZbcP9+4yVtfdVL13lO8Z1tWEfJmYceSRVdYS2G9yu5WaOsr5/MZ997x8nJiizI5Ouv6hNHsq5yT9OzmJmHV+cEiHpLe+z4ZGyNJC1grImcD3jiqHajdn1KbKG38XBgkrdkLM63kTMxJ3Gu2K5fzM9fLGUshOEE1UpLmchqFMZpiEtKFFRuytlucpwmr+XPBS95UKoWsovBtFdNXkHNkVMd5KUByDzYZRZuc2/3UHCM+Earre9D+TUqpN1yNFfwpc08/KyWUGaPEHuP3Jq7u0Fr73ikmYsxczg5nDOtypweR3muCOQscWeTnZI24kabNKIKg/6v3rLjOR3KS+J4YN9bV4SwSbDkmStBEiCyaStqZ0hjW+r2lMN6Y7ObcnUlscZ1Y9X0eP+jCVUrqOxyc1SLVBhLd7yjGWn/uQK+10SvUXJTd6cJZ1wXI1RhKVZqoaQaxbfiRA4p2IdAKj+14cBvnq0IqgxvEQSLIhGRKvRnJtTgYpblb+XneO+n6jcXcGM96Z7rWyWlSrUwr5maxvB/mtzh8rRLu1m5CuIkkV5bh7ZSmTwsUWNEyclO40MTcNp1KIbbWYJztkSTChtWDMEjhtbXI6zK7QLx9XvJz9+JVEesdg5BYWgdsrKGkop6IVm1mMiZnkr5hrRi60hboSonW5xVqM75VGx+FV9reDANWPpTupmKzhjJa0clgWyRIMzaV62EYx04IaVlrGNS+C7HwqXQtYMkty00v4KDGvbow2KHZ5tZQsEaLXipkIy4bpsiVHW2bHGDwgaWspBS5Xi+iKTO2Q9VGO2Kn+VgydfouxjcKvzU7s90NXF6wC45qjVwP1aiprby+7nto6O+B844QLCH4ri/KVWDP9XrlfD5zOb/gTOUwTzjdM76EF1aFsnPJOGPx1rGuyqp1lsfHRyGrOE8ZtKiU1CPmt7h1yG9UJuK2bZ8wcVdNCbhl+N6eJa1w3TaJt4Wr6PVnDGLblVLfK6ck7ivy36nfPxbbnUxMNcToe0Dltm36vKM2spXL6a5/BvK2yxvc9mhZdVQxp16wpInQxtVnavGUImYGcdvYtpVtlfc3qJwlpUTKDm8sNM/DNrX1gtis2PbNRUNBsGrKV52sOr7n4wdduEBYbc5LxHQVvEmgM9VYDaq9Egr8/kYVNTZ1VqYficSQQyKtqUeXVCAXq5HYVeEiI6SNIjDSOAxyz9a9YEmbpW4XeC1AlqUsFFrOEbhayM6KZ5he3dbsN3CMWRNGpWuk0CcHoN8QzujBafalcsfIb3Zdt3/Xdlu38GL779tJLMaoPnK3k1GlJzLqzsu1icwYxvmI906W7Flo/BbDcT7gneyacszacBjxNFSabC8U0nF8WriqOLenlCCLuLMFZYpfnzQYLoj/nDUQjBQUKVoFP4RPp0uFPodxBHZHe5dCZ19WazW2YhBGnBWN2eV06e8TwJglUn5LkmwrdkQO4x0pRnJM/e3ztTIOk36Mcr20olVzYRz8zWuv8va3dqu2UEMJ6Gv7puPxrkeK5BJxVey7hmEg2AFrYBwcSwxyjXvLNIFRTaEQhgwewzAdxTIJwCgRhP26bsGc8uxrb2CkYRNLH7EyksYrpqz3U+6annadhyCsM9HvFTkErSeupoUiM44jj4+PDEPgyT0xTIOweY2hZjmoM5ktixaOCH7weL13Bg3qLKWwxY0tb6xp47qtXb4hpgHn7ngCfEJWup2+esGGHS61n05pSYXUohl0GG8Y1pEhiMhXiFzCxFuWlapEjHk6UHLher0imWFnpmnCGAkkbQa6z8byPI6kdcEYgeidwtutarRdWs4SKDrq+8YN0aTnjtVCSpHnp488v7ywxYgPns1JIVqWgLOQrbgJRdUvFr0fi2lhuuI6In1KM00IhDAgxs2G9ffqxOWMl6knZeRsUk+7lGguA3aepVvaNnVcRw63IgUDDC7t5qO1Cv3TVu0sKZQUyUUi6mvREdhCi3JfU4MBRKDorPiElVyIa8TZgHeiK4q5UBA7nzYByKJYWU3G4N1OgJDu3XbdkaBabSfmPlmwblGSTtvE1fUpdtegwKfefO3hb8gL7Qa2emKUvNL2abJ4bXAhHRKwN9MoBvImqcPFWWpz4HYebyyj9/I5qcN5Kpk1Zmyp6ptWZXHbDkYtCvL+1/5cjGLvrTtOKcuuxzuGMHQY19zAGc62KI+G9xfxCdR95LoKBu8HRzCSEjxOE7kIo1HiL3YrsDCIF2RzVJcMrcA4eIopHQGwyOt3RlmfpWrNN7qK0OvOaHCnrQrZabPQCtgtNG2ymJ16q38uhBirmW3bshKcxXiPNUOflQGCC8qk02ugFEpMml5QMdZJiq4WG4GzxZPSIp6Lxmlytk6cBtkVJiDqFO1dwHnR0pl1U3jUMI4TwTdWrzQH8zQzzTOOhKkZUxKbC3i9f+bpwDQdGIaBbUvq9u712i4drvJ+EhgSCaPsr9FYaW6dxQVPmCYKIqJNzhGmkTAEMHxSoBr8NwxDtw37+cbv59m7rVBIpl8WvaeuCYZhlGSHnIVpq1Bhm2SNMUzz3KN5qHtoplWbr0EZlYbK4L0wn2/2jcGHvsNq0pGsBWyad8eSBsfLjlKtmdQAutbKFqMIygdxSXFOdqneWWH9JkilkopIYqxOvc0AvGX4BTcw+IEpTMI+LJVmXvx9Hj/owhWsPP3oEsHKjkG0C3u3YdGMrpz1EFSiAWCQw6MqHZuqmG1GhMy57caaj57CjEUzswQFFFhGqdPeawRAlODBtCWKheLBZfFXyxWK2fc40oU2AEizr6wAmJ1MYYyK/BRC0wOsmauCaExSzsqkLJ8UqP17q9npzesRMalVl+3d0brBVFLQ5ZfTibOzsBqmbei6K7QQy0RcIalZsfA5cMZ16m2nDW+bFKUiehHXlscYXW5LYc/I4V6VVNEZn9b2YisHq9wwsoNSzN/sz1n2LEaWz9ZhrKdpctp+R5wAhNnn1O5JdjdOYkUQu5yM0eLYh45ewOXHymdmFZqU6ah98vpQCLBDo8aQ+s6y7tCifHduE9HQ/WEtBeMMzfhZmhv5WkPFWX0O2ni0b+26VRQiLq3y/Ewpqlereq/IPdRcENpnv8NOQlypOjEWJ757zYjW+705G5T56LTpGcexR7uTVWlBxbvA4AdymLDGQ709yKcusL+doGfd/LZpueh93b+mVqq1hHEg14pNkWAGmd696wxUi9E93J6p18k/jQnY3mvok45z+9cJeUwIGs47/ChTh3eSxGyAbMTweKzKPEQMb9seliquOCEErJKwbCM01SKRPuPApB6EBtnXNVj21hGjpWx7L+SjUvcm0AdHLQWXrIiFwyDPpTvqKOLgA97JbF7LnqeWjQErhasR1cSGvglOJEbK2kpwA8GP/73j/b/7+EEXrsmPYvfkRTCaS2bFchxmjHOkUnFFTEmNHqQOWTbLhNHOskqJSSco1VzkrIw++uhrjKEmdcTWLgWk48oxESYxV825EvNC2mQqErF6YV1FtFmwZN25tE69VtB2WZhOrdCikSw5Q4PvGlyTili2tEmqNlhH/l/rvkoV3VKsWW5pvVCrRrdQIRjHOMuFv9VE3KJ2sZZgB6VhJ8KwTzjNFRxk9nPYTtmvxeoKTAx3g/UEHC5XXAavCqCUE+W6sXx8kX+oU9w8i72S1XDINUXZWWGkaJRKttp4ZIXOjMj4pRBWghuxYQQXiSX1FNZGOpC9CtKJV4ip4tSqKesbWXMlLwIbVf1z47wSQcVq1zoPDmwV/0pxEYmAOhhYQKchY5D9j5JTcsqKwKquRg/2iqE626cxfVf7zqxR6du20QDGqYg3CzowBXGB8c5iSmIcmm0PrIvu7JxjDrvI3Vrbu3BvMuMUpNlpYnpbsR4xSpanTYxNnmAZx5myRZytjIOjNkp/hXHwHSL0IYg8xYrG6Hi45zjPBBfUrslAtgx+4nh4wOFZlgun05VpKkzzkcPhoRe7xliLMXK8mxhHORvaI5fCVXV+UcM95/t7ijWc1guH+SgxONYw32mGWQj9Xmn3UoP/tm2j3kSZbMsqcDJeNHrjiDHifHNdrt3t5PH1635utN1ZLpK/d7gb+x667XFvX0ODowcrLGY/uD613b9+xedvX/fv6xXVoMLLy0ufBmOM+1QWwr4XB02Ozmxm03OiRa1IY3E8TDzeH5l8wNRCSivZQLBCk8eNRBsYbGawDlOgpko2mZIqOVbSpg7y44iz+2v7RR8/6ML15vVrhhA4vZyJObFslbJlVreAusaHIXBdrrycTlKwnKjXp3lkGELHYnswn4Hn5+dewOSmTZSonZjZIzTUK4Nc6h5dX5W2nPb4cYEoLKkYliUKi6xl/liD5B+q318tlFioaY9ER6eNFDPOFqq1+vPo0FGpRYxJS5EC2Lp31Wc04bW1dt+PoWmqtYL1FKxOmlCrsKqscWAKwVtKDRicdFk6Ulgr70nwFltFaFurmI+KBZbqcapCudieIZZS4ny5iBD56UTK4pc4TCP390f8MIi1kQrLBzcyzhPffvuOFh/hB+leDZaSDUbJAOMwUo3B1EKsYvFF1dgNQz+QTFug1DbVqYhaKoFAjNop3pQI/bqCcQJXt8kRNGLDyYTZ2GQ1J/2XRo2F5Wfu6EATwKo1T6lsWbwrrXMivFaa+hYj65p1ihJ9nLeW0JbdOlF5s0fygE7nZv/sqZLJVFVPU5G8s1ZhjfwjrBM9W8xZPvuUWcpV/eva3thRqdoISVNS2lSnD6t7QQksTKQojY2zhXVZGZ1ndBYJGLCKijioTr5/tRgT9Fo15CJm8jaA8QGHMDgrhpgrVV0/BDGQ6dk6eaZekQkUqs21MI0jd9NBip4WRKds1aKi9nZPHo9HTL2Rl+j92ijzrQDJJ6okLiuTZoPtOzzfYGy3B7j2fXxHNFqzCbkkUi3Ekqk1y64pRWKWuJpMJScRLtdSuK6LwHzed/SCnPtzvCWbyI/cjbwr9HNKpnrZa1sDg/fyHlTEn1TPUIl0abpLyzCMPNw98urhFff3D+QoWWpp/T2q4zoe7wjOEbcMcSPmIgdQEbgN3SE0plmDb3Tnr48dgzHaZQhFVaGfWsk3XyZpxbpzqU3LkxuY0iGYFlvinB50NMV4UfZjExXvuiBDlf1ElmgQgXRUr1XbkSmHnQQn0jOsmvI/Z8Gazc1rdzph3BpfUityX+2sMaP+iMYhTD8tXC2/ydQWdlm1mDZ2nUE3KwpfogVR32ezR7sPw003aizWye5RrHhk4mkBoe2zTLlI/pR1+DAKw01dsX0YesOwH04e58VJwVXJM5MAziLFVWHDXdwth11BJm1xUgDdTGnhuvGjq0b9gHUPqQ1HLkWhODUUNUatsFBGXcu/MuAK1RTR9BWjBU72XOjh4HzoRaT7VBgIwUoRVljZ6RRVKv35ylNVzzidKJsDRIeM2w6w74D2naUx8r/9Om/XWd2dJ0SCJ3ApyGe1xUSpllI1FLXt56zRhkXutVyVsGNFeFzaPaPXDrU5suh1VPS6Qv4+l0pMBWszJktBpEkNSqFEoYAPtH3xfs834Kr9WcuEq6X23Ki243HOETUSpE0yLeqmM3qduKe3n3O742rOGA3ubQVof1+b76DBuXLz9+3AaZ9LYym396ABdPLIqtESr01hE9dcyPpaGoGpTXu9cbs9UG+6jH3KvHURqbr3U1JHvXHeaM+Ib6W5AAB4AElEQVTJKEe77gXROdkftyn4sslkfLlc+b6PH3bhOhwJ3rNtEkoXk7qXd/2JYLUVvVGUzWKdwfpG994p6316UZr7rtlSjDxVBq8feIcTM+u64cLAoBNahwBrFYGrFq7cDkWUVlF1AjFC58boLsq2/Uez1mkWLKh63eGtR7klNBsb7bX2Cccamh9is5RSUJFaq7xfqt2RJNgRMJTquhAaDDW1LUnWw67BCxWvu6KkVasWKKlSM7RS7J3DDxPjNHO8e2CeJaZhXVdiqaRcmVfRu/jgxczYelIWP7ktZ7yymAoWHwacE2PZMEyUXElbJuVK8AaMx/hRwjhLweUKRuy7iopn0T1Xn7oQGDCWiCqr6IWrKlZvpOgZuZR6scxld9P2XqYfoehXgS6rUCy8OpMUY8m2EVGKWoKptocsP8BUpsGL11/OEippxAV+HAaCEy1NrZmSohCIUuy2Y/SJUacKZI/a9pqdfVpLZ90bI+xU0wqszCoqRt9oed4iDdkPYGOdFOdcWeMCJvT3pWB0L2hxpXVfVW23sgiP51kmYW6LqdwCpVZd/hc9nHUfnIrQ+Kvp6IXcxhKkWUqm6gtrDVs3sdXPrxqBmUsqJBKb28R/L6YefWOtZVEW3+l0EhLJPPNwf88wjEoucepSL+9HgywbpNiii27t2FpxaUVSqPRybcrUtZeU22LT7t3uJmOlie1FUoth03plfS4tJdw7r7FGe+bdz7OK28+y1uJoTOSb75v0YoH+XEo2ZBLF32bsyXkgxJbQyS05Ja6XC8/Pz/+d0/2///hBF67LcsU7z7KtRIXm5D6xymQKHB4emErheH9PM4AVUZ7sjeQiT9IN6vk+qFjUth2WCvNqFYuYWjJJC1eMictl4XjvmSpgnLoxy6Rg1Xm84fzTNPdupyj8V2NUzY92RWpLVQus16UfsM7KzsWaSrK5s9FB/T9cEDfxmnUxLx10qoYUCzW2P5ex83q94pwn+BE3IIdmRZhlee+w123FWfFHFPGuFPPcb7qs8Fdb01XVpoB1himMVGPJ1WDcM9N1URFp4nK9cl0ja4G7+zul8cK7j88y6TnL/cM90/GADxJhUarsYbABY4WVlWoiZulM5eh2UhRLY5HbNv7JG1YRSKpPjDIMtKgIOQSL3p+G3fB6h1drrWxplT2dQi7FyJRRK8Ie1TDNlCrXRZzfZbJSUkqWEbW2SeOGdLGltAtxk2SpeWsliid4bcIQOE+vDxGKGt3XyHulalQVwev0Z6xM6W36MHqQ6+srbZo2lpwT1+sV42UKrkVYuNYK6WKe5X2siNmuPGf5HtWIrgdrsUnRBcNu+lql6G1r4mpW2eXGKCavNZNjZIuJJMtF0brp1LflIjTszeK1JqIMtyb439YkhCIjBtIYmWpLqthaIUmjVYx8FjkXee9uCst6E5LZitF1WViXtdukzePU90jtaxozESOBtnGJzMdjhxLb10lytjRQjWaf89avgxar5Jwjpzb1FIUllamapIH2XmDIbRPP1ayO9DHKLrsVwb2Y7ysR2AtRc3Q35VZrpW1vqeTGzM5Zp+vdPafrUeXj6LZWDVbdYmRZFi7X36Mmux8/fsT5wPl0IZXCum2sMYHSrqtVnzKgQWIoNJBLFV1NTpQcZdltbU8SbR2JHEYGsiB4RQ8d6UTVmaFBkEZ69S0nlnXjuqwU47u/WINV9o5LOsNckuDT7ZBUmjDI4tspzJmBTfG3VrSsVd2Gd9hJbIZsdbKkRy61qBeOiJGb96LDjzPGOHCeLVeW7UqKmet11QNNurktroTgGIMjIAd4OzgkNTeS0iYCUKcTlnNaxQxZAxLXmDgvK0EdEgARYOYi0E8W5lqphfN1EVtQbwkxYzYpTIXKskmAZzUOg0Q7rOvGddkQpM3g3EZMUd0CkiI1td+YtU3YfTyR38dN9oS1Fzk51K27sbdSuK2Uwho3oe5rV426hAhxJsl0WtQhwo84r599lPThlDfWLQoDNRWFjOVNbvutMATGSXeGObNu8nqdM/q5BH0J2mxYQzEVU8TtoE0ipU3EtWJM7i+v6RdRSM4gdP3gHMaZnsRsmlQhZ5Z1k+vDyb5pCINMDMaSS9ImUiBEgeNkehbGpB6c6jxzuVwZQyBtG6tEHuAAb4XZmJNM+sZ5KV4K3dZWLHOhmqTTsd7rCsU3txyLPIdWwEtWSKvIe9LdbcrugtF2QAaRUYzDqBlphm2LFBUOe+fIMauAuiUrbN0ZQ3LPpKCXnKnOaSyI+ZRg07D1KhKf7u+nu+LqRZuYk7CYxUxY6fdJJD+1qOnyDZ0fJF+wKoW/NUHWWrJautnGKq4av5L3a3EncDT26A6cy6Uq51pwgezlrGu6U9sL2M7qdNb2Yvx9Hz/owvXu/Uc1hV3BGmKSGxprxbG4yp+BvPltWV6qdIbSSW3kHBnDQAi+73tuxZGg93WuFGEu9J1VrXRfO2GdFdYYua4bl+tKtV4pu42+rzuH0nKAtKtLksZqjOxCWpcITSOGEhqiOtnLxBWCao3GkWGcJB21Fky1+lpLD0YUB3iL94YQDPcPj30PlQqcLwvX68LLy0V2Uk6CFVPaGEuQZbsRV48GD65Rot/XbWX0gSF4cJ5RYRSZHAuXTWJjti3KJGZNh2K8c4QwcIkiAs0lc1423XlZ/GUhVZkecy2sm8SklBop2bKtkWVZOZ0XhliIsVIIpBgFCtOx9LbgVF0lNfJ7e6TU4lkqcGOV5erP+VbKXmvdNmrN/TDGQFY4LaZNwFIr9OR5OjAMI6WI8/u2bcR8JpaVNQpBoU2Fxhrmw4FhmJimicNhJq4b27rw9PzMtmxYC3MZGMOkUGARd5cq0jeT5Xp3ZidKFN0Vge4t7c0uS2US1VTVZRllGeoEVujWPeu6aq0WQ94yG4IXu6fSpjotABWZLqOydFECg9cJ6ny+iG1R8HgL5EywhiFYghGpgalg1Ocx626laDEWtEXTwY3VsmYx6hZC240V2Qs2OrvBKDlFIF3ZCSki0d8vaeGaq4h89pVt3dhWobNba4lb7IbVjb13O80I5Bs1J6xKdIgWrtakygpCLte2hihtQaq/hDylAuh2MCkpJq4btIktpk/kMJJILp6BVTWrzSatNem3k6ZMarLayOw7tdb0GuRiapOisQ4zDEQ9u8TbU23z6h4RAzJBhmFgHH6P0uHfffyItU6MSv1ALoXz9UIsFes3rFsoKpKkVELYle4xSlifGJdmbE0K74AfBjWlTNJl6nI6d5hCrIX8MCjhIACiBYq5sGyRZdtYtg2cRLJXLH4wXNdNOkPjqDhxt/YD7ucWoyjEMg1j79pTStTlCkRKlanD+ID1A24cydWQtkSqSk6RGYMtyo4kxsIweIwLjIc7/tD/8kd6jtPL8wvpZ9+yRkNmw/uJMM0cjkcRp5ZN2UwOawPWWaYwYf3MISdKThymmXEamOdJYBnF47frhWssXLeNl5PAA845pmFkHAIhCGz19O07khb0cRjAGraSefr6G7nJvWMYR7788kdY49i2yPunF04vZ07PJ56eXhiGkWmaef1qpYVeOr+bKwPdZLcUuiUWqGWVfgxyaLWpRDKQPlmsKyEjJsmKMsbg/W4PlnMmxU088oagbu4zwzhhjGEcBUoe5jumw6Pa++RdE2WsuBwMA+M4ME0jJSVSjIzzA+tyoZYsnpVhj383taBcFUo1pCJMWWOA3AgzKhGpYI1KCqr49xWdSmSytHhjpZBjNPQ0ME0z43BQ0WmFakkxk9NCZSNVmbzaFdhkCMu6dtPjtu/w3jN6z7bpFIHQ+YM1DN4RDFppNcoliRHyNI+EJGhEi1YR9EESA5zu+rZlVc2RNFDOymSVtoh3mXjdiNeNmjJp21iWK7WWroNKKe0WWM71BnBd184mlYlHmsPbmKBWuKT4i41Vgw9bU3x7XdL2RaVB1HR4sp8L1fbvkXNuoAYpJpZ1oRTZJe2hlVXPu9iFzm2SanClvHcCN5YiDv+n00mZkODmEeespFTnkVJupkQ9q8Q2yhNLe/77vdJeQ3s/wjAw55nj3fEXOO0/ffygC1dMBWsqa0zavYkrcqoFm6V72aLEVFAKuYrgsXWawzDinaQde7sLWXOp0iGlSM3i2G6AqmaVGDRh98A4DAzDxLpFhTLEGXyaC9V4wiAmoDjXO0TBmsG40G82UUaDwBz03YCoy+UICLUyzYcupuzeYMZgvWXLiRQzUXOMWvGrRrwXPZ4wjgzzzDQfGacDk7HUUpmPj7jhyOOrM/evXxjHmXGYmOaJHDfW5cy2XiQWvsW1B4e5a3h2FdJA8ITg+eZnPxO4gUrCYPxAmCtHnSKNdprFwJoLy+XK6XyiRdFXu8sFapUCHcLAfLhjnu+QiWvFh8I4QSmWXKxmrw24MEATQba7G4U19Fox6hDRGFzOoIQLycOitF0XevLLNSWfhnbkihEblPxgm8mufI3Rw34YJhUxe8mIm/T3weOspBz3565w1H/9r/+FohBPLlKUDPD6zWeAwkfaNGwaykkROQItwqKzUwGKMkMrReRs8qf6XPuSl/oJ/bnBRKWKAN36wBwmGQJKYVul6Oas7EoqWIetiAdjaU4lpU+z0eyi2CkMNOamNFxKAimGNSchnmSxYXPB4YIn5sQQBoWjVKKi0oDscj9YSxL3FtemGTVYLlnjNmImb0nupUFWBc1tBjTcsd2a+mhi5LZflkZkF1C3A7v5F3qvBslxNzlotl4lNyhZoUpTbtihDcJV4F53jtaIRVrTpDm771ylgfL9+4npuGlU337O9YdObP3s02muEcmoMvHe2kY1Jx96s61TbEqy7yq7GBzoE24PPy3lE+jw+zx+0IUraVzHlrOo9aVfk+lFcZG2N8g5E2oR1pd66IVhxDDADX28GtiKkDbWLaojho7zRQ40g9jyTNPEOE4MwyhTnnVilTPOHIrF+QHrm0O9QIlCTpP9m3EO06IyaNRlfXG64CzGdWjNWTG73DUdSRawOZM0sTkW0XMZhZvEPshLZ+0gjDPDOBPGmVolgM+5wOE+EIYD11crD68vjMNMCAPDEFiuF67nZ66XF9K29htkmgZG1aU4q3RvJxBNzF8rPAFg8eOIDYFpOlJRgkwWQ8+UEzElifpQGGNMmWqbjszh/EAYJqb5gPPCFHW+MM0HvB+ZpyPTKLEPxjrGcdp1WRVJQG5doFPLpe4u0d5y0yHEtldoBBVdnXRotYKSG6Sbbgel1SIgjYfdC9IwYq2XYmZkyh6GifnujrvjPeM0M88CDVotpqXC9XJmXa9czhcsQs+eDzNjCBhEr7MtV87nU3etKMrYozRvybY3a1NwEWKC4lLtU0KnFKNxNY2NWDtkuL9+FwLCC6mkWACFpqrYpDWYrRrXoSpKX7h1hl8nZKu0oNmmoT8r5kLcEimuVApucPgkaddpyBqzsmvZissUq+L9WgUyrCgd36Lqks4UbVT4rBMzVaaQpqnqBaruWVutONRSO+QmzhJ7tt3tlOS9hwwm7cWohXE2izNjW+Fqrjn010Bt2lFhS2erOjktJvL3tk9Au0G2wqBGrmHDjbWb7tlvi2/zcWx/b41Rz9e2stghv6p/3+6vWis1pZ21yz6NycvY/30rWrdoxy/6+GEXriTd45oTNe86iqI6EKOU3i1GLpcLw+B7Fs793YF5UtsZJ4yjoov8eDqTy8q6RXJKBO8VjpHFtjMG7wPTfGQYR4xSzdsB+/hq5HAnwtuC4bosqm8xeA2QxIghZa7KaipRJsbayCT6wWPleQ8Dd3eTsCSHQX31rlxOZy7nE5enD8QCqRpiBtTYc+hCZ4txlvkwM00zfpj4T//5v/D69VseX73mR199wZu3X1CrJaaCd4I/l5z58OE9Kb4hb1c+fnjP9Xol58wwBo5HNdNFXLVjisRlIWa54Zy1jMeZaZoYhoF5nKhVsHZJ3X2HzYlhrgzz1I1o1yKRE9ZayV0bJ8IoJqPPzyfVmHh+/KOfcHd3z/F4R06wLCvrKlDH6XJm3TaWmLBe9VVaaFrUQi7NY9KCVXPUUsT1Peeuz2qndkFID1Lw5LvlIrs0i9D1jUGdBDzDODBNB+b5TmCmLRG3wnJN+LCxbIV1LYSwMAxnouYXlZw5zCPGBnJZOV83SpIMuWVNHI8zgxdz6GE6gnFYF8hpI8eNnIUKTS/eWQ9g8T903ukBsksbjGk7DPq9BCJydvPM9bqybSs5XwnhqrsO2w9p0TMNXFaBpZoJPtowBB90uhPxtpAQKtfLisMyBIm098iBJyzPwhYTyyK76JADPhchjJQqgZFOdmXVSVOYS4YkXpeHeZbP3ToJBg1SiFzd9DkNeBekAKlVWIp76oT36oeq002D+YZh4PT88gmJqz122rhMla2QtMLWJp5bWnu73281Z7eC4FYcrfWfTD+1SLKxC6a7YbRYltSKk9mbtnEcP/mZTvWd3vsOMTaRNIr8RFPUX9F3EodzFt9eaxY4OMYNM8yqdfM7AcPtWW1NlhBjJG7xe5/9P+jCFbPQpb0fpEjUSkYmI2cqHst1k9gAjGVZNmJMeL92tkzwTvzYinSiBdGHbFGC9EpBjXGjLC+1B72uKx+fnvWihct1xfvAOOUOU2GbS7aGF5qmNdlTQUE62qQdWK5C50UZYiUVXHCEELlshSVmNSc1LMuVdVn011UOAxAOVZVF8xLPAjlagVjWLeLcRaYj4/jp198xDiOvX/9nXr1+w/39A2/ffkEpKy/PkpR7Xc6kbSWllbhc1KpGaMbzYZaLvBQul4uyBBMfPrwX1Xzw3JWjsAZjYrkuEpuQopARdNFbSsY4ObSc8/gq1kti4hpIqbBcV2LMylKTm/56WXn16jWPj6/wbuR0unC5XHh6ehZadhUn67yJi7WpRmj12klmYzpbrxoJPcwqk+hTh+L/lQp6UIm1UwVkN2QN+DAwDtKJx62lOcs1sK2b0t/Fmfzu7h6D4Xw+S9GxKykXzpcrmwo0KbkzNrd1wxjxg9y2RNw2sXKyUFMipUjaNkqJPdk7DNII1JwoRXV9iBg5twnHud7Z1yoQedVOWMyTG3EjUjSN12sRsKp/K0YsoUrN5LxSm3hYhfTQOm+joIJkvXm3Ww/JzkumpxzV/b9mtmUlpiRkj9aA6VSNumTkLLuuKhVX9lmmgil9j+Z035n1po4xCYuuGLwNhNHig2o/Z0EanJPdm9H70fuBZmhea2WeD70IDMMk6IA6t8zToe/1hI1nNNFbTQGcyBrWZaVk8TScNDtMyBfKvtNEdFMhbREh6wqLU6a3Nl3CEMRH0GAI3pOsI1YhY4zjSNCiKQQRVFNY9r0aojU0w0iKUbwyKYL0BCFUDMOgzMpbWr4leE8YZjaFCtd1UwchmcTRAmqtJWlDFYbfo+7w7UJtrsoyye8WSwXYNK6gOTtQCiaLVql1Sk5GKYGwKGxbFHZZVW/uLN87m0IzZ02pyIIW04keYShgvBjEqoo/V3TxXrAeYhHWVsZ07U4BtYjSEbruJrI1V2JN0okXOSS8OkFv20Laol5kok+peqE1aGNTqyHnC9JXJozJ/TXUIiar5/PCskrGzzAcSDHz4cNHfvr119rBR0qOUJMWpyyTKnRa7fl8EnlBKcSUKVYmYr9uwrjMBWcMmx5MzZ2gOYqI+FpufMsOiVpt3UuuUNO+L8mZF/vSDT2H4cD5fOF6FXZk0Y6xIPBvLyRWjXitQMsNstHSREHgZzlrZVIF+T1Ghcqq8fGGDkmmUjBR9IFxWQUuRDPT6gug7hJbZAgjtRq2lBkGiVNZt42XlzPrurJuG9uy6Pup4mYn3oMCL2W9FqvAaA0izJHBB4YQGMfQKdk5Z2xpMozEFhchc2hNaU4HpbYgVnq3LGSGrR9STglPTQMnDiHoHrlQkQO8W0w1NXtv9NtBLhNN8LdZX9K9V93VNUr4PjW0wmV7Mdy/t+mFocXIW4Wb9+QD1IVDvSNBC4nvKwEpdqHvfFBI8NaSqeRMCEOHzpwVizR05+y9/N5u8Uborj+v/UyljHdTATWJjkoiMRiJF667sQFVHPqNM0qakhdlFC51+jpbUkZrPLzbgxub4cItMaTtofbDVZr5hgA1hmmzj6PcFC6r0VLesyWRecQYJYFcw1Sb44gY99Kn8O/7+EEXrjCO1ArLsmAQHzKDCIgrRjQ5eVNn6oEhHPCdDGF05Lb4MSBnvZikXtdFfNkAlFLfupRh9AyD3EA5Cw1VmHKGUi3ey64mZV1IV3H0wFjmMHFdNzFwdQG04MaUKeeLwhsFxgmmCbwHHyAncqpcaiQCIXgG7wGHcZrAO4ycn5/Y1ojzue9mZKEuexWn+xZrZUp8fn4vQmGls3ofSDGTNlmin17OfHz/AYnvBmdhGDx+8v1g86qUX+ut9xqM49Dhkssi72cIgWnwinNXTRdehYBQ9wy0dnMYvfmccwwtyNBaIglLFl+6nLmcz+SYGYaLuFgUCcksGLKBlSI7RPRmdeJXmOoOGTZHk2mW3d8SI5d16TuKIUx9gX29XrlcLsRt4e44SZOTE5fLlbQslBghbji1uDmFAdoO1FghBqTKdDgAys60kteVosDTWeHt5sAQ49oP+ZIyMa4InTuzbmeBv4zher0QrPhxHg5Tp1qD2P8I++zK6fRRonpqswGROuCcY5oGhnHg7jgrsSBxOp3292IYMGbqWrxmHSSL97bzUKJHS11A9yFqM2aB6sQNZQqDJAtUevyGMB49rsfTVAkDatTrtvOxFocyHtvBqj+rFREpzqYf6BV0L2v7BGeVCOW862LfpuNqDhy011h18r7ZFX1CeNBHp5krwep2p2P1Ncl2Ww/woppQWUvtv3RSsWot1bwPTalkLYbhBoJsrD53U6za62liYKALrHvxVTp8SkmuPW1CGRxpliDU2/1YJ4f4CsbjjZoKX68sy0LcZNKfhoG7+zseHx95eHzg3bffssVNkLDv+fhBF66f/MrvYxgHUbCHQKmV0+nM288+Y5pnxmHk8fGBeT4wzzPjOAirKmfO52fWZZGDosheZouR63rFDCM+eObjgeN0EBp4iiyXKzGqb9l143q5qE6sdtufGBOxQ1kGF8RKyYXA3eMr5goZS3YCXzSXgnUVqKgU1B5pIgwDYZxJaaMW8TwLQyB4YfSpyYR2cJXlfCbHTbJzfNCbxjCMgx44AafL05Qz3/zsZzw/P7MsKwZHXDc+bu85fXzh7u6BEAI//upzXj0+ql2R5f7+yDgOhMELq8vJzX29Xtni2rF454yo4y8Xnp8/9v1ASRvLsrBtGyEE1jVQSgIEemyMRQMSDa46rBb6KdlNB9lL0Q5HFaLGiLWeYB3BGRLCB/DeEjWNSkSzth+yMUWME/isOZcbA6/evOKLYezFqrFTjbV8Hr4QHV6KnJ7eMY+BaZBkgPVyYbteuZ5eGMLANIzM49Q7djAsl4XD/T3OOS7LxnES/8XDNHF/POqus3K9LLx685rXr1/x5ZdfCPR0vfLt11/z9PSBWoTJ+fjqjmkIDD4ISUP3bd5btlWSjtd1YVtWdX048+HDgVqzdsq27dCVlKIxPqYoRBwRQ1+LV6NqK3lA4qKxrSLDyIVUK9V4mk9iKyIVcVpphct7i6kSePnm1WuGIChBTJEcB923GeJ65WLOXEtmWyMMvk8RrXg1LdRt1IpMx7JLsRWwTTclyEQrIrlk+ZXECs6VxoLM/aCXpAb5mbfhke2xU9hvCnknLmihq2qcXVuUUumTnEQxyVqgmsY0VIeKWiRt2NjemCuds3+PRr5o+isx36696etFHnUPgX5di9+iWn/J6C1fr9ydKh0wOe32VKYayDehr0V67mgc6yZnpUxcEvQbQuCgZ3Bz8n95fubdu3ff++z/QReuX/nVX+Xu4Z6cEuM0U2rl/bsPfPGjrzgej8zzgS+//ELEuWFgGkeoQtt8fvrA+fTCslxlV3Q9y029Lnz1Sz9hnCfu7o483j9Qq4SrnZ6feX5+5nw68e67d3z48JFlWbiuC9uW+iQjTB4Z/8dxkt/7QAijLJ2xZCVyiKnsgHEBMGAdwzBrUNzINB9IaVM4q8h+y0nYJKZR4sGZSk0RU6scpErNDUEW0u1QLmkPuHs43vHdu3ecTmfiljidzmzLxvV8kjC4w5FhmjhMspgN3nN/d1Q25aBLYMn+Wo+C94fgtUkIXK9Xzpcz7999x/l8ZlmunE8vvcOTbrACHmOLHIhWoZ5cFPoSyMjpjsD3G1GmSINVFmCj+8kdd9utBu8xam/UwzFr85q00v4akBwlOTCneebx4bEH7p1OZ3HysJaH+0fRw1H5+O7A4/2R+8OBN29eU1MirivX0wsOo+F5QQ6WJAvp08uFQVmPH5+fmeapMw5FzC7LbBcG3nz2ljdv3vLjH38ljhXXK1+/fs379+8oJTOGwKvXDwzqkXi9imTBIkX/ou/79XohRzlU1m3l88/fCn08CPmn5bctlzPX60Vi27dFmrYYPjGUFUhLWYON2l0KYvxr9LArmummbDfx/pGP24jzu1hTGW28GuPT4Qgdwixpn3xSipSqUFNjw0EvVs3fsGOC7BBYaYQPu3uJ2rp7irads2jZKlahxtbgtKHotjh1xmndv7az9X6+cAkrZfeShF2ErLo9dOpvJLD9emb/OisZWu1xi7Z94mFodpagSE9cnxCBDvs1h/taK0O7TnNmGAZqMpjqKA59PUXhcfE4bJNgqdIIJyVl7cJn+YSck2SNRnhpaIusWr7f4wdduH79f/11Pvv8C6y16gJh+OlPf8pXP/6xFq6Zn/zkJ7LwVbaMQeCI08sTL08fuVxOvDw9sVwvxLixpY3Pv/oRx7sjh7sDrx8eux7j44cPfP31T/nu22/5j//H/8E333zHx48f+fbbb3k5XeSDMg6DJL/6YeTueCedvlXIoAUPVksIE4fjkfuHV7z97AuG8UBQM1o/DPgwaL5X288UvMrlay2y21AoxpE5ziPTMHAYhO03DIFxGvSQEV3a+XRiWzfWdeXHX37FN998w9PHj1zOV77++md8eP+R89MzqzsRrKFMEzVH9Q6ysiPUG9FS1exVyADDIOLjh4d77u7uWNaF8/XMw92R9+/f8fz8RIqb+N51GGWQqAknzgsN0knrRoyQbaKkQtBpbPCeuEUKouGzzvcoDtkB71BIMUZ2js6I870WvIoQZnIFZ1I/NH3wkqLsPA/39/zoiy8YxoGK4bt378V921p+9NWPeHi4ZxwCL89f8vbVK16/euCXf/JL3M0zlMJ2vVA2ITM4oKTIh/fveXp64unjC8Y4tm3j629+1kkGFcM0HSTCfp758S//Cnf3Dxzvjrx580Z2STnxkx/9iJeXZ3KOWAPzNELJCgWuXZQb48rHj++5nM+cz+duL1Sp3N/PYnw6SnOTUmRbV9599w3v37/jdHrm+eWJqJZe27b1fU/zqJP3OqlPpbhSeOeI6thBKZhmEalTAlVcPRziu+iNIa4Lzo67Jsv5vmdb6q5Xkpj7SZtDtQDRvdi+vyp74GpVWzUjQazGqqeeeNZ/Uliav6jVabNWnVB0WhT4TuFrhUibO8Wthgr4pGhJ4dwbKWdvUxpuNGFaCPvP0c/J3uyWQnP00deY2ae7Zorc/vvn7ZS6BZPCiQ0ZqXZnRE7j2Ek1JSZ8TsSSJcfPKqknZ7Iz+LYDRfS0JRfWZSGyx8DcEjKawbS7IQPl8nsUKnz3/iPYQAge1M1h2Ta+e/+er7/5lufnZ0L4f6nGw1GrCI2Dc0xjICsDbluXHvf+8PCKcZyIW+Tbr7/lm9/5mVyoprJcr7x/956X52dqqtzf3TGOIw8Pr3h+OfW91um6qPbFMR2OStuXi8daL9EapUKq1K1Q1sR22TDFQbYEM/blZV1hb/cscRW9Vkob23KmUZm9M5giHmfbKhiz4PWWol329Xrh44ePrMuVHDdePTyS1oXBWe7fvmb0ntd3d8zeSYy8tZTtzIfvhAhgrOXdd6Pq4DzTJKLLFrT58PDAw8M9lMLL0zPLeuWyXPjw7jteTi+czyeulzPbupDiRskJ0KTovGlRBqjkKG4GLc7eDQOOAeOLOqFnMSimOV57MJJ4jDGEMDIfZoq1nF/OFBWeO6P7rSR2W5tmLBlrqWkQUTqwnc68N98IBdk58rqJLit4rk9PbKqbKjXx4d13eO/4L//5t/nlH/+Y+8OBwzCQ1oW4rGzXhdPTE8/PT5xPJ9bLlWGYSTnz8dufiVYpJbYYCcMkhWua+e7dO7aUJWctJSk0YeD+eGSeJ8YxME8j8yjNiamVbVuEIVkyy3Lh6cMHLucLl+sZb51OKJWPh1FhWUMpiety4Xw+8+7bbzhfTsS4ATLhj8PAw91R4OB1Y01R2KFbFDuxWDrJwGsRrEUbh+7WQQ8drdQOZ1IrcV0lfj6YfrD24lQr3skU77w0LkbzzEpJQsCxe+JwzlnKksJwQ2j2bUbhR2HxGiOMSplsbb+GxWcviHWaMRja5KAFuEItcj+mJA7o8rA7caQXrvb3CWek97v1Km3TUCN8SMGElmzRyCFtUmmep7e7sl4YjCW4vUAAvXiUXAS5RaBOYS1Wqvoq9kdF/RJvi7qQpm4p8+PgJQioFW3Vxxkcy2XhcrmybpsQrnQ1YXXfNs8zr9+81u/7/R8/6ML19PyMVaZK0UC+d+/e83KWpfbT05MuYcX0dbleOlZ/mAQ2rDUTt5W5xRU83vP0cmJZF15enrmcLxIvbsXk9HQ6sS5X1usC2oWUUjXOGiqWlKtQ6Cs952dnmDlEMSL4dNoi55cz61qwLuD8wMPDG473DxyOR968DpTOripCw06RmDbStvVdgDOeZVlJ24oxhbPuhKyyj9qeY7mcSXEjp8Tp5ZnlchWjzVLIcYWaGfyNCaiTGwLQPUWLzzCkuAktW0XdwXvGwbNtB66XC+frmfPlxPt333G5SjTEqjuX9nxiWsgpktKKNSqYrZDTpq7Gwoiq00QOEUqSVOKYWK8rMaZPptk23c7TQXZX1rIui6a72L1w5ax2V9vesZYCqZAUjomXiyb1BoEQNda9XFeyuhz60XG5nKEWPr77jvVy5v5w4G6cqHETN4GYSOvC5XTmerlIWq42OXG5SuHKLVVXppicC89XyZhrpr9O3fkH55nnkcM88fjwwNvXr2SqzonT8xMxrqQYWZcrp5cX1mVhWa/S2Og1NI6hTw6lpA6ZPz8/Ic7klWkYMPMkmXRJ8pO2bWNdVrZ1N5GtVSjykhJtdUeGuiiwE4VygxLpE5ipVXSS3nZ/zhTFVV92yxtisdZCGPXm1wMWnba6SLgWFZbXvg8qVu5FgKxmuk0Eq/OUOuP/7keDzugT1D5ZRWVaAt1t41aj1SZV70R2EZw47TeiRktA7n6CSd63JrFp+VefsiqFzdxIO1b3vraKrVP72SkltlU+p/bcWi5WVeOGWxPeWqs2PPIzT6eTpI7XTPUWP3hqlYR0o6zCnRlsMEZJO1eRynRhMu2z319n8JJndjgevvfZ/8MuXE/P4BzBD1zXjVIr3377XfcUu1wuwqRTNtrTx4+SDFoL8zj2BXOKGwc1Mn39+jWlVp5Pz7x7/56P7z+I2E47BukmM85Y5vkgugvElsj5oAUsyF4qJZIRLVFzplf7Tyxi8LmljfUaua4fJGfIet68PvPmjQiDD9Oxj94pRylcWrxKSQqxOapzXNeFnDdy3rBVrKqcM33aLCpKbWajL89PbMsq33vbuJxObNcVZ6ruhVS06L1EGCn+L8wvuTFLSmoDZGXvNXiW68z799/x/PLCy+mZd++/+yTmQfYnMgFeri+ktJLipn6RDeKJ4m4BDD5QYyQNAyVFBjdQtsi2XDifZboV2rrAltZ57TLFaiterxK5YIRqL7vlrM9l6/uDmit5FXPfZdsITnLKhmEUjF4L18U61hTJNTM/zDw9fSTFjXkYWE4vHOeJwzBgc9ZO2DF5z3qRhmdbV6UyF+K6SNZUzpS4UaqkAJRa+dnTt+KworTxqkSCqP57x8OBzz97A/mXMAbiuvDu229Y+o5qZdNDLsZVdlxxY1mvSteWR85JGqG4EbeVECxh8DjuGMfAskaupzPXpWnMEqUzwpRy7Rwle3I1/X5ofpDNdb3kqntJaaZqFhZtUCG1U9JMbrq0tClEKQJn2YkKXV9+MpJ4fQOt1SLNThuTGq1essHocGLKwqYtpWgT8il02OCzxrxrXqEppV642p+DiO8b6xXUCmsTSD47jSTSc6l9z2VZeuEopZCi+KV677tEpN37+3OyrOva7yfvBXGwFdbVfnJdixGwfO1t4ZJdm/nUz7AK9Nle5/PzM2vaSLXg55FxHun2Ufp8m2ejWJe5bnclzUztTUFz9mk/z6mp9jRO3/vs/0EXrg8fP7JG6SZax/r0f7b37rGyXmX9+Gfd3vedmX07p6fn0tLWUrl8KwURoalEJGnTFglB4Q8EosUYkFqMXCQEwt1oFRNjNAb+oyYCKglIJEgsl5YgpUqFVED6o7VYsD1tz2VfZua9rMvz++N51pq9aW1pgR4PnSfZPd17Zs9+Z81613P7PJ/P1g6a0RhNM8LKygo29u3DqGlQVzUm4zH6rkUYmIU787xFKaXFyJvpu/9zN3Z2tjGd7qBt24LIGzVNUSLOUFMiQj94hts3zEox73qWEkkEV0UeKFYK/RAR4xQxMbO60hYEzhLmrWe5cWjYVKPSNSgC0+0Zur5D9B5ByjcMGxdmeMuS7XVjMZ1uoutnGHwHRQx2qJsKk9EYlbOoKovG8iyQ1Rpt1zHLxeCx05/A9uZWGQ6sqooFGn3AaDIHy0kwJRZnkTycmGHQIQZsHj+OffvWsb11APcfOybsFVNsbW1JFMblRz5UBy4ddnMQCbwdvhxySBFaqG4MEQYAkOylBRCDzNt5GewlxWTDxgGW0M2m6Pueg4mmEdZvhmmTwqKB7D0faJrHG3balmHplNBUNZx1GFzF8GcjTPyuQgBz8s3aHXRDB4Apb+6++27olBD7Ho3RWBtPsG9tDQfP2I+Tx45h88RJtG2LlRWmp9re2UHdjAAwgCEOPSPrTNZ2igipB2IWIORAa7vvcOLEMdxzz/dw5x23o3LcPzh57H7OqGMoTAdaATYDHORgm+1sLzIOShK5K6yMx2gaJo4e1Q2szPjde/ReGbhm2sfJaCSoUlucTUwJfuhhGmarIB/5c08Mg6cEKJ0AikwP5APi4OG7Ht4oRC+jFW0LL1l5N7TlsLdBoW4qGShmZ2CNCMOa758JYvqkEAYAAhUn4oFzWUOohCEO8CGgitJXE0b5HLTlAzo7j92wdy2PExHvtUK1tGDPGIYBZBSS1oBNiD4AxHpZ3WyOMuQuQ7sAoOoaQfpGIQQgpl2weY3QD2WuLp8fAETpQi+CRMmIcmZVQBjWsbYaGJeUBICSGelzJjXIfWBHNbKmV9/33NJIC/Z6ooiEAOqZDo5LrqIMISVRP7CT67oOXc9BVc4QH42d1o5rNp2i6zqOXoZBiD65OU8xwWqFbaXQVZwJdV2LGJhJwMhchDUGxpoCAQ4pcY3WB0b41U2Zn3GuYsYAvZjhyASiPMzIN7aTeSmlNepmhG7I0NAFhDj5BFIRgGY+txgQBxbM2zp5P5A8pttjQDOs3Ivjsob7CFVlUVUiIWAUjAWm0y10/Qy976DBG2g0qrG6wkCC2jmMa8czH4pw3913F2STNQajpoEZjzEZN9BKo5232N7aBoVBei1JSEolOkVEDIy47PoO3rcIoQNRxN13f4/F9oYe/dADWDBspxSgFKGpKzin4YcOfTfl208BpBVHcYLMbKqKZWcMfw4s6aEwHo8xmawgU27V9Ri2qmCER673QRjMhVxWyhcAFmABmddLMjtEoiacYkQAuJwF4kwNBNKKASOJBR69JhnMJvgUMe06UAiIfYfeGqRhAIUBse+ws7WF6XSK6AOaUY2mbrC2toL1jQ0YbXgd2wF9jOhjxEAJgQJS4AN+cSgGLpmmiJCArgNStKicBSGJnIQVVWApQ5GgLRX3G5pRI1Ewl5wgM1GurlCP6sJKr2WcwDqDSmspB1fYt76Opm7grOPZHelrzLsBcIZBEDEVYc1ECZo0NImAI/jAoxSR4gBKXLpUVmHUVKjJglKFZjACrQ5QmgR1yvcf7w+9B3SAXTI2CosSIMnfTBCS3V1ZVeHUE4RHnifMZfjs9HaX7NiJZb2xVAQyC2RQMnwlMH0t/zKqLjGrjgBGMrVbvre0MXDSf1JGoXK19D1ZoZwUsU5aSsI4YtGMakhJh4c+rAFFZiSJieH8XFngnqWTfhULPHKw6CpXgDBDCDCe2fwnK6uoKgetlJD6Mu2dcQ61VqxKTWD2/5ig1ILeKcP985rmcRMo/jQerZ3WjqudTREJUsMfEFOSaExDEQMWKMYFFDxmyC6JI3Jy8Due+YnEfY/AdE/KVGhEIM8aDeMcT9VrgxzgcQ1ahje1wHxlsFEbPkyyM/UxgBKzsaeQCxSGezMxgqJH8gGzaQSlAW5aAQrFOUcf+ABxFnVToaqMvDcFpRPm8230fYshDtCKB4LD0AApYnAVBucQa97oGoQTx48zw4JzWJlM0NTMc7axtsplnBgwpQjfD+gGj34ITBGUZ36I59YG7zHv5kz3kwIUCPfffy9HezLAmQeKkzEgxRvWWYNKaSgK6Dtu1ivpoLMoJUOv+UZzRaCy73q+AZsadc3Du9pYNNUYTihphsFDtx36waP1AZRC6W1wwJGjzCAQasVBRQiSiUdEz8FIVATSFsypQVBgZx1TRABTHYEIPgBD4Pmu2HdI1rJjDB79vOUSXs/qzzEFQHMfaTKWAWT5jEMMQAzld0lKfPkgSMQAFaIIRMIAgqIKJjO7aB7CVZoFBlOKiOCzlEBQmnsWCDzbFkQBQRsF41hLyTgDbXVBBtrKoHYVRk2DlfEYZ55xgEcurMXQ95hWFdq2g7UtPPFrInEWmXQC6YSUdulOcfTDzisGBmso8EhE5WStLZwBvGXAB7T0fJBgFaMSjdIMelC5WMjOiv2QFlWATNQm4pGQsmHpG7HTyuAN1pOSx3QeCWMnZLQujlBrCxY947XONPI5M9NGZssM36e8pgYgDR3CYu5MKZ4zi1xG5ZEI7sVpo+FcBVdXsJXjoFERtDWIMRRG+mpUFaBWmb+SXh+TAcsIiVaoXQXreA4zxYyqTMIlmVCFiG7ooQcmTB6NGuEeNKXPpw1gLJOEZx2zzDakxEFmRpXivFSehpNPIDP8Pgo7rR3X8XvvBaD2pMFJKUzDgNCOQEOHMJkIxHPxHIBKPVqLyuxu+Gq0LBEPIjTjkUgQRPgIWMd0UiFFnmNy/EFVVSXXEhh04IMANIQpm4TNXjOrR5QBZb5/WTVWxcTM9r5Fv7ONQTOQgJWIebqfQkIfCH1LUrfmL1sZEAKMihi5hdx35QyQGPlF0QNpgPMOVjN5rVHCGCBN9aFrseUH9O0cW1ubuP+++9EPPZSxUMZgPviyjkozM3iMET4O8MMc3XwH0+2TaLt5HrIBAJ7CF6ehBfgBACF0XLodBii7ixqmYvJTs4sxAwA8CMkyfHygBAQPIICox+bJk4iBwTBKLcQ9gwLarkMQJgDulTDare06BhAohco59H3PfQejETyXwIauK1G50nmoM89rClVY5p0kGV1IhPng4f2AtpujqWokOaBXJmPM+xY+ehgNHDt2LzevY0Q7m6P3Hr2PwGjC/S5+4ZIZhsw4Ip/DXHH2CRlqJiHPbWdtkZzfTZpLCEixB0teJmbLtxraAiEOmLUe3WAwHo0AJAxDB62B1bUJNtbWsH99A/vXN4SvEPCVxWpTS/YdcXxrhk6qB8a4gtrs+yBZ+AAiBWfBwpGUuK+qCU4BA3GZKwYP8j1UjLCUuLwdPSIRmlEtiEEFRQlGwsAopXS7Cz7ObCT8uVTOlcw+owqtSJk4Z+Aqi7W1EYx1SDFhOt2BjwOIgKYeo65HpR+ltIEhdoYxAc5xEOm9x3hUwyaDtp9DOwVbOeb1rCtYpaCdRTOdlDEDax2aBREiIKMBRjE4SBmNqBK6vsNkMsHYOWxvbwOVAioFVWuMmqrMiXWtkCsMjChkmrhFCQ9K9q0ClFZwmv9241iG6djmcd4TxND3tcmYGVWcQQgDz7uJyjqMhjUObqVBd3KH18pV0BgY5dz1nEkCoBTR9jMMsec65aO009pxjRtmZichwVRKw1QWk8kKRuMxVlfXMJmswFUOxlop1wHSnZRhVN4nkYSvjhIOnHUW+r5H2wkSS9RAx02N9ZUJD+pFhidnOQWGrkpjczoTol4vpK0sTT94vplTYkFKSFtZKVV4CrMUhDEGdV3j0KFDPCApB1YvGz1Ko5RVig1cbZkk1LITa5qGmaKrZlcZBSzOZy2cNVAiz60BVEazA0kJFoShb7G2OsakqRFSxKzrMO97VGFR/zfWSOOVARdayDjrpsGTn/LTBebbdTyI3PUdWnECuVlsVIJCgqIIP7Qlg61HDSZj/hxX5EBWEMXbPpSB7KxwCwIMZfl1bmyzXHrEzPsSoUYhNOVyD9NnEQFQDPfd2FgvpaAslJjhx1zq1CIFwwcLk+9GPACTJrV+51iRYDJqBM7usLIywaSpeQaOCL5jFKDve8xnc+5/DB7bvceQWGUgM40TKWFMWTCEA8DGxhrOPffcAgroug5aa3R9z0AEgTNrzX2mGFrOQikghlj0pNbXVkVBwWHcjGQMZI6T99dYX13F6mQFayurmKyM4TSrAsTKIuaeTCKEpFD3Hj4BWvFAtdIa1g5M3KuZjk0rzl4VT8Hy70OAH5SgxQEZxb1JZyyiicwJCUgFRQltk5ZAQoJUAj8vMVdoDKGQWivifpDWGv3Qo+sHOKuQksocADBGceomCMAYCXoYABhBDAZoHQtG3lor6uAKQ/AwwSCmiCF4JEQOjEKFILOAWXk70zctCLcZzMJ5nfx9SjCRs7C2a0ESeG9tb3EJsXaICIjk+Z6CQdu16LsefhigBPXsrEVlK0ZcyqxXRklqzYPBVsY/TmxuIgQPrTXG46YgQDk75DlUpYCkuH+ZJFgjuewMsuKnC+uNfPYAZ9oZdPNo7LR2XKuTCTuuvCGlRr+ysoLRiA+8yWQC6xyMs5BzGty4XZCE8vChII8ooW5G6P2AeTeHTpmqJmJc11ibMNAhxYDK8WaoneP+mKgJG2fRdYMcQAM3xAPLM/RDEG48IM9+cEotjosIEF7B8XiEI0fOXCCFPMOWfWDhPgZzSWZVO5Y2sALImExQVXWRx86cfE4zOMNZi0obRhgSwWrAdx0QAzQShs4w4nLgOrd2BqQVXFqIzllruU8SA/qe6/3GGFS1w/59G8zCroC+FyBGO8f2bFqQVNYaWM3OtKkd/DDnAzARbF1hJCCbycpEspyMOmMobvAeXddxhkUEpyzf+YngfUTvufGOwDN+eR15zkVJIzk7LiVq1lXpXQ4C985OowyCVhWrCmjFSCzkAwySYZK8Pwb1NML7l4fiV1fGGNcVrDFATBi6Dr7v0bcdalehHwb0gwfN5uhCEE5HVfaHTZzphBDgA/dYqsphPBohieYcM9gH2MqVwWl2XApKE5BqCH6xZCJVVWFlMinSP+OmgTEK7azC0M7RjEacCTtXxkwMAEUWCglJHFDlKiRSUJGDM05PFxpPebA3xYRo2PHmexAgmfdKuxP2EuBZwywrWuVBVr6HlQShrPTAv0EQ9WVBtaW0IKD2IcBoj2Hgfo7SRghlaRGCKLmuyLp+WgUo5UEEQRfqgp5L0psiaIQk/KMpYAgBBANjYvn8lPRaSWVUPxW4PkCFnIxRkklAkgRFWhwmB4ld3/GaK4LzPFKQ/d0DlJol0NMw0n7TJVCGkgJ4YtonRakQYWci8rwqmegYKpWtniVmAIHuI3NFsuXPPJdjCXnm7nHquI6cdRhZXrsQX1qLyWSCumkwnvCAcEwJw9ALbHrhsADDKbN8qzRHY2vrqwzYUAobq6tAypPgEZUWZofBYzxqOP0GR3AMfx2QFME5Zvh2Q1/Y4e3gYaw4rkw2mkEetBBpU8pAW4vxZIzV1UkBgAw+FPLajMjJ0+i2Mhgii+0po+Bqh0oOoBQjQsjw2iSRLsCsiQtiW6oMEDmlj8EXUUiVwIPWxiLQQpY7S5SH4AGKfPNq1nOaz6cYj5mfbPXAfuzbt86zddMddN1cSlgcWa+vruDwwTPRjBblwZB4zmXwg/AE6uI4AIXgg0hCLAYttVAJIbPuE8FYi6aqOPMQdFoum+UDiIMFXstMxhtjhIlBZOeZU7IQl1YVrGPHFQy/jwyCKKZINNC4r5FLRasrq5iMG4wqxwS4wphvc1+KwLNjdYAej9D2HPxkDbSC0vK8D3o5YChFbG2d5FknazCeNBhPGukxYlEqVLxAdaVEn47lNPKsTd8xkMYYvSDa1RrH7zsGgNXBh8Gjcx5RJ0a6pVi4Cr0PyLN0vO+87G2gbXvMBVXW97x/q5iwvsEVBxUCu9IQJBODjA0IRF0nWFfBGZaJz8Y9aAdWNGKuRSFql6wnwg85+GC+wH4IoKTQ9wPafoC2FWfoPnB2pYV/NPF9531EIoWYMkCG5F+Zr3QcHFkYXgeBzg8D91atscg0SFRgXKo4jbxzeAvx+oE422JEqS4IwBB5Vs2HCCugLw0t4BfJPknzfRC5nx5hYEVipmnGhZE/lvuZHVlm3Xe2glYLmiiljYybLIbEAcm2pLqRovS0lFDfIXcLFujCcpYNAV33OKV8OnbsfhDxDEWI3BjUWsvQqOXI0LpFg1Tx8JzSWhqrqkQ9KeXIifCf//ktaGtQ1xXOOnyo6HUN3RzJM8qr7zqMRw1GTYO1lZUyW9H3A2YZTBGizOgkKfVxLJX50Sh7TGSyzyxnzWU4ayzuv/+oOAOuxwMoiKiMctJaQRlGEllnMJo36PsWTTPCqOEhP5JSjNUG3spsGxgmbY2GgkX0A5ASDAg+DIiJQd/QgA8D5vMOnV/MY8UYyjDkMHSgIkpncOLEcaytrWFjYwNnn/0EjCdjjCcj2NqhbZsCjY2+R9u2uPM738HBg2eWLDnEgOlsip3pFJtbW0X2oRmPRPeIb5goHHMpMBKvcMKRKnpoXdtyj2uXlEpuMocQkGf4GfEI/n2tgd3N8/w5xYjU9/BBlWyAId95RGARTaYYuQleO7TtDNPZDKOmgTMaTjOoQEFByeAnpSjgjIgQE3oidH5A7we08x4p8SB6isRDxjFKZB+xuXkSXddh3751rK2vY2V1Dfv2rcPVDYxkWpTyvouo7MJxjcdj5pWczXFffy+6rkXwA46HgFFTMfeiDBx7z2KYIQRm7FeKB9xFCmgYAuZ9QD9EzDp2uPk68wyYL/pgGlXw2NreQkqRsz5rBEAFaJAENxyUOm1RCyWWtqY4AmgFk7WdEsu3GMMovZh6QGlWCkiJM0HwATuEiD5EeDmwE1iyRqhvJaPIM2mcyTE9E2daw8DD0TEmGMNZFIPWE1JSsr+SCLky96QxDgt6JiMlTiNfeU8paT2wE82oQ64I1KViUFUNxuMJxuMRJuMVNC6/tkZ0EagJKilE7bk65CpW47ZORCkVwwGl74wY5Z4hrpeytASMzDEW1g+gOKZECYFiEc0lCQKJE0EudhKh77uiqrBnfuxR2mntuLqONYUGkRFhwICCkWzBGAOlrdC62NIkVpo1eviM4gMsR3UJhLbrAECGPjPbMpfNKPDsV9/1GI9qNFWNnfG4HODee/SDXzgXZMobmboXYbhSLpTPLqRdUH61YHXe3DpZHLFzjJhDyRh2ffCaYBxD+9u+xjD0qOsGo9EE1kj4CaAyTJFljWG2ajAVTWUVfNcixQhDCWEY0M6n2N7egrUWbT8ItJ3ZMnwIPJsx9EV2g9dawxqN+XyOvu/Q9y2MtVhdXUHd8DxUJ2vV9z0PUseAGD3cpkPXD0z6mwJm0xnm7RzT+Rwa/Hl23iN4cVCK0V4pJUE2CT8agRlKtGhxhVgyrgxW4M+by7sS5AryVJyYtSxPL1Q7Si3g00n6lFAcKMUkDAQS/MQUJeL2CCkiCRsJATwHQ5EHxMFEs1bxEK1WPM+TEkf7XQzog5e1HorjCpE1uFjBmTslfc8ZKusr8h4fjVjQlIhKzyZ3Vozl4c/BR6huwGzeYTafo+sHLp/1A6bTHewYhTAMmG5tw2oem6iMw7jh8QSrGeIePQdqg4/wiXXGZq1H27KCgs+os1wOh4YxQAgR09m8sJMwX6FGQQLSIrt3rkZVN3B1zTRcorFGCtKjyZpuGkpowLQJrM1HXM7KmU6S0liQNSRkB2KhtYU2giJVWbxyQX7MMHjW+kuJX5cD31y2EV4/YXjPEi9aW+n3yckO4U7M2UnRGhOnF7nkyP3kxetTJi5WWsQta9SOKbyUrJlWGkZxsKcij3OgnEX5PJKyqi4VdiDx6ESUfiUSlesC8vMWYyWZhXHhzEjAaFRKgwDKeRFCEP2zheTKo7HT2nENAzuYkBaLlINjIhJdH2Y4iBQX8FdRgg0ldY2SFbHjMs6KztaArp3Kp0swAJxmUk8/DPC+wo7WOH5C7WGGyIJ7WhtYW+2C3WqoXNOXm4aNZAYtCL+XRox84My2Z7BNDSuS3DydnmfI8mHKw5ZJEUhz5rC5yVpQTTMuUt7WWjRVg8qx+mw3bwV4EoDoMdveYhqpFKFkSHPoO4zHYyb1JL5ZeyFe9d6j9xyJJ4rQiQDSCKSwM51jOt3GiZPHsT2dYjIZl97J9zMU8KFkcPTe+0okFqRvuae0SwDtTHHyxCbriGnhruMlBJIqUZ4SVJZi+hAeptzluHLpgoMLlBJIBjs45+BAIOKbSxcElNyk8l9jDKsGCzM6FES8kkRBloDIgUnqWrRE8H23yG6Vxqiq4AT6vxtuvdO1ZWA4hFQcl49JqJDYAWjNCstt1yGRxzD0mLdzDEPLZSHnhFLJlfkkHDgDIQS0bQuAMJtzD5JlK1gi5viJTQw9M320U6a1MmC598oaVJnxQioSFFnewlYNIgHtEGSUg6sJef1YLYEVjGMibO9M4VwNpRhUZLWVbIeDAS17dzSeoG7GsK6CdrYMteeMmQS0REpDWdbyMoEdVyDmFkzEfbCU70Gh/iIYKONgXQVjaxhbQ6kEbSso7aCtgi7BjIWCBs07VthOGcijyhdIpD4ioUkKiiy0dqLczAFEksyPHQSj+0hxqS9EVmFvu17Qzw4s66aQG2KRWEnamUpAF2nXAD+Xzq02gGZyY4qJS7ouctYIcEanWdPMSxAXKaEbgqwvJENlUt/dpducHQLSUiAtDPs8IiltR0CQlrlv5hxTPvnwOB1A7rqulPuKY9BMuY88M6B2Db4VvSWFpACXNFKiXQ1IFMSO91zKcc4gRS4HxRSk7ssT/Osba9BKoe86QBGs0zKAJ9EThFTXLIYPGRHIpQQn/RRSGdIfBeXDEH2lNNbXBVGnGc5Kos23cFrg96oVTGWhrF6wLisuKaUU5H1r+GqAdRZGK2yeOMFaQ5SgKWI23ZEDlTOCGBjOnZQ0uUPa08txTsEI+IOXWhSpFYkgo9xgfkDXogy7ZsHJ7EydOOXN7U3Mu04O4ISqquEcO7sMrMglxiAOplOaB5OdRVONChw4CaKQKALC6rAbHZj7VXlubDeND7AQ3stcdXv44jSj8wCCT14if+br09bAkEYlvtYKqnB1fZ2zqRCYezIxyi2CB5czkCA7YS5F9ZKZc/lYZbkW2dMZlGAtZ9qudhgJetFoIKXIKtlh4GNS6SK+eOzkCbTtHNPpFICSDLlHXddYXV2B0Qp97zmgI0gWwcFWkN6Vz9pn1pYGfAKwub3DhNPQpfesreGoX7LBXDIrVER1hbppxNFaWSvPvSlGbwPaQukKynImyRMrWS2ZM92QcuDAxNtKO4RI6HuPvutRNY0EG4w2bIeAdvDwISJGgDG2BqDcp+EsJUYCVELfe2idSnshRsIQAgCNwUdom+B9BPnEIJveo665HMn+iUnfAIMozi1EgBRni0YTtCUkYs7TfvBQMLAuoAoR3hOggpTfggQ0kvlErgbEmMQzA0gKMWTAUEQIAybjFWhlWdBWZQ/DVGiZJT8m5nWMklGGmGA8ozh5LcAqzYr5Mw0YPAKEcsYBVM7e3Luz1mJ1bRVNYM3DR2unteMi5MMkp6Rc/mFcixKuPiGFxK66XH6+zkN52OXolEzp8+/WVcUDnFEjDFJvVoLeqyseJo2ea91JMUR2V3kwRg+CBpEBZ1a+IPxyNIKM4xWJEiW9D63yMKKW95gjKvkimfCHLs/J75Gkl0GJ/2a24AOqih3XfD5jcAYAZxZoOCmg8kEQggBPAvrBM+gggzOk9Ar5DPK8EUBQ2pbXywTBkH+ToMe4PaILAIPLeUnKQ1rQSwKokdkvB8DHLQankBDwSulCY+CDWUn/S2i3dgNfMqJRqV1gDwlalJQL+fFdw5KUpB8pP9f8POJJT95ZCvy9PAc69xwtqrpCM24QBo9BACNwFZJm1V9V0Gueew5SbhmGAZH4PfAFUtlXlGIpuRHkfUbpraVMxZPXm5Ao7im7Tefcb5jN5iLoySVuIzOM2hjJPiwoAYOfQoEKDVcuWSUohp3n8hMB/eARpASly95VgDKlx5wh8lrLeIHjkRUGAAjfHynhGExQKiEEQhYDJQIDc7JzAeT3BDggeycPWA8hohMEoSUUImwfArPCSKDjA48fGJMdgl44r8QweEAQyPlQDwkKsWRvPnAFIvf0QsjOgAS8wFlKQZBI3zsTFivZVEQKIRG09NHYifBAf5Rrj5IBKd6A0OB9qUVeiWccc5Ar9ympPJvMvwtGOmYwiveMYE4xctlSMkN2Rbm0BZCUdHNPK+WbSKmCksz3FJ8XEqQ4Fgrl2ddHZ6e148qf/aL+modBc01Z8bQ3FCJROYiULL5SuUZr9kyxh7nnBTeKJeBTRIzMz8X0P/y6lVDiDN6CQNAxIYkuFB+avIl1ZOdpyXEGk3IEL5mZUbKJcukqgRSX/zL0lADpxbHzWlReDB+kEhFTzHXmXIfOBzj/At8AXCochp41kYyG0k6E5bhfxEqpJGUqdirzti/MAlnqvGxKrREpk4EmWEu5uic8cvn9ohymSkECAp7U5/cGlpQw4J6AYsZxYzSXaqsaQWbiTHZuSCBiBozscLJAXkrCWEKLDDVn5zpxxssHqRIMwC76oF2BAF9/3iMoVD1Ka5GCWJQcmZ1CyeHP6M5mNEJLBHjPGScISJZ/bxevXAqh/ElmHgnCDr+rFA7NIpuJJGoXh5YI3iqEUO0CNfDnwFx7uexK6NoObduj6z20cXLQ8Gfqqlq0ukZcVgsJg49M2Cw0XM4ZoYsGZ5AhSpZL6CX40BC+unzhcmDnoCQDjpyr2WEKu3zKBL3gMpqSPp4PC3FCziykt6TAdElScWHMk/SaBJQxhIi25wCMnCr9I/4KxYF5z86LwRa0q4fD4JYhcJDgfUBlncDtE0CMPDRWkInEh3/uv4eYpHTM/UzZROUac880EZf1rLacIyUGqIS0cH65fOzltSMvD7+y4r1HhhA1/7W0awxIm1zqVuUcUYqgUibDZRmdYeBKAmuYcRZLkq0zGltKm/m8Ii6XcnJuSg8MWCCn8/C+dRakEh5MTfoHtdPace0u4SzUXeQgld6JqZgz0ElzP5cWOTpccJblQ01rjY2NDXRdi+l0itlsKtVoEn5AoYnSKECE1dUVjo6DUDt5ng/h12XEI9+oYCi6UYUapRzmfOlyQHHJAEgYuimU4RvSaJnDEZkRzhgsjOU5tSEwq4BztUhAmDIEzNEWMywwx5zFfaN7oEgGCylhGj0GigiRB6RJAcZp1CIwB5V2QWFltSVw2C3nkISGO2eNmQmjEo40AMi9KyORfTOeMDJUnHNE4oNNM9Tf2qpM/udIrWkaTJoRChnqvCvlwMo5TEbMcrC5vVWCEv7TPHBpNEOCIfIeu/teRfJcsjKtxUnnjEGc1sqKfPa7fo8oIWAx5Okcl8HmM1bZVmDIu1Y8gt63TCTrI4Mw8jXWtWP0YuS5vVx24WtSXKIM7MC01rBVxfRYjmd6rPShjLVQo0bYVBiZRnCA2kKIYPZ7OUTOPvtsHD58ENayuvR0ug3oOaA06rrBuBlhZTzGZNQwFJ4S2tkM7WyGvu9Bntn2Sa4z32uZlFlrDQsLZ1XZn8MwYN62pfFfW2a3YBRkhmRbkHIAHJRyIPLwnoEEyjLzg1YGBpqZNAwHPVBGpOXlQI4J0FKijQlDTOhjwiCZViBOekkQyNpW0rPLZwxrsPkUYWERiUu9APcx85cPEb1P8IEkiyPJcuSGN0wJp62Bihx0RnFa7HlzBsjq0lUI/L2wrPvAwJ0hRAGmsYPVmhWliRRD+KEQhDFfSUbqbI3K1fCGS9dKM82XlnuHQkRSGgQW4NTGQWvHgBVroJNUZxRYeiYmZnsZCJQY/ViySuz6VymQzqXX+NiR7F577bX42Mc+hm9961sYjUb4hV/4BfzJn/wJnvKUp5TnPP/5z8eNN9645/d++7d/Gx/4wAfK93fddReuvvpqfP7zn8fKygquuuoqXHvttQ9Q7Xw4K819k2M/bgrm0lCRDIipIJBKaQ4Z2SeNRmnmAzyTldEvJNBcbmRGtG2A1kBTVyBw9DObTQt5ZohcWmPQgYJRQJCSjSIeCk056dYWpRGHlOE+XHfmOEx+DpZvUOwsOXiiXczbzPuVhHUimYAkvGdKIiuA33uWuM+giDB4Zp4fGG6tlSqkw8YYwDmJ+rkEpbCrfwjIGvMMSP4ctNEY/EKfiBIj/rzywjUnCwoFbQYpG1m5cSW61VzmACmgJXbOMmydUVx9z2KTyK8nCKwiLZH7HsIAkB2WktJsTIGDEsqZG8qeATjiz7pFSoWFI3M806K0RoQuoxgAmKxZ+kApJZjAJLE8h5VExZjJZ5Ez7tw7Q5a95yvI81kAMVuGAoA8WiFs5eCZKygF5o4cUCdu1PswwFjNNGHDwBRORDDGoqpq7NvYj9XVdZ6bC5zdKaWxszPl+0Dg7YmAphlBG+4JD4NHZR20s7DGYTQey2fpQGhhE5e4vI+M0pR1U7KeRKwmEBKvqVHMEqMUZ2lBh5I1+yGwACYpAQQFWJuzR8n4pNfEowgoGUwiRvEyupDVrbM2VUppwVeoNXrvEQksiUOswpwDlSTZtHUOKSwkUJTWMM7CxQoGGoP3iFJOLcg7AaDwjKNDJe/TD4O8Lr+PLL9EROgHvidsVWE8mWDomHKqHwYMPki2Y6QMylkSIaseE4MwIveuXFWjGUWmvOKL4CxRUJDGOiTizxTGwCgNl8Dk4N2cy6OyVryWDipJVQEJmghyTABaYRiEwchyHzERg5R43tRKj2wx0P9o7RF5ihtvvBHXXHMNnv3sZyOEgLe97W24/PLL8c1vfhOTyaQ879WvfjXe+973lu/H44VgWIwRL3zhC3H48GF86Utfwj333IPf+I3fgHMOf/RHf/SILn43OEErtac0BgCD97AhyEamAtHMjivtfo3IqEONRYN+b2eMJEpgkT2tUEAQg/eoZUP44NGLxpPMi8thRojBsgMVgkmtNFjhMB9WOYnPf1mV6yhjioK2Sykxo4eKoCSyDdJLyCqmuYS1WDAUp6UATCYTtCD0ImWQKV12byilFJc7fBAhwEWfD+CoODf+AeFCk2HG/PtZnC6/mVLGlFkrpRjRxSVycSJWYOfiYIwNsMbC1VV5TgwJfVhM31soZkYQyxpAPKFvSlaRD0+QjCgQpKe54KxkZyLoKyKwDpTQcxGDMJTWUEnYExQYeEDc08tgkCxt0bZtIR2OgdnxNTgzWezjnJ3IjiNIzzZzDfLnyoHZotpgtN7DPEEpl3lDKct27ZxLwhJB13WD8cjC2AqJeEB/EDmU2Wwue53LaJQ4K4NkBDGIgKTlA97azJpiAWW4pzQEhNAKC4R8rljsxZB4lgfEemvMOm7QqwFh172TYgKMBFlZ/UEga1rzYHguMfP2FsQeMRwdWjIbbQT9l2DSgqWGfYvmzEYcFxT/TqnQQCD3hsclypkgpS/nHBQpKQcOqF1dem/QhqsX4NKxqyq+Xukb5ecYyxpVRJy9QDGApapZkocAvg9D5AxaMpeQFo5LSb82RinbKQ1j+TW8Er5GLPTe+H3qAmSytgYpgrFcku+HvjieDMXncZxF31drDqqs4WzKBwHTaFNKvSWo1Rq7xTEfs1Lhpz/96T3fX3fddTh48CBuueUWPO95zys/H4/HOHz48IO+xj//8z/jm9/8Jj7zmc/g0KFD+Nmf/Vn8wR/8Ad7ylrfg3e9+9yNq2O0u8fH33LDs+x55nqOa7WB1ZRWraxvY3tkR+Q2mZWqaBtYyumlnOmVtqvkch85+AjfQIZkbMdwZWaWWIrQi7OxMMRmPcODAAZE17zGfz1nDS3H0EmPk+QXvMZ1uY2VtFcbqciBraAhxTgGHFOCDEq42uYFCGNBNuwLdt3XFsG2t4P2A8eoqXN1AGZ7vyDNIuS8ArTCquIw4Go3wnGc9C1ubJ7F58gTuvusuHD92H2bTHbSzFvPZNg+aDjH7dHbWkWAMlRLhYqZjb+o/Gq/IzMtC3qA0anJ+rAClLYxxMK6W9y5AE7MY1E4pwojeVFVVOOPAGZwphojk+XAGEqyg2CgxX1+GvjuZx9J5Hic73dzz0mrPz/LPrV38HoAyOuG9R/IDoBRcXZWovbAMSPYWQkAnTA5aA9PtHbSzGcvqGJGSqWoYoCjE9l3PPJeDx3hcQUmPKpMma/k7+XoKG0HiUtNupCbLwDgorYrIX4oJQ9fj0KFzYW0NaIN+6DBvW+i25aHw5FFo1MiAEvfbmqpGVVcYNTXG4wlqa1HJNTV1w4EAKWxt7WA+7wCl0fuhuKsMyuGQ0ZS1r2pXKgk8EA7uj+UaulZSBjQM/XYNBzzRQKcEFXl/JEpA9AiJnW0M4pyUBqTUC+ji7LLjytehpazbjCeomhHfkdpCOwtNnHX4GPgg16oEK9pZGGhxUPyakWjBRyqsE0qUxY3WjOx1juH6clZl5njjXOE57IYBPgbAiHyLZTrhGBN6P0gW5uFTgpWAlDSXIjPIh0MfglAxyv1WMWtGAT0RtKtEpSJK31DIpLURkm0LwCKkkCuFIMXXEyhiGBgA0/UeALGChsnCmIzi7Do+v3aF04/Kfqge19bWFgBg//79e37+oQ99CH/zN3+Dw4cP40UvehHe8Y53lKzrpptuwkUXXYRDhw6V519xxRW4+uqr8Y1vfAPPfOYzH/B3+r5nzi2x7e1tADk6UgJB53jOWua4q+oa45UJVtfWOU21Fj/1xCcy+WzlpMQ3R9d2mLVznHnwELRSqJ1lKhLiDCcza0sfVYTpCKPa4cCZZ6KuqqIPlJVY27ZDO52jnc2xubnF8tk+SOlGAUrKVLToWWilizpNRlvlXkqewwI0ur6T3pDFvv370DQjVBVHeJFyiVz6MobLJLuHByvrhEOvQtu2WF9fx5kHzsBF/+//oWtnmE13cP999+Keu7+H7a0t7GxtM1S6bTH0HaRYXhxsLhvy+i8GnXe/N2Mr4c9j2DpDoTnKVNpKDyIPknIkrawukS2DPViBuHIValvBaM29M+tYlyoEtDtTtG0HPwwIYYAClyWms50yDrCHrqYk7HmtF7B4I1IU2shnK/01k4fZDTPP90Mv8G4G6+ShypjYwVmjUVUOq6sT2LOfAGs0Jk2DylkoEHw/4OTx45hubzO7vQ885GtZb62UspEdPl8LiMHnSqVSlkZScMYV2iytTWHXHzVj4WHkLOXYsWMyEGsZRBRFrNEY1DXPe62vrWHYtw/tbIYTx8eYjHgWr6l57gyRVYy9Z8g2t260/O0MfsrROZBSVg9WrEYgZeOuU1AwCDbAG1YusNoKnZpGVCTyG9IvyZ9jWEjNQ2HBWiKoPhUVIqJE+Ox4IiX4FJn1PwzwUcYZwK0DH7m3SpBxAqGsyo93fVeeH6KwrijOpqL0G4fIHIWD9KV2OzQquw+lpxcpLaRI5LUKYMR7zoYAdmxAgZv3olPmU4SniFozL6CW4XtKYD006S1x09oAkh2xkoIMFEu2n/dtkPfC2byS4WsLbR0o9MjFK45o+TNh3lKZpYOw+QggqOs6TKcsKtsPcyhN6PpTQPmUUsLrX/96PPe5z8XTnva08vNXvOIVOO+883DWWWfh1ltvxVve8hbcdttt+NjHPgYAOHr06B6nBaB8f/To0Qf9W9deey3e8573PODnvMGoZBTcf3BYWV3BZGUF+/bvxxkHDsgmTDh4+DDW19cxnjAQ4MSJk7yY29sMy7UWTVPjzjvuQPA+A2uZDNYZmMpI2Ykwqhz27dsHayyCH7AymWAyHmNlvIIQAjaPn8TmiU00zQjRR1Ez9diankQ/9NBRCaJnl/PKnaOMVpMyRW7wO1thNB6jcvzv4cOHOPKtG8RE2NrZQdv1SFIy00aarpKS5/Q8R+UhBNTVGjY21nD4jAOIYUDXznHgjP3Yv7GO2XQHs+kUQ99i6+RJbG2e5D6DUBLtpm5JKTef+SuGtABBGANjssPkxrCxFtZxA33wEfOu5+A6g1By30b6f9ZZ6c041DLbNZmMsTIaI6vUnjTHYO0UfdchpRrWGGEy6YrD2g0iycZN/AVUPO8l7BIArBwr77rKoRmNGCaugK2d7eK4MsN6PrCZ0Jepw9bWVjCqG4ybBmfs28CoqaEAzKdTHB2NsHnyJGpXYVw3fHAMHtPZ9oJei6S0XDqXDC/m8ioAKcfwEHMmJOZnG80O31nHfZGQsLO9DcKCBSKXwyrnOMjQRmRxLGrH8jiT0ZgFSatKaJ4GpoOaz0XzaQF/h7xq2RD5e+mOZKg+kRAmB1/el4ETzTazOOnl/XLJkR0YJUbJBh/K9SehABPJN+EuzP2mXMZl0t0yU8l1a2QFBqgFd2gIAblgQaBS4tTGMIoWArAyGogLdHAQUoMof5uk4lFKj7teM0lZnz9L7hEzcW0q15kgn7/JkHjadf2pZFTcMiCQVkiKu+RCSMqrVu4rzgi5FM2oQSBfeyikxFrK0BmxqWS+NAm/PaOeCVB5jIEDE6V3AcOUQt/3mM9b7Ex3QGCcwHAqFJCvueYafP3rX8cXv/jFPT9/zWteU/7/oosuwpEjR3DppZfijjvuwAUXXPCo/tZb3/pWvPGNbyzfb29v45xzzuHDgwiUOBpxzmE8HuPAwYPYd8Z+HDlyBIcPHwGBU/wDBw5gfWOdFT1djbbr0PUddnZ2hAyTyzr/9e3/wtBztMyHrkXlatTjGiQaNLU1GI3GoJQwn81Q7W9w5pkHcc4TzsGoqnHs/mM4fv9xbJ44KVEwz3H9y5e/iPuP3Y/e56a/OC616wCBlOESoet6VK5B5TRWV1exf/9+bGzsw4EDZ+Kc887FZDJB04wAKNx+x524/9gxRNlwjKqsHlBLzof39vY2gz6Im99GaTR1jcMHD+GnnvAEjMcjrK+uYm19BXf993/jO/91J7a2TuLE5ha2trdx7NgxbG1toZ23mM1atP0gzixKic0UyLM13MivXF0kV7Tl7IRoAMVukWGBS0V5FgeKSVSNNUUodDQaYXV1Dfs3NoCU4AcGalhj0dctQIS6rtB1HbZ3trC7ZwhZ3wXKMM/UoARBSpBfuYfRNCM0dYNaMnlbOSl6kThcRjvWdc3ZhpQf67rCaNRg38YajKjPHjlyBPs31lFZi65tcXD/fsxnM8x2pgVsEkLA52/4HOZzRuvNu6442yxFAQi1lQL39hSEg25Rqsy9Ruccgwtk7mh7e1tKwLqsAZcUuY9onWPIuwbG4xGefPaT0VQsHGmtRho8uvkcXdtiZ2sbXuR28oxZCAzEyX1T0gSbqRQEZAJkVeoIRtKyUkDlXMm4kHiwO5eJjTLQQiAbQsDQD+jaDtoxwYByeQaQ76YcNC700pKsgQCFcj9RMdChH4ZSEs5OIweSoNwnF0kQkhEPzYAmHSKUigi0KOHmVi60FoCRRpTqArBw5TkCYeFIh07zEH5Gm3JfD9BWQ8XcoyfE/CXOiowCSqYlPzeZfJrvH4gzCinKfcY1xAgSZnvO9iIlaDD6MiklNFrMt1goo2TfGKtgHcE5CKq55udJ/23ettje2cbmyU3UIwtt1GOHKsz2ute9Dp/85CfxhS98AU94whMe8rkXX3wxAOD222/HBRdcgMOHD+Nf//Vf9zzn3nvvBYD/tS+WI9nvtxgFXluxvIgR8snpzhQ+BMznLe6//7ik9dzUrKoKrqqwuroGV1XcmPUeW9s7TDQ63cE9d9+N6D1ryDiO8l3lYGvLc1iRI4aN4+sYj0dYm6zg7nvuxoljx/Ffd9wJlYCdrR3uacznUMS9hfl8hlm3g8EP0qgXSW3NvG0lVJUIWmmNUTMBRUI373EybcL7gM3NHdx77/247f/7doFwex8K2o71iqQZLJlCjrJUjhC1QlU5bJ88icpZVMYgBp4xQwjQKtNhBQxdi7adYz6fYT6fYz6fo+u4L5Kb2mx8ExhtFyALKFCQSDVwuYeh3YyKGgYvrOIE0oDWEcZwJJnLdYLvRYpM/GkUEAdWFd4+frIc4qHrhCmeWVVmsyn6gdnOuTTIzkupvQ4MxYGpQsJrrYGrRgXKbwyLfbZdxKydIY9T+BhLiSf3oRj8wYeyk/2ztbkiRMEa991zNyrDB2HfdehnM85k+wGDlDqHfkBkGggG8CRAkcAbdN4kDNhQAkggYloj7wNsz0jK4COMjoWRO3gBX+zShkvyHgoNF8BDrFpBG0bQHr/3XqGOEgVuYzlLSNwzG3ZxQfrBM3pRA8pZmQtmnarFYHQUImK+LiRgsD1623OQopgUGwmYjCbMg7ixfxfqE0zxNHh0bQsdDVzlUDumR9OOM4HZbFZIkEs9vXz2YJCMlvK8MdzPMtxLMgqwlUONhhnnFdD1Le8P50TaRKoKzsJIBqQTYBzfbTbyPnZSbWAABaNKC6BHAiRb87iIpQrb0yk7EuI5RJ+YsFtrXX6XpFFMShyVAaLmvR4QEZT0tayFNnzvO2uhrALJrLZipueMk5LeNf+bs7O268o8Wul3Uabm4Oc5aEy0Q4goVR1gMXvadZ0MvM9Qjzd+KEQh8AgdFxHhd3/3d/Hxj38cN9xwA84///yH/Z2vfe1rAIAjR44AAC655BL84R/+Ie677z4cPHgQAHD99ddjbW0NF1544SO6+CQsA1putlwyCimh7TrM5i22t3eQ+cGUykOhFqPRBFVdQwsacDrjw7hr52jnLcPBtYaWqMt7DzVo9H3HDAegEhHVrsZ8NmNCSlJATOjbHkPXM/FrYiTWbLYDaGYxCDKfoTSjrZLO6CveRbkkktFUoUhjA1U1YD5vi8PKB0ZmPWC6Fb6hnBD0Qgk1FnJ5kme6TOaui0wHgxShElMlheAZcDLdkejT7yETDsIDl+G8WkpUpUSgSSJd7lEonWTanhF7OaNM3AkGJQXS7Hii2VXSkwF9EgYJ0gpRKS4xDV4yVgXEKH0GlhL3nkExStgldu/jbLudmDyKUp+Sg7xE4CKf43dxUpLO5ToeSue1RikzGaNFYbcXx2Uw3driPZsiH/hdzwPFIcL3A/zgOYNUWKxzWjCWLGpxvB4ZJZnpqYIPCJY54SgHM3LNfSYxHhhow0O8oTisFHkOiURWxFgNP/QIw8CO2bDjWhmNmKdQa6SQWSPCoj9SZixL15PZPnImQnlMhUoGhJQ4yNFCrSZfqUqLQ5e4x6OVkfcm66wIxnI5jPuhzCDh/cB7IvJoATtNGXNRuz5/EoJuo3edFUr02iKIuN9Zj2qkGKGNEbCJjDLkOELzwL0RUEtmvmHEaC5TCjpSGkXZaea+tMo9sbz/8h6UgeB8jqk8J4eSv0IpAimeU2PQhwC9SDqk1kh5MgdcKIWI3IXLga0SNAcHI0GUCNIiA00LlhmtFSoZNcn3RpGjIcIgpNpt2yLFVSSNPUHII7VH5LiuueYafPjDH8YnPvEJrK6ulp7U+vo6RqMR7rjjDnz4wx/GL//yL+OMM87Arbfeije84Q143vOeh6c//ekAgMsvvxwXXnghfv3Xfx3ve9/7cPToUbz97W/HNddc86BZ1UNZLk1AblyllMiIxFKX5aZ5jbppGE1jZXOok7toT/iDBgBNYPZxSqWenBLBB4XUEbq+LQANpltSGFUjbG6eQN92GLoBiElQURq1qzh1j0whk7nqMumoBji8AZB3vlYLTsWYErpuKHBy7wODAIS/z3s+qHZvlDwPpZQuiDqup/NGzPIuo9EISJFLO94jhp4jS3FcMUZE79F1rXA1+pJJAFJuE4eV0VpKyRDvLoYErtLwDUdq4dxCYJZ9KA3nGmQgRiIgGqHEMgQkBYp8sKQYQc5xE1oDlJioVisFCNQ8hiADfdz0tsYIddACkJEtg3qARQ+wDLXnHgdRycRSSkWFOqXEzW5wqZDLccJ4IAjUfBB07YyBMcYw4EtkT8LgEYchDyCKg+bDfd61haMRwEIIchdsvzhh2sUU4v3ic5f35UV0s207ntMiw44r8CG2G1Xpw4BEiRnllUNKEX3bMvpMHFdcXcWoadA4Bspgl+P0gTXaSMZFWEiY2AFG5sFTSuDqxAA4StzY98nDKi4VOlvBuAZWG4zqGquTFSgAfvBwADu6mPtSBEp8nNnMzoCEwfcYfCck2DKrpo18Lqp8ZUdmTO7L8H1SVRZAAIH/fzxuSgnWe+nKqTyesODnswKksN6WWbAhDEJQPbAyQubO1IthbJbW2VVqJHrA91kU1AosPgHwFBEya5CcASROMauHKzlrgnwuuRTIe0cYN/J9rTWUZnc4DAO6vkfXsXQTV9OVjCPwPaWMhjUM9e/7TgLIiKzsPPQ92pYzrsEPSGT2AO4eqT0ix/X+978fAPD85z9/z88/+MEP4lWvehWqqsJnPvMZ/Pmf/zlmsxnOOeccvPSlL8Xb3/728lxjDD75yU/i6quvxiWXXILJZIKrrrpqz9zXD3zxzoFI8c0nyCKSBXUyAzEaNbxRNTel+yEgpYHZNByj26x1UFKXJlGLxa4DLmtkJSZk40OqsqK0zMwN62sbGOoBfdujnc25JJEIXTeAgtC4CCyUyMAQMRRVM51RZmvOUuSZJcICQMWH/BCYVkapAK0t6qqBM4TgIrM3SENYpYVj4euXZrBElZDsbr4zhRHUnLMWVgExBPR+jq6dc32aRPbbWUDV4mOlAatyvSL3hBZQ806EAvM65qysqUdYXV2BtQ5QQNcOHPULL13mATTSq+GbPpPjyh4CK+FmdeE8OB5zdhIjRnUDpVhHbHu6jZB8yZzYMely3Ysci6AU3+QczMhbEIeW+4YjQcgSEWZzmVXKpULnoECIxhQeQqYOq5iEV6nCuoKUoKHQirJAGLwQBjN7djcMyJlzPqyYcFnJ/BwPSWdnG1NC27WiV8ZigJX05Zhdg0EyShlosgjCScdclgqkmNg3kUYmm7OG0Y9B0LWcOYgWVUrwuoNWGjF4Dm68ZDbYvQepMMU4C9RaYzwZwxoeft3Z3imzYRHSZyTAJFscMZd+Zyzx4xyMXZWKguVhaMNIRCuDvEZpROS5xAUgqXIVXMWzZ0opJgvuDZqmhrFMIjBt51wqtAzQgWbqqqppMFldRd9zb9xFuxd4oVng0gprRwgJCS0qUaHe2trEZKUuZNE+DiAwDZO2CvyxJTBvTASpBG0VXGVhnC7/r7SCjQZ1U0FbjaQSuqFDExi9iwSme1IMaNGWS+yc8fFnBOwVsQ0xQLCUMJbVGnJmHGPEfD7n/qfTcLVA87XmWVIJtqxZBE+uqjAejxETYTKZIFHCfD7H8ePHsbI2gra6yEc9GnvEpcKHsnPOOecBrBkPZueddx4+9alPPZI//aBmLc98lZRT8QbKB0jTjBiGL+iaql74I6WzlLmgX+SGREpIUrrJ6LA8S8ObjCG6ddNgNOZyYwZZLBxFKqgvrTmk1EphNKrRShRtQMK+sIs9OfcXdkXTTIKZb74cJWo447Cyssp/j7iW33estpxFMfM1JYnCCFSyOa67M88cpQQfmSWe5DB1xgIy41HXFULijEspIBPOFnqn7JyQywYaTIIijiHxkLG1zALfNCMBMWg4O3BfJmQZcZTPUEkmygwXVD7i/Le9DzBqUVPPpSxKBBKuSCjCeDwWNFjcBVhYzFtlQAwPxLIjNnL4lbVyCzbzvIeymmume5LF4dcre5LXJJP5psiiiyolFNmO/Lil8jeVUpiMx+W187qWzEhTCdR2r1VKaQ/7fiU9OiJCXdcYjSKaZoR+NmDQoixdnDdJxkvQSUpjVZVvK1lfjUrWw+xi/bDGwGoNWIfBh7JGWmcUHV8vH4qMyK1rZmr3PqDvBh54HgIULJx2qEwFDYtxw2jduq5L2YypxCxCZISpltfNyr5aMqdaaLCGupK9x+MwRFF6gB6DAK0y4IKFaQNUpljTTLFVVRWaUQMoPuhRL6SFlLJwCdCaVQ20toghIUbAVbxOfc8ZF0mLAUAZzM1BSWb1ABb7JtlU9rixpvy/q1xBDGcoOpTKlXXJnDJKMQIRIvUkBN6CmMWuMnRGV1try7xoztj7vudxHFNDWQimAOWcyqAw5yqMJ2PWIyNiFHfyJbCaty2UBmbt/JEd+LvstOQqzA7UOVfKE4BEd4LKcVXmx2MIcAIvtLVWJOllXig35uWQNkpheuwEvOISABHX+zMmLWcBlUSzWmt0XQdrLQbvWQV5GGCVhlPcqNeW1VtHoxEG70stGXsGXxdlSUAcZuRp/AyLV1Inz8CL8WjMmzI7uRAZhq7zFS/WiySMzRBXAKjqCn3XYQgBoe/BshncM7SugtYKzmiMxiN0fYtuYC/FJPZ5ZiYTwKrCNJ9LtDkzo9wHMBk1ZRe9N3APTw0Lhwsp2SAfqKS5/FkACIt+09CBo25XYTIayefDwB0fWTrEVQ46saJsLgGyZWqoVDICfj9S7pE5uKqqUMkAby7f5hKIcw7Ks2AkC0pGiVK5ZKlkCpNSKmKLfcuAAU1Aba0E61oa94tB56YZ8bWlRXl2T3lQiVK2y3NbGvN5u6fsx09bVBcIQNNEnOhPMAuD1oh64cC11lxa3eVkFDiirioHZwycHJ7iO0HgzMxIr8O1HUJKcMgACMgIkYKtKjRNgzMOHMBkPEFdszhk1/YYOo9u3gOwsNrAaYvgCU4zqtdWjqH3gQ/SJH04vp+x6CPFiISEQCJaaHWZXbTOoaocgOzcGYFYVxUAhaEfMJvNGJRTV4seI5mC5iyjBloY2CUQysEQzy5aKJW4mqOBELmPzjIyDBbzPnBvC0rY3iO0Ju5xBumDc10Ohf0niSgoN8cKgfC87QQNamHA8HOjDJLhqlTpoXoPAyMoVA14LnkPPsBIhhVkQDgRirTKbN5y+dQqhBRYW886hDCUXukQ+HWgNVe7ImdzTdNgOg/wPmA6m2N7e4eBM+K4Hi4hejBT9Gh+6xTb9773PZxzzjmn+jKWtrSlLW1pP6R997vffVh0+vfbaem4Ukq47bbbcOGFF+K73/0u1tbWTvUl/Z+zPOu2XJ8Ht+X6PLQt1+fhbblGD20Ptz5EhJ2dHZx11lmPGB5/WpYKtdY4++yzAQBra2vLTfMQtlyfh7bl+jy0Ldfn4W25Rg9tD7U+6+vrj+o1f7gpsKUtbWlLW9rSHmNbOq6lLW1pS1vaaWWnreOq6xrvete7HvHQ8uPFluvz0LZcn4e25fo8vC3X6KHtx7k+pyU4Y2lLW9rSlvb4tdM241ra0pa2tKU9Pm3puJa2tKUtbWmnlS0d19KWtrSlLe20sqXjWtrSlra0pZ1Wdlo6rr/6q7/CT/3UT6FpGlx88cUPEKZ8vNi73/3uPdIMSik89alPLY93XYdrrrkGZ5xxBlZWVvDSl760iHb+pNoXvvAFvOhFL8JZZ50FpRT+4R/+Yc/jRIR3vvOdOHLkCEajES677DJ8+9vf3vOcEydO4JWvfCXW1tawsbGB3/qt3yocc6e7Pdz6vOpVr3rAnrryyiv3POcndX2uvfZaPPvZz8bq6ioOHjyIX/mVX8Ftt9225zk/yD1111134YUvfCHG4zEOHjyIN7/5zYVU93S3H2SNnv/85z9gD732ta/d85wfdo1OO8f1d3/3d3jjG9+Id73rXfj3f/93POMZz8AVV1yB++6771Rf2imxn/mZn8E999xTvr74xS+Wx97whjfgH//xH/HRj34UN954I+6++2685CUvOYVX++O32WyGZzzjGfirv/qrB338fe97H/7iL/4CH/jAB3DzzTdjMpngiiuuQLdLYuGVr3wlvvGNb+D6668vSt+vec1rHqu38GO1h1sfALjyyiv37KmPfOQjex7/SV2fG2+8Eddccw2+/OUv4/rrr4f3Hpdffjlms1l5zsPdUzFGvPCFL8QwDPjSl76Ev/7rv8Z1112Hd77znafiLf3I7QdZIwB49atfvWcPve997yuP/UjWiE4ze85znkPXXHNN+T7GSGeddRZde+21p/CqTo29613vomc84xkP+tjm5iY55+ijH/1o+dl//ud/EgC66aabHqMrPLUGgD7+8Y+X71NKdPjwYfrTP/3T8rPNzU2q65o+8pGPEBHRN7/5TQJA//Zv/1ae80//9E+klKL/+Z//ecyu/bGw718fIqKrrrqKXvziF/+vv/N4Wp/77ruPANCNN95IRD/YPfWpT32KtNZ09OjR8pz3v//9tLa2Rn3fP7Zv4DGw718jIqJf+qVfot/7vd/7X3/nR7FGp1XGNQwDbrnlFlx22WXlZ1prXHbZZbjppptO4ZWdOvv2t7+Ns846C0984hPxyle+EnfddRcA4JZbboH3fs9aPfWpT8W55577uF2rO++8E0ePHt2zJuvr67j44ovLmtx0003Y2NjAz//8z5fnXHbZZdBa4+abb37Mr/lU2A033ICDBw/iKU95Cq6++mocP368PPZ4Wp+trS0AwP79+wH8YPfUTTfdhIsuugiHDh0qz7niiiuwvb2Nb3zjG4/h1T829v1rlO1DH/oQDhw4gKc97Wl461vfivl8ob31o1ij04pk99ixY4gx7nnDAHDo0CF861vfOkVXders4osvxnXXXYenPOUpuOeee/Ce97wHv/iLv4ivf/3rOHr0KKqqwsbGxp7fOXToEI4ePXpqLvgUW37fD7Z/8mNHjx7FwYMH9zxurcX+/fsfF+t25ZVX4iUveQnOP/983HHHHXjb296GF7zgBbjppptgjHncrE9KCa9//evx3Oc+F0972tMA4Ae6p44ePfqg+ys/9pNkD7ZGAPCKV7wC5513Hs466yzceuuteMtb3oLbbrsNH/vYxwD8aNbotHJcS9trL3jBC8r/P/3pT8fFF1+M8847D3//93+P0Wh0Cq9saaer/dqv/Vr5/4suughPf/rTccEFF+CGG27ApZdeegqv7LG1a665Bl//+tf39IyXttf+tzXa3e+86KKLcOTIEVx66aW44447cMEFF/xI/vZpVSo8cOAAjDEPQPHce++9OHz48Cm6qv87trGxgSc/+cm4/fbbcfjwYQzDgM3NzT3PeTyvVX7fD7V/Dh8+/ACgTwgBJ06ceFyu2xOf+EQcOHAAt99+O4DHx/q87nWvwyc/+Ul8/vOf3yNw+IPcU4cPH37Q/ZUf+0mx/22NHswuvvhiANizh37YNTqtHFdVVXjWs56Fz372s+VnKSV89rOfxSWXXHIKr+z/hk2nU9xxxx04cuQInvWsZ8E5t2etbrvtNtx1112P27U6//zzcfjw4T1rsr29jZtvvrmsySWXXILNzU3ccsst5Tmf+9znkFIqN+Djyb73ve/h+PHjOHLkCICf7PUhIrzuda/Dxz/+cXzuc5/D+eefv+fxH+SeuuSSS/Af//Efe5z79ddfj7W1NVx44YWPzRv5MdrDrdGD2de+9jUA2LOHfug1epRgklNmf/u3f0t1XdN1111H3/zmN+k1r3kNbWxs7EGoPF7sTW96E91www1055130r/8y7/QZZddRgcOHKD77ruPiIhe+9rX0rnnnkuf+9zn6Ctf+QpdcskldMkll5ziq/7x2s7ODn31q1+lr371qwSA/uzP/oy++tWv0n//938TEdEf//Ef08bGBn3iE5+gW2+9lV784hfT+eefT23blte48sor6ZnPfCbdfPPN9MUvfpGe9KQn0ctf/vJT9ZZ+pPZQ67Ozs0O///u/TzfddBPdeeed9JnPfIZ+7ud+jp70pCdR13XlNX5S1+fqq6+m9fV1uuGGG+iee+4pX/P5vDzn4e6pEAI97WlPo8svv5y+9rWv0ac//Wk688wz6a1vfeupeEs/cnu4Nbr99tvpve99L33lK1+hO++8kz7xiU/QE5/4RHre855XXuNHsUanneMiIvrLv/xLOvfcc6mqKnrOc55DX/7yl0/1JZ0Se9nLXkZHjhyhqqro7LPPppe97GV0++23l8fbtqXf+Z3foX379tF4PKZf/dVfpXvuuecUXvGP3z7/+c8TgAd8XXXVVUTEkPh3vOMddOjQIarrmi699FK67bbb9rzG8ePH6eUvfzmtrKzQ2toa/eZv/ibt7Oycgnfzo7eHWp/5fE6XX345nXnmmeSco/POO49e/epXPyAo/EldnwdbFwD0wQ9+sDznB7mnvvOd79ALXvACGo1GdODAAXrTm95E3vvH+N38eOzh1uiuu+6i5z3vebR//36q65p++qd/mt785jfT1tbWntf5YddoKWuytKUtbWlLO63stOpxLW1pS1va0pa2dFxLW9rSlra008qWjmtpS1va0pZ2WtnScS1taUtb2tJOK1s6rqUtbWlLW9ppZUvHtbSlLW1pSzutbOm4lra0pS1taaeVLR3X0pa2tKUt7bSypeNa2tKWtrSlnVa2dFxLW9rSlra008qWjmtpS1va0pZ2WtnScS1taUtb2tJOK/v/AemCN87k4mK8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S69tSXIeCH5m7r7W2vucc29EZORTTD5UXVALarSE0oNoNNAjAZxqpqGgOTWhJuJEEkeaaiDpD3ShIf0DTQg0GmgIUEMaFBoNllQqVrW6yYyMzIh773nstZY/rAdm5r72uTdIZpJN4oLHM0/cc/ZjPXy52+Ozz8xIRAQv42W8jJfxMl7GRzL4z/oCXsbLeBkv42W8jJ9lvCiul/EyXsbLeBkf1XhRXC/jZbyMl/EyPqrxorhexst4GS/jZXxU40VxvYyX8TJexsv4qMaL4noZL+NlvIyX8VGNF8X1Ml7Gy3gZL+OjGi+K62W8jJfxMl7GRzVeFNfLeBkv42W8jI9qvCiul/EyXsbLeBkf1fgzU1z/8l/+S/zyL/8ylmXBr/7qr+Lf//t//2d1KS/jZbyMl/EyPqLxZ6K4/s2/+Tf4jd/4DfyTf/JP8B//43/EX/2rfxW/9mu/hh//+Md/FpfzMl7Gy3gZL+MjGvRnUWT3V3/1V/E3/+bfxL/4F/8CANBaww9/+EP8g3/wD/CP/tE/+tO+nJfxMl7Gy3gZH9GIf9on3Pcd/+E//Af85m/+Zn+NmfG3//bfxr/7d//ug9/Ztg3btvW/W2v46quv8K1vfQtE9P/3a34ZL+NlvIyX8Sc7RAT39/f4wQ9+AOafDfz7U1dcP/nJT1BrxXe/+92r17/73e/id37ndz74nX/2z/4Zfuu3futP4/Jexst4GS/jZfwpjv/6X/8rfuEXfuFn+s6fuuL6ecZv/uZv4jd+4zf632/fvsUv/uIv4j/95/8Jt3c3ULRTQBAQM5gAEOC+GDODOdhf9qaF9+yrcLxUBKjt+vxHLLUjq/ZvE0HJ+frzh88ckViBoLXWXxMRPbYA7NdLBCIC2Xlbru9dC9kh3dvUfwStFog0EIkeB3Ysgv1L/uFxfde32q8BOHwPDBG9V4D6vfd7Pcyf/i4gIrTW+v3y4dzSpF8/J0YpBZftCZftglYrpAnmadL7bw37voGEEELAMs8IMaK1hrzvkFZBxGPO7BqnacLptCDEiArBlnd9j4B5msGs36mtgYnAIWCeJoQYABBqKVeTkveCUjJKKUgpYZ4XhJDw7vERtVaIABwYix0bBGzb3ucgxghmndNty8g5o9WKXDK2bUfOO9ZtQ85ZVycRXt3coNSMUgtaFaQU7boDas36PBoQImNZFpxPZ6z7it2Ov20XrOuOnDPW9QnS9PwxAN/51meIzAAE83LC+XzCvCyIMSHXitZ0Dc3zCWmaENMMIYZtF0htqLYmmrSrNSNS0WpDqRWtVl+sfU1DgBASQmAwE2DHERHUKqiloNWG2ppex+H7uvbHurdXx+++zvuzu16v42X/rO8NQW0VIhUI0veOr1n9mxGYQaTyZJ4X1Fqx54Knx0dc1gu2y4a3b9/h4fER27Zj21a0VhACY0oBJW99/6e0IMaIEBjEhMAJgQNCCDifbxBCAIh079WGUgv2S0auBbXqHMP2p1+X2L5uQmgQfT6wfQsCWPCdz7+N8/mMaUp4enpAzjvyvmGZAkrJ2LcN+77h5nzG7c0Zf+H737f1ywARYoj6rFrD4+MjACCEgNvbW9w/PODt/Vv86Edf6D6ZFrz+5DU+/exTMAWUWnB7e8K+Z3z55U/wt/67v4K7u7v3ns8fNv7UFdfnn3+OEAK++OKLq9e/+OILfO973/vgd+Z5xjzP771+ezrh9c2dbmY+ymQZ0h1ArRW1FBCpstKFGgAhiOgDFRFb34SY0tWCd+F7/AFUSDIzUkr97+f/Pg8hVhnHUgkgBwUmXQD3Ozl+3zTqh44LCGIM4MBoh+9eXZP//nwinx9LtddQds/PacppHNdflv5erRWtNRPq0o9FRP3vEAJiZJSSEWLDlLh/Tw0Qsmd2BsOEBzOkVBRpaBDkWgHSDRyIxzWWjLwRWi3gGECtQY0bAkkDCcDEcNkUCIhMQNNtHkg3IzOropxqv7YQAuZ5RowR59OMUoqtESCmqHMmgjLp9iKivkYAYM9ZhXO7fp4+Xz4CMXJWZZZzBQdS5YcAQQVAYAqY5oQpTUhpwp5X5L0gl4J9X03hVpS6dwGXIiG4xQY1KkIMYDRQrZiYQDEgpAlTmkFMaJLBCIApTgoJVQ5Lh9AVgd9rzrk/f79Pv2figMBse5fRakWtDbU2lBJM4QukmcHU9FrnNCGG0Od1GG/+O13ZZqWUq/U+DLODoQgAaKhS0VBVloC6vBjfZTOCGcwqvGOMOE0zPrm91XtsqnzXdcW6rnj37h3e3b/B48M93r15gxBmhBBs7U/9ulWOTIgxIaWElKauxJjjuPpPqH//dDphMgPv8ekJwQybEAKqqOFYpaG0OpR6ZLRSAWlgJpxuZog0SKsqf6SBIJjnGadlxjxPSBywXp5QazEFdUaMek2BgZwLmgDLsuDx8oRSKn7605/i+9//Pl5/8gq/+Is/xLKc0USw77sajJUQeOyPn3X8qSuuaZrw1//6X8dv//Zv4+/8nb8DQBXDb//2b+PXf/3Xf6ZjvfnpT8EimOcJTVSwrNuqlrhtyBgDYoyIKYFpbBTmAAKD3PMCdQG85c1eO/z36FIcfq0A8nY5fM4V4LVg92+VktVChQBC/UBdqUJUqbptK9Spn26zuiXI3TtTCx+im71B9bYAaCak9WjSfwcEMSRVNqSbspnKIyEImQdrl8kkILZLtktrpgz7sZv0W5pDQG2E1kiFDtsGBaGigaCKJkQChBAJaOY5SquoeUMzT4oDmxBTwR45oJaKvK5Yt9U8OL2xo5enAlew7psKUJvDaUp9HUAAZgJzwDSp0GBWhZWmhBgjUkogmFfQ1ECI0wRmxrrt2PcdtRSUWuAeqVukLpTmaQKZl+eCnIjUUnZ8X8S8Wv19Xze1hnNGzgcPEECtxY7BSMks4Nr6WlJhIDpvIuPzIDABZV8B8879+QEAIyBMKkCnaUaIasQJARwiQogIMSGEBOIAEIODebxMIAbe7aqwaqtqQ/p7to90b4Y+zyGEruBaHesxMCsUAei/CkGgttw/Y/IYTGbakM6JIy5zSgf05ajUuv/X97YQAQg46is1KodsUGOHwTZv6uk1SJODshUwKhgVaAV133B5eMTXP/0KAA6K54xpmnXNpYRWCnJtKFvGBU8Hg0ZsrkI34qdpAklD3jcIBOu+g4vJthDR3Bs25UUgNToKodVmRlJGDGTzB5R9BzMhxYBzPEHQsO8rntYd7969RSkFy7KASBENZsa+79j3jD0XiAi++uorfPnll/jd3/1dRUjs8+rNwpTWME5/3vFnAhX+xm/8Bv7e3/t7+Bt/42/gb/2tv4V//s//OR4fH/H3//7f/5mO87/8l/+Cd19/jdP5BJGG2goulwtKyd3KPS1qGceYhrUUAgIHtRwNUvPFKVBLcQh06v8SX1t4wLUV+dzjgvjCH3/v+44mFTAFRYB5i6Fb/wxXXFDFReop6OLVjRlCRAiEQAHEQYV0VQEjdk8AQaiBJRg6KqqsyRVQ654piSjECFeQA1QFBCpDVKHBlLOIKSuHI7pWFDCxfpZVAcI3SPfchmImqSBpYDSgFUjdkbfdjHiF8aSoYbLvO2JQxbWuK56enrqyQlN4qtaqlrYISql4eHpEbQP/TSl1pQ+ge3cxpQ6JuFeVYkSyTepKOoSgnhUztm1TD8rO6c+8yfCeiAgpJoRolnaIiCkiBlOKPCBU3eA6R2XbUUq5uh9VQjoPft/MCrfmnJFSwjRNiDFiSpPpUenQklrXDbVsIAgCAw2E1qoZIow4TQghIqVZ54hJPaQYEWJEjBNimsBs0GUMV4prW9VQaNIQyPZbDKpcbA6ZGOQGQoiGRABoANs8pZAQYlRlYxZTq009A4atZVLUn0JXjkyxoxeBxFFM86KG/Bh72Hxx0us/Qh6ttS4XRGDrxqFG99rEoM4KEgEDiAykQJgiITIjMiEQoZSiP0RgMAIxEjNCSqCmz6cUXatNBLU01Fp0/kMEtaboQa1AayDWPZ+lgbJpIAq2BsUUWBuwJ6tsaNKwrRdMKajhRoT16VEVVwpg3+etQnLF/f27jjCVUrosHTKwYt837NuGbV3x9ddf4f7+HpfLxfaOIRvmXavH+fOrnz8TxfV3/+7fxZdffol//I//MX70ox/hr/21v4Z/+2//7XuEjT9s/F/+z/897m5vcXd3o/h/YLNkZpzPZ7x+/RqffPIK67rh/v7h4OYzQkg9zuExHBWlDeu6Gpw1rCMXZkfBdlRePr4JJvTfL5eLCpugG4wDIQRWfDuwwkHQxQQISmkKW3EwGCF2KGGeE2JIiCECKaBUXaiIbDGEgJgCUpxMYAakGLtFeXlaVdkQ0MCmmDvqc7XRAxN0/YkJP1V0Tart/GY6UO87763HLQCAocqhCjRm05rBP4C0Bik7JK9o+4a8rrg8PnaDAADytiPvOy6XC2opyHvGuq5mqKgwQGvIWeNQ+74jl4pcKp6eLqhtPIsjZHkczKzHrxUxxg4HTtOAdPz7uiZoaPf+GndjZl1Xs0hVySzLgmVZcHd3h1evXmFZFpxOp65YnD3rENvru7sriBVQ2HtdV7x9+xZPT094eHjoxxcRvHr1Cre3tzifz7i50TiJGETz9PSEvO/YtxW3N2dMKVrcTBVHbQ21KATr8aZt30EcsCwnUygRMSRwDBbz4ANMSCMWZQpFIcyEaZ4wxakjD4QRe44hdZgxcECaEtI0Y5kWTMuskOIB5geAAIB9X4IRoyrDEBgh+HwJ8n6xmCtAHLvxqYiLXyfpZ+x2bDXArJQOA6uBOeLGwAhPVAClAeKfSQmnxEjUkCC4myd8cjrjpz/9KR4fH3WdXS5AjAgpYbHz1FqRt109FQ6oaGh8CHGUgtIa2rZhvb9HlgphICwTKoDWBMXWQhPos3wmN5dlASB4fHxAjAFke/rN11+htQJAkDjg8vSIWgq+/+3vggCcz2d8//vf19ixXe/5fFKDLOmzWJYJ8xRR9g2XyxO2bet7xWPa/t18YIr/rOPPjJzx67/+6z8zNPh8/O5/+s9IKSDGgBB10U4xISSz2KIqBgBuLilEQepSD6+EYAaGBTJbt9L0sxpbCc9+B6lFVnLR74lCfc3PJ0fYTiBo3XImUrikkyf6RlKoziGQQEGtPFZMOCa12JMpsRgiOARQYDQKEA6gGM1aVSGwTIta+CliihM4qPKOYWzkwGYVMyOGoMckUoHBer0EgZAqLWmChqZWvP0u1VU/sF1WNNHZZBAomKdXBblk1FbRikJV+7bh8nCP3ZTTtu/Y9+0Kci1bRikZ27ohBEatDTnvat038yZs49dar+C1GBOax2OajDhjU2H9oTgjh4ApJjWGYjwCS/35CAGtFlDQtZfipOtN1Hu6bBeFUbYdueyIQaHI27sbnM83mNKEEBmtqsVaakHNFdUEz835PIwroh6gXy8XPDw8Yt1Ucec9gwNrzO18xjLPmKZZIdGDgdUMvqslY5oSQlAYloRRms9bNVJEQ6saQyQixJhAti4CR1AY8eF2EI1CogQbE/QpJoPqIwIHtCaoBvu6sousiotZA//TrPG6eZoxL7OuTQ6gYMqOGIGBaAZZSgHTtCBElQUpTiDzIjhEczTIUAo2Azch2XpnVnjQY7QUyFctOv5gEKTDm0yEPedO7IlRvdwUI5bTovEqItyeZkS6w6ubE771+jU+++QV3rx5izdfv8GPvvgCX/z+/9cIOYRoMSomVtIQB6SYsMwn9XaDI0QwQ4kBZlQSZGkocDKGG1gGQ7PDqLpu10U96X3bME/J4qYNZVtRisLe7zaFB9fLE778vd/HJ5+8xve+933Mc8I0J0A0TcnjuQQYqeSMTz75BOfzGXnf8fj4iJzzlVHnaM0fJ4X4o2AVftPYLk8oO6tHYgqspQkU7eE2QW4FMTBSjBBzz4kIwgQWc3WJNK5jiou5dUuaNDCiG8uxAftdDIaR2vrmJVd+5sL1TW2QoYjbQNKtSB0mGg8xMiLCHKcOTRCbRWkbWTeeepq6gBlCARR0A4WgimtOswqOFDGFBHLFZRAjmbKKUZVgCgFsLDgGA8Hvp0FoCPpmwl8VlwkjGNy67V1xKRxq814b9pINuqogw9a3i3oD7jHVWjtkKSKouaBWhcOYSC3LUpB3O48JQ4fPcjYvDASZZhWyFqOqUvvniysuu4fAGltpLaC0CmZGzXwwPvxJ+aZroECozGhhHxZ7A0rZIaWCWgVLhVQ99/YkkJyxhqAwU7Vjkeh82xy+XS9qtNi6c4t833fsmwoYrhWRBCyC0Bok78itoe4bVvNAmLkjBYoYN6yPD4DBaCJkCr8hl3ogI9n6JTP4gsLSrgx1ToFqHo3uJZ1LEYGQINn6DDGCAZSmsbhWa1dcDI876z6NaUKKRjiZlYwRmC3WqXE8ZlWmGgZQhl+PZ8fJ4pbmWbnhFyJicOREDT9FVNSAc2FKxtAbrFwa+88UFzGhltpDD9M0Y7Z41b6pp85GFtK1DqAKlhRws8wo5xMSA+/WJ9zfP2DfNyNnRExTwsODsvVSSljmc4eZ9VpUcaaUQDGgQnApGc2DVTTi+MzBoFyLzQXG5elBjepakZcZgTVYsj49oZaMWgv2dcX29IRtfULdd0xTxL6vIAs7NoMHmQNEmoYdRJAMqZjnSdmslwtqUcXle5mMFNXDIT/H+KgV12zwVwyENEdj+CQgGqMmF9TaEISRiCFMV3AWi4ohAXcSopBi1a5gpEkXWLXJgL9EiQiBGVOaNI4jru+G4uoEBz26risaMR7dLA0qPzVOU6vh5UxI8xlQvw1Eal2pKOMe7yJiNCaUpp8UDogcusBIQTcoR33d8cCy5y4wosVtPAbjUFAgVtSk2ZyY4upKuR2C+w79kTLimihcSIKrOI56XA3NNj7ZvOR964onBPOMYRh6UUw/QpD3rMK1NbDFFQQqKJn1uWh4TQUrS0WnuJAMY4TNGNFQG2oTzCYgwIxg8yTiNizMg4QSWUgwTWkoKymdvs1gnKcAmlOP97l3ypEgraDlHaUWtbZDxLRMOC8LQtBt+cXvfYEq0vEoF6wsgps5gU8ag/P0gFp1PnUOVcGhmWBNEadZ6f6BCT/9+qcoOaM2QTkyXYuyypwUwylqDFgIHFQBOOwDIXv2B9yMlXSjnndVv4WU9avro5qPZiadENAKSBiEAG4CVEGTglIzpG6oQddtCEHp22U3uF49KBX2symkYPFs81J76gXs84bGpGRepyouDqGTGUKI6CkWhx8PEXi4QZWTKrRpWnpscXgW+hM4gikgECtLjypul4ibOeAtKtr+hMe3by0EEFHnBT/+/d9XT4yoxxJdER+VNaeICuBhXUGWKpLihDilrrg4BISUwEFl5OPjI2otiDHgvMxKxzc42RmGpeyQmhEAhMBoraLWDKkVsPCAtAoExZhqK6Ci8zLPE+Z5Rt5XPD3eI++bXqsZrxona45N/Vzjo1Zcv/C972OKjCYVzXIwWmvgKkiBEc8nfPrqpgfMrwaxQnWGybHx6YmAigwxuNDdcv3H/nXCBtGzY3t8y2NBg6zgwr02I2awMaHsOKFzBw+YtDhpgjo5hM3aOm4iMuXSwBD3JjmMhd4hHu6LBzRo6cw0NrXH7zpE5dcixysbxhLhg0MZYuYBeXAYBq0aXAqzbltVFuG+R/s8kKJb9eqRFcvvImlodeoED2XNNfO2hiFQip6nVTUEHBp2yM9BIOHOT7FgeOlWt6pUfSIM6t4pA+ZtN+Syw9Lm4PlbbJZtiioYnXW3rZanxWQhFAZkwjRNmOYJ5/MZ8zx3S132jGRCdlkWg75DJ3WEOGKul8sFDw8PaoXbXOfdGawK45CpDGXwFbRWARKkSeNQIQRII+xZSSGlVhAzSmvYtr3vEY9jiaEUDrOKGWVufDSxHDlWWItTwAlRQ0fGKgSUTh1itDiue3T2vNzLCWpc3d1+bgbbgPH793oMO9i6PcQxfZ+Zx3SEL0MMCDF1D9K9mqs8SXJIfXiHMAQFpaKKYC87MikBY9vWniM42TMlYdzc3miO4Tzhr/zl/w3+8v/2v4FYbNZjopfLBW/e/BIeHh7w7t07/OiLLyxPbAVEemzvkVi93RCRTjeYE2ECYY6EaHG7VosSnqQBQY2GU2RQnJGmhCkGQBpqq5hcHqSEuMyQ2xsQE25fv8a674gpYN2esK5nCzFURE4KUxaL5VbB4/0Dtk3z2ZgD7u/vMS9ng4OdH/BhufFHHR+14kKryswJAY0sRkWEEJUGnya1YDSWUY3KelyUg0LEHMzLJuTKGtNhXaiA+UcHsoAHeFV4lUFNJ1/QA04bGDlQqgoLCrqJerAYBmUBh39NcekJLebk/3LH2v09IYKYL+/v+Wb2zeYbj4iu4gyBAWIBUwMDYMgVxt9p8E7YcMV9IHD4EAC1VDRWtmZrB6VMhBgC3JEgIvUWyRhuzeEaUywCJFYkQs8uyLkaPGECswkgCscIWicWVEukbdXgCbsbccQXChMbNosGoGbb5B5LsPu5hoz99YZS6CporzYNdYF6jFFJZCPeHIUimQXNyqqsBvkIcHOaO4S7zKlDueolmAUOvXcmQYpsDFSdlxjIlKPegLSqHnKrOM2Tfoo0FynEqAJflIRTImvsVtQbRgr9efueOdhlcAxBDT9CM0Ohx4QO94z+usZ1A8Hiq6F7RL5HQ/caPCbbdacK8L7G3VBTo8H3xft71vePGkEQQ7kqdNULNDjH5obb2h9rhcGNIMxmLOvNl070UgJNLhmteSJ+MWQoIm8ASQYh47SczOtLYFpQ6gmlKDvv299+jcvlgvv7e3z3O59qcvO64bKuWO33p6cnbEWRmZuTGkAaGlAmrO49QRXROYmMKQaIyTRmQjTvOgVGS1HXPgRBVEZRUPMtsK779XJBzhtCjAAE+76hlAwIMM8TSq6IKeDu9g7SBOfzGbA5mUR6riYJkMLIbfxZx0etuPbtgsjANEUEo4ECjJQCUoqYbLO74gpOg/dNZBajYua28ANh343hFBRH71a8bWRgCJzWGhjSN1wIuijcE/DFSwo9K8RFACe1+lwZoR2UXfM8rx4a7hake19sL3alCMe3B6xxZEARCYgaYuCek9Vc3BB091ZTRo3gZm0/BtTCJowAsc7j2OB9iEBqUQhPoPRdVzIiCO7JEYFY0IgREBEj9VypJtWUFWliZa+OIdi2rLE1NBiOqZh9g8G8ot6AscE0zUtxdfeibNpQRTrM2wD7jnqXz/Pfmt2DPWE7T7xWXHAP3GOV6OuFUkAKdPCUqVOKAQC1oLRBoT8vcxf8ge0ZQoVtLQXFvR3RxF1IRcl5xGoOyrfJdVL4abH8rHGBUMKQIEaCJuiLBtZJMKdgS9LA8CsE4/g3oZpu8zhUT+SVESMEcVcigWEGFZnH756Tz1XoEFkx74FJY9tejUQVtgP/0mnr7bA01a4Yc9iqQBpBWkUrbo0xQOH6uRzGcV/V+g0Vc/qzF3+saDEhLAu2LaPWiFISIDsWmYE0IS0zpimCeQLRCSEElFKwrpsph4pSMr7++g2+/PLH+Oqrr/HFF1/gad0BCri7OSHECSFOSClgmSc1ZAXYSwEF9S6nlA5ypmps1Egxwoxq1WGoNTUeWFC2Vb1giPEKdkMuGrZtRSkKpd/cnLHvGblkfP6tb2E2Bi0zG8TYsEwB9/cbmLUKzs87PmrFta6quGI8g9kECgGQiloEWyvYGR37llZR2hAYLoQBskC9Yfy2wKUp3AKYAHMSgAmmWqzUyc3cBYUP1V9OjR4UcmUQaxJo8OiAHIgFtQ1LDugeH6CbRtw7I1VfXaEdYkxgAZrFslggwt26lhxNqAAxzn5n3aVSCIwgLHbca++UEHAc3UM8eouiAsU373upAYfvN7OeEWj4v0wQCRZvNG+oFT2eiMKIGMHe/m9r+j3x0lr6fGO37NxbaP13VXR2XTLiG3Cl6JCvbdVjgrlIRa276Xi6Ul6dQm1LwuMtIu0Al9DVmvHP+Wvr02pei9okTE2FbgsANLkXDRApRgkPxp7UtUuWt6eruaJVLXFVGpQZZtdZXaGYWxksZ4/JvBxihDhd3b8aZe0w1+M5ONTs6SkOTdsH7E7D8IqOcDhxjyOLWJza1mA+GGQ1AK065KTmhJ/CCRls+ZG+4vy56ee8aoqhJOblQgAK8YOGiH53HHvkIcnV/bcmeL5WXOWP/X9EK4xIEjT+yIGVZn6I4Y3pE7x+veDm5nN861s32LaK+3dP+F/+198DSQQFJbecb26N7DEZc7QBIQBZtPIIkSYmNwE3KGHLbFh+jjYwEKaAeVFGodohzdYyIUb1VBmE8+kEZsJymlBrwc3ppKkf89IrqrjB/hyp+VnGR624otFfY3DrTYWzL2aBBfBNCI9yOrZQKB5gM7W2m1SkqAILMoi+vsA8NjMYdbrY3EsSeS7EjEXVtPRKnKLGszz52OClUfGhmTfhUJ0pEBqw4XjgDRDqPkTPwyLqFqda1WPjiTSQaI5HlX28DhfWMGUlB+XoAeJ48FdsdCt6kFbcgQO6yMBxjV7Bof53ow5xjkPLYV6kVyfoddlM4H2IVutzD8Diij70Pm3GuuJS2aQsQ33U7lv5m2wwZFMrHQ1AQyCdS8IQRooeKVnE15v+43ineXQ05udw5ebZMkIMVzDxePimSA9EHWfAsZUxk55i5X6InpdECUoxBGWCEkBW7sefhq/1Y66iacj+0z1TI8m4l6qHaaDGEGGgw9HPn5DVT6EBmcKUiBsoclhbaoTxQDD8Gdl8DBK4AKwxVa320R+urUJfi9drHN3QYrAr0ivF5XOj89MYyHkfx5bx01mukF7VhQwQCTzu1eOAnjPqSeopRTw+vO25hPOsLEmCVy9hTIkR787YpwJqgttlxuVSsK8XPN7f4+uvfgIiKxdlCeRkXus8zZYQTljmGbPV9TxNsxYoCdQZsGiCZblFOi24udGalhpPJFAV3yHQ+L1Wj7k8PWme4eMFIUSUnJEN0SolKlRIfFXe7GcdH7XiSjF2hg2ZchKpGNCYeTqoEKvd1ZlZzOCgVSW06oQLyQIStdKkLyqH3wZMclQ0ha3yQF+kI9EZQIdoci3mAQWtFRfkanMMy9U2W7fW0T2zAdsdxb5tfrjSQvcCQB1JQzfR7VjNiCLjODKcEpjs7tU0BuX5uQxyUeqL2O9Hjp+90lwm1GV8QcSFLEAHKecsOZHrOWoG9/RzPc/H6nclKDU7PjWutsvgobgEFQ57Uv/8mGMXSm0khWlcyeWquOV+8AIxDBkvkdXACmd5DMUnoH/WSpEdFFvrzEYy/1oO12mKsqda4IDeumCXPgdOCoIr2Gde0/X8W5yk5DHXXlrsmcfVY7puPFVG5Q97lv4srveW0dDHFNpH3XMExG/MEyRdKcqYK8FByZPu0eMK7cYC+R4xyBAMLd8EEI+6l0cTy9eoNC3f5jLiSnG5Adq9r2ZKi9DC8LK0LFax6ieEliakFgGZsG2betD1BGkL3J5LacK8zJhSwpSU1VjzjE9e34JxAUSwrhc8XS6o1Q1UV9p63vP5jJQmTFPEq9tXaDdnpEigKalRCEY1RjAgmlR8XnA+n3E6LUjpEKN2tAdaVqyUakShezw+XDBNM0rOSqAJQRPcm4Yt6vNq5j/D+KgV183tWemckfqG6guS3S1XJZTL3jccADQhUDtAO3UIxrzX8Zj7xhoB5rEJncGWn21637z6Kf0ekDhi37SO4rEKx3M8/UMetOuxXqT0IAj8Nxbq8Iy/zqChUeRwHmIsp9PBeqUP3qtDqlf18g5z8OFrVWqtf/b59V5Z7VD/R++rddYk0bWhIRh1/DbD2CHo7x/PDaD7j53F+OxiPajuFq8LcWfXXd9c1w5dYAoU0r08PPZn3b/37Fro2f08X0fH6x8xRUIrH3jWB7gMQF87vezVB8aHzqNkJp27Yzmp59/z6y5WLX9AYgeFL1rw172tUi3xnNGp3O8rLp1PLV92ZATGq7XHHkclNx50DyvcOoRxJ118cJ+OdX+kuY/PMYTd06NueI77la68fC8DgnlOOBq4Vz+w+WnQtVILWsmaUmCMyZgCAK3KEgJ1On1KCTkrTd0r5YgoGtQkI2dBa1reqzXC+WbGX/nf/WWUbJUzSsOWK7Z9x7pu+MnXb/D27VtlKd4/4nTSWochBExzREqMFBhTisbqJLQSEVqBGGx58+oVXr1+hVevbjXWWCr2PYODKcbWsO8X9falIm9aOeNyuXTjH9BYa7S8suf75WcZH7Xi+s53vo3zebayNp571RCjJx9aYVjxYLVDC3RlbWp8xK1fQc3ZkAm6ikX0B0DorD4AvV7cc/bUNYyl0k0AxbiD55t4SwKDSuCFPO07B/+BDxYqgE7N7mrULd0/SCkeBMhzC/t6Q4/gOZNyDFV5cr/O58JI3JMBOtPIrVpyKxjoHouIMp6aWJyFvV7BmG8x16hXCG/XnulR6fR7NPvcwGKFJA7dAogG4HlknV0Jb1foz97zXB9nNcKo/p6q8Hwu4FYpUYeQnEnqZ2gyvMfje2Xfrzb98fqf/7jR9UEF8fzZE7Q6x7M5GNDW0Y/Xey/1ACeKzWwHB+rwhNA6aAcShZeN4aopCejHf664NLGWx+eOxhQpXO2Pizppw+FlV15+PIcdnyvz4eGN+dM1LQLzBnw/+v0NaIAOSMa+78DRy5Wj12+vi5lQtk4VCfLjy+HebL9Znty+537triw91UDs4cRgdSPjjDndIqZFS8ClCcRRWy7VhsfLhvVywbbtWNe9t5vp5ciqpkbsNaNIBhctFFDQABxqqFLnf5l8BDoT0y4qTjPkBjidTnj37rFXsvGlp10R9NlmN25/jvFRK65PP/sENzcnZcTAK2M3pRYHXyQDGvDF7PERh/daa12wEmkpFCZ0r8g3/FXLCWMRiqhgPNY09HEUhLpZglbpMPruUbn494g0gbNbKAcPi48b2a1SMrKGghxK3nimuEYg9Frx5Wd9xK6E4UFp+ebWRNohcN27HPJsQCreo+oouMe8HKA/h9/E4i392DjqbDjUSYKea9WFhEvB54pSbV1t69AhT1gy9JUI7crP6fj+Wbe3nfXZZFjYzwUR8/DMOlTq90TU75sO9ylwgWdglgspEIrFUA7+pF0XXd1nV8R28Gd3Nr7nz56oe1BdQDukeGC3jrk/GAsHjwvucR2VGPWHYIprKKWOBLhRIrbeg1f1oD6XH1yXHM2DISs660QJp3cbhf6Zsfl8HNf5+NtlAg4K832PnniwhNd1GygPgM40ddfc3fwOixsaY5AQkQyF1a/VvPmqpbeqdRxgqxWqrV800V2TkE+IcUaKJ0yz5ojN8wKO2o0A2qymt4cpVXB5esJmBarfvnmDp6cnPD09YF8VlarmBFRpGhPlw04w5Uxw5WV1XkXbRKUUUZtgmiY00fw0raU5YFSFCKl3LPh5xketuL7/g+/i9au77vb6w40RxnwRCEpf3EcaskMkx4oD/rl927VauMXQjpCKKxJPYvTXn3s4Hte6gosCY9+1CvfxWq42EK69Gbe4megKUumFf9kLkDIqoLkmUQuX9k3h7R8YYGvbQExgBANBZJjAeiVwLTAsT8FRFPpXPDDfq2j47/141OVi1y8HTwrXR8WAnKTPhc7NgGhqrp2F6XOkMS5gOHaWlC0Va1nNS7akb3YjgA+f15Gs/Y3fg8e13rs3WxP7vvVnGMjRfgCt9ZqVV7Dq8XcozOKYmzJG0deh20DvwZrKBrmetef30y+zq95hEDEdqjI8y7E6eLRX0GKfay3v8zy2dfRIOQ7FcTyHF7buS6gf/2Bg4RohADyxmwAOPV5LdJ0Pdz0Pz9IMDuNDkKg+E4+vHQyn43dw6J5gevnu7hZdmF+N90vbttqwb6Urs6tn3JGI0uXGsiwQadisEG0IjBBVuXoRZmbGcjqDKOCyZZSWUfeKS950iXBAiBM+/fRbePXqNZabW2A5IT88YL9c8PT0hK9+8lPc37/D12++xv2bt8h5R8k79nUDsiJYbqC2VntleA93eLqCMncJFAKAHTFGrOsFTQRv377F7e0dUkq9HiaAP7/kjNP5jNNJO7Rqkz3NvUqJLcalyX9ONWUaFqYKu2kIJlcYAOYpdWsiWLKse1ZuAbt7/zyxl/vxj5uk+3y9ugVTuIqlOESjn3JobVh+bB4PH87XvTUigAKa5WIghF7AV5lkDJjnyVYFHgRIdetQACHNnQKsH5d5oVY/KQRCDNwTkTsJoguskSowIEPzOg6/H4XukA0HWE4cxjNrr1usLlA0oVifX9XyWM0VmStDvVNYV9uCaoWCyWreeTkr0rkCuteixxUTzs3sX30u/ntfRyDMp2UkhYPU71fMSasadFvg4AnZLQFQmvJh3o4xPpCxSwUgEZsbAjVBI/M0Dz3QSLtj+jLSKzbSSk8AMOEsRoYABc0A9quzUmPH/aC1LLk/V+qe59E7O0Bm8CxhXBlaDo373Dl54Wg4khWVVuGu8+bwIXM0EgWhp7LQ8Ma7wUNj//hkOJwlx7/hH/G1NRQ7Hb7bWtXn4M+RdFHn3Srs2EX0eRDAGYzisAMHzMtk+5J7dRVXhhq2qIc51RjqBK0M1K+TBDERQtDvaRk6ZfNxnKxwsir4BqBJwcPlARkN0/qEkLQ2IRNhuT3ju/OEz/K38N31+1gfn3prkqeHB1y2C6o0fPqdz8EpYjmdhrLSJX5lIMSQeheGaZq048HlgqfHR6SUcD6fsCwTtq2a4n7fG/6jjo9ccZ1wOp+ttpy3ISHEKfTK15A6FNAHa2NJX3R9cSenhb9Pzx6DzPI6lDBxAeaL2+Eg2zBNAKEIMIMoWNK0feaYu3WA4nwDuYfQ/z14U0wE4QAOERICYE0y9e5c7NpG0guy62eToAJYW3dyuMmFB6zlg+kwGbf1bC4cyzc45KisOpaIEScnhzjtz4OAFz+mHHUWdcHjEK0SDKoaBN2zOEAapmr02h1uGmWBmFljJV1RaMUPrYDvl32EfFz4HwX7gI5gs6X/18TocVs0mkTanLrT2cS/Y9NE+gnv+uvz2dwT7p7dwWMln7thFfi68x/PTIOrJCJrnki9goiAunGib6kS8moeR1jRPWBnnw4vQ69DSZZWySKE3qF3pA0YO1fqs+ojHTDG8R8RL8WlDSyPqISIXxUOiuvZnnVv9IACUH/xmZLT6RyGp0O/fg67fzKEwJ+Z+MPwWqcQy2zX+3Vyhk3uVc6aXySRM2lVkXuqSRNfawEcYUpfG5Y65I6m9USzQfVCjHXf0EjbCcWcrc+ctkaaUsIiC07nM/L5rCSsfcPjzRmXbUVtFXeffooKIE0TJmuuWlsDl2tBoEiWdhUIwZq9SsW6boAYoSYyQrHk9PSR9eP6kxqffPIJbq2kSJFq7ishTdFKPkVTZiqsNKZlSonNGjTrt5cHaiNfpRtLV5BHgG+6EV9RCMVkPoJXRzCh6Iuu1AZhwzE5IB6eu7TiB7K6eP7nwWo3W5OsEHBrBEJDE0KzUk2aOH2Abpri5YIRUyCQFQadxvmfwSf6OTGLF1qQdcvXngNw9btvbhGtXOC/42Ch0zhBL6Hj8/3ecEPi2Y9et1nCtfQAsEO5/bNs8QKpgKin20SseK5awa7A/J4lMEYKRYU0BlFTD0WGtzXinhkQfy7jVpo8i5fRYBWSNfrznyNkonEPU4Tt+Dpd/TumTK9Ln6mtTfJnQaigIRSJIQoWA6Tx1kakHjaoH28IbquUL4JtL/3ZeUzVnyMdr8tec6EMJvOP1FhTjwZXa3qkZTQQOSSJUeare2AOgYfhmdFQgPC1d4AQvwmO6nAiAdbiW+NHpV09X10Hx+c4oN8Y3Ti8XsJqMx0UXlMYMOeGKY24nz/71pQWf/ROax1QrjTqa5yZkSY1ACDAVjbtbwcNWVBtaMjYOznKC/6qHCixwkplYkqTFYk2ktlp1tharbi9vcW276jScL57ha0UEDOWxZjIpaJwRW3OaPW13FBKBcDIuSDnisenJyWEmCHnxuaRMPWzjo9aca37jvPNGfM0ac02aFxqOWtvHiLCtm9owgjCyHU3BlVT5VABSOs5KgoPKqMHZNRyDmhiCcpVIOLBUh4LH6pSxJVGrYAYBfsQsG0C1EaoTWsWfvLqDq0VbNsF2+UJ05Qwp4RWsm4KEdzf3+PmfMYya9PB2oA9Z1wuG56eLqaktPL1vm/a6iKM4Ldu5NEIUwWoLrLe6sLzhmwSuAfS9Z5qzVbHUQ69xnCVSwVSGNI9SLdMAYCEO+NxwC3UIU7g6jD9GD53tVkRZRP83k2XGJDautIaHYf1iEIAmBDSpJmfJlxub++wbRk5V9zevFJWY1Ps/RhHVAWjx2oyCCEhjHwjCMyL07p6OCqWdmimKbAcsIZapBtDXjZMX6+9r1aMAY8P99pzLQbtxVWyPusY7Fw6S1ocd5R08liYQDoSAUKvRxhDBLXaux2wJagqfAqU4gaeaLUFEQDFvC+DoKwNikO0bAWIvShuqQUPTw/a74kAkgsIWj+RSfD0eN8bYIZOUOAOpTlkrJ0SXA9oextpI75yJGG4TxQPz/AbR/eQh2L0OFdp6MJ+JKv7p4ewZR6kmFrd2BHU4qCyGyfD22/d51XSg3t8RAeYHTDCmZjRiR4eCCEAj+peMkcrMUfadaFuJoeczGFdp/eCbX/ABqAKYTudMM0zluWM880NAGicvleNAd59/UaJ1szI9VG7g6eA9XEHBQxPsRpwywFE0ZKmBefTK/zwh/8NQoj45V/5bxHihD1XYNvB3KwT6J/TPK4vfvxj5JxxPp1736AQEk7rqbdhH00DtXqz18ziAIsbNNRSumfFgbBtq1qL5p3oxvFFzob5a58hMW+tB8FtwR8ZQg7WKKRFyKVqE8D1AkJDLTvQKlqbIFKQ1xVMaok+3D8AraDVArYSNtqmfbcOo7vWUGwNJW+QVhWCxFAeIXgVbG1R0UygJutb5IrLN1cIETFajorNW68YcCiRhA6L2o+ZDyJjwwFOCDECA48iv6ydAc1pGFCcW/EGsMLbdHgsLdVozTCtfU1vb+/J5+qV+sxvOSNMUy/YKqIVyZ8eV5SC7hEDjFKLelBGenE4mAi9OnyK2j4FpCWUhuXo+VDo/b2uNLJ5EcV6jTExQkT3GEopCKzdfGMU7FXFZmkVJWsTSBEgNgI8T0g096w30byKmY1BREiW6JpjRbFqLtUqhTDXHqOtVg1DFavCVtuWO0mCMMhHx9w0ZjE7ROvqPa1ZFSIUUahl18oREFweH1ByRmu1E4+0+etka08Fsq51tdzzvqMZo9TbnPQ0BBrQfeyGzWBoXjEJrxEuALq/3ZProVIHXmmoLOl7XLrXIxiJxmIeVofoXRkpM6p7vxrnNOj/AGu6Z1d9vR9THDrcLBYT9/Y/Ftdyjw+mtHgULO6lwKBxTynaULRm9cxy3iFRurLPOSu8HiIoABLJ1q+ue58HXdrUvewQIuZJsJzOuLt7jZgS7u5eYZoXxGQxTmsJJPTnVHH9v//r/wfv3t3j5nyr8RfDf5fzCfM8YzmdEKeEUipy3rHnDCkF0io0L1klibTahTAHwrpdtFNsq6i52UMn3SwpIgTtJEyBlS207x33BobVBLd4fUWx5kPte8HDwz3ubs6a/BcZtzcnhEjgAKzrE2rNqKVoPcag20aTEyeDVrQD8NPTI56eLlifLiApYGqIdEhSJQ2aumAAuAubmhagb+zhlaU0ASmZxdew7hu83FGvGYjBuvTvKcqqdNd1XQHAlJXFNqzC9zHZlNggQ7UKDgLIZ9AD1W7BNi1J09QQkFYUepDavWG9KRUgpTU8bTtOt3eYphkpTWBWGOP+4RHl7b16TcSYT2fc3z8Y427ASdqQc+pV1BWqUSHYRFuluwItziatGoNjmGcZzDgAqeISU94xKJNPBKUWBBO8Xv9Ng3xas8+Y2ogcsJeCZvk482lRRVnriGj2uItb+9TnngJ3iMcV0FGwO6FA6+Ql1KbVEHosEJ6T5tUV0FuPcAzIWSuG15q1AzEErexYLw9aUJcE+3ZRKNTWonYPTmAKlgTOANRIK6Xgsq54enhURgAE4ZD/dUxFUWLCdbWOY8rJdRmroSyaAMwOVVKft6taiw69u0FiRCMSKPyM4I7b1fGbGT1sXSx8HOfcoeTjNSmsTFf3eXx/ELUCokGPw+PirryYvf6jPvNoBgqLANXiY6WhoXZlUkoBmJXM1aFhVgNe3Pu8vhdAPcVpYpxON7i5uUVMCefzDZbTgmmOCNFKsNExrvezj49acf2P/9N/QUoRrapVnXPBumcomUA3XZisOjUB276iFYWdyJMFzQKBmPtt6FVpFXvO2Ncd1d5OIWpDNg6IHLsLP6VkqsoqjfMI3DeruE2wgrJg5Jxx//AOn3/2Kb77nc/xSz/8BfyNv/5X8fl3Psenr++Q1wta2fU6oUIhhIBkrnxrgptzxTKfsK4bLuuG7XIBWgbQENhdd1UInicTWBee105kHo/fYasYIublhClpHkYpBZfLxTyehlx3w86VOTRNS/c+c84akC0Z26rwq6cNjOr5oz25e2ECqKfwbCMPS9OtO13smv5w8Lhq1XIzNR+gF1KIF0Bugpu7V5jmGWmase8FP/riS/zPv/u7+B//03/G0+MFuTTc3L1CjBNAhJwLtrwbTOnUFreu1VMBgOW8dGVVdq3u3pp6PQikfaeMuUcGdxXxck8EGLtRRD20AE/rUIFVW0WrBXnbQVYVJcWIddt6v7HzjcZ5W61XjMUGj4/qwmZ90KowA5vSVcjvCNH6XHsvtx5f68w/GkrLkIne8y0EpXijQWrBq7sbQBQNYNnx2Sev8dlnr/H973yO13d3uL0547PPPh3ehtBhnSSrZFOw7wXruqLse8//ccGtTVDTlYI6xrhc6E8pGVw6UmJGHFi0snkuAI17OXaO9gr7/mMgT0cq/kAqvhkPXrHEr/8qnnZQWMe0m3S4t2OajTfEhADZaPMCC9mxJ3RbXztcJ1h7IWLp51UoGtB52fddaxsmGmzpDwxyyNXu47Je8PCw4nK5aLdy9lxXy98i8+Yg3bj9ecZHrbi2PWPbMy7rrq3aa8NuTd10EMjYTDEm7HmzzG2Nl6C3HlHLVS2WhuW0aPJcrdqCvueOZBCtcItMkwAjTqeTKksAupr1XwKMVq5/CwkCBdRacFkfMacZn7zWlgO3r17j7tUnuHt9hzxNqFmTGydry+Kt5mtVlhwz4+Z8wrIsuGuiEErLgDQV6tSv5iqJuFW17GttKlB77ImsPXjElLT1uDdWDFFbzBMERXzDKitoTtp6Q0gz4RXayTgtrojYhJoloVocyCEcA1g6BEI9SVyfn45hiQLNNjIZ4aZZfAWd0NItWDOMGYxpnjHPM6Z5AaAxzG3f8eVPfoKv37zDZd1xvn2FGGcQEXJp2L1Tc/Og8kF4tQoQdK1YnEeTRl0AS1cEml4wYi/Vn2eHpGx9AD0tggDc3px7jG9b126BxxiRDR5ttWJell54WBedBcp94fos2gmbCJbT3F/z0ls+x3q/0rsQHD2VY2fh433G6Pk8jHlOIBLUsuH2fIJIRSsZt+eE880NYpzx2Wef4/NvfYq7u1u8urtB2TNKrShZPfpOwGDGMmvhYPVqs3qWh8T8Y7zLlYYrB887ciUUv0Fx1SqYckEuFV526kpx0Sh99SFP9TrZn66uQYaGO0TMrj0u/7z/uFDX7s7Te56ZK64QrN2MVaq/UlyH3DR1EElrusq45utroMN8qNHMDlVeXaevVlvfB+Xlhuo8zzidzliWBcuyYJoYKRnpKE0AGqY4yGE/6/ioFVcVoJWKdcsoVcsGNYyW8RqkJkwEUCBURDRSMVg9iiKE2gS1qBVdpYJnzW9pYIWlSDHlKtCu1c2rbjTERqA0grZq8bsL7DY6bIM3RFarpwmjCgCOmKYFN3evcL65xWm5AYugBAKk4TTP2gG4qNWtEI3FLKaEOWjAPZDCZoSmlFuMBUaHhnh118aXpVUEjz0xa3KqBXRjUKZRaw01Bgg1eBfbima1TQmcIqYwgUCoou0SSslq1XppKCZECr1WDHdAFaAmqNBW9Lq5dTNceVsOwkr/VldaXphVhK0q+mAH6vcNOpFBgdfOt6SpAyA8Xla8fXePh6cLLnsDhwkgRq3a0r41r+7hPzCGlCmuvQ4ShlGYxbScx85UGADLPCNZfosqHavrd9BgXo5HRPD5t0b1+8vTRaFum2c/dq0VMW5W004Fgdi1FI+9etzEqjG0WnH76qZDSH6tHgse9Rs9b4261e+kmtbjLOgeVwjaS+v2PIPQsJcV27pDC9dmxPQaxBGn8w0++exzfPatz3B7e8YyRexR1/jOu3kzCl+nFLUiOmuc1rsneBzOn/fRy+rFf83w6p6Zef5HxeXx3toEISWkKqN5pX3HSVjSDkULmj6/rrgOzSsJz8qVuXTg60oe194KujEg0nqtT2/J5KSJI5zo3/PP4XCeTjiR8Tvb+Qzc6NdwPM5RcTEILV6zNK+YwX4PbogSrBt1xLIsOJ0WzMuCeZ5HRXkCyPom/rmtVXi+/QzMjNMrS5okBihqzgkFUIyWnKztuZt5LSpMag+s1qJlSdxbmJd5WCqizKZubRnLCR2OjJjnBe4g+AP0Mi8eG9IvVeR9hbQCJsGrmwU/+MH38a3v/gC3d5+Aw4R1r3i6KCQiNeP+7Vu9WRcqXiFC3BJuCBwhURtoaj+pUVe3WLdRV2JCDY0qGipSjJpbEwISJ60XKIIqBSUbKaIU5FoxxYQwRevVZJvUWFHKpGxa7ico9TlyGtDfodK5t0voHoqM/lQ6vBzUMVh9qJpPgtqGhdusLM41q9AsU6gw2CtQoYQMATDNZ9y9eoVvf/e7+IUf/hJCOuPd/SNCOkM4QIhBrFCVkkfYlJUZPbZ5iclijkWZibVaCGbEE7wobK2Cm5sbnJYFtalgKrngsm5d0ALo9eNqKfjW934Jy6LFVh8fH/HmzRts2woixjzP3fre9x3zPON8PsNp1q64dD7Ug3GFmXPG7d0Z3jOtFVNoRuxwL1xLfJlXQ2xdirm/7uACBVYYPTBiYjAVSCvI+4rzPCGQkll++Be+jV/5i38Rv/hLv4TXn3wKDgnrVvDuzRt4fpcm9gdLAheUPYOoonJBCAHzsiDOc7+XDqsdYK/qCsle96RwqRW51oNRdPCKzMtLKajwN/JAQ7WYsq/OqmxaKBHF97tiNbbn3Wt9dh0U+LCm3/e4rqrsGz2ePM/SiR9ek9U+p00cqcecejzuMDpR59l9Ky29ooewejzZUCkihNb6sxnf9c9jQM/OTjYDMRk5jklDCJeVEaOSkXLR0MP948M3SPY/fHzUiksoYFoWnOJkWeJAzg2NGBwjpuWE5XyjzKxaEXobCRWATMPyynlDsbpa3S0mAoR7TCOVAX9p75zRmdeVFhNpy2s7U3d90EBS8PDuDSAFyxQwp4B0OoNiQmvAXlTQVc96N2nPZtUwD5o7gKvfvU6eGHTTN6tPlikZCgGMhkDaWTimpCzCEADDoWspnbrdAHg19NqUDecdO0msfXkTK9rqzfJYkwtpbCg4LEhNWbDulQrgzfKOTDmBJwFbYWJx8BUfgIW4C+wejyGLMzKQGN1qbk0Zg8vphNeffILvfO8HqEiYzw9olLTGW0hA0G60YqW09qLwam1WRLY7hNqHqNYGyhke2vd280SjooZHPoMAkTMQCxJNvSJKTBF5z9i3XdM4wgxebjHPE1pcsFYGphVMjNvbW4VwBVjXtcdCNNFeBWhsdcRHp9Qp82XfECzdojUl+aAUwOI2wTwTh2TtNs1qPtbWHASG1L/DkLqi1Q15n3CaE5gEgQW3t5/g5vYVTje3AAdsewaaKtIUAyIHKxmE7rWMNinc/37euPJD//oa8OaFz997PuhQPdYVIEwJesSqAeZVq/EbPWWEdHU3h9Ca9FinGBJETAj04Ws4XrvfWzw8A29Y6e8/X+sQ9QYdZfDF6R60fmQoNBGd31qrJtwDZlwPxSpivM4eLxsohhv8RI4wUV8LKUUAATc3N7i5uUEwqDOlgBC92/UMQcO+Ld/4PP6w8VErLg0ezphPN6jN2F2kmzVOE5bTDU63t5pFvu8Y0gYAW8zBqqDnvKOUjLjvPYgIAlB5wI4V1tk1YE4zorXBVjo9mausllWvYWDV6UkaCOrRkVTcnidACogjaoPFVLRdvWbDG3Oo158bLroYTMOscKJ6f0pRbWLQoHmF2sfJ/rbMQ2qsWLdVoyarlyZW/UChVmVPOeTRvOim5bg0ImOFjdI97VAtoAsC9Isee8rhCSYt63SAKhxyFWkHpS/Dg72yVq9PcaW0TAARAA5jI7emzDsOActywuvXn+CyFSBMKBKBEAGOoDCBOKGBUIUQSkVxiArj+CVvoFLAtYG4QKywbArJjAINkAsB+7ajZEMHSgGXCuEJMSSklDDNM2ou2LZVlVGKiPMZ0/kMiidsBQjbBmbG3atXvQD0dPH4l7K6QOaxtoaYYo85QKDe6b6httKbQPK2gXNGrRpf8uoIGlsZibIex3oez/HYkTY4DGg5oBbtFZXmCCYBU0OaTkjTCTEtYE6QosVX+w+aliwzQSxW2ouNRYqgBJTiz/I5zKkP+WqNHBW5x+6O62gsHv85CGeH+2znqUfVOmzsMUU3rHoZLhP84wwDAv+gHDvCcGZIPyeafMhTu4qh9bPR+N2uQbqLNH6O8b2jor4+z6gwc1R6z7HC671octAINp3JCjfoAEviOnSQ/tnHR624Qpz7RoBDaAGYTmekedZyUNMMzgWNPTlvPGK3ZlIKHdfdtq0vcAEB1SrvABrs7EymBA5K1318fNT3TRE4q7DTu6zuHVCw3LxC5Iab84yHd19jyxX3DxfcP6xorWFKDKrV8isabpYZ1KrV5csGV9aRhMkMsnb1aj2ZQnLIAl7JmU2hiVWRB2orQAUqKriS5vZYQm9z2MAUFhogxaGEQWPt7KSjABFBTLELPcAeT//9uohrlQpUS/bsVufIxgfGZwFzhIXRTGn2mNEh5gEAYsqlglBRlGUoAMJihT4JN7d3+CQDYbpFRcTDuiNXQePJ6koq/DxNhKTlVgAL3os0zUeyuEcrFRw1wXdKM6Z57jUlAeDx4QnruoFjQCvq3e4l47QsWOYF59sbiKUSPD094fHxHjevXuP29hZEhNPdZ8g5IwS1aN3zdMq4v+ejtdb7Oy3LYq9VbPuKvF56Mv6+78g594rxQxHpsWqtWNf1Kjl7PAtj1MVokLzCW57QnBIBrUCkQKBJqiHOmJcboCalyUtTj6UB25aB2jpUSESIArAVmN22zWAvHITph70tIm1P7+8Jrtfo1aia2O1JwUJOLHdPWY1HV44EQUjR5IlqCDalBiKwKCKBIAg4KFF5vpaHFnBP6kgCOVaDGfmih8s2L3mKGiI49jkSjxEMEw4AdWPYYUyPldJhDrU/2CCGdBQKI1QC87ioK2Ut+PB0yVjXFfu+WQ7ghgarZMQR2tyzas7kzzk+asX1gx/8AubTGaU2rDmDGzBzwnQ+g0NEE8LDu0eAGBxSj3m4QCxNLf7I0SoMMLhZfMifeaTDg7Pq1E2w14pqmf/EU99IYg+3klt5pcNfJA3SLHYghMtlBxPj4eER255xOk3gEDFFRmFAaraFWS1/xSwZDn1TAxrHKuuKkMLwLswSVKiA4G3e+6aXsVFFlCShXo4gJEYksvwOgZQN85wwTVMXcK1fzyA+HKnCx0rbHqfSRf/c6rwO9gKumNBjMCoL6PD+wNUdOnGhcPS6/KzHZNRaNSfp8eERDw+PuFxWbPuOXAoaAub5jATG3gRbNgJQg9aAtKAyGqHYvE7zHWIqGL2TRrI32xyWovGmOJ/x+nyrBk/Wah/btlkrihnzckbOBVwFFAvuPvkct69ucXNzgxgT5vNqcbzRQqU1wZQmJBBOBru6B5zzbsnkEdMya6ytFMQGpNtJE39Zc7I8ibseYkDVBCdHwbTcXHlZCpkZZATqxAwOhFo2EAJimLHMCdIyatnQRLAXbXB4uaygloFWwBRgHd+sQovBhf25W1pDzlrnk6kbTEeSxXNv5bmH8yEGX/+dLLm+Wtncwzo6QB0dfWkeQ3T4zzy+554Rgiu98d7x/aOXdYQKj7lbHss8QoRXXpi91j0j9nnQja571WUYerUNeNqjyycaCnaaJmXiLtM3eopjYvt/MM8zQpjx+OqCV6/uwSHgfD6BIyFELWAD8BW78ucZH7Ximk+aaNzWHTFASxJ5BjxrkqUn44UQAWk9FqN2yLCp3J4S0KGEjoB70p97XMqoarmYAgRGwU/DuWWwjZqocIE4YUIt9ZIrBIRSGtZ1Q84ZrbqSufLF4UYWwWI1HY4YHt2hNK8qUN9I/tLh9+7eh2E5N6/04LXYCNohOkCtxyvFMS7x+Zomcsp0v/zhNR0W67Nb1PelfeOmvj4+P7ueociOr+mhr4UQM3fmnBIbhiIW9mfJmirhsGW3Vv1neO2dktzl26h+7tUKmk08h2j5RgRNVg0QIXstQswiJmYEr6TOAQJCTLN6j1ZTs3uhMgq3KrSja1UJAV4WKIBYi7Wq05gQg9XUtLkcXqsSETTwX8B83coHdvdCzhI7PAcAnvks0GOroad09lI0J2vbdrSiXlZPZjXrnW1m3zNm+tbwe32+JulKqD8f10bU+98Z6PoRfqNn69v2h3/3UFRajp7I1Qqh6+9fYT5+XdffUcXl94ir74y9ZxKsw3N2HHKDpvXXNQVDyVDRPTOgG62AyxU9nhtFzt5VopNb8tRj7s9VD9kcemxR190oj/aH6b+fZXzUiosxgvIxJZAInp42c3sJrRFOy1ljTszYcgGodMx3JOgFq0IgaFWQYlDuUNMyS5qwqwvW4wqaT8XmHSh2q659RpNyqFSBzmZku47WKi6XFSlOgAieHp+wWi5aqxrYzVkrfCynBSVrkPfoUXQrk9VCTVNUS8uD6bjeIl4d/eDOdJaTkjCMFQitqXeAyRXaMoqus5p8EbZWQXSED40+6+VtzNvyEjhDwNunD6v/vf5lz5QWMJJOfQ78s8dcm34ioFvwWRoCAdM0o4glrcaA1RIlWwNCJE3IFdH6tlrsUBUZaUVyTxajw3WlNPXSO7mMgr8+NA6UjPHJ3QgKTODZPQfWBObaQMJIcTLFWgCsWOYbaJFaWOUXM05aRUje7HRQYZgUpuu1/0BQarQgxoQUyRLVVVHGeGDA2SilYJqUPKF5RdQ/ozDg3JPvNflcS5OJlrEBiBXaqwp15y1jfVpxebhAPierymAMXxPSikYoZO10dyZNag4hgqKmVrh383wd4Nnrz6tNPP/9vTXpSsEgv9ZwZRA5CuDeTFcouijsU8frGgpsrOf3oUIiB1UURvNuC9p0EVfHvd4n9tNbhKgR68m/uu4C8rqpN3/w2pi1igszY5piL+vFxFpyqh3m6OBRcgi9mn+/LLMsSi7Yc7NKOrr/NSFfDWF1FozB+scYH7XiWi8XiAjWpwt4mgymQ6/M7h5syRnZSpgkYqQpIcSAFJMKMCbkBgAGmZUMqQ2wXKdu3aAAzRRRzhBLlg0UTGQ0BPtsNJSg0iiuKtIgpQBSEQJQ9oxGDYEikmX2T2mCZkFVoKkClEKo8IrjTocfmsWxe7pSCWM8hyj+IJz9+ff032qdjz9ctFQ3QruKYx27HH8opjAuv40Y3DML+g8aH/LEAEIIXiFALU4mRpgmoDZ4+5laCnLJCnvWDEB6ZQUpnRFupXEszhXU+4F5QHpPDXlftcesRISYEFkbNiaeBquwJwa7BRxAWuDe8pHs+pkwtYCWImrTuJIWQ11we3PCvqlnTq0hWGI6A91rco/cLX/BdakjiQJpjMKC7ekBhYAYFI3w2GWtdeSeecV90ThNZIawGoQEaMkgb6VRC2B5hMuUwKLs1ZJFlfmuSmuz2EfJWl4okGCOEURy5cu69Q4MpaJrHAZ5v++Nf2g8ZyB+KB7W19CBhND3GJMtCNNu7u0Cakz6BR76ouFYp/Lo0XwgxnVEFa46G7y3X96/7v77lcK+9hKPEKQbJaN82jinx2ybrcVW2yhujdY9SnLD10u0CCwe6HNInQ15Op0Asv6IunU6KhF45J79POOjVlzOiiIIIinVmybGaUogjsjU0JhA0LiDl+93M8XrpgWCltNBRCALVJKAAmFJES1YFYImADEaCUpkI0EQ4B6KqLWkiksQTV41Uq+DpGqRX6inVEtBQ0VhZaKFoJUHqFrrDYsb1EPyocNDsEWkEMcRTvStXTv0MRabWXsmcGgAiHA/Tb0Bh6FsM0gDoExEx8I/tLGkf149AQH1ih8Q/65Z4xif7dDlB+Cc6+EQhlOxYfNtd+7QD1SJt367A0LSJolO/jDvUcQUAEyAai08QOWWOGRDgDfkdGOhSrP2oA2RRJmZipcYhDcSdv25qdOgx1cIx+dBGZCNtShq2YEpMJYUcErRDCqgkiCxXhca9fiQnsun6Qj3aFV2EWiqiARUtsTiyEhROyC0RsgYwqyKpnY4jJwMpfZaMJEFEYKKhgDdh4EAalqfk8g8U/E1oCszeDUVm19mAL2JoglYbV43UIK+XjCUl7jA/ICRIxjrVA4wnq9TVyyHr/f+b+5JuXNEpM0z/cC+zp9DB+LOx/H717GvDymu54r1GLN7vh8+pHyvS0xJ/xE5kpza4e8GJ059435GO5zLr8vfs+dwiFc/37IKF07DM6Px3WsW5M83PmrFBRkB3RRYcwYi4bxMAAUErshNMMWgVY7pYCnXqgJHBAG6eREZMgU8Pj6ABYhg3MzR2pEIpChHr7YGSQa1NUHetaI4mhZ7ZVKPKxHALFb2qQIto9UCkKhPVTIgBZlFq4IHRgiEmqvBJtp1uBjTqVtNtmc0tqJiujVBEPWK9D6bUfBxpby6IjJhLVACAeOaXuzfU4HTLDdNzAA9LLzDxoQA3gtMYyVk7WBGpXi3Cv27br19U8zi/aEei34flgzqB6dujevfCklQa4DBuur9HBJX+3zqvbGMNcGmYzUJVwDvzQTLgUJDQUNEQyT9caVBAqu5KiCDRswexsQRLmsqlFAplmjqJbFEGDsJ5kg4TQGnOaBmQLKgoCKx5idpOlztcGNgM0jIFZcqL1dcwoRKBElau3KalHTjFfh3FlTjAjUGaoiWtNyQgstnXYCRgWBFpAUNlRSO1cofVcOBzeZftJVLCgFTTJjTBIimhgQWrSFaG0pVtIPgRa/ZHwA8Q6Kvabgt9gHviYztJs8+I8fvutFG3cgbBp6NJgAfv2ufUwxR12l7frxn57H3jlUv+pJ9prQ60++guJ5/7vj5fpkHRq0rKH29GoReu7HmVTiOxqYe6rgPTVn10l5jSp7r7AEVon+OmTHPkyEMxzkAYB7cEZb+WcdHrbhuzhMIwOXhAZenxx6LiCFgPp0xx4Sbeca+77hcHowoUQ0SsSrjgRFFq2u45bE/vEOTpl7aKSGIgJpYFQpSGLGsCIgmyIoKdzF4jwkzERILai1okiGyo9YdaLtWXAgLuFll+kJIgbSqexNcthWBNSYWLc/MMWyPnXh1bB9NBNE2uxqJ9A0Lf7SisG/iWAuwfw4OGVms4ZBP0qEb/4+oFVVL6+08HEZRyEk6pMJHxYKhnI4xrT8MJvRWDUUqUNrYXHZM31YafFY6bkgTEDWvKjGrocMAwaCuVtH2CySLOpgoIMs3IQpAc4gQVrxX0KSirRfUOoFL1H8PxY25eX8uAjWrcEAEqg3UNHmYWkPwQDqTrSF9TnNoOCfCzRxwMwfUlSBR0FhwTirMC2nJMm0Nwr0PnQtSFxyaMkOQxqgcsNUdJKqoo6goqWjgtqtxZQqHpYFIEIKAWXthVajwm0NAiowaALayaWiCNe+6rlkhdaoVkYBzmnCeF9wsCxIzahFAFI53BuO+jRi1KtbJYoP6TFtrlpH/vvA+Dn/vWA3+uLaerzMaX7z+1w0+f/uAehxJP2KK2Y8daMThrvyhZwroqKC+CSr8kMd19dpBATy/x64QLc1l7DdTQIQe7zqWw+rKyxXYN4QhvmkQEU6nkxoez+7/UATr5x4fteKaLC7xyd2tBqg5QMB4dXuDNE0KGLFWHqeqgccUGBQDQtAs72h4rIjWiMulYInKBAsBOCXAq2dkE7SVBDXoZoZotW+oT4UiGiidWBBZQK0ioCBI1nptEEQawlOIMQUL1FvuCLz0DquJ59CIVxcHcBD+OrrFdQAA/XfAYBBy69M3antmZQ5YAB1WUeXlXhoMWhvem/+u1yzG2mxWbqi51aYXp95KjyOM8/Q/HQI6wF0Qh3gBbYFO/Wtq/A783X+CJ4FLQ7WK2GNDG0zYqlnFDQQGrGuA5mYHHFV088RjQZ/h1iq2sgKhARQBbqDoDRmDQsXG9ms0aNrapsYsYhKNn3XvAvCir2vL4LqDyw4qG6isoLLpa80QhFaAZhXQpSGKJaATejUFgipLn2RuBYm0gWNiIAXvDK1TbcXsFRYUAGBwVFi61gpuoms8EKakPeZQNE5cW8UyRUgjoFUUW6n6TAzKFIFYjzmgIcYZtQRUaFJ0M8q/zwUZhufNFq+8ouf/AmN9AVfi1sk7bto8F53uKXWo/Pn3gavzk0v+wxBxD/SZV2Iwc3fbSPfwuA7be7p7ruDK/r74J/DsW+Nv95r8WoaXN5Tih+xC6qjCcw+wq+y+x57Pmu9VX8PBuhur4iKEYKud9ERNNNfP4fKfZ3zUimtOEefTotbfMoNDRGmE169vQaw9l6oAlYEcGCFpa5AYAqY5YZkmxKixpbJv2HPGiorzHLq1dp511msjRKiALkRokRCjqhWPQVVmZKh3lIIgsYC4IVltQCGFEZPFHKYYIK0hRb5SWqpkxiLviqtb0ni+Iw+/mhXojS9xvYn7pnVP6WgBmmK6EgZH5WJKSzfcYROqhBmKS8zjclixNWMN0/VGP5xn/OrX9Fxk2KlAXRHaoa/kmMNkvQmkEWauW100S+KuIDR4mctAGrexilZ2OhUYDvW1w/VXFiRqSCiIACIIQbQ1SWRCClqjj0gVgBMhmAy2gwBCmqxLGs/UuoZApoqJGiJVRBQEKQhSEaUiUkUiT7loCKQsz0CEREMwNR517AbaJWjUMEVVJFMkzFHjW5UISEpIaVoByHgJZJ3ABYUs/9G+N6eAKg1tJwir0J2mCDRGzWK91kgr1XhrlaYx0FYNVo8R2Z+PoLPZGozNe+xpJwcPRK4huuO6GukQx5efff65shOr+CJXX7K36VppfpPifO4FiluJHq+7WtEHXPHZ7676+mY9GqsyDvBsrzxXK92ze+ap6fw4vHj1jf49Z0MfXn7v2skO4MfQeJuyDjWny9mifiJX9t/Q/uWPOD5qxXV7s+CzTz/FPM+4vXuFEBPWLSNNCblUPDw8Yt13fHL3KeblB6oMVGIoPm8xpcCEfU/Iece6BpwnfdAUGJ/c3Wo5qdpQtowq2tr8HAQctetozRXCglYiSlYqfYoqiNadwZkxgbGHiMLadmQKhJvzCdIiUiRQ1dYPrbIpMq1t1op6Ll6d/XkS4jfBah+KGR0x7GNAVoxU8uHGbjI8N7NWu+WGo8Iz4X6kwAIDWrFrkJ4v4gpWv6+FXp9VBnDv6pltnLNmTo7eQiNXTgBjBFshXgqgyIByaTRes1+Q9w01F0wxYIqMwAnL+QalirLmKEDIatEdFSQESlSBKrdPTuBozD1SEoYzTcOUehu+IgGnecGUkvZkqsq6bAKkoKWUKDBaqSi1IhfGZ3ffxXI6aV3FV69xMzHWbUHeC07nBUSEkitAGmxnCkiTwqgERhOjpsNqBfcO1RU/CQVEQJomzNPUGat5VhpzE+ntQ47GTSkReeIew5impNBeCQgIyFJwmrWx5eUJoLajRQDCmGMAoaHWDGkVUwyKNIC64o4xDkbogS2p5/eVoGvij8oq9Gs//n18zQ/ORhhx4+SPcuzjNXwjxCfQeo3Q9X+8hufQ5RF+PH7mD7qWowg4yoUPET+eD5H379M9Ne1xZ2kddDCC/RwYMsXRBBHdaK1qZ24OjFrRe2z+IVGAP/L4qBXXHBMiMfK64b6+QQPw8PiI5XQGWWuKKUZEJgRo072aM0rOeMhrZyQGJqN+ar+fy7ZqUJ8ISYq2PanaKNDJGdvjRbvXksFHgUGtgsWaOUpEEEZEQWIlN0SKKKxWyRQjztOE1ghMDdu6YrvMWhBWBFoWRVC0MJti/pYb1sSht27yQP97gAbVzjZ33DeFMYm8FJOzjZr+3hlV4p6eEzhcueHK4nSnUI1KY5LBj2lp+SKH6h2AGJEAcvDZrOq9x6oE3oLh+aZSbSFiRIQAq/wg1nKidgZVrc3KbwESBMLaPgXQ5PLAjHlKuLu7ReCEFGecznfIxSjBsHbnzSpI5Nrb5bjiIibt72WwTysVe8km7AuqZFQoIy3XBio7WkrKUjQvs4roZ9zlq9p/K1fN5Xt6SEhpwuX+HZ6eHqw8U8WyaD8trX04nrl2Z7Z27a3YXMGShT2nqeLp8R7MhBwjcordwtZ6hV4/sB76v1nNutYQpGq9y8oaE6wFVHdwK4hMlrel8bE5RiX2sBJeyrrj6d097t+eMSXtaBCDGEXe4re9iLL3w7IEaoOXWNWLef5WreYIzx28reN+aLaP0FGD9weRdgb2cmH+Wt9lRPCuz3x4Xexzcliz/rr/xcygJlfGpx/flYUrgeN5j0rtuWJ0g9Q/T/zck3lfWRENA3jEQRlEQxH3PoVG7ugS5qAYydhLR6NY7JSa66d5i6UM9mgPV+A6Z/BnHR+14iLRGIbUjGyb/eH+DUretWU4EablBMiOWqwRXN5R9g1Pl0fUopg6u4suGnDfc1bvgQCWarW8Gmqp8A7E27oaoUNVRIjaK8hZgw3anh11B0tBQFWvyTZhYkJLAbUofT5vG/ZtRU6EKRAaaXtrDRV5Rjv3DPd2BUEMxKBbNJ2BNZQak1qTvZ+SK5WjNWZKyMc1auK0dnRBocd2U7irInicTM8xrktaAzHj6tsdxji0NGG6ug6/T0+m1ZiJCmg5CFkRrwAhWsZLkQsgAEEApggCrOHhhNubM2KYkKYZ59Mttj1b6xqjgdeGUip2qahN2aWACXMiTBHWz6mitYyaV72OKsal17nKtaHuF+xBPSs2T640Jf64OUqiMdlaK/ZctYpGCNjXR1wuT1Zyq+IyW+fbXKzMkwqyNGnvKrZEdxETxkGTkX1x5H1TtqFB5UdWmz/j2uogSljeo64DFb6NKmqLKCWj5g2wHk5Sm1H8i1boII0pkzTs24qH+3d4+2bGaUmY5wgm60hguY7M6oGNjsrmRZJY6xM1qwaa5irMVsozY86ExcgPpmdwINDbt/T9I4e9dNgLXmtnnMGeG4Yi6crrSvGgeyrja/Tev89/PnAB7/3ut8PPlRhJ30/HC75WPofq71YMdwCSg214uOh+MIflCWPefA7JfmfSfcSH49Dh+D/v+KgV1+PTGyyLMo9iJHABmAr27R1KLdj2HRyDVTLQAqQEC6pvF+Q996Z92iFSujfTjMJ8uX3VvQGArJkdsG173/A5Z0xRu766d5NSRIxe/DZ3C2SZb1SIcIUkQUFDbQXr+g5PjwKmHXReQOKU+NFaovet8u6k0IXhLvjwYYAeyLZxxKClFzUduR2AW4ofstCuoZPrBffh7wxoxqGK6/d0g1uoWYDWqNe/61+wTeFn9aEsOUaMqUNLpRTseUet2VqwZ6XKkwBBi/6mSfushRiwLDNub8/aribNSGnBabnB46NV0qjK4MyoqHWHyIpa8rOKGMC+N+SmibrKXr2gFPdUhpXsyb0iYuVwoioHS/K9flY639O86HokYL4/YdtXlJxRqyAmjY/ue0FMbEpWMM2quDRnsblERoyjjTtJQ973ziT7JijK59Wf1+l0uiq0600W/R5aawghoe7FWR1Ii8aRYwDy9oS3757wdPkKeX+H82nC+XzC9777HTNKMFqksFLnO4zKKg21+gyZZz/WFZnEPYp6P6avUE1Op2t4bOi/Xg1DDcHn3sAwylwxPo/R9DVv69f3E4O0vBprtZAjaeKDZcqeK7iDCefEoO5tGnQNYjQQwocUXr8qPcpoI6Q33o2DILDAtBWXPlSLMVQBBHvPq8hQV8hHj6816XmMDdWac+rHo7F1A/05TUCOk0CwokpWwcfA3ScRrWbUBsxFcX7H7AM3Q68Y5zqjlmjWtdGRAQCCp/Wiy4G1DXnv/HoAH1qdQX1XKP3VFYhahSOfSmTpizq3Bg5NGwTyBKeGptQwTYJlYsQk2sIcDeCgVdubN7LMHaqTZhvNLGxNcLbJEYBEA/cCURkGhwIVxhl+j0FV1IarL6MmW7Nk7MDBErFbD6Ar4Uup/GJsIYLSrHG0YP2iDqKFOCocyco8ymLtYcCoLVvnWwY4Yt02EAjTNIFJrFFhxb4DnmTZWkaIgonIqolreZnSNOm71h3bxfqdScY8B5zOSb8vK7bcAK6gYJX4ZYdwQ5wEN5HRWkQtQC5aVFf96gZqFXFqiBNhPs3wIs49DtC9TekpBn06ENHE8qgs380tWAom9gggqlhOBJGo8DID6kpOCEEhGyVSDAalfsYFY1O4j5TVWHY6eBUDPhtdjQFCBCjCvd3eooItgZhdiSSIxHHtSCAQIrN5gBa/4jvz3CKWSa97SglpDn1nMWkkjqUBLVtrE1b0gn0HspUlEwNKpBtjBIL1LQVEvUzbJn2t6z++29ErXojPuVH5+6ftAyTo5dDcodI9buQHkwdKgBnwh7iwx1BKXWHZdFfxuofuDbrRJofXDurLbwOw8lsTci0a3uWAmCZDc0ovT8cW4897hojWsdRkfOXVEie7l4Yiut8RI4oxakFW25I9zYO1z5zdq9i+1MeiBjl1Awe9eDnGXeDnHR+14rq9PeF8MyNO1rSPAcFsiquitGKYvVq6NMoKWDxrtM7obi8BD48PZt0pPKJtubkzs/QArgSgigBklQDcfcbIyfMNBsGWCygwluWEGHoECfPEiFZBWem/ZiFZE0cRo2/DGVZK44a1KezY/ZX3BD2Gx6ccunMYzwPXkOMWsT1ybYGTamT4W9I3zpAKHSLoH3Jvy4+qZ+EOS4oJWjKFZ4nClltFPBKHNZnYLe3xM9hSmo9Gxgr0ksMiui44hp6LVsUIMnPCDU620azzLqxG4LZhz6EnlxIsB7Bq+xBVXIJGQLVKHApVNstmOFR1sHlxS9/jSD6vVx4ZhnAbTRQJVvzRn2g3Ksjy/PQcNIwwUuKRQ2pN3OoNSIGtbY4/r+HVegFfHI4PjAaGfj6Had3KHiJIn7snz0crtMrMSFEZvSFEpBDBNFrT67rWPaOt3LwCSutpIGR7rXtM/XdN1/Arp9Zlv669wzr0XDwXup3tCiegU+9L53piKC8/znjvgLC7HoVzbrvB0t8/7qlnQrtvV38i/q8e7ziGMWgrjFlDI9XkgcGsrQmoKXmJiQ71SvXbHnMDWdwY1HUnKKhhGWJv1eLeFWw9XoOmZPPtsqbaMbUqEJmAIJuY9/37n2181IrrO9/7HK9f3SLNCSlFxdFZIKJBxdI8+fcAm1mRU09C7hXeMQTG46r9tRya643QBFaKZizgVitqLmr5QC0SYCw9AGbF6sbIRQuKcoxKhmgVTTTYPk/mTltJqG5lGcWZDSLoFaqhFS+UK9aszJJctQxQSOK6/5V7A+2guD6YhNyVwrMNCry38BqcnAETlH4837TU4QY9Px+UnZIlOhWfRvDdHpZR4FXoD5KBi1uNTTp1XSEnhrYlZ0whIc2TtcsgXPYdMTZMU8LN3a1VYlfILATdEtumjUUPpjqkqiFULUcNBMQ5qgAU6T3BjnXhPsTmuu4dZjXi5EA9NmVQSunW+XVi6Bj+94f6ZGmFkaHgvTdY5AB0tipreSs36nudPbtv1srx+7op1GVoAnigCmPoymjF6z/S8DrN8wusbXlijFoLkhmEcEh6trXN6FY6941U0ZqVPzN4fzBc9ZpVbeu1EBFKn3ptCNrXohkd4lYFwcq3ucEjcMeYfSE3U36HfaHzq3feZJiTZkdCjEhCchDWzzePPI/2MNAr4AxFdQUn25wKGogCmCOYDZ4G93Ujtia8WIFDvNG6Dyh8ZxieSS1mQogTYpoR02RK2PYvkZK76JCPeVCsRIBQA8hyIzHSM4bq1zMx/pxChTe3r3E6n4xV1VCqQEpFbVmD9fZviAFpmvRLtsjUgKi9JAwZ/s8EJCu86palj26dmK1BokV0S1HFJQQ0Omw0Ox946CAhZavV0szjUOFFzLYo0JXl1Qonj0+ZIHQo6ghJiFd6/xAN1hVQxTeNa8bSOLF6fPbas02n1r97sdCmyAcyhh6L+r9inxu5OYLaWCsvuAcgyuSj1uBMJy3+CpTiidaA1w105Q5/rmY5ErR4rPdx4qAKMxetwt+aYJpmza0KWm2vmlHTAK0KKiPx1XF/L54LAOuebb6hybMdtnSyyYDfvM1DadVgXpMZ3syDvNeUWs37Xs2yZbV+2eMKY/Z17VKPOygpwCaCAkYcUUZsgiNWxVhNkUVDK0jjGzD25KFwLIdp1Gy0JHJf0xYUsuXSEKbFng8GIWKY+UYvYwgpUWmZTqh5t1byBV1aM6mnbPdaAS0fBRwUvSmuQ0xqnFNUiNr5q69Dq4biikvRBM3VJIvPHK2zJt0m6raVrnXp96VXcowyH5Qi3DsZnt1x+Pcc7NT3PX4E2GLWIx81We8aqf86x0f7rkk3zL2ymfJuuiUJZS0XCLQPoUCfjaMYmpLDRvoYV8VuKDz3Gn2mD5rqm9J1/rjjo1ZcMUWEkCBwGrTXGmdLKCWE0CxQ/b4icEXlSaDOiGFWhmCHabpLflxSHSRTKjzoSpF0j8shIVGmWmBNBnVBR6SUbo7J2HYHGeBW0MFN/yAryf4WcbjjQ17T+BuHzx/H+wF6P/74n9tKcIEI3wcGOPa9RVdzp8emDi+Nqz5YuPaZbq32H9uEgt6ptR+i37z/Tn2/w54W0fG+CDFEVBLtM8ZDCHerWciEm0teQZcKlq7g3wtW5LYLNQxl1Y6wVlduAlDrSrdbyBYAYOtqzcwoVboicwv5g4KAcBVT9f5wwSpx6LW1bhClGNCy4mnKdI19Psd1u8dxiH3RWAsaR6KrdagP/liZQezaDNIk6r9TIFWiFLTpa6tmyBhpp0NSfZepR2Va41hXsz8fu9rj4xZfExA4NgGD2JutI4dTDX3U/dcO+8wJHf0Z+jrvvl1fPw6fDRhtIDBaAaaO9Xoc1kLHFVRff76uu6tyjJt6XN3iuXIwIL3YTfO9hbH+7GK1ALbdF5tK9So3bqiOC4SHI+BzTO/fRp8zl4OHnz/J8XErrqB1zGo1K9EWB9tGZNZy+oMqPQRIs4ev4QHuHpdi6+x6AujBcZ34rrRYlZUQgXNRcd7xfqeE2sbusAJh4gQR0viaFI0F8GgmCPHac+gCXA9i/1j8bGDOh8Xj99f/lPd+jkttNJv75jnWOfGeTprrMS7JrW6fU7M8Bd1rEOsB5bkv5C0+iLpXSYRueAxTdyT+QrQBqOYZVRN+NDwLO8bRCJTD9ceYDF5UZZPSjKjfsrqD2nfpqMD6dY7ZcimozzqodTpJOjQhVIILYMINdQhENOzbjj3nXgWCgANNnQBqtqYZITJACWSJ1CGmgydv8FOPQTlARvBeTmQJvSaZIVLVs2TtQMCSAGgOI1Hsyr1WhdrdEAG0N1bOxT7jxpTA4Sz/3edJhaT3lVKjMEZt3dPXlfsgPUcr6LnE71A9iyvF0487cqlgr3kcTDwmBtsJBwunF2Q2eFb7etFYO43QaJQU67BhP49VbemC3z0lu2Iav/cHLL6OdB/J0TLtv9pc2toi8urtR2PbCf9jDfo56MDwkyZoBxp87zhu96NpHuMSnBPijlg/qN2MGy8Qj4IfPiXHOb4ez/PL9F7lA5/5+cbHrbjSjDQtoBJATdmD2uFYYz21eezABJQpD982OnHcWXldaJKybfSjXjT14CHojjOLEGjYDa4hJQUQo1FfWlr5W1ywRHv2ZokwtKVKUMgqRG0f4nLZWT9daNIIuJMvsA8sng/FVvr193+PLsu4pv6XK2sSvV8OVnAXOFq5XXA2Kx0khJkjvFJD64pF7BwHz4GG8tNNzl2IebxAADSDPWoRIGLMz0EZ61QYfKSvgIgR50mbYFZNIJ9PN2COEGLsuaBWq00ZoyUtk1U07yexCvNWeNYVFxH2fcVQQwAQ+ry3xgdPl8BhwcyLVo4QV4DUDS0iaOO/qP3kQJeDwcKH+9Lz2BHgnWxV2Ti64D++dhuU3qyNkSgNyFFZZQptVmndW+ieFWkpLI+tOqJB9iy1z5Ln16FX4Si1gEFaYi1FTHHS59MqSt4BUTJKFc1zc/asqhhGkQZuo2mpxur6VgAOa9zh86Hc9PXewdwVoX3vfZmprFhpfFhS4zn6382UVxNBaEfjhg7r4PDTg9Vu+NnVHNdtl0thoAPy7AL738c9688pIoQJzAWAeu0xNjRiNLLcxgAzJEbRYTXqAoQYHKM+d2LLVbTLszzD62ptbahREVAzB6DVMcfAB5Khx3P8446PWnF99fVbswTR20Ko8tIE4la1jBCxCprBBjLhZOWCmJUuDdu8e1Z4hFkL7RIdLHpfnvZaKQ25ecsMQgNbhrizdGyn2XnVYjOFY5ajiCAVrWsXuoLz68FwQmzQ4b+AKSljfX1IgV0PwvA8VdB0aPJKSJpysMXPFMwzjSrASdzwtyaTgPtcejzH391yv1auxwRNwJMnvc23Kzfz2iwo7rEj15vHQ3RDtgs5e5UUZsxZacECgDgpe5NjL+dVG7DXHSEmNTxaG9aq3ZpCMBqb4wYlLjRvHSp2Tf7MRFvh2OtNgFaLFnKuVtyX1HMPVOGecwpFSw/F0OE5hYcMvvObM6+zM8Ygo0o+NTAJShzrRBN7tedYrEDevcDwYQ1Js0r+JvR5dATQMlsjzZd4QEADwjQPkHRdF4vjxtCwF0GkCnhx41a0TmFQAlTx+KBIF4itCSq3Dks1V8zdO3BlJaN0mGFkRzKWr71mjEt0SNWaxDaHbQ05aHzlgjDca9U1qIoLz7x0Gtvc6os5gUKJI6q4rmC74UxB7Jy6dtjW3lBSV54ZmfywzSugDgn6Z7sSJYf2HcHw1ilyRU+nLndsrVs9T889dPvYcy29ZqkSrQ5GcpclH4YJ/ySUFvCRK64vvvgST08XTGkCJ6MFQ2tsVUsKzaUoOcPK2nTFFY5MLbeSdfNuewbIFInrAoJZPZ7rpN5Saw15dxo2X5U2caFPzVe09IAuERmDqqFAjKqsrMTgJWHEW/Y901yHMdbLEJJ/0Hi+bobwH1acQqVO/uAel1Cqun22FwE2gQUAKBibbXhUupMOi/eoxGR4dsOzHefz2KRv9NaeL/7+cPrf+pjdWhbUUlFLVYteBBwLIhSOawKU2pBzw143TPMJRAHFq2+YF6GKS8vgoI0YVxV0cgaaeSyiwrB6nT9Rpl7etb19rkXvG1DSiE1FE0G0hqdsXQtccYHQmZX+0NgUn5f1OsYJNcY1iA3NSg0FY5XlPV8rLv/+IY8rWOJvqw173q/WTY/pOruQxzNjK8ibs3b7ZtacLs3NaoBUJAamFDBPESnF3gm6gawijlYpYWP6kBsF5t071bobd1dkmMFo7S3tRckpilYchK2owgKhpwIoJIirvURm8Ek3YJSI5MQrgdunZNujZ5X163WobsSdfN2O2LDDe2OJu8fihqYdh3jEmbpCsm90vUv93GLz50qrNUuBkcHIlH6PAqnGku0FGlyEHbXuMBz6z2Evf7PiIkOOfv7xUSuu/+v/7f+O25szbm9vcTqfMM0TluVZ/x40K1qah2A/WIoAALGK4U5jpgYOlmEepp7xrVbTUFwOpivsKLaBgykuY/pQM4tNF0UKSenAIaLVTeErqbhdJtzdnnBzc8LNaYLUDCbBeVn0DN9gqXSVZlb9scbflQUmdPjb5qaz/zzO5Teq1z/IGCPO1cxb7WkBXUeNOAtAvdabfuR59Ysj3IH+ebBhgMaDdsOiVTHGpcUU6shvEhreBw5H7ZavjWVZoLEsgnAAh4QQJzAx1v0RD5cn/P6PvkCIMwSMfc8oVgiXrXSTF56VqlKtNeCy7d1TEG93br97+3Y3d9wGL62MIDmTftbieKoUVYE/rhedKb6GVz2dwZ/dEY4Z7W2gZB8T5KXWTpnXhODUjxmsF9149uO4rhyjFZS+tox8H9Hh92DQq6abQCqcKyd50wr8gfDtT1/js09f4/WrW5yWpRMe/AI0tNIAf9Z9nfvacXffvtTq6EzQjh7XwfSjofiIgu11HkZZR2bg3Ha7y9bPK8WNJ8DqG9vxnVCCzgPzpdwIAJuXZoftaJwMQ6wKekcjkucCfxh6A+HwNa7V/IvNFdeh/AaT12B2aahJrBuFGvkKIVdlu4oeJ+eMmLUCDaQCjXoerLSCBk/dAXrcsbW+dnXqv4mU8ec8j+t/+H/+vzBPE1KaEFNAiMEC0GPC3JJs7traa1eCoAmK5efUqlWrtU4aI03TocHaM2YifBFKP+dICDWYxSwqAtTSE6VFn+YZKSh0kyLj+9/+DN/9zrcAItycFq1SQOgWkbhJ9/z8B3xskEBwUFLDEjtuEsAE/9FxYgAmZkjYNogTXzXfBv1uBCCDEHzDksNJTT9LejR55qEJ+Zx4PM+flz8XZwIe2KA9zudV4fWae/KrKWHp8Aj0+qRhXXeczicts4SAPRfbyA0SGI9PK7766g3+y//8v+Krr97i6bJh3QtyLmbnuOVqFmt28oIANOjD0mRUuG8qKMmuByRa4oYIpWSjXOsxvMlfqVpqylBTNUSsxFEMqceVuhin4eu6t+p90NxQUNq/dhZ2UlGw2n/MXsg2WUUEy9Eyo2CwHY08g+HJHI0QlWdm6DCBOPb5YoJS1aVC8oYUGec54Vd++APkfYe0hs8/+8SAEL0+X5Qi6rW6wtfbdkHo3b2h12XzqeXZDh0JjIDk+36s/oamF6feF0SVlpuCB4+LzK2RJkC1U1kdy772waoYfSuQ2rl6egE3JUX075pVp1OpZJGjN+fGwJUpJoC4cekGuHtUZjSoslSxLtQAFtSq7zHXbqiM/FQLAUin/JhSo96hAg6xNov9wr20Ees6Qjn8R1JMH1Jof/TxUSuu3//xT5BCwAhcDzf0vXlxzc+e40O9DYfGxWpnrS1p7g83zkNx8XPrwRRTE60/5yPFkZTqcQmC0vOlaQO/82nGeZmwzAk3y4TTlHB7c4NXrzzpNOqi6TGj92/pqLT8ejwmoe8D7k29x+jp4sCteOrNJofyGAJbo/QGTxhxRUx5uXryzzjNmQ7vD99QmXe6746GwMhfcviW3RK2Mkbu5dBhUx/vYdybP29TDJ09aeVqijUqJN30217w+LTi7bsH/N6Pfow3b+/x9LThsm3qBZmQEINYvNUMAHAMh2oTXtjWr1PApGtH0BBZWX2aX4gOfdWi5bxy3lCKVQgPmgSq3a/J6PBujBGoK39ty+7eTmtKQHGB3mqz7sIZHhdh8q7aCjPO02KEEII0PbYqMY1nShNj7tYBc6mIs+fVumUPYrtuNiWpwi+gYb88YE4BN6cFd+cz7m5v8eru1kpV+b5lTSa3u5ODZeXwpK9JT+x3BT6gsfeNO7UlBE7X9dXR4Qo6fv6wXPuLbviNn8FstOdi3gYJ4YACXn/X4rXoUOHYfx+GwA9/G0w41ry/b8QYU1zUayKSpdz4Mx9J7MfE9W74wr14VZxqCJu2ZRMO/jecpOWxFP1sj5W9b2P/sb2s4/ioFZeEhBbU5b9cVuScse/lsAnGYnBLY1pmxKT16e7v32HbVtRaESfPkwlYEyOyaNuMVbH991h6V1nGwGeffYbaGtZtxaeffop1XbGuay8+ysy4PZ8Ayw97fFrxrc8+0ez0+QaUFmVSFXXXQ9B2LCJFBaXVSOMD1fZ4PV5Sh5isJBHg7Qv8+ksp8DYEXhXE8XFXTkQRyRS3fy9bQx2BCjKwHCy0psJSAIgWvuKgjMIuVLoHpRfuTRnFjs+mVGJMKvRr6xRwkPbziTGhNULOBTFNvTisJ4/2aTEz3J9OIAYmo7vXZgzJ0BmpWxWr+g68ev0ZXj8WVEy47D/B09sHrNuOvFebp1ERI0aFo9dV1w9zwPl8BgCUkrGuG1KKmAwRWNcL5nmxVvTHigECoYYqgsvWsO8ZKSUsYUJprH270MA71INsSjYJMRiESVi3i9YgjOqVHSta1FpRrUpMKbW3kFnOp+5B3t1FJLPy7+8fQaQw+el0g1J2W49KZCilWqFhseLECkfu+45SnbmYEWPC6XTClAjnZcbpNOPx/gFAQwwFD48XZa9xRGvAPCWAGXWvlvIAu8fB0uQQ1PMEYd93VNGcvmgdzX2Nd34fqffXK5rAc9nUKFKdZShJTOCQQBw0iZ4cZxjqocIEuADE1uXZPX+iw6f93+Edj7jVQGZ0f/k+HnFc76fmFTDGoG6cXv2w7iktnGuGMqu7J9AUB+ZwZVx7n7UYtbZmKQUxzYoKkWCaIkotuDxdUGpBIDalpC2LmjBYGBRi9/pr85JlirIwePQ2G5IKfxLjo1Zc/4f/4/8JyzJrm4enC/Z912KsVokiRk1QdnJBFaO4i2jTSFNaIUXc3d1hmmZM04z9kg1CmdR7Mtw8W2VwIkJIETHGvmlfvXqFbd/w8PCIu7s7I4ZkOLswBMayzMjbBbXsqGVDisAyRdzMCWk6IaQZzAm5NKBuiAGYJ8vx8WQL2yTPIT8izf+C17wTAhsM5yOEYNR098z8+w4bsZUJgpFIfGMdrTxjYjlaAWW2xajwSjBDwiEnwNWIHq8BPYCrb1p5GgpgCga1mUXr8J9APTA+eHhmKTeiUdaxy4oBJ4FU6XnOTqtinbF3lEZolLDMZ3z22bcRplv88Jf/Ei7rjt///R/j9774Auu6IZeKFCf4pvP7Fml4eLgHoIbDPM/wDroi2rp8miZMKSGX0o2YeVkUmjOPnQQotWLbNoiIfmea8PWbNyqorFbmqEOpwtqfoxdg9hYnR9jQW7woq5ANMgrY9q17DOflBjFpRZB9zZb5wJjTrF6bwWLTMqniLA1bXpWM5PFIaHfn+XTGw9OK2rSDOLWC0xxxc5px/0s/RGJgSYxPbhd8+ulnmNKEbd3BErR48iHIL+J5ZYN0wvC8v4FO6Vo1VqQJZA/+y+HvwNEIJ2xGlnT2n1c10fd8Cel7ziokan0uW1NClUEUR0YWyI7V3yPRlIHA4CvixbVBTBTMExs9yWyH4uh9DTJTMKPNIVatZerH6LC5e2GilfzH/lfPWWzuvFdeZNYu1kTayeA5gOVVShoBNMqfQaJtVunHhByNtA8gYT/n+KgV11/6y38ZNze3IApq8eWMfd/hZXliTFpZw6z40ryWXMWed/NMBHGKuL29wzRPmKYFD28fQbYRY7Ame6I9g9ziiVMyD6FhXTfc3tzgsl7w7t09TqeTnkdaZ2YxMaYpIG8X5LxhWx9Q9gsYDYml18uDM7KqliWaUjCGk0py4WNukP+rcIBbWM/jXIPbNAL6APXYl742krA7gtIVDqPHmMxVGjCL5r+ArOW7KVZnIPY4D/yYjp9goIiePDluU4VNVcXThRSNO0GHJ6n/96gg8ezOHcpiWNwHFQ0FiBEhTjifbzGdXuF8+wlqAz791vfw+fd+inVTxRU49fMOBS94eHhnitda3hDsd8a8nLSwbAzqUT09Ie8Z55sbLT5rwpWZLM6qrWymNCFNE778yZfgGBFiAARWhFcsHsVug4EDo+SMbdtNoWl6hrZXqb0SRopJ4e804e2bN0o9Z8YcZ21BwYRWxNAfQuSoj160W8FyXoCmJc4eL49WgJhAgZBCQkoJ55tbvHu8YC9Klqj7BXMKOM8J6+tbJBakAExUMc3aDDPnjCmINtJ02PBonHhVnCbK0qWR2iJwGHDEto7QutfMhK/7g9HkRoMbg75nxtof39NlalZUN/j6kjgUp8X4HtnS7utwrM7rf4eCge0/usp/osOHfb1/SAP4nhj3B4ycNZdjagCZEdZa98K1wr6uK++2rutJY1o91uceIhq8/AjJIYXgSj68DxDKuM2fe3zUiuuv/c2/hW999jlub+8QDgHhIVwSiAnrqp5Qhfbiaq12+EBEQAHmnWmxyrdfPSgj6vkgL1ljAc4YlbFVCqZpwtPTE968eXNlLV1bTgJIQd5XPDx8jYc3XyFvTyh5VYuMI4gDRAh7qWA0nIrmU3grkqOn5blG3QI7ZOnr5R53kf87klW146oxy9gVk2bsD6vMG/eFDo04LRiAUaEAEYZIGJUFDIqh7iH5JqLBkCSo9iKjlDeFzErTfKJmVTeU8YkeEyAjOTjGroatPPO2AByKC2uldVWsWoWjqLEoESEmnG8nnO8+xXe+9wuY5hN++WnFw9OGvBfse8ZmhA5pwOl0wul0QowRl6eHXkOy7hl7KWAmTDGBU3Q8FGDCw/09tnXD7as7q45OKNIwRe0US4ERiRFTBMeIt+/eYV5mTJMmUB89Mocta62Y51nTMrLCjB7LqLVaXUZlOs7TpBUsUsLv//4X5rnpNTards9kDVGloRUgGhRYS8NyntVj3TPevPva6m0CFPR+U5qwnE9Ys5532zZcHt4gQJAiA+UzJBIEVGyPb0BNjcdtXTHFBYRgMbGDEpEBZdcqYGqdtNSfclXmoljM+qhFWrN4mSEA0hSaFRFDH1j1pQhEald0DteZODF53LpX11pDC6EjEdIE6HlvtSvgo5d+lCnP49BO7tDPSm+D8sG8J9vzZAdgi5fVkWyoSsFpjH0udd03qWiWk0aiBJjaKrgaqgGt5sMxIMXRcobceDZ4Gxw01EUEhT1G6sI3jmH7/vlVXPNygzifgJCAkEC2SGoVlCYdKimlolKyTG7Nj+LQDD4S5JrxtG6o1g5FhDUmkAtK1jywGCOWZYH3osm14rKvCjPEgIYA4QiKE4YFRQr7mQAtJSMlRgMDYQZPi2abF+8ZxlptwYPeomQRNG9yiSv4b6zpoai8isI3UVF907kgUA6Q1nSMZpFPU7BqDuM8ow69VU0gsW7PZMKioYrm3tRcjAV3tG7pkONhFhu55ahkhmBtXnp8zINXLj3sh8IodHt1jyx9rn1edN6rCikOVjVen4EIIHvGXgiCCHDC/cMFvFZoKb+gsczAqGvDnotS5LkCXDFLQJrOSEnjME9y0WAZB3BaIHAIL4MDaVwgziCOKE2VRc476kSIEYik1SJQdhDtmJYzlvMJaUqojYCi8zzNN8g1Q0pGKwKKCVQbuBFgre6ZAxAKhCIqFdSyY9sr9txAawazIgbTtGDfNrSSIa0hzrMK2FZRZAeQNC8oVLSqaQKXy45tHQohcsC6FTytGW8fnhDnE4QIGgkLyHXHnldQ2ZC4IcGMsZKtJNtgBbI9G3zAfw5BDaPq9f46OuDG07PFTmRwvq0FmCIwwe/sSqKgyeK+xyyeR86ihKEVfFi7HRIb1+hevxHQ4UqLWFGRUutVbLZDml3JDeiQLQXieWy9M3s9XHAAQhThUNkjop3YicVklOWSlSP0qu+z6LUzRqk5zb3T1jREAKF1+eqelbQKBO8moNksHR5Vf/fZE/yTGx+14nq4rBB+B7x9wGDCWU06E+aebuRFCDzWUFtBTKqEas24WJBdLJGvloqSFe5I04QJBK7adgEAaimoRatyTACIK0odJWHIvIlt3eA7sNaMUoHWCnJupqAiOCSACrwGW69ODd9onsdFvd8XDrAf9YWi40PJf87IGnERMYaTMuyUGcf9PavPqtfdRPveC3rbeXdwzD4EgVC5oZHmxjhL8Qpnt01GOBKTHV5wCi5DuQtaumZQ5n0DeX6RxxCOdw6bUxcuw8PUigyaKH4UA83ur0GNnVwqUDMuuWLdMnJp2PeKfdfKG7UJcgXWLWvVBxLMcwIRYb1s2POmOXoWyC65IueMEANqUcbhnnXt1Fqx5w2linYJjgElV0tibjjf3KKKIO4Rj/ePuHiDU4qoTXMTt8sOWCfulivggXSoBd4s+XrLG1ptvbpGKQ1TmlEarPdYtkoz6N54zprjQ6TeQqmtx5HXPduzUCPO944wgatYvEghr9ZIq5bkAkFBo4oJTragrnH6Ku4OOdnaH2vY9wMOn+vfN4gazYw7EbC1qRFBrw6vISljmJrcqLYiezzI946MvcMEKwklxoT0LzhJQitmMBHgLV1YUQNXcEdm3zGv0mOVx3Y3zz+n1zBEtl5H7RPnECsIkGrkdjIFWNngv8EcJHZWYUNoWrrLEcoenusK3ISYU+N95zc3PiukEsABQY4w5zcrrj+3HtdP37zFm/tHPDxezGphpDgpKy5Gs/rNAg0K6z1dLrisK/a8WbKyPrjVYJjAjMtl65n8MUbMBFQmIMdurYgJISbvtMvIRVtviLVtFxHcPz5qVQyDEHLZjTJdtEg4h057FuKR1S4W4DxEoRm+8EebBLfWnntXV1Zd98gGtVz39QjcA61b6l3RCywHqIKgdGyn1TJILXyGVi0IQROFLZepXxtgEMpQXAC66vJz+/Mbyaw6NwCDqlb4Z7OcVZCMzeEAy6gtOCAYlXMGi4JAVfp7gPYralDK+J4LQmwQFNzfP+Grtw/YdlVeSg1Xg6jUDeKliyTj5rwgBkYpCsWkNCGXCg5kLLyKaYoDXt02bKvCZHvecMpNmXEx4PK0IteM0ipebRnLekGMEfdv77Htmz7TpvNXasF22VCkgqAVLhqaeR8jR6w1rXyRd4UNSykQCZjnGafTjrxn7NZW5JRLX0u1VgthUO9Btu871nXDuu0HI8i9eCDEhLLuoMCYlwlLDKDGVgIqo7WMioJliZjjhDkO8kN/mDJYoeSkJJBVaXdv5/jwqRs1eu2j31noMWpRWNuVkHX37WvEEuiUbXvobdYE4WD06aU0D+1Yojx1qFebZupeVsarXWjz8w5a+lEh6Rz7T+2fPaInarANke3lmLzbAIWhdQJar/7BBCAGQJrFrNxzpK7MACDGIzx5+JGGXszZCi94mSl9BOrNESootF6tZMQL3R/8kxsfteIqFShNsO3aIjrEgHk6YTqdkaJV0HBB3EzucIaA1fpijUO0VgFuWoMuJTy9eQsQYV5mvHr9qrPDWmsoOUOaIJ4STvOiC1ygnV0TI0RbeKJe2Zc/Wa2Mk9afe7zsyHmHtF2D1IEwTwtu5hmnZUKKE0yWo4pgWzOIirVo0XgEWWWOrkRlLBRqY8H76BYmBTAno29XzaTvSs2Tt1VZtOpwYsWWC7hqfb5EQTeIyZOuTEPAXA0oEaeLm9XWN4uXR9KYiys49XCLXTfG87J7qtWTdM0gOKwBebYnRmKvTSIMYrJ4Xa1KORfWjR5iQgyiyhWMeTmDw4S9RTytDU025LpZpQCdo2mZlMwAgZQVN+cZKUXLo9Lq7E4fn8RZYp7ArhY4OCKUglQmnM43CiFBtCdUjQit4vbVa0yTGgy1AmFT2ItC1CRRDiCK1hgwIoRouWDVkukLYtItPs2TzqPlKtZdNCa1zGhzw2bkJrhHy4QpsVGsgRiUJbjMDadTxjKfse879n3Hw8ODQksp4fUnn+Dd0xMaBCEknG5m1MwIqBCuaPsFqMC8LDhFQGv9KjioVSjMJHNhDSilWqSvxy7MbW3D1qB7SU5GKaVYzNEZg6mjFL54mv3sOYMDI1AES4FWZvfUDaV2R0pg9oR+QW0ZEAaJxrvdqFL3x5OLq3pzXRn4nqTrfXuACgElrBxzrXo9yH7p3jW7oEqFlIo0GREMpF22W4VIRTSjWRUczICoPSVGjze8vSaCUnfAEQqZe5NYcsfL95s0aLdOjS9y0HXYHwzGM8XVDPzxxketuNZ9AxC0tiAHK3WyYtsrPLCq7r8KjRAjLpcLLpcVpWZwjKgiaK2Y19YQU8DjelFhgYZlmQEGqhi0s21oVj6nlGyLpCKaB0AYRA9CQM67VvAjAoeIx6dHrOuKbb1gioKbJeH17YLp1Q1O5wXnmxnLQpAikArUvCFw6z58Z7Q5s6rj7XS14d+PbxG8qLAztAClVWuOx2w5RhGBI66KcbJT8hXW0NYJXl7IYUCyaiMaD9RK62qNspcUsvYmtRLQfEOXKwUsgCk1KHUYZtHDjD0LmvcdfHWbI8IA8YRU81aJrVYdK5PKEijVGwfYBNWeM1C17I1YKZ09V6yXTc/PAXNaEFNEDIQpaG3LJoIUCaVqXHTbs8YZLF7JPLxlQLDvWY0DVJSq8FRrFU9PF51XEszzo1rITNi2jHW9oFZdq8fISoxsVRMYpeyHBoJ+foOrDOlRL567N0hE2LbNvKm1C7Rj3o+IXBGNjsSJdVW0IqaMeTnh6emCXDPePQieHgNQMtp+we2sdRlDCEhRO/YyW6k0Gms3WPI5B+5lo6rUDnU2ae8pLuXrqNKtQIc6L9tm6QUzpmUajMxe8QSdVQeGEqB60r8qAN17ojHPgydSmnbjZqhnGHps1v0M0ZywvgbRYT2B9NQPhxwdCBAAtZX+fIO1Q+Duaeo5mmgR8SIFrRVw1GtQJ7WNAgvPvLveKFQcbdHPa+FhskXiTEJdNI6IeI6W76zO4hTdox4/75jKwYC2SemQ7B9nfNSK6+HhEQLG0+Oq5Yk44BIyAFhSXeuU3xAS5tOCbd2w7TtEFH6alwmtFtw/PKK1ijgxHi9PIAJS3hAiYS+7ely1YbekYgBY5hkQIG87oiUAz9OEV3evNBbEpILE26SHiIfHBzw+PuH+3TvMsaG8usFpYkzzZ1hONzjfLDjNDXUX1CzaNsMxfzbXPlh7CkCVQfNFKX3zArZm+mI/xLsOii2EiJQmnM83mKZJlZQQch45QCEodt1p6xYN1kKderzgfaNMeYUYe9WHEAZUWOXQXNGLorrFaTEFMWXsacoyJqDnyHSo8BAUOZIyhoQwyDJYFQ5rO+KxEuag8bymn9+2DKGGXEbS7nbZ8fbdQ69dOE8LUopIKeA8E1LS+NQyn7DlFetlxbu39ygta6v6oImh6tHq5vdkYA6Eeb4AAHLZsV42EKmHVotY3y/NP1vXJ+w5I+/WvoLJPMaRTtBqGfCoqAEHOsRDTa4G87BjSIgpYts2rOuKt2/f6jXHgNPpNOK+osm7MUTElPp7ORc8XS4opWgNzpTw7uEel23FZXvCEgGWiiAV03c+xew1QGNEoKpxR1IiQ4fDLD9MjT9P/vbyVc4QHR6Ax3g9ngMRqxZS8PDwgJubGzAHnPq6VOauWWJj3Yh6Dp6H5IK9NVGCBSl+7p0hPFEaQFdaBLFlLFfruFeu0AaAHXHwU3MIprj0/drZkJp/JVCUw5e9w8UNypIuUjCJeX2dkWgpAmxsY6JewsuV3yDQHzxC0swEtnidV9/QjWQQhwxExDte1L6v7HgfdK98r37ovT/6+KgV1//wH/8fKKXi/t2jgQ1sbdijJrSGiBgnXSQiON/cdHiDmPHt73wbNzdnhBCwrk8gIpzOC37yo9/DvitZI00TzqcTlmVBSgnbuiLvSuEV0WKU6+MF8zzh1d0dvvXZt/AXf+VX8Mnr14gxYt2esK+bCgACfvrlV3j75g1+/OUXmBn43nc+w83UMMXv4/b2hE8/fYW7Gchrwr5GvN03TAFIISDNCdNy7l5SrQWlSqfZ+gZ0qFCZihUi6jG5xd0auhDQCgdnfPLJJ6Bp0Z1RCsK6o5aiwkqAZh5Lmic7hln0huMTBYREpiuk07IHzAEAApSCykb4QLHafBFp1vmttWn+ljVEVBiW1NolGt5sN7XH/ugNEMVKLkHJF6U0zWHiaDHPiKaRC63UJgKqgrZnQDbURrg8bHjz5Vd4d3+Pr9+8xddvH5WUsO14fHxE3jaUsqOVC0LQRM2721ts24aHx0d89dOfKgV9nnE6aZWKZJCeub3aRDQlpKjV0dd1RclZKevThFx2nT/zfvZtx75vuL+/B7PW0Tyfz0hxbGM1HGJPRO75T15D0SZs2za9f444nxX2u6wrfvLll0hpwjxPuLu7w16yQm57BhFjWRbc3t7iL/zwFzAvCpV/+eWP8PDwgForvvjxLb56+zXe3b/Flz/5AqFlzCni9nzC9N/97/H5p3dY7m4wzzOCFLBUsGS77qRKjTR/KKZglTAAtIZcx/MdOYoOBTNgSewN2lNqLwWPjxekacFyVkWcpgVE6snlUlCbgFrDwhoM4hAQOXWh3FyZBtZGmEaBr1UQirZU4qBdzGMYMSNTgSiix/e6p9MU+97Mnk5gHmeMlhOJgJyb7WVCjISUGCkFJOuj5ixkB+FagcqJxIiBsQujcoCwIJB3EGgI3LRItCjaMFvx5ADtKO9IVbEqLzFG9ZBkKDqCMoKrAGSGhLbwIYi17HEP8Q+kxv8xxp+44vqn//Sf4rd+67euXvtLf+kv4Xd+53cAAOu64h/+w3+If/2v/zW2bcOv/dqv4V/9q3+F7373uz/zud7+6PeQUsJ0LLFSdqB4kDSC2gS0hlYaCnatExgZIRHa9oCnqs36WtHKxnV7RDT8l3wh1ozyVLFZdYNiuTEcAlgEpzlg2y54pAam/x95/w4sW5alaaHffK2HP/beJ84jIqMqM6vo6upuazMU7Fp32YUrYCAgoNBSC0ioINCGgoQhtYjUIgYShoGMBiJGK9wrwG0e3X3rlRURGRnnnP1w9/WYL4Qx5nI/kVkYmVWN3bBeaTvPiX18u/tePuccY/zjH/9f+BMH36o6wsvLI9M0iXhvFzBlpnORQ1fIcWadLE8fPS9PnzMdA8ve4atlnSbWeRah12woHsXRLcYElb7xGOQ1KwpFYUhq6dLkbk111GwwBdWuU/q5D1QMMWVOlwm3Jg0WMgrQNBxzAdd1uCCuuU1JRLJlEdMtFGqT1qmopQcbXGs10zTW4QJyADiP7/otU6+lUteVmCIpZ4HAnCVYD00Ky1q60GPdlVl4O6NyDWJlG7bsSkc39tvv2vteEh0biNPMy/OFl/PM82li3B0w1nOeE49PL5wvE5eXE/PTC/OyMi8raVkoOULJ2Jrw1hMqmDhjc6Q3hbshkHLCu0pXE857gjc4f23mUys5r6zLmZQyMa6SqGZHzgvrfGHoB0LfM3hwJsnB4wEKnkRXVjq0x+q8VqBJ4c5ESUnmdJLOoWmjvPUmbXWsl1lYhetKHwohZIJNkCe8qZQaSfHM8XiPNZHL5ZE/+qMLh8ORvh94/PBerIOcIy4v9CbyMDp2nz9wfn7C1EKoK/PpkZNNmDhDvHC3GxiHjn0fiDqj5a3HeC+ws3XYILBhcJ4lrli/p1I5X85Mk8Cq1maVAbNYF+i6kVqlpxXCDt8FSQRixrqC93aT7MqlYHMhVIsLAReCVDJKODG+MQrthjLUettTY5tvImddf0LGskY0J6v1+M7TjZ41rsJqThlMxXqrvc1lI9K0oXGAkg3GZKzLYqrZRJRrxfnC6AN7JU6VFClRRxVKxmn1Z1FIsBY6q/1rRDvVVSFrhdBJ31x1KQfjKFHIZrs7YbcWZBA9hE76jSkxDDtRfVlXZrXtyTkTvJPEoILvlXymPUPT1Hn4FbOy/xevfyYV19/8m3+T//a//W+vL3KTEf77//6/z3/z3/w3/Nf/9X/N/f09/+6/++/yb/1b/xb//X//3//ar2PjRO8N3bDbmpeloNEfgSBMIpuCs5VAxLsOH9SLqSyUtTVHLRRLqYZ9FzAmbMybXKTRXdYV0ootMgRpEajHhiALxVRKWnn/3c+5Mvcqa1yEVu+h78AWj7kbmKaEt4l1euHjh2/Z9QbHyqX3pHUmrTNxOuMwSpVOmOro+kwX1D6j6QwaMEbghqYKktvmu9E8k/7HlXUVU8UvkWleNjFhuM57SfCCbhjphtb0byyy8onSNK0vljMxXS0xmvJ4ay63hrj0tCRrrNWQcmaNmWWN0gOqqEUNShYBqkg2ueKwVnpsDc6RwHWFIipZ7TUSRuW5ljXqvTFUMut64fHxmafnM+8/PLHbHXE+sObKNK2iYL4uuLIS6koh4TxUNWrzvqfrvLr8BlLvyUPgftdLg11/fx+CkCisU5khuccyWFxIptJZr1WQkiNMJ0LMQ88wDKTkSSkwd63fKb2iEATuCyHo/ZfPZ1kTsUKmkK2oTmjckiFnK/NwpRYcEIyl8yM++K1XiYHYWbyvHO92pJSY5pnnp2eokZIPxHhhGO7oew8lM/oOg8eagfdW3Y5LIceF5WKweSXNL+T7I2m3wx53lJxYvSPHxDB0BO/ovASv5q/VBv8bAp5UnBgD3i80T6pSKgWLdR3Hu3GDp6d5oSIkJ++vGoa5lO1+VlflwM1pO+AlSBVyLJ/si1orNWeZt1QozWZH3dwkzFVsJkPNiWW+EKNUsc47nPVYYzf/wC1g3vYSi6PUQCkrKfoNxjTGigKLs3TWc15n6VUui44fKkzPtYfltGe8oRGlbn3zNr9acsUkeXwuGWdFPBpdWwT9AEoh6L6iILY+OVNyImcnCW/7HRQ+rLVeO4F/Abzwn0ng8t7zxRdf/NL3n56e+E//0/+U/+K/+C/4V//VfxWA/+w/+8/4G3/jb/AP/+E/5G//7b/9a73OX/vJb3PY7xl3O+nPOEfBsKzr1pidozjKOh+o9gox5YJIQAEgUExrSL/+7BWGSlojp9OJJUZSTpjxKu6aUmJZV0qRw/vHX7zbNtU//qf/hMs0UXLmyy+/5OG4I3gn2oN+jzUFyhuW6cIyXZjOL/yj/+//xD/93/8RYxd4uNszdJ7OWYI1lCxwiXeOcRzou46hGz5hk3VdzzSv0gPRjdE2V9tE1tpPNl4LXu1qj3NtLkjJGSkX+mGkHwbS1k8TeCzogXyr2HDLmGqP/T//u1QgcpBH1iVSyRsztCIzdYDAR7E1nrOqlhftRxiZa6kV7bSzxoUPH77j+HAva6AaLpeZmDIpFeYpMc0ry5pIGU4fn6Tv1XWEbmDvPceHA+bVcYN/rtCO5fWbh61fZioY7yRQqfxTyVLtzHElKIQ3rytpjdIjykk2clXGZWpJReGzVw8414YZrhvdNIapVgbrum49oax09xgjy7IQY9w+62341Qp12+qhJ/shk7IwTRutuyVC/TDw6rPPeHp54f37D3zz7bc8PheO+47dLhDcgc8+e8XxuGc/dozBYnVA/f23d1zOUh31wZLizPNyoaSZpw/fMXQdd4dRFOStofeeoevogqPrArt+oAtiNhn6jjVndawWhm/KmbiufPzwKPfGWroQZBzGe+7v7ljXddsTcn7KfUwN1tKfs15YyDnXT/aO9/57DDw5gPu+/4QMdbv+b69ClvvtPeflIm2DXLHBKoTtFLHQZM5UHI5SC6mZjhqDcSpcW1Qw+EZpxBvLdDltv6sx4K0GNnP9nQHGYSQ4L3OWLSHE0IhEBotDPJdsEHWYYq6SbDXLyIR3VkhWMRJXQbNMKcR5Eem7/Z5xf9DCRZR07PY2/mIY4j+TwPWP//E/5ssvv2QYBv7gD/6Av//3/z4/+clP+B//x/+RGCP/2r/2r22P/et//a/zk5/8hP/hf/gffu3A9ZMvXjP0PZnWMM0Y5xl9IBXHYXTMKdN1PeO429g1pVRiLqTGgDGSEVvNMnsveG6xBkcgJUMuovQ9DINAZrWKBA+qnK3N2mVZud97BlVafnXs6bogmL21eC8ML1M9lERaJ0pOnE4vTKZy9oZ5OhGcofOWwzgQl4WcosCGmi1ZAQBo9hEh9KCt1pySqEXUlknebKiq2RfQd/3mQZZS1Ca+BC5rrn2ylLL0DZ0n3syYdP2VBi5Y/DVTb1V21dfb1qkxG1S2/amszwaTCO0duq7Xwziq3I+l6wOX88Qapd8TowiLSjFnyUUCNtVgvDTgU4p077+T3p9uTu86nO9Y18wyryxrJOUKiMlkb5Ekoff040AIncCTVs1FHXhnORx6aaQX8YdyIeCdo+86CrIm0hq5zBM7Hato1POSxTHZKTGlgmS1ui53XcetzBAIO7JVRFR5/nmedRSkV3RAho7XKMSgTdrMNrdiy5rXrafTTBW36qNVCdWQa8E6R2cTnx17xvCKh7uBZV057A8M4455Fa3Ovu8JzihALUfV3a5nmiYulwvrfCHHSEmRtMpcUTWVVDLzKms8q3FhbdJFpWj/yNGPg5ArnBeSThV6/LyuzJeLuFZXMV8NXUfXdxz3BxZFIOK8XAkE5TqLZY3F+iv56OqWIHsn6P2+Bi6AKko6N8nXzSLXP6+VhnXyGkuar/NV3qjVjcg9maq9YMsWoGKO5ChMx6KVjaiwa+ByimwA83yRvR8jzlklBuns5k2c2A0j3gkJS1SaZE90vsP7QPAdfTeKBFkXSGRcL8mAc4FgJVkOVj+DGFnnmcPdHXFZeH564U/+7Ct+/Lu/wxvvlTak99NA0jVmP6UE/1rXX3rg+lt/62/xn//n/zl/7a/9Nb7++mv+4//4P+Zf+Vf+Ff7n//l/5ptvvqHrOh4eHj75mc8//5xvvvnmz33OZVlYlmX77+fnZwDu9j3BOaZ12Ta2IeOtwznJOJw2LHsvYsbNXsA7Q1ZzNwk+FWMLzmTSvCh7CBXAlZ8LHjoPwQtDbAgqkmoMS1xJVPCV465j6ORj2Q0CM8iIslPL9KKBb2JZZpZVBqKDlZC0rAuRwqK4dVyk17WuCzle3XOLNkEl2IRNuLVl3Y1ebm+yQrhm7v0wKN6eRJyYK6XYOlGqLrWSYpaZIWuJKal0lqihN+POWtkCVqcWMY3dVmvZNvDtEKZAMGpVb4Wm3rLdzcTTSuAqRcRkh6EXhYpVWHCi7tB+Ryt9nSz9MBGOFVjYXE60U6Hrevp+FLmjtXC5zCxLVNgk4LzIVa19J5veVqj5CosixIqKYT4viDgpysDyVOuoaZYKTYNIiSvRZEhBnY4FYrINZtG1bRB4BVOJy0m/WzXrRobUa6NoC9xoSsTkTGkN/SInY7BV5o7MzQC2dD2peRalg9JgIkRxoqgWHY35VohrZb68MAwjwcBxDAzB0A+eLhi88+x6RwiiLlE08fDOstuPeG9wFk41ki0UL0SGnCK1JNa4Ms8TcV1Y51mYkVnWZVwXubfW0KvkWquObJXff4kr8zQJzEVh7AaC9rXGfiCmKIo5axSHCK2Qi35mtg0Pm6tyjLQP+HMqLvlMQui+d1LdVhHmk++J6Lcl5qhZgcE4YXcaI+iAbRWPA1PFlyzlRFqz6gtKVdbm1JwRDzWjvbZlWShZbJCa24PAzmwsQIDdMKhGpboyWIEsh9ATggg4DN2AcQ4XPGuJ9DvttQ47vHGErsOHjlhhuUxMpxO7/Z7pMvH49MLP/vRPefjsFfcPD0rW0NEZWbVw0774Ta6/9MD1b/wb/8b293/xX/wX+Vt/62/x05/+lP/qv/qvGMfxN3rOv//3//4vET4ABl+xJKZ4ISlsZ63D9QIxdd7TBUcuC8t5Uhq59CYsVZmvosqdo3w/GXh+fJKN0gtN3EtDi7xGljSRnGMcd/Sj6BKmlDHpgiuV3hvePOx0ENbQdSLym1IiAo+Pj2KHTWG6nJnnC/P5jCHTh05nqYxIBa2J6fSiuHHeqiNqU0G78nxgxatCR3vcdaaCXxm4jDLBhNYct+D/ybwOMvwrNHS3DUa2wNWurDpsIQSpKlSJ5JdYYDeQymbQqZTxNmDaYK0G3zbVBufE88o5eR/TNH0CkxkjXmTtOUxjg/VBG97CfNrvDgzDyNCPzHPk5TQxzws5V8bdgdD15LSQ47xBTtt7dY7QdwRvcRbWy4kuiAJ8CGGDSdt93WaT9PcopWzwaoNu272vtd7Av5bz0+P2333o1Jyvau+lWXXI4dICpPU6A9X6K9rvijkpLCSyXKd5oo0hNDNB6TVKEz5XoWvnCsuy8vLywo++/C12+50kPEskTi9gjcD0eSbr7y+fiewfGbGoeIcEf2/xoceNPes8sSwTL4+PTJcz67KwzJOs7Sq90mmatEFUcVNQWS1JVmq+iuVWdRLAGNkHTcWC60BybbpveoA2Rry5WZeNkXtbcX0fAvxV6/r2+lVjJ95Zgm/WNLdBrT0Wmn+eczI/KCa3Ao2WIlWoIPUNSbkO+eOsksaUNmxEd9C2z/c2cI2jztFZOt+LZmXo6ENPaFWX66Qv7Sz2u8D+eGC323F/94qyRoZxxzCMFAwfP3zku/cf2O/3PH145Oc//5Z//L/+L/zoRz/izZu38n60x125vpffPGz930CHf3h44Pd///f5J//kn/Cv/+v/Ouu68vj4+EnV9fOf//xX9sTa9R/+h/8hf+/v/b3tv5+fn/nxj3/Md1/9MUPnBc6oOm5aLLlcSJpbVqQhP88rxrltHqnQaMISuLZma62cLmft4Xh24wEr/tVcLjPzKjT4cdxz/3CHNYZ5Xrl/dU/fyyL48PUf83KWmZvjca8NY5FOqkb6bbvdSOcr3or1w+V0whTJNO1uAMBYI1WcEUjHWotX9g/WaAYoS6DWLAcWMsuTS74SN/h0E7VrXVc8DdK7UeDg1oqkDfVKdZlSt22G0AlbSKq/oodsoOsCx3q4vpDRo0JffrOH5zp7Y/RwSKolWUsVSMy67bDxzjGMA+uyUsiE7CVTtfZqH+PM5oUmDMjI6XzG3KhytNm4UipPj+fNvHO/u+P5+aPOnokIbRt0beKMxhi60In4KDBfnumDxwchZ7TPOa5RG9sKP/c98yJmp33f0yk0TYWYrsHWan/MWUucJyFddJ6xHzYGZYpRZ5kMwXu6oScn6fW4Vh1YWSO1CAM0K2mm9VDWmKSv0jAkc6PvqRCXBAWpQHJOEC+MOxH+zVlk0tYY6TRZ8SEQ+g7f9Vp5d+ScOZ1OfPz4ke9+8YstIRn7jrjMlJzxzjGdTzKsHyPBC3oQvKXbDdvaNNaw6zp2CmGjiVa1hq7NyDmH40qKsFX+3RgZaC+NvlPEiUAWgiAL3rvNxqhqlfvJ6VplP3wStL5XZG1r2jbdQCMqJ9oDtaYFNlWuby9j2LzCms2NvLx+FkrIaHZB7f+qRgHrJAlqn7eo4re93xAJKXziulJSAuvINUpyExPRrsI3VVSqqj/akiLjbsd+v+eLL75gOV/Y7fb0w8g0L3zz7bd8/fNvyWtkjpHH52fef/s18+VESSukBMHrDWpCvlf48De5/pkHrtPpxD/9p/+Uf/vf/rf5l/6lf4kQAv/df/ff8Xf+zt8B4H/73/43/uRP/oQ/+IM/+HOfo+/7T7L7dsXlTDA9zjuM0wNcseCincSC2Ch0rghUqNh2rTLPUMvNl27WIejBagq1LAqugCXhjCx9ZzLeqKPq4Ok9eFMwNVLSQo0zJa6Qgw50SiAsCPV7Nw4kD2mdcdZsiy2XpD0hWbCid7aReEQPkAwFkvrnUAX39taqEOingVjWuNEMFE3vkN9x6zOZq912rZ/uR2M2C3jv22Y0bIOjVuehVFC0qMqB/PBNoNImcDWN0iv/LbDGzWxaiqzrgk9B4TnVCLQCk8lgcNru1eYlVAy5pK3PU2rWHlGVe6KwZzvzSmkD3hVjHNapknxC+yvpJnxfFQEW53DGCL6/TkQvgcL5m15Ryoh5o8CLSwhbcCpxZvV+U4woOuDbDh69SzgqdhGoM4Zu82hqvy/KQPSTKlzUqqr5VsWY0QPw5pA1iPxVKdSaJXgp5IwOK5d68zNqGxOcZb48kdNMXAesc8zzzLqu1H4gr17lpfZ0nVcIGS6XidPpiQ8fvuPx8YP2iXtMHUkp6giFJ6aow9UrMWW8s6pMrhWTJmFWtZXbOjWywATmtAab7TXZMdfvC8qilja6mW55Am1gO+e0feJbRNkexAa/U68yTbT91XIAwXSv+w4V505lGxaXzzG3H5aqyCkErZ+BMS3htFsAawPOEpnLNqTfAF753IRJ21QxjBXqu2hC1m0dy+O0kjNFVfeNtlNaO6IwLbP02deV+8ORdZqwGOIaeTmdef/tt3z79dfc3z8Q+gG0LymEtKuRZEuLb6WrftPrLz1w/Qf/wX/Av/lv/pv89Kc/5auvvuI/+o/+I5xz/N2/+3e5v7/n3/l3/h3+3t/7e3z22Wfc3d3x7/17/x5/8Ad/8GsTMwBKnrEYOjfIPIRm1a1JK6rfMrxbe09ShlzOmTVlsXvQWqLcqIbvdgcZHixNFw3F7DvGKv0bGcQcN7daqeDEpsKS8Va4oF0wG4zUD+JVZF1gtx9Yl8oyeZxV3Tv1RPrkMHaNCShNzTWuV0agbdWWaP113iMW5trYrpI9WzQDtDLcqWnftvGtVZbaJgjaVCu00DCGWKNqkbWAI5WFVfNJ665agLmsLHPc+oRWZ70UFIG2wbTd0PoI3nvt5UXO5xe8b4xFzdaQty1ElBYg0Q0qh6wIBwuhJOYVDOKSnYXiLGKzzYfM4kOzdfEMQyAuEkjkgGyHREuGJLGIqchgaa10rlKiWLrIe2wyWKpSX2QIfM2L9g88tSZKLFQj7tHOeZyRz2pNErhzThzHQQg8S6XEeVPecM5tB1BMlRQnGRoeen39ove29RY1o3d+g3/AkouQWXKVnlQLXtuoQq1bZR9Cx+PzE3GdWOfAsBtZl4UYV4KHjMWaDmcGht7Rjx0udDy/JKb5wvPLRy6XE7AjBEulk8VlIeVI0qpwiZGcZxT9ojlqt2RANBqNDNXaWxXyK6pwO/yeVZ6tQbi3lPNbixFAe89XKvqnDFi2e9muNgv2/cder3pNBHOBlIXQYNQfoVzhyO8P1jcYt/VVb5GTVtmVogQz5HOSUTN5rXWdr7+nF9ZhI0ME3+lAsoyQiJNBVhX+K4hnENHvvK7EZcaUQlpWSowkO7NME0+PT7z/9hd8+9VXHI93vPviC7pxx2EcOYwDY99d+xo01RMZs/g0Pf71rr/0wPWzn/2Mv/t3/y7v37/n7du3/Mv/8r/MP/yH/5C3b98C8J/8J/8J1lr+zt/5O58MIP8m19s3rzjsR4F0tlRMsWspJyRjg01IM8bEqlT51IYzc91uYgUu81n+S6GrJa7EJLbowzDSdYFS4PFpwjvPuBt5eTkJ021Z+fa7b0mbzFO59kaGgfMsDs3jbsc8zbw8P/P49JGUFkIY8c6wrjPn85llWWkVSasGo8ILBlnsTTw7aZ9KwJACpc1JbaiCEBU2WE6b6FpxeecUjpTMTJ63bs1gZ8VsUjaW2nvEdasoeitKD42hOPSj+nE1uaHb65r9G7U1d94y7nrcKnpwl6luWofD2JGSHFzLKjp9zjmFcFHNvUhOVVhUVgICWWSRuj5gkjw2p0gYxYdqGAacC1LFVkQU9tW9zA41uKhltNpzyVmqwaJ9t7v9XpXihY7vHFvPTs5VuQc5J+3ZeZkR2g6ta69CemNF/z3z2f1h65XVWjclg66TAdCmiFFK0QDfbfe3rZcrXGS2vhp638RoMmrgaiW4rKWsoxDo4dn3PdZWlkVEor/79iPPpxfiGvm93/89urBj6B2dN3z99Z+CtewPR7755ud88803fPVnP9N1K0PUJa8bi3SZF6kQq0gYLVEJL8bQd912WCd0ADf96r6SUSRgies2IFyraixq7+o2cHkvULR1VqjhRQ1b7bUPew2O13Xcgou15s8NXNfZJfQckITD33jUNWjYWkvf9Zt/3W3vcfvMbr+vCIa4ZgvF3zqH9Xbrgc6z29aG8wKlOt33nb9Kuwkj0bARNUzT1pSgXEtlOp05n88Mw8Dr+wfefvYa5ywv5wu2FEpcWaeJy9Mj/osv+OzuyO/85Md88e4tD/fHLRbWKh6JLvi/QMiS6y89cP2X/+V/+X/678Mw8A/+wT/gH/yDf/AXfq2sA3KmuI0S2voAG5sNZUchissxClupZOkrZM3OS7k+ttYq0/Z9L/TSU2JeIvMizJ6YAtM8M00XcpHs/XDYS9XQeda16SHC4W6vfYnEaTpzmhes8wJzlUIpEUzBuab3ZzZX5ZwTXhdZgzvcNlwteH7RhWqy9DucNZpp32Dx5dqfETp0y0yNxo9WdblNsaBBNM0GI6gbavB+OzCdE4mtEPxGvEnKUNzv9zebuWE7LWttf28Bw9F1Hfv9nhgTfd+RS9yaxoejfD+uK+ZS2Y27behW4D5hneZUlCoucMwSFyqVvu/YH/YAOpxbN52+UsTdtxZRM+9CUIJL0oAmMKG1ArHJQHSmZNnUKcWtryFSXKqKYRrSJLvW62ZNRQgbzl+rBYHC5L5YZ3G+19dTtpnCrb5TUoc6bxtXcdVtCQJcod+tp9hOCH2ODaYxYKpU4YpJXz+vLNlw08urFIiG+1f3mqkbfvbVz1jiIqMGXaCUxPly4uPzExHohkH2QpxFGqsk+tAJw9PAvEwbmSDlxNgPspbotvk32YcSuEzblzZgdZ010k6rsm6rk1ah3BJh0DOgBcwr6UJez/ugCdqtVNmv1viET0lMm3q7Xp8SOArOWIKVkZiWWNwqtHddvyWo7fvWuk3eTaqjegOrawWZ23yjCFtTZW/O07DB5d47gpMheWelRyuDz0ZZjcJmNiqDJrfObvslGEvNhb7v2e/2HPcHjDXEmOi8Izh1kS4Fbw1D13F/dy9yZF13LSgUSXLb7///Z8oZ/3ddKSdhS2FxVY0HraUpKTRYsFVcSQ9had6nzf4hJlFZbgKeeEfneoaxJ+eO8zyRS+Z8PosBpVJJn54fmZeFGBN/9a/+FXx3pOt6chZ1gVw2mVhSzjw+PXKaJ7rQM/S9ZkBi2simRealHC/XCfpNbV1hw1ZN4gQKSTGyLrJ4u+C3SffWC/qEoKFNY2MNwYdrH8yIk7Modwess3owJ+p8kefuO/YqrpqSDCF2XUff9xyPR4Fg1xXnHMfj8ZON3cgi5QaKqWqxIbMyHff390IY8Y5puhC6wNAPvHr1iss0MU8TMUXG/cgwjCL0mhLTPOEnT055O8CMtYRFDBetNdzd3xFCh3deDzxpQi/zLH2vXKRKMlaBTNX2k2bpZg4o4KonW6OiywvOSyXlpXxq6BAgs0xCGvEbOzSopJHRXkZWsgWgKhue4J3QxTGgh5j1IodkjKFosGoBreRMjgnM9dDdmkH1hnAhKwENR1vF3q4m/irD0VHWRrakUnn3+Tt2+x0h9JznMy+nE/OyEFSkd5pmfvHde4bDgUO9o5R7aknSkzUKWXnp2c3nSZKNLDJjdr+j6zu8E9i99QN9F7beTC6FPkhwiao5Wqp0oPu+J3SS6KSUNmmlYRiUqSu9lqhiAik2G51GL19xXoaeO+/xmyByK7PYEpTW/7oOdAu7s123Q/iiSSgi3EPXCTu01G2Aurmr9yrYXaok0t67LSmUGUe9H06H/Z0oiixRxlj6vqfre6ncS2Y6XwSFKFLpB+9FK9PKOIjXCswZdyWUVL+BITKaKNJvpMy6RLrQMQ4Du3GkAn030YdA0J5vUxEJznI87K/3/dqU/LTX+n3s9de4ftCBK+OI2ZBKwlaZfwlWxDaLKaSaWdq0vOBRW28jxyhT+ArpiXYeUApPpzNzykTAO8+0LJwuE1//4hf0g1gkjMMoDszAcDjw8OYtznsZpPSeKUWmaWZVOCBVoRjHNbLf7/ndf+EnfHz/kZxE827sB15/9oq7uzv+9I/+FGjkAaleur7HeidippoJ78YDMVZSqjy+PFLKjjt34PMv3jLPM6fTiQ+P7zeoZxzGrVeQY9YelGxM79SGxBmst+z3O7LSkR+/eWQcBqy947d+//d4enri6emJ+Xlm2A/sjjve/egdf/Inf8LL5YXT6cR4GPns/jMeHh5w1vHh4wdOpxMlFg47ydgulwtfffUVpVTGccfv/t6/wPv373l8eeK7j+/Z7/YYZ3n3xTv+8T/5Jzy+PPH88ozxlv3xwG/9+Lc4nU6cXl6w3m3qCGuOlFh4fHwk58zd3UFUR4aBYRiF7BMGutBzOZ95fn7hchE9SYtUrM5WslfFb4lZG3Gk5ioHvjXY0GFcEMaqk2ro+7NqrVfRdqz3kv224fGiPdltULgFdg0wxoL1Advp6xgZP28VtAtB1n69JgbWSMCrpah6R6RJg9k274ahWE81IrdVcmZNKomlyV3OWVwUesPv/JW/wuFwpJTKH/7xH4F1LGvi4+MzxhhWVQjZWcN+P/LlF18wXy48PT5SUuL5+Ym7uzseHu5IaeXl5YlpmnDO8cUX7zgcjjjnuUwnyHUbZm8s0RgjNUVC8Dw8iCLGNE18/PgR46AfH/jszSumaeKbb77h/fv3DGPPYdgzjqPIISVxqX55ednaF+u6crlcFE3oOb59w+GwJ4QgZp/run0uDW6MMdKNkrS1ntrcnCMM3D/c451nWRf+8A//EGdl9unzH/+IuEZO5xPffPMN94d7dgehmj89PTHPKzFHgg3sx8D+4cg0Tcynict04e3bt3z27g373Z6Pjx/5xR/9EesaeffmHe8+e8V+v6PvO775s694fn7idH7Be89uv5Mg7oMMGrfxkVWC+BojwbqtZ59iVdHnhPeB/eGw2dxcLiJITqlbolhr5f3793z33Xcc7qXaWi5nzs/PHPdHKBVrHP0QbhK735yh8YMOXP3+yP6wY+gHvFYJVjNe0EZlRVmEgNHh3Jy5TBdiaioLMpzcss2HaaYaKf+naQHrsCGwv7uT1xsGhn7EdTKoejjc4bpOXV4Loe/phlFmYKKoatdaCV3H23dvuLu7E3ZRFc3D0Enf4lZ2SsgK0gtps1OuCFW3QaKlCLMuZ6F+j+PA8e4oJbo+lwzpxi07bJmnrfYTyZoGp7Q5kpYtyv1KoofW99uclDGGw+GgvQ+7DYnHKAfk3Z0YcFprN6r8OI7bRr+dNeu6ntevX/P8/MzLywvrukrA0/f8cjoxTdNmvXE4HDgcDltDu+t79rUyTdMmddSkb2otMpipm+z+/p5x3MnwJlJVet/x6pUoIcR11UN71eq2qXLULXAt6yLEnyrcP2uD9LV86yOYDXrbei8K8Tjtd94aHzaW2qdzQVWVT1SRQ4OdsdJiL8oqFIV5v8GATcaozXk1Nui6rhsdHiM9Rak2Kik3On4m3o6G3MDnpRROl4nTtIgSxiLjJf04EpWpl9RN4f7hnuPxKKCAtwxjz/3DHesiyvcNSWiByRjxA5PeitO+jKML/fb4VrkYZ7Gpcj6fN6eHJs0kw8PXebi+7z9BG1p/MKlpaYMNp2kShqQVj727uwPD0G/7ENje8zYjqP3vBk/eqsW02bysotw5Z+mjBTE0xVtcF3BdIJbMeZ5YUuTl9MK6rKScOLoD87rw4emReZoFOQie3fGA6wIZcVd/Pp0oSdybxSxT3QG6gPXi2h2zGGq6lLYxCdp4iJ4lbUQopkSpsCyJZZrFBirKPF9nRGWl+e51JW970DnHfj9yPB65u7vDaZK4ebopcbVyPZ9/RfP7//L1gw5cw+7A7nhgvztI4NLmpki5XL2ralW1cswGg4zzIs6hurDbXFfKmbss2eYSV1J9oh9HdvFAdZ7j8SCOyP2A74QUcjzeEYZefJKsYxhHxv0qxoVb09sQhoHDbuBw2Mu7rNLb6juBOZq6+3UGRrT7bpUwGp20GQ+KXYU+T98x6oZrWdDhcOB0EgWG1pBu123gasOzvwqnx1w9lNYbfcbD8SiWGsZIgEyRUgvWWfYqAdQqitvh3EqjJZdtkPlwOCghRezpX716pQGn8PHxUZ9f4Mnj8ch+v9/uE3oo1SoHWiOqADQpqVpElLTvBKc31ZCTKKH3vSgJHI9HOThSUrUODVwqJphLo+qviHiJoZpOGtlKUmk6hhv5RHtNG+Srj7HfC256x296gFeDP0AD3o1VSROAVYi3BcWY4kaBv8JVQqTJKSskWfHBUVFJr9zMJ7PI8cAGJxv9rJZ1ZU2ZZbnw/PJCNdCNO/Z3WSTQcsYB++OB4/EoVi6lbPqaD/f3nE8XvBPYy2A2UWBq3T6vWo32VJv2ZVuHyrI10tNLMapsVt4SrlqrfH76XJvosH5Z/QxEH/AWZl81CFlSthts2yrnRqRpyZwkdEV/xuN9C8TiUJ2zaKWCqFnkkgkEsJZY8kamcCGQSiHNM4D4mkUZ5+hzpqwri/aMvfdirdR15FpJy8LL+cy8Lth6hSZb37glRLlW8rJs94daVbNTEJ0Uo/wuuZHhM4bINC0s88I6i/+byJNd4eUmF3YL9g19z+Gwl6SlE5brJv22/Z98xpWqZ+Nvdv2gA9f963fc3R3o++ET5g264JqKQ6sabskXu3y1wLjFo1POhMOOZV14OZ0YD48cHx6YpgsxZg6HHV3f43zgdHqmVuj7Adc55nnBdT3VGbrxwDxNDGPf2iRA4rgb6TvPsszCmBtEB89UaQrXktnvdlArnQ+8vJypChk6Z3DhWlmWkjEl4wwc9zupflRVoukqHo/HrRJpqg1NBeJ4PG6bvmVGRYkh7Z60zDWEDmvtNpw97Ebu7++3YPPhUSpYHwK7/Z7D3XGjMnvbZnykqX65XGicvcPdkd24x4fA09MT1jnevnvHj3/8Y/7wD/+Qr7/+mp9/++0WdD//4gt+67d/m4eHB4ZhoB+G7XP/9ttvuUzTNnB8vLuTDBPIMRHnhbQKDAOySZvrs/cBsBzv7mmKFrI2GhVaZny26qTKgPuSAOtpqge3dOb25wbHalXbvncLKf5yAJMeSAuewLbGSylUm3VUyQh8CCSgGA/qBtz3PcH7jVF3ey3rLK7e9dOZv/Y6MuLAJ/vqdDqRKhg38frtO3aHu00lQ8xVZb0cdjtJcuaVsR958+oNYzfy9ddfY61lnWeCc9ztD6ReZMfIhXmdWLS/G0KgaGWUkgzmd13H8XBg6DrpD1lRI+lCglKZzheWad6QAmcs0/nCpesxFdEjRUhM3nlZE2tkVZWXcZQ1fXf3wG5/pO976YnPq4g/rwvzvGyVnlSVHusSIxbrhN5Q18hlmreeb8qSEKSUeD5fruhH12/751Y9Bdge12D+btyxOxxYcuHxu/dcLhe+ff8erKfre3CeWDJLXBW2jczrwuVy4Xx62QSx9+PI8XhPcNITFmKS7AaLGJbmXKSiXVbSquQ3aykYXqaJl8tE33XUkjlfLpzOZy6XC8477u7vePfuHckYxv0B1/ffQ8B0qJ2m+PObXT/owDUe7nEhMC9Jh00Rtoy68a6pcp4XpRhLk36THqnfm47XBnaplfl0lh5AlQyyHwQiu0zTZtUh7sm77YDYHw7kklkeVrph4HA4s6yrEAiqKoRPZ8YgTslDH3j96jVUoXOfn04qcOl5uHvFPM9Ml4lvvvmWmFal9Vp2h90GYcxxUWak9Lzuj3cq5xLY74VFd38vih63EF47JHe73SeBa2sma8aaUmJZFpwTxe2+EwuP3W7Hbrfj9evXfP3119vPvXnzhmEYuLu7Y1A9NGutVEWwwTIN2gkh8ObNG4yxOOt59eoVu92O4/HI559/zvPzs6jzLwsPDw/c39/z05/+lLdv325w6O38S6u6drsdyyLCr9ZalssswXYYCV5kvBrsY+2ymWueXi5Ml0WqRJTBZayqEog9es5JNSLFjuWyFowV00vrPmXztWr1qkKyCGTSGJytD2ZuApe5Iv85rpvafVNUENZXvQbWNpO3ERi094Va2NSk9/7qtos1zMsswq6mkQnsVmFJD6KSY6aSttcz1jLudlgn5JmuG1hjxHshtEgibumUnYeBVw+vRAh3mTHYDdobBlHE2ESCraUWiCkRoxg0ClXdbQHaWUSTMKYtMYNrJdTW1PF4VBUbz+PjI4fDQUcf3BaMHh4eqFWEsi+XC6UUhmFgtxt5/fq1mE5qj2sYho3BeJs8tDXXXrOdK6fTaWM9ppT47M1n+BA4HI/0Y0fX93Sh4/7hgZeXZ/HrK0W1P5XQVMWd2ytjt/VnjTE8vzzjg8d3gf24Y+wH7g/33N0dpeXgg0L7I+PuwPnlaYMz97sdh8MRbx1xiayrjmbkSowiOB2niWVNzGuEavit3/oSby27YeTw8MCwP9AFTy1Sbbf94kNPr2Mm60aWc4JM1KIr5Dp28c8tVGispVQrNutVqbtOZpWk3M86Da8ZmLObhtkVglB4RhpHVCtaa1mHTlvvqdOFm1tW1KoUTcnFrl42WttQQRl3WSfUTS14U4RWHgJ3xzuq9rDiZd0W19jvZCPXqsO3KpqqLrtdFwhdoF+C2n9LI3s37uhCtwVTp+9FzC8jtcLd3Z1Cqqoxpwei92HLVJvgbilZewJRNpIR5mPfyyZqwcmrrUoLaPd3dxudNwT5tzbDsdhVqztDCMI6EvZiZhgG2aTjDudkw97d3ZNS5u7uyKtXr3j37h2DOu9WZXa1ALnbqZOzEX3I3TgIRJjlEHfW46wn+E4DQSFFMc6DQqlRbF2LqKy4aqgqdFCqUcdZJwe+ba7S8Sb5aeXZzSKt1/9sPmbOi1Nv1Z9pgWKDgY1QtHNTjEDFeOstnf3Gjt0o7Fe5BqDvMRzzjR2NMTLbiPZ9rXXba8p7rptn2nX4N0kvViv2orR+GT/QZE5DtNmaJyKNBtLf3e/28rO5cNgfNnZfzoVOlUSgVW9yK92Nwgglk9dIicqUU8Zd1fvkvacfBt68ecN+JyzFptQhULUIBxRlmtZSJbkcRE7LOydMViXwtH5wSyVC8NrTFTr6rW7nbrffesPWOlK62smMewn23dBjrED0ba2Ly4KcF4e9EEKMvrdGpPHB03f91k82qg857vYcdnuGvmcMA8O421y2d4eDjG94z24nQds7z34URq41Rh21he1rCqxrYp5mvA/ieaf75N0XX2CNtDSO9/eM+71AvjnhQ6d2ME127cbcVdcSNAmpNh7Skrl/TgOXVFoQU5aMzxqxk1a5FSlLq5bphWpUMV5v2tWAsCjlWDZxSZM0vw0yvHrDJmo9HtGUs5ux3kZZt1dRVfQ9OGNFcWIYqGnZMu6+70lRqpqoC33D1XMhrZEUV+kVeM/QD9wf7hjHnq73zGt3bUZ3Ae86jBH4JISrR1ZKD1vGuNcqBD6dQ2nsraR25O3qezWU05kbsfUIOOsROTSLc4G7YafEB6GpT9MEzmCQQceSCzFmSq5iKWKvkKUEy8hut9sqocfHR/p+4Ec/+hHv3r2TzbjbcXd3D6C9v3kT9229o7u7e/p+kNGFlFnmmXVNAoRUp4ErYKzDmkr0RWKAKwzGacPaaF9P3l+buSo1bz0nrBz+uc6qHmJvDrpfRfWV4d1UEsEGeiUe3EJx0sPRysqiyh+6xa2V9fW9LLUNqYrHU97W3vdnmuoNLOm9sgrrdQD2ymQsGpTYCCMlZ2Jc6PsgcJu1pLjgrCFnnQfS3yXnzKIMzW10Q56Y4Dupbl2hCz3rEpmnhcvpgt3tGQbPOF77rpuQc63klHl5ecEZOSCHvtv6pg1GlkTnjs8//3yryIebPm6jx5dSNgh5XVemUexJ2tB1S4qa23G7l7vdjsPhsCWz8zxvJKMGwctlPqnQYo7atRTI31sRse26DoOl7wa6ELh/eNDvSd+yIR7TNOlwsOPh/oG74z0pJc7ns+xj6xhUH7IlLOPuQNf3HO+OVxq994wtiVQ6fkpF2hTGUUplmVemy8yrz14zLyvGev7q7//1ra8tqM6AoRLXhX43EoYe3/cY78hUYaYWqFGEncFSTVsLdsvx/iLXDzpw/dmf/RnHw4F+kMzdVkspcevRtIFadCA3J6nCGlS1OaBqg7dYiyWz2+2IObKsM/N02bDZFFecYQsKounWsd+PxJKxVuC8+7vDtjheTmf6rtPKw1PWBZGVkWquJLEqOB6ODH3P0A+Mw544LZhSuZzO9L1YCOx7ccQdh56u7+gHvx2kwlQLYCw515tqynI4HLYDrNOBTmst4zh+QsG+Bq5fJmk4K7pjDXJsMM84jp/Agy3INxiyKbk3llUL2O15m11NY/zFGLlcLjw/P28H0TAMrOu6vadhGDaacoMebxXlx3HkfD7z9PjE5XzhchGYiiriucOwZxh3dF2PkRkISoEY6+a7JYmQVRsNHfKtOvODepLVStcVPfjFomUztSwICqD9zVaMNfqQzNlJJddEXiVgaHVhKnFeRATXQLCBVAW+NNVsCIPBkr0SeGKiGtSw0uM7YU4qJ1Kos+Y6t9dgRyH+3Ciu6O8A6qLbBfo+UGIU8WJjoBQGndOJ6v+EEdeF4f5BRHjnGWu9qoxY3r37QoOzSjmlzDrNeGNJ68pcxBx06HoxSw09n736TAg2WQgdu2Gg1LIxUxu0PY4j+/2eu7s7uq7b1kdb7613C2zrpMGNrZIpSmRp/w3XgeW29tZ13VCJxlpskGCDbxvr9lbKadN/zEWO7iL32hsLoRPPPmt1HKNiStURHwO5kEkkI0l33w/QA7lwmect8ZYqWtigzhicD3gVhPZqcOqsE5ZirRjr6XoJWt5L4lsLlFR49dmFeVnJpdLtdsSUhem539P10t/KtXC4u+ezN2/5/IsvePXZK3wIpFTE71DdlEXt39IEgn/z6a3r9YMOXN/+/Fumy5lxN+pcQjOFbowgtXwoV1aevamIGlMp3wjCGmdxvYh+zut8tU6olZjiBo31vbB7RPWgMK+reu54pduK8+jp5UTS7DB2QSb7qthbL3ZhnmZOL2d6VX0XKRYUZqgEJ9nUOPQiCwMqCpwJQUwPN1Vspyobxl2rKYUNt4NIXXgFxgvbYDAGVcnIUpEodAooRCiVyrqu2wHQsldrLff3V1JDSmmjObeAKK997UUBW9CUP9n6EO0waHBKC4ibRiNXyKtVG9/PfEMQP6YuZszOQgHvAmlNPH58op9W+n6gFJhXEXid51Wtb8zmdSaDvwINlVoUKr4qb9daNlq7M54md8ongctQjczPiUXMVbFA5PxRqK9AaYwrfR0Ri6RzHS40qw5LKuqMi1GpH2SwtUp1KeaIhibC3B4vHyhbj7cimovyP8m+jbmBFW2THzIs02VbK2tcGPpRg8RCG/lY15UQBnKuXC4X5kmGYNd1gSJMX6eOAhJcJKmZpwkDdJ1nP+5Y+p64rvSqOm9kwdB33bbParnCmXuFqQ/HI33f6RjAp4xDYTiOoASNtn7XVT73rKMDjYgkL5k3ll6jvLe1J5VX2iBDuaruMadMXAmwItLMBuU1skRwfiOjjP24EZrQHp/XoXgMWjUFvJP90/e9QMaIt15zSDBGlEakH2/ogt/GL1B0xmqiL5+zDCI7FySZ8ZWUhUQRU6GqR5jzgX63kyQmCftxfzxw/+qB12/fcv/qlZClrBX7rRs4cIMGrwX4X+j6QQeun/3sTznoYN335zg2uMGrdbWW6a1akAUo32/01oo20wPEIkN5WzassGK/4ebD1rta15VlXXFOTBRTStu80svlzND1qpbQ7K4LMS44NZZc5pUv3n5OCfI+1hoVCivsdiOHw4HdODD2PSUn1rVQa+IQ9jJQ2AVsCHgvbMeh3wHXHt4ta+12A7ZqswWDFjDWZdkgqgqbbUWnzepF4dKdzmV577m7u9sqtpTippsn7DhHCUFbKlf9t1bpynuoWpmGDQJq2bB3zfG3bq/R6M3jOG7wbft8G6yTYmboBsqaQftcMSbef/ceFzqclxGG82ViUqXzXITgkHKiqK6jVO7S38xKH69VpJjGvtt8j7z1FCNzgaYaUk0KWxuKKZtKQSxJfbIkQNmqvShTKEl7SjUzjN12EHWhk3ktJ4Gr9TapYFV9ITjPtMyUJmFmqiZBlTUuxCWqDmESSS5r1CbeaEWosLaFZhZqzFU373w60TQEU1o5HI7sdntiXPTzLJzPE6EbyKVyvkyM/SiDzevKYaf92eDpfOB8usgM1TRxejlRslDS73TYtes64rqy2+10KDYS/EgfrjOPrarfjSPDOLJTRmOzcoGrGG4jWrS5sd1ut1Wc1jvWKGMw3ndXVYxPIFa/ESfawdtIGJsKh1aAV+WLoMPfOhOnyED7ajqULZg1qPyqKBM47A9br6j1sKmVsRNPOazB6Gs1U9Ycr8awffAbElJiou+kp+eMk9m+IknPpqqjRKOqKjK5QrUWGwK7456x70TtJSeODw+8fvOWl5cTr9+8YadjKomiSbQ2ic01iP1lXD/owPXVV19jqDIQqoff7exKypmUo0jB9D2n00kgK81wNqpwyawxkpPQ5tcalbDgOBz2evPFNyl4OVjH/SjVWhGIph8E5hvGgdPLicNxz+4gzejVSTn/8ePHq5hoLuz3e5yxeGPg3ReyIbJAdX1nGQcvbrs1kpbC0zpxvlwky7fw7t077u7vORwOhLFnXZ/AWO4eXm1BK6XEOI7bRsEYxr7HdL1g3FlsDSSYVLVMrxjTnGKBnIhTIs1SqZpScIhSidFNdnl5ljk27TWeLpOw4YyI1yoZVg6HTarHEroglg8x8fHbX2xMI5MzqUxkpR9fpollXZkuF4EzrbAzf/q7v7spfLx//16C/G7HOI68ffOanDJPH57YD3tSTDw9vfBP//CP+fDxiQ+Pz3z982+5XBZiKvTDTmaSjAi15ptBWavzR616aPNzlopT9qEcpLJBJQO/IVtg2OvA9uVyZppmDcBZVUskuZCKNpJya/zLV9/3m4ROq2w3+rqzW/P+dD6JF1hKKifUDsOkxptRHAayOA847xg66V057+i2iqIV6YWmfemcVN5dCJzPJ47HO1W7kM8sxsjPv/0OjCdXiKlwdzyK9mZMfPZwvwWkVw/3nM8zaywkpWCLO/XAbnfAADlGvvv2F+z3+y14ndYnLtay2+85Hg5SVVtHXiPnmJheTsrak8C2LMuWXJVSiFUSpvP5TFTqfEwRrOhuWudIa1RYS6pP21T57XVWiqL2KPoZeO9VN1SGjtuQbvCeqPdbhu27DT5sAdAAyTmWdjaUogxpy+oFam1ow0v77BWlCL1oO87ryqhBWyB9VfsAmRGtkkSuyyKIjBX/uGaVQ4Vdv9uUM+zYQS3MLlGJGBzeCwHKBC9q/lkQBQnQnRLWevphJK0JG4I6EXx6/WWEsB904Hp8fIFauUyTZI9IBuS8NNmjMgnXYpgyrLEgwgIWZwLnueHX4vLapGUKBRc8IVhSWW6qOAhdIYRCzEYZf5UYC8YWqIlSFlKGZc3YaaXvehICVU6XlTbQGNeVp6czY9/zcHcgeE/fB7rgWKcTp5cPPD994HL+SF5P4unlPBSdOzOWl/fPrOeV5/4Z3/esSTTvhv1312Z7KVtD3RqBarquo1PY77YqE0sQFZ1VOKwCqfW1YLOsl+zPkXLLat0GuRrDNoBpjIwoSJ9QSDI5C8PR6uapuZBjEhHQJoVkzLapVq3y1hhVGzIqG6uTzDpnFq16c0pQK/vdjqHvKT4zBcMaxdrdd5ZhP1IfnzhNF5ZcmGJiiYloA72Vqqa4jmIkOMVcMBpkRB1+3qDn3W5HVT5dzJUS83ZPW9Br1ixrNeKjZjymG/Dh2ivMWcwn1zUiPk2SYAgjTjTk1pioa7zCWNrPkEM5kYtljWJ1UrLBdR3LKs+9xpXLedLRCUMtlmA7nO1Z18SyJjCJ4NIWMGW8QG1arGKalwWYRWPQytetVuHHxwkXBmoVEdYYz3o/MsYGRSwSa8oyl+g7jvevcL7TgeJIqTAOA6OOblBFKu38/KL6jQIrP+92GxrQ4DRgq9BlTTcLm9ZzElbjNE0bQQMAJ3C7cU4tfZqmpzI1ufYHG1WzzdgJgUOZysoSvn7+sldau6JrIxy+0d7Z9kmD/QDiGpWk4bdKrg1rt2pPWgKWaiq5qo6jkjCu77VJg10Rl1plHwfv5WzQFsVuGDe2cM6Fl/PEtKzgB/bHe5wzTOcX6bHpjJ01DT2pTBdZA/O0MN84qte4YlwQslaz2jF/seD1gw5c5/OCMXC+LIReFBSmaZWBPGvI1eC7UbTYCthuh1XK8Ljf8fz4JAKYXh2RjaU6GcSzLmB9kAMt5U39oRhhk1nT7BKcLBI8KRvqWrAuUIslRfDOiBbYGomxbIFrXjIvj4/cHffsd1IR+eBwDqbphefn9zw9vWc6PzEjeHfne/bDQTB06zg/nTk/XiQ7DI5YhClmnKop6OHfMi+MIXi7CYg2woNRWLAJeZZUyEVmudB//7S/1GCUqn9H53i0akOkr4xp1l9u6wVKcGubWrJDcqWuUeay9KB3NxP3sUjvLZVC1IzWOUc/9Lw8P282HKHv8c5JH8SIkV214kB7mk6UarCuY3/cE0ZZI8PhwFIteY7YfsRp1dU5v1XUOUVKFIVzk4UOjzLPdncPW5XYsvcmpuusw3YB3wn92XcdxjuRC7NXKOp8OTNPM+v5hDGOTg+VVw/3MnDbd0yXiaenJ5Z10cAlfYycEzZ0YD0Zhw87jBWW7eFw5OXlhSVOxGSI2WCMZxhGvO8Zhx273cjL89MmSrtmrTKswbmOpsAhUkwiXrssC9471mhZVhkROJ0z5/PKNFc6nSFYV8OaVxpDJYRIqoZU4XyZuLs7ctiN4qwQeubpwvPTI6lUfAjcP7yCKoPFl9OJxw8fiaskkl3oeNHqJbQKxnx6FBpkDUR11L4qyog4ctbPyAcPzlKtpVp0lEaqTqP9uNr62bWlbebqKF3Vv80q+SAXec1bEtYGIdptfTsdV2BLdITAYI3hcplpjEZjmtFs2ebpZL5QRmUMIsUqcLX8PpLsKOqSsxqdal8vt5lXu0Hx3ndCDhtHEdGtlafTmcu8YvsDb7/4kuAsp+cn3L5galWyhwR1mdFcNHhNTIpsQaWmVaqv5hdWpbq+EX/6ta8fdOC6e3jDuBOlYhc8uVaen18YdjsZ0AuB46sHcinENfLq1avNE8lYyy+++ZbL5XLV2/Jig/709CS9IIUa5mVmXRd10ZUsvKRMxtGHwN2rHUOvQ7ZZzBaHodsGb1O6ABXvRlA35N14pO8GjvuR+7tXPD09cT49Ysicnz6S00LfWXZjIMckLJ64EK3HhAHf9XTWkVIhrYX55YXiCtVWjLuymRoRIpdMzYlLSgozVIKTihFlTTYIQkRfr8oMojQuC7Rq9ob+ZPt7acGxfX97ZuUftIqNZrUIxVqyEXPL4DwmiiNuTomslV01Zpv/CMYQukCJSZ6hsrG0rJJY2gjAuq68vLyQc+I0Xfj49Ewp4HxPP+758ic/Zf/Z5/jxwPNpYZojNvSkDNZ5jnd33B2POpuTWC8XUlzIOWIRE89SK6fLJPYjGEzV2ataRVXeic9Z5z2u60jrSi2V1+/e8nB3R/CBJUW+/eYbzqczp+nMw/GO492RV6/u+Z3f+m28Nuu/+tmf8Wdf/RnPz88szXmgimVN6DvmaeJ8OvP6zWtVzAhYb/nZn/6Mx4+PTMtEcDKY/u7dO37v936fcRhwGP7oj/+YDx8+yBo8n4jaHxnHQT8pgd73+1FIPEUYg9tMWEmE/o6D3zHevWaZEznDsLdgCilFYlzpdgd2+x3j0HM6P3G6TMzrIk7erc857MAYzueJuPycdZkoKVOTMPX24247MNtwMiB6ffVavjRKQCN/1FqpQdEYRTxyzmRnqVng4WKEeJm/d6BujsnlyhwESSarQsa3PWRK0blJSQCqqsbUWinJkV2iKov5VmEF03pMBpIEJLLKxtUqPJ0szOhiwPqC99KHLIu4WUdjKKujKOQrSH8i6T0ry7JBnMYYlpsRiy2Z9I5pmvjw+MRljnz2xY+5nM9MpxeOw0D4kdnYmiK71rMbD4x7OXellyxwdSkZnLvZ9RVMRrQzMr/p9YMOXH/7//n/4vXrzxjGka7vKMDzy5lhv8NpI3s87ElRoKR3n3+uQ6+WlArf/vznzJdpw519CBv12jrJaJZl3r5EFVpcX5dp3uA0axFpKZ27qGShrHeBy/nCh4/vmS4XDlkYSs5axj5wPr1wf9zzxdvP2A0OQ6bmSBl37PoeZ2H/+wPT+SLzLi8XlilSq8Egm8Ibj7UV46DasrHRaq2Ypu6t98tQ8VUDApWwBSDVD6TeBJ0bgVhV1DfWShCpGnjMNpVBRujhMq8i83Ja5n1CgbVANY2F1/60OhysrDmjS3o7iBBopTH81DjUdSJ/hQbX3eHI3f3dpmQtv4PjcHjgMiXWmKnG8+r1O17/aMT4gcPDW55PM5c5YnxHKmJBsj8e2I97rIVcIlE/b0Nh6MULzFjDEsVWR9pB5WoNn2WI2aAwjbPMF/GgevjsFfvdTvqfMfLjnzyyrGJWetyLkvlhv+Pz16/Uoqbw9t2X/Pbv/BWmaRJ6uVH2YS447aOsy8r9q1fquyRiqt98/Q2nlxfWnJRK3fPw8MBv//aPGYeB4B2/81f/Ki8vL1wuF5UfWqkIWabCRkC6vz+KRmbOPD49EVXIeFlmYkxKCAGqzBw57SvNy8Tlcub+fs/xKBXkL779ivPpmbguBGdJyySWGMHz9rN79sPAbhhIcWW5TCzTxPn0osPNuoKrZO85S7JFlbXc1tU2EG0FMndqJS8B3ym7VnqTVfcT5kb0GPm5UqsmUI5irozMzhip0nSpmi1gyt8bWhEUTtvURWrBFHnuBjXSEAslMfhGZtgqLKNzqlcWritF9r9YRYswuJEkLtwEpNJd50ODD4rG2M3aqA21t7GXlqgOc6QgyjlZ9T+3JEDnX3PJYIQg1A+DsDNr1fEXnf301/lG2c52C9K/6fWDDlx/7W/8TT7//HP2hz2dTr+/nM+Mh4MIQBpRr2h28F98+SPpExlYl8hnr9+xzItadkgp3YYLfRCLCjEpnLem+TxPrMvC+XQiJVUSjwtd8Js9QqmJcZChwvcf3rOmgrFBPGtKxTvLbhByyKv7I2/fvcPWFVMTtSQchd47dkPHF5+/4/x84vxy5v13H3j/3UfWOZJi2apCExy+eDAyY1Q2te+6+RXZVjlZR7O6D14qru0AsKKWXrVxbEyjnTfzyWvgAj75e0FmT9qgZRDsQthLWjlhwEqZhlBwm8yQ/nfzQLJWlEtaVWHA+U78wkJg9NJEd94La1Szyf1RgtYwigdTAap1jKMn9BdSXYmpMuyOHB/ecLj/jPs3X/L0MnGZVvAd1ciIwTAOdKEDVFx3XXE6p7cbpe/kvAPrlS0mjXmphMRKpEFLVBEnnaeZFCN7VT8xGGKK3N2/3ijQfdersorn9cO90PBLoev3HF+9JqaIxUrTW0k+1bQRicr+eNhINdXA/as3TJdJoPAkc3TjOPDlj37EbjfS9x13n30mIsareFXFdZFZKR+kN9MC18OdkCZy5v2H98yTJHTTfJHAlQsYQ9/thMTUdeSUuVzOvLw8cbzbcTzuGbqOw37k/Xc/53I+kePKRZ0SDvsdX375JffHI3f7A7UkLi8vnJ6f+fD+vchg5SwIhJIWGtN0YwzfSGhZYwjKQm0U9VrqpkzT+pDNBfpKVtD+Y8mbqWUbxq5VPtvOKxzHlSgDYIqlaM+9CfuCykTZa2XVJOequdLFW8Vl1d+rDUSLDY4jGzW+rTJE3TnZA9i6Kaa0cZDbWcwtcClrt0GQDaFopLarTqVjTQXrF/a7/fa420vujxJJnKPrOxkn0TUimp4yU/bJpUH5L0KJ/0EHrs/efcn967dyo7tANYauOg7HV2At86pNwuownWfNjjivm0jmslaM7fH9kcvlQrzMpHTip7/7O/hhkNmlfk8/toa5zK/EdeH0/CLsrxRZl5kQxEKkP71grMi3dD6wRPj4eGaJMPQdvXcEa/AW1mXleLzniy9+RO8qwUs/5vG7nzN0nt048KPP30m2+XLh/v49nf9Tnp9eeHm+QDV41+N9hw9CrhDoorGQxNLe6lyP91YXrGSh9ibjacGrMaY29tTNv18v04opNshOhpF0MUqPQHB1h3dh6zvXop5fGqhcCBRE3Nh3w3Vgk6uZYCoZq55Xzjv2d/eb2HBTC7DOMex2dMNwQysu5FxZI4R+4rK88Hw5cV4yOzy+P2JcT7GJZCrWdgzjHus8KVcuJ2EPlpoJzuJDIBjHaSnUecZay+u3n0vAIpMqCGJlKMVQq71u4FJwfqTv9qy5cH7+VHXBe4GWp2Xh4/OJuM5YG5TdVygRCCMhjAQXqEYGluOSiGnBdwND15OpTPPEOq/gYMmW6gd8cLw8PjOfLyy/+MD+7g7jPS50dMOO0I/tk958pWQua2FUMegmWL0sC6nC3YOskxijMhal//X61TvGYdx6O2cNXIfDyH434L0lxgVr4eV5YJ3OrNMJi0iS/fi3f8y7N695+/oVvXM8Pz3z+PEjf/azP2WeLqImkxM5122NpyQJA7XK2IHV6sM0+aWM2NFLkBcGrBJPjL1aB32ifiKQH7ntD91XVeYoW/Brc56tEuQ2iClB43YA+pf3k1xX+jhbICm5Xme+gjh2NyIZwLDbYYMjkQl9tzkmtGDZAngLVl3Xba9trd1GiW4p/957LpcLh/sHpjny+t2XYAPjbi/egCpusC6rIjpGaft3oqfoHDHriFGpGOM/6T82BKb+BULXDzpwfffxhSUaLpczqRZilpmcV599hvWeVCQD7vqO3X7PZc5cLjI7InNAIh6b8Xz3i+84n89cLmceT6LqHjq/lcRVM9CcxU7hcrno8K58WWdIunGPxz25eAoSuJYIMVl240BcF1LNmJp5eT5ztz+wrpn93Y6h93gLU/9CcIZa4JtvvsVWydb2+z2/9eOf8PbtKmKYa4NJKjlH5vOJkiK7cb9h0LWKAvTWcVJabKVcrdxpDJ9rv0skhK4N4aaqb8yV7i1ErisMojgRmEpc08am6/sR5ROQk0Cr1onfUjf0YAyJiu97aVo7r/btynKsBRe6rcoKqoJvvcWoOSiqt+iCWp0b6VWZXFljxvmezIXTZeG7D09UfyDbHe9PkQ+PJ07TSjce8OEFrFNvtrbBoe87GV6nMk8X5mmi1sKPvjzLmlBzwe8PSDcoqFTN+K3b3KVzESahvIZk2eu6EteFnCJv330usPQ8cTlN6kisc1+aCJgCa47CSu16XOdlXismMpmXpxdRP7fw/PjMuiyktPD283dc5pWhf+Ll5Xmr0KFuHlINIjIGmhGmyJ7J+2gU/UrhMs3iyTav5Px+c9zFQFylT2ysVK/eGeZ5pSLqDtY6SjU4bznuD/S9eGa9f/+BwTt1Cra8e/eG88sL6zprvn5NmkpuR2HFK2HIGGG7Ra3SrBG0QYgSIgQgKJ1hnuZtaNfbJtdWpN9Xb47a0mxN0rZ3GnRW1T9t+/xpNZS8s6I/35R4bi+pdK6EnTbSU3Ol62XUoe97IXZpdZxLpht6ijFMadlsT5ryxy27tSFJTTC4qYE09uXtmt3YsM4TOnj16hVrksDYdf7qsQUbSWp/PHC8v8OH7hNT1ArqXtAqLK22auWmXfhrXz/owDVdZowJnE4XYsnEFHk5n6lWWDsV6ad0qZAKFByX84XpMm2wTK2WeYmczhOn04Xz+UI3vjAsqwSueg1cne9oCuHzPG+zPIJVl41NZmzQbDmQC5s4q7WBVBbR78qJFDMpZjnMjejoeQch9DhboRbmecJpn8l7z8OrV6K0kCvLImoPy7wwXc6YHCnJctzvriaOJW/9BzQj/aS6MsKessqiaoGrDVaWpKojitDLgaAzLkoV1o4Xt5QMU43KXAXGYdDHQk6iDSjZ30A/DuAcxRqsEmesE/p8C5gYg+86nA86ZyVsL+OcMKuM2fpmItMkB4qoA4ifVuhHnL+QcmWa5b5N8wrpwsvpwmlaGQkwZyFbGBk5MEYqx1Q0aayFy3limi7UUtgfz6SkjLwmDwQbfCmXHF232S9GmGKbnYU+qg1wUzNrKszzyvksA7pNX5ACplWt1pFKYl4SlynSDQLPNbWG02VmnoUG//Jy0hm6xGWepTeWIo/PL+rVJdTxNmcXvCqBFKXsF1kTOSVx5HYe6wWOjrmQSgVjxccuJZbWryxJmJ9ZYC5ZhlWgyK4nzheBlHWQuO97rIF1nsELLmCt0aHyBRCR3CszE5r4XaVo4JJ7nlLeTDQN5iZwXf3tigadJrHUaTuh1krU0RoQ5LsFrpSv1RNUYcbqzBsYmpJ/22/ySwgtXr6nPa8W4KxIht1WJpI0swUtkUoz9F0nrYuYhJRmKiUivX4VR7il0Lc1dwsTtsB5q1fa4MRbc8xQZZ41lnpD1jLXe+KExdj3PUH3aFK2ZdHfc/udGiLzfejwN7h+0IHrMi+EbsA6T+c8xnpCzGCd+ORYwV1Tzjw/XzA2MF0WljkqjdZQqiGmLIOxuYntOqz1WBPkoKhCp01a+so4hcAQuULMUYYWkXmOcXekH/aauclzOR8IoSfNE6VEKOCMh2pJUYUoq6FUESN1tkLJOBvV4bTig+Xh/oFx2DH2I9O08Pz8zNPTMx++q3TWYErh/jhuJpENvtkMCc0Vz57nGdTawptP8evWiI0mgk7BN2M/s/UQrn9nO3olUzWVm8Cl1Yr0mgHpFfX9QBgHjPfCvGrsRWPJtdJAGxc83TASQicMumUWkMdZrAv6mnVjg7WAjFGPpOA4HB94vqxYF8gZhZkgr4kYs86XwZpWKlYCZXCABK00Z9T4hlIs1vVYj+oYBg2WpbWXMMXc3Jt2T5M2tI2qMFgwXvqSmhxhHM5brN6rZU1cppXLsm6/W60Fh1dqdcBXmaM6XU4MadiyXecca8rMq/SApkV6n9YYUqnE3ODvq3qK9xbrAxYkOFnR5zs/PYrFCoC19ONIN474EJjnSagF1jPsR7LSz3MpFK3QrQ84FxSuq/iu4+CP9F1gmcU/zfvAnbI5a0lc4kJKBW+t6O0NAX+2rEaGrtuQ8a0ME6DqjFcdxhD8Rt5oh7n3cbufovO44owlWMfgr8LaMQbaDKdzTmYOFeKVdSbwoNHnhmsAaM+fkggaOO/JVfUgtXdrtf+MKqKAkpuM3frFQ5BKqut7nLEsq7A013lBjWcIjIz7nTyueRA2cpa52q80uPA2WG17BrbH1Vrp+5VqEktcWGOSZKs2Klfbx9JP6/ugPAFHMUbFH4qgFjcthYJUtf9ci+yen180kFS6QZ1wnQh9ih6gHDK1iNCjt47gHNU7hqFnN4r5Yhc6+q6DWtmPowzVKV5t0J6PfgjiyyQwmrGNIThwiUkb3yNvXn0mdiY5S6VkA8GKid04jNTgKGkhxwMhSPnfdQNdkIrL3N1hSoKSGfuOl5cXkg7hxpzpqjDWqjUY7wh9YH/c090f6ZT4AZK9m8ls2XkIojDvVCXj6elpyzrbgCW6MFNMmxp+jGpN3+ZGtCIx5pYJ1SougEIYeu1xycCz08axiNFKhuldwAaHCR66Tg85Ofht1U6akcAj1hno61/5SI2KLIywG3oxUpWVIllucB5vLDnlTfnCW2EQimMA1CyjAgVLzV4HkLOSLqLGQpmxEhWLJs+TKDlSS5JDu1WzrYrdGFTy3uYpKTRot2b2batahn9leLY9t7PSA6lU1lUGoQWmTqSUMdYwDkImaRTtbuilp+TkIDGKCngL3nhctTgc3nrkY5QDbskyYJwWYRfmnAmuI6UVo4PJd/s7+qHHWcfldJLB61JwvcNbtwUNkPnAXJrwrMM3G51csT4w9CNxTSy6ZkMIOBMwOdE5UbYpJZHWRQV7dclZqTyNuwaK7cOXu08wotqS800/qhRJDpSM1AgpnQ+MXc+gCu2lXmXEhAglZIyc0uaR1wggNBSDqgO9V9+udZ03dZPUpLqKBi5N1LSZCchIxdiLU0JFkk3nHc4HOt8xKFQ5TzNLjFRrcGOPH0aF2t2milM0cG3MRK1sNzKGKluIBqXZBMQrlq6P5Lpsa7yWptEplVRu8HfwuC5sVSUV1hRFJb5Vpip5JZ+LIjx8miz/OtcPOnCN4yBDcfMZkWaRRW6pWCP+RFbRZZFjSeS0ktNKLQFrRG/OIDCaqUX6KKbgTMUZ5MAsVmZ3jJFDjYr1wlCSD7GwAMFaYUyppUJcVzons141S3BMNanzLIIwlMy6rNv0unMWE3qyWGBhXd0apxSpVKxKEFknLKF+HETFm4o3hrGXjCknyZKCSgV1QZQL2kBjzDeHbL32t0Q7TXTbrLe42Jq30ue49rmu5PlPKy6VyTFC4XXebr0dYQ425pTMqFhnhaTRBjLhusiNUMmNBttcshp+ItJUtP5A+7rSmUECggUVtpWKtGZZI8FZqvMEZ3EGakmQNVlxCVPs9Tm0ZyJooQ4OVEjrosFFXHop1zm5Bok0anT7vSQB1eSomm1+LhexunfB0wUnc0M5ygB0ihivFZ2qRxjnMNVgTVFYSl7BqPmks+gar5haZI0YS69K5E4Ps0bSaUeJVejVGVFlMBWqdWTAVoPD0ncdYz+IEovvSD5ScqELQQ7xojNMpSKxpm7EgeDFJy5FGaJukmSt93HtVlWsM4KCFIepXg9wt5EIGqx1W+E0piugMk1Xrb4teDUafK3YJMSbruvoh0GSWK6H+Ra4vIdayMliYmP8GVWPqBs5pOkFgrAQixFZr34ccCVfKy4EsbBYZYZWRSsqwzhgNFFB2X4CywUcUKrCzbMwGIfDAaviwFvlqTOAt0E957wFt8YibPcN0HvqsS6rd6GmiLLlFZa9thusF7mw0HWbqWTVakuEAZqIt44UcPt0v3nZ9YMOXO9evyLlwvPjR2LNGCfS/rZmmqFDC1ymRNI6E+cLyywswJIG8LI5a1woaRXPpt7hbaVzgLE4LMVIw79YqNVSiqPzlo1VZaHzll3XcbeXGZ3FwtgHdkOHM5VxHJjySkmrsowyy7JyvlxkgNdYgSh9oKQo1gO1UcWdVi+Nii3VTD8IoSE83EuvoGRG3Xg5Z4KyiFpJb53i9NrTKLXBn+lmQUq27HPCR0eI0kdqGdv18EVx6/q9P6G7FhhbltdgCttmvCqCnTtH6HvpUzVqrv2ELiJ2C7UKm0xp9ygKsW1UDRDb4VclsHmt9oKTg9KUhDfQB4fxns4ZvCmUFDVwWch2E5q1Thvn+n5SWkXfrmaCbQQdmSWqOd9U622e6Kou0A4hjxFxXgo5rTqkm7DDgAuWPjhqiuS4kNZJh5eVahyl8sEEnJG1kHMhx6U1YgSCIksgTZEUF0wRVGDoezrv5b4Ysc8oTeioyPsyztF7D1pVmpxYqgbxCl3w7AbRBHwZR1D4bBh6ShSXaI9AazECVRQkduPI0Hesy5llloSBLBqOTpOi1o9NMVK9FWko58E5pr4XqFTX823g2qrtZpqJQm61cktWqFVGPppjdqNyd730XLuu22BFjNmG60XNJWOTkIFKvqrPN7RiCzL6eilHPMIcHfa7TRt0C1y0wX42cWRTC/1uFNIKlZpkbg9rcMEr2QEwhkilWsu428va13W/aZPC9l4axHnLOvz+fWk/l1KSZFpbCG3vA1uyK4HLETqpAruhEx/WWJXRK2MhFEWIjJV2ANvb/42vH3TgejiIy+ng4f3795wuZ+Z14WSSLMJhZM0z0zxxOV84n3q89XjjuDy+J56f6buO+/t7Bg95jbz/9mv8uzd49lQrHjRVM+qSpUTPWZqzxTXbdXh1HOn7gd3g+eqP/3/c39+LEjaZPJ9ZzmeShzhdMKby6tUralpJceWrr77it754zefv3vLq/sh8mcVCIifGIfD6zVsRJ71Rhfjuw3seHl6RKZia6frAMNyJRYWq1rvq8UNTaZcAEHOUgEXFjr3MXtUC1YnYbWscp0iNlmwlWwKFNrz4KDXl7dDLfFqpV/V9g1RRVk0RJYNTh1Sdu7Kt92Gs6JiZKtCnHlI+NGJMZYkrm12IsXTdDb1WG/HNybkgfXqJEQVnLIexF+3IGrFlIS9nPInjGCjAoTOsvvJ0/kiKRRKTrqd2vdqPq0mkftZ1XSnrTE6R0/Ks1dg1l3ROBj27pqZShEJumtyVc+QEqcocFkjwHawlXZ74+Pwd77/ODPweOa10toIpCtXA6HVurkbynGWOpxRIaRPQpcI6vygRKFPXmTiducTI4y++4cuHO1zZ4axj33WkLDNcdVkIOkvnaiXHiCmF3llWJ5Cnp/CLr74i3j+IJJVzhN2eGFeeP34kFZ0X2+1Z4kpcZxHCTkes2dF1nuNuz3w+MV8mLqcz+2Fk6DyH/R6HzCfa3Y7L5UUC5DhAyXR9x5oizy8vPDw8YL2Xz3C/p5bCsiysedV1JYme64KYYd7QyI1z0kNSEkHX9/TjQL/bgZED3RlDf9jdaEmupFRFFm7oth6sEA4KjuvAvpA+CqSCN728T9VCNLc/p03RWouQjdTx2vS99E+pmKAB2cBaBdIupZCp2P5aZbW12qrDW7sfkN+pkbZu+3DtaknlljxQW7wkWIu3EJNqhTqH7zsulwljHbvdnlKFB7DGyDTPasZrpPcsFgraexRhmfybC2f8sAPX3a7jcDxwGAPHQ8/5cuF0uWCD9GOc14Np12FePxD6DqeW69M0aVZhcCazHwPB7bD1jv0QGDrLECQjTU6GazGQjaFYQzJiUeLUpM17JwrdQ2CeLlxOEL2npgVvpHozNQl84yxDHxjHgRQtBlHUEIv0RlW1WO8ZxlGsUBDCRPszZelrWMXHc+v9GEOtRla5LhCpgpQNVTQEqF0FysgyxYFacqC+UDgLWQaJZXMi5b69QnlVq6NatpfcsO7t3+z15xoDVh7XIMamQC4VUVEiSZW39gnBQXo4heZS3DYqaGVnpGPnjPwKWOnj5JTpvOW467HB0bmKJ2F9YNcZlsFRS0cM4kNknBIuTKWaLNVAO9A7gzeO7DIlrwxdoAudjEvUrBVsxuRVewCOXbfTSgJ850lR6POn80mCgROLdYNhjasMvk/PApfVzNDdwDYVVa7XflhwGDwQKKXfBnKXZQEHwVnG4cBxJ44Ay7xQc6TGiOuEKp2LIWVLWhWGNO2skd4hzsI46DCsJ+WEKYm8zqR1wWK0ivV4kQyh5JXL5YV1XaT3p32Soqzc88sLL8/PEsDmCVPFAJIqs0tDt8OZwtB3DH1HiuvGjGufd/vsG6M3bz0ds0G0t1AtsEF/n1z6C1/X9lXfs8mOZSqty2OMmJ9uKEULR0Y74xVZ+0btQYxKSskbuFnNchWaD5uYi2bdR0XhjdufaNT60rb5936/71/t921/3n59f1azsRAb1L1Bj/r8pRQK4uzQ7rN14vKA7ShEmlu31UrYWi9iiq2Xp8fO9+Lmr3X9oANX3xkNWgP7fce8LJwuF1LNqpxtSDUz7nYcjofN4qEUeH564nQ6STPYVfrOM3aWoXuAKrBf57QsNhlsEZ09Y6jFkJWx5p0leEvoPH3n6TrLdFpYp0IyBlszY+ewtRMWYydGjsPQsz/sySlgaiEEj4Ht0PYh4L1ht98TVYZnXZaNFXWl6WtDV4Od4MhSvUgwvJb2uRQ1v9R5F+dUg81sq0hmUrSktyIlg6o0VHQzFlXCaP9tboITyOZtkJ8xFKOMQlCMUTeLBlRTWjVx0/u6hXVuvlpg3QKX0YjJDW5+szkMVpxl50rnDcd9TzWOYCvkhRA6eg+7zuIQyaeKoRhHaclEFcUDa8F5Q3WW4jwpFS7nC2PXMw6ecRhZ46rGiCs1R6zt6J1j3PXoR0s3dCzzwjxV5kvGVMPgA8d9R+87lhiYZ8s6nzYSRwgiSGxUSSPryeacoQsNSpY5sVXlnx7zgkEElw/7A410M51nSlxJ1tI7UZF3zuKNY9FsvlawRjq66NiDH3q8d4TQMU0TnipQ5nQmdP0mZZaL+IXFHFnny1UtvWbIiaJD+8ssXzFG4rriTVVPtCz3LfRYCn3wdN5TctoOQ1lm18CVUtoCl5AP7C8Fpwaj3fZAt2Nb164MttSb4Q4JErlev+RMr/ReFGakR9kSt7rpcdaqe8KIMl+h6SBe57iqZnsNEWnvYXucvv41I2QLcNnIedQC2/X3uoHZt9e59qa3e2ftJjZQFErchIIb8WSLLldii9KXbgKXqtg4cel21uG75pemIyvW6TZtsD6/rKjxa1w/6MD1v/+v/xODDrAO40A/DOyPd4Rxv5W787pIsC8rphS60Iv696sjvYNZfZ6WizTZYxRXYq/2HxsiZQxd328fKjlRi+F8Xnl5esYYw/39PW/evGHfefY7UTIYfeGLz+5ZY6JQOU0Txhn2hz3v3j4ImaRWfvT5a3ZDT98FzC7QBU/wDu/g6+dnPn74wLc//4bL5YK1+t6UlACGYei1sdoGgwHN4tJNsBK5JYfBbZsKa0D9kKQAUzNEDK6CK1kqCcXTqwO1OAWnNPZSwJdrNqnzVS0AVms3anT5pC1rRPuwVglg5qoyULX6inGVKXx97uPxKJJeVKh2o9aa2oalmwSTsiVt4vz0gTSfOIyByxyZTh/4xTd/wvHuNZfzhTgtGBs49KNQ5hFjxFwqsUiAtN6ovp2oYqTkyHMiTo+kuXIqYh4pZ70wPtdoSBfD08eiLrOOcT+KbFMp3O2E3ND3HbtRem3eyijAhw/PMhRswG89SrfpFwJkIFm79SCHYZQqzMBxCNtcztBZYZmSWMvCz7/9GmssfegZxx3N96ut9XbVKn2cvu/xwWGHARsMziSBsaqllkVJIp7ei6O0sTB2gf7z1zrnaHg4Hhi7QOcM7z57xcN+FL3DdWLwhrjOOOf4+PEDl5MM49cyM3QdfQjM88zT8zMvpxPv339gvz/Q94PONyFr1lX6vt+EA1AzRKXcbBUTXAWixThRLU2MjKTIPkfZc1JpyVeD1qEYCVHZNIuZDYfYCDcly4ybtw5RI70+tvVpr4HGbMEr6ePQvdv2yvVxGmRbRayV3TUAawKGURFotn8zzmO2+ccWcJW6rtlV1vfVJLByzmBW1nUmris1CNRXSsG21oOVJAdn6AbpWeeWrWlAvd6hmw/iN7h+0IHr6fE7XqxQffeHA+N+Ty6JbhXdwpQzS1zkEEOatl3X03Vi+rgualJ4PnM+n5immfP5RB/CNoPUGvTOOWrZSQaUC3FZqEBcV84vJ56fnnh5fiCnlTdvXgsRoGROL89czheWNQoV1omgbM4rhiKMLyNqBbVEltngTBUhV2cpOfL+/XseP37k6emJeZ43LHpZV7yXw6lihHFXjRgb3pAcTLFsc8K1biRUoeVKgKqNIYlaWmiFY0rBOI+rsqlE1BaKMu6c9qxMsVil+kqPyymUaXQG7GZAuJVDIDDl5pdkvndoyr1OMemArJwoj4+PkmXWipC0dHOrNqO4FMuhUYv8jt/94jvOl4nz+cI0x00BJa6RaVlZY6HrRX6oIBWjUHt0s+tgs9mqQcnLhwDTLOK082USfUwf2A0j3sowZlwjp8uJqvfaBsvYCQlg3O+otrLOkWWR8Q40+/a2Mmt/aJ7nTc2gH/oNzpGB4LzpIkovtCN0YZPzAXh5/iDmlTGS1iSfeU5c1pnTy0e1yRAJIO+FEVpKYU2LGKymiHUi0tucgweV15ouZ6H1V1jiIj2WEBh3u0+q5w+/yDwq2SVYR98HDEgPbJ6ZLyd+YQqXlw94C85UrEkcdjv2O6GH//zbX/D4+MjLywvv3r1jvz9sUki1grUFaz1J9TplbYkxqihT6ODxNkhkRLzZOIyRCqGWG6iaqoFB+zRa0W/IAi0ZY/s9jblWdhWu/R1nW0S4ee42KiHPZ7agtg3jfO98b+9B/sXQ7FDMdU/fvJfvXwJzXvfZFbW5wqob81IrrE7nN1s7o621UkXVxtSCzQmciD7YJi2FahlqwtoSgb/oDBf8wANXTAsWGaTsUqBLnpQW6iIZQMqZNSVluGTmZZGZrX7g4f5eYbdESgvTdOZ8PvP8/MTd4UApnlLk9siQo1PETDyQ5sskckQpsa4zj48fKCWxG3t26h66OM/joxwYcU3Ekuj2I8F0zEsVlWhdfOezYTIVawrOiCW8d5YUF56enjidBdZsDD0RtLweptbJ3E8tRSbwG3BmWoVltvXe5qBSTlqx1etGqNL/qvaqX2atE0jDKD0ZqUBkkQq9vag/2S05ozWqG1Hjtie3xa2bwLWpIMi/0FQOquouFp19EWUH2Vw5FZqYcBO2zUUMK8WeRQLa08sT67IqzCaft3FSSSxR6LviN6XSR1bEdjdIpfHh0c2O9Jj2h4FaVlKcmC8vcjh1HaVzUCArLDadXzaoM9dMGsXVd9wFTLXkLEGqpKLebIGx78nJsCxJhnSNsuvIm69UjNLLal5qxoiu4DAMdMFCtZRcOJ3PTNOFnAumGg77IzlKoLmcz9u6MqbIqIi1pJxYFtEgnKYJjCjGz5MEpLTfMwyDqIhoED2fzzIb2XfUEq+2Orlyzi+bHcvQddwdj/ggc2DzNIm5oyksl4olY8hYU5iPB9Z1pes6np6eeHx85Hy+sK6JUqpIhNVM0/kDo9CXogimmUnqF3ULOK2PJcmVfAlH6XvhQt0Rmuim0cNe/idZ4W2QufZdrYIOVhM8lWAxgu81xMSY9sMVY5sFyC0GuL0TTUDbZr6yV7ed872g9X3ItO21TZZJH/urRHRLrUo2MdxCnID6a7V0V3vTRgKXzIKhJK5rkvCXdf2gA9eb159xPOzZHQ/sDgcxk7SGyzQRU8YWy7AfRF3ABT5qpm6tpRsDBtnUWHDBsT/u2B/H2zOKOC+klMlZPrg2kT6dLzTF6WEcsMFSEImmr77+mUAMKfP49JFtSNdCv4hnjQuyiI3OflhThf1VMhaR2wnOMfSBaTpjreXdF59zOBw4HA7c39+z2+2EclpkRiau4mfljMcZtZE3lWwlSNba8OWW9ckoAFxV5Fsl0+DwairJJt3cyt4zeVv0nZfqL+dMdZpxborv5ib4Xb9+uTHeNoZi37aNMcjslVe4sSBKDEPX32y8KzrZqPq3/T/nHLvDntfffqfuwpVvv3vPukZyLkzTifNlYlkiLvTXmTDnNh09mTeTTbrpNlJwzrAfXxF8ZTd4XN1RjdKhEYKEqdAHw8ODqJ10oeMyX/BOZpqG3hKcwJLeKc277xjGkTdvP+d0OnE6ndiNPY3W3fe9CBErpLosy3YrW48nhEDfyfxScYYxB/ruuMHM98cH4rJyennh40ezkRq6zuC8dFnIEUwidIZxd0cpoj8pqiww7gJ976kIfdqkgnOZoatYItPzBw2qylQ1lmWJm0fW0PVqAml4evyINZWhv6MLBlMztURSFBLVNE2qVgHOBUEanMdooMmpqAtEwtnMmjK5VA1WDjHHlMqqaoLUgha0Vm7AGq8sWWXVwY39jgen5CBlrLZe67bf9GrcwWKF/ee8J9hAtaKRKAv2U2HdrWIrBVMtpl5nJGU3GNqQv2nr3dZP9tQv9YTb47YeF588tu2TJrAL1yrsqjJiaZYvbRA7hICrkMlY3xTqBZnqsOwOQs9vtkq19ZzNFR39C7S4ftiB690Xn3N3d2B/PLDb7wldB94yL4vKjRSMDr066zk8HEVR3Hk59GMmRWE4Zc3sa5XJ/VoKOUVenl/Ec6aiIpdSvcVlxVlLLoVlXnn37h13d3e8ef2Gx6dHcbRdV9598Y7D/iBK2aZQnX6CtmJz3VhWOa3ULEoIRqmoMsuyYq289tu3b9nvJVPf7/cCPUaZHXLOYQLgxNeqyTMBGJtVM1E2XdbT3tJgARksvS4kQzFF1bWNqG3rQvPOiryNZmBeD3YLFKt2KPa22jObx0+rwDbli4ax60puMAb6pySA13mdtvmcQhJSdd10yxrUwXVTGmux3rG/OzKkTMXQjSMgPZlx3GtiUnEu4IJi//JmaBluM4isgkfpfJcoDcSkpoQ6VS7vQ1v0N7qOaJAVx5fmlyQVslFJLOeCJjlGLEDGjvv7I6/ffEYjyMhBdDWSBCWRlCL3apstMp8cXtu9BY6HI7UU1jVqxVS2tSB/v7Fl4VqBdJ0ErnVZtsH2y+W8EUdqShzGEWsMcYmbk6+xDu/7zWJoWZaNlff49JHdILJBP/7tLwkODVozT4/fSfDQ9fPbPz6QMzw/v/D27TsOhyPGOEpZyamodJcI6tpgt99pE4JqIw03JIZW0pj2ndJ6tVWDh9RWDkelXJmxqbI5MqikFOjMU2sryVbXuTpL67i1l7Y3lWDJQnyoCucbgCpD3A2jMAbMTRSoVJyxm4Bw/T6w+OcErdvPtCWYt/+2qW1YdYcvQhfJOVHI6gLusFaVQvTx1Visk0DdaPFrjOLm0BCLeg1iv+n1gw5cr16/4ng40A09/TCIuV/wIjypquLVmG1h7J30H0IQv6V1lh6HKIqrioCReYaSs5jcdUGEQWul7zvJHkshR8k+1zXy+PjEfhh5ePWKN69fU5AKaFlWur7j/u6OvuvINSn7rlJNwTYPpxSJ8yQCnKVgFY4sJZOiJ2qWu9vtGIZhE7SM02Xr79Rat83tzPegA6PwH2YTOK1F/HwaFGFaMxa2wHQFQjTXM7r5TPsBs2kfQhtWvFXWUKjkk+fZtqDMbKIgxM1f6k0ZJa+rVHCtlp29mcG5UZj+RKGiVGGAaiALXYdxAieO+x3eB4LvGYZRzyjR2nPea6ZYbprilVTKdrgbLy6xrRJrgauUqm2Qa+CSytNhHeKjlAvD0G89oTUuGBXLDZ3HWr/Bnc5bequq3rtxuze35BWMzDw1JGAYhk3SJ6W0Dc82+xdp9hf6PlArhN4zjCJqLIPnKmFVKsYKQ0wGaWV0JHSBoe+5TJftdQqJYZDqyWPonKi85D4zdEKeMtYR/EBMIvocY6TrejkQSyY4IRi9ef0aZyu1RHJaMEaCgiwNcUg2RpiNYrEh1d9GVKoNMbDap6tXuE3XqTEtmG34nAZsWXe1tGrlBhar1z+NMhqqrpFSCjXfBAwNKND22jXBMNVsXwKZt/0hIU0WNttjNybtdTfLz7WErSpgqSSUaylz3Qu3VKhb9LHqz13Xq1FRAt3b1l6dlGvVntUVbdkifYtC5lqVGWvVZHSRatzJWI3VkqvCxrL9Ta4fdOD60Zdf0g8987pQTGUtGV9l/skAtZTN2qQo1dN3gU4P/pyrTvjXLVMN6ooq1FvDoErXFcQRdluoEuAulws8P7M/Hri7v+N4f0f33S9kzso11WQ5qFJKcjg5A7bgMaJ7tgIlYpD37Y0Vz6GaCf6O0+lF3psOFcYUcSlKZZlkbsgbi7edwGo3V61VVadhM7zLNwyoVvJsCagu9uvq1r60kapMs8a2ma55JFs+ablmqUbwRt1oBrXtQuDJLUXdnCMKoszQWE3t/LC6uZwVk8VaURHXa6UAXA8dPaCF3mywoYO6Ms+zsC9DoB8GyVi9xxgJJDcErJsq5AqbCPxot2AkATSTSiTGvHmeyeyd0feZIJUtARpcLwoIxoDTQ0Ib2iDwSolFPaKkr9IcbVvQyjcqHKHrMBqkZIxCDDl9CJsY7LXikj7meTrLyWFuaM8GsOp2YKWf6YM6DOSo4tUO4ypiWqr/MxHrO0Ivahsv332gpEzvAkGHdT372AABAABJREFUYq3V3pKp4A192HE8HgFYpgnnoO9Edkl6WxY7BCAJhK4fsPM9Sl1jHPeEIIKyXegpuaqQMdvnkHNbcBK0pKMsSUULXhuUWaAkYaNuh7O7mXdqQVD/zOoB1uD67TJFSbd1q4SNseLr1SbkFXveqvOqSWVGLFqKohG5nfKVDd+8QUY0/MiZVZGf05fYAvP3KpvSgqd1mzKGsVZmPEsVbzNj8aHH+XpNUJrrsUo5UQ25ZkT/pX7y1owxrPOCsSIALRU3Moite7r88xq4Qug47PfsDgdSTqQs+nuNARa8yCcZPZuXGAU2dI6K3QbljLUM2jcQKrEV88AUNg0xAO+CzulIX6EC3TDw+Rc/ousCeMtaEn7oOHZBhW0DQWcaduwpVcRanbd03mvgWghW5ruCcwyhU1v0hdPphZLkgEkp4Z3HYhl8R3QBWwXWEwSyXBd5CyxGQRJjZJaiSRQhahlbk+h7CZQtFluNwBxto23p2s0m1Y3cKrXtv635RDOu4QPtsGuZcQWBc33YqLM5N4xe58+UHWbtVWWiLfzW7JfA2aguRt+TQhOp0AdLrHJImmHEdAKx5FR0RMDq/FBzZZbBXZAqL5erN5n3XuZUvMc4Ua9POkPUINpahfwi70ugrm7j7aOis1aJBbo+l3WT3NntDgzjTpADJReBEZgxBFzX07ydrPEM3chub1njSi5Cg+6HEZtFhFdkzgJ913M87KgUIRZpYibJst6vrdqsGCe6lqEbwFS6Lgj93F5HA3wI9CojVAvsj0cchiF0GPz1M8ERo4oCG/FxqhW6ocdNcqAtcwQS3hv6zhHCQLFZ9e8SH95/ZJ5mcq4c9nv2uz3N2beockZaVxnv0AB+y5T7fv/nNjFpKhMpid5kU3FCK1UJPA2iLRgv7g7OOG4yuS0YoElYCyglI+0ATRwbirBtpFIhF5F4ylLxtgRc3ywobC8FVSPPC7JhthLmNlK1qvIKi7b1djunJfusuUlLwtRcj8fdjmleiClhnKACBpkZFQjJCpDaHDqMVzmt+dPEqdkNtRzpn9cB5BSjVBtd2A42o9g+znzi10RFm7VOqgTrZCAZy5U2e6VuUyrFSWDbrLut2Gh4jLJtDDWLGZ4P4sC85oRVDTRrhPpsnAEni8sh/bMUmxiwp+8tJpmNmGA0C0wxk9ZEXCIGiPNKf+g2sVivB2DWDNwHo5JJ9hO7cWMttqINUpVxsUKbL6UdKlfFCqH/W2q1JCNePi1uUUXLz5rmJWS2bPWTAUdaj60RNa72Jw2uBLMxDeU5rweMqcpy0ucW6rtMplSrQamCKW025BM8hVqu37HGUGKGXAjGY1XCoyZp2Dtz3YzWemVq3gJJUEpSRMRsGm4N13daNTWfsoocKq5ls7qu5MCDUhMYJ+wr51V5W+6/1X6F3dajwlsbPV/ek3V105kU+EsfX832cyIvZLDVYn3BqHpBLtp3NOAdWD51qC1G+1tIBVpsARrBwYN6yxm97d6FjWRgnQVvRP7IeozxtHRIzl23Vc6maQWGQD+ObACbsRQMqRis64FEIZGXxDKvzNOMc0G0/VLGBqvrUpLVssYNVm19wZZsbartN8GrfUbysKKfvcw0Gms2pKLdE/0BhUCR+3GzBlti1UhO1kp1s60RDUhtf3zap7U6o9jQTbNBvO21GycSGktXdRW3fQa1pq2ivPayhAzSEtCqr9cCtzXS/zcGpkkJPwaFjb0IbjtRjr/WV/L+BTlUlEF7pylnvAbd1veWvvN1Pfym1w86cF3OM7txZeeCqo9L1C8N/rVGqa3y36a2Ho7BWy9MQFeEnJGrQi8y85W1z1Cq0RK6YHUY09mO3nkVxYzksmKdaKbN64rxjpKF/i4fZlb2IHRq53A6TfRdYTf07Mc93b4XkkZOxFlMLefLhfWyMp0mDDCFjoe7O1GHjiuOCimSLxPFGLqDWIB0Xdi8eGJMwnBSJXxoitYyyIopCDJkyCr3410nWoEUWIUYUpGeYUpJFz+fZGtFk4K2edtjtn6DvVopQN4OCsnSrnYnbU7EYAjtQCSKGaBWGMZrMKxsf24ZZSs2VbrAYOicYZ0WKIVdGOQ0TpCWzHgY5eB1nuob4+xq4V5q3TLwuskhOK76PUJewSqCpOxfYx3Bev3dZaPmnEkqCWVdv9mjxGUh6xqRg0PUXdY1SSB1Du/CdjAUEHWuBltjVc6r4PtxS74qGarDuELoHRZR1T9fRI9QZuwCnfe6RyqpiP2JRSSFjDFYCsXEDRpNsUL1Wx9WYFZhwYXQi45nrqxZBHLRXmPKVYZhnZiGVvW38l3P/u4e2niIjp2sqYh6hvFUIjFdWLVi60MvKutF1NTTGkVVveuJy8pGAJJFuAWxpoif4RP4twnlCnTsNsV8SZiENFEoksDZa4IgPZ26VRNbNadJnqwPGRsRGbeAKSoh195e+4uRJNe35Fv3iFViErfPrV8Nxosx4ruA+lhcYbjKhnBgjPAAGhtSz6RahY3ad4PsUQqnl0n2WqnYNVGN0wR9pFZJfgxX8ovETYE7U8qczxfimui6uiXCBoix0PUiHpBv7sGve/2gA9f7X3xHSYl+HLZKq2gW3/S7EkWhQ7/h+EazkI1lpzpnTTKm1rgt6kbBBaPZpiyE5gTbMo1lWahGsrJpOkvmZqAfuu0QTClRolRby7Jw3B8Zh4Fh6Klrwhnw1jIGT7A91RdWJl5eTizzhacP75nOJ+7vjry6u6MfOvKykONKLgVrDTknhiF90pex1A1yW9d526xZgxtVqoN1lQ3fIK91XTmfz4QQ9J7qpPwNtR1kszbvrvbczciywQS3rKVbw71CxSlMatyVCVkrpCQdqnVdSUmJDs6J5BTt4P7eoqjILBqaqLTnS0J8MQVcaJqVlXla8EGknLqhYxxGnHfkon5SJYMBH671l7VWAhVgcuuly3Bw9bJWMG5zUG5BNfQ9oTcsyySvb6y2S3T4uxbSqrNotdLpCzRFBPmyVONoY+TSSrlW11HVMRp2WzfhZO1dVTmMpqxahwjM0w7CBru2A/r288BkCSwVqGIwWilQKnGV+2RZNz1QqgQ9gcQsJVc1GEw6byhryPcDvusQCxbD+eWJ80mG+q2B/W5kvxt4eHhFWlYm66R3rL3spKanbb3Hdd32XFuf7c8/DzJs/958w4quz+2cuIEUt59LZltr3DzX7XPKZa4wXr2uo/+z61bO7fu/A/re2kiEzG1K30+WSfseWjHJn003sDlHgyjkl6LD+vpypUpAbFJOxvf4jCR1LmB8wDoZHWhVmPcBZ9t4gtFepei3hhD4hCCCVHE5/+ZNrh904Pr2m58znS+ELmxCmBWBCRUUI1ahQBtr8UEDT62sMW5piZAxROA2xhXvr9mTXGarGmpteLBsQGmwSraWszSx5+kiFY419GOvNFCxP7Em0KzQ1zmKykFwxMtEcI6+87w63kFJ5LiyLJHLZeJyPuGo8th1Ia8r425gXRfRMNxgDPNJtZNz3uwSYoycTidlwAmrsG1Cb530B7nOXq3relV812Hn28D1/XmQ2wy2KVL/qsDV7qttA5k1Uwo4/CeHg7WN6ZbIuW7w2e3hkfMvHwJXWne7I9ILa010pxViTZllPlERhWvfDTy8ekXoOtaUdNYrqwljix0afEVyRHpATf5Km9S1qlBq813ShLcxEedpkjEDa+mC0+ShgHpmiTW8tLvbGEMqWYOc1ENo1lwUfsRch0rlBGrK3naLebXJZpVCWdMViqhmC4zSC1WmmW3VhBAdDAkUxLIUmiK+qVndkSsUo5qgllo0MNpmmGk2ssJmcGjEGr6WLElb32EQWFMcf+UQpcK8LNdE8nvBJKW0rYtbD6rbdXhdG7+6zyW3pmyfcYsvRfdLG4ZvsO629H5FEGxXq8py86dqjy3X/tS2btv7V4ixyS1toa4lZPrdWs1W6RS9p1Ih5mtfTJ8XruMwzT6ovff2VW7vVdVWh7XbuSKQv7n+vlz32bYf9QwVkswv3xOjBJPb8Yzf5PpBB64/+9OvOOx36sNVr/MVTnW6Kqy50YaFEl00q5qnSQ5HY9X9GK1IVsaxxyq9VGjyV2aULFrJHNsALNWQsoirLussStdWxE2HocNoJRbXyDgesNZTa2G6LHi1Lri8PDN0gd3Qkz//HG8NlMw0zVwuF86nM5SC944UV3KMjJdefZxWwOB8p+STK4VV4Cm2QdWXl5dtk+/GcbuX1Vc9oA1OFTqiZrIAtrpfGbjaYblZmcNWtW39qu8FrtvLlko2utGMdDluDyBAoToJEvD9AclPs9Dt97kNXEZ6F214WP5dIKDz5cIaMzFL/2bNmdD3LGvcDsqSi1SE9kqxzjWL2KhXOSADICSOXETRI6pqS1G2VtdJ1T9Nl+1QGIKHRl1w4uBd1DbnMkViErLAHFdV91AdOqMiylXILEYz5KLeYJSqz+c20hHtICmFOK2qSHILPwl0aNUd2Ch85rwEEVOzApVVZcV05KEmSkmSPOVKCD0GK+MBXEVY/c383a0gYKkyy9h5z2f3d7z+7EGceO/uRC2JCjVzOp3EHiVfKdm3xIrvK0HANXBd18WfX3WV0kSW2Pp3bb1tazw3JZdCdjfP+b0K6aoE0xKCTIpRtQ7rJ3vj+++rKHrSqrTvJ3ytt2yqgMelmE1VZ0tWc94e2/4u55fqgbbX1iBVb/ZGC9AGITzl7wdY3VvlptJv7YKYE8uysiyLzpZd97Hcj+0ObcnFb3L9oAPX//KP/hF9COQKqW0czcozkGpmjXFb1Dh7Vb6Ypu0Q3g8jwzBuhnSGK42VetUCsxhyyzCK6gDqAZTSSowrS5xZFWN3TuAnjCyKGDO7wxHvA2DYDYMQNdaV8/MTx/2eV3dHfvenP6H3YnFua+Hx6YkcV3a9sLDmeSWnR+xHnfeqhXG3YxgnKdmd3xZ7zhlTxQplnufNzgXYAtemxVjlAP2++vZtQGgbuD33bQBrGopyOE/bz9xmwbeDkI1EUDRpIMVPPt/2PlrWd+2LXYeRG+Gr/fd1k+uTaObahYBzoh4y7kZ8GLAuUKzj21985OPjEz//xXe8/L//P8zLyrxGkRRqFekNrVvWhugDJuK1CqtCJRZPonQDX91UmKYSl0XvuaELHgfiJBw8QxeoiK/RvESWKO/jfJ6IKZJLvQYuGrNSeijOeSWRSInnnCEoi9YHu83cGQzrpQ1NZ1JSZX5rZf146as556lGgnbfd0rIUWKPszgrii9XGVu0r3g9sIzR19cRhEZo8V6cp2vNvLw8k1PkeNjze7/7u/zB3/5/8Pnbt3z26oHg4fTyzNPjRz48fSAtC7bCSL8xMG/ZcbdJza0X1e1Vbw/om0QG6nW26Kb/8mmFnzYB308qtl8RuNq+MjR4PJPqLwfX2/d1fZ38K/dfe1x7/moqtWZhHrdqX3/39rPtHrQA/Ktes+3P2wpWBorVW88J3Iu8yk3F9el9Sjq7tSwLQz/+0nu/ZRb+c8sq/OpnX+O9zB809XJjHdYLKycjkGCtdevPbKZwGtBqhSfnGMcdfd8zjiNpXWTCP0o1UxWiMVWhmQog8Id8qDr1XhIpR2Izq7Pgw3VSP5VCeL4oa8gwdAGyqGPkZaa8SvQ+sK4rZEekUtaVeVqgZugHmp5aU0+QbM7qoSVw4Joi/pYcYa06lQbGcbxSVG1Ts7hWRFI4NOUIuc/t+9/PFH/V5vvzrtus8ZMpfk0InDM6WCzP3yjO7X3FKMoEKaVtTqnNlvyqwNXefGtMhxAI/wd5/xJq3bbedaO/duu9jzHmnO9l7bX3zjbJZ/IZ+DwVBYUgWlAMaKx4qwQsiIIBIYJYEARFDIKgFjQWFKyooFUFKwHRghURDcgpqOecQDTR7L3WXpf3nZcxeu/t9hWep7Xex3zftZO9lI+zSF/M9c7LuPTRe2vP5f/8n/9jBEY93dwynW4YpxOH2xekanlaFh6ezvzSf/9l3t4/kHIVUk6DUvSaGzZR31ILMS802n7Tx8tZxUX1GnbGn2YYOSWcsjqds9ScsAaCdxx0+GSuhZRhWSNrjJzPi0zPpVJNY8sKWSOjcHWvI9T+6Zv6iXWIyomxoviyVh2MKnqecq4Cp7dZSs56UGdljJGp27YZHUPXHzdKetBWkqz3hCpqJH0USYOZkEDAe4c1lXW5UHIixcj5mxfNWhMprZ1R6r2o3Swg7NDd2uhZxi4z+qLjOTx4/X1tmNxO6f15lrY5ANvYfs++jNbZe0q8U91/Xuu5Rgmu62i/1rG9H4JWNOer9fX2dV1TqwrxGiXXtCCvKpO4Aq0/LWNylpEy6PrQvdf0C53b9EybbFQYQpcGG0eZWtHgTd0C/evLHl9px/XJp5/gjCWprD5GIk8fghhfKkuKitdbUoqaBm9RRUv/12Vl0gworivLKs2q80XEdEsFU4xg1CCsvODlhrn9Ai7CHKtV6lxa98bIWAS7JLBSnxi9o+ZMWSOOyu3xRqNz0/HouEZSlCi6ls04t+iorcuuXZcTKWfpxt85F6s9a00+CXY48z5TYaMKl93KEjv0/kgRrqPY/e++KLLc/yvZqapj6MNbtNr+TVFJCztIcm9Mvnijy2OcFf1B70U1/XQ6cbx5QTic+PTNPWEYOF8ufPLp53z2+RttXLYatEg+0doGqI20WIl5FZisaA2jtyGgBttt05/1VUopyuqTSmyKK4ZKcJZlGrWgXsnVskZxXPO8iEMAUev3qsNnnQwUrFr7aUFBFQiu0WqNqXiVA3PWYapTx1VYYlSY3eBjxvmsjisjKhMCr/vg1NlCH6zRX9vK6BXnpdEaaUPwoXbYUZyLMBGtlZ5Faw2WTMmRcRg6QhJTYl5mnBGZIWMM4zRR1pVS05blarD2vMbVIOwvyljeu0Zr963fcz3112jPfb6e2aDG5ky2cMqw913vg8+/1/nu/97PvQWcvc5d33FcEtg17UP53XUGJjX5hg6UkiFbrNbC2wRw57ZWDZCg02rQ0to+vI7e8WpvWtDSzud/xWG14yvtuD7+5FOcNQiDS5olh3Ek6Djrao10rSv8l1v2oZRTu67ENTKnmct86Qv9eDziS8WYSExSV9jwbvm3isKkQC1L1CjUat+HpSAZQkm6eAxgHUWp1IXCsupU2JS4OUwcb068fPmSF3cvqTmSU8QWIQGkKPDmspxw1jKGARc22ntKaTforvZMY6sFbXWAduwL0UlrWs2hg6iwr42hVVDiwQZTeH9dS2sDA+GaKt+MyD5Cbu8vcKNo97XjuWNqxqnBH9v5152j2OH//YJv5+LHAY+hutavJs5ymGSu2Zoyn799IOYsI02sk1okavszYqg0Cml6gAfXYGKBYqtJ4ubMprHYolRnjY57LwTtl6FElnnGUBmCY9IZcKXAWiouJnzK+LCK7BRgrEz3NtbRJstKJqDRtGY7KUfSGlUlP9EK+hWH9wPWGUwuVDtufVsIA9eoo7deyCN5XbHI/Rbz18gATY5J+5GMIVevGVrADQfJrJzWTNeFkte+FoN33N4cuTzdk0tmTQI1PT49EuOMMwVvhb1njZAc4hqZ3czj4yPGyDTzeZ77mmz3/ItqKF+EFrzHh1w9R797Z53uH/NOgtPWcakUW94JAN9X5/qi4/nf+v7VfzPvV3tv8mBNDHtfRtgjFXuINcYolH11OtZIqi10+R1U+Ox8Wokl6fs8vwfGaHnTiLDxlz2+0o7r5QdfE2kdY/soehu8jpGWC55LFlqvNT2Nt0ai4cYWSjHhdsb4dLohLJFaLSk3gyhU0gaDyD21PUNpTguFUCqb4KWUyOROld7wVzE1k2OkVPBhYBgnhmlSgcqFkjPDIFGyDDbMXUOvGqSZUwup+ZnApoIGlCrzmrLS1c+Xsy54OB1PG1khFhmrkVXDEKM1u0UzS9PhiJbtPXdAbYPUWvt4dbl278IhfXNlYWoWEIh356zaxsoKkQF987G/HuV5AXjnuLTGVazSCqxlXcXJ2HDhkgqXWUSZwzhxun0BYaQYB8aBMZSq2ZaxWp+RkTPOWnxwLPOFZVl4enxiXheNKC3DEHatA4aWoUAhWCds0xLFiRgYB880DPrZC0M1IlmWCzGqdFkVckaXX2okitryuc1xlZqoeXtPqwZIRJEHmnZlapp7kidhvWSK3g84b7Q+G0VGyQqBRJiyKjuFkAmkqd1SimQVVq9Vg5NykRloUidKWAtDcLx6ccvHHxWsD6rcIF/S2C13vpbM4+ODqMSvK96Y3nKxKImmZecg2oxeJdLed+wDne17q0FDUU09ceWynqo2cGdh5e1eS1ab2QaaPlvvVCRYym1uWtuh+mwNhmr7W20NytfZWbuvIgZgACe0/ZbR1I3cZI2OOTKms4qLNeSUBX1APQi1D5JMyqKNcSXH1Bvor94fxN4YaaMp1m2Zm9nsQNPJBEVhqn7ULZ78noHCr3V8pR3X6w+/zhBkVpQ0B271HGOlpytrH07LUy2NJtzoneqUoF/QaToyh0WeT3NaDh+GXr/IuXZDXrTWpC+sGLJAhQ29aQamKAxYiizk7FayFXmeaTowHY6Mw0CJi2RjpbGD9OXbaJHWbK30bue3mlYDt/pH2mVcKacedfXIqVYZX5KS1OrU+KcksKNcQ9fVnfdZXMum9gXs7xU17g1Fu3amyMa3dYMw27GPHpuElnykon9XA7p7/b2xaVein5tu1DavLSbZ3H4YuH3xglgNpzWK40LUrqWdQupK1geGYSQ4gc2Mhfl8Zr7MPDzcM7f2Ac24NgbmJpxcSxbHBdSaKGnFWSNafd6LwHNM5CrTdxs9vhTRcMwgTkuhwlYzFQizNn+t9adWw9yveQO5STFJq1pB63bKArTOEfyA86KInlPWOqRkqt7JnCmDKgC2WhhC0a60DNDquhX1Ecm0ZLSHsxXvLXe3Rx4f34pD1DpnKZmcJAB0xoAqxNT24mzZSovsW+C5RxLeB8U9z3Ker88t8Nl+rhUddyTXs1y9rjiYvcTZ1esXNpugTmlzlnSIUs+urdj24/7Ee/Ate1bP0zQFD+hPNdfPaeeBPn9/3fRhGwcgbZlYEx833baZ/cnuHOx2vTbVl+u2mb4jrz7vlzu+0o7rt/xf/xfjOFArLHndlIt19ECpEPMK6AJ0TQ29UktiGAaGYeDudNMN8Lomaobz5cJwemS6ucU5T/CBYZhIRRhfMSZ1YBphNHzZQBMuNeoN+2ZwO9meWkX1Iq6kZebFzYGXr1/x8tUrXrx6iXdwfoCHN0+UmjEWhlFGvMvX2KGoUgLjFIBKShI1NbaVgZ7iv28Tw2bUG3Gl1cf2Be/2enun1a5re409G/H5Yb/gHGqpYLUOYLdF3xa+1L8c4yD1rmma+vtJdLhTq9ZjzywstbCm2HH6EERk2Q9BApxiORxPvHr9mt/8oz/KbypCL85YkpplrCOME2EYGAYh8AQfsAaeHh91EOKZh4cH5taaoPO29pDVMl+Iy0LKq8h9aX2k5Oa4PM7YDjsuMen4GPk8vY/LGIUyVVHDh35fuqM3hjEExlE0BMfB64wogfTWJVKqepS69YsV6I5rGAZRywftuxL2o/fSbxi8iAnL/KpMaznIWVTm53Vl7b1X0qtWq1QPnQVvkUkDJC7nB0zNHI8nYTOWSpwXIBGcwxuh9g8hUI3MJGtK+E7V8X1TItEWjr2Det+af35csfj2xtlsbR+NVdr2gnn2uCurXOvmQxTqNG5DFZ7vlfaaX1QXfl4bLqWoDim4cZR7W95tP9nvy850NDKSR7Qyr/su2+cMQUSPvdXAyCo7VGu3tcreaPcAY0VBqIoAwTSOsoacNEa3TyUBzXtvy6/7+Eo7rh/4P36I27tbHh6fcIPorcV1lX4fFU51g0jTxBjxwXXoJHjRpHPGMAQRDk0p8/DwyOPbR6Z4w23+ABCtPh8CzgaSNhIuSxQavvZH+WEQWInKsswC51EZh02tu924hiHHyyM1SZ3LxJnT6cTpeARkFlhUir33HuPF6BoDwzhy9/IFKa0E2vC3BKbiguNwOvRCa4xJGFzGU03FLxYhHBpylSZB2VQCbeVkWOMqumWDJ4xBFEWK1L1SSmK4tb4GsiGGYeg1h1b72m/4thm86tO1DeKtRNnOXtcm9ti4957qjEbzW61MNpdqJe4iyxY9olOKx3EUdmmM2BC0B29nBKxlmA786P/5W3j5wdcJ48SaKnOUYYSdgq4QcWxwV868fPmSwTuWaSRMB169fImxjhQT0/Gwq/3JFOeaCyVFLudHck4EZxlDkGxGli3rsnCZZ6zxXOaFeV0pteiUAa/kjNCzwFSaTt0u6rWGwzRxezpxmCYOh4mSkpAeLitxzTJiJCVqNYQw4IeBYZq27E2hJuccYxhIcaENWByCOMMheLwTBfmSpXctNfhWoa8GeFhTOzmjxJlSInGZ+e53f5UhDFhTOB6PfTyPMRZTpPcoAYfDRF5WSqmcTicOh0M3xKKkb9Qghx6EufcUUvY1nXZIHaoAtk8Jr9sf+9+fIwBWg61GDgFhb7a+qJIzNohaRYMuy+482ns3x/E8uGuOsn3fnHSrRY/j2JUwrLEyLQGB/qReaQiDlyyKqsLPolYvfXex32vvPM5bQvVgULu5SFDqBJquChtbWzA4qgOMyMCFaWKJ0v/YxAvWddXHO7QCgffmN7bjMiHgpwmfMuNhxDiLjxHnbcPV8IPvN9k5o13l4lCsQobe+c5omteIDbMYe0QFwAXpbbHGd0M2Jqk3rHHFPD6JyC4yll00BGTHjpPSQa3pMjelFNyyYEqihowtmXzJ+CASKvLhxIg5p7h9Ld0gOSfRkIwrN7rIAIpS5dsV2kVvHVV4XjCt/V9rDdlsTsBaef+c05Vz2Ed0e7hmf7zv98/rYnuVhys4r241q93d7s9rh2QYzyJe/Sxybpq5OYfNuWsitk9d2ZhQznkm5zidbhimA0sq2EXIOWsWB1YKwtZDoN9qM6ZEvHfk4BnzwPF0wlrHuqyM09Sde0UNXylka1kXMQjOOcIwKBPLMAanBKNJIDdh/YgE1DiqwxLI0qoDyzuDug8YxmGQ1w4iyZON1MF8ELX3lDKL9qqFIKN+hmlSB633ykqbQvAB641CdYUQvCjFD4ExeIH2csatK7kaLZ9ojVEheWsKJUuzclocOa8i9OsD1lnMs6zZGuk9k8UndTR2a/D5521rrP3bkIL97/frcJ+lSvaizeTPsp7roGj3+1LAbC0cte6gwKulq3De3hl+wfG9Plvbd/t92P9eq04z3+0ziwhKt+1T6Vlx2z8yKeM6k9udci8PWIUKr16fzZkXZbAJh+BaoKDvS9P/p/bk17gY3+P4SjuuOSdireA9ZhA8nuBVSFKyH+sc3sBgpBaSYqTkwjAGmRxqLd4LlTcjG7XYrRlzHCaJNpzDIGO9wVCNRDnzsrDkDAqtRWGRStpsLUbFREF6c1wIUpOqBbMGbDa4ajFp6LU5kFqW945pmricH6m5KnNRawzeUopvwDvW6wyxXYTWnEOxO3hPF/n7agD7zfwubLFFmu2x++d/r7rB3lHu2Y1iNLZot4kjv69G0bD0BmE2ggv61+eOcw/5tEzPOo/3Kg+mntzqBAHngjZCF81EilLRE0tMxLy9rvWqTlIz63mVIMMaBi9UYIzAxPIZN/q+0M+T1tZa4y/4lPU8PcN0INSJYZSmYx8SvlQc4MPY+7fkHAJhGAiwwbw7g1FqZVlFxzInqS2VIvDq7c0R6ys4qTtJ75YYxdyV4WUNGmNl2rZcAHH+BlXRt7gwYIs0rMac8aoIv6/jGKoGWmBypfhAJescMlWqqQr7Fhkp4p3Fm6BTwjcWaRsh874aa1v7zxm0+/W3J//sn2thE+h+DtntIPK+l0oL8Ox2PlzvG4HrxWvs68DtNXvZgHfX8t7wm37td7UpfW9jDCjjtJUvepZYr6F9qvQRFiuZLLsSwPPatbfS3mBtb96T90NOt5rrenfOElw0iDHobDjnNrsm96CboS99fKUdV7UOE2QmlQ2DDOejcjxMKsUjC6ZDA4jsSkmZ6TCK3JIRNk9JkTUnHucLbgiM48TheOJ0upFifq2ktSIUQcF2qYZwOODGiXldWdaFy7IIHd85nHeEcdBop8oIBiPNyq5WfJglS6QQmAhh0J6Hig+OYfSQB5xrCvVJmpq94NM5R2VMymDDnGSBN3Zf2ygptz4jVYJgq91Cy3eMKuJfswNhYwW1ZtAmL7On0z4na7yD/bf3qlstrdaqxA+DsVVIJM8e3zeqkXrT9d/ev/j7xrfbGBBJHy1YQ1JVCx8jGL/BTSlzmc+YGClKfAjDgAsDqbQoUbMQI2QSlwOujOTgqCfLi7sjtcLFGlYVsm2Fcz94AlIvvb29wVA5TFpD0DXoQ5ApAQWBNKu0QwxhYDoc8GHoGZfznjCMXdHD9rqaZOY1S723VhHWrbVN7K1460Wl3BpqFSfYGo+TrhFrZUglFWISpXoaZKaKLblkHe0uMOHlcsHYAKpSDq0DTutbRbQpU9MKrTA4CQhTrsRV5MxqGbBGamgVcfprkuc1CKpls21d7YOnPZzc/v7ckT3/+1Xws0sJnjsb+bp+DacZ4v53VVl7zuiYF70O7ckyBueaVr5BqqVndF3Oo4LMv2pahIVaRfUErNDiSwaV/TLVQnWYkrH6Gs6gpC/ZPDLHrzlsWSOWSrCGEES0IIQgjq5fn30Nb8cCTomYddpGZ4eq9JsK/Tbb8xsaKgzDiA8DqzLDWhOl9ZJ1SV2pClkCMHhxHL4wjpv4baNu5pJJOYpauXeM4yC1ASSSsUZGSKBD1FIuUKTg2llZpUg9hEotmRzXDQ7LohhQijDa1pywRZo8RRdYWFS5DXpsRs80OE0Vva3t2nkbYxJt4L1u0oVd5vU+uKP9bDQbahGbHs0RtffZEzT2z38OXewj/+cZ2Lu1r7phE8+OblCevfYWIV6/bntO/x26WWwbrbJ7bq1YLwoOPniFhqWGVIwlGxlvUauBpNemR81ozSqBMt98CEyDZm4xscSzKPAnaebrkawPOC9NmsM4QSmkJDJRKWcdLrr2jKY18LogGZbV+pZRGSr0M+6j/PacooSlUpsuYen3mx37Fas9YFacXFfvjrLychLyQ8s8ZEK3DCKV2miS9ollxnkQEWCBphowa2ujmrT2EQdFVPqrnhu5UnJVTUAr67/NJmqZ+e7ri9be83X+/G/tdy1jAsTBNKh8l4XssxFpJDcYNs1OZ61cM7PVomoVipgp11nT88CrOQG7V9d4DrFd7Z3t3+dB2x6Rq89+977XLnWj3fe9umMRytcOvWgwXwfar9+grcHGshZ7U3bnoYxCS3/tL3t8pR3XoI6rznOHjowR6rJz0sdRmvxurR0arDUzDKNsYh1jsOmPiZGWseXCrBJ17oqpMpemVqk5xN6X0cY1KIRRK7VNLV6X7rgsUgSvpRBTZIkrTuGTJhNcq8jdiNp2EcqxqcgscC0GO/kyrjlm+ldFMq5eW7Cmq9EL4/J6M/b/mtN9pu/WN6Euxtbgua8lPDeYexpsd3y7v+8dTMmF6mrH0vev3Z6zf25T04AGKb4LTfZzZ9vA/bzMVvOoBlF7CJ5h9BTj8CFgnCcq9bxfpyJCsEkFTBNgSqbGlZoj1ohg7ugducLqHSVHclpIMVGNNM+CyE9J4zxgLLlKBni+zBjTFP2Tsr5UPd4Y1RwMuDDIqBN2osQ5A5IJh+CpOFX/34xJzpu6hLQVVCqyXm2VwM9Wo/UqgX5MWjXjyVQk+yo5E9eZWjzUQkqDQqAyUdkVQSVKLZ3MARUPm9SV1TlmTrJNiQRQB1V2IozqaPp4lrqNItpBYPtM6zmc/Xwttcc9X2/O6JrZoRVtnVU18sKAlddyqhAhfXRgNGDcMw9hQzeeO6P3ff/cuewd7Xufh+zz54ze57Wx9wWVz4/9HnsH9WCDBlva1CHM56+zu761Xp9vKbVP3/hfOb7SjssYRy0QY8bYJBtjxyKShd2Yb4BDo7ZKXFZyilosLjhjOYwTL27vWJaI0ah5nRfZuLVCEb024xy2QLaZVCU6zmuUPhNaliJssqenJ41whb1o7dJx5oeHB2zNDBZeTlJkl/6iqKoEYpidN1BFhHUYvBbGPWvynb24r0VlSh9uCIgj1PqG9xsDKtXUnyfIdWslUCjCVly1V4tvrxEH2ybPOTNNU8e031fzet/GSTlh8xe30Pfncr2RvshZyd91rlcVIkV1RppqvccGD37ADyPjMDAeJpZcKMYxTJXPH554vMy8uX/izdtHFdxdiUkYmC04cgYGb/j63RFqYQiB0zRQS8RgcKawXs4syyKZVNn1nmVppcDAGAZyEpZijpFXr19zOB5FFNga7t++5eHhkVWhFxsj1ez7AUXWTJrMJQtw3ioTMODdvg1BoDkDhGCBzDwvPF3mzWj5gVQk61/XqD5EUAmpC8udyDlzOEzAgcpBVBCCTEP47iefMS/ChGxDOEvNeGMITqSeDqMjeCvOX428CA0HETRuwWQSMogFgg8E70lO9vTzpuPvtX7eF2g9/741Su9p7+Kw9DPv1jAVUZYw8m/dZX+Uuo2Q4fur5XQnqgHacyjzHaf4LHN5Dsu/b580x7R3/PL53VWwmWIirsLW7Bl9K3CJ59J+0u3Lh4Dzgbu7Ow7TxDAKQQgUGa7y3FoboezLHV9px1Wy9F2ts1DG8UaGmVVDyVUi3iwcP2ug+qJd4TLaO62LOi3D8TAxeM/N8cQUtCekRc1F4ItSDbYg+nDouIBa8VZGhku0K7WCNa0yK2tepI6jtPqkGRkGnUskdStrB8LgmaaB0VXW7EjFUlIhOItFsgLrTE+1nRcmlowTiDoeIgvsoOs35STzunSBtszmqlD8vOilR8vICmJADAKx7p9/uVyuxp+EEK6c2z7jas9r0XLOWUbSNHhyB5e0o0OTtch93Z23bLztfLf3hObqDMqQywVj2mDN5ga38eEC4Wm/ScvEtd9oCJq9d0Ng8BaCRUd9ZJxxhGAZhyZ+K6oQuQhRwVUEAq5K708628oowUFrbbd3d5xOR47TyHy5cL5cMM4Q58gSF6rIvghMqFF/MOCsp3hVGdHsKqkh9s4SvMd7YS5aJ+dZc8JQiHGWa2BFTwO9byKOarQJXQdHKovTuq2nK3gvc8ScI58OLGtiXGN3XG3MhkE0Gr13HAdP8IaaIk8PdKHnoHqHwXlch/gFM/cqn9Wy/ua43ueMnte8nv/tOdxYSqF4R22DFfdQZCkKZe6Qi1pxmO5gmlwaoMTE3fvUgq2biPXelewf19Zhc5zPP8u+nrwp+ye1BdvrvXcfv+d9vgjy3wejbbBmQ5ava3GmEzaayK5A25vjz1ovf1+G979yfKUdV62VHDNpFWkbg9H5VgaK1Kya42ppblpVLy0p3JELwXtO40iwjsMwUoNCDs6Jk8mFmgu5GmpdwTiKkblJLRp01mCMJxjDMI2EKJv5YZd9eO+JJVPNDoIrGVsrVinu4zQymEyJjpoMSWnABtnwbbx4kSl9ojphDTVpbayNUkecREqJeRbD5JxkHfuF2Y5tDPf2tY86cy7UzDubXfQTZYyB916Eimt9puBe3tlwnQVXdpIxXNfEzM7JWlO0Gff5RrxeE1eQiXih7fxNwZaiU2vlP2lal++7sSgCbzlnGQj4YDRYkbqYqdI8603B1wVTDMGL8sUUvMoxGYbBd63MXCAmGS7pnKVUqQE57wQKVtrydDhwurnh5ngAKmEIfR229SzrCZlMYDwGJ3BwqTqFGlolwtiNVTmOQYVPHYOFFJtivTIGq0DS1kot2DnNwpKllCR1VbVc0pLhCMEJK9daqrPkMnI6JcIQBGKPSe910mGRMuV7HALBSfuFrD9hKzaxXmetjlHRydem0axdv09NAWYvGg2bBt9+PextRvtqyEMPomrQ+VbP6mi7jKpo4FmKjFBq+2RjFUIxz6DKZ4iD4f0OZv/Y7edd5lShmKLT2pvKhfRQXde1rpuj9479fUxL6rsO8rkdkFaF/g5Xn6dJmvU9t7sPKUnQIo3sz+uO778Ev57jK+24Bjdga6WsEZMrvhqCcbhqMEUKylTBzCu66NZIiUmgvVUaQ12F2jYBcLo50Sa4pgrJZhkdv2ZSlOgzKQSfciYuK2lZZOOFgcMwiiQOFWcdmdxHqBsQjTtrAa071IR1hvEwcLo5MZSFHD1pRceqCN0DkEGVlzPn8xNJGwlrFQHTdRF9wyaLlHPm6fGRt2/e4qztqugpb3PK2uILIbDmxKrN2nC9ydc5kmNhmqa+oWOMfP755zLo8ulJ4aMD0zRxPB579rV/reZIWyTuvNucaN02wv6oVWS2mmPb0+H3GVN7rDhM2WYFiLmwloQthWotJoykUog5E+eZeZlZ14QfHMs8s6ijPxwOWOcJ44CzQQIBbSL2zuBNJeQLNS1M48DLuxM3p4M0NJfCcRLGn6yVytP5Ql5WQCS6rHX9enampZG2iawz1o7HI+fzmWWNTIcDwyCjItyg9H43YLwjJRnDY902BVlQA8m0rJfBpiF4dRqVXAKH08BNOlCRmuk4HTqJRVQRZGL3sug4nCJsN+cMh8PAOHmslWnVVGl29cEpvC5rXT6bo6SoGapKOiGQukVYmhhhjzpj8cYSHMrGE1g1QycOtMbuUspOzeG6dvO+rGvfLtLXVqtNO0spGwLwnPZeSqEqS05S522d2kY7+QKHtHewpZY+NqWHUNo/BlojwnRkYFOLaqQVdaRZyEJuj6ZYK5JtO1Zl3kF97f6hDtRrYG3rNk+tDZF01uKVDu/UcWYtG7ReLXbIijjMDVWJOROGWRuQd2N3vg/o9IuOr7Tjuj0d0Wox5AQ54ZS9BNL7EpxozdVaRDqmFoKB4izJboKaviIswGWhDIOOGrcMzjG4QB1gdpHLvLJGhDxhoJJwNWFLEn03WzkOjpwrnsDN6LmUSCmVycCaBPu33lPiQloukFdhH2alrVahzqcoyuEpZUyVQZTzOXIeZp4ez1Jrs/L54hxFxqdkQGR8Uoycny483D+otAuM40SMqoWnUa61RmuFSanimqXWiqh+76f5bjJXy7Jwvlx4fHri4eGBm7tbyWwNSkXfMs2e5a2R5TL3TJgyYd4TBD5nVjVwrzkmMUgNGkPPdw9LVtUkFANAMZCrTFI2Oo4BgWurZtQGGIfAYRwxJpKywngVStK6Y5aRH6N1DN4yhkpaSpclMrWINl3O8py4Sq0mg6uV0Vq8lcxLdNp3BssgBts6aYqfRubbG3JcZZjjdCAEmXKdqlwVS4YCjkqwYIP0GzaShlcnjqnS8J6gWBimCcMEVRxHNa0470lZpgyUnKjKY568YS2FhIwm8Vb6EW0tkCOlWq3tVUiJEkWN3rbMB9FdrKViyNQo2qI1RTGapQiNu9eGBB60WEqVzCjmFqzUvgb3aEbLLFt2/zxzb/+2wNEC2QiVPRnLOIxM43DltFqQ1JxF8Y3Wv6EK1lqSSX3SsN/Bje3GNkQFI0QYgeGBxvZEVUbU2Ug93IHd6lqlbiSmhiC1uWb7Op/TDH3PDmzog+yM7XEddlU7WNSpSb1qG4OUWuBdnpFcetlL9pP1AWM8h2FkWQX9kcZuo/XSQkWC1TV++SLXV9pxOa00TyFoX41MY1VlLR2gpxcMw2BFgNfVQjEVX7yoWVjL4CwpFmpM4gjbfBmjopYGgTa8hPICzRQqGU9m0KhzsAVbo6hf54iviUAWuaWaGI0QMDyZgBSta04EA7ZWYYdVJd0bq5BNkAbDAjkW4ppYl8jhMGAVcqq50r1GlZ9LKpRUyEn6PeIqTqlkqVV0OkeVxtucrqGoJsIqmZCIqgIbbu+s9HmMA2EJV/Cgse05tjsagTrEabTY0mFU/BXagMxWp2oki+1njSoN6lBlMykopjBMA02qtr8YjHE4dVU1F2oqPXJt60TmVBkGHxgHyf6iLfLZEaMLWguzlmAtg7UM1uPrJAxAYwVWplJSksnGVZiTJleZbaT3eXfhMVXWrHNOakBGDOvgHYdpZD0eyCVpZiEyPqa086kgAy0wRuqtGG1g1zXZDI034EzFaa3JeE8eBvK4KXmL5FHB5ir9XDnpdbcMzmArJFOpeaUmQ00GUwflARkJvih4ZD3WKp9XINZ+pwiGDi9OQerJrV1EpId8vycmSxDJuvahlM/JCrBJIlljyA3Kb0dbR/pD1c9UjbCNceCUjWytlbEcWZx2rZVqCyXJujXFiAPSWWvWWrmn6hwk6N1g7rZurLM4nGZcTSVeBZirkQCuQcBuqxnVUiSwqAKbyutYqrZDtAntLYsy1m5dvrJ9+1GN0Wb/raPsCuLbQX1190WrNpoWzIqknIz4Mv2BkonJvmytAs1egum0/wpd6ePLHF9px7U+PXA8HvnmB68opuBMYbDIBmsXDOmvKKVw9JaEI1URycU7rPFM48AYBuZauE8rthYpDNsKJXVM2wJTQMkSlWVZgcjkItPBYBxYlyhPn7LMM5fzGc5vCC0Si5nXo+iA1ZJ5CpaLN6QCr49HRiDNM94ZxjBiDjfk25U0RmE4Lgs1G/JaiZfEhy9vhS5dMst5wYUddbZI3cS7gXE4CEwXC/N5FgPpQocvjBEl+FUdG1b64JxTEVfAuSzOswpZw1jL3c0Nh+ORZV15fHzk5cuX3Xkdj6JyH0KQjKdWgVx8kCm5qmAyOo+3DmddJ37AHvIz3ZE6rRtdsaWC2yL0ZmQ0Im+Df5xxHMMgyuprIj5dWE3Au5HhEDiOE6JRKt+bagjGsybJlCmgg7Q2aNVaYRYSONwcGcZAsJ4aRdkhzgu344QrlXOepemzFmwFmxNVdd/KMoOq3h8OBw4hMHnHaGWI32Hw1JsDOc7adLvg/cDYlee1gd4UgaS1eVUnYUrG6KQncRic3nvHYB22VKodiOai+o2Snw4YsIZcDWsStXtrDIdhoDjHahJv375lSR6bD4wvb/Berv38+MjBWsbgKFmgYekNTGrMpA59HAed7JAZa+Tj2ztKiry4veP29gXHadSp0J5GNllzZZwWGbOyLpxOJ4wxnM/n7iCccwzOC2Eol85w3Rp6W2DXgpetNm6NIBXWiahBzjJyCHTGXpV+OxCITaYoWCXLiKSVqSJSjCnUbKA7LrBBiD45Z1JsWY46TUrv97Pedp0D45B6hWmtOlZgXyPjgIyzivzIWm9Oqk1AMFUnDLRsyyCjcmollbw5OmukVURfI5UMMWLWlTVlitF0wFhq1dE1Vc7Rap295JYJZ54en5hOt3gfRKvTWhVkCCqZZkRg4UseX2nH9e1f/Z9885vf4GsffMAwBcIQOB6PEvgVMcQlJ6nvDIHBO2xJYLRXKguc4UbPcQwMzpLzSz598xnWB6bpwDiOEqE0TL1tgjWK0ckZp31S1RhqK4anyEThaA1RsWgbK49vzyJ0WTPL/RtMyRyD59XNDa/ubnl1d8foDGkdeTKOb/+PbxPXRTrR18jt6QbvRqbxxDgeJAJLicGNzOtCU9cYwsQQDkzjkWk8KYQoUWqMkZSzKIw4yWq8D9oztKnB934sYD5fWC4X1ii6hc57bu9eEFPCzxfmuBLGkcPxwPFw7DVDgVt0QxtDUMHWbCxxVYHPnIjL3LPc5qya42o1iD0ktC9A7/tPelOok7EdpcC6JowSCLxxjGNgGj3jIHVGEZ/NxHJhOT+xLlFU9lPSrEyjxNYIawBEGswGS3JF6OBZiBReYbvRW3JwlOSoJXGwAvMZVfCQ8xODY60IBtsayfHCOmf8YcCRCLZyGAKD9OrifCCorBkYSknUajusW2uL+JVoYS3Ogbc6k4vEYAregXGGEgK50ayt7XCUjMERNmROmWkwgCcHw+QKIcg06Vc3k4w/KRCo5NVSstz7qNcyppWSlk5mCrbiSFAzk3fcnQ7kHDgeRonqNc6P2irQRAJiEuWMvBN4hk0tJsaIBdZFxF2Px+NW66rXhJ9WI2sOrTfEa80wpdTrM60+m2KUnL6UHvhZazvtHyA4fyWEaz2YFcLFU40gG82ht/21RmlpMBp8ZZt7NhfX1Bl+TgUMclb91SL1xKCBtQSWSv6QVFk+sxU0xql8nTUGbw1uCFJFrIWMyn3VKtPCVbrJuSDoiWl1KvmyxuHbxGP9EmIcGP1bUBaoDBNVqbD/Dbb/+3Zc//bf/lv+1t/6W/zCL/wC3/72t/nn//yf80f+yB/pf6+18lf/6l/lH/7Df8ibN2/43b/7d/P3//7f58d+7Mf6Yz777DP+3J/7c/zLf/kvsdbyx//4H+fv/t2/y83Nzfd1Lm0+ELWocY+UlPBB2Xe1aBNmYV0XBi+b2VnpiUoKX7SCZBVBNJ4eHsSQYxi9B61tVCUtNGjH6/ep1diQVNx4L3+zluMQWKmd7p1DoLQx9S9fCtPKyeJa5pn7N29wFmpKMudpXshxFXhPhV6TDj/8/M1bqo5Yefvwlly1JmEqwa9gJGo8P12ETm4kIs2p0Vy1/tEYdg3b3/WgIKgIKUrdIgQUqrIsa+Tp/MTD4yOffPIp6xo5HI/cnE6iQqA0WbleUnQfnCOukRwjcV2JSSY5uzFT3XVxvTmoRrcvyshzCsXsaxii7eg768wqhFJKZU0ZH5LCLx6fAzmvpLiQU+Y8L1yWyJwy9/fSu9UMC7URAhTg1KA9GSEU1MFhqgjHWisOvZaqAxNXaonUmqDKROucwKieIQYZLYLMrUrRUsoqFPPgeByCTKGOC+fzLOvTiPKG99qAXCGn2CG4pgouN7ZgVVNT0KQNir083EudYV2Z57mz5WxzXKapZ8Ru0Mdp2DmKlRQCJa28HeQ+1wrzJVKS6dqCMpwwkVKkZlWRqRVnqijRlMzl/MQ8P1FK5unpns8++5hxGHTisQw2jFHWzP2bT5kvTxgqt7c3IkdU2kgVXctVlM07m1GYCX1NyaOKOscNDKtKGqG0AOD6720/NIfQ1D7kI7Vma/pzt+c36rnUxZ+rfggcr0Sjzl/YMfu6Gzf9JFqzx0bh2I7+6F2Nq33uTmBpsGKrge0Yw71/rT2vw4emn8Me0t+7olKq9qDq83fnYHqJQK/qe2rbv97j+3ZcT09P/Lbf9tv403/6T/PH/tgfe+fvf/Nv/k1+7ud+jn/8j/8xP/IjP8Jf+St/hT/wB/4A//k//+c+S+lP/Ik/wbe//W3+1b/6V8QY+VN/6k/x0z/90/yzf/bPvq9zefnijuNxIi4zj+dHYloxxnJ7d8N0mDgcDhyPB86XJx4f73H2hRTRvSd4S7KOmjKmIvpny8L56cz9Z28Yx5HBeapmXOQMbXqo9m3ZUlhrpcQITd8PWRzeWggD5nhk9V4iRiqn4wmrKXP82kKKKzEuxBj5+KOP+fy7H1NrxiEKBY+Pj1Ck5uV0hMXTPJM//ZzPPr8Xw7asPF3OjFMQpfKakBlLhXWdeXw4I0w2y83NbaeuXuaFPtywbsypRrzISrsFaZSdxoGbmxsZz1Dhk08/47vf/S6fff4Z//NX/weHw5Fpmri5OfHi7o5pGGVkjPc6eNERjCijJx3jPowTw+HA4eaGbJ4VfnWzLcsi+mcKuYrjEsO6Z4i1bEwaSV031IXKOB1xIYjSiodqoVBYCtw/nnm8zDzNC2/e3kuwkDemVmetqYloTtkZw+wtyzLpWJxZVPsROahlOQu8F4V8c75cWNZFel96PUHhXdPqDW4rNVTpw8spStZopYYgaupqDHOVdY+o3PdZcKhcUiun6fVqP1vretS+rgt9vI3b3n/f52OtlQZkbRMxpiq1PvDJp9/RrASpE+dWiIeimUgtUvtqjgtToGZyjjzd3/PJJx/Jz+sjJZ/7CJ95lnu/riuDd5wfH8nryjB4jscDx+ORUopmoABKqHECacnnKD3SN2Yz6s7pbDPT+o+Q69el1TZRa3FCFnSqmXOWkvK7pSGFta1ta9livazHzfCLtqjUrBr7r+JcmwDRAoy2jqvWhmTOW591XVvGd23Gm8NpDmOvhLFXntmTn9q93jsu2NAPQUx3nlUPuZ1qO6roqbbsdzuX6/41rRqQ/590XD/5kz/JT/7kT773b7VW/s7f+Tv85b/8l/nDf/gPA/BP/sk/4Rvf+Ab/4l/8C37qp36K//Jf/gs///M/z3/4D/+B3/k7fycAf+/v/T3+0B/6Q/ztv/23+da3vvXrPpfXL265PUzc399zfnpgni96wyTDWpaZx4c3gBQRg4VpCIzDwHEaRT0jRtZllqgwLixPT3iQ4rsxDEXo1CUlbMyE0fb5VqsxrMbiU2VuRfgq5RBbwVQDTibJFuvJRmo8NnjGacKebojrynK58PDmc+4vT0LFzpHgHDVn3r59y2k6MI0jx9OJp6cLn7+55/z0xGefvWFdo7AODZxOB8ZpwI+e43SQbCUn3nz6uUAutXJ7Oknh2zlujkdiEtiwJKFilyIjvB/Oj9KDE5PWUSrOWn7oh36Y41Eo0w+Pb/n0s8+4XC6klPC+YEyklEdOxxv8aeD2xR1fe/WSwUutKy0r58cH0brLR27u7hgOE+PhiJ9GjcQkUm26gvNyEWZTkllCjw+PCh0VUmNAUrHGdacsBeuqlPORXBMuenwYwFWKyWQSS86cz2cu54XLsmJNYRwlTjFVDJAMHdgizIATw1UyH338baGXD4HDYcL70CHSNa4CQa7SZnA+i5KGMUI978oIdotE95H4YEOnTremVKwlFyejc+rGrospkuJO6mtnkCrCiis9O4Dgx+35Oe0cmu3GfTNIAm9ZK8QBGcjZiAEtjm5RvMEZD9WolFTtRt07S+uNzyUiU40jjw8PrPERA5znwsffXYSEYgzn8xNPT7Ivbk43pCVCqZyOxy6yGzqkJXDV6ANlHGn9g52+zqas02DFDv/umt99CBiFpvfKHA1ebM3SxW1q/K2XC2Dw4eo+uuAIgyf4ASz9sbVuahVJWbvWWoZhQJxGg7+lHlwKVzU72XP+Srli31C8h9rbZ+tDH3l3CkN77QbLl3rd6/mFR92yQzlvQcO86oAKsiD7SX17ux1f+vjfWuP6pV/6Jb7zne/wEz/xE/13L1684Md//Mf5d//u3/FTP/VT/Lt/9+94+fJld1oAP/ETP4G1ln//7/89f/SP/tFf9/s9vH0LJXN+emK5nFmXBeMs7myJcWG+tOhRNk9eZokSnbC1cpRoNi4ztVQu5zOffvIpD2/eEucZUmZ9PLPElTWulDUTJpkoO7jAkgXCyzGzpEUgtlwpRvD0WiprXoWGDWQDyYqQpdHIVoR4I/PTI+syE9eFGqMwsEpmWRbQPiCjFP15Xnh4eOTN23tylsUyToGny8xlXTDOcB4u2kOUebi/l40CUBD5I2e5nC+s2k9FLhgvUXNJifMszrzm0inGVDhfZkqVSPTpMou8y4uR0+nI3d0L1dezBO8Yp4lpGhmnCe9kVL2pBT8EyTBqZTjolFQvDLJSoZh6nQWqGgQISWAcR4L3YogHaF2xwghrsIQ4rjaaw486v8pJw2zwhmEwmOLJRRT83SC0X8lEogwdpbEOdYMDHqlpVQd3t5MI9DqR4XK+NZ+KWnvIljxYUvUcDo6UDvKatkX5VrF/JQ2ognstlTFMnWBUS+31p70MUKs/Ja0D7WGjKk+WYKBBX/rzEKYeJGTt+2o10A6dqdMrOROTqM0YHfwZguvvknNEsgh7RfzpvYvquJxtfNJKzquo4KfEzWlijbdYY5iGoBmzGO7LZeTxcWCeL9zd3HF5mimxcDgcuLm56QQNydCuJ3Q3x9Ao3u3YG+sGye1VIfZU+v2xsVivj6vX22Ua/TkKL17T8htTVmFoDbqaCkWtbRq4Vfaj0czLqcNpQYaIFe8d6D5Tfn7+zaG1ulw7Nnh9EwxogsbWCku40ubZaUa/Yw33IMzYnom3sSZtfbdboEhrixW+1PG/1XF95zvfAeAb3/jG1e+/8Y1v9L995zvf4etf//r1SXjP69ev+2OeH02ZoR339/cAfPbJd8nrwpoii0oP4SRiXFxLy0XdolJ5ePu5SP9XGMcg02hzJqcVZyzLvPD2szcsl5k5BJanJ97YwLIuLOtCSTLHy4fA4AdiljHtwSkDLYte3JpWFasVMd0WARdnmUsmliIjL2zVhksDWcgiNWdKTJqRZDWaXiIW6ygFLpeZx8czl2XFGKEP+zCQVLg35cjZnqXgXCvz5SIGxDm8WzFRFuh9TKQcRd2hIpGmYCtKwlBighF9xOAD8xKFbGENS8zc3Nxye3vLt771A51V6Kzh88++y/EwMU0H/Z0UoV2Q/hC0tiZjQ5zS5+k1Rym+a6E6RWV/yfU6HQ8asRXd9JoJhWGXcblex6g144egavoydn4cPdPohV3nLcM0sGZtOSiZZV377DaUNt8Ml1DXJSMcP3zZ62rX4qTSC9UchtDV6Z+p4f8tg9mTUpq80Dge9fGNrKK1jXfgnfwMNq0dwmmH3Es9DIQwIv1+9GvZaj6tJiTXrnTHdQWfhjaCXuBoEYC2DEGZpGr4xG5X+mlrPTmlVepnXUJJ1voQvNQL9XrM88zj4z2Xy4Xb0x33nz+yzpFxmHj58mWHCpvBjTF2Dc5a65UotFz+a+fWqOlXtZsdZLbPSvYOTfqRNmfQ3mOfffS/1e2eNGJP+9rWb2v9ECem2BxCE7QafNfdc6AFC3s4sH22PeTez40tE+vizWzQYnP+bR3JmsoCS3csVPaW4brdpTc8O4cP6DyuQWDtXlcUwohVWNx+scTkr3l8JViFf+Nv/A3+2l/7a+/8/vH+LaFt/CoOKi0rKc44L8rup5sjIni7EueF1JxKlObL1oE+KAnDmEpwTmikSySWRZpv24wrZYNVY0Whw0jj3eQD1XmKL4TY1AIydZAMzXmPGQeeosz9WnLBN3n/CnGe1TALih6jMAmrwgcA5/PMssqMm1INx5sXPbqZpkkZWfDJpx9zfrp00dW7u1cMgzD+DtOkRXfJxNpG2upCm1EUIoRnHEcO04T3jl/+5f/O2/tHoHJ7d8PrV1/jw69/yA/+4Ld6hDUMng8//Bq2QU4pKtW6EsaRGyswW86JMHqZvDsedKpz1Rqb3W1CGMexR9bPo+Fm9PeMQ9ACfM2kkjBO4IpSK8ZmrBWVaj9NhHEQJ4PjeDxirGPVYKkoZVo8gRRu3I784bzbTP4VZCJn0OyH9A0ZZXApYUAznAaLtenM7aildSTKTjfd6LX3aVnVVm9qv5ca4BZ17+sZxhiBWI0B44RkgtbBkkwmEFFp+Z2xBu8sMbbahfYqqeOKOUqXnMJcVsvwbRZY/zy765PjusFp2lFkLQzeSQBaZS/EtPL0+ILL+cIQRoL1nB8uODcyTVJbbOzA3jDcamlsbMPmuPZQWqvhyv3dERne53x2zwEVqq1Q7bsjVPaftZ2TK64tiWfXpN137a1Umvn1PZO/X2XCe2e5u8fvO499BrqpzryrrH91f3KmsGKXtWfebT3Xmml6nIIQZNURdUDujdiKbAOo9FkjlfyvH/9bHdc3v/lNAD766CN+4Ad+oP/+o48+4rf/9t/eH/Pxxx9fPS+lxGeffdaf//z4S3/pL/EX/sJf6D/f39/zQz/0Q7y4veXl3S3jOJHyLakkYs6998RodJ5yYlV2YckyU+g4HajKOkqr1JSsEVmkp/WRUjMxa7RkqhbDoZpKrplcdNpwFcrvXmaoQVRtjEoT3jVh4JISxliCF4o+CoWtu/R/GidRwU6R+TJfYdIVHbxoLE4p7FgZgvj4dKaUxNPTmZwFJhFKv9CwwfL4JNqC67oqFu21hmWlObmUXvMwVup587IyzwvOOT5/I9muRFQT0/HE4XBkGCdqh/dgHAcZBVJEiqi2nhETuuZfKkUyVdrUCjGYOWclDJReKwJpEPVBabVsm7LJ5xSN2jdYaNtwLRJOuWKczI8Sg6IFcaTuRG2CqlmhGeR6a3O3saY3LBtjt0kcXBsI+kZv+IhAfa1M3fUSSyEXOectWxQoRijXthfw6TCeNvQqviXExExOu4xJ4cV21O705GWKaPdgXKFpW8qLpa7L186RYlSXL/WsIte8XdeSe2NrTpXtbd9nzPX3Bh0HolJsRYYbZgNtgm9RY93CkGVZJABNkVJEDs17p60eW0nA7TNTowEHLVvZ1obsN32HJjhgRV3f5BYpmD4I1JR2X6Fl+21oZyNPwNZkKzD+jhNorNS42popCml3gaf6XtiwFINq0yvJg24PTIMTrevv2xv+9WhN2nuW4f5rv5f2aiGmrZUiuow07UgjSJZk0/vhsYWcK2uMXQey1xdbZi8xgu7zL1/o+t/quH7kR36Eb37zm/zrf/2vu6O6v7/n3//7f8+f/bN/FoDf9bt+F2/evOEXfuEX+B2/43cA8G/+zb+hlMKP//iPv/d1x3G8ak5tx+3NLbenG8ZplMZLBPO/zJc+G+swTaQUd3N2RCvtMB2FnhwTVY08VQzyWRlDQiEXQ1Wt0w0tNycagw9eKcWLiqVu/UUtRDbOypdCYc2QNq0vGfkg87y8NVTNIAWXt+RchElkTF/MpVaMM7idCnsqRca0x5VljTgnNZ1hHPFNu7AUzpeZy+XMMi8cDgcwTvFrI0SCKCyzDmdZETwNQRzc+TxzOBwIYeRwOHE8HJkOR4ZhZF1E469W+XxFDWvrlTG6YFvmU6o067bt3ZlypQiE2XthIpuQJ32D7gcjlnI9tG87lJFVlfWUq8CxzeFVwdpbvak5OHYb1xgVl62y61zdaL4avyuBoj5zXBtMhhFxXzHW22Nk7ppUDarOqRJKWqVmVLC3QUjsrm/p0JMBTM06k6vH5Wy2qzZ/t5ndjK7Jdn7tmZKlikOqG7RVK9Sm/akMxf40jdSNsAq7Cd/dh9ozDT1prZsINouKIKN6geIMqQXbRvRCn3osmolGeu1y6GsVvV9d8LV99hY7sC916ZRorbo1aSWjLMLN4ZhOTtqhtP292ld3XBV9fKvpbNd+Cz62uyR3vt+AdpZX8HPetadsqiH0gKbt05bd7B1V+/k5Hf6qLsW7FH1jzNWekPaiHYLQEYANbaAWmWIdY69Rv++ofT2898+/ruP7dlyPj4/84i/+Yv/5l37pl/hP/+k/8fr1a374h3+YP//n/zx//a//dX7sx36s0+G/9a1v9V6v3/pbfyt/8A/+Qf7Mn/kz/IN/8A+IMfIzP/Mz/NRP/dT3xSgE+NoHHzCOgXm99JHvLnimcRLV71o5HEZilNEStU0H1kil5KqGesWMoxQWw8g4Hsg+SaZlfHc4y7yyrDKWmmVlGEX/L64Jm9S4YBSqkAXovIFZI21riMYSS5EeqAdpvk0pspzPTONIKSOUR+7fvuV8PvN4/8Dr1685Hk8cTieGCjZnYpJmROu8RHIlQvWYCofDiUEhSu8967KStOmxKCwSgmiyhdo2gOgrrmvkfJ6vYIRmcIyB0/HED/7gD/L1r3+NDz/8Gt/4xjd5+fIFL1684OnBiUIChWVecUrfPhxOYvQQZmJkkRExO1x9c5Q6iuOZ5lzTVWuQYYMU9/BI33Dm+cDKXc+aAe8HvBvwLih93WiQEURUVu4c3u5UxgtCpCkJUhFIx0ozsIjGVkhZC+s7qLCHmrU7XsmoEKdebX/sFmXL1xITpoqMmbfXpIxW99p/5uvi/3Y8h70KlYQU3b232hMmRzZg01bP2TPrpGdqE6Btn9NfvU9h8MPV9S+V3ti+N8BN9cFaYSFiwIUBsF1pJARHSUJAiXPEO0/wBbCdIbcfb7InF7T3ATpEta8lOuckk7D1qvm9feb2mZ5nMM+Pq+v/HiRsy7nYso/3UsHr1T3dU9qf31/5PI0o0dYN/TO32l5jFbbPLFD+0PdX01VsRI3GXg0hMEwTh8MR266T2WpqrY4sTN5W5zLUJPZM7kEV5Q9npDdVoyyLnLp5z7X69R7ft+P6j//xP/L7ft/v6z83CO9P/sk/yT/6R/+Iv/gX/yJPT0/89E//NG/evOH3/J7fw8///M/3Hi6Af/pP/yk/8zM/w+///b+f1oD8cz/3c1/qA5RSZAYXUl5elrUvXOsca8ysa2JZE8HrgrSWlCX9dcPIUannKSZRgweqa9OGhz7/yg4TUz1pdGG6Evcyr1RE7LXkKn1UqpNXbBUoRnGJkiXqHscRi6hjlxxEwkc/06ITna0xFDJ+EDpta7513jMdBDKI6pDatZCelsDt7W2fi5XCJhoqEKFch/P5Qq0tQqILuHo/7DbP1jxZa+H29obbu1tu7u748MMPubm5wTnL/dt7Uf822uOSs+ostplhW7EboBV2YbfRSlHIUPrWUH1EF4Ye/ZWUCF6cjbcO4yrFlqvsYAtq1UgaWQcSWVsMjpJE8X6YIIyDiB5Xg3WeUioxzpiqxWbvZYKAXgM/KmkEiBgh/NiqTk/hLWMU+tlrZorFqt1y1R65GlpNYAcLTlmhyWviR2MLyvdtacn1yapeXtEsQK9n7lCt3JOc1cEp9NleC+MwziujbOcYnRVAqxaMkyGDvd5lXSu9QdF+ul29zgLWG3ISBRmBnsTwoU7fhSPUqq0dHj/IIM0UF2mhjBWqqEZUKodp6tejIRTGGIZhIO3W+N7pNGm8DjHXDcqr5Zo+3hxIW6Ptfdq8rlpF4b/1RXVnuXM67fnXmY2859X9bOenP6eUlBIvsGlzMs1BixOCGGe1T0YdeOr7a+949y0AeydlrWVd1/59c2wg2a1xniEneW1aoNSg5WuIEWMwbeRKkfNMWYTCZZHr5+/1Mc24v+TxfTuu3/t7f++vGX387M/+LD/7sz/7hY95/fr1991s/L7jMl8oZcB6dQxVFoYxOo1zCBQKzlf8UAje9RpIjgnnlFKdM8tlphrZUMNRVOe72gDQVJ17RFUF+845U4zVuU4FcqHkHmTvwgutVFbR0GuRt7dGxpc7J2oLSUagO+cYxoFx1CL0NDIMkjla53BBxk3YdcVYmVLqjVH1cri5ORGCLP4tuqucz5e+2WQcyiqGw0kkZozhcNg6341pPSYiU3U8HWWqqUZuzlqh/cdVFDKcVSKEZmmyKDr81ujHzbj2CNyYrthRFaaquwhdoCsxmC16fgfe6MSF9hQ1Ig1+qqhuorxXilkCCSzWBCoVZ4PAZ1iKBh/VssPjDSB1lVxFiLYUza26mmnVa64ZgBExYfWcVIUcq36u9izZ/w2OKUhpo2JMJjVmoz6neecGyTknvTNxDyvVbb5Yy06tlXwya4sGWg9qzjA3iKc2EIjeLWrstsfS7l5Z1/MZKK32olC5prnVQEqI8nxRzUKtOcUsqvStsN9ILM5YYizEKLWzqqK91Ot+rH2WZa29WlfXRIiN1NDXjVL2m+qFMZs47/41nhMwNsIC7zzm/eQJzXZr6UFH61N8/tr7NV2KjJB593GqxHF1TtdQ3/54Xy2rOVx4ty62ZdW61HS/Cswt99SYBtUDxWBt6ddk2+9bTNPPkw4w8mWPrwSr8IuOX/32R9zcnLi5uyUMAk94NzAdhCk2TJMouKsMUivCg+qwRVFwOJ/PpFylaTgXvvXNb1INxJy0IBy7dtn+5hqjNFHAlCKjGXLGFn/N6GopPw6L1NWWeREF8BAYx0BOImuzqqzU8Tjh3YnT6cjr16+Zpkki6lylH0nrVlEbkBsN3VDJOXE8HndjF7bxC4+Pj4BE/8YY1lU+Uwhjf06HeEolp8L58kRKooMYDhIo5Jx5enrCGpn061TGrFYZ4dGclkGiLJHkkSyj1Slyjn2B22fRcJ+R9A4zznK5XPT8NgOzj7D3m7YpaND6KC3UVChO+u9SynJNvRTKh+EAGNYx8/j4JNn6nJjPF510LWy6lLOMuKdRgZs6QulRbcqxZ1kAwyCsS8nOm2FKoih/Zexkvbrheujn3njtYaSWsTZW4R5aatdxn2k751hj3MFR9p3CfIeLhoFSZGBoc0L7aLtH3HKHoBrSKgQiFwaGEGS9AcsSdZqyzHU7HA4451jWjLNgqvRBGpJkdrVwfmz9jVuTdFtntW4sv/1suZIzRrOwK2PfHPLewbQACREO6AEV7zoquT6pB1gppp6p7ckIpjwjOhiD1ckLXQtQs6b9a8vP171YWdtqWqN5y6Ryzsr+LNef55nDfN/f2uvuH7e3b/s10BrtS5UeyxYEi9MSFiFVWyOM1qC9BLsNXq5G62SaZeVyHbR+meOr7bg++ojj/cTx7UnUiWtlXhattgu8sSyLwEzObqMENPIpSZQhzpcL8/kiYqA58aO/5Ucx1rDGVY3X2guOcmzMoVYYLUU2ZOvf2i+UrSlW6K4lZ+K64owhBMcYPNQifVylcHs8EMaRcQjK3nMYq2MrvCwm742M2hhkUq30zshnS1GoxLVk1rhgbRCJqmHQBk+P84GXL15wvlykBhZLV0iYFW5tRm4YPOMkxV/njYx3KSuPT2+BxDQMHKaBoDO/SpUVnmqBkqWOp9JSUPomkcbVxqnaImjZPJrJ1C3BqBWsrbvru5em2ei3m+EWJ2CKMEdlNESl2hmXK2uq+PGCsQPVBJwfRUvQGkKYuMxveLh/5P7tPf/1v/5XaskEJzUXsTGWYToK+UYN0bLI4LxlmVnXZYMru6MBAbU34ygEHSGwbNN7C9Nh1MbiyHwRwlEThHXKIrOtB0yvQVOD7xCWOooYo9ZCDM57sjY6l1p17M22XtvzW3tDazqVlobGaHVd0WNZl45ZehdIsXSh1YaGVIRoVDRTCWFgHIPCykl7FgvBwau7G26OE7c3Rw7BaVbqsabo5xbySqmJXGRfp9ymIcu05gZ3NGiuVr33kjZsxJ42JFIegDFu1393nTG1vqYWhMnUk0LF6vpWWr9mQ0XPy9lKzlbIJHsyjtN8pApJp5ZdL5++f2vubnqd+760qvqjEgxuTL59ja/WeuVUQcsrbmMn7p1Xc5jGbINHtwBFr19BYXDJgo2VpNwZK5Mins58/NFHvHz1igbHxhiFQzAIoiEZ9f+DUOH/Px2ffvoZb70w55rjuswzqY0iN+J8jLU476WhdEfRrBrJLMtCWlWzz1SCKsyvceHp6alnXD0FbxCIRiXeh75QZUE3ivaGXfevYvp7974ta2Qo4SB6gIfjgekwMQ4BUyrjNPT6lneh17la9Fp0qF1VXThnPdM0YAzEKFGSUKc3BQqjn8U7B0MgeGEdJv2sUruwojphZUyDMQXvDcFbnIWiCvuliHGxapilppUFFTVVZ4wpFMPeGJid4jT9d+2aWaNDQE2jCTfdMzWAzfDQ6jyb5FMrx5tmfFoEWnQ+GYlqnAzUzHINLRINOgNhnLAukErl8enMf/vvv0KOEe+d9NY5j/eB6XBUVqaIH5/PTyzLzDzPxLhKMdpYpW3Xfv37+IkebZcuDNsM4KvXL0iqhn4+n7XoLTCbc/6q90764oQcslfJb+syxtThaWN1vIQatTVq+4MSV0JoE4XdzuGq5FaVKyvZnSj/zzox2lrLOE4isqsKJM3Bi1KM60QFY4RBKZ/FSB9jzYzB8IM/8A2+9vqljLq5O8kwTKpkY6okYcxmvAWmbxkXwgauDbq9zpy2tG3/7/7rfX+jG+D9cZ3JNAe5BVTt9+13krlskKTZMTR6htRAtLqHKwvPYcDn2cr1e37vjOuLMp09+cPadp33dThxXFJP3jLEWtB6vY70WSOP58crhEpEvSsgGfj+/b7M8ZV2XP/z2x+RU6IYUeUGKSrOKYpSARLbWuewzolQq0YfGqhAlQ1mUTJGcCz1lylk1rhyuVy2KLhDK3ozy6YttseO94tkvxjaoEFrLIM6mpwSKa28uD3x4dc+4OWrO1598AHHSUZXBNtEY21vNG4QYIyxG11jDPPlTE4F70fubk/CTFtXlsuq0bXoMZacSS6xzqIgb53jOIkBTjpaYVlXUdEfAs47Yl5IeSUMu3HwBgwF0xhqTaqntgI8Ipuk11taolTCxlZA9NtcL4CbPijSWhlJQtVaY5OYcUCfIKu1j9bAaoQkIFdcaOdUiYCF6KL3XDPjisCsAv1IppVzxljP4XTLOB2x7oHzsvLLv/IrLNrLZrEcDgfGcWI6XOQlc2FZVt4+vOUyX1jOF1ItVzBeFzTe7deq6685ntZMawxkHCmtrOvC49OTEiKKTNpuwr86SmKNK8s8X0GIaO1nn8lVuXy8fP2KUqpqei6aXXtOxxuGccRZq9mYTpg2huWydFiwwZK5FObLRR2mlwZu4xVinlUc2OKCF3apkXrasiykFIHKzenAw5vPqTlyGKQh2jvHq5cv8WHEW4OpmSVK9mGt78Z7Dyt34kKpfUhhvxY9a9+g1lKK1p2bpuK2V5/v33ZYrVnuSRu/nqPbh7rVlJqz1UewidheO5m9MHD79+o+v+c8v+j4Xo/rDMzndq4F+pqxFjKm7j6/ogiyr6QP9Pz0SMpyfwU+zzy/ZL9hocLHy8Lnn3/O/dMTx+NBWXSeJSeFewLjYSJjWFNhzYaUjaT4bZ0AtRosFlMMNsHReAqOYuQmyZc4t2qaXhdUW8jA3KY1aOHeaNHZKJQj0YvBWvBGSBTBO1JcKSkx5MCrDz7gmz/wTX7TD3yT/+MHf4DgZcje/edvaA3Q4+A4aPbVzttQyWg9KK/knITirGM+jDHYCmtcmZeV7370HYFG54WnhzPT8cjNzS2/+Yd/M68++IDhZuDF6Ya3jw8s88x8mfn003ush2F0jIcjYfRM48hhHDgMI2MYGJy8p7MGh8MzYJ0qazedREPvnm/QyjiOAptkyXhokGotVJ0/VdUBNEjMD0FrZ4VsS49Or8vABmrRjLZKhghU68B6ipXGbecMTinh3nuwHpzDBK/s08z5cuHTN9KeYIwhx8IwDEzTxIcffqPDLtJ8a7AuEKaKr1AVtk7AeLzdCDNqnHIVwknKSURy17UTJO4v4ljjWphXQ60ejAy5rG6gCiNDCEX+yHBgmxfX6hhFZdqtQuNF4ODvfnru52HtQHAB5waqO1JMQKMF8HJfrHOksmg9rkCQ5nlbCoGJYRgZxpG7uzvOTzN1XXEEfMg45wnjyHQ49PqUCYvof+bEmgvnNUJOMr9pPDBMR4bpwDAeRGGmFtK6CLLwDAp7l7iwHd1QG/o8ruZEWh+lol96Pa6f944DM+bKse2PfWb/7omwC6rknTS2eHa+VbNGHZNEy6JFJKC1LuRcqaquX4u7Et99DhU2R73/LC0AaaSd1m4CGzmkzSPb1uvuc5pNBm2TiIZxGrkpN0yHA0MY+t5odHmoMgfRGm0w/3LHV9px3d69ZF4jT/OKsR7jAtbLRF1jBU8dxqNkXzljbGAoRWswykJTKGlTz84M05FKxVgvVFw1sg3ysTqiA9CpqDrUTv8vopRbP1JzXM4i/TgK1Un0XvEGXr16xe3dHYfjkTAOjIOML6gl6yRYp9p/IxhZXN7bHsWlNTIGmbUl5wBoNjSOkr1N08TT/UPP4EoSunVOkYeHt4RBMzqtiTEMUAqX1Uu2lldKDlAz1lSCd13xu2oDbK1Gh2mazg6jR4V6lRRZ2aAP2x/bH4Pp9YdaGxHD6CZrcAr97/vX32yV1r5M7+mVLLBp2toWzW5wTpMqWteVeVlYdJLu4XjC6lj3uMowQWOtDgOUNTEMMsKiR6hGFLaT1oGm6cAwjOzIhxToZBUxFKkTiqbDRE6JMCb8INGrMUYH/ClkbL2yW0uXJWsGLOXUoVQU1sv6+3WNWGfxQYavSj1LdDidE21J5z3OSo0jRTmHxvT03muwJvdmGifGceLu7pZP7Ge4ZSWcpIneO48fRLdODGDhqPBxzpHLwz3rcsHWzIvbI7cvXjCp9FZKSYSzm/KIMV3J4gsd1vdIPn4tyKw2pOA9GVfLWJ+/1tV5vA+iUwkqs4+r2LJBAXP2GSK9ni5BWRtXIw6jajDXMs28Q3meX48vImdsBKxylT3uf9+mGcvrbHttc9x7x6OtH2xkoVy2Vh1xXNLY/b3uz6/3+Eo7rg8+/DopVy5zFIWIQdh2QxViRhgGpuNBMH5luZh9xFQ3xyW1nciyLByPd1QKPixgbDcsrZ7lVQdRWH6ZeZ63uorhqsbQZzn1jKsqrXuB7AneMQ2B169fc3t7K+NOvCMMAe9k4KWhdEX7ENzmLMfQ6f3rvIAOcbucZyleZ5mqOk0TIQwEPxCXhePxyNPTmXEYmC8ye+rNm8+otXA4HDkeb5QU4rH2QKyRy/yo4sGRWjOGgtdBnlbfq2AwVfp9nPPqjBrc0RxWhSKBgmy8inX0QADa3t8gk1YYlsPg3DZdeWNjtTqXhrb6Eq2OaKmIslKhmtq/BKvP1CKUf+cctWTmy4V5mVmTkDpef+1r5JQJIQhZZ5XJAN6L1qL3offNtejV6CTdJa7cPzwwDCNhGDZZbCMAauttKllkxhoBILhWO83EWEDldXwYGEKbPeaxFpZl5XKZBfnS4CDlSPOSWpJVR5p4+/aREDzH04GXLz+Qe936oZDa2TSNTNOJnDOPDw9KoRdv5bzbvbZR3cCJ29sbYnEs64L1jmE89DE6udLrPDJ+xFJy5Lvf+VWBm8l88PKWV69fczwJ4WpdV0xwG+HqPY2rzx3QFgBtQU1/3C5gkkds9ZtSNso/PQjaMpdW125BDph3HUPLeHcBhClWAmFzDff18zXiuPbtFJvj2tXQTIv4FGJWeLn1b/VBsDtntD+P5rCeZ2R75m6vSWWZOLCRhdo1Ukar/EQTAG4OqV3vVspYFyEoucacoleff+PWuL7xzW8xHo5MpxvZHINnPBw4nASnnw4TVTHsCpxOR6GGY7qQJ8gims8X5nnm6ekRFyylyoLoAxX1ZjdH1LrPaxXG1hchBBvEJUZ0Wc6UFKljwOSEc0KJD9OIHwf8GBg0QwrOYQZHTQmD1KgeHp5YdbDizc0Nx6MMbzRVsriUMpfzmfOTzH56erxwe3vL3d0Ljq8nfugHv0WtkFLm//f//UU++uhjPvvsc/7Hr/yKso2kzvGtb32LV69e8cEHH/Ctb3ydx/PIw9Nb/CiZI41Yos6hlkKqKziHswHU+DYNu4aLGCMDLrPOF9qiWNMhWIk49xGpZJEtXC1KNik6EbodxrRKWjt0Q5VILas+24m0kFXR0bIS04xZPaZWBirGeWKqOO+5e3HHD/3wD3Nzc8c0Tdze3jKNE8u6MF8ufPLRx017V3rdrKiSHA5Hbm5vddx84s3DPcssCibbTAc53z1RI+Xa1+vgR9UyLEoiSd1Ri5O2PZuv+nEPCpm3plxRSqE3qUoLB3z729/BWMN4mDgeTj2YW5ZZri+GcRqZpiPGSIDmXRBWn3MK1WrGjGSBTZXhWz/8I+SSscExTIduROdl7XtpHIWJSk18+tF3+Pb/+G+kdeZmCnzzW9/gODicqczrhZwtwUCMl13BX+XbjGQf8rsW7KhgbTe4uj5QyEv/a7POqE29X1oiOnZi2DkbnWtl2GoM7xA79u+3I+K0FW7A2He/3z9XnJfr9Tj5ne6lmvuekRaTTKkqityCn12dva2pvdJJc1zP61ntsQ0i3DLO1i+5Ufal9cAqseo6C5XBpCvOOZ6ennj79i1fO58ZpoNmXDr3i6b+8eWOr7TjMs4xHg7c3N1SFdo4HI+8ePWa6XBgPByILVV1VqI4BMo5Pz12aMVZixsiLgvEeDqdkNaDQspbJJPLrkfGitirMYbhuEkT1SIYbvu+s31oBsQRRss4nCAnkbYpiUolDIGbmxOvXr0kaL3IGzqhglpYtBs9Kb15CIMQBcJAjBFnIzc3N4zDxLwsOPfAOIyMOhdr1HEDbRzK6w8+4LPPPufVq9c8Pj0So6h++CCCtsMYuLk54EIljIZcI0MIDMHLHCovmRUKpTovv6cIVCaBq9nBPDIfq1KhSB3SWx3jYDcUQcgYRTNK3Vj6tzbzSoxI6X9rkkodLlSPUE0TiW3hoGlqOZoRFqFQ55UUAyYXYha5Gue93Je7FxwORw0C7nSC88rLuxfMF2ERvr2/Z1XK8jCO3L14gfOeaiw3L17wdL4wL6ucT4fZEGp6KQqtlN5j90Pf+k3dUMyzkDRa3WFTIFHnrt/f3d0xjkLgyUkEjkXpu14hAa9ef60HErBBQ+uqzhFRHBG6vUTY43TsMmKlCiGlMWi7pJY1fPD1byrTsoLdxrL4IcnQ0iJSTsPgqDkxTCcwnlwqy7qKk3aG4AS9CN4SrKEWS6Yx9HoKKQZZE5Kes+yyqpbtN+feyD1tQfWgc1t83aA/l35qOoSydja2cH+ftr5kHMAX6GfujwYnitNqDqv3pO2yo+3xO3eswdp2ru3nBu+hI3iMkrigCfNK/WnrBUwps6mlWG092NfOtoxLnGeRJEpJUAY6SnQ8TBgDucjA11YxkE/6DDP9EsdX2nFhRa5nOh4RPVLPdDxxur1lmg6EcSLkBEZ6rQ7HQ48o7Ox1gJ5EwNY7bHBYZ2SSbfDan2B7htCdWK0Ci+2Kmq3WVHKhxCgU3Zx1NEnq9G3jZCrodJowORHXhbicqcYIdHOcuLk54ShYYHCGdYEcpfepKZN75xn8wBAGhjCB0zHgWA4nwzTBuK7iYI0RYzZIPWMYJ4W2PIfTkVevX3Fzc8Obt2+5XC48PZ45nA4yqt1bwuCx4cAwWZb1glcI1DuZZeVUeKz1yxnnKDXRfYc6LKMFJ+ssHoepWjM0difZJIdxSOuAaZT5/d/EEHXKvG4aY013Rm1vVAWhirGbcRCWiD5eg4uSqTVRcoSqShkGrJNsIozSUGt8wPqBYEUa63SYeHp44PHpkcsySz+RwoVhGAjDKHqSPmDcgBtWMBs8mEvdtTUUmLWHzhg+/PDr0iOYC/f3MpNqXVfWdWvrqLX2PjJjLDc3LxjHEe9DRwxiSqRSOoxqDPzAN7+BdZJJnc9nCYZyFmms2uqKW03DWitTqjWzKoXeI5aTRuNaHzze3OGD60LXuYhahjcZoz14wo2xFCzOj2Bk1twaEyVrz5DViQDO4h2UaFk1GLJ76LlZcnVk/dBMs6+bHY1Avr+GUbdM6106uNGFddXa0qzx7ndtrVNND75a3Uoo8L92ltGuOe09nn+pKok4Ktvf3+5qSE1uTC6P7fe9wc3NYe21B7sOv14LY5qc1bt0+hYg7mFEU4W9671jCDKFQ0acyLoQfq9pt0bVdb7c8ZV2XNkmwsEz5JGYMiGMvP7wQ6bjiVrh/unMt37TD1JBG+BgXWYpTAcrvR7ZUIncvjhwOHl8qByPI9PxwOF4wvkgeoepsMTMHJOoqOeiemJWen+s3pIKNUeZQZVin2qcUiSmGedGjDNkIzW4wVuG0TMdB8LocV7GxNtSccBxHPG1sGIgZV7evcS9CgQ/MgwyxbZEhc8QFo/H4QbDMB0YjydyjFjnyQViKizpiVIrg/PcvXzJzd0dr169AiuD+z7+zkdkLf6u8cJ5dtzennj18o5SrgkApQJGslbjLMXAWiIY7by39ipCyylTbe2GoSDUbxcao2nD3BulGXcd0RbdnKVWRQY3o6G3QO6DFrJTgVTa3CyDrxZrHM4H6TdKq9ZEPYaMQUgL+elCrdLT9ennn/J4jnx2f+GXfvm7jMEzesdpqJQkg0ZTkgDFVBki+fmbezKQSiUmyazAMB5OnJezCCUrAchazzgO3N9/SlyjfMoMr168YPCOj/7H/+Dt27esMTKOB6ZJ7v28Rg6jynANA5fLQkwXjF1EwssFvPWQE5fLzOVy4fHhng9ff8Dt7Q3h4Hn72efSWlEKl3khhFH7xLbrWpGxN4tmZNb5zpidU+zKFdM0sayFlKSetabmnAuxNbBi8FUam021OHdknF5QUsWVmePxlsFDyTPBCRW+xIIDBufwZlQSkcg7UdpsLfnyLtCIV7ZBx91Yt7rOtUKF7ZsXgtuGH+5hN4MMdaVK79J1v1zt2b/zAWOdIjVVlfCd0vh3TkAlxayqrpQODyIyYU5q4CklsK0f0JNywZpMGA/grEiPZWG0iv/e4LtaEeIaCkFXKNVIWSE3oWoLRmqm1ViRJzNi19ZYWGKiqNM3aPljD/TVAjVBTZKll8I6X0i5SGuFkXqXLRUXJgw6zWI3gfn7Pb7SjmtNKyYlLsssSguKQ9ci35ciorsYUatwXlJf7x3JOGy2VGTDjVNgrEKE8KYZXFnsjfBZjdzYasVRpCobJ2WReWmRoBjptkh0qpCm6Jd5BiqzN3gKtmYcmdMoKYKzksHZanC19Nf01kAICvEFQpjwYaCqpl7OmVRWKEmFtg3UgtfrgGYma049UraT4fz4yPly5rNPP+N0c5LM9HTEecc8Lzw+3PPweI/3hmkM7Bsd2wapQNGMqtrW54IYvF1/sVYm5Aezg/bMDik3VWFafWXDtkH0Ma1qUHespqr55ubctgZJY33T85FHmm0EDaYRDirURtSQSLYqiaQU2ewFg61WpftEF/B8WaEmkspHYR1hmDjd3OHHA4vKeyWqqDxUMLmypEpKFedE29JUqKmypKK9dJV1TczzQrKWy3lmvqyknLA24IPAeVkfX8rKPEeiZnzGOmR4c6vnVJYoEGiqhvO8YK0jBMfT00UJIULpd05wt6qRe9X/WyfrPVcwucj1roZYqhpDQ8oQcyFXuW5Rr11mkw4CsNVQqtDR51hYUtH5dwoNS+c4OUvjexv6yracNOOWfVE78cpeZehbDXRff9olarpGmgrFcxp8ex/gytHJa2/rr9cTd983qv2eHHHNaNwgM8nG9LVqpWbVNXTmqkZl7aZk0VEM2EmCtfPaiCn7/Sokp8LGZtyGorZRJC3jc4oOPT9qrbtTrx0KFshYGLEpRiyiFtKQEZlATr+W3n159/OVdlxys7LInRSwJfQF0VLsRueUKLEVJDfFgZZihzBoQ20lr42BaDccvBtWTalr09zaY8f0qKY2KMLsU3KBq0rJ1GQoJWERx5VbVGet0O2LivpqWm6tQITWebzzXZanGYLS6gw74216NNd+T+/vac2ul8uZx8cHdU4i7Ou9E+VrrVPEdSXF1K93i0w3dKXBKP0SdWhFrp06m6aMzrZpzfbX/lgadNMhnHZc1yw2j2b6P9fgg9ltsI0m35+3g5qqMiykKTVTi85fU+dV9Q1bvacJvqYs05SL3m/pWZo4nG7BB9ZyIZeFXMXg12o0A5R/saIBpwRHgdWqTNoQZYtCobCskul3yLo2uEWek4pE98VUUbWvlUru05mhqiMzgJXMO0r9YVnXvm+Kom2GDXVrgZh3G/Ta1rmp210Eo85Kex71sxRNLqQ5Q+su+nPF6ISDTMoFQYFNP+tStWlXtQs3eaxMrW5zXs5tjqduosHvMA7fWVPPnAfXdPH+e7PLMGh1oO37FtDJr3RN9XfYnGHdiezWtpZ3Tqb/TZuo2wzALWDcVO33EOV7qfntJZ/9fv/5ntP99w7WGDbneH0Zt/vfP6/+TpuN4ypTsRvRo7e77D7399vEvT++4o5LLlJKmYKonYN48moMLm1CrTlnfJDoQRa7o6vkWcNhlNH04zBwebxgdWRBbsy3niiYTWFcJ84q5Lz9q1NMqwPjh7bGsKZSzSSOS3Xn6pUMjNX6lcOaiilZN70uUi/KENUKDJaL1g9y0yNTokfeUnCDzHIyRpQtoFBLIsWVFBfOTw+s8wWn52ep1JKYzzPLPJPWRbLIkknrinyYnQNBdBSdXhfbDAntYTtWlFCiaLRhGgW4GKoRGE2iX/r3Pcuq2+aWUfdyvfrn3G3EVlxujLot2m5EDmWdKQW9feWUsHghFJgsw0RzVvUPmYZsjchdOSuGsiCUdGcc1g+48cDx9iUvP/g687ryOEcuayYCVJ1uWyypWFJ1GER01xRDKaY7FuNkpE5GmqDnmFlVv9EVgT+NsSJbVej1Mhs81jhEG1CzJg2cJJsN+DBRjCNVKKlwWVU53jmqcRTjMXgNpnT2WSmqTCJRswQxAvVZN9D6ixJG0AedZg2mO6xixIlVo3dCqecxJ9YUiSnibGtXkAWUqqwfQSYgFpmgoOz4HsBtBrgZT81QjLsyzvv8vTmeto7bgM+skmfNKfQgFuQxRR2pgGotRO3uW55Ll3NzVlpESsp9DTZn0ASaoXZ2qQGpjbXwu4rbb8GfoYq6iM5oc7t9sFH1t5/l383h5T7rrM3ssmpH445Wn/t7daf9LFvs5MouASWOL66Rp6cnXIwcT6I8ZOsmul37nvzyx1facdUsunNUkVNqyu9G6yfB+c42olYhTjQGVxJhT0qVBahZmLdVZmVpj0xOmRYmGr1ZpoW63djunFZzbB1iVHKBsA04TidEAiWRF0uNRqCi/qkEppIakETehkCxhWKK4uq+05JtaawhkIjZYmPFVCUjUChZp6l6iwLplJK5PF2w1jBNI8fDgdNJqM/rsnJen8g5MQ4jNzdHHalSNbPaMlWvzdjCNtvo2RvrrWU0187F7F5nO97PwNoz6J4LhPZn7p73vJBMETJA0b69loW2nqvGFmtq2FingZAYsXVZWS4zxhZCMKRiKFoDchgGO4ihcRNhODIebjie7rikB2I2nNeI8yMSFgCaWRV10EUn2Qqi63HBMg6B090LgnMsl1myNM3Ycq4kHWuUgFLE2ZeK1LMQ3c5UisDjCtNUK+QgOwwcb24I3pFjJJemauAwxmtWJRmiIAyaLWpAZozsvaYiIzPD5D441yChqlOM5WdndDZdVhkuLwK81VT84KlGaoBrXIg5E5y8ZqHtqxaUbAzIVlfbU7vVMmzrwm6/2q+/52M8ZOrzfv3AxiTcvppC+551+Dx7aCoW8je04f86swOuni+fTXQ5JbvV/W11GnoRW+Cd6+oobb06Z2R9F1Qv1NFYzNLBKPT1RqOnKuLUVdG2oK4FeC3LLnXPIhTbYTue9e4h61Aa+F1VbsGOjU2tupbe9+xf//GVdlwpCduvo3igtHHBf/dNrUZx7KLMQHFaG5zWWUJVnmeslcJuzftgHdPBcWm+a5AEFtoUV8Uo3vPF7lzNpntm2gKCjQqrjbwYMW3GUNTgOhVSNc5hq9HRCiIJIxN1szgoqo4jKHo9hIHk7PZlNTT0KtpqjNBZvXcSQTrDYRxl5pK5djpOyReyeVRTcdffYfZX32rPVWM+8UxZQ4tdX0Qdbs7o+diS/g7PnrcZpSrK+rXdItOlqKxr13P7kg3tNgOtUwRSjAqbeGq1nWKfgVyFvIDzOD/i/YgLg/y9isSYM21Eiej7tR6oqhmJUceDFTWMcRwZhrFv9JhLr1nFLOQgi+nGpC2vAlqXEzkpmZBtNFOS2pcPMAwT3hkN5sBojar135aWFJuOAnX4dsuG25el3UbrPc4rJG6gFs0obFMDF4RBWiME8fDBY62s05iTSl5JcbS2TKOtmpbR72C6tp42yK0NQGW34XbpTFsXHTZs4tmyL4sO3QTdJ24T9m2KME4DNGvaOW3vIdfQCI/OmP64HcFRMzLdA60+XCW4smhpYAcFWiPBSPN/1ew+0n4L9c+o2XK7MruPLxJSQplvJYqKLJG2poymRvteOKNvtuc6bpDptg+fs4DdzkH3x+1vxZc4vtKOKy7ChKJoZFUqOYpCOm4rprZ0v5aqorYJGRpVNwOMU0VpVRlvMkRtF7edXBs8uCk2KASPwHiiwWW0OFtyEVgwF2ou2lemC1CbTUXxQpUkSpNs0jEigDFBBX1zz7acc1iddSTYi2SROUfQCcwC8VTpJbFCmDBV4QtnGIdALpFYqzQMl4zz0pSaiihDmGoYdnOhDFvGIlRl2QROAwVrWiDQIlqBjioWawtlt2TNfse16P09jus5ht+Ofb/L8+dskEnZNrVRqK85Wq99Z17qhl6ZcsYKZOassK9yysRlxbqqa8NjisC2uSqpQKw2fpjww2HLsKp8uRDIqyiZYIpqzUkWsw0XFAHdIQSOhxNhmISRmgtrTMRGgY8JlzJeM6JWy6m16uwm7a8yhoBE4JIFWawzBBcYpwNCAIkC6RWdGFC1X1HJLb0+o4EVvd5n1RrqHlGZMx8CYdA+vQQ5AUoW6QBFMdCzGFHosFacXXNcMiYDqAqV1yJwkzZS2750FD7rTggNOiT4E8kh+b4FmXsqfFsr0AysBIrN33lnCX1sTdXBrzKeSKp0ViB2A33mn4FG+Kk759X9iml2R6XItI2jFAmuShUoUKTj9PWMoSlUGKOiwPvgmZ18meluvF+Ujc1Y8IMSwOxG5ACxCdUKZV3K+0UanVUhAzTgVuWMrfVg239dOUZbY1q7kNWgubKVEr58hesr7rhKSp2UsK+teGvxVnqMCrVrE9YkPVYlrlgL3li8s0zDyBBEPilHHRRn1bDkLO8To0AypQjcUSpWpf0bo027Kmg5RQWJMk1rprXMSZv1vO002Oo8bb5X1Zk/2aCzo1SPMMvssFIW3XRt0qv22+RCSVFqNTFqZCRHzkXVPlRRIcvwQqNCmTIUV1S+nXOUYSTpTC6AdZ07nLaHSISC3ByBI62RNmq+UYMBGbDJu4Xj7tisF4akeX829b5Cc3/tK/jxWjG8lCTX2sjARgnGE1gtfFsjgz9TEmOXEpQV46r0l9V2PwumZJwLDNYyDBPDNGG95zJfekYzDhN3d3fc3d5yOBy1Dma0vpEkeNFsvUWvzhiiEkNqheAsx4No/vngicuFnIQ8YRXCk8WfwQnN2tltdpk1UEzFUqQhf5SG8JQLgzd4Hzjd3DAEJwMXkaxSInwNatQplFoJTjJCisXUrCbfYL1mrkoucU4yp5ubI85Zckk8lUwhiUOEHmbLuqvUEqlkBm/xzhCcpXrHNA6MgxCUaonSB1lWZZu2OtH19GBRr5HvvR967asNTGzOq6+vXT+VkCokjakFGTfPBin2S16KTmTYYMqr1pBS3lmDjZxQtVm39VBdvbfug5aRSwDShjnuGIpFgt+szer72lHNpQ+p3LMX93tmO8+EAFMyAR02eHODYkUCL0VhITc+556oYuxWEhBIXhuNqza7K4lMHvB8P/+v5FtfccdVS6WmLNmW1Qa4uhUuqcgYkzbckUpWRXbjDcaJwwvOEXwQFl3OolStDZAlZ2pK4hSKoeSqzitLJIlg09aKgXJVKfH6ZazD2Da0D4KTWlFwBuOE9oqpDGEg+CDzsYw4yGwqzuiAx1rINfdhfNL4WbYIOyVxELq4nXPdiciGquS8MQup4iCdNRjvZXRJjNQiitMpRsW3hY7rnMMg59ZgLoGxig7HLJQdXu+ulJfy7vtram6p4DwY6yVC7BaOq+d0PKI5u/Ynw84Y1X5ujcYu2XFWA1ZBAwERXRZChjEOTMTEAM7KyHvb1BikiTKtCzVXnHHUIqw15wNxWUR010qWHJw0XwbvRKHfCuklLksfgCneJcmnyIkaV6GKNwTAiJOxVbLgWjKmZpypWKN1iiLTlSW/z1sAU4w4tVLUEEdKqizzQskFN42M3mBqFtWWHOW1q9Gmd4OpSZkUBVR70pIhrwKJYnDBKyEHnQFXCVimIIoyayoSWpUkrq5WgUVKkr2TJdusUk0kWMPoHc4O3BwOnEYLqZDmWViEWaj0VRXvi81URDqoVrMLVhoSEjQLaxkHNH3BvnBQe9rXs2Qp0jQre7r0UoTIqTXVEsnymmYfKh0lj+tTlZX8U7VVpuyYj834W2t7MNKcVimFlOzmTMpGh28MQ9r3BSV45Z1Q+LvIxL5hPWdBfWq16oA1UCkSbrfP17I4meKM3O2Od7ZPvvvMek45yydqEKl8htLwUVmXWsv7ssdX2nGRpf6ABWezZBG1iFSSVXXxLNNvY4xUCzlGaknSDKiG3XsnM6acw5TK09sHxXyrOK2cJOvKbA2yqWCc1x2xLUJbrWZ+UgNxrbkQaUo1PoApMqoBIyG9q4zDIONBNPNri7BY241xd2Cq2rwuwsSKKZHWhEeGqlArwzDgcNJHxbaRaocGqhocIViM48iTbn6hzDcaq6fkLOe0iz6rRuuC4hiqrZQdbFe7/NKGkYNAlW0TlVJIRZiFzv/aC3nLrq4dWVNHaAakIbpVU9KKsKTEeqCacxZshpho+nTWRuSCtam7CIwbE8t8xrCSYsYPK+NyEMeVBNoy1nI4ygiOwVsGJ5OivZGMbZ4XbdbW3rak4yKSJS8XMSa1SL2nHPC2KuQbxbmQu0ZkzJmaV6rJVGNJaeOzlaQkpFJwuZKjJUfD0/0j1IozN3he9tetecWUKELHOIH9dABkzRm07mlrosSmGWkIbsIV+WwlR4wZcNUxOQNeYERHoaaoe6lgjDRCU5Kub4OxBVcygzVMwTG5Ay9vTkyDIc2Z8/Igey4LeUIciUwh6GvLKEqR92rkpqMY29EM+jOYUNdJLmI/StbMCdu1IltWd63j15hyZrfg5HuRfpOGe0FboHjXYUJxXJWK04xr6/8qRWofVTOXkpWVC7tqn7xfQc+55M1O7PrLnrMKa5VpybUW1VqVeyrOf2sdqloXN0bYkLWr0jTW7lanquqwmyBBzumqNtccV0Mm5HIb6q+x37/X8ZV2XHGZWWZRcC8546yl6lwfioOcWM5PXOaZeV0I3nbD7d1B8PJa8MDoA8E7nKRpAqM4JwYmRmqMQotWVpRpGDxoZ7sTfNjZDs63vhNTMrbXBqo+v2IR429d4DQduTkeOR5PMvoiATVLT5UzUAKME6UkmmbYqrpuUWswg3E6LZbOjAQZrglbpAeyOMdxpNWJhmFgXVdCCJxOJ1UFkefc39937Hr/Gq0Q21QHrmCERtDoj0XhGPr7t6NBMqbbkLozDht2/r7ek/fVw/r3+sZNQV0rAQSvqg9KgOnl5greypDGwUvtIueVy/mBTz76DsuaVQKMPgZkHEdiTjjv+eCDr/HDv+lb1JcvcCUy2cLkKpOpLHGmJKnJ1hhIq0hLuTxyeftGjUnlMI3EAfLlQFkfycsjZX3EpIvo/9VKXRfWMtPnwqFBTq0cDgfVDyzEMLA8OFLKfPzJd7HG8OrlS15MhpdHGYGT5gdYn4ABnEytbm0mcc3UOGKtaNqlnLXHyxDKDSV4jLWkecGMI5kVk44M7oipBZ8SZl0Uw7RYFwT2U6i6Jqi24Gri4Cp+Grg7Br7+6iWDrVxsJj8oO7a0OhI01m3TTbTWkpM2KnMNLb+f7NOIG1o/1RqP1T5IScw31inQIccvqqc+P97XOyVrvmz7ZBeI7R+TaiHYrXWnaUdi3n3/LyIz/XqONgS3cQAa3NrsweEwcThM4qwtAksbK+0OLVisGwOTnLvChnOu7xG3r10bgzeSZdoved7wFXdcTw/3xGVljZnhIIXs29ORN5+dGMeRUuHp4YHz5axDAJH6gjXcnG4IL+5wU+AwBoVJZBiiQCiC19YsU4PjcmFdkigCVIE57CDCk8s8C6butV4VgvT8KAUoI5CaKVmV3ovo7SEQnjNS27BaoS0pa5rdBE4rOGXG2Q0LBxVCtRnXYEqF0fYsvOaE9tg5XBv5pGNfgD7Cpb1Gez67DWcwmvm3nqpnEa5Wy+u+DN4eYyzGalSpsEzLgprBuK6DXTuw5vTepRNvhqITPzQu3ALiliEbLaw356tzo6wVOZx15fL4yOPbt7z97DOeHh84n2fWmPFh7EbteJhYo2QVl/s33BwnHt5+xnJ+4O3DI4+ff8L8+IbL/b1cJ2vBJJw6l/nhifnhc9Z1JcfIMgTi+Q2X+0852MS6LNITU1eW80yMkmFXHauDNX3sTi4F4qHXIpdF4K01rsyPDzgsb9ITv5QvsD7SRk/4slLXyJovKvXk8EbGx+T5kWplnI9DZMgMhroWchKZInIm5QuX9YnvxDO3L14BlnJZcHnta7WwSCSvZKVElhYPMgMCg5q48vH//J8EW8jrmce3b8hxoeZI8qbXlkREWOo1otTQ6t1GKeTCOm61o+frvcdQO9hbWIAoWcJQDaSSNdYsQkCprYKtS1rpgrYJRbOxRjFgvdOaoNt6thq83RylnptRUpin4lV2qmIwqsYvdHLkDmi7TmX7bO3T7ffu86MHiUZHxujeeV6fkxq2TCU4hSDN8oBrtHolahkjqkQpZbwyV6kQ18h0sl3H1RmjjOIN+f+yDhe+4o4rLjMpJubLrHUiT44r6+VJGnErLJcHlsuF9XJR/FdZZjVzcxioeVKnUbBK03Uam9uWGanTMUWKoSB1HlNa5LhQq6dWJym5UPdobD9yhiw1BXJCdPwENrAIgSNovU2gN3FswnCSTaTuCGOcGuYN9jDGikHZsR/3C3c/2fSLIsfWH9UWcXMQUuxuAwB3+LzR89E6XzOWcrRivOlGQQ6jPXaVUiymJmWa7ai+u3N7vvHa6zfHtGcVvu/YCuGbQnk7D2iSTwppoIFCBUoh5YX5fGY+P3E5P0ERAd4UV4YhSC2wJAgGU4TQ8zTP/Oqv/DdynHFGHPP8eE9ZzuTlSUbV2CD3qUqtKs5najxT40JeVmo05PmB+f4zXh6Eyp5zIZjEHC/kZdGJ0klkjpylpgg5Y0qhLAXrN4e2LDNrjJi0Apb16cJ35wcOTkaLWOsIQE6ZEit2CDgzKgW8kOJF6RiT1EPbfV0XdpVLSjUkDOeHN6TLGRcGsnYcmyKGv7VmSItBlmtKwbrK2Bp188on3/lVuX55Ic73sjdN7Y3WxlpqHUUOqlQlTCjBRPvy2po25nnPX3cVuk/aelDn2tfUti/266kNQxRCh2kWuLeAtOBQpLboe8ra5rh2e+8quFInKJVkmrKPxFoqpAv9fE3rzStat9s5rraH29EDOT1agNoQFpBgtdmJFvBWhSBDCAITV2kZ6cEhGkhWYbO6Wmkybg0Ba+N1nH6GDb43O7vw/R9facf1tZcvSDGxHo+8fP2KV69f8yM/+iO8+uADcim8efuWzz+bOY2Or738UMdDLCzLzHx+4OGNxZvC+rXXmNNRmGTW8OLmJHUdK7WKmymQXr5QJY1CTJmHp3NPrV/fTJ1plFIiLyup49UbtEdJOqDRSQ0kDDhrGILlMB04DAOjl6jfGynqy2JtDgAEGNqyKe/AYcnGEKzHGSOElGcbrv17NZXZXjOzYMvU9ni71Cf2DKsWOV2TLnogagxOR7u3oi1XxIsKSrfOpTAMIzc3t52xFZ+xup4zu9p57iPF98EnbbN0nF1DPTFm+vgscFUxoiYiKvWq85dWgrN88PoFQ/g/dZCi4XC6UfZp5hA8p9MJ6xzLuvLw+ATrmW//t1/k5esPmAx849WR0RcZOOkc67oQ40rOhcNN4IPbD0CNxHy5SFYVI7/4//l/c3M6cXNzw4vTDYdwIqaB+XyRuq7TsTB+JIRACAPzfBFF+BhJJG5CwNgBa2/7fc058/j5r5KGidPxxOl06vcls2DTKlB1Kdi4qIEVZmN5tk62o2UPjl/5+FcpWMJw4DCd+gy7Wo2q4GdtTpZhpOPtka/dHcnRsc4PfPKdb7NcHonLIy9vJ07TyDQGLpdZeg51YGcIIvG2LItE/N4TgpdMpDaE8nlgY/o6fd5AnFIkJxHjttaLM3KIfFWt5JpxGa01597bKdvSqCJIlf0hPQLSH7fLLlo9CNNUIA2by9nOMZV8fd5GnRX5Ck4XJuEWULSAbmMJPmfx0vdTCAJ1t33UWJitjDBNBw7TAW8dxUs2FUJQlZ5r7UWn7GxjHSWJiMM4jow6t3D/UYqWTbbhsN//8ZV2XP+vH/stYJDJr17GSNS8kJYzPgQ+eHXL6fijHHWOUi6Zh4cHHu4f+Pjj7zAMgdPosCWS5jN1nSUjSQsW8DhGL30vFRiHkVQyMSWCrayrQHlhGPqgv21e0o4BRCMKFMbBd9l/QQ0kezqEIA3CdSfOiXAFhLGkunm1XC3EqkJwpo3r0OirVnqxdosnFebsZdVtNbXNIMd7okGFAWr7u1Rqtyivsvu5bptZ37NHsHX70q4CcpZOe+ltqrvzakoJ21nujaU8fscU2z2mM7AoEtm3F7EGp8pFtRhssArJKqSjdaNUM94ZTscR71/xDR0x0rQIl8uFdZlJS+TVy5dM0wjG8vEn3+UyzyxrZPRVNDDtiLdZJyV7ltWT0oBBUILDNHYZq/l8Zl1W5vnCJ59+yuF45HQ68eL2rtey0pooRpiEtcik43GUuWzLooQRJdR473VunFWHGVmWlc8/+ZRxNNydAi9fHHTNFJZl2THQYHQeg1yz5gxKVbJPlXu8Xy7VCKmi1MIhwN1RWh2c9+TchhqKkkwbQmryQrCV6g3eW97EmfXywNPDGwZusDlBDizrLFJuYeB4ukGkiiqXy8y6JiUbyHoRB60Bl6p7OKviyXUz/IJgWUW25XNZZ0hWUAdbtrpXJlOT1hMpOONlJ9TduqPFcEaJi5uDKrtsT2Ko1jxj2Fv2euXktsO0fQg6vVufVg3LGrfnN+d4tae334vDuC457IdE5rwxfuV6ZnWOzxQwVHkoZyG0rEFG9kggoXPdlMzWQk8DqoHaGtK/3PGVdlxf/9prhmEQZ5GT0ImdoeYVGyzTdOTF3YnDdOB4PEok4S2jN8T1CWcM4zDgTCGvCxmJ3pbLI9ZYquKzLZIxxQrdnsxgK24QnHmcpIBZctYZRGm36PaGuAgBxFmCV1ixiHBtcE45HTvqaN2l1juKrWyMqrBi7c8pCk9lZUL1GWDvRHRoxGdolJHtbBtMorCGVdkpI6To7riM2W3Dzcd1x9U381b8bjBH7xepAuHllFmWhSZEvO+3eR4t739ur/PcoV0XxpWS3GDO3fM2mAitY+gvDdKLYq0OzRw4HGTEjdfG78uT43K2RL9wnALTNDCMIyktPD05Hh6fGJyR3qngSTGoWofBYikhYK3hMA7cHA89218PgXVdmecRU5NMIT4cuDmOoqFYKzVnbY3IxJiYl8jgK8FV7OiYBoGtnPdCRLFy35bZEqNjCYb4FBhGz2nyHA9eDHOBmiCp5I/FUP0GBXejXBoKYDR5aNCXZLgxCCPvMBhOg8EF6flKppAVPTdWivTUwjxfNO8QqacxOFbvWH0L5JJAy7rQ+hwqDcma4HHVPqzG6CtZ9opzVdm+W42laL9k25e2TybWjEyzgmqkyRgaCt+CP4UVLdLsL2HFlg3t95o6+y7G3dZyhT1Bti/FuttHbI+vNDa6/lXrZR2C279l/7lB5O/bR+06tsdtfzPG6fUy2oLzHpZmrdo3mkhtD1vXiUamXj+2ka9ajfw3LDnjNI18+MEH3L64I6aVZV35/O09S5oxZcUzcnc6kXPk7ecfA0pCMIUPXt7grRdmmLOk5UKMK+enRz756DvI8MURoMMjzoUeDVlgmEaGYDkGIHhAqOzGiUMz1vW+BwOy40uL8hC4SOGJwQu2bbLg/3V/a7QFqbSx7i1Sas6sQXtajE41UVPbeBWH2yVY+ubNeUB3RrU7H2l1FQdSW4cyGNtlRfdHd38dLayY1lNCFgepmV9Bqbf62Aosa+R8WTgcZM7UMAwd6tjX5d4HGz6HQ2DvuFrE107UYHDduFUrAsWCF0KsWuuyFkrFO4MxHu8C0xRkuoAxQMbUiK2Jw+SJ8yNlPVNvbnl5e+Q4BcZRsnRnJdAZvWFdZ+KcMd4whCAwmc+YushcuAzBgZ8c03BgGr6hI0rEQBcVZK4kUU0oiRxn4vxInGF+cgyjZwyDQogVaqSmSsoJcpZROsHw4ddeEkJgmkYGLyLNuUSoC62zKDiH8U4ljnZqE6Uimi7sAgw1gtUQXkzUagnjwOALhpWaIzmuMg6lqsKCBm9lPTOXhLWVIRi+9QNfZ3555Onxhrg8CbQeHKfxgPcH/DBxc3vXC//GOFLMnckmLLmtn8j7cMVArJWrnqzG9pOmWXEGTTlH1Kys7nkDxmGr0NDjkqi5OSOBB7dkZ8Mm5KcKZqsvtzVmFTakwYmatbpeadela1UZo4tYmO152hS/ezQNit++385EoDuhv3s/ANLjaa3v6yzGLH2lVuaBpdr0ELdRS85Yck3EJDyDNRfG8dAnxbexKFYztFoLGNfCjWdQ8/d3fKUdV1yeOD86jElYL+y7m+PAEAX7jfMjn338JOyYJI21Ah04bg4jh/FA8FKcXFLElkSwcHd7wiJCl/tZOCFYlaqRpuXD6QTGsJ4fdYELLOGCBytFYqPRbgvxW28DzuKq9ng0Bn3J5BSZLxeyazqAZsuqqjCvAJrEtoguKJOJRrhvUaJuBM2eWutLc2jeyvyx3sjYN5uR99FoUpiYTij/LQOE3sjc8JnNeenGrM1Xa2SrEWabFB1zJsVNwb/BVCmlKzp+x/PVgbXicnNq72ON1Z2DL3WLpEuBdU2YmDE2YsxKI3FkKiGELlMzz4tcQ5+5KHstV5Hdmi8XSsq8evGKx/t7LvPMmjOH44FUCjmvrCkJtBiEju+83A/n0cGjmbgm4nLuqcwWUBsZGKhkg6rCpSnFKzgPKsFbvRbSZ0ZJpGipl9rVOqqR5ndnLcF7zCRbP8eF+1knIKck876UKUo21ChQblpXYdWpwdoL2/aIXnUTD4cbnAsYZmpcdbRJ1blh+lGNoSR5n2k0xDVjDQzjyIvbW0q5Y11f8fT4FmfBe8s0HliTzAxbl8h8WXZro7CuicfHc+9BBCOZsstX1PZS6BJrW/3VYIzUt4opOqnYSMbVmpVN3ViFBgY/6v5CCDcK39ldo66poiJTahXhA4z0R5UitsTIfuupmES4vWeytHVdFAXYZWctyyy58PjwREtpBOXQnrsq9qDtSyh4L4M2Y1owOIGfU2QcDqpOUrh/+4AfzkzHmR+8e02O0iebWx9brb3OGGPqdTLvvQyovbnl9vaW4+kGO45gW115E+9tI6e+zPGVdlxjcFAS58e3nZZaMeScyLWQtJGuFJlhNC8XjIroWm6wORM1olgus9KKk7CYQCi460qroxgv4+ZNMZSaSas4h7SmntQbwKxO1dtVo63Xi2Q9O2ORQkszVrI5ShL68xlh2FlrCINv+0QiHSsbwzQoUSHBUjJZ4QR67Qx53e5QRBOxap5lnO0sL3FcRT+FeKwK0rBLlc3borbmO1tIKPk/Lffa+rG6T9sMhDYA55LEaK9RHTosy8K6rlwuF80YfGeJtcg459yd2j4bgx1kxd5xSTN1G01hetSL3K9et0PU1F2Df0dxHFZ0GE1WmZ2aGURgA+utOiSnKiP06wlVm2CbMKvAhCBTcBsrk6ZK3qGU7V6JsHGVe1GTGqNr6SCjYsnyeT3WKU3C6FpogqcGHYOh5xScBDy5kFOklAQUvNsU/tHeMGsrIThVmrGdLWZaYNQg2wqUwjQ6ZZ/Rg5xSG2FgD2PJ5wjDyOIFuB4Gh/NWxsuYgcJRpKickcnG3pFT5fw0k5KO3jBW11lhXWPvW7TWMo5Nc7EQSZTduVZNdnqPoBEbsqdL1F0AKPdtu57iFzSb2GU7tcFtNFywObu6PbGRLRQWr3uCkZEMtpr9UwTx6MVEY9puZ4P+muSS2ZI+LQlsEld76r7txLFW6xLH6vo1rbt6WC2bhJWBDgU2CHd/c1vw57zra73ZhGZDfsNmXC9uT5Sc+Oyz7xKzaNFJtmN7JNQkUEotPLy9l1k7FebzDcGLU7hcLsRFDKh1hg9evRali7jy+Pi4pb12k/hPKXJ+lKGP3g/SnFk2rTFRHnfYIHCkbQK0SHFSGFBB12CFXIlLkRlZD9s01eNx6lmaa4xA05TMffcQuRbtbjfaV1J7pLaH01p2A5CHTQrmub5ZO6QbXiASdo2EnQrSfraNPSV9UFuRt2hDa1NLQGaBJWHOxWUVvchx4OnpSZuqI845DoeDqqRLHVPo3QIp9nPTz7LvTwE2+FQzOO+HK6hx//iqj28RuPOO080N1jmZWRQstUi9xZIZgmFwg0BOOQlkPI6i16iThJ1zIouk8BXWKONNdPxyjAgr09MQSAuktG5sTudl3loplJU+4HOapm7D5LMKTOad03qQ1qjsNrbFGIUDVSLMGq/3RXoJZdKtnKvTFodcYu/vOxwOV025zrmrnsHSYNla8I11WqDVUYy1qjQjE6Rb0GGM4Xg8Mq+D1CLJxBwpJZLyih+8CjhLpjwNB4bguZwjpUiPWJPDK0X71pSo0Ns79DM3aLDd/wYhGiPiwE5HrXS64O54X801xkiD3BvUZ7QO8L4pBlYhvuean/Kc59Brq0FvGW17nlDyt3VujTQMi7DK+5zBRu+X85BA0K9e92nBZ880TVcN3VhLGMX+VF2Hqw4dNRj8ri+rBdc5JRmw29ElLUs0IepdwPMbto/r5d1JOvRNYU1CpU4lM68La4wscSYmUZ8IYWAaLTXIYEcnKRWmikTPIRxwzjEOgcF7wXmrZRgU43eewxAQDLhSk0RxFoMzmVKj1CCSNCXXbKjWYRgl1tAxJEZT+VwyNemoDIuOHJG4JMe1U8LX0wmgOy8fPN46aZb1g8A2xpAN4risobp95rEZ+FoKaQePNMX82iJGjdDaqA86tGhAiR8d6thF3luJd4tOc8mtNKf9PnbL9IzFWA+mqEHTr103fnNSzfE0Qxdj7PBU+1s79vWv1p6Qs4y2H8LUg4WuYO0dPoTuhIVoXFrEg7EZaxzBGYZRIOVq4ObmCMhcrPu3Fw7HG4IPnRKfS2E4olE1qCQ/rRYoUL8ohVgjEGILaoyXhs5cCmHQ5uYYIRoZGeIsU6sBItdpXef+2UramreH0RN86GKol8uFvMjaOh4O0rQ+DAyHod9X55zWMenZvNQmdKRMN4IFlYLsTqsqetAnNjV5I50d531QVEQU80uVNRYGQzaelCopJp7mJ2JaiHFhGJRKXQpPDxfGMGOr5/7tmXm+dOagMULyiVEGIoqhL7x980BKQphalrUbVO8dwzBJw7V3opo/BPwQpNewrXGnNZoeJOzaMTTnaYEPVZyTw27ZkcJzRtXz9w3z2/cWdDBpe6NGJCr7NMUgkP0uajGqWxhjVBKV6V/9dTq6sL1+y7zkq0HwEmQ75xjHSaatD6KugwbOrQVBDEslrZFlnpkvZ+nlywWsk2RgXSkxUlMSboAVBAoHtl4LGH+/x1facU2HA6ZmlnXBZ6+qFgW3OPy6wlypLLTBdtKzIOw4q5FYLVKsbCM6vPc0uo/zRjeOptctG6bivNxEo4uvFNvsXd+wdCZWoeh8LFSYs1T1BbopgsrntExRUvzaHU3LbkopZOcpTthUxQobrVqZo9MYX72mozBi01gsWZXakWGGDZaCJoppNmOjDZGNZWR0SKGe3rZBOkpQtm3hLFZ0XqWMr42bFM1GtE8uOqHFeu84HU/SctDgiL7BZSZSCJ5xHLrjygrlbdRmefdSmmICgNQ0rXO4Bj1qxuDUmHZHaEAcujjSBp5UbfYUSAdxBNq3M06TGDvjiFnYrdWIk2nXpNSqwVDS5nIxlM3sVQpZs2bpcRFYKKkqt3WOMI3dEcosUFUP8Y7Jnzoc2WoIkoUjvVjKujPW4YbAaDaDK6NO1Azo2ku63rBW153txgt9Xu54mzou/U/EdOtm0gsKgxZKVejcOn0tyVbmdRGH38byGHpAk/Wz1FKIpUCMSo6oYgz13mEs1v/f5P1LrK1bltcH/ubre6y19t7nce+NGxH5zsQ2KgGqgiqLUjVsp2UyafHoILlhGwla0KGBBD0EEg3cMTSgZ9Gwu264g+USQu4gyyAhSyWsIpMkk4yIG/dxztl7r8f3ffNVjTHmXOuciCyIC7Z8lV9oxz1nn7XXXmt9c84xxn/8x//vGZ1nqKO+Spn5QhGBth6M9vl8GLsen+y1Qt5ih4tds0ZqYrr1Cou+v94a7FgppY0OtL2jiV+Rz6zWRtFv90QJUPp9GsTfNf3eh9REwUPfB7SyFmeVt6HBqxpofne2SbXJJu8th/bec5bAGpTU47xnmhIuBHwYMFUMLK21gnZU1WGMibRGSsrEbSPlig8DXqWhrr1Q01sKtV5D59cHCr/hgWsYA6Y6wjjgERYXzhK2gWVdMN6Cs53SPo9jh+1yysRNbEAoVQ4za8WVtSSMtXg8k5kAaGZ4pUia7N3AtNthjWi4YSymZLhhMwlkZ3sQylWm+zEovV0bqNZivdxoZy0meHB6IBsFLmrFlkpCN0U1GJs1v2363fr4eu1x1D5IXG+GgeXqPlBGpZusCqraq4dOy7KtC8KqrIZKU6i+gWJLpdYrUSIo3VsMAa+wlq1Qq++N3OAdBhFGHoexU2RbdSUqBKl7kLUhyeY5JYr2V2HR/l7bYW0ESgnDoEO6ocNnzrl+sNVaRY2/+YuFIFWqsRRj3qMe54IOmMO43wMygnBZV7aUsE4OxlxyZwKOdqYWSRaE+i5GnbVmYtLkQr3apGg1xJTkcHGOaRg0Mcui3F90QH4MzPMsUE5OGFMxCgenXGSQFTqE5eyIDxPLpUkx3fTDEMPKNo7h1eXZNLIGtwd3VphMYWZdo6a2PinQGJ16uBrHNcv3nmb2uGzS2xQhZOm9OiNyRqmkrsNYjCEWVbFxDhcCxopyvLVXWNa6W3UH8VwrRQbAjZHfH7wHJz5z4rQgmp8lbnhvCUF6hhK0NQDdQOo9cGniV4qsM6MQvbsJDLdQvQh7XysulMDVCBrXhNBdK7mb/9qGhMiupFYR8K1eEAuLxdUKWBX5Rs+IazDsUJ33eNN88mR8wnkJXOM44YcBFwRObG2KaZqkFRAzq6re55TZVHpvnvfYwXQ0xrmbJEVWgexTWkf9613f6MD1W9//bXbzBI3Fo1DHdLhj2B+YX7zkflvV0Eze6jiMeD9IhpDEr8kZ0WyzVswVjZUDpeg8VC1KvTANRDFCVjBSXg/DqMrRyhLrHjy3mVKl1sQ8T+phVAQqclYznEmClkIereoQOE83Sy79+6WUbgBpasEUQ0blpqwetMjmEAhRew3aKK4VasrEnLDG8PrlC/29kdPxwmFvcbaSkfkMOXC8bBYj2XXTx8vatI1Z7TlKZhhGIQEozt0OuqaEfW3yC8FkiVFZSp5hCGChkMlVLRiMKBfELfbeiLWOMHhSVIh4WSSgG4sPI8O4I6XM47sjW97Y7wOH+zthQqWNZVs4q8pJpTJOA2MIDOPE/uFeeiUGtmx4fvvU56I+f/OM08zU+8Sbt+8opfLRRx+x1ULZEmVdWZZFIanA9jaiY09K2LBKlLCSsRdLwfVKyhhDMSrgTOLl/iUlJ0zxDMPE8/Mzphq8CTyfN60iA9mgtEX5HU3NZVlXxNm3ZeCejGjMmZoZJlHfyMtKMVJ17u7uOJ1O1FrFjsf0Oo1STPeEije2G9JXzQouiEErIH5R6ypBgCaQK5VALonWB8Oo2WuBLVe2KGzOSsWMM3mFagzDPBL2onCzXBa25SJIiPMMg5f9GBMpFV27ljAEqIZcKscYuTwd2WJi2yJR4fkUNyTGt37e1US1lIyjfd+yrpv4kDnPEIb3Kv6KQpLO44Pch3XbcMF3puiHmpy9h2WuvURhpDpKyZ3CXzWxcVZEDErN5LQyzqMkgy5IBZuzSC95GenwzksVGwVeH6ZRSDRFDDyd8QzjoIoXI9WIss3T05G7+3sO+z0fvXotLYcYWS4Lox95fvuOLz/7IT6MOONYllVk0mpV4eIKbTzIO9aUtQr+XQoVRoVdxlkn/xHk3Vhx5x2c467ZMlgpiYdhwLvAuq2il6ZlcIxRZ7cCflCdrppFw61BAzfDeo25Y51jGEbdJFkVNG4o2rStLsEweKceNUU3t8Bg3g9d/Tqngs9JZyasBoNCMeKf1RKV29mpSsFp1iVp281EvjG0/lMbGgXIMWG1H4D15CIOvdLA10ADeCckEPFEEmZdKZmUEykXzYjlS3ohhmU9A1f48cqDLv37Ti3ESynkGDFGKrVtk2UpE/gRqPigsye5EFOU4OQEumyDuNIsN/o9yS1TyqzxqsoRBukFpSwkAO8dTSQ1DKLwYJzAWcZrg9k7bCkCnQwDuUql5oM4Hs+bdPN2+zuGIvc/5UwYRj3YJCEJgwS7a+551VxsIwJteLOxCot+Xj6MEpCAwQesF/frIQRyaexHKxYrHaJCB3Ezftx0EFt7M+VmfdYsr815YhByiHWW3eEghApE77J20kKlsXVLycSkHlVawaXY4CuLNx6qoeZKiUJcoXIleFh7XaLaO0sliUJNScS0qlJFhWrFebqIlJKo1GzEnGAzbDkTTyfWddU1XoXAZOj9wJgyMWWWNXJZVu2Jpe7XZlXQ9rYXRZWu3RU21+BiWiJ4IylWq5JMNPlAYHwwHaaWfqbpn3/bw139xiCznE1IG3FGTzrsW7Xyr6bIl54tKSoBysoekcClYgSukF3COkeK4grdAmAp4sxusazbxrqueB90lETcut+9ecvleCKuG/t5lqTTWD2PJJDVCut6oVDZtpWUW9Lx/tXmRXsZ/zWub3TgEuaVZZwmMNIW3lKUwOU9wzQzTlOHn2JMChV5rA/dUyoEsZmwVprwYfRAo18n+gBr79CiEFibZRiV9ZZ1VuUKwb0/W5RVf1AGsJpakcAH18E85wq5CLxhqyHlJIHCOmxtB5PTmQuBKXJNuNAGKGVltF5J/3O1HeenVmooyrIUJl3r0XXKb2vyh+HaI1MoTnD5loFrdmltJ5ukSzOrawG29SqyfoT6GurV4bk9VxNCjnEjNfjL3vT4mt8P9KzVmObiihyUVWjQorVoKFEC7Rq3Dj1lKqNSdn0I7HY7jJPepQ+OYpu2Y6AicOMwDBgbOl3fD5P0NTHs9weSVp/rtjFP5nooA9Msw9WianLtXULrRQprqyjU58OVtCK6i0J3HoYR54X04zA64q3kHT2MDJClsSJ932GSGZx8HSvwCq2VKlCQKI4HssKQYZypKlLrm9JLRxKufx6yDvLqWkxRTmJvHd5q4CpAlF4rtfZA27Qz+wlOJSPjLLkUtrx1iaVawTFgcNRcxPFhsWzbhh8CKUayJjDXsYbQ170YeQp0m4t+/hYdWzHS475RYrdGqlPKVbqoVWPOOUkgFPITeJIeuECTMyXNYOR+GK/AvlbURhkuxQipwxgDzlC1KrFeCF2mSMD05kqdd0ZsRCsVYz1+EHjfGdmDJcvIg8C+WuW5IHNmRsW3u8uEhlKFTuu2SVJaxB1iuVxYlwVqIdiP2E2z6BBaq6NDmWyMEDKAdd0k6dffX2/CV4OS69ePW9/swLUpPFeVoSKIWO0MpmGYGMdZGtpFjOusC1jnCb5ig5TK0zSplYdhGAKlbjTlhVuWjjGWJsPUMniBrHw/DBrd3HBlDDUCgxz27YAuNPHcemOMJ5ksoL498zCT0qaQj1CXm2aezA0hw9ZxI6aosJde5kbtgCtxA2TzvXx4IYdkzuS4QSkk7zG7iXkU9lBJmd1u937PSwNUrQIxpFZ9Jc2wqg45tsCtm14cYZuD7FUSpuRE3NZr30tp5MImzML40p5ZKc3S3HU6sxKrtLcl/40xEjfp82wxsa6RYRy4u7+XKkvahBwOBwlAwTPvZtZtAwP7/Z5SkbUShKrvw8AwjOSshB7nscZxd7inIp5uS9xYloV12Zh283vMx21JxFU+r6s1u+1KBsYYTJUZm5Irl21jf9gzDZP2Y2XNrUky51wK52UhjEOXBHNB9PNqqaSShd9njSRq1ZJyZFsjW9zYzRO7aeyZeUlS1ZQoVfWFrQfYtcqs13Vs4n1x47buZR8FrBF6famuB25t7srNypaSkZlDVUlBVVqcGXBaMQYmSpVKP+WKs4Hgpa/3/PTM5XTCGnj18gVOYWlK0vEAzzgMV23MpEPvWRNSTf2b35jR0se0atSY96D6W0Fn58R09vYzKLU2Xajew5K15cg1s6WtkyMMbb5SURPDDTHKqqGstEBqRzWkrWFV4cMiosVobzZ3/m7ri8tXKqUTJVwIWiMa6f9rsr3FpMQa+f05RtYtElMGa3j79i0piibm69cvudvfMY0zl/O5q5UMw0BMkfO68vz8zLqualfUcKerYEE1/wZRi2944Ho+nfHeE7PAOJI5WYz3mHXl+Xx57/HbFglh6FIxg5fM+bDbkVNRHNyT0gWQbMw5YRxapfRSBfVqQaot/Fs1dSEKNI2328BliOuZUpvyc6s6bhrcpmrQA4zhdFoluCg002jLjfTRptBzTj1zbDMg6mtPqxRbsYX+vufTkRwTOYnD7+V8wtbKYZ7BGlKMXC4ncon9UApe512c6zTrrDT7VCKNaj8Mo37qlaKSQyUnkvYWSyk9+68lU7LANdLjGpimobPjnDdKqjHIzJLvJI0YG1TDTQArrOvGukZiTGzq3BsGRwiOcRykoY5UjilHckmUmrFOZnpaxg3SZ/rqzduu/LAsy5XE4rSCKgLJnc5nTucT7x4fefniJTFF1mXta4BGOMiSg1qtoLz3hMFLU16Fltd14fXr19zd33E6nQU6VeV45x0xJk7HI4e7uz7qMAyDJENavbW+3LzbCTMvJS6XMyVn9vs99/f3nM8nqVY0eWvzTqJxePW/kqqqaNVc+zp0OhckZJkkTspGxItt63HVClGDXkHX+FV9obbhWSuMXZ3Up5obSDJLQjRPO77z3e9wOR05HY+8+fJLXr54wWG/Y7ffEy/i3LAsC2++WoWdmQspFWWFWpz1Ags38ehaO/xVlXmLogi3w+yyp7Vvq/Jt3EB/7ZJq0kFNlOok8PbApQy/fnhLDVLa3w2kden/1slewBCCQNrOUYBYssDK1hAVZqYKwcWoOn1TmrfGXvU2dcA5K0waU8Zq3x5jWJeFVfu/0yzOGcEHXr14yd3hThKCHDk+P/N8fOZ8PuKGQK6GLSWWRbzjcingnPjulQZtQgdsvub1jQ5cb98+kmLkeL7gh4ALXg4d56lIcNm2jaaSvm1qK+JlHmsIA+MwcNjtdShTAld8L3A5nPW9wdsqLjmIW/bZFChqn32hZ3M3Q7sG1stZmuT2ejA2ZlMLLH3RG24yXK7Nb1CMm5tNVfFBeka9p6WwUZuy6rNa+l/nHDlGOQzXCzklxsEzBod1sG0Lp/Mz63LuRIzQKeUqZ9V+P4gkjrlCjTKzVMhRejcpRdK6iXp5ymK/kpV5lxOlpG61kPLc97X0ADftB0mf0upnJN9rn6O5Bq5lY1lWYkysMRHCyFwnnJMRh1LFadaYKrBRqdRNFNwF9hFdtTZT9tVXbzgeT1wuC4+PTwKXYhnGWZMZCZan05HT+czj0xOvX3/Etm2cz+frvTBQatKWnwTOYRgJw8A4jQx+0P6UkBROp5X7+zvevXvkcjmzrpuSPjwxbjw9P/Nw/yDvJybGUQJ+yUKqCWFgGAce7u8xRvpC58sZbx273Y7D4Ym3b9/2fqL3Xuw9iow2lKrsxSF05mhjcLYxhR7UisguOVXal15wU2AokK4VRmMqWtsqntr3XINIBfeU+1NyZssJ74NWw5W4yvzQ2zdvmKeJeZpwzrEhw8GX85nLWeaJYkpsqwQO6zxDGBX2bWo7WUZirL2KMqPzlTeBiwYhGttVW4wGrgZfmxsY1DmH0V5lVMm5H5210o3fr/fZiy1wWWsYx4lxHLoSflR5K+sMa4wi2p2rQIzag8v1Rl/QDf3cKVSF80o//9rLWC4XlnUjl8rL19IT9cEyzxPDIBDpGqP4vW1rD5q1ClU+qjzZVchYxjz6Wcb75LWf9PpGB67/7Z/+b4zTSBgHocR7T5hGqjbll2Xh+XRkVYZXToLXDsPQe1tSce2JyrQJwQECTTRY6trjkkyxfd5tcQkR4BpEGmW4XdfgBWndtI91HcC7PfyB96SOrG+ah1cWTleEKFcG2u3z6G/9YHOYH1ko0+DJUSAgB9wf9rx6+YD9+Z/jsN9xPj3z5eefE9VwrpnO9ffYfpNzDNPI7iDO0yF4trj0Ki1t+dp/WDe1MMnkGNUKJrJtK7lErbYmcjm897k5rzNM5Rq4WoutBSx5n8LS21bR9Nti5LKuPNy/5HA3EwYYJ0euBpm7LFDkftecKJs0wr3O+eRSuVxW/vmv/zq//b3v84MffMZv/8vvsyyyqfeHF3gnn4uoui9s2uD++OOPuSwLT89PHQYVejB9sDdnqSCHcWDe7zjM+07J3+/3/PDzt4zjyPe///0Ov2zbxjgKk/X5+ZnD4dAhyWEY+p/XdWUcR+Z55qOPPpJ+VhFNyJcPLxiGgPOW3/qt3+KkpIZxHHXdX2fkQJKHdqC2wOWcCOW2Kq+UwrZGkWbSpj9ZCCI1ly5IoSldv7+yltrhDNYLqoC7kipyzqxpxVjY7Wb+3X/3XzCG63Dy/eHAMAR288T5dOJ4fOZyORO8J6WVy+nM4+OjVB/aHhgGESNIST4Tq4GnMXd1F/3I3mr9xHVd+15yXJUwbhUx+syhkprojNLrV7tuz48PRaYb9Ljb7YRg5r0m49LW8GFgU2i95iIBWqn/rackosGey0m0KTOVmtTfy1gG53tCvJ4vXNYFrOUXf8+/xzhP3B3u8N4KQSsLGrNtKzmnfsY4pPcWt4W0iYg4P0LP0N78rZ/fT3h9owPXZ59/wbybmHc7ZYIZCjIrIwy/jUXtqa2T2a1ijCi+5YxbV5x1nC+LSD4hgWu3mwWa2FaOpxNbM+bLjRhxXaRN7+22KmoVkHxD+1wKq5iSe4PX6iEGzRkWqbiaPh9wWZc+m+KcpxhdzElYRnDF4hsZQr7XJGe0/G+V1g1RoqREzhvOwMv7e+x3PuXuMFMphMEx5pHdfmYRC1tK2vpGLFWEi4v2Adf1TIwLfpA+kLfSgym5ENeNpJBkF9VtvTXteQnxIqsUlCElcecV6LOQi9H+X6Lp0wGdzSZV7lVmJ6XSRWOlghAZoZwT63ZRooZQ8LMOaFvrCLZ1zAthCIQmWWSElbqtkctl4Xi6sG6Jt+8uQpZwvmeszg28eHFgf/cANrDGzBI3jPMY77rYa6vmvJeqaNrtme/uCd4zeM+3Pv02hsq6bVwuhfOSiLEQ/I5x3hHGgjET1gvb0tiCGzxW/5yrIwwzYZwZpgO7ea/vI/JTP/3T1FoEHnZfYF2WgGECzgthYR4nCkLg2dZVpYxE+T8XkQQyxmHcKJ9SKZQSmcYJa6wSNQSZyKmIGglXRl47tKUPItWnUTi1Gl1jeSNGgThjjGAEEv3N3/qXvHi45+H+jk8//piXL1+y3+2wKl/1cH/Hw/2B4DyPIRCcZbkcqUsSd/S0qdedMPhyXLBqxtnEqxvpR0fnaS4RxgiSOQVVnqGqCoq8BxGYL736SFm0TKuR4F2MlR6PczcahddzoxQZtm7iAdIjlfMjbxft9zpySrKujGG3vxO0Qavt3Kpio04Veg40Vqkx4ArUGxmpIbi+f8w0CD3fGhFb8BavCr8li5ar9567uz3393fc398xzyMtPxFFl1XWjTKU0fvrdOa03FYEP+H1jQ5cMrwnUkrS70GJApoZVsAI7GCdOLDKDIW7/nsRSaCUtZx2gn8bLNmKAGopkHIV5W3tVUnfS1WOY+6wVkU3QwtEVURNu0htVY3mWnHKxqv2SpqgGnKz/aiifmBr+3eBNQpQTO1mcpWmmiBsIkmxjGZaV0ZPvYEJa9FsLUfwApHOu5l5NzOMgWEasQZyPBCcEQiiCJYOQoDYVD+w1OZDJEO00RjcMArEoj2sqlm8vP8blXwr0kvOjlwWOXTCILMkzjYZqHLDoLRM03hz6ElwlADW+kitygVjDbkWhkGa5FfhWmkWt16htW1tNLJBumGRGZwPTOPEfn/g1atXjNPKsiUuS8J77VGFQSSZxomHhxfs7w4cT0f8NHNZl04BdzcW6TllfJD3u7/bsz/cCdvPOz79zk+zLgvH4zOHh5dUJazs5j3TLD3EeJdIVYkbueKC1WHkwhoXpnFmN8+8/Og1d/s7zeQL3/mpnyHGjcd373jx8i3jvCemDW+dqJ04x2G37yzJbVlUx08WUswymuGdY5gnqUy0AhgHUaipuQpVPulQfla5r9veL3LI2Rv9WFESESX+dVuUeLQR44KhiESWFSboNE08PDx04eVlWYhpE3ki55ingW0eiXFknkRRo9ZKCEICEoIMlCLD8MFJb62Y2hPJ9t7KFaXHGFHbr6p2QidugHe6/6o6ElXpB/qgfVtNVmVguVHgm5BtczNwHWJNWckjRsd1tDeXTCEXgcznaZRzrdbeImlBaghj/6yzKtZgVEyhokLNro+cUGX/BC+6r+MgXnLGyL7IOSnpq+q4R9vDkoxEL2hVc/KmtUHqFVZt/euve32jA9fDw0v2+x3DPGlG1EgCpZMWbincjdrpvZcbq81WsZl3nQ6/P9xrGT5TsYRhYdyafqAsvLbxWlZ5i1vXam56U1fYQHpKN2W1c52hZ9pugC6WWw1MtWrFJQKr5kYVIJZrqe2UJCIit9AUyuEKaQokI03SUjLLMUBNTIPnu9/9Dt/9qe/w8UevuLs/cNjvqPPANFjWux01Z6pStFG4dEuRZVlFkTtqY1hJCIN3IiVTq1i0FBlEdBiKaBZRizStx3HgcNhzOk2diXX/cMA5UV8HVORceiy73aFXLX0MQanW175AJWpgHdeBw92O/X5inLyI0ZpCNULUQMks3nuSJofi73bBWk8thmmaePnyFc4NvH79CTEV1pj54VePYITlOU0z1hru7u759NPv4IfA8/Mz796947xceqXuFOZpUFAII+MkgWucZkmgrOHnf/H38Pz0xLt3b8GNHI/P5FK4299JdSQhgMt6VvkyeuAqRUgn4zAxTROvXr/k/vAgA63O8N3vfpfL5cyXX37BGtGqQKqiUkUk+v5w1zVAc0xCt9Z1um2bZvMyjiIKK9Jbcnr4ieht0lmySsnt4Hof3hYiSFOut+QqLNWYIst6ZosrKW2kuOJsxpoCNfHq5QtevXzBR598jPOebVs5LhdKWhlCgHEgHGamMZDmiYeHA9MkbNnmz9WEecfBt4ksLFZZw/S+lfS2r9CptYZJYdmcs8yE6vvyLcAjxUZKlWEcONzt2XJjZpbr899Aiu35m6jxh+SMpvxijJBo1mXDOs/LV6/xYaTqnjidTp25Os/7nui1gHaLCrWz6BYJiJvcA4xlP89dDi3GlW1bxIur9/mLynGKBmkI0tNeW8UVo2oxytgAGErifaPJn/D6RgeuMM8Y70m5aaUBxuODUE1zLeSYhWRhwJSCH0T2qRrNtoyIljJL6TvPEzHqwG+1jNMeHybN6BO5ZqV1K0W1VHJI3R7dYK9NyAotcFm9acEPvZLwXiFAr8oeikFUjFZTRjXb5L/WeVxo9hxGYcPayzzvvMz7cO2htPkTofSK2KipUgFdjs/UIoHr53/hF/jOpx9zt98BEOPas9tpCgQ3qZq+zo3lzHkFSsY7GAavgqVi1T4OUx8MXi6r9NJ0uJlyy6QshODZ7SZhXalqg/cO7/Wzc2Lp3qra3W7XN6IMHieiF0v6kqsSHxQSKtK7SmljiytxWzGjkDLC4NgfZk0epNKu1Wpfa5NmvknUIsy3ly9f8urVRxz2L3BhoBjL2+eVJUZKAe8CW9q4u7vnZ37mZ0i18vx85PHxkcuycLlcWDeB3JpKe0wRr+zWeZ6oRticKRfsuMPvKnO1/NT+gdPpREqJ4D3niwTCYRgYmj9XEf+udtVaCFrN3T88cHd3xzAEvHeMh3siFj9dePGtT8U0MHii2oJUKrt5x7Jc+iBp6y0aDVwgFdQ0TzgVic0xM3iBpkoViLBoJUHRXmRtslGa3JmqTFEJhLUHro3LcpJh2hSpaWNbn8lpwZvMq5cvub+TJOZ8Oum9jow65F9y5PHxLdu6UPLGNAaxQsLoASqsus0USpbB7uA92+Z0AFjIGF3aqdFWFS0Yx1HZimLPY0wLXNLLNNLMJFUh/ez2O9a4dqeDnJM8vzIVG6EKYBpc72nfshcHFYkGg7ciXW2tZwyeaSfydCln0rYQkdGawTeVDkhU5t0O73xnMreEyhjbJeKik7ENrJWqNSdNIkuvOKmVlDZqzThvuLvbkwqsyrhuaymlJESbf4vXNztwDQPjNFG0FK8YchXNLRlGTqKC0ewWvCgtGGAIY6ezj8PQsw4fArkmvJFNejkfMSaRS8G7UTZRyVKBKE6bNIu21mGxRGXoWMWyi/bGdrsdzsrM0DAOYifgPWEMGFp0FehPu6lY63GDTtw7T3cjhqs9VjVQxMHVtUFC7Wu1PkrrJ+Uce+CqOWFKYp4G9vud0s0FMs054cxVw1BsXaxQbxWr9lEqIlMMzjXbDq1cgyciM1rBWbwZKC5zOp3xOlawlSySOKrMMYRBD7Er5djaxuIyPSu/KU5FXNQaijU6xW96b6L1S+DaN2zU4YZNlSJab1cs45qFFrRfkBK1tqa6WJOjQ+y7/QGbklT5GWFdjiPZiHcAzmN8oLqIHQaCFQmusiWsk2CAkTkrO0zCEnOCD8dawTncMBBLoVpLtZZiLU5/DucIOoeYc2YYR2FrlsKkw/fOe2wIonOZMrEU1pQpxuLHCT9Osk4q2GGQwdYikmJunLBVKnTrrxVXsL4feF5JO7LgLEaFi22tVHtNVCRwXdPs3o+19L4LzmBNwJVEjgbiJn0kV3GmEuqIdxBsZp5mvAatKQRdr01cVn5BVpEB5yxjCL0KMaZ511m8tQze450oQQQvvSdRrqhXIm5DmGntAqsdUMfV1a2t3et6srVitG9qjdga4azOusnPXIUK5Pe5G51DbqpR7yRBkPWIKPE0ZXnt/XprmRRqzzmh8qgYUxmCIzRWMNBFfxUurFZlwmLsjN9ckkKrAWsQdRcr4wxFqfZCCsqSqKRICJ7SnqdknFV4v1bWLYrL802S9ZNe3/DANTLv94KRa1BaY5LNWwt1XRjnXddrOxwOSpGOHHaHXjYP2pswGEyt+DCKXlc7BNioWSCtahZMTuBkJkTkXYz4MVkxkCzLQnAyKFmwLJczBtjt91BFgeH+xT3H41kHXydyrlpZiYirdUbERq1nmAdVNg/EEjvsaRxKUpCDRjaSTM436RqgO+fGbaWkFajUktguZxyOaRyZplEX2gZjIKtYrHUSfDv3qSptVim/jeghumzSa6wl45wlJan6rAXnPTkb0tuNYd4Jsy4lHbQUcsEQgigZWNPVBdpEf1eG8A60kmw9hXZYtcBFlUCWbmCYpnQB6tOkFu0xbtiiG9kIUFSq0SBu+jxUY1GWUnj37pFhToQxw3QQsdam6eg9sVaeLheMsVy2jSXKUKb8crUZsZmi6yamTPUe9GAtOnqx5twD13o8srZMHXQGSRO1MFCMQLVhnMj1Qq617w004C0K55acmXdil+OnCeM9yyIssN1uJ6QB4LJtHA4HGo0eoGiF4MerZJOsP6VVG8htTKEUihXada06dKr91z5sCzLwmpKSHKTPWQ3UnIkVYq2kUhk1CDtXGWxhniasgafHR+zhwDgE/NBek/5OnUezxmMrRGJnC0uCp+u2D+YWgpPkolm1NAhaFu31/LGaXIr0UbhCfQ3tELaEVv+GkqNAke3n7PsHdxugN5pctV44BulBeXWCqNKfNahgs3NUZI7QOYHs5mnEO0uMtj8eZA5MhJMRzdH+XAbvLE3ZpGifLFNIaeWwn4V0Yw1xW6mqHCKsWCPEjCzoR0qRaRyoRVTja8nXswRY1gUfpLr9utc3OnDd379i3k+cThcdhq0UEqm25nQis3R224uXEy4jAp4pk/QmVeCy6LDqsvLJ60+Y5jse7u6JMVOfHjmdjpyXtUvFACJvon8XzFzZPqeLwIoFQhgp2vN6Pq3sDjPTODBMM1OR/tW024nPlEKIqeROKJmmSawzgseFoEN9whqSma2WOVWRjTJWXWyvigWNlhrTRk0JaianjcevvuxkkyurD+Imnkc2y2KLcSUBTjPAZhGxrAvLZRG2pQZNY2zXKotqB08jqyQhauQcO4xSc6KYCsjmszfU9t/paj2RNgskzCeDL65XAQAVgWDDMDHPM8MQaLJR1KKit1lFgx3WJqxtih9yMDWpKafQkjUB72tXvX73+Ej1gYJhzZHBiQRTqbAsF55PRx6PR63ehAJsvSeqfYm3nmIhAWspHLeNpAaFn6QkskJhwIaBWI5ctkhdNzm0W08iLhpYDWvOLOp8cN6iHtyV8xaVJh/Z4sq83xG011asZStFhFm59p8KcFFfuBa4mmtvqOAqiG6qk8rSgQ+wbavAbNwQWpFaonAdWqc2cpNoRjqFzeMmtO6cI3bwOITYs20rNkYqiWm0BOfx1hCd1+FhkUSySrrKNeODyLfVm1fx4XWtdugu1EarpVbZ9IrLdbSQwVvauEyt6QolQnMeuVaQztHcrEW660fJCca2oEe3U+rD+mQxaOSGRYtqxpVCTZmivloNZWlqJi3othZD2yO3prIScNv7aSMP8vpC8DgDVNFtzbliqicbGVPZ7WaBund3PD2fiKkZ7pZe0XHzGU/DgHGujyB9nesbHbjGnWgRrjELXGiKKBBbwWoFOgSMzJvs7+5Ftt8FqRI04/HDwBYXsqpRG+MIfmSa98zznvP5AtjrZLou6tw9kTzjNBGC0KKPp4uYBVoxsEy5dt0uYwTy82FgGItkHoPMnnWB3CJDi2J9oU7KOgRtTKbpHBYj5X9jCDXX5avfUSNpcMXqaS2xStw2IXsUaa7W0qrIAv5mUxX1ilLosUFuOalUkDIypScgP5I2UdrOMWKxQqtWAkDtdvWF5lUmn2qTvlL9QmUJtsKuFNsb26WYnu3f2qkI7HSFCm3rDdqAwV3nYtxVMLlhQY3mL+STSsX2w7U0iw6jfc1cKUYqeafQWCdfWGEO5vO5z3SN89SHuIsSiCqGVKocSEZ8sKIKNbd7YYOIsvrBi2J+bYLLqhcJ0neVWywCyDXL513FngeLKhaI5l/KAm1aVKuvkX6MyES15j/GkNogskLs7cpazYh0kenOBrbD1w1ma3NaojhTqoSRntlXsV5xRsSOq5EgmVMi5agVh6yDrOoLmCrMSyfu0daIiG91Fb19tHP9CvfVmwO8Wd4oYtH887QK68HWmGvQgv6Ydt16waG9uyv+qevBiLagoCGmhRpMez2K6xtdi60o9ToKUkvtSh6t5XGd99K1ikCituhMVv/3G8UPY69B5AaavH2cIek+K/3+AYpYxQ5HYqUyjlSqjvcE78WEd1Cdz84q1OQ+Z+qNa0Gt12To61zf6MA1jbNAdMuKqVVEc5Pr0AjmSgmX6kWcayuGtAljhlqxziuNtKgeYNM6HAnDhHWBihV3T1QBva9hCTDOixRL8OL7lJIsKus8zolUUC5VKiQnvjd+KCroGlRzTNJ8U0onDDRdwvZljLzuWnMX6UViAEZpwrZDELKh2mY0uokooluYYiIY3x8jFVCF3H6u9l5BaT5NFenBgBIhmhdRfX+xpygDxilirHil5aIeTn1+o/a/l6rZZL0OGpdi9BYZDfry720gs/cq2iY2zXDz9kvugdCLzfX12gY1vu811ai7DRmq+v7bUHkPYlky59po0NZ2xfvuRlxEzWLbNub9DowmWA1+QtaECJHKwSTyWaVDXE77LiKDJPBO0TXYDtwO+VR60GpzUN4JuQdqE1DRz7rTmbowMkYIFSL9I1Bq82zr5qTafy0tcN1UItbZrsogZ7wetrTP7eZ313bOax3WkjaUXKASYH2Yo/V7dI05K70ao2+tljbkXJD5Evm+rE36umysX6MLxaizd3vNcBNGKt2Kpq+3Hr6vKjZX5uH755MggiKt1JU1mgJ8bS/8+nttf21V97EhG/Xsa4lApcOQbY3CbZWk1fINk7iv7Zv/tusa2MQW6fZn23toKvxQMVWG1sXrWshPIkN3rZidVqIyk3kNXLQqXBPtnH6XDiCP+x3zPLGm0m0qNj30bTEYK/JP3fYiF1JB5qSAqL5Xl8vK0/Mz2xrJMZOLIRcrPZlYyanqvFDb7BWjn1wphWVZxLeogJmv7JyUEmcuXXqoAPevXgpOPwY8tfdbmrMuxohJns77TPMkQrAh9Dkau10tyFumW0pR1YrhCpVVgYZsrdp8lRmxTCS79z1/ggtQC+2MM7W2s1EOhFxv8P2eH8pG7DNqgH5CDSZMKeEHwcJzSnJ26mv33nZvsqzafVUxfMn6Nd31N66wGjiMVmL9FZnmbVU0GLUaoRJjxvokxIpYYRJVAac9g14mIDR4qfrEs6pXUUrjtbjrIVYV6h1GqXJzYR4nDrsdL+4feHz7DmoVy5aKkFu878mURkIZXkX6ed56iitUW5iGUSSIFOq2NMV1bbC3BEXnu1LKFJdEHdwJvdur2KxB5o5MgJwCUwgYBNZL2wIlywxTu7tKwW7WGoA4N5trcJJTVElKgCmV6gWyw4q5ZtLRi5SLuibrZdXJAAsmKFdGApO1Sk5o4EbbE9NEPW2YkvFG1m4TqMwpkS3U0l6f7KWq1ayGEU3G2iJviaJCoPXGwbs5JJAxRshE1WRd6/JaS7ke/H0O82Z/tMyn1kp1snqEpGHef0z/c7N4aUGxBcbWp6o3j9fPUp24272q5kcHe29l0YBOqLgNbHI763s/I59BYV0ukqTVkcFfZ7ZMRTQ+C1Azl8sFKqJMZMQIVQxCVWc1Z2xug9lZx4u+3vWNDlxWK5cQBowrEC3ebRgrsj/WBYFxrPrSVGkQG+sYRscaI7lU4rpSqgyZDmHChYFqLDFl1pikF2bFGjylRBWDAlWa1+wSITEY55h2M9VslCWypURMhaTKDI0u7sMgA83WKaKuvmHdfkAgJ1mDKpBphLVoqm42FdJ0SpaQTSJ5U5vlagu+HcDVOSFPGMc8ToyjZwiBwcswpTMVbx22GJHrKZkc1RjwRrRX4EYZzhbdvirqCLohrHGUJJCmbRCWwgrSoDZXGxaR7pabWsFUi6bpCks0j2fpX3glL3g9vFsDvagChgj4VoqTDD+nVuHIZnR20AHym+pO5ZfkwLvqIN5WY7XInY9blMnSmFkLkh27QI2RwRrmENhPI6P2BnKMXE4njNEenLM4PUKDNaQi78uUSo2ZEiWTdbWSloV1ufD85i3b6UyNIhRdt0gxSWauJC2mxiTKHKXK0Pq2UTBkm4i1MIRRKqgY8Ub6kM/v3vH05k0vFpwTmEcKrYp3ocM6JohXGU6g63aZWjEFYT1WISHIwHmmdDp8e872Q1lmg/S5S5TPJTgn7D7vKKawXTZy3Cgp4XJm21ZK3kjbCFmcswfrGb1ncHKgYmS+TWGE9gt7NW6tJkkGgaNt1f3bwU0Mza9K1mNteKE8lYCuSqYQkYFrQtMCi0CsIpFkFQK/BlDdpCrGbWyll8RIstyCI7XB0AjcXbPA6+0laU55rQ4F/sQKmtRfkwZRmXNN0q/XAC/jNtLAK7VKkqLQo7FNtSbjLITBCbRblOhkkCoXIYuMYWDwgaK91hQjY7sD9UqK+Te5vtGBCyPKGdY5ofDWitPZqILBD2KQ19S7283xQYZQ3eUCbJQqKvDGWwY/SnVjG7SEHmReApWW6KLAcHUybXR1HwLjNJOyyA7lNfXF5NRuxQWvrzMq1KObTQNbq4Sg2UW0DaJZlX6JT5XOgRhZXDkrqaDewACt7L/B3IUF6JU+L9ltq+BEJNXSk0MNnqaBh7fZZYN8NICBBMxmSClQGh3O69RcVMDUCPLf+wdt9+nrb7uzjdu2AdbGOHR6WEqnBeki1Poea00uCX1ywKhRpDFAc7oWOrl1/vqzikOVIqrnKUp/7nK5UE2kWkesCLQchFXmgGAto3MM1kmAypntfMH5QVUzDFYrAQtqo1Fkzm2L5FVmY8iFtK0spxOX52ficpFs2jr1YUKgXW8hF0zKkLPcS4z0F6vc75g27Cw3rKYoVJgUWU5HLqejkFiaFmVunmuyJgXTzFri6t1TX7iKJINFk6NsEDmlKoSK2tau4Jj9vmo9p7NemWylIrXDQHBDQyRJ20ZcF1LcCCUR1xWbBYYmi7vxEALjEESWSHtJreJqa7XDgDdCsg2tuwaU28e2tWP72m9ogqxl9RhDH3uzXppIVIfzbglHtQVQeYxpz99wSX2Ghirc9uVk/0rAqJoAtjk4BRLb1lEY1KqSTm2o5LVCNLX3D40mdN3brsPfRpLG3ssrHelp7MY2eF6rVSakeJo5K67yzcdrLkqQ+aD/9nWvb3TgarlRu1HWi3qBGwaGknHDQBiGnpVM00SznxBzNHFArRXC3uNtIPiRedoxDBMhTKKuPYyMoyiLRydkgDBc7ceb4OVut2O/3xP8SC2WnKDkFRD5Fj94xt3EME2EcWCLG6AZuM5JBB0wbKyf4/HINE0dT49RhvpijARQ2SuZJ0kpiexPkQHQWorCc5WGiN3Oi5RaSVticxvrsjI46QUG7/HW4gw4CoNvRpJtC7ceWqRZJ2h7CNmwRdXGE80eQ35l1T6d6Rur9VlsCz3VaCVXqEU8m4ot1NoIJxZ4Hxs37wUa+iFRNeB67/FuwLsBZ4dOekFfc87SWxKH7ID3A+ApGFKKnM8XHh/fsS6JlCpffv6OXA3ViBbgelkJg4xPEBM2V1ytDNYSMLicuTwf8SHgQiAME1S1lE8FYhIkdktcno/iIlszJW6s5zOn5yeO796xRqHUuwqpJQO54gYZdrXVUFPscNa6RqoXOOayXrBFAnqMq8yDpsRyemY5Psn6ZsYVL/2IWnFO4GwZR9PRAyq2Fow4mwhMp/2uRoQgbVJVazwwxipIp5C7KmokrXRrrUIx8E5k0IIT4eNt5fT4yPn4zHI5Y0vEp43JwXoeKTnhx8Ddfs88jrq+cwsb6rflaP1OEJSCWnvIqMYqk9Jjasa0ntJ1dd2ErMaU4+YxmsA6PliDV4FcjKViSYUbyK5icO/9DC1QVa59XC1LJUlz763xomSKWsA25MMo2ekD2O/2as8tv/LaMrgVVTY9oKmLREndZbykSHHCkjVGyD3Oeull16sG5dPjI24Y+fLLL9k9vMaGAWPzta/7b3B9owPXy5evGIeRdYnkWnBVmIKDDmQ2goMIrmYu66YbrJBy5d3TM89PzzIrZMTO4enpxC4cmMc9VlmBBktOYosi1OjAOA44JwukqUR7H9i2jePxzNPTE8/PJy3zvWauBudkANkNKuFkmnOvBK1hEEv2tkGCc4zhytgZvCN7R47iFeSdZXCObMAq3OGC1+pMD4UqkIrT2SRcIhkrXlw6kHw6XzDTyGDVQ6lc1UiskYUrmoyGokl4SqKMkFOlkPuchthbLL3pe3t5Z1TVQ5iAWxSNQVGskBRW7p3TXpds+qY96JwEk/cYXXpd6b9q6lkypUgfpSmalIJCmvReTQheSCrAOM4y6F0dMRusFePP7kWlmpESvg2zD/gKrhSs6PtQ15V0OjNgOIwjr+4eOK9b722N1pKLPI9H5pQMMn++CwNB+xyzc9hhoE4TT9OEKUJY8KVive2wrAi8ai+uZWlVZgzHQQ4lR+HFXqR/thg4jCNpHNgPI5cQxGhQpZ0qoogRXMBmseAJOttlBBumqrSY0UNcTC5l3CEYqcUa7FTbO69FqOpV4CdvxWxSDk5Zz2HwuJJFVTxuBFMYrQHnKGkThYggfT5n5GecD4zDALUIPI1Ug846Ss59iF5Lg75milYrGEtRfzC5tD/al25DEt4nldz2Rm+jYwt1DVS/Pq8m24bO/O1wdG3EFbVFaoxZpCqqxnSouyqg2QjrtYpGK8VJC8PevlYNdEqAyjkTrANz5fWXTi65VmyFG21GK0PHpSZVg5fPtH18FtFFyDlhrCj2p5z54ssvOa0bv/3bv83H3/kZht0ebwwlp/6zX/f6RgeuVy9f4p3jdDwSs6i3YyrBi1K6QQeES4Eqw7VVBTFzSiznM8v5zDiNUAZSTByfnjgfnsVcMid9bGRbF7Z1wQVRDbAKr5VSyFGGdVtQ3LaNbRWdrnGc+nQ7RiT/+5cOGTorysvB2a5OUdRy3eigoa3yRcmgpozFiuZXNopx21be66xHzpQkM0HGIr2/FMlR+gZWSR2ijp0oQ+i4ec7CgMtVFd5jJka1E2/07SgGdDGJ8FhKIkKcc2HbIldrDLlfPbvMzS6mdgdrg6ivy4oWeTM5+4oylsTksGjGDlfWVFdBMKZvPFpDQyvAq2alQJjGgamNBGOxXg94ZSBCs6wXTbtxGLBGbODT1vpljiGMAi9a6c2YWsQUc1txpjIPgfv9Du9cd6ceg5ifgmEwUj1hRG2k7CZKCVhnmAePY6DmmbvdREkrUTSRCd5pEiHvuMHAnY5uIVjDNASB0oLl4e6As5Ytiufa5B3zEJi8sD4pmbRFWafOyTrKEYqQPdqhLR+11YRPzRat7dVyMOIALuaPzQRVjmGHDh/rHJz0Kr3Ie2nwKllufjVwmCYGAzF4UrAEkxmcqFvYduibK8W9tJ6usjyrMu2MQoeWKrAmtQfd69UBaa5Q4TU41Nr6RBoYPvjp2qE3+HEwWJu10191RQpQibcOlbcenUGah8hny7WvJa/put6LjlW0f+0wpV6NDZtLJSj02HKcWxixfYa3P2tA4cnrfmt9tHYPKkLUEO9CqXnP5xOxVh4fH6/eZb0HeU0cv871jQ5cP/3tT6lUzs/PnJczW9ywseCMzLCUuKnuGjIjknTeQ6GK5fTEej4yeYPJgbxeeHr7Be+mPbtx4MXdnhxX1suZ8+mZ5XJk2g1YM2KKwmc5SePYDtgqJXvaNtK2UlNkPNwxj6M41paCtzJq66jik2eMKD05w+AgWAmGsWRR6MgbpI2aHTVV8rYQlzPxcqZGTw2B7L1UEMo8NDV1Fl/cVkzRrMhAjivbsrAtF5FlSkbp2UmzMu33xCizFwr3xVR0HIA++LrFlWXdSFngqMbJEqal0Geb4Z2wx1SdIpe++WUI0XZjvtqGwos09H2RTeB6xWV1r7V+hNGMVA7TBh4b6zRprWpimbAxEqMjJScWI0705sZpIAxqYKnzdrW/JoGAX754oOLwfuTFi036ZMaKDmNuljQWazKlbCJEaiv7OfD65R27bSRGrZjCyBoTpVS8t1QvxJ/dbuZuHKXCCY67eSAPjjk4luMz5I3LIkFlnsfOorydh7k9C4Lx3O9l+Brgk49f4ZxlXRfm4FiDYz8NnKbQZ2625SJBy3sYHCmqhYwL156jUT2+EFRn0fZeh2TgOmgeE+fl6n5tQZr+1hHGoCoY0qNqqinUwnJKIiE2OA7TC6iFmjNpOZHWMzVHpmARUqWshlJkaDkVkThq6jF9XEEJCCLx1eC2zPtHpwasLsWEPu5K8Kjq8CD/0Mj61wOdeqMU0iqYFhzq9fd0KK69gtvn1cpK+t/uWulXbRMWhcHrNXiVWjGpCo5crqMODeRs554QqUSUO2ulZ7gGujbLKKxieQ6LlUyoGqwNOD/gfaDkDFlfQxHrGTcYXPBUCqfLGRNTD1xtNMU5qbyd+12qnFEuJ6Zp5Be++22WTQRMn5+PnNcLefB8tN8xTiOny5nj85HXr1+ym/cMYeCynPm9P/Mt4hYJ3lOSNN3ffPcTgp/Y70fmIXL/3Re8fHAcT69YzifuHu7Y7WfudgdOl3PXQksl6xDeyC/+3M/owYsO+EqgPJ3PzLuZaR6ZjeHh5UO3IFhzweWIqwVvCrYmLIlqM6OJjDhGYO8LhAq+YNhwteJUhmmwFkclLhfyumGpHJwnl8i2rpwuZ5ypWGAkUy7PPOx3zOPI8ekJ1zLsHNnPOwoimLmb95hSsCnx9u0jMYlKwDgEsOKi/NzMEoNnmiaWy4oxluQqv/EvfpumPTiE0BX6vfPcDwd1TBXVjuBE1skFx7pdWC4C7+52czcBLRQVJ/a4oPJTSJXYKq9xNgyTY90y65szaz5TY8LHSoiGLUM9V04nL67YgxykImSbMTYoHGLIxfDzP/tTQs7xnpwMKclGPZ7PnM8Ly7JyfD7y2ee/yQ+/sHgvvTQR0pXeQBOofY5ZfKpqVQv5AM5x2Z6lP0VlM5V/tr2h0CxhwJuNeShM00BOZ2F1Gcu6njpMKj0VORinceT0lImLzBZ+7/IWkPGDd1+MnI4n3r57JxD06GD0vLo/sK0rpWSCh6fTs4yTOMc8TQIt5cK6FsoQKCFgyth7M7Yi8zlVyRa1YmqCHGUgX2fSalw4n5euHn9/d2AYB4bgJTgVmeG6u7tnHuT7jpecju9YlzNpW4VJ7DLj5Hk+PqlclGd/OBBTZIuiMNJgP4uhOjqEmUpVDzWZraQWLE7EjnVWL8ZIk2IspRDZ1CG5YP3QHQyqkqhARhDaoHmpMg5irRXPQOO6a0WFHqBE8krYxNM8kJWxNwxz7wM2iLWSMVV6Z4MXVnIuYiZp9HXmLBJwzjoVHM/YCmMYMFUIWfMwShKJfB7TMGrllDmuUYq9WqmbYXI7EcMe73D4ziiOaqJrrVEhBVjjxvF8aiGdL776iq2p6CwXjPHXgP41r2904Hr86ku2eaJUuoI0OQqNU/slNUd2g2f36gXTNDAGS/AGNwbC3Z6SM8GLXl7OhW+9foUxrptRmlq430/cHUZqfkkYRV07uNDniILzbElsHrwXAd2m7me1V1NyZj+PYEVf7unNG/Ez8kJHP0xT97ppw36uVkbvIEfyKjbdpiQ8hcEKjkyGKrxUju+O+hySVYYQGA4HCBaTDJFC3tbe/wrOMgbPEGTTNmh1XcUWImeBAVdddNsWWVT3sGVmjdTQYL+iATslqeJKLRyPR+kjDQMP9w9Mk8crw66kDFl6InGNJKSvNe/G3qcA02fxrDUYp4PlRpT/jWa7uZTOIC03OEglaXbqgKI9B4URm1J9LkDqc0sdWlJqvPejqt9LA1og0ozxVkSTp4BxlXXdBJpVqxPxxvJs0arZpGHdklS0FdqwexuBEAaaDLp77SVWdRKAiVoK87wTlfmqkJi9sr1SkveKEdHiYRyEPaqq661q8m5iHBy7aWC32/Vei/OBdZF7H4KHotWqtYzjKIecQuI+eIL3WFt1uFyCVXBORjaMwZWK94YQLDTWrBPzTvB47ceEYAgOggM3ic2Q6AZWnCs4W/DOMM8DzhU2J95j1hkdUhdShbEG6y2m2F5+FrXdyLcH5Q3uaZEEoMGM8p3beasrld6gYyXvzW1Z/f1XuPC6+hr5XasWq7Nn7bFaxTUX76rGs8Ik1r5ZbaQQgVobaxEdoWlMyaCM1ZKvlilgunAAIIzh9j6MpVh0aPu2QtQ9YERlvxY06XIqDGz7lyAeShAzDvHpiyIWLYC6iivQ4dyqJJTftUaSX33+OdM0dAkZyRyuhoW5FOJ64f7+jhevXrCuAt+lnPDGYrwDLxvysNuLtYP3YBxv3r7jsx/+kMv5wt39HYfDHfM0sayrBMktMg2iQTYNI5dVThmrmH9b7H4QxfZKJQTLuiWej0c+/+wzUorc39/xySefcL+/43LJxGXjoge9c5ZgDHldKNvKZuQAJyeprHJUKRaZz3rz1RecTiecc+x2Ow77PW6/E0KEo8/uFM3Op+BlbsY2HT4JaMuyyOYslS1upFxY1411Fei1KWw3D66rpIzYjGxbxDnX5Y7WdWUYxLZjnva9KipFmG8lFUqsLOdFrR4qxtwRRh0bsJUYo3QnahFiS5EeSmVQPUFIfZYr6/yLwlRFG/RGh1tdMzG0Cl0pE6pCCIOQLVzQBrkcOF5Fjr3zVOtw2RFywXrHMA3MW2ScBrH7qGjQtcpalL5nY25tWxISRBESxK3Veyc5UJj2Y1/PwzAwTQK77nY7lkX0Ca0V2wkZJA9XbTsNZFchXPq/5Zy5P+yYBo93hv3+oDtKKpZ1FZ+pEDxDsD1wNUJMKWoVpIPyMmwugWAIgcENvWdZVDlDznnX+yGpFKbR9ffgvHxeg3cqzyX93VozpqpSubGEIHN4hkxQY9AeQwx9iL9V+K23Iqoo18hlqjAhKaX3W4S8o2dJuarCyOGsb0IDiVVIvwV8CTRX5Yl2D0qRfmqDCm3vkV37Zr0/VxrsCY1C3+Yka0Vek7n+XXsg2m80eKdanPZ91YxmtIq+zwZPtrDcVFAa5Nw+szauQlFovliFKPtUZQ+cRv22YspsW9TeZhXFfp1JtUqWaxVv+z1f5/pGBy7nHSUX3j2/Y1kWSi0M48jDy5fs54lRXWIvlwvf//73iTHilaV3dzgIM0nnV7y3yPxd4fnxmW1dmaeZ/TgrS69yOZ6ErKAZzHpZiDHypcJwOWdqlv5UTkk8fdSWg1JZ4iabowq06C0s5xNvv/oKbw05i9X8uq6yYY3hMO/6YSEac1ddvtbfSFlUmHf7vZAIMKzLhcv5yA9++1+KgK8RFtcQ9KA2hsvlQsmZi3dY4HI8EbeNt2/fMgyi7pw0ODXpqf3+TtiQGJZluS5yVV1o9hqHw4HgBuzoKKkKLPXVW37j13+TJkxcCpSYGIeRu8M99/sDfhDW5Wk5CYQ1eObdyOFuZt5Jv2ZdRTfNe6mMjQ4Si9VXmx+S2ZicNPuskvl6PeD7zIqRA7Nfpv+fbrArOcWaTbUwBZ7BWHa7PVORe3F/uNPApUw/K1l8yZIweB+UWqzEGa1Obw+Txl4sFKbd2AOv9N8kgOz3e87ncx81WNe1r+NGRLnO/7RM9yq8mnNmP81s20YIMkLSDt1hGLraQQiBMMjIx4sXL8Q4UMktIfgeEI/HY1dB2E0CPRtgXTchwihMhrGkIio3OadOxHPOE9MKteCtZTePGKR//PT0TrzccgQTSDGRkzgk5JhvBp/Rz08cyeOWJLFSxOPDwGVrIyOUDus377qUtN+b21B67b3DNmIhKEAbmq9d/kwee4VtbyWVBFcovYdLVc0R7fuWUqDUbkpJrULXv0lGfKUnntQWkAu53lDo65WK31oRIOvxNrlxzvXHJIWz28+K6LfKTinBTdiF6npejKJDKg5eRALtsm6czifWVdmH9Sp+0NZL0fPs2jv8ya9vdOACcQTd7/fqZloYppHdbsegDfdux1AKu92O3TQxTaPOfQgUNc8zwVk5xC8XzmdpUL9++YLdvGdTksf5dGYcFNc20vxfFiOCkymSraXYAqlSk0CCOUaRmcqZZV1YY8aHwMOLF4xjIMaN0+nEcjkLJq3ir1uUymi7LH0YuZTEqiZ/BoMPvhvZnc8nWejTzN39AYshxsSbL7/idD7hnZhkep1joVYNckCR4c0UI8uy9MBlkExMNqTRnk1V+n7ldDppkK19ng2Fkn74w88FUg1BSAzLyrJceHo6ysFQpfIZfGDbMk+PZ6af+1msc2RbeH7zzDQFdruZw2FPCCMhjMJWy1foweSCLTJoWUr9EUYUaGC4VcbubC65ZGBXwRfj1H/Mg/a4im0zalYhxEZl1ipbq6UuVKyHitUeT7WVWkOvUDwCW7Ysu1m4GGO1nyHjxaOaa+acGQaxjbDWMs8zTSXEuWZ34d5z3q0KlV6lg9oMVdaK6yAK8pcRr7JotcoeiSkqFBgIg9V9ZglhUIZg7skPwDQNOC+l1DA6/CBQ1mAscgYbVaeo+Cp2PDYJiGuMYZ48IcuhH6xlHEV+LEchr5SCMByr7KGo4yfBSUJ5m4RQVf5JD+QWoH6kqdKICFodfaiU3qoUCTpaaCmKY6ATY9pVcksoK6XNITY4rFSMLRhNpq7Grletzf77dX6zjZG0719fi3nv704Zvi3gtn9vwemqYdgC9RWiu1WQzzn399T//mN6UNefN/0zphRR/jCi9H99XllTt7Oj8sHTocuve32jA9dyWYQ9pAN07QNq0/gVmbG6XC6s68o8z4LLa7e1sdhSSuRYWJeVx8cnTseF/X7HPE0MQyBp/+xyOTPVEcKADZIJ5SRwXcnNrLFSknjSyKDwSsmV1ILiujHNMy9evMBZyyUljs/PPL6TYCF6g4FlWYhxo+bEOI4a0CrL5SIL3ho9wGTRx3VlQYLobjeKM3SMOk/2JIaFRVQ80iaMwdevX6HrDe8GgVY1QEt1ajv2L/BF7NI2JReej88sl4scoN6pQ65k+T/84ReM4yCBZ3/Hum1sW2JdNukNGcMweOzgiGvidLz0tVxK4fnpmZInkZAZJ6ZJbElqFXFfQS4k0xVZqNYjEFijMbyg+SVd4bjrUX7dP6YKG8yqqkZX2UeyeUm82yyN69CIqeYKTzlIxgqcU69stjaP1j6bJkskr7eZjkpiUGlQYWXaTWyb9K1CGMjZahM8MMSggcvjvCqzK5OyUalrkQa+0TdYtDIsOXF/fyDG2AVRYxTbk3k3MmQhEHgnliBNqst7YYu1Ade234bRYZ0cijYAtuj7NJAUfqsiLyTzW3IDsq4D58Vny1jD4KRvVXKlJGkJWYtCZJm4CfTsvVf48GbYVm9oh+pK6UxXWvDSx1V475AWYk8LPO8Hsxa4urPAzTqVqva2yuW9gFFKkWoEobZLElN/JIjcBpjb+ccffS3mvZ+vVfm1WsXfvq/Wz7wdG7kNqMI81nnHrEooChteA3Fj7l7P3fcYiEWGC1rbuH2W17nH1jtr8ObNSMC/wfUTB67/6X/6n/gbf+Nv8I//8T/mBz/4Af/df/ff8cf+2B/r//6f/+f/OX/37/7d937mj/yRP8Lf+3t/r//9zZs3/Pk//+f57//7/x5rLX/yT/5J/qv/6r/icDjwk1x//+//v7k77PGjwBtNVTqMg0xz+yY+KlTf3W7HEAa8cyznM+siUNk4jgzOk3PhclmYp5021bPO9ci6F0PB6+T8ul6HbJfl0uGZJukvM0qyaGutLOtGGGXu55//2q9TVW5IKhARwrXN+RRdsNvKNE3ab/AdUzcGjlrNWB3eidtCyWInIpDPyrZe8Or+Og0jx+ORbV1JceOzzzbu7+447PY4ey+9OKXLjmFgGkfmccD7gaxqzpfzwvly7r2rttlyrqxR2X7Ocr+/E4FX60lbwmGZh4npo0llquiLP9wFfuand7z++COpbM8ntm3jo49f8/Enn/Jzv/ALOAdb3Hj79itwUq3RBX7bmWQUe5c/GetwtRKCGFt6K5qARSNRudmY0i5QcoNal3ivqiaumfXJ81vblPqtQIgqdpv1s5OqK4kxqG76ogSCkjPOhm4iKEpKKoLshJ0lwxKV/X7EB7HTMcZRt9YTkKrFKQPTaq/M6TxUMxcVZe7rgao8F32GjHhIRU6nM+u6KCHjerhttnK+XIAqScg4YowgG6fTqa/DcQxaGWl/kYyzhnHw5GQ1aVkBQ/Ci02lj5XxeiClh1sJht2cIniE4luXCtq6slwu1JowtWFeIa8JYGIfAPM5dzLUFk57X3/T3am3fNx3uM9LY6Yd3qxKa2aFIgL1frci9kse26gtdw+VGbBe4Kr6UVnGJmoe1H1Ri8N5/24F/25d8LxB80Dtr/7XqSNAr/pyFsAQY68hGyDC1yMypJHGGmnTsRR8bnKMUsdopKYu3ocvs9vdCemmJl67rDv8Zo4tLSCKVG6izzVBqtS+kGxlNuAoZ/+TXTxy4TqcTf+AP/AH+9J/+0/yJP/EnfuxjfuVXfoX/+r/+r/vfx3F879//0//0P+UHP/gB/+P/+D8SY+S/+C/+C/7sn/2z/Lf/7X/7E72WYRoJo7DTUs5QMrmK1lZQ6ZF5nsl5IKWhY7IlZ6GmWis6cttGmJ1WCHsslstlYV1XlmXpmXOMsePWt1DB+zfgiul6D84NcshZw5xEESLnwmWR+SdZCFeYrSopqVvUj6M+xjIMg/SOVJ05lyRNeeeY5x0VyZy/fPMV52Ptfbb7uwN3hztePDwI80jVTrdt5eXDS+7uDtzfHXDOclgOlFK4u7tjHAamIQhEZ+QQ+OFnP5Tgt21CPd7vCSF0vLxtLvEwUzhPg6u1VuWzhq7+3iCqmkWQt8nK7PcH7u4eOBzu9AAqvb9gOrOqHVdW+we1f681j60p4m1kGiED7XVIz6MxnKQvpXJApZBqEifkXIW118ZWq8GajLVJ75uq8VfZrr1vcputAqL4LWvl2h+qiCBkxdgq7rVeezIGYac6i0+yTYsqZ2BqRxhC8MTYDlfVjnvPpkODlm2HjaHYyrybpOJ1KGlF4O7dflYad9FAlBQKtkzT0O/ZspyoyADqMHhysZRiibHgvcEHxziPMlTuKqlGjPGM0yhjDcmLaouRz8sP+m/Bs6zSr841SzWpksTrZZW1NjgO8/69ObacMsVcCQh9X9bSP4vrzBS61xoUfh0juKpO1Pfu4RVWzL1y6RW8aSzXVg29D8tZJY61IeNr0KsfPPcVCrz9HfWDn2lBq8F7GBFF+LCKu4UhW0UtSMfQX3vrTbbf1x67bZvAos5J0mGb75f0uFq7QC5FMex1n3d0EEEVShPZLqK1KYH8/8DA9au/+qv86q/+6v/fx4zjyKeffvpj/+2f/tN/yt/7e3+P/+V/+V/4Q3/oDwHwt/7W3+KP/tE/yn/5X/6XfOc73/nXfi339w/s9zPOecZpY0uRZVtFdNc71Z3zfXGfLyeBjZxO61uRDyopM887xnFinmbWZaNWOmbcrlsWTNMnbJldWyTAe5j1VX9QZzsKkmVazxZXDXCO4IOW01fLD2MMqMq2tYZpHDjsDwyDJ3hHylFlnzy73U6qlVLYVvEnowpF9u5wx8P9PS/uHxQSkM19Pp+5uztwdziIo66VoduH+3sOd3cEFcuUfpco1bcsy3vP4XDHq1cvGUeB9Jo+YYwJpwOr14O7Ba6hP95aUSJPKRPXjcvlLBBvRe/HiO+K/E0ZwPSvJr/UICA5jzSoGdO9j+wHUEfvdbQsQStooToLeaaRKmrNonlnjEpTCWylbUd09pt+LN5AUh/qJ0pVZUUlQmFB0ZuTwGHddcAaJZ9wAyHaxSoEqYFLZ6Ji6m9eMuP+mcvzGKqIQCu71VZhehnjGEtg2wZi2sAI6SJbhUZRya1aNOPWodgK3YhLOCq9znVOBoOt+jJhzM2fRfW9kXu8d+QsH6SMS1y1OtvslbNWsnStPDxOvLgUbZDRjFvYTtaTvfns9W786AHSoOV6G6y4OZDfv4d9ydz8W3vmD/d/+297PvPeGr2uk3qzFmtRCLzokHSDet57zfpz5Rrs7E0P6/2Hyt8b+aJVc61nDteKryUBt0QN8Y6TAX7U2LI9DwqHyx6/YrDSQ272LLefW3OhFoGAqknU173+d+lx/YN/8A/45JNPePnyJf/Rf/Qf8df+2l/j9evXAPzDf/gPefHiRQ9aAP/xf/wfY63lf/6f/2f++B//4z/yfA2WatfT0xMAv/Tv/DvcHw6M4yhQjhGK+KqU7RgjqVwbtefzGe8dQ/Dspll7VHKTpnFk8IExDPzg+58xTzMff/xxZ20ty8LxeOxDsOM49mylUb9vr1adtUPeWqv+X+ryq2ynjq83qNDJbJdg6onz8agZscjcCIQ3ME+jNrElY922jdPxmcfHR9K68vDwwKiDvt/61ie8uH/g4f6euK2kGCm5sN9NzPNIGHx/vUm9o0pMnJfr575cVs7nha++etvZbbUaxnHqAe3cHX/ls/BeZt5aZhfjwrK8eS/g32atKW0SoGchmBhrOZ8vfPH5V0z7SWjvza5eg1Yp8N4e15OhFIQQ0DZzqV1br2+o1u/SqhBgGmXIdo1JLakU1tT+jEXnkVxQ25ki/lNVfker5q4JjW7aWrBWEqkweFmvtVCwvYL3g5fZKVCLHNGidPoezhdxPcDKmEVLeupSlOiASnvpoSWqPIAEOFlXUpsu66KEh9L7b/K5FnKOfT3kohl5hS0uHZprlVhRYeV2idqDHGpbiuJl124ShlyFddsdnr1jGCameZZERZU00hBI0QsPT5PAbYtsORJcZj8fCN50CxyZg6pi4FqiMIatvTJGFcZvFY8oSUCTWGqPkSpM7mczGW3VhRzKak1jvCIjVmGvG/PW66fBrU9d+xzbwwwt/tdrMNO1Wk2r0LhqQvYvjbbazsCIkLO8hcqHybbsPam4WsLdHnt7tYDVvPTQ4LKpU7qo0MhjXHWUIixoU0UcWRvhN/D6rT1Qq3f7Jv3gs/rJrn/rgetXfuVX+BN/4k/w8z//8/z6r/86f/kv/2V+9Vd/lX/4D/8hzjk+++wzPvnkk/dfhPe8evWKzz777Mc+51//63+dv/JX/sqPfP/lq1cE74ib+v80sMharIHBWrwZ1F4+MWlVYQwy6V6hInNc1nq2mDke3ymuLxPwu1nUN4ZxYJomNR8UBfUWIEvOuOBlAFmNIdOmi4XW99BFZmUWIulCahRV5xxNpsUamWup1WHchfu7u856fH56S9wWqDtev/ouJUeW84UffO+3+ewHn3M8nZn2A4eDKoRcLlxOZ3bTjHMS+ErK5JpEMUJ/9/ly6pbpjTq9LIvKtRROpzPn04VqLOM4MA4jwzSScuZ0PpNK5nK8KAMzivml3ougDtIFg10ja4rCOCoS4Bo0Ok0D87xjv98xjDKzFKMYJFaFW5ZFKNwOkWOyCsFhuKqTKwMSdF4kVayTQ6uxClvPo1ohb0iGKzNJuVSWNZJy6x0Fwij33TrPME5SGRhLXLarjRJykDnEhv6agHwgNtyz+BvdNmfBiUdZ61GlLMLFxlnxYbPq+WacMPOURJJKwTsvupjTKGLLtbKmKIdg1Vkqrv1Aq+ojYfBYK6QLp6oncmiCiUb7dIj6t/o1WWsZpkmDfvvE5b2P00iuqRuj1loIxoELysQV9YjsCuMEoRSx1jEeEVo2NBNPa4PqhBaWS+R0uhAvK9569tOe/W7fzw8Z37iOPnwIyTUIuFdW+X2tS2tkePfDaksQBkkyvA7Md9shcyXgtMff/rdd8utvAuTvcP1OAeXHPXen2RcLWcgUzcuvIUBt3bXkudaq/fLQk5jbHmjvFxpZu9Y5sWDSM60lmq2t1d9ney1tflVheWcNzl0rdW5ee/0d3ue/7vVvPXD9qT/1p/qff9/v+338/t//+/nFX/xF/sE/+Af88i//8td6zr/0l/4Sf+Ev/IX+96enJ376p3+atvEzahbYIrhFT8MrclM0g6rorEdSUV4dMEwxkqII716Wi/YiAiEkbINltC9mrCqcG2GipZQoSqsptWqvrejvbYK3UhVhnfgmqu6fudEaa9IrVvhtlJrZVN/Oakkhf0ZhSE+1kMJGihu5JKyt3B32HHY7cUM2pve1lmWhZ0TlCm82yGHbNp2TEfZh1P+mLPCdHK6eaZ7Z73Yc7u8w9UpGkay/GdKJ9kA/MFtfqpUEvY/Xei+IhJMXTzOvRBR5HTKJb+v1IGlzMa2/ZTBXj6HmUtv6YVWs3r2aFDaLjYLcl2SsPLc34tTbmupNCV7hOiE/BFq/L9eic2Ky7tqwqrVOZ1X1Z52w5rz30sNq97uWHsRasGqMSGNFLb8aEc4tuagJanucrO1cqqpRyOD87b9dYdX3E/r3eF2aJIVhpID8Tq1OrLv2Bm3rKWq0Ms72KqCNZ0g4BIwc9FJtQamN0WmlIC1VjVtHEY7ORSsWqxWcjJt4N5BjpmRxsd7WyLZuJJOIWyQPqR+K1qqGZam6/a9rq71/Y24+hFsIW7+MjqPI/btJdBRdaK7k9ub3tQHc9y1BflR54wpv1x97YN968HUyTYdmr4Gl/bd93/yY73/499t+lPe+u6b3MQL9PIT9KuzgVUUImpVKN7f1egaam8BjboN8fQ+mbe2P1sv2zhHVl+3f5PrfnQ7/C7/wC3z00Uf82q/9Gr/8y7/Mp59+yueff/7eY1JKvHnz5nfsi43j+CMED4Dj6cxuN5ErbJ3SKjCKHHqGddt6UKLRVkuh6CwRVExENsQWievK4/OzCpnOcpOdTocDprSNDFHL8PVywQaPNYltg1hyz3RFXV1op8u6KbTVNsEg/66vJaskjwUw0gh9Pj4DhcF7gjb0G/vQe4fxhloHxmngxYsDte757ne/y/3dAyEEXr14ACTQvX3zpfQJvCWEiXVdO9wpig4bl8uFbduY5xlrrbo5G/wwcqiwbJEXDy+4v7/n9ccfcXx+FmPFbWWcZ0YNCtsayQVMLhgjFu65Vgp6iBtD8Lf+Y5VKwno59MM40BiUl3XBXSzDOPTXhdw6vHE9E5TRgKTYPOoYbdhqZRoG5nFkGgasFRZkyYU1brBFjFZSKauthHFajQZ8GBmGCeeDDsvmDqWZBHmRJpPxDusdticDQmpw3jPNkwYuTyqRrBk/qvCADiunnPFqQZOi2GuYUtmWSK0G68QnrBbRn6slM897qZJLwcQkQbyoIKtCoE3PTv4sbgFZIhVG3b+D7qms8kVeqfaAOEoDrYdYq+k6g8ZJxWpKZT0mfAgUqswcVtNNVkUKTCTJvA+KdFiW8wVjJfCmLUK1eDdiJsu2yJ5JW2bbEnGN4k6unnTi2FwkGZFmGwbeH3+4xZGNKjeYK4GBKtJZ3gfRrHROxltK7qiIXEPPAFows0Z7hzaryWxTQ1FGo8nvBaDWFritynqFc9Nnar1ka20nQ4QQ3tO8XJblvZ5VC0itiqpFhgGGEHrfsz1GUCA5m1rwLqUwhMA8TRyfn2/SHoFLgxdBAK8Eot4fU6k75wOJa0Ja6jUpXteVnDL7YWA9r9fP/mte/7sHrt/+7d/mq6++4tvf/jYAf/gP/2HevXvHP/7H/5g/+Af/IAB//+//fUop/Pv//r//Ez33v/jN3+Lh4Z793UGCi2ajTRMtjCN3/qU2HJXBpDdruSyStWVh3lnjSV42nR9HgmLtIQwSeFQxoLFmvA9M6gKaU2bd1q5zdwhCKNjWjcenRxEdNYa7h3uakrgQIXxHfEsFW33PXq2VBfDqo4/YljM5RWqKTLsd+3kUFqAR1XQ3TfzCz/0sT8dnSil8/PG3GMeR1lsqCqFQZYF6VeWWCkwuMxqm3SwbJyYu69IDvtV+jnOeQuX1q9c8PLzg1evXHJ+fOZ1OTI+PlHQN1mnL6jht8TZ0WZlyf3/zegCF+qytUDPDEJimUQ81CdDDIAyIbVs5nY4d8gVITt2s+5B27Zlj6y3VWm8kkgx37q5DR8v5Ano/h2FkWxZSrrgw4qahZ+an84m4ZdYtsW6xM8zW86KZulMYpiVNVZy2tdIqNPmppHCffAC198BusmwrShPDONOcuGUWcdE12LJ7af6PwyAVZCmih2hb/y/r4XmFiwSxqToELUyvbRN4N8ZNYHddE5JlC5GnwVBUqWrltWjgslUTO/29Rma3UhEFE7SaqVkINqVWgvOdfBNC4PnprMGvMASnqi0bP/z8Ky6nI+t55XC4JxxeMGhVcD6fO6Q9hkH97Iar3VCjyWuwufV/ukUaWhWUVTFDxmjkbJBET47JlBJxFR3Rtv5a4Chp6/fwlmHboDcLKtr8AYR581puJbmEySlr53Q6dZLXtm39/jf1FAl6ji1s2sa7Mg9BlIPSTQugBcn2nlpwb+/VOcfT05OYyobA3lhJZkxl23Y3c7BXoobJFoy+71ooNWFMxVlR+fdBel79c8a852rwk14/ceA6Ho/82q/9Wv/7b/zGb/BP/sk/4dWrV7x69Yq/8lf+Cn/yT/5JPv30U37913+dv/gX/yK/9Eu/xB/5I38EgN/7e38vv/Irv8Kf+TN/hr/zd/4OMUb+3J/7c/ypP/WnfiJGIcBX794Rc+ISYzfWy0UGBgW/F5FRUKaONT1wXS5ntmXtEjI5SsM5J5lzECFd7SGoLUaMqbOrQhi6ykUpVea4NHCF4IkauN69e6sq4I79fv+BAKYMtxYlEzQ6t1F4yFjwzpLjiqEyOMNhf2De7dgddqK5p035aZ5UjqqKQoZi2jknqtqFXzXdpDM8TlMfNGzwVC2VZBMxiw2Bs57J+V7V5CrqJAJ5aVdR+xnOS5Urm1SGX621eNsCdKUknZGpBXpjv1Brkv6hE+bb6XTS1y5q6PNuUmUIadY3yKdgrn7I9aZHoUzoVmNI1mpVhPZ6gqWUutWGNVbHCgzWDeJUrOoZj4+PPD4+8+7dE8fjuffbWzB01hG0mmtGlkUPOGstWNNVMaSCp38mIn4rf26QmrEWF4aeubch+l4BtLdgxNmbRiG5hWnai9TLOacwl2EKQRmdkcvlIhVkSmSlezfqfKt6QaFi/Tzjdp0Rszd9jKrVWOOpiFAsYoSYaofugxOSinOi5WmoeGuZhsCrly8I3mKpIuy8RNZFJKFeffQRD4c7xsFzPp1ZloVt3TA3kHFTvahVFNJbwPoR48IGdSqsWvV+ltYH6zJQDQpuc13v98GgPe7K0Lul1L9Hvuh4be19OIE4S6fmN+fyBgOWnMmtKtK1X2tVwYPc14xod9Kfp8PE/bklaNibxmTJ19dcciZrH1TYvVKJphwx2YjknEo+GXNV9ZAzK8levFEcAXqLxSnvQIJnpGpi9XWvnzhw/aN/9I/4D//D/7D/vfWe/rP/7D/jb//tv83/+r/+r/zdv/t3effuHd/5znf4T/6T/4S/+lf/6ntQ33/z3/w3/Lk/9+f45V/+ZdoA8t/8m3/zJ37xX719x3lZmI4nVQwX4dcYoxZejnES1QljhThBFYjofD52rcGcEmSV2imZ/TwLXdspJBI3YtxY14iYp1nCMIp8EhK4tm3pG8A5I3DSFnl+fsQYyejvLst7emmlqMpHbews+XnTb3IhbheCd8zTwMv7O8ZpYr/fcTjscd5TcwKDqEowUytMk3zWV5212g/aUsX9GQPztO/ZXX9NWS0RfBDvnNEyTGM/mNYU8cFRKVzWC8u2sMWVVBLeCn6OBgG039UDV4VskrzmYro4riQMyMyOleTj+fmJ0/GZGDf2+5mPP/mIw2En3lKlUhE1h1KtSunoMHL7DJWgTVWt75TI1qjDr/a/bhrYLcO9m3eiAG884IipcL6sfPXVW773/e/zve99n6++fFS4Vzy02iyNAbKqqa/rxrJdB7SNa1RxWVeSmTRtwhbCWp+g9bhavwTO54uMbiilGSWXtFnFLtJ7XUj9ffVGvhFdRm8dd3d7qbbWVaxcmjIDraFutJd4lRNqCh1yaGn30qgNjcLpze1JXdGA5p9WqQk9S0UzUp4P8iZahEMIvLy/5+d/9mc4HPbsplFgwpRZl5WUIoefPfDpp5/irOXRP+LdkRSzmrOKKn1K16FdoyQEza/652Jp3lry1RiEbfVc+1JWU7FbeK/1q65VzbWn+KMVVfuzuf7l/YOsBbSqHliKBjQR4Nt/v/1qj2msVIGIm/Zimxts4VwnHUuj3dfe/22voQrsc33uluiX3Oe3WhJ/G7gaeEIuJK12mztHZw87Ge0oNYukGMgIxte8fuLA9R/8B//Bezfkw+t/+B/+h3/lc7x69eonHjb+cdfnX72FKtm7D0Gayc6wpdhnDKxzba/IbJTerLTFnr00JQfJyApbyrQB4FIQR9uSuyuxlExnWrpWSiUMXrK9CpfLSSorUJX3QDWGp9ORHMVVuXJdkyK6W6+Nb9O2TsXUwquX94zTxO6wF6NI57Dec7jfq2uybImim8cYy9PTE6fTqWPiIUhPYZp2+CDeU2kVryDnPKZWno7PLMsKW2Le74SMECQYeWUfrioiW6gs26I9xYE751REVggI2xKxzuNdYAgjuYhFyun5RF5kjsNZYShaUzEkxsFTqxySb999ybKc2baV3X5kv9/x6tUrXr58wfHpsVceoojdZt5kXTRorE1heNYAAQAASURBVBlLemMxQUgqwbmePFhgHidcCIzjzGG3Y3+4x7rAEhMxFXItrClyPD7z9s07Pv/8S96+ee7QzbKsFFU5SVtSOwd5DWL5ksgl9eY30Pt4lUqqCVEbNzjvCMPYySfrRdQmaq2qCSnZbQjNnFMqmHleyVlU+YXdJZ9tQwXa7JXAWgIZvns6kWJk3WTUo6o4Uocae8NdRjuOx7P06xT+lUNRnjsMocOTNVe2TV2tnTAIrwd2W99oX08SF1Mr2+VM8I7jyxfM08y3Mbx8uOcXf+mXePzqK7764gt+67d+k8+/+IKSEi9fvKDWyjCILUuJjZ4v7LbQmGz9AJXf32nZ7c/tq/eeFd6uXi1trmMEvgScJhLSj8q9msjaawOZfevDwdCH7dva7MSKD/pcLfFo+7XBqCL5ddsPvsp0TeNIGAameSdnQLmqvN/2+FpPtjEw22trr6HraCpUOE0T1rsOd9+qebRy7QpJSvKea6Ra35Oxq9pHC3gR1LD0/3Co8P9M1+mydBp8KNpTwJMrlHot/WuRgBOL7cKRtRSV2pcDzbayumbcEABRMM5UsSU3MgvTAbKqWnCITp4LAumQiz5ennuYJ5H3qZC2VX6/ZkxOte8Kzb3rdiHLCxXVZUvKhdP5zHmZ2c3jFRevAknJAnVUI+bkzRMn14I1wmTLpXC6nGC5HjJNI44Cy7YKO1OrylILmy744D0uOD0ctUozBlt1or5W0iqeSBhDSc0ryjH4rc/2ZGVcllogi1qDs+BsY1AWqSxqIYweHyyHuz0hOErNnC9HHcKVHmC3b5eTiAa1OiOBH61KhJASejNfIJUq5oWqhTgOY2cNCnzZ+o2O4Aed4RsZpk2kw0LQjFU+85gShYoPgf1OkowtbiKuvG10CxPve+DypUGqojbh3dASd5wdtEoG5wXylmo/dDgsl8IwDtQKw5hVgPjayzRtPqs0OFjWiRXbbapxWBu012iwVvQJW+Ugr6syDPuOQjTVj5bNN73DNkfl/HVW0RqrQ9G2Bze5W1phIH2QuFzISfpty+XMukqFOU8j+bAnrgsvHu4xBm30Jwl+er1H664I1KrMP93YH+wwbmA8VbgwQvC5lYO6fd5eHffE3fT1/j7RoFVkApXWmyDZfu/tnz+szD4sDP5VrMEPv/fh9eH3ftzv6O2Cm68m/Oy97/Y/t5e1UIrpH6o8b6Gpvjc4c9s2NrVEwg+dIXuLDvyk1zc6cK3r2vsCVgdMLUaGOvUwE+p6JmftsUAfQjXa/BzDoI1TKYvd4EUUNKGYvw4i+qEHlFoNpahpH6q4UAqQMTrj45wjTJM+t87zWKeVVKVWFUM1lmIUtqBl5oqlV6lOthg5njLLuieXQx9ubWW8UPXlzRXQBmlRtEOGQlPJLMuithIZp9lRLtJ7arMaQ5AZnZYxxRhFpSM7Yk7i3ltkDm7wIgNUTCWtYjdRKtTcWwgEN3QaLVl7enowmpxoRIOk810pqSbdJASN3V76eSUnzmfxUpNNJAdo34RVK4EbsAeFaJyq1zvrZKAVCQjNtVrUPKS6rDcHIqoBOOhj5nniskZCEFX1LYrTdKlVjAqNIYSBu4cHpnnmslx4Ph5Jz886kB3EJscoJb/IbJ+1tssbFdV3mycvFX+pOK0snZO5w6xwWEyJYQg9QHTiC7yXIZfGlkTWviABBesiw3CrkymDpSLTU3ufy1nJvhuMKd3FliigiITYv+ShaC+rQY62Z+1yS5RdV4Q8Ebzj6e0bikKhUaH5GFeaqPC8m7m/v8O1RVV1P5er2kM7fN1NddPwv6proUWyXi3c9JZaL45S39MqbASLroZeW1Bv/mRXMoR8v+kUXtU42vXjiBm3RJHf6etDUsf7/bPrPNrt7/mdHv+hJNSHj7+9jEFn1ux7z99hSHMbuNsk7fU5cyndl2/bNtwo5A0ZffhdGriM94zjwDzt8UGGPqV9E4GWLQZsyRh7K99UsaYpO3hckGy2Fqle/DCQsjCMMrfNatszziv+X7utSMPWx3nXvZdowRLD7v4eUkIVOKnV9SqhuuutaJmLoRKC5/QkfmPPJfLTP/UJ9w/3fPenf4rdYNmWM3FbpPdjZIGBZNvTdCVpJLUhf3p+7jT4YZj47LPPePv2Lc/PJz765BNevXzFd7/9XabdDh88ox95mB7kabWHeHx+5nyOnM4XhhClorSWuMbe2H7z5VsuyyrQYoHdbs9ut+fVy9eEcSB4MRsURlrBmKzB2DGZAR8sSZ2gh8Hjghzs1lriInTanDPRNHfjCtV2uEOycZ3WqlIVN3ZZirGTB/wQ1FakKdC+D9+0Q3eaJvb7PXeHB85L6mSOwV7Zm8fnU6+O7u9fcP/yBU/Pz2y5cPniDXf3M9Nujw+jDhPLLFgf0LSGdVmIqyjpj/d7KEmHcLOI/hqhintXlWEYGVQhpUFaVUk6bdSh1goeYTWqDQ6D136GwVn5HHwIIjbdpHwoYjOTM+tyIctIuY5rqP2LseAsthRlGMpoR0qZdV26dqH0zRRG0uSkFplJHAcnjshGiEWzqqSczkc+//yH5LgR15WHF3fcjTumMDKGgWcdxXh8fKRoBRZC6B5cpYi/V7vvdNubVh2q9Yd62tnq0NAqbt453RAQZL1t66UHrTZ7Za3tQRfEaqkFufbz13tzDR63/22KFLf+WI3+3rytGgzYnqcxZXMpuDD0738Y6DYdHWgw5C0l//b5bk03m8ya0WFmDB88t+wR7xveK8PxUQktzl6f53Q6cTweOZ8vhHnPtRr9nVtO/6rrGx24Xn/0CeM0EoZRxjPQ9oVtunAO622foxIWoOaJpuKVTSZW4wpl5cgwBunJqPuvnCnSjIeWhQSBSEohxsS828nwZhG1bKfZfdVBZINhsJb1dKTESM2JUnQgGjBODoW2QJq2l9GqKZVCXC68e3zHu3fveHp6wj/sMNYwTROvXr2iIoF7i5Gn50fWbeHx+ZEUlZLrLIfDgbv7ewCeno/aq0p89fbCln/I8/HI5bKwvzswTTP7/Z7Xr190R+ZCJuaNZT3z+PTIOIzaCwuYqmQMH1i3lefTM8fjieenhRCEwvzi/iW7/U56dvPMPA2Mg2MePcGVfiDknDhfzsRtY1nOlJzY73fsdjO1igVDM95sTCaKCIiWEPDGgXetcakCy1KFBGWa1lqFXuxWjPVMux3xeCTXymXLpAwpw5rE4XkcJg6HA6miiYtl3SLGGrZ143S+kHNlvz/w0Sff4md+9mc5X858/OZbjPOBMIjArNEB7QrkWnHan3XOsam82LZufPfTT1mXhcv5wtu3b3FO+lYPD/c32X5Ry5Okycj4Hh2+BbRpmgE5nNZtY4uJNSqBJOVu9zMNQ2efWsD65o7QAqzsBZGjkiRhULUOg1oFVRldeHx8ZF1FjHmcRsZBX2eKpG3FUKgls20XXn/0iuAsP/1T3+HVq5dMo9gJrduZvG2kbcNZy/F45MKZ4Abt4x55+/YdzliGINW/C7KXmit3bRVauflzrX1CvmpVa7SPcD1Ob0kaLRBcv9cIL+/NTtX6XtBqfZwPH3MbuG5hyds5rpY4feiV1Z7rQ+X4VtHeBsgPq7kWsD7scbX9cPt4ssFpsGsISXtPTcOyH4imITRyjt6OT2zbxroJuQZEXT7X2gkcX+f6hgeujxnGkWKMDp5K4HCD683GapUhk9u8QwOSaqcGWyO6AIJ1J6oFV2QzV2zvowiMIlmJdSJ0CxBSZpxmGrXVdUbWdYLeALYWyInsLDU5UlZFD6oOYLbABTRDwZwYpwlrqlDMkaZ/UlULZy3BWaZpkgHULAHPB6/yVEap6p5xGJjnvTAtvWd8I/JWucDpXLEuskWZPdtSZLdbKVU8msYyEILHuEbhVY+lqn0kJ9JOPkgf6HB/R8xifJnykXW7YM6wLCv7w4H9bkd5+ZLg7xgHycivNvbt0BE6/7KIl1mz8QjW9QAvWmwiC2XKFSIsg/hGNdRP4B7I2RHQwKUVpHUrVsV8c62kjOhKZksu0reptfam9aHKcK4xlsu6gbU4vxCGkbpF/DCwOxz4+FvfYts2pnnHssnsSqu0mmNuqpVhmtS0cSBtkXVd2LaNn/nZn+NyOvH8/NxnFEPwPNw/4HTttT6d9IYWdrudoAJGrCyGIL25w92dwl2Jy7Ky6aze6XxiXVaFUgPzNCoIYDrEKvdWEI1+bDsrZJcQmPc7vFagpRaRQ1tXvvzyK06nE97L5zZOg6r/b6R1EUgtJx7ffcW6XBi85eOPP2acPCisva4jJYkyjMWwxYqtlsEnluXCsqxsWySoNmHOheILtdorMngDEcp9h6s+oUCaHW2uP+oWJWf7j+8lmX42/Cjsdg0CWV9P/eCr/Jjv3UCAvF+V/I4VSkVZgC0YXR//viP2FUX4sDd2+zs6nGiuwZn6QVDrKTc0JRwZATG9IjVWVFxSkvZC24PWGhWw/l0auH7p3/u/gDF89e4tz8/P5G1TAVLxfMrAul0E7gkDYRxuhu+KqAYgtFFvrv2A4/FJe2eeMEwdDkipiD5hyUhPXYLjMMmMltzgIq8lCVw5jjPUQkmR8+mCdQIZZGNBbeaF5Fb7YdHYhSDind/96Z9iGjzBweuHPd/++DX3L+447HdQIpTMul44Lyu5FKZ5z6tXrzgcDrx48QIQuCuM4g49zTPjNDGPE1+9+Yqv3rzh13/tN/je977H4+Mj7949CaySE3FdOB2fiFsgBM/9/R3zOGExBOfZ7Q9i9DjPBD/I8857fs/v+T28ffuWL774gn/2z36dL774gqenZ07HM5wqzhmcf83L1y+4P+y4243EVbyfoKpivtNB14j3DpmXW5nu7ruMTdqEvr+t23uswqTzKk6ThhQ3anUq6aMfd61c1otIhpnCPt0RgrhEZ0SWKaUiGX+KUGVw9n5/EE8p75miEDLcKWB9YLssbDlTrWH/cMeugh8nTltki4mUC6lk1lUkx2oqzPsD0zxzuLsDbDcm/b/+3/4QT4+PvPnqDdN0YI1S3d3vDxgNXKZUqSD18Nrdifs1tXJeF7yVQfr9/R2USowb/nzm29/+Npdt5e27d7x9+xZQrcFx7PegFGnAN6gU6PYUcNUIbNY2LYv/zrc+JefM97//fa0URYVm3M067LwSl0Xm/krm3Vdfcrh/wJnKx69e8OaLH3A6PnE5PTONomIRt4XL84ldmJjDzOCDGotOxLiqbBQiELwJ7O99ZlCfKj4486v2s6ruOatQuFRiuSeOvcI0gDNU/dxbgtXnG41RpfrSWwitpBOCRqHW9+eWWguukYdqbRVTGz52eG/JWcSX23C7xBHbmYbiTaeloxEoN/dGYKU5EbfgdSsvdStV9WHFVbWH3lRp2mNyFhWX2jacnKLEVCjGa+DyWOPIGHJWRZtyDVwiXPK7NHA9LptstDBip4z3A8Z6YW1RxVDNqxKBdxQbeDqdidvKOARKjgRv+eijj5hCIKfE5fzMu7ePhOC4Oxy4v3tQ+MWLEeQmh0/FSFXjHMHp5Pq6iBBtMYzDnjF4BifyPdTKfpg4ncW6vowTPgvTLxVlpN00Wa0BaiGnlf39gU8+esnP/tR3GEzGkTmdnxh9wTtwpvL8/I5lU+HgYtgd9szzzOFw4Ku3b4TpdthzvlyIJXFeLny+bYQQeHi45//+//iD/OKbn+ftmzf81m/+S7764gvx5MmJt19+jkUo1tuLex4eXvAw75isE/+znAgGakmcT88cn584XxZyrfjR8//8f/1hzuczx+ORzz77vDfSAU6XZ9b1yJsvM1CYxpFpnhiHgYJUPufTGWcc3o3M84HD/qGzA8lHSq5kp+xSHxjCwDgMDCFgjJA+fJCB1+ZxhUKxbrD9C1eJiKL58XJhnu/ZjzPzfubLL9/I4Xk6Yq2XcQpjuOTM7nDABEe28HQ+slvuqMayqhvA0+XM//c3/jnDODKMsyhPbNJXqcZQ1oVTSrw5nYQQYYwo+08TDyGA8/yjf/JPAAnKp0XcvI0x5JTYHQ7C+nSOdD53vckCPNyJn9lp3fjyiy94fPeOL998xfzwwDRN3L14wb/4rX+JVb83rGOLq5IQDIfDDqsQdDP/806gTRDZqPMSefqhyIm9/ugjvvvdiSFYXNjzz//F/wfnHS9fvmZ3l7XvesfzslFrIufI8QyxTuBgK567F98iDDPeD/gws6Qj6ybKNUu6YHLhoxcP3O3vRbm8Jt5+9YaYN2qJzNMLwuBVo1MjlgGK0jUVLcg1KYmpGTganJWD3gBeUYCikHTcIsaKM3QIlpyy7gtDLFGtiKQnOI4D3ksSYq2gMN6pjmSRYCjKHlp51IyM91kqgo6AJFzOiktA8I6aS2dxUjKGjDUO56RXaDDSgtA+Z6HirVFNVHmthvcrPlAFfGXQWmPwQXwOh2HUPqi0XYbBY2yl1ERMq7YgfB+DMdguT1VKYdlEzu/qpGFZ1jPWWcb564efb3Tgevv4xG6/JxXxTKrGYZynGqcsr0o1Xtx7o2jmXdbIelml0M2RyoALA+M8qz5ZYp5nghPLeGc8VV1B15jZogiHCoXcUTDq/1NYLhun48LgYQiDOt0aBu965nZZVmmKN1ZOqZjSKHgNhDcqqWYoCWIRCMsHz+A8tkRMLuLy7MAZoIp4rmxOgRCdVpc94TTSe6hsGMSPa5ompnHkcDgwjoHdbubh/kBJmhlvoj6foyiN2yJVxzQM8nnF2CnNW8qsceOyLLx9fKIa8CHw8uVLUb4YPEbnX1JKXC6LJBBRNBKtPs8whM5U0hoUYwXKmsZZEwnB/IMfiC5qP1EUSqyxV08gNKvV+RyhgSv/yegMn5MvLOSaSCWTc8RYweOds9dEIkexxDACi6w54qexK6vkUsAaxmnSIeLIsq48Pj8xxh1zFpbosoleIdaA8xgnVh8xZ7yT9bumJH5IpfD23TuSstvGYZDqy8hA9WXbuuK9dVZYoFEcfVOS9Wys5fMvvuTp6Yl3j4+ic6fEnXePj4CQCg77AzFtqqiCwo1CYvLqgND6pbeOvW/fiELMOM6cLwsGy/PxzPd/8ENqhcenhZevP2J32DMMI19++VZllSJxuRDjwhgMYwjczQEfJoZhusq4oRWeEZ+9BmFaVa+XgVo6NA5iRGlaUn/LRmxwnP6vqJKM0lC7xl/DDIta2+eScBiKzZQifVhjK6ZUUtqECGZEHNspnA0qINzGW9r/KcTeqiK4hSR19k7nAJ0Vk9n+eH1sZ/CZqr+n9vVuzPUNK3dCyFAdGbxCklf2pe4NI/Bp+8FSKsbfktOMipbX/ruamEvV139rWVRrq/Lkq5Qk/l4/ImXyr399owPXb/7mv+ThxQvG3awltMXba+Mzxtob8Nu2sU0Dy1klYpzBUvEerBuY9gecgXkcmUOzSKissbIcTyzbxvNpIRWoRuR4hlGywMv5QgiOuK6s5zOH3aCDt5XBe9X6E9p75olYBIoSMokqaBuvwp/aALaIyjzw1Zt3lJyZBs+3P3rgbh65v7vj/uEeb1HDECEsChpxVVFoiu+1yhDr6XTSwdjM6XTqCzd4T81N363w8cevaQoD6+XC+fnIer5wf3/PYb/DhcDppOr6VQJDXlcuy5k3797ywy++5LKs5JI5Hk/c39+z2+3k5w8HjJHAScmcnh95s10gZ92DFVPE5yooTLWbd+x28tVU70vOjGEghUgK8coApY0JNIPGG/kiC7UT8gvV1i5ab52KLacsQuuIiSdVpLdathpXIXMUY6R35z2XdeN0PGKtZbfb8fr1a+ZpYllW7dWsxFRYV6n+zstGzLk1jHDek/UeBWVFvn37jpISb778ih98/zPePb6lAp9+8inj/CT3OGZSFe3Ny/nCvJ+14sq44Pj4o4/Z72UG6/lJqv1qKufTGYCUIz/43vdY1gUMvHrxWoI4lRILwzyqRJBhnAdRC0dIOtuqAdIb1kVm2w67A5/94IfkXPjN3/wt/tmv/XNO5wUfBn7u53+JaSfGr+/evGGLC7VmxuBJ8cxu8tT0EeO3XkIVFmIuiJak6hA+zDt244gfPOu2clkunNdL94CapgnrDDFHSlzxVnT1qE3BnmsWp0xOqumOAU1tRioacbXOOUp7AFEuLjGTSqKmTK6elB3rtpCrWIvUnCl4nRcsNFOZNo7Qgqa8FEmgGgGkBaZcUp/TqyR88ULGqPmqEKOKOPJSJbBKxcUVHmwBTWFRrAa8Wru7hcR9GbZvbadcMqZalZEruNqgRTqsaYyYxTYihrwW2WvOBsZxotrAfndgmiaGYVBqvVS1/4cqZ/yf6Rq8w5smMCMDc4OT4c6UMhQxRqxZPH+sFRZUbQSLGzrrfrdnGDxlt8MZYXdtWyQtZ2KGmC24AWNluHlLlSWtOneSKUYkelI1RCzJeIodqGGCEKjWgNkoNpCQbL3ooq1WF4VmjlZxYEslhIHtcuS8JB6fL3z8+hU2zIy7Az7MOCO05XkILIsEKap6N7Umr5EAGWOUHl8RDTd2O6Wpnjk9H0ULL2dKyhwOBxEt9YG0yaS7n2YyhuNlIR1PfO+zH5JSFl8uZ3g6PvP28ZHPP/9CZs+SVBWn5UK1hssq0klU2VjbFpmCE+Zk3Khxkz/XgjVV+oS1EJQcEJzT6lIIL9aBD5KBlzKQfOkCvaLGbqiIqnibtUkpYVJUma2MEWyVSlZtRGksT6NAHTltpNRgMhGPfT4+47z0uCiVfFnZzmfO757wQ+B+3vPdTz7lxf6O47tnttOFeLrgQ8FXRwgDJhfYJIiMWIL1yko1zDbwMM682O9J28Y2jczO81bhlleHO9wg82hrqhyf3rGtG3VL1MGRLyKWyxzwpTIgvVdXxFZid7fjW69fMc8Ta1xFcDdulFqYnCWM4sZ92s7E80kCwjgTAEqmaqVhc8KWhKuOyTvmceAwT3yiDNfnxyce7u/6vNlHr18yjCPVwLacqSdZr6YWatzIJhOXheCs9IJzwNSKM4bRB3bj0CHidZPB7mVdBQ4bB4IyHHFa1ZeCc822A80Jr2QEYw22WB2GbfWXKk5on7CUjPVeVCQYQIeQcylUW3rwq8ZSxSQNinidYRA6ufdU76hOfrf0h4TVaKzB6sxcLaWTIJIGkkTFO0OxkC0ko4mYMeAtJjjwN+xkdE7SIJJNRh5jxW9GxBWaNJewu6TXZ/U80rM0I7OmuRS2nPC29uq1FQlNJFSMPitblN7atl1V9YM36latRp85Cb2/ZE7ny9c++7/RgevF3YFpnlSrtWJrxetNwFY2PeSEvi44cfGOWnz3jGmUWWsd3gUKllINuaj1RTWaERsGK6ocqcAWsw6yGlwYcEGt6r3YXFfrKEb+W52XBV0rGUupWnHVq8LH1b2ndpYOBoJz5Lgpjiw2G8YK2zEmsWdwBrCeWjdKlrLdaoblnPhQAVDFIuaWudSGcgENwokco9DEjcWEgTAMVN8GKsW2JabIliQguKoDxbqJrbdULIMRTH+eZ6GBG8PpeOJyuXTlbnvYEwzYItTomuXL1IJFKx0TRHRVyS+1FtmQAB2uuMIggnAoZHRj3neDFsnjPmCKNQaVNN0DMRZyysRYu1SS2M0n1MlR5KSAmgtp1X4ElsM0Mw8jwVhqSuR1gwwWSx4G0rKyrat4eq0Rh9KLU8ZVGJwnqJijNwYHDFbgsf00Yby6StcVUwrBGoZxYPSeYsXANBjDbhzYTxO5JhZ9r6NzDM7hrSXVCjlhNUDspxE/iADvgtisWGuZgmdwVubAaiFYjxugOIv1jpILUxC7Gqt41RA8Tv/uneVuvxNpIgPPb9+ySKee+8Oei4kEh/Z5mmQu3b2hCcoeLxdMrczTLFWUNYRBzFHFBV0qKeN0Jsvc8jKucmrX9VB7ILIIQco1pXtj9HttTcn4Sy5F4A0147Tq0yXKIk4Ht5tfl1Fpqyuj1CgxqBiDuCIouSLrHFYVFjTWYLxVbUvRt2zzfhhxEDCqA2icDvgbjdCKkxsNToICmt6nbJHctCrQSgADJJlun0/fW1fYHhpM+T7smlKVBL5ZTNVWEV7n1FJUzcOc2G5c7X/S6xsduD569QLrHKfjmVQ0Czfqfmtrl/1xRpk7VgIXVeZoBK9XMzVjsdZjsGJat2W2KGrJxnmp7JwnVXC5kNFDo6KMPbHAiDlJEDGOYh3FeXBBCAFUCo5UjfCNyvvBy9iqzVmrGDJYb9UPamAcd3g/YowjJenXBQvBiSp3SjI4GYLtFahzjsGH3vRvTf2qFVizghjHUQWHM7HIgc1YO3NMmEGZy7JI5VJ1Y1kjPlTO4YYgJpN3d6xbYjAyCH1/d4cPgZwyb7e3PD09kVNiGifs4SBJRK3S+qtVel1GLDWKbqbgvcCt5YrbQ2tD6BF0Y2NSW2+B2wfK59T+3uxIWn9IZH+kT+p9UHhPpKhCcAxjYNCmsykZW0SSyhgZbk7bJq+zwjyM7MIgHmqpkDdxIKi5MIWR7XQWa52cWF9caGhRTRlXDaPzaGcDR8XWwm4QyvxhGsHBUiuXWgjGYMMgMlSDo6yRaiOTD9zNMw/7PWtcOFs5wIK1BMCVQk2JGje8VvcP+x3GOWKKPCMVRzCBwzRK/6yKuskUJkzwckY6S46JIQRcrVKROTHtrFWGjP0QuNvvONzdS7/tB98TmNtZXr96wdEXbM0MqoOImq/WGskxUVJiqZnnx0dyTLx+IfOAznvmee6HYKkVx1WXsamfa0qIu6m4qC1oSUXoDHhrAdelskzzE9NB9Fa1C5JRPjA/FYafVEWuH/wVZK+0BJKq5w86eCrQnTE6k6XD8laTcOfEjRirRDMrgaz3kZzD+tCZpsr+AGRfyRBxa0FotaRJpanX71/7W/0jk0DumvPxDX1eH9S1CisyNmIECUhqESMKQyJ+0Aahc5LPO+pc19e5vtGBazudcN5T1lUb8A7yBtVjcsZoBZayVAgyPyA28JSKH+Qg8sYy+IHgAqkmgSmsA+PJKbGlTMyFTBGvIfRA8UFmcXLF5cKWCmusGDJrzqRaccNA2M1CW82JagOpynxQTm2SH65N1CrwnxEwMV4iTtImnA3kVNnWwmqyWFMYI9DlKiwwY5xAl2URaAtpmDcrEe8GYtxYlpXLeSVumVpgCBO7qeJxkCSQU0R53RpHNplcKmuMWO/x08RHn35LKoIQmA578IEwTIzznjdv3nUlgZIybhgZRs/rl68YvPQd7vZ7Xh4O2JxI5xM1LozjyDzPPBwO782zSNU2Eqzh1cN99wQ6DSecE4CkIE1kLNq7Mphqu5RVG8b1Pgh8SsVWef2tKm29LucMRgFdayy73cg8XxinkS1G6haxdmU3H/AD2JiwqaK4MjYVBhwDjlANdY0Y64QmnDMuFbzCsr4UBiQB2vmBj1685NuvP+Z+nlkNnH1gNIZvvXolHlZICzSVgkmJF7udSDrlwmA8k7PgPTvvGIwhaJdl1qrgo7s77qeRQuEUI5MxzLsdh8OB1/f3bClyKZnJSDUzBvn93nucBoJ9CB1Oy7Vgh4FxGjnsBoJkIOwGh6MwD57/H3n/8ipbt6X1wr9+HWNExJzr8t525s7L8XhE/VDQgiAKFkS0YM0/QMuiBS8F0ZIimPgPWBMtiSBYE0QEEbxVLH0qHjyeNDXN3Hu/l7XWnDMixhj99hVa6z1ivenhuF8r30uOzdzrnWvFnBExovfeWnva057neDwRXeMwe4FKc5Y9WgXSD9ZAbeS0kdcV0xI17zhT5XCtlZenM9fLVZEL6eF57/HNj6w+F7Ee6h5V29Z9sroz9U2TL5dCKoktbaR1k1m14HDF0lUORX5LKi/TVK2lCIEn5yoVv5WA2foCUgWbpmuylCJVmtF/l4ghleEYzagyDA1QGjZEujSccx4b5EwqGBxCPupScc2gparO9tkmqFOTfnwtog8KjVwL3t3JN3VZMGO00pL/FVNwOIxtMuqgJCV5qAZFDWoNg20QqtDhfen9ZIupjP76vu/DD6yZNpCe73J9rwPX8zffSLPXStbjgmdyMnhpasHVItCVcdRmCcZQncMbURVY5oXj4cgyH2RAMkbBmOvtwByQIihMpZmK/hsqbWKG1ptU/kZZbCFGov7uUouI2hqHQRb9oOt29hwMApGhycHmjBIR5SAW2R/R2LNG1DXWbaepgsR6ESiuIRXbNM1aVViojW3bOZ/PetiJqogE9Juq87aKokJJCaOK9BjDZb0yLwvRReZ5ludwThx5lWVmMczTpNmuvsdaRxXotYcQnMc0JWFMkWaaUNmdqLjXu8DV/Xx6D6DVrrBf1RqmDo2/OqquRhePlYzyHiRCE007+lc0Nea8C3JyrnarCPGvEtX6gjGOqBVwzVWHwWUQViwpJPsPOjJxvV7ZrisGw+XlzLbtlFa5vDxDrfgYhCW5XkmrkFVaTpS0U0sSe5iS+ebrLzFGPLo+vHuHC04hzcypHMUMc9+5nAvffP0l6/XCnjbWq0iDlfwo9Ucp5H2jNanyTC28PH3gcr1yuV54fvog/eIt4oHD6ahKJlema1TfqMKeRaXcWQSuV6am95bgDNEZgrOcnz4ICuADT++/4fz8hKFRthVTMgZZC1MUFXZnEo5CC56SHaZlJa4YDvMsXlu6Bugkg344tF7F3CqEVhvN3h7Xvyw3UdnORr1D224i3U1YkKUI+eXeQkTIH9ydGd1pWP9bwpCs5/8BmU6Ogqb7qArT1Zhx/ty2keorat/6Y03Eb8F3d1XRveqGkZAkfbDOaESCdIf2xj7qPmPGUEr/XZ1axniPTSF2jFUZt35u3uS1usSWtSLO/W3R3p/m+l4HrpcP77G1cHx4JDqr2nqOLSUqVUgbToZQaWb4a1VjaRYO88RxWViUEh5DoKQ0FqRBqObOQLUySDeoqyiWjwQqZ7ugaMezjcJ8YicyTRGxQfCDrdc3zm12S4chJR6KDFWpMluBbDCx8vBEH5jCRGuZmhP7tkmTt1SulwvX65XaZDg1vNW5G13Q+7ZxOV9EkFiZhL3B2jdiyom0J7brSgXCPBGmiW3fiVH0+UKMwpQyYhXfAyCtEX2guXYLwnqQWASusVgNXALlTiHSmlDtg3MqIKSb764vAZCTDAM3GBtiCAe7mxZbbff9LzNONfEdku/FiVoPl4aIyapxpg8icltKlopbA9eed9Ztx6BK80XYld45phBE2aM2qDLnE71niRPn5xcu65UYI0mJMABpW9m0N2AncRHYtyvUQs2ZWrLoCTqLaZWX5/eSxa4b18sLIQZyLqSUxBqmSP+l7DvPH96zrZfhbOydpZUiQ6oK63nt/1oD5/PzIOys6xkwtJKEIBOcqIvknZrTgH+2bcXyQD0skoQ4ga+CNyxTgFqYg2O9nkcmfnl5YV8v4mlXBKZz1hK95bDMeNuIvmFKguqp2YG+VuedsHUxkqx1FKW1j9ZaT0R6ktPuA0a7BS1n1a6l/zm83LSv0yRYyBpLmshIYkK79YngPhjqfjWSOJteabVbf0g0H/uibCNI1FJoXfLp/iV/KwC1u/06Alfj7r+FBNIVZjoC4l3QMQPGPoKP+1XfVv9oCBok/SuDMbdA2bkC1op4rjE3K5meOHSpqB4E+WhH//TX9zpwsa/U1ZG9IzoxIpwt+ODZaJRs5PBSXLjTSzFSWcTgOcwTh3limSbxm9JmOjlhaxU2jZcqwdlKVpmeUiqZW+bhFU7zruINeFNxthFcwzqhZbcqkIDVisGWimlViQgG24wY4tEReYF4gmlEK432x8OBV8eFh4PAZnlv5FRoeybXTNp3zucLz8/Pag0ysSwHUf4ohcPhQNrEUdY2RNE9iZRU9AHboE5ZGtTaqJZ5rIhzEaKVCnXSXhkCKzofyD5jq2FrG67JBgmqXDAphb3YDRckSfjszRsmZ3G14kpip0kjm0baVgmmTfoIRI/BY0zj/ftvxDLFWfZ953y5iKP1vtMoNNPY8wRWFTjm6WMSRqtCKW43v6Wu1XevRjBPEdMctRjW7YqxjTgH3n7ylrwXLI5PPvmEkkW94+HhyOPjI8ej6Clu24p18Ph44ud+7ocsy8zleuX1m7eSDWkVfDqdsM7TkEri8fGR00GGeEt0PBxnfttv+9+l59HasKwXvbov1KtL1vnrV69hZLlFZLqMGf3M4+nE5198wulhppRAKW/4P37rb5FeaIyidxjEaPLzzz4RBRLrWJaZTz6R79d15dNPP1XDzI3n52ceHh54/fo1P/jiE07HhQaclpn/43/7RdZtw4fI6fRIV1n/+R9+Ts6viSHwW37h5yj5ChSCbfziz/0stsmYxIf3Xwr7Ljgm50Q9AljXVXqEKQ03ZlCmcBM4zRvHfIgSbEsh75lhi20tVq3lm3OgEm7RebWO7BCapZis2qWS1FojdG/jZODdO0/B46rFFpEzsgZcMwQ83jqccaJpzC2A3h/fIrQhaj6UClZep7FixWS0F9ZygSDmsKYHzdqgoLR6hASkdkN9vKSVJlZDtdGC6jK6u8DYhNxWe/9Ne+JDhcZJsJIAaLkvlvowcymVasoIsIbbGEofwekBtJTMnn6T0uEDjbxeedo28r5S0s5xmYV+6Q3FW9aUSLtosyVlwfW+Unp8pCQ1lNSF33JiCQ6TpVeUihigDTitmZFROZqqbVyw9SDNx8sZoiPvkbJFcrpQdk+hUFKh7lfqdpVDeU8621GVJWR7qoah0komvTwTDxPmOBNN4xClqvQ0yrZRU4KcmHxg34XK6p0j+kiuUgnsKgW17Zv0q5K83z0VZfcZop+oJtOKNluL+JW5GIiTeE9Z7wg1MPmIw7JvuzTDnWOKE9EFmqsUm8F5EWG1jrLtGCsMrNkFptkyxcjjfNBs3jHPEytqxQLIHZA/RUA1ME8T07IQp6gDqI6UEsvhwHK5cN1W0eabIqfTaRjm9d+kv042oTUiFBuc9M7iJDYqzo7DxBmHcxr8ghd1+7dv+a2/1WKNwxqPM5GXlzO5FpbDgePpxDSLbFKuGWsNh8PCZ59/Qpw827bz+u1bgiZKIhvmZVwhC8HheDwwzYGffPUj9m3l5fzM8bQI3GsMp8ejSvE4piny1VdfDwjmdHoYIrsA3ku234Va5d4ceP/hncDK25V5kRGCaZ5Y11XU2Y1hipNIbuneOD0cSWnHOHj15hFaI6VMiI5pmohzoLXC89M78X57fs/DSfzj4hR59ertyLyPi2gixuj5mc8+5Xp5puQNSuLN44OolLx84Pz8QmtScUZrKLsQcNJ1I/XAlRINITYZ53BByC0hSlBJKKmEQhnEChQ+rJCVxWcsWJllarbD/5aqVOK6q2Cus4TgZaZJoWHTGqh1TO3uA70aLw7rGh4rUkyCSg9YUjrYisJooBHm4V3l1pdvE/0Cq4/vX1RBM9rdz4D0v7yx1O7irKiHVdSj9MHogQJJr8saK0m0NQR1Jr+ZTYqggrmDJOWr9/Hkvjnvod188LqAtsC7kvx/1+t7HbiiE0bgdbsqW7RxeRHKbTPgKNgmfYK0XYXCriwYjGVfV7brlX2TngDOUXPCtoJtGVsTbV+lYZwSpTQVstR+lAHSTtnOJFvJaafsV0y17JfAOjm2y5E9WKxaSpB3+b01KwyixmudDOFkPsm2Ri2Jsl2prtL2BVMztlVcq7gmEAslY6vAibLYDcHL8J/L4r67b4mislI5ZYFBmyHtt03sjAPhUII2fzssOYVJ5Fycw5iiGwVah06NbChvLdU6inFYK6QGpxvIKmtwch6sYwqRYB2tSWM+eE8NAqdWhStqczrLpsxH/Tocj6IKosoQXaB22lbZXN4zzbNsMKDkPoDSPzrdbLVSikKPuslbU5zeBXI2lNzEY6pWnHccDgc+/UycnQ2O60UMO+d15vhw5HA64ILjsp7BGS7rhVwz8xJpPJBL5dXrV0zzIhtbKfvy+SSBrpwl550vv/4JJYnobpzDODhCCGKEqsPZuWa1amksx5u2plFCRa80WxV34Ebh63dfSVWWEj5YwuSI0QNxzDdO80y4SnKwp51mqrB1ndGhbpEBmnfpN2Eal+uZ0iQ4vf/wQUxCnRP5s2DJRjLxOR6x1hCCY548NXsyhUZlvV5Feu39O7755muMkVm+4xQxVYKM9NqkKu9Ql3XCHLZN5N5aMuTSJDlNmZaFndi62zhSgJkix7qplZpFzQbXcO02zzW+UF5F1cFbaTZJj6oqwUIrD6lijJIvGEzBfnh0NmunjfeAY7gFrW4g2Ks0p5C2QOx2/F4Vz9D2hcV1okUDqwPWVqNkD4Q9CGJuPfumfTOBjs0N4rc3h2RrHZiKqXfCwrrB7sV7NYbdwfFmkFiGkO93vL7Xgeu1Ms/cBdbrhXeXF56f3vHwKAdDPCxi3FgTtsqcSK5yCMUYef7wFSVdmaPl3eMDc4yk7crLh6/YrxdqTpzfv+dyXdlSEmKF96KAUUVnrtVKLDvlvFJLxqbE5flCvX5gffqK2Dbq9ROOxyNznIhm5+ArzTTWVNjzzp42JVIIZDUhDryl7Li8kp6vbAH2p/ecv16YyyvCm9diYGhE5Wm/Xmm5Yisc5iNTOJBy4nI9s607zntOxweE3GRx1rNeN/VJsqQqTedWYY4zsxfjQu+DHNIdo8+NXBPONeY4jc+irhmPxZiA8Y3U8f/SmOOsvQODGvXgsKTLysNxxlLJ26YCuLeNHKaIVYHW4/FI1IprmiaZXbEy3DjNM6eHB/ac2LOI1+ZS2NdEyZn1cpVkwFqZtdG3Ulplz9vwQUq5klSH0rqA8zPOB3yYsG7GIM7BcZbxgJwSa1rBGZaHAz//iz+vbgWN//if/k9s8FwuF7HfuF6GTUxcIs4bMCK4a63DRc90OHK9XPjw8o5f+/ELhzkMmZw4CxmmB3Hoc3eJ06sj5/OZp6cnYg3gAhinfQ5hb4UgA+rXs/hXSZUv9ySEQK47e4HpIJ9pa42Xy4fBBrter3x4fjeg1R/95L+PTBoDe6msLxeeXt5RUh4/Y62wCPM0czk/DaIBGBE+rpUf+540VSyV//R//n/58P4bvvrqJ2zXF6bJy3DzNFF3kTs7zBOlFEIIPD4+Yq1nmRceHh54evee8/pBfecKgxSkQVxm9frQv1FWsSenwr5teOvANam+rKjSeBzGT+Jplgtbykx1EmisNRyGlqsGIEvLcpTPQcSJTYG6F/Eu08TAcPPPKhlMMdiq8CIOU5VKvt8EE2Y/iT74Vpi9GorWjIsLpihUaiQRLKWQS8ZVI27rTXpNVoOZ9FjVgwsI1ojowr5znCZJpjZJEI7hNOD08RHqOtEZfryXuVWrhLV128g9uBmjpK9V3bvL8P/6Ltf3OnB9/slbTqcj8+GA9U6YfN7RnPjHpFJY98TxdOLV61dctp2X5zPn84WX80UD2MTDYeZhEVHWrW58+vpEPUVsq7x9PLClRMoZjGgWFp3cV4kLrLNUlCqbEtt+VXgp8voYmUzG7mdKWjl5iAcP1VFmR8kTtSzKYurNZVGftyHyw7e/QCs7b1898gs/+IxPXp04zgHbCtRMtBYXZiYfuG47uRSOcaI1MZADKOVFSAc2cFwOTDESQuTHP/4SaaaKTcfxcBABUafOyFqh7fvNkNBYGda21g5owhgV4TTCfizGksuNveWdVZzf0vXJnLVE52TOqaHD0v2gdlgvNhrWOWHbdbkY5H0ZZQnW1t2HK6l7c7X6Uc9jmiaht1tzC446ZOmzJYeoGHzFOGV9Wo+PCz5EfJyJ0xHnAtYFwNOazNtZozTlUrm8nEVloM8W5cS6bnyyvsVYw/F4Yl4OuOAHtLKnRHeXtdayrSvrunK9XshlHRpvU4xD1NlZe3PoLZFcZt58+hrnfp4Q48jkcylKppQ1uq0b27bx8PokzLAeuJRBOayA9J5mDeg9kSjqLYUejL2q6z2kLpPkrFCw1+sCCBnDWiuVf1Y9x1op6nhddoHFDRUZdyzMU+STN6/IjzNBZ8Kc9qiNNSzTrHqcoqhijTDlyHVA1NlYruuVEAI+Ro7LInJhymrtVhtZCTCCdJmO1iucJpfyKuR7rZBLytxsTRjkKpB12clQFelxOyPaYkahvd6LRIkeFgmixjmp+kwbhCzTqxYrkF+jUYbrO7deVqu3ykZbBd7IeIRzlqYkoj7P1sYrhqprwej+rNpjE4NXqTzHcDFFNAeR9SVIR2Av5u6eFjBuiCD0/uaedvZdepPf9fpeB65P3rzh9asHjo+PuOCFsq06s0VnFvaceXh85O0nn3DdEs8vL7y8nHl6eibtGR88n719zZtXJ7xzXMikVw+YlvEWUnoYcxjNGLGmyJnrtsli8o4Qg1Q+tduI7ypI6ZiXWQ5LDKaCe/tISfmGr+tmH2rNtQhGXsWW43Q6sF8vvHo48frhwGmeRLS3SZ+qb9zOqmpVsX5rKLqhu0KEdyo3pAet7wxH4zT4yIxTVK3GbBymIhCOMpYE+1Z6b4cK9f05Y6gKL5RcxgYYbC/FzOVP+T3WmBvUY62aUspoQyfVWKXiN0RNv2U6JiLgUhO6cq5lSPfcoBh5zdbpQWTlv3tUdc4Q+gHThIQic3we72dciPhpYZqPIvPkAs5GhOguMzvOSwW0Xq5ctlUgOWNomzzEaw/ocDgyzbNKDInOZSjd9FCYWSFYpjmwHCJ76hp8limIqv04QAYVW2aFxARyUuV7JWeUqrdJgnacAkuamA/TnTeSHVY/nZ7cxw2KUq+NET+3DkcKdNRVGhiHVGtNmZnCXNymON4bBtbLNtifwphVqwuauF23gjUNWiQvkeMhkvOm+6KSVFtTqkgRG7bOqVamBI1WC16l3Zx1tFoweOlJWzd6UjTGTKZp99CxmCAaxbk6LR06UeI2e1RU9Fi0+braTQ8ECu91lp721k2HKfVrMALv2YFVtQKVlWc1mHT4rWkU7Xse7UnLR22knaF/b3Rf9YDbVTx6KO793DEOoH092xGSsSbu4b3ykb2NvHUhb9zOQE1QNBnqSU4f4O7+id/1+l4Hrp/72Z/h8eFEmKIEjtaoFGyUSfZpmXGTNOvjNFGxbNtrtk0GcNOecc7xyWef88Vnn0OtvA+Gk13xpjHF24bus0DbtuvPrxiF9uIs+muM7EtnGpAh16yT/yUlyChVulMPTCffUrLAdXnbRf5IA9n7r7/msMy8Ph14WCYMjaqSSd4YgjWsObNdN7aUwQqEU3IlZyGUWBzOBbwP2sC1LNMyqPhU6XnV0qhZhj5rrsJY7H1BpBcm82RGZllaw1YwUZu7tdFK5XpdsUbmmrwGqa4XaY30IoIexLVxJxllBd51fhyOrSIzJFQsBSfIkoqEMgLX7Y7e1A4kSHLLijVwyX+bwUaWB1iW5YgLoudmnQaqOBOnBesiziu70jhqNXx4PuOCKLBMbSLVxJ6ECLNnYfs5b1kOMyE6jBFadVYbG3S9yJoRWacQLYfjhLEnnQfU5ARpardSyLWMRjzd1NF5Ui1KsKnE3nDXtUtZELuLm3X7/fr+2CjwdvW+Wrd/H2uG22E25u2MFd3DnEnbfts7wLrug2LtrBVnBAxT9NIb0woMGjXvpH3lcjlzubxwfnnhm+dnscfImXYsxBh0yHjDy0lOK0JwabVSgjgXiOeerMtWKkUDfsnCEoSGtYZty2zbTvaeUAMhAEYSByyj8mlNEInz5UWSH0TVwmnCiJH+bzWNYiSo5FIwKY3qs6MH95TzXrl25AZQePMm0dSrtNtnJc2tlBKtda/B3oO3us4R+Svdw4MBWOtYA12A+uaTJTOrKLxY1SZF4D1ZX7loBY5UVphGqo6cEtu2iVOykbXTYdpSCmlPo9r9rtf3OnBF74nBEYOXaXHhFoG3WG/wFByZ68uVb75eCWESeaYQePPZG4G5rGNZDszRUnMh+sq1JhqFsu9UlUjp8kkt75iaMG3D1kxLllw3IYPo7M+yHHB6KO85s5tKMZVqIASpvHJut4zNKJvHI9mSj5L5GHEGJl2YYuQ0Rx5OR5EXyhkLA7LZtvfknMi5sK/ik5OyKFjP08TheOT14ytijEMvrC8op9BK2ndySpyfnskp6aCzE9v3JsQFp70lyST7weyH8nMF7L4NRp9Yu8+iUOI8HqMzM4bmDLkJYSBOE85bcFY2uxpBGit/540bVexQ2e7Vmunh6i4I3MnUuD5wh8KxI7M0o4fUN3CcgrD8jMMYj0RJFWE1mZohFwmhDSEXyFCqKLTnsmNsY14iy+HmJnwvNGooeA8YoaCLCaNWh/ZmHXG5XvQ1y1etdfQ0rRIHPpbiqVCSZtmGGP2YG7yfubHWivi0+NXSD0XJqu3dveqHn1EozI1/H27ipsuV9eFyh9GgsF/XceC1WgleHMSbwmKdXg5NkgtnMV5MFWvx5GipLbPvV+0HJiFguIkwReZloTWEbq9knYLIlJESFelp25Kx2ZFr0UFnM+ayOgwq60kqeKtjKEXr6g4D0gOTki7qWFaNbh7UkPnO5uTxKhYoKvMp4YLIx4EGr17dInN1XQc0ZbGtadbgVPigEzcUUwBduxgRtK5GenG42+/G2CHWW6rMIjqqDgsz7Fe6K3Gpogyybqv0rjCYlIeppA8L3pvbOspZVIDKTi4buFm8y5KcJVg/1l2XmUtJ+tD/K9f3OnAdFpm/ilPEiL8HzQhhQTIkaYDLPJX0joSY0JgnT1FFhLKv5C3QlLX3+HCSzN62MSPSdP7DmoYow6hci2mYlgWusE3s46uKsBqgJKxWT9Y06ekYIS2MQT2UfWcaOJFtEg8oC1QZbtYDuUM4+75Ln0CdZyWbNerdwzgsqg7b9kN9lPylsl5XoYAbGd7Gt4G10zq91Y4NYBRyMsZqj0gkpVS1ZmyoCrgQRHA2iLGnCIKKoHE1+thaRXFC6cVySqjSdZPDwyjNu4LOwegpbtDX0qHG1lV0BCbsMKM1QoRojFdp7gKd7t8R8LoPVTPtpl5g5fOjitq8vD7RPXQuDFHifbuQShmSQz1oAOS8j/8uWZyMrbPq2SZVgSgViJQP1jIFP1RAauvqEE2HWrnBof2WaHY9gnAM42Dq+npyCDdCsGr/1rN2uYuCDN1Vov2TrWCoA1Hw7papN25Qk7disFqcoZUsFjGatIkdhgbRUkWUlUqt6unWhYyDpWRDI+O8wwU/FGjCNDM5z8OrRw4PR1pt7HknztOoNqy3w18tNxEiqAZh7HpJaNB1WEsRsgANGzyTuw2gO28xyvzsoJoaAcva9HooW0Nz9iOldYkGDdusED30Q7LOaz9eleT1MxEFd49Y6hnQZMqHgI9B4csxli/Pa24wZquM39t/92g/KHPVYFWRSitwY2Se0Orz4UR3tHlCi8r+M2ylDaZvf16MwSkBqDWxX6q1YmxTEkhVBSOp7DrK0ANXqfk3Lx3+dDxyOh5kgwY/glcmi+p2zZSWmaNligv7nrGuEYwEspbV0HA/401V+mfh80/fYm2jlcTz03tlJ2XF1mXgttUbvDLkoZoErZp3KPLhVrVVMU3gik5Q6EZvgtmLXJDRAGMVFwZIqar1uKpeqFDl5XIh75kYI957LtcV7ydiDBjntFmuGDqykHIWBltTAdPnp2dR5miGw6SNa2NFDHYoEUij13JbsB21EEABtbkXOFHsGEQHctBno6jjN4UFe7/M1EKqjWgD0U0Yx1CorncYPXQF/VsAF/V3e1MA+FZVgcKA1hp8uDHsdApc4CO9r/fXrhYuxjpc7FCco3YfpGooVZlUSEWa086+rWzrRQ5A50SKy8uBISoXq1Z2kqU6Z7DGYwlD7qcofNgr1XmexSqniqZhh5d70LqX1LmNL9ygqClKUlNrJac64GWcGDZWozI+rdzdOzuqv3sYsN+/ThKw/ezra3g0bRrORVnrzpBzD4ptaN0BVMHMaSXJEIZp6qcljMtkG6WKuGyIkekwc3r1wCnOHOLE4/HAcTmI3mDNTNMyekbWSOWGM6QmggDVGWxwhFkqapCKP6VE2XZKrvhlYg4RYzy9hWfsrWdYW6MWHdUAbAy34GE1YBkrQbL3LeWZGExGaxQy1yfQTM7SEKKpx8Yy7rVzTpycde/dOsIdNZCRj6qMQhHdtXTyT2uN5gR+t03mzXq1hdXk21rwmjDbSPRyn4wRp4z8dPmoTzXeyw1nF2HgrFVUryKLaGnmLMII+76D9+xpHwPJ3/X6XgeuH3zxGdF7LttKqRlSw/nuWgvEgHEREGbPHnahHvvA5BvpspLXlfWyMnujckE7uTidBck8X154fnpivVyHukD3BOoeOrmUwZox1nJ5fh46e8IokoawN0aEUav2kLSSq7WRzW1A72MMu8rQpzFcr1fef3ji5eWFd+8+sF6vHI8nDscjpVQ+/fSB0/EBjJGZIOdYt43r9cq1yWZ6fC2294fDgWmaBqR4Pp/lvRlRcljmeXhz5VYJIRKiWMgYrWyXIAHSWIsJEWzTjRfAolYPMggqsxwCbQjD0AxvLeesDovaca+6uV4DqZ71/mAN1nqtpsC4oPunIQxJ+bmuiC3Jq4I/3SjP9EB8U5kf97wJHV5NMUaAABVcbYakgrZgOUwTwQHB4k9HBP+XWRjXJFEwztG89hBMw1uRAgvesyic11ojG3E7xoqFfPAWk6XSr6Mj3zTzlv+uTXpe1RhaNjpg6gTGUwFbGbJNQ87MWMOiDX+pfspHAbxpgOxN9t7TMtbiWlMK+e1gLk1VHOTOy/xhzmSFj6T6l3XTxyJSkQoO04ghIMQ3xzQF6Z9khj+a845lXmivX7MEsW5xIZCN5Id+nlQZXV5PrQ0TPGGeOJyOAh06y5oTZdVelaqY11ZpXntBU8RN08AQqt7j7l3VGlTr6NWpsb3Wlyqo9kB1hwb0oXE5dzy1VFIt4x51sotUY0L2cjaK6PNtcY71WXoeoIxDQ8U5r7BpHedGKlkIFK3SLHh1Y+/7otGG8G4zkjC6KeKVyXtYJqY4YYzn6b14sonQbqO1rM0wQRZQR4tSjThftD5DdkOH+liFjXHc99+0c1ylFIoxtCqGfFhlnbXuDyUiu6UWVY2WgdpWK5ez4eXlifWysu2JbZtw1pHyhndi3mZp7GpFf75I1nFAGFwGYc71zW1ilENKcdwhOOscPgSw0hvarldohWDtaJKWUpTR5+X1aQ9L5jAq13Ujl8bT0wvn65Xz+crz+cK6rtrFE92/67phjKNbwG9pH4um1CoT/1Mci/t0Oo3Fs22bvg7HpI1Up5qBrWSBWLxq81mBNa0P6n+k5IrWRP/OQHNWjOysmNJJllpHdWBU8shUKd+2lChVZLWcFXZohzWbaZIxGoPJRuSB+uFglapLu+vHCBNrZM06oTka9VYIG84IjNgPGYxQgIX1BxUZZq0NbBFLmtoMWxZGIBXqtrNd19GvRHsB+57x3mqvzbGuaprXoTZVal8vUSuANoav0SCxb/td8pI+2ujfJkfcswI7rb1qg7//vDTwJVg/FWG0lppvNh1IxSXXHfW5Iwr2JkCctomu0FGrOk8b6U9ZC7lkzpcz+7qRswg5i2kk0BrbdeX5+Zlt24SRpxWZ9EYhpcS6rqS86yFXSPvO5XyGUpm8G4hH0Uy/Q6RVZ+zSvrO3zJYyJske7olIZ9L2rwaYbcU40d5v7Q4RuVOXuEGokNI+7o3AAx/3We+/5PNx457eyx/dv/Ze1XT3A6nyykfIzrfXgIxfHEdV3EkUtclAN9YONqX1TkKyJmlG8fXOuDVOFC8qhVwbwUdVwBBEYN93ak1gKlYJK32UJOdCbkblyO5YlXfrRxLZiK2VEDLf9fpeB66cM9ZIQ1FE9qTDkpt8aKUmmjXknEhpZz4sKLDP5Zx4eX5iva7UCiltVGvZtg3IxOCJ3pFyZku7qnM4nJeegTOGPe+SWe5JxEIB05pCi3LQhBAkQ/LSazpfzlAzUwxQZTGklHBOBktluFQcmFPK7Dlr0NyZ3r3n+Xxh2xPXVTKYaq4UY1nihHt+FjWBnEnKUlo3md1xOSmMJbTdUirTNLHv8jybMsC8c7Qo/l9SyNwm3aV5nFF3OcnadBOUBBVhQ+05I9P+BlqhlYZRl3prZfDXFd2kOsNialFldZn3apZRtTaabmiBsdZVXG9HL0sPE6MQjMCDUfXVoLU86PDOGpy3Oltm8cHezXY5WULGYmzF1YYtRexKfBNOY0UCl8oEXUtl3zZqqcP+IWchari7wHVdL79hA8uf6gM3qkZG4Jrmy+3eq5DsjUrw8TUozN/6ulHby4CPobG+nPXwKuPA672qb1f8/fv7wCXrQytRreKskbkqYxu5JM7rlaTs3X3fWa+rVIdFHAyenp5EZ7FWas3jwPaaIIlosvasrKWmxIf379iuq5hadqq+taSUxn3NuQ74dd3XG1tv74FCApcQOlSyyQosNjqJPWlqbaidd+KMVJqGPW13lerts+tVVg9i6OM7Hfw+cI3nGGvZfBy49PH3Aa5f/bNyTghhY7i7V+LdgEnXulPx49a613EXoWY8t9UZyj0tzNPGFGdmu6i4cmJPF+lJmiaKKyGIVGIRJ/jcGjmnEfjv12dHrGaEFfub1o/LOKOCqhu5JEorktWbNtTZg3fil+QtD68eBbctjffv3/P+6QPburEsy3AybTu8XFfmFjHhIP5ZGNZSaHvCeM9eKw7Ddb0KhT0XmnM4VzDG8vTyotliHsHIOwGfvvnqS2pOHCbx8tq3nX0VVtTxeOR4POJ9ZNs21nXl63cf+Prrb2it8fDwa+wpa5CbyK1y3VeeXp6FWXi5sK8r17P2WqwsrBADYZqYD4tubLHA6KygrJmURVhhUdUZOqyTqeKQai3Xfbtlks6RShpadrneftfxeBwBoZYqM0CliNTVPfyWMq5BMI67Fogcmtw29e2g9wwmmDU34VIjmmzWS3IxTfN4fmMrzpmh3j7NkRg9UwxMUxACgBPtwz0XGbw0Xua2fMCFCePn4X+UstpJFLHkuF4ulCwqDs5bZRhu4AS8ag0+PL0fldD94dPKtzPu2+FkfbjNstnbjNVNrfsmEjx+pv/edrOSkINKxFvvg9Dt6xY4pdKsymWRylqyeKTKVtjLW+071kbOO2AHS7MZCYg5i0xaLjLIvl2uI3jve+bl5UUq/SSoQK1qOul1mN0Y5ln6trJuM7/8y/+Zd998TXROBtGNYZ5nnp+eQA/8tO+DPeyco5Q21iBdQleH6DusK+LbUqLnu2DR7gLA/T27wYCMz6//eSMM9dCO4oy3g/w+QZDXoDOITSC2Dh/fjyd0FMSY2xq6r8I7Q3gomtyY8XeX7h0l8nR2qLV22Jy0JspC0UemOPHJ4yc0VegoZcM5iJPncJg5Hg/aC7OsW6EgepytpNtrtsic4TxxejjgcxAq/W94bf/z1/c6cK35yoSjWmlk+i5U25W3laXnTMRZWHPjcJhZThN+OXBNha2+4935hfj0gXle8CGQ1kRLhXrd8fOBz37wQx7ffMqPf/QjbAg052hWlB9GHyDMQp1vjeocCVhz5poScxFK+vGw4KJAdVvOOB/AewgVN02YGCnGiH+SSua8//COisCce95Y922okd8sU6RXdXl5YV2vrNfrWMA+HGgYSob1qjYae2LfRX+uw0cxzsMiPadyG0o1BhcducqAb9FGc0/V8t0G766xAOvL06iQOhuywx59g9KERmwrov1m+sbv0k+3PqLzItobJ1EwxwiJxevBPkYWgjAy97jhfSe83Nh4zsqIgfN29FT6WICPk+D1DVJtTNNhDCC/XDawDusC5+uOszLPtu/XoVByWA5Mi0ArYZ55//xehl59ZD6elNQiVXbvJ9ZcRtWBckd6VdNdq733LIfDIFqs6yrzekZ6ZctyoEN7Oe1YYwhelOt/8uWPeXl5Zl+vTCEOFYMQJs2SMw8PRxEudo7z5SKZuDVMUajNva+2bisGcQJ/++Y1Ly9nzi8vGGOJOmri1B6l1MLOxk5hDgvu6PhgPiAfnCHtiWk5Sp8nJ/WHkwrLG0PaN9kH15WyiQlsSglbYfLSJzkskohN0yQD3Qp5xiBzVvu26viHJCPTNI0gtmtwE+KPEEOs6XODMvzbrFTxyvlUwlKVtaoBrKMCIUxjvdLAWoH8Sy43yxR3GwGoyBiIAr7ye9uNkBR9ZwfX235BC7yqjFujBB/V+uyBoKaic5PanthWdSRuIg7cZbpywh9F3pdWhZSl0Pq2X8kusbudshaCE2h7mh3zoonfFJSO72Qu1Houa6EowrWtO6lYXl6eyHmjtgytcH55ErTmN2vFdb6eKVMQwoN02/U8lb4F2szvVOx9T8zG4eJEmBfC4Wvs+cx2vrDmjKcxzxO+y6YYyzTPzO7EoRa+fv9BFra1GB8IdhKF+lxE0FWzFRsjZt9p2lfwDYoxmBAI84xB6NE2RFEgx+BjxDhPNYZN5zhSyewlDXhCKhqRS9m3nePhCNFhCApLFPmyoqjhgyVOYgUhlUdTUkGhtcz18jIGHYPzFP3d5/NVDmbtNE9zkPmSUu6UBLqSRffxqsqGFEggq3LGkIwBZTfe2HOtiUO1qZWmj7d3VQS9wVvKMHYUZqXYtDvvqD7o3JO8x0ahVdmMrWrgFLoZjLmlOrLMOKkLdgj4KIdvw7Clwr40Qsz4vfLVV+/AeqyPvJyvhCBszpQ3ZWsawFJNI84GFybWfcc5z2QcPt5knkrOGKsHSNPDsTVoMi/mehVk25hHC4MU1NhT1nEKKwPSIWiD35JzGmojx+MR/40bz4kPEgiduAfsZFIWj7gQRFLquu4y6K0mqOTeRwm3oWcns4/rumsR0Wcd5fCP3lKLo1qp1EMU0efLZRskBOcCIUrvqpaC0d5z9F4G6i9nWm28fHhPrpJc5bQPi5xsMsfDInNwMYweWM4yf5hSEvamtRQj/mPTNEkfJol78aiO2p2EFUB1QnbBKlFIApKQRRhrxziDKaq44hyloEG+ayEaWm5idGstzhpxiED6P3aMHUgSWE3/T0k8+rrow8KtiTVJBWgCdzoVv51CGKMTrRUcfV7SsXXh31oxQUw65XcVMXTsjNCaB7kkl0zLjeYalwqHecF56UHO80yMDu+1PWIUpnceu1eFfrWHZxL7vsk4h8KH23oFbeF81+t7Hbh++Vf/K6fTQTaYkZmiXEXI0ofAchSbCWcNphn22rjmDHuSg9EHwnLkAcurTz/ldDrx8PDIJ+6W7ZRdbE3SemWvCAPOBfy8SJDzTg9ZJYvkRPMRNx+YVrFd8N4TvMfFyMPbt7ScKduG8160DbdNYARrKRhyA7wnLDNvPv2Efd3G40pJWNs4HCY+++wNDw8PHA4HAFJ6RUo7FyWShBBYhj6bGzTg7qn0K/+ljmrhdFxIyeP9NmiqHV/fU8V6R5x/43Jx1enmku9Nq7Ryg6y67XrPLiWp6KzMqs/Thqmiu2tAd1ike2R1+KfTtW/fK35vGbTdMVxthcUo5I1G9zmjU5Sd0erJ0nKhKc3XYnWet1LKxof3T5RmMNaz7ollEfkm5yw+qsRWgy1lclu57pnLlrCmsKXKVII8hzIE91QoWQ5Da4UZaWhsW0J0FR0Prx/Y9p1cBH51IVJrY0uZhqqzO8/5uurBKBqLuRZqypyv0iOLIeJPdzRsJBBh5HDNtXHddkwSg8xcM43GthcqEtjm2VKNUuv3zPunZ57PZ67rTquZbUsYLN4a3jy+kuRsy6L8YT3WBdZdgqpvQoAoVHKvMkMkOMfj8cjxsLBdLyzzwn9+fubycuF6uQBiMXOYj8TJczqdFBnQxEslpGSURPo863Xlet2otXI4HJXMUZmm9BFUGNX9nNqYQhgkFqOEr1KrDJdrH0iSM5lTq7WpM7NV9qclxhmDwdtIjAFalV64F51L05xKpUmhlCw6MiMJ9xzD+GwclWJUwstK+oUxBOOxwUmS4bxC08hovL+xlJOPgwBzOB6FCapIkVXCmjGG5m/QpWlVA6PncDjx8HDieJx58/qBeRZfvFr3Id/lvMG7aSSYooEJLhhpVShiIslBFdToN6sf13//9Z9wOBzw0ZOyMAcvmzj2Ou+YlpnleMBH8ZO6XC7M88w0Tfjg+eabb7heriLfck2ctMc0T5No36XM89Mzad+4riu//H//34QYiNFzmBcWhSqEyST6Wz0oCL5/m8ewVswoJ2ugVvK+4X0YEEda13Ho7tvGPAsE+IOf+Vm29Sqkh21j36Qh7J3lZ37wM7x+/YqHhwec8zw/f+B6uXA+nwcePs8z3ge6LYFzYfShOtPMYHh8fD0GBK/XFZFnEYIHRvqJxomp5P3Ve7CtNZXSUXZhvWmnOetvzD1usGEpRYJFLeJbhNClnXMacMNg33l/s1XoQaeTBG5qE7deUcf7RSj1ZiUuouB1kBG4a1Ab4zioqeOWC9hAypXLuvErv/rrPD+/cL6sfPP+A9O8EOJEaQUfnDT3ax9aFjHVihxqtTbiFEbmLBJYff4m8/r0KIdHq3x4/0yYAsfTgbBELtvKnhPLshDjDEYUNawLhCDZ77qtwzJDZqcSrRZOxwNZCQRT9GyrKp1YRwiiOlFqVULKjaVZtXkvg/BKxGmStHV24DxHgYL2RHSWddulz+cthzjRqhheNgNxmgjTzH/7778qh76qiKQsbsLWGFLasAZm73k8nag5sZ6f+eX/8sus5wslZd68fsXr14+cTifefvJaetOauXe4sLU6Dk9jDF999TXen8k5czgcFW5tLFsZpJeci5BNlNwgbDlFKYz4pMnjkox56Dq8Xlf9t8o0LeLZ1+S+xWnGGNEEnaJIUKV9l8S2iayVsaohaGTUokPl1jmCSrOVVslb1gHeStVK21hHdAEX5Mxw1uJC98lCdS1R2FfGQay1nB4fmaPYB73/8J7Tw4kYpGpN2ocutbJtG8GLuPXhcOJwWJjnyMNpxgcDVEp27Ps6yBml7TTa6OP2femVAYr29XIRC59LZ9p+h+t7Hbh+9OU3LPNZBm6rWFlsOYmWpHP4ST4QH2RA+Xw+E4KowHvvhY67b9qrKCzLwjLPzLPg1Tknnt4/kXNi23Z+7cc/YYqBEDzRB+Z5HoPCYul9mw5v7dbQhVvLLVqDadIoDlqptVrZrpdRmbUqgr4uRHyQDRVjYZ4XDVwiOHTQivKopom0evP7QX2QpgnnPDc/nahsLYGSchayxMPDw8jC5lkCctdPqx14t+ajwNUDUW9BZ6WJd8ZUf4y1NyXxexp3VvV5qg7Xaq+hB65pmu6qrdtgrZgo3lhKYzjS3gKUv4d+WtEB3R642ngNg3mFwB2H0xHrPD4XjA1sSX2ulS369PzEl199pdBaIJVCmIREse9pBC5jHdMhknZhbIrtvTDqYvS0IkGeWtg//xlhmbbGlz/+khADh9OB5mFNO6nkYXZpjThZOx+klxYCe5/Pao1lmZQIk5hiEE3I4Hk4HcQVW0VkS34/CBjrJixNYw0H7cU1BKIKQeaqti2xHKQPuu9SFcrrbyzTxPPTM/u+E7xjiRO0xrpubGnHOqFAf/XN11gvAspSqQj06Kwl7SutFiyNh8MBhwoAvLyQ94RtMhcY4sQ8zzw8PDBNk34uZlRPvSrrlfjLy1k+F2NGIiQKM2UELWvLICMZ7UXdBm5v4y0p996qsm+bEc+7UpmmWfu9DWM80zRjrCXnyqx7M4ZAzvsIsDe6PNr6k6Fio6gOGLHe8buY2ibREjVWIMIY1FB1MGlvKu504shg5goMvxwOHHXma8uJ5XBkmiLTNItyf5Eg2e1zYpw4nR6JMRBCTyDRfe+pNaiNUB/ZcMPX654B29mtnWyS7/QYv8v1vQ5c/9d/+W94NZM0SvX0MRCmKBmwEdUBkAP0+XKWpqUeeut6m7/5tR99KYekt4OK2lrh8nIeDKD3799LE9taikKA0OV01LL6W+KVPtxR5YpoybValD7dsW/LerkwTxPLPBGjx4SAn2Yu28YUg3hR+UBKGzntpH37KBg4JS6UMo+g0Q920MzHfaxdN6kLr7WWeZ4Hi2meC9M0jfdWkWHFxt2GoPej3FBt2PcknkZK+rhtzDtjQydN5B640raL2oF0ncd9OxwOozqW4HSLmNfrFWP4qOIymh1/PDdjx/OYG1N4QI3yd4MWRjOQSsI0MZj09lapygG58vT8gR//+MfSN7WifzfNWgldVqw3qt0488nnn3A9X3n68EQzMm/UqugYbleBZC0wxwOHgxwmP/rJl6J3+bLwsl+Uq2zEzd3KjM2s1OeGrG/n3BgWf/v2DTXvqrZeOR0WjocF6x3fvPtATmK78tU3H2jaJ3n/9GHMOX7xxRc6xwPrtmpfKPP8/MybN2+0cpCDPDhH9IHT6cRXP/mSy+XMFDwPx5Oy+Qo/+smXFO1/WmeHfNG7Dx9wCuU6Y9jXK7sSMg4xssyR0zyRc8V5MRB984n42i2HIw+nV8rg7OMkUm1In7MxaUITQtTg2/T7CYPB2irECVewJouDt+pGOt8Dlxl7oJRMKkrzVggR63RG7Ra4SmtYE0YFl3O9Y+g29iRECaGC935m94mzA56MYQaEPr9OG9uW2LdEzjob6sS5u+9fkcuyYw/3S2Ya9Yy0ogl6OApkOq9y5kyzIFNUobLvOQkDd5qY54VPPvnsTixhx9Ym8GwIkszuO6mI8Lhzs1SQpc86dr8xcaCXGS9BmXL+TTrH9dWHZ1lcDRGvDIHDyRJdoxlx/H25nEfTcku7snaU/nmnkv103aV2aNIL6Q3YfdvV2jxCmCBESoOX9UKtq2Y3Klap17bt1FKHSoFByq1WqzAfEfqr27IwvLzjfL7wYCx2mvDW46NYarxcV0BIDsY7ggkYo6QFGltO+G0lFclgrWq79WDmQ5CN1l8DdXz5GFTH0ICDkrLOV2SFHeQQaK3Stf86c7DPpdxbcgufVirPam8yRB0msAobWmtROVJqrjIoXnXuS7vDXRIm5ywVgs4wlVK4qvis9549J7oqRx8UhRu1HL1X7k4pWzLc/tg6YExjLZfrRm2NVCvzcqJh2VLVMQt9baVRa8b6xrQc8VOUyiEUbBBVkjdvP+GHP/ezvPvmHblW1n1jWkTBfZoilyDwl3OWz37mBzycTpjWeHm+YJxlPh749PhzSuqo/Mqv/nfWdQVjeP3JJ5QqTsEv798PqJgIj2/f0kqh7Inz+ZkwL8TlwOH4SJhfMD4zTzO/7bOfwRghe/zyr/wKzy8vcmDNMyFOcvg4OehiAz/NfPbZZwLxpcT1ciE6zxQip9NJSR2GGAKPbz5hnidC8Pzk3Qeu5zN5T/yW3/q/i5MC8O58ZjmdpGK8rhxiZC6Z5XhkDp6H44HXjyeiNTLnB0zLgThNOtDfXaMF2vJeGMXGihdYLpUifJfxuYn5qFLZlRQjA9cWFzxxikzzPCDnDrWJsLPHVa8Hr5APYpxxrlBiY57m4ZFGk7NICIDa14uBeZngDFVRE+lXG4x3+DlqQikD7G5S+bWq84S1yThDlbksnAMfaCrZFCb5eQkw4nw+BJhdEDgeSCWrC4ORHqd1XaBSTwVpt5fWyE1mN+E2S1iLEKucA6UCyHiE94ipggdb9F6A1dbBppJPUihI0ve/wof/XgeuVBrqdEWpcqCQKtll+ZBy5rztIqbbdFB5zAn2oUD5DLNCVWK/nQYcsO2bMIxUrkgEBxpbUqgD0byLsWdoltIEzhEjtdtAYmtNKbZGDw1o1mCwpGZozmNjxMVJGG5Kna9GrT/ajUkWJ4ZOobHiyNzJDz2QOM1yx8S9bsRexHfFckCHPkUU89vDkKYKM7Mz3Po1aMT6fNbdBou9Dt6OwKXXvcKD8YYaCrXYm82L9puGlpv+bG03hqHtGPrdc4/+WbtVXZ2h5VwnhuhWsUo9Vwi0QzW9z0PtPbuqVVpVXTdVk1fY0npPnCZsELajjxPGGeI08/jqNY+vxELHh4hJCfEaiyJA7AM0g/eWEAQGNK3hQhSR3hD49LPPcEGD86//hFyvtFJlvqs1rFLijevyTajCiIjINmOpGCpGbGJcwBvHNB949eYTrHGkXIjzT+ByJZeNdUtUhTplINcqTOxU/cXim8HYjWospYl3caqNVKoE88OB08OJeZmJy8J1T5ATy+nENM3Sz3EyW9jdCmLwqhV6YI6B4zLzcDrKoHEWqxaMVJxOYez74d171ZRejQ4vMetoHu31Ch3CKOTX+5FeoVdxP+gLHCSxAdsczqA9XGhUqcSVseq8h1IxptKaU41D9LVI71BaFlGH2otILjkHToVxFeaT9WZl/MKK0K9xBVxRZ2YR9O3QfbNWpZxkgbdqaU3eF/pv6DruyjBj/yhy0O7OmC5wXWsjl8K6brJXWtV1Jn3blms/CLSf7inNYq3OcHU9UW6D11WJWiPZ/I7X9zpwZRzBBqz1VCO01LIX9rYLjFIq160M7FnWkmJGFNHv6lmaKmULXbvgq5g+rHvGuAw2CzvIysJalb7dmpTFLhhAFlrFU1pGZktFrUKOTieahNpEr6XIAWE91QZsmAjLkTBP+GnGxRlqpRlLAVKtBCsHZwgy2zPNMz4EYZ1ppXGDD7o+2p19Q+szIW30AYwx4lemMyPZltFYRd4CRn/X/SBsKWX8fG8QF/3eqcJ2h1O7AvltiNLo80WqFU29nuX2wNUPGXlC8eWqtQo1XP89hJsd+w1XVyqw69YlauA16BgF0S1soq/YY6SzGOPFxbl1mSrtf1mjw82eMHuwAR8m5sNhmIjGamimMi8H3rx5y6vHV7w8n/E+ApfBAjRG/mwauCTFt6pI7+W8cZ7PPv8CnOWyXrE+SKXXGuAw3mJDwYYJ6+NdD0GDvhOLmVQqSXBG6Ys1mA8nXr1+A8ax74kwL2Adeyo8nS/MVaxBihHBF4DcYC8Vr9T3XNF+SMPtieu2c9l2cJbpdOThzRuB9U6PXFOhbCvL8YE4TWKtESJxWohTYF034mFhCoElRg5TZJ48yxTxCBJQU6Llfehfiup8h379XdCy2oO5Ded6HzDGE+OEwG8qiO7Um85W3S9BJMQsggAYlS3S7MYZIzOjKlxtlPxDtSOIdQVBrLgNg/aFrVFvt4ivVYacUcdt54fSfOuSanou0YwkKr5gXMa49rECPJKg0LUaDaJG07Qq07m6iuhFNk1kJPFy4txgJcEpVQhWQ75NK9qnlzMxOLwzBN/3Wr1zxJb3f4gze6o4t90II9bJ+dxuw9S9VWPdDaX6aa/vdeAy4YCJAeMDlgpGpH7iLC6/DYNdjqQ9kVLGR5miF6O2XRaSc7jo8NUOqnTLG947UVr3T8KKcZ4shj20aqgIBlxLZUsXqpGMzTqHjVUClRFVBu+DqjjA+Xoht0Z0gVKFuFBdoFmHCTN+OpBb47In7HXFtkqJnoqYQOJFAtQhZXzWHl0pRfX5vNTwVpQuxP3pzvqDNjyd9qwsICMLqJsyllaopo6DAAQyTCnd9f+0d4Qdh4Xc26ZqCt0dVf69KObdWhqVXn/dcsA0dZHVCkvHAlotUG4mhylXbN0lkFhLqjeF6e7thLkFLqP/ja13d0HNMauorKBiuxIsRcLmum24kMF4ilq1Yww2eI6nE2FaRnKxKVwVJsueNpbjibeffs58PBHnBR9nfJxoxlEaBAwxzrQgQ9d7rnLot0rW4dZqLIeHR6mOreOHP/w54rywp8RWKsFK5fTFDyLH44luPujjAWuh1IxxQbTjmsGEmenwgHOOx9dv+OSLH+CVXn9JiePDI199/TXVyLyTV7WV4/EIiGr+6XQSWrOROcZ93aglS+W0HJhL5fT4yOu3n/Pq7RumOfLFD39IPB65XK9gHVXlvA6Pr/DzQQ4vf8GFyHI88OnbtzweDlALOa2kdZXB1xiI7oHTYWaKXiA86wneEKao/RL5LJ3TQE7Gh8gkfjkcTkfSnpVEVPBRFNCbVthiEonKHklUTPpvIEvTG4RqXmW8wRSRL7IuiCt5q6BjE+IQUKQas5ZMxQXPZGaxatnD2CPWyx40zSqMJ8lM7wuGKgaYxvbzJOBdoDWx0akIauK00hpD+dZSjI5CtIr3jut6lVGBLRFDoWJItYh0mSZASQ1Lm0l4mzShdATbA2rDNKdJ4J2OorEjkZAedBg9xqLvoXVLlf+F63sduD77wc8SgvhqpSLwoA9CzpCKS4zjXLAYFwnRk1NmT4mUxDKuNiulfYcarEAIMhkeSSXfHbKVXLTZ2CSDAoEwmpUJ8mZulu7NNvleYZZmwIUZbw3TFEhONA5dCBgbZPFbT8o71y1h7UZwiD2F81JdeSOK3zmTSyU05KDWisig8090WnbHwfQavR7VldPqKE7ToP3adA/vadbY5M972G+wCnvF5TzeN3L2WuHaEbgkAEoGfA/n9S+JCx//nT7LR6+/96K6EeQ9S1H59/2B4zO9/XcnZKAeRVYUDEZVJVCUxeBrxU8TGI8dXke3Q0Veg5JditLzQyCVjPVh0KE7McU5r/09kZJSVr9+PApB1ypZvBdIMYSJZg2LDfzcz/8i8/HEy/nM5SoU5BACx9Mjh8Mi1X9tOjMkTfbn6Qla0dcqv9c5h/WCUvgQMdbz+u2nXLZdEqbrig+ivh7jPCC0ZRH2mXdCqIjPL+xbYs+Vbc/sWejapVaBQkOkGcfx9Ehp4OPErrJLzaB9NCt9FB0ZMNYJ8eLxgbStvOwb67YSvUDosreld1bSPqA95y31cpFh5gbeCsu4H6LCtrPEOMm8YWkaFOTzwQjtXKpec9MvBFpBfaOaIm8OS8OpQHYzhlYECsSCaUarOKmGvA/ak7PsKQkK0EkpTX3+dGd0WBF7q/gdqMeXwIOmds8t+b7bFu25Q+gIhNirMTq0qXvfOjVg1/3Z4UIjMLMDjO8Qu4h+hxBV41SCfHeDdi5QqlULqUbZNhqj8YW1AkNarUZlBKYqcvIbRYN/mut7Hbg+/8HPCjvwemVVjxfJUKJkDvuG2Xa8Fftr7x2wyyHBTlVX0YEHG+ljeOcJkydMgbDNA0uveR+swYqVrIqKsV4WrjZ6VchI1MWNwAfgaKYJ6cJbpilizC4mkc5ifJSMFNFK21LGuQRBNpPznjhPeGuoOZF7Wd+E5jDou2iVQw8W0su7VVyduWQHVCjmfX1m6gYHfnx9O2Dd9wnvg5fAgx1GlN916z981IPS19qD4vidI8j0ptQdY9AahR+MQoF2/M5a2/gddmwcNV0cMacpk1B6mgKc9N6XERUKY4ggUK2xmIpCMwPHFHjGGP3sJfhZrXSN9mLksJCq2g2Gotxra0R531h1262yoY3zo49jrBe6s4/84GfERPGb9++5/OqvSoVnDPNyYF5mcZe2flSTOXnCNFP2Vd68MeMgwdoxv+Wd43h64PTwyGVd2XMdJAe0RxasY1mOWIs8j/bqSoN1T3i/s6sg9J7yOGhzqcRpYs4HqrFcrlchGViw3svhXLqyuPi5RdXURP3d9m2H2sQKRwlYPsiwsSRKXmeZ9tEHlXEEZDxE+3JWR0GMyxhbdL9LHxaFvmTxqHeVk55btQaDqudbOew74WPf9gEPys+px1uVtWQxOrYgBKmUC96FkUi4ri7RhEjStQ+btWSaDONrr7L3q7Cobqg251XJXqBH8ftTN0q6AjytA+iS9A3o04muZ+8ZO1d1easNi3VCFAtxLP2mVPvusIA11JxF4ivtt/ZC768NySyBdUd/rP0mDlx+mpimGRsiZtvY085lvQqcVQp7Lrx68xYQvPt6vVK04RymGd9JDP7mTVRyJcbAXhrby4Wc6xArFZq5wErTvGji5jg+vpJZHm1CyoCdzIg0o+wba4UhZpXdFALBBEreue4bcVk4rxvly6/49M0jcZqZlwXbChhHbnDddjwCE0qAcOO9NWNoSWBD54UCL9etmd8z0oaQQ3y40WnXbRVJHwM+BvXqEXkg54JYkWBE7aF2Q0OZDwMhxnSZna7d1oMWMAJkyXX0q0wnqlgrr09PBNshSq2OirIarXeqKKB1mJWZm7EJ7gKjdf7GjFQpj2Z6+L5pJY5MVMuxroNqnCdrzy/lyvW6yaEMHE8nUm3sJYsQ7OFIqZXL+SpVRC588/U73rx5jTGWeV54eXkZQdn7OGaLjsuBp5cXvPPMMWKdI5fG8/nKT37yJQ+vXzEvi0o9JdKeAMPLy5mnpzNfff2Bh8cTh+XAYVnYr1cRpg0e7wLn65OMKOxZ31/j5Xzh13/8pUBYRmaN3r3/wPv3T3z19TviLPNBcMZHESx+OG2UvDPPi0CG08z1uvHVl99w+MWDSDYZx7sPT3zz/gMVw77v/OgnX7JtG7kWtlT0oDRcruuNiAB8eP6AdYZt23j//j1ZbXYOxwNp2zlfLvzM55/e+p5GZpxMq1gsfgrYYqmtaNABWz1nu8kspyYSPkyIYoj0GGsTiC34SfdLU0KDwHSTdbQolVHuTD0V5C6ladDSHrr2jEqWHlZrBodVFh9gnELOEgSMF4k0U6v0CzV2Wq3AJaBlQPqrgYlKkqmaLOMpQqOXNd5bH1bRn07jN16gQoR3NEZIQpTkg9oI3hHjTCmZUtIIMj34jWQx6CykESj2trdlz5XmaGRCCJRy5rpeZX6w9j6iU7NPR4jzdz/7v/NP/v/B9fT0zDwLuy/1uQGEpQeiaN3VClLKWh5L1pv3zL6lcdBNIYrVhXes6waIl0333KrlrhnJnaOwEgo6bGWaLI7xwdeb+rSrjT1njFW/mqKqERW8E809Y2WwscvMyAEk2Y81Tp22Vb7ISsbYqyt5PmRj6Ou8WTQglWAdhgaDQNExa+scrlZpZtuP2YlGA1e/X5KByhwQSG/MFh0QpgkT8SPIT1lvRr2P9PsONY4A1qE/7eGZItWIsx3KNVo5iSKGVLhtkBMU2ByZnQRHy8fDkP1+QL9Ttb8m0/sLTRvZwjjdc1bqtTrTGulDpVJw3Imtepm5k7k4OWByzoQQBymms1x7H6A1hXedGw7QYPjw9CS2PDqXt28yJ1eSrOdSKtbJXNWlntnWjWANk3rDTTFyOBzxzuFtYEeU/b1z7NuOSUWqfJ3NSgqjVwMuS7/HZ8++JS5nmZ07nZIkK9pflb0l+6Pp4nt6elZad5Uh5F2GqK/rNjL8UqoM4DfDdduZovRDpmkSlEKH34UZyJ3ztVPJJQm6tTFmqfqnX5UwlUvWgXlJiJq1Wrk7jO0bRertDtV1+FvQjCrroFdFtYBR41QrvbJc+tB902rWCBtQ9x1NXqNpunbdbXOWVLTSrvo6BNbLGoxthw416AiAUuQ1tR7YLLZJsGumg/GMsfq+x/r6BiVKKdRpFDsfZ5cSfFqTOqmZNhi4o2pSDEeIIWg1bzDNUmuPyp29qZWdiiAMFEVRke96fa8D19qNE1tnwnSpFieQRENM5YrI1Mg6lUHcZCypyAS3AbxxgwWz7isNMVlr2kPC3vkbaUAqreqCb6Sk1GyjgaJDXdz7G6nIbQVjVHVbDzDB640GIDksS60Y091+7YBAht7eYN0JZCeHp/zTsPiW/TAWXA9a8rYU4jBd3UPeZ2dWjdmtfmhgJFntLo93G92gEI2po1oyxshBrJVNDzBGabz3fSzJEhmLusJgb42fM0LNd060BIX32d/TDXroeLppDauzYWPQeNyHvvVul/iH9YfJve0HVsqZVIqMTdBhSEuu4tfUP2PnAsHHMcBd9AAOPlB0brBpWSeZqgjfdvsSo5vZWPGG29Zt9HJq7Qrlsq6renTllKmlYtgx86QzNKIsP02zJj9+VM3OevY90UxRfyYJsLV0u/Wu4C+hQJK+q0gAeVHnd7pOQRTQhZ4uB+h63YShZxDEokgPJCWdAdK90NXYy7B2Eai71j4HJIon3RJoLGij999Y7WVX/Vxk/rInGyndDbjqYdrX542uLq+h9fWvSVmpgvk1I75rY5wGZO7Q3JLLXpnLfJgEV9Phgjb+UJSgU9PbYPG11u4sUsQuR/x65Iet6a+/IxHybxXEqb2ZW4IKtz3TEzo67nHrBzfQNQM4YVYaNNEv8rMyQqc9stqEuV2NBqeGNW0o6Zj7PcYtObS6t52iGo17ssvt8T/t9b0OXJ1WPW6ENXjrmXRq3XuPRdaAwLGCDVcMNUbBzhXamnwg6leuQrCwzuC4VQ215ptPj262nBPrdh2ZrDN2+FpVbXJK47x+1PfxuoCtaThrmIMXCNBolr4mknXUGGVh6gppVRiB43eaiqVLLN3wZEuHzu6qrwYYcV6uuqNuC0zmcXrHR7atGdXErUvWszrZmDrpJAcN4hoMVaGR/kLN+DmZe5ONel9dCNNI3psde16ibkU2jhFBPkzzGpx7U92M9wb9AJLkQe6V6c+s/9X7jrcs12iZOhrxzovgcW1se+aybqzrzrZlaNrYd4GG9ChLaxSkap2myPF4HK7S27ZxUGi6Ne14Os8UJx4OR3wMMvScEl4Zl0FVvJ2xovSNIzhRso8+4I2oaZRaSGuS+TJnabVyvVxI+0ZJG4flwOl4HDYqxhiC9bx7ETjPeoHRSu3ahCKASzPUwpg7tDi8MtmcUdaYC3gXyXuBArapw3gz1NLJOaJe4ZBRvV5xdGUVmsDerRS2y5Vvvv6GYIGSsQYejieZLWxt2O7UTgVX65ucE+VOBgyg1MaeC00JF33o1jiphmzvhyLzUvdXgyFOUNHheJqSGqomM7I6S20KC6LqL0KokOAlTNuKvH6r+xMkIGQNzgJz90AsQxi5iH2KvFWnFZauf3RvjX667q8mMU3imqE2o1BgEdKJJqFVE8JaRdmi1UY3WKkqZIDu/4ohkajVyPhjQ1Vc2i1v1rOlYqlNComsfS9zJ14A0udLRdR4cu8rfofrex243rx6xIfI9XoV2EIrIHubzwOqqMNrQ1cGjAWCW0IYEARdHDbv0oyXPuiQfjEGWpUh4dr7I61SqycGPx5nNTD0qPAxVNb7Q4rNGwE1LQ2a2rYDtfTKDpWRksVUVB3aaiDpmVFFyQl38Fczt+rhdvW/0IMJyRBbE6KV1v1aDfXmPCNjk7rq4wBme/amfycDkRLwGHNzPbxJoOtBUEKcJhJVKrGeqA7FEQQatLY3r82oUDqzkLt73KtD581d4/3uvWu2egM/7kEUq4Kzkng4xGCxNkvaC9ueWfeENR5vBaYzTvpStRT2fSeqOOqyLDhrmULAND6SwOqOAbeEy9JUnFnkrMywcjFoRVMAhUwPy8L1umAQppoBnFGF8NrYrisbDWcbp08+483rNyzzzDddXHnPPL1/lqH6GDkeDpgqCueHeZHXYyCnNKSL+vxNDzBVlTvSvqsP3Dre47auvdDn/HLGqALH4XCgSzKdn1+45AumNQ7zAlX0FtfrBTdFHE0HkkV81unBK9bxKpdmPJhGtVLxiD2LBH6R+dIVpqiCNeKjBw3v75iyHW6mQ9VVApqR+2r9LRHKOZGLsHqLCgw450XBQpgTArUZbVsYI69TAYXeAxYoTlmA3GTiJOEO6sSuSaW5JZhSWMre6Lqe8rj6EWJwg9wVGtQE2rieTJuxAzusS1PGtEKITWfZcPrcpVGM9Oj6+TSqKIwEeW5SWbe/l3NjzHKV+hvEun/a63sduII2Jg0VWrmlHLXKYakyJ4yDvgx4xTtx+vWaGaV9J6VMShspb0qLF6n/fmh2O/B+dWmoGPptlO1q9eC3+qFWrdJKFdaVQczqgtNs0EKuRrMykdoxSN9sxJp2h6SNI/03Xh3THtjE7dV+65FG38NtkXUoQl77TVVgPHMPEFZe63i+/lwabEyvZrT/V6sE0v7QO7BToYPb2zT6f52tiEKKzvVB59vr7j2v+17ajeF4Y1A1rT6h6evoMErviQ5CvHyvNOpmPFZZiN10cd+TzElpJWRQlp5q5pWSwTRCDEIb12HprIKi8n6rWs0Y1nWlGdj2nefnZ15enhHqduTdu3dczmeRD2pCdthT4rpuwqTdNrZtp+SsoqiBEpx6rjXmSV6Dd4593Xh6/4HL+Uwzlncf5E8XAg+PD2zbzrqJViBW7kdKiZzS6EUka6k5k3fR27y8vLBeL7SSuV4uIodUCs8fPrBer5TW+PDhAz54DocjLorRZEPsRkpJGBrLFKHsJG/Zt5XFO0nk0k7dV5wxBNXO6/vPBz/gZVsdxt7o3fL5C6P0o16msVirVVGHXnuypgu5NjPYo72XOlyrrXyP9stzVvkkDQS34FJH8ueNU5am/HzKuwYZFeBubfyuPnfVh+pv5Ih268s2SSP7uEtHdGq7nQ6yD+w4g+rdWSBVl5NkUPtipm+6ewgG5DztLYNvPw4zjgPZP30MwIxeVt9X4770ZFHPBfM/PMH+567vdeBK24ZzYgkiFZdgrjUnakqUfROtraZlvapo0xAPG2uEXl4rZd/Z1ivnywtrXgXD1UU7FBj4mPpt9UP1zg0NM+lzSK+saaba2XZ7Em8ggHmOAvlYceXdjRyxzsJBjR+9whodMvLWKSNWCffWcrMLEZmXpm50t/6NbltzF+qM/H1f3Ea/t8ZLJuRusEI/tPrmNQhsJ/BC0xILqFVgIGtF7aO0G1SoWHjTlK8HsfKt19hLth747gNTl4+S16OsRvuxlUn/u/tZsI+KTqPAo2a5fX/2fpvh5nHlQgQTcAWwlj1n1i1xve7UlnEx4/yOCTvTLG7C63plmUXnb1lmgvM8nE7EGHj38jxUxkWBf2ZbhVU1Hxau68qXX37Juw/vB1T4a7/238fmLvl2MDsfOKtL9qp2OF3N++F4kDXjLG9ePVC2nXRdef+Tn/Cf/9N/4v3792xb4v3LmYaY/z2+fiU2Pt3NW4P7tm2iDahixoBqa8qs28vLC5fzBQNs60YtorJ+vVwwOkv18vLCNM88PD6yHGa8ymN989VX1JIxpnIJHmcaNR1YH08cY6DsG5fnD3z4+muidxzmGQscHx7AwIQM8UoFJxV9Z/sBGiyE4SbBSzK/bvchvc/eewaa9qlsvdvfAr+GcGPr7S7grNDgL9dVAqeXak6UTSpJYXvnDCF6fPQKkTaxctH+YYyR2gw5N1UCqWMcxTk/qhr0z9qRtdYTsbtE7e6/DQ5njc6RVorJ9ITM2aDjQYjRp1ZNTvdca1Uo/a3RrGwQqWL1zLBZz8OGczf0RaBlHRFydRC6QH0KqxQM0mMVqnz/+e9yfa8D109+9Gsqd5QGC86FMNSx074JvTNnVYK2eCuwHiWxnpM0t/eN9bqpP9VGqRuYRrFQlHAx5pRUr05gHCe9jZzJCmHUWkWTTLOUrM9fs9gFtCIuozWJsncx0oOTqlFgzYdloqaE6Q1fI3IzEgN6hSRQYWkNbB2wB9o0l0zyfmHcB7B29291ZHeietE3SNMYJP2wZoyqpMONDNNu2m0KA9zrIo6EytyCS1FIhLugMqqtu8oJVJux3uDW/hzOmbu/kz38EdtxvDN58jbqVMlWmza0+8+PtNMp/m8bAZQKX1ivOy/PV56fX3j/4ZlUjM5Xic7cNAsRY71caKeH4Y01hcAUxUZn33cu5zPbusrIxJ5I2y5BbFm4rFd+9OMf83K5aqUWOM0HclH22l5E+2+ameLMFCKmNooVivZ6ufLh6/fsr07EIPC1bYWf/PjHvHx44sc/+jV+9b/+N/HIwmD8RKOR9531clXFFIWsFM7Le8Iaw75tfPP11+IjZmX2Z/JR6fm7GJ3uYg2/h1X83BRufHm5EsKV6/U65qBAmIdTlP30UguOxn4+cAiehynggGAdphZabtR943p+4XA8ytC36SKtBvGYK4D01mq7jbDknO8gNXNbmkrU6FVN7gSRqg4G4yBHiRcNrNyjopqZ130TbzMjvUIRtxWWpdVDvzSRyeqB47Y57Fj8rZqhlN5aG15io5JBc0BzI/b0vZCzVjkdUbiDCm/76YaiBJ1P669jPGYEQh1hadL/GvMhH+3U+3NEqyl1VGhG73sVrdhWGi8vL5zPF9Z156G2IXZs7W9Sdfh9W6m6sY3rMAGUnKg5UVKiVIE2RK7Ii9ZXa7TSqLmqMd5G3qWPJFWPGWvL3qFksuD7n2YsgKpkgz4c692N1m2NsuiCV1xePnDvtR2qMGZrHd40smj08n2K33b4jrsMTAnbrdGqGdP7A1L4qJcj1y0u9GxJ+3f0IdimmDhKiFCGnrKxBquy49X19nwfDRX2+4a5DVCaNmap5K1/ayPozb3L425/6POJ+d79fVeEGB001s1rmrInjQFVRxgISL1h9BL45A6ZqpWqBvDSmqqlKKswFaVAy8uyCt9KP6Jbu8tMznpdMbWKbXktuubEekRSDPlsck7k7MlJnLYFfpaejshrNWG1GcRbS+WPahPY21u5t946apC1YnsPozVKyiS7s20b3jmWacZ6TzVivropHNiDVlM0onFjLQ4mZF972kx11oLzJEQizSCKMNYHTUwa3m36etTWRbP8kjPNy+C+9160KvUxzlqWGDlOEd8KwVrmGHn9+jWLeuB1rczWzJAMG4FG2ZGdSNX7Np35NxImhen6v4NU7F32qDYgy+cv857C9Nx3gVVLLhh/P2Jy+319fXWHcVGeaB9JnN1X4GhVWLRXOoKcErPuEbyedEnlVoQ40WOPUwjw7r3VKpSrqkzKrhva9+vgWLS7fFNz29bvU9MRnFpFVqrdJZl9yLl9fN9Lka7Xuq5smqRh7BAG9/km1/bTXt/rwJV30XcrpWKapalCet438rZT9l0CV5Ls1iDlRM1iXph2rcZKwjQJNt6L0sGg55gbi8cYo/5B8jUyF2NwvmPHQm3vc0WdgeasJcTA9brSasUZgQea6J/cDgOjFFIkaw9d1mYoY9wqnFK0oYpIJvVmfr3DwztRpBPL7ysuCUodq25j5g160JIDtgcuTB0LuS/mTuf9jVPwOk03or3SeE0HCNvYGIZvETPuqrX+2Kpwr+3PZfrfaz/Q9Mfo+9PANbKP3jDuAbYHr16JAkYPq0YdbLFc+pfO3DR9tG5sIQIkYYfVTKOS087z83vWi+f5+Yl9W8fBYkz3hfKE4PQdVnq/dJ6E5TfFSSzsNxErzcYyz+LXdlhmCVy5kJynGvDzxGGO2lMzMpOoSvECvhpePT4CEKbI5Zo5r+sNMShl6F7admv40xpOq8cQZBDdGrEvgUD1haJ9MO89h8NhqIakksl5R3yg4hjgr7XhLThrCMFxOiy0tDNHIUtNceLVw4njPMHbN8wxMMfIfFhITTU1ayWl/aNqvCc3pag1fL6zxrFusHpp98nL7TH9d5UixqZSie26xQVx2Hcxx1y3jVIqzt32QtXZr5uJqowVCGlFl2KPR02MNntg6bxese25Yq2n93nvq0thgQhiMBiw5kZEb7VvupuPWM6ZprNlMsMlBBHRGtUzQUkrA4wZvT+5H00hf2/lvSowz03Grc+HyTqS80nGEq7rVYbQSxY5PTthrNGRg+92fa8D12mecNZyzVcJUq1R1iubrWxpZ798kEVaMi0ltnRlr/1Q65I/kq3LgJzF4kg1qfiq+fgJG1SjB2Hdac5RSuZ6vYpckvNE72nZaSYtva0YIyZGUdcIVuY0asVQwFSxxYlOKMfWcVomjnPkuAQOS+AwzxzmmXmeNQvO1GLUUurm4VuomJaHiroczEq3/VbgMqCST/I7WgNrqs4kqZzL3eWMCIxKS0sObkHyb3DK/VVLv7f956Xasv1G9ltai+7JOyr73dVjnvSy9E87tindSXZAL33z0QbkKUKqdxBiraPCrVQNQDDETVW9yxm1PXIwT57DEqlN/IScD8JiWwIvL89sWyFRIe+s5yd+8qP/TsuFr37065yfn3C2EYOBKvTw03EmxEAthWXyWBN4PE7iCxUDMU5EK/Nqzliy85yOkeUwcTgESnG0YkgbGKsixrmwrS945yAE/MORefbMc+BwiDh7oNZCBU4qnpv2nfN1pyQheVgnQsNYURUXNNQxRUeIUWkBMKlwtNHP9nQ4cDgc+OTtW87rmW1fuV6upFVkmY7HA34SxYZaKz/24uLtnWX2ljAvHOaJx8cDzkGjUGvmeJx58/oVb16/4uHxkZ98/Y4Pz2dWNS8EtCck/WprUO08Eb9NJWOLw3VFiCowoBzITZRgNMgZZ2m2QrXUKgf+eb3SstgXYRkO59u2sSwLHZrpSEUtUgVJEgi1bloZiqDzw8Nx9GOfn5/oXnfLsug6lfOkFlm3vX8psmGitN4Tp3uUo5REKXKva4kYK4l92ne2bRXYtQRS8APhyTmLaLC1VKvoSBPWcw+O8rp1H+n54Z0lOEP0AivW0nBUqitUY7S353DeqLoIYBvOi7O5cajqzXcPP9/rwPV6ngjes1rLdbuwZ5n+L+sFWysPkxw0zokb6nW9al9BJE1Ed80R/E3xvLXK5L3g5LV8RFONdzYgILMezhniSQ4BqZIAKtFZgp0gTqoB6PAGybIdUo3FqP0yYTZWHYYODmreSOuFtE2UZaaWoIQNT62GktChaqmYnO9ZmWwQY3pw7nYeHR7oUGejSy/J1SSQtpve2uivWaloaOXWuG0CGxhNBDotvsekLlIqgbUiU2Jl9BX640yfO9bYI6/9Rpdt+q6MVjqDwqywFaBq/VUrRMXq6V2tOuZSboBOuSUvmrFqWa1KGw3vUMO8grWZt29PQGGeRO8vhIj3UgU8TZ51Xdm3jdcPByZvWc/PkAuWwuNxYd8Nb14dMcby9PQBayuWzOlh4fHVidoOPJwCtVas9wTvCS7w9PTMyzmzbYXjyXM6TTw8zBiz433FGYXJFUL98PSkDMaEsZXSEg3P8eGAdZo9Y/B+wtomPd28s0wL1lqikksqMiM2zzMxRuZ55uXlRWDFXJinmcOyEEPk8WEh+sgUA4fFY50neEtNmSVWfGgcF3jz9kEqkH0nXWYlMcn6rzlBzaTtwvPze0pa2abAlmZyS6xp5cPlhefzlXXPNMTxV+bX5PmcyjSZbLDBEaYgxAkEavfB413E6MxUSoVtFZ1F452SO25qFdaJFUp1Engqoo7hvCfEibdv30rCa6wKVDdQXcOOfNvRa9DxDdP3HsTgKFUg3VryGAGZ44RzIlRdiqjz2I5+5J2uI+i8Zdt37ePvON/oEmUpbaQ96VpoeBvBWFLeZDzISLUbRg9f4NtSpWXirdoCOZHWEg86gzWVWjJqfaiQqiSJ3gSy7suc9iG+e91XLtfrEHaAj4lf3+X6fgeuw8IUIilGns6N62q41g2TM94ZptNCqZnlsHA6nnj/QejF67pKgJomYhAYQqwOhA7v54lcM3sS+rE1oi+4LPNQXs+5kvYd68TxtlOBu/eV0wyp03al2ZqJ3mKbZMvBe0IU59WqthQlF4I31LyTtis1n6RnV0Rpw3nRYWul0rXCjNKaa+nNW5Gq0ekJpa73L+2vNA1cGm0kOOiBrppVXcnBOqcwa/soy2u3BtctiLT7/l9/XJEAOmwfNPCZG2uww7LNNAUfbn0+0/rUSafdSiNenlAo7a3cNaSRoGWsKCvcB67apMrVH8b0RtUou9B+Xh/FLhgyn3zyiHdwWIQYEEIghInj4YGHOQiOv64cjyfm4NguLzJ3ZRqvHo9sm+Xt27csy8Kv/Ndf5nK5YE3j1ePMm9dHnHd82k7SLzPy2oOPGCvWEs43jg+R0ylyPAZyCzhXRuCaoqp1mMz55YWUEphMyiulOpbjLBCoMt7mOGFaJe0rte6EEJimwHI8iGpLk0FbkWGaeXh44NfrxuWcaFolPpxmjofjgN8M4L0kUd458t54ODh8sBxnyyevFlLKrNfKfpKETiTHGtdzhlbJaeXl/EROV9bNs+4zl+3M++d3hDjLQW88h+MJH6VfJ6LEdsxbYuU1xEkS1pIKNEOIkeAnrBX5Iec02JhVrUeQUQDTQNU1ohVH5dqqrB0Yh+6nn32GMZZaKi8vZyV33Xo/zskKkhkziw93RqwG5nkaGqi1FqmurSVOM8s8C2y4rtzUaSDlhAu932nZ90KtO7UmwEl/LmfOl2fSvlNzEfd242jGksuGQcSbQ4xEGyTdrYVUb+a43T3COUdtVRjOzgquUUWppdQmDO4mJ0icVdy8ieCuuGjAljau28qe0oDm/1ev73Xg+uzxgcOy0IDrdmLPO9uelZYtg7SlFR5fPfLJp2+5Xq9s+0pK0ijs4g4CX9zwbh9lyDiVPAYex0E7mDqS/VvrCD4q5bOOwHWjmiu1HDkE3z7OeGcoeR8Hfq2VddtIu7wu7z3LvPBweuCHP/zhwO6/+eab0euSPx292Xpd91tWBtwHqi5FIZXNXfamTeLR9Rp6cyMOyZU7RDcA+m+xjfTSeFCbZHy971W0f1KqaLp9JPmizZ8GGsS0d2iVU9U/H9MrOhng7T9/43SYu7/Te161juwBV0KXVFxI5tt7eZ1IJeKgmZeXJ/aUWbcdS+NnvviMT9681lk/HQY3jjevXlPKp+QsEM/zs2gGPr37Bms7TLbw9u1rTqcj8zzx8Pj/4Xq9Sr9ku1JrxhvL4/GIfTyRS2bPiVwaP/y5L/jF3/JDAF5ezlyvV378k1/Vxr4El3Tdoc14D59//prLceJyWVnXF96986S08fbNW+aDmIXue2bbN+Zl4ud/4Yd8vn/G+frCdb2yp5VpmThOC/OyjCRl2858/vkn0N4Kmy1lrJfF8fj4WoaTW+V6PeMNnA4nfv7nPiXthXVd5bWfP8heqpVl8tJ7KYWH4yMPxwXvHfM8qwJIYS+Zsl65pg17MaTS2LeCc4Gf/dmfwyp6kVPmumadIZJeTaViveXN6zfaCzbMcSanOuamgMEQzq2y5Z0977gg9HYhclRFJeR3Bz+NIORs0ARRhGuFXapd26bKG1XUNexgI99cwWv16lMnX04JWJIcQ/Ce+PAgW1AZkhSLd4KCtJqhZgwVKwRXQdxrVdJGviP89BaBEMPkgQ1sG737MHl8lSQkxijQsHek1tRqx7M4iFZcKiZrSPkWoOJ84KunK+u6UmsW9X+dSXz1+hVv3r7hzZs3XHW4+jdtxfXzP/xZjscjlca6r8r8yhh/a8jnmjmcDjw+PsoBWqVhmXTTNJVw6ZehYXU+pGsE9uuWHVUlVjRdzFGw4NablHX8NkAPY+khvTotxOBwVgaoAVptAjXt+2AaOSNZ9On0OIKaNHO3Ebi8d6DleurlvTGolBh3DIJO7lVmogar1sm2GoS0guoEidsIgMUYsYKotFF51XZH1tBhzo9qu7teU21Q6k1uxmAGPigW4Vl1Eetd4OrBtqq4rlrAKAlDRiBusKBsTDMa6VII2CHJ00OXfCitIzjypxSgY1am1EIpUjkfjw8sx8f+asip6loQ4sbxeBBZI+d4fj5zvVwEVivCxOwzQVKlefFiS4l933h+eU+tjRCkDzRNYdC5z5czj69e8fDwQAwT33zzDc/Pz7x7934kMNZ6bf6rC+3hwLrKeMc333zDNElv9M2bN0PQN+fC+3cfmKaJ0+mE9Z7L9czlemHfNnHgVguRbVtHT+fVq1cyZ2RkhstUMf98fPUoqh3AYZupbWOaAm/fvmaaFtbryoenJ959854eAKz17Ns2GvnTFLXqmySg7yvrehE4v8N4KbEcPDFIBRiCwGnbdmHbVoHSvfaZNeB+eHoSeLRC8JH1msiqxWiNaDZeLiulVXJN5JYxg5kLtSZNthRC9mHMd3399Tf0cfaUCvu+6tC2CHT331FKog/R95kw5yydGdlJUd3V23uHaRK4pmmWWTV9PzHKffLd8djKWE1qMhtoVVChAZvC1xaZCcUKQ3jbNoF8UyZr3xIkwbztLZHUsq2ylkKz0o923uCiiH33arIUMUA1RccQUte6hKZzmQKtB8CwXaXvdz5fvuvR//0OXJ988pbj8UCplXWXUjTlggk9cFlqywSFUfp8SqPpDU7KKiy3TN0BxuCDyMfM8zxKfzlsdm3Q5tH/6nMXcnzaj+aZbtWXwZnKcREH13nyLPM8qKv7vrErbX/bN1ouerg7aoWUK+u2K2ZtxgJvTQOXVmpO4bFOX+g+VlarEjuqlHZHTtHDXHtPrTdiVcJKbMlBZKJu5IeiwZoexOp9GLy9CtFN0yZyvcEtotLdBu1c5nwU7umwXdPAO3oGAs18NARuhKhSR29BeoHWCTNLnFRGXSlfI3C1wWKUgXGDsQJF9qAToyfOBzEFdIFaZT4vpcS7D088vn7NcjgwzzPHlzOXy5Xj8zMplf4hjIPHGMPhsOhht2OjJ+07zlmmZWZZJsn0q2gwPj4+8urVa5b5gLWOeV6IcWKaJh06ngcrLqXMw8MD+57Y1l0lluSwPJ1OhBC5jTSI0/Hjq0fmZWHVYLFtm9q5C2JxvV7Ytg139Ty+eSSGKH3hKchAf2kEHaa3xuCipZRAnDzz4cirV2/YUyIejiKPZUVYeFkOpD2xp53r9coyzxLYY+T5+QPueqFZMxRBQhAT2OAnYpg4no44K4xOUf1Y6YPbZqxROF9eRL2+NrwNXM7rqJiDjzISsG46NlEVqu6K74Ic3Ni2bahCSHXnZR/R3b+zkF/q3S5ohlIUIbCGKYbhyoC5qep0ONFZpz2/QlR1lc6IrLUQ40wIXVMSnJ+pplGoTPM8XBQaYiq6rZE6XCxUEaVkSjFj1KGzo5vqL1pjsMVCNpgm7NqUM9Y0MpbqDM04mpXRg24ganNVG6iiQV93W2Mo8dTS2NZNEIrLb9LAtSyR6C3rniglkfPOnnao2psJQmt/evrA+uWX+MmPTBVkxqJTgV3vtzjD5XIWSrJmpH2aPavWW85lKGX0yzmxHbF36s/93/vwn3eGl6cngnc8PJx49XCblAeDdZHJRayL7NvOtq78yn/7tQET7NvGrhI/ZUCSd8PRSpu/lz+yWk70Q3+M43aU7v5x9xUJ0lPqg9S90dqvAQPeBel7g7jrvo3XQLN3UB23e6Jagl2ZoSlk14mFt3mYMrQSjTE8Pz8LG8sJ4+433m8jg5bKXHJeHLHprEbHR/0QzA1izKVgLMQ4scxHJSZYfGg0Ve+f5+kmrGsteMeads7rxvl8ls8LQzwsEuy86OddLheBzVYJVNZ6Hl9/Qsoy/L6lRNsS0xSZp5kQZrZ14135hnO8YK3ldDrx+PjINE14L+xD7/2A4wCmWFjmwqPS38VeZJXD2xsOhwNvPxWkIbfCXlamQ+Tw6gCI/NSedtbripsC0Rlwlq1kCo1QJXAZa8gp8e75PcEFgvfStwH268bL9dd5u4qHV5wPvPmsEykCr1+/pjNBhaYONNHyjO9mpvMLcTlwOMycTkdOp6MER2Xw7dvGy8uzDPjfiVc750QpvgoKsO+J63XT1oBjve5acVWcC+LyUJokHseFaY5ctyvruikCoj52tSMtK12yydytPfnztt+hr2NDrT2xSMRJXLO9U/WK2sc7JLAKi9BxfbnivWPbrrLytWKb386CENUs8OcySeKwzMRpGm2J0+nEvu3s28ZVNSXzLol3K0U87lqFIhJ0vTcggctCzhQjakEhRtF5VNHeqj5muchIT06ZXBo2GoGht52coGTIyGNSLuybJCl9j1yv6//j2f7/dn2vA9d/+S//F8F7ruvKeb2yp102v1ZbxktWs+27WJKroZxVbnVfjKXc7NsxkglLdnWnu6Vpecene5AopbLvu3yvdFXBr+s4THvF5a0Ry3FrmZdZVOzRQVpr72AATyuVbV35tV/7NeB2MOc9Ubv3mJGA6Z3D+0AuWejaIA1+hmqgfG8YGoNy9Vkt7qbpe5XYKzWRlRITyk49v23WLjhcldTRoUOndumDqt7RyLs+odHfPX6ffi79pTTVnKytcvfqpFI0ckC4Uc1IfxF9rwK7CJyScx06itYYjDeDVj981IwBKzM3DZhiZD6ciHFinibiNOOcBKEQBPu3zlIdnN9duK4rL88XUhI5IGvEKj6ESAiRGCdRmdAKwyCzf4eDEIj2feN8FsLGrLNazjTOl4tk8oWPGH7rutIdrrvdTq2Vl5cX9j1Ra2VZDgQv/drz+ZltSzjnWI5HwhRIKXO+XMlP6a6n4dmSHPS5FHzw0gdxUr10ybQYg8DsuXA5nzUxE7izITJn5/OZp+cry+HA6XiSdaFW8LmaIZpsMKx9/24r799/w+Vy4XK5sCwzj68eeXx44OF0ZJ4mnBGlkHXfqDRODyfpa+s6KipkS2tMy5HGE5fLlbJncpU2gYgTp7HGpzlwOh5YTgv2omICzuJDT5lk7e17N5VNzPNB57YyOVXta1Vas9JHHbylQmNSclW3KHKIuG4b69c7IXQ5Z4mvvJ4zRpU4HD44fT1VyWBNnNqBECU5y7XQijD9jBXkKNY4dk8phWmaRj+tk5kGYYru3Kwu0M4J3J6LjA6sYnuTnSU5w+XlIj51rVHdxOW8cjlL4M+50sQmWYWiZd72oL1T9y1V/p/m+l4Hrq+//hLvnIiNpl3N/jLVKjTkRHZm3xPrvgsjTwPM/UBqGQoBMsMwhnbbjZQBYkXhfc+KwhDq3LZ9kCXc/yBw9csasbm21rDtaeDctYgixDRFpjgRoiiK79vOy/kyqphaRemjdQq6tTivvj4NdpW4Aj4KXPK9ViydfIEEBqMVjuvy1R0q7NWY7VI1el/6QkfrM4UXhXV1k1zyNdyCk7kt0Mp94DKD8FEHi7EnCW0wEO/vIaapPYf0vuRWyGu7f1w2BmsrfVCz+4q5fl/s7Ws8Z0UpzY09Fcy2Daw+F7BWTBSd98Mh18+B55dnLterOiB3eDWIKkWpA5rqvdF9FwNTm7rdQyNnPcSMWD/sKbFMMsjb4Ziuvt6Trxuh81Z5b9umdipqJ2Hm8fnXVmilsacdPznxmqKQS4IkcJMpTmwn7qpXoZI3zCZzObUUTNa+YJMEqlJv9u1d/1NZcbV12SQjgTxXnLuMNem95+V8Zts21u3C+XLher1yXVcaTSTUnNe5Mammb+QK1U60t8qm6fq31nE8nth3UXTfSgexlV2pM1R4+d1OHYmtVRklZwjGjxlPY8D7RMqJlCTpqFXu324zVZEFmhn/3arA/b1i+pjcJbBiV8Dow93QiFOUV9pnDjsmouu8u0XknChZxii6TUpV89vB/NXP0DqntjvTIIDoIaiB69YvdlZcoDFWSWfK+iyFgASk6gyXy/VmsBoWbXeI43afsXROhJ+rqpN03ctvz37+NNf3OnB9+dWXorDeGpk6pLVy6dwx4Y+J+G4jV1HM6I3sfsmB0okXmWXWPsPdfTW6EYaChQYza+3og3XrhP74fqCMINbUZVjdbm+DwwggvEsj2G77CKguTuw6e5aSZNLWWoJzeJ0rs9Zo4Gg3sp9WJcPzqinuftd7q7UK1dwYvLkLDvr6QQR9hRzBUN7u/94JHq3JHFetjN+/lz7/1hlNd6QN7qrXKoOJPsZBhhHxYAmIQw7r7nV15iZ0kz/J6oz9GMosgHWGZTnSKfpWbSrcXdC6hwp7NZ5rkdzzbjBahjYL274PYooJcM2bQFxT4HA8SnJjHNdto+RKyjulFZwaDLogEk+lysEevPTjTo8PoshiwTp0qN3Spoi2Bkd11V/rTZnhRsPuf3e5XEaSdTweR6KFlT6HsYbDYWaaxOSyVOnTWAMuSJJm9DOf1O5914HWVqoc7l6clm+JWpb5Jxd49I80dbB+fnkGDPO0MC9i3d6dnZd55nyRarXkpIEyMNUqepBG6Npb2tU1WdRHfHADAs/KFN62TWFAh/WW169fjT1z5jwIUH1EguZwiEFrqYlt6wlgkmBiIQQhiLg+L7cbjJHPuxQDylS8Dbw7alXWnujH4L0TOPw+Cf1IksookiIH/jJNCFqQRCVFpa22bR0/L+obFxnsnyJr2gW22/exRkbPSxPdMEURTlbZrL6X2uh3M8gaGKM+cQJz1pyxJeOqp3hHNpYPz1Lhl9IoJrKtiVIg7XJ/vTPEGOmO8dCY50Vh0o/PnJ/m+qkC1y/90i/xD//hP+Q//sf/yLIs/IE/8Af4m3/zb/Lbf/tvH49Z15W/+Bf/In//7/99tm3jj/2xP8bf+lt/iy+++GI85r/+1//Kn/7Tf5p/9s/+GafTiT/1p/4Uv/RLvySaZT/FNUXR/zMgpnJGdPEylYIEiqwUuWGrIekYzd7qkWFRUItmFkWzrnDHAvpYqLOX+NL8luxo5Cu3kkQCSrnphlmrWWIMTHFSpQKtixSXz0mCqA+Ox9cPQ4w17QJjOWsJSk814/UUrQalchowjFYYaH+p3QWw7r4sGov2o2pKLqMHA+MwHSSUXpJppibmercKwMdwFwxun6uQO26/o0OFFRRqtXpPbq+iK1b33pz3MgZQalF4UAKW/ejwruMrpzxeizNGD2OdEvjoDbfhP5VyojXtHXqPs15hIW0+I5TraiuuGPEYqsIcpWWMaSxzxOr/cJ68C+PssCyYeZbPxED0so7DJCaR8hYql+cPImwbZtx8S4g6rGw1iWpVLFe2dee4HHDGsqvX3KSq8c45phBGwL3mK8YZfIii5F5EaaKUhnHSe6QZUslAIziPOxxEODgEtut1kHsENpRe0L43UbBwlsNhZr1srOvKuq8cJmHUTtFjdSA9l8Lz00ozjeAtx+nINgXSvrFHh4ueeZqYgqOknWQtDjgdD6ISUav2TS5CzkoyZ9YJD19/9U7HX2StvH/6wPly4XK+KFlFiD05b3zxMz/g8y8+I0ZhTrYasQ5CmCTpcKIdOkVPSp55XihFqq/g+5lhcdbTh1JA1nJn4fb+Wq0V728Qb0qZfasyCpF23r9PupckCOcsNk2lJKbRUggygAzMpwdBUAzjHP1oNKR/jzAMjfbeeiLEIEHd2iHo4Pbp1ULadmrJuJJ5fZyJzuAaSrJY2faEtQHvEXPRDMFZ5ilyWk4441Qg3BC9uGmkbf9/Ptz/X66fKlL883/+z/kzf+bP8Pt+3+8j58xf+St/hT/6R/8o/+E//AeOKiHz5//8n+cf/aN/xD/4B/+AV69e8Wf/7J/lT/yJP8G//Jf/EhCM9Y//8T/OD37wA/7Vv/pX/Pqv/zp/8k/+SUII/I2/8Td+qhfvvEi91FvMQHngdyWv0cBlR+AS8VXuOkCyOKo8lJrryORGBXAfjbgtig5r3WSVPj7YjR7+XapP2GtNTS+rVABO8GZ6aW8NrroBozjbYYc2qLjfJmJAf71KI7f2N75G+g1QmoQyioRN2U3tbr+v98akHyRW3UalLjpRosOFrQo7sFeWritcG4Mxt2Umj+9P0GFI1Rm0KhLrrCpA6WM1yMpraiI+25rMhmU5WK1CEt0CvX4k9lnG59BNKHvcrebGQGut3pS5Vf6pW4m01mTIWdlfohvswEMoVlTcd2GVUeX+xyCEHaOUfFqhtayHmxsVn/QbUM3KotClmBjekl/zUbUvpBcJHD4Izbh2KKxXJN6zLIscZEZXQAPjDLYICmGs7B95ThGIthq4Wr35nzkj98Bpn9DWPlheNelpNAvWBIZdu3dsSP/YmcaiWotzDApJC1ko5SxiAKpJeNmu7M5gjfRwog94Z9n2jfPlzL5tw7x1VB9392jbkwq7bqPiDDEwhSM5F6nmpsiyHCS5zGUgA03fjw12nDGdAm+twRlH9kKgWOaFnD0peILPIwl1ziPmqV1KTdi4fV5rCN+aG9s0pcTVGnYVOO6uCM7FG7NZe1DzPLMsC/M8c75epZ9vjLhnIxXT/bnQ108PSl779qVIP6xvyF6hCeKhZ6N1+HAgx0QrGV8zj8eF4Ay2VuYP7wXGLh2ulp9tFay3Sum/DZt7/Tw+cpL4DtdPFbj+8T/+xx99/3f/7t/l888/59/+23/LH/pDf4gPHz7wt//23+bv/b2/xx/+w38YgL/zd/4Ov/N3/k7+zb/5N/z+3//7+Sf/5J/wH/7Df+Cf/tN/yhdffMHv+T2/h7/+1/86f+kv/SX+6l/9qwP//J+5uutwyXUcmoVG0Uy6IYJzQyGvCdH7ntLd/x5gpOE38HdAdh9h/lpFdLjxnmEoHAP7UVDph3tt0rCtRTXyjFQqGIg+SEBwluhvzMe87UMBIESxbv9YLf7mHVRK0g0hxIVO20WrpOH+ewdX3Ptu/Y8WuwRdgwCa3x7CZtw/ocMLLNv1//SFcNMRZDALe+XbazwDQqBQbN2YW9Ci9mAnyUFV2ajSCrkVbVca9UDrsB4SQJxhCtNHH2/rH7FCkf0FyT3pVHgjUJTel5SkIZ9LxhoZLPbBESdHKp6UE+d6YduSHjCOOXhQncRt3dS1IGObwwbwTj7P2oS1tl03ko45eFUtaFXmxXpvqwev7qRbSlG3ZTf2ToenZ9W3lJ7qKn5JxjDNnqMTMs+W5JA3gDcGF4KyPS2tGUL1IyOvteKMwVtLNG4oush4ggTBKdwgeGPQAdlC9JaH05FlWYgxkvaMd5ZSLNTM4/HAvCwcDjPh2XB1Bktjmm+aiOtaeHl6oVWGSnx/r7c5ucB6Eeba09MTr1+/5ng88vjwwCdv3nI6nYbC+8PDA7VU9nXj5fzMvEw0TWJtkH6TV2WOvh+9r9QaaK2xLMtgC3b7lD732Nm2HwUouPWeNLno177vxBjZ1lXIWVkcsOdZZtb6Z533xKtXrzidThwOB969f09St2wXgxjkaqC9hyT7HnNODHQNErgoHzOj7xPi7upg7UKexDw0NvmsgjWYmjh8fWDfC+uu4zvaWa/N4K0XWbR5JoY4Pp8YJ0rJfOu4+amu/6Ue14cPHwB4+/YtAP/23/5bUkr8kT/yR8Zjfsfv+B38wi/8Av/6X/9rfv/v//3863/9r/ndv/t3fwQd/rE/9sf403/6T/Pv//2/5/f+3t/7G56nN5z79fT0BAhF2yIEjNbu+lq6SBrQisikpFz0UPTjMKr1lplL8CmibdiyZlqW8/lFaNfOYY3XAGWYpqiWBUZ1xeoIWPdOrZ3K3rTn5LzFOEM1hu18JcTIgYXWJjoZJMZI2YXF56wVRXvrMa3haqMp/DQYes2Ij5B3hGAZGoVSemkVIZVm3ot6POXbzxorOL9CCZ20Lr1AS/SeUlU6qfVwcwtejUY1CClG+2zdMFCg0qzup/KzvacEMtB8gwyL/K/cSUJpFqhPJP5pVaWuPOI+rTDinj9WOXFaLeQmQ+dSuUn/xqhqelaDO4FZGs4FrSRh22+K4agWYgiGUnZRYMkG52a268qedvKaVJG9YVvm5cM7HaEQGK8zLyXYzMzLwvz6Nc7AVhKX5ydeXp4+6mHN8zSgvs44naaJDx8+cNFB50lp0FYrtGVeWA4L8xIpNZFzFSUQZRva50YpuwTI6Lm8XMZ82PX5TJ/KLkXUYwRe8ncVQ7ljp6pOZRGdu1wS0yx2LOu+YmomOoNxgbJd2Vqh7iJ0W1RFw9GoeaNsjY2EM5UlOryZyXkXo9i0k9adzz/7lNPpgcfH16zrSlHzyuC9wqWrDmGvMiLw9CzyScsBaww/+4MfjHmxfVu5XC58eP9EQ3zRDsvyUTVgAEodFj+tlJHknJ+eB/rgjRU4W+1fglY1GKPJqSRlPcntiW5PGPvMaJd+swq59xnTaRJ26+PD4yDnrOvKssxMGJbT40dQ3+g96991tEV6xKp8r87Z/b+bAaO9vD2lwaguJY0KfrZxJJ3zdOD1q7fsqXG+7BwOJz5c3rOuG69fn3j/cuXp6YV33wjkbVrl3ddfA0Wq6+l/vkj59vWdA1etlT/35/4cf/AP/kF+1+/6XQD86Ec/Iqpvzv31xRdf8KMf/Wg85j5o9X/v//Y/un7pl36Jv/bX/tpv+PtpXpjnqLRNKwOkBlKVgbhcC7mIHIm4m1rpbygNs+Sb/IswCwu1JixFWUbivyOZrvY5NIOKMapvjsH7+FHgitrIBjMIFa01jAUfhDnXrMyYxBCYl5klzoNBNMWZXLJs6jvnX+89YWR1TgVq7chcOoQlzKO78t/fhqNac6LF1tWgNUhV6mBbeuNuyhXGUEzV+So7Hn+bypJKbhT9HdpyRgJKM6M/1V/P7TtlMln1K6LDuTcl6h4gFSm5ex/Ktqr9aZveDzOgv9KEQBC8uyN7gFX1B4MVD67aRmJhu5TG7R3pK+Wun2ewFYGXDDgr2nHNy9qyOreXur+bEWfryUk1s2epNkyrlLwTvWfyjofTgeBkGLvRmOcD0xTxerj0NTDPs/ZI/Pi7j+bYbHfe3gesfDwe8X5Xar0EhxBFib5OorowTQuGFYyjq34nFX521knVae+SgP5xVPFdEpJRYZkmITV4wxyi3E9rmOPhNnyLufUhSyU4i0GcyKtqZnpr8NPEFD2tThyWwunhFcvhyOEgM2e1FP3MIIcsFUeIQwx43zZR1993np5Ejd2YA8syY6ZIq4V8WsDUocp/XxV9xIDVCqz/W1/P94QluAWj/n3pCjN9bZubwOz9f3slz4QQ8NbR7qqlaZpYlkWUTu5/1jlqQ4ws6SBHRzFuLYLRx9K/v0dcevXXe6b3Iz/WihDwgBCVXdx/0xD8dZ4YexWsVb8G8j5z6b1XOxxDjGHA0N/l+s6B68/8mT/Dv/t3/45/8S/+xXd+8v/Z6y//5b/MX/gLf2F8//T0xM///M8zzTOH44HlsMgMinM05wYtfk0b6561T6MZkFWdrtYdf7VhmjNd38sYcdl1zg6c/KaaUEcG1CuuEG6BqzfO++Hcq62GQCkhCPutmsK67qrPNjGHWZ6/NeZJAhdVJIfkdNbK6P9H3p/7yJZn+Z3g57fdxczc/W0RkWsVC5ghh0VgBjNE9zA1SvwHSiZIgBJRLIUyJQJUqFAqUKRGlSBQoEJwQHBmhKY+DXC2rsrKjIzlveeLLXf5bS2c87tmL6t6ujMGaDCQlvCMCH/+3M3N7v2dc77nuziBxKSgoT9HqLXONbKJhgK2w9debyLrLA63UcCzGojWojsKKxoO467wai5pu0lqaRoZJTboAXbzf/L3WrUqhsa0h08LV9OvVJ2ajbEbYUQ84K7FU/6u/F9tk0up4jCiiKRzHuvNBms1eynfeUw228RlvBYXjBauq3C05aK117wVsO3T8sw/gZNtm+6csFgkjMSQ0MJmDN5LGGIXOuaYKEkyn5b5gu3lht+NPb23miBbuLt7EOaosxtzsE30wDaB3YrjW4EXgedZ2JNDr5ChFXbqWjFekgr6vqPEpFq1XijLRqM/CoQs+WkWJTGgiHMp6mZidLoX13lTofOqOfKW2uucbS2dHxTtkOkkF9Ho1Sx73abBiiXqa2rphg7vRHeUK3TdSAgyheaYyDZfpxYvr0cKYmdUcxUrKGOIa+Tp8RF1kGa/32kemGcceprPYfv4y/xJNyID1z1igwFvH7dF60qPvxaK7fO0Iif7s6qOG6VU+rbHVWSk73ttLvqbewdc6MilsEaB8tuqve1JTVP06z3bNJF5u0e087tZH2Q1Cy/WYXQfn2uBrOztnKAISSYl8SCFujUl1tqbJk9oTK3B6vsOkOvjli38mz6+U+H6R//oH/Enf/In/Kf/9J/4yU9+sn3+Bz/4Aeu68vT09MnU9fXXX/ODH/xg+5r//J//8yff7+uvv97+7C979H2/vWG3jzUVulzwLYQRoEKuKLVXNFKyvGxteNkOQKF6687Dgtj9SDaOGFZesei2Xyjl084r50yMAmOWIovZlnra/rw9jIN+GGQ6LFIkY5TFcPNNbKQJocVWglMmWG3kDBVGWr8VKuleM77rxNEhx7/QNbZH/TWniTZtoAetc8KYM7U5q1ft3AVCEC2QPh/TtlfX5VHrLGNabzrTNobdaljkOaQquWQm5U86yc2SqhV9hRgtZuvYjbWYcN2R1VbBFCK1pohNTcnEJJosCpjUnrUhp0+7Z3ES1+nNaMdaC7lByaWIhY8W7MvLlZqMplBXjByaa5SpXhOMGQqlE43W5XJhmWfO00muXWvE3DmLXmuNKzEb+n4Q9puVhiUELy4S21QvupgYV+ZZoOdlnlmWmTUu9MPA0Pc8PDwIspASJSXevL6nBE9eFj5+fCR0J7wPHE8TFRGd1mKIWS2MSt3szlJKmNpshAAKaV0395rHj704oXtLcAFjNaodv03MRq8V5x0Pd/cK5yfWZSZmEel3oWOfd3RKRzfW83j8QCowjDshUSHoh/fddl1TDJ3v2I97DvsdL88vTJcL83xB8wXYjQpDrivLNOP7jjlltXKrN9fupxPU7b10q9W8vYa2e60VB0RKEny3sVilCZFG1Fo16w5u21sv8ywBuBrSKVEgDst8Q6HPOOeIKfHhw6NYObWmVWFCZ9rO+IZdrCjT+XzeGIifFF8Dy7zoeRKYVyGROSDUiiuZzjl2fcfTx0eOLydOpwu5OtJaGPtBCCB6HpeUSctMXCbWZdJwzsL5fOa7Pn6jwlVr5Y/+6I/4N//m3/Af/+N/5Pd+7/c++fO/+Tf/JiEE/sN/+A/8wR/8AQD/5b/8F37+85/zs5/9DICf/exn/LN/9s/45ptv+PzzzwH49//+33N/f8/v//7v/0ZPPtfKsibWfAJ7Fsp7RSMZ6panJUm9zebHXqE2FPLahL2FUhP9IOa1JYmzdesWhJaaAEMXpMNtEE7rhjcLF/5i4SJXpksVh4YcOR6PGIO4MThP0X1L151p4XPuRrwLukDVBfBfYBU6gQ1jbpZQ7Zy4QnNsbhZGvPKsFXjL+W0Ka8w7BeAoJeOsqPhbQd1u6vb97DVevCLQkqB22nGba2fZpkTp+rLuflT0rB2oU3d49GvaHswZS86zTljyOtRfT56lMSxlwI5FQvXaFCZQiUCKKbe4Frk+pHDduuFX0D1dyyqquuuDIjlSWlitUaeBKuaj6ypwby1ycJ0vE+eLHDziTSlU8RSFGWmaKkLd9Oe10PcrXddfNVhUPn78sE1bQRlybXrd7/csy8w0T8zzxOVyIYSw6ZskvdhROcj+K2aeHp9k92scp/OEdRqDUYxoIvVNzc2UWvdSt76XYrIsB/LpdBHqeJAkZ4kRkcMXfYeskanfRUcpz+Sku9cYdcIHZ2cu82Vj9EkPJPDVsqw4I8hDihFrZunwS4FShBq/iv7xdDxxuZzJcRG9V1yZLxdeXh6Zpon5MjEe9ixLZJrXG/JQg95a4fr0XprnZdv5Xb++TWbNZFfvgMY23JxarF7DalzgpMhvusyYiUmMmJ0TduhuNzL24/Yzcxa4OOfCy8vLdt+LBZNAvOIUo3CeTpNRC+L5fN7kH78+JU7TROgHfOgoCNPWVvC14Eqmdx6y6OZEOlLxzgOrQN3bRC4fksQc1ZElUkpkmqf/pUf9X3j8RoXrD//wD/nX//pf82//7b/l7u5u20k9PDwwjiMPDw/8g3/wD/jH//gf8+bNG+7v7/mjP/ojfvazn/G3/tbfAuDv/J2/w+///u/zd//u3+Wf//N/zldffcU/+Sf/hD/8wz/8S6eq/1+PjCVmsUFKegDmIiw90XTJhZSydFKbn5kVWmbTN1DrdjEIAeG6RF/XhWZy2QqXQBrigABs47GMylcmEVxhu9a5GytZWWtamSZlc/lE3Iw0CyGsqisreiBeoQrnPa79e+sE7fVGqLWyKrvwChm0CxKderSra/s773Hh00Vp29GhpqzWgjV1K66tP2vFUzDt1qnqVKTrJvnzK34uTxTdPSaFa5WZph6G3tstRyzntDUH3nmWWQpX6LwW/KI7nagDl1GXFBROzTIRFLWFqlfXiVa4pFhZgfC0iNnbwlXS9fpov30txGWW6d1YvKs4J4VaAhPzVuC9EeZhVg1Yiqs6MKQbQWxjpqoGMVWsFVNlY8w28eQcPyFq9H24uQYtl+mymeO2xqqZv4bguT/syEWSsuM68/z8jABIlvO04DSzimpJ+dPdYms7ihYsq390NUF2zMtMTbILNEbCVq3hCg0ZieUQOnshXeaNqJHLNbE7IqLjRuMvtRBcwPnAuiZlz8nvXXJVY9y8QcU5y47r8emRy+WCKYlXrx5Y+p7pcubp6ZHz6cT5dOZuueMyRy6XZTttDdd7S552hSrXRNXCJe+HTGlW70VrPVVzrbZBpn1PXVU0VKE1dJLg3JznJV8upci6zDgX2O1G9oc9u2FH1gKVswibS5HpJSnE1+y62g+3N4hR87Vc15XL5bK5aNx6uG6Fa13xXY9xvbwWteJKwddCDgFHZVlF9Nw4BLUiLjHbDlTOvTUuzPPEPF+ISaKlji/Pv9F5f/v4jQrXv/yX/xKAv/23//Ynn/9X/+pf8ff//t8H4F/8i3+BtZY/+IM/+ESA3B7OOf7kT/6Ef/gP/yE/+9nP2O/3/L2/9/f4p//0n/7GT964jmKNJH6muo3JNH2Mc2KTV1sOlLLiKlRrN8aNbBGb/12lc16cNnLclOxXF+hmbhuJaZFOMZVPqKSti2oXfGMsphT5vPscHzrpWItOU1noozmp5VCRQpt19yYJytJdUwpFYc7I1dVeUnAlPygpu26DNFUAXDY4A6CSq4fiKMkoTt32YG6DEJoLQzuYSkl6P+hOwDdH96q2RhJfnuv6KXwi49TNzYFe5JEmzi7qanKFTQTcaBNXm3znaZKCH24kB3qj+OZuYCulyiE/TWd5r3JRrdMVrsxJYLA2pVHlwLJu89/VOnt167i66UNUgo7QsSVIsTn+l5scJ6M2QKlkNXBdKCUBTnwd9fqQz8n1+/Cw2wTP8ywMOMnwmvV6kJ1BIwV575nmMxe1TBI4sS3ZpVFphe54PJJy5Hw+8ae//HNKEdnIsmaGYY8PPc4G6Z6r0fdE7c6cIwLGCPnEGhGbOi+OF4O/AyMJ4yLydfp6X6dv78J2jc2zHM6us/RO42i0mVzXmVySBoBaTucLOSWdyr1IDZZFctCU5l5iURhOpovHxxfmeSF4mWanzy+ktPL1V1/z8vzE89Mj4/7AtESmOcqu1PqtoLRrhZuoEigMw04dbVZxvNlsxPwNMqG3eNU0BXO99mvNEv7a9kA053lIq0yf0jiLB+ThsOduf09L9RZ3ChEtn8/njVnqraUYtp1utVdv1RDkvW9M7f1+f0NT77YGcZpnfNfjQiAbB0XYowHojGXsOvI4Mp8vYqqbNC4lxRvGpJyn67ryzTdf4zuH8RJDM80TT09Pv/GZ3x6/MVT4P/cYhoE//uM/5o//+I//J7/md3/3d/l3/+7f/SY/+i99fPv+IyFcxZUVtEGuiOFPBHMV/gFYE3HGiMO6U0wZo/ECmVw1ELLmLYeoLWu9Z2MJNpuoWrmKVm9gO7guaVvHm9VzDpMlNnxJukMr24I954y3ZeuuKQXv5WtSrLrXEhjt1uvL6KLZGJiX6Vq4grijgxQhpSFId7Sxi6rasUjR6nqJgZGpIXE8HvHeErzbCk2tDf5wm8dgSdrplqKGv9clMr/22rSf24qVc06c/fVruy4IhVahSrghjhTlNNZMihqGaQ373Y6h72RBnwrTfKbUhA92K+Y1c9NUqGi3VmE/2qsPYsqFFo5szBWGNdbRNnkVsZSqVcpZyiq+tNfuVXZzBoyjHwa6vjKv74l5JudK18mh1CyFGptUbH92vLy8bAcNoCa7wjCTw0Z8+5yX/ddut2NdBQLe7cZtP3w4HPj48eN1cu08thhSGdnt9+QqhctMq+w2rFiSySWodHcMvog3JqZIYrbKCLx3+GTxxUnSrVwgtJTtpvEzrXDdmF3XAt7bTavoG8moFrVekjdC7N3EezKnVRxrSiWvkRITNWWq7qkMAe8EqvRO8q1iFPmLNZX9OPDm9QPOVmpNAkG6wDAYjO22Yn/rAN/gP72CN/9JiYpJClUaxDy37aGECl8RhOH2nGKD6KAqoaf9rODDZhTd3HmcFvvmNuNs22UDuSAGxkGcNbrukyiTBnOKd6vs4Ft+2+0Or01e7UwruXCcLpgqcvHeWVzXY0yg6wM191jjyLmy3++Z1oZKyL6+5Mw0nXl8eqQfO3aHgVwi83zh+eXxf9E5/5c9vtdehY9Pz0KrdOoyrjZOjardKNON8FCKAiIGgnPX6Atjt68tVdwYcs3qy7bc7K5Qg9Rr4aKCdVsbRuuwpWuTLqdhytM0cbeshFJZlsg8rarVcr9WuJxErmSJ80ixYm1mdUl2c+0irFdyRaVq9w3ny1mCGY3oQ3zopUgVkQa0G8b6sBXUZZHfy1pHN8hhV3JhWSMvT090fcfQd9pd6g2LeNW13K5mbZWLCKyronCl3tDlgcZ+arspkRD0zPNle507PcDk++bt5vNeNGy1FnFVX2THZK1hPqyMGoK4rpHT+UitiXEvi/iq39u5gHhgt8Ilz0q6VZmCix7K8nmDD22RLo4ObX9RQKcSACuNgr7v9cZPylorVGADjy8nLpcTpWTGoacbB4Lv6ceBwRiBmYrAYpfzZWvRm4uK95ZB3Qi8t3LNqL3OdlAjRbfB4p2y1HKSvLdFJ0WMwfcdrloqljXqTjjLzmldBJJq+5S2X/31wuUU4hJvQS3mmlvWrgsp4zJ5N5i7Tb8b6SgEQrgawJaaEO6Poe8ccZ7I60KKC7vdHqf7swZ5BR8wzEJtDx2lJNmXGsiZjaBCrXRKzw7eE5O60tgAmhvWkgO2XZVCmO0+h4S1WfZ1RjPiFPq72lu3CV//q+2dzRWON7rSaMu1WqumHribwhW2Zshp42U6kdvUWrZGphWuvpck6U2I3ODTWhhU91dyZuh7MNK43xYv55zIi1AtmT7xqnZeEkUUIFcMlpyqCJvtNXUDbVqLOtwIq9JI0oKtxPW3NNbkV19/fXUT8O1CE51Sc6sQCxehKzeaJ1UcALrgxYLEe7yKN6uBZV3I9QrPtA4kxm6LTHfqUH0rNM65kDQ8sDnJy9+THJzT6Uw/7BmGkXleePwg6awN6mmTYef8Ntnd6kZqKVtH1C5icV3OxLwyDD3GwPF4ZF4W8cELgdANcnG2wgXadYuVTCmFNQrZpBmU+hBk4kqJ08szh/2ew+Eg8RNr3ISUzR7GKr7dyCnd0F/hwBsyBwr/XeG6rOLLHefzUei1uRCCun6bq94HI+w7VBtSSiYuAiPVWtjtRPfk9PU7Hp+pZHZ3I0kXyNwWrqoi9LbjQrQ0VBWO5wTIzdZ3nuDdNg1sDiDWssSVmLLYCd1oq9DsKGF5ZZ3aDJfLiZgi1sLhsGcuhTdvX9PpayxruUxUP0CKeAUOwyDsOj0Hc4zENcv+5rDn/nBgNwy8OCdU+2kWm7FS2I0959OLxKosZ6pJm9+hCV5j6B3lvEjawpq4TOuWGNzc2BvTEiq2FlXe5W0yLcCbt++wLrCscXOqF3d4t+nkKijRoyqTT76/tZbQBZxrZIi6HcBjsNgcoURqXPniix9wd7jjbn/Pm1cjjZr+8eOT7LCNlQQJC95BirBMM5fTmcvpRFLj2Jqz+ObZXl6PWsQKTB+/bgbb7r/gO2nOssDCt/dmxGKLFDWs7H/R+KTbAtGuF+fcxtZtBJP2el/RHKMNxLW4GGPpusCr+zttyq+SnKu/qiBFKat7//5q/C3oRGKapm0f6r0neC8TYhVUAC2mfejYjSN7vVYXO+PswrpmnEK/WUXUJQvhyFrD2Pe8frjnpz/+EW/ePJBL/F8PKvyv7ZELlJiIszCmKtIVtKwk77x0gU40IcuyyoVasoy9XaALnt3gwOvOy1ZcCFDMlkVT1BI0VsOaDblIPxWTXITifmxYc2SNcuAFVwm+0nUymq/ryjSvJI25XlNiiqvi9UImKEo9rtYQa94O2qWZ7MZIi3FoF2bRQ2WeZ8mPGnvMslBTEmdn0wx05aM2eNEaqkWcon3ggOF4OYnjwHliSVGXyY5+v2d3LxHyLnTYeZbiFRN1W0jLDWK1SMWcFSrkZlFrroWu3YwmqJNBj5kmxe+r7PyKkGzS1rFLcKMzYpfUDzvGEWJsr+/CssbtAEu5qqgyIGe5Qpx4QMPwUpSfU6QYhSJLiLiukq2lxJSSe2IoImambma1vutYlsiyrixzwqjOTmLK0clF9qCgN/HOqUO3VKBlWYT+nFa8NwTnMMXy9Ze/4HR+IaWV+/s77l89EILf2IIxyWtsvMEGh+8Cr9++YU2rOMhEoR2Xmq77TsTr8fn5mX7Uhf9hT9/vcK4nZoN5uVDMglkK2Ix1ht53snMtLR+tYpzf9hi1pE0wu8aCyYlpjkyTQrSl4n2nMgMrbvRJCFXOeokjUgOALmadwAybLT4w2UJnKt7Kx27s+eyzN/z0J7/DF59/oZ6N8Is//4XuniM5X3A+c/9qR4mJL37wmjdv7tntB3J2OA/Oi7QmZ0etjoq7TtRKapG5qeK8IDxWYUu/WJyrqluT6db5QE5RWahCdRepBiSN6jGwRSw1pm1S8k6OiXfv3koT5sXrsuRMLgmvDUyvbiE5ZULwvHvzlmmaWBZx75dE5bZvF8uylKLsrrQhrEamt3VdOZ1PGGvZjTv2+51cs+o/OqerJ2hvHa93I3e7HW/vH3h6fOJ4PHE5L4RgGHc9h7s9/RC4JGV3p0TMmpDgLONuoNYgq4Hv+PheFy6ny+KaokZ6yMew3wlTzjl1q5AOYqiF+XxhXRZ6H7AWur7j8y9+yDxdaDEGb959Ri4JGzzffniUXU4I+DBgg+bnYHCKbwfvuXs9cLlceHl6oijc13nPq1cPfPvtN6xrZrfb8/kPvmC33/P09MTj8yMx2g0iAbaux/YC7Xgb8GMvMRXTRUkJHcM48ubNW04vLxxfjhyGnh//ld/l4fUDrx8/8Mtf/JJpmTHOsRt320Q0r6sUaOfwwXN3uN/cAugc/hIEPgpemJlFyC2v373ls3efye/4cmSaZpk+i2D43ntSXDcoJLfCxZXQAkJhb+r/xrILXgxP1xRV87Oy241b92qNUVi2Yp0leAlp3I0jcV2YZ2EsTRfLbr8j+MDx+ELXd4y7gZ/+zo8pJXO5yEJYzGOlO44xsi6JpFBY3/X0XeBuv+PLL79kXRZqlYLVkniX6bJNBj/40Q84XcQX7+d/9ku6oZfdUz/gnecyTZxOJ1IUd4ph7Hl4tcfSIDbDbj8wDoHOG7ytWLMF8sgOdyfJvE0b5YLDeoNVYavz6mPZ9+LNOPTc3R0oWSjh2+6j70TwPo6kKnuxCgzDKDqoJllwnuAr42ioyP7CVIsZzbaXtCjT1MoUvMwTOYmU5N1nX+Bc4HKZ+Pqbb2kmx3Loiw9iSpkS9BBXn8Vmd9SHJvkQ8baw4BYRTfeOIVh2Y8frN694/fqBh1cHhtHrdZfoOqjBUGvgxz/5jOeXjnWZ8M7x9u0bxnGgFCnq6OvsncBxhkBU6LzkrFE5spsLLUbFVGWrQg0WqlhcNX/JUgsuGFx15CKxKLKGypgihbsFt4qGS6DSel0GEoJlGDz90NH5XiB9RQG8B+cKwQuiMvQ9h7sdzUBhXcv2XMVMwSPInWE39hsTONeCt04mOG+U0SzNSDAWp7vbYbcTPWwtuFoY+45x6NntRuIyixZuWSmomQHCnHbeqFl1VZs58fpc1wV0//VdH9/rwhV6cUnuctJxHNYYefvFZ3g1HM2I9984jvT9wOP79xxfnrk/3LEuM/vdyF/7P/wf+dP/4f/LPJ1xFn7n936PUhK79wd+8auvMc7ju4Gu22FdoBrLmrLoMpR79js/+SlPj0/84s//HGsqDjHO/b3f/Yl0nnPk1ZsDf/33/zqH+zu+/PJLvnn/DWuM+C7QDdcLalkW3UPJjqfvemJKPD4+kmMUQendPX/jb/wN/uxPf07881/w+s1r/vf/zf+JH//kx3x4fOQ//3f/HR8+fqCATEoKGTw/P28MRe89b9++YxhGTuczbuxE9zP23N3fU0phXhZSTPzwpz/hpz/9XeZl4dtvvuX5+WWDQEFIA8fjC3IDK7yJTDHruirpoOKc4Uc//jHBe/HbO02aF3WHsYZzd2aeZ169erVNaLvdjnWWyPSWa7Tb7bi/v+fx43umSfVKp44f//jHHPZ7/j//r/+n/H7v3vLf/rd/E2MMX331Nf/9f///YIlZko2HgZgipxcxx23GpW9ev+Zv/P7/jv/7//X/xtOTxGKUkvnhF5/zox/+kG++/opxGHj1+oH/88/+G15eXvjlL79kmf4v3L96w7jbs9/J93r//gO/+tVXrOvC51+84+3bN7z77DXz5URJK95DSit9HzgMgc4K7BlTpO8c7v6gYYAVrBBfjAUXrkiATJ89w24g5UjoA/ev7umC4+XpiVoq49hz2O+opbI77EmmIEdMZTfuyMWwxkxOBWscXWfp+gM+zMQkbMzNZqkU7JYmV+k7z8cPH1jXlVevHvirf/WvM/QDLy8vLIsEC0q2lxRFzNUJRL5fJThHLZnlMtN3Hm8kMbzvAh++/ZbHeWEMgft9x+HQ8+7tPT/+0Re8ffeWw13PGs/EdWGaLyzxSAieYej463/9r/Dhw3vmeeLVwwP39/es68rPf/5zjDHEOLEuF3wY6MJI1w0czxdSnJmXhb4Pwhq2Fu9HcorUapEQSk/wRtmNia4T4sTxfJF/NwZTYBgcuWTmJVKJwrbUVYNRTVvwnrhGChFB3BaMkWv94W6AWklJtJ85L6zrjLMDu3GHuGplSllJaWaez+z3e0EdUsaYTkkuhXEcNjgyxhVsoAuOYdxv3o/zdFRqu8E4x93hTtnXhbJMeGsI3jIOHXk/Ms8TpzPELEzrNcmqJfQGnMW4Ss6RNc5My8Tx+IIxME2X73z2f68LV1bqe+d6fBfAWpZcGA53OO9Juv9xw0h3uGMcBuY1kXEMhx1m6gj9AF2P6wZczjhXGfcHZS0FrAtYH4TC3g9gAxUDNUNQcaXzuOEOP2TCeIejYIHgHd2wZxj3jLsD/Tjy8PoND68euCwzd69fMS+zBO/1nbpQO1y/ajRA4Xy+4KyhWIvxQTDsbsB2A8V68B7jPdU58B2EnmItxXmq79SRobl1FFw3yAQaAll3Xqmqu35jrjgnpItqCVXgtrUkns5HMS0uBZzFu56qWicXAn7tqVRccAJ7VsXqbfMARKeRICSGyWE7mSBC8Lj2kT2hvwojrXfYIP55oevUzmuliyurYvcYo6y9nm4YGA97hSVGdrsdxhgOdwfuHl5zqFXYdmqoejhMxJg47O/p+o77uzv2D/fcPdwJWadkgnN8/sUXfPbFDyglE7zj1asHfvqTH/P0NGLI/M5Pf8Kbd+84HO55eHjN3f0rnp6e+NGPfsiyLHzxxWe8++wNb1+/4uuvf8k8nei85euvfoG1lb5zTJcXDRSUQ0YgHnkOVrPWXHAUW7HRwypMT7wQSgoSKTNYyzj2NLx2t9sxjjuaa/xxPguUBcQorDqwDMNI6KBgMbXHuVkSbnNRd4q6kQFEIC7MP+uOQo+3gb/6v/lrPNzf8+VXX/HLX3zF8Xwm14Ixbksh9yHQ0q/jIn6NJWVKEK/D/TBw2I0YYD6eOdZHyhoZ+nse7u94eHVH6OR3f3z8iDXS1BwOI3d3A6ELDEPHu9dveffZA+u6cn+4w3vP8/ML3377DdM0CXQ7Djy8eot3Pcao2JbKuvYM4yAaTuvY73fELDCm955Uikz600zoLLu9wO6FortIoztjzZczHT63gNDAGtWCzBi8g76zBNWm9cHiTKGkhXk+C/OwVpxtZCKj31M0hss0kXIjWFkl7UjIaotsMUZkJusq2rN1nkg2qjm3p6SyCYVzkoywaizBDxq9Y3C1qKYrU3MipXWDRXOOVLII6W0lqY4xkBl3I/u9NHMNgo0pfuez/3tduG7zb0LoQBecwXdY78EUqkk462lpts57wra49GruiuzGnMM5IVaUnDZ2VTUOp6O2WHYJJbgZSOYcBa5aF9YYcVUKF6WosjxpEGSSCJZcyVk0WzFVbBGvN1/EOT6mijXNRsZC1f2R8RjncK7D2iCx4Hj592q3j5iqCEeL0Q7XCy0ZdXcwAWMDFElWrcVQisHgMMbjXIdz4sbgncXZQikwTYs6Ysj33UTKKJ6uk1bTQ1HlYDTWYmuDRsSlw+mHD+3f7fa+tsX1pz5xsgdo4YFGBa23nnI+eP266wK86HtgjPjVNbftJpbWFxaspVqJnklZltXzIq7vYr3VHExkT5ZLZlkXnp+e5OP5mcvlzDjt8D6wG/fSnZes60VxHYnLstkzLctCH3b6nCQgM0ddsAdhPdLo9Em+RxOUB93nFqWKGyOZXw1SlZ2WmMbWUmhenUJHF7aprUJ59z5QlWbRdR0FS6kWSqCLFeuyagAbnCWp39YYqEWslOymbuPVwyvevHnNeZoYhpFljaw5SuHS68QoxEytJGO2oEZJP/aMe5l8c0p81AgTSBt717uwoQji51dw3uG8A2URp6ThmFUSC3IppGVlnmemeeZ8vmwEK4F+O4IfQM20Q4j0fU9KaSM8mJbQ7D2uVtXjiShdmrKeME/b9bsRO4zBITs0Z/WazyICb2SllsYgTOAgu8CUWeZFrmtzK0lqZ08h23YPWNVgBqzzlJrUgSOr8F32ze0ebCkAIH8vaNGGqrtfZWWXsu2yRZvnPiEJwZU32e7VxlrMSk5qMo4QAinNpBRZ5mvix2/6+F4XLuc83snEI1CEp5iMc0GJFfqCG7fRxhuD5+qCbDfNk9ULxxqnuxnpOjxehYLNGFSc5Z0VQkjOojRfVJHuGtuqOOZ5Jq7CzFrXRFxFOJhiIcZCWouKpBM5G5yHGK/OG+AUmgBrZQ/mbIc1GhteHc521GKpxVKyIa6ZnMQ70RgvhU/ptsYE6SrR9OQqMeMlW0CKmrMZZ9X7zcvhUIthmRe6TiLFmyhaiBBXg2HxSHPqXSi/QXP1kIvabR/CuuzkPbT2197bT+2sMCIWDyGok4bcYFexo9kc8yvXDKScs3bWEkTYcpOanGErYrSEWsHgz+ezFK95xhhJEm66nFqbKHji/fv3PD5+4MOHD7y8vND1AwZHHwa1WprV6mZlmi6cvKXvPceXI3Gd2I+STSSkG0eyVqnSEiRam/9jrSr5ECp50dezeUZiHEmv12ZQa63Dh04Zap9+rxACTvVDMn1LUkDXdeQqMFHJnhCyJiKLoWrVCa7ve3mLSyHGhcYVrVUMbO/u7tjtduoj6MmSrvkJ1RrY7j1pbupmHDCOI6/fvGGdZoZh0GDSsjFsW+Mje8qW7SQNlUwCQoq5TDPzshLXKNKKUjieL1wuM8fTeZMZgJhl78Ydxgmjdl3XGzNtQQuaG4/3nuaRHlW31pxMbqnrTQPa9F6317+1GlBapSlujjYhdELrb7vism7FwHAtXqJnKxRXKQiRyrmAD1lZz0U8W6tAwI2QZJzD1aoTr1U9ZlCT6Kb7ysq4FYKF4/p7h3DNImwrAW6aomYbV4qRDaIWrq4TCcfpElnX+X89y6f/2h7jMNKFTqt6BSN08lwKqCuFOJoX5mnRi1zU6ikWaq5irbIKbTWEjnEMrDExTwuX88x0WQi9xbge10VKteQCcU1YhT5CCJLzZMQBnJI3qNDZQN+PjONe4iiqJWeDNR1d2FGKOLEH38ny2luMvTLj1iUqC64AUriojlos8xQpGawJlGxY18w0rVzOUfU3YEynXy+TldHiZE2HNRGqpxYHVZ6Ts+BdFRiwQtFCL6ynQtcpndw4ocnC1SPQWNCiYYzBVA3jc53oovRGrwp1iJXNLS39Kty8fTRWGq7RiOUGv+aoXTPSgK0gybXQFsBVNSSeEHoReCp9N+jBZUxz6hABeJsWvXOErtPp0LDbDUAleNkhnV6OLJcJZ0QYXotAKNPlIs4aRcTS6zpzPkMXHMs0UbI4ZXQqJN60Xtp9lwoeA85LU3YTBy8pMMKO8F2QEM0K8yoCe++cOhmIW0zbM0rxlWLnnFfSUS97rJolFSDJ+7HmlazC2jYt5Sr32DzP6icpf2aM6NZijLz/+JFcK09PT0zLrLICec+rEWnq2lITStGpKEujqYUpdIH7h3smbxn3I8M44JynH0e6fmAYduzGA+PYk4sw3rquowsDczorqpF5/Pi0CbiDWirN84xYcgv7uO8Ggh8Yxx37uztCLxNWC3eUrxez76D2YyEEHp+fWJZF7JF0ZzyonkzuB7MVrpQTOSpc6gIhSGZfQjR76CQrjiByZtRade9Ubho5s+niDEBoHpBmixeRwunB3BoGSxH1riPGtDXRVq23NnlKkfe+wdO5FOZVPRmzp7OGlCzrEjmbM6fTiWmaWJdV2c/qLLTJYxTidCKwzzlzPB5Z15nT8fSbH/r6+F4XrqIFK+ciAjm1GypJWEypVIwTCMTYSk5l89nbFOf679Y6ESb7jnlamKdF3wTY4BpaV6H6CquedHHeOvR1XaFkcaovjmmahEGV5ee/PB+p1XA+zaRYKVmTe4sUl5KNqu/BYAlhVCPZjDXCXsJ4anWsa6EWh3M9YIlrZZkzcS0YPM72BDfolGVwtm7LZBFNmq0IluIwhK1wGS2SwqLS6VUtjNQUSQvV1Xm/uVFYPUQbU8o5L/EhLSU5V2qR5+F9oKRMnK8hkO1xjT1omp72vsvnm2EnsOVUNV1M13WIObC8B8aItVBKCWcDyeQtcDQ2U9JWuKji/ZaSOvPbbUJrbt1tb3C5nFmWmZwjXRc09FK69cqRdY3i1L4s9EHeh5RWmitDrZKkKzsJgYbldUjEtZKriAutEgBESCqkilplsV/dNR5D3MjlurxMs0SOWks1dsuNM9Zyni6ErmNwblvWtw4+JfFJjKnF4wikZ62jGKHEXy4XZf5pF+6Din8t3377gWVe+fjhUf38spoZqiSBT5uTbXJsk0RtriRSALyTKJcu9PS9MCBjKmqIaxA7rkJMsjdJMSpN33K5zMxz1CwxCD5QqqXrBgxnDDJtOCf+hy8vJ1LKnM+XTbMpriWC3GzBp8aqz2SShi5YrEKA3ocrfK3NkYlRfDHR694FahB6Tc4FcdtoGjGv73cBFdvLfSZhsi1w1hhH8D3edZu2Ul6Dgu+aY43drjXvPMM4EtOZoop+6zxOd/ilgNF9sXXS4DmFma/v1dVvtE2R3gs5qO973GWmFUFM82O8TtfNZCGla2bgd3l8vwtXLpuLQ61g1PG7ZomPL1WXnwq/yIEpy83rjVP1wmlGsI5J4YWUMpshZlMnKyhyu9/JOcsuS0XDLTpF3LWbS7t8/fk8gfFCty2wXZDGgRHNBjdmpN51UjyaeWetsuvCkaIcdN51FCoxZr1JCyDTnnOd7K70QvJeIQej7vhtN1ba7w/WFoyRn2Uo2k2jN8zVBf4G2d5uZjnQrQpO5cJsO6lSGuYvr6PAhZ5UVuZtarsG6+lLgLVmS3tuj9att5Ro567uCYBq6xLW2S2nKjYfNXPz97l6OF7NbZNoTAybuLqF3pVS1OhYnefjutkS9Wo3JQUkscxliwHJqTnFF11KV31NinbIiHi9tETuzLLK+4jRiBmFqnOS61tEGfL6S6aZpeRERYIdzbzQh47OykTk1SkFY4lrkgiW2oTgrRHU4qX2ZFV3o1uzpiSbZVnw1m4sz0b4sdbx/PxCionj6SQFo9TtPW36qG0Xqu951T8zthUxrjsZ5+i6QN8rumGcxMXPkocntm5SrKbJKsMvEIJnukzMswRoSg1xKhYO2ihUvQct6yrs35ylMDdTgWb7ZvUcaRNE21nXG1eQdoa0wtUgQZmQmm1YM5IOMmWp1s4ahRPVeaOlJpSslwFXFqasLgS1sNZr86UQadIm5MaazZjrbrm93+0elOLlIcmeDGO0ALdJzW27xc0ZxJjtz0KTkfT9ze5Lp3F7bUyaCXIrWPW7163vd+FqdkxyCBs2ixau4y4mY70X48mUqWrCLRdSVYfsRFoT1lRidHz4+Mi6TszLKt/b3ixajUZigO52PLthFMw7BMZxhJLxqu/qx5HD/d1mXDstK1jxqev7kQ7J6JILS6MefGPbmO3NrUVoz9AW036bFPt+IObE5Txh3RPTNG/FcrtpjGioWjcoxZptYr1+vSzr5eK8fr4q1p3TtVlISaZEqi5utbsUOnzUTrHR4+VmbjumW2PYHKULayag0OALed6ir4G2OL51Gwi6axuGgd1upwdv1kPUbIWsGungh2Fgf9hpMZBDO6vR6ZUFJpH2Dw/3pCiH4P1u5P7hjt1+hzGjYP61kOJFOlnNvDocDnI4WEeMIrjsXQdG4MJ5nkh5YZku2xToTEvijpBWyaWKidOUhEmqcRdRc9ZyFkst2YVZfU2KCvKbubGYnt4f7gmhx4dANwqdG8Baj/cd/TBifY9J6OTSiqN4/oHTuBXdTelOKqVEtXIQt91OyeIccrlcZLc4z5uxLFqkClX3tddYnto+b4oYJ1t5LrlEYlrBGsIw0HWWgmGNicvlwuUyaRGxTPOFGMW8OK4zu92OYRg4nSTvzBrDOI7kTvrCNVaen09iUmB74pqZ14nLNNPc0VNK9H2/QYXjOIJBJtVh2Ojjch/JodwMBdpDricptrLM1osRdJ9swOq5RNE/c2IcvkamSXPkkHw5KroGSDjXAmsNMeYtaWBZhCkYV8n7sxmMXmOXy0wzTgbduRknza2RKY5qr8+5NYxK0gC2/akxApkOI1gf2O339MfzzcQJFiGEteeWUhISXLkaeX+Xx/e6cH1iH1PrzSEvN0spRaDCWsRhozZhbMVoxlSlqpfgCrVgbOXpUTzSYiw0z0GwsuDU5WXNGflfYc2F1TpxcFhmakl4a8k+bPBhsxz68OEDXXcWmOl8Bmuvru1WlqMS8dHc0AUerPXqkN7wYnGtN3KR5sRlOlOQ1FfZ6cikIKyoK0uvxSK0m61NjW13ZO3Vbqcx9OBTaLZoJyhPXb3ZqoUNNlQyQK03EAhanGQyWZZVXvsU9efL79IKFtqMdF0nTYYeyO33agvrVgBDkO9ZSlaYUnzTHp8fsc4yTfO2j6jGkKtcQ0VZZ1BJMemNCfO8CESrdmHrunKZJgyFWhKUTE0L03TeoiKWZcH5jHWBdY3iKuIsYm21E2G1g3W5QJVpa50vwvxzMJ8uykItzLFiElgvQX6pJMmaK9dOtqj1VS4V743C5CjykKg72UGF0IlDRRVrL+c7um6kCwMZ2ac15MEaq8UqabeuHbMm4VbABWkGrfebF6WxhtB1W7yQQJkCJ4b2deZqOItO5VXZeaYUvHqOYq47T9kpyZ5XunaDdYFxd+Bwd6DvAu7cMU8XClZhs8oai6AYOi0KAUV2yv3gMCaIFq5Y5iVhrGc37uX3c0Hs17pug+1C6Ci1KDNXJqkQOoZhxBhHc/J3LtDs5mTfKnvCEIJGIbXmVyc1Y/Wab9O9k6DNAnEtpCxrAu/kNVvXTIoZZ6O4tRiBFrGFagqFBNZhbMFYL9T0XEhr4nSZpMilzLyuVJzAyF1HSoVlWZlXyWmr7T4mklMkWcMYAt5WSvIU69RlPrKkzHS50OQFskpho/uvy6L3iISwNuLUd318rwtX69yL4gwt5K6UxtSrStltN0HepgBQWMpYUIwfvdDaTqRUsKqtss0uqXmYVXSpKpBls7spCgcVZCLLN3RYY2RKLLXqjVwkdqC23U7BVIHZ5LCrtBiRUm+8yzbzz7JBaUYLsHEzLQZETGEbHMN20DcH66a0F+ZiBq7sv2vT+Ok832DC607iegP+ZX/e4KfmVHHttBvbqm6U5FY0nTqxt9/XeUfJdoN3G9xobujBVwo9oiVzTt8rUe3bakS3pBNAaXCx/bXnq2GJDfZtsHDTUEnUfCKnlZoTpogIu1HtU86a5yDX2S2LtT03EKspFC6TXWqhc27zaiy62DZW4SKjE9V2DbT8NfR9RCfHtqrn2qkr26xBg+uaxLxvmzg1fDBqZI1tIZx2CxRtQZ25wbM3zFwp/EVhPbvt4cTV3ahfnWMzu9b7TazAKrVIU0Ct2OBlOkVeq8qVaSjOGlmhNbBKcghdIKwC7Qcf8a7TKdXT92ZjQkojJfBYp+m+zRpsmoVB2HWNACXXRzObbr6hqWT1R5U9VQgdXZe2dUWtDXFQKU1NShwTJEOa0mYwDI1xK693QxJk72RjBqSAFZXjmCroS85VWMkqr2kTkHwISaMEQyiAkXu91qqwrQbHmsbu1BVI+/vKzm0ox9UhX++3eoXNmwWYIDBZX9ueti9ufy/GRFzjljDdTJy/6+N7XbiaLmBdkxSPKkvxoOMoSEddactnoGparbW6UPabb147zOY547yV6PHQy5LSeSF7gGD+WizlYFXX5mooToKcxEJGYCzfd4Ra8NrJWitZUn3faffXbTAkGHxg00RNk1BGBfMv6vN37VShbhTwlFZMksslaFZVCE5o9k7+XSjrWbwV10RKFuekqHOTByQdYN3+2QqaPJfKtXDB7Y6k1kLmSkVvH61Y3dLoZZcTN3PfW2ivdfkYcE5fV+T9WZZJf8dAjHH7fptFlLW4YAmmfa+KcRBqoR86+mFQn8LMZg7cfp9y1YD5TkI7x3FkVOip6zxJ5QwpJ7zuSFObYmvRHYFIAsRqSRhkMUXSaaXvAs8vL1pcfsi8LDhnOHQ7oTRbh7eWpWaB47bXROLTxQRZJBulZOp6fW+M87ptAXLF+oALHT50GBso1TAvK7Z4ljUyzyvTEjlfJqEnGzHbtd7JVOW9HJJrJK1lO8S7rtuc4htppRnxlpxJJkm4q9yEGGdxRne+ObFqYyCiWjhPFwwVZ3fsagMPK9VU8X/0VgkZF+YFDnd7nb5EjkIVjVE/jFAkXUD2Yv11Gp5WarFYJROErmddE2ssPD298PBwrx6grfSjThNtt+lIOW97vaahs1ameWsl4qe3PdW0IMgIFSFk9G2/5nTXBKZmiqnIWyzXTd+P7MYdVEsIF3KeRftlAjjZcVMTOQk7Oifoeo+1YqAQgq4hukrfSTjvskjahDBYe23iG4V/YBz3WnTbGqLQyFGyzxOP0HEcRaTuLK62GKOKsO0NXRgYh7hxAFrzuuq1Ns8zNUchLf226ri8FR2X6R1LisQsIt8Tz7LX8mFbhDcoaF1Ey7MfejrvWLqO4DTZuGRKKtQhcLpcOJ2PPL+8iK6i6wndIPi/TlciAtZJxxriujJPM13nePXwwNB1PD5+5HQ6kVPisD/oQn/m48f3nM5njLN0Q68sOLkICupSbgzLvG5/djmdKbVyt9/jX73BWse6LKzLqvBKohSY5ollFYukmC60YMuYLjQGWSkF6wwxXlijju5FIlacN8Q0aTET09Q1ZtaYBFLlSpS4LWZog5BS4nw5bkWq1qou4Ym+v9+ypUBuKDG0Fa1TVZhwXWdxE3FWvl73dF6bhOZA3XRX0+SUhCEH2DxNhE7869a0spynzYXieDpqdysHUZv8aq0cT0dyzvTnM+fjCwbD5Xzh/vBXKFVo8i8vz9pJFE7nM8fjC+u6kDOMRZh+3dALrFcr0zKL04gVGPT5+KKZUZVvv/0WKvpz5HsYazEEcomUajC1aH6avM4xR+oahZeA+sEhu92x61iXRTwKrcM4R8yZX3z5K7766msRY1vYDQNrzDw9HaXJK2CMF4jPSEe/LAvnaRbmnQ8cj88SgrlE9uOO/W7HOAxYaxnGHcZ6Xo5n3rwpGgPjKVno1Jdp4uHNW4EKq1Fdj7ijxDizqOfd8XRi7D3TMnO6nLc9yBojl8uZeRaYfVIPyNAFnN+DkZiewTl24x5UOtCPI904KtMDllkms/NlYbe/o3DhMs3c3z/g1QlnGESraK1lGHoNjEwsy8w4ykRWasYYmbr6vtJ3Yikn5AbHuky6z21hmhIR0ncDoevoQic2aK7o+++wRu7ZFAuzWcmpXKFItMHKBe8D49h2xoW4JnzoCC4QbGDs28Bv8MYj2W4Dwk5lY5eO/SAyIOcljw5D5wK2hxgza5R7tpjKbnegD/LaSBMq42UXBrzvGfeA74mL5PUN/YC1s0pDkk6mEhczT82J5PDdz/7v/Df/K3hsuw7vsZ2nB3YV8cdq6vAW3avw1xq8FJHdiEVMKvu+F2y9CC21G0X8F9PKfn+QAzh0hG7YDrpcipAlDFTt0td1pQuSU/Nwf89diwGJHdlZuj4wjj2iE1oo9JuBb9f5rShWGtFBsKC+7xTOEaJF3wfGsbkJFEpOOrmJ4j6mha4XnUrwYSM8XNlcXp0cRFGfS5aLWqPujcKsQkTU4EHaotb9hekGpPMvRUgEKaeN4ddiXRp1tuldjDEq7lxkt1gKyrIVN/KhsZQEPjGg7v1tTycaLqfkgNv01rb8F0jHEHq/aUhyLuJwb8U1JecbWEsfWVOnS0lQJGeoG3oppEpCEQscCBpumXLCYLm7uxO9T9+xaihkqVV3dzqNpJXdYY+BLfDPW4vzKhhGrl+MhnQ6J/RpAxjZGZbaWIUGY2+mxNDJ71ShV7Pf0PXS9fuAL2IQ+3D/CuucTg0GFzr6LLuQaZGOOITA4LtNqCo7n54YE33XMXQ9IcjzF3hIroX94cB+v6eUwqs3r5immVQyd/f3SjxpLMwe5yzrOmOAdZnIMW7ZUhX0NXEaiCruFt5ZQt9jfVBYSwX2KDxqqjrZZzkHbEsGbgGiAjWHrscvkcqywWSYq0yhTQtt9yQaK6HEkxq8r56iDapT9m6D3xpEXrmeE5tQl9ZwsL1/spe9rhessRspq+pyUJiLZpP0SEHLOiS2+0O/R902aVuTqTis7KURcpX8t7q2WIe1Em2ZdU99Cxm2YFeUrm81QqY6hzCSzZV/UNtZbbb7M+taZlujfIfH97pwtcVx1weG/UF96npiESw35UJRNpl34tOVU6Lmwjh0lCSL94e7A2WNm5lp6D3rfse437GucTugjY7QDSLwOtX1fY9BpofpchHPtP2ecRg4Hp9x3hPjytj3HO5k6hrGwBJXXWpf31CBmq6Mm1knLgkLlAvv/u6e128edGlt8c6QSuaw39MNHblGul7U7bvdDqcTZZtImrr/fD6rViVvbL92cQul126FrqtqA4S9+Zrr4r6UpMVBtFW73bAVNWGZyZ839l97TXNOJO/JwdN83Zy3qm3yV+hPi5b3ntevX1N0D3V8fqLpZYZBfOWSTfSpU7ioY3+3I8ZFXASUml11QsmpiV7RfVOzADK8PO8pOeGM4XAvHaezEvTonAiTe++22JY2YZYKMWemWUxEnbUMu5EUI3GNhOAZxx2WysP9nRAz9OuauFT2RV58I12Qbt616cqKL2FtO4asRd1q4XPiuD/07PYH9rsd7A6sUViNMa784Ac/wjoh9czLoh6CnrhmvvnwkcqZvXW8fvMOjEBhDw8PehBpnpPudpPeIy3+/d1nn3F/fy/XbxRCS0yJw/0DS5Tlv7WGYejV5iqy3w2syww5ses7DoeDNh7QDz37w45SVvZlRwieu4dX7A4HhnFH8J1q6YoSMyIprqSYmOeFlhw8aFGvVcgXwfd4L5Npux5k51e266CqemPb1/7a7rYU+ZqqHoK1NlG21Xso06jj8rVXxKOUsgWZGneDhChBw9lPC4YxgDO0iB/pORSBUEsnDNhqdA3VqpbqqRDiS0lZUaMi7imuxf3INzBG05i3ht9sO/wYpc4pT0QKnO7Tjfd4J7pNzK1s5tPdfNEVwfzb6pwxz2emqeLnwFvvVLsRSOui8dArsaSNyebcXhhTGhOe4kqOmcsF0iI0YmPh41cfxWWAa7Cb7GyuXbm1VoS8TiJTZNLIxHXFe8vpPNJ1HafjCy/HI3GN9N7z8bGjUZiFJCBsLblRkAtPl7/CbvMsSxD3D/VAW9dZ9zwigD2fj8zLxGk6YpxhmiU2oC2hjWHTBjlnN5hG4g7yzY10jfBuv7N0lZFcDDnDbarv1iUq6zHn6/dqAuBSJLq74emyDxELncvlLCr6ZSavqyyonbw3cROR6iShqcIhBPpBnf9vtF/QNFVCFS66x5vnxHl6EUwfBZCq2YqYUL7VJ847BrWlkVtTHqUUzqczixNa8Pl42qb9mjM+BMlhchJbv6zr5nUobgVeGqpV2FnWGY2+EQ1dycJwHULgfFmIWdh7MSsDtEaej2chN+gUbL1Vb8223JcC3+I4KAL92vcfOfZnvHM8Ph85nY48PX0kFcsXX3zB559/zvPLiedvP3A+SwL1ZVlIWd6vX375S6zujnbjTunjwiZbU5JinKIGmsqC/le/+orn5yNd33M6XlhTJNfCZZqJSmAZhqv2K3jPT+9+h3Hoefv6FTWtpHUhzhMO+OKLL/js7RtBTJaZWjOjhhliDefpwuPzszwnbc6qRukUDN4XfBHyUbNuqxXWnFnWxHmKHI9n0WPOM95apbonlYagsFym6zuyNk3DbqQliAsc76VweXc1R85ZPmcFpisIotCaPmcbMaJl2sk/UyzM88rlMuOdpk87R0lVae6RmMT9ogtgOtf41XJPbAVL/0kjXIlnZ4qRdV40LduQg6RelFrEMSMmSsqQ62bx1AI9vTPYCk4Zg6I7c5vPpLCArw0uKNqjRb7lB55Ov6XOGaeXF6Ka4c7Lwrjfs7u7Z46RJUameSHmtJEC7u4OqiuAoRf6bM2JcehJy4pgTIbj+SgwjE44V5LB1c5os0mpjcXmt64kdF4X+YHL5czlInh35z32uWpEgizvc21iT6Ue65vf6OsgC36qLMidE6jTKOxwPp04n8/My0zWYmi35XLz8jMbM84q9RZat1avkIRvlHlLLkkp78qWQqArahMHX0WpjX/dKMCN3tx+fiOYtBBEo1Tn5+dnnp4eWZeZtCzy/ew1GdZsTd+1cF3ZgvooRY0/A9N03qZHyaFS5p0pW/CjcmqEhVcaJdfQfPS801TsEGQCUMNk74x682XOx+N2HaSYtskQDPM6q6XOSq5lm4SwCGuvFMahh1rxbbeqycn7ceR8mUlZ3PqL88SSiTmxLomstlnWenwQQ1mRawgT0zkxZVWarU4eWYJHQ8fxeOJ4PPLh4yMgaMHr1284Hk988/W3fHx83GykrHV0/cDT8zO5VELXs9vtxVfSSOEqKW+R7yWV7UCa51Wzx0b5+8rkHC6zUuorh8NIKongHSUX7u92jGPPbrcjLYakezFbK97I79d3nr4LGCNFNXSdQGZGvBev1kJuo1xXZQN6F+hCTzRJXGxyE9PrNJQrzorOr/ONlNJIRRpMmhLd0KD+lWsPZ7bCYl1LBBfD7gazSQPcJCiO4tQ4QUnOt56G7aPtccUKymxnwnV6+7UDsVXkKueAaXrTNn2BsAi1KdUbG6OIgdVvYbab5FOmtrCRBRa0BkybHmsSfYOiMg1ypZ1CSoRqrhmNVfpbS4c/q93OZZ55OR3p+oF+v2fNZYNA1iQdtbWWw90eZ8Q/b+w7lsuZWrIWrkilYp1hSYt0s0F2MZv7QU4bZu2cVVpnYl3jBu017L7BcTIdrUqndTpZGPpejIBzkeeaNa1XxK/iV0cVF/KgVkE1y14tLitpkc5yniRWYVkX5rhSTOVwt4cqu6bL5YTB0fUdu3EALMsya0qqdH/OObrQb6xD0aTETZeSUsH5gPOyf9kcRG52K1e3i8ZEbJh6ZZ4XhUL9JuzMOUvher4WLrgWKrlJuU4TWlyttczLNWZ87ITY0vcdIfityUhR3Sms/I558/kzeuNw3ScoHt/i04219F2HoUjKizWUnKDKPvGinWKt4lZy3fNV5nXabk63mRBXYlInFioPhzsMBq/Ek5IyfeiIhyT+ggpH+93ImhJrEvQgqeWTs4HQSeHyzm1szG1SbazCmjmVs3hoDj3LNHM8nnl+emGZE4fDPT/68czT0zPffPMtX3/7DV5zykLX05fCt++/VUKHZxh2QvjAbj/HWZngcxJK/el04vnlKEGfuz2n6SwognP0w4WiJ2TKB+Z1xjtHjglLYVT2ZS7iRHM8HqEWhhAYuqDRH2LKfJ0yDRhhxjUiUNvpllKEpOMD3nX03YAxkWSSQng3Oy2Mkh527IZ+kyg09l9VOcBt4TpdzhvKEIImefuAcVfnDJDnKbEfikjkshWxdlmWG6/OnPNW2CRSJVOrNnL2Osk02NYoy7neFK4bhcon+9tCK1TyNRZu9m7y36XBhvWqt3LZaoSRvJfStpftfiu1UIsF37Watd2/RZGNVSfF9n1/3ZP0N3l8rwvX55+/I8XI8+nIEgUeWuYLNnRqcDvg4yq02QpVIysM4sfXjF+FEKDdBmJ4WZQwAEUs/rU7cM5s5qJJYyu8BSezOdUaJIW0EpOycprGA9FelWxUvFskC0txbnGnF1JGzlWhlwTVKmwocN0yr7xkgatyEtsZWRx71W46ofZn+bBWF7BYShFNxbJEhmGH9xJRIB5wzX+wkS+KfiSSsszaFCgT16eFq8EfAjXmm89Byw2alwsxyaQxL5I63XWBu93uqoOr7bW+OmxQ63Z4DMMAyA23U0lE67jb58UBXmQSKYuJ6+bzVytyi9oNi297mxZ7Erue4DVmwlku9aLvXbrmCKnbejN5TikzL2nTkbmgDvu1kNdFl9KVdYtCh8u8CGTjPfenC2nVNG8qNnQU06gEMrW1DKtljVSlOKe04p1kXOWUCDo11pJZ5wVDZbfbS3hhLuoE4zgeT/zZn/6cP/vTn3O+XOhCz25/x/ly5nSZ8JczFUncln1KRdw1RCLhnUxyh8OBpsdzwVOLaJJ03a/Nu2GJq5LcJcJlWiQPa+h6vvnwLZf5wrrOxPnC5Xjk5emRYCUby1S5D3fjyND3hOB58+o1u/2Ow2GnWW5aMOoVJUm5EjqH78XZIahebV0T4+7CvKx0w4QLnpgSp+OZPnRKC3cqZbjqDYdxoNRK3yesDxuk3ghC3ktyuOjKZPLGiFxCTIQLXe/p+iAyGm2gRDAve6cG8Zd8dVUf+oG+76FcYfxSVk0CMOxHobiLw4VOXFy9N6tOT4ICOJyBGCSRoPOOzsteS31ASFXOPoxQ60PwdEGQpKEPeAO2VKHZl0qpBsJAvFklNF5crZXL5SLI0Dwj9mMdwfff+ez/XheuRTtvAet09M6AE3W8oB5GLP9VY1SU6eVNJcUVQ6UUT85NBCsaqpZ9VApbRy2sLdk9mVoppR3yEneNMVT165NDrdKscgzioOCNU8d0WWBKLlHGYJU55QWuqRlDpevkYHaq76kV1Z0py8kFnA3kmvFd3aIWxI7KMY77bUrMGT2YPX0/bq4gxjjtioT+LnusdnNciQttufrrj+uU1BhW2r05mZRk5VJ1QolbtykL+oGqgZ9SONKmMWn2S4BCFnlzM2h7uEa/b2SNVryctVuekLEyrcmhJsWjSVybTLJ1lg3yabBtsyTKWRzIAe3o5e+lWDVCB5yvFCNTctUCafSa8KETsgXggxA4hHFoSFmK9RwjaVVSgIGSZrJBn6vdrknr1GeSJuYV/7estlHZZ4LzUIsw+ErF+xUT0ELU47zIBz58/Mj5chEpREs6cE5E1lmm/eaW0mQVkhMlc12uRdOMpUmRnC7d/Xat8AocXXSnW01VtEHg6KalSylyuVxYLyemy0UigUwRh5KcMaYS14WTlX2LJJjvuNzfcTV6NqBFRq4LvUYxxE6RE20kBYqTfSSl4Exl6ML2fVpMT/PYE4G/3a61ZVm2PfBm/Jxll7qqxGNdV0rVoqWFq32tXBvbYPTJ92mFt+Hb25+V65/FGJmmCe8td4eRqlY2squ/GXsUMs16fxnnP4EKN3gRYQxmhfWSDgNXqFNNcv2VvQsNEbG4vqPE6xTVGtemr11X8XN1rdF11z3yb/r4XheuuK76Bt0KZAWkNQCK/ct7X3SEvcVtJX5EFP16oBmBDDb7Aaxqi9ruxYkDeKmEIAOz90FhM6vuBI21o9PcjWsEXm4ib6wWVLkxrdKhrfNULDiDc2z2SM7K/kUuXsGfxdla8e+a8cZQgCWuGMSbsGlIxBVC7IIky0iWzs5JQQSji+tKy7PaeEbNSd78xcLVCkWjqd/SXhu13lggX/3c2t0ozh4dKSZizhu00L7vpyLn6+c/yQLSgtMkBtu+zjWKtIZQ6g3coMLr79bwjCtT9NdDLDHiHGH06wWq0v1IKVjvMVam2dx2SyltLLVGU5epRQpXVmjIbtR309YKoAy3mBNZr89asw6In0637UUrALl17EUMW2ubLvU18nKNdmr/JC7o583to8GNzSFCnnfYdhSdBrAa40guqSPFbcpvK1xBofZAUjlANYggWWANXPByyN28v22PtMa0NSOlREqKlJzoO/l+qTa/RSl2BRExYxpEymZsLBEiQUlNK83ktTVxgj4slJQY+0DaJ9Vo2g1laXrBGKOSF6Rwzcu8XZ+tiXJOwjkX1YsK9BsxturuWXRY0iiz7bhA0w6Sog3GXyG4251QMZ8UrnmZ6YJT55H2ejYnjSsjMLUJNCVM14pZvRawoj4luVCzkKpKTptmFckcIEZDdPLi1yrPBWN1UGhJEdd7y2rjd123iB/lrZTmuzy+14Wr1IwpUpx2fpQX0xqKsU2agAu9MsiKxFN7T8mZvvOkVS70vr9G0BtrKV7duKm4UvFVgvQc7WA24CCENuparGvBloFaM0tKm0lpy0syWEyx6mJ/NRf1tYXpKfVVPdDMbaHYDmHHNdag2VFJHIrzXg/ZStXD1bmruW3JUVhhekA1iKNBclmZWLdLaZADZU1Roz/g0+J1vUid7lvsRtmFrWXcdkxXV/5W6JwNdO6WWn+F7KzuUKy5HmztucYYCf56g+YS1bMwMPaDOFUolCZNhhSGGOMWCGoQ8VrF4HIQrQ/Xpfr2HhQlsSixpt3vYRAtEYirRbUGlxMuSZeNuU7srdgEZ3EuQRUd4dANqinsWEKUA9gaprjKwaGs06R2VLlUCOLO0vcdobvuV7N6LYr7BuKc0KAs3f2ErmNd1s3O6eHhFau+JiklDncH7uz9tqtDWZeNiSrGzbKrEXd0NkJDCIHLJHEjxphNjyXYuuyRjbXXKBctCH03ijB36IGMcwLnX05HYknYanl4eGA/jhpVc1YHEfHyzFXLfSteBskWQwrUuq4cz7KTqgVMtdtBvq4rscJl6Jn3Ysx7e43fFq7QddsOrm63ptn0iW36bmkRkoC+6O8tt/FuNyt5iQ0qrBWOxzMpCoR8f5DJZ11XnNX3twhCcOszOk8zphaCLWyEfmM+acAa0tHumfv7e5mEcqJao3l8RX9Glo8sxJuYEs/Pz9JwOUscOtLYE6zFY3TadhjX0WdDsWJuDWyohUxyLYQVGoX//5/H97pwOWOEaZUNvrMY76jWsqyrJn9WIToILoALQaAWLMF5qpWFu2gZhAzggmOJaYOSKOVmlFe/OKOkBj2QchHxKaaAkzenpEyOkcbSqVY+T7kR/SlUUGl6Eflci7M32unXKl51Mq3JtMcnB6sQRZZppiCiTWPqNoWktG6vWTv0200ruHzYko0bSeG2aDXIRS66KxzYxqNWdL2TadQ6o/sw9PuFrTju1GmhlEIk6k21Ml9mOn9DQU9iRlqMweqUZYy8lm3ilPdGoVtrccbhjNMSIhqtGCPLutDVXgqIMdQsEHDO4h5iN9alvzKqUGGzd4TgBarSxiU4S7MbMqi/YGl2T+CtJfQD5SaxtzHcSi0khakMkrbtrJNLrZqt48YYZa7JNWKtwxu7FXaKpHAvNW7F3BhDXleylYw328uE1ATO7b3aHPlLZr6J7GjdtatOkAgru9W2vK+lkmtSiyIrzjWd+cQmqxYNGrUSvul8tzWR5cb8eRwPBN9RS6YLnt3YMw49h90Bu9tha8GUxPPjB56fH7mcT4S+I/Q93okIWHR6Pfv9nta811ok3y1Gcsrsxv3WqOUqRd8YQ9cFdncH7paVh8uErYV+7Egls8RJGxPFakqD3yrOW0yp5Gw0Xb0VLo/3bmOXUpy4uRcPRlEGUzW4sqfvehpAVKsQGNY1yIRSQVpaaRSdt+JE4i3OWIzpcd6SchRxfB/wXZBdoDZXMmWK8L7WStCJx64rNqgtmLNYL/ZexsmOq11fwsR0coZ6ef0679iNA3eHHcFabIVlnuU4MpZPGr32qIIwldrKqjSJpaL5ZN/t8b0uXNbICwFVFoEVYhK3A1MLpoo2HN3VmFLlvw0E5ygaj+6d04ZailG98emiERDaVqFBG8rIaxdeTmJj4tQ00xSoSYsY4iq/5T5dfwOtFZVajHam+uZXo6LG664EwGmEi7ilC0W1Go3xLkV1Il5/57LBVkY7/3aTlCK5UO0a25w6uHaA8h/iloHi81Zp6dJJXTs848xWnG4zeBpsIQnLEs3S/k4xlZwiNRXyKrlNRokvRuhP8n7lsr0uDp2GSsHoVGfQ4mPk59Qi8Suyq5bDtDYneyuvralWOtR6/fsNaq7yo/VzcljQIFkjtHjxDJBOX84kea9u2Y+CAikN35gtILFBlqDwrRZj2cHq/k0PsKaTkfdC4kwM8jwam6wkMQt2tlUIgRZLLsKitTfwIrJUaSGoqWSC7s625kAuQ5yxeI2UAckLqwWqydecMuNAxbfo/ehcM2oNWFwjoRKkrmOdJbgeb4R044MkPwcvjEGHwTtD53ZYoxKLIgSkihQMFwK+6wl9TzcMeNeMYKtAhF4K1zDutqJeK1ivjvXBMYwD425gGHoMGRfkd6lktd2SwuSNo0X+iFVTBqMBm1qQgnd4315ji3MdIVm8tZilqo6wEnoRho99L/WtkSayOOI4hZyNkTMtBId1TYMl+1ofLFjPMAoqY51VckjYzolfR1K8FQcWOR/kDAldhwsC69IaUp1i7brKvW4KwQlZpO869uPI2A94azAlU3PYCpd1lqT9bCNUiThfWcIKifsgLjD9cG2of9PH97pwBecxwJIjtkKOiePzC7vDXnVAAs/lCqZkSFkKGpXOeZw6Xoxdz1IXPRAhr82iSMw9vRftAsYqTCeHh8NIp4/jeDwSjGc49LIDmCJzFCubWgpF9xBG64PQs9WnTHdp7eDMaSXrwnuj2YN0/eogbZ2TqIEi3mC5FnXEduoYHalVlqvWNexZxYVKgMg5E5PstIS9Jwm2ZdvPSaBc1w2UMhFrwXkhixhrSSVDzlLcnUCcFdRFXyn1KdKFQUIJc8WZQIqRWgzBdqzLTJkzNsmBY63s5voQ9HnLe22LMjqdULFrKbhaUYxIbmAsJRbyWihRE2KNFccJzQ2rBbwJWFsp5lr4tHTRRL7WQM3yukalO1sjjVDNVQtfgVwI9mqEq9nEsj9VdmSLq6n2GpKYMeLjN02yBC9QSuS2rQm+E0eLNiXHWUShQDd2W4cf4yqCUCTluNGdy6qidsSyrE3SpRSFCWUibCJ9H5pZsfyeoevEFcYIJES5Th8Wg1MLpHaBCmvW0XUjxVhillcXBB4ah34roN54wrDDGEhxxhRLzTJFTvOFLjjsOPDmzWf6vhnOlyPTGvFqe+b7Htd14Nwnvx9wJUDAtpNMS/pkt7J3jmm+4Dop+C6A7wy+E2NlIUa5zXg2BLm3YlyZ506ndpXJoIXLCbs3dPK7xTXz8eNH1riScubhzWt2evgDGnkkuy3v1Dg4Fclpc45+CDr9aTaZEUf6vvNYv+dyvlBNxvUdbz77DGMMi+aHteZxjlGYpl6+VytowzhuX1eqEJpEHxhY1oh1KyYnOud5OBw47Ha8utvhDZAzac2MfZAltvNU3zFFOV8POzEnjmuiC35LsAbL4e4V3jvu7l99x5P/e164DuNOb/NZOtQSBTNfVmzK0gV4L+a3y6KLY81HympZUyspZtZVgg+bNqrtE9oN7YMXppbRmIUKWaMrWgdtjcNbD0bC2SyOpCJDY6pud6IwxrRnv2o9fm13VOUYFUN7qW4OS/bXr7ldboojRIEMCV2+VpAjplz3DMo4Et9AT9fJBbXbHQi+x+AoxRCjEDmqSk1CvyMMg9B2zZVE4DoJw3NedwZZqN5DN2KNI+PkeReFHWOhJJ1orLAsM07wV3QS0T1Fy/IxoKzKVsitToHymrTsIrLZXlPnOiQfTJxIri4olVyzdMtKRBGYVjKFg2twj3r90KCcIgeoMdR8tf1JG6ysMKbVf2+jC1X3BeKB2CJL2htisPT9CAjZIyWJeM85kwoiLM8JsIQgoaHOCNU/rrIP8d5uUSzWSUGxztJ1EnApjuBB4POUWWLEGqf7jayThRYU1Z4Ja6ySYtwmzT6II3rJreCjPoWdovGVZSmczjNJajrYuk3pV5GtWP6UmjCmMnjLF1+84/5w4LN3X7DMZ0qO1Jw4ns5cpoWUCl0YuH+4Z7ffsRsHxt1eiUsiBG9RGRLrEbQAXxMHiBmcNKCN1FWNICE5JcbB0w8d96/vubt7YOh7Ss2sS5SGb404I96Jh7AjRSXNUOlCvzVZJYkfZEV2kcPQ4by4duyGcXNnaWSRpmsUWF1IMoe7PSCF/GoDJdd2Sk1fGenV9Fb8AYTF25IlNuKUalKddQxWrOUMgDr2m4Y2KCq0Rdgoq7FdEw2GlVv1uoOWUFY2rWrfd7JrL+iKoWrg5MB+v6frBn2tfkvd4UPowEBMmVwrZiMXCKAiarqyXRy1Fqoy5MzNjqYonl1qpflKiBCyKpUVroamUlAwdotSKTF/unjcMm2aTkO/vxGFfjWaM6Q7oE/ZkHrgaeEi5U2Tge57KG1xVmkb4mpQCnYhm62y0MLdqVtZkM+pXqvlrIhxp8cYYcgJDIlAkRSsbcvlVhArFsG/BaqwGCuhedvPrRZ037QtZAubEzVKUmkHuPzhlYoopqUKPVo1Tm4GoFaer3X+KsoUd2Dt/K+/9/YaVYUON/AL+TlbsSz6d9m+XtZpIlhWXHHrVdqff+JCAJtswNjWQAjc5bzHeciped6BoXnaGYX4jFLbCyH0G4vN0OLUZae3xiL051LB6etpbJtvttd8e52UUAEaNW+tQoJ1gyOd9RpcyvYKiSZI/f0awch8akzcok/kuUZihJQl6sI4g9fY+TbtpZQ1ZiNSySQL796+wRgpzJZKXGfWWoizPN/m3zfu9hwOB4H4+h0tUFWIb9Ic2u3tuEL56P0sHVPFNsCjNt/BW42f2a6nWtSJJSZyjgTXqWWTvMZNpxjCNex0TVHPA2HpbUxUb6WRUL1X1PyzRmSSAE+77ajEuUaQl/bey8553QpL27E11p6zYtvU4mdqEalJblC37rzk58ku9CplMbRoIqvm0ZVr4vgGpbfrvO3B9WYppVBti5HK289pe9UGX4pUYOX55fl/9oz/n3p8vwtXHwQzTQlywSRxFki1YIu5PQ7JmpNkndUDRHz6xFiXrVhghEyQC0jmjeDZAh9lrJcOv5AxVTrYeZow1pGLHOftkDVySm2CQbz4GRYavNVo/Ajd+mbZ2yCjlGV/YdXxQ/Z0RabJtmPSxWdqhwfob12vXb9OF0b3PLcdUSmGXOVD1vIe543uefRCV6ixDXlyY8uyuRUuVwolJHLqmE5nxGyi6boCzij3rl3wtdIixI2VhNvNpZvmjm5UeOu1GWhTrzhTeN/RUqkl1kXmnyQjqO58riSJ9ucid7BIOrnevEaCJJOORGpNiKHKrsVAMRVb7bVoYW6KlxicWowWWTZSRgWGUfwr1yVtLK/SilWVYrWmrIdkZn8YpIt2XjzjfFDijcFoXE9rMJqNWNUdWINFqVr8TYNdxR9R5li77aZaiq53nV57V1KJsNviNbYD8VA0RpipVhsdkxt0BilVYq64Imm+1lTNrSu4hkEsAAB5BUlEQVQbhCUpC5kYF3WqkHvPdDLqi/BfnrNzkqCw3x04HO7phkDnZcrJOWFsApMR2yG216ZWgZkB/Rng7LXxbKbGtVZSlt9zWSLLsgKWGBcu54moKeYhRJ0gLcGFzXlGyFnyM+OahcavjWVVCUo/DIzDqFZVVn9Guw9kN30bBSSvuzSCQtaS11ko/Ovm2GNMYZlmlnnSVANx9iiqj5SctApBi5BO0M5cJ7w2lZYs+lEfPH3fqUGBV4cWS5MamW2t2aBZYXnnashJ9HGlXFm1XddtDkBPT0+cTkeJ9PmOj+914TpdLlgjLMIm5EwVTJbO2ehOAifR1NZ72UXoAjQl1XLZxGaE6T2H+wfVk4gZJe3Qqmy2PRaDrdI9PL+c6ceBYY3MS6SaxLxGybTJGbLOFMZRyFeyxc0UZEpDjypOiwKI84WpIt60pgIZ6xAD1RvdRAXWJIdupqqVC1R7ZbPVkjEObFGWUN/j+x0u9OB6YrHEKoe3sZry6sWlYF0XNRBusSRianuZZlKaRVjolLxg4XQUxwZnkTBD2wnJAYfVjKBSIxVHtR68sD+rEcTPIgeQKXqTtJ1UhTk1eM8RfC8dXi5clrQlrLpQthtMVOnXKatUaR6qYRP0Ouew3nK5TOIFaZrGTW7srpke35AlKiraNjeiy1IxFHJN2pXLoVSADx8eWZdVtEgN2tLdH1rsgu+EzGIc/+//4U9p9mK1QlqXzRuwH6Rr99aST7JnKSnqIWMJ3rPbjZKWmwq1jjLtKCqR1qIOHeC8URKLvQp2jXRzYm0GMU6kdKY5hCxLFMq9D0zTJPEmVtwjpmUVgkwT7ZrG2hSfQTQE1aprexgGSrWcThf+/Oe/xNQoHQNFY3cMpRimeWVZE8sameYVygm4Oqi3fZ4UPNnjenOFP9cl4Zymg5uGKsg6oO/2DL00QusqprvzJNllVIP3nRYFIUKlFKkBXLZkW/AuXuG0UjYWrrWWLvQs68KH9x+osEX+PD4+ys+ZZ2qpG8O3MQKb0FnMqSUkEowmUlzdOgCiFkGnRAqAFCNJG4tb0kbM6yZ92cx+9VqnCoN3GIatCF69FxWu3MRnDX0RlKg1uU0fd6vB1Cscax3TNHE8Hnl+/i2duJ5fJARvTQmMY12jOAXoctmUCs6J91uRjiqVQtSRel4mJSl0G6U4VOnusU60WdVQqviWpZzIRXYa3jnRdyEhe23impaVNSXOp4uY6xZZ5Leuo+p0pMCj/CKlagejJHxZ7gBGO34tQvo/WwrGJmFV6g6oGkPMIgFotjrt20vmlHRftlpNbTfMawFbqEb+KYvhSlwLWBEpdyHTBYFHnO/BBYoW3Vgi81JY1siiEQXWavdvA+14X6Mc5pZMjsJSMkApYiWVi3AsGhxnKmSjMAhyiLpacE6suxbVuhhjsNpVrjFyPF+Ia6JU6DqFlwyYKmJngYDYHMpTyVTTjFktLnjmeaWkJPvmVrisJbmkPpd2g1VqFQGsMTfwoN7Qij5e90W6C/AhqMdfIsZMygvLMqmxLvQhChnAB3nvnbKxqrxOstuQ67jJD3I7qJPYZw29kGxyFiZgNAlrI+LgL3HvqVyvEWsgm4pBqJfteTvvZH+pu9s1it/iuibRgWGwdoVSGXd7+n6gHw90AdkdGtEBVbU1i2mlKhLgnBFTZ92JlFI4ny+s8wwlifjeO5w63MSYyVk8G0NYrjsY5P1r/oUgZsYpJ0pOounUAtJgMAOkajBG1gpW973N4SaljDMRilDR2w4QDNSsRbmw5lXfZ6M2V7JoWJZVWZAGa5uLh0x3rYH11hN8R3Ar2UkKcnPeNzjWRazqZLcqkLKpspuruSqsqISkUkhR9vs1BKw2gaVcxfmN0BScNKElZTCGFKNYheUsTOuW5p3SJlBOcSV1npwNqslRCFzOVYH1nTASuTXrlq9r0gSMRCodDgeFPH9LTXYfn19w3pErWBdEqR4j1YnGwCDGkC1ZeI1po6VK3IZEJKQ4UGsSI9AKobNbJ2Gso2bBvmOSA0/6B4sLBuM8XT9gVZQ6zSun85nz6cI0zQIZ4QSeLKLVKQrltAV4rUDWglOVp6B6ENPgHiP0a6vdjjF564qNgWosCvOLz53u+Awoy1Dzd9qJ6gxpLRhXZCnghQEVY2a6RAoO5xJdqHRd5u6wpx/2GNcWuJlUHTEb1gjTIl6E8tQNn71+JRduyayXiVqSRE1kCSH0uiss1G0fkrKGI5qq6Gzdiq/P4iyStOOXWuBglSlrnmeejmehbFfYjWaDRRwVH643k6Q5R9a46mSkzvNdEO1dEUhUfBqtHt52g1huO9gYI05p0M5eWacCk6h8wMv733cdfhjBOkqS7Khcz0yXhZhkksixELpC6KDrRk34lQlVFvWGEieWNUlBQrwxhZ1j8LldL9JU5dysvKRoFN0BJ2VjWmOpplIo8h6sSVwerOiNvJVO2Tsvh2mUyItNCF3lkENh5d3BETqFlEwBs6r4XcyoZfdRCJ1Q772TqTnFwrqcWaYLtUTVdnUMwQONMp6ZpwXnvFo36fXmHF0IcpgbNo1ayZlMIz04ci4Y1UVWXafmJKSb4ORaKUWkLYmse2YnAmBdJ4i0QmC8qA4TlUJa8+Zik6J8rrFym3i8lCrsQy1afehZu7g51sguSfa45/m8ifBrqdTcSB/Xa88gzNScM3GVrLcudBCqisObW4WuNYyEaS7zQtJw1yYaT31P78PWEIgjhmx91yjvR+cttTb/TbYVSNv9e+eomiVo9V5r4ueUZQ0wjiPN6i3oZPhdHt/rwvV8lpyhiiX0ssReC5hcsTVjTCGvWgwKFJZtt7DMC/O0SEGK0hV6b1ljBhbakHsd/zMxrRvDxweLMYFxDNzdvdoCCdcYeXx85jJNkiLrehGP+oLvk9DgdYSyVdk4qt9pC/tsTVuryYhdr7uwhkFsz0+epCzbrdv2PZmKKWJQmrJGp5RKjwMXcGHH4dW9uBHs77h/eEstctAta6YW0W8JYcNurLB1WcglYWvlsHvg/s0PgErKks1UcqLkFW9ERBzXmZeXC/NFMPjLywv73UjwHmeh6wXqSyURsxJoEJd+tvegKtYuGVVOJzYyrFmK1uVy4eW0bO+P6wqFvE1cgWa9ZWS6k80VBUmKlmNXkoDlNb26MNQqZAParGwasUZuSlcaQUVSk9shi614B4GW4jswDKPAME6oyZ+tkefnI7Nej+jzDKHjzdvPtl0QsMEwl/ORl5cXgbFrpu8Db9+84fPPPocqwve4Rs7nE3G9ZpQ51+Bz8SKssKXUSBBhVMKExLGMY9p2rznLobnf73l4CIzjSM6FuEZeXl5kYrpcKDxS7UhVUk7nArZaqBYXs+xBcsXEgjUZysr7+MhuHKglczmfsEadbWJi7T3jODD2A4PbEVPldJpoNmoYIbtcNEanwfitqUsxYWqi2EJaVz1sy2brdLnMTNNC8Ja4iF8htccOYlhdLPoaFhHylwb/FpYlbrDk7KNqrixZJSZymztSXsUdfYmM454YxSj6eDxzOp03z0PJ/hK4bZqmTZJjzdUi6daO7Jp/JzmAx+NxO7Mu6vW4ris0s26k2Kzq6iGZd0IEGceRzgdxy9A/awSjagxdcCK8H3sBD7gSLzZfTydNfkqZlKX5c95sXjnWOvpuVPbq1RT7uzy+14VLRJ2Qa8aUrNOGTB9VbZ+MwnKCq19hOqz6a9WK9U7EqrpXSSk2ktjW3YA6IDc918Z+Ew2JsXXD9X3o6avF+4x3nXR6RnYF1+fl+IQFdrMnaZHtgGqimnFiA6KagS8KOCrG33YvbYeGOE9U4/SAMljf48NI6EewHuN6XBCIx7tBGG66hxKaq5VOX12nbTfrDQVDPwjV18kBUlKmlEROK99+9SU5RYzvGO8mfNfTzTOlVF1Oy+uMTlmlCnxTG51Gd45N3GzVgNiFTnwI9fe0xtH1Msne3Rf9nKXrBzUdLVCyEiCAqotuKw7VpRUoazDeXi0q9doRYXHZGKTUTyNbBGpV+67SrjHZPVon0GAIPT505FJZFoECh2HPOI7sxoMY8Kp5rVOxa8VwOk8CAalvYNcFOaxrFZ/OKg4Wu91A8B7vPMt05nQ8cjoehdlW0CgJcQW3LcpDr+lGHqj6S1fNHalWfp+cZMJf1mXzvhzHHXd3dwojJT1ohWDx8vJCNSsVT8EpiUWaspTExiir1IRSiVY7fyWXdKGn7yStvAtOYPoi+jCwpChQp7FJhc4aZLgx2No9VGl9nrwOLTS0+fPpr18qRXd2nTfqTuF0vxskN69maQjQ185oQYqFamXi6Lqergs4Z8lOiklDZuRSsaJd9B3eBaxqTJtzimg2ZWostVD7uk0+1jhNQOi2nLCcs2g3Vf5hvIqgnZV/WonNKZoP1jR7IThqdlAKJSWsAW+NOsQ7EuIKQlUJTbE4ve5sa3yaiN8rgUfvBTF7ZmsOWsPb9lsoiUkMd1fm+bdUgCybEzScrtwULqOFRQ95PcTb3kgU4h7r5UL23pPa96wSU9FYY7fRHdxSs41rSwyZnpzc7BhH1484329sonle5ObZiqgUQKOCXVOvbEKxlvHqsyaY+pW6LtBiK8KA/FnzOGwHqDzT7blVNdHFFKyXQuW7AaHUicOB8z39sJc4865XH0ZDLkhnmWW3gooYrbXsdiPjOKgQVsw8a8nkvPL+/Ues9biu5/BqpcREWsWzzVtDzZKM3G7vgnhMyu8nYt2ty/RSAHzwhL5X5mNb8HsRZbtAreEKXRhxDxdRc3vvAV0Qu/Y5u22lqLZs3fq2gaxKvaSZyt7YG4Gy2fRarNf3xVi3sR6DxmSUIu7hSZ1AQuh59fo1b968YxhGcexXp/6UM7/88iuBE9XsdRg78TbsewnP9J6hC4zjwDLLwvv00kERuMr7IFR4o4xaZU8KccltbLZShKVp9PMCRUOj5lf1SnQNPXBecqeMQIjjOBJj3iBbaUU8BbEWqoowbNqiKlowLSOs68rD/R1dcPjesd/1eGdxFpb5oho43dwqVF43SUSLnnGbm0jBqBxEGJaiRazaQLa3Xe3J0F1lTHjjMf62GZTXw1n5sVYbim13idVdk9Dhu06aqmyyGgBI4ZJzRSQabY9lVYYhnE+hu7fXtBXWhDj7W2MJvhNGovcs68paV1JNWpQqzlSBtPXDWoMz4qZiMZQsk5yX5aEYMOeEMYagMHYXRPsmzMh2HV/trLZdsBOCRjVOi5RAiiWnrcGQ+0xfn+33lzuwhUq2KfC7PL7XhSvrjZBSploVlSLdd/tfabsk1Uh4LxdG149qfVLphh6zLNt003ViY9KYN1edg9fdh8WaANWSUmW6RDXZDHRD4M0bv433YHl+fmGaZmECOik0Yo0kzh+mVvCyGLdGSQGay1XqsnVksHF5to5IbFlEgLhRvjUkr2nKMAh9nEoIA/2wox/2rKlS8KRqiQn6Ks8pdDt2ux21WiFP1AlnDL0x9CqGNRhckF3gkjNxWSklaR4YLNXSdzv2Y8/Dq9cMvdDdP3z9K3KKTOcz3371FdN82RhgrjlNGFncB6+04yAsJxExdqRFmIPGGIa+l+JlLFEtiUrOXM5nnh+fiKyCzReNCwGl8HusF2p9KuI1mGJRfF5fM9WYFSpUef6N7Wn0a7Ceggg1c5V5sYlAWxferHXU7IqUshqqilFyrZa+G/C+43w6M00z07xwd/9KDoQidOfn5xeMMdwf7vj8i88YhkDoB3IuvH//yJ/96Z8yLxeWy8R8mYhrxlmP6RoeKHtOcX4XyyvZycnhKcQaaUKMNSJxcCIbsVroGs16mqYNPm6O/SIOTxr7EkhZD2EtXM57nLEkl2li/ybsDmFg2O0ZO8/D/Z1KEyLTeeJ8nricL8xx4XDYEUIgpoWSxWVlGHte3d3jOy9G2jERVet0N+6kcaniK+m91b1akNXAssikJKAMJcn0KPvBwjiyNTNO9+iNNLGs69bISAFVKnthI46A2LRVW0GDVymVqn6KKYrkxlgr8hNjyAizOOnr3bkOZ2U/NPY9nE5CJkNTEBD3k6yQYN7gvkSOCeOvx7wxhnHcMfRle8+GYeDVwwN937Ou6/beNvZzvxvZ70fGln3nQDxTDTlVFcwX1hTxQ68iY2XHoqbWKSmL0dOFHmvsby85oxqrlF5DVI2GtZ6cdBFqxTlDTntJGi5JYIqUIl67eefkMAZZalovOxRZ3iZ1S24XqDKU0JEeERXLkrNj6NXluu8JoWOaFpY1Mi/LxhSDSo5ZsGIjo34TujaXDR2gMEYsqzYtkh4CRietqpZWNZcN7jHq4O2DZxhHLpdpo/YbG0jFsKwZ5zql4yacHThfFrpu5P5e6MAYS6mGaV5ERuA80zorOwp853VBnFmWWSxpqszBH48n6ejI5HXmbjcwjj37cWBeZl7mmW9fnpmm88bAMs16ylp6012nJAP5MmHdwmWypKipq7kw9GKxZZTxl9RY9/jyIgW/GjmItChWIEYwLqp3msgHWsGfLovudRAKvJPDwakW6orLN7itQYNGD0AxRo4xUhfZlRonNjpJrz/1BxYXi2Xlcp62mJEUM8u6Mi8rof+WpPuynBLBiwPGdJnVwVwoz+fjCx8/fODbb74hdJ5gnRj9Bi8aPXXt8MqsWxfRGBnnNIDSbXu7UrMKoYU4syrZpGYRl6q4T1ilqwhtp8vEsqzElMixktJMIZJya9CEoNIIQqUUfBcYBklbfnh4kDBIa8hx5fHxibgI29JQWeaJdZ216/eyW8tiwuyKTOVrn2juH1ZJEc1ZJqs2qe97WrhoJrEumZwKYz/Q9x5nRFRvqdsU0quTfts39V1Py/EKqrey1oo7vm0+omwkCu+lOV3XlanO1Fw2t5Gh6yEJmy/0vWo1LUPwzJcLNVQOIyIMd46SEtHIlNiHDjcKfFerxNj0XUcfOoIXl59sIwVD5wNB4XXXUI0qv2PLdouLhFLWXOT+6zo1cpBWWRpIzzB02CrRJ6kIjI02mru+ZynXSJd5icxzAie7bO/ELeR8Psv1lX9Ld1wi+BVoqcE01t7of6zAQo1J1UyXUPYQzmonqaaltm7U8QahNMhQLtDryNsgRRH7RWxM9Fn88XzohU3oPLDQhK/NoKnh/iLGRBetQi5pWWGuyOfF8UNXobKSuEKXquMSOKaqJ558XcpZssVS2WA+EShDjJlSV6yBNSacWzjsHzBuJYSVko3ocnQXFHMB56guM606mQJeF9AlF+ZlJa4LTfhcjGUtmbjOTMdnlnVmvwz47g1LSiwpMkf5qKUIuFCLsvZEgpC7QPaeoA7wthhyNsyXZYMaYkwKvQgdN0cJTzyfJ3bjiDOwrpHmslsUBpPR0G4aXLmOCuuStv1E8n47wIz3W6mq6tDQnE6KwlIpWXFHKRJHkbJMvM57nJMDU7KOZO8SkSRqq7ugZVkRt/nEEhPL41HkDVUgzK7r6buOFDPPz08UjbU4H585Pr/w/PwsNk+how+B3X6Un1mE/YZG+kSli1vryN6RkgEF+GrNtOgeH2RCkd9HiSPGYjyas2R0dxT1ewoTrzbYvsjr5YyhVrtBye36aUm/b968kd1QjsRl4XKZWKaJZZ65u9sLxBqLTnICy0phEK9Eq6Gsgtm26Ygr80QfEuUjhblk0dLVUnBWdkhSuArUjHd++1jqshFkhB4POdlNKNwcKBrrVH43LVw3U2mMUSZyK82QNM5yBAfndK8ryRWrkQYuePEftQohltzSwS0mtDgbyLalpDfJht1MC7xz1Ho1iW5wfEsOoEpelotugymtsZJIUSs5iwRIjhxhbOdyDX7FOGmCvGdeMjFFZTVqYGxQ67FevCobknWNPvrNH9/rwjUvUZwwnBxcFdEsye5B9FV9P8iNtS4q2PMaV+FVMKvX/LZ4z5wuy2b9AuiNrDlWXnQ8TdQImVJW2aUYR9dd/Q8NaZsCZd+gjuG6G865KFwj43RMcqAIvGK1wBaMa1h+2A7ZzbZFL1bjHF0vbtEpR+ZpkmLpnsUdXq2FlhhZ1kTOlWlaVfM0sN89AAKHTKeJrhvoh5Hd/kAYR9W/LWAkNsVah9UbF7IYnSq91ZjK288/Z5kvXC4n5mnivCzMcQFXKDGyloLtO8y6kIuws2pcIKlxrwU/9HRDz/39PfvdgNf34Hz+yDRNMtXcs6nyyTIZ1yRL6xwjuVahcSehYufaYkNoBpFCB1eadOvSU0oszATvycOAGcftMKpZgkIxkscV55lF42OavVMtWZl3Aout60qn7ueSQSZTcUor0ySklXmeGfq9ND/O8Kc//zOs94QuMAwDKWUulwsfPn6k5nS9ZoFUKj50nE8nTvmIqRL7EdRmZxh6shNIdJ4uTMsivpIlq45MXh/nDOMojun3D0IgSSny/PzE4XDgcDiIU3jfU0rF+6zJ02CiIWUQ+2kr2XMKoxmMpDnXa5JuM5etyuyNa+R8mZiWVVmZAmtZI8Ls8dAzDEFtxq42QiEE+hBkL+adblh0o1yrMGQRfWExlmqb2r9s73vNBdcJPA1XBwuQ59yo6Yr+3egypXlp7hObfx8KGevnnGsEi7AVs8ZavT7UleL6n/rf+r96vXRN62Rv//YNS8/yqXSjfUiDbq8ELt3btn1Tq2sNbkw5kpbKOPYMfac/o6gVlrh3GOtx1WBC3aj5SZMxrHPsdnvuH17z8PCa+/tXPD+/qFvKb+mO683bd0DDk6WDttYKg63r2e327O8O3B+E9h2CuAo4I9CJxINPnF6eZSeQIillHl75DY4THP9mygGkdMjFLwadhcfHR3kuKfH8+IwxR9BikWOWQ9d7sFbJI1W/t34egZhaYi3GkUvh5fmF0Hc4L6yiStPhpG1nJmr5wGWZKbXw6vVb+i+6zRtsuszaZFk+++wLQNwUXo5nllW80IL3nE8TOc9M54l+GNnv9rLqdlAU0pTXUA7dagSipSVJW2FQOWf46U9+RPAOa2C5vFDSCmSGPpDizDJfePzwgcvxyPl45PnxI7uhIzhhWeUSt5tY9od262bfvXqzqe/v9ncbhHc5X2jspd1uxKtYODjLbrej6wNd36vjx4XzdGGaZ1yQ4jCOO+7v7whBtDdVu1txu2oTXmSdZV+ZS2aKE2/Gt3jvOOx3yvpKzNOFlJJGQgiM3DiLBmFkGgw5SgxPzZmSEtVl2Ydg+Olf+V2Gcccw7ri7O0AppLhyfDlyPr7IjV8qwVvevnnLF599xodvv2E+X1jmiWm6EJUCHpzFO9GDheAw56NEpFiD96+2pbv3TuFzqzEdhmWZuVzCtse11iPpt4UYhZG3LkmgQrU9K1hyle8DsrsFRUEwnzQIHz8+SkilNYzjnv1up0W5sNsNfHj/nun5mefjE2/evuJwt6dzQSBxDUYtJRNrUUj0SlLonNtYb6LlEri0XVtGi5bQymUybJ6D5QamzaodNP2wNa1xXm7sparaxzWSkiRCSKSQwOkU0TFWdTmpOUFOev9ow31TcBuj1bQP9KNmjAi79Odlqn6/kiO1JKypeGcozm6RL8aIqBttyo13AgGrx6nR88Q6C95RihWoOSViiqzrwrLOBCM2W9KkZd1zwVLOzGvZ6PRFPTa995tHozGG8/nM6fRb7Jxxf3+/sbv6bqDre/b7A4e7e8bdjv3hjv1eTDnvDvd4J04K1CIsrOcXTqcjjx92nI7Hq37BiZ7imlFkrkiEXtClLfsVNlyWRanBLaZaOo6+G/UQ8BJq6VqXj9BtN5proPk0NRFirZW3b97iu05ErLocXmMUzHxdtoIagsf3gWoMb9+94+5wkCiBruN8vGgYZOXNm3egh85uvHA6X0i50HeBCxdqTiIWrKJuCl7NWYMH73E5kJW2m/V3FZgz0wImJRdLsot2Y0/36g5qopYENTHPZ+a5wxnDut+R3rwm/fAL3r5+YOgHuhBY15l1njV9Nm4HWds1TJeJp8cnDru9OgdoDhutNEiX6p2E371+/Yrdbsf+cGCNK+fLmePphdPlojvJjsPdHa9ePdB3MtkahYJzSlxOL0zTxDRNrMsKiMv8aT4z7EbGceSzt28Yhp6UolDSTyeMEm6stcRFlvGlsbsqm6UUFbwV7VDrm/e7Pf24ox9GxnGnbLweYyy9BqQ66xj7jtcPD7x5/Zo+BOIi9lyn4wuX04kYVyHXdJ0eTIZpuWCcIXSe/X6vvnRe97rSace4kHNimqbNXigEmW5bRy6GqXHbOQq7Ui216jU6RtAD9W2s9eY+au8p237TOykeVHEVt8q+jUkz5/S+29AGtSHaeKM6VbQkXuDmz9gIRNt0o4hLLeIcY5vH5M2HoDH2+jONYWVho8rVev3Z5vpz5Y+EHl+UhFRVhL1podqHMTf/3p6r+fTff+1nNMvoZmZArRvJozEunRM83BhUJK+kEaf5Y1qg2znVIMSimspkGhIhsKFwXZoziND8cy2kdSElo7R4lY/cTKMtlLQlUs/zb6k7/OvXr8W3axh59+4zXr1+zQ9/9GO++OILDod7Dnf3W5QJoMmliZxkof30+Mjx+ZlvdwdeXl62m1D2F7qfcNeLpFI26ySBVgogk9n5dGJeFlLMpDTJgZ4KfddyfYIWrmYcK5qOrpMF9TAMEj3gPSH0QqUOgXE34oJqqipc9PA8n888n46bCBFreOWFEfnu8895/fo1+/2e/X7P8enEPM/M88zhcL8VrmWSRfjlMuGc5+xPFO2U0jIxlUSJkePzM27o8UOP7YI6CVhlEzVo1sgC1nsonuPjE47CbvC8ff1OKMU1cTo+k+Ky0aj3Y8f9Yc/n797xOz/6oTh/DwOX04mPHz9yfHnh+flRIiCSvHfed1zOZz6+/8BuHIlrYppm0iqZUW2CbG4Er1498Pnnn3N/f8+rV6/ItXC5XDifjxwv52vhur/n1f0dg7KnvPPkJBTvb7/+Fc/PzxyPR1KM0tBYwyVO3D3ccX9/x09//BP2+x0pRV6en3n//hvWZSGtcsA/P71wPp1JMcrUoovwLgSKle7Xe7dZYHWhx1qve0llrnYdr7qAf/uWvus47Hc87O+gFnKKDF1PF+SQOD6/8PThPfM0UWvlcNgzjgN39weMh36Q6+vdu3eM40DXdcQ08/wsJqgfP35gmiYulwvPz896f4gDRhO4zvOi+zx1UTBOmYqCHBQVz20u7FWlA5oHV0rZJjnv3Wb82gqJaa4mzuFCUMLQTZFQuLftc6wxGxvVqeyCIs4R4qIvz6cVB1pR4Gqw7JzZdlpbgdgKgdv+Wcu1kdqej7mJUZFvL0hKSaQsAu9ckuzaTFX6ubqutOd08/MEvr5KQ9rnNli7XndP3BTk9po1xif1Cl0WdcUIQWzZmvvGLZzZoFrjHBaveXRWhdvyerWvJ1VyFJZlLMIWbDwB+LUGQ1908bz8LYUKf/CDH7Hf7bl/9cDd3T19PwCGX/ziS2L8M3VQTgTn6UIQLF+pmSmupLiQ1pXpclGrH3mldRWJweL87UVz7X7aI2chZ6SYcBiJFjeesZMJ5/7+lXjPqblv1cybXAVqbAdjzhnrJEa768Q/rNNJixT1h7YLx9L3PQ8grLMiYsQf/viHHO4OXLSwrZtrwjXaZdF9Sq0w9CPjMGKqofOeeRzxtYp9TIyYFMmlEim4tSMvnWitMBthxHqxJBqGgf24k1jyvuf5wwcuT498+NLzzcMB56DmxOPjtxyPT+Qc6Zzj4f4A6Q2v9ge++epr3ptvqLXw+PEDLy8vTNOFdZm18xRtyjLLe3Y8Hsn3D+LQP69cji+AUdJBt93gT4+PfPnLLwldoO97+nFQbzq7JRsD1F/9ahPCjuPIbjcINb4Wnp+kwE/TBVuNUK+7wN3+QFxWPrz/wPl4Yhx7uS5SYpoupHUlLgun01HcKbQbpWaJmF9WapZ8uLisBCs6n2osp9OJyEknjKwekI5x6Hj7+g1vXr/mcDjwwx/8kOBF2kGpHPY7uuD55quv+TPveP/NN3z48IHTUSzSDnd7/rd/7fdEjFoiT48feHqURfvL8ZmXF3F+mS4XoNL3Az/+0Q/59v17np9emM4Xnh4fhUkYpUEzaPHwXlziq+zdcs36e8u1pOUAWzotZpmvvirsdjulWjuca3BbZbcfOJ5PzOuq+1slioh7MkHvk85J2rB3jqSoSrWGmpKYEyAQdlUmsB6fCmqKjs06o6+xEaafswqxSrwJFEqOQgMvhZRXZS8bas0bTC6kFKP7xyrBZOpHamrZmIveGrJTPZiVlUepgh5aTUCuRkAaUdGIo3tFyV1tz41osVo6+ifTbMqkVVmk7cyKapVVUeJG3aa1LQblxi6qGzuBuzspYA6BLpskpRF5BgvzJRKj2HxRhTDmnKPve/b7Ha9fv+aHP/wh9/f3PDy8/s5n//e6cM3ThPeBlMR3cFki65p4OZ1Yl1XMLpGkZO8cl/OZuIpPF+3wKJms2hSBDQxrSTQT3Ja9Y3T6an5kDS4QVmFinsRk1jlPXAU+k0JztVqxqvEoVbRDYhtvdJ92ZQqGTiC+0HXMy3xlwClU0Sqn9x5bK4VAoYgHWYo86fQYgjh3UwxxkdE8HbJqdRydC9qNSoxESZG8LqzzLIXYe3xnJI1Yo7pLjpsDBdapOWIVqnRK2JzxtWJSYrosnB4jL4/vCU6Ya6fTM/NyxlBFF+IMz8bwZa18qQGDMS6cT0fZM5WyuZ0LlASPHx45n86cTicux+NGK//w4b2KYzuGfvhkMT3Pk+xqzmdC3xGC3oSdkmyMNBQC6yldeRBBqXeOVf3dapH4kbpWcslUB/NyIZfMyVq6PsiBU3RHoRv2ruuYszQo1ILBbkvxnCZyFBsyayw2BHCeNRvxn8RAlcNkBZZlUlZcxDtL7zu64LGmktbEfHdgNw5M07SRCkIIGpAqXoTv37+XbLDSXOojKa2czifmedpMp/u+3+Dab7/9luenFx4fZfLMWX02bykEpVKrkJBarphEtlQV9ItpcBPJblouGl9GabGg5tZyODaoHMRztCp9vzHU8I7iLKU4ajbkJsKlFQthOZZm226g8UlFoyKi4LZOaM+t3bttOlx0mkracLbJZ9GoklrDBp3WWrEVQWc0OwuuMGSza5LX32yO6tamG89AeW4CxSayUdRIi0u7viQjrWWHyYS/Lutm+fXJz0x5K2LNheY2rLJlZk3LTMyRYEZxMdGEbGEaFjU/Toi9V8tyE56AOHtUddK4skhD6DgcDron/JT1+Zs8vteF6+npSZhNIXA5T+RceXk58vj8pIaesgR3zuKM5eX5mWWZSeuiDt0KHShF1xhhIy5xbZ6l235LNBlXqMA7oV+3mId5mqkIhizCRHHX6LpZHAusI/Td1i3lIjCb6NAkXK9BIE6nlhACz8+90tylm22fD50o9Y29khYeHz8yzROPz8/EGOm6jsvlgq2OFCPrslILjMNAH3qiXcjrSlaablwX1nlivlzIOdN3PS50jMFLrEspxLhAbkLeTopWKRLV0Q0UayEETMrMxxMvxxdSmgnB4RykNFPJQpIBJlNI84Xj4ween5+YLmfm6UIuiXEYGPqe+4MIGp0mvH71qy85vZy4nM889b3kFs0rx9OJoRsY+oEyJkKnovCuU/hCD4LLRb0PHb4LmM0Wh22qBsSfzcu0LsSGqt1opqwFLCx55TKdSDkCqIelwVbD0HebFmi32ym7UWErK81Czlk8HZfI5TLLLrQUbKisBaqRSd0Z6fJzSpzmiel84XI6iRtJLmIHZWA+nnn9cM/dnUyC02Xa4DjJeIrMJvOrL39JyivzOnE+n9T5fWVZRNLgnONwuOP+/oFpmvjqq68Euj2eOL7INC8BlV6hqAbCRWG/GiOGyMrATCrudw68s3gn+8dbJt5V0Nz2YOVauJwwgkvVnaeRYlS16NkaJJal5g1yc0Y89qwWwpxRwkDRAaOxc4Xma9UoFupfKFpbUKMW2hgjy9JIT6KralDalmis+6aUI+aGoHJL/Lg6SFTWNW2/b4NWWyClvD6Giuj9YpQChRZw74QI4qzbLJUW3XU2ogT6eokbh/yMW/s0uEKjq7KAc8kMptL3QfaqNJZlku8fE8YGrLfb97p6KFayrerjiu6cPbvdXrK57G9p4frVr77m48cnfvWrb4iq6TmdxFU5dB13dw+M/SC2LuXa4bSxOaUMpRBXmTBaJ9b1vYTzgr7h8qautiWxSjdn25teUKujwpoLp9MJa7zEnVSlvVvL/nAQtw/YjCcbbLgsuuCulTD0xCi+gfOyClRkpPNuN3fLkFJyKqUW5rgQlWk0dL06MVtKlAO3lsrrhzeYXoa4jx8+cDmdyTGxG0dqXDG1EHRZTYqs0wnyqsSVhXmNNPPdrh9JRW6w/7G9d4+V9azOw5/39t1m9uVcfM6xAbuGpvBzMZSkieVGpUhYBoqitMkfaYJaUlXQuKZqLo0QURKSVK1bKlVVqyj5L1RqkraRoKgojQoBO6JxaHFBFCgudkzMxcf2uew9e2a+y3tZvz/Wet/ZBzs2dsCnB89CG5+z9+w5M+9837ve9axnPY8PEUe7lzHf2cHe/j4ODg5wcHgZh4vLCH5AXTs4Z+CcQtNWUJUDxhEXFwdYr5c4PLiEy5cvIfoJFCN29nZxYn8P81mHsV8hdxlVSji8vOD+St+jXxuZj0poqwazboambgAw1yUFj6OxZ5hWei3DMZHRBOKbztlCZlFKYZomkDSirbGoHVP9U0qIfmJ4FhFBDMO00Zh1nWjbEVIIqJsK89kMO/Md7M53MA0Dhn6FFAm1Y1ZhbR1cUyHUQfQG5ZAxjHhiuYZyFctmdY0owfOm2S+XWC+XWK+WWK3WBSo8/9WvYXc+Z4ajNnCyGTdNw0PifoKaCE88+VX04wrrYYlxHAXmYop3VYmRqJzkl8sl/viPH5EKLiFFoGkaVFUj0mAocPkUotwXCseVwYP0q6A0LNhvyoooLVuasMbiNGaYe0TwE06fPi30ao/9/R3UrWWl8sqhbZpCza+NEXQEcEC5XlLWq8zJgFIhzKQUS8UTk0d2YSCwk3OIGgYGiQLYCZ0p4JlckDd/Ji14hMBzYpS1GAEhpQjMay2L1iIhpoDJM0svhABCJQSqJFXnMbPNSIhRI0YZqE6sfh8TH5a0UqzgEiKC8vCTQZi4JZLlwjJxSUPBSuXEt/kmSSsCj3rEKGxXfg+FTDFqDINlAe3MuJU1iCHAUxYLzigGpDqLpRdo5SCoFFB7/7z3/ms6caWUMAys7sxwRsTkpyImGr3HNI5ImqfDKSYW0HRA4ypkKZgw1iKsK2W/Z0yYANEBFPqoogId5gRWIBupwrLjJDebK1HPYGFaitxH4GqOezHCqZcZJGEqho16N5/+pBJTjMsDwpyTZrRWQIJGa2rU5MSAXgExwo8Dyx2Skql5HgqmEDD2PWJgZuLOTofKnikVwWq5xDSOGIcBq9URJ4pxQAgRzvG4gW0qIaxEBD8h+hoUK2gKUORhVUJtNay2sEax8nYiWK1RiRjoMDDkMPQrxMAsLWs1mtqVnsTQr/mUCNZeWy6P4KcJSAlVXcHVNSrrcPLEKTRNC6MNFoujDZ3Zj6wGn1liMUITsdq1fC/6gCGyyraCghd6MbO5NNb5s8ooE09MwxMz8KD4lFo7WzaE4GukkBB9xLDusTw6wnq1YmuQNqCyfIo9efIEFDTGYcQ0TFj2PcKqx6yuEZQGUYQfBm70xyhVcoBKCdNo0K9XMLMOXVOzN9k4otcsEFw7Vttwzsk1LSf/vLFI8DwUMwydSCdVjpOh0UDb1MU6RGvL81yuEag+sELMOKEfRyjDkmm6DL17kAg16xARNHt6ERSUYQFjJlGJhFPDWoXB8SYXA0Ntfb8GFMtJ5WsDSNCKwE6sLA6QCklBxlbAJKrMkiOIb518RUoblQilrhiPymSLzLbL1h8Zfs36lY0kUWtMMetUgKhkMMSpFcuk6cwsln1AZYjOigWSVCKsIRn5s6mYlWyM4faZAhIZYVcC2vLzGscqJbayoGNCz0o0D7vZHJXA7psqSyqtxPB3DBEuBEQlNkPOwEmy84Fd4LU1aE0nKiaE0RO3NQhihGnKkLqz3ONqmgZt16KbtfDeyqD/84trOnHlTD5NvtidExGcrYTaGjCNA5J47SiIOZ22mDVNoYkG50q5rrQGLVcMcRDJrIRcwDr3vLTAVmx4GH0UjTuDPKTIWmgOCgZeTQhIQGR8OeV/JzOFy6wGcb9JqLOQmQ5A7icFiEHX5ndFg1FrBacsCBDdPZ4XmQbucbEYqMM0rJGCh1Yafhh57sVYWA24GTMwrTaoLGF5lBDGFaZxhaFfSQIGQJHtz1MtzCq2Mom+R5wc4tQi+h4gD6sJJr9ugig5BHHbFYqwzJ9oRTBOo3IWdeWYkpvtZEKEgkLlLMaBXYqdMXBao60rdE2LE3u7qAQSWy8ST/AHj+hH7o+nrGbNa8fUc4ZjEiX4ctqV3km+sQQuzhuaNRbasrhqSB6jH0CUuKdw7DQbRQ09TB4razAOA9vC+MDcgrqB6zixWGPhjMEqRYyjgkZC4ywmgWFTYMpQSgwtpuARk4YfNcZ+ha52qOwMznGCzRYzRBGJEirnCmyn2E5bGHsWzhHqmnt68/lcYF0jhp8EazTmXQulTIFed3d24YT1OI4j1lWPYZxQ9QMCacQE2JQAZWHHCUqPmEIEoFlgN7BArE7cL3LO8bC1Y7t4SjWIEuZdx8OufuKqxhOMJiRnmZmX556kUgKxaosR1XjOZOByIkN1YF1JaB5LiZLQAWklY0PGAhhCNGKOWLkaKbG2YFPXBXqrBLo3xsAcS1zsIB3KGIB1liXlRA9SG0YCtCi6Z3IRpJ0AxQP/VnqyKnP5NUr/nJ3bGWo1lYGtLaw3/J6URlVXokWp0bSd3Fu6UNaVAktH5cQVI9Q0wbHUKggQIW2ppAHRfbVQkQ9mKkWENIFgikCDkT1OYWMcWlXMHiVKTDx7nnFNJ671eo081R7CMatoMqAUEMOIfn1UtLtmbVcusMrqwrwxCqiqrEqhYOsZhnHEuu+xXC4KW6iuG9R1JZCOKhsU9ngQM/jAlYBzXIn1AwCFSik460AxwMrFws1Wj9zbrrRG5RiN9xQwrpY861U56YMRkmIl/MKNsJuTIFsi8A84gTOza1ov4YepvNfLFx/DrJuhbTqGMQPj78uDJ5iJFSPP8XiutvrVmpu1w4hpGqGUEV26FfrhkJcbACmNo8US69XjuHjhT7hPeKxXkUoCVlitLiM7DjurEPyIumIzPz6ZtVAg+GmNoY+iJM+U7qaqgRRgDZ/kECPC0KOfRjy6OOBhUlnb3IePUBilh5gSazoScSLLBxTiJkehV/M1xRtHZkZpzYoQRF6IAxFKEbLOudYe0zFCyEr3cNaI31ENP3HSqpzDgDXCNGK9WuLi448Jo4urSlJZ4dxCRWInbzBspxLPy6RhQCRCHAy0H1ErYK9rce7MdZhGoaiHiOWKJbouXboodw0bXCpD0Nqh7Xax7yyatmaqfNdBSzXJyTJCVQ7XnTxRrrPK1ei6Dlrz4PzoNBpr4EPEGHZxcDSCYFG3O2i7GSIRxsnjscfPY3kkB6CoYJSTQ5NDZRzqqsKsa6A0oWlqzGctmqbCweVLODy4hNXyECFMSH6EItbM00gwmqv0zFKEUmjaFrOugdGKXQI8X+cqivJJiGjnO+wajgVMVTMj0iic2D/B4ynGYLVasdqKYjueum0AAmzlpfJip/RIgc1Xddb540OPNQYJpkCxdVtz4owJpqvgDEGHCOMsaoHYomiBBh+QkEAa0E7D1hYpJbRNCwAYpoGTkmXpsrpmpaBuNscQuGc5hAFV28C4Cs44sM8BIzVsC8Uok6scYmQVDKuAJ75+ifdJXcmBv0Jb19jZ28F6xcPvU4oYxgnaONi2xqyqMVw6Qj/2PGpRKfSjZ4bwwWX+/HyPg8MLXKWPL1Jbk9xwBCCDihpN3eDE/j7m8x2c3N/H7t4eZm2LruvEUoAb/FyRMTNnHLPBZEIkgjIVJh8wDCPGqZd5BYOdecdmcVpDCSORT8CxqDwHL83WJGSlMlnB0F7fD+KIGnjmS5TJY4YsKCEkg0isNVg1DZ+0FdurczLgvpYSm4Hc70LkzY802zHkgeDUzcCvRGFvbxfz+Q52dnbwknPXy1gAw2KHB5cw9KwTV7s59wVjlPmeiNEHrHs+WXsfim8ZFCt/N22Lqq55LEFmTBIRpuALlOtDKKaLTdugbSpUTqF2gJ/6MouzWg/CMjOYz9jqWysWOfW9sLmgYIVizJLcASSUc4obNtvoA/qJrVl8COWzINkkMvMtCQYPoV17HzdageKRdlw9hWFcSQQKcp1UZeiTqdq2kDP8OCCIm2wtvmJGA+RZNcNPUzEtjBEYooIPhCCneoDX08gX27oY1JXDmetO45b/71XSn2OI/ODwgNXcU9pIEgEgRGjD3VElG15Vce/IOQuVWFgXxGhDlDGKPMQOIhjj5ASuizJCSkAkC2N7TAGAYai8q2qcrGucOXsO63WP5WqNJy88ifV6Vaqttu3QdQ3msxYhjui6Fnt7ezhz+hT2d+Y42J3jySfPYxp7EEV0Xc36fikVI0Z1rCz24oauKJUxmOzZhZRAIcJajyl4jD5gmCa4SqNBVeC7/FlH0TUEKVZ6l4Nnrs7z/c22KYHXQWxNJqXgY4CxGnXtoCtmB29gShLTV24lKOljKqDsDYmYSWks960yiWucuEdrkoGpNCxpkPRck+IxGe89hpGRkmgB54BxHQp6kIjVMlxwCEk8zozCepzgE6MQe90c2TYJQPEU1M6wn6G2YiKZ5NBFGIYewxQxRaAyJAc4ltmzhm2bvkFK8jnFNZ24GBYRWwUpXWfdDPv7+9jf38N1p07j5MkT6LKMDCBHbSp00iCJaxpHcQqOMK7d2JqAh0Kds2hqW1oDlAKADEdOx+bDmPFDYg7GvVuhCytWkwgxCIOLN38fPXxMPPOSEnxSiGRACnDOcrmuIBVXRulR7FHyV1IiO5N0Ud8whqdGFLhymM06zGYddnZmOH3mNFJ53SNAAZUzmCqL3fkMVmfV8wo+JoxTwOHRIZZivTGIMSRkw6+7hoVg64ZxdaGZh8Q9DR8C4+BCMmnaBl1bo2sr7MwqgIIwPRUuHS6AyAKoe/ty2jcGTVUjiTgqxQSaWIcw+glJEjAPnXKVGhNh8hGrfmDFET+BWKkY0KKcniJi4rqpbdjuJkRO1DGyRbuM3ZW+Y/6T1tkROUMhPHtnrUblKlSVQ11XmHUdUuiQUkCVtTI1w83k2T16HAaM6zV8iAiewMVDhI5a+gFKErb0b/JpWWaZmqZG23bIWoCuchjH4Yoh30xYUJodarUG6qYS5XVm2abIjghZrT+GgN6sME5jMYJUivVBGUblSjUlwJBFVUUkRQiJK1dLBGMsmq6CMRZKGVw+OEAIUViMDMc5Yc3SyBBYYeYpmRHTBnXdQCuSe5F7yuwVJgdK8VeLKcEHhstZGMCXnlOed+ODDB9mJu8RY1UOYkreF4HdH0LkWsVaeW0hwjlVNnMt+1BMCURR2ICMckzBw4pLthNnYKLNVUSSxHJizYkryYEq08+9SE9BByiwPQ4pFruGsQXhyJGIX7cPAUoFKBgZQBbRABkBIZWgAs+CQjMjNv+uiYkPKIo3IUZ/pCemNggFCdklQ648lE5ISckwOKuhhBD4OiKxhXmecU0nrhMnTpRZgJy4uq7DyVMnsL+3h1OnTuLEiRM8AyRU1ZSS4M0MA2nDZbJSgIkRJkTYqkJVN2hEu85ani3p10sZFg6wGizv4z0ODw4webk5NA9aRuktMAtro/redTNAVfDBwpgJU9DQXkGHJKerCEsGEQmZz5iVNmA0ch7c+EgeqwI0QCkLfOaKS2xRwPdYQkKiKLJEC1ixwGjbFvsn9jGfdTBK4ezp09J74Yt9PYxY9T0ODw+xOFqi73sMw4AQY7lhlMnJknH8umZaf9N1DNkltnefJmZKGmtQWYuurbC/2+LkyRPYmc/QNA0ef+IJHnEIEV035xEAa9E1LeZtAxBhGkesDw64Shx6TOt12XSzeCh/yBZHqyX6ccS6X4vbNa9hkH5LjBGeCKdPn0HTtAiJE5f3HsM0ou8HrmS8L+wvns8ysraK5/yslSpYlx5Kkkqp6dri/WShRXqIQDYiWs82LClBe04sKXJzXoeIGDdMCmvZo6xYalQVVqsjPPLIH+OGG25A27ZwzmE2a8vjcv+Fe8IjoAnGcrKt66rAg37kXhR7cAG11UhKYYwRU0wyk8Nq6BAbjxQjJjmwTX7A6BO8JwxTROoJenUEd3QIZQzGYcJ63ePChSewWCwwjqNQ72foOn7dqzXhaHGExcEhLj7xOPr1Guv1CuO4xqmT+5jNO1S1kXESuW/EDYLJC0qqlAg/jehXA4JnFmBlmbilAUw+YvIewzDCWYWubZgQAV3mzQCNIKzZRIALzI5jZXypzOSLFLHFELFTRUrANAWMYUJMPOcUY4I4zgqZRDwDSdpwKrOZiccJxAbJJ04uIQQkSayjj7CUkKChHfcO2WeTX1vKLgQ+QqsIrQLqVKGylYgdaMQi3aQQKMFVlu/LilmvWllAGxDYbd6HrBay0WdMSoEooB/HApGyAwWVWUClFPzkcXBwgK9+9asYpxHrYXjee/81nbguXb4kbBggn4CNsXj88cfQ1A3m3Rxd16BtOsy6GSCOqBrcGFXIJpNMRconH1IWTdthvrODaeplfiJhccD+UUFUH+bzDgAxG2waeeh5GEV+SKqvaUIMnLyiUOtTIiEd8AYYU9r0rqSyguLrW2kjjCED7RyUkSQGhgWyOvVxfTSGElkLLYWE0Wf4iWGV1WqF1XrF1YUcGmtneeh3mkDBY3F4CcF7Fmr1gU/KxnLCGgeZI5HB1RjlxBqKpI+tHGazGXZ25jh95gyqiun9UapNHwJiz5vjcqmxWDiMwWP0J7C3twefEqbI3lS9v1zIGbVz2NuZQxFhmgb0iwVrGo4jwjSWgWolKLI2Bk0zxzgORfZqHEeuamLEOHkWLI4Jnng20LoK1lUiMcQn+OPq/axozp/lmILo8YltjdalKlcaYojJPa7d+Q66tkVKzAhUmaIsDWxFVCpYYzSmfo1x4qH6afJMtSYe6gxhKgooxmhcvnwJX/nKV/DSl96A/f0TmM93YEyu9NlLifUvRaAZCUoG6quKadpK8WEgePYkc5oFgkPwWCwO4ScvrEqFuq4ZLlQa0xTQD3z9D+OEfiB4nzB4j37gtfY+YN2P7N7rPbyI1hIB3o84XBzAOY2dece+YWBx30sXjjD0Pfw0YW9/JgcgArSDNXzNJ0Su8kUgGASxmYdAwZwEnNE8NK94Jm4KCePESZdIZzBG1owruvz9bGdkLVenSuGYn5RGVdUblh4UlFUy3J1gQfw7WsNoYQYiCw1rgAwAI44BGqQdf94gJGIiD/drVXlsfp1QBkpZWOPk9So+mBHvEVpbGG3htEVlHCrXFITGGouQYvHc4tYAQSsSU9bItHfSZY/hg4EGT58SJkGlCOISABTyGh+/OZFnmbrlcol+3WM9rLES0YbnE9d04grBc0lPqlArp4kVAIaeXWCryrK0UdtBG3YjNYqFRsXcimnuBYBharmrahweHeLo6EAYRcDQrzFNA1JkU77VimVruBk+slTSNGEYJm6shgTv2YcpC4xGmafaDFgeq6AEWiPmvTPsoZkZBFAZlFVJ7NAhLESVJZg2bENmb0uCS0kSRoT3fFGNg8XRcoHgJ+5jWY1x4PemUoI1Cj7LYcUII7JV4ziVqiMEgS8iQy286QJQGv2wRgiczEzleBDcuoK7Z3V1rSC24hEXLlzEOE5YLLmynUZOigqs/EGU4IzF8mgBEM9TTT3LdSXvGd4SdmbmK2ltECJh3a8xjKMkr15gQ24Qp8QQbVIa6/UaSmvUdYu6azlh54QbY/E24x2cT9h8bhIGqDDRFIGrmmAQbQRUYian94hxKjJAGoATJQkrhylQRrRFtkcq5Jh4PigmYpZdyhVQ1sxUSBRwuFhgPp+jqdlTTWsjw/OZlca9FSgFZVRRgYcCgh/FrTbBGoPKWYQw4ehogWEYeR4wkrD/eFPMsmdccQVME5/Mh3HEqs+HHDYWzAeGzExT4HnKo6MjGMND21oBwU+YxgGLxQJDPyDKXFxKfDi1tiqsv4RUZNWOMwEZ3dJyhGPDT1IMwbP3nUCFUTZYFn/a/JfY4DUmTn4sXsNOx8ZojGkSZXW+R9WGmyjCv8TVlFRvShvpPRs5EGlsvPYkCWnWa5y8yD9F2iQueR+JuJfHgAInJ2srEbdmyDZXXiIoxeiLoDBZL1COS+W5MmGJnZSF2SwVZH5PugyJ8/skIhRpa9mnSo9QJ1Dk/twwMlRvjMHOzhyu4TGW5xvXdOJSioqGHVtbiDV5EPO8EDFOCuv1GmZxCOs0rHFlOp5PMaIDp/gDgWbX3yhyNVbrMgdTVZY3J3GEBQgheKxXKx5MDLlvlvKVVk5qmcpGMcpnm91hNVSBljK13UgjjSEHikzhVikyw0zJqV7JjSJVQUgZ42a9NS248sZNGZIsE0L0uHT5Io4WC4z9uqhrG61QW4O6ssgK4HVdI8SJT6ej+ChJfyDDZol48NBYC+MqPHnhAtPyg0egiLqueTzAbFh3xphihRJTwte+/hiAx0rTO6vmV1XFChAxMAV9GECRKbj4Bu03o1jPMFuxAwq0XImagOeKoO8x+omruWHcnJTFsZoANE2HNkywzolzNZVkWwzw5LCxYUxCKhIJ2vQSTIxYLNknKwROXEoo042t4CwniUrGKoAMC5OcblORZ+J+x1iYjyzcyv3Z5WqBrpuhaVrM553YkHD/qqpqWFehamrOm8gCyWJNxlIUMrTLqgrWcrJdLhc4OlpiHEaMourtDLMCcwUB2SYjafgQ0a8HrIdBYFUFpS20BqzS8DEiRi/oQ8Lly5ewXvNQNevh8ba67pcYeia1OOdw5sx1qOqO57609KBSElINNuttLR9O1VoqBPHiUoaZdUn6XyEw4xSq/Jygi6xZkP5WiFFgeVawsc6yr13ychCVa03QaU4wnMC1NVDKQStXzFn5sbokRv6WgTY8nE3DxP3ZEKCSgq1yTS+oEBFiAmoZUWjqDnyAMUhRFUYtJGkpOZhDEjLAMGJKeX6NtywVeT+c5EAHgRtJbcYnjOFRBOZU83MrzYgQJpb2yqK/iQjrfsRytYYPHm3b4sabbgIpSL/7+cU1nbi891z2QuF4U5IpqtwHqKoK2YYkJYukAoKcZHNvIzOEWI9QQ+mK4a/gkXwoShlVbYFyvuDNEQLHpezsSmyLYIphoCsbtSKITiKJnYUt8xzZ7oRPwTznwaV4kJkhPp3y1UWAwISFJqDVsdNfQgrsVKsMX0D5PTClmSGg06dPgi/2iKnvkVIAIjAhIEbZGL2HtVpUwvvNLBQfE5GVA7Ti9baOpXlO7O9sTmjg9Y8JsJp7LcUAVJJ1JOBotWKVhBgRUmLLcYHZvGeGW1NVWFy+DErcZ6yEmacVivgnpNGtABavHTjZZDp8ln8CkqwLwzi2qdHJvJJxlfinCVQYo1DgpbrJQ6S5y85XXjlEKGliJ6WYhQWNo9UKYz9AIebbHVYreD3BqNzA3gRBlWTJmnUJ2kAqqJrfTyTEFCQBcPVVVfwZdLMGzrKGXhKRXtbbVHANE5B4PIDXQZkMXyUhMvDjY79G7w8x+IjBB9mwE4yKsNqUUziTKAxWK/YBm6YJITEj0xgHV2/mHJWoSyilsLs7R1s3qOsabcMai4kIRmns7Z7A/i6TM06e2sNLX3IjTl93EloSaogBU5hY01FYvtZaVNrAOgeCRojS74qSQMFW9cF7rNcj+oEPZWxvZvgrcVUx+YRpTJhGHjHpJw/SPLgeY8Iwsi6grWpI84E/O2Kt1MuXF2i7Fm2nUNUNInFVhASEBPhA8BMfTJzlvUMZhckn9IPHYtlz0jEVbC2H7ZEPyKtxgmsbNNrC1S1SiMiO7uw4zbCh9xEaASANrQc0TctIRCKEQFCa7W0IXHUzBwAAWOx53Y9Qlo1jA0H6eLwLJqn0lQgwxMhs7Bh5cN0Ybn2EIP6B1mB3dxfaGozTi9TWJFOnuU21KdSLuoVQO3UuYUHlRk359Fym6ZMUzQqZJmytQVL8dxBhmibkm9oa9r8CpQLpsPNt3sVIiBI8ZS85rjy3ytP++QQUpTObIQ6xILc6V5TyBHKky3ABgAIvZUUEyv++OPFCmIhQxMQBwbjHcSzzb8ZwpQk5zQVieNELC4gtLUa+Co+zGQWTI8qiqXxiUyqn1PyVKdbMuuIEmAqzKcTE4qngvhSEyo4YYSMznjQ4WUwyXJssM8RiArQSOnyKyFiJhgKFhHE9FlZg/hgYZmN8PhFLB+bPUCEKqSIiixvza80HAFsS1+Q5AfIHIWVt/mQK/ItjfRXP5AyedGXILjKZR9HG+ykRMSsuH06SVETIxBsq/4ZSkCFdpl0zzJyrevlckDUt+R7QeZNSuV+a2YFGWJKcII3VSP2AxXIlEHhChBL5JiNmiaz+niGl6NlNWSm2pFeaITxeb14c9n7iQ13Kg7Rq42qsiAlXTd3CWYe6qnH2zHU4ceIk5vMdBOkfqZgK+w9Ecp3wAmjpx4TIIxGFWKIUV6ohwceISUY9fIiIkbjKEu3SDBPGRFAhsXKEeKrFSGzx0g9ou6moswNAiBHDMGC5GmCcgwskQ/CAKp9DFiJmM0sv7wfSl2O4dYKCRtMGeR2cBKbJox89ZpHhSE60jLYoqbIglWMITMxQysDFJGafSYxzAwsYW+6bpRhFh3ASZOdKwWQe1geyf0a+1vM9HOUAFaV1kz2++PNPxTpKR/PiZRVmOu9GvkRtvm8UcnWsNKBJCWMnFXiCwNUL700bhhA0n/YMsnIyn+T8OMgNqVA5DVdVoMRlNSkqmzGQoYJUdBGVnMytVF+kNhdxTjT8QhnjUsR/tiLxki8RIiqSTnyZynuU501QiLLxgKiY1gFUNl6mPhssl0tM01igliCJLoub5tP+NI7FqkARYBQPnlpRAAAYmhDVUyFpRMb8SaR5pDLj9YeA8ByTD1ivB0RQ8QOiaWSMXjZTI9WwdY6TagpA0jCkoImgkETl3wscS7BKI4WA9WolOkCqMM/yzUbZXkaBRwMi085NjNBCaOA+kVQU4iScE1cQhfQM2ULLZ0WcxNXmIuUNQJI18nWAvM5JXJAzASNhuV6Bn1aV0QYtlbrWue7nhBuixziNaE1TPuvch+PLSgxRNQo8tNFlkY1OaUDZcj8Yx5BYUkc4WLAGqCL23LLWbjbpwPNnwfOm1zhWqilqC5KkfQwFUmMHhAZKsYRXSrGwJOu6LmaIdVWjrVt0bYfTp6/D3u4+uq7Ful8BJCK3YBo8Ax7xWO9HWIGBMI4iSkuiiJ6YMOVjwhi4ipx8lL4tb8JKMZMuz1tB2IVKZRFdJbONA7phhBOyCsC99r4fsFr16LoZQp2EHp6Xgw+fifjwkkJCiAk6JEBHxCh9woH1/NoplIQ6eh78XQ8TfCDECARuo5YZzgI3J8hrjoAKqFJCTHwneulVE/FwdRJIdJom9P0oAshycMMmyW562SgHBpLxg5j4MMTjA5DhZlHOT6mQo7RhMfPnG9d04srUy3z6B/KpmUrvJYTAFOqdnWI3kKWhMnVWiZcPJxQurwt1nrLnjMZ8PiuMmTrrv8nMUIzhCtr7cciHiw8CiC3uNXJ1lI4/SvY3Uc12liE0YZmVk7wkMVJScQpUA8On3wQFTyytk3/HWcUftFLY2ZljNpujbVscHlyWYViej1qv2SSRQoC1PD7gpxHO8GVC0vPy3gNCvLDWcWWrNZCU6MRpOWlz747hbh6yTCkI04kVJYytYMcJISQYMdWs6xo+eDQND46fPXOGYTohmRweXMbYr1FVBm3tpJ+VEENV5o+sNqitQRgnXAgJKWQiDGvM5TWdQu6zoCRO1o2zrKYgcKdSLKHDg6MByfPhhDdH7lkoo2HdpqLVWpUZq7Zl3UIKSdTRDZ9RUkLy7IybFKuHSLsck5CPsnL68Tiunp5NAHd3dzAX5+vjLsUA0HUd2rZl4WdtkUxdyAEwG6dc4zgpG2NQib7cFAjQDsZUosnJQ9UssJpgbY/ROoTAJJnkJ9nYI2KZJ2QJKchBhA8oDOft7e2gXw9IFDCOPXZmO6hsBWvYluegP8Ti8BB17XDyxD52ducIIWEKbPyojBgdxiiVP8oco1Ks6NEPo/iLoaj9g5gjEyIwFmIJs31DIJmBVEjKgMCHnRgJQaeCiEzBox8HDJMHVWyLAgA+Jkw+CQzIrl9eqhVN0hPSDlAOpCIICj4pgJcNkRSmSFjLTNssJITEFeA4eR7tGD3GkDAFwjBMsAI3a1PDmBraOKaySx/NCCGnadioNhKryBjnYOsKCBppAgiTUPQZXWi7GVztYCp+Pgi0bqyFdp7h6sitG2sNmq5DEhhUaUIlZJBEhBh4P3WVsHafZzynxHXPPffgAx/4AL74xS+ibVv8lb/yV/Av/sW/wCtf+crymDe84Q247777rvi9v//3/z5+/dd/vfz90UcfxV133YWPf/zjmM/nePvb34577rmHG6zPIbLicP7vcSuC/GdjDHwMWA+9JKNNVVQMBFPCJN3MJJVb7uEAwrbhowS04eYzJT6xJDmhFNdX6QElqTKyZtlT+mIpt8YB3vTMBjdOASQfMLQBV90CGSl5vFYgY5kSn5QoVUCqtYxQ8aakpUmaiBgCoCUPuw49651Rwnq5Qggjkx6IEIKY7qUEn7LuXYbLIOvCMCl4pAlsqKeERksFRlVGgU1MmJwypYhsX9FYi7qpcapqQUVaiVlSVVXBaItxmsSAkckeRipj7wMoBMbSFQSuYmYhGfEqyyrWGS0GHzJytZGVSDKzIrNTNUlflDSQAq+xrL8xtsAoMUOQ+UCR8txWYpq70jAmIEZbkkEK4tck10O5dsWSQOm8+W7m9rJaQo6sdJ+1FwlcXfsYYJKFJj51MxQZ0I8DEgBrPYytmcKvGO5T1iAE/jezlBQUYB1DdAeHR9C2YhgpAUSh9DSMNqjbFlrcosM4wIPEcJF92jYEKnmLlJCSRwiMgCjFqIaCQpgmjGZE0BFaMQtUSZV0eLjAOE5ICXIgqKGCFmHYjWeWMgJ7kUJVt9jd20dMCcujpVz/gG4MK9dERjp4Ronhuapu0bQz6b8eSqUq95xiynyWPmzaDicNO0EQMWwaIkPM2jpo6zCOHnUbYQ27tWtjkRKx6EBiVMJYIW4IeUNpZjbPd3Z5hs0HLFYr0Ss0sK6C0qaQO1ICKhEAyAQvYx1cVSPFJGQVK4QPj0orVE1VDp0xcZWptUHddGialslVIqJby/NpY+HqGkRRvN20zKARXNXAR65q66bGFKZNG2DymEaPcRxhnUaKCeP0AqnD33fffbj77rvxvd/7vQgh4Od+7udw55134gtf+AJms1l53Dve8Q78yq/8Svl7l1UrwJXMW9/6Vpw7dw5/+Id/iMceewx/5+/8HTjn8M/+2T97zm8gwyrfWHHlnxnDJmxeEly52ZGBFoVM6CzfLzeawDlyuo2keM4hJTDSzxtdzB+A9CcYFcsQ3SY0uN/ArS4q1Ry0ghHGEFseAKAkDCaBtI6/Pq2gUmYJUSGFwHAzNds4QItmhlBzVYpF4UMp0WyLTGeP3vOGBIKB9A1zfyoRQ0FCk+Zly72/jdeOHOjktUYe0JQ1ohSlmk0IIlJKlGCdQ9vNMZvtIQoDU/ZNrlqUwrDupeJiFmOuJL0PrEqglbjEioAvJUQVQNYiCcszK01wCzIiZf8oxZ8Mcs9IYE9OWOJ6Cz4pZqhRKWGBQnqi0sfKNGN+D6JsoSJC0KUqqusao0hSEYhP3oab+kmxzqKcPwQW5mslqY39xBXXv3wW+T7wIcDGCJMSbL6ipF+mNG8kFkagXQtlUPrEMTKLzQfP0md5uHndw1U1/CSjAySwluHhdWcd0+JDgAegkkcKQIpq0ztTrKeX782UQnkHHqr03WKIDEsjgBIrMDjDAgIsl8aYtLUVKldJNZHh/3zfK0lcQN00mO/sMkxZyC7MA/VCAuJqQPpZRHCugasaZANZiDqEOn6QkM+oqhtUTQs/MQyaUsLkIyvpi1/ZFEJJCs7V5dDFPSG+hozdJCxidhesc2i6Fv0wIsSI9TCiM4zEaOuEAS1QI+HY7KEuUKmxDkBkuNtY7nnFAJPEi04bsXziL21YFKCqGwyj6GGmBGim3eekGQL3qpTa9EStc8DAvThjLaB86Y35EIpHmNI1COxn9nzjOSWu3/u937vi7+9///tx5swZPPDAA3j9619fvt91Hc6dO/e0z/Hf/tt/wxe+8AV89KMfxdmzZ/GX/tJfwj/5J/8E7373u/FLv/RLqKrqm349xx+b4T+GAjf9HCK2HDh16hTGMsczsC26OI5mO4emadA0TYFXMkwDyEZ0LPGp0oQEfCRMw5qHfOXmcZrN3bTWMvzLF1cGlhxYI846U3x6+J/KOzdXPNMwFnv5bBrJN2ssChRRGr3dfAe2rniwWWCsuq7hqgbWaCRjCgWWcqM1D0dH3kxBCRHZ3XTCNIwyv8ONnKqCCBU77kUc41IddxxWlteNIUTC5EfQOLD+X642nEXfjzh3rsLpG0/B2QpQfDOO44i+7zFNE9bLJYovmgJiYGbgNE2I4wgja1051qBMkc0Wwzgh+gS/psKT0Jm8mdmcuVekNPNOtAVzQ6RxJf2IfC0VgWQpWJyrZehYC2NTDlDIkkz8/DESmnaGrumwsg5J/N/YHt4gxYihX+PC40+wHuQ08gCx5MXCwFRqozsoa621loY96xIeh7m15uZ4JXqJzlVwVYN1n6CUhbFMj889u3GaMPoJIbJyi7F8Aj916iyGPJvnWZqrcqxvaLVBMgExeBgQWqeQgkeYJkxZ1R6SZKW/Io1fPrmHCYACaSOsST79EMvTwiiu7rIAc9u0wAhYMyDqgKAMlJXeXxSPvAiEkLCzs8dGr8OAtm1lLIPXLnv4+RBEpcTA2ooPgMiUcj7iKoHkM0s3d2y5v0OC8nCSIyiEpBGS0HakzxckwajcY5dKP/uUESR5ej5YRShMMSIAqLThCs5YHn0gIBDPEYZImAL364wMtk+JdQbZaZ2E9KX4oGLlfeTPRAhsRh6Xk7OSa46FqFmsGjCMCJEGYHlWq0hbRaz7EavVWob8+bBfgWHE9XqNS5cuwTU1D9hfLVbh4eEhAODkyZNXfP83f/M38e///b/HuXPn8AM/8AP4hV/4hVJ13X///bj11ltx9uzZ8vg3velNuOuuu/D5z38er3vd657y74zjWDTNAGCxWAAAKFK5eZ0RbbyaNxBnLaq6Rtdyf2t3bxcAirX1crXCer0ulNpKBiqryrFmF3HyM1o2iLI9c0IzedNQGkYbNA1LEjlr4cVfql+vsVgc8gab7bJjhFFAbS1qUaDWcnIC5EbJ811aVA2MEBSsyCkZ/i8npYr7BXWNIDeZqxvGpasadVWBVK6dWOG+qiu4insvzrIGoKssIPYR/XqJixeexNFigYODAxwtDnH50iUcHhyiEq+mTIHOLs58KttUqSEGEZ11qNuWfYJkcDQbNrZdx9pzxsFPk3yeXEmmwBCmArFklzYi66Vx7nXfjapyaCoLZw1imBCmAYcHFzGsV0Im8TBEGPsBT3ztcSGxZFLEBjpN2MzzBXAVB/AMmWta/nyshco+uvkwozRnLl2BoAv1P2+KmRyRxw+apsLufAfzrkNdWVSi5k8hYL1col+vcbRYYG++i35gOa3Lh5cYii2QNZXrr5j/Hftv8UGSw9bx/lh2ETAC783aGlBWYNlaNjODtulAMldY1S2arsYwjHj88ScEbiUgcZKdxp7Xepyg6goagD2xj4MnH8eYEqISxXZZ59zq5feiQKLNOU0DtLZw1sFpg5iCiAoAiSK0rlA5h65tufpi7RtQ5HGAFKM4IzDC4GOQeSI+zK5WK6xWK4apsslhIowDz/bFyIryBK5eWFDaA0RMd5chZWVYfDll1qrRXKnEhOiT2BhpqaT4uUfv0VAHQh6Uy8PQ7KxH0leHMuIZJ8y+xFVyP06YfEBNALRBhCoSVJMPGD3PofnILtMxAToTq0S0m0+VYMje5uFnKhqp3K8yfAAWRGSQPqVVjvVRpW1B2iAGTppBhrKJIEPoU0G5rKvgHMGQQi2jF/0w4MKFC3ANHx5CuApGkikl/ORP/iS+//u/H69+9avL93/sx34MN910E2644QZ89rOfxbvf/W48+OCD+MAHPgAAOH/+/BVJC0D5+/nz55/237rnnnvwy7/8y0/5Pgm7RRtOHsZaWGmG1zULjs7nM9RSSTkRfiUi7IwDlssVxmHAul8X2E7pzN/b/D8gm4AMKWvFgqB5M6hshdOnT4jbbccSOYeHWCwOcOHCBbYOId6Ah9USSKn8Psn7GCeZKUsJpDYVFmPTfNqzzknjvULdtNjd3UXXddx4n89wuDjC5APmO3vY2z9RkpQPWdZFYT7fRTfr0HYNrLVom5pFYGcdQJy4jhYLXLzwBJZHRzg6OsKwXuFrX/0Kvv71r8PIyTxRKuyjyXuM08Q3CTYbKxvgVWhaNtlzzqFpZ5jPmRwym83gXI31esDFSweY1IgsSJwZjZQSjGIhWWfYz+fkyRPY3d3BqZP72N/dQQwTxn6Fxx/7GtYrNsA0WqOpHIbVCn/cfUlOxrwxhcCnbFYQn6TXwX1OpSapwivUNV8zrqpYdUJg3SwwyjNCCkkoN9ro4tvEMJNIPjmHpmUrkNlshtOnTmJnNoMzFmEacHDpMlbLJbq2w043Z8HdacAXH2ICTKnypIo6DocDKJVVGWo/BnNnosjxCk0BMjOWv1Txa2JSCjfru9kc3byTSo5E05Dh36PDQxwdHmB5tMAqHTGpSLM32vLSRYxZTFPuI2nNlr/n/xJICDuiDlMgan7YcfHiru2KeIDK/WTxuNuwczftA3jCQD36vke/5uq9DC4TxOEgXNETz9BYEGZqkIHvmOcASeBz4p53FIuUEJltqbWSvi+xPJgQMqA284Jyk0DeAn8BWQq7JNDcG/JivQOBKiOxY4AXAehcHecvoo0+ZoJAwfq40EEWImbYl2ceWbcww3o+BO5Pk/RJ1XFNRpTDqhbSRbku5b0ZLZ5jxO/bB4/ValUqrqpypZ/8fOJ5J667774bn/vc5/CJT3ziiu+/853vLH++9dZbcf311+ONb3wjHn74YbziFa94Xv/We97zHvz0T/90+ftiscDLXvYy7jcZBQUjEIhD3XSYzVpRDtjBfGcmFE+e2m7bDnXTQGlgvR7Qr9e4dPkilkdr1hv0owwsc4mdQJubX4k6RFHjbqAVU05PnboO1587h5fecD2q2mJ1dITlcomj5SHapkbXNjh1Yh9ffviPsVouET3TZfu+x3K9wuVLh+iHAcM0svIH+PYOKcIZZqhVVYXZbIZuNsPOzh7Onj2L/f197O7uYX//BB5+5Ms4OFxg/8RJnDp1Ck3bwlU1axUmZkLx43fRti0uXryItm7Zh2k2FzvzgHnT4SVnz6GqHLquw/7eDh566Ev4v//3QQxDj6PlEsvVEo8//jiefPICjo6WODw8ZJFNIZ3UVcUHBrGUyerkOWG1LX9GSmSQLj15AeMwlQ3auGOVWdui0gaVq+Csw/LwCLV1aM61uOllN8JohegnnD5xAikwjHXdddfh9MkTGNdrfPpTDyBMrJO3WvdcRS6XWBwd4eLlA6xXPQ9N+rEIglZ1jXbOChTdbMZWLUqXgw20BZHGajUhlMFviLoCw11ccXIVP2s7hgL7i9jf20NTt5i1LWJooZLCvO1wam8fdVWjchZQhEuHl8SSIpb5l5x0o9CYs7VPhgRzxXW80jr+fWbcRiBMIDBFWofICiHBgmpw38PmmTLAWocTJ05g3s2Y4m4U2rqBMxZGaVAILLOlNbq6Lr22TLVWUOzqy8RT6QETsuNw3VRwtkblWOG+ck6YdQkwBm3XYmd3hpOn9uGcRgpeDiKctMIUBangilqU9ZASsDpc4PDgAIeLQwzDwD5iShdSFRvI8uGXFCvmpGMkrly1pGP96qyIno+4rGgCRLM5TESRBgsi96YgM2qV405AZIPQyfPAvakcrBOGruKD2+iZsegFblVGi/FlQqCEIL1LlqySQXelkUS8ICkwOUazY7FxBsooKKtAGlIZBihloQFEipIQuXdMBCjDlZwCFwd5No57ZREqKa46Aa4apVdI2NDnY4xYLBYgEEIKaGYd2rYpyMDzieeVuN71rnfhwx/+MP7gD/4AL33pS5/xsbfddhsA4KGHHsIrXvEKnDt3Dv/jf/yPKx7z+OOPA8Cf2hfLKuNPefGiV6YUS/X7KSDEtUACSxwcHqHtGlFIDrhwkTFylr4xRWuv71fo+5EH8jxvELmfpRRtmrQplF5OXw1oa55DiT6h73t86f9+CW1dQynWkgthQky+eNG0TYWDi5cwDSO7E/uN/h0PmIr4pa3KzZHAJpTGsogmazEusVz2ePLJi0JjZmw+66Cd/9p5NA1bi7iqgTamQBIb2MhKNWFhrYa1hpvifioSUM45NE2DnZ0ZvvKVP8GfPPplEasdMU4jn2KDL5unkapQaYX1uue+yzji2C0PYy7jyaoSirlmpYwpMGwzbARvjbVCl7eF3WZdhbqqYI3C0cEBFpcu49GHH0LWLVwuDoUOz4nTWYOhX+PRLz8iRBQeIOVTbICPTNzIc328GfFpPIQIP0VoHWAd20Kwfl0qEjgEjRi12NNz9ZClbgBAqayQojGu1jDWwFmDCxcuYH20hFEaMUzww4gUAntyjZN4KPU4PDxCiF60CkPpT8aYkFUOtBEKhmwk3JRn8gQjx7r0UKLM8CAR0gipEByqWvT8iDBME8bLl+Fjgicm0Vhn0TZN5sQw0EUJFNi52hqLaRwwDgOWB5fhR1+o1E5QjGy7k/Kp3ofC1vXew5sJk7Hww8j2KwlIgWAMw4RsCxMxDRPGeuSNXKDfGCNIJ7a9txaVqJ7w4XTJsD8BVhsxgdXMeEtB5hbpikF847jqVACqpkHd1jBBoWkrzOadDHkT/Mgog4qGfeBk1oVhY2YgI1fpWsNYB2scolR4ebQkhIDY1FBKl4Px4WKBJILILDnKUlPH2wjaGkQFBBBISwNX+rb571qzAaWpLftnWQVjJZEpi+RJnktBiQNBCoTIHzQiEYbJYxJGqRLCidKmEMWMVOo7OwbrnuXHjJE5P+l/DcMAFoVQ2BdxiKp6gejwRIR/+A//IT74wQ/i3nvvxc033/ysv/OZz3wGAHD99dcDAG6//Xb803/6T/HEE0/gzJkzAICPfOQj2N3dxS233PKcXvxGLJKze6IEiizBoo2BHbP/EkOb3k9Yrxnnti5TZolJCJMXIVpuPmf2HEMjhhlRMrQIsDJ0SsSSN0pjsTjCcnGUC30QRWEGbnTgjFbwPdvOp5g9e8Qc0DixxDBQSlQUoJgyGxK04cl+1mQT/bHCMuPE2lQtrHXyfPxcrqphnCt9Llk4KK3RdR17MGkFI8oGKQQR3pUZIqXgnMbFixdw4eKTGKdsuimu0yrDOZZPugSopMpGQMS0Xzr2memclBM4iTM1CjEck7FKCdH70peqKoZI27ZF21SciCaPxeVLyHb20zhAkXg4EYFSEIXxJ5EdoGPkJLXpu+iyAZLR8plAenYy4Hq8lyezUQmZ1FEVSjwTJ+Q0rriHk0khozWcTJ1F8BOcYh4pKEEnKhVEv1yhH3qs1yu20El82s7ko+MwYbb0USq7eWcNO27SRyFqHP+ixGRJHQy0stCaoGC4ie/ZKXo9jBj8hH4a+VqyFl3XFjUMrdhNwGkNoxUoBkQfmMre98gO3PlaAwS+oyTQm1RjQnAKIUJFQtJZwDdCkeIBc22l18wwbPbPM8YUNi2PX2xgUCtaglAsxH180LYQZVMeiufI65vZMLlPyYcx1lis6hq1EAugCNEHuXbyeEIqYwubGUYuMVlubAM3ZhJNiGwWmZNANoVNxL0mL7NpGYFJMnuVk2Ei9vHjTqjotNMxBMBs2g25YqOsapMHShXhiv+Jx0reH6fJ81ex81Glp1sk05RGqypofcD9/NznlS0qiS/Y5LPCymYY6PnEc0pcd999N37rt34LH/rQh7Czs1N6Unt7e2jbFg8//DB+67d+C3/9r/91nDp1Cp/97GfxUz/1U3j961+P17zmNQCAO++8E7fccgv+9t/+23jf+96H8+fP4+d//udx9913P21V9UyRhwC5B5AE/+ULglUODKZpEkkTK4vGQ4jKbjB/AIXqnVLkDVPwdue4mamVQVJRoAROJikRmrrGzmyOYd2LesAIgJ1ErQx1sk5fRJhG1Ibpo6xOvWm28/vhE3GaJlYQTIR+PSDr+RnLQ898cTuRUhHFZ2gM62lzU+aehbMMawEF7shK9BkW48SjUTtWvTZKwfsR4zigX62xWh1ycqAIn8KVm6eoORAf+UuTexpHvrinCUrbAuNkrbokTfAweaQQgZCJDAwpJkQh0jCZpqp4MDntBFRmH2Mc0S/XbGMvUk9GGHigBD+K1UmY4KcRWWYqFtUUoWrLqVQpDTiD4CXBERtnDvXIlHvLGzL7Nw1CedewbiabDluHMMVY4J4YRYIqAioPvhowVzzBKIXKOsyaGlazO/FycYT1eoXlmj3PNrSGp5IzjrNeN/dE1mMMMhBqyz0SQmBGpk/o7AwG7NPkPRNrklLoJ4/V0GOYJqzHgeniKqvTsN6hNQazrkZbVajFXyxItZ4PNWxoyq+X3wFfO6XKkCqdG/sAEBHAGnwpJVjtYDUPKdfOoa4cmroqotZ1XSMFtt3gHrL09sDiwM4y3Dr0a/ZrG8dyeMlJA+D+j9H6CmGC/BgtCiKVq0DOoOlaNE0jg8k8+5h7cilFeU4mYGQkRBvueeUDz+gZoRiDVPxRksEVyj3iwB28mEAaZN8xksSUr90g/biY4ibRKYUIEebWCtbxQV1bg0SB3dWFtZnHQGIK7Lgs34MGKFCRrlr3A5p+4Dk4MGkts7q1NmyrUrsC/W/6qarsD3l2LfsEPt14xzcbzylx/dqv/RoA4A1veMMV3/+N3/gN/PiP/ziqqsJHP/pR/Ot//a+xWq3wspe9DD/8wz+Mn//5ny+PNcbgwx/+MO666y7cfvvtmM1mePvb337F3NdzCaJ8iudEZJQCWZJGueU+lMkOralAOkptIB1uKLLLrIqMoWfvIwCMmCuuvIxmvLcSq3prGL5jqZoKlTNIiS/OmCJ8HAWSYEkfDxLFCwVXMaatBeorQr/agkRrrb2hwyQ6almANssg8ZwID5pqpUo16AyTCbQ0ZH3IeooE45j5mGHAbIDZDz0GgUUZTmEn1LZuYIxCP7CRX1NgTF0SatlAxesIYBi3EArA7EuluI/ACZRrFmeNuLSO0MSXI3+Ojj8XrUGaN6+mbtA1LcZ+ACVR4hc7E+TZKKm4DAhGM+kgQ5nIslEWgDKidGFRbOitxtERG13yaZwNBY1xqOsWKRFcFVBVjRzWFULUx5rvmvXqSv9DFUsNBhYBnRvxmgfGY4w4Wqw270eG2Z2z6NCJOvwmaeEb/nzlvbCh4JtyuKlgbSXEJMOGgikIJVugaoxcASvAy4RtZR2sq6CtRUoR4zTAOVNYkk4xzzJMHiQuDW3dYKdtEYYRAwGUZDhY2IOZAGWdRW2ZcAMoYfdmkWq+I3lT5YOk9yP6YY3FYgE/TeWAG8LEOoeJmNItfb1sbxJTYjbhMCDIrGVWQrGWR2CcZUp/XfEhbvIT1n0vyVphChOUYW3Spqlha8vJwwf+MDUAI4PJrDHPs1BNA2Ut6mULZQym4HGwOMBswQy7cRjL2E0eV9CyR4WR2xY8dsGwW0Ke10qbZFRxco6R9UT7kStkKz39mBJf45UVoW5m/41+go6s41qSGDHZgwAev7GGr0lK6IcBi6MjGKPRtix6rZSGNRWr48uhyEihMI7jhhgkgi8hRKRxQtLAcskQeOkXP494zlDhM8XLXvayp6hmPF3cdNNN+N3f/d3n8k8/beTT5HH4CcAV39sMhW6UBhIRlBImkd4w4IgMyCYoCsLmigVmBKJImyRJZAbOVnz6klNOIRzJMimlYI2FVizjo6X3BSJYuYHyh5ebxDwPBJ6hIGAcxXRRoCBr2DrEVdz305ob5EopmcniinDjkSM9MpBQY/kUFGPEarVC1mGklOEBQqAAlXTZAFvbyFpEhklkrYvxpkBoOLaBZwZnlBmQ7JfECiF8AybiYec4eUyuQvKxVAdEiUVhtUblHCvFG54ZgkpM3c2N+DxjYwFIqnAySpASW6FkaIIK200qLrM5+aXEhn9ABRU1XF2zoeh8jvlsF9kWPrPQiBSGkaQBf2UDPwsIs0q3Lmy8MmfFICUfuCS1aW0w6zoYy72IJy5fREKuTJ4+cR0ftj8+jG+MKQSiPL9EREghIk4RmBQYzWY7DyjuiwQo+JTkVM8HHx6qrQFFhRiokaAV+55Zo2CVXC8aaOpGPKQCQmI5q5A8TDRyGAHajpm+PBNYsYBviEg+cQ8FGpp4uHlnvoudnTmahpNLnkPkTxHl/eYDGctpaSTFGpzOOdR1hZQyu9hCQX4mPa9apL6SbMLeeyjD8Dn3nZnRagzT9RmO5wQYI8HaIKMGGlY7TnKGD4eZPdwPPfqhB8DzcjFGhgeFeapUdm6eymG89KQtOyogyUyffL5GYG4vr5nnBpnRmK/HPLOoyj3L2LbB5qBJmdEpbFPrrFD9OelM44RhGDGMI/fFzbHnk8/DB66+GhlB8pF1Eptuhggmz+R5yCvEDJ5HXJNahflmNTarIJefbH5OqpT8kA8r4/8FftfMEsunSCW0ZnIWSrHkP8UEnwKUiqB4fNOqkRUBcvmdYgT5iEQBGWq01qKyFZzVsFbh6PCQlSsyrTRDF4E2FZ4NBQY8WvWSOBmu7FruYzVNg27WsWuqEjHgkBB95KHhyfPmqFgjTgucGCIrI6QUsV6zu7PRnGChuQpKAKKI8VbWyoVqii19oeVKxROEhZUbx9xby1p2stZKbO2Py3pphcpYJO8xWYd+uRKF7gSEUJ7PSgNYg/tAxqqNYC1Qbm6nFPIUf2UcmtYhJYZkICrwmz7QsV5XiiBExGOvE8Li5LGKFju78zJDl4eAAY11z0ra3nsM0yiQE5M+dAb5RRMzhgnRs52GAvjA4fjgoaUSmTUN6pYrpEuLBSKFggwcv/aPH8QAlPeSe4KZWejkPXRdhzy/FH1CWAXhTitAWbbV0RoBMvSaUhkaJgB1cpjEZDL6gIgoA9xcxWrFdw+PEjje0KKGjgYRATpp2OSKDuLO3hyzWYfZbI6XvPQlWK8G9kwbRqTIBIEkPc+matF1M7jaYho84hhRVQ5TnLgySRE66QJhxzAhJR6czbOEzlUgSqiqCtZYJMeJRiuWRMvbd1Z7j5SgFTAMI9fNmhmHk48I0XOiLZJNchjOvVXpiyqTFTE0fPA4XIyYH84BxQ4HwzjxwcyQVEIMG66Gtbhsg9U0lJb9bGNoyXCkBSUm4qzXPZZ1zcopxmI1jAyfAxilv6eVwuhHhjHF9mVD8098y4nGaFHkiAn9NGK5XENphbarABBcZWAUYZpGMVeVnnxIqKoGs50dhAhMPsLVtTAfGb6MMQHTJMPRz14QPV1ck4nr6OgIAHD56NJVew0HuIDHnrhq//w2trGNbXxHxNHREfb29p7T7yh6PunuKkdKCQ8++CBuueUWfOUrX8Hu7u7Vfkn/z0Wedduuz9PHdn2eObbr8+yxXaNnjmdbHyLC0dERbrjhhuc803VNVlxaa7zkJS8BAOzu7m4vmmeI7fo8c2zX55ljuz7PHts1euZ4pvV5rpVWjuc/uryNbWxjG9vYxlWIbeLaxja2sY1tXFNxzSauuq7x3ve+9zkPLb9YYrs+zxzb9Xnm2K7Ps8d2jZ45vp3rc02SM7axjW1sYxsv3rhmK65tbGMb29jGizO2iWsb29jGNrZxTcU2cW1jG9vYxjauqdgmrm1sYxvb2MY1Fddk4vrVX/1V/Lk/9+fQNA1uu+22pxhTvljil37pl66wuFBK4VWvelX5+TAMuPvuu3Hq1CnM53P88A//cDHt/E6NP/iDP8AP/MAP4IYbboBSCv/5P//nK35ORPjFX/xFXH/99WjbFnfccQe+9KUvXfGYS5cu4W1vext2d3exv7+Pv/f3/h6Wy+UL+C6+ffFs6/PjP/7jT7mm3vzmN1/xmO/U9bnnnnvwvd/7vdjZ2cGZM2fwN/7G38CDDz54xWO+mXvq0UcfxVvf+lZ0XYczZ87gZ3/2Z4uI9rUe38waveENb3jKNfQTP/ETVzzmz7pG11zi+o//8T/ip3/6p/He974X/+t//S+89rWvxZve9CY88cSLUzjwL/7Fv4jHHnusfH3iE58oP/upn/op/Jf/8l/wO7/zO7jvvvvw9a9/HT/0Qz90FV/ttz9WqxVe+9rX4ld/9Vef9ufve9/78G/+zb/Br//6r+OTn/wkZrMZ3vSmN2EYhvKYt73tbfj85z+Pj3zkI8Xp+53vfOcL9Ra+rfFs6wMAb37zm6+4pn77t3/7ip9/p67Pfffdh7vvvht/9Ed/hI985CPw3uPOO+/EarUqj3m2eyrGiLe+9a2Ypgl/+Id/iH/37/4d3v/+9+MXf/EXr8Zb+pbHN7NGAPCOd7zjimvofe97X/nZt2SN6BqL7/u+76O77767/D3GSDfccAPdc889V/FVXZ1473vfS6997Wuf9mcHBwfknKPf+Z3fKd/7P//n/xAAuv/++1+gV3h1AwB98IMfLH9PKdG5c+foX/7Lf1m+d3BwQHVd02//9m8TEdEXvvAFAkD/83/+z/KY//pf/ysppehrX/vaC/baX4j4xvUhInr7299OP/iDP/in/s6LaX2eeOIJAkD33XcfEX1z99Tv/u7vktaazp8/Xx7za7/2a7S7u0vjOL6wb+AFiG9cIyKiv/bX/hr9o3/0j/7U3/lWrNE1VXFN04QHHngAd9xxR/me1hp33HEH7r///qv4yq5efOlLX8INN9yAl7/85Xjb296GRx99FADwwAMPwHt/xVq96lWvwo033viiXatHHnkE58+fv2JN9vb2cNttt5U1uf/++7G/v4+//Jf/cnnMHXfcAa01PvnJT77gr/lqxL333oszZ87gla98Je666y5cvHix/OzFtD6Hh4cAgJMnTwL45u6p+++/H7feeivOnj1bHvOmN70Ji8UCn//851/AV//CxDeuUY7f/M3fxOnTp/HqV78a73nPe7Ber8vPvhVrdE2J7F64cAExxiveMACcPXsWX/ziF6/Sq7p6cdttt+H9738/XvnKV+Kxxx7DL//yL+Ov/tW/is997nM4f/48qqrC/v7+Fb9z9uxZnD9//uq84Ksc+X0/3fWTf3b+/HmcOXPmip9ba3Hy5MkXxbq9+c1vxg/90A/h5ptvxsMPP4yf+7mfw1ve8hbcf//9MMa8aNYnpYSf/MmfxPd///fj1a9+NQB8U/fU+fPnn/b6yj/7ToqnWyMA+LEf+zHcdNNNuOGGG/DZz34W7373u/Hggw/iAx/4AIBvzRpdU4lrG1fGW97ylvLn17zmNbjttttw00034T/9p/+Etm2v4ivbxrUaf+tv/a3y51tvvRWvec1r8IpXvAL33nsv3vjGN17FV/bCxt13343Pfe5zV/SMt3Fl/GlrdLzfeeutt+L666/HG9/4Rjz88MN4xSte8S35t68pqPD06dMwxjyFxfP444/j3LlzV+lV/b8T+/v7+At/4S/goYcewrlz5zBNEw4ODq54zIt5rfL7fqbr59y5c08h+oQQcOnSpRflur385S/H6dOn8dBDDwF4cazPu971Lnz4wx/Gxz/+cbz0pS8t3/9m7qlz58497fWVf/adEn/aGj1d3HbbbQBwxTX0Z12jaypxVVWF7/me78Hv//7vl++llPD7v//7uP3226/iK/t/I5bLJR5++GFcf/31+J7v+R44565YqwcffBCPPvroi3atbr75Zpw7d+6KNVksFvjkJz9Z1uT222/HwcEBHnjggfKYj33sY0gplRvwxRRf/epXcfHiRVx//fUAvrPXh4jwrne9Cx/84AfxsY99DDfffPMVP/9m7qnbb78d//t//+8rkvtHPvIR7O7u4pZbbnlh3si3MZ5tjZ4uPvOZzwDAFdfQn3mNnieZ5KrFf/gP/4Hquqb3v//99IUvfIHe+c530v7+/hUMlRdL/MzP/Azde++99Mgjj9B//+//ne644w46ffo0PfHEE0RE9BM/8RN044030sc+9jH61Kc+RbfffjvdfvvtV/lVf3vj6OiIPv3pT9OnP/1pAkD/6l/9K/r0pz9Nf/Inf0JERP/8n/9z2t/fpw996EP02c9+ln7wB3+Qbr75Zur7vjzHm9/8Znrd615Hn/zkJ+kTn/gEfdd3fRf96I/+6NV6S9/SeKb1OTo6on/8j/8x3X///fTII4/QRz/6Ufru7/5u+q7v+i4ahqE8x3fq+tx11120t7dH9957Lz322GPla71el8c82z0VQqBXv/rVdOedd9JnPvMZ+r3f+z267rrr6D3vec/VeEvf8ni2NXrooYfoV37lV+hTn/oUPfLII/ShD32IXv7yl9PrX//68hzfijW65hIXEdG//bf/lm688Uaqqoq+7/u+j/7oj/7oar+kqxI/8iM/Qtdffz1VVUUveclL6Ed+5EfooYceKj/v+57+wT/4B3TixAnquo7+5t/8m/TYY49dxVf87Y+Pf/zjBOApX29/+9uJiCnxv/ALv0Bnz56luq7pjW98Iz344INXPMfFixfpR3/0R2k+n9Pu7i793b/7d+no6OgqvJtvfTzT+qzXa7rzzjvpuuuuI+cc3XTTTfSOd7zjKYfC79T1ebp1AUC/8Ru/UR7zzdxTX/7yl+ktb3kLtW1Lp0+fpp/5mZ8h7/0L/G6+PfFsa/Too4/S61//ejp58iTVdU1//s//efrZn/1ZOjw8vOJ5/qxrtLU12cY2trGNbVxTcU31uLaxjW1sYxvb2CaubWxjG9vYxjUV28S1jW1sYxvbuKZim7i2sY1tbGMb11RsE9c2trGNbWzjmopt4trGNraxjW1cU7FNXNvYxja2sY1rKraJaxvb2MY2tnFNxTZxbWMb29jGNq6p2CaubWxjG9vYxjUV28S1jW1sYxvbuKZim7i2sY1tbGMb11T8/4XV4O5zij3pAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -354,7 +354,7 @@ "# plot the result image\n", "import mmcv\n", "import matplotlib.pyplot as plt \n", - "img = mmcv.imread('../resources/output/translation/tutorial_translation_res.jpg')\n", + "img = mmcv.imread('../resources/output/translation/tutorial_translation_pix2pix_res.jpg')\n", "plt.imshow(mmcv.bgr2rgb(img))\n", "plt.show()" ] @@ -418,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -433,12 +433,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_cifar10_32x32_b25x2_500k_20210728_110906-08b61a44.pth\n" + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n", + " return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACwCAYAAACviAzDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV6UlEQVR4nO29e5AcV3n3/3TPfXZ2Zvai3dVKWkm2FXw3RrZlYQIGlBjDD3DsXwKUE8ylQpFIBKM3AQyBVCCOXElVuOQ1ppIihlRwTJxgk3AxMbKxMZElW7Zsy7bu98vuai+zs3Of6T7vH47nPM93NKNdI88u0vOp2qo+c3q6T58+p7fnPM/3eRxjjCFFURRFUZQ24c51AxRFURRFObvQlw9FURRFUdqKvnwoiqIoitJW9OVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrejLh6IoiqIobUVfPhRFURRFaSv68qEoiqIoSlvRlw9FURRFUdrKa/byceedd9KyZcsoGo3SqlWraMuWLa/VqRRFURRF+TXCeS1yu3zve9+jD37wg/TNb36TVq1aRV/96lfpvvvuo507d1JfX1/L7/q+T8eOHaPOzk5yHOd0N01RFEVRlNcAYwxNT0/T4OAgue4p1jbMa8BVV11l1q5dWy97nmcGBwfNhg0bTvndw4cPGyLSP/3TP/3TP/3Tv1/Dv8OHD5/yf32QTjOVSoW2bt1Kt912W/0z13VpzZo1tGnTpob9y+Uylcvletn870KM6ybrKx+eV2bfqIrvh0L27apalXVIq/cwXhcMBkRdpeY1/V4wLMuVSvMTBkJ22zFyVadWoaYEIhFR9snUt00FvgiLRW4sZr+Hi1weu65a677D48o6Vmn8locJRtkp87Iuwu9lRR4n4EBnurbjqx60PcBuyqkWz3x2Hr/5fQ6Q7DtDsn38nrQ8p2lR13BOCT8sHibEfmVU/db3oFUTWn8T2sNuScNtZ40NRmKiqlapwUntzoFEQlR5BXZvcfy27MvmlS7WOfK++w573rQc9y1OeapxN9NF3VmMl5bfxVVkJ0RNCcA84P1egweekfcy7tgyPjYrxL8r//WEqNC0OVVKwSf8uzjwYGy55uTbyGxW2c1pWpHHc/LjtjJI+HCNBv958O/CU8RhfXeqaxZNwDFRa7KjISKfOjs7Wx+bcAScBsbGxsjzPOrv7xef9/f3044dOxr237BhA/3lX/5lw+eO4zCzC+8kp2G/k9c0fuDMcOyhuWem/3exjGNUnKOhca3O0bw9pqEBzb/b8KyUF928Aado32wmrtP8VrZsa4MJrvWBmlbNqkEta1oMrtk8m1p8rbEPTv69l+tazINZMJvvthrrJIZWq3snyw6+ZM7qn0LzqpZ3GedXq+tqdtDZ1M2k/nRzqnvwquua913LfoaObd0dWMvHCN70Fs/D0/QMO2037xR9eXq+1+rZ+Ktcc5PvmlcOfepjn/aXj9ly22230fr16+vlbDZLS5YsIc+rsguwb7cd8Q7x/Sr7+RyEq3Hhpa/Gf9BA3/j8nwC8pQQD8oFY83y2rzxOlP3IK5ZlnVhcgJ+KgbD8ReHV2C+ISpGa4UTlqojx5BuqV2TLC63GA3ZeA63exGf+ezkQsu2tkuwgvsKUiMtfy/mC7INEh62vTMPKh1gJwX9m2KLmbZfPLflF7A03YOt9fMvlRThdqxdirOI/hnBVJMhWjXy4HwaO5LBVEs+T+7Z6NqWT8p5MTDUfl52ddgVjOgu/ah3Z+lBnV327moPlMJfPC/ylOPNlAcO+6+FNaFhR4e3DGyYa16LuVA1iOwdmuiZ7suPM8Hyn+mVm2JyptFjGghUTN5EU5dLUiK1r+H/FnlXwklnxW63EwGqLw8oGfpE7ODN4fYvn1GxWmMxp0mk0nLPFAGq5itViXjT0h9uiDhvUqr943WzWSy2n/eWjt7eXAoEAjYyMiM9HRkZoYGCgYf9IJEIRMCsoiqIoinLmctqltuFwmFauXEkbN26sf+b7Pm3cuJFWr159uk+nKIqiKMqvGa+J2WX9+vV0yy230BVXXEFXXXUVffWrX6V8Pk8f/vCHZ3wM17WrSd09PfXP7/v3fxX7LRzsrW93xOXy3MTEmChvf+75+jb6pCxatLS+HY9Jp7dWds1YXC4X+saaEjxfmhUi0Xh9e7oglwtHRidEeefOnfXtEydOiLply5bVty+85GJRV6tJZ6Rde3bXt+PxuKhLJu2SaQc4+qFMquLZ43pg2uHL/FjX0yWdxUaH7YrYW65+szwOW/l98KH/FnVDi4ZEORq3bTewvssddGsGzQpy33DALj1Gg/JecidTU5JOXaVqSZQjSXtOD2wpAWrumWk8dg5P3juviv1sy5nxSVFXqdixli/JtpVK0jxSZeYtD5zXuOnLBSezYiEryseOHatvh8JybB0bseP5c1/8sqijgFzpvONv/66+HWMmGCKifMH2u2/kMrHXsGxt+7mVb6Hb0oeAyGEmABeW2JlvLPngt8CLXoODcvO2VuC+i71O4dzYymzH+8B3wTwRkucMBuz4iTjSjBlk82KiKI8zPSmfsf/3y1ZoUIVx9w/f/4ltT0Dey5gPpjlmMy8E5TPEY6Y4F8wuAXAeDgZtP6M7USta+Sy4LX6z47gTvlhwTHzGttq31X1Gp1+OD6YVv9V6gyOfTUH2vAmBU+vvXPvGJuefuf3qNXn5eN/73kcnTpygL37xizQ8PEyvf/3r6cEHH2z4h68oiqIoytnHa+Zwum7dOlq3bt1rdXhFURRFUX5N0dwuiqIoiqK0lTmX2jbD98v0iq/F1JS1b7/+9dLHIRyxNq1qRcr09h+QfhTPvbCtvj00tUTUcX+IcFh2SzQaFeVi0doyTVG+v6VSVgrsBuRxSmVrNzsxNirb9uKLorzzxZfq2w4EPUt2W/+Mg4f3ibogSGbDYdu+nh5pO40yOStec9VHW6q15QWC8ppdt/kwOjY8LMrnLjvXFkIg9WI+DpGwlHXmCmgTtuccXDIoqqaL1maNKkq0pYbCtg2hANjwWTCsQlGOrenpKVHuTy9iJWk79Vjwu2JeXkc2k6lvj5+Q9vPx8XFRLkzn6tt4nycn7RxBv5tCWfqAFFm5wbeH+QwFXbiOkmz71JTtg+4+qWRLdNix5sBvHAO+LIb5gBw4JMdLstfeWw+M9h4Ijg07j0E/LVbX4PHhy+NGHDvfDaHNnJ0PfrpxHxC/tauGCErnBJv/BkQbfSsVNx5FjH1X+nFMF+VYC7FoiVVfniQSs/3hwzOte0A+U6pl1l+u9COb8u199qFfyxgcjN2TPEkfoRqT2jb4eMDcC7DnGLg0CN+fU8Wl4PWt/DqCrvQbc9gdCoDPkgMPJ5fVY7gH08L3x0D/8LFnYFTwLkB/Jgd8R8LCfxElzc2k0eYkQc9Ojq58KIqiKIrSVvTlQ1EURVGUtjJvzS5Efl3TWqlaM8d0Ucr93LJdSIpGUPomlxoLJfvdo8MHRV1+k13Svuaa3xR1556zQh63ZJegymUpJ3Nca77JZKTZ55lnn6tv79p/WNQVq3LJa/FSu4w/MLhQ1HETUR7kjx0dMgLsoiH7XZTaBkJ26axB2oXKPBZBMxCSw4Yv3fuwZHvV4lWifHzMLqubMi7l2c0f/vhHourqq+RxVq++pr49nc2JukLF3nfMZ4PmiiBbFq1CTotq3ppaJkG2PQ4Sw/4lVsnFo40SEYUidpk4jGEfWdjb4rS8lxlYevVZ5Nau3m55HLamjKqyIEbPZXLfWEyat4pMsottLcI1v/SSNQ3u2ntI1BWqVh5uQP5NERkVM9W1oL5dDcAyPssHUoPHVc2gzJ2Nw4bfVc1/Z2GAUY/JjR1Yxm8pp2XHacijhMvfIlQ+HEd0uxyTDSajFtE2W4Xj7+5bLs9prCmukpH3Occink55sgVdKQhL4LLnT0SOu2DSjssaSG1dknPY4ybQcFq2VUi1wYQH0lsZ8blV5FaQwc4ijUeAfRJAswubww1mDrDfOKwer4MPGLTA+AF5TjRPNgPzUwWN/H/pslARQR+iGTvNogCbGattdeVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrcxfn4+gqRvXXGZ7rlal7YklSaUMZMQcn5LJ7Wpk7ZqTkGmzWLblbc8+KeriELb9nHPOsd8DCeiuXTYs+oGDe0TdgcNH6tsjk1Kq2dMn/Tr6Bvts3QJp3w8weynKKkMhaf8rs1S+lWkpgeIJ/fB7DTZQLsmEuNa1mi1XIEvqcFZKigs85DJmIWa2yhPj8nu5nLQJc3gGVSIiwySpGHodkxhGmf8K2vdDZCWGhZj8Xqwgy5Pj1k4e65C+NR0dtn0uhHDvSqdtW8Hvx6/JexsN23MGwGbO6/j4JCLqYukJiGQI/hBkD55mfidBsKefOIhSQbttXNkf+4/w+we/cUBqe/S49Q8JxNOizmWSa5fkPHQNDCBhU5f33Reh1/E3l+x3J2jnjEPSDs4ljw5qN1va2iHMP/FnmpyXrSKqOw3yyOb7CpcC6Kt9h4+LcoJlxw7D/YqyTOJBkCVX8B7wzLVVec0F1s018GnATMO+b8daDpwIagF7IBdDgoNctIP5eDkGZdPMVwOed36DD4gl0MJ/p9ogjeY+H6KqQeLtMH+5Bmktq/NQFgzPghofhy0GUwDugYOpKJgcOtQyJQHfnnl4dV35UBRFURSlrejLh6IoiqIobUVfPhRFURRFaSvz1+fDp7pBk4eO+J/Nj4vdHNfaSzNT0k8gMyVT0Q8ssr4TyWRa1J0YsaGs9+x/SdQFIG5DuWL9PMZG5Tm2Pft0fTuflX4dYZa2vgP8FIoV6cuye9/u+vahozKGAo/lEYYYDpWKtB/ni7atnZ2dTY+DIeQNxB7wfWsPxNDRXANvfGl/DEflOcNBZhMGkzk/B8YrqfnS9j45ae9XNC79DarMzwXjl1Qx/DKLFRGC6yqxOB9VFv+CSMbcICKKMl+OCAaOEPEW4KJ5P/sYo6DWtFyG9uTz0/YwvvxezZNjIpe3PjERqMuyMYv94cB1ZVl8lUpFnrNSs9fphOT9MWF5b6NR69fhBeV4LjP/lBqE5K5BTBlfxElonu7eR78J8Osgd5pty9D0/PeaT+i3wMO7SxrmE7PLB2Mzfwy3jOuBYb+Fz4esG1y6SJSDbB54xUm5M3NW8CA2T64A8R94HB0Y6/wZ4wXl/YnB2PeZr5YPflI1FuLdBb+FQIs+wBA7fDShGwX2Mk8v0RhBhoVQhzoRXh39SHB+iQ8wzgj3+UC/GwwpL1snYfOywQ9Jll2+Lz63xL4Q52OG6MqHoiiKoihtRV8+FEVRFEVpK/PX7BK2S2E86usz26QM1g3bZbdSWZo5nKBckutfYOWrhYrcN9rB38Pk0u+R4QOivGPn9vr28SMyC2eEZYdd2L9A1BULdpk6GpNLzxm2bE5EVCmy5d5Ac0nWdEHKi8uwDMqz04ZcuSgYS9g2xMJyabwIy/oiky8sIQvJbliab3yQ4vkeuxZcdmQZiqNRCM0McrKFC600uQTXHAnZ7xqQ4gUwcy1bOq+BTNhrEZoZ+/LwwQP17URCmtS6mZwWzUl8lTICGUNTHfI4fBQUQOI9Pc3GD5gjamUwxTFzEq4383sbAVNcDiTWPEtzJ5gxY1N2/BqQDGPWyyozJ7lwDyLMrBiEsVQD+x+XTmIfcFxcQoYx4rE+QMklX8d3YADz5Xcfl59hqTzAw/pX5VyTbcVMvk2b04AI1w2/M/MFaVoJsSylgZqUtXOzpgu2gkoJzC5sDhPMyxB7kLtwIUEf+oDZyaIkTV8VZtpFuWgATRDcvINSV3b/XDDTBeE6eX0A7oIrstpCplr23AihDBduXsBh4xvGpLyXsm66JueTL0yDzdcXXDSzQF8GfXtcvGaZEkDNLoqiKIqi/BqgLx+KoiiKorQVfflQFEVRFKWtzF+fD5+Z/Xj4WpARUtXaA6MQBj3dI+3rcSZpi0SkPbtasbaqRFK+k1ULELKXSQNHjkufDy51LZWkrXL5it+obx+ZlD4eBmzLIRbuuEG2xySpaJfnclUioirz1aiCnK0wMWG/52FqarBdsvDqKF/l/gc+Shwh3XOES21Bl2aYjA+lv+ir4TE7eQBspzzV+fAxGUZ6YFCGsY+xe+nCdU2MWTkvhkxHP4adO16sbx87dkzULVpkZY1vetObRF2I+dp0pNKiLjuZEWXuy1ILSnlonPVXDVLYCx8Pkvd2clLa/hMpm+4+X5Dj14CPA1ddxsHno1w5ykoYKpqgzMJKN8xve59jUfm4CoXkfD9+3N7rjrgcP+WcHaPxhHwuOOCPUfDswPSN9LuR8wvnCJOABuXgxrlXYj5VwYC8DkmLWOs08/DqxsUQ3PKLLIo9hWrynPmcHSMO+KrFwtCAaftMIUdec5rtG8IQAZNyjHIWLRkU5V0HDte3u5Mg247I6ywy2T2mWkjEWPoE8KHCEOp8vpeLct9+5n8WhH6tlO0cGh+WoSBOjMr0H/ycyaQMUWCYv9UUS4FARLR42VJRnsrb9iWSKVHXmeqqb3M/PqJGH5BONt/cSgu/Le6UadTnQ1EURVGUeYq+fCiKoiiK0lbmr9mFw1bLIhAN0A3ZpbNgWC5Few5EdizbJbhSVS7zVcpMJleFpc6qfEeLuOycQVieYytXmJWUm2Ewi6PXKqIomFJ4uVKTErUylHl0S8zoSmwptlrFc8j2OGKJWdYZdtEN2RhhiBku50LdICMAS6RhkKEGmRnGd2Xd5IQ1l6D5qFwGaSBrTwxMcTwD7yhkIR49Lk0rhvVfEJbKPSZJLWSluS3VzZafY3Ipmme8JSJys3a5NZWQy7KVmh37ATAjYOZjI6SkokqY18Ix2R8TEM23ULHn7E7J7Lg1PmYdsK/BOIzFmOkrIo9TKlszzInhw6KuIyZNYf1payJxIDrsdNYucY9Nyrpoh1ya7uhaXN82QdkH/LqKZWmWqpZsP5sAyBjB7BF2WNtrKMFsHukSaWl2Yds+Pl88OQ/4GAkY+QwJBll/OTiWQCLrlHilqOp07XFikEU7W5by3hNj9n4d2ntQ1B06Zk3d6U55f8Jh+SxYuHyovn3J6y8TdQcP2uNWwJQRhTF66JCNMj01NiH3vfTi+vaShdKs28HMbx29crwuXyCzT3OJfqUk+3VkxPZH3JV9Z6alaZmYidEQhF7w7P+9/LTs8xpGTWZDtlqQzz9hahEPcjW7KIqiKIoyT9GXD0VRFEVR2sqsXz4ee+wxeve7302Dg4PkOA498MADot4YQ1/84hdp4cKFFIvFaM2aNbR79+6TH0xRFEVRlLOOWft85PN5uuyyy+gjH/kI3XjjjQ31f/M3f0Nf//rX6Tvf+Q4tX76cvvCFL9B1111HL774YoN8siXcdMR9PiLS3uUy+ZYJSJ+PqidtsuUK87kAO3itzHwswOcjaKStridpbfMRCANeYxKkWk3afbm0idvoiYgwwDL360C/BV5G3xFMeukyn5QwtJX3gYu+K3DOVrZlDoaVLlcx3HGLLzMbY2dS2v6jMXnfK8w+WQL7aDeTrOZAZvo///OEKO/da1+Me3t6RF1Pl5WlDfTKUPkDAwOifHTfgfp2LCLHS61o7/XeHXtEXWenteWuuOACUYcOGfy4GciYXC7acVcpSl8nF+cMC+PsgW9EscgkzBDSvlCSx+XyxAGQTko5IAyesrxfBZYiwK2Bn0DS3oMK+OvEINt0ImzLL70gM1MfZPe5lJN954aknPbci3/THjMtbfhxlo06GpBjlNiYrMLcD4bAZ4n5PFTKIC+eBU6rLLd825XncMF3o+bZtod92c9Bh4W/D8jjVA1k/WVh0t2gvOY+5p+x6ZePibqH/uOfZdvZuOwcWC7qOjrT9e1De6X/xdHho6IcTVt/nuV9fyrqYlXmGwHXkQGJfjVj/Z32PPeMqHv0J/9R337fTfJ/Yne3zaSe6JDjZfmQlMheuMz6gKAMtiNg2xdyu0VdHlJzTOVsvwcgbUbN2H6dLkmZfW5C9iXP6j1xQoaUkD4fqJ2fGbN++bj++uvp+uuvP2mdMYa++tWv0p//+Z/Te9/7XiIi+ud//mfq7++nBx54gN7//ve/qkYqiqIoinLmcFp9Pvbv30/Dw8O0Zs2a+mepVIpWrVpFmzZtOul3yuUyZbNZ8acoiqIoypnLaX35GB5+eWmmv79ffN7f31+vQzZs2ECpVKr+t2TJktPZJEVRFEVR5hlzHufjtttuo/Xr19fL2Wy28QWEZ0WGVMM+c0bwIFW3B6mGyzVrR8MQ1NxZoloGLTvEKeC28Hhc2vfLGDiBwc/J20JEVHIxvfHJz0ck08sHwrIuhDa+GtsXQpSHja0zprXPh0g/7baISwB9VaqAzwd/38VXX7ZrB8SY6EzIfo4xPwb03xkft/bZEMQTwPvV29tX3168eLGoG+i3fh4O2PBrkC68r5e9cCfluOPxXY4flfFBdmWs/wH61fT2ST8T7m9QyElfFt4HGP4e4fcPY8jw+44+WuGIfFzEYnaspdIy7ojsd7AJg69GgPlDOBCWnK+E4r1zoe37D+ytbz/ys4dEXa3E7Pue9DmZmpb3azRr+2/oHOmHc955NkVCJwtFT0QUZtfleGgHh6A2LC08mVY+H63vZUM4ev5NnoYd0qVHIKaMYT4W+Nzk6QsCGOMH/XnY+HEhBkgqYcdLT0qGRX/X268V5dWrrrKHjHaJuhzzPZoclfMJHk206q1vrm8fPyHDme/PjNW3+1PS7+epx34uyoeP2JggwzCHo+ykxw/tE3V+0c7v41Xp5zd6aK8o5ybsD/RKRfqg8DgjPL0HEdFAf58oV1n8nWCn9A/hKQmSUflsDPemRbmSsOcJO7LtfE7zETrzKB+neeXjFSc8HhDllTI66L1CJBKhZDIp/hRFURRFOXM5rS8fy5cvp4GBAdq4cWP9s2w2S5s3b6bVq1efzlMpiqIoivJryqzNLrlcjvbssXLB/fv307Zt26i7u5uGhobo1ltvpb/6q7+iFStW1KW2g4ODdMMNN8zuRA6ddMWxZmCZmIUT91y5XOgE5FKjG7QHjEC2VdfYrqiBpA+bwZcscSmYuLS0KhehuPnEgWXYQBDMLuysGMI9zCSFDUvsnty3Vmu+xO6wc6CZBeFmIDwnX8bHMNJJV65kcUlowxoda54L/ROCcOs+W2524Tg7duyob9fg7u3eK6WuoyxUcg6yuHK5G4bKd0pyGXIBWwqt5mTWS252GTkmVwX37LIS0AiEFh9cIs1ALhs/eViWrbGsqSWQxFaLcl+fmd/yECI8zNIVoMnKr8rjRsU4lGMrLpb14QbB+OGmlgDIM3Msg2gQlptrYNrIseXmcEIuoy9ZZsNsRwJyjhwflmHj9x629ySckKanBf12PIdjKHNn8wmkrB6kK/Cr7Dpb/QRsYcYlwrQHEj6lcX4HHXldHmuEA+f02TPXaWGOxZPWwMzApdkTIOscXCBl7kNL7dh/+IlnRd2D/21/3OYzMlPs5W94vShPFa0M9cGN0hQXZ9L1Sy65SNQVIdz64AJr2pg6Ic/Z12tNG+/73ZtEXW+3NRkdO35E1I2Pj4lyZ6dtj+/L+1NiqR7CMEeOHpVpB2psrHWg7J6lLy5gHRw3wuZ/COr4XefD19DMhbezfvl46qmn6K1vfWu9/Iq/xi233ELf/va36dOf/jTl83n62Mc+RplMht70pjfRgw8+OLsYH4qiKIqinLHM+uXj2muvbfkr2XEc+tKXvkRf+tKXfqWGKYqiKIpyZqK5XRRFURRFaStzLrVtikvWsNTCHcFjlR74NASDWOayU5DPOlYGVspL+VoQZKjchITmpErO2tE8kPNyqWsMZIsOhIbnfhXBoLSrhoLN09v7VXlOn3iq9Rb2Y7BJN6RhZz4Pvo9yO+ZXYsBPABSGPLR3K8B1hEZGZZyY7OPWlnvwsLSlbnryqfp21wIpV43GpCR06VIb4jiVkqnVq569zv379ou6CfDdOH+BldoeOyBTgEfDdowUwZ/oKJPtDRw8JOoKIOc9Mmz3DcG4619k1WRLlstw1D78xAhG7HcDEOa/wvwmiiDnRUlomskTjSePM9DXawvgD0Ig5awy34CyL+s6u+xxeOh3IiIf5M/dA4vq29f+9jtFXVenlXa6MCjHJmSYafOEDZ/dB3LnMJO2+0ZeszF2fjmY5gB9I1zbBlDBAqcSLzb32+JnxDk7PZER5XjUXleY5Bz22DzwavgMgQvlFw7Pzaef2Vbf/o8H7hd153TLczrsmffcbjm/Dx63IdRTcfk84XJ0IqLNmzfXt0+Ab0+AtXX3zh2iDv2drrhyZX07CP4P3O8P5fq9zB8k1iHnbDIt/eF6u63fSyQiQyYsYHJalOTHV64U5RKbJ35AnpPLlMcnZZqBIIRp4PLrMMjjZyOpbYaufCiKoiiK0lb05UNRFEVRlLaiLx+KoiiKorSV+evz0cSohKG9ebkGttyaL22y3EYb9KVTQTxi4xJgCHcXDLjcHoi2QRFq1qBvhD1uIAxhxzEmCbuuhjrWdIzdUatKu3iVhZwPGIivIHxAwOcD7Ps8rgae02W2XdeRdkOvLO9BnKcvB78Obst0IJ7L4YMHRPngfqtt37zladlWZpNNjY+LuiXLzhPlc19nw2XXwC5emM7Vt8fARj41Kf0E8nFrv92/V/qH9LPQ6x1JGVa6wuKFeBC3IhaV+wZde10YLySRtL4s+Zz0FSnWIJZH3B43X5ExSSYnbXyDyXEZz8Ap5US5k8Xy8MryOEtZjJJwAq650jwlQAkGRZn5GmXyEH8HfJiiQTsXUwNDoq7M2m486VcSjKVFeeWVNiBiNCbj+ERY2H8DsWd4/BIHYokE4HdeTfhUQVwNNhcdqGtQGhru8wHNYePZwDPswB7pX7R0aLC+nUzL+8VjjdQwdhE6FDnseQhzeOszz9e3j45I/4tLz71UlKusLyvQl8TuQRTC+k+V5b2loB1bJ8blnE2we5tKyRDulYo8ztanbayRCXgWDA0tswVX/kstsudfMCzHUrpb+hMRe24VIUYKfxpjrBUP5kyV+exUwS8qx5435Zo8TrRDPrsjHXYcJHNpagY/w5yFV1cURVEURTkV+vKhKIqiKEpbmb9mF4/saiRPhArrOrxsICxwrSrNFVUeHhqW2ONBu2yO0jdI1EpBZvcIOM0lSDUwT/hsuawhmyiYVrhsD6WKhng2WgjjDOYSXsZw1HzZGmW4Ppqw2HHwjZUfB7NKumCWcvmyJCYWZqcsFeQy/vSUDHc8PmpNAqMjR0XdBRdfYk8BWT+9CmSDZeHFM1lpVqhyk0hJHicSgFDfLKz+JEjYOuN2aTgcltlEx1mmzVxGfi8NssGlLNvz8ZHjom5qKlPffvGF50Td3kMHRNkJ2fvlwRKuyNgMGZM7Y/LmptPp+nYV5JmhhJUNVkAyTD5kXmbz0oP5XWPS2ziYb3goeCKi7JTtvwpIxSen7H0PQ7oCDB3dt3BhfRufKRWPzyc5JriyFM0sHpggKhXbvkbTLesEHxeyIcw/u38O7uvwsOjyOo4eOSDKfSyjaaAnLeo8Fiq+hrJgzN4rniOybsliKztdPCjDqfculCaIAg+VDxLQoSFrUutNyznCUxkQEcXjdox0JaWU/txzz61vJxLNJbpERFVmwl9+7gpRN5bJ1LdzJWn2LjDZaxDkqkEw0ZTZ86aQk8+7cpkdB+IQuCT7p8DSRJSr8h7k2TOuAH3VAalCYmHmXhDAVwV+LTMNqN78CIqiKIqiKK85+vKhKIqiKEpb0ZcPRVEURVHayq+FzwePhF7KQypxx5YLvrS31Ywsh0L2QGWwdxUDdl+vANLWCMjdKtbGtYTZ4YmIchlrW86XpK275jQPU+wGpS8Ad7lAOyJxyXAI3x/BfszkgIFgc6kthn8OwTXHmM3aoC8LL9ekPTIalyGES1lw9GAwtTN1xKV9thSW9yvJwmX390iZ3KKF1rZ86LD0B5kYkemn/bK9XyEITR90bIMyx6RMrzMKkmLmYxCOynvA7cXZKXkcYuc8vH+vqMpdKtN8R9i9TqWkv8OBAzY89K6920VdokvKEatMjj06CnJaZr/t75V2+FBQ3tvJrO27jnSvqCvW2LiENANCjklEcWZbJpgXHnPq8sC27FXk/Iqzfq+UwfafYD46Bv0mZPPKIvx783DimKLBZ3UGZe0QajwSsmMLwwfwyW9ISi7dAEj0g3ZfD+SZ5ZL1myqWQF7sSt+ndJftH5gGVGX30iV5nERcPrfIsH6PyOfW88/+rL49MSrDmT+5Rfp4VS69sr49MjYt6qay1renMCH7OTs1IcoXnWel9P/n1rWibtEiKwcvQ9/t2b9HlHsW2PGdL8q2kmf/jVbAx2Jhv017wP27iIjCkCKhg42JdI/0QeH+YDhePPD16U2m69sTkDogxJ6bPQnp41EDCbpbseeJwFh3mq5bGJqp4FZXPhRFURRFaSv68qEoiqIoSluZt2YX19gFT54ws1aWa4JVlh2SYGkIpXhxFsEtCtn+xLKoB5Ldilym9ZkMzAnKJaYQyBM5XC5VqsglSQ80hjySIWbr5fpig+lfgRo7roFod1xxiJLhhkiyxE00so5HYTQgH8vl5fJuFQIQcjBCIycRlzLLpUtsBlMflt9rbFk0BHreAZDm9bGlx2PjMnNuMWdlaXG4P91hOX6qLPpmB2SkDPCMwCD/jrMxW57MiLrtW6Tcr1CzY6biQARaZj6qQYbZE3m59Foo2H0rJbmEHGMZb4sgQfVCUl5cLdj2ZH0pEy549rpwidaAKcNjJgEPIg+7zBbnE84RotYfnLwO5foNkYhdZmI0aHaxZR+vi0cbBVtOq0ilVVjyd7hcvsFEJO97xbdmjvx0RtRNjo/VtydAxt3VLedBPG7vbSAgTSluxZ4TnyE+ZEUWYQEgRIBftfLRwX5pjvVgyX9w0EZcvfbai0VdX581ZVR8OX7PYVmqiYhiITuGg2g6YM+q4VEZcfWmm24S5YmMnUOPPf5LUbeQSbPLENH5+HEria9VpClw8oQ8p8v6dvFAv6jLjFlzEpe4ExF5EBZhatze67GxMVG3b9+++vZ0QT6bs1kp7+1MsfATreaWmAeGUA4+k28piqIoiqK85ujLh6IoiqIobUVfPhRFURRFaSvz1ueDXGpUuRFRBXw+Kq61sVWD0m6IyRB9JklCN4oQs9NHQtJuF4CsgTyUtgFfAO47UoMMixkme/I6wa/ENA993hACm9kxG8IbI8z81mB35ttuc5v0/zaovukTSnb5NmQaTUj7ccARDRIwVxoaHZX+F5WctO0mmM9Ff1+fqHv88V/Y74Gd9TeWLBPlHia/ngLbqVu2fhzdkCE5VpT2Up6Ftxts5jmWBbOQlbb3OBtLgaL0AxrbJ2XBNWZDD3dKn5Mg822JwrhPx6V9P8Gy7FZhjB7cZzPyPrf9SXkg8AHxXStt9cPSH8SPsHPC2Mbj8LEWAX+ZMpuomJkV/TH4kHXB7MzDpLtGzmcPbNSmxdzjs8agD0qLtmF4c8P6BKWS/ED467AGWWQ9lpl0GsIQHBu19v6RE1JS3dkDPgVsXNbC4O/FfOBcH+c++pw1/z17ww031LcxDLpXlvLrd15/Y307nZbzO8aG2uHj8ro6EnIcRlzmMwQP/UNHrAz/X+75rqhDf57+hdbPpFVm9XJZ+p9lJuxzqzspJe9T4ON1ZL/1x9j+tPw/95Mf/7i+jT5Cl73+DaLcwdIy9PRJufxRlooCfTwmJqRMmUTaDLyvzf7vzDyvra58KIqiKIrSVvTlQ1EURVGUtqIvH4qiKIqitJV56/PhOMzkxMxIHqGvBKtDNwWw+1ZZvI5aRdq6p0rM/gXhhblWnIiImN3TARtoJGhtl2FIlc3TcYcD0rbtwEl56moXAxNw35WarEO7Jk8pj6m7udMFpg7HmAq+8IcA/xT2XWNQ2y/tk0HD/CGwOQzjtr6uYMj2X1dapuf2eDputL3DfR/ea0Oan9i1T9QFWdjkcB7iWEyOywYz+2gQzlEds/sWIdxxksXViKA9fyonyjEWGjlm5JgsTNt9p3IZUVfskGOtc7FNCZCKSRt5goWUpzyE5I5K+36k0343V5H3q8riNmB6eePItpdYvJCAK0M++022iRqzzYt4M1Dn8nEAX3TBl8RnX8YwH8bw0Odo37bX5TXUYWNZyHJ4vPApBG5I5ELsDMND1UPsoiCLy+IGZV25Ip83U1kbwtxNyJg6HRH+XWgsxqbnz2do+4lxO/aPHTki6vq6ZZqKXbt21bdzOZku4IILLqhvDy1dKOowRHhm2j7XwyE5D9LdNi3D5SuvFHWHjkh/q2PHjtW3KzC/f+M3bAj3YhF8Pli493xWzv09L74oyj/+zx/UtydGZSj2Ywdte/oH5TXvPbBflBcN2b5cunS5qPNYDCD0e+xZ0C3KmUnbd6UyhJQXnMLvsAm68qEoiqIoSluZ1cvHhg0b6Morr6TOzk7q6+ujG264gXbu3Cn2KZVKtHbtWurp6aFEIkE33XQTjYyMNDmioiiKoihnG7Myuzz66KO0du1auvLKK6lWq9HnPvc5+u3f/m168cUXqaPj5aW6T33qU/SjH/2I7rvvPkqlUrRu3Tq68cYb6Ze//OUpji7xWFZb/ooUgDXKIJf7OZAZFrLcVllo6wqEwT18yC6r9XbI5adEj5RI+SxLJ5oDYjG7ZNnbJY9TYRkpCy5k4PVA7sfOgaGafVauQZjtKqzT1phEtBZqHvYWJbINppUWdfwGoYUol5UZKTvCUvbJCbBbi2afPMhQQ2Slrg5cczlnlz47IXNk5uhxUX5kz4H69pGXZCbLcwdtqOY+GBNxWMI9dNxKg8MQej3IzAodkN20i6UAwKyk+ZyU8/Kl/IlpKZPLM+lvLi/73A/IvvQyLBR8h1xiL07Z4ybDMO5hFCQj9rsG1th5IlsUY1ZBHl5jOwdhHAp5fMMSv8QIc6isE+kTGuSzftNSo9mF7XeSUABNT9FiX8eV9kcuu8dQ9A0KeGZq6UikRd2CfntPAjF5L4NxOUYTLJQ2mieCQVv2SnKMVnHt3mn+e5abLlDmuXhAPrv3MnOoV5PHnJy05ovtL0iz4VNbt4hy3wJrorjqqqtlU1m49TEwh27aJFMbRFn4+f5+KVPOsxQSNcjgnOywzztTlc+wBNyDY4cP1bcPHZSmlKveYOW017z5N0Xd/oPShLVwyGbrnZ6Wz5AKS/ExOipDrw8MSlluZ9LO73ANXxVenamFM6uXjwcffFCUv/3tb1NfXx9t3bqV3vzmN9PU1BR961vfonvuuYfe9ra3ERHR3XffTRdccAE98cQTdPXVV5/ssIqiKIqinEX8Sj4fU1MvO+F1d7/8q3Dr1q1UrVZpzZo19X3OP/98Ghoaok2bNp30GOVymbLZrPhTFEVRFOXM5VW/fPi+T7feeitdc801dPHFL2cdHB4epnA43JB1r7+/n4aHh09ylJf9SFKpVP1vyZIlJ91PURRFUZQzg1cttV27di1t376dHn/88V+pAbfddhutX7++Xs5msy+/gASsepGrCkMRaSereDZMb7EoQ/YWy9L2zeWsJbCnl/PWFtbbAeFzQRpYZinACy7Y5VnO+ACkcA4HbblopP0PU62XWfhh9H9wWKjbmkEfD1nmfgJF8JvgdjsMn4s+IAEuDQQjPt83ADbqGEg5hYYYXFCYEplKJSlncyFkeaqrt76dCMu6iy66rL49NCBDM/fGpZRz7/NWxjcVgVDw3EZbkvc5Av0VD9jrLuSkRNav2OPEsJ+Zn0cA/AK6O6SdPp5I1bfduLTLx5mfB/oiTMFYL+ZsexxIYV8t2pvilyGdO0jOucQa5bRSI9r6N06QhVt3g7I9Pk9l0MJv4uUGsU30YWIy5kCDjwfIsV3h9SHqDLt/DsrR2XEdlO/icdjFNMjamWOHB9J1F1MtsOsMReTYTvfYfo0lU6IuAOMnyr7ro2ya3ctyWT5jw0GIS8CfeXAP3vrWt9W38+ALBtOL9u6x0tLXXyZlsOGwva5AUPbP4OCgKJ8YtVLXv/zy7aLu2LD1/1q9erWocyA3R5n5SuAzrbPD9t0JSAvBZ0wIhmQiIe/XosXWPyUEz9hly4bq25gyonegV5SvvNL2Vw6eRXwRYM8e6eP28188JsrJZPKk26eLV/XysW7dOvrhD39Ijz32GC1ebJ1bBgYGqFKpUCaTEasfIyMjNDAwcJIjvZzLAfM5KIqiKIpy5jIrs4sxhtatW0f3338/Pfzww7R8uQxgsnLlSgqFQrRx48b6Zzt37qRDhw41vFkqiqIoinJ2MquVj7Vr19I999xDP/jBD6izs7O+hJNKpSgWi1EqlaKPfvSjtH79euru7qZkMkmf+MQnaPXq1a9K6fLK4h9fyQtgZk22uotR+3KQCdX4dim/nJd16Xi6vh2PSfkhmk8KBfvdWkUuTfPod3ypjoioUrXtC8SaR00lIjIscqlp0A3yfeX3XLCJuGwtv1KTMjkhgkSJHGpmRepaMB2wpWgXlpAjII0W/dUiCGRXWsq+3A55XYuYDDYZlcugf/Chc+1+vV2iLgbL2DuWnVPfHj3/YlGXO27j04zsOyTqSiU5fvoXWvnd7j1SJsejtUahrT4bE0GIQNvVKyO3hjrsdwfPPUfUjeeto/b0S3Ie7D9yTJT5Uj76WMUTVhoYrcjxi/sGWLbcMER2rBXsPDCQUZUggzIP7JoryPV3w7LlNoj7YBmbRwLGrLL8nA11YB7gJhsHJedc7ovRc2Ve26bHJCIRZbVmak33xeX/xkjEzNQDvyWDTMbthmEeQvjnEjMXk7R4UpB9F7NdN2S15bJhMFcXCiW2LedPtSyP099r5//CPiltDUXtOYolKVBIpaR56Uc//ll9+7ntL4g6nln3sV/IUBDcdEEko6oe2L9X1P3sZ/Yca659i6jLTlg5a7JDmlmKEIk4yszHa9ZcK+rOYWaX6byca5FOec1Lltl5iv+7Fi+1lopJiLj6yCOPiHJfn33GJNPyHE1NoDNPaju7l4+77rqLiIiuvfZa8fndd99NH/rQh4iI6Ctf+Qq5rks33XQTlctluu666+gb3/jGbE6jKIqiKMoZzKxePvCt92REo1G688476c4773zVjVIURVEU5cxFc7soiqIoitJW5m1WW/KpbtPlkccN2IuDQWsnw7DW4RiUA9bmFg1L23uwyh1L5DtZFWSw+QoLpxtpyLVp2woyWB6KnYcsJmqUuvKyG4CQ8mHbVt9tbtsmInKYdDHsoc+H5VRrWi6zdaP9Wkht4UDVAoRFN6yfoeuYuwEFA/L+HDko/RYO7rX+GPmpjKi7+f3/f317YlraR01JSs9qzCa64mLp8zHVZX0uSnAdHoTD99nYK0HI+3DCXkvXAin9zU7attcgLXPOyPuVG7fj7vlj0gdl0fJl9e0o2mdhHozlra03lJE28w7mkzKRlX2VBKm2YTLYDGT6zLM50+CrAXLacMzO4RoORO57BOHVDcjKuWQW5xP/pgNZbTE7rUs8tUFznw/M4Cx9HOBCGva17fOxjj1/AuDDhekcDBuHvtc85DVmiXag7LI+CYHOM87k6YGqlHkGHHAQ4eHFYfxu3bq1vv3Ctm3yHGHpm9XfZ/0Wdu2UPlRLl9q6gcXSN4yHcCci2r/ffhd98JYuW1bfPnDggKibnpZS4HLFPkeC4He44tzz6tu93dJPqztpH2orX3+ZqDt8QEpdC9lMffv6d6wRdX09Vk6bgdQKuw4eFeWdu21G4EMHDoq6KotnEIXUE+gTyLP+4rg7HejKh6IoiqIobUVfPhRFURRFaSv68qEoiqIoSluZvz4fAbI6fmZu4lpxIiI3Zu2TfRBFNVaQfhWVsrXbeRGwXZatvRhNpxXw3eBxLUpgA+WKoIovbWiFqj1/ICyPmeAOD0QUY5rwfEn6LfgsLnkwCtFhweejWGkeFrjK7LNVSOeOyiaRCR7cTDxme/cgNHOUZOyKco6dB/rZZSfxIWrz0aMjolwr2y/3dEt7cZ7FEskVpN/Cd/7xLlF+adsz9e3XLRkSdVdceFF9e2RiQtRVwX5c4A3ukmHRA669R7mwfN/vOXdZfTuRkCGMxzJShz+yz8YXiKblOSY8a3vPetIOn4E4EjUW3yXSI/tOuJ2UZFyCOMQdmWBJIL2wvM98bHmYFh5iaVdZe92w9Deo1Gw/mwCEGocYMtIlBH5XsSa44NMVBP+QCvPXcMHPhIdCRz8Kn/k4NMQSARcQn7XP+HhdLIQ7zMMwtD0QtmOrCLGLvIptT7xT2verBp4pLB5QJ4RpL7BxmIQ08EEDPh/8WqALYqytg4OLRd3b3ny9KC8dsn4Uz26T8Tn6+62fR0dKtufB//6pKPPnWm9vt6jr6U7Xt0dH5HO0DHF8xkZP1Lcvu+RSkthrxrga5y5fUd+egrgak1Oy/PwLNtXDpZdeKOp4KPSx8XFR9+jmraLc02f9yqrgizUyamPupCEmygQ84xYssP2Mfi6nA135UBRFURSlrejLh6IoiqIobWX+ml2Y1Ja/IjVIfpg2rxaQpoMqSPG4SSIYkstsQSYXDUPm3GBALilXmIywUoJMsWyZ1g2CLDhmj+MEMCwxhE1ml4lyP5/J4rA/4IrJYyYj10Dodba8G4LQ3h6YjLi0tDHEMutXuK5KXi75d8aZaQGWoqen7LUcP3ZC1HWnZObGThZSuAihvcvMbjY5OSXqDo3JJcuRvDXLRGA5c4iZrNLnyHDmU0wiS0TEVyV7Fsi2DnTbZVC/LPs1y6SuNejXaFTKchcyk02iR5pAxqftde46sE/UlUE6WWbZaXceOyzqli62MsZ4v7yOUArMScyc41RAxs1key6k68VMrWFuiorKccjDzzdKbeXY4pJVD2ynfs2W/YaMzWgiYdeCElW2q4Hfbi5x+SyGXpfwO+JCLb+shuzSMIcdJp2MR6A9zMyB11Epy+X4UNieJ5eR8yBETAoNJjOfpNmZX0oAUgkEmWwYs19PTcl5+swz1hy6f58co889t62+HY7L/vif/5FZ1osley9vuP4doi6ZTNe3azU5lkaOy+y0q668or5dLsvnjcOesXl4VnPp73nnLhV1BOa+t7z1rfb8J8ZEXYTN2eNjMl3B1meeFuUqyxyO2Wh5mPjfeN3rRN1UVkp4RQgF/H91GtCVD0VRFEVR2oq+fCiKoiiK0lb05UNRFEVRlLYyf30+miJtajUm06uWpP0RfQF4aOQwhC32uBQvJLvFBZs59yUp+tJ26rEQ5hE4R5BJLstV2TbMY11jPhYoteU2cxfOjwq/MpNaudgfzCcFbcsYPtyrchmhrOMyLNeFlPEQMpxcvq+s4lHJha2fiBaCjPqc5VaKNz4p7aNjE9ZmffToEVkHds0KC/U9AuncJ5jt9OIrZWjk4BEZ0rhEtn888HEYrlrZXgHCNvusn9PptDwHpCt3PeuDkgMT7NGctZnvGZZt6xuQKcljTNJ86KAMv1yJWJ+LSLxD1BVcOffybC7manIcFlnZI9BNs5QIREQdzM8jGJc+HzGycwZ9LBrcv7i8F1Ii8JDqAUceJ9Tg88HCtGOUdOab1dAedhgf5cXQVj5PA+hTxuWRRp4DZbnVqt03BHLIAEtvXyjLcZfulPcgwFI4jE1JeXoiaceBD3LeoAteZswHxYPnzcI+Ow6jQXnNHTEp792/z87bEjzXd+/eXd8OxWT/4HMsmbR+ShddeL6oG1qyrL791JbNoi4BkuIMk6GGoZ+zTIpcgmfIsmVWvr98mZQX9/XJebl4sa3f+NBPRF08ZudBCfzGAtCXR1hYgpER+Wycytn2ZeFeZjIZUd7+wkv17d5e6f91OtCVD0VRFEVR2oq+fCiKoiiK0lbmr9nFISvb4glnYUm7xpbZKp5c3i1VpAxWZKSETLHEImbGIDtuKCCXKD22/GzgMDW+xAzSyTKTBVfAfGR8+R7IpYIVWNKucbMLyfV3TApaYWapSlEeR2TObbCBQDZPtmyNuxom/0N5cxyW7jOTdtkPl81FcEsw7Ywcl+aTDpYJtQDLst6Uvc6prIzal+5Ji3Jnl21fZjwjzzltl5+DKRkJtHRCyt3GMnZZ24Dg2WWmJwcuOsJk3dM1WXfwiMxc++TTNpJhsEOat04wqeI0ZKdc1i2XTLn8roLmNiapm4Jl8xpc8zhbis5jVtsSmwcwLwnmXjxoB1QUIpzmmFTSJ5TaysNWWb/7YJbiz40gSOAjGPHUt2OrVQZnHycCbxtYcnz4ncfrPTBNekz2Hg7JZ5HbwjyaSkgpdDxuoybnS9Ls4kQgg3LezqEFHSAV7xmsb5fBbJiIocmKjX2oqlbsOfA5PjJynJqxdKmUqObztg0v7d4OddLs0Zmw93Lrli2ibscLNnLq0cPS/Pj/vfNdorx69er6Nj4r9zNpeyohn3c8q+6f/umnRV3Nk8+t5Swz9fi4DDXAZeUjo9KUcvCgfDaGmYmmb4E0Vy/osxL9VFI+0y67TJqWe9J23w543pwOdOVDURRFUZS2oi8fiqIoiqK0FX35UBRFURSlrcxfnw8Oe0UKhWWTfdfawkIeSBMxJCzzYzBg562ycOI5CJ+LvgmG+WN4DoSVDtnjegHIeukyuSrIcH3U9DG7YgBs5A6zfZ8qTHuQ+WM4oO7lodkxTDt0D4WZHToANnMeVrohJTDYdgvczom+I2zX7LQM8bzzuZdE+dD+HfXtEmSgFG4wIXl+bgMmIlrQb6VwR6IypHKR+SoUwS5fC0pbvB+xdtYGnxgm2Z0E6dvYsLU1ozQcpW9Hx+x3Jw5K2zv3qkhCtsrJjJQXB5jUdUG/tAlPjVk/jlxefm+yKMcaD4mN4cTlMJB954I/T4T5LYTAdyTBQrgbcCLAbLkeD78ewHFob0owCOHdYbBHmUQVZbnCTyqMctUA31HUOXAOLstFHwLeWyjDJR/8XphfWRTaE2S+ap0d0h/ERKB/mGS/b0D6WHR32uymTkX673Sn5TnFSAQVLn9uHT4o/Zke+m8ZFj0QsL4TS1iGWyKiEAt9sH+/9NUYm5B+SYm4vW4PfOf27rGS9GSnzCq+40WZSfecZbZPRkZkhu2ODtvWUFda1PGsups2PyHqigX53NrMfFK6umVY9DC7t+g/9Du/e5MoL1pkUyRg9uAK87vB/2sLF0rpb37atq9cgTD6XAIO/oEzRVc+FEVRFEVpK/ryoSiKoihKW9GXD0VRFEVR2sqvh88HM3Oi7j7IYgREghFRF+2QdnlumwqDHwX346iCTXqqIG3fHgv97YKPRYTFnwiH4N2O7xtAfTyUuU2YpN2XpwCHCNwNzhqOY9uDYeOrVRsHhYdPJ2oMoR5gbUcbtc/DWkNY9tHCpCiHeQwVdFfhmdVjsrIDUmeTb/0jTEWGgx6bsv4i4Q45JrohpHEPSxOfz8oYAfsP2nTYT2x5StRNTcsxkWO+LMWiPE5+0vpGjBySmvzjLEx7EPwL0hCfI91ldfeZgrTB8pTbAQhffvSoDLeeZSHmBxcuFHU8tHe5BGGcYThXmY9FCOZTiF3LNPh8BMDYXJm2/VPNyX4NhVh4dcxLD3F0fBZjBmOC8PQJ1aAcS1Xwv+LRq4NQF2D9HIyAjwXzi2pI0QDn5PM2DHGFHDYRSvDsCYNfR3equ76NflulYsa2G+KnuOAvk2Qh7nu7pL9BiHdlEHzTPOlHwR/WeLuyk7Y9eYgXcuiQ9AEpFOy1PPfsDlE3uHRRfXtsTPpQJSDOBvm1k28TUSeLXbHrJXmOF57dJso8XgcP409EtGiRbc/EhGwPD5n+tre9TdRVoO96emzcjUhMPrf4cfr6+uRxahj7xd4DfKbw/58G5k8N4gzxsZZISJ8YgUgBYKgx2tTJ0ZUPRVEURVHayqxePu666y669NJLKZlMUjKZpNWrV9NPfmIT4JRKJVq7di319PRQIpGgm266qcEzWFEURVGUs5tZmV0WL15Md9xxB61YsYKMMfSd73yH3vve99IzzzxDF110EX3qU5+iH/3oR3TfffdRKpWidevW0Y033ki//OUvZ98yc/LtGsilPCa1NSChQ/NAgC19BoLNl0UdCHVuQGbJl3Q9A6GjWRMwZLphS2AOvPd5IFcSlw+mHX5djeGfZXP4qjEqokJs7Tfg4BKc3Nfn8mIMl83kfwbizZeq0jwQijU3u/DVu3SXzHLZt0AuBSeYtDXk9oi6imfDQU/CMj5mavV5CH64rr07dtW3j+6XEj4PbBBZlqW4ArK0DmY6wGyeXA5pwGRVmAYJMStGQeobY1LBKsQdj0VkXwZYx+cm5fJ3hMlMcf7gWONzCE0HPGt0FEwOOIen2Q+UMmTsRFOCqIOxzlMbVCDMv8dmlA8mT5TTmrL9LmYW5tJ2NKUEePZrNH+inJbJ8CtlOe5CzHxTLssUERhqfMk1v8m+B5lYmSkw2SPl11uf2yrKKRZKe3zkmKir5G1/1IqyPbVKRpQ7O+xYq5Tl3DvMQpjHYjJc9zvf+U5RrlZtXx48IEOvB6J23KW75HwOgbTeZQ/kF55/TtTx8Zxjpj8ioksuulCUuSSdZwsmkuaLa65ZLeq46QLdAHI5aS7uTNk57MB1lFhm8zykk0h0dItysWDvURVCH0Ritr+iIWnC49J5IqIAG7NFuO/N1y0MNWismzCrl493v/vdonz77bfTXXfdRU888QQtXryYvvWtb9E999xTt23dfffddMEFF9ATTzxBV1999WxOpSiKoijKGcqr9vnwPI/uvfdeyufztHr1atq6dStVq1Vas2ZNfZ/zzz+fhoaGaNOmTU2PUy6XKZvNij9FURRFUc5cZv3y8fzzz1MikaBIJEIf//jH6f7776cLL7yQhoeHKRwOUzqdFvv39/fT8PDwyQ9GRBs2bKBUKlX/W7JkSdN9FUVRFEX59WfWUtvXve51tG3bNpqamqJ///d/p1tuuYUeffTRV92A2267jdavX18vZ7PZl19AgmS1Wsz8VfLQ5mjtpT7Y7P0q+FGwUONuQ8h0u41h2Z0I2PiYPdvzpI3aY/b2ckWepMZsYcm0lC5henDZAPDrYB3igKANo7QHDG+rPInDfVDAhyBoZD9zWRj6JnDfgBDKBjtk+0IeszOCaZC7XxSr0i9gZFKGWy+ErR/FogEpF+1IWLvzCbBjFrPSzkoFex6874b5wYxlpON0qkvK3XgIdSTK7KxpkALmHTu20O5sgvK3QTRur3kMQp8nAlYyXIFxt+wc6ScQYn4mJ4alPT3C0rIHitIfxGvIM8CltuD/wOYISvqEYxRJWzNKMKNRO55Mg0NTc1+sKpzDY20wmPYAnI8Cvn0s1mBiGpZOAacsHy94zT618EHxm/uqTU3J/kiCzxIPWW7AzyWXsf0aDstn2A++f78oX3zp5fXtslSKU5XJXmtlOS9zU1Jami9axySIBE9Dy1bUt4sF+dzs7pXSUh5lf+Hic0RdjM2DUETOkanshCiTYferKv8/FFh483e883pRdwLSICwesj+Kp0GSv2KFva6pnLxf/N4GITVId6/0VZvK2fs10CXTHuTy9pxdXV2irlqQz+oQ82nyjOyfKksdEoT/HSUIEdDba59xXgV9Pjh8/M5MZvvy+WdJOBym8857Odb+ypUr6cknn6Svfe1r9L73vY8qlQplMhmx+jEyMkIDAwNNjkYUiUQoEok0rVcURVEU5cziV47z4fs+lctlWrlyJYVCIdq4cWO9bufOnXTo0CFavXp1iyMoiqIoinI2MauVj9tuu42uv/56Ghoaounpabrnnnvo5z//Of30pz+lVCpFH/3oR2n9+vXU3d1NyWSSPvGJT9Dq1atV6aIoiqIoSp1ZvXyMjo7SBz/4QTp+/DilUim69NJL6ac//Sn91m/9FhERfeUrXyHXdemmm26icrlM1113HX3jG9949S07mc+HL22OZWaDLJdlSvJEWqaRLpes3SreJXXvJd/aBl0IT+00pNVm9mzoQm7rLRelHrtQtuXOOIRmbojXwf06msdbaIjFgMEPeNyRogdVrAzf832Ig8J8R9BBxdSY3bksv9cTkP1czjFbrzT7CnNhJidtjIfHM6K8bLG1we4alfbZBQtsCnAvnhZ1U5My3PuJ4zamweSE9LmIdVm/HDcmG1v1pH10Qa/V2pfBX2Vhvw3pHoOQ3NMFe5xEj4xlMrhQpsN2guy+Q/jlALPzdgTlcUolGS+kRHYcNsQeYAb/SFyeYzov/WUWdNt+LuRkf8TZ3Ct5eKMlRbL9FUrLmCQV5l/U4PIBY5/H54dE9OSyMYs+FgbitseZ3wvW8fntwTzgx8VzYDnAjuOCb0+JxXGIBOT9ObTvsCj/y7e/W99GZ/0hVs5l5RgIOzLOxrNPP1vf7l8wKOrKJXt/whCnxo3L+e4bCN7DqDl2XAbj0jfAgG8CsaHXHZdjgvclpoFIdcmUBOEIbw/6vGEAeMvSpHxu8cdjCubeaFb6ozXDq7Y+fyRmrzOTlb4j8TiL4wNxYVzws3DZ2ArgHGFxa0wN/G7S8rnhs+eY67Ty22rlsNicWb18fOtb32pZH41G6c4776Q777zzVTVGURRFUZQzH83toiiKoihKW5m/WW0jZF+N2CrTdEYu7waYxC/kgFy0Kpe4DUttWc7IJSenypcToVvQJMLMDK7f3CTSeBzbHh/kbI0rgCw7pNNcimcwZjogTDSVhhS49jggDXRg+ZTXuwaXTNkynye/V5iUpjAWDZ8WdMtlvnzBLjXmctJ0YQJyuXeSSWQdkFyO77dL054v73MNlj5dJtnt6ZeqrH6WlZiHQSciCkB7ctMs/HFeXnOaLWdiVtLePiu3w3sQS8rlZp4xOAkmxVbgcflxqiDPrLKlWMxQzDNrEslrwRDlfF52QEbMIKQ2yDB5YgAkuzwMN04RXG52WujVeR9gf6AS2GGh0dHkafj6O6RWcNh8cl3ZdwbMmoaZPDF7cJiFV++Iyb5LdMox0c3MDN0gweRj1qvIc6QS0qwQ5eZsGBM1r8iq5LyswfwKMvOAG5TX7LHUC/jcwltnHG5ug+evSBkBZh+n+VjHc4pdXWwrtoftCiOR12EWZGG1Q6k6ps1g/1ca6qj5uENNc4Oy/TXh1ZlaOLryoSiKoihKW9GXD0VRFEVR2oq+fCiKoiiK0lYc0xj7eE7JZrOUSqWIOsgaeZkJMiDdBMjjalZpjmw0EnPzIKr/+L7N1WIv0zIUOttupU7CtjVXfbU+x2zqZnOnW+3bqg76BrKXUzRgb0I+D7ZLRg/ITsfHZ55wMBy2J/XBHopm1xYZ24UfTgtVJxERhVh4+kJBSqyFX1JI+oqUID12s+8RSft1g8x0FrTyfzhdcDv9qc7R0WFDhtdqckxgSvlm5zhZmdP6msFvq4UrnBETDAePO8M6rJ95nYOySpf5UYDsVA59aA/46IhnHmYKYHVR8EEJRmRf5bgkHv3RRCp6OAlKbVuEARDHxe81+MB5zet4/+DQwSHiNC3IIsaUn+n38INW7cFx76PvEx739IPScWRqaoqSyWTLfXTlQ1EURVGUtqIvH4qiKIqitJV5K7UNx1xy/lduVM7apTMv8ysctHmwO0nzBKXKqYAlP0g0TCWmtQWrAnFl5+SkNLOAOpNqzS02VKmcnnVHvjoPqtNGc41pHsUTJaszpZUZ4VTLnq2Ow8to2uHmHPxeKxMIymf5d7EO257Pg+58jgkE+G+yVnbMVr/dQKLbYOppbtv1mZnBwIMKj4JS8hkD2laXyXJRTsufhxgtlwo4Dm05EJaRQL0W46f1Axl1ry2+h/0sJKunMnvMsA6ZsYm61XWc6kAzP8z8cqRojq58KIqiKIrSVvTlQ1EURVGUtjLvzC6vLE8a7sHLl5F+lSWl03UcpTkNa4BQnOESJe7X8L05vn+NS50za9Bs1CWnS4nS6jiN0T5f3TnbcY7ZnHN2+7427Xu1xzRz8KAS7WvV1lNNzFaqorbYA1qdsw3nn4NLnI/MZLzPu5eP6emXQy1XJwyd9l5GKa7SdvwZuj9guGXvV4/me3qBoVmrzayBs/HVeLW+IqdCZGaFc7zac7b6HspnXyte/UsDhOT2W/kmnJmYygzv0SzupV9uz31v3Yi5bsDZyfT09MshM1ow7+J8+L5Px44dI2MMDQ0N0eHDh0+pFz4byWaztGTJEu2fJmj/tEb7pzXaP63R/mnO2dw3xhianp6mwcHBU8YimncrH67r0uLFiymbfVntkEwmz7obOBu0f1qj/dMa7Z/WaP+0RvunOWdr35xqxeMV1OFUURRFUZS2oi8fiqIoiqK0lXn78hGJROgv/uIvKBKJnHrnsxDtn9Zo/7RG+6c12j+t0f5pjvbNzJh3DqeKoiiKopzZzNuVD0VRFEVRzkz05UNRFEVRlLaiLx+KoiiKorQVfflQFEVRFKWt6MuHoiiKoihtZd6+fNx55520bNkyikajtGrVKtqyZctcN6ntbNiwga688krq7Oykvr4+uuGGG2jnzp1in1KpRGvXrqWenh5KJBJ000030cjIyBy1eG654447yHEcuvXWW+ufne39c/ToUfr93/996unpoVgsRpdccgk99dRT9XpjDH3xi1+khQsXUiwWozVr1tDu3bvnsMXtw/M8+sIXvkDLly+nWCxG5557Ln35y18WOWLOpv557LHH6N3vfjcNDg6S4zj0wAMPiPqZ9MXExATdfPPNlEwmKZ1O00c/+lHK5XJtvIrXjlb9U61W6TOf+Qxdcskl1NHRQYODg/TBD36Qjh07Jo5xJvfPrDHzkHvvvdeEw2HzT//0T+aFF14wf/iHf2jS6bQZGRmZ66a1leuuu87cfffdZvv27Wbbtm3mne98pxkaGjK5XK6+z8c//nGzZMkSs3HjRvPUU0+Zq6++2rzxjW+cw1bPDVu2bDHLli0zl156qfnkJz9Z//xs7p+JiQmzdOlS86EPfchs3rzZ7Nu3z/z0pz81e/bsqe9zxx13mFQqZR544AHz7LPPmve85z1m+fLlplgszmHL28Ptt99uenp6zA9/+EOzf/9+c99995lEImG+9rWv1fc5m/rnxz/+sfn85z9vvv/97xsiMvfff7+on0lfvOMd7zCXXXaZeeKJJ8wvfvELc95555kPfOADbb6S14ZW/ZPJZMyaNWvM9773PbNjxw6zadMmc9VVV5mVK1eKY5zJ/TNb5uXLx1VXXWXWrl1bL3ueZwYHB82GDRvmsFVzz+joqCEi8+ijjxpjXh7woVDI3HffffV9XnrpJUNEZtOmTXPVzLYzPT1tVqxYYR566CHzlre8pf7ycbb3z2c+8xnzpje9qWm97/tmYGDA/O3f/m39s0wmYyKRiPnXf/3XdjRxTnnXu95lPvKRj4jPbrzxRnPzzTcbY87u/sF/rjPpixdffNEQkXnyySfr+/zkJz8xjuOYo0ePtq3t7eBkL2fIli1bDBGZgwcPGmPOrv6ZCfPO7FKpVGjr1q20Zs2a+meu69KaNWto06ZNc9iyuWdqaoqIiLq7u4mIaOvWrVStVkVfnX/++TQ0NHRW9dXatWvpXe96l+gHIu2f//zP/6QrrriCfvd3f5f6+vro8ssvp3/8x3+s1+/fv5+Gh4dF/6RSKVq1atVZ0T9vfOMbaePGjbRr1y4iInr22Wfp8ccfp+uvv56ItH84M+mLTZs2UTqdpiuuuKK+z5o1a8h1Xdq8eXPb2zzXTE1NkeM4lE6niUj7B5l3WW3HxsbI8zzq7+8Xn/f399OOHTvmqFVzj+/7dOutt9I111xDF198MRERDQ8PUzgcrg/uV+jv76fh4eE5aGX7uffee+npp5+mJ598sqHubO+fffv20V133UXr16+nz33uc/Tkk0/Sn/zJn1A4HKZbbrml3gcnm2tnQ/989rOfpWw2S+effz4FAgHyPI9uv/12uvnmm4mIzvr+4cykL4aHh6mvr0/UB4NB6u7uPuv6q1Qq0Wc+8xn6wAc+UM9sq/0jmXcvH8rJWbt2LW3fvp0ef/zxuW7KvOHw4cP0yU9+kh566CGKRqNz3Zx5h+/7dMUVV9Bf//VfExHR5ZdfTtu3b6dvfvObdMstt8xx6+aef/u3f6Pvfve7dM8999BFF11E27Zto1tvvZUGBwe1f5RXTbVapd/7vd8jYwzdddddc92cecu8M7v09vZSIBBoUCSMjIzQwMDAHLVqblm3bh398Ic/pEceeYQWL15c/3xgYIAqlQplMhmx/9nSV1u3bqXR0VF6wxveQMFgkILBID366KP09a9/nYLBIPX395/V/bNw4UK68MILxWcXXHABHTp0iIio3gdn61z7sz/7M/rsZz9L73//++mSSy6hP/iDP6BPfepTtGHDBiLS/uHMpC8GBgZodHRU1NdqNZqYmDhr+uuVF4+DBw/SQw89VF/1INL+Qebdy0c4HKaVK1fSxo0b65/5vk8bN26k1atXz2HL2o8xhtatW0f3338/Pfzww7R8+XJRv3LlSgqFQqKvdu7cSYcOHTor+urtb387Pf/887Rt27b63xVXXEE333xzffts7p9rrrmmQZq9a9cuWrp0KRERLV++nAYGBkT/ZLNZ2rx581nRP4VCgVxXPgIDgQD5vk9E2j+cmfTF6tWrKZPJ0NatW+v7PPzww+T7Pq1atartbW43r7x47N69m372s59RT0+PqD/b+6eBufZ4PRn33nuviUQi5tvf/rZ58cUXzcc+9jGTTqfN8PDwXDetrfzRH/2RSaVS5uc//7k5fvx4/a9QKNT3+fjHP26GhobMww8/bJ566imzevVqs3r16jls9dzC1S7GnN39s2XLFhMMBs3tt99udu/ebb773e+aeDxu/uVf/qW+zx133GHS6bT5wQ9+YJ577jnz3ve+94yVkiK33HKLWbRoUV1q+/3vf9/09vaaT3/60/V9zqb+mZ6eNs8884x55plnDBGZv/u7vzPPPPNMXa0xk754xzveYS6//HKzefNm8/jjj5sVK1acMVLSVv1TqVTMe97zHrN48WKzbds28bwul8v1Y5zJ/TNb5uXLhzHG/P3f/70ZGhoy4XDYXHXVVeaJJ56Y6ya1HSI66d/dd99d36dYLJo//uM/Nl1dXSYej5vf+Z3fMcePH5+7Rs8x+PJxtvfPf/3Xf5mLL77YRCIRc/7555t/+Id/EPW+75svfOELpr+/30QiEfP2t7/d7Ny5c45a216y2az55Cc/aYaGhkw0GjXnnHOO+fznPy/+WZxN/fPII4+c9Hlzyy23GGNm1hfj4+PmAx/4gEkkEiaZTJoPf/jDZnp6eg6u5vTTqn/279/f9Hn9yCOP1I9xJvfPbHGMYeH8FEVRFEVRXmPmnc+HoiiKoihnNvryoSiKoihKW9GXD0VRFEVR2oq+fCiKoiiK0lb05UNRFEVRlLaiLx+KoiiKorQVfflQFEVRFKWt6MuHoiiKoihtRV8+FEVRFEVpK/ryoSiKoihKW9GXD0VRFEVR2sr/A+yvCuQBVh7LAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAACuCAYAAAAce/ZpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Wax0WXrXDf7WsIcYzvDOOVVmZY0uG9uADYX7A6k/ZGRxgYTwBe1PQgih7la3bLUouMA3GF/5ptVwAdwhuEIM10hcYKk/aL4qMGVcg+2qclVlVc6Z73DGiNjDGvriWWvHjjhxzjtUljOrOE/qzYgTw469117Df/2f//M8KsYYubZru7Zru7Zru7Zr+wiZ/rBP4Nqu7dqu7dqu7dqubduuAcq1Xdu1Xdu1Xdu1feTsGqBc27Vd27Vd27Vd20fOrgHKtV3btV3btV3btX3k7BqgXNu1Xdu1Xdu1XdtHzq4ByrVd27Vd27Vd27V95OwaoFzbtV3btV3btV3bR86uAcq1Xdu1Xdu1Xdu1feTsGqBc27Vd27Vd27Vd20fOrgHKtV3btV3btV3btX3k7EMFKP/0n/5TPv7xj1PXNZ///Of5b//tv32Yp3Nt13Zt13Zt13ZtHxH70ADKv/k3/4YvfOEL/MZv/Aa/+7u/y8/+7M/yS7/0S7z//vsf1ild27Vd27Vd27Vd20fE1IdVLPDzn/88f+bP/Bn+yT/5JwCEEPjYxz7Gr/3ar/H3//7f/zBO6dqu7dqu7dqu7do+ImY/jB/tuo4vf/nL/Pqv//rwmtaaX/zFX+SLX/zihc+3bUvbtsPfIQQePXrErVu3UEr9sZzztV3btV3btV3btf1gFmPk7OyMF154Aa2vduJ8KADlwYMHeO+5d+/exuv37t3jG9/4xoXP/9Zv/Ra/+Zu/+cd1etd2bdd2bdd2bdf2Q7Q33niDl1566crPfCgA5Wnt13/91/nCF74w/H1ycsLLL7+MUmCtAQSVZXtSr1VmX5RSG8+v/r6+krUZH2f8KOcFkSf/boxx+Jf/ftxvjX9v/Nxf8bv52Nvfz79dFPaZmSo54yuu+Yr3tFL0fc/y7BxjNf/b//bX+T//r3+BsrAslwti9KACamgWQeMqaogRFwJFUdK2DX3f433ktdde43d/98v8wR98g7Oz83SC2+cQQcFkUnPjxg3u3r3Liy++yCuvvMJLL73EfD4nhEBZlhRFMfQZYwzWGkxh0FqOGULAe7++3sf0rxACIYR0TvHCY1GUO18HRQwe79ylzZ3Hyk6Lekc77Dqv9PFL+uL2e5vP2fm6D55pVRFd5O233+Uf/7//P5ycHPH//H/837hza07TnWENaA0+gAuKEDVaFUTf03ct3vcopSmrEmM0rvf0fY8tCiCitSaEQN92dH2HUgprLFprTGGJIQ73SSm53noywWhNiJEYItpoyqLAaEMIDh+8vJfeDzEMj9ZalNI453DOQQigFNpotNI45wkhyO9b+X3n+uE1bSxKgVYalEKl2xyBoiiwxmK0AQXe+/QvEInUZYWP8prWmrKo0FrR9S3NakWMnsIWGGuG/hm83NuiLKQfa4PWmhgjPvg0F6z7gffymtIKkz5bWEsg4JzHOUcIAaWUXKM2VFXBcrXCxUDUiqgMX/naN/lP/7/f4f/6f/9/8df/L38Dok1D0q3/EVFRo9S6/+buNp4rLzX1ZFLLjbmTPKdeNSqkPeQD65ksEiFGTo8f8cX/4z8TiPzcz3+e/YMbFPWEGBXWVvgIMazPWyH3QEdABSCQZ9AL58pjTuxxS+Cl31WjOTHPLTqdS37cPTeBJhKJwyEiKnVaTUTFyP/yC3+Wru0A2Nvbe8xJfkgA5fbt2xhjeO+99zZef++993juuecufL6qKqqquvC6UruBwNNYHkCXTbAXP69RV3T4q0ACShHj4wHK2MYgJZ/XruPn69h1LKUU7gkw2/bvfzDypMfcl6vAnjFMbEEInna1YDKpKMuSGBxFYSnKSvrAFkDRUR475/A+UFUVN27c4Pj4hHfeeYc/+qPvCDjJv3/hMgVENE3D+++/z6NHj/jud1/jK1/5CoeHh9y7d49PfepTfOxjH+Oll15ib29vaKuytCyb5XBorQ1lWaK1xnuPcz3WFpdeszHmStqz7/tL3oloXWLN5SDEOXf1PY35d7cnnovnJYeJw6PWhhjXk1d+HWQSX38+gam82hJBeekGAV586S7H50dorXjhuUNCWLE3LyhtFIDiI72LhKAwSqEpiUHhnR3O0xgDFIQg4HEAAsbQu5KubYkxCojQmhgibdfiej+AEK0NRVGAguBDArg9NjiqoqaoC8qyxm8s8DGBibRohoD3hhCK4dpDAjCu14QAxmiKwqTzKGQu0grvPCgB6VoblJZ+moGwNhqiJuJxvYCUEKQRi0JARdARpTyF6THWosoSJpoQvAA0azGpXwo4U/jg0UqhtCy4MUKMmhADCtC6oHeOvg9yzQqMjhgDxsp99wqC1RDl3AVwaWxZMS0NujAEpSgmM77/vXdplh1Gw6SqiVgBFANA8YBHRXvJvCrg7co5WxsePw+NIMbouVq/JCMiQlQRFRVRRaTLR1RanFWEQIAIXd+CVizOl0znM/ZvHKJMQd97jC0plRlAe9rOjOaykEDKJae7tc5smxx3G0zsuNZdDbHx72kAivS/uJ42BKAQZWaOcQtkPn7N/lAASlmW/NzP/Ry//du/zV/9q38VkEnst3/7t/nVX/3VJz5OjOud/67F+8mP8zTfvfoz613YLuCknhjNj8/tSc4vxrixU9/+fFC5w139W9v2eEbpcaauBPNXXVPf9xDCetFR0PcdisjBwT6rZiG7tO0fiDKYjDH0vQMUi8WSb3zjG3z9619nsVgkwLBrh6I2XvPe0/ee1arl7OyMhw8f8uabb/KNb3yDF154gZ/8yZ/ks5/9LHfv3mUymQBp4VMxLRoBnXaPIRjaNmLM5X0gBH8FCAFrLxmySnZjfd/tuKbxd3e197hvjCem0Xn5QO96iIpIGD1qUAGFARWIQcnEOvpcmtVJe8thps+TqLaRpm1QQbG3P2NSK0IPN2/OeO+dh2hksdURDAptFFFbNFAag0YTvJGdfnAo5bHGYq3FOY8PEUXAWo0qLL6UvhViwGg5r0opeqPQWlFYhTZQWFBaEbyiIbDqG2IX0TZQVzPwnVA6wWMiaKMpbIG1JjEnHmUUWtt0nEDbtnS9Y1IZnI+AxyphIZRRFIVGa03bumFuM0aYlxgjwQesVSjlBQwEh9URTEQrg9YW8AKEQsR5R/QdRhnqqsaWhr7r6boeqy11WaOsxvuYGDIt4MY7QhDQohJgsdZSVSV9r+j6iHMyZ2gFWgec60FBXZgEoszArkSlWTYNJga6xtH1nhgDmkChFYZI9D1BQVRKuosOKBXQMtHLsCbNSZmb3bW/2LJI6n5X2HjB3li8U4dV5K6sEhCRR40mEDEoQurnIX1PGctkb87J+RkhRFRm8bzDobB2Pe50GhPjs9gYOxuPaUM6AlTy3no8rknYHccgoi+ddxXr4N4xIBn/G7/O6PWhpYZXh7uTvQDrE77qdgz2obl4vvCFL/A3/+bf5Od//uf5s3/2z/KP//E/ZrFY8Lf+1t96puM9DUjJA3/X64+3LTS64/uX/b4Syuepz2v73Mafu+w7F3cbjwdf22AkH+PSRfGJ7NkBikJ2kM1qiXM9RVEy35vTNiuapkUpjTFqB4Mi46HtPXVdE2Lgu9/5Lr/zO/+d733v+zgfNv0NF35VDQvo2AMUIqxWLatVw9HRCQ8ePOTtt9/h61//fV566UU+/ZnP8OlPf5L5fEo9KSkKS9f1dF1HjIEIsmBc0c+E8r+aBdltEaW5Evx47y6/7A27uOsSml7aRljA9eNG39Jq9Bvr53LNcdiVQ+63EaUiRanRFPSuZ9VErFaslufs79UcHb2LWfVoE7HaYEyJUSVgicGkuTmCdwTnZfHSllgYrLZYoyAE+m4JUVxKzWJF5zpmkym2LCgUsmAoUKEXd0lwhDSvGxwFgc73xEbRm4hG4UMghkCIadeslLAeRlhZhQJjsMagiJjo0cFRWojRQYiE0EOvQYNyBdpqcJ4YpM9oa4jepE2IQweTdvEQEOCG0VQGlLX4rkOpiFERpT296/AdBOXpgMXZOU3TUlYlzPZQGrwLhOiYz/aJvqPvHN51KGXQRgBUxBENKO8wwRGjuHGIDO2klND5ANFruugJPhKIlPWUui5oe2i1xvUt+F7cHCEkl5YiKp3YHyN9RAdU0Kh4cdP32LleAVpfwRiMev0utzzbi2reZKZHpdE6QtQoFVIPVwKo0DgXWCyXPDo+4vD2bbQpsWWJtiVrlzTDLyhGOCKxMheZCkAp4hY7Pz43ZdIGYYP9kGMo4uZ3N1sh/Xh+3zzmcfvbCSgNwMSkv+V3n5Y++NAAyl//63+d+/fv8w/+wT/g3Xff5U/+yT/Jf/gP/+GCcPZJbLvDPq7TPg6c/KDuosvPTf9ADMpYA3DZ7+96BB47QHcxJbktt5mZp7HIFVgAEh1/yXeDdPSYFrO2bWiahr5tqaoSGXhhBMbTxBhFN7BarainEx49esTvffWrfOe738Mnv3gY1t/d4G280G+3i9yTwKppeePNt3jjzbf4+u//AX/4jW/xEz/xGT7xiY/x8sc/xksvvUhVlzjn0Dr54s3V/VPcIZffZ1tc0X9iHNps53ev0qBs2EWAclGDAmsf+dpfLuceEniRiWnchxncP5vHEF9+EG2FgWkFioApDLO6JvgIscdqKK3GKE30UBgBTsEHjLZQFKIF8aLpUDqyN5tjlGWxWkAAY0us1ixXiqK0FNYO/T/3+RADrnO40KMRBqw+KOn6juAD0TtsUVEUwhIorURH4j3Be4pC3DUuaYKsEUZvUpS4IIqwyvVEz7Ai+ejRSmMLi661AEoYtDIhBJzvCb4X4KIVOo66cQzgHTEICLbGUBQlpTV459Ca5NrSTOqK6XTCdFoTosfbiNYVVWlRiL7EK5s2AeLW1lrJPTEKrSzW6qFfZI2KGnYLCbh5h/NBXGG9YzKfErynLEpc79AxyDIdIjF4In7wNAYVhZ2LUa4tAxRG89sVm7rU3ZLO4/HIfCfrrbQwOpkPUJuPIYFwITaEzvHp5wJQViVKaxbLBT4E0AG0SezUGjoAqDTuNfl0syrlwpmmfe74muLWv/G8tqt9rmqPyzfhV1tMIGQ91lWU+UE8YfEJ7sKmfagi2V/91V99KpfOLhuzFts6ku2O+yTsxJP49mIMFzrzVULW/C8vbI+zbZHsruNedR3bbi+A+BhgtK11GYOtbY3Ort/M5739d4jrBWl8bdmu0ltEpSB6XBQ62BhNWZYYDVpFQowopYk+JN98ajcvO4T9/X0WqxXf+MY3+fKXf5f79x9QFNLlsx/+MoCyvSBvM1ZjYSxA0zR861vf4vXXv8/zz9/m05/9JD/z0z/NKx9/hYODQyaTiUysEZmo5Ggbvx1jlEVAbS/q63PIYHGnOw7hqy67V2OguUvIqoaVbn3AvCREYvo7v591JRmYrCel8b8Y5Xs6aSjk99Y/EZXGB4c2BURN1/X0Paxi5Px8xcG84GD/AEJFDL2wGbpARUsQLbS4J2IUoKA0vu9puoa2EzGsJ1KVJT6E5EqxTKYWYwtpE63pe4fzTgSixso4VwqUQRmDLUpxNdqCrusIMXC+WlGWJXVtqWyF0ooiuVoVCucdnfN45+mLQF3XlEVJaYUpKkojC2gGaF4WfB8iGFn8FGmnrESbYlizbForcWF5N9wsHwI+j19rRbMVSZ8RpqSooKigqieYskT5QFQOhSIohS0r0Uq4fq150SLutdaKqymGjfmCuHabSY8xRAO6KCgSY1Zag7Yav3L0fYfvA0SH0Yl50YqIJuQxoFmv1lGhs58m98PhT5U77zAO8hMZYVsC8O3hMRqG+bgqDYioHq9fycNGAVHH5OGU8dG0LatmxfHpKU3bMC2qpCkyBDQmjSjBG6PnQEBfnkn1yvXAPIY1vzi37LiiS755lQlgHMSx0qPkfAjpHj3dBv1HIornMouRteo9/ct+//FCss2wZHX59kKQj3GVrSMsLi62ssDoS0GKOEyv3j3viqLZBZp2siSXgQiEOr3MvSTivbDRFrvEw1ed96aAcrwC7f7O49X3MunJta+BknM9stbFob19AhPWWkIIdF1PQFPYite//wa/9z++wrvvvIfWKgEPATYbYue4OTWAupTdGbfRtluvaVa89r03eOfd9/jGH/4Rn/vcZ/kTf+Kn+fjHP86tWzep6xqtFCF4vJfdRW5rrXSi9WOasC+Knrf7dm6X4T6FTQ3ULqCz614M4Ehv9r/hcQCt+TxUYmvSPdr4TpqoyELLBFjyIrDRpWTSUsoKu5EiU5xXWFPhfaA0hnoyx6iA7z3RRWKQSdgrmRBLYyjLAu8Dnfd4NKYomc/3WC6XtP1KQKLSnC+bFHFVYK0wHZ4W8QxZdAIQ1hZUSf8UY6T34nKxVQ1A5wI+KjoXQGfWxGC09ENxbRiCigQ0UVmiNjIkdEFZCkPR9x2hd8P99z6IyyXIPYkBOt9LE2qFMQVFXWGMwTcrlNJDNFnXdcQAZVVRVpXc26SD0lqDdtio8D7QOk8fRdPV946ua6nrCXVdoYwlJPGsslq0LVrhk1vL+8ScEAVGaYUpK3QMgxBYbntIMo4g1+IdRitWXUdR1MSo2EUMx/y/UXfK0EeNlr+Nz476M6P3h0CZMQgZfW5jPVbrY+ZxES522gu/NTxP4238He88zWrF4nzBdLZPSABWXEQ7Dzv+hUtevvqLjwUSV37/CnBz5VySxrhSCLwG0HK34pjD18CTsfI/0gAlW56E8+QNFxfrK7UOT+HSkU57+XvbAGP8+Gy02R+vPYt761ldYo+3HQ2d+dS0sMco4Z86uWR8othdDLz51rv8H1/8It/61h/hnMcWshsKwef18xLLSP8ytmst0tv53RhZLju+//23ODp6xHe+8z1efvklXnnl49y7d5ebN29R1xWz2R6TSSXRIil8PYMBlBr2VrLDXgOyPIXmSTRP2jLn2aHdtoFJGAEKGIfWjz4bQY0ATwiBGPxwLiFkL7sAxzUAGqb9AZww7vdXTGxKCTjzMW55qTUxQtc5VIhoFQguQFBEH+j7iFcBZRUWLcxZAExBPSuwVlOWNaooCC6ijSwKJvnpOy8RONZaAhplS0xZYosKXTi8C2AUmAKtAhK97sm7wGoqYfCrztOHjiqqIUJLa4MuNKUyECO2KES0GyQiqGkaKl+glaXrGvpe+mdV1hSV3gjl7b1PzJJDKagnFcpaARpREZQhpOgIj8YFMFFho0rgC2E2fCQEcChcgBAcyolLzrmI8wEbFeerBu8iLvRYU4AXYacPbhC9KpW0InnOjRGT+402aBUBLeHYTvpQ1/eE6MWtoTUuikts21ExftzkRZ5xnnmKr23r+zZB9o5Db7PGw89Fgnd45+QzSSAdnMdWBSGS2khtaFDyGr/exz6tU+SHawqumPtGrGz6ZFK8oNBENRbWPpn9WAGUXTqSJ9Gj7KK7r/ruVaLUyxiNGBPt9UNbzH9w2/bDP+13d+lYfnDL26j8l/xHJFHcbtjJu15obGstXdvxla9+ha99/eucnJ6ijRHqPLmF1vchTSk7L3c3m7YWru0wFVCJAVFKsVw2fO+113nzzbf53d/9KrPZhDt37nHv3h1e/firfOzlj3H79h329/eY1BNMYfG+xzlHN86Lkf4Zm11USeib8IxHRIY7eubIVXeREVoD+uwWDENOjPX9VJuTdrrXoj0ducLUNjhR+Ucuby/yrVhPaNm0EgK8bR2+96joiD6isBJZ0zj62KNLcf0V6f4rBXU9YTKpCQEqo2nbnrZd4X3EWslXo2yOurHDBkdpLSDCeVzvUE4iVGSzq8hEpNaKoqpxIdJ3PW3vaHsBO1rrdWh5Apa+F3ePhBFLUpeIgDIfAS2MTzWZYKyhazs8Hb539CHgAqANxlqcjzSdwwYIXnpj7EW71HWO1gXoHBE9aFd86i8SXVOIGyLt9BUaZcCoktaJ+6XvJP9IVYnbh+jwIVAUilIbjLHCFuDXgNoK6yI5XnxiKZPOQhvaviNGj85gzQuTo4a+cyXB/Ez2uNlo13y/LQ+4ChqpOILU6VhGCZB3fU/f9SKmdo52tcK5nmoyTZqq9XFV3Pyd/PeHs6e9vNW2txA7P7He6wyC6cyIDwzLEy4TPxYABS4i3F1A4TJWZZdbJh9z+zhPAlp2sSjr4z32Uj5U2+UWe9Lv5OcfHEiJo39rt07escWo1lEtMeKdxxaSN+XRo0d8/Wtf49GjoyHkse86QChyuOo8FVeNoKvbRg+ACUVaoDy9c3Sto1mteHD/mNdee42vf+0POTjY49at2zz//PPcvXuXe/duM9+bUVUVdV2LbqEU/cPYJSmnvtmvc86BOMLBeberlNoIX17frxRJoNavb/7G5sQtTZ9cD1F25CGM3VG57a5uw7XFYaFTiRVTIDojIxEAXdfhlCcGcV9oAtEbmq7H47BaFsLedYQgYd7aGIrCrt2PSnKdNKtGkoqVJYW1lFWFjgqdRKAhCjCRyKsMhkXLIm4hiy2kTfNvlWUpeVISWDajqLecqK1rW3wQHcp8PqOqarSWqC65T3LdXddCL2HdXdvS9T3eO7xLydII9J2jbfvBrSPia9G3uT5gjUSIOCd5UNb3UQsY0TnU3Q73V9aMQn4nWGKxXli8d2ldEeAZYkD5nLxNlDJagdFK8tT0Hc655I4yaKXwA5hOuVFMIXtrpQdQsnvp296V5z42fhxZWtXlekbz8MDvrd1DCZoPjICMm+Fk0qDY3CBdOLsoUVt5zOjUF4WV6um7TgS0IdA2Hd55UcREicIajxpgI2WCuiIPyg/VYo74uWhXsUl5SlqzX5k9WT8+rf3IA5RdGpOnYU+y7RKj7gY5m2z1GMTsYiDGC/ZHi6y7aONzflKAst3WHzyDMrIIgzgzxiFbZZEWBKHEA/fv3+f3fu/3eOONtyR6wZgUJaLQygyTycWEe2r0Q0+6wG6bQilJWjbWBvR9T4wBwQiB87OexfmK9957H2u/R11PmE6n7B/MOTzc4/btO7zwwgu8+OIL3L59m/39fcqyHBIW5p18vlcCEDJw24ysGM4sXa8Ai+0EgNJvi8JibSERIynR3Rq06kGDMtZHbWp1xm33JH1I3HWDwkCHYSfp6SVTbOjReKJ3g4uJKN8w1kh4cPS0bUfftiit6dsVi/OS+XSKLUsKrdmbz6iswXmfrifg+xYV/XANIUaJkokCCnzwBCfJpwpj8WUBweGNRaMkUmY6oestrpfomsJKNlTvvUQYKXB9x9n5Oc2ylIRvShNUIDgvIbi2oC8LAdpRInAk+ktTWks0Gtf3KSutx/VRcrCkTK69hugjve8pbYnrwwAmB42I1qiqoCgMdgQeBLgIe+G15OeovcUHEfg636OVEuAVHa7zuOHewTjCJ3gvuU2swpiU/yVllrVGozBoUxKMRiNC3tT7RqGvO8aeGj1Zo+ndXUqpkfszz9dq1DvHICUD+vVnVfr+hqTiiv47dodmtjHGgO97fN9DzjDsXYoAiwKK2RwhSU6FIoVtX/WzP1S7fOzGeDWDEgeiZIB9AM8UwQM/BgBlW8i5a3F9nP7kot/x8s+O7TLW5dJz+YgilMvO+VlAyg/P1QMDO5CYFAEkHq2LIRtmCIG33nqT//pf/yurVQNaE7wHpSVSBOTvEfl4yVVd+dZluwFFxJoCnxbTvvcDqNV6vfjHuBYa9r2naTpOTk55990g2UxLCQPd39tj/2CP/b0Dqrrk4OAGxigKW1LVJZN6SlWXlGWFQmjlENY0++CSgSFnh/ce5z2u79ftFsX9sLe3x8HBPrPZjNlszs2bN7h167a0fgxC7QPO9Wky10NisnW7bQO8y8GebHgTQFFrLY0PkaZdoXxDiB6lA0FFXPRpx27RpcEoj4opZ4nr8K5HW43rwLuO6Dp8jFRFwXxvj73ZVBJl9X0CrJpIcmvlXTCRqrBgDS74AUQU2qKskt/zHSFoYQ6MpbQaHa2cKzFlYwWiwpSWUNd0XYOOkegdy64R7RQKbQ1GR6xV6KjpXEezXOG9p6prqklNURb0XUfTdpSzGYEoIco6oqPB4/ApQaHVKjF3EIdYIIUK0HcNMeiU/NCmHXFmZyTayUYjuYS0wnU9nesxSnReLkU7hQxctSZGR+8iBJ+YEhGsV6WFpDUJISWsM4aoLS5GlLZSZoC1ABYkA23WmUnHu3KgfiC2vQZszttXsygq9+8YUFE2QSpG6Tfpn44iF1VBXlfGDHNIZk10ZroAHSV3zIezZDyGQbn0vVE49uhVyQjzbPYjDVDGO8jLonZ22S7XzZMvqIk+3OFSGh/nsoX+h9vhPjjM/awung/W1smFxCIq+bxV2nUrwPtAs2ppmg5rLY+OznjrrfuAoihLXKbrY0wRDSm3wZCaPfOS23fnim3MJdcbY8SFlPuikJTkIQRcL4AFr8UVQNyowxETO6RUJPrAsnMsFwsePXyEthqTaq9YU6DUOuLMWjukPpcFMQzRFzHIVCIRXCQ3sPxuIEqSsPQYiQTvqepKFqmy4PDgkJdffplPfvKTfPKTn+TWrVuUpSSP6pqe3justgzJqdI9WmeTHDNSu9o331OZvENeqtIurG2WBNdQl6BV7g6BGD2qiFijCU7ygijAakUxlSiUsqyAiLUFR0ePWLQtVVkwqSpQJmVKTWBtqBuTwEZZUlal1AyJkWDkqrSSiJjOCbCrqxrXRbzOIbxSysA5CVcOUQCjMBWRaYrgmk5KWh0l34nKyd48ru1kbklAslktaduGGDzTyUSyGnc97bJJ4Fxy24zrQWnE1aKVkZDXJJ6V7i3H9N5RlRW2KNLvS6r+XF9qqOFTVXInvccrcetVZYnuFV77QTDrvafzXWIJfHJ1RQpjKYxBlyXKaIJXwmYqCXdWVlEYk9wxKafIuCuRki5CcgON+9E2EL50oI6+93Trwtq9s8m7bLidkrt5+Ef2DEXZIASfmBXJuAvyurHF1hQSRmeZXIsXfnMX0N/VDmMO4/L3dx8LrmzPlMl2t11kvWJMRQAUQ56Xp7EfeYCiVU6stO4k4wVz7LrJzyXMax2jYawka/JetAJD5tS08xx3Wj1k07woys109xikZOo4yjowpJTOft8c9np5eHMaIGpN0edrX5OEY2p0ONP1Z5Gd1Mb7ebGKEZIPXo1+Q7Fuw5xYatx/MzUq22g9DE7Zta1RtB+JPMd+2izeG05nqz3FDASFd3KNfbdCkxakECiUoukCbddxetYwmexR1VO+8vVv4rz0Az/SXUgEhjzmXeVGIyVbOxl23RO5HzHEEdU8ugNaodLuL6SU04EIJmlRwojHzf9G864JMigDEojnY8D1QN+h0KjYbp6uyhO4SinHYcgJHtfTXGZ9ssA4ENNcE4fMlVppFqtW7ruCd9+5z3dfe50vful3uHnjBi+8+CKvvvoqr7zyCrdv3WIym1FXNWVZsFwtZLwolcZk3g4GtJLEVF3biDhVSbRLaS2L5Tk+Spp2oxRWFUOr10UFBgrjmUwsk8rQNh19G7G2JgbF0nd0vdzPup5ibSGMQIB6UuNd4ODgUGr1oeg7R1FaSlvRtCtigPl8T4SyISQNk7i3FDotugI2C1uBCnSxH9p+OqsJIdI0K7yXPCBVXaCUpus6jFUYIy6QopS6TNPpNJVQkGgel8Szg6DVCwMxm82lrYxN7rdSri9A37sBSAB0XTfkuclpzPP4ynlMnA8obaiSSDVf57AcKYULMp76rhvmRa01NoEgr8IQZtz3bhDgeu+HuS/GCN7TOSd9QqdEbwbOz05TOnsD2tM37ZCDLZg4hI0L40DajJCSt6UzVePH/Pr6/S3nAgMC2nh9mLLWlie50WSXYYMMWTWsCQzHiEi0mZOs1c7h+x5rVGJqoSyTVsho2r5lzxiZMvOcvAVUcgBuHM5jvFFbz7ObQGL8KK8HJa6k9SPySGZ9tm20kVYCDsOFR7WzIs/4e+sVIM+gaQuTv/AU7PqPNkDh4k5/G5DsAihZ7JbdQ7nWSx7kTyKwvfK8tgDShvBq6wrW9+qKm5bXwR3rqdpADrAu+DbKSzIsU2rztbw5gJ3XPH4+LHSswck2oNj4O31vLNLMx7N2XfgrT6K7GCyFIka9vqbg0XgInbgqgsYog4oG10OsLb/3e7/Pa997G23LIaPmxjWN2zDtdLbbXjD/jvt9yQZDsnkm0BElI2pUApZzXY61hfWN3J5bYmYTxDyyAyGFbMZEluqEcYJKgFDlz8t9GRJajYCigJLhZ+RMRvN6jClzZ1j3V6ckWkSdL3j06Jjvvf4Gv/u7v8d8b4979+7xyU9+kp/8yZ/kYx97kXpWoxIL0+UaREoyqKqUwbSeTCisZrVasVye44xJ9XAMSqU6QVH2jAaQYtWeo+NH9LMCe2MfawyeDryjKCqm0ymm1eJ+0ib1aZ3ykRQUtR7AgPeepmmHhVXcb5JnRCuDSsXzYpA+oLXB2hJwQ1sqZbBWtCpAyrvT0aYChNK+kjRQMveaoeq11qJJKsuS1Wo1MGDA8H7TSOXtqqoGZkd+dzRe1DpHUR5LeSM03ugMFYczcNSaaTmlqiok/0qfajdJX5Hz1inCRKfsx2msRknbnnVJkIFPgVIRhaNK+WGGYICo6ftAxA9upN51wzU71yU2Md/6OCxwuQsLgxLWY1Ll8ZMfd4GUsaXedNX0rXY8z48hj6HNzd86Y+7ujbBONZ4GZj05bCIgwXRyVRvzyJCZWcb77s3nVcBiDQtk3tl+zJlp1wLhS4+V54vLHrmsxeNwW2RpStu9eBlrc7X9SAOUZ7WxwO9pNRO7xLTjY27/nf+FMP58xp+5o+cQT9a7a9Lz4cbm78GwhKmcKHnkqhieP33M+WV2Vfs8Drhta4SMEUp6s212UX9yPaPsGqAiIdUAUUSil9U5hoBV0DYr/vN//k+cnx5TVFUKldxtV99vzzh71ACwLoC5dO/yCh9BUnzH9S1g9NHx4/iNYWexfhrGH80jPu44gNr6d2FHtnHRgBqB2jh8fmOO3gFQXWIXl8sVR8fHvPvuu3znO9/hS1/6ErPZlJ/86Z/ihRee41OvfoIXXnyeyWRC37cSWul7iZDxnmXXorVmPp8PbHGfckXACDSl3zbGoo3m/OwcrQKTyVTua/DUUXal8/mcorAbYDizEdZaVqvV0M+897RtO3w2BMlPARKe3rZ+6I9VJQDIOYnqyYAgGHnfFmvWYxssbPevMUPStu3Gd/L72+7hPO625xXXh2EjlY+Tj5/BkFJqiCDK768XzzXT4f06d5REPAl4GW/g8nsCzgrADeduE/McYxzacXzew/kryf/iXE89mYDSdMklttHN0xO17UIfAfEfll0+l613iBc/sc6kLJovcdMSU0i6zkLcdG+12txpjixuD92M3HZ/+or3Nk/7j9cun1ef5XR+LAHKNoOxzaSMM8luD6bH2aUhVts79a3fzjsf0g5B2MK0FQaUjik8dXwb4+V3VY0+s0ELpNc2KMCrr+sqkLHrup5FbzLeCY4ny8uBzxqU6ATickxrHEWoOOdpuyXT2YTvfu8Nvv+97xKjp+vbZx6fKsa8BxnOWaktlxBjvJCzZaY+FljTs/n6rroF6Tar0UeFBufC5kiNdTMbJ52+Gx8vrHsc2NwlMs+LXs574r3n6OiIo0ePAPje62/w3PN3+eTHX+WVV17izt273Lxxg4P9vURxQ69gtVwwmdTiqkhJuvJmYU1biyalrmtKY9jff4mjB+/QdQ1KaUpTUVQ1WmmapsVYTYzlsGhPp9NNdwMMi3c+/6IoMClSxns/sKcZzOT3ctRUBhVFUSSQ01BWRQI1LW3bDot6XriVUsOx8zlkUXJRrPOvdF03HNtaS13XQ5uMXaG5H0qUkR7mlfwv/37f9+Q6QDm0PI85CUk2A/PT9/0GCDHGDIBj3F/G8+RYkO6co21b+r5nNpsNIfExxg0GSJv13Bu8lwR45HGV1+zRCp02BNmt8nT77m17/GJ+FYMc42Xv57mRoV0kY66ETq/XHFLJjzjMA2uVybVdZT+WAAXWKH4bMOQdjrV22MlnywP3B7Xxor490GXU5WRhcaAK5TTXzEr6BptMSH59+3Pbi9ZooD/hyN4FOi6Kxq5mUy6zXQBx/LhLcJwvQA1tQIpO6QnOYSKEPqAQ7UJZVnz9q1/j7OyEorT0nUNdUYjwMWeMzaXPx7uaoU3jQPELybVGFkkOl1xT+XthDVTId2qTNB7frh61BigDYz8CTClPwe6E0VdUM760EnI67mPKPMTR2NBpDOX+sTg95Tunp7z27dcoS8tsNuPevTu89OILvPDCC3zucz/BSy++wOHhTZSSpHquc1JRl9xHNruruBikUN+NmzdwfUPwgdLWzOcHxJC0Z0oWysViQYxxWOSVUiwWC4Ahj0zucxkMWGtpmoau6+i6jtPT0w3xcd/3A0sA61IDDC4Rk+rdrAFFduOElDV2nOF6EJV23eBaziBEa81sJjlwsksqsyBjd43RNtXgWb+Wj5/BQz7XzKCMN2bjzUE+h/z5MYAZA9Lxpi/f98ViwWKxGEBQnlPHbFD+rrGK2WzGcrkQYKYNJgibmmvxgACSYdhcxQY+pa1dMpfZmF1cP49xKwAgb5bIrpvx8UcJDkNcA73RJjVH8CmeJM09bNKw4wuKTzy3P73t2AB9SPZjCVDGboNdDEp+HA/k8Xs/6G/vMpVo+jj4GAWcDANzAwjs9gesB+6IG9kAIvHip4fF/sk63C5Nz/B7O8DK42zsSsv3JYekXtXe0lyRGGRXoiJEL3kjvJP71veRqq5o2sBbb73FV7/yPwg+UtfFle6dx5lSIgTLgchhy70SI4PLbnDFDBhFJegwapuY09OnLLOj+7Tdgl7J9wWcxPWHRk8zuzMcZXDZqCsZFD0CbDt1RhfA9Pq50PRrcA+pONxQgFB+PwQkomrV8vDBI/7w97/J4Y19vve97/HZz3wm5XW5xeHhAXVVC8nkPWgBKIH0qKLkjnE9TdNyuF9zsD9jsVjSLFuWy6UAlCCi1JwjJoRAVVV0XUfTNBwdHTGZTAZmILMsXdcNQKTvezlejCyXS8qypG3bAShkt2RZlgMIKcuSEN3wfNyWeQHPm6ExcMnvN00zLOjAAGbOzs44Pz8fmI0xkM/HL4pqA3BkgJE/n88nR+WMmZUMJsbnttaEuIEByZbdW8AG+MrgJm/yqqpK2qLlOutxer8oLLYwKbOvR2lNiEh9IsCFTSCgsosn9ftnYWzH9qTf38AheV7WkRgTm6MSaGK9scztMq5hBeCDlxpLwcucHyM+BPoUAWaLxy29Aa4q8Po/Cf3yYwlQ4OJOf8yojOtcjHcI413Okxz/MhfRmHnIx4pxXQF0ExVv7k5Gv8BmPLoawRa9AVLyq+x8nsHJdlqgi9dzxdVuDd6LC9pVlttg7B4YzvSqY0TZbayBQcSl+hYRiQzoneP119/gi1/6Mg8fiLvB+U5Skydx6aVXddk1p0JnfkTR5oU/370NSdEFmiW1dwKla1By0bc+VgxBqp46FBETwS1bgEaNvrPGLjGxNJff57wgbV//9v3cfoS1i8A5R9s0w+tFWWJNKdFJAD7gXCd+LiV6h7PTBf/7//e/8N9/58vcvXOHl156kZ/+mT/BT33uc8z2ppSlJD2TC9FDX5M2DzTNijPlMHpGYS2d7mmbBucinetxvhjOEeDs7GxYLAHqWsSbq9VqEKBmdiKDjvz9siyZzWaD22WxWOC9ZzqdbrhejDG03UqiYNLYz5Exy+VyWMiHSsBJz5HPsa7rgU3Ji733nrOzM8mcm6IJxyzVGlSY4TMZBGSXztBuo3MaZyHevu/59azNyZFBVVUNwCa/H2PA+Q76DJA92iBFFauCpl1Kbp0gfQ0lWXcjgRAUy+US5yTaRaHFxbfNWG+7eNRVda+e3J4G5FzYiA0+WPnrwkytUxRmzOw4SZjt1nOdUgQv6QYEoDwJvvifBIVcYT/yAGXbDTEWyW2DhjGtOQ59zd+7LOV9/j6QqLk1OHmSxXqYEIZF5MIndnxHxK85I6n8Rp5Y0lhQo+sfb9g3JqI4fHb7/V3Xt/sCdp/j09j4fmxXbb7SEvWfzzF4+ae1RD6cnq341rf+iP/23/8HWoNVoksZL3Ibl7K1KO8yhcbjB01IiOB3MqrbzFQGJWZ9k9JOUDT7ayX/cHlyMuvvj0V0A1Bx5DlSkz4SGYSDIc9jmXW65Fa6kYtnux12MWfjx7xwWWshuTzyrj9nLV2r/LSce/QpE63k62iblu9//w1ee+0N7t9/yP5szk/99E8O+iwV10UfNRKKXOhI3xuOj4/wruHmjZsc7B/gHfR9qjGjQorQaQbAYIzh4OCA1WrFdDodtCLAoFFZrVaAgIXsqplOp8znc5bLJdZaTk5OWC6X1HU9MCpKiT4GFQYGwRgzRN50o7w7ZgdrlRmHsQtmNpuhtaZt2+G8MkAYb6hEs7EuLJlBSwYRzjkmKWcKrIW++bfH0Ubje571KovFYgBteZ7MnzPGUE+qoT9kYJRB0r179zY0Kfl7uU28dyl8eoYxFhtyFe/N+WmjvT4gN8Zj2Vp5dskHYMRZ5yOm98LmGBrusaS6H5IlRhHRuiEbsnoC0e+TuKV+GPbRAUU/8gAl+00zwNgGHvkzl4k0B+HZSA1/lUkaqjUwyQN0HB0wfHbL1RSiByWhfDEy0M1S10QW1rqe0PeOsrAEHH3XMZ9PUFqz6lqpSjrqmMYYyqJAwIxcUy6al6le7wKF1oM/aNsn/jiwEJMPY0w5j9vyKhsL8PLvjYHj476vjcYYhXekfBMt3rVMqwlvvvE2X/naN/nqV7+GNhHnU2iuYpya5cKEnCf9SxmDYbGVGj4qMR8qtwEpyGe821MKnQBGDAFdFvjlEghUdUXbdmkXla7LKopa8nS4rpfMksqALcEY8L1MfoUlupa46qitZq8qsUBlKzyR49WS09U6EoIrXDwqgaYLbqCdDN7F747dorkd5TelKN66QRLXpBIhnoS9xhaETpKRffvb3+b07JzFYsVsXmGMpW06Yi9gLChxt1TWDdoMCByfnEgG1WCwthKqPAF1ay2TyWTo913XMZ/PqSpxiUynU2KMTCYTJpMJ+/v7nJ2dDa6QbEdHR4MbqKoqyrKk6zoWi4Us0on9uHnz5qAlyeJZpRT7+/sopWjblqZphsU+i1czWMqulayByeBob29vGCNZgCuuHQEEbbOuwxNjHNiUfJy+75lMJgNTlMFWdudkIJPvoVJqYExyen2l1ABCZrMZbdsOETe5EGL+rQzOMoOUfzcD2AwcvZdjny8W4uzUWX90Zdf7gS2ETXfvRVA+7rfb52MS5pA+vX5P/s5joO87yrJkMpmwWCwoijK1e8Hx8TG37ixT9mYBa5Pp+Hevsssa5wka7Vlwxg87VOop7UceoOzaAY5ZlW0R5nhRHYOU7WNcZWMWYLyDeaJJnpS8TGW1vxSu8z5ycHDIjcNbnJ2do5QeEjqVZQlaU1YlzYiGjTGwWC45OztNO5ZIUUiCpxgDTaLiq2pCcBdp++02vPR6uby+0A/TIiJGDUhUy6ptWawa8D1d6/n9P/gm3/nOd7n/8IjercEJZDJhd2Xmx5+7loxnWoMySRcR0pw0XohHWz8fCDFPhBFtQBWS/KxdrYjAZGJoeqkN5HpPu2pQxlLs7XPw3PMc3ryVUmUrqS6rFZWB1dkxywcPsd4xNQZLpDAlPZKNsw3HtH2+6CvaMzM6F9947HR35T0fKLpx5suhhVBKy+6xdxnLySKWomSc89giCdeV7KiJKXKm77l5c0bfBmIQ3YjRlhgNxLXmoq7nQ2SK9566rplOpxwfH9O2LWVZcnh4uBF5ksFCZjyyJiTv+LPmIrtJMojJAPfs7Ayl1PD6WGybAUQGFWM2YbVaDYAm60LynJTHbNam5LbP15Y/t8345o2SUoqHDx9uALV8nRmg5HMbC2Tzxi6Li8fRSBnQeJ/1KJKhV46hBxCUGZdxW1lrhnb0PrmkypKIwqtiI5HlH4c9vZ4lIFl5so0YlASMM5BzzuGtBSKLxXmqv5XE32lDJFoniUSU+eWjBQh+uOLbp7cfaYBypXzhioV47FfNf4+/M56Mx6/J62uAMnYVbfv3d5nMu1LtNg5JkDQxxcw//9yL/Ik/8TNJzBe4ffsOxmihuquK5WopGow0YTRNw+npCcfHx5ycnPDo0UPOF+dpvTDEKBPbIJ7YdU5Psnve+txlgG5MO2+3+bOYyhN7kIHc9Q7nPKvzJffvP+APvvEt3nnnPm0nC6yxqQCbnDDRyYK87Yrb5fbZALXZTaGzqyJNJnEtcI0xpCgThVHZ+RKlHonr0L4Z0r0pQFvDtDSsVo6ARxlNNd9jfvseB7fusH/zDrYqcW0v6coNFDpS6UhJQK9W2L5nEqVWTGELag1NW1BqTZsB1FXtqXIRtLj9xmNB55XRbRGJI1Xb0CRXMI3DS0pp9vamfO5zn+WFF5+n6xu0Bu8la3DMYkMlrpe6KKnKiuiaLH0QQWKQasJ58c4i1xzBA6I5yexCdt+EEDg/Px8WlZw3JAOJDCYmk8nArsAalOTjqcTSjZmXcVtlfUhmToDBdZLDb8dp9nOK+fwbq9VqCD0uUnbbDCBy4sLx3JPdRlVVcXJyslG5OruasiA4AyhJ2LYlTh2Nk3w++dyLwtL1zUak0PhzMcYN7U2+lgwa9/b2hGXSmqg0SqX57/Ke9YHas89LozPcigZSCHtS1zVnZ2eIzDvw6Oghy+WCPPnmTOdnZ2frOegJNrUfjuVrfJZze8wu6SntRxqgZNteZC8DJ2M30JiqHovF8kQwdgFs21hLsS2IvTpMWaNUdklpnPM4FzC6oCxr7t17np/6qZ9GKcXpyVmiVqVs+WQ24441lFUFMbJYnbM4P6dpWpzraNqG11//Pt/8xjd4+OgBSkFZVklN7tEj8WG+5l3Pd7bvVhtvA7jLjvVBsCwhStHWCJycnvH2O+9z9Ogh3/7Wd3j3vYcsG8lEqW0h9T6iQ3KqMriNL2NQLj9vkJowGknVLgdTCqkIS0zZ5D0qpLLyWlEYjVEarKZrJYPi3rSgPix4/sUXmczn/I+vfZPj8xXTwz1e+sSnuXHvJZytaPvI8VmLa1sKDSp6rHJMLPjliuglGV3oHCpI+nhdFFSFpUANehS5jMvv52UutR/sXq13lUPbARJevf67LC1379zi05/+FD//8z/HvXt3JaldpsldD3h8hIlRHBwcsDc1NM0JqHX13Qy4ZSxnnQTDzj1rQbz3TCaTYZxmpiSDkbzzF/cRGxlhi6Jgb28PYGBQ8oKb5wgBV2vGILMNGYTkdh3/bmYlsjsku4cz0Bq7qVar1dAvc7gyCF7OUWRjUJWBw40bN4bfyu7tfI7rukOb810+1prRkCiqrNuZTCZMZzX1pKLvuw3gkdmYzBiNAUpmT3I79rnCr5HCgeEZ6rM8ra2H9trtKG/kkXJV3990/6xt3f7Cxqnh+s/Oznhw/34CI2m+TD7h5WopyfF4kuX/w9KgPNnZ7TKlGBo8c6rjx6e1HxuAkm3bnbP9OKZGx7uA8XtjwHLZ741BShawPW6Szx4CrS1amyGXgalkd7e/d0BdTZILx2JMSVlKjRDvAj5ElJUCX9oU1NM5RTWh7ztuFJZ6OhPf7re+yfHxETFGtNJ43w905FVt97g23tbuPMl3nnWHIK6wSNc7Wd6U4ruvfY/j4wd0zYr3371Ps5LFTGlDRONcJOQQXL0eZPl8x0Lpq85LpzVQp0y+OgaIfhCpWg3WKEmlH0AHKIymsorSKg7qOfhAYQ13793lxo0bvPyJV9k/vMHN/X3+9//jv1LN95nVc2JQnJ8uOe+CRMJ4qdqr6UF7fBJIl1pRYVDKCYOioSoKVmVNWVhM4yV3ymOmgScRcz/t9wQdOXG5jCfN0eJjrOHGzRv83M/9af70z/0p7t27CyHpQkjlJSLD92PMeW+i6DjSImuNRWPRqqAoalbNir73zOezYbE/Pz8fzne1WjGZTMiaEGvtsJMfh/pml0ZmX4DB/TJ2547dPW23BiRKiXB2HKWWwUNuv7xQay3Zb4HB3ZR1GpmVzaG91toB/DjnKIqCvvMoFTZC9sfz1a1btza0ePn1zOBkxmM7vUJ+zMyPUhJ5s1wu6V2PNrC/v4e16xw4TdNsbMoyKzQ+Vtas5Cihru9RPqAL+4HknXqsbWzM8rMnmMO29CaXHl4pfHAUpdy7k5MTHh0d0TTNaA72oNbh5CpTq092Ak/53g9iPxxG51mP+mMBUODJd+5jsJJRfh7E4wklTzrbtTBy6Ns4W2L+zcdFp6zFiQqlZCcefBhcMnfu3GM6neO9pJyezWYCTLxj1XWihQjCD2htmU1rQgwsFmdCoc73+MSrnySEwLe//W0ePnyQqN6IHi3Sl53bpW2mNyOWxjTwdtvv+vvZTQqNGV0QQs+7793n3ffuUxfCGPiI8OxKKuqKa8es84fEtRblghB2168N5x0RyOORJV+ea6WwGgqtKIxUa60Kw6QsqKqSqiyojOG5wxsczKdMq5r5wQGmLJhNJxzO5/zkJz7Ba999ndbU4ALtqqNpAi5qlKmEII49JomDC2MISuNSgqdSa3AycOU8FCauq74y2sFs27h/bt/D7YiTbXscABdpTjqJMQ2ecOLh4T5/6k/+ND/7J3+Ge/fuUtcVwXkkzH60eUiAzMXI8dEx57rHaIdRjrLUKKsGHYq1lqqq8aHfcEdkcelqtRr0HlVVDQvvuO7Ncrkc5oAc8ZLBQBbDZo1IBgSZGSjLckiotk7CFYcFeqzjyG2eXS/jFPQ5qVvWm2V9SmYjsvsnZ7Ntmw7n/Ma8la/LGMP+/v5IgL/OOJs/1/c9q9VqI6orX1vTNIMQeHxM17tUP0hRlkU6b9GVrJoG1/XM5nOM1vjg8V6uT6W/tVqfR26LnB/kiuzvH5CpC8d/ojkqMadX2Vh/UhQFXdfx1ltvcn52ikTySOXyXP/JGCM6o8gzcgofdVu39SZz8j8pg3LZLn3XLnnMjOTBCwwTzHjXseuY8tpm5M82ZXpVxx80LKNU6EIzr7DmNPnQDbdu34WoOF8sePjwEc55lk3DjZs3KKoy7bqSj7os2Ns7oG1XONdz+/ZtuSYX6NqWo6NHGG23E3dc2XZXWf7OZWDnsgXwWcxYg9KGZiWl3H0UEWYIqQ0jojUhZxSNCbCEAUjGONolDoAqfZQ1wJJ1NLnqYkQRsIDRYIym0IbCaMrCUBpNXWjm05qD+Yz5tMZaI0nlnGevMtzd36OuKmazqUTi+B7jep67sc9PfupTvP7wjDMf6TsPWLSyeB+HOj7BBzwBryLROYIXFid4D77HO7mnFwq6pj42gusDjV1onfLD7CoFIe2ReaeLYv54pcDf5/61vRAA1aTik5/6JD/9Mz/D3bt35WghUBSW3nUoo1Be4VyPMcWwLnR9R+eXlCUQWvpeckkUVtpiRUtRlRtCzgwUVqsVi8VicNPkhbHrOo6OjgYGVSk1RJ3khXs6nV5w2eRw4gxUJO/IOo38+DfyQjwuCJjT2ucFbZx9NQOCHEGjtR5cU2NxbFEUeOeZTKd4t75eYAPMyLlKSLsxeY7L7qaW1aoZ8ruMhbB931OW5VCwcDKZYK1lOp0CKf2/d9CntPyFZaonaKNpmhVFSj4WEluAkqrWwTtxuiaGTWuNsVYSta2H5WanWe8xPnB7Zv3Jjvf6vmdvf4+mkQR/i7NTXn/9+zRtgy0szdIN7rLgA9bYxDp5KffwUVKkflC22xv2TPYjDVBiXF97zC8kWy8648/HlDdhQ7o3wPdM5KkkiIyj7w3sh1q/xvb7I7cPcKFomLAmKVtmyJNLoOscJyeP+P0/+Do3b9/izt0Vd+4+hyNCYanrKaausZVQxE2z4vvf/x5nZ6fcvn2bT7z6cer9A0kjbQx379yhXa548/vfpylXrJoVVhtZqgaNgizmg0tAbdZCGbVqqjZ7EXCM3Sb577FPfNsFlj8z3kVdNlkMyDsGcI7oAqbQaBVwAbxbL7ziXkgLrCeJVhTRWNGRkLL2JlSjI5LKfkThBiUuHZXyMlgVsRqqQjMpLJUR9qS0hsoaqsIwnxTM64LCpLonrpdEZaqlWTXYsgJlKa1FqcBBFdm3JZ/9+PO8f7bg4SKwUoGOSFAe5R0mOgwBFaRz+xAwQWG1TZFCPUoF0JHOdaAVPga5TGOwtsYYi2sbAUUKVIgYFTEE5pOKSV1RVjZlXE15N7SibSQUmii1Q0IQt6I8j8NikquajseeUZIRVCPMljKKgKaaTPjsT3yWn/1TP8/BjduQiv/FEAgEjEqZY51HxYDru3WhhyjsYWwcWvVYUwgoiBqT3AtF36GNGjQRWQBbVdXQD7PoNLtrcnSFRPYcMJtP6bpOIn66hogUJez6bigPkDUGxkiuFm0Ufb+ONRctTZ6H5G/vPJ3vkKrI62gZidxL7esCCiWfbXugY0XDcrnA+0AIHq0lC6tkxC2YzwQ4+CBJ7LxzFGUhIBnwQYTYMUbaftOd412g6Rq6viUChSmwhSGqiHJgCtGFiAsiYgpLbWogpjaA4COeQDRKchIpw2wyl0rRriOk3DdaW3IlYhEUGwqrIRp80tHEoAbXt+wawppOicJdDinvnwJX7MDX8nrq3xuM+1XuG9hgBDc1siGljHDEEKjKgu+8/Tb337+f3H2RPgR8hM45fJCcViF4QvCo6Eeg/4NlU56dnRkX4Xh6ZJG6zcjiMCieBaf8aAOUSx4vW/hCjJB2RGMbhwFmGm78G8O/GDcWWGBDVJYX5DGVPtY8qJR4Sz4n7gMpdBboXcM3v/1Nnn/pRd5/8ICftJbpbM7+rRtMp/t0XYPvWlaLc05Ojvnq177Ka699l0994hPcu3OL27dv0xtLcD11WXHj8BCtNIW2HK9air09IoEYhT5QKoGO9E8G7sUCfpl+z22zTdMyapfs+hpnrhzXEdmOlhoLNncJViUcz2N0So3tACO76PUtihA9GklJLUyJIiglsckhDjs5SV8vQYMloiWRaGJFzMyQNmgFZQFGBWqrmZaWgoAOnlJBScSGgO01sYFVo2k6ifOtygptZHdoyhkUkja91A7VL9H03NyvCK7FqQleW/qgMCqgaNHRp5wrCh01+IjCorXFtSt0lCR12iraviGYUiZBBUobqsmMaV1zdhwkjFcL0JpVBbcODvjMZ17h9u1DQuzRRtO2KxbLBdYWnJ8uyJlcQwTvg+Ru8JHFqmHVtDjv6fq8eycVRYPDGze5f3Qq9VnagFYKYyte+Ngr/Ok/+wu89PFXKKqC4S6o7DpTOO+JKlBog3eewkiemaoscaqAEKiKitm0EnGwshhT0LaSCGvVtCwWiw13TGZBcr9t23ZgIrKY1BjJcmqtIQSDMenag2e1WmyE+vYuuWxGVZNdt2ZFfBBWJ8ZI26TKx6aAqFIyu7W+xI1AQwb0WZA6uI+DgBxJTOhYxQbvArYosLZjvn8g7pfkQijKEqXFteWDG64jjz+lFYW1Er5uNbaUczdWp+TDArAWy3PR5dgiAa4wJGN23tE1nVQPT4BrtRINymRSU1U1ROiD3JcccSjjPeJdCnfG4vpAQPQZg1dSQUwAJSJjkmAQFjDIaYzmo8tY2ivfz+BkBFIuX8wj2cW7Rjij3wGKOoVPK/B9z/e/932a1YrpZELXOQKaoA0uRimZoSLGpG1qDCPB7sgVcoUrfvsaL33/aRHdyMIHgJWGQ4yYsP/pXDxKXfSNb7sfxm6XJ3FpbEfnjHMNbLMm2wNhewEefzY9Y3yb5PhKQAqaxeKcBw/vM53Nmc6mTKYTWXBm+5ydRpZ9C1rRu57T01Puv/8+N/b3OTs7586dO5JQqm1RBBHd7u/z6OFDmajVmkvNbg+l9Mj/v9GyG9e16/rHLq3tdsif3W7DbTfYLlCy/Vxv3LO8sxqTZZtMSHbfDBBSawiOEDwGmBSaWWWZWE1VGOq6xBqDD4G29/ggOU9sISJYi4coi4BSInwtC4M1WnaDSihtH7yE2uokQvSetnOYpiF2DZSBxekx9XxOXU4wJiU+i7lXRFTwssglfVIcwnJGk00mwWIgT28q7WwjKX9FCk2NrUITmdUFz90+5LOf+Dg/8dlPMpuUvH//HUkkVRjqvSlGG+7O51hTYGyBMXZg1XwUwOJ8oGk7Vk3Dqmnoe1mYA5FXP/lpvvv663z9D7+FPzrFxchsOuGTn/gkzz33PEqb1N+yCD2FYG+AUWFW8tVOJlOoI5YaayNW59TtFd6J6DMC1nrm8zl1XQ/sSM7nkUWvue/myBZhUIrhveyK6ft+0JDkjK5ZJ5KTkeVzztqS7L7J7p/8d9Zv5IRm+VyaphmA0naOkjw+xllax2NiyN7rHEWRo4s2gX7fdyMGU1LUa9YpEep6HXE4Hps5c+226zu3kXdecvrEOJxzFhKLpmbNnIJoVXLk0Gq15Pz8jKqqKawiBoMyemC6xzXKIAo4Gcb89hZ0l13hJ9p4L7+udnznimNfQiroxEQXVcVbb77Fo0ePyJWwyZtSGMqcWLtOVyClOIbEBVxcwn8Q988Hy8g8za9+kL/8Iw1Qso1V9mOAcpn7YXvBHQOabRfEWAmfB96uBXv7uNvP8wSWBzFIQi5G5+x94O2332F//3CIKKgnE6qqpi0rTpLPuapr7t67y2Jxzp27dynLasjm2KQJpK5rEcslX78MsnVtm0GuqzYzJcoiv9nNLmuvnSzVWAS3wR5dnehtfLzhO4zBypiSzd9ZvyNNuZ5sNcKYKSMZdHWEWW156e4NXrx7a+2ySQLFxWLB6dmCpulwUdHHnhAdffTDDxojmWJ1YdDa4LXCeUfT9ay6HmUKCmtpI/TVhK5ZSfqUvqG2BednZ5STCfWkxhqbXAGJAo9RQEeUPCfijosXptZRg5F1NcPCwBqEa63QRtqhrkpu3zjkEx//OFZrHj14wPnxKc1qSes7FJFJVVHXc0osVampqxJrSzACnut6QlFWQ2RV03Y0Tcuqaehcz8svv8R8b8LJ6Qmd6zk+b5hOKm7fuoE1WkCcVzgHBgU6Si00Je3qQyAkUWF2FeUdpghcA8G1Sa9R0aw89STpMoKkcs/p49cJsuJwfzPrMS7kJ2yI2tCR5T6chbZj4DHu9yEEfB82jjdmEbcjBLOWJLuccvr57TDgcUbrcbqD8Wu9E1dYZ3RKDicRQNpcrGDsXD9kcM3RgSFV2vUjNjm7YququjCWc3/TSg1p9MfRjrkNcpRUZk7HuaFy/hite2Iw+GhR0eJ92BzUua8/1dq868OX7dnH4ORxS+mIORmf2/gTQXSDRVHwve9/j5OTkwGU5TEavGSL7vsOY806ZPyqU/hBVvk4/O+ZDvQ00O2HbT/SAOUxZMhOFmX7ve33L6ML14szjEHK+DPbQGfjt7Y2BNuLNkjhtfffe4+9vQPOzs6Y7x8Mg3w2m3JSlriu5eDggJ/5mZ/l1Vc/wf7enIMbh8mToRM9Kj80n++PztmnfzG5eAT55/LhWSiZH9dARZ4/zsbM07gtxuzSWEy4C0Be+O4Wk5MBy/hWKrVmWeJYxRkjpPBVhbg5bh5M+fSrL/OZVz+Gb5a0qyVEASfdeY92K4zvQCFF6ILU4zEGglIpBVPEx0j0npAqkzZ9T+sc1gZ6a3E+St6DNAnFIC6P09NT9g5vMCkqrCnIFVFVjOsq7nG0n4z5qkcXO6JMgw/EQnKzaCU1jn2M9N4JOFMKjaKwhtmkZjapcc2C1fkZ/WrF4vSU3nXs7c3ZKycc1BPqsmI6nzGdzqjqCcYWKKXlmqNCGUOsFd3EsVq1LIslTd9gQ8crL97l4adeZbVa4cMDbhzuU9cl5+dnTGdztBIWRGNQRrRAOW3sRv9J46MsK9EFKZcAvKfrehQtq1VHDLkulrRJLrCXBa3WWhaLxeDiye8PrETqT/m9vHBk5mK8WI8r/g5J1jq/Uf13vNgDQ6hwjiAaszt7e3sD85CPP2ZnRIS7Pqcx0C8Li1LQd62AzLaltz1lZTFaU5UVWWXndN7NC8BwfU+zageRblEUGGsEQPaOJoRB86GUxqS20NoM/SyHC4/bJkdEZrdaTpKX2/78/BxrPK6DqDU+BkxVpnHOcD/W5VFzksM4vLex7o5MDWNlc5odbPQdNcy/u4+18+A7fjcDKB+kD6gI77z9Dn3fD9mJ8xdDEAGy63r0ZIrruyG6Zy3PV6Pfizt/8+nsSVin3aY2itQ+/bc/SA7lRxqgDJ1yGwywfn0bfGyzG9vfz69vv7btJhovsk9j2/7OvDMCqTuzXK24f/8+b7/9NvsHh+ztHwKRvb19bt++xftOal+8+uqrovfQ0pn6XoRa2efc947Dw0MmkwnHxyuUWod0QgZHeTEMCZyM228MGDbb5rLn2+07vsZxWu1dAGWXDXud9Y2WSSwxBBlEmVExxRDCmi6OAeUjhEBdWe7ePOSFe7e5dTBnEVpi4+j7ltido/slRWxR2hOMoQ+BRGJQGJPCjlN7eU/bOzrXp51/BkoyoWoFVVkwqWrqsmTZr1DAg/uP2Du8yex5aQurIwZFH5OAF7kHIR1jnbd2qw8pSfwku7Aoi4hS9JGBhcgap0jAGsV8NqGuClyw1EazcI4yRu7cus3BjRtoHymIlEQqoDaKaSFpybWxaGNBJRGmD/TeMysK+klFHxwr1XFzb8pnP/UK9x8+oukDLz73HLNJhes6+qpHa4U1SgS7SmNSFt6hoFoeD6m/aa3RrENzgbSoR1wv2hxxl6zZugwGYA0qssvEWst8Ph+YiaKwoNapAvJnMiswZmbH4bq5/85ms+E3skh3Q5CaGIr8uXy8+Xw+hCdnF0k+xzxWJpMJwEbBvgzyswvPe48rSwl/t5aysgNDoxQDCyRROTlZXEmM63NTSokIHpUixRI8joAKCZgmFsgYrF5r7sbBAEqpIQopZ7/N90AAjIbYJJazoPcaUxQU1ogERkXEMSualDXqUChCcovI69sgZLz/G7++c5kcgZPHbXCHL1xyPEXSNQKLxYLjo6OhP4Bo28QNp9dMmZYEnSGEEThhxKbIiW1XPf/jsjU4/HBcRNv2Iw1QYA0Yxjae7LbBy4W8Jlvf2fX3RVfO+rfz+7vcHRvnyYgxGfkoxr8qOQgklv61117j8MZNbt99TnaQk5r9/QPOzs7RbYsiUpUlMUjNHRd62r6jd54Ypes/9/zz3Ln7HMenR0LLGlGRa50RexLNIq6nPErWTIRGpfLh4+sc+6Vj3J0/YzufTKawx8Dkqmy98gMJzOQ/GGcDlp3zGKDIeh0TsAgYLS8aBYd7FR974R63D+d0qzNcc44JPTF0lPRMDMTS0KuAAzoFJk0ahYJCaQqtqa3FGkvoHbhI9BFtlNC8xmCB0himdc18MqWcTujaBTHCg4cPObx9m+dRKY9HTELYMFDogeSaYn0tYyZYjSbWGEP6eyRyBslsa7REJsVIVRXcunWTvWnNyeIU17T4tkWHSG0KVO85efQQNZ9D3UoyOiPXaxJgKMsCbQ0hgFOibdGlpdTQo1HeE7sltw/3ee72Dc5XHXfv3BKBMzHtKBVag8FglPxGTC4qSIBQKUKUiKrlckEMSyw9oCmMGSrlFnYi2hvYqJ+TAXrWkeS8HsLIlMPCn8W0OmmBsl5kXEgPGFLExxgHLUl2oYQgQmFJFbAQ5iiJQkOIKQJH03XNsIDLgi0p68vSYq2haTIzI7/rXIf3/RD9sy6pkXUlDuekb1R1SZV0VCgZL7ky8tjtkkOHs3snj+HMHsUYh8y722N0KCyoFHUlhR2Lwm6AMVBMJvVwnlVVjubHQFEaJtU+oAhe0/YKZUqMNjuYkUvcEypsvT5iHTYoFLV+zINmOOTTUihbp7D9lShunkePHnF+dsb+/j7NaiUbR2uxXrIfh+AJ3gER77rh+YgbSqc/Wh8IPJs9O4vxUXLvwI84QNkFFPKCtyul91gLcpmLZ9exsl2mo9jFJGx/Z5zsbNBnsMkQtMsVN+/uY63l7bff5rnnX+DTn/0czou/vFDrtNE+TSoxgjUWBTRtM1xfWZbcuHGDu3fv8r3vf3v0nlC32Wki174N2NYTQGZachtdpq3Z3m2OfdR5d5gByngRuMxVBtnjEVPp4Dzn5IReozYdXEHpviR62GqNd4HSam4d7PPic3c53Jvx8J036JpzCiXC14lRhEITWomY6BzYkNLZByjwlMZSG8O0qKjKEhsgdg4dQmIDLAZQXsJljTESyptdAEqzWCxYrhpJSaMVymi0T1NCDJK5VidXW7qmXblH8vVmDYpB5WDMAQxGq4lJLVxXJbdvHTKf1iyMYj6dYG7c5N133uHdN95i/+AAaxWr5YIY0i64tJS5Ro0xhODQaIyx2LIi+IKma+mISZMQODt6RL13wN58wuHhPpNaqgBjNV5JlJNRYAlYHfFa4zEoHdfXNeqHIjZ2aJ37n6ZtO87OlkxqT4zSz8uqHEBIHtuZas/9S5K6VRui2RjD4ELJ/bPruiGra1VVAxsg7qU1AFKAN3ZwPY0Xa2ER1gnhst5DihrWG4BJzjEM42I7JxOshbEZIPkYhuvJ1ZadX6em7/t+OPdtnUjWweU2GKcAyFlQ8/PxGAYJeV+tVszn88TExIEB8t4zm80Gt1TOx7LOnKpS6n6NUiUx2kv4QWEp9WVJd8Zr75NSKGOE//QUyk7mZPw8hsDJyQlN23IjRWQVRQEj1s17iWqSopm9hK+nU9hgLfJrP7B7R7F14U/39e0L/ZDsRxqgZBrzMoAxfhy/N7ZdQGUAEDu+K77XTTfP2He8LbbLFkJEhTBMxrvMpvobh4c3efDgAefn57z11lu88OIraeHR3L51h/fef5cuBMpqQvCOEANt06OU5J04OzvDdz3OBW7evMVkMkPpwPn5MRSacpLLnOfQ3Ayk9HCuIl7zxLgOw97Fdiil1rvR0ecycMntkHee4+R2Y7A4/s5ag5J+Wyc1JSMWTIFGJv+Dvf20gEg2x2W7ZFJXdF3H3qxChcDzd28yn1Y8vP8eoW+xGlTwlNagqwLfF7i+kAXaRYqgWK56ooLaGCpbUtuCvXLC3nxOmO5xPpEJ2VipeOy8hAh/7IUXuHv7FnuHh5w3rRSp65ZM53PmBwd8//XXOTk5w/kpLibXV+hxqSSBAMeAR60nqhjXES5K0bUt1hY4L4tViA1aWYhR0u7XNafnZ5Sl4fzshDs3b/DC8/eo6HknehbWUBjF4vQMrSz1tERrYVsms5rJfIKtC4KOeDxd6PFOYa2Q8EFHlFVYVWKVpT07JwbHbDbj7PSYt99+k7MucPsli64Uoe2ZTkVQ6DGEDNCTu24Yr0MUj+Lg4BCjarrVKXVtmFQZZCzpu0BhayazKUrBcrkcmIDsTmzbluVyuVEIMIs3J5MJZVXStqthce37nsViMYxn7z3Hx8cyNq2lbdthAc+L8aALKddjKgOjnAdpsVgQY+T27dupvpb0ibOzM1ZJ1J5T72fB7DgT7Dg6MIR1rhhVVQTvOT89o2lbyTTrPfWkRkU4Oz2TMWQ0zapBG01d1WgdB21I73qssSnST1PaYkhvnzcWa9eTbJAeHT3YEPDm6zw9O2Y2nTGZTOj6Buc6qrpiMq1xTrE8X+F7J31sOiGoesAbisQOkkF5Gv8b/Kk82cYfF2b10ZgBhvDky96/iv1WeextfV2njVFIG4L33313cMtYa7HG0HSOsiywVhLZ9V2L0fL8+Oght2/dSn0+z79y9CHK8tKz2ryM3W9eZGee1NZbvKe0CGA+UGDzIw1Qtm0XSBl3vl3uoF12pS5ig2Jfg6BdIs/tY8mOd/f55okt+9DzxHb//n3u3nsRo41Q9mmyyjU8gg8CUkKQSapZbewIX375Ff6X/9Nf4Itf+k9436cdjNnMgpldKTGDFlizJ5ttuqu9x5NotnHUw7gd8m5iLPzbZcPrW+yOUmumRNoh0jStJPSKcr43Dm9wfnoiE4Z3TKoJt2/ewGpN03f4rsMEj9Kk4n4FdV0SgoSmlj7Qd5FSK/AS6TObzNmfzdnb2x8o9PWCoomKQZi6N50N97AoCo6OVtw8mDKdzVksG/ShR1sL0RKdksRYMQ4JyjKsjcMkk7rNGq1stLvRBqs0HnF3SeiqYTarqOm5ebjPweE+1ij29/fQz99juTdnub/PcrlCRU1ZFyzaE9BgypKoIp3r6bwjrhqmsxnVNOIVGALeR5q+J7gAOBSyS2+bhuPjU84XC1x5hj05Y3JQSoST86lApsMbiEGLDz+s72meqBVgraG0FaGXUgddt67oWxaKwtYYa1EaDg4OhjGUQ3uXy+XQTpm1yxlUY5Qw4xD9AFjGocYZKOTvZgHo/v7+EEqco3JyCHIGQPk8cg2gnOck9wljDA8fPhyKCI6FvVnHkrO8jl2jgwYl1cLRSqXoKE9M+gajNWVRDuzKMBYRF1Ou+pxBW1ms6/NkhsZaO6TLz5uJ+XzOZFLT9x2odSh1Pq/MkoQY6PocsaNRWqUaQHC4fyCMr60JsaRxo3GN5DoBPQCVwa2b30vD4SIwefycfpWm4knW06s+s1gsODs7G/qK0UYyJRuNMblw4roCtPeexWJB2zaUZSXciTHDujIuBHmZ5Q3cB20bnrBn+v4zsjaX2I8VQNm2YSc+cjXsYkeeziLbXx0zAJeew9ZrSumEwtcAJ4v4rLUEZTg7O+ONN97klY9/ihAlWVUwhslsj64PqBhQKbGRTrH3XSsTTCCwaFbYquTVT32Sh4/u8/bbb3J8fCyTh1pXHPXBpZTYYRgckMNX4XEdbpzobtwOuzQmmQofMyjbmWXX4ERBTIyUYueoiVFcW95BUYgW5tWPf5zf+73/IaHG3jOtSw4ODmibRkJH+1ZAnY5ELc4RY0vKKqKUxXlPKCP7YUKMCmMsB/uH3Lxxk/lsL+kV7OC/l0RdTjKjGtHt9L6FboW2tYCiOMMpxftHDyjvfQxbV+hopGiyC4ToEbVGzguhJAmaWu8ohzZVEqqrlYahmq+wTNqoVF3ZMptNMf2S5567y/7BXHauNw843JvRni9ZnC5YLle4Xioezv2UZbsSEF5YSdGPTJiN61GuwJYV0UggtMaIgFZbVsenKKU5OTnlvfff53yxojUL9OyE25N9lFHYwtH1PX0PzoB3ShLvRdnl6yGPBqky81pv1PU9XdOnXB0lWpegpNS9LeyQ9yQX18uhnmMRKzDUm5FaOxXGatYaDz2koc96jKzjyH21rush6ZuKEsardaq0nLQ/In7tiDEkV4uEM4dUo0YYEpeykMqOWdyykmFWXAR2SBwX0xgoU7ZYFSUKL4vCjVLUZYHRdnDvyhgTXZuKisO9QyT9/mKj4nKIcYjUUUWJs8UGMGsa0c8c7O0z35uxbFZ0fTswyMAQoZQ3Rrmfeu9ZrVY0TYP3HbPaUpYVynuadkXvTRJzj+YS8iJHcvOM549cHXud1OxJ7KrPPvY422+NvUlKmJSjoyOOHh1RFSW+d0kI21Ok/FNWaULv8H0vLnZgtVzSNFLbyNoSk9y8qDGUukqD8rj1a+wLe3LLcPCZ7IeAmH5sAcr2wvgkQtZsY2Bz2evbgGSXS2iDUeEiSNFatCCDsM6ta2M4RLPg3nmb+/fvc/PmTap7d7DWym4xBFaLJV0fJF9HmiCy73e5WrBYLIbf+8Srn+HG4S0ePnzI+++/z4MHD0RXoEW0JxOrA9SF63pcu21nzs3Xt+0W2gXkdoG6NaWNDNiRzuTiZ9fjQmtNYQte/cQn+IM/+Cp4j3OI2NBozs+OccslRRR3WwwelZJTKWsplELbEusDyjtKa4kRjLbspXDuspBcGznHSnCRtm8lRXpc59sIpmA2daBaDm7c5OHRQ46OjzH1lNOzJdpalNF4JGxZxTBcSEQiecZtJm063uEIyFWIEFZqr2w6r3WK8Lp1+yaz6QRdaCZVjQ6RKu3C69mUbtWy6hr6lQCupm1p+57JJFCUFcbKoq3ahqKsIASapqPtO5SSDKyLVYspC07OFzw4PqbpAt2qpVp2uAAxejrn6Jyn7zXOarzXhJBCdEeRODmBvHMOa4RxsMHig0u6FCmASZT04ZNpPdSTyaLWDFTGbtbsssiMQVWV2KQVyeMxJyvLC3i2sfso9/n9FI2TE7plJiRrLzJDkhftzEbk6r4gwKltW4qiYDqdbhSey/c/u1CHQofJDeB9HBicsiwpi2oodChFEP2ga8n6kr7vmM9ngyg4s0F1XQ/XnsOIc0beGCN1XVGUBfNCs1yqwWU7brNx+8QYh+tt2xbXNuhoE2Nb0LYOF0vRUCmGyC12LY8xoFUqJ7aTQXm8XfXZJ3KlXIIHrDE8eviQs9PTARSLZilQaTUkaOv7nq7vhvbKbBVs1nISXZ2+ME9efmIftMUf7NhDvoQPBq38WAKUbbdCXmQvi+DZZduL67ar4zJ30bZ7aX2MTVdTru1BnpSDZNkwxnB4eMh5IxOAXy558OABd+/eZVLXSaBWYKylS5VEu7bh/HyBj1DVFQqpl1HYcqCdZ9N9bt+6xyc/6fnud7/DV7/6FY6PjzFaoxDhVvbY5qCcPME9jmochyxut8NlbXtZwryNY7A1TuJmrhaZEMWtoZSAg8l0wt27d5nNprTnZwQPpRVavEmUtdYBow0aTU64rrXFKMBETPBE11AUBq0LtDKUkxpdWKLVeCcanaCgi55V39F0TQJqEjlyqDR2doPgAzdu3OCrX/nvvP7WI+69rHnnwXs4e4gjDrlVgpLkeevMsqkA4qjfrNlAyGLCAfT5SIgO1/WEvicqWcjrwnDn3h2qWnzhMQaCimhjmMymFFWgsQVhoWi6FQaD7zxduyI4mM4U01nJpJpQTaaURU3retq2H9Kc+yjFK6eFpXeR3oGPyaXQdvROag11vYS/u0LhncJ7+afQ4EENYeJyfW3bEr2j0JJwTZeGvnf0fZAcMAFIGoCxIDQzALkI4Hiyz4yK9x5bSC4a7z1nZ2cbBQEnk8lGsb+xOzMLUGez2aAhGQtbcw6VzCKMwUhmJZbL5YaAtq7rFNmzrpC8zfgOcwubida0lvBoYyWvUZ7n6rqmKEqapuXo6Iivfe3rNM2Sl156kbt37w5sbYzrrLnZzQSsQ5mdo+1aet+jrUrRRoEYM/shzwX45erOHmOS+6u0hElBXVrm0xmKgr5vCL16zD4/ogax7A9lNX68xR3zEKk6AMIePXz0iL7vmc1m6/wniTU31lCUUpPI9T0qRLSKUuzVu5QyIel5QkBFDUaJYH5HgdcNe1Y/zNWX+4zKldEB4ANjU34sAco20wGbYtrHAZSrGBR5vFjxeBeguVQDk/3tiG4hTwLT+Yy9vT1effVVvvfmO3S9SwXdpNPLBOcwZp39tGsb+q4dfNkKoXWbphl2Rn3vmdV7WFsSo+fFF14hBsWDh+/zzjvv8ODBfWKUHBpJAsYVmOSCjQHGZW256/Xx467PjBmXmDgoWQyE4g6BVNeC5FOXUvNCc1e06gylwNoUxVHX9M25CA2jFI6MQa5Za0tUJhXCc9joUMqB9mhdoNolcWmpqylaW9DQec+yazg6P+H8/Iy2a/DO4duOZedoVcXk8JDlcskffutbvHsEdn7McXgH+9yUzikRwmolIdJDO6iBQRm3hWLdb7LrTRZFCUfVLkVVdD1FAdEHbt69ya1bN+n6ntqWdH1P6Fqi8zgPzbJjuVzRrVbiumhblmcLFqslMSrq6ZSDwxvs7R9Qti2nx6d0ziWiRuG6jrPlGX1sMZMJqigoyorQ9XQu0rQ9y6bFliV98PSuxzk1/OudwihxJRE2+0Hf9fTdChVa5rOSujSbfWykW8mujQyYMzDJ+UdyG25G4zh8cAPAmE6ng6tom1WJMQ4RMrm/5SrE1hpiXGeTzi6ZcR4WpSTtfj6vrAHJLqCqqgdAkNmJuq4HbUsGOxAobIkbtUMGZPk6yrLEe9GUyfkVnJycEEKkbXuOjo6GKKVx3SzvPffv3x/AV1EULBYSPr23t8ftu7eYzifUdTWwNrkNsnun67pB5zPkcDEGZTXed3RtCyqkasxRIlti7t+iQUk9nrED5kOCJ4NdtmI453j06NHmWhOihH3HSFmUTCdTSX+fgKf3nq7vaRphLMtq7b4VVj1ekAU8zTn9IKZgYDCf1n5gcLPDfiwBCqwrCY8np6exyxiU7O8fg48L2olLjrF9rLwgjcNurbU899xzvPbG25ycnHC7mgyRCLYoQEkeltWq5ezsTMRxSlNVtdC+eRAk4SVaJttZvUfTdPRdT13NePXVT/PCCy8xn38bpRSL5Tltu8S5fgAB43PdugJyN8w7VvmcRJ+Mbbx73XTxrNtuHKacP3fh83H8t0Qe51Nz3lPVNYUtpWhi3wnVbsxQlj7vhrXSUszPS6hf1/e4lDsGowlRQXRMTE8IHSEqFIaojqiqCfv7h8z3DyiLkrZteHR2wsOzY87PT2mWDV0TKDW0/j7LWPDq3pwv/c6Xefd+xEV474Ejrt7n9sEL9MEQo2QFHVxY6VoHpjVenKzyplJCrTWltdRlhTeRPkqOD681Ojpu3jqkLAvee/9d7vctvl2hQ8Qog3eRs7MFbdujUSxOjlkuzjk7PeXo+JjlsqGqas5vnzOZPqLrPIulaBJu37nL4a2bLBYL3n73bar9CsoJdnZIWc/g/JSIwkdo+45oDL0TN0/bQWcizoIzUSrp5jEVR0tUjLi+o2/OMXqCisX6uo0heNHbZK1DHkuLxYKiENajquqNfrXRH0e/k0FBBgjjfp3BjzGiC/PeU1iLDx5toDTrooIyliOrZglk944aAIxNQGI2nwwAqq7rwbWSc6lorYniABQ3ARGlI1obisISg0OmDMktI+kD1nOU5Ffp1i5HH6irSdK0wMOHDwc3V13VRKBtGt59712MMcxncybTKU2z4vx8wdnZKatmyfxgxsGBCMVBoplyqLMxhtVqLdIfC/q9c7TNim7ZYEyNixaiISbh6OYssw1UPgo2Po/12barhqOHjwamWkXRvZlUbZqIhOubcd4YWRfOzyVvSj0SUyslvqwYQope/BG1jXXv2e/hBw5Q/uE//If85m/+5sZrn/3sZ/nGN74ByO7+7/7dv8u//tf/mrZt+aVf+iX+2T/7Z9y7d++pf+syzJGp1m0Xwvj502hStk00JTtYkuF4az+eKNsTHb8+Qvp/zkwpbEAO7/Pec3L0iPffe5+qmnB6ckTwXnZ1qGGXslgssVro5FKL7zmgsFXNLEBUiqKoMaZg1fQUZUVR1YSzM/rVgno65xOf+jS2LPnud7/N6ckRi8UpznfSuCoM66W4VzLgSinyk4jN2GK4IiklnnYEaaGNG4ttAjcx6XKUSVSxYZ04bmgdolpXAUXl76eoJ51rkziMKainU/YObrDoOowtsGVB6D2rVcfR8Ql7kwIfI2VhZOLXCheDRKpEiF4RlQa8TKirFW3f4b24zIwpODxccbPtmM/nuK5ntVriXY/Vmrq2WO1QIdJ3HavFgsoWfONb75LTMp220AaYdZ6oPCaOaO5oRPicaGVx5+rUzpoYNVFJBd6AMCdYhSktRWWpfcSEgMERgoIgwK0Pgffeu8/9N1/HNUumtuBg7wCA5WKFUhJxUpYVRisBwcpgiwW2rJjvHYJSLE+OefjwIdoYDm/clEm3d5ydHdPEkmp/xv5kLqHbaAo13tmLkLj3GueV/HMG32swKfw+QqEMxiS9YMogaq2WlPeAUQoKCxi8R/LJ6EDbS2r1rm3R2jCdTiXpGJ6o1iHv1hoikuDQFoYY17V6xgXwcsRFCGGoa5Wj7GKMVFVJ2zTrvhrzOJZkiERQWlPYUrL79uL2ICp8SsgmGXTBGGFlJBrNo5RoqUKIw4IvYEs0Jr33dN7R9Y6owDqLKQssBh8j3XJJ1AJeo1Z0Tc97D97nwcP7SZSp6bqWsiqY1DXTaU3XrFj1Cw7nlUQH9gsslnldoFyB9z2Lk2OadknTtEwm54Di5q2bHNy4yayeiHYlQlFNmEykPb3zLFdLWueZ1VOc8xhTolVJ9FboTSVTp4qSoG/NpgjbLNNIuFILcpVlDeCzmBCV60ksRs14um+ahvPzc2FIvBPhOpFCG1zocN5J4UOlcT4kzY/Bh4LVqmG1WrGf2KbxehRDAHUFQHkiquLprzltO6W9nnp5zO28GSat4mjH9ZT2Q2FQfuqnfor/+B//4/pHRul//87f+Tv8+3//7/l3/+7fcXBwwK/+6q/y1/7aX+O//Jf/8ky/ta1fGFOWY63DmE3J+Qu2O8XY57t9rOH7ClxIiZmS4yGGdfEsOafELNjE4ri8AAaCClhVyMRbFDSrDqUtpgDnZPf29a9/nffee4/Qe6LzKO9SqnURix4fndCsWmbTPXzwKG3wKDCWwlhMCBSmxhNTpIfm4Oa+FHdbNgQtiv3O9dhiwksf+zgozXe/+0ecLxf4ENEGGYFG4ZM6bcB5SqGUJWea9WFdDyVEEuuAJH7MXiOlUMqQl+OUK5UYFES5rhgjMWQwp1BGoQqNcgp6AEnQliBSKtZWYAtF7wO37z2PKktef/89Dm7fJqyWhKYheMdisWI+KeljxBJk7BcKEwwmpYePw0BSrFrFYqVYngt4tEZRGDjyp/QrR7zrmUwqtI/YELBWoYuaYm5ZLTs6p9ibzXBtQzWB5QJaoJoUxKJi2QbKKbiuwwcluWeCAiQbrYoQnMdrqQOkoyYE8FbTOMd0UlLPp7RK06uIU5Kt8+7eAU2z5HxxRt82PDo5Y9l2HE5n7B/coA2KWivmRUVhC+7sHYA19J1n2TbUekI0FlVU3LitcEHaPcTIZDpjMmuwZcHBzUNccBydHqN0YLF8xOH+J1E4lHNUUVGVU1SASVXR4elCS+cCTR9oDXSqwMYAcclkryY4T3AKpUkRKCv2phXTqkbToVVEa1nJYpBig0FDWYsGY7EUHU5RFtjS0PYtsz0JCS9SEjbvPaUthjFutZFIIDtLGgo3RM+sa8k0nJ2tqxZLNMzaVWOMpe87mnaF9yKSVMbiXM/ZYoHWKddNXIfzW224fecOxhgePHjA6ekpRVEM4c5St8cPLinZnBiWy5VkLa5KprM9eu/oQyS2PRqPC566qmnbhsKIS+98ecYbb76Ow2OioV02eCeZfm8ezjg5fkCh4HCmaS3EyqKVpqAjoilqQ4iGaAqCLmhXkhPHh4DSFbfOO2zlZE4wNdF1tF0KfTaWylZE69DR4PqGtvdEE6EoJXIoM6IhiuBbhYFRDGrtdnhWp0Yc6n5fZpe9K/1MqzU75YMTwGQMSlnavmHZLDg4uIHVRXLHRzxB5uOyTokZLcenZ5ycLzg4OMAYERE/fPiQ559/nq5tUyFGAa9ladkKcNo+tSslKNtM9pObIg5FSp+2vWX+3IixyputZzybHwpAyW6KbTs5OeGf//N/zr/6V/+Kv/gX/yIA/+Jf/As+97nP8aUvfYk/9+f+3FP/1ti9cpmbBTYZk6tYlG1txGXvZfDzlCe7nqxYZ7e0MeBDQVVPmUxqmUi7Hue9MBc+0K4agnN0iUGBVDsk2g0ftBShAoyiGF1D2/eYwlLUFa3rUcZS2QLXNYDm5q3btN2KEB0PH75P3zdkEWbw651DjPmac1smoJHASwiZKZFaFNakOh8bIcdyLK2K1KYG6dh22OmoRCFEApvDJctaFcrkZjUU1ZSinEgl4gDYkmoyZXVa0LWe8/MFB/OaGBUhynkZJQtViAlsek8e187HtNNPgBO5nhgVfe9ZnJ2L+NYYCmPpux4fHMpCXU2ppwXTySS5DsArmWw7ZYmqxEfAefBOiueh8JhBtquU1Kkx2mJ1QNkCTEGkk88GOD0/42jZ8N7RGeedoywMZXA0Tcv5+YoAnC9WVGXJiy+8iL51i+7ohMXREYvjY5an5+zf2Gda7dHR07UdtlT0zosANiq0sRhboq0Bo6kmNbdu3uLg4ICz01OWy3NEZHnO6dkxN27uM5tMULFBodDKiu9dRYIjCWM1zlmc8fRG45qOYCIGTakMvU8iRKVRUVEYI+wSXqKnYmIplMFaAckQqKoCY3J0nDBhIQTOzxcYo9nb2wPUIFCtq5q+6+g70Q1UkypptnrOzs6Y1BOcd7g+uX46yeYaYkArjbUFy8VyyLbbpbo3wt5MKYtCxnxyxUmtLI8PnjqJaLObZzKZDDlPcjRQZnbGmpq+c5wtRNBbVxL1k10sIUR8t85DQhS30cnpKYvlkq7ruXnzMGWBdcwPb+CCw8fAwd6cws5olguMUrje0TSdMJMHMwiKVR9ZuUDrPF55dFGwXK5444036ZxL7tWe1fkC7x2zyYRJbUX87CPeOdmEhZzOX9OlfEzZ6SYRSmq0og27oqebaz8oU+vfl/Vik40f14mCUU6odN9dyKkD4lCOYVzpWpjwBZPJZHAB5eiqtZvrj9MSAzKUPnk6S1vN0d/bd+7p2JQfCkD5oz/6I1544QXquuYXfuEX+K3f+i1efvllvvzlL9P3Pb/4i784fPYnfuInePnll/niF794KUBpU5bEbKenp8Cm3zXbtuZj7Jcd+6C3wcplgGSDdktizey62eXbHruWLhwvPeZOnCcjn25Y7wKTyYT5fM7du3e5/+hoSNYkvm1PcH5oi6qqNjQcQ80Mvc7qmsV1fd8zmUyGyIac8nt5FmiaJdZYDvZvsLi1YLVacHy0wvk+iTLN4Lset8WuqJ1tt5cxBq3Wya7GYZ8722j7PgSFCmpQbqnhX0QbLQySKZhMZxSTKb2DtgNtKubzOYujktVyxaNHjziYV1gdxP2hNVpZjPaJ4VN4b4hBQFdZIZlpy47gE/VMEvdph3OBtu3pu4ZlI+JSRWBuS2xZYqsJuig4PjulScJ+a5XQvUYSlIlQdU3vKgVE2YGYBFCsMcmVZVBGE3uhpHwvPv1Hx2ecnAnTMisLbh/eoGmWeLeS8N7kfiqMoZ7MYbHi/fMFf/RH3+b46Ji7z93h5u079N5z6/YdQgicPDri+2+8ifewt3/AjZu3qOoaXKAuSm4cHFDZgvvLFX3bSiXloGiWDeXzEw4ODyneWWCqCjOpCSHKntKB7xVee5xydEqiGIIK0DsKXVAUZpjCprMZdQllZSBqvG9T2YMUXWUKgop0ncP7dpT8T2OtAPizs/NBSNw0LcdHp7z//vs0TUNVFezP95jPZpRlhe89veqTFkaxWja0bbNRg0cWJCkCt7+/L39HqGuTJmcpvmdHRf6GDU2h8XatN8tJ03K4LjAsXuNcLHnM5nT5UiRqnak6b3SyazVXTc7jSSnFdDqlqiPFZAIUTKcV+7du47sVdfSYSYX3HdODmipFEplFQ1lUzOb79J3HnS3olitC3xP6ltJqFouGRbOQjUTwTCY1ZVnQd5HlYkHfNszqCfsHBzTnJyhjKKKmDYY2zSuKq9mAD9Ok/EK84CJaM2mrC/PdoCfRasitk8XaGdDk0OyzszOOj4+HBID5Hvd9j76iUS7TN35w9qzHfgy182EDlM9//vP8y3/5L/nsZz/LO++8w2/+5m/yF/7CX+DrX/867777LmVZcnh4uPGde/fu8e677156zN/6rd+6oGuBpCccuV+22Y/LImnGpcLlONJgj2NE5HjJAXGJ8G782YtsjJxPTsVtjKWqDC7Fv9O07O/vc/v2bbyLtM6jtaJtOx4dHfHCx16mT6LPHCWQf2dcAn0cdpknupz1tCwrptMJoGhWKyBKllpjmc6mPP/882g83vecnh5TlgVdt2YWttstu8K2rz23p1KbYGk7Uds2ANw4Tki5PpIOQymhamV3LSA/pNwjVV1jbU3rFG0HtaqYzPaoqoqz8wUnZ2ecLfbYn1V4rwhG0mivtQcGY9Y6m7Ks0sRv8S4SvMf1Drz4wpUxaG2ZTKUuyWp1TtusQBdEpdGmpPeBhydH9FGkJKaw+ORyizEnrYtJ5ChF+eJIQq+V1NiRkEYliat8IKqACykapfdoJZ8tjWVvWjOxcHyksSowrSyFtSyXS/b3D9B7+9y79zx903B/9pCisvggrMkQUtq2dE1DCJrgfDoHRVkU1FVFWRQp+ZZnOpnilWPppvR9ROuCejpDG4MtS0xREnxSvgaISc/jQ8B5T+fluprOgTV4I+yQUop6MqMoPG23gNjhfJeYBAmFt4XCFkZYJmMHYXzvPFpJltQQZLwtFkveeutN3n77Pc7PziRHSYjMphNu3brFPIk960lN8JHTsxPOzs7p+07OX+W+4SlsST2phggbYIhaybV2xjlU8pjP+U9yorYsys3jdcyU5CrEImSthn46nU45qPZpu5Zm1W0wk/k3BKAwiG3ruubu3busmo5oJvTRUEz3UKVoQrAT2qglfNiWRK9BlZSzmrKs8drS+CUOiepS1tB2HUYrijJFMKlIt1oxKSW3TmE1XSNu3izyLooCZQ2lKjFBo4LUdlL6owtQgCzCAzY3rBmgwKbEIP9tjd0ISx/nPskRVG0rIeAf//jHLyS+u/KUfgAN5Y+SfeAA5S//5b88PP+Zn/kZPv/5z/PKK6/wb//tvx0qiT6t/fqv/zpf+MIXhr9PT0/52Mc+Nvw9ZkXG2hO4HKRcZnkh3Uao4wiSyNXC28uOr9LxM0ABWcSDd+Dh9u07A5I+ODjg4OCAw8NDtFY8ePAA7xx9opvH4Y9jywmqck4HWGd1PDs7YzJxHB4eopRJrIZoYSQjpmZ/fx/i85ycnLBaLpNYMZN2F5HvdtuP2yGHXOYU9NkVlRM4jYHiLpAHChUNKmT1jYCKJItAKdnpamMwRQmqoO+g6w1lqTFlST2bUJ5q2s6xbFpmUwEOFRZthMYUlijgiThBvRTaUFUWqIkBXO9om5a+ExeaUPUwnc6p9i3L5Yzj40fCotkStKHtHUcn54MMJ2qFB8k9o7UIPIe+skFPDdeb3VrEmNJnG0yUjKTRe6yCyogWQ8dIZTTaaFwrOVVKYwUbOCd1d7zj1q1bHO7tcXx8IvktokSd9F0HITKbTnnh+efRumQ2m3Pjxi0CkdJYirKAEDk5OiaGwOHBIY1v6LXD6BLvIhErCe/KEmUMMUSM0UNRQ6IiBIUPAkYIir6PFErcb7klTFHIwmUsiiD1k3QGKCVFUQmLqhmYxhACxH5o0rqc8M477/Daa6/x7rvvslq1wzjRSrNaNtz3DzgqTphMUp2lEDg+OU73WnLm2MKm3bSUilCp+KO4jdbVkXN6+Zx9Nu+a83s5oVyVChzmxG7AwDICQ4K0GOOQzTXnScmMaE5Ln0ElyZUq0WpqI6T54OCApnvIuw8e0KsSXdfw6JSTR++zWpxQV5Zbh/vMqilt20FEWCVlWaw6Fk2P8wFDpK4qyXAcI9O6oqpqppOKSV1SFpai0NTlhElZ4vqermk5WZ2jowelMaXkcbIhBzNssrMfNYuj/603pqIlytGB46R3w+YrZZ/LEU193w8bxZxMMEeGjZO2jbWQl9mTMCjPHASSr/cjgH9+6GHGh4eHfOYzn+Hb3/42f+kv/SW6ruP4+HiDRXnvvfd2alayjetKXGXjG7ZdXfeym7nt8smv5YE+/kwIAbReCzovcSft+lspldaZuM4IqUWZ3zlHJHLz5g201jx8+JD5bJ8bN27wiU98QvzAVTUKiV0X1cs2phK3MzuKn7pEIg1C2rXJQpbzMBBFgKhNxCjFCy+8SNOsODp6hAzMzbYdX9cYmFx0d10Ebtuaod33RhJ4qYAka8piqxTikl092mpsUaK0JWDwQKQkRE9Uhslsxmx/RvStpLCPUtQv5nsiamABDNERXRgWhbZt0sShk5tCztPHyLJp8eGYxXJFXRX0XUfXOqpJDcbSec+iaTldLlFJfxKjLMhGGYwpULbA+SQGDLk9pRifgKZUl0YQsSz0WlNEA8GjkaiWyoDXlr3phOdu3WaxOGFel5yctykM8iH7ZUnjA0WEwhZobZnN97g1u8d0f4+ubfnv//VLHB8dc/TwEV3XY20guoBBomJKYylsQdf1nJ6coLRiMq3Bwc3JHcxkio8alGW2f0g5P6DTFmVs0g1pdFSoKFoeH8GlMG5x1ZWU5WQAdNpYnGvxrhMdTgIIoJMYG6qyorCa3vWslquk6chZUiPf//73+c53vsM7b7+DThFvrnfEEClKCUXPbGPbtLhOauZYbVHFmgkcBLIxDiUqfO9EIK8k8WLeePikHctFC7xz9DlzsRJGtKrFBZlBSx4jmXnJTExmP7N7yTknifG6lhgYFkb5jB/cQrYocL38XRQFN2/e5MHRCW3fU+/vc3DjJsG1dL3n+PScZrUgxsBsOqX3gRgivVviXGSxWLJYrnDtCqsiBwf72MLifUARqUoD3kFwVNYwn1YQNavFEpf0MDEzpwSUDVJoMhXVe/J18MNCMbnCzHr+yhFbbdsOLvWsH9netOWNWa42Pc4RU9f1EL2Zw81zKPJV1/tYBkVd/f2r7Nm/+ST2EdCgjO38/JzvfOc7/I2/8Tf4uZ/7OYqi4Ld/+7f55V/+ZQC++c1v8vrrr/MLv/ALT33snI111yK3DTDgagHs2MbMQ/7sULkz8ZHbdWa2WZttcCL6lfV5yc5Jau/kQnOZXVgul+zND6iqips3b1LXU2xR0bUdfuSOygK67O4ZBFqsd2N5gNR1hdYK50LKq1JhjUXVIsotS3m/dy1lWfHcvedYLs85PT2l7y+Xk4/Bx5h9Gvywo/uzrQHajqIamxp223FgEsb/crvalB9Ga5OYGotSEgXkY6SaTJjtzWkWgYAsaj5GXAhov66WilaoqMmVXkX4myn3IAgDLbVuokqutpbVSqjutmtRRG4WFfSexnUcna84W65QZh1yHbTU2NHGYGyBdnEQFstpJOZk1LczIFZRytAbrcEIA2BQFNZQlRNm1WQoOjitLGfnLacnp7zz1lu8fO8eLgRKU+B85OT4mFXTcKewVAHatqPrek5OTjg7PcVoS3Bw1p6xOl/x3HPPMZ3PiKlIXYwRogBsVRoMgVDUtB56NNV8j2I6o+udsA4xoGNyU0n0MD65raKL9EkUaItqmMK893RNi1URjMKm6BuJGhOQ5foe1wdCcn1aW2CNYbVoePDoIX/w+79P7xzTeiqTdoxgLFYLkC+sHgCIGo1rpRTFONFaGrt5u5/7Zte21FVFXU0HgBFjxJpRAc2kD7PJ9eP6jtOzU4wR4JeZjjzPZFfAoFHLuUKUCORNKTt2EijKYs2u64cNyKSeDO9lRnX//gMmk1MmswlaRZbNism05s6d2xw9jBweHBJjZG8+R2udKkQ3gKdZnbM4O2ValezNpxzcPJQMyMEzrSusAaMC3ne0ywWSPkCuOdiYXGOGPqwFohvz5GPXrDga+FuPT2TPSAcoSHRR2hhtuniyuz3PdflxvOZkpiTGeGG+ruuaR48epdw9xRrgjq/3mS7pcVqQD8ueDvp84ADl7/29v8df+St/hVdeeYW3336b3/iN38AYw6/8yq9wcHDA3/7bf5svfOEL3Lx5k/39fX7t136NX/iFX3imCB64CAZgk0nZtVMf60e2j7HrNVjvVEIMsnQqNUK762OO/94WhMYYhoVHJg2ZFOfzOdoYqWyZBm5G2dPplFu37nB6tpTJZ5R4LoOP3OGdc4Pgbnv31TRNYljKDWbFaY1PLpccIhdCpCgr9vdviI9YdQnElBugZzxxjtt7rOXJKZzze9vtuwu8pCPJGEs0qdKaGCWPxNDJldCnMcBkMhvaRmuDDx09nlldsX94A2NkwHaup7YK5x0KQ5FAnSYl01IQyBTtWneklNQrgkAMaqClQwTXe9reYZRi1fb02rBoO07OF6y6HozU83FaE1DU9VSieOJYN7XuuyFGiWsKEV0YSmtZnUt6elLmU60EHEzRIiK2BTEETk9OCKETwIZUWj09O6PrevZnMyb1hFIbTo6POTo5RlmDU5rz0xOcd6CgrEqqsqYqp/RtT9dJorvZfI41Ft93kj2UVNhuUtP5nq6PnNx/ROMjqqppQyQqEUnn4ACCsCfORRrt8EZB6zBW433E2lSqgcijR0cY1VKoFoWImmOU4CdQYCzOdwTfCagzGo0UYrv/3vu8/uabtMuGalJjC0PX98QAZV1SmEKKKpq1RirvaoGhpsoYOOQEZHUtbK42iqqSSr1lWQzZaXORQq1lbFaVjPWsQdnf3+Ph0bHkaYnrXCc5iy2wUccnL2Z5cTPaMNmbEIOMtdPT0wRMJItsdgkR9QZAOTw85M7tFeddz2vf+RbN4oyD/RmFjty5ccjLL75AaTXz2YwYImdlQVtXzCYlk7qgb29Q2YKDg332D/bIIL6uS4zVTKqSvms47TuqeiKboFRzSakCE2PKNaToup6OmMDZ2sWTcK9sTBKgjGwO+122PbdvP99eE3Z9d8dRk7sjJsZ25ELT6wrZ46zDua+MN6s5yiqbc27QK+UkgycnJxwcHAz3Pkdx/SD2OBfRztcZeXd2fn0dsXnZAcLoA5ofzH33gQOUN998k1/5lV/h4cOH3Llzhz//5/88X/rSl7hz5w4A/+gf/SO01vzyL//yRqK2Z7Gr3Da7bkBeDC9z+Yw7+VjYOe58PlH9+e9t1mT82/kxd+YxcyCpou0AVowx7O3tJR+zfDcXELt9+zZt/54ku/Jr5kbo7HVxszFzkV/Pvuo8uRZFlWhkKTQntHTBIMdU0HeSVmw+3+Pg4AZ937NcLjeuMbM9sOnyuajbWWtvrtLn7LiLxOiJIRKiHyaqPITk3AusKWl7mbi7toHCUJQGqwwmFvjYcfveXfb3Jtx/53VOzhzF4RwfAlpJpIxm7S4LI3deCCR/v9DzwcekAQKtZEekINHXkl101TkKKzVozlcNqw7aCBiNtpbC1pQpc2eIKjE/ImzK2iZh25RUR7aGorI0CYQq74hBiuVZYykLyVMTtGialqsVRLl/WjFk0T0+Oeagrjk/P8e1He/fv8/79+/Tx4BTsFwscDFgCoutKrQ2lEVJXdQpA3HHarlEGUPnOnGDGIlUQP//2fuzJtuy7EoP+1a3u9N4c/sbbSYykQUggYJkZFGqIvWit3rVb6v/wF8gk8xoMpGiiUWJFKsAFLoEMjK6G7fz7jS7W50e5t7Hj3vcG5Ft0ZKoFebhfk9/9t5rrTnHHHMMg8IwBs/FdseQMslZhpRBWxIakyXwTVHa1gciXmkKrbFOAkxrCspiIp7mJGJiNpDSgNUWrQT6DnHS5EkaoieFAa0UloIhiXDW1dUlfbunriY5dwQRMVqLBw/qcA2Ii/B8Hecp45XypNZqShwSfS9BquieDJRlw9nZKUVRsFotp43FHojpeWqHlvKPpSjcIUhZrNZ3Nq0Y4x3Pn5nDMmfox/PMe48r3KFrZ7fbTcmSBCPL5RKjjcxxdUuiLwrHRx8+Y7Pv+eqrL+niyNjBYrXk8eOHnCwbNImmKoghopc1atWIU3d6hDUFRhuMtUjpaiRGjyKhraZwitFHUoxEL2J9Pk58KaC0FuMcPmnaXvRbYooTYjYlJ7Mo2py4qO/nRNxfc35d7sX7xqTKdCfpFHfqdEgk7ye5x6WemRc4P39G2Y4Tvrdv3/Ls2bM7t/2vOd53BOf1/H0j3TtP3/f47xu/9QDlv/6v/+vvvL+qKv7Nv/k3/Jt/829+q+/7PoRk3mzucyDm++fxPtTlWz9asul3oQb3A5Hj97ytKx7B+dpMi6EQNhdNQ1XX9L3oLQxBOjVQSuSoj67Z+4vW/B3nC3xGN+ZApWkayrI6tFt6P2CNPdTgm6bBFZa23eN9xFrFerXmww8+ZL/fiqz+O0plx+3b94/lXBL7rgXjXfyVw31klEqgEilHRFv2Fr0ga5wpsEVFWToimm5sGcaESj2Llcbqkj/9sz/DqMh/8399Td9vGUOgilYg6TkYnWrKOU26L0o4EmOIskH7RPAZ76Uko5V03Vg7t5MCSpOAkKEdPa33oiCrFcoaqmZJtTrHuAJtJMNOOU1uxEgQpsSbR+xdJx8TbdDGoK2FNGXzMTCmJO7AaJTOKC3ty/v9jn0/SGe2NcScGIJn1+7obm64ubji+vKKwY+UfQ1Xb9lut/R9yzhvrjFj6CmddO0EremHQT6bNWQNVVViSkMXPNiakBND8gxZ45UhWlF71TFQACZmokoMKsBEfI5asypLVos1pydnFK6aRAkRxCoFrBHZ9xTlOMWgpg4gj1ERq8T4zygpuew213R70fPIOuPMVBJBTYGVIaPw0aOUpnD2DhoqyIcQoZ0zLBcLkZkHfByJfsT7gcI+YNEsxAMoSodZU9VQ1wzDyND3xJRI05qglRaVYKMJiQN/YeagzG3Hx4jOTLKd58YM/4/jiB/jIbkRzy5/CGp89hSuOijf5pxZLRY0a8PJWWK5KHjzegkx8MmHH/Ds8SNS8Ix9C8FDjDirqKoaaycVXldK6SZlyJEQrLS0R0/hLEoljIr4FOm6IOZ42jJ60f8o1yvqpkEHRZUNGnc41t8fUxyjCe+q8Rwhr4do5vi2u2jKrxPE3F3juLNe3d8P7q+RsyTE8bnMOVPXNYvFgtevXwtKuVgcunjm4/7u8ZsyRb7r+79fA0Xe9T9e8PS/CS+e+8gFvDs4edfPuzbX40zmGE1RSk0B/re7de6XfN75OeHwGGH2y8S0xQTjTiQ770e2m5Zu9FxeXvJsL0JTVVXiY7pTs55hxhlqPA6SZnh4RmPE1EwuMdFvyOLjUlVYYyZYObHbOlKKFIXj8ZMnfP3iKy4vL985Ge9/5+PjKUjA7eV8fJ7uH/t3BShaT8TdwBFqpSYNkUyO4kLsipIUIlmNpBAka1YWayOffPIpf/zTn9LtrjGFI7bS2huzkGU1U7CR736eGJkQFBFtkzZcuS0lKUFYo8lKoa3FOkHFXFnQp8x+HBl8xlWOqm7IrqJcntCcrBmTxjgLSqPnwCRJd9Lsv6GMhhSl/K3m6ojU/FUSKf4xBoYx0GWFjlA6Q+80u36gHTxoWCwXFHVNPw5cXl+zu7jg5u0FIXjqZoE2mn27Z7fbQhKeTp7gbFNY6qahKqdSRN9LW7QStUm0IpK52mzQlWbwGY/BExlRBBQhg04ZmyHmiJ+6pVKS6zBoxalZcH72gKePHlFbexSIJ2IMrCqHVqKsStbT+UK8cJya+B6yaXrf07V7QhhwVq5NZy1lWXAwVdSaGBMmSCBqjMJaUQa9xedm4TdDWQliUJQOHSRw0UGyaHImeM/FxQU5Z9brNU3TiLaKc+x2O/ouTn40keAcxhrafiRNc7Rpmm+tN/OcGIZBeCfGHBS5j3WPiqI4bHKiMmtZLBaS2U8ux/N1XVYlm66jLC0ff/wRZ2drnNI8ffQAFRNvXn2DmUq+IkgXRGzOFdN1mRnHQWw3jMJohTXSBu+sott3+ChibGNIRBMpqpoYRbvp+iZRVM3UHbZgVa9omuawNv76I9/7+06hYrqevp28/tJBylR2UhwHKbfr7/1zdvw+IOernvx25tLd/P6LxYKTkxP+9m//ls1mw8OHD3HO0bbt9wQo3wEp/TJf6TsRmu+2C3wvusJ8jL7jQbOPxy8Z4/xeByj3EYXji+7+xnd8Eb3vwvxlLtqcb8mu87/fpZ9y/L7AHdjulkh1+3pzOUYynlnTQE1S1x5jxT1Up3xo070tRaRDB8GcZR3zUGKMZNJUKrklBWpjsKagKBw5ZXIeMFqcVa+vL+j7Fucsi8USax0xhm8FF8ff/fug1vu3vStAPHr0xAUJxOxBJapmQV3UjL1A+ovVCSfrM+rFkrKwhJxJfStQvoqcnKz4V//qv+SP/uSnfPazv+bh40eEsWXftRidqZ1FZxBhNCNGgVO2lbOCLCiHVgajs1gQWQlaYkooo6cfsTVQRhNzZte17LuekKCpa5Zn5yRbEW0hxFBrJ07NdBzmtqQc5bfWTA4AhJzEBTgFcggUSjqOtDFoElmB91IGiTHQ7rYYk0laYR0sVgt8yvz8s894uFiQ+4G+3aHJVE1NCAODD/gUxUMoi9Gk0fZQLlguVpKVp8jgvQSdSnyM/OC53mxJPYx2QdKWqBVjzHhERVOCk4RJWZo9SAQU2eTJE6fk7OSUhw8egh8PV4AzFqMLNBFSICVxlrbGYk0pfJbY48eeIUVA0XUdfuwhRZTWVKWjrstJJ8ditJgzjt6jw61PllIiLz6jFnPADwmlwDnLyckapRJ9P3J9LXyT0Q84Z9m3WynZqIx1huWqIXhxD085Mo6DbNy+J/QZO83nOYCQMtEKMyUK19fXd5yBZ4mG+5vhTLgviuLQ4QfgXIHi1tTUWkvvPbt9i1s0OK0pyoqz1RrjCq6vL9C2pCwsKidCGoTTpRSuKDDWotCE0E/dfmoibWdC8AzJ03etUMeSJodIJBKCJ0Y5nruhp1ms0LbGNo5qcnCW2f67HMfBSv6VgpQ5wVJHtYr5ebeI1vsRlPkczQHKMAwHdMwYQ13XnJ+fE2Nks9kcdG9+22Wq/1jjN8V17o/f6wDl/rjPA3kXH+R9Wfv7CFXzv28300TK7yZgze8/Bw/3XydOt8+eG9ZKRucmaeuuaw9M7ocPH5K1XMAxRYpZfTTfCr3BrcbJMQP8WMdl/ttMXIecIsbc8l5mYuAc3FhnWa1WbDcbNptr6qacYGxH14XD97wf+L0ryDg+zvcn3PsCytsHQCYSsyfpBBoePHjI44dPpRVUS+mjXtST3oairkrQnrNHa6zK/OEf/JA//ef/nLIu2O5bTk7P2N9ccv3mFS0ZVRVQTOdEMx2vmQSmp8DEYUwScTclm5Wx0irsnMVaM7Vsi5LK6CO7rsXHhCsdi+WC5ckp2ZbsvXSrKK2EaAuTAJ66hbhnxESDStJxlJIo2BIDNkupYSL2kDOEkBnTiDcKXZdURUHMmhwCEejHgc3mBt80rKuSHD3dOGKcJSkxmNQG2raj7XvGvieYSF329ONIWU6kvrIipChlC6XY7vdc76559faC+sSSFzXRaYLKjCnjJwE6pSGGTJg6eUyWpuOsDXmyCqiKgrKQ9nCjwGXFoiopDKjUkpMhpyQbfgjkLMfQDx1h3E/8LNEHMUZT1aUghEVFXZdUVYm1BeKanJjNJ1MW4rkxiCmhUaioUVo4NkLENjSLCrImZWn3Hf3Avt2x3y948OABdV1zenrKyckJVXW78S6WC6payJD7/Z7r6+vJ6VjQtznZmD14rL3lsMxeQPOaMiciRTE5BWd94DYc68C8fPmSpllQFtXdEtJ+jylKbNWw3XcMbUvhRJguW8vDs6d02x3e9/RB5rfPmpClpGZUpihLdM6oHIhhOJBIx34gpyD6Jk7sEVISDlQYAnmyB+j7HnRGR0XU5YQo8DuNUGYE5V2ByS+HpEiAc7/EA7fKv/e7d+YxJ7JzqW0cx8M5mdfe9XrNarU6BKXztfC7Gr8pv+U/ZvD0v4kA5V0H7D5qcnz7Mfpx/3XeVXqYf8sP3/ncWx+F29uOP8N8cUrpRR5TVRWnp6d0/TAtRCJFbwrx6+jalrJspNuGW77LHFTMCxdwRyxoJrEuFgsyUlbyIQAi1X0IWrJkXEVR4LKmKsSp1YcRiNRNPQVQ3eE7HYtKHZ+DbwV3E8HsuxaC++UyuVG4G1qDihnlNKfn5zz/4AOiTxhksRtDIIyewml+9MNPOH10xh/9yU/QSjF2A9c3N/z7/+Uf+B//3/89r9+8RVvLYrkkji1d35FTFHtzO33OyXtHAgctRFwrvBRyIk7BqfilyDkUEXxZjPvRM4wjtrCUzYqibjDGgrMUWpNCImZBDlKeTNKOjt+s6m+ODuPMB1VIwJIFejtC0BAXWWNplksSkZAgJOiGQEgRU1h27Zb1oqJcNMQoiERKQTqKJiTIFY4UEilmun6g7zuaSkoQtrAobwh+BKPZdy2v3r7hZrujPv8IcWzN+DghJFo0SwS9k2OaJ/NDtIap1booS/GbajvwA5KsZinxIW7GCuE+eJ8Yx8A4iN1Aij2F1RSFPZQo5w3Ze+GYaKMmY9i5fTwRgyelgDYabSXYNFZcibVRlK6U80aibkqqqiBnRYzgCkNZFoTg2e/3nJ+fUxRStpjn3rFqaNM0h665NKESORuGicA+oybb7fYQcGgtwcecTR/ro7jCYqxBK3uQwT9GZ0XcUWO0HIe+n+T6U2L14CFdhs5HqnrJmKAyjvXZkmHouNq2hNCx2Xdok1mGjPWJEEesUpws1hiVCcM4fXaoygKVPMpqjLVSxnGOoY9s9t20PlkseVqfJk2Qm2sJWPhl45P3Per7nv3rBia3L/9dJR74dulIKfHfmZPVOWCdxfVmsvSMjj18+JDNZsMwDIdr4i7v5rc5vu94fV/56HuOm7r3928QD/1vIkA5Hu+C2t5VZoG7aMrxc98XoHzXex7/zDVipcQsTVqTDdoojLNige5HUkzUdXmQ/y+7QXQ6YiIET1aWXdvRdC0np5NehrpbJprf/1j3ZP6uc8vxYrEgpcQ+7xh6aSU2ZtZ2CMQk4l2uKAgho51lfXrCdr9jv7/BueJbcvbv4u7cD+Z+mfMzP/5dAYpSCpSBrMgxo4wsgDGMIvUeRuqm4oOPPuUnf/xj/tV/9S9xlaGqLF9++RVv2i2fffb3XL19xXpZYT96Tru54kW/pd32JK0wWWNVhJyEsJcgpSxIAYg+ihOH6GSytPTOn12rKQOPkCR73/cjfZdxjcY52ay6rsdkQ9aOQyaWo3BZssj5azQ5T7wTzdw3INeUlrKOmgXElJFyE9KG7EIiZ4N2liFNpTyTcQ6ySgzeYxHdi2wUZV3jY8BUFdiCceiJPggvIgR8DIz7gWHfkYPYHDRNjTIa70dC8BST7kdKUJS18FycIfhE8B6jHFabI1E2TZS+JLS2aO1Q2lJoS2UtMQzsdxtUFG6GVzAMnkCHzQOlFdJmYQxY5HrIEJK08dZ1dZAdZ5p/ccrgYwzEaIS/k2VT8KN0oNimoigsrrCknBmnzaGYRLNyNrjCYguHyuBczaJuWNYVr1+/RWfkGIUIMeH7yWSzKKfyRsSohKsrmsqS1g3OGa5vdmz2Hd57lsslIN48Yh9Q46ZNbG5FnuH/qqmJk8Genq6lORDq+/6AwPT9gFLSsSR8N8PDx0/QyyUvvviKlOH58w+Jg8dVC4qq4q//5mf03R6dI8PQs1jWmKKkrGtstKIiWxcYYB8GQk4Tyd4QYsTHDEY+d1kvUAzs9r0EW9YyDgOaTN04TNJsh5GcwrSfKQ5+COrIeOsewfXXG/NG/65EKXNLCr1PsJ0pobcOvfDtQOewHtwfWaw45jLPjHbPCc68bhtjODk54e3btwzDMLWp/69hFPhbHIpjn0UZv0ag8nsdoMxCbcfjmJdxjIYcX0hh8ucwVjbdOQNJiAMl+ZaImnIC0qQWKZyEMAUDx8S1GBKiawEKM7X5KeLUeWBsgSKjjJA6T88fUJaFEOqahrdvLzk/e8D5+Tlv3lzws5//nGfPP+Lhk6ecnj1g33WYEFksViJQFSQTKQrRZPDeU1XuQLDyfodSBmslchdpb5kIblq05LPlAyJTUlBlx/X1NTFlqrph3+3ZbrdCQg2RelkLH6EfREY9T4iDHN1pWt/Klc8Ez0M1V8n9cVK1ve0Cmjg1txAVKQoyELyFFHFFRdCJIYlRWcgtT54/5Uc/es7jRyu2V99greYXl5dc3VziQ0/wA8Ffoc1AVWbMwvHs8SMKEjcXl1y1G8YRTtazUJ3wETCKoKScEUwi2amMlaXLQ6PxIUqQl6EfpBXXaA05c7JqMK7E2gplCtp2IFXSGVRUtZTrkhyfGBUxQM6Cvul8q7vjfcQjwalRCj966kkFeAzxMOmVUlhXENBcb/aUhai85jy3qiZGMtddy/rsnFpbLi+vKYNmsThB+Yjzii60DL5lGAd0SOAj3U46uE5O1rimYUxiTtjuW9q2I7mKYC1dTHifKGCyZdiTlEVhwRUkKqIRmX+dFUW0VEFhxoAae7KTbiWFxKURTYoKpy1D22PrgrJy0saqI9nAcnFCXReABBf9ENjstriiYL0+ZVUUqJTJUTbTdrtFK8XSOV5eXrDbXvPBRx/SVCV98Gy7HU29xDZyPeQEQUf2/R6TRBgvh0zyiT/80Y9vu2xixFnNMPS8fv2Kuq44PV2zXC0Zx47NzY7lcsn5WUNZapQBUzl2m62cHxzLpgKlGPoOoy3OWMIoAaM2lmLi0eQUJFiymq7d4YzFTuXgfdtKIoNm33bYQjgNMWXGEIm7PTklPnj+IWVR0XrYdiOogtXZIzbtwKMHD8jXb6kWNc8+eM7Yb3n75g1NVaAFG2MYerJWmLKQbsBkGKKiqGpctSTGzDB4VAajFQbF6XLFrt1iusji9AHRGlL0KMBgEFdzD8pPu5shU5KzutNqfD9keW/4MqNKtzfc/lJ5El/MRz/veAk1y0QI1HkrL2Houo5xHGmahq7r7pTL5zmp0Zjpv1WzEmn8DKV1lNbhtGG/3/L44QNevfiav/mrv+Rf/+t/TdvtD4T5d43vC9nUdzxCf49L8u16/r4HvP8zJTUdywzk40+hUN99qN85fq8DlPvBx/F4Z9ng6L6UheB153FZoHpzhEyoLNoYIjkQJZvltlQziznldCvQk6ZmcEGyJ15KhuA9/TAQ5t7/zAT/FdRVTYpRrOCV5fz8IY8fP2a5WmLLCqU0VdkcuCPz55sDshlRmQOrGVKeHz+O/WEC3XJGkizCk2KqnYTjirqiGwd6P9L1HYvFkrqquOZWQOr4dY5LTccoygxno9Wd2+4HjjMR7V7RTIiEpqDLMI6efuhJKfD4yQOePXvCDz7+iD/44ac4Cy9ffcPbVy+p6oLd9Q3XF68ZYkddWazOOAORRFFYHpyfEbqOdrNnHCKjD7TdiNZpMvoT1CIiRM+YEmHOwrQm5oSPEaM1OcEwjnStlyDCJp49O2F1dsa2lW4bWwipNUdFSB4zlYoOC8F03UlObFFENAaIB/8azaTZYoy0FAPGmqlcmAlJ0w0jcQwkbbFViXUK4xzaOrRKaOfY9R0v37xFZXFrVkRoReJ9GEVNdpZMTzEypEQO4oSdcmIYOpIx9MPAm4sLNts9iyentEPEW3nPkkToAikmacu3kzy9UiRtyEpCWJsTVmVUGoXUCmSS2BVECCnhlMb7QPae7AwmZiprcLYULphWKJVpu4HLyxveXl6ScmKxOmG5WrFerdA5sb3ZMfYtMQRCGMEVWK1w1lEVJVVVo6KlHQeKqqRaNNzcbHBaeFrjEPBdDyGybBY8OD2jbVvGcZzIrFvevJK22+1ug7NnjEPPWOhJzM3gx46hD0QUzhnqsoBlQxj9dIaFnKy1mxyiBQX1IUrnU5by79i1NHUt3T8gfJJhwLmC1XJJ341T2fiMspESY4gRVxR4FCkEvv7qBevV6SRwCOSOenHCJ5+WODuJRzLy6tVLcvQURSldTFbmskWEAfXUeoyNLFZnIuSXFF3bsd+19L0gKGrSfmpySVEYrE0UiG+PnPc57BAEJat4kESReRFvN7ucJ1L5e3a69+wHtwvMYeLd/vtXGN/FrbvzfnAnaJmTx1mobd57nCtYNNJy7L1n3+7IOWO/h4fymwQp3zd+necelKrecTjltl/9NX/PA5R3lxPul23u32+0PnTiSElGXisF0cFQU73w3ruRczpMDjtdcHPNOd7ZmAW+nzdxpaagZuKo5CTtg0PfE4JnUTeUqxVo4VUYo1mtVqzXaxaTy2pRFBh9K+JzbDA2T5TZq2McRwk0JgXJ24lw23Y4H5tZSntWsoxR+C/DIHwYcqauapwrDiSv43LWsR3A/eOuteiCHJed5vvuP/74ebfnMREmXxCUpiorTk9OWCyEYFyVwtHp+yAIVkrEkFksVriy4NXbb2jbDdurK8a2wxlL4QpC7inLmqqq6dqBcfTAHqNFPl07jS3EFiD4RIwzW1+CzpQS0QfSpFfQ9wNKZxZNQVU3PHj8iObkDL3p6UbFGCWIoRDibYrqUKoDKd+YrMnoKQOZjs1R8Kx0Rmct3iU5AELsLMuSIimGPjGOkWQUJ2dnrNc1RgfhK7gSqzPnhSP5gevNFU45FmWFVok4dMSQJIc1k+x7WYAO0uWkpSxknGNMCbRlCJFtN2LKiqfPP2KoHtCPinEcGIZMzqIuqrSVhFUh0L0axYbegHHSnhqjnwQFhymTnuap0ZTaYdFCUg6ets2MMeETDD5OPBPo+p5Xr15xdXPNYrlE6Yx1mrOzEwqrGYeBdu9JOTAMvQjrlQWmdMQsDtVVvaQJQpTZbQfIFu8TfduS/EhpZS71fc/Y9SSlabuWfbvj+vqafuzJWXyuQorcbDckAo+qR7jCsbu+ouv2uKKi8xmSpnQGiyQ4GrAaCuew1jF4Tz9OHXgpEmJmHCH5kTCO9H1P0zSsl0vGEER7ZRhYLlf4GEQXJ3lSmhyRjeby8lo+e/ZsbnY8fPiIk5NT3r59y6tXryidoSwMH3/4lJPVCTdXr/HjSOkUw+BZNotJC8pAFuVfsogmFqVDT+tQIoMG4ySILlyBQtYgbWTdMFof7AQOwOnh2p8Bk9t0PqvbUsv3NTa8c035LXE776P083u8qxFgTuLmtTaEwH7f3vm8ZVlQltLF9ebNGy4uLjg/P//e7/Sd96MOAcP7vsP7x/t1UL5zCEnnqKRzJDHBdwSU3zF+7wOU9437/JN3BS15lq0/1Du/zVOR4GLyR0Gj1HfAbuqWbT/zR2e0QU3Zr9aaYRjYbrfMQc8wDMSmoSrEEFArTT+O7HY7nk4GZ845hj4cCFTHstzH8tyyYIu88rH51Iy6zJNk/o4z+jE/Z5ZZns3KjLFstteM43B03G830WNH4nkck4Kl6+P7+Sjf/rfgKjEGoh/QBorSUhSW3XbL61cv+X/9t/8dOQa0yqzXS1bLBq0Up+sTPv70Iz748DEXCVq1I6WOkDKKSPARrS1lWeNcSww949ij8ChlMKPBRTeVoW5J1XJtpKklWyTKuy6gFJysFpyfnVA2NdqVLJdrTHnKtku83Xb0257CKcqqZuqFEshYGbIWEihJ45PohMSElCayaKQwOckaNf174swUhcUFYBjI2rA+fcCjp49pKsM47NAObFGxKC3rxtFtbtheXaJtpqkLVJqIe0a4IslqSmcJqZBOFiUlFlsUJK0JKePHQJsSpih5cv6Mjz/5MTfqnP71jrc3r9h1HltWUnLKSfguOqNVRE+ootVgjMJYS86Bru9QWtEsahRQWSiswSoPU/AUvKfdb9m1A62PbHYCsVdVCUoJotEPFGVJ37bc3Fzx+OEDnCnxviOlQFEVDEOLjyO2KLBOAoFuGFmUC7Quubi64fLqa6x1NJWUZh0Zs1rQtjuCH/FjYL0+PXTOte0eSJyeigN5WThCHKd8ZmoNn0jDKSX2240oRqeJdO7FqTzHRFFUnJyektEYBVVhScqitUVpRVUUtNsd3WRj4VyJ1ZpRKVFQngJncmLoR0JMwodIHdubDSqDH3q2+xadYb/b88UXX3N9dcVXX35OXRX88T/7MX/603/G2WnDerUU1evsSSR0Aq3EYDSnfJgPIQSYf09rzdw4YCZCKEqSqjgMJFtitJoB1kNgMv1jWgWYttp8IKne5679pl0p3zXeh5LM6zy8h3/C7fo4juPhmAzDwM3NDcMwHFrHZ6rAarXi5cuXXF1d8fjx4+/8Xt9H8r3Pm7n/3O8eUy3tVxyHwHJOgO/zduao81cYv9cByvvGcVT7zvulyXE6DQnyXUfNmVyqJpKWVkemYUdllZnwdHvCj0lYt5t4zqLySUoM40A/9KyWSxZNzWq1oqoqAIZRsnmlNbvdDRcXF/zB5NdyLCs/l3LmcWwSOEfqdV0fugYEVbk15zs2uZp1Uo7bEWcNiJQS2+2GF19+yc1mc3jM3Br5vvEuJOVbQd+9heVd/zbaYEwmaAjjyNs3r1ktFwQ/0nV72v1eVFM3W5TOE7dm5Gy95offfMOf/tkfs1hUnJ4+pLQl25tr/NBTuJKikA20KEr86EkhT9mmZ8gZGyshyB4CVyEvz2iTLDwJZRRnZ0uePHksZEdtyMpSVEsoHLbSZDfSjpporVx5BwRLI+JgZroi5bZDuXA21ZvOUVJTt8b8o0V/xTgLxmNNycnDJ6zOHqHSKK2hNmNdxXK9YFU7bE4Muy0GKKwmjYEx9jhd0cdAinIMcoooLZmxcQUB8CHRhcRN29HFhFssefjkOcXyFONX1MuCVZ/B7BgnPtHckq9Vvv3RYKzCFVAUGuMU4zCIP9JR/O+HkTBuCftLXBbTwLbr2O17hpDp2hYfBLGYO15CGFFKBMX6ruXizWu6pmLf7jBWfHjG0Yk5YgpoMoUtiNlws2159eqSl28uef32LcF7Pnj6mJPVkj4FunaHToG6Knj48KGgIWVFXVfUdUPT1JyfP2C9Xk3HbsFi0RxQ06qqDx0+YRzY7zv8MMH9KbNvW/abPcZYnj17TrVYUjcNtigwzlFVtcgOhIjOoK056GeEECjrmuVyyXa7I6REWVQU1qFVJAfPZruldIamLLm+uMEpTRhHvvzya37x2ed88umn/Pmf/zk315e8/OY1Ven46Z/8BGsbVMjUZUUYWrJKB3Q1hjitJ5Ew6Z6MvaDD8/qoRLGHwmgyhoSIJMYcJumFO4sHc7FATTXQOW6Zkbh3BSm/dEfObzDulqZv1//p3nd+jmO0Ze7a2e/3DMPdhE8pEW3TWrPdbjm2Evmuz/Le+78HQfmuke+Uv36FoW6DFHmdo/WcXy+Q/L0OUA7I3Ts2t/n3u06kXBC3ipjHfAjpbJHNd97Q70wChWSwR68lP7dByXGwcOBdTLXsrKVjRghzZ6xWywNpNfTD1EWgp6ysvUVFUBRFffc11a3K7TEv5VhR9la++3ZjnDe8OfubA7IZaZnfI8bI27cXvHr1ir7dT14+7jBx5uccrOiP9F/mv5V5N+L0feUdpSBGT0jiBoxR3Nxc8803X2O0+JuklFit1lhj2VxfM/QiCvXNN2948+aCX3z+Oc+fPOajD59zdrqmLpcoW0EKKNNibIErS9wwiBBazuQcpKQzeFBziW7OmGbRqYgPUBSGR0/O+Ojjj0UBsijIyuKKBusaLq47TNnwZFkRTM31vmXbdWg383Kkc0ElQ0LE2UwGn/VhcTl8puDJVrqNVI6IgJgY8c1+StZU2GpBwBBilq4ho0g4bNHgSkOuFxhjiX0v8uxTK69xgL8tYSqjRZrdWbQrSMoQUIxZ0frICKxPzqjX57Rj5KbtKOsTnn/QsN3vuLy+Ztvu0BmcMWgdMCRBkRyUhaIq3UTsLohkxr6nqsTNePSw2V4Tdm8p0g4lDVD07Z523xEwU9t8pOt6cs4YrSdBNk1dOk6WC66vLhjGipzjpGWSsYUh42jHQMgKW9Ts+5FXr1/x5Vev6MdICIqT1SOqck3XDfhuQ9NYSpOJUYTKxm7EFiXNYsGz50+pypKTE/HY0UZR19X0feJEhBXvpRACKmd817LftzRVQ1WW1M6SyoLtds9f/Pt/R90scFUFSpO1xhUFZVVRlTUpJtBGhPRWIiEfU+bm5oYYE94HulaOi7VWguMYxW9Jwel6jTLi53O2PuF13RC851//6/8Ln3/2C7748jNO10vKakmIkrRYpckxHzpTcpo8qpIEznVVk1Kk9yLzDxzaacUPSaOUwRazzxmEmG7LwJmDcfCdEs8BQbnN7N/VSfNd4zcJYObPdvzvnI8bMb4bRTkusR8njbelb1lrm6ahqqqDON/3faZfF0H5/vEbBDbqVorjnQjKrzh+7wOU96ElxyWeb7WVTaiEVbIpzCJPClCTYJdWd1/zwHXJcgJm1GLmcMSjUsAxgfQQ7GjxAEnTviTBhTpMXq0U2orZmzZimDZMZZ6u64S0pvWUJYaDp0NZlne4LvPfx+WeWRhuRj4OsOsRaRY4uKD2fX/gpKAgBA/cVeK9z1affx8vFofjxV1DwfvP+fZ5lWAvE0nBo3JCKxjHnr5rKctyOu6ikVGWNafnGmdE7Xaz2eKHnq+/esnFmwtefPWCZ0+f8OThA9aLhsJqYlJoU2BsgTYOreN0XgV2D0mIrBoRB1M5MVNZrVFUjbjDfvjJxzx8/EhIsNqyXK35+OMf4YMm8IouGrKqWSwjURUkWwoNVN8S93LSpAAxwRADPgdUluBBKUhxcoSeskspDelJcVbM61yRybZC2Yo+KkJQlK5GW4UPitFn/CgquO2+Z7+9ZlVXlIUlRk9O5VSGnNqjtZQ+lTYkLZomY8x0MZGspSgbqtUJuai42bdkV6MclNqBW4EFt9NCbM6yORvUFKBoqlKE36pygTKOrIw41k4QSgaGriWOPaermmWpyEH4FH4cSHoSXUuRcZjE2aoKrYVoabSirgqCb0nBs1jULFcLbq6uiTlhS4fJiqgUm7bj629e8/N//IqbTcvZ6SOqqubRwyc0VcGb118xdj2np+csaouz0kF3enoiRF7nODs/neaana5P0UoxTrpTkhE7CjO1Dzd1zW62M4gBoyqKqqZyBYvlQkjJCnxM9KNnjBHaDm33dO3AMEj56OTkhI8++Zhnz56hlLgEV1VFCJF2L2TLxWIhhFYUcfQoZTk7OSFlTYiJR48fE2LkzZs3/NVf/CVv3rzm/MEZP/iDH1KXFpUzi0WFI9JtR0hTmXMKMGSznGZsysSYSCjhIFlD1oqQIr73YgzZlFRlSRgtx5thvhsFfGtdmNeUd60ZvxQH5bc08rQH3HJQbjl97/pMx4TZYz2U+b4Zjakq8U5quz1d1x2Q9d/F+M7gJv+u9Fd+9fF7HaDALUv6PrP6fnR9QEKkGDuVDyZvHbGgY47OlZ5cWo/GDHvNwfRxMDC7oB6/t5pY+HOQYuQReB9o9y2bzYbFohFzKC2k2DkDmgMLBXRdN9UrG5JJd6S4Ofocc713DqTGcTw4pIpqoTrUpp1zh8DmuFw0IyvHAcrJ+oS6rmmjSJDP3+k4WJmff7xIzK+d+G6/ndvj++1Jbo3FVhXtfkcaI0MnNfe6quW+xjIMA10rLX5WT50pyrE6qanHiuhHNtuOtv2cl9+84tH5GU8fPxA9DW1R2qKMBWNQWY5vRiHldEVMQRxbM+hJbbRuKk7Pzzk5O+X84QOyUlxtt4SUCMrw0/NzXLlk5y2vLza0vYiSuXrBuqwYxg5ljo5JgGhksQ8+o6OdulpmQcGE1hmjJKOcu8wyitm4UuuEKSowBSFp0RsxjqQzQ4z0Y+I6dYy7Hdfblv1Nx0W9YdlURB+gH4hp6gJTCPKVxU/Hx0jOmnaM7EdPdhW2FqRm2/bsw0j96JxuvGGMsmhXlcHYJX1vGIaOHIRnY40gKoV1FKbG6IaUNTErlLFiljidf+9HKudYr1csCvB9i3UWVxQoV6GjQhtPioLiVVVBSpFh6BiGjq7bo41GqUzdyOIfpmvcFSWmMAxZ8fblW/72737Bl1++pnAVpyfSTbXbdZTOotG3PjhGsVg0nD04w+iS65sdxhiWy8UBxm+aBucssyS8neQMvB8AhTOW6ANlVVA4R0yRbr9HG4NzJWVZcnpuGXxgu9sTsyejMNaB1oQMCSHoXm223Gx37HYdH330EScnJ4SQKEvFYikddlVV4ceR0QeWzYIxwL4bcGVJWRZURcHD8zOUUvwP//Z/IAbPv/gX/zmFc1xfXaEUUydSlKAQTc6RlLIoImcRwtvtOvb7LeMYwEykbyD4hB8G/H6gWRRUFDhrscmilT74YR0ttNPfd2JyGb9mrPGb8FQEOb+/ht1Nuo6Ts3eRd4/XzZzTIUC5j7BUVcVme8Nmszl0YB5zXb4PObl943sB3684fp3nZm5RlJnuMA+Vf72S0+91gJLSrYTwTB6duRXHAcp9QlMYPYXVOKMJMYLWU2ePSDrniXGcyQekIGVpN2aCNmcewjFLe0YU8jyrmIlSSSDuSY5+v9+z2Wz48Y/+gNVqxW6/n1j20rb88tVLfMp8/MmnNE1D3/dcXl7w8METIdQede4cb/jHJZ9ZLnv26kgpHPgnxhiapjkEI8MwUJayMLZtS1EU7HY7vPc8ffqUi9cv+GK/ufX1md57HEdxcr0XFM5BW84THMxd4uzx8TouC30rsJxKGYdFK09iVFo2DWPc1D0gEOkwRpS2uMIQvEdgCpGiL4uCkBJvLq/ph4Enjx7ijMO4mqISZGmc/GiKwuFzJCuF1JcS0UdyVhRFOZm7icnj6fkDtl3HaVVzdbPlzeUNVzdbfvijD/nkBwtu9n9PO46sVicMNztUEq6MMvJ9U4z4GMjRE73orhhr8INAKlEBfsQZh9Yem2RBlwVOQVUSJjVYbcXRWWsHKjD4iWNhHD4ZuustFy/foGzF809OSXFk240U1rDtRsqiYPDCiTBKy2saQZsG7+ljBuewZYXP8OU3r8gv36LrBf7ymiFJUKeUoixq6sWCRbOgXjX40RN9QKWEygaVC1Io6PqMLmBMvSjG7gSnSmReX1zwJz98JoRtPB5Z6OumIZuCfjccSpld20kgUon7Mjmy224AIeMulsvJsyhjXYm2BRbDyzdbfvaPX/KLL94w9CKcGNFoY0Wgrm7YaM1yuaSqCs7OTlk20r7vfT4EJn3fUxQFVVVSFPa2Wy4LhC+XtZ42+HnT09SLBX4cubreUJYl51UjpTujcMoQ0p6Ly2siirPzBxht2LfSSadtiUWz7wb+/mf/yNX1DR9/8jEnJ6fEEKgqIWH2vaAqtpCyionq0JpcacvFxQWr1ZKUIp+TePb8Gc4YLt9eYI0g1X3XUixKtFJEZtPM2w0nRtFZubi6JsZMWRZ03Y6yciyqBdvtntT1VNUJ+mhDLgp3W84RSPwOpnL78+3xy27Wv/Sm/p7ngpQrjoOMGCUJBKZ1Xx/KNrOD/H1JhRnB9j4cnKz7vme1Whwe/+jRI24217x48YLVasXZ2dlBgPA4QPlNia7fScD9DRVs52T+Tonn1yw5/V4HKHB7oI/LHPfvu/NbTSrbUvXHGjOVWgxKiTV9NwyT2NH8kyVT5ftJWbcBwzFSIIRBzS26IaZRgpwUE/H0ZLXio48+oh8im33Lw4cPqaoKpRRnZ2dcXV0dPHfmFuJjg8D5wp3LO7NOy3Fn0rvKXjPKMo7j1JnSHSDGp8+e8uqbR1xdvGEY+jvErQM6dK/U8y5C7C3Z9NZm4F28ocPz80xEC6Q4k+UyfvS0uZ26KE7uvEeagsEQg5A8kYUzpUTKo9yWEz5EirLm/GRF2SzxwaOGgaKCFAJDL4GXinmSvo8kHVFKyJ3GClRrbEFGc3J6zmJ9Qh++4OLmJX/3jz9ndfqEH//kz9i0kVf/018yhoQxDp0i/ZAIQze1qltS9PT9nhAzSRlilo2EJC3OhECOQbQhpm4GpYQrkufAedrwUpoWAu1AKRKJmDU+W8rFKaa64eHjJ/z5n/4R66Zke33Bq29e8OLLL/FodOFQGLpB+FCurFGmYEwJU5YYV3G9G7jYXjEmwDiCvkQ1DUFJIUdrhbUlxU2JsyWLZsWD84cUZSn+Qj7Qtx6iQWGIY09OHc4aQiqm5VFRVhVKayFSGqQ8UpYkn4nKYpxI6JsYxOgxC7escBalM+MgRn6uWqAQkTttHItVScaw2+756uUlr95u2Q+RsiiolwuapqYsHWVlCWFg9B3LZcN6saSqhM/iR4+xldTcpw00TVB9iHHSLDlam4ya+F4RHyJV3dAslmQlqAnKYqdSVz96NruOtuvZ9wMRza7rSdcbFss1pqgoCpG477qOHBNjiLx4+ZrNvuX58+csmgXrVaIqxegvpTx5eSlilKQhp0Tfd+zaVoJiP/LRR8/xo+f65oLVqqapK0Y/YHWmVAsInlmQUnhg07qrFZv9Du8TwzDS9cPUgu/py0j2ntPlEmMlidQxoo3GGP0rb1vvIsn+Lsf9BOpbZeyj8a4yz7xmFkVxSPK22+0hqD12n1+tVpRleUgQ7yej/9TG732Acrz5HWt63B+3QQqUhRiB6YmrmJlKOkoY5wwSlKSUUTnL/RN5611Q3nEd8rbkc4toHH9Oa+0keDXw9YuvqeuKk9Wa9cmavu/JGT799FN6H+i6jpubG37w8CnL5Yq6Wh4cTrfb7QE1aprmELXPqMiMbsxtzdbe5ajMx2SO+GdPj/nzzzooVVnx6OEjXq5XhEt/QKjgttXuPjpyp5Sjvj1p58cdK8m+a+QEKcw1tYl3kaDrBrpOhKlmQrDWGp9ECE9M1gLGKGIIoj+TjHQFkFEh8eriijEETpcNMSswDmsMWXvGkDHKkrW4BacUiUH0NuaFuaorUk589vkX/PiP/oTnH33C12+uefLc8uLVK37283/gf/cv/kv+4A9/zP/yVz/jYntF13vG4PHjyDAOWAM5OYIfiGEgJUXUTKGzBGkxBYgBleJk3JOBdOhqSDETQyIrizV2amcVWfeMEQTIWlSxoGkKnhvHn/70D/k//5/+JafLhq7dcvH6FT/727/mv/9//DfS6TSOoqCsDc44snWkCK4oybagD3v2XY9yBc5pUvQYvAjJ6TyRmL24DfvE2MLeWgpXUdhCxMiMJWdN33u0lg1djQGf/OSYA1VVo40RXZOwJ4ziRRRiIqjJF0lr0TMBXGEpXUFZWgkivCdr6Z4piorRR6yr8BHevLnkZ599w2dfvOHN5Z7BZ4pSDPxSDigTMTaR8kBRGM7PT1ksF1PmX9A0C2LWwo9KU7asFUllOXfcljdDiKgoGbiPaeo8criqoUwaVUK9OCEl2O87rjYbvnn1hm4YMUVFVJZ2jAypI7ualKB2Na4UtV01TZa27bi63pLyNzx8+JB+EJXT1XIpZWEfyGhGn+i6DlsWqJwZ+hYfg1xryVMWCq0im5sLhragdJZcOmIY0DkIb2aaS3ryVsooPvvsC0Fjq5qyFILwOI7s25GmsDx48AjFKEKAXS/qwlOwNNUkhIc0kWLJ8w+HQPBdOijft3H/Jpv7Men/oGmlhOd0vM4p9e5mjTl5nEt/82vudjv2+z1FURzQ+KZpWC6XLBYL3rx5Q9d1h+Dm/uf/3u9z1LTxK3/no///qs/LMLVc3S3p/JMs8cCx9LC+04EC97tC5mBCiKXOKJElVxNcmWe59QkYy0d8k5RRsz/EvXG/Lni7Wd9ezDHGCdbUaKuxWbgTX3/1FUZrPnz+AYVzFGWFKwu6PnBzfc1239L2Iydnj3j69BllU2KMoe979vs9IFD/MTk3hHAwnJpVbgVNqe7wdeZJMQd1wzAcovg5sLHW4gqJ6qtSJPXvH9t3ZRN3A5J3E2jnx78rK4H5Yp85FrLpGjNZDQQR9trtdjRNQ1lVojFjI5lMiAEfBtIgHQZGGVzhxLDMGJIydGNA71ppUdUWW1QkP5BUwpUlISZRclQKiKQ0aeHM/9Ma50oCisvrDZiSf/Ynf8bFxSVffvEFby8uuLi64uGTZzx7/pxXF1t8aEk5HcTuvB8Yuh0qZwmYtWbMcu3IMRCNiVl/RZHJKSIkNjlCMQYxgFQT1+hw/SmRR68LFusF69Mz1quaBz/8IX/+n/85z37wY3SKPHhu+cFPfsrTDz/lF599xs//7u/ow4airNHakpUGo6mWS5Ky7LqewY9oa6aSpcMZRfQejAKdUMZikPmlNETfc3P1BqMLqrJhsVzR1AtQidHH2W6J4L1odgAYOH3wgHpRoLSm6wd2u71YCkSFx+BjxipNU5XUpcM6Q1VYysKAytNcGNHasN+2XG9b4edkxZu3W16+uuZ6MxCSxjiLj4GLi0s0AWcecLJyjD6gTaIqHSGMhDFiVguMcfhxnBDZ2wB9nlfzb+n6CofSQAiBYQx43+EjJAzGWqqiou892/aGl2+vePH6ElOULFyDx+KzkJRtH4g+UjaZQjtCkuPsihKXFLnvaXvPrh3YdwPVrmUYBVEcx4Cxjq4f2bd7qrqmaipSjmQiVV3Qt4GiMHg/cPF2z+lyxdnz5zSlgxQpCsM4evF7ElbzhAoFjLEoHWnbHu8jTbMCZRjGHmKiazvIPdlHct+jiknAcNrZ5qDk23tvZgYJfx305Dct8cylapXVnfVqRjfmAAXuJszHr2GMYbFYHEiyKSXatuX8/FxoByEc1uPlcsnbt2/Z7/eTj9JtQnlcMvru7/TdJZ7v+db8usENSJn3P5V4pnFoZ73HXzi+kI5PpNYKZy1ayUVljCFpISjGLEGI1ho90x6UdDK8Kzp+PzIgUPMxwiLZboQjNcTdbieqgSengnwMA8Za2rZl37YYY+i6li+//JLz83POTh8enDCP3TCP1V1DCIeL/b554LsQlPm+mbQ1l2uMEW+PqpQghfcEfu8qrR0jSDG/2zn6/uscH7/pD8gSeZMUZNGjET8kKWe1bSuvMxEBi7IgpkhWGT1Km2qMEbJmSFEMEa0TjQhroR9QCk4WDaVxkDNGSatq27aSFeWMsaKVw8RPqWsRwBt9wNQlv/jyK07/4ef8+X/2X/CTP/nnfPHZP/LNi2/YbDc8fPYJzz/8gL/6+8/wIRBnxn5t6X3LZnON05rT1RqUpguC4qn5mE4iWGpenGIk58i8gMQgLawUtxwockZrQ1NXnJysOD1bsT47o6ocH3z6CQ+efsRuFHGwB9VCWomrFY+ffcTm+oZyucI6R9v1dP1AUVbYouLyZs/l1RXd4DHO3XZ4GYXOCqISfQ6E0Gu1+LAwlUSiGgm+p+v3lFVF0ywoywqFqM76lEkxCFFWZ9an55RVJKaBrBTNYsXTZ45sSoZk2XUeoqeyikVdYQyoFMgpgMo4a4kh4gfPdbvj6maPtg0hwsXllu3O0w+QlaBnPgxcjzvqGpQ+Zbku0cmT8ohSEqSSMt5HNpsdPni0Ey7UjCbOas7zPEgpT0rFHMqtw+h5c3EhEvQ+iKpuYRjiyPWu43rb0vlIXZqprTvRB0VW4Dd74hgxtqZwjt1uh3OWRVMDBuMKec+QiCHQ9yOgJjJuRie42e7Y7rZUfmQ56eX0w571aomxUgJf1BXrxYInDx/y4OyMwjkUAa0CPjBdg0KQ9d7TdgMPHz1iu91zeXnDZttys2nJefIhqxw3NxvKMlOWgvbmab4fVoEJQRHk9R0IynuClO8bv5XyyFFJel7jj12k5/c5/n18++xOLTINgnzP69ecNM7NEYuFdHHNMhNzUHP/fb7zO/1GCIqgtL/68yQsyerbiMk/WQTlOJo85lzM4z6KYtTcyRPJU+ChlULFKBchepKkn1qFp9p+zkIdUu/daI9vz9/ezHPGB08YE64Qyez9fs+bN2/44Nlz0UKJicvLSzJTFH1xibbuUJOsyoVwViZ296xhIu6X9s7iCBxun8s88zGag5pjS/hZsn+eKDO3JIZ4mJzvCvzui8QdP0YpdeCOvG/S3j9Hh3Mq9whUOK1ToDDGUjhRYB0GKWWZocMYjSscdV1ijGYMFp/EwG8YvBz7mBhDQCuNVSKPtrGabrXgwemKdVNTNTVazTbqSdqLs8FNLrpNXdI0IvseAesKalPy888+56YL/Mt/9a/44Y9+xI9+/GOq+ozlasUnn37Kg4d/w2a35/L6EoHGxQm57zs8ibqwFOUCpQoJzNDTd88wI3tK5Je0EuQva81MwtRaT4G3wlohH56dnnB6sqKoCkJWmKLm5OETyuUpkYSpHV0yvHx5ydtXbxlCpl6ucNVCEA2u8RmUdez6nqvNDZv9jqQszpVEQKmENRVh4kBNPRkkEikHcVJESYBlEj6M7Pst7KBZLFgsTygXpzTNipS16HsoTUgJWxTE1NKFAa00y/UJ1XJNwLEbE9kO6BQpVKS0Fus0OYz0nZj3GWtw1pEn4zpZ7kTu/cWL19xsBlISfk224sFlnWKxrDh/eML5+Rrfbxk7R1WXGCUOSSLuF+h9j0MEWmby48wxu72uFd7fnZO73Z7Pv/yK1fpUtGiMBVUwjIEhJLK2KFvQj5Fh27HvR9rB49Nk/BiViAEai/cDy+WSssyCIhrHdneDdRKMj95zdb1hvV7hipJ+9Fxvbui6TspROdANHZubS4bhlMePxLD0h598wrMnj6ldQZp0W3L2tPsNRovlQgjiui6cryytzylzcnKKtSUvXr0iJ3jy9AHnJytWS0fTQLUuyM4x5Hrqmps3t2mif2tvnYOTW1TgV0FFfhME5fZ5d58/I2T3uXTve/68ts6ByUyQPfZOU0oduierqjqUeOYA5T8OgvJb4LnkbyMm/2QRFK01Oc1thhVMzZkCv4p3yhRZHOD5lEVbQjG5kwJjzPgQyEog4DTBl6LLMC24h753kDxRbNwicntC9E5SZiIqyusLgU+yyaQiMWYKV+AKRUyZN2/e8vc/+wc+/PgjtDH0/YDWlmfPn+J9ZOj2XF9eQlRYbSgKN3VZhAMhtpxKMCCdFznA6EfRtSik/RLmWimHmm6eNjyj9a3JUxLHS41m6DuZXNOx1lYUcUOashyN1K6ZAxTZMG8l/6fHcTcYOQ5i3jnB51Kb0tNmnVCIuZs1FudkcRS+TC/6F6qeXKo1hXKcnZ6JhPpuT9+PxAmqTTHiU0KTJw+bHmsMpydnFIsS33fowpFzIoVR5NpzxhmNKUQCvh88tiowxlFaS0jw2c+/4Pp6x//x//Cf8V/+V/8VSlX4kKgXS9brNc1ywYvXL0Cro+wrMQwtu51mqQxZG2RaTlL/OaHTbf1d0L2pO0AbZrKsMnZqwTWUTUnTLDg5PaVqSkY/8vZ6w+Pnzzh9/Izl6TlhHMgp8OXLF/zt3/4129dfc90NRO3IOkpmr0rQkTc3G663O/btQNIGpSTI9SmQtcWpgFYGnRU6i1NxjgkfR6awHm00RLn4Zi+srtuw73YUmz1nDx5jFTgl16nV0kFjY2TsNjg0MYsh4k3bcrXt6MZAocDEgdIa1idLmsrhigKtMmVV44qRdgj4kEhKk7Nmu+/YdwO2qFg3a642G3IasYWhqRSLRUHdOLxvIUfq2lEUlrEbyUpTGGkb10nKM85NWkgx4H0SsmxKaCVlyZDEjXr0I/uu4+p6w9/+7HMePO5RSPlyDA5tHEPSqKIB67m62RIZiCAcFO/xY6CyJft2pGXAaE2DxmdFHiI5ed5eXoE2PDg/xYfIft+irWWpjXBCdlu22y1dt6OonNhIOMPzp4/5gx9+yocfPOfB2Sk5eYahxVlDjKKkG6Nozjgr+jkxiiW3oAMjNzdblLbUTc2DBw9ZrdY8f/4BhUosbcQaD0oRIoQklg5xWnRUThMHRR3WC8nJ02FNkIaF3y0p9v5QAqUe/j0HCLcBytHj5t9ZgbpF92OMB+2q3W5/QLuFCHsrZjdzArXWEkRO3RqCNv1H/dq/5pg/5Fzm4TeKeX6vA5QCcFrhypqsBGqtakfvIzEhG0yOaM3kFxEpqpohRJRyGGVJUe7zWLLRZCXIRGJWbJ1gamUmTgCgRGUzxGnD15NNvFbSjqoc1ohmQfSBkDLOWIHSk8g7B2WwhWMMgZ9/+TWvr2/oQuS/+Bf/grdv3hBiou92nJ6c8fTxE968veJyjCyqipOTEwpjiEHjh0F8eoYRY5ygPWj2g2RWQ4j42FEVEEJHSgMxjGiVKKzCKOFmKBRjlNdQUZHGJLLaeMbRk1Wi7VswE3Q+erIOYCaRugMqaKQlD0XM0tkgtM9vLywpiW35XZhUjKoyU/IN0+YmdgE5Z/Tk4VI3tSBB/UCOSWzMq0q4GjFitaF0JanOGG3wQRx2E0m2+4nv0Y2Bi82OsyFQnpziXSbXEa0TF6+2pAwDimZ1Ki21yuBzJMVMCBlblRSuoSg0Q+f5v/3f/zv+8j98ztPnH/ODH/8RRb2iXq9RhUU7J6iU0XR9R0yRwjmC7/HDFsoCsZ1PxORJKjEOHavS4ceOQiJAyqoCW4LyZGUm0baMtVBVGldqhjRIl0VhSVgefPQJ66dPsIuCUWXevHjL//zv/hf+7j/8JaURKfvBK6rk2Fzv2bcD1/3Ai+sde+8JCXLWmJhEt8IYstFEnVBpymwTk3z5dL7NxMMKoq+CnkqmWh8g/N31Bdl7Hp6uMJWmdgp8Yr/bUqgBows8mugWfPX5ay43W6yr6fqBIXtMHhiMJqSRfSEOuVVdYxVc7fe0Q2DnPbZosFWFbmqK5YJTs6JYPsY4zdXblxAjlbWYnEn9wNgacvAs6pph6FFWo6zFq8SidBidCDlRG40tHEorXBHZtUI6tc7gQ2QYMz7A1fWWr75+ycXVhn/8es/ff/VzrHWs12u+euOnjVCjdUmfCjaddKQZVzB6xTBktC5IqmBMFq1hDImr3YBPouPjfU+1PGWz7zF2z3LRsN3tuLy+wTjH0O5QaaTUCasSq9rx+PFDnj9/yg8++ZhHD89ZLGtSDLS77cRvaUTenozWFj96QkiMo6fdd/iYcIVoqpyfn3J5dUNK8OzJQ5rFgrLUhH6gGz11ZbAUDAH6kPFxpmRGUpYNXNQszbReRGY12dtyz4HwMa8a3w8W/JqbpJRVs9jn5UhOUv4ehp5+St6M0aQs5G1nLXFqwZ61p+ZAZkb4t9ubyUOqmswdmwM/yTnHMAoqrZXhmxcv+YM/+BEoKeeWRXGwB7ib2N3ljahJeev9x+K7ykO/3sGS2PLocxyq9ROS/k8NQdGAyWJLHZVBWyucBa2E7R+8cAi04CrOahFNMgUxQYiB0B/ZyydAKYqiYjqmABNJUyOEsHCoh6YkC4joOmTyAeKWhUYpQ0YUSmPK6KkeayYROKNFFKzrOsJmy8XlFa/fvsVqzbppePX6JaXTnJ0sSCHw7//i7/jg6TNyED0JqzX9MKJiEm5FjFxf33Cz27LvWharFWgLRJyzqBTxwTMMIzEEyGCNwRoLWRF1IkchZpauwBnL6+sb3l5cMIzDtK1naV1NXmwCVCTruR1XTQGGmh45ZxTIhauAfMzduSvcNkPi8zh0AekpGle39V9j9AE1ip1nHAa2k4BdUdhpgmusMpS2kAAnZdlkDQd5bYWIsXU+sB896whRWXJRYQpDcdJzfXHBiIaqRpU1yTpSEq8g7yPduCPklmZxQt2sudne8LOff803b1q+fn1DtVyzbVu6oaNe1Gw23YTkCTFb6UxKIzEOqCztzFrd6kGEFDGmJA5CkE0xivR7VlILnxC7nBPGJJSKKB0Z04gfwNUNZVNTn57gleLvv/iGf/jbv2Z38ZpXL75mc32DD61kxLuOExy77UjbjfQpE3RJcFocckOcgsEoLcMaQk6Q7URqngm8ct6UMih9BNtPiYOezrfTmkgg9ntCByFrTIqkrLBa40xBWZWQIj5lQRhMTT9GfEhUVYmOgtKNIbHbX5NyoK4X2OKGTdszemntrkxF1/a8ubrmardnfb5mvV7w9iKjcqQ0iso6dIjsN1uWTqNUwq2WhCSJjjKQjaJcVLhQ0HctcbqetdFkBTFLKdEWDVkbtl3L9abl5csr/vGzl7x8e8XlNrBpe6zWnHnL1S4RU8S5gsViQUyGpAX51MqgVEIri9GWwSdMoaldSU6RwWdUN6ByIoaR09MVu+3AMHpWKzOJ1SmqsmBZrHl8uuL0dM2DB+fUTYXWsFwueHB+BioRhkHECQHrjHQd+oEQI844QhjwXpDgmXCfJ1SvaWq6oZ82bll3Uw4MvqUsHVlbfDIMY2QIojwr7PMIBMgaCU4mDtqkijPbtR6P2zLHbyLr/v0jT23VOSVynmX6BTE78PgOiLuRvYEpiD8qcc/8wRk1PtaQAikrzxQFKYEbNpsdwzDrTQGIerL84/g73w8qvsMs8JeK1n7N8lBmCiinVvbDRvrt8/fLjN/rACUBPkbwI9qJUqQ1jrbv6LuOMIpLa0iR0lmWTSOumiEJByVFLAlrFaos0NpO5SFpmYxZ0AEhhEGMkweNURgte7/TiqyFJJiUIgyDlH6yx7oCZ265AyGNhCRiX0wFIucMMRhSCPzis5+zubrgxz/+EX/0R3+EzkKsTTnw4Ycf8B/+6u95+eJruq7l4aNHLJcNzaIhkxnHnqyUtK9aS1PVEydB6vBlURHHkeh7otfkKHwF6cTQRB/RxtCNolzZLCtSjHz96mu+fvE1bT9gCmnfjPGWE5FmFAnuJDLz5Ti3bx82LfXdWjWHoGV6vJl5QHBYDKd/yf1G3J77vqfve7z31HVJWVY4J4uBmYT4FMI3kl3mljissgj27fZ79m0LJIaxpWkqzs8f8+b1BcqW2KKSEowWtGyMme76mourLW3nWZ8+4Oz8CcVijTEFQ9/y2c//AWEeiuR3VVp6Z9EKrBZVUU2QLiUtGiJJa7zK4vSaJqQnzRnktPDETA4RlaVEJ98NdE6EscMWFpSUFbCaB8tzXn7zNd3+mq8//wW/+NnfsK4clYEYRi4urxjTiPYBaxcSwCkFWgJ/YkQljUJkzlNIpBAJSbp8tBY95rmWPp8iBaiUmC1rlURfzCKIaD0FyImuayFCDPIdjZYAbLk6wRnN1cUFSgkq8fnnX1KVFavnjwlR09QFzbImhgwE6sUpMSdpg1YZpxKYkq4N7HY9SjsWyxWZyDj2GI2Ux8qC1XJFXdWsliuMzSyWK1JOtN2A9om6yYSQqIrqSNYgo4zFWUVVNYClrGraLvD6zRs+//Ill5d7Lq9uaHcdRktbuDWTpcB0fQc/st/nCfFNkBNx0h5xRtKD1XJBVRVoLW3XKQWCj0Q/MPQtRkfIkaY54+H5CacnNWenJ3z68cecLhsKoygLR9M0pBToevHZWiwW3Gyu8D4i3Y4F1pk7nYEqi5y+99K+X1UVNmWMtVMHlhLkdhho21bUUcuCbgdlJerVY4gM/cCY7JHnTD7av2Z/m3mVn1eU2zXjV+3k+XXHd3FM3n274vjjHAtRzp2Rxtxuu8fNFjOncP5OxthDt+Lp6emhLDSX3L+NoBx/ivcHIr8xYfg7xvH7ztf0rxfsyPi9DlAy4EMg5IxDPERW6xVjHNnvbuj3Uh8lJVylWS0W5BgZYo9zCjUbN8UgHI0MSmuW68WUWYuw0rxBhmDpxp7MZBuPZA45enyMpAyFdROvI2GNwhpLgSaFhIoZoy3OSBAUwwAKwtDSdx2ayJfba8qy4Cc/+QkpJTaTNfdqmfmDP/iUf/tv/wfOzs/5sz/759TNgkdPntC2PXYYODk758HZKdaV3NzcTCWMTFlWkAuRnB4NKRVTEUZqvSkxtQqO9ENP1gldaPp9z3a/4ermmnEMaG3FZyOKUR1kYpzKVxKNTBmQmpIJTcoi7TxPqOPJO2sp3F0Epr+nAEgbgwpzkDMFFVPpbdYmcE5Ix8MwEEKgbdvJHmBxT9339n2PNVxmYuNms6Guhcdyc3NJs6j5wQ8+IUTF2fqck7MHUnvOiTFG9m1L245cXm3ZtSPXmz2v3lxw9ugpq9NzmtVSBADRaGOIRGIKLMuS0bcTEqFw1sj1aywYIfCShbKh1W0elFPGWoMhSYkECeBKZ6CwU/AtnULGOojCnTl/cMbHz5/RlI7NxQVjv+P50yeUKvHN55/x5ZdfsO+2jDpTa8tJXVDVFcY5cvLs2shuN0x+LtPEi0nO8ZQgjWGkmBbe22MOEGGCyQ+8I6Mn0qWUTI0uSCERvMcreWmrpVbf76+4unjN+dkJ/b7lZnPDq1dv2Ww3nJ+fs1yd0u1EkXW9XtLuR1IY0Kam6zq0rihLTTe03Fxu2W4GuiFRFA3WGPb7DdZkVuuaptScn5/yhz/5Qz758Bl1qRmHPbZw7No9YRSkJU/n+nztBCVNGT9GlFZTkGlRKjIOge12z2az4+Z6y83NVlRBVSb4XrRtlCLHHpJ4/sYxoLIX/o2u8H6clKgNSpXEJGXrdnfFOIwYozg/PeP8/BRrMkPX4seOxWLJJx8959OPP8JYzWrZ8PTxYyzQt7uDlpIxGudE0fnly5c0i0rkdiY0cxwC+3bL0A/SwTR42nZPCAnrnPAlppzZKpExWE7X5nYjXItmsaDd3gg6kDNxDIcy4Hw5HUoWh/UhH0ACdbiW3h2Y/E433HcR+L+HGHv7PEFJ36WLNVuRzAHufe825wpS9AzDwH6/Z7Va4ZwTzs8UzH1XgPJdKMnv7njl25/D55vP0bc/4y8zfq8DlKQha3EkjjEwjgPkKBonaqKxZmnRrIxlWdUEP7JwjqapWCwXUz1xwI+jCC9pkbvXWrooYoqgFVoZEhBVBj3JlOdMigkfgljDp8x+u5smXyKGiMqGmIS0GxKURYPRENOIVgpnC9yyoakcbdsRY+Crr75kv9uScmS332Ktpes6Tk6XxDhyefGav/6bvyTlzA9++CPqZsGDh48JcSSlTEiRfugps2Q2Ohv8CP0Aw6hQ2gLShpi8J+fAMLaMo2hcJKUYkqf1HbYpSAdOicZHyaK1ceSYyCmg3ZQFZjUFKdJqZlTGJ5HGPjhA38su3t8CKBe3PsowbjUJ4p1/z7XeuhZOSt+39P1ACOmO2u78nsdZzbE+xX6/5/r6mqIo2HeBbtxwcrYjBKgXa5rlKeM4sN/vuL7ZMvhJH8UalNGM0TPsNlxvbjg9f8CDR49p1ic0izW2gBQSOYxUpaHb9YShhxTRWWOMEEtVTJhCkZPitljGZD1/e0yYPzuKwjqUcxglaAhJE8YOUsAUjpNFzQePHxBDoB07Sq1xVcGbF1/zV3/573n51ecsTlaoypES+GFk3awomgW1UeSmYj+OxMHjlBG0RAn/IiZhOeaUidyeK6Vuo5cZXbtzao/+1NqQVZoSgtsOPD1xV/bbHdEPWC1zdbvdsmhEiVUbhysaimpJUa2xxQ1jgpgs4wijDxTNkmHY8803b2nbQAwQyVxf35B0pqosTXHKybLk008/5od/8EMenq25uXrD6MPER9PUdQPW0XcjFxc3mGxomooYFX03HIjoKSZGP30fH3l4/oCcC3J+wWbXo4ks6oK6SRRFyXK5oGkWaK3wIZJmpDYIehLSSMpTV2GMNPWKVBhy7SgLx8PzUx4+OmdRl3LIo6cqC54/f8KicQzDwPXVBd1+iwGIET+pRldVyQcfPOekWeHDSFmWjKMiJUFNdrsdm82GnDOVK4gh0XVS7ikzFIUmJNHiabthmm+WHBMhjvRDx9BJMHS+asjpVt4B5aTkPl/a3G6eR1VgbpmW6luBye+aMHscjNxPsO5+XvWt38d/37FamZKoWVAzhIhzt99pRoVjyAfdqzmIiTF86zO883P/jste3/v+9xJCGf/ESjziP2JwRYH3kd1uS1UVjENPDB5ntJBonWVRVxQTU/rlqxd0XUWOZ1RNDWlSedVSknBWoMiUhdyWojAqck5E7wkqTtofk0icylhn0ClhT5bcTiSw9rYleL/v6doRlUdUGkk5M6aRnIV4uqpLyvqU4KXebYyibQcAaQfstvzxn/whf//3P+Nv/vovqOsF282Gk9Mzzh48olmuSCmzWp9Q1QueP3+OIrHb3FCVp4yjEF6ttSgtqEkIIyGKAqsPIylHIhnfD+z7nqKsMIUjt/MkUygkwJFhyElPCqYCzc6LilIKixFxMXU7kY9b5fSRKeNd3ZhZGG2aZnNwkm4ziNl7adaBmYXopM4r3zXG+C1DyftKw/P93ntBX3wENP3gef3qipAVw5jY9wHJcw19CKCMKKLSM4aRjASyfhx5+6Zns72iahas1uecnJ1TN0u0Ea+cOI4YMto6CiudIVKvTZgsnSAaCUzUrCUDEhROVu/SAi6wsTZ24lpFtMrEsUelRF06TA7sLt/yi88/4+3rV9xcXnD19hVfffYPXLx8yXq1YFXVNCcrXIAiaFxWFFlTlBXBGl4VbxhUS2k1OoloWBgG8VrKCYU5wPVzmUd+5Ngae2SHMKs2KyluqMnVm8ThNZxVnJyeUpeawj6l3W+xSvPwwUO63tM0C6wxbHd7DErUUXtPTGL0uG97+sEzjJ5yITYW4yBePEIW7dhsNpS1xVlYrSqeP3vM48cPGYaBzz7/nL7dkmPk9OQEayuUtoQUudlekq5vUDHz+PFDAIbBM3dZWVtQ1SUZTdl5msUZZ+eRolxQVjXDGKgXBUUpLuN1VVFVtdgeTNe5NYZ+GGj3e4ZxJE9trd57UtYsFktO1ishaIYIKlEX0g7tjMyvunT03Z6u3bNvt6SQWC2WnK5PDl5c3kuWbswpdbOeTFQlqx/Hga7rD74x0RW4oqCsImaSMJjn8jiO1HXNer2mKMQZ+/T8jLIsWa/X7Nbrg1t6Vnqy1yim15iu7iMEZS7x5InXMOt6HEsZyON+d+jJ4Xp9z7j/3veDkpn0fPzYmb/Sdd0hQElJmjaOv1vhHL0eD+71t6Www7tz9+2/zUH5ZT/3b2/cRVBu3+vXP1e/1wEKiALsjIIMQ4dRUBeO0mjq1RKrFHXhWDQNOURSEElhZQxtP9COnhwyQxANkZgTddVM/fmZ0XvxQ0E6UpTVGCsW97OHTWGcoAhKHTJ2hcCmszKrUgprHKvlihijiLF1Pbvdjr4bKOqKk5MzyQq14aMPnvHFF19w9faCFy++4pNPPiEFz5NH53z+C8ObN69oFgtev3lFVS9YrNYsl2u0djx48JBHjx5zslyId0ns6DvP5eWGfi9ktbIsQU1kLAXF5Hjcjz1x9HRjz81mx3bfEaN43OQ0t7mKWis5Y5Wd+gRFv0LlLEgAk8KmFjnuA6fkSO33fgZ0TJI9ZODvGPOiNddsj0275vKCuM/qOwHMXalqjoIkWTBDEHsBNQbKYom1JcMYefjoOQnN9c2eRV1RVgvKaslmt6fvN9xsd9LOPHV31YUjxpFuOzJ0e3abDVcXb6ZztMQ5x+b6CoJwo6wR3R2QIEVUOqM4Gud0CM7kQyvIGpUFqTJaUxqHLpzwGaZFfRxaVBipK8vlyxf8j5dvub6+4uLiDVdvXvP25TdcXbzGaVgvKvbXGxpdUGlHMWZsGgn7kexFBE75AFEIm7KJmQmuFo+XWf78wBM6BIxTme4dvKOZTxRDQCGkcZilveV8ij6P6PUYV/D4yWPqxYqirPA+Mg4DGikbdUPHGDzb/Z6Lqyv6oaeuGnb7lrbvpR1eCZkYlTE2U5aaunI8OD/l+bMnGGv4/Msv6HYbKlewaBqMq0Apum6kG3raVq633a5ntZZW977zlEVBYTRKWbSy00as8DFQVYbnz5/TLJZAxo8ty1VF0zTT95yM87jNotu2w/tRKmoh0vcdw+B5/eYNy4Xj2aMzVuvFlJWPWG1whaXbbUkpUTrhKi0WJZrAOAyQIsF7TtZrTk/XBx2lF9+8QGvNycmamPzh9pw1ZSmmgwqNdSVFrTBHgX/sQDHS7VtImTH4w1xrdzva3Y7t5hrV1JIoWIfShQTV0zUr8/reLM/HS8BdLsN/DPTk/jhGXX+ZEs8xcjivO/P6dyyoCbfu7/NRUFPiVhTFUTtyvO0aSvfRnN9ugPLbOLbfDk7+iSEoAEPwuCQblQZO1iuIgcvXBXVRTAGKkL3GfmAYBq5utgyj9PAroyhdhZ5MrHyMkLa4skQbsfK0RlAarZ10SySxh09R/C2UClONOJPzcCQ535NSPli1pxiwikkzQLIHHxJGa05WC7Y3lwxDx7NnH+CHnna3p+v3XL59zf/+z/9MMsVx5J/95Me8ffOatxcXeB9Zr1bonMgxMHQDX7c73r55TV0VPH/+IYvlihdff8arNxe0W5GHP1mvqapK1GKrimWzIOtMvElsw56hD2y3HRdvr/H9SExekCJjiTEQvbQOm6og+YBSWrp5UiLPcCagnMZMLdpwqzx77G1xt834Fn167/Wcp014HA9oyG03gaj4ghD42rY9BDCzvsD8HilO0vFu1jUQGfqsEoqK89UZzaLi009+wM3NFSEFsJZ6uaCob9i+es3FxQUxJsqioigqYhjJWVCMwiq0U4y+583NNW9efUPdNFRVRfBBSNuLGhUV2lmsK4CMSgmdEirH217reWgRCxMDOjm2hXWYwmGtJiQvwmR9L8TFoeLViy/55ptv2Gw2XLx5TRx66qbiZLnEKhj7gZebr9l99ZoP1+fYYkVcRgITYtg4wr4nDZ7sDGrSzdHWSPulyoxDwE7A1MGfSQFJHxCfQ2AyXRyyCGpiGCidwxYGlWWuhJjZbrcM7bU4PYcRq2SzdC7Qd73YEVhDVRZURYFzlmZRcXp+Mlk3KF69eTtzlGmaipTB+sxy3VAtShSR9aLh2dPHPHz0gP1mw/X1DVXhGHykygqUkBU3uz3jGLCmYLVaiWNxUnTdwG67Zyy8HBeladtOEJS6ETl6W1AYw6Kp8X6gsCXrZcOirskKNArjNEZJt1QYB4gjhVEUpfi1GCJaJRZ1gcbTttc0pWaxqHFKSgFDO3B2dkbOUdpYC9HUuUqRoe9ZLhc463j79i1lWRzWqqK0rNdrvvjii8OlZp2mqirKssZ7Lzw0Nd4Rg5wmLSDO8lprttstIQTquj7MdWvNkWy7Bncr9HhczrmjPqqOb1O3daCjdeL+3+8b79twf9nn/SrZv5pKsKhbpHC+XdY/cy/QueWmzBpS83p2LMB5vzT9jm9z+xn4bh7K941fH2XJx6Qh+QQ5M8vf/6rj9z5AKYqCHCJl4Qh+5Juvv2RZ1zitKIxmUdcyOYae4AeGsedqMxKVZCkaA0mjs0E5h7KZwhZC5preIyboOolg7aSimHM+CO/oqZ0yJUFbBLaU7FJInFPdlYirHFqBH3vGEdlwrKPd71gsGqwr2e02XN9c8vz5UyDx83/4Gf/4ySecnJyKI69KPH36mM3mhqHvubx4hbEFDx89Ec5LTuy2N/z1X/07PvuHn7E6PeGbN6/Q1tLvexZ1wx/95I85XVcQOnwfRYoug28HUi/mZjpo0phIwUMMpBAISRRDC+smGNiLasfsoptvkY84cYDgbtY8/z4OUuZxW6uVEpr34qo7a6AcuD/3Juv8ekopikL0BrquO5hw5ZzF+fUIMSmr4oCaABOKIZ1T+82GBw8fE0Omqhs2+x1n6zMePjrnr//DX/H3f/e34no9eS7NBN2qLCfGDkDGZNHMqIoVISR89MRRU1iLyonk/dRBJuUOaw1BJXzyWA2+73GuYBgGTmzB4HuMlqA5p8QQBrA1SukpuIrSgu0Mu/2ezy4u6YdBWtlHT10UZA1j3xFIVK6gdI5aO/R2oNtdUD5rePLkhKvdhsvrLf/42Wsu2xtSYfBTcB68p08erzPJaKq6Ivt40HwQh1tB28QQ7tb0bEbsjTHSgaTl9t1+j9PxEJd2Xceibki+59EHzyis4+r6BqUUZVmwKAoWiwZjYLfb4IeOk+Wa5bJms9nQti3/8l/9F2x3Ox5cbXj6/BEhZqrFktPTc4y1vH3zGkVmtVjw8sVLCqP56OOP+earr0Qd1Qcurq5xrsT7SN8NrFYrzk5PUVphixI7hqlbruTs9FT0g1Ki63ourq65vLhi3w2TRYDl/PyUR+dL+qFl6wequpZr7mJPzkJqt9bgDuKTmZQV9YMzaUU2ajID1fhxT0tguWyoSsPltiWMNTkntkOPncTZ+rbDKM04jCg0dV0dsnljDDF5Li4uDjGAcPA0KQrvzpqCuhJS7M3NjZw7I1L77X6PNZa6rsk5s1zUhBBYLBYH5WpbLIhhnFBly5gSV1dX3NxsJ3kH2VBvN8Y0fZY0dQT+aqWWd/3964zjwHp+rzTJGczr/3HX4X0uCtNcEIR/OAiKzrdtt1ucs4fy1zAMh9Lf9dX20HZ8eXnJ+fm5NCmkdJBeODoK33lMflvju193LvGk2+Rybr8G3p9xvn/83gcoQjS15AikwNDtqa2mKQuWTc1iURNGT0AOzziKf0ZWFu1KimJiohtDQmNyRlmL0wY1RboxTk6yOZFDxAdpA4yRCcKeuleUxrpbT5QQAjFk8YdJiexbdtcD6/WSetEQQ2QcPdXkvWCt4dnTJ1R1Tekc61VD8+Mfcn1zxf/0P/1/+clPfsJ6fUJZFJyerjg5XbHbbbm8eItSmqurC5bNimaxQGP4//3P/x8xbSsLbtoNWUW6/cCiXrK5fMU//9M/59mTZxTNithHLq5uaNtBOChtR7/bomJAK8neUk6kqQ0upYzTDmudaCYcaq6iCSDeMXfrr8fjuORy/zHHHT3H4zYYyXeQk/vPnR8zQ6Lzex3L+c8w+rGb6Ay3Wm04e/QU7z3b7Za/+Iu/IKuMMR9S1Z244hYVRc54H0g5CF/JSzuoIQtBW0kHjzEGZyxGGYxRB6NKOy0yKQbGMWMsFM5PLbnpziIXkjj4Wm5L8oeK7+SiG3OeXJGNONcGj86BQoMqDK0fpQRnNU7VKDWhe0mQkgUKlzLWJ1au4uTpCtdu+PtXX5N9kK4sEbgXT6GcCXlCzTQHMvJ83EMIaGtu23Dncz1h3/PCPgwjyUR08hgnDrmAuLs2jqo4IYWRq6srrm82DGOc0CYYfYfNiuWiRikkiPZifLdY1vhhz6IRpPDkdMlu32ELx9mDExaLFcu64vLtW3ISQ0+tNU+ePOPxo8ekkCiL4uAW7sdw8EfRWlM2lWzCWvQtqkmsTGtF1w9obfjggw948vgZbT9ws92SlOL8/ISx22C0bFRVJSagq5WQ9p1zBz5U1+4E4XCO+uSEwlU8PD+bXK4z+/2Om5sN3X5HXdU8evRQygI+HLV5Mm2K5uAHM88B55w4ghumOROOukvyUcAi53G329H3/QF5kTKQlFtfvnw5ye6XOOcOv/f7Pfv9lrKwKG3E6biosaOgWjPg8F3jLlH12x5r90uI94m0v+mGfZ9bclwqfv9zQGktukXTtXXgESVxjL+4uBAH6LI8UALm9WjmzcXp+eIkPx2Ld3bFHLPPf3fcnO8NUo4QlFvk658igqKgKkrqsiR7L7Lk/UAoCoxOWJspnCZ6EcMqKodqDcoWZO1QtkS7UuTL4UBQYyKDGVtMF5IQmSwKZRKEJK1/Rnx1qtIBmnEcKCafnThJsMcoUXbKAVs16Gh48/aG1RBYrZY8ePyEDz74gNPTU1CGk5MVSinevPqG/XbLsw8+4Mmjh7x9e8G/+3f/jk8//ZTnz5/zz37yh1K3V4qz0xOGYWS723F6sqSqazSKrrthuWjY9R0PHi2FX5EjKey5ePMVu5vn5Adr4jBlSDow5I79Zs/N9Q3Xb15w8/Yb8tiilcdqSXViFOGig4jSTHw9Oi8ZQCcxfntPgDJP2tvF517Ake4GHseBxCySNMvpC0H3WDjqLhT6Prfrufw2exLJ7ZrLt6958OgJHzx/wtcvXnBzfUnXddT1Tzk5OeHFC2kn1VrE6sgZUiL5W7Z+NtN3Sxmts5RkjMEojTIKpTOZRMwT8pTj1CElSEpOmmAUXst3TGTREFGalCFkQKlJiAtSEldZHz3Rh0lsK+G0EpJq6UhJOo+yyhgrAZMfR0JMbHzPWi3Z7nb87Gc/QxWWaxUIMVIUJV0KBBXFviEJkTeBaHYoCUjnICWEQA4BHWaC8tHibo4D03TgcxECOcc73IOUEvt9j58ccc/OztCmELuKnEl5AOWp6or1eo3Vlhg8fTtws91grRGEJgZy9KTYE3zED3sGrQh+IKWANYaT9VoI9pMDcVVWoA3dMGKjoE3r9Zr9fs9utyOqSZo9CdlZGT0RWvPUmSG2DNaCdoakEv04AolHjx5IYDrpi4RR3MRTUJNrcEGwBqPAKyUdPkNP3+6nro7AollSlo66LGROgsga2AI/eDLQ9z1t207lzUQMiWTkGj3WrIlB5k3fj4d5BoBzOKdxtkBbRVaK5dwVlyVwsdYBGaUzZ2enWKXZbDbonFg1NSfLBSEErq8uCHGej6IBpbW53WsPlZzbBOVQqpiMXI+Dk/etK/N68dsg0t4PRN7drSNdjN9Kso5EKY9L23OAMo4j19fXbLdb6rpmGAYWiwVttz84GwOHAEUsTUTcLacjlILjAzi//ywj8dsfvxyKcpRkvjOY+uXG73eAgpq4hHEqQfiJGzKiydKi50e8H1Aq0SwaTiK8aS8ZohL9FHVweiCGTFZgs0IZhy2EQY0XiXStpWtDfH0kQynqmrKpgQyDIApKZVSMRKVRceJJxED0Lf0wslif8NN//ic8e/r0MAF2uz3GWq6u4ORkjTGatt3x9Re/4ObqgnEcePX6QszxjOGnP/0pf/qnP+X8/OxANizKgsePnvL1i6/57/6f/y19v+PRA3FlvRk6YmGxi4p2t+Pq4hu+/uIfMFFaR8/PH3B6do4at1y9/pLrm2vG/Q39/g3kDhWl68QYB9rgg0T2wd9K0MuQjTQzt8dOZ+od2cb98s5xlpSzoBDq6L65jDMHKXP7Xs4Jrd1hY5wz9jljOe7amdGt4zrvrKUyPz5nKAvH5vqS9bKh3e84f/iQBw/Oubq65vLygmGQ9sAUJ2VVhLGv4NAaPSNIKWV0Eol+PS9Y6u4CehBxcgZlFRZNilPwMR8no8lRE7UikMXaZuKCoBUxJMLU6ioLlHQBpelzNmWJn0S30nR8jLF4FfFkrNLss+dtv6VeL3n66DHX+yu++flrQl1i6mIyT1SHDWoeKUkwekxEVtwuzDGnO5vGYeE/bHKWjIUkekJ62qhSlM+ulWaxWrBan6C0m5CrjDaRfXfDbr9ne31DSpmmalgulyybhZS2hpEYIkbB6XqFtvZQZq2KgkcPHtLUDevVir5rWa2XvHr1ClCHDSXnTCjKiWehUE4zeo/1HmcMdtrsxYNHuBuiY3TNGDxFVeIshJAZ+44b30LO9MPI0HdkoCwK7HQdSkeQma4Lh1K3KEZZWPpeAtCiWEyu5z3DMOL9yGKZptZg2O86uq5lvT4hhMh2e4XWisXkD6W1PpiGHs+TOXPv+57tdntIQGIKuEIC3b7rCVNgr7XCj1KmOJu6hKzVh24VcuL85JRN25GzJH1jmjq/Jp7JocRzRBbNhzXg/YjF96Env41xGxDdvYb11L0oBPd7iC+3a9lxMjavPVprdrsdNzc3PHr06M6aJsf0LsI8DMNBfVa0ttS9d/vdj+8PTpj4N9z+fUBP/qmVeFKm7zqSV6SxFzi7qSidpSqd6CjEINk1CjQsVgvKiy1Dl8hTlofWhInIJyqXVjJZJqOqHIWwmBU+i2x9TAmlMjpHzNQG6lVmDCPiVBvxKpI08praEANgFA8fP+Tx46egLC9efkO73088CCFFPXv6FGutZIsazs9OefKk5id/+Mci/HRzw9/+zd8AsN/v6fsWlaXj6B/+7m+JKdF3Gx49WJNTz83NQHKFeNMsSxrjICRUGIn9jn7ouXrzFacnJwx+oL25gnFgWXieP6rYdpFd6+k6Wejn0sVhYUlTBVbP+U6avLIU1qhpcdWH0/bLZjTTejBthncZ9Ac+SkqH17/PczHGHAhmc2Y/IylzB9Ds2lwUxYGQNo4il9+3AzHK36enJzhjePHia66uL2WRSYkck7ShZyVBSpZgRSkp+eVJjj7NKIrWoKdgRSMeJwqSSmLBowDypFSsD+WbNIMsSpGU8HtChqxFBC5rxewylKfPIC2omRQ9wXtMLtGIvUE2ButKUAofM12M2KZkF0BFTxN7ahW4SSODUeA0SYPKSfRuEA0WmyVQij4Qzd0WY2PNoXwqzUjTeeMIPUtSCk3WQro1SNATN0JpWC9WB0fdm5sbut6TUUJUddJJtqyWdLmj27fsxh0ksa13psAZTXYisNeNI33X0487UswUrsYPgTfhDavVairRGDY3u1uYPYnFwF7vZEMCQkqUdUlWCR8Tfe8hZWIQb6W6qg7S5tYZqqUIANZeJOSv316SUyQMgXFuUUa6syKanpGb6xv6TjQw6rrm5OSE0lXYugHkuG02m6l9OknppKql26iXsmsCtJVkSxlL+/o13vfoSTfoOKOfrSOk87A6IvsLvyqmgLGiwKsyGL1jGHuMku5F8kKUZa0EaGYizIrhYj2pqBqy1kQkcAeONjPei6Doo6Dg+PfxmvLbRk/mcYzWzCgv3A88vv155nXreMzHADh0d15dXd/h5s2vexsA3YpJHgcB3/5qtzf8JujJ9x2z998/Ldj/qcRzO1JKMkH9SO00TV1zerKiLNwh82kWDf0w0g8DplpQ1xV96BlHT4p+Mgycuk4wk1pmJqdATkHuzCJKFpOSjWHi/vicGFLAKE1QWRZSpSBlAiIZLboPGlfXaKfY7Dv+/X/4G2IIdJ3ITFeFmMiVZaZtW5RSfPLJx5ycnLLb7RiGwMsXLyiqhqura7744guKouCjD57z9PFjxnEgpSQdDXVJt9/ws5/9HRd9z4NHT7netSQ0AQ8+kIeBL3/xOf3NDatFjdGZ67dfUtaOuilxNuBj4PRszcWN4XpjuLne0vYj3oepzFNijZ7EtSZZMTWpsjNlwVqJY/QcWCS+zdT/znH82DmXuj/UnQBofuwxWnIMDc/3zURnOd35cLvVkXa35eTkhNWyoev3vHn9Da/fvmL0422Wmw0x+6kUlQ9zMOY5iZDJmWI8fEZt9KHTQ/g6CaKI67mc8SmglTD9nbPYwuInTZ6Q4uG6S0ztvVqhnSFqKXnMSqMWjVFHiM3UAaaU6I5Ya7HOEVImK8WoYKMCwYp1gwst4fIVr7Y3mGVNLCw+J1E/zRqTRQiRlFFZ3MFD5k72pycESXGrWXOAp5nF86R8IXB2hCSlCeH0jOQQGbodVkOOid2uZbNrUcqwXe84WTfUdUGO4HTB2dNzUoxcX224HrY8ePAAbQQZu9lu6XYdIUXqqqYoChFt8+IonVJitVpxs9nRDyPOymcsCkfdNBROOtg0gFGMIWCsZWg72v0enZHvPG1Mq9WS9XoJUylojJ6cPMY6VqsVfvQoJY7IeW7Ntg7nhMBqTYHWAR8GhsHLZ0qRy8sto+9xzk2GfT3WmolcW4KKLBarSe9IlG6tsQzDwHq1ZvTuEDDMomFz8F4U5cHU7hiBHMZxQk+E9FpYJ9L1Rk2lJYO1kvHv9nsh8ToRiZuRgc1mI8aCTYFCHSUJ3CY770VQOMzT+/P8+L5fJ0j5LpTl28+95bjNx0zQQvWt98t58osztxpBdnK/DpOOzGKx4Pr66sA/OZZMmOeRKMhGIcHPrz2/wdHnuhug3F1nf5XxGwco/6nEczsMyImaXCaXywVNXYtEdJIMaHWyRu9bNrsdy0ZRlwW7dsDnaUGMkJNCaTGXUzGSQ5AoP8jfOQYkvxPyrNb6UMqIKaJMlnrGbIymRGshM5ncKZGSpx8xtWb0geWiYbVeY7Rku+vFgsWi5vzsFO9HPvnwQy4uLvj8s3+UrDGXnJwZSleQ6yXSzqo5WZ9QOIv3oyyGKfCTP/whMbR88/IlcWwpTY3SBSrJc1JK3Fxd4vc3fPjsMSfrBpMHKqtZ1jCmyOAHbKnhpKKqClaLhs1mz8XVlu2+IxOl9VqBUnnaPCe4c8r45T5RmRUPiTz18MtOm6dMYEYF5+z5EHMn7kzE48ziNpu6JWjKTfJKadLmuL+IzfVd50R34rjmrqZsMAYhv37xxS8IOTKMHqWNHOPFgrIoEZ8zTQaM0gcTyJylVk9WhJDIOUrgkCI2OopSylFM1xBK4bI7ZOuYiHOlmKvFQGx3JD8QUiAZLQiKkjJPUqCMBqUOYl4xeCk3GdHjcJPxY9/2U5lME1MQpNAaqqpmJNKGPdEL30Sfr0iLkt020MZx8mrS6KxQURYdpeTbJ2T+xXyXlAxSP9fGYOwtgTYDKk58lQQze0lpRT7S0JOOhZGh27GoS+HuKKjrCqUMKSbRKErw6uUbbq5v+MEnP2C1WBwQlL4dwEwddcayXp9gnaNZLADF27eXFE7ahufNYBwHcYtWmd12y34f0EZTlSu5ZqPwZpzRWG3opqx3sViyaBoUokuSc6Jt93R9K3YaSng7hStpyiVDDmhjWZSVLGFJeCtzeWi5XlMvmokDl3BFAQjiV5mKwlUAWFNMSE1J13cURUVdNxjn/v/t/WusZclZ349/qmrd9uVc+vR1ZuzxGDAYA3YSE5wJiZLIo4BBCRBeAPILBBEIYkegoESQhDigSEYhigIo4iclCiRSEiuJYnIDFP9tMCEyBhwbbAzGl7E99kz39HT3OWdf1q0u/xdP1drr7Dk94wHbM232Mzpz+uy99tq1atWq+tb3+T7PQ1lWWGu5c+eYkzt3CAQmkwllWVBVJdZmMb9KJyU19vYxJicEyRi7XC5YLJbUTUuWaybTI2xvybShqiryPKOPieSCD2SlVIkv8iJmyJ2yWJxK1EvXEYyE+gcXomtJXOXPtuEfZ2Id21hPlv7+bLl1tr8jtuRpLG5yVW6+VlhkhSQoVMoMm2XJnZUPrNV0OuX0dDGwZMvlEtnayHypY44cVKzDEzZs0kBMxO9MpkhV5P84drc+fGbYo1LDdi4eMed7MjwEyT45mVQEFMt1iwtQVRlFOcM5RZEXKA/TIqPKAp1ysvvzCu8VhAyTS4Fv6zwBh3VuqD8TAFQMnVUarSKV4j0OT4j+8txIPZ5gHRBL0XsLzlNWFdfuu4/5bEpZFJSl5K8o8oz5ZCKLjO2liKBztG1NlhmODmYsV45u1VAUOfdfvUaWGyazGXlWSYI4naNwrFfHXNif8SUP3ceVo5KbT93m+KTD+Y5grQgjg6fPHN73LOtjsrxnb69ib7+iLBTGSqXovl9R6JJ8VrI/Kdib5GQmYJRn3VhC6PCZHjF6cUcx/B0IKiYbA8koq1IxsPhgJ1WtJ6Z0F6wnPlwR4iZUnv6DkehSJWiTaE8VJ3wRbm5yD/hIKweyLCVzEzegUKsMyfdA0feWxWqNyZTUHCoKcT0EESeHEGKxPgG32iRgJSwEXiaK4GOoNh7nRbPjvGia0KB0RgiR7fASqZNryd2xP5/Sr0tOVgFrcrpc4+JD74xGFYW4iKyV8ddbgvOiV1FpR6rReYYpPKG3uN5irZc8ImWBMZp5NaNbNJg8g6LgTrPm5mLBzeNj0Z4Yyfvjg1TrlQtVG5qeRGuPmCOtME5LOv9Y/j14L+JWnTIFG7peakBp36OxAmyJwmadMT28AN7i+l7Cb4syZvAF1/U0ERCZLEt0DdV0wmxvzq07tzFBEsuVRQFa41zPyfFx3LUavNdUZSVAKrqoDvdlA5AhRQwFe3op4IkneEfXtPjM0DYNthf6Pc+yOPYkL8lytWRdr8lyQ1EWGK2xwaInGYo+AsiKEAJNs6Jtu0Gn0HXiYux7K247HTCZpihL2ka0HVLkb8pkMsUHT9+JDkVrTRY0Ckff1tx+6klu33oKY5S4v6NINTMFJtOoDgHf+CFdgvOesswxZo9DDjCZwQdxdwUv1ZV1lkehryU3Fd4H1m1D3xwzX87FDVdUMj5zL8UntUL5sEn2pyJIDSK2Hu+41fC0B9KGRkU30LluDKU2C2Tyhvxx9Bmjj4YQYpI0HwvHyt9SayxOWqTEawiFHOcdlJINjZb0CangojGG5XIpGsfIOEpXKJSW8iraSDJH1zt656jKgmBlA7xZ+kX4Psybz3pddz8iRWOe/zk1ZAU/7z0SQBxAitq890ew5wxQfu3Xfo2f/Mmf5D3veQ9PPPEEb33rW/nmb/7mTRtD4E1vehP/6l/9K46Pj/nar/1afvZnf5aXvexlwzG3b9/mb//tv83/+B//A6013/qt38pP/dRPMZ/Pn1tjFLhgqXKN8orDgzl7+3Naa1m3Th4GZ+h6RZZVHB1cZLVesj8taeoC29XIMJOHMSiD9rIrdkLOSbVQCRqVrvYB2bvKQpNlGblSEuLZy0Kn8oDvHcp5MqNFwOsd86rk4oULXLp4Ee96nOvQJkfrQL1esF5IXhOjNffffx/OWS5dusTpyYJ63XMwmeCDIgTH+nRBVuQEr7nNMbPZXtTN9EwnE6xquP/qPteOFAcTi7+muX1rQV17mrbj1NYcHuYQwPqWptdMQ0aWa8rCUJicSS7HrroO54PsGueGIjtkPim4dbxksWypO0vTB7w3KFOITsLLjtiHAEQA4GU3oY2WBF5ePO9BOH2p1zOA7xBDu2OafBW1LWGTawM20TkCNKSIoNbEUvBgTDYSrCZRrRQ51FrF9/UopwEEFJPZHO8dRVnQte1AqWql8LZHhQLXdzjXk4CTdQKoTBRSyw9onQ1VnUMEM86lUEKFUhZrerz1EtJd5mBrvIWDgwNcs8ftp27SG8M6z7Fd1AxUJbPJhN57nK1RzqJsIFeGTBmIRSBd1OB4pFKykmJQWNdj1z0qLsrzYirMoQs0yuFDoJpMsN6jAmQJZOjoxhpN/WlOkz6Ua1Ma8iKL0iQv+XKUMAWuR+plFaIz6WxHsC2lEaDoFbRtR4Zlujejrle0TYtXUq+nt1ZCVosSa0tQMJtPUQaKqiAvM0kVX6/Ii0I0ITGzrTGbrK227zFxV4ySMO1AoAsS0rk3rdibClPR1WsBaZEJFG2Ap8wMJhT0rTAOSbuRilYWeckknqPve/qupWtv4Z0fciZpo8nzMmaVNRGQKJzvKWL0FUCWGTSKtmlwzkY2pKTr2ujCC5Sx+J/RjuBbrK0pS83FiwdAoG0bTk6OadsmMiy9VCpWiiyXLKV1vZbsvUZLwdQQqHQ1aCikho4sRs5KVtlqOhXdSxAmrPeBzjryopAC4gpCcLRtB0YYlqqK7FGQ53uY2NN6Mv5LbV6DLVfx8IEwbHzgs8GmSLXwDVMD3lt620dXqcE6GwXiMjcrpWJWZ3HNdm0HyshGwWSgFE3TRnAv97Jre5qspchy6rYBIC9KnA8EJbV5ar+mbhrJORQX/xAnzJB8vyqCoe3M+FvX9OwsyDN8+i7vKYI4ENLmk0ijxw3jtrD+M7HnDFBWqxWvetWr+O7v/m7+xt/4G097/5/+03/KT//0T/Nv/+2/5aUvfSk/+qM/ytd93dfxwQ9+MCYdgte//vU88cQTvO1tb6Pve77ru76L7/3e7+U//If/8Nwao6Wr+95ycX/K5YsXIQQWizXLdY31itYGLlywTKuCvKwwrTAQs2bCcr2iXzdYfExNHSOCBr2EG+5GmoCHxGMRJMZtvtycuPg06xrXW8oqo8hyurrHoNnf2+PowgWqqsI5g+1jSB+glObW8S3KvGBvf5+2t+RVhQI+ff1JpvmUo70ZbdvTu14WGa9plgvWp6cURRUFhj2Xjibcf9+ci4dHrE57XFOiKZiVmr6fs1633JpkNE1LQEndFxUgdHTtUoSFGVRlTjkpUKuWtvc4LxELe7OcPNujKAvms5onby1QraXtgmgy3OCswbu4MPtUVt6gVLbpUOnd6AYTGiUEH+vPbIfSxaNHorUUKpzEZGOR5piGTccmS37xdHzytyfwkzQaE4Re7rtu8BsTAm1dYyNNm9oiO0Ij84RSBC3i2YHpGSJcNtkzheWJ2Xe9RxmN7XqMUpKzwmQcHl7g8uWYmM8FgjbiWssLgjYRBCpJdW5kcfJuVFARJOy97xgiAKLwTsKghdVQUSPkkbwr6bOKNOnE+UXJMclkNxvfYOyD3S6sRgAAar9JREFU90PklQlhBCblmfFB2MjgRSCcWKjUN7Z3+NDhXMVkOmVSTehsS9M20EJvpehdbjYZgq1zrOvV4LZb1Sv8asF0OuWCvjDkmSjLUuqdeIePuVq01uiiGMZHGjPJXWUt2N4OUS9JVyMshqSc7/t+yDUym8kCnIq/KSWJuJqmo+069uZztM44ObnDYrmUaux7e1RVSdqdT6oJebGJUAMJDEiLRMr3o5RE+6S8Kkkc3tQNhMCFw4Mhadrx8R1WqzWTyYSiyFmtBBikDeJ8PouFN6UOmBTgbIFN1Fsq15GifObzOfP5XBIgliVVVW0EpAhIz/PoqkD0O95ksdDnwH+SdElPY1AE/T59MniWueGPLZINm+U8tS3pqM7Wx4nfo9IOKzK+XjY8CSwZsxHJpjlLoWL19VRSgIGJxnu0Frc3cXw568QFFFxq4PA7MVDbot3nYgk43bVL7tKnirjJTLOGEpYrbfr+KPfiOQOU173udbzuda87970QAv/iX/wL/uE//Id80zd9EwD/7t/9O65evcov/MIv8O3f/u38/u//Pr/8y7/Mb/3Wb/HVX/3VAPzMz/wM3/AN38A/+2f/jPvvv/8zb3xmCM5hcsOVyxe5eHREXbes1zVt19G5QNAa6z1ZXmDyAusDudbMphPmsxlN29H34idHBwhSuzd4J5Nw2EQVJDeFXKs8Oj4taorNgohEMKSdlCdwuLfHlctXmUxK8SkHK3R3K24ga3vycsLRxYscHl5gtVpx/eYdAE5XDUwMuNsczPdjFkw5d910NH1Hu5YkXH23wq4Dlw4e4oErl8jcgn5vRl1bqiqjKgvK3KBcT1NIJVGPRylJ+18VYDIn1WVNhlKG+d4E03TU6xbrpXrwtMpQekpVlVSTGSermtNFzaruaTuH9YLkldcEDMoHQMfFWQ2MhPSnF3ZEC2OyqUUzSvB1zk4oReAMD/poMdmenLZ3UmkBS5/fTjKWzpVqYTgXk+3Fc6Z039uVksep9McT5biN45DDNMml9iTXntC/GXXdMJlMuHbtPvreDtko008I0PebLK1joDW+5nEIaWrDOGz7/JIB59dMSrYBInEiGoEWHzUJ6TvG9Xk2gunNggcCCvqYB0UbWTCLbMLB/h7eNnRNg8ewX+4zD7CuG9q6Ha5HXKLtmTbP53P6vo99FYYMoCk0vyzLIXpLRVCYCkfaKHgfA9x0LeneOyc5S+bzOSkUtCzLAbyk77PWUpYSpuycZ900+Kgh00bFhJHCnHRdOxTR8x4R8Ye02EGeF1RVRV2HmAm5GdqZ5zlKidhV3Jrt8JwAgxDW+xA1JHmMMNPC1jlPluXkuRrGUJalhIzuTHmJlIXZWiuC4ziOUpK2FHmilKLITGTVNJ31rFuHytmEGafre5qmYvv33e2zDk7YuJphM7/7GMWZ0hncbTFPzNC4fZvndsMAK6WkWv3Bwab9BAkyGOYUeU3caR15noEfgQUVn9/kcg1ngwaei4UEeO76/jPTKy6umTLPx2f9j3g/PqsalEcffZTr16/zyCOPDK8dHBzwmte8hne96118+7d/O+9617s4PDwcwAnAI488gtaad7/73XzLt3zL086b0gQnOz09BYh+TM3h/j6XLl6mLEqWy1oSLTmHD1oSJZuMrKrQbUPvHLptyTLD/t6ctuvxizUeUMqLJiD4zQLp2ZS6U2CD7B19int3jt5Jqmsf5IEry1J85rbHR6FuWZW0bcvjn36MLM84ungU03RrFCKp2j/cQxcF12/eJoTAp27cZD7b44GXfjF3rj/J8ekJly8eceXKJUymIp0cyDOF7z2ZVtS0PHX9k9w4yPjSl17hwt4+uI7b6lR8oV5R6gI1K2lw9G0nE4cBU2j2phmmNLS2pfMNIShmkwOMLsm1orUe60WjQw7aaIqsoiozJkXOYtWwrluatqfrRZDpg7jKJNuuQgJYVAR1Ehw7iIqji2BgUUbP/niRHEfljPMLpAVvLGQb21hMN17I0sKZzpFcPqkAYVmWQ8TPGJykrJxpch4DgzFwSZbaZiLTkb7zbPZON7y/Xq8pioLZbDak7C8KEUWmtqToGD8CBKkd4wRRY3CQmKLxhH4eCNlObrfdd8Pfo3syfMcInEh67rPgMcQduTHFwH4oJ31stICLSalQwTGbTpmUpQhOvSMgPvoUnjsWLCY3RFEULJfLIbV4ihpRUXB4ujiVSKcISJxzQ32qdF1jd6JSirIsh/f7vo9htdnQV5PJZMgEm8BJyry6AdCB/f053luaxpLnhrLcH8ZTWsTkHjIkjkt/F3nGNNZ0SqCpbcXFk34nkJRA9niMTqfTgdEBAYLjInZp/KTSEOOxmioYa62HsOSikAR2KWw5Wd/3UfSJRCl2HShhtZvOob0RF6Qf7fiTAGkYa0lp8gy6iPj+ZoiqM68/u5fn7gekquKRR9w8Y85jI5Ox0Vqc/V7i4qyVHkSrMjYzunZTJToEKeuQAG+6pyl6VDbHHqOUuOPaljwzotcbOmrMZMYX7gqcwjOyUepp13Lm08+MFUNijM68FAml587qfFYByvXr1wG4evXqmdevXr06vHf9+nWuXLlythFZxtHR0XDMtr35zW/mx37sx572erCe+XzG1cuXRXfRxwgBpemtJZgCFwK9D2AyTFWSlSVNuybPNFVVcHiwRwiwajq8AmMk90mIfkXQo4GgokcnkCJ0rPcS9aNj1pRIXTtrcc5KtdpMonZOFqfUTcd+WTGbC5WrjWJ/f5+8yKnXLeum5sk7p+zvH3DzeEkXMu6/9iC3b56QVwGMoQ8OpQzltCIrcnzv8L2nyAzNJOfGpz7G9cefoF7WTCcF08mctpcdrbIBlQcqa2kJdBrq9Yp104BT6L6kmEwJhaEl4Hyg72pynTOfl8yCprWOdS0aGuU8rrdM8oLiYMLetKRpOparmtNFw2od6CzRdy9l4X0UrSZAgo7xUCoKaQdakK1kRJuFdAwsxmzEeQtp+tyZsTNiCmCjZdloVNzAsIwjflwUQrtRVEFafMbMxXntOA+ojAGKuA2knUVRDLvezU42G65/Gwyk8wyhvOdc+xicjJNFpfaPWZQx+EttOM/O2xWltijvzgCUMQM5nDdR2FpEwkko6ANY29MpCHgyk4kGMV6L1lpcFJmErKaq1WVZDjltJpPJULTOe8/JycnAsLRtS9s0TKpy2NGOgem40F0CL4mhSKwLCAOT9Capzkpa3JumOXMf0rnbtiUvi0HMmtiGvu+G79j0mwDcpmno2o6AZzatyLKzYa3JtaK1JEdL4arjarmpzxMQSscksLJer89lodK4SgAsjakEnJumGQBRGl9N09B13fBMdkCuRd+iTUZVFei82mTaTdHZY8qCjehzLHp9NlNqs/6O//1HsTC4eDY6CrlGKRSb5oXzAEqIDZdrG4NnPbBRcu/9kFoi2cBiRhbf9ZbMiLbE9r24g8+0cxt0PEOHnbNxG9uzwohn+GwYd3x6DSC8ABiUz5X9yI/8CH/n7/yd4e/T01Ne/OIXY1BcPDri4uER3jp6Lw+RMhrr4g6taTlZLjlsDtAmo5xO6dpYTyPLmU2nOAfWn9L2TmrIhJSNU0Wf4iaVsVYxhBZBxSEKgQT4i4/RWotPi1suIsE8z7nvvvspXppz8+ZNut4x3yu5eOki09mEp27fISun7FczWitCvlXdcOt4xXTekE0k8yNFwWnTkPeKalIwmc3QQRH6gAqeqsjZO7xA0y44OV0TKOitQnlDQU6eKTIPk9ziq4DThjWKW13HnZNTVkbcU+X+lKKc03tPv6gFyWvIckPmIhXdeiwdk1xhMgVKY53BVoZ5lTEtChaVZdUE6qaXhE/exqRd0o9o2QMnzYoIqza7ATVKpb8NMhJ4SHR6mgy3GYzzQMp4Qd/WoqQFa7zjVqOFUWsNcbEZMxXb7pttUDL+3vSdwBnWJn1PlvVMJkKXW+voe9EZiOZAdm/jSVA+t3GZjIFIWmTS39vALC1c42RRCZxtu3zG13GGoTqHmRq7eAYACQOoJFLYaeFO7ZE2xBo91mGqXGqW1A0oT14WlFVFlgs7UOTFsPCnXbtzbkgfnliAdG/GuVrS+Envj/9O2qZnYta2XXrp2DHDkM6VPl+WJa2VonDTobp1T123eE8EqllMPx/dUl1P2/Y4L3NLFqU8Q+bjUkKlp5MpRVHRR1dMyDbZlaU0A0M0VggKow1ZVsS5TQqN9l0CIzOKlIOjj5Wa9WbcAgM7kzQ541IHqZ/7vqet1xzMJ3Rdj8orirLEa411Hu8g5RWRzd+ZB+bs72exz4WbZ6ytCmGj+5Hr23KlbBXHU6TNyOaZ385wHYJoO9NzN4w3ZyNAEVF4WZbkkVlL9X2ITOSATyKgUmqbxzjTyDNlRM55d/j/ue/fpU/Tqx6FDqOUDwnY3fWMd7fPKkC5du0aADdu3OC+++4bXr9x4wZ/6k/9qeGYJ5988sznrLXcvn17+Py2Jd/ttmWZ4cLBIdPphPXijgyATHI/KGWwAdbrhtt3Tjk8vMB8VmGKgiwv6JsVHkVRTJjPpqzrmq7vIVhUMBEzq0glp84XLUTKEqpl+SRoSb4Fm5tXFKWEMLoeT+DipctcvXqVJ564AWi0yWmt43RV01rPk0/d5qGHvgilM2adZ71uObywh85yVk3P3tFlJpkim5RYLOtmzarvmE2cuGw82LZjb1JycHSF5ULRek3rNUqV5DqgM8NEa4ztaEKDc5JsbDbdo/BweueY+taCarbPZP8CeTmnJ4Cp8HEXiQ9kmWY2yfG+JMskQspaWK87+q4Fr5lkmmwv52B/j9ZqThcrFoslq7ql6y02OFx8TkLIYkid3qDtlDqV/sw9H+sBErOREk6Nj9nWgYzfG7texi6ZMcgY50gZ/6Tiar4ozvjjt0HMtrtpbOPFPv0eA4gQAqvVKub1mQMqAgbRnEiSPDdq31kwlL4zLRIJoJw3sWxrKlL7xiLRu7l/xteDOgsIz/tx1kZXqoqp7SF4yQ/kvbCWGQmoxPubSQXe4AN5nuGCY7VacXK6oJpMqYqK6WQao0GkYvWtW7eo65qqkmJ+1lqqqhqK1yVq3cznTCop0pbGUuqLsQtMhKfV0B8JzKRjU1KzMbhN+rO0cKfjxU2U09oGCDRNTdPUUmxwUmL7EIGqVCHuup6u62NpBRHJagKmKijLTTXu4+MTjmOl5/R98/mcg4MDskzYEq00+3v7GxYnz4cFU3Q6OUVRxnEWYvK1qFFRKTy2HaoWj8dTci0l5s8Yw3Q6ZW9vT+oBLZexjgxkVUUxP6APGVpnaVplYCEGwjqF7cfV99l9NU/boDzTuP1MLEQGZ3yap28+tl07ySkl7iWlFbizz1LKUizPXKBpmmG8KJ3On+YmeXZ0dCfKXOFj1JC4ydNv2bTE9wY3z3m/727DdaUN+tZv+Zrt1+WKo5owVnmPq+bQtq2u+gzsswpQXvrSl3Lt2jXe/va3D4Dk9PSUd7/73Xz/938/AA8//DDHx8e85z3v4dWvfjUA73jHO/De85rXvOY5fZ/yyI4hL6iVRmklZc/znCzP8cEQbOBkuaLpLErVaDL29vd5qlnjO0dZyMDZ39tDmZw7x6dMqlyO1wZiLHpKuFMoTdO2tFYGmI7CT/EZeyazkr7r0fhILwr9GpTixs1bfPKxTzGfz3FBkRcTsrxCZzkvfvCLOLp4WdBnVmKykhA0i9WaaTWhLApMkDBUFWQXdvnSBWZlycmdO6yOF0zKKXfWa/RkD+M6svkR1x68n99///uoXEZzYpnv7zFVBX2/YFbMKQrP8Z3bFM5weX7E46cn3HjsKXw+51J1RFnlhDwjmJjFMA66lMa7nzvWq4ZWeZgYjMqFLWlagg1gLGWWc3TBsDefs1pnLFcNq7qj7T1tF/DB4ZwCBFjqYAhBwJDScZEfAYFUITW5PEIIZyIr0gQ83rkPETgwuEHGE0X6SdRrcg9su4LGbRjvhMa76sS6pEUqfdeY/k676vR6Em6Of9KuajqdYowZKPj0uTE7Mb7O8e4VOHPM3Sbw8QI6XmjHr40p//R5eHoZg+2+Sm3wIWAj8DHGiDCdtM+UkPC6WcTj5Vz1eo3rauaTkqzI6fqW3OfkhZaEa9MpwQugSwticuskMJlcd8YYDg4OWCwWWGuZTaeEWJivbdtBLzGbzQYgMwhqR+6uMUOyWCyG+z5m8tLY6vs+lrFgcAFVk4LeS+qB1F91XbNcrgg+9b2ijWn5V6s1JyenMUIoYzopqaojQggsFpLk6+joCK01JycnJK2MUpK9Nd3P5CpKGpd0fQnkA4N7DBjGdlmWTKdTnLOs1u4MG9S27XCPU2SPMWYAdHVdD2xWnhnUJJOiqXlO8GZI1hc9gKNFFcYunoRPlKgvN4tAFDg8zbvBxr0jtXKeAWA/A5uQdCeDCyoC/8ViSaqNpJQU8FR6UzDVuygVCAobRexpvjDa0LYtJycnXLhwAaU0TzzxxPBc9LbdgH3kO4voBlRag4eud+R5dmaDlDhnpU1MIgmxUmYU64ZRRNrd4pATiAIJk/Vnf+PRJsO6HpDklKkKtlYGIuByLgz30vwxQOJzBijL5ZKPfOQjw9+PPvoo73vf+zg6OuLBBx/kB3/wB/kn/+Sf8LKXvWwIM77//vuHXClf/uVfztd//dfzPd/zPfx//9//R9/3vPGNb+Tbv/3bn1MED0g9jK7tQSnyWH49aMn3kOLCtTL0nWO1aqjKPXRW4GyD8wCBoOSh1CbDK81qVQMiRDSZhCarLMeYjCwv6boOe3qCo0ebHJ9o4SwH5VicLtk/2EMFT9Os2Jvvc+3KZTKTs1qteeDFL+HSxctkZcZ8PuPo0kWms2n0IU+wzqNNRZYXNE1P3fYU5YS8KOjbjtZ2kogreI5URjGbMfeay5cfYH865/atp7j55ITFx9dU84s88MVfznR6yEf+3/tpfMPipCObFBzMj6hw5MFS6JxJs6ZTmpurlsWyZ72waF+yNz9C0VE3C9arJb1tMUaT5wVlJblhiryg66RWzxKPtx3kkBlF42qsX2OUweSGYt8wn83praK1mpOTNevWs1pb2s7ifECrnDzL5YHzDjdaUNOEMHarjKnRZGNQ8TR3RLTzXk+TbWJkxpN1WqATmNn+7HnnuZuNWYvkVtheANMikEDOGHRtf1/6Ox0LZxmh7ePGbTyvrdtU+baNr/1urp8xuEv/TsyMc052yCGgdQwNFxpmWIiqqsIZh8VFMTmSVG4+p5pMJWGb0jH7reghlsslXdfFcN1quGfjhRTk/jZNI7FHESCOXUHpHoiLzQ7XMQ6VPj09HRZw54TZGVfFTtqVceh6uvbZbDb0SYrE8U5E/wkcJtAjC7DD2h7vLZNJMXxuDBbTDjxpbtL3prEsocPCxGithzwtabOR+irpeNIYSMAqHTfWrKRzdF3H/v7+8JpzLrI3GaenpyyXS8J0IqH2ucNbKRuiCBJmrOJYGTMQarzbTy6ClOBv7L65mxhUxlFKzvhHsQ34lraksdF1PUkwm0KpU3Pk3ymqRsUyBmcLkyZQKvOJYrFYDIL4IbIv+m2GcamzKKRtY0K/sQ4pbUg2c4M8+z6yri62XxJEZlkx7qkzAM9ZH/8eb2BSP2isl1xESgX8oDsCpUUz40LAx2KlRmsBbwHA81ztOQOU3/7t3+av/JW/MvydtCHf+Z3fyc///M/z9/7e32O1WvG93/u9HB8f8xf+wl/gl3/5lwdEDfDv//2/541vfCOvfe1rSYnafvqnf/o5N94Fz2K5BH2NqprS9x1e6UFo6TwYIxTl6WLJtauXKHTAMaGcTOljHpAsy0F7oJbQX++ZzvfIipLJdI+8mmKDYjqb0TYNXmm6TupwOGJ9haLCezsUB8uN5ujiIYd7e0yn4mN2KPb2L3Bw4SKresXJYs1kPqesJnR9y2x+iMkCZWUxJqfr7JDAzLnAybKhtw3e1nhbC7tBwPcW0BjTUs33uBA8H/3kx9HVHG8mXLr/IVRteLI85NMf/TCLVc99+3vYeknX1pTVlMPZlK4oOHEKe7yg7zU3nlxy2sLefsF0f58rB5do2xUnx7dZrpYUZca0qqhmJUVVkGUGpYSCLnKL856sc9RdR+87aaPOybOSUGb0PmNaHnC6smRqxYnrUDGKRTtFiDVMZCew2YknGns7NHgMYJ7J97zt/tkGPlmWDVWjx26P89xFY3fS9uvnAYkxkzIWXm4WRgkrJchvEcV5nA20bS//zgJGhzj5AVEHta2SfyaAtg0u7nZ929c07uex+2gzgZ39/m3NS/p33/fDltiYpD3atEFrcZ3kuuR0tcA6yI3BGEl61zQNp4ulpOBXmr29Pbz3Q+TJWMQ6Bh1pcQYBKVIioj8Tcj6u7pt2vUnwWlXVpqJsXDiAM+BxG8huyjBswPRysRZhsJZIlrbpIlgYA5qcvMgkyZs6oO8szrsIvGSslOUkjimiTkmYXmHaVAwplhIHVTVlOp2PhLMZSq0GxiMJZ7PMUBQlSongdrFY0XWWalLgvR36MEVXlmXJ5cuXWSwWTCaTgX1MbI6O7iYZ2KKj8r2ldUGieKQYPc56JKGZAJaQwCqJKFEbFuUZAMcYTycW+5nsmd2XMZImufC9VL3fzDmR/RlYmwgq4vdKwrQgWZ6ji7goBRwkJtVkGev1mjt37nDlypU4rjL63kHMXKs9mByUUTSdJQTIiglFXuC9kyKuI0G7UlIFHZVicnQM6Q5Y6+n69ukXO3SIjtFJ4m5T0Y2TuikECEpL0kliWQ8NQUmyzBTpqkkuOifzuvM81/wszxmg/OW//JefdfL/8R//cX78x3/8rsccHR0996Rs55gH1k0t/tEso+1blDFkRiZ8Zy3KyGCoVzWZypGaZDkexcl6TdP1HBwcCLXWS0ZFnckuweQlWVmRlRV9zAZYTqbM552kCc9yHGAi+wGBo6MjUWcXGft7c7QKtK34mMvJHG1KVJYRUPS9o6l7mkmPUpLh0ZhM6roYTaYQV1GQcLa9+R4+TFGqp29PyfKMtm2wbcf6ZElVVFy9eoVyMqOazji4eIVgclrbMz28xMX7PZ/8xCe4efuEo8MZxaxEZRZdZKy7mnxvzoX776Oe7XPSB+4s1jx5uqSYZjzwoqt80UMXubB3CLqgv/WEhHz2a8oqxyjIy5w9ZpR5wXrdsF6vQeco42majt5ZguR/p7cNvVVUxT5hotGuojQ5y3XPet3TtDU29GRF8gFvFshx7hLgjED2mRba81wcsNFhJMbBGDPsuNNDn95Lx2/nXRl/91g4ud2OtKNN/x67lwCcs5sdlN+EDAP0XT+4cDYhwwzfn8DOWIA3FsYmOw+o3I0J2u7D8TFjUCcgYyO6ld3wWbfS2BXgnFQBV1rKCoQQBjdeCDEpmrVoBBRkOmbxxdJ1UjivblpyI2zbarUa3F8XLkhCtqZpBuCRXDZJNKu1iNyVUgPDMBYXZ1k2pJJPbd4GtPP5nPV6Pex+k+A1LdppN5wAEGwYs7bv0NpQlhOmU0VVTYe2JaCV5xkxt1lM3qZwrpesvtFNk3bjwBB+nsZWShiXwldTH6xWK6y1rGIV9bHeStxUDmMck0nBdDolz6W44N7ejK5v8X4jvk6MUWKS1us1p6enNE3DbDZjf3+fvu9ZnJ5yON/bPEchRmwpWcR8vO6EQJJ+QUeEIoy3O5cRvNs4vdu/n4t5L6VHhmSQarO5kPeFlSCOeRWvJ+JtksvEx+cg1eIJQXQnSikmVaqXdIdr167J3JZJhfI8LwnOY73De+kH5yT6rbeezIB10PdeKqSjaHtHbgwhk5IcCWiI5ivpS9iSzmwKB4h7BkncqJBN8ui3UVq0ZCHQE6MGAUKg9z2937C4CnGhBetwPrGLz66DSXZPRPHczTzQeyf1NQhxR1QOsebe9RgtotYUCVFkBU3raFrL7TsnaKXIShHTaSXZQ/u+x3kpK+8C4IJoUrKWTEuacqEPY2ikjsl3tGK9XjKdSeXT3vZogoT/KYX1oPMM6xVFOaOsplSTKUVRRF86aKOoipxyMsV3liI3svgbKPIpIThyY+kyT2Esvq9xbcukmlJVOc71nJyc0NmevMzIipzFek1ZTbn44IPsffx+nrxzgyfqJYdzgyoCjepY9DWr3rLEoaYTSnIyU+K0oXct128uOV18hIPDCRcO5xxdfoC2PqWpl/hgZTAHj840lSklzb23Uh9CSRn5zFlA4UOqY+TBr8l1xnyiyLOMsoDS9CyUY907HPJQJVp37JZIu9u02002BgvnMQTjSI703liLMg5d7vt+8OHDJu9I+nsMUMbRLtuuoG03yDh0eBzqm3JepMksgS/YLOzbrMT29Z7H6jwbAHm2Tcf4fNvaF6UUahT2Ok5et80ojEFK8B6VJVDmBYxrTWLVRSQYqCYVfSuug5QHJcsl90aRFwNzPHZ7JPdYEjKnvCIp30Q61qizTNewy40i6HG0ThLLpnMlpmXsAhpreBIbk1wgCUB675nv7ccFLQlKq8FVlACS5N6R2jpjN8U4V0oIYXDbpBwtCcCme5auIelB0pjNMslcmzK/Js1UCpFObZYxJ/ciz0X/NM4cu1qtWC6XA0ATtkbm1Pl8LgLQWNU4ALiAMhKmPKkKJGt+ej7TvZCduwsCTNN8m+7Teazl58JkyTdI4jNhf2wsBxHCxhWYEqqFRPmOwIlghLNh4YmVG+fSuXXr1uhZF6GpzgtMrgSx6wx0TjWdcXq64NadOxR5iXUe2/fiPvOKzlmMCigjmaXRkirDesnpkjZ80kIGyimBK+UVXgHO4wjDb+UDDkln7yNgcV4ERAIyPdZbXLBD3hcFkqk6ltx4NjZr2+5pgJKQt0PCsDrryFFDdIjUeZHREqxncbKgKo6YzuccXrzIyckpdb2Sc8VdVTmZcvv4hPV6zcyIrzc4i0dhXcC7JILTQ8XaEGJVWWTBqpsGQs7efMakKAlBkrYZJanQ204SLuVG6oWEE7lp8+lsk1wpMzJunCe4ntB3NF3MIpg5XL/E5R6NIzjPhatXONg/ZL1uWSxOmE+ndF0rdTdOT7nv4v3MqikPfNmX8PhTn+DG+iZtlmF8S99KkbLGBhpv6LIJQWcEk5FlJZcvvIjbt5/i0098io9+/BPsH1Q8cN8RV69e4OLlSywXJ+AsfVtjncUoQ1FkTCYVKE2eFeQmp+07rHP01uNx5MqhtIPg8TpQGIOeBApTMJ8Zlk3PnbUUTBtbYjngbKKy8UL6TIvw9iKeWIrxQpSYiO18KGMRa3rIx5E654GU9J1jhiW1Z7yoCeu3YTvS7jQtNmMh7RiUpJ9xltTx9Y+p37v1zd1se2Ld/hm/P76u8fVuL94JdDkfi+/FsE1UwChJfa5DzNdhIMOjg4D8LDf0zmKynOlsjrOO3m7Szi8WC5566qnBDZMiS/b29oY+GPLahI2mJIGXtNinticAMs6FkwBJEoQeHh4Ou+EQQszmqmIUTncm0aSMV890rqjXLXV9QuBsRmStk6DSRrbCDc+AUinZ1yZEfcyqDZEgowU7AZqu687chxTVlMAJbJK2rdfr4TqtlQzGopkIKM0AUBJLUxQFjz32GFmWMZ/PJZQ6Co8l+s8zqyZoLUJKFwLeievax4SsshPf+EtknMbNiX56DqDtsTb+vf28P9OYH4u8ty0zBpWWySCLcGLaE+MUIhuRXFKbr9oI8VO7xhuqvu9lnZkIOL1x4waLxYKAo+sdx4sl66ajLCpJnWEChRIxeVCa08US71cx7JgzLIfrLcpAbgqIJTe8QB48EkqegBMp2ijWKxvE+y7glSfYgMOBA688OmiUkfettwMb413MBj4qmmjSpiSpoJ+j3dMARRstcfvOYYPE9vsgYkLbOzItNV+c9fRYnrp5k4sXD9mb73E1N7RNz5M3r+ODom46euepkuCtacingcxDsCIsSpHlJsvjQ24YGLPY+fP5PkbDdFIxm1Yo72kbR16UVPkUlU/Jot/QZBqdCc3pnBORkQ7RX+dwfYvtOyk8FTyTvED7niI36KygKqRwIS5QGkWhFVYHLuxNeegl92M0KO3JCsPN02MWTc3k0j5XvuhFfPrRE9xUkWcV61unrNoan+cEU+I8LNuWtu1RmWPvgqGo9ikn+xyfnnDnk49z+/ZNbt854srlAw72pkJH+wLXu40YrMiBDGcVxnRo3dA0NU61ZCaGa+sAveR28MqTa0NWGcpKk02m+KKi7SQRVjovbHbpKXJl27VyNwZlDBzGAsNtViJR42Oh4zhfRmrL9ndu59kY54wYA4v093aEkbRX471oCpwTb24Igbpu48KbwgtFQR/C2XONBZ13++5nmrzHLFWy88DJ2Lb7G+RZVH4UPj06NrVXO4fWyS3h8cEPC5bc54wqN+gqj2GvItLrehFUd02Ht5sw4ZRobNyOFPE1nU7PZOHtR6zGmF1L9HuK7rHWMp1OSeG4qW/TRJ4AQLqmbXAwm80oimIAtVobjM5iSvmAjxE91ifXnabvW6zVmExRVrnMC/G7dMiAxFIF8rykKKrYPtF5dJ0dRe/I+lBVU/K8PPO8bGusVqs1oKPLmoHlE3Dmads1bSf1d1ar1cAqhRD4oi/6ooF5qaqKq1ev4pzj9PSU1WIxABmnc07rXgqk1nWct6OoN4phpT0AoptQehzOv6lltQ2St8ft5t93Y1ieedHMtIlh/Ztns+2sJEsDUnbsc88cAa5EuMhrklCwHeaIuq65cLDPbDbj+PiYxWKB0oHj0yXH6xZ/fEqZl8xmM8qyIsvEfRhi8cF1XQ8pMXprIQSyPJc2Iyw2bPLLaDTomAYlDB416cMINOqmRUKXVXTJix4w/dYYjBTCw8W6PUZryWmlIGhP8Fpq06noHtd6qGP3XOyeBihGG7z1WOvxQUFmcEHRdj297VAmR6lA73pscJwuFoTg44QFVVGQa4PrLX3b4a0lL0oUYLuWECwqhsAqnRG8FWorLXIEbLAopwi9BqPRueLLX/4VlGXJRz/8h5yeLrh06SJZlrNatxh6CQPzjiyTMOlJVVKVG6EkyKQlD18YHmwZU5qqNOTaUGQe263pXcPxyW26ekXb1jhnubh/kXbxBKqfcTA19L7Aec3+4RWuvuiL+fTjn+K0PWFtOxa+x+wVBK+wwdLWnqaHoGbMJvvcvL2UfAwUVPuXMdWEuj3lDz5ygw9/7DH+3Gv+DBcOppRlgbEK1zaDcl0bmXCM0phgKCnIMkWIkRuni4XsoE2P8RZPdNd4TZHNOJxPObkjFGVwHmVAK5ng08I8BgTPZNsukO2d2HjRTpO3UupMZs200x27iMafudvr4+9JNPv4O9MiIO0KEZhIqYCukwWm65phoZCPJYCVUuSfZZG2tSxjhuPZ+mnc/vHr2+xMOiaEENOCj8sMeILfCEO1OZtnxVtHyDx5mYk4vbcS3SHaQKzrcVazaFZ0TY1WgWpakhdFzDMlbUtZZOfzOYeHh8OuP9U3OTk5kTwjMcsriKh1sVxg+3Jok4lulSzLsM4xHUXDpPuTWK10vuPjY04XC4pR/RnrXHT96kETMg4BD0HFkPic+TyCpT6yLCoB7QytFWX8vFYNzlvKosL1m8RcY4FrchtInZ56uK6kOZnP5ygtYa8JXCU3VQJWqfihMeaMWHhzzw1FXolmxEmSONt7mroj+PUARk/bFU/eeIqmbSmLgv35jLpZx8rZBtu11K3D9lY8IkHRe4VDciAFnGS+jhfqwihhoho9YyJ+OMNUxlE54AZjzIBPxlAifhRr+7Ovjf6hlKW3mwrFxmTUncUGDVrc+kmvIecfuZ+Cx7pWMs5mm1ICMoZ8ZO56siKnmk24desW66YmM4rFaol1iqbtaE27EXb3Pd45irzAGI1UuVYosyljoZTCRFecjIH4TIfoqQoM4f7jzci2m2xwBcUIOmUMUjfOY9I6GJLEIW4YfXT/xLkZD8EIC+aGUOXP3O5pgOL7nulkTlAZXgcmexN8CPTO0fcNyoiIiGDxXuLUT0+XXL28jwoOo2BvPiXXRqjI4Mi0YlqVdH2L61q0ChgsIXiKTM7vTdId9eA6rOvRJVy+cIX777+f09s3uH37mHXTM9vbw5QTAgpdCuuDEuDhk7LbZGRKkWuDDh60YrlcSvrjPKfzDu0aetehFFiryI1mv6jQlaFe1Uwqw3w+IaNGK0e3eIz2uOGp4g4v/4o/y61FoAkFN6+fUBaXeOUr/xLv/8C7OG2uc+G+BzhZXsf2NetVTecKynwfwh792pDNJrQusOwNjasIOidUcwJL6nbJ/+//fJCv+vIv5mUP3c9sWtKrE/pmiaYnK2VCyTqHDQFjcpSqcL2jqTtyU6BxZFrTl5bOdvR9S2clq2ZhFJMsYAJUmRFwQhZLJflIyXeRajZ0ncV2EgZjlMZog9Gpgq4oyzNtIhWqIyUrPkFvHU5J5JQyAlBS+vBEjyfgMhYHjh/yDcgUS8xIot3HbMu2VkUpRV4Ysl5T10tMpplUU3ywUjwwE5GkdQbjJGIqTeY+eFyMsBjb3ZiSMUgbnqfRQjQGaGPQNY4+Sufx3tOHQK5zTKbJMyOiPrtxNSQ6XIBm1EF4T1c3oAxGg7cdfSOl5o0mhrQa1ssGrwK27+lPLUVpMbEoXltvhLCpXek6ptMpSimuXr066JXGuUqKosT6wBM3nhwW+iZsNCurdS1CbyAve9BmKIyXlxVd1zGd70k+kN5ifaxVow1Zng/ukqZpUNaCNgQVSyo4P7iTEnBK/ZwZQ29TYj4RrU4meyyXSxaLBmt7lssFL3nJS5jP54Mr5fDwEOt76nZN70Q7ZbSmqHIyb8jLHKOM0P0+4IKP7F3OfLY3hErbPtHzGaYQvU3fWckFZQzegfOOurHU9ToWszygqCYDC2N9x3z/AgfaoLRiUhYUZcV6vSRXGQf7e5jWURUFHnjqeMHHH7+F15mkifAe7R0mWIkoiekjtpnA7edHaT2AQxXpAQmbDRHQjQXpZzNFj5m9zYYihfsSq0Q3nB7foZjOaOsanSlcL8xF20gSO4VitViRlQZlIMugty2TSYXzgcXqlKBh3a5YNfJTTkqm8wkf+8TH+FNf9UqOlMaHQqqQtw1HFy5gu17c4c0SpWdkWMocsiyn7XtMBiavZK7xG0Z5HOq+cSNu8iglVi+hsrR5Snl6lEquq5Rh3ZHSeAjTYqOrTqhPrWKG4KQbCpFNSdF6aJIL6NnsngYoirh7amVhM8bEMN8M6yzay4KklOQXSKnCvXfoIMnUMiXuE6NSCm5hZnAe23d0XYNHgzFkNhPfaQyFtcFRFgWXLx1xdLDHZDLhU499XPKnZJrZbEpZVfGhDqC0AKi+w9oW7QNGeapMk+kpq9UyDgQJo2z7PlK/Qv8GBTpWBS2U4fDiJSZFxnpxSlmVPPCiayxPNI8/9mGuf+pxmvUJ2i64cukq+9e+gv1symyScfvWgq7pOLr0EO5WoO0X7O1fo25OsG5F01japiFXDeX0gDvHp/Rak5UzjNecLE9pW4tROVlxiFYZH/zDx1icLHjFl7yIo7053vY4K0xWJ2kUKSYZvgu0dUdwUBQGrStZfK0h85o813S5xvQduo9UdfRDa9JEAtaJjzWElGr+6SK6FPq67XqAu+wYwjgxmToDIs5zFW2fb/zv8QQ6/r7zWJtzf+JOpbfihrBR+2SMjYvZpoLxWIdwHjtynkvmvLaPffjb1zeeuLfPN/b/n9cf29c6fg0cbV1jMo0KDm0gUxKtsF6vsW2Iz2aG8jHZm3coL2UkZrMZLhZyTO6t5P5rGqkEnbJ0eu/P5PFIugzv/VB7586dO6ILmM24cuUKVVUN6enHifXW6/WZgntj7VISNx8fHw/3JrmAuq6LSf5k6k1i2moi4csJ+JZlFYFM4OT4dNCxTKYVXddGsCJJ2p566ikee+wxLl++jDFmCLlOoCfdz7peY3SGCoqULVapTRvaJGQN48XNxj5yaCtgo2072k6YAWF3NG3TidasEJ3O4nTJndvHwz3PckOmFW1bU1UTTF7QOmEFlYLlesn1m0/hTSUJMn3A4CiIpSjyKmadPqs92R5r4+i6dN2pL5wLcS3IoxBbEo9Z6yLbkhZcFXVAmbifAGcddbckuB5dFBS55s6d23RtTZ5lzEvJMbNerajrhnq1Zv/CPhcu7qONJs8NRZGT5xn7+3OOjyfDxieNy97HXDpegLTycg19gHq5wtqOsizIjSZ4i4q5t5t2jfOiIRnu3Rar9Ezu2vEm5OyznPRK488rUhbrjaBZjg1hw2YrpclNJsEQiOA9uDCc4zO1exqgBBgEXE0nlOb+/r7kNQH6KG4laIxJ5cJbCDNC8EPiIW/jbiOTHAuZMahIe/Zdj1fiYvDeMZRoUlJDZjqdcuHoAmVRsqpr6nXLfL+Qcuchhi1GWlfSd+cx4RTokPI1bAaACLA2yH4TUSLUbJmXdM6x6pasVgu0L1ktF1w5mnP1vmto3fHhP2xZnaxZL9c49zhq8n6+1ORUswvg59TrBavFgr3JEXWx5vHrCzpby+KQz9mbQk5AeShLSxk0bWNZrlY0jYj9sizD9Y7WWiZ5hbUNH3/scY5v3+SLXnSVF913kcnsCN+vsN0a7wNGa8rKUGQVru+jSM7T9T2qU2RBEUJObmUCD8HTtmGgXYfdeNr5hI24eaz1gPEE9uxi2fTaeBHOzcYtMw6d3eSQ0E8739i2F/3xhHneZDFmL9IxaWwndmAcwZPGx/jvbfZku23nAavx62NX1HntG+/yz/uObWYIFUNItyJ+nuZqGq47sgtGQmmVktBH7yVRmyHHOisuFO0oSk2R5xDFq6ng2rho3nQ6pa7rIWvqOPqmrmvquj7jitnOSAyy015EDcWYUUvF9pLWIC02WkshQ6XUkA04RQUlF8zh4REuhuuu69WQLTgg/SzASM7nvKXtGrq+I7cZfd8N9yK5DNbr9ZAsLYGcxBAkIau1FhcLL5rMoGMKdh8cPkSRcqYH8CaaFhXbKfez7cQNZYzGmGJwL63rFajAxE+wcWMyHo/aQ932A9upQ3JTbTQn3nm88sToB1AOh8doTd91kfE8++yMGbPEFoyjxTbvbyIvoR80m5IWfhOyn1gD5xRaS6Vlkwmgsc6htCfPDW3b8OlPfwqjBGSZIHqSTOcDSJ1OJ+R5MWwqrU3PqmexkOCM69ef5PLlq+zv79M0HcfHp9R1i8lKvJMIVRX73TtLVYqWabVa0cdssF3XoXRGVgjozPMcN0oYeN6GY/ysb2++xskGt93m47kAztbvOrvBE8bSxcr0mvPnnmezexqgSJCLG1TVzjnKqhqo+bre7AiMS2mnG/GFOz1MOLVNJd4j4tR6eGiAYZeAEvdAQGGUFOiaTqcyQazWrFcrLl+5En3kirbpcE6SD5lsU/dCEajKKVWRUxVRXxIgz00MK+xHSFQND49WOZNiRmFyVstjlqcnaF8ynZVkuewGfADrFbO9i2T5lLpe88nHrlPrd6OLCXuz+zi9E7h9o2M+vUCu55TZUcwGe4oJnjxTWN2wWCy5c1KTza/iradrWxG5xkQ8RLFm23vmsyO6tebxG9c5ubNguWx46UMPUFWz+EDX1HVLlSvmswnKFyyXK4oyR7cBpRy92xS/sw6MsYAdFjDxowpSd9aRlP/jPCLbi/z4mRg/iONj0t/jh01n5sx5E0AZP4B3O++5Y3UETsZunvFP2v2nnzErMLaxGDN9dux6udtuadu2Act5LNB4QhonxNue1Lb/vS0e3u67YZLTmswkN5AbNCiZTm4maOo1Ks/ItAYXXUrWkvU97brGjRbpFOFSllJjJ4XWprDc1K5xHpE8umMADg4OJB19DJdNx4+rEydR6PHx8RAOnM4NDGG744iv5FpKYCi5jhIDMpvNhu/tuo66rocooUGDFvtyMpkO6edDCMxmM65evcrh4eEARhIjkqKHEqNke3luUvROAm+z2Wxgm1KkVfo9JLcbgcwxm5b+Xq/X1HU9gKLZbDbMZZNJie16us4wmU7JywnGQp7L3Kd1Rl4UOC05ooI4dIb9xfZ8vP37PDZlM8ZH4trIjHqXALdD603RxxQiHILUu1FaWHXvHbHyGt71dF1L09aUmeH09IS+7QnecTA/wGQG5wRUqlXARBF2GvtprHgvpQeapuHo6GiInloul8zmmtWqjSUBvNSx8pbVes1qccpqXVNWE2bzPUnVL0IefPDkWmN9khs/fZMydkuP+2zMxqbXE1DfuH2evlEZP//bmznvRFSebRWZ/Ezt3gYoSouPLpYt90H8qjozQv16sNbjnHSedY6266QiZOiGSWoT9WBwPu4A2VC3ZFI3RCup/+G8dHgKz1suV7HIk2YynRKUxraSCllnMsGYLJf2OYezkphtWpWiSUE0LYkCTiGLnpT8RzL7Zaqgb3rAoYGurWmNZTopyAuDV1BNZly88gDzaip+7rbj4Kjk07f+kGVzg715h+/m3DpuaFuoigl7+xcpiws8detTtN0SbQxlnrFSgtRXp4/jsyoOWC06lbjLLHLDqmkIzlNlM2b7V1md3uYPPnqdk2XPA/dd4NLFPYp8Tr3qOK2XaAWTMkfrQJErwIDKMC5gbSAEjfeG3vbk+dnw1eCcgDArvukQNunJ044s3Td5bfMgnScS3QYX2yG+6Zjx+9vujHTMeYv23Y4Zsx/bocNj/UfaqdxtsU+vj4Wwd2NB7kb53s0dM27jNjg5029bQCudM+2ixu0bf9+4r0MwKC9VWlM0Xl2vsTqQRS1FZmIF5IGOj8LWGJWTWJDJZDKAhrSjTv9O15HcwcOOM/ZzCp9NDFVVVUNdnyHzZ7w3h4eH5wqRxwtQcveEkPJnyPenYn2pCGpizMZMVrqG9Hs+n0e9ikRm5HnO6ekpeZ5z8eJFsixjsVjw4IMPDmMojZO08OR5gYkL8nQ6BRiKJx4eHg79NL7P6Vxaa6qpuCaS2ywBG+ccd+7cGdL9p1IDScCc5wZjYlbeupa5OZjNpiDIImy1lmhJLyLxEDPK+lQQ7y7P0nnjOJkUznNn7r+8LnOEjXNZ0ov56KoIXnI4BS+snTEKrT1t27FaLySiae3p+47pbCLgGMPxyR3apkVnmgdedP8ZdiF9b1mW3L59m+PjY27evMn+/v4gTF7HvFXOe2wrubd629M2Ncd3Gp54/NPUTcvRxUtcU0bUHF426w4pdGtHIeXbm6KxO2fcl+PNzrh/0nvjOeC8eWCb0RqzY70VguCZ5flPt3scoKhBIDadVRJ27CQvguiqNBl6QNDykAqQGHewTByePMtx3p1ZyLz3EvZrBJHKIq2ipkVhncd5T54XVNMJbd+DzsQnmGXkRUlZFigtwrekJUgCWWstRaxto9TZOjOSvl7Yl6qoyCgjuIFJXpJlFrzDh57bd27y8Y9/nL7rWa5bViuH7QPz2R7l7Bpzu2LV36DrMowq0Lmjti0eyera9B29h6AKdFZRGIPJFW1Xc2dxitMrVAyvNsqglZMHdRWT4YVA0/T4zpHl+1gcH/nEk5wsVnzZF7+Y+65dZDo7ZLm4zWrdAJKKG7yEHJc5fQ8G4V61KkB7el9QFMtI9XvZVwWhr83oARrfLxgDlKf7q+/GdIwX2PSQpnON399ebNM5zwMo57Er4zak821PHmlBGC8Wd2Mjxu3f3h2d993jn3Ebt49P7Rq3Yfv7zgND29+TzjFmh87swoJDG0WuNTrL8ErAYd9bPA5yRe16OiUZNG2MXOh6y3wyxcTkZykJWtd1w2KU3BxjlwhsWI6k10iRWikcOLmEsixjMpmwv78/aE4SQ1FVFavValisx4LLNG5Sf6W+7PuexWJBVclCv7e3R12vI8XfUBQ5bSsFArO4E2+amrpumM9n5Hm2cRVHAJvykSTGKLVbqU3RwGGxQVzFwhDIb8kCHOi6dnCD973kyZB7lxY0j/U+hk3nlGWBjoL+xWIxiH6dS3qolN9F4ayl7WXx7a3FtD2OjK5r4/wMjJkOBbnWlFqAQ91KWHnwZ4Xcz+Rqlb9l3pb8I90QJi5apOIMQAQpopfyzmxAXR7HwB5FrlksTnnq5nUee+yT2FY0YhePjjBG07eSoXdvNmc2m+GB0FuyPEdrSex5dOGIl7zkIQ4PL1CWJWVZ4ZxnOp3RNi23bt0mYLh964R125JrzXKxYLVa0DQ1Tz15g4PDC0ymM5arJVlR0Lsg9SF0QdtKyZB0XYlVHIOH8ZhMTMn2M7s9r4zHeALj43w8aTyeyZwcQ49dSjh5l7n3bnbPA5R1XXPnzh28OpC8BV3H8ckxi+US23t0lg8um4Tmx524mdAshaogJqoBBr+y8oEMRZ47rOspypIyT7kbII85CKxH0g/noiZXLvocnUMjD7pM1BlVNYm7FYu1Dq0VRVFRFDV9LyCpd4HeWpRWGJNjW0eR5UyqEq06tGrQusVZw2w+wWQZ1gWq6QGrZcti3ZJPCix7KHMVrzxtn1MWJfk0o+8si35BUy8xxmOKjGChtgrvNK2vsL4i0IgfuvN4H3BeQF2XEkRpTaZzvPX0rRe3VVbSuo5PXz8l+MfwQfGi+y9x8VJJvbpN264JucIR84moDGMCzhpyE8h0hikMVlVUk9sIwxxwMaTWBYfeElttHjj9NPS/bc/k+oANQNEjMDv+7BgIpbGYfo8f/O0H/W7sxnj3ch7YGb+frm0cMXTeubeB0DY42WZSts+Tvm+7TXez84DQeX29zb6MGRUVwnBXq6qiMLA/n+D6Ftd3skkwRna2KMo8J/hwJsoKNhWrT09Phz5LbEiatFOdnjEzkhiPlKY+uUhS+1L7i6IYMoFqrc8U/0vMTJq0jTFMJhOqShJyWWvZ25OomTw3ZJmhLAuapiZEn31ZbtgV+Xw15GJJLE1Zluzv73N4eDi4jMbJBMdup8QYaaVw1g3vS/HF2XDdk0mJ1hLtMmaCBpBHoCiyM9W8u65hvV7ivY+sTIG1HW3bUFUlSm3Yo7Ismc3noAzLJqVSSN+XSzqHmCdeqxDFqtFtEDZMxPYufpzPZTzeQ/BDv2qtJBVCdAEmpm3McMn3qSFjrrdS1PXw8JD9gz329maE4MhM4Hd+5//xyUcfZV2vWC5O4jjWlEXJ1StXuXz5MnkUcI+BUJYVzGZ7Q5kBa6US8MH+IV3b03eyJnziE5/gzukpudYcH9+hqdcUeYbRigsXLgwC7qAUTedQRpMVwsLo+CgmFq0oinPdNGmMjguWjkFMGvdpnUzuvrThGJdJSPNS13VDaHuRZ1RVSTYIbZ+bDuWeBihJgLdcr5gfzEWLYi2L5VLyACjJFwKpDHZgHX3JJqK/VF58LHgjhMFX2fe9+PZQFGWFso6Qe/IYDeB9oHcW6z1Yjw+aoAzKBFRc5IKXWg1J5TyJExUIvaqco20nFEUWJz5xWbmwyb7XNA2rk5jUZ1JBEDYoyyWJUFVW5GVJIKOczGm7HF1muFDSdIa6ndDbGSpk+C5D5wUqdCwWJ7FIGRSFhDV6L9WgfZaTTaeYfiX+WOQa6notOyyTY3SGc5667cmNISvn9M7S1RatJzhr+fT1O0hFgowXv+iIyeyQZu1xvpOCU0GEeGAoy5y+C/TWY7RhOi02OWBCIPiAD2rk3jmL4rc5xPFENhyz9d65i2d8P2XoTGBgvCPe3r2dt/CPgcWYHRkzNNusyJihGbf5PHfOtgtmvFse27jt5703Pv/4O8YLQjpm3I5xG5/t/GOGIU2ccg6Pd8KmKS8uHq2EpcwzHd0+SR8U8F4KDSplCFZS5qcNx9htklwN6XuTqyb1V6LTm6YZXCggi/zBwQFNI0X20rllvG0SBCZ2JfXtdiRVAjghhEHrsre3N+zgk75oWKRi/6WIojSu04YpuaLS9aXvT8LetNNPIt/kyjrDOCiNyjbC7aRZCUHypYh2T3Q7KXV9AqkoNbg/0nyZrilpbMq4IKe+S9+bhL/GGPYPDtAmJ697yrKKU5ywC15JCLR3nhB6VBQN972X0NV4zqQfGnR957ADclxB29UD85Xm+wS+kgA63YfpdDpkHZaF28Q8VRXz+YyLRxfYP5iTGfjYx/40Kjhu3LjBradu0/c9V69cw5iMC0cXpVhqfE6SPiexTcvlckh0N67dlITdN2/d5vbt27TWsu57nBOQ8eIXvYjDgz1m8z1Q0n41mktSf4cooD2PqU0b9TRGx3l+xi7i8Rw1zp6b+ndcEmQjk9joT9brNZ0RBsVMKtF4Pked7D0NUFAM1OtsNsMFz5CvMk6EzrmY4Ewmkbpp6NqWCwfTM4NynNio73tUiqyJoqlhB6BLVBD30XQ+w3s4OZUBnuUFLoBJgyIqWYRajTuvPFKjRovP1VqsUsP5N8m61BBlZPKcdt3FhEMqCoNbbL9mEsQvWtcN9boFMnrrsV6T5VOcyum8oe0VwZfkRYVzAaNzyDSt1XQ+F9ROTKtuFL23rNya2tfowuBXEuKptcFkmhCirzNOXJJYTOpmEN9zIaB0iest1586JXzoUdq+5sEHLjHfv0xwNevVCS7IDlgrmFQTfBawTlxxhckxOsf7+DB5FftVQQCtUwp6e+aBkh2iObOwboOV88BJ+nHBn3no0iI0fhjPYyDGx6V2jFkIOAtQxi6Q7bYlS23czvo5pl63Q0rPAwvntXf7ve0d1rgN8HTxa3rWzmOitinjlAumKIqNmyeCj5D4MJUirySc34fIIsbvdrFtKB13uRLJk7K+KqWG2iaJGRmHz6bnKjEN20nKxotqYkdSn4yToo3B6/izSXyagANsSgyk68+3XFIJVCQNTXLLjPsusQipXk/btkMxxNVqRQhhqBifrjMxR+MyDc5anJX2iHuhHIDiGISn605C7TT+tlmMBGImE8k8m8BJWuzS95dlSVVsxKJ5nnOQT5hOJxDAOS/ub2/wxGga7+iDxdoeFxQBPcyJqap0MufcINBNY1NrGSNyjRsAmFx46T6n+z+fz8+Elnsn4LdrG9qmRhEIwbJeL3jiiessl0u++Iu/mJe//Mv5nff9LjeuP8nLvuRLuX79SZarNX/woQ9zeLg/9GUCxKm45HYtp9SnVVVx684xwSvue+ABiizj6OiI/b0ZDz30EtbLBR/92KM4Hzi8cEQ1mVApg/UeFwS8VZPpAJjTOE/jNPVRGn/j+W/cjvScpP4dj6UEgtOzMJ7fUmkJqRXlhrEgg/Pc6eeudo8DFMW1++6jLAq0MQQviF4PyE581pIwRqOjj5M4SaVOTah6vPvUUXVc5AWYDB9fK8tCaMtE/WtDlhdYFwScZAXaRJo1EIvopck9TToietXxBqddzvaONIspjpXJ6JoF5aREaWj7jrap8bYjz3JypdBKJmtx80mthKzQeKVYtw2np7eksJ93EKR4X/AZmZlh0XR9I+p5ZXGho+8bar/E5w3KynXqmJxHkRZ6D14ASlCS7RQt/mwfEzAHp8hMhcXy+I3bNI347B984BKziSaEErTHBovvepxfiwpSSd4AyEmVcr33saqpGvzVMA7T3QwNmaTOLpKb188HJuPPpknrmZTn48UsPYDbQrK76VW2XTLb7dp+Px0zPnb7ve3znee+GbdjmzlJbR1PUuNzbfv8P1PbvqYzOqEg40T6M6CGImOKosgpco1REjkRYr6KPCZp08ZQZpICf8zgpGe4qiqWy+WQrn4skE2LcQIDY41MWpjHbr40P4y1LCkdfqK5x32Uxk9iPeq6PgNqZ7MpISQALC4FOW+PjOnNuErjUGuZg867p7CpS5XAX8qrknK/dF1H33V0XcqMLDqUs6yWY29vjvfiGmlbS1HIBqHtmiEDaQLDbduQ6gQlfU8WQ5hlDPkIEgqyKK7tu17Y1yKXMh4K2qbl9HSBNx1KG0myqBy4XrIMY1B6o6PYLtIYQmCxWNDERH/j+wGSQn9wI0VtTWLQE7sTApyeLjk5WdD3HcF7VssF9Wo56N2yXDOZltx88gZPfPpx7rvvGlevXOPFLz5mOt1jOptRlBWffvwJ1qsV0+nkTHK4zbNFBCjdFvOZkplJRNlLHnqIWVUxnU442N/j6tWrfLKWwplZLkBtUk3orMdjCWFTCDOxg8ZI0EgCqdu1y9L4GGcjTuN+PP7GQDtt6FOOnzGITeetqipm1mVTGuA5IpR7G6AEuHjxIj54bt26CUA+CscL0bUjD7aJ5cuNJPlSGq3Dhn6NICdDdhZNfNCzTNwhQWuKsqSqyjghBZwPkoCnLOmdVHZ0QfQqktMhI89SUa6Mrrc0bay7YaWUfPCSLn+9Xg8ACCJlHnc5OstZF7Wo741CGYXODEaXMXGPYjrdoyxnrOselGEyzem9YbFseOqp67SrW/huRduvCd5gszmoEu01KuSSBMtJ4cW272m6JU2/ICipoqljankg8hchTrAu8RkkQVog4JPYNcsJSKHF4A1P3lqyWv0hN28+xX1XDrl2+QKTskBrT+/XuK5DAVmeY2KRK6XPhgsLO0Z8jsfUbojY5ZlZg20wuM1ayJjRT3svTSKJPj8PUGwv8Nvg5Mz33AVkjHeo26BjfFya2MafS39v2/j1u4G2tMCN2ZhkabI6L0ro2Wx8/Jh90lqj4mQdgoyedFtVvI8hILk3vAjCA4CGvu+omwWzyZRpZA4SmEyMQtKXJPfJWFORWKK2bYdJGxgWrMGHHiuNJ9YnHZvYkeRmgQ1TknKkpOPrupYaKxEQyWS/2cmmnaoxenjtLBCUHEx9H3DOonU2iHjbtmW1Wg3MUEoEt16vOTw8HHbOCXBlRliFTX9twLhSki3VGE3T1JycnMQFaj7oCopK2i85PjbuMmGcumGsSH/YAfiJS8tHNsvTWUcxgd7KPe2tXEvIFNpkOKXJlIMgwsq2twTUcK3j8ZvubQKi482Ccza6jzd5rxLIEVeZisJZaNuOvr8+3FujJdtxShTpnBWgFSM69/f2uXh0mdPTBdZ6Ll++xnq14sKFI6qqYr1aU9erCPTaM4wGEEPFZwOTlQCwUgqT5xRlyQP3389sMuFTn3qMjz/6MT712CdZLQWIHUQdo7U9dd0SlCIrMkDTNe2Z8ZVcSOPNcNKlpHGc+jOxasDgohwzquPrSAAn3YPkzkoMS2ZEFkBktJ+r3dMAxROYz+cDbaaUYjKd0ltL7yQyQGLcM7Q2qHgz1us1zh/i3aYIXJ5lkVkRsMJqPfjdiizHaDlGqygisg7nPFVlKEtDbwN127FcrXEhyPlIfl8VS4aH+J0+PjRI2GQIdF1P09RRpa+HXYLWmjKTFOJd36JMTp4bKjMhUyWzaYnGM6n2yPMJYdVDTCBn0dw+OeHOrSe4NOuZTwLOtvQOnO3onYE+4NseyWKsCcqL2LXz2D4QvI6ppvWgDNeRJZFVRYqTKUWsmxGFjkFYFBc8NoDROWWR41vN8WKB7W+xXnd0rePyxX2KQoKntfISv68D1vc0HUPOkzSJRu9O3G2c3ZUnGy/G6e+0KKZjxyzDmeOAVMoeGCYNoYw3Lri0wx4Dk6R3OI/l2P7c3ew85mV8Tdvg5W5gafzZbRu/nj4/Fo5vMzBjt9G4nZ8pWBmDq7E7QSmpinqmvUoYhK7v8daD7zGx0nGe5+RlgYuptH1kJ9ICba0dkqMlLUeaoKfT6cCcpoUsTbJjnUkCIClHiHNu0K+k/koL3Di77FhQmnaW4/5LG57kdqrrGu89VVUNaflhU19n+7MJIDZNd0YAO9ZJAUM/jEHLer0Wd/bhoTDOsV9gozUYa1rGSdYSELLOUY5AQdpVp3lqOp0OYzaBs3FxxSLbuAO8MvE4RZ4Lg1QUBSErZGPpfASZ8sxZ30oUT9i4E7YZr+RySP04dlX6IFF/VVUJIOo6FCLOzzJF8NCM8sYUhYRjl1VOmRv6rqXrWiYTyT1zcrLg+PiE+x7wZEVF13tMFlAmo+861ncWXDo6ZD6f8tRTNwcRd9LvpPbOZjOOjo6YzWZ0Xcfx8bHk2+laulaKVH7JF38xzjk+/ujHeOLxT9N3LbP5noCOvACjKVxAaY1Xhq6TXF/JMzAGIgkkJ8ACDIA6BZCM3Zrj+5nG+vY8lu5/GhfjfwuIdajg4/PzJ0gkC6L0b9tmmFjCei303IhK8sHjHfjQ4a3ssFLY0/jhdmGDxoWiBBX/zoqcLIYh4yFTIr7VJqfIDbn11F1P11ky6zE6+dHTBBBiHHgYAJFRiswoDMhvk52h1Wyk21SW4wmsmiWekrKYUGaGMpOMtd71QIZ30HdR9JSbSGc6mvqYVbfmyn4FWjMrJBvluvUE41n7Bt9DsAVBZ2BB9Rn0FUYlnW6q6JkWeqHkBTlYUImeFEuy5Kbv0CaL9SI6vDNk5R4Ox42bC3ABpTIOD0qU8pjgCFgBTX1g1eZ03SZ+PhCkjg4MrE0qlHfeWjl2X6RJHp6e3fRuC3qaEMcLd5oE04Oczu9GgHf8/ef9e7uN499jFma7Len3GBxsMy53c/WMad1k2+G4Y2Zmu33jvtpu22di48+m+7C5hljCWEW3XXxerO+wXY3RkClFWVXkZSHiVG1wXXQB+I0AMN2jyWRyhooea1FSe5I4MOXySIJBpRRHR0fDfQ0hDJ8ff67ve1arFV3XDeAjHQMMSeDG4b6yq9XD94130KlvxgvAtusq7X4TIEjZcEHmtiRYTYncUm6l5CZKAvMEQpL4MQl9gYHpSf26t7fH4eEhJs8G0JE2cKk/kzsNGFin1F7nHC5G1wWga3vaXip0Wxv1IlmG1VLHRfrQ4fVoVx822XHHYzWN+XTd6VoSM+Wcxccqz3leyGaVkd7KenovG0fZ0EqUmPOBpmlxvTDGVSUC2sXilOtPPMmNGzfJq49y6eJlKTKrMsAy39vn+PiU1bqhLDYJ88abmOQinEwmA4A78/yjyEzgox/96BDZ9tBDD/HYJz/BH37oD9BGxmjbtagsSzs2iKkwwmhTlVyMSQuSkkCm+5bASXqmE3hKz8h4zkis4ziZ5LguWQKM6X1xSWpcb2Ok2Z8gF09C6KsYW++9j7/D1kIEqID3CqUZEsakxWeYEKyND7DU/siKnPlsxmQ+By2dnXYmea7ITCbx7SYja7qoRwGdZcI4hBFMCkJZG5PFku8lKniCA03AGEVViTp/o3+IOzwgyw1KewI91uVkOhdQoDO0BylTGUGCCki1TEVZGiZFzlOfeJy9+y6QFYrpXoFSlpBbyV5rawiB3k1wfoL2GcpOUF0hSbFcA6ElLSBpwGpUrLUQJJVxlK9KvpiAVh40BK3ofKDvLFjPNM9xXtO1DYtVz7rumZQZQfUY3YPqCTjQjs5On844RPpfFjzp3OTiGZxN8e/07zQJDCGLIwAwXpCHRYCzi/nYDZBo0/HCPdZVwN1dS+P3ngm8bAOo8TnOAyifKYOyDV7GE+ZYd3LeNTyT++kzsXFfjk4KavOsqpTqXMl7IaTdrJJCmukaYtt8kBIKyX+ezp1YiQQIxoK+sQ8+Rf0kxqJpGikCGDNEj3eVqY3pXIkJWSwWQyRG0nrM5/OBcSmKYliINvR+Pize8/n8DEAKIVDX9bDThk1eHAERjslkeua1MTjKsoyLFy8OC9Q4asUYg1abCt3bYyIVOBy3YQzI0OoMw5JcYiEE9vf3h+NTbpYhE63SscK5ROlkRYv1humkoMjjQuo9bd9G7R4ivreOtV1TTuYxcdom6dz4XqQw77RgjsHcel3HSK0iRvJUNE1L2/ZkWc1sNo95X/RQA0kE/5pcQxVDZWezCSbPePzxx3nyyZs0dcdHPvxRPvQHH+bixUtMJ3Nu3z7mgQdezMHBAacnd3B9wFqPMTkS4yAb26qaRmZDCpx2ncWYnP39A6bTOShFXTf84Yc/zBOf/nTUulzG3f8AH3/0Y6xWK27evEnfO/KqJCiDzjJMLqzhhcPDM3PBeBOyDdbH7Oh4TIwZxu1w4pTOP4m20/FN0wx6q67r6LLItPUCkp+jRvbeBihCtZ1w66lbrFZrUkFAHYsmEZDEPmmwGU2RxYJKSgSkAGgjlUaDw9lA2/X4AEVU5JdlSWelLk+6OVobMm3IjXxWK1A+Fh0kDFkxgwJFMYRMmqAoY+EsZ4MkjvMep1XMjSA3tigKqqLEOkeR52gD7WSK1kgIdAIL0f1k8oKsqMiriWStBTSevMjZn89ZedBOYbuGtm4JqicY2RXMp5Ktdl07ms7igkK7gOo1QZTFsljEfw4LV3S5DAxA+kmMhJIJrOkkf0yZC6CzXQMEpvN96q5m3XomrUepQFkYTKbQBoKagCpAZQIoEzDROv4IOvfBnsuejAHKGWHmCCCMF9szupMRoNl+wNMxY6YkPdjjsM5tgJPsPB/68L3c3XWyzYaMj/2jAIYx4LgbOBmzS9vf+VxsfK4znw8h4pNACBJiHJAybsFkGA1aGfJM45ylt5aTkwXuzgknJycEH9if77M3n0cft4QfW+tZrero5hHXrQCKhrZdxUmUGEEjdVKstRwf32G1Ej3YwcGhPOdxYfPesVqtWa1qlGo4ONjHezAmZzbLY0RhxXq9xnvP8fEpy+VS3BuRZk9tOTzcQ4rUxXDpIJFwzsmGSphXWdxiD5JcqatVQ99LKva2FXFpSi2fdDPGZNS1hE9XlWgd2rbjdLGi71qaukFpRVVWFGVBWRRkec6TTz6FdZblYsFyvWZSVly8dJGqrGi6Dp0qg6Oi+DPDeymBIQUIoet6nFvQ9z3Hx8fU9RqtjdQKUxkoRFOiC5re0/YhZsoO4HsUmqosKTKN71vaes10vieV5L1D6qgZimISgVA56F2UYhASJ3ZLNBUFSiXQIlWYT05Oo6bHRPd6wf7+HmVZURQCFkDj/EYcenx6wsc+9iif+MQnBka86TqWp0uUzsArnnjiOhrF3nxK369pm0bunhFwGbynrEoyrTk5OWZxfEpRFVRFhco0mTIErVjUNeZUxnmzWnP16mWOjo5wQdE1LR979OO8+MWeS1eukhWapm5xqxqFYb08HcbEdCpFa6UcRA3KU1Y5y2UbswgbMiPazK7ryExxxv2XwEgC8XVdD4A4/YhbtCUER1kIs9J2Lcobqr09qmJCnunIrH/mc8c9DVAmkwm3bx+zWtXEnLH0nZXw0siiBCOhiloFcqOoqpyubblz55j77ruPoqi4ees2XueoTNE5SzA5vfXQCrLNCod3HmWSj9lhux5nO0LXo7XDeEupPJ3tyL3BYPDBkQeNCZ7Qy7GZyTHO4RuPtZ3csEglrpc1xhgm1VRAhzYUeY7yDuM9qu+xrgctiY5MVjDbO+Tk+DYt4PMcM5lAlrNcrTksSvbnB5zyae5/4MVYV9P3mvVJjzKBrMjovWYyvch0b8LJac+tOzXrekXAYnKhOttmjdZCw/dt8k1rqbDMxrXjE4qIS4xWIoLMtJD2zrVxNyvK7h5LbnJuny6krzIwykU2qaKczWhdQe1AFxm9DRSl1DkKwacIcPBKfkISV24mqTFwSP7ftPMcZ1eELeDghwsSDZHJMEl/5Dy269GFikwKIgv2sTDWWKsRUm9FdBfNRT+79x6d5+QmI4vUs44/KoCOgFvYAlm8tFIYrYdEdQqFicyZirtPFTb6J+kHAdyACLPtRm9CCJiYvXPcD5Fm3PTL0J9Sk8ozypsSvERexHYpkxGy2FfeSUt97EsU3m6iXNq2lZlIwXw+5fjOWp5lNI2DSZ7jnEd5hQ8K17TYvpO+0BnWeawPlHmJCYqTxe1hEr1y5Yr42nWg7VuWyxWL5ZqmrhGeUckGw6ZnPEcZQ9f1nCwk6k2hyCL7IqG9lsxklFVP23X0TnaZi1VN3Yq7JMsy8rJiEoSVcUEqFAOs1mv2Dg65cyIRbeu6HxaQlNfn9HRBiiTMshyTZxgjQtrpPNXAcng05URYxpPTBc57JhMvbq8gKcbbvsdEDZ7z0EvKJrq2o256iqpiPgnklYCtzOSUlafzUcPioF819FEkmmeS08Wjo55Ogc5ZNwISuq6nX9biWsFQTvZQRkMuc9Oqrgm6xHpw2oCCMg/MK6lHFrSIK7Ux+KIgLxSBnqrKYvp8AaKyiNohB4zWKTeQPOt5nlFV8/isT8mziizXeAfGHDCblXRdQ99Z1IUpeVbgvGO5uMMiOIJvOTo4IFjFndtPkeWSBO3K5Uu8/OUv5/atW5ycnFCVFmctXS9taftWmJ/lHXITi8wm/Z7RZCajiwktyyKnyAvyQtYv5y1t39J5R1bOcF62mjrLccEw27vAS176MpqmpmlaimrC8ckpi+WK9VpcfVU14fBwj2pSorBo5SiKEgjkOXgXWCwXVGXO/t7hIG4VV0/B3vwAayU/TFM3rFcL1qtFDO0uOTjYJ9VDS+xaVU3Jsz1J/1+vCL4c5sOACJ3LWC9Ofj4zu6cBSghhiCkXGjYnBNl5eOc2chwvNR2863B9IM+EilwsFrS9k+yvJsflGgk+sWRZIREoYVShkVGoZQh0Tc1an6IM2LoD21AqQ4bDeLC+J/TQtyI09c6Ra43yvcQrWCusQIAQnNCawUthQuJWMmpeIDApCrouRCgGtpMdwqpu2Ns/QOkMpQza5Ni+Zb1uaNY11noOD46gW6K6CW23xnpL3waCC+S9w5SirA8qoIxDZw4VRJzqQ5fCLFAKKZhYyIJtXU/fW2F0BnAyQAc0kClP0PGVENAqHqoU5URKr3udEZTBBkfw0PY5qzstT96+zfGJlBMPSmq0hHA2odk2A6BUIITz3S9jF8XTP3dWKLs91sb/Tn51GV7+DF36bGM2fW+iVpPeIEUPJMV/OuYM4+Mc3imc2hRLPE/YKgxiGFyZsBFDjtvgvdQcOU+Ue96/7+ZOGnQNvcXH1OiD3mPUjrEORSkFOjCbTbDB0qxajk/XBCCfBE7XHUWekSsjlb+NwZgcnQlbWMRBoXWOo6D3mQSU6gqTa7IiZ1k7cmvJOgHYTQeOAl3E5H6qwIWc3mcC+nPFZF5Q+iAhtD5G/KkcFOjcgPFoY+hDjkOSOCqlsCEneE0ImrKYMZlMyauOvGmjiHQij5GuWDUe6zMcOesOHD4WyBQ9GqYiKE3QBq801hu8MrigyKuDCMClL3PnBsDpnKftWoLXMbmdQjthJLWGPK8oJhOCbgltQ99bWgv9qkPXlvvuuyZg10xQZROBmND4/bpm3ToyF8h9QGtJqNb3Aeskl4mozwp0XpKVm5wzaI3XGeV8zuHsEBc8T90+pun7mJhPUxYG7QJeaamqbDTOiSvMdr246IPcRxVZJnysv6aSBk3Gm0LSrBttqMqKLM8lyCEzqACTac7BnsV6h4slSIhJN/NM03Vt1AUqiiyn7aS6enIBaiWbqBRq7pyjco6+6rE2ForsO7q2jmLcyNIqJWx7CHhnCU7jVI9W4NUmhN17aLpTVJaT5yXVZMLFS5e5eOkSFy9dxjlx03jnWTdriqajNQ22syztCZcu7uNcz+nxMcvlgkwbAblKozPDPArGU/RYCFBkGbZ0MTTYk2eGLNN0jed4dZu+tQTl+cpXfJWUoPCyeBltMFlGnkkJlFwrce0HLZtJL3M2Jt6f58CgqPBcudoXgJ2ennJwcICKgySp+JPPc5uyTxNvFjvRth2ZCuhMY60wLMYoeh9ing0du1DChYU+YNOv4iAValrnoAPYAMGKFqQwkmfEtoBBFRnKy4CEqFEJEoEwLOhBMrWivJwj/dYBKabnZd2PWTTRAlKysiT0Ftf3qCwjeLfx3c9m4D3dcsm+AeMCfRC8I7tHUsoRTCa7KusZcqkQJGRNvnurXcrLMcpLH6gxMNkAFHkdmU1CAOI1q4AhEKywC0Jgx4+kG60VKs/wQZ3N9AsD+zEGHNs2dk8k204Pvw1QxoBh2xUzPj65eMZACTjLntzFxpqabQAyjgTZbnMCI+N2SteeFdSO3x+DivTaXUFGctU9gzbmPN1C+ux54OyZ3EFKbTI8o1K4ItheNhKXjmasFjXBp/ERMMg4UWz2YelZNRqCl6wXW980GpHnjBOkOnkkjFAqYDTEwr+j457T1DqM59TO8d+yl7xLv0Qd17jt6fvPs6dP+Xc7r7BvKsh3n7ePTSkDzjqW5KlN51bERRbpL5lPnv6dOn6fFnkcdS8nTEdmmQID68ZicoUPWkCHQiYkpeOGe7TrPm+aOWfaedZjVDxISUiv69pI/MqCmg5So85VWnQ0KBWlA2c3NQmIc2a8n88WnPesnJ2vNMGI5gcXZH3QBlPkGJMJg2jt6II0QYfIJFuyssSFHnq7OcRolImcxKgY6pn+QsX5HYLKZP3xihCsDAIVSNGT485UqT+JoeF3GYPObR6qk5MT9vf3zz1uaNa9CFBOTk44PDz8I38+BTulhy4AuRGM4bzU1gGkZLVzDOqKhNATlQBbgzFa1DCca0rJNsn7+OA9y/FDC4E8A9sNAIVnCVeNAhFwjgKhy8bfEhBw4oLQvpv3FKgMlAhxCTZeM2eve/xz1zaMv220pISzhxiGXj5z9LNc4c6+gEzpjOCl9lTwYVjQk+ohAZP0eiAt9GcX1PFo3KS9OjsCTTzY3WXoap6+SEfidHgE7OiZGbcrbQDiuswGap5tX7quNMbH18U5/9628RL3TEBKjX786L3UN+NH+rznzYzaqLZ+wuhn+/ndBk55WhvjGmXD2WOfBjDU1jfdjZ3cjijb+CrPf/+ZTOvNjQZZEASJCIDwksU4aRHbpr7Lica98+y2vTnwaJl7tZG2WPtMH08nkd+pgrt67pF2KCUg565wmM26sm0hPWHjUbbVNr95/fj4mIODg2dszj3p4lksFn+sz/fnvNaOnsy+a845Yss+Azxx1/ds//TXPhPrYyOTiu7ZbAQcuvjzNDsXAQQIvfz8ce0zuLbA2Ul8Z38yLfgYJRUnsTTC/wjT7Gf4hc/x+LOUzReOfZ6up322h3wbmYXPfIE/e54/xgU5d/7Gb7wPCxIA0bpnmh+fWxuezkzGwfZcdmjbX/lH6YbPpO/+KLflnPMuFotnBSj3JIPivedDH/oQr3jFK3jssceelSba2WfXTk9PefGLX7zr++fBdn3//Nmu758/2/X982ef7b5P2tH777//WV3i9ySDorXmgQceAKRY4G7APj+26/vnz3Z9//zZru+fP9v1/fNnn82+fzbmJNlzr/y1s53tbGc729nOdvY5th1A2dnOdrazne1sZy84u2cBSlmWvOlNb4oVKXf2+bRd3z9/tuv75892ff/82a7vnz97Pvv+nhTJ7mxnO9vZzna2sy9su2cZlJ3tbGc729nOdvaFazuAsrOd7WxnO9vZzl5wtgMoO9vZzna2s53t7AVnO4Cys53tbGc729nOXnB2TwKUf/kv/yUPPfQQVVXxmte8ht/8zd98vpt0z9uv/dqv8df+2l/j/vvvRynFL/zCL5x5P4TAP/pH/4j77ruPyWTCI488woc//OEzx9y+fZvXv/717O/vc3h4yN/8m3+T5XL5ebyKe8/e/OY382f/7J9lb2+PK1eu8M3f/M186EMfOnNM0zS84Q1v4OLFi8znc771W7+VGzdunDnmk5/8JN/4jd/IdDrlypUr/N2/+3fPFBzc2fn2sz/7s7zyla8cklA9/PDD/NIv/dLw/q7vPz/2Ez/xEyil+MEf/MHhtV3ff+7sH//jf/y0QqUvf/nLh/dfMH0f7jF7y1veEoqiCP/m3/yb8Hu/93vhe77ne8Lh4WG4cePG8920e9p+8Rd/MfyDf/APwn/9r/81AOGtb33rmfd/4id+IhwcHIRf+IVfCL/zO78T/vpf/+vhpS99aajrejjm67/+68OrXvWq8Bu/8Rvh//yf/xO+5Eu+JHzHd3zH5/lK7i37uq/7uvBzP/dz4QMf+EB43/veF77hG74hPPjgg2G5XA7HfN/3fV948YtfHN7+9reH3/7t3w5/7s/9ufDn//yfH9631oav/MqvDI888kh473vfG37xF38xXLp0KfzIj/zI83FJ95T99//+38P/+l//K/zhH/5h+NCHPhT+/t//+yHP8/CBD3wghLDr+8+H/eZv/mZ46KGHwitf+crwAz/wA8Pru77/3Nmb3vSm8BVf8RXhiSeeGH5u3rw5vP9C6ft7DqB8zdd8TXjDG94w/O2cC/fff39485vf/Dy26gvLtgGK9z5cu3Yt/ORP/uTw2vHxcSjLMvzH//gfQwghfPCDHwxA+K3f+q3hmF/6pV8KSqnw6U9/+vPW9nvdnnzyyQCEd77znSEE6ec8z8N//s//eTjm93//9wMQ3vWud4UQBFxqrcP169eHY372Z3827O/vh7ZtP78X8AVgFy5cCP/6X//rXd9/HmyxWISXvexl4W1ve1v4S3/pLw0AZdf3n1t705veFF71qled+94Lqe/vKRdP13W85z3v4ZFHHhle01rzyCOP8K53vet5bNkXtj366KNcv379TL8fHBzwmte8Zuj3d73rXRweHvLVX/3VwzGPPPIIWmve/e53f97bfK/ayckJAEdHRwC85z3voe/7M33/8pe/nAcffPBM33/VV30VV69eHY75uq/7Ok5PT/m93/u9z2Pr721zzvGWt7yF1WrFww8/vOv7z4O94Q1v4Bu/8RvP9DHsxv3nwz784Q9z//3380Vf9EW8/vWv55Of/CTwwur7e6pY4FNPPYVz7kynAFy9epU/+IM/eJ5a9YVv169fBzi339N7169f58qVK2fez7KMo6Oj4ZidPbN57/nBH/xBvvZrv5av/MqvBKRfi6Lg8PDwzLHbfX/evUnv7eyZ7f3vfz8PP/wwTdMwn89561vfyite8Qre97737fr+c2hvectb+H//7//xW7/1W097bzfuP7f2mte8hp//+Z/ny77sy3jiiSf4sR/7Mf7iX/yLfOADH3hB9f09BVB2trMvZHvDG97ABz7wAX7913/9+W7Knyj7si/7Mt73vvdxcnLCf/kv/4Xv/M7v5J3vfOfz3awvaHvsscf4gR/4Ad72trdRVdXz3Zw/cfa6171u+PcrX/lKXvOa1/CSl7yE//Sf/hOTyeR5bNlZu6dcPJcuXcIY8zQ18Y0bN7h27drz1KovfEt9+0z9fu3aNZ588skz71truX379u7efAb2xje+kf/5P/8nv/Irv8KLXvSi4fVr167RdR3Hx8dnjt/u+/PuTXpvZ89sRVHwJV/yJbz61a/mzW9+M6961av4qZ/6qV3ffw7tPe95D08++SR/5s/8GbIsI8sy3vnOd/LTP/3TZFnG1atXd33/ebTDw0O+9Eu/lI985CMvqHF/TwGUoih49atfzdvf/vbhNe89b3/723n44Yefx5Z9YdtLX/pSrl27dqbfT09Pefe73z30+8MPP8zx8THvec97hmPe8Y534L3nNa95zee9zfeKhRB44xvfyFvf+lbe8Y538NKXvvTM+69+9avJ8/xM33/oQx/ik5/85Jm+f//7338GIL7tbW9jf3+fV7ziFZ+fC/kCMu89bdvu+v5zaK997Wt5//vfz/ve977h56u/+qt5/etfP/x71/efP1sul3z0ox/lvvvue2GN+8+a3PbzZG95y1tCWZbh53/+58MHP/jB8L3f+73h8PDwjJp4Z8/dFotFeO973xve+973BiD883/+z8N73/ve8IlPfCKEIGHGh4eH4b/9t/8Wfvd3fzd80zd907lhxn/6T//p8O53vzv8+q//enjZy162CzN+Fvv+7//+cHBwEH71V3/1TMjfer0ejvm+7/u+8OCDD4Z3vOMd4bd/+7fDww8/HB5++OHh/RTy91f/6l8N73vf+8Iv//Ivh8uXL+/CLT8D++Ef/uHwzne+Mzz66KPhd3/3d8MP//APB6VU+N//+3+HEHZ9//m0cRRPCLu+/1zaD/3QD4Vf/dVfDY8++mj4v//3/4ZHHnkkXLp0KTz55JMhhBdO399zACWEEH7mZ34mPPjgg6EoivA1X/M14Td+4zee7ybd8/Yrv/IrAXjaz3d+53eGECTU+Ed/9EfD1atXQ1mW4bWvfW340Ic+dOYct27dCt/xHd8R5vN52N/fD9/1Xd8VFovF83A1946d1+dA+Lmf+7nhmLquw9/6W38rXLhwIUyn0/At3/It4Yknnjhzno9//OPhda97XZhMJuHSpUvhh37oh0Lf95/nq7n37Lu/+7vDS17yklAURbh8+XJ47WtfO4CTEHZ9//m0bYCy6/vPnX3bt31buO+++0JRFOGBBx4I3/Zt3xY+8pGPDO+/UPpehRDCZ4+P2dnOdrazne1sZzv749s9pUHZ2c52trOd7WxnfzJsB1B2trOd7WxnO9vZC852AGVnO9vZzna2s5294GwHUHa2s53tbGc729kLznYAZWc729nOdraznb3gbAdQdrazne1sZzvb2QvOdgBlZzvb2c52trOdveBsB1B2trOd7WxnO9vZC852AGVnO9vZzna2s5294GwHUHa2s53tbGc729kLznYAZWc729nOdraznb3gbAdQdrazne1sZzvb2QvO/v9PftkIpywvzAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -453,8 +461,8 @@ "from mmedit.edit import MMEdit\n", "\n", "# Create a MMEdit instance and infer\n", - "result_out_dir = '../resources/output/conditional/tutorial_conditional_res.jpg'\n", - "editor = MMEdit('biggan')\n", + "result_out_dir = '../resources/output/conditional/tutorial_conditinal_biggan_res.jpg'\n", + "editor = MMEdit('biggan', model_setting=1)\n", "results = editor.infer(label=1, result_out_dir=result_out_dir)\n", "\n", "# plot the result image\n", @@ -474,19 +482,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "http loads checkpoint from path: https://openmmlab-share.oss-cn-hangzhou.aliyuncs.com/mmediting/inpainting/aot_gan/AOT-GAN_512x512_4x12_places_20220509-6641441b.pth\n" + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/inpainting/global_local/gl_256x256_8x12_celeba_20200619-5af0493f.pth\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9R5BlSXaYDX7uVz+tQkdkpM6qylJd1QL4G4ogQMzw3/C3WXBJ42o24AYrYhak0WbBLRfkYvZjM8YRZmNG/j9BI3sGQAOtu0tXahFavHhaXek+ixcv4kXkC5lZ3UgiT1Xke+9e9+Pn+nU/x4/w40JrrXkDb+ANvIE38AZeE5C/aQLewBt4A2/gDbyBi8AbwfUG3sAbeANv4LWCN4LrDbyBN/AG3sBrBW8E1xt4A2/gDbyB1wreCK438AbewBt4A68VvBFcb+ANvIE38AZeK3gjuN7AG3gDb+ANvFbwRnC9gTfwBt7AG3it4I3gegNv4A28gTfwWsEbwfUG3sAbeANv4LWC35jg+g//4T9w9epVXNfle9/7Hj/72c9+U6S8gTfwBt7AG3iN4DciuP7jf/yP/Nmf/Rn/+l//a371q1/xwQcf8Cd/8ifs7u7+Jsh5A2/gDbyBN/AagfhNJNn93ve+x3e+8x3+/b//9wAopVhaWuJf/It/wb/8l//y103OG3gDb+ANvIHXCMxfd4NhGPLLX/6SP//zPz+4JqXkj/7oj/jxj388sU4QBARBcPBbKUW9XqdcLiOE+MZpfgNv4A28gTfwakFrTafTYX5+HikvZvz7tQuuvb09kiRhZmbmyPWZmRnu378/sc6//bf/ln/zb/7Nr4O8N/AG3sAbeAO/RlhbW2NxcfFCdX7tgusy8Od//uf82Z/92cHvVqvFlStX+Jv/2/+Je1/+nM8+/QWZtANaAQLDsLl+/Q4ffutjDGliWzabm2tMzVb45JOf0+t36fZ8dnfqbG7W+PZHHzA1VULICMuAza1thExTrfk8fPyUYjlHNp8ilcqgFURRjOG4pFJZavU6nXaDhbkSUdBCJCGu42CZHvniPOn8MspdYKVpsNWVhDJDLB2UMFAYaCHRQgIarTUaDUIwfBKBZKRRahD7H0IghEDq4aplBGdpn8fvazFsQ6BB6P3v+/desCALhDhcFb14X53Z7mlW6XHajpe7yHNd1PJ92L9H8Wmtz6fNi7Ofe/z5J30/Xn50/zQwhqXOpo+z+4+XtFq8gF8AHH2+c/Xl/hCfhHvUXyM0x7tHCI3gaP0X21TDRvb7bTTazzM+j8ML7+6CDpeDNg9oOhkuQpdGHzyXPuf4mNTWaA6cdG8SXWfReRx36A/4v/yf/49ks9kL0/lrF1yVSgXDMNjZ2TlyfWdnh9nZ2Yl1HMfBcZwJuMp899vf4enDe0gSpCEJgoAkigkHLcJ+k6tXr7NXrZPPejx7dB/bhEBqsp5N5c4NPNvh0aNHGOZN0hkXr5gnERZamdQaPaq1Hu1+n1I/xx/8/jt89eUjHj1axfZsHM/DNAWW1Lx18w67208hGVDIZbANm0Qprsxm8IEoCUkiRQ+JkU7TCzWxZTNQAm1YwP5A0QDi4FMIMTYZhy9eIpATBs95GfyICQyFIxMF14TavMhWxuk6e5JchNZJdH8TMElwXajtUwTXWThe5rkk+gzKz9/Oy/bvi4LrxbFw3jYu8j6OMlKNFOcRXEff12gROI7vPPCygusITWd0zYUE10uGLJxW/7yC6bz3jy/sLgK/dsFl2zYff/wxP/jBD/gn/+SfAEOf1Q9+8AP+9E//9EK42vUWs9MlZmbn2dpcxQAc26PT6RKGIUHgU6vtEoQhxWKROA4xzVmerz6j2+2TzmRIpVMYzTZf3XtMZbrIbJiwurmH0inuP1pjEElCHRHT4unKBmEEjWbElJvhybMNUBoRw+9+L2BhbpFWfZNMKkU+kyUOFbNFj06gGPgxgR+w3e7iCBPTsWnGCRKHRBhoTNDHBIc4XAzvv2KEPrpAPm3VfhKIcaRnjPPDSX0KnlNg0mCepImc1v5p7ZyG/yy6BAz7+NLCS48QXLL+6X0wqd44sz7PdD++Sr4MjafhPpH5iBcXKie95yPPdMkFzQvNv0DX/rs6bWl22cXU+YbBYXGtx5759LbPrflfsOxF6x+/N0n7OmueXoZXnQS/EVPhn/3Zn/HP/tk/49vf/jbf/e53+Xf/7t/R6/X45//8n18Ij2277FXrOK7HwuIyG+urOK5NNpslikKePHmAbRskCRiGSaVcwTCGE/7R48d0Ox0MCYZpYBmSZ6vrPFnbpNMNaDQkQZAQRlAsZylW0jRbAzY3a/hhxPrmHjFgaolMEqJQUSrM4BgxjiVIwgBbGKw/uUd59gp3ry1gmbvUq08IGw0ylauEKk2icwTKIsFEa7G/ctMnWm+GU+9iAmOSyea8ZoRDPCcP6P1vL9K6z4gmmRRehpG+ikDYA8bG2WbBi2qKJ+G7iAn0bC1Nn4uuizKHk/p2Ep5XpQkfmGZfov6B+e+4OfxIH52O56Im6pfFdVSoTobTBP552v4fNXjtNyK4/uk//adUq1X+1b/6V2xvb/Phhx/yF3/xFy8EbJwFUkqanTamaWFbJjdu3GRrY510Oo3nuTQbDba3NpidXQCVsLO9zdLSAoEfMD09w8bmFktLiyAtaq0Wu/UWURIhDYubtxd5+nSX5k6bD64tc+XKND/90c9o1EISLbFNG9e0yKVTGFFIJp3GkBKBYPX5c6YKBfLlKdCC6uZzEpUwk09x90ae//SDH1L265SufIRIbHrKJdQOUTI01gkxtNlPXCWKy9nk4fggHoo/MVopnkP7Og6nCa2z2r+w/+OceC9cTx/7PQYvKyDHBfdZuE5jbJPqjhj9oe/nYn1wVvlRm1LKSzP086zQX9BcjtV9WS3iEMcI56E/+ThtZ8FFNJ+z8BwRWqdoIidpOifhPS60LuI3vcj4P0t7OmvMvOzc+o0FZ/zpn/7phU2Dx8H3+7TbHRbmF+h225iGIPQH1Ot7qMQln8+zubGBZTlUygbra+t0221M06RQysM8tLo9hFBMVSqEsWZ1bZ1OLyCTDZiaKuNHEe1ui+crAeWpOcKgRqfbw/Ec/KBHr9cl69h88eXnZNN3SbsOYRhhOx7TM7M0aw0yaQODiL3qOiJss1iW7O7cQ2nJ29/5xzzb6VHvJphWnhiDRCmkECRKMR4QMQSF1qebPCbBxEl3CWH1Uu39HYNxc9ul6Z3UrScIoVe5ZVJ8ky+Pl6T37+SrP1u7+R8FXvVY+6Zwvgy81rkKXc9jZnaaW7dvkEq5KBXhONYw2ADwBwO63R79XhfDEMzPz2LbDtPT0wx6A1KeR6fVZG31GTqJeO+dt1leXCKXcinlc0xPFTFNqNVqrG1sUa01iJIIwxCYhmBpcYEwjomSgPWNVZqtGlvbm3zro28zNT1LGCmWr16nkC8AGsOApbkp3r99nSslD7/6iPWv/5opp8tUJsKigy0ibEMgtMYQcl8rGq2chs+lUQemvvFV1fjn8e/H/6Q41Lg4KHvZN/Hi6uuk9o/fH6f73K2d8EwXrTsOx/0sQgiklJem+zTt8qI0T6J/pHlfFs952xr/vEDNE/Gd1JcvD+JEzWXY1gWxveR7Oi/+l5h0J+I9gn9Sm2fUPV72tLl23v65TJ3T4LUIhz8JwiigPFWmPFXkV7/8CdtbmwdRSVppgjDAsR1M08SQsLLyjOmpWaIoRmuIwpAoDEAlVLe3qe81GXS6fPTBu2zttmjUW6TTLoZtYtkWays7mNLGdiykAe+8+za2BfWdDWId0W63uDJfIZfL0e/0yGQK3H/whGKpiO26LBSLtJtNbi3fQMcCQ1ZRUZWo9QTHXcbSGbSQKNxhILwwUGNrCyE4CJMHjThybzJTPT4AD1ZNI/vgKARZ7PvXThxPZ2l5J5u6xtudJGiPf78IXBTHSWXOMklNpFuM3sX52noVz3hwbTQGviHGN/77vCvtoyHr5++Xi9JzQusn0CImljmLhuNj92VonkTXeem4CO7zlD3POD9PW2eNk4lj9hUKr9dacLUaDdKpEq3aHtlslmdP+9iWRRSHtFpNUqkUpmFiCIlGk8lkMAwDw7CwbZvhRijFzMwUpumxvb2HiiP8fh9TQLfTREqLMAjZ2W0gpUG3N6BoZej3+2ysr7OwOIeOusR+A40iiEJ2dnaZqcyyuV2lVmtTqszgeCkM26ZYcEg5NpEf0eu2ebj+GDMMcOcccullOnGITizQEnUQoD4MmdWa/TD4/Rd+RNAcZaonDVBxUHXcx3VoZz9lqJ5yd7LEO07LZZzG5wkWuLRAOMHcdn66zx9OdprAPOv+ZM1Hnyo0f1MghDj0mZ5wfwSX8dFO7ie9bz6f9C5Px3dWey8D4+No/PPw3mgRebE+OUkgnVX2VKF1vLo4OjbPHcA0Fst12vi8zB6zcXitBRciJgkDvrz/FddvXGN3d5sgCFFaU92rYrsuJpruoI8fhmzv7OD7CZ1un5mZGUrFArNz02hD02j1SOeyTM8XSTRsV/vUqh3MVIpIawI/QQiB0tBqd8jlHdbXnxMHZfq9HgszRSzH5unzFYKBTxRqIl8jLIfVjS2u3FgijgLCfoRZLOM6LjOVCpbnsdHos7f2OVNXTUxHUR9EhDJPhIVSQ3OVJmIYsDG2JXl/D5He17zEwf6vsUEjhiU4mCj64PLYkD7V9H88dHdyoWOvRnAQQy/2h+mhonKssD4g9AWYxI6OToiXmQCjzhqFxut9JfS4Y/mw/IsT7mjfHZnc+mh06AubZjn2Do7cG2nVcCikXo2P4fwM+cWnnVRVvPCFE0kVoyGqOYjoHB+qYn8x8MIYGaE/MVqWsTiH4TgXRzZXHe/fSTTqY89w/v4+3i1HBZM+oG001PXBXDw+985uc/LWiRG5R5/5wMByuGKdMKn0AZkceT8cLmjF6d0xGsuj5xstiseXtFrrw99av8Tet9dccDVqu6w+/grPcYn8kJmpWbarOyxcuUJv0Kc76OGlXPzAZ6+2hwKerjzDc9N8+K2PcF2DxaVFNnY2iVUCps39Jytcu3qFfD6HY6dotwOkbRCFGsdVpNI2niuJ4gF+kLCzPUDGMQvzN7l2/QadQpHZqRLbmw06nZhcrsDG5g52PkU2l8JLpVnbXMWQipu3bhGjmdqu8eD5Ou3q12RmFV7hFjv9gJ5KESd6n10qpBRjwmmU8QKGF+QL8+4oZxxtvNRHCpx/1X6yZnJ8RI9IOlh8yUliacISbyJMpvAoIz9/tNSRCL+hujmmIUyQLGP1L6QhaI1AH5quTwj3Ps30JY5oc0c1rLMouYg28eJz6aPtyqO4TnKMHwrb0/T2USl9rB4gRkuw0zTc8YWUHLs/PhdGCwZ1hGHvs+ATaRtv4yjNZ8CxcTLC84KwOPg4XECePXaPUXfiGDycD0frjIuOo/NVHJQdSSV9sGRQx6MZj+M9xmsEoMU4DeJoBX0oqsXB5+Ul12stuKRQTFdKaKWRQlEpl/jFr37B9Mw0jmMT+APiOMLziniex9LSEsViwFRlBn8QIqVLOp1nYX6Zvfojnj7dYDCImZqaY2bGptuL+PLrpwRxTD4tsBxJJuOB0AR+iE5iMDS2I6hWt/nRD1t879vfpjJ9hU+/2GO72kNv9On12ygrxzvvpFlZfcJ0KUsc+UAOtGZ+eho/iFjbrlHfeoTMC9Kpq0TKIJFpEiHRmGgh0MLcVwyGPi5xsCoXDLM47E/u/T56cXBcPB7nLHv1keuMDeIjg/+0QXpe4Xm8bcFllm3fhLN9Yjt/R+iYBJeNEHuZZ7rIOLpsGy8FL4H2Vfkzz9POaRkoTtLGxn4xkjoCgZSHqpQe4RrXauEgNdyJ5sjxeuNa8FgZPeGafIk+eq0Fl1YRmVwWnWieP3uGQtPrdNlWMVPTUwy6XQLfx7ZtSqUyO9t7XL92nenpBVSi2dzcJptPYxhp1td22N2u0x9ItjZ2uHbtCh9/+A5+v4W0LBrtOmHk47gQRQrDNvA8D9cxQMe0GnUILMIgIIjg83vb/OWPPydSMYV8hucbTTr9PoZu4/tZblxbpNaqI6VFLlfB0pr337rBvaebPN68T37WZLqcYac/INQWWjpESEAOlSut9lfzhyq3FpqRZjUcSIfr2/0C+z03Wg2dzLwm5Sw7ya80NC2MlRkXWAcLrzNZ3hn3j5U+oF9cqOpx7ekiDOdCzOjYM78qpv0ydc+tOYqjUXhHg3qOaumXDTY4beEzjneSf+WbCssevrLz0T/J73niM33DC5Rz9/nonwOb5aEFQhzf/7X/+YKmdQzfwXviEN95++HvbXBGpVQi6rdpN9tk83ka7fZQJVUaUxpIKYjiCK01SZKwvb3DVGUBz01TqzXodgNMy8KyXFJeFin2sEzJl198TjZj8dadOxhacef6NPce1Wh3IxzDwBISkWjevnUdIRMgJmVowm6btZUVbrz1bVr9HvV+TKSh7Xdptvp02jt87zvXaLa2yBbSzE7N8LOffsLv/s4fMFWqIAzF9fkicVRjbesrSm4aVxcROo02BEKZKLFvZtnPLYgWHOz1EmKolQ3XUoe2ZA41IYVgmOluBCesos6YjC+UPc7ojtQ9m1FexGrwshrXURxMZI7/o8Gk5510b3hh/5VMCAwZsajjfXbSav9CNB4xd00Ovf4m3tMBzjMWc0donSCsL9cH52/zNBou0t5wfqqhOV9rtBpb7I7hHi1C9di1I/5ufXlhJI4tgC4Kr7XgisMBs9MVvvj0ExSCxeVrfPStb3H/0UP8ICCXy1Hd3aFWq5NOF2g22zx7voo0PGZnF1hdW0VKSa/XYWlpjs3tOul0lp2dTR49fMTSXIE//L27IDStZgah+0hD0x9EZFIOvU4TKTWmZfL+u2/Rru1Sr9XZq25Ta+5i2OCHQ94axYp+b0C31ydOOnx17xmbmy2+frCKYX7CO3eu88uf/Yi33r7D3RuL5DI9fKuDTsBXEUiJr01iLYkFKCHQWEMTIiZgoMQw27zQQ+/KULgNV1NiPzJxjDUcCr8xuNRu+WMmgrPqvQCnLetOxXm2xjXZdHKy9nPWyv5ckVUnwEW0rstGl43qnqYRnJ037nQNe1x4TcJxEYb6gl9owsu8jEZ3GbiIxnUijhPNdSfhHfdBnQ2nvbtJ947QMr645FCrFlIe9VOPaVCj7/r4mDg+5c/Qik+l6xLwWguuveoeUoW8+95dtrarTE9Ps7R8jZ29GkrFuG7qYDWxs7NLuTJFOpPG9TyEEJiWSbW2S6GQwfMEb799hVy+RBS2UarP+sYTblxZZm19nXAw4OqVeVodn3TGJF+osLWxRqI0g4HPraVF5qbnINFsbz7j7TuzZKfn+Ku/+RpDw9JsmvmySW1vjzAJUEmVVdHmybNdWu1P6LY71HebfO+7RWZmZ5maloRmli+e7tLqt7Fcj0Fk4CvFIInR0mQQSYSZJdIWQrrESiAxSTQIaSCQoBMg2fd1DQ89GFoMJw+cSSl+4HQmdcRUyJi5B845Jy/OLA5NV0MN+7IMbVIqosvCURoEQqtXxmgn4bnIIuPAJHQeeg7WI0P8o0P+Rkz5Veb0Ow+ctWXgKBzVYMafWyBOFCwntXmA9YLC+Pzj6GIa10XH6ZCWo629GN56bLmgj0aTKiYJSw7IPjArHlssfZOZNl5rwTUIAjY2NkmSBKUEzVab31q4wp077/D555+SSacoFIokiWIwCJhfnOWDD79FsVBBJdBoNtitrvG93/6IVMam+7zOB996h1zut7n39Zdsrq8zVcwyOzNFGMXcee89/te/+CsSFXDlapF6o4YUDu3mLo8fbZB9L8WNm7dZq67x9p1Z7lhlLBlhSwMzGXBtsUIv6PLgyQq9vqTeaJLOz1DrtPnZr77EM6HZ6GFZe5gpD2WELOQUvd0NCFrY2gE0jmXiZUqEuPTjHu2BJEx8LOGhlYfQkiTRSGNf8zo4wGQUzi1QCIwJE+Y0oXUa85yoTRyWOv1FCjjuNzkfHDLRX6ep71zt7GuhlxWIp2lEx/cFnVeTO7cAGI+Ce8FUeD56zwsv+96OmI2HGA++XzSI4bxtvYw2/OL90zWu8+zPOu2aPtiSIU6dhuN9Ml7sxa0h59e4vkm/5GstuJAmQTBARQohDVw3hTQsFhaWqO3V6XWbOI6HbbvcvPk2pu3hBz5RkiAwEFKQyedotVvkcmnSGYOd7XWWrtygkPfotvYIB30KxQqR8sjnF8nkKmzt7PDoyXO63QH12i7tZkSr1cexTYRhECcRnXaNylyK99+e48rCFR58+TnV3U06wQAwENKh02sSKYOBrzCl5PaNa3ipDNXdKr1gQKFSIp3NsVA0uP/wSxJtEAtNeXaGYHeDUKTAylNKz+InNpGCIFKYpksiBIlK0IZEaAlKARItNGrfA3aSmfBsU9LR8uN4DjSu8fJnMqbTJ9Wp9UYBKhewrZ/0+yyGdlEG+yrF6Gnv5LyM+Nz0i4v16TcFkxZMl6Hp/ELkfGUm9fc31VevRnMRhx/jclIfuXvQ1lEdcMyk+BJa56vWwF5rweW6Hk7GxbFddnb2iGOIE00qlWVmbp4nj1okSiOlJJ/P0e0HbG9tg7aoTM+xdOUaSvWJ4h5J0ib0I3Z2dnHcDGnPYXpmjq31DXoDRaw9/tsPfsHz1Qb9MKHe2mVudgppBpge+EHM/aebVBtNfuv7dyjkM2RdaAif7bUndDstUrk0ja0Otm0z8Af0BwF7jT5Camxp46RSKK0QAuIwoJBJ0e+1kEmPd25Os13dY69Wo7lZRzg2VqpAPzIwVYd8ehblQC3sEycuhp0j0uYwfH4/mCNhGIk4SjJwUX/OpPJHV2AHNqYx4XW6/2tYXrykb+FkjXBi6VOe45UxIHHwz6XxnlTntJX/Sc9xsec87Z1dLO/fhYX9sWd7WW3sPNGjh4uCUwJWzsB9VvmXHWdnmbRPxjd2XTO+eebo2nJCLX1kHp8Ok8bbq1gwnASvteBSSBKtiJOEfKHI9Ow8cQJhpKiUZ+h22uxsb2BZfbRWtNtNHDfLw0ePKZRmqJRn0TqgP2jQbHbY3qqR6BqPn6ywMDfL3Mw0tuHQ7SV46Tn+8//2n4ikJJ2XpNOSvUYPy01jK5NO0GWr3qfeHfBhKDClyd72Jr///f+Jv/ivf8O9B+vMLhRIlOC9d97mB3/5Kf1BSKbgEccxmoRGo06v36aUTTMzXcYyLXw0+ayL49lkswLH9FnfXMfvB4T9HSwvjxMITBEg0wnlTJFOEDFIFIZMg3BAS5TWSDWUEYYYBndcxOwzaeIfddgffgopxwa74DynBB9GW1/AtCaG2t546PRZdSc9x6TQ//PW/yZAa33gVzoPLefRxC6ktRxj4peB40z9rH7Vev8E45fUro7DaSbOAw3jku28YEY95TknPdeh/+nkOqdtNzifcBhZrcfnI8PF7L4T+oW9nuO84ZLGkJO00ldl0n+tBZeUFuVygd2dHaS02Nur0+sNCMOYdCZHPl/Esl2iKEEpjVYCfxCgtI2UBgiDVCqPl/ao1RpMVWbZ2NxCmhKlbRYWr7K2usOztVU++fIn1NsRERBqE6VNXEviRwNMyyLWEpQm63n85BdfUs5ZzFTKrK9vsrm9g7QNNrbr5DMuxWKWQt4mViFa6n3GLugPeuzubLO3FfPWnbdoNlusba4wOzdFuZJnZqaAP+iwW10DoRn4TUwjQQxsVByxvb2NyC7g5OfJexJfy/29XTZRJIgiAUKSMGQSw+E7DNp4QQQdjDk99mM04cbKHZQdptgR+1gFEr2fI1KM2hlNmANco5Q/o4ly2JYQHFwbGSQPA/uP0SVglK5paArRB/jPM0XGhd7RSTUynY7KHemYk7Cd2s4B5hP8VJOiAccDIk6b9EfuiRf9EwdlxElUjvXt8Xb0fmiPOCmMeTwg4kQSD9EeBADoMeYtGX//k/w/w344HEOHZOrDj7G6Yny4HOmP8bE8XuR8WtRRH9XhM52XJYtTyx/OQbFP0kEk57FyJ4vlIYLjPTieBuvw8cShhiXGZuiRea5PEbLnF0RHhfC5q70Ar7Xgcm2P8tQcheI8hmHy6aefsba+huN6CMOkMjXH3PQSqXSKmell4sRFa4P1zS16vR5uyiVOEjLZAqlMkUI+z9bWGhpJJpMm0Wn++if36Q5gdaeONobtDnxByrMI+j45bxiFpyJNjGCvGZHN5cmTY2M34Oef/lf8KBnuG9YSgcIyBdm0STAQGJZNEAgq5RSW4+ArQdD1+duf/IrFxXkMw+bhg8fsVfd45523uLJ0gyhO2K5u4od9EqXp1rdJeTFJN6DdXMesFsmXFynO3GAQSjKFRWq+Rsg0StkoaaFQGNJB6YQENdyAKGCUcV4ikHqUMFWToEmAQ86g96MTJYYhSaIQ17ZRUYhOFKZlo7Qi3meCan/DtJDsLwOHE3LE5KQUaKEQepj7WDBcCIyYUAJojP1gk8Pw/iGHVmih0KMUP0KClvv3XtQeLmaGGjHKcZ1yJBaPwsuuI0/STo44zs/FWMfqi+Nf9PEbL9QbF/kHwk+A0Kc94ThDHKVi2h8nWjHe7nA5o/bNVeNSVB3Bd7QbDhcj42PwEO/495Of8JDG/WEy3siJEvdQSzgsoo/eHxPnk3r6SK/rQ4FydOF2WHm8jhz7Pt7sKEPpSe3o/btj1vxjdJ8sNg+fQR1+H6NttBA4KnoPKRj26yRLy2jB8HIa/WstuIQQJAocL0upUObjj13WN1colC06nT5xGHPt2g1M0yCVSlOt1vj+7/0BS0tXhlqONDANGyFMisUipVIRy5JoaaE1/NUPf8yT51UGocByPNIZEz+K8IOITjuhlLYpF4s4jkuj3WGrFiEtm+drNZavLNNpVom0JFYxUZwgAMOy8P2AD99/ly8+v0+n08V0wO922An7kESU8gX6nR6255HNucwvLLO+8pzGdAuMNh9+8DGrG2XuP77HxsYmGTeHTmKmChkqrke90cXfe8pGY4sosXBufch0bpFBYtIYxPiYGMJGa4GUBjrRIIeM/mBT84jpMMbg9TGGKYbnekkBhmWgEx9TJlimJFF9hADLcIgSMA0TpTU6USD0wSrSNCxgP5BkZPbjcOf+KB/jMDON3qdBcZjeavR5VEs40ODEUb3rrMCTU/14HDYxUvBeHJNHKTgLzmOWPSsbwXlNRkcvnIu8o9rVuSXzJLE+ujNiZurgyrkE8P7vFzSsY2WPKJ3HeepxEo9fOpcv56Q7R4XX8SZOav60BcjBEmlMth8JiBoXJGe2+aJgf0F/mzTuTiotRprgi3C6qX5U5oXmLwSvteBKSEiUwjBNOt0+qUyOpeUb9Ac+Qlrk8ykG7TpSCqrVTSqlArYpMPNZOt0uAo0UgnhfSyiXy0xNVTAtm/W1TR4+2iUOTYoFjwSLsN1GoDEtSamS5u67y0TdKteuTePrhFhs02gNSOVTpFIez541qDe6CEMQxxrTGG5EfvJ0hbfv3GVmZnrfZKdIooDFpXm2trbY3KiDCilPz6D6AUEYkc7kaHe69Po9mq0GqaxLvdbCc7NEiSCJNYV0GpVIrFhz89YVHjx6TLPR5nnUY2b5LmZqhpRZxLVyhFqRaJNYAwgSzXDz8ojly/2V3P7KWevRRubhvp6jE0+BinAsjaEidBKQTztIadDsNHGNNLFSGNIlZijstAalFSQxSggQ5nBTtVT7mthwA7VEI8VQwzLZnxTy8CDN4ZpyPxXWC9rR2XC6Oeh0s9fLwKSoq4vWP+UmZ5s0z4bL7p8S4tBMd6T/XlIl/Sb8ixfyqZ6G5yUf7qxAqfFyl6X1aN3zCOmLtTUcAaP3Pq4Vv3p4rQVXlISEcYRlO6BMHMfFtF0sJ8C2HWxTstdoMD2Vo9NtMjc3SxIOiLXANCRBFKJ0SKvVYGdrnYXFeeLkAyzb4dNPH9HpRISqjR/08WOJIQW2JZku51Bxh2vXFmju9un1q9y+vcjmzi6mbSNFwieff0K320EJSRwNNQylYGpqgTjRfH3vIZYpmZmukEm7dDoNvv/97yGE5H/7L/9f7j9Y5dHzdWzHROqI/+V//hMsqSmXp+l0m9RrTWrVFulcgcWFK2xu1NjdanLlyhKl5RyDTp0b83muLRQIE8n27ldYmSq5qeu46YRAZ2j7ETo0yTkZgsQg1hBrvZ82CrSUQy1IDIWC1GooSNAYsC/EQBBjmBEi6eHZGmn5mLpF2kmRsmx6/S5hJIlVgNQSibkvD4faUqQNQpUgDIGWggTJ8HylIecTQiO1Ruihtqa0HloCEYflgEP/Fgdz5rjB4jRtaxJ8k8EYl4mCnHT9xftHtc+z2nrhnj56b3Ldk81AI6H1Am6hDkxM59NuztZGx24c+ITOLHuOti48Thg/1vVicDyw6NcRALTf8hn3z7MIHDvM9sBOc3b980RingavteCKVYyQIA1JGCn8IMK0LAzpkM0VCf0euXwBpSLa7Tr1vTp3775POlek122jhARh8NWXX+LYgoWFq+SyWdrdLlNTJba3GxTzLo1OQtTzKRWKDOIYf9ADHfH48WO+8/5VavVtao1dDFMxXyoTBDH1WhPHdRhEahjskYCKE3aqLeLQJ/JDChmbW9eWKBYyNBtbdNst7rx9l+//7v9Epx/xfGMLDXiWAYaFYYAlJVpJUm6WwFdEqk8q3ePxs22ePtzlT/4oRaFo4XqayO9y/fp1BkFMt12jWXuEijrMGgHTlesYOqKVaFTsY+NiYGGZBgqG+8CQKGGhsYDhEDQYJpkyDjShGClibDMi6DURMiYO2rQ7u+hCHgwXoV0ydo4wNghjcKwUUkoSFaFUhKFspHRJECTCQGKhhcNoHSv0aHrs+wOk3D9CQex7TEb3RslCx4XX6Ux//PtZEWHfRCaA46vai24qPvH+Kaaw4/6y8QjGcfPQZBPqebTayacCXKb3jjP0k/vgqEnteP2LtDXp93m1zpcROefRcF9GsL2o4Z+OZ/xwztPN12K/mODw7LGj+M+z3eYi8FoLLsd2SGfShGFIpxNQKc+gFMQJSGEDA/KFIlHQIEkiOq0+q6vPsJ1tvFQWL53FsCyk0Pzspz9lfe0h3/nuhzx7/pz11S3iaMC7797kyfNteoMUShtYyqbRViSxZnO9xrOsybt3r2NWW2xut+gO+szPLaB1wu5eG8M0QVuoRBHHila7TxwNIFYIFbGxtYEhQ3LpNLZp0u8NuP/wMbV2CyyHKPAxtWJlfYP379zEsyy8VIqdapVMukhpepZ2L6TWbJEQUm83Wd3Y5ebNeba3VhEaDNNkcapIxuuxXdvk8Wc7ZIqPKSzcxhUplPCwvTJBLIi0AMMgRhImFolyUcIDYTLUuiJsoZA6wiAZJhnWAVGvxY//8r+QdTVTJRfPjNB9FzeVY319j1xxFidVoNnxyeUK5HI5bFuQSblIM013EBNqQRALYhwUCVqYB5FMGoUWDM2CYj/wgqFGyL65ddzuLhiZqV40xl9mwnyT6WtOM8m8iv1Mp+GdRMuBqvpirWOfJ8H4uvukz/H2zg8X3fj7MubYk/B9ExrReGqqb3Jz86sySZ84Zk8YGpPKv8ycer0Fl2sRBT6GCLBMA3/QJ5MvYNgGhmEgGJ5Y3Ol06HW7vPXWHX71q895vrLK3Xff5Vsff5diusjv/+7vYkjFF1/+giRJmJquEEUax2nz3e9/hB/+hJ3dBkI6PHiySauVkMSKbsrGIMvSwi3uP/gr4iAk9iMW56bZ2d4im7Vpd2P6/QFS20hsAl8jpYE0BJZjYNoWvX6fq1cWmZqe5rPPP+fLr+7TaA2GpjoFBc/ll598xlQhQ8q0mJmZo9MdUK7MIU0XrWOWr17FS+2xcOMqoV9iY2OFJLaQMk19r8b0tMP7b91hulbj6/uPCDur1Da6GE6GgS+4fvs9hAK/26c8PTc8RkWl8P2IKI7ATKGlxtQRg84eg0ETFQ+QhqLfb7KzvcLDL3/MwlSO3g6899YS7Z0+K80u1VoH08mBmaHdi0AYzM1NUch5LC/NsnjlOo6C2fIM1UaPUDkoEZMkJl0/GkaJmiZRItiPHSRWcugLQw8jNxgPuR8KNQ40itNZ7Xn2GH1TcB4m9U36dibjnrTSPu7cn9An4uCfMQZ/1HR75NIxjeab7OdJMN7mRQTgC3heKVWvEr45H9NkmBT8cXThMK7t/70VXChFv9cj5eQJoxhsh2ajTqE0BQgcx8UwLIQwkFLSqDfIZtJMVYoEfp9w0EMamlw+y+//3u8R+G18P2BmeprIj5mfnWNnZ42ZqQy7u1v84T/4h2xu/2c2t5toBXFsohIL00jTbQ9IgpiluWkGvRZTlTypQNEP9igVU/TaIa1mDy1gcSlHkgRkChlinXDtxg2SOMIPY76+/4hOf4AwJV4qjWmAlAlCwvPV55Syeb66d59soczNW3do9wbEyqTe8ilNT/N8awtTauaWb2Ikisr0EtWdFg/vP+HOndtYQnP7+iLP19fJ5DWtzi4bT1bwO5sUS1P4UYLwNyhWFihmFxhIm6bfxnBzaCmQyYBPP/lLTAKKxQzPV58SxQG1vS2MqM+gOcDNGHRqBp5j4zermIlEDQZI26a1W6PbH9Dc2ebu28us+nWCzh7FUgUrLymnJIlmGDiS2FjKx3QEfqIxLAuFTRhFmIZNooeZUqQwSLQGOTQbKr3PaPb3kU2KynoV8KoFymlC60JtTQjOOM3sdd4UX/ulD3GLcWG2b7odqboCjggthr7KQ/fbxcxwvw6/z6W1kXMMqZNwn0cjHH8/F6Px+JaCbxAmLkiOmpRP20x9UXitBdfnn36G67r84z/5JxgS0q5NuzfAsS2iKMIQJqZhMTs7TxT0sEyHq8vLzM3O8smnn7C3t8PMzAzNQZNf/vLnpNNp7n39Nd/73ndYXJwjSTT1J4+ZnyvQ7c5y4+oC165ep1r/msCHQr6A0tDvh3Q6A+IA3r1zm6mZEj/95a/Y3asSDiJyFRe/E+CYw9yBO7tNSmWXKIlJpxwiDdvbeyws9uj1Q8DAtEwM0yLwO1iuoFjOkcp4hEnE9l6Hv/3pV8wuzvK7v//7VHd3ubK4wF//9Kf4iUInMUtzs7T29pDa5tbtuzy8/wUrz9bJ5l3cnMWmoQjbu3jS4OpMim5/m6QTkLIdmutrOFGL3s4aA9/GS80S9CxavS6rTx/g6IhKMcN0QVJd7dINehRdQWIJpvNp8inJjcV5bMtgYWqWTz5/xNpmh0RE9Js9gjAi7Pb4tNPgymKW6vpjKpUyg9YWmXwZ086QqBTF8ixWykRbIWYYgxxGd2rToe+3iRS4VoookQgMYiUBAyGMfQuhOrC3j0+ak0wyL8LJAkDwarWEkf/mtCwep/najjK2o1uPz4P7YsS+aPY76l87RTsZCzU8r8A6ie4jQQ3sb504xVR1vM2zmOhhfw9beF1hcsTi5Oc9qoGenQlE69HYGkc7/uOssXo5eK0F16A7YGdzi0atSqU8QxL7tFp13FSWUnlmX+BLZqbmsKRgd3ubOEpQSUyrXWd19SmlcoXZ+SUGgwHV6hZKJ3z+6Wf84R/+Q4Iw5N7D+1SrO2QzKcLQ53vffQ8/hh/+9a8olrNcWV6k2Wpy7eoVJAoDjUgUJoJ+q4UpTbJpj/SCQ8MyGESKnVqbVnuA42m0CPnprz4h6iumpteRhkWSSMJY4Xpg2yauI6nXa9y8NoctbXIFF2lpVlY3Sf7qr0EISqUKcZiwtd0knfLYM7sUc2V++cnn8MFb3Lp9m1aryvziDOsbzynni+zWdgiCkMWZOXZ3a2Q8k2arxlw+j4iaaBHgCQ9LaQZ+jBEGXJ2C3fUtZJAnZ+bo7FYRpibnOcSewVTO5eriDFfm5iiXy9TqLbSyqNd/xdZeh2IuSyqMUcpnZiqLZ8bYAp48eEwS9cgWirS7Pl6qQKFcwfY8DMskSDReukicGLhenly2gpsvUW3sYZk5gmRoio2BZH+lqSXsO8bOZFyT4ZQgBHFeHOeD8zDW4wL4JByIY/uJLvXsZ8FxoTXeV2cIrnPeO073WfdHRuLTcB/vw/MJzyHu02i9LHzTmuTpmvTpZumzAjhG94+8f3HKnHmF8FoLrrdu32Z9fYWf/uRH/MM//EdoJfAcC8syMQwDpRJc10UIg067S6UyTaO2x1SljG1adDsdvvjiM5aWr/GP/viP+U//+f+D65k8uH+PdquFYZpsb22xeOUqzXbAD/77f+eDb/8et29f4xe/+ITNrRV++LcbGFJy88Yy77/3FstXFhACPNsm5brUOwO6nSae5XLt2iJdP0YJRdfvoZAMwphk35T105//kivLN7F2utRadRzXxDYVvh/xe7//x7RqO/hJgGnbFAo55tIFnq2uce3aFTrtNo7pEfbrqHBA3suw+NY8+bSFaWnclIMQRVJuhqnyNPcefEESJORSOXJehrbRJuz1CDodnEIOTUSr3SHRFjrVo7q9S6IVH929y93l96hu7+K3dih4sNfq0G22KWQ9LCFxDAPbtMl4KXReU8iXefx0le5gi0TEmJaBbaX56MO3aFRXKBVyzE1Pkcp6RDrG8wTr6/cJwimEobEdi3anRxhqpHQpT8+RzU9TrFwhm1+m6ye4ThmhLEAP94cdMPH9jdV6tDI/dljhqXPslEk7wU9zWbhIAMakaL0Xyky4ewS3Hv860lJGDGcS3pNMWKOTc41j2skpIIbi5bjWe1LU4Hl/Hx5ueUrTpwjCSZGWQ+3wBGSvWAE7y5T4KnIqTrhzSq2jZsZJOIY0Hb8vOKpxH7VyvCp4rQXX9Ws3effdt/kv//UHKAmW5yBdEz/oE4Q9TClBK/aqNZJE4LhptKihEXz00XeoVqukvDS2YWJnLN5++20+/eyXFIpFgiihurlNp9dDC4EQkl9+co+lm3cpFFJ4ng0o+oMBhbzLsyePyN69xepKxPziElpaRElCqegQhV3CXpdBt833f/cPmJkrsrmziucZ1OtVdJKQKOh0uti7e0iZkPIkSdgnV8ghVci15ev8ZGOD3Z1d6vU2kVIsz5RJUGRzBaq1Nitru/T6kEorOoMuoU6otvsQ99AyoZjLsLtXo1IpYxg2KTfD7NQM3U6PrJcmk8vy/rvvUa5U6PR69Ho+X339CDVoUErBk+drfP15xNUry9x97y7FcoV2v4N8rjANi6lSkatX5simbcrFLJapcG0wHZPv/9b7tDotOr6g54ekXItSzmOucBPLEKTcDOvbGzTaPSw3Ra8b4XoDEAFeyiCfSTPox2xvb2PLmHxaEnVj1naeki9dR4RdvOxVUB5KC4QxPFBzlG1o6F6RyFEqGjFk2geRhzAqdCoc52UnB1ecl7OJU+qcpSEdNfsIcSh8jhZ/8bmOYjvMG3iYQGhMozpSWh3cOrg6Zko7SfQdlNccSrdxs98Lz3SU/EmEH981dGnQh3SPdAyhD59nWEQflD0YLvu9dRY7FkfMZxNLnCjxjxp+z+ibSTcPHmDS2D6t8tB/eahsTio78nEe08z0/vl/4uj71Rz9Lf/emgr9kNtv3+FbHzdJhMD0PIglaIN6bYdyqYBlCjQOs7NLpFIp2tkmjVaDhYVlHHu4nygcBDgpF2kI6q0G15ZvECcQa8W7777Lp59/TbUekEgxDJCozOFYCYaEufk5XCdhtpSjkEth2g6Pnz9jdWuDWCscxyIKEpQp6Pa7fPH5J8zNF3n3zjJ+0KVRXR/mBbRsbEeyubWFNA1Srkk6ZeFZBjoySDtZ4kDQavYJo5jKVIVsNk2hNMUvP/2a9a06iTAw7BjLk0jHoNnr0WzU6XfqKEPQ7nZ5+uwpSwuzLC/foF6r4gchhXyOJFY4rsdvfe/7fP3gIevru6S9NG/fvI6KI7aqO2yaJts7dbZ2OzzZqDI1ncdMSRaXSsyUZ5ibnSeXTaNUH9PRmFaC1gM8x0PqAa6tiLQmCEOmSkWKWY+cZ+FZFik3zdbWJqVsBelm2d39GmkCMsKybbrdEIFFqxXiuQGDboOrSyVKuYRa4wGD1h4zXgbLnSXsxQjpYhoOYaL34w3F/jwS+5xEHVwf6g2jiTr5+PgRvJDD7yw4Y26eJI/EsXvHyx1NNjt+f8RwjyOeJCQOGYo4KLOfukgcxT8Z5IiYsfb06QxJHRUIw+ccvZOjAneY4uvYwuAI9ae/q4vBcEfgUc308FmO8P2RPBBHWfZpAS2n8uhjqZWO1txv46TdzWepuGMLhQk60xl1Tx8Dh+ut0QG1R5Z0x1o69oxitNC6HLzWgiufL5LECblcnsrUNFIOgxr8QUCv1yWfS6NUQhD4lPJlNNBsNvnyq1/xrfe/TRxFCATPnz9ncWmRdqvLb//29/GcFFol3Lx5i6++/oJsLofpSbTZpNfr8ez5L0inTW7dvs7tm4sUsibz5SKDXpvy1BS7v/oExzXwPBPH9YhkTK8XEMcJu7tbBEEDb9fCsDSOaxEEMVppFAm2Y2IYFpZtYluCfq+HjBX5TB7btKnXG8wuzGI5Ltl8idW1XdY2dtnabdPzGaaWsmwsy2Nru872xhZCh/j9J1xfniJlCVae/5xKJce1qwvk0inW1zeZKldIp016nS6e7bK0sMSD+/eZLpeQgOekKBUqLF9b4JefPmZjY5dCOXdgmv3si8/56ut75PNp8nmPmUqaXMZjemqKTq/FlWsL3Nq9xtPV7WHGehUQB32K0wvoOKHf6zIzM0OgTQaJSRRoNtar2J5GJRFzszP0uiESl62NBnEUUNvZ5lvfehdHWIRJi3btAZVFwXQ+RzcSDGKFxAS5vx9sdBA0CQdHrShxcWHEoa/klBKcFqQwwnHeey+aWo4zifMz8CNYJjLNizGUX0fE368DTvfoHBP4Z5gwL9zwSUElcNIe+m8eztuuOF3ThvPMl4vBay24uv1hdnQNqERhGALTMDCkQblcotGs0+82MYSg1WpSrpRIp10cx2Jvb4eU55JJZ9AoTNclny+SzWXYq+6iVMjczA1WV1ewTJvFq1eR5hadXsjW5g5Ca6QEz3V49nyVtGkQBT0cx6FUKJKtNdlrtAmCAKENwiDCMCTSkBimRRjGWAIMw0IamlhBHMdIKTENA43A9wOIA7KOy6DfJ51KYRoWWgsMw8EwPR4+XqXTS4iVSZwoLMtAJZJBP6K60yAKE7KeTb8XECcm89eXaWV26fUaNDsDLMth+eoNIj9ACMnayhqx1pjS4MriEpYh2d3dJkkE8wvXePBkC8OSBEnEk6frLMyVQEOj0cO2wPUMavUAgc/2jk+r12Z6eoZIgZYRN29d4dnTNVzDwbUlrcYelVIZ20nT8n3iRLK3s4dtm/T8eJglQ7n0uglbm02S2CSJNAYp2s0OTx+tYJsurW7I9bds6hsdSgtvUUovUm2FSCdDkBwul7VgX8faXyUKuc+whleFOOnYjhfhtEi0Q2f12fUvc2bWNxEcMIqeG/qaLut7O/veufnhMR/UJGFxWruTQs1flZ/oxQi80zWuU3GP4XthwcKhdndwbbxd8Wr9RydFFZ7mgzvrPZ3WzmXhtRZcnXaPTrfL3l6dQmmajOFiSIHneYShj+vY+P1hqqVQ+9i2ieOaZLMpDFOQy2Wo1xqkkuHiOJcrUq6UQCVsb67z2SefMjM9Q6/3Mz799FO08NjZrTM7U6Bea/HlF1/i2YqdrXXMpM90OQ8otrd22NrYJApCokSjEkGcKJQW5PMFev0WhgHCsIjiGDDQSpMkmjAOCWJFOuVhGSYqkeSyOcIg5OaNG9x7cJ9+EGG7GTa2awwCRbXmE8QJSSKYmS1h2xqtFFob2JaF7w+wMzbScIhig0EA+eIMtudSKE9R3dlGKEXKS9HrdvGDiM3tHd5//z163Q6FQpmNB0+JZPpAu8PQKJUwN1NicX4WSwgatT3SKY/t7SqFgkO5XGGvVsP2bMI4wXEFqbTD1atzlDIFTBSDXpeWIVm+fpONvT3ajRaPHjzEcz1sV5LNpcllXDbWt0mlsiShYLPao90cMFXxWHu2y0cf3MFIEqS/w+bmQwb9BnM3fpusXaGTGETSRStJIocJefXIFKaPnuY7EmGXdZu8ELF1TlPIi0zxcu2/LByNEjs/kz/JcQ+HQQ6HDJBL9e9pgRsnreYnLQQus/KfVOckIXophnzKYmmSxnWkbfHqjKXHcYsDs/r5yk/6fVq9v7fh8AtLV/AHIUEQYlkWQRAAJirRSKmxbZsgCEh7KfyeT3/QAaFJp10Ggy6uO8fMzBRrm7usr60xPb9ENp+n12wy6PX56v5X/IM//ke8c/cd/n8//BH15h6+rxEYVEopJAk72xsYMqG6s0XKEmTSafaqe0RhhBACyzAIEoXSmijS7OzWKBRSOJ6F1gm9fg/TtPBDjR8BaJROyOUsojDAsxxMw6ZarTI7O831Gzf5b3/9IxZveOzW2qxvNwgT0IZDEIT4gY/SCtMArWKEYZLJpikUM9TrTfzBgG63ye9+/zs4ruDJszWe3H+IJQy6V7t89zvfIYnbtBp1Mpk0X9+7TxDEZItTPNto8t4HHzO1W+fx0yf0ujEqEUyVp3CEgSPBcUz8bpurS8vk8im63TbdXhchJe12E6U1+WwezxG4wqZYLlGrN3i68oR6Y4/1jV16gw6plEesDGzHpTcICaOEjLSYnpsm8PtkMymuXV3E0hHXF5eYKZfY3F5lZ+MZYd2in5/FSMeY9gwmEi3Mfa+WgP38hgdZzI+nRz0jwuto0ZMm7tka16T6B1XH7k0+SPKoVnQZOH6211ENZdjGeWESrZPuow+79zy0n6aVjv++iFZ4WeF12WtnNXWaj2ySxnUU9/m14ovCKOL0vBrUSVrj+P1x+HsruGzHw3Uk1WqNwA8xDIFK+ji2h5QGXsrDsiyUUszMTFGrVXn27Am12i4pN0cURUgpsSxJvVbl2s23QUsGPZ9arcHW1g6GYVAsFMhlM3Q6PbAEQRCThAMy+Qxx6JPKpvjoow94585N4iRhY3ePXhjTjxWDwdBEGIYCPwzp9hJcN8C0DII4ptVSpNND35RlWUSxIo4Uvb6PihNs16bRbJHPF/C8FJlcnmarR7XWwk1PUWv1UELSD2IQ0Gy3KBVdMhkXrSUqiigUc6RSFtXdBu1WG9MSfP7VfT768C3W1jbI5XNcXZhHJxH9QZ9sLsOV5Ss8fPiIKI5ZXd8EJ8fGTofylMfOXoNEKW7fuc7G+jbTxRzXlubpN2ukUg720gKFTI4kilGxYuP5JplCiiSK2d5Y49aNFKlUkZlSBb/dZ3Zhlu4gQEhNs1nDNCBWCUoldLsJiYqJk5idnRqFXIF0xkJKRRj4vHv3DtfmZ5kpllmYqlCr1nm+WycsbSMTCyOXwrI8tIrQ0kQIE8UwUz8MtazxwIKLsLPTNI1vXmt6+awIkzW9yxF+WgaII/dOt53ySqIET4AThdWBcny0/W/Sd3fEvDYkbvL9gywkJ2tk3+Rgu2gf/Lr8nZfNxP93AizbZjAIyGSzKKUxpEHKSw/DVBX0uj08L0UYhjiOg5SSdrtFGIbsVffo9Xv0Bz38sD/0hw16SCExLYc41szNL1Gt1lBJTDbtMTdVJp91KBVSfO+7H1Ap50ilnP39Yg7ZdJq56Wn+0R/9EVcWF+m1uziOQ6IUCpDGMHw2k80hDYckGYbZRxHEiYkWNqblgZS0O/1hPWEQJopHT57RD0KiBGIMPvvqIb/89Gu6g4SeP0wXFSuFNDSpjIWXMslmLIpFDy8l+fjjd6lUivQHfdptn37fp1qrs765x42bd+j2B9iOO/QpoVFK0en1KZanuHL9KutbDe4/fM6PfvIzHj/doNmK8P2QlJtm7dkqGysrOKZJxnW5MjfPvS++ZmdjmzvX7tDY69Gsdsl5Gd595y62bRPFEZvb22ztVdnc3cF0LBaXF/FSFkk8QBoxjmMACqUVSieYNggjIdEhpVKahfkZKqUClVKJqfIUJh43l27x7u07LFSyJL1dWjtPcVSPvCdxUBg62Y8W2z97TAyzbYAB+vSkhiPNZNzMcfzaWb6e85Y9qe5FaDsPvouWvwit5/HTHfk7ha5vgiEetjs0iQlx+juadO+y7/1InVcsqy8zvl43eK01LmmZmNpmYWGBwcCn0x5QLAyjDdGKJIwxpEU2m0drgVKaJEmQQnLlyhJCCFrNJisrz0mlSjx/9owPPpxiYXGZ5Ws3kJs2CMHXX39FIZuhmM1QbzQJwxB/0EYlAeVykTAMqNdrBIFPoVBgu9Yi5XmoJKHb7dPpBCTKwDBtcnmFbTt0en3QFpadJlGQKAlCYFs2rmvQ7/eoNUPQFjlH8PNffc7U7Byl6TlypTI7NR8RBPQCRZQM7eCGBMMyMS2DTrcDiU8pn8c0YvI5l9/9nQ/4r/+lwexsBds2sKTBB+/fxbIshCGZnpmmMj1Frb6HYVv47S5Br4sfa1Y3dhDSIE4SIMKyLFrtDtcWpjCSLp7nsTw/jRSKTrfD3MwcWivKhQrvv/MOrW6TXKrA9vouwjRReo9HDx/j2R5oqJTLfPjxtykW8+w1OkRIgnh40CRiqI0KNLW9XSQhvt9le3OdD25fo16v0dprU8yVkYZDKuXhh20GrTpruyvk81NkUxkCbYJIo7GI9095FmOxZK8qeuuAYbzk8eTfBIyEw8l3X47mM4XVS2H/5uCbpevi/Xpgzvw7qvFMavebOgBzErzWgitJEkzTJEk0CwsL1GttkiQBDa7jEoZgRCZg0O8NEEJi2w6WJcjlClTKZdqtBsVigVs338Z1HaIwxPZSLC5dI0xigjAc5j4MB3zw/vt0O122trbYazbotBv4/oB0yiOOQzqdDjpRGNIkjhRoQRhG+L6m2Q1JZywKuSxBGAISpaBe79EfKJQSSClIpV081wZtEoYxtVaf0IJ7D59x5+4G73/8baSRwg9D6q3agdBSDLfIpFJptNaEoaaUz5BNp8lnHVZXnnH75i2uXKnw4Ycf8sO//hkGuyzOzxAEAdev32D52hXWt9ao7e1SrEyxfOs2f/Pjn7NdbTG/MMW9R1XSaZcobqN1wvb2NiLuk/NM3rq1zM7eLrlMijhWlIpl1tfXWVtZZ25mASFMLMMjl7V48OgRSgoqM/MkKsFAsLG9zfVOh5mZaZQwafVi1rdrSCkwMLAchzgIabc7pF3w+z5bW5s8ePiAQipHEirS6RwPHt/HTEnq3RbCdJkuZBg0HlMuF8m7ZRrBgBiFEuYwVB44cLzos3ZxnQ0vMI5XwEeOmJXGksKNN3USw7pYxOJhWP1JRSbRch7cB3SLCTvMDvBIxvf2vAq/yEW1Wo75/S4L44z6TBPsvlyb+KxaDyNhj/X7wW8JWp0/hdV5ogQP75+eYuwFWib8PouOy8JrbSqM4xjDNKnX65iGSTaTZWtrG4EcZg+PFblccT983MJz08zOLHD92k2mp2YBQaFQAjSptEMQ+nR6XZQwKU/PcPPOW1SrVcrlIinP4cHXXxANurx95ya/9zu/jes49Ps9trd3cW0b17EIA59+r0un3USIoTAyLQMp2Y8ajAjCgEw2h+NliCJAG2gtSRJJ4Cv6/YgwVFi2jcIgULDX7PEX/+2v+Pr+Ezq9kHrTp90LSRAoYaCBRDHMDqIkhjSIfEXoh+gENtbXCfw+3/rgXeJ4wN13rtBuNHFsm3Q6TbPV5P7DB/zox3/L5u4WGAIlNO1+n3a/x/zCPDNTWaLIH2YNkYIw0jiei+0ZtHsdgjik3e/y5f2vqbda2E6afj/GdbJcv3YHrUxK+Wmy2RK1uk+YKEIFmVyBgZ+wtblFNpPi9u3rlMuFoc+ShDCK0EqitMAPErKZMulUnlwmx/b2DolWvPXeXYQH3ahFP2xhmglC9ZFJHT3YoLr2BYV0TNZLsIwY29BIoYZB8GJ4srKWr9i88k2at46ZK89b/vz60MVNfWeVPUijNHbtKJ4Xr0/6PA9cJET80LN5sb49DY7iOd/7OX7t+Pfx+2O/TqR10nOc16y5j/lc7/W036e18TLT47UWXGEY0el0sG2HVrsD+6HM7fbweBINSGkOI8mEIJVKYRgGvV6fdDpDp9PHtCyUSlhZeU6rWWN7e5Ner0uz3UVpWN/YJAwj6rUauUyG5StLDPpdnj95gueauK6FbRs8fPiQ1ZVVdnd3efrkGYZh8vZb7xAEMY5jUpnK4Hg20oAgDOn3ffxBTK+rCINhQEYUJYRhgjQsTNMl0ZJICfwYBjFs7db4v/7f/588X9um0/NRCoQ0UPsmBa3BNG0SJXBsm047QGACJqEf8/DBY2zHZm5mihs3rjJVKdKoN8ik0gghefzkMUgDLQxSmQzPVtd5+myNMFYMBj43b17HkBLLlDiWgeNIhAQv5bK6vsJurYaTSpErFSlPVag1WuzVG9QbTeIowTJtOu0u5VKFMIzY3NhCmiZOyuPWrZukMym6vS7Pnz+nulel0+kRBMnwTLAoIYlBYjJdmWemsoAUJuVymSCOGEQDIh1gpSRO2kKamqlKDr+3hwprVDe/JuxuYokejhEhRYwQw/1cglGqo/3fw+FyYZ/G0fuHZrmXEYaTsqGP6Bte4xjNk//2sR3w0JPLThYixyMbT2K4k+4fZaCTGfNJDPas65NW7seDQSb9N94doyeYRNvLwPi7mkT3QX9OeK4jz8zJfTppjF30vUz+A4Q+d/mz8B+n62XnxWttKgz8Dhtra3z88ffQGEhpcfXGDWq7ewyCAYVCAdt20FrjB31As729yerKU+ZnFuj1eziuxWAw4Omzh7z9dgrHVKgkwnUcmq0u/iDk8cMVeu0mxUwez8uQCiK++PJHvPf++3QHPve+esD167cp5Mu0mm2eP9/k6UYVO51DJxrDUDimCWK4QVpLh73dJn5okMTguhaGIegNArSOh/44beD7CaZtoOUwhZOyTOqt7lBgaRBiGESh2ffPaPDDEM+xETLES1kYpkWj2cFzMzxb2eLOO28zPTPH3/zND3m6ssniwjx+ECKEYNAfkMtlkdJiZ7tJp5+gSVGrB7z/7gzNegOpYxzHRScJmVQazwRDa6YqM2gd02r3qExPUy7muXplGsu22Nurs7a+Rq/XY25hAUMrri1M0ekPKGdyJEHAleVZHj96TK3RJcZiZy+gPxA0OwGJ0mTSNulMGltKdnZ2MHWOD9+/w/vv3KRULOF6KRqtOtIwSWUySFMyCAb4fkC/W8O0IvzaA2r+GtnFjxkkIKUFsJ/ORw/NMnJ42jLIYR+fMv6O3xPH/RhanRILvc9AJzRwwEy12v8cEiKGu6dHHrmxNDvixbaPZNOYlFlj0pPpw49j6A6Y+7lCu9WJHfdid4xpgWeZ1OAgse+xq4dbCOCAoWulDpnjmBA43hvyhGYPBeAoZdN4f449yAt9JYbv/kiBsUXDITljlY8iORZj+GIjoztHiB8Kw1flSRq+60n9PaEsp5v/Jt0XL2EufK0FlxRgSpNMJocfxCAkWccljmParSZB4AOCMArY3n7G3EyR+flZ3nv3Ds1mA8d1UDrh2vWrrKw8x3Uk/V4TQy4ihKbValKpTHHv6y+xpCROGGpQdor52VlmpmfoPFsnCjQfffARxVwGL9Wi/bMv6PkhTb+G1prAH2B5Gscyh4f1IoljTbPZRYjhRmjDECgdoYUmiiLCGIJIo4RGmhbKsAgSTawNvFSK3mBA5CfDemo/556ARquDUXCwnYRSMY+QEt+PieKEbjdkc2uXpaVFHj9ZpdUNKAWKWqNBqZjmzq3b1Ot7WG6Kq8s3WNtqEIYm9Vqf5StXiYOQuZkKrmMxN10mifpMV4pMTxWJwoCB3yNWmrUnzyl4WQCUVljOMIXV9tM9cvkc5akSnmPT6fQwEkk6nebJ02c4nseUlULLFDu1dbrdLmGoSRTIrIFWik6nTTeKKXgSlOLK4hKDfp9cOkO/5xOFCttxSFRMIV+iVJrhq6++YroyhQj3SDomZnwTz3DphgMMmWGUr1AbkkRHDDcn7zMafcjwXoAThA6MJukY4zvMOnes/GRGLcY58QHoA6Y3TNU0auMkz5w+4fvF4HgPnLVOvsg6+iWVmkPNcOyawVB4qf1chy+Ys463LU55x8BQcB0ap06Jqj9EN97ucWl/oQ7ab/9Uc+MpdL1M/56SQ/HFoucvO4KXIe21NhVqJcgXi8RxQhwnCAGJiqlUiuTyWeIkpOf3WFicY3ZuhtX1Fba212m26iiVkE6nMA2DwWCAlIJev0/gD1BxiNQJKcfmxo2r5PNZZmbnqEzP0ur0cByPb33rIzbW1km7LrduXsNxbDrdDgrF7OIc2VyWRCsSrbAdi5TnAJo4DomTkDCKSWIoFtNksxlSaQ8v5aKB/mBAt98nCBN6g5Bmu8/uXod+kBAm4IfJfuoocbiYU8OX2W736fd8et0BGggCnzAMME0TPxCsbVRRSBrtAKSk1e5QKk9RLlXwPI+FhQUE8IP//t8xDUGp6GBKn0ePHpMojW1ZLMzPc/PWDT784H1UEiOA+/fu4ToerpNGacnWTp3NnTqmnabb9cmk88zNLlIpT9Pv9nEsm+WlJd5+6y7pdAFheLheliiOCcOA99+/SzqTxzAMLFPSarZptzrYtsXCYgXLiNlYW2Fvd5t6dZfnz57QqNfY2Fjn/r0H9Pv+0OwqTUzTpdfr0+u0aextsL36EBE08cwY04iRQu1rrCMGNbTviANB85LcdaQmHUNzkqnkYHUvjpYd95eMf3/V8DJYxVHb5DcAJ+CeYI57waR27O+ybb7w3iYozkfLvFx/vKzJ8vLtXqTsr5fG11rjsmybcrkCCLQemsyiKCKfz+H1XTzP4/nKUwo5jygO2NhcJ4n75HIpHCtNtztkhDMzsyRJjBTG0FemIgb9Lv1+mygKUVoSRDGNVocnj59z48Yyi/MLWNLgs88+4ebNm+xUt3Edm3ypgu3ZpHIe4d4emayH4w4zz8cqJomSYc5CqcnlbXK5DFESYBgSy7Zg4BPFCXHCML+fBmJNP1AMoh6eY5Ly0nhpQaT6KB1hGIJEqWHwR5jQavWJbc3CjCRWMd2BT7FSoVhS7NVb7NVaCAnaMIlUTL5QpFHfxjEN+oM+05VhWHkcBqRcG9NQfPKrT0inU7x1+wY3b1xjffUJ16/Ms3zlCt1OC601z56tcPXGDZYWbwz9VwJ2qm1uv/0+G6trXLu2zO1bN6jWdhk8fYKXyVIsVgiVZGfnE6amZpiyXZ48XeOjtz9m7sEavh/S6Q2IwwQ3bZLNZvjWh+8RtLZJoh62KckUs/SDiF6njdCwV+2QSmdo1DdYebaLYwnkjMnUlIWhmuw8/4pMbpp0KU0/MdHSAyVA7wcPHGha447qi0VCHTUt7V/QR5n6i9mxh+tIMYqCFodRXYeM4fgG2XFBdjmY6K+7YPkj9y5wmOBF6X6hX0fX9dFCRzXfs9s5/f4pmUBGv0/DvU/TZeG8ffSqhcdZoTwvjf8l0L/WgktjkMnk6XR7mJaNEBJpGCAEhWIJN5Vi2vcJgg5+mJDJFXj2ZAvLNHj3nQ8wDQelYqrbVUCzvbNDMT9DtbrLwB/g2AbbmxssX11EJYoH9x4yNzNLNpPHdV2KhSKLc7PcvnWdTz79BNtxsN0MX379kGqrj+1amLaFRhMEIbYlifePgMhmLcLYoj/o0u/7WJY5jAzUGtO2wBT43RA1Mt8L6PsKPwzph5BOpbFtlyTWGFKgZEKoh0MtihSBhna3j2tL0hkPwzBASpJEs7VTQ2lJrAVhrChVpug2dun1uvj9PrblMjczQ6ASlpcW+Prr+7Q6TarVDu+8dYtBv4eOE0xpcPvmTVZWnpL++Nv89Ge/oF5roYXJ51894dq1a2R6AV9+/YB6tcpbN28x6PvcvH6T8tQ0P/rZL/nyq3vs1Fq02hG/+OVXFAppms0m9+/fwxAaz3WQ0qDZ6KC1JJVOIYVmbnYav7tHr93CLuTYXHtOo15FCkEUhqytbqG1gWU5lIpZ0m6aTr3ObDFDd6PG8/s/5Z1v53Bti14sMZHEwkALjUYynnx35EMR4qJ7UUZBDvuMfIKWdKLWNao1wal/WHdU8mJMa9KhiZPaPwnOFAIn+O7Ownda35500OTRdo9+jnCfNxDg5DITBOV42dHrPRnxKzCJTkZwVg7Fl4KR4/wceE/LnDK6/4Kw//sanCGlhVKCZrNFqTw1jKjTgnanh1IKx0nh2Ck8z8W2LYrFPKYh2NlYY3Nji3feeR/Pc2l1m9Rqu2TSaVzXJZ1Ks7b2nHQ+g+NYJGjiWIM0GPgRXjqDYZikXJff/b3fIZfP8Ytf/ZKdWp1BpFjdaBJqSb6cptvrYVkWjm2CVgSBT6IkrpdChiaDQR9pQJxEKDV8waZlDY/bEBEwtNVrpfcdzoL+ICKOewgNppQ4tkUYKIQGKQ2kAMEwaa+UBoYpGQQhzXaPSinHXq1JGGsGfoznWOzu7hGGETvbO1gGFEsV/CBACRMdR1xbmmdjp81eo8uzp09wLUEYBqytrbO8OE8hlwcUpXKJdCbLj37yK2qNATdup4i0oN/u8ODhU1zbYXqqDEJSqUxTLJT4i//2t1SbA8JEs7CQHWqQpoEhBCnPI/B38P0I2zKwLAO/3ycMfGTK4e7dd6iUSrQae2xtrBGFATNTU4h6nVgLfD/i7jtvU93epdvp4xRN8imHd67N82SzCYM9LDuPI+39pMR6ePik0PuOY7FvPuRA+3l1MNJKJvihDrS8ce1sxNyP19mveQZtx5nEadF4Yuzfy4AeIjsXHSfSMEkLFIJRBvvz4hvH+7LM90S8I5IugH8cztPWeVJqfRPmutNwniY0zzNXXmY+vdY+rnyhQBTHZLN5EqUxLQfbdocrbTtFuzsA6WDaGebnrpHJVLh14y7f/50/IJspIbCQ0mJzY4s4Ttje3mW0Mk6l0xQKBTJZj0G/x8bGGpmsR62+x7Nnz3Bch1K5RLlcwvFc8uUKfiLpDGJypTSWAxpJlIA0LRzXI44TQGCaBqm0QyptY1ga0xJIqTFNiWEYRFG0nzjYBARyeKLifli/gdaCMEoOJmOSJKgkRmuFUsOIOGlAHCtsy0ZKyc72HnGiCYKYleer1Gp14kSxW+3zfGUNx/FYWlpmemaeWGmu37hBq9WikMuwvDTH23eusjRfZmt7C8+zsUwTx3a5f+8BruOwu7PL3Nwclco0rpsGIXBcm3Q6y/zcAteuXeX5ygp/9Vd/zQ9/+EPCMOT2rTsILEwpyaRd5ubmuHHjBn/yj/53lMsV+v0B/V6AZTtkMmkymRRKKzq9HqZtU2+1aPd69IOAu++9i98fpuwqlytMlSvMTs9gCMG3P/4O5WKF3a0devU6RVdye6FE3NpE9PeQUQtD+ZAESKH3J8V+lOGRETch3O7SoPftW8f/JoNSo3f78u0LMdxTZRgGhmGcmBj3pLpnwhkZFC7CYMf9VfvIz6yjLvA8x2FS2P8kIT5e7symzqDnZRdELxta/jrCa61xxbFCC02+UCQIY3o9Hw2EUYijBQhJJpNFapCWg2l6TM8u0mns8ry3TrvdwbQM6vUmlj0smySaZqtNrlDCtm1ymQyDfp/1tRX6g5B6o8/zlWfMz1ZIpxyEOTy9+N7D54QKKrML7NYaJJ2ITtfHsj0GfoxK+mRTGSwzIgwTtFb4YUAcBygNhjnMpOG6Fn1fEUURCAPTkITxMABCSmMY7CaG4c9JHBPEEbEU+7NHoElQajiI/cHQ1GiaBnESYRgmAz/AH/QAcF0H4pj7D+6TunubtGNSKJbp9Aa0On12d6sIIVlYWCCKqywuTNNuV/n80y+ZqhSRCiqlq9iux87uDoVSBTsMKBQKlMsBURiwu7tD0G9zdfkKQscsLy9T3dvhBz/4Ab/z+/+QWzcXefBklanZeVKeQ7vVJpVKUyhKqnsNHMfGcRws0yRJfNodn/sPHxJ09yAecHVhDoGkXJlmafkqfhSzvHyVvb0aURiThBGPHz5gulzii19+SjHjEoUBC9feoqdjLPrYVkwj7BMoEMJgqOtM9tMc8odXwShGzqxRGPq4NvVN+xfONs9NKn/8+3F4WQF4kqZ1Gfi1MfNjSvCL7b5KTf1Y05fU8n5TMD7uXub9vNYal205CDk8MTiK1XA/kpRIadDp9RHSQEgTy3URYnhERiaTpzI9SyadxfPSWJZNqVhCJZpCvsDt22+RL07hpbJkMll2drZJIp/52SmSKGB2NkMU+9x/eI9YxTx6+hhMi1Y3otHxWd3cww8EQSioNXwazT79QcLAT+h2BwhhEiXDDb1xHJLNuqRSJrZjYJga2zIwDQPXscik06RcB1saGAx1Lqn1gSkQoTFMOVQS5b5TXGuEMHBsBzTI/TDe0f4XraDR7CClpJDPUC5l6XW7VKtVnq2sEStJrCS71SaPnz7HMA2WFufptBtcvzLPdz9+n/m5Mptr61T3GmgM8oUiS8tL+MGAzz79lI21NSqlLI4tWV15zpMnT0ilPL71rQ+H52vls1SrO3z22afsVncRQpHEPteWryCQPLj/iKdPVxCGxE2nwJD0/QHtdpck0dy8/Ra9MKbdD9iuNYiRpLI5rt+4zV6ty4N7D7l5/QZpz8W1DVqNPYJBl5mZAqYhyWYy2FKREhF20mImJyimwZYRBskwaEIMgydO9kCdBeKokNtfuI/vK5oUnXbgCjsF77D6ZE3g7wRcQChdDO3JPpJx/9Z5W5kkjC+jvQiORjJOaOjcdFwUzht0cpk2Xiag5Xi7x/v17/UGZGnYJCpAaT1MJyMFoAiTENezEVIQRj5JYiDcYSJZwzIIguEO3s3NDTK5W8RJzOLiInNzi8NAiVSR0tQ8hgjIZTL4fgfbyrFXzpJKZbBsl5WVNUpTRWzHw/YyhEqw1xigRYxhWICB56ZIlEIjEdIkiiOMeGjKS5KIJElwPQ+lIhI1zHphWWmi2Kfd9gmCBNO2cC2DQZggtEYx3JQ61KQktmPt52tMiPr+sF+EAKVRiWLQ72M6mpTnEYUax7VxQ5N8Lks+l4EkolLKo5Tg2rUbJBj84rOv6HQ6CNNGS8mzlWeoJEDFA25cXUIlAku6/NVf/oqpSoV8wcOybRzXIop8/IHP3bkpisUss1Pv8vOf/QTDUKTTHhKH9Y0Ver0eSsVYpk0+KygW0jRqVQTQbvf4yc/uMYgEPV8PAzJMSZIoBkFCo9NFSJtUtsjz1S02NjZ5urpKsVhkarpIrVZHRRGLszM0Wy2Wl+dxDYN/8AffJwoDpDSZnp4dZtqXFuubD7HyN/CcEj2RIMXwYM/945I5uqQWHGWPp5nFjv8QB0EehwLq+EZVebC5fPK6cqgJHk76803+C2k4HPWvXQQuGlV4Gi1naV+TBNf494sy3jO3J5wGmpOFxBn9cfHIyvPR/dLtnGB1uChcZOydF15rwRVGEYEfks4YZHNZ4iRG7+9yz2TT+H6AbVgoHaM0rK49J+VCPm2TTqeIgojtzU0GgwGplItWwzOOhGFhmg79bptGo06pkCafL/PV118yNXWFREsq0yVWN1a5eestlDAQhkmnn2C7Fn5nGJBhOy6OY9Nut1BRRLmYJvAjNEMhlbY1qZSHYQj6/Qi0QRxHqH3ToECTRDG2Y6O1iWkMhV+iE2KtcR2LfKGAUopur8+IZwgx7BvPkfT7PRwlKeRLrK01EPTIpDwsS1IqFTGFwkTR7/eJY0XfDwlji8fPNnn77assLV1hd2uVfq/Fk8f3h0JYWKRTJcrlDL/65CsUA2Zmcuzt7Q39YsU07969zeLiLKYBP//Jj9nZ2WR6qky70SKTy1LyfXK5LJVKgdX1LeZmKnS7bUxpsLa6zsAPMawMUTSgulfHcSwsy0RqxfOVdeZnS0itqdZalAtpVtfWWbqyzPz8Akk8PLrEtS267QapbIZo0Gd+boYkUTQabSxTYhigpUKEXeq7a1BOIaV7KKskxxwY55toh1UEhyHvI3XqaNnJk/dksaGPRHqdn6bxtsajCicyW31Y/jKmpnNHFepjP4R44cmFEKda2g7KH2vyuPCa7Ls6D/M8R8DGGH+frEmc3R+X8fudB17KJHdGVOFpuCcl351U5rLwWgsu13ORQuM4NomCYOCTznh4ysH3e8SJwrLy+IMBrXaXYNDl6f2HfPzhXRxXYkiLmblp9C8TXNfDtGwq09OksnkM06Lb7aFUgmlICtk8H33wEV4mx9bOLs1Gk74fYFjbFGe2sNwUlu3Q70dYpkMUJwRRj3zeJAhiRpnHLdshThKUUsRRzKDfRwiJZRiATaPeodcPMQxQscYyBWnXwDQ0lmkThpJ+EKCShCCMGAwGGHJoXrTE8CwtyxT7+8TSSPyD72qlSacbDve+iYSV58+RJPzWxx/i9zs8W33O/JVldqtV4kTTbnXZ3tol7aX41kcfEQQD1tc3mJ9bIp+bYm93l3a7TaNeY3Y2z43r1+i0e7TbPTqtKlU7QUqJaQrW1tZwHYcH977inXffQRoGs7NT/O2PforWAZvrq1Smpqk1OuxV6zi2gTANioUc1VqNOBpGGzq2g2GY1BtdPFvS6zQplN7jw4++w6effk4mk+bq8lU6nQ5dpahMTVMqF5FJjCkFcZDg2i7bW1t0O21M0+HG7Y+4/5NHeEYWp+KhtU2CidIjjWcUFDFpkr6YEkeMMbFDxjcKvjjU1ASTmbI4UkeO4RAM8yvu3z2SnWO8/uG/xy6+eElPYkp67CGYILwnM5x9XXDivX3n7OH345QcPOKYoDjYjHC8vD64f/AcY9cE+sAXfETI67H6oyjAU9NgHNfoJpQdCfmRaVicUO5EGGPw52HkI7rGy56q/J/jWU9r7hvxEx4unC4Lr7XgajZ3MIREyil8P8S1PRzToZ+0iXU0zCbuhyglSKXSeI6LjiPWVp+xuDRPdbfKkydfA4pmvcVbb5VIZfIYhk0cRQgBac8Drajt1WhUO9x9+2PKpVl0YvBsZZud3S4//PHP2d6pYRgS2zZpd3wMKbBsgWnAVCWNITVxEpPysvQaDZAGtulgSEEcD01mQQCDfozAwPUMEj9CShBimNHcEhJhGbQ7MSBJIkWn1UEKgUAilRxql3GAcASFYorQD8nlU0RRH8+L6PsJvSDCdR2kqfD7A3q+j+Pa9PodIhVgOZpM1sU0Xb744h43r84RJz4Li/P88R//MSpRpLw025srNJo22zu7PH70iP/5H//v6TbbPH36lKWlaTY2N1lZ3cT1stQbLR49eky5XOKdt2+jkYTBgPn5GQSQBDFTpQqNZhcVa6TQREEfQ7q4pjmMqksgihJy2TIQ0O+1CIjphxFbuzVarTauZRFaAfW9GqVyhbmpeWamKyzNTrG7vkF5uswXX94jDkPSrkOiFZHfoJTRNFur5ArTIF0i7RBoA0YZ5LVCIBlm1tAcyUV34tw+Ia/ewddJK9bjK1z1Qgj4C3gmwAskaQ4YlxjhP2JqG1sdCz1sdwzZuaL6RsJJCCaGaB9LC3TA54cETcQ3LrbHn0UDxph2cyjED4X+8JiUQ6FwtAkNKjmCdlzDlEIeaLTDK5Nz9o2EqjSMQ7wXAr3/nOcUEBoE6qj2eCBWT9FqLiMkxoT3JCEzWaMaabIHxO5fPezbE9ZbF4LXWnAlcURpqkwSB2TTmeFmXZUQhxFaKBw3jSlMTNfGsQSFfBmVwMbaOgO/y+bmOp7nYRiSrc1tGs0WhYrCtUxMy0IrRbFYxJIJzXqbdDqLFAZLC0sEQcjM7BX2OgH/r//833Ecl1qjCVJg2wKVKFQsMQ1JsVgiinz6/R6aYbguShMnikRpXMdm0I/o9wM0inTaRUsDpRVxpLEtSaQ1nmswCMEQQx/XiAEJhs8tkRgCLEvgeoIoHmCaAtu2CEMfaSRYVkKr1SCVmsWxbRwrQ7ffpVSaY/HKIn0/JOWled6s8/btCvm0w9raIzzXoNVq0ml1uHPrFp7l4thD0+Y779yh02nT6fZIpdPDY1KaTRzHxXVc8tnsMM/h3CyeY+H3A9KZLF89vM/VK1fpdwbMz83juQ63blynO/BZ29yj6w+1Sq0SkighlbIwJKgkREqFlJJ0Ks1utcbO5jqeKbmxvMze7i5RlOC4LoMgQClNba9OHMX8/Oe/oNMf8L3f+g7ra89RaIJBj93NVZwpl5QZoeIAaWaIlEaPTkrWB2yWIwzym1iQvgC/2ciwV2LGOrbil2eVH6967Per8bxcBM5YJPy6ohd/g22eZTY+j1n5eJm/tz6uRm2XuZkS3U6dlJdgWS5JEiF1gpBD05mhJaYwkVKitSSbLRBGmvX1DaQUeJ5Hr9fjo29/m7n5BVqtBulsEUNaJEqRyWRpN6rcunWbfGGGRrNDb9Dn1q1bbGzukhgthA4xpU0mbSINlyCIhzZ1pdA6pt/rEgQ+XsolDALS6TRRrEiSiEF/MDQZDgZYlk2+MIwf7PsJnuehLL0vYMAwJEEcIw2QsWK0XlRaodVQYNmmhWWBbQ8HxfAMJIVlDY8gsSyJMCTtbpN8xmXQ7dLrdImCgG/lP+TevYc0mg2Wr84wPTVDp1nl7t13abdqNOs1Htx7zo2r1/ZPava4desWiVIYhsHPfvZz2q0eb925yVR5hp/+/Bd0u10WFmYpF4dZKpr1Gj/50c9wU1manT7PVmoYIqHX7TC/MI/juVgG3Ly+jBIWn3/5kIwniS0QQuHYEsNQwyhM6WAasL29zdxUiXQ6w+z8Aqura+xVW0zNTDPw+5SLebQv0VFIOpPBTnm0ux3mlhap1xuYbo7F6RLbnT1yZsTA75BoB4MUSlpoZSDFcB+d3v9Pjhbyr3hMvxqGJE5YDZ+3Nke0phPLXdjZf1hv/PtpG3NH988l4Ma0r8sELLxM5N3xNsef63SmLvb/f/E5T9Jyzut7PP48lzXNnbX94SjNcGBOPmqfPYLrZefNay24NtaeY0rFe+99i26nTRQMME0TuX+cgUg09v7hdWEQYNsud9/7gE57m1a7RT6fRUhJoiXLy9fxUmm2nqxSqsxjmmI/8g3q9RbT5Tn6vf5wT5FjMzMzy+ZWlV63RalQoNXtUsi6WE56eBBkFKGVGgYIdPskSYyZs0miENuxCaM+WmviWGFIhRBgWhp7/8WHsSDRQ0NFksTk8yniKMA0FZbNMMOD3j8mRYOQCtsysC2JEMnhoX1CDHMOZlK4rkG/nww1t0Gf0NKEYYht2mxu7hEnn9HpdpmfX6K6W+eLL74km7KpFDP76a3mSOKYcrHM8pUrPHj0EGFI+oMBOytV1tc36XYi4jjiD//BP2R5aYmnz55RKRepqYh+p0ur2cAyHXJ5h1ze5qe/+JKlxSnmZt/i+rWrfPH1l+g4YHH5KpXpeVSS8NW9R3Q6fWzHIp12GfTbSGEj5dBEGsfDgIvvfPQtSuUKt+7cZvlaSL1eZ3NznZmpCtfef4/azg7TMzPEJCQk5AoFUuk8fT/hux++zxePV3Hpk7Es+iIgTkxiDLQQoA2Gk1GhxVCACTRCv7odJa8q+urA93MBpn+sQcZ9LxcVAietrA+E1Qn1TsM3jndytOFZ+E5Pu3Tas44E+UXgIpF/4oDPn++9XShC9LJj4Jww+Tn3/yZEUx4/g+yy8FoLrna7yX/5Xz8jl8mRSWcxDQs3k0MnIUkErukgSQjDPmEY4KVSiJTEcQ2+/Z3fYX5+jo2NDZ483eLe/Se8Y6SZmZ5DSkkQ+ERRzO7uHlGY0Ov1EXK4byzRmrWVVebmp9nc3eWDd2/x6WdfEWlJEgfYlsC2bPxBgEATx8NgDB0PUz5pHWNKAHkwsExT4nkGhgV+oAhDn24X5H65cslDK4FtCVKuSRQnsC+4lFJYpoFpCKIoRAiFkC5JkuDZJnESkMQhnjfMmJBJe2QzHipRJFHM/NzC0K8kLbY26ySJSSad5YvP7nHr+vwwOjPjUiyUKeZzGNIY+pNcl43tbWzb4Xd+7/f4/LMvqdXqREHI/+M//r8plgvcvn2b58+f4DomxVKOen2PmdlZrt+8xb2HT5ibK5DJeHiew6DfIZdN8Qd/8H0M26PV6nNlYYZM2mNnt0p1b49ms42XktimJJVKkUqlqSmF0Ak7O7uYUjBVLtHvdwnDGNtx2avXiLVme3eP3d0d5pfn2K7uIG2LqeIshtAov8+7Nxaxcg7drQ5aesSmyUALNBZqf0IOI+T1vn98/6DASxiuxhn7pOi+MyP/ToEhpSfXucxq/bJM5iDKTo+iBo/SeRbuiwmAyfeGaZnO3jf0svcvV35E2+VoOY/v6aLjZyKVZwi/cR/XyDfI2Mfxhczfa43r5vWbqCjir/7yB3z0rY+5dvUqghAVDQgjhS8Fjmth2A6mkQzNHxgEESSJicDjxs33kSLD82cr2Haa6ekZnGyOOAlYWlri/he/HGbfkJJMJsXO7h6uVkRxxHJxmRvXlun1+3xlCAxACYNuLyCVTiNRmJaBYwuCYPhCTVOSy+VIpVIM/BDTsBj0ejiuTSplY8QxYZiQzTh4nk2vOwCdDH07EkwDHEdi+5pICbRK0Ert7z1KiOJh2SROiMIYkbaQUtLr9dBJRNpzsW2JFBbtTp/BIGDQD7i6fBUpJVeWQxzHpd/tA9BottFC0Gx2SHspFuYWWFycZ2XtOdXqHs1mk5nZWWq1BtPTM0xVZvjyi6/47MuHXLu2SM/v8/bbt+l1WyShz607t1hYWGJu4QqBiggJiYKQRrNOvbnHtevXKGcybO3usrWxyoOHz7nz9juUSzd4+EjhOQJNjJBQ26uR5BNSqRTFQo5MLke90cQf9FlaWuSzz78kl8szMztHECpMx2OnVqfaqSEtSaFep5ibodVs8uThfT76zsckusfW0/tE7hylpXcRBoRKoRgmJQZBzIExZLjn+5zT8Dwr5ZPChieZh17VKvo8eC7qm/gmfTCTwtq1vrhAuwhcFMc3mvz2FcOrynV43kXFKL/jy7T3WmfOKJbK/P7v/wG3bt0GEiAGHSNISGKfanUT1IBet0ans0cch8M0QImJaaQJAkEUGVxZfovv/NbvksnmSZKYIPAR0qBRbw61DdslnU5j2SaGYdDt9EBLAj/Asy1uXL3CP/i973FlYYZCNkVjr0e72SefTZFyrWF28rSzv+k4xnFNkiSm2WwSRTFxEiMExHFEHAZImZDPeczPVcjnXbTW9AdD06KUgjiKkEIhBSRxjFb70Vd6GMgBgjAcnqQcRTFJrA40A60VqIQoHGphINjZqRLFCctXr+P7Abdv3+ajjz5i6cosxXKedrdLAqxv7lBrtAijBMfx6HS63L/3hOfPnxOFw4TAlakp8oUibipLo+XTD2LypSn6QcTmbpUwDOn1uzxffcJefRspE9599x1M28ZLeSRJzMrKU0qFHGnPRsUDVp4+Ipd2+fD995iulEh7LhKIwpAkTpDSwDQsdnd32draJJfLEUUx7XYXwzTp9/v84pefcP/hY/pByF69RWVqFiltvFQKx3HodNv4/TaVfAodNOjsPsVvreKoNq7wsUSIIdR+lOcwTF1fQGgdhxHTlVIemnVPKTeC43kFX2byj9oftXHwd0lcJ/19UzDehpSnHy3/TR/RcZyei8H5NOBJuM/q71f1Hl7Ve31VY+O11riktCmVp8nmi3TaDQaDAe1Wi6dPnlMqlfniyy9YW39Ks9Nmc7vK//J/+KeUS9NkswUcM4XSJmE49FeEoSKJAlQS4dkOQdfn3tdfs3zlKrPTJdIph6npKVKpHEGoCaOYQd9Ha0XKsfmd3/oeiwtL7FTr1Ko1gihGxQMy2QJhGIBO8AcRWsQ0m3XieJh6yZByGG4NZNIZtO6itCaMQsDHdSByBM16h3TaRjE8mgQxPAF6mJQ3IY4Ulm1gmg46iYgjRRxrgkFMJAMQMWjIWocbrQ1pYEoDjWSv3uKGUqyvb1OuPOXa8hLT0wVMU+B6Nmsbezy4v0GsEhavLDC/sEAchWQzNiqJaTTqLC1fQ0tBtlAgiB/Ta/cxqiZ/9eOfc215kRnH5Wc//lsWOi2kIZianabRrCFNydXrN3jw4CtS/R7NZp1up0uxkOW3f/u7PH++jm0axL6PlEPzqEDjWNbQhIug3mhgS8X1a0u8c/dtojDhzp07GIakWmvw1Rf3+Pijj9GtFpXpWT755HPeu/seafsZ7XqTJ0+fEichvyVM3ruzzNPtFvWdhygVIb1pMCoYVp4EAyEkaInUIyH264NXYfb5jcDIXDj6eXD58gERf5fg5Wj69TzPJN/jq9S2LhRV+JLtvdaCq1SZJbNv1kulPCQJ9eoei4tLlEol6o09HNfCS9lIQ5LLpnEcmziOSWUyw7OsTBvDsjAtg0E3ZuX5Y/rBI+68dYvFxUUcQyOID/LruV6OVCrDVCZLdW+HwO/jORaWKVmcn0MIwZ3byzTbXXp9H4nCc22azaF/y/aMof8sPFSXBeyf4GxgmTa+P0CphCTp46YMlHII+iEqVoRxjCHBtgzCeLjxGBUM/VWxQpAggDBQ1Gs9ZNnFcwXo4abk4XlVEXGs0UqS7B+l0mq1+eTTT5iaKVGrVdndWUOrmKvLV6hMVyhNTxHpkJ1Gna8fPOCuvE02l6NQyOE6DgsL8wx8n0Rp3v/gQz794iuIEhI5zOP41cMVMp7FW+9+yNrKEyxbYjfbTM1MUWs0WV+v8vjxQ+ZnK8BwS4NlNVhYWKZSKtLrtEk0/OHv/wErqyts7exQ22tSrTWwLIdUOsWV+Sk8z2KnuovQBlIarG9skMtlyeTyfPblQzY315meyiGFotfp0WjU2d3d5eqNG0RxyMbmJvlShemCjR82aW7dRzt1srPvIu3Uvp/GRCuQwgAUx49mP4kZXMY/cxocd+YfXD/BnzNucjxpdT7CMM5LjzO7c/vaxssex/FCm5NpnRRccKnouDFf5Eka64m0nBDscvw9j18/LhROfk5xQNt5cF8GzhPocZrP7DztH7Zx3Fl3Ap7RpuhLwmstuIS0CMME2/WQQhD4PRw3QzE/hRBw7dp1vLSNUjHLyzEPH9zj7rsfUShU6HcHmKaDaRtEKhky3WR4bHwcxwz2TXNaQbffZXs7wPf7FErDIAjTdMllC3Q6TWzDxBIG0jO5srjAO3dus7K2Tr3V5vnqBkgbrWMsU/7/2fuzWMuSLK8b/Jnt+cx3nnyePYaMKTMjIyuzpkyG4qMaCtTdJZUED4h6qgfEAxIS4qGEhIR4QIVQ89Y0EnzN1zRUFwUkVWQNOVRk5BQeo7uHz3fyO535nD2bWT/sc6/f2a+HRxWEPsy1/Z69t03btu21bC1b67+oVHwsy0arFCENSml8z0FgaDU7WLZVvFydoU1CKagQDSI818V1fDwDw402uVYYLXE9H8dyUHlCrnPSNEMYg0UhUeWZIjE55ZLAtiUqV6SpJssNcZyT5UXcrna7wzDscf78AtevXiJNYt75wdusra8SlBwGcYZwXbSA1Y0NXEdy7tx5GvUq/UGfwPd59wc/4toLLyJtCyMluVasrjW5fX8dx7Zo1C0unZvDL9fY3Fjj5q01rlw7hcpd/uiPP6QcZPQHHc6emqcU+MxMzzIcDDh37gy3b99jZm6e2ZkZtFJgLBq1KSrVJuVyGa1jao06Ok/QGN7+/vcoBVW63T5hHDM+OcXa5kPGp6apj1Ww0aysrDIzNU19bAzL8wijEMu2uXP7IxSS8cYYrfYa0TCiPnUOSYrAKd6PkBSy8mHIGXuJ4Z+GVdfxTPEgsdvdh8I15JiVttjewTtY91HMcnc7h9a7n1mdYHW+n+B/2rE8zkDhJHUW/djVd/b+3j8mh10/rm45Gu7j+ngSiea4Nk5y/VnH9ShGvrMDfMg8+l8SFxDFEVIYXN8tMPSwSDNFmgyYmZ3FcnyUVmRJyvzsAp1eytZWEyld0iTF8xSOX6BXSGHoDYcYYzh95jS+53P2zBnWlh9h2zau67C8vIEyFuPjHgaDJaFRr9NuNen2+8zMLzA3N8fs48esrq0iBXieS6agVquitCbOQoLAJ7E1tqVxAx/fs3GdAlcwzwrvLCEMljQoneLYkjQrJojn+lhWD50rMBqlFI7lkCqNbdvEeY7QYNngBwG2rRFCI4SF67pFH+KUXEGWGsDCth2METiOw61bt5mcaHD92iWUVnh+AVH1eH2ddj8ksAStzQ1+ajv8yv/lL1Iqlbh69QqbrQ5f/tKXOH3uPA+XVylX67QGmzQ7A7o9VUiGIsAIh1NnTuH7LtVKmyxOaOsOl6/M0mxuEpR8bNfl3LlzqNwQDlMG/SGO6/H9779DUK7x4MFDVlfXaHX6bDXbTE6MY9uGL3/xC3TbW6w9XmNubo5wmBCGETP1Gp1Ol6BSplatEQQer770Iu/95Ed897vf58Lly+Rac+r0aS5fuUK17PHd73+PWj6EJMN1XUqOJkWBKOCftp2SCyZ2/Dw9jCA9zRrs06SddngiXRxW99Em5bsIze6V8f58iBEoQqFmPxTUQ2z3Y7tH+6wKTyB1Hdb3w/MeTdAPNcs/gmAfV/ezSJknv77fEu/4/M87Pz6NNenT6js4dgcXLIcugszBOfos6ZmNM77zne/wy7/8y8zPzyOE4Ld/+7f33DfG8A//4T9kbm6OIAj45je/yZ07d/bkabVa/Nqv/Rq1Wo1Go8Hf+lt/i8Fg8Mydb7e3eO+9d7nx7k8RSuFIQZ5GuJ6H45XwSjXWN7cYhhFKaV64/gL12hgryyuEUUicRKBzyHMqpRK2ZXPq9Blmp2cIfJ9yuYLl2HQHPVrtDu12l1IpIEn6JEmbXEcEJY+p6RkuXLjExMR0AYfk+1gYXEszNV5hYXaCuekxGvUytVLARKPOwvw09XoZrRVZnmM7Ho7jIoRA5xphBDrTSC0o+R7VeglFijIpjmfjOgJpFdBIgzAkjDPiNMPzfCxH4rgFAn2p7FGtBni+h2W75EqijUOWCZSRBY2RCk1EFA/xA4ePb3/Ef/lv/wUtNe1+j0fLj+n1Bviej5Y27Sgnk5JHq4+xHJ96tc7UWAOVZkhhoZRhdXODYZIhbB8jJRNTdaqVEuPjDQLPYbxe4/zpBS6ePs3M1BhXrlxgZmYCy3Hp9AbcufuAXm/I6TPnqFbGuf9wgwdLLf7Df/o9/vhPfsrSWocoFdhOmbW1JkuLLVaXVojDiDSKqZTL9Pt9jLAoV8cAyczUBJ4tKfk+ly5dIc5AuhVu3r7H5NQM9+/f479+61vcvfuQmYlZttbWESqiVhJsrT7EMTnS6MLhmww58r8TpmBixcHOsU24i8+zgI1CF6gpu/MdfpgiP4cfYtuPbPsYwTRtH2bfsae8MCC2y5idc2N0YbwzgiHC7GvD6CK2nRgdjI7RbwFYiGIhyEhlCQjMTl4x+svIyOQgodw/ENv9Ho2H3nWY7WNvX3fGRxTuJNv9PWosjz1GIW4wGnHIsX1dAujR9dFYiVGf5M75/qOItL0dRqc4jpgQRh9xPGUi7c47GpPtYzvPkzm6XW77VZjjj33pyXw3T+rb089isS32tPnp0jMzruFwyCuvvMK/+Bf/4tD7/+Sf/BN+67d+i3/5L/8l77zzDuVymb/wF/4CcRzv5Pm1X/s1PvroI37/93+f3/3d3+U73/kOv/7rv/7MnZ+ZmWJufoYb7/6UH//oh6gsIRz2EJYgVYqxiUnee+891tfXicIYnSmmxye4cP5CYXXW7RIOBjiWJAlDHNsmyzRCWiilUFrzx9/9Duub6yyvrvLw0SNarS1cT7Cy+pB7925x7/5dUlUEb+y1u1hGcOXyFa5duYIxisBz0HmEIw0V36XkOWyurxFHA2amx7EsQZZrev3+yILRJfA8bCR5nJOFRfgTxxGAIs1iDDm2YyGlQBuFNjmWI0kyhZESISzSXCMk5HlKuVoijCIGw5heP6E/zDDCQWmB53lUqz6uVzAwpTX9wZB2t4uRhaNzbxCitSBNUtqdHonKsEsBY1PTIASWZTE7NU2lVCKJU+7ff4TjeygM7W6EFwTk2pDmGQvz84w3atRGscayNCXwXFZXF2m1WpRKFZAO9x48otnp4HkBt+7cp9nsMTW3wFY3YWUjYaM1pNOPkdImCMrY0rC2+phqqYzruGRpRhxHBajxiM49uLtCHodE4YBKtYrrl7HcMv0wY7PZJklSfvSj92m3+0xPzfLClWvMzUwyVvUR6ZCk38I2BsuSSGtklo9AjGChnhDq0Ue5a1W5H1BXPOexnwjtvTdq/AguukO4DiWUT7LL3W1umzDvZkK7mJcQuxiaEKPjqL7vTU/Ughw4nqRtYrmbKJtd9Zq9Y7G7L3IXAO6zDzTbBjiH3Za72x8R5N3X5Emb2v28xw3WgWSe1v0n4/yUtp/2nvang/WIPc+xd3G1zci3FxWG5zFsemZV4S/90i/xS7/0S4feM8bwz/7ZP+Mf/IN/wF/5K38FgH/9r/81MzMz/PZv/za/+qu/ys2bN/nWt77Fj370I774xS8C8M//+T/nL/2lv8Q//af/lPn5+RP3RUqXmZk5vvSlL/Pjd75PyZfUG43Cd6oUkCcxzWabbrsF2uLNN3+WKI5w/RIzMzN0Om3uP7jP6fkzlEoB5XIFISAKBwhpaDU3uXf/AZWyZG5uim6/z433blCpVtnY2CQISpTKDZYWV7h+vYHr2li2g8o0s7OzTExM8nh9nTiK0WQ4nl8gnHsejutiWzbGGNLUkKcZgW8jhMD3AmzLQSnDcJCQxAnSKu4lcYLKFcYUe2FJkmLbTsGsspAkSbFMAUCqtSFJMtI0xw9KDAcxWV6ESdGmsEhMsxRXeWyjkG/TBqUMUoJlCRBFvLM0y0kzjW0LkiShP+hha49hOIBShfWtLbqZ4tbdT/B8H0SCtBOyLKXdiin7ZZaWl1nOBpxdmKNcqRNFGUmasba6SaVSpdEYw3VsAtehFJTZ2Nzip+9+QKYtcmWQlkVjrIRWiq2tNqWFCa5ePc/W2iKtVpMsP02n0+ULr7yK6wU8WFxFSnAtSMIOteocZ0+fIYlCfM/lzr0HrK13+fGPf8Ls9ART05NcuHiRNI3p9fucOnuWfmKRSx/bhlQoMgxGOCDNE3p6TCo23k88rXdK7Tf62HP3M94z293kE8Kzp8ED7Ypd1w+zGDy2qc+6/7uq+yzr3lGfjv48W7kTZTx0H+/JhWOnwf+kqWBgT3zrBOyKasDO9U//YJ+pH9eDBw9YW1vjm9/85s61er3Om2++ydtvvw3A22+/TaPR2GFaAN/85jeRUvLOO+8cWm+SJPR6vT0HAMImz+HM2fPMLSxw4/336Q/65FnhDwXgOC5bW00eLS6RphlxnBDHMVprarU6juuytrEGUpBrjVcK8HyXzc117t7/BEVKFEesr2/QGG/geT5RGON5AcNhjMoNtu3SbLYwulhjDYcRIAmCgDiKSNKEJI1JkgTX9ahUq5TLZawRonSWZaRpRhTFhGFcGF4ISVAuF9h6rkeW5aRZXrw0IShQM+xiRYlAiAI/L0tzlNaF9WSmUQp63ZDAryClU+wbhRlhmKKNKfbBXHcEbCALv7K8iKKcZZo4TjDGkOU5aZZiDOSZwfc87t+7z+/9tz/ge9//Putbm1iuxbvvv8dWu02mFMKyyHODbdv4QRHwst3uoBQEQYUrV68zt3Caaq3O2TNzGKPxPI/pmVmSNOXu/Xssr64wDIcoownjCMtxyJQiThI8V3D+3Bm+8NILnD41z6UL5zl39hzXrl3nzp17tNtd6rUaKs+olANmpxs8Xlmk294iS2Mq5QApNOWSzelTp7h67QozM7OUymWmZqdpdToM+n2mx8eZGa9RcTWOTpFKYTBorBHh2V7tP7GEO8yw4Khj//3j8j9L3mfOz3aeg3mflk7Sl6PG5mn17u3bycfzqLpOWseukjvtfxbPtPe5jrm3XecR7+9pz3Bc/46+v1vy/TRt7Fr4iIPvT2A90zgdlT5TxrW2tgbAzMzMnuszMzM799bW1pient5z37ZtxsfHd/LsT//4H/9j6vX6znH69GkAhoMUpQTDYcybb77F2bPn+f/9zn9iq9kkS2KEgDde/xKeW6Lb6dEb9BGygO0xBjzP49pLL3L12jUGwwFCCNI0xRhNmiUYIYiThFQrpC0ZDAfMzExTrzeYmpylVh2nVmtQrdZI4hylDNoIJqdmkFLS7fQKop+mSCnRWo3w9ShUkarAFKxWAxqNCqVyiTTN6XS7NFutQlrs9dHa4LoeShnSJCusHZVGq2KPpQj8rLGtIjiCa7tgBEpJtLbIcmg1+wzDZBRl2UIgieKcza0+cZSNDA0KgF8pLSxpY7QhiXPCMNlZ0UoJriNJ4phyqcxbX/0y2mhq9RrCkiytrtPsxDxe2yhUcmUPKWFqYozA9xgOhnhewNrGFv/Hv/9thHQQlo3july+fIUsy/nkk7t85StfxfMDNrdaxGlOtz8kz3OyLMX1HGq1CmPjNSYm6ly5coHXX/sC09PTPHz4kAcPHvLJJ3e4c+8+t25+TDwcMDs9yWuvvMTM5ATddpPAs5mfn+GN17/A5UunOXvmNFLYhGHET2+8R7O9hWVbSCSOEExUXcpWgk+EozOE3id9PMe3eBhRGYkzh+Y97vxEdR+Z98lfwf7nO5owPw/xPnnewxnwTvsc/Yz7zdJPwugOMofnf6b9wSx3HuypdR5e/0nG+yjmc7K2Ps283j2e+yr7DNnN58Kq8O///b/P3/27f3fnvNfrcfr0aZI0x3ddwCLLMy5evsLNT27z3ns3kJbD+QsXee31N7AsgWd79Pp9StUxbM/H9XziOMZ2XXqdLkoVFnRCFebx7W6bcqWM43vMnZqhErigNLV6A9f1KQV16vUpfL9EmikqlRpxFCNVIfW4jsephVO0ux2iJCNOU2xHkOeFEYW0NcY4GGPQ2hCnOeWyT55DqeRgOwLbdhn0h8RJwrjjYlkSy7YwCLJMo7IMo8FyQSJQSmBLG8e2iaIQS1hY0kUK6A9DXNcHIXAQlMsWYVwgiQwGEVKCHxQoCpZlEUUFA1cKTK6RspAmKmUfW0pcxyZNE5I4ZrzRoNVt0+51mJ2fphtl+OUq6xsDwjTGjNwMIp1zv9lExSmXLpyi1e6xttkkSSOSJOXa9bM8ePCIPMu5e/8+QamE75Y5c2aex5tttOUQpwlCWFi2xHUkG2vLLD68SxoPsASsr6/z8cefMDU7w+zUDB999AFXL5/nCy+9wLDXpuTa3Pz4Y1rNDeKoT6Uc0Ot1uXfvHo16nVKpwt0796jWXKSUBEEJo3ICXxBmIa4Y4okaSmgy8WRPCPYSlU9jNbj3/tPNhj9zJjGyBiwKnEzld1gbn8WKeruenbpM8d/TGPf+d3CS93BYv/cymGJgDnuso6wWT27B95T+PX0aPJVZnnTh8rSyJ0/bZvLF7+1r23+eJ4DkdvpMGdfs7CxQEI+5ubmd6+vr67z66qs7eTY2NvaUy/OcVqu1U35/8jwPz/MOXBfSxrI9qtUSSg3xApv/7Zf/CpvrmwwHfdA5fhBw/fqLZFnOvftF/CWlFNJyyJUGDWE8LHyBjAYE/X6fb//Btzl1ZgEjJJ3Rav+VF68zv3CKscY4vlfBdctIyyHJMsJhRK/Xo1yu4AQO5XKVixcvsby6SqY09PsMoxjbtUmSBNvYOI6LUjnVagOMIs9SSiUX23HIshyMxLIF9gihHgHlUpkoyrAst9gbyzXKFM7HRYDHAGlAK0OWKRSCTGmyXFAq+2R5BgIsx8bKM4QspC+tMoaDhMZYGaVytKZgENbI+ksWH4/vB6By+v0B9wddOptrnDu7QHswoB+l+KWAick6gT9Gr50iSgIpNLWKh20EZy6cQuiMQT/Ekhbf//7bXL52gZXlLcL4RxitmZufpbm5wdTEBHNzp5mcXOAHP77BykYTTI5SGY7lEg0Slh71+LEneevLr3Hu3Hm6/QFJltPp9tjYbNNu97l16xOmxmpcvXweRxgw1xj0e9y9c5thnDE3O8OZs2dxbBvHDsjzlNffeJ1Oa5OxagPXdul0NpmaPs/m0hrB2BjDzEI4VcDs+HLtJbL7P/hDQyKeOG3XvR+cd//9o9KfJXbeboaxG87q6QTrcEJ+0nTYM302zHQb2OtkdTwNW3I3Qzbb9T8HgsVxjsufTTrqneyei8flO5ieVTrfnz5TVeH58+eZnZ3l29/+9s61Xq/HO++8w1tvvQXAW2+9RafT4Sc/+clOnj/4gz9Aa82bb775TO0F1QqO62HZDn5QwfPLOK7Py6+8Qq1aI00z0lRhOz5CWLQ7XaI4RMhCqsizHKUVU1NTlMplhGVRqdUISgFT09N8dPMW/Sih2R6wvLrF4tIqQhRo7ACDfp8wDLEdh83NTbrdLlEUIS2LWr1BtVrl4sUL1KpVqtUqvl8gtpdKJaQUxZ6RNqg8L0LcOw6O65DnOXEck2YZru9hOzZCFJPbsgSlkk/gO7i2QOsUgWJivMrEeBnXkRijRtFhJeEwodeL6fZSev0QIyTSsmm22kU7SYLShjzfttQSGA15XgSxtKSD53kEQcD42HgRvLFcwXM9fM8H6eIFJVqtNufOnaNarjLoD4ognI0SU40K4/UqFgphMs4szPFzP/M1tDIMoxQhBb3ugEqlxKOHK2xuNrl18xPOnjnNtWtX6Xc7zM9O8bW3vozvCsqBTaNWwrMlnmOolB3OnJrBsS1u3/6EBw9XyA0Mo+K5SuUSX/zSF2m3u4TDmPWNDcqVEpOT41y5cpEoCvnkk7usPV7DcVzu3btPkqQkScLU1GQBXJzEBK7EFim+jDBxk4qTI3UMRiPlNubfk7m5rWbZrft/nnQSFIY/q/RpVYNPr++gOvCz6uenLbtzfsJ8R7V/kj6ctJ9/VnNg957VYcfevM9a758x4xoMBty4cYMbN24AhUHGjRs3WFxcRAjB3/k7f4d/9I/+Eb/zO7/DBx98wN/4G3+D+fl5/upf/asAXL9+nb/4F/8if/tv/21++MMf8v3vf5/f+I3f4Fd/9VefyaIQwLEcAPJMkaY5UZwhLQ/LcpgYnyCOIixhjxAiFFEc0e8PkJaFUoXZexRGBcjtCKTT9Qp/qnNnz9HtDQijjHYvxAjB+kaTMIzQSpOnCcPhANe1SZOQer1GUCrRbrdJk4TAD5ienmV6eoZSqYRl2TQaDYSUo72aHKUKZ+M0TVFKFfiBlo20LBzPw/U9hJRFWHBRIMuDpjDEMLiehedZTEzUqFUDSoEzskws1ohS2hgElm1TrgRkI0Bey7LwAx/Hs3dUlUYU+aIoIY4zkrhA9dgGk82znCxNCyvILMVxHISQuJ7HtWvXOXPmLBvrm6RRgsk0p2bnOLuwgDA5lcBBmgzXEiw/fMDtm7eYGp+kEvj0ez3a7Ta27eD7BSrF2uqAwPMRWrP2eJl2c4OL588wO9nAEQpXaman6pxemGJuegIpDGEc8Qd/9MfcffCQTj8lKFeYmJpk/tQCjbEJ5k+dpt5oUKs3WFg4xdhYnddeexXPtUmSlNu3b9Npd+l1+2yst9jYbFKrFoYdtmMjJFTKLp6dYpImgRXjWQX81l6mtW16vlvvxuj3s6j9jtfVPc9Hf2TZnb2tZ1cTHtbGsxPr52j1T5WOH//uTlzLMQT7SMnwGd/Fs+xpPm/6H7mAemZV4Y9//GN+4Rd+Yed8e+/pb/7Nv8m/+lf/ir/39/4ew+GQX//1X6fT6fC1r32Nb33rW/i+v1Pm3/ybf8Nv/MZv8I1vfAMpJX/9r/91fuu3fuuZO58bhUGOHEJNoZJDkiU5tu2wurTK+OQclu0wDIfU6nW01kXYjihDSgshBbnK8e0AR0iEkGxsrNPqdInijCQz+L5LrgV5brh37wFTY5M4jkOrtcIgHFKr1yhXqpTL83zyyR0mkyksu7AqnJ6ewbJsqtUqSZZj2Q7tXh9yUMoizwu1HIDWCtu2dvyOkjQlyxXSKmav7Qi0ySkFfsFc0hStc3zXQpsEbVKkZSMtCmZkDNVqA9eFbq9Ff5ASJTmVio0feERxQpYXyBqVciGtDfp9VK5QmcF1bLTWaJ0X3hfCEMcZriXx61UGwz5nTs3juD7LS23uPbxHriWucFFJShQWRhGONFx69SrRoIPUhk6rhTM1w4svvkg/HOC6Ll/+0pv8h//wX3AcxcJ8jV63CyrFqIxue4tocpIr58/Qbm2wcGoWtEbnhrFGhXqjwurjx5RrdSIlGaYdjJC4vocUBsvxuHT2Eo2Kz/s3brC8vMjCqQUq9QYXzp9F2g627bO5sclHHy1SH7OoVmqoXLG+scbMlEUvjKiOj2PUkJJbZqu5iKxfwHICFAadF5aGQuwEpWcvyTG7rh9MhxKBZ9gT+6z2u3YzrsNyfdYM8+C+3smZ+57zEzDKZ+37k/zmgBbss2qr2AZ6yr7dMW18VpECnqR9Tsg7lR9yzWxfH6l4d6tGTxBg9Xn6+8yM6+d//ueP1VULIfjN3/xNfvM3f/PIPOPj4/zbf/tvn7Xpg21JkJYs9mSMRhuJFALHcen0Onz4/gecu3gd3w8IwwH1ep1KtYK0CilGG02r1aFSLaEx5HleqMkyzXAYEsUpeW5w3QJfsN3u8u6779GoVvnqm1+lXq8RZynSEjx+vEq9Ps7MzDRhGBKUPNK0sADsdHpstZt4pQq2Y1Ov1+n3Y4ZRYd6e5zmu6xbBJo1Ea0OWZ6RRjMkFCL0TtsEYjes5RFGClIZa1UdamjTPyPMEo3JsWyAtiOMMjCEoVWi2trCsQmpzXRfQuF7BmLJEAQLXdfE8h1gV5/bId8yMNlvjOMV3PSSGfr+Ha9t0el26vR7jYwGPH/s02wPCMKUU+IRDh8Ggx1d+9i1OzU1R8R02Hq/xrW/9IZVKxOz8LD/z1bfoDwe88cYbbGw0WV5eploNuHvnE770+qu88dprvP0nP+TVV17l/NlTfHzzQ8JehyxN0CrnlZcuUymXeby+xUazSZyB7TqEUYTTs2i1WiRhTv7mF/niay+yvr7BxsYKzVYTtxRw9txFTp+9wL17j0jiHMe1SNMMlWsePryPFOC4NiaEdreF6xqWV++zlVSZLM1grBpIZ7QyHpF7M7Jy2/moT7b/dCgRP2Yz+3lW1ofm3401d8xK/7NgXichuM9iWAHPx7h2B+6E/Xtze/feTrJv9jzv44Bxxq53cRIE9t3p+XEyj7YOKaKAPxn/PUWeOvefzwH5cx2PC1OovaSUZGlGmqXU6nWiJGNsfIILFy+wsvgAyLEsQ65yXM8jGTEU1wtI0wL1Ik2zAuDWgiSJkUJiWTau59PphSglSHNNnKbcvHWL23fu0Ot3kKLI77ouSRzjez6OZZEmKSrP8X0P2y5wCNfX19hqblEql3A8F8dxqNcbeJ6HlALHsYv4TAKElGgFjmthSUm55BMEhdQ6HBTGIo5j43oupVKJIPAxRpNlGQKD79vYNrQ7HbrdzmgfBmwbfM8Z4TOCJSRhqImibSZdGMHYdtG2Y9sIYWF0MQGV0ViOA5YFsgAXevx4nXZ3wBtfepOFhdNMTk7Q7XZY31gnjmPu37vPhx9+yOLiIu+++1NQCb5n02o2CQKf4WDIf/7P30IKi8uXLjM5MUG1UiHPcgb9PlplDHpdAs9hsl6lVvbReUaextTrdTrdHvMLZ+h0CkT+MMpx/TKtbg9tBLV6A8t2mZqewwvKTE7NMDY+wcryKp/cvo1rW1y9dJHxRoNyYJianMD3fTY3m/hBQLvdpt1qsbK0SBL12Xz8ENIeJulBHiMo3CWQ2/4q7HyzZvRvNGH3HYWmoPi2i/ODeZ4Q1L0I8PurNMceO9rLneaOyCM4og+7VuJPgwLahqvagWN6Ajl06LEHRmhfWwfODxCBXQ/1hC4cCk/0VPiiw9owh5LeJxaBR4zRgb4flWdf1v39HI3P3vd/dD1mV15z4LmO689TjuPG9Enjh7xDve/3/nnw6dLnwhz+qGSUQuU5ruuQ5YI0LVDey0EZ6UpeeOUV/tPv/HvGJwM81+L+3TuMT87g+WWyYQxSEJRrDMMEy7Gp1CokWUR/0Mf1C6OPTi8mTjSYAVVf4dhQrlXp9nvE0YBGY5zxiSmMtmiMj5MkGbZtYwmBMposzZicmGRlbY2432fQH7C1tYURLqk2pCov9rLQ2FYhUUnpICyHNNZUSgFqtCcWJynCcmi1BsV+mG1jTGFIgAQpLVxfojJwHIHjWiiTECXgBw5CajCKPB3iOBaWsDCOC2TEiSCMNb4rkVJQrVhImSMsjyQCgaRctukOQlIvx/cltjCsbawVTsZWFen1mZiZwdjQ6XeIsoT1tSZxGvH6qy8xDGOuXbvGl15/lSjN+D/+v/+Rr//iN7n/YJVh/w5f+tIbSCHJ0xQbQTQcMNao88qrr2BMzu2PbjHZqLKytobrgBAOS0uP2Wx1qDSmyFQR2UzaDncfrFCu+Ay7Qxq1Da5fuUJQqfHlr36d2elJ7t+7Q318irXHq5w5vcDtW58QDjoIk/NzP/tlLl48jyVzep0Or7/yBf74D/4II6A8VufyuTlaIXSXP2H6+gypFZBKizTJcYRAaAFCjhiWGuHRWSNGtjN72SEIsK0zYs/HPKKY20YLO5f2FTl24Vp4lu9iStvFnxCOHfXmScyUD8tzYDV+OFES26DExhS8RopD8+2u9omyzuyMw85zjOrZyaH1gV3F7Wd/WnqSp6hQ7mJYZmfw9jOlo5LZJ40cbEtsz4X91Ryo9uBYPpEEdw/90xjB9r3D1NfH5d+ep8fk37Xw2ZvjmPq3FzSfMn2uGRemMECwLIskTYiSmMmpWRwvIElCbMfFdlwWFx9x/tx5EGBJiWVJHMdGkeP7PlGkEEIW+zlKk2ZpgXiRpGSJBmORK4XrOiRpTK41V65eobm5gTGGlZUV5mdOEw6HBEEZP/CxLAvXdjC1OtVKlVqlhrQcNlst+r0hcdpHGQdtCmMLe0Q7LCkR0iZO4gKf0BgqlQJlo98fkGQay5IjVAxNmimMKFSAfuCRJYY8LVSQrusSJRFJkuF5Ln7gI02GyjPKJQ8tLLJcUS47DIYRgW8TuDaViocwKVIItFJ4rkOeJSRRPBqfHIPBCSS2EBgsVh9vcOuTh9QbVRpjVQoSIvF8G4QgHIZ0XYv5yxcYH6tz9/5DlDHcu/eQICgxMTbB3bv3efH6VdCCL7z8StFHo3n99S/S7nRReUZrc5PeoD8CFLZ5tLTM2maLcm2IkRZaS1zbpd8P0b0h9XKAyjMePnwIxnDxwgXQmjxTXLpwiUa9xuLSEmNjYwwGEZevXCYK+3iey9Wr17h982MqlQrlUomt1gbXX75GZ5jiCE0e9TFZCo7GiGJ/6wCx2kfwnhDdvefFyfHTXYyo3e4y8mnldjE8safx3StlXdz7tBqlA+ooc0RduznuNtM8eaOHWmfuIdyHNLuLcZ8kHUZqxd7/Tp6ecN3DpTY4VAV34uo/VVGzh/E9tY2dUocsRPbUevDa8b14vvS5VhUKIbBsC8uyEcJGSotqtY4xBTEFh1defYPNrTZ/8vYPWV9fZ2VlGWGBJQ2VSoBlwXijXkQCVgZpJIHvk6UJRmeAxrZzyr6N5zqUy2VOnzoDRcQrHj1aJklScpXRbjfZ2lqn3+8RRyH9Xo9GY4yZqRka1Qazk7PMTM7Q7w7BwMZ6iyQOEShsR2J0Rp6naJWRJBGe56GUIstytDaUSmXKpRK2XTjgAti2wPNcbNtBa4jTlDhJi6jIuS7Q2nNDrzdkOEwQwsZ2PYKgDLpYpXpegYvY6fRJk4RKpUKlUsG2baJhjMkySp6DUgrbslEKbMsjijVpApubbYyQWI6LG5QIkwxGDuBjjTFc22bY79Ha2iKOQrrdLuVKDdsJ2Gi2yZWmUq1y9+5jmq0Ws3Nz2LZDnis2N7d4/8OPaLZaKA3VapVf+Lmf59VXvsDFS5d5tLROpx/zeKOF7QZoBEJKzp45xdUrF6jXSly+eJ6f/7mvsbn2mH63SxJHTE1NgZGcOXuO02fOgBA0xsY5d/4Ur7zyGmma4zoOSuU0m5tIC8bG61iWYDDo49kOvutiCwFKoTJdMK5dJsTs+ntw7h6cy0/bMzmpifZhZQ+5esLS++s6Qf1HPMfu/j/NjHx/maczuMNdDg6zsjvJOD9P+rTv6Yjajq3hWft7srziydxl7/t6mlXkSdr9LMb4cy1xpXmG1hppWXi+T5wlhEmKMA6OV0aSsnDqPCvLK2RJF4Hg3p1PuH79RRZOnSGJE2oVH610gVIxGIJRNOoNpqan8D2XqsnJlcLzJVkWUfMrVKtVgqDE1PQs3d6Ajz/8kNnpOZIkZWpqknZri0xlzM3Ps7W+yaXzl1ld3mR17TEzEzP0BiHd3hDfNeTGUPJdKmWPODLESYoxCte1KJcCsiTD932MKTD/0qxgZMaI0TUHy7KJwgikheN4xAayXEGSAwaFxlYSQQZaMzHmE8cJSuWAHqkGHXrdlDCMqJQkvidGK3FDOIyxrWJPTiAwCrJUYSHILej3BiTZgHK1SpIpPN9haWmN5cV1PMfwwqWreFLjSsPE+AR+qcRwvYlG4nslxsfHC2afZCwtrSBNzpWLp5maHGPh9Gnee/8j5mbneHD/Ib/8v/15wijkwsWL3H2wSGN8AhnFbLQGGGEwRhCGMdIYXrh6geql8/zKX/7LnDt3iuX7d0njiLJXZ2pyEqUV3X4bN/D4+PZt7t9bZKvZ4vzFi3iBg2sbpqcnefDgLg8e3mV+YZY8yyh5PmkuGKtWIc/B0khbIApzTrY3lARmtODfJj6Hq3x2/36aT1BRxy4p6oTfyt62dn49c9nDSh1mwv0s9R127ySGJ/ulvL3AT0/yfBpC+7T0TOUFR6oNT1b3k3e+//62ZeGneZ5jywixy6NjW0LbrTl4vvael3l9rhmXbVnkuSIMh/hBgMbQbHXw3Rpj9RqWlNgm58LFqwSuzdypBRaXlviv//l3+MY3/xzzC/PE0QClFNVqjfXHy/h+wKA/wLZtgpKHX/aJogjfAakLPfvm5hbp+QzPDTh/7iIlPyBNUzY21pmYmEDpjM3NDer1MTQx1doE3/j5b7C08picnEEYEUeLtHsRpYpT7NeYHMcWZJkhjhNsy0LrQiWntSaOY4RlkeUa13XASJSBPFdoRWH5pAXSstGk5EqP/LMAYfA9ZwS9pElShcpTpAUqN2gtCQIXTGGOH8UJaZIjhaDk27hWgZxh2TZxmKE0SCGRgBoxUNdzaXZCMqO5fOUSZrNDmiboNKNaLvHy9Uskgy6e59EYm+C773zAg8UOlhdy5lTOdMPnpZcvUK8EbG42mRqvcvHCOe4/fEin2+OFF19iYnwcv1plcWWZQRgy6A/42td/hu/84CdstGO0KSCatMopVwIq5RJnT80yNdlg0G2xsf6Y9dUVzp89z4VLF7Eci83WBu1eIQFubDVxHZcPPviQNBly7ep5Ll48S8uRjE80aLaajI2NcfaMRbujaccOg3iIE0wSG0OeKxwpsaRA76iuCgJwlGpkt0nzSVfDu7N9Srlp1N4TYnQY8TvU6XmXqvLoyML79Jm7W951fb8l30mlsMPzH1SjHlX+edPTFhkHEDP2WTweill4ZN17mdZxZZ6WTg5DNmpTgBj9fhpzfFam9rywT59rxmUJAIUxEinkKLyHjet5REmKVgnVSoDnlnBsweVLV7n2wgtsbq7z43f+hCtXLlOrV5iZnUJYOb4nsKWhVArAQDXwiLMYZYMwKYFno/IcYyBXCikN5VKVS5eusrW1we3bt/n44484dfo0ly5dLvbPYkWv02NiYoYvvvYGxobl1WXW1tYpeQKhclSaEGYK13FAKxihu6dZilLQHwwYDkMcz0UrUZi7SxtpOXS6fYyBSqXwE0uSHCENlpRFaBIbEAW2IQZ8z8YYidKKXOUYithjlm1RrZZwHEAqtFGUgwCMQTsjdPhckStFkmry1CC0YqJeRVoJSZ5TqXgEpTKdTg/LtvEcm8BSdJpb3L+jsIRhYnKCx5stojjEcQRGKLROqNameeurL6PynI/e+yl+UObhoyVc16dcqdLudJmZGsdGMDs7y9LKY3r9Pu/9wR/RHsRIyyJOcnQYEg9zzi5Msby0SHNtGVdozp2aYzDoobWiPxzwg3d+yNUXrjF76jTLS4vEccLk1CRZkjMzM8tw0OYH7/yIl1+6zvkLF7h44Ty3bt8GbSj5AUM7ZNDZoms5jNVn8dwKxhSOyAWyymFa/4NSFzz50J8Gy7Rz3xx+/1nSSYue1OR7L+H61N36U0v7CeszSSlHZHteYn0ySfLzkz4Tl4wTps8149IqI4sTnLKH0ZrBoM/09Blcr4rKcnIFShuk7ZLpFA8oeR62EHztZ95ibW2Vn/zobaZnJlmYP0XJrzIcDtFaU6lU8X2PMO5Tr7oM+iHlRpXT82eYnZ0lzxWeU4TRi5OYxtgEX3jlVbZaWyilkZaD65WwLEMUpWRJSr/Xxy25jNUbTI2PESYhSEUpcLHswhAi1ArPc/ECn/6gh7Rc0lyR5hplUrLMUKn4aAoVoxPaRFGEkBbGiFG0Z4Pl2pArwICEJMtQmcGxnQJRY+Qa4HgBnc5gFFolxdM2nichM6SOGkV5NWhjUMpg2xZppslyRWALsqwIba9FXpjHa11IwcOQiUaFq5fO45JgS4ElJb//37+NW6oxOXuan/nam9y6dZeJsXHGx8Z4+OgRZ8+c5pVXXwOdsLqyhF8K8IMiEGYUJ7Rabe4+KGCZCt+yhOEgpj4xxWDYwnEFtqV49PARJU9SDWwGnS2+9taXuXzxPGmSsLnV5PYnd2i2W8yemiGOYxYXH9FqthgOIpaXlwjDLirXPHiwSKe1xZlT85w/f57hcMj9eyuU/AbTExUmalMMLUWCwpIORusdg5vdW8hPBIPnJEoHjQ5H1R7ORJ6WjpMe/rQJ6En8oY4r92nznnR89pQVhy8wdvt9HZUKW5i9bW7n/9PBFjw8Pd9C5/hxPHKR9aeUPteMS2iNJYqw2DrP0XmObVkMBn3K5QoWNnmekKQZOkvwXJ84CmlubfHi9RcJAp9OZ4vl5UUeP17llZffYGpqHt2VvPjCS7RaG3zv+3+IZ0uUK3bieE2Mj+M4hQOztByi/gAhUiamppk7dZqNzU0eb2xyuTbBxPQEDx8s0uq0qStFmlmcWZjnq299mdnFB2QqYWVlESGgVmtQLvXpDiKyXGNZoI0hzzN8v3hVriup1avEcYHeXq/V2Nhs0e2GeL6LyjXSsrGlhdYK13d3pIBM5Lieg+f59PsRJJpB2COKFEqPTJ+EQGmFzjWlksSWAtexSIdRof4y4Hku0hM4gsKk2Si0zimsqnWxF5ckhH1D2XdYmJrg/OkF6mMN3r/5b+muNtF2wDe/8YsMel3GxxusPF7lnXduc/nSDC+/eJVzp+apN8YIygEfv/MOZ86cYW5mhvXNTWq1Gv3+gEqpTCVwiBNNGoX4tgAUQWCT5ymRlpyZn2ZqosHc/ALzp07TGJtga6PJj2+8x+ONdXphj5nZab75jW9w/94jvvvd77H46CGvvf4FKqWAc+cushGUWFx6xMzMNEFQZbxex/VKmMgwdXqSe21DP8+wbJ+cUbw0Uey6FJqWwyWtY+f2kTovRiqx5yVCz87cTl7g2bL/aaU/K8nled/FUaC8oxw8vw3eM/eKY/Xb/xOkzzXjSoZ9Kp5PnkbEWUSl7ON5DlkOaZJQr1eIIoXjeaR5QhhGZGlEtVwniRS5Fly58iIvvHSdGzdu0O8POHUqYGrKZ2xyjLfyn+HGuz9Ayhzj2cRhQnOrxcrqY65eqRdOwtoQhgn1RrUwDhAWV196hbu3bnP33gNeuF5mfGKC5aVlHM+h09tCoLAkWEKz1WnhuS6DQZ9apUKlUiN9uMxg2CEIXMJIjcz3C7DbcrlMmmUjK0RNuVzFbvfpdiO00NiexBI2lrRJsgJdw3ELSWA7BpiQklKpTJokIzWhLPa6DMS5wdIaRwrCNKde8rFtG9fVRGGENkV90khsbQpJyhaILMWYHJUldNtNpLGoVzyyOOTihVd49OAeSsCVa9f53ts/5YP33ydPM8q+jckT1tc3sKyMR4+WiIZ9Xn3pb7K09IjV9TWEsLl9+w6XL10iGg4plUtUKhXOnjmNEYLrdsBGu8/d+0ukucaxHcJwwHijwvj4JK+99gpeEPD2Oz8kTVN63T6f3L3H8uoy9XqZSvVNxutjXLpwHksI/uQH3yOJY6bGxqlW6jQ3m5TKNWbnTrGxscXm5gYgwAnIVz6hEzWwG1UylSMQI1QWxXak1927FU/SQYJ0mEHCwf2S598Y3z5/GgLOYXkP43mHGW8cZj69v779z7hfAjsJSsSTvEXfDovLdRzyyGH92F83xzzP7rJHq/7YKyk/s8HI0czrpGP1TGlkkCGEGc3hk+2NPU16/Cyly8+1ObyFplry8V2HbqfJ+vpj0iRCK0WWJuR5iu04VKpV0jyj2WqOLAkbuG6FPBXEsSZJ4frVl5ifPwPGJs803U4Pz/XI0wyjciRQr9VYmF9ga6tJrnKUKoI++qUypUoNKW16/SG9TpfJ6Tlm5ubZarawXZfZ+VnK1RLTk+OkyZBGrcTszBSd1haNWpWJsXFOLyzQ3GoSRSGB7wMGpXOMUWRZIWHVatXCHN6CKBqS5SlCgONIslRjO07xoQiDEZpcpRipkU7xqrMsZxhGDMOINFMUrpYWSkOmDXGqyLRE2A5hlJJmOVGcYChQ45UuJp/WCmMKh2ZLQimwqZR9SqUAS8DVi6d46fpVxho1apUKvV6Xza0mtuPilwLGxhqsrixyZmEW15IMBn0aY2W0gXAY7aBudDtdvvCFV0mznA8//JDvfu/7KKUJSmVeeulFXnvlFb78xmucnZ9FJSH9Vh+jFaXAo1SuEJTLvPve+/zWP//X/MEffYfNZgu/XKHaqKNF4T4ggCSKIM9ZmJ+lVqvSabWYmpxCYFEu17Fsj053wIMHiywvr/DBBzeIwi7373xEr7OObRWBPC1ZoPOP4lIjxTb80/4Ahuw7P3q/Y0+ePcT06A334+rezSCOOk5S5+68e/4ek3d/28f197g6DuZ7AtF0kr5vq+pO0gd2nZ90fPccHD9mh/1+2lz5NGN14oOTt3nYGO5/nv3Ptf/3p0mfb4krihj2ewTVANe2RmstTZpmOK5HkkS4roVlWTiOw0qzxczkFEFQIYkVrlfFq5SJ0y6WJ8gzTZpparUGDx7d4cP3f0qeFUCv1WoFx6nQHwyYmppBqRyv7BJHEaVSBa3BcT3C5haVNEdYNo3xCQK/RLfbJVeKOInwbIssTSlXytTiKhLB1SuXWV19zObmJmE4JE1TpO2hRqpPjCRJM8DguFbxTHaJOMpQukCZ12iMETiOgzI5SqVYFoAhTRNKfkC54mGynMFggCWhWq2jlKY/LFST20C6JlN4jo3tOmTaYNKcNM9RprD2VrkaaRKKmF/apNi+DWh0nmIJweREjUrgEXgOjbEa11+4zif3H/KjGx8xNTvHWL3B6qNH2BKGgy4Xzp/jzPlL3Ll9h9nJcer1BrNzcxjL4sq1K9y8/TEPHj6k3+kyGEZMTk7j2g46S7nzaJFGtYrvWMzPlnH8ElGSMDU9Q6YNtu1iREKUWLzy2usMhyGDOEKguHb+EvNzs2RRQr1a4fL1a1x78Rq3Pv4IaTmUqw3mbZ9SuUSrtUmuFKVyiVde+VmiLKW1MuD0/BSR0MgRXoJEFlae2wbrgpF1VvE+inTIR7t/ZX6kzu3w1fVea7vDKn9S9lmJxk7+E1juFQv2o5nISc5P2r8i3yhooTn43MfVc7K+HC/pnLjuY+5v/9z/d2/pJ/Nmb7/Mke/j+dL2ezho1bidjrYqPV4C3b7/POlzLXG125ssLd4v9rZsj/GxadCGJBoQ9ruYPEPoHKEzfK+w2PP9ANctoU3hMOsHJYyxKJVqOHbheIxR9HsdfvjO21i2xC8FICWO5xBGw1E8LxvHdfA8h0GvgyU1tkWB9qBS8iQhT1OkKGSaaNinubVJc2sTASilqFSrVBoN7j9cYnF5hc2tLSYnxqhXy5g8oxaUqPgeJU8SuBazUzWkUAzDAVobypUSQhoQqojP5QqkUYAm1wppSTQClYM2xapUaUgShW0HtNs92p0hSZpj2zblcoDrOkhT9M9xPIx0SJSgP1SAg84NKlNIDK7nIGw5Qu6wsS1rpJJMuXv3Dq12E9d3+eCD97n1yW0q1Qrz87NUy2VA0O4NCOOcNNdsNVuMjU1w9dqLlCt1XMdneWmFRw8fMIyGRVTqXh/p2DxaWsJybIQlmJmb4vHaEpqM6ZlJ0iwlimOarQ7tTh8DjE2O4boO9XqZ4TDk4cNF+v0Ey3Zotts8Xn+M6zpUa3VsywcNk5NTXLx0GccvY9k+4+OTNFstlpYWUVpx/aUvcObMeaqVEoFtcIghjylYlEQisIQp4qKNYHN2/xUj3Dax+zBP7gnMyDBmbz6JRortfNtEa1TvjkBmOBwjrqhP7D4/9Bj1ddS+GDHeoj1zaP6ddoRmBxTxMOxFoxFm17MaMzrX+34ffrCrrGRXvxg9+57DYNAYswsTcs+9J/cPYuxtP/+uscYcOBf7xqoY30Pub/djH2ajGPVl93ga1J7jwHgbxW78x8Pae9Lu7kMfcW/vexej0Enb/UaYIw+z/Y7FvroOzJNd5Ua/xXNwn8+1xFUpF1Z7pVIJN4zxvTJZUoT9iKKQQbdFYI0TOBapJ0nTAjzXdj2iboeq74IQ1MfGUVmGUhqdZwz6XcqBT71eod0ZYBAoIM5ihLCJkphhGOF7IcZotI6Jox5SQhL26HXbjDWmkEKisgqlIMBzJum0Nhn02ty7d5eL16+gUo20HRaXV5FCkKU9Tp9e4NT8LINBzOZmh3jYZ2q8RrVewQsCmp0+/V6PesPFL/mk3QFCGMplByEDwijEUFgtpZka4QhKssQQRzESg21ZhFE6YmQay3ZQRmEJiY0Au0CFtyynoAaWQZOTK4ltuaRxBo6hUSthu4I0TVBKUCqVMaREWY7jONiuR64M7U4Px3HpdjpMT0zQDWOyLCVONR/fvsfU1DiVzPBf/8u3aNTHeen6NR4+eMjDh0tce+EijmPjeD6W5+F6LksrqyyvrHD+a1/h45sfYID333+ParXKl85cANvnD//oOwVivirUq1evXsaSkvfffx8hJBcvXaDXa7G8+hjPFqgrKSaXBEGdWx9/wmZrDdcpMwgzyqUKWRLR6XTY2tri5ZdfZnFpmSTNmRibYOneLeavz5A6EAqBUWJHhapHcEpSb+PX7dpHOTCjd61Ct6Wn0WWxve+wXfaAZLG/nu3jkLo5Gkdvb97tPuzbBzpQdP/qeV9bu8uaJ/0tWPqz9IuCcYjtkdjOv0sCEXuyjmrdZmxi370Ttm12R7g+6OhszD4g3n3Shtk3nk/q4smcMKZg+oem3e3t3/Msnv9I4eZQVfJR9/ZJSeLgmO6tepsJcTDfgXnyRNJ/8j6O6PMJ0ueacTmeS6NaJ8u2w3J4GCwQOdVqhV67SZxElEr2KD6WW6xgTI4feGiTMRgm2K7ExgJThDYJhMuphXl+5Vf+Kv+Pf/lbWLZHv9cnSTsIHLSy2FhvMTU5w5VLl1mYmyXPU9rtJp/cuUNvEPKFL3yRiQmXKAppbm3iew7lcglJsTe2vLzEex9/RK/XI05yhFHUqmU2NjbwvBJBEOB5ETMzJSq1Eo2JBo/XN+j3h6SpIkkShGURxxGeb+G5HuVKlXQtJVcFYkYRxbhwG7CkRZ7rAhPRtsmVplqpILMcA6RJThynSFl8DGlSIHSkSY4zUrUOhzHjjSquLTEmB+HgWC79fkq3G9JQLmmaojXYbplOL8K32yzMTuC6JQwpP7nxPufOX8SSgj/3i1/nh++8g21ZnDtzmmbzAz784CY6U7z1xevMzozR73d5eP8+w0ERwFMKm26vzyd37jI7M8nc/DyDYcidew94tLzBRquP7ZWJ45SVlRVam2vkYYcXrl1laWmJMAxp9/pYtovSktm5eRCCZrPJZH2KPIuZnZmhN+iwsbGB0oY0GnLv/m3iKMa2bR4+XEQpw8VLl7GsHMfW5OkAY9dAemBstomA0U90a8+j0XkqQT95Rc+ohnvG6p+mXvuUKA8n6tOnrfboLh9o9yR9P26v7eD945nDydLR6rznznvccP/p6ChPlD7XjCvPNXGaEacplrRJ0wzbtQq0+CzBD3w6nRbGlAh8F9sSVKsBbmDh5qrABdQ5SWLQwiYIAsqlgGHYwUVQqVTI8wIlYnpqhlanR6cz5OGjJe7fX8ZxPLa2mvz813+Ge3dvI0cGE7Ozs1QrZcrlMmE4JMtSHEdQKtXI04gvfvGLdIc9Prl/H8d2uPzyVfrdLutrqwX8lOWSppqJ8Um6gwiDpN8f0usNClQNx9oBCo7jhLGxcYy2UFoXyBEmRkcpvueQoNCaIqqya5OnKXmucF2bMEpIs6yQCCwL27ZwXbswBNGQpboA2hUU4UeGMWFY7BtqA0mcY1kWcWzo9w153tshjItLmzQ3u9Rev0Z/GDPod/BcD5UZkjhkYnKayxfPsrm+QhxHRCG8/OJ1Ntff5v7de/za/+2XqFQc7j+6T6/boeRbZGlG5uQMw4TV1Q0+vnmb06dmiaKISrlC4PfpRwntTp88y3FdmzhMmZ6a4vq1K9y5e4c79x+RKkW1Nk4YZly+PMOlc7MsTI4xXmnQbK7j+xWuX3mBUrlEqRLwO//pd1lcvM/s7DSNxhhbW1tEUcQnd28j3QqeN04SdSlNnWIYxki7VCyezSiw5I6UcfIP/VgLt0Ossw4SQ3HCvCfvx/6yR9W9Hb/qMEJtxO59uIOBED8rprbbxPwoA4r9eY9u+8m9w/ZuTrrfdaghTZFh99mevEKIQsN2zLg/yz7es/T7pOnT7Jf+nxo5w3Z8wijB9QKwDUJaWLZNkkaF1ZsAKQX9fg/lSzY2HnPh/DkwGUnUB0tSrVYIkwhpLHSucVybdrvFg4efcP7CGYLAASFpNMZ59fUv8t3v/oD791fJMlAq4eHiIvfuTdPvd7EdyYUL52i1B2R5huvaCCwCf4Y8i8myjFarSX28inQkp0+d5ifvvsf8/AJSSrQyuK5LuVymP0jQgON5PF5bI04TMq2IooJJK6WLj0hCqRQQRRlbW00s28MSBYKD5zhoZcgVI3xDAFHAQcVFTDKtdREORVo70FFaF75I7fYAz7HwPRurahWwUFqPQH81WaaxLBfLdpFWTpKqgkE6FrbrEcYxP/zJ+3z9rdeYHp8gigpw4TxNqAQejhQszM5w8+bNAhbq5RcYDro8fHCfDz68wde/9haXr14kThU/+NGPefhgiV5vgLRswkQRRglv/+Ad+r0ek9MzXL58kd4w4Z0f3mSsVjguN2oelsm5desmX/nKm4RJyt1HK5Rr46xt9rC9Mrk2jE2MMdhsUqmOYVlQr40hhGHx4T0e3rtFq9MurAWlZGOzheu5+KUSCskge8jYGc20N0WpvECiNUZA4Rp3nGH40ekwRrObEB92vqs0u1Uze+p7RoJxUsK3mxjtv76H6PN0y7rPgrA9q2R0vET7bAz1aRLXce3sf2/bv48b3/+R6bAFyPb1P00n5M+1cQbSJihXMQgsy8LzPWzHxvM8HNvBdR1czyMcDllZWaLV2iTNIozUeL5NmsYYowmCoIikbDRaK27ceJeNjXWiOEZYDs1Wl61mh5dfepWpyRkcZ9sZ2KLZanPn7m0sW7K2tsbDhw+58d67PHhwHyEE4xPjuJ6D7dr4voPrOSRxTBxHVKslyiWfO598wqP7D0mThNZWj3a7w2AYsri4yvr6Fr1uSBxDFAqiqIiSnOcaraBSrpJlOSovYpOlUUwaxxitMVrhOnYRjiVJRkzKJs81Wa7JFVi2Q5ppQKC1YdAfMhzGDAbJCDcxp99PCYfxzmIgyTS5LswFcm0QlsTxLLzARVoCaQkc38EtFXtnH3z0MRpBrVbHtjT1apVBv0tza5N2a4tKucQv/vzPU634+K7E8yQLp2b5+NbHfPjBBzQ3Nhn2B9SqVcAQhoXk9/DREpVKnUuXLnPl8hWyLOHa1Uv88l/+BeIoIg5DqqUyRit++pMfgzAMhiHDMOLWJ3dZ3+zz9g9+ynAYcubsGYKSh8pT6vUaICiVSoSDHqWSy/jEOH5QJopS5uammJqeottpg8notddZun+T5tpDXEsjUSNjiiIZtj/wJx/6sxy70/7ru/8+OQ62s6uCQ/I//diPr3dY/U/+HiM9HdibO8nzHD0e++s9rL6TSnJHt3kwz3Y6bFxOUvfh948Y20Oe7aTPtLv+p/XrWdNR4/xpxv5Z0+da4ur0BkxPTYGQSGmRa4NtDJbj4EuBylMSpYjihA/ef4+19ce8+9MfMRzGLJy6TJ5ndDpd0lwReD6ubeN4Lp1uC6UT/KBEsxkRBC5RlDLoh7z04suEw5TVx+tYto1FgW24urrC5uYG9+8/pNYYR6lio1VaxYRcXVnm3Jl5Bv0B/WGHmVOzZGmCbdt4nk/g+9iWJM+hWquwsdXBsiTNbshgmOKXSqSJIk0NQcnFsR0s4eA6HhiJ47i4jkOaZFgWhWFEbhAjJ1hLCmzbAkQRhkMZpCXI8mIPRhmDY1nEcRHLS0iBY1mgFbbjoHSBvqF0gXnoug5RHIEsjDOKCM4ChEGbFCGDUSBLgV8OKFeqnJqbZnn5EfPz8wSBz9bWJo5jUymXmJ6e5NYnt1nfWCFJY2Zmp1ldXqHX6bG+dpP1x4+ZGp/k3LmLfPDRTdI8pT8ImZ1bwJYQDockUYRrSS5dPMep+RmEEIzVKzQaNe7cjbnx7rvUa2VKpYA4symXc0pBCSltuu0uIFhaXubChWugBLYluXz5Mo/XV8i05KWXX+W73/s+n9y9Ta1e50tzM0RJTLU2xp3VAcmwDXmExAHpYrRAG7CEoLAq+/T7O1LKY1ewB1e8x9d3Uty8k94/aVs7fm2fQTqsT8+yyj+Jg3OR5+lS50kkpN3nO22Lp2yw7TIw2d/mSdPuPj6rFPRZOQ3vb/t56/tcM66gXMNyPJSBJE4wUlL1PIw2WLaDMQbLclhYWGDYP8873/8DPshT7t19xDe++Ze59vJrbGy1qFRqWFholaOVwuiM5aVHhMMhWS5wlMDzygR+hRevXWd+ZpZ2t4/r+awsPeTVl6+zurLEf/yP/5FqtczP/uzPceniNYwxRGGIUjljY3X6gx6gEBjC4YBwOERgyLIUW0r0SHVZqVTIcsP07GkeLXd4+50PqegYyypwBsHCdQNc16XXH+D7bsFUVDbao8rRRlGpVIjjDFxJkqZorRDCwrJHyPNGgBAIKUmSjNzKCytEuzAqyI3CsazCsEMZHNcHleM6Fo5tMwwHyKSQWoUopFXbLiZknscIYUgThe24eOUSjh8QlKp8fPMWC/PzGKOoVqucWjjF1OQkw2jA+PgYrfYW//u/+3f83Nd/jrGxCVpbbSbHJ3iwuEKl0SBTCikcFpc2SdKcU+fOEoYDfvTjd1lZXkSsPGZmqsHk5BTSZORpys+89RY/uvEuWjqUfZ9SqYRKMzwnoByUeHj/AfOTk2DWePvtt7l25UWQdcr1Gl/9+s9x9/4ijze26PQHfP3rX+elF68xHPTo9Tpsbb7HlXOnMJ7AEYpI5QjpFONrBEKKZ9XQAQc/7v0r/T+rdFJp5Uk6rm/Pz7Q+rars2LxHdFkcwViOkppOkufAWD3lGZ7FnOK4dp+2cDoJYzvpHNzfzv62n2cRB59zxlWq1ChVaxghkZaNGr1iIyDPC1BYpSW+G3Dh/EWq1QqtrSal0zWMNiRhQhKljI+XsaQkGvYYDPoYo7EdC6UVUipyVQRP3Fjf4uqlC7Q2N3EwnF2Y5cz8NMN+B9u2uX79OpVKjXNnzzI1NYXWmmZzC2MUlhS0m02SJMb3fcrlMra0iMIQaTvUq1WicIguB2RZjOPYuK5NrVGmUvEY9FIaYz6OXQR0tCwb1/VRuWYwCNFaoVVOpVTGti2yrPDtsiwLYTmEUcIwjLEsigjKQuz4b9mWwBhdoGLIwt9LSoElwLIstIYsyzDCKWJyySIidJ5rQh0jBPiuQMgiEjOAEEWQSj+wmZ0/he2WaHWHfHTzLnkaoZRG5SlvvfUVxiYmCUplbt++TZanBJUKrU6f73zvbV68co3pqWkq1ToK64n5vsowCG7c+JhyUOLq5Qt02x2WFpcIghKd9gbdTouJsRqXzr9CY2ycmalphlHC2lqbmbk6Jk8oBQopDGmSEQRVvvb1n2VpeZVqo4pXDrA8h1JFUJ+I+ZNv/R5GSKamZ9jY2GRyrI6pVJibmSKozdI2HnkcYnt1lBkZTosnZO95iOzzfujP0tbzlz9GiniKgPHpO/GM2fdJIc87sk8bw0+90CiUGM/Vj0//fg+qST9t+jTS3nHpc824LM+lVKkipMC2HLIkKSzmPA8jNCpTuE4AZkiW5czOzhHWqly+dJW52QWSOGNsbJos1WjLoLQhSiLSLCqAZbOU+YU51jdbBKUaG+tbLEzPILRBJRF5OMD2HM6cOYNtWzQaY0RRQhQnPHq0yPjEFK1WG9sCpWJKQYAUhl6vSxxHdHttJsbH2Nxq0241KYI6jtHv92j3hnz5zSusbn3C/KlpPrm1TBSl2J7EmEJ1ZFl24QqQ59i2JAh8XNfC9QrJzLJdSkhyIyhXyoRRjG1bOK6H4xrS5pA8y9Fa4tgS25I4toUwZuTkWjgiA2QZZDpjaqpCrlLyLMP13ALgWKsifphS6KzY21GmkF4TJWi1+pQq47S3Nun1E3zPplJt0KhXWH28TpLmvPLKK9TrdS5dvkyz28OTkomJaS5fvsZP33mHK1eu4Vaq/OH3v0+p7GPbFS5dvMB7P/kQWxoqpYCLFy8QxRFzszMsPVrCcQT9bpdms0mv16dWruJ7AafnUoZxn0pgk8U5165eZtBqsry8xtlz52iMjbHVXKc38KhPTPF4o8mP3/2Ah0ur1GsVFpdWmJ+ewJISC8GFM2eYP/8i33n3EUkcYnmGbBS7TZhCNWaOUfU9j6XaUfUcV1ywz2rtKSvho/qy3xrvSdmjZQRxnM/RYfmf+pzbG0CHlz9u/2nPXswJ+3EUxuLzEvXRr8PvH5n/uLqe7d7hyezsz3429X125T/Xxhn9wQCNwfF8kJIszwmjmDxXCCyEtDGigEySwgLAtgopZHJqGtf1mZ6eY2x8Atfx8f2ARqNRGDmkKQ8fPmRmdp5eL+XuvUdMTk6RZxmonKjfQacRUb/L6soqcRzjOA4TExNMTEyQjMovLi7R6XTwfI+NjTVazSZ+4CKggILKC5+zUsmnXq9hjOLRo0e02y0eLS+Sq6S41ygTJ3Hhv4UhSWKSJMbzXWzbLpDrjSKMhsTREMsyBbq8zhBoqlUfx5VkKkdrhZQSz3NBFoYeWZaPrBo9pJQoNfLjSgsLQqQkTRQCmzQtrkshcVwH17ZwbZ/AC3BkAcCrUoUUNpa0ePfGLf74O++Q5hYbzZCr11/jrbe+xrVrL7L6eI3llRV+8M47LJxaYGJykjjLkLaD5Xj87u/+V9JUEUURKkuI45CNrU0sx+LKlcvYjmRyYpZeb8Ds7BxTkxP4vsMLL1xifKzCl770GjMz0+S55vrVa2xtdBh0B3i2IQ67qLzP6soSjuNRKtdpd4bcvHWbj299TJwmfOd7b/P//H/9W779x99j6fE6H9+6zfLyCuNj4yw9WmY4GNLa2uLe7ZuEvQ79bgeMQUqriJkm5FOlgf2b2Z827Sfmh66+d+Xdv5F+3PXj2jt4fjJDgJMw5+MkiL1/T97mbsaz27jiJH05bC/rpM/ztPoPewbB3svHPc9nJZHv1Pmc8/Goep93nsPnXOIKghJCWrieDyKlUqkQJSnDMKZeqeH7JcJ+jzTPKZfL1Gt1pDRFvjjCGK9Ay0CgcoVt2+SZpNPtkOcFqGucC7Jc0OsPef+DD5n7ha+jdYZtFZA+tuPRHgwRUnL//gPm507RD7cAm5mZGb7zne9w/doVpFS4ns9mu0VQ9lCJwXEKVPiZmVlKpRJTUxPkeUauDLX6OEoasrRwevV8C2lL8lyRZRnNZptue0iSptTH6lhWcV/lWQG8ohWojCzLqVQCqrU6aZazudVGaU2aRCgzmkSyCN2ljMF2bLYhgbRSCLkNiyPIDWSZIs8MUjioXBD4HkYUzM8SojCp14WKES2xhEOUJ3znu+9w492baGFTrlX50bsfUC65rK43iZOcleU1GmNFHx3bIU4yHi0uYmWaqUsXmZqcoLs0JFeKeq1Cq7nF7/3efyOOU1rtDrajaTSqNOpj+K7HcDAkHA6pVMoMhkPyLOXx2gq9bpNuq0kpmKbsClxXsLG+xv1bd3jjC1/mhRdf4ic3fsTm5iq2H7C+2WF9q8nqWgFf5bmSiakphGUhpCAMQ7RSDPp9FhYu0rEmyYTAqAK6RyNhB7dwNzrD0c6de4QIUViw70FnH93dT9SepCdQUIfRhyPkp115zZP62Uc899P446SVw26MBLLD+rf3OcXeMjt/9jHL7b4f1Yf9eY/dlznYl/3jdzi93X6gbUisfWqxbSnU7Cuz7/ehde+24Ti0v3vL7p8TT7qx650eKZ3ubUfsrtgc7tZxUvZjdnfmM2C0n2vGZQsoe2XSJCPNUjzPQyPJU8UwHFKvlvEDh8hI8tRw7txpet0WaRbS6feZmp5AWA7CGNzAR5Iz6DcplRu0u+voLKbTGlCtOmxupnx8+yaOlTJZ9yn7Lk7g4wdVKvUJ+oMhw3rEg0ePuP7CC9y6dRtjUixL8aMfvcPp02d46aUXcLwK0zOn2Nxap9fucmZ+Ace1SdOIUuAzv3ARZW4xNj5Bkhs2W12MSvBcw9SkTxQlhIOYwdDgOYYoThGklKsekgzfttG6wHMzSiFHk7HTaqHSjMDz0VoQDgekaoQiJgRaGFIjCDOF77gFE0oiLAG2BWiIUsPGZhshBFpllAMb23EoBwFJEpLpHCk0XskdmehDkmZIO6Dbj2h3H+O6hv/8+98GociSHKMMZ+ZdFpfWePkLLzM/O88br73Gf//D79HLh9T8AGUZhCvRaKSwCByXfhwjbYuFU+Nkesj6ZsTFK5e4+8ldXnn5BRqNTVSm2dpo8nh9hf6gxy/+4i8wPz+GNBk/8+XX+eCDG1SrAfmwR8lzCHwHZTK+9JUvc/Pjm3R6Q37lr/01Ko0Jfve/fotOt0ccKm68ewNPGs6fmWc4aFGtV4iVz+ONJroyjuMLjMkxVuF8LE0R5NMIOfr4R1A5u9JRzGT73sFvvHBhOIyY7y57dDqKExV7KoKRJGJ2IalTKI/20t9DnuMohrzNYLa1iYd0ac9zCrOt1xzdfkKdi8s7JnfsZoKHVr2PKos9DPLwDu0WIM2Oe8Pud/eknNhRXo0Y1L76xZ6Fin7y3kTxW5zU40/seo4Da5+DsFX77x/HacTufPsXPUfsUZ1010rsZnyjPcXnUfd9rhmXUYpBv4fre8TREIShFJTJLUWWJ3Q67UIiAPxyidXVFbIkZHwqwHIKVZTlFDGjEGLHqVcDaZpTEIeMqYkp4ljxeH0NWyS8eOUs3sw0j5ZWKJcbBH4Z23UZb4wXfmNhhMozWltbvP7aF/je997hvfc/5s7dB7z2ygvMzk4SRTFROKRUDvBcm16/M7IKdBFCcP/ePcI0R1oejisJ/AK2ynVtpEyJwoQkzCmVKvS6Q8IoZ2a6hus4uJ6LlDaDYUSeZwz6PZqtHlkOluWSZhme55CqjEzrkboEkiRDa4Mu+/iuhbSKQJyWbWM7FiUfev1sBG4KMTmWFSKFRqlRIE9HIFWGtG2ULnyu0qyAkvIDCy1y2v0Q3xdoLYhDzcrqBoGt+fN//heJwoR+f0gcpfhemSjJ+N73f8DcwjR+UGJyYoLNrS18r4TjWsTRkEzl9AYR9x8usrq+AeRU/BJ5rvH8gP5ggOM4ReiURgOT27z15S/T3lqj32+xtrpCrTrBMOwTRgO01ty+fYfHa+v8tb/+f+eX/uJf4N333qPXG+C6xV7iMAzxPJ/a2Bh/8iff4403vwlIJDZGG2zLJjUFc9nGjC9o5wlW/Gbnv9GNQ3MfLPfky3jqt3PSxe6OZLS7vaeVOXGmwy4dofIb/Xd0tU/21Y7Ks/v67hE6WprZl3tn/+6wWvTOGJl90uve8diua/v3LhPxp3X6sHtPY17PItTs7yNPpKLD9j6fyahFiGOl3WdNn2/GZRRJNCRNIobJEGkLPK+E6zoYNJnRaCEQVmGQMOgPqVYCXNenVKqQ5QpHF2RFY5ASXM+l1WoRxynlcoAQguvXrzM+0eSjDz+gPxzS7vT4c7/4DcBmdXWTzY0WL738MpZl0eq0Kbku5VKZRr1OHMe89ZUvY9suzXaX9tYaN969wfLqEs3mFpmqkusSti3p9br89N2fsNnscP/+IpV6HadURikb33fxpU2SFr5cnp/RiwrMQmMppG0YDCIoge36OI6LtHNcBFGSFNBWqSJJYrQ2WI6P51ioLCcbLeK0hjjJwcTknsR3ilhdaa6x7QJiyncUWm1PwALbsbBytEAXSOJZnmNbAiktPN/CcoovTFrFfceRSClxHRedxdQaVYJKhX/3//n3XLpynv4gxHJchlFKvVRCa8XmZpNSpcaNdz/iq197k7X1x1iWxWKvVxiiWDaTkw18TzI/N8edW7eJ0phWt8PM7ByOLXn0aJEzp05zev40m1tbXL50hTju8+67NxBCIoBapcI777xNNOwRDxM+/vADpOMRhUMuXjhD4Dm4EtqtFqVSiZnZSX74o58ghM2ZM+eInVk2Eo2wrUJnSmEOX6Cb7/LH2UcED1ONnSQdrm45SqQ5rszu+3CMAvDp/dmlwnqedGAv61P26bi6T5iZPx1TSIBnM1Y5UHpf1z6bPamTPe9nbSn4LOlzzbjyNCJNPEqlEjpPMHlKEg/x/Qqu62K7NjrP8XyfQW+VJMtoWDWMFriOj1KmAIU1hjhNcW1NrnM8PyDLIyanJun0B+QqY2JqgjzPiWLNw6V1Hi4u88rLr+M5FdbX13cMGYKgjGc7nD93DpXnVMplPG9IUKry2muv0e1ssfZ4mTt376CUIUtTmq0Q1/MYRiHaFJPh1OkFhnFKEsdIy0MbjWtbaCPwfYdK2aXTComTGL/sIoRFFKeAIM01jTGJ6/pMTFYJw5Bub4htSbStSTOwLYkUNmmSFYghFFsxBoiznDSH3LcpeS4Ig1I5ljBUygHRMKZc9sFk5CPfN89xcQILy9IonZGmKYJiby6wHPI8RwiNtAS+546QPAxe4NMbhjxYijmlJrCXfV55/YvYfp3FhytcuXiRztYK5VIJIUAKRafbIShVGBsbY/XxBucvXKFaCSgFZR6vLFO9cok79+/QbEW8+MpLzExNMFavs7K8xOrKKnc6d3n0cIz/61/7FbI05vKlazx6tIzv+Sw9fMDPvPkmY7Ua773/MWkc8+1v/T6PV9Y4f+EM1WoF35LkScTbP3iHN770Bq+89kWCcpU/+sE7VOZS5q5+hYGRSCPZVojs0PMddddey7tnJTjHxUJ6WnpqfnN0vhNZOx4Tw+l5XAL209K995++4X+YD9KJxvCY53laO0+tm5NLv4fVt7/o/6wuE591nZ9rxiXReJagHLgMhgajMlSWkskE2/UKKUIWfkuOa6OVZm19E+k0AInjFo67WMUKw7IkuVKkWU5/EDGlNbXGGK1OmxdfeBkEpLlBGwk4dLsDdK44feoUcZoTBIWENhz2qVYrNGp12u02gevhOTbddouxsQbNrcdcunSWOB1Qrvg4vkOa56xvrDMxMVOo5lyHfpQWZv7KkCQJg2FEphSOXcLzbep1lyzXxFmGRmA7YMgIY0WcaPwgAGnjuG4RBTrJyVJNmhnAIoozpABbQjYKSSQsG2M02hiiJC+kJkfiuz6W0djCIbMzLEuMfMoKdUGWZbheEQ7F89wiuKXejv8jsS2N41hYtgMUqrQ8V3iuj2MLgorDyvoWuTAMoxiki7Qc1tc3OX9qgSAo4XguC/MzfPjBRwjp0RgbJ83gwcMV3vzy6wyHfbY2N4sIyKUSrW7I+tYWp+bneeONLzE/N89/7/wetz++xcLcHEJY1GoNFhaqTExM49kejx8vUS35nJ6f584n94iHQ8JBiKCIsCsFLJyaJx708X2X7//JD/jKW1+lXJnmyhWLPJggzRIsx0eKQnFjjB6By+5W4zzRez0rOsFhTGtv2acT2mOtBY8o/XQw2u3yR+v0PjWT3aU+PdwM/dkY12HXjipvTiiBHNfW0X17tnd/IK85yPien8kcYmBySN3P4lv4aVw+jkufa8aVhkOcyUmGwx5ROMB2bCzpESmDj8H1PSwBnW6LsgN5rkBpJicnsR2bXCu0Lsy6hRBooxgMe2RpSppmNFttGmMTJGnMqdOnsF0XYRSpyrhz7wGXLl4hznKkFORZQrlaZXx8jM1NC8e2iEbWbI5tUfZ9tppNbKk5tTBPlsekecTE1BipypC2S5LmrG+2uHn7PmkqKJerGClJ4oQ0ybBdF0OhshMyYXyyTL8fkw+396kExjhgIAxzUpXQ7S8TBB4IiVKFOtCxHfLMFNGdtcG2bVSuQBXqPaXAGE2uoR8mRFIyWQ+wLEmcpkhhCHwf3xOEYeH4jAHjWkX0ZlXASwmxvbEvyHMw5BhjkaYZvucThhECC6UNIsqxhaTXGxKnGdeuv4QUDg/v3OcbP/sVLJkxNTHBC9eusbbZZW1jyCBcx/MDNrc6/OQnN3jj1esI4P333iMIAiqVgK2tTWq1OkGpRKVSIUkSLFsWjuaOg+t6DIchcRTx0d0P6ffaDLptbK/MhbNnefenPx1hNkYsL68gpaHZLNFrbXH61Dx3791ndvY011+c5o03XiN153j3XptM56CtkUP3KODeER/q7n2Ew64flv+zhM/5vKVnVVGdlMA+KwzWnryfgRrzs4JX+j9D+lwzrixNARhGIUrnIAzDYZ9StUGWxXi+jSWKcPJRPsS2LMbGJjh35iwGg2UXkWqjOKJU9kEPWVpcxBiD49qMjU9w6fJlPrr5Cf3BgDhN8RyHNFfcuX+Pt7pdxmpVlMrJVcbm5hpCzpAmEZbw2Vh/zPjY2MhfK2N+dgbHkXiBU2C2CUEYRty++wm5MVy79hITk5NUV7eIooygVEZYHuWyxebWbTq9AmaqXHYolwPSRJMrG8uV5ErjeAURz9LCjyjvRVi2RX8YY9mFxGmMwJaF8YmQNlJqhGWDMoWEYAwIibAEjJyLM61p94fUAg9HWgVo1QjDrRQEhMM+ge8XakOjcKSNbRdgu0YXgRRdt9jXkpa14yMmLUGuMhzPQRuo1uskcciw1ePmxzdRmUEbmwsXL9Brr/N4dYUL58/y4cf32GxFhFFOGA/p9Ya0W01qgcXC3ByeZ9Hc2sRzbSYnxlFZSp6mlEsljDG4js3GxgY/+M53ePH6C5w7f57hcEiuM27fvkW33WJu/gzzCwuEuaGX3CEo+2jACwKGYcjE5CRnzp6lOwgZHxvD81xsCyxPYnSCMVnhOygFyrBjnbfb5Bs+/T7BZ+EL86xp27rwsHRQ4vtTSGKXvHpA0nz6WHza8RKjtg9r57N4l/vreaa+PWU/cr/f2rO0+T8zA/1cMy7Xc9FKcf/uXcYmx6hWKygtSbMYrVN0yca2JI1GlbA7xGhNnmWsr60xffoKlgRjCVxjEYUDGjWHwHfJVU6pXGF8YpKHjxYZDAY0my2yrPDTcB1JPwzZ2NzAQuE5FsZAnicIFFtb6zS3NtFZjudabG2uMTExRbu1SWOsQbnsc+rUKYQFYRrxyd17JEnE8upjwjinNwgR0sGyHRw3QEqXudl5Hi2t0OuGCGEolcoIqUeYgNaO8YRt2wwGKcbk5BoQObYNll3gEGotCDyBkBZGqwI0VylsWUBcFTBXhcovz0eRX4Ekg55OqZZ8tDaESUy5XCNNEqRjFyDAWUyucjxPIq0CNmo7xleBXq+QwiKzLJIko1bxCeME25FoUzhFX7pwkSgasry2Sp7kjDemWFx8xMLcJJuba8zOTHP1ymUWV5vkg5hcQ7efkieCr7z5JvGwSZoMyeMYt1ym1+nQ73d59OgBY/UG5cAnzzOSGO7du8u5s+cQUrK8skK9VkNaFtOzc5w+e4aZuQXcWoPVZpv3b99EJTm9/gBXVhlGEaurq1gCxsfqGJViWRl+WVIOLPKsGLvMqIKgiUKKfbLxvddx9H827MH/kfUd3gjPBH30Z52OYxD/K332c/xzzbgsz2NtY4Nv/+EfcvX6FaZmZ2mMTRJGbe7evMOrr7yMUhmNRkA4HFAOAsYbY/S6HaJhD19a2LJMlkRIaQq0dykwaMrlMmmW8fHN22gtuHf3HkpBkilsOyNVRaiSdnuLKOwxMTFBp9vDcS2E0GysrzI5Mc6H771LtVZjOOjh+y79Xo9mcwvhCGrVOmlX4QUVBknK6uMNFJIoLjAF4yQB4RHFEUJYzM8v0B8MSZIYlSu0UdiOJMkVGEGWZwSBRxQp+gOFBhCgc5CjOaMNxJkaAeMW0ERaF5iFslha4jo2SDEKjSIwRqGMIVHgaYEUhRTnexZZGiKgUBFaEqktoihByIJAu66FbZexLIEwFkoZ8kxRrZSxLEm5EhAnEbbjEA4HNLdsJqcanD09T7Vag1yTZjGWFEghGPR6vPnlL7HVjfnWt7+D5Xr4ZYnvCILAI5Bl+iZiYWacXhiztbbGD995B4nm8qXLXLl8ic2NVSbGJ3Btl1q9hm3bNBoNPv7oPfxyieuvfoE0Smn3+4xNTtHu91GmCAGzvrHJsNtmrFomGnS5fuUKP37nB7S7Q15582u8+edPY/QAlUukU8IyAsX23hCfmQXYNqE8FHH8kD2Zk7YlhBjtS+4NwngU0dlPsHd+n9AqbbvccXmexPE6KOHslrhO0seTpgN17/Pd2iPxHWM08tTFiXhS32Gx1o7q1x614gn5wYFy+9Jx8+ewuo4u//T8/6cOJFmtVGi1unzjm99kGA15uPSInzl9liyJaW2t8+Ceg0TTqQU8uPcJjl2E0Kg36qyuLDE+rbGcIfX6ONooksGA9cerCAGD4ZB79++TZTmWtFhcWi68LoREGYiTmMfrjwmkolr2abU3GYYxvU+6VIIy1WqJSqVEe2uLUskjS2OMzkmSiKBc4dHyI1bXHoMt2Wq2sF0XyxiMFkjLRkjJVrOJoI/SgsEgod6YZHx8ksGgRxgOAYOUgixT+J5X+Hl5NrYrkZYq9rSMwCgwetvnwpBrXRhOCAFItNGjUCeja1ohkAUTF6C1jTYaBQzjFNcCoTWd3gDXKWxbut0BjivwvCJOme1Y5LnCGEOWxEgpEdgY9WQSe74LKGq1MoFfouqVyJOUD9//iBdevsTFC2fZ2thkemqCKAq5fPECvUFIpTbG+bPnyNV3cG0L2wHfNaw9XqIRCBxp+Nmvvsntew+5v7hMq7WJZVlUq2Vm52b5uZ/7eiFRZtBud7h9+za5Sjl34RwvvvwSpXoDpbrUxsYpNyZojE8i7YKZR1GMzqBaLhFFIavLizQa41y/chFJyp2b71EpjZMKi0gVDtOaHRlrHwF8kvYT8ZMaGpzEuOCossfkOLKNE9V7jPpqf3+P2386TB0ojrhf+Mh9SgOHp7S91zPqoDWo2ZXjOAOQQ9sUR+c7WV2fHvvxefdKd7+/ZwWBfl5V9+eaccVJzMVLF+lHQ4bxkCiJyI2mXK0yMz3Jd/7w9+m2twgqJVZXHvMzr7/E/Nw8ze6QW/d+ype+WqbZ6jEcxnzxi1+k39nk448+BgNREmFkEVxSYjMcDrFsUcSfynMiY/jv3/5Dfv6tV6lVPR49fIBShq2tLV544UX6/S6NWgWVJ2yur3H23Hk8z0EZSblUZmpyht4w5MObH9NuhQRVje0FJGmKQRAnSaGq0zlCeugRs3FsF8uyUUqhlEJaxb5JGEZ4GIRl4/kObmxQkUGbwkNx+68xICmiRedaIYQsPjxdqLaMMWTpSGKS1ujD1DBCfUjywlqw4lkoU+yZOa6NY0ukZUAUkl6e5SMk+mJSa6WxLbBtm1IA274+uUq5dP4yL73wMv/5t3+Xi+dOceniWzS7G3z04Xvkac7/+39/wDd/8ecIzp4mjkIcb4jvCybGSwyzHM918HyoVEr0Wqt4UlOpVbl6+SJhOMTzfC5dOI9j26ysLLL2eJnZ2Tkc22NtY5148REPHt7jjS++TJxl3PjwI65ceQGcgMrkDI2JMQyglObc2bM4QiF1RqVaIcsSVJrgOhJ0yscf/pgzL30DrVIECihUpsZIDjO2O5xhbSMXCPaX2Etojvs6TkaYjyp5WD8Piy91kJCOCPsR1T+rZdnO/ZFV4f7sQmxff7qUsM/t+KkEf6fuIvtOucNM6Xecj49YeBzbv087Jmy/q5MwgG319K4rh1gk7mrl6TU+g0vG/7Iq3JXiTGM5kqQdUq+UmZ6apLXZpBKUuXzpEvfu3ODhvY94/DhFKc3y8jLnzl4E6eCXKkhLcvnyeW5+eIvmxhobzRb3H61x/YWr3H1wh/WtDkpJbNvCCIElbLSRWLaFEYr+IKLb73N6YRZjNNVqQJqVaDfXydOU1ZUVFk4tkCQJlXKAVorF5RWM7fLJvfvcunePe4sr4FikSoCWxImm30/RRmM7DsIyGBTSkRihyVWKAWzHw/UChGUTxVsMw4w4SfD8QmUWhjlpliGwCqTyIv5jsfo3BcyMGTElM4KpkaOPKzcGoZ6sIkef4sjz3RTBEV0XbXLCJMO2BbV6hUrFwbZztM7AKCwJWueEYVzE+bIUluUChdqv223jeja9bsjy0gpZkuLbcP70LN3uOlGSsPp4Dak1k1NTSCnJ4ohqyefa5fPMz4yzvNHGGE2cKNq9AVIbZqenCfsDhLSYqI/jBh63b36E0Zrl5SXOnj3NoD/g0eJNhHB47bXXGMQD7t57SLPV4/KVFxDSpdVq0ws/ZmlxEW0Eudakecbc/CRjFY+SbWHyjOEg4sMP36c83kB7VRbvfEBt7nWUUeQUhicIycg4fsSWdhHbHfQDs/d/c4jKb+evOZpOH7IZdJC4HaPWOfD/nlnw5PcOYd/fz319E3tvHZt2SyA8GZ/i3Oyt4ADh276/j4keSPsXBdv5dte9rzPb+5PC7BmT3aq6vegih4zJoQ9/EKbpcBgtceD+k+snVbtp2AVNdXjJZ1HhPenHk5HeniEHn8Hs6B2e33znc824KtU6g34PnYXkiaBRbxCHIXathB+UOHN2AZ2+gCVt8jzjS6++TqU8TmPqFKeNRW5ylM546cWrqFxwd3GVTphRH5/gdJbx8NF75Bi0yZG2xnEccmVQmSYVBktoOr0hSaKoNxqcOzvPVLvOzY/vgJFcvHAJYwxlx+Hx+gaWsClVxugPI+48eMT9pSUyKQsYpkSTqpTBIGYwzGiMVQnjCGkLbFtiuTZJGhZIFRoMEqQLwsIg8XwPaxSKxSAKtZ2SYLmIOCeM1c5UNRiMUXvGUjOSynYnVRgWWFZhfGK0Znv6aSRSesSxwk4V5TQm0AJPWjiWwJFFTLNhGJFnUVGdNgVor9HkSmMMpEnKo4eL6Ezw8ouXuX71LHOTDayXXmJpbYvVlXWcwKc76GOjcCQ4RiPyjLFyiaV8jSTX2IHFZqtNxYGtdh+pDBNjFVSmebT2kCyOmZ+dw7Ukm+ubPFxcZBAO0cZibn6OufkF3n33XX78k/ucPfsS45MLVCsB//2P/oDVlWXKpTK50eRK0WpvMjt5hl67Sdmv8OW33iIISnx8+2Mera6Rmoe0ehYzl38WYfnASHJV2T58tid4g/tp+2iX6dh177OsV59NnXRAzntKHfuJ736idXLOdSCv2fVbPAEPPqIbexjr3vb2ksvD85k9+Q8+7g6H2idhjiQfI9jGLNwhz2J3vUf1++lqtqOH/jixaT+jh2LOjU73vWdj2JPfHNvw7kVUcchdZfZbzz4Rwrcl6OeLgfa5DmuS5SlJErGyvEQUhSRJgu/5mFyRxDGB53Lp4gW+9rWv8MarrzA+1qA+1qBULjM7O0epVGHQHzIMY4TlobVFnAlWN/q0uinV+jhIj0xL4jjHsi3yPMOyJEob0pwC/8/1qdbqJGnK+uYm58+fx/E8oiQjzTVhlLD+eBOwaLW72LZLfxCx2RwUeH1xQpoVoVQajQa+b6ONwXEcpGWRJimWEIUBhJQj6zSI45het4/juLiui+PYJGlKHMcIIXBcB0vuTKdPnaSUOyvU7W8kSVKUNmhtyHLFYDgkiiK00uR5TpokxHFMnmf4/v+fvT+NkSXJDnPBz8x3jzUj98y7L1X33rq1dlezi72y1U1SpPienvj+UhKgmR9CU4AkQBAk6IcWQAQ0GOjHgBLmAQI1I4DSgzTiUCIpPnFvsdeq6tq3u6+5R2bG6quZzQ+PyIzMjFxuVTefCppzETcj3I+bHTc3P8fOYufYBKFPGJbwfR/LsvA8f/DdIU0Vjx48ZnZmGkFhqtxsNrGloFot4boO6+traIqUUZ3ONlIoFhdnEWgcpzBJ3r//mCjKqNUavPHGm4SlgJ/7+Z/lS1/+Ms9cv871Z6/jeQHGCL7+9Z/mp77655idm6Pd7fL7v/9H5DnMzzX4vd//fd764ZvkuebCpaeoT0wTJSlKGeI4ZnKiTq1UYmFulmeuX+WFl17k4qXLXH3qKqEX8M4PX2Xp4W2ESbEkYBRmEF04BLGH+Q2O7ftx7IstDvn8GcOfTdj0XkFxJMpYOGkEw7Adc/KxFceZ605u+vuRw37aj7iPJybjJHP0xwSfasFlVMEY+v0+a2ur3L9/H0sWzLVcKuG5LuVSiMlSbAuiqFsUYLRd8jRjot6gXJnAdkLuPljhj/70dba6cPP+Jo/XY9xwBmGVEZZProd+h2I14foe0rHoJwovCJloTKO0INcG6bhcuHQZhMD1fJaWVmm1exhjMz+3SK/XR4giYa4QRbVirQ3dbh8pJWEYoHWOH3iUSyWktIjimCzLSPMMpQutJYr69Ppder0uWivSNMWSFlmeo43Gc73Cv6T1iPB5wjE2RT5CYzQIM1hJQZIqjNZFtKBgh/40K/bWScsijoqgjHK5TCkM8X2PPB9UXbZtfN8vSra4Ep2n9Ps9sizD933iOEMbwZnTZ5iYqPPw4QOyNMNg2Giu4bqSz770LKFv4zsWvutw+9Zd7t19TGu7w7nzF7j/8B737t8t9ri5Ae1un5c/9wrXrz9X1B8zgpdefIlf+J/+F6qVBh9+cIM0TXBdj49u3uKNt95lZm4RrW02NrZZWdlk+XETo3KyNOHcmVNgclpbm7iuz8L8KX72p3+Gfq+LNDkWOZZRWNIgjEbu+BkKn4gYfh86qke+F9kn9p7f71jf42M55LP//FH449oejz9iJhQc+H34dYf3eTz+8b6c4XgedQ8Hrtkz/occP268Bxx81Po4/D46XseN+UnGfhT3uDHbpeVJxnnvmB95zegcHSMRD9JeaKGj8+XjwqfaVGhJg8pTFubnCMIypUqdTqdFERGncaQkKAUInWPyjFRrlh49YE6EOKUGSkO9PoVle/zJd9/lP/2XPyE2mkhppicnUVlMNwIpc3w7R9oUWTJUjuv7SGyaW10eLq1w+eJptLCQtsd2q0NzY4nFxQVq9Qanzmgm6zMsLJwizhTNdhvfL+G5xZ4oKDLTp2lGmsbYlqTXT7AcCyGgVq3S7yf085jt7W0QEq1hu9UnTTWeb6OVIlMZYRiSq4hcCWzbRusEpQrBtZsc98lAD5LnDn1jQg4MjgL8IMCRGVLmJIkmjmNs6WM5ReJbOQjwEEKQDWqeFRqhxPc9jAGV5xitSZOE6elpJiYadDpdJqbnmJ6ZppqWmapXCcOA7W4Hy7bwfZvZuQk8z0LmCscSNKam2d5usbnZ4oXnnqXTaXL/wT3uPFjiqctP8dkXX2J1dQ3HcRBInnv2BZZWVnAdn1/6pV/iP/yH/8CHN26x1dzmtR++zfJ6k+XNFnfvL2MoBKwg48Gdx9QcjYk7lCpVnrr0LCrTKAUCyWdeeI7J02cpeaBUhiVk8aaOcaXA3kXwqHlm3L6lXea19/dhcBiDPAy36P4ggzxIsT7AfHaF10HGelSo+oH+x+KL8QOyr639FO9vcxzzP46WA33sv1aAMGJHAxFCMuoLK96dMQ9+X3vH9Xl8qq+T348YT86h149HGHkk+9ob9wx3mxsVXh8PPt2Cy4Ko3yWNI1zXw3UdtJG4jkWeZKBzVJrj2BKtMow2pHmfOOojvRppbsDyyOOU19/+kLXtiARBs9Pk5p0mjlMUSJxqwFxDIHVRVdggyfKUwLaIs4Qbt+4xvzBDvx+DsOhHCfVGHT+sUCpP8MLiBfJEUyrVmK3VsFaWabdjbNsll4YgdIijaGAWc1FJjJQQ93vgh1i+g+e4pHaOEQKlDL1en1LJwfMN/b7B9wUlPyRXRQonRBGxV+zXAj3IP1jAkFXqI0Z3F3ZfHJASbFsWY5nmlKvVwR4rQxgW2TGyPKfbiTDCILQiCIJBBnm7yErieAgEWZYhhIXn+mRZyq0bt6iFNpcvnOPsubME5RqN2Rk63RbbG6v0+n0a01M4toUQirjfZm4mRFoBlfIEgeXx4O4d2u3eoDq2ZnJmivc+us3Dh4/4hZ//C7S2Wrz99tucPXcey3I4tXiWbrdPtVbni1/6CivrTbA8trf7vP3eR7zx3g1SbZibW2BhbpJGzcY3bbI049atW0zNzPLBRx/y4vOT2MJF5x3+wp//WZa2cvpZF0sE2MIGOajJteOH2R3bPWO978f+d3t0r81JXvwnSSO00/aR2s1uAMSTRJWdpP9RvIP4J6pWdeDacZktDtO+CvPg8cLrwLHBgkQwXJzokfOj/sHxY3Bs+0ccO+o4h3QpBouo/Zftj/wzHCNcdu6bkYASs7M14Si6/ofex9VtbyNNXggiywGt8BwPVEantUmv08IpeSgNaRIhpAPSplqtI1yfznYbLA+/VGdjq01uIJeySFNkIIk1loRMCbzAp+QZtC78Vtoostygk5Sbd+5QqXrMTdepVOtM1B2ifkqaKoS0WV1rMjM1h+eH9Psxju1SrYSsboPneRgMSRzj+x62bSNSwIDvuRijSeJkJ5uFMRrXdZicqmNZDkqDUkXdqyhJAInn2sSdiFwX2dgtS5ClgywYQiCEBRSa1ElBiKKqsRQa27LQFPvbcpWDVlSrPmEo8H0blRdaXqGZFdqeweC6LloXpkCtNGmqi7B5IfACi61Wiw8+usELLz5PlivuffARnR++gSbHszSehJlGHZWlPHXtCkolvPK5z/DWOx8QeDbT9Uk6m5ssr65wZnOWza0l6o06ILj/4AFra2tUq1Wef/55Fk+dAQSNxiS9KKLVanPq9Fk+9/lXeP+jW7hBi2x5lY2tNlpapGlCvValXrPwjcAjZfnxQ4JyzNZ2i9t37jJZn8KSFtrkpFGLJAnwG1OkWY7ruaRpEYwhRbERfFfDYefvUOMSQuxsGocnE0B7n9vJ8Xdxj7tmILxEIU4Eg71MQlBEQv44YXdpf5J7G6e9HIHMsWrIobA7Jvv05//z4Mf9KMZ2N2a1dSj+xyfwU+3jSuIYnecszM9SCjw812KzuUya9BCmSLdkCcjTmDSKSeOEen2CUqUCCLTSaG1I0pQky8mNQGuJNja5scixURqkZVMqlQiDonS7bYEwqkgdlBV1rh4vrVCqVJGWizESrQXzi6eYP3Ua3w+J0wwji4fa6/cIQh/P85iYmCAIQyYm6tRqNSYm6gS+z9zcFJONBhP1OrNzM8XxwMOyBH7g0ZicICwVvjDHtQuzm9bYtoXSOb7vkaYpKiuCSaRVaEtCCKR8sglTJPAt/GpKFSVOjAbXcdC5QkhBqVzGsixUrsjSjCL8W5BleRG0oTVKFZGMepCrUGsz0OIsXN9DC4F0HG7fvc/s3CnKlRq+X+K9928zM7PAM9evU6lUieOEt954g7WVJSbrZWqVCmsrj7l79w61ep2XXnqJ7dY2pXKZD2/cQJmc6alJfvD9H9DpdIq9alnKxEQdPwzI85xqtUa9XuPU6dM8Wl5mbaNJmmsURWb+tdU1PvroA9IoxraLPJalcg1p+fSjlHfffx8FTDamCD2Plcf3eXz/Bg/vfoTOY9CKoR9ECsHwEYiBzWT0784Lvc+MtNe/cDQc5ks57Px+38ZxK+bBzGA32m9cJN/RdD0pjKPtuPYOu8exuPt9jke0czTsjyQ83ER40mfzJLA7R05+758cBpP7iHk1jsaPC59qjSvwPRrVCnHUo9lcQxnD7Nw8eR4DOXGvi5O72EJgIbBdDz8IAYj6PZTKQChynVOtlbEsyPUgSLlQF1AUpkHLchAk2FLgOXaR+smxQGiU0vT7CcaA5TqgJJefvsD01CxxFDE3P0eSKLTRpGlMo1FHWoIo6jMTzJHrQmvs97r4nkMQuEWQQhCQJIpqqUSr3QOgVq3geF6hzRhNlqVFqipb4PkeWZYXwRTYOI6F1kVaKCsvNsBqBQyE0JOAFBIozI3FniwLz/OIuh18z8J1XCypMSoqikoahRHs1DyT0iI1KVoXq/JC2xMEQYglClOjsCTlagO/XOPVN95mfn6B+tQ0uU5oTEwwMz3D417EjY9u0u23CSs+wrHxbYMjNUuPVjj18iJzC/O8/eZDGlNzVCtVsqzF/Pwsnmtz+dJFXNcjTjO2tzfJux021zbo9voIy+LWvQcopQfBNz69OMH1wBKGzeYGS0sB7kKdiXLI1PQCU7OnOHvhKVZXmjxafkyuJonjPndvfcjjlsCub/K5r50CJ0RKrzAX7vcDjfw98Rr9E/CfHwnz2llYDxmzpLBA6R+T1vXk2tAT3+fHJXvU17MD/ydrW8fBmOEc55c6ro1RH9ewbNmfxZ1/qgWXbblIBHmW0dreAmBmZhLbsdCeg2tL2q0tpIYkzbD9chFdZ9sIkWLbVhGubIHrWEVGCVFEgBlTaAyC3ci6XCikAKtIo45RGs+xOb04h+fAysoqjXqNxbnT3Lp1mx98/3V+4X/+BXKTk6kUZVz8wC2ye4Qe/ahLc3MDy7bIsoSo38dxLIzRhOUSrmMjsGk2myRpjm1bOK5DpnJ0npFmKUJCnqcILEqlgPWNrYGfSTExUaPfT8m1wJCQZIYMhVJmzx7H4Qt+VNoWy5YIA1oWYYWOLbEdmyxX5KkhzzPcwEJIB+lYZHGMRhe10BwHrQ15lpDnBtfxB/0XYzwUoVpaRLkmKNdYWlkjUYa1tTWefeZpHMfn23/6Xa5cvMDGxhara+s0psucu3AGQYYg56tffQnX8YjjPpVanSCscOXqdVaWl5mfmaVRq7O+tsLERINytcbN23d478MPcfyADz+8QavTY2ltE4WFtIJB0U63iPD0XAIvoB/10GYCy/aZXzjHy698mfrkJDNzGyT9iJXlZT547x1q5ZD7axu0N1YweYZtWWRD/wrFVlph2I1I43C+eSgDHnWzjMnmMHpunKP+UBgzN8b1veMS29e2YehDOdr/dVJTX0E/IMROkMP+toc4o7roYe0fmt1i57/D8ce+IwPHpRh+FeNxx9cR29vPj1crGrnno7Z/7VI08HMdjSgG7e2JqDyiTRiOxf+gUYVbzS1EHlKrVpiemuSd99+jWisT92M8KyXLYixRCLZyWKEfJfTjBITEtiS1egVhCxKV0uu1MbqIVDRolAGBVZQfQYKxUFpjTE5uDJaQONJmemqKy5cvYYmcmckaK8sr/NSXvk4YVEnTG3x04waO4zA5Ocmjx4946tJFclWY99LUsL21yeLp09TOnKHX7VAulej1uoU5MQhxHZ8wrLC51UL3+oX5z2hs10VaAsexiAc+MNsJ8DyXfpQQhAFCFhnjVaaxpESQDxjLIGP5CZyoQxjiuI4DWuP53lB9I44zOu0WjuXjSI1GFZu1dY5lSyxrN29hmmaAhW05CCERFP4vLaAfZyyvrfKtP/02/SRj89ZdNpubBJ7F88/8BdaXHtHtRZw9e5bGZL14ZrnGtW2E0Dx8eI8XXngJ13P5watvUq+HzM/P0G1t8fjefa4+dYWo22Pp8WO8IODh0jKdTpcbb77J1laL6sREkbQ4yglcp1gAGUWv32FmZpJLFxZJ+tv4QcCFy08zPbXI/KkL4Ej8qE/ge8xPT1KvhuB4nH20zd0NQaUSkmMGe/D2Bg4PV6x7vEvDVetR77XYu2QeJ5hGmecog//EIIbCY5fyvfNoLy1PvJLfd+1uk+MF8KivcCi4TprwdY+AOSRqsTCvH13SRewIpYPv1H4htv/5jL3fHzPsmz77zp2chmE7O8N3rMY1Og4n7uYAfKoFlxCCUqmEEIKnnnoKx/Po93p8+MEHtDeX0ck2Lz/3PK7tUK/XkanC83zQhm6vT1gOcRwL17VQg2KIGD1YQBXpeTAMNtWqIvOcsIr9S7IoXZGnORhDfaKGbTtcv/YMIJiZmWN+fpE79++QZRnvvvsuU40pmhvruL7HpYvnuXz5FI9WljFGEYYBKk9RKkdiiHo9trAISzXq9UnSNMG2JNoYpLABQ5blwO5LmmXZzguWZzlCFubBPEvRWmGUGgjhws+i95l0Dq4kB/8Jgy0FUtiFBqJyXMdGZSkWYHJDv9unGkoc3wZRpMVCS4QwaBTSsnA9hzwvAlGEB0LaRYXnPEebgt4oSrh56w6uE9JoTNKYaLC6uopSmuvXr9NqrnPhwsVi83na587925AbXNsmjnqUSyH1eoWwVGJlpcm5c+eYe2qaShCwMDvPzOQUzeYmq+trbDY3+PDmXbbaLZ5/8UWE7ZDfXyJVfUrlkCTN0VpjWRaOY9Futei3myzOTBLHGbX6BBrJ9tY27W6XpNtFxRGVwMcJAl549jST2xaZV6aVO8RaDHdyDcIZ9lVEHn0WZndlOl5zOXrJfJi2s5dpjAk5H3d45zpzAHX3xz7T55h+jwuJH/pS99O92/cIdzxwP6Mcc6ihncT6t5uNYxzdh9G6t4niWew/c5SWe5Q2+iSC44Dmsuc57Q9H3ztWBxXH/drkycInRh/Pzu8xdB6+0Hly+FQLrkwlrK6v8dSlyyiluHblWaKoQ9Rpc6O3yf3HLXqJxq14JHkOlkNYrtGJYjrdDkYn1N0GwvFQRqMFSNtB5BmawiQmgHIpACHoxQbfLQRlknSxTE6z2WLl8SPOLrxA6Lt4rsfWVguli+2mvV6PxYU5fNdis7mJVg16nRRLCuZnprl15wEYm3ary3ZrG6My0iiiHIb4nkca92m3BFka47g+lhQ0t7axXAeVQ5bmZFmO0ZIky1CqCJfP8pRqLYRcYVka37fJ8hyRG4wsEsbasohu03pg6pCimHWDDc7CgGMJ0GDrovAjSmMJC5Hn2EZxquEx2wgIPUGU9hHaRjguyhi8wEepFFSKkLKosmwUJd8iz1KkDbnWJEmOIScIfIQwqFzjeD7lSp3GRI1HD+7R7XTRE2XKJR9DGdv3SHOFXSmx1VwncMv0uxGtzSbK5Jy/fJ5SbYJ2lDIxVUMJTbvfY27+DNNzZd58933eeftDglDy8kvPMTW3yFYvIo4zHNuh3+8RZTk5kClDc3MbnUSk/Q7trTbd1jZxv40flog6bdaW17h3/w7nzy2QdSPqUmCyDmVrio7OcSxJChgjyJUugmVMkUMSPVgmid36Zzuv9JAZDKM59kQajn8vTsKsC+/tyBU7/E4evH5EyBXn5OCjRxD2Co5dfLHv2n1NjzBaIfYj7WXKu33vQ8EAemAdYU9o9mEwDFwY5unc294YMPvoGGdmPBT2+ZNHGPj4vvYfOFwCyz0LEMGeZ7L/GgND3/1uR4f7unfDhPYJwJ0jY4JODm1raHg8Hvck8KkWXEEpwLWKrBKe6xNFycC0FlAu+Vx/9hlu33nA/OwU5865ZMJCyiJCsFIu0WltEJQ85CAzhhYFEy/M6LuPx3VcpGXRTjSdXky5XEYYB2FyQNHv9rGlw/zcIuVShTQVbK1vIYRkceEMUhqMsVhfa2KU4Nz5sywvPeajDz/C9wrNRWVgC0G71wOjUXleBGuEFeI4ptPuoHQHYTlIWWgzRiugEFTdThdtBJ4f4ns+qVIonQ98TBaOsEkSSaL0jkAuNK9BWZPBHNZoLCF2VH/PtkFrjNLYtosliqTDnoQvvPQcv/hzP8XZ+Rp379zk1/7Nv6WTxkUmeM+hSKdrsG2LfhQhRRGqHzgu5ckqQbnGw5VN4iTFtgTGLTQSpWF9Y4NyqQJa4dgBDx/cxxMJZxZmsWzJ0uoay+tNpqaLzdmdTsTs9DxxmtNrbmCkINOabj+m1W4RTE/ieh5hpYptudTqE0xPV7Bti5mpaaZn52nff0yc5ti2z2anS5JpMq1BazrtLvONGmcXZhDG0O20WV5+SHmiQSUM6LQ7BH7A9Owsa8sPuHfvNpgaTjWHmk8uHYT0kdLBljZa54VWP+DWu6/0MH/hvuXrjjlr5+eRL/7RTMEMGhhlxpIdxidG+h/X9o6wGRUi+7TBke+79zKurSejXBzoZwwzPBFHHBGmH4ODHi6ET3jBfuV533ezB2dMIt6Ri8Xoxez/vlfQiwPnR87t66LQ+sc/O8m+hdNxY7hPYT/JJUfBp1pwOY6H5zg8ePSYSqVKtVIltSX1iQbT07PYQvHOq7cIbBvOnaExNYVlOwPzj8T3PHSusBF0ur0ii7cxO7PGUDBwaTuUyzV6rTYb2xFR3GFhNsBCo3RKkuY4bgDCph9lqKzYK2UQqFziBh5r6/e4e3eJ8+cvEYQhUlr4nkc3itnebDLVmGRu8RRbYQAYHNtBGUGr00cNFkVZphDGGkQ+pkhhF9pVqpDSwuih6WBgjDJFpg9LDpINSYEQu7vWjRAIS2AJAcYghSgS4ZqizpflCCzHLjYbxzGOAduyMGjKpYBrVy8yWQ8xKiL0JL4niROFcSS5zskzg20V4fOOJbEdlzQqxqvX22bBK+3kUzSmqLxsWQbLssmtjJWVR6T1GtNTIZVywL07t6kELsa2eeONt+j2+myslZidmqE+OcNbH9xC2AKv6lOtTVCvVcnTmE67x0S5jBCC+/fucv78JZ555hlu3nwP3/cISxXee/9Dbj5Yph9leKGHGZg78ySlUqmwMNOgub5M2ReE9QpBGGCMIeq00BSVtm/fvs39+7expeL8qTNM1CdZXnuEL0KcRolcWOTKIG2PfFAfTYxwrUIDYO8Ceg8c5yfaa0Y7HIaqzT6z3OifA13tb/u4fgbz8EfoszlOMBzlt/lxwxMJrXHnh77OwYJxj0z42GM47rpx5uHDVXdxxIB+XN/ljwI+1YLLIPCCENGPiNOM6bCEZ1tMTl3BdzRbq8tIDCrPiKKI07UJHMdDpRmB76IzGwOEYRXXCbCsIoP5ToV1BEYINta3qPg5w9pKSapA2FiWh8g1tYkpXC9kvblNKSgxPbVAUKoXBSGFpNfr4Xs17t1f5cGjFRozE9Qn67iugzSQxzE6S0EpPv8Tn6MxOYk2gm434lvf/g73HzxCWi5hyUZhkfUTkrioOJykCmMozIp5UaPLIJCy2FOVKwWiCD+XoogOdIwgzXKUNsiBwBIYJAbXKTYnW1YRwSilRZplZAZ6SYqSEhuNCSUfvvcWL15o4JUlJV9w4dw8r753mzjXBOUAo3MsxypMj0IQ9WMaEw3yJKPd6vLo0WOqE1MIIZiansaWiosXFnn6qcv85//0n2lvRfS7htpUneXHD5iqlVhZWaHcmOH2rYd0Ol3mF6q4tk9jYoGlzZil9XWm50pcPm8Tt9oErsWp+TPYts2jhw956vI1PN/DDXyQFmsbW2h5n/duPqDZScixEbnAcUN6rTauW1RmXn7co1HxaW1vMlUPqdeqdLsdHty/y8Kpc3z3O9/hg49usjg/hWsbTs/M0+1usbLcpLW0xvSFPouXnkdpgdE5UspiLTw00zJg9WIoVgRmJ7P4QTicl43WpjqKKe3a5cTI96HJT4hx0vOEbe/BH23j+FX+IcQe0dauZirG+JmObPUTCNXDfFaHIB+Lu0fjEjvs50R0Hn76gO11TFuHL3YOXv2jhf9hfVxKGRzPY35hkX5cZI5wnBIqV0T9CJVlzM9UUXlOq93GtmxUmpOlEWHo09lSKMuwudmm2yn2YWk9jLgrBlUbaG5HSBJOz1fwAxspBEmSYvkCKW1u3rrHN74uUVlGK+vSbt+mUq0T+CWqtTqeH/DU01f42te+Rpx26cYRfuDzwgvP0drusL3d4fz5c1y4cJ5ev8eDu/fxwjL3Hy2xubWNZTkYYRHHikxrcgUGCyFtXNfCmCJajcHGWiEtbNshjhO0MdiuixASaUlc18J1bPJOH6UKE6AjwaK4vuT7gEFpg2s7JHlOpjRGCDJlIEpw0OjMJo9jHt27yeTVc4SezU9+/nNEuHz/rRsU5So1KlfY0iLqxSSppl6fJPA84n5MbmC73WVhYYYkjuh0uzxeekil7DI3M0naX8a2NMYkXLp0Ht8unosfVrh0+TLvv/cujXoDrQWvvvkuN+6vMDk3SZylvPX2ezR8lxeuX+WVn3gFYTL+xf/j/8n83CKWLcnzHMtxCUoVbDekWp8iE30y4YJl0+l0SeKUerVMP4uQwqbb6TExP0E/6nH33h0qlSrbrRap0vR7bUqBj8o1fqlEp9MmiiNq9RKhEyLpQtbCsydIMdjIgTXa7MYd7AiLQmAVzOtkef4OPzcORx+wkR0wEx1h2zq6bdjPDHfbPoRBnoiBDYXs6O+9QQli5/zJGOKPUnAd3Z44QNIe3H2BEjsCQxyCf6Df46g9Cv+Ido88Oy6Y48lwP8n4f6ozZ2hdaBi9qL+T7VspSNOcXqdLHEU8e+0qOk+5e+8egR/geR6WlERRn1K5QpppNrc6dHspeqhpDaw3QohBfj9BlgLCGmR/MERRDAY8z0dpxXvvf8Dc/CKO6/Jbv/3bfPTR+yyvPKLTb2E7glIp4Oq1q3zpy18CBK7jMj87Q71S5vrVK3z2hRd5+tJlFubmAcHbb7/Lu++8D0gqtUaRrkrYRHFGu91HG0m5XMVxPNIkpdvpkStFniviOCVNsoENWpDn+U4Uj207uJ47MBsWk9hximOObREGHlIIsjQlThN6/Zg4SdFGYESxoRljKAUl/vr/9Ze4cvkCjjB4lsXZ02f5hZ//n7h29RpJqslyiOOULC2iECdqVTqdPuVyjfMXLtBpt0izCEtoSoFPrRaQZwmbzXUqZZ/nnr3IN/7cl7h25TIz01PMzMxgkHR6MXGmmZuf5+q162RK8Nb790m1RA0SHc/OzFAOA565epWF2XlKQcjlSxcol8rEccz07Cy1xiS5ESgktlOYDP0gpNPts9ncRArB8uNVLp4/x1e+9Aq+V2xgrlUqPHzwgHq1gu86xP0uy8urbG126HV65HFa+MU6m6yt3mPp4Ye8/+a3iVqrWCZB6hx0vsuw9tVsEsNMFMPjgj0Rd7tgDvkcde64EvNQbAABAABJREFUwIXjrj+u7f044/CPO78f9wi6dsbp/w/jYf94asaP76cLPtWCy5LFHiHbsdFGowbaUhTFSFH4sLI0ZqJRJww8mhur6Dwl7vdJkpQsyymVq3h+ODA1DNeKu8UWDQyyRUDgB0xO1qjVQixL0+/1SNOYICyYfZpmzMzM0O+3+eEPX+X2nQ/otDZotdbZ2l4lSTv4vsfZM2ewpUXc77Gy9Ihzp09RK5WwpeTRw0c8uP+QreY23X5Mt58SRRm9fkK7FxFFKZ4foAxsbG7T7fYBSakUYkmLIoOBpNePB/vOwHFcOp0eaZrjus6OV3W4Qq1UKgR+EdSSpClJkpBmiiiKyfK8WC3JYTSSoFLy8B1FZ6uJpRW+7ZAnORPVSc6eucxf/sv/F+JEkCsbYxyMFsRRxtZWm3a7y/2Hj/j2975LkiVkaYLnOUw3JrCFIU9jHty/R6ezTRi4lMOgyHrheaw3t3jtjbf54OZd7j9aZ3pmkVNnLtCJcnIEthuysbENSF75/Od59vp1XnjuedDQXN9gerKO0YqHDx+ytd3GC0rUJqZ54613WV5do9PvEcURGxvrJEmM0TkzkxVq5RJxr8PMzARZXmwUn2w0qFYqQJHz8dy5U0hhuPL00/ieR7u9jdYp/c4mnpWiog0e3HwLmXcp+xLXElii2NslpdhJxyWk3LOoGPpupFV8hNz97CyJ932ENEeePy4iYdSvMaRjGDIOGmN2P2OZ3z5aDvZv9n7fI4TG4ZqDuCO+wSH8WbHhJ9YUPoZmcbTl8cl8h0eF5X9a4VNtKnQtSRr1yJRGCEOr1WKyNkGWZSilsC2J57tMO5PUZhpsbW6AUwW7RGWigSVtMjzuvn+fze02RTDGMKuEKbiDKYI0lC40vFJokyU9HMuglaLX0wSeQ3OzycbGBo16la986YvcvnMbozMsaUjTPipPECInifukabGXyZEWjhS8+cNX+bmf+wVC3+PDDz9gu9XGSInrBqRKkvQStLHwvBKOC9oIkjRDCIEbOHSNwXFcPN8a1ATTkOUkSV5k2khzXNcl6yfkeY42csCMigCOdqdThPIZg22J3chKChmnAZvBxmVj0DrHteHu7Rs8f3GeNFIEpSpRnOGVS4RlH+yQTr+LlUWU/cKs241yekmTJE2LFE9C0+/FPPfMDNeuXuOdtw2Z6pEmEVkck0R9et0Om3GfqB+zsryGFg4/eO1terHD1PwpeqnmwdIqmYJUZTiuYWqiyjNXnqK1vEyr3cP2PPr9iEePHnH5qStEccz6dotzFy6R5rcR0mLx1CIPllZ5tLRE4LroWKLThFIwwcbaMg/utJifrWO05tlnn0XonPv37xGWqjQmJrh44TyO7RL6Lguz59naXMa1BYuLc0gnJMt63L/9DrXp05y6XMOWJfJcDxNIHuDDw9Dh481yh8PxPOoQhIOWrWNgvxlo7808Ca88HndUPO3LkP8jllwnM8V+8rb2IhZm2qG/8/g2j7rp3edweC7JH7cna9j/jzaQ41MtuNqtLXSe4JdKOJZDkhXVfy3LotVpI/MeeRYTBC7t7U2M9BDbayycu4rnB0hslHbpRglxVlxnBtkgioeuAYk2hbbhex6BlyK0wvKLoINaOeDMqVlu3rjDUxcuMTs1Rb1W4+rTl9ncalIKfXzPRyuDLUAajZQWzbW1Ys9Zvw/a8Or3v8czzz1XZIs3EMcZSkt6/RQ9oMF2HKSQpGlGlmcYrcnTDCiCKZA2tu1gVE5gOyRZB60M2uS4XoAUOUmcFW1nhcDVFOa8YXirQmJZhcBWw5BpA8ZopDA40iKJFCpPmZ2awHMsPM/BsmyUsEhzg7Fcrr/wWV7/wX8DBNK2sGxDgECZIlrPtS0sqTm9MIdE8c5bP2RhYZZS2aVc8nn1e98niWK63R4XL1zg8aMlwnKdc5fP8N23/gMzC4ts9xK2P7rF0lqryPJv25w5VefKhbO0N5sIKdlqt/HCgI31JlevXqW5ucFmO+bB8ipTs3Pce/AQjWFqegolYGn5EfMzs6h6Rp4mfOULr/Deu2+z0moxUQtBUJgJKyXOnjmHMgLP9bl29RlAkvS6PH35At/73mM63ZhKo04S92lUPPpJgqV6OEKR5BmW5RWm6MGm2p0FEwyOfRKDyH4mIcZ8P5qRDC0Qu7/HqDhi5LjhgNlOiF3hchzf2gluFMfj7sUfSQv1MXnjuCwW445/vLaPaWeEbjFyzUl6PbZdDEKKnfE8OLaHd3ScOBvNCHLcGI3i/CjG9FMtuNKoh3ZtykEDjc1W2kZlKdJosjyjUSmx2tqkUg1AG+7c+pDFiy5Tpy5SDyu0t7p0kpgbt+7R60aAATUyg8TAJmzk4NkatIpx7YKpSGNTKXlUKmVmnp1lbmYe13KZn1nk7XdeZ3pyml67hwmKh+VYNttb20xPTzE7M0PUD3j3zbdYnJvn7bffwg18nnnmGfxKgxt3HvHm+7fY3OrhByGO4xean1IkWUKc9FG5ohSEFCtednIqZllOUCpj2w5ag9FFUEOea5IkJc/AsiSB76NMUcCyaLtIGCwHkZVCCixpg1KD/I0Gy9aUfYdzZ09z7twpdHcdy3ERNriBh3IdskRx/vJlXnvtO/ilAMvOizRRnoMbVoiihDRJqJQ8Tp86xez0FPfu3MbkGcI4zM3OUilVuHP7PoFf4umnrrGweA4/rGGkx8z8f8PxA9776Datzia5kERRzNxUhc+9+CynZ8ugchqTU2SpotVqsbyywnPXr3Dz1m0erGzywa07aPkhykCeG773/e/RmJrk6uXz5FnG6XPnUFmObUG/26M+MYFlWzi2gxQGpTSTk1NIy6UbxaytrWFb4JQ9bt58H893KXllHN+n1WrTaa2jU3Blhoo7BEG5yBm5Y5xmn5byCbjwGBi/eh/PmsSOn+0YCTIiaPY2t0v7nqCDE2kQx937QbPX3pRPJ4ePm9niqOPjcY+/ZnQIi4jSw+9lL93H9C33jdGBxcfR6vVJ7vKkY7F/vD+J1fJT7eOyLUHU7xBFfYxWuHaRjqnf76GNJoojHNdGiCLBa5ZFWJahXA4HmohFnObcuHmTTGfkSherk/029h1QWBb4vkW55ON7NnmW0u/1WJibZ2pymjTOsKTNubMXCf0ylnBRuaHfjUjijM31TbY3tyiXSkxNTHDx4gWMVvSjiJnZWbq9Ho+WlthoNrEtB60lnW6EkBbGGJRSZHlGrjW2Y+G6NgZNEsfEUUSe5wVOliGFXeQwtGwsaSGl2An1l1KilEJlxSZmYVkgBUZIlBFoIRDSwrItpJQ4tk21EjIz0+D6M+f5uT//dXKV4LiSOO2jdIYmJ9MplmcxMz9HpVbFcmRRfNK1sAaJecMwIIpSWq2ITqdDozFBp52wurqKVoo0zbhz5x6+F2BJh3ffe58Ll54mCCt85/uvkWSalbUNmtsdHq2s008KrTOOInzLIFTC2dMLVKs1PC8kzxXdbpetrS263S5LS8tMTk2hjGZqappcaeIkZmnpEWHJpdtap+Q7CJ3Ta7cwOuX69ad58cXn2G63ePb6c1y9co12u4PnBUhp8fDRfcoln+mZCR4+vs92u0UUp8zNLSIQBJ7N2cU5Jio+Ko1Ik/5AQAxW5Pun2gCG/own+cD4YI69eBzyOeg7Oo6W8W0fdu5ouo+/BnaCV9jPkJ98rA6jc2/b+z9Hjd/BTyGKjvk37HdIw5572d/37vHjxnfveWB0zu17VoeP9fg7GN7ZTh9jMEYXEzvzXIg9xz8OfKo1Lm0MvuvguQ6e5zBRr5LEPTCGNMkpex5xnLFlOriuQ31iim6nw907d7h0ZQbHD0hbCfcerJCmmkF2wt1FpgYGvh2FJEmhHHioPMO1i421cZyT9CIERXqniWq9aEVYyMGm2263Q2YEtrTBtnADj/W1FSxLc/3adbwg4OVXfpLJuXneu3WHVrdLp9/F9RzK5TIbmy20UeSpJs1S0qTIPej4PrkyBGEZx3LZbvdB2hgB/SgpwtgNIAVaZAOaNGmuEEpDnBZZM3QRHi3McP0vMcagjcFxbWyh8VybUmBTDl0sodjYWme23EClKb4DJc9GC4VWOdXKFLOzC9QbMyzdXkL6ipLvIoA4iomjwsyZZRGB7/PeO2/T723juQHrq2usraxgS5sv/OTnSdOMdqdHL055/a13+Pb3f0Bzu4USAhefJKeIoNQCnfVpbTWRKUx88QskqeDc2Us8fHCHq1ev8fwLz/B4dYNMFcUrv/GNb9BsbrG+vk4cKzzXIu12qZRKbG1uMDExwdbWBpcun0NoxaOH9/A9h63WJraUPHjwkPnNbbrdLutrK0xNlKnPzjEzPY1BkOSajY0NHNtGuD6XLl8mUhmd1hqN2lyxGRkbNchkMlqUsZh5J7QXFcgjX8W+YwM2sd+1sXNgr4azn+Hs72KsEfLQkP0xFxwGe2g6DEbp3CeYT9jNXuyjNLtxfiHBMLvJ8e0X10jGj/S4Fg5vdT+d5pDjB9sTjDyesR2MacPsH9+DOGJo2ja7c/awtgsazM51J69nPR4+1YKrVKtSLYWsrKxSq05QrlSJ+jF5GjNRn8QSCjeo0Ot12O7EZFowE05hCVDGYPkevTRlY6tV5OwbffkMYCTDiKbMaJbXO4T+BBVXY0lFBkw2JpmZnKRer2I5gjhLqFbq9FNFlOaErou2PIIwIE4iMgRzi6e4e/cujlUUUZybnCQ30I0T1ja3aPd6WI5DL0mwHU2t5tPv9xBWsZcoy4uEtMJIfD9ECEmSarSwsRyJyaMiwlIOwveNJM0LgYVlgaVRgEXhtzM6wpYGIyVxplEDtUyrnHp1EmlSsjQGMkJf0o9bvP7Ga6jOaZ45v0jguxgM3XYLpzFLnhkq5ToLi6d5fPc9oixDyhzL8nAsl1TCdqtNo+axubmBSiPC0OKpS5dYXJhnfW2Nl5//LHGScPvOXZ6+9gx//K1v8dqb7+MFFbJ8FSUFSb9PPzKo1FD1HByZ02l1SboJt+884Nz5i2Qqo9PpYrsuKxsbPFpZRSFIs2K7QLlUQQLPX7uAa9ucO3uOBw8fcPv2bYwwTEzUqFfLdNpbOJaL0TnbnS3W1taYnp5lu9tifW0V2zKEvsvS4xU8N8DxPLw8p9dp0+32aDabnH8a0ryPW8nBxFiyhNFOkYGFfGR1PiZf4DEg2CO5juGrgyWa2P29py2zK4x2V8sfc31sjjdn7eKaY3EP0jFCu9h7fk8ZkX2o48LB97a9l2mLA2N1vE9nQNKevzAwc430dfCWzYgpbL/J9XiGv/c+xEiMxuC72DdXhi0P+d+ov23U73ooFPPp4NplZI6NzgNT4B+VleM4+FSbCkHQ6/exbJtOr7sTEu84LuVyFdv2mJ6ep1Spk+YaYVmEpZDG5DSuHxQKlWWxvLw6yP22JxB49yOKFcvySofV1TYat2DCdpFU13M9PM/FdWw2tzbYbrdI0pRur4vv+0hpEYQhi4uneLy0gutVuHLlWcKgykR9GoxFpxvxxpvv8P4HH/F4aZlmc4sojonjiDzPaLd7ZGmGZdm4ro8lHcDCaEES52xvt9ne7pCkOVleVHbudmNyVazjkyQjTQuzoGPbKK0RAlzXxragFHo0Jqt4bhE/KESRQT6KIizbolQKcewiCCPNctY3mvSion3Nboy2lDYImyCocOnyNfxSFaUESapJ4ozt7Raddg+tIUlSoigmDEMc16Hd7fB//N7v0ep0+NKXv0KWKprNLer1Bm+88RarG02WVlZACCzbJUmL6tNZpsnzFMsSTDTqtNsRzWaTTqeDbdtFcVEM3/7ud9nY2qTWmMD1PD786EM++PBD4jjhheefw3NsZqYmyJOIfi/h1q17NJvrbG41sSxJr9uludHEGJidm6MfxXzw4U02t9r87M/+PHPzC9y6fY9+krGyuoHAIgjKLC6ewvND2q1tXFtidIZE7YzzznTbM+9+jG/NE3bxsYXWnzGMo/NHQ/vHZ7BizGf/8eNbeIL+jrnfI/1sO7bHvb2Ou4eDH3H0ebH3+5Pf2V54IsH1K7/yK7z88stUKhVmZmb4i3/xL/LRRx/twYnjmG9+85tMTk5SLpf5xV/8RVZXV/fgPHjwgJ//+Z8nDENmZmb4O3/n75Dn+RMTb9kOSkOn06XT7RLHMZ4fgLSIkgxpubheifrEJI2pKYIwxAtKRUbyOCLLFRvNTbIsR4q96uvuCkVitEQbyJXh3oMtlpY32dzqYdsB/X5MrhS1ag1pCTzXQUpN4DuDEiAZSdTH5IpapUzUjckSheeE2JZHtxOx0WwRhGVUrpHColKuIqXEtm2EEEirsDcnaU6a5sRRVuzt6iaDvVE9ut0+nXZEu9VFCInjeigNWWYQwkINgk60Lh67LQdtCwgDh0oloFYtMzFRGaR9Mti2Tb/XJ4szjJHESZFnUGlBqxNTqTVwvBDpeDxaXsMPy3hhSJIrOr2U6899hunZU0jbR6kierHTjYiiBMcRVCp+scoTYDsOH964wdp6k1KpQq+fMDO3yNNXrvP6G2+SZBnGGPzAp1wuo5QijoebwC3CkktQcjl79jRf/epPUiqFtNstVJ5Tn6jj+T7vvPchjek5Tp05Rz9JWVldptdt8Y2vf4Wf+NxnUXmKhWayXuH0QoNXPvcsG2sr3L9/F8uSpConSVMsywZjMT09T6fdZ2Z6lgePlrh1+z5BqYKwbFbXm9y4fQelDL4fEvUSpFb021vc/OB9lh89KpZJg7IUO8EZgoH/5ihmubsK3+tLOQzX7MPb9VGMg3F+j48LT9LOuACCw/w2h117aHuHtHEy+vbSdZL72dHyxtD2ZGNy8HmM7euIcRrX/6E077/+EPKO8g3uIX5Mn590TsETmgr/5E/+hG9+85u8/PLL5HnO3//7f5+f/umf5v3336dUKgHwt/7W3+K3f/u3+ff//t9Tq9X45V/+Zf7SX/pLfPvb3wZAKcXP//zPMzc3x3e+8x2Wl5f5y3/5L+M4Dv/0n/7TJyI+yxS2kNRqNdIsJ9eaztY2oe+hjSw2FuuMaq1OP+liZcUGZW00cRqTK5vvv/ZDcr23yEMBe9cR2lCY0GxBs9nHt1x0lhB6FqVKBdcrctphFOXQxwiJ53ukSYRWWVHQMs1ZWFjEcX2yLCcMS7iezfsfvod0Hba3txGDTdWlUolEGUrY9OMU19VI28HYkna7T5oqVNZHa3YEnONIOv2cTBvCko/tWMRxjuMo8iwnVwbfs7Bsm37aRSsDKCYaNTzXQlpQrZbo9WOyblGEUxhDkmQgir1sSZIRBg5pFvPuBx9x+dQCSktu3rnHxKkrWEISpwplXIJSjTNnL7H+8DYSQ5ZECAS+75DEWZFo2Pd46aUXOXv2DP/m3/y/qDVqbGxt4QclyuUqV5+5zm/85m8CAtfx0HkR7SalTegHZGm32MxraWzbplIp8eJzT/Obv/EfcdyASrnGwsI88wsLZAYyA51eTBQVe9pOLZ7iJ3/yFVqtLba3Ngl9l/npKe7evkMp8DBGEAYV8jyjWq3S3m7z8MES3W6P+sQkjx+tMjczx51b99jaauL5DlGS8NHNR3heMXckgk67TdTt0EnazM5cRGUZFgYlB/XfRmqjFcZCU5TWORT2h24fZ2YbxWewqj7kgkOCRD4ODJnUYVWH9+IO6BrDaA+vS3Yy+sR+P95IW8e1vUPbmPPHCUxxxDX7+z6UdsGJxvAo2vbf30me535z55P2eVjttJ3vn0B4PZHg+t3f/d09v//1v/7XzMzM8Prrr/PlL3+ZVqvFv/pX/4pf//Vf52tf+xoAv/Zrv8bVq1f53ve+x+c//3n+63/9r7z//vv8/u//PrOzs7zwwgv8k3/yT/i7f/fv8g//4T/Edd0T09PtRVTLAbOzc/R6EUYX4eCV6gxJv48twZE+lpMxMdng1u27VPOcXr+PDGJEWOHGjdtowW5SeIZ/d1e9Q+FlEAjLQtou/STHdTS2MDQ3NvE8j3t375LEMWEpII4SlDK4jkcl9LGAuNvDsQTdVhPIqNUqOK7FhQvnufXgHjfv3EIZTZ7n9HsJwvWI4rgQHIBtObiBjxAOcZxiWRKVFUUu81zhOFCrCZI0Jc9zpBQIWRSY1IMsGsYYbKuo7GxZAtezqVZLpEkfpRN8v0RYcul0Y4zRBKEPpgj/LoXlwjSoJWFQ4t6DlaL0hxHMnzoLtkenHxMrh1Rb5FHOyz/xZV779h+iTIKw7AEzl+DlRFHE2fPneea5Z3n8+CHN1ja+49LcauH4ATMLp4j6PeIkIUlSSuUKnrHAclEUQluKHr5vYTvwzPWr1Caq9Ps9DJqJeo12e4vzF87Q6XaYmZtjo9liffMhQmiqlZAw9Hn//XeZadSZaEzQmJjgzdffBFxsKZieqlGphKytrzE/P8+lp57isy+9zP179/lv3/oORZimZnVtk82tTYTMeerpp1g4NYkxRRHK1tY2aWKwLYnK+qg0J7AG/tNhNn8xstdm4BB4ktf6iQSL2J+wdt/pMWc+6Qr5ZNcfLkBOynAP83HB4YL6+LZPnpPvQJtj6DpZn7t979f4Ttr3k57fEaJ7/FGw33R41LUHBPFha6NPuI/rE/m4Wq0WAI1GA4DXX3+dLMv4+te/voNz5coVzpw5w3e/+10Avvvd7/Lss88yOzu7g/MzP/MztNtt3nvvvbH9JElCu93e8wFod3q4ns/K6hpxkuzkFcyzHIQYpD1SJEmMtCTdfrH3yZI2UlqsrTV5tLTMoCjwvgdqAE2x00YPDS4kqSY3FlFsqNQaBOUy5UqVVqvDRGOCyekGUhbpeZTK0EZhOzZCQLu9DaRsba5gyEjSLknW5813fsgf/ckf0myuo7VCCqjVq6ANjmNjWRZCQpLE9Hq9oshjYdsECo3Lshwc26FSKVOv13AcGymLzcSWXQgqxypqeEVRD8sC25aUwhCjc3KVkucpQphBKq0ilVFRLqZClhVh9kJKsjwnGWx83thskynBU1efpVydKMyCRmA5AUY4nDt3kSCsILCxbHewr0Rj2ZJS2SfLEv7kW3/Cd7733SI8X8MXv/hFhBC4joNSBtuxmZ2doVwKcB0bz3Nx7KLciiXAtqBSDvgLP/ezPHhwn9/4zf8vti25euVptFJ0ux0eLy+TZorV9a0i4jI3lEolOu0W77/3LrkyTM/Oo5GcPrvIhYvzdLt98ixHSosozrh48RIAtVqdr37lp1C54fTiKZ69/gyXLp7lxRevc/r0KS5cPM+169f43Oc+V5g2KyVc18WgmZub58yZ88zPLxbVqotKksBQO2GQtcQc/xH7/h6He6wJci8MQ+o/qdAan2dxHHyyfoZ9/ejhk9P1qer7E3R5EqG1i/vx+/nYUYVaa/7m3/ybfOELX+D69esArKys4Lou9Xp9D+7s7CwrKys7OKNCa3h+eG4c/Mqv/Ar/6B/9owPHF0+dRRtDlmukZVBpghqEcReaqCmEmKUwRjE9PYUfhJRKRW2m9z/4gDt3H6IG2tbBSV8wlKEGlmOKsHhl8GwJ0sbzbJQ22LaD41ZJ4j5CQBAErK9vIKUkSQoBsr6+ikCBSFlZWcaxJf24T6e3jbQFpXJIP9NIW6IGxSQxEAYB2iSkmcGSFnFcpHvyXI+UHKU0lmWjB0JaG8jzbOAns3AcG6UUUli4rku32yvKn6iilInAYJQiVxq0AqOxpCDLNJJis3Lc76PyGM+ugik0TccJCMtVhOWS5YYsyUmFRiPJlEIiidMMIe3C1JjnZFlKqVRCq5RqtcTy8hKdjke1VsVxHJ599hkajQk2m03a7S5g+Jmv/zm+//prbK+s4XglPMfCkpK41yf0PCyhcW2J4zo8fPiIGx/c4xf/l28QR32yNGN1dZW7d+9x78ESubJw3JB6vUTUj5AqJ6hVeO31Nzh79jwPltbYbEesNYuSJsP5EvT6NJsbOI7Dq6/+gHOnzzE7M8VEvUG1UiKOaziezZmzi6xvrOFYFnme4Lo21fkZbCkISiG2X8KyPWzXJxloa0jr4B6uE6xyh3jwBExgRyg+GQwZ0pNkqh+He7QQfFL8w+n6WObEHzFtPxrcH60gPs4vt9vlfn//QbxxmUYONsoB3CH+J1kQfWyN65vf/Cbvvvsu/+7f/buP3flJ4e/9vb9Hq9Xa+Tx8+BCAICxjSYdadYJKpVpUNy6HOI5dFIuU0Ou36HRabG9vEUXFviE0ZHnO8tIq/Sgv0vQVxmiE2D8kBXMxFBWScwO5kjheCWE72J7L1NQM0irSLfl+yNrGVhH957iYQVFG33cBw2SjytLSfdY3Vrh99yZ+6DE9M41tDSoRC4PrFeZSZRSlUkilWqFcLlEuB/i+jVIJUdQnyzJsx8YYQ5plaKURQpDlKVprtM5xHAulcqBIvOrYFq5jYUmBENYgOGJgHDLFxmTP9cAUkfNJ0kepFGMgTTS9dockSej1+qRZTq3eYGJiim4/otONidMcg4UGFIZcGfq9PsZo0jQebI6OCUMH33eIkx4XL17gK1/8EhPVKs8/+yzCaJYePaTku/iOQOcx5dCjErhIo+h1tkmiLtJofEdy7vQ8jXqF3/7P/4kszXjpxWfY2txie3urMM/lOa7nAzab2zF5Lrh25Sq+5zFRrdFqdXj19Q9454NbbPUy1rcj3LCOdEu0Own9fsr83Cxra+uYQfXj3/2d3+b5Z6/xzLWnKIc+lTAg6rZRaYzKYjbWV3Adi3NnT9GYrDExWafemKI+PU8nVsQZaEShge68v0M/zI9DaxiF430qxd+TMZcncvb/mODH1f5QC/6z6m9MT0+G/aOgS4w8O3my4Jg/E7pG4GNpXL/8y7/Mb/3Wb/Gtb32LU6dO7Ryfm5sjTVO2t7f3aF2rq6vMzc3t4PzgBz/Y094w6nCIsx88z8PzvAPHoyhhZrKGFKIo8BjHeK6F1hlGZ2idkiV9tIhRKkcYcC0HtKbeaNBqd9B6ZNPC0OWw35HLUCODzBi22l1cyyFXNaRl05iaxggLIQRhycf1AsrlMq32RzSmpqlUq/SiPpVqmbXVbXq9LisrSzQ3N7n6zDOcOXOG+0sr3H24RLVUIVWSKO4SJxmVqoOwLHyvSKJrTBFc0un06UcdjJYIbISwyFW+Y3lyLIc4LcprGCBN8iKAQQgC38N1LHSuUbkusmeYQnCpXO9EullWIbwC3yYIBFIIfN/GtS1sYciynG63hxEzGCNxbJfccrGMje8FqLRP6PkYo9Eqx5IgBQihsSzD1nYTVfFI4pjlx0t84ZWfJE1S5i5M886b75IlfWZnZ6iUfLRKiHodltc22eolpLkDypDGEbYU2Jbgo49u8o2vfplrT1/g9Ve/zbWnn+GZF14kTxNwbX7n979HFIHjaMqlMr7nMjU9TaVW49HyJm++c4tWV3H7xjLPXT/DUxfPonJNlGRsbm0wOVnHcWw63R5h4KHyhEo5YGN1hTyPcSQ40tCoVVlfW2Vl+TEXL1wgy1Icx2Jta4uz008xWT+FKdVIM2ug07PjWyi45K7Ddf/7PrpwFSMC78n5whEXjPg4jtJkhmbE0RX4k2hIY3FH+h0N7Ni/yh/nIxq9ZjSYYYg36uM6rj7UcdrEUX6infOj+8iO8ytxcDwHGDyJ8Nrfzzjf07FCZNSvdUIf17CvA+3/9+DjMsbwy7/8y/zGb/wGf/iHf8j58+f3nP/MZz6D4zj8wR/8wc6xjz76iAcPHvDKK68A8Morr/DOO++wtra2g/N7v/d7VKtVrl279mTUC4HrBsiBz2p1dY04SsjTlDBwybME2zZ02lu0trfQSpMkCVE/wijNo8dLgwrBo00OtI/h79EvErQQ5Bo0Fp4fMjU9x+LiaYKgjOuHdHsRShm2ttu4vo8fhGR5jh94tHtt/KDEM888z+TELJZ0WFttMju7wOzsIp4fFlrQQHaksSbLilpaCEO32yZJ+pQrAeWKj+sW6ZO00WA0jmXjWDYYQZ4XwshogxSyCMwoEhfi2jZGa1zHotft4TreTlooyxqkeHIsjAHLtghCl4mJEpWKR71WwXUk9VoFy7IJ/JBqpUq1UmOiMTnQMiFOYixL0O22ieMIKcBxJKWSQ6Xso1SG0Yo8TXnzh2/wJ3/0x8zOzNLcWGd1ZZm5uWlUFpP0O/zw9e/ju5LAs/jpr/8Uz167gmfbJHGC73psrK2yvbVFnmbYtsvpU2f5xtd/hvn5eTZWVomTmFqtxukziwSBDybj3r17bDe3WHq8wtzcPOVqjW6c8db7d1jaaPPOB/d478M75NomSRV5bpDCQgiYmKiRZBFra6t02tsYnWFLqFfKNKo10ihCpSnddpv19TVmZ2e4eOkijh9Sn13ESJ92N9nJcoLYTevD4O/O74NTfuQjdo79KEEceB8Owzuc8Y8eO+xzVMfjcMf93v/3MPzR1ERH/d3f/+DXIcfHj8lh9ByGf3Tbe/nRUXCUgH0ijWkgqI57ZoeN/wjCoXR+Ui38iTSub37zm/z6r/86v/mbv0mlUtnxSdVqNYIgoFar8df+2l/jb//tv02j0aBarfI3/sbf4JVXXuHzn/88AD/90z/NtWvX+KVf+iX+2T/7Z6ysrPAP/sE/4Jvf/OZYrepI4i27yJSeJpTLAVmW8ujRQy6eO4XWOVHUpeRJjNGUyhW63QyjwXZc1tc36PczpCWLzU17FgDFZBmbyMSIogx9nBEnGXPz80w0GthSECd9vCCg02phWzZ+ELK5tUUQeFTdMvfu3+fMwiJzs6f52p+b4fy9O/zb//3f8uVEIaSDUkXmdyNcHNvBsYvaWsPAiCQpNgNnWYo2OZ7v0JiYZnlpg2azhZAu0rbQ2hT+KtgJ4hgGMbiuQ5om6FxTqtZxHUGn3SNXGdK2BoLT4DoOAo3KU3p9TaVSIktiwsAlyxRCFL6vbq9bRPdZFlCEzIPAkgLbFihL4vsOIu0jpSQIA6SEuJ8RlFxcz6Xf7yKNYHtrm61mk4/UB6A0pxfmiXyJQGHhUPI9SmHApUsXuP+gicU6nmMxPztF4Fnc+eguQrhMTc+Spz2WHi+xtd3iuRefZ2VllZeef4FO54csPV5mq9kkyzKSpM+7731ArjR+4BElhuqEz8pGm27nAy5fmKMUCCYnfJIkIY5jeoOgpLn5wjfrOh6Bb2E7FtKWLC8tIYQgTRO6nQ7dbo9ypUamDFGiUNLGcQKSgZQaptraXdmeXIM68Sr6ScAc5DlmjPbwRKt4DjLpE3V8zHVj2zGD43sNJ4OmD24b2D0+qnENGjokou9E9zvyeSKtaQ+u2Tm6p+Gjrj+Gtp3ze5jb3n6GKDtN7VgAxmutxz3P/RruYSbYk8ITCa5/+S//JQBf/epX9xz/tV/7Nf7qX/2rAPzzf/7PkVLyi7/4iyRJws/8zM/wL/7Fv9jBtSyL3/qt3+Kv//W/ziuvvEKpVOKv/JW/wj/+x//4yYm3IY4TXMchz3Oq5RI3b7zP6blJAtdGAnmWUy5VCcploqRFbgRIh1JYx7bdovaU3m3T7KTbKXIUsidtyUDtQpBkOdudlG6U89qbr+NIw0S9jlEQhAEIcGyJLcC1bFrb22xuNpms1+n1I9bXNimFDV546RX+5E9fRXo+2thkeYYWGcKSeL6D1hrHlnTbPQIvxLG9nXRFwhJIV4INlmsRpxlJN8WSFp5X3FuapliyuIVS4BMGHq1Wm3I5oFoNUErR7cbESUKpUibqR2AMKlOUwxDHLpLzBoFVmB/jmFLoY9sGjGJ1fY2trSapMlSdaWKlEbaFLTS2sCiVqtiWRZQm+J4EyybXCul4aCFQylCpVsk1NNtdMgWPHj4icKHkGkze5/zp0yytbVAqlbl/7z73ljfpxX0sV+K4cO3pyzx37Qr/24P/N3/6re+RxjHf+NorNDc3KVfKaCSvvfYa9YkGX/n8M3z7221qZZfH7YxHy6s4bocoiinZgkrosdXq4tQLk/KdBytM1h3qE2fJlCbq9zBGIoTNRGMagV0k2A0dsqzPqVMLLC09xg9C4iTDsM3ERBfXq+K7JbJUIyxnkDcDLMSB/VrjUuEcHxx/tOllj5lsD+7Blguev495ipEehpEkomhLjPQ/lknv/BzmZDyq973ndpaPu52P2LB2/wgMciCsxMDUPfrqjtK4e58Sdoph7qWsYLJm7HXsP2Z2qQWKPXli2N5oGyNuiZE7HxUZxX78/XTudHFg/PZTM1aRPfBjZGx2LhyMwR5b9MipMbC/q7H5B0dveeSAMQYxynifEJ5IcJ3ELun7Pr/6q7/Kr/7qrx6Kc/bsWX7nd37nSboeC2ka04s7XDh/kSRqk6QReRrhukW9JznYxmlJG8cNOHdxhmq9SIDabvXpdntAEZCgdZGfr3gRJWbMZMYUllVjNHGiWWv2WW12efuN71ENXM6cPsPjR8v81E99jclGDWnbiJ36WSlb21vMLy6Q5TmW5VCuT/DiS5/j9bc+4N13btOYbWCkIM1TQOA4DnmuCAKnCOEXRQCI0oY0zYjTHKu9TaYyvJKHsA3SKZLxGiPIshRbShxHYts5QVAkI7YkCKkRElRaRCUaJP0optPpEQYlapUycdxH+A6WZaFURpZGBG6JIAhwbYi7WzxaekCmnkdjs9bcwtRqpFqR6xyFw81bt4s9Zq6LJidOUtI0w3Nt4kThSENFOqR5xo3b9/AQOCLnyoXTVEs+tVqJ7VaP6clJLj59nf/9P/4Wy6vb9Pox0jZYlqG1vUFrc5Mv/uQX+d3/44+J4m+jVI+vvPIZJqem8CpV0BoVd/jcC9co+4ZUC5IsI80Ua6ubOFJw5eIZLl+9zN0Hj9naivCDkLt375CnCeub2/gLDWr1BjrVTNQmsd2Qa9ef5+VXXmFp6S5vvfEDVtZWKVfKCGGR54IHd5dZmD9HtxMRVAt/rO3YmMzsvLwFzyjmm9hh0gfZwifRqvZcOmalvWc1PKb3ggEfLL+yo5OM9b0dQsthdB04OzxSHJPsbBwY3+5Qpg0Z/B4l5WDQi0DvEap7wewIr5PCiDxnVOwV381evEMUqMOG7gDOuGcwPH+Y8BoT9zMs2DT0a+/pzYj9Rw4lyozktRwP+8fyOPyj4VOdZLfb6/Lw7kNmZ2bwPRvbkszMTGNZg0AFS6AyxcrGKmJ7m+deegXHdciV4u7Du6ysrKG02eMgNzuZjg8mgRwe1xQRi0srTb79vTeZKCna7S7dfkq71eO//uGf8tTlS3zmhWepTEyQpREKzWc++zJhqYTnuXjTJaqNBgoFUtJuJyi5SVjxizhGLYijlDRPMKbIT9hqd0mVxnEdVK7RStPt9ov9a6YQdJbjE5moqJ012LeVK02jUaNcDgGoT9TY3u5gjCEIArQ2BAJ6vQ69OCbPNJVSFYmFUYZeN8b3ApIkwZUenU6bWsVDqYw7d2/z4UcfcvnqcwSlKlu5AqfYd2bZLqVyDWMoaoMNyq0kSUqe5kUYu5SsrGwU0YetjKlqBZO2+V9/4eukcY9yuYy0XcJag/tLGyBE4aeMIuRgT1i5HJCkEdPTFer1Co+XVnnttdd4+tIZJmenCQKfb3zja/zav/rf0DqlUq1z6fQFhBXw+hvvUCrF6CxnYWEBx3b4qa9+hf/yX/6QMAhpTEzh+y71qsf7H35ArVLh1NwCM5NThEEJL/AJQp/TFy/h+TZp1OXBg0ecP38B3yvxX373D/A8l8ePHjIxLakutMGdRggPOTRpDViPGbLofQvf4dz8UcHxbR3QwXaOjbKfUQE3vI0fdfTYHhLMUPsYL0z2C1xx4OwnCwg4ijZh9uq0+/sfN6JP0PxeITFGod3VuMYJ/lE69587TH+TT0Tn/mCYk+B/Esn1qRZcElB5ihBFVeEoipiZmSHPM9Koh+M5uCWXRGf0U4XtuCilcXyPTG2T5inSEkhTlKvftT6MqvhDJjKiNwvINPRixc07G1y5OMXsZImtbpck07z70R3uP94gKE3w0z91AW0E/dY2z7/wGdKoS5TGWBKyLCYo+ZQrPhMNj26ckbUyLMfBkj5JoujHGf1onXK5Qr+f0utHlCpFEcJcafIoxbY9kIXZTeUpnueSRAm2JXF8lyBwCTwPx7Zx3GIMhjWqihyLRbif6zlUZYnWdkwUxVjCIuongGBuujC9uk5R36zf61D2HDzf5dHSYypTiyzUn0ZaIQqJEYI001TrE3R6fUq+wrWK/WxZptC5xpIW4NHt9hCWRdzt0Gt1qAaG77/6A+ZnGoTtkLlTZ9nc3iJOE5IkwQwKRUxP1qlUJLlK8QKb9ZVNyhUX2dRstlrcuHOHlz77GbY312lvbeJIyf17d7EdH2UsANI0pdXq8Pxzz1KuTnL71m1K5Qqd1jbLSxtYtoOURRLkbjfj3fdu0W11mfr8NO+99z5eqcREo0a5EhCGFdbX1qhUJ+hHKWdOX+Bnf+brlMsV3njzLUqhh1EpWmUIFFLYAy1GoClSQwmGpqtd4fVJHdlDOGkbhQAYn47IsLuiHzKqnVz24ug+xkWdncQfsxNtN0og+5lwEfV6OByMzhvX95P67XZ7H2rMo9cOtZiBsXBEsB/X9k5pm2PGtEAyu/3vU3/3a8TjNNzxrZ9MCO3sphlSvef3fmPo4JjYj/fk8KkWXIEfMDMzie+7pElEa3uLWmUez/dYW30MWjE9M0el0WB9q1WUApGyKKhoNLlSKLWbE87sTDQz+LW7thyaD41RaCGwLEmuoRtrPry1SpbX0HmPqJ/T7oCgj+KPcewQ31bc+PAt/nzwNZrrj9lqNnnq8jU0Ci/0qdbKTE03qOSazXaHTqcoCJnlYIQkiTOU6uC5DlhukZ/Q8jCJKl40x8Jz3SL/XpZjSYNSGY7joHVGnoFXr+B7Po7n8ujREkJosiwjzTLyPCPJiijAer1aTCpt02l1UbmiVg2xpc1ErYYlIc8TVBYh/ABQBKUQYzl04xxTsjFY5EpjS5BGcu35F7j94evYRuBIWeQoDEKEBoNHrlLSOCfuJkyUbRam64NCjzmlaoVXX3sNt1SlVJ9mZn6O24+bCARK5UzUp2m1t5lbmOH8uQsIW5KbDmHJp1qfINeax48f8t7bb5MmEWfnzzC/cBo3CImTHqcXT9Hc2GK71eHx0jL9XpdTc3PMz0zz+3/4BrbrEZQkWZoghWar1SXwNljf3ODR8mOav7dFtVZhY2OVz3zmJaanG1Qnpgg8H8cLeP7552m1WnzxlVdYPH+ZjdQjDl2SuKgobZSGEQE2dGiIEXvSKLP7uGHExwUX7An/5nDmujdoTOzBP0n59sPaPQx/r8DaMVaOpWV/0MheevZqXEP8/eXkx0XKHXtfg/+GAkKIUeFePEvDvvES+yna3+bA2DiGjnE6lWEYdLK3RbmLckih0iOIOAGMD3Q5DPmEeCeAT7XgCoMAtKLT3gKtSLOUJE2wLEmn16Xf6+D5DpPT09iOixACz/fJjCJXOcbsd4uPOlB3NbBRI4mQRd2uotiiLJLnorBcHylzRKrItUHl8O7790jj/w+NiovK+rz8+c/QaXdYXFzE8z2kLWm1W0WWC1sW+8xcD2HlpHFKnhevqTYQxRkMTHda5yAspHSKMiIGsqzIXK6VIolS8twAGY4tyfMM27ZxnCK4osihV+QqBIXj2kRpjlEaYzw8x0bisJ3nGA3lcrEXy3OKTdQq00RJjtGKJI2YX5jHC8pobLSwQEhcy0GnGZ4X8MJLn+P2R28TpylG52ilSfMcgQVRTqtdaL6eH6JNTrlaw/MDHj+8i+sGbG23STbbbH1wG22FqFyTJIrNrQ4vvnCZwNW8/8EHPHXpKZ57/irzCzN8dOsGfilkq93mvffeZXVthcmpSbRSSCGZbDSIE81Ws4lWFlBUZz5z5gxx0qdWK7MwV+Pug22kLalUQvq9Lq7n0+v3efjwPu3WFjOzM1y+fJk33niD06fPcvbsOZA20i4022Zzi9D3mD7dwA1cWmsbhKUzDPc8WFLuboAfzDMhhsx3d/btnB1hzqO/TwInDcseUHEI5uFc7kAk2onpOuY8OzoLB3wjY64dLyAPalz7cY4L9z4U9vj39gdWDAXQXsSdsTq65UNpHe18V2jtCtH9tA0P7d3/dBwRo0bho6Xbrja51491AIQZwT+yySPhUy248iTl1MI89+/e5tTpRSYnG1jSKvL9WXLH19WPYjCCJElJ8zaWP9C6tN55JMXfEaE1gP2GkkE6RDSDciGDlFPV2gS+HeD7LSBGG492q8P9R2usSMNk3WOj2WS6MYEfhIPIQ8Ha+jora+vkeZG2ybZt/CBASp/19S7SAktKpIRUZagU0hSC0AMjBnWtEkCilC58dtoQBBa2JSiHIb7vYbSm0+2w0WwWuQ6FwHYkQho82ybUHlmWIiVok5EmGa4nsaWkVi1jVEaaxdQbE0ihcGSObRmeuXKF+cVFwsY8HeOTaIGwZLEp3PGQ5Dz99DXm5k+xuXIfdIqFLPZFWZLt7R6dbobvOxiZ4/gCPyhRqtS4/uxzeI7P7/zXbzGzsMh6c4vV5gPyXGFZ8NRT5/jqV7/K3dsfsrT0kHanQ61S5fr15/j9P/oDNjY3efToIauP7rEwO4NrC9bXVrlaLqPSlOnGBJsbm3TbHebmprh86TIba49oNjdYWX6EbWump1z8kovt2kxNztOoVWjUHHKV8uUvf4Esy3n91e+zuDhf+PG0IAwr3Lp1E1tKHj24z+dffhnHsYkU2FKgVYZjBygFe+ID9sAuu/7vEfYywFGGbMZ4h/fDUWf3c90jBOWRffxoYf+CYT8hgl3tZahxHa6oHafiHC9wx2ObsQsOeRBx8HO8qXS04VHhcvB+zF7ZdhSNYv/YfTJ/46dacKVpSqXsUCoHJHEfx7bY3tpkc2OV7e11ol6P1uYWM7PzWF6A7ZXxAhedpGxtbRHFyU5bQwv1jrnQjB4H2Bu6abShSGpkENLQ73eQfk6jXiIM67S7OblOKfseJukipIXWcOr0GaJup9hsjEUUpWR5TpYrhG2hhSwSsmqDbUs0BtfzCrqEII4ywtAhzw1KgTaaLM/R2hRM0w/QboaUglLgUy6FGGOI+hHtTheDQcoi1ZPWmixLybIEMDiOxPNsEscmjaIiO0SWE/U7yEBiVFETS+c5gesxPzvFM9eeoVqp04kyZMlDWvbOZJdCgnCYmJxldu4UzeXHoDPSNENriTSaJFVYtoNluaRJglMpEUUplu1iWQZpe2xtd7j2/AI9ZbG2FSFtg+cKXM/j9//gj3j44C5SaL72U1/E5DkrK0s8erhEpVZDYCgHIX4YUC2XyLIc3/d59Qff58LFp5mbnuH+/TXifo/33n2bdrtJGF7FoLEsjefB9FQNBHieS71e4bMvPsPnP/siloC11XWifo+19S1ufnSHSxcv8oPvv0oYetiOzec+9xOsr6+ysb7BBzfvUFm4zISawpssD+aYOMinRrWKQ5alT+InOgnsaeMYnjLUKsaZrIo/Hz9ibOyt7BsfMcIsd8yUw/+O6PjE+5ueGGeXWYxqXHtRnyRwYRRfMF467O1H7Dk+YiPafSRj6S7uZ6+JdVRN2xXYB5+NGRlvsXNs/z65I8brE8CnWnBJKVEqZ3OziTU5SbVUprm6TBh6nD19BktAnin8oESnn3D/3n0uXnoaxzE8fPiQOIqRUiKNwJiRilz7lhZDD9jA/VBMUECKwq1u22CLnJJn4TkSgSHzYXKygu94tNYTgsAjCEO0LgpgGiS+HzK/sIjj+EBMmhaZyF2vyD9YroakeVFnKsuyQTbxjKifIKSNbXmkeY7KCy3L81xc10UpgUTje16RCivJ6HZ6OHaRPqq5uUWpHBRpsERRCkYO0jvpQUZ6z3VASyolH9excGyLXFtUy2Ucqem1mpxePE21XC2qTcspNrOh0FKFm1oUWm0cKdrtGIxNHGXE3QzHsZCei+U4ONLGKI20HHzfp1Ku8XhplQtnFrEdH8cNuHHzDldfeJHvvvYeUaTQxvD40RJ370Y4jmBqss56c5v2VpN333mXUljC8/yiQKnvgbDJlObUmXPU63UuX7rIw8ePKIWS5545S6ff58ZHN0jyCNe3SbOMRqOKMZv0OpvEaYbj2CTdbWqB4LPPP0MU9ZlqVPnyF36S/9v//Z8zPTPPvTt3ePToAbValUqlwg9e/QHt7S2uPH2NZnOLjlnGTGyxOGNhMvY49aUo5t4OE/jYjPTJ4KCJjEN4S0HbYFPIvnNyty0x6h9+UmIOOT5i8hoR2TsnBMVmxaP1s6PMnJ9kHAceyh1J8fH3Jz1Jn0W2y+Hs2TUda3a1rOFdjXumBT/buwAyQ2k0xuS5a57eG2gyhF2hNbz28MRMo37AjwOfasFVpGsqynVEvR6L8ws8fekp0qSPQKFURlgOKZVr+IHi7ptvcer0ebSIWVvZIE8NtrTJMRgzbmLvsJDB/4PXxgxfYIUtDaErmKyHXFxssNVcw5Zgux4IRdyPMCbHcQTZoHpubXIGzw2QlsPS0gpgIWQhrIyBJE1JM43ruaQqRlqCeqlKniu0FrRbHYTIMCgQEt/1SbKUPFcYbXBsh8C3qVbLxP2IPM0HqaNsVJ4NMmN4xHEPERTZOYw2CKsINcdIatUam80tapU6ltQYnWFZFp7rI4Qm6bS4c+M2z127yvb2Nla5Tq4VRuRYNkihEdogLQvLdklTQxRl+I5PbquBi6dgcMpo4ijC5IqNpiEIy7z+2lucmp1na3ONs2fOo22Xd979ANvxgJgw8Ol0I/zAwQgLyy2zvrEFKqUSlrBnHLpRnzTLWFnfYHJqilMzc9RKxT60CxfOU63U+OnTZ7l55z6/8Z9+i9WNDpnW3L33iFLgUiuHLC7M0Ov36fVikiTGkoqH9+7zg+9+lwvnTrOxHuN7Jf7Cn/9Z5ubnWV5Z5/zp0/zEK59jfn6eDz74gE4v4u79B8RJhq0FnhOAETupuHZWzCMaRDH9Dn+zP2702zg4cP2h/odB1YW9es7uRQOeZ/bfxzEgDWgx/j7kPmVDjNA2DKkeiq4iAOLwfo4+98m0sYJfm52gml0GPmTeR5s9D6dz2MauyBYM5YrYoxUNNShrXz9i3xiOLjL2hrvsvaHddoeC+DBtkn3nxb7f+88XOH9mKZ/+e4M4jqlVSpw9e4Z2q0W302Z6ssHycp80TYj7ffqmj+eGTNQaLM4v4Ps+Xhhw5emL1L/9DlE7wxy6g3vkAYxMxOHjtqRhdrrE3JSN1Alpv0MadTDCIckMre02SaQol0LyPOfd995jZrJGvVpjft5Hk7Kysg4UwQGOY5GnKVmekSuNkF6R4891SNIEo8FxHMpljyzVZDnESYbn+zg49PvJIJOIxHMLOuM4JooiMMV4ZUoXfrE0xXHcYmOzVSQptgeBHBiNRNPvx/R6EVOTIXE/RuWFmU/lCgxsbW7R7/Xpdro0qhaO5ZIJSZonWHaRlUAOsvdXyzU2NzqcminjOS5RnJCroq6XMQIpLaQj0FqxtLREyRdYtkutFnD9+gvcX1nlrQ++T6fTw3FCXM8nzfrEcYYiw9nqIEXKwlQN8ozJiYlCkGys0epHNLdbVFY3qF+qMDU1xerSMtVyiTxNuHzhPKcW5ojSlF6as9XqkMYZQmfUayVKQZHLsduF0POwLYtbN2/hWoapRp3tfsKVp59ifb3J+bOnOXV6nkajgRd4XLp0ia3mFh/euMlnX/4Ck6euEkxNF7kj90yzgX9CsMNMCmF28OU+LPrtk8DB4IwDvbKrWQxFxV7z4lBDFOMbGA+jghvDAZPlqBlsD+6OLjHerHqg/5MnAH7Sc3vGZg8pYufcyQfkqL4Gd75jkhyOhBkZ9JH73GNSHW1hN9/JHnPrflPhDtYwavH4e9hrKjzZ3P048KkWXEob+v2UmZk6G2tNMp0SnAoKJTpXlEslOu0uSuVIS3L61CksKQnDkM985kVm//O3WWk9KgIIBRizP6v0vpAcGKyqiuD4IPCYnZ2g5MXkeUS1Nsf1a0+x2Wrxg7fewbMVqVaUfBuyjPfevcni3CQzU1OEpRITE5O8+OKL3Lx7n8erW2RCk+WGPCsyYxhTVHlWBvq9PsLYxLFCCInj+IRln3htg36/qLpcKtm02x06CtIsw7Yd4jQjzTOCICSJM9IowwiBFA4CiOMMx5E75sk0ybCkjRA5tmXR6XSoVT36vXhQiLLwXfX7fWxHkEQRvU6XWc/HJBppSVzbBVOURDCDQpq27YAwxEmCZQqTpGUotiXkBmEU5CC14f0bd3n+mdMsrTWplGtstrusbTTp9PpIq5iynuviT83Q6fZod/vkSrLR7BI4DrP1KvOLC6ytrbG4ME+eGpYfr/NTX/wqi4vzxElKtVLl4f0HzLsBM9N1Lpw7y8OlJdwgoFat0mtv0+32KQUudilAaU2lWmO7tVlsQ0hzLKNYLgfMLSyQJh/g+j7SEpw+exaliwTJ9VqdZ597jlOnz/KFL/05ljYVW9ogTJH8GEYMS0LspCvaYR8HjABjMp8zDvEEsGP6kbDT7+hqef/KeZzfZS8VO993TptDsUZ/y4Oou+dHX8OBFWvc2n6oO4wdt0Ngx+wFII5JhnVIwwdF6EBLOiql0ZE8exzxglET5M79Dkyzey8fnRvjOxrmCCraHFFnR3oYbok3A8F3cFP8wS53D43r95NlyxiFT7XgcvwA23FJYsPaWhPPLgIbPMelm2VkaUymU7pxDy9Ni/pHwgID5VLI4tw0b9+4B0IOVotmR7kaeQV2wTDQtMAoSLOcfj9mquqC7LO0vs7Z8xf5ytdeREnNO+9+yOOsjVCF8NRG8K0/+WOeunyebneTy09fYf7UeaRl008y3KCGNhaZSkhTjSU1aaJIoi55JghDD0xGHKdEdPGyjMmpOs3NLv1+hOv42NImznNa3QTb6xUbhm0Lg0IbhRCCLDMoNdyAm+B5RRHKNM0HTEwiZBGVaFsSaSQqzalUy/TaHZSOcByfiYZPnPQxaFKVYbnFqlNiFw4zoxGmKOaplaFWq2BMnzhLUdqg4hQpBZ4rkQZKNQejU1rdmHuPNyi/d5NOJyJKujxeWUULCEOfwK/g+z69Xp8wLNPupjxeWufMuTm6mcWpSh2vFAIpZS9kolzitVdv8M6bN/Fth8DTZP0+E/WJYkuFMcxMTiHJqdWqOK5PUnJ5cP8BvV7O46VV4jzHCINjC0q2x5Wrz3JmYYpeZ5OFuRm2Ox3SrIeQZe7cvom0XbI0Z3p6hqefepoojgFI0oTyZJlESnKtEUIiB6M2NHVJM2qaZo+cGHqPxMik3KuBHA+7/pDh31EGO6oKjmHSOyTt629U2TGjGobZETbA7ibhPSmGdht5Esa2N0BlLCnjSdxP+oiCcsCqxtA0NxirQwSi3NF4RrUdyd4FwMEnNdSWisXIGEEnhs9c7zlW9LFvY/Zh8u5Q2PsMJLtjuleAF//vD/UfxRMMxnHkQYzN/nKC53QS+FQLLmMy0lxTsVweP35IOXTJ84SV5Uf0em0sS6KFYXOziRPWcL0KWZ7T73cphbM8dekMf/yDt+jFRRl6sRN9sb8j9szHYQ2vNFVE/RgpfYyQVOo1hGUhhcXC3BztrRbnT50nS1LQYLRiqlHjwsUzhKUS5XKJ1dVV2u0OUjpEUUqaK+IoAyNBmCKdUaKJ+gndXozr+ChdMH6yjJJVYXq6wdZWi36/jyWLiseJymh3IyolD0GRL1FIQbkSst3qkyQpdiHDUcpgUMjBBm2da5CGUhiSpzFplmDZLgiwbEmWwsxcg357E9t2KJXKIAQGjRAGoTUSgZTgWRLX2Piei+PY5EkOaGxX4vsBtltsTRAYXMei38sJPJfPfPZlorjHg8ePSPMEhCy0LQG9XrcwfwqJwSJNcyzLotPuUS35PF5epRY6LMwvUK1UePyoSZ7BwweP+cIrL9Jur9PebHL5/EX6vS6lUoX5+XnmZ2eJs4xXXv4MJs+5d3qBKEr54Ru30XGPUjXA5BFn56dZXJxl6fE9SoGN53m4cUQviuj3uvT7KbOzizi2j+8XUZ0qV6ytrRGWZomMLpiU0YUGNcLk9zPMfTxv5+u4tD8nhyJDxy7D22cGOqaxw0w8e46ag0dPImxPJLpGTV9PYG46ztg3irOPB+8saEdF8v4GnpyWfRrOIZcXC5oxi2ix+0XspKob09dxz+vApBsnYg/+3pOfUOw9fzC68CTnTw6fasHleoY47ZCkkrDkIISm092mub1OEvWxbJtqrUZ9oo5tWXieR6fXJyjXUCriytULeK5AxkV8jjGHuir3zDHDcIUF7U5CFGucULKxvskP2q9y9tRp+t2YXrfH9HSFM6cXWJido7neZKpRpz5RRVgWvV7Mf/zN3+HB0iZShKRZTqvdo9spAjom6hXC0MdzJb1ekzRRQI4RFspoRG5oNrc5ffosvh+ysdak1+8DYlBcs9jbJUVRWNIA0rKxLEmc9KlWyoBFa7tNqexTKnnEcVLU8DJFOi2Vp8RxD9cT2J6gF3UxKPqxAm1wgxDXD8lzhZJFcIZrOVhSoVVGmubYto0Qil6/g++A5VlgirInvm+jTE6epaS5wbILIfruu++Qpim255LmAstxEbkeGDCKl1VKiyjJ8AOPJEnotrvc7vZZ9x0uLkwjyyFhUOb5515geanHo0dLdDo9NptNdFpshVhfXydThm4U47o2Bk3cbVOvVjg9P8X8whmivuL+wwe4oUUpCHn++lOUyw43W+tIUWVldYWJxgTtToft7W3arYjz5y9j2T7b2y0cx0HlhtWVNc5cPUvuuMS6iIplR4PSO4Y6QWG6GxdVuOfI/pD4J8kVt6eZvVknjrxun39iPL4Yz/P2mZMO20z9JLScHHdA1qjCt/98cYZCuxijxQ2FxQGNVBxCyx7kfbTs3Wi+P1JvbyHL3WuH3rShvXQYYLHHt7Vz3e54Hjo+h4eQHjm2R2ZeOUQifZxN84fBp1pwdbpbTDdqKJ3QmKyT9Lq0Wk20VghLYIQmzVK00Xiei8oVAoqkt8rQaJQIAgfRTgYrlpOBAZQpalxlmUFKHyEE2khs2+Gdt99F5xmz03Noo1B5jNYpUdRD6wpaK/r9Pjdu3eP+g0dsbMcokZDkkk63R6lUodfr0u0n2LbCcUKUhkxpUpXgeh6WEUhLkqUZnXaXIAiYmGjQ7fWLzOzGYLsOaZ5iC4Nf9smStIiMsyRZnu+8VkoZkiQHYqQQ5FlO1k/AaFxHEKcRuBKlJV5QBgxJ2sO3HSrVOmGpgrAcPMfBEhZp1CfNIpaWHnL7xk2Sfp+bN2/iuDbapLiOhS1tEBpDBiZFoDhz9nThM+t2Wd1YRymN7ThobShVbaRVlK9BCGzHwfdCctPHzYsN1WnSQ1qKmdlJ/KBEnuX0ehHV6iRXr1zhv33rO7z9zntUKxZpr83S0hI3btxgbqGLsG067Q7dbodH9+5SvXqFVnOdZ65cY3oi5M6dCGlcFudOk6c9Vh7f48qVy4RhyMTEBJ7vEycJly6dpTGhKJfLeF6JLM1YWl5hbX2NKDVcftGna2Qx38xgr9uOwCp8XDuO/aOCBUa/74bZPcHbs1fo7U95dOhV+5jhePz9x3b9dsN9Q8PvR6VZehJaDkfaLxTNmAACsYs7kFCFQBj4eAZOMDFsbkx3B8dwaIYbs/gYNLSXfn3o/RyqL4mh4DoCa0SgjkfYS+P+/YFHPYejzo8TlvvbfjLD8F74VAsupTJsx+bB3XukSYYfBGxtt7Adu9hYm2ZUa0UQgiUlmqJsvdEZCEkQ2CyemuXeWhcKYzJwvF9XCLmTLkpp2NzuUymVEBJK5Rrvv/cR586e5urVq3z44TusrjzGcyweP7xPo16lWqvy4MEjbty8Rblap9nZII0zFC5xlDM5VaJcKbO51URgF6H6YpAZAw25xnM8iqg9w/ZWi6gfUalUC1PmIMZaDcLjpVOs4LXW5FmOtIrs7d1eFykBBFpBrxvheg62lBiRFdWKSy5SKvI0wqAplcMitVZs2Gh18MIyXlAilxZpGtPutvj2f/sW925/yP37d1heWibuxUg0s9MhthSoJEGbHKMNnnARFriOxczMBMtLKXEcUy6VC+3PCGzXJkkyDAJtilRfRgvanQ6b2x0c18fzPCQKVEKv06MSlvEdwVtvvsMLL36O2dk5Nrf63Lx5m2eunqdem6Dd7XDlyhUmp6Zpbm8xPztNrxRw9emnuXzxIo1qBWEMpxcXeP/9D4l6PeZnZpiu17BQRN0OjuvieB6vv/EG6+tNLl96mqmpKVSeI12o1+pIaZHEKXUvpN3pocMaSmssW6JVYS5EyAEPETv8bjda7Dj4OCVPxjObE115rMAY8wYZEPKgxrKnCTHUOU9oRjoR/kA7GcE5SPcYj87wWcAOg931742DvX2Mb3uEJDHa5uHa0qEw1F4HdB6GfjLhfni/R113VITgcQuPj5tzcwifasEVxzmWdPG9Knmo0VnEVrNFkmRYtk2SpTiuSxCWMEaTpglpllOfrJNLQ57FnF6cx7x++/Cl1CEwXE/Fac6tWys8dfGzSNmj2+3hOAG9biE40yRCqQxLWqytNVFKoVTO2vo6rU6XPLewHY+S7ZFrh8fLLTY2tpmbn0FKB8/zSbXB83x6cR+tDEma4bg+whiyXJFTaE9ZkOO4DllUhKu3OxGeI3Ftm243KlaQg1IgrlvYxaUUWJaD47gkSUwSpfi1ErbrU6141Kshnmuxvr6K67nFXi0Mnu/T2mijFEjbQUqJZSSOJXhw9yavfu+PsYTANhD1OpRLRYVqy9VkKisSMFJEHUpLY9B88MF7Rci/a+H5Pq4X0I8T5P+PvT97siTJzjvBn6rtd7++u4eHx5oRkWvtK6qAKoAkCDTIGbK5dI8Mhd0iIzJDGZGZB77zlf/AkJChdDc5bM6QbJJNNgASAIHCUoXasyqzMiu32MPD9+3utpvqPKjd69c9PCIjMrMApqA1xMLvYlfNTE3tHD3nfOc7ljNBWTYaDVOJOEqI04IsUzieRCJZWVxEFxFRv8/du3d4+fnrbG9ts7Z2xCc++QXyImdraw/flfyFX/w5snjI0tIS1VqdRrtNVuQMe30WZhewpcPS4gqDQcjXv/qLvPTiJ/iPv/0bvHTjJcgL/ugPvgE6I9OaJMvY3zsgy3Jef/11fv6rX8d1HJI0RmuBKhTnVlaptuehMct+5iC0oBiv/MXYqTSVSMqjcazT7QlenmdqH4Xr5v0PcvL1Y/0bz3QqY6X0NO399zt5iseDK6a+f9zpnRzDqWOdaZ1N7/Psi46xQf64uNoz9fencOsfe+gPMe8+1opLYOPaNZYX1+jYAZIMVEwYDYnjEUoLLOlQFAohIByNUIBtm4B+NAoJfK9kLICJo/l9mik6aXbV0pQ4UdrFcQVKx5xbWeTS+XOMhgP2Dw7QKuegsU+nM6TbG/Bg4yGjcESaZQjbQdrGDVet1ggCl+EwYv+gQ5IkZZVmgeu5OE5KmqWAJoojfNtFSEmRZ0RJjBOHgEYLje045ElWcikWWCVuTdoWSissCzzHRWuN6/okicnrsm2j2PI8JY4LUt/Csf1yaEpkk9BIAQsLTbQuSJOMTCW4fsBw0CNLQmqBhy0hTnJcR4LOsSxD0istUdYQMwLCdV20Nkz3Smss28H1fdKswHFBKZP6UBSKXm+AlMKAU4RBP6ZphmNZrK6u0qg6HO2u85PX36Jdr3FudRVVFPR7B1hSMxrm9HoD2jOzqKyC65kxtKTFuXNrZDMJnusihEutEnD37hbVao9GY5a5mUXmZ5awhEWtMsv3vv9DWnMzXLp0mYsXL/Hmm29ycLBPUWQMBz0QFs3GDJYlmZ1tUWnN8rAbIoIWWhsgjCErnHb2HCf3iuMPz5j75YM/rbyeUg6cyCEb//QZhMj773u697ECEMexOHH26T6bLHu8K+rsffTU37EL7ZSrbGrfiSur/CNP7vBIE4+8mI6BnUTwnVSHp/o5HdQ6tdexa/jx5/LYczxrjD6g/niqGFrZznIb/rlVXEUmSKIMiWRmZh7XVrhWQZGn9HpH9AZ9hqMYJbo4ToBlSdIooXN4hOVVsC2X27fvTgSEENIIaHVW/sWj7gXjKhSkUrO91+UTX/80Kj5g0NlHs8zWxiaNag3fc7lw/iL7l4aMhhE//OHrvPKpT2F7DsqyqTZqjEYay5Y4jk1/mDAYhLTaLZQG3w+I0wFB4FIoTRSbUiRhkePYNoXWKA2D0QjPt/EDF9vzyVRu4ldpxkyjRpHlHGf2C6QlyHNlalxpges6CCGxbIXOwXYkSRKDLrAtyxSStCy0ZQRMvdWiWqkQRyOi2KMatLh39zYHe7sszs+S5wn2KGZQcUAp0iRBW3lJXQVoyAuFU9jGgi1h1LbtmurEaU6WFQhhAxItIMly0MoIX+GgERSFIgxDXv3hqzx/9TzPP3cRlURY0uLK5Ut0On22ttZZmK+Atrh69TrrDzZYXppBSBuEpFqtMxjG1Ft12s02WZoSRiPaM4so7WLbPlK4bG0d8MLzL/JX/g9/gzv3HiAtj/5ghB9UsW0X33XpHh3gBQGt9jy2a1GrVul0e9TnVoniiNQ29FYFAiEkJ4WYPja3ntqaeLYmTknYPx2LSzMht/vZXdoZ7XGWXblgeD+z9inb4926H/JCT43VeLacVoN/Vu1Z3Msf1j043R5PJvUxaEmcEEUxvh/g+wF5XhCGEYNBH2lZ1Ot1bNfFtm0syyYMjUUipcSxfCgkD+5tl0Fyk0eh1FkuQ3Fqm2pSIiybt9+9w83b6+zu7XF4dIAqMq4+dxUwbOGBX+PrX/sFZmZaLC0vUKlVOH9hjTAO0RQUZOzs7aCFJitgOEpxvQClBUmalspFUam4hhVDgEaRFzkFUABZnpOrgmq9Sq1eRUqJbUuEFCRpZuqRCQNTr1QDhFRYtij71mWuWY5lQaXqUq1VkJYBnFQqNYpcY1s2vuPi2hYzzSaWgCSOcEqOxrGfX1iQ5xmashJz+U9KC9tycGxzXwyLR06RCwQORQFRnHLU6TAYDknKnK9cFWgNlmUjpYPt+jiOR5xmhFFMvx9S5BlxPCLNYv76X/s18sKUuNnd2aTR8GnUfZrNGpVKhXfeeZckSdnZ3UNrsB2XNCt4652bHHQHbO0esb3fYW75PEG9ieMEXH3uOrsHBwzCGGl7tGdncb0qjlNBCJNkHUURWR7T7x3x7rtvEYdDLClptVqkaYZleyhVVhlAACbwY6yR8eKpDAaJ8s/0VlpiUoxnoxnv4/dPuYmTSLjp96e3E0/CE/Y7uZ0+75NP02SeTNxm+tHfPMN2MsY03dej58PU54+McYlbleWYTm8nj3fqmNN9ctJyfPRcTqIWx989Mr7lPybvp+7BePYIgyB+0n374Pfw/bcP2ueHbR9rxbW8soDnOURRyCgcmvhOkbOzs8vBwT5HR0cIIWi1mszNz9Fo1AgCH0taRFFGFGZkyThr39RHejqkSylwkCilEdImShQP1neZnZun2azTarcI/ICiUKhCYwmHb//J9/C8AN/32Njc4P76A/IiYxQNURRUKj62a2NZkBea7e290urIEcIkC+dZYnJ7ywdGaeMGRYLrO9iOhePaaK3IcoWQEsfx0EjjnoOJa873x6S8ijzPyrpdFgjDoDHe17IdpLCR0kYgcSyLeiXguauXmJtto1WO6zpICbZj0R/0GIWhKS3jOJjhNUrLcQy6sygUCAuNRZ5rslQRRxl5bopTKWUAJkprRlHIKIxKVnmwHQcpLPJC43keILAsKHLNpYsXcMtyLQcHe9y7dweJJo6GpGlEmqasr28ghKTX6xFUquzu7dPvDygUPHi4CdJhEMUcdgdI26Hb67N/dEij3eLc+VWiOERbghdefoXnrr/AuXMXsW2Pfn9Ar9fh9u336HYPCAKH3qDL+sMHHB4eEicpflBFa6u0LkslhZgsKib4wolg1ZNNiLFAHrNmHv8FPRG677sJTszz9xMkZwmd9xU+U+ddakqELEEE4qTSOq2AphXR025n9feIa24yjtOKojwfacb1hKIqFdh43E4eb/o44zE6OZ7TyurRxTCTfU6P8/R304uNcYrLeN+J0nrcLTh1v85UGh9ehzz22O/3/Z9bV2GShviBIay9d+cOtcBG6IT2bJOiyBiNQvb2dgmCCudXL9BsNAjDCKEFaZwy6I8YT241DpRPsv6f0qwtiVILBTu7e9y6XfDZly7R73WZn5shjQryGmxubbO/30HevE2cpHRGI6TnU2tUGCUdbMdhYWGFo95dECCloD+McFyLVquBlVpIYYiFPdfBsSHNC4SwKJSJa1mWwHVtLAlJnmFJyniWTeC55Gl8LEiAosiJ4wzXtZDSYmzOG8uzIM8ygmqNLMko8pyKH6ALRaELRnmIyjLSOAYNWZJg1U2/lpRkWUyGAiwsS5ALUIVCKaPsi8IUv3Rdq1SWZeijLKyolLHYsqwgyYwyk5aNxtBhISRRnAMCS1pYaBaXZxACDg+PWF9fByE4Ojrgr/5Xf4Vas8bM7Ax3bu+gipyF+TqXLq0QBFXyQrG+vslhd0C13sR2A2qNFrku6A365Frh+i6DoyOa7SbVapUwDHnxlZcJfIfAc3jlE59k0O/w4P5N/MDHsiWdzgEbm7t4boPlc1doao1l2ZBjFJaQiLL+9mTGTQTROLgx9XDr6c9PKp9naSac+6jieto8m5MK5rF7nRSKeqw0Twrxs6yBpzmHs8/r7L6OFc7J742X5XiXsdX7wc5leuweDTqaLp7Uzxljok8pttPfH5/408+ER/Z9lh+fbE/K7zqNKnwUZfi0iNmz28dacWk0g9GA7Z1deoMuFb9Nr3PA4cE+S8uLKFWQJCPQsLO9g+36uJ5HvTlDfhAyCHfIUJiCJgIpDHDhrCMdT/zjfI1yqpNlOQjFIEq4fX+L+aZHq1bn4f0t3n3rPtZLNkuLS3zyU9fxfZtLzkV+/PYdumFmYmR5Hy0VB90j8iLBcwV5pBEK+v2RsbaSCAEEvkutViXPFWEYGTdark2gXymKJEd4GhuJa0OaKpI4xnMcskIhihxhCVzXosgNT6DtuGW9sJy8yLFdWeZcGSsJcmzLsM3nWYIWMZZOUUXM1tYm8+efR1ZqFCUzveM4uHaFJB6RZRmB66LSFFUoRmGBa3t4nk2WZgghsG0b17UYV1VMs4wsS8gLE7uTQuD5LmhNlsXG9Ss88lShcIiTFEvApSs3iNKCW+/eo9Vs0Gy1ee7SJzl/4QJpmvG5z32ObvePCUcjPG+Gl158CYFkf2+f+YVlDjtDFhYW6XQ7tJpNzp8/R6/bw5YGOHJ01MH1FtjYuEWn0+HihYvYThuRC1yvype+8jXaM22W5meoBB55nvPmWzfp9Ls41X1ms4jcK7AcC4kgn5DV6mNXISegDJx4uh+/cH/GJqb+H8/vaSH5fp6HY4F1sqeSu2HMCPIICGTqAh7pfqyuz3LVT6H7zmCQYDJSU8L/jL6Pn2Hz9zj9+/jo0z95lqE+Jr199jjOo8c5u4+xZDp5ruaYY2nExNIcK79T/ID6+MXYVTr9nUZPfn58b88+nxPfTBYAiuM7oc/eF0rmmKlSUs/YPtauQj8IiOKE3/3Pv0cYR7RnZxgOh4DGtiRZmlKrBhRZQpqEeL6HkJCmEUpkZDqh0MePhSkO+YxhT60RGgql6A5COsMUP2gwGsaEw4jz5+a5c/s+d+68y+rqAq6tOX9uFaUcgso8g37BwX7Mzu4RDzY2KHRBte5R8Sxc1xB1xqFhdy9KclbHsrClwLWlKaviWRjgXk6WpOi8wEbgWTYWkGUZURyTZpmp36UKNII0VaSpQloWWJJCa7SQFEpjux5S2hRFgSUF1YqHQOO5DpYE29YsLM6yvbXJwX4H2/bxgwDPdcnSDInAcxw8x0ZKbVgpNBSFYDiIiKIUISwcO8BzA5I0IYwiojhlOIzIUoXnBdTrdeq1KrVqFccxytX3HYQ0MT2JjdaSYaTJtc3WXpfDbsit2/f51Kc+zV/8S3+JJEmRlsu1azf4/Oc/y43nLzMz06Reb7K4uES1Usd1fS5fuUwcDhEokijGdwN0AffvP2Bzc5PDww625bK7f8Cbb71NdzBEYTOKcoLaDEp4hLHm4cY+rl0jCgs+/9kv0W7NGGYRrUlVToFGWPKUa0uVcZSSfV1gLLLHbIw3pjbxdNsjMSjO2MRZW+kim3I7HrvNxi7IY0UwHYs58aq8hnEvkwQvMX5/6sSm2+Szk8+qmIyC+SeQCC0R2jreJpUdDP+m0KL8bPy5OL72x47B2Rvvt/9ZYzx1eWfu+5gfjPkqzaYY56kh1NR8Gs+j025kVW5lLG9qBgmMfBn/nVjJTzj3E79l+jeP/s7sO3UOHwKs8bG2uHZ2drGEYBSG7B8ccn/9Ibbjsra2RrtVJ4ljwighyyKgwLYABEWecnSwT6tZZ+Vcm6Pbe5gpUPDkddZpF8DJB8csU2zWH2wgs4S/9ItfI4u62PcUviuIBkfsbG5y6dor7O/1GeYDBqMItEJImzSOqVbr2K6NyhPsVFFoY5VUgoqpVKwVo9EIIUQJVDBxozCKybICz/cmZ2vbDpocrTV5nlEUCqtkDgATK1Kj2PAYWgYq6Lgeggzbtgl8H60VSRQS+AY6H0YRgSdotFr0en0azZa5cmncAY1mC9cPSJIeWRqitSYIfFSh8DyLNE3JU1MyRStw3Ygs9/A8SSWoESfZJDesUqkTBD5ZllEUBVERkyQZjuMwGAxJkog4VqRZjkDx0zffolW30crjyqWLnF9ZZdAbUhSaldUVmq0F/KDKzfd+yvlzKwyHQ9bWLjE7P4frB7SDgM2tbQ729llcWCYcxeztHRKnGSvNNi/NtJlfXGBxYYl33nmX3d1dLqxdolqrl+jMnGqtRRGHaOHQ6YZUapoXXvwUh4OQrJBoHKQwMUNR1m/S49X61OpYlxbL45qYevGoZfPh2uNdY093lCfFwp4EGpj+7ekKDRMBP3F8HFtuUk8d61RY64wPTrwXJ57pDz6KHyZe81GAFaaV5yPffejen+U8nuFoH+LEPtaKyzBJwN5BhzTL8H2bL3zqRUa9feI4pshTBt0OtWqFIHAo8sQE/4VB2128cJ7zq+f46R2juMS4tusTVwJ6isVZjyV2GTcw+UCdTg+Zxbzxkzf47Oc+S73pEQQ2jl3QaFQJo4hhmPPmew9pzNSwbA/Xc5HSJAKrrMCyJTIvKApzHM93cFxBUeSkSUqeFSAsHMchzTLyvEBKgeOYKsdCSizbQYgELYyFpbSJnUlZEtNK21guRYEjbbLM9O3auqRWAs/1UGlKEAR4roPKYyPkZ2YotKbRaFJr1MnzHJXlLC4u8ZnPfpZXv/cNpGWRljRTSilsx0YKA7vP84IsKchyTZZZeJ6PEDbVqofWAi1tHNsHbFSRk6YZSZKSZ4bk2HVt/MBhNEyRUqK04PCogyg8PvfZG/yFX/o68zMzhOGIeqNBUK0RxV3OrZ5HCkWeRty+e5eVlVX8wOPg6BBrYDM70yYMM3q9PmmuqNYaVBsN6s0maRoxGIa023N8+Us/x49+9GMuX7rKysoKKle4bmAU3qDH1s4B7dkl3KCBULBcnaeXW1iWjy18Mm1yuAw4Y5wfh1mFijFT95Pn/8kS9h9dG1tIx2608euzFmzixGs9uR49USQaPelDTvU7fbRxH2PQ0Vn5lNMoQDi+fuOmO7Zgjzn/zhqVY8onUca4joXtybpT7yeEp2OCH1T5TPfxtGwTp+NITzr02H34rGf3rNdzev9n4Zn8IO1j7Sqs1Wo899xzWK7FQafPzu4uXiVgfmGR9Yfr9Hs9GvUKEsX+/h4HB7vs7+0QRSG2bVEUOUeHBxPaI9OeZjCn3InaIPcEgjwvGI0ShoOUh+tdvvnNH6KKnGajhm0rDve3SLOEvf0DpJWglGJ3p0u3M+TosINSGse2y1VggbTAsjS2I3E9ibQEjmtTrVURUhJGBiYfhiFZVgIZ0pQ8V6hxcUbLKKxCGWWIEOSFNqkDUYxCkKQ5CIll2QyGIRqNbdtEUVTytJkCj3FsmCCOOj2ktKnVGoZAtiiI4wTHdWi22vzqr/4acZwC0Gy1mZ+fL1GddWbabcParwqENAIkThKiKKHX77N/0CGKcqSw0doyBTMzRVFoHMdldqaBUgrXs2k1KlSqRqELAaicLI14+aXrHB3ss7m+QRqlCCThMKJaaxIEFcIo4Td+6z/ycGODV199lVqtysH+Lm+++RPyPGNjY52jzhFJkjC3uMClK9dwXJ9ef8je3pGhobJdrl27xv376yZ+artYlkOt3mIUpewddMiUIEoz3nn3FodHPSzpohXkuSrdZaa0zAkXUam03g/ePlZsJ901H93GlKtn+vVYqT3iVpt6egTHaDchKOHax38n1yDEies8HY+ZHEscQ74n/Z76fAx+eD9Bfjzep1GSlErxpNJ6knB9ZqTl+/Txfv08DoL+5AOcYWc+4TgfJWT9Caf0odvH2uLyfZ+gEnB+7Tzr6w+xXReNYBTH+H6FRrVKEPh4fsBRd4Bl+9TrTVOmXgtef/0N1td3MPnGJ+qX8rRuA0258kGitYF5f/0Xv0r/YBOdR+zs7XL/3h2qFagGDkG1RqVWBQnLK202t7vUmxXizLgEHccBlZOkCY7jECUK1zWME2N2CSkt/MA3HmqtDRNIXpCrlEIp8kKRq4wkzVCFptCmvIhj22RZQpYX2LaFAmPRlYUhLSkmOUZplpEXOTOthgFqoNHKKJA4GhFGGaNRxEwbRqMRswsWcZwhbJvFpRXDxWe5zM3NMej3ieMY13Hphl1TPkUIgoqL4zgkcUIcpWghCMMMLST9QUq1alCVSuVoCnzPYabVZDDsoYVGWhAExrr0HY1FxuL8LHPtFqN+j8j3saTNXqdHcDjiynPXsR0HIW06nR6/8NWv0DvqMBj0mZuf47WfvMZwEPLgwSb/x7/2NwmqDZTSRFHEIBwhLItwMCRo1en3e7z80su88/Y77O/voXXBxQtrdA4H3Lpzh+eeu8pB5wglLbZ3thlGCRefr+EGc9i2INcmzoAoGBfzM7GWMjauz5A4pybeI0utj1DWPCq4zor9PioAtVZnCr7T7OEnrYex+7oEqWimvntUMZ6+0LFlN64bfRJNeObVTf32eD9x/MHJ4z+DEP8waMj3c6Oe3Y6ttCcxwD9Oeb3fZ8/aTiMJn7Tfn184fBKjdMG5c8tAwRe++AWiOKFz1KVWbyApmJufQ2uBX2mws9+l1rCoVGtUnTZHR+8QRUUJwxZneSee2CYTBlPNVpdx0kuXL7JtJazfu0NvMGD3YJ9rV1aRtqTRbrN0bgXP9wnjI6StyLJs4vKL4hChCoSlUVqR5wWeR+ley9EC8qwgqAZYjstoOAIEnufheR5aG9ACKJLEJO+a/A+LvGQESTOTQzWmUnIcu3STGmi2VuZhsG2JKgqKwii6LDXw9jBK2drew8olWjnU5yzmpQRLYjkuUiu+9OWvcOf2u0RJyt7+IXme4tg2eZ7j+j6O52FZlnEdOg5FnqGFheuZ0itaSUajIZ1Oiu1IKoHEQhOGI0ajEC/wqFQCVFEQeC7hKELFmjSOyNKEdrPFcBgyN7fIMC3oD0Z0OgMuXb2EF1RwXI9qtcH8zCwPHtzHdh3iOGR3b59PvPwZ5udnSDKNbUuicMio32dxYZ7dIqNSqTDTbjMc9Gi2avS6PbqdI+Sli9iuw9Xrz2G7Nt1hj3sP7pCpmPmFFnk2orOzzvzFWTLjAzZkzSUS61jOlu40rR4RpuN2lqvkScL9yfP4rP3fTwjqs/edKIIzEGWlZamVPmGNFWUu4v7+HtVajUpQwRqzq8B0BscpJ+NZ1/gsD/GpfcXTL1g/yvY0TPgfqn9Vplw8o7J4GlfpWbD3P432sXYV5mlMnsacP7/Myy+/SJIkjMIRs7NzxGlOgUWWg1+pY7sVGq1ZCiXIcwxJLaWrBoFW09Q7T9cmN0loCm2IbaUQbDy8R57HVCoet+7cQQkbbbkMw4ztnX22dncRjoWQJt5jSUm1UqVRb2BLC60VQeCjdY7jSIrCKFfHdUGbHCeT0wQIgeXa2I5NXhSEcWzyuhDkWhtlJUyJEz/wS/h8gVIaaUlcz2W8VrUdB7QBdbiWi+e5SMsk80axSQDO8oJBP+bwqMsoGqHRFKVCtBwbJSSFhv/6b/wtLl+5wp07d3Ecx0DePQ/f93FdB9/3qVQrVKpVvMBHY9xjFd9nYW6OxcU5FhbmaLUDpIBwlDAcjBgOBiXEPyWNI6RQCJ1S8STtpk+eJvzBN/6I69ducOPGi6SFpt2aQSnYPzikP4pZXl5lZWWVOEmwylIpvV6XhYUF6rUqK+cWKYqUSuBR5AlROKBe9wmHPRwL8iyhVvGJ4xFRNKJaDSjyjPv37tDrd1m7sMqrP/oBd+/fIisianWXSsXGtRT1wAEVY5EjVHbCzocp6+KUC23sRjthfWhOfHbiO/H029Ptf4wafKo+p8550j9TbkM5rhkn0CVyNc8zVFFMrKAJ3m/ajXbCUVkK4ykX4bNe93QT4/4eI+BPu/XOcvP9rNrjj/vkfSYX9pEf9/07fez+H8FQfawtrnFMo14LUEVKt3PAwswlHNdh5dwag36Xg+4Ay6uRa0l7bpEiK/DcCmlWkOWqDM5iXA2akrrs6VcN48CzRGJbBfPzLUZhF5mHhPGQahCghUOtuYBKQ5ygzubWNnESk2Q5WZ6TZDmqjEfVGzWSeIQuKY7AkAIXSqG0Ik1zcqVQaOIkISuMBWNZFkWkiOIMTY60bPKyZIZCMwpDHMcuC2YamiXLlkhpYTmGyUErNXFBqaJAuha2ZZFLiWVZ1Cs1Nja2CWOwLJdWe4YoDFk8XyXPc4TSaGkSsv/5v/gXPLh7k+WVczhSEscRtiUZDPoIaSGENPG4MonZElCr1gijCFXk2J6HH7g0VJVWvUq/3yXPMqQQtJtVbNeUrlFFTuD7uLZNOhoyP9ui3ZphZm6B7sEh7fYsbqUGVoDCZtjrkUQxL770MpcuXWbU61Gr1liZOce9e3eJ4xFvvPEaYRxxfvUirhtQ5Dm+VyFOQl5/7QfUqgGf+uQnePDggF73CNd2WDu/ShqPWFxe4Nbtm5xfO0ecRDQbVfq9Pnu7mzz/0goqqHIUDbADFyWNZTUGJ0+JYyPcp2yK0iY7+cwLJm41Pfn/WaTCadfa0+z/dO1JqMLp76SUWJZECsGgP6BWqz/6m+k+p5GXT302T33SP4te/wtoY6X+0SrXD9bfR3P3PtaKSwpFFof0B32KPEcI43KwLJuj3oA81wSVJkq4+JUKthswGnWRUhsXU6VmCk5mZQ6Ehvcf0NPiQxlWcxSua3H50nnOn1vicHedhcV5DvY7gMX2Xp9rVy7QaLd581uvcnTUAzS+7zEapURhiJCSSqWC6/olStJhmIVoLcky47LLS/Z0gCRJyDJD1WRZFp7vYdkew0FEGKcgjGB0bJtWq0mSxOhCo6VxUakyB81zAxCCaNjHcS0jTJXCcTxsx0LEAiEljXYLubNHsx1w4/kXmJmZZW97i7VrikJlOIAQEmm73Lp9lzQcla6hgiSK8FyHNE2Q0kZKSZIkRElM4LisLq8ghCDNEtIsJtc5juPgBy5JFLKyssho0KcoclzXZTgMkZbg0tp50iSkSBOWzy+xvLDIFz7zGfb3Dmm36mxt7XC+Pcfa2izv3rxNpVLHdx2Wl1b40Y9+jMhzlpYXubpwnfn5ed565y12f7rH7u42X/7yV2m3Z7h06RKdow5ZGqOykM5hH1sqOkf7DEc9Lq6tkaYx7XYbS0rC0ZB6o87156/x1ptvsnZ+lX6nj1A5jcCjnymEUFjjWmtjxWUGa+JSKzGuZq6fmnWTGNfUolqXPRl3Xrkie4zr5hiQOGahF0+c/6WKKy1BMeUSPN2pOZMxd+3Y0ho3KShL6xxbPpZ1DFKxpAFsTJB/Zb+G5WK8yhz3fdJZqKeO+77tlI4/vqYPJtx/1hbXB21CiBNutf8ilJd41gXTo+1jrbgc2yLPjLswjCIc22Zvd5fnbzzP8rnz3HzvFkpkaCuiIT2EI3D9CrbrkRWmDEa9FtCNS+qnsYvjKdoYSouWINTEzVAJPGbnmljMcPvOA5SQxHHB5edeQlowCjP8SgWkxA8CgqCOtAYm3gQmfuMaXkCtwXFcgIm70JIWlmWhlDIPqqas8VVgwB02vq9Is8KAL5SiUGrij06zHKUUlpR4rosUFoUqEEjyosC1DaRfWqYvMCXmBWDbNnNz84Qjz1RqvnSRdrttJmC5kjbVRiyiOKHf7WJJiWNbZGlGEkeMJYaUVsmdaMqaBL5PmmdoIIpD/IqHDXieTZ7CbLtJq1Hh4OCQvCgY+0zr1SrzF1awRMH+zg7Vik+e5YRRzOLSIrbrkiQZYTigElTx/CrJKGVrc5vvf+8HzLdbpFnK6uoKa+fPl5WLXeqNGvfu3sa5do2tjftUgoC7t96hGrisrV1hb3eL/b1t0jxnfn6O13/8Gq+88gpxYpCYS0tLrF64wOH+PoN+H8/zGA2HBM2Umt8mVLqEYhhuSMW4ErJACUxObgkaOv6faY3zaMD91PwsX5w9f896/wTBfbLv0y9OtjH4/SyX0hiYMfmuLHAqhGBhYQHbtk/AvIV+srVwEohxxqA8rp3lKnzc9TxBJpy4lg/Q/lRiQqcU/NOe69NA2p+2nagM/Rhr/FnaxzrG1SkF49bGQ4QuqFerZHnOg/VN9g87aGmzunYRx/fZOzqgQFGr10wNrTxlaXGeZsOUoj++tU+6WccDPUZBTX/uWDYSkxi9sbXN+sY2lu2xu5/wH37jG9x7sMuPXn+H+YVz+H7FEM2Oeyh9/rpQxHFCnuYoZWDplUqlVFYFaEWaxqRpcuL4ShW4rkscx+RFjpCUAsFwBHa7PYZDQxFl2w5KaeI4QylNGCWMRiFZVhAlhQHjl/WvktgwrAspJlbFzOwsUZwyCiOGYUgQVPEc34grrSanNc4nQ2tsKcmyfBJfG4NIjFKJOewcEoZD0AWWBMcS6CJDkLO0OMtXvvJF/vIv/0XyNCmv14BP9vb2OTzsMByOeO656yRpxus/eZP1jYfcv3+f7Z1tNrcesn+ww8xMg97RHsPBgE6nQ5KkeIHP3Tt3yPOc+dkZPv/ZT5OmCS88f50vfuGz7O1sgsrZ393CdSWfeOUFlhbn2NpcJwqH9Htd6tWAG9ev47ouqsi5dfMm4WhIPBiRJhkP1zcJRyG2JRkNB+g8RWqFNVEUsrTjjcYSQiBL6+UsAMJpm/8RF+Iztw/4a31qG/f2iKIZx6EeFTdaKyzLzBvPdXAsC5TGEiWbRXlxj3sq1elTOH1OT9qmr+MJvxWPu9ixYNdTZ1GSdT/tdmJBcuK8Th9repvuY3weT7rIUxc8/Xv0GaOoTrzWk3/m9ZMH8TEDKeCYtGrqHD5g+1hbXNqy6XT7LMzP4biSai3AdprUarP86Mc/Ynt7A8txCaMR27t7XH/+BlppdK5wfEnRGbAwV8O6J0F6xmohQ00PMPDog60m6+Dj2ITG9zxmWnNYrkuhfGxZQSlJ4Nd5+50tEB6bOzusXOiQ54BlcTTom+KJliTwPBrVGp1u11g0tTrCEnS7Her1GlmWME6QTOOMwLVxpIVEkyWmfhWWhdQSPU4CxcTILGmhC02udIkmBFTBMIvw/QpaGdh8XihGSY7je4ySFLSkVvWJkxFZ0SAPU6Rts390RHcYYjkVhAzw/SYatyxsnGN7Dp7vYytNFkVkeYZlO9iuy2gwohK42NIh0zlpXtDpH9Gst9BAtVIh8B0cC2q1gLl2m2jQYbZxHgqFE/gQKygkllVlOFQMBxla93n7p28jFFy9epGNB7fZ2NxgYWWF52+8QDWA0TBECEE06tHtdgmTBb7y818hiUOGvRE13+PLn/00c806y/OzzLe/hOvYvNc9pFmvs77+gGazQRC4BIHDaDSiSAuklszPzpFkEWky4u6tm8y3FwjsKsuL5xgMO2R5ilQpW9v3mVm9gcI1CbtaTs0zgdTqJHx8vL78yLw8z9rRSffcST/bydfG+j4lcM0PJ0LWmqhjDUJRaIVjC1zHVNB2LKu0yKfrJOupZbY80fXkry4mSnwS+3vSpT5O7o77mCjMaXZ4wTjheTweGo1WxalOxHRPPGnMTy9C3r+dpSQesc0n30/OZFpRnPY7Tz6cNunHK9DTxxsPTOmSnlK2+vRAlucntChlEif2/6DtY21xbW7vMBpFeK7HoN8nHEXYtgPCojUzz8LiMtIyl9jvdfnd//w7vPveO8ZtVPGQMufyxRUcGwOGKPt9vLPkjNWvOLbW8izn4PCIB/cfcngwoN8PcR2Xv/23/yp/9a/8BTqdAUmWcfvuOlGUUBSaMIwRlsTzXWbaLVZXV1hcmAeM7z9NUxzHsKJnWUKR54BGljlXgCG1dV2UMszshTJlUKQ06C3f9wj8ysTtOF3BGaSJ0WkQJSIwTnKSNEeXdZOjKCbOUqI4QloSx3GQluTcuRUq1SpJkmJZDlqZGEahFKMwNInJYUSe59iWxViwWaUVpvIcMLyHlIH6orCIooRf/Pov4ftB+TuFXwl47bXXcd2AJDGW2mAY4jgeSZIRJxmv/uh1wjChWnW4eGGNxYV5pNQUWULvaJ80CWk3qxzsbXPr5nskcUQ4GtFsNpiZaROFEW+89joX1tZwbQetCiqBh+PYzM/Pc+7cCru7u9y9d4fDo0MODw+QQtDt9gjDGMrxz5KYOArZ3trG9wKEkBwcHLC5uUGR59RrVVzH5piYlUcs/uMHc0pp8Bh015Sr9tht9aSNMxBfj99OI8PEhO9QPPL60WfluP/JcYQ4VihClqU6TCzWkqKc2+WqXxjlo09kWOvJNuHqmxKuJxSBnth7T/FvvBQ9thREuUgdKzIxTYwsjq2T6TIn4/2my84ccwQ+eWPym6fdpmKB5fw5cR5njMn0m5Ocgvr4+/J6TncwXnCMS+tQjsvxeD1uxqnHfP7B2sdacdWqdXZ292i2ZqhU6yBtoiQ1LiohmV9YJAiq2LaN77ns7eyws7nFGz95nfX1eywvzzE/10JojWuBLcsg8LOchB5bXSY+9dZbb3F0dMigP8S1LS6urRF4Fj//c19EaEG/PyIrCoZhRBTHk5V1lmX0el1GoyGWbeM4BqZt2za+HyAQeH5QKrDc0F0VmjhOiaPE0CHlOYVSCMREYVuWhe/72LaNLJkaxorLsiykFOSZYYVXSlMoCCNTgTlNcpK0IMs0Eotut4sQxoILw5BqpUKlEuC4No5jk6u89ABoWq0mw+GILE+xbYnrOgS+h5Rg2WbValkS2xagNaNBjOv6LCzMEsexcZcqxWGnw+qFi9QbLc5fvISSEsfzmJlp0mzU2N/fo9PpMBoOkVJTrbh0uxGHBwccHh7SbrVoNRtcOL+KLaBZr9Go14jDkDg2NdA8z6VzdIjve1y5coX9vX0ePFjnW9/6Ft/61p/w8OEGCwsLjEYj5ufncV2XW7duE8cxvm8WTZcuXcR1XZI4JApDOkcdtre3WFxcxHVdDg8POdg/4I0338D3fRNXFEZITyugR52DpaD8CIPqT+5rfLwP9vlJWPqU0it5dI8rMkqQlqnxJm2kcLAs28RjUYY/WGiEJRDSLNSQZSdjTuFpiP6UwD4psZ913J5y/6eRvh/onp12wZ11TtOaZ2phc1asbVqpiclSZLI/J14/esrTwzn5W35zcpgfd63ike8/ihSCj7Ximl9Y4vqNF9jY2EZIFyFsBsMIhGR+cZFKpY7rV1hdXeOzn/kM15+7ytxsC6UyIGc0POLC2ixf/fLzeLZGq+wMU/fpmkbjOGBZBkperThIIWg1q+xtb5IlQ375L/4cUroUWuP4Lo1mg3a7bSwqpdjb3eftd97hwcN1pGXytxzHYTgKy4KQ5uFWGoTlYHsehRaESUKUJOSFIo5iDOu6g9ZGydi2UYJKqUkhOgSo0medF7mJTZUTSWtBFBWEUY6QLlpbgGX4BbOUokhJk4Re74g8T1EqM5WT5TEjwle+8lWAEp1oU6n6VKsVlDLJ0UJqgoqL60qkBbYl2dvbo1KpYNsu3/v+D9g/OGRrZ5ebd+4yilMGUYKwHGq1On7g02g1SNKE/YMeW1t7WGgsKfDsgm9+85v0+kNarTaXL6yRxhGNWoUkGrF2/hyf/OTLVCouCI3lWOzu72I5FivnznH58lVeeullLl++itaGHf61114HBM+/8AJKKba29mg126ysnENIQbPdRFPQ7XZot1tIIWg06hweHZIkCQuLiywuzVOvV7BsgW3JyapcSkCoU6v2aQUwvaLXP+NtbFWc/fnj/j5qdUwprNLyFxMlbTK0pLAQk01S5MqgYz0XyxIT5YUwgJWx5aWlRksNp85dCl2yj5fHl9Nj+CzbswnVJ+VYPSkP6um3s+6FmFCmnU4xeP/t0f0mv+WYL/+YS3/q/fTvTr+f9H36fB891vh4H7R9vGNcSGq1BkkUobQiTnIsx0daFu2ZWZI4RmlTJNK2LZaXl1BFgSpykmhImMS0G23+8i99hXdv7THaPqB4ZgPWIOREifqzbeP6OL+ySDQKGfZ7WJZDNOzwyZee5/Ll77LZ6VBtNNDCJUlThBDkSUyaxNiOg0bguKaUvOM4tNttDg87SFuQFYYkGARSmByYItfkhTaADBRCHNe5yXPDJp/EKUWhjicpY3eMsb6Mm0cDVhmK0CRJThwXBA5UKlWyLKLTOUTTZH6uRRKH+I6L0gVK5yAMTF9KyZe//CW+8bu/RX93F40RXIVW2I5FkQlAmbGyJCpXqMLkqN2+/YAkS9g/PESTk2m4ffc+G1t7dDtDpHTJBn0GgwGeIzm3ukyzVjUJwaMBSRTSblRReUJe5Gw83KBR9alVq2RJzLvvvMeN55/nV3/lL/PDH71DURQMhgOCaoDreczPz9PvDdjd3eP6jRsAeJ5Ht3tEGI5oNOpY0uHihdWJVXv9+nOkaUKve8Tt27dMsrXj0Go1SwtTkuc53W6XUTZg6fKIel1ga0mWGyMEISYVqtHTRsP0g37y/Ydpzyo0zhY4Z/dhoCalO3pKGWgBYrw+Ghds1UYA2rbD/v4ugoJLl6+aKt/aQAOkkBw76Mw/OXYjaj1ZfevSCjCvx9EY/YFGbOw5MP2dZQWN93sCKa+GJ1L8P6Y99a15zI4nzqP0Roup19M//TBzSkxdm5m6j/cOnMWw8WEQlR9ri+vwqEt/MCJOCzyvRr8XIoSkWq0ad5vr0u32uHPnLvv7+6hC4XsetiXZ3d2iUfOZa/rYOuLG5SXkB7h/GkwdLwGeb6FRzM3OIYTk6tWLOBacW5rn2tU11lYXmZ2pEfhuudLWpsxHnpMVuYnxKI0QEsfxTBFHIXE9Dy00ozAhTQ1jfBwljMKIPDcuwywzXmSljNtRKY3nmVIkcRST5fmkSOa01TUOtiulSrSfNoow18RxgVIChF3mXll0Ox0G/Q6ojKLIAMVg2CMvksnqCiTnzp3n0sVLuK6HAKIoJM8zKpUA13MolFGulhQIKclzTZaZeIVlWbRas1SqdWzH46AzYGf/CCUk3cGQXr9PliUmtjQaceXyRb74hc8SRyNeeuE6/+1/87f4+td+gX4/ZG5ujq3NTbI4RpXVo4vCxABnZz2yLCWMInb3D4wrVhuy5Gq1Spok2LZNo9FgZWWFarXGW2+9jZSSWr1Ovd5gc3OD7Z1tbr73Dju72wwGA5Qy6NXhcIDSit29XcIwotM5oj3TJBz2iKORQX3KU67Bx7mfTgjQs7b3m6XTvz+rr7OOd9axxyH4438n+hTAqbjQ+LsxgEGI0uuHRqKwhcCWml73kEG/i+sIhCiwKEyUVZR5bMqUMLGFLA8zRh+Ot+nrPfadjIXkswnLqbGZ5px6liZ+xtufQnv6w0+5anm6Mf8wiutjbXFtbe7gCI1nOxwedDnqDbDcCmAQRkdHR/T7Ax48eMDcTIOVxSUEFq7rc+f2bYbhgAtXn2em2aRRdbAEhrKoePrKnGbBYpA1vufj+z6t1hyrS7MszrfRWUqexSiVoFSC54Bna/rDLoVwUYVJJEZrpGXj2C55oUtFo0nynP5oRFCpgogYjiKEHpe2z9EYK8yybKqVKoPhkDwv0LqgUqkSx6aG1TiuJcDEYpIE4BEEpVnlQpEbi7bb61OvLqCEJAgCZtpNLKFxHUngO+R5Srd7xMHhPu2lhmHw0IpqtcYLL7zIa9/7Hq161VhkmJwzy7LROqEoCvwgIE0yVKbQCOIkJY5SBsOIKB4hpAUSssIwwluOg2tb4FjkllGIlUpAvVbhS5//LPfv3CLwXV555RWuXbuGUDnvvv06m5ub3L97n+WVZWzfZ/ncOeqNOkG1yv7+AW++8RM82+UrX/oS/V6farWK53ksLS2ZEjlFwf7+PkdHR8zNzbK8tML9+w84Ojritdd+RKVSodlsMgqNQvI8n8WlBfJcc3B4yM7+HgvLS1y8cJ79YUhxdEB7pY1Q2lhapesFMR3QF08toJ60Sp9eDZefPPKDM39/Zp+PChs99ftyHXS8uhZ6kjRuCxtLSPIsNyBBy8ISIFE4lsC1NEWe4loFUisKBFoYSjEhJQrTl+O4FLlAWBZ5rpBlAE0LUXI/jlf++kyd/DRt7PY6LgD26PfTf5+mv/+9nWx/bl2Fne6AlaUFuoeHJGlGsz3DxsYWd27fZnZulgcPHmBbElVoRmFEkuUlN53mk5/8FP3BETqNuHTpOtHgCFtC8r5K6yR6yciE0scvLc6fP8/9Bw+pug7LC4tEWUizXse2JdWKyysvXmPv6JAoCinyBMv2SRKTAKyUKBOEDTtGluVoYVyJtuPgKo2XG6WWKUWhoMgNW0Ca54RRNDk/rSGOE9I0K0lNSzdLmfB56lKYJhXSGoQlqVZr5MmQJE0oModcFdRqFWyrwHUktSAgSVMScqJ4RJMClBEkUtiAIMsMW71tmwq0UtpoS4MSRFFCza5jWeAGwlhdqWYwzOl0+khLYVkgLUmSpKQiJokSnGpAJQhQrhF8O9ubLM+3uHjhPBsP7tA5PKTIczw/oCgyvvzln2NzY4P/5V/+a3769jusrq3x3I0bHB51udiaRWvJwUGXOMkA8F2X7e0tDg/2Wbuwhuc5hqFea3zfZ3n1HEIIXN/j/t37fP/7P+DFF5+n1WpSq1VotZu0ZmZ4+PAhG5vbbGw+5PCwT5qmeK5Dnsdk4ZBWkQMWjwrGD74S/S+hHSMdQWtT3UBKiSVgOOzTqNUNrZcNWRIjhKZIciou9KIho+4+CEFQrVIUgsANyLLMmGmOJI4HSGGhhTRxVQzPobQs45LUZcxLllXNhZ6kDJmR/tMa32OH5c/mmI86zM4EZ+gTb5+eXeSJTU8W7BOLXI+P8LNX0h9rxaW1IAwjCgUryxdYXVtja2eDhw8fMjs3Q7Vaod1oYglFlkVoYZEXmmq1gSZnzpvBcy0GnT0W51oI/QApBDyDCWu8bsadMRgMefBgnYZrMVNrsLqywsb6OisrM6RZTFFozi/N8cJzF1HqHv1Y0wtzkjhGa0mr1WIwGJaVjC0ajSZZkTMYDKmU1Y49P6Bq20RxRhTGRCpBKBPfiqKkTOY055aVZU3MeUrDtjGtuM5sYhLcHv8miRPCUNBuBGRJTLXps3ZuEdsWVCsNepnF8tICSo/JUhXD4Yh799bRhSaOEnzfQ6gCW1oUhbGu6vWmsSyVwnYck+gsNK6XkqUKaSmEK3Ftm3Mrc9iWqXx86fJF8iyle3RAEo2wbRuBosgT2s063U6HeqNJkuTkac7Wzi6NVpv/+//z/8Fv/cZvcevOXZAOoyjlsNNjNErp9UakSU6/P+DgYJ9ur4vSmvP6PMPhgG63R1EYlow0TQnDkJnZWUbDEMuSfP7zn6PdbuEHhuW/0znkwqWr/PN/8W+p1FykDZYl2dvbIc8qtOo1kzpQPvBCi7ISMqWkURznd/0s2vQcfz/B+mRBNG1tGX1l+pOWhdAC27ZJ0xRhgcpTbr73Fu+8+QagmZ+bIYsGVHyHwaCLVhk//kEXEAY5q2BpeYX9/QMsy2Hl/CprFy5hOz5KC3IlKEpvhVJlzGtc5As9VfXhwymOsUI4HdN6nLvLfFeeg3jyvh/wjB45t9OvyxOe3N6JNTxlyRtxNxV/OuMcp3ucfCtOFwQtdzy5Qpj8aPr6Pwrr82OtuJqtNqNRiC0Mcs51XebmZgnjIdvbW8y0W6RRxOXLlxhFQ6Rl4wc14iik2+khZcJevIsWh1y5ssbszG2SboyYyul6UjtOPAQl4PzqMj//C1/kpz96lTffuoMucmZna2xubVGtXiJNIwJH8MkXrrO0fI6do5j/9PvfMrEtLckLhWU52I4kTVPSPMf1AmzHxbJMLS0pLRrNNpWK4lB3SJLCxJom1DjSuEuUqRQ8XdF1HJEw9FGPrgQnAqgEbhgAhCleqUqFZwGu47B6boVGo4bjuHT2R6RZQqVumzIq0kIIF0s6VKt14miAlBLHs7EsGycwLtLArzI82Mcu630VShtiYClIkhSEIi8MqqoaBJxbOce9e/fp9XqMRkOiYR/PsahUAmrVKq5UqCLnp2++wcq5VSq1Kp7n8IPvvYZA8wtf/Xm+9ku/xMr5C3iVKpbtcHBwSLczZH5+iWZzlizL2d7ZJopCWu02w+GAJEnwPBelKszPz9MbDgjDECklru9xbnWF/f1dRqMBnW6Hy1eusLW9zd7eDvWmR6fXZ35+gTRLGQ37LF28SHNxgQSgOD3TppfHH42ge385cbY77Gkq7E4fY7yvAeOU81ALsizHsS3efvMN/pd//f9jeWGOYb/DaNhH5TGepWg36zTrVYoiwXUkzVaT+w/WSbOMZrNJkiRIy+Ltt6p84UtfxQvqOG6NC5efRwsHtAXlou0sVpuPqj0LMu5k/tqHEdiPI0TQnMj4O6t/IU54O0X5n57af/pnZ/Uhp6ahmnytj40sphTTJM9t+lwfvf4PC4f/WCsujaA1M4MrHLa3t8myHNsXJFlIs1mnWa/z3Tff5DOtT9FstbGlje24tLyA7Nx5up0NLFugtMfi3AVeefl5Hv7xj55pbWZZEksIbBRrayt8+ctfZr7R5P/7z/4l9x9sEQQXGDHg4eY6c7NzDHsd5ucXac3Ns5zY/Obv/gGBHyAs1yTWphlCSFRZE6socjzXQ2PcgUpppJRUqgGDgeFYLIoxy70BFqBBy3FMy8zSMTADnhQUPQ5qa63L4o8OURShCo3OQhYadRbm55iZabMwN0evP8RzXbQuQI/r80h2dvbY2tzC8306Rx1D2Osaa6xIM2zLYTgcEccpVpFjexZJoskSTZ4V5dNSmHpNmaRWqaDyjDyNGUUhURQRhSMyR3L79m08UfDitSssLy3h+UHJkehS6JyZuXl2t7dY39hkdXWVz33hi2ghefW1nzCKIrY2d5m78RzVWoMwjGi1mgSBj2VLDg73aLfbtJpzDIdDM/aVCnGc4PsB29vbVKpVNrY2GQ2HhGHI/MIC9UadvCi4dPkS+Z27vPDiiwSuzfb2NnMXXgI9FczWYIgJT6+Wn3ISPoXBJKaE3QdRh08jZI6F0RSQQytcx2X9wV3+zb/5N9y7e5v1ezfxbUjiENfSVDzB4U7O7EwdrXIsCy5cPI8lYjynIBrtln3bdA/2+e3f2sJ2q1hunb/z3/3faMwuo3IFwikFaAlCwsS9xu2pV/ynjdHpz6YVwPSHYnrn6Y7MeDy7jB4L/LMWFafdceV+j4YuT57etAI78Vec3v2RSxifyRh7PL7eE7LkFDOHOH2w6W4/pPX5sUYVXrl0mcWFRaI0wnIkrZkmYRgyGoZEUYK0bYZhRLcf0mwt4Pg1hO3g1yrMzs2xtLSCLW2WlxcQMuPSxXPIMwFEUwijqU8AisIUe2w1Kly+sMqbr79GFMdU2y0GmSJ3HBbOnaPbH/DTN9+hPxhSrVaIwgFSKALfA8DzAnw/IE1zKkGFWrVKniToQiG0Jk1SLCkRQhJGEXmeYTumJpfrOfi+h++7xm1WuviUPuYZU08lsMyVSzTo0gLKFaMoIckyojRDSMnK8hLXLl9k6+E9dJ4x356h7vnoJAelUUVO5+iIBw8f0h9F2G5AGBeMRhn9zpD9gw6jMGIUhyA1WUkQnKYxQuRYDiCN5ZUrQZxq9g563FvfYBCGJEmCZdvMzS9RqTQYDGLeu3WX927eJs1zLl28SKPRoN/vUWQZly5d4BOffIUH6/fodI/QwozNi6+8zM//wtf54pe/yh/90avcvfeQ/iCi3ZrnyuVrXL1ynXZ7lm6vz2HnCCUFb779Fmla0GrO4blVFhaWkZbN+sNt7j7YwHId3rt9k5mFeRaXz5EWgmpjllGc89N3b2N7AcNwSFGkoDRoicTE/0SZWTtOQz4rl+b0a4FA6jHrAxOmCCmm9iu/l+V3Qk/25lEhyOQzIY456U+iw46fh7FMMm7e45W363qGPNl1yOIR3//Od3j77TdQqkCpYkJxFvg+lgZJQRqHCJ0zHPbZ3Nw0VcBtiedJVBHSP9pBkqLzEUXSxxEJ3/jd/0B37yFVX2CLHKkLQ0QtbTSmWKoQ0oBBpCmfcpod47TWnyQ0n1BMZULa2JXOFBvGuLLECQ7C6d8aBppjXoljGpCxQhEnTqXc7+zTO3neJ445Tm9Rk+sTU69hnCt4/B2PjMPZ26McheNFgJmxUjM1ezkpR7VCaAXlJvS4kM8Hbx9ri+vihYuMhgcEgUez2WZxeZ68SHnwsM9gaJB4wvbQwmVl5QJ37t0hLnKqliaMRri2x8LCEkf9LpFQuJ4w0+vMMNcZYr/cUQjI0pytjQ1E3uDmzZs059oMwwGxhrBQREnO7u4eqysrDMOQUTREBB7NZoNhMiyrIHv4XkAcJrRnWriuZYrsWQ4og8wiK4jjiDwvSNKULM/wPM8UoERSqBRdqKdcVZ/eS5QLN4UU4NjSVE/VlimlIiFOM6IwZNg7JAkHSO0QtNrsPdxkYa0NUqNFwb27d+l0emRJgoXAti20tonCmCwv6PZH+IEECb5n8p5c1yTmWpYmzyDNCopckKmMOw82WJxrl/x1GtdyjUAQLvXWHJ4jmFtaQRYJw9GI2blFGvUqaZrQ7RzhOhY7O1ssLS/geS7VRptr15/DdSu0WzO89/ZNNja2uXBuid2dbRYW5tnf2+bKc5fZ2dtnMBpx4dJlBmHE/mGHZmMGXRTsbO9wuN9hfm6Jufl5rjy3xo9/8mMqzSbtWXjjzZuEccrO3hGqSCmkQ2V+jZUr5iG3hIMpbXJsIRuxdQyWOb22Puv1SQ+j6WW8VBFT34+R3Y/IwxNWxsljjl1vYvxgCE4oKcexJ0hcKS2CSpUkjohHQ/7km3/M3s4W3/zmHxGGIwrXwpZQ8Rxc10OS41oOrUYDrWPq9QqDh0Pa7Tk6/R6u76CzlCLLzNxQ2lTktgoCW/OTV79DvVrlc18ULCxdJBOghUWaKWzbmTCTxElUxt+MCaG1PnWNk0s316fH+5VoRVmWXtEKYfCOyIl34tFnaTyCWkg0EoMWNff0GF2vOSa0hbFKnSgtxud7VtOnXo+v59hEPF6STDqbXONTKw1xpuSbnO/JJIRjDsnJuehS6enTvy0XyB+wfawV1/rDBzhWUWZwam7evEleFPh+QBAEFEVBo9mkPTNDfzAwbAv1gFHYNdDl/hFFodje2cVtWdSqPs2GR9JL3vfYYsrWHsdn2jNtrl2/zMONdXb2Dtg76FOpukgxRzoYYeewuLxMoRRhFJHGHaIoAsYwcY3ne4xGI8IoxPM8U814irR0gtgCiiIvwRYFSBvP8wxtU1G8DwDjyW08nZRWICxypRiFMcK3OTrqcfvOHWbqggvnlilyycHeHnuDXdpLV7HcGpZl8Zu/8b8RhkMEkGbguxKtcoo8Q1qAsMprMRN+MBrhe76B49vCXMvQQPmFEhS5IvCrRJEmK3IOOz2jBNOC9QfbzDZc2s0Kl84vEkYR3W4XSrdRe2aGPE1ot9okcUK320FYNo1mG4QFOuev/fVf4/d/5/f47g9+wJXLq+we7JPlinsPHrJ7cEgjTdne/T4Li0u0mk0WFhaRWvFgpsVw0OMzn/kk+4d7hFGCY3vcunWbxWHOYBCiEUhhYTsVgkqdvIA0KXACG50fP7wn3U9PElqn2iNSyIgO8cR9niC8TiWLjveewPUFx8qtVGaubUSJZZsqBpa06Pd7/NZv/SbbGw8pVE6lEoA2FQ56/R4V36NVcfFcm3Mri9RrHltbG6gi5+7duywuL7C2ep5Xf/hd8iRmtjWDazuMwgFaSwa9HtFoyHf+5Ftsbx/xt/6bv0ulPoOwhKkugHG9K2WUmNYapFXGYo6HylyOKhXQWH2cHv0T4viknSpOvCs/MuOjpsbxpFgfH2G8jDA9H6swNfnsibHOcUzppG56QjvL9fjh2pMcmuOZqM+wsD7MWXysXYWbWxtEcUiv12V7Z5tur0MYjhiOhqRpShzHNOp1tNYcHXXI8oz3br7D9vYmaZaiFIzChHffu82D9YdIoXnx+St4zrPpcyGkYYZA0el2mF+Y5fz5NUYjeOvt+9x/cIDl1uiNRqxvbpGkBfVGm63tXTrdPlJYSMtGC7Aci0qlQhiGE4ocpQqkJUmzlKIoSJKkpG+y0BqyrDBJx6XC+ijQS0oDWtJuzzDTniUvJHGSU+Dg+RU2d3bY29+n2+8zDEeAwrIlWufYtqTf69Co13Aci/ZMhWrNx8RxzAp9aXGOSqWGbbtkaU6a5KbIo1/B83xs2yHwAzzXQyJxbI/tnV0GgxHDMGI4jAwllWXTnGnh+D4Pt3ZotmZotdtkWUIUhXS6HbI8J81yrl+/bi5MKaLhgM7hPoPeEUHgUql4XLi8xjf+6Lu4fpXtvQPqrTZeUMP1qkjLKzkcB/iei4Vic+M+zVaN1dUlPNcmjiKGvT5f+4Wvc/XyVRZm5kDlNOs10jghHEUkSYHtBFiOa3AZpddITFw8Jy2kE1LycRtM4kuTONMT9uHUvmdtZ/U5trImpyUElmWZ1bM0ZM1JHBNHEd/81jf5zd/8TfZ3dw07jLTK+KyNZTs4ro/vB9SrNVbPnWOm3WJ5aYGZdguJpnfURWjB9sYmjVqdwKvQOeigClicXwQNw+EQ17HRRc7O5jr/4d/+K/a2H+BJhUWKUBGOrQh8GynKlAwhEOLYNTu5Lo6tXTDXK4UBBiEm9IjIKcolU4JGluPJ1BgdbxKNFMr8rhw3Q9eoH7kPE0uW6e/K83rS/Xq/78+4tz+T9pi5dfZc+nMMzhCA6xoY9Sgc0my0SdMMBBwdHZFlGX6lytbWJloruoMj4qjHztYD/uLXf5HNrV263S6r5y9yMMrYvn2Hc+eWcX/6gDDNn3jsMeJKa0MpleYZd+8+wBIRb/30bUahJIkTokSxuzeiFki2d48Iw5if++pXkUrwzrs3cRyfRAnyJKXm+1iFhXAEQlZACLIiIy8KA+/u9YjTnDhOCEdx6WICVWhSlSGkqYj8USguAQhb4no+7VYNyxFk4ZCdvSFJLtHC4t7DDYpM0Jo9z4XrnzLwdVuQ5glxHOG4NtLyadZrqDynUvWIw4goTsjznDwHIVwMd6Eiz02NrTRJkUJjSRfPk+gi5pd+8Zf4yWuvsr21RVwoUqWxpEWcFoyijPZik9n5JQ47XRr1Crvbm5xbWcH3XTzPJxyF7GzvEkchs8027UadJMs5PNil2Z7l97/xn1laXOIv/KWv8Z0f/JArly/zxk/f4fkXb3Dt+gvcvn2L4Sjm+rUFKkHAwd4OaRLSaFSQUnPv3p2yMvOAdqOFfdnj3PkrvPnG27zx5n0GwxHziw1qtSbVagvbqZJqOYWAm4ofaTW1Dn/SvTwuynjGDD2x3wlE1xl7nL73Y4tKMxamYgIvE6WEHVclti1rwqtZr9f5nd/5z/zP/+yfcnR4QDToG47BDBQFKZrAd/BshySJ6aqEG1cWqVUrHBzsM1smuC8tzDDsdxn0CuZnZ1m7skq1UmU0Cqk3GuzsHBKnGZ5ruB9H/SPeeO37LCzMsDDbxq9WEZZDmBfkZb6cViCljSqmLaTShTceH31s4Yz3sgRMcpYYKzhdjs/0u3LchC5BDNOWbxnI0tPOtfFPxvfxrBvzPhZXeX+MrvsZKqX3adNHNnNmar6JjzoV4GOuuLI846h7hOO59PpDDg4PaLbaJGFKt9clSmKc4RDbcun1Oty5f5Nr1y7gBx7v3nwPqSyk7XP16jne/s/f5NbDDtdf+jme5f6PvQRJpri/ccDsbIULly7z7rvbVGsBUZIjpEV7dpE8TbBUAbZLlhSEUUZWaLK8IM0VYhiSFxmeG2BbHmka02g2OTo6Ii8KwzWIqYIchqXiKt0bSkOeF1NQ9w/STkY+ikzTG4TkKqfie1RmAsj3CJOc9twKBzvrJFHGguvgeU7JuacQWjIKDUt6teKYUizacBNWagFZkbN/2CHwKxRa4zoejmWRZgWjUUKWprieYTCxhE0QVHm4vsnS4jJpkrPf65GEIVFS4HkuaV4QpQWjKCaME/zA59at91iYm2F5eZkoSUBDFCdU/ID9/QMWFxcp0hTXtkmiECE0WzvbfPrTn4E7knfeu8fFSyv8wR/9CVevXmE0DOl0BvR6A4atEXEcMjvbZhj2sCxJGA6o15o0Gk12tnfx/QpVz+Xv/J/+W7793e/x+us/YXvviOeu3uDi5WsIy0EUZZREABPOPTUlBN7vPo7v1xhIUX46AVKMoezj1yd7ftw0Pxa0x2XfJ8oLJn0eW4cKx5LoIufWezf5d//u37C+vk6axEhVGPehVgjhkBcplcAlDEcmduXAw/WHVFxoND1mmy0ajTpJVmAJwfzCMoHnMxxEXL101ZSwSVO0AstycGxJkWf0O4dUqnVuvf06japLe26B9twCcyuruJaL5ThkmS4BSyfHaxwTVFAm5x47bY/Hz1hJJymupt2xp9yI5XiNn8UJNKpEj45H9jh+eNyLQUJOu/rFk/1qmhMy63EK7GdabXkc/3zk48cvrv7cWlyO63BwcMDq6jmazSZ5rjg6OsJ2bbI8x/cDZmZmCUcRR519fM8hzzOuPfccVb/G+r1NKpUG/VHMYJjTbraZn5t7asU19pULBIUCYTnMLpzj06+8gJTf55137uL5Nr6v2dzaodVok4dDfvr2eyyvXWB5+TxvvvtDlPCxXJektJbyMGR+fp44ickLRRSnxEmXMEnQCLSSSGmRpXmJmtKTfJkPQ155/DtBgSYrqwxXKj7CckBKLMflqNdDC4tCaTq9Aasq5+bNd1m79kmE0AS+h+NaJKZYMUgockUe50Rxgu24CCEZjmKUUsS2hevZoA1RMcIiilLDCqIErVaLmzdvMT/f5hf/wi/y7e9/nwcbW8RJjiqMANPAUaeDtM4btn2dIyUkSQTasIDMzS4SRyMKpej0evi+R61WYzAKyfOcJCvo9ga88qlX2PiP/5F33rvF/NwcDx5u8oXPfY5PvPwKncM94+YrqZruPXiA47js7O1RqTUNf+HGlimnY7m0Wm0+9cpLLM7Nsrl7xPzsHI1qk2EOxSQ5tFRWQk7u39M+0tOJsWd9fvb9fXJfk/dTr40LWhEEfllZ25yrbdtobeLL3/rWt3j33ffYePjQUI1FIY4UVN0qruuSq5wsTbGENKwXrks46rKzvUOjYqP1LHYp+rWCQd/k/822Z5mfmePB3XWk7dDp98lzTa419YZPnmVUPYew32F38x47S3P85Cevsry6xouf/AzXnn8JocCVLrnSCGGRFwWObaOVqQ6QxFlZDkmUSczlwkmWFlKpYMZpJ2YhUKojIU3epDYlhSwBWimKPJu4Zi1LYls2WWYWsho9JefHttv4OGrCbvHIXXwU53Di/k5D/k/nj33kls9pY3DKjfzIrkI8Enf/c8tV2G7P4nuSwWBEJahi29Dp9mnVG7iuQ1EUnD9/gTgOieJZgsBhYXGGNElIUsWLL32KMIp58HAdIRTgIzAQ92drGiElh4d9vv2d1/AcFyEtms0qRRETx0NGlo/UkmGvh3rrPe5vH/D2O7eJ45y4iLDdHMs27BlFYZjutZZ0u33iJEVaFllalAUfLZQy5LpwPAFMYcmPZmJqDLN8rz8kL3KStEot8ElSzcb2Aa+98TYvPHeORqPNgwf3aS+sITBccirPSoon8FyfvFAMB6F5sJRGKfMgawRpprAUIAWWtJHSResEz/UoLFOx+KjTBaUpioyNzU0W5xfY3tkDLHrdAd1Ojq0jLi3XjeUnBZ/45CfIsrS0WmfY2d4zNFqFYbp3/CphEnN//T6W45IXgjCGMIm5dfsOn/7MZ3nzjTfZ3t5HA2+++S5f+4WvUm/kBNUGtiV47cc/YHv/gC99+Uu8895twijm/v0NFuYXybIMKcG2Bd1un5l2k0JLWo0GRaZwPI+sVF5C69LlZEb+rDqyjzZxaoF12jV41h19cn9j5KA+hsohpCBNMxzHwXGciRBUqkAKiVIFjuPy+7//+/yn//QfSZKUQmniKCyBOJaJfylFnmVY0iJLE1q1CkUSYXk+uYJcQ6VSY2Zuga9+5RfwKzW+/Z3vctQ54ujgLtWXayzNLxFUKjzc2cPxA4a9Lp7vE3guWRyyt7NNEvXZP7eIbTvYZLz54+/x6ve+zY3nX+KVT3wO26liSRcUOJZNptXE+hGiVD6lgPc9jySJcGybQhVGSU9iyGLibtGAF/iooiCOQyxtEfgeWsmJEszynKJIcRwHVRjLbpx7Lkorb2zclQb4CWomMXkzpbmesLp5XAzpI3UnjocBJvPlrFn2v7sKT7Wd3X3arYAoSbFzU5K+Vm9gWwZqm2UpP33zp8wvzDI722Zjc52iKGi1WqgCjrp9gkqVhaVl1tYuEmUOD+7fJ03Spz6HcUBXacEoirl1ZxtbfNf4uIuMpaUGcazodzv0j4bMzzY5f+Eylh8wOz/kjXf3SfMCkeXYjoWgbxRWb1ROAoXSEpSx6oxyGrsEfybDyviJUBgXaNYPSdKMgWsR2HZZJPMuMy2P+fYM0jJlO5RW+L5PlCs+/7kv8Id/8A3yvCANU4S0EQg8zyGKYgAs26WIMjP/U6DIsG1pilcWCY7j4VUCVG4KXfZHI95+510WFubIM0NnVQt80jhG5zDTbtGs17Ak9LpdaNQp8pw7t2+RJAXf/u6PuXTpAjPCpjuMOTzcZ2P3EBAsLJ/jQqWGlJrDwwNq1SovvfQiv/Pb32Bzo8vBbp9rz12nUQvo9IasrS6hLY9RrBhGGddfeIlwOKLRarG1vUO71eQH3/8Ozz13lUF/QLs9R5Zk1Gu+qfCbF2gtocywO+HEeyrGjCc5+54OOXZyDz2Zy2YhJkrvj8L3DCIvS1MorSwwC6ZBv8/v/d7v8ZPXf8xoOEBaFmmSTZCtmTZ9KAUqz0mTGNfStKoeL9y4zp333mYw7PPW27fY2tzgM5/5FCtL57h3f5ud3Q6B75HnIYdHXQa9EVevX6faaLJ5eMhBp8v84gI130UITdV3qNcqDHuHNGdneefNH2P7FXZ39xn1jjjc3eHS5WusrF7CdmvYnk2Oia1arrEcZalEtNYkaULF90niCNexQBdYtm1gNHqseEx5oSwr0KrAdV3SKOL73/kWzWadq5cv4bouru+hy2rRCoVEouU4iqgn0HAty1DYiaDR9JvjNIdH+DTeB/Tws1Agf1btY624+oMhg/4hruvguRWCoMb6+obhRstMscPhMKTVamIJi4frm4RhglI2B3tHVCt1Gs0mtif49Gde4qhfsLkT4jo/IcqeniFeComphCxxHE2nO0DlKVVPksaC2VaN1A94cG8fW2r2Do446PTZ2x9Sr9cotMMoDgnDhFE0xLaEQWBZEtuxSzdNgbG0hVmx6ePwvWk/mwmpgUJBlGQYf4jAswWXr1zm4eYW6/c2uHb1BkdHR2xsbHChNk+aKi6sXSRNcvLMKFjXNSVWpO0SVB3StMC1BELEKK3IchObS3OT5BxGKUS5WenbEse2cS0bvxKgVcH5lXk2NndRWpAhSaKMO7feIxvs0P/0CywtzrPx8CFb29t0jrokmcYNKrx18zZf+rmvsNsZIO0A262yu7vPwdERszPzQMalC6sUWcr87Byf+8wrLC8e8O577/Htb3+Py5cv0J79NA+391nf2iPXNj/88Ru88tILjMKE5194ic31dbIsoXPYZ3vrIdVKlTyNadaqpOEAoQqEVcY1Sregnvz9mdzGp27HNE/HLrOxIKzVqmXJnIJO54gf//jHfPvb32Zra4uHDx8atpUoQlMm+o6ReYDKsxIda3Il49GQdrOB57kMh5p0mHD+/DmyXDAMUyzL4+BwSKVi4dg2ju+Tpzlvv/suuZQUWlOp1dnc3mamUUFkCRfWlnj++nXCNOGdm3fY2tlnbn6WVr3JYrvGzsNbjLqH3Hn3HVYvXePGS59GSA8hjEUlpcW44pe0JLY0HIuOY7gwpYA0iRC28ajAsTJIyzyzNEn51//qX/KjV3/A4twMnuvyyU99kpWVFa5cuYrjBdiOD1PLhPGi4dhlPF54TPsLH1VGFpxQYqeV1n+JSupxru1nbR9rxfWrv/JrbDy8w917d+n3R2htMz+/QLPZJghcNjc3eeGFF6lVq6hC0O2EXLo0S5JoarU2cRxzcHhInA0Jk4SF5at87eu/wP/8v/4hvTB+upPQoIpj6KoWmsEoxNKaeuCZpFpZMEpDfvFrX+aw1+XlVz7Bv/33v83DjS38YA4hA1NKRBVESU6ea5QGqXVZYdj4w23HMkX1dPGz0lNT7SROSBWQZBqhc1bW5rhw+RKjjkd3/4A0z9HK4X/7D7/B1/6yzae+8GXe+uk7RFGOKkyF3+EgxbZtqpUWQmjyPCNJEhPTy00dLukKRMlxJ4RxwZgka3BtSWFBv9/n+tWLOLZFtVLlxo0bHOzu0KgIzi3WWb/zU44OD2k1a2R5xvPPv4Dn+DzY2OH8pev8v/7JP+ef/NN/yUsv32B5aYHDvT12tne4dWuLl16WrK02efe9t7l84QL9fo/5uVmuXL7G9WvX+ONvvcqde9+jNTvDxQvLCCfgYHuf9kyD2/ceYEvBvQfrJOGIdrNGsLJEs1Flf3+Pq1euorTkzq136aY1LrzweUQxjmucnlL6zLtw8vacXrg8Yzv102lk2tj1IwVIYUhy8zzn3XfeIQgChIB/9I/+Effu3yeKQrQyLuAszRDClNspigKpNY5j3IRxEpPlKdXAo8hTVG6zsX6ffr9PGKUUuWJrp4fr7hNFirn5JWq1Olvbu1y8tMDm1jaObZMVilgphG2TK420BO12m+HhHgKF5zk0201u31lneWmeerXC5YtrDI72iKKEuu/x7T/+Aa8MB2gEL3/6i6SqhEsIkEjyMvaopcCyJXs7W3QO98nSjPMXLlBvthEYF6jSYFkWTql4EDAaDdnf3WVvexMp4OZ773DtxnX+z3/n77K4VMG2DSEwpau1JKcyyqvEOBwrtdIdeVrQnxGPPK20Ho84/bNp04r1z7XiOreyyvxsk5m5OTw3oNvpkmUZlYqHlIatPQxjbNulyAvq9RZFIUiTnKJQDIZDZudnSJWNZeUM+z021u+CKng6sSBAWEgk6ALHsQh8G0vk2BrSvAAtsR2PRl2wt7NNLi3eePMt4iQmzcB2c1zHUOb4vk9ehIblWoHjuGRZWvIWjlFKomTBPuNsPjJXwElX07jLLFM4AjzfJ4nNGNq2TZImKC3Z293hj/7wDxhEKT95/Q0a9SpxnJKmOa5ro7Xi4OAQs8K0yLIcz/VROqFQBXGa49jSxBmkNDEvrbFtQRB4oHMG4ZDbd26TpynVag3Xsfni5z/DwmyNH37nD4jjlLxIef0nr/Hpz3yWcyvLRGHE3OwMg+GA5eVFXn/rIal6h9WDI/IkZ/PhIZ7v0Gz47O/vc/H8ItVKhSSO+eEPf8KLL73IxUvP8Tf+5jL/73/yP/P7v/dt/uu/+at4lRra8khyzXu3brO6vMzsmoFxz8zMEI06LK8s4zgWqsiI4ow4HLK18YCVq68g7KCcZLqMs2i0GN/c95uBj7oDJ6GPp5BVcnxjy3k1iVdoU3EYyvlW5KR5ztvvvMO//tf/CiEESZJw795dlDZxq7RMYUAb3swsyyeBeKU1cWrSH8bxM5N/WHCwv2MsGcugDh9u7dLvDwh8j5dfedkAKFyB63oEgUueFziuh205dPt9RlHE4vwqly5dJp1rYeuc3Z1tLl25wtXL54nTnPX1+4xGAzY3NlldPU+rEVBkEd3DXd54/VU++4WvoHKJ1rKMKxnlUeQFOsu5f+cW//7f/Rs6h3vMzLRZObfKz3/tF7l46TKG2FqihaYS+KbumCP51V/9FX78w+8z6Jnc0aM4olatsXZ+Fcf2ycvSP5qy9IoeRziN1hov2sz78rUQk7kyfdvHs8S4dY/ny6NAjanvP6JF75MT5E+DhU799kPKqo+14kJIlLZxZMBse74sAZ+T5SndXo9RnKHCjP2jHihFliserG/g+z4a2Nzc4Hn7efb2d8mLAuixt99lrmkxGlkkWUGBRGOVJLUmkdAgiyRgIRC4FrgCZqouM+0qSRYx06qjVYGyaty8e8DltSV+6es/j3AC/tm/+F9x7SYL8zb73UMqTZ+6dEkOI9O/ECYOok014KIwFojreuR5UX72KOz9o3MNHCOopj+RwgBXRoOQg/1Dzi+1KaIIy7LIkgwpNA/v3eY73/kew34Hz/PxS4ofLwhwXZf9/SPDAI9JBJVqDA0uyLWmyA2PnS4UriWQlkQLRa4KpADLcllYXuXBvXXevfkA3/egCHnrzW2i/h5rF88xv7jI3bsDtvd26HWPmGu3iTPN+naHpaV5ajWX+fllLKvC3c33iKKIT3/iKkk6ouLZfP5zn6NWr7OxucPbd+5y0B/QnJ1lbnaBtbUFfvTj2/i//S2u3VjDq9k8eHgPz3bZ2T1gcNjhxtULHOxtMzPT5qjTx/dqHOzvU2Dh+i6OJ7FESi5c0JYJYSgFOjv2Dp2+laef/LNu9TjYL0uBynEdNuDE62m7TkhxDGfWJi9QIMACYRlX9Xu3brG9t2v4HwtDO6aUKXZqORZS20ShYT/JogSEpFCKtCiwdYF0bSxbEsYJlUoVz3ewHY3vQaFs0sIg7jLAE7C9vY3tWMzONGk3G/QGXZJCkasUyw0Q0saWDirPGfb7XL90kaon+dEPf0Cv08GxLKzAYWXlHPsHh/iVAMux6HePSKI+9269w42X6qg4wbYCCqEphETaLuQFji2I+l3+P//j/8Bo0CFLR8y1K3hWQcuzCFAU0kbbNmESk2lTUcKWglqlQtX3ifuSuMhRqiAa9MijEL9mYr1aaHzHQ1uSNC9QhaLIlSnJUmoiNVmoHmeLjW+y0CUfYolsVGeokbGFM0lpKO/7GAzyodsZCMeTfppH2/EMHMcTP1j7WCuuH/zoVY729jk6OMT3HM6dW8YPPHqDLoedDr3BwJQP2d7BkhLLcYiThKBSYW1tlUIVPHy4QZIlZGnG8vIyiwuzfPqV55hbGPDmW3cIU02uJRTjR73MXxGSQmnsUsl4tsXq0gwzMzXWLp3H83z+5Fvf5ebNbUaDmMCpcGFtjUq9Ta87JFMeWkKeZSTJiGqlSbNZI0lS4jQ3yiDLEGhs27AOGJfhn5X5b4Sb1oput8fWls9cy8f1AxzX5eCwR6u5jOpnjAYDBJBlpgim49okSUShMhzXQiWmfIlEkmU5hVJl3qdZkRclMapBpAniJCHNUmxbIrTg5p37dA4OEVLjBwF7+3scbG9RryiuXr3K4sIMrueyt79HGsVUgypH3SHt9gxx4RL4Af1BatBsuWJpeYZWu87O5jqO1Gzt7LBsSdKi4MrVywz6QzY2HiK05td+7Ve4efN/5Pvfe5uZuTaVSovlFUm/2+X82kVIR6RZTL3eYn3jIZcuXuLe+j2G/QFXn7tBGiUszzTIkxBhVdDaQuspUMR4rE/8ZeLGe3I7CTcTp/5OXo9XJKWM1KWwPE455hgxV8a5PN83bvU4xHEcNIo0z7Ass4DLi3zy2fFK32yyzOPKlcZ2LIoiY2FhiVduXGK2VeVPvvsqG9uH1JuzZGnGc89d4fBgjzRJcKRkYW6OUThk9+iARnuOQX+E4zj4rg9asLW5zSvXr+C6gmtXn2N7d59Ot8coTjjodHFcl/NrawyGI0bDIfValbxQ7G5uQJHiuoFB+aERZFhopIZvf/97vPfTN7CtgmrVo+q7NCoencNdhCo4f/EaucihiOj3h1i2Q7PeYGdrg+FggBTgew6DYcp7777NP/2f/gf+8i//CkGlxuLyCkkaYzkuSoBl2aZmGwaApTApCI7lkmqFqRNdHBMlTyyv8t6einlP54UZS3o8P/SJ+fBh2gmb//S6Sj9BNeqxDP3g5/GxVlzDMOTg6JBK4LOzs82nPvNJbMeiN+iiUSwvL+MHAfV6Hc91GQwGVCoVNIrNzQ1qtQrz87Ps7e+xs7tLp3vEhYuXaFQdvvLFTxKGI954ex2ENfHejEER49IJCEGRF8zMN6jUPPYPdvi//F//e377t7/BwUGXLFbYlsYSgn6vx2CUsrfXxwkqtObbNJt10iRF6xHDQUSa5cfwWAGqUGWxSiZILSnl2QPyM21GcQpHEsUF+wd9wxo/GmHZHpbtEMUpYRTT7Y0Mx2JhFLCwLWr1GkEQ0OsPKVREnqcUuigRVNoQR48DzeoYuWaayQHRJgLNzu4egetgCcnC/CI7m/fY3dtHzlXo90f0ukfkecbu7iGz7Rk2Ng8ZRSkL3iyuV8GyHA4POkirSavVoFZz2dx8iC0K/ErAq6/9iFeKglGYcOPGNY4OjtjafEi9EgCCL33pE/zRt77Hqz98nRvPP8e16y/zh3/4u9huwCc+8TzvvPkqo3hIo9UgqFbICkUQBCCgEnjcuvkuzXPP4VTLh7dka5/mFP8g7VniB+aI45iKnqis06JEa8M/WKvV6PV6pGlCtVqhKDJT0dnzyHVewv+lAW9oVULgDdrWtmySNEWpAtsR1CoBKk/Y29nklRd+gdWVZY66Idu7BywutEjikFazSefwAC0FWRZTr1VQ2wXD/pCDoz7VapVGrUq/H+Lbgl5/wNzaMkmjTi2MDNLY9dk/PKRaqTIYjFheWmR3Z5tavY7v17h4+Tnu332Pq8+/QqPeYDgcMhoMGPRHUCjeefNVZlpVOp1D6rU5PNel1+3y3e/8Cd1Oj5//+l+kHw55uLlBbzQEITh//gJv//Rt0sQktadpTOA7FEXKj3/8KoeH+1Qqdc6trnH5uefIi5y5+XmqtSrtZpOK5yK1Ydd3tCTOYlzbLYuvlp4e4/I5eZ9K8+dR1nVdKq0xGOS/nJjXh2kfa8W1t7tDoRT7B4c0m00sy0YVOdKy8H2fVqvF/Qfr+J5HrV7hqHPAKDRlFcIwBOD8+VXQmmajweFhh43NB0TDHqvnV/n5L32Ko86Ah9sdSt54s14RRnEZl1aGZQvSbMTS0nXaLZcfvvpd3nv3p1hArgVZJsjzlLt37uBVGji25sL5edaeu857d25z2OkwGMZoBLZllaS6AkuacgyGeVuQ5/kk6fPPogkhKApJbsFwlNPtxWRpjNJ9An+Om3e3WN88JI4SpG2RK02uFCrJsG0XyzbISIGprpwrKFAlm86U66pMVjQJ1QZxKAS4lk2r2SSPIzSKJM14592bpFGfPBdkueDu3YfYtmJhYY61tctY0qFz2Md2G+wfDjno7tHpDEjznMBforAU9VoFnYPnuiRxzP5hh/XNbcIwpt/tsDA7w8HugAf377Kzs02rNcN//9/9bf6nf/bv+fGP7lOrL9Ht5hx0h4yyjMN+l9Zsk2EUs3dwSKVeJwtHHBzuUwifgjpFluGocRmKMf3qhwRcTLWzEpLPqkdlFuLHsY+TwACzryUljYbJjcwyQ0Cd5/mkQnZR6BL5ykTAmvtrXNyeV0FraaDwUhrod2Fiym/+5HVajRqOA9VAEg4H3HxvyPXrl1Fa4bgOge8DmucuX+EnP32PYT/Fkh6uq6gHPkedAT/44Y+5fuWvs79/RKfTY2Nzk3qzzfz8HBcuXuVHP3qdRr2JRpLrAukIhqMOf/LN3+fm7fdIC5MGcXR4wGg4olap0e30uHJxlYNawNz8PDtbO8TRiNl2k8FgwO/8p3/PweEhaR7TnpkhqNZ462CHfj/m0sU1BoM+rjOHYxnAhlIZb//0DWqNJhub63z3u99kGIbUalUkipXlZV558QbXnrtKszVHfWYOz62gdIaUNoUe38Np+3wcFwOhiykre+xWPIve9mffnpQA/1HE4j/Wimtze5tWrc7ahQv4nsvde3dot1tmdSshSWKKIqdWm6FarZZcajW63S6+5+G6Dr3uESvLS3S6XWZmWjSbTVSe0tnfYHZulRtXL7Cz16VQUJQ8Y+OaNgJNvVGh4lk0mja1mk+ns80f/P7vE4c59ZqPzoaksaJeDdjZ3mTtok+9Bo1mhUa9Yi5EC7I8J8vKgKo2CENTzl6QZcBkIn44E/sDN4Gpj1UIisIizgTDOGO23UYVGiyHvf0j9vb7VOoVskKDKlDa5Ln0+0MGwyGeFxjGCClBqcmqfwKn4jiwnKZpWUPJJHJGUYoqeghdgNIEvsvu/iHtuk+z1eRzn/80M60KqkiI45BWu0GRQ66HHOx3WLt8jftvvEe3F9Geq2LbEt/xqderdI66uG5AoQtq9TY3b96j3++yvDRPe6YJxQrdoyOuXr2E41dYWFzk+nPneeudHf7gD77DwdERKw92cKycQjukSnJvfYtooWB+ZoZBGJPEHUaRYvnCS0g5heRjWl2VgmccP/iIbrWeGttH5k95rPExp+0+4+4TVKvVEg2nDctIkk1c2EmSAeMFlkEiTvrVmjTNKHKF53j4rkU8GpDVJYtrqzy8f59aa5YsiXAcA+5QSnOwf0iaZAwyTb/bw3EsWo0aqgROCWmTZxDMNSAz6RMPHj7Esmy2trfodIf41Qa1eo08z+n3h+zuHtDtHVFvVhlFId17t8hyyd7BLvcePOT5GzeQRcLF1QWSOMX3Ztja2sX1HPr9PiAosoThoEeWxizOrZGnA9AW9bqHX3EJ4wLfs1hZWSaKIsLREJWFtJo14jRjJs9xHI+ijLk3az5R2MX3HI721rmpI5L+PkibK9de4JOf+SKFECXS0TLx9slMmWaTN1bY5BN9HLY8VeDmT639LKH5H2vFJYVA2hadbo9wNKDRqFKpBqRpQhiPqNYaXL92jUolKKmLgvIhDKj4PnEcEQQ+W5vrzMzPkWc5ri1ZW1mg0xvh2Zrz52bxbEGSKaSwDP5LGmqYIs9YWpzli597meHhFuFoiEDTqAV86XPP8/y15/nG7/0xP3z1XW5cu8ja6gyuA54jEVpxeLDL/v4eaQaO7aFVThxnZWkSjZQmWGtZcsL6/meSRDiWQ0pjCYcs14wiRZzmpLmNZzt4QZVBqHA9h7woSDJFmo2Jik0RPqUUo1FIroyVMV49an12mctjYWvch5YlieMU33MQ0lhzWA6HR32uXFhiY3OHne2Cet3QAEWJJooSoihlFGckd++xsblJULORUjIcDZifqQGaRqOO61pkhREovf4IkJw7t0q31wMgDIfMzrWo15tsbm9Rr1f47Gee582330MDnW4EVo31jXt4Xo3DoxFb2+/y5c9/jldfe48kzrh4eY3DoyMebmxwsXUOIZ1J5EHzaJ2os8bjzFv0BCHx+IWO0VRaTIm0sbYUx+AcIYRxsZeFRU0SPOW9G1tfFkUJ6hCyLNghBEJSVi7QOLaLylNmWzVcB2ZaTZbn54kyzUKny8bOLlIKskLheQGLi8tYKB7cf0C7XUPYPrOtNofdQ7KsQMqc5ZXzHO6sEycd7t1bZ3GuRaPR5s69HTzfZ2FxCWm5DEcpvcGI1swco7CP7XrESYJSguGgy1yrztL8DEppdra3kbak3mhRqAzPd0niHFVkCAriqE+tGnDjuYv0OzvsHxyyMN9k0D1EejU2Nh7yxlvvoBV8+YufIw4L7t+/xzAMWTt/HssSzM3N8/DhA/IiY/XcEtGwR55EWCQEtuaHP/o+D9fv4ViC557/BEgPx62gMCwjWmMY90tvxTSYZwLcmJpLH1ZifBCZ87OUU8+kuH7913+dX//1X+f+/fsAvPjii/yDf/AP+JVf+RUA4jjm7//9v8+/+lf/iiRJ+OVf/mX+8T/+xywuLk76WF9f5+/9vb/HH/7hH1Kr1fi7f/fv8g//4T/8QO6vQmtGwxGzq3M0m3Xq9Qq27bC3t0uUjIjTBLRkcXERrWFxcZH9vV1UnhGGOe12iywzXHxH+3vYtkOjVmE46OK5PmH/kPlWjbXlBe6s7xOrY5SV1oYU9fDwkP39Ta5dXOVwb5v19X2ev36O2XaFSqD4ys+9jCBi0N+m18twkzpSSGoVD2lr0iQhzgRJWhAEVSwrISnjXHmeTVa8EyZ6pSY1vP7Umqb0ZgmTs1N+7HtVatUqaZJx595D4jgFaZHrMW2WmORkxWlaoiRF6Qo8phcyCM2zeMxEqcDNZ2N0ZRSnSClIE81WvM9cq8Lm1i5x6LKyNEvWSZmfX6DbG5IVGi+osjRXo1JrsLyzy7K0ee+9e8ayQzM7O0u9uszW1gMq1Tq9fozrVxgMhty++4Cl+RYVx6VQEmnB4dE+d+/dpyhCrlxdJdUjpCd4sL7PlUsX0VS5e2+XarVFQcggyqm1Z0gOOth+lc3dPYqf/IS1Fz6HQoEeE66W8VPx4dfGpxc547ioEOMYbbkomA5ulQnDqHH8yyzZsyyj1WphWc5UfPUYvGHbNnlWTBgkLKvMxxOCvEw5FNKkcfiey6c+8QLNIGNhfo7DgyOSVLF6fpWjfo9KpUoWaZr/f/L+PNi27L7rBD9rrT2e+dx5ePN7OUpKDSlZSowMGLALbMzgAopgKoLojiCAjoboCMIVdARDMET90RR/OKDocFP0QHWXTbiisA3ygCwZDdZkpTKV88t8775353vms+e91uo/1j73vUzLYAnCLgVbenHz3nvuuffss/f6rd/39x0Ga2RZQehpruxcJU2mbO9doxYxRxcJaZZTW8Grr9+lXI65stkiz0tm0zmdTgffl5RVxSJJiUKJHzhj6m6/R1bUhG3pQmZL9wdOJxOOj0955959ut0WQgneuvs2RWm4eu0Wsu+ztbHOYjYiSyc8+/QTeNKwPuxhtQtvLYuSPJ3y1t275JXBWsGXv/I1ksWUJF0SRBFJ+iZrwyEnJ6ccHT0kzzK8554mX07Z21onkIblbES6mHD48AHj0Tm/4/t+H1F7yDPPfJDaCvrDNaK4TVEVeMrHCEGt9aWM4fH397Fp5n8mEPo7O35bO64rV67wD//hP+SJJ57AWsu/+Bf/gj/8h/8wv/Zrv8b73vc+/tpf+2v87M/+LD/5kz9Jv9/nr/yVv8If+2N/jM997nOAgxJ+6Id+iJ2dHT7/+c9zfHzMn/tzfw7f9/n7f//vf9t/vIAGvtIuZl7XaKNpddpUpiLPc7K0IAwjhsMhe3u7JMsFRZ6S5zlJ4lGWBWEQsL62BgKyNCUKQhCSTqdDe7DHk7eu8ODoHIHCIKlx7GUD5HnBfDFjPu/R7/YZ9geYWpOlC+6//RphEPD0kzvoqqAql/hhwO/83vdjVMQkaTqCgobh5ga8SklqbS4X9BWz67fz0muWO1zst2Ft2KfIc6oqIm61WR5MQFqECCiLguqSBQm2dP51QrjOybKCA1cQ1bdeqVeWQ+aSB/MI4zfG0WnjVovN7R0WkxOCwLkSKGHIyhorHP1cBRG1hZOzcypj0VXJ7Ts3mE7HVFWMRTbJyorRaESSVggRcnGxRArY3dmm0+/ykY9+EGOdme9LL73KM888zcZGzPAi4oUXnuff//uX+MIXfo2PPPcEQpQkSc76xhbffP0dbly7TtDqMcsqgvaAo+Mz6lqD73Rbj+JNVh8edZvf8v14jIjxrbrw9xqsvvdx/8HCKB7TFgk3j/R9H3BkoaKonLGxWb0XuDlk8+PG0PgvutdRliVWWzxfYEJJv9/l2nbMdDrh1dfeoDCKzf1dirIibkluP3Gbt98+4ux8xDNPXGFre5d7b0+REvqDLkHkkZQls3lCpzNHmRqhFEEYk5clRVmgPEWvNyAMY6q6BjzW1jdI8oIw7uD5MdYalxgufPKyZr5MWCSZo83Pp0gpabU6BIHEak1ZLLlz+xrJosNkfEa6mFJXBQJXoI3wOTw5xQqFBYqy4ujkDN+X5JXBSHdNJmlBLgtqDe1Ol7OTUzotn6p0cUAH96esD3t0e1129/dYTC54+Rsv89o3XyLNKz744Y/y/Ec/TnewRpImeIGLiRHCjRwQj2UMXNpFNTDif2YI+rfr+LYK1x/6Q3/oXZ//vb/39/gn/+Sf8MUvfpErV67wEz/xE/zLf/kv+f7v/34A/vk//+c888wzfPGLX+QTn/gEP//zP88rr7zCL/7iL7K9vc2HPvQh/u7f/bv8jb/xN/hbf+tvuWj6b+OwONV6pSuqsgBqlsmc/qBDr9/j4uLc2QlVzrXh4MEB0+mYosixaIrcdS6tVsRsNkEIyfnpGTevX6fb6RK1W+zubHDj2gZxIDBFTRAGpHlNEIUYI4kDRa/dZTFdINotrl7ZIV1eYKoK60nm0xn9QZ/Ai0AXzOYL9nbWufvwhPOLlLq2VBV4gU8QRW4xK/VjO+PVq32PiPC3+LAWlJRYU6GkZXdnHVOXJPOMdtSjKmu0tdTWEMYxZZVgceyyWut3Pc8lDCXeTcx9fP6ysgyyzUf92HOsOjWLwPMCOp0e1BlC+UjPJwgUxlr8IMaPWqSF5ujgkDfv3qfT7RL6Hlvbe0ynC4QK0UbxjZdfJw49Op0hTz51jXfeOcQ/mXB2kXDv4JjAkxwnY4ZrA05OTum0A6SsiULY3urz5ttnbG50uHd3hLWC46NT8qoAL+DNty+4mCRs72wxWySsrw946n3vc16NCISjVCKEfUTVsLzbou495+m9n/9m5p7/UTeFFez0ODkDEFLSarUwxlCWJbGK8T2foigu2YOO8fnoeUzDfBMSiqLE1AalLUthuX/wDp1oh7VuD9+PSZKCNM0pq5oojhmub/L2v/sSy7QkCgS72wM832e5XLK3t08YehgSiqrm/HzERj9me2efqtaYIqfVaRGEMUcnpzzR69HrD7hydQ8/Cpmcz9BWMF0USBlSFjVlPqYqEvI330YqxcOHh3geDIcDNjYG1OUSow1lXpOnIcKW1GWGLkvqyiC8gIOjM84nCafjOVlpKCpDFLdpdXtuo1xCoUuECpnMl2As7VaLa1f3OHr4Nr1OTLvTIW7FPLw4YzgYcOPKHv3+gNffep1lWpAuppTa8LlPjzg7fsDHPvG9bO/tE/o+VZVT1gbl+TyKbXmUGoYQDk5seOrfzirynSQN/Gae4z/l+I5nXFprfvInf5IkSXjhhRf46le/SlVV/L7f9/suH/P0009z7do1vvCFL/CJT3yCL3zhC3zgAx94F3T4gz/4g/ylv/SX+OY3v8mHP/zhb/m7iqKgKIrLz92g1HU8ZVkxnkzIs5R56LGxPkCPCleYipxer4vWmtPTUzY315nNZ7TjiN3dfazV+J6zbhmNLtBa8+yzzxAHLUcKAMo84fbNfW7d2OLewzlGSZK0oixqosjH2pp33n7Azf0tQi/g9q1bvPyNM3RVsyxy2q0QqzW1rVBUZOmStx8cYv0WGEOn5ZOXjuZe1zVlEzW+ggedS8Z3HlXyn+8QaGNQgCctusoQDeyX5wV5XmKBvKyQxqLNanjyaN6x6rQEv95T7XFV/+o7q52+EIK8yNHvikVwxWuZpJxfXFBlKdf2NxvSgOc0Lz6UWckXv/wyJ6cjlK8Yrm/SandIkoIbN27y4OAdFvMZuiqQQvHBDzzBYpaQZzlVpRkMhyRpzSLNabfaZGXJ9u4+eWlJkoTx+QhTa+6+9QZB2GVzq8ViOWU4WOO1t+5yPlpQ1oaLWcpwJ2D3+hOsD3d44Xf+HjwvwFzWY3cOrDCO0GLFf3Bx+XYjSr6d62elsVl1aNY4On+r1UI0FlCP5yw5ro1EKUVd15cVVyBREhDOIUJ5HqDp9fpY664RFUQcv33M/ZMzgtinKGrOzkdNbI5HkpUcnZxSpGPW1zcJOn3acYhUIDzQwlAbQ1VVVMoSNn/b1vYWNYK6Nrz44kvMFwvWwoB+f0BaaoTXYjbLOR1NuTgd04kFV/ZarPX6VLHP9au7pOmcMptjjcH3fZTwSeZj9vd32VofslikHJ+POX54xN2DM2a5Jq8sRvgOjowkfhiTpAWVBqsN2gg8P8BiyCvDeLbAIDkfTbhxbZ+o1UEqDz8MmU4nvPjiN0AoWu0eYeyhMBidcveNb/Dw4Ttsbu/xkee/h6eeeR+tKEbjCFQAVjg3ELHSCQoQsskj+zZbrvd29d9JIXrvz/+W6rheeuklXnjhBfI8p9Pp8NM//dM8++yzfP3rXycIAgaDwbsev729zcnJCQAnJyfvKlqr76++9xsd/+Af/AP+9t/+27/u68ZoROAYP1pXdDtrZFmGVC6OIMsyOp0e88WcwA9ptSL6vT6Br+h2Olir0aamrkqkklRlyfr6OpOLGZ7nU9UZo4tTruxd4Q/+4PfxT37ip+l3ByAUZa3Js5RFVqFYcnV7CynhrTdfR1gwWhMoj6oyZKMJnbZPvxfS7sSY8wvW1vpM0iVRFBG3avKipiwKjLUEgUetV2anlrpe6bcUSqlLO53fymK2QsmFsCgFvU7MoOshbMXJ0TF5lqHrmrp2ujZjXdfkpFfyUnbym/mbHxF4DQgDjQvE44ds5i9FUXB6cgbW4AUB1hQkWYbne9i85OTsgvsH5w7yMpbZIme5LOj3ety/94DlfMkHP3gHXRdURUZdGZaLhPFkSpZXtLVgMk+YLpbs793g6OgEjGA8nnBlb5flPOfeg2N2tjcYrm/yta+8xPogZm9/h1znjGYpaVFzffcaf+a//T8wWN/A1ILh2iaVbjrPhn1nL+d8jTigKfy/6ePxscbq8/cON97zdJfffoyI8fjjHcVdU9c1URRdmu7WtesNVxE7UsrL77lN/Yri7xKGpXJknLq2LBYL+k9ts97fQOu7eH6EkIannrnD0fEJX/nq10nzmrQoqbRPGMXkyWq+m1DVJVhnNl2UFbN5zZt33+b3fPw5pC3o9DpsIigqS1ZUvPX2OwRBQH9t4My3K0gXS07PFty/d44vYW9/h5u37+CZkrXhLr1OzGIOs9mEeTpjUeZ4omTYu0qZpxTaMJ+lLBYJ9x8eYUSMCiKwGlPmlHXKIs3x5wmlBiM8jKmwwkN6AcJajHFwsrWKbr/D3pWrCF2gjZudx3GL2WzGcDgEUxEGAq+WjKczKgttazh8WDCdTXjr7lt87BPfy9bOPkgPJT3K2l5SVwVcEjgeMXm/jUvLvvdS/PaewNrHEp7/IySk38zxbReup556iq9//evMZjN+6qd+ij//5/88n/nMZ/4T/oT/+PFjP/Zj/PW//tcvP5/P51y9ehWLICsKhpvrjC8uOB+P6LQi8jzF8yRZ6hwxfN+ntpp7Dw5px21m8wXL5VtsbgxRCvzAA2MZDtc4P7+gLARpOicIFSxmLMuUmzdv8kd+5Pv51z/3GTrRgCeeeJLX33yd8WhEKwzZ3dklTUZQp9RVTZGXLPIFGxsDR51XgsVySVFWDIfr9PvbqGPDYpGC8fGUm2EFqqG7CkclX61l7sIRl4vDb33xcswlJaHbDriyN6QdWUYX58ymY9qtNrp2kIppXBdoZlqPdlaPnNC/9d/t2IdY7e4LY9BFAVI1aMejLlTIVSEVJHlBtyUpq5pBr89sPiOIO8yWKXffOcZTAe1Om+3dbY5PjlgslkhxQllqdrbX8YKIzfUe6XxEMp9y9cpVDh4es0xr8qMzqrJi2I9pPd9jMh4xOp+AUqRlxXyZcD5asMwzur0+Tz+5x2x8QZKMCJRhe72HsIbnPvgBnnz6AyyyklbYJssr6iZyd0USWc0gHo3TvwNIBh7LbuKxxPnL/7iM0Hg3L+MxayAp0drgex6yeQ/LoqSu9WUhe7SQ2ctFScrV9sZefjTazWiV1NRCEwWWs/MzjL3NdLGkMmCFYGtjjWfu3GZrbY1fmX4dP6xQhaYyAX7YYTBcZ3N9yGDQw7OWUIKSgiTREAoeHo05Oh9zdW8dg8JaiVCSuwcnqLBHUpRMlhXLpOSt+w+5mBgXVGotoa9otUI21vuMTx+ADXjw4AhT53TaMWHgCt7hwwdsbmxgRZ+T8wukHzFb5mSFoUAj/YgwCpjOlxjrvD3TNHf7D+VhtcEiqbQzaLLaUmlLtshphwHzeQZ1RllrfC8kSVIn2p9NqeqKqi6JW22UL2nFXcq6wkjJwb271FUFGH74D/+os+y1GilUA9mubj93D0u56u5X18AKTlyJm7kcrj5ilvLYCFY02LDblD5iB7tdmFLO7mvVd7v/N6YNzXhACsu7qJDf5vFtF64gCLhz5w4Azz//PF/+8pf5x//4H/Mn/+SfpCxLptPpu7qu09NTdnZ2ANjZ2eFLX/rSu57v9PT08nu/0RGGIWEY/rqv+75PWZccnZ0grKUdxXT7A1q+R+ApNvobGAzTZMF4NmN/7yaLRUFVWjY3uqxtbOB5kKcZnvLptruMRlMuRgsqbfB8CFuKZZnQ6g74+Eef49e+8jovv3aPzbUBH3jmNt/8ZkG71eatu6+zMYi4srvOw3szWu0Wy+UIP1AgDFmeEviKoirxgh5F4VNVEVmmQQmUVEjl4fkBWZmhlKQqKzCr2RaXhpyP//utPjzg5tUd9ncHCL0kTwRBoJCmgVeFxjQL8SNShYu5aEY5l8e7iQNgUc3NA0poPAFGu4U2UB6l0c4+qFplka0YcwI/CEH5yKBFbTPuPxxxcjZimWm8wMcYy9X9fZLlgul0Ti0VKgzQaLI8p1iesbveZWtjneGgy1NP32SS1FyMXZBmltbMZwknx6ccHp1SGcE0SYh9xfHZBYNhnzTNaHmCYT+iLpfEgXOJ6IYhZbJEVwasxzKrEMiG3MBlp9WUe5ovNlrB39wh3vvfjxevx4fy1mLFysjVooREXAqJnQ+mF4Yoz/01xlqUVI6w1LyfKyjbWkNR5DShGo33XNMtCo3yJRLpIkOUYxlmudMrjkZjOu01rOdhMESBwDMluxvrbKz1mKc1y6zECkFVQxzG7GysE4QeLzz/fr74tbdIDs5Z6JK8tMzTki+/+AbIp2gFkiTNUFGHl149QKmQ4fo6x+cphyenLHJLjRNIS2tREpL5DE9pNrf6zKcjimLBWr9HnqYMNzZIs4z+YIgXhuRVxd0H99nbu829B0dUtUWGPkVVUiOoygKLoaqh0s7wQGsnH0nzAoQl8Jw3Yykl1ii0FownC2ydMpku8Nd8dF0RBAEqUPiBT2fQw6Co6xJb1syTlDAs0VVBMh+znI947eWvc+P2M/TWu8hauN+nBMZqPKmQeFhTI6W79sxjM0+BuUxxXlHpL40B7KMitZp7ujUJWBkU44I4Hd/A8Q9c2oBAKoHWYK2+vO7VfwLZ7D9Zx2WMoSgKnn/+eXzf55d+6Zf40R/9UQBef/11Dg4OeOGFFwB44YUX+Ht/7+9xdnbG1tYWAL/wC79Ar9fj2Wef/bZ/t7UOqtCmJF0u8RqniSIvCDttoijECktRV+xux7xz9x2KvCQMQu7cucpsPkcJw80bN9DacnJ8wnSy4GKcMp7OuHnrCsUsZTJdMh6l/MEf/uPcvr3LeDKm3fLJ8yVRKBmfn3B1v8sTt59kPjnl2rVNNtZ6xOE+nU5ImlYUZUG7tcZ0eobwI+698QrffPMcvVqgmi7F4ox1S+1YWsY+Img8vrP5rS5aLmTPXbjtVgtPSjbWN+i0uwg15pd/5RW3E38XieQR9doKgRW/MUtuRdrAGKQSeFKx1u9R5qlzfLeukK2IHo5m73aCrXbMzs4Oeal55/4hDw9POD4eUxlLGPpujmlKWu2QTicmijys8Oj1uoQepOkCWacEu2u04pjlYk4cR1y/tsv5xWsEvmS5zMjTjMFgQFVrzi5GeEowXF9jY1GA8Oj3B/RCy/giIY4CsB5lkbG1ucuiKDBaI4Ubnmtt3kW8ebwQr6x53nuufnOo4WVAxnu/3JzoR6yyR0XSLUae5yGVIi9yEBKp/MsuVxtzmQBsjLn00lyZPSul0MZgGnq88hQWg62rR122cHq98XjGdDJnONjFWuj3+2xtbrG+vsFimTOfz6hq1+EVpZtftVsOaUiTJVf299g5nPPqO6fNteaStE/Opjw8uaAf+wjlEXpQ1DC5GDGeLamNICkq5qm+ZLO2Qx+lwOiSr//a13nyiSt02m2GvQ79XpvFohEea4uQHu/cO8D3fcIw5vjkBAN0u32mmUYIiRKCra0NxuMZeeYW8KqqnFwAqMqSpC7JlUBZS56kxL4iy3KyNCP0YTZfsjlcZzhcpygzVCDJyoKyqijrkmVSMJmcELXal+f++PiI8XTGZLLgv4p7xN0NKi3wfM+dI+PgWyEFBonnN/NIuCRAuQvMnRu5WpOsvRSUrx6/QnykfPQcq0NKieeFl84qj8hA7nco5V06rpB952Dht2V692M/9mN89rOf5d69e7z00kv82I/9GL/8y7/Mn/7Tf5p+v89f/It/kb/+1/86n/70p/nqV7/KX/gLf4EXXniBT3ziEwD8wA/8AM8++yx/9s/+WV588UU+9alP8Tf/5t/kL//lv/wtO6r/2FHXNWEQsjYYsrY2pCxLlos5vqfo97tsbAzZ39thY32Ni/Nzzk7OCXyP0+MJUriU3KOjY6bTOUEQEkUxV69d4c6dm8SRD8bS761z5+ZTYAVv332d27d2WV/r8OxTT2Crkg+87w4ffP819rZ6mGrJ9kaP9WEbXed0OzFh4GFtjUIQ+iH9wToX4yUvv/w2Z+MF2kqK2rlo52Xpsq0Q1NWjN351rPRjv12Hu+QhTwuyNAcrGQ63uHPnafJKI5XXBOwp3KUlmo/y0WL5LVZf97Um1oOV+4Lk2vVrvO99zzAYtOi2Q8f6azn7nxXMIKViMFynqAwPH57w8jff5ODhBdo666HaWISnMMJy9523GE8u2NxYo9+JCH1JlqTMRmO2NjabLqBNqxXSin2MLkiTkq3NAXt760wmE7qdDlf2d9nZ2qDTbtHpdFhbX2M+X4LFDf+XCdZo4ijE6BIlDB//+McaQ9oGUrGrIv6oaNnma6b5+Os3KOI/8u83eqhblMRjH92cw+2UtXEQjvK8S7an7/vUdU2t9SUZY3d3Fz8IkFJeFqxVAXbzqxrPU7RaMVEUAe51+L6HUqqBisDiUVVw9+59ev1hsxOX5FnF5sY26+ubzi1dazAVs+mcXreHVAqNwdiaKAwxja5PKY+4FSM8j4vJAryQykgeHJ6xSHOWiWa6SBlPEtK00ZkJie/57O1us7m5ye7ePkJ6pElCGEasb2xQVTUg8fyAVruD8l20ilQeG5ub5HnJrdu30Uaj65oojIjDkE6nQ7frhO1FnqNr13E59qVLL6/KijyvqSt3zoy2dLu95v6XjCZTlBewtbuHH8R4Xsj5+YijwxOCMGS4NnzMdsuyXCYcPjxESMlkNqPWThQuAWNqPOVRaU2NAOGRlwaDAukjlI/BJawjJEIqrFAI6bpxJzVyjEXPdyGaQkqkcv+UpxBSoDxntuy+5x4Dq823bTo2qJvzsfr+d3J8Wx3X2dkZf+7P/TmOj4/p9/s899xzfOpTn+L3//7fD8A/+kf/CCklP/qjP/ouAfLqUErxMz/zM/ylv/SXeOGFF2i32/z5P//n+Tt/5+98Z3+9Biz4yqMuSrqdNr6SBJ7HoNdlvpgQxxtEgUddltRFTZ4s6Lbhwf17GOPEx3leEIYx/cHQ7T5lRRQqdne26fXXCMKIdqtD4MHuzhrPPnObz/3KZ0mylK21p7l9Y5dOW2CqhDKb0e93SJMZvi+pKul2VVELU1tarT5lOUf5HkEA89JBa9IDIwWVrh2pwbgVzNpHXYpzj/itJWWsjgYFQiooypx7bx+wu9Wn1hXjaUFRuZmNWREKLv/ElY2Vc1TgUmv86DU8ejmmmYvVVBaWiyWb1/d44s4tzkcjhHJsrSQ9dLowBMbCYpFwmiwf7Qg9QVlZVk3cIknxpCArcpQvEcIihcUTlmG/xc72GnVVEirJbD5je2eT0XyC0Sm3bgz5yIc+yLUrW8wmRwSBRClBuxXhBQHGGHq9Pml2QJIsEaLH5uYmg16H9c0tpLV0OxHddow1tXs/tSvUl7T+xzuvy7MmLjsVsA6a+Q+8N/ax4vUb8jGE6+betXkQoJo037J0MxTqGm1XWWslv/hLv8RkMmE+nxP4Ado4U13gEsZezb2CwMda0RQeg5LCbUqbuUknFMQtj+ksYTo9YXPrOkr5ZFnNZ3/lC/zOT/4url+/yRv3TpEiJ1mmPHz4kPc/tUtV1/S6XaJ2B88DhMMuPSXp9vpgC6aLBOnHpOmSt+4dUpQVeJBXjfZSuBGqtYLa1GRpSqsfsr29jRIZnbZiPp8TRwFR3OHhw2Nu33mCVkcwmswJo4B2u0O70yOv7tOysLa+zqIYkWYZtbGgPGeDZt0lrYSEZibnK49up43Acno8QlhL3aoZ7GxweHhImk7R2nB2NuHatWvs9de4+859hmsDBmsbBFFJu90lbllG4ynGGOK4RRy3mS0vuBiPmEwnBH7gtJQIbG1YpAuU9JmnKUVeUOqabreLEK4ByIucuqrwfIWvJJ7nEUcRvucIYVIqZ5zdGCgjoDa1K1Z1jaXR6xkIaOQQ1jZMUpyur0GPVikX2W82rPdbHN9W4fqJn/iJ/+D3oyjix3/8x/nxH//x3/Ax169f5+d+7ue+nV/7Gx793oCzkWO0CWEIFag4ZHd3C4EmS5b4u9tEgcftGzfYXtsijmPiOGQw7DIanRG3Yoy2TMYT4laM8iSeL/jgh56mLErefusuRks6/ZiPfOw5PD/k+tUr/PRPfYZuz+fgnXs8ffNDQEZtDGE7QFjNoNdiMhlRZBpTa6y2FEVJGHRZLDOECiiq3EVKSMGKFV1r3bASQcj3ZGL9NnZbAJ4n8T1Bp93h7btTPv49irOLCf/uV15mviyprESpECsExpTvGvy+Sx8k4FuKlJpZl4M2BOenZ4TSMBx2GfY7DNY2+OrXX3FP0VRSXdfMZjOXXislZW2oDQjpgYWyqvF9B1MukxSrDfPlnCgMKUrwQkkYekwnF3TbYZMzVWF1hRQ1z3/kGQa9DudnpyhpCaMW89mYqqpIspRaW1rxAKkgSXI83+PK/j4CTb/bYdltITGcnRyxmM2Q0QBrFdY4gbnj3L33XDSzPx4VMHkJjvz6a+Dd0OCvd96w7+l03alfLUACbS1SKnw/YDydXnZenufzj/6Hf8RXvvIVRqORg4isuUyufuTKIS6p8Fo7GUqt3bxEKUFZFggpWBsOuXN9j1gVTfKvx2Q65eDgkHy5YHdryBtvvMnm/jXA4ilJldfM55ljNhrDfLGgth7L5eLR6RAQxi2sFSzmOQ+Px5yeXZDXltoqytriBz7aVK6oWrdFCAOPZLHg2Tv73Lh+nXRxAjrlnXvndFod6sCQFzUX4yl+GJLlJcO1NWazBN9v4fkByvPpdLvU9RmzxRLheVjpoUuDEoowDCjLgsGwhxISJSxbG5t02i26rRhdlrRjn7W1AVkycxvoq9c4OTrECsnh0anTg7X6lFowXOtSlBXj8RiA6WxBkpXkeYHWFt8LOTo85itf+RJn5xO8wAcBWV7i+zFFYcmKkrxwIm2aeXRVVeja+U8q6fgDrVZM6PvEYUgURbRaLZf27CuCIMD3ffzAmTiskgG+9rWv85EPf4TBYNAYZVdkWUGapsxmM6bTKXmeu2KZ/xYVrv+9HbPpGFPXfOAD7+Pi/IRQSQa9LovFnDKXlGXJwYN7tDsDojDAtBwtN80Sur2Isio5vz/i7GxCf9BhY2MNhOZDH3ofu7sbJMuS8cVLnJ6dMp5Ydvf6bGztEgeCjbUQz/fodSJakaAsNCqQ1JUDxrTW+KGPrt1uNC9y2t0hfqvjWnOrKWoDvguFNNq5pMvVIvQbwL/fKkDyt+JYEQX393a4ffsOvzb6MrNFzquv3+ONNx8glcDWjeOetfhSYEzttCRwudt69LfbSwLTqgsw72kTirLk5PSUJJly58nbzr09yxArqpx1ydHD4ZAoDBhPppSmRNBEsCCxVrgdaRQgpN+E9QXUNfieACuYTxesra0xOjtmvkxI04zhcMD6sE8YCL75zZd4+OCY9z17i43NNTw/wPM8jk5OMVYRx322tnaYTJZUZUU6n7G7vUEQ+ISh7xaVuma5WBKIFsoLkdIHpOs+m8Rn0xQz3dDLVQMVPz4r0NrNl+DRuVxp5IRwO13ZVH+ttfPzlArTQH6r55YNbAONiL+qOT4+4ad/+qedx6QQZFnGl7/8ZbcxkLIx1y3QWr9Lh/PofRWX8wujNX7gEYU+tS6bx5nGqcaC9AiCmLyqqTQ8PDzD1AVlZfBaHdI0oSg0gZLkec3h0Qmhv03gCYpqQtWkZStpCIKATq/HcqnRKE5GM6TfotKlg7yUJstLRyYQym1yMNRlifIVShi++qUvsr83RFcJZ2djBr02YRhz9+1DpoucrZ0tkD5S+ASB5OHhqYO8jOGdd+6xTBKKsiL0fMqyxNQWbQx5XiKEpSxctl4cBiyXS6zRhEFA2IqwuuD8/IyPfOj9WFOzmI+5dv0G0+mcs/MxTzx5i6jVYbvd4fz8wgm6rUB5Ptposvm8QR5y7t+/zyuvvcWnPvVLZEXFhz/yYW7dvoUfRKQiw1gfbZ01V5JmrDZCulGRy7pCCoHKS7I8R0nRxOW6e9JpKx3063kuhcNafbmRqeqab77yagMdV9S1Jk0yisLN6KCZgUpF9l9q4ZqML+gN2owvztjaWKfbjinTJRcX5wx6XbI8Z1lkeNMlnXaPIAyI44gsgzRLODs74+JiSppUXL9xlTiOWVvvEyifKAipfcv3/67v4/x8zFv33iBdzplIiR8O+eEf+iS/9EtfJoo0VZ0jhDPEDeMWVVWRlyVSeSDAMwZdWeqqZjmZ0Gq3QRRgcV58vnQjm5Wup7mYjPkWu+vfpq5LNgyhm7dvo5TbxdVacXA4wYoGIrQGqws33AV85Yb6KEmtnZD1Elt618t4dxKViz6xZEWOQLG+MaDd7mKFIssLtG7GNhY67Zh+r8Pm5han5xcNdq7AaiwGXylM7WYoUgZUdU6aFcRRRKfTZXxxwaDfpaoMlbY8PDwC4RbddjtC1wVHRxfkBexfvUWa1YRhm26vz6CfMJksuHIl4Pada7z84sscHh5zbXcNECyTBdpoyqogzTPeevsuH/qeq0gVUNW6cZt4ZEC8GmIbYxHSXRtCPGLxrf7VWqMe001dSiNwzK+Vy0gcR5RlSVmWrtg18yB3jvVlkXnzzTf59//+V/ja177Gyenp5dtTa02WZW6BsVAWxSOoCC7lGatFSzawYJ67QoVo5pYWrLHM5jOmHZ9ZkeFb5xUatFr0ehGT84wkzeHigv7WOu1Wi9G4JPQ9rl11dPSL8YS1QRelBL1Oi04cMs8y6koznUyZL2ckaUG6rNja2sZYRVEWTeI2BH5AGESYqkTYikAJbA2mKjkbn6DLKbs7a1zZ3yKK2yAUN27dIggjiqrm8OiU+Sxh0B8QRjH1dE5RliwWS9IspygN2jrkpa7d/E8J8H3Fcpk4yYAQJElK6Hn0uy3ydE6RL/CV5eHDA3rdNnVds7m5hdGa19884OHhMbWBqq7QRtPtD/DDiNdef5P1tTWUp/GDiPOLBWcXI5bLjLJ0m+HRyRYbax0Ga5uEsU9WlFQ1+EF4CfMZa0C761EIkMptn3WjSpHNzWaNvWRIriQPSZoRRSHGaKrK6U1H4/GlsfLq2jDWujUE3P15SQb5zo7v6sJ16+Y+V67tcfDgPlWVUVUQtyKMrkjznFa7zdHZKVU1pyhqdnf2yfOM8fiCXr/D+voave6Q5TLj1s1bzOYjlssF83mMqZtiY1I21vso/yb3Dl5H64pWu6bflfze73+SMATlCZJ54Rg4Ujv3hsDHV5Ki2VX4YcgyXXI2yYjC4BHd1Bg8FEpJlx7bYIa/vaDgrz+0NnhC8vDwGOqCyhiySlJUIPyAOPRZj0LyLCdPMgTOm66owYjVxStwoZwrcoW9PA8rXchlP9bQtfPS0YiXac50umxmW83Q35NsrK+BrsnSJdYaB8FJ8JRw/20sRZZi6pJ2FLFY5JSlwZqCNK0Iw5jX33jA7Zu7fOC555lcPOTtdx6wt7/N5vYGftCm032bNDN4fodvvPw1blzb5MknniFNC+aLh5yfnXH95m3a7Q4PDh7y1K0rjEbnbO1ssEwWpJlmLfC5f3DA+56v8aWj5xtrGjKGvWT5KSXwPGdma1nRzt28TmuD5/mX8wKDMz1+RFMW+L5CiIA8zy8LWBAEzn0kz/E8jyTJaLfbJGnKL/zCL/BTP/VTLJcLrDXUtXNwMU0qdZqmLolbiCYI0nObgcfSCh7XFzqzbAcN1nVNWrvX6TY6UOQlxTyFskQbw147IowD+v023U4Lz5O89ebrXNnfJkk0RZJjrcFgKbVjc4Z+1EDAHhLIstTpL+uCMI7IFwUX4wVl6TLzPKuwBtaGAyI/QJiatX6E0Cnve/o6T96+Tjv6KOfnh0ymF+zub9BqdSmLGmMd2aHd7dDp9HjnnQf0uwUf/NBTdDs9QLKzs8PRxVtYXOq3QeJOvUQoRV5VaOOu11prqqpmPl/QiQN6vS6yF1IXCcvFFGErfF9xfnbG9vYOSsJ8niDkBQhYZin+xZg4jtna3mJ9bZM0zbj79gFFZel0u47cNZkRBApdJlwcHyBMzdaOTxy0ieKYNC/xPEXgq8bL0W/CWlcbE8fw9ZSbea3svpq7070nxl0vAgc5l0XVbKKE62y9R5sa26AB7rpyoxH9n7DIfVcXrk4nQuucjY0BRmvSLEGXHkZrkiShN7yKUgFZkSKVx0svf8M5V5gKYys6nS5ra316Pcv9+/fxfUjSORvDoVuUZnO2t3epqpQ4VPQ7XRfZkS4RUrG73aVuzHyNdTBOlRVI6VOkJX7t6PpCOtilKDQISRT7eJ7AU1BpZ1yKto1w1K5g+8fSuN81sfhtONNNp6cEBw+Pubq/zf6163z1117lfDJDeB7dbpePf+xD+AJOj055+PA+i+UCnVSU2jnp68eYCFJIt+vHDa1XprkraFEIME1hS5KK4+MR9x88dMgabrcfhgG6LgnjiOlkxPpan8lsTlVprDUoGn2YAF1XHB+foK1xQ+aq5vR8xFq/R6UNw/Ud8hLORnMG3Tadbp9Wq03c6lOUjr14eDzibLQgLyqe/+hH2Nu/xngyRXmSk5Nj4pbP4UlGVWvSoiDNMpTnoU1FEMZ89AMfdea0gPJ8TO26EaXkZWrwima8gt1W2qrVsXKpcCy99xjnCkGelw1EGVLXLqG4qipmsxlvvPEmr7zyCm+++RZPPvkUo9EFX/3qVy9nDmVZkmV5c4VZZ15du2DW5hdcUqNXheu9Nj6Xfog0pI1VUnhzFGVJECiiqE2316Y2JYia/rBHr9VGmxJTafI8JfAkeTNTW6aOqq3LjK2NbUDSilsYs0AJF7siK0Wn06bKatI0pTbuBtK1C1isigxTZJi65MmbT/Dcs+8nVDVVPmeegakrkmRJHLW5f/8A34tJs5RFkiI8n7WNLarKMpuklGVNvz9gmWvCKMb3fYywaGvxpGxgW9dBa2ORynUycadDFARILMvlgsBrsbe/QZnHnJw8RBCDFbS7PZJkSbvdImq13TUhYDqd4XmKsqpotzsURclymdAfDNnZv8JgOODBwQNGp+d0uh1CZdDlknQxIu/16A5aWGkJfe+y81FSXMpuVjAwxskX3AZKYLBI5b0LFnaONpL6crOtLp9TPHadCGvdtWMtVq42bAbxX2rH1e2FeJ6lrDTG1lijQXm02m3SvGA0nrG9u8fktde5d3AAVlPrkl6v3ewItXvT+0OKomBjY8iO56jz/W6PbrfNYj5q2EuWOI4pipooVChPEoSSNDf4QcRkNMVawb37J9y6dZN+fwM/hMVyhO8JyrICaeivdZFZSCsOG6I4zQJmL41l351O9V6q828XVCgoK00hStI058r+Hl/7+U9T1prSWo5Pzjk+esCd6/u0QsvHP/p+Dh4eMltkvH732FkEWXDMQdlQst1g3/MEVWXxpKK2EmsN2moMDm7MypL7D05YJAW1EQihsLamKksuLibcuLaD70v2rl7j1dfeIjEFN27sM7kYUZY5yvOZLV2UujUWKT0sgrwynF5MCbyA49MJJ6dnpIsxcbxFllfkeUlvEBDHPkkm+fwXv8psvqDXlvzrn/23fPD9zxD4AYvFAkRCEIbcvLnNyekZdV1S6ZpFsqTdG/Lg4UO+9/f/KIuixApNXduGNeH0Tl4D27juxc3nqrpw2iClm67JUTIde1Ig5WrGdLnVIQgCzs/PUErS63WYz+e8+uqr/Kt/9a+4e/cdRqMR1lo+97nP0253CMOA6XRy6QWa5zmyYZJVVeX0Wc1iZo1x7hnS8Ei/824Pu6qqLjtJhHQSgGbHba3zd9zc3qQTBnSHMUk+R3kCT0qyPKUoUta3h8yTCmtqhIUojmjFbdJsQZ0XpK2Cqg7Y2NjAv39GEEasra1xdHrMaDQmS0uE8EBKTJMRpiRoXTrCR1GQLRcEsubs8B32treoaoOuSuIoZjKZoFREskyYLRNGkwlGSFod51nYavtMZwvCOObw6JzxrFgBBm62U9UNkOa5BVt6SGlRvo/yfRCS+XzK6CRl2LtFp9PGRJLFLGTQ7xEEAUVRomTABz7wHFZI7h8cMJ1N6Xa7LJMlRVHQH6xxenbKaLTA89sM19cpihIhYGN9gDAFYSBohx6L6Tl1renOM/auPsmgN8Q03b42oZuz22bbbLmUI7iNiHbUeuk2S6u0a4WDpmniVJSnLoXpK1MBcRm18tjGBsekrlcV7zs4vqsL13I5o9fvUpQ5pnYC2W6vR+CHzBZOuBq2NP3BgMV8zpNP3kZYwzKZU5Y5VV0iPI80TZoheoYxBb5SpFlCWea0Oy3GowvqqmZ39wrJYkIYeYClrErqqsIKQV7W6BrOz1M2NjOE7xMaRZpXdDYHdDpdut0+9w+P0csa3w8QQKBcMNyKbLDqtC7Xov/dHG5hLMuaF19+jYfHR8yTAo2lBrCGg/v38ExBmWcskil7+1f45J2nMT/7Kd58+wHSCLSRmNWGTbhZlrspDEJ5SG0byyh3aGNZJLmbe60YIgi3sFcGJTRJmlKbmsl0SlnmbKz3eeLOTd5Bs5jN2Nnb4mIy497BWWOnZS6j0Dc3t4gDj/F0yXI5px0ZtFGcnY8RShDGfYSQBGHAeD5Beh4b2wMuRnPeeOMtkjQlTZdsbu8gBOzu74Eumc7mhK2As4sJt+7skGjL8dkZWe1T17YRztN0V+4m9zy/8aK0HB4e8Yu/+IuUZcn29g7PPPMM1hr29/bZ3Npq7JVEIxZ1G54sz3jppRf59Kc/TV5k/Mgf+mHefucdvvqVL/PgwQPS1HVWVbNbN8Zcsry01o9maQh0XaNWOptmRrH6b5dSzGWK82oXbozbcknpumsH2Tr9luuSNZ5SrK0PyeYzqqp0RinGMJnNMGVFtxdhraEVR458IwV+8xxFUSIsFJVmsZxjg+4l87JqWGp5Q8IoyhLlKbrdNoO+IzXUDYx3fX+drY0O44tTMDWj8zNCP6LQjSDXOtgrLUqKskYbmM0XFFVFkRUEfkCSFRyenXN8MmaZWcqqdqa+1qL1aiZMA8O5TqyqaxaLhARNlWaEwjKdLSiKnNs398EUrK0NCf2Qi4sJp2djsrymNiCVy4N75oknOT49Jssyp8uqLZtbO9w/OOLo6NjNhtMl+ztbTM6PUVi67Zj5cs79e3dZvvoW3cGbfPx3fB/7V6/i+SErQbwbBbqZqTYWjJOm1I0TtDH6Mqpo9XEFE1+uEgK0duzSRzrUlU/hCjZ0Fm61/19o4UqLApVIPOlT6hJtLdYozi8mKD8Ao5kvZmxuruNJgyfdnKDX6RKG64zHE5xGRoOwaANVpamtxhiYzWbs7e5S5JBlBUEQcf3mNS4uzlkmc5TnUVaa8eTEvVGez2DNIy2WpGcZcRwThD5HZzMCD57d2CRuD1g+OCZNEqQEX0iExi2mwi3UCtBCIJRHqetmJtRwe4RildEleATVrNwWhGwErdYghbiEaqQSl6wqF8joWF6XxXFVNH+Dc220cbtWaxnPlyRF7tz5a4P0BJHv04kHvP+DL/C7fv/vozfosT7s0+u0eOH7fjf/5J/9Uz792a+gLdTCoEs327OmRtd1sxC63+45bkUzp2q0N7KBKqpV1yQxGGpjmSU5WZZzPl5SljVKLLj75ut02xFoj9nohGG3h7y6wcHxBUYqUIpPfOKTPPHEU0hjWM5mpMsFb7/5Mm8dzGiFitEkY2P9GlZ7zBdLkiwniHyWeU2Vl2SDkjRP2dvb4vq1Kxw+POTo6IBnn3kKS85sOsELI4QX8/Qzz9HudPC0j9aGTqdHUbhrarlcIpWi3+8znkx5++23+X/9f/7f3Ds4oCoram3o/EIbz/dYX1vn9p0neN+zz3Jl/wqtVov5bE6SJty/f4+f/Zl/zdn5ObWuefud+wSBT5osSNKEIs+RQhDHEVpX5HlGWZboqkIqBwO6a8A0dPVH87VHw0dHwkCuvr6aUVonrq0bKFfh3kTcQF4BUkCvE2LJUb5G1xXGSIrccnGWEIWSjc0WoR9Ta4lC4SlFrxeTZXOshSwvaJcVVgpmi5kzKq4r5mmGFR7alGAhCiRxy2fQ89gYxtSFYj6rMLVhuNZlfc3FlSgZYzVkRUFWFWgl8MM2aVGSloaz8ZxWK6aqLIgaIX2MChktMmbLmrT2mKYpKIVeSRs8B70Jq7HoSzKS0ZaqLtx9KSCrLEVVc3R0xM1rm2zvriOlR1FoHpye8MprDzBWsr2zR6sdI0KP09GIIO5yMko4m4zpxB1297cpq4rx5IL1YYetK5ugK+f8sVwwGodsbGwynr5F7AvGZ3f56f/vXX74R36ED3/s48StLnmpyfLqEsrW2jE1tNEYXTsPUqOdnMA4NuUqVPaxJQTDquhJVj6cK59C9zPNBlRIdOB/x2v/d3XhEspH62aY7SmkcLqioijIyxw/UFRVgUQTRwGvvvJN4jhmc3OToiiIoojxeOyYNFJijGuFx7MZ7bbTDd0/OKYscra310nShBYhtS5ZLpckSUar06bddvCCEB43b11jtlwyW8w5PZ8QRgFXr+6gi8wtfEHEcrFEqYrd7R7LTBN4PkVegq1pt7vkRc0iyciqqoE4Lh3DWDlRSGkfERpso5ISj1wYZFOYlFzFibi2/dI30JrGqNbtWLHOAPRRgo/gkVu5O9wmrPmZ2ol4W52IuBVy/epV/vu//9/z/CdewPieYy1R44ma3Ws3eO7jz/PFX/0S4/GCo7MLvvbVX+Pzn/4VRJmgkEzmKVpXhKEjH8SRT7fTIckKpmlGbQVlVeB7HsYItHbp0LW1zc82NG8EZV5ycHDI+993m9/5O57n5ZdeZLaY0YpabK13+VP/7f+R93/oedY3dun2enRbbTwhePjgHr/w8/+GX/g3P8vZ0TGBinnp5bscn04YT1MGaxvMlwuOj8cMOz6TeUIYBJydnXH9yj5hoEhMzWQ6oqorPAmtTg8vCPnA+z/ARz/xCWrrNQa2voOyLJR5SW0MfhBgjOXFF7/G/ftvM50vLn3dyionDp3h6quvfpPPfOaX6bTaSClZzBdIJah1RbJMHCOw1jw8OiKOXWCiFBbfD1DKMcTq2pEELmcatnmDhcBq51f3uN0YrDqspstrYCP7GKnGGmhYCW6mg7sGPaEQRtONItaGPYoyxdgaKkmaV4wvEorKYPFBeFxcTNja3OOJO9e5f/AORV1S1watBUVpuJjMEH6MVQFSOT/A8XhGmmZ4yqPbDtncWGN0cUYgDZKSWzeucO+dI2azlCAMiTo9TOUzOj6j5YdIK1CBgxdnScVknpNXluNRSr+ATjskywsGa+tMFjkPj09BemRFjRGu+7dCQuMYoesa6yxBEMJl2Umc/6jFmd1aA6NJwrAXcnx6xmDQ4eLsgpdevsvR6QQjBXkJ2eE5fiBQoqDV7XD3/gEPD8f4nqIT55RlxWw2wtQ5vVixfm0HqysWc8t8viRJDrh24xrX9ncoypztSnJ0Mubw3msIKv7If/2nkCrEGEGSFkjlUWtN2ZBytK4xjcDcGSc3hcs2TENrLhmHrnC5VGlTOzcV0VwnutmEW9PMu/V3Xn6+qwsXNiDLa5R0LfhikbKcp8SxT6sdsVjOacU+UkArdvY8UkrG4zG7u7ssl0vm87kT0vk+SZK4XJ+qusTjJ5MJvW6XjY0Nut0uUlk2NzfwPMW9eweEYcDtO7dJkoQwbBGEIbbp7A4OTrl2PcIaQ6fT4a237rJYlGRJwpX9ATUR86RgfW0LYS26rnjqyWeoasMvf/bzvPPg1LlrCxwdFYCmXV/xwS2snLtW+LKwK6LDY4nDDW2ttsYZqwrnso5YQU4O/nw3Md11d6vttm28zqy26NpglXu+sq75gT/4Q3z4Ex8nbncwQmKwePhYC0HUZRCEfPTjn2B6seDo8JiDu/fYvrLJ0/vPkE4nfPWrr5Npzd7+Jp1WQJXO+eTv+DhnozGf+/LLnI1ThBSXztY0otpWK0ZKSZKkzu0bS2Wh0/KYTiYskiVrGz26wx7TecHTH/gQf+KP/9fsX72NlT5SKeIwIAw87ty5zvs+8Cwf+8iH+MJnfpHTg3f40pd/jfNZipGSvCgp8ppAgkZyMV1w89oG+aJkOluSZQUgmM1mxIEk8BTZckmVLXnn9dd46skPILwYEFTCPZ82rst28yBFmuXcff010vmcOnfSAt/3ifyQKs/IiwKJYDmdsJiMG3Ncg+87yFFK1bhaiMZHNL80zpVNJ1WVJVVRX8I9rrNqds7N55eE59UXm+vMNNT2R2iuC4tcQZ7GOMhQWud65wnnBtMKA3Z2dgkDxXJxQRj4BK02h8cPKSsXPhqHHsrzmY5GpNl91td3aPfaFKUmzzV5VoLwMcInDCOkDDDWRaxUVYIUjsVnjSNFra+tI22J8kOkCugOhkwXBVr6nE0XzGdjLo7PGHYHhIGiLAuCuMXpxZzxbIkXxmjhoaVPXkvSJKG0S8azhOm8Alk7p4yGMSmkAWqEEQ2CIZ0/o3GMWtGYDRhjwDo3/kWSc3oxI8ksnV5Ikknu3rsA6VEaHHIkfHRdIKRlPltQFpWT0Qg3o9d1SSsOaLXblEVBmiR4wtJuxVRVxXQ6JVlM2N3bptvpY7SzifKVYXR+wsnhPZ548lmiqEO3VQES5XkUddUUrEf3nDWrGVezJjxG0FlF86yYrsYYR4yxLp2+qgrqumpc+SFJ0+946f+uLlzaBNQVHB8fM5vOSdOK7c11Km2ZTOZUZcpHv/+T5NmCuq7o9/uXlOD19XV2d3e5fv06s9ms8VxroKrAZzadUFeadjtmd3eTtbUB0+mYfr9LkizotDt86EMfZDKdICXsbe9wfHZGWecIBFHks77uUZUZhw8O2N1bx/ckAo01KVVRY70YXwJ6TrvdRtdw+PB1LIrnP/wEt+9c4wu/+iJZUZNXNdo6mrhULp/q3ZIuV7Ro5gng6ppywgm0aSZDK5o4TnfmdtWr4iXeRQtZPa9bnNQKC0BhsdQNpADtdp9rV6/TanfcAmwFqimikhBrBZ7w2Rzu0W+VeHgYXVHmOdvDFkSKw+EJ02xJ5Bu21ttM9IQ6H7MxiHn2zk3Sb9wlK7SDo6wrps59WlKWNda4gqukQEhLVVuKqqFPR5ZWq4WVIT/4gz/Ak3fuELUHGNSluwPWoHzJ9vYOP/yH/yif/MTH+dKvfIaygn/3+S+T5yXZdI6wEEY+fthiPJvSvpgz7HVZZi5HKW61WCwWbF7fRdqK4SDmyu4Oz965yb3XX8WqsGldJGlWUuN0a1L5KOWRpjnTixGm0tBQ/3VZMc9LZwXWiJVrU7MCaTwp0VXpSs1KEyYVqumuV64GWmt0XaLr2uGvjZ/ku9O2m43OexlfwmIugaFGvGxtM5xfQdjuAlFCooCVP12v36PditC2CTkUIaW2jKZLNrf3mUxmzWvImC4W+GHMdD4nKQo85TNb1CwWGUpKWu2YuLuODDyn+5LOBg0rsUairHPdPz0+Y3dngziKKApNkqUYoVjf2uZssuDw/JzZdEq6LAnUBCUFEoFUiqx05gBx22Jl4KBhIykqwfnDM2pL49JuQUqsNg1RxiIaYoo1q7hGeYmlaV2jLtl2FokzJk5SzTypmb99wmiyJMmdhAQV4AmJpUJR0hm0iIIYz8vZ3lpnuUyQ1tDrt+l3WihZ04488jRjMRuzvb0JusRXhiydM7qwRGFAWRq6nT5pOmN+fsrP/K//Pz72Pd/LndtPEYYtjHaM0iAMH9MIuu2vNU5YzeVMk0sWqWp0q6bRo5rGPUUq2YxiagQW3w23qeS7DXq/neO7unAdHo8IPI8g6rFIl+SZJGp3KIuMokjY3dnh5OSEMJAURXEpulwul5ycnLC5uUUUhaRpynKZXKbtdnttWq2YdJkyGU0chTcMGd274M03X+Pq1X2uXr3KxcWYVismWS4QEkLfYzqfE8Qh2lYMBi2yrCSKIupaEwaK9bUenlSkZc08LSmLhGRZgmmRJvmlduTGrdtsb6zx/b/rY+Sl5cWXXmE6T0nLirxslIGPLS7utnPO6jQ74kvs2Rg8IZDKDViV4tL0UwowQjutDYKVEeajiVcjIjXNwNlox87DrX2/+/f/Hv6vP/bf8bEPP4+89P1wv1k0ESVYgRIKi4dQGhF6vPHWWxy8fcjxdswwDnnuA7c4Hs+RUYAMJL31HkmRkc8TyiKn3wlJUid21pc6Zut818qaVVy5xREJqtqyTDLuHx7hh5qtjV1OjucN6ywjjHrOIFRJjG1YczgqehS38Xb2+ND3fJz7R8e8cveAuwcPETiT18pYKi1otXvUNmS2KOi0K9C1g8KqgrI2tMPAzRMRlHlObS1pOXcaNelhhKDSlkWSMZrMiOMOk9GEi/GYKAxJi7IhNTgyh2mG5Nqs2DwNbCtsA6FqqtoVNjooIloAAQAASURBVGssCEtVVs61XWsHXUmceaqQl0w49ySPrqRfN+kUjx7kXDcadlmTU7NimV2GSFoIvABwMFNelEgpKMqE8cTS7QTUdUGa5vyu7/sw9+/d4+jwAXs7m1RVRlZWxO0Wk+mcOIoZTzKSxBD6isrWqEkC0slfOm2fqtSkiaEdhbRbHeI44PDwIdYMWS5zjDbkVc10kYL0qYym1pVzCLEucFLYhvRtHdmqNpbapoShT20sppmvlcYFaNaNHknJZhOJOweyOZeNt0kz4xIoAcrj8py5/aQ7z2lRc3B4zmQ65ex8TmXd2MIRZSy6yBh0fKqq4uxshJQBuzubHJ8co6scT1mWizHdVsj2lU2sLljODeenx+hmg1OVGXXpkVQZvgrY3hzw1lv3yJMZo1PFT/7L/4kb12/xB/7ADzPsr2GBLJuBEJe+g5frjX1stnXpnmKpVvIMwyUM7sYNboOIaRxXrJO/mCL7Ta3z3+r4ri5cReHov+PR2BWXSLFIcoa9DsN+i0EvJlnOaW+tAc6PK01ThBAcHR2T5wVCCC4uLhiN5qyv97HWEMbO4XljY5NOp0ueprz++uvEcXxpanl8fETgh04zliV4nken03ZMtFZEdXaO6LaIopjFfMF8VpEsLP1um36/z5ofMk1SlLIUuUZJjRI1/V6L2SxhMR0xuhhx5877KSrD1nqfXq/LaDbn7GLapOeu+iN38Ugh2dpYQwpLniwdXGgsWVYiPcn2zjYXF+cUZYn0HAnC8xQGSV7WlFVDxBcAkkdJcw6WdDCkdoLiQLJ2dZtb738KEXhoY/FWK9xjC93q6WptmCzmWAWjdMlLr7xGUVScn0+w/YjcCh6eZOTGOqKNzoiDCbaSbKwN6HRbbKFJ8oxZ0njOGed24YqWegSJShgMe/jSMF8k9FWbV18/ZTFL+exnP8fTzz7PR57/GP3hBn4YXM76hCP4YoUlryrWtnf5Az/0IxSl5V/+L/+K+4cnzNMFWVVxfHrOld1N+oNNjh/eY9AvKbI5SZZQVTVr6+ts9odgIC9rWu0uaSVoB8oxz6zgzXfu8cWvfIXXX7/LydkF7U6PJMk4vxg1rhoN3suKZdqkCttHG4qVVVZR1Vy24Kuui0b42Wi/tNUNpCgwtXGLin1PkWL1Fj7WezerlPODdJEXWuvLGevjsOEKcywvGXqW0JNUpqLMnYZqNhdEodvkHBw8YLFcUNUVk9kYazSeEjz19FO8+PIrbl4iFFJCXmoqm1PqiiiWCKm5emWTZJFzVEzRdUkcCtb6LSZjgaCkygqms8TphyowwlCUFY3Ey23crOvebW3whcAqRyowdU2FwfMEfitkOm1YcMKRm5QHkhovUAihnGdjQ7Nc5ZvVxuEYUeTT67ao6oo0dWxFYQ0K54Ty1jsHeJ5CKAW1xgsUGk1RFMQBbGyukc1nZElOq+03cG9JFEp8z0HFg35MGEhMLRj02pyfn7G+PkDrmigKUBLWBkPCMMJUOc+97yk6/SHjyRxrBFL4ZPMxa+0Iz3Phu8Ku4ojMZZe9mnW5d7zp1nEbltW2R0gXQlob05hKO/LOihHcJIP9Zpb5b3l8Vxeu2TyhLEtGowlrGwOCIOBiPGLYbxOGIUopBoMBy6Wjtg+HQ6SUBEHIbDZzRW88ptaWKA5J0pLnPvgsYeQzHo+ZTuYEXohUiovRiDxb0GpFHB4eYhHcvHGT8XTqbobMQTVSKZbLOZ1OTFVbZvOEKPIRWG5c2yfwJbUuCWNJ1O45M95pyunxjCdu3+bsfEK/N+Ts/IKi1Nx7+w3yoqbOl2gNG4M2ceQzGs+YLorHzoa7MDbWh2yu9ymyhM21IQ8eHnB+PmKRpNy8vsezT9/gpW++SLfTcroLJH4QkxU19w8esszqZiCr3UxLOKjDWINQjaDUh51nb3Hr2SeZFin3Tg65euU6O0GMwDGLXOqtbZiCiq++8nUenBzx8Y99jHmRUWPQEh6OMvBj3nlwwfH5glqADD20rZGywJaWo7M5t25eww9jAgQtW1IUFXVlXFxD7W4ItxN07FCpPMqqxNiI+wdzisKJoH/+F36F+w/O+NN/+s/wI3/0j3Hj1m2kUJf6uRUxJW63UQKu+gF/6s/8GfrrW/yL//l/5le//GWU72G15uJiijGa0LNuzqINdV4xHAw4n8xQHvheyMnkIeVn/j2lVhS1cwI5OjvjS1/7GtPFgtpAsszgfIRtfORc4WrsmVbMUXG5LLheWKnLhWQ1n3Qq0kbcuSo2wmJ0he9J5GoGYV1Ejfu+bOy43MLj+V4D7Vi38OAKlpJuxul5kiKv8AOJ1pbAd8JUp99qssaoLzfphpKiNtRGIyVUtcX3LMN+l7PTY+q6wtQVSvhoW4MWjM5PaYfOBcQUFWWWuSur1hSZRgpJGEEn9ljrb9AJQx4eXFAXS9K04ur+EEFBK7YI61PWmto3GCStsEUYBtTaeQkWZUkUSFQYO0qS1ZTKnYww9LAYWpGk34uwtqQoLX6gsNRuroal1+5QVzVKesRxTJpl5HnK2lofFNRVgUDTjj16HYWnApaLAiVd+vJ0tiDLc6xxCcK+74gOCFgftNnb2eT18zGdVkS73eL8/IQsWRIoyaC/STv2aIUBk8kpgYQo8tlYG7C9tQlS0G63HNTaalGXFdPJlMPDY5548il2NrfASOK4Q6BgORsThi0AZBNZAm7WWlfO/7LWtbtXrOvCm6AcjKkbgk+FkBKvsSizOCG4I/UoJIqq+C/Uq7CqStJ0htYQhj6dTgthq0bgCUlS4vdaFIXzawujiChuobVmbW0N3w/w/IB+P2Q6X5BlNUVZM5lNkVJQac3FxQmdVovd3T0e3L9Lrz9ACsEySTAIlknG+fgCKRWtOMbzJVHkfMAqbTh48JBW3KbX7TCbz9nd3kB6Dv6ZjM+AgPHogtmsxPOnWCvZ3trBGMHBg0Mm43OStEZ6gl67C40lUKe9SXAyJi80WebMK422vPnGm8w3+rQiqPMJmJpBL0TrHEFJp92m2w7odiMWiyXr6+tMZwushutXdzg6GbNMcpQQ1IYGchJgDKY2CE/Q2VnjylO32NnboR23OT49ZbyY0e8OCPyAoii4ODtnZ2eDOApYZkt+5t/9HOfzCb/7k5/k9vWbfPIHfi+/9K//DW8fzzg4mjlCC2Al7N+6wSybEQQek+NzyqTm9bv3V7yBRzM8QNsV20k3nmouX2o2X1IVpfMExO3zDJaqNrz11l2+8dJL/ME/9COX/nGrZ1wFYSovAKsJOx32Wh2+/wd/H2ezCQ8PD7k4P8NY10mdno/ZGoakWUYceoRRTNwKmUwnrK33WcwSWp11LqYLlpnGCMXJ2Rkvv/oqyywFBGWR4/m+24VD091ajH4U3Cd4FI2OEIRBgOcpR5evdcMclCCdDRTWoJTnmFy416gEBL4jjbiZl8XU7n1teAPusY2rgTEucQHA913BUp77gmcdKcPzfLBNUrLyCaPYsWfDiDTLyfOCKJZEYYi1mqqosJXFl5a6TJGej8LS6zr4ajlfopTHwTtHDNdiPE9y68YVbt+IGF2MsQK8QOKHgkE/pNsLefrJJ1kfrHNycoGSHr4niOOAKA4wleHk+IRlklHpmq2tXeK4i+/HICSTyZiT0xN67Q7tVhslJUmaMJqMmS2mWCzLNGFvf58kTbl//4A0ywnDiKoqsLbR36HI0pwszUmmCUJ6dEKPTiiwwtAZ9knThCxL6XQ6RFGbj37wfYzHLi7mySeu8eKL36TIa4yFbj+i3WthhaHfjqnzJdLW7GxeodaGOFR0dvpsbHT44PvvUGQLJJYyD+l3XJJ3p9thY2MdISXdThcpFUHgoyvN+cUFo9GE8WTC5z/3eapKs9ZfZ3N9i+0tl1HW7nTxRYAwbg6aZClBEJAXBa12m7qqmo7d4vt+M+v0qWoXeDmdzdHGMJlOeO31N4jCCM8LuH3zCU5Pzjk+PvuO1/7v6sK1uTFAqgFZnlLXGXlqCAOBrkoybUnqnEAJp7xvRWRZfmkz4nkeBw8ekuc5vX6fKI7x/Jo0y5nM5gS+T783YDw+4Mb1mwyH687Cv0ipdU1/sMZ4PMMKRdzqEkcxi/mMZZIzWO/QDlt0W22eevoJDh8cMR677B2JZX1jQFk5mHI2n5KlOf3BAK0FWVryxht3uX37BtrUvPnmAUVZs7u+QZYlxGGXs/Nz1tcH7G33EDLgwcML5vMMISCOJGEk6Pcj0AXrwy5R1MZTgof373Fw7z5bW32s1QhjqMqSLGksrHb3GAy6jMcLjk/OWSYFFSBdWBgWQ397g+e//3eyd/sa27111uIOV3b2yLKMNE/BaGbjCXdffYWTwza9fpd/+4v/ln/xP/3fufr+pwg9j73+Gv+X/9P/mfHRGb/66c+vYtUQgWTn6i7f+32fxG9HIDRvvf4aX/rlL6CzGrsyN3NtnSOH2FWf1MSQ43aByyS77J4czd9x5QRQlDXjyfTyOrr03GsAMkd8sY8G69Jy5cZ1fvfv+d28/uprfObTn3axEtYihCHLS5Jlyub6kDgKmM3ndFptDo9OKArDj/zh38PzH/3daBFQW5jOpvzKv/8cn/3sZxlNxo3xakYr9MmLisBzBVxZ2xA3HMlhFdoopMWTxun9Vuoh59Ls5inKhTd6nofvx3TaMViDNiVR4BOFAd1Oh8D33Wuwirqq8D2fMPJRUmGsJi9ziiLj4mJEux2zt7cHArI0u4zVyLKULK8RCIJQ0W4FUBd0ehGdWLFcQtxWWFtSFhWRJ4jjkFB5KAl1XdCKAqBElylP3b7OoD/kYjThzhM3UV7E9tY+25s75HlGu90BBX4AUaSQyuIria8CjBEo6SGxTWing/SyLHdpvbomimKk8JEiaES3NbouCfzIWa81sGhVV2RFhhd4rhPCxb+cjy5IkhTf81136nlEUYuq1G59QVCVJQhQnst+QxinnWvyv4Iwwvd82u02xlguLi4YrK3zfZ/4hBPVey6rL+pElHWJsmBrTSB8jBYEUYuiLogiRRx5dDshVZmgBLTCyN0N2qI8iR8G6FqjlOecKqzFjxVXrnTZ2bnObD5jf/8GSioCP8STHp5y7u9lXZFXpXNJsZYoirh//z5f+epXicKQ69evc+PGzWaj7jEejymKnCAKXFzNgwcYazl48JCzs1OiKCJNcl5/5XWWi5Szi8l3vPZ/Vxeui/NDBgMHtyVJRZHPwBiiYMhstqTfbZHlGVHcJW6FaO18z6SUXEymGAGtbgc/jCiThCiOKcoSXVtUFBK3ulTaMlsktFotqtqA9LDaOOGtEizTgnfuH3LjxjV6w3VMnVPVKfPFnHo2YW/3OvPpnJkx9NrOcXoyXeAHAt8P6XY8ZjNDmtZ0uxGtdsjDw3Oi44cYa/ACw/5GH983FHlNK9S8/2kXoSEslHXF/m6fOPQ5O58Rhg7rvnPrKvfffp3RxSlYxcbGBqenM5I0ZzmXeIGPkgHz8YLID6l1TTKf0Wp3WB+0CX2Pu+8cYgvtlPPCzcKGW1t86MMfJYp8tjpD+lGLQbvfsNcsus4p8iWvvfYyv/Irn2c6m/HiN7/BuZix/fR16rKiE7R48upN9vf2cWw2iRWWIPB5/3Mf5Htf+CQ3btwmzRLuPvkWW9tXeOUb3+SdV96gSvL3zGVW8Jm97MbEqutAXBY1mgIGDv4qK30JMT7umdZwKB3c0WD6CAeTfPgjH+av/tW/yhPXb/Jvfu7f8Na9t5kvptSVRUkwVYUIFKFU2FqTpylB1OXGjRusrQ/QuMV12O9x/b/Z52Mf+RBf+cpXeOmlFzk8PAYEyguYzqYYbahypwcCZ++kGzssay2eZ/F9iQl86hXtGEcqMNoQxz7bOzt0Om3arZjBsM8bb7yKkvCRD32IJ5+8QzuOiMKQYW/IZDKmLEoGvT6ep9C6ptIVUeQ8D63RDAdDtHG/x+VuFSyXSw4ODlgsFpSVy4U6Px+xTHPGkzl+K2R9owNC4/shutLMRjOKdEnQjpDKcGVvg2efusPtWzfotrsUmbO6WtvYIApbGAN1XbLeazVkFYHyJEY7hmStFNpmKOk3vpgST3luPtbYZwkFwhqKPEFXFilCjLF4ym0+LskaQBB4eAhiz1lFtXodjHXw7PZw4EBZa5FCOcZuk1ZucIbGZuXDZ0GvXPitaUTe7vFKuutOW8Ozd26RZQUfeOIJqlLj+wHGVmiqZsRpUUiEcea1RVVjm3mjrSuktNR1gRLSxdcIl/dmrCOQWE8jpUfkua+vZqPImvWNNmsbu05MrDVKKoR1OkCLgwTr2umvpFJs7+zxvd/botVqIYSg0+02uVs1g8Eata5Qvk+70+PG9dvkRc73fMzNUuu6IkkdAa3d7pLmFV/47/5v39Ha/11duOLYpxV5KKGJAknghZhKMxuPqStNGEjC0Ge2WJCVKf1eH6GkM0FNU7o9xyxzlNQUh+oKqsppXNI0o8hrzs7OyPMMJQ2OFe789orzEfOFy+GZTGaUZUVZLPECg7Ylnq84Pj4kCH3WhkPyNKPT7VNVJe1Oi3Yn5ujolOvXr/HGm2ecnU+5cmWPdmfMZDrC8xxjSUhDv9clDAStdsD6xga9dsw8Kbl3cEarEzPot8jLlJ2tdZS0LBZjhmtdBIY8rV0khamIQp8iK5lOE+paIISl1Yooq4JAeixr7WxuUFy9uscyLVmmBWmuyaqKm08/w6A/ZHdjg7YMMFVNVdfUVUWlK0azMZ/73Gf48f/xn/HOW/fQRmClgSEUWcqrb7zO9c09XnvjVV558RtAcz6tc/Z/3/ueZntzyN7akEr3EQr2ru/z1LNP8//8p/8Pjt96sMo9ucQMV/yR1XGpOVm5FIuVgFtcUrRXxUtbg1rp4N51dTlCyiVDEkEcxTz3wQ+y0V+j3x3yqU/9Wz7zuc8Qhc28yEK2TBiuDd1cyhi8IOLtt96k09kAGeM0MgpdV+xtrvEDv+uTvP/JW5ydnTXdlOLo6NhpsbR2Ak4cTXuVVJvnBbWuyYuCoigQUrpOQ0iE8qnrmtlizvnFBZOLk8ak1+J5grgV8so3X+L48B7dVkwcRbSiNqZ2+VA7O9vEUUCta4zVdLpt2u02a2tDhCk5fviQsirY2toi8AN2toc8uP8mUSD44HPPYY0m8CMEHssk5a237/Kzn/pZ1jd6BFLhtyLSsUFFAVd2t9jb3eTG9avcunGVfrdNnmZkVYm1guVkRhXmGKtJkinYisUiRUqvIeaU+IFPXhR4nkcYxtgaPBVQV07v2BsOiBuhNtRYNKYWKBkS+D6e57z4POU0fVZYqsI6ooQQmFogvQApFFWtnSFEA49JnIShqkqEEnieIq9ytHHZZ1jZXINuHqlxTF5fSfKyQAh3HRfWkYvy2qCkajo2Q02N8IRjjOoajMUIr5FFWKy2BCqgqipCv93A4RolFLWtENY0AnNFrcFo7YqtNRicZMJaS1k5baCnvOa6BaTC9zyU9fGNc0tZWTh1ur3mfIrG4kkTtxy1v+V51HVNFLWw2oX9Oh9Z1/1KpSgrDcJjmfwXyipUPpR1gee38LwIKS3GrwkjnzzLKasa5fkIJamNc+xWno8WlnanT54X9Pp9t5gpx0gUqUZrxWJZUesFYStksDGk3Yp58OAenXaLqq5Jsgxd1/iBT3/YRWvL0fEZQSjY6Q4oKktRVOg6Q6BQ0qM2ggcPTxkMBxQXM7KiYjLL2NreYGt7m6ilsSjWNrYIQ8tiOeb9V3Zox46yH0aKVtxmuVggsFRlQr/rczG+II677G/3ELLi9HhCsbzg+tUdBIbNzQHD9S38ICDLSi4uRmRZhTYe3U6LvNAsFiXGuAGqRhLEEWVak2Y1i2VKbRXd/X1uPvk0ngxJZhlH5wckWUIQ+uxtbzKanHB6fMhP/It/zpt332maIGciS2opFxn/27/93/jIs8/x2U9/hjdefWPV4gBQ5hWL2YSTk/sEaDa3dtA2o1Q5Z7NjLo6PePQDq46qqV6PD77eRYf79R+theUyIUmTS50KrIrbI9+1dycL04ipQ67fvsUf/2/+BMZavvHNl4i8HOUbwihkPhsznczIC03carO/f50vffFLaO2xd+UmUvlYbfHUCp5TrPcHdOMWSjln/GefuOWcQewjh3hrH8WHVLWLjzANS9nNsBRSSjw/RFuXFHx0fOq6oDJ3iyvCxaYoQZEtqYqcPM85PT65fI2Hhw/p9bqsrQ3wg4CLcxehcd4bE0UBURQSSsHZ2dmluHWxSNjY3HCOG8JZR/lK0W3FXNvf5U/80T+CtpVbGI3gePcUX0pu3bwOtqbVipiMx7zx6ivouiYMWk0Ao2Q6m2NMhaBCm7JJUHALd1FVLJbLJh7ezX57nSGBChmPpiAVV69fo9fvN6JsQ55nBEFEtzOg2+4SRh5RGCCldmQlKfCUxDeNDMEKBE5uIZWiMhqlVgJ+S2ULlHKb3aqRVARhhC6qRs/1aONjG8ahxrpNqa2bTsyZRiN9Su0QISklWENV1uQ2Q0q36dJaozyfFTuvtCVKKqx+BHebxmpLKg8pdLNZswhjmtgZ2xBlnKVTu92lrmpo5sWAY0euUAfZmPE2s1TPd+urSylwYuayLhAI0jwnDALKoiLwfJLlsjHbpXkNJUZIhHQd2Hd6fHcXrkAwX2bM54I49un1Qrq9Fnk2x+DRirrkJXT8AM8XJFmJFwgECqFCirIgzQqiKAAVYK1imdbMpxndruTsjQM2NyIW6RIjSgpdUsxrtLbMF0uiOABfYoqKqkhRKiCKO+SFdhDjNGd7a400KQhCj6PTM8pC44dtpDSkxZROv89sseCdeyfkuWI6LTFUbGy12dxsszbsuRujLqhKePDwmChqsWr3PaV54tYmg/6Gg2iSBWvX12jFEb4fYqxgkS7QQtPtt2h1Y2apYBiFjMYldXPztNcitNYkhXWZQoVG+DGLRQFIRLvLcGef7Y0tlPR4eHTM1371i0yzOZ1uxP7mBoNuxOnRMW+/df/SqsjSsI9qOPjm2/yv2f9Clk758otfQvoSk5tmLuVw/DTPuH/xkEUxYysd8bmvfYlvvP0a2SJxF/olQ+MxiPDxw36LT74F69YYS54V2MfmGitYcAUdrorWJct89XVfsnVlh6efex/rG5ucndxF47Msciqr6UYhseexWNY8eHjBMkn4xU99ig8//z3cvHWHTqfnqOnKc+nEBoIwcsCmsAg0SbYkXSZI4TotR7Rw6cduwXD6Ii8I8JR/eSqW2ZJlkjCaTrgYTTDWZWvVVYmSgiJPsY3ANM9SyjKnKGonEleeE51aj9r6SEL8KKS2gqOTGVmWEAYS31e02zGe5xGEXfb6W3jKI0kdDLVczpvX5WJ8+t0hVV1SlSVWGna3NgnDgKLIWSzmzN4ZkywXTWfo4DTfdzIFYy1RFIIIqHL3ngeBRysMaVlBezBAa0vVaLJUGBLHXe5sbRNFLYS0KC9AhT5CKdrDNcIwIlAhoRc6xEV4WCRV6TSKgS9dmgEGo2s86SDAFWkGQ6ODq5FCUFVNhwVIFHW5snoSiEb3Jmlc8q3r8OqyAuE6fqEdHGxEzcosQNK8z03Wmm1cjaXXuPXTWLcZ180449pfH3PjLn/TMEwFVtfN2tHEKTXF8TKORjjSjWm2bWLVYYrVllGiTY0fPiodUgqEdR1qIBzDNIoDhHXuOe4eenzz2BCPVuGD38HxXV242t2YPJuRF0uMkXh+jOdVdLoxVliyqiBQPpPZkjRfsLm5gbbOE+7s9JzRxYSrV3eotSDPDMu04mK8BCPZ3Oyws7tLHLk004cPz1Cej+8FGKvpdgPA4ikfbXOibuDIEXHIfDairHKsgQf3j+j1epRlxdbGJm+8eY5SMVAynsxYpiWtVpet7U3OzxecXyxJ85KqLrmyv4W1kocHx1yMpuRF5Vy7PQcRzec1WztOWyaUYG9vm8PD+jKPabFwi0FRFpRVTr3IGa6ts7e3jjYKwwRPRZRVhReCLgXZvMJDIAJJ1I9YlBmDzV381hpPPfE01/euOdbmcIj0PS6Ox7z9cML9+wGDQZvA9ylt3RAomuJiBWjIpwXJNMUYy9r6Gu1Oi3nu3CjAOZaors/ULijygl/9+V/jl3/20yzSJVG/3TAcec+M69s7BE7dX9ea6WzOMsnxvBDfb8IYxbf+uRXt99JBXUne/9wH+PDzH+abL6XMJg9YG0p6vR51rTFGELdjpHQu4aPRhJ/7uZ9ja2eb7/89v5erV6+6BRnpPAqBwFdYo8myJdP5jHS5bHK33N9gTLPYCEkUtdyQPs3o9x3RQHo+iJq402Enjlnb3KCqagd7YcBqijwjmS9ZLFPGkzF5kbE8OmU+X7r8rapCeKB8516va4uQCiks3W4baTUCFyOkjUV5Hko6eNKJb5sZnK+atNyaKAjRdYXFyRc85QInhRD0B13qumA2mxKGEWEQANBqWebzuXveJqRS65qqLoiiEN/znCGiFc5uquk850nCIkguwzixtnGqV0jPRwhJFDp4dNBzqQ1hGKGU54IpJeRV5aQcwrouUioXe9JsljyhnDOMdKga0gVECuGcaYypmmsGl7PHii6+SrG2jU2WvLz2V8Gil6gAzpsRCVY6SO5SN4fFGW2v7i9D3RS/pql7dL0L8a5rehX8STO/NazCtL71PfV4ZM17s9ce/9rl8/JI19eM5971fdeRu59T6r/Qjquscja3O/Q6Q3Tldh7alIzG580gPiAtS+azBYt5yjKtieIWUvqMzid4UlGWkgcPjohabc7OEs7OE6JIotQR3W5IWWjKyKfI3dBWWB8IKYucJMmIW5ZWHKDrCqUseS5Ikpzd3Q2SJONwPGNtzUdJi+8pet2AqqxJ8iVFoR0pIp0jZYTnC27dXmc0mZGmJWVR8/bbD7k4G2OcIQ1xq4cQ0Oq06Q1chtdyWbJIDrh25Tqj0Yzt7XU2NjbIspy6XpDnJcaW9PotZtMRvd6QJKtptQKm4yVPPHkDIyoiL6Da004fpwSFCkkA0wq5duc2e3s7IGBjfY1OO+bK/hWmiwkP336ThdDUdocgCihNfdmuiGanuepqDu8e80//h3+GKR1Gj1lJaUG2JEVcQQ9oGR6khyyWS0ymMbFGBgrzHWT4PI4eWiyeCjAWvvrVr7Gzs8sTd+6wsT7ACzwen3R9q5DExz/f3N7kv/qDf4Cz0zcJvRllmeErJ0LNs4JluuTpp5/h1dffIooUXqB4480DNjdfxtjaxVAoD4Skqg1hFBEHPt1um8D36K8N3YxTCLqdLro2uARpgTYujDIvSibLJdYKkuW5s3pSiqKskMppr1qdCImlqgoGa0M63S6bVvL+dgtjLJPxhLLULJfO6DjLlyyyOYt5Qp5X5HlBVZVEoY+vBKEnqWsHQYIgTXJEk5pblrVz60hrPM/DGk1ZVs5SSTpITQmB8hRRFLmCWZdkeYlFXJrQVlVFXhSXQZZVWVJWVcPOc+4LaENV6sv3ZWX8WxYV1hh8PyD0Q2pjEEqiLejaEMcxWZSSLBe0Wx3a7TadbpfBYIC/Mg82TYGwxsXxWOuCSS3UjcO5I1048kVdVS4dWjr9oKe8R7o7YRpgr5lZ04xPdSNbWEXZW9E4a9jGiq1x5Fih403XJKS83BCBky2YWiNW+WfubAA0ju6NIEQ8SqpezemMfZT+Z98Djj9OWnpvWVt1aI+g9uZPbH7GSUzeC7W7xxss76qm38HxXV24PN+j1jllNafX6bsBf9xnOvdZJjlpaphO5mRpThiHVFpgc9cqG6uI4h618ShrhV7WWAPXrm6T5wl5UZAXCZ1WRJ5VxFHIfF5QFAvW1jc5OpqxSDLWhhG630YpTRgaisL5FGZphkSytzugKlMKY/C80kU0FDmz+YK60lS1u1jDCBCWdqfFzu4adWU4OHhAVdZgFb4fEEURRVHS63eIWhFlqbk4vyDNUpQnSdO3mC8yEBN6vQFZllHXNWHgIYQh8D3KusSYEoymKpZ0Wz4PDx4Qd2Bj2Kfd7TGa5zw4SvA7HXwvpvA8dq/togJ44+7rPKVuMZ+MqfICVQlUZih1iagEk/mM+rG5EY/dsK5bAJ09sr25PARoYZhWU/QiYz6ec1KdYAMDBXS7bcZ58d5L4Dd1PFZuWJE1RqMLvvSlX2V/fw+ta5555mm2tja+5f30XvhlBakoKdnY3CJudzHVgDIr6Ha7TMdLRuM5YdRuEn89hBTs7u2h7Tn3Dx6wd2WLVq/F1Ws38MKYIIyZTqcsZ3PeOThAKcHW7jq1rhgO16gs+EFEkWd0+0PmsyV5PqPbH9AeDjk/G3Hv6BhtDIHnkWUZWEOeJ1y9dpW1YZ/z8zNacdiwD2UjwM3Z37vKcHODzR2fuB0CNS++/GtYec73vO85louEqqzIswQljAthDDzOz05Js5wgjClLp5WUvg8qx7eWqi5RyqPXbVMVBUHg43ue0/8Ix6BECmdzKAqSNKfTauF5zp3cGENZVShj3GywrMnLCqE8B40BSZZRlS68cpUBFQch1jpXncILsIAXBGhczlatHb1bVxXL5YI4johnLcbTC9f1C4FSCt9T+L7vvBc9z5EVlIfvOQ2dF3iuc/Acm9O6ZEY0rgNbRXqsSEGyMal2EJy7fpwW0Tb3QxMoi4Mp3QXnBpnvgq2NwQjHGBQ0UGKTKvzorhKXv/dR4ZKXAaCuMzOXobXuMcYZDjTPoRphsf0P3RPvbu8ebe7so6nxr/vZb32bflvHd3XhSrMCJWo67Zqt7XVmkznj8RjpOXeMvKhBQac3IAodG68sNKPRjNliCiKg0+vT7Q148OCUIPDodtsIpZHK0u12ydIlSiqSrKDIS/K8JM1PUJ5PHEVo7XNyOmVzo8tisaR1ZZONjQHLxdTZrAjJZDIjCkKqJhrgYjwFIfGCFqfnc5SSKG9Ilhcsl2O2ttaII8dAq2tFWWp2+h3SNGOZLpGex2yeuPwxKdFG0m23KfOabq9DnqccPHjg4gNqR4vt9HyUkoTCb0L6cna3e1jtsH2tSoJIcnQ+4+XXJ+TawrjCa2VceW6HtW5Myzfce+d17t9/hSJLWY4zjh8cUmUVaMPRKw/coLk2bg7w2E0kGsDEWP1opsXqMe6TZJrw5V/8PPVaSdWusFPhiHipIJskmEWN0u9NiP5NHJdcDtvAhAXHRw/RdcmXfnUHT1muX9ujyjv4YXAZjPcfixaXSrF/9Qq7+1d5WJ6DXlDkBkHIxvouSZZxfHyK8hStdhsrBJ1uQFGkvPbG69y8fZvDs1NG0zmTyRytDetr62zu7zMc9BnPRrx1/x6zF1+lrg072zvkRcmTTz5Fu9XFGEtyPmI8fpM7TzzJ7WeedqLrsmAxn9OKIw4fHmCx3H9wQCuO6fR7XFyM6A23OTu7AOnT6g0ojUV4irPRhCBSZGUFnmKeJmxsb7FcJmzubJEnC774xhvcuXOL/es3yLKCNEsx2rBYLh1C3Ngd6arCGs1HPvwhDu7fZ3044OqVK8xnM/K8II5jlskCrTXTyRghLe12ROB7eJ4iSZaMJxOK3MWatDp1Mzdz+iltLMZmGJwnpoug15dG2lrXZI2cgLqgqg1JkiGlIu308IQkTVIXOaIUVoJQCtWYEhtjiKIIDMRRhFJO46aUj+cp4laE9JxThud5BH7gCpzv2IZKKcIwIAhClJJ4nnJ08+Z/SkqEAE88srgWwjbWWg5OFEIgccjKpVD+Eg9cGRw/amCMfpxeu4LuVs79+tdtwPj/k/dnMZZt6X0n9ltrz3uf+cQcOd+8Y92hbg1kVZEsDiIptSiLkrolSkbLD91Qu1/8YrvhhmE0bLTRAuyXNtCGYcANPahbBgy11WJzEMXJrOJQxVvjrTtl3iGnyJjPvOe911p+WCci85ZISrzgywU3kBmZkRkR50Tss9b6vu////1ZbzAXSl3x5JWl1LrN+FQb8OOvK/G08PbJ691cbrs8rZp60rYUYDRC/yWdcSHscNUPAo5PTshWNvYhCAPSrGaZtixXgiv7m/Q6AWXVMJ3O+eijEzqJR5ZnnJydE4Y+ritwPcFscU4QuiSdDmmaMuhZx/tFjzsrWvygxcPeF9J1kTogyzRt4zJfNHQ7Ctf10KZFGId+v4freMzmCztHMNDUil7o0+0llEVF22rOz5YMhx0EEUY7lKWi07EO/7qxEmjXtQPsvCgYb46pqorNrTH9Xp8iLzBaM21amkYzmxXsbPdIkgBDRZZlSClYLlfkeYmQHnt7OxRFxbLIefQo43zeUtRm3WoV1GnF6nhCJAXjfsLjo5LHDx9wfHDI4nhFNs2gsrOhVis7iHmq9fD02wud3sf65k/9otDM315AF4Jdic6BFejckGU5rvTwXIeifRoVI576TB+TFP7QvXLx3+y/a90ym56zmE+RRpPN5xzplv5oTBQl+E9tYP/Gp7ro5UvB7t42X/zilyhWRxS+YnZ2hufGqEagTcuH947o97uMRh06cY+d7V0OHh+AlLz/0X02dvaQbsCyKDl4dMB4vsDxfKKkS1YZ4s4m57MSPwyYzHOWq4xV/g5JnDAcjYiimA8/uM/JdEGnk4CB46MjVFPx3O3bVK3m4PCI+/fu0aqa0XBAfziknyvyvKSqalpzl9WywHE9FvMJiprJ9ITBsM/9g0PiqEtdt2yOhkS+y+HxOQbY2BgzmUwIwhApHWazOYPhENcLKKslnu9zcnTEd7/3fVxnbQIXNhxSCEEQxDQKVovlWoXpM5kumJyf2wj7wGc43CAMY4ZDe4/neU5RliRJTJ7nLBZLtG7X9YWmaWqq0vJIjdY0TUNR1WRFTl6UNE17CRcOAssaNVojXQcjLafS2hLs/KlpWuq6sUIYx6oLtbpgFtrkZYGD41rjLthK0pH2fVEUEYcRQRzS73cZj8YEfoAUAtdxkOtEB4HCEbbqkQIcV19K0N21MEIKiSulbcuKC6i0fX05jv27EE+3Ai+IK2pdSXF5T1/Mc/Ua2HyhWpRPbVC2WrOvmcvtZ/3v+kLIcTEvu3gF/tDHP/m7WcfomB9qV36y61O9cUkRMB4PmM5OCbyGumxsjkytkNJjYzzi+OiA6XSK74959PAxUrhsbQ0QUtI0FY1uyOYZSjQWuIqmakuKSUG6rInDiKIsQBgcF5559gph6HN0fAw4uK5HlpX2ZtYuVSloWxt0mCR2RiaBuq5I8xzcgNFowMnZFKVaBsOYYGeDxbzEdTwcGTGbZGxsDKhKg+vann+n08FpoaoaZvMF0pUoVa8pCQ7z+ZzZZMV43MdxHbIsY2Pco9Pp4fsOZ2czorUHLF1leH6MxCY4e+GQd797wmSakVft+ga8iEeRLCdzjo9PSWIf48ByueDggweoXOPYLXy9HzwtVb+4jGWu/anXRVylQGiQtUFPock1ugEUOOZCbeagJU+dONcf97EXgR1+X7xo/qzarG1biizj+PCI76xpANv7V9ja3WFvb49er/exzeuHT50G6HZ7/NRP/gyr6QF/9PunpFlFGPgUuaI1mm7P/jzyvCCKAqLQp9vrEXd7vPf+h2T1IYONLZLekM+8tkUUBGgc3r3zId3eCD/o0e9vUVcNm5ubbG3bOUFRFExnK3qtYGt7jyD0ieOY0WhEv9cHNHEY4rgujx495KWXX6WqSqrKUlr6/RHdnqRtGwb9EaOxJaRMOgnf+e4fk3QSXnjxJU5Pz3GcgCyriDsxuq747Oc/R7qYkxcVjQaznk+dnJ7juAF1XbG1tUmv26WTdMjSFaHv8/jwmLOzCbdu3gIEebluNXoeG1u7CAzLZYYfxOzuXWU2mzKfp0CGMS5l2TKdTDg7O6ff75N0EjpJzKNHD7lQqrV1xfUb19jb3UGplrwoWKxWnJyc0aoJYaipq9q2EgN/rcyVSMcq9hzPw6yTe23laKgqKzn3vODyPpBS4vqB3Uxc37bhGo0QLo4XrPPC3HUrTxNEPkGUgAwxwrMEfwStbtFtixSG1iiMaRDC4ChrjJZC4DsurnSQQtv0bmzVKaUNrbTKP4G9VfWT+/TyNcla5fnxjeTCzH7xnJ6IK8THfl18L344e0usW6of+xz80Kv/hzanC0k/YNfVT3h9qjeuqlas0gKlXGoMWV7hyBal4fr1G5ydp2AMRb7i0aOcumgII48wDJCuA6VhlWV4joMyhkbV+J6kLEpUK/EjB+m6Nn9GKD7/hdfIiwwpHdIi5fhkRuAL/MBGK2Aky1VFmHTJs9LGXqgcYVzyfIXCemjyqsAY1ifAnOHIo25a2nXUSF0p3vz+e+xdHdlWim5pGoeqKm0vf02fcIRhvphbE2StaduGyaSxXh3XI01z8rwiWKOEtnf3GY12UGpCEMUsl0seHK74wdvvk5eNDbtDWDUVgAQndmiHEQeTUwa7A+a64Xwxx+8kNDS0uTVLAvbt0/fp5V38bzlZCQlGAraVKgyYp+5pJQwuksbUHxsG2yTop3xXFzOFi5nAD71oLudT67Zl4AacHJ7w5nd/QJ3X+J7H4ckpV25cR2vN9evX6Xa7lx/7b1zrUnE43MTzIupWUWvNcjKjyFuu39wnjEvOz+c0TYHSBQ8ffcRnXn2VJEl49tnncaIOYXfAYLTBjes3CV2f+x9+yOPHj5lOMkuS1z5Ih0Z5xHFMFAWsFkvquiLLCgLfp2lyfD/k5OiUwaDPeDwiTVPijsOt2zGB5yPF+nxuBIfHpyxWKd1uF60lnaSLMZLNzS1efPFFXF+wt3eVW7ee4+jwjLvvfcjezjWqMqUqU/r9IcZobvg+/V6XPCu4cfMZ8jRDtS0vPP8snu/S73TpxBGz6YzpdEKapnYRNdbg7/khSadHFNkkh1ZJPL9DnAzp9sY0TU3TKDzXYzpdcvD4lJs3bpCmKXlWEfgRx8fnVGWB6wp2tjYxWtpEBAGO9Ol2+rStoFaGYG22dqVDEkWYWBMEAZ7nrNWdgqa2FgIbtCqtoGRdJYKtWlzXxQ8ji8kKIuq6xXEsbSeKOjiOvz4ASjzXJwh9pCvWZlxlu9ZaYRyJE3oIoxDrjcuqlQ1CXGSyWQ/Yegp1ee9pZSxX8jIQVl9uKBdVzcW9q9Yzw4vHf7HhOJegZvuZVWtTj5EX4op1tMpFNM6lpN9+nfapme/Tmx/yT26zX6oR9ZMN7JNcn+qNq5N4gCbwY7Iso6o1EkOnG7NcrtCtohN75GVDU7f0uz3KosV1NbPFkuHGmLI1uFLgeC7ShbqpiOKIKEhYLrK1OsvKyxeLBXmZknT6GARJ0iNd5WxsjDk/ndHvRWAKJtMFebZCa/DcECFd/LCLrCwx2fMEm1sbzOf5GjNj2WR7e5tMJ1OEEXS6IXVVAJKmtidsz3MtDaAXU9cFQoT0uhFKGXqdiNOzOb7vWV8FkrTKaZuWuramxck0Y754wMHhMbt7V6jrhjv3TpGRjyouaPDrU5gEEo/Bi1fxNjrkSc2pqBg+fx3/nbcoPjqC+oeGsz/crft37QQ8VS09YVw8/e8aLwhQBmp1EaVh/4frWim0EIK6rj72RYPAs/aEebreP82lFFdgiMOQIAjWjLWGwWBEHCcoZeckRVGQJMmf2jK8bImuF4DpfEatGrt5FQV5taDTC3FXClRLr9cHUzPod9jYGiPnOfgJ81XFfHFInikC18O0LaPhFkKkhFHMcDwiSTqslinL1QqtFc/cvI3ne8RhSBxHTCZnPD484PHJY5TSDIcjtrf3qOqSuqxstapa8jxja3ObDz464J233+WFF57nC5//AnlW0TQtt565wWjcYzo7o200nVGfG9d7XL9ym6Yumc/OWRpNWZVW8ak1i4WdbY0GQ3Y2d1nMZ2RpbivPZUZb20y6IIiI4w5106A17O5dtVT9tY8oDGN8P0IIQ7ffo8hsREzbatq2ZTJdcuf9e7z0mVcYbWySZxlFnvPKK6/juhJ0y+7uNlVVMp9NGI2GoBV5VlE3iuFwbOdlTYNRGk9a/qbrevi+vxaFaKRnKxlnvSkZsCnSro0uMdqahsMoQkrX+uiEg+uGuE6AH0QgXJQyqPX9qs0ay7UW9Uhhz3nCsJ5rSYRxbCCq0Uixbu+JpybBAoyRl7MiY7jMyroATF9qI4y8nHv9sDzeiPVcy1hV4QUs1/O8tZLRgLYG64tD4A+nHl+8vaBpPGkLrr+YFn+mCuNiQ/yk16d646qblLrSRGFkB6Juw2jQXdPgK5pa0e34JHFAXTcIY/vEjrDijbpWGONwfDpjOEjodbtUhcH3fOq6ZZUWONJK3bUSPHjwkMGoT9sqsrwiinooZRVHSjdESZ+N0ZCyWrFY1OT5jPF4i7qxbcDJrER6ivHGmDBIOD/Pmc9z+j2DNi3dng+EONIliSKiJOHO3Y/AgGpsltfWZkSaLpBS09YFo9HIoqmqkrKoGQ4HSClYLFZoLRHSsbL7EvJqTq/foVEeeQ5V7bBY1fzUX/0iv/VrfwBoW/gIwJG4W336z+0zutahrCRvzw7YHeyz/ZlnOfru+1aablhXS09XQh8TwT55159xn6475x8XReknf3SkQRpJ067bgut2oONImrom8AOUlFhKvGRjc0jdlGyNB+xv9mwOUlFRVw3zZYHWkBcpdV0yuHKFqm7oDwbcunWLWj0xZF4+i4/1659+3Ia2aQjCgCxboU2DG7h0+i5K5JRNwXDTxdEOcUcShB3KckFdWx9b3jh0Oj3qRlDX4EsXz3ExWnPjxvU1KcEnDiM6cYftre31wN6qwgLfs5lracFiOkfVDXlWUOQVw5FvKQ6RXTSNhijsE3oRn33tc9y4eRNHCtJVijGSOIr5nd/+bYoyZXN7zHi8abmdeBSVNSonSdfaMdqGuNPF8z2WiyVCAdhIljwrCNwenvTIi4p+f2AVf0JSFCVZXhAlHRZpZttXRlBVFWEQ0O0O8AMfozRKl5SVncXZ8FKXl195haqxQZP90YhOr0cSxYRBgO+5KFXT7fXZ2ty22WNCslGWCMehqmuqyhqhVdOC1qi2QWkrxMAY2qalXSf4tsZQ5CVVU68Vi9Zrp9aRHZ1u13YIcAAHKTzCqEMQxjiO/d77XoDrezYpeb2w67ZF6Rb3ovJpm0t5upBWwCFxMHpN1liLRzBYszFYZ9iadygu/v6UuEKu7Qn6Qm1o9DoZ2yY2K2WrOdMY2qa2yQI82ZSE89RhzTxVKf0JXq6LTsblc1irr8xTJ9CPtQzXyqy2qf/0BeHfcn2qNy7X0RR1y954TFvXSAlhElJUJavVgtDv0DbWdAsOhwcTgqDDYplRKcgm5xRlgzYQeC1LNycKPfKipKoVSZLQNBqlNIu0ZDSKmM5WFKVGKcnB41M8L8BzJYNhQtvmVLVDlmbgBFS1ZrEo13k0NUHUIYxcTo5nbGx4lGWDag2L5QLH1eRlRtJ1aWuFNnYB6PU6OI5DlueUVcn1a/toVeC5NlF0Njmj2+1QFhWbWxFNU6CNrUQ6nYAo7HI2mZIuUvpRj7YVTCcFs9kjwjhGG8NHH96zpyxhcAIP6TnIQYTcjHDGMZ3RJvU8R5ua49kpfpWv50w8tRnJtYyXtbDD/unPFsQ+Kc2M+HiMt5QOjuMitFpz82qbkeV5pFlmB9JC0O0mzGY1mnadD6VxHEGWLul0YgLfIfYlRd7QSxLyoqJtrel4Y7yFdA3vvPcWaZ7RHcRcu32Nza1NhsMhURRdDr+fdO9/ePMyeJ5LnHSIkhhNxWqVMxwnbO/1gJLlImVvf5MqLZnPSvzwhEpp9q69yHi8BU6XupUYbed8dVHguR5aaeI4whhIV0u0MmskkftElabsafv61etcv3YVLwgoqpIgWKtYtSXMB36M0QbpW/bd1uY2W1sblGVh6enCoakrruzvIx2I44Aqr8iWp/hORBx18aTHZDbj4aP7+KHHxuYGcZSgWzg/OeOt7/+Avd0dbt24zsawj9GK8WhskxEw1E0DSI5PzvD8JXlR0u118b2QJLKLvTKCqmwpipxeb0An6V0uvnVdo1E0TcVkZpWJAsjSFW1d0TbNuttgF0/HWdPiHUnS7dq2ne8R+j4Cg+c4hEGAKzyEwMrcpYtN8llvFlJQ1/U6n86GSpZFTtPU1o6zZiLO5yvLLa1a7AauaVq78biei5BWPh/HVjXpeS5JHBEFAWEY4Lv2wCLXCkMb8npRzdhWpSultZRgD+BSXFRV4kln7lLhpy4rqieHSo24MNCvWYMYg+dbi4TSFzlu4kmVtq7mnigQn6rq1m15u7HBRXbfRTV3Wb2tH5T92DXq2vwlbhX6bogIFHlqc40czyMvCxzX0O1FNHVNfxDQqpKy0nRGPdLUMMtbiqpBSE3S8eh1Eoo8p2lrAizFwHU8tPYoypaiaKiUxswLbt66Rl23zBcl80VFNwIVOUBFpQXTaUoUxwSRS1nU3D+YEychg2GPbj+hrlLiOCKKXbq9hMl5w2yS0x/6uI4ky61nbLXM8IOI8XiAlIZuz6OqCmbzcwu1jBIsPMByzzbCIWHU4/zcmq2DMKA/GNnYhUSgH+TEsaAsCnzXxXE8VosVnoH7dx5fLseqbHCjCJVWJC2ISrE4K9jqbPDw22+QHz2mPUvRefPUSOvJ72v3yHrBf6oK+9j+9acp/570OpI4ZDAYkKf2pF/VGZ7n4/mQVwWqUUgkYZggnCWu79KWNUrZfn1VK6KOgxYOp9MpnoSe6+MYA0rghg5KwOn5OaPxgMen9xg/iBi/0+fLX/5J+t2hRWsJ+7IXQtlT7UVJeiHrxcHxHcLegJ0rL3D//ncY+A37V3oIUfLsszd49633cGTF5kZCviwQumTUczg5+oivvvw5nGCTvIK6amnKykabK0XT2MgQ17FgXsc1BEFgF0ulUU1DqRRFZnmRSiuLMFrnePlBgO/7drHwFU1tgb0mDHE8kBgi38ddL1aCkG7HhoEKCa1SyMAh8ANLG9cG3TYIY0iCGF+6uEKShBFHVUVZFFR1TZplKG2xRtpoqrKy8ybHwXVdRqMtwijE83x837d4JWPWAgPLvgvCGEvjslR/bQxaukRRTCS6rB4/5uDxCbdv3+bq9Zv2czvOuqKqyLKUtm3JsoyyLPm9P/hjDC3bOxt0OjFlkdFWNpPMrKnrnuvbAFrXytjjOKbT7aw3mZg4sm3/Xq+PlMJWUlil5NWrLsZItAKMoG1bqrqmbkpW6YpVljNfLDg9PmaxmKHblsD38H2POA4vY1KCIMBzHYTQRJFPFPhUVYHn+fR7fdt6NA5hmADguHZjDtcqWCEFgetZJqvSgANItH7SpkSAaY2NK0IitN3kpbSpAEJYVaXWxpqj1xuQ57mopqXV9p68eL9ArNMJrDpTa2OFIsa2PS2z15LpjQEtLNYLx/nzL/rr61O9cala4AiXxTwlL22kda+foNqKTi9GIqjKCq0ktVZMpkvOpi2LTBHGPoKWXj+g1/GRNDieS9uCZT+6pFlFt7fJsjijahX1UtOZNsSRz3RWoBtoPE0YhNRNS1MryrxmkRZEkYsQLkif+aJisBlSK3sC2toeUhQZUjR0Oh5towmDmCAQQMtqWVKXhjxf4PsOSdfK5k9Oc1bpgqbRtK1iMAxRpkat/y6EizEtTdNQNxo/yGmanDhx2N0N8TyHs7Zkd6fLZJLR6/hMFqVt9cknwopqWSBDB121PPjXb3Dlsz9KbzOi+O6H1JM5tOv+PE9tWU/1163T6s95rdu4ej2CzrKcsizZ3b+CW0namWExX6GFAqHtC1BLTs7PaY0mdF0aXVrPijA4nmC+sMgg01TsjDss53M2xz2kgKNJxvHZMVp6pHlOWS74/g9WPHj0PqPRgN2tLUbjzvqhOR/zqzz9oA3ghT7DjW129p/n5Owur7x8jY2NhDff/D6Bp7h5fYPZ+Qw/iPjxn3iR0A9J+lt86/sP+e733qAzuE7ZeDjCml3zrCQMY1xH2KRiR5DELkEY2MVRa6RwcDwbDCiMxsJdfZRqaGtlaf1lQeVaKoPRGs+1aKjCdS1VY90OUkoRhpHFN10M8lnPZYyiqRtc1xLZh8MB/X4Pf02rxxik6/LMrVvs7+3hed662nFQoY0+8YLost0kEQShsFWPMDiOSxh4lwKCi5kJ2FO5NfJqWMvHG21bpH4YsbW7hxaWV1qUJXfvvs94PObKlSv0N/bwvQAp4PHjRxye/B6uD9tXPJ596UXiOLKx9NoBLVENlFXNfDlnOZ/Tqob5KuP4fEKapdR1xWw6ZTwakkQRgefieJI4ThiPNpHCta9hPyQKI6IoQqkWzw/Y2e2wZUAZgdaK1WrB4eFjTg4PL1vYjtNam4DjoZGk6YKwdG3lW2YIjA2sFR51bVBKrBXU1uDuB77FrbUNw/6Qra0dXn75VStDWleaUeRTlqVtG5o1QkxrgsAnL1JrKxCGtrVzRU+6lGWJ44BSLWmWr7O6QhR6vclJS7TX4LsuZatQrQGj8BxrCbDxKBe+MGll/kD5yQuuT/fGlecNApitchxXEHcChAQ/CsiKjLbR+K7E8xNwWvKqpijXS6Nq6fU8ksSnbWtczwecNXMsIk0r0rTGD1uCMKKsKrTWVqXnW+zMGpVGow1IH6Ur0qLAczTDfowfBDgi5Oxsyb0P7hNGDlf3uqwWFa4nwbTsbPc5P1uSxCHCaVgscvr9Hm1sCPyQNFuiqdi78gyNajg9tR6auq1ojYfjQH/QZz5fsMznuEGCF9iK7eDgkF4vYHt7k07HomEcJ2G8scN3v/8RRycNlQb9tBpwrWj3Ipf8eMr+1WeJVz5v/PHvUU1Xduj6Z/gvPtY9/He+1i4crS7VSMYY2lpxeHCAlq41NZsGx1mrDgEtDM2aSr2cZ2BcMC2uNASeS1E3LBYrIkdSFRV7mx3CsGVzu492Cw7PG8raUBcl2apm0PHodl2+972vsZid8Pd+6e+zf/U2GsfOMZ6SF188V7Bk9m5niOeGKNUwHPVom4x+J8L3Ql584WVOjw45PHjI1m6PMAg5m0wYjCPef/gBX77xEn7j09aga43vh3huQFXmKKXwfZ8o9jEmoKhqdGPWMRE29iTP0/UMyLZ12nYtqZbOpYLMMhYlFzqTtrUoprZt1guVoq5rWqXwA+uPrKoKz/ctfNcLSNN0jTgSSMOaXG8BwH4Y4ocRAolez2xsYKN7qcgTCNCWCq7Wajghoa3rj8muL9RvQggrGFhbHnzPt+ZzY9ja2mZjY5OmaexmKSU7OzsURUmaZvT7A5sNJVySuMNf+ZmvUqsS33co8hbPlfieFYwI4+JELkPXZWfnKqqtQdjHkhcp0nG4c+c9js6+gRf3uXrzOuPBgKSXUJbVOtfLt5WWMtRa4yhNVta0WtEf9NEGGqVxHYekP+aVrV1e/ExDWZaX+V3CPDFvV1VOmk5ZzKek5YrRcMDO9i6BH9O2Ngss6XQpSxuOu1jOUVoxDAJeeP4FhsMNHD9CGeyB1vOokYT9js0CkxLP9QCJdARjYfDWFhsLEIa2UfiuR6tqlGpRSuF5HlVVr1+j2lb+a8ViU9frmdx6fqXt5qa1vV9Vq2lay1sVaLzgTxM9/duvT/XGtVhW7O5us8wbXE8ShCF5WaB0Zc2HVUs46qKlzb71Aw/XtcnDQWi4dn1EHEiW83zNPJMgJPNlgZABWzt9Tk/P6fa6REnEKl2BdDibzBiOBsRRgG4rGmXI85Iyq0nTlit7EYHv4jqSukzZHCUsU01dl7gSotC3pzHHAQFB4FCWBY3KSZLYMs/cdSxBKcmynLt33qfX7yKlwE7CNavVkih2ieNtHMfj0eFjkk4HNxc4lWAw7GNUy/HRMdevbXH95lX8MKbX3eajB2fcuXdszfVyvRlJK7KIehbc6wchUsLDuz8gPzli3bv5kxVBP6wo/HNdF0gbeWkO1Rgc1oF2gSYaR3jCIURTly15oWl1i2PTH3CEg+t4GCXxPMtKCzwHWnDQZMuSzs0NfL+kP5B8cesGJ9OGw5OSDz44QgqDUgWnZw+4fXuHb/7xfe7de5P/03/5XzMY3uBSovXU1nzZLUTiSp+2bq0aMV/hOpbYcP/+I/a2r7C1uYOgZbw1QCBojCBXCv1gjqa+/C5IxyGK7bzH9RzatqEoCpbLFSuZ2cgQ18V3HcLAJwxcgtinVfXaTGtQbUtVVbRKgTDUrU2xjSJ7b9l4EYV0HEtkcOypuW1bhLSzDulY+G8Q2MDFtlHUjeUPaqXXFhGNUg2+cFBFZeeSrktd2pmQ49hqr1ljhi4seHbGYSM1VN1exmPYt3ZJujCr2re2HWfWVHa5Fjl4rovEiqO2NrcZjzYQCFzPEsq11iznK7K8YP/qNVxX4gUeSRLjByEYB6NA4uF7AVormramVXbjreqG0/MlXhBgnJDd/RtsbO3ixz3C7pAr169TVRWrVYrreeh2LYJRirJpmGc50nGJcQnCiMB18X1bGfm+j1KKgbB09QvSTKsUSinqKuP+fSjOF3QG20S9HkF3RFXURHGHnZ1dAi/g6OgIbTRFNWU6n/L+B+/TGofPfW5A3hRWaCLswSEvSjzPBWEsl1NxKXN3XIEjrCfUCnksHLiqK9AKISUbGxvUTU0UJfZns0a4Seng+zGEMUa1hEkIWq8PUTXBWrGJvhCSgBSGxXL5SRYL4FO+cXl+h0Y5SMeeSFttc4gGoxgpFaOtPm3dghCEnZDmOLeDV2kIAkMUGXy/xfUUwlHrQasgyys832DSligRJD2HoBNTVCnz2Ryt2rWz3yNXFbNlitEGzw/pdGyg3GI+JwjW8N0w4OaNPfJixtW9bYpigXYctO9SVIrhsMdkOsFxrTdjtUrXcRZ6faNJ0rRASnvjB4GHQZGmBWEYIqRAugLhaIwoME5JGNv3VdU6+6kFx/EYjTdZLmuOz0q2r3bQwuP4YG4VS0ojPEGVV8RRl7/21/82v/Wrv0K6XEFrs5CeHtL+CZ2zT3wZYcBYNI2QZm0NsySDKAn4pb//d/jRL36ON7/9Lcoy541vfpPp+RxjNEnU4fDBBNrMLoiNfXlEXkQQ+TRlSuAL8iJjsZzjhgUvvPwsxltx4+azpOmMJAnZ2R6zWE3IshPqOuW733uP//a//W/43/5n/xeezul6+ulalZcEIyiyHNO2zCZnbG0OuXbtJr/7299kkHzA7uaY+/eO2drZ4ez0CITP3ftTBoN9dvc2UCbBc2J0LcmyhjQtqUplv89SU7UpWhuSuENv0Mf3XBxp54mhF+B5Lo5jxSmqtXMKB4nr2Zd4U1vJc900GGWoqmpNULcTSaUUrm/ZfHXT2IOVF2CQBIGP6xo2/IDA82lb63My2p60Hdejri1Y1nrynHXVJHAcuU7Q1U/R4+3JGwOuJ5HrWPmyLCwj0LOfz1aQdibjOA7mqZnIxfA/DH2aqqHMS1sdui5N1eD7PtKx7dVIRdStVQJWpabbjekkQ7tJakkYRBhjI0IcR4JRNE1D1VTs7F/FC3zKsuJLP6ZxpUC1NUrVzBYpWoPjxZaXi8ZIByEUvuuzvZ/QtIqiUjS6wnUUTatZ6ZwLKkUYBpRlZdvkWq8p9R5owebOVfav38TzHQy2AvRdD0e61vCMw3hrnzgK2b92g8VqSWMkea04nky4eetZtLYhlRpBd+jRahvdorS2sn4haVXLwaOH3Lt3D9ZzUt/1GQ5HdJKEVbrg8eEBQkpu3bzNxuYGdd1itKGsaqq6xnU9yrIkjAKE0Oi2xRVQlZbm77ouvh+s/WvGqjPb9t94Tf27Xp/qjSvNFVEHJtMVfjQgcX28wLOy3Y67LmkFZZmxzDTaKDwfotClPzD0++C6gpOTFXpdQyhthRCNaqnaiiAUSDcj8QLGI5/FvEZp8HyJEZplmpJnNaNBBz+MGA76OCKzUlbV0E0iwsDHkYLAc8nT9HIQXdUtWdoSROD5Hk1TM5kscL2AJPFwXIembYnihPl8TqsMWxtjqiYjjn3iToZSmrbVhJHL1Ws7KG2oSpBJzGpuF0DPg4/unxDEEZX2ee+9B+RtxX/8v/4K3//2gl/7/3wLaTUL0Bp0I2ldyQd377GczpFrtZsjQPG0FvAv+FobmY22hmOFVdHduH6V11/8DJ9/9XN85ce/ysHJIx6dPmR/N+Hs9JBxP2acSBaTnHlWUClD4AnyNCNwK/ywJer4LPOUZ57ZYXMrJs+t12e5zLh9q89gtEUURXRXMJ2egTH4gSIMf7i6NJellhUx2DytPEtRTUXgges4TM6n5PkxURjy5pt3Od8e89GHZwxGhzhOS7fbYXq+QDke52cnvPLqlxH4tJWhLO1cbbmyxPmiyKnqgqqq7BBcNhZRBNRVhdIORW0rLFe6iLWq1HUEWhh74vUdpHQIE4te0kpfEszbtrEzKd0ipbNWcdrTdFGWqLZFmRZHSJq1StFoQ9vqdbvQvq9ZK+AQDn4QkueZjWqvbZfDcx2kxC7+a4qDNna2pNZR8doI2nVF17YK13XWC7omjj201nied9lSLIp63a50aOqWIi/X2ViSLM9xPEm310VISavsz9H3Q+aLFUZZ5qHjZOucMyspd9dECCktM1EbbRddCRiN9D2kTNbeKolSoNeBkY605Ja2qTBAVTcWLGAgzzKkiPADa8A2WlulKBIpXdq2Xr+qrPihVYIqrQgif61qNLRNgePYSnO1WBJ4AdIRpOmK45Mjkm6f8eYW0/mC+fe+R9Nout0+Bonvh2uUmQBhPVhSCDrdDr1+n26vx+nJKWma4nse0vX44KOPuHP3HU5OT4miCOkGXLt5k3B9H/SkpKoahLCAhDt33uPOnXf57Guv8uILz4Ox91mr2vUcU2PWc8u8/ksqhz89X7LKMlwPlqsUP4oYDQfUbYbn+6RZRtuCkCFBFBEnml43Qusaz80JI/B9wbXrIw4PFqzSlsiT6GVDEoT4gYNwFJADFf2+pKklcZRQFDmYhqapMUBZ1viOj2kbXFnR7wVgaq5fu8bh41OWs5oosS2Ss9Mp0rFzsqQTs1yluJ6PujzUS5bLmlu3rlIUKefnU/r9AVprTk5O6fQ8NjZ3mE583r/7wOZbbSRESchktiCJu7iiw8N7B1S1s07B1fzgnfu8/+CMvNTUUqN2JefF0i4YFoGLNpa1VuU5b37jj9CqRdvZuH2xXTzEH2oLfuIuIazVhBeZRerSwiWAyA/40c9+jlvXnsfzekwXS955dEAw3KA5TkliGI7gxrUdskVj8VqqplSKd98+otfz2d3fo5OENHXNcNAnjBMeP37M5LzEC1qWq5y4k5BmC1arlH43QlKjtcv+/talH+VyA7ucda21k1qRpjNm0xMrMc8LmqbF82KuXh9RpjZaRwiXB/fO2Bh3iAIXh4iHD8/4tV/+VR7cO+G5Z1/kyv4tG9OjHKJgY5171VCVJU1b0rYtruPjeSHGGOq6xndtRZBmtvI3QpDl5To5GRv9ri9iLxw81xpNA9fD9TzqqsL1PITEQmDXMxArZ7YbWdNaDqAxTyrtRmn0uqNRFqVVHa43nLK0kSdt29A2NX7gr+HOds4jpcD3XMraiom0MbhCUDfVZdKuUhfG5IAk6bCmzlJWzWUb0g8DjLFVIELg+hbjpAHHddBAozWqqUFIBA5N29jE4qYldiLee+dthBTcunUTgcAT9jm7josy2h4IfG8dleKi22rNRzS4Xoh0w3W3wN4TvitomhLP98AohNEIJHVVMur1L2eIRhvbYtR6LXMXTzK6hEbrBI2hUS1BFDGZTrjz/ke89NJL9Dp9RuNtVKs4PT3m1//1v+bBwwckScIv/b2/Q7fX4w9+//eJoy6vv/45hJQUWUYQBFRVgXTsXDnPrepyc2uLYb+P73mXas8wDJGuRPiaK+kV8rygKDM+uvch16/fxEYEuQgMjhS40oqFBoMBrmfFPEkSIR1JIGLM2uQshNUYhEXySVeMT/fGhXRQWuI7oM1aGiolQRDSKoUjA0pVWQmnsmBVRYVRFdv7Xao6xfNDNjd7YCTpMqPVdqEIY4EfSK7f2EcKOwxFe6xWDdmq4fh4SpHXNnNofTot64Kg26XIM+LWw3VcyrpESsHxccFXnn2OBw/fR+MTBl2aVpMWBVGckHR6zBcZ55MzXnrpGYTAAlDXdPe9veucnZ1Q1gvqpmGxXLBY1pxPauIkIioUrmeQImA+yymyDHOZtePhuD7auDw+XBEmCY3R/OE373L33gnGNRipQAiGe1cZj/Y4eO9tynz5lIGQj29aF2//IsouY9cktL7cHNadQkLfY5QMKZcV3//2W7z3+AN+8/t/xJvf/gbXEo/Pv7TPMFKIdsH09Ij9/V3GI5/j8zOeuWnQomEwbAkDTbaSPD6c0tQr3r/7mCDSPPv8LrP5iuVqThAkFAWcHJ/w8ov7vPbaNRbLydrUaTDCIIy1fz59CQHXrl3hK1/5Ud5/f8rp6R3yXKFMTRgqRoMhUeQhKDg+XFAsC4q05frV6yyyR6iq5Ou/+zu8/f03ee3Vz/OzP/cL+H6CkA7GOEgBcT+g1R20UjZ3ColWCt/zcB2HKArp9XtWhLH+N3XZ0jPr9p4VYFSVnYe1qsXXiqosEbWNjFmlK6SUliTheWuzfUrg+2uxx5NZny/DS+Cs5/s0rd1oVGvww9CCZF3XQqrrGuG4BJ5nKyRpMUae76+Zf3bR7sgnIgXHdWzOlbtm8gkLwhba4s08z0MLmzklPStNd1330qzrRy5VU9GqBrmuLrUy1I2Vqrdty+p0wbt33qZVNavVhL3dfa5fvUGVldRNRVlUhHGEqQ15nuGuVdzOOmlAa3AU1JXG9QIcAW3ZYkzDajEDiV2PWntQKLKMdLVCaU1wYVVYy9gvvpdSOuu2q13TWmOQ0nrgup0uUjhrH5bEjwKUhvF404bHLpdkaU4n6bK5sQlGUpUl/X6fzb1Ni6tyHN588/vcv3+P07NzPvvZV4jDgNHIgozb9eMIw5Dt7Q2ijsedO+9xfn6C0YrRcGjnYo7HYrEg8KySEgEboyFhYJMoJpMzyipmsVzy1tvvECcJt2/fptfrglGXESuf5PpUb1y9QY9+LyTLznFdq5qbTKbESWDDd3HQ2qVtoKxayrIlChw6SYjvB8SRS1GsWE5zfL/DaBxTVSVF1dCqCmEc4jAgjkKMVjSNphNH1EMYjRIELstlw9tv3yNdVYRRTBAGSNFDGc1qviKMFhgh8QPDbLbE92OUFjhuh/lqRtMakl7IdL7i4cNzwiDi8OicsszY2BySpjmTaclsvqKqNY7ro3TJcpVSN4YwdNDaYTZb0qqW+XzFfFahlYfnx+RZi+t4pGnDZtLHdTSzac4LL9zg5L0Fq5MSr+vTuzXGiIAXX/kx3nnjLRp1QZTWoC+2kz9BkPFv/vHPfwkDUtn0WAR4AtPYaJTVKuOPvvYN6syQjPo8XJ6gqwqlW87rloNVxgsvvMhm5LA3HmMwNKrEtCGBq/DjGNVm1JninbenLBca3XosljX73Q55kbO5NUJ6klYbHj6agDYUpaCqaoo8sypG8afpJe2Cu7u7w8/+lZ/hnbf/JctlzmTS0GifOJKkK0XH9XFkQFEVLNuGIs/Zu3KLf/B3/wMGG1c5nS6R0mM4GOM5LbrNMTaLGolGNeYSO2TjblpA43lyvZkIPCEvxTNy7b/R6kLcYFVgsKZCrNWExoBWiqpqKMoSL/DXidq2gijrlCCMadsGY9YZWXV16ZtCrD080pIcfC9AKUMYWYGP57prmb7d1MR6VqPXyseqrqzxei2HN4BRai3ztm0t6VjBiCPtzC7pJrStzdOSjrykPtjC3UUj0Mb6jnzHxTXWM6XWrD3HcQmimNVyRdyJ+fyPfIGqzogC62GbL6e0TbuOKbECKqUUTdvy8PAhZydHGK34mZ/5GbI8w1CjlSSMDJ7EWlLqAoPClz5ZmqEUhEFEVVogQVVVVGvEUhAGgKEoCoSEKIrtXGoN+a1bRRCGeL7HxnCDsijXFa69RwPP46d+6qeoK9tWjuOIJOnwoz/yZdLlCs/zCMOQtm2QCIzj0DZWFBP4HnVTMZtMUK2dV/q+hQavFkv6gz5FmTPo9dnf2ePk5ITZbEoYRizmJ3z3O9/FaMOXv/RlNjY3Wa2WVhHc1BwfHjCZnDFbzPn+D97CcRx+9EtfotfrUtcV3c5f0oor6sS0qkI6AsexaivPC8myDOG6aO1hjE+RVaxWJaoRyNAQBQGujDBaUBVQl8qSKEyL7wm2N/ucnKRI43D08JRuEqN0jetKVqsVcdKhKjVRmBDHEaqp2NywycTT2TmO9Klba807nUzpRB06vS6Hx1M2NrvMpgtOz0/tAuEJ6sZwcjJDCIdOt4fWhtOzFXEnoapKPE/y7jvv47oOm9sxjmc5Yt1On/FIIHCo65LpbMqV/X3S9JxFURD4DbiaIO5yer5EunOEVAhqfuGnv8K9h1P2ohVvHnxAGwg2ers8fusOszvv2phXY7ATEXdtJr6I+f4L/kEKGO8N+Qf/8Jc4q6Z858Pvcn52wuKjJe1U885H79NozY/+xI9SLKcMPE03lujI5S6S8x98wH/6i/8er9y8RT07pcpS2uoKSguCwOPRo3sIt8fhg4zF+Yqqbuh0JBvjCETDc889w/1HxxwdpQjp0OvFeIEVGoRRdGmntr8+bpo0WKWb74dcuXYVx3HodgfUteb+QUYQdClKTdXmxIHL1Su7XL+yRduU9DoRrlD0Oj5BNF4nBoMnc5ABCGsqNlgv1WItBojjDkEQE7g+CGkJBJcPcQ3PMgJHOHiuvJwH6TVI1WDwQhdX2xlHWVYknRil+6yyjKqqSVcpp+dnGGMX0t6gj1oLKELPKhDbNcfOODZmx3Vc65ZQ1pSqtaKqreCCtYzd862wSDtWuOH6PsbY+7lt20tptWOgVsoq9dYbThj6qKpgVa7QShGG4Tr3yoP1Zl239oYSQlBU1mekVEPp2o3Xfo9bPDcgDBPm8wlvvPFtTk4PGPaHdOIuP/+zP8fGxjaeF5AXBWfnE9749hvcvXsX1VbkeY5qG1585VU6Hdv6cxzfPl9VUZUrjGqserRtqSqNIz2ULtdtWRcjJKssIwxD6jzH81warXCkRKPtfM0LcTSE0l3P4iRxGOL6llmqjSX6t02NIw3GdKmqaj2fk2uzr7Tet7phli7Rra3Yu8MhL4wGNqML8DzfzsfzkiwrCX3LwFzNMzzhcW3/BqeHp0zP5rxZ/IBeZ4jW8Nprr9tq2PU4n86sSMez7cM7d+5ycPCQ0cYGX/j8F+z3XhnuvneHqirZ3Nj4xEvGp3rjysuc0DMknYQoNNZjgiEIQqqqpa5bXC+gbUC1gjjy8F2fqmqZnC84PS2QjqbXidf/HuC6hk4noalcJmczHp4WRMEczzP0+gGDYYzrQZlZVI7WHeLYp2lLwjCiUS1KuzStwvMctHEQ0iFJehwePMYNJPNlznRS0x902BwMqJqSuhWEUcTR8Sm9bocgcOl2uzjS4LoVWVaSJIlt80tlTYsULJc5+/tXaJFU9TlBCNeuD1muEubzgiiJQGuGI488n6GBr3z1WbY2DWH4HJtKUnV8vvnNb1I8+gCxqkE1gG3ZSKD9oViSp9WEfyF7mIHVPOXLP/PTvPy5l/iN3/9l/off+u84vQrpYUanCUj2AvQAgiqg13bYv7rPMmhYBpoTz+HXTk64udHjS/1tXhzuUGcpgd9huVoSXxVUSvCzXw2J47eZp9ZvN9oMSIuKu3fvUTUuy1VDXmrC0HB0dIoQPjdvZlYa7DyRaFzin8R6EmcuggFdev0Bq3RCWa6oCsG77z3Gcw39WLAzjhh1B4yHA8piRScKePzoI77+h39EZ9AnSRLiOMb1Q7wgQTouRZmzWs0pypz5bI4ykk485MaN57l58wU6ycCaUR3HzhocB0dIjLGTQoFjPV6mxXHWHjmt7PwFa0T0jcvp2Yn1PQYhSrW0qiWOY4yBjY0NO0xvciuzX1drjvOEQJ7l2ZrYIRD6CcNOOg7eulK07S9b9V20Bo3hUjTheh7SuRBj2GquriumsynHp8e29SlaNjfHxHFsk7bX7T8hHJSyJmtjpE1b9gKk4+I5dgNpmgopJU1lM7mkELie5Itf+DJ1k+N7LrpV1HVLmmZ4vkIbqFtDGPcYbe1QVxlxz8bDHJ6cE68KsrxgMBhQVjmL+RkvvvAMWzsjVMvaW+gjsAehuqpo2tYmRucFZZqitGJra5MgSVC6oWgaRGMIAgc0SKFQylhaBYqyzG0bVymUsi1HacD1XTwvwXU9hHAQwiHpDtf4NEmrG5q6WgtsNFo1NsTWcSzyq7L4KtVYT1ZVNZRljjYNQgpuP/MCV/ZvkGU5i/nSplKvf45hJBDSIYx9WE/NX3n1Nb70pS+BtAipC97nC889j+tI5os58FufaMn4VG9caZ6jQ8He/h6OrMGUZFlO3VwMAT2qUuFIF1e2GCOpa6vkOTnKuHKtgytsjtbp0RyBIYolg5EkDiMO83Ok8lC1SxwGFFlGry9xHUEUu/Q6fU7P67V016EoKoIgxJEhbVtRFFak0esPWMyWGGEIw4huXzCdTlkuS+IkRZmafj+ik4wIg5gsTxmO+iha/I6PG3rW0yUkmgaNxfHQVMzmGWE0Z7jhkSQRdd0QxR7d7pjQm1CXOYeHKXt7Ltr43HxuxH/0j36O81kJix7LlaXre7VHNVtiiury9P4kzUrx9Hb1w6TBf/v1bxmGGaiLhn/1O7/Dz/70z/G/+Pn/kFdff5Y3D/+Id+98E7VQlGnEweP7tEuIkw7bO9dZLB6QTY4woc/vvvUu37q6T+fF17jdG7Az1piswkdydnRA0Siev3kNPxTkCs5mC7rDDT748BEf3TtitlgxXza0teH0JAMt2druI0VFlh+TdPe5eLnYWvrJ0M+sf8uylK2tEU275N13c+bzklZDXUHoCxarktPTBdPZHNUWVI/uI4KEt37wDttX+ly/cYOTs4L5YokGG4UhoaoK8iIl6SR4fszpZEq3l3D12nWE7FNmGcYofE8QhZ6VZK9JDaoR6yrDwmXTNCUvSsKkQ1k1lGVNWTRMJlP29vYZj/scn6x49PgB3U6X5597jqTToSwr8jy1rT1jyIuCVtkIjjiKCUKPurY+Ji8IuDCV93sDyjKnqapLxaFWLd1OzxrO161WpFgrCA1NU6OE7aIo3dDt9ciLnNl8igAWiwVvv/U2cRzz/AsvrJ9XTlk1SGnFBd1Oz24+bsDGeESnEyGEg+/5BG6IFJIojqjrEkOI541wpMRoje/6CGkpFm3dMhxt8GM/vkuar1gtFzjuWs25hkxr4fIbv/lbnJ0dY0TFvQcf8OUv/QjjwQaB37XiFD9GSBetBa0RuGHERhxR5Jn1bQYBnu/i+jZJuchr2tbQ1O36IGLQTY3nC5RqKdMCZYw1PbcNeo1qaltFHFsZvjGCsrZK0U7XboraaFplSJKYtm1p0hrHcYjDGJB4XoBYK0gdV6C0j9aSLE3pJn08L8TzYvzAUjq0EaxWK4wQ63gXW1GiWuJ12OlFJ8GGbVq1a7pa4jmffPv5VG9cba0QccjZZEGRpYSBVSBpJVilmrZRQLNWMPlEcYeqKEiLgqYWhH6XXlczPZtx9Kih33dI4g6qcVgsMurKw5MJZdkiHGHjFcyK8WaXslI8fnyINgFJL+LstEBph0G/R13l1E22ltYPieKEw4MTsqJGSAdpDL5jGG/0aZuMpBtSFi3TyQmuG9KoHOklTFbHjHf6JDLi8OAxSeTihCFBlOAHHQ4fLOh3Pap8xfFjl1vPbDCfTpFuRS9o2YwaBluSF24GBL2ERipufkZwlH6Lg7M+8yzhdAlgSLoR5dn0KX+tsXNCY5tjhifkwT8rFvJPviQC9QS9K62YxsqLAARGG+5+8B5lXbDtb/PVvV/glb0X+MNxlz9++zc5fTijlTFxOGK0sUPbpHB8jv6wwVAgNxWljvkd7zHh810+70tu+CHdkcNnP/8FlsuK2XLJlc1NFpVkkfX4wbsH4PbYv7XNHh5NbSgWim/+4dcxymN7e4/vfu83+ODOm/yX//hf0unsr785yj4nI636CzBC8c7b3+XunbcYDBI816Fdq/KM1iB7zJYZTVXwYmnY3dnk/r332bl2lZu3OmRNwdnsmKLUxFFAWSwpVjOEkGgt6EYhWpekaUrS3eZ8esbvfe3r9HtjjGk4fHyPMp/xwvM3iCKfQX/AxmiLMq+o65KzsxOOTw5ZrFY0jSJKEg4Pz1guavqDTT7z8mcZ9m/SNAsEBUkkmE0f8+iRot8fsLW1h+cYsnSO4/sMxiOKuqBuSrIyx8FQVwUOgnw1RUoXY1zKokKphqrOqKsFSeIT+C6SGmFcfDfGCGst0RpLpBEOYejhSAj8Lp4XcO3KPq2qqNuKr3/taxw+fowUgm4Ss7e/x9Ure9a8LlyauiWMEjzXI4kSW82ENvC0bRvyLGW1XHF0uOTGjau4nqRpSvKiARxMAEVZs0oLa0dJEqIoYrlcEsex5QZ2vDW1XXI+Pefx8Sl5nuO6kjd/8BF37z5mf2+Xz73+Om2r6Xb6bG7tEAYRQgoa1RB4AVGni+NItDLkZYvTQumA6/o4nkE4ng0ALXPquiAMPQuPDmKUMjS1Wr+WPJrWUi/KqqJtW4Igwll7PIsiJ4x87CzUIIzCczzcwCfLUpTTEvghrpTUWtOohjjwCGMfx4lIOh1Uq+jJAWVd4YdW4n50csTvfe23+eIXfoTxeBtHCFCSpi7Js4x0YWe3IDg4OMRzPcLIp9OJCcPgkyz7wKd848pShSNbFrMCVSt2tnsIY+nu6aolSyscX7K92bVk5QYELkZ7JImLbg3D4QbT8zleAMKRBFFCUbZMJwVK2Z7y+eTM9nEdn+WywQsUs3mK6/hsbG1QtUsQBWDIsoLnn7/N2fkhau1cX6YZQeyxu79B3RRoXRN3AjrdiLPJHGPCtWu/xY98HF9hZMl4M6bfC+gGAeXVENcB42gGfY+mzumEDcIV1JViOms4OTilUTlxR5D0Uq5eEXzpS5ucZiW58El1y/3jU94/0Tx63GO5qDif1iwWK/LFirWL8i/kkkgMF3ToC3E769nHxf+6QPvYGmZr8zbny5bByBBJjzG7PL/xBT4afMh8+gCvJ1Gp4Xg+ZVJVrB7NMIcVKIOezGlXDzjJAh7E+7R1xvdmj/jic7vcurrFYBQyGg/4w299m//pN77Hr3/9EDkI+PGf/wo/+dWf5pVnX2UcbxB7If/kn/y/+OVf+e8xIiZNHyD1BKObJ0/uImH58jlZ0sfu9Rtsbe9QVwuGoxDfg6qy/qS61FSZoik057OKK1d2ycuW5XLFcDRArZY8eHSI4wrOJxqU4sa1fcqisjYFrdjY2qRWmu2dm1y58hLD/j5SuJyeHnL0+F0+/OBdVsuH9HsRcRQSeHaOW9clvudQ1jZjbDgck+VHeG5NHIGUBVotWaUnDPwtkkRw48YW77xzzj//5/+UV197nZ//+b+J48DWxtBWRVWFbBtEXZHPZwS+R1lkrJYLqiolL3MkHmlWcHp2ZtFqKmNrc0gQ+Ix6G8Rhj43RLn4Y4ziSIAotNaKx6Qti3erUqkU4Llpbgce1a9cJApu0PBqN6SZ9Nja21wGOHmZtWK6b2mbtSYnSLUK6NGnFP/tn/x1NXdJWFX/1r/0ML33mefJqZX1ugQ/SAoplUaPqmvl8xmRyznQ9w5HSIQxDwtiSSNIsZTC0WW5VVSC0wnUk0+mCBw8fUpQFgReyPZ2tH7tPUZSMxmMrzvADmqalrCvbKlWaOLYtv6ZpbOKB9CiKOe+//z7PPfcs+3t7JEnIRdSjUpqqLDBoqsJ62Zq2oShyK6lvG+I6vvTFhUFIkRfUdUsniW2LslaUdUnbarIsIy/BccWlebipGgsDFpBlOcKBwWDIX//rfx2MIAoifM/F91zqOqDX7a0JIZqyrNjZ3rIGeKOp64bZbP6J15dP9calW4/VskZoTeA5NJXLaplS1y1auXSSHss0JVs19LoJ2SInDEO2tvY5enyE0oLZLCXPa7p9D+E4dAZdHj44pTUutaotVshzmC5Tup2A0IlYLuHsVLGzE6KULa+bBqqqojANeVFQFDXdbo/Hh1McoekkAj+W6ExTNSVRx0Jh/TBAIxhvb5A+fARuxcZ2TKfn0uk6JIGhkxiuXo2RQhF3EsYbfVZLw639IeksJ/QHrFYwnU3IypZnnx1z+7rD/vaSsL+kWmZMVw3ffa/lXMMqT3n/vTOy6X2MsmZSXbUWO/NUhMHFJvbnr7CsL+zJR1u6hI35VNZPI2E03kBowfn5OX7cpWw6fPN79zjfW/HyczfoujHbycu8trfg1//F/5X77xyy7V0n6jjky5LmeAGlsaq/Ftpswsnp23xrYog+/wqfvf05vv7t3+W733sD3RT8/F/5eba3r3LzVo3+w0Nkv0ubDCi1T1O5eEkH8Phb//7/nIaW1eoOWneYL+0cAnHxLbGeM9sBvYiWcFjmDVE8ptcJee2VDb7z7SOMNRISBSHZYoEj4N33Djg6OmT/yoCihoPTE4wvEY6NwAj9mCItqeucskpJU8XmVo+tzTGbm/vcfOZFfL+HFDZnznd6vN/zGA98bl3fxnWtrWBnyyKQ2qZmlS6IO9tURWVbPCiyLKPf7zBfnPHue3/MO3e+xe7+dTwvIo77aCPo9ELiJETTsrHRR1UZviNx8Vku55SlQi8FDx58SKsbEAbHranKI+azGXWr1ixEj7woOD2d4LkOhwf3uHplH8+v2Ur2iZIOQuSYtVLSkQ6np6dI6TEebVGVhiju0jSaq1evsre3S9M0Nu/KDfGDxLIRpYMyLdq0hJGDvw6HlRqquuLho3s8fPQQrVoCT/Crv/7rKAo2tkcM+n2CyKFtYDAaMRhtUtc1TVuvAxc18/mcoigoy5I0L8jynLzIePXV10nTFWWZEXk+nU6IFNDrJdRNZeef3T5Cams0Nprl3FbU2drCE/o+2iiE4xB4gjDyicIBqrUHviROuH71Jn7gEUURvufZPDMMnmfWGYMl/V6fwHdJ8wyDIsszsjzj/HxCnpcYA+dnMzY3t5nNZ9x5/5QXXrhNHCX4oU+bazSGIit5dPCQ/qDHzs627b40Fb4fUNYVdVNRVTYkdDFfIgDf63B4dILregS+T1mVeK6P49rWo4fE80IWixXn57NPvPZ/qjcum6nj0uoabRRlVVDVFY708D0f1Wo8x0Xg0daWnVZXiuUiZTQaslgsWWUlEg+tG3r9kKKqOT5Z4jox0tU8Oj4njuzsICtbgrBHWWjKUgABy0VOXhR0OgGtKnAcyXQ+Jcsr2tbQtqCaAul4PD46Zmerz3Ac0h8OefjwCC0Mwo0QrsEJQJMz3twkimG1mqBqh9VMsTlOGPZihoMeSpV0EsnGuM/muMvkdMaN4Zhb166AyIj7OcP9htxJMZXP0QzOTjRvfrNlESvSeUV6qq0J5SkMhsAyC394IvXnL8KerrKeSBoMAqTDq194ha/+1I/xUz/500wfL/hf/if/K8Y7N/mFX/gb3H9wwsHRhLeOD3j99jWeHfb4yvW/xhd3vsPX/sn/jQftjG7yAIFHNc1x8BBY/JDRoM8zPviD71MfTmm+8lk6wqOsl5T1nN/5g6/z/K3XuHLjBt4w4pWfeJ3Xv/QjPLv/Ete2bxCFAVWtWOYNz7/4eR49dCkzmJ59+NRzWfu4hOHSmaztc1ymJY8Ol2z0NcNhnxtXB7z9zjGthirPkUJQtYZVrpAOyNOUuFA0RERBRCJ9xoMuZZayOeoTBpr+0KVtG+bzFe+88z2S5BHvv/8BSdJnY2zNznfv3CUOfV596Tpal2BapNA01QxHShwh2BhFGBSuFGwmQ0alT68bcO/eIfN5RtwJQUo+uregbR02N68xHOyws32F8+mcBw/vo6qa+3ffYaPb4eaVa7htwf07b/Gtb3+fs9kc4RnCJGbvyoDd7ZB+P0brhk7HmoeLwlI4iqrAaIUfZTjBCmXOaFSF7/lIaVmL09mSt95+m7aBL/7Ij6FahyxbIV2Pbq9H0ygrBvF9OyMta4taCjyKKsVxW5q2QOsCpTVKw2QyZ7FYMhglFt0mNMtsyfff+g7PNjcYbbxOpxeRptC0Cq0tWCAMXQyKIAiJYyvhNsbQKE2aZ2RZjuP7SAFVkSO0IgpdtK5BaLJsZQ3ZGpaLKY70cF2P4+NjADzPI4pCi3oS1p4wHA5xPY/QT4jjHkncYWO0YUUpbYuQXFZPNvlb4/s+3W53jXSqCYzPt771Db7znW/R7w84P59w69ZzvPrZz9G0NmHg/oN7/MEffp3z6We5euUqV65coyhasrS0B4MwYrFace/BfRbzGa7rsrW5yfPPv0AYRQRhSNPUaNPguD5pscT1bUXqeb61ZaARAnrDrvXiuT47e/vcuPUM//JXf/nPvbrAp3zjkrLBINjdi/E86/eoaw+tBEVekJeKTpJcRmUr1RBFAU2To1pDGNm0Y20cAj8G6XA+W1K3UDUFYSjY3vMxBspSsX91l7aSrGYrmsaQFyUqs6T35567wsHhGScnC9J0gVIwm61I4hjHiQjjmFaX5EWONBVbW30aVfPBR4cUdY6sDHHHQZsW6TQopYjjAKHAldZYXZY5i1nFeDjAUQrKnG7c5f2TM47LQ9TMcO22Q3LVIY8Dzk4UXgUPT6CcOsjC0AsTiqYBbSssDGvJO5eNvb+Qn806oOTJ59NAwN/6W7/E//Ef/++49cw+vnDIFxWj0Qad0YDbn3mFyTLj8fSM9x6/zX/1X/w/yQ9O+bt/+28T6w6iFKhasUzP1+ZcKwAwl8nJlhmoq5b7dz5kcnjIc88kfPVHtggTmMwnVI6id3XIj/7M63zpp36CF28+x43BHsPOgKpuWGZLZqsl59MFH947YXMQ0O/v4Dg+xmiEeCKJ/xj6yhiEFjw+zTk8OsMU7yIpuXVjRNUIdrev8s5777CxNWRjHBMGknffu4/0VmxfHYPv4HpditzBdzpIAd2uTxw51I2dcRiEzWATLUU+4b3TB6i6hrahKQWucHEdmxbdNg35cmaDDB1LAC+KHGUMcZLYOUuZs7szJIojGm1QSIQTcfv2azxz63V6nV0EEUcnEz786EM+uPM2olmx94WX+eYf/TZJ6NKNHL74xVscHB+xqjOKpqVp5gjRpds1bGyOEEIQBjGet8Pk/JyjkwLpOjhORlEdk5+cIfFpqhYw+Gu5d69vLPaoPqPX3aSuKmazc2bzE/p9q8IsiyVQ4LkRBsH5JOXBww958PBDwshhvNEl6XSYzZcoDa5w+ezrL1EWGednxwShYL445+FDxe7+FqPRFkJY7mlZtvZrLib0eglRKNnatJVe27YEccKjg8ccHp8jRMHu7i6b400khm4cgKgxpkHpmrqy4OHJ+dxuuq1Zp0LbMMs0XZGvVjRtTZZlLGYTyrJmsUjpdvpcvXKd6zeu43kenW4HIa2SNAh8u4l51lYwnc/BaKLYZTo9Zzo7I4hc8mLJ48cHBEGPv/439hltbCNw2Nja5Mq1K4zGPQaDEbs7+3hejMAhy1L++Ftv8OFb9zk4eMDtZ25SVxXn0wnu/Y/odru8+vIrjEZ96mqPR4/uc/DogGeefQ7PjXCkfUw267Dk4aP7YKA/GNDvDSnyv6TIp63NhOs3Ntnc7pJlK4xR62A4ePToDCkNZZ4TBTEGwe3b10mzOUWRMzld0uv10KplY3tIrzdmkRbcff8Bi2XF3t4mN271iCLrXZmeF9RlyWSWoxVrhiE4QuK5gjBUfOalHW4/u8mdOw9YzO2usFis2Noc0omHzOaHuE5Avxfi+Jq44+CHoHVF0unSHw44P59SVxW+4zIajTg/m6BUS7ZqiEdd0A3FconbGrphgsgW7PRd3B2Pndc9Nq65pMOCRS24c1dTr1rODsGdl/RaQzFriWrIBbRWXcvFEvz0prVON/kEbcInl+RJ7QUGz+vw6ms/znPPPIcjFY4QDHoBf/tv/Q20MDgCrow7XNnu8MIzY5bvvct//T/8Gt/42jcskKq1Ag8L2VBY7rt+6pE/SYc1RrNaprz/Uc3+boeenyIczRt3PuTqa9f5e7/0H/LMzee4MtyhH4zQtUNR1TRtRdPmHJ4ccnh0Sj/qsjXeR+t169M8qSAvtnohBaZp8aRL3N8jX7U8d/0qw84Rb/7gQ5599hZlUTAc+3zpK6+QJA5vv/UeWaFp0opZeoQXQhBCJ/LY2RzyzM0N6lwTBwFlllMXhk4vxOiW2eyUKAyRNHi+ZrQ1oK1LfE9wfHxCFIQIHE7Pj+j1+3SGAzzfw3cdhCNJ8xTpeAz6fZLegMEq52QyRciA1nhc3d9lZ2ubbrJP2wRMJzWHB2d8cPc+bTUj9g3jbsRkfobjKP6jf/SP+Oe//P/ldDmlOxgSuB6e29LpCtLsBNCoNiVLZ+RFyrXr2wjHIS9KhKhoG0NZrsjTgiTxrbE+iogSTVVq3nrn6zz/3GuM+1fZ3+uCkORZxnK+IMtyG0ApXBzPI4ojnn12m+vXBxwcPOT07IiySNna3uXo+JiHR0ds72yzvdtlNHIoq5TByKY5h6FHli1ZLcBzB/T723R3Nzk9O+T8/Izz0wl1pfA8HwNkx+cUdcN4vEnTtLhugDaSMPQ4OTvhW2/8IXmxQDqG4aDP/t5VojBhNBrieyHj8Zg4SsizjLoa2oiXtiHPM7TWVFVDmmbkecH55JDl6hQ/8On1e4RRSJJ02djYwvcDHC/B8wMGgz5KtaxWM37lV/4nxhtd/upf+zmOHh9x7doNtjb3SdOMoj6k2xnQ6w354he/hOvJtefNEoa0afGCkP6gz7MvvMB4Y8z+3jZCGFbLJV//+tcpy4qzsxN++qd+nA/ef4ff+o1fY3d/nxdeeo7t7Q2ECahrix1bns75F//jL7OxMeRzn/usTdfoeJ94bflUb1zDfohWFUUuLY5fYTmEocv16xucHs0Q45Ayt1Lcw6PHbO90GI/HCG0IfI+q1nSSLumy5eHDGauF9TaMN136A5dWrfCCmt39LtnKR7VwcjInTlw2NhLqZoUjFcasUMomkcaRoSkVbWkQSuBJiWoN48E2Rhf0eh2kNLRtQa/nM583qDYnjkKSwKYQ17SclqU1h0Y2iM004AchrhH4RjBKIjbGQ25c3YZE4XRTZtVDHAPFYcX0IXxwv8HMYdy2dLQgm7S4QhBKSab0U7KJP/n6ZFQnsc6wUhcNQgy2/fIrv/p1/ur/7Gd57bPX0HodcSDXX0e0uI4gcR0ePz7n9OAQ1SpUa4f0jm0KPgX6Xcv0P4ag0mtChH3HctHwu19/wFd/9ArXbu3y6pf+Gs+8/rPsbl4l0YaO66GNy6pu0abC81o2Nrq89OJzOFTsDAM+9/JzlkVnAJyLB7uuKPX6F1RlzXhrn9aUnC/mxJHDtSs9ynpKljV85jPXefvd77G/P8DIksHIJctblDBUNfQ6Eb7r8PjghDLPGPQ8rl/b4vT0jLLWSFljZMlqmbK7s0kc+awWM3Z2ugwGHYo0ZdDvUqQVwkh2tnaI1oSIza1Nal2hjaV6F1VJWSkUDknSZ1N4NEpy8PiMd999lw8/OGM4uMHnX/9Jnnv2GZ555hr/+L864rvfOuCP/vhNdjc32ByFuJ6iO9wm6oy49+Y7tJzQS2J6ict4HDIYBESBJMsy0JooilgsFyht8MIQz3co0wzdGvzAoFVGEHpICd1eSBg5aOOymD9kPjnD8xJ6vSFFUdtEbEdSNxVpluP7LsulotcdMhxt8spnbqPUDdI8xw9DmjpjPjvi7p3vkSQB3Y6P77sICSfHJXXdcDacsTm6ifIl/V4fRwZsbgwY9GMcx0O1giJv1lBdSSfpkHQ7+F5gjzFGgbF+qCiOMLLFcwWrLOe9u3e5dfM2QZTQi6N19plPp9tluZyTpSn9JGI8HtnNyLFBjo8ePaQsc+q2Yr6ckp1M1wKRBNe1XMr5akUUdtgYj+l2OuRFyrt3PiD/3oy7H7zP88/d5sredcIwYDabkhU1SdIjDhOQgij2bc6gMoRBgBSGvMi5du0avcGQcn+ftil57847eJ7L7v4eabri3oOPOPinH7CzPeSFF56hqGru3f+AbnfE3s4mWjssFit+8IN3EMDp6TG//du/SdNUfPELP/LnXlkurk/1xpWtclarBYIt6romL3KiKCCMHKLI49qNLYpUcXJUWkSMKunEA6SsuHF9gw8/OMILLGEgywpm0xWOdOn2IAwUggxEBsKGofV6W6RLSbwSNocoUJb03DbEsabbtU7+Vz9zBd8d8P6dQz744JzVaoYULb1eTJ5NGY4lYUdSlTnP395jcr5kucroJx0G0cY6pqFgf2eX2WxCWWYIBJHboxf4bG+O+MzLr7C7N8RzXBxAtUs+PPkOsbMJMwgWK/pti5qXlOeWfbFsYaIcCiEpTbvGYj2lgP8LvWzb0VZutloxJuc7b/z/+Id//z/j//B//i+49eoOq7rhS5/ZZiDAGIkRAuF6rHSB6TvI0IHKGk/1xSe8eNCXX+pP2l7leqNz8YNd/P6rfP4nfo6f+flfoDfcwzUC2VZ4Glqlka5LmDgMxj5pNmA0HPLKy8/RpHNeevY2SgmyNMd1nTWg1FljgBo8z0EYw2KVMeiPCcKAt7/9uwxZIWWLJz2SWPLaa89QvHFCXhzzwks32djyWa4aqkqTdHtEoQe6Yj4DBwO6oshzjo9z/MAwHEmC2KPX77Jarqirio3RiOVyQZWD57g0TcNgOOb8bG5JLEmfIAgpCpsOfXY2Ic1XCMfB9WPK2gAxrpuQpQVnxzPa1uPu3e+QZZKyqPmRL36ZMAoYjboY4TBfNqTLE1arAddvbPLLv/I1vv71d3nr3RWObwj8BbtbEecTl9HAJ4kFYSgpqgI/DPH8BNd3cfyA88kZbVkSOA6BL3GExndB65KiqMhz22JbLjMcEYHxuH/vbTCSooD9KyOk0EjXIGVEUzdMqilFdka3M0JKl7ptmE4qwsDw8ku3+PznnqMsViyXU9q2ZTQa0e0OCMIunt9hZ2tIVQkm03soPUKphjzP2d7eRWnHchzdkMVqQbZcMp2e4ocxYRjS73eJQ59Or8dLr7xKnq84Oj7g5uYG21u79Ht9G1qrodMdcPT4kOPjD7j1zE16Xp9staJuNdL18UOfXhRww7uO0jWtrlksZxwdHpLlOZqa89kJ5+dTTk7PwTg4jksURQSBx97+DpOpZDqd8YMfvEOe1zz33Ev0BiNkYSizHMc4OK5DoRQ60KRp9kTlGfokSUIUJhg00+kZr7z8WRaLOf/jv/iXOJ6gKWswhs2NH+H1V19hlee4fswqy1imKW1jmM8XVHXNzu4u3Z6lEK3SJQ8O7n/i1eVTvXFJYVloh48njEY90B7zacpgFNLt+bRtTtO2CKkoiorbz27R6gJVlwjtAy2u9EmXE6aTJVIY4o5PHNUYbenaWpU4QuD6AmlamirH9zVhFOK6LRhFq21p3okhCGK0bNndinj1xa/y9d9/g7oS3Lt3xNlpyta2x6NHZ7ieYmvcYXp2RDeOiVyfri9xpeTGC7dxhE+n0+X9u+/x7p27jLc2kNIH02Fr//O8+lO/hB8FtPkck55wdPePyc5KGu3glV02h5tcu3HGo8kjDquCYmloNSxpqY2hhY8baC+up6C6f1Yl9mdfFw1C6/2SF4IGFJgpB/e/x2svXcHvCX77177Ga8/8TUaRVR1KA4Hrsbe9zX/wd/99vvkHv887f/QeWq0/hbnwfj3NsbDRIxdII3H5CBSOE/PC85/jZ37+F/nMq6/gu3184yCNjcJwHBfHEwRSkAjQKmHmzxHCJc1yZKdD0hnSKE1bFTSrgla11JUd3s9nc5RSPPPMM9TKsLWxzcbWS9y+foVv/OY/ZWtng/fuvI/nSj764B329rpEcZesOEC6FeONGEfGBL7PaNxHtQWjQU0YuCxmK9omZWcnYmdvhOPCZDGlTnPSZUGeKabTBdtbAb1OQBxGrNKKbuJy85adR5yc2aDB5XLJzu42g1EfL3LIy4pVVnD2cErz3hGOFzObFSgj8MKcJAm4sr9Flp3xz/7f/4TT0wknxxOuXrtGnmacHZ3QNIam1nz3O99HAD/+lc/z3R+8S1FlPDoqeX3zNnEcc3T0IX7QEEbWaLxYZSyymvNpiuf7DLseIjL4rkFpxWqxRDqCvGowxsH3AqQrSaIAV/r0E7ts7e3tk2WpFUGgKKoVSE2eL9nc36DfD1gtc87PjtEGgijG8RyMqpHUdDs+GI+6WJEbQ1WU1PUxZTZnNN4iSTos04cYY0MuV/kxZaHRymfQ36Tb8yGtWaYVXhDy6PFHvPveikG3h9YtCEWShBwenrBaFbh+h7IxhGFIFETk2YKjsxOU0aRZThD4+GFolYZ5wdvvvovnubiuIIx9myPW7fLsc89hMORZiVIWRlC3NY7joRXUa2n99s4OV67u001itNakWcrJyRFFXhL4CWlq5fCDfo9ur4vj2ipuNsnI8hzPt1E3nhcQhiFJp8v21i6uu871yxZIpyFwBd/4xhvcvnGdW88+xx9+8zscHS25emXBM888jx/6OK7P1vYeH354l6ouODo+5tHjx594hflUb1wbGzEYw/H5kjRdMp/bm6U78AgCSbrKUa2GNb29VRZM6bqGdDGj1w2J48ByCqmIIkHgt5RFhU3vdoiCEN/3yTNNnq4wRiCMYTxKyLKMOBHEiYduFUbVLGcFddkyEeCJmqv7Ea4Xk+endLqSIBJUVcnZ8ZStrYB+N2A87CC0IA5DAtcl8QVSgC80/U7C1uYQI1q8yOPF17/KT//if4zf3ccgceNzsvmc1WJBHEYsJgtC6RGOhuw+73GtXtLGmrMPKqpzaGtohfq4SO7p66m/P5lvfZKG4dOyjCdfSIqan/8rL/DSMyGuH/C/+Ye/SOCJS6MzgIfiWn+b/i2f//1//p/zf/9v/h/80W99E9FciDGe/hoaibOep4n12yczO993uXJlm2du7DHqRji6xdQVru+sP8pBiAtJO+AEJEFCESpcL4SmJu4maGFhpMaBIi/Js4LVIuXdt+9ycHDMz/17DseTcw4ePqJpGlwPbr7weY4ffJdrV3Z5/85Dbt24wSx9hBuUhHHAcxtXmM9LHh9MODyY003g/PwIY0qGwy32d6+SpRVl2aKMwEjBhrfFfFmglIPr1CSR5Rm6fsR4Y5dBT9CJe4RBQJ4tiTs+jpS0aptOt4s2DVmZsSoyTs8X5KVitRLMZhnzuWa82aEsagaDLp7ncHR4wNHRjDd/8B51Jbhx/QY3b9xgMTnj9u09fvRHPsMb33qDne0hN567zb1Hj1gc5Hh+wOl5Tej3OD0tGW94BKHP2dmKrFDUyqOqXPzAytkdBzqdiCqbo7XBkQ7dOCCIuhRZSVWUOEIRhw5Xd7dZLhZc2RmwXEFZFrRthSs9Ul0Q9kM6sUCYjKae0Yk09+4/ZrixxfWbN3jrrTfxPGvNkFjaRLpY0rSGxSplNO4RJTHSDeh1N1DaGpKrusV1Y7rxJuXWdTQORycnzBdLjHBZLFMwgqPHmiiK2dnZRpsCIQKqFh49PmZjY5Px2EFKj1Ybkm6PNF0xX62IWwvhPTs95cMPP+CD99/HDwKEgG4vYTDsEQRW4Xhlf58rV67SVBXD0RAE5HnObLagrBukdMmKEnIo8pp+v8NoPMZ1HBaLBcO+A7rFES1pNiXLJ4DEcXza1qopjbCg4jiOKcuKMEyI4oSqqfnqT/w079x5i8OH90A1PHf7Numq5uDgnM9/4cdsskWjcFyH7d1ddvb2+Fe/8etMzk+tAE1CVf8lpcPv7sa0qmbv+j6qlUynKfPlEiEK8nTKoN9BNQW9vkMYSYQsMVgoab8XcGX3BmEUslhNqFqfFhfH9VlOFaN+TBLaeBRXOOimZj4t6Pdirl65ijENo2GINiW+Z9AthL6PG0im2ZRe4nDjyoCHYsWDR3d56TNbICIaBfP5DLSmKjN2NkKGnZBRf8Sg16fXTRDGUOQV55Nz4tjh6rUtHp+ccjKf88Wf+huEg32Mkgjd0ixOOH3wA44ef4A3gtb3aB2D0xd0eh7jOsTZu4I3WDL5sGX+wYKmtsF2/2570Setu57ycYn1W9PgGIe/8zd+Ht8BoQ0dz6oCxYUqcB3pGToBfm+Hv/1Xf4mt0VX+03v/Cffe+3AdK/LUQxegjYX/ul5I29R2axMaYSAOXHbGIV1H05Hga41QCscEOHI9txKCC4Cw0QJBQFm0ZFVBv2Oz3JSAhhpP+MTYuUCR21C/pjU8Pj7FcR2bh9W2eIHPaO95PvrgLULhoFrJ7/3uG7z2hR0kLePRkMCPUHHIqCeI3BZVQeh16Pf7hL6D5wo2Ngdo7fHg0RHTSUqtJEmnT9O6lMUEBYRRh7oxvPX2XbY391Hao9Ea1wXfcWnqmkY3TGYlwhEoo8jLnLgT8rnPvcL9B1Pcx0vqeonrSpaLipOjKUUBGI80rVGtwPckui0JA9jZ7rBYPELrbV56aZfT6YLZ9DG/9Pd+ka9947ssVhVVWvP979+jyBt298ZsbW+ijeCbb9zhbJqihaCuJVVe0I00bREQeuA64Pv+GhEUEPg2zbmuKgJHki2n9DoR8+kRURyhWzCtwZOCfjeh3x1QZBNc12M8inn55dsIobn34BhXGkb9Lr1eh9nsnDRdcmX/Cr4X8ODBIxbzls2NgLxcopWD0i6LZW7tLUoRxUOyNOP45BTpuBjhsH/1Gl4Q0jabKCUo8watNE3TUlU13d4Ax/c4Pj3jjW99h8GwTxxF9i7Whk6ng1xT66WQHB4+5t1332a5XNmE4taqLYUEz3dwXYHveYw3RgBcv36VV19+mb29Hba2t5nO5hRFzaA/AuxB2aCZzBZEvgstzKdT8jwnz1McF1xP2LmdcAkCC3EO/ZD+oGvTsZOY0WgLg2QYhExnM9K0sIZvI9gY7yBFRByOOD9bWaq/FLz33nt4vk+/3+fmzVt0kpi8yBgMurRtw+nB/BOtLp/qjct3Ffu7Y4Iw5Ox0iS89hv0uGxsjZrMzitWS61ev4LkxDx88AJnjSkUS+kgjaNsl09k5rg/drkGj8XxJP+4z7EcoleKjGcYdQmKctmRze5/Pvv5ZfuNf/yqdTkgYdDCqxpUhvmtvvDRc0aqGps25dmULRyqKCpJuh1Xe0FTw2iufIXQ1rlDkWUYcBizmC+5/9BGmbfB9j+FoxNlsxtl0Rq0MShmkMdTTIyYnZ0SeROVHlMuKRntMTk+YpTMGPY/OZp94mJDUA+qVy5Ye0h361O4xH75zHxr971hDPa2iu7jWBlwM4mLBv/yfdmht31qzMUYjJSSxxxe+cJOvfedf8ff0PyD23cv/ezm+0uaCWwvCepD6/QGfef1lFos5k7MJXBzUhK3UDAbPd9ja7OMZl1AELOcrVtmCq70xu/0B3TDB9yI8z2YFiUs3sbi0ZmEUGsl8seDDDz+iVg0vv/wCWro4UpJE4jKFOPB8Bv0+2zvbTFYZJ9NTyqJgY2OTna1tpKtZZBlubxOjFLdfusbs/DEHjx7R23JwQklxmvLgfs6j+0t0I3juuavsXdnF8yuapuD+gxPCKGI2T3l8fM4i1SxTCMKQZ29dZ2fbQ7VLojhiMVvQtD7nk5rz6QRQjMcxcSxxJSzmC9rWEMYBXuDR643JiwylczpdzYsvbbK332VyvsAolyxzqCtARnZ+nOW0teDLX3yZX/ybv8B3vvUNfvM3/xX3Hzzmxq1rpI8e4/h9To/PeO3l12mVz8GDxzx0PN59Z8J8KahKl2eevcnB4yVFccIqK8nTktj3CIKEwWCDJHQQpibqBFbh2VjaeOB76KYmywtCP2a1yjBo4jhmf2+Pqqo5PDxic3MHjOD07ITxsE/c7ZJnC7a3h2R5TlGkPP/88wwGfTYGXRbzGcNhj8Vizo2rG+xudxiMeiyWLnVjaOqCJk9ZTFN6gz55mnN2dk66gjAQDAddhkMHMnDdiOFwlxtXryKES1XW1KWF6rZoul2XtpkBLVU9JYl7eG6wht265EWKdHz2r91ga/8as+mU5WJBmmVMz89J1wKXPC/JVEmRn+L5LvPZkrpSXL9+jeFowPUb1+n3h2hlU6pPju29aYwm8DyKPCNf5Xi+TxAGeL6DF3iURWlFM26E0pq6KZGyRxjGtl0rtA29rQpeePY2G6M+SjU2oNIL2NvZZbS5wwcf3WOymOM4Dnc/ukNZlOzt77O9t8uzzz1Lt9NBCJtvdvftDz/Byv8p37i6kUsvcnFdTRNrfKHpbFncvux2aKKQXuwgpML3GjY2RggaktCmpCZxSKtcjNS4rk3/9XyfqqgxpkC3JVd2NymLmnyR0026aJXz1ltvEIUGQYEwDuiG0WCT4WCMdF2yIqNs/v/k/XesLFl+3wl+zgkfkT7zevP8K9NlurvY3dWGpo1IiZRGM6TcgBK5goSBWpRAkMKAQ0DYlaeWglYCVtRC0AraWWG41FCUJSW1YTdJdbNNdVVXl3veXX/TZ4a3Z/+I+15VkRSHVRzMorHnn/syMjMiI17E+Z3f7/c1KQ/291jpdSizjDiIaDQbTMYHtJoOooqhpFZkKEsO9w8YjafkeUHLc+hZLSpVMlssGI5mBIlCyJyTB7cIzVNeffl1tnbO0W27FKLLaCEZL5dYFji9Fq49QLZbtDJQjqDTaFNsuljWkPHJnNnpjHdW/nv42TcDjRQC8VuBEUJ7hBgXss6mJPCx56/y5FMdGgOdpGlxPznmoulgYD4Cb9TR68zjCUVepGhScvn8Rf7CX/g0F65e4T999jPcfukNVFY+CjxCKISmuHBxh+ef/ABb3havvvAK1+5c49zFC6R+gq45WE7zzGxUnAEsgDNXZ1VWKKFI8oyj4QmHxwe0Wh3msyWe16DZ8GonWyXqeFzVslatZoNW1yVVBVKTVFIhdEm71QBdx2x12du/TzQ8hihit9siikKCMGM2S9k7CDgZFsQ+mOaMtALDTEiiGds72+SlDjJDNxs4jfr/OJhmdBpLtjZsPM8AIen2N1kuSpJEw/czToYjJDk7uy1W+02m4wWLRYzrGfRXW6yu9ZCaQMgcpea4Lqytdkl32ty+cUQWp6AJLl3ZBKHY3rrAG6/eY2e9Q69h8fSTV5mNj7h55waGPSNOYHr/kCQ9ZbYs+fgnv49nnnmG3Z11Xn/9FW7dGmEakOUlRRazs9UjCGMqcmxXUpQV83lIc3MNz2uRFxFxkpGXGZ7ncToeIYoKygqUpNls0m236fYG1PIvAtv0oNKI44Qkzti7v4/dcLAsB6kZXL64RbvVZzyecXKwT7PR4NzWJr4/ZWuth2HoeM0mpm6RZCXTmc/dBw/I44Q0zJnlU2YLSPKSMFRc3OlTFVM00SVJI669cYCmNVjp77C6skmv18NxHNptlyjJ8VwD29kkTmJOTofEwYyG2yfPK/ISkiyh1RqwvbODZtj1wk3TWAY+oR8wn81JopjpZMJiPiUOlmi6Qgi4e3ef+w8OgJLd3TpI7G7vcvHCJc6d38U2bCbjCXleIKWBbXuIM2msbreNpukEQUgYhhiGiRCK+XzOcjlH12uFDil0hKj94LI0ot/p1EaXRYFpmiwXAUwnnJ6eUJQlzXaLRqNNnKTcun2btbU1Wq0Wll1rKDbc5rua9+HbPHCtrTRw7Io8T9nd6rL0dapSYFoWsS1ZLJbk4RzDdug2LVZ7LYJgTpKEaEIjDkOSrKA/GNBq9mqJf91gLn36/RaqSmi3mhhBytwvGE9nSH9Bmhf0ujbdTpeqzFhEQW36piqm4wl+mNBoGsgza3K32aLZXeXFb70GQrK7vU2wXLI/PKXlumhSYzGdsbm2RhAE9crItjk5PcF2LNY31xmOImbzlBe//jXe88Rz5JikhQ3OKqZp0tl9hmwIjl7S6jyOpW2ThQaNXBIEE9rugMKzmXgZpuUA03d8vWufwrPcSimqh+aKbwVyqKI2qztT4dA0waULAzr9DE0bM5wWWDtb3C3GNMsBfdnAxeIRzBwBqiaMO5oNSiFNjY998GNsnbvE6sXL/OP/69/n6MadehKTCmGA227yJ//M/4kf+M4/TH4UUPkZN47v8JXrr7D2+CXavT4qq+WnjKZTk5cfIjmArKg4Hp3w2c98jt/49S/R7fb5ju/4Dq69do3h8Sk7O9s0Gx6u59T+bkFAEiVIDdZW+8yjENnvYpk2jm7Q7rYQUmEIxd2798nDJW2hMehvE6RD8qTEMh2uPtZlbV3jxW/c58HJFN2zkFqJv4hptAWWDUq5pFlKGFVYdo8ijxmNQ9IsoNMpaTYrmq0W33xtn8kkJkkr8rxke8tg72hKEAYUWU5ZKUQFk+WcZbLANBStpovXbOF5HlkWEocRu+e6bKyvEoQFnXYD23EQIse2dF74+gsc7h3wIz/6x/hjf+yP8MI3t2h1e4ymC27e2aOoDEzHo9u3OT65z2I+YWNzgKRgOlkwGg3ZPT+g07ZRIqYSEs0QlFnF/f0TFosl3Y6DbigMU5KXEUt/iaFrtFoepqZj2y7dTg/LNPnaC9/A0ATNZptWs8tyGbJYLAmWEUJThFGMkJI0yxmsrBEsQtI0r1f9quTGtTdoNR0oczSpQ6kjPBNN6LimwzNPPsXlS5eY+QH39g/ww5w0E8RxRsPVMAxBkQxJ45B2s6TIIgL/AJRPnnURArI8J4oTClWiRHW2oBPEsY9hxFy6dAnQEXIF11kBqlrP1G0ShhH9do+W22Z1ZY1Oq4WuSXRdIlRFEkcoFEkaEgRLhqNjHjy4x2uvvsYrL7/K1cuPc+nSFZ59+lnWVteQQsNvt0mzhPF4XHuLlbXUmxD6mdpPrWxS5CmaVDi2hWN7SKkDgjwvaq3INGFyNKGqKra3twmDBWtrAz72sY8gtdpvzHJMtrY2WSwX2KZF021QFQWdbuesXPruxrd14NJlianLurckS5qOgWW75HmFoQlso0OW54RxQqdp45gSu9vGNFcYT2cEQVLzcUqTVqOP7Vos/BlJljGZz9FlyXw+w7Rc7GYDtQhJi5x216VUBUWRkSVR7Ty8nBNEMffuHzIPKra2PTRdcnQ4ZG1tFbdpooSOpkv2Dw5wdYPx8ZK8lbO5scHq2ib9fo/+YEAc+0ghOH/uHFGWEWYCwRRHT7hw5TGk2+Hc49s0O6sYjQZJoJEolyitVT6izEL5OtEiJ52k3H/tJicn32J6CrNhxmKyeBd4i4eMrFpxUKm36my8fWcShZIKJeDxx1f4wHdskSQTxrOYzLG5d3rIYO9Vmpe7aI6BkAaGEGhnIa/ex5kEVVXDvKWpc3nnIn/mjw3IK5+/9zf/BtGpj9MxePriDs9cfYo/8YM/SLe1RrWSc+6lC5z80in7s1MORse88M2X6HU7bG1vsSbWcRqNOuOg1hbOqor/8pWv8vf//v+N2zdu4bkNPv+Zz5DnBesbG3zogx/kmWee5sKFCywXS4IwQAqBbRsoCVbDwWy4uJaLWQiSMGE5n2MIjSRQVEmDi89ssLoxoJVqHJ7sI6Xg8asX2D73BPPlL3ByPKfZXmE+99k/GBLn+zzxnkvkWc6DgyW210VgIYQgiGLyoqLVc5gHGfsnB+ydLEnjulRbVYIog7ws0GSF61nYlqSUBcrUyaqUIq2b547rkSQpW1trzM0hpuFQ5gb54YzF8hSpr3L1ygVuvbHHvbsPuHltjz/9p/8o/ZUehtRQlYbjtImTgqws6PQHjIfH3L27j6oKPvT8c1RFysnxHQyj4PLl8wwGq4zGY45HJxRlBraiKmrlmiCMaXcM1tZ7SFW7BHteE9OsRWcXownTyQzTNMmyBM91GI2nHB6N6LUHVKVCaiZClNiuheO4dSYhBWEQcHBwzLntbexul6eeeIw4CtF0Sb+3hpQWy2XAcumDJkAKuoMOjm0wnw8Z9Fs02z38ZYgkI07mLPwpDUfDtVx8vyBLY4K5T7g4PHOUVkhDw3Rs4qz2BGu32zRcj9PhHienEY7dwHFWoCwoCofx2KfR6LCxuYOgQihVe25pEt3QiKIITdPo9FYxDA2pgRAVRVGrgsRxxHQ6w7EcdN1kPJ6AEjV9RhdousFg5Yw4rRnkRQlK0mp28Bo2hiaZzUcURY4mdJbLEF3TsSwHxzLQdUlVQsNxGI1H3Lt7B9MwWcxneHmObhiMTofcv3P3rI0sMNod7K6JZRp0223k2z1Z39nc/+6/+v/7EfgLml6PPMtYRjFlUZFlIxyngZRGLfEfxYShT7PdZj6fUVS1w6rbaJEVCVK30a0Gd+4dU6mM0WxIQUWhFKYOniuwrAhNWCyjmEbDQzc1KEuGJ6fYtk6v1z6zVFCsb67QTGIsxyBOUwzH4vB0zPC1A6SusbOzSplm5KXEsFyk2eLgeMHKap8gLVEqw7IsPNtBE4q+59H0DMJlglbpXLj6FMoY4LVWkKZNkqaI3CfKYxZhwnxREMTHrK7oLAKf0ckeey/d58WXxyQJKGXUOnvvdEgF2ln/qahqALqCRyFGQCVqlJbnWnzs4xfQtJTQn3NycljL3ChBoEXcX9ylffUNLvWvsuFs1jB0SkyqunsmasN6lKpN6Kp6DrGFYM1u8CN/4r/H7Wh86fNfZMU18LKK7/mOT9DptFEStKbB1rOXMZom5TTn3/2Hf8d//txn6bTbPP+h5/nIRz/Ch59/ngsXzuN4LkqXHJ6e8tIrrzIaj6CqCP0lt26GKAUP7t3n+mtv8D2f+Djvec97qCowrVptwfJMnE4Dq+0RlTmUWV2GoSTNM2zHYXN9lde/eZPjoyYPujMsw2cxC9nY3KJII473rzHoSWYzjcP9IxZ+RRALgsOIUjtGoNi7n3DhkonjOkzGx4gqZ3VNpyw9ln7IcFSCrD2SpKwwdInnemgiwrQMkiQmLRTSFCi9QooSx6hdgoMgQdkmeZ6yWI5pNXPWVs5RlBWzWYAiq7e3ba5cWWcymvHgwW0GK8+xtrbGeJ6wmIcUpWA2m5PlBY1Gs/ZdiiNu3brB1sYaaVoj85aLiNHpTY5PRqR5UctQuTaW1abdNbAsAVpGmBQUeUGelhTZnNSxMAyDZRizvrqG67rMDg6pVIxjO+RFSaPdRpM6vr8kjUMM3cQ2LfylD1VFu+kxdw2qMsEyBUGwoMhz1jvrLOdLDMNjc32TOLrH/sEe+4f7XLxyHtMRFMmCjfUOSTIn8UdAQVlmeJbAc11m0yVNSwPLpKgMhJS4ngdCMFvOKURMkUXEcU6aLnnqyau026v4wRxdL5nPliznd1guJCsr2yhXcvfWq3hulyjOqRQsFl26vR5VVZHnCqFqw1nDlGiapCw1NGnjOiat3QECiW07+IslYRAQZymVKmm2GliWg2UJqhKWyymj0RTXtdE0gXAMTNOkKkt0TaPXaaGUfESKroVBSzQNDE0SBAE4DqeHB8RpSqPVxjRtLl+4UGs+xjGtVhMNSKKQ+XR8prH47sa3deAK/ZAhtVtqlmVIzWQ6j3DSWhjIcRukhaTdWwMJWVlhei5hGDCczZn5CaoqOJneRUiF1Eo0Q1DkCs0Ex7MwdIHluCRJQa4qGm2PTrdBlSWc+rXlthKwtr6Kabns7R/itl0M2yRYLkmiDKkZuF6JkgaTmU8axfRaPWyvz2iRkCY542BId75gd3tQW5wkKbqA1PcZbGxx5fwuQW6RFwK328VZGZCkAVG0YJkec3hyk3t791jMQgxnzEr3FKlK9vdP2L+zpIhBKoGifKQs8U7C19bldZ780GO89trLTO4FZHN46GZbB7GzICMU7//gRdDneJ5FuCjZ219Q5JI4VmQ6+BkcnLvH6YUJUS8j0RM0SmKlUEKgaxqubqMh0IWGPEvoZFVLbG04a/zF/+Yv8Jd+4M+T+yGR79Pr91DSqD9rVDQ3mhgdj2oP0iwhzTOWvs/e/r/il3/lVzi3s833fM938T1/4JO0VvqczqYsF0s0USMba4+wAoGgUooojLh/5wFlQd1o3lgjLQryrCSOS5SMyGVFs9nB0HSabQ1ntU03HnD+yjmuvXqLb7ywz53rR3zHexvEWcx0cp/1wYxWV+fcdgtNGDy4s2Q+CxCmhmYJpnOfMMiQmmD/wV7t51SoWmZMN3AMg61Ll4n8u/jLmEFPp+E1aLdsqnyJ5+h0GjaLRVJDm1sumiXOJNIkRQ4HB0POba8wm49pNT2iKOD27ds0m2u4ns3h0RGmZZBXC/qrBk899V6SZMnR8QMsS6Ibgo2tVSrT5PqNG1iWxQc/8Dzj0Zxf/cIXsUwN1+3SbiW88cZ1qA5I0wQhDMbjEKTBwoR2W9If9On2HMJowtHpiJYn2FhbQXLW35Iapq2QuoNpN7l09TF0DbIk4f791wnj1zF0s+5dqoKt1T7bW9s4Zyi++WzGc+9/L1kaUxS1iaJteSRxTFVBFC9549qIyWRGGPps72yws7PBZD4ijUP2793FNDXW+l3chodpmaRpzMpglZOTEfNZSJoUNJqdusSqSfxgiWVLMgWBH5GnBaYOh/sPaHUMmp5Oo2FgaBWqLDg+OiaMpvR6H+B973uGNBHcu3fI4dEJx8e3aXf66IaNZTfJM0UrjGg2PNqtGg2otNomSYoa5SpKiWU6mB2LLM1AKqQUxFFtc5OmGVmeURQ5N2/u4TVsPMcCUTAYDDBNE5QgTXKWiwVSyppikecUWU6300GTEst2sCwThEJWFUJVSAVlVWEaBsFyies6GJpkMZ2yWM7f9dz/7R24gorVQRPTthne3yOIAopS4jQaZEWFyg16q2sUVU6Y+KRKZzyaUVQFlu0iTEXoF4wnEboJXkuj6Wi0mk2kUNiWhmWatUBmVWE5Okka4bp9Gr0W4XyBkDW8uEKx9JdESUSVgScaNWN/NsPUTR4SheI4w/czTFNR2Rql0WL/4JQknXBFX+WC3USVIXmes7a6RmK7GIbFg6MT9sYJH/pkyuZgQCYUx7MD4vCUG3df5OD0hHv7E4pcsDg+oiqPmQ9rlecgrt7CyVKPNATfyWj1GvwPP/HDfPlLq3zjP1/HiHt85atfJUnSWuYGoBIoAS+/dB+3rbiwa5IlBUGgapigUEgkZVhw+uJ9Zh8POZ3MMTwwNZgt51RSUFUVq402m50BupBnIrbUPlhCoCuBgYHQTJx2g2ZrFSXPICOqBm3Y3TZWuwnyoXr7QyV8QRRHXLt5g9F8zCt3r7OyscHVq4+hKVXD7R8dsB6C+kFvt9qsrKyyurpGo9FEaIKsSjk9PSF1FLrn0NMyNE+hDJvUrehd3aQx6bL9WIf9eEK6KDl5kLKyYZCkKUGwpNG0MKVGu5HyxGNd0AXH04yCkvX1FY4PxxiyJE9KyGNatuSJx3dpd0RtfmpJLmy00UVJo1FbWnTbHqLSabomYbDA7XWYB0uqpEAKHc9x0KVEFRVlAUEQ02xK4jJBYJJlgoODU+I0YuH7CK3g4pXLqFygSRPTKdg/vIXUXfYOjlnbusj2do/rN1NUqfEf/8N/Ioozbt28TxjEXHvjLhfOrfHf/6kfpFIRQhVMJz6vvnaPO/ePibOYJMlJi4LpfIqUGVLqOE4Ty2yiqpxWp0mW5+wdTJjNDmk1lxgGlEXCoN9ldXOdOEpYhiGaEJimRqEgyXIWfoBSBXmZc3R6RKfVrLlRnR6a1NGkwd7ePrPFnDBKmQdLyrJiq7/BdDYjz3Nct0GepWzubrO2vkZR1UUBXTMpMmg1uxzuD8mzCtt28fMURcXS95kFIcskxzEtWlttojhiPltSlQaOI/HnC2y7yWDQxTTWOTpacHj4OqaRs7t7hbUVHU22KCtJGOVEkY8AppNjkshnoumoskRVJa1Wi2azjWWYOI6LbVlUqsK2LXRNowLSNCHPC4qy4HR4TBxHxHFCFIcIUbFYzMizlOUypNdu49gurtug1e6g6wa+v6AoqzOlDpuqqjBNC6UU7Va7tlgpSoL5gqKosEwLf7lkNpugC1EfY754V/M+fJsHLilsFsscLRIYZofd1T4nozknk4RWp8/x6YxXbhyRZBGWA82mhaLAcgxcw8L2NIIoAAPQQbN03KZHkkS0PJcsjfHc2hspCmMsXRLHEWEU8PHv/Ainhyf4/hwlBHfv3Wc+T2i2m+RVimlZZFmGho5UGrZhcDpa4Lgeg8EarVaP116/z2KRkeWgaZLDYcDUT3js3DqWKNEENCyrfqBVyur5Ps5Kk0zPSVXBjQfXeP3Fr/DSl3+NKvc5HubkhWAUZFSlJJ6XiOotRGJRB5A6zLyzJtf1b95heP0YuYCnLryHDz39SU6Phrxx4/pbPiWgkizmMWkm6XgSIQocr3UGCKlYRLXtQ5YazCcB8zAijVLiLCEMl5yOR2ysrdO50iWvBIVQNY9OlCgUpSrPblqBElodk2StRa9R98WUEFitLh/+1Kf45rdeJltGZ+K4D+U36iA68xcIqbGxtoZl6CymU5I4ftt5PzTC1HSd1fU1dnZ22NrZJi8z4iImzzPmyynjeYCfxQy2NtAagqyy8SybZ598L0F2zOToBq0iZ3bTZ+BJdlc7aLbAsCuUlpAkC3SRYziC7/7OJ7i9N2M4GdNsSnqtHqJUpEHA9voqT1y9QpEHWFZOq2WwnC45v96i17KZzWcgYlxDkUdL2s4aA6+P1B2mC58bdw7prZmYlnV2Daa4lo2qKsbjOZ5nk4QZR4dTFsuS/sBCtwR5GXN4coem16ZMFZVKcGwP08rQjYzF8ohK5jz99CX8aQalpC9MDMPh1q27ZGnKcDTl+o1bPPPMOTptj2effQ8ra5tM/vV/RgsTvEaTMIyZzCIEBf2uA6sOCz9nMR1jmkss26G/ep44TMgraLoNWi0LXYPJLKDdG7C6XmccaRwynC4p2KfVajLorxBFC3x/zjIJCeKYqR/i2B6tRotKCkzPAVNHcy2SJCNIE5aBT7Pp0emtkkQBWVZxdHiK6Xo0Gm10zWM2X+L7AV6zw80bdxhNp1y5fAnLNNA0sC2b/aMltq2wHB1TtzF0iS4UolLYllFP6CpGypD1DYuqlAThPsfHMVQmzWaDbncdz+thWW3ysrZsCoIEVUmqouTg4IDZJGIxG7G2tsFodIxlWbWflsjQNYFuWFi2S5r5nOwdMJ2NOTo8JIoS2q0Whm4gNZ12t4HrugRRShClGH6EUKKGxmsCXavNYpd+gGVaJGlKWRSPQFbtbo9ur1+LQKDQDcl4PKIqalNWKd+9Ns+3deBaXd8mzWIee/JpXnjpZY6HC5ZhwWgSc+3uXdK8NmwzbYFuG1QYKFVRFBWT8RSlBF7DJCv0WhpKVZiaDrqOYxrEeUYRpyRhRhzktFoWZVHDu1dXVvA8j8VigWW5xNEMcWadkqQJaZbh6BZPPn6FbrNLUcLtew84OplzbmuboqzjiJRQlpIgyDGNmNev3yULp4gswpCKC5cu1Odhw8ruCqNkxMm9V9nYPMd0Puezn/0SN168i23VDs8LPyMTgjKpIcJv1/F7C4wOeORr8nsYIlP8s5/9F4RhyNNXn+Pf3fgV7ty8fSa2dHaMt2QqmpA0Gi2kVrIINI6PfDRDJy0qqkpDCZ17127zqtNmHvocTsbMj44ZDYf86I/8KLbtITUdhKxFdYVGWmXkWY6tSQzDpAYhVJRFhXbmZQSSKMt448YtkjxFWm/e4nWmWdW/Vwia7S7f/V0f54MfeI6qKnnjlVeJ4+jRlXrrlal9j7K6bCIUWZqx9BdkMscSNvlsyNHpIXFZcm53m2ZH4/L5x9hwBjx18QnEd30X0eYGy1s3UXFAp9PBbXUJy5jh/IAkz2l5TarcwpY5Gz2NNM4R1ZxWq4nKFZprs73u4OgRQbqg4ThYMufCdo0AnAUR+0Q0my6uazIZJogiQzc9VrsDzu1cYDSak0c5vh+ystah02yDKvA8B90oSdMC7cyLLs0jKmFSIZCGTZSkROEQy3RwnCbT6ZQ0V2imx/J0SMdfkuYlp8dLbLtLUVZ84Dveh64bvP7aNZaLOd96+VtcudqlP2ghZMgf+NSHee3aXb705ZdQ1D5UeeERLGcEfsbp8RJdV3S7HaI45sbtAxrNBkmU02w6FIVkNl/ieTprm9t0O10c2yMIAkbDEwqZsYgyhtNDbt3fY2tzlZXBKpalMRmNmE+mlOUUgY5/ZitSKkW706XTH9TSZ1mO7jTI8pzD0ymzhY+ua0RpzuraxiM0Y7vdwiRnc3cd0zJwW06tYJL6BEnKyqBJnkvSNMP3S0wdOpt9NK3A0CVVlZMkIVCXtRtuA8+z8VxwHYuiyDk9fgPDbNDvbfLU0x+g0eiRptUjCbJLl1aYz5YoJalKxXyRUxQxs/kBZZWTFylS1Gox+/t7vPL66wyHY6oCNKETRRGtVsKgP6CpWximS7tr0+/2EEKrlTniFFSF7Xl02i3iOCZLU0oFmqaTZhkLP2S29Gm2WnQ6XXq9Lo7nsLGxznB4ymQyptnpvJPp/m3j9xW4/u7f/bv89E//ND/+4z/OP/yH/xCAJEn4K3/lr/ALv/ALpGnK933f9/GP//E/Zm1t7dH39vb2+PSnP80Xv/hFGo0GP/qjP8rP/MzPoOvv7OdcvHyVMFzy9RdfYjReMJkHFBgs/ILJtMAwIcnAy8GxdeblEseS6ELS8mob61Ip8CSV0ml1mnS9JuM4IJjPqYoclWZYmoZwDYo0QwhFmkQMh0OaTQ+QzOcheVEbwlWVoqqg6bjsbm7Rb3fZXt/GD0KyOMfWm7zx8hs0Wx79hobKBOQVnm3RahqURcnpaIqjCWbjOcskpdXzcAZd+hubHI8PeXB8DedWh2sv3+DwzozpqHgzHGkCab1FcPAtpcE6wGhnr97UWP89DQXfevk2SDjc/wJZVpKr/L++B13geAZxLClimJyGKAG6Y7Fy7jJlIvjNn/83fPMX/zXb3/Esszzn9M49rjz7LFWao5VgnEHWzzTgyUvF63v3SMoMz3Joe22auocqCtYGXTQpyXLFvftH/OIv/q/8y3/x/yKZL9+myfiQc4yQmLqFyhSO4ZGVKfPFnKr8nft/SkB1xi+7efMm0+mEKA6xPZfSUsTjkL5ssaK1WZUt3rvzJI+tXsZQFU9sPsnjg22SZ24THLzByZ1rHNy+RxQvsQ2H1dYOhm3QajTRNYvpbIJBTrzUQRoIoRjPZpzbXqfbMGh5OobmkqURba9Fu9lCI0PXDO5cD/D6bc5v79JrdAmWEabucvfOfUzb5eK5XcI04u7eHnmUYjsG3e4qeRGzvzel0/UIoyWlUjguGKZFXlScnvh4rkVZFGRxzOnpEtsyEGicDg9Is4KrT0Cn28J1U16/9lWy3ORrL7yEbbbxgyVFkaOUzmQ64sJFj+F4n7W18zzz1GPcvn2XOE1JNB3Pa2C0DeLYJ0tlXV4PJ2RZztKvrYI810YIsKyCNF3geoK8FCwWOYZhkuc5fhBRlArdsUlVXoskTwJ020MFOUfHQ1QFWVqhCZ1Gs81gZZs4Szg4Oub24RghJXGckiWCTlPDsTV0UyNJC45OZ4wXCV5jBkLgLBbYjsZsOWdzc43j8QlpFOG6JpYj2ewMyDONxSJiNJ6xWMS02wmazDk9WSK0im7PpjfocDKMWJQLojgkWM4wNKNuYQBFtmB0OmW/JdhYO49hNSiLgkoJbMvkySfXKQtFmhXEsceD/T0W/gRNhzwLsCwLTde58vgGm+f6RFFBliiksLBMDyk0EJJ2q0mn20HTBKqsOXgIkyAIKYucbq+HbVsYpo1hGliWjWUaNXk5S5lMxkymU06GJxweHbCyOiBNEoqqoNPtEgT+733++a3Ty7v94gsvvMA/+Sf/hGeeeeZt23/iJ36CX/mVX+EXf/EXabfb/KW/9Jf4wR/8Qb785S8DUJYlP/ADP8D6+jq/+Zu/yfHxMT/yIz+CYRj8nb/zd97Rb/j6i9/Aa9j4YcxwssRyXFYH67jLGMuOGU8XbG60KbIQqRQ60Gm6GKJg0GrQ6TRrFQW5yf29AyqlaBgWS6lRVSWaYeI5HiuDVRy3wRs3XkfTNUI/4Jvf/CbL+ZI8UyyjCFRJo+HRbXcIDo+JgpjlbMn0YMzp3imbm5toCh67cA4LKMqU6RTWe6uU2Ny4tYc/Dei1WzRbfdYGXSr1gNOxz8lsyZ/86CfJYkUQHRHMfV7+xgu89rXbLKdLaiCBQgiBymuDOqCOUbL2jHyzXvgwYL0zp61KnEnZqoogiRCafDPT4u0ZSiXqMoCmGdy6PmI5T86cQAxsr4vjtbh/8yYq8olFySzy6Wxu8Mz73ssTTz+FLgUqy9AdhVa9WVIo84Jf/nf/nv/1l36JOEp56on38xf//KfZWl8BUVtM+MuI3/gvX+O/fPaLzE/HDyU4Hp2vgDMKhGA2nPG1r32D/Kx/uXf/AW9mpA9Z1PWfVrvDhUuX6fdXePDgPt/61rcIA5+m16LZbRIlcwY7q6woG8ev6MkmtrQpypiG3sY2+sjzXZbNBi3HwchiDu/fQ/PaGM1Vkry+mlJKtlc2yPIOnUYT3XJZBgmz0wWeYSGV4trrr7Ozu4PrNYmjgsgosI0GnfYqm+sHRGHC0eGIzY1dqmxZK6trDmGSMuiuUIiS7bVVKpUjZQlVwXIZ1CTgZVyLlxgmumWw9Gvx1zjJCPwYxzEZ9HqcnkxwPIvVQR9kQOin+IsxraZgZcXiOfcSd+4tyPI588WEQtXq/rphMpmMOT6qJ8kH9w956slnuXz5Wb7xzW8iRA20StMYxzbJ85ij4wP8aEmSZggRUxaQRCmHhzOOjqd0uzprRpPRKKDI52i6SVGUKAqkWZGWgunExzLh4HRGphSuqxMXkMQpUajQRMnUn3A8ijBsi+E8I80y2h2P7uoGaRISh0tsaZKqijwraPc6TKYR9w4OcFyDTs+lqFJ2dvrM/AVpHBMHPrrZxmt5BPECw2rT6TVotpuUeUqz4XByfExZ6OhafkbglziOQVGUlGWFKkv8KCEOA9bXPAxdJ4ymvPjCMa3GKnFSkpU5IBFS59ln3s+5c5dZLAN++Vc+w6uv36LTs1lZ79FoODXCNElZW9tlZXWXj3z041DaFLlOUUjK4kxdtCpJsxQhNYQm0Cno9F28Zps0iXEcG8syKQqT5WLBchnWyvmGhpQCy7FptlusOqsYho4QdX/ZcR081yMIo3c0B711vKvAFQQBP/zDP8w//af/lL/1t/7Wo+2LxYJ/9s/+GT//8z/PJz7xCQD++T//5zzxxBN89atf5fnnn+ezn/0sb7zxBp///OdZW1vjve99L3/zb/5Nfuqnfoq/9tf+Wl2K+T2Ok+GQVdGmosBt6ERJhabXoApNFjQcjaZrIF0XqSJ67SYXtjYJl1P6rRYatX1Eu93CurDN3v4xs9NTbCnRLYc4jCniFArY3ljn+rVXubCzTZrG3L5+g8sXHkOXDi+/dpM8r8jMWpvs3M4Wy/mCJIxZDGckyxhVFPh+hK4fc/7cLoYu2FwZYJgtJtOUxXQIowBR5EglaHgtHn/yKa7fvMUzz32AZ575Tv7tv/8PLIsUDJtiMiMajbA0hRCqtotSCqEJpKFTljlW08awNcJRhMpUDWF91+MtvC0Jqqp1398sPoqz8FAfQ0ciyjNIO3XeZ7lNLj/2BInKsUxBEtRBVC8K3vPM43z/93+KzZ1z9LsrNGwLygqh15YhFYqjvT2+9vlf5943XgVlsTxI+MSHPoXI4aVvvsrm7i4Xz19ka/s87U6fs4ty9vsfSlTVbmEVkjzL+M0vf4lvvfISUof5ePg7pFqAELS6HS5fvojrOVSVwtB14ihieHCC41gYtiSPQmScs90eMDk/Yq27hqZVWIaDLlxKTafRv4qIY5q9GzQnx8R5hKNDkda6dVUJWVWy8EPiKMFuGIiyvv+qCnTNottbQWg2UlpMRkNuvP4inVafja1N3v/c8+zt7bHwfYKwpKgMNL3OoqI8YXz9FmHiY0gdr2FiScF0Oq/NG60GC39Jo+mRlyW6Lh7ZZFRVide3KfIcwzRZW29jmZIgXFIUCZ5noyiZz4b0+h12tjbI8pLpdIqQgsFql8hPcWxJVcErr9ym6XTYWHkOXTo0XJNPfPcnqVDEcYSha4zHY27fvgWMiaIliyAlS3JMw6aqNLyGh+3oVFWEH8TkWcFkHNbiGpWi3TVxWzqQMZsnuI7EsnQmswA/Uuh63Ydx3JIkLjg5DsmLjEtXL1JUAUGSkM0CFmGKqQukEmSlwFQSqZsYuoWQGUIT5KUkSaGsFOPxnG63yWIZoCFwPQ/f90nyjEQI0lRycjxja6MLKmVra5WVlRQ/mJMXKUEQcWF3l6UfMhqOsCwTx9a4dHGLZsMiCBZYiwjR8UiTFE2TLIPwTC1N46WXvsCd2y+jhIaQC7a2PAxbEUbH6GaTdqfFYlFwcHCd4+MDNGHwHc99HMN0sC0H34/Js6Q2ytXrxWpZKoqyRGo6hmXViEkUuqFjmhYC7QwpKijLeh6M05hSVTzYf0CeF7Tb7RoBnqREUYLvB+96NnpXgevHfuzH+IEf+AE+9alPvS1wvfjii+R5zqc+9alH2x5//HF2d3f5yle+wvPPP89XvvIVnn766beVDr/v+76PT3/607z++uu8733v+23HS9OUNH0T879cLgFYX2/QaDsswwVeU0OzChbLQzZWN5GVQHUsqmLJ1voqptlG1zWalonRbGMZLg/uP6CqEhrNMe12g4YpMUwDoWoH1s75Tm3ncLiPIQv6jRbZMuIjH3qOo4MjTN2mazfJzkd1EzcKqbIcx3Oxm00kOg3pUpQlQeAjVIlj2Rzs3SUIAnrdAatrJp2mxkefe4KvfP0VLuxuMOi3OL63R7vTYbW9woc++AlanXNYskl2dEqvv8K5xoBs9zz7+phgGZPrEqvlIQ2jTsETKGSOktVbiMJnQ7wlP3rLvC7UW+ft35J5/I4q8tWjUCDO3K/k2Y4+8r4NbEcgpaQQ1H2h2Ofu66+QlQmardFa79C0XK687zJXLm/y5Lku7336CRrWgJZw0aq6F6UomIc+v/CLv8hLX3vpLHkqsTTBiy9+g8/+yme5/toNNnd3sVoe03SC1wGzYZH70dlvfLNUWJ99CZTEQUocTH/ryf+2k51NxxwePWBzcwvL1umt9CnyjGi2YHh6QkHBg33Y3z9hfX2ntgDZWdDvtDGFhUBHYCO0Ls7gCr0rzzNexEzu3WG2d5/BYIdK6XTbfSbLJY22g2Y0cTyHvCpRaHT7XZbBnLLI0T2XIEnYO5nQ7Q44nftYYYwa+YSpxDDbzBYxwSLEMh2CsMRxWzh2A00YxEmIZTWBksVsQpwWmIYDqYGfZCAKLFun02iRpQlFElGZAikURZbULsuiVlDpd9s4lo1lm7VJ4WyBKKDXMPj4dz7J8WjGYpmgaS2iMOH2rRENx+L5D2wglCSNA6I4rRF/Rwd0ui3WVjeo8oy1tW3yyuL8VY37+w/40m/8BpIlUikcW8OxdNqdFXSjRDckUVIR+BXNlgRRkKcZeVqrfgRBRZxUxGlIf2Cil/Xiy9Bs4jhG0xRxWvOjNM1kZXUD3dI5ODjB1BUUiqbnoWkuuqwwDB1DLmi5Fud2r3L/wRGTeUC36TIfBjScLlkSMZ9EtFsdFqMJhydjpK6RFAWT2ZzNtQGWadKwDZquTpanTGYzwvmSlX4fUeRkSYjjmMynCxrWJlVmYmiCLMvJswgpNVyjpN1uo1RJoXKqYoISkp11we5mj0a7zXAyZLGY4pkuTt9jP1kQxTE3b3yNq5eusDp4nLKo6DQa+EHO/sFtNKPCtlws2yMtC8pCYlo2CojTFC0vUFVJHEUYRk0u1oWBK126RhfD0Dh37hxFXosOR1HMYrFgODwlSf4P5HH9wi/8Ai+99BIvvPDCb3vv5OSklh/6LU23tbU1Tk5OHn3mrUHr4fsP3/udxs/8zM/w1//6X/9t2zVdMBoOKcoCy7bQNUkYJjxx5Rzy0i7+Ys5sPOWDH3w/ZZnz4N4D4jDk6PiIOOgQ+jGaVrB6fpeqyvAsi63NdYo8x7Idmq0uvc6AbrfLbDZFo6JhW4xPRphSp0wyiqKi47mYlkWaJriWxXIyhaLENj3On7/C/sEBAo2qTHFsg4br0vAaxFHG3v17rKysYpo2H3zfZRzXxXYtJienzMZzPvjR72Fr+zGoHB6//F60pMQwbXa31zi/eYUbt2+hjIK05bB98UnGE5/rb7xBMFvUeIm0hhU+1BR8iNWoA8xb8ij1Zjz73Ttf8i0gDPVon0oVaKLO+jSg1zJr65Aa6nfGq8nx51M0S8cwHAadPj/79/4eH/jo+8lFwlZngJQOSlmPDgUVeZ5TqoK13RWaG138JEFlsFhM+I//6ZdQhcBzesRBSFxU+GWC0kt00yQj5O2glLeanrxl/K4nrZhORvzSv/pFnnvuO1hdW+Pq1au0Gk2ixZK5f9YbqwSzyZRbt+/w9PueYbFY0vGaSFOCEOiYKBooawVv9TKN3gOyV+7x4OYdZu2AJ9/7fiolyIra163RdilRmLpEizKu3d5nb/8etmNwPJzi2CZK00jLnGavg9J0bt66jyYNDMMkjmJ0qZOXBc8++4G6P5UHFGXCfDkmrzKCKCBNQEobTThsrK5RlBlSVliOiWEZ3LlzG6ELNGFiGhZhGLKzvUuRF5weH2E0HPJC4I8XaNLAtgwsw6bTG+B1+miGQb+Xk6Y5UWSy0muSRznz2Rh/OUZ0NILlgi/++hfY3tlkc+M9fPlLnwfhYLl9VKWTZwopTAzdJgwWUCpUWWDoIGTJ6noLw9RZXbMY9DVM0yBJlggtq21ShMnGuoNl6yz9U6oiqHtVcYRu6zRclzyLEULj5GjM6WhBrhSbO+uYmoelGwTxkv29MZNTyeZ6n27HQtddNjYGJElK4CdksaTV7DIdj5CuxaDXJssCPLuPpZdIVSCwaDUkDddGSpM4SMHSMAyTKK/1Tx3TIYtSiiQj9GNcy6XhdplMQtIkJ89zhKgwDRPHdtCkThRGVJR0Oh6aXutxRnHOyXDJcDhFN0uankXoT+j1B6yvNVAYHB6eMp7eZ2f7ImUuyLKIl7/1m/ybf/uvuPrYeZ55+mmuXn2qdnzPBEVZz48KgzTJQAna7R5BEJBlBWWZ1+4MUmEaBkIINM2k0WjR6fRZXV2j1+vh+8vfdab53cY7Clz7+/v8+I//OJ/73OewbftdH/Sdjp/+6Z/mJ3/yJx+9Xi6X7OzsIM7UwzsNlwqFkgLdMTi8d5un3/MUri5YabexDY3RYkqexjiWhWfZRL7PoNvAdW10JdAMm16zRb/bR0rB6emQvft7OI0WntOi3epy/95dWo0ep6cTqrxAEzpxHBPFCcfjOWgm53e2ycKAhu3S8NqUFVw+fxHdEDy4fxvvDC1ntCyqNmfOtBJVlFimSXLWLzu3s0tcKLbOPY5htKEyWV85R7wbs7K2hpIGy9kcu2ETypjUbdBZOwdiH0OYqEwhCh75N9ZZUZ0NCWr5GPUIqVDP2pV628v/6qiRhG8KFD6UaSofVhIVNVFWqwOmUPU2BWiWQbfVwvdD/vif/1N86nu+D7dp1dlaBSiNAqjUWa+uqEiznMVyzqXHL/L4R54mymF2v0YlBf4puucSsSBILWRusb29wf7+6ySLmDfBKA/P9c1+1zsZVVFw9/ZtZtMZH/jAB3jmmVr7zXHdMzeWOohXZc7+/gPu33/AY49dZbU3oOO1z3prEoENuDjNddzmJk1jDS8ZcbR/RFXYDN5zmUpq5GXGwWhMJQWdfo/1ncf4/H95HcO0COchx8MprabL6mqPm3fv89iVi6xtrLO5cYG7dw4YD6d4roeu6TQaTRynRRQF2FqLqjKZjifkaY6hOexuXUQzbDTNYX1jg4ODPZAlpm0QBj6G1cZpmNhOk2ajzXyxz/FhiG3blGWDe/fGbG6uMhjs4rk2aRoT+D6T+RGFOq7Lj60Gmg6mXtHpdUijjPHphPlsjyiqVRuU8rl541vMpgdEcY7vl7Q6W6xuXEBoJrtbW1Qf+hD37tzm9PiYLAmZTWOQUDInyTLKSmAZHlmaYFhgWrXCiyoiLGNBw5OsrjQwdJNOt9Zh7LZXmE9jhBhR5DrXbtynSAvipOLmq8cICaurTfJUERcZ7d0BQVRx//4tWu0mlm3S6/dojaYUVczx0RRTlzzYO6XXbtHvtzk+8ZnNEoKwYLDao9FsUOYp+w8meJbEMhS9XgupCRy7yXIREfgRQipajRVsq01VOmRZQp5pVGWNpjVMHVXqCGHgOl3yPCP0C3SztkDRhE2/a+Iv91lEIc22i27o5EWMrkMYRVy4sElVBgzHd0jikuUy4M79b2A7GTdvvYqmZ6ysdTl37ipllSJ1gzie167ylSJLCqIwxrYcyrJCSp04DkFUSFGbcGoazGYzyrLCtk263Q62bb3j5/DheEeB68UXX2Q4HPL+97//0bayLPmN3/gN/tE/+kd85jOfIcsy5vP527Ku09NT1tfXAVhfX+frX//62/Z7enr66L3faViWhWX99pO0TRfb0AGFqmoZIrvfR0NwvHePczu7ZCLj1vVrtSRRlpHmOf1uG1VW9Pt9NAlJHCIqSZQXnOQn9Podlosly2VEVWokaU6j2WRtZRvHtrGNBrZpEIUhnpOQZymu4xFlCUYF5y9exjYsup0+s1mA7we4tsXlC5eJghDDtEmTlOV8WTPNqbBMG9OysMwaEaUo6HXXEWaD7soOo4MxZaZx4dKzrO9sM5lOsY0mVstkfbrP3thn/+4DjvdO8YdLlF9RSYHS62ikqJFCShVAWU/dQtR/paijzkMLLfXQGet3Gg/tUMSjIKcriSNt4qqgoERRkuUS27AwpF4Hr7MAIgHDNPjjf+qP84N/4oewXRNN1RmJkBUPO2eFUty5e8Js6rO60UY3bCI/5v3PvY8nHnuOr/3qSxilxo1rX0c0LJIgZn//GrKsmB+5VKWGUTgoaVKqlFK9O1DKW8+7LDLGw1M+95n/zM3rN7h48SKlqtB07U2rlUoxHY25c+8ed+4+4PzOOco+aEpRX1WJpjfRzR7d9cvsXh6ihgoV3yOZw4sv3eBwcUqWlyjDxm40aTRH7CxjklIiNRtQxGFc+4s5FqYjOBmdkCQv8MmP/2G++xOfZDYJOD0e1uT5IkczDUSukcYJ6+vrVHmBEiVbu9tM5j5us49mekRRgqbPQZYURYXUNAYrNaQ7jOrepmWtYBg9giBmsQSvsU6lbOIETk6OiJOAzc0NyiSiqBRFDsv5AtMETRaM4im2btP0IAqP8dwN1tZMVlafwPd9pNAoS53jkyVRXCKqFK/RQGmCrfV1LF2j1fCYjicslz5hGJPkBb2VAUIYSDRGY598liKN+n7qdzwsvSIKQrS+i8or8rggTwJEZaLpDQzDYLHweeKxcwxHM2aziDgqiOOc0cECyxa02h7TScxkckpZCIzhhIWfsr4Z0em1Wd/og8oQQqPMZ8wWCaPRMf1uH6VshLCxbI/QL7l+bY9u26bTrNjZGoAyUGWFaRkoqaCMSVNF02uwmFfs7d1BAg3PwnUsyryizDRW2l3m8wVZnqEbFppus5wHNJo6pqXT63pkWcHCn5MkKUenS7r9gs2tXQytIggK7ty5xf37B5imQ1FUnL/QZ2f3eW7fuo1llyz9I4Koie200DWDQb+LUjpZpvCXMWGYMRpOz4BhVQ3O0gWGUZGmERDSbLZwXYuqKiiKgqoq3+Wz+A4D1yc/+UleffXVt237s3/2z/L444/zUz/1U+zs7GAYBr/6q7/KD/3QDwFw48YN9vb2+PCHPwzAhz/8Yf723/7bDIdDVldXAfjc5z5Hq9XiySeffEc/3l8ucUzJoNeh2+nQarhsrK1z59ZtkihiMR1SlXXTXdN0dMPAdRws20adlRpQkl67Q5YmtSFhqYjDCNd2MXQH0/QQKiPyE/xgwsbGOo5toQwd03SRSGzDpNlooZkGs/kUWQmyOCUQSxpuA1EqkiTBlCaZlpPGCf7SJ41jDE2j0+li2bXTstQ0At9HSEGal2h2A93ySLNTlsuQ81ev4np9wriiTCs05VMoSbzI2L97xOnhKXmU1kIRhkJ6OhQlVGfmkQ+BHA8rZ7L2y3rU/Dmb1x/mJm/SwOovyLPgU9OB3yy/6ZpCqtptWkFNMiwMOCsdltS2IWlWMpuO6DdtLJWhC856JRVQImWFUoL5fM4v/vtf4rX7d3n2o8/w4fc9TWUKPvj8h9jZfowPPPVBotMlv/qFAcPFnCyvOLx5h/neIW5l0mr3WEQRQb4kR6GK9JHh5DtWGH4IMJS14n2RZ5yeHoMCx7JZXRkQBnPiMCLNCmzLQqgaRh1HCVVZAwEesuY0NISwaPY3WDl/iZPre/RXMvZnC4IsIogrxos5ZqNBvvCxXYO94316gw7dbossi8jKGCUEi8Any3NsxyLJY16//jpXLuus9LfRDYc0icmzmDgK0AyBSkv2Dvco4xTd0GpQQyXwWh2a7RWiOMNrdTAtjSxPanNMURElAZbtINGRaOi6wcnRMcvlHCFrdOK3vvUiS39eOxJXFVJKyqoiikKqMkbKEs+pzR6lyNFNA98f0u069AerLJc+nZaObTkUpc7u1g5RYnE6iqlUxmIWEiUZaRRybmeb9z3zLEVZcni0x+nkGNNxOH/+Mt3ugL29O1y7/hp+EBFHCb6fY0pBy3Ow7TZCKMpCcfPObTa3Kh5/YoOiPCLNljSais1Ni7UVE1NrM5uVzOcB/ZU17j64X5f6Ola9wCpzFDqzqY9hCHqdNqZhEEcZB0cLVFmRpRVlFdLrdZCGxt7+MXmmiMIKzy4ZnN8kz1NOjicIWYBUuLZNq9Vm6af4y4zZ3Of0dE67abKwJIIKjQpDM1hMlqRphmZYmJbD6uo6KIc4FqRZzmw+JM0zml4HqiXntposgoRvvXhAmlQIXeF6HrpusliEDFbXsS0br+HR7bWI44DXXv8GN2+9gW032dy4wPMf+m6Uqu+Ddsui2fBYW1shjhLGkwlVWWI7FqZpUFW1srymaZRlQXzmDfZ/WOBqNps89dRTb9vmeR79fv/R9j/35/4cP/mTP0mv16PVavGX//Jf5sMf/jDPP/88AN/7vd/Lk08+yZ/5M3+Gn/3Zn+Xk5IS/+lf/Kj/2Yz/2O2ZVv9tYzhekukKWOZuDPqIoefmFFyiyHEPTObe1jWPZ7G5toBSUZUVeFKRpilASIUQNDY0TdE1iGwZ5nlFkBUVW4AcxUTTHdZtUlWA+XTI6nWJZJu9//7O0Wm10r4WqUnRd1lIo0zmLyZz1tXXyrGAxO6KqBGVZkaYpo9EITZcYhsFgMDhz4a2lhsIgQNMkjYZXp9WWg6aZlBWEaYI0dRQaRSmxnQZFXjA9ucWDByfcvXbM4f4xo9Eclb8ZfaSroRJFVda1QafRZOfqLu/70HNs7V7Cj0LuXr/Or/7Sv33bXP4ocL3lekvetIis21YKoeqbSNMLGoZgHtXf8JodDL12GBZnnTQlQK8Z1/yXL/w6P/wnfhgpHtYbH3LPSqoy5e7+yyz0fe7qr/LGtW+RrH2SD116BpKcb7z8Rf7f/4//mTvfuEESVhSFYH37HINOD6YRIs0Yzk5IqpxMZVTU0ju/76FqVXyAJI7Y27vHen+djY0VZK+Jv5gzmS5Y7fRwLYem28CxG0ghH+2iPssK2/TI3Tai1WLr6asEYUJwOuZgNEFf89CsiKRISLKCUlAbMRYxiIid3S3ysk2Vpxwcn7K7uXpmyaMxD2YswgVBmDM8mRDHIaYBulZSlilClQSRj6nZVEownE0RhsPh6QnOMqHbHaAbBrZjYdk1tFmhMO1atiyJUpAVlqXT6Xq0uxaOozMaHXHuwhanp4Ljk5jDkxG9rkvDs1BlxLmdDTRZYmiC7c1NFvM5y+WShmcyn5+QZyGGZSOQLOZLTLNBw26wtbaKRKPZXcW0G1RSJ8tLNFk/A/PFkqeffQ9pkRJnOaurG5Rlxepan5OTQxzbw18sWc6n+FKQJYJBv8S2TcqqRIkWt++NODr9TQxDouk53b6FJkqqHFa6A558fB1/oVjfOs+HkpRCKbxWG89tMplMSNIl/vIQVdXVJlGBY8PujsdkMiKSKWGsaFa171helCRJiWubjEcZ2UXJbLbEMgXtToNKpYwmPoOBhdQslDKJkwohdbxWD9uUmDrIqqTdbGFZBmWpiJOcN64dcuPmCZqhSHPFuQsDul0HKPEXM0zDpJKC1cEunl1x5+59wqBgOhnRbNkMRyGTcYrnNbAdHa9poGkljmtTVTHLZUwcRjQbTTynTbvTp9XqkReKPBcgJGtrvUd3+0NqTlUp0jTFNA36/T5ZllHk2bt+FP93V874B//gHyCl5Id+6IfeRkB+ODRN45d/+Zf59Kc/zYc//GE8z+NHf/RH+Rt/42+842MNej1UEZNFKbfeuM7qSp/N1VVsyyJLUxazKarRqjMApaiqiiiKCcII0zDQdZ2qqAVtK02j0jSkEIRBTFaUZElGVZ6JyFaK0E8YDpe02i1GozlVJVlf69HwWoT+ElVUrK+sc/PGDVRRlzjjOEIpiaFbZGmOrpkYRg0xtm2LoihwXZeyLBFAo9FA03VmsxlH8xHO9nUuPvkxKinw2k2UBCUUpmXiNpscnoy5d++YuzePSNOcqhBoSqcSoNuSK09cZToMOb15AAl8/A/8QX727/9dCgowLe7u3edvfvkrb15U8ZDrdIbWOMsyqN6c+hV1JqZpkq2NdabHx3zoAxfZWG/zv/zrr5MoePH6CRt9D6EU1lkEzIGqhJ1zl/mj/+2fZHf3ytn+6nRPYAAFSR5w+/glDqqXCTZuMzHnfPH+kOHpi3h5D5M2ylhQsCAMY1AmD27PeUCOhcBAkXN2vEcn9tYQ/LtlW+K/+hmlzrhySlEUOQJJHARoakCr2cKWEkd36A1WGLS7rK2s0mm1kLJOceXZfoUAIXQcp4Pd7dM+t0p5SydzK6RlUhSKzfUVgtJnGSxoehZCQpEF+H7OzRtzTMug3Wzixg7T6ZK1tQHdQZ87t/bICh3X6jGfLimKjCRZsLHRxbU1losZtmUTZiVJVqAkDMczykqj015hZ/scZZnjNRym0xEAeVGQFxlVVTIejzA0wfr6ClLWztbNlotl6wwGHts7T/PSNwt8f0ar5WAZGg23iy4LdKmhS51bN+/gWja2WRNWEQVxGHD3zl0c28G2bQwjJPZTJuacONMpyoTV9W3cRpPzu5sURUleShotCz+MidIELUpZLpfEUcRofEJZprimRmu9z1q/XvXPJgG3701RlEitXoZVSiOMApotg07LoNVqYWiK44MRQmj0un0GvRazZcKlS4/RHQxQmo4UOpcug6pyNC2lyBPCICD0I4oc0iwmjBYEQUKaxiyWQ2zPIQxCigzypCJYzJjNFyhVITSd49MpnY6Hblqkee1gbBgm7e4qjpdx4eIFGq5Fnga4poEmJLZt4XguQRixurHL6XDC6XDEdL7gYH/IfGHSaXs4jkOW6VQSiryi2XS5dGkbt+lwOjxhNA5puHByHHJ84NPp2nQHDoWKaDdNBoMeRa4IkoBf/8JnaLV6rG9s8fgTT9EfrOM4LmUJcRIDAl03MYwz48ksw7atep4TAiFk3RZ+l+P3Hbh+7dd+7W2vbdvm537u5/i5n/u5/+p3zp07x3/8j//x93torly+iGtJTAFFkkJVQaVwLAdDM4ijCUEYoRsGYRiilGK59Gvkm5SUZUlRFGhSp9loIqiVP6pCoEmddqtNXigqpdA1yWDQQ9MNGk2P6WzOZDojyxO2N1cJliGeaZBnOY7XIE4zlBA4Tp01aZqFbhboZj0JSSkRmoZr1TddEkfopkYYh8RpRqPVZGCYfOyjH8e2XNrdHpVbi4GmaUxV5mR5TlGUZEnJYragQlJRPQJPSKnhthwG/U3KIKMhbP7I938/vXaXa9dfZ2WwRtdw2b9+E6EeKryDUvX3NU1HiIqyKN8EYuga0pB0e13+x//pf+ID73sv6TJgpeOgy5C084/46hsvcGf/LuM9i/Nuwa7d4rWjJZHQePq9H+Rv/V/+Ot/9sY9gNZ0zZOOZiqCoeSi62cRudTkaDdmfH9G8YnHtm/c4GJ1gRC7tVhuvYfL0By/y0hevEQUpD/PDDHFWxnxLOVS9NX/833pafvf3H2ZctfGKRNd1XNtlddBH9PoEfoTTG9BpNWk3Glim9iiZRFGL+IqzgqHZoLO2zSI4wLvUZxBscGIKhrMZhTBwHI9+r83Geo/9/ftEYYEUijiOWS5C0iilyiscSxIEMYoZy+WSJLpDHN3GMj2gJE18NDOl122QVylpkGJbTdIy4ejgkChJMQwXXQquX5uekceh2fQYTya02p0zUnBEkacUFMQh9Pot2u0mB4f36fU7hIFPGEV0mhZpCmmyQBMm6ysDsiSnzCBNMrY2d0nCiCgOaLa82nkhL+l1+gC4jkOz0cIwHDrtDks/J0pmHB/4eK0OllngNpoIpREHEUJoCJGTxHMGKxuYesVolKKRYAjJ2uoazzz9Uc6df4w8F+ztH7BYzmqKjQB/ucAPxigVYOgFaWojTZNBt0urtUuruUGzucLOBQ/DdigRVLmioF6ISmFSlhUCSafVotuq/dCkplAiJ8sK8jwmzwPm8zHj8YS9Bwfs39ujKjNMy0LTHRzbIMsilNDQDUFR6uiGDcIiy3OSFCazEE2z0HBAM0nSjKRIwXRQmsF4NqoBZXFOXikct9ZnnC1Sln5BkVVEaUIlDtjdXcVrWTgouv0GrXaXlX5BtxNwejojjEIO9hZ4TYUhSg6iI7JMR5QVCB1V1BJ3k+mI7Z3zdDobbGycoygFStWeYbpmYVkOQgiKomA2myGRWJZ1xvx8d+PbWquwSGIqaTALAiy9NidzLZuyrCgrhes1z9LyDIXk5OQE13VotWshybpnQQ0XFwJDNzBNCyt3KFSFbmpkWc50tkAI6PValFXJZDIlTl2CMGE8nXB4OmBzMGCaZUghaLa65GWB0DSqM1hCXhYgNQzLpqoKDMPAsgzSNOHO3TsYpo5m6BRFrTlWliVXHnua9dUtNCFptVrkSc1qL/IcfzHHD31EpdFt9Ol1e0RpRlaV5EkCKPIsZ3w64uq5dT7w3AexhMHW5iZ3rt/idO+EB2/c4WR4SrqIHjp5nPW6FJXiDNZaXyPdNNna2eYP/uE/yJPPPkWaZfzoD/8Iba+JjqzBHGXEP3j2Ce4NX+XWi1+i2hsxvznixq05t06+zvf+d/8tf+rP/gUuXrqM6ZgIeWZIKc4Cy1mWV1QWlrbKpY1neenGLZI4J7pZMr+ZQj4HcYTUBFIIqrhe9VdK1YoYaGc4iQrEQ0X4h8Ho3S/xHmZaDy/Swz1phkF3MGBlbR2NilKdomk6qBJDO8O7KHUm7yvqniKKClHLOTlN5gj0zRV6ccKm4WLOQ4ajI9pugzKPiIKSrbVdTk+PiZMYDQ23ZaBLgW1rqCpnOl5yeDjCtk38xYQ0ExzuD7EsgWmZnNf7ZFlCHAVIUZeqLRvW1jscHJxiagWeDd12C01Kkiyh0bDJU5s4WqLrOmm4pFK17Jlr9mjYGq6p0FXK/t2bSCFwXJcyq9jo9yiqFKUKkihElYpOZ4X1tW1e+darCCWYzmakWUxR5nTafUDQ8DxWBjWy1zIdpCiYTQ+Jk5xlGNJot2m4ir29mGvX7yINF8NuMAsC7t0/4urVJ9F1nSicsr3RosoS8mTMN1/8MoEf8OGPfpKt7W2Q9SLJD0KyJKGqUpb+CH85w3ObDLoDml4Xy3BBaSilUVRQlHXloVIKoUnyvECVNREXpZOlNTgBBVKrkFqFEAampeF4Lu32CttbBY9diZhNJkwmI9I0JksjbEdHCIVlm5RljdRTSqAqiTeZ4fsRUZRw/8EIy9Rrwd80YTqbghDsnlvH81zu798liTPyvMBxWpw/9zgKRRTHjIZTtMJmOh2hOKHV0QijNicnM9JE0Wr12N45z2OPXyTwa+pQFC2xbUGv16wFx4MCXW9QFSVxGJHlBV+49QU03eXipScwTI9Bf53Ll66iaTpFUSBlrSvqui6iAsv6/aHSv60DV57FLPMQoRST4YjFfMH66jqe16AoK8oKojhlufRJkphmq/ModU3S7JE2oq5pCE0itbonk2YlhmXiOi62naOoKErFfBGRZTG262DZDqfDBaOpj9JKTE3DlhqOZWPrJnmWk2QxjqERlQm64XLuwhUOjw6YTMY1edHQKIqcOE2phEJWJbphoGkalm3T6/UQVAjxUA5Ip6gyKqXIq5LQD7Glxc76OdIndcIoIStLjo+P8OdT0iRhcRiwMJas9TeYLJZ865XXmJ6O+OpvfoXTowOOT49Is6Re/SjFw7lZvW0xJNjeucRf/omf4NrrL/Ibn/kcf+gP/kFklmN41VlpUUNqLl3tHM7AxlhfUNhT7Me7bN5ZcH0h6PTX+MYrL/HU05cQ1hmbSkiEAEOVKKWRZwV3bt9jo3uBP/DcD/Ar//JX8K/PKYfAgkeZX3WmpiHLt2JHHqJLBGCAyn+H4PXuxptB64xwLQSW7bK2ucGFx67y5JNXMaXG+dmcOM9odFoYhiRNYyzLQhrmI216eUZNUIBuOgSZJFE2jfVtOpVL3vSRrRYNYHy0R5JC5EckkU6jscr2doc4i6DKaDgGcbhAVbWB59ragOlsyXi8oNXoEIURRVmSxAESnSj0sS2bJFzieg7ntlboNSyGpzO0MmExPOLChYsYouTmtddxHA/H9bBti0Aq0iSj1XLpNBu0PY/5dEqRZJRpTqPdpt/tE8UxSRKxXC4wLY1EVVy4cIE0LRiOjtna3sAwdFbCDnEUcTKccHQ85tzuebKsIggjDE1CCbNoTpYGuI5LVkDTFdy49nWkZhD6E+xGF69p4DrQamn4yxP8pU+zYbC73aPKakpEu7NKv9dGqhChNPJUoZTA0jSkaZHnGu3mJk13DVVJwCYvHDRpopQiyfK6AiE11JkHYKVKpNBBk2cPjEQ3TaqqqFHOZ4s+0ChLRVlpSCRCGbiuRavZZefcJVCCsigQsgbxSFm3JhQKdVZPi+IUITTyPD8r3RdEYYAfLPD9Gffu3aWoEooyozdYxV+EKCUIw4zJJKA3qHUFBwOP6WxJkimqKiKJIQx08tSkzCEOFUeHpxjmmDzP0TTJxsY6QuZQFbRbbXY2VkDZxEl+VoHRiOOKKKmYjGfkxYwwyHDtFufPXUJK7aw8Lmi1GpRZiabpRFH8Ozxpv7fxbR24UBVpEtVlvXYbKXT8IKYoFJUSFGXF0g9qvS+h4XgeeZ4RJSlCKBzXwTRqYVtNq5vQlVI0Wx0qajDFYjklL3Mc16XXa5OkObbbZmf3PIb5Ktdv3yZKMxa+j9XuIIQkilMUAsM0cF2H+/f3KPIpz77vg1y/cYPZfIHXcDDL2gLbsu2zlWeJYRh1r0pA+sarfPQPlaBSdE1RCoHUdMosRdMMbNNla2Wb0ZZPkgpmkzl5lhFHAYE/hQwWhzO+dfwSpu6ALhgM+pRZwbWbN5jPxm/JH9Sbho1CUNX6MTQaDbI0Y31tlXazw+c/++sc7t1meHTE+9/3NM3GMxi6Qy2kBAId21zlyuOfZD4d0m712XjGoLF1mTtHp1y/dZu220QI7YzXJEDV1uRKQZik/NqXvsj//C/+n5RaSXI34uragMgtGIcBUVrUxxF1oBVC1kHlLDiJM9QjaFRKvMNw9XtHG0qh8cEPfpA/+t/9IJ/83k/S6bSgKInDkOl0gpKKRsMjz3PiJIFMoRsajlEzsqWoe5WOYfHU5fdx76hNqQti4w7T9BbBcMbe/RNuv3ITQ+YYoqAqSgxDo9k9odE0MYwKx1JopDQ9F8u28BydbmeDbsfDtjuEQQxUnNtZY3h6yCzL8NotZtMFV6/ssr62wumRZHtllQu7l/nC53+N2J/T7nR4/PIlpGHheS0QFYasmE8nGLpkPp4T+wGdTpPzWxfwgyW6YaBLHbNhMU4yDGmhS40oDpnN5pimRZLEXL58mcloQqfb5vyFc5jWffYeHHHr1l00IWg2HJqeTZam+Esf03RY39yk13XZWO/wYH9OXiRcurDG7QfHpFlEmJVkScrxwYgsjdjZ6WLpNrYp6LT6NFydJJ7w8ku/wfbOJTqdVUpV+32Zuo7ERtfcR3eQruuoqiRIIpSq0DSLLK/QNImiJM8STNNEUFcnqocrPVVRVgW6Xiuwl1WJIXQ0TaesoCplXdBXOWmZIZB16c/wUFVJUVaoouY/VapEyvpedz0XpQSuqyOEhKqkN6jLkUWRcv7yU2TZkoO927z++ivEcc76+hbPPfcczWYDhKilsJRgMp0zmY6I4yW6AZ12n6PDU/YeHDKejJmMZnhNk8FKl+PjQzRN0OmYnNvZYGt9hySCyxefwXFaaKbO6XTE409qVMpkfXOHSklUpWEZbg0WViA1DV2vzrKvuuZQVfk7ejrfOr69AxfQ7/bQNJ0srdWxBfKMVV6v3oPFEqlptfFbXlCV1ZmqtIVtWYAiLTK0MypTlhVUKkHTjVqrSzMwTJO8LEnTiE63RZZVTManmAZcPL+Bbmn0uh2kkKRVQRFldZaWp8ynE7I8p1KSr37ty8RpjNu0kbokVwVFUdveZ6Uiy3IWi4AszZBSIvVjju6+wu6VpyiynDjOgVq7j0KgS5vBYI2N9Smn8wmL+YTR8IjZpF4tUUGVFKREpCQoqXjlW9+k1WyBqNE+D4ERiAqhznR5K8X2WhvbkmcIyAaVf5f/+9/+S5h5xqXNNscP7vJT/+NP8Vf/zz/Dh57/CFKrH3mBAqFjNtboWT10zUDLS85fvYpsNOj3OxgSiqLuDwhUTU2ooKhS4mTK2qrF9qrFcjrh+Yur7A5crKsOfiz58gs3maclSVGRRhl1SZA3Ies8zLvy+rcoUP9bAem39cKq3/a24mG5sK7Mn98+x4/9D3+RP/TffD+GayJFjdzMs4yVtRWyPENQm+uhIAh98jyn127S8hqPrr0UOtvrF2g2BiySAGG1EZokCpfcvXkHv4gRUUbblehlRZGXBHmGSkNsG+yei+vpJKGPpcNyMkZKCegcHd2m2+3juhYnew9Is6h21Y6WmKLg4O5d5sNjLp6/SK+7Qr/f5T1PP04YRfhhxHw2w3G7pNEM3RA4uoPWGeC6Nq5t4Hkugb8gSgM2NjeZz2fcu3UX3dQxLJ1uq02z3eDO/fuEQUpISlmV3Lh2A6EqUtuh47q8/+mnubR7gevXbzKfzcnzgqPDY5pNj0ajweHRlDCK2dxeIU98BCWWZmAbGovZnNlihNvsomk2ZRqiSgj8mEHPoywLhsMT4iglSwtGozF5MqM/WCfLoFI2nfY6m5uX0QyXUulkuaI8syRQUpJnFXEcIYWBlBnHx3scHu1x4eIFNta3cewGCklVcpZZgFAVlarl1gpVoSqBFHXQEch6cajqUmOlZK03KiSa1FGqPKtE6BiGQZbGKKWQQlJQ2yrVHEyBqARf/LWv8Gu/9nmUyljOhqgyZ2XQZzqdc3BwxEe/67vo9lbO0M2CC0qhqoLqjAajayZpnLH0A5Ik5ubNN7h+6zWiaIFrdylVQhiWPNibYRireE6X9e3LgMZi6XN8tMCyXa5cPY9tekjNhEpQlZBXBZrUUFWJJnXyPKvbA+rdQ+Hh2zxwWZqFrJNvbNMkjhPSJKPRaGHoWj1prq0zHI0Yn47o9bqURUGr3aCscpI0Io4j0jjBMAw8x8MwalSXrkmyPGe5CNg5f55Wt80LX/8GCElZlPUDGwQgFBoWQeAjhUBVFZqQ6JqOJiVSMzGtOgfw/RlhHBLEIZpl1aAHpWi12vVq2bKgCtCp4ciySPncf/j/8PHv+yMYXoukKNFNFylaUOoYmolSGY6rQxlyerrP/f37+GFU93zgrHVUPOpV3b99sz5u+RAy/6ayhKC+IS7tDPjYczt4Vo7nOVi2S14l+MGSZaiwG10+/2s3+dIXfpOfv/gv0c0GVy7v0us0AVBCkBYF49GEQW8F23bYPHcep9vg1q03GE8PyYsO3faAMq+gFBR5wTycMJ4fYBLS1GM6XdAyiUWKVlQ0LZ0Pf2Cb9cc/wqu39rn+2uucHp0ihUaj4ZIEMWmSnSl4vFUt401jl98WwMRb/nFGXBNIENWjCuPbpbAUpm5yaecST15+Etc2am4ctcCxZltYhnEmQlxnoXlZYJQ1byXLS8oKNE0gVG3EpwmTjtfHcZooQxImU27ceZULT5+j2XI4vnYXt4pZcT0sqWh5JkpLEEaOpguajonR8ugPeoRBRJbkSDR6nocjBJ5mMIlmZHHIxkoXKcAdeDQ8j7Isufb6ddrtEevbPrce3OXqE49x+cknmA4Dxic+YRATxT5JkjIcjXBsk0uXLiCEgW03SeKE6XhWc7qUwDRMbNvCsgziMD4TB9CwHJcsy6gqgcpynFYLUyiC2RQdwZNXz7H0+1QVLP2INK3FWp1ZgGnq+IslqrBZHfQZzxccno4Z9AaMxxMmpyHT2ZQ4Vdi2ThIvsS2TlZ5Tk/0Xhzi2SZYsONy/QZbOaTb7LP2K8ckp88mc85ffg2Y1KUuJ0k2ElOi6jS7BcHXSJMV2LGx7l8F6h7KqKKqEstKw9AaVqqiq4lHFIitzdFM76xlXlGWJbdRZaJbVHNK6f1bfZKqqakNUWVchiqKgKmuFeNMw6opIVVJVOULWqLwwSvnsZ7/ArZvXMTQNXYJryzMBYMHnv/CrzHyfP/Yn/jQCC1VpKEoQ9dSvlCDPJZru0Ok46LpkZWWVJ596Ct+fczo8Yh6MyZIUw7BodXpUpeR0GuB5bSy3yxNPPlfLOgkTUemgav86pVTt9KDqea6qKtQZJckwjP//BWcEfkCeCHRNw3EcXMclz0pOh0Pa7S6ddg9H6qyurpJnGQt/SZLElKqgUgWacTZpq4oqLxBaSu772HYDrapIspRKSpaBjzB03IbL8emIKIyQokYlIgWKijSO6/IVtbyR9rABbtYWC5qUFEWBEgrdMomynDIv0IRkMp2h6Rqe52FqOo1OE1WVGK7HU888Q1UVRP6COMtotQVCr72INEOQxwuKdMnB3Zvcv3OXIKjrxo+SiEe4hHr2Lc6ELR+uDB8J5QqdioKtzQHf/bHLVMkQTbfRDZ2iiDk8OEDoDpOlhl0ojkc+Tzx+mY9/+H2seiYUKaVqUQmJKkEKh1a7j2YZVFq9yDBCjfl4BNmCuNVirOzaqqWoOJ6PuHPzdSan9yBfUCzmCOoSaVXVhEtLwsCxOD9o0Wm9F1vAbat+QIWAtJNxfDQiDrNHyMo3MYtvH48eGUVdfi2rs2ztTc5ZHchqhBgIpFIYmmRtZZWdc+cxTOsRkP/hQygEKL0ug0JN2Ba6gdAFhq2TJSlJnuIK6020oahLh6ZuMWivsL57js2Ll/jY89+JClP+zf/y86SjMd/1/qfpWGDIimU4R5oCpKIoIo6OHtBpNNlc3YBKogudKEpqsMPKCkqVnJwe43g2Bwd7rK6uYZkWmtTY3lJkec5oOObg4Jg4KRlthvTa6+iGR5qFDEcL1lZXuHSxh22bNBoegb9AkwqBQRgkWKbN1StXWSwXGLbOcjnndDgkK0sKRyGznCiKyHXB+qCL5ZokeYJAZzKZYpgmUmpomsnm5jZCGBRVxfrmFmkWoaocQwfT0Li82qcUOllh0WrNuX3nmI11m8OjMeNJTK/fJYkUvlHS7QyQUiBR9C6ukWYRWVZi6CZXr+6QpRqnJz6j4RE75x9H1w3SQpGnGctFQpEm6FKyMhgwm55SVAluw6QsBUJlLOZL0jih3eziOE2KAipVlxvzpEDTFZrUsRyLLKnbCNoZt0/qGnlZgqoJ25SKPC9AlWdIvJKyzAmWcyajIQJotRq4jRoyn2UJpiEREsoiBwFBAa5rI0XFchlz4+Z1Xn75JZ566jtA1UIAQtQoSCFk/YSU9Z1c5gXSMOl2V+kP1tjc3gWRoZsmqpIIoaGUoKzqBV4cZzRbHUCQ5zl5XiDOZJ7q+Uc9+vfDIWX9fvr7cKv4tg5cKIljOzQbDcqyxHHcusMhdbK8YBkEOI6H6zWo3Fp0VUjwwwhkhZbXdeQatdfG9lykYRLHGUUck2YZQpMMxxPuPHhAnuc1xNyra7cPyXWapqFrWg1xR6BJia5pWKaJadbOpYZe88aCKGRrZYW9oyMWswVFWaIJ0AwN0zSxhIYQgjSvkMLCbvWJkxzL1lFZgSgVuilQhgBZADF5ssAfjYiD+LcVxN5c0/yWd2oQ3iPOllDVGRy9wDZyKmXgOC5CQBSmFIUkzQWf/fWbpIDluXz0E9/Dk88+xebOJmUlKNIKodcBUqoCKSrCJKTV8JCqwNULtnoO4+EBX//mV3n5G69wfDyhdD1meczp3hC7DHn8fJ9+06nZ9mcTlW1YWJqBabhEwwdMlhmn92+SLEKyEoQuqaRA6NqZ7Yr6XVtWb4LaxRlXrwZNVNS9J+CsYijgjCQupWB9fY12q8PJcMSLr7xCa73NykqnDp5v3b+olwT1aromXueqIitS4kJH6rIGBoi6ZFgBpVJoSDaaa/zhj34/F/obxLFPQ+p860tfYjk5ZffCGlLFFIWOZVv0+l3yMmY2HvHi119ha3ODQX+F9fV1+p0+lmVhmiYNz8O2bGbzORd2r6DpOov5gqPDfS5eusLmxgarazscHU8Jg4JbNw7o9yrO714mjCrcRp9WZ42GaxP4C6SwaLhdDEOwvrpGkoS13YZlsDpwsW2DQXvA+mCNZRwynE1YzJdohsRrtlCaoBCQVgWhv+DB/gP6Kyusr25RlAI/CLFsF9dt0O11iNOIokpQZUJRZBimRVFBGRWc313n6uWrzBYJD/aGDEch3cGAbtcjzZYYhk7T88jTlHbbQzdgNp8gDYc0zWi317DMBg/2D9ENi/7qDkUu8KOE/f097t+9xfD0mO3Ndahy0jzg0qVzqEoxHg2Zz8b0+x103WJ39zGuXHoaTRmkUUqhKnKZU5ZF7RxcVuiahm1ZOLaNkBqGadaWJEohhagh5pMRcVwrqSdpQhJH+Is5nXaTpN9DTjSWfkB/sMJ3fddHCKM5ZZqSpyFUOasrXcLIx3N1yiJnf+8+u7sXse0WFTW9RZMGmgShJFLWPmBFUZGnKWX5Zp9ON2ySKENKvc4MEUhpUJT1oi/LCrI0QwhBVVVIqT0KTg+31dyth4s78bbX72Z8Wweuq1euIslRCnzfxw9C0ixH000aLY+yVMwWi1ol2zBQVYHQdHRBDT/XBGmRkcQxo/mMqR8Ago31LRaLJfMgwLKts/RE0u72aovqojzrldXMcE1qGLpRi0meZVqGrqPr+tl/jiAvCqSm4XhNilIh0TEMm1IUGJrE9TwM3UQoRVlU5JVie22HVn+7BsYVOZ6t4dktTKdBlFVkRUycBIxOj0iDqKaxPbo6b/ZrHgIw3pzHxSMQw8OMQQMMKfnohx5HJ8Nr99E0yWIxZzrLyaoGL79xQqogl/De9z7DRz7xKRqDNYr/L3l/FmNZlqVnYt8eznxnm93N5yHmjMh5qolDFVkk1QTZTUiQSEiPgiDoTRCkN0kvepMAgVADEgS+CGqQhNhokcUia2BVVmZGZkZGZMYcHj6Zmdts1+58z3z21sO+7pFVJNXN1IsSdQAPdw93M3O7w1l7rfX/3689qKHMCwwG7UlHpl6mvP3OT7g4fsogFhw+/phsMSJbLsjSOU0+p51U/PTTzzkal3T9gO9++z7rLR9fOymxDhRKSXyp0FYijABZsh41fPete5wNa/7Fv/pTjJBUPPdIra4vjFy/8KpZjQ6FG8e4y6AEbichnQldSUlVNW6Uaj0QEHZbRL0BRVmzf7jPD378Nru3d+h23yIIvBefXvzClxYr6mPT1BRpim1qjBDMy4JcSOLV69BYS9VYyqamq9tsbvbx0LSSFn/1N36XN27d4/Cj95k+e0ioA5IgojEVlyfHCAm9uMcr919DKiccWcyWaBRJFOMrn3SRYypBO+rSGEPcSrC1x7EdIfB5/HCfvKp57ZW3MATEyRpR2GM6mXP35TcIfd/R5YsU37dURU3ohTRlSaMl7aRPu9XBYgh9n7osUC0w/XXypkSofcrTY9Iyd+GUYY/T4YiJN6MqCoTvTPOlaWi1urz77s8J/Ag/DLh95xbSE0CD9BR5XmKEQGlFEGimkwl1WbCxtsXVK19G6nWE9N0UXNQIKSiLkrLM6XdbCNlwgxIl4enTPYbDE0wtiGOoqwmzqYexjgUY+ZaNjQ5aZRwdfU4ce0wn55yfPGBzfYOX7t/l+pWbPHryGYtFwfhyRJmVtOIBUodUTcNiOSYIHbG/ygvqsiAIfJI4JowiklYbKySeF7hRWlmhbE2o4CKbc3h4yIPPPqXMc15//RU8ZQnjiDLPOD05Yj6f8fL9u4S+oi5Szk+PqKoCKQVbW32S9oB2u00riTEImsaNCN37fwUhtvaF0CRNS+azmRtv1hVxy/FUPc9HKh8hNf1BG0vtnu/IX+3mvjDov/A7/oXi9It/9v/L9StduIYXIzzPtZ5V1aC0pttvUxb1yjfl5KmqrukNBpwcPSOIQ7wwoCgL0vlyle0lSNoJ2rr91fnlpQtCK0uKuiaMI5qmoZrPHelcCIQU6FVxUkq5/7+SSVdVRVEUL04dSimMMZRVRdkYJrMFZrWIbSVtTFPR1A3LZYovJZ7WWOnz5W/8JoPtu9jSIJvKSZnjFsIP0NQ0yxnzecpykdM8t6H/ghfr+WLmF11ML15Yq79iX/wJXNnsc+v6DiYbkxYptTHM65B//kcPyCtDbV1nICx8/smn/Jf/l3/M/6n4x3zja9/mt//6X+XG9et0+l208bClRYqEP/i9P+H3/l//hL/2nZfY6Wu0sEhriVVDshZQC8nm9stMJjmBlqx1I0JPoxT4oQe4TC9bN9jaOAGIyel6klY/YjkeOd6GNTglodsTWMEqyuUvNl0r8cUv7MEGvTbLeepc/abhxo1dbt24zh9/7ydYEoTXgTBC9bo0rTY9vyYSivHlCUdHB9y6tcvW1oY7kfJF+pdcLcisVQih8L0ApAbj7BjLusJEPq3AxwCP9w+oLbx6/yU8JMKAJzQtv0vnzuvc2tzgnd9bcvLgAXGsyesUjHtskqAFMsQ0NZ1uh7oqODh4hhSKfteJSpoaoqjNbL4gWxpMo9lY36UuFYHfoaiWmNpj+8pNahOSZjXa76B9gdbKGfyto5GbKqOuGzeCkxFl5awHprHQNFCD1YKL4YjRbEJ7sMaga5ge7ZFKy/lwThT5roiGEX4YE8QtFkXGIktZ315zEfEi53x0zHy5QCpBr99hMXcMwM2NDcq0Jl+WlLVlvhyzfeU+GxubKBU5n5UpMFbQNJLYizk+O+PkdA+la2bTC85Pj7l/7z7bWzt0tcfaWgvtBTQ2wEjN7rU2VbXFbH6Fjz+Es5MD4ihEK5BmRp6dsLlxg9s3rzCbZeS55OnTj4ijLmtrW0jlMZ9PGV9WpGlGEoeEnoe0MYVwpPemmhFGCb5qU2QF89kCz9OsD3r0evf40hsv82vf+irPDvaZzWYoJfA9xfbWBoPBBossoyhuEQU+vU7C3tOHPHn0ACMMfpCwsXWVr371Gw6arAVaB9TGkOdOtRj4gSPj1DVN05DELZfuIATzxQxrapSnCcKQpm4QSlNVxnVj2k2I/EgjTPPvFaZf/P1/7Odf5vqVLlxOFq2ZzGY0TYMf+LR7AxbLMYcnp0ymM6IgJCtyLsaXFFmGnCusdUo0oQRh4mJG/JUhrqhqZsslUZzQW19nNp2SZjlSSkLfZW6VRYHWHhjjzM5NTbAaBf5i3Itc0Tm07yGlcgSP+RKtPNKiwGBZ6w1Il3OapkYaSUXjlEaqy/03vs5g5y62gTpfEixmrkuQkpqMMHRx7dtXbrC2tYF3eEFWrfY5v2g7+nOvj79Q4JAv1IDf+fo90vEZEkFWeny0N+bxaUmx+zoIS2xL/HpB5APCMF3OydOGH7z9Azprfbo724zOzjg+PKKTdOgGPj/9yR/x5mtXGHQs7dgiDFRlQ1mXSCXxpSZSms5aC9/TbjInDZ7WSBxWytUk5RAx0hIEbqxS1SWDVsOvf+MGy6wiLwzHZzMupymVBfkX1IHPi/Rzp9fu1U3iSLO10WcxWxAGPr5SaM9ntphi6SE79wmv36OOJCK0mLAibpe0TcPx0QH/9L/6f7C/95C/+tt/nfsvv0QURmjh0nJZnWalAKs8tArI0oxynpIWJUkSooSHqS1Ka5azJdM05eW7992KbLUaUChAo0JJ0BLUVUY+D/CDFp4QnI/OKG1Dd6PPbDZhNl/Sbjv/1fnwkiwtCfwQayVnZ5dYBEJ7pGmBH8QkyYCWFGxsKfLKonWMqZyirTEWIVeTBaXxgoQir4nigHQ5pcxy0rRAqgbtCXeTExB6HmWRUjeSshTMZzlVpRiNSlo9hR/4BEGXjfUuWTohz1KaZcps5kZ7FtzUIvA4Ojvi4nJEEGjOhj5V1RBqjyxNaUctPC8mjH1nF5ElplnSbnd5ur/P548f8ejxU4qyYj5PqeqMIBIIkVOVGXfvbDNfnHN+9gTf90iSDoP+NVrdTYzQFHXJIp1xfLTHk0ePMPWSIIA41PSShPOzx0zG59y69RL9bocitkgVsFykTGcHtNs9BBV5viTLFigRUReCdNZgTE1VlWzt7NDtDyjyLli3/yqyhnGTo7TGIhn0u2ytv4kQrvC4t4RH1Rh6/TUshjjwwbp7URInHB4d0ep0uHf/Ndpxj9oIqtoilEZYw2I2o64bBv2+A3xLSV1XgHwxJkxip8wUUjlgtGlANpRlje87luXzkeDzwtU0DXmeY619wZ997pl9Xsjsc8/oL3n9SheuyWJBli6oajdfHQwGLNKMZyfHPN0/wgCDHqsipVjf3maxmDObz2i1EuIkxlhLURaUZeWgm1YglHbdUVVRVJVTltkG21hnFFyNA52K0FKWJYEfoJWjJSdJAkBd17TbbabzGY1xpkWBoCgKFpMlr776Kq+++jI/+9m71I2gzDLy5dLtacIIHXexwgOtUJFHqALqOgdhiDyNFYqmFlwOR/Q21onikPlkyQsv7urnF/o668Qabq/13KprUMCr93eI/YLz0zFVEzDJPY4XCa/+zj/i1e0t0uUZG7rgagx3rm/x4Yfv8/TpM8ZnY4os50fvvEN3d5t2khAJxdHBY3788D2+85VtekFBpA16tSfyvQC/8ZBKYZoGad2yGBqMBblCd9V5SYNAac91UqtRRF2DrzWt2OPVeztcvzYgLWqWaUNawCIz1BZGY2dFsNapvIyBLC9Is5zpbMbmZoSSFm1Sbu92EdagjeHk/IyqaRO0d4nvfpf+l76CXPNR5Rg12acsnrJMJ6TVgsvHpxydHjCdj/mdv/E3eeutN2m32it1ovrisS4bZsM5x8/OGI+n+GHA5pVNYt9HBYrhcESZVfSTLvPpAt1ro9SKtmEc260yFtEO2bx/k3bTI52k1NMz+j1NLiqkFLTbCkuNEJYwdrvfZZFTGUsctgmThPPzS4pqgfZipCfJKoHve0jjDnV5XqA9TZxEVI2j9de1S07QPvQGHp6WBGFEWaYcHx9QVzlRFLC21kchOD85QgrLbDnl5OKCsNNislxQVJJynJFmFaPxnKKosE1Oms5odztMlzlSQVXlJK2IrtdmfWtA3I6oVu9JY3LqqmY4HBNuh/T7CV7oMxyPOb84oDFur5ylF2ivpKoXjMZjzi6mWGG4e2+HoqzwI0NVLQCPXlezWEx4dnDA6fEB3f42lRUIT9LpthFyzmBdsb15k7paIk3NcjolLxzgYH//nChqs72zwd37t2i1Y4IgQKmQs9OCrKi4urtGkaaEnsQ2DUVWkmdzhucFk9EJWZaTJC0Ggw16nQGeakAETGcLpuMLirygyCvWNzYJoxYbGzt4QURelkynUzJP0UpC2u0er7zS487d11imGVHSpSgbpPLJlksuLo/p9vq0khZaSZqmZrnI8bVPp9uhLEvK0llyvFWnZa0lDF3ycW0a6rpxUVHGYFdJAE7xaMiyjOFwSFEUJIljJCZJ8u+JNJ5rBH6Z61e6cH3+9AlFUXL1yibra2soP2CaplipaHVbFEXFeDbD8xSVqSmbmnSZUlUlLdGirhuKoiDL8xcnjqYxlLWhrBvnhWrMCyCuEpK4E6GlxL5Q/dRODej7RGGIWZmZwXVcZ8MLptMpZVkSRS5oLUtzAl+SLzOe7e1TFhlFUdDvdAi0oqgNMukirMbp3KAWAvwApSXYGoQkMoo0Lol7A3QcoZUgFE6OrjyN53sgLfN5RrvdZntzgyzNOD4+cZJxKdjqx7RDRRIZLicjLk6nHA8bSs/nZKbI1z/mt16+w2//nV/jRlvhm5QkjAllh0H8kOZOxWQ2509+8Gf87/5X/2u+9Ppr3L9xA5uO2O1ZNsMKz5SEKkKg3WlaWLzGOC9KXWBMgzEuWVnjuinVuNFFbRqwDbVpEMrZDDABTaVppCTyFH6c0A4MaVAjvRDQGCzTZZu8LFksl+RZwXKZsVjWlFHAWruH5+tVQiuU+ZKyKLi2vYO8HKNXUo35bIwaj9nYvOG8K+2Aw3c/Y/zwY0SxIJvPicKQ4HuKUCtiz+O1N17HjxLHKLYC21iGz874+ds/42fvvs/J5SXd9QF3X73Ll776BlvXd7BByPrOFTwkdZZjWxFCShByZTjVaH+LV7/5u9g3F6iR4Xv/7F8yPZ1RRBWFZ6ASNKYhyxcYW9KYHK0VdVUTRy2UDgh8xWB9HS+MqWpJFHdBeEymU4aXJxhTo7XP1tZVkk4fxMrIbc3KVSAQwkNoSdLrw1yxsX2Vpi7RShC3IpIopNdfo6ychWJ99wZplXPywfuUtUBaWC6WeJ5ACYgiR6QYjVPanTWEsmT5DLSkshY/CsmrCl8IkqQNHZheTqmKnKKsGY0nBEnA2cUFQs758KMn+F7E9Ws3mExnrK9FjCYjrl1f5+JySKubEJS1Oxw1GXmuCJIIT9V025rx+ILJKKe2ID2FabqEUcSrr95hbdChKpfMJkOCQBImJVp0+PD9M85Oh4ynZyzSU+6+dJfxrKLIa/JcEYYd+oOIYLONJwVltmR4XjKf5WRphmksm5vbrG8M8JQmXYxptxLiUFOVHvNFilYSP4kQ1uJpzWw6oyhHNMYym0/J85Qkjtjc3MQLAoTSxK0BQiik0izmC5QU9Dpt4tB3419r8JTAeh6mqRldnqKk27nXTcNyMSfNSqyFKI7QnkcQhnhxSNM0rviYxu1uVxJ43/fZ2dl58XuxYrYCX3wMvLhP/jLXr3ThmqYFgSfI65rL6XTVskqyPMcLAhpjqU2DFYJlmpFlBVIJhHQL3iwrnApmtW+SQjgJPM4A6CkPKUFLjZaaKAjxtcaYhizLiMMIT7s9jKcDwjCshzZvAADi/0lEQVTm4sIRtT2tmc/mpHmGp306nZ4jKRQFpmfwtEc76WKNYXNzg+UypZskzIxB+aBaXYR0n9u5zGsno5UeIJFCYo0kjBPCuEWQtOn2uqTzHBTE7YgGV4SNgKKqmC4WVIV7EX79y6/gMaYd1LTiiGUhuJjknGaCk1ywubXBb/3mV7j1yld4+VqPnslpqQQ/bjO+dOF7gQxR7ZCiqSnSjMXFJW//8Z/wY9tw70qf+3//W+i6QVlJU9ToFXDWWIuQznSpA6dksvZ54ORqwmkNQsoVy3AlulAS3/fwhO/UgLamyO3KyyexVUldu5u1pyVbvRBURNN0AEma5kymc45PLlgsc5ZZBrXbhYaeR6Bj7ty/y6dP9/ECgbITmosHjH5wQvq4T3n/Gr5XMzq7YHQxgnLugv88j3S24MOf/oxYh3iez/W7d4iiNoHyyGZLDj5/wrPPnzA+OmM8HZOmC5QH0rMs64zOYA2EIkkiWp0WQru92AtilZA0IkIEV/CCAtNcMpc1Z9M5uoGcEhUGHJ8doT2IWz7zxRxsg+d7WKmoasN8tqQsG9766rdo93ogfH72/qccH58yHl/S7YSYZhVk2uSAT6szQCrpYtqF28FejMf4nmY2maCVwPMihBQoL0F6AcoLMUqj6oZ2EtPWgm91Wrz9kx+RZQvKXCFtg+/5bG9tE8Yxl6MxeVFR25raaOZpymye0tRgmoYkitHSpywKlFTkjeViOKG2HlcGAy4nc4LAsL09YDFbcHGxR5j00Fqzs9UjbHUwouHjj/ZYX4dOYlBRABjybEGn3UKqNt1OF6l8yrqmWgEKtIo5Ozvn8NkBm5s9uu02UgQoldNUiq994yVGl0M8H6Q2ZPkEhOTg8BlSJHjelGeHD7l5/QZrnQ5JELK5MSAJfdLU+Q9F0+BLzaDXZ7HISOdzQi9gfeCM/JPxFNM4L5TCHfCW8zllU2NpUFKQ5zmjyRjtBzRWMljXKO1R1ymLxYx8uXAHcU+AcIe2xtROJl/XCGvY3zvEWtjY2sLzQwJfscwy8tzg2wDPcwd3BA7csLofPy9EduXZes4nfL73f2EX+gWp/C97/UoXrjB2D+IiTVlmmfOAaEWRly+UMkEYItTqBriKDjFNjWksURS+eHAlbuwXBCFpUb2QddZ1Q12l1GWFrQ2N79Fpt9C6Q+j7KOVRlBV1XTOdzri8HFHXNVEY4nkerVYbz/OI4xhjG1pJTFkWBF7glGxNg1TQiiLCIEB2uzSex6//7t8nbnVXJ9xm5ZdRsPphpcQPNUnbsr61w527r3J+7EIspS/xk5CzywuKtEAHioqK04sLh1YS8PEnj/j2WzvkZcVwPOfBwymNJ9m5scvf+ju/xVe+/TXuvfIS7VaPTtIj9n3qOuN0tmT/0TFaR5xdjHn/03fZ3N7AD300grppsMLw5lde5cnRFE1F2xPsrAcYHFLL4iS/ZZnh+xJhLVoqpFIvXsxSKhSeE5MYS7MaFSqp8T21OjBYmsZg6gZja2zj4sKNsdQ5eH7owMbaI4wS+uttdtY63L12haOTMxoLVWMYjsbEccLJ+Rl7e5/z+uv3ORtn9A4umC8fEHpd/DRg9N47zOZzOlGHN7/6dT55921sXVHlNefnQ2bjGc+OT1hWFb/zu3+Lmzfv0AoT8nlKEIRcvbZLusippGWWL/jwo/f50Yc/ZvfOHe7ee4mtzR3eevN11vpthHQZRhKBsGCExQ0OfYyVFEqRRgr6bY4On3A5HhF0EoysSaRPmhbuMBX5lGXGYjHnxo112t0ul5cTHj56hB93GY4W/MEffp8gSAh8jef3Mc2STz/7OXfu3qfX2UZpRRS3sTQ0TU1jak7OTinLklYSs7W5hZaCuijICoMLlWmojWFZVnz84GMW+YKoEzvfloK19Q6DTovFfMJoNKG6GBG3uqRZw9lwjNIQRgqJQascmpr5JKMVLsBCU9ekqTMzV8MZtfJJ8xI/TFC+4q0vv8bh/lOkJ1nfvIr2A06HM6QwBKGh1W6xvdni+s4avjAo29Dttuh2u1xeXpLEMcPxmL3DI47OFlTNGVIr+t0O2BFFVnBxNiaOOlxcXNKKYzxPIrVEahiNzhHSp9PpUtSW8eicdJGilSX2b9NJInwVEPkBWVQ4mob0WC5SLutLrl27ianFSg7fuPTgKGa5yGgaS5lnKO1sLGWeoj1B0oqYzxcMLy9Y37pCf23dhY3Op+zv77G51mcyGTIZ1cwmMd1Om36/y3Q2xZiGTreDsJbtrQEPHjzk+PgZ6xtbdPvrbi8qAkA7oMFzt4l1/7HW3cvMLxQjKVforNVO63kH9vz6SzsqVFqjPUVVlk6Jh3DLZCXJ0wzPczJm27iuy1oQUhAGkds7NA2+1lRN4x5kz1tRnzVV5RzwKIVW2nkucKeKuq7wtaZeceiyoqIsSuzqiQnDkCiO6XY6SPmFZ6FuLFVV4mmFp93KXWmFF/qO+l5WpFmGFAoviADXoVgLCuE6ECOcCdDNoQhCy2Btg7t3X2Y+ntBtx5S2xkjB+tUrjGYT0jxHKc1kNGUxXTK6GLMoKv74x8+wwqK0YnNrh82tDb7y5a/zza//Gm985XXWN9aIogS0j/Y0TVPhTS45Vuc83XtGIyX7Jyc8fPKQ5WxB3bgELIPln/2/vwc4M/Ybd67wn//um8S2IC9LyrKgKFLyIiWOYpSFyKvx/IDKNiBd7IFcmR3VStEmrKP+Z0VKU2ukcIR/Iw3YGk/XWGORysMg8ISiKWusacjrEpMHSKnwg5Dr233K2mClZHujC1KhVMlkNqfd7rIsK7qdhvXtFkEsuHFzwHA45LPPZownU55+OqUuSmzRsKBkuciQUnA8vOTey49545VDtrsbtAY+Skk6gx55WVNgUW2f89EF6ckeh+fnfPqHf8C/+6M/5Y1XXsdranZ6baKtPkJBWRu01kjhihi4fVcTt/nu7/5N1q9s8vPvCT78vSeMHj7md37nt1C+YJFNWS4XDjnU1Mzmcy6GP6PT6bKxuU3gt/j088c8O75kkRUslhWNMbz2xl2KHPb3nnB2PuTu3VfZ3L7O1vYVgjAiCH2U57Ozu81inoKVtDs9bFNjPZ+6cjvENJ2zyBYcHO3x4PEjvMgjOzlA+5KNtR6BhrIsyYuC3mCNQGg++/wpk5lT8nZ6AZNZzno/QImQqsmoqpoynfHmG6+TRDEnx6dM5ymnFyNmT/ZpBERhjBSwttZnPh0xHC15+nSP04sZaWlptVt0BwnW5qRpzsX5Jd3YJw48JpMF1irWBhu02wkoQV5VLLOGyVxQNzV1BeNxSpEbTk6mRGFDFAVI3RC3Anxf8+Czz+mv9ZkvFrQ6W1y5ep2qekZTW8LYYzwZQt3Qa/dZ67v32HyWoYTPxnqHVtIiW2RIpel0OjQrAZXvaeZNRafTozEC3w9ZpBmtJEJqQRAFeL4mK2uUlqRZipAlSinWB32Oj59RVxmtMHQJzGlDVc2pq5KmqZlOhiAknU6P7c31VbqFJIlDZ/fRnqPgY7C2xhh4Hi3rSDFfyN+tdQev/xDa6S+9qrCTdJCyIbcGIXGVH4OpS6LARyuN7/lURUld1QS+7wQSQhCHEVXlgiKTJCFKnHpmeDl0XY5pqJuGJIpo6orFLKPX7WLqktF8jNSKJI4pKhd7EsUJcRARRCGmdqgkJcDTinS5oKlr/MAnDILndlMsBek8xat8yrJBoLDKY15Bo0KQ+hdgTGqV+uEk1mKlWNNaI6Wi2x+we/0WSnsUZYH0nCKrNBW+7+gS7/3s57z9/R+hpMLIBolCeZpXXnuVN954k+vXbvDWG1/ixrXrdLptTF2ymNf4YRthI6q6xFeKnavrPH76FGsM92/e5e0f/ilF5mCuLlgE6pWq0QCzsuZsOKYlpzTGeUPKusJKSVlYPCExsSDCozQN1hbObSU9tHQ8SamcwEKs5OVF7WgDarXvFcLi+TGmMUilEL7CGoMfBVjr9pVGO1l4neVI5eF5IdJThFHAbJkiEHQHA84vpxwcjBiNl1STlI2dHoHf45tfuc5WDz749BnnwwxT+UCNEDXGNk7DqBVx0sbWhjIvKJqURlpyahZ5yiydUtqKoBXS6/eIJ0NMWXI2OmM5HREFEi0Mv/brv0Z30KGqGyTQbiV4Wr7YNWkVsrF9HSk0i0XFcL7g049+zsHRJdeuXyeOYzqdNdrdEOkJ0rzk8aOnpLnHH//xT5FBxMV4zmxaUNUSpQQNhgePnrCx2aGzvs3F+Yj3P33I/KcfESctvvqVL/H6K/cYDPp0OzGBF3M5nHH07NSFGsqaqkqxpqYoCzztc/36LZZlzuX4nKzOGI3mVMuKfr/NYK1DXmvOhwXtTsJ41iC1j5aCqgYhFE2tePrkjNu3dti+MuD0+JgPP3zIvbvX2d6+wsamZXNzi+FwyHQ+ZXh8StHtU9aKk4uCDz565gzUcXv1njCAYWN9jd0ra0hbYuqMk/MTqqpiqzTUQnI8PGc0GlLVhls3r4H0EcLjz/7sI8LApxW0uTw/R8qUu7c32ViPwVRsba7T6wRMp0vKYsz56ZT33x9xdprTaTV882uvM+jG5Knh8OyMy9mEu7dus3Vlm9PDMcu8xHpO/DA6PSWIPFrtDkJapFLUNicvliStPuPxCIRlfW2Alc/N89AJAjcebEDpANPAeZYzHo/p9kJKm2PLgjQbkqZzeu0YKQTpomCxLIiTLr3eBv3BOuPpjCLLSJIuSgesbWygtaasSxcG2bj31HPIsBDCpTYIudKHyRcEG7NSHT6Xy9o/H0Hxn3T9SheuLM2AirqpcA8XhGFAEkcOeJtXVHmBRNKJW+xe210pZTystZydn5MXOZtbW5ydnzObz2iaisD3CYMQJZ2B01Nu3JQkMdPJhCh0ZtNWq0XZuPysIi9IsyVKuJsAxrHp8ryiyAva7TbtVkLUatGYmuVsjDSGTsfJ8a0p8IMQHbd45f5bXLl5z4E2cW9gi/0F5/lKHSgESinCMKTd7nD16jXarTadbodrN6+TFzmXk0suL0copbl94y5/9Tf+GofPDplcTgCPJGnx6uuvcP3WNRI/IQ4jTFOymM/xQ2eg9KOWy87CUBQZVhoqUyJpaPsRVzd32N97AgpEIx0hXHtUTUndVOw9O+fThx73d9x+y1caqRUlxvmtlGRRZhil8Va+EFPXbjaOE7BLz1KZirqyxFHsxhRN4wgZq1FEuYqbUIiVyMADa9C+j+8p0iylaWriKGKxyNFeSdTqUjUVCEmr0+VisuTd9z7j5DxjlhmML6iOLvg0ytgcvM7GusfuTowQXTAe88kpVTkmjgPWtzb57nd/k7/z3/u7vPbSS7TbMSr2KIscHWpag4RNu4VuBeRlQe1LFnnGYr5guZiDhD/4w3/LfDlnmi65eesGvU6XjfV14jBBKTcxMNZihcYLWrTWtpkZS+/aNV4JPMbDJdOFZX29jxca5umS8WxEu9MjaW9zbfc6Z6Mlj/YOyYqGrLBO2beKy/n80SEn55Hb9xYFTbWkbATp4SXz6YTYN3Rar5FEAwSSjY11ZpPJisSgkIFPU1sm0ww/cvvXTrvH5w8/J/AFa70uFxdj5rMlJ2enCKXJ0xnLdI+sgKSjiFtytUtTVHVDt98CYUmLnMFmn4uzE/YO9zgfntJqtQm8gM2NHrdvXeP9Dz7h4mzEH/3RD9g7OOfwOGOxsCi9xKLpdGKu7PQ4Wsy5PF2wvt6iqZdYoynLhqP3H9LqHCKE4erOGhsbm4xGY3Z3B2xvX2Uxy/jwgz0uLxaMLw1SWEa9jC+9ucunH31IU1p+4ze/yQcffkyrVXJweMbxUUWega9cHFuWp8znFY8ePyVJQs7OTuklG3iqQ7uzyYOH+0RBANSEyqeoltTTHM8LaGzNPK0JkhadfpvpZMo0ndDtr1GkOVZI4jCiKHKSVheLZLpYUlYVk+mU07MDysLlvfXaEcJW9LttNtc36Lb7YBuksCSJT9WkGDL2nj7j5HTIxcWUe/df5pXXXuHa9euOoCEk1krcdMgJroR1tAys8zQ6upVdIc4ErFIb/tLK4WezGWHgFvZCKqRyN00pJFr5JP0OoR/QShI8z1up+poXUs28LGm12yitmc/n5FmG5+uVhBoCT1IUJfg+WnlgLe1WazUurF0UtbWEfrRSyzj0SRRFeKtcLd8P0FseWmmW6ZI0K9HK4nsegQ6JoogoSWh1BsRJwsV0ySI3eNpRxYX84iTz/LJ/YY4cxzG9Xo86L+j3B6ytD9jY2qBqKnqzNbCPiaKIq1evsrW1TRQ5uGrZGLJlgbENiJJiWTCfzBkNJw7zZEGFHjIMQUNVVwwnEw7PLqitIYkjwlVn6ymFqSvanR67u3d56c49LCU/fOdHnJwcg9D4kQPQKquQWlCrGlPVSAVISWNLhNFIa6lthZXg+wpPa4RusJXDIjmdhsQI+yLn53mn1TROOOP2jDFSK2yZI5UbP2rjURvL2XBImpVkeYURitkiZ55WjOcFk1G2+houxI+mYbHM2TvYJ9Cujbx59Tp/67f/Bo8e/pyqGLK+3ub+q6/z0stv8uprrzMYdNGBBCVohKTdkQRRwOaNHQ4PT7g4H5KZhsvxGF/7lGlBtkipqoJ333+PtZ1NTs9O2N7c4vVXXyUKQrzAo9ProrTECsksy5gvl7z5jW9w/9WX2X/8hOnFlE9+9hH9tW2itk9RLEDGJO2Efu8K48mUo/MJk3lGXUJZQVXCc6P3YtmwWC4ABwKuKusyqCxMJwuOD4+4f/c62kuYzpcIESKUoWoMs8mM4eUxV3Z26K9vs0hT8rLi+OjEKdlin6YpqZuSjY0uYcvncjwjCw1R1JCXDUGs2bm6ThiGzGcTMBlIQ1HlSB3jR5rWWkIc+2TLlHk+pdO9gjUW7Xv0BgOU36ExHgKPKKoII5/xJKUuGk6OZkxHLg3a88CTXfLMOi9m5KF0iyTuMBpP2T8YsUxrtLZMZlO053Pv/h3ms4onj88pC4sxBRfnU5bLhqIQHB5c8P7PP2LryhYfffaE3Wvr5EXK4bMpSeLx5PETqjynyBRJ1KYuCxb1gqefDxkOl/h+l7gVsZgv2LmyxV/5q1/l/Y9+Tlnm3Lxxi63tHbK04OneY4KgRdJuUTc1RZ1hpEVKTVGWVHXFcnhOu90jigNu3LxJUWY8fvQJQeAzmYzx/JhBt81av4epDYtlidI+tbHsHewxno1paOj2ety9f53h+Gc8evoZF+NTrl27wdraFuvrV+i0B/hegFRupIld7bLMSljVWEe/tziFLDhGKH9JO652q43vCzxPU9clrLqSTqtDvzcg9ENs43YutWk4G144g5w1+FFMEEfMZjPef/8UMARB+AUNY0WwAHd6qKqKLJV0WglKSkLto7SkqGp8JQhXURV1XSO1E3UIqdB+vFpQgg4SQk8hZU1dCTzp0e33aLXanJxf8ic/+D6z3PLKV/8GUdRyY8H/Dk9uEATs7u7SihJm0zlrawMCP0LbBqUDFouUMAzZ3NyhlbQRSCetpaYVtbHGCVbqoMFmlvPilEePHlM0BuFLlnXG+toWZQV7x8/4+MEDxmcjdFpgTUE7UVzf3SLPSu6+9Bob61f42utvESc+N+7c5p//83+GwRCEEUkYkuiEoi6YVxMHEK4qoiRydHWt8ZSHEg0YqFd0bKoGKTWtMEJJgdQCK+WKrwhWr8aI2hCGMc8J1UJJJosJyzSl2+6sMF0GpQM2t9bxwpC6sewfHqH8lNKAHyzxQknHb1FYyeV0RlMrzs+XDLoRVVmxsQa/9p27/NZvvMqTh49otWK+/WvfZn17h1anu4IvN6uxdIgyPuQLGtHQWuswzZY0Eme7KEq0UBRFitSCxXTEj374Z5xdu8GrL7+CwHB+cQFS0F9bY/PKJu1ui6oqKBuD8CLCTsDtV7qou5ZuZ4P9J0+xNqTb69Nfv47AID3Fn737L/h8/xyFpS6hqQHcBMERsNxYxwJVI5B4YNwEoSkN6WJJli7pdCsWizFlo/F1iDCCeZ4zWqTMnjwjzyuUlKT5gtOzC3zfYExOK/a5ffMKcdun04u5dm2T0Sjl2eEZnV4fL/CRQjGfp5hKOBxSM2c2m5Mup0hP0Ru0CYXgzkv3ePjZ54xnU+bTlLOLKcZqdnau0elu02qf8+DJAdN5hh8kTGc59WhBVhQcHpdIYDxaopSzXtx7ZZtrN3fwfQizisuLS6aTU7o9zWI55/z8gi+/+S1+7de+zdUrlzx8+G8II0Wr1eLifE6vt8Hh/lM+/vhTVCCIY5+bd+5y667Hpx8/Jg40QizodrpEa30++fgAYxvWNyKuXdsiilOe7l+yrCqmkzkyCBjP5wzHYy4vhwgNB8dHLBYVl6OU8WTJl7/6ZeJ2zOHRKZ3OGrvXbhGETnpeNzXZ4yd0u2vcvHGL1994i3v37lMUS46O9ri8OKOpC/KqQgmNMRJjPUxluRhe8uEnH2Oo+PJXvsybb93lf/gPX2e5LEjTnLX1DTwdoqQ7fFdFseqgVsQeVonh1q78XuD2s+6P7er9+ctev9KFS2ntKMdCEAQh1hoW8znr/XV8z6MsCoq8oDYNk8WM8XhCFLruKIoTmtqpB5Okhe97aK1WoXHKRQRo7diDWqOlQklFluc0VeWkn26OhxCKzBqUVijtoqqRCikddRwBZWUQVlMUNVJUVGVJSYWxlv1nz/jswWMyY8Dv8Tt/+7+g09v4j/Fh/71LCEEYhmzv7NDudJ0nTUmkI2gShdHq70Sr1t6CFUirVsBMlw+Er2l1e+ggJmy3mI+G1GnD6dEp+byirAzTbMru1hpfvnmV2dEpe0/nJHKTdusey8rj/mtfZnN9k9vXblIWBWs767z/85+iiqcoJSmLggCfPC+YzOdo5U5k0kBhU7QOiOOEIJAEvrMj2AaapoZGYZoa4TsoqFzNTO2KOdg0DWJ14HjBkfQU/V6PJEoIwpCyqJjNFyjl8Exh4LPMcgb9DlevbnOnkcStB2SlpRYJ6DZ7h0fMF5fsLTOCe336gx6NveDd9/4Fv/Hrf5uvfPlVur0NdnauInwPpFjRyPWqmIKKI6ww5E1B3GojgwmTrGCSFczSEmMgDmJu3rnOK6+9zI3bt7h18yZbG1uEQcBimbJIU8bzKY/3HzPYWGPnyg5B4NNutUniBGkU6XTG9rUl5+eXfP75I65evUZv0McqwfDikg8fPKWoQK9Qjc5i4SIyatsgrFgRvQUIjZAa09QoACNYzGZMxiP6a1ukWUYYD+ivbYBVdNe3SAYDnj07ZnRxRFOVKNmwubnDoB+yXAy5uDgmy2bIYUNvrcVgrUcSR9y7e4XTsyGL6QwhfMaTBWfHE4SEbrfhytUWvq8YTZcYkTKbLpiOF/TbPZKojae7NLVgmZZcDEd8+NFjqloxm+VMZyl3793hzc0NLi8vePz4CdmywjaSbFkjSqdcffbsAs+H69c36HcHBJ5iNDzBVGAqy/D8kh//+Cf0utvcvfMWrZaiqCyLLKOqLJ1Wi91rV+l0DHmWEUUxB/vPuHnnJe7d22a5mFIuBd12l1fuv8nNG/d4dviU8/NTev0unf4OtYh474OHlKVhOJ7z+aM9rt26zWQ+5Xw4pdPqkhU1y6zgcjLnycEBt+7cZpkXlPWEi9GHjEdTNrc2KIqM09Nz1te2+M63G65c2SUIA5ROePmVL2NfrhC2ocwzsJa6dvsn5fkUZcnt+2/y9o/eZr4QPH58ztoaXNnZZWuzDUKilMYaQ13lSGUQouF5Zp3Dyq0qFI4qb6zFrJTdDof3l7TjGo9nRIGk1+/QbnfwPecFUlKymC+wjaXMc8bzGfPcseie+6rKlRIxjh3lwjEHBVr7TsH2YvwkyPKcqixXBA0n66zrkrIonXIGiJMIrTWNMbAarfh+hJQ+SgUugTmIaIWaJNKEnTZR4HZTH3z0EfN0SS01nV6Xey+/Bc+pC/+B6zlv8Bd/LYQACXESOxXjC5O6IFl9j88RRO5XwhmcxXOCuURoUEFAMuixlm1iA8liuqApLGfHZ5xfnPL5/idcHj/ib37nG2SXI7qeYff2JtqLSLZf4f6rX2XQ7SG1R1EUHLy7z3R8xk5XAg1VWTLOK6wQREFEWWQIY6iLCmyDFj40UFcWKKnrFFODr51nTStJVVcIYVcMyJq6ql4oPp+bwptVmrRtXD5aEsRu5OVJ1tdCpBKcnp3y6cf7WCkI44h2K6C/1uFOvsNkVjGZw2ePjxiej1lkpUNOmSHXdju8+lqL+eIR7/70v+Hv/t3/CTdubCJUQ7N63uRz1FNlqOuGtEgZT6akVcPFZM5wkrGoBbUXcfXOfa5c2eXazgZf//pbvPLay6yv9wnjECkEdeXG26PxlBpDXpWki5T5dIY36COFxJeew461u1y/cZPJ5ZgHDx5ydHJOLXxyLE/2jzg+GmKNpDaNy3cSdqXKdGxEY82qaAnabZeCkC5KtBRc290iinyePnlKu7dNr7eO8LoIGaJUiEWwdSWm09+h19/m+PCQbDkh8Go6nYh+J8RTlsVyQtTS7F69gtKGk9MTgqDNxlqbp0+PCALYGqwxvVi6xPEgJM8qPE9zZXuHi+GQZZEzHxWk3Ya6GpMuG9bW+vhBxMbGFh9//JS6lqSVm5gcHh2QdARvfPk6r76xyf7+EaaMaEqPPHWvv/WNGKVSPnr/Idd2+1y7tsZGL6YsMuJWzGQ6I47aTKczDg72mc8b/FChPA8DpGlOkeZsbPTY3NilMlMePjri6PCc5WJMt+ujYo/JZMTp6SlpWrspQruL1B5Nbemv97jz0k2qyjKfTfnos0d8JXwdrXtI5RMmA3rrLdr9krA1xAtDuv1N7r/yFsL6ZFlNluVoDUHocXR0RFML2p0ejYGytICiqjWe1ihtCaQPgNcAOCWh8uDu/TX6a7uORegHCCEJw5C6dgdl09Rk2ZL9vYcEgaTbiel0emjlInsEgJRf7LKEcq8t6w6VVZn/0vf+X+nC1Upi8mxBUzdMpzPA6VVGoxFxFNNUhnSxIC0LDG5ZL4VyC3ylUavEZM9zN3BjHPVarqTyTeOUhY1xXZNZKeLyIsc0LmNLAEpLymmJ1MrJuJWiqgxZXnF+NuXyMiXwnbFwa6NHGBlu3rzKxsYW/f6A+WKBEYLaKv6X/5v/LUgfhMSscEz/oes/GAkgQKr/76eYFwtSLFbZLwjpViAleL4AWdPUNVHUwhhFOm9YpFNm8zGquOCN621Ueoxqcra2NvB8QWOh1+1y5+5LDLo95nnK0eERRZ5zfavP7noD9ZQkiTg5PqPV6uJ5PlHHd3ssX2OqmsCPHZooDKibcoXjcvlEjXQjzlbs9oxFUaC1/nNmR2sMevVrN+J19H4/DKhqgxaaKAnJy5T5YooxBVp5bK31ELZmPh2ThCGTiWE2zXjy6ISigUa4ePbhqGI+P6eul/z6r7/EfPE5//T/+b/n6pWXuXv/a3zl67+NF4U4qrylLAvOh5cMp2csU4MX9JB+C6PnqKhL/8o1tnd2eeP2LV65c4PbN6/S77WRCuo6x5iKumpot2KuXXNCk8Za5os5TWNoRQmJ9NGNQUlD6GtMkvDGW19isDbgBz/8EY+fHKDCFrNJhsRH2AIhvkBoyVVaQp43eC8OXxZDjR96iNzhzq5e3SD0S5rGMp1mNNIjaStSKdFKgBQoz8MPNdeu36IuGy5Oa7QsmYxn0CwBzcbGFn4oCXREuxvwbP+Q08OnKB2ghEeZplTSstZPSFoBQQjIgqooyJeXNHkBDbRaAbYSXNncBREiVchHn3zKyUnG7rXbHDw7oZgXNEZQ5iWHz/aZLY949dXb9AcRh/tzDp7MWMwr1npdvv3tN8iWp+xshEiRuWLT6WD8gKTVZWPtGidnQy7OjxiNGuq6puV3qOoCYwTPjo5p8ox2K2axPAG/TRxf4eMPjuj2FK3E45WXXuGT9x8xnS5Ypg3Kk/QG22BDLk9HpIVhc+sql+MRXuixsTbg1u3XuXHtdfzAZ3t7g6jVpq4ll+M5VgqipIWUHtYokpY7dCMqpLJs7Vxd5Wj5eDpcKXMVSEVZV+6Ahbey8jjLzvPDrKGht9ZbjdZdSoO1BmkFVbmkLAtOj/f4/p/9AXGkeen+ba7sXEXLgKTVRkchUgdYqzHWTXqU9BA4uK/W8j96n/pvu36lC1cYhnjazU+zNAOBY2t5PmVVu9C+oiBOIhphV9lYDVp5hEGE7/vuBrdqYY1xEmtRGxdfYoxT/K12ZBbXbRnAj8KV14hVm13jeZooiihK59WS0scYSxzGBIEmz1JGlw23bm0zHF46Vpj2WC4zN9qTISrsuLba2P/OrfQXRey/LTLgubKHF7s+JeQqCcQFy2lPIZVAqoBQtWhki8vZhMOLA/afPGHDn+PVDU2p8TyfRTqnXjQUpSL39qiKnGVesLe/z7s/eYfv/7s/5vLkGa9du4Mtlqs4GKcUbLUTAk/T0ICW+L6PJzWNKbFGuOTZKER1AgQCKQRRGFBXNdPplLquUEquwKNuRFuWLhr8+V5RSoUSijyvkFojpGAymfHo6edUdY4f+nTabcqyQEoPowRxPABRc3x0QN2sWB5WoJSmLF1MzJO9Gb/zO22kPSdbjnjy2QV7Dz5geHLE3/uH/3MQCViJVI4KL6QmafnE7T4ijPCSFp1ehyLL6IYhu+t91rst+p3EmbKlxWssTa1odINWjnwhlUIoSTuOqarKjfWspWkqamkIvZiw16PXa7O1s0EjBb//h/8HWtGA9bUN7l67xaNHH1OtQNMOimqwtvzCMFqXGGPI84y6KZzFQUNRZkShM3NLHSJUgsGnLKHRFu2BMNDUJUkc0et2OX32lNPzQ5bLC7AZvV6Lu/feJMvn/OD777C+kVBkKdSaIIjJixpvxabsJBFb2+sovyEIJdpXmLpkNrogXS7wtUeWNQR+Qn+wy6cP9tg/mFA3S37913a5caNFp7/kvfc+Jc8bglBQVBn5TcFkXPH40RkHT+cIK6iKiv29A65uJ2xu7pCmQ4QtaCVtFvOSo4MhB0dTxrMJRsBgLSGOnToUXXM5mpAkLYQfsrN9nbff+RARFBwezTg9mXD7zhr37w3o9ta5e0+z3r8FMsEPfCySqpDsXM1IKxDaYzobs1zO0UpjrKPgSJ3gh12qBqzwWNu4Qlk3PIcSGAtKGZqmdO9p6cZ01rqUCotYTQ0ayno1IjbmhbXGNAYhLVmecn5xzMZmHyEMvq9BCvYODsiWKZ72GfTWV+GaCd/99lv8/GfvsJwNOapSptMFa+ub+HFCt79FGPdIWn2CIMQ00DQlga8h/0tqQK6bmjAIMaZB64AojoiiCGsMo1UuzmBtje0rW1gso/GU5SJ1N0jtOW5gltM0FcY6aKSnFMo41R9CUhmzikgRLvIeCKMIpVyisRRO4RYGLr3VGkM7jul0e7SSHhv9AXHcYmNjkzCIMHVJEGga3OjjRz/6CYtFivZ80AlCOrq8UxP+p+lFXdF60ZevZPNf/P7533mBXhECkAhbg2iweNgGskXDfGbIypqjsws+/ewBH3/wI964FbMVeiSe25H4UYLwNb4SBKFgOX7GH/7ePyVorTNYG3BzZ42PE4+prIl8Tau7SeB7tFttDPJFlLcOAtKiIAk9bFNTlim+hCAM0J6iNjUCjfKcgMFaWFtfQwhBUWRMxmOquiKOYuqmWY1ya4RQeJ5PWTUgNVooRqMJR6fPaGyNF/iEcYDwPIxQSOFRFJLLZcrTZ+ccnF6CVBgjUNLHDwOKckFjXJkvyoadjS6LqoA6QzQ1H737+8yWE974yl/h1t23SMI+7TjEi28hlQdSU0tFrxOzvd5xnj/PI/IVvrB4Wri9rQQptSsmjcGTzihvceF9SilMY6ir2hlIbYNFurh5XzsDdqj52je/ym/+lV/n+3/4NnujMdd3rvDs6ec0taGxq5sWFmvcTqKuGzdGFtDUDVGkGXQ71FnKZDqm39+mMobRZMZga5uytmjhwgdD4XbEvidZzmdsbawRvfkGJydtjk+ecnT8lNF0zn/zL/+EXtejKBqW84ZOa43d7Q2CIOLqtatcDM/xfZ/L0Yg0m1EslsTtCInC15ZOu0WnFVKXNffv3ea9nz3i9EefM08b0kxjqXj/w8fcvnWdtV6Hf/D3f5ff/7d/wmhYELfg4Omc/b0zDp4uwDprzHSa8sO332X3SsLXv3aXwK/x/AilQgdNpsNobIjiNmubm2xtX2U2focPP90jKCTXdz2KJuOtV++jdYwfdDgdFpyfp1SV4fR4yo/f/oSvfeVNdq60CbwBVnSpG4NWHkJo1kOPvGoomoqNjU03ccgr8rTmYP+Qjz99n/PRLteuX6exkrKY0u70kM4DTFPWnF+cATVaNkSJhx9GaBmB75OmS6ReJTCYGt9XLqFbOgNxURZMJkN+8MM/ZTI74/r1bbq9iDjysdQ8ePAJ2TJDGEUn6bO9scXWeg/bZLz28g2kEFR5TjsSDC+eUdTQiD22dm5x997rWOMhpKQuc4YXI0fg+CWvX+nC1dQNjVqNvXAw0KIoyPOcxTKjrixJWXB8fEK326EVRVR5STpbUvsO3Oqo7Q6hXtU1TdUQqpXxVz4fpzi4q+cFeJ6icdnc2KYGLH6kCf3ARVpoTa/XQwpFnqWEgUYrWMzHmLokiSKiOKJqFJejIdPZbAXJXBB2N7D4K8rH8x3Wf/rj8jy88t8vXvC8sD2PMnG6VO28FbmhvKzIz2F2kfLZw31Gown55ICrUcGtQYe7mzdQskQpn6pSGOVR1iVltqAphjx495DchLz++pfot9tsDyTlVkKRT6mKmsBzJnBrasqiQCpFEkT0goQ8S7G2Jo4TFqlhvMzxI58ojpyi7eKCupywvraBF0QOlyUlnW4Xz/Oo65o4dmZKuQq28/yQtGhYZjl7B8/IigIRRGjlE8Y+VkC2YuHNpyP2Dsfsn0w5HecsKutENsL9sKYGUaN9wfpGxMeffkpT9kikIJQekeeBrrg8+Yz/8v/8Z9y+/WW+8tZ3eP1LX6e9eR0pBUqzYi8KOl6AVAESkNYZY8VqTCMQIFySthUWIxpQzaowO3mxUBJfBWjP4a+klijtMFlKSBoMQeDzD//hf59vfe0bvPODn3Cwt0eUxKTTfMVjsCgpXKyOlNSVg0Q7niS02wmb6z3mk0uCOOJyPCYtCuTxnHt1xNVrL1NWORJoaoWWDl7nSajLkjgOuX59l6qeEyUeYRTyzjsfUNUNd+68TBIHDPp94qhNWVRI4yMayXQyZXQ5ZDIbIjzNfFHQ7vRZ67vRXK8TsrY7YHPzOk/3lrz3wQcknS699YR0uWQ8mzObL6Dx2NwY8Nf/2rd5/PQp4+mcD39+wGyWA8pF1luDkILKSqbLikf75/R7HtJWQIcizcgyQxR10EFIumzYe3pKFDnR03Jh2N8/pRNWXGwMuH3rFariIccnFwjhUVUZ40lBXRdMpylVWdHrdAkijfB8aiOwaOpaoL0Q6deYpkIh6LZbtFqWuNVisDnADzSNtTSNpaga/NLZa6xtmE2nfPD+e2TplHYn5KWX77M20OgowRhLlucs0oVblXjukGFtQ5YumUwmLBYzzs+PePLkAX4Al6MT7t67SqsV0G6FTMan1FUFjWJ6eUE6PWc5G9COfVqxs8XcunGF5TJHnI8QXkxv/Rrt7vYLpmttDM+OD/njP/o3DPrtX+q+D7/ihauua0rhTKxUbh8ipcDTml6/4/KxvICqdBla02xGseIQlmVJ85ytpSVIQeAHzhPWWGgMQim0lu72Ll74vUmSFkpIsuUSJcH3NWEQEEcxCEGdl6tYlHIVCaBRShOGitlsxHw5ZTydMptPWS5TgjAilPDrf+Wvs7F59cX39+f2WH++cfrzzdgqEVI8L0f2edrxF7BL+KLbcqn2aoXvFQgD9chy+NMTPvr+Qx48ecA0+gxTPKMnFbvbBXpd0hJj6ipGBD4ChakNy2VGXpcEnqQV+PjKUpSGw89+zH5TEIWKe/e2kdRsbm5xsHeIQmJMzcXFKd3eOgqBp52yCy/A+F1++3f/AWntMZyMOXi2x/j0krwUYGrkLGUye0qapvR7Xba3tgjDkKpyi/w0zdja3GKwtkZeNvzpD3/M3rNDSmNI2i2yLMMLFcvZgqqqsY2ARnJ0OOOzzy8w2ictHf1D4EQMZhWGLKV12Wpa0xjBdFGiW5LtjU0iGzKZpmgablzpIMsTTvbeZf/xR/wX/+P/Ba3+9otUbGt/4SkUz/0t7qDhRrfihVzYrviOWOGyHO0KbSaEM8crz41MV5/MiZGlK4gSru7u0O8PSFoRjz/fJa8zjo6f8f0ffh8lrRMhSYEQ1n2vK+FGGEi0dq+ndqvH6ekZUlQYYWgPIubpnLzOoLG0ogglHcm/qhoC5VHkS06PDxGi4nJ0iaHmtTfeQAjF5fCcq1euMuh3yPOcqoJ2e8BiuUB5AdViytraGlY0SD/g9GTIeHzJwwcXvPrydYqsQIoKqZfcuH2Xly8K3vnZA+68dBeE5eJixJO9fV65s8v3/+x7fO0bX+HmzSuspyUHB+9Q1w3GCqI4oCydune2LOitd/js0Qk7WzHdJOT87CHCKIcYkx5nwwPmy5zprMIaQVU69MFwmLN5Z51n+xdsrp0xGi1J04I0L+h2ezRljqcrPn/4kFs3r1OZElE3WNsgpY+Qrhsx1gU0+jrGipIsX6J9TRh57F6/SmNrQFBVgvWNhLIsAUFdWlqtiPv37/DJJz+nKJYcHu6jlc9m2EUgSJKEsi4ZT6fs7e0xnY5RCicWOTsmzzJMU4Kt2djskRcVn370iCTx2NlZ4/atuxRFTlM2zC5nVGXOfDokkAkq6dHrt4kiwdWdmwRxxNH5hH6vQ9zugPQx1tLUDVtbm9y5c4vx6PyXvvf/Sheu50pAg2W5zDCmod/r4mnf5RDlOUubIgVMJjOqql7BLBVSNs6orBVSrKLcceNAXyqCOMLzfeqmpqxdSxt6nlOKGYOvJDpOkBiiOKTdblOWFYvFgizL0J4mjCLiKCJNU8aTEcOLC6IodjEbRcEyW+CHmkWaI5Rk9/oNojh54X2w1iD+wlNkV9YuZ/RjtacAmhJT5uSLOaayWOMKS5qmjOYzGm2I2zFx6NNtt9DaxzSGPFsyG4755Acf89n3HnD68IzzywM6L10iwkt3g80dbimvYhZ6A9900J6HJz0sBUEQEIcKa3Kq6Yw6W4KpSEJJEgW02iFl5egiErmifSiu7GwideTm7FqhpKBGMlkabrz2HZYmpDNfcuX+nGyx4J0f/CGziwcEcoEpHT6qqEpOhxcMen16vQHWwM5gk831DU5OTnh8cMzB2ZSPn5wzSwuu7G4wGl/gB5YbN3fodtrYRjC5nGKp0B5MliVN5VSBDiXWoJUbp/gB9LoB/V6Xl166i+/lpPNjjs9P+I2vfZdOZnj3g89QStNfb1NlZ8wWJf/VP/k/8vf+R/8zuus3CX13+hS47su6JxSBgZVFAexqL+HOKitrJ9IYmheeGImSCiFXnXXjTlfPV6MCRyoJg4AwiPjmd77J5uYGWZby4x98nyRQaGXwlLthVqWhXjXrUkPgW3zZsBiPmE1SPFnR7XoknQ5vfuUtBhs3XLR7EFGmC6YXI6pqRhQ4hWMYBNy+dYWjk0Neee0lwpam1fV55fWbZItt5qMJTx89BqDf32CYXXB8fExlCvqDNkjJ2cUcqTOm85LxpGY6qTgffsa3vvkyapLx797+PXy/g1BtNrcHzKZDsmxBHAuErTl8doj2aj777OdkeY30Yv7aX/8GDx8/4+Hnx9Q4g7KnNYt0yXxZoLXk+CLl8HDGy3evMJ8XNHVK0yikDkjaAVkxpSggCNzHmUYxnlQshOWHP/6Yzz4/Aw/C0OPenVu0koDzs6fsPX1Gr9dlY/2Oo5UYy2I2o91aR1jtnsfV4cF5QQVFmbrwxjonSRL33hZgTe4YrVaiAkEQKJJ7d7lyZZ3peEirldBKugRhRN2A1Iq1QY84joiDkA8/fJ+DZ3ukyzmL6ZyyKrBNTRh5TCcLyjKjrg3ZoiZbntGKe3S769x85RrdJCTwBNIWPNt/xLP9fRbLJU1t2N65wZ079whaU7ezlxqEC+ItyWlkwHe/+5vMZ1P+6A9/9Mvd+3+pj/r/k0tphec5dRlGoGWAkk7s0KyMq0qJF7sfoT306rTseR4Yi1p1I1K6RbrSjlZe16UbxwhB5DsKRuBpijynrErKqiCOE+I4IUxi8rxgPJ448YYElKBqSmaLmYPkah+lAxf6Np+7ULymwPN9+msd0CGBk0+xuuW4kdLz6xc6Lrs6rgvrlEBNU/Pgg5/w/g//mOziHK/yaPld0qzmdDzi0fkhmSrZurqBpGKz12Wt2yXwI06PD8lnM04PDzBVRXw9ZON6RS2XRMpDAp5UBEqjlY9EEeiQIGphkfgCqjpnmefYukBoSasdUeYWIRqqMmMxzQFJTUO31cHSIJWjbOSZwUof7XvUZYEtDEGUUFtLDbT7PXa2N6irgrPTJ1wGJR1mSBaEF+cslnP2nj2jQeBFLdYG68TtLj945z3KsmKWGY7Pcz7fW9BI8DrQ4IOxzJclk/k5d27u0h+0kdZQG4F/uiQrLYu8wiCxUmKs8+tJaUkXOePhJT97b0mvF7LRkyCWLOsZXneTDx/tIWufy62S9X7LjXLqhn/yf/3HvPbtv8033voqa72eU1UpV5rEalT4gkv5omd2r0GhBEoKtAVPuGW7cKcox3407mOVVHieXnXrcmX4dJ8j0Ipbt67z5pde45P3fsZmp0uvC52WoKpyyspSVC4oUHrKEU1w4aoyVngeRKFHv9PlysYWnu9TNR6eVZR5iaortDD0Is2NG1cRCBqrGE19zidnJCiW1Qk0NSIXdOKY2199k8ZYhsMRo+mc4WjC6fkZXuA724O2LJYzylqQZhAkPmnV8O7Hj/md3/kau3du8OxgCGVBux0Th4o4HrC10SUKNKFWCAlPnjxlRMbp5ZB6v8CLQ26/vMWjByeAZW3QYW2tw9HJKS+/foOrV3ZIAo9OJGm/FFIW8NmDfRZZyWQ8YVnkWKNpDCghnIq49phXJSqyNMIZWnwNp8eHKAlbW23WBwOaSjG+GDK+2EPJAGsUvTsRFoUUPlUNH330IY8fP2I8uSRKPLr9kF4v5M7N22xvXkcqSWMKhNIgtMsOtBaspNdeZ723jsJ1b9YqR6MxDRZD7GnC9QFr3/4Oo5df4ujokHffe5eDw30qGoqipMhylBZ4nkQJj/mk4rNPnnHz1lXayYTpKKfT1hTZzOHVwojj8xnD0ZzD0wlrmzfY2rlNHHURMqKuoCoyp8S2PlUjCYL+L33v/5UuXM9joqWUtFqxixpvGrR2eKfnqjwHopX84nzGV9oZVl/w/77YKyklkasTr+/7L75OXlfuBQIkSeJ2WUqT5iVFUb8w3vmeh1wZO6uyoCgritygtM9iOQMp0Fo5FZKUNMZCsxpHGXdkNlauyBkrufovTA2dot1ihfPfZNmcH//wj/je7/9TttoBVVbjy4CibKiw1E1BZTIOPv+Ubithdip5KiRBkFBlORpDGAl0W6KDEiugIVxFwRhk476q8rQrrtad5IPAR2pJlhvm0wVyhXsRQBxH+B4IWRN4CqxEqZDAS0izGY11whiLh1YKYSyBkuBBTUNdC5JOGx1olLAYI1lMDHsPz3jrlW2uXr1G0t/ip+/+iMJYJosFyWJGlufMZg84P7tAKY/j4ZKz8wl5YUm6CbN5iZKC27du4PuS87MzJqOaL3/pDerdJTtXZuwdnJPmFWcXE6bzgvmyoigalO8BhrKsKRswwmM4Wbj9V1zhtbpM84h50UHZgFKv8ejomG5iaQcZzz6/5NFphWcCXr57j+3NDYJQ42LXVgcW4aIqnNJr5anCMeCeQ5WfK06lFFgraRr7wvApDE7+LFcGeWtdUvfqcwaex1tvvcnot8852X+IUgtarZq6ylyad2Moysq9jzyNFO6gl+c5Ulp8XxOELXrtNo3xiMMWUngEGppCIUVCYwrOzi/I0pyiNPzX/+pfU5Fz/7UdWh3JWjchMB6Bbxj0rzNY2+buvducXY7prq/x6YMHfPLgUxZpSVE6VFDZGDwvoj/ocTG8oK5r9p/ts7OzztWrW1ycLhlenJNqQyv2qLIpr758n26nzdr6gFu3bjKdz9k/PuTpsz2WxZKd7U26rdt89skRiIJXX32N4WjE2emIqzs32NjYQDZTokQTJwH3Xr7DO+9+4FIQhGWxzGka1zm7TDlFFHdorFPcRpFPEITUtWNSXgyHrG+0iYKK8fkTpqMJa2s9BoM1jo4/xwt7VHj85Kfv88O3f0CWL6ibmqQV4fuGl+7f4MrmJmWRoqULr7UrYy8K9x4TAi0lcrU+eH5PkkKs5OzWCTKUJgp82u2El+7f5/r16zx5+oj3P36fk+MjJ/FvaiI/Il24RuDZ/ojJeMHJ0QE3bwzodz2aOl+pfJdsbuyQpTmP95+xdzxBf7rP3XtvEsc9tPRJkjZ13eD7MZ4fUjd/SckZrKTpsBq8WIvWarVrciOTpjFovRqnPFfWGYMUAmPECxagknJl3JVQl8AK3yQlTeOSkgUWrZyfwYscgHYxX4LUNJWhaaAsanzPQylYLuYopWgqw3K5RCmfKEnwwwCtNNqTVGWJEIrSgDQOZCus+7dYxKrrss+/Q/fv5/layxlFL4dnDM/2iCOoyWhvtrl+4zo/eecnWNNg6oJO6NFpdymrkroxCO255XvPx5QN0loQhryoHO7HGExjwAp86cyKAc8XMJamKimAqipJl3OaqsDzXeyBVoJWKwIaqipD0FDkFfP5jLqe0e+38f2QxhiM0WjlOmfVSDwt2R9PCdot9Gps6mvBsij5wZ9+wJ/+m3/Ne7f6/MZvfZkoUuzeeonPHn7OZLbg6dM9tJBUZUUUthBSk2aCxWyOtFAVDXlWkWY5x8djtjY3MVWL997d49a1e2wNeuzsRGjP5+j4giRJqI2ktposqzm/mPJk/xCkpcjd2DnwQ5JWiLVLnh1NkNE2f+8f/E8ZTeYIJRmPjrg4/IxisUTJhg/e+R6Lac6bb36Vr37py/TDhDjSbGxtsLazhgqeJw3L1b7LvOi+sBYllZsSPB8HCoHn+ShtnP/KWL5Ql4o/tydt6hqlNa12m69/6+s8+ORbfPDzP+P+zZuYegnWGfTz2u2LMY431xhLGWmkcj4tlFOoWalA5njSkmcF2XyGbZY01IRJRBBEnDw7Ym/vHBWACuDLX77hEn/J2ex1mc0vmcxnpFlDVjUsshlXrm0SthSNEVwMl7z77gPHvzPPbQmCKFLMZnOMycnThjIXtNuaPJuxnKcUyyX7/gGXrZBnh89YW+8xWO/R63jcuLZG2VRkRcXVnXVCr+DZ3pxW4nHzxhU+/uQpf/LvfkC/5/Gtr12n9/JtxpdDDg7POb04ZW1tfcVGLVnOna9NKcF4MmVtMGA0niKkR1m6d6s1hmXqdlG//29+zr27O3zza28y2NgkzYZUl3Me/eQHbG/fZ5YJvvf9t9G+wg8Utqwp8hyM5sEnj7i6uUUv7tJpa8oKlKqpjCWIYowRON2YefF6wTiijBWuQ5fCHYyFEGglXzBWb928we07N3njrTf4+JOPefTwc/aePqEqK5rGfV6lLMtZwUFaUGcZd+5sEQSCZVpghU9aGKJ2n+XFjCpbAg3K26fdntFp96jrmslkThS3SVptqvovqRzeGtCexvd93FhE4HmKMPBfdFClLR0WyDxP3RVuhmwNjald6u4KoCWE28Jn8zla6xc+L6UUSZK88G1ZY4iiBGNqiqpimaXMZ3NCz2Ot3yWJPPr9NgjD4eERee1k+5tbOwitKevK3YAU1JVjupmqoq4LrHU3RFb0AqzkixHSF+v3F9pAK5mOxzz89H2K6ZjKV+xc2+XG3Vs8OzvkwScfEykNtUQ2htgP6fbXODg6JKfGNDnSQFPUzhcEq6wvlyatpeK5P6yqavI8w7MKUYMsXVJuFGjW+1tIaamL3MXAzBcsllPKMgUMTSMAj5Ojc27cvEqvnxCEMVna4HmaXjfBVpDmJbs3dpjUFTo3qMIQWMnnH5/w/vuPGc0zZh9dsH/8jLW1Nv/oH/1nrG9s8eThA5JQY6U77bZasYPoZkuyNEMBZV7Q6iZ4nuL4eMxsUnJ5PqPKSy7OZthqwXR8RlHWZIs5i9yNMZUf0e50sEiOT87IqwpPh9y5dZ+PPnwXuZlw7fptRqMFf/M/+01uvfQdauBssuDp0yccPvmYiyfv8+G7bxPJlJ2dDtduXUF6luOjfRbnc155+VXn91vTyMAVrfHFOe+/9x5ae2xfucL9l1/hxcjAil8oXg7ZJaR8QX3hFw484EgFUrg9nUCwtbvF3/8f/Ods9H3O9j4jFC5TKvAkDSFInDUhLahqS2EtVgiMkFgZYIRcER86pMuSqrEI5ZMkAXE3IWoljIYjHh8cUxlBmVmGFxkXFzPu3NpgMb5guhjh+R7jacHxyYSigY8/fcLaRkIY+2xtb/O1m3dYLisePnrGfFFwORwjPeGyvDLJ1Ssb+F5JpgqssQz6PQLpU+UNJ8fn+BH4vuRiGBDGmihWxElAGEm67ZBuJ0Q1XaQxHB7u0TQVg0Gbqq6oqhodKIytmC3HPNl/wtaVPt12j1bS4atfvcWjh3t88vHnbt9a1jTDIYEX0u31uLwcskgzBN4qRNHRXT5/dMZ4/H2uX9vgm9+8jmXJ5nabn3/wIagW3W6b2pZIJfADjzwtUFJjDfzoh++w/3iPr3zlLb70+jcoyxnz6RwltqgbhfJiLO6wIRCOQ7rCoskVUceuRsp2VeC053ZrZV2ysb7Od779HV57+RX29w549uyA0XDI5eUFl5dDtDJIYUiXDednc9qdgKoRdHo9GhExzxqMCOmvrbN79RY72zfQKkBrTRK32NzcwiABvSqwv9z1K124As8jDgInrwa39zEWUzer00SNEqxSed3HiOfwVSlRUiKF82M56pEzYHY6nRVdQ71I6fQ8D89zGKOyLGA2Yzqbcn45YzbLqIqKXjtiOZ/xV37zW7TigPlyyne/8y0++/wJp2eXzBcLKmNpdzoUlQshdM/dirVnaqDCSuWydaxArQCo7gQlvihd1jGFBJbZ6JJEWybzDL+f0AoT0lnKvZv3GJ1cOnN1XaF0gFSao8MjTFMjpaKoCofJQqK1v9qnuK+PdR2m73n4nk8QRCitsdZQlxm+7xPFAVqDaUrS+YL5bMp8PgfcDlIoByhW0ieKIjq9AbPlkqrJ0VoRBl3CKGawvka6rJBhyaLw+OmDE3pdD3GWM3605F/+6z/h4wfH9Adt2oFPtpwxHF7yB//297mxu87tWze4vr2F72mMcXuiujG02hPOhwvCxDDPDUU6pzYV+dIyG2dOeSfg008+otNuaKo5YeyTl5bxpGQyb6iMQEhFYyR5kVHUUFYC7bcBn42t68zSMePREX8nUvS7TsW11h1w++ousy99iZMn30TUMBvts9nKSI8/IOp9lbDvcXXzDnGrw3C4QNc+xApEzfd+/19TLObkRcHPfv4eWZryxpe+hPScuMNJNn5BiWFXxesXrufdl9baWT6KkqosCJKY63df4tfriu/9q4xyPmK5GIJSCOGIHzSWyE8wtkQZA0pRWcl4mjMrjxE6RXkd6kawnE2QtmBjvUsxHDGeTfnoo4948uSQyjgR1XxRMRzltDsLJsMRJ6dneDrg/KLEipC8qMnKEjmD5dk5XhhQNwVvvnWHs9Mz6tKQ5yWRUgQ6YNAZoAkIlCCzS8IAdq9usNbrMehs8P3v/Yh5tmCZ5gSBwCsq1rZ3GA7PSNoR7V6bcjnm5Xs3KZeKP/neR6ggIkki6toQx4r5fIH0PPyozXCS8frude7fu8flcMpPfvJj+t11ru5ucn5+wdb2FuPRhKLKsLRobEPV1OiVvQChqBvA1gxHC9J8we5Nj7e+fIvb917ms8//HU/3TgiikNoWbmVQufDYsjEI2+Arg2VGWZyQZftcXEx48uSYl175KlG8AUhqg9t94Q6fYmX3MatkBWMNlQFPuYgnY2qEwLFaEWgr2Nq8ws7WLt/42jeZT8ecn53y9Olj5osZRT5HaUO7E+CvslqK2k1xtq5c4fpt39Ez4jaeDtBC42ufqqyQ0uXWZXlJmv0lRT6FQYjnuV3VF6maUFclVWVXOyxXkKSUmMb5r5q6wSqXLmxss+qqnMLwedZVURTUde2EH7idloWV/BSyPOdydMnFcEmaGzSSIqjwtE+StJDSsDZYW3UpBc/lQkkUY60lTTM31sHF2Re1WXnH+OLEJB0I9i8q4d0h2qnM6rrh4NkBcRxy7/5VtOeTpXM+/+QTZtMZpnYnvajVZrZc0tQVvqed/NwKpHB8R0emcDs9szIluhueIvQ9er0+cdymrqBpBFleYkzFZLzAeRprtBR0Oh2SJKEoK9IspSgzysaN4It5ivTdyT6vcnpxzHQ6xdia49M9ZvOcLCtJ/W16nc+5d6PN8dv7vP9vH/H+g0+xjWZjfYNr2wKqKVrVXNkYIE1D7AVUeUGoPeIoxvN9jIUgignimKJSfPDZY84upzTElHVFXRZQ1dgaPK8mCj2C1oAg1MyyjLQwzBYFtoGyqMhzwIKvJPNpztHhkMl0ycXFHJoxy8WU2XROYwRaCiQQeIJut8dicIXXvvqb1Mtjnn72Mbqc8u4P/g2V8dm9cQ8/6CLwiXotjG9oKKiyBQKHsErTlB//6IcoLXj9S2/+gsHv+aFtNU78c771L6YJz3svbxWmWlcG7fncfvk1PAWPP36PJ59/xOXFMVXlfHpSK9KspGokk9mSonGqvNpoTAmT8ZiGjCBsYeqG2POYZSXHJ8ccnRxyenFJYx2xoTIGU1lG44JFuke/4xEGPlZoTi6dyvbq7jaBrjg4GhPFlijxCWNDkkCvH3J+NkWgKEuDMZIsrfn046f4gcLzDFHkYW3BxeUhrVBz++4OJ2dngODy/JIkCNFo7t64S7fX4dHjz8jKmna0wf07d3nvZ48xSjPYSLi8LPE8zcnxmAfJHrNFiVKwf3CAQKOFZrlc0O30uHb9Gr1+hySJkcIymcwpypy6rt1UpS7c82RY+Qtd6GPU8ohbCZPZkjDepj/o8clnJ6TFnCB2kG6MJk8zAs8jiWK+/a0vobxLbt/vo/xLdq+1ODqqePToY7qdG1y5dpdGCCwS7QVI6eEpuaIAKUcHEhJjLVXdUFpnRHaH0cah8IRc+VBzQt+j22nT73XZ3d0lLwqy5YzpbES316LTa1EZ5ynLa4MfhpydXfB0/5h+p+La1avkeU5ZThis9V68LqPYpzHVL33v/5UuXOBm/HJVmP4c+ghLHMcOhVPXLzK0lNaoFYhVKrXyOjVUpaEo3IstWHVWdV0TBAFBEACQr/6f53lkeYHSmvWNLhaPVhjjaQGmZDqfYU1Jli2YzlwGlzEKhCAvS6rUBSxa8zw91BC3+2xfuYaTDTowpbACK8FgEKuW8bnSsDENNW5k8nRvj+OzM7RNCcOA8fhylUDqQi0tzpgthBs9YBt8qalqV0B73d6LTk4q6ZRqTUOn0yZJIpI4pqpqRpeXZFkJQqOkj9KKIl8ipAvU8/SKqK80Qio6nR6GHrPlHIPi8PCCs9MLvvOdt7i4mJKfnVLmlvl8ivIM4GOle34WF6fk8Yzp8Zzzw3OaYoZgRqg8dtY6xL5GiIZBr0W2mCFWzjQaS5WXVEVJVhakeU6nHaN1zOm5j/YSgqhDY11Sdp0vacqcl+5t0W7HsMqmCuMCK1yQ3niSkmcl0hSYpiIvLZSGk2fnLJc1z/YPubHjI43i7HRIWRuslo5sbyx1VVLXFa+/9V20yImjHqcHTxhNh8RJn/HkCDjB1Ap9rrHusAyNIUszPn/8mOl0Tnetzwcfvcd3vvtdOt0+v/M3/hZYje8HLw4yL8zLFmdmxnXuLjkbiqwEa/ADn6YqkVJx7eVXkb4irUvORyNmoynCGlrtFmHUYnh6xvHpJXldI9SCsLVGZz3EDyTjRUFWzgkDt9cdn15wcnbu3itmdRhz8ymMgUVaIgoXLe8nbSrh0Yg5lbHURiM9H8uCqiooyoJBENJfC3nt9fss54Lj00uKsmI2zQl9n6o0TMZLoljQ7w+cB8pXxC3NW7svIT+Eh58/ZffqFpuDAZ24ReyHZJMKnxZnlyd8cPkJ46nrX8uy4MaNTQIfTg7PUHGLJ4+OEZ4mTmLqyrC/d+AS1T3l0gamMyaTCcvl0gG5qwYpq1V0x+qOZJ0QzJjavV8UtDoRWVmTF5I/+oO3efDghLJyj1ljarfvNg5H15SGMi85Ph3S6c1QQclw/IhB5wrdvk9ZxfQG/RUSTFAbQW2sUxauJjoCjbFQVhUIp1L1lCRNc5QG3/ed+Kc2VCtsnfs3O1C00h6JFxAnCRvbO6uzuEVbkL5BlDV5WVGUkidPjjk9+ik3r12jncRY2zBY67K1tU6716XVavHnzaj/adevdOGyxmCa5gVo1VqLt9p5uQ7MgJBIzwcBWipHB1iJLrRyINTC2hUAUuJrh9OJY5ejFUURSmrCMMILPRaLBbO5U68FUUjgh3heSF1VLqtLWA6eHWAxaC3J85LGCqrG8eQaDI2tKesKrAbrxpGdQYuNzStOvtpY9OroLKwrCsCLlsusJNDWWExdrhRg8QuPj7UNAotU9kXBk0hsY6iN6zAbZZBK0mlHhKFGSo3n6ZVask8URVxcXDCfz0mXS7T28HRAGAYY40gixjT4nkuprZsKqVxysa1qhAowQpC027TXtvjk04c8enrIfJoznqW0ul0mowukUsStNp6v0dpjvsiZzsa8+1//E6ovzfnoewc8O92j5JzdrSVXBl26YUUUuB7CFAsiTxF67rmIo5iyKFGeR15kVEVGni/QfsBWz3MZbRKkF9BKOog6QSvLndvXEUJRLQqaKiAuW6xvbvFa0OO9n7/Lx5+9Q5BolFcRLN0BZu+zJ1gJ0/Mp8Y1r1GXNaDTm+PSQtUGf2I/xPY9Q+Oxub7pdghL01jc5PTnhvR+/y9GTZyzmC1qRxFOC2lRUuUAqjbAlP3v/HX7y03eYLzKiJMALNHk55c03v8L//f+2hzUef/2v/U12rl4jrwqUlCSxy4wTajU2FIKm+UJdWBU5vufYg9LzCaOYtev3+Fqry+7Nl/izP/pD3vnh99jAwy4WIARRHONbiRU+0gso8hwhY+I4oihr6qZivqwcwksrHHPXuHBQsQJaK4/losDQEPgSz69otUL6gz5lOWE2z7DWkqU1Itacn01otRKu7kju3b3DbKyYzn9O0BRgS5bTkiiOsU1FnjU8fXJJEmmSSHBw8IzA80kizbUrG/g6hEZweTHl6qs3+OzTTylSaIUbeEGHdDlC2gIlLEfPnrC+to0mpCkFQjcUtmZ3d4tHD58SaI+6qlnMcy6HzzANGGPxA0VdNTSNuzc9vzE/j6gXwqlupTtXYFFMpzWCkrff/pz5XDgBirDUtbt9YQ2e8tw+HssP3v6Ur31jg9FkzGxyiESye+02xu6Q5yFFWRG0XA5hXdeowMcI51lNi9z5TPOSZZ6xmE5pJxH37t528SR1zfn5OXVdo6XH+toaVd2sCpRABx5NA/X/h7w/ibVsu9JzsW/Ouepdn/qcqG/Jey95WSYzmRVT+VQ969mwZcBww5A6tmEBckNQQ90UBEgt4/XUsiyXsmwZkGEon56UlKh0ZjJJJslL3rqIG3Wc+uxy1WsWbswVh094gIHkAwwTOsABiWBE8MTea88xxxj///3aR6CY3oIhlMRaiZQBcRRx6+ZLJL814MP33ueD935GVRc0bc14PGBra8Lh0QFvvfkGzv4nKs4wxvRjA/+iAyjl4aOq33F1Xeu7gDDoP7i+oAkcZZHTti1RPz6JopAk8axA79HKiKKIpmnZbHKaeUPTvSBuWOI4JkljsiRGiYwwCGibCqT06Z5SoSIwrQfaVl1Hpw2O/jZF0N+EPfVA6BpMiRSp3305iROKXmbmb2H9WaS1xlrNerUkHQzQMiagRdgWJwRCOs8Cc32UttE9XDhDCE+0V4GPQZlNp+zs7pEkKVVVsV6tOTtdY3pRiQrkNe1BCIfuHMr/SIRpQqAVTes70qbVrNc5edkwGk9IB0POr5Y8fXbKcl3TNLDeVEymI3Z2t1HE6NZghWO+WrDelDQ24O27e7TLP+XGUcNwvKZzNffuHRKYnHJ5ThcKRqMBQRIThYFHacUZYe/Vy4YDkjgiChWL5RyBwTQbtoYZMo4RKmCQRphakyQhSSBBSoazIV0zZX0yZLr3JjdefoXGpXz3j35IGgW8cveQOGqwnWZTFLTU7O+FBMoxHU5YL9a8886H3Lv3Gnfv3GOoBCKQRKQoJWgdxNk2O4cTbtwNWV+lnD37AWmkSKMU4TRFVXFyfsHHH/+E1eqK8ThlOI7JyxzrOj765B1eeeUOuzs30J3he3/yR3zzV79F2dS0bctsMmU2mzGZTgmi0E8j6N+vSBEEKSKUDKIxrs8fiNIxu0cZs609br/yBr/y67/JH/zrf8n56SMshju3jxAyIknGBMmI1kUsipZNY9gUDUWZU+Q5uq2QOJRyRJE3VUuh/fMHtIUlyfDZaloxv1oRipQ4DBHGUjc1ba0ZpAmbZcXySnFxtuL2jTu88eaAzgg+/PA9pMjoWktVtty4cZPBCC4vT1nMG/KgZbVYMx5OmV8uyZKMJM6wrUOFAbozDLMxy2WFbhVhFLE92+FykROqgFfuvcZ8XnD87IQkGhClIYt8w97BhKqASEru3LjDh6v7SAHaOJIk8Jlx1iGFH8X26fX4Qby3Knihk8BoWC1rVkvN5fkl+Qac7Y3kgPiPGKN+jG8954Yo2cK4IaiE2rSMIglG4aQEoXq6v6RpG5yThBGEPQoMJMY5zs8u+eC9d3G24+TkmJ3dLWazMT995x0+/OADwjDka1/5Gr/2q7/ag4BBtxqhQoQKqNvaawWcwmmfpCH63WsYSG7dvMn+zjavvHSHx08e8+lnn3B+eYq9MnS6pSxy9nd3fuGz/5e6cGmjr9+QwcD7GpIkvi5YzjmsM9RNB83PvVpSSkKpSJKY4XBwzRxL09SrB5OUpm7I85zlconuDFKqfrndIfqlpm+rW1bzjc+rQdJ1LXESgRRoZzEIrBC0pqMoa//3CBBK+XgBIVAKjKn47JOfcT6/RFqFMZrJ9i4iSpEqQCKRIkDFEVJKmqLEmobHj56SqBbpNKHyc3Gl8IWLXknkFBJJqAKiMCJNEkajIdvbW6RpglKKs4tzHj9+2o8Iwp7N6A89bU3vlxMo5UkjgQq8l0gJnDMEYYgMIoLIH2TGNTw/Paeun5NXHU0HZS3IUsnuwS67eyN0m1Jtas5WK1abnLrTSBkSRYJYbkjCgmgrZ7ojsUoSBksCbYmDmDgOSZKUOAkYDYeegSg85DiKApSS7O/tMb+6JA4jdrZn3Drap7Mdm7r29AktUNmQNI4RBqzpMMLw/Pgpv/9v7nPv1aeod2LiVLGdSZoq5/jJEw4PR7z99k3qpqVqV2SZJQ0lhIof/PG/5t/813+M0Qk3bt/mf/Q//mu88YWXmQ23sAYuFjnrTUvdGs6ezynzNV1Xc3aW00008cBL2//sR3+CNht2dmY0bcOz42ckWYBxltlWStOuaJoxoRpRFRv+8Lv/jtn2NpPRGNPUSOcIpCDoQ0UdXKO//BLXj4O1Nj7wMVQE0tJpjcNw7wuv8NfH/xP+L//7f0yRL7G6xJqK6WjEzs6E2c4Ry7JlWTbklUYby2IxZ7NcEkVwcvoQowukM6wWDWEk2d/dBik4Pb/AtZpyXSGFIYwE9abEUVK3DmfAacH8smAyjlhvW/KpYTya8cUvfpHpdIjuWrAhH37wAUmccPPGPvfu3sV0DXV5RZFf8vEHj9maTuiEwZma8XCCsoK6rmiahiwdEoQBedVRtw3DQcbuwQHHTy756ONjyrwhyzRhIpFxxI9/9D51ZejKBmUE3/q1r/HhRw+4vJwznfpOf7WqcNaPBQMp6LS71gP7b2/DQUquLira6hm668fkmB75pK49p1L4VYaUYJwjkAGfffYcFa25dUsSBoaL+SWD4X5P7R+ibY0KIirZkecboliQZQOMhrKuEUJxeHREHIUU+Yar+QWn56ckScj9zz7h4vIcawynx8fM55f81rd/h8lkStMZTKuxDsIw7s3tfe6c83YLh8VJD2tWCO7du8vtu7d58603eP+D9/no4w/YbHLKfMPy6uoXPvuF+/+eg/H/l1/r9ZrJZML/6n/wEtPxgDD0xavTftnX1BVad9d+Btu3pH7xKBgNhyRJwnA4RPaLb9/B+HiSdV4ihSAOIx9GCHRt58MnYy9e6PrdWSAB7eWqaZqhAkXbdQghSLIMjfdArFYF602FFF5wYdG8GAjiOsBiVICRCqF9R+Mf/gDZ37ikDPzOy3nggnIGIRXWGSJRe8m6McRR5BlzWIIgIgxjoihmMBiyPZ0yHGQIJ1jO11zN59RNTZzExHFEHEfgvDITgfd89fJq6yxKBkgR+k5OgFSSIAqJ4oh0MOTk/JzPP3+EdZ42cXG5oHOKprOsVgW6a/md3/kyB3spJ88fcn58hjYKJ0OcCnBWEClFEkYkSjGIIgIlEVlCmClSJUhUihTKj0+EJU5DlBAoJ4mimCSKOdg7ZJ3nPHr8yBulhUGbBic0eVOjtSNSGYGLSJKU1jS0tiEMBYIAFY2IBxPOLy+5ODvFaUNT5aAMKglZbkoGwwllmRNGPjuqrUtaGxOqGaqLSLMxURayLlaM0gl7B7fIRrs0LqRuNVpbhHOYJqcsCqSKcKHifHHJd/79HzDKIAj9+7hYLdnaGbPOrzg8PODtL32D2eSIWE0RNkWpCKR/Tn0Uht93qSi8Vhp6I77Cg10sm+Wc9WrBanFOFBiyVPHsyROqosYay3CUgtAkEQRSMhlvsTXbRwYZ8XCGiAa0KIxTOCRt11HmBcY2bIpLnj59wMnxMZ98dJ+mNLz26l1+53d+i3/5//xXVM0K4yxhINmaZcyvapAhdWNwVhFFAZaGvf0R48kO29u3uH37VWazMcvlBT/4wQ8xneDo8JCnzx8gZMfh4SGm7XCmAlfQNWsGsaAqCtIs4dbNO4zSjEGSUOQlziV0OuKzR085vTyl1oY4HXJydsF6pek6CCKBCB2D6Zjziw1dY1EO0kDyP/sb/0Ou5pd8+sl972uzkOcdq3XJYDDEWE2e1+B85pkPoVU4obwlR3RYC0KE3tdoaoztfBrBC1+qx5dg8LsvqQKEssx24Nd+bY+vfeUlykogxG3i8CUGo2206/xe0ym6pgNhiKMYawVl46c+TettOKGSSOkQGNqm5D989w/46KMPfNK4kFjj+K3f/jYvv/YFZtu7yCBGKj+hEv3uNAykX9tYg3P+P5WSCOvH+d5i479PTp/z7PFDTp4/YXF1xf3PHrNarRiPx3+uGvBL3XGN+y6rqhqafpnbtJ41Nh4MyDI/6/V5TSGL+RLnLEoFrPONZ4xZhzWOTndIFSKAIIiQjp7A7F3jqpeIl3VLGIfUjSbPN0ghGKYxkRAUVe0fhlAhVUCnPXDUOtkTN/yeC0BbjXN+H6B1i58jmGtSgRAS5depKAFCaHBe4SYcKCH9kMcJjO6wyhEGXrIveBHB4kgHGePxmOFojBSCoii4uLigqWuk8Du8sikxVtNpgXGmD8n0j4bqSfla+1DGOIkReJSWchaMYjY9YP/GHR4+fU7VSMrKkGYhuqnJspiDwyOKsma5WNK0JXW+5nmz5Px8ThAkxErhnET3kfHDJGGcDRkNM7IkQSCY7m7jpMUZTZNXSARREBIGEq1bVM9CGw/GOBxXVxcslkviOMRiMTjyqiFJYgbZlChKWVz5w9M6wEkG8YjBIGF3bwcQaGeo1x0LsyEIFYGEZDiiqBqwHc402LZhMBqipEObDoVkexSxusiJg5hIwWSQsLW1TRRnGCc9wT7USBX25uJt4rKiKCqqKufJ42Nc67jaXPHFL97FCcNqsUJXDdvThCRuweXk6ytK1zHO9nHCIKT3BWohPUhZSJS1WJz3PAYhQnqfo1SC0XBMpAKk6WjqFeC4fec2bdOxXCyYTqcMhgnCdVRFwXKxRmvFbLaLClOEEUxmOzgZYIWkswmDLKHtKkajkCSUKOeYn55QBgWRyBlGDa/eytAuQRuNCCRh6NgeD5hN9yjyEmthuVmRlx3FesXVec7DT0/56N3P+MpX3yaI4PGjZzR1x9tfeZvz+TmPnz7is89PcJ0hUI6X7k15882X2J0Oefb0CV1bc34xR08sVjvaWuNcgwwCdnZ3iIYDTk5O6bQlDVLkEMqmpTUtt27ewEjL/GqDpo8Dco7HDx9w68Yer97d4/nTz5lOJyiVcnpWoGSEEQZtWox2bNYbnLG0raAz0BpH2eCNzEKhu8aLZoTCOK/QFVIRxTFNU/tzyjm07ZDWsZ7Dw/srbhzlOCkoy1NwAVs7iiCOiUJIIgiTAGG9HN84SxAJUCFIRV23VE3LMItRwqDbijs39yg3555biL94nl8+J05DlqsFSTIly6aMpzNwljiS6LZD9SrltumI44iubXHaMhiMaY2m1S1I2Ns75Obhbbq6ZLm85L/83/yXv9DZ/0tduJbzJTKErjPUXcOmzDHGj8yKzYZBljAZDoiCBNM5Nuschz+oOtMihSROEpQM0MZh+85J4LxjXGsvOxZep1gUJU5AnCQ990sSBiHaiB4T5W9VPuDPd0VlUaO1pSlrv1kz/v/fWL+o1cLieie7xBEIj5xyVlzL1LXpiCLZ+7zwMnqp6Jy4Ln5OgraWAIHqk5gPDg78uNRa8vWapvHjz7IsCcOQOI7RtsPYDm0dkQoIAomVHkRcVRWm6UMdg5AoSimrpqd7aNAd3/zmt5hsHfD4+ILlpiEvNPsHN1mt5xSFL4iL+TltWyPQKFqm4yFd1zDMJghAt4ZQhURRQJrEJHFCID29Pi82xHFMU3p1psARB7Iv+BpjJKbzSbKvvfk6l1cXPHn2FCesR25Zg1UQRiHTrR3iOMVaw3y+QEgfzujamvF4zHg4JEszbt98ibatefzkMVVeAo4wipFENK1luc5pW81oFJAlCYMsZbOZI2VAGg0o8pIgjrDOcnJyxuHNe1QdHD89ZzQVsGroOotKEsI4I4pTCDKGs5QoSVhcLqnyghv7U9589SUsHYvzSzbFmvE45nB/QhyBbjsCCavlkihMCIIXfiGJ6jFnznjRku6TbyWCqvasvq7RrFY5xgXMtg+QSlNXa7Io8z6fOEMgadqOzkiSbEzbWfKyprMr4sSQDYZYFLUxvmPJUuJAYVrF3vY+xXLBl954DWdqhKs5fvwRadgSZzF1Y4iyEOc6WmXZGQeMVMSmWpHEkloPqDvJfK6ZX1Zcnp7x0x//iG//7m/z9ltv8fjJEx4++Jx7L7/CwdEtPv74M85PT6nyNct1zYcff86Xv/QFXnr9i3zy0YcoFVC3jkAaIhmTJAMPeZYJyXDGeLxF1zRcXqwJ44wgTji+OCav1uzt7FFuKpqypS47BonCNgXnzx9idMnBbkqSCKRQbL16l7zsCCKwwo8O226MIEB3EVWjsU7x4PEZq3XJcDwkjjzhRTc1TvsRo3Uaq0tu3dpjvlxRlhUOrzjWteXR/Zw7dzZMtlNGsxFVKVgXJao1ZJnA2BaJIBYRKghACWzXUdX+c9Nqj1K7mq/45MOf8NHP/hQlWra3R2xvbyFkyNGt27z68mvcvn2HujZoGwAR+WoJONpYIJXnbCZJhpSCtikQ1pINhiCMPyuwfbcf0NSWKEgJVPwLn/2/1IUrHaREcUBVVYjA45usM3RNS9t0TMdDhsMhpvM+g/39fcq6xDpLEAQEQYQ2luVqjkChVEBjW/9B7bTfhylvUhaiF/n0hekFgvvFnFUbg8ThpABncPg4+6oq0dp5ubLx2TdSKsIoQYWBp3koj1NxPSFDWIuz9Egk62PRwcue8eNMaxzWekd8VbVEccgoGzDMBtexLU+ePPHjzJ4C4g9606cDu2srwWg8Jkm8EnOz2dC1pgf+ekGG1h2666irkjBOcFiyNOPe7VvE2YAnz49Zl5rVOqfVmiyN+whwnzjcdd4fEii/VwzDgDxfUxQloVJEQUQcx4yGGVHo91OB9HP+OIoxxrJcXJFmQ5RSrJdLdNeSJAlZnJAkCXfv3eNyccmzk2PKqiJOI6wx1F1LNhpiDVwuFiyXD8myjOFgiEASxyFZljEYDHzm0XRGFEU8fvKY58cnlHWDDCKsE1gE88WS5TInTlLCIKQpKs7Pr9g/nJIkKZiAq/Oc7dk+QipmWzOSJKHWhp2dHYq6o60aL/vuOjq9oSgK4iSmq0tWyznPnj4Da1HCIZ0fUY6zkEBFzEYDsjjCWUOWZsThiGA0xmhvq7g4O8Nay3g8YTJJSZLMx2X0zw3497PruZtVXTMdjdGmoKsqpPIdwHAw8bH1ukYKwSAd9s+PYzSekiRDOuOo64rnp+c8ePyEKEn44pffZj5fkMYRWE2WDkniFKchUIqmLQmjAGNagsCRRIpW634k2qJdBbIlVIIwjdmKpxwdDAiDCatFxXKz4ejgkDs377L68gbtDOPZDGsFd27f4/HDRzz8/COK/JKuhbOzFVVl2dm7RSj8JEZah9OWNMlIh1PCqqXWlpGzPmYo9qKVprOEImI1L5hfrnHOsj0ZMr45ZJSF3Lk1o8jn1LVHy0kVojvHoycPOTvfcHRjny++fY91fkJkA/LcUNYFy2XFKq9YLiuariNqJS+/fIsk2iVfL9ks13StwBjodAuuIo0N9+7d4dGjE9raUGloKjh+mrPOa9LFE/b2h4TSABqjHa1TSCeQgWdXKiVpO01TNyBC2lajhGS9WvL0yROKsiEOBFdXGzZ5y2A8ZbE85f7Hz9nZ3eK/+O//NUajhM54iEJRFLh+BLTZbIiCgCSNetGGo+sK2tbnugkcmJhAxchAUVUbHj568Auf/b/UhWs6nfpwtvUaax2TyYQ0SwikoO0X1G3b+tuoBScF2WBAFIWsNiuSOKHTug/fUxhjWeeFJ1JIgZTqGhOllMIZg+40VV33/7v0ks5AobQkUCDDANVvK6WQbG9tUVQNq9XaB+ulsWcZBiGg0M5hrMFTF3uCBtYzFmVIFIY9Ab9CGYkKFFEYYZVXJ0VR2CuRLEYbzs/Pr03S3hVvr4kfL3wacRwzmUyu856staxWK4rCF9VBNiSOYxaLJV4lFGNN1+/jNGkSMxwO2dk/5JPPHrIuDZWWFHWLDGKqpiNOhhgnEViqqsDpDtDMphPOLy7YrFdIB1maMRqNfPHqX7tAKQLVL/OwBNKPNPNNzqaqkAKm4xFRGJINh9y+fZuma/np++8Rhp6pp50f74ZRxNWl74YCpVjMlygRMBpIgjCkbVuKouTmzVuMRiPquuaDDz7k/OqSvCgp6wYnFJ111G2HQ5BmA6QMaFvN7s4+u/tT1ptL4jAGGTIZSwaDlMVqjVARRVEQpTNGWUY66KPajaBuffROWVds1hac3zNkWcrF6pyd2T66qZhfnPL2W6/z8ScfIY1BWFB9HLvWFhGAiiO6pmGZ575YDIaoKPZeHuEIpIReaeuMpq4tgVTMtrZRzmC0RKkIrRuCyLMpnZVY0xM6hETrDhWE/m0BnLOUZUGShIyHmY//0R3SGGzXsVrOSULJwd4+Zb6gbTYkkSJLY1pbUVUFaRLhKk2ta4xtsDTEaUDVVMRhxGw2YjI+4mDvJZracn4xJ40SVBDx0p0Zje4Qgae0x0HC7myb116+w9XVCWWx9JehKKKqSkQQIMMhpu18kGIQo6IhwwAyITAYgnhDkjZkgwlhkLG1tcdkskNV5azXc9pmQxZKkhDGWQhGYYwkiodsioZHT55zcdmg25Du8QVRHJINc2Y7A/Sq5dPPTsg3mkZbP7oVsFiuefDgMX/5L/0GWXybs5MTdNOHRbY1TdNwenbMr//ql5hfPodhhNYCbQzr5QInB4iw7gEK3p9YdpZQStIowQgPY0AIutZci8Kifmqxf7DPaDylq3a5c+uAxfyCi4s5V/NTVBDTNi1nZ5cEoeJ3/9JfYDLbAlqyQYgQEe+882Pe/dnPmE6nvPXF11HSMh1PmE1muD6g1OkWIQ2dxv/suubjjz/8hc/+X+rCNV8u6FqPM8iSmDAKcMYQhgmDyRTTtaxWS7R2BCqirmscjrzMccB8ucLhxyi6q3FOEMYRYRyD9Cmyzjl019G0LXXToKQ36Yp+zm2N8REGgd+NpWlKFAaAN+5JpZiOx6RJymaT45xfiioV+t2XNpie4ixUgAp8t+EsSKF8kq0xZGlKEAbXGCpntY/cdpb1ak3TNmRJghJe8fgCWRWG4XXBcs6RpilpmtI0DfP5/NrX5vDKwcFgSFmWHnUjFUEQoruONAnZnk2RYcj29g7bu3s8Pz7j5GKBERFhOiHJfDp0vm4wTjEYTglCwXK1QvRGyLbtaJqSIAjY29//j5hp1lmEFWisV1o5S6gUQaDIN0uM0YyHKYEKSOKELMt4+bVXubi65CfvvIOU0ncpKsAA5+dnXJxfEkcZ4/GELEvZmm0zGAxQyj/6SeKz1LIs48mTJ6wWS9I0Zb3ZUFY1QgbUbeOjW6oaFYQk8YC21dy78zJvf/FLHBxs8X/4P/5vfQcXBoyGI7rOK7rGE6/0G062Qfl9QBBECCUIBzFZmrDcSKq6IlAhhak5OtzG1HOk0wyTiNnLL7E122IyiPjgs/fZHm6RjbcIky2i5IDVSqOdIBmMuHvvFZQKSJOsp8UY2rbhYjEnTROEBGs1ZdURBTFJmNBpSxDEtK3GOUkSDzBGk+clRtcECrSzPdU7wjlBUVV+NB2EjAYpX3jtJT779D6XJ8+ZTGcAbE/HGN2RBILJIKNtC/J8QRRDmgacnj1nnW8oq46uc16oICXWdRjrFY7CCZI4AWcZZinR4RFRnNF0mqooCWMfUSNQDFM/JZiMbnOwv4tzPQlCKq7mF1ij/YU2tAyyAUEYIoKYLPZdgHEdKEEQVYyHQ6JoxGi8xcHhLVarBaenT4hCTVttCJShLL3IJ44zZBjz6PgJeeNjjTosl4s1ix+u+dZv7JINJmRDgQoE+/tjykqzKSp0ZwgD6LqK07Nj3v7i60i1y6MHj0A4wsCChVs39ljOj3n1lT2CIMY4iQoDhsMBtTYMZ/sMs8SPEon7PDlJoBKkkDgr6VqLNZ4e32mDUv7C65zxlpAkI0kGzGYwmuxwdHSDomz48Y/exRHz0ccfs7O/xW/89m/RNoY0GbFaLvl3f/AdiqIkCJ7x6OHnKGmZjCfEYUgSB3z9V97GmJb9gxtATV1bqqri/Pz0Fz77f6kLV1PXKAVZkhJF0TWmKN9svH3X9soY66jaGis8P08KQV4WdNpgbf8GB15ebZ3FSkHTdf7PGE9Jdz0Q0o/e1HVUShhIsiT1nULoX86u9XSN4WCIDPwD0Wrdp9R68YNzsleWaZIoRvYHChJCpXAKnIE8X2Ot5c0332S5XLJcLinL0lMw+oL0Il8sDkPCwP8MznlyiFLedP2CHNI0zfXfIaVkPB5jrGcmZlnvRWs1SRKTZUOybMAgGzEZD4gDRV4WNHXNe+++T2VgMJ5xsSixnX8tvYhFkBc1+/t7HBzscnl+Tlmu6Yzm+OSENAm5ffOmtyf0UFitO6xurztMrEE46yneVUccxaSxVximSUoUxdy+e4fVes0HH36ItpZBmpIXG4w1zOdzhqMBu7u7OOtRVsZYsixDCElRFBwdHTGdTum6jsePH1M3DVGcsF7nZNnAx7tsNjSbDTIIGI3HbDYleb6hazXPnx7zxS+8xdXFgp3tPQ9JtlA2JU3tVajaGC6uLrBE7B5OiJLQdy/W892qpkO3JaNBQqAUWSjY29kiC+7yyp0pkZRsTUc0Vckwjnnp1h1CGWFaRzaKkUIRRgFWO7SFdDDE9Wb8F0nG1hieP3vKeDIiDP1+MIhiHB6wioRiU+Ks7/R9TIrH/jihGGQZRhvuP3jgLSdZxmx7iyiKiKIAnKNtWrAdGM1yfsHNmzexRrFe1LStJk0jhoMQrTVRrIhDyc3DiOVqwfPTcwQNTeNBvWmSYUVEFA+YTfbZmuyBVRhtSaIEnL9UGozvDPGeTm+AUgRS0VpBUbRMt0YkacrIwHjo06/z1RrrLJuyQsqKmfJjzdOLE0bjhKqrSF3CKNuiqQWjaEo6HCIVWFPSNkOiAALZ8ejxfZ6dHrN3dMh4a4fJ3g0urpZgFMv5HF1XtN2SwXCfLx3e5vmTS44ObjOd7VLWLQ8ePePzh09Jkojj02OiCLa3JizXZ+i2oWssVS7Y2ZnQNQU3D7ep2paq7ajqnCAccbC9TzLeZjwZYUxK1wWIKO7BvH3H4zy0OwpjjDF0dP1nKUFKy7e//es8f/KIoE+QT9MBSZJgLFjj+Nl7P0Eav1+ry466Nkg0Z6cXrFc5QRDQ1ZpFvQLhWM0LhPNqxSiQvPbGbT75+GfcvfsKaTrm8ZMnaPufKKswSkLSOMQZg+2jSJxzWOO7mhfdhDEaa6CzhjhJCKIAqUICoa6JzUZbtLVY62i7FqTwbC/n0J2hbZpe3mkR2qv64kHMZDQmjSK07sD53dJ0PGEwGBAEAXlR0HUtWvsuKU0T6qrCWEcgJFYFPrJe+EC6OA7p2pYiz8mLCmM8rukLX/gCP/7xj1ksVrRtw2w27Q9hcd1Nyb6Yvcgoe+FZC4KAxWLRz6QdURQxGo2ubQR1VTGZjkmShK7tmM1mZJmn4VvrDz4p/M9xcvycNBt4gnoLymnCOMOJAIulqWoGowlBEDMcjZkvVwzHU6qmRNcW6xyXlwt2trZIJxPSNKbrOmQQIPu9mw/KtOiuQ0pHHMe+mDtvwpZhwNbuHtOtHf7g//EvaLoWGUhu373DOz/9CZvNmsv5JYOR3+/MxjNu37oNeFTWIBvQat9FP3369JpBmaYp62JDFEZUVc3Z+TnZcMDe3h5l02KMZW93yPbM0TUty/mCq8s5cRIwHW+zWS8RCFZ5TlFW1HXL5dUlSdIwGe+ihKWzLVKGYA0KSCNFEkgC6YgCh0Ny+8Y+j9slQjiUDNisNuiupapLrHDo2lJsVkRZS5xapAxJ0pCu6xBCUuY+uTaNY4w1LBdzwkCQr5cY2xGGIZPZFqGKkFLw7OlzMC2DLPKHfttitGE0yjAmxAlYrlZMJ1seA5XFXsGoWwSG8WhMpASvv/ISutPM1ytWy0u2ZjN2dmZsVjlVXdNYQ5ZuEwQQh1Bpwc7WiNH4iPlqzfb2NutiTd0WzHYDoihjNDpABUPqyhIGEW1rEaIjTPznN45jf6l0Dus8tsgaR9tItrd2UEFMkdekyRCpQuLE59CVZY1QJdZo1nnN6dlz3nn3R9x9+SbjcYKxHcPJjKpzfvxmBZPdPSQGa1p026K7nIvlZ3xyf85VrqlNRzbKOLqxy0svHYEp0fWapnxOklYMhi1hCBcXx0ynCb/921/jrS/f4b33H/JH/+93uLqoaerHvPHmbY5u7VKVS/b3Dvjg3c9Ih5aDG9vs7e3Rdo7vff8nPHp4xqMHG1R0zNb+Dl/9WsR0a58sSegaSxAq6qrFZ2x7O00ShRjr987OaYIwJQol6WTK3u4XaeuaOAqoq5a2adnkBbv7Q/YuJjx5subk5JxPP37A3TuvUOYdm3WJJMR23n9me5N1azw2IZCCTz95gAosr75+m/XmjCiRLJYXrFfFL3z2/1IXLq0NnXD97sXvipT0yinwD/FgMKBtO7S20Jt/W+09WC+QJQ4/lnsx3muaBiHFdQ5X1/p00STqvU5RSBgo391Yn2cTJxF1VV0XjvXad0p1XdN1mjAKvQx/tUFILwxJwoAg1HRdzSBLuXPnBmGkuLqaI4TgwYOHGOM4Pb3i5PiEq8srkjhmb2fHk0G0L1Ch8iPEFzLU0WiElJLlcul//q5jtVp5IcZoxHA49DekrqNpfApz0zR+DxZGlGVJVVU4J9jd3ePG0QFRqLg4X2GtYb1a0hhJNtpFpkMimWCst/zXdcBifkkax5ydnVGUa+LIB1C2TUgUCKpNSSgVURT5Yht6EYfR3jjus5c0QZ819SJqRShJNhgShjFV2/D7//W/xgBbO9scHB7w6NEjmrphOp2yu7tNmiTcPLrNznSHrtOs12v/WiyXaONN00mSMF8s0FpzcXnhx2xpxibfgBQUZemfg7qj1R17e/vcvHEAQpLGCVIJTk9OaeoKiUIb4zFZdY1BEgCz6YwkiZDOEklFHIeUtY/bEUKwuz2hqEpMW5NGAft726yvRuiupussuqtpG+81jNIUSYxuNKZ1uBjCIECGAWkSMr+4QlpDmsbU5QanNU7XjAYJ1hqsi1AqoCxysiSjKnKuzs84PNghUKLfiQYkSXI9Wi7LgtlsRpzEIBxBqLDGUNWln2o4i9Et1rQMBilODEjSBNPWYB1pElEUJbqP2DDWq3G3Z0e0umF3usXOfgcyhHBOfXVGWTcMRzsE4ZiqclgXMIiH3jriLCoICOOItm1ZLebMJiPu3rnNbGuL58enlFWBMV0/No3odOtTeLVBG0eYxDz7/AF/+qffQwrHfH6JDEGlJ+zpGXXXUH78AZOxjwvRWiBliDWay4sL3nv3Z7RNThSFxMMZp5cbiroiuNqwWK/Z3R8yHUMSK8LA+zvDwPGbv/0q5UYy29pmnR+zXm+4mh+DsKxzTZRldM4xHoyxtBAY7r66RxxFdK7h+ckZm3XHk8dXnJxounaNISd8esb5xRV/+S//Rfb2DxmOxtT1BiG8ghECrDFEUUQYKoyNUIFEmwatLfPqknyzZDRIaY3v4J2AKNbsHQz59s43+eyzHS6uch4/fsze7g2kCHn+7ATnQEqF0X0wrwdU+uWAE6xWDe+//4DpbMitOweUZc7l+SVG/yfKKtRdh1F+RCacQwq/szDGMBwOqduGtm15YbGWeMhtozs/6nOeMeZLn6RtWvI8pzUtMvA3fKy/8WdpRiBlPxqx1wICa31ab5LGJEmCBLqu82rAXgjxYqQnpKRqDFGUEoYxQRDx6ScfM79acHS0xa1bB70gw0ev37l9i+2dXb7znT/kk48+osxLBlnGbDqjrivyZkPXiy9MT78fDAZorf3h2Y8DX1BBXowUhRDXpmvvGRM4+i6N3riqAm7cuMnBwSFGWy7nC7Z2d0mSkM16w9nlyqezhhFChLRVQyAkbd0QxwnD4YD54hKAosjJ0pQk3mNxccpkOmY0HhMGIVa3WGsw1vvO2rbxXjpvXqNpPbIry/x+JYhjGmt48NEnvPf+e3zjG98gDAOePH5KU9fMplMGg5TpbNL/uYST0+csl0tvWZABWmtGwzFBENLojsViztV8QRj5rmVvbw8poagqssGA0XDI4GBI0b+eL3iWXVtzUeZ0TUOWDnDWcnFxwXA4orMWYWFne4fReOh3JoH/99SloSoqOgsi8OGim3UDzmC0ZphFbM3GlOuGvGho64quK3np3suMZ9sMpjs8OZnjrCBUIe+89y63bt/2Qh3bcnn6nOl4zHQ0IB2PmI68CMlaS9O1WOvI6xaBoGtqdramDIcJaeJ3o0VRcnx8zOHhAdZpT4zRLaFVgKWznfesSQiDiHyz4kXyt5KS4SAjSZP+/dWUZcvO7g6rTcFytSKOQqwNKcuqV7b6cXrVWYbjQ9LxHnm+AQdF5c2zWTr0kLQwJgwldVvx4JNPePfdd5lfnPPr3/wayrXE0Uvcub3PZrNiufGvWxCGCNfRNQ3aONZ5yfnVkn//h9/l8/ufE0chQlqEgtY1fPzpZ7z15iu8/FLGBx+9T5pNieMRm03NgwePOT874/TkGNAMBxnD0YDDG7d48OAhXec4P6158PkZN2/G0FVkSURaB0RlS1ltOLvccHp+xutvvsrp2VOOT04o6prOCFqtKcuO1XKFlC0iUGijOXl2yTBbc2P/VVyfkG4syCCm6zS6czx/ds4HH7zDyfFjgjBhNtvl4OAWcZLRtX78K4TGYrm4OKHrWpqm5OTsCcZVTMYR1jaEgVf6hioiCmPGkxGHN3YZjt9guWrZrDXGNhRVwcMH9/EYK3/G+mWNxfdbAuMEUgbkheY/fPdnfO3rFd/6rW+xWBQ48x9FGfy5vn6pC1cYh6RphHR+4RgEqfcmGYPWPhhxPB7TNp3/YMUZbrMmr0qM9ZQJ56BtvUzcGosUvoPxAgjPIwyCAInfbwk8yFcpRRyFHuwbSB+jbnzRGmae5uGco6oqgtALENq2QwUJFk8IKOYXNE3LdDqgbVqePnlEmsb+8BYKFYScn5/5nQ9wcLCPUlFfWCRZlvY7LL/H6rqWoih6daC8RjYJIf6jkeKLkWHYq+q8T8kr9/b3D4jCGOe8avPi4oLT03M6a7lx+wa//mu/wsnxc/7DH/4px/MClTakoyHDVNHUFVVZEIYB86sLrO6QAsbjMWEgqEuD7gx7u3sIBFVVYrvWj/9Uv9RzDhV40kPVNL1MfkQ2npDnOV1e8uz4nOcnZwzGE4x1XJ2e09a1P2htRxiELOcLdnZ2aJua+eKCUAU46y8UURBijCf0WyTD4ZBHT56QDQfESULTdUxGQ99xRBGT4fB6xxaGIVq35OuSsq5QQUQUhMzGM6y1XJxfMp1sUTYtgROkWcp4OMSalrOzY7rO+oDOIMY6TxdoJaRxgDGOUEJdFUgFQZzSdd5Dtb1zSDacMp7skw63ODgYYkSGEYoqz7n/8YeMhhmhknTVmng2IA0dWSxohDdr102LFCFhlLK1HXFxccXz5085efqYvd0Jw0HMzt4OcZxx88YhKuiFM0KgO421HXEcejg1gb8UWovWXY8yE5R15Z8zY+mM/+87uzNWeYWKIpJB4rvB9ZK6KhiOhmSDlLoLaYoSEWZEoSK2IcJp0nRAIEOshbbxcfLtpuLd997lpz/9CZfnl6A1oqtJAsMghds3D7l355AfvfM+VWew/b5Ua411gnQ0ZjRKAYcIJGVTEcchbdtRHJdMRkOePj6nzDVHN27y5MkjtrYPef/9T3jy5JgXskpjLeu8pG5bfuvb32C12nB8fIGU8PD+CaG6yWZV0lQl04lg7yBha7LFYtnx9Ok5hBIROQgM2TDAmoC6bnn/g89QoeTmzRsMp7coiiuc1Hzw8RmPnzT82q9+g9/9q7/BB+9/wicfn6KXht29EcbUfPz+R8RxxqZoyIYRX//6r/D2l3+lZ7h668+nn37GD37wA8CRpjHpQOFkxXINQjQMs5ij/SPyUrNa5uzuHRBlgs5ohpOYNIv40Q//lPPTJYvFaY+l6omqznNgX8QzWdeLbpygEZo/++GHXM5Lqj4R+j/JwhVFXpggjCNJU4Z9twEvlrVeDt91nV/oKk2e58znVyAkTsheUPCCEqGIoxjdtVj8n3fW9fEEPlQxjiKyLCUOfcBi2zbUdUUcRejOd3IvOhnn3HU0tg9qizg9X1G1S7I0A2fZ2tnlYG+KpGO+OOPi4gSlFLPpjK71O4u7d2+TJkPqusNoR1lUSOWIY286LcuSpvHRGS8iXF7s916ISMDvcbTWCCEYjUZeCru/TxSFTGcT9vf3USrg6ZNnfPbZZ1TVz6jr1sc0RBFf/dpXkEpxsL/PW2+9xUe//+/pxCX78RCJIt9sMNpQlgVh6BDSUdc1SkJdtFjbUlU1qh8rNG2J1d1156qU7L8VgVKkPaF/PJmyWCxw+MTr+XpNnKbcODzk+fGx7zTTlKooiOLQG8etY7Va8XS1ZDT0adVRFPvXwoG1hjCKCeKETZFz69ZN5qsVs9mMJIk9iSNJmE2nxGGEs45QSuqioKxqwihkNPACjkCGzLa2WC1XhGFEXTcIJVnPV7zyaobuOlpXeQOwsH2XIbDaoruGdb4izRK07gjikLYqSWMPb3YW8tWCJAtJsjEHR7cpa0uWKlobUTaOV199mR/98PtcHFf82q9+nd1pxiCJ0V2JsIpICarWv85hGNK0HVZbBB6P1tQVVSFZLE44PXuGNrB/cINXX3sd8J+BKAppmooiXxEoxc72NlmaIASkcUTTaRwQJzF1VTOvKgZZQhgYtLHIIKTpSp4+e8ze3jZbYy+SgY7NZolKtgjilNZIHxMfxoRBggoCmqYlzwuMNoyHA/7kD7/Hw0cPiZOEra0p1WbN5cWcps6ZX55Q12u2t0bMr854fnqGsYY4CBiPR8gwYntvh0Y7dne3+fizTzDG0lX+czMcjfpgWEtTW7JsxO7Oto8LurrAdn7EC70301nCUDCbDhgPE550XrxVFpbzs4qT5zm4juVa0qFR4YDD27c4OS8oypq92YQ7Lw04ujng/KykaRxpFpNXJcdnVwyGA7RuOH66IS9C6rrh4dPHfOVrL/P6lw44vDnhwecX/ci0Y37ZEExCpoMBi/UVF5fnnJw8IUu3kCrivZ/9jHd++lPqpsUaQ9PUqHDE/tEY7ZZIZdCuQNucqq5YrlZczZfMl+dMtgZMZzNGw12SgWadX3olpgMhfq4Ovg66FQIRSu/y0YDzl74H95/RaevTbn7BEORf6sIFjlAFHscT+BtgvtlgnSXPC4qqZjKF2WyGkpKq9gv2UIXYnnYeJyHOQdf57K0wDMAZ4niADLxCyQevGcajEWmSUBY5RVPTRX7mHciAuvDerjwvSOPYB0UKb7p8EVI5GA5Z3T/j488uSVPJjYNtvvqVt0gTRdOsUSokTrLeR5UQRrGnbBjt6fRN6zE+gfLQTWNYr1c9CSMieLF363PJXigOjfFRJtPJhDRLscayf3CAChRWa84vzzk5OeHqasFmvbkuhL4j63o5raUsN3zy6ScEUrLJCy9QiUOc0ayLFRcXp8RxzCBL0KbGWk2SRKxXC5SS6K7B4BgMR4SRwtkWgfXZYp0mFjFJmpClXuqutebx02dczlce1yXht7/9bcbnF9Rlw9V87sP8hkOCoI+oqSvCYEASx6ggYDqZeHEOlqqpvMWg71JNbaFrGWQJz49LXr53lyTL/FgxDD3TMo4pixKsJQxCnDUkSXyt6pRKMcgmGGOo6obxeMLx2THr5Yo0TSiLgmE25AXhOwgkUZh4TqUQSOtYrWva2uOxojRGDTJMFtPqDmccZb5hf/8md+++ShAkPHz4CSpOQCZYAlzX8KU3XmfQi5UCBbqtaJuGHB+fIYT3OjVdS9saojQlSxNuHB0Sh45QQdMkyEByfn7J8+Njdnb32NqagoRAKGgsUezHf0VVYKz2SC2Lzx3ThqbxKt3ReHQ9/YjTzCvh6pwHj+7z4Yc/YzSMuHdrn0E2YDdO2JsdsCpaIKRqWt9xRiHvvPse3//+9/nWt77F4cER58sV9x89Zmdni1/9xtf58Q9+QDcZcnHylOVyyfxqyE/+7M94+yvfYHdrxPHpU0JlGQwTpttD2s5xfHLMj3/6IVfzK7A9SMCCCP2qIYki6qJkvV7z7s/e5ebtW0RRRp7nRJGg62yflOATqNtG89mnn5MNFIeHAy7PC6rScv/Tc5zxY/gwEeQVoBKWqzW7u1PatibLEm7d3uXkOCdJNUZrxqMR062Ms/OcH//oE4aDjGKlESJgejDl8mrBg8cPKMsFd2/f4eDoFSbjPU6er/i//p//gNWiIIwcdQebdc3Z5RlKLvn0k4d88uF9dK8FcMZiBVycXZJlW0SZZmtrjNY1Qkmq2itCN3kNynK1PGU4SYijIV/7+m+SJgl/8oc/ocw1pvt5jAt4oLPrFa3wIkEclArptPZey/9UY03SwIskvGLGI5Nw5udZNCrklVffoKxy2qogjiMEijCIPJ1dCrTRSCUZDScoqXwBy7y8HSlQUhElMUmSYoxGty2m0wjAdF6eGypvXtadz7ERQnmZsYdAE0YhURQynk64cesmV+uG1bLi4irH4ZgvFnRNiZAJk8nEK8PqFpPn6D7d+QX9QkpJ07SUZYNzliiKyLLMm4mdu/ZvSSmx/agzSRJefvllhsMhp6fHPH78mEcPC9o+OFNrA0L5rjQIkUowGKSMRiOm0wlF3mDQPHzwKeVmzuXlkvOLNTtb+ySDIYIO62q0q6HRTMYjLs8vGAwznHQYNNZ6dNWtW7cIoqBPWfYGYYtBudjDOoWg6TSiaWm7jqYzXM7PCeOMOAnZFF4A8+TxE5QQZElCEAbIQFF3LeORj6Px8TSWVgg66RNgu67DOIvuvDAjCPr4CCGJQsUwS2nahjiQJHHok4eLgq7zt/G8KgH68XHou/oewZOkGU13yny1Ikq9PSOOQgZJisJH01gkxjo2RUmnLVGYIGTAKBuD88Wjq2qca1GBYtinFNy7e5fXX3+Dq/mKzfESkDR1R6cbNnlOkiTsH2wTKUnXVoRBQCMcSeyzsuq2RQXQWTDWe7LWl5ekWUqURtx99RWiUBGogEAqzk7PWCwXxEnqk4tNS9sHIcogQGNpbUfX1SzrFbppEE4QBhFZmtJoTWtbZJTx/PkZURRx+9ZNptNt/vJf+qvk5YbLi+coW7FYzemsZLWp0WJK2aZUxqJCxWIBy1VDGA958OgpdSuRSvD05JTRMGG9uGJ5cYoU0GrD54+fkI1SPn/4mHJT8eYrr7DZXPD09Cmr8oyLz88ZjvZQwZjJdMZdNUB3gtOzE1pdkqYRpss9ViwRNE2HsZKHDz6n7RzpICSOQ/K8pq0N1vjuomsNP/jeu/yV//yb/Oo3v8j//f/2ByxXJXXV4VzAZDokSQOkUuSbDjrL+emSrW2Jblv29nbI4l2a4hEhDdJ0PmesMwijWF7UQADCcnGxRAZjjp+XLJZzpIx447U7RHHJK69OeetLB3zy4RXrvMAI0IS899H7pFnCk2fPkQEkMqbtWoJQ+rBaLbCd4ubBHazIubhcYduC/b17LOcPaLucqnaM4tjvymzNT3/6AyajXd764sv87CcPqLrOq7CNu744W218JpwDZw2GFxlegF9p/8Jfv9SFy7v4Bc4a8rIAa8jiiKpakybepNfUFcv5Amc6ssGAwSAmyWKUCnHCUTd1r7AzqJ7tFvQd0rVXKgyp64q6rJBC+N1Rz/SXwo/h0jTGuahHQvm9EXiO4ng8Iopizs7OSQcJr3/hJaoyRzhH2zVesh5GOKvpOkPbVh6bIkS/D1GejuE8tqeufw7+bduWOI77uBHhhSRZRhzHTKdTmn5PtNlsuH//Puv1krr2GB8lPdk9DkLiKCUIY7+Xq0u0brzacTghjgecnD0nL3IvDGk62s4w7C8L+WbDcrlke2uL5XzJerVGSW8cXq9XfvZtDVuziVdEYnC69WZuofD5eo6qbij6hb3WBq0983Fvf5/9wyMur66YLxbkeY5SXtU3Hg+92g18gKF6se/z9gQfEyH8RUPr66m6kv735nlJFCW0PeYrUIpKe0+QwCfiuh7+C87H14g+oVpAFCd0nWaT51xeXjGZzqhbv/saDEdIpdgUJVGUISQYA5fzK5q6YTLbIgpjAuVTAjpjfTEFOq1BSvb2DxiNx8yXa+aLDa221G1HXtTUbcsgTRkNBr4AO29bsNYQBSFpNqJuNVHT0Wrrx4OSPgDUi3S0MbjWYl1IlkbE2Yhbd0ckF2c0bU1nLdq0rFdzNvnaqwKxLFZzkjSiqUrfIcf9Ba7TxHHEclXw9GTO6dklR4dHXK3WzK/mTGdbvP/BfZyp+Qu//RW+8s23uTi/4PjslFfevMXq8YqmtUQixTnB0eEtjo6OMKbFWFguFuxsb3N1ecmD+5/SdRVd6wUNi8UarTtOTs75p/+7f8bf/l//z7Gm5eT0GYQhrVHcf3jG7t49RqMtjsZ7tJ0n1qzyS3Z2x+Babt3cZ7NasbW1xWeffYq24CQ4Onb3tzk5XvPs0YLO9uAA56HW9z/7nMOjLf7z/97v8O/+/fd48ngBGNq2RciEV1+5x8P773Hz8Ijbd/Ypa69mPTs9w5ohV5clSki+8pWvcLnKMXaBtc6jn9oGcOhOUNctRR6xuz/m9OSKQBn2tqdMx1P+4l/8OsPhZ/zxH933U6iuQCpNUVwShBYXK4qeWK+FwXYaKQVnJ3N29lLuvXTI1WXJclEwHjbcuXebVj9jvlyRZWN07zNdLObk65LXXv0SQRDyo+9/TNd6YLn3zvZwcxX4HMHesnD99d8xk+SXunCVVeO9Tv1+JI0CtPFqPpxDWMefff+PUUHIcDggjGN/8DctSZqhjTcFW2uR0osXwkFAmsbEsTfqbTYbyqqk05pAKuIk8Yd+XyiEs/24xB9uWluiKMQ65yWwYYjWhqJY0jSalobRaMR4GPubXRxS5rUvJtK31kKIa3WkUsE1KLeqqj5+xV6bimXvVwt7RddgMGA8HjOZTIjjmHfeeYfFYtHT6cHDLiVR7B31Ukl2d/e5d/cljHW89/67GNOSJCFKCaxpMSZge3sL6wzPnp/gnGJ3d4+6bajm55zPV7Sd5vUvvMHB7iHzy0uaYcpm45mCEstsa8IgTejaEuscQY+4cs5ijKZuPD/vBYbqxS5uMBgyGo14/vwZ6/WGzWYDQNqbvq31fq84ioijCPAj1Bd+vq7r0D2c2OgOY6wnigQBRVFS1w1RlDIajalrX6RGwxGqvylq3RKEoS+yYYjqRQjGWLLUo5+McVzOl1RNi6Hg5p0bXC6umG1tY5xjNByiZETddDx8+JBNUbC7v4cMJUZYtPXJxcI5rPZZakmcsLV3SJYNWKzXLOYrtLa0/bcIAsZpShT4AEOB4EVQtrV+f7VaL4nilOFwiHWCVhuqpvVjVemDCZ1xHl5ct1Rl1+91BmxvH1A2BVdXlxR1y7rqeHx8xvHZiTfvG8Orr7zkO6CLE4ZpQhwHNHWJEoKm6Hj4aE6e15xfrXh0fMxoOmX+sw+5ON8g0ZxcXPC/+F/+T0kHCfN6zvd+/F3uvfw2rlQsFksO926TRBlKWdoup2k7mir3HVZbM59fcvfeTZIwoCjX1FVOUSzJkohH8zN+/7/615yvz2ldx2Rnl4cPnrBYtWwKwb17Mbcm+9y6dYuTk2dIIdBNxY2jGbPxgBDNr3z9C9w4GvHDH71HNlY0uuM3f+s1fvTDRxw/WfmihURIaDrDw4fnbO98xl/9L/4Sl8tj6rbi7KSmbRtWizVt06CdQWNJRiPW1RWbomSzWVMWVzRVTdspTk/WfPLoKVeL3MO0tVeACiHpWg8wOD9tmM0GbG1vU6wL5K6gbSuq4pi/8Be+xHQ65Dvf/SlnJ0+4cXfI3t6E8Sjj848vAHBO+v29dwRhtKXYdDx6cI4kQ0k4O7/gxs19Dm+MKOo163XJ0Y1tlJQYk1PXcx4/fZ9f/83f4fLigvufnPnoCil8R9Vfov5bRQt4EY77n6Q4AxGQDCIfLw0YpxlNpjjT0VYVQgqKIiUdjHjt9TdQYcR8scJaS9e1XiYeewzOeDTpX1tPcVgufWfyIjgxCsJr3JLsd0dKSIzuE5GtQSlPEtDa3zq1MazXuWeS9TFyUSgJA68w1HXLenGFkr6jCqQPenzhodlsNnSdz9nyQg99rQZUSl0XMPBcwv29vesu69mzZzx8+BBrbZ/uHPWiDG8sHo3GREFMVddkwwGrjQ/NNMZ3HdZo4nhA13kfWNN1tF3Dyy+9RtNoEAEqcnzw0WdMZrvcuHET25MNdra2efxoTlXkSCAbJITS0TYFzhoCIbA4pHD4tCmvkpQ9LfpF0QrDkPFkwnq9xhnL9mzr+j1RWeoVnkpdZwFp7bvvKAxIkojWcC368B+QgChS1xaFk+NT0sGI2XSL1XLD6ckZaZowHg59LAN+pyOEoGn8LVXQ+TwlB2XRsHdwyHA04fOHjxBS+r1oECKDgM4YsizCOZ8h17Qdeb5GhQFt1/bG6Z8/VwIQoR8rJ6MJRkR89vAZm82Gpm5IkowwTuiMIYpCpFI0XYcUEdr5xCYpoetaL3AJQuqqoshrgigmjGPSNML2OWb0I2jR56CZvoh1nfOy7Dqn7VrmyyWLfEltQEQJ9SanaSyfPHiGsf7iEUX+2Q4Cx85szG/8+rc4unHC/c+e8PxszrquWJ5X1LUjHHhK+NWm4v/0z/8lX/76q+wdjPjs88/giWNv5xWUEHR1yTgbkcQxSQRt1KLEHsMshchx584Bu1sDRsOENL7NcnlFEoeEBzEHB3vUrYGVx5A1tSYbTGhMy81bd7lx8xaz2YymaVksFmw2K9I4ZTa5wScffsLWdMTJswdsbU25c2OXZ2fP+fZf/DLazplOU7AgUDgczlqCENoOTi8W/Jt/+//ildfu8hu/9Sb/4d+9x3rV0dQ1i/mCJM5wBJxeXBEECRChRExX1ezv7rNeW/74j39C3nUYq3DaT1oEAmcd0vVFwUgwCbpVBElAU1VI19K2HbPZS3z1q0dUzRUPn14yGkIYNESR4fDGjOPnOeXaXAsjjLUkyYiqtHx+/xHaWLa2h3zjm68yv3qOFR237045PV4hnCVQAWkWodoOZMmmeM7tuyOOn89Zr1qcsMjAn3em84xEKYVPLriuU77oO/QvdPT/Uheu2joiFTG/vADnSCPJW1/Y5+7NQ5bzC8piw+Lqgsl4yCuvvML9Bw+ZTacMhyPSLKPrVYDgmYMOWCwW6E6jjVfkvUAl+YM0xjmD7jqEdb3woUMI5bO/nFeyOQSTaAJ4xWIUxv0DNaM2FVW17v1jXhzSNh1YQZT5Lq8oCtrWF4wXSjhfgCK/O4n9SC9JEqbT6fVBbI3h7OzMG3GbBsAnOvd7rvF4zGjkpfr5pmA+X9J2mryuAUmRFzR1xd7elEEWsFjO6TrnSdUIJtMZWjukDFlvNpxdXRKEgu3ZFOEESiiKTc7J86cs5nPiMGQ6HhBFYGyLM5ogVAj7wjknEL2PTkqJ7kUkQkgGAx/yuVmvPSwYS93nnYm+0CkpCZQPRgR8FpuEtvUmXwQIKfqRu+gtCnB5eUlZPuX05Ipf+ZVveL+RdUwnM7Ru+Oijj5nNJtw4OvDCDmuwUuAT0BRt5/cb2XBENhxxfnnJ6ekpo+mMw6Mjnh0fE4Xe+yeE4PLynGdPn7O9u8vRjQOQAelwgooStAOHwPadsJEBTkbUWvGsLwxV1bG7s++N4Y0mzQa94d5eq7e0sUjhcF13PVauqpIkzkAKH7rZ+UnBaJgSJiFFVVNWPpdNqcgXrNoXbBmECBnS6orL5ZqTi3Ou5pes801/GQhpO4FSsd+RSkera6bTxFNglOPOrUN003C1uiAYphAHGAf5uiB0AePBDpt8xY9+8i6vv3mIExXr/DlZnHDj8IsMkjGRUjjdIaUg36w5Pn7Owf4+ZX6FdZYwVoSRYL2+Ik28GKeuDGGcsHe4y2h7h7yt2NQ1t1++QaMD9g5uIwgoq5pHjx+zXq/QuuPo8DaHu1usLi4w7Zr5hWBvZ8IrL92irC/JkpAoDfm0eY7TvvBLKUApHJrOWs7Olrz+5ssU5Zw7d4/45q9+gT/+w09RyqFkzHA4Y7mqefJ4zt5uhtFzbuzvsJGWJIgwkSMNFKtNB9IxzlJaISmLBvOicXGSUASMBttsVsdkqUJKhzU1W1tDnj79BFzEW1/Y5823jvjk88/YFBVpkrL32k2K4iFlvsIZ/MTAaoqioqxqlIyQOIp1zXs/+4y9g5RsHDIcpkzHKU2t2axXBIFgNh0zmWa0bc1onPLlr97l448es8lbTOcw2nmeqvVEGF9x/WcR/rtNC3+pC5eUEVEywDDH6JaqLHj/g48ZpjGHu7uEB3teAVX7Ec2f/ukPuHXzDkmcEEcxdV1zcnLC9vaWp1uEAWVRsL2zgzF+Nl1V1fUojt6qrJS69kaFUUQUBxRlQRRFpNmwH+05giAmicMeKxUwHo2IOoEQhrZpaWxHUzV+32YFmzyn6zrC3sc0Ho+vPVoAYRgwGAwYjUbXpuK6rrm6uuLq6oqzs3OUFOzt7fXSdj+qTFPv93LOsVwuGQ6HrNYrqrohLytUGHliNJJbt++ArViv5lycnTIeb5FmY4bDKXv7hzw7PscYy+MnT8jLnK3tHcpiQ5YqsnjK6ekZTVMzHg4YDhIGw4S6XhMEIdZG6KYhCNV1VpTuWn9wW9vLar3vzDPz/INeVR5AG6ifvw6mF6PoPqDTGu3VoFFI0wQkadJTOULKqsA6R5qkfqQrPO/w5Zfu9obbnM1qzRe/9CUeP37EZr1mOhnRtS1CQByGjIYjmt6OEMcJUZiwd3jEo6fPePDoMVEUk6Yp4/GIzx9+xvb2FqvFwu+9RmNmkxHFZkGUJAwnO6gwQAUp1imsk6jAU/GdtTQamkLTOYUKY4JUUjaWIB6iraGsO8IwIJASGQjKqvJho1gExo81ewBz29UYA2EU44xDRQlKwiCLSAcpbatZrSuQIUqB1Y6yKnvup8BaR5oOmE63sc7RNJrNZk3Rlv1oUgKWOFWoAEbpkEgqPnz/XfZnOwSu49V7N7koV+hAgzJszzK63NCVJXEgafKG54/P+cpXD8nSCKE3hKJCuZpApQRxhHMeKjCdTLD6iKJI6OoVq00OLmQ5v2Q6HtF1FkTCZHsXgoSDox3iUcayKEENkOGQwXAKTmBaw/nZH1DXlQ8wzTJ2d7bZ+43f4v3336EpV+SrNWXlOHl6weefBPzab7xNohSBAKcAKb1KLwzY2k6QYUNeLLm4XDMeDXn1tSPe/ckTP1pOJpTVhiSeUNcromBGEjp0rRAmIFECLTsOtoeMhiOuFkvaZsNsPCGLIzZFQ1F6oIJzkvPzOWFkCFTI3Tu3qMpLLs/PKTYVh/s3sQK2drZ49d4B51cFJ2clebFkOIxQAVgjsMZjxXTn2y8XBDRth9FwcVYTRpI4nTAaTsjLOYPBiLbRXJxvuHH0ClJYri5zTo6XpMmA19+8wWrd8PzxguXcswilCnuYw4uTuy/49r/xS3/Or1/qwnV+fkFeljx/foIzBuk0m/mKGwd7xIHkYG+HGzdvogn4zne/R101jMdTvvKVL/Gv/tV/xdbOFiCuobWiN8u2bXsdB/Li8HzBz1PKy67HwyHGGMoiRwjLZDKjrhviOMJab1IeDkaUZcnJyQmXlyv297e4dWefna0Zy+WafON3LEqZXmHmozbCwHuIpJTEsT8QZ7MZ4M3DZ2dnfacIm82G1WrFarVCqYA7d+4wHPpu5QV+Ku+VZz5c8pDZbMqTJ89YrUtUGONQBGFC1zYcH58SipZQaQLh9y5pHDMYDDg9O+fw8IiPP/mYpvOBknVVMh5qtremfYHpyQmRQEmL0Q1KCHTXIPA4ISX8aExrjbaeCt8ZD3gFrmNkEN7QqJTqKdYekeSZfP790n1wqO/AfN7XeDwmSWLqqkIISdULPpIoIQwCZtNpj6jx77E1htu3btJUJW1dkyYxbdOwXq/Y2d5iPB4TRRFLvUIKCMKEJMk4fvaMp08f0zYVRzcOuXnrJkW+om0qnNacn50wHo6oiw1VVeKEI4q2qYo1joRsOsGJBIsPDtVCoITA9+IWGYATjjCSWOforAMkKIXus9gknhhjnU/K9v7En2dvAYShIg4Vzgls16K7FhGHqCAiiSLEJMQ6RdNqzzsQtr/YVDRN5S8bSCaDIcEhrLOYy4slbd3StpYwELjKMNyKGYYJgzBkZzxhazwhcIplvmFvNsEkLY6CJITJ0R7lyvLD7z/CCcfdr+xwY3ebNBZcnBREqsXZgrYRtG2EUCFxnLA12+Ls9Dll6ScKZxdznjya09Y5aRwxm+6ws3uLMDWYtiWyLdNkSBiPsTJGBRmL5cZf5hzMFwuatmM0DLm6mlNXHaNsQLFpWCyWvPVGxuPPH7G6sJw8uUJ/veVwf8BkoljngAqxrcE6y1tvv8runuDq6jlRFHJ28pSjw7vs7sScnpZgFOtVx3y5Qjea89MNk3v7zC/mHO0dMBpk3DyI0VrywYcPEF3EyjbEyhANY4xzfo9qHXVT8ejxM95685DRcEyxyWmbgldfeZkf/emn2A6SRJKGwGjAatEQq5imNrz22ks8fjjHCedz5swLXxpY5xMCutZnr1UbwWbhKLcgihICJTjY3+Ph51ecHOcc7G/T6ZZnzxZMJxV37h1x595NnLlPsTn1Yg3wHb3rvLcLP753WOwvWLl+qQvXfLHyAoG6RjpQ+Fu6ChLe//AjtHmVu3fucnY1Z7laIaVis1nxb/7NH1AUBTu72+zv7GCsoWs7QhlQdTWmF0O8OChfyNFfZHJ5v1DNarnEOIPJHUIGCKkIREBVF0gZEEUxq9XaQ23HKXVTsVquGA0HSAtZnOKM7OPUU8IwJIm9LHw4GKA7jXFelHF5eYHpWWNd17G7u0td1zx58uS6+7p75w6DweCanHF+fs5ev/d68edWqyWr1ZLHj58wGs/IqzWbwnt7mqrhq29/gQCB1R2j4QjZm1aNNmxt7dA0Nefn5ywWc2ZbU2aTCTtbU4TT1NUGKSxJEqHQPvLFtAg6RM+UdM5RNuW1sdvhMMb6iXffWYpeTuu9Tz4JGWevocHXi17rEMKDd8NAkaQJURxh8e+f7UUas9m2F6tEsYf3GssmzwmSoA/plDQKyirn8GiP/YMd2rYhy5K+6xXXGWdlWTAeRzijmV+dI51hb2eLGwd7RErw8MFDtqdjmnLj/UOJYrK/R5kXtF3DeDrGiAEdiqZqMSrEEmGFIBaBj67xLxRRpPzhYrrrEFCfgu180CSOQDriQKFUSKRkf/D450b2GLSgDzcV9KZnY8C0iMRhlUOJiLataOuWzXJFXmyQEg72t7m8umKQJVRNS1Vu6Nox9daMzfaafJ17f2Htb+bpIEJ2lqKuWFiFtF7IsjWb8eziGYNYsbM3Rrc5d29M2HnzFuNoxPvvP+T80XO2Bx137+yyM8qwzYowSREioO40mKSPq3HcvvsS0/WMvFjg7IxqPWE9P6cqSoQYEGczCIdYK2ltyDLvECqkNjXWdmhjWS3XXJyecnV5BQ4CFVHkjouLmuPqKQ8fnLE1S7k4W7NZl6SxwrQO02ju3NrltVd2eOe9S6qmweFQKqRqKl77whf57JOCpsxp65wo0hwcTnhw/5LPP32AVAFXpwuchSrQPH18SRYb0lsj4lAyzmL29m5g65b5akBZFVzMc/KqYzIMMDZikzdY41MvLq/WfH1wi1CBCBO6qmN/Z8L+bI+6WpEQ8PDRUz7/5Jyii8kby81brzMYhCzLps8U9GIe2ytTcS9sxIqT4zWLxZqzszO+/Z+9yWQa4azgC1+4xcnzJcdPz4hjxW/8+hdZri6JYkvdXDGdSm7eHPHowZoXZm0ZxGAtaZpx+9YNPv/8vl8M/gJfv9SFy3tPJFkSMRoO2CwXzLYzFstLlvMrtvd2SUdz3vnpuywWK8IwZbVaI4ViZ2eX9WpD+GJs5dz1SI9+z+K7rZ8T1ssiJ+q9Y/P5FThLkqaUTctkusVmU3B2fokUAaNBzGZTkecFs60Zg2FCkW8o8wKrXQ/1lYzHkz6BOPNJuHGEsLY3U85pe6XdYJBd+5Om0ynPnz/n8eMnWGvZ3vYHs1KeolEUBUHgx4rn5+fcv3//GqwbRYEP3EwTlqsV66JmXXSsFn4MVuUf8ZW3bnC4N2E08knGZd2ASEgGgp/85Mes1ktGkxE3b9xkPJzgrGF+dU5dtwgVoVAYZ7CmwzrTj7F6BaD2WUvOCq9msp7qjeA6kRledLj9Ay8EDj+aVQKc6MUWUuCMl/XHcezVV8IRKMkgS9jb32M4GFIWvqM22jCdTCnrirOzU081jwKsgzgOGAxSurbBOsl4PERJ0e83A6yxFEVOoPxreHzyjM16yd7+HgcHh+iu5snjB3z22ad88a03abuK2WjA9nTAIIsIaXCEpKMBVRtiW4eT0tMX/L/YGzI71+/xgL7jdc4ryqTi50qtvhvtcZqgDZ3zYZS9QwPbY46UlPiYEkBYgkB4cYi1OAIMAVGcMk4jxDihq9es8w2BdOzORmjjaDuNmA2xuqXTDU1ZUlUldV2zXC45Pj32z+yl34seHkxZ5QVRHDCaDDBWs1qskDLk1tEOEsv2LOOv/O43+eoXX+H05DHHp4/QRUXb1rguoW0FHTkq2iJOQjrtWK83DEcDdtIbZOWIIr9ib3ePaueQYrVhd++Iyc4RHYqqNSAiRBCgwoDEBXTaMU4SfvTD7/PuOz9mk298F68dxsI7P/2I5dWC+cUapzs+fP9Tjm7c4ItvRhTNCbrpuHP7Di/d3ePH75z50WSgEM5x//PPuftS3Jvva7quoSwuODrcwmnLxcmc6VYGpqWpLKZtyZdw88YWeam9C9poJuOam0f73LtzQJQEfP7wOY+enPH8fI5NBVYrNhuDBS4ucq6uNrx85xYudNRFTiAUwyjllTs3MK7jaZwzv3jGumkhSrm8WJJlGXmg0Y3vthw/vzAK6SvXC+VhVVraruO9n97n7stbvPHGa3zrW0f86ffe58nj5wzGluFIsrt/k+VqwdOnzxiPt5i+cZPT448RQlHUHdYoBqMpr732Mvu7Wzx7/oy2rX6hs/+XunDt7XtpppCC8WiI6Ur2D3Y5PTtjOhlyen7OOi8p65bbt2+xtbWNEIq6algsFqRZQhynWKv7xb1FqZAkjTxny1rqurwmxkspQXj8zZ07t5DCB+oNUfz4R+9T1y1pGtE2hts371DknobRtg1tW7FaL5mNtxFG4pRgmA0ZT6d0xrDerLm68sVwkKRYbbC9mvDFfmq9Xl9/Hx8fkyQJg0F2jZkqigKl1LUQ4/PPP6dpmmv0UxzHtG3tIcSjEZ0pGKmInf0xDx6cc3ayZJClCCdoG8Ps1jbL9ZrAGDbrnIePn6FNx9b2lChN+rGpF0U0ddOTBAxN0xFKixA/91BZ6+i6jrbtCILQ+2KcQzuHEC/WtVxL/631niOvCJR9R0avTvL+I/AHc5gk3nZQt8RRRBgEZFnKdDqhzEvvXxKCyXjshSnn5wwzT9dompq2bRmNxjRtS9gDjl9I7f3YMiAOJLPJFK0NVVVQVTm379zyI8T5FZOZV7OGCs7Pj9nb2aExlkg54sARDGP/ughogVAKnALbB3ga58GptidsCOixYV6vHATengCgdef9Zdobqo0xaGMw2ndYKgAhfOHXpkO0jixVPS1dUZUlTdsBks44tJXEaUYYx4xHGU2dYE1NKC1Ot7R1y2q5YmtrSpYmWC3JbQPGm0yPjrYZTzMu50vWm5K8aKhMy9nTc4wz3Lw5JMs8FLbKGxaLDboyiAa+/vY3eP3VA956/ZDLy9sU5QoVDGlNxOWy5PTqijhpmG4FJOmYMAxwCJJsSJINyIYDyvUl1pVs7045vHGPeDClUwFRq9G6L9Jdh0CiVMBHH33MJx9/zHq97mXm+E5Whnz2+XOcrgglXC0qlBJ89WtbIBI+/fwxgRSYruH2zUMEHyKE3wMa3ZJvHGXRMZtGqMGQ1aIiTSWRCJnNBG1tKDc5sXIY5W0LGjg+nSNlx+2jKQfbW6xXJZGSPuNPOl66ecjR3gH3Hz3hRz97l7Z1mE7SdALnDA8fnPH1t+8xHW2TL9cc7u1jTcc4G3N6fsqtwzvs75xx8tEFuzdGXF4smV/lfkznvLLX4f1XcRxhnfZsStOnJfe/R4ohjx9eMp1sszXreOW1HW7fHXF5eUpZzQmiEav1FZ2uEcJTZCYTwXqtGY4GBNGMW7df4tatm7RVgVLRL3z2/1IXrjTrwxNjD/V86d4dsjgCk5CkEcZB3RnCJGUwmlHmJTgNSAbDMbOZHwN1XYeUkZcRhwFSedJCHMdUVUUUxQSB4vLignVdsfvqFq+++gpPHj+mmlckg3Fv9A0QSHRn+MEPfkIUwt27NzyFu+tIkpjJeOJHRMbRtBVXi6WnORjj1YFhQtP6KJUwCDHOH+JV7Red1hqatmU4HJKm6bXcHfDqMq3Z3d2laZpr6fxwMCDqcVZpmvicsLwky2K2BjPCZEQcj9nZuuKVOzfZn2UcHYzIN1e0rad7L5ae4pEmCVb67C/Tx7Z4uZNBBX5U5bf2/e0NPAtOdzStNxRj/A1PG+PVdH1xe5Eq/aLzkpLe6E3fkUmvmDMWet9cEARY67shhGOxXJImCWkSecOx82pAb9IOaJqGssr9frKyyMC/Jk1TX1P9XxjPoygmTRKwDif9TimOQ0Jr2dvb9h2MNYSh5PLylM1mwSsv30UIT8HYOdxlmCVIDMJagiTB4IgDCSpg3VVexu4ETkgEgQfvEvgxqpX9e+hHmv5ZML3ARKCiCGENzrT+fXCGKAqQxqEkRIHs4c5euJLECYGUxJHPfBNKEcYhi+WastQEjaTcXJJlKW4Us9rk1FWBc5Jis8J0DZNRRpaGzMZDRoOAuk24uJqTJorbt2/QtIbL5YZad2TVmlrnjPfGjDKFEkPCwLFeLskXl5w8OeZwb8rtwyNG410Cucd6HbNc12zNppzP11xdnfLKazcpy7WPRjGOom6QhZf8CzRdJwmiEdYFVDUY5YgnGZFyBDYk0C22yKmqhuXlBX/4H/6QzfISr/XxB7Y2hk2xJkw0w0SRhIpYBEzGMcJVIHLGQ0WsBOVmzdHhLmGoUP2kyylHXTuWy4JXXtrD6Q26CwhDges0X/riHdoSnPPJyeeXGzoLqBApBVfLnKpYc358yXpecefWATORkCZDklAyHmSMBq8ShvD5kyuenGw4Ps+pO8fJSc5iXnHr8CbT8ZphHGOqls1yja4EkRzwm9/8Td7/+F+znFeYeUVddDjTTzNeXB6FQAWSSMXUODrneiSWQjeGcg2tdjx+cEl7o2E8jciLSzpdUtUOpGE8GlAWJU1VkWzB17/+Ms+OSywT9g5fJ4pHCCRJMkCI/x8Vrt/7vd/j7//9v/8f/drrr7/Oxx9/DEBd1/zdv/t3+ef//J/TNA1/5a/8Ff7xP/7H7O/vX//+J0+e8Lf+1t/iu9/9LsPhkL/5N/8m/+gf/aNrscGf50s5AwZiKYjjlMlgiBQGJWNaowmjFCtiTo4vKTdzbt68hbMdUSiZTqaYTrOar1FKcbVc0NiWMFFY0/WpxtIT4yNJHIRIJIN0gAoCFsslVV0zGo/IhmNu3thhPl8yGES88tItPvjgY8IgpKw2aBuQJD4+Pg4DinzDfLnx7EkniJIYiyQvKwLZXENo/fjChy+GkaJtG6wxzGZTdNex2qyZjMfEqRcitGXHnTt3qKqSZ0+ekMTeOJslKQeHh6gw5PJqztNnzxiNJozGMa12VPkCiWVvZ8B0ljLb32K+WVCWDZdXS+bzFUEYoQLFYrFgPJ0wHA1Io4S2bpF+kNd/CEBJcT160NphOosxYFEIBZ3zMSbWWqSS3opsNRIf3ikBqaTveqEvED7R11MrXO9T8gIOazxlIwwDojCga1tWyw3r5RqcI0u8BeDZs6fX498oCn30jPApzGHg6fZCCLIe2RQG3n5QVRX5enNN5dc9xLduC4+ssoZICfZ3ZshAoXVLEimyNEZJsNpiWk1nOozr6NB0GKJgglKgNHTG9fQLjyHDge38Els4h+nHOVLS5835Ih+ogKqtMc5SlzmbdYfAMZ0OCdIYKSzWGcq68aRuJDdu3KXtNFfzBW2nqcuS1WZOuVngXM2X3nqLGzt7TAYRq03D1XJDFAYUuU+1dUQ0nSEKBaEQ3NjdQyhFXjacnC1oi5yLxRVaQucsDz4/59bRDnvbA2bjhFESgPEexp/85MdcHj3n3u3XuHXrFaJYEIUbxoMRQndcPj/mYOuM2c5tFusNnZO92lKjjUB3HcNhSjYcIqxgVTua/Ip4U+KUQsUDpBTUTc1yMWd+dcl6eUm+WRAqr4gUSGxnyFcrdmYhX3p1n1gYxllCmqVkiS/+r965Sap8rl7Xet+dlGDcz323i6sNSt0jLxds7+2xWm+Q2jEedFRYlBCMBiGzyYQwzgijlDCKaZuazWrFxdmcjz/9lAcPH3O0N+ONV2/w1bfe9NOgWPDt3/gVvvw1y7//o3dY/sk7CCfIFw2ff3bJjYM9ylLQFSVbwwlPH18QBSlVt+HO0V3+6l/4Fb77Jz/j/GpJohSt1ggpoRcqOStoa0uaJSSJwtqy94/60eHjx2fEicTaOfc/P+HNN29xeHMGKKbTIYv5EmMc03HGZr3Gug137x6wvROy2SSE0RBtA3CCrtUvyFC/0Nefu1q89dZbfOc73/n5X/DfKDh/5+/8HX7/93+ff/Ev/gWTyYS//bf/Nn/9r/91/uRP/gTwRIO/9tf+GgcHB3zve9/j5OSEv/E3/gZhGPIP/+E//HP/8LGSfZcTeGSREH5/k0UsNjlWpnx8/5RP7x9TVRoXTFGBoalznzI8X5HIiG9+48t8fPGQTVdQdBVb44RhEpPGCduzHdI4AefY294myRKiMGaTFwglPTG8LplOh8SRjzmvqhVvfOE2OzvbFGXpiRyRN7J2VdmbYEOaziBRNI33wSCgM6ZHD4UIKek6Q5iEWCBOM0aDDGMNzmhG4yFCCcqyoGlqJtNtiqri7PSE3d0dnOlQwnFwsM9LL90jHQz43vd/yN7uHp02XF5eAJ4UPx4P2N3bZzwaM1/MQUg+e/wcozVx7LvAYrPkYP+IKIpJogThIOjFEg7Q2nm1m/AHgu58oaX3rDkEndYY1/n9jHU47a5VhLaPRBBCEOJvpwBOSl/Meiq36Jc4xtjelW+R+GIvHURhRBSGvtDhu9TNpqJpGrKeOF83Fan0ENw49l453bW9OtFT0zvRUtWVj1yBvrMr0PpFHLoFaX1OW+gjdoSA5aomUB5zVbUdGEtbt2hjccoRxl7hWXYWq1uUDqh7U7cM4/6W6z/VUkmc9mXLOYfs97oiCH2XqyBNUwZpRBUpis2afLOkyOHy/IQgcIxGGUkywJAyGE7IhjMuTo4ptCXf5PzonR+ztz1iaxKTxQP2thKS2PjG2So6HSOk4MHD5wzHI4bjMbiCUEp00xKi0J0hEZKjnW0uzs4InUU4hZRDVos5Pz09ZjqIeP21EV/98g3i0HDn5i7rxZyqanj2/JQ//t67vPbaW0wnI8oi541XX+H0+SXv/+SHbO0dkw5mqHSEFjFB5OiMIh2MWW1qCtkR91J/IUD0lIqTB48IopCt2YwoEOzuTPnmr36D9372E64uLvt/o0EJwa3DQ7751ZcYqRV3D6aslpdMZlu0xjA5vEPbrBgGGbsHNzlbuL6jbbFIlPE78mLdYLuIfNOxvb2PaRW6rcCtyJIIJQOsdd5Q3SzZmw4YZAmdjrA7Y+7ePEBrx9XlitXlnHd+/AEv37hJEFiCJKStcwIZMR0rdqch+VpjjOJnP/6Ycn3Kqy/vEwpDftUwP73ySLEoJklHfPPLbyBcyHf/6PucLwoCATLw8U5S+DBIHNR1g5R+fIjo/YF4vFVVWpq6QoWO+5+uiOOE23cOubh85lPBF2uGw4jRIMXZFik6kjBkdrSLMUPK2qENVGiGg4T51Z/72Ad+gcIVBAEHBwf/rV9frVb8k3/yT/hn/+yf8bu/+7sA/NN/+k954403+P73v8+v/dqv8W//7b/lww8/5Dvf+Q77+/t85Stf4R/8g3/A3/t7f4/f+73fI4r+fK2jeuFxcj540KL56KOPGE3GiDCj1h0//LNPma9KnAo4u/oZOztDcA2BCCjmG77x9mtkg4yiLFkVBZPdjMl4zPZkwuz/096Zxlh2lef6WWvPZ6556O7q0VN7wgNudwBxr9yBEEQG8QNZCKEEJYKYCASJBJkcIkVGiZQoiRB/osC/WCQKJJdAbiwbHAhtg4e23R7a3W23u7u65qoz7nmvdX+sXcd0AHPthDaNzyuVVHX2rqq1vzq1v72+7/3et9UijiLanS1UVuB7Lo7nEEWxaWCiSaKYJMtJE6MlNhj0TH+l2aTRqBFFA6oVn6BSIYoigmaDpaUVQ7nXgjjNKJTGcixTerBtXMvGlja26xJUgFJfbrs/FZVzNmmakaZ9Y+BnWTTqDaI4ZmJikiyOWDx3lusOXsPU9BS79+5h8cISYRjR6XRpd8xslZQW4+MTzMztACnY2tpiZWWFpaWl4YBvPwzJspSpqSmazSa+b+Z/tksMShlWVVoYAzkpjaJDkmbGDqRUrlBKGWsVnZqn1W0CjAbLNeQLnRdIy7DpREnCEEKUQ8ZmNkl9n6r0dnKTUhqRZcxIw8zMNHEc4zoOFd/Mu23rO3a73dJLyrhcx3FMvV6nXq+jlCIMjZCv43lkeV6q5ScIBF45F5ckSbmjNPqHjmOR58ZRutFoYru2IbUr8FwflWuwFNoqLUBUQlxoCgTCcspeiUIr43+lywF3rXPD9mLb9LRACMdI9kpNkRtJHWFBvVGj1azh2gukacTqijE73NrawrIi9uwdp9vr8fy3vsVGr0sUxyyvXGBpfQ3Hl1x3/TXMTdXJsgEkZje5/MJp4kyQZII07rK2kuJ7mumpBo4lEAryOEVIiWPbKK04sG8PSZGz1u0RRxmuU6Pfa7O2HqFVwux0ix3zNQZRl/HWBPt27mNjvYc83+ah736X+fkJ6tUa1x68jre89RBKWJxb2qTd67Bzz1Xs3rkbjU9vkIIl8B2fJMkQ2hBRAt/HdS0zo7Z6nrPnzvH2//W/qTUaCOlz3XXXs7W5TqfdNuMEGE+9frdHGsfsvGIHQveRQjDWarFz1wKCjI2Vs2yubpJlNtfe/HYO33Yl//HwSTZ7Cba0ECLHFpq1lVVWljbobfXYs7BA2G+TxCleSY7S2vytszgzO1iVk0YJ9XqLWrWGVpKZqVmKNEUlIRdWlxEUIBXdMMKt1HHR3Hz91YRhji4Uve46edhjY2mR/XsXaFXHWHxxGc/18DyH1ZUlLD9kYqzKrTdfy5nzFwhjM4C+1Q4NszozJq5amV29b5me6zZbXill5q6URhSC1QttsqSHLRdojTUJiwGenUNmkfQlvuXT7xrt1zSNSLMc26mRFzlaxUxNNjl79lXd8od41Ynr5MmTzM/P4/s+hw8f5p577mFhYYFHH32ULMs4cuTI8Nyrr76ahYUFjh49yu23387Ro0e5/vrrLyodvvOd7+QjH/kITz/9NDfddNMP/Z3btvLb6Ha7AOjCRuVQqQZ4gYdjSVY31ukMQmy/SacP7W5CL4JM51gCoqyNJRW+7WBryVavj+VazM9PEJ8bGHUH2zz9d7td1tfWKLIc13FAV0iyxBAiyhuVkALX9agEAUUp7Br4LrZlkaUJjXqNTqeNKnKKQhEr00hvtpokqSIt+mjMtlkrjdAKiaDVbCIsm26/Rz8cGJfgIifqG60+KU1pzrFtpqamGG+NkWSFEbXMMrI8Z2FhN1mW88LpF0nTnK1Ot+znWVSrVUBy1VVXMzs/z8bGFv3BgKXlJTqdzvCmHA4SLEuyc+dOGs062zmjKE04VV6UEkcOFFkpXiwRWNi2C1ohlDKW6XmGKndahVZI1NB7a9s3rCi1Grd3YVIYUoYuNRq3VSG22YZC2iUjVBnBYN9DAZ1uD6scHC+0olKrIoRJ9kpAUK2QJCleUEEVBWlm5t3SLKHZaIAQxEmHrCS9GBkvjywr+6rlw8I2PV1KMRxLyLIULTAWKo6ZvxGOi0ozikKQ5qXkmOMNB1i1hkIVFFmMKPUQTTlQILQhtli2RZFDqnNcx8iEKV2g8pwCjSVN3zEX5gFz//79uK5kY2ODTrfPoB9ybnOFta0um/0B6+1NorBPN445t7TOQ48d57abDhK4CknE5ESLPOsQuDVmpmdZW14nU4oLi0tMTY7h2A71So1Br1c6a0s6vZCK0tx+++1859FHWT7xEpmwyUsprrGJJi++tMLU1DheMMH5pRXi8CU2VreYmZ+lUgvQRcJ3v3eMXj/mzbcd4oYbrmOQHOPMuSUGvQ5ZFOJXPXxHkua5scJxXbKsfI8UOXmSobKEAwvzpP026aCLqFexpUuz0eTgtdcThgMWz53BleC5Fp1Oh9OnnueaPTVarSpJNGB9bYOx5jg75yZY7PepuC6djS3ifp+3Hb6ZZ5+/QK8b4SCwHJieaOJbFtPjM9i2w8Zqj3RQkMQ5hYzx3Uo5X6mo14ytUJ5mtJpNqrUG/X5oNElL0W9HCkpjEBzLRauIQbdLmoFKCup+gO+67Jicw3EmyYsBaRTSzQU7dkyjCrAcuyRQbaCFz9zsGBMTddJC0esP2NxqE4YD4jhm0BsQJRlppkiSAq0lllO2sbWFtCyjmVhkpEUBhWZrrcPkeIuxehUylzwtkEiSgcOZUyu86U0TWFLx8EMPYjs1duzYg5Aus7OTrzb9DPGqEtehQ4f44he/yFVXXcXS0hKf+cxneNvb3sbx48dZXl7GdV1ardZF3zMzM8Py8jIAy8vLFyWt7ePbx34U7rnnnh/orQHYdp161aPbb9Nut5memeTmW25mZW2TjXZIFCcEgSAuBHm6Xa6CKIZUF8xNbat3d0Cl7NoxQ7VRp93ZoNfeosiMC7LrOEYfwFPGAHL4+20c1yUIKiRJQpyl5Flm9NIco5GWpylpHBOZ7idhFOF6HpbtUyhjqpjlOarIsYSN6wTUa7WypnyGKEkQQxJCDkrheab3Mj01xdzsDL1uh7W1NZKswPN9hFLUajWS2DzlCCF59rnnCapVqtU6YbTO+PgEO3YuYNsOa2trbGxssbG5SbfXHQ4HCwQTE5M0m/VyDiw35JHEKKmbGRBD7VdKI4SFsGyzQ5BmqBldkKdxObMlSkdmxyhGl9OHtm2XrroCLfVwF71N2NBamV5fSUSxXQetzF9TKTXUihSl/5nSpi9oCegPBoYdurU1ZFeCmVnxfKOqX63WAEMWcVyH/mBAnhflTtIqrV9ykiQxYwaBUd/3PBeVmsSV5zlpmpYJzZArlAIltNGREza249PrR2jp4Xo+hXBIc00YR+hyPMJoNgocx0UXBQLT58zzBMvyESgsaSOkoFBFqVpvyCoKDPVdaYRtmJf9rR5CWNRqDcAmjhVqo8358xeIswRpa8KkII66dNonOffSEm9/640U6Rqd7hpFEbJzapZKzePaa/bx0rkNNjsDHn7oEW688Vp2zE6z78B+UIooTmiNT7K+1SEqFDvm5+hEMb0oxXYtHOniuk2uuHIPYZLSGwwY9DSDzjqnTq6yY26L/fv3UKQZ1157gMGgz9NPP8v07AKe55HECcefeoqXziyRFTYLew5w4823lIPvLk7gk2cFGoXQ4NiSSGVMtJosnn2RoFphZm4XfqXCgX37QWWMN6ucOvkccZQxPR6wtdnmuRPPsjVRQ2U50SBnZnKOdVkQ9/vsP7CfxdUOaxfOcWDPFLdcv5s0jpmdnWNt8zyBK1hdukB7a5OdO/bQ60RUgwqWNC4UAhvb9qgEDr12l0a9iecFWNIhixPS2JTX7VJpPy3lyjzXxnY8xls2vucTJxmr65tkRYHvWtQDD8f1yAvLaIsmOa5TQVGgkGRFQZrlZUsiMyM/haJZdWnVZ8rSfc6g3yNJcvqDhHanTximpHFGUUC/H6GVQjoOrVqdQRRhqZyoFxP3MxxbcObUIhMTUzRrTVzL59yZ5xlrNti9d4H52XGeO7HISy+cJQiqVGuNH590fgReVeJ617veNfz8hhtu4NChQ+zevZsvfelLBEHwmhfx4/DpT3+aT3ziE8Ovu90uu3btYmOtR6fdYWZuHA+PbqfP7NwMamWNSuAxPubQDxOwQpzYlLFq1Srra12KTLFr1wI7dxnjtCiKmJ6b4ro33cTU9AQPP3yUp586jhSCWrXK5MQEtWrV7ApUQV5keJ5vhnrb7ZIJZ1GtONila6slBUWeEfgermMTJ2kpEVVha6tHkpqymG3bw/kj0LQ7WwRegGPbxkNKKfNG00a6Z2pqyvSwlOL0qdNlqcqm0Wjw/MmTjDdbTE6MIYSkH8YMopharY4qBwt3LSwgpMUgDPH9gLW1DZZXTfkyTVNs28x6jY2NlVYqGXGSUAkCsiwny7bV1hW2NHNQaZYhpItWGCUILSlURp6l5GmKLgqKPCdVRkvPti0sx8G2TTlS5WpYyvMct/x8u8SokbaN9X1zXpQ3p23rF8sSQyV9Y1HSoV6pUgmC0uNM0Ol0SJJkaAWzXZoOw3CYoOI4Nj0IPzDjCGiS7GXn6DzPCeOIrMhLm5LcKFfkppcXRRGNZgsFCMsmHITkuUIKcwORloOWrrEZkYpcCYQl8bzAKI0LY5GOzkmiENd1QIPn2gih0BjHgDxLEAKjsygUcRwhtMYtxzrQCkvqUmuxpNS7AX6lwvzcHOeXVuiFCseVtKUkjHJ0pjm1sUG9coID+2skF9rkyYCJsTEmJ6a4/babEeI5ktPnGAxCzp9f5pqrrsLzA9bX1uh0u2SZohCSJE2xLEG16hJlMUJAkuScOHkerRTNhkN/sMFVB3awY8c0nl9nbeU8W5tdJifGsAOLvOjT7SY0WopWc4IrrrwSRIXTpxfJU81jx46xa+9+pqan6Q9CijhG4uD6HgiFa3vMBh7Ts/OcOXveEHuUGWafmhhnfbXB6uoqURwz3qwwMzNGHq6jpaAfxYTdPp2NkBPPnaJ589XMzsxQrwbsnHMIs4h6rcW1V81x+uRp6hWNJStIlZAnBTU/wFKYG7hjk1fNw6RnO+XcYUBz5zi1ah3bcojCmCTJadWbNBoNsqyg0+2SZIlR+RDmIS1LEyiMaW2zUTXvFRS+74BQhFGBJV0s28F2q1iehR94JFlGXdqkpQlmGIZmnCLPKMresbQEjWqADmCsWWfH7BSDQUSRK1QB3W5Irx/R6w/Ii5SJpk+U9uh3BqxcWMFzAuJIs7XRI48kzUYT13bodVLCQcibb7uV6669mSefOMGTTz3H2TNnXnNO+G/R4VutFldeeSWnTp3i53/+50nTlHa7fdGua2VlZdgTm52d5bvf/e5FP2NlZWV47EfBPN16P/D6idMvMOinXHfdPM1mBccVvHDqRaRl0ahVcOwc17GZmdOsrPeIBimqgL6liVLNhfPnqDlN/tdb7+DG669mfXMLKaBer+G6ZtfkWA6tsRbj4+NkaUyaJWbbnSS0y4TlukbRXQjDisuyjEIamqkEkiwnjGJTqlKKKClASBzXQmFYbZYtEBKicIAjbby6SxFoktTsuDzPY2pqkomJCeI44sKFZbI0JvB8qpUKtm3x3PMnEVKUxpIMva0CLzAzOo0Gnl/hwvJSuV6b8+cX6XQ6DAYDiqIoreuN3NT2TmPbnLIotOkliNIcTitDqxKGnKClQ64EaZIRZ8ow4oRFv9+nyFOELKWwakZ13liaKCQFtiWxbAcw5S+xPbOltskbDlKUPlvljJIWAsfz8CxJEASkcUiepibW2zRnVZArsxvK82xoC1NxqtiOQ7fbNZJQUiAQ2I5DJaiQ5TlJGlOtVrFtm0G5c7OkJM9M36taDYYWOts0+lq1SpqlZqebZGRphm2ZUlmhBHkhsVyJ43ok2kIKG9e2SrZigVAax7bIsnS4m5LSJGXQpnQjBVqB57lG1UMrHNtFK6OvadkWruMYu5g0HzocgHlgqNeq3HT91XR6GyR5xHirweL5dfNAZ0tOnlzEd1vMTwdEg4jjTx1n8fwy7/nlPezbv48ot5hf2EOWRaxvddjc2sQSEsetIm1NqgQiFTi2jyU1lswROqPbTUAJTp9eZGqizvr6Ju21iLe9tco1V12LqUMrkkSB6+G4DfLc5vQLi+xa2Mu+yhSVxgSN8V1sdULOX1hlaXWdQliGdOMFhGFC1A/RWuG4Fp5rFG8mZneWQ+o5bl5w/Pnn+M53vsX6+jpJquiHMVpCa6KG7fkISyKtgm5vi2dPnGKs4bJjtsYgHBiyjsrJwk1cGTIzbuHXBbZj41cktZpDkStcR+I6VRy3gufXGR8bw7FthFIUWU6zXsW1HWzLxcJFF31DxrJcmrUqjXqTTBUMopAkjnAdm8CpoIrMKNLkOX4lMKMcCAI/oOl6LC4uIy2LXCjzf24HTI3PUBSKNMnQRUEWpxS2whFi+LCGKhUzhMZCYMkC31HggCVcqoHD3OwYcZKSFebeFMY2cd6n322T2gmthk+/H0FQYW11mVrVQmljbuq5AbPTc8zN7mf/vmt47LHHOPr4k68p9/y3Ele/3+f06dN84AMf4JZbbsFxHO6//37e+973msRy4gRnz57l8OHDABw+fJg//dM/HUoRAdx33300Gg0OHjz4qn///77jLTz2yJMobaj4tl3BsT0Gg4ha1UMKi7x82qvMN7Gkz+lTZ2gECnKI+l1WljPyPGXH3A764YBnTjzPsyef5cL580gpmZ6eolqtMBj0ydKEQRiSlpYo2zqClYqpW1P2WlzHNmKpaWwGPYWFkNooeEuHMElQBUjLNxYBgdEAS9KYwPfxHJe52RmefvY5o5Qx1ho+DKytrROGA7TWVPyAudlZijznpZdeot/vsWfvXoJKud68oF6vU6nV2LlrgU6vy7nz53F9j9XVDQb9kCiKGYQDfN9ncnJy6ENmrDwMAUGUN05TPnvZDsN1XfK8wLY93KBaqrdoGq0GWXsLrYyumu06+L6NlJQ/37gu+75rBmaFEZjdnt/ank9Ls8z0szBWJ6pQCCmNOrmUuI5rZu62CRRhiOPYOLZtSrtK0e31CAf9odmmZdvYwuhTZllGmmTU6kZT0pA/NFmZrOv1xrCcaNs2juMYhfYwpFKpIKUNmHJyoQpUYX6fX60ShiG25+OUxIuiUKR5imUH2LYHtkuSlZJW0ggx25ZlRjC0mdNytgkeRUFBXvYVjUW6bUniKCqNI1VJULKR0sKyjFlMtVqjVqvR75vrd1zzPxHHMbZVo14tGMQ2c9MT7JydJUk0a6urdNurVCo2jhuQRBFZWrC23uY7Rx9mav5qZud3kStFXiRkKqNINfV6gLRtkjSlUBaVmk9RnCMM2+zY0WB+R5OzZzosnu1SZDmbax2ktmhvRmyudgl3pMxO72R9dYUid8GrMzUzQZZpev0Y120SRRlKO1hOBTeQ7NxT48LSMmcXF5menmV6eg4hTdLQQNofsLW1RbfTMfcbVeA5NlLAsccf4eSpE+WOBXphxoXVDa6/ao5zF9ap+R5VxyGoj7O0vsmzJ8+Qqxl6YZcrrtiLYyk8W7NjusnunS36GYRJjso11UqdjfUtuu0+4UCjZECcFOxeWGD/3j00qlWq4z7Li+dJo4hWs8n0xBSeWynl5Rzy1PTPhYZ6pUY1qEJRUPEMczKKQ7L1FdbbG2R5Tl5olHBoNlqE8RKTUy02231TabI8pJVSrdZI4pB4ENNqThCnMf1wgBQpQlrowpTpHctCy5wsj4HMEDMwpCjLtgh8i6rlonAQlk+hY5ACiUeaFbS7XdP2cG0qNY9KrUat1uKr/+f/sm/vQa6+6np2zO8kCuNLk7h+53d+h/e85z3s3r2bCxcucPfdd2NZFnfeeSfNZpMPfehDfOITn2B83AiT/vZv/zaHDx/m9ttvB+Ad73gHBw8e5AMf+AB/9md/xvLyMn/wB3/AXXfd9UN3VD8Oew/spNawUVnG8tIig8EAhMXKcoeNzR7z8zPYUuA4EtcPKDLJzEQVncdMjnlUqw5ShDzxxOOcfO5Zzpw9T6ffx6/6OLZFqzldNuRTokEIWuN5HrV67eWhXzBmhXlOpVKhVmuwtbWBLS000tjQI0izHMd2QBoeU6GV8baxXVMSU0YsFhS1WhWBwHVsdu3ey9jEOKdPv8CFC0tIKRkbaxnzQGFRFIqtrS3W19dpNlvUajXSPKMfhjSbTXbu3EmlUuHC8jJhGBLGCReWV9BaE0d5yagrjSd9d+j5FZY0fiklwrLMjSDNyusud5PSxnUElrSRwsJ1HTOzpQW1eoM0DYlUim07uPbLDMA8L0ojTBsK445aaI1j27i2TZ6agVqlTYnQkDYUCkNeAWPjIfIClRplEMe2mZycIk4itFbkRXmjV7mRVuJlVX/XdcnSDCmsUotQsra2jpTGnmb7utM8Jw+LYc8vSVPQmmopsBwnMWiFbQkalTpJbOapBv0eSuUUWWrKnqVfnC0lnh/guh6JMnT+bU8WrY1Kt5SSPE1KpZCXh7i3NRqLwiS1KIqRAnzPxRJlX08ZynyWpXieQ73eoNvtEMcJnU6XWsP0Km1LEvgOjdo4WjfphxFZtIlKU3bMTTA3XaEaSMabHkzPkmUZ/TAhU5J2b4Bf8Y2zsueAAttzUMJHY5EUGRrJ088+x2PHjtGaEuzbN0GSJOzZNcfZF7dYXuzSXu8QhykUcP6lZZpVm717d+M5dXYvXIHlVnCcCoMwpt5wCMOMOIzIZUSS5li2RxZHPPPcCaSEbj8EYTM5NYu0HdIsJajW6UYJLz79HH61gS3Nw/Zg0GVlbQ2lTXnf/H2h003JcZjduY+1C+dJopCdC0Y2ab0bYi9uEMYBvu+zb+8CWVEwPzPJrW+6jq8/eBTfs/EqxmzU9KkTI37te6xtbnH23HG09rli3x4sCZ7fIAkzNjc6uJaH47hlD1YSBD5pnrG6uo7ne8xMz2DblhH1xpB+Go0xbC/gwsoy7W5ElGjOn19jbb3DDW86hGaFF86cJSs0vl9lY2PDJMJ6nTTLcByPZtMxSjYa0iQjjVMQEqUFjuvx0rmXiMIE13GYmposxZsFQhntTte2CAK/ZJXW0EIa4lmSEYUx3W5Ioz6G59WYmd5pZKS0EY9eWVt91ff8bbyqxHX+/HnuvPNONjY2mJqa4q1vfSsPPfQQU1NTAPzlX/4lUkre+973XjSAvA3LsvjqV7/KRz7yEQ4fPky1WuWDH/wgf/Inf/KaFv/8qWfIophuu02WpmR5QRRnrK4P8D2LickJEDl5lhBGHVQmkcQ0ahK/EqB1ge9VsW2jHmC7LvsO7Kc36CCFxnakKVsh8H239JWh7KOUagUYz6tKSXff2NhgMBhQrdXwfZ9BlJAkhsnXaPjG0t7VSKnxvSqu4xJHA+LM9AQ816dWrdIf9Ln90O20ex3WV1d58YUX0Ahs1zF9rsYURZ6xtLRMr2sGbScmxvE8D6UUrVaLubk5CgVnXjrHxsbG0KbF+GUKpLSZmJigWjWMu7gcwDVDhwWWbaOEYRBuu+zmWWFu7JYp21WrdXy/BpaLFi45ijBOyQEhjIGlSm2kfNnZ2JA6DBVdlrsH17JL1l+K1pp6vW4sR8LQyPVIC5QmK40utTZK+eZ9ZYZ3XN8nzU0zmVKQ169WqAYVkiQ2ShrSUHxd38fxPLqDASDIlELlOVGaUElSlNbkeVoacEKchEObmG2Sh5SSNE7QyiJOEpI4xnYs4iik3mziuj6BX2EwCNGFplqr4/hVstLqHW2YiFLI0kYEVDncbLzKyt2utEzSV8bVm0LjO65hUyrTd9vebcVxhF0y/M4vXsDzPMbGJ9jc3Chn2CwqgY9nN4nDHmka48iCVqNGNchLU8EWjXpALfCoBgFCWLT7IevtCMv2kLaDZ7lICyzbo9eNSMIcLRS5FihSvv3wUQaDTaZ3tpAiwbUTVNpmbipg1/QkYb9HGivyOGesXmV8rIFnecxO78K260irgrR9cpWSFwXraxskSYFKUgrLQlo2mxtrbK2vgtCEvS46L8iznOnZHTiOTafbxvMDDv3cW6gGHkHg091q0z8TU22M0x1EZElcamAK+mHOyRdWufnGq3H9JnGvzfLaBrkUvLTcpT2I0WKOWmXAjnlBlERMTNZZ2LELx36EOE4IpA9aIC2bSsVhYfcUiW7gVOZ54fSLfOfhJ+h0Q248eA2WVkxOzeNY0syEKY0qNInKyLMcz/fYvbBAnqel+K0gcD20EKZy4Lh4SUKrNcH6+jooqFVrLI2t4Ng2uxZ2EqUpfhDQbNVJ44QiMyzGwaCHtowSTVayWm3HIsshLXKjVGO7jI3P0hwrSOMY1w+AonQ1pnQnKMrdlYfrVkizAqfiUa9a2NM+QdAE6ZNkgoMHryfJCnKdI5Vk955dr+m+D68ycd17772veNz3fT73uc/xuc997kees3v3br72ta+9ml/7I3H+7HlcS+J7LpVqpVRgkOzc5bG4uESqCmxbI21NEidMT80xP+exurGBkC4IQbMeGBdXJXDdgDhJDEHAtfE9jyxJGYQDsiTFdz380hxwm5Jfq9XIsozFxUWKkvbt+z5pXiAyo0EnbJtqrYHjueUcUoLWmD6abdPrGDai51U4cGA/juMSxwlPPHEMpGRicppqtcrmVhsv8JmanqLf7RENBkSRSTYTE5NMjI1TbzQoyjLb+sYmW1ttur0+UppylWU7IIUx03QCpJRDzzHjISZJU3PD3ha6jaIYqQWO5QwtX2q1GmDo5tKyiJOUJM8YpIo4LfACj6IwTMNcmWFkx5YlHV+WfTOJhTDkBqXwXGcoeIwwFHAod0rSQguJLgoGA5NE0izFllZpgphx9txZU3IsZZJ0UVAU8uUJ/bIUWRQm+UZRRJKYXaSUkjiOkVKWmoVmXktrTRxHxlw0z8myDM/2yhkrbebuHAfXcUkiM+TcbDbxgwAhLeMgXe6gLNuQL/I0QykL2/LKMrKhGOeZGZnYts6RYpuFKdBa4GjQlm0sIbQxnrSkJPB8U1ZF4Lo+Wpsh9iCooLWi1+vhuKWzsm8MR8NI0eumRGGELQWBV8H3NdKSplzkuqSZNruHeoPWeBPtxWxshYTdLrV6syxjaqQTECeGxOL4DmfPL7K4tE6tJoxCSZ4QDzbJU8H6UsQVB25AaoH2XVTiMdFoUa9WqQUN0tyIyEZpxtbSBrlK2bljB7OzFlI4hFlGOwrJCsGu+Vn27tlFFIf4nk+zUcVzLKQws4G1ikeYanRhjDHzQtMcG2euyAkqNaTjcebk82iVU2gj+Hzm3CaC55lpBeyZ38HYeI2Tp04RqR5Zp4CTq1Rtn8cfe45du3djyQHN8WnWVzs4VR8wogFaW9i2z+TUTvpFFb8hsewqzxx/iieefJ5zZ5a49cZrsOZnmB5vAgohSm1SKcnyFJ2Y/0dLSpxScDnJMmzPQ2hpyFHCQ9qS3Tv3kGcZlhS0mg16/T7CsVnYNQ9CksQx9VqNOAxxHQu/4pNkKYM4Igv7xnanrIQorUFY2G4FYVWYbNXRyni7qSIeMn3z3Di5K1WQpwVUAyzHRymBH1SpVOtIq0q3m2B7FZI8M5sBUlzXxw+c13zvvyy1Crf7HgKHKI4ZhBGNMfOEWyAIKhWm5+eJoh6BH5AXYGkN5ZCs7brYts/G1haDsI9n22SpokCTkSIoaDTqSOmQZYpeLyIMQ+ZnqxRKsNlu0+n2mJ2dwXYDY0Q4MGaHrl9BSYtcCfIopRAWwnGJU0WURuRZTJEXplyUKfIiJVMK16/QbI6jkLxw5iwrK+vkec7u3XvIc02WaaRt2GiLiyugNYN+nzQ29Pt6s0W13iRMUtbX1tnqdAnD0Az4WjZ5lhEERl3e3Khd4sQ4PbuOa5JdrowLqm2jUqOYkWY5SWzKamGaGPJJoYnTNrVqHS1i7ESDcBCWZ2SJLMnmVps8i6j6FnmhyZOMLDOCphYYV15tymWubUqeaRYO57eqjoMWgjjJGCSpKelo848ihDCSXo5r3KOFIXOY4ckMS0garkeWxCRpaprFmF5RpVrF93zyIifNMlzXJ04SeoPIsP+kBqnIigxdEmqMPqTRMXRsh1RocmVKjpZlkcUZuRJDia6406dWYPyzNOSZ2bWLfoiwBVEiyHBQsvSElRmyTFxKaTOjhUmKlNYs2+/7bRuKoty5SscmjBMzUqE05gZoRGPV9sB2oZC2pNPtE8ZWWbp0UblDoT0oCrOTtzRxlpAlMVGaY2mbOI5Y78Qkec7i6hp+tYHGY3HF7HQs20KKCq5bRVsW/XaHb/3nw0axXktcJ0AKyczsLP3OgPNnuuXN02YQpth4BH4FrQSddp9uPyXTPTZ7A547dZI0i5ibm2H/7v3sXTjAdLOFHfYYRCmgufaaqwnjiKIoqNcb1Gs+KkvBsgxb07HRqqDX3jKGqWWpvlKvMzk1w5nTLxgij1amtJ8qzp1fp7smCXs93va2mwhqdYS9QZZCp5+zsZWweuF5olRw3bXX4kSKxcU+u69skGVQeBa2EyC0R5IqLNdDWALHq7Jv3xVsbayytniB+x84yu4dU9x263VMjrUoSokvaQlsx0Jp6OkQqbYHeUBaNg4SJQRrG20saZEXGZWgQhA45n8ACPyAQhjVmTgpKIqMC0tLZKWzeq3WoNFqYfs+0rHLB6yYPCvIc0WeS7IcKpUWaWaEnV3HN6MGwmIw6JnXXIs002xubuB7BWOTs2gNWaaJYk2uIgpl4xc2g3SA0hme7+G5HtK2LrqfvxoI/Vq+63XGCy+8wP79+1/vZYwwwggjjPDfxLlz59i5c+er+p7Lcsc1Pj4OGMHeZrP5Oq/mpxPbs27nzp2j0Xjtg34/qxjF55Uxis8rYxSfV8b/T3y01vR6Pebn51/1z78sE9f2EGqz2Ry9aX4MGo3GKEavgFF8Xhmj+LwyRvF5Zfy4+LzWjYf88aeMMMIII4wwwk8PRolrhBFGGGGEywqXZeLyPI+77777NQ0tv1EwitErYxSfV8YoPq+MUXxeGT/p+FyWrMIRRhhhhBHeuLgsd1wjjDDCCCO8cTFKXCOMMMIII1xWGCWuEUYYYYQRLiuMEtcII4wwwgiXFS7LxPW5z32OPXv24Ps+hw4d+gFzyp9V/Md//Afvec97mJ+fRwjBV77ylYuOa635oz/6I+bm5giCgCNHjnDy5MmLztnc3OT9738/jUaDVqvFhz70Ifr9/iW8ip8c7rnnHt785jdTr9eZnp7mV37lVzhx4sRF58RxzF133cXExAS1Wo33vve9QzPTbZw9e5Z3v/vdVCoVpqen+d3f/d3SzuHyxuc//3luuOGG4VDo4cOH+frXvz48/kaOzQ/DZz/7WYQQfPzjHx++9kaO0R//8R+XjuMvf1x99dXD45c0Nvoyw7333qtd19V/93d/p59++mn9G7/xG7rVaumVlZXXe2k/cXzta1/Tv//7v6//6Z/+SQP6y1/+8kXHP/vZz+pms6m/8pWv6CeeeEL/0i/9kt67d6+Oomh4zi/8wi/oG2+8UT/00EP6W9/6lj5w4IC+8847L/GV/GTwzne+U3/hC1/Qx48f18eOHdO/+Iu/qBcWFnS/3x+e8+EPf1jv2rVL33///fqRRx7Rt99+u/65n/u54fE8z/V1112njxw5oh9//HH9ta99TU9OTupPf/rTr8cl/Y/iX/7lX/S//uu/6ueff16fOHFC/97v/Z52HEcfP35ca/3Gjs1/xXe/+129Z88efcMNN+iPfexjw9ffyDG6++679bXXXquXlpaGH2tra8PjlzI2l13iuu222/Rdd901/LooCj0/P6/vueee13FVlx7/NXEppfTs7Kz+8z//8+Fr7XZbe56n//7v/15rrfUzzzyjAf29731veM7Xv/51LYTQi4uLl2ztlwqrq6sa0A8++KDW2sTDcRz9D//wD8Nznn32WQ3oo0ePaq3Nw4GUUi8vLw/P+fznP68bjYZOkuTSXsAlwNjYmP7bv/3bUWy+D71eT19xxRX6vvvu029/+9uHieuNHqO7775b33jjjT/02KWOzWVVKkzTlEcffZQjR44MX5NScuTIEY4ePfo6ruz1x4svvsjy8vJFsWk2mxw6dGgYm6NHj9Jqtbj11luH5xw5cgQpJQ8//PAlX/NPGp1OB3hZlPnRRx8ly7KLYnT11VezsLBwUYyuv/56ZmZmhue8853vpNvt8vTTT1/C1f9kURQF9957L4PBgMOHD49i83246667ePe7331RLGD0/gE4efIk8/Pz7Nu3j/e///2cPXsWuPSxuaxEdtfX1ymK4qILB5iZmeG55557nVb104Hl5WWAHxqb7WPLy8tMT09fdNy2bcbHx4fn/KxAKcXHP/5x3vKWt3DdddcB5vpd16XVal107n+N0Q+L4faxyx1PPfUUhw8fJo5jarUaX/7ylzl48CDHjh17w8cGjFnuY489xve+970fOPZGf/8cOnSIL37xi1x11VUsLS3xmc98hre97W0cP378ksfmskpcI4zw/4u77rqL48eP8+1vf/v1XspPFa666iqOHTtGp9PhH//xH/ngBz/Igw8++Hov66cC586d42Mf+xj33Xcfvu+/3sv5qcO73vWu4ec33HADhw4dYvfu3XzpS18iCIJLupbLqlQ4OTmJZVk/wFRZWVlhdnb2dVrVTwe2r/+VYjM7O8vq6upFx/M8Z3Nz82cqfh/96Ef56le/yje+8Y2LDOpmZ2dJ05R2u33R+f81Rj8shtvHLne4rsuBAwe45ZZbuOeee7jxxhv5q7/6q1FsMOWu1dVVbr75ZmzbxrZtHnzwQf76r/8a27aZmZl5w8fo+9Fqtbjyyis5derUJX//XFaJy3VdbrnlFu6///7ha0op7r//fg4fPvw6ruz1x969e5mdnb0oNt1ul4cffngYm8OHD9Nut3n00UeH5zzwwAMopTh06NAlX/P/NLTWfPSjH+XLX/4yDzzwAHv37r3o+C233ILjOBfF6MSJE5w9e/aiGD311FMXJfj77ruPRqPBwYMHL82FXEIopUiSZBQb4I477uCpp57i2LFjw49bb72V97///cPP3+gx+n70+31Onz7N3NzcpX//vGpqyeuMe++9V3uep7/4xS/qZ555Rv/mb/6mbrVaFzFVflbR6/X0448/rh9//HEN6L/4i7/Qjz/+uH7ppZe01oYO32q19D//8z/rJ598Uv/yL//yD6XD33TTTfrhhx/W3/72t/UVV1zxM0OH/8hHPqKbzab+5je/eRFlNwzD4Tkf/vCH9cLCgn7ggQf0I488og8fPqwPHz48PL5N2X3HO96hjx07pv/t3/5NT01N/UzQmT/1qU/pBx98UL/44ov6ySef1J/61Ke0EEL/+7//u9b6jR2bH4XvZxVq/caO0Sc/+Un9zW9+U7/44ov6P//zP/WRI0f05OSkXl1d1Vpf2thcdolLa63/5m/+Ri8sLGjXdfVtt92mH3roodd7SZcE3/jGNzTwAx8f/OAHtdaGEv+Hf/iHemZmRnuep++44w594sSJi37GxsaGvvPOO3WtVtONRkP/2q/9mu71eq/D1fzP44fFBtBf+MIXhudEUaR/67d+S4+NjelKpaJ/9Vd/VS8tLV30c86cOaPf9a536SAI9OTkpP7kJz+psyy7xFfzP49f//Vf17t379au6+qpqSl9xx13DJOW1m/s2Pwo/NfE9UaO0fve9z49NzenXdfVO3bs0O973/v0qVOnhscvZWxGtiYjjDDCCCNcVriselwjjDDCCCOMMEpcI4wwwggjXFYYJa4RRhhhhBEuK4wS1wgjjDDCCJcVRolrhBFGGGGEywqjxDXCCCOMMMJlhVHiGmGEEUYY4bLCKHGNMMIII4xwWWGUuEYYYYQRRrisMEpcI4wwwggjXFYYJa4RRhhhhBEuK4wS1wgjjDDCCJcV/h+9PxqNFpJHnAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S6wkWXffh/72Ix6ZeR51qqq72f09SYukdHUt6UKWaQL2xJAhaGDAsAeGRoZhwCNq4M8emBPLHBF3cGEPTM0EaSRI9tiAB+boQhZtgLowKdqUyI/8nt1d7/PIV0Tsxx2svXdE5sk8daq6+vvUH2s3TldmZDx2ROy911r/tdZ/qRhj5H1739639+19e9++Ik3/tDvwvr1v79v79r69b2/S3guu9+19e9/et/ftK9XeC6737X1739639+0r1d4LrvftfXvf3rf37SvV3guu9+19e9/et/ftK9XeC6737X1739639+0r1d4LrvftfXvf3rf37SvV3guu9+19e9/et/ftK9XeC6737X1739639+0r1d4LrvftfXvf3rf37SvVfmqC67d+67f49re/Tdu2/Mqv/Ar/x//xf/y0uvK+vW/v2/v2vn2F2k9FcP3jf/yP+c53vsPf+Tt/h3/2z/4Zf/kv/2X+xt/4Gzx9+vSn0Z337X1739639+0r1NRPg2T3V37lV/hrf+2v8T/8D/8DACEEvvGNb/C3//bf5r/+r//rn3R33rf37X173963r1CzP+kL9n3P7/7u7/Lrv/7rZZvWmr/+1/86//Sf/tODx3RdR9d15XsIgZcvX/Lo0SOUUl96n9+39+19e9/et3fbYozc3NzwySefoPWbgX8/ccH1/PlzvPd89NFHO9s/+ugj/vAP//DgMb/5m7/Jb/zGb/wkuve+vW/v2/v2vv0E2w9/+EO+/vWvv9ExP3HB9Tbt13/91/nOd75Tvl9dXfHNb36Tf/j/+X+zmM8BhVKqWF/yrwKdrLH8HVBKo5Qu+xWLTStI3xVmZ/vOfkqhFCj0eD5txuvosQ8ZhQ0BYojEGPHRE0LA+0DvHd57gvc47/FBfgsBYoQQI947tDFU1tLWDVVdY63BWktlK4wxKK2pKotWCq00WmsUkz4z3j/AFB2O7CLF+8jxISR5auW+Dmm+l0UcIzr1IxAJ5ZTyzGIkvcP0b4xEIjHE8oplv4j3gRAChEDM20NAGQg+MAwOWxmccwy9RxnYrlZstx3D0NPUDcYatNYYpYnR47xjs1zj3IBzDmst1lbYqkIZjTHpeQPeRUIMxBAZhoEYAzFGmqZN9wPGGDSKSCSEUJ5hGWcxEmOg67Y47/BpnJRnCvK0orw9OSY9R62IMRBCLOfxPuCGLcHL+1YqovOYTcdro9HaYK1BI2NKW4O1VfpNIS5xBUqea4hh7DdKukCQvqQuQekaKkzuU2sUGqUUxqTzpmaMRikzmVfyP2M0xqhyvDEWozXKaHnnaQxoI+9Pa5nrWmmUlrlROoTamwfp1pQCLfNblT5pGXdKYZVJH9XOmpHvq8ynfGh6R8T03tI7yWM2BC/PMQaiD8QQCNHR9zLWvHN0w7aMbyCtESGNdy/bvSdM9pm+22l3ptv2diz9HR/K5Pmkz9N/w+2zwGTd0VrGhdK6rKNa6TK/tl3Hf/6d73B6enrwTHe1n7jgevz4McYYnjx5srP9yZMn/NzP/dzBY5qmoWmaW9vnsxmL2YyDgmsiROSlTATNIcFldBF4eUIlCbWzn0wGVa4pA9eUz7Fc8rDgciELLk+VFiSfBZefCi7Zf/AuCSlL27RUVSXfq4qqEsGltcZaK0JLqTJpx7ZrhscDA/K+38vzveP3Y/sebTGWHgZEYOdzy/ljEQDTc04nsCykjqoyMknDZFIrhXc9QSkqY+j7jkprqtYwDB3EgIqeedugtSYEz2q1ZFY3MvliYLW8xnuPUorzs1OstRhjQOuykMtlHWHwbLYbbm5u6LqOYRioqorTxYL5bE5d1yhr06KtirD1PpQxEENg6Ae23Yau27JarfDeJaEcyz3HvWdlK03wnujDzrj1fgBEABmjyziejhWlFEFBjOPzzecOITBrF9iqoqqrnXdvrS37bLrtRGioneNjjKIQGEPbzMpYNsaUvhhjMLqWfmpT7kEpJWM899dorDbyfozZG2uj0NFmVOKUsQfGZBJoaqobSV/GxVwWYG00Wo19ulNwjYN795/yzsLOcwnRi7KV1oa66nDO4ZzDdHpn/Ofjpn8xjfXpmJje6/SeD83J6bsqPY9xFF4HBNf0TidXvLVW5n/L5zT+puPuTdtPXHDVdc1f/at/ld/+7d/mP/gP/gNAJshv//Zv82u/9mtf0lWPv6jbn48ftX9Msezu2CfGmBTG9HkyEdXOeY70fMdq2t1/+q/KluCBgZqP3V/4c39yy98PDfy3ieE59CwOf5/29dB11CicQjiIh2erI0+o6D3ODUV4GasI0dNvB3xICoMLrDfLIji223XSdD3D0NNXNSGI5fPkyZMiuLquo2lbqrqmnbVsNhuGYWAYBrbbju12y3K5YrPZFEEEcLJYMG9ntG1L0zSySBtTNOe+75Og6xmGgW67JQRPjAHn3GSR2tV1lR4XW2sNKkaIovFqvSuEQCWrbHcRzFZM1dRYa4tyN33tV1evRKuHZDUolNLUtQUUIUS6vhMrR8v5tNLFOhv7gFhLRmO0oapqtBGhVdmK+XyelNWWuq4wxmKtLFV5wdPREHQkKg1JSGfLTGuTFFQlCiN5nPvbcxgR1qoonTEpL2FirSQhFsehKs9P7Y7c8rBuz5/pccmo3vldo4kqTgTh7XVhf95Oran7zM7XCa+8/b5zvRiV99p7FNpq8v1t208FKvzOd77Df/Kf/Cf8G//Gv8G/+W/+m/z3//1/z2q14j/9T//TNz5XUqjvbFlw3Np+7OXt7nSncJExpiYD//Y1omAEZXF9fW8P7KQO93dnME6E2/5v8pxuC6n8ufT1wPb9c71JOzZZdgZtuuUdDW5P84txHPi3LcaJFpitkRDw3qUF3xOjwIObzVoEWDfQbTtWq5sEhxnc0LNeb+iHgWHo2RqLc471esXzF8/xPqC1YnCOdtZSNw2z2YzlaknfibDZdlu6bcdyuabv+6QpQ4iB1c0NbSNCq67rBDnaAhm6wbHttrhhwDkRXPLcRogpysmKYJEdAmIAZMtbJcs7P/Os1Ggy/CrKgAgT53wSXIraN8myMQUeVAl+3nZbgVidwwefLBmBqZXSxAjD0FMQEKMx2ToGYoJvp01rRWWT4EpCbL1e0zQNbdsym81o6pq6aYgRqmzpAj5ElAqoJCRREJUiRtA6opUucNZUGOyMQxk42XgClRdXNelrtvqzlbFrheyM7cl4ZDrfJ8jN4bmn5SlNlNDJbCj77p9D1pdx26E2VbDvEljTa5RzTaXsW7b99YX8iL5qgus//o//Y549e8Z/89/8N3z++ef8lb/yV/hf/pf/5VbAxuvaCCPdf2HdH7iHjxthwHuccaL5jIP9TTSX3b4dtnrUgUl3oCsHfp/AGHcM7J9CVsROCweE17RNhVbR3GOE6MffnZ9YOIFhGPDO4VzPejWw3WxZ3Szp/cDqZsnN9Q3rzYqz0zPm8zkAN6sVm+2W1WqZrK2Om5sbrq+vAdH4P3vy+Q4ctu07vPfFEszCYNpv5xyvEIEC4zjM8FiBe3WCe9ODCMXvGRBrQGGNxZjs0xPrMDhH8J66rgv0luEorTVt21LXdbmnuq5LX6dw62qzKtZGVVW0rUCbcqzD+YHB9fR9T/DJZ2cVWhnE6tq1rHSy5LTWVFVVnpGfWJGjQAGlRCgZbbDGcHJywsnJCaenpzx8+IjF4pSmbrDWY7X44ow1GIOgGgQ8nqAy3Cf7CLQXd2Cr9CKICFRtVLZQI1FNhAuR/EICcVQQ9wTQKLwoXuVxOqrRH8mR+TYRdNM+ZqVtd9fdcRR3/NhTJOOwwD7WVBL8sm8W4rcB0C/UMgT5BU76UwvO+LVf+7UvDA0W03Oy8L6tZcCBF3sIKrwF1anb+0w/34IK96556Lhy7PTNHrHmdv6dDNBDUOFdsN/bCq+3Oe7o/nvG5qH9poJL6QhTnD8pMkpFhsFxs7xmvVpy/eqSqq5wg1hPT589Y7vZ0HUC6z158gStNCenJ6A13ntWqxWAQHZdx3q9Hv0RIchiOIHh9p3X+Znn37K1nd/KIdinCMN0ePS++LNUUkq0YvQFGYEG67pC1RUqRrbbDSG4IngyBLler2U/vTuQsr819yeoUZhtt+Jby35hrfXOfSdnIsMQiHFI9wVWiw/Me0/vXIIKYxHQSuudwJQMG8oz8GNgSYCbm5vi023bGYv5gvl8zsWDC85OzwVSbCva2VwCZqwtvm3vPRhQyULVEXwIZd7l4A2ZaxCUWKIaRVSRqMZ3p/L+E9+OUqoIea11efeaXcGT14mDIPjOOJAHOPUPTgXIdP+72+215D4w4dimHqt30/atrn3k5E3bVyKq8CfR9heU8Ye7TespPDeFCqfm/A5U+Fa9ytrbbaF0XyG6P0aOwXZvayneXriP73PousemyDjgx3sI3oOKaHSJ1ApBLBwJdnFst1uur6+5ub7i5vKyLOLb7RbvXPJHbVkul3SdWEzL9SpBd7DdbomAd45t19EPAyFFbnnvivM+hLCj6GYLYmp9hRDkvEHgvh2Yb6Idq6TxZz055vDSSIH98iKqlAQLVJWh8clfphQhL4CoFKEZ8DHgg4dBnqP0KZYFO4ZJIEdagMOeQiDPXiVYTiWrTkNELKco5zDGoKsUHJE06xBSAJJz5fhsnUVA66EIkGJ5oUsUoHPyrtbrNavlkqZp2KzXXC2ukuCqOT+/YDabMZ/PqZq6CEhNTD4vQEPYwfMTRKhzRKRCgiLFwipjGtB5oZ2M2bDjr0mW4974Ha22/aYmYzorNmqiQN9WpI8FXhxrBxXtO/bN19iFCqXzd64Ld0zjfT/6u2rvBRf3HwD7n/ePV9PQpHfdvzu0pmP9Sd/KtltY84H975oYXxacGHf8lHtml+zBeB8QvAMiyhi0MUBMfqxI3wuMdX19zZMnT7i5vmLYbkv0pvee8/NzhkHCja+vr9lst3R9Dy9fFm03RonozIu3nizozrmyXz/0oLT0P4yBDsbYHWgzw4UhhINjKLccQqwRmE0W/5B+ywET2eqMaCPRdnVlaepaIk0ThOaCw0VPVBFtpf9DL0JA2c0Y6DD5M9qW6+wKX0/XSaSbT5CktRI4MQwDPgmutm3RKIwWtUIbldIbIs4PBDcKwahyyscYwAJQVRVNXTNLUbTBB4J39H3HarUEFM9fPEcpsTzruuLjjz/h4uKCR48ecf7gQfEhSgRnBUYG2lT2KAwxCyiliEoTlUHE6ZhOoSbPQRtTTlAEPiS/Y57/o4IxHcITW23y75jmgMqoyf2XEbnO6wXSm0GFu7Anr1FmVd6vfEmHfklCC77igmuECt/tedUBbefgfgesnJ9ku2V9cUy7+il28p5tHOSj5TYGXmQIEJncWkm4+NDjnJIIwL5ns9lwdXXFzc0Nq/UNT548YbVcst1sCN7jnaPve7773e8WNpZt35frdV03whggVopCFq4QCWnpsUpyUFzwBS4iRowaIZ59H1fOwzpkne6+x+StiGIz6bQw6QRh7kJGqZ/e03dbVkjqSFVV2MpQ1/WOII6pv9ZauqEvaQc5utFaizW7IfYZlhSorsW50ZolBWdYawsUNvQD10H6ba1FG1OiEN1EOMW9PLIcXZkhyn7bsdarW2ke6QiB/JLAURvFcrUqgurxB4+5eHDBgwcXPHz4kLad0TQ1s9lix8cVylyJEDVBBaIKkqqQUwJiFGsL2cdMYFWlR8t5Z1nP73hfeO3sosraVQRpGQO7ltK7gNZ+Uu0Lu2zu2X4GBNdt8/a+Qud1i/tdlsxoZU2+qz2r+ZCmckTzOTgop9bPgX2mg/luqPC25XQfK+u+E+X1+037ETm2+xT/zueVSLowanVpwQopajCEQNd3bDcbPv30UwY3MPQDl5eXXF5eslqt6BM8mM+9zUJru2XwDpKzfMgh5zHp3CEWwZV9G1FBJEhknfcorQgpPD2omJz7t5UHN0kgTje3c9/jZ7I7HU0o1lzwnmx5ipad3nvS9EOMED1qUPjgMd7gnKeqq5QbpTHWolTAh4AaJFBEKSU5b8ETXCBUccfHki2sEAJNI3luTdOyWPiURpDfRRKqcRwP/TCMglOJf0mpFAGow85zmgoBY0wZMYNz4l9KWov4wiR9W6cJF2LEDb1YYNYQCazXay6vrri6vioQ4ocffMRivsBWSRiiIAjkq7RBp2zCLOAhBWPErE5kizrBhyQLOUVUllerMkIgx5YXuzfO07dxLYmqhO7vK6SHYML95PVpu6+Fdej4ooyVnXIvJoZVfj7eF9Vy/xxln0lqwbsSwl9pwSVtXOTeRsqPFgpHhcp9B8F0EE77NA2zuOtcoy+BncV7hCB2z3GXP+n2591j7grQOHbu+wi14/dW9uA2rjCFMKcCWYSW9x6rE9dEgshCEOit6zq23YbVasmffu9PmM/nWGu5vLzk1atXrFYrXN8XeK+ua1novKd3A4Nz5ZrZDxNCGFkB0iJlUpIqSjG4aaTf+Cy0jug4LsA72n2Me4tBLL6qyUY5LlkYSkEgoBgXEpUsj6LLx5DCw2WM9cOAcg7VK7TumM1SzljbYquKYAKBiO1d6aNLPj/vPT4JqBxyLuwfwgKilKKqauq6oarqkru2XC7xKaJzukCV+1Xi1/IhlACNbHHlsW1TQraC8hmEpzSmpOsQo4TDW4NWEatzWHwgDA6UQnuFv/RcXV9htOXk5ITZbMbp6akIoMePmc1mYl3GSNSaqDTaAlpSl0P2YcoIFGUkZsHlyziQYBtDYXHJUK5KAigdM0US9pWznZagwv3Ix6kAOPT9rnbXunVonh/eP4020aB29gkpTy4qgYen5znW79f5w+/TvtqC68iNj/DhOzBXX6vJfHkm8V2v9ZAAvA9UeF+Lan+Qvcu2P2GmWliGjZwTSygv1BJ8EUqQQgiO1WrF1dUrrm+uubq6Yr1e8/LlS4ZhIITAcrkUi6vvUvi2F38Jo5Ug5zegFC4EhmRdKJUd9onB5Mhz0BNtOO4Jp/yOphbM5KaLlpoXNjlUWBQiCmN1SY7O5wGKdSOwX1rktEGhR+aN1N8cqOKc4+z0lLZtOTs7Y1Uv2aw3rNfrW4tM3/dYa2mahsVigffi37q6usIYS103nJ2dFUumaRo2m02Ba3MC7zAMO5Rp207eA4C1NaayyUcJ2xx9mNIKMkRZniUyH9bdmrAJaGuoqwajUxK3mHp4Dz52CW5V5f4qW/H86XO+9rWvcX5+zsXFRbqHOYvFHKsk9UApjTYVLoq1ne8lxohLQTZCKWXFuvRhB/WZJsdnyDmmc+XAl2PzQRg8Mqw8mafcHlu713izOTr11+Y+Zyh6f5+pIrv/OftttTEYa8p8UkrtQOMZii5K3E4U8Nu1r7TgOmZ2qmzL37MdEgCv269MdvWGeG58O2EwhSSnwmn6dxwq3BUWh6zC6ef9/e6abPfr9QhxHTrfNOhATZ5nsUiUSomlKu2v8N6xWt2w7bZcXl7y2eefs95sALBVRYyRdjZjcI7NdoNPuVVuGPBx5BMEsDYmi2Dki0zq7+ExNlGKMomFKvc19VslxTwmAXnLUk5MIPl9xMnCpCLOjZF6u4rK+M6ygFAqQ0qhPEOhjhJrIPjAzfUNm82Wtm0x6VkaY4pVpZTCDYNYl0mIqNTXytoC1wbn2KxXVClxOziPimC1Zt7O6IcBtPjbssWaA1zGlAJPdBGVhUVKA8gLaIlCTHM5+8ky9ha8x/tNeabCHWmpqwqljPweHD6xagxuIL4SSHT+Ys7Z6SkPHz7k7OyMi4sLFidnzOcL2nZGiCFFNCqcG0Y/nzUQQ8pfixiliNrkYEAkoXuCtGSlKI2KeID1ZVfRFJ7H20qOIBHy72GF79hcPDS/swDUWktwTBBLWxhVRmu5zL84BhhN0R4XPKayxSLP58zCcGpZOe+QYJqMXHBrvXqT9jMjuPZfdpQdbgulA5bKoTbud/e+b/rsd7SjNxRgr+/3bWvr0OdjgmkKFR7ab9qOQYrjMaMj/Vibnj8vajt3k9XsODqxc8LtdrtluVqy2Wx49eoVT548QWnNbDajrir6vhfN2BicD/gQ8SH5pkLYISSNpAUziP9nvx/79xgmzyj4WJKGp0qJUpAJb7MgUWlxnoKlkMOs8z0rWZxVxLtQkpJz8MLOkXEM/JgKxiw0ZR+K4Oq7HrXtGPqBk/m8CMUh+aIAXO/koBDxg4OcHK0N2qoSVdlvt8QqlOhJksVgayusGlHOjUo+KOewxgg0F+MInYaQrEVKovBUI5cFUGR6JKCtwI7BxTFdAITEWCEsHunZ+BBwXiBRh8M5yWmrqoqXTcv1zTUPzh+wWq14+OgxFxcP5V3amM6j8d4BRsLmicIJiAIVUEmhiFH8XGRyY2KxYqIa39Xu2N5V6mBXYd6dcqoIr0NWz77geh2MP0Lbqc9Jkah0VaZrFt4ZDZheQyeWkhAjdVUVMuAdC3lPOZY5M1qxuyP5zdvPjOC6tfjKtzuP3xFixwSV2t3vmOArlsGb9P2e+x5q+9bWqOEf6ueXB2fma30Rs38Kg+TPMqlAwoXFr+X9wPX1NX/83T/i5uaazWbD9fU1P/jhD/nRj3/MyclJWYQ//fTTAl9leMp7X0h8p3lKzrudRXMf9jsE9cl+FGEVd5YdCoySJK8InmRdVZVQPSnAuwT7adAma6pCtqqsLUwOIrxSoEYSHnkRq+zuNM79N8aU/nnvmc1mo48p+WRmsxlN0xRCV2ttSVpWSrFYLAr0UyVLNgs5IXoe2TgyhDmbzRN/IviJBp+DO7KwXG82dF2P94HB9USEcTxbgKPAzqwT0PVDyv8KZHJrYxTr1YbNesvV5TWz2ayQUFdJiRncgFYBl8bHUi95eflKaKas5eLhIz7+5BM++frX+Pmf/9fKORRGrN/g6LZXhQGkbVuxTLOyozWVtVhjUKYq42gffrvdRjVm6g3fh5jjZMzm38u7nsydQ/NwX7HP8zWkZOxs6U5TNXLeowseozVVXZWKB86JP7Gu62JpVdVIvDxC8GP/TVob83WnVtrbtJ8JwbW/7Zhl8jpLRD4fv97h89626Kb9+CILetYms1C83dfdsNm7+3yY5PZ1sOHhbsWd41+n4U2vd1fLwjfGFPodZAGPMdJ1W25urvnBD37Aixcv0Frx4OKCP/3e93j56hU3Nzd477m8vCREWUgH53DDwGazzT1PsEWOgEsh7j7AhLJpXxkKCUbZewiCWiXLMsSAiruUQiJcxCpQxhTYzQ0SKWeNYdY2yd8lwShyvJEyHDG/c5LllWAaIlVlCF6ErusH8W8mRnWdWCiEAqoSa8lo/DCgYqSZSXh4HhNKi5WntEq+CodP1kmIHq00dV1JyY30J0LXFTipsgZrE+N3YsZw3jGr6kRRZbi6vgJkkZy3JzR1nXxn1/gEKaIktk+sZPGtkRbB+XyODloCa4Z+jOYMkCs6KAWbrqN3DtN3WCUWoETYxBSdObKPKGATofee5XrN50+f8OLFSz768EMenD/g5OSUs9MzmrZhtpgL48p2w3az4uLBI5TJBLyRoDQej2GMiiw1etTt+ZfH2u05cNhXfQwWzOjS6yDDfL6MNoTgd2Do6d9UeYsxpMALhba2bNv3U+WxpLKQStaksOqPguuwAH+z9hUXXPnvNvXTaIBLuw88WPa9zz4HBEjc+/0LCa1bfbpvZOM9zrUndA5BhHcJpkO/HRKEb9KPqYCVdWAMhY8xstmsuby85Mc//jHXN5c0jZDB3iyXJfhgnVjaffBYawsh7OCGnWtOteCpBph/3215QdD7m3fOIfCUsGIIK7sGDCEooW6KY/h3CJ6gNVFrTAqnlmmeHdm5xpcmm3XZD5SFl/cer9N5rS1KjpDWikXXdV0JXjDGJD+DdH4U0vKnlMXabM1pnBYi3Szgjda4IBGOuoyTUFhEJHnZoK0kPwuLfCi0VLk0T0jnsNbSIiHlayOEvgLB6bQIu4m/cWxaawygvcEXq0ZgKKWEYcQHTyTig8JPq0YplfyaERVDOZ4QcVHSJK5vpHzNernk4cUFDx48pHv8mLOzMx5e6PFY53FDj45CMKw0RJVgRD0hy90ZMLeVRHmUh4XavtAqsPL+foylgMZ9ubVf/i3/N/09s+/nfQv3ZhQYO1u82YJVCFPLdA0YhgGiKFDajL6uonhPoUaOWaD3a19xwZUXt6lzf0zse107BBWq5IXID1vt73fg+HGgHcFt1esF2V1WyxQGfJ2FdVd7nXV0SAjdR3jl/r+JsD48OacwSCBDhABPnz7le9/7Hr/3+79HjGPtoRyQMZvPWa2FX9Bay2w2KyHe+1DyvqYoGiioFK5d4I1UoDAEKVAJmdlihHVi9JRab4waZdu2GGOE5HcYWK9XEnatFBFP8ANBBbwdhVVV1zvlTqwek3JzpJ8xhqZpWC9XdKHDoXh4cVESgwHm8zmz2YzVtdQD673n9PSU2bwlQ5jZ15MF/Gw2o04WUN8L0721tkRoZqgwv2s3SQkI6bmhoDIVdV2LgeN0gmu7RJqrCFHhQ6RbS/ShUZpZ00rADCKEClwbAsGIgPHes1wuaWYzjK1oW5tY9F1i4XfpuVUYU5V323Vd+ZzvOY/THOKvtaG1Bt/Lc/6TP/kTvv+n38Maw9nZGZ988nU++vAjfvHP/Tm+9a1vcbI4wVrL9fWyJG5rU6GjRJlSHVKADltYU6hw2rJCvmv97Pr0s2DIFtR0nB9TxPLamKHxnFw+n893mFI2m02CSqGuaq6urgghsFgscM5RVRUXFxf0fV8CaZ49eyYQt1ZFsQRK2kSeGzndwf5ZhQoPkZu+flE/4p868LMoQ28Czd21/c2F1hu3fTNz5/rp0wHIYl9gHdtvv793Cbudq9/xTkatKxKCElLZhKv7oHDeF/qmzz77jFcvX+GCWFF917HebHbGQM7DGtzAtu9wKUl5H9KIccyZE+UkC54AMdesStaFmgZcCFG4iFWF8wGtQ/FwZWUqRE9bNVTWECqLcwMxeIiRuq6pMky1XWG0oW0aZrOGedsmyyAUayxiCN5hjKapax5ePOB0Pi9MIcTAvG25OD9jmQpOrm5uWMxnzNpGAlr6Hpu1YBRGK2L09L0ELVSVASxnpydcXV7hhx6jFOu+I3jP0Btmsxm53IkUpJQ6XN5LHlg/9HR9x6NHD7GVJWCoTIoSHHrWq5Vo5EoWtmEQGHU+bzFWzjX4wHK9SnW9Ii5K4rUPkgwdtx3aSLRgwsgw2qZIxEDwHd4HrDEYYzk5PZOoOefZdh3DtiNPFGGul/G6XK+xSmONprYWjyK4gefPtqyWS374g+/zx//yD/nmN7/Jxx9/wre//W0enF+AUgTncW4kYDa2BuXToBJfEEodrBg8MUR25sT+lCnjKoz0Y/tzbDoP7oL8ZUzFIoDqumY2mxXFJ+c7Zr+laUWA5wjW7DsESvqDrSrOLx7gneS5nZ6e3hKEMcZyvQzZv237SguunN9wCCo81qaWy9F97nHtu6ww2BNGE/hy/7fX9fcWnn1k/xhj6fixfh3D2O+ymg7dzzHht2uF3baoJr2lWLVkoaGJKjD4gaHriQT6fstms+Hp0yc8e/aMy8tLur6jd2IR9H3PcrkEpRKUNeYwuSBaoN9Tbo49blEtRCKJ22pUNsQSjwWqI0ZUQMpa5DtVFOGVgyecd8JYYQxt2+K9CK9SgRgwBS0IwkIQo9AbmVEzzRM+W97eOQnysJZZ25aAFK00J/OFCGsfSqAFUP7NGq+tbOmrII1jIIExGp0CKPIDy4uWMSHVEcslSlSylF0KUZfnbqyhqS3RpUTlOKCVSu+DYskBWKYVhyXJmDSnh8RLGWJ6t85Bym3TSTBkMt4YcvSa+LRiJCWYCzBmrIVpQU6tUF6iD+VFB4jCkmIy40eIJXp1tbyhHwaurq9ZrZZ8/PHXODk5ZTFfULczeee1WHy2TvleSqxmRY7iY2+eTsammlaPGOdQmTUTt0g+Ju97SLGcft+dh7sBINM8rrwtj4e8rWlEAdpsNmXtizGy3W7luSYryxlXri/BSYzVwqGUtsnj/G3bV1pwwYEXmfwjUm77nu3WjveDCmHHIHttP0vfXr/37nGHzvWaNvb5bsHzOj/VXdDidJ/DPq4DD6cI2FgmsVYCGUUf2W7WXF9f4ZwwMlxfX/O97/0J3//+93nx8oVEd00i2LbbreD7Crouw2k53Pb2BBZW9P2bkb8QQKsMyYzvVimFnUxygbF88v3cfibOe9xGFsi2aZg1Laenp3g/JGb6Lt2zoqnnRWBsNhvqqhK2i7aRnKIEk2WGi+A9r168LBF689mCTksgymq15uOPPy5Rhi9fvigCop3NJCDEWuZzifqbPp/MQqKUkuTeuubm+npnYev7vixAYn2Nwq/kXznHdrPBWM3F6TlGGfpe0hdUpHBErtfrAstut53QUSUWi8yxaKskeGMSnEhCdYgjJKuUVA7OvpuQLAmhtRJC4QKHnSyKYN1ut7hJsnZbNwJXBgn8aOuGytpUDsfTDwPbrmOz3fLDH/+I//P3/k++/vWv841vfJNvfP2bfPK1r1PXDXVTE0Lk7OyMumnQ1iQmDoMtYeRMKkkUlWkPMVHsr2D7a11W3Kcy7j4IVE7nqKqqvM8cVZqtpByNm4NZxEKW55kJjGOMIsi0xgfPxcWFwOOpCsNmu0UBZ2dnAAVWLRDzF0CavtKCa3yRMWl9ogEGVUry3H28kr9bGUdp+z5UKALtthl/8Nyo9BdkkGp2GKRvV0sWaCqHBIfJsiJCSN+CvKbHKWWOSNHIKAhva3H5/HdBhK+zZo/tkwMrJAlTngaAKfWSIgSP85HBB7773T/i1atXXN/c0DSW9WaD945vffub3KxuWG6WvPrTl6zXa6y1nJye8q//5X89FXtc8oMf/EAWBglzSBZMECFz5KlEGPnkkEVFRdAmlsd2S5BHj8zvnHsWU1QfpVR9DB7fD/QBcLKwnyzmnJ7OiQRWyyVD3zEMjlnbUtmKqrZUxhJ9pN/0WKVpZzPaxZy2nfPy5UtulktuVmuWa4FevAvYyqbjG66WK9q6prKW+eIEaysJUEkpASFZMbWpSqSXqSwkSM9FsagqrZifLFitVsQIVVVTpSrExMhyJe/AWIsy0s+6rpNlIsTG65sVFxcXVMai2xlt09D1faoQvSqWTlNZNt0WP+SikpSaX6cnc+ra0g81s5mn63sG5+idJ0RhQckQnVIKZRTBSwBFCb13Tui9hoF2NksFKhd02608mwRzMhkLgx+PDzFboobee3Q0WGX4kx9+nx9+/int7/+ffPub3+LrX/8GDx8+Yt7OOD895ez8AZ988jUWiwW6qtHIHBXrOqBtPfqtiKDFT0jI7CEGo0yZtSr1L4Yo/tEYZF2JgB+V1UOw+JQlI5+HEBm6HqM0eqaYNW1JzI8+MG9nopDEwLYTBfHswbkoOEbTzFpm8zlVXbFYLPJkgaRkRZDSMtYSkq+36/tCK1alYqZv077SgmuacyOaxxQSup2YfMxqisC0Mm1Z2/d2H49/jVWxexQ7FhTsxfTsnWeKME5M+im88PbBGem88bDFNP187N+8z3jOw5bXlCUBJnyLE4ZzEA186Hu6zYYnn3/O1fUV682ahxcXxChFBufzGfP5jLqpi8bsQ0CtVnRdl4IDNHVTS9BAlDIcmbX90DOYPuqs7e6+qdutjLMEPaGm0DPFMiHGok1Ox+EIzaQoPwlFozJSxqNtG+ppleBkwfiUhFzXNW3TsKm7FHgS6Poe5wPOBpxPC3+E4CXxGaUKVJNhHynUKIuKSRBPp1TRlDMsaasKbQ1uEIGRYUaTne7O0fW95DzZCmtNghTleTnnEk2U3K9PwTe2qpgvFvR9j/OZsb4iMtB3A123larGKTgkp0YYrbBWmCpcCGQXidJglCnzKhsukZEeK0NffdfhjZDxamOo0jtxzsmCzVhDTSezO/c7KoUnokPABQ8hoHvDutuifgjL9Yrz03POTk754PFjHj18hNGajz76SHLbAIxEXWY4NI/PrCSLxatQ/XALMRnnzWiyyXg8Pm6nxxVofgJpw1gsNT+rkd1Efu+6jo4RWsyWcgiBk9OTEjnYdZ1YsTGWitv5mvncxhia5Of6s+vj2tMm1M7LHfdhKovUlCJJlcGSf0t7vd4PdkAgHho8+1rQVGjdDzb8Yu1t/F3HoL9j8MMhwTcyPYzXUAiDegjjor5er1kvl1xfvuLZ06fcrJYMruf09EQgnsRuXtU1lZUE2BAjPkEZ0+ilqq4JscP1suCPU3R677c/525OkZopVJgF1c7CQbLWJ1x8+b6JkuM1DbvPk12ejxk59nygMpamqpm3c2xlUQlSHoaR269t5yVasnc+VWTuEpTY0/cDSm0BRfQBV8nCWNcjFdLgRj+UDxFjRTi1sxkhxgLpucSCIFGHFcPg2Kw3EsLeCmmvQHzigzSpnIi1liYIKW2uj/bixQusrZjPZ/gYJDClqgWuVArV97gYqGtx9nfbnq7rsN5SIQU9M/+itgZrxGrphwHlxWLUWqG0HfkRlQgZiHg3sorkIAGlJQl8Np+XyMoYYxqbyeKIEZQwX4hsSPDwNLoeMNrggufTzz/j6dOn1FXNBw8f8bWvfY2rDz4khEBVWR48kH4YW9GkRb0b+h3FLle3lr/tuAZNfFvZX6fY3caB73neTefzdK5OE5ozp+N0TS2+qlQIVGvNYrEoY9k5x8nJyU6V7T5Faj548KAEcKxWqxLB2bat1GzTGr/d8rbtZ0Jw7VhY7/gaO4LuwG/sLYRvK4ruEmK3r5+xR83rLb6dM5X9jwmk1/Xj0O+HLLKpbyE7eQVSy4uysGCsVisuX77kyWef8tFHH6GeaT797FN+7/d+j4cPHzKbz/mXf/Qv+OGPfsSz58/RStggvBffz9Onz8q77/1oYankR4vx8BPacQyrPJZ29ykVbpXaFWRAprTqh4AxUklXR4G4tNaYyiCRHgEfBkI09H1HTDCQ0hJt5vqBFy9f0DYNMUY++rkPi7+o76Xq7/X1DU+fPufs7IzF4oRvfPK1VBF4w6tXlzx7/pwhQWiXL15QNTV1U3NyclI05LqumbWtWBpacX19VcKgLx485PSDU8xHhsvLSz799FNWqxU0An3WtsZVYj0tl0tubm54+PAhg3f03vHpZ5/y6NEj5vMFJimDOgVvnKRnF5Xm7PSM6+trXrx4yTA4Tk9P5Rl04hcjLXha68KKki33zOIQkeg8YwwVYzJtDAHvA85FJM4j5MEtv2cFUqXgmW3PthswJqUjVFYSZZMPUyo1a5TRxEk+2XRxr4wtVnFtKjyBbdfxwx//iCdPn3KyWPAnf/o9hmHgk48/4ec++pjz8wdowBqNjlI9OwIuBgmp1xCCIyjAKElw1lLNubgY4v2U3n3IsIzrvdw45xw3NzfF3zUVdFm49QniW61WPH78mBACl5eXLJfLorDlYIwYI59/+qn0l12rL0cuKqXY/FkVXIfa/gvNmv7r2l0Can+/ne93fLur3dfaug/Ued82Hn43TDj9vC/U7urD9Pd9upqyT464S9Fe2+2Wbdfh0+TI8ODLl7Ig57Imy/WK9WZdLGhhstgNC576NXOYs1z02PPY7Z9So/UVQhZa6QSTEOWcDCwLiS/XVuwyYQv8FJLTX5ggtFc0TY2KkaAUTVNhmpq6rjHGTJzfpgRgKDWwWm1YrVYSLWgsVQriiFGqOa/XazabDUPf4wYnASLO7+SIDW6gbVrm8xntbA6IlfX82XM++rmPOHt4VnwVr169Yrlc4oax4nGbIhi32y03K1mw6roW5ePqim3XcTJfUDe1sF84V/LfQBz85+fn1HXNs2fPinXXtm2icUIqJxsjfrtEMZUtLh+lyEtEoi6NMagQBHKSiI1kAY+KSFbVdi2RlPirJMw+4oiKBHemgBCVx0GuNRYSpGnzYEerHJAillhWhkKmgYqR+Omn/O4/+2c8/fozfunPbfjmN75B121ZdB0nZ6cSvAFsVxvxNSWEYRxfMQ2ucW2KGRuMojBF7p8/eQsFmQioqVCeMsiPEanSjxzEkwN/9teM6ffIYaEZYyyC7m3aV1pw7ZvFP6n2JgLkdX18l/dQ2DWm1lT5bRcKK8ccgP3y9mNCbb8dstiy4NqZKElDzgmJIWlwmdZnk2AhrTXr1Zqnz56wXC3F52Jywm8sWLtK2nxuVo+lGEgKy/7EOXTPu7/tQockS0slh5ZW2TeUBHMWkAkezIKr9A9KDTESLFRZIyS2SJRfjmDTRjMMrlhIAqmIENysJRpPIr8M5+fnVJVlsZjTdadFWA7DwKbr6XuXwteF7sn2HSGxRdRNw+nJXJSIoefy8oqz8/ME8VyU47ptVyCjzM9X4N31hnYmSdbT96iUWClGC2v8qN2LUM/1sZZLCTHvuq4kPwtMRxJAeocLL0RJAg9RXpI1EomKBpX6KFWXdYkKzQjMNBAqKyNKFftfzul9CfGfJvVOCX+NGeuGxRhLSROf4MURWZZgnRAi205SN26ub1ARamN58HBL3/fUTU2tBHYd+h5X1xitqWe2CGABVlShUtqZb2lOKYTR8z5tfx7vw4N5n/17FwNALL5uK5B0iOP+03SLYrWmyTSdfVmJIFnJb9t+JgTXWy/8xyyse1pfP812qG9RKaLSaYDpsnjn394gQeCd9S+/m8wLF4Pj+vqaZaJq+t73vodWcH52xosXL8qC1rYtQAm+8FFofMS520hBxBDY9t2ta5ZACCN5Mzmk93BQzAErWo1Ob9EDFJisAYswUokFwyA+u5ByiPKEFR7CVqrpxkid/ECVHdnUYxTrczU4mqamqkUQ1bVYYA8efMhyecNyuaK2Da9evWKz2fCjqx+wWl7QNA1N09A2DYv5jA8/fMzTp0+5vLrmerlkvV4LL6PzrLYD225gs+1BKc5OTzm/eMB8PuOzz57w+dNnvLy85P/1l/4yZ6fnzNq5BDyEyHq9wnkvUGOqvXS9XNIPkn7w4OKC6+sbNtuO7ulTtt251OpqZ/j0wL33PHv2jAcPHnB6esq3v/ktLi8vubm54clnnzM/WRRr5uZmhTGWJo0BH6JEng5e6ncpjXcRdEjvQnx1Odx6uVqlatbJHzTxZfqI5GmZsXZWjuTNFbAzGjAdGxKYIqTCkPPQRiVtSJZlljWD8wx4AoFwFVjeLPnen/wJTz77lD/3i7/Iz//CL3B5/YqPPvqI8/NzFk1Nt10zuI4TcyZWcmXpnRX0QEkkYSh1mtNYTZHIb9Kmc3Na221KwbQvzPIzsday7bfF+qysFTKAYUgpEuM58rxTkxeQx/4tXP4N21dacE3b1Gl5n/Y2QunwMW92nkMWwH2umYXOVKAegxF3nsOeL2d6rrL/AYvkLtjwWD+P+cqUUsXPtUkWVFVVPH/+nM8//5y+75i3baFpmuaUVFUlEU9JcE2TanObOpmnzafIOj0JEz322vd9fkqpkSCVbNntOsK1Ulg9TvgSHIDARm1bS+Xe5LzO27XW1E0lVpqC9WopltJmw3w+LwuKQIYVDx48gBA5OTlhtVrx7Nkzrq6uUEoiAi8uHhaap4uLC+q2ZXF6youXL1iu1nT9IHx8IbDebnDPHMZYPnKOqq55/OEHXL58xWq15A//5b/k8aOH1JWwGwgDguLm5oaulxBnmyIfJapwkJBnIwziXd+zXK0ZBk8MJOVBFqoQJDrx1atXJdQ691vqhkm+WecGhsGxvFkm3kGBJMXPJYup8z75feRdBHJidEr8DWH0c+21iEDBbjJmVPItZYtAjOld2Hs697TWDGGsHqB9KOKjsFIqiFEVKDN4x+//X3/A9XLJq8tLvvXz36brOh49esTXv/H1lIyu8IPDVHZiuY+BXSBKqNZ6HJ/x/q6OnfHNcT/Y/lwuASyJ3itDfRm6n/4Ou8FIU1hwuu2LCK+vtOB6W4vrtoZ93I90bCAcOuZevdjZSU3+jrccBCLX+eJW077pvn+tY0LrUEDH9Jj946ewoVAx+QJDZRLYYRjYbrYMCTfP3Gd5slRVxWazwXlXJu5OuZGxQ6OcmdypUgKz7EMWua/yDFR5EDv3ORX0k+PL/SmFTVBeLlseowiqGAKVrcX6DSEFZoSSW2ZThJwxmuAn0X4JKlVKsV5vJBm5aZi3sxSRV7Ferbi5vmEYeoa+p20aSQdIvy+0xlY1vRtwQQIT4iCLTD84+mHgxctXGGtpZi0XDx6AElaLFy9foJRiMZ9jlCr+p+12S+8GNBqjbOI49JKw20skn1QGNgyDI8ZEHdQ0Aq+mRa3vOtYAZ7H48CS5tU+uROF5VKpnk3LVBO5MrOR9j0+WUSY4kQT0EZYsqS2ktVGNfq/JcCGLmogE1pCsbDkHoPfPNY5xnYTmIW05AkGNP/sQklXnefrsKUoJzFY1lVj0WvH48WNUZdAx4vpeBH4Snnn+7yq9AlvvW4ZwfNv+9/118y4hlo8VppUx8Vz2G+vpHVKsp8re/rnftn2lBde92xeC/b7EqMKcAX07G/lgP8Yowt3BcbRvhy7J60Xf6wTR/j7Htk37lrW0XBgRJDv/m9/8ZlqIr7i+vsYHj/OeqqmZzeeltEW/6iW4YQpFhMQ0rg0BsepCjCVi2SSo9FC+yFQFmAaSqOmzmwR4hD2pGFVMLBtS0kMbjSVT2UD0DqslwMIag0KSTomBfrtl3rbUsxmPHz/mwdkZ260EX+RcqbpuePXyFZu2ZbFY8PDBRbnnk8UJDx903Nxcc3n1ihcvYbPdCMQ6n2GrirqpePToEXXTst5suby+Yr3ephw4z7MXL7m6ueHHn33GN772CacnJ8wXC4au5+mz5zR1zb/289+WuZOsK6UNvevphp75fI61Fduu5+rqhrqpqOqKk7NzNpstfT+weXnJbNbQNjWzWStFI9NjvLkRAmBrDfN5y2Yj1Etd1/HBhx/ig2e92kjNLCth+U3TwM0NcbvBB0cmOg4xElL6AyD+JnEnSsh6Yux3eKleDCWHK8ZcATjNsKzAAD5Zvqn+YalplhkncrRd3/f4dB2lVGHVly5E+uilH0CrDM9fPed6dc2mWxOix1aGP9bwrW99i/l8zna1BBVkHMew6zMt8zLNN398xdlXOl8nMA4Js3xctq6mPq+pVeWHMUlbGYMfXMl1zHPsXfrz/2wIrtRuL/KvFwCvO8cu7JZ1rOmnd9MK2HVAo5nCBPeBEo917hjcd8gKm57z2GAcF/3RyZud8Lvs0g7FGTc3N2y3Hf0g+VlAYS73+MJaPr1eDuEtfq10e9MKx7esyiP9nN7TdKLt/57D2Y1RzJoGkGi2TB7qnWfoOlarFUpBc3LChx9+yGa9odtuiTGWsGChwNl1bKtkIdR1JVGX2w2VFZLbGCPWmCQ4DKdnJ2KRuoGXL18SX8GsnVE3LaqS2lrGKClPPxfaopvljQTIOM/VzQr3ve+zmM9YzOecn56hiPT9lv/rD/+QDz/4gKauuUgM9CEGBu8Sd51AsU1TSQ20vqMbnFBBKc3gAmHd4ZxUoJ43deJUFPgspGcQQoaRpPrw1dUlVSVM+Y8ePUIpDUqXIJ66qgjXVyXexRhhugjes14Ll16uoeYTxZdYxYYY/S6bepJuNhXszPMiRgTq1CmaLiZ4MUFeU6LbfO7M9hFCQugVqKjQxqBiIPpAT8D5gWHr+f6PfkiIkSdPnvBLf+4XaduWjz76iJOTE7abrQguLYqZ0VoSy3N9NxiDsSZj+JAVdQxFmh6TIcDpvJ/O26ww5meb55uf+LHKeUMQ+FirktC9f+1ptOLbtK+04Lq1YL4xZHjsh+k+x2DEw7BdYQmfnP+2tnPg2CNdvwvGvK/28rbW5rHrHYMgXivoGCe8MbIQn56eCvmqc1KSPfhSwgMoPi2dQtCn+SJ39VlPhc3ebwV6TRBhtgIikzzAyaKW302enDHm/fTOOYVtXApGOkUpaeKdYz5riW2DVhL5F0Ng6Hu22w0axpDvCVFtjOMEv7q+Rikh1m2ammEQeNAHqbarncP5QJ94+PphQNeVCI0YhU4IEuHvDG00fT/QD47lZkNIpMQhBOrE97hmLRbRbMZ8Niuw1vSeBaKs6IY+3UPEVomHSCmpbjxIHTCrJPFXWQsqQWgxVSU2Gq0jfois1mvq2tM2wj0oD1tegtEaawy1tTgfEgtIwChhtSAmotz03jJcmN+ZyJa8L2PAjro9m/P3WMYHDIPDp+rRMYxRjpk/Ny/RcRx0CeaTf12MKRVCGOmfPnuKd47FbM4HH35QSqlkBc0khg11YKpPx+N+O2ZtHYIU7/r3dajKMVfCoZYt5Ckk+7btKy24mGpOcTc4403M0tsP/LblcmgfGZ37Iz5BWSoeEaS34cGs+R0aJIfu5ZB2NX0Oh4TdfYXXffa7y781/T1bJ865JCzGc2dfxieffMLz58+4vHqFNkLbMwwd2+0arRXz+TzlA/kSsAC7+SDT75DUgj1oIlsyYxG7FHUIqZRK1gDlvXkfKAy6ahxZ41iT78IyIdRNwXmqShJGK2uIMTAMPZv1mqauadqG+XwmoeObDW7oWd3cUFVVgZ2yRuu9l0rJSqK3rq+uqKzlZLHg5HRBiJ6+1/S9kgg+JdVpb1Zrrq+uub5ZEjVEZWTBdR5jKqq65uzsjG2/ZbVe4YLDB+i8w2/XXF1dc3oyZ9Y2tHXD937wPdqm5cPHj+VdJ7+hlG+nQL8+pLIiLuC1FwjXWnyy7Abn0QTmzMoxgUAho4jgnceHnthtMUYY6KMCY6uSFpC19KYSlhQfPM4NWFMlxUYTQrIWVBQqvyD5XzKPU7BDyhuLMV0/TAXbZB6k3/M4Wm1GRouS04WE5QtxrLDOZ2GomdB/aS0chQjUrILnxctXrFdrgR+toet6fv4XfgHX9XJcEBg0eF8qaGc4e/p3qMTTIaFybF2McYwwnLZDgi6fc3+tyWTL+bOKGQWZMAdlujGmQVNv3r7aguuOdtcCfF9Y8C2u+iWc8wA8eQAa3IcJ73XeL6Ozey3GWBJJhTtwDL/NA32WfD1XV6/QWkK0nz17Vo4XfjyDCWI1lDDmvYm6D0kcm4QZ6ht/GIXsyG0H+MxRR3EOlvOmgocr51gsZgJ/JcJWpRCroK6xyT+x3W6xlVhLjx49Yr1ciaWhdaHNub6+ZrvdFnqcvhtrHzUJNoRIUz8oUXY5H25wjmG1om1bTk9PqOqay+vrSZVfTz84hr6j7ztUZRJce856vaayhsoYvDW4MLBaO7yTfnTbjlcvXvDo0SOqusZUtkC+Pr9jW6V30OGGAVTy1VUtwYtwWW0GBid+rPOTU4zN/rx6tDa3iWsyDlJxWSm08ygtzzFk+ielqI1NvIy+GGUKMIiAQlNKxUQ/8hjuN8UoPIMYihOrOo3jyb65ifBW47gopvm4T0DgvWL1GTWOr+BJlPl87/vf5+bmhqfPnmGN4Zf/wp8XDsmug0hBHKY8gm+7hB1SePe3H9r3dee6r2X3LtrPrOCCibWx9/3Ofb8UgXZ3m1779stV5e+LCtxJVtdo8L27sbR7rQmWnf+NE60QZCD3fZdgkUBlLfXpCer8jL7b8uz5c9abVYnII95OWrxljY4/3N4vYe9yLhIN0AgVai2Js5BLmwj7gdvpd/IvTAxtqY1lqKux8q5WlDIkA8IIMpu1xCC1nmazFtq2lBnJPoblcpkEoGO13jA4h+464mImlYCDL1aBSxGINpUE0SkARqok18xnMxFW3olfJ/gEzfXEoBP7hMCPNtEd1W2bkIyAG7I1KUv+cnlD07ZSIkXvavtK5Vwnk6LoIMaAQs5rK4tziT5ocHRDT6ObVHesKmHvtqogWy7p3YYYUSEkrkpJ5paaZjVVZambCh8kD6vvevw0pw7Yl0DZft4ZIXH3s1K7+4+7qL3t6Wx7Y3B/TGZ0zKQOhSgJ6ELcFhmc5/rmhs8++4zf+/3f59EHjzk/PwelJDIznStnYxbY7Q3Vz0NW0yFf7rHj9re9zr/9ZbWfacEF2Z9xOGDh4L67W47v+w7slWPayu519AhJ3rPdB2ueiLC3Ou9d2Pc+LDFqiX4H4hPS0zWb9Yq+22KtWB/inF7z5NkTrq+vhCE80SeFONLI7OduTfuwP6VjTNGGiY08N63VDozYVHWBpLKvKVsWxCy08qItJVqsEaF1crooJLtucLx69SpVPpaQtWGYEZwj+oq2aXdIa2OM5XPmIby8vmbbbVMfhBqp7y3r1ZLZbDYpG2+oEUF8eXmJ1oamqtFnmtVmQ9f1xEgq5Cj31A8BZUBbzaKdoWWkMWtbYXn3nqtXl8QYhM2hbrm+lqAORaSetUVYTR34VVXh/IAPWejI8VZXGCXVll2qRmyrikopTFWBlwCMCGjvcV7C9qeQVGUNKikOudCmTkUvu8GxXm2E/d35Iij0LipPSDImIVZl9E9LG4lsUeOGbCGV/dV4bNybCxN/3PSYDB3GyX4+ynUNCrRms93y9Nkzuv/fP+MXf+kXCx1W0zRy2pCKjKoJndpUCb1nOyRw7hJArxNO03+n0Y9H17SJ0Hzb9pUXXF9Msh+zYO4nKPb9Nl9WU2oUNHdBgl8eBHp3OxaMAePCppREXqETS3ayDi4vL7m6vOTly+clusxay/n5OdZIWYvValUWxxhFHZ5qtVnoxBhT2bPXCK9J/0JASHInVDXTvhtjsCGgMn9dUYBkUbQqMZi7gUhgPp/TNi0PHpxwenpK123ZrNdcXl6KL8PY0UcEvHz5spQdsday3W4l/H8Y+Pjjj0XIdB2vUlFICfjoub6+pqlrTk5PMVqLNTYpSyEqj+J0seB0sSAE2KzXbLZbrpc3KU9IEqu3q3VhJo/OcXp2wmzW8vhf+3mW11fCAr/eslhIcvRqtZIyJSkZ2GgtDB0pt2pW1xJKnoNTlARxWGNQKuAj3Kw6hDBXkpwzW7z3npcvX9InWrDMoCLWeSpsGKGhwUeIQaIidJTAjaqygMK5VOYlSQ2VprT4l2QIWBKUV8YxJVJvJ7k5UXbFJKlyQMb+WM8cgndNwTDx8VRa8rk6H1F9R6UVgxtYrpb8zv/+v/Otb32Lb33rWzRtK+Nis6Vq6luoRfCjMngMljsE4e0f8zbtmCV2V8DGF70m/AwIri/S3sUaP9XO3oVxrNQu7FCE0QGr8Zbf68B/MpHU7VX8Lfq1byHmdsyXlPue60ARI6SowJFlQqFTaPnTp895+fIlxhhevnzJixfP8d7tnCuEICUrJhPxLqh1/7anSsD4nHORS4HTUJLcKe9VE6MhB2gorYrVpbN2nRa3brOVYnn1luAcs9mc2laodkbfCty5WW9k4U1JwxJ1l9g2tJaihr2U9jCVkA8H77F1LczmRLEwup7Brdl0W+azecn1kYXWEZwTeqSshKWFva4s87bFIdZrCJIvpLQqTCD9ZoMfesLQs5jPJRerbdlsNgQvCoRzA6RgiPzcssAEsUm0UeggC3oRqjGWF9L1A3G5RqvnnJ6e0jQNdd1gq5rae3zwJd1BwtED0YsPzHtHJKCjlDlR2mCtpm1qKhMYnAS39EOumLxXeViN6mmq8cquIhvH70ohRV5DHiVifavM1r6HW+wtBNna2oUUFagcfSnFPUGnhGN4efmKxckJ5+fnXF5eynvKtei8nygesQjY+7RjCuZ92339VXdZXO/C5/WVFlxfhtNv2t406GFP5nyh6+5/vgViHujbvrAqS3T5/u76lds+Zj4drNPcj/KHKYuYsGiMhelevnxROAyvrq7ohr5ou+UeJ4EZx97JLf/FZLs+8DwzY50iJr9Mjj5DkpCtJrJ7LyVAxA2ghFC173vCNtBXPQQJWDBafEiztiV4CYEnir8tR9f1w1AIS3Nto77v8d22PEvJm5IcJKtNqp8lgRbeB5qmpqmbsrjHGLHEROEgS7RWUk6jrWtcDCXZO2qdyIMVlTFSB6zzDN2Ws9OTIlCmIfOD67FVLeH/amTrJ1XqzrHh2siz8Yn6SiH7xih+HZcCTHyitDK2wlgrSdQhKzyjhRsGVSDI6DOTucIo+auswWqLNR5nxJ/pQhTrbAL5ZQtsVGIoAkipkeKrjAw1MrPsj627pnycfigXU2mMjh1wKTnboLFac3Vzw8nlKy6vLnnx8gV1JdUDYhJcJphRmd3rwH3dIccES+nyO1pX39Q/dp/2lRZcsCu83pkAu0NQFYHwE0HkJpbVGwjQN77Kawbw646FwxrWDrN0WuyrWoZchgpnsxmr5Q3X19ellEYWXLaqSsh6SXScMGfktu9cFmtofE7TWkqH+q61Rpuxj5lPUGst+WAxEiYwYoaPsgUISSDm5GEkMOPFixdJWMLJyQmqkt+897x69ar4tWwlfirJsWoLw3zvXeFuXC6XiSlEGBoAqqpCa8VytWS1El/bxcWF+ORSPlfm72sqETzROfzQCd2UkmMkFFuqIRulcc7QDz3L9ZpPf/QjFosFjx8/5sMPH7PZbLm6uubm5oaq9tRNy8nJSSnLAnCzXLHddiyXq/T+wVqFdyOZq1BGySLc9Z6Xry5ZbzalAjPEQvclMkahjcJWkmOWIbJcl02pXhQD72iaGU3TMJvNqaqmXGfbS7kXH1NuWxyVnPxvjJJnNYWFs8UGuzLiLuXpYAsp2hERvMEL+4dWCqMVDsltczHw/NVLfBROxuvlkq998gmffPxJCXCKIeLjmMB7rBfHXAr7/X+bIIv7WF3Htv+ZF1xv2w5ZNfc/+B13hjxP3l6A7JzrDe7tdY7U153/mPM1/5b9Wbk55+i6rvhynj17wmef/Zjvf/973Fxd4oJHa2jamhiRSEAmkytDhRxSVtRESE6fgc6dZV89NcakiLpRaBUhW8n0qGtLlSLiZMHx6Vpgqnm6BglulNDl4huJAjCJL0ieg59APs45tBWBdXZ2JqzsWqwoqyhVZDebTWEO2WzWVJWVvibrMMOV6/Vatqdn54YeYmDW1CzmMxpXYbTQbaHEwrIpmjIz+OtKymt4H0CDcwPX11fMF3Mqa3n8+BExBradJFCH4LDWFOF1cqKwVnLT1psN3kuiccxWD+IL07ZCGUvoJfR9kyoBzNqWqrLlnDExOHRdR/QivK1NFaSJDN6nGLtJ9eVB6CvErybCDmMY0nPvvVicKkpyb6KzLIEUsfxvsu3WSNeTSMOxLtWYLHy7sK2KjMekHwOxCEyFLMrLzabkj4UYqaxlPl8wm8+om0ZK/Uzm7P5c2If1j/m47tP2gymO+dLu8mvttz/TgutNb/yQb+jWPj8ZU+p23zPOuIdz3aUx5c/3gzGPAWhfTpsKr0KflPxaOfdIa83V1RUvX77k1atX9H0HWihyqsriBo9LC1VuxybkuE0XwTWFLGVCRVLBp1HTNVJbyxhVBFwycPciDkPKNQq4DPQoVYTb6CdL1kGy2ITJIU/UFDSRou+UUol6SRKNszADlWBGW57jlB6n7zoJhVeZ5FcT47i4V9ZitCaGSIgeogRKWCPUQZW1uFS0U6cFU0OqXgxGVxijaZxjCAMheLbdFmMNs5lhPms4Pz8jXl3TD1KHq2n6BPk2KUhC6ndlH5748UazJUaJDFSAMT4lMHu23qcioAGQwo7KjEU8YwqTJ2bfEylqU4IpxAr2ZWGsqqaMA7HUZD+bz4UoHCqhqpMuvmaATz5MEtTLb3Fvt1tnVWnKy7YMQ2okWKR3DrXdcKUUta04WSxYnJ5w4S9KMI+p7M48y//mv0N+6WNBG0dv88D5p8ce828fusa7RIu+0oIrt9c+fI4Iral/qPiE9OTnn4wQmza1L7k44s86sG3/mJ9mmwqNnNibWca991RVxUcffcQf/MHvs91sCM6VROUS2aXGpGAFYmlNfFTHJufU2pI+yBHyn0A1CmF0r23mByw9LyhRcoOIFmw0IflZtDL5YkAqHqk1dW1Hn0MU9vPgPd4NpVKu0ToVgazw3vPixQsur65YLpd0XUddNZyennJxccH5gzOW6xWr9Zq2qlnM58QIm/mCZ8+e4QaHruQ5RSi+Q52gUqnA7HHDwIu+p0kVfuu6RiNCs3fCOyiCWgR42zSgFMPQ47YpnF8HVsslwYvl+PWvf526fkYMkRevXvHi+TOh8ZqfJJb6mgcPHtA0LavVipubG2L0xYdE8AKtao01FqsFdnXOMww9wQ90nSSnN6k+WdM0rJdL+m6LGxyBkRarrmsUWupqJbYOIVcemS6UFiGoAasN0YIOAseFGFNAjrxaHxJjxmQM3LtYYx6Lk+PHXybfUixL7l/OUYxKCHljDHRDz9NnT+n6jhevXvK1jz/hk08+4fHjxzz64LG8yz1ezX1WmTwv8u/7hL3H1s9Dltr0OoeE4FRofpntqy24VPIAH2tRQdTEKJqZQCppGCoNQUpTSNkLPY6pe1gxr7PMDnGL7Q8k8hq391umhJrCh3fhwiJu93S7vcGTfQ3H7mYX6T/Q4vh4Yj6EiQZMTAzqWWDZct0stDJz++LkBLTm+sc/5rPPPufy8lL8O02bFvhAGEJKAh7JUJVSKCPPJiRtOXPZjWuOOOCNSuSmKTFX5Xwra6ltlWA20baNkTFgNLIghkAgSn6NnBEAY7XcV0jwX4wpnN6gtSos4toYqlQp1xqDboTlwiSy1Fybq65rfuEXfoHVei3s8MuV5HCtViLMg6dpGh6cntNXLX0SgPbklLqq6bqO9Xot7BA2EqpURTiGcg1jTfH39d7hQhAfj5d7jAo2/QYXHKYX0tvlaonSmhB88ed67+m6ofiutBYB8OjhBRAl7N0H3NDh+h6U5ubmmtlsgdGapq6xOuC8wydrO8OrwvMn/YwxyvsHlPJpXEkkYZ1YRKyWApd93zM4L0nevUMZI+9aGSqrMbqiHwaBUSPE4NDRlERpXMBFeb/GmgkkKNa5DxE3scB2ZkeEQkE/nRdTU2tvKiXbajLn8gVv7+ggMb87gvaE6yu2Xcd2s+HJsyecnZ7yja9/g5//hV/g7OwMPUELtBalRSx/CVoR35ikmjCZp4dzwHYFmorjQqUSciIaw4G1Qt1NXTfdNq308Kbtqy24uMOkn66uk2WtfJ4qP+Xzm2kJxyyd8sJfc748SW4nAU/7e/v8O1DhPa6ze95jPbmtHx7r0X5/M8q5M4ljKLDdVAPMbO8hBJ49e8bN8qZw9GmlCEyf3+SeC9wWx7VBK0xMfoayfarvpt5G4U0TBWbCFq4Y4UKjU4BCgtgSniUarE95TskPFMSv4lNicqZ10mmBD94zRGHIUMaAEd9ZVVmssbgElQbv0VpxMl/Q1jVtXbNcrem7jr4f2K43Ep1YSdFJawxWywLfVDV93WCUFgsl+YGEocQXhaLUwopSEypGjzAVJYs2heRL4Ibcr0vRfCZz7iUhTTrP0A8SnFFVoIStnRhRyifLL9feGtDaEBJDe9s2DINmcMNkek7etZKowCHVDouRQmul0nO2VYWpJXfLJ+g2jzFhkxAlVWspNRMh5ZilcP00d7RPFk44DEUrknUdb6vGO6LqmDaY0Uz2huXe6NzfttMXRDa4EKCX4BOtFau1WLCzdsYnn3xCPDlBWbXLep8V1Tg52cFO3ha9t3ebkk9P/27vX7wdr4EHv2ig2VdacL2LQIYv3HYe/i4ceR/89/WnPwwJjt+/nIFxqB162sU1p9QOZOES4ay1tggmkGTdxWLBer3m//6//2+pcuv9ThKt9z453uWaWmt8TA5+L6wIGWLSaiSl9WG/MrLfqVeklKI3hr4SAVBpQ9NWKCUBCxqDretJeYpRGBgoofvRB+jER6SMwiYWh6qqWK1WqRTJlsVsRlXJdk3EzmZSmqS2rFcbNqs1bui4ePCQ08WCjz58zGYtVtRyueTly5esl0tAohJPz89pmrqQlnrvOZnPWK2XO1WjczVh56TQpPeOYfBYnYI4vMNWFcpoojKEQcnirCYWPhGfSlxlRKCt6+QHFIaOHLFY4ElrJWw/SMHK9WrD1dVlsnAEOuy7QYJz+m6yyMro0lpR2RrIVnos5MNuGGiahpOU4K21put6nPMC9w2emPx5Co2xVeF5XG829NmCVxJgwzAIQ3wa2NH7xCs4jnUFWD3Chnl0Fdj6vpPkjrar6OZzp8p7CZUJJNoxHDerJYTIarni5z78KEVUStqB6we5x7C71kSZoChGftBpd2NSSnInspWtRo30TsRnF90Z4cocOTx1b7yrNfsrLbimbfrwYxb7r23vbnEvwurgVe4vtA691/sGX3wZwiq3Y8Nt/3p5cObJ4Zwri5tSio8++oinT5/ywx/9kOubS87OTtisYb28wnnH4AdhLPeOrhsDF+JENVTi2MAjZK6ywCgJZiBbUzr57/MzGcPWJSBBoEY/KIYQCL1iMF0KqECsghixlZQBsdaKlu/ExzNrZ8wAn2CyGDzBwaypqa1h1tSlVlcIUjxyozXROypjmM/aBFEHrq8vWa+XnGzmPHjwkKY+5/zshMePLoRBoh9Yb9Ysb664uQ40Vc1icUJdVyzmZ5wsZgyD5H7l522MIXiH63O5EUe3kXInfdeJ5Zh8TL3a4lJAQ13XuCAWmB8cg3NJeTB0204If9uW6Aa5J58tRznXMAzU7Yy2FV/darVks+nYbLbc3FyhlUEbxaxtygI39GJhSVBOLfliSuF9GjvBQwis10sWsxm0oKxhtpgTFPRLJyzzURKhjVbCz0iksjV126KrCtVt6HpHSHXEzCSJt+SecQABOwD73QGq36MpESQ5mT1O/U1pj6w8RQn7V4BXoQTjaGuZzee0sxlVU0PMNbJIwS2yHuZimEZptNI7Eb5A8fhmFEUlM7HYWGnu3CW0pv+Srlus4AMK987+b9l+ZgQXTLSHezZV3s3bL/YZ4ihfDl7+fsP8oP9qEoyQv7+t5faF2tHDx+ioaTis1mbHUTt1HF9dXbHdbPj44495YQ3+7IQYHvODH36P66triTpMfrNbglFuRmCvEPHs8gfmJ5ihMaUUxpoU8CHwT1JkxfoIPrlCNQqFTZRMSil8cMUvVXL3kp8g98vEIKUrgihLWqUoRa1ommqETcKAUpHghuRbkkARrRRWAcHTbTeslzdF8FRGozAYFQmhgujxHpSKDMOWGJz4bVROLlbCCZiCRbCamMqrKAVuPmfoe9abNUMvQl8bjVVCUBtCwNYVVRSoN1SB3g3F6vQpIjO4IVEvSTSi0COJdu76QQQiEso/m80AYU8Zul7y1awVKC9HXjJd5JBkW+1wQ9L8jZEImxjph4Gu71nUNVVT04TAtu/ohwxvavohW08R52O5nqkqlPMFHpsC46LsSOiOCzK2iico7sN4EyX1EA44/TqxRHbH8N4sUinpeWf7hBMxjSOXLCznhKh423f0XY9OZVUyBju1kHR6P8csnt0VZu/zEWF1NLAjjhD7eF9xZ916F1bXz5Tg+llsZeE+IrCyv+bgMfdo9x5Ee5NxvESeDLsMF5mjcHqdEDybzYYXL17Q9T2//Eu/xHe1+FIuHpyx6TYMw8Dy5kYWSa3QURcIcOe+IlJDqyQXjzW3FJlENSQNtC7CR0Oh1cnniOm4qrIpAVgTQmQYepRChNnk2VZVVVSRGEXDz9CdTgssRlFXtoSga3xa7D0hwND7FIlY01SWGAND13E1vKCua9q2lYixGLEK5rMaa1TxoXX9liFG3NbQtE1+ExIhmN6VNRZdWYHgKptYMQaWyyWvXl2JYNeaUFmGDDVmSyxBv0Pf0zupnDwkP9Ew9PhAYX1XSjj4vA90fZ8omTxKC2kygPeOy1dXqCAKTd2M5eitMeKHSspKW9cEb+iVTuwqJuVnSbi/0pr5YkHdNESg6ztW623yI1Ys1z06RGwMDINQYtV1lRSCkRR4OvalL6l+tvJ4pGrzdNwXKI+JL2esQnrnvMk/FxV2zw9+cB5OFesogrQfBjTQacPNasnNzTXz+Yy2qVMQjljx09pamZkGbifj7/9b+hohU1vt3M7k+yHhVR5H3I34fddI0FdecB0zYXNTO4vsF29K/WSYM25FIP4r0e6yHNXO75mfUClV2BCMEbaE6+trljc3zOcfYKxlubzi6bNPefr8CTerJb13bLsuRRWmWkRmDPTQKFTKv8oCYycUXCskJ3cKUSAlPIwIE5WDL3wQ6DEd64ae4LUwL7SnAo01jcBmfU8/9KgQSRm+BD+U+l4ahfdDmuyRoXfouqGxLY/Oz3GDE5b7GOm2a4bB4/stDx6cY4yltppuvSEOkaBBV8ki0RrtJDEbY5nPTguE5BOzRlZs3Hab8tI0ldEJQhWrrkqC5OceP2L1wYbVasVyuWRIfo9cnbnrJdijmbXFT+G84/LmuvjvnM8afS7TnqEozWboGYaO9RK6zZqQGCAWJ/OkwETWN9e0bSv+P2PQMRRexnY2Q+sG7wMvXjwX6ihtWSxO6IaB9XLFZ8PA+YMHKKVomgZrbUrO3lDb5MNJzBrrzZp+kHfa1DWVtXRdx+BSiRQNOtFvKaXBaIyRxX9ITPPTthNOVT68bo6qdGQ6KB2XEYP9WeWCSmNUkrWN1sJq4h0B6Jzj8ydP+eGPf0yIkY8/+lCs7CR8swKnkrWrIomeaxSUU2vo4GyeyK3Ma3mXr2u/7Vtd+fO7cGl8pQVX1tDGz4f3uc8juq8fST7cs4NjL97API63JsqxS962tG7/duy+3txc3wVLjj/3ieY2hSqgEOtWdYWtLKvVivVmw9XVFS+eSwmTbbfdgY1ijAzBY+IYzh9Jfqqde79d0qQ4oTNrQ1BEFYQcNtE8oYMIRiWaakyQn4oB0l8MXgIw2oa2EXYI7x0+OIZhDNevjJZKvEoi4HxKEg5hoNKWSoOtZPGY1afEpBkT5FwxRKyWa4eho1tHiaIzBhVC6lPEddsiAAHmbVMER2hqyRsLnuh6YpSFWBtFbTRGQ/SOk1nLyazlg0cXrFZrur6jdw6amm0nDBMxBqyS6Ly6bqjrhwxuoOsGlquVCOIQsU0lJe29CCilVaKjBe+GEmQRVBCIUCmaWiIR3eCwyYSRdIJUXqYII/HbEcWa1IkqqnOOzXpNVYl1Op+1bLVi6AeiKfZxijIMxMQTaa1FkyMhpVRODKLAhFxF0hhJL9GaYNJvcUwOPjSjsv10vN3hH9qfQQKjpHGVtsWkKKWrhBC4vrnhydOnhBBYrZYMyXfZNFKYtW0a6koqhpNYW3Jwxq3gjcm1p+CmUmpSXHU3R+ygz4vRx/W69mc6qlCU5Ylj8OB+95M1x8Lbv6iGMMWo31Ub+zMVULeTlN/dBTOsodidvntQwqRXU6gCxG8iNYYaNhvL5eUlNzfXXF5e8vTZM5bLlfi3IME24qdyIRLxRRgpYpHS0wipcr/JWSC/TeqBxYD3iO9IaXF0p8KRIre8QGVIBCPBE7wieCl2WBgLtMG5Aec1RkcGJ1aWSYuytYamsgxOypAE71BRkns1GmMNTS1w4zQXixCpKwkCCcHhOo+KHiqLUhqFhG/73icflcCBbbWQvqUquV2/pe87YYhPAkHHgNVCUuSHjsXijNl8Rjufc311xfXyhtV6jQZqq+j6XrgOtTBcaGuwC6G3CiHy8tUrttuOwTlsXScLxjE4L0UjUzKxwKMBFSIuepRBIv6aiqGXQpth4sfNuePWWhaLuVhR6zVD34u1RJSCkTfCaRljZDafMZ/PRHkJeUFVkNIxhiElgPcDGqEgq62VPjnEqvJBmDOUcEEqNXIIhkypsYsckmyiMhvi3q/vouXzE2OaDVmARlabNc9fvMQ5z81yyfrmGqMN8/mCSOTs9IyTxQnz2ey2cDoguKZw+PS3Y1bWjrK4J6yOWXLvqv0MCK5pkupk+0+1Z3e0t+3YOzKx374du26a1Dv+3IgbfCGLzTlFSinquubs9JRXr17yz//5P+fzz3/Mzc0VV9dXKSlWg1a46ArXX60zvJEvKeHb3ntUyjnSOjOfZKe65LVorQoLu4qSx9T1Uo1ZVVBZk9gwSLCM7BfcUHxsOkbC0NP30oHKVhijaIzmpD1FKRF8xgp0KYwcIsSGvmfoO0kPyP4uJRyBxIh2A/V8BqScMmsLdCQRhT1+s0Ebw6yusbUUFdRpoVZK4YaOEAappjw74eHZQ+rEQrJa3rDdbui7ntBtwBiJpgsDOtY0Gr720Qd88PAB267j6tUrNl0rFlfiZuydY7XeErqOtm05OT/l8cU5l1fXhfVjUdeotgWtWHeS6ByIdF2HGzxDqsSchYpWYJsq+RKHndG0Wd2gYqAyira2RF+hCFijqJoWlESNXl5esul7wuB49OgRs7omes/V1RVKSxCINRqtLCFotltJD4jWUNmWphH2/ug9wwQWi7GXiD+dlSMgilBMhUhK1N10LZ/E5h2fJ/doMQqBrmJ0dYxpAyTHtgZlZIx4V3yiy5sbvvfDH/CHf/Qv+ejDD/nm17/B//P/8Rexp4a6qqmqilyN/FDb6fkk0CIrf4f6uuPrComLci+5+F2vXV9pwSXtuPPwXbeftND4ItbeXVbXsWd053WOPNbkNy7aJylAw9qROaMIFmU5OZnTzmTRsFbYGTI0GGMmoPVMQ2mzbwvEetuvfJx6ggRPibYsDmnpTwyBurKY5IdSQKUNlbFUdvQDVdZg7cjgoIIHB1FB3bRUaeLHkOpB+QFdSQSh1gqtBM6yibhWAdFaQtsQQ7IYUdRVTV2JFdpt25FwdxgSTZEIsZPZSan6PPS9+JKUsD40dTMGoyiFtbI9hoghoKMXuiQNw6yl7zqqWgh7vfeEoWfYKDYqwmwmkNvJnHllWK3XpbSKqSzaSFTe01TMctiuOX9wTvv4EY8uznn29Blu8InZPDKfS9mVwXu6bU+X6otFEvu583TDgDGWhMilKD6J5nNuYLNZEYKnqqSmWNM0LBZzyekLkdoKOXIInr7b4ocBrRSL+Yx+K+H9IeRnCUpLra6YwsajD+L70yIcVe9KUUlB5aQv6ARfKlLtrSy4KNbPOEWycBqjWzMyoI64AO5qox8tFtTITOaopDRIgvdqs+H68lKqLLx8WeZdZoL5+MOf49HDRzx+9IgqKXK3ZtAEsdiHBg/tu284yLaAirulh/ZRoD/zUYVTLeSQKXsoAuZ17b5C4hhbxbt6MW/cn6P7TcG7L6eVUF5ieS45l2QHMlDC6t02NbO2TaHSeYBTJopPoda3YdBRmI+TYvfeRyE58fkpUrCCwHyKiNWaShtqm7ZPghmyMBanOBgitdW0taVparwP9L04/isNJgWDQKQ2KglDEZS5j5pYqHbaqsHWQig11DaVs3dJWHTFKmmaLJyg63oyw7rWmqYyKdpOypLYSoRuvxHaJq1gVllaawg+0Lc1RpviZ+y6HhU9fuhxSlFpha009XxGZYSNY7vtBCKsamazOTH65JdcY5WibhuUnhN62XcYHL33YCqi0oQY2dYd682WVVImBu8LM4a1VpAERp7FoCO+94VdJIZaCktWYj2hNDH6lKysiUHjAjjXo7VJvIYValDib8tjUgkVV16HFWC1JiqJNA3eS84T8pqyAJOaYklQpfEk0F36Xzp+3D51NOeTTL6+4dzaR49UEZ4y/n0IdIPj+uaGl69esVouWa3XWGOkFI4PNLW8e6U189mMxWJBpRTjDHvdtac92D9qX3jpHTfBtL23uFKLE1M2fz+Mx05+V/cI1jhi6ezjtuJE3TmwbH+d8LobOz7WrUP9muZMyHc5fygL/k+qqQyWxBHvz34mYT/o2a43LGZzPnj8mG987WP+9Lt/BDGTqzqCC5ASLoXlG5QKpcLveM5cvHA6IcQScokGqLJJIFW2wJaVMbJIaxFUi7ahriqs0SmJeJBFv2lp6ioJQUVjDXWlaazCtg1hVqXij6nicBAHPkOPVtDWNYt5W9gbamNLxeToQ/HlhER/la3EXPZls9kI6W4il63rurBIXF1dMfQdyhhmiwVtLewc1loWti4w0KySApZa6yIYp2wgmanE9WvWbku/sZyfn3NxOsfaU7rtwOXNtQgK3/OL3/w63TCwXK749MnnuI1Da8MHDx7QdR39MLDuenofsFXD+YMLlssVl1fXvACqpsalAI7FfFZqjWkFzumUuwdTv2RMkZsDkfV6lZLZIQbHfNbSNjXBw9BtMcZi64Z52+Aqi08wZL5fYpS8N22Ytw3zWVueqQ8OFXwuF4pPxS9dkOR2VGasl/EdVF7SR2VNqyTgMjtv2mP8/xSXODiBbre4+7OLMbH4K1zw3CxvWK1XeD8wbDuxpoHBe+h6iIphcGw3W1arFZc316X8TA4emkYa5pZD6DWJNV/FdP/5c6oplhL5y7EhpiAcfXANhXcDG36lBReMC+RUiN0yYb9Uh9fu4vkuLvVloJ3Zihi/3x6sd5+A18y2cWqKhTNm6OfIMJeYEKxVnJ2d8PjxI+q6AlSprDtCiznLfywtkvs7hS+K1UVWLGQcqAgqClFuW1UYIjoGdFAp2spSG0NtNK3VNJWlrlqhZkrMFk1To5MGqaJER1qtqaomwZLC9Zc/AyV02WojVoJNzPFGp+tWKBXZbjZiVRBomhMpw0LED544awjnJ1I7ymVSWmiaOUaf8MHFBV23IfhUlkNBXVU0VZNKsZgUmVelOls5UCUlAg/ic5u+n75Pgufmmn6zljpltmJeGXzwdJslKggcGIeeeV0RM2G191iicEc2Fb1XoAxuu+Xh2SkXp6d8/eOPuLpZsu229P2QKjBLTaxt13OzWtH3A30/0NS2FIX0IWCNpqqNWL+p1Iw1c4IX7svttsNvB0IY8E6iLHs3SGVpr0rCeAyRfkj5YNs1TRL4TbNAm0jXC1OLtjb5SKF3kqidE9qHVAzTaiUcgoESQakSMbZ491Sq8yVE3qOCOnrCDs6l/fVcUag8AqAi+CQ0SETKSim866V+WkIvvBfy4kDkZrlE66d0fc98PudkLpBrXefcr1GRHsv4aHL9uWmbCurxuPEzjM7Co5GHR7a/SftKC664Z6buSP6JJfI6k/idtbfBAl53yp9aMMax9mb+MSGTFRVUK4Wpa1C+WAhSAsMmtgmDlEnPvIeHI6AUyBxXIiRUsaKT1h7FsV4bQ2WFgUIrMEq051ltaapKLC0VaStLU1fM27qUf5/NWmZtK6S2WhY9hTjnra0S64MEU9hSGkWlYoAqBWAk8l4t/pimssWPVgGDtfT9VvxhWnx0UVsRvoAPnn6QyEQQklprLQqDc83IpJ8YPqypqCoROMZYqsokBz+JQNiK72kwY0VppXCuodtWdN2W9TZxCHpf3oMmYgTPQxGptGLRtJJ3FYSXMqZzKa3xLibL12Pmc+qmxlYLmqpms92wSVyF2ewMKF5dXbJeb1gu12hrCrnuervBVlYSiI3GGiFF1qaCmFjQVWTwQ7KqAraqiEp8ZsEnYl2liDpSEfAOXD8Qo8eamtmsReuI3XaSw0ZEa4vShhnCvTh4T4xbYhgKr6NGwQTByX4vEViy6siSMFpnr51bWRPJ80pe0s5aJteI+BASJVqCWkNikUGhjS1w/Wa7pW1biXJNz3UYBgnUyJ65MtcykiFX2p/V++hW+iJWcDIe1N7vx4TUFxFeX23BlR7YfmLcvhag3rU0mbQ8sL7MdpfJvS+S7xJ005/efMxE7mu6Zqg0E79G5zBaUTc1TVMxOCk62Pc983nLyWLOerXGarOTTLwTSZX7wBjsYa1YZcKGEUFJtVsQ+qPKVqm6r+i5lRGhdbqYMatrmqpCR09TWdqqYjGbYYwwOczamtP5grquSuh6LNFYqmilQq5rMUbgyDxxxSpIIdVKBGdIrO2Nrjh/8IAYIzc3V9zcrCBA3TY0s1asSu+IVMRGWDEyPKqUTteayzrnY1mQvA80TUVdN1RVjbW5DpoHFYtTPrbVjuCSd5VCzzeSYJwXN9dLgvXZfI7PSFFdM29mdENPPwxsNp0wnADOB1bbDb3zhAjbuqY6PWU2n/Poaw/YdB3rzZrPnzyV+21bTi8e8Oz5My6vrnn27DlVXZcF9sWLF8nPVhW42BhD3TZUVqDHqjagItttT9cPokiYCmPH3KW8Rpja4rUiugGCo7KKs9M5pyczVpsNy9Wam5sb2rqmaVtmJwu6Xsq5GBkEDE4sT6sUUatkEKkS3KFiFBLemCZauC2ydnGKyZepX0wdX7kiQk0V3DAGPjByFC5OZqkEiWe5XPLw4oJZK5Go/dCz7TaSU0hK8J/Qb+0HXBB3BVFJL8nr7uQ/4sj9mK22L1K+5Fj7GRBctxPijvmO3qa9GR57nA8st2wl3tq+t230Wx2+9hil86+WVTbtizEarSqi1vggGq5zjpuba168eM7nn3/Kixcv2Gw2JUwXZGJk6DCE0X8n1kN6t0GB1yg1KVWhtECCWuiWWit1sZq6pq0MtTG0dZUEV0Vb1cybmnlb0zby2aQSJEZJkmxVieCq7Ah9yvTWaC0hxpnVQyU8tkCdWYNGFhBbNYUSKg4DWiseP3jAxel5slAGtEocj1aXMhUgeU1aJb9D4k/Mz0qpWVmcdaqGqBXUtsI2DSjoBymLQQjCKlJeGFRGBDdzxYNT8UF55xj6gcGJH2roBtCSz1bXNVXbFmqomCBI7z1d71itO1brDZdX1yhrBB7G069uIEYao/jo0QUoja0tD04WNEZzvljQaIHlfAh456mUJGHXbcNivuDq+prNdoMfOkxlqRvLvL3gwckpy9WKV68uuby5EbomBfOmESgtBlbLFUqBrS3zRp55TFUHHpyfc3Ky4OKs52Xb0DQNVV1jqoqNlYKjRks5mW3fs+46uq4jFx+QJOuRoNfaVNBUKeFRjLEUppzO9FsgzRQeEjPo+BybWDoTWYfRik23xSBRtDE4PnvyOf0w8PVvfJ3ZfM7J6SlNVRVdNAuYrBjsQ/f70b13tUOW1nQ9ew8VHvFp3d5n8hDfEjf8V0k43Ke9SX+nz+xd3Gc5Q9z1QTrnWK9XfP8H3+dHP/oBV5eX9H2XnPRDCo33ZTER60qO10oXGCNX+DUpjF0rif6z2mCNUDs1VSV+K2uYtyKcGlvR1pU49SvLrKo4W8yLk7+2yR+UQ+atFv+KkbysPHkNCqXNRFMdqXSyDay0FqaLvCwZqf+lyAwgqhD+NnVFjBYfLN7lY8yupWAMRo0WRxaSAUkQjlHy5bTSBTa3KcQ/BxH5YSi1xnSO6FNSlmVaFdd6T6gsjbW4kKyfRmqcKJ0sPitFG7URiDIL2WHwtE3PYjYrlZRJxoePqYhlCNTG4BNdlCWwaGt0nNGfnbDebCSZmcDJrKFpG9rZnPMHDyA4CI5N12FVes+zGc6JL8wPwquYuQ+NUqAVKsjzN4nWSWtFcEFSHryD4NExYBTMakl70Frj3UD0LsGkAYWQKlutCEajAyUaMQ15sYrtOCZ8qouS38t0hh1cvt9gjdpf/yMpKnLiMtFaapytViuePHlCkxLG66piMZtLnThrU7UAVZTrafDZfjj7dK3dWTOKTD3s53pXBsXPgOCaPIyjAmyiAXyp8ud2rob068CeR6yu2xGGb97hu3K4fiJNKVTiGSQxGXjv6PuO58+f8Qd/8Af8+Mc/5NWrVww52nCzTvv5BGONBR+VEtZvnfKlqhShp9M+VoNV0FRVETZ1VdNUmrqynLQ1ZyfiY5nVNW1V0VhDW1suThfMZzOaukoLW+a2jKNwNJo6CQydOON0Ki8hkVmj5Zt9DOKkF/06M6jHEIg+io9M8EuCc1SNxVYWrWs2m205VwzCEZjJezNrR2VGCMzHVLBSKUD6l3O/rM7sIFJyJKgUnOG95GdlDbukACSIRwFRo6yVmlVRAg9cjkb0oXBRaq2wSqGsAaWoK7EO523D6emJ+NC8l0CTGOiHnt5JuZQ+BacoPzBvairVEM5OwPdswwAETueNBBQsFjx8eMGwXeOHDj8M1NowqyvOz04FMjSakNMKhkHSDNJYCkBjxGJU6TloAio48AOu20gkoQ/UVuq8xeDpNhuGQSBv33f4YSs5YCpSG4vXARciRkWiTv5ZK7lvoAje44wHPHFSLm7f8jo6j9TxYI4dy02NaI8PERki8u7quiES2Ww2fPe738UNA+dnZ1hr+drHH3N6esrp6akkXCuVKpVLsI1OYzxf43YX1c7nMTH77vSkQ9/fpP0MCK7RvxVixMBBIfYupDzkxUm9kQCcwoO71t9h5+Vo9t99kamP612EmL7LNiR+uTy9rq9vePnyOd///p/ywx/+kM8//5Tnz57y8uVLum6bFkJdnPxjdJNCG/ETGa2prMY7oRGKgCVSa0tbV5zM5xIAkSDB2gpkeDqbcXayYFZnwSWUP7W1LJqGxmrhCCSQkUe5lknRdTZBdSI8iTpVbQ+Y9NyzFZhbjBFCKmwYQaMF6rMZUpSKvcZadAjg5b7P5nMGL4svyTJRVYVGleCDGFSydMytayrAJmsBKJyGSmtJoK7Beo8LfgINjYuNjhCNwJnee0wKFtDGUOlUHdqHEsIvfphAGBIZrVIo74XUt0nRfFhQLcpoCc7Ybum9o+9NYZHXSWk4nTVsVhYba2ZWUydGiKaqscFzPpuhzs+xUWGriraynNQ1y/WGWmnO2hb9wSNulktW601i+xfLsK4kiTnGyPX1kpvrV/ggqRc3l6/S3ITODYQA3nlWmw0uir8uRlA+YBHLv9eR6MFky8PqxNgh0bAxRIZIqUigjQiSaS5ZeXf7E+gN53NE3nEybekHhwYqraRu2TDg3cCnn39OXdesVkuI0HcdD87PefToERcXFwKRVlUZD1Orv6yzd7FoHOlfGS/sxiS8bfsZEFy7rMWFBHLy+/Rp7pjBb9tec+jdUTQTs3my77sSrPdt4+2/O2E3xcLFlyM+qvWEieHy1UuefP4Zn3/2GdfXl3TdZkej00TQKsH7kxwTphZB8vMoxbyxzJqaRdtyfjKnthK5N6vFqqqtYdE2kq+VOOoaK1ZLbTRWi7ZshGyq5G0Zo1Ngh8YohUnPTBelRQSSSQnCIE75naeaFpIcaZjVDFFscxRiOiCV3/XBCx0VOambxNIt27L1qSbXyeNZa5O6llfZ8fll1nzplsZAXlFlUQ7JX5wiMKSfJrHsy5ZMgsvE2S4afhgX42SlokXYlf2UeHMkslNjTE1jhfXBJyVkINJYzaKpmSXoqp3Px1wjpThpW0wE5SUYoKoqaq2ptcFbg6sq+q5Dh0AcBkhVmXPACl4KSdZaiSB2TiinfGIcVBJ9qlP/K6PAp/upakAx+EA3DChtsCHivJRAkXvUaYzIibQSCrPeOcIwpHc1rkn59d/ydU3e684cm8zX6U+iR8XdH2IkRNhsNhhk7FZ1zXwx5/z8ASeLBY8fPeRkseDkZFES97UeWWxkzo0C7JDQ2VnDVL6bXVfOPsT4XnC95g92/Sxv6+P6In07BhW+m+CR2+b6648ZF8V7ABZHzwHHBa5WihDFSthsN2w3G9brFc+fP+PZ0yc8f/6UzWYtZUDIC7nckE4YvSoQnCzcISqCkjB3m6yvk/mMxWzGyXzOw5NZqjulmVUVbS1+q3llaKwIOqOEJb0yilorLCm/K1J+V1r+tSrV70qWjCYxYJA0XEgWF+OzGM3lRNbKaHmq0SeQ64PlcOT81kIpz5JOkyvShpFZ3aSk7mxhEWPxt+XxFkNEmQlzxzTXTMtdxOR7knLvwqBOWSwzPKtHhVBMKrHy9FjXSvqcLP8k7HOpkzz7IhJxqGISXnWFoiICfcrxUzHgtGJWVyglcG+7WAirRcpno2molBG2d+/QxlIpRa013hgGa6SSgA+Qztlay3zWYm3Ncnkt9FBRlBEdAtE5ETBKnokyEtYQdcQNUm8MranbBm0sXT8QQ8BqjY9IonIWXhFiSsdASWRpTM97cO4IIe+BlhSPcX7dntdpl53veTClt0GIAhG2dUVTVcKkP59zdn7GRx98yIPzU9qmoW3bBEmPULlULwgFJbprzRrX2lGZmv6Wv+8Ivj/TgivEWw9iR2jFveCMn3J7l7Dlv8rNe0/fS+SVMYo//d53+YN//vv8b//b/5fl6oYQwg4B7zjVkuWlxkKDIUgBRhDfvFZKLKmm4uHpKaeLOaeLGadtS5Ugp7apWLSN0DkFj0WomyyRWkkCqTXJ0sq1jxTEIAEIqqpQMSRmdVDeoaJJNY3kHlUJDhELyHtfCluWpkYLTacoL7HcZLNNuWAieABdpQXDEWuFsORHei9BCTGqQpBntKaqDDFaMmxuq6pYXCIA5RwBEUwqsYZ45ySgggghRY4l67IoP+HQYpWELyLsQqr1pNXk9xRgE5B3nP19/XZdaJiqTJwMoBWVliTxXklqg9YIF2HflfD8pplRK42pK8J8LhYBoEKgURGPZ+sduIGTuqJ98IDTszM++PBDzs7POT0947vf/SOpst07TuqKeWXh9IT1Zi0qRBLK2d+qQs26D5Js3G+xszmmtlR2QT940BplDAHFthvoBydRhNoQo/j3XNcTvC/vXmWFg9GCeq0gYxRdu0Jh8gO5AnJ+Q/K1946Tak47nzE4x3q9Zrlccro4kRI3J4tCL0Yax5n4WCmKxTW1nKbR0/uRgtN7mQqs/P1fSajwv/1v/1t+4zd+Y2fbL//yL/OHf/iHAGy3W/7L//K/5B/9o39E13X8jb/xN/i7f/fv8tFHH735xSYTK+OrKsbydxCHLa9TJncm0HwX7dh7yPDk3YEXU19FuGO/3e/7QnkfXjgeTr/f99y/+2DrSTUtnzMcQCIlFeFSWUmmdasNy5srXr58nmpY9Wli5BwPURPHIASdYCmAgFWkxV2E0sXJiTj/5y0XpycS2m40tYLaagl7ryy1VhIeT8AAFglWqBJUplL4uEaKUxKT5UcsEWTSs8x9GEc4MUN/uWaXYDWT5SIvStnijqhc0SmbOirFL4Yg0jE/03SeGIOEFUwEQ7Y+pQ+Soyh+pHSZROabB8dIMhSkvFhUpc+KLNzSuYuSlyzKSNH6gx8jC2K6pxATXLrnjyk+3cmt+lT3Sqeb0CACAhHAEalh1tQNlbHFKp21LUZrYZlPrB+D83TbTlhBEhxsVUV0A52GxiiqtkYhCo6NDu16quB4dLJgUVmIivV6CYCxRvqYCJ77YUjMG45ZXbHtZwzB40IUdnoxX9HG0ntPPzhWmw5lNYZUFcAF4WXsR8op7z250GO2TYrfZ39tSE8yvcas+5RRNf56rGXLX97BarthcAMqRl68eok2mrPTU1xiBpnNNjIuyruMKd1B+pujRuPEvzVBJNN3CU5RaSGIeSal8btjYJTI4bdrX4rF9Rf/4l/kf/1f/9fxIna8zH/xX/wX/M//8//M//Q//U+cn5/za7/2a/yH/+F/yD/5J//kzS800SzH70zkUn61E6gwQTaRkNFoKIvkbnsbP9h9tYjbGLE6+Fvpy2v6to8lv70Pb2L97EAVh3u0i81nn00q82EUYFAxsN2sWS1v8N4lbj+XhIEAcKCIcWRGV+NLLPCeNRIwcbaYczKfcTpvOZvPEvQntEqNEeLcEQaMwvwQQes40gaRLKmYhFSGurKQKtMuC6wUHZiYEnQ2pILPckmee5zom+nhZAFM0bhBGBfyuJUVPkY1Gc8xbSc9EwoEJCHZpjyjfB6lRm13DCDKSERMfYDoVbk3ic7MKxCQIhLzAlMi1fw0JC7fYcpoK3DpeKf5ujnCMST+yQzJFeRUZVhZ4E5rco5aSkmoqhQQ4nFuSwheilO6QYIdtBIfpbX4lLs3r+3oZ0VRxYj2DuUdp/OWRVtjtGXVCDu9MHM0OCeUU9vtlm3fsx0G2qZi20tJlu3g0Sl6UmlN1TR0w8Cm68Uvmd51iODdqMSoJLyLcjeZP3e2UfZM/pWHVmbp7gTk1mKWrt07STmxKK5vbqirmpvlkqFuUAgNmtVjUJS1VmrTmYjKuYU7cOFobZVLJYh5OkxGRShvGzceK61yn/alCC5rLT/3cz93a/vV1RV/7+/9Pf7hP/yH/Lv/7r8LwN//+3+fv/AX/gK/8zu/w7/1b/1bb3Sd8Rns+bT2Pv+r1A7181AX7+r3lws33kfg7VuKKScpTdTcP9E0B/zQ023WrFc3rNfrgpt776jrNsGBwm+oE5SSF+4Mp9XW0FjLYtby4aML8W21LSdtRaU0lVbUWsrTGyWwoPIiHK2S0vVidUkUmFYpECR6COJAV0lgZiGVfVp5GZU7TVpnWo1C8dGlZWUPxslBBdJCsbJGX0LSTSOUbNY0qcc6wsmKLUJVAgjGNSMtjioHfkytH+lHiMk6RKX9UrCFmgRaiH0nxR0zMW3uefqcmUCgGB6j/0zJuU2U5GnnPX7wBZKstJHAm9Sx4FwyIlTR5okxiWSBVUMuRhmE+SPXOiM4qcDcBwYFpycn2MUcq6CtbDJeFdv1lqYy1DoS+i0PThepCrJmMatkfFjLfD7fSXzfDgNdP3CzXLPpe7Z9z3KzZb3d4HxgCEK11VaWedNwNj/h2atLLm+kGGqdIlKNrWDbSW0yl/gLJ282C7S3a9N5ePsc0y2h6PSRq+trvPfUTc28blnMZlxfXfHh40fMZjPaVsihi+WsdwZbEVxTqHC3wMsooA6iXjHcGl9v2r4UwfVHf/RHfPLJJ7Rty6/+6q/ym7/5m3zzm9/kd3/3dxmGgb/+1/962ffP//k/zze/+U3+6T/9p28huCL7zBk7NCS3tITxuAKvqAkM84XvPGlDbzwQRz/cT1PQ3jewA9iZFeNxsbwTceorQohcXl5yfXPNer3GOSf8faYiquybydF8emJFkAKzFG1TczJrmbctF2enPH54wbxtaK2l0eJkNwpqk3xGSmGilLrXyCC3RpdggzHyMScxk7gSdSLNnSQ3a0lcFe65MGqLIsJ2wnwzCFSeSwEaJ9+C+G90EmpG3Z7wo2aejlGjBZwtieyPiFkK5P3V+AcjBJUjHrPw9TGTpUZAFwgopGrApDDxfC5b27EPe2q+lPMQ6zACSpnSpRiS5cgYsUnifvTpBoRKyxMGh++Hsq/RyQqPAaUitdFgDbGyKCLdtmdwju1mXRLErdHM52MIvJ/PcYm9f7teAZ6maTiZn3C6mJd1Yug6sf6S0LTaEK1UCfCigWBtxWzWMDhP7xzXyyWDG+jjQNMuOD89KcEbvXPEELFGiJa1M+WpxQmqwdRCf007vF+C9Y7tEyf/iEFPNzjics2nP/6Mjx4/Fl5K4PRkQTNrqZsm0wQnH9ckmjBDhXG09IVreTdh+Whv87r7Bde6dy64fuVXfoV/8A/+Ab/8y7/MZ599xm/8xm/w7/w7/06qdis5BA8ePNg55qOPPuLzzz8/es4u0avkdn19DXBLMO08jHs8kxSwNR1GO4vEu2634cHX71e2Hf3t3Qi6Y7DgQf9aHAdfgb8UIzvAZDLGGHn58hWr5Yq+78dFVUVilAi6srCrDLWNUXxGQW0Ns7ZhMZ9xenJC2wjPYK01VglUZBVUZhIZGCMqpH/Ttsy6UfLDspBTiYnDmLSPLnlZef9xPmbBtfuspiJq+qz2hQ5kFpADeV97ZywL/d75xm17YvKOsbuzLZthSdLkIKeQgi3ixLrSOULQ6KJ174c2j49FnopJM0ozCu3IpH4aUirDIEEjPkU0hpR8rgBDei9R3mlUOvlcRBg3dY1RWkq1OCeFOpN/tI4WW1XYyhIr6J2ws2xcx3azJnhHbSqaWS2Wf7rvfK9idU/ePxGtYrKiGlwVqJxjvVkLT6ST4KHaSmpGZS1apTzGlNqQx1GYwGy7L2T3laaZdfC317UylBJyFyfoYUSCLQY3cLNcspi1xBBwwXN+dko7a3GnHj9MSwnFvRNTFs59d0zp+xFe0wwnftH19Z0Lrr/5N/9m+fyX/tJf4ld+5Vf41re+xf/4P/6PpXDgm7bf/M3fvBXwAXmRPEKye8h0vkPK7ywI70Bo3UejOGQJ7prf4/Zjx7/LdnhBvE/LtV+z1esLEBKC5/vf/x4vX72k6/vESehTkEbSrpUWi2aqySlS1J6wqp8uFpyfnHBxdips7wnSsyisSuHtNtEqxQheIAlFRKdCkSYtbJkhw04+ayV5WzuJz6jyX8G3UMW6IC9sKbR9N8hnXOSndcTy92nZF9h9l/k92AnN1ORRlw+3RN09x22MKdE4w7k+VUXO2nQyd8UyHhk2cqBFbiUcfk9ZIaFLMSkFufBifp4gggkjb9EPg2j9TqwuHeSdVNoIS4mxWCV0RC5RL7VNg2lnuMT5mBUUZTSaSgpKNhUxQBurImBevXrJCgjDwMPHD1GkhHZAWVV8iYGAmkDd0XtsJQKxUZqWyPX1FX0XCUNPv1mDramMoWkqqm2fKj33yfeVLZTpEzz2vtTuqz6w5/5vd64Ek/eWkYwYI+uu48XLlyzrZarcLblz9UxquOU6cNbUyVIei0TGmNMjdpEvSkDHpK9TyZmun6NY37Z96eHwDx484Jd+6Zf44z/+Y/69f+/fkyTUy8sdq+vJkycHfWK5/fqv/zrf+c53yvfr62u+8Y1vAHn6BiI+eSNGv9ExqPBN2hfVDI5BlbfbIQrOnRNNtNv7CUV4ff9v+2YO768mf7u9zImbOtdgzz1gvV7y8tVzKUaoFO2sZb3dpIXclMVbyrU7oncFIqq0lCNpKilBctLWnMxqYcMAbIyJGSBSleAMhY4CTfkstFTJsy2fjU5+ryRsjFKpjHvSFJX0n+jTcw+J/Dbd/VhPT5J+Yyb6nVhHMAlaSLBLSiKWU+9Ff8rLKPRNQsWUAgEm77SoZHH3/U2twhj2FgpGiKZozREJg48xMXyE9BfTNXPIxiSPB1XuM6b+5guonKkcYgp+SfepxmdhzGhDSKK1l+Rj70p+V5UYOkxm3deGPKdRIri89/RuoDYGTaS2ls1qLdCytXTbDoJDxSb1WXp8ejJHq8C261jeXDNftEKSrLTQWLlADIa6bqVMytATh4HGaJwSFpJuu5HnYwwPT0/Aeyng6Hqy7lUbTV2ZVG8s4gPF4oo+Ujw7KplD05cV83O9/3o1PcPrjoowlpPxkeVmKxRc3vEv//iPubq+4urmhl/4hV/A+4gbPItFqradlBCBCtP5Jv2PyPtHx/J9HLvjcIlKpWTtt2/vnm9+ry2XS7773e/y8ccf81f/6l+lqip++7d/u/z+L/7Fv+AHP/gBv/qrv3r0HE3TcHZ2tvNX2o51NY14ya5m9kza2+2+i/vrWtx5mZPPU+F1ZJ9pv79I27/PY0JuX5MfYahdSKr87Vgeewvm9Dw6aVIKBjew2WxKwqsv5RA8PvjCSyjEuhkijGWRa6ylrWtmTZMonEyCBiUXKX82Sfik2ERy3awMA2YuPi1KY4KAYBcO3BXOKnP8ZMrvvMjHyKg9w+SF7rzjXRBvst/evjtW9t672B874/nH/bOQm76jUStO/Z3Anbt/qkBi8qx08fUVzsakCBzqS+7E/lgRK3T3e4nCTAIz+iC5ZINLgSjy3qtUsbqyRqwslTkjzY6SUWDW9I588inpdA8q/VZXqSRNSn6urVSjDt6zXW8Y+l58m6V/IsiDdwTvMEqqWc/qmrqSsBHvBvrtGoP43draogHvhHezsTZV1RbFbCSG1kXI7Ko505Ey3bpvVx0+6q6f9ltUuRClDFIfo6QX9APr7ZoXr17x408/5bPPP+fFi5dcX9+UytlM0IM8TmFc46ZTQlwAr4EEv4DweucW13/1X/1X/Pv//r/Pt771LT799FP+zt/5Oxhj+Ft/629xfn7Of/af/Wd85zvf4eHDh5ydnfG3//bf5ld/9VffODADJhpomUxTC2e0YLJg+yLW17EXsKcvHbSK4uS3KcBzHCqMB4Xgl9UORcS95gBZnKfPRIm1EgOpgJ1icBJa3LYtMQb6viMElwRWqtUVU+h8Wjy0FqFVWUvbNizaGSfzGbOmoansqJUbiSQsPipAizoIUWicVErqlcAMEVo56MKkoAthlZsEVkRKVGOMSLQhiI9FTefa7jPbDVqJO5NSPu76pw4qE+wKgUNjNW/bUSjSv5QuxFEHGo0iSFaXCpNFhiwUNEEn5SHdaEkri+KUl+16ksK3e91xHKT+EwvzRkzWWP4c0hjwYazaa7QoKxLhaVCoxBgi1wkxSoHIpIAQpUhpSKS/UgPNEBNXo0KxmM1YrjxD3+Odk+rUqYbberXCaM3Z4mSHxsq7Ae96gh+orcbWNTFGNj1CCt33bDZr5gvxq87bmmHdsd10DC7QtAuaWhKRY9yic0HRiVUs7ylw2HZQE+RisunAnreOVBNf9f7ilL6GhHQnSkpcCMS+R2nFq+srlusVgciHH3zA44tHzOdzrLWlKsEhf3iZB3E3PUOxK5/2lZy3be9ccP3oRz/ib/2tv8WLFy/44IMP+Lf/7X+b3/md3+GDDz4A4L/77/47tNb8R//Rf7STgPzWLSKaoA9EvRthKIIil3fLocCaoCZ5OF+gRbX7Uo7veBjmO7Ztf03b8R9w28p5t+3IeY+hF4pxISPJNBXxw8BqteTlqxe8evWS6+trVqt1CYG1tqKdz1mvVwmKExogq6BSinndcH56woMTKVV/vphJCQutsURMDJiosVaqC1cpujChexBkYhol1FDFr6VFKBpEaJnESad1XlQmVm+MENPCEj2jnZIHjzyUHQumPIvd7UpJ+RG9N+nHjzIGvHfEIDRBO6Hqe4qQWFl5sdh9bTkoIiQBphJOIwItj7MxZy6m6xjymJaT+alSSB6vAZRJ7/q2kI0EOXdSIkwaHzHEVKVX8roUiYW+IIxJqVOSFiFrd8AjjBNaC+ltpsRqK0vwkWgUs6aCMENr8XUGFxmGjn7YcnI6p22lqOZ6vWa73aIVPHr4gOcvX7C6Eaj57PQUa2uMNnRDX8LubV2jjZUS9rFCn55gFHSbNd16hXMe5T2zqsL5QECUNWs17axhNgxcLoVE2lqLGoZb8/vAlPqCuMvkROnDKESEtDrGiHOhjNEQodECb/abjj/50z/lxYtXPLx4wOAcX/v4E85OT5m1TbKmpgpvZtXQE+Qob5crZFSAyXFfpL1zwfWP/tE/uvP3tm35rd/6LX7rt37rC19rR7NI/94WAofCNN7RwHhdv3If7tjnkO8ra9T3u9ZheHD/+GPnnGpPdwVnqIkRESfHhrIYpgDxCYQE4Lzj008/5fr6mmHox0GuFbg8kOV/ldUJjhPLqzYCFc6bRshztRZrS5HgwbQoh5CvTg6fzozchZIpQU4ZFssWllY53H3nbgs+r9I8nEYAquK8ibJAJ3Z1vadR7z5TRIFh10rLP48Rh4ctsx1G7iIo2E143nufRUiVa4+WT0GWlAjW8k73+lIspHJtEYtZwOXnUq6RFa/0XiQKdXesC1O6SX3VBCTnK6QSJDp1LCp5C9nvqfI9TZ4JEfFTTSy7Ap3GmNIvhOG/rmv6vkfrQAgpFSHGwqCf/2wiY1YwWhlRxtF8NgMizg1c39zQBY8bBqKyNHUF2rK5WSNV26S/OTo057tN39lYCETdf016jWRT03fCOM6Kn20yR7NFpJNiE5LyMDjPcrUUgWvkWfT9Iy7Oz+V5GkNlzQHkII2zxJSSooBu9e2Ltq80VyEcXrRvbT+i4hywpF97nUMPfrzW+FuBMI/0rSwiR8+19/0AbLS/330F3v4+uxGMR86ftfeD58/Oc/mcTxSiJHR+9tlnLJdLnPNonRacQOL1G9+CMRoVIipIjak6EeW2dSVFIpUWjsEiuMbFTDgrfdL2R+gp+0OMmvq0cnLxuG1qHWVv2xjMPf1N5RCgdOd5n9vUYUUNSAvEjo9qIhyYCKtdwbUrvG6PwQNjvbzH29Z8yC94Ok7UeI87Z5kKVJWCXvKdKkXUuwJWhbAjvIhZkdntQxGKOldPlpyykI9nd4yZOBbcHKM8UxRrCCgFdVXRNDXO+5JyYbSWMeacwFxaS+XmVGk7V/xVqBSCr5BqBsIaUdmKzOyen5NWwjBhkpBcrzeo2ImfVinqZoapNC9uVuNzjmNagdZhd72J4zucKg+vbTHNmXz8kSk/3XxLgUrzNQstraRKdD5fBLbbjq7rGbZbZk1DcB4NzOdzmrrepXFKNyQfwxGey3fXvtKCK5LIPPdIG3egwiNC4ihG+wU0gqIFC15GVLcHVYgeSb28vbCM17/dtzj9HONEA/8ybcfbrcBBiDaa839ijNhU3j5ET99vub6+4vnz51xeXuLSApIFl/ce73wK+QahQFJSdsRYLs4f8PDBAy7OT5lVFhNiqlYLUYMyYn3VNmNNqRxIgjGstdhKYESrwRo7BmqkxcTm6LcchafzIpnYJTK8oXRhjUfJ8ZEEgaEKBGjU9BnlSMYx0TeGkTZJxQQF6tH6U2oMwReWjMRYHiMD7Agba20Rbvtj/y7lSqXjJ6Ze+mcM6ghIKYvpuMwh8Qq9e3w5P+I7CwJ3KoSqK7P/a62xVpdzGqPxXgo3RjcQ3SDJ5rMWjDDPD8NAjIGhd9JHo6lqW4RhXVtRe5TCaEsIkaaS6r6l1pgScqzKWBYnJ2gtkOHV1VWBLqOTAKAYwTmPMYbT01Mi0KUK3aQxZYyhNVLheLVag9YErXl+ecNJO6eqWx6cnfP8aknwXiopDw6i3I8EKoVUiZryTrKqdD/fA6Pweu1+8r9EmpJKlaR3qpITJQceMbHAymUi2+2WP/2TP+XVi5dsN2u+/e1vk8dztkinQRuji+bw2qS1lLP5Iu0rLbikxcmnI1I+HtZKD7U3FVx5oYiTgXRIoNzu1zFL8fDi80U1l12r6rhlNkF2jp4nL3CFnVvJ4q0QSMl7z2az4eWLF3z66Y/phw6IaXCPikYW0grRkK3WtHXNSdNwcf4gFYasC9yS4UGbfFU2Ec3GKKHVU4hQo9BRlRpSeftUYy+x2vJQUgmRMRrK5AW6JC7rZB2lQyAFbaiiVU8FxMjSkSG86e+TSD91+/POe0tCNgvEcaGQ8jQl5GfPIt6HgfP5SX0D8YNlMl0UAoml55PrMe2MHdJzKpZ1uZvkL4MSGKV2/Rpaaw7lXO4XJlST6TNVPnXMlrEWB6bevT+tk7WUCiHmCgRi2cn3tm3Le7q5ucENA13XpeAOs5Nfl63s3DIsarTBtJbFYoELAecDl2ZNSKVU6lqSkK0JVFYR3Ao/OHwurpr6rNPoF49fVrA52A7P/7uF13Ss3XKE5kc8eY3HzhSB9XZDJFJ/WvH48WPqumLWNOU6/3/y/ibUtm1LC0S/1n/GmHOttff5u/ecGzc0MkPTlyk8noJCIFhQDNCQJypWAqJgQQwQoiAWBEEFA0EQCxIiRFEErWQWomAhQLQQlSBQIRJSxIx43gyMm9577jln/6y15pxjjN57e4XWWu99jDnX2mvvczPJc+44zLPnmnPMMfrof621r7X2NfPhXXKN9HNg/f7/wXlc/1ceW00Tm7+faqq+CWI7X7zrQe5N5Sa8zoWVtPHy9du/5/DPU5/hTd8/VShfinyzAAOxJgF08KBtGijC+MzMmOYJr29v8cXnn1cmBiKg5LZJmQ9FEo09PMSK2o0jnl1fYT9IWRKUXCMCK9zntBoxbNyV1JQa40SD+LqNGzYGncOaBVqkKrx6WMq2L1pdpwFnqH1gz/jQFkDthFV/NoaM1qbteKyCOjookdEpGiuYUceP2ta7EiLeiZUEljAzHVbSCD5RFlwNpjEhWJ++m8p9m50jlA1o0GvkVZg+skFTtw763rM5bP3oqItY1M+ddwgh1ITqlioggksgQEJOCUOMKCkhpUWsRLKAmDVY3BQZp/LYIcSAq/0e05IwTguC9wJBpoQYpUSI1U7jvghjQ+OqClVMrrReuNw573oww3IQ+22i38cYnWzbCDOG1BLj0wlfvHiBV69eScTvfr/yLTahdT7/twrVl/V1fQ0EVy+k+s95c9769Tb3uCS0nmion7XnTW1527atJiI3P9cPA/p86J79dVlXXM4ZJSUAGY4YyzLj7vY1XnzxAkMI4LxgzhlJueiMN7CwFPEbQoQHEJ3HGCJurvbYDQGDc0DJGDRiLJBEBUbvFKoUx7rBfc7ykMg4CNdBE2dCAV0QBrB6b0crvLIOXtYRVQtFo1brgLhVXzFzR4HUePsk/N+tFrOVkjDrCgZTypcXx0KEka9kwTYmUppYLQXTcNWKBKtvUC7WCUS95kVlh1FDtW1O2/nQTT5E9ByiW2vf+tmTA3kCx/XayDlXNo5e4ImFBdmE2QSmhe0zoGMdo0dKhJxZIUqB+HLKgJcxHILH9X6HkhYc04J5ngBHCHFALqmOg/MOARGuiGBKbGVmPG6ePcOUEu6PR+x3O9xNC1LKuH7/BqIPFH0GFYG5U6SsQ6oljE3Qxkb6n/2ln1ywpPrj0rxXvU2EOZqF+5AFxlAG/5zx4uVL/Kf//J/x+u4WIXg8f/5cLNG6fqgpZ67xam6F1ZdFkL7Sgmt7bIXBWgu4+IOnS58n3X/116pd/ef174vC9e2so9X1LrZpvXleev/QsYpA6p+jn4QEhXuExsmRFEa0MiZ3d6+xLAuWJdXSGHVBE2E3jAjBIzoppT5qJGEgrVALlmrHTisSk5Q48V7yvlLO6jcsWhLDeAjRkmA3oE8TC1pq5NIksD0BNh4yNj2pbrWgeB0taBfYWq5NhKBaAwaVrRe2tssFuU67WxUw1vlmtZFzQnfUwZX9ehDfCsOCAKzt4s/bQjirO64/V6v0ErO3neM13LpnAN+2qVrqEAFWvG8WlX7u4FcwYpt/jFSyPn+/veom24VeC+GzKArLUpDSoj5WgfT2+z2YJfow5Ax4BqkvjiFJt0bYy2CUeUZh1sKWI/b7K1xdT3j2fMb08hbLtIgvS/tvmU9wIKUbU5ISoAvwKTBqaSuzpCrQZgRQf7H56EHh9eDK3nzBm495cyKrC8A7ST959eoVgve4udrj9/2+34fduEPwXlINvIezemobCHjVhB9li0uOXlidCy394/xXT5T47+LzutSGrRA13P7c6roEk7zd/ft29xbYu0yWfmOgCtesW6hGwQr+koikCcsyr3nwWkNVeInz3EMCMyz8PZrVROLTMqaLoAnKghIWFGMPh4a7O6oCq1YcBkC0hc30X9UQCb0PbA0RPtg3/YVWY0hA7RN0ndULnfUcPJ8zBE8dn+Gl+Wrtda5ZZN31toKDgS7nTi0Zjayr/aGJ1oobal7u2rIzqEu1rNVzmE+vvjexa0JPr7b9jdEJre7TwebVL1qfU5J3ZT661fUMUpa5aOvJ9gfNM4MEE8UYMQxRvtf2ifDHygolQHPrqFqFIUbEGLHf7XG1nzAcTjgtGSklWEHUopGPRjkGQg3uqc/fvbB5j0vTa3ucCa+n7R/1ZxcOg0ft5jZmRIRlWXA4HPDixQucTkclDxiUXcMB9DTGoi9zfLUFV104GVK+/FwneQiie+tb6b9PtoMu3KLH9qUdfXJ0dxDL4NO5Vvvw/dYw4da6eig446kCrW5udTdGLVNPpM5+76XAKwru7u5wmqYarCF5HWW9SAuDlwQgwHmHm/0e7z+7wYfvPcfVEKUYJAmvoFW1HnyAMXYXLUop1k0HEzrRXS0/i7rNt98eiDzMEiOynC6vsFSDN6oQ21gmtX+x3Yhbgrvu1+f92V2rWmSb6FjnY/tB6avTri6kcCLqhmrXqFV37VAqpGp/kgj5Go/QCySy52ghBKvnZidJ/53lZc9UtIyIMb3XPrS5UzLMF4ruewndacwdlhqQc67zuDLrZ9jZsGRqs0CFHJjq2DNKLVzqvAh6l4EYPMoQAB71c4AcK9SYkbNFgppiINaX8SWmXBDCgJtnz3E3ZVwdJpyWgsM8YxgCdmUEvb6Fme/UdUHzc6GmBBrZYe3rzuIxid/E+aWjcQPiwnl04YvLtlo/ngBBuRx1fsUQsKQFX3zxOV69eqkNu4b38exi2/UCnCNj73J8tQXX6hCi3d4Cq0LrgV/0WsSXPZq/qWk9l4SlWVn97+TfNw/o9nePnf8UKPBdjqq7rtqi3+jiBDO+//3v4/WrV0gpIeelOfkB7IZRiux5D8dFSXUJz6+u8Gx/hatxB8dC4SQbEQsprhO/FTijcEEuC0g1WmF/t3B2PkvkbVYUVtaYCDn7TSO4JTThBahl0l2z9uvGOX1+Dq2UhwqFdWS6lxZ16+32Xb2mCSpq1uJqjHrh1/mItsLS3nvfKtziQpiy+Vu2fgqnPFpb2PBsznf3MlizF3jGlm9lVSp0qhyX1k8tEKD0N5NaXrBzfC3H0fv62DHIAYE8wA7suN5XogCjchwyovdqyWYsi0DRyFQtMADIXDBNk9yXCPv9HldXVziljCkfkOcJeUkIzoFzAlSIWz6uCaxqNYMbNF1Hn3E+um9rV739bx3W88VRU4iXXMBYAGL4A+HTT38AZkYIAfu9g0TOukfnwBn68g7H10ZwrRf7RjC8hXRngwfsKva3/Z6ozt9eMLJuMm3AHrzBmbB57PxLcOdWaDw0QbZ/PyTMniLkelonrM7vIE9I/k/OC16/foXj8VitLdv4XL8R66IPziN6YR6IwQvngGA19WxHkpPjCFopV7idiJR3UHOp7B7Gsl41ftsg7L1r5xN49V17tm6z3Qgd+1x0lXPh0q5jU4j60y6ctxZu1kMPHp1QXI1Tf0pvYW3abYcjt9kcz/0orGNV9RNDkKoZYHRSG62ebZcWzkHa9Nt2Xm6fmKDgQ71cW+PNB6Tzz95tFASxYNbMJ4zOwvbCcGHs52bjSPqFx5KyZW63deIIBk8WlgRqb+TAUQpHSn6poAGFW/qHI2Uo5F4JRG1ne6pe2eJV261zyH77wNHPItFxCOarfYrVZf1GYgrLZ96DNKVlXhbc3t3i+uYKy7JoGoIUkE0pwYcM1ykiq3Z16NO7HF9pwXVmcTxgtdhS5Cd01nrirP/Vi1ShZQuwleHup8BamNT2btp+6Xm2bdz+7rH+eAgaBN5sfT1mfVob6mZd33Pr91KQS8I0HfHy5UvcH+5rKXTbSLwu+JwzPBx8kBD4cRiwGwZE56RMSLdCqTB8CAgK/2SDHQtXX4L3WvMKxh6vBeBtwaLlVFmoch8qTd0zNcsGorR0wqW3lABoJeH2220/M7c2NN3nch+vfq+CqQFH55sLUd9NuuUqpAhra9fu/h6FDZ5zgOa76VDWOdQfRb+3Yp/1+arYQLtA3VVrJ8jbvlp0F0RSumrLrZ91HLibXyYIATDbtayHLHim/d57sewsLB3QSEudq85JTTaufJVO13aBc6G1s5SqrBKERzIEj1KAZRGyaHJAiB7DIH4vEVyKABXJ0vLOIfsCr94B1n7tFeBmf0k39uHmD6f01h+fHRYF+/jKf+CoSh5JoU4iDENASQuYWUpUvX6Nm2fPNABrATPBe1UoUwI5V6HeWpeuqorvLrm+0oKrP0zjB4BCUrH0IoTWQ3Vms2Njadlm9IaN/sF2dBbUVnitNJ0L59pzvMlCbILvS6gtb3kwsyRoKlEqa/9ZTtWyLJinCa9evMDv/u7v4NWLF+CUhaS0yIbhld/MelY45CL2uwH7QTgJvQOGGDCAEVg2SiHDVQ1b60YRxE/hvUdwDlQKnGM4T43su8qfPmKNKixY5VMPI1bGDKpzoOZ1UYOtAFQf0mNKwdpiuwwRbn7RXt0pRZ/ZLIn+ewvE2MIwPWxWrUg1n6X8THvG1f87a2hr0a8sgP5zbi13IHTetbP+OFsX3fVKWlDI/GWlPqYxkxRe+9W8c43NxKxw5SdkbpDgNsLRxoGZheGiC74QWjAT/Bqw4hzICbO8D4zjNCOVgtM8I2uIUQwDiA54/vw5KEQcl4xhiMggKXdGBMqSPpEYyrOpY2V2pDkddXIya+QpW8XBy6v+omJj02SDAkg/rH93pqTr4UDwWh7GOSVl1nlgLCRffPEFvvGNj+u6CCEIa41GuvbMGsIdxFvP/lsdXwvB1QuiLTS4tWAMfjizscV+XY++qVn274X7mmbU36fXjfqFb0JKkhBVo94IOFJYpbuLKt8VWJCNe1U0s7EwPwQVbq2uFTxjG9qF45LV2FpmEAwr3RJwOh7wvf/23/DF51/geDjoxuFX8BcpzZFN7BgDxmEQpvcgn1ntK5D4HDyJVVA4o+Sii0iDMaDh0wb/QZgIaoBEba0UhJTIQ7NYuGnTrr2cRq+xRmvJ/t5r9+eb4MNWbntt+1GYGi6MiY1HJ1iqVWXf64ZmvxWYts0doYWSB+L2Q4EQO2uoP7ZCxQSVcypEmKvgqE9rF7cloL8TTb3dYysAq3FmG6oWoSzGzMGN/JXAYNLn1SjSDttA5TRiS5RmBG+UWV1gkAlEVcKqoHKuWl2FWU1MLfypxTTBSshr0CRLGP3pNCOTw2maMC0LQoigJQNETbFxjb1FwAESdnt9VL2LbkOWOCFPXjuqe2Ybv542qveRtZlolniby21urq91tgPU/RTV+vLk4IJWMU8LlmnG/d0dXrx4iWmatGJy0JQUfREUCeiV8y+ncn/lBdd2I13Bat2rP6mXA20xPaD9dpbY+qP2m2bqr9D2C0KrE15s69mSKjvBtXqmApARlvZVks9fW/l6CTrcarjn/i7rufPv6kZfP6gfgpVx/Hg44L/9n/8nXr98idPpVDcFqV8h5ztC9UvF4BGjWF0+COQXrFCQtjVoJCFgUXMFRKJFm9ASjbxFolXY1hQS7Rur+VWVgdLGsTey6qKGQcEd52DdWNbH5T5uyokoIc0P2jTgygzXxsFuji4go41M/dfuV0p7AWYF++pX6qFegy5t/mOj7NTzO0FjxlnpPjPhqT9o7dOPnCPtXsJ2DawVmTZXnXOtYJQOGmufOy4oGoVrgaJymjG2yPUkqVaEoH1fOIM25Vicl/4xKNs5B/IeJZWauN33E5eCJWnUJskpKSVM84yZgeNpwrwkyfliIOeClFOz0iHC3GlNMbOgegyQwWKFqcJjRMXgBiGuZ4L2dTdvViNZoWHuptdWrNVR7xS9bj8tAJGsOUcEFyNyJhFcS8L93QFfhBe4v7+HIyds8rrOJG2FZdxYCbarUH530fWVF1x2bAWUdbr91S/CH8bdmNfO9vNT3u5+Wy33TDtlPPD9+qkvCSv73Zt8XE9pY9vQG50NAYLrl4z7wx3+y3d+G8u8gJX4tg/SJWo1tIbgMYwBMQTRdjuB4SDsGtFZVB4qdY5VufWrx2kwWhUIrjOkO80+q8WqckH49R5K4iRJhG74SndBtDnwsG+wFQtcOajfMDbbPYYAYcWwraVuyqpYufpEG2hyo1yZDwxN5rQ2nLff/EiWi/eYhdZ/Rsql6BTbsvD4/lznugECmjZZe0AVDm5WlrHUb5VRC3awGmTgUsmUweZnQrVQDU7sIyJLFqFhwRfSuCyCqIgQmqdJ4D4fsKRS9Z772zssKlimacKLF1/g1d09GITr62vEwjilDL4/YkmMXKRWmVn+lgHDLFCaTHgCnIPTrrCKcE1k8YUZe/l4bCeqfke9qnF9isxhzPOC6B0oBMAHeHIYhh2udzu8evkSx+MRKSV8+umnCErZBq2/VuegCzD/OINrNfR3Pb42gmt1dNr6OYa+FmirLy5YJ6uFqYtghf8DKxP48j27z/v78/rcS8L1TYPLfPl+2w3rkjDbXGnzty4Mapthg0RVi1PYxiTAPM+4vb3FD37wA4AlvFzgHRWoIMCtN9am0XfUMLAF1KKamEULLrkItZFJnb7F1L8nbM+wvpJxKyjchb5jHQixusaZxQOdB5bn1Hqs9jXQbYqmrbpqAa3HpN+wL49PHTd97vNZoXyRfbmR7l7be26n1bl1bVukWfIdiTB3kXvaF1VRY1MYWn8xC2zbgnRMuJEtKR2TjSJWFbTGgdlbBcXWuSpPIPETSVFKapGwRca73QMt4rIT7gZbMhqLerMusZqzOSUss/Ab7nZXcPdH5GnGcV5we3eUUHlmxCECmRFyQWCGCw5UWsQjdI478sjZrGZV9qx/SWcny6a/nSGP7RCrveHC1DI1oEHT698SoIEtJMVAU0L0kne5GyIOMQqVFjNevniJ95+/h+fPnqul1lnYtldirXy/6/G1FFxv2Orl/xuBgR72wFpo1YnNXDcw9Eb72bWwGqT1550VdaEt/d/rzeShwV5bZZegwrMeuGCNXbrfJYtiyaXWkDJrC7qgpmnG4f4eL1++7K7ZCWTd/0nZLewwWKFRNLV7yibYPXu3kbQx6MPZz3tnS5/DurHZRtX+pTNl4pKV1Ma2PV9tU39+7WtUa3IlDLtWmnCw64JZNPv+Yhc2l1VD0ISWPZc1eD3efd/1R1NWrN12aSJXo/9w8Rn6dp7/yX279Iu2rDpfSv2hQmPdJrcaFyfRpk2npNo21r8dUDdPIYBWCJloXcYD3TUcqWXPKhOtSKkczjmULNbjkhIApz4dh5QzpmnC/b1URgbEz5iVJDp4rgnyWWuKkHaEkB6vCajRKUzVp9d03otdvl3B/V8rGbaylFVJIVFKt+4A38PN2p+OOiZ+BrgU3L5+jePxWOmwzF1S2/KAYv8ux9dScH3Z44cBq4EvaxTbhXgJIgT6Taz5xS5f4/yajz3Dl4EQDe8n9Z/YzsYlY1lm3N6+xqtXr/D69WvM84xStrFDsjgk2VeCM2o1Ve8666eDLIjUB7CFqUz7ZjiN/2qbti0yqEb7yPNgrXWbhfBwJ3SbMTOEtYHOvrykZKxgzDcoDv3GUWFBZx9ol2zv4ba+WO516YcfiRTaIwDwEFjOhNZacD91A3pontdnY16xehQtS1P9XOBajFCiJbtaZiqkDRplSJQoyGaF9BNBoEMu4lMSQmFtu9PP+n7Q/wQWbZ+nlCRs3TnEOKJgQZ5nzPOCDEIWSVmpkG5vb0FxQPQRMze6Ku89hhhqIxuZsDGtcBUawcta6NK0oc4mZC54ZIZeHo9Hv2O1YKHrSeBKAglMGdwZc4sx4lxdXeFERxwPR3z66af46KOP8MEHH2C32yEO8Wxtlc7y+jLHV15wPWXTfWh9mWb7tht5tdBsGdB6EzEI8ZIweVPDvow2YtOeiCxocfWtWVDcWm66FtQNrJ+dnyfl3i1EWTdsB81xkXOOxxNmLZYniz8rht/Csd0KKoPkvQxBE0AbVVLbgmT7MVaOwE65C9e1rnokrb5MYbUNSsfCKbdfg7vkxwJVrpOAq1BhVoHdldJgbrRXAOAkQpAhTWZzRBs8ClFqzZIBKZyo1pGE+bva76TKAZMEszTI0q1zqQjoa19tZ4VZYmtkwL7Tf7Wt7LSfutF3UEhVn7kJVWoXo+YT2Vqe/YDXmlzVdGARWFU5E4YLNZvWVlp/KQYYGl0KIWNmtfyNvZ5g5MIiwPpEYJRm9esMQ84JJWW1kDwsaKYUYX1PzJraUZR1PuJ4OOLueETKCeM44vnz5zjNGQsDc5ZQ+XE3IrCgFUQn2Ny21BKGzT3NLSOpgMBgcC5SbLN/dlhMcVvibxVaTh2M2llw2y3D3qeUlI+wwcUlCyfjOI7IOeF0OoJRcJpOuLu7w3vvvYdcSke0K3PEUavJ9hBP4lOOr7zg+r/yOPMV6Y7T8H8VXoyVcOohrfPPO4HWff6ogJNPHzhnCwisJ3TbZtZtbh8bHgQYpMTdeVVf103BNsBSWiK29dPhcI/T6XTWctvIRDAZY4Xc2nta0TVpB+m+p/1ILfDCkeWF1P1ez2vttEWyflbWSC0TImtYrbfWtpvlJcupfra1AlWTqdDXGXZjMGU3b2xo9HoM1BqXZjOx3rcJi9qxQNfm87mztpj6oz1CF+nF59dYsabQ+fUYIthX311oRdlAkPWLs+l+Pv/7ZzPoD2ysGICROzQIkNXadsjMmulbtH+ddhu127MEWvRRk9YSZkk0X5YFlLmOhdPgjnmaUBwJ4S457HZH5HkBZwkmkhwoS7o11UZSDBgOtevIfLpK0MsM6iMsL/RpHf8Llsyqn9/iaKqcXIRrP3fKp35u+XIxSg20vjCn0XcVZU1Zratuz3yX40dEcL3ZEXjJz7TaCDqh1U5lu3r9zZmg6t5z1WTX3/f33Aqmh6DC9l0nPC5ch2xz2zzXped86F+5Qtv0S1HtNZnGK4v4Bz/4AV6+eAEuUnnWVCpZ6NzVynKrMPZK0cRoDmhG51QXclRHgPMe3ouAsd/LZpTl/JrYyyBSzrnNkpbF19cK6uii7DvVtut28IAV7rprtp5u97Pnq/1d52J3ptYSk65WIWJ9z93uQ/Z5szBNwNlz2JjW+7P1TzeOZIUpWwBJVaQy2+3XsGZ/zQuWUCmNcNfEQW9dF92AGazxPPZbEeI2Zr3Sd+l+thn2n9tGSqrFNz8pgZwHKySHwnUu2lhX5VH/LdzooZgZmQsKoZYyyWWG8xExDpU5P+UMRsCwGxEGwvX1hPv5JVJKWJZFIvF8wDgaH6KMS/Ri4Zul6bSMShwinAtIuSAja3+s55T1c1UebK09sM31+kHVCS+fWm9gyAt0fTvltAxBaK28VqAehgHPnj3D69evK1yaUsKSJDUgxigRlNz82I+19SnH10dwdcroQ8dTJLyZtQ/BhaYxbreoNQzzuO/p/Nw3C9bt+Zd+y1AtlFw3KUwTt/em4T3cWVvhBXtcvab3Do4dUlnULyX1uE6nE+7u7/Hq9euuX0otoQ7YBosaBjzGiDEGBGUkcGCpw+Vtg9FzNZnRUxN42/oQdfMpqDWhalKyWWsbC6tPWgYAIteJVBP+bSPrw6cJqNFp6w6U6DZstExWy1CSTg2S7B+BW8c4OY+sA+A0HVYkFasGb1YyacQia+RenRPUrAa7BwGqKDA8EUppQpdXQTNtHiQuknjMwvrgNFzcIGaGwX9scvhsnhdurPCcLT9xfbS8JYZEY3IVohVyAoNT1iqhXq0VWl/D5kdHvg1Irp+ckVcbN0GjMiE+pKJJ/bk0ZhTvPaZ5AucisJ8PGMcR7z1/jmMuyMqiDgDeed3gA5Z5Bg8y170npYsqYHLgJSEbsTGL5UQAgvcgR8gchKi6NOvbdbCwzfmHjo5mcDUWb3v089h7jxgighe/nvcOu90Or169wrzMmOajlhtaw4HGSyoK05eQWvgaCa43yKxHD7FWzq+w2rg7rdc0pAYZtvO7X1+83uVzHz7P/m6a+iO/7zTHbYJ0r+WIAr3elC9d85Jwk5Bm3bR0MynKTHDz7Bn2+73kw1zQ0FtODYOVRscWt/dqOpgFoYS68jtuofGmoNjp7WdrVK67f7Ws0BKUK9BiQqy3ALSfDIID2gbR95vBJ2j7TrOmSC0t2miYqmFboINdp40bNOrSoZgQAwmfXn14vRtjtaFcGjvzJ/RWCoDGzmLWeiecu15882f9rdfL4c0KmVpgpszIZwSg84F1z2P8hNZ30tO8GiP5t1kfpsxVC1CVTmmbBRyoMqVWfqsr1R5KqiGL8pVTxpwyhvEK5BxCHEBlQk5ZCqZ2Cc3eeyx5QU4ZOSWAoQn4Tsh2ibSUi9SfYyIEhQpRUCmTRBCgzjlLq8hlLZa2U+FtxMN2KK0PCSzzxTn4IJBgdoQYhor0OOew3+9BJD4x2x/JWchLf+1LK/btjq+N4Hrq8abF1G/sZ1ChnkDd5AewWmSXrr2652Zhv6ltl3730HPBICRe3eTybKbNb/WoujdtzlUrsvTPjxbxxSXhW598Cx99+BGc8w2WUE218pWVrBFLDCBUweWsfD2akPNOamp50vIjTlOTSKwBs4tq4EO1pFDNDOImuCyx0h6xhWi7aiFU7R4X8mW68TFozva2frOUzyyYQoUFA1xhIWi+FS7MMW2T9Zdp19SE4EUFg2hDFfawxe+cE0tiqwjRZuqgRZI1AUkrYXemANnUWd23CVmDD8US7+admgZs3aB92QfDEJqF2/srLx1FmTRM4ZN5SI2kQoW5FeF00PwvRQjafNR6ZETwPoLIIaUFx3kCuQiGVPzm0wnzPOM0zVhy0txhHUNmlJQxnyZNIVHrzjZ9CIqRgwjGGLxafw7BCQ9nUX5QeebuutR8UKtZ0YERl6yuVSej2w7OJ73MBFWAYoyYJnmOUaMGbY48fy75WyK4jN7Kd8piu3c/F97l+EoLrhUGf0F6PwaHAbbZq8bGDf/e+oH05HMBgLXQsmuWUuoGcAYNYr2JbElRHxasD8OObWEzyJwehtdQ02+kT+rl2nP1h5kwzJ2Ao/bbBwRvKQUffPAhPv74E3z88cf4zquXmjkP7Pf7ylSObBWLCdEHaWcp6vNirf3TPRMZnGZOasvqp7W1ZRaMMctb5OFDsfAqIGQzKFXIFB0jIeiR5z2ztKol1qwnUic7l2KEB0oobF3crFMRohq1xhAhogs5xqgwIYF8EM3a9dZTYxS3jbyW7LD1sBmfddvVErD2dPOvzZMWPCQPyCBPIF4zX7RJrsS3zeTp5lWLMnQq1ZgcGIxswpbFqc/2cFbXTX/vdSyLKpRMhGFPKvhYCldWhaQJSqATjkQAPKyRbcN1Nh2kX4hAJasyxuiD7pkZ3gcQzViWBZ+/eIH9zQ12V1cYpgg3L1XAMWYUiD/IO6/TvGjtM5MHBcEDjjzCMEgJFRDGccRpXpA0MjcEh8KuQrVeuTRzyoAy0JsAtIcpq8HYzPwHFJ3VOeiiWEuu88FqtxEJTLjf7wEVVtI/QnptCdgANAqzv/+b9+Y3HV9pwfVlDlv4Tz1XzTA0f5FZW7223U+SB6ypzUa4+u4t23/+obTFhNcWAqL+RDsuwUx2ygovoKqVr9CqTnBK8IVMXO6uUctr2PWdlSLxKyupn8yEvrBjKxBp0BCRUdN0wquaO23h9aH4F/uxe1SzIJgZcBtWjE5Jcl14u1lpdk+TphIMYAKxMvqaUdXur8oFFFapVpeNTX9uHXPbSlEtm207V+O5sZpqiZOy6XMiUAdlwtoABjqYro0R6pyzuQCgFqO0OmwwK1jbW+df/x4K3ekmzMyrdbYeA8DsCK735e59+53NWdVqOova1bHnGlFIlblCfEoF3gX9DK08h/fwPmCak1gfECUjhIgQC9ySTDzW+Wfj5MkBXkc4ZxSNSPLkEEPQsdf8RBJIkR3BuyLsIyaHbbyc5FoRaX5X1we9nrnVV01Rr9dCf8L5d8yStzXPcz1xWaCkug7DMGCe5zpGKSUUpfhy3tUbmBJXx+Ydjx9ZwbU9bPPqN6IVDGLaK2zhnE2F1W8Y5xaRaC18du7Z35dl0qMD3VsoNnl7IbsVuJd8Gisht3lvGlf/6E0Yn7eLy/o+pgUTWeFHyd3yzgRB22DBmjMGgxucWmKA2UTir4JqmrLY+wi/Cg+69WZ70Zre9OO2P883924j7qURA2TEssySD0RetE1HjYqPWpyjwZWor9bJ/cbT3e2s/Wfzgrqougtt179QYczV91j9DSeJr30xQNrMfdbQdJsLrM/flKXmQ5Z+LdXStZyrqkL0ybUX5lVbm5s5vFIIt+sK1RJrioyEyQvcrTXemDRqnpGVh5CiE59s9X1pyZQ4AJOEfi85I149g48RQXO1rIccKdExiwUnc9nBk6ynTFksfCLEEGEBLg6QCFlHAApydtUfZv0glrPuKI7AWTgQV7K6/isjkE3JqKJ1LbjayFpgRevjUgrmeUYIAWDCwvK33+8QY5QISjQhJwnWStFmORX0lJT4Nx9fa8H1po3+ooTofvcUqNHG9qKQurShb767aH3h/Bxszr/8aqHSVuZk/f483P1S+7a+i9q+bteoGhmh+hvmZcJxOuJwOFSmA0c9qwUDBRiCxzhE7MaIIUYt+ggQa0g7kWiigeC84P+dd0JvbAvONlM5aqFHD31dfsbVODwwzv1G3/+77jeGZO22zcRB0owKa9KydyqgvP2i0q0TAbBS8b11pgEaIg/lSfvii+jHSIZEmULanAQ3hg0bN/MfVnb11TxToFTXBjmI9Q5IAvrm2VnMlCqQqTR4sSlwtlHZvC6VrLdNeytTcklxa+sBWJPk9mOYOzirdHCBJCA3/paqJOiVhfxXSV9BKrwK5mVGSkoMDI/MRZk+ZByGYUAcZpzmBafDAQM8EALiMKg/VgOCGBjHEW5ZME2zFEQNEc55+NMRy6IBHTkjKFKxpIQQAwI5jSxNyNnBJ0LOAp1G70GBkFl+47zHaZ6wpIyl5MoWwwwkQNZe17c2Jr7raRNgUq9OoXaIUA86b0II2O12IDDSMuN4vK/jZ74tZsarV69wff0McRxxc/OsjmNNmNBI2Xc9vtaC603HSjM0HjMA1DnRtxu3WWVtdTWI4k2CRk+/aFk9JGTfaE6vBF8TYFUbroLsXBC9yfrYniO6X+f/2RyiZSXkklAtV1O07C3Jhuw14soSkGv9K22bLByb2lxfK6iN7Dv7cw2HbS0tu1RvWZxZHG79+4esmx4Ws+XIYHXgq0ufWULinau1lppPxcxFUuFAK2FUhQpMO3aruXD+nrAVtOKrIyn813cZUd24tsdqvho8iBb8shIgLELLLCsywdoJlZVtVizMPCuMKNGDlX2FDQLr2oNmeJ31/arha4uricHz1AB7FpPwbDe2IS2lRgimItWQCwMpSbRhYRlHR14hPJaSHuMOrNa0zO2CWTdzG5MqHIgwRKn6XQpjnqdahoZUMBLJvEmpVBjeOa5CMYSgpV7kiCGCWaIe5cl0Lpv/UdeTIUZGv0SbF4CqbDodV7AId4EKJXna6TPlnBs/IUv75nlGsfJDIUjFbV28Vcl6w9b22PE1E1yXN+E37f1ArxnK+Vu4EB1c2M/ytrFsr/ewNbV933//xnZur3fhkbdQnzT/PALs0v1WgvqBz8+ftxfSa05Bah1Z/7WNw6A8K7NutgWo8RRWNo3VPZtQbsX+mtDpkxwNFukhE21ZB/udv7YRT5eEhig8BiHJ31rxSS2lthNLfhWawKo7dE+/w7XKsRRErHvrxblkzyEC4lxwEdGD89PWitkerT+t21T5Ygi8Q64KIgYUHuyEFiwSk6oVXkl5TfqwCKnCBhGKfdR4KHvFhGv7xBq352h+KiKL5SA9oSusSQ10k7VG9fcWqVlnQr0prQRgYanG7Eh+n4sFcqGDHEWYTKeD5Ih52VJDCAiFgSmtBHO9R9GyPcOAIQtVkswnZaIIEVbUcvKpReYSak25GCNQMkgjDr338CXXrar2U7YxfZi3c9XX/d9kY4vav0tahGc0RGH/KAXLsuDq6qrOy5RSZdchEjo3KERbyuUZ+TbH10ZwdQjAxeNNEB5M+3iSBQK04T0XPm2Sts/e1K6nnHv5N9vn2oTxd8elz7dW11botd+wqevoFYT+WQmSeCmZ/8ampuXtSac/i79AkEChx/VOEho9L/AgRHII0SF4DQtmsYJNh3ZserIlkXK1ZIga60Xfn7a5kusFZrOqHrLU1pr8VoDZfts+03QX2fg05y1nRs4MDpYAaxewZGR5sgyAdLE7MJxvwqe3mtf9rlRCnbAmcxrCtPwLc6omvXJ37U7hMKiN1gJRZE3RaNBOqTPZ0f5U/U5EXe2nUtrvLV+rSFJzHai+82GBCjp3XP+sBMeMTIzCzYfLLDBtYUBKGOpFHcCSGl77SYBEiR4sRVKVnXMIUays0zILDAkSa6tkgKT4qckhKyUzzzMKEkIIGInAzuM0Z9wfD5jnGXnJiGFQn5oEcMQQQdcOc1owzxpGrhaX914YO7SW2TzP6AM3hmFAmSdkFRwhtET+ZBaWvoo2tumR5czS6q0smfhS2iWXIghJCGIJOq1eHqRgZCkJ07SglOsKgy7LgpSWGlmMWt8Mq3571+MrLbj6BVU3kc3xJqEBgzRWmzWvrtUHZ6DfyGFL68KmhgcEEl9u05uF2yOf0/nnDx1b4fUmQb36LfS5oCUiqmNdjnlZcJomHI9HDdNu4bNiSeggUbO4vNdwbqvZpdGGonG2a1vy8WqDZdksQRqO7XwnxDVZGgTPqIwQb1IMVrDwhbHazrliWrjOEQY0uktL3JcCUFlFDxrxqz0E64O6zT2cM9+YtGOV00SmBbcxrYX7VN2Wdp4n8wIiIM0SEIb7cyXKeCEfsrZNC78EW3YfoNbTUj+UWJZZrXP7vAvL79ZYj3ywzh3m9Tj0ULYjIGcTeFAb0PpDFIeqqMCs35WWCcCYLwCXE1ISZauQ0Po6L2HzPgSkacbxeFKGjAUZGbvhCss81fQGKbIKECdwbadTmFjuN44jvA9ye83xk2haj/2wwzIvODpX53XhLqdKeQEpxgoh5rlBlKIsyRqEWoy1vyBKiiEcTYj1SozcMy0LTqUgDgGOBBLf7QYAA9D5AInEj3l7e4v9/hoffnhCHEZN4KbV2n/X4ystuM6Py5vSQ4Ki37L75Wbje/Z73ZxWUNuFff8Mzuu09UtC7rF29i28/H13bW5/b62mS9c/t6zqI9bHvdiSqtmur2cEm8fjUSan7yG38w1RwuTbYhRfka+chlQjwfrAgAaOM9BY0glYk8U2IcdMLb9t9Rwq5LCeOb2Sse2rtU9MN8beIqFmJ6ByBwLk3foaXT/bYm4Gbcs/I3vO7t/213pQ+k/Ino+sD9bzznOzCrcKSP/MvVBgtZZNyahCa6Ww1QoYrV31ZVlyUEGm9zb4UK/QLse1Q6siaEuuU1Dss354+x6yz92FCU16G7v+SngrtAVO1RorJD5DqmtGoDMXB7XyVLUr7TreB0h6nkfOBeQYcFI1PCeJNnRO/L0MmytmCbKSULuuLpb8z/62DiN9RoEV8xo2ZkUp9Fn7PjMLeRscU6c0NZ9lLgWxjpOcaKw0uWRIcrT4vY5HCdSa5xk+RICMHPvdLS07vtKC6xLs9xAc+BhUaD6CS9cH0Gm3F/K4NhvGSkg9Vbv/kkcPG1Zz/Ex7fdP7Xmi1Jb9GzdoW2gSDnV8wzRPu7+/w6tUrRLiajGiQEum9hE16QPQDAPGFpFTgqYAC2u841U3VeYF4hAtO7q96JAx7KJx1gQKoLOfq5+kEuPSP/GvsCQxLlFxrgTXaD81KXF2DTBA1wSX9SSB4/Y0HvFAGNShShVcpIOfbtXUnMeuKgNZ/3QZlwCnLQ3QW1vroBdPK0tZhuwgp1/8Z2oAa8m5VqOv87tZU9auVUotgmoCqkYRdwjMrMW+1xDoLq/axWkt1leWi/rNOWBr0yDbOnfIFtJSD7pm3wto25axFInNmFOUdLPr5rJGHFBip7gUtmi7njMzANE2Y51mCO1JCDAHBC0P8iy9egbkgOI/9fo9pmiVnjG1+EcIwAAwhFEYGQdELtcIa/yfBom29F6WOCIghICfNJVNiW0YGF7W/e4UMhlooKlKXvghtIlqlQvggPjjnHFJKmGeCDwLro7AEj+gl7u/vMY5Sm28Yd1DS0brXfpn97ystuN50vLljuu+593FxnUiXrkn9yr5wv97vsxWYW4G21YTf5LY8v1Zrigmfh9oFtGfibuHZ5+ebu1orZGHIDBd8vaFYnGIROeNiYoizxrf7sQMMOfcExCjs0s7b5qVErwGV3805BySIhl+xcIHDagJwB3tUy0mtiJbhD1mEbm3xbC1q7t73/WTHme/r0tjYuRpJZQpPgQre3ipT7VyCrVt+EdxlAdS3q2nAgE21XrF66His9Wu/nlzYNjL7RhjgufZxL7j6vpXPSyUTFqtKQr515iiZrMHO/GBbelg2mV9mNee7NcXc/DtVsdE2kPm+SBQFhxoBKBaJ1goLBEoEhsBx4u+KYErASQRXSaw+KkIcd7i+Yby4vasC8ng4SYB4gUbXMZwT4bXb7TRnjDEdTygsQRpDjJimuSoFUs+OseSE4CNYlarBh1Vov/mkHGyNUi01knNRijb1+zquJMy97W693VtfRsVmvjtbS9YfwXt4QOvoSQt24yjArN7zdDjiMN7XZGTnPJgKSDkfv4ze/jUSXJd74SFIzhZ+2xIbHCKWRhNeTaj0f1v5ia2VhTPoob+n3a0HqC4JvPPjTBWtm0DTeNs9tkJp2xe9oOq13V749ULcDoF0mqNVLyw4eFbYQwUFuLFAswp703RX8JoewQUJCe4FTIVDqFozZP92/VI3tAaAtFfl+3MauKCv6uOg7jOo/KXmrDah1eFPcitTYrSfXb8NrC31/lCWK/tV3+Gr35q1KHfQsdLTq9DWKdMgU676Q+sdVVSsrwitfIyOC9kXHQs8wC2E3MbL+suure8rw36dw51Qq0qhtZPrnOunUbv8Gv+o87PeB1rtxdZQs/ZEAejmObfxLOpvFJ+OU++frmHiFt3ZQWMA4LyDKx6AUD0VkPglQ5B5EgKgEYCZGakAmaF5YNo2CLdljAOQElJOmOcFRGLtC+OMvA8+NOFfCthJ1GpNG9H15onqcAQfkLu1ZX5F1G7uygh186xSsTHAxoSvuYdOCX5D8Urp1O+PTmHJoIK2wIKMwKgFI5d5xuH+HjfXz0AR1YL7smjT10JwvZVltfpNt9GvzFcRSj3kYAu0CQO9LrfPda5BwpfyWbvkLynnwNVXo0wQ/WTabOh1w+g/swt22mf/bFuLyq7z8OfrZz7z4+k9cs5dNV5U7RwoSPOMkrMyYojvKi2KtWuF46zkqq2N7fLRR/hOcDnn4FhzdSUjCSE0vjlpvGtWQVHLCvYi1CWrDAbO+1pZ2KI/xBozgdaECHW+ODvKBmKqygJBIEEbFlOOVuPhBOIr5msgDWJRn1a3cRqbsJWdR2cdcG0jqpXB20nQTNFuzpBu2lCFq2iJ+iYoWDCqynxSOp+EKBINekVdC1TrfklAjFplbPlEGrGm4W18IRzahLHv7tVbUoBasiq4xSNqAq0JLtlMqc0xvVYhgJMIAltfhU3IC+DWF5FsmzQ0uk+uczydpDBlCHAYkZiFFzNG5HnGXDIKApaUMS8SlecoqOAijOMOjAkp55qQbJGuMUSQE8tlmiZlj5dxEu5LFVyFhXzaiSZFBMQ4aBFXeRrhWtSk6oJGn4YGYJRSELxYVSiMpeSmoDgC+ZYvZhXNc0Y37g4hDEjLLIEpg+X9icW2LAvmecaLL17gGx99s66leWk11d71+EoLLn5gopmmt/3uHKaT/5Hu1jbJn3pv0agvSI6HftO93uboF69daPss9TxdxIZLr9gWsBZe7TfnFtpDkJk9syWQ6s6H4ByOxyOOxxOSEenaZuKDFJUDsB+EpKYokWkpsgkEP2h5E1+tLCKnAKNGxvUbpbXHqZHBZhmtGrvSnldzoN+ML1h/9fdnH/VCXzaOfhTqcmSWSEY9t7BYos4LCwMX+z1a3a16cJ1XXS75WTsfUtj6se3P6P11q6OeJ9CgIwd26u84G3+0RGP9rW2IYPHBGOGqfN9ROpVuHkvFRxGkHfR7aSWtP+99awKFGftFUxS6fmBW9nc5ivrfPGRzLeD226I0RUWUS+fEchILQshvd7sFx1nY4VEKmDwSgDktWFJGygw48cVyKSooZM5M04xx3FVFKISAq6srxGHANE2Ylhkgwn7cSQ2uLD5bpxZiUKZ19POAZZxiCEhVwIjJJ8qRQqSSbCGfZcs7BNKSZF66FkHqnKvXISJ4EIZhAAAsyyLUTgy4KALTaKy4FMQYMQSJOMxJoh3vbl/heDwgDoOkCeS0BSHe+vhKC67+sAHqNV2gLe6LfqVOTxUT93IEXi/Y6t92zkozPP9tuwhW8m27+Z2d/hYCdAtDbtv4kOX11PfNDEPFsNeCVO5/f3+P0+kI5oKUuVos5Nsmao5d8+k4nfQ1t4q6MPTOwWLQqskcUxcIHXRI+kkVSrrvbjb+ivFzs9AM/uitPTKrx8Zoqyyoti4bifZ5qZdWIa/CTS2lGm3ogFq+uOa4mDVDIAmw7Ee0tdvGHXQ212Tc6rBUTYlaR1ZzvdortaS9Odab9Wfdx8zaXLVjlU2hTgEIvG5jCqhFozukbaLteWw8t316AW24cFTlY6u8Fe6enzXgplmprH4gVkvVLMVe2a1IgEAEtUSKcw7DOCCDsDBjLkWgQRaYHNytG66jpqV/GClLXp8FcwzDgGEcJVyeGyxrvzMLEtCEfNeRUkPD4nNDdupexqx8mdUo1+8b3NpGDauXlROqhoAqL17XQtFoRYtezPrchrIAisp4Lbui0YXH4xH7/ZXQRTmd32+twrfjayG4mm+oE1qXBNXKCuO6QdrvzzduWxvrhbU9p96ns77OZNeFMWpMBZeF19sc5uOyRXnJour/7o83Wlvc+eTIJvW65aUU3N3f4aiCK5cC5+R3vlo5ohl6FVLeeQQnE15gvBY0YeeTbrKtDfqsrfUwvN2EWG17t9H3cJf+Sv+vkU7UBFfdfM1iA9QpxZu+UaElH6gA6oS9FiisqB1sA5W2ttwuVwWb7vB1JjFQf2P+GPteNuaHAzJEcPUaUxOO9f8bi7Rp81LAs40/qvJSL2WPZv+TjmiWb3EVcqzWEADLVLZ79tGc5ZG5u4LTnROBW6MvWyh63XQBscpKp5RYlGPOoKB5f6X9xtjhDVKV8iHik3HOYYgDMhPmUjCdJmSthlyyWifkas060nZKGfuCxaIP1cczDANijBWKY6IGRa+UMYDIwfvel2cCsZwVCW2BM/ZZE1AeqAKGlNnEiKzBRQiwnVuVZpJzRLnkEup77z1ySvV98B6cM3JZQBQEMs5FBNfhiOlmxnMS65GpfJn846+24LoEl13+nt/8OTeosC0YXauPan1AW829YNgEZqx/+JTHe/KxtirPowWf8ttHhVenFEDmtxx66VIKlmXC5599jtvXtyutG0AN8/bUFhJ64UOARSba91VjtHtYRFm/YdrPSRcWUS0MCGPGUBHlvKv+M7PyhPutFZm0tp6zZ5xbW41esLea1LrURhWzoMy2J1LflZZ50d969Y0VNKFVlQS7f9ff1ucrJezCZi++RR3LIl5VIg2t8VGiGTmL/0dD01v/dGOu31m/c9cUax8DWrSTVuPTuwRlw2LIJNKGQAIaDJbaogPb56u6CBEcvLSNhWWEAXDOmz4CkAX6884ju4ICxrIsonBB4ECCWAd5mZEXCZqQOzhMOWFZEubEyKocDcOAWAjLaULOwoo+jiNcGIShnU4gSiACptMJKQksfn9/L3MxSFDDsixV8Bgbx7IsVRgAwJJLV0xVlSuF5ntY1nsvqSVk/lAdb93DGluMq+cDfSRvq9q8UmYKawpLxH6/x+FwkDYSAYVxdbXHzbXQPU3HI1LKCvvL88zzjFevX2J/fYVvfvPjVvboSxxfacH14NF3Omzfae+709qGRJZ3smXRoPr99gLVgQyz+s6FxCVBdvn77ui0qroBvUEAPXq97ruLPqvHrK3aej1fV4Q8c66aXCkFh8MBk3Ku9fdk5oqj9+PSlHfRVI0dwwQbGnCl1pS1fz0GspAVSlFKoD5nysHBuaBVhX2DAclVElyDZqiD7aoFXwVH035tTEyuU7X8bHOXfKZCSmakdPVEDuQ3y86EHxPglHuRUOG4tYUJEfqbOdoUKBMrxtBhQrejVPKuBjawCV2CUiL1462Ckzq4l9FBit252kfmc2co7VLDKlcTSeAsud6Kemv1mJ3iV5+Tq+Dq+090ArO+ClAsuEdZTKCVtL0DFSDlguxyFcSFizBQqCA0ASk6kNwrpYSpSA5XsoA9MuFX4FnmQYwBccm1hpdEJQrkSA6VOolZhCWR8g76tj6882Cv1ap5qbmN4xg1l1ES/gEoQ0eA8X4yMzxN1RIlQq1/573HsqTOSpMu9L6Ngc2xkjNKFotuHEcQqf9tTsg5IS0LhhDrMJwrUzbhgMPhiMP9Peb5BB8HXct45+NrJLg6H1f/6WYTXevqXSdjvRFs/0V33a2Pq2sBgHONcdXKpwqvzVE19Eevu2nzU699Qcu9+HvqvmNJ2HS66TELw/VslWxru7RPVWD0C4ao+YYq5Qy1fdy+W4k4WsOzvZCv5dad6ywpjTDsPzNfQcd71wuj+lpZsia06CwnrG9HC9nryZa6qEXtB+DiTBQhUTuoWbx1v97MuX6zYeoRArHuavi5awhB70tBbwkWACjVl7Uad3Ji3cCc/U28b+HLJry7L7sHrtq8Rv5VwYUWyLBSGtH9rl1ktR7W44DKuu8KkLlFSVarjyVwQCBaTfYtzV9kmz4sqpIEmpuXjMystbxa+kQuuh64ILqoQiJXC8YXOYdcy7MqykEIksAPp9yEKSWxytTJ6dWCCVGsHqLUfgsVXCFU4ZNSXhWdtIKUdl+x8vJq/pwptYxag6zCkcyIQUoRLcxYlrkKXyHVXSe72/oGEZZ5lsTsZcYYgg3VOx9fG8HF3f/PvusssPULbQEY3HE2iHreW1o8T5AXTz56i6tOhie24yGL6tI9HrO8THNvAk00UB8DoJaQMQU8dH3B5Vm5CANidFLWxCwkUg44nGWKnfuvgE7Y9ULJAkK6KCk0K2t7Xt+2beg7r3DR9b2tF3u2CxjMghZA5+DAzsHHoHCMb2MJo7raHM4Jrrq5Zz+pttarfL1BA7RdzOqiW3coQBptR15yrUS6dVYvKgoBZk3i7RRD6t44ax+BPMEVQqGic0kSeqWNuba7qG8phAi1UauCthVea4X0/F1vxUvfiPQMwaHMRUL8UxaBZruF9n1hxrzMkgws5gmSCiIu0gnOO7gYwEvCkjJOKSOThMk7J1ROp+mEJWfc+CAVjZ3HRITdbg/nF8nfS7kKkMPhgNMknIbjOCLuRngI84ZVB2dmhCiJy8M44OrqCqfTSUlshfw2hoAxRoWCHVIyuqfWT957DCEiDFHD5ts8OUNXVJmwBGRhtknC8nGVsd/vNTBDKkCXnDBNJ8ToK3KSs8GFDmGIIGLkvGA6njDGEfgSPIXA10hwbcyss0W9OrXXpFeC5tIGrxum/X22wWO9w77xMAe+g1BMtINIQs1XMCG0emh1svcWyOVnu+Tv2G5w/WRt2pF8tnKWl9I2j47B2y5XCgMlI+UF8zwJ5k6Q0F0VBNE7dfQXeBInrve6gevmaI5a27icQV4MbKe4tdUTIfjQCSVfoUCn1ycieBfUgNFADIUUK5cgOalZ5XyjKoLWOVLB2DvLqQ/C6CBGRx6OfAumMOvIeWXOaILS+t3C3al7NvvjIdi274O2qXcT0Sy/ag4Jb2RRaLB0Cbr2q2rYVqhPGtaPeeVQVKZ2sEk2e5FCTAKLlfpgbc46EjySK3tCs8CZDbWoD7l6L/KUu8u1iViQUKz5TLVZQBPyYu2rv9U7LDmrf41bgi1ILCqtJpwLsBTGklUokwdIbWmzEr2HD0GuN8+Y5xnOB7gYEFNEyhMk+ThiWpL415hxe3uLJSUQSbi5jwFerRHzM5kAiDFq/a4Ry7xg4eYHqykvqqEQF9F7rE9Jcr5C9IjRY4gBUAjVfi/fh2ppD0OUccwF0zTJ54qeSNkVYdaY5xmsqS3OjZprJkngzqEKwGGQHM2UFjAxyAio3/H4Wgiut4Xm7HPqz+ngkUtwYV1EW8FQF+bbNPjh89coP3X/rl9nPg6shS/wsIX1mOVVm/io0O9gF+VNS0nyO2oJE7VgLPwdEKjBUahOZoEZi7lX1k9ItHr6FXJllpbvgys0xN5ZgIZEBTpqzuZaosOtQ99VKlXBUgEphb/seSpMiH5j79tnurxdDwLXVRhy05f6G7E0OgtL713qXcTB/phHu35VKycrhGttcagWTasHbPNHnoT0Va9Y+meSfgCRwI9SCGttkarg66Pa+gG0ZxToVgVOIYCznYSLhL8m1ex9J6RXChjM39z1C1uIvkcupf7W2XVUoEmdMFEccynVYi5FGTBKi+C0uUU28DrXOSXkXDDNM8ZdqEiABGaUClFLMJOsFxNc0zRJflS3dgANLY9DtdJCCNJ2Fvgvu8beX4UXtyjC2oVW987SThwpq0cdVuEb1COEgOIYmTLcLInwtveZJbbb7TBNUlaFsvR10ShOp9C07Q+GFBlEuZm1b318LQTX9th2xxYiPDu/W2RbgdD7uPSEM4vl/47DNvP+2FpXfTj8Q+dd+nsLzVyEDV0nVNXM9M6jZKHBOZxOOByPWiG13cMgDys14ZwkUkYfEDR6rfo3AGwkQf1/T+VDBKmi7P0qUrD6qlzbTByp9WXPU4VcH2pMVTFpc6TzpTm9qVpyDlbvyfwaDlRYKdfNQvHq2XeA00R1o60Cal4RodEl1XHT3ZfZyHP1kivFpBvPrr+c98IF1wtlUG23+KjsPqX1i0GDHgCMtZ2hzjGJKnRo1FKe1IlCAHXUQt4ofXS+dAJCnl2Fh0e1mouWWHnoWKEFD/i4UMfzfO6LcgOUpbkDnPNwKWkyeIEDIZeCpLlZ/dafc0LKEpBBmsbhfURSC6QUwLmAUhbMKSHfH+GDlCkheByVkzAOOwQvAtSiAc3imdUHZPOWisyHZVkQhrH5ysxShfyWFJrnUpQk2BKHJcKzlC5Xa7MHiJ9Mh1MFo613UfaE5DrnjJIZ3heEELDf70EE7Hcjbm9fVx8YESGnBZnn6sNzOSOVjOvra2XeyM3H+wbl+bHjayO4qs8KbUlf2sCZ2+dbvw3QYLKtxfWY0Ggf9vddQ3OXxsg23F6olsIIPuqGcS4ce839KcSvDx1b/4Fd2973k4vINqkepmHknLDMCw6HAz7//HN8+umnePX6lUAynlBKRkozyA+ySakFJsIMWFLCGMWvFZ0XrjTvIFVlgcY5Z74Ppw5oWZREwsphgsj7UKFCts1JrQ8XukTnaj1DrRElCtXAiBrEzu3+pllrCqe0jxnLcpQ+cgzng54jfePUdwSWqDMorVYcB7H6VFgJ4ewa+qtaM5eLDBa1hIsKPRJcRvtP20pi3ZjQrZaLCSUXqsLQs7hLPwkRrdXNKoXguGnk6J32JqtJhFUIJKHlSDD7FCTPAn2VXDSxV19Yrxk7tpCo2KdyXiqt7plUTCF9Xr44x4kkT6rkjKLl7T05natFwuK134sGUyxLAZEHOUZJWfy4ar1zKTgcj7g9HiUpOS2Ss7Vk7PYThkHgN5BGdzpBCVC0YrGGxDMzTqcTTp3gmpa5IhjDMFShYtF9XAqid8hBwti99zgejyIYiLDf7TCrVccMpHnCDMbN/iPc7HcIjnB/f48YBLqPMWCMQ1XSmSFM/DmDc0HKCZQIyzzh5vpjxBiF9X0YsMyTjZasQRL/t1mXx+mEcdwhDoNYlTo2D/nDn3J8LQTXeoPZvjs7e/2WUBfE9por4dW+uCjEzo9z7c8+re/p3DoCHoiWeuQabzr/8XZurq1tMgG+terEGJHFlnNCLhnLsuDu7g73d3c4nSYAwoEn0ACBnQkCvYcjzbvS4ImNtixCyp5NEsVb5eK14LIN3cLRLYfrXBvvEop1swe1/ltDee2a8qafH9Si7ggK/6C7vohZCyYge5gOOWtA17mSVfOlmNd+v+7cOp7UrEXuMZ8OyuLaLoUPzfKr/ly9Qw0TZPWP6R21XEiD+bo+hTFIYqPTMByrcG0LZ2VMy+N2CkR3zYfg7b73TDnkOq/67zf91CMtZs2iWbuwSD/tR1bfF2/2ClZLkjVww/qzlIxpyUjJohJJoEVWf9AQAYULK9sE+iKrBdMkvjGzfKy9lpslpVbyyvKSICexrnvl1xTibQASIFCdBUcFRSJMUYoK65tvrfhWwgRZnn/pQvDF9xZQcoso9H5A8C162Pp/noW3MOVUC572gVBve3wtBNe7HCs8uNuY7d9za6pBhQ8eplwStfP7rx/57fa71Yaq933b36+bz2ffb53//fP3lqBBD4AywIM1bHepeP2rV69wd3eH6XRCHAIyt3Bb9gzmrOXVWelinC6Udu315my5OaR1iFzVLEW4m1Wom03Feo2qqQlayWdqqgRrfzrzh6ndwT0UR64KDhFc2kIy+0/+DnGQ9jgJx69GspHRovm6KnFtKevx0c205hChWS/o33f9VDf5VVSjvjzVROd2sYB2CQ8pi9jBokpDVQW4Shhm6WOnEGK9v6URFBIm3mJP2ywn4gAjm65UTFXg6E0scdv6mEi57Np8JROiTcrrGmv9cab+9cKq+8wsWWdjqdcJIYjMDowyTVIUETZeGhaeW6DSvMwI414Z1AmHw0EKTCo0LYEdUiDyan+Fw+mE4yQWigmuoIEYOWe8nF7jdDo1QeOofj/P8yrXLcZYrbA2fcpqzZpCaFCkvVJa4JyvlZkN2jfLzoTpPM9VuJzChCUt4FJqRGPUassxyvMkTaSWXLOh7R3MCBQwpxnTPGFZpFZZjLHCnu9yfC0E1yXHtx1b/1Y/oQ0qtPO2G7hcW055SGiwfHmhTZ3G/hbPsX3Vz1fPag5/3z7Dw218sN0PfG4mft8uxWIER+dSz/POYVkWfPe73wVIHbdoUGPOGQxllra9prN0qh+K0IWrEwJJmLz34gfpF65ZF9TZIkwErlGFvo6LONK9JoqSWALUEpHF/6UIlvBx69i1cWU0665ZiPKNJ9OOSZKMex+MDyCvSc6wYn+QzRmdFadCq9YtIql268ImgMTGCNSsIrKwd72PD5U9pKg1qODvapzJy5gKVEdaksW1oAs7z2mIPARS1QYAzPAaXShwIQu+VrJabQBcgUDe+iN1b63WFyQhl9WvJvXXfH3aVXpC9Y+QQpoSZs8oYCpK+dSv+YfREGe+R5WznpT6iBxC3OFwmkDTjHk5YplPmOaE05yQyWFaFhxPJ/CcsOQMD4dSMpaSAHIYfMThdMSSMpgJ8B4g8WP5GLGUjKVkyd1yDlQ8rq6uqhCJ44Cr3b6un2lJdR5IgcqlIiKV5QISCcjsa7AU4BtTPrQ0SlA6J2Sph6fWVUoJKc0QkSBrawgR0QdMu7lafMfTEXeHe/ggAvnm5hrOkRaLDKDgUAgI44B5msGQ3K9lkdD50+mEnJNYkhdG5qnHV19wPbJZPwaNiW8BqFAht1D09XmPG1nvelyGCduGvv2st7jahv2wpfU2js9LFuaZ/6vzB5IWl3TeIanF9fr1a+x2O5zGEafpiDGGaq3V69imj95IaFQ0ntrLLCqi9TPW5FkGCvX5XhvokEhzubwID/0NE9qmb75M+XlTUKxxqBeX66tAsKRrEEn4cSeQq23mW5g8ObPeNEy7Kk5owQ72uT5cfw4z6u/rGBusZZZWTXBuL6vsbD3eUDtW4Wm3I7UquYUv1sf3tV1M3VWq9QNI8oLGQLK0pVnAahmS2EUCo6pCUxIAxuAtDFuSg/uyPqv5rJbXSqnrhL/2XDf3LwdjkSpJ0OCFho7I2A77URPmPaZpUZ9slnylXCQAIy3ImbGUgqS5WUtesOSEcjrB+YAcitIeOQnIyHmVgBxjrOvDOWFkT1paxBTHPgG4D4Lw3lfLK5eCeZnhXKi/maZJlW6u1wUMnhTfUk8rRUQVwvPeY1CLqkdlLGJXfGMRV/srhBCw24215Ir5rkIQC7+iDPr5aZrr3P0ypU2+0oKrt0TOjids3GZxGV7+thbSOx9PuM3Wiuotru1m3mvlvN0In3hsAzQaJt5yusyS6vH3RTXAu7s7SY48HnA43teF2GfdEzTZmBoMaEKrhepafar2rOukYPvXKpqpZdVZcVXQO4mwc+on6DqxwmrkxMpgMlogKMzWd7r+z6xdEw5EADq2hWZQyVyyYAmvtFIqE5hbuHgLeN8IaDbfjQiRAlebwXZvE8Ka1Mxd+9g5tQDtaPRR6NcNM1pemgks9bPZefV3KgZJnqGmJNrDk/AzWjQhE7VaYdpeE8RLTuCcQBDiZWIHQlmPdQ/dYq3UGXzIytzeLK2+/1pag13PEAtLFGdqbA/SvYRxGOFcgHcSETgtCfOSgJIxTxPmJAhC4oKlFCw5I3qHIzPSkrAkCdTJscCFgBil6vGSUxUMQWmfpmmqgit1pURMoNkaMqtoK7gsei+pFWPH4XBYrWVObc32PqYQPJglr818aM45xMHIfxuBr9NctMPhIGTD778P7wOGkRGHIFbbsiCXJBRWepj/K6WM4/EEy5/8kRVcjx4XLJctXPjDEFOrwI0HvrcNuLbrgTtvrbBtgMFD1z5P0X33o4cKbXILLNOaUJ3KinmnlHB9fY1nz65xPN7Cv5bCfYWFDkYIOSUJ0il2P8QBY4wYvCQr+y7iTxYJNLoNICrVotk+e00+9n4z3g4hRDgfQC7A9dWhna8atVgpDKstlsUcQCUjNY0fugEzgMJw6merPH82bq4JTx9DJ+Qa7GeEtjCfkHIYBghrtuywgECcJkwaEwaRCkQTvJo4DSKw92CraWb1mwCAmwVtQpxaeeM6g6z4YLPAhDaKS64bjiGjVdi5LibQFUUvmqBazy/ZhJdlQV5mEBgxaEoDETwpWwMzMue6ccq8C/W2rRCrjJ3oRtq/ll+IzrqthpVazO2J67yXqEqBtBx5xBBxc3VdqZOOpyNe3t5inmaclgUlRCFSZkbKC1ISJY4pSGYEEzLf4ZvfuFaBUXB/f1BYblGrROZJOTHGnZQ4WZalzpWcW4h7Sgm7ndTqEn9VwjAMFa2Q4XLwwVfGeSJgv99VeJFzrvla8zxLQnBhgD1KTjJ3IDqPBEB5jOOIeZYQ948++kh82fOE43RAKknppCQZuRawZK77xLIIa8iyLLi9vZX0gy5w5F2Or4XgapbXW4oi2yBWH6050t7Gb/T4cclyWltVF3918by11tl/d9EhfeGajx19H9ToQug2oQnGDMY0nRSSIHzzm9/Ed377fweAumhyycjglpSspKE++Lq4wAIXyWQ3nwOpFm34lFoXJjx1vKuPrPN/QdtJrvsd7LcaOt5ZZQYRWr+sAieolTcxu8gczqxhkzVpU6EwIoGgnHfNqiPqLDQ0Lj8uKLmxO5FzAl1VDcEyr6pNJm0i6H2c+E9qRWeAXGhQofd1foAhLOl6HYHvJIy/V6Wk/0snnLStFrFZJwk6adCFq7CHOAzbfDTLp4Z2kMKu5EHgCsfbmD+2LqpMX0GGayV1bVU2f5eNUw2qpG4OVevXoaQEF0WJCs5hiBFX+x0+/PADTLnA390j393ibprU+nXISaxH7xymlEGuAJRRFlSrarfb1aAHq8FlXJkmrLLWr6rM8Mtcg41sLZo10895770IDuc0YMQp2iHWlRWCZGYM44jBFM/DEaXWUfM1mKNCgxDW+7u7uzqW+/0eMYYafp8zw9XIdtJ2t+hD1n4vLMLyNE2IGgjyrsfXQnABQA8XPfUQGIGrv8sWzcWowkdv3a1wMmHRIKCz8+jCZ+2TzkrbBGh01tulz58KDT5k1V2CC/uNhwFkhTUKF3EUa77GBx98IPCdLq6cc3WW16RDhWq8c432KS16fYYFCvSOdfNc9J0mBojrCHIbPNW/Nr1fLZcm5Bu8pw++7lez5lxHqYO2GZP+Zn0bQoUTVbPnnsC3tp3BWSyb3pxczQdb9Oar6QMy1KIyi64Kau+bkNQgB66Srw8dV2HsWumXam13O3udK9Wvp8+YgVbvmcwYkyTsrP4zk0b9SFCbA/AiuNozS/usrta2P6zPm6LRzX9rca/A8Pn646qsmHBT/yqb/Sv5h+K71KAa5zAOAyh4nOYFTITjMuPuOElbnVAjWbRsmWYUl8X5wMDpdAI54SN8/fq1QHwmuDbJ8Oaf2l/tAQZSToh+7KbEuuxI/2w5Zzj93CBBO8fywFJKGIcBDBGofcrL+Z4jAxZiqNfPuQWVmEAWKyvX/EwGqp+LtL/Nps9Z4NZ8dfWjK7j6Tn7bYwsVrqK8tuc99R66emQhtaTSN7fTtEaAqFyYQOfC7CHhZm3+ssdWiAlCxl2p9FzhhxA8nj9/LtqUhsvWhcVAyhmD5Z1EiVSyYnbmTK+Cqlo0soizTXmFzJgkCk2e2wHswIXAGhXnXIDzXrXqC8550rpX2usGA9VIRYUcnffwMXYb4zoitVltFvihAsgpYwb5KsQgwKKMMRvaqHCaWpe16rNBWI4Ag8Zs4++CShDEsmLvNZSdzgIzlAYDBqn1hUuLPYNtAc0Bh9rRqIyNFZKVo8j9CjWZZEwhhVFhURNyCj0KNOThiUAoKD5UqFD6VtgfOK+DB0yYmU+kwp/9GnAOjltdr34zXo2Zb+E8Zr45ciC23CtdxjmjsM7xNMMR4Woc8fFHH2EcR7FwcsHrwz3uT0eApLQIUcEX0yukUhDigDjs8fnnn2G3v8J7H3yAzz77DOQII401UMN7j48++qgmHC/LgqTPmpmxC8bryGcQvvm9+iAo5iL5VSUjpaUKqGGQBOOoeWJR16OhFiaYjO3GKjcLbFswJ0l7+eijj0CEmkA8TSfM8yTKKxEyF4E4NUQ/hACGQPNEJGTEy4LxR1VwPXiQOxNC26AFMm3w3eTeOx+XaAp7mXZJ0J2/P9fOt4KxF7hviq689NnW8pQAC6V10QUS46ClD4zxOsJrwmLLildt1BHiECuZqNTLglo0orFXLkH9nYSoMwoRKosGsQgHUZHBlAEm1dKVlsi3za1BRJs+7j5e9YAK0UKlPoP0Qdv8nPqknJYwaQyAsvETX/ZiFrXaOLeNpm+aQZy2EbNr7BciAzuhpJsAwym3baf1K9xqFqb8uEDjn9Hqn+j9zRqGWA+OABQJfECx6/Sh+Q6lpJUVarChKRSsm6GR3koHKGu5I4mAC6IQOO9h7BxgaLQh6iYqGrtQMjGJ0L8MI/LZv01oQdIk1BIvpeU7wZlyxlWBtdB8B8nn4lyQeUJwDs+u9nDeY84J/gsnzPDHGakkzLkghoiUC+YyYUkMhgP8hHB/L+PKQE4Jz549xzxNSDkjDrEqiFQkEMOs614omdAy35H10zRNlZXGrC0LADFFsg/ysMCPfq8xAWc5VsICkuAcsNvtqoA7HA4YhojdblSOxVRfBPFFSjCGjONut4d4C0iDSVh9dz/iwRnbSUwV0/hhXBvo1Mq24Zk21+PrZ1Bha9GqXRcEUy8/Lgmk9Wfrz7ff2T37RWsWzds9O3XwjG5MQINXySHEgLCECoUMwyC5USl1/caqXRplk8EHKqxcg6qYuZbPKMygArG61OIiMNirH4qKRL45vQdQLTPYe2vDBfSWWeh81pBx24hLLrWdMmatb9cv7W+0azju6InsPXMlK7U9n4AWKq6WHZxYkNwGG6t5U/1NBjN1AprX7ROrjtu16rj2A13/p1GWALuikB9VQ6zX87YIYD2BLWxC2um8U4ojSASfRUc6p60TyG6lYJiVxLy+vv1D3H+Eik/1c8iE1mob4DYHCHUcUJqlwqxKj+a4EakPkiSHMQQHigHkPT56/z0RUDnj7vQCc04oKSM4h1TE91PyAhcilpRwPJ2qwlxSQfQBCyZwyWDuEuuDRMGaEiPkvqiCg4vYwX3kYS5ZBI4qjuKvkoTgaZq0mxyAViyzZ8exvy3C0QQXV6vJI2Wx8iT0ngCM1QomCM2X1xSUnIuuH5mHVqzACI1rZO07Hl95wVU38PbJ2/y4vTdt54Imt72fnCOQA1HnS9FFYT4Xy5QRXdwCgx+o79RBZdtom23wgd33vG0mUIAGD9n91jvV1gI9b0/T7my9gyGatp4jGrEWt3Me773/AV69foW7+1vMulhskzEkS35a6sviChiMnAqcEw08O6BkRoYkunpD4IjgKIEKi39GI9K8d6BAEvWtYKAjD6GnykpBJRCgwHJFLRzhE5Qk2tLQLd3Iqm+KrN8F9isMKAdutciKctBJULgNqlqLKoQtr4XNKgKBbbhJrDIy4VuhQ3XO56Y8eJ0TcL4mz5o1QexAynhhEV6pZBCsQrSvn0tvQRQDhghyB6sPIhYdF5QlAyZ06gavxMcM7eOMnDJKSkAp8KS5SjkjYcacMqyKdaEiSdBgJC7IWsSRIHx3pWSknKoVK+ui0Utlw3hVQBdu0Xc2N5lZFAAVshlZLUhTBjSSMMPSmEU5cKh0Zp6AwTtkknvAAYUE4vs9n3yC6+sb3Dx7hlev7zHNC5ALghPIkJmRUsYQBqQl4Xa5xTiOQoi7LAjOIXiHZWEc7+8F7vYOMY5iDek4LzljNwzYjzvs4oCpMDILdZJE8slcDkOs0F+pLC1Ct3R1RVqEUvtL6auMfcMiFaPW/ooxVujQgjAzZ0zzhJFGhBKwLNLHwXv4cYecE4IfEZzHdDwBLBGc4k4YUArjcDjUsP+cf0S5Ctebt7mYfziW1pvv93a/q7995BIP+bTOr3Xenvaez85/G6hwK9DMsmosC1mZAOR+KadK5hmGoVpdwxA1SVM2kjBEjPsddjvB2XMpWEoGoWhtJi33kBPyksDeyYYMRkbRlCjCGALYSeVa6jjbhAWj9U1lKCeA4Krgaj4rqCAW0lXWUGE2JWHTJyIInCxGUxyoWT0gIDDX0hmcMhDk3iDW/GCDFwHnuG6oTi1GMISIVqVnMdWnXlf0AOe4auTIIsBFqAIidZTymxhstbFyBkgtyNJ44kzTFsIMXikp0noCyMMHU7y4WbuqPZckpdyr4IfIvVl9oOYf9AoJVoLgfrbqHEtZobkVz+F6DdSQHZ2fAn+J4NzSafUWQVP4mrJZb1EUItWS8lwy8pIwTzPMZxeDQNwZpMirx/s3N4hxwPQHC/5/v/O7+G8/+AKf3x0QyIEdY4EgD5lZ6nWVjP0wYlQ4LucsuZA54+r5DVyMSu4r1k5xjOvdHvtxh+v9lUSzmvWZhGqJAeyu9nUdWG5Xn8RsMN04CrzXw+BmYfUUU3aO9G/zLxocaVBlzlZ0ktbjysbxypimCUMcMe5HPB+eS390gSPvcrx1IP2v/dqv4c/9uT+Hb3/72yAi/Mqv/Mrqe2bG3/27fxc/9mM/hv1+j5/+6Z/Gb/3Wb63O+eKLL/BzP/dzeP78Od5//338lb/yV3B3d/fOD9E7ghsc986Xe+pN6wb3mK/pcV/VQ5d+SGA9bHE9JPSaT6x/vz628ErvG6jBEvY30GHUgpcbVr7fS5VW1DNlM3RW4dgLdGT9xhALpOQCziJoStHcr5SwpISkm1JOBSVzhaBqNFYP1Rl8pS+zYi0BUvwWxnYufxtDuVFaVSvV/rZnt4ubyl/v0wRQs9ZUASjcXdMa1I8nYDyIZIJnQx4s/W/2gFrv9Vms/Ii82CiXlJWCc5a/S1EItN2rVo9G8wczy3hw4RW5bu1l5lX/6oChpCxC3xLN9doNOaC6Qa6Eio238hjavEol10CJlIu8ChsYXOeznN+sLGvtah7rtVeoZif4+n/tClZmBixE0qVag+3ulpc4xIDr/R7f/Ogb+MZHH+GD99/DGEPtL0cGj8k9ks7pXLJYHrnUPnAdqa0gilwDJOx5TqeT5l8Zsa00aLXedZmbEAMaA0eN9AP0XuKvtS6we9o9cif4HUn6h9MYgqrYwgJpAoz8mohqyotBlzFE7Pd7HWtBJ971eGvBdX9/jz/0h/4Q/uk//acXv/+H//Af4pd+6Zfwy7/8y/iN3/gNXF9f40//6T+9Khf9cz/3c/iP//E/4l//63+Nf/Wv/hV+7dd+DT//8z//Tg9wDhWaln0ZTnuna9dJ0b3vb9adsz7/8v2f2q43Xeex+65fmkz7ln1iUYHGWG7+lZyLOmMX0fhKQYwRz58/w36/q5sJa6KrVyLSWgHYUc0JyoWRU0aa5yocCnNl5JiXVB25pbDmE2lSsTFGmIDKAvuI3CGBhQq0PRmliGUgbNYJhbMGGTR/Rim5vnpJ2IRZE34CM+nLNs9q8lXJKc+U8maDlxeXbsNHP4+5CaeStR0mTIu0nSUMGbmAcgalDCgjBacEpEUCIopWxQUQSErIOPKVHSK4AKfWJBeIElEKyGo5MatFWlr7C0vZiySCC5nlfAaCc4jeYwhBkstdq9Rb5xWkr3PJIoAKIxXGkjKW1ITVNC+YlgVLztqdTWiZhSVWHdVionLtUv0sJoyrElOaBVGh/U7J8+Rr5YIa1FAa5RKzJOR7EIbgsd8N+Pijj/Dj3/oEP/6tb+G9mxshwSoJ3hFyEtiRiLDkjDlJ3a7pdELKGVw0zYQ8vDPB1Z5jWeZqBd3e3uL+cFDOv6yMMxqdp8E8WaFDp1GDRKSBFksVZERaddkLN2HOa1op40RMi0CI3kkdPXm5ynKjk74FdXT18YZhwLjbYbfbSRHMGAUqVWW4XCoa+sTjraHCn/mZn8HP/MzPXPyOmfGP//E/xt/+238bf/7P/3kAwD//5/8cn3zyCX7lV34FP/uzP4v/9J/+E371V38V/+7f/Tv80T/6RwEA/+Sf/BP82T/7Z/GP/tE/wre//e13e5IHNvhHN2rVVi79phcG3Tfv1rbVFR6ywHjz97lAau8fa+P62s3n1f5+m0N0fMH3a+ACUQ2NtgkfvcM3P/oIr774EM+ur3C8fVXDziuRrjI9pJwxzQCVhBF6XaXPsc1+8A67IWIIARQGOE+Ad8hwoDCCgkchQsoa3MGE4IR0lSqaogX1gi6wAoEm61isD4ceHjWbsFkbtonJtWodECgRviYrC5wmviZ7sbASKI+fC7GNBbOWfWkyD3a/kmFWhHNKHaXwizFcCB9hAmmZGGZtm1pDXC2aAniP4hzYJWUa0VyzIiiiYxlPq5BM4hVrTdLrSJXbhJIWlJTkPGfQrmySGksHKUrZrE6pqRblYRfUTb0UCPdfLtWRTwRM09I0+l2QqNFqMbWgjj4fiZMGfXDWAJ+yWi8AJIXA5rI9I1FFBNp5prDJzKGS4XyADw4+BCQQwMDoHb798ce4vn6GAkLm/4LPXr7C7ZQAFiWI0cLYp2nCaZ4wjCN8jJhfvsTxeMKiOY9SvFEssvtpATGUw1NbS+otdwTyDj42X1WNFlRFdRzHavnsdjvc3t4CAK6urrAsuYbhW7CG5WnZZ8JHuAMR4Xg8ApCEZ/OFmQVqBNsGC1ux1xgjxt2IYTdi2O/w/L3nGHfjl4IKf6g+ru985zv43ve+h5/+6Z+un7333nv4qZ/6Kfz6r/86fvZnfxa//uu/jvfff78KLQD46Z/+aTjn8Bu/8Rv4i3/xLz75fl/WonriXfCAdOvM8hZ9Z+/XmMpT72OXviyUmp/sskDrj+rfqZmha1jkku/rwYlE7ZoWsguwlPFYWpht8AExxK6eEFchW1hgIEHQxGezJBUkRRbptCwCLRKBxxHkjPV7EdihMAoc4GaE4OGjx8ACSXhPADu4YgLHnplrGLbBZOazIAIo1xg4GAEsEYkvidsmKScIezy41F9YwjRsQzH6I7VS5J7GE4hqaQFouVs2d2quxHruEKFu5rUp9p7VMrOMK2UaIdLIxNzgza3vDsqcIdCmQo6dgsJQrZg1TJybQHMK7XHW751D0TyzCs2qBWv3Z3uvm7g9YVbLNSt8VINe1LICZP7MOcMVGRNWK83mU52bbNCatLSHwNoSoQqv9XPfIC0T6BLsUoHU2usMfWb1wxGLgB+Dx/V+h4+/8RE+f/UaBYTjDz4HMymDzFKfJel8v9K8RhNmhRn7q6tqCVq5FVtX8yxM7SmrcuA8fAjwLmjAEKNkxjBG5JQxz4tCpVT7Q6arUKL1ZU9W/m3td6tA0aovU32Z1Wa+TgvwcEQYxp2uS48YBnnFAUMcsb+6xjAMmNOCdz1+qILre9/7HgDgk08+WX3+ySef1O++973v4eOPP143IgR8+OGH9ZztMU1TDekEgNevX6++f6rv6Ox4wNp68snd56IJo044g4hoK/eq7HlzO1eCqfv7EgzaWwh2MBOcaw7qPi/rbQI2+ufLGo3HYM1JacnIRMJv1i8Cy82SiLOkfhSgkDBrs0ZHLUtCOR2VZsfDBym+lwFMyAhJ8PLEhLmcEIKXABB2iHCIZPLAIDqj4BXB6nVBSeHAjhfRytSDm89HSX7ZBrTrVYuik28azg9mkTuWe1ZKDcSAauV1F1WBJlYZa+ClCF4Akg4Aq1NmQtG2elQFyVqRS4PDoFYYTHB11IfGzC99JNGMLfxfhVYxOFLzzjruOafj650lTYtVl3MBXK7RdsWgVLZcHbtHRp3N3ERB1sKMOUuQCAyiJCiLh/TdnFKNsWz+KTnHohIl39C6WhafRdithbekaEgbrExPE1xkoXRMgGNFREzAK7tGWsSu1HUWnMMuBnzjww/w7bt7ZAZ+8OKV5O1lDZBRIZUYmOcF19diuZXCEggCws0zr+tGqNE8OQzjUNnkk/p/AcB5g2E9MrO6O6WKeloyTtOMZHCpKhvWL1bapw/MMIiV0Iq8thIqoesf6cUaNbokzPNUr2VJ2uJni5KMra/9XvLgluqbfPvjKxFV+A/+wT/A3/t7f+/Rc7607XUBanwIqqva9eOXq7raCh7srnv5d9vAinbP9v783Hb1BoTJQnuY++2ppnofGr9oBVMLGDA4gYhQckJaZizTSX0dHiF6BB8BhgRcLAuW4AEmpDzjOJ3gS0FkwLNwwyF4TAxM8wxMsrGPw4AQI2Iu2A2MWIDBBeTECJzgUkG5O0hAR5J8GmapDeW9wxCD5pF53OyvKrN29AGmjwrcxRLlVwoAS9BErQm2Gkeu8Xtd33KNtFu4gENEjMqSXvdPNYc7+JGIGrSGloMk2nIGXBBeQWeC11ri4NnotVSlyEI6m7rABe89XInCX+gDKJpw15tk8b+hBq5IZGTKkrxKLCHiltYQtY6ZDwGFFywpqe/PBIJYFW2O8bpAZE0LIKQCLNkCDTyWsogV6hwoyNzhAhxOMwJJ6D4ZHEUEwLXwfn2ZX8qUiHXKhxPfU86oOgOzVujNldev+uVMigI1bSKnBUSLlpbxoLhDgJQweb7b4ce/9THIOXz2xQt897PPQZlrDSqGpAAYrBdCgB8EPg4x4vr6Gha1l+ZFxmFeMDmpZ9WsQyX4TQnOLYCXumAWMbgsC47HI47HYw2WmaapzglLYI4x4ubmBsfjUSs93MKRCJ8YI/KsvuFSKvTXkwwYPJhSqUFbu92uFrsk7xDHQfgJY8DhdEQIsSMpePvjhyq4vvWtbwEAvv/97+PHfuzH6uff//738Yf/8B+u53z66aer36WU8MUXX9Tfb4+/9bf+Fv7G3/gb9e/Xr1/j9/7e3wsAm03b3hIekQ3tNFwWIm+C6gRuugQVUl0E6wtabs768y1cZ1bNpYCMrfV1qc39bS89l+Hrl87ZRlhtn8EWuVg1BjtwjQwKIUitKtXgdrsdWDXsIUaMw4BxGFCYcZpOmMGgtIDSjKBWkFJpyN4zS8a+RDIFAA6pMOYlY+EFsTAigFNSLZ60pMQyi98kZRQ24lPCOMQKdzy/lkq04xgxDiOCWmBD8OKY9yJISzCBRZLvBbNpqcJfKLU3mnCyPiwGgzb/FCAh/lw6iM5pNFzphE83LtLvWawwJlCWEiniZxT/mQWwkFl9RepG2XgPw4DgvYT7s2y8iuMKK0SSNIRlmZUlnaWEvUVh5tzVTgNmphrwkpYkliMkIICNzbxosUcVJGluBQlLTp1iByzzDIARXMCcLIovqw+l2kjiD1P/X+CW49jKaomfUawowOCxon2iS7eyc6iGWRWvZUlmkAKAMndwndsinHU9EVfuQ2JIXhoRAgP7YcB7N9f49re+iS9ev8acJMct1+lBmNKMOS3KImN+raL9qVC1QaGWtsFcmS3mnJDVpDa/1pIyDscT4njCZJGByhtqz2NCZ1kWiH/SA4EwuwUEBy6Aj41PdFkWDXIpZ/thSkkDWQAffA3kquVXQsAwipW121/h+voalbjaXdrJnnb8UAXXT/7kT+Jb3/oW/s2/+TdVUL1+/Rq/8Ru/gb/21/4aAOCP/bE/hpcvX+I//If/gD/yR/4IAODf/tt/i1IKfuqnfuridcdxxDiOF78DmhXSoDTgaTbYZaFlW1EPA65f6KCadk6HLG0Orgtme8smIC+36JIQA9aCdS1k18LoISuyOrIvWF2XhFfvR1idZzCUaxxwjiSiKKUFYIk4HIcBQ4woYK1tVOBygisZ7KgKCIY46VNeqhAcnMBJxJITNGdGyAUDMxxmWMCAlcoQwaW5RWAE5zDGKLCK85imjN1uxG434voqYwgBMQSUEuEdwxdfy7Czc/AwLV/zmlSE9UJKOqTNQ+21KryEBcGEHldIkVmi8awgZLW0AO1bFWKyg0lqs1nASqwnzyrChogkRL1IFdyisGT2orSQbt655E5wZczTjGVecDodJQLSrC5ukXvBh5pELtCkRmAuLSfIe4/MAi/mkhGDUBnlnDGfJqScNIrU2BwA7zxmrTKwH3eYF4v0BGDlbuDEV1TEOiwlgQGFuwgpZ+0XW4ukRp3CpRpqL2OTwc7y0aQRtVSPURFpWLf3HrziD7Wxlra7uuRUOXUyV8bocXO1x8ff+BBX//V3cZhm8CxttnYtacG8zB1NmpRxSUurl9Unlhcd9xgl0Xg+JF2HquAUifY9nk7YKwF2tTZ1nvb7Qc4S/OO0QniNTmQVcJtI0O2+YAKQSWFWb3ClRtk68T8bzDkMA3a7HaBj1rgv3/54a8F1d3eH3/7t365/f+c738Fv/uZv4sMPP8RP/MRP4K//9b+Ov//3/z7+wB/4A/jJn/xJ/J2/83fw7W9/G3/hL/wFAMAf/IN/EH/mz/wZ/NW/+lfxy7/8y1iWBb/wC7+An/3Zn33riMKV9H/k+8ub/9td/8Hv6VxWiY9LNretMHnX+5t1eAlKfOp1emH1kNB60yHJsLmSr1bkshQs81zD4/tEyZ2GxA5xRE4SmUVgeO2bxMCpFI32Fn9ASqnCc957OFjhu1D/HeeoGqWFuVt4eQbngmk6ouSM4DxiaIvk+c0d9vs9rq6u8N6zG+x3O4zDiOv9iDEOiEH4EUEeA6y0SaXuqInBNvLMYo1qwgE8ifadjWmiSDi8c17U6CJJnWZhFYKwE3AHRdrcdYRAohVnLhI2viSUjmeuas4axg3vUKioht/GuGremZD12kSEtCw4HA443B/w+uVLTNOkmxrqBhrGQTd2CesHgBg8ghLAng5HzPOM4/FYmeqJCPv9vs3TymjMmKalWl/zNGE+HhGCx3vvvSf3sLDscelgXY9lTsjLJPWsfAtbn+cZIEm92O12VfNvFldZPVMl7HUOLngQeaEr0+rNGRKY4rwwpdgjsLbfARL+r1GOJUuZeqYAD4d9DHDProDwLfzOd7+LVAruplkKTKofyUp8OBUYlq8FAPthB44FKQ44HY8CJ2pU4LNnzxCHAa/ubpXZwiG6gJOSXB8OBzx79kwol7qjlILD4XC2DxRuZL0WqCF9Ied4LcQqRMdCNrDb7XBzc7Ni9WFmLJOMjVWECDHAx6g1yJIwgwSJKqWc8a7HWwuuf//v/z3+5J/8k/Vvg/D+8l/+y/hn/+yf4W/+zb+J+/t7/PzP/zxevnyJP/7H/zh+9Vd/VSStHv/iX/wL/MIv/AL+1J/6U3DO4S/9pb+EX/qlX3rnhwDQoLtHT7n8/SWf0kN+oXNB1PmSOqjQgigu3O2N7ewTNS/e/4ly8CIUufF5bbnKgKZR2flGKWMwFlTjXpa5QQLe43Q8Sn5Jtwi8d3oNc5xLPzkVXAUi31IuuEvH6rEnkkgs5AKeJf8khIBRoShXCibVsmvOGGdpk4Zoz0mqri7zEVG1R+88TstLDHcHjOMtXt/d4ebqGtf7PT58/z3sd1nKPhDBoACgVwABAABJREFUuQjnAgYXsBThl2PFS0UbluYaVGJ91wdsgMSZ7xwJzlq4wY0ksKH8EG1j175e0W0V+Y1jCQLQEtEgcojRWZSCzB8f4CJhKcKjV3KRWlyUqlBZOFUIapln3N3d4e7uHrevbzW3SHLiiCBhzdOEZRYLYT6JYJOoMQmBnucZaV4wzzOcd9VBf5xSDSgg7TciwqSbsSMCMqOQw5QKPvv8pcCuOndOxxNiDBjGER+9/z58kPDrVAqWlGG5CCkliexnj3I4yniIyaYTysEHpTEq4p/1PsACMVJK8B6AFwiLLeAFZpiqBeYcGKUFkHC3HAsDJG0KPqJ4EWCffOMjHOcFX9ze4aRDUYqs82VZcKCjFK5UCPB0OiHsd1VBI0cgL6H6JuydVhteSgaRgw+p+q+urq6a1QMhNF5SqgFu5hskEmUn51LreQGW99iIfS2HjQDsRqnaTN0+kbMoiikngBqNVMkSKHN9fY1lVihzThiH/WX46S2OtxZcf+JP/IlHNXUiwi/+4i/iF3/xFx8858MPP8S//Jf/8m1v/eg912LizZv721hg54LN/rc+p8I7RGsIqT/vwbacW0GrNvb3v9C2t3mOi9fv/u4tNDtYnf8Gb62SOPW6eRE/Sa55M1gJRguC0N2/lklZBSlAM/RDUOIJvY/BGr7T0lJSm0Yi7hyhRig6cmKdZMacMlIyahrGkhPmRcKRJZlafhNjhDENOu/hfYRzHsMAUFcrDEwI4mCp49aqm7T6RAAA5wRKQXtO0HqusoXYbWx3so+odplulAZxtTEtWeBSghmGDqQVnhmS0Mu8aLVoh1QSUhYteD7NlZFhXhax1EpBTi3njSHl4E/ThNPpKJudRqUVZqHp0s0uBI8QA3ZLQvBBCoqmBKelTQiE+TRhtxsRQ5AyJz4ARfw7KFktnSDQr/q1TvOMwTu4EOBzxKJ5ZcxCqUQFADXaKBH6EiHq1I/Yl+YR2i3p4KpwlCJ91kFjtbMh/Wpzly1qhAggza0jVcyIEQgYgsPz6ys8u77CfjciTYsEMeial5w3IIQBYxwaXROzpjp0ibrUWY5EQqkFCSYSbsMGIzZmCrWGlGXE1rcpECFEAKl+1hPw1j5BI/QN3mPR+dv3Wc4ZXOTZzR9ohxSMlehJ7trUUnXe/vhKRBU+dKzCwu0far6ES5v6Jcvqsc380fubsHrjeY9be1thdalN1L1/SCr3v+mtpv6z/u/HgjX6o+bHcM8ikFe/sQUlr6JVWmW3lcCOFplYEiuJaQKUHcKiq8whLPCgWBy5CCfaXCRZ1fLEjIg0eo8hivZeskBp1iZANoV5WYCUkYpEjQmFUsay3GGaZhyOJ1gRi1RYCF6zsHqACLvgkWwsAUQWv1ggCNO5Spmk/rWSU4M2tax6FUwswKJZz6QbZ7Y8KWoL3+l4rzYTAM4qDOs1U+6YEbKricOm/Z5m0cZDDNhdXSGngnlZME0nHO9P6twXiOh+PmCepI5TLgXTsuD27g5ffPESp9Oplr8AZIM/nU5wEDqg6+tr7HajJOhGj+hiExw2j5lRloyUivoad9iNe3it5zUdD2KlZdnkUmaUacEPPvsM3/jgA1zt9xh3wqCSkwR6JOVkzBrYkeYZOS0Yhl0dM4L9j1drwVgfapCDwoRtDbXxFbeumNrFUgeMrd4FsBMSZwrCMDEGh2fXO7z/7BofPH+G5dWdXld8kAzAZemL66sr7MZdLbCYUqoMFgbhWb4XzTMOhwPiOMDqXN08a9Dd559/voL+bB1bEIg9v3cOC/Oq6rKVSbHfZV2fhqzYvOuZNvrIY+ck6dkHCZ0vGdjvryQqeBggzCMBg1Zyfpfjqy24uk3eIv0un/dmy+StoMKVIGl6soISb9X2tjjw4P3tnu3HXVve4ahaeikbiwirz4DOcGRokqEsNlbLUph/JDBimqdGrEpCweNINlFigRfTkrCcTuA0w3GGR1digSRIw1NGYCmZLomXV9oOsWymaRLaJpKIweADQgwYQ0AgwjIMQClCF1XEeogxaJvV8azdWHRjZjBevn6FwhmHqz2eP7sBsQiElBfcXF0LZBUDPDmkUlDmGfCigTtu17M+9sHBOyUKLglCuKssJJonZFqn+U6YzFu2nknS5x1vpEYFmOYrm4bHkrLUq0rCCr4kCVW/O0gYdVgyCrnOwpowT4tu2ozjYcLpNGGeF6Sc8fnnL3B7d4cXr14iJfFvtppOALMw8zsfwORxmhbc3t+DUeA8wbuogoMRYsRujBjjAO8CaFlQIIE3KSUE7xGCQ64ckow0S10q52S+fv7yJe4OB9xcX2v9twEoGakUpFqIUchxl2VGga9Chwprbp3048CSxFy0+KVE3NWVXReaWQmOnKR2eIBCwTIvgMU9aKkZRyyBN2kBnEcgh6sQcT0MuNntkOBwdzjK6zgJHFkrGJQqrEoIGAYJUx/LqAn7CUtZMNCIGDyudnstCSR+yt1+jyFGhBjwkgSELiiIwa0onVgTx5eUcb2/kmR+b1YY1zXS/KyAmrM1KpFA1YKzvw05ck4TpzVCOKUEi62T0H3/pQIzgK+B4LJ/V8LJVKx25uXf9lYagK1wWwnGLVRHbYLbW+60anpIij0oa/QHF+5v3158/4BA3lpy6H7z2N9bgdoOhbM6BmjdNqvgSSlXhzBB8qIkEk0BPc1/MR5AEVRecoMA7Hc72bycwAq7YahM85b06D3hNA0aHs7wJL6Q4D3GOEg4vEYtnuYZS04CBZbm02k+nKztl/fzPOFwlJBngkA18zwipb0Ux4NGTzqJ8HIk4dvIXBk75JoFJo5Yr9+6Tf0nNk23FjQDRBYWb77Ts5HQ8ilc+1+olAi5LJpkKkTFWS3krKwVWcdpnhdxyGfGMi9VGJ1OJxyPSuSaE6ZpbuHQjHofIidwMaPmCBEsKjRLZGEqCK7lwlXmfAaiN2hcQviZi4x9djUJmhlISnvlWNjZp3lBStJWsU4CvINEWzoHYo9c5hoFu2gpFbAFyEh3M0voPqjAdRZFU4R1PZhlq0qDuSSMYquCqf0gcYEU6yR4chhjwH4ccLUbMYOwpITTNMs4FeHb8lqDK+u8pBjgg8duN8Jlj2meJAhHoV4fAsZhwGL9Iw6+ui69c0gGv1O/Rxm7SF/MdI34uA7qIyL4GMBTU24FaVJlw6qRV+KBUu9V9ybu5mn1O75bwJwdX2nBBXSbbz/Z8ESocAU1nltYb+rYN0GF7V6PWG9Y+5Jo8/3q+TbXe+ie22v2n5tQMthgCxWuhRewntSsGmbdVqsllnNeBWVQzvBOIrVsXIwwlFiYLMboMXiHwXuMMeBqvxeGCx2X3SAlUvZXOwQv5RRCDBWiIQKCwjiOgDHuUIrmLuWC0zxhWhYcTpPUfNL6RXd3d5imCbMKFK1chWWZcTywJFHPE6bjEfvdDs+fPVNYQzbb7GWL9gREb7WP1N8B8dMFs2QLo5D2sSNAN3zAhBcBmiPmsJ5P1foFag00QPfEUtAb4uQ8gncK4wrktaQF2Zzr3MpMJHXUs27u0zRVCPBwONb+MdjTO4/r/RVOCsEatJaz+MGWeQbB1TyvEiMoS1JxYQnCsXDzlDLAM7LL2kYhgV2WpOe1ZHHnhNcSADw8nA9ISUL2P/vsB7i+usEwjBh3WoeKHJyPSPkAKcUCLGmpc3SaJq3/pjDqIIEPvrgKddf1ppaMd7762NBFIoII5D2oBkF0BxewhooGAq7GHW72V3jv5goLCKfTBE9Cx5UhfRppkFL3qtSJdTpif7UHZkkjAAT6jTEiDlI3Kx9PYEieXtbk40bPJEnGvfVk86r3Za38WTpPehh1v7/SsUv1+1K4XluKVmo+nbLXWF8aQa/xXIJdhRNzeio+dX585QUXYMKKVsJnhazRZSFmzu3+nO37S9+ZkJS/u62dHrJ03uF5niBAv4zGYu3c3ke0JrMGWsIhARpFpyzdMGGUu8kPDWYYQKWI491LUqIQ6TK8c7ja3eBqiHh+vcc+OKkWnDPef/4M4xAxDBFjGGruV4zCmu29QxxijeJjLpo8LBump6Ch1LL4BXISdgspk7JgOgnD9u39HW7v7/Dy5UsNLy9qZRVlkUg4HQ6i/UL8aPM0YbmeNPqLEL3HOEQhcVWIxDuvvIICpRQNig8hCK8fce07g/lE69aNot9kCCgsllKx+e2gOU0aSm9+sSyKRQgBS8qa07MAzukmk2qI8m7HmKa51iHLKaHoi7Mwmg/Bw4ExaCTe5B1uriW3J3gPr4nBBGUO19D0AtZEXOn/MY4IWs7mNJ2EOWVecH9/J8wQecb9fcEQooRfowjrikJlabHNckEhYHBCgbTbXeE0J8ypIHOBn8VfWkrGMI6ay7dIigXJ3MxckBZNZiDCvGSQk4TzgcS6W+ZU2SGsSKr5dM1/BkArb3sAuW4APZRLhUFU4MC4HgM+en6DU/oE99PvYqdl7+Nwi1QKclFGmWVRX2HA/f29+IFZas9N8wnTImzyRRdgvyeFEMQydgJPX1+JEmfFGo3RfzqKgkJEuL6+FkUsZ5xOpxb2Xlr5EyKPGIPWDpMwflF4E+bThBgCKFANnbeqycsiCkMlBtaIXgkeCWKdlx9RwbW2ELZQ4UObeiecuutsr/vY+83ZuoluB2GNFT5FyDwoYDf3fOhSTxVkl4RW+3y9IPpj9Ywsm2pKC5ZlVoZpAU68Dwhe2pw178eTlDsP3osmuRtxvd/jegjwYHguuNnvMEQJ0BhiwC56xOgxDAHBR/l8jBV6BBjR+1ou3JGr9ZNIpIMhNlgUCluWBc+ud7g/XOH13R5j8NXfsyxZrTcNXydJsl2WGYfDvWD3Gt4fggd0oZKWuQAEGhVfh6vsGMDa90VOYCaYP8X6dWvxUksjyCy8dJaQ22vJ8j7D6B5a1JzTdAO5vgWLhBBwfbUXDtDTsSPwlecdQpCaUjofcs6Yd6OQuervvQadOHJCnmpKCgFxiCAnbOpBw+UZ0Oq3Esl40NIcSSNDhxABAnISwea9XjfGKqSDbnhgBvmAwUurxUcmiehWzLAlMKst64SQlrv8Suu7XJQPn1uUooxZg2t74l5ZFk256BcnGUphColGwwZPuN7vde4vuFqSbPoswLJs+kudeykDKXuklDHux6rQFCWktlwwCXyiinbYOAu5bVAigKR9wpX31awwy5Gz5zTI2BAS861WKwmo1jNR1kT0grJR7qt7QIM4qAvegPr1zizVtzi+NoILanVdggrXFtPjEN5DVteFm5+1RZAzFQhnguy87d1feGpYh7X7Ke18TPBcFloSWst87ucy2MtaC4ijflkkd8d8IgAQQkQEVFCIzyl4B0Qg+oDdMGI/jtiNA672IwZHGAjYBS9Jx0SIjhA9YfDA6EWAxeAxDkE47DSaawxDjUQkAFlhH8cQKMcRmIR+qGhy85JucDhe4+5whTEE3N3f43g84v7+IJQ/gLSXhToo5QXH40E306BWaQY4qJasBL1Bxh8kFE+AAykXkUWSMVPNKQNpaQqLdvHUFr3x/WlwSeYCdpLcWud0B/XkZAm2yrTAssEYTZCMS1AGg6hcg4zT6VD1PCnEzNiNo9B0jWO1NlLKlXsuxKE66b1zGBXSDT7AeYdxvxPqJ7L9W/xqh8NBxkA30NPphKT+M4sUXeYJh/v7akX0lEdEjLIIJyIKYxhEqM3zjCUt1e/JeVJmBqCqp0qga4EvTXCxkvuWagFLHhPDe42W02w728CJWrCIGD9dxCQMmVCy39SS08cxYr/f4SplTDljiBFeI1mXJEogQZKovSOkIlGw10NAWHxVWCyvKmuiPkN5B0kmUwt1F8FlsF0vuExYmQVkvIeNMFuCiJA0h4uMHSer4AK8N2LjLkiDAGGeV8VHA2/AqPuypQ38yAsuQJmv3Xozfwjy2wqx7bX687ffVYuuvn+qyLl8Xfn3nAj3oXvKB49bZ/abx/Lttm0xmK/oBnHehxL5RMS6IcnEW5JAHJJ5L41zzkmZkmmqBJ9Xuz2Ck4g8uZ8Q0VKWYoO74DF4sWiCd9jvdtgPA4YYMESBh8QIWsCLlK333iIWC0ghtQDUoDxHWs+KgN3gAXi1UgjP9hEfPL/Ch+89x2kSBoPXr+7w6vUrHI4H3N8dcZomKZQIxmQbZ0nIeanci4N3lTU9eod5Fl9TCAE7jUB0F8bI0pAfGRn1bQHsirL5iiAFipRPUQshZ4n0BDGmk5aaV+e6KQ+seWgyVgum0wHH+3vc390qrMPwgfDhh88F4nVe0gz2uyqk9lc7xBARfax+S+c0+tOCcLwDYgST+jtIrE/vQy3bUTqBa/44oKVUGJTlnNT4qnOwCMvGNE24ffmqg6kzsrKTn05HTMcjlpxQFqOBkvkrwSEyd4y30TgJSykSkTcMSj7bra2+KKiTSFDnPOZlapaYp1XAjSMzYxXWY4kufXZ9jSVLJOs4RrCPKORxOs011yqlBArCEXh/fwfyYvV6HzAMYw2cWFc3TiAl2Z0nSRJfJkkKl7IoQpnFnGW+cMbhcIebmyvknEBkRVS14jO1MPiUZhVcJK4CAD4Qrq/3WmalIOdUk87HYcBuFIiYdK/IOlYMpd76UY4qNGillSB3dZOnC5v7+Sb/8KZ/6TdvhAr1nkXfbyXa20B5l+55+f6Xr7uFAvu/L8Ga9gxbgWUv54S3jzJWUUlEkqwrWngre7AsJ6WAmrFTItughKVcMnJyqm1HsCegODjH8ACikzIlDgUoSWpKOaFcokLi9ymEAodMALw4fanX6pS81hSLECwEQ6C6QAAFB7cfsYsB8zgiOof9fsRpmnB7e4+721upPDvPmKYDcl4kNygGWJmRo5Zvj8GDXRSfglI3JdX6W4RWV/eoCGcgG+xEXeSXDJL4eyB+BlCDbYqWlgGztkM3ryyQYSkZyDoujoAhiMJRoLlOCWkWYWaKgSEEwTkMcZAkYifBMMFKVezEqoo+opaF0Twhr4VCXQhACGASmNIi8UCA9yQWo27+LSBANk2bl2lJNTG9lBYwkdVvQkSg91GDLkqRCtrTNEmdp2FQ6FeCbHTSIynsKUqP1aGSf01omNUllQTEYilZIUWlurI4PCHg1ZIqdWy4IhYOToM/hAYsOpnbwTvE4PHs5gYLS95gTlL1O+eM6XgC7U1AUa1zFWPAHKzdhKubK9wfD5KjaHMmS1qArXOBjAkED0C+H0KAU3/WCrI1iDGy1k6TpP6iuYzmN82FpW9iBGubTUGQ4pda7VuhcgKtLEUflNfxrVX+dnylBRfVf81Ub/+eiReyz3qBpNAXtXMuCYE1tFhPXrXE/mJaC60VuMb2ntfNI4JVnb1474vP8fixtbjqpriaK2vpurX2zoWXtoWbtk9OuN6cD/AxaFE7j2PqSiGobygETeTUooVcWLRZ1WgdAcGRlgYXDZXAUhOKGMxOCVOzRtYJZFh0MxLVBbVAoxGgFjBK0s2SlLaHZNQGRwhaaRmlYL/bYU4Ju2HEGMVJ/vr1a0ynA9JcMHHGPF1JBBwzJjAIIxwN4CAh85aPk9UiZDIIxcagYxIhgfZofUK1tkSpcA324g3ka5KZWfqVAM7qpyGBMKN3cBwwaxAKZ02QBjAoa74J4ugkzNo4IaXwtEQRDlEKFho0u6Im07XnSeezIxQrHcIGoWrpGC+lbsx3ZYEsDBY/5ZCr9WV1p8CslaQlhSGEUKFNIfA9VQqpIXiJGp0jTiRKjNWMyrnvw7ZngIVgNykk3pegBwRlMD+NjaH4EBVK5G5cGToTTZkWHcqTq4hC8A7XV9c4LQlTygg+I5FYRPOSEIdQ/ZgWVBNDhKdJ/WAe407yF618jSevkbuSl2gKZozicDa2m+BlvQp0KP7dXHIVXACkZpwqD2Lt+frcIvwDnA+axymCznsvc09rjzXBpX5XLm3MjU3mHY+vtOBydWJpckYnU8zikr9t823+AQCyGbhmKb35INsa1x9rCXHLvmnCxeknBjVYCQ7Za/ocEAuKINdKkJuD0973hJbrV292X5oM5mS2vbEvgdI0/fpJt2BLUWdsSfp7D4k2lI0xxgHMwIEP2F9f4/rmBofb17h7+YVo6vsBz64H3FxFXO0CogOCE+jiWpNIY/DYxYjdENQCCJLs670IGc6gkoQfURMxC0vAmKNQrb9RNy4HhrMyLACK1gM0YdHT0ex2Owy7PUIYsA8ehQN2PiCC8Hy/w/F0xKvrEV+MvrIYHG9fAfMEHndw5UoEa8oYfEAcB4VdhOXbwyN6ghGp1pBjOOHtdQ7kxR9gjORiqRRxyDuCZwffBQqgdJaxAxJneGL4IHNkIYFus2reNbFVyXOZhY6INFpsCFrCwnnsB6VhsgCYInNWCnHqBgyAiuaqbSZPyhmOAXYO2blaeBRwcEF9d7ppSXqFRLt5g5TyAs7qE2GGQ2MMicGDS6hJwh6AFTLNaUHIQSNRfSWALSnj7v4Wx+MBw3hUiyBhSTPyLOkC7B2AKFZXypV7LysxrDGlj/uh+nob6zrq2pIAT8krtMAbCRVRGjMH7McB+3mQ4KTrDDpN4GnGAYxxkMjK+/m+8g6KH+gaQxiFpDq/qtZXyaxrNGGaEna7HUoB5lng7cIZjljyx6YJS15QckLwg+xMOYE5gjwhDrEqBdERRnLqD05YjifEqxsMfsBuvMKUMsgHuGFAJhJG+FwwFOUiZQCFwFn4CksR9UQCdrMGhjy0Vz3t+EoLLiLUnB/7TzYus7rWQqT9vT3WHXgZKuyu2TdAr181uLpBng/LNpWUqOepO793/9lTDhNKQA8NNqF1fu7qaWq7z+9n5Lv9c5rCIDCC8xHPbp5hPh5wu9tjtxuRHYDiNTNftMxdCMKG4YUaJ3iJTGNm0U/1+dM8g0IQPwSLk7oorZEl1abCGMcrYc7wETWwrpZVSZrQyfBRYUpWKEU1v+P9EaBXUm+LPIbdKGHOLARQgyc8u9rhavyWQIanCceDbCrLPOEeWvBvlzBEYX4QclzGos52gpTmod5CUSHFqu0zxFI06NupACOItDAeRgAaot+c6WlepFCv3teUtlIWFN2Il2URcmLIecNuL+c5CZiJXnxz0XsAWn+LCY4kaAG5YJ5mWEVlF0SpkITsjiGcHHzOQPBg71HM3+YKiH1lll+gkWYsQqtqbyVLSoKWkJFAB/FPWU6XOf7N4nIuCQ1UiEjjKOwupt0H40+UaEirYOAm0mAOmfehKokKe/YWJbV13QIyGKk0pdf6vK6hGkSj32uun0TMSoDMED2mRSsfqIB2YKlQ0JEXS85cVus5YD/ucLXb4+Wr13J/J0EQVn3YrDDbAzIkHWKe54pGlMJI0yTlolTgmFXrGEBO2AWP0REoJ1BJIJJoUxHSjOl0qsVHSWmvJHJVSpjEGGstvbrNWeRrYeT/pxSS/L/7qNBgtbA66wodlLgRBlvor4KLF85r529vfkm4cBUQrEKpXq/ejp6kaDzsl2sPZs9wfk5P2NuElyy+9vfbHuv+cCtI1hFh3O0wjqNyDgZQyMJqrhuxJxIHuOb8CKO7tpBbaHfJhq9bnpH4lqTCcmpOfQa8y3DwNZKOASlZzw6lkLyY4NkLPMEEx8qdCCDnWf0r4pDPOQv0qeHwxEVymsadbDghglhYrlOW3J7kRKDOGqQSgmw6uTASZXifEVmu5UzoN12qG49+HHUj7zj+6pjqxrniikOnMJWiMJH4GzhnqX9m4+A9fAhGMC++LC8RgkS6oavAl+g4sfLm6aTjwwILW80m71QQO6m1lItUWg4B7L0INudA1KAikBPBCHX6y66m1mhToBwRCjk4FRRGy2S+seab86C6mxWUoudAQr6ZWXyqKUmNNS0TY/4XiVo0dhYP0gRocmJBWTDBKgWhgxrXS7ApD23spF1eIzHtJVZsVz2ARbjFEFDYODNztf6crqFxGNo6dE7QHKLK/l+KBqHECHBRSqyM6Jtaz9mElShNHrJGgyMM3sFrKaBUMoJByURYwEglYTlphGenkovg8lo5QOYHtW5BU/Jbisi7HF9pweXIHMQ9HLgWQo6aj6g/B1CtCA7i/H5EUHTHSrjRZZRW2rDNk7rsP7t43e6z7ffNl+fOrtlbh0K9YkLKrLBLUOHTDssBytmDCykk6sGsFWFZGALuh13NoheNVSwrRwI37YYBAQTPQJ4XcIwoBBTnMKdFkzEJV1dXwryQEm7vXmM+TaoZe3CSTcb7gBIYS84ojpQ9QQpRzvNJGdMhzONM4mtzDqMXOh3nHfb7GyzKb3d/f4v7uztNwHRwXmDSYRgUzvIY4wi6DihXYvXdHw5CAQWWkh9aydcWPTFAhbCj0fZ/hUo8mBjOcVUCZG+TDZEJ4GCKCTTB8+FxYy6VicCq3grkVuCchGJ70mRhjUYDQRO3nSJbCmCXIkrCaapktcm4/7RmVIyx+jSb8HLwPgIUACcWF7Q+GOkz16COOICcRPblXmB7CWqQ4A6tBQaGI9Xc9VnneULRMGspjZIqz1/OS1v/6rchksABi4AlQk2hKKXgdDoKabIP1b8nQUfynERUYVarLRXDqMqAQ/Za48ssLmc+YSfCWXP9vDNUCCBIXS+vltRcZnBmgSXHUYTjqcATMJ+OeJUWOMh83O+vMI53CDHAzQ65ZCnrUgqW0wn3x4NW+R7V6mbMKYFcxJ68RIEaSsVAZAmfH0PALgQ83+9r2saclVOSGZwSTmkCLwsmLSXjYciTUFeFQZK3yTuQJ/SeDJnj5vh6uz2oP77SgssmpwfByCHPhFO1yM5ZIuz8/lqX3usvQP0C6z59e/vlYSH2VAF26fPtb54SDn/pPr1Fap/VZM3qtVPhRA7BCfyBxSNE0RZDcKIpMxDJYQgjxmGH/W6HARLY4JRxAqWAMxD9iOBE68vTgpwXzPOE1y9eaaCAR/EOJcl4ojC0BBAMa7NF4pjA5JUqSarLSn6YQwiALyLEyA2gkuC8w/P3PkTOC9I84/7+NaajCKGjO8D7AcMwYhj2GG6uMVvS9U5SAjgXHO7uAYbmp+3gNUQa7FBYWO2993DkLWlKgyiklIbAUs2vmWE8h8pFB1HW2DXKLkCgs1zEqjJaHi4C8QWt8RR9aGH5GuRgRp/T1IRcMpZ5xjKdsEwzjvcHzFoR2bgEDY4SlhH5/aAURN4H+Dggxj2cE+GVzNwgJ9yJ+ro/TAprEsYQxQJ2BBcD/BBEqJGTiFO1SHzQEPsiwSLshJWFcwLpJivWVa5zNs0ixAQFkMKWOSexQiF+51IyOC0Stu+k+KEEzjcaJLte/7cd5hgwpdJU4vqX+uukoOgCLklXkPY/ATEGraiQpa/UPxlCqInzzED0UUrEeGVu1/yvrEnDzAJdC6zLAJOyeBBiHDAOY4XwQhAS4IyC6Aj7GDEGj10MeG+/E7Z+ZlA6CqJBhDh4eAw4zoQwM47TLFGRLFGj7BgUHdgDxTGK4N91HxGoVSKPze/7LsdXXHA1SGHl09oIr3o+1vAhLgii9fWfABUSqr/hh3VcEk4PCbOtoLajtecyVNhOf7jtF2Ur2zUBC++WiKeA5MSqiUGIWFEamCg+CRJIwqr6AvAEOGpRRuLY1dLzyyxh20vRE0Vkcmah6gkBINHO4RyKWdgkcKyPwkLNZAEv+lBBFmHWNhWp0og4BPgSao4O2GprFSzLSYs5OoTRA6BKY8NOyYVLEYc/CV+fhH4XobTioi+nwlWe1yBL9WdLz1LbrC3gRyC0blwULqwpDDLozVdBVKmYhEVB2gzmmqgrm6n4G1KS/K7T8YjpeMA8TTgdjkjzDLCQGUt2egftagh+KYySdQxzQYZYwOSBTFBaJVknwhgCsFaCBjNKEgZ+JgbPDiENAjH5ABeDwnQOwgEowRGVeYSAzK76Z8BcE5Z7n633DuM41hxDgbgMTk2YT9KH5t+y9BZALbrOeluvD4nKYM22JkM4LFqjLqI2NmJhGVQoe4u33DI9DcySthG8Vvi2OQYls5aaZatyMd3ad0Si2C3i1/TOAyqwLDIUpPMDDMSIXQjKHeqws2R7AjyPsAzCKTMAj0AMR0VTFATyN3Jeck5QFJ3XTJ1zgs0EIFHg3vH4SgsuUBNeqNZW29T7KDzjru6/X/uKzt9fuN2DUKFoO8Db+I96a8b+vnT/R/1dm++37Bj9tZ8KFfYW1/lhQS6s0E9W7rqA2Qk+PoYg1EgJ4idR6wiFwSnDR7F8huARHEtEHInmnM0aSAXz8YR5XuAz4NQyYWbwwqDBYYg7yRtzAfABxWtovvNAytjt93AxIJvmrrYiaRRUThIBl4okZ5IbZIGTQIj7OAgF0TThxf0r5DljmRcMN0I5RCD1C3nRLhODl4RCDhwXAGI5uFxAWep/FRWgzmluFRURvMQaZVoEXtLSEGyRZR1riRQYLDWHqQYiFCskqcpbCJpasE6CzgwpjFkKCmcRHMsirBWvb3E4HLDME9KsWr/zGEZJFHfkQEzq/8oie0iSUJ1PcC6hFEmCdiGiOEKIAwYVGt4FRE/wcdAggILT6YA0T5iTVPR1g7BzhDhgUBYOYY0QGFiCHIzBhACvVrv59pQ9vk9sBhhhiJWhAya4ckJKWoqHzd8kELhAqQo1OmGtEM6+XFksAC2GWgTCrHArZ4A1TB4kAQwQuDAGj904YNCgJacBITEEACRBKI4QgnD7HU7SzlwyHEl0q9A2iXAZQsCkxVMt6nSMQw2AIHIYvKyR4CSHLPgA5owheJAnjMTYaX5jdMAuEG72Upkh7YVoeEkZd6cToguYg8MuesynEwjCrBFiqJGjxQGFJF05cUHU6IyWJODg+N2TkL/SgsuczdWX1eTJIxZJ7+N6OlS4DvdoRw8V2vUes764qlQPHw9ZUdvv3uQzu2R1te/Pm9EL0u09nHOAau+cS8vRYLNaIA5iaGXZIoEI0Qe8//w9/Pgn38I33v8Az3cRey9+C0oz8nQA0ox5XnD44jNJ1mRgOZ7wg08/w4uXr/Dq9SssC0Dksb8e8OzqPTx/731885NPMDx/hqlkHJcFh2XChx9+iBgC/rf/9X9FKhl+iLj55od4/v77uL+7w+/+1/+K1y9ewsNh8BEfvvc+PvzgA9xcX4NQcLh9BccZHzy/wk/+3m/j5nqP5zfX+PEf/z1YcsEpJcwgnCZJTDaiWmQGMnB//xp3JeMLYiBnjAobPn92g+tnz3B1fY399TWG/R5uGNTnA7BD1WqdQizHw6FtwBqYQES1Mq7NJSJj3l+qw5uIKn1WbyFJjs2CsswC2y0zJmWGn+cJ0+Eomx0zxmA5XsIGfjjN1fIIw06ES3DICZi5wIwgKeHu4EKR5wkLwjRrHpNEMEaCWqLyDNEFuAC4Qsrof0LKBRQchnHUfrxGGEZleGHkNFXhDWPoJ0YcPOIQQHCViSLnDB+0ECJrXbj5JNcpC3JipYkSiLYlQAv8ahGhVtYeQBWCxnfo0Nw2omzIX0UVRY+26AjQfC6Nuk0F3mtNrgzlg/TiH3SEXAqO8wQaPV69fiVpEkPUNSoCy0PmQZkX8T1CcqeGECrZraWLcE4oaYHfiV84cQGnBPIkgS6csIsOz693GIcblJKwLAm39wcsAJgcshOy4M9f3+Lz2wNOiwRPzTkhxIjEDCoZXq35YLlxFNTa6qqZv+XxlRZcLaKnf+k3tBZQwCXL6ilQoThYz87trbZL8oHaH1tTvn+CBr09BNdtrK0Wa3H2TP3f29B2s7aa1YV63kO/eeiwYIwqGHWRB7W4jAIJTjSrwUo07HbYRY/RE7yyO5AuLs4L0uEoVW8T4+UXL/DpD17i1es7nE4T9vsddmPE9X6PD957D++//z4+eP99hGfP8OpwwO1pwm//zu/g98eAb37jG/joxz7G9fNnuPrgfXzjf/jvwfOCz77/fdydjrh+9hyBPKILOB2OmAGcSsE+BlzdPINHQQiEly9egXPC/uNviA9iHzAS4Yu7A2hJFdIzKE8K9GX1Y2RwSghcULwDlQwsC8o0oQwROQSxiojAThPNnMCP5DR/zWe4Qloio3a6BHmUriyFCc9OkJFCi8LmINAYZ2M5T+C0IC/iz5uORxVckttk68qTtosIMIgPhEwOzgUUF1F8BPlBogjJoSjbBjkP8h5zkoKfSwHmNEuirXNIpH5OiMVdlByZSwJSkrD4UsAJyJwxLRPKPGO8ukaMI4i8qEsGydmkrPO4Fey0vaBYORnlJxQr2yMOO9w8E7Fj87GUxsCfcyOJ7deII6r1yEplguC2NmzJUsvzLErabDl1RJAQ+YGQkgQT+QKBwFVhYPObKSVbSgnzsiBAFUcigRFzAWmZHg8JpqCSMQbxQXv9vfmucgGiJxArJC3OY6GI8oT9bsCzmz2udzsQSerF9dUOS2EUcsgUcNIKBHNilFmep0a7ckZhp2wipY5PXTNv2H8fO77SgmttbfURd+2crYBa7ckX+u1806b6OrN0yKLrziG6s5CNM7nXAb/8sBW1CpSoAvRpA97aRfV9lX8rCPHN8ObKKd29J9swSl4JLqkNJcwR0QcMccBuiBg8YQAEH0eBkyxFCQ44TUjTguWU8IPv/wCffXHA3f2CGB2eP7/Be89v8PzZe/jWN7+F5++9j/c+/Ah8fY0ZhPLqFX7r//g/8P7H38A3vv0J/rv/1+/HT/z+n8Q3fuL34OP/z/8b3/ut38LNf/kOTtOEZ/sbjGGAh8P//p9/S/o4BOxvrvFsDIhglNM9Xv7geyh5wQcfvIfEGftxj+ura9ymDLcsoMXV/ivKko1srwxehHMulILRObhSwPMCXhawn0U7J5KoRw2+IEfqu3DKHq6+sMRVF7LIPmOXMMFVZ0bVUgS+kk2pgFOrXow0KxP7hOl0kgTVeQFpVJsjBweHXAB2kqcnU1Uj/vyA7CMoDHBxB3Ya9k4Bw9W++h/z6ShcdqVgWSaknJHIIQHwzPBgjF5yzrLx6BUhLiaSROwyC83Q6f4OeUkY93uEYawaPFVWeAAgUR5YilzGONY5nBU6s74DAOcFlry+uhI4LiXlIBTrZ6kWb3M9ALr3QOZ6Yf1XE6pLQa2f1rslmEVAL/OM4/FUSZG9DxgJWJaCwoTCDpmk/VAuRHJeIUyjn0pgWGJzkPOy+Jo8EQJDLeyM/RCx3+8RQ8B8miCBTRkzd4LLQaI0iwOxkyTuqx3ee/4M711fSfI3M47TCdOSkEFI8FhYwIbDacbp7qjCXIW/vTqFQlFVzVP8URVcxiaB3o+lPBokWCoAmP/L/ujhvzfCcbgsUOq56IUX0FtObwfnXbh3byG+oS+ecu23+V2zXtffeSehv86SDknrEeWM0TtERyDOAlN5iVraDSOudntc7fbYocAvE0qasRwPmA/34DSDlwnLfMJnn36Gzz79Aj7ukAojjhH/4//4E/jWJ9/EfrcDsRQH/PyLL/Dpi9f4nRcvMHvCgRm/8zrj/U9fgK+/i6udx50n7D7/DIff/E38z//z/4LD61t8+Ow5/tyf/v/i409+DN/88Jv4+Cd+EsfDAdPxhHR/i3T/GrkseO+D95HnA0pJ+O53v4v3jgd8/O0fx4998BH+wP/0P+H73/8Un336A3z6u0ecphnL6YQ8z0jzCcgZrmTk01HqPA0ReVoQLAh6nlHIwSiaSpTy9kxAngsySSRcdF6od4oGaFgwgwlJg7Nyq4lWNF/LbHyD0qy4pvwuq6BSItZFiFgHF+AtHwsS7GJBL4kJKUQUcihwuEuy+bllwZAC4hCUSogwZVerAIS4R1QhNN/fyfPkAp6OEhCSM6bTDE8Sxyckr0nqjnlSRg0N8y4Fx9cvcbq/hYuDXj9KRCtJCkguRcPyg6ZviAUpECFJ7SiNPnQKraWUkJZJ6Is0/00nvPRht47qezJ2eF69DCtUNQQggd4AQnYCAZZSMM0TCut+pQENNdApSnDTvCw4HA7/f/b+JVaWbUvTAr8x5zQzd1+P/Tjn3nvuIyKfKCqhyGyAhGhUCQiUGZElGmR2UsoGJAha2aKBBL0USHRogVRktRANaNMEUUKhrEYK8SgqUZJUEUEQGRE3btx7ztl7r73Wcjebr2qMMaeZr732PnufR0ScG9jROnstd3N3c7Np4/GPf/yjz8lKOTPsdhTLAofJc3V1xTSMpNNMjglBZ5aNQ0ByJJH55KNnPLm+wjvHb/7mb7IbB/28LIxS8A52h4klz9r8XSIfPbnmRz/4hF/44Q/57kfPcU5VUW5vX3Nze0/MhYSwO1whLnB/WrhZksm/bWroLWHvWW9WVmf9EDbAm9u32nF1KM76Oc8gNPuxTq23Qmrt97c5sYdbz+D6v5xdAcWb25z2Ny9Naz6tJW8ee0iiWHHw/pmbi/8Q+nwTAn037Pd2FuHqtOyRs9d3MMayrMYErAb35JxwFIUmfFBlgWp0ae/wIpqJlNSbXLGeoZwWXr56yeu7I6elMIjJ5XjHMB0Ydgf8MHB/d8erF6+4O868PkVeu0AaAkcnHGvlhOMonpwq//tPfsbpt3/Mr//27/Abv/Upyxz56YtI+LX/F8+vn/D06gn/yJ/+0zy5uuJiN7G7vuT5D77DYXTspBBC5XT7mrKcePHiJdP+guunz3h69ZTLyys1qEviZ0Upyfe3M96i6uV4Rz7eq+TOfgKUzVdKoqaMTKoU4kUQi7wbHFRRbbyadZ20ZmIjIxqbbx0o2Jh2tdReZ92ug1prV+VozdlgWnY52qBPDcIM6aICqcJcMnMu3KXEXSocY+JuiRxTUecrnmHc452yMZ1XVt44jlxdXXJxccFuN3Gx23EYByYfrB2hkq3BuUuWWZNsqdpnVbPOsarWRB10fLEeX4wsJZOjh3ECt0K24zQZ9FhAvEJV5ry8DzQ2bEoqI9bV9JumlTTt0IrzgoheExEVmm3nda2rK5RaxZmSf1bSCED1PQNuweAQ1Knf35+IsRALhKBTvksQrf2N6oyPp5Nl5dpTdtgfGAcluqQY8a2+Ze0OfVKBAzcG8BOuJHbBaZ1w8uwnlZYKUgi1sV4zMgRcLUzBMQ3BZNgGxmnSZuZacEG/57wkYq6kGnj+9Cnf/eiO3/7ZCzJia41ev4QVHci16pRn55S09SW3b7njAmg0500G1ZE8ObuR3zDw7wEbyoO/9V97gTRAcOt03vJmmw9SAyF27OdO6yxTehuuufkujzmtx/5uDunN2tcHLJ66fttqhfUmzqqyPEkla4JG39UaRFWc1VlR2JQcTCqmNimnFLm9veV4WohFKEkL+94L+IFchTllXt8f+b2ffcbL17d8/voeefoxeTcxe0dynlk8x+qYl8jv3/yMT1+84P/z9/8BmR25DLy+Wfgf/v7/wuQDl7sDscA/8qf+BMP3vsPusOfp977D04sdY03c37zgtXccbyq3n7/k9vaW169ec/WdzG5SRmNZIvf3t5xOR1LVrCHmyO39PcSZfZ5QsKR2WnBTv+jyZErzUw3Ctl8Fbe4uNFHiBv+1Sb86H8115Yde36JpTbbPag7NaOM9IDGh5Nqk0zC9PYV7lly4WyJ3MfJynnl5iryeZ14ej9yeMgVTtXAjvYRhbMhpmnj69AkXFweuLi54dn3Nd58942q/42Ia2clAlkiVjHcDtSYqpY88AW17cNWrEzJyhdggz1yKsgG9riuc3VfiqOOgMBmihraoJXUu2AQD64Fq4s7OlD+c6/dWQ0+cUxmrfg9tz6mRZSraXF+Kw0klC3bdZFN7M5V8dMLxNIzUck/OycgYojT14NRJDyOpZGvnMCp+COx2e8ZBp4DHeUHGUdeSU0URZQUKnswgHhccHnVGF1PgYgpMo1cFlRqoOZuiS2WcBgJVe7nGwdiH3pi6GnCHMbAsGecjfslkN/L0+pqPnx+ZQlDYvhFl2j+WMbdZbEVHZ1K/Qs71rXZcItp8DE1m1xhVPSN6zJi//b22zmCbdbzzGL7cob/7PR9kVl/uPYwae+ZUHx9t8kWwYjse5xwuZxWxtShKxW8T5MQgjsl79uPAGBxSVK1hN04IOqXW10RNMyXNkBfm0z1xPrEsJ45zJFNxg+fzVyeGSesP90vi13/zt5hPR25e3fDZyzvmVEgCyykifqSGkf3Tp9wV4Xdf3ZPmO/6nv/+/8tmLV2TgL//f/q9IrfzW//abDAK7YWQ3jPzPv/lbuMMBORwI+x3/39/6hxwGx5/85DuMF5dcO2G3n5AwkHLmH/7Df8jF04/YXVwwThM//MVfIOYF5x3zfOKnv/e73L56xetXL/jhdz/m6uk1l0+vKQJuCAy7CRlcr3moYK5B2xbxV6z51QgKvjfE1G4HtzWuOC8rmzD4fo1LyqbybSM4SiXXaiNNlKU4TRPIQE2FmjXPSLkQl8SnL1/yO5+/5C4lZifcO090nrK/YKkzuIEqnhevj7x+fcvxeOJ4PPGP/qN/jvHyCadh4n/4f/89ghOeXl/zZLfjT3z/E370yff44bNnHIJjFyamsIO8UNOCuEo5Wg9fmpm863W74+mWYdRJzBKc1VcLKaqzxGj/JS4muWaFA7EZWlj7gvdUtDm7yw7ZRWgCvts67nZ7rAFZA+dVJ9XZZ/dAxSb+VqmW9Wlm6tsxiaq+xGj1UZq/UxJMpeJtUvH+sFf1mFz4/PPP+f4nn7DbTRwHTxBhNw5cH3bE+zvIjiCZJxcTTy8mLi72fPTkgvmkbMzr3cjt61dQK7th4OPra3bjyH4a+e7Taw7jgMK3aIO318LI7rDHDyPjWDi4ERcmKp5nV/8rL5fIsbVvPHoOte0j16zjib7k9u12XLCm4KwZ1zaZerPO1P52m/0bsLj5qRso8A/q+zx2rGc9+OdZ4GNEEjGIsrZMtNU63gMefJiVPTyms2xNdBE7M7OQGYdAnkb244h3DoLObhrHkSFoE+wgivWr4K2KxZZaiVFhhJgKp7mSgBQz6e7ET37/Uy4OE7k6jjEzHC44HC7YPX3G70d4XSq3BXbPvsPJTfz0duYnv/tjPjueOKKx7sXHn3C6P/Lp7QkpmV/84VM+/tGP+N/+1/8f49PnfPwn/xQfffyc+89+gitRiQe7HaMTplGJCTcvXnJzc8OPf/u3+Pi73+PJ06c4OWif0zjgg9dJy0CYJi6fPuXiyVP2V9cM04AbBxg8NThVABElBG9XXtu8ZS9aa9LovVrRWygmRKsZa0qLFerdCiW2zMUyO+89YfRIVWXy5XRkOR451TuFanMklsjrmztujydOKRGr8MNf+BHs9tT9gdM48nqJfH5/ZLpXx1WqkH76Ka9iIufKs+cf8X/5i3+J7//g+6S48OMXL7m9ecXrnEn396Tf+wmf3dzw2fPnPD3suNqNfHS953I3MHpHOFySneCWEzI7pYDXapOkFSL0pTBK6NMTaM24VjPSnqmmn4jWy5zWjVQezkaSVMEVXcEUb7BewHl7UV17wFoG9pjj0q324MNVZyzD5uh0gnUsdBWMGKOx7db3c94TrEzWalopJiSowx38Kj3VGn+9t5lp4wA5EwbP5cWeu6hqF0E8h11gN3p2g+MwBZa715ALh8OO+xuFoPdj4OPnT7k67Lnc7/no6VMu9ntGbxPHvepQIpVht0N8xkmCMHGd4eOnhaeXlxxvbjjNi6nhZFU3yWXjaex8Ush/XB0XrA6rRUwt+jnLoHgzi5I3TIU9I+a0ZH3+i0gWX/e2ZSLJg+OwX96SHb7xTrxPCfQhpLg+/vZ9hVYSMAy7Vh1J4gPBCVJUISD0gX0toLB8oirDTanHlZRV9qiaI6sYey4m7u6O7KYJ50fG3YHD/oLp6pr98+/w6acvIaqG3OGJGr3jsvDifiGJqgXkXHh1P3O8PfLq/sTFbsLtDuyun1LHHcPlFYcnz9hfPyGe7nDxpGy5cWeZJuz2e4539ziB+9evOe4PjCFow3TKHRIBjGI9MkwTYZrw44AbBo30xejvTnSchlvPc4NfaTCVoHqGtckPGXvOYMHGGmsDPZtcVDUtuAZtiTmuYRitt8sU2XMhzQuJzJILyxI5HpVskoDpcMnHn3zCeP0Ed3XNq1oZbu+YX7wk7wtFPCnD/rTgPntJnSMyjiTnyM7jdjsOT56wlEyaZwpwFyP59pZBhGXecT+NHE+v+ej6ksNu4rAfAaH6AZnoLQaY8kjNCjmFAE4CUr05cYPvalHOi2tlAvo1NK/Wf5pTk4pOITBBXe+1Ti3lHDZ8VO6pw+eV1QxpnYcNjF5NoaRkJSfklHpzeS1K9HCuNbRLb3Modhze4MycEzmm3hyuNVBvuojSm5uX4EE8g1Rt9PfgRWHAwes8uovdxK3pe15MI08vL7i6uODyoBT4aRg6c7PVAcVBYEJIGnWFwG6Cy4sLri8v+fz+HplP9BaF1vPJJgOrXQ/mC23T27ZvtePqEBbNeQGyqXk1w39m6Nu4wQ0k9+Bn+/4fciwPWYV/0NvqjAWxuso7937w9R5mWm9PN5WY4b0gWVlqnsx+nFiCM4MYVbtuVOVqncybWOJCSTMxzhyPxy56mlLW5tQBxjExpEQyFKcUcH7g4vKSj773ffbXT6nDyCyB008+RYaB68Ml++9+h89uXnIfI4cnz3D7A6d55vbmNf/PX/s7lBg5vr7hF//kX+Dw9BklDHz3R7/A7vopJYwUH5gurgl5x7AbtY8IIc0zzjkury5UXTvB8dUrlvsj7rDjeDxyf3vHfJoZ/QC7HXX0lIrOD6uFffA6rbkV9U1BO4yqRI4o9bsrZNRV6qmUQo1ZlcJLIaeVBp9TVi06v8oR9ddU7a1rAsnj0OoWjpIiZVzIYeCU77i9vePm1Q33xxPj/sD14ZIn3/uEH/7ZP8vu2TPc1RX/82//Dp/f35Nz5vrJFXOqnJbM9ZMn7A4Hbm7v+P1Pf8b//f/xt3n69Cm/9Eu/xMVhz0fhO5zu77ja7QlFGZcxF26OR25ev+J/+eynfPf5E55cXfD8+ROeXl5wsd9xebgkjDtyXJSxeX9HXo5ITHgKbie4oOSJppBfpEJxuMEmLjuDYAVKyUixWqtpO7YV7lUBF6mOZJJPK9JQ3nBaW2TioYahWLGw1TLp9kgfb2od2dT7c4ZlnhnHPQRHOh6JVZXha82kWM1xV26WheV4Isekqhr3t+Q04qQyjIHdNLCbRvJuwFXH5IXdMCAlU+LMFDxPry/x3vPxR88hRRzw5OKCj58+5WK3YzeO7IbA5NXJYULk4rRZmgDZJVXgxzFOI9dXwve/910+v7/j5fGe1CK5xrTM1eaYaRDmHtibD92+5Y7rQXbyRfWo96wbbRmG33Sm9U46/FfBKe27bp3pFg4UwYqo55+9/Xd7PG3WU85JCRlVb6YSI+TYi8KkyPH2FkEVxA+HPcE7Ylw41og73cDpnnQ66vTVk/azjGHi2ZNn5HjDzasTKRurkErOC5dXl3zvk0/43vd/SBbhmAqv5oU//YMf8On9PS/nBU73XASPv7piGkdevb6hCPwjv/R/4td/4zcoCa4/es7h6pI5Rn726af8hX/sH+NP/PAXeXb5lClM7A4FiTPLcmSogogKx55iJs+JukTGMFDywmmZufnsM+tRWggI+93O1Lwry7zoz5JIex2EKGEghGFl4LlV9qaWYvO59MIVY1yWksmxjT6vJjTbIllUYWEjwV1r7Urm06ijZvb7C6QWYkwc72duX75iPh5Z5hmqME4jF1eX7PYXliVOml3e3ZKcMNTKTuByCFyNI8f7I1PQmUtyeaD8wg/57tMn3B3vldm3m7jcBZ5eXypb8HLP5agw8i4Expw43rzk/tVLlpT4vZ/+lJ997tj//sjT60uuLy959uSa59fXjCEQ3EAUhw8DvohNAFClkBACUoqOIvFO5aQaGSInq3y7HshVI2HkZCM5RAO9Vg8Uq3U9mmlZoOzsOrWsqWyCxN4Ybq9TebCWkuvnORGGoIEaojKQh4sDucDr+3tqXAjBcXV1xe3trX6XFvTUog3aeHKMRBQyfrK7Zh88oeocuUE80+AZnAYw0zjy/e99T2n1PvDs6TOu9xdIKexD4PriUuFaHbGgsli1OXcB8eCtcb4K3mdVDHH6Xb7znedcf/pTplefd9RkU9ig1pZJFkRWJf0vs327HVf7aaWojfPagF8PzP8WYnv46Bd83tkLvj6H9j5ahR8KVz4ECR8jZ7wdImznaJt5SUNj7ael/0rWGAffWYNxWTpzSqm7issvpRDiQo2L6cMlQ2VthIhTmRsfPLLkHq06UaM/jgP73UQslVQjvhau9xP384nbpI5rN45Mu4nLiwNDUJmq733/B5SUOR7vqTkqLb9kXC18/7vf4eOnT3myvyBgNOYCKSZc1CbiPEdub7XnLJ2ORNMzLBVO9wsu6OiW3TASQ6AkTzK4qOZKSeqCvVONONdmmanvR5zBgM1pNVil6e+VTfTarlNt67oajKSzjzgLTkQnTA8j3nudIRYjp+OJ29e3StKw+lAYBqZSyaHihgEXPNSs6vBOiKVSYyTkzA5YUgJUAzLUzPVuZJALLqaAN0X6EDyjYcpD8Fzudzy7vuLJxQU+Rl4H4VXNfLabmI93nE4nTqd7jqd7bl7f8Pr1Dcdnz7nc7zmME64mJqoRMA1mqysTUOy81JIpyZGJuoRq1fqMq9b4asqlJa/1JVHYbSUMPHKv1dYjavdi2fRw9bttnRX2Zia21rzAoHTnyM5mhWUlQqQYtdeJqtOU9V3V5LSWB7Ttoma9h7BM1lVt6h+DJ1AIIgzec9jtuLq8ZDdNprXoub64ZPJBa2MVpnHEo9MCNDDKfTZeh0BboGW9Z+pAK87BxWHHbjcyhMD9nB44poaH0x34V9m+1Y6rQVZtE7RrHHSRdGHRh5nZttb1SN3oXduZA5HHCQ1fdMwfcskeo7i/j/vqt5F59DePb3Xcjzmxc5alDgFsozfEIFkkAxnvKofdDsk6qC8tC3uTeNqbuGrKkZoXSJG8zOQ4g+hk2iqVnFQzLoTAxcXEcb7XCQ8I0+DxUjvcAR5JEdKJywAHyYzxyHJXOIzP2O8vuPj4Ozy9vEDCwPd/9Av82T/xJ7l59ZIf/+5vc/vqJUP1PN3v+OHHH/P958/56OqKuxefEedInmeYF2o8kY53nG5u+OnPPiUe76nLTE4L+92BYZgoGcZxxA8Dg/OcjnckUeHUYEK8JRW8eAY3MPjBVPJV6aCQkdAgbSvEKFugR7u6rh3F1nuTc9KaDn1uVBhG7e1iNTLTNDHa0MG4RObTieP9kRcvXyFFh2ROw46xaoYSY4YGXebEfH/PvETyzWtiGJB5YVczp6zDN0vKcH9kJ0qnvp4Grq6vqcDd3R1uOdlxVq6niR989BGffPwRzDMvdwMXQ+D15z/j888Kd3eJ29s7Xr74rE/7/fjpE55d68/3nj+FIOAqIoVQAUzhfBgMDtS635IzLMKw3+OMYIB4nANXfSd1dGFedQUdFtwa1m37gjxAdt50XGvN66w5uaMWpWtGepum4KRwd3fPONySC9zf3pEcOs8qOErJeKfHXpI6Cu+EHCMlRV0gOSubMgUkT+yHASkKqe6HkWdPnvDxd77D1dU186yTD3bjRLm6ViWXeSFQVW4rq2RZTgs5zjo2BmxIpVsdkhPrxdJa3sV+x2E3Mg2BfD/jfKvXurOfdnq/Cpr1rXZcZ0y7LbR2lhittZovSzF/Z7ajYVT/2C/OjoQvmuC1dbLf1NYcWtu2zqtBg1sHJrI2eIqYggYGQfiB66tLXv/0J8ynIznF/l6lVpY448pCKJGJTCWDqLTQMI6AI2fIfmA4TFw8uaDW3yPOEapwtR8ppzvuX37GzRAQoz4/3w1MoVKOHi4GxmdPODy9ZvfkmsuPrrl/ckX1A4cnT8B7bkPgIi786C/8eb73/Bnfe/6cHzx7ir97zc3tDfn+COmEL4lBIDjH4hwR4fL6Grm8wNXC689fsN8dmHZ73DAw7naUUnj54gU5ad3JYRF5TORlwRdlCvoCkrRugkMNMShWJBVMN05r/aU7pwpqnHImmqhrLqqioaM6CklUXT8XhRVDI4Ogrx+mCR88+92Owzhqn10ufax7XBaFz8yBpoqK/9aMzxWpwmWpSAhcXU3MuXKK2n81p0SuKqF0VRPDOPL9j59x8+oVOVfEwRMH7u41x5qZnGNMiSfTyC/94i/y4vqSu7tbXr16xYsXn3E6HjkdT7z49AV3L275bPoZ99/9iB995znPrg4MkyfZ+a0Ohq52Ad4HY2Rq7cgHzTCqOMRps25wLZNpah21Eyy20Lrus0FnNvJSyj84D0RXRLERO6zeuC0BmANs04wrgVOw+WAiTNNErZFUCvmkk7+1Z9yrMosNB/U2uVonFnuGmhlqYRLHYRpNwQa+993v8id+9It87/uf4EJQTcTWPpGLTjQ4ncine9J8JB0Ty7wQZ48LA2PKlJRxwYrO3unC8EKNulyGQbi6OnB5ceCw31E/f9lFBhobtqEELfByX8HAfbsdlxnf7WKwR3i31T/PMN6o6fBuB7SCAg8+5SE+9yW2LwMLPvo++mZv1Lge7vVYb9fbPnubxalGmzLfgnPshsBnS2RZFlMk0J6a4AVVjV/hhnEYVV2ayDhMgCMXIQN5HBjHgadPr1iOOnH3Yj+Zplohx5nJZHtcEFKBnYOLIHzv42eEw4EwDeyD52q/w4079k+e4MLAcRq5ksKPvv89nl4cuD7sCSnCMiszb4mQFxxFR284TzGNuP3hAi+okQgjOjlbmWil6oyk0+lEU1TwzvVeljZjrDdfWwReW8ZeDDNUGqHVJrVdgObECta3tapmVINddNlZM/Gm1pXbyPc2Ql1UmUMGYdrtwfq8XFhs5IgOe1RPpwoOuWoxXdl6iVIrB6dTpHeD42Ka2E8Tc0wkI0hM06gqDZeXXHhPqQXvPM+vr5mGgYGKS5FQKzvvqReXSMkcxpHDNDE44fb1DTcimpmgU3rn44n7+3t2QdhPl6o64loLvJ23UsnWPoAFs+LM0ZDJUQNN8Spv1Ru8+8RwXfvOMmCx3/ttbUGEsgHbPbOSNNrmRFQdojY2qF5vdTR6rktKgDICp2kiGOQ8jIF5VkWTRsIpTic4U2pXx9gNg+oQDgN7LxwGz85rw7EryepagcvDQacSHA7aopLVceWYVbVFHAWIeaFGhbmbCr6qqhiLtcGe4izzQtVyRFsxxhCYxoFpHMwWazCwlSNTKNfuiz+urMJed6HnVH3xNVXoNxyYjiM1yPDt7/vWhx+85dmpf8/r8Nhuj7Ia33ocbzq2LU297bP9pHMo8Px1j8GcD2uAzTi0txYBVa1TeHYMweYENccVrADtta7khIBOMR6mHTIUkouM40jFkauA15s5LyPL86ec7k7klNmNe6ZxIARBamL0Dj/oWPDoYeeFi9HzJ773EVk8WTyDE3YXB4aLS3bXV4zTnuXywMe7gY+eXTOKEEqhHu/t5qyIFhhwUgkudPki7wOHqysG5xi858nVU47HI/NpZsmZJSXmeeb+/t78jzf8f5VSqrnYT6ZQkKJOr1JNFaNBMCrH1Hq0emnAqNQqj5XX4XxVM/g2o0uc7/WzpiLeByDWauvCK3wmTo1HG0boHGKDI2utuKxtCrlUcldgt34x72EYIQzIuGNOiWTnAiq73cSz5894st8hVdsiLnZ7as7kFEnzidGBDwG/2xNqJe52PL28YBTh5TgyiKx0+KyEhPl04jg46tMrI2N4I7qEXhfMTbFCwLvaG4CbOC1Yb5t4mttTx6Wagq4FHVJwYn10/T5gw9pcb7FO/OgomgWDIjb7S8kJg/eMQddnsfqUOFUaCYOSTIbRIzNQVvX/4oSSkmUqMDjH1X7H9X7HfgxcDIG9F3bB40uCCGEaOYwD14cD+/1E2E0QgtYIUybKAnE1aHUeyNbwXSyb7wo5Vl8t2BBP9PvnlBXS9I7BO2UkTuPGcWn7Qt0IQ1PFlE3W8/qh27facbUIfn2gPf5mP9ebda0HcMDbsquNs2pZTHOYD0uMbVE/pM5u93tY4Wqfu52j1FPqB/s89ro3t0fd4juee3yrZqREdFHWkrUxUlAcPC0M2AiFKqqrh5By4TQvTJd7hsnhvRaexzGwC4FQIFR9zW46aPTllA0WgifHRB4SJRfux3vt8k+Z/eWOy4tLrp884eLykjAMiHeUm8IPPvke3//hD/jko49w44SEQKww7AOQmF9+xnB1TahF+1qO9zpMslTGMFBLUnHWnKglkmohHrXvpdZM8CMXl090RpJzvL55DSOacR11ltVpWdbrgmajcY6kcYCSgKJNvrEy+hFcpUpRJ2bwsRi82Cxi07OsFWquSguPqWvvIaJUenN8UiHHWYc8Vp1OqzJaJy5SIjivYzVOsw63bJ+TLLrO60BKvf4ZJ6pPt/OBIo5UIGY45UjjMVRRNXInwm63g+DZH/Y8e/JUBxpapjAFJW5I3ZGGQbOOnLl5+ZKdN2mnqpnX954/5/6TT0imYl9yAtPc240BP3qm3Z7RhlROu9EajnU8SMsYClXnXXltCejyTj3gdSBBJ2wDtJq5U2PtBXV6Jle03h/tvn5ESaNlbSgz1leD2KsK4O6Hkcv9gbulcBczuSxkPCWp0nqlWhY2MO13pNNCwBFKwDkYpLILnk+eXPH0YsduDEzesXeia/h0x/6w5/nFju9+/JyPn14yuQrLEfxeiRWD4PD6Daq2WDRzUqHDz3GOpBh1fp5zZBwSlArpgvV5lUKtkV3wXB/2PL260Ox3xVfJkkk1kWpiQltkumrJl9i+1Y7rbGuwgHQPg9SHu8hqwzue/SZU+LZNTbn+77FZMl8N3Hv/7W2f88Xo4vs5sDebLLefYS61wVTibGqsDu3L5uC8Vz00vSkyBNdnB3kRPEpgkNDOpbLjMGkiZaUFylAoTptnh3EgDCY9YwoIw2CDCaeJJ9dXhHEE5zku0fqi1PE8MfWLRWzgnxXmXY60gnnJSRlV1UgQDj3GYcJJQHUBzbeIRyR0HQARGMaRE3earVRh2k3sxolhazCVS90lgErNNoyzSRttTrgZPAwWtFhMa17mdKRAdQrnCK4P+WzOR2nxaEF+GDVit4yij0WxZlh6Q2wjhuh1aBlbFY/XOEMnNwcPwSMhkIppIlhztWAwkhn2kq0GFoLVZrxKFznHYb9TkeYSgMJuGkhXl8Q0k7IazpQiOS06FmdwXB527KaDDVwMTJMyJ8U7assUs/YPNnq7jiVpUPeDGpTVHat975YhnN1TWyjQCQ/t7trXVej0dbtn+ngaYwV6cUzjSJJMTZmUdBDokgvzcjIxX33dNIwE0Ynho3hGqRwGz7OrC77z9IrJO/JyZBIU9hs9F/uR/aTi1jkupHkmnk4MQyCja7jkgtPeiqYtvC4yNOvK2WqAWacUIA58MCTBrXagogxVUVKNF9fHRJbWB0dz4NUO4I+543pIZtj2DmwePvv9fRmE21e/8RrLjtpzraj+ZbZ3UeHf+vnv2L5Ie/DhflvI8I3PqdCxfxP93L5XM8rquIpBNGaINwKwqnFo9SlR2LCRQHQsusFlxa+OKxeqr+a0VFbJe9cJeCp3M7Lb7znsdzp/yUbdzEumolT6iyGAwFCDEiiMxNCnAhk01w2MGR+xWhfVhH9roWQLYUw1vJ0HbQBu+D3sp4lp1AF+W+VusYbYavuumNO6nnptrGXv9rBCRY0BJ1YvUOPTjnt9T0z+CWLUCbTeKfSpKg4b1RJzVrWyXi+hOy3vV70/nS8p1GFAwoAfBmK2IdAiFBtH0uofvc5Rk07RdoJ4HZZJRbM0NOgRqQS3R6GoRMqRmNR5xTgTnA05nEYGU0l3Tqck+2AQaKETVGpObQH38y2iDcfinEKLpWjAVdZZZ48iJ/136c7wjf3qeRYmyHrtqS2lQkT1CUccSRySF2JKLEtiWWaTLHS4CsMQCOIYnGMfPJODizHw5OLAs6tLRge3L08MAgRHxXM47MyZC2lZiPOJYVY1F52XZZT9tn7EgjWhtwTWNk+rtWXUavJPwXoIDR0yvc1aitW1NVDLbGHVxr6kQ1DvMFFfuH2rHde7SAwt+xILsR6lwL/Xh7z7cz50sxLy259/K/T5zeRzW2LGQ5LGIzu/8buTZoiFWJQ04L23pth1ZlFTtx7EMZgBpJ6PPxcRsstkySr+WpQ5VauOqhjGQY3UOOK8FpQvwkAYR6Zp12E2j7AbJ5xEKqKq4jnqzbYsSIpIzkqvN2kqQafGClg9KammYIZUFvLgtIYT4yZIKQxhILbIE9T5UU0hfadznwx2QVbVdqXrmd5T0fNXG32wrs6v3eXqp1dBXmGdeVRbGlhs2rFdHh+EnFbYsPiBYdSRI12QPre4+DENvtY0ur6fFw0q/Ah+3OGHHW7aK7GmYgMGMfkkz7SbSMvALEcEmHZawM9RoGg2OPoRCWoctZnV6nxkckkqc5R1dAwl6TRpsKGW5qxcAPGoMKEa+7Fllqayn5I2c7fz2IKwgjJcS2MLboxt+/uh0+rlghYk1M1+bcyMrSfntMfRFah1AynbetDE1VNOs05HXhbmU8I5zzAMeJR8GlzF18phmnh6eeDjJ9dcTiM1LeTlRDBVlOGw4+nHH7GfdoRhYJ5nhrt7vAiTC30aQBVdU6AOvpJAcndgSKWivW6lFh382RagOa025sU5rTcOw8A0aWN6qY5Usex+PYfdsf9xdVyc2XibvCVNReAt2cvZaza9Su35B49/1e2NnpD3uFqro3rbd/jqx/YuJ/UGSaTdZCLE0uBSrX8VoFQjblgkGUIgDC0zUrquNyaVF+1d8ba/AxDVMtR6meLoaZpwOIagCt7DEBQKEtGszqsjDC7Y2AXRYZAx6bgJ5009SSjLwqncUEshLtEyFBP+qlWnDksTAkPrmuZsnI3pOJ2OKk2Vk7EpFbNTKKjipOKq9sZU59XQeG04HoI2Vjsb0NgUxMXOYUMItKy0stzsFjfD2Opg54zOAmoYctZnS8Gpqqy2LEg5gxmboXVDIMga3OUYFVrLea2zio6kryhxxaPDQX0YrHdqhxtVi7GazmQNnqUUiujsr904kBxQB2XMDR7vdfRFse+oepYTrW+tkrWPKKvTKrV0OFa8V81Hi/6d9/hhxI+DnktReNd7hSNXVl/Fe/uORUd5NPp7h0INKmxB1JuQ+UPnZY9jzMMWgCH9urXzLTbl3IsjGNpQ0mxomWOc9gwxE5I65WEMKIAMpSRCGNmPA0OOTN6xC57RCaQF0sIUHLtB1f4PFwe+872PGcKox2LNxPE0c+Kmw784sdpe7aLNCIhrsGaxqQG5B0a9DlsUhk8pmYPW/Rtz1XuHRjANBWjN9OfDN7/s9q12XGvf1kNoUB6z+Zs9Hvvjm9satvuh24cc3qPEkodF4+aYH+z7Ljr8G+SVSqMRaJbQI811HxGF17yNmWjjJsRep05KrObl1i9bHeLVOE/jaGMoPDlnlfURjXJzyUjVMQ7BexoFPCc1TOJUGkh7mBwlZUqMaliMVaZiphrZS3W2hPqQcYsSM6BGLUWdGZZMSklrJoCUDt958dqXI0JA2VdOnDWPrmoZdMd1prC7XgOd2U7DU1oSRm3Nx9IL//qiQimCiOpk6ekwSBbXIRqxz8k5400eSRh61IwIuUJjNjYI1c4IxQKNNmFYJas0ELEUBhk8Uj2FShEhBAfVMyQb4eHXWp+R0yybc90555zPRIWb0gRGEGghXRsM6YbQ6f6gCICz66vnQs+BM/SkFKEm1QFsW5+mLnLmtLb3xkpYenhvbu6X1Sr1LKzrT2L1XdGRJhjDDgw2HAZmW+fBasJSFRZWABAdXRI8+yEoNJgTUgqHcWAYPLtp4OLiwPX1td4DFZbjjIjO+YqnE4RAtaDS24id1u3XFToM3iVrD5eukbXxvU/jztqy4VBEoq2lM5vyEHrdrvUvuX2rHddZ5POG4f4wr6TY63l/19e2vef1eV9IcJsdfp3bQ9jQOdejz2YsenEVvedKVfpxNrhFjKQRbO6QN1UDL1pobhFuEIfHdyORczYDCIjH7yfSMJBTJsbYI3WopByRpDUWvRGKCU3o9FyFyiJiorM5184o61lVKcoyoHbYTgc36rHM86znJIvBVJm4KL08hNDPUy0RKZY1TBPEieLa3LL1Win1eg2wBI8T3//qUJ1l6LVixeu1LqBK8OpMu4G0Wh21jZjR53qg4DdGVehZzDhOWvNq58UHUozMzAZTWo3NmqARIVWLvlOy+V4ZSZHsBHE6FsQ7nXhdnQdvRt4DYzv/+l1D8JrNFdPEw1Rw6qbW0p06KxRrmVYIo0LGLVsC2mRjEenkgzC02hw0BkLO7bs0+aVz6O6t91a/EGwCDlYSWJfmwuDClmHQH/cIwQWGoOQxKRrIDdPELiUWO7fBIL2StW5UUySWzPV+5Go38eSwI6BM2CCVZ8+ekkti3E1cXFxw9fQJ47RDcBxf31OWhRojKc6QdHKyCw6pGoDgKp6Ml2q920puSbkyzzO7nHpG1pqwaymkGKFkncqQEnPr4+x1NGPZbmqHTcPxq2zfcsfVNjO49tOWna6vLyY9tHf4euHBL37+C9NlOc9i3nj6Hc+97/a26HKbaTkRikGUClXaKEk74alo/UCcwhLLMoNNVXVVjZSzqC54dVrBYEMpamQE6QsdsCK+p3hdos6tTk6smTelxQyZt2J/jwk7bIGICq425XVp5BC7B/U06z7OM88zJSeUVq2jG1wunE4nnHMcDocefYL2OCl8JzjvSItKRknJ7K8u1IFbpqrNV4LHt4VAP4q6zXOMIN8MJVCzGXVLe9TnambXVBmciMGk65rokKRzlKxGI2atn1SvDtcHz+ic1hCDV928Vjdr9SARUsqkWikp6vWrFdcaVEUPKuSAlEEP0HkthZgRFydkU1PIxmLE+pS2GZ5zYqxUqDZzStfAqFOLRRU6fLCsT3QMSQVyLXhz4aBN2NhZlroqRvgGI7Ky3r7oPnvssX7/Fs0w2986UVrXWbKgRPp1rniUqFStLuyyZe6GHgQT5i0Cvg6U+cRyWrj++Ic8vbrgycUByZkaF9zgub644Ob2hloqKWdVK/GBcdoRhpF8UoX9Mp8UfSiqYFOyNWG72jMrEdFLZ/XRlJI+l406WgoU1UlswX6bkJxKZknRgjosWwRYYdg+zuWPbcaleNVau2pITHvuC+x5j3/NwH2V7X2Kje97nd5KOPnAY/yQ/R9zYG+yC02XkfZVVTUi58o8L2cOucENAgTnu6Pw0lhW0ps0pZtrM+OyufGBEPKmFlQ7BKMGz3W17tr15HW3kmu/rqlFruIQCVaTacV4FWvV76vGTEeBeHWmxngMITAMA6lk6y2ybKRU1R1MqcOVwWo3QwjW/6U1LtfyMAvOz85wFas1rM9toZb2oPrBBlmJjpdpU34bBNrPLT3z0xdUm/K7Rr9eRIWNDcYU58kpdaOvpRBHNmJBdVrYb1DlOg9Lp1J7h7U1lM1xWGa8oZxDXUffqavWz1O+PVXodU1nx5iKqa6rNzU40G0g64pYbxzQA4vmuOyIu7GtlnFvUQY9l5YB0sIIC9zqCgZuHVpvz6+o/qTdJ0UaFR5tSEf/9nZeqQpJl5zO7McwDD2bHoKnZI9Ux9XFQRmVwSM14Z1nDAPTODGEAfGB4DzZGserOPyotS7nHdlBEjG2ZbEgFMsQ9Zs4aTCrrEiGKXi02la1Ngox+Febp5Vs069R1bupw4s94zpLor/U9q12XK3mAQ1ueZNUsLlt6Xu+p0H/UEexvRAPmUi9HbE+/r4fdEzvAyduo8EP/IzHthadOudIokQ47z0FIabE7d29jYmwHi4nfdDk4D3e8HNnUajYMMPScHVscCIrIuGc6qGNw9CPoTWB1lrMsJpDk9alXzspg0Kn7pfuOB3idlRLW0SMEF8NzhC0T0yEEEZyzhznI/v9bh27XoRjUoV7VwslZfISme+PpLhAzbgQGIeRadRernEYaHUgdVz2swEQG5zUssr2PUvOxqJusNZq7FvdBnNa3XF1B77JZEShQ+dDPy89Q/Ae7wJhnPDLsk7pbRRn5zWjoIJTkoZrRX7v+qTgUhKuqHHWvi3fHQLWbuBQB1zbBRc1Q825aT1Qs+9aixF7PGEciDlrhl9UqqiKecps58ocfM+o21iO2tbYWp/13mtDfTOoRcldznlK2TI4raetQ7t61Vprh9g1STVZq4DTPjf7HGdoAlkluTzKiQiigUpNlRTXwI9qLQKlMMfI4B1+NzHuR54/fcphGu09tOH7Yj+x2+3YxwMSArvpQIyFZUn4MTHtdnqcY0BG7b0rMVl9TNdGKYZmVIfH4V3AOYU5S1LB3ZIWyAmioy46zNKhTnY67BiKajLm3O5DdVtrD5e2bbTmjfzHNeOypbje+LL99z1Srg9wYl/bJtJTr8eYfX/gx/OO7W3sHzUoDlwAccRcePX6ljllxHn2+70a6+AZRBi84HJEqg2UqOCsGVlc7TWCVgpomxes0G7sKDQCdRLsdzWUtWykZECNhQSyZU9VVP7G+8BoWZMzwsg4jv2DY5z75YlRJ8w2fTXvVFG8NFp2LaqqsKjTWuaZ0/2RIDpKfT+N5ojqCnHaENPOKrTvua3lKKym0W3wUFMh50TKKrukjlVHjmj6pSr0LUDrEkb6zt1ol2wtCc7r2BLvyNbvlLJeN+dgHCf8MDIZ5KuklMRpnsn1wXs415l9rl04E7ctbSQGyvZTQ155dA5ZrQSDFYv1ftmdsWZctv8wKtDqc1oXSoNKG7nCMsBiun5bM7Cu5XrWn7TNuNpPRyCcw9W6Kj1skIV2/Zw5wlpbO/3mM3Nj5mVVynKeKoHdNDKkjLe6bHvPXDLzfIRcWOLSpZSu96PC4SVB9Tx/9pSrw45pHGzQ6hOGacfFk2ck4H5eWBAODXr1DmEEcUjSWqXoIkBSxtVFk2JnMHtVGDXGyHKaCaeZixRBhBIX4umkMKfzDMNElSO5VmLe9MRxfq561vXHGircbrKNXXsyf7bDVoD0rW/zTsexBbQePg5fJfl9jIL+Vbf3eY+3LZ6tw1p7VRoUo/8VkxqqIixRterEax0oBGMSimVZTnBWqNXOecseaoNx2jHTr52z2owXdwYxKCzYoCXXNQW3jkshlGC1FsHZjKjB6yRg10e7W52hZM3gDBosORmbV+sw2s+ix1hiVKjFKNslK/7vRKNIlcpZSMNASgO5aJ1GnP5409drcFI/t1tRXgx+bA3cm2uSU7KpybJxjs37GyRnTm3bfmGVM8146ppRaINwJuUIeZ0Q7sOo/VFuYYlJe9tM9y84pyoYXhl9W4heDIbUPilHx9AaxNuM1gqX9EypoIa+fZfGBjSoog969C7QWk36mmypT8Hmaq39Qv2utfeqZf1pWamw1oyVkLSSkqRlaCn379onAPRz+KYxbk3kAn09I0KuyjBsuXG16yuCThk2ME1LR/pv8F6DP/EMQ+Di4oL9fsI7R0qZcX9gd7jk8voJM7XPUYulUnxVKv6gcKIbKjVlZEnUlKFG8NZMXIoO44yqQVWKzeQqReXeECV6pGSEK4Vtl5Q4LZHTEtV5VbpGZFu/X0Xmabt9qx3XmaPqhn+FAkTEIJF1CZ4REL7EJ77puB6+yxc4rwfZ1Tbaa8e1vrP0/b6IhPGu4vLD933b7217rPmyGYDa6yyqS4gZp2giq845Li4ulG4NqJq1WH3HyAWbBe2csxqAQTq9PrNG0C4oZk+pWjuhGQFtOPVeDSjVGfomeB+Y9gdc0zQ0CM07x+C8OchKtP6l7oDqmvE0EoZCUApvUpWcUFMywVvT0ata00q5EFMkU9lPEyklsjHFnA8d0vNuHfqoWaNqBTZISwRyKuYUraZjtYNSEsGNCrdVhUhp8GhmxRINomnRgOhsDBM4XUkdiChBIUVyrXg/4JyeUx/UAfolMqdIz1TEqVbdMOCMZdnXXlmdRq7rJOBSpa8vsOYDcwiprjWepm3YHHIRVYff0tXVsdROInHbe1tqzzu742q3rQUFjRjS4Fl1WrUfw8ra5CzjK6wU+p7NFoUF25p5SG7SYAGCd1Sv94srVRl8FkQorq3nbZxGrUOaOLErWeuMptThvWccJy4uL9kNA6UW7uc7DvtLDtdPuHzyFJcSpxxJOZEa2ClCmEbN+SuQKlUWqkRKFm1FqShLdppwS4SoQZwY2YqkqvV1WUgx9oy4IhyXyHGeOc4zMSeKkZC2zmqbpdav4MS+1Y5r3YS1ltXlSv8Qtsdgtbc7si9kFf4R2aTf9eCqasJ32ScLDrI0x+k67Vlg/d2kZWouptOHTW61hdyiYguLWy9OGwLoqqM6jcibxJTzSilXhpnH+4E2bkTE4acRFzzVBGJ1lYjZdB0hnpaZbIoKUK3gXLk47JCiju10OiFOIcAwBGqKnHIizzPx/qSF65RJS+R4PCIlM3nP4JwSU5zTyN7TDWBtGUjLqExyiebEiha/y4YCX3JRlXapSE7qqHG4bEVB0YGfSkFuVH+7iM4pBFQEcZkQRiU1oNF/7ffN+b0jzjFOI0+HZ1xcXtJ6qsI4bBpZzynkbvA9nuuBD81P6AFlNsV6I3G0o1Yle9Ygr03bbhkLet5ahixV6yaNQWnLUqFmrM2hqMvxyBvH1tZ4y7icnavaPutBptAc5xdlDy0o0POkn1MGT8nqIMYhMARHSHA3n8iKY6i8UxgQXyhSKLcnBrfjcr8jtHEm04QPOptOSgE/Mh2umC6fEK6u2eWCy4lQMn43EEZdv9NhDwQNcObIko/kOpMTBHSSthfHUBbGmEml8vrmSIyzDqqMmSqZsszUFJkOB/wQSFRujyde3x+5PZ60j97ssRIRyxs/X2X7uXBc603zFne15vuPvObrgeXe8aFr5Gfbu5zVWdYkH35sD5mBX9drGsSnEay0g1PgSZT6LKYv2PqcpEFS+iEKzeRCcavqg0Ih0is0zXggrjMQBbHxP9JnI51l2LLJqQ0CbKxDHRvh1WmyJibFWIAl6cgMqdh8J80URxeoVcdOaF5nUEm2ZuaUwTKiZZ6Jy8xyf09ctCYxjgPjNDIOpjLh3Vrr2pzzuoEIabDkWdNtv0od9ivVdBarkVsMkhWpG3JGg9v0C7exFC2DVC8CSh7QhuFW06g1Ic4UJLLrDEs3jX1NNtJFH+W+2UpVh6KomOuH0dWuYO2ns6ys38H1wb/2P4XalAnazuG6Htudb+eww61i6096zaZazx/SxnMoG7UYvNqzK3OeTTy6Hev2Hin9nNKvaVubbP5uP2eP16zyTIMnJA9zohE+xiEoDJ0S+bTgcyJ4YTcNgA6RbAxXMbJPGCeG/Z6w28O4w5eEz55QTeDaB8QH8AOC6nbWVCGMRnEHFwZInuIEn464ELRtolTyEhX+nmcbP6TBgA+KIiwpc7/M3J1m7udZG9lbNr/Vf9wELF9l+3Y7LnnrH2/u2IonW+P8+K9f42YG/pFr9NiF+8MgZrz3Aqr1gR0Vq19YpiuaHTlzXLr72rtCrVYPKO3lenpaX06LlLHfpYt4baAcNZSpCeD2OsT2v4aSGSSWBefKZvKPGrKSs44IScmkbFB40xQuAqoi4Ws19pf1j9VKjVHZVUVHMyzzzHw6cbq7p+bM6LUnahyC6sc5vzGS3X/QMvSqHsPgMc221l6x9oXat6tnEGGpYk3izU4IbOjgtL44VqdVq+hQS7EmbBuJ0pxoy4Bw2oYQvMc7nRflTHHBvNJ6P5lAL9D7v6jSdSzPj4IzQk4X22przM5Nq2eJvd6JU93BohONSzeCBotu+oN6k3yt9u56//cZUxYEIWLfeV0bSsevVFc7PPnovbIxwNtntoxenTrVUAU7v7VQatZRPt4zeA/E7oCHECgxUmIkLTO+FoJ3TGNzXKqsMQyDMfMqYRwZdjuduTWMuOrwRrPPItZT5wFV+Vf1sQBBSU2uiirFe6cZ/ayEj3YuckqkZSHFGclBJwoYbFmAJWeOszqt42nRFShrEFlNYuthEP9lt2+347JNF//7b2vvxbvrRt/E9r6XrBnlPwpbixzb7wXtTynNGIveFM7GVZRhoC5L82f2QswwVRvjYf1BD2EmMWKaFa5pChe1qoF1sBt09pJCVH6tHzWjg4DDoDBIp5lsDlQBtKwZl2VPPXurRlGmkuYTKS1qYMReZ2KvJS469r4oI+t0PHG8v2M5nThMg+rFHQ4qkNqliNq1lzODB2bQKMYWy+ZcrHFWQKzZSXutnJJGZOUO5pwt29K/vXObE2/3RkUDh1pUGT+lPiRTlL5JI29owmTke4HsHHFZ2O1MgT2ozFbTomzrwj4c12j7GpnQyjh5M0xwCyE2JiKt1PNIRK7MvXqm8+iczZMqpRvS0ppjLVDSVMKkx6rCja2lorEAS23q8PpvhRXCllVBBnRNtev3aFlgW8PZ7FPaeS8Kv5WsDNs2WNILPQv2vb8sQ44c9hMXu4nDNOJyZBgHhlFrt6SEc8Ll9YFpv8OPA3iHuElrY1l78lResFJisnvEAd7m1w0wTISSqYvWf91wiw+D6lIGR04LcT6S55nETGytL0MgIczzwqu7e27u7rk9nigmVyV2H29AGr0mH2y1z7efG8fVtrXP6W3woUav2xv7az+et0QU7xNpfFOO9LG+rscef0jK6Pvpzn0BVlQNvHH7VhkihdpyLiZ+rjWuuvm8dolaHUx4EEz0g2lGt7bcy0R6XWdnuaDGN4TQMXU9Gpv66xxlWL9PNakfdb4VJHQoShWlTM2hRDUcJknU5lrVWow4kZiPR25vb1nmhZor4zCy301M49idofNO62ztu1t9DnGWhDYjazWuWnrDaiprFqMG3s6B07qBGup2zYr6eGqHvfQzjbJuNlUQGwDZdCa1daClQCupfuNPSqWWSJwLaVnRiw5Luo1ocLBeJ8E0CVfHlptTwuDRzeLqdVTTj0QMWu4ZTdXzJdq75r0SbdrabJT0YCrvLcLHnFlBz80W7ksbZ9eJUEgnWIA6t2yko9ar1m8Lt6qb9CGc23vpwT0liHFO2j1mCAO6puuyaEBVbVKBd8gQdFDkEBiDJ0hlGgamYWQMg+4PeC/kHMkp4muGMCHFNC1TtutfKDEh06DnwHvtTStVs+sMlIAETxhGhnHHMM69r07Xpso8aUM/BiUW5pS4uTtyN0fmXChiwQJimTEPtro5Qx++/Rw4rjWafWjzzwGkB695/9TnC3f5oNT3ESfxTWwP8fh3bQ/3e2c9TtZCfpNn6ka5D/IxhhUOrE7fHdeDf9vvK4PSfq+tdtWe0/cXVKQUo1l7t9bVSm1OWI/Pm/xRtWhbZwtBqWLOVDXa2sE5Sqd7O1kHi6/Nzi2qLqQUmZeZ4/FoBhA1KOPY+8QamcAFbzbZMkKn56658/ae1WSpupuvPUk1J2sQqluFc2mVr6rMTPVZ0mNa18Pd1VA4zGj2LLhlSKs6ibSTb6/KpSqTkpaNWW3NbQg5TnAldKeNX0WUNbOp9n3ezKY6w9G179K+XenXp7cJWNbag/a6CQpsERWxKt+ZM3kzQ1qJF2t99fzxDVzZ6mTmANU2rN8pGyu17XvuyAyW7Ood7bqzwpYmf1VK1YkKAniv6yqo43IUlduyerLEpa+dlCIuRYIp/CtJya9X3iSY1DPacRo0qF/C2SBQj7M5ayEMm++iBKackmWG67SG0xK5PZ6Yl0gyxY52Bdua+hDi2hdt32rHdQb1yXqKVmO34vDb3ozH32xT7H/jqQ/Pgt63APltYBUC3Ti2jLVuc/+G79l5KtbUOghIMUo7oobH4JsiUC1aq66ps59fU9eyBefxpnThTHVezAEEy7bCMKwRfdV3auxDlbYBKSCiGVN1TaTHd+JCj4vFIeiQyBqVmp1MVV5ESClyOh25v7vj/v6emgvBe1Uv2O/ZTUMX9fXeM4Sh/+6ct2zV6h1JWYPViB9N47G7muZXazu287XYKgeCQoqlrqLIesAq5dRmMHWIrVo2LGIjPvRDWtbcM0aDW7PbMMJyppbUocRtJukWHTejAwfXKbjdAXdyxbp+HPQMWlrfl92rjRnYnJpzGydCW09WxzJnWbMzJuY22KjY4Jf1MR7cp/aZKqqs2VhvyXiEhLLd2mtai4cyIxsc+hAFap/b1DWMAVl1LpYOT9Wm58EJl/sdlxc6KHV5vdCUPMZx5DSfSDEzn064+9dU5wjTnuFw0KjFr9ldY/fVpO0buAfmvzk7p/qVwzCQ2jy5opPMa27EG8+421GoHJeFV7e3vLp5zf08q+QTus6dXZtiMHWv+rVewy+5fasdl97YX6Yf6+3OqAMGbzz/ICsBW5hfcIxvwcO3x/FFzuuLerje9dmPve6txeb3eb83XtKyH0dBGWKpZBtouBZoS0sfgBUCpBtVqdU00pphckaWaPUrM2ybWULvOvoKpKKRoev5h+ZiWhoRpYjX3JORakSHtR5RNLOwunbOhZwSp/nEEiOpZG0Wtdqet0F6w6jK5Q3KagbfFS3451Js+nBRp9V61Cqmp9ecqGtBfYfKqCpf1Qrdzaho7eccOmtsQ1DR1Soq6VNrJUigsT4xgdcqqmJPa3pFulNUnqK6yeKgiF+dZqu3Vc3Klhgtw3SdANEA3BZLBgk9uyopb67QCj16cUhQRQ/Xg5vuerqqyUrAUONYrE+Nfh7sJW+pnyHG1MyJGCN3d3fdcel05s29Iuv90ycn9PLEuUPcPl5K1eZ0Uyvp2Zz9eO+ZxlElaWMkiDYoD0H45Hvf4fnTJ1zsJmRWDcNlmbm5ueF4uidllZqKpwE/jCzLiRATbhgIfmAcd1C0FwsvOok6FVQny5r7U8GXon1aTfkiq/qI1EKOiWQjhgSVDRvHHcuicm8vX93w6vVrTvNCypAVbLFBnWuWel7f/GOacZ1ta1j68MHHt7Ob4OHjjzz85YODL9ze5pS+jlzsrE61+Zx3Oa23tQo0J7TGjufAXym1SwhxdqOfxZprnevhe24zYxGbZeUsS1kzZ29NyrVF+z3Q2EBcFe0XqzoBFzlXR2hnt/a0pgVAtf9sjZwYzJNSYl5Uxy8nE//10nuaxOSCulKGNAFYg8ty6WQA7dfa4IGWXvUrs1mjZ+y12mjXdPjUSasCrue0bSoUnCgUzYSkaE+ZNcKKVMRVmsJ7m/mlfPuNw7dz2q+VZRPNcWlC3ZRGLINo8LEoNKpEE8C1gYsoaYSW9SrLTVssLGNf5Xz1ebv29DrZCpe28+REKe1SGpNy68gM+mqN2Jtz2yC/lmFvob++gh84v76mNo5K1gWux0tRDT/aFIQGNa5rPYSBsSr0JqXgnTD6wPXlBftpRASmaewU/ZvXN+SsTeHeCyUt5DiTo/ZYife4ITAET04mbtzuxS6LZUSllFW3MClbtuY1w85FUQdFBnK/V8SJqsHHxHFeuD8qaaOtdSN7tku0wsRfg2H7uXFcCpVsb1oL5R/dUW+FPqpo6zjqup+85fFH3/O9LsbjOz2WGVULr79OssaHkEMe3qzNWGkdY4Vce19GMU29lIjLoqK6dh8r96s5HjqV2kkbdnjuClfWmDoplQ7SZzUT8wYt6XuJCdK5BleK3TidxaaOy5mhd0iPsmkNwO1mpM21qsSq0F3bci7Mc+R4PHGaF5YlgQQVgTXHVeqaCYnXbKxpFDb1j8ZgM2l9ulI6a/zVIKT+z9n9bme/QzvWuGtO0m2WTDZV75QzJeqbOecofsSJjo5xPqzNxO1auKqjVNo1fiDwu16xvjjU6PdXmCTSthZFXmG/mqjFrltZ15FRSvSaVtbGdXOG1TsV5+3f36BGWZ1fqy8GHJRKjEtfC53lWSvR1EpKrTi/6g22raE5W1ZhE48tm3UhTmtF6mTN6be1aBek5EosiSquZ/Q4b8xYheeGARCn12ueCU7YjwPPrq+YvDL7Li8POtk6R372s58wTRPD4JkGT40zJZ5IpzvKctLm5HFgDI5Fl5qyeW391JIpMZFjpixRWYClIDlSU+x9jjGnnn2vCIWSQlIpLDFyPM3cHY8sMZ8HEd0G/x81rrNtTdW3jmZby1qx1F7QPssA7Ded194j2bPPqOtu59Tm9bfCKm2zPl7WnwcNpSJy1kU+DGsR9KwY/PD7sj32b2brtY1auwMpbo00BXX6roCOA1FabYyJeZ6Zl4WDrPpsOS0qb+MVBhKnmZTvWUJzPDqunCL4oBi/svxyr5voHafn0XtVunZO1eiD811iSAQGcTYj0hNThLo6y9LUKkrtLD4HSG0kjowz4+Sc537J3N8deXVzwxwzS6qkojU2nQemjqrJOmURsgVICXAdIhGavFX7yXnrIF3XvlPDp5FyLhlX9Hmcru9a1ZDqvDOx7K4dc8ssVH/fwcb5ac2vUog5IznrxGrvIQjiVcW82d1SCzEnpmmyIKGSclp7nGobMQOhESTs2qvfKmtvWKmW9XkaBAqiGnkARihQgg6UZPVJjEhQi10o6VlLNQKME6hOM8FWKkslWeOyp5RFv69dayyzkZ75amXm+dMnpJQ1QyqFaCNeVkq8KORqsF9K0R73vZ6TU+4XeMmRbFl/romMkm0UboaEJ5dIjFUzllKocSa4gcvdgcNuwNdMWTK73chu2uHE8emnnxFPR3wZuLx4Spln8B6338NyC0OFkJTqntHsuioDsuRCiQvEjEsJYkSyzs8TY9LWFImL3s/TOCqyIGoLRCo5Rz5/fcdPPvucH3/6GceYSQVqY223Ol7dzkdT+LGUL++04OfAcbWts9K2j8mbj22f25661dE92Lu++VDbqznBL4ok5C2PPzyeL6plfRMO631qbG0/UKiobQ5s1IUYFLCqbTcHU4vp/JVeEdlg3M2Q2h3+IEBY6xPqiFS+zSLxfkwt/DeGW2kAlJjhFWURylpkb6MotHhSLTnfjNtAj907NZQxFZYlEmMi5cK8JGoVbdC0UetbcE5rOxvoULwqF2wNdc8uDB5sBawHgVGFzrhbayYr564z4Fbgre/TzqNzDi/BnKBlomcpXO3/rR9eumPc1mTa5XoMIeiitfZ8UzkpVfpnax8UHV7r17+TH1yHzkRaIKmf1eplFhGdrVvNDtt3aJCkXhXvPHgoWfqQTGnXF7322r+l58S5FrjxuNSTrZVsa72cISZiDcaa/YmTzYgPU/ivikDkqmzNnAspV0MrInFZcLUwBseTiwO7wSMFcml1VJ3vtt/vSPOs3xFRUk/O5PnEcvcaT8HXgt+D5KLBU9YxKjUXaozUmGyqdYRsgal6ZG1SL7mvTYW6E85IHaVkbu/vuLm95dXNLUvM1oq2YggdNtz+fA1Y4bfcca2mr21N8+78wTdvNH38Yab2Hp9YV+PSD+Et+72VkPHGYXwzOdS73rdlU++kvm/fR9Z/Wwra+zTEWHIPvnMrxhb0ZhCUnNCLtGIUAHu/ekaBP3derb+oO7a3nPdm9HRTlQiqkTwMCuoG0wfN+CzjaTUZZR5qBlez0n/nRfH7UmGeEyKeMJimXMlrACMNzrRR9U4zQhUBpkNemAL6+Y0s6z8tELCHenZzVmtp+xkpQdp8qE1TsDlsL06L7KWQyRQKXVHSSVe42MYQHdZsNaBW+9peG4OQ2ndrSvjO+wZIYbGHZoNitS5ZmXq1Sle6wBxW6xHT4NA+q012bsdLc6w2iLGdRWdAZXOgjSTjPSdzDrVkdrtdZ1W2jFGzQs56yIQNq7AFZIaodBRic12647J12tQz9KdY24ZiMSlXYi4ssbBEPbblNLOXzH4IPL++ZBo8ZMhV2are2j8uLy+4MycspeKDZjlpnjnevmYohSEXXMWyWNRRRcMNYzSHpdlVzepyaoWaU3dcdvn0+qaIH5Vxm0rh9vaOVzevefn6hiVmsrF/+4va+drahhaofQWz9y13XO/YzqA92fz+JbeHDuu9X/Z2B/ZHcXtI5lizQCuIa3uxwl2ijY8UiCV1xpCzqNXe0Jo/zz+jmFE9e6J/rhEGpCkSrXUt7Z2Vtyx6t9Y6rLlYrDeqDYfENWPt+neogvUa69TYgmOY9sR5JuaF2/sjxyVyf5q5vTuqfmHwOgerYoZUnYvfwqBVEzod4yKmhejRCegKGwJm/M3IN5RA7Jm6MgPpGYxx/axvLeeqdR/RES+bHF97bZwgXgvpvijBRGFZUSdXndHZG3PTnGSpCk/WuqGsr85AEx/dN4inukKMCsflnDsrFOhq/v37tUZrcTaI0gxmdwi2/theajEWZlXH2O7HCjmmvnadh2Rw8RisBukE8YGXS+T+/k7rsG1CtWuyWQ36fLge9bNp/1Y0v7F7e9vj10Lpzji0c9zWdEyZWCBWIVdvTjdTk9WbUiLHhAyVcQhcXV0SNplhC4aCH9jtDty9fE1cIvev73n69AlCIKUKc6LITKyOmorOWfMBYqLGYp+3UFK06cZJWylQOLEskXk5cpqPnO7umLw5vpzJFgDNc+Tm/p6buztu746m9s85mtWd1RYdaI7/y9vjnyvHtfUr8taT8vjjX82nvYdj2mYiX7Drl6W/v/mR7+cwt5nX49Dh6ry2m6qeA1Tr8SgmK1Qtam74Hmd1QlgJGCqK23p4HhBCWvDRnZtBh5v9ulNtRqMZl82xN+O5jb6bRiJOmWeIwm04r5CLOFIpzDFxPJ14/fqOe2uwPM6R/R7qKNScGLzCUc4N5lOrZnDmXGh8v9rgk+13PIcAbTeL/FtzKGf0/1rN2UKHXrfjuDTD1bfz3tvUY1VncLXiw0CrMdmhrka7ZV7OqZhrXZudOxt09YtnUXRL1xpzMiWdLeWsfubDSnzgUcP1AL6sax9VWysp1lXp3XrM2EDU6znSL5dYqfQt008psyyLOnBpWi/retmAoi3112sqsuXq6DJqrQ6P9Hk1J9auVWFtwm6ptMKRdVW6R+uE0+iYhsDgHLWoQ3FOr2HwAe8HsiuI81ScjhTyAR90IoLzeo3FZJ4KDucrLmsflzqu2DMrctIygGXvKUdSWsg2NHUMnp1JmJUqpJw51apO6/6e4+mkY45CQES1OTWz7mnDG+eG97RPj20/P46rRahybhTe2E0ef/zha7/p7b3qSl8hInns/R8/H+92WtuM68yBbWA8oZ7NIlozB9nAe5sqoqyvd5v5W7RPkXZTdzO0+Xd1cOv7tGctE9niiBbpOzM8vWi8vpumdVWhS9moUswpc1oWjseZ27t7TvPCvETujydVzvaeHBecqH58I0TYwdOEcQVR/9NgkwJb8TaxtK9rpItlHk1Cf3vsDUfsXr19l8bubJAe4NsYD+2z80ZqEIMzW00q50Z/t307JOdoIw3pzquuyUd7fOM0WxBRjDlZayUMgreG7AeL6zw6f8u2hSVb5K6UezuQJurb1oimPJRaSdRVD3Mb9RdVQyneUTbfp9G42ayvnmm1c7/dl/U91zXa9u9A6YP97H2L2PnXY6mlZbbCfhrYjQOhkU1odV6Ht1lp4pJOPhBHLhXntRG/NiV4Halgwy8jtZhwcUqQEjVGGw5qkKCDJnmWkzKEdVikNtgPQdmnGSWlnFLi9f0dd8cjp2XRY0BMwcT+k23A84jz+pLbBwv2/Z2/83f4F/6Ff4Ef/OAHiAj/+X/+n589/y//y//ymWEREX7lV37lbJ/PP/+cv/7X/zrX19c8ffqUf/Vf/Ve5vb39Cl/jwfbAeb2TofcH6KzAjPFbnMrXlWl9U9u25rQmCRYBx8WmpzYa+ursYIVMW/e8SO3R/VkmZJ+z7SGpdUMhB2WXea9K1l6Nssiqkdc/tyt6QBGnPTRoQbyPWmB1YhoIC6kUXt/d8fmLl3z6+Qt+9uIFt/d3vHp9w+cvX7DEyLIsRBukF4InBIcP0hXm+3fut6fNvmJ7XvTYVR7n4XW35+3HNTHh4BGbPaZ1NO1xy0VrDktKxJRZUiYumRgzOaqxDMPENO05HC7Z7fbs9nvG3Z5x2qm6+DDiBp0a3aBHCUZACd5mqDnEBYYwEWzgpNjxV8vYwjAwDKNCU9ICiorg9UcC4k19PAx9RMcwWA3HxsAoMlmgmlJHWlShZBgJNl+t1cY8ynT1Tgiic9CCOGrOqq0XVX19Gkb2u50yJBv0KuhAzJ7BreuwX4t6fn1ETIMPzaRSyZ3RqpC1Xje93cX8gY4B8cOAHwMViDEyzyeWZbGBpBknhY+eXPHxkyuuL3aMztlP6DVasTUlLug4Ej/ipz1h3OGHUTM5m4BAStQlUuaZOi+k44l4f0863pHu70jHe/J8pMaZmhZKWojLkTTfk+Z7m8OlavUxRl1nuXA3Rz5/+YqbuzuWnBls/t3bbMd63laZ3S+7fXDGdXd3x1/4C3+Bf+Vf+Vf4K3/lrzy6z6/8yq/wH//H/3H/e5qms+f/+l//6/ze7/0e/9V/9V8RY+Rv/I2/wb/+r//r/Gf/2X/2oYfz6NZt18PHvyAbe9fjD7dvumq1zUq+sfeHs8LyY82W2/23i69lUoqPR3Luc1a7ynXH+2vpqhoDrW6xZktN2kkd2LkDr3V19i2TWKepiDosc05bR1g3wqlKkYaWqagBFvvTUUWzLTZReYyRly9f8fruHpw6PcTjw8C0P3C4uOCw27ObPKOrjH7t5dpmXi1OqbJ+X20Idigc1mpW9LoOtESi0Ylb7aA1Y+v3KLXq3KPWY2TEiMZoK5Z15FIMLqztK3aHJw58WOHLuj3mimUj1pjc3GtzaljF02qIOHBBZ0DVUpQC3th9btMwbpldte/oxfI6U7hf0cLa60Ut8AnBGIcVmmSS3u/tvL15Z65wpsokNVQgGCMUtGZZleanCiHWuKyKGucDEB8jNLWaFpZlNIfWxsSUqgvXOXRwZxViitpflzM9mKsVVwv7YWQ/jezGgcG3OpnTWmKBlEqXVou5UILgxkHHmnjPnBNtAl1wXsmzSRurl+ORuCykZabaPauQqV6HUouOVIkLJS6E9dbSwI/KnDOvTydevL7l9jiz5EyyhnVxawO7/mbUqq/Rln2w4/rVX/1VfvVXf/Wd+0zTxCeffPLoc//gH/wD/ov/4r/gv/1v/1v+yX/ynwTgP/wP/0P+8l/+y/z7//6/zw9+8IP3PpbzOseX2B553WPNwO+zfRH0V99jn/WwVuP1vp/9Icf80IE/dF5v/6Dz166QkPZ99FxiU75oRIxS63l634wYa8aldYzVadsb2EevwqsddjCosTZntIEya3euqiZeqyoyqM1Up9Go17U6kHXQZC6F07xwd39knuc2RV5JImFg2u0Yp4lxGtntPKEWgrBxWivRgWbuWw1JoBbRjKaoAavS+p30xHQTXHN3IBi8J2b8ygMDXe2898y2VO1FqtUci8eFRFMjHCZPr0PKVjhZ4UZ1rqUtEr02dVXB0ABALIpoTbeo8RPV6QudUm/QZ4OFG1TZ6ljdccu54xExB8Lq4EvpDch1kx6JwXi1rrAcZ/Ccyi05k+UqderoAWCKIUVp9NYQrSPSNk6rrkK623tl9YtKwNDsuq5rv1jevYGpc6mkrCSHUtdeQhGtYw1Bx52MweOdaEuF2Bga6OelU+2dQ4YBN446WiYaulFt3E1ekZG4zDoUMi5Ia8y39arHbWQNI24EWYe6VpRBvKTM3enE3WnmFCO56LQIR1uwWwxhzVzXbPGrbd9IjevXfu3X+O53v8uzZ8/45/65f45/99/9d/noo48A+Lt/9+/y9OnT7rQA/vl//p/HOcd/89/8N/yL/+K/+Mb7zfPMPM/975ubm82z7Tb/ZjKTD9m2vQrvs70vNPh1Xex3vf8XOt6OcLYjqWALvKYEORGcEJxFxKgxzsbUc1KtB+wB5OKk9820vxvVmc3ufek3A26NzI3pVgVl4NFuQG3y1JlffgPRFht3It1YZCq1WLNwzhxPJz797FNOpxPzPBOzNgEHrxnXbrdjHEeGITAMXgf9icruOK/N022WkR8G3KCQmJlSCNpLoxGpwYHy5o2+Za6p0zWVkGJjWbaQlv1esgmaGgkhL1F7iUomldKV9C+dIzQ4zxibrYbUcJycM7XL5AKElj7aLhowFBFrQ9Hz7n1Ygws7zvNR7erQS1UnUHLqGWlTNRFRYJHec16tBFNt/pi5qgprc79lmnXVxCsbuaemYSjeaS2oQcXSWK7aLpEtUqmlmF6fOphkU4lbVn7uxDZBn689m8xZNQo1uw2kHFlSYY6ZGNUxtKglOGVn7qcdk4dBYIR+T6k+4AjiKThCrfgQNKPejch+gv0ITvBBkNzaBERVMkriNB853t+RFtUk9F6UiBPoTfklJ8oSKVHv7TEExqDQdBbHUip3y8Jnr254fZpZTBRYzzc4McdVZQVDNgFZR0Xe004+tn3tjutXfuVX+Ct/5a/wp/7Un+I3fuM3+Lf/7X+bX/3VX+Xv/t2/i/een/zkJ3z3u989P4gQeP78OT/5yU8efc9/79/79/hbf+tvPfrcH2ZJ6F3NdN8UDf6xXqn3ypYevAe8H3Tan9/u0yPVYlGq0uOH4MkhELzpCVpEmErGO6yR1p9dtIp7EJttFvXmkLY+s2U1dQPLtF2tO0qjWDOQmVWQVSPi0o1F0x9MMRLnmWVZWJalGyZAay8xIT4QxomnT58Rgjflj4L3QnBOG0ODX7Mt7/SG9o5kGYr2v+g57HI/rAy/VX9vG9icX5vS193aD1VtOGFK0bImLfir82nST1rLCePAuNtRLTvyPiDdr9hx0+AzhbJiimr0WzIsoatTNCZpu2TZILItrb1njG41YYGgjuOhioKYE7R1Jr1toF1HGwJpmVCMmdpc6RbOFnXkfQ1tnFgIoU8PVul8p59TAVIPMlqm1TPcuo476dOWZeO4zFC/cSdacBWLqpVEm6PVsrhlPhLGwDgFnl5dcnk4sBsHDbxaplorDkcVj0MoGUR0EvL+sMMNGgzEOZNy7CLOrqBU+0UFhE/HI3mJUIrWZp0j56AkDuuJm48n5vsj8TRzNe4JFtykXFjEcYyZm/sj93FhLqrB2OD+9t+b2zlC9lWgw6/dcf21v/bX+u//+D/+j/Pn//yf58/8mT/Dr/3ar/HLv/zLX+o9/61/69/i3/g3/o3+983NDb/wC7/wztd8HTnKl4UNH77H2wgZDz/nXZ/18NUPj+2xY33Yk/WYw3rsWB4ee2dCrSCWQXeYIGei5qSK1hYdUhtMSM+ANkfTfxQeXLOtFUqyKF42L2HroKsZ0FYzwaL29XM6Rf7ByasGzSjSlK2WoUyqxu4KITBNIyKOXGEcR1wYGKYd+/1OnSfg8mzK8Dqh2LXmW++UeRgC4r06MEyesEWdVQdj4p06ju06qRsKeu1aIArvGfTZnPQbhuDsOqvBK1mhw0aiiEtCXMb5iq+ba7NtdK4mz0Q1HT6DdZE+nqUhgN15NVHb/n563TRDNt3GFmiBkitkuzJMSFe/WZ+GLfaMbI+T9cDb+Wmnb5Usc9A6hyyr0s+vSJeDs/VtWZyztoFSbZxHU/2QdX02aa1qUGDOZZP5ytm909Zggw0b9Nyb1JtTEhi852K/47CbmIaBVn8yjLvbic5ANWfpg+d0OsJ8Yp4XlrSonmKteHGUJVGWhePxnpyiIggGfXs7Bp0FpoSOtCwqvFuFcRyNbav9cUvJnGLi9nhiSUXrrJ0dvAkkHzEzLVP+I5dxPdz+9J/+03z88cf8+q//Or/8y7/MJ598wk9/+tOzfVJKfP7552+ti03T9AbB4322L+N0HnvN+ziwFS//sIvRqLnhMbrwZp+3OZ23ObyHi+Jtju2h83v4eeuT9FHcLdp3HnKOpGUmnU5MqD5gMKORi8EEPgBZIZmeo25lkaQL724JFs29qS3QxwtKNnCl4oIZ0qCOojX2np1bKq62PjE6zGNAl0Xw2gybogqLOoGL/YFnT59xfzxyd3fEHy50TMSoa9F5ldhhSQzBqfMaPGEYlPo9BPyoNQc3jMgQSKXorCKn86L0Ozq8F8QVZULUBh2pykKjzavNdQp74pCiwrmpXUOHTrw1Zly/trWpkRuEaCNETqcFnPb9lNzWFkgwRqFlAsru036itt6aGmHztb6KTrwulSI6UwqsttKuZ7u+0iY0ba+FXmOH9maVkpp4ucU3bVp0wVmNB7uCiCjLNK+O3skGhXAqpVRLmxRsdU1KzzL7vlY3GoZBDbWtj5ySQaCmSSmY2vqqJJ9z7YohxihXmLCocyxVmXjZPkOcMI0D06gs0CF4huDZTYEn1xc8uTqw341QV/JSF2w2VRInYsom+kU++9nPiEnbNe7n+74GDtOO3KC/mJj8yBAGpt2ey8OFOa3IfHdHSYkcVb1DamUMgYuLC5zz5AqxVo4p8fp44vPXd8xRlUDwD3r0ZBvqPtiazXKPPvte2zfuuH7nd36Hzz77jO9///sA/NP/9D/Ny5cv+e//+/+ef+Kf+CcA+K//6/+aUgr/1D/1T32JT1gj7hXJkrecsW9u+6agwbb9QdHkH/sOZ+ezCXUaqbWWSMmRUpLWq0RhwhijwWm6oFtUmsXZPCd6oZeqNGbnVZZJ1RjWaHWFXqwmlbPKG0VB8LhakKoGvRE1tIZlzsoMcbF+n5SjqhDUSk5K881RHXDOyZqpE6N3pOCZg0OGkWGclDo+eOMkFGQYFOLxjjF4hkmNQhhHhv2EHydcmKhDYMThKyyzxy0OSsLhCagklsuZghpZxOSqRIylqVFAg5ZyY9Q1qJCqzEELGprjgQzJ1A5yVqmflDj6Iyo67BnCaIYR1a/r5IdqGYxeC60NqgEF+iy1nCttYKWvFWGg5di5rgioEmla5igdEsRqMLVWimjLQNuvutZcrlDoCjQW09p1nR3YgsB65hDP17NCyJZQsq6vtsZaVuaDZxSdq3ZaZmJKPUhsUGxs9PCUaOLHKl+1ySakZVuimZY0KSodxjjtJoW8S+ZyF3hysePJxSX7cWL0QUVtAS/aArHbHxAfKLVyd3dPjpHj6chPfrwgrVwqwn43deJNXBbivJBjwlcIh5HD7sDV5SWH3R5Be73yvOh9kAoUGMNE8J5x3CFhIIpjzpVXd0de3t3z+jizlEqsKrzb+gzPSC9v276iOftgx3V7e8uv//qv979/8zd/k//xf/wfef78Oc+fP+dv/a2/xV/9q3+VTz75hN/4jd/g3/w3/03+7J/9s/ylv/SXAPhzf+7P8Su/8iv8a//av8bf/tt/mxgjf/Nv/k3+2l/7ax/EKIRzg9pugEep3B/6JTfb1wEXPnjH93JwqzOW88f+ALaHEOPmmX7Ta7ZiXfe1ELxmWlmkR6LOCaX6FSqhUbztp8N7xprqlPgWkWvYXbdZ4eaYqu1TqmuI1KpnxxaKWI1YNdxfqkFaJVFyIudITgs5mQRP0Wwj+HXisvfOitm1G99OEjFleHE6h8sZkcOHgAyBGgI6bVnFSQsFshosqs1CEoO2zNl607SrYg7APEBbkw7WMRz23bfUbzCmfINtqd3ozqeZpqm43x/wQYd16jwt6edrjZrrptG3mkK9rghp7Qbm5NaBlo0R2LKMzTBIabCRZoVr3iXrQdPqgk2Y1hxRfdMh0RwK50SQJgrd1yT0AKvWtibq2oRux+qM9OOC7++pdPywgf/qg0OQDhc2CFxHhVQNRCzjLChRppSkslpOGIdgLMLA0Nadt34wy7h0TQWcN0KG9VCWuDDfRabdSBiC1jBD0Nc7R0AIVUjiFQLMWV/vvLWFaKvKkhIxpj4sMgwD4zDgh0BxnmLEjNvTzO1p5rhEgwnN9m6cljSm6eb+a3+1vb+KYf5gx/Xf/Xf/Hf/sP/vP9r9b7elf+pf+Jf6j/+g/4u/9vb/Hf/Kf/Ce8fPmSH/zgB/zFv/gX+Xf+nX/nDOr7T//T/5S/+Tf/Jr/8y7+Mc46/+lf/Kv/Bf/AffKkv8F7f/YED+Fq3D0yyVrvyHs7Lvt3bjv3rdKrvyhhX8ocSI4oV3rN13oPqqk3iyE5sgmrpeP5mYEcXIG1gHTaLqDEEm3o7tPakNXI1G9cbi1stvZHbMafXRm80gy3qJnpEnrMRSmxkSskKj8S46AyirOrYwakeYXtPvT/NQttHSCNYyDo4Ur+Hqhs4c1w4JUKoQuJAlkpNDuKsYyYw49+Yg7XicVoTqxYkmExVhZWFCSZd5BB/7rhExBK1liXkfg5Ox6PWVZzj8vKyO8JSCo31DkbTbpkGxSj30GSPtxG2Pq6wr41Is9E3Rns3vbvmZJpIM8Y+o7Y+MdMxrKtxq1L0mjdleyqpjUJBHVDrFdwyCZ1bPz+bwLGKC/uGyK6ztUrthI8Q1DS2+us2m3t437R7pCnaw6bOWyrZaT+bDsdUlqH2cOkal1IYvFOH5UTJTZY9KzRpwZDzWjdt+o+16tQFEw4+TAOTD0zTRBhaI7enhpFlmFjmhdcpEVNiNqWLXHRdLMuisk2L3gMiWtvaTRMuDGRjFM4x8/o48/p+5n5e+oCe7fRyZzB/r1229dTssNkT9xU81wc7rn/mn/ln3ml0/8v/8r/8wvd4/vz519Zs/LbtQ8kZLZL7OsgYX2V7W83qnC319Trh9zrmljZtHsg5kktEKExDYOcD6Rhs5ANIqbiSybVBf/rKUpVanEphtMxS4+tWB9HPU9jLqmIPVTasf4s+72zr4NooCb2tmritWPa2kha0gTqlSIwzy/Ge+Tir5pqNLUkxUuJCbsecMzuvDELnHa4OKq9jZIVcDfYrmVgLQ616kzlTl2h1GVOnqEDMBZLOxXLVaj3mdJrRXTXxbB1Ys3PYBBUgkPLGaCvjzHsTZ82pSx2dTsqelPt7jvf3AIy7qeG33WHkokbMO0cm9zjNBXPGziF+WDM+g/e6Ur1r/UTg/LBmKqVQe2ZdaTO4RKSL3mpjrtUBXdU6Ss5dkqiy1nd6VL+BDIux5rYM1fYcIgo5G8klbBxUSolUcs+0Ohzb4Mf2Hmf3jzJZvRXmGjIBWg8rFT1fBZ0LFtWBNPPtqDgp+kMTJdbPDcOIHybcOGk9D9M9zAnvlC6fUsVXISAM0gSeK2Lzr3yFgFAzzMtCSXC7u0VEB1fe3x+ZlwUBhmliGAPTOGrbgNOAdCmV25h4cXfk1fHEKVVkmEy2zXV9yzVLX51UZxuKfC027OdHq5B1oax/P3ZyvgajX8+BijVbWRf29t+3v81Xc3IP3+PLMHXeVtPaLq5+44sKqFaD2ZS11H5qL64Pw0CZo81x0sbPXIwMgTWk2mMqPLpRj8Dgp36ZWj5lTqtJKnm9UaoNcJTG5nPWo1UaOaGyaV0+g3OoKg4cl4X5dOJ0PHK8P5FTQcTjQ9YpuXoS+pTnKlWNStAMSh2XDds0CKqUotmbzxSvAqjqk7d1EmtONZpZqxkV89xtlllzSpo7CtmyRUHZfT5Y9lAqxYZMtmng2anx0iRJurpGihmopLgwzyfCoOQSbXRd4bgGp+XcMk5lNqoyie2D6DUQJUr0LNSJCi9j6iSba9wNGlaTNJRQfxoRxH42zqDdZ84g0movFsvYdKx9NOeSSamYkr0O/Wz+vTu3xoAsZY19euCz6Rmz4y3Wu1UfcVx6T8gbMFgumVQhiYrTJusL06xTs0ZVL9O2Cu/Wc2MRgcKEg0psNVp/LonGOgzeM/jAOAxM44gfmiqIkNJi96cQQiCWTCmV++ORYdyB1euUY6FN6c4y29YgPafMKcP9HLkzmFDbOrSwJk0J27LkJiTQ4PQuv/Y1bT8XjmutdbWi79vxU/kC2PBt8Ftdd3jTQ26e2r7P+2xvrye9e//3YRJ+3Vs3uL0W0AbNqREUUccVQiCXjGRnfq2ujssMdnWtHgHZorQg6rSaLFwv4rdr0puOzfiLqGKA03EeDWpUVYp1vlLXRbOsQJxlMyjRIy6RZZ45nU6cjidyygr1DWUzPxt0EnHqGaB4o4g7K8xTqbU1Xmd9H5+QkHWas2yiUXNIrXZjD2lLUXfwrYdoVbagrmoJmk1iTDb1erU5NFMFIVdELGvNK018CIuJqEaW5cSYRoaUcIPrbr4dYG3qDi3bdRWtxrfkOBs93e4v049E0BpPBYycAPRmcZAuvbUdUNoVUIykg4g1iztwhYrDtfcqmnUr7GiQZIea7XzYcTvxvU7W17DVDMvayKafXc6hwW0mpxDgSodv/7b3630clQ5RplpJCEvKpLQKEFdql1Pyok6rMR/buUA0OPJh0NYKG/iYDabX16gI7hAC4zAyjEEDnVIRFg0QWlCZVdvy/nhimmYEzTIxOLxNbijNGZfCXDLHVLifF+5OC6claWO12VtVPVlNr1jw2ZzWNhj+OtzXz4Hj2kYn20faH5vE9StDbC0s/Oa2PygCxodsZzi+c+RUKTmynE4qG2OqGYPzROfxzpNi6lh8UUwOSiIFKMF3wkUqGakOX/VGa8u+Qu+VAgyGUHJEzhkKSBBTpDcD05xq2RgZO+5Ok2+wj3OUDDkl4rKwHGfm44nT/b1mI87jw4ILA34a8djE2lxYlkUjfhGqC/R3F8jNK6ECquI9EgN+GBHv1sGQ4kD0PBS7+RvwWQEpmk0UM5I56yytpiqibEwdNV+aQ0YY3IDHd4JEjIlkMxb9hrIcQlDnuiSW00wcZ9Iw6NyqLZSTk422N0ksI6LofRXsuFXBTq+d39wmooLAKGzVKO5OrfS6wLIyKKt583ateg3M8jr1CRbZe8vFxRpx7doqW68NotTXPmQaNgSrOfGcM8fj0daXJ4SgAUtd108P2vJmTfWsa0UmSi14a44vltnhhJJUJuk0zzqUNEabWKOBkDiQSQebNqhQ2wAExJvy+wghaO9kLdQUcVS8iU2HaSSME8M4Egav91GFCxFKKqRUSFlwLjHPC69evYIqNgm6MrRAAQ0unMlenGLkLkdu5synNzd89vqGm+ORVOn3bFsuGkxJvx5926I4m/P5ZbefA8f15bYv5SAe+K0WMb3zJS0S45vPiL7RzaC17WyjJc6UnAhU1VQLTsVWYRUkZfPde+3BGnGbDp1Ft9myBc0Yzm+Is4Vfadqtm0iOxsbtUWO1niaF1AJI0eyoEURy6nWMUlRloh03BbwfOgyTjcrd4A7nnKpkWOFc7atCMGKQUcmFkgolFGvmtGylrqxE5xxFTKIK0J4yPdc1aU0qlUKy8xyc4GVQ1gGyQk5s9B7tRLRzWihnclur4LD1WrV8rjUg9ZNekaKCuVIaHKYOxLtsGZFTMkcxeoQkWx/OoKdAY9iVUrs4susyXHZ5wc6LkUpY2ZNrULLq+Sn82HHUrvdXG3TmPISBUmL/Prmswx0Rhxdv66iSUsT72q/tiiqs5BRnjJNajGRkZBcxJ90zuJKp3nQay+ow2/fqyFBtOoaqddnU7QWDQJu5cBrkIEJJiWVZmOeZnDPjOBCCI4SBab9T1XmR3vMFaIN5yYhkxmkHEjUI8J7705G2rPeDEZ4EJiMhVaksqXAfC7enhVevX3N/PLHEpEzXDTrS2vbsdqV9gYf0+JXs8+W3b7njesT5fIBD+sPKbf6w3deHsBHPKOW19DoN6M1Ag6wMm3dGNYbV0J3X/1p9wfThzPY0aZ1msN51HfvEFNabQpo+GgbJbbIGNRLK8nLFsgaLChuLrM1Eaj/UQhjOWWRndGen2nE62kPp+JKgUkybb2WoNRmdpuHYvnQz0k5E2wjM+GGacdVoy23irB6DBgdmEvr5bLW1rt1YsfqE1SJXX2Tn2SSS7Jo11uQZTAjWQ6bXfjXSaOYhBSRjKR9IUdnAok6lCD3r1rdU4LVH3e2AnDPHuMJMbKC/5rTOb5xtWUD0fNl/DssivCexjp7ftlFIO5fSoMW6WZvnSvBi2Yf33iDcbCoTq2GmQbmYPmK28R3l/LitXNeh73YPOVEmoXcr164vPWn6m2IIQSQukVIqwxAQNzBOe8b9jmEcTa0l9HPsSsVGceNDYEQoBcZpYp5P1FJwAqPzXQdg9MZmrZWlVE4pc1wSd8cT86JN0xXfIUKo/Ty0S2LVT84d2IqifBV06dvtuER6s2RfDLoiH+72RwaC+7JO6w87Wyu1kMmqLOiaPE0gu0CoBQUmNNKdhsGQoEKtmUKweEzv2pK1plB8k/aBVAtDLZSihrzUshkySVc+yKVopF/XLMHVNk4lazpRjJzAqq1XbA4YNt+pWEPuvCzMs/4sy8LxeCQt1lDqvTq5NJBAYRo3KOnODQzTgf1+ryPBSqXOOs+IXHq/GlWVJPKiAyedOP0OOVkdTgcdOmNuzaVQUtTG6CWhQrwbqNZgodzIBBVAIaUmdttqO20Q4BqoSNeOLLWa2r3Sp4dRBYHxwcgQK1OzER2wq6WfkZBcoXooBTdUhKCOs2VnVEpNep8KpFg6jOekOTS9Z5vzAM0QdGRL7dcemt7Geh84t1kf1tPUMsY2YqaS1wDGuY34rp1TJ3i89WfpczpzKvdstmXGIQRirZb1xPWaOF39fcIxmEyUQbo0x9iaxh3B5lZlMmISY2MYGayZOhcdBVSboLRg/XcL93d3nI53QGU67Bmnif3lFdNhr32D9n1L1qbt4D1RKlUK3nmmw47dbg9eePHiBcsyU3PuNWO8Eo1SgSXDCcdtytwsmZvjzGlJpFS1Yb1do3aOWc1vC9Na40S/bi1Y++MKFdYmH2OzhVqaK3b2KlucHEu319NY6wobvLV81TP2Bjp9wTGx1ilWmPBxSLFh5Csev/nY5oS37/1IpvRlWIVvc+Jve1zpw5gyQG7gHwIEHAFPQA2WAMOggxUrOgK8VMPlc6FkD8EgpgqpqCMJmFq4xdzO+TfhBVBISqpG+1WFfbXvqfXiAIIy+qz+pQF5K8YX4nwiLwt5nkkpcZxn7k5HUlYWZC46fBDnOc0L9fVrTiI6jNI79tfXZDwSRp589DFDcFAyp1rUcTr9rqlEfPYMJaijiotmHabMUYv2k+W46LiJ04l4mklRR04s82KivcKyJA6Xl53ogOnoLUtSiSJR2aWTqZdrUtfmSjUH1ERpI7FkfPAcpgOHq2um3Q4fRnXWpteowYPYPaD0dIWfKpIqtYTWqKXXrIBUhwTAOSUbeLu/vMNtMy6wJvAV7pP1YiPmfLRpuDm12rP5NmS0wc+1OUsxB2Lwb49c9AM7lE2pxJh6ZtX61SqVJS4ky3abMnxTnG+PVzvgNViGkoqpiKjJLrWScsYNIy7pOq822ytZRi21diZuY2Q2Bl4bfDo4HbmS40w6LaT5SEmR3WHP5ZNrzbT2B8JuQtpn54Skik+VWCPeDwRfSTF1hORitycdFmYfWOKsxyee4gKnWogIswgvs+fT08yn95H7pdhsumrHvjGp3m0v4grl0y5fu94KLPrHzc17bd9qx9VXDG1ZmzltD28tXz33TSsaJW91WnXz2/twYVZA7N1H/IX79ON+92c+dGTffFZmMAjFAmWDBloAUPXYfQg6SoN1hHuDv0qX4tsoF3RShf7Q+ns2W7/SLc2o1VQkGj3Q4K+iAUxOaa1BtONugYSNeEgpqSHK2aDC0mHMlBKyLMricp7kPFkKpXh21ZFyJVfh4uPvkI53xOM9qVZV0bY7dWVgllWMGK1d1ZTt+Ap5WUhxJi4n4jKrUn2cmZcFlzSrSLmaoodqGOZcSFmVxvs9YMdNdwZrgAFr3bEUrfWFYWDcTQzTpH1ZRirQDMnRlB9b4KV9ZAqpaUGuBRPOMp0KOVt/lkbktJJZtY4lu+ZsnVZzrO1/22Csnn+H7Vps79HP8eaxDpFu15C9SXv79rpVMHfVHyw5d2fVFeLrJvzc1m3eYjtajcu1D69r6NvWopN1rM/a6L6KUjeIs5ZCLpEcZ6SoQO44HhinHcO0w0+TamLagE/EhIBrQUTbO3RKeOrHGLxnHAbLBAspQRFHRsjVseCYEe4S3MyJ16fIcc66Fu1iSbOND85FD062p2c9ebTZeF92+1Y7rhadq5bXduFvjHk3sG8aw/f8kHf7jwe+4l3Oo7Gc/qhu78rYmkGvJW2K5N4ckGLmxRTAwzhoUlArpWaNjC0qjsmchF9rEtr/gsEVjuoq+BZ7rCe/VDWMLmh2V8jkGJGsxrbU2jUQU6PS2fkuRecSiag6QbZoeJkjOSuNPSVzrEVfnzkRxolxPzGOE9UHCIFnT58zjnsIE5/80p/jd/7+/8Tx8xccTwtPLna46jd0aYUKzd0jxZPjopRoc5ppOaqjOh1Z5ua42k8i54IbBs2uYiZVHTOSi8Jpy7z0a9R7jMwIO3e+fFuwM+0mpt2OaX8gjCOI02pQKWr8vBrAtLneuSZqWWsYvRpTnDbQok2x4o3RhgYJCi9Wbb7FIkarndWHTqq0n2K9YptApa0Bas+wdf3kDmW2c9BJNmwEdzfYyUMaO6I9fTpjK1uwUVcH1jI7i3jFu25RSodG6Y3y1b5rZZU5a5BjX9NN29NgTS/O2KDGJu3fT+HJnArxdCJ4zzTu2V/sceOA80GJRC70oM9VpySRkkDyqryxaaT23jGOQ/uU3k+ZsrYeLHhOFV6eTnx+P/Pi7sTN/Yk5Jp1w4B2Gydt30p69tuKcnGddIo10taqufNnt2+24RDY6dsLboK6z1+iuX8nbP/q+m5uwPrgh33f7o1KHe2xrrKpctD5RXMD5gRIGqErqTeL0x5hy2XqTc2lKAPQ6Vc6ZXISUPOqlKtmpMntyCkGo5sR6TgE1DEUZa6kASzV4xRlLsa6GojXIGHR2ZvAS1KUQl0RNFSkGX/gAgyDiOc2J0zFyc/eC6ALj5SWXz57x5Pl3uH72lMvrK37yP/3PvPi9n3B/+xpy4mZ5jUcVM8b9HnIlS8Ih5LKQUeWCtFjGRSGnxRwrDMHjncKthb3W35aFU0y8vrvlfpm5ub3nOM8KhYcBEY2eh3FgP+1MckdrNeuQRRA0ovfecfXkqU1y3uGtMbca5OdN7Lh6UdFfqkX8jU1XEafZl3ilf0tjaIqHlMBV7dVT5ExFI0oxYo3YmAx1SM2Y1mrMxg6tV5Rm36x4Xb9PIx5YzO82dSyoiG8Cv5nVMOtn5FJIMXZmXi7anwerc2sQ4NtQFCXVtNEpSudvjMBcIeU2Iqf04ZfLsnT2akpJzXcISvwwseDBe+vn8gQXGPygM7jMvh32l0bbd3gXcC7g8EhRyruI3Q920EUAVxEPfnBUwqruX4r15TmqOApCLJVUChI897lwu2Q+v73j85sbXtzecDsfSej+YoHgQzzqMTv2ddu2b7XjaltnFzWPdHaOVk27s8iT9/D3tdpOj+/5oTT3tv9j2xkDrj328O8/AMd21sPz8DNrW6jabSLeg4lvxpq1zwmxhlmtcTWlDNGXdwNSzIAolIhxARoDT6guK5Ze6ybIsGbWVsiyKLgX7Us1v9SwIDq1XKBnI7UUaspak+t2UBiHEZXEy4gLpDKTokKKS46cXt/yeokw/QYfffdjnn/0EWEI3L6+Yz4eIUUihcFpNLr4BamDxZerhptCk2kljFhU6r1CdFJAiqPmotp0pXB/85ow3BHGkSVFxJtxG0aGYWAYAuM4cHE46HcthbvbW2KcKTYrSgdd6n7jMBHCcNbbRcsIGmRVVRG+VKtvOU8tqjQvBhcpuz1p7RJ07lix69MM+wYOpF2HB4EeD35ag8A5q9CuXX++IQErkeTsFpH1ujdouWzeY3s/rtCWtVE0wg+Pw/tiBKIWCXemZFVCRJs4nWuFrNOoU04d2mxSUmJ3k2CkBVMdwaB0MLaoOLxHaf62pZwJWRvafDUdR6Gf7zN2JJuRQg3O6w392tJR8KRSmJMSOe6WxM0p8vr+nrvTieOyqDiwX+twWC1rPVP6ew8k+rd7aH2/2vZz4bh0uTXH9eZzzXl9iNl/J2X8zAG9/0U4uwn/iG9v0snR6Fg82eBB57X2U3DMOTINniyQcRTndW4W6ri8ha6t9qBRrpBLwhf0Ri1Fe5pyIUuGavOTHAhaO+o9SKjCRGuMVYWGup1JaLW3aurcqiKQk8KLJWpjbQctRJh2O6QKySljLuFIbkEK5Ji4ef2al7//U37zx7/Pd7//CT/44Q84XBw43d0ST0fKcmJwwi543DRwNCMpBps2kVnVwktqHL3ZABXMohbL/kpljtYr5Tw3N7eIG9kdKn4cOez3hHFgGCYuLi7UcQ2Bw+GgGXCKVqtREoj3nt1ur7Pt9jumadTjEWcMQ+tV8l5ltezaazOuwqo+BLLV2lJK6mgRRBKStGfO+UCt2aKU2m8P7aVbG8Flew+YU1of08XSYMLGFqzkPvdL1Vray03q1RBIzmpX29pmWaG35jikqWpI36+U80bZXjfr8KNuLSBojE39XsrmS61uWgXymmXVzee0pSzV2OqWwTQCTG8bKeCDWBPy0AeexpiozjO4oOfbyp1NhaRYpteILKVueiVFtA0heGWHukwmshThmDIZ4dVx5sX9kRd3t9yejhyXSGTVUawbHFqkhZMbunu/ux6Wad6Wx77/9vPhuKyY2U+YbE/fh28f0uf0Pu91Fl0+ss/7fNYfJoy4JYt4PMV5xA/s9lfkuyNzTJyOd0y7HbiBMo5k8RSUHLGkaNFjJVYtAgdXaeqFpWZKcUpasJsrU6EGqK47Lw2nfVc0qIArWZ2Ta+j5GvVVo4LXUjtTjlwpaabESEkRLwpLBi+wG0gpUgsscWF/fcXkPPtSORXhWUp8NC/85o9/j//9d3/Mb/7uj7m7u+P5k2sOu4mL0TN5RwyekkaWwZFqUcUMBy5pAS3lpHU/KgG/1kZQ55qqjXb3wuefv+TFyxte3d3zS//nP88Pf/QjhmnsDMimZB5sEOE8z8ynE/N8Yo4LwzSxP1xwdXXJfrfXQZSCsf3suhpEuDZzN4gVG9xo/0klRk9cZpa4tBSaGDW3DmSmccAz6D2pKBSuMc80/NDMrmvbtZ6yzVar1cAyUhVOVRYbWjmr2tDd2K7OWe2kZfQpaUZbMiKmGG8M05ZtQVOGMN1FccomLYUYc4cQtw4rpUROaYNc1jOn1ViHrd2gQa9bdus4BGoZNJhwMAZP8Jq1aACjm/c6vgTxDLsdw6gZsojghoIvBV8jrblbIXk7H2K1J5tysCqHaHtKrlpLc0EFkourzEV4NS/cHE+8Pp2YgRe3Rz6/ved3f/YZL+7uOMWkUwzaXLZWe7T10sQJzmwHnAWHqy35PxzXG6dA02FLY//gD2c9jo2zeluW9U05rYef92UdX3tdvxlqBRziAsOkNNycEvPxjlg1yptjJVWtLjgzxqq5t7K9SsnkksgZky1SiZwiGtEp/p67kIOaTm1yLTmv0bBpzJ3DqgruZDNUZBWTVcq0RsBt0quSBxQvbDWnSu1WxHkheMeAJ3vHJMJ+v2OOqvP38uUrSoxc7CfyxYHd4Dl5x+no2A2OZVnIOXN5sSdYJpNNpV0rOMXmXK5Zgk5Kzry+O3KymUfjtGO0mpTznkpSI1R0rEXOibjA/f29ZlspqXyRUw07VbAwULWUNVqu/XSdB34iICbf5DRbDGFQQ55z1wNUw679ZiIoGcDGeEhxVMmdm9jN8sNAk9aM3oglGSnKxMQgO7GpxhJMaWRTu+sxDfXsPBYLDhqjtDNLWwZnv7csKhv1PVlGU8wot/tXIUpZgZ0uLeUsaay9Kdk5r0QjY19iWYpzyrodiqplBO91lp132nxsGVnORYdyOqdizoONyBFv8mm5Z3yII2VT7q9CkWIdPmvDb5+XZrPPigX3sQqxwCkX7mLi9RJ5dYrcxsiL23te3N5xczxyiklrX96CkpZhPkBmWqVGWg9mX0tbm6L7fhXX9XPguN40yKt+1nsa66/i3d7n7H+VKyTv/wbfJATpTDQ1l0hFJWj8MDFMe1KMyDCREGKqHGPqOmYimMJ5oxM3Ve5MLqoXWNAbqTjXCTddc1AUlmyquLWKydfoDat1DGs05pyKTik2BqOqkzIigCofJCVFmEpGd1yN7m9VAaUTO1NO0MbR3W7iECPzLNzfHqkxspxGXM7EaSA4cBT2YyCmxVS8i2rIeY+O41BDrX2cBolVNdrZIvfb+xMxF8QHDheXDKNOKtYaoTa5xpx1GGVR9uL9/X2HzlrtawiDzYdaCQqrEkWD9LY1pw1qIVXlgyhICWroNzOhlOyQTcxXrNdLGZxrRud03Etv+JHuAGifUVpLRDaHZd/JMhWHXm5vdIxSpB97q3HWVsmx96mbzKeaZ9728zXYUCdF02uuKSUl+mBTnzf31dam+KaIL6LM1M25c953Z0n7mqJQoApRe3VczhyXMf7a++fWJO4VznPBI8GDH5AsSIZaVVyaqj18ImvGs/p1qzFVu4Ws0bV9o1hgzpVTztzFxO0cuTktvDgeefH6lld399zNJ5as4sahNX2viWY/L81x9cdYY6NzI7s6ui+7fasdV+0zmXjjpL3X1hpZ3+jt/hLH8g6n0SKMLzycx/Ls/u83Xxd7GxuyNWYCVuPQGyCLg2lPKIV9zsT7e27TPZ+9viVh6giC9X6tS7jVLXJMJHRWkF7L1KVagzOsXuXSFe5DWVMKphtVrZ0zm23VRoRQoUSr81DIRCqVnCHmyJJPzOnEEo/mjBPURC2Rmhfm0z1LShphDiNJtL5TU2FC2NvwyzjPuJIpSyKeZqbBMXhh9I5p9NzcDrx69QqRyn6/ZxzH3qZmZGlKyqs6hGWbKetk52HaszsMXF1dMe0OLKlwWuYOYbV/c1yI88w8z2CEliAON4zK+mMDbYlmxkK1Xit1ALlY/aNnWWtPEDa6wvvAOE7sx2h1NM32alUiTjqdIFTEJ9ygmoo6EVr7xDRr1gavs/Vus24q6oCxHiSKZaROmZ7UiqulQ2qaZWz6uYoqUbRa57Isev+ZZNO25cNzHvX3c5mtEd4cDeR+7nxYHfbZPeLoQZd4UfWPnElVG3bb7qVfZz2tCqUK4zT0xn0RuvK6Hwf8NCCjtmIwjtqKFVXzM0xBYb+l4tgEEzlbPCIWv1VyrqTc4FFl4d4cI6+OM5/dHfnp3cznd0c+v73jJy9f8er2lrvTTCqKnvTxJJY9wjo8skOBcGaHv3o16/HtW+24tlsr5365fq36lfxWX8QfmPFsb6LzdPvrw4IfHmPvaXnwd3vsYU1OnxCFGGor4DtycVpsRnBhZLq4UuN7HMg4nB90VpRUxGjZLfKtG0MjFkH350umCpRiyu+iZI3qoJhIoY59aOdGDGIyJ1CsllWMoFAyqej4BzVKKteTkk5vzjlpllBVZXsYAqUWxhiQoNp0S1zIKFFi8I7r/Y7dMBCTNS23xumqzb85F05xISWoecCVzMtXNybFBMMYjHKuUk1aIVJWGM76aRAOl5dUcxjDbsfd8ciSEtnqWl0FYz6Zkd9kLrUSXSQGNWxNDX5LSKBimoNijkEoKZOKafNV35W+K63/R/AuMFjjqk7AtnVbKzktBupW68UbNOaXpmxvGUjOpqtoav+1mbiWdRm5orZ709hruehMuLJCxK2Xq9p76KBhwVWDFFv2+HCNs96yGlzZY63M0MfV0L/jlrqfTUlkzSTbfaTZWyqFJSVwjoJmnK0uWUrR3tPWd2U9XC0Ad95qUMHmcAXr0ap6Ht0QGJhsmKlQgyIONJHfVtutjeEbDNnQtZYKnFLhs7t7Prt5ze99/orf/umnvLi749X9kRd3R04pEWvtCJbea9IvVZ90bOd1s9fjgbrYHft/QIW2yXrKerr+hS95sMcWdP+S27tqWed7vflZHwrzfRUCyfa1j33uGU0ZaOe1Q0uGXedqs6KcV1mbccSPk/4MI64klfmRdBZ5GTC2PtKhxII3WLBFv07E6iRqTGsRbXwEnFhFqtdGDAra/K50+9yNZnNerZ5VNjWuJqQajDKO86QCkhXCc15rFBfTxH4SMtq0vCwLOUVyEoKvZnQTJRdycsSUOR5PTOOOYcyEUbUblbEmQLasQexHde6GYURHWnjGaccSI/MS9TzY+ZlPM0tT+HYmo1PNccdEGjLB525kXWMPFhPjbdIWVaPpKo04reNCGkQM7b4yuMt7nYrsXG85oCoxwom3mWhee4wQnJS+dqrdoOoAlGXZMhCkbgIBC2ja/DR3Ln7bnm/rpeFjzRx0s7BZdT072wDCQK/BVs7FYtv6bzCfnquWnWntTdVE3nRcTU9Sf9f3KXXzHbzr521r9KvV1hqzpfb0TLqnFefwQ9AwvYgxb9t9auujGlJRHQVHwZNFiKUw58LNaeHT17f87NVrfvLiFb//4iU3xxN3p5nbJZL72Wm1K7OxtRFlpCO90gAV2Zq2x53X2576kO1b7bgeUlG329dFTnjwrrpuvuC93ga56YGc30BAL3T/QWxf5PAeZl1v/BQdR5JK7fIwFYVF/G7H4foJH6XIfLwnne6py9xVI7S0bQX/JoWzee+SjQ7v2ogIZRfWWvC+UKsymUoVA0U8zRlZHb5H1mvurZBiIWPtVaoILtWIfMZYcxVM2s57z36/JxfV38NXleTDIy5wsTuoph+OJWZi1Oyt5IiQTNoqQ1kYglcnWDAqfsahpAknjkzGEwChlITzA7kmUo6QE4erA4eLSy4vr/jss884nU6EEEzlI+t5TouKwHpPmLQO1rQFc0ok701sd/1+2QgW3mpu2rQqON/mKYnOybLbS0fLe8vsMmMYVN4pZxZmbWEwmNa5gPMO7Qwq/XpTcof3a046Hypl5rgwTRMheLx3SuG3NeGkXVdNaJWsYQFHm43lKq53KbX1ra+fwmDO2DLw2vUszAHqut86RBXctUyjVrzz0KY4F6W6x6VlmiYTVUwhw2KAWHTQYhgGjsd7hf7wxJTIRQOnMSijsaS8gSkL4jPBMLcqjhgzOB1pozep/s83DUdpt4JB62jGnqvJglXHUh0LlWOu3KfCzfHIb//kp/xvP/4xn756xe99/oKfvLxhjpmlFFL3/OuwUidt2NDqrNq/TlThX2yGV3e+dj92AeJqx7gZs/Nltm+14zqL4m3BdMf/SEbzNoPdT2ZLhr4WJ7d9//fPqP6gaO9vgwrftm9FSyG5L8AG7OiAxQJqnCsUZwMSLTrzTkV2S6lkKrk6ctP7C6s0DjQbZ47MQIptIbhCZ3yJy+bMWvTnOuRUa1PobrO2Uh9ZUlKlpkpJlbQ0x5MpRdiOIxEJeC+M3hTtq0bMKc64otNoB++gat9a9RUvYSUT1KiFeBu7XmplWRZub+84eR24GYLeglWUmhxzJeZKSqonKKLj1qdpYrfbdVp260Pa7/csixhTTr+Lb7CdqTVo8/FgWoxKo99NShQhBB12WSuuug4nOrH3lDXz8R7Nbmy6czZpoHEcu0KEwsdzJ7qEkHDOPiOMaPiiLDw95xmphVoSJVechLbo9LMw+SQbP1KyZswpLVq7s0ygbjIZkXXIo7Pak8Kvm6ZcsAxGP64Th6D3mimRqPa5U04cxSSw2gTqZmhSyeYEm0agg5p7rankSqrJQAvX65zbz8ulknKB7CgG8SFO2boxsSRFILyIJWM9H1IEBIWpo9HWU3UspXIfF06xcIqZT1+/5qcvXvDZqxt+6/d/n9/52c+4ubvn1f2R45JJtVIMnkaaOskaELbgsAeIFuR0PySbhKJliQ9sWhMt/ipZ17facel2DhOesZUatGVbw2H77x/gJDSAeCSz+8LX1Xfs1a72+8KEj0cp3ySb8LHPalBfc17VnJdq0RkT0LhyipAofVZ/qhWxtQCdazFHVvA4o8ur7qDr+xpU05SzjWCwlftq0Z32hemxNSdkFDxF5FKFVCm5UpvHbTx8xCjNQN30NVUxHRDdignbKrnB06BGzWaMgeh0UKET+930+1LOzKeF6PWxiZZxa+SlNzUgjjCMqm4RlHE2DAPjOK4GRcSM96QZX1qzzZVWnYlpVUHPRZ1OMHki55Tl1gICSWkdF2J1muZEGjmibmAwaEMhlYaNZXo98yngfMHXsCr+22Vz6Nh5NwQTmZUOOWlSYQGMkQG2k4xLKTgv5rTOVSI6MsKKYZ3tU1cIrL9f3T5OP8fdyBpcuL3Vtga6tAytwXWyQobFNCVzKauAtDiF8kTvn2rP51JxivSqikVMjDHhMwrRig429U7wvpFt9PiSISEx6z0US2XOqoBxe5q5Pc387qef8bs//RmfvnrF7376GT97+Yr7ZeE+RpKxeLUZ3fV1ZDM4OlQoDTrc/jSIdnNumhOrmx3X2uJXs1nfcse1MVw26gFju9i4Wlr5/8s4935q63pRtkXFdzulNy/O9m+9gGsfxjkh432O6sO+0cPM6l01rn58j/ysvViN1t5uMv0l2w2scFUTCzUJVoM+sIbcVAoxFZwOCekjNMSZYK59S++06dF5pQV7b6NM+jiadlNASgo5ZquTSKn4Ikj1pmog1KVQU6HGSrAZUrlq79RclIWlzAINfoqpNbTbtuZMLAWyHlcx6NdwZJzzDGNgCOt19Qb9pFyI6bSB6RrbTRl3ueq3DmHk4upaRXDDSKmV8f/P3r/EyrJlZ8HoN8acMyIy19qPs0+5qjA2XKR7BVgggRCSCySEELIb9KANRqJllZHANBCIBg8JCzq0DC1kWhYSEgjJIMRTIMCIK0tXAnzN9c9vU3a5jqvqnLMfa2VGzNe4jTHmjMhcudZ+nGP73/Y/j9bZa2VGZkZGzDnHGN/4xjfGEcSMsRQssxIyPDN2OzVcJSXEGHvE1dTvkbWNSdsccy1YjDTA3sMRnXR/ZrXA+j1TUqiWyAxFNcNVzAlR1mBrEcSiZQXFiCvZJfgQEGRUhQdWkgKxR/AOgRk++BNUoqAaImnxCGuORme9rblmBMxArF2sM5oGX4OtGiGiRdxqWCxKE6CUNQoTtC7fOp/W9jg46Yzc1dxtP6hGJKqbJE+FFt9nKd0otadZgFwA73XPqgLkXMGugkUjriUW5Fe3kOEKwSS6uAqC1x5bwQHkGsNPEFNBzgXRFDuWpM0fPznM+NbzF/j28+f4//6vn8PXv/1tfHpzg49vXlnpiuaqG2vUdSnc1UFii6wcqR6GI1IfEgq767Ve95VOAGprEw2hOd1b3nW854ZLx2o+NoZBnb0HOYaX4LJLf/9Kj+3n3WUVPjw+C0nj0nttiRmrN1pQxLTXSkJrVbJ68abuLibECjLjpASOWDMClASRIEiVV1027wHvULVvOch7e6xJLqgmkrAqMbRIi8wzLLJuXClrY8iUE1LMKClDlP9u+RlAasUxZaScNXcwTnBCoFox39xCXNDPJOiClopCgDhdykyMMDBamUwl3YRgBpw8gT2Dg4cbfO85la0uqbvsUsGWwxvGCd4HDMGhFuqpCjLjxsy9XbuIYJomOEfIOWGZjyhzMngzI+WISqo0Tlbw7JxJ7bNGlu3cSy2IOen17QK6DWLTfl+wPBM710rp1KFwXkkJVVBi0fterdRYjOxQUzcU5Dy4ZJBUEKvzoWQXXaPFqAB6L3P/aYobet2MRGPrvOlcKjTY2sS0ObtKvzapIxEtpIZF/ClnVdVAU16xSM0ijtbLrLEpgRV56QXYaFGKW6M8oR5h6eXUDVzYqPaWCwwgBCJU55AEWHKBcAYN2u/s0298Ez//9a8j7J/gi1/8Mn7Tb/rN+NJ3fAH7ccTgCVxqX4vaKcCMqACfPn+F5y9v8fzlDX7pW5/g69/8Jj761sf42a/9Ag45IdaKBQA5I4C0U7d/2SS7hETX4mbct19tjZa9DdCv3F1n+HVcgYfGe264NqE5sF747dPrU907uny57rH+Zy/oG/u7nO7nPM6N1taDeTsY9CwS3BivU6mcBtWgQ0atiV+D5pqA7pJS3xg8AeSbJ1dRmdSMEVCIjJDBgHPKnnDNaJEx3chymHqsdgWmXoJUoZBjNqmoAn3fzC1PADRSSK2EOROWLIi1qCoBayQYGcA0wMEC+Kxsv0CtK69uVM7agIC0ZkcvlsJCgw8I3iMMg8r7mDxRqQXBO3jnDDJTL7mUavI+Tllilfp99SEAbEn2nBFThAiU7GH3t7baK1LSBULQ6dr2eYNWlZXpwJ7gjCKeRQuzm4o+QQ1OzklfUytCk/dpOoOiZQnMRg1gAYrT/mI2B0ovJjZUoRRwznA+g02dfGV1Mpi1IKAZiE6Dh/TWGCCFaDW4sMjMCoeJmpKGzf0eiel7bIkX23Wx7dHWomuyyLijKvZ+BC0qLmnDkLX/iV3b1htO7L3XDsoM4gqq1Hu+QaSryhRRRfYkytbzICzHBR998hw/+79/Ecfyy3j27Nv44te/ie/+zd+JDz94isfX13h0Pdk0UHJIQzBiSvjGR9/Gpy9f4dMXN/jWpy/w0ccf49vPX+D54RbJ1kfhVvmlU8X1b7z59rK5Dv23FkhtVDH6z9m1uw8Z+r+hwtMLc5HejctG6069lL3dfVHMm0Q37xr+Xoqy3ibyunQe98GD9x1/Hm1tf2/QIIC+MbZ6mp4YL5bMrhXH4xEpLspAY4YbAoIjuKrsuwyBIyCLTUJWo9WUAlqUpYapy612qLItHM2vKekjoqIwQZpX7RRyJINwVGS3Ys4Rhyg41Iwg0HyPA2ZPmMZxVUxPuoE759C61hYR7HZ7hW2cgw+ue9+lVHjn9cfrT8naTbnWiuurPa72WoRMBs/d3Nx0GI9Ia6TUiDDCOBi8qJHkHCMAwZh12baNt0kPOSaMQ+iSRaipo+i1VvghgB1bZKPsOG0qqQQQZtaOzHll9Xm/Q1MCX+cCLKJT48UlASmjNmPY6OyANvikAqGoIrEClaAsCWLV5q1QXUkh2u2XTAqrwVGNSWimDWr0y2Ze24ZrkXg714YQqCJKn+yak+o1b229tf9t1gCh97FiZkQ2Ag9Bc6RNg9E5ja5qBbjlbw3uppXM0FqdAEr2KIZSpKqF+ASCJ8anL2/w9W99jJ/9hV/CL357wTh4PLqa8N3f9V34rd/1Xfjyl76I7/6u34TdOMA5heGP84LjvODFy1f42i/8Ep6/usGLmwNe3Bzw/PYWr+YjjrWgEPdODe162JJer+PGEdBHV7jv1HiZk8zUGahAQ7vaA2cRm2xU+99xvOeGax06gX9tP//Sxv+6cck4/aqTLR4wWGvUtQ3zVazzJCFujLKUs8oQeQdyjFrIIiCgsE7o0hxcxygOyKRGZ6Atnq7ev2aBgGwGiyvgXTDDBqSiOZuUNW9TOnuRkNAiMM25FQgSCl6mBYe0YM4Jj3baTHEwVYJiXYqJVKOQSAuec1Y1eS+CaTds8iDFogL12LXUpqjwrG3gFYJxGjBMA/w4wA8DgvOACMgTDocjjvOCm9tbDMOA3bTDtJuQSzKtxAGPHz/GOI6otWjOjxTKYWbM6aisQCI8vn6EcRzU+2dBTgrxHpdZW2wQIZVshAxT6oeAaqudy6qmbyNboTDVikqbOVDQ8148jAhg8JARcsLx9mDRkCDGhCXPkHnGHCPGaYdxmrBz++5UaNQLEGmY2PQjiWxrFYUES80n+eo2N1vR7hacasSUJcV1rkNrxmon8LRib2MFkr62Obkt37VGyLYNWxEyeVqhU3ucQWASjaK5AqSiu7k2DcRmtKBRrWjfuiyE6gZUPyCC8bVvfYxfev4SM3tEjjjEjI/jDX7x+c/i//OzP4f9OOALHz7BB0+fYBgHiAhSyliWhNvDETFp6UElxpwy5piwZEGFRtA2XXtOszkNAEwOa4Xje8qlOfbNSAHdWOnXacSN12/Ev6GhwuYBvMlGf05IuKRacXG87tq+o425GBkahPCmr38TgkUb57j06977jvE12KW3i2jnajdBFd6zUZwrttRisSJK0WSJppBEUKBae47IFplBf2Lt/0gXEUvVPlnWuqTADiyMXJoorf5oF2SFEqX3C2I4760vUu2khDAInPcQSGePrRuUyvuoZ1hBUuGZwOwxOGOyFWMTikOjkDtuhaoaAcE0/fbThOC9EUSyafcRxmFQz78KlvkIoJFfislDOb2WojVBgAeJKmYU02wcx1FbXaRkRmllDLL26FTj4F33jouRCVYo0fJVJXeFfYWgCqhQ7yTeojWNOIDWB5i8Mt2YCYPVmKlhtFxSyYgpdc+8RX/KrjNRXthcqts51qeeVqwYg04Mojo1WGpsxPI+DT5cCVVrzNAdxvbehboxc44ttj91LEWUhODIrmPBKuS8Qdja2qQ278vq4NHGILTrXoxyX4mQBJiXiE9uDng5RywGYUdRdMJJxRIjbkrGQTK+fXuLYM0oxco5cqkAea1NZMGSrTZLZMPE1a3NAX3uNodR1261ui275+3qbfJXFUrM6LHb5rl2abefdoIoAqZ2827j14Xh2o6TLbltviKvtT+XRn/NrxA8ePG93unIzy/UPDdY3Yg1H7Tnu2T9ZIvCGrNLLOFdxRTam6agbeQMhYNKioilwLcEcVvI5sNaysPqb2RtCCoZUsjyNC0xrYr0nW5LWDc31vxRqzAmx/BBO8s6p0l1hZ1qZ09p2wkreK7aKypYl+HAygDTOieALTcBi87UQ2d7vT4+jaPJLAmkFO1v5RyGaQCGgFoKjoOqr5Nd52EY9LtUbYXS4DzleSjNmpkxjAPismixcc4Qp0aTndMiVYKyB73XTVMENUbUfp3QmZG5KINQN+uKIgWopNd7Oz9IjUdnl1kDSiFCGKVDyKUShKIJAmdIVA9+nEYEGrSrthRAzFxuJKsAfR9qN94mRLWC4pb7Oh9lU8DcxpqLoYYoAkSdWKMhvn0/09Wtm3kOWD7Rasecc1rYXGB0+ZXm3SH1bghwch6qYKKQba2CzOrkFYOzb+KM54cjXsWIBYRIQCSVKHRESACoVMy3R/jjDGZSsV52YPZwLqg6i1L4rKuxrLVTdh01Ojw1KG1RV5uHlVZF/HaA2DGtsHt7C06Mls0tWwLdQHY08v+GCs+GbH5g11zWRffaiANik/vycZ+XmTpn5PxqsxlfN04iL5tkvQ7mbNKpHupK3shJG92VVMDjsBYkA5rHEkCS9r5rzUSySeiAVU/NWx1UMzY9SjbJpypAMiabbsJrjqXR20GMMHrEqMW4t8cDAMY4TeAdwxNrdCCCvZ9AUIWL+XCLqt2jQFUQiDAFj900AlCZnyIEImdRll6i/TDCh9CNTGsgSLorQgSqjpESalYNRUD7Mn3w5DGEWHNBPmiOC2pUX7640XowZgyj5tcCE3gM2E0D0jgihIDD8QDlXniM+10vHSBmzbdZ8XA7t5QyglfokC2blAzmY2aMrNBSqRUpp3VTDg5k6iOlzZWqjTrDMBolH3DDDiknjGnB7c1LxJywHBOYGfv9HsOg10pcy3MpZGionREx15xZLasxabT9dk5tyRdre9PyZrp/1x4VsClQtF6XWoRoG6s5F7k5AaJKIG1tupZPdAFznvte0KEzESzLokXAVu83hAAiLZ6Gtxop0hxnFgClIorCtSkmfPPFC7yYZ7xaEm6XhLkoyiBOhZ25taQhWB2kIBfAFcEwEPwwomyiHx4GFW/O+oVraxfjnFFhLcpinCjUi0WzKzh7vj9plCdNNPqBvfUE4sVno8ID77nhYlhOxFrJazi6TtiGu7YL3qUwt15WH809oPVP80w6reNeu6Jq1zou5YnuehdEqsbQNvKtUb1PAqrBwiKn3+t1462MYkMA6+bHhDXF8igVpkTQjEQRPcauIQngTNKoClByRnVQOFC0Mh/GlKOS4Zkt8tJNhYVWj1Q0mvJEtllriwy9NVaXVCpSqZhTtg1LmYm1ai1ZPiaNykpBFQbYNORa9GgiuxkCzw6OgDEEiMGYIQRtPeE9HAgxRjAxnA9wpvRQTQqo5gxyHoPzCEPo86BvruYEtKi15twp2kTaq8l5NVxqdBycB/bXghzVcMSYUFKGdw7jboLzDrkA4ITd7sro3MCcIlxV6vkQAnJR/USIkkj6pGrwFZqOIKs8lvPIRfMdKhNVe4NF8rHXcDGzlUFAa66Y9TlYuYAjDEEhT58icopIKSJG1yccQY9rc7AtUt1ku3lQx6ZP5ba+ihW9r2vWjra5armsxrIEbaCsVaOSDAItrczDnA4lZ2itWst5sTV6LCUiF10DaBs/NDIq0IiuEuCZQeOI3NuPEJaUtNYNQGGHpVQsueLVMWoxcalYjnEDP1tEb68PTMgpaY2haARcRJByRgjB6rtaBNoKs+t63WqFkNtEQ2peyKxwu9R08rvtsRaqd+KJ2HMtWCAYCUNM4WPdE4GN0/CO4702XN04bf4PdPO1MV4r2te3++0ElxYOUzcOfbTjNh7V9oANGIFzo4ULR22HtJi7bRhvMNrHr4aIzp4/g0feYnSYbZvC2kavJxBiM3CrcbZAVRcuc6cyt3brW4ig0aZJjIHV1AVE+qRsx9UqPd/gvUdNGqmosypIuSDmjHmJcC5ooSyh07NzsSohUdiQNhT/UquJ6KohcV7hDO9Vz88xYxwG+FZwCv3O3hO883CsunZFaleZZ+hGNVjfKmLCssS1zqhVbYtek+blF27itaoe750HOWUZjq3soLVqsYngw2A1cUU1Ar2HmPhwmVOf/M14tuaKvZcU1vnfIloy48/OoQnJes9d3qtYzZwrFb6KUeVNNokI1RTTiWCyXUp0qdPUmykuByVwqFNjVPK6EfTt/zeYmoCWqWqOZCMKVSva3hquZvvEHKyGEpA0ceFVxaGtldPlIifzjyC6UVublqYKr++jaEMvkTj5T78SW12dIJtwsQMXq3+za1bM+TouSVuJFL3OzNSRB7Z1xc3QNCcTqzFoTpJ+L4s2N4br7l5jUWA/4/ONoR/VjdT5z/a1292YzqDEzdu9qd99cbzXhms7to0FelQFrHqOn3W0nXlrtE428jcLf+877jwq+jxgw7ciobzuvS5EksAaiWkkYZMaBE8ejh0KsVGzvUUv3tqxA0Tatpyd14Jlanku9I6uQqoSsLX9sjmflv9RhXYxRR2NZlM2CnsRhGnskexibd9LrpCSUa0TsoO2lm9qEn4YMXiP/TR2wy2iUdkQBgzDAE927gYv+WlECB7eUZ8uzIxpmpBiRE7KagN0ExrDiHGcUEngszZgFFJR12GwbsekOTUXklLga9XILAQ4p+3c/QAMIqiSUUX1/4ZpAkRM247Rmis2eSXvVUIqHmcITB4qJQCA916Fhpt2IWsnXs1CKo071QKyHKXA1LNqBXvuJQX9PklV1RMJAAQ1DJ3FBph3vnEmYU5MXyubKAvNYJmwbd083XJ2oMb4a7WFpk9o9PcWzbd1Ib0Ie1XFaDJdTA5EziSp9LFOtjCV9sNxBomq4ocQsKRsToIGeVqLp0ZWdQ8JAJvyhYMw4xAzbuaIw7JgXhJiLp1WToY4qK4kemG7bJzFu4tWtsvmwf3p0t7wLumL7Wuagd2+/+eVDnn/DRfRiUrG53NZXjO2E+IBW1XRWiW0l8lmZbWlfv/NfNuJ86tFo+9oTYsats81T8s8+ipiFPMBZKrrkiMkEShUsCi8l3JRFWpS1pZr9UYX7qiYtE/M6rGjkRSCRgmAYJ5jh7l8GHC8PZowbMEwaFfgadghLjOiNd31zkN7Ghm5gVQZ3JFT5pvdDz+o4vsQBiV4+KBFrwB4UG1B51TxXb1hi/aE4dhj8AyGtwS4RykAO49xHHRjJDKZIy1YraLwIIHhfQBVE5EVzZO06Ml7j9vDUTdMEkzjZLkh6+xrRmmaJni/bsDsHWKMiHFBSgneOygjsECkmNRjsd6deu48BMAxCgsanaaiIuUI51Wh3jsHz76F5topmYoqqzDBBa11a/CutPyNrBF6Mw4tqS9QOK8LPXfjY32kW+FvQ1hI54OIFnJ3koZt+LD8n7M0QSPcUKNjQiN2ErH8lm42zSFspKRG/29ahI0800brnaYRm36PVHJLr2nrmyVhXiJKESwxIeeis9+ILzASRsvJdgEAWQ1uXyN9XW7IF/2cT73A1rBiu9TedN+5lALZPHlne/y89qj33nA1E9Ai2HcfsskdveUrz26GPHjDtqvm8xmfx2R43XvcgRBk+4+sRtZyb8RqRBSTdx2uWllpysxiiMF6pidnHrRq/UhfTJ3XaK9VOnrp581Elr8w9YacdeNg1TNcjjNiSpazuEbwgxoX0vYk1bQtld1m6tiixqHKGr1qXZdXsghTh496kapXmjcxd5u+XlqFZFR7UCWFiLVSTUBwrM03lWEJLSOo0nONZBR7ciqRtG1q2CK7rhABjZpqyVZLumrseYMw+7FMPQIh1kahbFFUYxx2Y2BwKTmnjZNrVZ42rzVNMSe9B+3+otVYNho7d1htizi166Pr+Yzdav87OZ7aa4CetELTDmwQo9O/m4Fj6gXK2EBqTR1ekQA9xzafayvHsLm0Xd2q1m+dq8xA19rjP4sOzYGrpRcLt7REm9MxZcSkNZBCWnRerMlnX1e0JTiskKDYG11cwyIb03X+1Hp8M2wPje36vY/otn2s2cI3RaPeZrz3huvOeMdQ9N5wG22irvjtg+/Tb5BceOz0uM+Sj3rovd/29W/6HuuEPH9NuzYGabADO1UzxzRhsGZ7KSW8epURSHsLDQbJNe25Iion1Jh1TBWtoqa2zzRsn01YVD+PQKIVRa0AWSwJDiGUlHF7c4slLsilYBp3GIJ54UW0vUoWJAhG7wDSNvNVosroJPWmvSM4z0oGIiWJoBawRQVCtjFS2yjOnCEijZqsQWStAnKMLJokZw6qHUctl8LW+t3UG1q3aPbIOXVjJVJO7k+7Jo1wUKFt2xXucvB+6N73lrrNzAjjaALB3vT3NOpNVvcllqMi59TZyBmpFoTBirKdw+1hhlQBG7zuHWMIHrtxgIAtmmETndW6uiKmQE4Kx63zi9d52kDiboSMAAJ0FEOkSYBZ6xtCVzxpUR6Zwa8pGSJgCvrtE2VVRidqqvTtOm3WgYiK2sZlrW8SMbLSujq2eVotYtQecUIrO/bV4YglK9GIvfbtyrVorZupqbT3345O9pHTtbxND5yzlvt7XFj2nxe7uZ8HTg0eNn+/614NvOeG604UYDCA0Ge6Jn3c3ZrvPv55jHeN8n516fO66a5Qpz1qSe3Tf7WwNh4IORZMk4cLBMdAytqrqTLBjwHjMCiGLwrRCLNqFzqtu2rEh1IqqlN5ojC0qMbBpYzDvGCJC2JU2aHmYwbvbRN02I07EFjp2EsC0YxaAR9GjBMhscfh9gh2Ct/k6oBc4ItFYjWjOKWFO4sumAtSLIi5gJ0SKlxKYHZdfzBYW5JhGIzabd6ysTCJPZxBTE05m0ij1Gm6wmTR5W7cqaBuTgAEIVgezjGW5YhcVAnee68tL4iQFmXw1VLRGwxWwfF4VDkqY81p2QAQxqG3OCFmUAg9ui3SelNpcaqDQyoZKScsS8Rup1JWYRjhB6eNJVNGLbG7Ht4rY5ODByenPdKsiDo7Jc24Nq8tgrYAe5Or5Y5VdwdBtJFoixBhkWqRurbcsmOrXvwe3YtFaauYmepbihXKawduc1zZ6/cvGrm3l7BzoFK1BRfaz2o42FTXg1f5sqI3AuSNgAPCq5tbpApjEwqWlNWIsZI6uuyZdcHQFVjWCfXa1btCgtuc/8m+9jnvKRolf967pY732nDpWD2Ez30bb6sG1LMtdzyJfujlG3T38c/vRr51pCSnZI23ee0aRVyqOdNixgZrbJ9T2K9tCLpReK8tP0II5iE3WpRYTyGtFWttTk6hNuo5HS1qrZYEhqoHNFhPRItZqSInzRUEZ/2gBMgpY8aCcVRmYhVSSn3M2tDPFUiM8KwsOskRzjG8Z23HkRRuy7nA5WqwaADHbL97/X4DQOQQPCzJr9ATm5wRk/bubfCZmkm7nqLwIDMw+AHFpU4xhmn5eeeQHUOJkWpUG6Mz54xiRJQG1QEaYaBHGsmMsEK7PRqRteC29XvSzsQaIWgbGs3ZMevjpQg4a8sY1a4s1tBSae3eGm+24uhW9HwxT7Jxgra/d+arzYcG8DXmYOuL1eC4ToW3adiKhZsALhpCINXYtNLp8C2Pti09EVkbdHqv0VsIAdHEd9Xqd7O19rYSQMAmQKzEI83rOstnwhpeVszLgtSYo7x2wmrv/7rd7hKSs90jGxy6hfHuI3JtH7/0c+kzt6+59NrNgfd+h9eN995wrSgM9Xu55lrebdzHwrvokcjp8+vv90GEl+G5i6H8Ped1/rqHnjufxPd9t0vveenfc+ajepS0aUBn8Eoz6qaUWgWoRUAVGK8m7AaPyTssxyNavyNHAHGBy2z5ANc3zm1DyZbQd7WAKStDzrHWaBWty9Jcg7a6OBwiUKsSLbxHSsqeawlwJTlUxFxRJcJFQnCMGhd4BpaSUOYZjgDnGUMIGH2Ad0qFZ5e1Vb0LSlFmNrLFiDJWoBIGNyB4ZzJHGn2qX2T3RMgaVqrZYgAlJcA5KzzWxDyxGj2VD0KHCwkApPTaRiLq8lvVVNTbKFZvlnNGKtF09cJJbkJhsKxqG8wAWKWLYE00iU3tXg0DkYrMppiQlqiKFyB4BmrNKCUBpWAcAoagvbjYmHwidZ1bdDq3tjR1Zkbe6GY2BY1Wy7fmqcTgVkLORZl8+g6dFq9FykYG8g6egJy1OLtpCqqSOwCsdHQRJWu0ztLsdE4djvNmXQAC7WRAps6SpaAiW5NHjfbmlDCQA3nqudgigpvDrXVWEGNemvEWdAeaqBX1mlN9D8T30J7x0NjuE69zdM/hyfa7o5ZvPNc6vWDE3nK814arYmUT3je2i+HzGs2bWv2X0xsmct9jb/EZDQIw/EPaR9537D2PXzJe2+deZyzPJ/k5Xt7kgSpZfy3TZ5umPdIyI8VZC42pQKgiWK6gkQRkGBGTwnfCBCQBJGMekm4M3sPD9ULSIoBfHWAAsGJLxp4HzEvEsiQwFghY+2CVjGWJ1khQ676SbXalAtHEged5xjCOCN5rS5KcEBxjPwag6O9DYIQlgkU3jsmPcE6LhZ2LBvNpNHL0Xmnz4w3mnQro+hAQwqAlAMQQ0vMRAOR8n6/Cgsor/BqcMzKBgkY5zWikjELFvls29XHT0qvV8kw6jYJ1GvbEmI83qDlBrFjVEcAmn+VYKfgxJaWwW15GqfeMWlVEthVJT9MeKTZDqIZLG1AKgqNuuCKpev00DtjvRpNzgjoJ0gDFdm9ppdRbDZLNajUetXToS0TFltduxVCSCTFyXnrU7yyeVWtUVUeSGUIOOSclR+SMlHKvZWyOQVvuZFEpLKIdnLN77zqdvli93gliIyqou8Sk0DcEN/OCIIALAwR6zVOteHFzi1w0QjMBMJxqT6zBCsHgzM2avy+nfomSfsmQnD//kPF66PXVkA+VVTNno0WzG2LMu4z32nBdchzOIwLg3e1Wv1WXIi2sUOGbRkhvbbywRmj3eUnvYhC3E/i+COzSdTxfFNTB8rvnRo1ZB8K8LBAHwAHBrcSD1qFWOwbDsmhiwqwFg6soXOEYXUGjmMQTW/2MS0bFFqVqD16ntHfKJsu52h7lsCwRx8OM+XCLJRqdHrRqHVaBxKSJfJNs8iGAdjvswjV244D9NMJVQY4ROSYcDwtcBZzR0jXa0bjJ5YSYEsISUWK2/JPTf41CL1Clg6ponKllmPJHaIbL2ohADCqsKCX2SKKo6JJ6+rLK9tTGrFRMEt5yc0IVpWYIqjr6UvTmKHakNHi7pyqYrO/fKN6lijkCKlLMplFIzAhQY1ZL0b5eza0UpX8DBVKzirOKSkZJcWZUtUdU+y7nc7KRdKqdC3cIGgZvSs+ZMVyPiFrrkmIakc3wtc2PiJBLNvgQCh86nY3nkcx2k240+M4qhYBEZbTU71TtQZDNWef6PVMI2GmuswgyVSSb9ykXvWxdjWazyjaIDbW1ebYPbaG/O+vyHiP0kLG7Q6p4w9HP7x1e+7rxXhuuu+MM2tv8e3Hb3z5hv5/ccLEHNy8We0xO3uTCW8v2+Lu/v/W4xwh+3gSN7WS7ZLzWz5aT63LX8LFFFGq4KDAYplDe+m4Ztk9M8BzUo6zFioq1eNiL1mJ1eSljOBCrPFIIpec2HDMkqFIFgpIMSocIAw58RFkSSoyIxwVzzCoAzMrycj4o9KQWBOQ8/G7C9OQxHl/tcH21x6P9Hl4E8+0tDje3+DR+y5TsBULSC2kJAIqAKcFRREwRjrgbNm9RImTti1VFlKruHTh41JG74VI+gknoVIXsqokZF8m9YJbdqjVXSzUvXenthTQPSNA+VajWMqbkHkVojy/bMImseFwAuB7RFAHSsmiOxoqYmxPn2IGta3MrdWDWurRUtABbmoI9WQWDUzkqVxjVWYuTTc4UoH6PmyPXclUE9DpOEVHokaH3gLUrgJhMVamrZFURZYI2w1Q2CjACVUVRhQucGIu+idvnlVoBI+cQCmAQY2s6qlCZwpdkkaW0fKaVQtQqKFQRiyCWamzLBv+u25QSJ9d8cFuC253htUaJ1nyZ3POaS3muc+N1H9x33370ebEV23ivDdfdnMvp80KqE3aGLG2PMDjAwnG5dOHbzTuXhDkd2y6rbzIazt5asz+E+25zdp+XwbrkeTErUYDqmnO4lNNyVoTZEsprqwQ9T5WlaUyqgJelwpHKIDkf4P1gsBOQYtRkvwtwji0XVhET4F0CkcAjqOqDCJhnTLsBHnrddrs9nNfIhuBAOYNzhVK/FdYafMB+t8O8n7AfAkbvcXtzxO1hxpwyputrDLs93H6vzShJgOAxTCOePH2C7/zOL2PwjP004vpqjy8++wLmwwHH2xt8+s2PsBwP1p2XsBxmpGXBcpzx6vkLoGYQEublsM5BYSNQaNTJIKCuEJMwtAnm4MBBjZHkrAZbRCE9qUrvHlwnGkgVhCGczMXduAOzw5K0MFitYIXLEQyV5qoQla/yHmHcgYhVb3GYkEoCTDUi1Wz6hIx5SZCcgLhgqlNvSS+1osZo5wsMQfVIEDwO0Nwji2BZtIULE8NN6IZ3S74BAA6MWgRcSJUkTDsTWI3Ndt01I6R1a8AwTJCk51NqRUoRuWiPLO8HMKtxnaYdUsyIkpBKVIjae83ZpQgY5JVMeHeatLi7dYwm8vr+JaMrDwMAmzJMEYVmwdpDLus5aDsTQSZGKirzJADWVghA34MMMd2sSHSFWzy894i9ZQ/gNo51d3QeWPft2PbveeS5fU0rhNbPeTPD9rbjvTZcbXzWi9FyBXcf22zIm8caZ6h5me13nPx+2TNpHuPbnx9dfOwhGPF149J7nj93miQ/M2Jn7kC3r6Rin+QcwjBiGCd4VjmmIsDt8YAcGQubFE4qOBxmPH782DT6HFATcilICcgWSVQ0bUJluznv4YMHWYJcBHDJIfuqigQiWsdMDsF7BCYEAE4IkwsYyOHTl69ApaCmCF9GrQ9zDuQ9fAhwwwCaRvDgQdME7K/A11fYTSPC9R7joz1ePv8EUgqePn4CmML38eYWH3/r20oKIYLkbM6RoKTSu0fnnBHnBZCKkRjTbgcXHNzgMT7ZqxSRCPKyoBpLMM8zci1wwakCfNBl3O6edl3OWJYFV/srjOOEab8DyCGVhOPhFvn2FZb5iDjP2F1dYZwmDGGwXJFGEreHW5DzFhUcO0OvlIplWayezuHVzQ2WWduqOBCQI6gbqFHJGM6hpAQRax9j88VbPZjYBGJvhcnSOh4bmUK0DrBF8cyusxWj1WPB4MqW1ysiSFHPq5jh8d73TVw3XYFzwOCDEWWgtXN2b4hV2LaWU8e01awl64HWoG9ngsnZUIPWf05ggSvbH6I6hFVr3kGDR0kRKWvfMmk6QNJagZytcbqkAnjXqNy7Nzy4390dDznWl47VU7wbZX1ecOGvC8PVaTb4DEZsAxueGyhsbuolqPByeI7N8Xd/f3hc+A6biXjp34vvcmbY3tTI3c8mNAO2Oa5DWdTi2jXv0HJEIQygqjp7uVSVtWHtihw2On8AdOOBSjBpDgEnGxuIDLICPLlOSW6qEUwMV2rXI2SB5iqY4MSDxgF1V0C5QlLB4XDQiCVGlGWBDF4LPoHe00tYIaxiP3UY4McR4WqP8XqHBIGUjKdf/CKCDygpY769BU2jkQ9cnxAiqvJestYCxSXi1csXkFoRfMCTx48RxgF+DLj68LEVDxfk4xElZeQYcXh1g1QS/BBw9fgRwjicEAbykpBiwu3tAY+uH2G/v8KTZx9ovjHOePniU8wvBuDlCyQIrj54hv3VFYZxxO1hxpISasqIh1kZnNBC7VKKEWkU8tNWKBmHwwGHm1uUlBCcg5cCT7AO0gUyBtA4QKWciklSGamHGxS/wooANvmqVcGjlKLafma41LChR5xkXQGIVjStlNKllxrrlem0A0NjqooA2WnuTKzOawgDwArPKckI615jNW8acei+sJYTqJEHLF2FVhrCmvMirdkSqDivZ2fixeqcwO5nM14tl3WS3mjR04VxEh098DxoLSk4f+4SceshmPDcWJ7uE3TnuAchrNeMXxeGSzc1fKYL0fDkbrz6mzcjdv8kWQ/d3syHvZMHjZitVMXrV0y9ve4S6+d15wXczVNdTN62f88jLWIt+s9r7uEOnMCr/BFZ6wcfAth5pHhEzBFeCmh0gCd4rwy3YZhwff0YjhglZ8RkHjtUhFdAgL1fGIJ1VNYuxn4YwbWCnVK8nRPUIqj1iFSa4rtDTVkLR+MMj4r94OCud4jHHW6OC47zjFfzDN7vgHGE5IQkFX6acJwj5pqxQJC8w1XJ+ODJU4zjiPnVK9TxVs/b7+CmHdyOsNs/wVg0Z7W/usKTx48B73VDMl07qQU5RnzjG19HyRnjOOLp06cYQlCFh8d7ZRKWDBxnoGTkZcHzb3+C4zIjjAOefvhM+yqRGoAcE5Z5QZwjHs0Rj64fY7e/wv7ZB0ApiMuM6dULxFcv8fLFp5hePMf/8//123H1+DHCNOLVi1d4eXuL28OMT54/x/XVI2UdMuOTjz/Fi0+eI377Y1zvPWouiIcjvvbzv4DbF69QUsJu9HhyNWK/G/H4eg+SUfNypKUEtfouiSSoKiJhClDG5e+5o5QrQtAcpKLTqrjinAPYg6yFDjnrvC0CJBO2NZJL8H5tU1KrijHX0rU0nXMIIWCaJlSZIfOi9X9Vi3+vdjvMAkTrUhzCoK1lkqr9F+u2DMlG9FGmKjudu5WcFbQLSm1MaG23UqoZayI49khR2a85V/hgdWt31mgzg7Yv0N3Iqq33Xgups+3EmLWhkslbZf37nf9Lr39wH7sHcnzt695g/LowXG8zGozXjNH5LVonwdmzGw+lT5rzyXCCAZ++568EVKinc5nufumY88jrTc+jRVaAXRU6f655ssYWtN5VcQGWZM3yTG6oQmVyCjnwoHRn7z32+70qLeRsrc4zCgkyK+ySSgEzkKtHMP3AVDKCbRw5596bqNaCXOLaodh6DokjjMEjJU2UU3D44PoKgw84xITnxyNizogl4/bmFcb0GMM4oqaCYRzA5AEwiBxiVubYcY6Yi0DAKH4A7fYACDVGZA5gH4AwIvnQGXhajWzFxjGCHz2G5KIN/64fA94BngEfVAXcOUgRUB0ACqB9hAiBdjsMj58hptgjUhd28LygcsTAC3jcAX5ALUCuhEweHCZE3ADDDrsnjOnxB3DTpI0KdwVOCIED9mA8ffYMTIxlXvDkmYMIIy0JT/bXoFKwHI/4pZ//BUxwYBE8fXKNZ0/2uL6a8OjRFcZpgIiKIZfSGmd6FdyFRmVuCGp8W4NH+y4wWr4YPKlq8FD2KbPWtDmGHwZgSUg5Y4lR6/oIcKzEh2o5Qa3P0ihtsGafRGQ9ziJijL15ZKNrN6X49tOOTzGtvbugBJciRsuHsi0JDBFCsXKLmBPmZUGxPYDYmbZlQK0F8zIjLsumDKDtVe2i3B0aUTWtmNOIaJMee3C8bh+4hMCcP/cmr38oWnvb8evacF0KZU8276bS3rAFC/f1plO/6S2sFf1jJUq0n2aUsNq39TPvP5+3/DIX81r3eVvnY2uoHjRaD85DuReeOI3QVj06aW9qTKrW9bWYegKT5hCCVw9+jfBWb60L8FYlb7TWJ7U1L2ywLBReagW37JT44BwB4tU7HwFKApSKmgt246hUbseYDb6TokawMmG+ukI6HnH1+BokQF4iUkyI7JC54OZwxJy0Z1KFSvNo/iMAPkBcgDiPQu0aOQir4YRAjYUfQFTAYQCFAPJeN3HS9vAggnAwlInBwwSZI+BH8O4ahIMa6YYkOdHv7gQiDrmqqkUWQqmECodcCUIebmCQH1HhIJVQhAEOIC/wIWO3vwYRo2RBDUUlioi0yLtUUK3YjwPYBwTn8PTxNZ4+2WG/G3H9aIdhCMg5qSxV7rMIyEuPeJyzImebL0Skcl4OAGkdWC4K3bGQlU2szMdWXiGA9uYS1+HFKkrh78aIVK2kGS2gQdLFlPS1sWTOFbWoWHN7jGnNvZVa+mcqXFlQTEwXdm5VYBGYki6y5a+09KEVoisLM1dBTirbxexO11jfm85Xo5z8uz38FKd5u9Gc00uO/UOG6qE96ZzY0X5/1/HrynDdh7vee7FtkkGUygw5jSza/zq+DGyM1unn6JRvn6MdkRv76aHzfd332BrF7fd5IyN09vxDv6+PbT/t/HxOHz8nbTR5G2grWGtBr51iKztI0QJMYkFwJv1kDRNb9pqJtWcXPIInhQrFGvoJlErMumG12idypCK7ldXgVO0RpY0eWWugAkEGQR0KuOqqrLlgt2M4r3VEMWXEm5dYcoJLCa++9W14Irz68EP85t/0nViWjFcvXuHm6gnKXtUyPvn4EywxYhgGpFywLAuCMSeHcTJSCZnunO5Xyg5TGDPFAsCKljnAwWmE2FTjDcMWp1EdhQIfEipFFJ6A6RFcBpALSq4adRYjGtSCZSkohRC8VmOlDCwJiBGoVWWqUmGkKig147Bk5CKQyhBhTMMeTIzoFszpFmleMN8ccJw/0TdLCY/GEU+vH2E/TZgGh3HyGAaPMQyYxgHFa41TCa1bdEWpWmDunUfwA5i95bNaVwGAnNfoOSYsMSPVVpKrUFuuojXZLbfVfuz6ETmUmk9IFc60I6dp6tFVKassVvAOjgnLfETKGbe3rzA4by13xKKyBMCYq+Zk5VLU+EMdsiUXpFJwjEULnItGdcf5qMxM51UVxWr65pgQU0FOVaXEWv2d3v07RKi2SlvbJDFYsG85Pc/3euPQDbjtYK2gmTS9ZlmYC2mF10Vbcre+bH1qDQDeZbzXhmsbEj9koM6Thq97zxUqBN4k1j6fGnehwu3NuzyZHgqfe9j/Bue+HecEjktGr7//JqH6uuuoC+b08y5Bmc45DMMORE5FQ+cFIyqu9gHDMML7gGkY4IgQ5wU5RtSaNSdiGm0ipOoW0HqZlCvmJSGXiuAdxjzCuot0OnLOCZMfeqkBmTdbc0aJGVkywIAfTPw3e7gUEEtBIUEYBgxxAd3cQg5HfON//RxKTDgsC26XBV+4foYhEzKA//On/394/uIT7HY7XDuP8ctfhhsrMiKOz18iDAOCEFwYQLzZatp9EMCRh1AFCaGkokG9FxBrXZlUQUkVHoISMw43M55//ALTMeGDx8+RYrR7xwgUkHPFckj4xf/jaxjGEVdXV3g0XUNKBkqBy8DLT1/g9uYGaVmQl4pnzz7A9fU1xspIt0fcPH+On/mf/xMf/++vYzeOCOzw/ONv48XHH+PFN7+JfDxgP464Gkf85i99iOvdHrtpxPV+B5BGvjnPKEmLrL03SvhG/seHAD8Mptium2WxOaXaiQypDCoFXApG7LXjs3PIUnFcZpRStXWORV1Ai7RUnT6E0OnvUgvCoBBhCEGjrHYu3tt8HXBzc9P7Z6WUYGlm1FqteNxjnCbEqI0/Vb0/6Xy1+puYM5aUEVMBBzUo5JxBthlCRUswfFDWbV0dZCmyqc+6y3iGNDLFVlHk4T3k0r7wWcbrWMfno53b9v6/M5EO77nhAu73Khr1+M7j2ygKm01bBA0Uvg8q3L6J4Fzw0z71LDpZjzmNZi6FznfP9XL0eAoV3v1uwOXc1yWDtf374c+X09+aR7d99NxYo4md9pNQDztoL6xStZBYqlKdHZPWd8FgHYu0tueTS0YqTp1sIc2VMPeOsO1zmNfaPM1PCIS5aydqYRlp9GNd14fRY0oeFVrYu4SMSgw5Lnjx0bfw4uYGL25u8bWf+T/wwbNnYM/41s9/DS9efIphHPDz0x4vP/ompmnSDfBwwKPHj7BzHhgnvSZe37vnWEWJAFIrxOAk7X8MkG/9uARIKgJbloR4OyPeHsEViK8ONh8YxIJaMuoSUY8Lji9eIfItZF5Qnj2DHzwkFxxe3eDjX/plvHzxHPPxCMoFcpiBL3wBwXvkFzeYP36O57/wSyifPFdtxuBxvLlBiQuGUnC9m3C1n3C9m/D00TWmccA4DNjvhl7bJOKsJgtwYFBGj3K8DxaZ+tVJAfp2rLZd7F5qLshbNIOWZ7LGoEIegTQWq0Qq7Fu1uzUTm6MArXuzKKcVHyvgIt3Raj23WuDShJ5hDucwaC1chSCnCqJNzyzRfUfBAyuYplVo2nnt41atCDoAdt8a9d2+f7UJ2Zfl+t7tz77YtmjQZp3ch9j0sfHNzw3JyT5jn3EpL34HcXkDw3VyTr9RocL7kLit4bl7QxRfugOZUU9x6bGb//XX65vg7K6vkcg9UVZbBt3YiZzcyPNzfyuoEJuL0D2xyxHofcSNk8/HfZPsgiHd2nKLJLbXorVMF0BVDJzDMDDGcYQLHrFJHdWKGBc83l8heA/nGYfDATUllFpB1DYLYElJpZ6cbnQ55y5E276PeuuNlVm18Fb0StValVHmC1AJJRZkZFSqCKPDmIJuOBWokyCLqpsfvvUpnn/8Mb718af4b8P/G1/4whcwTgM++t8/j+PhFZgI9eMXGKYJ027Co8eP8eTZM9B3fhlPhgl1GMBDgASv10nl7JX+nZPWCYmgOFaV9+p7TgVFQEtBzRXluGB5eYP46gBOFcdPXmIYNLok5zDfHpXafzggv3iFw7Ig73eYP/wQjz98hhIjbr/1bXzjf/0cPvn0ExwPByyfvER9eYC8OuCDpx9gfv4cx29+Gze/8Eu4qQVEgDch4+v9Ds+ePsJ3fMcz7PcjpkkZhM4xnGMMg4NUIDmg1IxhGFStg4Djss63cZgQTLuRndeyA421tQhdlILXvpcPoTPsmnpHLkVFkp2z+dByS9UEndVQNYNITSbMm7qKhepdtYRUWZ9EmXaOWOu7SN8TgBouJpuXS98KiJpgcMvJKrTNlgcDax829h5IWXNnG6dOWjfxvvYI2sJlbUja8lxtv0JrigkC6uW9ZLtCxV4jHWO/85KT13Y29dmedWnvehsCx0P735uO99pw/cqP1ZI9hMk2qPL0ZlxOSL7TWTTP57Vn+/rPuGSw2iSttdriu2w873u/1ViuBk4vl3b73V1dIy9HxLRgKYr5g4K2D8mCwA5X+2v44AEyfTzzpoHa62dq1bbntRZUUeHOZVlQLFdWSrG8iQOTNlusOaPmiuB893qdZ1R4VAJSOUKy5jinaUROBQzC4AKCC5iXhMNxQWCHR1/8Ev4fX/wSnr96iY9fvgAJsGfgiTVmrB+/RPGvcAPghQgOH36I8OoWH4jDdQUwjsYoJLjBg0OAmyYMh4jSxG6zCtiSd5DbqHubABQz0mHG/OIVPvnfv4CPf/HrIAFuf/GjLgo8hoCbFy9RYkJeIo4vXyrb0jH++6ef4PrpE8xxwS9/85so3/oYT6Ti2biHu7nFt3/mZ/H8f/0cHl9fIaeMFBd86ByG3YQQPKZpwKPH19jtJlxd7bDbjxhGhxAc3KBRld6jApASDoZh0vo6UTX+m5tbVQchYJhGi35cj1hUsUMdkNYrzBukV4rmD8n6sIVxQBhHEGd1VkzhfUfqzPSfWhBC6KzAHlUBJ/9656wvHE6OZ2tb0j6/VkEtFUtMqoOYkwr05owCNlVHVcNQQ+GUBi9G5x+C9myz3mm1ajH34XDAEhdT0/EqO3ZxjZ+K0xKtCvF31uXWeRVc4ndc3Bvu/L1JNZy/fz+HS3vjhcdP9pTfqFChtjS3O2Jt1vsFpVVbGec3cfseaNdPeiKcujAoTr2SfrFFP6sZJzMsLS4T6SlT9ZgbHrWZdOeRYHt/2p7Phcl4h2DRviNO4sDL1+uea3ByDu2Lm/T2RtZ0M1k3Z2Y7lnSul14JJu0SrMbCQUj7XaXjES9DgJQCmoJqBTolErRrW6v0Taa1oiCLlqV6LWLNCYkE5L3W+NBa/0MCa+ZYzbtUhQ7CmjvhqtJVbMoIDQrSuh4AKNhBmWQkomK97fqOATVloFYMzNiFAY4dmgqciv4KripAn77E85/736gvXiJMo+a6gkNoahwh4KNf+gbiEgEm7HZ7zcMMA8h5E9cF8nHGfHvAfHOL229+E+7VLVAr5uOMBGBxjCMz0rJArLWLi9FqxoB5OQK3N7ox3tzgsSX/uaEQNYFLVr3FohqRj6cB427EMASMuxGPHl9hmiaM0wgO1CEzz7RSxcXiHmYM06hzTnRFsfeQqnO2NXREqfChwbm6BasmoXYdjstszLyCJS4aMQUBhBEGZVqWUk0815qRSkPPFGKrdV1XzoyUI4ZjLQwvVZX1YZGW5rIcgNDPSXufeeSkMF/OxcgMyoDMxeq4QJortdYlxfQHcxWkpl5PqrrhTKuy5qJ5StuMWrsWw4bWVd0CpbZONuvxfC03GabtawSCE7snsoH9WwuVdQtooZ6e1rpXXU7N4GSv3KJUVbTFyec53mvDZbtNN1rYXlRpRqtetOzN4rd72zbqzt7ZeAR3PJEOeq/vtd4mWc/r/O+zCOzEiGw/o1vBTdRzdh5rrgsn3+8S++jSuNdbovVaqLGqm+9zeqp63QhrE8QmA9XYhdSvY4W2UF+OM154BykFgQhCzujtWeEz+zjdCD3UT4UaNnDPB5WcEWsxvT2FeJo3DIv2HHsI1jYKTTFBa8703jvibjxzaS0YmpFnOCKVLpojaimQUjBOAdURJBd4IVz5gCFohCat95NtdO7mFjfzgvlb30IYRrhhgBsCht0EDh7ChI9+6SMcTcbp6uqRyi9N2i6lRQLz7Q0ON7dIy4I6zxikqqBrfqVK7BBEyMZ1AAIE3AgIR0G6vQWIMNWKIJZzLRXsbT5Xgs8JjTzi9yOmq52SVXYj9ld7DOOAMAwo0DY1W6klolXaipngw6DRsqiT4MIA1IIqptJe17XZohtsjJaIMvGqaPHwkhYM2k8GwgwXGEIepS7IRbn2CjPaGrWNWFHHqjVj7NTJsDmgBM+qhquKNo0Rgbd+Yc6tBb+OGSllZBPpbdeJnVfYEkAWIOZqnaKBVAVL1j5c0ajxYq9xzplhVeZkW0/q4mqeq5EwWrS0XemX8lcnaEl3hJtDcbo7nL/u9Al1ztfjlCh1aWx8BEM/7ThaFYbav9v95jcsVHgnfMXDkNo2Ymhei667M8LDPQYMWG1KRYMI7/+M7d9vepMuHXsesn8WNs6lz9O3phPa8F1jffpd2rF187sY1NjYYzllzHO0pnusGxc7HOdF2W0APjweIUNAYFrzDD5ArNuunoZuBKgFpSTUEtSjraqWERcP7x2CC6hFdfDmecFo+ZOC1FXOKSmluVgxakFZoU4A5JT0kTOZ0IUaDwdBnLXlBIlg9AqDcsy4cozBMQbPvctx6yjMVnjNBcCcUOeEWDLmtuEHB7o9YKwVk2MgvkSiV0gElAprhcKoOQFF+5mxCAZmg9aMOYmqXZ/NW9cLRyikCg21ChgqiUWeEatKE8GJ6j0yaVuY/Q4UVMXf7waMVzuQcygQhMDWkNe8c+Ie8bT5klMBOQGxtolpXQAcGH4cUJYFOWbEGLu4dK2197TKOSPHZCr1OtdaOxIiMuX1iLzMWpBsNViBQ4cXIdQZgkSkxq9WuCFARIlAjQIPSJcLa8XOwipWTACcJ/2com1ZeipJCHOMkJZnIi1GX3JBFAA8aCeEQkjHZMZLoUt2DiEMKtQLQo3KXqzmZGjUhdMIBtD7K1iRngvr9PIifxiNEVFjeroHPozQ/FqP99pwbYdCEpvfT26EbB4DmuFqvwOnoTABq1W6CC8KRBqd+XLC8jxCOnniDb/PQ8eew4afdZzj1+djE4idnaMZMFMoaBHa2jBOE+lCBFgbk1wLUgFSzjgej6CaUT3BW6fjAmCJEU2QVVBBUuEdoVSHmJJ2S7aT0Q2L4a6MVi2Cw/EWUierI+PVuFokWTdQSxE99yrWX8qpLE9OBQSB84xpN8J7hzwOyDGCq4CqUeq9EhOct5ox0o3Tc4t/BNS6/LLWl5WyZisKO1QydXRj2ZFTI6jSRQQpA6TULgHlSDcyqgVE1upFoFFytf5PRCgmGJtS1PyRCeNS0JwfMyEMg8Kn3mHcTYDXgmw3BoRpBDltDipmhDR14wDSiL/lhoDWT8xBiG0ttbmwdhdOSQu9vfd23WtX1RD7u1oPLWaGg55rzLk3dawpI+dWmF7gBt9hKcA61XgGQ3NUgGCcRu1sXFWE2HlnKv1Njd6irRC0EBxaxF5i7jqCgIMiClpHKEU6JNiYhFo4rqoZUjXnFmPEHCNSXBD8gGE0Q11qz5+lYt2abQ71pSYrdsMd6THDRavz3NNZfT/a7BNvsMbvG8bXPIUSz/aGZhybYT0PBrafq53JWzT5buO9NlxvSog4NVDqiapncwqt3ck7rTPhLLy9339Zocqzv9s54c0nzdaz2p7fXcP8mvfZvMdDNPl+jpe8uQ5VyLpSIP3aysZDbl70WrOxLry2uTTG4RwjHAkYjMQEYYIDkPKqJK4wDSBozSEzKhMcAc5aWJRSME3aWgRVEJeoOQQCAoeTa7qFgMUea1lJFfkluKARD1MFSODHQVu8Dx4LEyRlzQU5LWBmp0aALd/j7GdNiKs6PrN2M868GvuBVeKnqUiwXwtTFYIDWkteqRWSkuaRLAoVFHvONn677swMR8akZEN+TEuy1T2xY4zjpJu8dxinUUsFHKlC/qCFsnDKpGvlDSsVep0iRGosWwPRapuZGqbSo6iTeSYGlZVsyPKpd9QMlfT1S72Eohppo9aKGqSLMfccs61vVckAnPdIWTtyl1rg4BQJcK3vlp4z+7rpqq5GNNeKVIveU8vrAtQZhPq1TKvTDFdjLJaihjItC1KKqpZhUTlycyySfo+z7bz/tfmn7T79OIvO+hrbrM/z9fume892V7Fb3q//vce3k8PlaG3dG5qD8hvUcLWx9TAId40FdXcAZ4/fY7QegArvfPbJ558uyvuN6H3nfxlW/DyhwvPXb//eFgfeO8Fp41pt8nDVck9toZZc+nvUJntToWAuOxB7gByOcwRLhYNHgCrGc49k148NIWAI2i4+52w5E1VdKFWLjl+9emWK5QSqgpnnbkAB21SJlL0ogBgJhFijFaZG4rBjYNBUKWCuEO90wZBqEVIpGEFwTUHB+mhp3oPsllH/XDZPOgQPNkJByoLRaT7QeQdnOo9uHExhQVu6eEcIlpupuYAhUA1AjV5qUYp1rdW6+RajYNumnb3VE0FVJnxQhQrvMEyTFvE6rZMip/VulaBGy/IupRkV4d6WpBEA2u9MVmsFjZzB0C6/YkXIgOWPVuOXUlJ2aM5GPi4AALkaSURBVCmd6Ue0qrzXohMhZ6XXe+sinbMSTzpEaKPNwZQSqrUscY57ZNM+p8GQkNqLoBkEqaxFwlWzTXNcNFrKCTAnBaSGXlumVLgwYHIeToAojFiBkpojoT3mSk5Kg5cN+YhW9Q51CLivSzFjulm9p2v57BF9zd11+7bpijbOKe2fCTSU1SA35+o3rOG6Yxyw3qAWSbTICrKF1jZV6vZep7VRuAMV9ueosQlXqPDSed0XkV0673sff+C+vg1UeCmqOjde20jpPGrSSaZJ9WagpIqJ4Zo3XUunLevx5mmWrH2HLDkgUJZXrurFagdfVbwo1XXvcRwGgwJr91IBbdvBUkFVfyfn4J3KS5WS7G+HMQR4MxSppG44HLM1v0TbbVVhG9Z0tF+nakpCDB8cSl6/t58CeAxwIhgrYHwB0110BqkoQaVFX4MP/R6wc3CZgAyABMEHM3ZG1w4BPA4I+6suY+ScwZAghQshqDUDMSEvC5AzqGRQrUCOQM6oJCCv0ZWbAry1yiCnyvot4grD0LHgCs3zgW1jtLbzqgsp1oML1udsm/slgyrFmL7taeqUckcOtXrknLEsc88xwRTOBap+AlinZmIsacGyRMS4IJdkpRFmLEWgUHVBSrOK1hL1sgh1EpR5KBDM82zECJ0jmuMUZAImu8ZgtoaTmnNiR0hZWYFFoEr9tQIomFNUjUEB/DhpO5JckJaMVAm5AgK2tiuqNu+9xxAChnHsRlrr0iq2+M8GJNqu5EsP2rGbPW3j6K5ELz3wjYzXSRS9IW8R9Xn+kBHr0TgUodnOEkVmVuj+Xcd7bbjaWOG5+6IcxeK3MF9XLti8/r5I5O4H9v/dmUb3RkunL36z73Xf43IXMnzduEOjv3CeDxkw/X0bka1GrQmPnhi69tNbmbf8knruxYzXChuuMFDbcGDv27JZUnWBN4mfBncRAcSEKmv1S88RbL5nRYWmg9rCRl+k1ZyR9Xqo6nc7J4Yqo0sVBFZ6rwMhFAFV6UWr3Lr3Ku5o5Ak1RrURArwZN1aNPdUDIjW63sGFAW4c4PcTyDvAvq8jq9kpCl/Can6cY5AZLoYAyYNyBqSCrX8VmagxGZmAvEUYbGQYamSbqk11aY141YA1GFAN7NYDP2XHrtdX2uW3eapaehuYdjMf2/t1t0EEhGLCs9l6c+nG1wRxt3OyVm3YSc5vNlqcbN5VlDVK0O/SIvF+6m0uiEbDpWQE8mi1wUQm8mxzP6aEIkAxiFBZlkBKxQwXWTG7oUECbWgaPIL3BqMaHb9qTm9rsAR6HwjUjdLmaXt+87jI3TYo21zZycMP7xv9Mzf3l9q9wh0A6+R919fh7Ng17/YuEeB2vNeG6y7EhlOPA6vRWn9Xc3UOFa4vwJpcXN/kTo5re80v3YB2g+6e5+lxF2vLZJ2a59/l/DV3DOzZ5L5ksO7DnztT8ELU1SOpehpdlZLtZ30sZ4WtWhFoMYmbRlPOtYIgKkRaxRa+g7dOuYEddrsd4rJYOwtBTtotFrViN1whBC26bZASoAw8sSS6lGK1OoxhGPT7WOM+kZWYQRsYrEGHAnR2GjfqdNA8lC7EAAeFlQIIlEtHTvuGbhsdGeEC7FBiRE6ixiw4WFN71KzGGcwYxlEbSe4m1CGAhgDydg72vlL0eK4CNxZMZdL7k4sWaBcrvK6NLKOGzrnGeCSI5xZwGmymx7Z6Nf0olZkiZs23WVTYNQHlNPdBdFpbJKLBSXNYBAUxRizWPoRI80+73a6fWxulFKSSMS+zFkRY1CaCk3lVi274VAXs7V7XVTHerBRgzlBrGVKSReHMWrPlVKFCarH3LyilglnFd9lpU9ScBSUXxJRxPC5aP8gOlVVIOaaMw3FGLIQqjAJnNWt6jrtpwDQMGIfQpbFaO5VclI4P3vhb270L62P9L3P4ztMZ9+ai6G6x8qVjzn+/8373OfUXxkMIz7uOtzJcP/IjP4J//I//MX7mZ34Gu90Of+AP/AH8rb/1t/Dbf/tv78fM84y/8Bf+Av7hP/yHWJYF3//934+/+3f/Lr70pS/1Y772ta/hB3/wB/Hv/t2/w/X1NX7gB34AP/IjP9Ix8Dcdl6DCFkGdGBr7aUzCfg0NnjjxPmjjITQ3CXc3+Wb8Trydkxvy5jfldTmrPmnvMVj993PZFzqNzs4n0EPEjPPISbX0iipa5GagElKKPZ+w3VCiCZQ26nHJxRS01SPLAhxjwnGJCCxIgZCqkiuYGHOMuL29xTLPuhG3/A8T5uOMmgOkNOOqBlSV15XEEJixmyYAHim1PlBke5gymoShsBmrOnuBIGVtAy9FQKzq5DUJiDUxz85hGseeSwvC6C55mxt2STmE3tAwC5AZyJ5RmeF96K3kvdkKIYYbRtAYgGFA9QQ3at2Xd6pqTqRGBkVQs/aFAgQ5JeSU4Lm5YwIpBbkYzbpmK2tqifGKajRRB1gvLAKKRq8AIMWiVAIcCcjR2VJQ48SNQNKhoLUzca6aA2rEjMUMF0jVM4YQ4LXiW6Msm5+lqpErpcB5Dx8cUkpmuKsKJpd1Hg6DGqDdbgfnB5PQ0s8sVft2Od/U6YsxBKEOkw8oVXtqpVQwz7N1GTDFdXOsnG+XSFCyYM5F84AsKOyxpIIlVZWjyirsW0Rr/5iBcfB4dHWF66sr7MYJR4PRY9J10RYtkbE0141KrzU2Edlr7MZ9iMrbjJWAc1eTkGDwOJrQlqApTupMurRnvn6ve9PxVpbi3//7f4+vfvWr+P2///cj54y//Jf/Mr7v+74PP/3TP42rqysAwJ//838e/+yf/TP8o3/0j/DkyRP80A/9EP74H//j+E//6T8BUE/qj/2xP4Yvf/nL+M//+T/jG9/4Bv7Un/pTCCHgb/7Nv/lWJ3/Hcj9wc9YLt9nMgTuGbnv8CvlcuvCXocJfqXHpc84jKfX0VwN8Kbq7BC9u/74EF655rXoSdTV4sEVjrRtsMYgwn0RdVuNFWshYRaGWJSWkoMXDpRQUYjiqpkOnr1XWl3qVzM687gLIYpCWnpMLK6TmSJsIZpTulRKRtb3QzZkq9S1BsOoqihgkKdWWpC1KUsPngjfDxSA4UDdc1KFNBsFPo9aAsUMuSSOXUiBVQIPq1vkw9HSqgMDjAA4BCB7ktc4LnlF5JU44eNRcIaSkDBGgegagBc0doqkerjCoZNTCILKIsxagGX0IRLKxH/V7s7X3qS3ilwbJ2XufbGBk8NsazYo5dVuiSC7avyrlrCSH5kyhnccmFbNFJmhVqBFzKBpM2Na7GjCLvIi0bAEw58POpRSFWe33LdxWq1iX5PZ9gcYzr5uyhebVCrQ2LpWi7EG7bjFV7boNVqHmqkLAOSsLdAgeu0mjLe9VLqrYetGPNOeBtts+9fN8aEPoe8HZGr4U7QDNDJ46tid7xfYMtvf7xPFdz7Cd5VrkfBfReshpftvxVobrX/yLf3Hy9z/4B/8AX/ziF/FTP/VT+EN/6A/hxYsX+Pt//+/jx3/8x/FH/sgfAQD82I/9GH7n7/yd+C//5b/ge7/3e/Ev/+W/xE//9E/jX//rf40vfelL+D2/5/fgb/yNv4G/+Bf/Iv7qX/2rKmL5huMOVIhTR2R7U9ZrtoEKW7OZk9foMfdBhW9+bpe9nn6L3+k9HzY6p9998zs2RhiXJ+1DUOEWWus1OQYP5nwKEyp8s8KJKSXEqA3yqol7Nm+8low5BiyDKsWnVNDMAURMxkcQwqSi7q1tuxBKrkgx9vwNWSQ1jgMG78ECpGSQlNsoMwCmnwcQKTlgpZAXNUSWS6kmQyXECMauI6dCrcwObIAhmyssQmDRVheOPYarCd4F7fwcj/BB4cics+oUhgA/TfZihdXcOCirzzPYaw6ssqngi34iOY8iglyApWq3aAAgzw2v7Al0ygJ26EQQSMvzFZNMq8jWjRgQpJKMJm7Rk02mnDM8NUUU9CiVjYCiBvEU4u5zwIyVay1GSoEzckRK1EkLbWM0uWa9X1aY3iIsMQeo5adEtKCYee2q7NihkJE87HOkKnO06XH2eV/NwapqOtno7MxqPEtRGamuyEHce4GlnCHOg8gj1WIRV0G12KNBgWmJGAJhHHa4miYMQ1C9THP2iqxyYi3Ppubwbn5qC/Ot6/h03TeHYLtvnL/L9vE32YtO8lZn0dd9o73vnWjtDV77uvGZclwvXrwAADx79gwA8FM/9VNIKeGP/tE/2o/5Hb/jd+C3/Jbfgp/8yZ/E937v9+Inf/In8bt/9+8+gQ6///u/Hz/4gz+I//E//gd+7+/9vXc+Z1kWLMvS/3758uWdY3oOg8/zXlujdf6aCqnUNzR79PwoPBSXn3qJ29dexnEJa0ffJua5jZxOIc71ve2AByeZyCbnsP3M9jhd+HabyduMVNlEO61gtBgUtSwLUk5IRX+PaUEp63EpJcQUkdpG0z1vM3ZVULLCeZ4Zc0w4zozDOOB6msC5QnLCfjdid3UN2gukZG3sJxXVB3AxaIJ0Y/HkVGFcCCULYs2oKcLzKqjaNrpaVXHCOd3YVcHBwftGjRZoQ1FTEgFQoTRs5z3CMBghxKLAqqw/geaqlqKNAEfvUJzmThwzaBzBpg8YWk6CCIWgbDUiVbRg0rljkRQVsrwV8OL2pREMVrmgUmtP9Pfo0dhxYoK2Us0AttwYBXgS1EKolZCWlVjjidvupxENThPqmQucK9aOxCTTOn5lsKHNNRbC1dUVbm9vcXN7A8QIcg7jOOpnBa+q79AcI5MKJA8bweRYcm99cjweNQ9U14LdJUYcj0c4F3qhr0KCVSNMkd6qpDa2oZUqpBhRagGTGpEG3w7OI82LymtpeI7W1bvC+sPlAmEHIX3sdlm051ypABjOeXghUEwgUrmoyTs8efQYcB7JzienhBiT5nktgtXr6fo+crpqT5EesWi4r3tzXNoe0zQLT1RxtnsKcLLnXN5b2jncjbbefBiASMa8ZXeHHPM2450NV60Vf+7P/Tn8wT/4B/G7ftfvAgB89NFHGIYBT58+PTn2S1/6Ej766KN+zNZotefbc5fGj/zIj+Cv/bW/du+5XMrTnD/WoiaFE05v0mlkRts3xmnS627U9LpE552xea/X5rbe4O3unWxbg7mBEqXtcGfvIZuJvqW1342kDCpsv2+jrS10mLPmGayfVIMQk5E5SCqISTeflHGYZ9wePGRQ1QLdLPS8YtbGkSQVhRTyaYl1MYitLwzW+hrPVmtk34/tGlXzsAkabZApVlTzwotBaI6dNacskKyaeW0474y04RBIJYEAzX2owoSqTBTFbiHQ7sN6L2D5JH1OjTuM4cer1JFyyzWiEY2kSnMuNBGl95VJmYdAp6HDJIjABCIHFGhEa6QY77iXA7Tr2DYmgrZobvPFs+sRh0J1er7cJKdIJ1TfhCzyJSb4IShh0nKDLWJVBuhKD9frvwHk2PqrgdbNlzVH1aOtjdfe5KJ8yxma6nqtFa6tD4sUWj+wRgaRqj3e2j0Hi6prFIO8G3RnkHQWIJWKSgT2QXOXVaXAclECkhJA9H0srAXDIXj9qczaS8wcumzrRusQ2gavF7OZmjukinM0p811bCIxXIq21tdecpj7PTiDF3WfOc3fX4QgXxu9rQbs1yTi+upXv4r//t//O/7jf/yP7/zhbzr+0l/6S/jhH/7h/vfLly/x3d/93ReOvAvNbSOu8+hr60NcwoIv3ZjV2K1v8lmw2ofH/QzANk6fO2Ut3gcp6pGnz1+isq9MwtoNT2NydaN2dmw3YrkZtDX3VYsy/mopariEkRhmuBbcBgeGFowKVq8xpqRepcCS9UFrdpzrRouavJJpA44+aMRh5weDfrVVyorLsylJOKeeeRbdmJ3VPIkZ5xgjGhzdoUL2SitvdWAt2nEMcYRMVvvU6t/a2ZockgCabxKLAqG1WQoZqVCtE8vFstHnATWObNkERyrfVM08OsvjQPd2hfEEaVFIkKCixKKTQg2XbbR6gaUXhpJFQABQAJSWTyvlZD1svf8qAiYxh8CrIgYT2KS3WtTfvlPTFFxi1AivXRf7aTWBDJXjKrn0aLW1IxmGoXcmboYrpdRRGI2wdJ0Ug6ybwS6yOmmOHRw5U9ZQp6sKtFCPNAe6lKrSTADgnCq7l4JUTEC3GS5RUgtENSQdE8YhIHiHpItPc38tN2xwSYuYmvHS3ONrmIDnRu1klZ8/In3tn6QetnBNf9vL+86dFM1bQI53Y8d3G+9kuH7oh34IP/ETP4H/8B/+A77ru76rP/7lL38ZMUY8f/78JOr65V/+ZXz5y1/ux/zX//pfT97vl3/5l/tzl8Y4jhjH8e4Tdy7gqSE6P655h6+7wHIhsXj6sQ/Dh+1cfrXHhblnj288q35epxO45XSUfr7S3LP1GypGcW9FxV2kNmudTa21a9HlnFGNVhxTVMZhyshJG/xpvZTCa0tMoFrAUvB4v0MWQhLg5c0txqANAv0QwBj0PqYMYqe6h2R5oTBgd3UFgTLCbm9vMTL3JHhwxlqrxZoMNvaieeKNRSdan9WuSzPELdJIpJEMzw7OB7Cr8BxWQVRyYM+oDEQUEwbOCukV7fPFFin54OHN6y/GgIs1YclRW6sMA2gIGrmxKt077+FgwrtOC5pLzhpxiaiig0G9Yj+A5hIPx9mCMf2unNV5ELsexdQ3pGjer9d9EfVaOWYlvKhByTBUzL46m1EmhDAAxChSsSwJUrVdyzAMputnSv9gpCJwovdR9ZkrjsurPo9URT3AsTcoUH+8HzCODlUqQowK5bIyD4Mf4P2IcaTuMAFAzhXHo6YcnPMYxxEiETHPSEtESRXJK+QNMNhPYOPNZamYU8bNcsScEuaUcLtkxFIRc0GqVSOuKgihqhh00p/BE673E5598BTjOKDErPOw5bi6SHHLIXLfn15PXt+s87M1vzVO3WHYwL7tuJN8/tl4s6iIzn7uPr7x80+IOO86Lqsm3jNEBD/0Qz+Ef/JP/gn+7b/9t/htv+23nTz/+37f70MIAf/m3/yb/tj//J//E1/72tfwla98BQDwla98Bf/tv/03fPOb3+zH/Kt/9a/w+PFjfM/3fM9bf4FLBIg7j508vznm0rGKPb3JJz94Hvef7xsd9pnHdmK2fx86x/X5U3LG9jn1YLfswtoX4AltvlrRcdbaolrqCT1ZvV1dpFWAXCqWVHBYIm6XGbfLjFSLRhVOj1lSUumdnJByNtZhxcubW3z6/AU+/vRTxJThvMe428OPkwr2lqqbXUqdINI3Y14LmRs13Tmv7d5r7XCnVGuJgpaDWEkqsUSkrDm9LKoAHnPCnGZVB5GCVDMKCjL076UkxJyQLBrRrrwecNSZljEXkAuASWMJezg/IIw7jLu9dg9W+XqtQ6tQoddaN0QapcyXpEQMRx4EQpwXK+xdo+Scs1Lqcz6Z2c2oibHyWluYbS50S9zJpSBmvQYx6U+uyuJLFsmACOO0A5lKxbLo9Ws50nle9CcuJ+eXrPbKB49xmiziRhfs9d6DAaSUEZcFyzxbZ2Fs7tmKCmzneKlF71uM2trEgObGHoy5KAO2aN1hZY/KjEqECkLM+r1TzliOM46HI+bjAXlZcL3f4fH1Ffa7HXKKiElzw6nkTptvos/bkoA334uwsRmXc+tvsu+8zdZ0Gm2dQ4dnBmyT010fOv37bcdbRVxf/epX8eM//uP4p//0n+LRo0c9J/XkyRPsdjs8efIEf+bP/Bn88A//MJ49e4bHjx/jz/7ZP4uvfOUr+N7v/V4AwPd93/fhe77ne/An/+SfxN/+238bH330Ef7KX/kr+OpXv3o5qnpg3N2IL4TGsqpmNJz23N7fm+N6y/E647A9x3f5nHO48s7j9xx/ns9bz0QuHntutE4eB84Yhhv2oTG2NA9h8Jht/KsY6ek1Vi9bVTSWlDHHhOA9puB7681Srb7KWGUDKTFBWHBcFmRRZtYwDBgGbc2ORq+vApLSUkLKWNwspO01dc5BuGgBqzUp1bow3JlaTYMu5aTxOSvho1GtKxHcELBl57HR62G9owSw1vXmZVeVK6ogcKldqNV8cdN4dGBWVZHG5CtAr7ETEpDUfr7tfpAo264WQY4JYCW3MK0wcWvC2SInwkpqIVGWI5Hm3RqRpda6ticRpYUXO9/2d+vZVQy2Y8cYQtBC5JJ7vlSgEWFMGumXmuF96M/lor2+yGkxckwJkpWg0s4XApRmBGOCd/5OjlpEOuzdIp1qUXWtgHehRyipZGSRnotV6SetVqpktHdoNJebkyNAXGYld+SEq91TXO932I0DDsusmoW9dKSYYW/5DFuXGwf7kv7g69h8+u+pQ3rf3nTHkT/fIrs9uj8ye5Pzas/3veg17/XQeCvD9ff+3t8DAPzhP/yHTx7/sR/7MfzpP/2nAQB/5+/8HTAz/sSf+BMnBchtOOfwEz/xE/jBH/xBfOUrX8HV1RV+4Ad+AH/9r//1d/4Sl6DCswN0IrZjLhz0rkarwUrvMs6por+aY6XS3hNZ3WOEtxO8RWBrxLXS4HMyOLGW9TjR4kzNg2zWg2gDviVXDFkwZD1uzhm5EkrVSKakjJISPHkENsKFCfYKGK9ublUolggsqqbkCPAEeK/sPm2lAY0KIZobKqf0ahHdRhgEFlJyA1UIVUveF5BtllIBIWOqOWDJSZmTgHY8NpYekVKoIUAlNRKuFAiZerkpdlTScoAqwLykvqENAaiuonBBSY38UnrRcUlKux6Dh2ct1GYAoKZW7uBBSFV7ZrEV0wqt95mtqLpR3ZvklgBAtTYtJvfkvbYaaXVSySDkGCPYeYX4gtcCb3N4yAeEYUAYAsZxRHrxAmmJWOZZob4m7muNI3PW2qxozSmbogURY9ztgJKVNUnAvCwbJ6T2PJyIdh4gIjgWBKPkp5QhMuu9ZmMMWn4vjAEiGuUdlgVJtHv3MSUkALkKlloQqyCJNoucl9QFALIUpHlGiQscCj58+hgfPn2Cx1d7HJe5k1KYuLdEcd5DxHQ0dSKao3jBkNy3ptt6Jbp3/erTd53Yk/c5MykVBqdb7k1aL7aTn7sn2Py9RpLqj9s9+yzjrQzXm2zQ0zThR3/0R/GjP/qj9x7zW3/rb8U//+f//G0++o3HSUTxGSOoN/qszwn7e209hB70uXxWi5xkAyusuoN3o7DtR/fzOHlAx2q8sv1o/cw5K7FV6oAAsugjQiGYOSXgtiKw4KpOGIJHjgtKTHBEePTkMbgoJbkWpWWXKphjwpIidvsJu2nEftyByUCfWuGDCrA6MxDt5ImhreXtQa0dgkYkxodg1iiiGBOMWOuDmB1cTQAzqDIyWbE1BMKsEkyuqdIzSs0oWSMqlZfSmjQXiskTkdGXdSOoubbwx7rzasSJrLm6kjNyjEZ1V21C7wiM1jhSSQHkuTPdnCPsdiOkZAANooL1S9ONqYjmIlnEmImtP5RGbk1PspECVukvNXK5VjAyxFqhaB5RxXxdUHhTe09Jn0tkCiMqO7WWUuh7CooZEkUaBcfjEcuiUOJ+v9dWIQb5tpwRydrCvlHCW26zimBZlrUjNnPPNxVYjy3La4kL2pATpDBuKVhKwct5AZkisTCpM5FVNSYvMxwEj672eHJ9jd049HvUop8lqdxTTBGlcm/mKLl2Xcq+vAQPRjzNKcdmXZ9GWa104d33q5M96MJe9KZ7bTeqn2E7e6+1Ci+N13kTn3U0aOHzGG8Scb0uefo24+SaNGx6CxHgfqgQWDer0/OmzevOmIm9SWA5M4z6U2oFGRmAbSFDVNnh5ggIKsbBgyR3NhyoMeoAguaptEBVN0/nHYIPkNEiIcCKRm1YLyDiVjxLq3EAdJNmAA3wsk2tdjhJC6MDW5v5Ipa+B2qqqknHpEn9ou3XyYR0tYeU6v9pnVJW0oWgawDWovVHpVS4osXMYEIhKzKGwpCAWCuTCBQymLZAJBgpREzjj4BaVXqoAoDAedf/FrHjyO4xNNJS6E9r0rbzp9U+khnCZlx6R2GyNcjb60naDZjX/GBbR9paxXeNyGKdBNq0K43AULPBkkoYafkwIsJut1ORY7a8lEF22/kMoJM0gFWst9aq0DLBDGRFLBmpqurFkhIImssqQO9qkKVaTpU6VJpLRUkJdZ6BXDAMDo+u9thPI0JzLrA6iqmseVf0tbRChivTDPduOeds4e3YLN3+Pg8df984V9FosOxbBwW0hQd/FZUz/i8/Pufgql/WC5Hb217z+24ynRmCzxYhnrIZ7y9UbnDY/UbrfFIRreoTzWt1rW08tQ1pZeJto69ezNyldgSCCpQClAYhJnz6UrAfAnbjANSIw+EGQ2B88PQRrqYJTISXNzd4tLvG4D2CbarJSADzPFvUot528E7hQgCU1ViSAM4Rgvfap4mD5j3tWrVi1b7mTVeQAIXD6qoAwuzA2WqdqhINvGMTDB4g2XT+HKtUUa4oKUMKekE9wWMQi+CcQ84VpSaoAPw6JxZOSpW3DXrwDiIFKS5YSumMwSWrEYPVEDHpPY5pgeOVQo5Wa23wJWEtKZCyknOoee4QoMNvWJs2GoRXqpI0wIwwqFoIObbicP09ZhX/BRHYWJKTnU+t2krk9nBUSNVq0JbGSs0ZIQSEQYuE53nupIwQgvVTU8mtFokBmvurZhQacaXd3R4hbjQNcy3IxwNSFixLxs3xgAACnEMBEGvVnnHB9zlPrAY2xog0z5D5iNERpmGHL37Hh7jeq7blsiw98muF+lWqEnSIIRzsPAHqaiavH+u+IadboEFy72oets4pnQF+9+1bd/awFkj0vACwgofvvtf9ujBcWy/g9cd99s/7PKMu4Ncu13WelD3/OWcXtmhLiE2jDSeAtXaK1c09pQU522aL1v1W+3q1okwS6AYHZ00cVXg35YSaHfbTAHIBKVcsMYIJmtOhGTRN2E2TFv8WLRQtENwej5hjxOF4xPV+xDQEjMGjltjFcPf7PbxTvUGF0DQKYvIoVnNFTPBdQ1E9eOcAYcYYPMYQlHYdlG4v0DyL8wqHcQg4zjOSJvWMNacsxSGMqK72SDHOqvYwDKzQkz1ec+m1yhmCuMzauZcZshs1D1UKclr69fROC4zZNkPVMrRNkAkgQa4NskKPKLVvGOBAqNZ0saRFNQapgl1Qgy1iSuyr00LeqWNgmoSuGYdaMe4mjai8w+2L2SIw1Sycl9lU+NUYl6x5rQbvsXcgqifrw1uE5p1DYmV/LscjxjAqPNsLfqXnehgaBZdmmK0KP+WqcksJYD8gQ+u6UsrIGViyMl0De8B7FAFu5wXCDD+OyiZcFpTDEbc3L0GlYvCM6fEV9oHx7PEjfPnDDzB5p3lA1tygyIIlRhN/1prBXMVIO6RRO8giFCt+1sV2Zw13e9D2jnujr/vz1pfGpb1oa5zedXxeSNh7bbj6Zt+ShqBep6KhqP77OiPTfIruFtDd12zZZ4o/vdWZrq/VzOvJ+feIZ/O92utOHJUWGKx25OLv9437yBZi0JK64KfwyvbcVl/VrtjG2DZWWesvVM1IKTmjGsRkbTbuwJD6CSlbLygBKoWuCXdzOCAuBM+MYBTqXAqOy6IJbivubXBTlWrq30qZDiFoYW5VhfvgPByp0rqyDJ2J09pPL9BVRpeQ1kg5UTFZVWVqkKM1vxRlr2oUWyE5I8fFlNk3hqtWjdAsrMs5AbXCi3UINqeICKg5m3o9wbNDFEFN2VrIE0JwcMwoKUFqsc7Po7bgsMJqUxFE5Y1XDGUGijWOhDl0ZHBhWzZkslIK/THqRtOQSNvBKElXo8wtsqUPE1LJqKRVWyUXsCc4AXLRmrslRiXNOG/CzMXKEtSYLstRDRuxEV0A1IqcksKDRn5han78GiW276rzu3WcNgq6SKe9C7Rguop2LUi5olTSXlv2WqoVYId5iahECNbyBqIEmZIzAhGCY1xNA55ejXj25BEeXe0QPCNXVYgHWQ+uUrUODuasYKNMeLaYBWvkdGmZb3erNT5e/2tR5nYN93t0Z0ewub15v+0xW6N1L3lrPXhzjg2G1ihfSDqc+y7jvTZc6BsnaT7j3BNo0cB9dku2T9F6cXt4TO2w04/tic6HT68V2qJnWFTGqJ3nViOxv9VJyI0VT7Z36sbrwu/v4su0yApiifd74EKxb9FZT9hM4gYVWo6gSEFFo/pmM1ZqwDSHY/dMTMzWKNMFBYNjVYLwA4QZqQoOz5/DScUUPJ49eQKZlL0XY8Q4jP27KzOrbaoEFwaM44SrqwmeALEcxBgGlfwRAguboTLpo6BzqZpSRkUzXK4XPQpZAW4GamDksl6lWrRTtCQgHo8g56xFRsUS9V/nGASVq4pR5ZtEKsLggao1bp4YJUUwApgDpjBgIUYsBfPhgMExPE0Y9yM+nRdILQiO4Qja08wHhc4IqHzKMmMAwXljeOb1XpLllIy+T/YebT3UuspTgV13VFQyXyMwL87misA5xrwsINMoTLkgkNMcXi44HGYc5yNCCBhCgFRBTAn7qycKuULw6sULEEEbbJoUVElaK+WdRomdRdk3d4sm0VJ8SnNf4oJ5nhFLQSoAW+dp9VkdCvTxORbTJQSENBriqlJfx2VBKhU+FYzjpDnHrJ2nvXcYAuPRfsAXv/ABvvD0MR5f7yCismHsgBq1dCNVUTQXKh3Gm3NWYfrV0OjM2u5U6xOGBKsD0RxC0uvfflrJbyNEtaauONsa+7onU+QnbG3PqaP6mn3lTl5emrOrUbIQbXKObz/eb8PVxpnB+rWimL/t+LWkw7/1EILU84TqGm1tDrQNvygLThrLsDU1PHtbQYePUBWKq0y4OR6RM2NwjMkN8KQEhlJFa6ScA1vBrrL9CqZp6uoPg/d4eXtQhfjlgN0QMIYBV7sdgvPG9LPFZfVn4ziq4KktKDHHgR1317NRwUV0gyylIEzBSAyEXJJpBjqjlAskJ6SU4Z0HDwGSC5Z4BBHj+tFjrW8CIc0Lrq6vzSstcCAgaynAfHuLZTmiloyr3Q67YUAgRokLxsFjHPa43u/0O5WKggw/hH6fev2aqKebmrKGwWZrPV7BCky1v9WJY6PAw+q4KjRQX+ZFDYvzGMYdjssMqQWeNAKOKSPeHjFOk+aUckYqFeO0AztvzDp1cIhUCZ8ZCMy4utrpBifSIy5mxqNHj5DjAuccduNoEVtBTlFr2gCACBUqJxZzAbuAVCpSFqQKre8z8swxLjgcZ9wejrg53GJ/9Qh+GLB//Bg3xwUxJlARCDTCLqXi9vYWUoqVHhSkZYYrjOGDHZ49eYRnTx9hDIR5LpCSkEvqEGEpFSmfMnk3sczGQMiqbXlmLXilBWF1jrdr69T5/KzEjDc6/izfdf5pbwtZ3jfef8N1hrtujcA58+11o0cSdz7iXQzLuxuk89f9ahi2PqGwQg8a5dGFJdGcu4dggxZVnR53+nmrxygsxt5TJQ3lcil8MvoAPwQM3oF9ADmVXBp8QI4RRRSSy8VEcwNht7+C98oQ1E2igCljiQmZivbsYlYaNa2RtrLclGkmnUigBlOnkrIRmwoIs/Z/YmYUk3q3wzB432G3Wp1R7wWlZNU4MjhQ0UG99sWgM25RrBmUYsLAQwhaaB2CUfsrpmHENA5ddb0DQVK7wXJNrqkZJxObPb+nRAQmLdptHZBhpBsfvEKCxMrqs2ue7L1EoPJcG0WMKqKGKyYQO2v46EGUjbqeEeOi8CAz/OAwzwswBAy7EY10oOLIqsKxQrqu0+AhjRik50MmkyWiIs1LTBgnt4HJVhZirYLjcVanpRpbMCVUEwduupkEgrOWMq0AW6zMQ2rB4Bx244Cr/R67acQYLGK1829QaM4Fueg8aBqF3NMIbblQ/+O8rqofc+JDGoJx+uDd173hWHfNewHFh19P1Fm923FCBHsnjEjHe2+4dJO4a7Te/c0+8yn9yoxfAeN10emxfBeZUWnG664xP/v77hF3fpQHsoEfZcU3a1VoSWpFqgVUFVZgAuqosI4btIcVOQ/2AX4YNLpJGUVUQd4HBxcCdvs9CBUsxtIrFREZQASJwLO2r/Be4J3rEVhTIXfeGzGhibGaIjkZ3LExXC0fo//qd9fml/7kezaKuRQT5qOKHBc1BuxABORlAXlt91FK6bnHkjPC4BGCxzRNGLw3gyiYxtEEXL0K4TbjZVCyA6EQQWCyW1AGHQxWtaIBaCrLDAEBRVTQtlj9GJtMFlleMS4RS0pqCOy+Nsp6qYJ5nlFhrM+YwE67DTdKe1uvaricKmr4gOcvPgVJxX4au/HWZpTVJJFYC5aJrZ6OOxNSmzdm64NGa4SXM0KD3wwuCyYnVlLWlikGk+ZizS69A0zwuc1a5xzI2viQCKRk1JQgJWMcd7ja73FtdVvBioybU1isF1surcC6KYZQzyhQX1zbaOWuOVoTCO07WUeAjoKsR8smpfAme2TPxdtP0/J803GCIl34vM+DoPFeG67z6Gr7++nF+9WJWt5lfH5U+HcZ90+gu3RXgCwqOoUDWBPkTcmP+CR3B9yFLLZeV6lrVHDMESamg0USSvEoxaHkjMPhiEf7Pb77O78MYYfDsuCTT59jmWc40uQ+CyC5okrCtz59jsERAhPGFs2JIKWM3ThiCAOGaURJuqkRKeE3hADvPYZh6IrwAE76pm1Zl4AKqgIO3gPOTT3KJFMo1/5MrpcJMAjVCmVvX77EtNthN+3xaL/Dq5sb5BmmWO/6xjyNAdM0WbQCsKOeL/XOA1BDEZj7lkcAvHOar4hi4rGqvl9lbRmi+UdTmeDWWkPWecAMsDFGY0RcEgoEL1/d4PZ4wG6/x453YDgsOQHksKSMV7e32O+voB2DlTGYrWsAGz18WRZcX1/bddfWJIfDDVKc4QgoJSHFiJyi5k+Lfufpao/raafny15lrkhA7E0pRGvvNJzxABUcl4Q5KUy5pILp6hFqLrg5zHh1e6PHs4r/avcBlR07zDMOc7TeXDaHS8V8PGjftBKRjgeMTx7h6aNHePb4iRJwTuaOSlHFqPT+UtY2KKu3vF2PbQ2teIcQcKr+ZIjGPcv4PkhuS6jq9/hB9OTN98/XQYWf13ivDVfHZNqf92z+9MBfr3v48pDNv5/PraHzf88mE4DeqmJ73Oc9LhnSuzVda2HuyfG8iue+bqJvse4CachZV5kgMGJSGMbvR4SrHdww4LBEzPOsEE0uoKKNFAWMUiJKSZBaEYYB17sJ19OIJ08fdR3BZZ7hmDEOo0U6taupe+sZxUQYx7HXA3nvVbbIIqfWywlQxXSpmu9hk0OqVaxB4NKjGnYBngnCzkSHFS4cvcfkA4JjSCnaPpDU31bmoNYpDV41GIlIoUZZe3DVTe6Qhu29W8sdHLveokSJKQBZXVbKBY1j5+C6FmUu2coF0COXZV5we5ixu7pSAx+GPhdadFFrU76AivuyN3X4Ebv9Dvv9FV7dvEKMEfO84Pp6jxgjlrna/CG7jgX7/R4zKRkmxQZJEnJW5XkCI4QBBOqal+wCcq1IccGw2ysdvygE2ASMl1T075hwWI5ItSKEES4ElNsDUilAyoBTZZZSVU3DeYeUCm5vb7EcbjA4xuBISyQ8Y/CM3RAwBKcF85s1I6KKL8VILWsctRouMejwDoxm0RRJMyKGYLTg6DU8h4vGaLvDXHDuL+XI2r+v23/uGq3TGtPPOt5zw0VvGE2dQomXj3+XiOez3YlzQ7s1Wu2Bk3M6h8E/47gbVb0ecj1hO569hprRIc0dvC6a3EYwVQSuIxQqf5RLUVHYWq3bLGNeEnJalAoNpVaDil0cwTLPKCVjVwTTMECI4YcRRAIpqnqQNn3EquUrmnxU+y7bhoSq4YeeSG/PExEctwVu6umkeSdVtUjdcIHIlOdJsxa1ALUieO3R5EjzXWx3l6FGPHiHYdB8XlMm0Vb0aumlVlRa82p6HVtYINb1GCZ35ezdLU9n0lutxq4jRKJU/9aFWO21qn5E64I97vZrqQFRj54lZ+QiPaoQWPTIvhcLtyLi9l2ICDFGZItQmyEECMMwaqSyRJQy2/1hbQCZCxJrmYFzCk8qL8ZBDIrzIj16yktGylqnlXLBElUN/rhElCoIvOawYi6onEDVFDFKQSwVAdo5+Xg4IM0z3BjAfsAwBExDwBSc1fiZtqNYA1fZoG+yqZG8sMbk7N9L+wFB4UGb9nfW1Pbvdk3vLuYLD92DYj302L2D1pPTf84c4M+wi73Xhut1m21/fnvD6fLrt4/9SpzjfVHL9vdLj/1KDoX19Petptv5OW3P2X5bvWzeFrCuenFr3sd1mIyZ74jZtmJuzYtoSw0iQS6ayyBW8d1Pnr/CPC/48IMnCG5AcA6Dd5hvDzjGjKNE7MKAOaqK/NOnezx5+gzXuxHHOcLtBrhhxE4IRQpu5gW5VLAISkogiLISTc/OWYv51niybTTtOoXglbJN1hLeMiEMzSkxAO9Y27uUglyO8Kz1Y5DaSRnsVcqKIFZITL0wuloPr+B0maakzLRSMkJgbQhZimoRWrS7zPMm37bmVxp8qxGWCsLmrNqJUtWwNoek54qSkhVg9XH6t4Ccx+F41Nd4fe7V4Vb1EZ1HsWNvDwc8fvIURNp5mL3TQnLncHV1hUePHqFWZecty6JR13HG9aMrhDBimCYjv3h4H/Dq1Q2urx9jHMcenYuICvva9yOywuWqecSYsonEOoAcSpGeK3vx6qVGXPOsMHIpkCb3dJwhR82K3hyOmJeIw1Gv7TLPWI5HOCmg6uBE8B0fPsMXP3iKLzx9jKv9gGkIcEQoMarMl9RuKGpV2bBGaGnQ8krKOHVWdb2Zn25ElHXbZ9vT7uqMnjP4zteyGOHkfP/ZIinnsP+7jNVoXUZw3mW814YLeL0BAC5HJ82gCZ3e0Df5vDe78M2/WhUKaOOBnJzHaz8TfVMBcIZzb47b5CYuHbKF/tbf1wnaowvb8C5FZO1YkdbLyq29rPzaOn0Yhp7T8d6v+Z2N8Wrn0phuhoAgi2YnHJSbkErFAFWQn2PGsSwYvMfVblJv2JTSHTvANuxUKz5+/gLzPODpox1oUcWHmrLK6YiqMOyHoEoTZqxEKkquyvqTatGR6gLWJv7qPKRoJMKOlE4PAVVauyPTBB8clnnBnAtKTmqkPCF4hhj5oqQFNQ/wYdAmg0Vh01IKYOy8Ugp24wgaBvjiUGvCNA66cdeKEDwgFaVmzPPcN/vdbmdsPM2ttPvnnAOLbob6ndsGV/u9yCVrDZYRMmDGh4gwDEMnrjh2GPc7zPOiyu3M2JnBZ3NarAwWx+PhbA7pHLu5uT1Zs8VIC2QRNkwNfhynk9e1DbYZruYopSWpygcTDvOxF7LnUnptUyoFeTHnhbWTcc4FRSLCMGKJ2l/ruEQsUSHFeZ4tis3wziFIxUBAIOALT57gCx88xbOnj7EfB3iy1dg0LRs5B6RRf87W/RgolQAyd8eW8IZbYeuCWuVCj4KbAynSorDVURECzB/RfKisBtFA5JPoTR0B7n3nzo1X+/vSntIe3x5zChUKmlrJ5zXea8P1UHRwduTJ8Q8c8jmPN7tRD0V9F0+ZTsPsfrxsvJrzsHxjcO/+fh/st3n8znOMRsRomoUtumo/qoDgTqKu7efcUedoC5YIAKs8FAS5aE+uXAVLykqTN+UMybkXUGeBMg5NFHdJCY6BKhPmJQK1oqaMwelG3AReHZHqGRKhC8xWOeFt9VjToB/YRg9h6ySMrgxCsCJix0jMm41hVXbx1jG42mPEsEiLNSqolgep1rGZCYGUMl4KTPkDtpmde9frptPziBY59s3IlEOcW5tCts21JfyrqAoFVWVUNlYhC2mxNwCwdXPOVXNPtRgrkRCGoBGpCeXmbBp9RnoREYMMVbWemy6kvV5EOyI7YjB7hDAaEcjydJvO1U2mC6R9v5rbGFPSvlkCU3Rp6i61RxshBFTRSKiIsh9BGpUlYyS2RpYQAUuFY4IXlf/aTyOeXO9xvZ+spoxBTR6LNh21ZT3X1oCzdiGZLZzXnM+z6Ot0C+hPrZHyemyL5KT9TtuMlmz+sWgbjad42Vl9HQJ0nu/ejvb9ziHN37B0+EtQ4eugv18NCO7uOEet7443mRybo+9/WNqvdOewc4Nx6bMfMl5b76u9j3Pe1CC0ALVFXMEiiiaEmnPuxus04lsjO4XptG8WoLp3uVRUJiyxAJThfcKT62tIKXjx6gYkwOAcxuAhxJoPCt6MKQGkLLHbww1yTCgp4QtPn8IPI/bXjzCyvt4xQ2oGsm6YVTQC7BCUiLYvcQ7Bc5cXQi0aAdeKGs14MkNE+0o1WZsxDBiGEc45a6fhEMJgzVNtw4Xg8f4KIK0buz0eAcBYj4xh0LqkeVZDWWtVtl1J/d7sdjsE7+GDP7mP7R4ABgsHNYLqlFRrE7PRCXQOwXttagbdfIZxZ603CLurPea4aDNHqKpEqRXH461dJ6Wqq25lMlFhRowRgIoMhxCUeDIMNg88dk/2IAK886qQ79iCX8E07lCrfodhGPr0bmQZZjVmxKSixkUQl6ydikEm5aSKFdk0I4MP8H4ADgfczkcsMSJMOxUG5oIi6Er0tRSQ5QI9A5PzePLoCl/6wlN84dkTXO8njN5ZTstIMcTaDWBD8NB+YEn7f1VTsrAidwJMoonuQivN3mwc1PvGHajwrIEuASZMjLUUZLPGt2t9G3HdIWSdHXffHtbrNjdO82eBDN9rw9XGudFqHh9IOz/RxtM9e+U94a9sIp03M3J34MkTCLJ5wg06VOruCZT9ORjYt5kGl9+bLIpyJ7g0swOLdGZdY5o12KlWNVQ5e9RqTQLTThdl1UR9gwe3LdPbhqOq8va+BGvwWAFoDs7ZxpOL4DgnPHmsm0MFoZaEnCOOMzC4A8ZhwGANCx/tRhAT5pSNbcbYhz2cd4gp4tWrVxieXGtjS6Nl+eBNqEAV1LWgNSEmLTKVWlBShJh2nh8G7WBb9X62Yma924RpHDF4pdYrlBqw3+8VDhRRLb8KhfamEcNusg3YYf/okba7L1ZPZb2cGrGBoPR9Zo32UAXsld1HNt288x3O3aqmp5RQiMGOOpzrXIueASp690srFWDtl6UFugnptskIEWIq2jQUgmk3IZYERx776ysQMWqKSKVgHIK2to8RL17e4PrqCj4EhHHC8Tjr+RO0lQ0YKanj02bq/tEjVCO8OKfwHjFhmibE1Ag6VjRcKlLJOMxHkA8g7zFME445mQwS7L1VqV5sPVYInr+60fMWLRIuOaGWrFE5KjwRJufwwfUOX/7Ch/iuL38RHzx+hF2DnaEMUxFBitnIP7XnANl7kA+2hnTdqbNULZJqeCGtUQqt/+jSPM1dXdo/Guzn2HUnRUSAunnfzThnEN7nzJ50idg4sfeSQC4wCntk/47jvTZcepEuh7PUwOGHIrGt4bj4Aeef1f+4k6t6/Wjhv6Cf2n1HfpY7+ga2bvtdZLMy3jTqOveydMPz9lPOoq619USLzLbFqjrZgX59zMA36nmDWlpCmwAc5wWOoJ49OzhSdXmpgpizMgYBBKeqFqkU3TDsO7UcQ4xRSQNOF7Nj6HEW/ek5VBNzbVCKkjFA2murZLZuu5ZLsGPa/HOs7jkRKczW67NIGx1CBXy91/oxZu69uZhch+gUvtJr0qNAqJNV6zqhnEGTsIisBd79c+21LOhMwVwKnCNzJNaWJa3+CERg5zWaMVi51AJiDyXQqFiv6hwao1AqhjICYuzQLnyMDpWVWuFELPoMBrVaE0wmc6A08i6lmMZjgxQ9ojWjbHV4IOoFygJYoa/CnSzKsGxU9CrmEIlqGMZWGFyqRcTeFP700jq1iWAhDI4xeodHVzs82u9wNU2dReiIVxivrsalwYViwLPOD0aD/YkYEGVhUo+4+irFueZqBxPpshE6We9na19OEg2XDzx1wh+GDrfoSTNe9+1hl0gj7zLea8MFdLv0YHTyusjl3AC+9tjPYlg+w1gDuDXr8rmBntvv/ppJ2hLkjZzBXG3jDUZxzhiGodOdt0SNYRj6R7bHWnS6NVpiuaQqhFwBKgVVCCUXPH/xEtMYsBtHMCtMOAwBy+GIuMxIKYLY43CcQUSIpeJ6GlUpPWcsSVUPHBSyqs4hMGMaHIgHEAE5Zu00bC1NmpGupSgTD5qfmnOx3JWpSsiaE2QA7LWNvV4DzZsIQXt2ERkk5TbU8nZ1VjagY1YnoKoqBnW4Vg1rn7u8QjkQnOa1HJvGos5dT4ycE5Y4W0PGYOUA6iAUu1e5FAhpHRoxWwmC1Y4RACYEH5CyGqtlWTDHBVQccMtgcDdSKR0783Q7r0RWRudyOCKXCucJPmjX4GXW2j3nGeMQ4K22TR2PgnR7xH6/13O3powazdaeJ8pFENNR26ZY7seHgJwLjocjlqJ1XSkXzMsCZm0xQgA8EcCkDgY8Rqe1Wh88foRH+x2mwcOTtpFRUoZ+wArT6R2tlt+SRuaxRqYiLadXjeizLuzVp5Pmt2xGhXJY7xqni0scDUPBxY2DcHetX0rBnEOK58935nA7dZD5+qtz2nJ97zrea8PVLnT/e3sRL9y89vi56vHDo11+wlrN/u7jdFIATKLN/gCcG4nXnVV/z8/hfECW6G8botN/VcGdTLX8lNGlnu/aCTeEgFaTlfMqrJvz1F/XoEIAnaVGDdfC1gtrcUuLzoyoAM0VgBz8MEKKasrlKjgm9ZohwESMAkKqFbfzrAbUMybv1HjNR7zICagZV9OI3TjAuQkpJbCdZ1Nj0BVf1CMWpY8LoO3V3SqIVUpBOh7MryH4EOClIhBAZDJH9k1DUIMGqHFTsVen7VdsJ4pL7IZLSkFJWdmXqN2BItE276XoNU9xlalypqgOIpSckRpUSIAEVeAYx7GXNQAmVcUED2C/3+HlzSvElHA8HiHHA5zl6rJJOsWUMU47KEvTQ42EEkoqET784ANwdoi1IM4zrq9HTNOET1+8xMtXryw6HxBEWYvH42zswYLkCkpJiDkj5qJ9raCtR26PM1wYAC44HI54dbjV9xlGvLy9xbxEpKwq70WAXDJe3KzqGNNuh5QLYlQdw9vliGS5KGavpQdJCRmSEqhkUEkaaY0jvvD0Mb74wRM83u8wOgZV7QHGZmBa5+amTqLklIKcVEGkZDNi1lYFFknC5kgzrhpsSd+CLsjWdvKQ2zyrDoKDZ4dgjlErHyjdOby7F5wbpfsQGN4cd9Ll4l64cH2+5VF/wxquNi4aL/3j3ot4J71537V+Q+jtTcLe5glv33qdFK953Ruc09vkxO6crxl1FYJtHrwuyPbel39OE7jOqUJDYxXmvBI2GkFjW9i7nvP59TvxDze8PsESM5hNGXwKqCJYkjaP1CCAMFsUEapgya2GrCDHhOtxgB9GuGGAC0FhMNJGhhERDO2TZWl2SN12ddbW9UzUNxZi/VtZgMaVMvWQTjYhQhWF6Nj7DtsphGRv1CEUu+aMDsOqUS+oVRtxqplpEZcqTmhX3uZwiEoldcdEv4ca/4paM1oNnhY2Q40yWJl4orCuwnQqcKufpC1jGiRLVt6g7Dut+xrHSaOz4AFyEGj+SVve6DbbBIG1O3YF7XZ6mqZeAhHr5aYOY3N6qiibsVTNF9cKELOpyzPYBRyOM+akBi+VqhCgaH7pOM8AMdiPvf1HKhqFlwoUqONQSkFKESVGUK1wEIzB4/FuwpPrKzx7fI3r3YTd4OGZ4Gwz5wbVAkbQaWzCNo/brVaHSG+1MezkrINx4931ZbAaqebY9bUibRlvjMzZatqu47a+tvyPS6mA16ULHnK2H9oRf0NDhdtN/3VQ4X2R2YOvW1/wwEngrVgRJ4e/keVsp3BpGup40+jrrq92+v7tM1qt1X1Q4enkVqhjhQ1Lz6c0I6UwYuoGrBUj36n7uJPBbcKh2+XKRqeuBjE9VeZajDjOC7wZzmOM2iW3amPA4FTY9BgjHu12GIcJU3AIo54fW7FwrKqXWEsGrOFjteS6Gi+DgbDmLfo1AYxUojeCSTc0R9x7HIHIlNBNvslyL9h4sYDCRs4FJXQ4FZFVhXGVPaLWkFO0BYhzziShtHC5lIK5k2I0jwZjOhYpyDmBmZU5aNeYSKHZ4/FoeS8HFby36AGEmhNSrVhihguh90BTAouqt19dPYILwTouW06FWk2a5p3GaUJcFqSk6vAhBDXSwXKMWHOaba6llBAGDydsQbBByuyQ0gJBBpeKwzwj5qKahDlr3zGoUHNMtxApGKZqPcXQm3zqcYwCK85OGSUlBBI4z7gaJ3zw6BofPL7GsyePcDWNGINHYO6GazUK3bVQqv0G/9tklZuN7izE85W8xlCyeXR1zNVoWcx2tsed721tjXWX8N41/XAN1337wp0h9yiD/EbPca0G6/Ti3QcVvvn7vs1r28WveCMLJoo+rdU9p5/7dp/99pBhXwY2e5vWme6pd4379rwuFSZv813eO4j4k6JjzXGNJq4q8H7pFPkeqTlTX9fEUT8hsXCkrXkmQEjhvypWZPrtTzEOHsE7UAi4PR4hteLZsw8xlwJXKnjYIdYMqnbuIYBDAPsVTiQiXO13KGlByVG7ClPvEGnGitESDb0uhzXqIWZ4Xgtuc63IOXZSgjDB+QDnAwBBSkvPd8WkhnyQASSaA1wZY4JSCHmJiHHu7TSoatRUckKtqrPYGIbOoj3HQDYq97Ic0ZTfXXBdcDcyYZwGJYQAyLFiiTOy5Smn62uMYAQfEK09TMxa6ByqSiApvEVwLiAQw48TnPXuSimB2GPaXeGTT19oHV5MKBUYd1eY9oR5no1yrh0CCgpyyjjMBzhLBwiAF69eIteEaZqw3++Rk6pS5KpReCqCWIDjnAHW6CsdoxmxglgF2fIEx5RQS8RxnnFcIrJAi5SrFhqXGCE1YxwYIwH7ccB3fPAY3/3FL+LRfodHuxHXY7CmnV6JGSddpteIp2426VKs+SZZHaE1uy0gm/uthELu7GG0/T/RSkxmgmyaqJ6vT3dmfNiaqPb8ssGU5/WYWxjwPkP40J613Zu2Nupd9rnz8V4bLuDMWG3/1T/uvUCvu3BvcmHVgwHOm7i9KdVzCxXe99mXn7/onL1x5Nf9oLNosXtkFzyqS+dyyVNbJ76H940Ndrco+cSzw/Yz2nczmE7WrybmkJDw+hisUaE1IyyisOLtccZN1sT+0ydP8MH1FUgqyjLjxc0tFseYHKHsRmAa4UmbUtaUe4ddNQCW2ayk0UIpkKIsQ88EKlW1E2llDIK1hxkzq5YiCAxTCxdV+sjZ6tm8U8FggUVUpV8IR0Ax+C0tixpIa2CWs2r7pTgrrGnR0zBo2xAmQq7aTiRbv6zm7xdj95VSUFMBO8CJ3hONxAjeWrKkGAETz6X2nZxDGAb4YdB6MVKlklIyYkpwc8QwMXa7PZZFjdw8H3G1f9Try47HI8ZxRAiqev8q6Xkile5EaQdnwhACvNN2LmSyTTFlSFGB4MNxgVitF0oFnNMOu6LMQiGGsOD21SskEYU3AaRUkHLW45JGaKkULMsCKgUOgsF5TN5hNwzYhYDd4LELDqN38ASLtFYGZrVi7bVbuFb8gayztlhLk96Liy36ZqBq/rQxNKU7bdKzve3/Oss3dVNniElbn42B2YrHRURJPt3fvuuIntdjnb/ffdDhxb3mbKN63d72puO9NlwXw1T7dZvDejCcfeDx1332uhlcGm8eCr/p55/e9Ps+1Z7vB72hET0zWm96Ppc8PDrpUXVXv/C8YLEtuo7n35PvEhCki/hiVUEoVTf4ostZAMwxokQt3F1iRJVrMLQe7PY4IzOQWZW9J++QvdNiWmMNLkaMULFbgMxw5ay9qTw7iHNwAmQxIVvWPlrk9BqIOFOasPzVJleWjZnooYW/BKOJ19SvR/XeYCxt7TF4K6oWhTJLSZYjSgbjZUDW3GG252utxqZWzKpYfqU1cYQTDDJYlJzBJoFVbYM1fmQvXXDOYRip5wbJ6aadS7W+W9GiLC2+zbmoCvzVY6sBrFq3ZRvZbrfrm2NTqFAF/wFChFJ1Dp0wUi3qzaWa/mGAlNJlp0pVVmGpgspqxOYlIkNUe5EI8xzVQBiEmXPWvFjKCJAOpe6GgN04YBo8Ru8wOIehw4MNEaU+J9doqc3tNs9XckK1XCPg+7ppLqVYjd7pKpD+/2a8+pqz6K1Bj9TLJcjWojsxXICVCdg5XTRCdLrG76z3Cwasn+nZhtMKprd1Z5eOe5vx3huuc3hQAAjfvaDnF//Oe+HuDXibHNRnOffzx9vYUmnfZGxLPU6mBN1jDzafec4Gepdwfl1Id41Wy4FtYYiLk76dMOzLqCwFYC3TAQDOQ6Qgp4LjHPvG4bxHTbohgwRPnn6AR1d7gBy+8c1vwhGwCx5+N6mmoffwYdTC5uMCDE71Eas2s/Si9UlSNUnSRGlJCAhavNsusECNjuQKqrpJKGNP9QkBUQguFxSpIOj18EXbuLPTmqU0JwAEcoxhGVfV9CrA9R5D8BapowsBj8GrcketiMvcmZvON528VZ+vw5i14DjPOBwOCK88njx5guvra4ABZzVby7IooYNUx26JEc57jNMOUxhwezjo60ctsF7iguPxiFQIS64o0HzeOO0BYnzyyad4/Pgx9rsJz1+8xLxETOOIlBKur68h+z1ub17i61//OkLwGIJHrYKbuEBE9LtalOaHEYebW+QiYKfQb8qa6wy7Peb5gJvDASDGvER1ZADcHmYzJg63xxnLEhFjxLTfIxWlwtciYE8YgsN+nPDB4z0eTQOeXGledPSMKXg4BrxXiFxlqjaOI6+9w4mt4aUV7vd7UgWt0ptAWr+1MXwEgVxYggT0msS2loL32hFvu55sojSnsaMZliMsYsuqvY936nTZsdrkQb/Red6rCUHft0+0nN2pSsZqsD5TrSrec8N1PtYo4w2Pv9dI3X3w5G37DPi/4Ljz/VsIujGC98CDethlA3YJNjz3oLZe4EkERiuR407ExatXKLax2o3cnC+hopoN04XtmBFGjzAEY9tVuGGAMRVwvDnC8UHbfDiHkQmTtZ4v1UQ/iVFL1U2WBFO4gpAovMMKgUkVFMlAtRwXC0haJ2A1csE7OBcs8li18NplFxEsy4yUW/PAit3uWiEcYlV39w7jMEKSbVqeu7ZjI0CIaCPMkpLGQMzwjpGXCmG2FivKnqy1qFgwVtiNiEwwuPROyURkXXkzsslXSVKV/sNhhh8HOE9gb5qDMSEVYLrWjXjcTRjGCZ88f4mb21vMMeMLTyaEcULMCZ88fw5tmUIAOYNz5x6R5FLx6fMXKjI8DNhfP8Juv9d8JggggfNqSMf9DssScYwJV2CIc6AgoGoRGBHgPF7c3CCXCnIeL29vUaBsSGLXW60kU7LIueA4L6ishfHBe1QR7EdVXnny+AofPLrC492Ip1cTHu0mBOcgtcC5AE9aAK/w40pGUAbnGl1la6eSi6AKKXhMDgUtCstgy+n2dWcguvRkVgMeqRubVuN3tdufrNEW2YkRc9gKoyvk4no/l3TawvgXocTNcef7QXvf9fc7u9SdY952/LowXCcexpsct/n93FtQltLdWq8TCO5eGFDO/j31Lt7kRp3IrrT/fb7B3oPjdZGWBbaw/PLmOq7X62K0u4FMTiGJc4N4HmnaBRCNakQaaEioYKPEKIQopI0awWKU7QKOEYd50SiLnRbS0ppHiDGBpCCQQl0VpiYhhFpEC0JNkFXzbLwBbbAuZmP15Zw7dNO6FZdisj+1mLyVJsU7KxPUxWObUCwTazNDbDT4SGt+BAA5p0ofRChZ67xaYatgZW1tNxYAvUasq2NstAizYq2mqqGUc0nZ+lxR/9ZSVSy3tQsRE7GtAjUyJt2VSsbt8QCIGR9i5CIoVRXfwQxYIXRKWaWJ/Ib+TyYAzQZNeYcya16L///t/XusZFl1H45/9vOcU1X30Y/p6RkYxgN2sDADcRx7NLFCkEA8giwn9h+OjRIcRRCTIYofsRCWbWxHCQmRoiiRZf9nIsV2EusHQUGOFTAPi3hMYgIiQJgw8wUPmGnm0d33UVXnnP1Yvz/W3vucqlu3u+cBk56pNbrT99bz1K6999rrsz7rs7qer5G4EJx1ADkntux6UIp32r7nnFcaR4BVP/qeSSuZDamc4xysVIjCwyR1jIk1mFRV+bFZlFmIIqNUcrRl6SZ1duJDCiW4PusV8tiL8h+P6TDnhUB5TXY2A3AoyvqSxXlppVFVVSm7QJrDuX4MYtAjZBYqj2su6VhZk/nvgnpszmeNg4Rh/x3pEI72kyFdMeyiWWzgqdpN77hWIMAb2OFvBP4a58cAFFovgNR0b8NzMsUTAUUobtNr0xB6b7quFec2mlhjLyrEqjdbP+mMx2STszwNj94Mpw6STLm+KN++9sk2TvD8yIyLIx0KIBkOW2E7CYEoCCQBdj2jlczZ7qQzxxugjz06z5ulNhrBpzqlCOiqQYwBzhEL9E4NlK1RNxMYEIgclm0LalsYCVRa4dgu0/MjXOfg+x6SCFoK1BUrnQuiJBvELlNrww4loiiFGGOwu7sLqTW6vkfbsYKH1gpSISlVEIRkVXTe9APavoXQfKbm4u0BZqrrmkWAiWArm/QUCYgBMhr4pUfXtQAGRYLSvVkOZBYhBbS1WPY9hBQw1sIYA6E4GnLOQZmhNc3RfME6kqZDNZ3BKI5aj46PITRDdH1oIbXBZLYLZTVcDOhbj0ARfd+zhJMLmExmif4fEaEgdQVtLYyx6LoeznlozQXDQjLjM2/qAhE1+GASEHD5+AhAOvkrjZAcgwuEhfOlUWjrPGRkQobUfLhwrcfBwQGzLfsezjlY71OPNw3fd9CRoCPQKIWZ1ZhZg4mxUOD+aJVJ+bakaZgVL3ibDqAo03ph2j1JiUgSzkc4z9eJkfNSGWAQgBA6LS9ev2q0TrMobtYK1MrA2gqTyQRWM4wcKedRk6p9CNzUUkrmvmT1DjGsdcnBLTgW5P1FijFashph5R0uE6ZWpK3yms0nXIwOpDwz02d7nhYgP9kczJN93TR3MPrnW/Z+607jqeSYsl2vev3Gr2vzNa5aWpxrj1uPaDfBh8PpLdc6UZnslE6tIiUOBj+aJ3xOZIN7KUWCzjqIkRA8dxhmLT2N3b09nN3bxZndHfz5//dliNCjkoRgFKySCFHBLFpYYyGFgjSESmmkozLaroOW3JFYawVtDKRW6L2HSpCdUVVhTXrv0S2XcN7Bh8D5IyERiND2Hdqug48sh+VCPvQAQnBrD2Mr7s+VCppZ2T31BwvMRhRCAFLDWBanNUbD920qkuYcA3d5jkXPjzd6CaU1XB/Q9R2a2RQmsRF9DLAVq9gv2w46t/wgwnLRJoFYdhSubeHnS0BrHC+W6H2AjhG6rtA7jytXLsM5D6k0jEragqmBZRc4aopCYqdpcDw/hgRhOq0hlGY5quMF9s/uF5jMEeCI0MdYoioICW0Iy85hsVzi6OgYLmY9wvS5E1RJxL3EhJQQHZcDKK3RTKYw2qAyGpXWaKYNGiUwtQqNMajTT5UeMwh2pwJysP7FGCIpBIzsJIihUtbXEBiSVxlRoNKmhSMjUe7jNcLvpFPXA84da1RVjUlTY9ZMYK1NEXzKd/acv1u2bYq4AEDz3MjLaUTIkiNuwDh/tWlNf6v23hu1m9pxsZ1MRg6/PnkHsBKtlHfAqVHthnhmhc59mm3CgDdCmWMY4tmdK9e09TE+bdw3TX4xhhzHjz35bAwRoMhIBgCU3FJWx+ENIyB4zuF0XY+27bBMtV5WEmxloCzr4bkQECDQO45qgu+5LkuIlPSWUNrwcyK38eBTL9ef5by6SsoPIZ14WTCW8xAEAYSYNoYkTKw1AkKCXkWB8Di/pVagGggJgSQRViCYrIcnBiWONKhSyLR5Uin6BjHvMtfvZacUM5STI2POzBe6O4RE1zM1PzrHfc8gIBExbztO9EvB8GZS0eh6l/prqdQPi3N/LgR0vYPSGtIpLJXiaxECzgfWKATgfAcImWq8ethAiKkztvMsmCuytFfw6LzDsu/gkzpuBNC6HsKzAyACszJ5wqTNnFmqgusRIECwWqOpNKaVwWzSoLaWyQ+l5Q4SDJsiDEpQ2AilIMIgGkzDwSTSQHMfVrgA5Np+NXJcWThZCPB1pG7XSttEWKnRNA13hhYAxOj7Ro7whzWW4csiJA0M47DhgHk9hYzxuj4N4dmY/3o+57iKzxIDVLgOrZXbNvy+6e9yO4DxQeq0YR6+CI4AOCqgE48Z57tW3/MkXDd8phTCi9Ov80Y+y40/h0Y/Jx93rde/7nuL1cU5bMgnvzeZL2XjNchyUAVvwxx/JYFVAYAociRGrKl3+cpluG6J5fwI8+USalJDVw2mOztYHh9wF12t0S6W6NsWy8UCja1QWYNJXaO2FZqmxrRpEHsHJRi2sVKWVhsxEKIWEISUz2JqujYatrIIESDBxdd1XcNWFWxVQXbc00prjd75lMh38J6FbrXJArisM8gENiZZeO9BiWhBFLm9B6UyDaUQKEsnpWaRAogB8MlZEQS8jyDhIaMCQSIfyKVW/P7WwlQ1rh4cYdl16Poe050aRhsEIjx+cABT1ZDSYNm2CF2PPhUZT+spYqTkqChJKXkcLxYQqd6q6zrs7EwhpMSic9jb2wE6jc4FhEg4Op7j6OgI0+kUk8kEUipWOfEOBAEVCR7cOdtTRNunZpCSSx/GOea6rhPCGorzkhDouhaSNIIARM30993ZFGf29jGpDWwqceBSjLyO8wRlRyUSrTcTclhUNzEIKTJEmkghHGGxaDFxEqrkoZRSCJHntkh1XlwrJlBZCylTPZ22aGp2WtPpFHVdl4jLOVZGiTGibdu0btLhKB1QiGiFwLMOC47/Hj9mfR9YR3ieCdbg9eymdlxPN1xdOfU/hXBmLNNCGd4qp6vT5fs3famn3vYUosZn0k6Lmk7LnwGnT9wCsGyACkXaQDJuHteeL9Yi2Hx3rmui9Lo60YJlBKB9yv8Trl69isXxEY4qg4vnzqCuK0SlcLRsUVUTNJMZ+gj0IaJPtU4RlPqJBTTGQkgNpQygBYyS/IMISkLDA82fNQbzMVkqVSKESITZ7g6kVHDe4+rREStOpPqvcc8smbx37pDsHBcSV5Xh6Md7eNcX+acYArqkJiGIYKuKnZPg3GI++QcQjhcL9vNKAooFfqVW0Nawor2UsFrBBYacpIvwRFDWYlbVgNJonecu01Wd6usEdvb3cXg0RyQPbatUINzi6PgY0+kUBJZYWvQO8fgYresxaRocP/YYlJCYTBqoZcURjbY4mnfoHCGSwqOPX8V02qOqa+zun8HVQ3akR0lUt+8d2o5JIxC8mTaTSSkpyGr5xhjUtsbx4RFc36NzLSaTCYwSUEnTUSuFyhooNRyuCEAfOA9nqoqJDyMl9Eg5+l6FASlGBB9SkXzPQsmS508mFXGeKWlbpo4BSGxFrTRUirJqMzgubSs0TYNJ02BnZwdN00AIznFx406GmK215RwfQijsRyklaJRqPy2qOs1Z5Z8b3ZvynvFM7Gc3teM6zUqQ/WSiA/EUndf4dzrlDozjmBuFD5/chLiR265nY8WPZ8JRnnReAyMpt7EXGBreBYwWCa2O1InFhFXYJdN/cwEubwoKFCPa5bLU3YSoQYI3ZGo7wJoEkQC+7zjfZgwqamCN4etKShfeefQ9R1dBCEjBTiBvODKx6RhuE4leIhITEiVpKpNad87pqVQ/E4nSyZthG60MpGS1Bee4dxijjekUrBSITFJcSMK7SqXNM6suJOgvSlAMRdGhqhvWDgRBGwupVSolkBBZrsm7VPslIEXAsu+5Fs8oOOfROofOe0it0fcO0QdUSdZKE6AjwXsqfbGOF8viAKq64SaWAFrn4PskQeU9hOLuzDEzMQmQyiBSi8WyQ+8DR1iBo8ZcGO4jl/Qu+x6amGDC7NHU7iTBJhQJEdxt22gDkxyDIIKMQGU0tGJ5L+8dRJV0FIVIkEp6qTL3gMJ4zT+poDh//zHpPVI5lLCaPiV2pRCc5811j0LqRDnna5SpqL9Ov0vFjquua9QNR13ZcYXERg0+oLc9t8spaxJgPdGT3YqfKqJzrQPste5fR8WejD0nHNd4MCVEgdau9binZ2M1itMEI9eirwxnXe+V17HgUz+H2Pica2HQN4I/n3yfzdd22mPHJ7FyIktXK0X6fpAdlizOqxw00mlVSLny0cVKJWYSrC0bNBXHRUlyRyvO97gQsFzMUe3u8EJVGgECnQvoomcihmAF9Ni3mFYW1ljUxsKKJCrbdvA+sLCs7FPOITlgRBjFjkoqWSR/kCjiyN+hVKNNj4uPIQjaMCNSSM7z5CJVdr684cTo4fthnH0IMGqQ8Yme251QEMz0S6d8SD4QRJY75801JQbrSQ0XWPJIp/o3EgBJkejjQOd82vD5Iy3aDsoY1MqgdQ6tc3A+QFUV3LLjNiLGcwQJiT4Qun5ZZLiOl8tCKmgm07TZM7SX+7gdzR10VcEolSDXHHEqQCosux6xbdGFOFLIGJyjJ2DZdbBEgJAIgQuvQ4xQQpbEHoGjKqmZOOJdB0kRSgCTumKVEgDe9ZBimqjyAsGfRE9i8laxzEOeo4ltw3M05pwSy3YpyQcE/lz8Paok1aW1Tk06s2STZccpBSpjoZITU8lxNXUzclwiEXmS43KrjivGCBmH3FXMtQ9PwTZFXKehS9sc18iuTQA4xUk9Tec1jkrGv6cbNm7cJzfykw7hmcCEnxnHvAbRjcb4yTi4632eVZLGSfy85AI3PDcL++YHcGwjEyTjIWLkjbNrEaNHU1lMJpOyuJe9g9EKla0h6waXDw8QuhYX9vcQhEQU7DyW3QK+6+CXLaZVnUgerFIgIsNsxkqOEgI7yXwyJmUGMVUhYasaIeWk5osF6qaB1Nz6IxABCT5qppOUB3I4Xi5gDMOI08mEN+rgcXB4FdPplO/TFk4KhJ7gewelmR3IG6WH0pq7RWsJkbT5etfjeD5PkNs+mukOetej63t0XY9pknI6nrcciUEgUMC866F8hCMBXTfQUgGG82pVM4EFQELhyuExYiQYU0HoAEiPCAkIxR2mlULbd9jf34fWCo89/iiMtZCRKfkHx3NeIxGYzSZolx26toMxCl0S+V2GY67Hcg7H8zm6AsVGmLoCpEDvHdplz9qKxoBcgNYGs2aC/d09dMsFBBGM5Jo4LRkCvnBuH41mOTAjcvdrho21MSkikoVIk9cMpZxWIFFq4XIioqANyXEbC8BWEJJhQWU0dBJBNsZAa1sOJmPHVRsLrVPdoLEsOJygQm6myfCgMVy+EaLHfD4vBzvOfSkolXJb6RA4zmddt11JXpvjdXqNx91oauTJ2E3tuNZtJewd3bbp9hNGmY68+QsQSKVEiXiRGTnj3+MGJ8V0ZBpgrVRoOKbL5o14vOFvPKEgT5ZV/7sp3D8tulr/XMPtq++9iUQxPD+BnqfUtG16r+EwkRPcq9ecIcRrWY5yyjgRwDVzoigtKCGhpeRTdJ+/O1FyR33fQyuNpq5BTQN35QDk+qQ5yG09INj5+DYdCkUSR/UeDkg6hfnwnhLt6b2VVolKrGATEQCQnGyXCkoLVHUuyGUFd6lYGSNQ5I7DCU5SimuBQnDouhZKq6G/E7joNsaQ8l3cdiSQgJQaUgIhFiYHAII0ChJcrKwF6zYuug7Hy471CVMEEsDkEhcjrLCc23EeQmoQJLyPgI/wMcJFJoO74JOUlMOy6+BcAKFNkaWEsRU650p9WNt1cJ77flVVzXVc3oMgsWw7ZKJT53tYbWGqCkfHh7BVhcZWOF7Osew6drjOQyjuKB0TGhIDz0+fdA+lUpCGI3Epebs2WiWCjYZCTI5LQFCAFFziUBvFjiJBiey0RMkT5TXPfKFEOV+DhsfHaJGgYSMlhDZAcuSmstzHTqrU4sWknKlOqv8SSnHEpRXPM6kNswrrGnXdoKoacK6VYVfnelhTQQqFAG6KKpWCjAoycPuheEoT22sdWG8ULnwyaM6TteeM47reQFwPyx1OR+nvE86ChqTrCKLKUdbYaXHF/NiBRaw7tOE1TzqrcbSxKRQXYoiyr/W5r+X8xv8++dMPrf1sss2Ob3BaJ8kZJfrC6Ls48fKJarzmZJGeq4SAlgqV0XAyC/dSSc53XQetLQBuMxL7HkYKVFqij5kWztR3kRLiUAzzhRggPIGqOvW1AnxkBqQSnLvShuuEQEBlTaKiDzVaUkmYnHcCQ6dSKT7EuDDqCs2t4rmQNDky4g7DfNoHRKpX8iEdIJIzys09Bb8Bd40m7lsllOIckgACEZZdj7ZtUTcN6qaBFrLQ1iMJVqYglkgCuFg6+ICYYERP7Lg659F7h94HtD0L1Xa9Q1PXvFmnCGDQrmQ1fuG5zsuHJes4RmKh4yR8i46wt6Nhqhpt71BNJjDWIi4X6J1PcGZEZbinGglmSXJTz5jyngSZavAY5qVEaglghXWCEgJGs1qGAEOGevQcdnZJOCAdPCmBrwRKTUfFcKAkAmFcGpNWhWB6u5GKc4maO2HbRLnXSifHpSGlhk7EHc5rCVTawBjN2oNKw1YVKstdqVmEmArlv21tKZAXYBajkDJpiapSYJyv69TVTjeeb99k6/vMM4EMPWcc1zNqayFNSXQDhd4KoERSMcbU3TUOEVYuPkzwQUz5jRAD53fWoqzcuHHFkY3eH3jqX/hTDcs3wQWbYNhNrz8USa729hl+Brpt1j1TSdIobuhtJsuffFrO3w+l92eBUu4EbI3CbNIgdi3aGNG7FkZJuBAxXy5RNxPufNz1qI0GJBAE52Aao9HUFerpFCL2iMaAOhaXzQeJGD3atkdHEcEaTBpWf7DTCWxlEWNE13WYNlMAnCxnyC2PVZLmEYKbXXpuy9K27SAiawz6ruPmjKl/mYlMjW+m06KIICDRTGYgIjjnsGw7Vj6Q7BxYTsnh+HjOdGmloKsKHoSuZbKD1gamqmEsOweV6nygDI7m3FQyRoZCIwEeQJy30NZCJj3AebtE7zy3c1EWngid92gPrsJamxTgVTk8UCQsF3OEEKCtSWODcp3OBywWC47OXA/pNKrJhNU0QkQ9nWHeLiH8IDSbm3OSIiCwQPKkqrlXFgGNrWA0ly9cOT6GoAAtFawxuOXMHiZNg93pBBoBTWVgDfdWkzI3/xSpmzFPRp/lnAAo8MEEApxPJCr7wDi3LaWAhoIUBqgqSM0szrquYbUpfdWUsak1ECubSIGS49JmaBqqLbeFyQLElJy0EFxszWUUw9o1xhSFl7wWM4t1fU2PHdZT3YPW945nynk95xxX2Wif4gmiOKn0mJxnTcFV+UIDsTpBznPFQOXv7LRCCLzoaSj0izEV0AruLCsoQq5FZAU+FNzuXAoJidOv97Tk6LVC9fUx25RU5dsIQlDaZzdHj+uvJaWEiCelYlZV4WU6VeauyTKxofi9ZPku0sAnWgfA+nRCsIRS53yRwAFFFpcNAY21kHu7aK3G5Sst2naBEJi80TsH0/cwFUcEJAhCSezs76GZVBBa4srhAdzREWQMsELiTNMw8wzg96FULyUllEm1TqYqUaNUGm5Elc6fL/gAF3waB2aU9Z1D2/eYL1su7E1MN2upPE8IZh4yySORPwKzDbvelTnqA6XBA39WH1lmKBIUEbQQ0Maidx0CBKKQqKdTkJBY9gy7+bYtERekghQKMUTUVYMu9SoLRIjOg3zEctkxFb3vcfXoGM10B1Jx4fLxfAHddXDOobYGMQb0nYMPnll02sA7z58nEsODPUOK+2fP4ejoCAeHRziaH6eC5R5CiFSbhqQHKdJ3T5xPlBJCKshKoTKcK9JKYdI0zMAMHhqAVllzULCepHOI3kFoAvdCVmgqC61ZXV0rBR8ifIhwwZ9Yd0ShoDLeh6TLyHtDPvBKqZh0o2uQtdDGQhnDNX3awGjWHZTaQCoNJTUqOxAyrDZQmiN3pQyk4ahLW5MOAALKKO6nYC20NVBGg8JwOL6WrTsWvmZ54v78+7VeL+8r49daifCehvN6TjiujQQNvuO6zx1guUwfzgFXin7ShsCPxaqDSYuFi+6pCKiG9JPldvKJJj8nxQxDnmvNEWz8EWOIEeWiTjvFrN9+Gk59bcc2hgJpw20bxlGIAlVsggpXE7+8eY8hi0R6S2y4zSSPDC3m3zFeBJxC5KaKsymMEjieX4WbL1h1Afm7TtebaMsQMrWb5xbzrm0RXQ8DoLJ8slVCpI0vlsUsk6gsJTknLqni12OF+PydSEQKqSA4zYMk85HnSyBuVx/SnLDGlijFx5gLu7ieSzAE6JNCh1aKYSHFOSUiUaA+T5yfDSlLqKUqnYx776FMVcgZgcC1YJFgbMWjJURqd6FBqeEiwP3JIgK61MSzdx5t1wHaQhuWJ3LBFyX62u7xGgge0XtIzZqLRChrKUPJQnIzUqlUqldjZ4MYgNGGyPlEMJVdcosRI1U6EClYbUoUojDUB2o1wIBKiuKclOQ8mFYSWkvYBMvJDO8GPqhm9f+Sm12D+Yf9IP1O2XHxOApjQMbAGHZexrKAr0k5wOy4tDKpkaYszUJXHJdmMefcNkUIAREFhOxT2QXfJ2I+FG4+5K7/fb3USn78ac+53nOfrt3Ujuu0ZCJwMme1fvuJUBgbvsS0qBiO4ifnk1OBBXPDuhAQIkdYvqiBD40DS6SWWlVorRNtNeHewl/zM1KMIDk+wVx/Yl3bNue/rmc3lphdfUx2WJtYS0opxHGlvpCIIp58TUJhPynFJAXnApQ24LxXVkIAK3tbi51pDTdtsJwfwLUtQAEkmLVVJXHZxOrg+p9lB+E6WEHQoYcGC7OauoYwGtHz92q1htWsS1jZCiQl+hDgjucpkc+F0PCxfK4osoJ9UlJPxbCkmLauNOc2mATRQUiJ3bPnuLmhc1jOj6ETrHN0dIR6OkkRm0DneigzxWS2AyRHF2IElOFrhoCXGorYcfUEHM5bHB0dY7FY4OIL7sDRwREuX7kCW1Xc3kRKSNvwfE25u94FtF2P5bKFqWpE4vk+X3bovYPzHkpbdL2DCyzwKxSL1vbdEtOmTgXhkvUkg4MQElpqLHsmz1Qpeui9x8HRIabTpqAQXdcxeQXEepFaAZCgKGCVRmUN6rpKArh8wOuXLZbLFp336DCHVBxhZSKHtga1tTi7t4OdpsasrtBYhdoYWKNhtU76gLJMxPEhbXBcIqlQ5HquwZFFikXYVkkN0hbSVpBVBWNrGFPB1BVqo0vExexQjr5t0r9USjFNX3EvOCk1sxGTskrWFwSw0nV8OCQShLhxYduxAPZpubDTDsfrf6/n79MfN3wt6/accVybrEQoQKpgybHOWn5EjMMqlOcQDY4LxAluIoYEQ5L0CSl5vslxhRDgUtFhhhRDTNiy92VSSSnhZSjXJKSESPVAMi1aJCgsC3w+lWLpU0YJWHHa6/DgSVbh9eCBcWR1otsxVh2ZSCfZgrfTSTgjQ4abPjMRa+8JEiPackD0DjvNGcimwvLMPtr5IeaLDr2PCH2HfqmYgag0tOSo4vD4CNFqVFpgojgfoCoD0zQM24LgYmKfVZzXarsOVlhIkgi+g1ISTVNjNpnynCm1ZQokuI28rRu4pPvHI85EDxdi0jqUkFJj2bsilBoJCSbkYlqCQIyEtuMWITLpHkYA8+USbdtyjgW8cXoCoguYOw9/eAxtLJrZLqSpcHB0jM57CK3QOo/JbAqpNK4eHcP7kNTpJyAIeBIQxkJaC9879D6mGjSG+0xVp0JggvM+9f4KCJ7hUaMVtJLYm+2U+qoYBIRWcM6hbblgTWuFRtaj+QQQafilY6KNE9yDTDGFnVyPtu/QHR+hqRrUFUtqzeoKRorUbkbCGsMqFIISs1CisgZaM4GBUm0fELmjMiKUBKA1tBwOJZEEIg0HTxEJUSAdTuNoScn03fOhRWmOtqS1UIlUoW1iBpoh4tLGsmPSBkZZKMV1gjkCzLR6IRV3R1BMoRfpPYf8Mju03FyUSJ1Yj+O1tL6Or7Xux4/P6Y31vWAT+ays6eer47q2DYMlUuTEodbgpE4btgwkEQCKouS9cq6q5LBiQEjYcXZcIeVYfF6wwa8yDpMTC8EjRA0ZU+5DciSGEIaTU4yI+cSeyRtCZE/6pELzJxOVjR962gS+1nuvQ4MnJJ6u8QNx7QNJPkQA4L5pifQiwclrECEmsoMUQGUM9ndmOJxNISFwvOzReo/Q9+hli7qZQGqO+ro+ojEKBG7w50HMqgNYCUFpCB1T7hGQ6UBBKR+ZWyqRlJDKwPm+yDwxhZ3FavP8isDQgiQ9jkI+/AQsu467LsfAsF/SYjRVVaCociAKrISeX8dH/htpzpBQpVliAJ/8TaUgjYVLTRdN1aA9PkY9mcJYi8sHR3DeQwYCiR5aW56PiuWIAvXwnpU1WJ2Co0chU1t7KWCUQg9C5x1CDDBCpy7KNXS6xvm8Y3hYKdiKW64QMX3be8drKHKvMC0lpDHw3gEUoaBRWwstBLMRQ+A8nhQwUrKKvxSI0SbHldXdAwRFGKPQVAZNXaFS7FSN0TBKJQe3XqohBnJVPLkecgqAD70i9z1FPiwzVCgTU5Gjp9xNWGmdnBA7IqlY/UOrBFcqdvwy1ZEpxQonnDseWIIyEqRQyOxSKVWCYMMo+jq9RutaDuVaKYYbcUSborCnYs9Jx0WDl0LOCQmRnRitRKhUHi/Lhh1pgA5ZRSg5HYwdT4BPwpnec7K2RFze878xJIXw1ZqvvJlbH0q+pjguoECIAIrjGrN/BIbGg4NXfnJkjNPd9vCY0xxRxurHzMhNkMImh7VJwFOuvddpNqx//n6F4G6/IqW4tNQg38P1Ee1ijuA9TG1xy5kz6BfHTJkWx+iuHiJ0HboI+OkUSlTcjNAFQCqGBWNE5x2UDGi9x65UkFbBKoUYAqtGxMiir5r7J5EkVkNQBpAavV+Wk65PEbSQCn3fwhel9CSGmsaRlbyZIt85VxhikQB4PtTs7Ozg+JijIZ6jXJ82n89LdM4QnWM1DPYKMKYCBGBS3odhMoODgwOYuoGqG1w+PMJsdx9NM8FXv/6NFN15+K7DRBluaii5MaPzEZ1z7LRCEvgVAaauYaxF09QwQmKuFaLv4Z0HpZokW1cACaje4fKVQ/5GlUQzneJwMUeMXMzd9y3a5QJ936GqKuzu7sLaBoujY0giWKOwO5thWllQjPCuB6KA1gyfGWsghE0wdGphjwhEBwFCZQ2mkxp70ykMCFoQJnXFOSUhIYECFea9BGCnzP2I83l4yLFSjAiR6+hYy5fKnFVKANlp5Z/UdJQdFjMJtTYrt2fYT2sNqUVi7epC/MkOKu95UnJNWHFq8uQhcbwW1x3WeF2vEyxW1uRo73ky5I+naze14xoGd4ShitVaIIaSkJyXKAnz8QCPJ5YQAj6Gsq2HOLxP3oQicWuGkPoLheS4MkzonIOPYdTaYihUpLQgAcahNcUk6CqhKUKTLtcUk/7c+LMSMXOKRDq9xVg2/vWJ89RyX8Nz153XejO5dUr/RkcnUmEuEoMLgmuFhIQWvDmE8YK6IQg0NxjkPAqSlI6UKSoBobIWCAEyRuzPJlAXL3DbdaGwmM+x6D18G+DaOQRFRMO9jA6PF2g7BQuCERF94LYc052IxnJ7edcuueg1etQQODg8RoyRG/o1DZSt0HmPxbLjvERlESHhnUPvehwdH0IrZoD5EGCMBDdF1Fi2c/jAtVH7+/ul+HQ+X5a+YyEStK1AcFgez8u8bjvHiglSQ6oIoZksEaKHtIbhOsVMxuV8AdH3kJ3GYtmimU5h6wpnzt+CRdej9QGz/TO4/MRV7m0mBDwBbe9wvJijsg2Ol0scL5Ypx5vqvABmCRJHwc3uLqbTKQQFVMaibmrYusLR8QLT2RR20mD//Dk89sQT6NsOonUp/0twfQdjDKzegcQO6tpyHpOAi2fPorYa1nBuSyuZSiK44Dbvj9rahIhEuL4DSc5xWSU4n6Q1rJJQyNB4yjmnbsg6MRL58EBQKqu6AzIOfbfKGwqU2joXCK2LcCEWdrEQJkHjohR858adrJKS6rhSLZdJdPjsuCqrIRNUKCARRe6jpUaOK0VWUqw43MHJXDtntQney+t7HQ4cP++011r//Zmwm9pxbTZ2QJlGzfmqnKga4oyTIWtqVyCYMZTvz45rrHQRk8JBJl54z5CGD0x17r0rCXL+N1HmI/eI4l5MjOkDySlkogaAIGXRExszEvNjIyJSwTtyD6Z83yaG4diG21ejrhudVOOT1yZHdQKCSDBLdkqboq1Ngp8nrjd/f0Qr3A+KwyEF4MNArTVuu3gRlTUMBwmNaV3B9w2OJw0mlUWIHaKL6NslYgSUD7CVRdv3INJQlYXREqQ0glToQ4QKAQIozkOCD0r52KMSswtCwIdU0wQkKC1yA8llC+cCYkjsSyFKvoqJO7J8jyES4Bm07PquDEMIAbu7u4hEXC82nSY4SLAkkec8qq1qzNsOXe+YdRcid53WEp1zEJJbgkBKeIqQIWKys8MtT/oeQrBmYSACBT5g9d5jsWwRSWDZdWj7Hj6wlJI2hss3chQNPrgYYzGdzpgUYQyEEFgsF5gvlwyd5khG8DhozbT5GAnRsTyXUQrkPSQSuUKyQooSXEOlBRJcxkQXSkw+bTScY9QjBo/ec45SW80/kg9QEsyCtCt1h8PcLOtlNJ8BDSIPIJzYT9ZrObPlyCjPFZ3yUFKqVBw85L3HBIvyo7NGpQAfA6nUQW5CPTY5k03kqWut/2tFXOPXWL//ek5rCxUmK8OQo6xhS+e/aOTUxs/LAwwUODDf7sNwAilMwZigwdzRNbAG2AnHVR4/ykfEgBhXHRcASKHLRDMhIgiGgYKUK85oiEzShIsxKVGjPGb8ua51sjoxfrQKo546zqMHbVos4/s2QY6nMQz5QVh5/up1jq+PI2uu3QE7AAKs1pjNprjzzhehPz6ACA4yRkysRWxqzCcT7EzqdCLu0LctXCAo74uaBQgsWKoVhDaIUqPzEUIk2NdzDZ8SuZcSR47aGORW7jFw1J5bm0eK6NoOi8UCABADQ4LWWs5RRYYJx7VuOdcVYmQZJPAcbFtuw5GLeXd3dxlCSuw/2TtACFjLbU06x8rtUA5CCUijEFK/Jk3cd4v7W3ns757B4fEcXd/DR0r9rbmjtKeIPngs2w4BLGbbdj18jJhZrkdCYNKRVqqI2hqtUZkZiAKUZme4WC5xkMgfs929pPvHhzKjNaRnLYrgPUdEUsC1PavPy1TwS5E1IylCJRgw6xLGNJeV0ohp7YIiguu5xYvK0mASWorERlVcM5W/gxyt8KTntAGGSAYARAjpUJr2Fxo26kgc6Y1nsJBJZzDns9IPiz0PeSk1Wh8rjkvKUcQ1hgYzdD+m6V+ffLG+jp+OnRZ1jX/f5rgwHohRcZ1IG33eLEmUsDlvzHm4xjXtnPxNSfOES0cMzqoQMNLffWEOckEi57U8qyCk6CvGBBGMIy6KUEqWWh3jHIyxiIFP0sYYrjfJMBj4JD+ocMSEX6cxSBGXTPAFMGz4N5I3GlvOfV1rPq1DCePXX8fOAQzRlhAn7h9+Rg5sZbFROejSkMrj7zotYO+4+FZJfuAtFy7grhe8AK+8+248+IX/jfmVx4HQo6kr6NSssPMe08MjPHF4jMeu8ubpYg9nXdHcs00N5z2cjxBSQy87LDtAC4JVGooijJRofYC2FSt7G4tF23EUqRS04hYfzPhTrCbhHJqmKfmoCQiGeP6EkE+oQAiEvuvZcVAiW/Q9RxHK4PDgCEKIpEjBtHgoCRcCFm2H4/kSzWxWVNVdbk4ZAtq+Q20N6qZGrTQOr1xFM51gohR6H3D54AAHh0dwzsFWNQQZHB/PIW3P8lNCYtF2WLRdatooufBZcJPIs3szVMZACMLR0RGs0ZhOGkgp4BxD6s3OLsgYzBdLfOPRb7L8k+AyhknToDYa586dhUKEiAGCCPvNhIVoBRNjVAjQSmBiLeqG83e8PgCdGHcCGsZa0GyCs2f2uMCYCFpINFbCSJEkvwzXdWlZ1hlPuKzHmeZuKZpnUhUhR1ahoDHjgyatzX+dnJbRmovWrUm0/rW1OFKeye83Lt4X6VAgM75Z3mddoeYktLcpOns6Nk4VXC8ye6bsOeG4ihoFOO8hhODNDnGAqBIezWQMfuyq4xqcyzgnVSC/GBD98LtLBIyQ8P3esRqAC6zT5mPgDrUjx8XXO7TUFkIgaM0QEYZ8kZKSIz+emXx7clBaaZS+6+t2Clx3vWhrNbLhyU8Uy0IATk+6rjuk/Pp5AUXJMjjXjsw2wxrpaiFGTmstAEutIIYc5bmz5/DCF74Qs91daGNAALquQ1PxxrQzneDs/m5hAR4e59wRRzLNbJrUBgxTucF9wjrPbVBE8Jg1E5jUJ+vq8RyVMUz8SM8BAOU9yHC7EOFH4zI6RRMA58MgCSYFFvOWFTOUZs17ldq2932BnqU2rNyQ2HzLrof0AUJ6TKRJOVMgpB8fI44Wcwit4bzH8XKJqq5BUsITPx9ac0uU4wXazqF3HstFB1tPuVcYgLbv4SLLV4WOIw0hRIL2GHUIIWCxmCNYi0lTo+97LkCmiNnODF3vsGxbzLuWW5GEiOl0Cn94yFGdcwhaIUoAUaGuDSRpVnHnEBuILPHF+VMFo7jWipKjEWmRcxlCSNcVoZAagGrNdVoKkGDClkkCt0CuXxqilvw5N85RZr+U9b0i9UbMH4007DVZ/7JEVSnKKg5JpqJ8DCzBwVmN/wWEkEXZZ/W6Vtf+yuc55QA5ln26Vl5rk0NaH5N1pGR82N2SM0Y2RFibGYMinUoo01SRI6rR7yO5ppAr3ePIcVFMwqID6cJ5nxxXQJdzXJ7JGSW/FfLGxG8cUx0XpejOaw0fI4TQ5YvNeauYNjqo4TNyXMUTJb9OmXQbnEgZnw22cjoq3oGjViEiWL5GlEPBShQ1fp38k987/USRIE2IE4tmdRMQ5TuCWEfg8zdZaCr8eiTAez3DPAKAkhJnzp7FxdtuQzNhBwQpEiRLSVVbY3cy4SjLBzxWXYWLEc4F9F2HesbtQyBTmxTiuqnOB+575XtoUyFKiSAFaJnkkQBoHxA8s9VU2oTyxVGM3BBRpm7DSkEQFYUVSt9f70YsQ8EHF948qcwprxRk5MrE4JnhKEOEEAG2YcgNimV/PBH6ELFsW+i6YfafDyDFhwpH4Bqu3gG6RyAWrw0R6F0oayFGwjJ3ZxZDTorbbmjeoNNaWLYtKEZU1sA5B+cAHzxMVWHZOyy6DodHRxCpw6+1FhKcW47ec+IyBJD3UDAM5UFA5SlKgFbcodmaDLVJPuoJdvSssE8sMuxZqUNICaXr1NKGFeEFMQFKJxiuwG55HhanNYbfRs1B0/wlQtExLE4rrbuYnBcRCpNQjPKALPQ7Rh+yMxvdPqyyvKKQUwYYHeySFxstzLzO8gcar7UNK23ktE7dK27Arpc3e7p2UzuuPEHyKUuMvkH+/5AfYqgpY9D8fFa+Xq2vGiSbWNomjpxXTFT37LjGuazO9SnXxQ5tRa8wQQgAQ0BCCKhOwbTMmqqqCsFHtMbAWovee9R1DWMMK19bC6MNqy8QC4aSFkAkSEo5HsQySXM7jCF6WsWexcqkTTsBBUBkkTtwwSRikrNCOVFy/FUQPG4bjwgmB8d0HZz/YXLCSAR1hNVnx5p7GwWIlRbmgvhULeJ6RnLk2CIVvVqtFHb3dvHCO+7AXd/5nZjs7aGe7UBXDdqjKwBESuZLTLUATWpoAO0tZxEffRxt26L3Dou5HajZVQURgaPlHN5UzDyDxpGLkBSgpMD+lIVNvXdw7QKha6GkxMTWiBAwPsBoLhyORDB1U5TOKbUl4Y0vwgcPaQzLAWU4Oc2lxbLj+QgWmRWa0YFF20HYGhIEqQAvAFFV0ELAAVg6h6Xr4Ig3cxIS1WQKrwzXKMaAliT6pcOiP4aUC1RVBVtNIJdMVec+ZB0616euwboov8QYk3BrQBAeISm8d55wMAeOF4t0sCJcPjqCTTmko+MF57IEQ27LoyOAIupJgx2rIRDRL46wCCyQbJTC7s4U1bROOTOLqrKl5jFH+czQBMOiqS/VrK6g1YSZjdYyW1AQnOthlMKkrmGtTvNPoqoqgCIo8PjnCElKDQiVoFtODWQil1KK9Uul4BxaGoe8xPLheGc6A0wDCM17VprnRbZpnNcSEvyfSoc1du6c9hgir7I+stSaZNZxOchKXiTprMHycRmGX/NdZZ9IB5S0SFfuP80hnZZCuJEo7cnaTe24QmA4jiRPAGA8WAwVAnlrphXHRekkve64fAis9J6dThjyXN4NuavecwW/j7HktvIp3jm3mhdbaXMC5NmSN3FjDLq2Q1VZVFVVdOQqa4tjNNqj8hHRUMl9CSGKGoMQGiJJqI+r2GMkSLmBro51tHHtlhJt5RqykzDJGgC5ep8Qa1DHquNkB6tW7ueAi2m+17iycpuUXJMjiE+tt164gNlsBqU1IAWqSYNmNoE7NFi2LQRF7Ewm2JvNUJketTFoO26q2C6X6BcOi6NjLJcd2naJ3Z2dogq+N51xUS2AXWURg4egAELAsueT/9R7ROehJed8yB1h2jTYmU0RvGdYU0ksfQ8HQpSCGywCKbrVaGYW2rDUj091Sc55LLo2FbgzvDaJnGvyRGi95wNECMBiDucj+hCYHSglhLGIcgFP/BwkmS2X6r+WXRIqFiwc6zwjE4dHxwU+d96h6ztUVY2qqtF3XZnDx0eHmDQ1jFRwAIvEpkjXBy6C1kqhbVtWsEiQHEVCFAGh7zCb1LBaYW86xaSykBxWYXc6wbSpMakr1JUttUk2iedmwsowv9ghCeIIXFLKkQkAFBBcVzoOayVhrYGtDIw13M4l5avTJgGVIspc9OsjSiNrleBJoghPYTUyGsCEAdmXArfeehEkLTovsHTDYXMlj6VkWgXr9AqGB0vUNFpL/N5yhXiWX1eIdRhj/JzV9TmG9HJ0LZ9ElJV/1qHBdef1dGHDm9pxRcpilyfzJkMvnFXHNWDRNIJBhlYkpbA4ESu8HxxQxvBz59VcaOyCH373Ad75QRIqsBMcv/9gvHn3fc+n2t6i6nvECCZ5VFWRiwomAElJJiZ4g0kJClrmiTCefPwAAWCEpG7C4cZrbIATUJCGApPkscTK7yhwysqCEKvfyfh1eEGN4BdRwI/00iN4o3yhfPHsgLF2O0d2+/tn0DSTEsUZyw0IpdHoXc/SThRRG43ERMeZnQnOTBsczy3mncc8fY8LBKZKa67jqg2TCyQIlQus3BAdpIgIUXNreClBPsALCSKgWy5BQkBXFq7jFuqKFGT06INHpDCClHjLaSouPI2S66F618P1Dn1wBbLjXGqAkJzDctEDYHhTdh08cV6rDwEkBRdIK4lQvl6BEFliqnPciDLnXCiyBmSMscgv5bnrXYDRDGsGz0SjGAOTRqzhej01FPKXT0Wsku5TPk/KhEik64nBo5lUaKxBZTSkIFilUNcVdmYTTOoajbUwSgFlzqRXT9fAGzTPnZgOlxlW5iCID1IqMQiFQGL0paLktEAIKPWTAjxPS8dj8BrLG25xNCmPO8Z6+Iw8QIQc4Qjsn9lHgMF86dEeLUbox2YYfXNccvLWzY8fXvdUG31X5c+1nNS1HMy1Xvs0ItczASHe1I7LU1LNjmOxXLZxZMOTMZEtRtFPSFBghgdjggADaFDBcINQbu9dYn8NTsyHsHp7cWKZBj/Uf61+YYO7kFJisVwWauzxnHsS1VWNM/tnMO171FUF1zhUoYc1Fj442GhhtQXp1E4cjJuzqlU++cnR76vjJ8VQg6SVRJGqSaQQQIDTZ/yokisEilKASFgdOyNC3CCDkzcZIVhyUQ7tqPhvIVI0c/IEmI2wjr8z5VyAmOKtFG699SJ2dvdgbA2pDKp6knpvaXTdEkoAztWYVhWUljDCAPtTdMs9SHJwfQfbBSwDoet7LI7mUKaCtjWCYJUCFwMO2yWf3IMHRQ8KFRABawFEwMeAvndYHM+5saMxmM+PYazhaLCMOlZbuUgJqytEEZPjWHAu1Xn0MUUVUkBaC2FY7od8ROsdN4iEQui7pFQPzLsOQUgIayG04XmckYnOMwXfA0fHS4YHrYXrHZbzBdPQU2NCJSUqW6Fddgg+oG87xBDg+paVKgC4rgcioa4s5osFhJBophNordG2Ldq2hTFcBO1jRIgOBCZHIHo01Q6s1uj7DhSAnf093H7xAqzRoBBAgZ33WLTapJowACtwNBNCmCRTzSbQqVFjUxkkH8MNR7VOHZElw540nrPs5JRJ6v/JcYdRrXGe51IOXdHHKQdOLSTZsOQMz99yHo401FGLq8tuWAxYfc2VuT86iK46A0qHRqSawJNO5lRSyXhdifFfoqw1Iia4RHHSoWYEZxMFfpNtet7TsZvaccWkBZhPFoPTGn3RyFEWbyhjtuC4FYkfieTmNhPsuEKB67JTygyqnOPKMk/Xclzrpw+eBCOobNT5drlcpip6g8ODQ8xmM25yt7ODnZ0dNHWNpm5Q1zV67WC0gQ+BG9FpDUMaUDGtifGkShFYxLgzY5lIY1ZgGklICcQ4SE6twwGs9L16+yosiBP3rddwDbRfwYWVklYeH+P6JKcEA+ceXAIgwrlz51A3DYQSRbHCVBWk0pwPEQJd16GSXLtTKwnUBi88fxaz1En24ceu4MrxAlcWPaue9wHaR1y9eghrWdlAs+IthFRwgdAToAjoPMF33MYjhgApFFoSmPceHXGfKTgPpSWrtvsAHxyf/hWr1uu25SjEBxwfHaGyFXRVwSozzB8h4cHtTZZdB1vVIE8gBOias40hEi4fHiJErs+aL5cs0isZhHLdEiEQnOOD2sHhAQv/phYpWa2haWpIwQXUOhW/ZtRBCI5I69qm71CisjUWy5bzvm2L6AOTNryHShstBDCpLKxm7T2rFc6fOYNJU2NW10D00FIgeIfWd2hshbqpkbsxZObiYpFzzA5ac84rN1XMUdZsOiniy0SB57IYSCVKjQqNiWM0pbmQWWJg3PGh1iFSYv1JOVonoszKzOjkdZRYyjlKEwLT6QzCNDCVxyOPX+WDjZSlb1ZeZ8SdKU8QQPiGDP0DqWV3cTLjA95wONwEOq5bSqPklMoG55n3ivFtY1hw3ZFtc1ynmPch6bWNIcLBcTGsNuS1XAxlkEMMCH5ExkgOyyeR3CHiGjuukYPyDr0fVOCzIrzP0Vikko9YwYyT8aY8Er1M+IWAKBGdVhp9x+rgi6ZG33dw3mHSTNBPON9WWQ9r7OoESqQMgJ2AHGeJSqQ0TK71U1A5wRXFdZTXHH5Gzylwx6oNcN+q0+KEsUgBYXJWeYGJa0/qDOlkjJIShCikxGQ6ZdWE9N2bqoKtKgjB6gQiHVhCCDBSs6p4lNitLZQguHgWgQBrDCIdojvsma4uHRbzY3hnYSsD7mxFrDBOCjYQlAdalw9DnG4ySsJFYOlZJDftOYiRHYZ3Ds6zGLBWGoBE1/tynW3noHQFozjP5r1PhA5C3zODtXMBplYIkVUtRGSlCxeYuBHTOulD6gMX0wYOhqNd7+C9Q9su0S5bAMCkmQCCJY5yj6eQujATqDBnJdg5RAIE8R7a56J6Ivi+h3cOFAIUBIJzzOxUCkZK1NagshqTqoLVElpwCXJp8JhxbgqgyIQjmeji1hoI4bkJpAIqW8FYA2u5+WJ2XGMcphyaRoenMVKT1+IwlzfkaGjIWa3kcMq70Op/RCXKlamljqkngIwc4UZuYsrOBQW9wPinXM1wEE+rIV3jKEIafd5hLcsVtGV9eZXnrfirHAzwofBGHc16Lnv87zPJMnxOOK7xcIzpqIWemuqoMruPiRkBwQ8nuHVFjLFgbt7s+pET60bwIDMH079+cGDZIeaI79QwPumWlTyRk4W4EGPEfDGHtRaHhw0Oj48wm86wO9vB/v4+JpMJmqYBw3oR0aZIREiQFqDAwp4CjP7lUyQvik2jyszB7HNWqO1rFF0puXkif5jyv5XPNpbOWY+0eOdjNHP8mPUoMTMkx7fljxA8F3RrrTGZzKCULkoldTPBZMpFuFIbiDBEQ8IaGG2A0ENUBpWRqOsKddNg/+oRiIDj5RUsXEBwPY6vXoUyGqYyaJc29YPSQN3AaK6YIuGhNVPgY3LGbSDENkDpBIRygIqli3C9g+t7CBCsjlDSoO88z0/vsegcqokAlOVWG9QjRI/O9WiTcrwPhF1TwfcObdei9Uu0qbFjFJzfigQmFRDnx7quA1FA17Xo2hZKKCyXc7TLFnVVp7yORO97riUkQud6GGvhXI+2XaLrOphUSBv6HtYYiBhxvFhCS2bAub6D6x1ABKMkuuUSSlVotIJVAhNrMKkrzJoaMTh08w798RGmkwqTukbVTJKz9eha7nxsjIVWGruzaToUMtrWNJNy8AmBt3gQsz2llBAJhlcqyUKVuZZaHiXEgRm5uRMEwIIBTCYRKXIhIHVAz2hKpt2OV1HCBWIsjkZrBa0smmYCU0suHvd+6ABBzBIe99Uav97qTflQmN4p73Mp75fX4EohcongNsCH2S+TACA5Ehw1eD2JpJxc6ytXN/p7RSB8dMB+OnaTO64E3Y1ORYPTGtVmUSZjpFxWJl94Vncfq2K4GArNNb9+jsacG+jwGRIsUOGoB9dQtHx9xwWkJK8eNXzDatV7jBFd2+L46AhXrlxBZSs0zQT7+/vY293F3u4uzp07h2k9RV3VmDYzNE1T4EZjTGmdYEwu1OSNV4ALMBkGxMri4/hPATR0T12HCodJmaO8WD5TIV6sQYjrCypDhUJkVhbK9xlTLVXJsY1ujzGiWyxx8eKteMELXsAXL1isFkpj/8x5wDlMd3fhDnwqSDUsRisVKqV4w2XNc+zUFlVd4+zeLjM6I+HRK8d44qhFHwKC7+FboD0UMBWf7l09Qdc71BUL7O7u7THNuzI4OjoCWgcl26FzrRQgCnB9h5DgQgQPqyMICkJz2w0iQlQWCxcQj5es9h4Cgg/oOo+2cwyhSonWR8y7HlfmC3R9n/QDI6azGTNUncfVw6PSQZmIEEOPrm+x7OZwbVKtaAyaqkYIDm3LTR27bgkiLuJ2wmHZLnB8fMSHmYo7JGujsGi71CwxQAtACcBKAaVTATsEds/uYzadYNLUkBQxndRoaotpzXR+PlwRamNgDH83skBghOlkwlqMkinpwaW1XOAVZsHZkkfkeWishjE60dzB5IP0X86pMlN3mHsx1YGs769lPwGBwkDA4nmN4l3Gm7P3AUQS1taYzaaYTKfoSWI2m4GWLfqk+i+ROySrsg4ovZccoQubrOwvYv3QKAvEO6y/k9HQ+mccfjJharOt7wmbHFpmOa+jTk/Hbm7HlQp+x2EyUSyOKjsrStFXqceiTHUfHJf3oygrjuDB3AwvxiJXk5UzxhDi2GHlPFjWSMu6aTms5/nNYbgQAiLGpE49sOmkyEKaIwkl4vqUrucTd9d3WCzmODo6xGK5xN7OHqaTGXanHWazHVR1hbqqUdUVn47JQEgBDQEh2bHmQsuslpEPcZS28wECWcW5+TTGn6kkp4kgSSJGLmDeNKlXcl3lZ2htsn4IHLPusoUwEF5CCJhOJrhw4UJZFDxeCrZuMNvZxblzt+DxxZwZbYgIvodLcKxtTFKxIHgQrBSY1Qa333IWB0dz1NZA4DIOlx1cTOy4QCBwW5MYeI51XYWudww1WgujddIXZFq2MRE6qATB5qhYc15Ks+K3JwHnCSopuLtAoM6hD1SEaGOMcL1nmDpykbg4PETXO3TOo/Mey65H7xxI8QbfO4fFclkEWpVmdh5fl4GRQ9uMStfDhi6BrmvTPPZonUffc/4qgFl5QQXAg5mFIUAQK2soyQXi1qT2GkJgOmvQJFp7pRX3wDIaVid1EOLoRVCEIBbQreuGxysySUQm6CqknLASXCwcXfpbSWgty/ywqTmjzs5AMB5WonvwRj7kZhJjMYX0Ay08FUhHUZQwMJqVJVe7UsScC/nTupES0+kU9aSB8KyHeThfou86rm8zuijR59eEyFD9qsui4oDT38nJrh8Ux8zHVWgfBVZheHRw0oS1NytvuGq8J/GpnCLLsBXlovHjRr/LFFnmz/VU7aZ2XM45pvAWxzXQ2ynlEvzIcXB0Nq7RCiM2YVyF/UYU+EKT96vKGaUYOYyfOzguGjuuIRYvpzwawW75/vXQfMgLZXYgIPoeS7HEfDHH4dEhmqrGweERzp05h92dXSx2z2C/7zGZTDCdTjFJLSWiGSYV4/TcFVbK1N8rOUfmOiTVcgyV/4Ml5yqHOpYk7wGQglKErBCyUv0/jrrAcA3/DLmH8WOyuxrTxYUUXGoQIkKCiWc7O7h48WI5efNCVLDWQuzs4taLt+Pw0W+i9wESERQ4P9j1PWaTKkFBvDkrcDPJ2285A+cDprWFiA6PPBawdBGdJ7Q9t7KJSVzZOQelDZa2Rd/1qCruaBtC6natFCwBKoTUD4pQGcudg0WArWsoyd2xO0fQAJRgHUSECIie1ejTuMQCafO8Xbi+lHe45LiWXQeXxs4lx2WtZXKJSeQCowFRodK2CLgKyLIhxhixbBccfZDAcslswwyRBe8RlALFWCJIRRzVgnhO180sOQ+FMzs70FrCaInd2RRVZaGlBAWGE4mAGLjwl2uZgElTQyQYzKV8WSSC8w5WGZbEUgreg7shG3bC3vNzirKG5M8lEmFJa83EojR/M9mB11vKBYohj5rXMkW55riGyI57a8WRuvwq7C2FwHQ6hW0moC5gOp0ifPMxLOYL1A079XGNZj7cjf8bLEWZqb8glY6Vpx8Sc/ST3mDFeaE4df51JWeX36qsxQHyE0IkJCPBkPnf0V5WdozxY2iYz0/FbmrH1XUdBFCcRA6rs2xTZvVRisBcGBxKrrsapJlGTMJRBJWd0Koi/ODIQn6vHG2FQYh33AalfJk5JZQcV7axbtj6pC8OAKtq6svlEovFAlcBPH75CXzt63+Ouqpx9ux53HrLBezt7uLM/hns7u2iaRo0TYPZZMo9jqzBZNLA6qEXkMxRFDFrjzMFg8TUGO5chRoyEUQgUIYQNaQkSBkgpYZIxa35OUIOn7U0yFODHA6JVSc2PnIGHxL8IGCbBjs7u9g/c5ZzIkoVpiiERT3ZwZ13fSe++uX/i3bZQkYPbSrOm7iAPoR0Ipfol57p+UpAKeB7vuOFePELLuJ7vvMufO5L/xeXDw5x9egYj185wOEyYtEBS8eEBBIOrVzi8MoVaKNRTxqcv+UWKG0Q0mjC5e+eMKkJSgp0XY/d/bMARRwfHuDq0WV2Ikbh8OgQOp3EQXI49QqBGLnGsO9daVjqvUfTNOh90sw8Pi5zlwt/U50VOFqiGOGDg67Td08E13UF1um6DkeHRwAR6rqGRmKyETdiDB0XJk8mDXaaClLUgHdoFGCVRG01zuzPUFkLazWm0wkQmdjSaMlagYLLUkLqaKylxM50CptUZFyKWjm/Zcq6lOC8qEpRk500aR5bdN3wnDy3tGbnuQK/d12K8AiTyaQI2mYVmpXc+UgSjsCbfozsZCkMbU02xRGRIiCGpo7ZQZ4/dw5f+r8P4vHHH2dVktsuYjaboaoqaK2SYnyWgMq1j9kR5SaWCf5NYsDZQYxt3YGell06AfeJ7BuT41577XX4fwwxjm8fCw0AJ6/vqdiTclzvec978P73vx9f+tKX0DQN/spf+Sv4F//iX+ClL31pecyrX/1qfOITn1h53t//+38fv/mbv1n+fvjhh/H2t78dH/vYxzCbzfCWt7wF73nPe8pp40bNpcUYc6KUhskVY1LGSLfHlKgd09/92AmFMLo9rjqndJ+Lox5ca21NygYxdlqlrcEoGZmOLgxbMCOSv/QBWiNShXoOwVBizv+sMKHSKVUIgHrG0ruuw7LrcHR4gMlkgr29PZw9exbT6RQ7Ozs4d+Ycq283TWIlMqyljYHVJgl/ypQHTKCRVBCRABEhlQZEKAs5X4cQotCAx853XF8TwkjyycuhlYPkliH5cUYZCNEhk0EIolB98/cOIpCU2NudYjabYTqdQSciQh84pyCUgoKAbaY4d/4ChA84uvw4amMgAoGSSoKSGloJWGP4BE0EQRFWArq2qI2Gf8l34OrhES4fHuLrlx7F5cMFDuYtHj9s0QeWD4MguACQ8+gXSxw88RiUMZDaoMoq7gDaroWbdNDagCjisStPAERwfY92uYQxXHe06BxEH4rwqhpBPhm+Lt22nWMoO+d8aeiYUKVWL3myhBDhu77kJpfztpwLJIDWtYiBGYwicNeE2HUQAjBgtqTUFgKAksBew92HBYBmNsHUcLsQqyXO7uzAphzT/t4uTGpRonXKnUYCjEaMIZEcgLquYI2FrRjipjLXqRAhYqzKOojp9hgCvHAQ4FYq3JRRp/wiO7ByyI0ELRUfzNJBayAjiETEQNkvBiRHJmQHWZywIBXZuXB9mIeTscCRSikuzRhBf3VdYzqdQmuNL33pS5g2XOLCZKtU31gkrfhatB4OrxRpYAwSymGQgOLsCFyykscw7yN8CFYF/ckw33g950BAjCDJbOND9fjvTY4rP+4EhPjtirg+8YlP4L777sP3f//3w3uPX/iFX8DrXvc6fPGLX8R0Oi2Pe+tb34pf+7VfK39PJpPyewgBb3rTm3Dx4kX88R//MR555BH8nb/zd2CMwT/7Z//sSV28Dx7SD3UW5USUIqzBccXkuPxKZDUmZYQRPOjDkPxfYQ7SUIycozd+jQESzK+Z3zPEsLLBZ9sECY5zXOUxaycVSZvbFDCRyIOow/F8jqPDA1S2wuzKDFcOrmA2m2Fvdw/tssVsOsNsNkOMEU1d8yZhLWpbJeaTRpHLIpFgQ7YMuUQRT1xD+uVE5FhgFKnWYJR0u+AOu8yu1FA6FqeVddZWCjtjKMHHbDrlvEFdI4vThpCuXqTeRVWNs+cvwC2XOLzyBKROvYwoHz4ESCpobZhynjB7SYG17Koa+vZbcbS3g7PHu6wyf/UAlw+PQBSx7CJLgxFhkTta9w7zQwepuUcWJVV1ADg8niMELvCVSqLtW5b4EQKLxRLWGtSRip5hPtyUuiPBOoY0mqPe+9RhOabmhAogJKq9xDQptccYEL1DnyIZCYHOdWkzFbDaoFssEbzjFiLEmU4RXFGe0Eqm3B934z4zbeA6ZkfuTGvs1BWMYv7d7rSBTWSL/ekEVWVhtUZEgO+4kFkqBaT8FhElQpFN8lLVcKD0vqhe5L1kWMMRRAGUpMnGre61HuZcEQIgKmzBPK8HGBtlPsbcAX0F1Rkikfx4zlenCCPNdyXDyutX1vJjiA8I1hhMJhNYa/Hwww/jru+4E3t7u9jd3U0H2yyWnTREx9cp0juL9L4YoL/s0IRkuF8qidX9JiEkWehztHbH+xQljDDrrG5c72t/rx9m8+/5EDV2dN82x/UHf/AHK3+/733vw4ULF/DpT38ar3rVq8rtk8kEFy9e3Pga/+2//Td88YtfxEc+8hHceuut+It/8S/in/yTf4J3vvOd+JVf+ZVUrX9j1nVdmVBj55WdSIgoTmRwSoNKxhjSy0xC/p1WnVqOskaOKxM4+L0H4kd57QwR5uTuKTb+AvOkjKPNSqx90VmXrSRa030yJVfzHAuB6dGHx0f4xqVHipjvLecvYHeHF8cdd9yBM3v7mE2n2N3dRZVOuEYPrcKVStEWUtHvyBFnJ8TQq0BQSSonMsgowDqJShlIGUZQyWbnprSGjBEisF4bggBGxc95kx6ftC9cuIDd3d1yHXlRd65HpBkgNVQ9wW13fgdC8PjmN76GCA+rFIyyIBC6zsH3LDtU3st79O0S1gQYBZydNtjfmeI2Oo8X3H4rrh7NceXwCA98+as4nC+wbHvMFx2eOLiKReexbIHWAdEF9Msl/HLJq00IdD0htgumXo8g0xwRuM6gb1sUeSEiIAJtIvBoyTJFAMNVbdum21PrGxAUImzNCivBtXjiGwfo+x5SSTR1zSKw3sM7DyNVieYoOFDXIjqPKIHKqlQkrOH7DpIImhRuO3MWk6ZGU1c4t38GWTc0eoeLF85DgHD14ApmVqJpuDBYU4CK3MVYg7shIxXdjuf4ZDJJ2oCqrKWshJEL1X3qGJ7nTlbRyNGJEENTyTxf8nqVQkAaU943vzfbsPHmg8Hg7NJj83OkKDJsQKKjByqpIiDBZ4GgpcSkmfB3nQgkQgg+UO7tYj4/whe/8AV0bYsXvOAFyG2O+r7nMg+tUrSdDueRYEyFEH2CIvnSBzYjx89cJJ6lrdSJvWjFeYwiqxAC56AICElRc93ZrOTM0lwcr+1nsm5r3Z5Wjuvg4AAAcPbs2ZXbf/u3fxv//t//e1y8eBE/9EM/hF/6pV8qUdf999+Pu+++G7feemt5/Otf/3q8/e1vxxe+8AV87/d+74n36bqu4NYAcHh4CADo+w6gQbaJnVVyGIlRGENAoCzvFIuIbqax8sIIw+8jwkaIMdV68WP8aCL73DguJpgi5usI5VrydZ1Wt7AJI+bbMr1cQMRxJHN6uJ0hAICjpOH+5FiCQ9txkalJ+YOvff1hnD1zFnu7u7jllgvY3d3DJOXBJpOGa2aMgSDOxygpSp6AN3iUiDJvChBcOyQo1dKAAMGbkJAaUltoExAIUM5D+ACoAEjWXud9WkApA6U4f0gyIpBPgseU8H0ez3PnzmE2m6UTpgIr3LNyhI8RAQSpDJrdXeydO4tzt17A4rFLAAXW1oshnfaRmGsaSjJjNYYILzx876BSgbCWErOmghBAZRSseDEWyxZd79B2Ho9efhwHx3NcvnKMJ46O0PUBvef8QKLOoTYAkNTHQz6tC1BqvxJEh7BUqVUHb5hKKBYKAeAioU9Vv+ywBDP3knZ/6FjLMGqViqQJOgTAB5AX8H3g/CMIRnCUlJXKK6uwZyfcqTt4TJsa1ho0dQ1BsTBBd2YTzCZMbZ/UBtY0CWYGpk0NoohaA01Tl5yqhEBVmSL9RKlg0CSiRIa58gHN9y7llPi2LEGFUojM8zxvyHkNxBgLK9f3fYHQ8mOVUjB6tWh/2IDFEP1FKr2/csu3DM8TKEUuQ0RR8tk00tNMz9HaYGdnBzJF9iQljF5iZzbD3v4+bF3hkW9eAgTwkpe8BHe96C4YaxJcT0mTlQr5RAjBVSpSQJAEIZQ9QioBGQLGxKjsSvM6LbeLRFiRQAzDPqUEK8znzzHevfL3VG5LDi/XwgkheMwyWgIU2eyx23w6xPin7LhijPjpn/5p/OAP/iBe/vKXl9t/4id+AnfeeSduv/12fO5zn8M73/lOPPDAA3j/+98PALh06dKK0wJQ/r506dLG93rPe96DX/3VXz1xu/eOqbARg0OhVdgw56HGBIrBcY2c1Nhx0eCgQo6+MuQYT/6UiUvDD41OP9cquFsPqded2eComJ6cbx/belKVHVc6dY3eP8aYCjnZoR0cHuDKlSvY2dnBlatXsb9/BtPpFPspIqvqGnXdQCnJEYpWaGoLnVlohVySmFnpXQv8UOA+BaE0ROTuzSKdpktfIpn6U40KnJXSkCpAhAgIXw4BITnRfMKczmaoEkyYIRDG85G+6ySnVNeY7OzgzPnz6K48DuF9ygUIRE+lRMJI3kRlpLIJsWByAKcTBKxWQG1htMIkKcxzZ4CIvV1meD42vYLJExLzZYfF0mHZZziUx8hH1rBjBADg1jwJhopAjB5SqQSfAVLqQWQ5MWCFSBGH4d5SSigIQaDguP8UiQQtAkYCZPNyl5AyciRlDXZ3ppzPIkLT5FonjjrrypScW21tYoHyXJhOGlaFVxqVNTApGmKmb4RJecNMjhBEsJqdmJfMIASYKFKi6Dyj4ugwlHNOQgyb5FrUPl4LkgYiQ0jU+rK+VCY8DPTw8foc/h2YdOwOuc5sHNVEsaqKExN8OxA1UAg1WqnSrVpKCS2ZjFQ3nOeaTCZ4/LHH8Ohjj+Krf/ZV3HbrbTDWsuAyZefJ8z6XyQSeGIw95iL9dLBAgRPH+8hq3mkYw8FBnbScQBOrPyOj0b95zE684LXf5EnbU3Zc9913Hz7/+c/jk5/85Mrtb3vb28rvd999N2677Ta85jWvwUMPPYSXvOQlT+m93vWud+Fnf/Zny9+Hh4e44447uEHgCKojohXHVaDAdTgvq2eMMPKyMa45rhgGp1hu3wBNch3TSJcwrkmxrC2McYS1Wh+1OrnK70KsMBLHNj5N8uvl60CZVVQAjnxtHlevLnBwcBVSSGilMZ1O0TQN9vf3ce7cOezs7GJvbx97e3uorUVtDGY7E1RVw3kxrUt/JZYDSmw354YkrVQw1iZlbcD1Pmm3AcDAKLTWwlhb8o+2svAUIGOAcLwBucilCsaYVL8jMdmZoaqrsiHkMRZCcGQSIssDmQrTvTO4464X4+ojX4M77OH6DpOGW5QEH7BYLDCZShhjU46IUMKc/B0Sa/ZpU2EKQMwmHD0QIJTG7d15zBdLXD04xKXHHsPVwyNcvXqIK1ePEhuNT6F98HCeldn7PutcsmJ6nkOcYxGpwNUh8SQQQlq4BMgQgdhDaEBb1mA0MoIMUBlZ1M8ra1HXFeshag3ve+ymwnWd9j4hBKaTury/Ams7cg6txy3nz6NpGlTWMonCcuQuACAkaI08mD8hYJQoTktrjegDqhy9ibq8NqQccsQ59ySGtiEh5TXblnubKbWKPOS1ePIAtyrESyUiwMpaHDMNB9UJpIPGAEFLiELKCJGhS0oEDfKhqNKXjuf5PQSgjcFsOh3mqVDFce3u7+DChQt44onH8NgTj+F//M9P4TvufDFkitJ8iNBKQhuVOlqkHC8JaGGQEL0Bw4RYWfsZMuRoT4/GYXDwmywfCnLN5rUet+mwPT5YbPpuno49Jcf1jne8Ax/60IfwR3/0R3jhC194zcfec889AIAHH3wQL3nJS3Dx4kX8j//xP1Ye881vfhMATs2LVVXFVe9r1vf9Cg7NDd5GDiWygvhYWDek28eOaxxxxciPKaeoMLx2WIEkQ3nM+N8h+hpYUETl4FXstCTmuuMaHJuAELyZrcxSweQJIQSc6wGMXmPMIU8Ca4MjZQmamBah96ybd3h8gCeuPIGv/fnX+JRd19iZzrAzY4Hf82fPYme2g2YywaRuUFUMBdVVnVQNuG1E2QBAw3iBClkhEsGEpBkZCUJ6juK0hkryQUiMwkjDR+bJT5BKwhqNprYwVrNCfN6AiBAhEIhVBZ2QsMZCT2eYnb0Fe7fchoMYsbjcgZQFKe6QGwJr8A3NBPk74mjKM1GBFMjL1Opdps+XWJYIsCICVkHtTTCtLqLrz6HteiwWbYI/WUvRhQjnPRbLJRaLFn0uKvcZ8hFYtAv0jvUpBcmS78zoAUdcCk1TYTJpMJ1OEMOgclIbA50UKHZmM9R1VfKS1iiOpIwZognBebK+d+l1UmYzMtQ+m81Sbo3JDzHpcE7qhnuNCYAoQEAihoi+7xCCh87NUtNaW7QLgERZf0R+IMUIwWOf5hAfCnk8jLWQYlg3ee0C7ECkEBBqyLWsKLKkdcQEl0HMdmyyjESKG5LzykXFeezzXTExhpHqRYMPqTSBOJpMr2+0KbV9DJ0l6E9wnq+uauzs7UIag+7oEH/+yDfw6c/8Lyy7Ft/7F7+X1UdSnZ+tLO8TBGhT8fpH6hgtRNJ1YyUeaRQL92oNSIkoUhPY5LCkwiAmDCSySXbmw8+YxLK+h40d0vphe9PPM2VPynEREf7hP/yH+MAHPoCPf/zjuOuuu677nM9+9rMAgNtuuw0AcO+99+Kf/tN/ikcffRQXLlwAAHz4wx/G7u4uXvaylz2piw8hQopR1ERUoiKGioZoaOy4WM1llZwxODAWID0J/40iqA3O6gQsuPL3SceVbT3iOv0kkhZTzCF3DqVE2uDzpKOCcwyARfopp0CG9TjySXR9sNMXUcB7h65bpiSyxvz4CIeHB5hMpjg6PMRstlNqwiaTKaqqKpqJmYaccyEZoRjYgGmyp8Z5GTIcTmUDkzCfHENIsj5pwxRprJTiImOt9eCf0/eTn8NzAiApIbSFaabYOXMO3fwI7fEh54qkgjIGrvdw3gFCcE5GcbSVDzYQAjLlPVhdn8eaUzVMHdYSSP+DkRKNtXB1hYm1MNoWxxUTlNn1PbrOoXcObdehdY43FqUwb+dwroMPnlmQSI6EBkcjhYCtLJqmwWQyhQCVKEulk7LWGnu7u7BGM1RJhMqwcC/Db8MGThGINUdUSit451lEV0pW3odApAilNLouieiCuwgomWr+UvNcAw3hGCbTWkELjb7v0fcD0SJHVQBS37ohAiKZD3g8F9gxrkLfZR3l69+AbqyQmEZkoPFaI8qEIjGsNhrBkvlfwaLVsUy4jKzGctANISLLFwIodZLZ6TDMODD/pFKwdQWlmBW77Fr82cN/ht3dXdz14hdjb3cfIuXyDRgqzLBghsXHuwQoCx6kdaZyGUV62qisItPh0xM3blTXirTyv5vQok2R1jNlT8px3Xffffid3/kdfPCDH8TOzk7JSe3t7aFpGjz00EP4nd/5Hfz1v/7Xce7cOXzuc5/Dz/zMz+BVr3oVXvGKVwAAXve61+FlL3sZ/vbf/tt473vfi0uXLuEXf/EXcd99922Mqq5lIXgIDJBghgp5Uq8XIGeSRWo9kPNWm3JVWD3RDQ5qVOy8FmFtggRvJBy+Xu5rE7S4OglEwnmyOKfkpP8IshRy9dSZ68pYWT8taDXkq5CjJEdwjoVSD48OIYTEN0xdWkfMZrMkMzXFTtJMrKoKTdOgtmalhosXDUFSymOk0ywShKGUSadFUTrUEhjeZRo3M6essUCqeTPGMFst5UiG75gVLXK0HSIQlYRSBrqa4MzF29AvF1gcHWFxdBmN0TBWIUSHNjmKqjKobV0OK8EzRV8qsJpFzrNFcINKoQoyk6POqCK8ktBCQMZEU5cqRbuJTSd2AcFixV1wWKYCYKUUXOhBlJ29Qu96hBRN1HVdvk8XArQ2qKqao6+mQWUN+r5D1zLVfXd3F0oKxOjR9z371vyNjzoYcLt7JmRMp1NcvXoIIkI9aWCqenAYgjsat8slrl69CkEVkGCoMQNQJwcopIS1thwOhVAFtpRSYplgwxBCUaGXKUKiQsAaHzRZaqywMX1YWbNj2DivIZOYhOs6oOU5yW1R9gZ0cn1KIUESrKG4vvZjItw4j5gOkzxPWSexrusyP6FTry/JosxVbaHSPHbB48H/78sw1uCOF70IL3vZ90AqhUARprJDe5k4oDqMEnFZDInclQIQ4DTAUH7CDnscjZ5mm2C/p+LETnvO04ELn5Tj+o3f+A0AwKtf/eqV23/rt34LP/mTPwlrLT7ykY/gX//rf435fI477rgDP/qjP4pf/MVfLI9VSuFDH/oQ3v72t+Pee+/FdDrFW97ylpW6rxu13GJ7nMsK13BcBUdPGzcn3TMrcJjkYYNT4tN7BCGORD2HE8oJpzW6zqf6/VAcMlMRNILKTtLhAYafMg295GZACMGV6+CHigQzrbxbicRyqxEmcBEiGP4RJND2Hdq+gxACj19+AkbxQrLGYGeXFTqmkykunD+Puq5QVTYVWSpIJVL7i7TgAnfoFVpBwyR6L5X2MX3fo+s6LLoWIO5IrJRCcCyllB2oUZrz0yL1XPOATpEMb+gAkQSkgaoE9m+5Hb5n5t0jDy3hZYQUEbqqCxGjbeewBVZSqRM2v3aQPJgxRXwQDDJRZChUCcCkqg7XO3SqAyigMhXXisWYcgvpxK016zx6go89Qz+CMK24z5VUCqaqSx1iDASTOiUrKaG0KUXKAukAAwEBA6WobMYECakqTCYVou/Rdx2W7RKVYbV7kRiZQkh4H3H58lUs5tzgtG4a5L5oRAAFQqUr2KkBAlBXFbTSCMRF8DEGRAE0kymQorTjxZIjV8kF7yFG+HQoyZT2uq4TSzDAJSko7wM8edaCTPCcKAeeVLM2UrbIkZXWGnVdF/UbAOlfJvucWENrDghJ2CCv6XUr8FqM3HcsjtCZBDpqKQFrWTe0aeApJC1GSk0qufSjahoYayC1AnkHHyO+8mdfxf/vA+/HAw8+yH34phOcO3cOZ86cwc7OLnZ3zsAaW0SZVYpsIZhGv3Kh+deEashrOBYhUmPX9HM9u1Hnlu1GD/XXsicNFV7L7rjjjhOqGZvszjvvxO///u8/mbfeaCEECAzEjDxpxoSMk8y/wXGtQn5Dl+TNPyNae4q+AJToZRzJjG1wZqd/jmsmLNdggPFiO/n47DAzjHXyxbLzWn3qmsOlAabL5ZZ8X8xYY7nu4CNkL9EqBZe65h5Vh5jPj1FXFaq6wt7ODqrKwliDKkVi/DnA8GEMoBBWrrRtWyzbJdqu41O44gWXP7NKJ3hVIA+URPqYNONyBwFjQUIgQEJXNZqdPeyduwWHT1xCWBzAuSUmdQWKDtH1cK5n7UKZJXeQKNHEp2oM5QdSppbyMgnkiqG+RSmZmkRqdlYg6BStkciQTsoHSkAbVcZWCVU05mSCevMGzeWjElJqqMTOBAalBy4p0EXGS+sRTEVM+zeG/5bIm1kippQTzahtfQRkYIqzFBrSsEYhCYGdnR1oyVtJ6NtErmAYmqNhWWDrcYSS57JMWpFitMOurs9QmsZS4WgPArj54JrHbV0ybf1QydHa6m1CJH3CkAgacShUHr9GjsCLkxvNtxyl8XWgwHBFLSZBqZEVvxnyFaJA8hnCk4mc0nYdHn/iCTzwfx9AXdewVYVmMmGlmMkUZ8/cgr3dXTR1g8mkxi233ILJpEEzqVPOECWy4jmcmJQJ7dhIAButwTH8uvK4Ncvjt26nPfaZsJtSqzB/+LbrU8v5jHcT68Ll6CusUlVjjClHgCHiSptyDCN4cD3ays9D2hhoFTaMI6eWq8xXJaie6gctma3ig/KJch2fBzjPUh6b6LFUXmp4/Dg3MDwXw7sIWRYowwoqYfbsEPOWnR1dQAS8h+u7ctJ99LFHYS1HXGd2d9FMGjR1g9nOhE/VSUWCPMv+ZEZa37No7fH8GMfzORbtkj+z0hAitbpP3ldIyaSGlhsgmjjAVERJb6/v4KNH6Bs+RUYPHXt4SMhqCl3PcHx0Fd28hdlt4IWEJ6BfLiFVjari2pnecb2L8nxCloJ1/xwArVM+TBBkHPKpAJds+N7BhYjO9exwUqI8uy2pPAgCjrhAPp9aXQylw63sI1zfpzpEoAkElaS6tAop3zHMPwEmOTAdXoB8LILRFENSvhCI0qBtO2Q1fyYv8DQIUcARf0dh3sIYVrlQ2sBozoXGEFBXNXxggd/jRVvWgScPkhbJj4GkRgSvw65vy9yTShWiBpLqQ4gB3nE0xrJWHl3XQ0gzMOJ8pnILrrcSXM8GsJNVgdAFgk+fW2kNrUOKdgfCQb6O6LgoG4hAdmCZoE+5pAZFWDt6z2SuELiIPanvOB9BkuADmGwTIlrnMV+2OJ7PIbqAIAxaAMeLBbp0OMuq6VKy6knwHgu/wEMPPZTOi7wHyXRoO3/mFly49Vac2d/HxQsX8KI7X4T9M/s4e2a/rPkQPHrXD+oqgYWKg/d8qAt+kL8baS76lD8r6iD5gHjKZpalra4n7TQ+LPiyVp+8MxP0TLnAb6N9/etfxx133PFsX8bWtra1rW3tadrXvva167LT1+2mdFwxRjzwwAN42ctehq997WvY3d19ti/p/znLtW7b8dls2/G5tm3H5/q2HaNr2/XGh4hwdHSE22+/faWI/EbspoQKpZSp4y2zpbaT5nTbjs+1bTs+17bt+FzftmN0bbvW+Ozt7T2l13xybm5rW9va1ra2tWfZto5ra1vb2ta2dlPZTeu4qqrCu9/97iddtPx8se34XNu243Nt247P9W07Rte2b+X43JTkjK1tbWtb29rz127aiGtrW9va1rb2/LSt49ra1ra2ta3dVLZ1XFvb2ta2trWbyraOa2tb29rWtnZT2U3puH79138d3/Ed34G6rnHPPfecaEz5fLFf+ZVfWVFkFkLgu7/7u8v9bdvivvvuw7lz5zCbzfCjP/qjpWnnc9X+6I/+CD/0Qz+E22+/HUII/Of//J9X7ici/PIv/zJuu+02NE2D1772tfjyl7+88pjLly/jzW9+M3Z3d7G/v4+/9/f+Ho6Pj7+Nn+JbZ9cbn5/8yZ88Mafe8IY3rDzmuTo+73nPe/D93//92NnhjsR/42/8DTzwwAMrj7mRNfXwww/jTW96EyaTCS5cuICf//mf504WzwG7kTF69atffWIO/dRP/dTKY57uGN10jus//sf/iJ/92Z/Fu9/9bvyv//W/8MpXvhKvf/3r8eijjz7bl/as2Pd8z/fgkUceKT+f/OQny30/8zM/g//yX/4Lfu/3fg+f+MQn8I1vfAM/8iM/8ixe7bfe5vM5XvnKV+LXf/3XN97/3ve+F//m3/wb/OZv/iY+9alPYTqd4vWvf30R6gWAN7/5zfjCF76AD3/4w6XT99ve9rZv10f4ltr1xgcA3vCGN6zMqd/93d9duf+5Oj6f+MQncN999+FP/uRP8OEPfxjOObzuda/DfD4vj7nemgoh4E1vehP6vscf//Ef49/9u3+H973vffjlX/7lZ+MjPeN2I2MEAG9961tX5tB73/vect8zMkZ0k9kP/MAP0H333Vf+DiHQ7bffTu95z3uexat6duzd7343vfKVr9x439WrV8kYQ7/3e79Xbvs//+f/EAC6//77v01X+OwaAPrABz5Q/o4x0sWLF+lf/st/WW67evUqVVVFv/u7v0tERF/84hcJAP3P//k/y2P+63/9rySEoD//8z//tl37t8PWx4eI6C1veQv98A//8KnPeT6Nz6OPPkoA6BOf+AQR3dia+v3f/32SUtKlS5fKY37jN36Ddnd3qeu6b+8H+DbY+hgREf21v/bX6B/9o3906nOeiTG6qSKuvu/x6U9/Gq997WvLbVJKvPa1r8X999//LF7Zs2df/vKXcfvtt+PFL34x3vzmN+Phhx8GAHz605+Gc25lrL77u78bL3rRi563Y/WVr3wFly5dWhmTvb093HPPPWVM7r//fuzv7+Mv/+W/XB7z2te+FlJKfOpTn/q2X/OzYR//+Mdx4cIFvPSlL8Xb3/52PPHEE+W+59P4HBwcAADOnj0L4MbW1P3334+7774bt956a3nM61//ehweHuILX/jCt/Hqvz22PkbZfvu3fxvnz5/Hy1/+crzrXe/CYrEo9z0TY3RTiew+/vjjCCGsfGAAuPXWW/GlL33pWbqqZ8/uuecevO9978NLX/pSPPLII/jVX/1V/NW/+lfx+c9/HpcuXYK1Fvv7+yvPufXWW3Hp0qVn54KfZcufe9P8yfddunQJFy5cWLlfa42zZ88+L8btDW94A37kR34Ed911Fx566CH8wi/8At74xjfi/vvvh1LqeTM+MUb89E//NH7wB38QL3/5ywHghtbUpUuXNs6vfN9zyTaNEQD8xE/8BO68807cfvvt+NznPod3vvOdeOCBB/D+978fwDMzRjeV49raqr3xjW8sv7/iFa/APffcgzvvvBP/6T/9JzRN8yxe2dZuVvtbf+tvld/vvvtuvOIVr8BLXvISfPzjH8drXvOaZ/HKvr1233334fOf//xKznhrq3baGI3znXfffTduu+02vOY1r8FDDz2El7zkJc/Ie99UUOH58+ehlDrB4vnmN7+JixcvPktX9f+O7e/v4y/8hb+ABx98EBcvXkTf97h69erKY57PY5U/97Xmz8WLF08Qfbz3uHz58vNy3F784hfj/PnzePDBBwE8P8bnHe94Bz70oQ/hYx/72EqDwxtZUxcvXtw4v/J9zxU7bYw22T333AMAK3Po6Y7RTeW4rLX4vu/7PvzhH/5huS3GiD/8wz/Evffe+yxe2f8bdnx8jIceegi33XYbvu/7vg/GmJWxeuCBB/Dwww8/b8fqrrvuwsWLF1fG5PDwEJ/61KfKmNx77724evUqPv3pT5fHfPSjH0WMsSzA55N9/etfxxNPPIHbbrsNwHN7fIgI73jHO/CBD3wAH/3oR3HXXXet3H8ja+ree+/F//7f/3vFuX/4wx/G7u4uXvayl317Psi30K43Rpvss5/9LACszKGnPUZPkUzyrNl/+A//gaqqove97330xS9+kd72trfR/v7+CkPl+WI/93M/Rx//+MfpK1/5Cv33//7f6bWvfS2dP3+eHn30USIi+qmf+il60YteRB/96EfpT//0T+nee++le++991m+6m+tHR0d0Wc+8xn6zGc+QwDoX/2rf0Wf+cxn6M/+7M+IiOif//N/Tvv7+/TBD36QPve5z9EP//AP01133UXL5bK8xhve8Ab63u/9XvrUpz5Fn/zkJ+m7vuu76Md//MefrY/0jNq1xufo6Ij+8T/+x3T//ffTV77yFfrIRz5Cf+kv/SX6ru/6LmrbtrzGc3V83v72t9Pe3h59/OMfp0ceeaT8LBaL8pjrrSnvPb385S+n173udfTZz36W/uAP/oBuueUWete73vVsfKRn3K43Rg8++CD92q/9Gv3pn/4pfeUrX6EPfvCD9OIXv5he9apXldd4JsbopnNcRET/9t/+W3rRi15E1lr6gR/4AfqTP/mTZ/uSnhX7sR/7MbrtttvIWksveMEL6Md+7MfowQcfLPcvl0v6B//gH9CZM2doMpnQ3/ybf5MeeeSRZ/GKv/X2sY99jACc+HnLW95CREyJ/6Vf+iW69dZbqaoqes1rXkMPPPDAyms88cQT9OM//uM0m81od3eX/u7f/bt0dHT0LHyaZ96uNT6LxYJe97rX0S233ELGGLrzzjvprW9964lD4XN1fDaNCwD6rd/6rfKYG1lTX/3qV+mNb3wjNU1D58+fp5/7uZ8j59y3+dN8a+x6Y/Twww/Tq171Kjp79ixVVUXf+Z3fST//8z9PBwcHK6/zdMdo29Zka1vb2ta2dlPZTZXj2trWtra1rW1t67i2trWtbW1rN5VtHdfWtra1rW3tprKt49ra1ra2ta3dVLZ1XFvb2ta2trWbyraOa2tb29rWtnZT2dZxbW1rW9va1m4q2zqurW1ta1vb2k1lW8e1ta1tbWtbu6ls67i2trWtbW1rN5VtHdfWtra1rW3tprKt49ra1ra2ta3dVPb/B8Fn5pleU7fhAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -501,10 +509,10 @@ "from mmedit.edit import MMEdit\n", "\n", "# Create a MMEdit instance and infer\n", - "img = '../resources/input/inpainting/img_resized.jpg'\n", - "mask = '../resources/input/inpainting/mask_2_resized.png'\n", - "result_out_dir = '../resources/output/inpainting/tutorial_inpainting_res.jpg'\n", - "editor = MMEdit('aot_gan')\n", + "img = '../resources/input/inpainting/celeba_test.png'\n", + "mask = '../resources/input/inpainting/bbox_mask.png'\n", + "result_out_dir = '../resources/output/inpainting/tutorial_inpainting_global_local_res.jpg'\n", + "editor = MMEdit('global_local', model_setting=1)\n", "results = editor.infer(img=img, mask=mask, result_out_dir=result_out_dir)\n", "\n", "# plot the result image\n", @@ -524,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -540,7 +548,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbUAAAGiCAYAAABgeVj+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAADP3UlEQVR4nOzdd3iUVfr4//czJTOTmUnvvZBAAgklkNClo4ACYmHBgr2yWNb6sawVdW1blF1dLGtHRelIldCblJCQ0NJ7nWSSTKY9vz/yy/M1i7oiCQE8r+ua63JaOAfi3HPOc5/7lmRZlhEEQRCEi4CqpwcgCIIgCF1FBDVBEAThoiGCmiAIgnDREEFNEARBuGiIoCYIgiBcNERQEwRBEC4aIqgJgiAIFw0R1ARBEISLhghqgiAIwkVDBDVBEAThonFeB7W33nqLmJgY9Ho9GRkZ7Nmzp6eHJAiCIJzHztug9sUXX/DAAw/w9NNP88MPP9C/f38mT55MVVVVTw9NEARBOE9J52tB44yMDIYMGcI//vEPANxuN5GRkcyfP59HH320h0cnCIIgnI80PT2An2K329m/fz+PPfaY8phKpWLChAns3LnzJ9/T1tZGW1ubct/tdlNXV4e/vz+SJHX7mAVBEITuI8syTU1NhIWFoVL9/CbjeRnUampqcLlcBAcHd3o8ODiY3Nzcn3zPwoULeeaZZ87F8ARBEIQeUlxcTERExM8+f95eUztTjz32GBaLRbkVFRX19JCELmQwGOjTpw933nknK1asIDc3l5MnT7J//37uuOMOPD09e3qIgiCcA2az+RefPy9XagEBAajVaiorKzs9XllZSUhIyE++R6fTodPpzsXwhHOsb9++vPzyy4wZMwZPT8/TtpP/8Y9/MHHiRP70pz9RUFDQM4MUBOGc+F+Xk87LlZqHhwdpaWls3LhRecztdrNx40aGDRvWgyMTzjUfHx/eeecdpkyZgtFoBNp/FywWCz/88AMVFRXIssyVV17JmjVrSE1N7eERC4LQk87LlRrAAw88wI033sjgwYNJT0/nzTffpLm5mZtuuqmnhyacAyaTiWuvvZaZM2cydOhQJEmira2Nw4cPs2fPHkJCQli7di0RERFceumlpKen07t3b5YsWcLs2bM5dOgQ52liryAI3Uk+j/3973+Xo6KiZA8PDzk9PV3etWvXr36vxWKRAXG7AG9paWnyxo0bZYfDofx72u12+cSJE/K6devkAwcOyGVlZXJxcbH8yCOPyB9++KFcVFQku91u2e12y2VlZfIf/vCHHp+HuImbuHX9zWKx/OJn/3l7Tu1sNTY24u3t3dPDEM6AWq3m/vvv55FHHul0FKO1tZWCggKMRiNr167F29ubSy65hO3bt+Pr60tsbCzPP/88jzzyCAkJCUiSREFBAePHj+fUqVM9PCtBELqSxWLBy8vrZ58XQU04b0yaNImvv/4ak8mknEn5z3/+gyzLDBkyhISEBIqKirDb7eh0Ojw8PPDw8ODIkSMUFRWxe/du/v73v+Pn54csy3z++ee88sorYitSEC4i/yuonZeJIsLvj8Fg4I9//KOSDFJSUsLatWsZO3Ysf/jDH1Cr1UpSiI+PD97e3kRFReHn50e/fv3Q6XTExMSwd+9eoD1Davbs2axbt46bbrpJZMYKwu+ECGrCeWHKlClMmjRJSQiRJIlRo0ah1+vZsmULsixjNptJSEhAq9XS2NiISqVCrVYjyzIjR45k0KBBHD16lLKyMux2O5IkERgYyKJFi1i4cOEvViG40KnV6k73VSoVGs15mwcmCN1G/NYL54V+/fqh1WoBaGpqoqGhAa1Wy4EDB0hNTSUmJoaNGzdSVFTEqFGjqKiowOFw4Ofnh9FopLKykqamJnQ6HYsXL0aWZa699lqio6PR6/XcdtttrF+/njVr1vTwTLtWbGwsCxYsIDIykqamJvbv309MTIwy75KSEpYsWcKePXuwWq09PVxB6HbimprQ4yRJ4tNPP2X27NkAnDp1iqamJmpra0lMTMRms1FaWsoVV1zBc889h9vtZvr06URERCDLMsuWLaOtrQ0vLy/69euHxWLh1VdfpbW1lddee43Y2FgAjh8/zkMPPcSKFStwu909OeXfRK/XExMTw+DBg4mPj0ej0XDdddcRHR2tJNV0/O/84/t2u53du3fzzDPPkJmZidPp7LE5CMLZEokiwnlPo9Hw/fffM2LECABaWlr4+OOP8ff3p2/fvpSUlPDMM8+wbds2NBoNZrOZ+fPn43a7SUhIoLGxkenTp9PS0oLL5aKurg6n00lBQQE+Pj5cdtllyjW1hoYGpkyZ8rOFsc9HHh4eXHvttTz44IPExsZiNBpP22602WxoNJpf3HJsaWlh8eLFPP3009TX13f3sAWhW/yvoCa2H4Uep9Vq0ev1yn29Xk9cXBypqalUVlbi6enJFVdcwb59+7DZbNTX1/Pss88CEBkZycKFC/nPf/7DnDlzCA0NxWKxEB4ejt1u57vvvkOn0xEeHk7fvn3x9vbms88+44knnuCLL77A4XD01LR/kSRJREVFERUVxZw5c7jlllvQaDQ/WSJIlmVKS0txu93ExMSg1WopKiri+PHjREVFERERgV6vx9PTk3vuuQetVsv//d//UVdX1wMzE4TuJVZqQo8bOnQoq1evxtfXF4D6+nq2bNlC79698fPzw8fHh7Vr1zJ37lyam5tPe79OpyMiIoKPPvqI1atXM3/+fPz9/Tl+/DiSJLF161YsFguxsbHMnDkTSZJobm5m165d7N27l40bN7Jjxw5aWlrO9dRPYzQa8fX15cYbb+SPf/wj3t7enTI3ZVnmyJEj1NbWkpSURFBQEBaLRTmP53A48Pf3R6/X89VXX2Gz2fD19SU6OprJkycjSRJut5v9+/czb948cnJyemqqgvCbiO1H4bx388038+9//1v5wD169ChOp5PIyEhsNhtZWVk0Nzdzww03/GRQg/YtTIPBgE6n45///CeyLHPo0CGuv/56AE6ePMlnn33GH//4RwYNGqRkQsqyTFtbGwcPHuSxxx4jMzOzR663SZLE5MmTeeGFF4iIiCAwMPC0VZnVaqWmpoby8nJyc3NRq9VMnz6dEydOYDAYqK2tpampiaqqKlJTU+nTpw87d+7EarWiVqvp3bs34eHhGAwGAFavXs31118vtiKFC4rYfhTOez/eelSpVJjNZhobGzEYDDz11FNUVFRQWFjYKaCZTCacTic2mw0Ap9NJU1MTTU1NzJkzB1mW8fX1xdfXl4kTJzJu3DgSEhJ45ZVX8Pb25oYbbiAuLg6DwYBer2fo0KF8++23LFq0iFdffZXa2tpun7ckSXh6epKens7ll1/OLbfc0ul/VqfTyZEjR2hoaGDIkCHs3bsXlUpFYmIiJSUlZGVlkZOTw8mTJ0lMTMTX15fi4mKMRiMBAQEUFxfTu3dvsrKyKCgo4IcffkClUvHggw9iMBiYMmUKzz//PAsWLBDJI8JFQ6zUhB5lNptZtWoVo0aNAtobxH7++edcdtllrFu3jurqavbu3cvq1at/0wrKYDBw9913c+ONNwLt57mWLVtGdnY23t7eDBs2jNmzZ6NWq5WVYmZmJvfffz8HDx7syqkqJEkiJCSE6667jltvvZWQkBAlmMmyjCzL5OXlkZWVhd1uR6/Xo1ar0ev1FBYWMnToUKqrqzEajXzzzTdkZGRQXl7O+PHjef7553nyyScpKioiKCgIl8tFZGQke/fuZc+ePVRXV+Pp6clLL72EVqulpaWFcePGsXv37m6ZqyB0NbH9KJzX/vjHP/L6668r2Xx1dXU4HA5WrlxJZWUlDz/8MH/5y1944oknflVQ02q1qNVqZQUH7dmDc+fO5Y9//CPr1q2jsrKSSy65ROmgm5WVxeTJkxk0aJBymLuoqIhx48Z1ee1InU7H7bffziOPPEJoaGinA+GyLGOz2Vi9ejVms5nQ0FDl7F5tbS0qlYro6GhKSkooLy9n9erV9OrVi/j4eGJiYli5ciVDhgwhIiICq9WKh4cHMTEx5Ofns3//fmJjY2lububIkSNceumlDBkyBFmWyczMZMaMGTQ0NHTpXAWhO4igJpy3JEli0aJF3HHHHUB7QKutrcXlclFRUUFiYiKhoaEUFBQwZsyYX9XN3Gg0EhgYeFqzUIPBwJNPPomXlxeDBg0iJiYGp9NJTk4ORUVFlJeXExoayuTJk4mMjATgiy++YN68ebS1tXXZnG+55RYWLVqkBCuHw0FTUxOtra3k5uaiUqmoqakhLi6OpKQkqqqqyMvLw2q1YjablS3Y2tpaBgwYQFhYGD4+PmzYsIHIyEjMZjNeXl6Ul5fT2NhIaGgoJ0+eJCgoiD59+tDa2sqHH36I1Wrl0UcfRavV4nK5eOGFF/jzn/8samQK5z1R+1E4b3l6ejJ06FDlvtlsxmAwoNVqSUhIICQkhObmZt5//33Kysp+1c9sbm6mtLT0tMfb2trYtm0bnp6eJCQkYLPZaGxsJC0tjdGjRzN58mSSkpL47LPPgPaAe9VVV/HUU091WXmt3r1788wzz6DVapFlmZaWFrZs2cIbb7xBVlYWCQkJ9OvXj169etHY2MiuXbuQJIk+ffqQlJSkZDGOGjWKG2+8EUmSKCsrw2Kx4Ha7aW5uJiIigvr6eiIjI+nfvz96vZ4JEyYQFxdHW1sbjY2NeHp6YjKZlPJjarWauXPnYjabu2SegtCTRFATesyMGTPo27cv0L71ptFoWLt2LY2NjWzbto2TJ09SX19Pdnb2zyYy/NRh4586e+Z2u1m7di2bN2+mvLycU6dOERQUhE6no7W1leTkZA4fPozNZlO24TQaDffeey8jR44867kaDAZefPFFwsLCgPZSYFu3bqVPnz489NBDuFwuqqqqsFqtxMbGEhkZSd++fQkICMDtdhMSEkJ8fDwDBgzA19cXjUaDh4cHwcHB1NfX4+PjQ79+/dixYwfbtm3j8OHD1NTUsH37diRJory8HKfTyfbt2xk2bBhZWVl88sknWCwWoP0LhdjZEC4GIqgJPcJkMnHfffcpQclqtdLS0kJbWxtGo5GMjAx69epFVVUV33333c/+nKuvvprRo0d3euzH2ZQ/5na72blzJ9nZ2fj5+ZGXl8epU6dQq9UcPXqUuXPnUlNTw8qVK6murkaWZby8vLjkkkvOer6pqalcdtllSpp+YWEhJpMJm83GypUraW1tBdqv/+3fvx9fX1+0Wi0rV67k0KFDrF27lurqauXnlZaWotFo2LFjB9dffz0nTpxgyZIl3HPPPezfv5/k5GTKysoYO3YseXl5xMXFUVJSwqWXXkpycjIzZ85k8ODBHDp0CKBTJqkgXMhESr/QI66++mpSU1OV+56entTW1qLVatHpdAQHB/Ppp5/y6quv/uzZtIiICObPn4+npydTpkxRtijT09PJzc2lqqrqtPecOHGCxYsX8/rrryvXysLDw5VrbHPnzsXlcvH888/z8ssvo9frmTdvHu+9995Pbmv+WhkZGcr5sLa2Nvz8/NBoNLhcLjIyMqivr6e6uprvvvuOSy+9lNbWVhobG0lNTSUrK4uVK1cyZswYvv76a06ePElDQwNfffUV5eXltLa2Mn/+fOx2O263G61Wy+HDh6mqqkKv1xMbG8u6devw9fWlpKQEh8NBcHAw+/btU4KsJEmnld4ShAuRWKkJ51xUVBRPP/00Hh4eymMtLS3YbDZGjBhBcHAw7777LjfffPPPptVLksQTTzzB0KFDSU1N5ZNPPlEKF5eVlTFmzBgCAgKU1+t0OkJCQgDIy8vj4Ycfxu12s2LFClpbW6mtraWoqIjw8HCio6Px8/NTzqrFxsYqySy/haenJzfccAPQvs3qcDjQaDQcPXqUuLg4qqqqkGUZp9PJpEmT8PT05IcffqC4uBiz2czBgwdZsmQJgwcP5vrrr+fxxx/n5ZdfpqSkBI1Go2RNdmSHZmdn8+c//5mysjI0Gg0rVqzAy8uLoKAggoODcTqdWK1WkpKSlK1Vk8lERETEb56jIJwvRFATzrnw8HAlwEB7EGptbcXLywubzUZ1dTUlJSVMmDDhZ3+Gv78/EydORJIkJEnikksuYevWrTz44IO0tLSwZMkSampqlNfPnz+fuXPnEhYWRnFxMWvXruW+++5j3rx5lJeXc+LECSVVfteuXeTm5nZaxQwYMEBpYHqmIiIiiI+PV+43NDQgSRLR0dHs3LkTtVqtJHr8+9//pr6+noSEBCWR5JVXXsHlclFeXk5bW5uSodiR+NEhNDQUaN9m3b59O8899xzLly9nyJAhuN1udu3ahcPhoL6+nsrKSlpaWpQyWSaTiZdeeglPT8/fNEdBOF+IoCacc+np6coqTZZl6urq2L59Oz/88AMVFRW0tLTgdDrJy8v7yffr9XruvvtuoqOjlcckSSI8PJyXX36ZTZs28eqrr5KWlqY89/333wPt59ji4+PR6XTU1NTwzDPP4OvrS3V1NYGBgVRUVHDq1ClSU1NZv369svqZMmUKb7zxRqfV5a8VGxurpCC73W6ysrJoamoiMDAQaE9s+eyzz3C5XNx1112sX78evV7Pzp07mT9/Pi6X6xd//rBhw9DpdKcF3cbGRpYvX46vry8nT54kKiqK77//Hr1eT3BwMGq1mqVLlypNWYcOHaqsdgXhQiWCmnDOxcTEKKugtrY2ampqcLvd7N27l4CAAAoLC1m8eDEnT5782Z9x+eWX/+Q1oI4ahw888ABr1qzhvffeIyUlhezsbLZs2YJKpaK+vh6Xy6Wk/2/YsIG4uDgKCgqIi4sjJSWF9PR0Ghoa+Pzzz5W09xtuuIGrr776jOYqSRLp6enKfFtaWkhKSkKn0+FyuZTKJgkJCdTX11NfX4/JZKKxsZFjx479Yl3GtLQ0pk6dSnNzM5GRkRQWFp72mqNHj/LOO+8wdepUQkJCyMjIwM/Pj9GjR1NYWMjWrVuVbVZPT0+uv/56cW1NuKCJoCaccz/eMisrK6Ompga73Y7FYuHrr79W0td/zpVXXkm/fv1+8c+QJInAwEDmzZvHunXr+Oqrr5RkiIaGBpxOJwMHDmTHjh3s3LmTmJgY+vTpg8ViITs7m6ioKAIDAzl48KCSUKLT6Rg7duyvmqNGoyEjI4Mnn3yS++67T3ncZDJRUlKC0Whk8+bNhIeH09TUxMSJE/Hx8UGn01FXV6cUWf45fn5+DB48mCeffJIPP/yQnTt3smjRInQ6HWq1Gn9/f6A9iB48eJBt27bh4+NDa2srGzdu5JtvvsHLywtvb28++eQTnE4nkiRxww034OPj86vmKAjnI5H9KJxTkiR1SkiIiorCZDKRlZVFREQEGRkZHD9+XMlc1Ol02O12ZFlGkiRUKhXTp0//2bT9n/rzgoODufTSSwkKCuLWW2/F7Xbj6emJ0WjE7Xbj7+9PfX09O3fupH///kyZMgWtVoufnx9BQUFkZ2czaNAgJEni8ssvZ9KkSaxbt+4n/zyVSkV6ejoPP/yw0pz0x12obTYb0dHRtLa2UlNTQ2trKw6Hg+zsbFasWMFll13Go48+ytNPP01xcTGSJHWq8mE2m7nyyiu58847SU9P73Qw/Nprr6Wqqorq6mpOnjzJ7t27qaysZMOGDYwcOZKgoCBUKhWDBw9WVqsTJ04kOzsbi8WCv78/Pj4+xMfHn5OCzoLQHcRKTTinUlJSmDZtmnJfo9Hg6emJ2+1m2bJl7N+/H5vNpgQCf39/5TrWjBkzmDNnzm86N6ZSqRgwYIByHS48PJy8vDxiY2OV1Zu/vz/BwcHs2LFDaeMSFxfHCy+8oGQoBgUF8de//vUnMwW9vLz4v//7P9asWcPMmTPR6/VKUKqpqWHXrl3s37+fnJwc/v73v9PY2Ej//v0ZNGgQAwcOBNrPi33xxRcsWrQIs9lMv379SEhIwGQyYTabeeutt3jvvfcYOnToaZVOTCYTd955JykpKUq5MWivsvLhhx+iVqtJTk6mvr4eo9FIQkIC4eHh1NbWKtcO9Xo9CQkJZ/z3KwjnCxHUhHNq5syZSoJES0sLhw8f5sCBA7hcLgICAhg4cCBms1k5aFxWVqZs/9XW1nL06NHfnKGnVqt58MEH0Wq1pKWloVarqaysZOPGjdTU1DBq1Ciam5tJSUkhIiKCmJgY6urqmDFjBosXL6ahoQFZlunduzdPPvlkp2omw4YNY/Xq1Tz99NPK9p0syzQ3N1NYWMiOHTvIz89n5cqV3H///ZhMJkwmE/n5+ej1enbv3s3333/PokWL+NOf/oTNZqO1tZWTJ08yffp0/Pz8lAzOXyrb5e3tzcaNG9m+fTsOh0P5cpCdnc2rr77KsWPHqKysRK/Xs2/fPiIjI5k7dy5bt25VVoQLFizo1JhUEC4kIqgJ54wkSSQmJioftB4eHqhUKgoLC2lpaWHYsGG88sorSsPP/5aZmUlYWNhvTq3v2Ir09PRUepkZDAaqqqooLCzk888/R6VS0dzcTE1NDR4eHoSHhzN58mQKCwtZunSpsg166aWXKuMYM2YMy5cvZ/jw4UqSRVtbG+vXr2fNmjXk5+dz8OBBHnzwQV5++WUsFgseHh5MnDiRSy65hNbWVtLT00lLSyMnJ0cpXTVx4kRuv/125s+fz+zZs7n99tv/Zx1KSZK47bbbMBqN2Gw2UlNTMZlMeHh44Ovri16vV7Zd+/fvT11dHTt27GD79u3k5+cr/0b/65qlIJyvxDU1ocdoNBq0Wi0+Pj40NTUpKweNRkNqaionT56kpKREeX3HNa3/7gh9JoxGIwaDgdzcXDw8PGhtbeWuu+7im2++4Y033qCwsJCIiAg8PDwoLi4mKCiIgIAA0tPTsdvtNDc3Yzab0el0ypbgK6+8ohz0lmVZGXdZWRmHDx9m+fLlnDx5EkmSiIuL4+qrr8bX15eysjLKysowm81888037Ny5E4ChQ4dy+PBhJEliw4YNmEwmrrnmGqKiov7n/CRJIiYmBk9PT6Kjo6mvr0eSJAwGA19//TVlZWX069ePu+++m4SEBDIzMxk7dixVVVWsX7+e22+/HS8vL1566SUuv/xyUTpLuOCIoCacM2q1+rTMuqioKLKysqivr2fYsGFIkkRQUBATJ07E6XR2Cmod24ZnE9RCQkK44oorMBqNZGVlKb3XTpw4wXfffcfcuXMJDg5GkiS0Wi3Z2dnk5ubi7++P1WrFZDIB7QH5tttuY968eUqrGlmW2blzJ42NjXz//ffK1mpwcDBz585l37593HTTTWRkZBAREYHL5aKmpoYDBw7wt7/9TZnjvHnz2LZtG+vWrSMiIoJRo0YpiSq/RnBwMBMnTuTrr78mPDyclpYW5fra5s2bufvuu7FYLBQWFjJ8+HCcTif5+fns3buXW265BY1GQ1paGv7+/mdVGkwQeoIIasI5YzAY6N27N4DS3dnLy4uGhga8vLzYsGEDBQUFLFmyBH9//05lrrRaLV5eXj9brf/X0mg0DB8+nKNHjzJw4EAyMzPZtWsXffr04aOPPiIlJYV+/fophZU76iZmZ2czZswYbDYbBoMBf39/nn766U4/u7W1lby8PAYMGEBpaSnXXHMNsbGxBAcHk5CQwMSJE/H19QVQKuKbTCaeeuop5We43W4+/PBDXC4XDzzwAHPnziU8PPyMArler+fWW2/l66+/xmq1dnrO6XSya9cuDh8+zI033khdXR35+fnU1dXh6+tLa2srZrMZs9lMSkqKCGrCBUcENeGcCQ4OVj7Uof0Q9pdffonJZOL555+ntraWiooKoP0c1o9T2R0OB7W1tbzwwgu89957+Pn5/eZxTJ48merqaqqqqrjssssIDQ2lrKyMrKwsbrvtNmbNmsUdd9yByWTCx8eH3r17ExgYSFNTE59//jnz5s07LciUl5ezZcsWDAYDK1asYNiwYRiNRtRqNQMGDMBisdC/f38qKyvx9/dXVoJPP/00mzdvJjQ0FJPJhMFgYNKkSYwbN46RI0f+5l5uAwYMYPr06SxdulRZpUVFRVFRUYG/vz/Dhw+nqKgIHx8f6urqMBgMeHp6cvToUdLT01Gr1Z2+VAjChUIkigjnjMvlUlLHJUmioaEBtVrNwoULyc7OVgIatHfB/u9qGrIss2zZMjZs2HBW4/D391fOYvXq1YusrCwMBgOyLFNcXMyWLVv45z//SUNDAw6Hg6CgIHJzc9HpdBQWFnbqhN3W1sbatWt5/PHHeeyxx3jiiSeorKxElmXi4+NJSkpSki4sFguenp4kJSWh1WopKyvjyy+/RJZlIiIilG3C7du309jYeFbNSX19fXnhhRfw8fFBq9WiUqloa2vDbrfz+uuvo1arla7bGo1G6TT+4yScju7cgnAhESs14ZzRaDRKdqAsyxiNRmJiYjhx4sTPvj4wMJDy8vJOj+fm5p7VOLRaLdOmTcPhcPDWW2+xf/9+Dh8+rDx/4MAB+vbtqzTfbGpqIiMjg8bGRqKiopQVpNvt5q233uLEiRMsW7aMxMREPDw8mDt3LiaTiRUrVpCens4LL7yA3W5nwoQJXHXVVWzbto0///nPVFdXU1dXh9FoZPr06RgMBmJjYzu1qTkbUVFRvPjiizQ0NPDSSy8pPduam5uVLd+EhAQaGxtJT09nyZIlSr1Mh8Pxk2W3BOF8J1Zqwjljs9mw2+3K/crKShoaGkhJSTmtULDJZCIsLIzExESl5FNgYKCSxHC2NBoN48aNw8vLi6uuuuq0a3U1NTVYrVYyMzMJCgrC4XDQt29fcnJylCBrs9nIy8ujtLSUlJQUampqCA4OZvPmzeh0OhITE4mNjWXWrFm0trby3nvvMWXKFKZOncqWLVuor69n2rRpSoBrbW2loaGBsLCwTtu0v5UkSQwaNIjPP/+curo6ZcvU6XTS1NREbGwshw8fxmKxsGbNGoKCgpREHqfT2Wn7VxAuFCKoCedMa2trp6271tZWVCoVTz75JAMGDOj02vHjx9OrVy/y8/OVbUiVSsU777zziy1pfi1JkvD39+ff//43ZrNZWcV0iI6O5tixY4wZM4ZDhw7h5eVFRUUFmzZtorm5GVmW0Wq1tLa2kpOTQ2NjI+PGjeO2224jICCAuro6YmJiyMnJQaPRsH37djIzM8nMzKSlpQW1Wo1WqyU0NJS0tDSysrKA9lJXXcXlcvH4448rP9tiseDl5YWXlxcLFixg/fr1nDhxAofDgdvtplevXmRmZiLLMgaDgblz53bZWAThXBFBTThnwsPDlRYsAH369KGyshKDwXBad+u9e/eybds2ioqKcLvd6HQ6rrzySm644YYuq3bRsXJZtWoVkiSRlJQEtB89SExMZNKkSWRnZ5OYmIiXlxd1dXWUlJTwr3/9i8bGRhwOB8ePH8disVBUVMSGDRuorKxkypQpJCQk8OWXX/Liiy/y5z//GVmWO9WrTElJwel0smbNGjIzMzEajdx5551dsu3YQa1W4+HhgcPhQK/XM3DgQGbPno1KpaK0tJQtW7YwadIk/P39mTp1KgUFBUoA7CgILSr2CxcacU1NOCf0ej2PP/64ksrucDgoLS3F7XaTl5fXqXI/tG9/ORwO5b7L5WLQoEFd/iEbGBjIJZdcwpo1a5RsP39/f8LDwwkICGDQoEF8/fXXxMfHU1xcjMFg4L333iMuLo5bb72VwMBA9u7dy9y5cxk7diz9+vVj9erVGAwGfHx8yMrKwmw243Q6lSaoMTExjBs3joCAANauXcvatWu5//77lW3WrtJRGSUgIIAFCxaQn59PVlaWkqav0+mQZZmwsDDsdjsxMTFKIg8gth+FC5JYqQnnREel/I7VkVarxW63c+rUKYKDg5Vg1/FcQEAA06ZNQ5IkAgICkCRJ6ezclVQqFcnJyahUKurq6gCULdLs7Gx27dqlpOLLsszll1+OyWTio48+YufOnezbtw+Xy4XT6SQwMJAvv/yS1tZW7rvvPp555hlaWlqorKzEw8MDHx8fvLy8mDx5Mtu2bcNoNOLn58dDDz3E5Zdf3uVzs9vtREdH43A4lBT97OxsoP3IRFhYGJWVlbjdboKDgwkKClJWqx3NW/9Xg1JBON+IoCacE7Gxscq2odPpZM+ePTgcDuLj4+nduzcjRoxQ0slTU1Px9vZWqvVfeumlBAQE0KdPn24Z28iRI2loaODUqVOMHTsWi8XCF198wa5du2hqaqKkpIT6+nq2b9/O8ePHmTRpEq2trTz77LNK0kheXh5///vfMZvNfPTRR0rQ7lBRUcGJEydoampi9erVJCYmcuLECaXRZ1duO3bw9fVVzqR99dVXLFmyBKvVikajUVre7Ny5U6lFmZeXh9VqVb54/FxWqiCcz0RQE86JOXPmKBmOKpUKs9lMbm4ugYGBBAQEYDAYlGSNjhVEYWEhbrebTz/9FLPZ3G2HgZOTk0lKSlL6rEmSRO/evamsrOTbb79FlmU+/vhjVqxYwfr16/n88885duwYO3bsACAoKIi8vDxli6+hoeG0a4SyLON2u5FlmeDgYJYuXYq3tzf33Xdft1XE12g0TJ06ldLSUq688kqGDx/O1KlT6d27Nw6Hg/r6eiZNmoRer2fLli3U1tYqrXmgPQNUEC40IqgJ3c7Dw4NevXopK4DS0lI8PT05duwYZrOZvLw89u/fT0xMDB4eHnz33XecOnWKY8eOAe3nwQYNGtQpyaQr+fr6MmfOHFwuF6tWrUKWZRYtWsSnn37K2LFjOXbsmHI2TpZlXC6XUq0/ICCA2NhYHA4HBw4cYO3atcpZth8fnu7orWYymbjjjju46667ePTRR5Vakt3B6XTy9ttvU1paysaNG1mxYgUGg4Hy8nLmzJnDqFGjMBqNNDY2EhwcDNApO7WpqanbxiYI3UUENeGc+HGCh7e3N/X19ej1epKTk7Hb7dx3330EBASg1+tP24rrKPLbXSRJYt68eQwZMgSz2YzBYCA4OJgbb7yRpKQktm/f/pNJE2q1mrCwMDw8PJQyUxEREVRXV3Pvvfcybdo0ZUtVkiR0Oh0TJ05k0KBBPPfcc7+5hc6v1bHlqdfr2bNnD6NGjUKv1xMbG8vll1/O+PHjKSkpITU1leLiYux2u9Lrzul0Kj3tBOFCIrIfhW43ZMgQ5cC0LMt4enricrno3bs3f/vb3/jrX/+Ky+VStuz+u65ibGws6enpZ1Wd/38JDAxkwYIFbNy4keTkZBwOB8HBwcTGxnLXXXfhcrnYtm1bp/c4nU4OHz7MkCFDAFi3bh39+/dn+/btDBo0iLy8PGXMra2tDBkyhE8//RSdTtetc+lw7Ngx/Pz8OHXqFJMmTSI8PJw1a9ZQXFzMiy++yKpVqxg/fjzJyclUVlbi5+enrBxtNttplVwE4UIggprQrby9vXnllVeUbtUdSRcBAQFUV1fj4+NDSkoK27dvV97j5+dHbW0t0B7g7rjjjk7Zkd1BkiRSUlKIiopCpVKhVqtZtGgRmZmZeHh4cPjwYdRqNTqdjpaWlk7vHTZsGIcOHcJsNnPZZZeRm5uLwWDgwIEDWK1W5X0jRow4ZwEN2gNTSUkJDoeDHTt2MHDgQOW5AwcOcPz4cYYPH84333xDSUkJLS0tnbZDRUq/cCESQU3oVjNmzGDo0KHKB7nJZEKr1eLh4UFiYiJhYWG89dZbnd7TEdAAPD09GTdu3FkV9/21nE4n3377LZGRkSxdulQ5uFxcXExLS4vSTVqSJNRqNb6+vrS1tZGTk0NoaCj19fU8/PDDWCwWmpqalNJbbrcbp9Op9Gk7F2RZZvPmzRQXFwNQX19PbW0tlZWVxMbGMnz4cHr16qUUmU5KSiIzMxObzaZsi/74zJogXChEUBO6VWRkZKeApFarlSzD999/n5UrV1JQUABAQEDAaRl3ycnJSg+27hYdHc3x48d55ZVXlLF2nNOKjIzkkksuITc3l7vuuosNGzYwZswYtm/fzjXXXENRURFWq5X8/Hylmn9H14GOzMeRI0eek3lAeyuc7777jkGDBpGbm0tERAR1dXXExsbyf//3f6jVatra2hg+fDi7du3Cw8ND6UQO7QH+vzM4BeFCIBJFhG6jUqmIiopS7jc1NWGz2aitreWdd97hzTff5PDhw8qK4McrtA5+fn5oNOfmu5e3tzf//ve/mT59OpIkdTp4XFJSQmZmJlOmTCEnJ4ft27fz9NNPo9VqKSwsJCAggOeffx5vb2+uuOIKVq5c2Wnuffv2VVrQdDe3283GjRt56qmnGDJkCCaTiREjRjBjxgwAjhw5gtVq5ZJLLiEoKIioqCiqq6uJjY1VVmk/dSxBEC4EYqUmdBtfX1+mTJkCtK9W7HY7vr6+1NXVERISws0338yzzz7L0KFDOXz4MCkpKezZs6fTtZz+/fufs6DWMeb33nuPW265hWXLliljkWWZoqIiFi5c2Kl81+LFi9myZQtlZWXYbDZaWlo4ePAgzz33HCdOnOCbb75h9+7dzJkzp9uvC3aor6/n+PHjtLa2smbNGhwOB1arlbVr11JZWcm7775LYmIigwYNIicnB5fLRVRUFGazWVlVnzhx4rR+doJwIejyldrChQuV1OigoCBmzJhBXl5ep9fYbDbuuece/P39MZlMzJo1i8rKyk6vKSoqYurUqXh6ehIUFMRDDz10WnsQ4fwWHR2ttDIBMJvNNDY2IssyJpOJ7du3k5SUxLFjx5gxYwYWiwUfH59O25URERHndMySJOHn58e///1vZs6ceVpA/XFA63DixAlaWlpwu9288847mEwm1q9fT3R0NCkpKYwcOfInu2V3l+PHj3Pw4EE2b96Mw+Ggf//+HDp0iPLyctxuN/3792f+/PlkZWURGxtLQkICBw4cQKVSKWMsKCgQiSLCBanLg9qWLVu455572LVrF+vXr8fhcDBp0qROWxn3338/K1as4Msvv1S+5V555ZXK8y6Xi6lTp2K329mxYwcffvghH3zwAU899VRXD1foRnFxcUrWI4DVaqW5uZnKykqSkpJ45plnyMjIQKPRsGzZMo4fP059fT1utxuz2czkyZOVWoTnmr+/Px999BHPPffcGVX8aGtr49577+Xzzz8nKyuLxMRE3nrrLeX817nQ0NBAUVERQ4cOZeHChYwZM4bQ0FAkScLHx4dLL70Ug8HApEmTgPbV6dixYwkJCVF+xn9/yRSEC4bczaqqqmRA3rJliyzLstzQ0CBrtVr5yy+/VF5z9OhRGZB37twpy7Isr169WlapVHJFRYXymkWLFsleXl5yW1vbr/pzLRaLDIhbD91UKpX8wQcfyG63W5ZlWa6trZVtNpt88uRJubGxUW5paZE3btwor1+/Xg4JCTnt/Xq9Xp4wYYJ86tSprvpV/E3sdrv86quvysHBwWf8d/DII48o8z+XsrOz5ZiYGDkmJkb29vaWr7rqKnns2LGyTqeTZ86cKf/73/+WDx48KB8+fFj+/vvv5ddff11+5plnlP//XC6XfPvtt/f475C4idtP3SwWyy/+/nd7oojFYgHaL/gD7N+/H4fD0anRY58+fYiKimLnzp0A7Ny5k5SUFKV0D8DkyZNpbGxUqoz/t7a2NhobGzvdhJ6j0+kYMmQIkiQhyzIOhwMPDw/i4uIwmUxkZmayevVqnn/+eSVL8MdsNhtut7vb6j3+Wlqtlvvvv5/MzEzGjRv3q1rfaDQahg0b1i2V93+N2NhYQkJCKCgowGKxKOf+2tra2Lx5M3q9HrvdTu/evUlJScFkMhEdHa1s77tcLqVEmSBcaLo1qLndbu677z5GjBihZH5VVFQobTh+LDg4WPlwq6io6BTQOp7veO6nLFy4EG9vb+UWGRnZxbMRzkRkZCTh4eFA+3WqoKAg6uvrOXLkCBs3bsTPzw8PDw+2b9/+k2fQOkpXmc3mcz3006hUKhITE/n222/5+OOPueOOO0hNTcVoNOLh4aEEOoPBwPDhw/n0009Zv349I0aMOGfX0X5Mr9eTkJCAwWBg9OjR7N27l+PHjwPtW5OPPfYYP/zwA+Xl5Wi1WqZPn45Op1P+n3G73cqXUUG40HRrWtk999zDkSNHTisv1B0ee+wxHnjgAeV+Y2OjCGw9yO12K6n6HQeYV65cqXSRDgsLU77YJCYmKgWDO3Q07zyfmM1mZs+ezTXXXENbWxtFRUVUV1dTW1tLbW0t6enpxMbGKpX+e4rL5aKhoYGgoCAmTZrEV199hdlsxm63ExkZyfTp04mMjKStrU1p1mq1WikrKyM6OhoPDw8yMjI4cOBAj81BEH6rbgtq9957LytXriQzM7NTBltISAh2u52GhoZOq7XKykrlQnVISAh79uzp9PM6Llz/+GL2j+l0um5r4SGcufr6eiwWC76+vjgcDvz8/Jg2bRpeXl5UV1eTl5fHCy+8gNPpPC2gQXvm5LlMrjgTKpUKg8FA7969z9nB8F9LlmW+/fZbNm3aRHNzMwsXLiQsLIyqqir8/f158sknGTduHFarFU9PT8xmMyaTiUOHDinn6iRJ6nTGThAuJF2+/SjLMvfeey/ffPMNmzZtIjY2ttPzaWlpaLVaNm7cqDyWl5dHUVERw4YNA9pr6WVlZVFVVaW8Zv369Xh5eZGcnNzVQxa6gdVqVb6IeHp64unpidPpxO12c/z4ca6++mqlf5pGo6FPnz5Kz6/hw4czZswY8SXlDMmyTHl5OQcPHiQ1NRWVSsW4cePw9/fH19eXXr16YTAYqKqqoqGhgYMHD5KXl8eRI0dobW1VqokA5/RsoCB0pS7/zb3nnnv49NNPWbZsGWazWbkG5u3tjcFgwNvbm1tuuYUHHngAPz8/vLy8mD9/PsOGDWPo0KEATJo0ieTkZK6//npeeeUVKioqeOKJJ7jnnnvEB90F5Mf/VlqtFpPJxNGjR1Gr1TzwwAMMHz6c48ePYzQaGTduHIGBgeTk5LB7926lnNa5qPl4MXn88cdZu3YtgYGBqNVqioqKKC4u5t577yUlJYU+ffpQU1PDoEGD0Ol01NXVMW7cOAoKCpSWP7Is/+y1a0E433V5UFu0aBEAY8aM6fT4+++/r/TEeuONN1CpVMyaNYu2tjYmT57M22+/rbxWrVazcuVK7rrrLoYNG4bRaOTGG2/k2Wef7erhCt3EZDJ12l6WZZmqqir69etHfn4+0dHRNDQ0cM0113R6XVxcHC6Xi4SEBLFaOEPNzc3s27ePmpoa7HY7RqORkydPKl0CxowZw/r16zl06BAajYbevXvj4eFBWVkZBoNBOVjucDjYu3dvD89GEH6bLv/UkH9FFQK9Xs9bb711WnX2H4uOjmb16tVdOTThHGppaenUokWSJBITE6msrKSgoABvb2/++c9/0r9/fyWoybKM0Wikd+/eLF68mDvvvLPTlpjwywwGA3PmzGH9+vUUFhZis9mwWCxYrVY2btxIUlISKSkpGI1GIiMjaWhoQKvV4nQ6OxVAaGxspKSkpIdnIwi/jfgqLHSLtrY2Dhw4QHJyMrIsY7VacTqdbNu2jbCwMCRJ4sUXX+x0zbWmpob6+np69erFtddei8vlEkHtDDQ3N+Pp6UlzczO+vr4ASqPPuLg4evfuTUlJCf369aO0tJSysjKcTielpaUMHDiQwMBA3G43n332GYWFhT05FUH4zcQFC6FbuN1utm7dqqzc1Wo1NpuNcePGMWTIEIxGo9LrC9qD4EMPPcTEiRNZtmwZhYWFvP3226c15BR+3n/+8x8efPBB9u7di8vl6vR3t2fPHpxOJ2PGjCErK4stW7bg6+tLfn4+I0eOZObMmQAcPXqUF154QfRSEy5YIqgJ3WblypUcPXoUSZLw9PQkNDSU/fv3K6uH8PBwmpqagPYtr82bN9Pc3My3337LX//6Vx5//HG+/PJLUVj3V3C73eTk5CjByOVyodfrkSQJo9FI3759qa+vR61WM2zYMK699lrKysooLy8nNTUVaK/+c9ttt4m6j8IFTQQ1oduUlpbyxhtvKH3JZFlm8uTJylGNmJgY5ZCyj48P48aNY+HChfzrX/9i2rRpOBwOXnzxRRoaGnpqCheMtrY2pcwctPdMO3jwILIs4+npyciRIxk4cCA2m426ujpaW1uxWCxcdtlleHp6IssyH374Ibt37+7BWQjC2RNBTehW+/btw263A+2riaKiIvr3709UVBQlJSXs3bsXWZbRaDQ8+uij9OvXD51Ox6BBg/D29ubkyZO88847YrX2Pxw7dkwphfXfqquref/996mqqkKn09GrVy+OHTvGjh07GD58ONB+PfPtt98W247CBU8ENaFbJSUl4eHhAbRfVwsICCA7O5v9+/cTERGBJElkZ2ezZcsWsrKyGDx4MNC+isvIyMDlcvHVV1/9ZB8zoZ0sy2zbtu1nO1WbzWZuuukmSkpKkCQJt9tNXl4eo0ePVhqX7tq1SySHCBcFkf0odCuLxYLb7VaK/losFjw9PUlISECtVtOrVy/27t3LwYMH2b59O/7+/vj7+3P06FFOnjwJgJeXl1ip/Q/btm3Dz8+Puro6oL2Ul1qtxuFw4OPjQ+/evUlNTaWwsBCTyYROp+PGG29EkiRaW1t5/vnnaWtr6+FZCMLZE0FN6FbHjx+nra1NSc0PDw9Hp9Phcrmorq6muLiY5ORkEhISSE1N5c0332THjh00NjZit9tJTEzk4YcfFqn9v6CyspKmpiYWLFjA0qVLyc7OxmQyKQWLzWYz4eHhVFVVYbFY+PTTT7n00kvR6/VAe53OH2eiCsKFTAQ1oVsVFRXx7bffMnfuXCRJQqvV4u3tzalTp/D39ycoKAitVktQUBAxMTFER0dz3XXX0djYyLhx43jllVcYNGgQ0L7N1pPV7883sixTWVnJ3XffjdVqxcfHh3fffZeNGzdSWVnJyZMnyc3NZcyYMRgMBkJDQ9m8eTONjY0kJyejUqlwOBxKKTpBuBiIoCZ0q7a2Nh577DHUajVXX301Go0GT09PYmJiOHLkCI2NjYwcOZLW1lZUKhX+/v5cc801uFwubr/9dqKjo3E4HKxatYrJkyfj6enZ01M6b7S1tfHggw9y3XXXMXXqVOXa5eDBg3E6nZw8eZKGhgb69u1La2srtbW1bNy4kfnz5yt/j4WFhbz//vtie1e4aIhEEaHblZSUcOutt3Lo0CHlMU9PT06dOkVERATHjh2jqKiIyspKvL29CQsL44YbbiA0NBS73Y7VaqWuro7q6uoenMX5Q5ZlsrOzuffee/Hy8mLUqFF4eHjgdrtpa2vDarXicrnw8/MjKSkJh8NBYWEhDocDi8WCw+FQOpL/5z//wWq19vSUBKHLiKAmnBM2m61Tdp3L5VJWFJWVlQQGBuJyuZAkif3793Ps2DG+/vprNm/ezFNPPcV7772nZOr9nsmyzI4dO5g1axahoaE8//zzBAQEIMsyzc3NuN1u9uzZw1NPPcX3339PU1MTer0eHx8ftm7dSt++fZWf5Xa72bt3r0jjFy4qYvtROCfcbjenTp1S7mu1WsxmM263m379+qHX6wkLC1NS+9PT03nmmWdoaGggNjYWHx8f5bzb75Usy2zfvp3rrruOuXPn8uSTT6LVapXrjE6nk9dee41NmzbxwAMPMG3aNPbt24fFYlESbaKjo/Hz8wOgrq6u0+pZEC4GIqgJ50xlZWWnZI/q6mpaW1s5efIkTU1NDB8+HG9vb4YMGUJKSgrp6eksW7YMo9HIzJkzMZvNPTyDntPRAPSOO+7A19eX22+/vVNAO3bsGGvWrGH06NFMmDCB4OBgampqCAwMJC4ujurqatra2rjiiiuUIxKfffZZp0a8gnAxEEFNOCfUajUtLS3KmTVZlomLi6OiogIPDw/i4+NxOp3s2rWLpUuXsm/fPq644goyMzO58cYbCQ8P/103DK2oqOD6668nJyeHDz74gKioKKA9HX/79u3s37+fcePGkZKSQnFxMf7+/kogjIqKYuXKlVRXVyt/h1VVVbz77rtKCTNBuFj8fj8lhHMmICCAv/zlL7zyyivKIewTJ05QUVFBU1MTJpNJqTJy6623UlFRwbx58xg5ciRvvvkmM2fO5Ntvv/3dJjS0tbXxyCOPsGnTJgCWL1/Orl27cDqdfPDBB7jdbmbPnk1DQwMNDQ3ExMSgUqmor69X0v5PnDjBzJkzMRqNyLLMwYMHycvL6+GZCUI3kC9SFotFBsStB28eHh7yvHnz5FOnTslOp1OWZVl2u91yQUGBXFRUJOfn58v19fVyaWmpvGHDBnn8+PGyyWSSU1NT5Z07d8offfSRbLPZ5D/+8Y9yUFCQXFlZ2cO/VeeezWaTH3nkEVmj0Sh/r0ajUX733Xflhx56SF6wYIFcV1cnHzx4UF67dq3sdrvluro6ua2tTXY4HHJFRYX8zDPPyA0NDbLb7ZZlWZarq6vltLS0Hv/9EDdx+y03i8Xyi//PiO1HoVskJCTw/PPPM336dHQ6HdDexHLv3r2cPHmS3r17M3ToUFpaWigpKcHDw4MTJ04QGRlJdXU1y5cvVw4TL1myhIyMDEwmUw/P6tySZZm3336bd955B41Gg9PpBGD06NFKAs0f/vAH1Go1/v7+GI1GpU/aiRMnlBXZjBkz8Pb2VjIkX3nlFfbv39/DsxOE7iHJ8sV56rKxsVGkgPcAg8HAkCFDWLx4MfHx8Uoig9Vqpb6+HrPZjN1up6ysDLVaTVRUFGVlZdxyyy0cOHCA2bNnM2rUKJqamnjssccwGAz8/e9/Z9KkSfj7+/+uKorIskxubi4ADQ0NbN26lXfffZfp06dzww03UFtby4ABA9DpdDgcDmprawkICODUqVMUFBTQ2trKqFGjCA8PR5Ikqqurufnmm1m7dq0SIAXhQmOxWPDy8vrZ58VKTegyaWlpvPLKKwwbNkxpUCnLMidPnuTUqVMEBQXR2NhIeHg48fHxtLW18cILL/Duu+/S0NCAJEksXbqUiooKcnJyaG1txeVyceLECSZMmPC7Cmgd+vTpo/w9Dh06lLlz57Jw4UJuuOEGWlpa6N27N7NmzWLixImEh4cD4OvrS1FRERaLhaCgICRJwul08vLLL7Ny5coenpEgdC8R1IQuMWTIEFatWkVAQIDyIdzQ0EBhYSFNTU0MGDCAw4cPM2jQIEpLSykvL6eyspLdu3fT0NCASqXCZDIRGhqKh4eHciZNrVZjMpkIDAzs4Rmeez8O4h3/HRYWxkMPPcSWLVvIz8+npKSEuro6fHx8GD58OFVVVXh6erJq1SouvfRS5Xxaa2sr69at65F5CMK5JIKacNbMZjN/+ctflIDmdDrJzc3l6NGjDB48GI1Gg8PhID4+nmeeeYb33nsPh8OBVqtVMhq1Wq1Szik2Npampia0Wi033HADaWlpv8tV2k+RJAmbzcb111/P0aNHWb58OUOHDsVqtdLY2EhiYiIrV64kLCxMqfcYEBCAyWTi888/Z86cOeLAtXBREyn9wllRqVTce++9jBw5EmivarFjxw7a2toYPHgwLpeL5uZmPv/8c1577TXeeecdrFarUqOwg9vtJjU1Fa1Wi1arVQrsHj9+nH79+vXI3M4XdrudrVu3Ko1Sw8LCmDlzJgMGDECj0bBixQr27duH1WrF6XQSFxdHSEgIDQ0NfPDBBzQ2NgLtDVu/+OILBgwY0IOzEYTuJRJFhLMSGRnJ3r17CQ4OxuVysWbNGnr16sXWrVuJioqirq6O7du38+mnn1JfX/+TP8Pb2xur1UpwcDDl5eVK1ZFLL72U+++//3d7Pa2DLMts2bKFyspKrr76ahwOB6WlpYwfP57S0lIcDgcajYaxY8fy2GOP4XQ6GT16NLW1tXz11VcUFBRw11130atXL6D9jOA111zDwYMHe3ZigvAb/K9EEbFSE85KSkqKcr1LkiQGDx6MJElKZmO/fv0YP378L64OrFYrKpWKsrIyZYWm1WoxGAyMGjXqdx3QoP3vddiwYaSlpSHLMjt37uSDDz6gqKhIWb05nU52797N6tWrGTx4MAcOHODUqVOEhoYycuRIPv74Y06cOAFAr169WLx4MQEBAT05LUHoFiKoCWelI4hB+xai3W4nNDSUxMREoH3FvHnzZnbv3q28JykpiaCgIKD9A9vT05Pk5GQkSSIpKYm+ffvy6KOP8vbbbytn3H7vdDodvXr1oqCggNmzZ7Nw4ULcbjeSJGE0GomMjCQ2NpaHH34Yi8VCUlISGRkZhISEEBQUxJQpU3j22Wc5deoUkiQxYMAArr766p6eliB0ORHUhLMSEhKiBLWamhqcTicNDQ0UFBQQERFBQkICnp6epKamEhERgcFgoKWlBZvNRnBwMGq1Gj8/PxoaGgAYMWIEc+bM4f777yc4OPh3v0r7MbfbzY4dO3A4HLz66qtMmTKFGTNm4HQ6SUxM5MSJE/z5z3/GYrHQ3NyM1WrFZrORmppKaGgoN954I5mZmUD7tdBLLrmkh2ckCF1PBDXhN9NqtcTHxyv3g4ODiY2NRafTMXbsWEpKStiwYQOZmZlUVVVx9913M2/ePLy9vWlsbKStrQ1JkqiqqqKoqIiAgABGjRrFAw88gI+PT89N7DwWHBzM6NGj2bp1K0ajkQMHDtC7d2+am5vx8/Nj69atmM1mQkJClK3J5uZmDh48iCRJ5OfnK/3TBg4cKP6ehYuOCGrCbxYXF0dcXJxyv6NqhcPhwOVyYbFYKCws5OjRo6jVatxuN6NHj6Zv3754enri7e1NSkoK48ePZ+bMmaxfv57rrrsOvV7fg7M6f6lUKiZOnMhHH32E0Whk27Zt1NbWcvToUXbt2kVJSQkqlYrq6mrcbjfHjh2jf//+aDQaJk+eTEJCAoCSsBMbG8vgwYN7ckqC0OVEUBN+E4PBwIsvvqis1Gw2GxaLhWPHjlFTU4PBYMDb25vKykocDgePPfYYmzdv5sEHH2Tt2rV4eHgwfvx4Ro8ezaRJk7juuutISUn5XbeX+TUkScJkMnHzzTfj5+eHl5cXLpcLlUqFXq/n0KFDXHvttbz99tukpaVRU1NDeXk5FRUVREZGMnPmTPbs2YPb7Uaj0XD99dcrnRME4WIgPkGE3yQwMJBx48Yp17zsdjt1dXVERkYqZbE+/vhj1qxZQ//+/dm5cyebNm2irKwMq9WqVBsZMWIEGo2GkJAQEdDOwLBhw3j44YeRZRm3242HhwdXXHEFBoOBwsJC3nnnHXbv3k1MTAyRkZGEhIQgyzJRUVF88sknVFdXI0kS06dPV5J6BOFiID5FhN8kNTVV6UTtdDqpqanh6NGjbN++HZfLxRtvvMFnn31Geno6Dz74IMXFxUoA7LjWs2fPHm699Vbsdjvp6ek9NpcLkYeHB9dffz3z5s1Dp9Ph4eHB3r17aW1tBSA7O5vnnnuOvLw8tm/fTlZWFhaLBW9vb6KiosjJyQHAaDQSFhbWk1MRhC4lgprwmwQGBiorK4fDgcViYcOGDSQkJFBcXMzevXsZOXIkw4YNo7W1lczMTCVBoYPVauXyyy/nrrvuEltgv4EkSdxyyy3ceuutDB8+XKkc0mHz5s1MnjyZ//u//8Nut6PX66mvryctLQ2NRqP8DKPR2BPDF4RuIWo/Cr/JmDFjlJWXSqXC5XIxfvx4ysrKKCwsZMCAAVx//fX079+fq666ipaWltN+xiWXXMKbb76Jh4fHuR7+RSM2Npbk5GTefffd0/4eO8623X333YSFhXH48GEAjh49SmRkJNBereQiLSok/E6JoCacMZPJ1Gm7UJZltm7dSkhICBUVFcTFxZGYmMi2bdtobm7m0KFDqFSqTis1lUrFPffcg7+/f09M4aLRcV3stddeA1Da9UD7GcKnn36aoUOHotVqMZlMtLa2YrValdWZ0+mkpKSkx8YvCF1NbD8KZ2zgwIFERUUp9y0WC62trfzwww8cOXKEzZs3k5eXx8yZMzl48CALFixQtrs6+Pr6MmzYsHM99ItSaGgoV155Jddcc02nmnglJSV8+umnvPPOO5SWluLr68vx48cpLi5WSmR1JO0IwsVCBDXhjE2YMAGDwQC0X0/LzMxkz5491NfX4+/vj5eXF7fffjuvvfYatbW17N+/X+mP1mHgwIFKqSzh7EiSxMSJE/nss886bUE6nU6++uor0tPT8fX1xeVyERISwoQJEzh+/DgAPj4+jBo1irCwMHFtTbgoiO1H4Yyo1epO/c0aGxv56quvuP766yksLGTkyJFUVlbyj3/8g88++0zZCvux6Ohonn/++dNWb8Jv01HL0dvbG5fLxdixYzl06BB1dXXKlw6Xy0VaWhrR0dEcOHCAqqoqoP3f81//+hdWq5WcnBweffRRdu7c2cMzEoTfTnyqCGckKCioU3+zQ4cOERISwkcffcSBAwcoKSlh3759VFdX/2RAA7jqqqtIT08XdR27UF1dHfn5+QBs3bpV+bt3OBw899xzvPvuuyQnJ1NbW4tOp+Po0aNAe0DU6/Xo9XpGjx7N0qVL+fOf/8zixYtxOp09Nh9B+K1EUBPOyEMPPaRkzkH7h2l1dTXr16/H19eXPXv2sH379p99f//+/bnjjjtEQOtiQUFB3HzzzcrRiJKSEjIzM6msrFRKltXW1qLX6zl48CCenp643W7cbjd1dXWYzWYMBgMhISG88cYblJWVsWLFih6elSCcORHUhF8tJCSEGTNmKOfTiouL+eijj6ivryc8PJwTJ05QXl7+iz/j3nvvVZpVCl3Hy8sLm82Gp6cnvXr1wsvLi2+++QZZlklJSWHw4MGoVCqampowGAzY7XZ27drF8ePH2bZtG0OHDiU5OZmhQ4diMBh4+OGHWbduHW1tbT09NUE4IyJRRPjV+vXrR3R0NNCexv+3v/2NY8eOERsbS2JiolKy6ecEBwczduxYsUrrBiqVCm9vb7Zt28Zbb73Fm2++icvlwmg08vLLL5OcnExTUxOVlZXcfffdpKWlcejQIbRaLQMHDiQuLo5Vq1Yp1V4GDx7M9OnTe3hWgnDmRFATfrWYmJhOCSKrVq0iNzeXffv2sXHjxv/5/tjY2E5HAYSuo1KpuOyyy7jpppt44IEHuPzyywkICMBut7N8+XJKS0tpaWkhJSWF48ePEx8fz3XXXUddXR1jxoyhT58+HDp0iN27dyPLMnq9nqlTp/b0tAThjIntR+FXCwwMVP67tbVVOd9UVFSEzWb7n+8fOnSoyHjsRs3NzbzwwgtAe8UXt9uNw+HgX//6F5Ik8fjjj2Oz2aioqGDkyJHY7XaSkpI4cuQIPj4+TJs2jW3btjFy5EgA/Pz80Gg0ImFEuKCIlZrwq0iSRHR0tLJSa25uJjk5GY1G86sDVVxcnNh67EapqalKP7X8/HwmTZqEl5cX/fr1Y8+ePXz55ZfU1NQwaNAgNBoN69evx8vLi8zMTPR6PXv37u305UT8WwkXIhHUhF/Fw8OjU2ksp9OpXMcZPXo0wcHBv/h+lUrVqUu20PUiIiJ46qmnWLZsGS+99BLfffcdra2t2O12ampqeP7551mzZg1eXl7U1tbSu3dvJEni2muvJTk5mYceekhZpUF7tZGfO5YhCOcrEdSEX8VoNHYqweTj40NOTg51dXUYjUZuvfXWX/xmL8syzc3N52Kov2uDBw/mzTff5I033iAtLQ2DwUBubi4FBQXU1tby7LPPcuedd1JXV8eRI0doa2vDYDCwYsUKFi9eTHBwsPLv6Ovrq1SOEYQLhQhqwq/S3NzcqbWJXq8nNDQUg8HAoEGDaG5uRqvV/uz7Ow75Ct1HkiT69evH2LFjufPOO4mLizutvqbb7ebzzz9n7NixfPbZZ3h7e3Ps2DG0Wi1tbW388MMPyjW08ePH88Ybb+Dp6dkT0xGE36Tbg9pLL72EJEncd999ymM2m02p0G4ymZg1axaVlZWd3ldUVMTUqVPx9PQkKCiIhx56SFyw7kF2u51FixYp/wZms1nplbZv3z6WL1/O7NmziYmJ+dmfIT4cu59Go+Ghhx5i4sSJjBgxgr179572GlmWaWpqYtOmTfzjH/9Aq9UyYMAABg0ahJeXFx988AFutxu1Ws0tt9zCG2+8ga+vbw/MRhDOXLcGtb179/Kvf/2L1NTUTo/ff//9rFixgi+//JItW7ZQVlbGlVdeqTzvcrmYOnUqdrudHTt28OGHH/LBBx/w1FNPdedwhV8gyzJff/01RUVFQPuq4MYbb0Sj0fDNN9+QmppKVlbWLyaNiIO854ZKpVLqQQ4ZMuRnX+dwOHjvvfdYtmwZn332Gb1798bhcFBWVsaaNWuwWq2o1WpuvfVWVq9eTVxc3DmchSD8RnI3aWpqkhMSEuT169fLl1xyibxgwQJZlmW5oaFB1mq18pdffqm89ujRozIg79y5U5ZlWV69erWsUqnkiooK5TWLFi2Svby85La2tp/882w2m2yxWJRbcXGxDIhbF940Go28bt065e/8u+++k9VqtSxJkjxlyhRZo9H87HtVKpX8zTffdP0vmvCzbDab/O2338pjxoyRAwICZJVK1enfxN/fXw4MDFTuJyQkyFu3bpU3btwof/DBB/I///lPubGxUXa73bLb7Zb37t0rx8bG9vjvobj9vm8Wi+UXf++7baV2zz33MHXqVCZMmNDp8f379+NwODo93qdPH6KiopTq4Dt37iQlJaVTRt3kyZNpbGwkOzv7J/+8hQsX4u3trdx+XJ9Q6Bqenp5KRRGA6upqpXPy4cOHf3F72O12s3///nMxTOH/p9PpuOKKK1i3bh2HDh3iq6++4s477yQhIQGj0YhOpyM1NVWpF1lQUMCKFSvw8fFBo9Gg1Wp55JFHqKioACAtLY0lS5aILFbhvNYtQe3zzz/nhx9+YOHChac9V1FRgYeHBz4+Pp0eDw4OVv7nqaioOC1FvON+x2v+22OPPYbFYlFuxcXFXTAT4cc8PDyUDEhZlhk7diyDBg0C+FXdk+vq6n6xjJbQ9SRJQqvVEhYWxsyZM3n77bfZtm0br732GgaDgQMHDnSq6L927Vr+8pe/YDQaSUhI4Morr+Ttt9+mtrYWSZJIS0vjk08+ER3LhfNWlwe14uJiFixYwCeffHJOs910Oh1eXl6dbkLXCgwMVJI9ZFnmo48+wm63/+q/63379olzTz1MkiSCgoK47bbbWLp0KUOGDOl0FCM3N5elS5dy0003UVNTQ79+/QgICOC5556joqICSZIYMmQIH374IbGxsT04E0H4aV0e1Pbv309VVZVStUCj0bBlyxb+9re/odFoCA4Oxm63n9ZCvrKykpCQEKC9Gvx/Z0N23O94jXDuVVdX09LSArQnI3h5eWE2mxk4cOCvqj6Rl5fHmjVrkGW5u4cq/A8qlYrU1FSWLFnCSy+9pGwre3h44HK5aGho4KWXXuLjjz9m5syZ9O3bl08//ZS2tjZUKhVTpkzhpZdeEt2yhfNOlwe18ePHk5WVxcGDB5Xb4MGDmTt3rvLfWq22UwHcvLw8ioqKlDM1w4YNIysrS+nOCyglfZKTk7t6yMKvZDKZ8PDwUO5LkkR4eDgZGRkEBAQA7Ye0f26FbrFYuPnmmzl8+PA5Ga/wv3l5efHQQw/xxRdfEBMTg9lsRpZlNBoNXl5eNDY28s0335CQkMDgwYN59tlnqampQZIkZs2axZtvvimOagjnl25PwZLlTtmPsizLd955pxwVFSVv2rRJ3rdvnzxs2DB52LBhyvNOp1Pu16+fPGnSJPngwYPy2rVr5cDAQPmxxx771X+mxWLp8Sydi+3m6+srl5WVKX/HOTk58owZM+RHH31UnjJliqxWq+Xhw4fLw4cPl+Pj42W1Wv2TP2fevHlyc3Nzl/xuCV3D7XbLu3btkmNiYpR/p8jISDkmJkb29fWVN2zYIB88eFD+05/+JD/99NNKFrLT6ZTnz58vS5LU47+f4vb7uPVY9uMveeONN5g2bRqzZs1i9OjRhISEsHTpUuV5tVrNypUrUavVDBs2jOuuu44bbriBZ599tieGK/z/HA4H9fX1yn2NRkN8fDx+fn4UFRWRlpZGaGgo9913H1OnTv3ZA7sff/wxa9euPVfDFn4FSZJIT0/n888/Vw7QFxcXEx0djUaj4a233mLjxo2MGDGChIQEVqxYoRzQfvzxx5WEIUHoaZIsX5wXOBobG/H29u7pYVxU/Pz8OHLkCKGhoUD7tvHTTz/NoEGDOHHiBLW1tdTV1TF9+nQefvhhnE7nz14/e+CBB3j11VdFJfjzjCzL7Nmzh9mzZ1NQUMAll1yCRqOhvLwcm83GwoULMRqNaDQa/P39SUtLA2DPnj1MmTKFurq6Hp6BcLGzWCy/mJwmaj8Kv5rZbO50TS00NJR77rmHyMhI5s2bR//+/YmNjWXVqlX/syp/bm6uSBg5D/14xdZxLTwyMpKTJ0+SlJTEU089Rf/+/VGr1Xz66aecOnVKyYicMWNGTw9fEERQE369hoaGTkWNjUYjvXv35uDBgxw/fpzS0lLWrVunVHY/ceLEz/6sUaNGiVXaeaojsM2dO5f7779fSRDau3cvFRUV7N+/H09PT+bNm8euXbuQZVlpQtqxiheEniKCmvCrNTY2smjRImWF1VGJ4tprr8XT05PCwkIaGhrw9vZmypQpPxu0Os5KiaB2/pIkiVtuuYUbbriB/v37A1BVVYXFYuHZZ5/F29ub6upqli5dSl1dHZIkERsby4MPPij+XYUeJYKa8KvJ/39R4x+fIQwICKClpYXq6moKCwux2Wzk5uaydetW+vTpo6T6/5iHhweDBw8+l0MXfgOz2czLL7/MoUOH0Ol0yuNHjx7l22+/xeVyMXv2bNauXYvL5UKlUjF8+PBf3QldELqDCGrCGSkqKiI/P1+5L0kSGRkZ5OTk4Ofnh5eXFzabDU9PT2RZxuFwMGrUKK699lpSUlKA9g7NERERPTUF4QyYzWZmz57dKVC1trby9ttv43A4mD59Oi0tLdjtdgBSUlKU5BFB6AkiqAlnxOl0snLlSmUL0uFwUFlZSWhoKLNnz8ZoNDJx4kQGDx7MZZddRkREBKmpqVxyySWUlpYCMGDAAFHG7AIyZMgQ+vXr1+mxsrIydu/ejd1up7a2liNHjiDLMiaTiWeeeUY0hBV6jAhqwhnrSAQB0Gq1Svmsffv2ERAQQEVFBXq9Hl9fXx588EFKS0vZs2cPl112GUajkbS0NLFFdQHRarWMHj2aAQMGdHr8u+++o7KykqFDh7J8+XIsFgsAffv2xdfXV7nmKgjnkghqwhmRJAl/f38lGaCmpgZfX1+mTp3K4MGDuf/++8nMzOTTTz/ltddeo6Kigh07djBu3DhCQkJobm6murq6h2chnAlJkpg2bRoFBQVIkoTZbEan01FdXY1arcbPzw+r1ap0YAgNDWXDhg189dVXp63wBKG7iaAmnBFZlqmpqVG2H/39/ZU2QiNHjqShoUGp2RkeHs7SpUuZPn06hw8f5uDBg6SnpzN69GhxRu0CEx8fT1xcHGq1GoPBgL+/P1qtVtl+VqlUNDY2IssyKpWK5ORkpk+fzrp165g/f76oDymcMyKoCWessLCw0zW13NxcWltbARg9erTSa8vPzw+n00lWVhZ5eXlYLBbGjx/Ptm3bRAuaC4zRaGTatGk4nU6io6MJCAigqKiIBQsWEBMTQ2trK6+//jr79u3jwIEDFBYWAu2rttdff5133323UwalIHQXEdSEM9bR8RraO1qHhITQ0NCA1WplwYIFSsr/0aNH0el0JCQkEBoayssvv8zRo0fx8PAQ11suMGq1mj/84Q+kp6cDkJycTHh4ODt37uTLL7/kvvvu49Zbb2Xz5s2sWrWKhx56iLKyMmw2GxqNhlmzZnHVVVf18CyE3wMR1IQzVlZWhsPhAFB65qWmpnL48GFmzpxJUFAQgNJ7q66ujvj4eHbu3MmpU6dwOp2iA/YFKDExkVtvvZWQkBBcLhdFRUVoNBrq6+tRqVQcOnRIKWodGhrK9u3b+eCDD4D2Jr7i+ppwLoigJpyx8vJypcmrRqOhtrYWPz8/br/9dmpqapRK/larFavVSkVFBdnZ2ej1ehYvXszgwYPFSu0C1FFl5LHHHsNqtSr/9jExMbS1tTF06FDi4+NJSUnh0ksvpbq6mtTU1J4etvA7I4KacMYaGxux2WzK/dTUVHx8fPjkk0946623lIO4AFlZWRQUFNDa2kp6ejq5ubkMGDBArNQuQJIkoVKp6NWrF1VVVUoXhueee45t27YpBa81Gg3vvvsu48aNY+jQoUD7qj0rK6uHZyD8HoigJpwVu91OQ0MDe/bsISUlhbCwsE7Pa7VaQkNDsVqt5OXlsXTpUjZs2CDqA17AtFots2bNQqvVAlBfX8/hw4exWq04nU4CAgJISkpi06ZNyr9zdnY2y5cv78lhC78TIqgJZ8zf3x+TyQS013H09vYmISGB//znP+Tm5nZ6rdls5vjx47S2tvLoo4/icDiIjY0VK7ULmEql4ujRo7S0tAAwceJEJk6ciNFoVPqppaamUlJSQllZGQBJSUlKmTRB6E4iqAlnLCQkBG9vb9ra2nA4HMiyTHl5OYMHDyY4OLjTa+vq6nA4HGzZsoXa2lrWr1/PunXrxErtAlZfX0/fvn2V+wUFBaSmptLa2kptbS1VVVUkJSURFBTEsWPHANDr9cyYMUP8uwvdTgQ14Yz5+/ujUqmQJAlJkrBareTn5xMeHk5CQgI+Pj7K1hRAeno6QUFBGI1GDAYDkZGR4vD1Berw4cO88847SjURaA9ye/bsoa2tjeTkZAYNGoRGo2H06NGcPHlSqSBz5513MmnSpJ4cvvA7IIKacMaam5uB9q1HrVaL2+0mIyMDu92uHLrtKGirUqk4fvw4LpdLKXpsNpt7bOzC2QkICGD58uVs2LBBeaysrIxHHnmEjRs3smHDBn744QcaGhooKCjAbDbz0ksvIcsyXl5evPDCCxiNxh6cgXCxE0FNOGMdW47QXjbLbDZTXFxMcHAwLpeLhoYGYmNj8fHx4aabbsJoNBIREcHAgQMZP348ffr0ESn9F6iQkBAWLFhAXl6eUrRYkiSKior45JNP6NWrF0ajEVmWGTBgAHFxcVRWVmK1WgGIjIzEz8+vh2chXMxEUBPOmMFgUK6NyLJMSUkJffv2Va6V+fn54XA4eOaZZxg4cCANDQ1MmDABh8PBiBEjGDhwYA/PQPitVCoV06dP54orrsBoNHLttdfi6+urNAi1WCw0NjaSkZFBUFAQZrOZxMREioqKgPat6169evXwLISLmQhqwhn78SqrsbFRWalNnjyZV199lUWLFmE2m3nzzTf529/+hlqtVhJLZs2axebNm3tw9MLZCgwM5LXXXkOSJJxOJykpKYSGhjJ16lSSk5PR6/Xs378fh8OBy+WiqalJOayvUqm47LLLRMKI0G1EUBPOWHx8vPKh5OHhgd1uJzw8HI1Gw2WXXUZTUxM5OTnk5+djt9txOBzs2rULX19fnnvuOdEZ+SIQEhJCRkYGe/fuZc6cOVx++eX4+/tz8uRJKioqaGtrw8PDA71ej06nw9fXF1mWkSSJG2+8UazWhW4jgppwRkwmE9deey0qVfuvzqFDh6itrSU3N5fevXvz6aefcu+99ypllCIjI3G73dTX17NixQrKy8tFosBFwGKxMGrUKOLj4xk4cCC33HIL4eHhBAUFkZqaSmhoKMeOHSM7O5uSkhLeffddVq9ejSzLBAUFcd1114nVmtAtRFATzsjll1/OiBEjAGhtbaVfv35UV1cTExPDm2++yeLFi7n88ssZPnw4Go2GvLw8IiMjCQkJwWazsXnzZqWKv3DhstvtlJSUUFVVhSzL5Ofnk5mZiVarxW63YzAYkGUZHx8f/vjHPzJp0iQ+/PBDamtrAbjxxhtP66QtCF1B09MDEC4s0dHRyjU1jUaDWq2mX79+eHl5MWbMGPr06YOfnx8nT57k3nvvpaqqCn9/f9asWUNcXBxXX311D89A6Ap6vZ45c+bw0EMP4ePjQ0pKClarlZaWFr7++muuuuoqDAYDoaGh+Pr60tjYiI+PD2VlZQQEBODr60tCQgIHDhzo6akIFxmxUhPOSHJyMtCe9Xjq1CkcDgclJSUUFBQQERFBVFQUu3bt4v7776epqQmA4uJibDYbISEh2O12EhISenIKQhfw9fUlOTmZlpYWJElCr9eTm5vLpk2bcLlclJeX4+npybFjx1Cr1QQFBREcHMz27duVEmn/XX1GELqCCGrCr6bRaAgNDVXuh4aGYrPZMJlMFBQUoFarCQ4O5q9//atSAxDajwAEBQXhcrnYsmWLqPt4kZAkCW9vb+X+hg0byMzMJD8/n61bt1JdXY1Op2P//v3s3r2bwMBAMjMzlS87Hd3SBaEriaAm/GpOp1OpJtLW1gZAbW0tLpeLESNG4OfnR2trK62trZ3S/m02G1arFZ1Ox3XXXac0GBUubM3NzZhMJiXhY+7cubhcLm688UauuuoqDh48SGhoKCEhITQ1NWEwGIiJiVG+1MyYMQMPD4+enIJwERJBTTgj+/fvR5Zl9Ho9Xl5ehIaGEh0dTUlJCTU1Nezduxe73Y6Xl5fyHqvVio+PD3FxcaSkpKDT6XpwBkJX+XF9T4Dw8HAGDhzI9u3bOXToEFdccQXR0dFYLBb+8Ic/4HQ6iYmJQa/XI0kSEyZMYObMmT00euFiJYKacEZWr17dqUHoqVOn2LdvH35+fhw/fhxJknC5XEr3a4DY2FhSU1OZM2eOSOO+iHQEJ2jfitRqtQwcOBCXy8XGjRtpbW2lqKiImJgYdDodMTEx5ObmsnjxYgB0Oh1JSUk9OQXhIiSCmnBGysrKqKqqUu6npKQwZMgQ/P39SUtLo7Gx8bTA5XQ6SUtLY8WKFTidThHYLlIeHh5kZGSQnJzMzTffrGw5arVaioqKkGWZwYMHExERobznv1d7gnC2RFATzkh5eTkvv/yycl3E7XZjsViw2Wz885//ZMyYMaSmpqJWq5VGonV1dezatYuSkhI++ugjpRWJcPGQZRmXy4Xb7WbixIlotVo+++wz/v73v7N27VpaWlqYPHkysbGx2O12pSD2NddcQ2BgYA+PXriYiKAmnLGCgoJOVfolSaKpqYnBgwfj6elJRkYGcXFxSsq23W7H7XazZMkSnnrqKZ5//nlcLldPTkHoYhUVFdx9990cPHgQgMzMTFavXk19fT0Wi4Xw8HCam5spLy+npqaG8vJyoH1r+oYbbujBkQsXGxHUhDPWkfnYoaqqisLCQlwuFy0tLXz33XcUFBRQUFAAoLSjkSSJuro6pcmocPFQqVSMHz+e5uZmli9fzoEDB5RMR41Gg9FopKKiggkTJuDh4cHixYuRZRm1Ws3gwYPFlrTQZcQni3DG8vPzKSsrA9qviSQnJxMREcHo0aPJy8ujqakJX19fZYvS5XLxww8/ANCnTx9iYmLEh9hFRJZl/P39qaioYOPGjXz77bfs2LGDfv36sWnTJv70pz/xzTffoNfrOXToEI2NjeTl5ZGTkwNAUlISvr6+PTwL4WIhgppwxkpLSzl16pRyX6VSERISgkqlIiYmhnvuuYcrrrii03tiYmLIyMjg5MmTeHp6nushC93Ibrfz7rvvsmnTJlatWsWqVas4fvw4S5YsIS8vj4aGBtauXUtxcTG9e/emoqICrVarnFdMSUnhnnvuEV90hC4hgprwm/z3B1B5eTnZ2dnExsZy1VVXoVarletuAAEBAURGRtLc3Mz+/ftFVZGLiIeHB/7+/gwYMIDg4GAcDgd2u53jx48D7Z3Sv/76azZt2kRxcTHTp08nKCiI3bt343A4UKlUTJ06FY1GlKIVzp4IasIZczgcnSrty7KMVqultbVVKXL83wesS0tLWbZsGbIsK/UChYuDJEkEBATw1Vdf4e/vT//+/U97jcvlYsmSJTQ1NREcHExGRgZFRUXKlxuDwSCqiwhdQgQ14YzJskxeXp6yEqurq6OtrY20tDTq6+txOBxkZmZ2ek9FRQV2u53ExERMJlOnVZxw4Rs5ciQjRoyguLiY/Pz8n3xNRUUFDocDb29vTCYTHh4eSjm15ubmTof6BeG3EkFN+E1+fADbx8eHoKAgiouLycnJoaSk5LTXe3t7o1arOXbsGF999RUWi+VcDlfoZlqtljFjxpCSktKp6PWPWSwW5XfDbDZTXFyM3W4H2n+HRPNYoSuIoCb8Jj8Oamq1Gq1WS05ODjExMYSFhTF+/PhOr7darfTp0wdJkjh16hRr1qwRq7WLiCRJjBo1Cp1O1ymJ6MdUKhW1tbVYLBY8PT2JjIxUthzDwsIIDw8/l0MWLlIiqAm/yfbt2zlx4oRyv7q6mgEDBlBfX8/hw4f5+uuvO70+NTUVPz8/rrzySiZMmMDOnTvP9ZCFbhYQEEBhYeHPrsJ79epFTEwMLS0tWCwWqqurycnJQZZlvLy8WLBgwTkesXAxEkFN+E1KSkpYs2aNcr+jq3FwcDB9+vTBx8cHaC96GxERQXp6OrIss3//fvbs2cP333/fabUnXPgqKyvZuXPnz67AR40axfDhwwkICOD48eP4+fmxaNEipSpN7969RS1I4ayJoCb8Zj/+Rt7c3ExycjLBwcEYjUZqamowGo1MnjwZf39/VqxYwZAhQ5g4cSKzZs3C09OTPXv2iEaRF5Hg4GAiIyMJCQn5ycPUK1asYPfu3TQ3NyPLMrGxsQDk5uYCkJiYiNlsPqdjFi4+IqgJv9mPzxW53W6qq6uxWq0cPXoUi8WCyWTi+++/59ChQ9TV1XH8+HF69+6NTqfD29ubd955h3/+85/i2tpFQqvVkpiYSEVFRafWQx0MBgMDBgygpqaG5ORkfHx8uOaaa/j888+B9vNuIllEOFvitKPQJVwuF5WVlVitVioqKvjTn/5ETk4OW7duVQraFhYW8sorr+BwONBqtbS0tHDy5EluvvlmvL29e3oKwlnqOK/2cyIjI5Wtx6FDh+Lp6cmiRYu4/fbbAWhoaBBZscJZ65aVWmlpKddddx3+/v4YDAZSUlLYt2+f8rwsyzz11FOEhoZiMBiYMGGCUn2gQ11dHXPnzsXLywsfHx9uueUWrFZrdwxX+I1qamqUVVZgYCDh4eGsWrWK3r17M2jQIO677z6mTJmCVqvFZrNx6623cumll9K7d29cLhdWq5XCwkIKCwt7eCZCV5BlmeDgYAYOHHjatTGVSsXll19ObW0tkZGR5Obmsnr1ajw9PRk4cCAAOTk5NDU19cTQhYtIlwe1+vp6RowYgVarZc2aNeTk5PDaa6912mN/5ZVX+Nvf/sY///lPdu/erVx7+fHhy7lz55Kdnc369etZuXIlmZmZyjc64fywc+dOnE4n0P4t3dfXl+nTp+Pp6Yleryc6OpqMjAylNc1XX33FmjVrOHz4MEajkfj4eNRqtfIzhAtbfn4+H3zwAS6X67TWQv379ycgIAC9Xo/L5WLr1q14eHgwZMgQ5TU6nU50bxDOWpdvP7788stERkby/vvvK491XBCG9m9zb775Jk888QTTp08H4D//+Q/BwcF8++23zJ49m6NHj7J27Vr27t3L4MGDAfj73//OlClTePXVVwkLC+vqYQu/QUlJCXV1dUrfNIPBQF1dHeXl5cTHx1NbW8uQIUMYMWIE27dvR6PR8MEHH6DT6aitrVVWaj/+/RAuTLIss2nTJkJDQ9mxY8dp10n1ej3BwcGUlpYycOBASktLMZlMjBw5Unl/fn6+6LMnnLUu/1q0fPlyBg8ezNVXX01QUBADBw7k3XffVZ7Pz89X+ip18Pb2JiMjQzm7tHPnTnx8fJSABjBhwgRUKhW7d+/+yT+3ra2NxsbGTjehe5WVlfH11193+gDz9/cnLS2N+Ph4WlpaKC8v5/bbb8dsNmO323n99ddZsGABzc3NbN68mW+//ZaGhoaem4TQZQoLC5UCxT+m1+u54oorlG4OVquVdevWERcXB/y/gPbKK6/0xLCFi0yXB7VTp06xaNEiEhIS+O6777jrrrv44x//yIcffgi0138DlG/3HYKDg5XnKioqCAoK6vS8RqPBz89Pec1/W7hwId7e3sotMjKyq6cm/BeXy8ULL7ygpGRD+7U1l8tFfX09MTEx9OnTh3Xr1hEbG0tpaSlut5vc3Fzmz5/P2rVrqaur63RtTrgwNTU14eHhwTXXXENgYGCn56KiokhKSsLT05PDhw/z1VdfsWPHDqVEltvt5oEHHvjZmpGCcCa6PKi53W4GDRrEiy++yMCBA7n99tu57bbb+Oc//9nVf1Qnjz32GBaLRbkVFxd3658ntCsrK2Pr1q1KUDKbzRgMBtRqNQ6HgzVr1nDzzTczdOhQiouLaWhoIDg4mLFjx1JXV4dareZf//oXzc3NPTwT4WyoVCquuOIKrr32Wp544gnlS6skSaSkpODh4UFwcDD9+/cnPj6eyMhIWlpalPeLVkRCV+nyoBYaGkpycnKnx5KSkigqKgIgJCQEoFPrko77Hc+FhIScVm3C6XRSV1envOa/6XQ6vLy8Ot2Ec+PFF1/k5MmTQPuHm5+fH4WFhZw6dYqEhARiY2ORZRmXy0VZWRlOp5OjR4/ypz/9ieuvv57LLrtMtB25wC1dupSnn36aoqIipk+fzosvvqhU4Z89ezZeXl4UFRURGBiI0+kkODi4U+FrEdSErtLlQW3EiBHk5eV1euzYsWNER0cD7UkjISEhbNy4UXm+sbGR3bt3M2zYMACGDRtGQ0MD+/fvV16zadMm3G43GRkZXT1k4SwVFhYq19YkScLlctGrVy+sVis2mw2n08n27dsBlOahQ4cORZZlYmJisFqtP1nZX7gwuFwucnNz6du3LzfeeCP/+Mc/mDFjBmFhYTidTt58800iIiKULehjx45hNBqVs4myLIvrqkLXkbvYnj17ZI1GI7/wwgvy8ePH5U8++UT29PSUP/74Y+U1L730kuzj4yMvW7ZMPnz4sDx9+nQ5NjZWbm1tVV5z6aWXygMHDpR3794tb9u2TU5ISJD/8Ic//OpxWCwWGRC3c3S77LLLZJfLJcuyLLe1tcl1dXXyoUOH5KNHj8rLly+Xhw0bJgNyTEyMHBUVJU+bNk1etGiR7OPjI0+ZMkUuKyvrul9C4ZxyOp1yYWGh7HK55MrKSrmxsVFeuXKl7OHhIQNyWFiYvHnzZrmurk52OBzy+vXr5fvvv1+2WCyyLMtyeXm5HB4e3uO/w+J2Ydw6fm9+Tpen9A8ZMoRvvvmGxx57jGeffZbY2FjefPNN5s6dq7zm4Ycfprm5mdtvv52GhgZGjhzJ2rVr0ev1yms++eQT7r33XsaPH49KpWLWrFn87W9/6+rhCl0kMjJS6WZtsVjQ6XTExMSwc+dO7Ha7co2zoaGB9PR0TCYTxcXFJCUlMWvWrNM6ZQsXDpfLxapVq+jVqxcRERHs27ePxYsXK4kgTU1NNDU1kZ2dzZAhQ5RD2h11HisqKqirq+vJKQgXkW4pkzVt2jSmTZv2s89LksSzzz7Ls88++7Ov8fPz49NPP+2O4QldTK1WM336dCWo+fr64na7OXjwIA0NDQQGBirVYBoaGmhra8PT05N9+/ZhMBj44osvGDNmDH5+fj05DeE3ys/Pp66ujmXLlnHgwAHCw8M7ZTK63W5kWSYyMpLi4mKysrKYOXMmkiThdrv597//LQpbC11GHN8XzpperycmJka5r9Fo8PDwwGQyMWzYMFpbW9FoNJhMJkaNGkViYqJyGPuGG26gsbFR+VYvXHj27t2L1Wpl+fLl7Nu3j7y8PPR6PQaDAYCWlhbeeOMNTp48yZIlS6ioqFCyZRsbG1mxYkVPDl+4yIigJnQJ+UfnzOrr6ykvL8fX15eysjJ27NiBxWJBlmXGjBkDtK/mUlJS+Pzzz+nbty/x8fE9NHLhbMXGxpKXl0dNTQ12u52srCyOHTumrL5kWWbPnj1s3ryZKVOmoFKplAPaFotFHOcQupQIasJZs9lsnDp1SrnvdrsxGo2cOnWKZcuWsXDhQhwOB2FhYfj4+CBJEmazmeXLlxMfH8/IkSPFSu0CdujQIb755ptOQey/jRw5khtvvJHq6mp0Op3IdhW6jQhqwllzuVzKOTVoP1PocDiQZZm2tjblDFptbS0GgwGr1UpSUhIzZ87EYDCwbNkyjhw50lPDF85S3759/2fH6vz8fPbt20dGRgYqlUqpxu/r64u/v/+5GKbwOyGCmnDWJEnCZDIp94OCgjhx4gSxsbEMHjyYK664Qnn8/fffp0+fPoSHh/PFF1/w+uuvk5mZ+Yt9uITzW3Z2Ng6H4xdfk5aWhsvlUsrcddR+lWVZrNKFLiWCmnDWJEk6rSJIbGwsLS0t9OnTRylC7ePjw/Tp04mNjWXNmjVA+1ZlS0vLT3ZKFs5/HUHpf7WMSUlJYdKkSXh5eeFyuZSu6U1NTeKamtClRFATzlpHLzX4f9dTTp48SWFhIStXrqS0tBRoL1p96aWX8tlnnzFq1Ci0Wq2SNKBWq3ts/MLZSUpKIi0t7Rdf891332G1WrHb7bjdbuX4R0FBgfhCI3QpEdSELtFRu6+jQr+XlxeJiYk4nU48PT0BMBqN7Nmzh5SUFPbu3Yu3tzdutxubzSY6Hl+gZFnm7bff7pQo9FOOHz9OXl4edXV12Gw2JahpNBrRGFToUuK3SThrLpeLgoIC4P+1CAoLC+Prr7/G5XIp11uOHTuGv78/J0+eJCoqihMnTgCIldoFrqWlhdra2p99PjY2lltuuUX58jJq1Chl+7GjB5sgdBUR1ISzplarO/Wvk2WZXbt20dDQgMvlUopZ6/V6jhw5QkNDA2vXrkWn0xEaGopGoxFlsi5QDQ0NnTJff8rkyZO55JJLSEtLY8uWLURFRQHtq/t169aJXnpClxJBTThr/53SD+2NIX/44QcGDRrElClTgPYPsSFDhpCRkUFaWhrz589HpVJht9s79dYSLhzHjh2jvLz8F18THR1Nr169+Oabb/D09FTOs7ndbmpqas7FMIXfERHUhLMmSdJpdRs7itfGxsaycuVKTCYTY8eO5ciRI/j7+1NRUcGzzz6rJJEIF6a9e/dis9l+9nm1Wk1FRQVtbW0MHz6c7Oxs+vbtC7R/GRLNfIWuJoKacNYkSTrt8G1paSkTJ06krKyMwMBA/P39yczMJD8/H5vNRnx8vChie4GTZZmioqJfbMg7cuRIpk6dCrQ3EB41apSSJNLc3ExjY+M5Gavw+yGCmnDWOiqH/JhOp+P9998nPj6eMWPGEBYWxqlTp8jIyCA4OJh9+/b10GiFrmQ2m5UWMj+luLiYtrY2AgMD2b17N7m5uUpSUE1NzWkd7gXhbImgJpw1WZZPO0DrcrkYPHgwbW1t7Nq1i+uvv57k5GQaGxt55plnyM3N7aHRCl3F4XCwffv2X9xCHj9+PPX19Wg0Gvr160dra6uSwm8ymX4xIArCbyGCmtAlysrKOmWxhYeH09TURHl5OYMHD8Zms1FUVERNTY3SW024sLW1tVFXV/eL24/19fUMGzYMs9mM3W6nqqqKoqIiAAICAggPDz9XwxV+J0RQE7rET50zs1gsZGVlsXbtWvLy8ujVq5dSfUJ8Q7/wGY1G5s2b95PNXTUaDU8//TQPPvggoaGhlJSUkJ2djYeHB0ajEWi/FttxMF8QuooIakKX8PHx6XTf6XTy/fff43a7SU9Pp7y8nFOnTnHs2DEiIiJ6ZpBCl3K73aSkpGAwGJTkjw6hoaHMmTOH9PR0MjMzsVgs1NbWMnjwYLy9vYH23xFRIkvoaiKoCWdNkiT8/f07fbCpVCpsNhv+/v7KIdtjx46Rm5vL/v37RVmsC5wsy+zYsYMHH3wQHx+f0w5QT5w4EQ8PDz777DNCQkKQJIm8vDyampqUg/bFxcXk5+f3xPCFi5gIasJZk2W5U5CSZZkDBw5QVFREWVkZl112GX5+fhgMBo4ePSrSuC8Csizz73//m3379rFz585Oz3l7ezNv3jxOnjyJSqWib9++lJeXExgYyOzZs9FqtciyTF5enjjWIXQ5EdSELuF0OpX/ttvtDB8+nN69e9Pc3Mz777/P1KlTCQ8P59prr6WtrY2rr75aKZckXHhkWSYiIuK0rWS1Wk1GRgYHDx4kOzubtLQ0/vrXv/Lll19SWlqKyWRCkiSampp45plnOv3eCEJXEEFN6BIdF/+hPUkgJCSE6Oho9u3bx1VXXYVWq8Vut/OPf/yD0NBQ4uPjlYaRovbjhUelUtHS0kJZWVmnx7VaLVdddRXp6elcf/315OXlkZqaipeXF9dccw2BgYEAHDx4kMOHD/fE0IWLnAhqQpf48TUVWZZpbGzkpptuIikpieXLl2Oz2aisrKS+vp78/HxefvnlTh2PRVHbC0+/fv0YN25cp8dsNhtvvPEGVVVVWCwW+vTpQ05ODv369ePLL7/s1KJI/JsL3UEENaFLHD9+XPmQ0mg0JCcns2XLFoqLi9m3bx+HDx+mtbUVSZJQq9VceumlyiFckQV34Wlra+OLL774yTOHubm5LFmyhNbWVvR6PV5eXjgcDtRqtfI70tbWpgQ4QehKIqgJXeLHh687AldraytqtZqkpCQKCgqUclp1dXWEhIRwzz33oNPpcLvdvPXWW1gslh6ehfBrlZaWsmfPHvbv33/ac8HBwdx111306tWLqqoqQkJC2LZtm9LpHNpX5mKlJnQHEdSELlFeXo7L5VLue3p64nK5GDRoEH5+fp3KaHV8mB05coQZM2YgSRKrV6/m9ddf7/QzhPOX1WrF6XT+ZIPPWbNm4XK5OHToEA0NDYSFhXHLLbdgMBiU1ZnBYFAahQpCVxK/VUKXOHr0KNXV1YSFhQHt3ZCLi4vZuHEj9fX1nbaaZFnm/fffx9/fH6fTqQS5v/71r1x11VWkpKT0yByEX++Xrolt2bKF+fPno9VqcblcqNVqsrKyKCoqoq2tDY1GQ0lJieh4LXQLsVITukRTUxPLly9n165drFq1iqqqKlpaWrBarWg0GsLDwztlSALU1tbS3NxMRkYGAQEBNDU1sWPHDrEtdQEIDw//yfJYACkpKUpdRz8/P2JjY9m2bRuRkZFUVVXhcDhYtmzZOR6x8HshyRfpJ0hjY6NSjkc4N7y8vHA6nWi1Wu69917CwsLIy8vDbreTkpLCv/71L7KysoD/twWp0+mUgseNjY20tbWxfv16EhMTe3Iqwv9QXl5OWlraT3a9vummm5g1axZJSUlUV1fj5eXFlClTKC8vp1evXgQFBbF7927R7Vz4TSwWyy8W0Rbbj0KX+XGlkJqaGlQqFb6+vtTW1mKz2Rg1ahTJyclkZWWRk5OjJI4cOHCAgIAASkpKcLvdPPHEEyxevFgUPT6P5eTkUFNTc9rjKpWK/Px8SkpKCAwMRKfT8ac//YmCggKgvSN6dnb2OR6t8Hsith+FbmGxWJR+WVFRUSQkJKBWqxkyZAiJiYmdthhbWlooKipSrrtt2rSJtWvXim3I85Qsy+zcufMnr4np9Xqee+45TCYTixcv5sorr2T16tU9MErh90qs1IRu8eWXXxIZGcl1111HSEgIubm5REREIEkSBoMBX19fmpubcTqdSjCTJImbb76Zvn37smTJEsaOHUtAQEAPz0T4by6Xi+3bt3d6zMvLC5vNRkJCAiaTiaeeeopTp0710AiF3zMR1IRu4XK5ePvtt/nhhx9YsGABFouFCRMmYDAYSEpKYuDAgTidTv76178q5bKMRiNNTU1kZ2djNpvJyclh9OjRPTwT4b+1tLRw4sSJTo9dcsklHDx4kMWLF/Pll1+K6vtCjxHbj0K3aW5uZtOmTXz66afk5OQQEhJCRUUFJpOJ/v374+3t3ek6nCRJjBo1iiuuuILa2lpxZu08ZTabmTBhAnq9XnksLi4Ok8lEbW0tWVlZYoUt9BgR1IRuZTKZSE1N5aabbkKv1xMfH09ISAjvvvsujzzySKcMuNDQUNasWcMDDzzAnDlz8PDwENfVzkOSJDFu3LhO3c6XLl2K1WolJCSEp59++ic7oQvCuSCCmtCtUlNTmTlzJn5+fhw+fJidO3fy4IMP8s0335zWKPTYsWPs3r2badOm8ac//Yk1a9YoWZLC+WXixIk8/vjjhIWFIUkSvr6+BAYG8tVXX+Hn50dQUFBPD1H4nRJBTehWZrOZ8PBwKioqsFqtHDlyhFWrVgEQHx/PvHnz6Nu3r/L6pqYm3n33XXQ6HUFBQezfv1/03DoPmc1mKioqCAwMJDQ0lJaWFlpaWsjJyaGxsfFnD2YLQncTQU3oVrW1tRw6dIhTp04xceJErrzySh5//HFWrVrFli1beO+997jyyivRarVAe4NRm81Geno6dXV1JCYm0tDQ0LOTEE4jSRL9+/entLSUkJAQZs+ejdPp5MiRI9hsNgYMGNDTQxR+p0RQE7rVgQMHKCkpYeLEieTn5xMTE8PDDz/MhAkTaGtrQ5Zlrr/++tOSDmJjY9m0aRMvvfQSRUVFPTgD4aeoVCoSExPp27cv06ZNw2azodFoiImJITw8nAkTJohkEaFHiJR+oVs5nU7mz59PSEgIDocDvV5Pfn4+iYmJ1NTUEBERwd69e7njjjvYtm0bu3btorCwkFdeeQWn04mnpyejR48mLS2tp6ci/BedTkdFRQU//PADsix3KkvXUfJMEM41sVITul1NTQ1ffvklAQEBqFQqoqKi0Ol0REdHI8syc+bM4S9/+Qu33347AA6HA6fTSUxMDElJSfj6+vbwDISfEhcXh06nw+l00tjYSE1NDXPmzMFgMDBy5Ehmz57d00MUfodEUBPOiQ8//JDDhw9TUVGBVqvl0KFDyLJMTU0NVVVVHDp0iJSUFEwmk/KewsJCfvjhB3GQ9zzl5eXFrbfeitFopLW1ldDQUJxOp7JdvGvXrh4eofB7JIKacE60tLQonRMiIiKIjY2lvLwcLy8vdDodnp6eGI1GoqKilPd0dEfW6XQ9OHLh58iyzN69e9m9ezfV1dWoVCoOHTqE1WqluLiYwsLCnh6i8DskrqkJ54Qsy7zxxhv4+vpiMBgICwsjODgYvV7Pvn37SExMxOVyERgYeNp78/PzcbvdqFTiO9j5RKfT8c4771BYWMh3333Hjh07mDJlCj4+PhQWFmIymTpVjBGEc0F8SgjnhCRJzJgxg8LCQnx8fJQVmPv/a+/M45o61j7+O9kDIYTNBGRfBFRU3HFtK1V7a7V28WqpS+urrdWut63dt9vF6r1d7G1t+95rV6u2dalWbUtFpSgiKKJgVRRk37cAISEkz/uHl/MaE5BAWMT5fj7z+Zgzc2bmCcfzZGaexWyGSqWCwWDAV199hePHj1vde/ToUTQ1NfXCrBnXQiaTwd/fH3q9HkqlEmazGSaTCaNHj8a8efPYKpvR4zClxugRiAj5+fkICAiAQqGA0WhEc3MzRCIRPD09odVq4ePjg/DwcP4eiUQCjuOQm5vL5+Ni9C3Ky8vxww8/oK6uDufOncPJkydhNpshl8txzz33sHBZjB6HbT8yeozff/8dy5cvx5EjRxAREQGdToe8vDw0NjaiqakJd9xxB0pKSiAQCHD69Gl4eHigsrISLS0tqKioABGB47jeFoNxBSaTCdu3b0d9fT3kcjlv5RoREYGSkhI0Nzf39hQZNxgOX6mZTCa8/PLLCAoKglwuR0hICP7+979bxO8jIrzyyivw9vaGXC5HbGwssrOzLfqprq5GXFwclEolVCoVli5dioaGBkdPl9GD1NfXo66uDt7e3nB2doZUKkV1dTVCQ0MRExMDvV6PBx98ENu2bYNKpUJJSQmEQiGam5tZosk+ioeHB1588UW8+uqrqKmpQVNTEwYNGoTi4mK0tLRAqVT29hQZNxgOV2rvvvsuNmzYgH/961/4888/8e6772Lt2rX46KOP+DZr167F+vXr8emnnyIlJQXOzs6YMWMG9Ho93yYuLg5ZWVmIj4/Hzz//jMTERN6PiXF9YjabkZCQgMbGRlRWVkIsFiM8PBwSiQQCgQBubm6QSCQwmUwwGo0gIj79zOnTp/lkooy+g0QiwZgxYzB58mT4+PhALBZDpVJBqVTi5ptvxvTp03t7iowbDXIwt99+Oz344IMW1+666y6Ki4sjIiKz2UwajYbWrVvH19fW1pJUKqXNmzcTEdGZM2cIAKWmpvJt9u3bRxzHUVFRUYfmUVdXRwBY6WPl1ltvpdraWjpx4gRVVFRQeXk5NTU1kVarpZqaGsrIyKBDhw7R2LFjCQDJZDISCAQ0YMAAysvL6+rjyegmysrKKC4ujoYPH05nz56lhoYGamhooDlz5hDHcb3+3LHSf0pdXV27z6LDV2oTJkzA/v37cf78eQBARkYGkpKScNtttwG4bJ5dWlqK2NhY/h5XV1eMGzcOycnJAIDk5GSoVCqMHj2abxMbGwuBQICUlBSb4xoMBmi1WovC6HtUVlYiJycHFRUVkEgk0Ov1kEqlcHZ2RkNDAwIDAxEWFobFixdb3FdRUYH09PRemjXjWhQUFKC0tBRyuRw///wzampqkJKSghEjRjBXDEaP4vCn7bnnnsP8+fMREREBsViM6OhoPPHEE4iLiwMAlJaWAgDUarXFfWq1mq8rLS21ysckEong7u7Ot7mad955B66urnzx8/NztGgMB3DmzBm8/fbbUKlUkEql8PPzA8dxqKqqglKpREtLC/744w+89957AAC9Xg+z2QwiwoEDB3oltxoRoaWlBWVlZcjOzkZ2djZ/ZmQymVi+N1z2WRs+fDhGjBjBW6pGR0dDLpdb/V9nMLoThyu177//Hps2bcJ3332HEydO4KuvvsI//vEPfPXVV44eyoLnn38edXV1fCkoKOjW8Rido7m5GSEhIRgwYACMRiMqKyuRkZEBAJDL5TCZTHBycuJX9ldy7ty5Hs+tRkQ4ePAgZs2ahTFjxmDEiBEYMWIERo8ejVtvvRV//etf8e677yIpKQlVVVVobGy02C1ojaTS3/3shgwZgsceewzV1dXYvHkzzp49C4VCgblz5yIwMLC3p8e4gXC4Sf8zzzzDr9YAICoqCnl5eXjnnXewePFiaDQaAEBZWRm8vb35+8rKyvgcTBqNBuXl5Rb9trS0oLq6mr//aqRSKXP0vA5QKBSYNWsWAgIC0NzcDKFQiJCQEMjlcgDgjYZshVjS6/U9uioiIvz6669YvHix1fOo0+lQUlICANi2bRtEIhHUajU8PT1RW1vLz9Pd3R3V1dVQq9UYO3YsnnjiCYSEhPQ71wSO4zBw4ECMGTMG2dnZCAwMRGFhIfR6PX8UwWD0BA5XajqdzmoPXSgU8pZrQUFB0Gg02L9/P6/EtFotUlJSsGLFCgBATEwMamtrcfz4cT7lSEJCAsxmM8aNG+foKTN6kIaGBtTV1YGIIBaLUVpaCp1Oh+zsbEyfPh2ZmZnw8vJCfHy81b1eXl496sybmppqU6HZoqWlBUVFRSgqKrK43hrcNz8/H6mpqSAiPPfcc/D19e13ik0oFMLJyQlOTk4oKipCRUUFKisrUVNT09tTY9xAOHz78Y477sBbb72FPXv24NKlS9ixYwfee+89zJ07F8DlX3RPPPEE3nzzTezatQunT5/GokWL4OPjgzvvvBMAEBkZiZkzZ2LZsmU4duwYDh8+jFWrVmH+/Pnw8fFx9JQZPQgRYcuWLSgsLITBYIBSqURxcTFGjBiB+vp6ODs7Y+DAgTYNfS5cuACj0dgj89RqtXj77bc7pNDsYcuWLXjyySd5V4X+AP038LTZbIZQKIRWq8WlS5cQFRWFyspKuLi49PYUGTcSjjbt1Wq19Pjjj5O/vz/JZDIKDg6mF198kQwGA9/GbDbTyy+/TGq1mqRSKU2bNo3OnTtn0U9VVRUtWLCAFAoFKZVKeuCBB6i+vr7D82Am/X23DBkyhC5dukRFRUVUW1tLr732Gl24cIGam5upsrKSGhsbadmyZSQQCCzuGzx4MOl0Ooc9q21hMpnok08+IaFQ2C3yL1myhEwmU7fL0VMUFRXRRx99RGlpafSvf/2Lpk6dSgsXLqSvv/6acnJyyN/fv9efOVb6T7mWST9H1D9Nt1rTnDD6HlKpFPPmzcOdd96JESNG4MiRIxg7dixEIhFEIhH8/PywefNmLF++HI2Njfx9s2bNwvbt2yEWi7ttbmazGd9++y1WrVqF+vr6bhnj+eefxz333IOwsLB+sYppbm7Gk08+idGjR8PHxwcXLlxAaGgonJyc4Ovri6lTpzLDLYbDqKurazdSDXMgYfQ4BoMB33zzDZ5++mns378fEyZMgFQqhbe3NwQCAcrLy+Hr62tl6Zieno7KyspumxcRYdu2bVi5cqWFQhMKhQgKCsKkSZMwZ84c+Pv7w8nJqVP+VzKZDFFRUTh8+DB+/PFHC6XdU7RG0ncE9F93h1WrVmHfvn3YunUrxo0bh6CgIOTm5qKhoQEiEQsxy+g5mFJj9Brl5eUwm828pWNZWRkKCgrQ3NyMXbt2wWAwWLQvKyvD2bNnu20+6enp+Ne//mUVYzQyMhLx8fF44403MHHiRDz55JNYunRpp1ZZnp6eyMnJwZgxY/Dqq6/iyy+/7FGLzsLCQqxcuRLz58/HBx980KbfZ0dpamrC1q1bUVpaivPnz+OPP/6ATqeDUqnEqFGj8NVXX6GwsNBBs2cwrg1TaoxepbCwEJMmTUJAQAC0Wi3UajXkcjnGjBkDJycni7YtLS1IS0vrlnkQEfbs2YPExESL6xzHobCwEElJSXBzc+PjVu7duxd1dXV2j6PVaqFUKnH+/HmsWbMGjY2NPWL8Qv815CgpKcFPP/2EH3/8EU8++STuuusu5OXldVqxHjhwAE8//TR+/fVXjBs3DmvXrkVUVBScnZ1RUlLCpxliMHoKptQYvYZUKkVVVRUMBgMqKysRGRmJpqYmpKamYuLEiQgICLC65+LFi92ysiEi/PHHH1bXZ86cibfffhtjx47F119/jXXr1uGtt96y6UfXEbRaLdauXYs1a9YgMDAQ+/fv75Ry7Ay5ubl49913YTAYeJeC5ORkzJ8/n3c9sJecnByMGzcOXl5eeOihh3DrrbdCpVKhpaUFfn5+2L9/v4OlYDDahyk1Rq8RGRmJV155BTU1NdDpdBCLxQgMDMTUqVNhNpttphrqTiMRhUJhda2pqQlDhw7F3r178eGHH0Kn0wFAlyKbFBYWora2FiqVCu7u7lbbrI6GiHD27Fm8++67OHXqFKqrq3HLLbfwZ11Hjx7F/PnzO7Vi8/PzQ3NzM06ePIkHH3wQxcXFAACj0QhnZ2cWg5XR4zClxug1Lly4gNzcXMjlcri5uUGv18NkMqGmpgZ6vR7V1dUWDspeXl58rMju4OrtTpFIBI1GA5FIhJaWFoc6foeHh+PAgQM2Fakjof/6kJWWliI1NRVlZWUAgK+//tpiW/Do0aNYuXKl3QYkZWVlOHPmDJKSkiCRSHDo0CH8+eefyMzMBIB+52DO6PswpcboNcrLy7F69Wr88MMP0Gq1MBqNEAgE0Gq1fNilmJgYvn1FRQWfZ83RNDY2WhmhuLm5Yd68eQgODobBYHCoUjt27Bhef/11ODs7d9uLn4hQXFyMvLw87Nu3DxkZGVYrJ4lEAplMBuByzrrq6mq7xqirq0NFRQVcXV3h4uKCr7/+Glu3boVGo0FJSQkf3JjB6CmYUmP0Gq3nWC+88ALefvttZGZm4vz58xCJRHBzc8OsWbOsMqInJSV1i1LbvXs3Tpw4YTU/g8GAffv2YceOHRZJbLuKTqdDdXU1hg4d2m1R7IkIdXV18PT0bDPDQUtLC79iq62tRUZGhl3fb3l5OWQyGeRyOU6fPo2kpCQYjUb4+PhAJpOxDAaMHocpNUavU1tbiy+//BJ33XUX1q9fj+LiYlRWVmLEiBGora21aFtRUeHwMygiwm+//Wb1Avb09ISvry8CAgK6bPpuC47jEBQU1G1+XAKBAIMHD4ZQKITBYADHcVAqlQgNDcVtt90GPz8/C581rVaLlStXWn3n7SESidDQ0ICjR4+ioqICAPD5559jx44dyMzM7BU/PMaNDVNqjD6BTqdDaWkpdu3aBalUCldXVzQ2NloZZFRXV/PGGo7CbDZbWSByHIf58+dDIpFg3bp13aLUpFIpNm7c6FB5Ws/QrkQikcDX1xcDBw7Etm3bEB8fj48++sgqZyFwOdnnr7/+2uEVli1neJ1Oh+PHjyMhIaFfxbhkXB8wpcboU6hUKnh6ekKn06G8vBwuLi7gOI4/d5JIJN0Sqf/K6CACgQDOzs4YMmQIDh8+jAMHDjh8PAAwmUwYNGgQn3anqxAR4uPj8ccff1goN4PBgDFjxuDXX39FVFQUiouL4ebmhgkTJsDLy8uiD71ej7feeqtD+d9aWlpspnwaP348XnjhBQwdOtQhcjEY9sCUGqNPUVpaij///BMymQyLFi3CuHHj4O/vD6lUCg8PDwQHB7cb960zlJWVITk5GQDg7e2NqKgouLq6wsnJCREREQgJCXHoeK3o9XpIpVI0Nzd3uS/6b+63hQsX4siRIwD+P82PXq+HQqFAbm4uUlNT8cgjjyA1NRWzZ8/GyJEjrfpqbGzssFI7f/68lXN1RUUF9Ho9Dh8+3GW5GAx7YUHZGH2KpqYmfPDBB/jll18gEAjg6urKb3FVVVUhLy8P+fn5Ds2mnJWVxaeYcXJyQk1NDRoaGpCfn4/y8nLk5OQ4bKyryc/Px6VLlxAeHt7pPogIv/zyCxYvXoyKigpkZmYiJycHv//+OwoLCzFu3Dj+3O6PP/5ARkYGli1bhgceeAD+/v4Qi8UWimnUqFHX/OFgNpuxa9cuJCcn87kSgcvbtmFhYWhubrYyvGEwegK2UmP0Oerr66HValFbWwtvb28MGDAAEokELi4uKC8vx/vvv+9Qq7qsrCz+7Ke2thZTp06Fk5MTvLy8cPvtt3drRvXs7GyEhoZ2+v7WFdrixYtRWVkJkUgEs9mMH3/8EVOnTsVjjz2GW2+9FQ899BCamprwv//7vwAun52pVCqIxWIsWbKE34Z0d3fH2rVr23VyN5vN2LZtGx566CErQ5CIiAi8+eabOHLkSKejrjAYXYEpNUafIzc3F6WlpThy5AgeeeQRPvmkn58fBAIBTp065TDzerPZbOE2UF9fj7S0NHh5eWHKlCn4/vvv7bIGbAupVGrTHy0oKKjTCrp1hbZo0SLeV+yll17io4e8//77kMlkKC8vx2OPPYZVq1ZZZaEODQ2Fq6srn4W+sbERf/zxh8Xq62ry8vLw2GOPoba2Fk5OTggJCQHHcVi2bBk2btwIsViMF198sUtRVxiMzsKUGqPP0dDQgPT0dAwdOhQbN25EZWUlOI5DWVkZPD09IRaLbYbQ6gx6vZ4/gwIuG6JkZ2dDq9UiOzsb586dc8g4QqHQplIrKirqdJDmlJQULF68GE1NTRCJRPjLX/6CkJAQ5ObmgogwbNgwpKWlYfLkyfjiiy/4aCJXIpPJUF9fj1OnTgG4bFSydu3ads/UTp48ibKyMggEAsyaNQthYWEQiUS4++67oVar8c0333SLtSiD0RGYUmP0OYRCISIjI+Hp6YlVq1YhMjISvr6+MJlMuHjxIjIyMhyWwFOv11soSKlUCqFQiIiICOzevRvHjh1zyDg6nc7m6kcqldoM3HwtzGYzPvvsM1RUVCAyMhKjRo3Cnj178OCDD0IikeDnn39GSEgI7r//fuTl5bW58goLC0NQUJCF719ubm6bkUBqa2vxwQcfgIggk8lw00034cCBAxg8eDBGjBgBoVCIL774wm55GAxHwZQao89hNpuRmJiI+vp6qNVq/PWvf0VRUREEAgGMRiMaGxsdtlKrqamxWFV4eXnBYDAgJiYG8+bN40NIdRcNDQ24dOlSh6wNr2TXrl348ccfAQAnTpzAsWPHUF9fDxcXF7z00ksoKCjAPffcwwcYtoVQKERxcTEaGxstDEMMBoNVJJdW9u3bh6SkJACAj48PiouL0dLSgoiICCiVSvz0008oKiqySxYGw5EwpcboczQ1NSEnJwcqlQomkwknTpzAkCFDYDab+fO17orW33rmdPDgQWRnZ3cqEag9eHh44LnnnrMr9YvZbMZvv/3GK3aTyQQiQkhICOLj4zFy5Ei89NJL7UbzEIlECAoKQmNjI7Zv324xPhHZjK5PRDh//jy/6mtoaMDGjRuhVCoxadIkHDx4EG+++SYLjcXoVZhSY/RJXFxckJqaiqqqKj7ie2vkDZFI5DCl5uLiAg8PD/5zWVkZhEIhli9f3mZOt85i60xty5YtEAgEdrkoEBEKCgqsro8cORIBAQF48cUXcfHixXb7kMvl8PPzw8WLF+Hr62tR5+TkhDFjxti8LzAwkJejdbzRo0djwIAB+Mc//sG7RjAYvQVTaow+iYuLCyZNmgSTyQSdToecnBzeSdlgMDgspqBer7c6nzObzdi8eTN0Oh0GDhzokHEEAgFuvvlmm3Vnz57FL7/80uEVjsFgsKnUgoOD0dzcbKGk28Lf3x9hYWF4+OGHIRaLLRRuUFCQTWXOcRxGjx4NmUwGjuNw3333YfDgwSgvL8fXX3+NhISEDs2fwehOmFJj9ElaHXfz8vKg1WotzmnkcrnDoooYjUariB5EhGPHjuHEiRPIyMhwyDhmsxnHjx+3WVdaWoqNGzd2KE4iESEtLc1qu9Ld3R133303APCBhduD4zg0NjYiMzMTwcHB0Gg0fF1YWBgkEonN+1pDlAkEAgQEBKCpqQkajYat0Bh9BqbUGH0SNzc3CIVCBAUF4aabbrJYSXRH7MeriY2NRUxMDEaNGuWwPsePHw+VSmWzTq1WW8SfbIuWlhasWbPGyt+M4zhUVVXhhx9+4EN+tUdVVRWampoQHh6O0NBQDBo0iK8bPHjwNTMHDBgwAK6urjh8+DCMRiPLm8boMzClxuiTBAUFoaqqCmKxGJcuXbIIjhsZGWkzwnxnEAqF/At84sSJGDx4MDw8PPiYienp6Q4ZBwCSk5PbdEXo6NZjdXW11ZxkMhmeffZZREdHQ6fTdWjF19DQgIKCAjg7O6OgoMAiQeqViVmvnmNtbS2ICL6+vjh06BCKioqQmprqEAd1BsMRMKXG6JPk5+dDLpfjvffeQ2NjI79SCwwMxC233NJuxAt7cHNzg7e3N4DLjtfu7u6QSqWYOHEipFIpcnNzHTIOcDlfWVsKp63tvqsxGo1WfQgEAowYMQIuLi7Yu3dvhxTk0KFDERkZibKyMqSkpPCO2SqVChEREVbtiQjJycmIi4uDXq/HqVOnsHfvXphMJjg5OSE4OLhD82cwuhum1Bh9krCwMNTU1PCrhjNnzgC4fDbl7e3dYSVwLRQKBR97sbS0FNXV1SgtLYVcLoder8eMGTPa3DJ0JG5ubjatI6+mVakFBATAz88PAODr64vm5mbU19d3OE7lLbfcgrq6OqSkpKCgoIDf+iQimz5z+fn5iIuL44M7e3p6YsWKFRAKhWhpabGZV43B6A2YUmP0SdLS0nDu3Dk0NzeDiPgo8gUFBcjLy3OYSb9AIMDcuXPBcRzy8vLg7u4OuVyOxMREFBUV4f7773d4UlJbpKend2jbMC8vD83NzZgwYQKMRiMkEgkWL16MW265BYsWLeqQBSLHcYiJiYHBYEBQUBBuueUW3vCmrq4O//73v61WexcvXkRhYSH/WSAQIC0tDWazGbW1tVZnfAxGb8GUGqPPMXDgQNx///0YOXIkXF1dLaJ6EBHOnDnjsIDGHMchMDAQAoEAw4cPh7+/PyZMmIDff/8dRIStW7d2e1QRAMjMzERVVVW7bYgIDQ0NuPvuu5Geng6z2cyb8W/ZsgUSiaRDyp6IsG/fPoSGhsLZ2RkJCQlQKBT8SrG8vNxqe9fd3d3CeKSyshJHjhwBEcFkMjlsO5jB6CpMqTH6HK6urggODsZXX30Fo9Fo4UgcGRkJFxcXhyqaoqIimM1mFBUVoampCTfddBOkUilCQ0OxZMkSh6We4TgOw4YNs5lqpqKi4ppm8dnZ2XjvvfeQlZWFMWPGICgoCLNnz8bFixdx/PhxzJw5s8MJR0UiETIyMlBQUABfX1+MGTOGzyo+ZswYKwvTyMhIrFq1ir/u4eGBZcuWOWwbmMFwFEypMfocBQUFOHr0KA4fPmwRqkqlUuGmm26CRqPpkPl7R3F2dgbHccjPz8epU6dARNDpdNi3bx+8vb0dlpDU398fK1assHlm1dTU1G60fiLChg0bcODAAaSlpeHgwYPIysqCwWDA4cOHYTKZsGnTpg4ZiYjFYkybNg3FxcXw8/ODh4cHRo0aBYPBgEmTJuHhhx+2ukcqlWLFihW8M3pjYyO8vb35PGwMRl+BKTVGn8NgMOCzzz7DsGHDwHEcOI7D3XffDZVKBQ8PD4cn7WzN+yWVSvHaa6+huLgYer0epaWlaGpqsjhL6gqDBw/GBx980GbA3/byj12dIqewsBBjxoyBTqdDbm4uDh482OGMAmFhYZg6dSoCAgIwdOhQGI1GXqFKpVKbW5itSrXV6Vur1aK+vh5OTk4dGpPB6CmYUmP0OZqbm5GSkoL//Oc/AIC77roLN910E6qqqrBhwwbk5OQ4NGhuVVUVfza0c+dOKJVKeHh4QKPRQC6XO8woxWg0wtvb28LRuaO0tLRYhAYjIpw+fRru7u4QCoU4d+4cb0xzLWbPng2O45CamoozZ85ArVbzZ2KnT5+26XNmNpstlHvr9z9+/Hi7ZWEwuhOm1Bh9EiKCm5sblEolQkJCEBYWBqPRiKqqKqSnpzvUIrG0tBREhJaWFmzbtg3Hjh1DS0sLxGIx9Hq9wyKYXLhwAWPHju1U9A2FQoGRI0daXKusrMTHH3/cIavJVoRCIdRqNbRaLSZMmICPP/4Yhw8fxoEDBwCgTaMPoVCIqKgoftvXbDYjJSWFz5jNYPQVmFJj9FlOnTqFjRs3QqfT4aGHHuItHvPy8nh/qa5CRFYv8ejoaH6Vlpuba1damPZobGxEVlZWpy0FR48ebXXN3rxyUqkUM2bMQHl5OUQiEW699VZIpVI+0klAQAAUCoXNex9//HE8+OCDvBVk6xYkg9GXYEqN0WcxmUw4duwYXn75ZeTl5fHXHRmlv6qqCjt37rS45unpiTFjxmDEiBH48ccfHWauXlVVhV9//bXds7O24DgOHh4eNg1k7LEENZvN+PHHHyGRSHDo0CFUVlZaOE4TUZtbu87Ozvjwww/xxBNPALjsW9ddee0YjM7ClBqjT2MymayUQGfPpWxx/vx5nD9/3uJaeno6XnjhBRgMBnh6ejpkHOCyQumMQmtFKpVaRR0RCASYOHEi5syZ06FtUpPJhMjISOzfvx9btmyBi4uLxfZlQ0NDu3N0cnLC3LlzIRaLMWDAAFy8eBHBwcG47bbbEBsb22nZGAxHwZQao88hk8najSU4atQouLq6dnkcIuLN4q+kqakJe/bswcGDB7F//36HGqUMGDCg0+4I0dHRVpm4zWYzUlNTMXLkSNxyyy3X7MNoNOLEiRMYNWoUzp49Cw8PD/j4+PD11dXVVt/H1QwZMgQhISGoqamBj48Phg0bhqioKAwcONBhKYEYjM7ClBqjzxEaGoqwsLA2z3YmTZrkMOON1qzarUgkEnh5eeHrr7/Gf/7zH6v6rhIYGHjNtC5tIRaLbTo76/V6EBGcnZ071M+RI0dQX1+PYcOGYcOGDRYR+juCUqnEsGHDkJSUhN27dyMoKAhFRUV45JFHHJZUlcHoLEypMfoUCoUCf/3rX3HXXXfZtOqTSqUYN26cw8a7OopHc3Mz3NzccNddd6G8vPyaqxZ7KSgosMta8UoyMzNRXV1tdX3SpEkIDAy06dRtC5VKBYlEgsLCQiQmJnb4vivhOA5SqRRKpRKlpaUICAhAfX09iwHJ6HWYUmP0KfR6PYxGI/7zn//YfNnK5XIEBAQ4bLyrz+ZaQ0XJ5XJ4eHg4bBzg8gonOjq606vMixcv2jzv8vPz47chO8rAgQMRExPT4dWdLe677z54enoiNDQUjY2N8PHxgVqt7nR/DIYj6Nw+CIPRTbRmdu5oDMOuYDKZrBSnQCBAYmIigoKCHOY20ArHcUhMTOz0Sm3YsGEQi8VWTtatkT2CgoJsruRskZOTA6FQaGV40p7145VwHAe5XI6GhgYUFhbitttug1arZRFGGL0OW6kx+hztKTQfHx+HGSMcOXIEH330kcU1juMwd+5cODk5OVyxGo1GzJ07F3/96187da4WHh5ucyV09OhRvPrqqx3KxwZcDuD8ySefoLKy0spdoaamBklJSddUbEFBQTh+/DgGDBgAjUaD77//HuXl5XafzzEYjoat1BjXFdHR0W0akNiD2WzGzp07rVLYcByHQ4cOdXo11R46nQ4pKSmorKy0uY14LaXk5uYGd3d3q1iUxcXFCAwM7LBFaFpaGh/E+erILC0tLXj//fcxY8aMdrcmW1dqHh4eKC8vR319PfR6vd3O4AyGo2ErNUafIzIyss2VjKPCY126dAnffPONxTUfHx989NFHmDVrFp9p29E0NTXZ3CKUSCQICQlp916BQNDmOZ+vry/8/PwszPPbo7m52WYKHABISUnB77//3ua9HMchPDwclZWVGDFiBM6fP49bb70V+/fvx+TJkzs0PoPRXTClxuhzFBcXt7n9lZGRYTPgrr2cOHHCylIvKioKvr6+8Pb2RkVFRZfHuBq5XI7Y2FibCttkMkGr1bZ7v9lsbvPM7Pjx49i9e/c1E422YjQa29wqNBqN+OOPP9rdgpRKpcjJyUFKSgpGjx6NnJwcjB8/HkFBQR0an8HoLphSY/Q56urq2tz+q66u7vJqjYhQVFRkNYZOp0NycjKysrIclln7SpqamrB582abW49SqRQRERHt3i8UCuHv72+zzmQyQaPRgIgwYMAAiEQiKJXKdh2925PxxIkT7YYHaw1kfPHiRURGRiIhIQEeHh5ISkpqVwYGo7thSo1xQ3L48GGra8ePH0dLSwtOnTrl8PHc3Nzg7e3dpiIxm83XXKmJRCJMmDDBZl1kZCRiYmLw6KOP4qGHHkJoaCg0Gg3mzp3b5hmkUChs89zszJkzKCkpaXMuWq0WLS0tKCoqglwuR01NDTQajcNz3TEY9mK3UktMTMQdd9wBHx8fcBxnFQyWiPDKK6/A29ub327Jzs62aFNdXY24uDgolUqoVCosXbrU6oD51KlTmDx5MmQyGfz8/LB27Vr7pWMwbFBbW4sTJ05YXTebzSgvL8eePXscPubEiRMRFhaGFStW2IwKIpfLO5RFetSoUVYGJbGxsQgPD0ddXR3Ky8vh6emJBQsW4Oabb0Z0dDTuuOMOmys2s9kMjUZjU7GVl5fj4MGDbc7j4sWLaGhogLu7Ow4ePAgnJyds3LjxmoqZwehu7FZqjY2NGD58OD7++GOb9WvXrsX69evx6aefIiUlBc7OzpgxY4bFL9S4uDhkZWUhPj4eP//8MxITE7F8+XK+XqvVYvr06QgICMDx48exbt06vPbaa/j88887ISKDYUlzczPq6uqsruv1enz++ecOywBwJTKZDHFxcZBKpTa3VkNCQjpk5GHLQrKgoAB/+9vfsHDhQgwdOhQnTpyATqdDaGgoAgIC4OPjY3MrkYgQGxuLIUOGwMvLCyqVyqIuPj6+zXO1gQMHQiwWIyUlBXq9Hmq1GoWFhfDz87umDAxGt0JdAADt2LGD/2w2m0mj0dC6dev4a7W1tSSVSmnz5s1ERHTmzBkCQKmpqXybffv2EcdxVFRUREREn3zyCbm5uZHBYODbrF69msLDwzs8t7q6OgLAynVWOI4jHx8fmjZtGnEcZ1WvUqmooKCgs48sERGdPn2aFAoFCQQCkkqlFmO7ubl1i1xKpZLWr19Pc+fOJaVSaVU/ZcoUam5uvubc4+Pjrb6X8PBwOn36NP373/+mX3/9lfbs2UPvvfcerVu3ji5evEgzZ85sc16zZ8+mKVOm0JgxYyg8PNyiLiIighoaGmzOIzc3l1xcXAgABQcH07PPPktyuZxUKlWvP0Os9O9SV1fX7v8Rh56p5ebmorS01CIFhaurK8aNG4fk5GQAQHJyMlQqlUXCw9jYWAgEAqSkpPBtpkyZYrFNM2PGDJw7d67N2HIGgwFardaiMK4/1Go1Nm3ahOeee87mNp0j+Pbbb9HQ0ACxWGxhIi8WizF16tQOOzHbg0KhwK233orFixfbNBRRq9Wdjt6vVqtRX1+P8+fPY/369Xj22Wexb98+ZGZmIi0tDUeOHGnz3r179yIpKQlpaWlWqzK9Xt9mGpoBAwbwLgiNjY2QSqXQ6/UOsUxlMLqCQ5VaaWkpAFhFPVCr1XxdaWkpBgwYYFEvEong7u5u0cZWH1eOcTXvvPMOXF1d+cK2Qa5fxGIxqqqqEB0d7fC+DQYDjh49yv+7uLgYwOVtPY7jUFpa2uko+u0RGRmJ/Px8fPLJJzatN11cXK6pTIkIp06dslI+Wq0WmZmZOHToENRqNbKyslBeXo477rgDb775Zrs/8FpaWmA2m0FEkEgkFnMoLi5GQkKCzS1ImUyGKVOmAADKyspw4MABq7Q4DEZv0G+sH59//nnU1dXxpaCgoLenxOgENTU1SExMREBAgMMcra/EVignjuPwt7/9DY8++igqKyutYis6gqysLDz88MP47bffrOo4jsOECROuuVIzGo3YvXu31fWMjAysWLECM2fO5C0dz5w5g4ULF+L06dMdnmNmZqaFAmtubsaKFSvw+++/Wyk2gUCA1atX8w7c9fX1cHd37/BYDEZ34VClptFoAFz+5XYlZWVlfJ1Go7FK99HS0oLq6mqLNrb6uHKMq2lNg3FlYVx/REREwNnZGTKZjF9FOQoiwsmTJ1FZWWlVl5WVhaampm5xugYu7zDk5ubarHN3d8fNN998zT7aiq3YqnDc3NyQkJAA4LIC7ExKmaspKyvDokWLbEZY8fLyQnh4OIDL1sp5eXldHo/B6CoOVWpBQUHQaDTYv38/f02r1SIlJQUxMTEAgJiYGNTW1uL48eN8m4SEBJjNZj5PVkxMDBITEy1+McfHxyM8PBxubm6OnDKjjyGVShEdHY233nqrw9ExOorBYMC6deusrA/FYjEyMjJw6NChXomIMXbs2A5tl9fV1bV5ZsVxHM6dO9ct8y8rK7NKa2M2m7F7927+vI46GN2fwehu7FZqDQ0NOHnyJE6ePAngsnHIyZMnkZ+fD47j8MQTT+DNN9/Erl27cPr0aSxatAg+Pj648847AVw+W5g5cyaWLVuGY8eO4fDhw1i1ahXmz5/PmzTfd999kEgkWLp0KbKysrB161Z8+OGHeOqppxwmOKNvcvHiRRw7dgxlZWUON9jYt28fb7DUilKpxIgRIzBkyBAMGjQIFy9edOiYHcHV1bVD53gXLlyw2hrlOA5Dhw7FCy+8gLKyMoSHh3faAdrJycmmozYRISsry+JaSUkJVq5cyZKCMvoeHbaD/i8HDhywaWa5ePFiIrps1v/yyy+TWq0mqVRK06ZNo3Pnzln0UVVVRQsWLCCFQkFKpZIeeOABqq+vt2iTkZFBkyZNIqlUSgMHDqQ1a9bYNU9m0n99FrFYTJs2baJPP/2UNBqNVb1KpaLCwkJ7H1vS6XQ0adIkAkBCoZCcnJyI4zhatGgRrV69mp577jny9/fvNrkkEgnNmTPHpptCWFgYabXaa8rw4YcfWtzHcRxJJBJ66aWXaOnSpbRw4UIaPnw4DRo0iAQCgV3z4ziO7r//foqMjLR573333UctLS38XPbt20cikchmX/aOzQor9pRrmfTbbeZ10003tbvNwHEc3njjDbzxxhtttnF3d8d3333X7jjDhg3DH3/8Ye/0GNc5rSlNgoODYTQaIRAIcPfddyMlJQX5+fkYNGhQpzJSFxYWIisrCwMHDsQ777wDLy8vPPPMM8jJyUFwcDAaGhqsznEdiVwuh0wmw7Jly/D9999bbCMWFhbiwoULdlt73nbbbQgICEBCQgKmTJmC3NxcaDQaGAwGNDc349KlSx3ui4iwefNmqNVqmyvkPXv24OTJkxg5ciQ4joO3tzckEomFyb9AIMCSJUsQGhqKjz/+GEVFRXbJw2A4gn5j/cjoHwwdOhTBwcFYuHAhqqqqoFAo0NLSwucQGz9+fKe21/bv34/a2lpIJBI0Njbi7NmzKCkpwfHjx7FmzRokJyd3i9VjK/X19fDy8kJdXZ2V75ezs3OnzooDAwNx+vRpuLm5QS6XY8eOHbhw4QJMJhOioqLs7s9kMqG4uNhmxJO6ujq8+eabfGSSoKAgDBo0yKINx3FoaWnBjh07HH4eymB0GLv3ca4T2Pbj9VeEQiH9/e9/p08//ZTEYrFVvUAgoC1bttj9LDQ2NtI999zD99Hbcl5dJkyYQE1NTdeU4+rtx9YiEonI3d2d/xwUFERDhw51+DzVajWVlZUR0eVjhv/85z82v8+7776bZDIZH7Wlt79fVvpX6dGIIgxGV3B3d8fYsWORkJBg03DCxcXF7i06IsIPP/yAHTt2gOM4BAQEOGq6DmPcuHGQyWSdulcsFmP58uVYtmwZ7+eWm5uLzMzMTs+nLUfwyspK3u+N4zjcddddGDZsmFW7nTt3QiaTYeTIkW0mImUwugum1Bh9Ao7j8Mgjj+Cnn37C999/b9PHKiQkpM18Ym3R0NCADz74ACaTic+j1kprzrHeRCAQ8JE5OoPJZILRaMQvv/wCNzc3SKXSLru96PV6m+fmJpMJW7du5bdPXV1d8fjjj1s5jZtMJjQ2NiIlJcWucz0GwxEwpcboE8hkMjg5OeHPP/9ss01MTIzd52m5ubm4cOEC/zk4OJiPRt/S0mKV8qinUSgUfMLNzmA2m7Fp0ybodDpERES0mYHAHto7W9y5cyevqDiOw9y5c22u1oxGI2+wwmD0JEypMfoE48ePR35+PhITE9tsc/PNN9vtu1ZSUmKRSsbf398ib1l72Z17AoVCAblc3qG2bcmu0+kglUrh4eEBIupWmSoqKvD555/zYyiVSrz//vvtrg67I0A0g9EWTKkx+gTe3t7Ytm2bTcs7APD19cWYMWPs6tNsNuO3336z2EojojazR/cWtrb6bDFy5Mg2MxcMGjSoxywOv/76az7kF8dxiImJQURERJvtg4KCWEZsRo/BlBqj17hyxZScnNzuS3nYsGF2Z17Q6XT45ZdfLK6lp6cjOTkZzs7ONqNn9DRGo7HDK6tBgwbB29vbZt3evXuhUqmsMmB0B2VlZTh8+DD/WSKR4IEHHmizvVKpxMSJE7t9XgwGwJQaoxdpDR7McRwkEkm7ZznBwcF29U1E2L59O86fP29xvbKyEufPn4eTk1OfSE/U3Nzc5ur0apRKJVxdXa2uy+VyvPrqq3jhhRc65Z/WGQ4dOsT/m+M4zJo1C5GRkVbtBAIBZs6c2eVzPgajozg+cRSDYScikchK+VyJQCDApEmT7Dqb0Wq1+Oijj9pMcllRUdFtEfntQSQSdTo5aCsSiQQnT56Ei4sLzp0756CZtU9ZWRlaWlp41wuNRoMJEyZYGfoQET7++GPU19f3yLwYDLZSY/Q6zs7O7Z4r3XbbbZg5c6ZdfaanpyMjI6OrU+t2PD094ezs3KU+6urq8P333yMpKcnh1oaTJ0+26Wt28uRJq4wBy5cvt0oUSkR8rjWhUOjQuTEYtmBKjdHrtJVOBbjsC7V27Vqb227tcfToUYvtTIFAwK/0euPlOnXqVJsO5TqdziGKSKVSobi42KFR82UyGf7nf/7H5gq5rKwM2dnZ/GeO4zBy5EgsWrTI5sqzurq6w9usDEZXYEqN0acJDg62OwqI2Wy2SJWiVqtx5513QiwWQyAQdLvDtVQqhVAo5KOEBAYG4qGHHrL5stdqtTAYDF0ec/ny5YiMjHRo/Eqj0YhVq1ZZKK9WbLkOiEQivP766wgMDLTZn5ubGyQSidVqjsFwJEypMfo0S5YsgZOTU4fbExG+++47/PTTT/y1uro6HD16FM3NzfD29sbrr7/e5S2/9rjvvvtwyy23YP369fD19cW9996LQ4cO2TwXNJlMHT5v4jiuTYU8efJkhyvr1q1De3B3d8fatWutTPiFQiHi4uIwYcIEzJgxo8O+eQyGvTClxuizDBo0CPPmzbPLQKSkpAQvv/yyxctYr9ejuLgYYrEYTU1NeP/99y0csh2Nl5cX/Pz84Ovri0cffRRKpRIrV67ESy+9ZPUyb2howKlTpzrUr1gsbtM0vra2Fs3NzQ7zB1MoFBgzZgymTp1q130cx+HWW2/FkCFDLK63Ku958+bhgQcewPjx4yESidg5G8PhMKXG6DXa2qZqZcyYMXb7XR06dAh5eXk264YNGwaxWMw7DncX3377LUpKSqBUKiGRSMBxHOLj46HT6WxaO7Y136vhOA5TpkyxUvLe3t7Iz8/H6NGjLXz/uoLZbEZgYCDc3d3tvtfFxQVPP/20lQLfunUrPvvsM2zbtg133nknli5dCk9PT4fMl8FohSk1Rq8gEokwZ86cNlcCCoUCq1atssvcnYhw8ODBNi0p09PTUV5e3qn52kNxcTFSU1NRVlYGd3d3fPzxx/jmm29gNBpx8803W7W3R0ZPT0+r1ZharUZMTAwAIDQ0tMsuAsBlE/2IiAicOXPG7ns5jsO8efOwYsUKCwWs1+uRkZGBb7/9Ft7e3vif//kfq7iXQqGQRR9hdAmm1Bg9jkAgwIMPPgh/f/82/dMWL16M0aNH29WvTqfDsWPH2qw3m80dDknVVSorK3Hfffdh+fLlKCkp4UNcpaWlWRlY6PX6Dvfr5eVldcbY0NAAIoKXlxcGDRoEsVjc5fmXlJRAo9FAJBLZ3P41m81IT09v836hUIjnn3/eZqqg5uZmPPjggygoKMDQoUMRGBjIyxQYGIjp06d3ef6MGxem1Bg9DhHh119/xbPPPouSkhKreoVCgSVLltg0gW8Pg8HQJxyqWzEYDDAYDBCJRBg8eDA2bNiAyspKq3b2nBm6urparWRKSkpw//33o6ioCKNGjerUluHVNDU1ITExEbGxsbj33nut6okIhw8fbtdM38PDA99++63NdEENDQ1Yvnw5mpqa8Pnnn2P27NlQKBTIzc3Fvn37ujx/xo0LU2qMbiM8PNzmC5uIkJeX1+YL8e677+5UOpazZ8/2yPaivYSHhyM6OhqPPvoowsLCrOpDQkI63FdlZaVVrrnGxka0tLTA09MTXl5eqK6u7vKcAaCmpgYajQbBwcE2zzZLSkraXflyHIeIiAi8/vrrNn+gmEwmzJkzB0ajEYsXL8Y999wDb2/vNqPAMBgdgSk1Rrdx6dIl3HvvvXZth7X3EmwPIsKhQ4cc6qflCFozRIeFhaG5uRk5OTlWbdrLIXc1crnc6rsRiUQYNmwYNmzYgPDwcD5fXFf59ddfodFocO+999r0LdNoNNdcZXIch/nz5+PJJ5+0mndTUxPi4uKwceNGZGVl4S9/+QvUarVD5s64cWGxHxl2IxaLIRQKO3QWFB8f3+Ff3kKhEGvWrLE7uzURIS0tDZ9//nmbbRQKBVxcXGxud3Yn3t7eGDZsGLZt24azZ89CJpNBp9NZtGkvbcvV2DoXVCqVeOaZZ2AwGFBVVeWQfGocxyE8PBxbt27Fk08+aTPqi5OTU4e2TmUyGd544w0AwPvvv88/D3q9Hnq9Htu2bcPOnTshl8shl8shEAgQGBho8wcAg3Et2EqNYTehoaEYPHiwzTqxWAyRSITx48djzpw5GD9+PNzc3HhDAD8/P4SFhdl8GU6YMAG33nqrXWdMrQrtkUce4TMyX4lCocDcuXPx5Zdf4p577ulwv45CJBIhJycHwcHBuOOOO6yihzg7O2Po0KEd7s/Ly8sqEn99fT22b98OoVCI1NRUTJs2ze6wYlej0Wjw/vvvg+O4NiPsjxgxosOWljKZDH//+9/x1FNPtbkV2dDQgIqKCpjNZhgMBgiFQubHxrAbtlJj2M3Zs2cBXE7+WFNTg7q6OhARBAIB4uLisH//foSFhcHHxwdOTk4IDAyEXq/H999/j5tuugkAcOHCBYs+BQIBZs2aZXekiaamJqxatQonTpywWR8XF4dnn30WOTk52LRpk/3CdpLIyEhcuHABo0aNwsSJE1FUVISNGzdaOX2LRKJ2s0ZfjVwuxyuvvIIjR47wMSONRiPq6uowevRoeHt7Y9CgQTh+/HiX0r0EBATg1KlTyM7OtnluJhAI7FphApfDh73++usgIosVmy2KioowZcoU+Pr64rvvvrN7/owbF7ZSY9hNq/n4zJkzERcXx/+aNpvN+O6771BQUICtW7fi/PnzSExMRFBQEE6fPo3hw4fjp59+wqZNm6xelDfffDMefvhhu1ZpZrMZH374IdLT021uuXEcB4VCgaNHjyIuLo43oLBnjM6i1+vh7OyM/fv34+TJk6iurkZSUlKX++U4DsHBwVYJTlNSUrBmzRq8/vrraGho6PIKp7m5GVFRUW1uMXMc16lQY60rto0bN9rMv3YlOTk52LFjh0P87hg3ENRPqaurIwCsdFN5/fXXadq0aeTi4tJuO4lEQt7e3sRxXJttQkJC6MSJE3b9fc1mM+3du5fc3d2t+hMIBDRt2jRasmQJ7dq1i3x8fGjevHmkVqtJIBCQm5tbt38/MTExpFAoSCgUUkhICEVGRpJAILBqJ5VK6cCBA3bJbjAYKCYmxqIfjuNIIpHQiy++SEVFRbRs2TJycnIiJycnu+YtFApJLpfTwIEDaejQoaRUKsnT05OEQqHVd7xjxw4ym812zf3Kv9/58+fp0UcfpeDg4Dbno1KpaNmyZSSXy3v9mWelb5S6urp2ny2m1Fixu0ilUpoxYwZJpdIu9xUSEkJpaWl2vxwLCwspICDAZp9RUVGUkpJC69evp4iICBKLxeTi4mL1Yu6JMmzYMHr77bfp008/tamAAdCcOXOoubm5w7KbzWZ69tlnrfpRqVT02Wef0YULF2jWrFmdmq9AICCxWEwAaMaMGbR9+3aaPXu2zR8lI0aMoJqamjbnaTKZqKWlhf/btn6+cOECffHFF7Ro0SIaP348hYaGtjkfhUJBs2bNIl9f315/7lnpG+VaSo2dqTE6ROtWXn19PVpaWpCcnNzllCkhISHYunUrRo4cadeWoMlkwtq1a23GTJRKpZg+fTq2bt0KtVqNhoYGtLS09Frm5bNnz+LLL79EaGhom2dcx44dQ1VVFTQaTYf65DgOM2bMwPr16y22B9VqNaKiopCamoohQ4agsbGx3bBhtnBycgIRwWg0IjExEZmZmaioqLDZx6lTp/Djjz9i6dKl/N+vtrYWp0+fxpEjR5CRkYHi4mKMHz8eLi4uuHDhAi5cuIDs7GyUlZW1Ow+BQIDFixdj7NixKC8vbzdSDINhQYd/Hl5nsJWaY4ufnx8999xzDusvIiKiUys0s9lMmzZtImdnZ4v+FAoFAaCbb76Zjh49Sj/99BNlZWXRHXfcQcDlFZMjVpbdUeRyud3br1qtlsLCwiz6kUgktGLFCtLpdJSQkEDPPPMMBQcH29z2bKsMGjSI3njjDX61dq0ybNgwqqmpIbPZTGlpaTR16lQSiURd/k6EQiE98MADNGTIEIutx0GDBvXZvyMrPVOutVJjJ7CMDjFp0iRotdoOtxeLxXB3d4eLiwu8vb3h7e2NgQMHYuTIkXj++eeRkJBg9wqNiJCRkYEXXnjBwopQJpNh6dKlkEgk8PHxQU1NDf75z39CoVCgrq4OEomk36U5USgUmDdvnsW15uZm7NmzB//4xz+QlJSERx99FE8//TSEQmGHjS0uXbqEo0ePdjhLdWZmJp5++ml8+umnmDNnDg4dOuSQiCAmkwlffPEFsrKyLP5uN910E0syymgXjqiHIrz2MFqttsu+Ooz/5/XXX8dvv/2Gw4cPt9vO398fy5Ytw+TJk+Hr6wuj0ci/hAQCAdzc3CxiF3ZEqRERGhsbcerUKaxatcoikK6rqysiIiIwZMgQ/PLLLxg1ahQeeOABVFRUQCaTYdWqVVixYgXKy8vx1Vdf9VhAY1sMGzYM2dnZVmGugoODceLECbuf19LSUtx33304cOCAxXWpVIo9e/bAy8sLu3btwqVLlzBy5Ei89tpr3RIbk+M4CASCDitCexAIBJg2bRp+//13EBGEQmG3jMO4fqirq2s3IS47U2NcE7FYjIMHDyI1NfWabWtrayGXy+Hj4wOz2QyhUAidTge5XI66ujrs378fWVlZOH/+PHx9fTF06FCo1Wq4uLjAw8MDgYGBcHZ25n+dExF++eUXvPjiizhz5ozVOV5gYCCefPJJfPDBB4iJicGyZcsgFosREhKCzZs3w8nJCWKxGJs3b+5VhcZxHKqrq60UGnD5HOtqh2SDwYBLly6hsLAQvr6+CAwMtJlyZtOmTbj//vuRkJDAX29ubsY///lPyOVyTJ48GbNmzcIPP/wAd3f3blFqRNRtisZsNiM+Pp7/zBQa45rYtZF/HcHO1Bxb7DmXEQqFvDl5a1Gr1eTk5GTTik4oFJJEIiG5XE6RkZEUFxdH//znP2nXrl304YcfkqenZ5tjDR8+nJKSksjNzY1cXV3p2WefpYMHD1JpaSlt2rSJ3n//fZo9e3avf3/tlYCAAItzgsLCQlqyZAkpFAoSi8WkUCjoqaeeoqamJiK6fK544cIF+v7772nnzp2UlJRkZeLfWlQqFX3zzTcUGxvb42dRHMfZ9dywwkpHCjPpZ+W6LQKBoF3/NqlUSoGBgTR37lz+5Tl9+nRav349paWl0bRp02j48OHk4uLSbj/dUewZz9PTk/7973/Tpk2b6JtvvqEpU6ZYtREKhfTUU09RQ0MDbdy4kfz8/Hil4eHhQYGBgTYViEQiodDQ0F5RLu7u7qTRaHr9OWKlfxWm1FjpN8XDw4M0Gg25uLiQq6srvfDCCzR48GC+XigU0ieffEIXLlyghx56iL/u7Ozc4y/1adOmtemX1tkiFApp+vTpdjtU91ZxdXXtlG+gn58fSSSSXp8/K32zMD81Rr9h1qxZGD58ONRqNT766CNERkaiqakJJSUlqKmpgbu7O44dO4b3338f+fn58Pf3R0lJiVW8xZ4gOzvbobnNgMvnSb/99lun7lUoFPD29kZ2drbD5nMtuhJ7sjWuJYNhL8ykn9Eunp6e4DgOTk5OVvEG7cXDwwORkZHw9/fH7bff3mFn41ZajU62bduGiooKREdHAwDuu+8+uLq6YsmSJZgyZQq0Wi0MBgMCAwPtzsvmKMrLyy2yBohEoi7HnBQIBJ3uo71o+47CUTE1CwoKHNIP48aErdQY7cJxHB+BX6VSoaGhodN9TZ8+HRMmTMDu3bsRFBSEQ4cOdeg+Dw8PmEwmfPXVV3ByckJ9fT08PT3x4IMPIjAwEI2NjWhsbMTu3buRl5eH+vp6SCQSJCYmdnquXeXKSB8cx+H+++/HTz/9hJqamk73qdFooNVqO/U3qK+v7/aoKsHBwcjPz7eZqFUmk0EkEqGhoQEKhQJOTk59Mks54/qH+akxegypVIrm5ma7TetbzfuvNufWaDRwcXFBYWEhDAYDRCIRJk6ciJSUFACwSsbZWwiFQgwYMAClpaUWsru4uECpVCIyMhK///57l8dxc3PD+PHjsW/fvi731VnEYjHMZnO7pvcuLi4QCoU2E48yGNfiWn5qbPuR0WMYDAabCs3T07Pd+0wmk82XZGlpKerq6rBw4UIIBAIMHDgQrq6ufe48xmQyoaSkxEp2kUiE6OhoBAQEWFwXCoV8UlWg7W3HqyOkyGQy/sys1SG6p5k+ffo1k57W19czhcboNthKjXHdwXEcVCoVpFIpKisrIRAI+pwiaw+RSASJRAKdTgcvLy+IRCKUlJTw9VKplM9XNmDAABgMBkgkEj45KwBIJBKMGDGizUC/7u7u8PT0xPnz57tdnlY4jsPUqVNx6tQphxrIMBhXcq2VGlNqjOsKkUiEoKAgFBcXA7i8yvPz83NIAs6ewtnZGTKZDFVVVTbrBw0ahPLycgQGBkIgEOD06dMAYHFWJRAIYDab4e3tbaEQW+taV3dmsxkeHh7s/IrRb2Dbj4zrlqsD8XIcB1dXV2RnZ/PGIe0ph75KdHS0zbQ9YrEYHMchOzsbtbW1yMjIQFZWFogIMpmMbycQCBAaGgoANrNPh4aGIiAgAK6urhCJRBb3Mhj9HbZSY/RZ5HI5TCbTdbW12BFkMhmMRqPVOeHAgQNRVVVlYTnZikgkgslkgru7e5tKXCKRYMKECTh48CDfvp/+92bcwLDtRwbjBkEgEMDZ2Rk6nQ5KpbJL7gMMRl+FRelnMG4QzGYz74vGFBrjRoWdqTEYDAaj38CUGoPBYDD6DXYrtcTERNxxxx3w8fEBx3HYuXMnX2c0GrF69WpERUXB2dkZPj4+WLRoEW9+3Up1dTXi4uKgVCqhUqmwdOlSq9A/p06dwuTJkyGTyeDn54e1a9d2TkIGg8Fg3DDYrdQaGxsxfPhwfPzxx1Z1Op0OJ06cwMsvv4wTJ05g+/btOHfuHGbPnm3RLi4uDllZWYiPj8fPP/+MxMRELF++nK/XarWYPn06AgICcPz4caxbtw6vvfYaPv/8806IyGAwGIwbhq7kLANAO3bsaLfNsWPHCADl5eUREdGZM2cIAKWmpvJt9u3bRxzHUVFRERERffLJJ+Tm5kYGg4Fvs3r1agoPD+/w3Fg+NVZYYYWV/leulU+t28/U6urq+LBGAJCcnAyVSoXRo0fzbWJjYyEQCPhAtMnJyZgyZQokEgnfZsaMGTh37lybVl0GgwFardaiMBgMBuPGoluVml6vx+rVq7FgwQLer6C0tBQDBgywaCcSieDu7o7S0lK+jVqttmjT+rm1zdW88847cHV15Yufn5+jxWEwGAxGH6fblJrRaMS8efNARNiwYUN3DcPz/PPPo66uji8s0SCDwWDceHSL83WrQsvLy0NCQoKF97dGo7EKrtrS0oLq6mo+E7JGo0FZWZlFm9bPbWVLlkqlkEqljhSDwWAwGNcZDl+ptSq07Oxs/P777/Dw8LCoj4mJQW1tLY4fP85fS0hIgNlsxrhx4/g2iYmJFlHJ4+PjER4eDjc3N0dPmcFgMBj9hQ6bE/6X+vp6Sk9Pp/T0dAJA7733HqWnp1NeXh41NzfT7NmzydfXl06ePEklJSV8udKScebMmRQdHU0pKSmUlJREYWFhtGDBAr6+traW1Go1LVy4kDIzM2nLli3k5OREn332GbN+ZIUVVli5gcu1rB/tVmoHDhywOdDixYspNze3zYkcOHCA76OqqooWLFhACoWClEolPfDAA1RfX28xTkZGBk2aNImkUikNHDiQ1qxZY9c8mVJjhRVWWOl/5VpKjUXpZzAYDMZ1A0sSymAwGIwbBqbUGAwGg9FvYEqNwWAwGP0GptQYDAaD0W9gSo3BYDAY/Qam1BgMBoPRb2BKjcFgMBj9BqbUGAwGg9FvYEqNwWAwGP0GptQYDAaD0W9gSo3BYDAY/YZ+q9T6aUhLBoPBuKG51ru93yq1qqqq3p4Cg8FgMBxMfX19u/Xdkvm6L+Du7g4AyM/P79fR+rVaLfz8/FBQUNBu5Or+wI0iK5Ozf3GjyAl0r6xEhPr6evj4+LTbrt8qNYHg8iLU1dW13z9IAKBUKm8IOYEbR1YmZ//iRpET6D5ZO7JA6bfbjwwGg8G48WBKjcFgMBj9hn6r1KRSKV599VVIpdLenkq3cqPICdw4sjI5+xc3ipxA35CVI2b7zmAwGIx+Qr9dqTEYDAbjxoMpNQaDwWD0G5hSYzAYDEa/gSk1BoPBYPQbmFJjMBgMRr+hXyq1jz/+GIGBgZDJZBg3bhyOHTvW21Oyi3feeQdjxoyBi4sLBgwYgDvvvBPnzp2zaKPX67Fy5Up4eHhAoVDg7rvvRllZmUWb/Px83H777XBycsKAAQPwzDPPoKWlpSdFsYs1a9aA4zg88cQT/LX+JGdRURHuv/9+eHh4QC6XIyoqCmlpaXw9EeGVV16Bt7c35HI5YmNjkZ2dbdFHdXU14uLioFQqoVKpsHTpUjQ0NPS0KG1iMpnw8ssvIygoCHK5HCEhIfj73/9uEYT2epQzMTERd9xxB3x8fMBxHHbu3GlR7yiZTp06hcmTJ0Mmk8HPzw9r167tbtGsaE9Wo9GI1atXIyoqCs7OzvDx8cGiRYtQXFxs0Uevykr9jC1btpBEIqGNGzdSVlYWLVu2jFQqFZWVlfX21DrMjBkz6IsvvqDMzEw6efIk/eUvfyF/f39qaGjg2zz88MPk5+dH+/fvp7S0NBo/fjxNmDCBr29paaGhQ4dSbGwspaen0969e8nT05Oef/753hDpmhw7dowCAwNp2LBh9Pjjj/PX+4uc1dXVFBAQQEuWLKGUlBTKycmhX3/9lS5cuMC3WbNmDbm6utLOnTspIyODZs+eTUFBQdTU1MS3mTlzJg0fPpyOHj1Kf/zxB4WGhtKCBQt6QySbvPXWW+Th4UE///wz5ebm0g8//EAKhYI+/PBDvs31KOfevXvpxRdfpO3btxMA2rFjh0W9I2Sqq6sjtVpNcXFxlJmZSZs3bya5XE6fffZZT4lJRO3LWltbS7GxsbR161Y6e/YsJScn09ixY2nUqFEWffSmrP1OqY0dO5ZWrlzJfzaZTOTj40PvvPNOL86qa5SXlxMAOnToEBFdfrDEYjH98MMPfJs///yTAFBycjIRXX4wBQIBlZaW8m02bNhASqWSDAZDzwpwDerr6yksLIzi4+Np6tSpvFLrT3KuXr2aJk2a1Ga92WwmjUZD69at46/V1taSVCqlzZs3ExHRmTNnCAClpqbybfbt20ccx1FRUVH3Td4Obr/9dnrwwQctrt11110UFxdHRP1Dzqtf9I6S6ZNPPiE3NzeL53b16tUUHh7ezRK1jS0FfjXHjh0jAJSXl0dEvS9rv9p+bG5uxvHjxxEbG8tfEwgEiI2NRXJyci/OrGvU1dUB+P/MA8ePH4fRaLSQMyIiAv7+/rycycnJiIqKglqt5tvMmDEDWq0WWVlZPTj7a7Ny5UrcfvvtFvIA/UvOXbt2YfTo0bj33nsxYMAAREdH43//93/5+tzcXJSWllrI6urqinHjxlnIqlKpMHr0aL5NbGwsBAIBUlJSek6YdpgwYQL279+P8+fPAwAyMjKQlJSE2267DUD/kfNKHCVTcnIypkyZAolEwreZMWMGzp07h5qamh6Sxn7q6urAcRxUKhWA3pe1X0Xpr6yshMlksnjBAYBarcbZs2d7aVZdw2w244knnsDEiRMxdOhQAEBpaSkkEgn/ELWiVqtRWlrKt7H1PbTW9RW2bNmCEydOIDU11aquP8mZk5ODDRs24KmnnsILL7yA1NRUPPbYY5BIJFi8eDE/V1uyXCnrgAEDLOpFIhHc3d37jKzPPfcctFotIiIiIBQKYTKZ8NZbbyEuLg4A+o2cV+IomUpLSxEUFGTVR2udm5tbt8y/K+j1eqxevRoLFizgo/L3tqz9Sqn1R1auXInMzEwkJSX19lQcTkFBAR5//HHEx8dDJpP19nS6FbPZjNGjR+Ptt98GAERHRyMzMxOffvopFi9e3Muzcxzff/89Nm3ahO+++w5DhgzByZMn8cQTT8DHx6dfycm4bDQyb948EBE2bNjQ29Ph6Vfbj56enhAKhVbWcWVlZdBoNL00q86zatUq/Pzzzzhw4AB8fX356xqNBs3NzaitrbVof6WcGo3G5vfQWtcXOH78OMrLyzFy5EiIRCKIRCIcOnQI69evh0gkglqt7hdyAoC3tzcGDx5scS0yMhL5+fkA/n+u7T27Go0G5eXlFvUtLS2orq7uM7I+88wzeO655zB//nxERUVh4cKFePLJJ/HOO+8A6D9yXomjZLpenmXg/xVaXl4e4uPjLXKn9bas/UqpSSQSjBo1Cvv37+evmc1m7N+/HzExMb04M/sgIqxatQo7duxAQkKC1TJ91KhREIvFFnKeO3cO+fn5vJwxMTE4ffq0xcPV+vBd/XLtLaZNm4bTp0/j5MmTfBk9ejTi4uL4f/cHOQFg4sSJVm4Z58+fR0BAAAAgKCgIGo3GQlatVouUlBQLWWtra3H8+HG+TUJCAsxmM8aNG9cDUlwbnU7HJ+htRSgUwmw2A+g/cl6Jo2SKiYlBYmIijEYj3yY+Ph7h4eF9auuxVaFlZ2fj999/h4eHh0V9r8vaZVOTPsaWLVtIKpXSl19+SWfOnKHly5eTSqWysI7r66xYsYJcXV3p4MGDVFJSwhedTse3efjhh8nf358SEhIoLS2NYmJiKCYmhq9vNXWfPn06nTx5kn755Rfy8vLqc6buV3Ol9SNR/5Hz2LFjJBKJ6K233qLs7GzatGkTOTk50bfffsu3WbNmDalUKvrpp5/o1KlTNGfOHJtm4dHR0ZSSkkJJSUkUFhbWp0z6Fy9eTAMHDuRN+rdv306enp707LPP8m2uRznr6+spPT2d0tPTCQC99957lJ6ezlv8OUKm2tpaUqvVtHDhQsrMzKQtW7aQk5NTj5v0tydrc3MzzZ49m3x9fenkyZMW76crLRl7U9Z+p9SIiD766CPy9/cniURCY8eOpaNHj/b2lOwCgM3yxRdf8G2amprokUceITc3N3JycqK5c+dSSUmJRT+XLl2i2267jeRyOXl6etLf/vY3MhqNPSyNfVyt1PqTnLt376ahQ4eSVCqliIgI+vzzzy3qzWYzvfzyy6RWq0kqldK0adPo3LlzFm2qqqpowYIFpFAoSKlU0gMPPED19fU9KUa7aLVaevzxx8nf359kMhkFBwfTiy++aPHCux7lPHDggM3/k4sXLyYix8mUkZFBkyZNIqlUSgMHDqQ1a9b0lIg87cmam5vb5vvpwIEDfB+9KSvLp8ZgMBiMfkO/OlNjMBgMxo0NU2oMBoPB6DcwpcZgMBiMfgNTagwGg8HoNzClxmAwGIx+A1NqDAaDweg3MKXGYDAYjH4DU2oMBoPB6DcwpcZgMBiMfgNTagwGg8HoNzClxmAwGIx+w/8BsJfq0/PSqMYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGHCAYAAACar6kjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3rklEQVR4nO3dd1xT9/c/8NdNAgl7TxniHiAOHDhbxYkDV1Xco1XcVq3ibh0466zbuutedeHAQVVUwIULt6IyXATZJDm/P/yaX/loFVS4Ac7z8TiPh7n3neS8QxJP3vd931cgIgJjjDHGmA6RiJ0AY4wxxtj/4gKFMcYYYzqHCxTGGGOM6RwuUBhjjDGmc7hAYYwxxpjO4QKFMcYYYzqHCxTGGGOM6RwuUBhjjDGmc7hAYYwxxpjO4QKFMcYYYzpH1ALljz/+QPHixaFQKFCzZk1cvHhRzHQYY4wxpiNEK1C2bduGn3/+GZMnT8alS5fg6emJpk2bIiEhQayUGGOMMaYjBLEuFlizZk1Ur14dS5YsAQBoNBo4OztjyJAhGDt2rBgpMcYYY0xHyMR40szMTERGRiIwMFC7TSKRwMfHB2FhYR+0z8jIQEZGhva2RqPB69evYWVlBUEQ8iVnxhhjjH0dIsLbt2/h6OgIieTTB3FEKVBevnwJtVoNOzu7bNvt7Oxw+/btD9oHBQXh119/za/0GGOMMZaHYmJi4OTk9Mk2BeIsnsDAQCiVSm08efJE7JQYY4wx9oVMTEw+20aUERRra2tIpVLEx8dn2x4fHw97e/sP2svlcsjl8vxKjzHGGGN5KCfTM0QZQdHX10e1atUQEhKi3abRaBASEgJvb28xUmKMMcaYDhFlBAUAfv75Z/Ts2RNeXl6oUaMGFixYgJSUFPTu3VuslBhjjDGmI0QrUDp16oQXL15g0qRJiIuLQ+XKlREcHPzBxFnGGGOMFT2irYPyNZKSkmBmZiZ2Gowxxhj7AkqlEqampp9sUyDO4mGMMcZY0cIFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxhhjTOdwgcIYY4wxncMFCmOMMcZ0DhcojDHGGNM5XKAwxtg3IJFIIJFIIAjCJ9v8e/+n2jJW1HGBwhhjOSQIAurVq4eGDRuiYcOG8PLyAgC0adMGd+/exd27dxEYGPjR+1pbW+PmzZvYs2ePdlu3bt0gkUhQrlw5lC9fXvu4rq6u+dIfxnQaFUBKpZIAcHBwFJEwMjIiAwODfH9eU1NT0tPTo8aNG9OmTZvor7/+orS0NCIi0mg0NHjwYDI3N6djx46RSqWijRs3kpGRkfb+EomEzM3NqV69erRz505SqVQUHh6e7TkMDAzo3LlzdO/ePe133OXLl2nTpk30/fffi/7ac3DkRSiVys/+X88FCgcHx3+GmZkZ9evXL9t/umLEhg0bKDg4mKytrfPtOWvUqEExMTH0xx9/0F9//UVEROfPn6fU1FQieleg/Prrr7RkyRLSaDR0//59ksvl2R6jf//+lJycrC1qiIgePnxIffr0IblcTsbGxrRt2zZSq9WUkZFBZ8+eJSKi8PBwevv2Lb18+ZIaNGgg+vuAg+NbBxcoHBwcXxSGhoZ0/Phxunz5Mi1dupT09fVFzWfbtm1ERNSyZUsCQCYmJrR8+XKaNGkSmZubU4UKFahChQpUqlQpsrGxIVdX1y96HkdHR3J0dCQXFxeKiYnRfue8evWKTp48Sc2aNaOXL18SEdGLFy/I3d2dtm/fTkREoaGhZGtrS66uriSRSKh///6UlJRERERJSUk0ZMgQbaEzc+ZMkslktHTpUtJoNEREFB0dTZUrV6bQ0FBavnw5vXz5khITEyk2NpZHUjgKXXCBwsHB8UEIgkCCIGTbVqlSJRo7dqx2u7m5OSUmJtLz58+pVq1aBLw7XCGRSLT/lslkJJVKtdvyMlq3bk1///03Xb58mQCQn58fZWZmkkajoUOHDpFGoyG1Wk2vXr2i06dP05w5c2jWrFnUtm1bsrOzo+++++6zzzF69GgKDw8nPz8/Kl++PGk0Grp9+zaNHTuWmjVrRtOmTSONRkMajYZevXpFPj4+NG/ePG2BsWXLFjpz5gw9fPiQFixYQJmZmUREpFKpqF+/fhQQEEBZWVlERHTw4EEyNTWlo0ePEhHR/fv3yd3dnXr16qV9jgMHDmgLs7i4OKpTp47o7x0Ojm8VOSlQBCIiFDBJSUkwMzMTOw3GCgSZTIZGjRrhwoULSExMhI+PDwwNDREdHY3o6GgAwA8//IBu3brBz88PGo0GvXv3hp2dHbZv345y5coBAH766Se8ffsWW7ZsQadOndCwYUMkJibi1KlTuHr1Kp4/f57jnB4+fIhbt27luL2FhQUOHz6MixcvYujQoVAoFKhYsSLOnz8PmUyGa9euYefOnTA3N8edO3dgbGyMoKAgjBo1CiEhIQgNDcUPP/yAkJAQ7WOWL18e9+7dQ1ZWFgRBwO3bt2Fvbw8nJyds3rwZLVu2xKVLl/D06VNUq1YNtra20NfXBwAsWLAAEokEAQEB0NPT+2TuRIS4uDiYm5vDwMBAuy02NhaWlpZQKBQ4ffo0fHx8tDnfunUL/fr1w8yZM1GvXj0kJSWhe/fu+Pvvv3P8mjGmy5RKJUxNTT/d6FuPbuQHHkHh4PjvsLa2JhsbGzI0NKSyZcvStm3b6NChQ2RpaUkSiYTWrVtHbdu2JXd3d+19SpYsSe7u7mRjY0O1a9emnTt30s6dOyk4OFg7QvAt3blzR/scO3fupPr165ONjY02TExMsvXJ0tKSJk+enG3bb7/9Rmq1mm7fvk3FixcnAFSqVCnasWMHJScnU0ZGBu3Zs4cOHTpEycnJtHnzZu19XVxcaNCgQdkOXU2cOJGSkpLIwcGBQkNDtbkmJSXlyWvwbwkJCbR3717tqMu4ceOoQ4cO2v2hoaGiv684OL5l8CEeDo4iFPb29vTzzz/T69ev6eDBgzR+/Hjq1asXnTt3jrp27UrAu0MzAwYMoGHDhtHgwYO1sWrVKkpLS6O0tDTKyMjI9890RkaG9vnT0tIoNDSUBg8eTNWqVdP2TyaTZevvgQMHKCIigkaMGKHdduTIEdJoNLRu3Tq6ffs2EREtWrSI/Pz8yMrKSttOEASSSqXa215eXvT06VPSaDS0YsWKbAXKrl27tIVDfjlw4ADFx8cTEdHVq1fJzc1Nm6uRkRENHDiQLC0tRX/PcXB8aXCBwsFRBKJEiRI0duxYunXrFqlUKrp69SrVqVOHHBwcqGLFitSqVSsaMWIERUREUGRkpCgFyJd6+vQpRUREUEREBM2ePZsqV66sPZOnZMmS5OjomO21KF26NFWpUoX09fVp/fr1tHDhQjI0NPzk67dkyRJ69uwZERHFxMTQ7t27aejQoXk+apITb968oZIlSxIAGjlyJEVERNC1a9dIrVbT7NmzRX/vcXB8aeSkQJGBMVYgyeVyTJw4Ef7+/ihevDiysrKwadMmBAQEQK1Wo3HjxmjcuDGaNm2KsmXLFshVS4sVK4ZixYoBAKpWrYpRo0YhNDQUV65c+Wj7FStW4MaNGyAirF27FmfOnIFKpfrPx69evTpatmwJBwcH3L59G3///TeGDx8OPz8/nXi95HI5atSogQcPHsDZ2RnVqlXDy5cvMXLkSGzYsEHs9BjLW3n/G+Db4xEUDg7QtGnTSK1WU2pqKu3evZu+//578vf3p5kzZ1JcXBy9fftW7I9qvnv9+jXFxcXRqVOnqGXLltkO4/w7zM3NqVOnTvT06VMiIrp16xbVrl2bQkJCRO7Bh1JSUqhXr160YMECevr0KX333XdUpkwZXh+Fo0AHH+Lh4CgEYW1tTY6OjiSVSmnUqFHUpUsXqlKlCt2/f5+eP39OI0eOpN69e9OZM2fE/mjqlMzMTDp06BCtWLGCnJ2dafTo0aRQKAgAVatWTdsuOjqaqlevTu3atRMx209LTEyk6OhoatSoEZUsWZKioqLo0KFDZGtrSwEBAaK/Rzk4chtcoHBwFODQ19enoUOH0p07d+jYsWNkZmZGf/75J7Vo0YIGDRpE58+fp+nTp9O0adPyfRJnQaLRaCgzM5PUajUtWbKEJBIJVatWjTIzM2nx4sVUrlw5Gjt2rHaNEl2Vnp5Otra2tG/fPtJoNOTh4UHLli2jiIgIcnZ2Fv39ysGRm+A5KIzpiB49euD+/fu4evUqkpOTP9gvl8tx/PhxpKWloVmzZvDw8MDgwYPRu3dvZGZm4saNG5BKpdi4cSPMzMzQvHlzlCpVCjVr1hShNwWLIAjatUr69++PrKws/PXXX/D09MSrV6+wePFiNGjQADKZbn8dCoIANzc3DBkyBHfv3sXu3bthaWkJS0tLlCpVCjExMWKnyNg3xQu1MZaHmjRpgoiICGg0Gjx9+hTr1q3D0KFDMWXKFNja2uL48ePYuXMnFAoF7ty5g3Xr1uHSpUtYu3YtzM3NAQCJiYnYtm0bAMDHxwclS5YUsUeFw4sXL7B7926ULFkSPj4+YqeTYw8fPkTr1q3RvHlzzJ49GxkZGdizZw9SU1PRr18/FMCvc1ZE5WShNkluHzQ0NBStWrWCo6MjBEHA3r17s+0nIkyaNAkODg4wMDCAj48P7t69m63N69ev0bVrV5iamsLc3Bx9+/b96K9Kxgq60NBQJCYmam8rFAp4enrCysoKPXr0gKGhIQAgKysLv/76K16/fo1NmzbB3NwcWVlZiIyMhLm5Ofr374/+/ftzcfKN2NjYoH///gWqOAEANzc3uLi4aG8TEdLT06FQKETMirG8kesCJSUlBZ6envjjjz8+un/27NlYtGgRli9fjgsXLsDIyAhNmzZFenq6tk3Xrl1x48YNHDt2DAcOHEBoaCh++umnL+8FYzoqPT0dGo0GGo0GT548gaWlJXbt2gVXV1f06NEDcrkcR48exZEjR7B06VLMnz8fhoaGCAsLQ1hYGIyMjMTuAtMh75feb9u2LYB3BW+vXr1QpkwZdO3aVeTsGPvGvmbSFgDas2eP9rZGoyF7e3uaM2eOdltiYiLJ5XLasmULERHdvHmTAFB4eLi2zeHDh0kQBO1iSZ/Dk2Q5ClooFAoaO3YsLV68mIKDg8nLy4uioqJIrVZ/8P7WaDS0Z8+ej+5jRZtGo6HOnTvT4cOHs21//fo1NWzYUPT3OQdHTiMnk2RzPYLyKQ8fPkRcXFy2YVMzMzPUrFkTYWFhAICwsDCYm5vDy8tL28bHxwcSiQQXLlz46ONmZGQgKSkpWzBWkIwdOxbGxsY4ffo0Jk6ciPXr18Pd3R0SyYcfQUEQ4Ofn99F9rGgTBAELFixA06ZNs20/f/48Tp48KVJWjOWNb/oNGBcXBwCws7PLtt3Ozk67Ly4uDra2ttn2y2QyWFpaatv8r6CgIJiZmWnD2dn5W6bN2Dfn7e2NKlWqAACkUilKlCiB7777DlKpFGvWrEGFChVEzpAVRFlZWdi3bx/S0tKybZ8zZw5PkGWFToH4iRYYGAilUqkNPp2O6boSJUpg48aNkEgkGDNmDDp37ozo6GgMGjQI7u7uYqfHCqjDhw9j8ODBCAoK0m67f/8+YmNjRcyKsbzxTQsUe3t7AEB8fHy27fHx8dp99vb2SEhIyLZfpVLh9evX2jb/Sy6Xw9TUNFswpqsUCgWGDx+O1NRUlClTBgMGDMCTJ0+wZs0amJiY6MQ1XljBk5mZiVmzZiErKwt///03nj9/Do1Gg3379uH27dtip8fYN/dNCxQ3NzfY29sjJCREuy0pKQkXLlyAt7c3gHdD34mJiYiMjNS2OXHiBDQaDS86xQoFmUyGlJQUjB8/HtevX0d6ejr8/f3xyy+/wNPTU+z0WAFFRLh37x5MTU0xd+5cODg4ICUlBVOnThU7NcbyRK6XTkxOTsa9e/e0tx8+fIgrV67A0tISLi4uGD58OKZNm4bSpUvDzc0NEydOhKOjI/z8/AAA5cuXR7NmzfDjjz9i+fLlyMrKwuDBg9G5c2c4Ojp+s44xJpbAwEAkJiZi3rx5EAQB/v7+6NGjB1q1asWjJ+yrmZiY4LvvvoNSqcSgQYOgVCrFTomxvJHb09xOnjz50VOGevbsqT0NbuLEiWRnZ0dyuZwaNWpE0dHR2R7j1atX1KVLFzI2NiZTU1Pq3bt3rq68yqcZc+hquLu70+DBg6lly5b0/PlzWr9+PTVs2JAePnyY248aY9m8fv2arK2tqVixYpSZmUkXL14kuVwu+nueg+NLgi8WyMGRj1G5cmUKCAig5s2bU2JiIq1Zs4bkcjndvn1b7I8MKwRGjhxJAMjf359UKhWpVCrq3bu36O97Do4viXxfB4WxosbOzg5SqRSOjo6Ij4/HmTNn0KdPH5iZmWH79u0YOXIkXF1dxU6TFXAnT57Epk2bYGpqiv79+0MqlWqDscJKty/fyZgOc3BwwN69e7F69Wo8evQIarUa27Ztg7m5OSIiItCmTRsMGDCA552wr6JWqzFq1CjEx8ejQ4cOqFevntgpMZYveASFsVx6vwJs48aN4enpiVOnTkGpVKJ79+6QSqXo0aOHdiSFixP2NSIjIzF69GhERUXB09MTc+fO1b6n3rx5gydPnoicIWN5h0dQGMuF+vXro2LFinj06BGGDh2K5cuXIz4+Hn/88Qdq166NAQMGwNnZGQMHDoS+vr7Y6bICiogQGhqKrl274tmzZ7C0tMSgQYO0hwtTUlIQEBCAo0ePipwpY3lHICp46yMnJSXBzMxM7DRYEWJhYYFevXrB398fP/74IwwMDFCnTh0sXLgQc+fOhbOzM27cuAFjY2MMGTKE5wawL0JE2LFjB54+fYqgoCC8fPkSnp6e2L17N1xdXSGRSJCSkoKePXtiz549vLw9K7CUSuVnF13lERTGPkEikeCHH37Azz//DEdHR+zevRtKpRJSqRQ2Njbo0KEDZDIZlixZgnXr1vF1otgXe/ToEfbt24fx48cjJSUFtWvXRvXq1VG/fn2UKFECGo0G69atw9y5c3Hz5k2x02Usz3GBwthH+Pr6olmzZhAEAUSE+/fvIyAgAJcvX8a2bdvQoUMHhIeHY/z48bh79y527NjBxQnLRqVSQa1WQ19fXztv5P02uVyubZeVlYUZM2Zg69at2iXrBUFA7969ERUVheHDh+Phw4eYPXs21q9f/8GFAhkrrLhAYex/ODk54a+//oKpqSk2bNiAdevWITw8HMnJyWjYsCFatWqFe/fuYdSoUdi8eTOaNWvG14di2WRmZmLs2LEgIsybNw8HDhxAeno6Tpw4AXNzc3Ts2BGZmZnw8PDA0KFDsW7dOmg0GgCAsbExmjVrhtTUVEyfPh0xMTHo0KEDrl27JnKvGMtnebmwUF7hhdo48jKKFStGDx8+pMzMTEpJSaEaNWqQTCYjMzMzWr16Nd2+fZvmzJlD//zzj9gfBaaD0tLSaNy4cdSyZUtKSEigefPmkVwuJ4lEQk5OTvTnn3+Si4sL2dvbU4MGDcjU1JQaNmxIhw4dohEjRlCZMmVIo9EQEdGjR4+oUqVKon8mODi+deRkoTaeJMvYR9SrVw+7d++Gnp4enJ2d0aZNG8TExODMmTPw9/fHqlWrsg3TM/beiRMn4OPjg+rVq2snUms0GhgbG2PUqFFYuXIlnj9/jnLlyqF169b47rvv0LhxY6jVavTp0wdSqRQVK1YEAGzduhVXrlwRt0OM5QGeJMvYF9DX14e/vz+sra0xduxYpKSkwMnJCZs3b0b37t2xePFiLk7Yf6J3lxDBxYsXYWFhgWvXruHhw4cwMzNDo0aNUKZMGRw6dAjBwcEYM2YMYmJiEBgYiIkTJ2L//v0wNjbGxo0bxe4GY6LjAoWx/+Hq6ooff/wRarUaT58+hUQiwbZt27BixQp06dIFxsbGYqfIdFyXLl0QHByM3377DeXLl8c///wDGxsbtG/fHnfv3oWnpycqVqyI5ORkrF69Gps2bcKLFy+Qnp6Ot2/fip0+YzqBD/Ew9i+urq7Ytm0batSogXPnzqFp06aYOnUq+vbtCxMTE14Zln0SEWHGjBlwdXVF2bJl4ezsDHt7e2RlZYGIEBISggMHDsDb2xuXLl3C2rVrkZ6ejvT0dLFTZyxf8SEexnLBwcEBW7duRc2aNfHmzRusX78e48ePx5AhQyCT8UeFfR4R4dKlS2jVqhVOnToFmUwGe3t7REREYPz48QCAt2/fYunSpSJnypju429dxgDtImw1atTAxo0bsXHjRixevBhlypThUROWY4IgoF69eujevTtq166NIUOGAAAsLS0RGxurXeeEMfZ5fLFAVqTp6emhQYMG2LlzJ7y8vLBgwQIsXboUTZo0gZubGxcnLFcEQUD9+vWRlpaGwMBAXLp0CU+ePEHZsmXRpk0bfj8xlgs8B4UVWTKZDGPHjsWUKVMglUqhUqmwe/du1K1bF46OjmKnxwqwgQMHIjExEWFhYRgxYgSGDh2KhIQElC5dGklJSWKnx5jocjIHhQsUViQJgoCpU6dizJgxPL+EfXNxcXEoUaIExo4dCx8fH3h6esLAwACzZ89GYGCg2OkxJrqcFCh8iIcVOfr6+pgwYQJGjRoFmUyGY8eOISYmRuy0WCFibW2NoUOHYuPGjVi/fj2io6MhkUjQvXt3lCxZUuz0GCsQuEBhRc6YMWPw66+/Qi6XQ61Ww8fHB05OTmKnxQoRmUyGTp06ISMjAytXrsRvv/0G4N1kbBMTE5GzY6xg4AKFFSlOTk7w9/eHIAhISEjAwoULoVarefIi++aqVKkCR0dHSCQS+Pj4ID4+Ho8fP0aPHj34yteM5QAXKKzIEAQBHTt2RLly5aBSqdCvXz+4ubnxHBSWZwYMGACNRoOff/4ZFy9exKZNm7B582a0bNlS7NQY03lcoLAiw8zMDJMmTQIAhIWF4cmTJyhRooTIWbHCrEmTJqhSpQpKly6Na9euYfr06WKnxFiBwQUKK1L09PQAAJcuXcKqVavg6ekpckasMHN0dESjRo1w8+ZNTJgwAenp6Zg4cSJ+/vlnVKhQQez0GNNpXKCwIsnNzQ1Xr14VOw1WBPj6+mY7nbJ48eIoVaqUdjSPMfZxfPCdFUlnz56Fvr6+2GmwIqBOnTowMjLSLtCWmJiIBw8eiJwVY7qPR1BYkaCvr4/hw4dDLpcjKysLaWlpCAgIEDstVgRIpVIMHDhQe/vx48cIDQ2FQqHgIpmxT+AChRV63t7emD9/PiZMmACZTIY7d+5g5cqVYqfFigiJRJJtrlOlSpXQvXt3tGrVCvXr1xcxM8Z0GxcorFCTy+Xo1asXBg4cCKlUCgDYunUrpk6dChsbG5GzY0WFubk5zM3NAQBTpkyBIAiIiYmBm5ubuIkxpsP4WjysUCtXrhxu3LgBiUSCdevWwcjICB07dhQ7LVYEtW3bFnv37sXMmTNhb2+Pf/75B/Pnz0e3bt3w999/i50eY/mKr8XDijRXV1esW7cOgiAgPj4eDx48QKNGjcROixVRXl5ekEgkCAoKwtq1azFt2jRIJBIYGhqKnRpjOokLFFYoCYKA1q1bo2bNmhAEAdevX0fZsmVhaWkpdmqsiOrbty9kMhmUSiV++OEHmJiYIDY2FkePHhU7NcZ0EhcorFAyNDTE5MmTQUQIDQ3FuXPnULFiRbHTYkXYv6/3FBISgh07duDBgwcYPny4eEkxpsO4QGGFlkQiQUxMDDp27AgfHx9UrlxZ7JRYEWZlZYWRI0cCAPbs2YO5c+fC3NwcEgl/DTP2MfzJYIWaubk5Zs6cCXd3d7FTYUWcTCbTnjlGRChbtiwuXLiAgwcPipwZY7qJCxRWqJmamqJ3794wMTEROxXGsomKioIgCGjYsKHYqTCmk7hAYYyxfGJubg59fX0IgoAmTZqgcePGUCgUYqfFmE7iAoUVSv+ekHjq1Cm8efNGxGwYe6dXr14oV64c5HI5Jk+ejLJly0IQBLRq1Urs1BjTOVygsAKtfPnyH93+ww8/aNeXiImJQXp6en6mxdhn/buIDgsLEzETxnQTFyiswKpfv362ya9GRkYwMDAAAPz9999IS0sDAHTv3h0ODg6i5MjYx2RlZWHdunVQq9VIS0tDamqq2CkxpnNkYifA2Jc6d+4cNBqN9vb69etx69YtTJw4EVOmTOHLITCd1KBBA1y7dg3btm2DSqXCvHnzMHfuXAwePFjs1BjTKTyCwgoslUqVrUBJSEjQzjV5PxHx6dOnaNu2LV68eCFWmoxpCYKAHj16AAAiIiIQGBiI9PR0vHr1SuTMGNM9PILCCo2BAwd+sC0jIwPVqlWDtbW1CBkx9mnt27fH3r17MXnyZLFTYUzn8AgKK9RcXV0xdOjQbBMSGdMFDg4OGDNmjHZ1WcZYdlygsALP2NhYe9nuNm3aYPbs2VAoFLhw4QLu37//2Ut6MyaGevXqoXr16vz+ZOw/cIHCCrzGjRtjwYIFAIAyZcpg5MiRcHZ2hoeHB0qXLi1ucox9hpeXFypUqIBy5cqJnQpjOoXnoLACb+/evYiIiICenh4cHBwgkUiwb98+eHp6atdCYUyXyOVyjB07VjvK98MPP6BWrVrw8/PjNXsY+z88gsIKPCJCTEwMHB0dMXjwYDx69IgXvmI6SxAEyGQyFCtWDPPmzUOlSpUwadIkbNmyhYsTxv6FCxRWaAQFBUEmkyE2NhYSiQT6+vpip8TYBypVqoSuXbti6tSpuHLlCry9vXkSN2MfwQUKKzRMTU2RnJyMgwcPYuvWrTAyMhI7JcY+oKenB6lUiiVLluCnn36CRCLBmTNnEBISInZqjOkULlBYoXL58mVcvXoVLi4uYqfC2GdVqlQJAPDjjz/i6dOnImfDmG7JVYESFBSE6tWrw8TEBLa2tvDz80N0dHS2Nunp6Rg0aBCsrKxgbGyM9u3bIz4+PlubJ0+ewNfXF4aGhrC1tcXo0aOhUqm+vjesyLKwsIC5uTnq1auHWrVqiZ0OYzny4MEDEBFcXV3FToUxnZOrAuX06dMYNGgQzp8/j2PHjiErKwtNmjRBSkqKts2IESOwf/9+7NixA6dPn8bz58/Rrl077X61Wg1fX19kZmbi3LlzWL9+PdatW4dJkyZ9u16xIue7775DnTp1IAgCxo8fL3Y6jOVIUFAQiAiBgYFip8KY7qGvkJCQQADo9OnTRESUmJhIenp6tGPHDm2bW7duEQAKCwsjIqJDhw6RRCKhuLg4bZtly5aRqakpZWRk5Oh5lUolAeDgIAAkkUhoxowZX/NWZixfBQQEkIuLCw0ZMoTUajWdOnVK9M8RB0d+hlKp/Ozn5KvmoCiVSgCApaUlACAyMhJZWVnw8fHRtilXrhxcXFy0p32GhYXBw8MDdnZ22jZNmzZFUlISbty48dHnycjIQFJSUrZg7D2ZTIY+ffqInQZjueLh4YFffvkFSUlJiIuLEzsdxnTOFxcoGo0Gw4cPR506deDu7g4AiIuLg76+PszNzbO1tbOz034A4+LishUn7/e/3/cxQUFBMDMz04azs/OXps0KuXPnzmHt2rVip8HYZx08eBCenp7o2LEj/vnnH4wePZpPjWfsX764QBk0aBCuX7+OrVu3fst8PiowMBBKpVIbMTExef6crOAoUaKE9ov9zJkzOHXqlLgJMZZDKSkp8PHxwe+//47OnTtDJuPFvRl774s+DYMHD8aBAwcQGhoKJycn7XZ7e3tkZmYiMTEx2yhKfHw87O3ttW0uXryY7fHen+Xzvs3/ksvlkMvlX5IqKwIcHBy0X+xyuZwnHDKd9vDhQ5w4cQIAMHbsWIwePRoajQbz5s1DamqqyNkxpjtyNYJCRBg8eDD27NmDEydOwM3NLdv+atWqQU9PL9uCQ9HR0Xjy5Am8vb0BAN7e3oiKikJCQoK2zbFjx2BqaooKFSp8TV9YEdWsWTPtomwDBgzgCwQynfbq1Svt8gy1a9eGRCLBhQsXsGPHDpEzY0y35KpAGTRoEDZt2oS//voLJiYmiIuLQ1xcHNLS0gAAZmZm6Nu3L37++WecPHkSkZGR6N27N7y9vbVrUzRp0gQVKlRA9+7dcfXqVRw5cgQTJkzAoEGDeJSEfRG5XA6JRIIXL15gw4YNkEqlYqfE2Gd9//338PLyAhEhKCgIWVlZYqfEmE7J1SGeZcuWAXi35sS/rV27Fr169QIAzJ8/HxKJBO3bt0dGRgaaNm2KpUuXattKpVIcOHAAAQEB8Pb2hpGREXr27Inffvvt63rCirzMzEw8fvxY7DQY+6xmzZrBzs4OFhYWICLcuXNH7JQY0zkCEZHYSeRWUlISzMzMxE6D6YgFCxZg2LBhUKlUePv2LSwsLMROibH/dOfOHVy+fBmjR4/Gpk2bULduXZQrVw53794VOzXG8o1SqYSpqekn2/CUcVZoSCQSPkzIdF6ZMmVQokQJyGQylC5dGvv27UNsbKzYaTGmc/higazQiI2NxezZs8VOg7H/REQ4deoUZDIZ2rdvD2NjY6xfvx7VqlUTOzXGdA4XKKzQsLGxQd++fcVOg7FP2rhxI7Zt24bk5GRERUXhwoUL/L5l7CP4EA8rNPT19eHo6AgigiAIYqfD2Ec9e/YMrq6uiI6OxtChQ7Ft2zYUwKmAjOU5HkFhhcrx48f5eD7Taba2tsjKysLAgQMxZ84c1KtXT+yUGNNJPILCCrzk5GRoNBpIJBI0bdpU7HQY+6Rhw4ZBqVTC29sb33//PVJSUvDmzRux02JM5/AICivwZsyYgZcvXwIAD5UznXblyhW4uLggNTUVv/76KwBg8eLF+OGHH0TOjDHdwyMorMBTqVTawiQ4OBienp5wdHQUOSvGPnTq1ClkZGQgIiIC3333HZ4/f46dO3dCIuHfioz9L/5UsEKlefPmXJwwnXbp0iU0bNgQxsbGSE1NRfPmzeHi4iJ2WozpHC5QWKESHR2NpKQksdNg7APp6emIiorC4cOHtdvGjBmDmzdvIjk5WcTMGNNNfIiHFRpqtRobNmzAixcvsHLlSrHTYSybxMREbN68GS4uLvD19QUAvH37FseOHRM5M8Z0E4+gsALv/ZonycnJuHjxIpycnETOiLH/ZmZmBldXV57Qzdhn8AgK03lSqRTVqlVDnz59sH79+mz7Jk6ciOLFi8PKygoymQy9evVC7dq1RcqUsf8WFBQEBwcH7e3g4GCcO3dOxIwY021coDCdpFAooFarkZWVBYlEgp49e6Jr167o0qULdu7ciR49ekAm+/Dt27VrVxGyZezz0tPT0bdvX5ibmwN4d1X2rKwscZNiTIdxgcJEV79+fSQnJ+PSpUvabX379sXjx49x4MABZGVlYcSIERg/fjwAIDU1FTdu3EDVqlVhYWGB5s2b89L2TKc9ffoUly9fxsaNGxEWFqbd3r59e2zdupUP9zD2EVygsHxnYmICa2trdOjQAU2bNoWHhwc2b96sLVC8vLzg6emJZ8+eae+TmZkJKysrKBQK1K1bFy1atAAAGBsbc3HCdN7ly5cRHh6uvZ2RkYFFixbxIR7GPoELFJav2rZti169esHX1xeCIODu3btYvnw5wsLCtIXGpUuXEBAQgDp16mDixIna+/bu3RsuLi4QBIEXtmIFUs2aNWFnZweNRgOZTIYSJUrgwYMHYqfFmE7iAoXlm169emHRokUwMTFBZGQkEhMTMXnyZOjp6cHHxweLFy/O1t7CwgJWVlYiZcvYt+ft7Q17e3tERUXBwsICqampXKAw9h+4QGF5TiKRoFOnTli0aBEyMjIwZswYREVF4ccff8Rvv/2Ghg0bip0iY3lGrVZj7dq12bYtX74cJ06cQFpamkhZMab7eJyc5TlXV1f8+eefePv2LRYvXgwvLy8EBweje/fuXJywQk+j0eD8+fNQKBSoXr06gHdnqe3btw8lS5YUOTvGdBePoLA8IwgCunXrhqFDhyIpKQm///47fvnlF9ja2oqdGmP5zszMDO3bt9fevnXrFqKjo0XMiDHdxiMoLM8YGhpi4cKFcHNzQ8eOHeHm5sbFCStyJBIJ2rZtCyICESEmJgYRERF89hljn8EFCssz5cqVg56eHs6cOYO4uLhsvx4ZKyqkUimaNWuGly9fYtasWQgODsamTZvQrVs31KtXT+z0GNNZXKCwPNO/f38YGxtj4cKF8Pf3h729vdgpMSYajUaDxMRE/Pjjj3B2dsadO3fw6NEjsdNiTGdxgcLyhJ2dHSpUqIDo6OhsC64xxt4xMjKCgYGB2GkwprO4QGF5ws3NDXXq1EF4eDhSUlLQt29fsVNiTFSmpqbo0KGD9vbVq1dx584dETNiTLdxgcLynFwuh6Ojo9hpMCaqpKQk7NmzR+w0GCswuEBheSYqKoqv1srY/2nUqBHGjRsH4N3ibdeuXRM5I8Z0GxcoLE907twZb968wcqVKxEXF4dt27aJnRJjoiAiKJVKDBo0CHK5HOfPn0ebNm0wZ84csVNjTKdxgcLyxKhRo3Djxg00bNgQlpaWfKydFVkqlQrjxo3D33//je7du6NevXo4ePAgjy4y9hm8kizLEyqVCoIgoH379jhy5IjY6TAmKpVKhXXr1omdBmMFCo+gsDyzfft2zJ49G5GRkTh06BBevnwpdkqMiaZLly5QKBRip8FYgcEjKCzPnDx5EkZGRgCA8PBwJCUlwdraWuSsGBOHr68vVCoVduzYIXYqjBUIPILC8lRKSgqAdxMFFy5cKHI2jIlnxowZ2LlzJ+zt7WFsbCx2OozpPC5QWL45ePAgbty4IXYajImiXLlyGDNmDPbv34/BgwfzKrKMfQYXKCzPuLm5QSqVAgCcnZ2RnJzMy96zIsnS0hLDhg3D4MGDkZiYiAcPHiAjI0PstBjTaVygsDzj7OyM7t27AwD69OmDGTNmIDg4mL+YWZGSkZGB2rVrIyoqCu3bt0fjxo1BRDyCwthncIHC8kxkZCQ6dOgAOzs7XLt2DW3btkXFihXFTouxfDVr1izEx8cjOTkZ4eHhAACpVApBEETOjDHdxgUKy1O1a9dGhQoVsHfvXly5cgWxsbEgIrHTYizfqFQqDB8+HC1atNAe8ty6dSuSk5NFzowx3cYFCssXRIRGjRohOjoaEgm/7VjR8O9ivFOnTrx6LGO5wP9TsHzj7e2NRYsW4dGjR2Knwli+uHv3LlavXg1nZ2c4OzuLnQ5jBQoXKCzPZGRkYMOGDdrb9+/fx7lz55CUlCRiVozln8TERDRp0gQ2NjbQ09P7aBuFQsGjiox9BH8qWJ5RqVTYsmULnj9/DgCIj49Ht27duEBhRcbo0aNRuXJlnD17FsHBwR/sNzY2xtq1a9GzZ08RsmNMt3GBwvLUhQsXEB0dDUEQMGbMGCQmJsLf3x/Xr18XOzXG8kVGRgZ+++03qNXqD/aNGDECP/zwA6ZPn47atWuLkB1juosLFJYvfHx80LFjR3h6eiI+Ph7r1q376Bc2Y4XFhQsXoK+vj7dv3+LChQsfbbNhwwYQEVQqFa8PxNj/4AKF5Qtra2v07dsXd+7cAQAsXLgQq1atEjkrxvLO+9PqW7duDTMzs4+2eX+Wj7OzM9zd3fMzPcZ0HhcoLF9s2bIFV69eRXp6OoyMjKBSqbBixQq8fv1a7NQYyzOJiYno06cPlErlJ9vdvXsX58+f1942NDTkibOsyONPAMtXZmZm2L59O/z9/XHt2jUcPnxY7JQYyxPu7u5YsmQJ7ty5g+LFi6NPnz6QSCSwtbXFgAEDoFAotG0VCgVMTEy0t0ePHo1u3bqJkTZjOoMLFJav1Go1SpUqhcDAQGg0GqxcuRKJiYlip8XYN1enTh3I5XLIZDJs2bIFAQEBkEgkSE5OhouLC+RyOeLi4lCzZk34+PggIiJCe199fX0sWrQIvXv35iXxWZHFBQrLV2/fvsWcOXOwc+dOSKVShIaGIiAgACqVSuzUGPvmpk+fDplMhpSUFPj7+0OlUiEtLQ1TpkxBSkoKMjMzERkZqZ2b9Z5KpYKpqSlmz54NQ0NDkbJnTFxcoLB8t3nzZtSpUwf9+/cHAJw8eZLP6GGF0vLly7F69Wp4e3ujW7duaNu2LYYNG4YnT55g3759sLW1/ej95s2bh+fPn8PS0hITJkzI56wZ0xGUC0uXLiUPDw8yMTEhExMTqlWrFh06dEi7Py0tjQYOHEiWlpZkZGRE7dq1o7i4uGyP8fjxY2rRogUZGBiQjY0NjRo1irKysnKTBimVSgLAUYDD39+frl27Rm5ubmRnZ0fp6em5eg8wVhjs27ePJBLJB58PqVRKjx8/JiKixYsXk5ubG3Xt2vWjbTk4CmIolcrPfj5yNYLi5OSEmTNnIjIyEhEREWjYsCHatGmDGzduAHi36ND+/fuxY8cOnD59Gs+fP0e7du2091er1fD19UVmZibOnTuH9evXY926dZg0aVJu0mCFwNWrV1GhQgU0b94cKSkpCA0N5ascsyKnXr16qFOnzmfbmZqaYs2aNejcuXM+ZMWYjvjaXwAWFha0evVqSkxMJD09PdqxY4d2361btwgAhYWFERHRoUOHSCKRZBtVWbZsGZmamlJGRkaOn5NHUAp+yOVyWr16NY0ZM4YAkJWVVbbROMaKivj4ePruu++yfT7+dwSldOnSFBsbS4mJiVSvXj3RP78cHF8b33wE5d/UajW2bt2KlJQUeHt7IzIyEllZWfDx8dG2KVeuHFxcXBAWFgYACAsLg4eHB+zs7LRtmjZtiqSkJO0ozMdkZGQgKSkpW7CCLSMjAytXrsTp06cxdepUJCYmYuLEiWKnxVi+s7W1xZQpUz7YnpmZqf13WloaEhISYGZmlu10ZMYKs1wXKFFRUTA2NoZcLseAAQOwZ88eVKhQAXFxcdDX14e5uXm29nZ2doiLiwMAxMXFZStO3u9/v++/BAUFwczMTBt82fLC4eLFi7C2tsbt27ehVqvx+vVr3L17V+y0GMt3tra2cHNz095Wq9UYM2YMAKB06dIoXbo0PDw8xEqPMVHkukApW7Ysrly5ggsXLiAgIAA9e/bEzZs38yI3rcDAQCiVSm3ExMTk6fOx/HP+/HnUrl0b/fv3x8OHD3Hs2DGxU2Is35UvXx7bt29HsWLFtNtOnz6NDh064Pvvv4dGo8HatWv5bDdWpOS6QNHX10epUqVQrVo1BAUFwdPTEwsXLoS9vT0yMzM/WHQrPj4e9vb2AAB7e3vEx8d/sP/9vv8il8thamqaLVjh8PLlSzg4OKBs2bJwcHBAtWrVQEQ8YZYVOdWqVcPevXvh4uICAHj16hUOHz6M6dOn4+7duxg0aBBevnwJX19fXgafFQlf/S7XaDTIyMhAtWrVoKenh5CQEO2+6OhoPHnyBN7e3gAAb29vREVFISEhQdvm2LFjMDU1RYUKFb42FVbAff/996hZsyYOHTqEs2fPip0OY/lKEAR4eXlh586dqFevHuRyOVJTU/Hbb7/h+fPnGDVqFKysrFC+fHleXZYVDbmZbT527Fg6ffo0PXz4kK5du0Zjx44lQRDo6NGjREQ0YMAAcnFxoRMnTlBERAR5e3uTt7e39v4qlYrc3d2pSZMmdOXKFQoODiYbGxsKDAzMTRp8Fk8BDxMTE5JKpQSAKlasSGfPnqVatWrRlStXKCMjg3x9falz586kVqtz9b5grLDIysoiZ2dn7WfG2dmZbty4Qf/88w9Vr16d2rdvL/rnmIPjayInZ/HkqkDp06cPubq6kr6+PtnY2FCjRo20xQnR/1+ozcLCggwNDalt27YUGxub7TEePXpEzZs3JwMDA7K2tqaRI0fyQm1FKJo2bUpnzpwhV1dXAkAymYyMjY2pQoUK9PjxY0pNTSUrKytycXEhlUqVq/cFY4XFxwqUVatWkZeXF4WFhdHMmTNF/yxzcHxNfPMCRVdwgVKwYty4cWRlZUXlypWjI0eOUMWKFcnW1pY6dOhAgwcPJqlUStOmTSMiojlz5pBMJiO5XE5+fn4frETMWFHwvwWKvr4+WVhYUP/+/SkhIYFKlSol+ueag+NrIicFigyM5RGJRAJ3d3f06dMHMpkM06ZNw5o1a9CxY0fExsZixYoVEAQBxsbGSE1NRVxcHMqUKQO5XI6UlBRUrFjxP69VwlhREhgYiNTUVPz888/IyMjAo0ePxE6JsTzHU8FZnqhSpQp27tyJ2NhYtGrVCiVLlsT69evxyy+/YOvWrdixYwdcXV3h4eGBefPmoX79+rC0tETLli2xYcMGdOrUCSNGjODJgIwBaNmyJUqWLIkHDx6InQpj+UYgKnjncyYlJcHMzEzsNNgnWFlZwc3NDQMGDICBgQGaNGmCefPm4dixY7hy5QqMjY3h4OCA27dvA3i3vs7u3bv5bC7G8G6hNnd3d+3nIzw8HB4eHqhduzYWLFiA+fPnY8+ePSJnydiXUyqVn10yhEdQ2DchkUjQo0ePbGs49OrVC3369MHGjRvh6uqKS5cuITIyEmq1GkqlUvvlC7w7Jb1Nmza4fv26WF1gTGdIJBLMmjXrg+1Pnz7F7du3ERwcLEJWjOUvLlDYNzFs2DB8//33SEpKQrdu3XDixAlcvHgRzZo1gyAIWLBgAd68efPR+86cORPDhg3DvXv3EBoams+ZM6Z7iAhbtmz56L4ZM2YgLS0NwLsFLnnRNlZY8TubfTUnJye0adMGY8aMgSAI6NmzJ/bv349du3ahX79+qFu3Lvr374/w8PAP7lu+fHm0bt0aTk5OKFasGGrWrClCDxjTPUZGRtluHz58GMnJydoJsi4uLti/fz969OghQnaM5T0uUNhXKV68OKZNm4YuXbpAJpNhw4YN2LdvH1JSUnDr1i1cv34dv/76638uXV+yZEnMnTsXU6dORUJCAqKiovK5B4zpHo1GgytXrsDBwQHFixeHubk56tSpA0NDQ22b5s2bo3LlynymGyu0uEBhX0wQBLRu3RqnTp1CWloaVqxYgTNnzkCpVGLGjBnYsmULgoKCsl02/j0HBwc0btwYcrkcrVu3RmpqKrKysrB06VI8e/ZMhN4wpjskEgmWLFmClStXom3btihVqhT27t2Lt2/fatsMGDAAv//+O+bPny9ipozlHS5Q2Bdr3749XF1dcfDgQWzbtg1Hjx5FbGwsVq1aheXLlyMwMBBZWVkfvW/9+vXh4eEBY2NjvH37FvXq1QPw7myFtm3b4vHjx/nZFcZ0ikQiQVJSEl69eoUGDRrgxYsX2LRpEzIyMrRtZs+e/cnPGGMFHRco7It17NgR+vr6cHR0RKlSpbB582b4+flh3rx5mDZtGjQazX/ed/jw4XBycsKBAwewd+9epKSkaPeFh4fj6NGjfEVjVmSp1WocO3YMrVu3RlpaGn777TfMmTMHlpaW2jZbtmz55GeMsYKOCxSWazKZDJUqVUKZMmWwd+9ePHv2DO3atYOjoyOOHTuGCRMmID09/T/vL5VKIZFIUKNGDaxduxbNmjXTHluXyWSQy+WYM2cOf/myIuvw4cOoVasW9PT0sHr1avTs2RMVKlSAVCoVOzXG8g0vdc9y7ZdffsHo0aMhkUhga2sLlUqFq1evQl9fH3fu3PnkyIeenh5++uknvHjxAi1atEBsbCx69OgBc3NzWFhYYOXKlahfv762iPlSKpUKBw8e1A5/N2/e/IOzIhjTVcnJyfDx8UFYWBiePXsGCwsLBAUF4eXLl2Knxli+4REUlmsqlQrJycmQyWT466+/4OXlBQDIzMz86ITYfyMinDhxAjNnzgQAHD9+HCdPnoSZmRn279+PDh06wNjYGGlpaUhKSvriHJcsWYJ+/fqhY8eO6NixI8aPH//Fj8VYfnr69CkkEgmsra2xZs0atG/fHosWLcJff/3Fhz1ZkcIFCsu1uXPnws3NDQcPHgSAj654+V9UKhVu3bqFUaNGaRdo69q1K1auXAmlUgkiwv3797Fs2TIsXLgQr1+/zlVuRITVq1fjzZs3aNCggXb7gQMHMGvWLMyaNYvPEmI67cSJE7CyssLSpUuRkJCApk2bYteuXXyBQFbkcIHCck2j0UClUml/zX3JoZiRI0dCoVDg7NmzmD9/PmbOnAl/f39s3boVHh4emDRpEp4/f45u3bohISEhR4+ZkZGBlStXYvPmzZDL5Thy5Ih23/379zF27FiMHTsWvXr14l+iTGc9e/YM165dw+TJk9GjRw/tPC/GihouUNhX+/epjzkhk8kQEBCAgQMHwsXFBUqlEtOmTYNSqURcXBySk5ORlpaGSpUqITw8HD169NAu7f1fVCoVVq9ejQoVKmDJkiXYsGED0tPTMXr0aKxcuRIDBw7UPnezZs2+uK+M5RWlUomNGzeiU6dO2L59OxYtWoTGjRvjjz/+EDs1xsRBBZBSqSQAHCLHtm3biIioXr16Ob6Pnp4eLVq0iF6+fEkdOnQgc3NzMjMz0+43MDAgT09PunnzJs2dO5fs7e3J09OTlErlf74fVCoVTZgwgVq2bEk9evQgExMTkslkNHv2bMrMzCS1Wk0VK1YkANSrVy/KysrKr7cqY5+l0Who37591LRpU5LL5WRqakoTJkygmJgY+v7770X/nHNw5EV86jv9PT6Lh32xly9fQqPRYNiwYbh69epnJ7UqFApMnjwZLVq0wJAhQ7Bz5044Ozvj1atX2jZpaWlwcnLCsmXLYG5ujgMHDuDNmzdYuHAhRo8eDYVCke0xnz17hrdv32LZsmWwsbFBdHQ0iAjOzs746aef8PLlS6SmpiIzMxNubm5wdHSERqPB7NmzkZSUhGnTpuXJa8PY5yQnJ+PWrVsYN24czp49i7S0NBgbG2PWrFlo3Lgx+vTpg5MnT4qdJmPiyfvfB98ej6DoRtjY2FBqaippNBoaMmTIf7YTBIEaNGhAa9eupZcvX1KDBg2oWLFi1KRJE7pw4QKVK1fug/uYm5vT0aNHSaPRUK9evQgA/fLLL6TRaIjo3a/O8+fPU7Fixahx48ZkZGSU7f4tW7akKVOmUIkSJUgqldL8+fNJpVKRSqWiGTNmkCAI1KpVK5HfyayoysjIoJ49e5JUKtW+Z1u3bk27d+8mjUZDR48eJVNTU9E/4xwceRU5GUHhAoXji8PU1JSioqKIiGjo0KEf7JdIJFSnTh3av38/vXr1il6/fk1BQUE0YMAAksvl1K9fv48WJzY2NnTw4EHSaDS0YcMGMjc3p1KlSlGZMmW0Bcr58+fJwcGBANCcOXOobt26HzyOnZ0dmZub09ChQykzM5PCw8OpfPnyJJfLqXTp0nTz5k0x38asiFIqldSnTx+SSCQ0fPhw8vPzIzMzMzp8+DARER06dIgsLCxE/3xzcORlcIHCkecxaNAgIiL65ZdfSBCEbPt+/PFHSk9PJ7VaTVu2bKHGjRtTjRo1sv1q/HdIJBLq27cvnTp1ioiI0tLSqH379rR69WqqX78+eXp6klqtpgsXLpCrq6v2ftWrV6fvvvvug8fr2rUrbdq0iaZMmUIXL14kNzc3AkAlS5bUFlaM5bfw8HDy8/MjQ0ND7Xu1SZMmpNFo6MiRI2Rrayv655qDI6+DCxSOPI/3BYpSqSQbGxvtdhsbG22hsWfPHqpZs+ZnH6tKlSqUkZFBRETBwcHUuXNnioqKIqVSSSYmJnT06FFSq9U0fvx4Kl68+Gcfr2vXrvTmzRtq06YNGRgYkL6+PtWoUYNOnjypHYlhLL+Fh4eTXC4nAGRkZERVq1alq1ev0tGjR7NNGOfgKMyRkwKFTzNmX2X37t2Ijo5GUlIS1Go1zM3N0bdvX2g0GkyYMAG+vr64evUqYmNjP/tY48aNw5s3b7Bp0yZ0794dDg4OKFmyJOLj4+Ht7Q2NRoPDhw+jevXqSE5O1t5PEATY2dlleyxBEGBgYIDw8HD8/fff+P7773HixAksX74cVatWhSAI3/y1YCyn3p+aX7FiRfTt2xevXr3CsmXLoFQqRc6MMd3BBQr7KrGxsVAqlZg9ezbevHmDxMREWFhYYPr06WjevDm8vLywdu1aPHnyBABgZGQEX1/fjz5WcHAwfH190b17d/j7+2Pu3LmIi4tDhw4dcOzYMZw+fRqCIKBHjx7Zrkmip6eHyZMnZ3ssmUyGmJgYNG3aFACwePFiVKtWDa9evYKpqWkevRqM5Uzz5s1haGiI4cOH49mzZxg1ahSvFMvY/+DTjNlXGzduHK5cuYKpU6diwoQJWLlyJcLDw5GcnAw/Pz/ExMQAAH766SdMmDABb9++xc2bN/Hw4cNsj7NmzRrtv1u0aAFBEHD48GFcu3YNHTt2RJUqVdClS5cPTmfWaDS4efPmB9uqVq2KpKQkvHjxAgYGBlAoFPDx8cmjV4GxzyMiXL9+HU5OTihWrBgmT54MtVoNR0dHXL58Wez0GNMpXKCwr2ZiYoJp06ZBLpdDT08PmZmZWLx4Mdq0aaNd40QQBPTv3x8A0K9fvw+Kk3/z8fFBpUqVkJqainnz5gEAwsPDcfLkyY+uteLn56ddnTY2NhY3btxAUFAQWrVqhbNnz8LY2Bi2trZ50HPGcm/+/Pm4du0afvjhBwwcOBAKhQKpqalo2LCh2KkxplMEooJ3UZKkpCSYmZmJnQb7P4IgQC6Xo2XLlqhfvz7s7e1x+vRpJCYm4sWLFzh69CgAQC6XQxAEpKen/+djKRQKPHjwAA4ODpg1axYCAwM/e90chUKBtm3bYteuXdBoNPDy8kJYWBiAd8uH9+7dG/PmzYObm9u36zRjX4CIULlyZVy7dg1Vq1bF8OHD8fz5c1hbW6Nfv35ip8dYvlEqlZ893M5zUNhXIyKkp6fjzZs36NmzJzp27IiuXbti9+7dGD9+PNq0aQPg3cTATxUn5cuXx5kzZ2BjY4Pw8HD88ccfObqoX3p6OrZs2YLMzEyoVCqkpqYiPDwcDRo0QKNGjfDgwQPo6el9s/4y9jWcnJwAAJcuXcL06dNhZGSEkJAQjB49GqVKlRI5O8Z0Bxco7JsJCQnBiBEjoFar4erqiqpVq2LAgAEYO3asdrLqf9HT00OfPn1QtWpVXLlyBQEBAShbtmyOn1tPTw+CIEAikSAlJQUhISG4ePEi3rx5g0uXLqFYsWJf2z3GvpogCFizZg3q1asHAJg3bx5KlSoFlUqFa9euoUSJEiJnyJju4AKFfVPGxsa4ffs2HB0dsX37djx79gy+vr6wsLBAo0aNPnofa2tr3L17F8OGDcOlS5cwaNAgfP/997h48eJ/Po++vj58fX1hZmYGfX19REREIDAwEAsXLsT58+fx/fffQyqVonLlygDApxUznWFvb49du3ahfv366NGjB3744QeEhIRAX18fCQkJYqfHmO7IywWJ8gov1KbbUbp0aXr8+DG9evWKhg4dStbW1gSAKleuTJ06dSIzMzPS09PTtre2tqbHjx9TZGQkLViwgA4cOEANGjT45HO4ubnR4cOHydramvT19enOnTva90dGRgZ169aNWrZsSQkJCSK+Uxn7bzExMVS/fn0CQPXr16etW7fS2rVrs302ODgKa/DVjJko7t69q13ALSIiAgcPHsTw4cMRFhaGqKgoeHl54fnz53j27Bn69u0LY2Nj/PHHHzh58iTatm2Lbt26fXbBqmnTpsHGxgZyuRyZmZno1KkTAgIC0KdPH8yaNQv79u3DgwcPYG1tnU+9Zix3nJycsHPnTrRt2xZPnz5FXFwc6tSpg2LFivGaKIyBz+JhecTQ0BAKhQKvX79GiRIlkJKSgvj4+A/alS9fXjuB9c6dO8jIyEC7du1w69atD9Y2+bcSJUqgYsWKCAkJQWpqKgCgWLFiWLZsGWbNmoUuXbpgwIABkEqledNBxr6RuLg4dOrUCWXKlEG7du0wdOhQ3Lt3T+y0GMtTOTmLhw/xcOhUSKVS7bD3p8LKyopSU1Pp999/J+DdhQZ/+eUXUqvVYr89Gcu1p0+ffvSK3BwchTX4WjyswFGr1QgNDf1su2rVqkEqlcLY2BjAu6XDp06dComE39Ks4ClWrBh2796tPbuHMcZn8bACSKFQoEePHujQoQNGjRoFALhx4wbOnz+PPXv2iJwdY1/GxsYGgwcPhr6+vtipMKYTuEBhBU79+vXRuHFjHDt2DAqFAl5eXjA0NISDg4N2UTjGCqIOHTp8cOFLxooqLlBYgXP27FnUqVMHGRkZWLNmDXbv3g0PDw84ODjwIR5WoEkkEnTr1g3Ozs7ZthsZGWHevHmwtLQUKTPG8h9/m7MCp2zZsjA3N4dUKkWxYsVgZmYGc3Nz7XwUxgoyFxcX7NixAxYWFtptpUqVwrBhw9CrVy/xEmMsn3GBwgoUiUSCv/76C507d0bdunVhaGiI7t2749KlS3j69KnY6TH2TXh5ecHHx0d729vbGwAgk/HSVazo4AKFFSiWlpYwMTFBixYtcO7cOfzwww+4fv06XF1doVAoxE6PsW9CKpVi8ODBMDIyAgD07dsXKpUK69atEzcxxvIRFyisQBk+fDgcHBwwZcoUZGZmQiKR4O7du9i2bRuvGssKlXr16sHX1xcAsHLlSpw/f56vKcWKFC5QWIFhaGgIV1dXnDt3TrsqbY8ePSCRSHhyLCt0BEHAr7/+CrlcjlWrVuHy5cv47bffxE6LsXzDBzRZgVGmTBnIZDI0adJEu7y9np4eiIh/WbJCqXjx4vD398fatWuxefNmWFlZiZ0SY/mGf3Yynaenpwdvb2/Ur18fGzZs0BYnFSpUQKtWrbg4YYWWQqFAt27dYG1tjcuXL8PDw+ODU5AZK6x4BIXpPIVCgU6dOmH48OEA3q0JMWPGDLRs2RKurq7iJsdYHmvYsCFcXV3x8uVL3L9/H0eOHMGSJUuQkpKC9evXi50eY3mGR1CYzsvIyMD+/fu1txs0aIAhQ4agRIkSImbFWP5p3749AICIULZsWTg7O3Nxwgo9LlCYzsvMzERISAjc3d0hkUjg7+/Ph3VYkdK8eXMAwJEjRzB16lTs27dP5IwYy3tcoLACY9iwYdBoNBg5ciQ6duyIP/74A1lZWWKnxViek8lkUCgUSEtLw6pVq7Bw4ULY29ujZ8+eMDQ0FDs9xvIEFyiswImPj8fOnTsxbNgwREVFiZ0OY3muQoUK6Nu3LwAgOTkZQUFBiI+Ph6enJ1/9mBVaXKCwr2JtbQ1LS0tUqlQJVlZWMDExybPnmjZtWrbb7du3R9myZfPs+RjTFRKJBCNGjICFhQWUSiX27t2L5s2bw9/fH6NHjxY7PcbyxFcVKDNnzoQgCNqzKwAgPT0dgwYNgpWVFYyNjdG+fXvtolrvPXnyBL6+vjA0NIStrS1Gjx4NlUr1NakwkXTt2hVbtmxBWFgYxowZk6frNDx+/DjbbSsrKxgYGOTZ8zGmS5ycnKCnp6e9XaVKFVhbW8PFxUXErBjLO198mnF4eDhWrFiBSpUqZds+YsQIHDx4EDt27ICZmRkGDx6Mdu3a4ezZswAAtVoNX19f2Nvb49y5c4iNjUWPHj2gp6eHGTNmfF1vWL6ytLTE+PHjERwcjBIlSiA9PR1KpTLfnj80NBTXr1+HoaEhSpUqlW/Py5guWLVqFZo1ayZ2GozlHfoCb9++pdKlS9OxY8eoQYMGNGzYMCIiSkxMJD09PdqxY4e27a1btwgAhYWFERHRoUOHSCKRUFxcnLbNsmXLyNTUlDIyMnL0/EqlkgBw5GGYmZl9sM3AwIAcHBzI2NiYAFDx4sXpzz//1LZVKBRkaGhIDg4OJJPJvmk+75+7WLFitG7dOvL19aXevXtTt27dqH79+qRUKr/krcxYgZGenk6lS5fWfiY2b95MRER37tyhMmXKiP6dwcGRm8jJd/YXFSg9evSg4cOHExFlK1BCQkIIAL158yZbexcXF/r999+JiGjixInk6emZbf+DBw8IAF26dOmjz5eenk5KpVIbMTExor+4hTkUCgUtWrTog+1Vq1alGTNm0HfffUcAqE2bNiSXywkASaVSWrJkCW3bto3S0tJo+PDh3yQXJycnGjlyJP3111+UkZFBmZmZpNFoaNOmTaSvr0+2trZ08uRJ0mg0X/JWZqzA0Gg0tH37du1n4/r16xQcHEz+/v4kCILo3xscHLmJnBQouT7Es3XrVly6dAnh4eEf7IuLi4O+vj7Mzc2zbbezs0NcXJy2jZ2d3Qf73+/7mKCgIPz666+5TZV9gdmzZ6NZs2bZFkbr2bMn1q9fj0uXLuHSpUva7fv27YOdnR1Wr14NNzc3lC1bFjLZu7fU9OnTERMTg127duX4uV1dXREYGIi//voLRkZGmDlzJoyNjeHq6orLly/j8uXLEAQBycnJGDhwIDIzM5GUlITQ0FA8ePAAffr0+XYvBGM6RhAESKVS7W0/Pz+8evUKEokElSpVwtWrV0XMjrFvL1eTZGNiYjBs2DBs3rwZCoUir3L6QGBgIJRKpTZiYmLy7bkLG4VCAalUirp162LChAmQSCSYMWMGpk6dCqlUCo1Gg8jISPz2228QBAGtWrWCsbGx9v6CIMDAwABVqlTB0qVLsWPHDrRs2RIVK1bUFifAu2Lz5s2bOcrH1tYWixYtwpgxYyAIAo4cOYJDhw6hUqVKcHV1xapVq1C/fn3s3LkTly5dgr29vXbOSUZGBu7cuYPOnTt/+xeLMR1TuXJlVKlSBQBw7949vHnzBq1bt8bp06fh6+srcnaMfWO5GWLcs2cPAe+G898HABIEgaRSKR0/fpyAb3+I53/xHJTch5GREXXu3Jmio6OpQ4cO9NNPP9Gff/5JMpmMLl68SA0aNCDg3dyT94dtnJycSKlUUuXKlUkmk1GVKlWoS5cu9OLFi88Oz507d+6zOUkkElq3bh29fv36Pw/R3Llzh3r06EELFiygzMxM7fZu3bqRp6cn9e7dm1JTU3P0vmGsMLh9+7Z2jpehoSE9ffqUiIgmTZok+vcMB0dO45vPQUlKSqKoqKhs4eXlRd26daOoqCjtJNmdO3dm+zABH06SjY+P17ZZsWIFmZqaUnp6eo7y4AIl5xEQEEDOzs60ePFi0mg0dOzYMbK3tycnJycyMzMjQRCofPny2vb6+voUGBhI06ZNoxo1atCGDRuodevWdPz4cXr06BG9fv06R3+jN2/efPTYuEQiIWdnZ1q2bBkdOXIkx0Xpv0VFRdGGDRvo4cOHPDmWFTlpaWnUr18/At79WBw7diwNGTKEqlat+s0np3Nw5FXk2STZf/v3JFkiogEDBpCLiwudOHGCIiIiyNvbm7y9vbX7VSoVubu7U5MmTejKlSsUHBxMNjY2FBgYmOPn5AIl57FixQqKjIyk+/fvk0qlohIlSny0nSAIJAgCTZo0idRqNWk0Gnr58iUdP36cVCrVF7030tLSqFOnTtmep3PnzpSamkrx8fHaojW3NBoNT4plRdqsWbOyfXYB0MSJE8nNzU307xwOjpxEnkyS/Zz58+dDIpGgffv2yMjIQNOmTbF06VLtfqlUigMHDiAgIADe3t4wMjJCz5498dtvv33rVBiASZMmoXv37pgzZw4WLVqEt2/fol69etr9UqkUs2bNgpmZGQCgePHikEjeTU2ysrJCo0aNvvi5FQoFVq5cCRMTE9y5cwczZsyAh4cHDAwMsHHjRnTo0OGLHpcvFMiKOicnJxgaGiI1NRVEBBsbG1SuXBmZmZmYNWuW2Okx9k0IRERiJ5FbSUlJ2v9QWXYymQxyuRwpKSkA3hUJ3bp1w8SJE+Hn54e4uDjs2rUL3t7eImfKGPtSRAQvL69sZ9UxVpAolUqYmpp+sg1fi6eQad68OSIiIiCTyWBjY4M9e/Zg2LBh8PPzw+XLlxEbG4sHDx6InSZj7CvNmTNH7BQYy1NcoBQigiDA0dERqampAIAVK1YgKioKffr0QatWrSAIAsqVK4eaNWuKnClj7GsIggALCwvtL1A9PT2MGDECnp6eImfG2LfDBUohoqenhylTpiAyMhK1a9dG3bp18ejRIwwbNgwmJiYgIqhUKqSnp4udKmPsK1WuXBmdOnUCABgZGcHX1xdz586FIAg8T4sVCt98kiwTlyAIKF68OGrXrg09PT08fvwYBw4cQEJCAkqWLIndu3fD3d1d7DQZY19JEARMmDAB27ZtQ2JiItavXw93d3f8/vvvsLCwwNChQ5GUlCR2mox9MZ4kW4jo6+tj165d6N+/P8zMzODk5IRjx44BAIYPH44+ffrAw8ND5CwZY9+KSqXCqFGjsHDhQgBA9erVsX37dhQvXhy1atXChQsXRM6QsY/LySRZHkEpRDQaDcLCwiCTyXDr1i3cunVLuy8tLY1HThgrZGQyGby8vAAAXl5e2LNnDx4+fIhixYqJnBljX4/noBQiKpUKFy5cQPHixT/YV6NGDbx48SL/k2KM5almzZqhatWqaNmypbYwWb58OW7cuCFyZox9HS5QCpmQkBCEhoZ+sL1v375YsmQJsrKyoNFoRMiMMZYXrK2tYWFhAbVajdu3b+Onn37C0KFD0atXLzRo0EDs9Bj7YnyIpxAzNzdHrVq1cPz4cahUKixYsAAPHz7E4MGD+VRjxgqRmTNnwsfHB7dv34ZSqQQAdO3aFTdu3MD58+eRkZEhcoaM5R6PoBRClpaW8Pf3R7ly5bBjxw4YGxsDAJKTk9GkSRO8fPkSBXBuNGPsP1hbW0Oj0cDBwQG1atXSbjczM4NUKhUxM8a+HBcohZCvry/c3d0RGxuLpUuXan89ERH69OmDdevWISsrS+QsGWPfiqurK4YOHYrFixdj7969cHd3h729PXx9ffmMR1ZgcYFSgEgkEnh6eqJq1aqoUqUK9PT0AEC7pP2lS5dw6dIlLF68GI6OjkhOTsa2bdtgZ2enfQw/Pz+sWLEC+vr6YnWDMfaNCYKAgQMHwsHBARqNBrVr10bx4sWRkJDAP0ZYgcVzUAqA5s2bo1mzZtDX10efPn2gp6eHzMxMlCpVCk+fPoW/vz9at26NzMxMAMD+/fvRpUsXpKSk4Pbt24iOjsazZ8/QrFkzrF69mn9RMVYI2dvbQy6XAwDUajXS09OxcOFCJCUlQSKR8OR4VvBQAaRUKglAoQ8nJyf68ccfKSkpKVv/k5KSqEePHuTr60s9evSgV69eUVRUFNnY2FDlypXp+PHj1L9/fzI3NyepVEqtWrWi0NBQSk5OFukvxhjLa2q1mtq3b08ASKFQkI2NDZmamtLVq1epefPmon+fcXD8O5RK5Wff0zyCoqPMzMzQsmVLLFu2DElJSXjx4gVsbGwAvPt11KJFC9SoUQN2dnYwNDSETCZDy5Yt0b17d5QrVw7BwcHw8PDAuHHj0KhRI+3hIMZY4SSRSBAQEIBdu3YhPT0d6enp6NChA4yMjHhSPCuQeKl7HWRvb48dO3bA29sbEokEp06dwr179/Djjz8CAF68eIHr168jPDwczZs31y5fr1arIZG8m1akUqkgCAJkMq5BGSsqQkJC4OPjo70tkUggkUigVqu5SGE6JSdL3XOBokP09PQwZswY9O7dGyVKlMDLly/x119/YfDgwdrCgzHG/kt4eDhatGiBly9fip0KY5+UkwKF/9fTAXp6eqhevTrWrFmDKVOmoESJEkhOTsbSpUvRrl07Lk4YYzlSvXp1tGrVCsC7kdjvv/9e5IwY+3I8giIyMzMzrFq1Cs2bN9cuqAYAI0eOxLNnz7B161YRs2OMFTTPnj1D6dKlkZGRAT09PV5FlukkHkHRYTY2NujZsyeCg4PRoUMHpKena/c9evQIV65cwfDhw8VLkDFWIBkbG8PKygoajYaLE1ag8QiKCEqUKIFdu3ahUqVKEAQBarUawcHBaNmyJQCAiKDRaCCRSCAIgsjZMsYKEiLCihUrEBAQIHYqjP0nniSrgwRBQFhYmPZifc+ePcP169fRtGlTkTNjjBUWSqUSDRo0wNWrV8VOhbGPykmBwueg5iNDQ0O0bt0aFSpU0G4rVqwYihUrJmJWjLHCxszMDBYWFmKnwdhX4Tko+Wj79u1Yu3Yt/6phjOW5uXPnip0CY1+FC5R8YGNjA4lEAgMDA8jl8mwX72OMsbxgamoKS0tLsdNg7ItxgZLHnJ2dsXv3bu2xNkEQUKpUKezfv197cT/GGPvWSpUqhX79+omdBmNfjAuUPFasWDFUrlxZe5uIsHLlSrx48YKXoWeM5RlBEDBq1CjY2tpm2y6RSFC+fHmRsmIs57hAySdyuVx7wb5ixYqhUaNGvEIsYyxPmZubZzvjUSqVYtCgQdi3bx8qVaokYmaMfR7/D5lP2rZti9q1a0MQBLRs2RKurq5ip8QYK+RkMhmCgoK0t4cPH47ff/8dpUuX5rlwTOfxMYZ8YGBggAEDBuDGjRs4f/48kpKSMGrUKLHTYowVcoIgwNraGqamptDX18ePP/6I+Ph4BAcH48KFC2Knx9gncYGSD6RSKW7cuIGRI0di165d8Pb2FjslxlgRUb9+fTRp0gSOjo7Q09ODr68vL3XACgReSTaPlS1bFkeOHIGNjQ2Sk5NhY2PDy9czxvLVnTt3ULNmTchkMrx8+VLsdBjjiwXqgvfX1QkJCcGkSZNQAOtBxlgBZ2pqitTUVC5OWIHCBUoey8jIwPbt2zF16lQ4OzsDAJ48eYJbt26JnBljrKgwMjJC3bp1xU6DsVzhAiWPPX78GOPGjYOPjw/q168PLy8vpKamwt7eXuzUGGNFhImJifZq6YwVFDxJNh8oFAoMGTIEnTt3hqOjIxwdHT977I0xxr4lmUwGQRD4MDMrMHiSbD6xtLSERqPBihUrYGRkhMzMTLRq1YpXk2WM5Yu0tDR4eXnh5s2bYqfCGE+S1SWvX79GqVKlkJaWho4dOyIiIoLP5mGM5RuFQsE/iFiBwgVKPgoKCsKDBw+QlpaGChUqQCqV8nArYyzf8I8iVpBwgZKPMjMzERMTk23bxIkTuUhhjOWLqVOnip0CYznG4335KCgoCGfOnAEAvHnzBgMHDtSebpyeng6FQiFmeoyxQkwQBDg4OIidBmM5xgVKPnpfnADAL7/8grS0NBQrVgwbN26ESqVCnz59RMyOMcYY0x18iEckaWlpAIBnz57hwIED6NSpk8gZMcYYY7qDCxQdsHv3bkyaNAk3b97k+SiMMcYYuEDRCWq1Gr///jt++OEHZGVliZ0OY4wxJjouUHTI/fv3sWHDBqjVarFTYYwVQm5ubmjUqJHYaTCWI1yg6JD09HQMHDgQ06dPx9q1a5Geno63b98iMjJS7NQYY4WAlZUVypQpI3YajOUIn8WjY7KysjB58mRIJBJERkbi7du3MDQ0hLW1NVxdXcVOjzHGGMsXPIKiozQaDf744w9s2LABt27dwpkzZ5Ceno59+/ZBpVLxZFrGGGOFGhcoBcDly5fh7e2NzMxMTJ06Fb/++qvYKek8lUqFY8eO4fTp01zMMcZYAcSHeAqApKQkDBo0CM7OzliyZAlq1aqVJ8+TmpqKlJQUAEBkZCTWrFkDQRCwcOHCArEC5ePHjzFlyhQYGBhApVIhISEB7dq1w+DBgzF69GgUL15c7BQZ0wlVq1ZFWlqadiVrxnQS5cLkyZMJQLYoW7asdn9aWhoNHDiQLC0tycjIiNq1a0dxcXHZHuPx48fUokULMjAwIBsbGxo1ahRlZWXlJg1SKpUf5FEUYuXKlaTRaHL1Wn3K9u3bKTIykh48eECLFy+mjh07kkKhIIVCQXp6egSABEGg6Ojob/aceWnVqlW0c+dOSk1NpdTUVIqKiqJ169ZRSkoKzZs3j27fvi12ioyJLiAggCQSCUkkEtG/0ziKbiiVys++V3M9glKxYkUcP35ce/vfl+8eMWIEDh48iB07dsDMzAyDBw9Gu3btcPbsWQDv1vvw9fWFvb09zp07h9jYWPTo0QN6enqYMWNGblMpMmxtbdGgQQO0bdv2m16N1MPDQ3sY5N69e3jx4gXS09OztSEitGvXDgqFAnXq1MH06dNhbGz8zXL4Fh49eoSNGzfC1dUVfn5+kEqliImJQWhoKGxtbWFgYABPT09ERESgbNmyYqfLmOgaNWqEpKQkXLhwQexUGPtvuam8J0+eTJ6enh/dl5iYSHp6erRjxw7ttlu3bhEACgsLIyKiQ4cOkUQiyTaqsmzZMjI1NaWMjIwc51FURlAkEgkNGDCAzpw5801HTv5No9HQ9evXacKECfTPP/+Qvb39J3MaOHBgrke88trQoUOpVKlSNHz4cG24u7tTz549SaPRUGZmJs2bN49u3rwpdqqMiS4gIIA6dOhAPj4+on/HcRTdyMkISq4LFENDQ3JwcCA3Nzfy9/enx48fExFRSEgIAaA3b95ku4+Liwv9/vvvREQ0ceLEDwqcBw8eEAC6dOnSfz5veno6KZVKbcTExIj+4uZ1SCQSmjhxIqWnp+fmT5RrUVFRNG7cOJJIJGRnZ0cymeyj+chkMvLw8CCpVEoLFizI05xya+jQoR/kW6NGDXr+/DkREc2dO5euXbsmcpaM6YaAgABSKBSkr68v+vccR9GNnBQouTqLp2bNmli3bh2Cg4OxbNkyPHz4EPXq1cPbt28RFxcHfX19mJubZ7uPnZ0d4uLiAABxcXGws7P7YP/7ff8lKCgIZmZm2nB2ds5N2gWOnp4efv75Z0yYMAFSqRRr1qzBrFmzvvnzPHnyBH5+fpgxYwY0Gg3i4+OhUqk+2tbAwAB9+/aFWq1GXFyczqx2GxMTgxMnTmTbtnjxYmzfvh1mZma4ceMGBEFAiRIlRMqQMd2Tnp6OzMxMsdNg7JNyNQelefPm2n9XqlQJNWvWhKurK7Zv3w4DA4Nvntx7gYGB+Pnnn7W3k5KSCm2RUrVqVXTr1g1Dhw6FVCrF6tWrsX79euzYseObP5e+vj4sLCxy1DYzMxMnT54EAMydOxcymQzdunXLlzkd9H+nCf/v/Bsigr6+PkxNTbXbqlevjg4dOsDS0hIDBw6EgYEB5s+fn22uFGOMMd33VeugmJubo0yZMrh37x7s7e2RmZmJxMTEbG3i4+Nhb28PALC3t0d8fPwH+9/v+y9yuRympqbZojCysrLC7t27MWLECAiCgEuXLuHmzZvYtm3bJ1+fL2Vvb4+///4b165dQ58+fT45ATcjIwP79u0D8G6NkWnTpmHXrl149OjRN8/r35KSkhAaGqqdRP306VNkZGTg3r17mDVrFurWrYunT5+if//+OHbsGHx8fGBsbIxly5ZhwIABCAoK4uKEMcYKoK8qUJKTk3H//n04ODigWrVq0NPTQ0hIiHZ/dHQ0njx5Am9vbwCAt7c3oqKikJCQoG1z7NgxmJqaokKFCl+TSqHQvXt3ODk5AQB27NiBs2fPYsSIEXB0dMyz53RwcICHhwcWL16MZcuWITAwEFKpNEf3jY6OxsaNG3Hv3r1vkotGo0FqaipSU1OxYMEC7Nq1C2PHjsV3332HJ0+eID4+Hu3atUN8fDzGjRuHwMBAqNVq7N+/H0uWLEFERARCQ0MRFBSExo0bw8vLS+fOOGJMTI8fP0ZoaKjYaTCWM7mZXDVy5Eg6deoUPXz4kM6ePUs+Pj5kbW1NCQkJREQ0YMAAcnFxoRMnTlBERAR5e3uTt7e39v4qlYrc3d2pSZMmdOXKFQoODiYbGxsKDAzM1SSvwngWj6OjI128eJGIiF69ekWTJk2ipKSkXL0u30JWVhb98ccf1KlTp8+e0WNnZ0ddu3al4cOHf/VZRhqNhlasWEGWlpZkaWlJenp6ZGBgQIsWLSJjY2OKjY2lDRs2kFQqpfPnz1OtWrUIAJ06dYpUKhWtWrWKhgwZQvHx8ZSYmPiNXg3GCpfw8HDRv+s4OIA8OIunU6dO5ODgQPr6+lSsWDHq1KkT3bt3T7v//UJtFhYWZGhoSG3btqXY2Nhsj/Ho0SNq3rw5GRgYkLW1NY0cOZIXagOoZ8+e2v4lJibSkydPcvWa5IXOnTtny7FJkya0fv16GjZsGB05coT8/PwIAAUHB1N8fLz2bK3cio+Pp1WrVpGxsfEHr0uFChVIKpVSw4YNydzcXLsNALVu3ZqUSiVt376dzp8//417z1jhc/Xq1Y9+zjg48jtyUqAIRAXvQiVJSUkwMzMTO41vpnHjxti+ffsHZ0CJ7fXr15g/fz40Gg0yMzNx9uxZtGjRAg0aNEDdunWRnJyMzp0748qVKyhevDjs7Oywe/fuHD8+EeHu3bto164dbt68maNr5giCgEGDBiEkJASNGjXC4sWLodFoIAjCN13EjrHCiIgwcOBALF++XOxUWBGnVCo/O5+UZw/qgMaNG+tccQIAlpaWmDp1KoB3qwA/ePAAQUFBcHJywsSJExEbG4vExEQkJCTg+fPnaNu2ba4e//79+2jbti1u3ryZ4/sIggBra2skJydj9OjRAACJhK95yVhOcCHPChL+ZheZo6MjmjVrJnYanyWVSlG6dGn8+eef6NGjBwICAjB48GDtxQUBQKFQ4M2bN/jxxx/x4MEDbNmyBUqlEps2bfpgdOT+/fvYtGkTnj179tnn/emnn9C7d28A7ybSTpkyBampqbCxsfn2HWWskJPL5WKnwFiO8AiKyHx9feHu7i52GrkikUjQqVMnaDQauLm5YceOHZDJZJgxYwaOHz+OP//8E/fv30eFChVw7NgxdOrUKdv9o6Oj0b59e5QrV+6zv+aKFy/+0SHpWrVq5fhsI8bY/zdp0iRs2LABr1+/FjsVxj6JCxQRmZqaYuDAgQV2yFUikaBly5Zo2bIlAODSpUuYO3cuSpQogapVq2Lz5s2Ii4tD586dcffuXYwbNw5+fn54+PAhbty4gRs3bnz2OYyMjKBWq5GVlaXdVrFiRSxatAipqanQaDRQKBR51kfGChuFQlFgv3NY0cKTZEXUv39/LFu2rNB8WdC7s8IAvPuVNn36dABAy5YtcejQIWg0GgDvjoPn9G3n4uICe3t7+Pj4ICkpCUuWLAEAtG/fHikpKfjtt99QvXr1POgNY4VTWloanJ2d8erVK+22tm3bgoiwd+9e8RJjRUpOJsnyHBSRmJqaYvz48YWmOAHeFR4SiQQSiQQTJkzQHto5cOCAtjgBgHr16sHNzS1Hj/nkyRNcvnwZrq6uMDEx0W7ftWsXrl+/jr179+a42GGMvRv5/N9LVLRu3RqtW7cWKSPGPo4P8YikT58+cHBwEDuNPKNQKDBixAjtl97BgwexdetWaDSaXK9kSUQ4fvw40tLSsm1v1qwZfv31V6SlpUGhUHxwNk9GRgbS09NhampaqApBxr6GXC7H0KFDce7cOe221NRUPlTKdA6PoIjA0dERnTt3LvTXiKlZsyb8/f3h7++PNWvWfPEFHlUqFXbs2IEDBw5k2x4eHo7Y2FiEhIRozya6cuUK9uzZg6ysLIwcORLjxo376n4wVthNmjQJycnJYqfBWDZcoIigXLlyqFmzpthp5Cu5XI49e/Z805GjunXrwtraGhcuXEDjxo2xdOlStG3bFrNnz0ZGRgYOHDiAHj168OgJK7Li4uJw/fp13L59O9th1v+VmZnJh0qZzincP+F1kCAI6NChg9hp5DtBEFClShWsXr0aV69eRevWrRETE/NVj3nu3DkEBARg/fr1AIALFy4AePdlO3HiRDRp0gQ1atSAWq0GERX6ESvG/i0uLg5t2rTBxYsXYWRkhA0bNqBVq1b/eXp+5cqV4erqisePH+dzpox9HJ/Fk8/KlCmD06dPw97eXuxURDVy5EjcunULJ06cQEZGxjd/fC8vL+zZswdPnz7FunXrkJiYiK1bt37z52FMV12/fh0eHh7a28bGxjAzM0OXLl0gkUgwe/Zs7T5BEGBvb49Xr14hMzNTjHRZEcNn8eggf3//Il+cAMC8efNw4MABTJkyBfr6+t/0satVq4bt27fDyckJt2/fxt69ez9YLI6xosLDwwPLly9H+/bt8ezZM8ydOzdbcQK8m4geGxvLxQnTKTzmnY/MzMx4zY5/kUgkGD16NCwtLbFp0yb8888/X/2YVatWxZ49e+Ds7Izbt29j586dePjwIZ+hwIqsGzdu4Pjx41CpVGKnwliucIGSj9LS0r563kVh8/5aO35+fnj69CkyMjLQvHlzKJXKXD9WtWrVsHv3bjg7O+Pu3bvo168fRowYwStnsiLN2NgYt2/fztHKzYzpEj7Ek48yMzMRFxcndho6ydbWFlWrVkX16tUxe/bsXF+fSCKRYOrUqdripG3btihVqhTat2/PxQkrkhwcHLBw4UJs2LABJUqU4LN0WIHDBYpIMjMzcfXqVbHT0DkymQw//fQT9u7diw4dOqB+/fo5ul+zZs3QsGFDAED37t1hYmKCmTNn5mWqjOk0KysrDB48GLdu3UJwcLDY6TCWa1ygiCQlJUV7eiz7UMmSJbFjxw7s3r37s6MgMpkMP//8M+RyOXbt2gW1Wo1t27bxZGRWZKWkpODp06dYtGgRpkyZwpNfWYHEBQrTaVZWVtiwYQPGjx+P0aNHY9SoUdmuyQO8m8fi7u4OIsKDBw/QsmVLuLi4iJQxY+LbvHkzqlevjri4OPj6+oqdDmNfhCfJisTU1BQ9e/bE27dvP/gPl2VnaGiIqVOnAgDUajUuXryY7Xo+P//8M6ysrJCQkIA7d+5gzpw5YqXKmE4gIlhZWWHq1Knw9vZG6dKlkZmZyYuwsQKFR1Dy2YEDB/Dy5UtIpVKcP3+eZ9bnklQqxaZNmzBv3jwYGhoCAOzs7CCTyZCVlYX169dj/vz5ImfJmHiICJmZmdr1hRITEzF37lwMGzZM5MwYyx0uUPJZZGQkkpKSAAClSpWClZWVyBkVPM7Ozhg+fDg2b94MCwsLqNVq7N69G4mJiejcuTO6du0qdoqMiUapVOLXX3/FnDlzIJPJEBERge+++w5XrlwROzXGcoULFBG8fPkSANCoUSPo6elh+/btImdU8EgkEvj5+eHw4cNo3bo1goKCkJCQgI0bN6Js2bJip8eYaIgIaWlpMDIygiAIuHXrFnr16oVNmzaJnRpjucJzUPIZEcHf3x979uyBh4cHkpOT+bjwV6hZsyaICOfPn4dEwvU2YwqFAmPGjEGxYsVARLCwsMCYMWOQlpbGpxuzAoW/0UVw//59XLt2DQBgZGQEZ2dnkTMq2ARBgFQq5QXZGANgYGCA0qVLY+fOnThy5AjKlSsHCwsL+Pj4iJ0aY7lSIEdQCsOKiKmpqUhKSoKVlRVatGihnZfCGGNfIyUlBX/88QdevXqF8+fP459//kHv3r1hbGwsdmqMaeXk/3GBCuD/9g8ePEDJkiXFToMxxhhjXyAmJgZOTk6fbFMgR1AsLS0BAE+ePIGZmZnI2eSfpKQkODs7IyYmBqampmKnk2+439zvooD7zf0uCogIb9++haOj42fbFsgC5f1kSDMzsyL1h33P1NSU+12EcL+LFu530VIU+53TgQWeJMsYY4wxncMFCmOMMcZ0ToEsUORyOSZPngy5XC52KvmK+839Lgq439zvoqCo9js3CuRZPIwxxhgr3ArkCApjjDHGCjcuUBhjjDGmc7hAYYwxxpjO4QKFMcYYYzqnQBYof/zxB4oXLw6FQoGaNWvi4sWLYqf0VUJDQ9GqVSs4OjpCEATs3bs3234iwqRJk+Dg4AADAwP4+Pjg7t272dq8fv0aXbt2hampKczNzdG3b18kJyfnYy9yJygoCNWrV4eJiQlsbW3h5+eH6OjobG3S09MxaNAgWFlZwdjYGO3bt0d8fHy2Nk+ePIGvry8MDQ1ha2uL0aNHQ6VS5WdXcmXZsmWoVKmSdnEmb29vHD58WLu/MPb5Y2bOnAlBEDB8+HDttsLY9ylTpkAQhGxRrlw57f7C2Of3nj17hm7dusHKygoGBgbw8PBARESEdn9h/F4rXrz4B39vQRAwaNAgAIX7750nqIDZunUr6evr059//kk3btygH3/8kczNzSk+Pl7s1L7YoUOHaPz48bR7924CQHv27Mm2f+bMmWRmZkZ79+6lq1evUuvWrcnNzY3S0tK0bZo1a0aenp50/vx5+ueff6hUqVLUpUuXfO5JzjVt2pTWrl1L169fpytXrlCLFi3IxcWFkpOTtW0GDBhAzs7OFBISQhEREVSrVi2qXbu2dr9KpSJ3d3fy8fGhy5cv06FDh8ja2poCAwPF6FKO/P3333Tw4EG6c+cORUdH07hx40hPT4+uX79ORIWzz//r4sWLVLx4capUqRINGzZMu70w9n3y5MlUsWJFio2N1caLFy+0+wtjn4mIXr9+Ta6urtSrVy+6cOECPXjwgI4cOUL37t3TtimM32sJCQnZ/tbHjh0jAHTy5EkiKrx/77xS4AqUGjVq0KBBg7S31Wo1OTo6UlBQkIhZfTv/W6BoNBqyt7enOXPmaLclJiaSXC6nLVu2EBHRzZs3CQCFh4dr2xw+fJgEQaBnz57lW+5fIyEhgQDQ6dOniehdH/X09GjHjh3aNrdu3SIAFBYWRkTvCjuJREJxcXHaNsuWLSNTU1PKyMjI3w58BQsLC1q9enWR6PPbt2+pdOnSdOzYMWrQoIG2QCmsfZ88eTJ5enp+dF9h7TMR0ZgxY6hu3br/ub+ofK8NGzaMSpYsSRqNplD/vfNKgTrEk5mZicjISPj4+Gi3SSQS+Pj4ICwsTMTM8s7Dhw8RFxeXrc9mZmaoWbOmts9hYWEwNzeHl5eXto2Pjw8kEgkuXLiQ7zl/CaVSCeD/XwgyMjISWVlZ2fpdrlw5uLi4ZOu3h4cH7OzstG2aNm2KpKQk3LhxIx+z/zJqtRpbt25FSkoKvL29i0SfBw0aBF9f32x9BAr33/vu3btwdHREiRIl0LVrVzx58gRA4e7z33//DS8vL3Ts2BG2traoUqUKVq1apd1fFL7XMjMzsWnTJvTp0weCIBTqv3deKVAFysuXL6FWq7P98QDAzs4OcXFxImWVt97361N9jouLg62tbbb9MpkMlpaWBeJ10Wg0GD58OOrUqQN3d3cA7/qkr68Pc3PzbG3/t98fe13e79NVUVFRMDY2hlwux4ABA7Bnzx5UqFChUPcZALZu3YpLly4hKCjog32Fte81a9bEunXrEBwcjGXLluHhw4eoV68e3r59W2j7DAAPHjzAsmXLULp0aRw5cgQBAQEYOnQo1q9fD6BofK/t3bsXiYmJ6NWrF4DC+x7PSwXyasascBk0aBCuX7+OM2fOiJ1KvihbtiyuXLkCpVKJnTt3omfPnjh9+rTYaeWpmJgYDBs2DMeOHYNCoRA7nXzTvHlz7b8rVaqEmjVrwtXVFdu3b4eBgYGImeUtjUYDLy8vzJgxAwBQpUoVXL9+HcuXL0fPnj1Fzi5/rFmzBs2bN4ejo6PYqRRYBWoExdraGlKp9INZz/Hx8bC3txcpq7z1vl+f6rO9vT0SEhKy7VepVHj9+rXOvy6DBw/GgQMHcPLkSTg5OWm329vbIzMzE4mJidna/2+/P/a6vN+nq/T19VGqVClUq1YNQUFB8PT0xMKFCwt1nyMjI5GQkICqVatCJpNBJpPh9OnTWLRoEWQyGezs7Apt3//N3NwcZcqUwb179wr139vBwQEVKlTItq18+fLaw1uF/Xvt8ePHOH78OPr166fdVpj/3nmlQBUo+vr6qFatGkJCQrTbNBoNQkJC4O3tLWJmecfNzQ329vbZ+pyUlIQLFy5o++zt7Y3ExERERkZq25w4cQIajQY1a9bM95xzgogwePBg7NmzBydOnICbm1u2/dWqVYOenl62fkdHR+PJkyfZ+h0VFZXtS+zYsWMwNTX94MtRl2k0GmRkZBTqPjdq1AhRUVG4cuWKNry8vNC1a1ftvwtr3/8tOTkZ9+/fh4ODQ6H+e9epU+eDZQPu3LkDV1dXAIX3e+29tWvXwtbWFr6+vtpthfnvnWfEnqWbW1u3biW5XE7r1q2jmzdv0k8//UTm5ubZZj0XNG/fvqXLly/T5cuXCQD9/vvvdPnyZXr8+DERvTsdz9zcnPbt20fXrl2jNm3afPR0vCpVqtCFCxfozJkzVLp0aZ0+HS8gIIDMzMzo1KlT2U7LS01N1bYZMGAAubi40IkTJygiIoK8vb3J29tbu//9KXlNmjShK1euUHBwMNnY2Oj0KXljx46l06dP08OHD+natWs0duxYEgSBjh49SkSFs8//5d9n8RAVzr6PHDmSTp06RQ8fPqSzZ8+Sj48PWVtbU0JCAhEVzj4TvTuVXCaT0fTp0+nu3bu0efNmMjQ0pE2bNmnbFMbvNaJ3Z5a6uLjQmDFjPthXWP/eeaXAFShERIsXLyYXFxfS19enGjVq0Pnz58VO6aucPHmSAHwQPXv2JKJ3p+RNnDiR7OzsSC6XU6NGjSg6OjrbY7x69Yq6dOlCxsbGZGpqSr1796a3b9+K0Juc+Vh/AdDatWu1bdLS0mjgwIFkYWFBhoaG1LZtW4qNjc32OI8ePaLmzZuTgYEBWVtb08iRIykrKyufe5Nzffr0IVdXV9LX1ycbGxtq1KiRtjghKpx9/i//W6AUxr536tSJHBwcSF9fn4oVK0adOnXKthZIYezze/v37yd3d3eSy+VUrlw5WrlyZbb9hfF7jYjoyJEjBOCDvhAV7r93XhCIiEQZumGMMcYY+w8Fag4KY4wxxooGLlAYY4wxpnO4QGGMMcaYzuEChTHGGGM6hwsUxhhjjOkcLlAYY4wxpnO4QGGMMcaYzuEChTHGGGM6hwsUxhhjjOkcLlAYY4wxpnO4QGGMMcaYzuEChTHGGGM65/8BYtfDPk4QApIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -555,9 +563,9 @@ "from mmedit.edit import MMEdit\n", "\n", "# Create a MMEdit instance and infer\n", - "img = '../resources/input/matting/beach_fg.png'\n", - "trimap = '../resources/input/matting/beach_trimap.png'\n", - "result_out_dir = '../resources/output/matting/tutorial_matting_res.png'\n", + "img = '../resources/input/matting/GT05.jpg'\n", + "trimap = '../resources/input/matting/GT05_trimap.jpg'\n", + "result_out_dir = '../resources/output/matting/tutorial_matting_gca_res.png'\n", "editor = MMEdit('gca')\n", "results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)\n", "\n", @@ -578,7 +586,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -606,7 +614,7 @@ "\n", "# Create a MMEdit instance and infer\n", "img = '../resources/input/restoration/0901x2.png'\n", - "result_out_dir = '../resources/output/restoration/tutorial_restoration_res.png'\n", + "result_out_dir = '../resources/output/restoration/tutorial_restoration_esrgan_res.png'\n", "editor = MMEdit('esrgan')\n", "results = editor.infer(img=img, result_out_dir=result_out_dir)\n", "\n", @@ -655,7 +663,7 @@ "\n", "# Create a MMEdit instance and infer\n", "img = '../resources/input/translation/gt_mask_0.png'\n", - "result_out_dir = '../resources/output/translation/tutorial_translation_res.png'\n", + "result_out_dir = '../resources/output/translation/tutorial_translation_pix2pix_res.png'\n", "editor = MMEdit('pix2pix')\n", "results = editor.infer(img=img, result_out_dir=result_out_dir)\n", "\n", @@ -676,7 +684,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -690,7 +698,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAACtCAYAAAB1Le/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ya8tW3bei/1mGRGr2NUpb5k1mRRJkXqkRFvwg98DZMgG3BAMGGoK6hg2QAEG7YbohgQBBtQyoIbU8z+gvhuCAXbcsGDhSbLMJzHFMqtbnHPP2eVaK4pZuTFmxFrnJiVlwvDLTHDPzHPPPntVsSJmzPmNb3zjG6qUUngcj+NxPI7H8Tgex+P4GRv6p30Aj+NxPI7H8Tgex+N4HH/eeAQpj+NxPI7H8Tgex+P4mRyPIOVxPI7H8Tgex+N4HD+T4xGkPI7H8Tgex+N4HI/jZ3I8gpTH8Tgex+N4HI/jcfxMjkeQ8jgex+N4HI/jcTyOn8nxCFIex+N4HI/jcTyOx/EzOR5ByuN4HI/jcTyOx/E4fibHI0h5HI/jcTyOx/E4HsfP5HgEKY/jcTyOx/E4Hsfj+JkcP1WQ8s/+2T/jq1/9Km3b8lu/9Vv8q3/1r36ah/M4HsfjeByP43E8jp+h8VMDKf/8n/9zfud3fod/+A//If/m3/wbfu3Xfo2/+Tf/Jq9fv/5pHdLjeByP43E8jsfxOH6GhvppNRj8rd/6Lf7qX/2r/NN/+k8ByDnz0Ucf8ff+3t/j7//9v//TOKTH8Tgex+N4HI/jcfwMDfvT+NBpmvjX//pf87u/+7vL77TW/I2/8Tf4l//yX/7I88dxZBzH5d85Z66vr3ny5AlKqf9BjvlxPI7H8Tgex+N4HP+/jVIKDw8PvP/++2j9X07m/FRAyps3b0gp8eLFi3d+/+LFC77zne/8yPP/8T/+x/yjf/SP/oc6vMfxOB7H43gcj+Nx/P9x/OAHP+DDDz/8Lz7vpwJSftLxu7/7u/zO7/zO8u+7uzs+/vhjfumDLWeNxjtNYxRKK0BRSqHkQiqFmAoxF2JRpAyg0LqgAaNAAShFLoWE/B1zIRdIBXJNhhWlQCuc96Atl5dP+fZXv8H5+Zb1qsV5g7OW1juMNuSUiSlitCPlgvMOrQ3dao02Gtc1NOsLrp68jzHgrUGRadqGkiCXREyZkguQSCnROIv1HcM0MfR7Dvs9Qz8yxYm312+5uX7DFAJpHBkPO8YxcH6+5n63Z5wy9w/3XL9+DRS0UbRty9nVFc/e/4jzqxd0qy2+W2OMxWiLdQ5jLUopcgFFqec3U0ohx8gwDgyHBx7u3nL95jPevPohb1+94vbmlr7vCSGjFRit5HwroAiazgVSlvOdciHkQkjy+1I/SwMhZXxI/M++9j5aK1AaZgSuFAolz6+kmjr5b0EBGXl4PoDlqcsoJ39OH1NaYVR9nVYoJfOsaCOfahVFKXJR3MfMq7sdt7uBMWZyfecQAjnLtcwlL9+/1L9BvXPsWsu8k4/U8tpSj66wPF+BHNPpl6jnV8mtgFbgjEFpjVIKq4W1bIzBGI1CkXMmpAhAKhmrLSEnvHHzxSKh0EphjGHVOvp+JMSINxoUNFYvj1lniTHTecvZZs3F+ZrOG1KGECNGw8XlOdfXO6LSxJLJscj9kiP/9jvf53/6P/9f87/93/zv5PrN579+ZzVfh/laLn/PF+14BdXJP+X0qJNH8snPf17WW35fSnmHsVXA6WWb15uSMiVnUoykMJHGA+FwSzrcUKYdKk9AQqUMKVJKRtV7iVwgZ0Deo+QMOVNU/ax6/ct8BPPvKShVoMzzva5V9dgVClXvp6L1MkVOz12ZXwgUpZd7apmMKEqBnBM5JUoBow3WaLRWqFLqkZXl84tSy3kqxwuz/FyQ019K4Xf+L/9X/vf/p/8z3/zwBX/0//i/8fn3/yPX12952B2YYiKnLOtDzISYUVrjrMVaizIGpRRGG7y1aGMpyrCbAteHgRQTnTO8d7nlxeWa7aql7ZzMfaUoaEo951rlOlfknGQglwIlk+uflApTysSsiLEwZRii4nY38vpmx5gS/RAJIXGo7L9CgzYoBZtVR9ut6PsBYwxNu0KXjHOWQ7/HuwZjDcPQo5TGOYOzhlVr+db7Wy5XitZpWXtyJoXANI4Mw8BhP3A4HNjtJu73BzmOVIgpy/6WZc1JuZBP5/G8rtef4jwd6+/maxczTKVgtOX5h1/n/OnHWOOYQsA7zdXFGRfnGzbrLev1mqbrcL7BWFkTjDH0hwf+j/+Hv8fd3R3b7fbPued+dPxUQMrTp08xxvDq1at3fv/q1Stevnz5I89vmoamaX7k953TtN7gncZbjdUGFBUgZFLOKJVRCVQ+3pBGyR+t5sUOUlGyHue6kJWyrGG5FLRSaGPwzvGVr/4CH338TdbesrIFaw2rVUfXNLStx2iFNhZjG1AW126w3RbnWxpbONus8N2a3b7n7u6e9abFNy05BrQ1JAUGQ7t2aDT7hztSmFhtr7C+o82KcvWcu+u37PZ7So48efKcXCK7/Y6p3xOnwOvPPyWEgbbtOPQD682Kq/Mt+/0OpQzdqsG2HevVhq7r6FZrmm6FNg6jNWZeCLRmVi7NC2YuhRSD7IIlEUJP23U0jcMagyqFlOq6q2QhUwac0mhdt4gC6QQRJOovy3EzURpUko3VWVs3KF3/fHlrKQvonJdoeVzPD9fHj4s0pVAUqOPlfmcoBapu5jNIQSuKVmSlULmQVGECXt3teXO3J+W6Z+RMqZ85f658mCwJSmlZ1oscT90SgSKnte4oRmvZKOuGuWza88/UuV0XHK1lTpt6jrRReGcw2sh75Yy1hlIKqWRSBYzWWjkfgLMO7yxKQU51Ay6ypI9TAFXYrhqmEChFFkKlFFOI5Fzox4n7h0zfjxz2DwLgu46mESD/cHfH5eWW3VAEWOuMzQqVNcYZvHd0q1UFpEdwOAPN+b5VWi+g9Ihl1DvX753ryY8C0Xdm0CLROwJHSjnOx3cAj4ycSwUqWTbyGMlhIg6aYCLRjBCANEKKkOuNUUEJOUOpAUl592e5pBXIzGCgKAEvGbmv9Aw05PEZaCzzag4M5huvqDonM9R7W36tFzC4gGGtQWlKTuRcSCmB0lilsVqhDRWJVEg+gx5UxU3HjW75u4KoUiNAayzrzZqXH32d1+99g8+/92dc3458fnNgTImMLDMaAe3OFtBQUkaXgqlrQ9c1tI3HWst5KpytGqYwsW48zy7WnG86Vp3H1w1TaZkwORdyTlBkW871WHOR71tQ5FjIRRNyog+Zm33g7W7iu6/3dJszhmFitzuQCqQK+I31+KbBGsdmuyaGCVCM44R1LY1vGMeBi4tzLi6vGH/4fVzTSWCoDdvNGdM0YYymaM1//907np8ZvvH+OVcbhyYzlsxhF7i92XFzt+dhP9KPkX6KTOkYpEtAWEGX3C1oDUapuhYpjJY9san3V11x5PuXGugXaLoVV09esD47pyRQTEzTwM3dHorCaIdvOhoURluc9XjvMdZSclrunB9XqvFTASnee37jN36D3/u93+Nv/a2/BYjO5Pd+7/f47d/+7R/7fazWWKNxRlC90Rrq4l9jEnRRmLqilKTIczRWNzStK7qvoGRB0PX1coELRsPzp0/5xW/8Mi/e/yo2BzqT2G42OOfwTUPSYJo12/UZXbeGZk2xHa3XbM42bLdbGqchFVzbcTaOPHv+FIoiFbk1Cor7+3vubm/o9zs++vh9Lp484ZPv7fijP/4zPv7a11l1KxRw+fQp1numEMgxUZRic3ZJTolPfvhDvvatS5IqjEPP7vaGlCKNLYQw8vlnr7l+uEcpjTZaQJgqdcLW84V8d/WlRfo08pqfq5RCa4OuEUMqMMXMFBIgTEqTFdiMq0SIVrKQWa3qBnjc0Msc/WV1Ai4EoGg1s2bzcZW60KovAZDj8apyfPNlo6ub/Lwem/qi+eacw/BSFmwxH9gC2qI2PIwjX+wG+jFVQJGJKS0LHaWgUcRSjptgRUbq5HiX713RiWwu+Qi2FChVI1uO0b1SYK2BIvNZL0ClAjoghUTSBa00mkzJcqy5FFL9PjElOb9aSZSWJUpXSknUrBQ5J1SRYximUAG8gAVdmczDlGi8ZxhGbncHdgfNxbrlMEy0XcvZeoUuiRACq805OEM/pncAgmwcWc5RqZsler4Icg6KQpUa/SqFpgYa6jhfvzzkkZmR+NJj88SuC3eZw81lVpy+5xx91v+VfPyTMylFcg6UPEKJdUWZUZQ6zqeFjpnfs7yz6S8sxfy7cjwadH1FmWdIqedo5jyz3D8LmioLAzmf6xkIz8GHqiCmzN9x+bwTHkcpZBrOj+fjccvMFSalnDKcM+Oij9/z9FwqRbNec/nRL7D+g/8P3n1BUgN9llO2cpZNY1k3jq5xtN4Km2MN1moa72h8Q+MtzjlShotxIsSINYpV62ickQBSq2WtKfP3qedEGN4sG3qOxBQpOTEOE7sh8Op+4E/fTNweJnaHkZgLZ0kzTiNaa/b7B7RxKA3vv/cBX7z+jEPq6/oOMcq8P9tahiBM9Lm6YH/YV+Y/0/c7Xr7/gvPzS96+vYZSaNoVShle3z9w19/z/NzwwYXFERmmxL4PvLkdePPQsx8zoUZcMUkQIkAbjJa12Gq5TkYrnNY4q/FGgKfVCqOO86ig5NgKhFTQqzXr7QXb7ZacoGkm7u+EQdwfBqw7oLRbgFEHkoWgkNKfFwr+58dPLd3zO7/zO/ydv/N3+M3f/E3+2l/7a/yTf/JP2O/3/N2/+3d/7PfwVuErQJHIUyKPlHO9ORRaaTACQNK828yPGV1ZgrrgKJhDWFkkZfPLqvCXfvEX+aVf/CtsV1tM6nGusF5tsI2hW22wjefy8hmrsyvazQXGSbrkbLOhaVdA4eHuhqI8680W7RxWGaL3KOuIKXI4HAghcvHkOdvzK/7sD7/D7/93/2++9Su/zFe+8S3in/4ZP/j+D3jx4gVN43G+wTeNpBusHKu1Fq01v/JrzyUKKJEwHujvb+kPe26u3/KDH/4Q41u6dZJ0TKX+tZaNaE5vzGubKtQott7IJ+i7xjcoZTHWYYxHaUMuipDm9E2RqAuN0SwbHvV0ayMbkc7CWGU1b+RIdDgvfuqE/Zp/UerGo3kn4p3ByLK5LF+mgoLCSVg8I5gyvxAlcWbFKWXZVJRWFbwm+lK4HSPTlNjX6GVODyqlhBpn/oiyLPLzXqzq89TJx2ulyPVgJYLJ8r30yXdG2JX5O8ybXSGja1pHq5r2LFmo21Jp/5LJCkGRSPQP8nytDSnLRphywRQBNaXIEZUKHJwz6KKJGbQqmAqKtNakLAtj13rWXcs4jqSUGUJgYxTDoSeFxNlmRdpNWNtjm5WktSq4UHpO2aaT9IOwOGqZm3JB9JxaUEpSUnpmEOqcKQsdUufrnw9Qlv349ALBO9dGcOXpXCkLKMkp15ReIsVACgNxOpBCDyXNKGBGoQv4UHMqL2fIiVLywrIU5Hnza3JO9dDqd9ZmOXhJSRUyM43Hcp+WXBkZJayIBB2ZopV8ljqeo5xVfZ68XtdjLln+oPRyHud5fQpQltOzAC6W45GTmet9ebw75RsJc3v+9CVPXn7AB29eYVRhTBVkdI7GO7wzeG9xVtLr1hi0EcZX1hYJlFLKjI2RlHlJWCUbsp6/kzqZB0uAWEFmSpQk1zFMgdvdwB99dsubA+wT7KfM9uwCpreEvucw9PjGE0IgxUyKI9o67u/uCKEQhp4cA0pbum4l37woVl1HKcIsSGCtGMcK/LXn5uaB/tAzToEnvmN9do7xDfc31/zJpz2fvEp8eG5YGQlktLVY47AmMMYoAXbKaK1qpkHRWE3rNI23eGdorKSTnLPLzwJU9EmQI4FaiJHbw8jQXHB2ds7Z+TnGGFKMtI3j9vaWFBP73QGtDKBRaAlejZGtNf+5d99/dvzUQMrf/tt/my+++IJ/8A/+AZ9//jm//uu/zr/4F//iR8S0/7nhTKX859QCZVmQlxtKF3S9gXSeNwpZzFSN+k8DmSN2nKOVzK/9yi/zP/rNv47XnhIHum1L6zuKNaxWGzZnV5w/fUHbnrFar+i6Nco6CokpRToN27MzLi7OiFE4GmsdPYquPSPGyJs311zf3DEOA+vNmrOLCz7+xjcZw8R3fv/f433DL3z963zx9gumEJimwsNux8XlFdY1lXJPGN9QcmaMka7thKaNmfX2kjFE7ncjFENMCmNaVhuPVjO4mSnzGh3XDVCpyjhRF7UyR1Ysm77SGm0c2nm0MZVFmIGhLF6pQEhgtLy/XkBCfSMULFv08aEjs6DfYR4WnLGQEzOzoN4N1OZRI7rjQlpfq9Wyni5r6wmuKZW5mXPtmYL2njxFphjYh0SoG3iqm86smdCl1NzucXM7YqTj96i4uR6mbNJmZk7U/LoZqOiTcy83/rzkxigbnXcWa6wwYYCx8r7zRq/qXmStO24aWlGCHK2uC1RKAkByjhglQCSXXAN7iZKNVZXFPOobnFVY01BywrWq0uaF1mpWa0fTWEKIXL+95dlzi0FJuq8u4LO2o8yLZZE01QJSTihpahpIKVXZjyOgW+ZSBZ7HiXCcIOX0B0Hix0zayTzg+DDzpM41NXNM9QTy1BOHe/JwT4kjqgLNmQ0RvUkFDznV9E+qv5//zifsn0ajsNahbYsyHpAAixTJJVFyIJPQ00jKiaxNTRmlepwIK7UgrgJlTgsdGZ75RJQ8MzUzE3JkUeY5SslLzCdrwul5PdG6qDo/swJd5hm+nPICSxq3WW+5fPER+y/+DKcjMUwYC85brNFYZ7DWYa1eAIk2FqsdWheUNrLWpIQxhZASMVJBuARiwhCURQuUswQdKUVSDOQUiTGx3w/88We3/OA28Ho3YpsWYz3GFQ79HkxLmO4oWSpWY4wYayg5Y5AKlq5bs+o6+cxcWG3OcNaRUqLve9q2Fc3IMHI49Dx79gJK5tWrz0kxstme8d4HH6K14XDYYYzBtytGNEMK/NltZq0TbbY4Z1l3HmsMVo+MMYES9qgxilVj2bSedeNpGof3Fmt1BSmOxkpWwmiN1ZKZ0MrUlFAmpMyr24kv7FPapmHdNfimFaara2haz/Wba6Zp4nDYY6tcwHrRNhqtST9PIAXgt3/7t3+i9M6XR8yZkBSpSNSbq54BrZHbulQkWIQCXuhJZPGptF9hzncWuY+ULLrKGH7pL32b3/yvfovGOB7u37Jdd6zWW84vn7LaXlLcCqM1m+0lz569oHGOmDJu1XF7fY02hhBizWlmtG/Z7XYM9wcuzs8Y+wPtaoX3jmE/EsKAJtPv7+lWa7769a/yb7/4nN//d/+WX/v1v0JJka5zFBTX1zt829Ktt8QQl0jOe0+/Hxh6oBSc8wwpsb14ygdf11zuX6BUIYbAm+u35DDirJGNCVlC5kV/GSdaCFXmiLayKFqjtMEYi3UeewJUjgy+bLwxF8YgDIypb59ykQg8F3JRdWM9simiw9DHz1w2n7o163pBT5HJu+vl8denO87JccnzFTOFXepjcyphPqKUM4FCCZHdlBhSZoiJECOFgjVWNom6oc45YFQ9zBO6fT7XZZmX6p3jTpXJUJURFEBdsFrLhl4vSap5SokSQSmJJCkRY4zICuqOq2bB8QzclRJ9ysw0Ko3E8MdNScSdqv5e9j1nLQXRdpWcwMj9N4Uocz5lGiuRc0jCQOyHiZhEC9UPPV23IipNvx/YbNYYI5qWGRSlGKpg/SSqqymlGaTM10epkzm7AIvjxntkYP6ccRL9L1PhZNq8exscmb1SwUcpmZwiKQRyGMjjA3naQZpQ5CVSX+ZbPf8inK2fmeVaW99itMNicH6FbdeYbo3RDmUc2jUoY8F6AXD1s0uMlBJJw46YRsZhx+H+LdP+hhSnyuoZjJ5vCmFxmM9vqVqWcvLtc5FJq3T9W1WgO5+cGrQgqWZmKl+fJNSWk6eOr6lQKdePWjCQ1ti2Zfv8Q66ev0THnhgHrAZjtYhdjUEZi1E1QtdamGBthBlXWkBHVCiV6k1XA9OqQ5mvYamasZgTKUsaJqfEcBh42I98fj/x718NPIwJ33ZkZSlZ0e939P2BZn1GCAnnFPvdDqU027OzyhpoQtVrJe0hTljjGIYJvXKiS7GO/tDDWpNiWua0a1ps9hhj8VVjc393z3q9YpqCnGalaVYbTF1vru81MU40DTgrxxRjQgHearrGsukaNquGtnE0jWhzvNNYY/FWUmdOm5NCh3knkHMYYuGQW+7V+cJKeWtkv12ug+bt67eEENjv9gKYrMFYg7WWlPIpUfljjZ+L6p7/1AiJmjMvxJzJKHSRSN1oARpmFjuqvET3BYUpcrMcl4+qUVEaawrFwLPn7/Hf/PX/hs12w6vPf8jl5RkX58+4evICszqnbVrW51fElPHtit3DPf7ZM1brBoXhxcuX7PY9WivuH/bEnLB+YLM9I6bMmzfXOFM3yZJZb1r+8Pf/hGbd0HWe4dCzWjX8pV/+S/zJH/1Hrq8/RxfF+uycdr1m1Trur69p2g5FJk4D3hpyHHn1+ec0vuHyyROmmBmmie3ZGe+tNpRcmMYDt9dv2XQr7u9vOEyVSlaKuYBm3pqXeL9Gg6exkqoLzywsds7jvMfZ49Sa16ZS171YQKWyvH8uECpQmdnjXI9lYRdmBmUmXI7vvOwq8w115CxOx5+3PR0ZinfYlQoG5vRfUQg1TiEUOMTCOE7cj5EhVFqV4ybqtKTvYkxopUlkjNJV3yMfkWuOWtIpAmAzHMvJ1ExaZVRRpHpdhKGPOGtQRi/APJVK39dUj4gJTa0MEm2MMDtqYQxlYZlZmUKslRRz9Yw1mikmUs44o8i5UvRFqPGYMtoqnLE1vcSSegGFdpbdECi50DWOUsCj2R0mnNVSAdR1xJQIYeL8fMvDMAKZkiJhOtR0j4BgtYAVxTuMCu+yK6ds2wxoFiblBKicXvN3fneyHryDHef5PwOVkmXzz5EcenIYybGHMEAOqDIrx09A38z4gICRpqXxLd60NM0K61sUFrRBWwem/pG8KKoKz4txC6iWqVTZ3xTlYHMmhZHp7gse3n7C7uZz+n4nYFZXtqoC3zkAUQvrUZmOeo7lax9B4PyaMjNN9YcyT+457JvRTJkJm8rlKd4Bg9QzpADbeFZPXnL28qukwzWhl6obXat40IbCkRVRVQdnasoaqEJiEbrqIvO51MKJmcXMCVLKpCQAZYqBME3EVPju5w989+3IfSjQrPAqEHOhbSzKbUi7B6YQiQ93tN0KYyprpTL73Z6m61hvNhz6AyZFhv2BFCc++Ogb7B9uGXvRdrXrjnFMaAWHcSLGTH8YRFu42YjO0hjubu9QlLqeKC4uz8kpcXt7h3UWv9pw97Cj+CsI92ybidZJOthWgLJqHauuZV1BSts2eOdqesdUEbQ+EdJSGUC51ikmYQ0rG5LSXHFYAyNjaNuWy8tLSkpcv70mTCP7/R5jHNqKgPZdtu3HGz/fICXDrPqLNbeulAhlTS44UzchrRZwMi86M/EpVcnqZMWSC3R2/oT/xf/yf8Wzlx8QpgMvPviAzeoC022JumXlWny7whjNs2fPcFWDEmPi+u0t2lh8rUraH3q88xBgf/dAGEaunlzhTGHoD1y/vWWzabg8a+lWnj/4D9/hm9/6Cqt1Ioee7bbjg/dfcv/wwOHhgfbhgY+/+jW8N+x3D9zfXrNZb8hhJEyWkjT9YUfbeLRWxFRwTUvOhVAV5sY2PHn+PjfXrxlu74gl4vVxkxc2QdIycKS4Z9Y6z7+bwUSlXY1rcG2La9xJ5QXHeVk3sJBklTL11M8Jtvl6nEKK44ZziiTqY8uxvfsxX74NlkX3R8Yp0DlS0PPGlBWC2IyhGENOsJsm+hAYU6GU01SHbF4iSDVoLeDDlMoCZUllZSEYyItORQDOu5S6Qpvj8czf0RpDjIkpJoxVC7BOOQmVqgpaC3vnnaVpPDFUZqdAqbofa4QGzrlWI5QsOixAlVr9hoiJ88zCKAFZ2uq6SGV0XUKc0Ywh1+Ohikep+qTCFETgmouUMqqYsTqRU0DZlhgDKQW2q5bGW0IYmA73YAwo+aONYWbUFmZoASv6R0uTZz5lflzNM2iG3fO5P5kOldlgBjqnU24pF07kHCkpkFOAOFLiQEkCTBSStpH7pZa/1zmttcE2axq/onEt3q/QpqnHNx+LqsDsWGqvtFoCB7RC6XKc5PaY/qt5WgC092jf4i+ec7G/pX+4Zb+7pd+/JYZeZtYpu7ycjwo6OLkP50BAzWsqUGaAKBui0noJaeT5iuM/53NZIdApi3JyTbQxNGfnbF5+lfH2Ew5venIaobLcFW0gSqiTQElVdlLr5XdzNdiiS1LChArTUjUncWKYAv2h52EYmZLl33+24yHI97IExhCxVnN/dwuqxzknWg8j+j+05eLpM3KYGMcJcuT6zWus9YyHHWEKoDRGF5RxHA57vDM8PNxhjOH2+sD9/T3rzVZ0RzHgnYNSyDHR73c459nt9lxeXtA/7Fmt1su8zilhfEcshWQdgQOr/EDrtICTtmG7blivW9ZdS9M2kg6u+kVVU8soI8UTIl4TkF0KKYrOKaaJPsraPQ4T0xhpm4xyphJhGt+0XFxdkVLm5vqWoe9R2krwpA3O+79YTEoqBV1z1bHy37OeEC16APIcWBz178eFR9Xa8bJsuiUD2vD0+UdcXj6n6VYElXDNBqUanlw+Z4qJscCqW7Perrm8OCflzKvPX6G05vLJBW9fveawV2w2a96+ek3TtmwvzkFlKBNjv6OECWMKY79j7O9Zd5b33n/GD77/XV6/es3Z2Z7zswtur7/g6uKcw37H9fVbtjGx3z0RWn86cP82Y7WuUVUkK4PR0HjL0O9RWsqIpyBCsPVmSy6ZECJXz9/HdFserr+gH3rx/zhZmaSyIEsEdMJRzGCmqFnMqtHaYq3DO4kOrdGMSi90dylHxfiyLM0Lc6WKj9Fr/Zxl9a1/l6MQVtVUzSmEOb5zqU+fP4cjEP3zsMr8HjMo00puYu/IztG0LX3IDLuBjBYmXM2fWjCV1YhFqG9jNClrdJHF01pLHkdSmSsIJBeulCjudQUMc9SvZ9aofqmYj99Oay157BApCHApSLVbU5mNKSpCiBijONt0KKUXEet87lIRceq8paOgpCxeKU5Ak1YzqLGM08gYIq13rLyndabui4oQE85byljwVtM6g9ewaRse9r34qcysFIYxBRql6McR6xwlZvb9wIWzNM4Sp55hf4MyUo6JNmhtKxiptRnqXWZlrnw61ajIVDqyF5XLYKa0ZnZlZkmWGTTPr+VVVcibI6SJHEdKDEBGkziKYxWlpHrp5so4cLal6Rq6doP3K6yxx02/LkyL2Pf4izmsWoAYANockavSFCOl+YIKawpHgSkK7R3FGrJx+HbN6vyKsX/G7v4t+/s3xHjgFJyUem7nNNr88+mts0BANR/nPH/qn1yWX7Gc63e9Zo6LzJGxmX9vmob2/DnrJx8QD18wPIjOZrYSUFpT1AmjRYFSRdbUImIlOqaZLZRCCFBF/HimaWIaJx52B764feDtruftbiL5lvspooxlnHqmqDj0g7wuRnJ+oGkkFTONI2Ec8b6h25yxPb/i4QffZdhNTCHiG1fnq6HbbNg93DH2B3LO5CRp1rZbs98/oErm7uYG33RcXF7wcHdDt9qglKJbr9D1HghxDkakmq1tGg67e5RiYXU0Zwx7w7YZ2W4azjYtZ5s1601H2wiDYk+q8SBXW4jKrFGqeFjWA6XEY2UMhaF4MoYYYZoCIYQKoOW+tFbTrlZcXF4SxsjDwx2H/V6mqjGsN5vjovZjjp9rkBKy3Ngly4Ir51fV0jdhTyTZrqqgVl4ndLU+moflcoyelUL7jvc++hrTNNCHFSpbnNEU5/j85oGnz57ywfNnNM5xtl2D03zx6Rfs+wPnl+cMw4Dzju9///t8+NH7uMZw/fZzdocHnj17xuvPPuPi6hJnLIfpwDgK2r59O1AoXF2d88Wbt4TgiGHgi89f0XqL1RCmgdubt+zun4NSpDAxHQam9YopjKiUSM7htKKkxMP+hu3FFcY6drsdlEx/2AsLZD3Od7Q+otZbOufYh2oixywK1KBr/lzV9NgcbXJc5CXNYDDaYazkPJvGs++no2awvk4CLFmUKgEmYmfm95wXa402oGKeL9wCXsqSOz9izuMSWOb/L49Tqv5oeQ955GQbkLx63TO0d5iuQ68aXLviMAZ2ux37aWIMI7kcdSdam3oOCl5r0lK+KxtLKVk0JUajojAK2iiKZgFZIradN8ZTMK3mk1d/lHNhjV7ATslZSgmrQVVCAAsUYog8pAOrtsF7JwtLjFJxZSTq1MCUIgUlniraYJWYdykl1ToQpXqriDg364BzhgzVj0iRhgnfOIytaS9vWK0bqVDIhRgLoSQyI2vvJLBQMEwTZ5s1/WFk5t5Kmkjjjjn3qJSposeZTanapBOWRCaNXqL7mWU5kmjvgpb6D+ZHyjzHmK9D9c4oBagAJed3mBJ1SjXWVOgMNjSKpl2z6s5ofSdpMUDNolgKqgZJ70B3Jd9T1VQXWkt6R8mGUpRC5QJoinUUbeR3RjbwXDcbVQoqJ5SK6EZTnMG0HufFq2azOefh4Y797i0pDu+wMMdzcMKMcAQwR/BkauAwhzClCm6Pabi5/FqCxznF9G6kcILH0dZguy3N5Xv4ux9KQDfO53sGfrle97wEmZparVbvI2UqUFGaVFNzkBiHkf3Djoddz+c3O757vefNYQJt0SEwTBGlI/0wMo4Baww5l1qaHwlTwHlXP1tByexur0lhkNSStXTeE0MgpoD3mjiN3N9eY63j7vYW3zQYo5nGiG9XrC9b+sOBlCK7/QHnLdPdLcPQ8/LlB2w2G97e3DCME10j7zGNAzm0hBjwGoYxMKlA4x1Zr3kzwtMrz3a7YrNuaVuHc1KybWYdiVYoZev5l+9TUlqCyVzEa2UcE33QJNNhTEfBEqbCNAa0NvjGoJAUtNOG1TZzEQLTNNKPA0N/wHqPMX/BmJSYxGMjFxFcnlKLieqjkOaTLzdOqRGIUO6FKUr5llIiPFfW0G7O+cY3vsl21dHfX5OzZv3+x1w8ecI4JZ4+f0LXivBIacWrz15xf3/L21efkNJE07Rs12uIA9fXb2is4ebtW9p1T8kBpRR/+J0/4IOPPuIHP/g+Ty/POewfsK7hzevPcF5AUUqJoe9JIbDbHbBGXFunceSw33M47NhstuQ4Mg09+8OBkkBXPcg0DoShZxoHEoqHu1uMUbTdCkqibTu0UazaFhNXDBr6tK+5nJl6rovvvHmWUp1T6wZZz7jWImwzVtJe1jlaZzFKkWekfRI8zfqULwOFeZNWsJTCRZ2kGoJ5MZvRpvrSWnd8dCEiZkZb1Ue+xKK8Q/nXcDEbhbIWnKZbd4ypMIRAIeM1jIibsTZWqFKtqvhXFPCzXkFVMJaLopSM0UbW9HoOZl3KXOqu6vwUL4GCMaZufAVr1EJlz1Ev9bniVTI7g1ZBYEqkImZNXaPFtTNF8bGp59YZK4LzKL+PKR8XLsSJ1mgDuRBSwDeebdtIJQOgihIwXAJTqqmoEFEYxpKYvDjPuq5l2PWgNCEK49A5R0xJFtScGYaB1XqNto4pJFTJ6DzJJlABxsKwzXNEKagahzlFscyEU2ZlnhrLTJtByuncq/8tJ0zGMnnKSWmzOpbgo5g9RY7zR8B1161Zry9pXYfTGl0SpChgegmoZGs94qdaUryAMHEqnRF4AdEJZEVOmdL4k3QYUpFTDdrqzDvebAsD5TDNGq0M1nnaZsXm4hkPd285HN4IE1vycp7lO1ZGswqwFbJ2yrmovqSlPgFY6OxZeDKng+YvUs/fslfNmhjAGkUyFtu1+PNnuLMX2LvX5DBVsK9Qpp6b5epKOqKUClqqV4w2GlMgGdApEImM48D1zR0//Pwt33974HosjLkwVRXvme8oQ6Q/9ISQ6v1gKEWqJVMpjMNAjqmWPvvqKdRzf3fP+eUF1licb7m7+YIYolQhoRiHgWQDxmjCNIJzDOmA9w1nVy9w7Y4vPv+Uvj+wPb+gbVuscYQwknJHnEb6IZKmA/v9nrPzM84vL7nf9wzjQNt0M/lF0prrHXzyYPjgvQbfNjjnsMbKOv1OerSuK0oIQZSWVHWt5EsxM4bMoNfo7gJfHBpLzoVxCBhjZM031fJDa5xrWW03nB0m8u0tMUXGcRS2/idEKT/XIOV0LHrDenOkVP8NCwuwsIoFYhaaPS80Zt0EbMv28iUvX35EZwK3U+Jr3/oWz95/H2sNOSW0Kgz9npIcN2/fcn/3gHOGu5tbrPUMTQspkkph2B/oS+SLzz+l3awI04BvW2KY+OyTH3D79guG/QPnmzUxJPa7nteff8qTZ88pKdIfdjijODzcs9pIHtI7SwyB+5sb1t0GSmYaBzSKYRjEqMt5hsOecZpowsQUE31/wHnPOI5V7JUJNd/bbLYEFG6cmMKwbJiyRlW1SFHHtNhCj8/QQRYObQzONzjvqrOjgizuhvrUwr2ywPMGMTseSrWDXpgBo8FGDVNaNph546oxd12H5Q1VeTcqAxZ/i/lIj6F1fWY52biMOJ7a1qNcQyzQDz05RYZhYBgDBaluUUZaBkwhEmMgJjFxm8uQ30kVFDF0U8ZSKuU8C3bnCFTPpnbVc0RVFqUUiKmg6+ahlYCMKUYBh/O3KiKGpaSjGy65Cu5m8J6Y8/TCmEkuWeVcK3UyyhiKVjTaiCAXAfVTiGy2jpw0IWd0znTOy31RjbOUlaNJMdMPE6F6bG+6hqEu2Kpk+mHEbTowGm0thzFQ1IB1jmEMKCGVJZI/8TqZxQyzER/ztZ1TPydXXh0nCUcGYN471bL5KxbEzCKync9/rq+tpmgln4hHAUpNYxU5Dus82/OXbNo1Xht0TqgcUDlVt80Z/Bh5X23rdzxCcIqWjXbxxIcSowCSOl9mxkaRa1UONfWqj0BuSR9q0AmKRmHlxnOt6OZcRE8j3rc0wxV3d59Bfy+M3WlUwXGNXHQhc0mzgsWkbU5JVXCi6t9zgDDzVgtrNXt71etpNMLQeY9dndFsn9GsL8njnhTCO8ckvlhS4VQwtQBJLRVsqlYrFSd7wBhGbm7u+d73XvPdm543U2bMIjqfQiAXRcr37HY7FJLCdd7PX4aCoWsbGr9iv78nhkC32hLGAV01J1PfE7RlGBObs0viNJJSwvmGcHdLCFmqH7XGWE/TtADc3VzjvKSRHh7uCUMPwNPnL9mcnxOi6Gh2Dw84C8NhBxReN2/puhV9v2ccezabDYf9XgIS67kZDZ/dG5498bRdK1Wrda3Ri+O1glr5VRAfpaI1BohB2JWIIzZnNH6LSoYc5XrGFJnChE++2hmIx44xjrZdcXYhxnj7naR8Yoz8pOPnGqTMmoBcjkLOlDIpzJEVQLX/lbVE3E1RlCQ3mDFm6dODMmwvnvBLv/orXD59Sn9/w4uPnvD8vfdZr9YSudpEipF+33N7c0eKE5//4BOePn+Kbzv6/sBhf2AcBobdjs177/Hpd/+UXDL319esN2e8+uz7vPfhe7z+9BO6dcv19RvON2uur99itGI4HNjfXXP55CnTFFhfPSXEwNAfKClgbUeJhRwzYYqMY0A9PKBtg7GFEBM6FUqJaG3p9wNFZaZhL46j1WztcOgZhh5rDOM4EpOYAC1RaSknm+3Rwn3uuyNk1BH8aa3Fet16nPPHRaKuqgopbVsWtlKO/Xwq+JCnVnM5U3URIVFGSVGYGp2pIotk4QSwLBv+aczM8uEncXb9++QFpdQKCo12nv0UcMYw7CLjFBmHwDAEYQJQUtETp+osezwvcrsXipHvk7P0ScpzBUYVyM56Goqck5KFfhWgIYcUK9IWliQtz6eay1ltSFkM42YNS65gyDvDVGSTLyhx/i2l5qOlnDjnjHdGhHHUdhH1ZnHGsV11HIaBEJJUByWp/plCZEyZXFtCbBrH2bpldxiX0kRlbWXbxBfEOosKSez3tZgvemuIseAbg7aaYUqYfU+sbIta0iAn6IITfDn/JaH9MgcUFbRSGYDTnznOt3nDPEb8as4OHctzQTbePAs0FaIGkPcs1dVVAb7dcH7xnFWzwVFQaULlCLOYdu4hpSpjos2io5hTReRCUZlSAtoBWEoWEeOcHly8irJYtqPtKfqqU6TOSTQYJ1KV+aRpIyZyaLKy2EajYuK86WjPLrl580OGu9fkNC33vszZE4xg9IyUmDVrYh2glnN5DADK8s/Tu3CObd4FQ2K6ZqzFuA6/eUpz/pxpf03OD5T6P/lMtYBESaeqmhIEWa+gmIItEPXEMAy8vr7ls93ETVSopqUMEynmWq6rCGGi8R7jXDVg04shGiqz29+z7lZ4Z4HCYXdP4z05l6XVhFaKFAdycgLgM2hlMdYQYyZOAesclAm6Lb5bMfYHHm6vAfBNyzgMeOcpGQ77gZgUu/2BoX/Abc8YhwHI3N7f8o1vfJu727eAlAT3WjHsei4vLmnalh9cR55fRL6xKhgrpppHZlBErXIptcyzJP5I6II1idFYaDq0v6Sxa0zSTMNIigK6xcAukV1Gm1zT/hY8dBupBFJKM8XIAlB/gvHzDVK0RBxFSY15ypmY5o2VGnGrY923VhSjqshUMyVkM/SO9fqczdVzvvkLv8zXvvpNpnEgYlCuoWjLultz//CAVvD2+obrm2uu317z9NkzjDXc37zBNQ1N26LRjGPP6uyMV59+ysWTZ3z6yaf4xhBzYto/cP3GkkIkxUQKkRgCYz9grePDj75C3++J00jXdnIv+5bxsMc3Hd53jGOPsZYYA9pY+v6A0pGuWzHFTM49znuUSTx88YqiDd2qZbNesbu/xhhLf9iTixjL+abFNQ1bveZut689OoBlsSsn4KQuqvkkFz2vYDWS0dainRERY162g2q5rKpHjUQrWlUR5xzaalMpXQE4NgQCzMz7spGAOknlUJ1xZv5i3pE4BuAcf3WCZo5SF+T4Q50/KQQwooVQ1tK0DXmcSGnO9YN3tjboy3Xzn8FbodS8b0EtAtVSF3JbLenrRwrDsWgoarVaUcx72FxeKe0LJJo3VqPTbOA2My7CiHg9U6/yncVESVJSXdNK6bsSa3uUwllZlK21aGdxxtJ4h9FKnDSJGApWw6ptGB4O5JwYx4nOO843KyltF+csuW5Ks59GuTJKse6aWj1U8E7st4cQ0RRCkYWOUqrGpVYXCCJl+SJ1HrwDUuafSl0C55QEc1plucDH4GVJzbAAXebXfHkVrWm5hRkgIyJweR+lYLW54uz8OSvbCHuSJsgjkJbbaHZyFYAq80JVRmA+Z/MGXNBVfyTpm4wSAXGMEKOIdrVG+SI1/caB0mRVeTVRPR6bDRoLOUpVkFZgpKGpUZCL6KV0jnjg6sVXOVw85ebTPyGPErHXKKR6qqil5Hau4Jnv3uOdWM+uVsd7bb43F5Aoc3259VDLPFYoEeKvzvEX7+HvXhOGA+RYn3tyTefKJz23zFiu5DLnh2HgO//xe/z+997yasgiJh4mQtVoqRo4hMMeYwydFpbA6QVdkcKIpvCwu5fS3k4qNw/9UNc96U81jT3kxHB4wPkGbR3KedZnVwy7O/ECUgrnPOPhHt94tHGktGe/e8BYS9c0FKUlvRQiff+WOA1QCjkFuvWaaRyJ40AcD6Cg9Z7r21u8taxWK7pVI1WlxvIfPunxVvH1D87QpoZxqixrrKrrivxegYasJZWYi6U0l/jVFUY7McdDSxoqydoTQyS6VPV5tWeYNjSNJ21WpKIwkwQ8J0vxjzV+rkGKTHg5uWkWZ2WJ1soyU8vsAF43BYMxCusdvttw8eQFq3WH8y1P3vsav/GbfxVrLf04cXtzS7c9Y4qZPkqnyrubG374g+8TQ+Tu9pY4jtzf3eC0bFTbsy0ff+2bjLc9bc0D3t/dorQihom3rz4nAfc3NzJJh5EcQ0XYEzknNusNTdNy8+pTzIUmpoRtN6QQaVYrYhAjJpMLYz9KGaSWipLD4YCyht3DA+dXTxl3O1JRWOPJIXJ3/Qa0Yv9wj206rLM0qzNcZ3G+I6eEc5UhKPMpLCyNjYSnXaL6RQw7P0QtXdUGX02CppIXB9s5V+yMwVlJ56CkcVWehVvITTIbYWpz3KBm0DHvJEu3VeaFckYlLFElsDAvx2fPv6vvqTQYRTJiRe8bT8ric2KtJStF056j7/ccDj1GKWLOS0M9rcCaQlaFVCt1Zlv8rMRHJM9RJZWSzlLKmXM+LtgVgCjA1Mgw1Wshp0/OmdK6WtqzVBbJAiNpNWdMbZUgbIZbBKgC5JyvjTC1ZgqRFCNOazabDTEntC6g4fZhx6rryKUnxol9P9I0rWhJUsRbzf3ugDWa7brl+m4nOhQrS5HTmjEk+rGwWa8Wsa7KiaQg5VjdipUYrxakwdrCokiwsdjIL9dbiT5j5gdOkUsFDketxPHcnkzqekL1EbTO76YWeLPM97mE/NQWfv7EdnXJ+flzWuMwc0lyHpk9dEXzVq9Xgayl864q6qjLMlJyKoenawuChM6WopKkeihgDLlkFJY8TXJMxqKbgrLtIn7NuaCJsqnPSFhpigbsKVuk0bV0XUBQoKTEevMM8/Uzrj/5DmF/PWOPIzBYvn0BzPF+nK/CzEyeAsCKRuaHyvHt6mtni4MaAGmN9ivs+jn+/CXDwxvSeFhYW6n6Uihlqr6C+u+aepKCR3IWAWt3vuKg7gh5Ik2RME2i7ak5pyUFkjPTOAGQVVicsedrRcoo40hx5OJsze4wVjM20YNtzi7oD3sgE1MUEe24xyjFZntGPwhDlZJUx+xuv2C1ueD86im5aIZhT0bReM/+4ZacIpTC02fP0cYRhgNt12GNY7s94+H+lrZpuTw/4+a20B8OxDjx8HDgxdMWaxQhO/7d9/dgFF97ucYZT4qZXKYKCA2ZNMuHKDVYCCERsiF1l9hmjTUOnzPOWsJkCXEixbR4HaEUJs/me2Lw2TQNMVb2mJGfdPx8gxQlkevc+CjnUsFJqRFsjVwrQDG54K1ne3ZOu9ny/PkzVqs1Vy9est5ecXb2hM4r3tw9sN1uMFbTHw5Yrfji1ediPx0nutaxvjrjyeUZ3/3u9xgOO5IXenuaJj75wfc432y4vr7mYr1h7Huev/8Bn33/T3HK4Lxm7Pe03qNLxhvFGAJOa8I0ccj3bDdnGDQ5gVEGqzSNbfHOM4QBbYSRyGESnZrS7HYPdKs1aZLvv3u4J8UgIq7r11jnOD+/4OFGcqNqiNim4eXmCq9tdbpTbLoVJSWGaTpSc6VGTWVuPVDBS+3auojrkIhLVxDinZby71NK3Rhs04jLbeU+FFK+m4v0QMlzZFxYIlmRI9SFlWPb+dkoFk4iugXMzCzK/E1OwuTTALoCAKsU3opOwPmGogq5JFprSEXRtbXtwDASohyrNXqxsJ+CWJ5rY6orbNWf1OhSmuVJWiWTF9t668QlVlfq9ehjUkXLdXMVVlBEbyFJ63ijpQu4UlXsiiKlSNeIw+XceBNE65NTwhgnrykjZEXIGu8MzipULHhrhEFJhcYZ/MWG21spdYwpiqC5zG64hXGKXJx3tF3DMIw1/5xwrmpwMoRpAmtoG4dxvoJb2cg2q5aekZSOxAX1/B1Lc5kLRVjqTmY9EZwAFfXum8yNHBdd0gxky/J+MnX1QrktpcGymjCnUiRRZlBI89J2fcnZxQsaZdBxgjSI06yabe1lAop4v4CxwpCUJOzJDHxq08f5s1WtkCkpo4ykdgmR2d2z6DqjtHj5yP4ZUTFStIc6bykZlZEKIUBXdkVp6ayrqmmPRtU4RAzQ8jjQdBuefu3XufnBHzA+fMGJgOSk4eZMpszC5vmXHDVny002t7WYT+185yvm1HLKhZzk74JC2wbXneG2z/HrC8Y01muhTwAjx/uLUrU6NSgtiZIiD3c7PnvzwBAy2hkp3y8CULTW5JxIKWO8qRUvBaNMTeyV6pBQRaZa01jLVMH85dmK69tdbR440rQWo+W651J4uL1GGY21jk53XF49YZoGpnGS7xwjdzev6VYbzs7P8E5S8r7tGPY7dnfX0h3ZGJ4+fc797RupzmlbNuu1nF4nGkNnDW675XDYseo8h74XAT4wGc2/+eNbrEo82do6BQXgaeukp1ox4uGUEnGcCCEzqTWq22CcOMcq5XHOEr0lBEeYUm2mWYihsrpIOkwbI8DGiz9NmMWiP8H4uQYpsVY2hJhFI1AnUql3wXxv6NqA0Btou5bL5+9xfX3DD374CduzLefP3+Mb3/5lSszc7waMUTw8PAga1IU//qM/wCjFsH/g7ZvX5BC4uDznsNuz2pzRNi3We/rxACgebm7wvmF3c42xnpubW4bDA+1qw/Bwz2p9RrcSwWscpOyyf7iT97GWHBNpijy5fI52hsP9DWiHc47p/gFjHWU8iFQsJrCGMA6YUm9wNNYbKVHLBRUD3khDrqnfoYDt+RnNak3TNpQ8sdvfonollRupLL184kxDFalGkaxBWYSGedatzNoVJRoKySk72VBPItgyW4SrItelpkik1JPaDC0vwmdKJuaj2ErV/53KYAWoqKWs892F8ZT6ryvrEk2zACeQTYxcMKqQ9Vx9I0+yRjNNZemKOlOkq8aL0C+LSZ6kK7SkGq0l54TPmd0Ql3JVWxcNhYhbZ6tuU0FGYU5Pao6dqSuY0er4XagutDLrRTmgjoxS62319pBFR+ssC6/WwoI0XZ07I03raJwjIDohp6APAWsU4xS4uNxy2PeMw0jnDbka2cWUWbeeYZrYHyYutyvexkjK0gJBK6QxHFRtRSaEgNMOjcZawzhOXFyccXe/w9c2EqeXcMnWqOXqHgXSMxNWL7paNsl6cdVxBkB5F8eAAKA8e3hUIK7V8fXzc5aZdJxnzfqCs4uXNGh06IVBKeG4Oyt1dO5DKrUo1Os9V2KJJ0eJahEDS9qjVs2oXPGRrunVREHK38kFVRwg1VDYRl5vodRqopJSnQ2yGaWUjsxRBb+q1LLdArpobKXswzTg2jWXH/9lHt5+j8MX36Ok8fSEL/2yjiLx5bard87xv8ffqOVfnDBmIPM/xiSmZiDpJddh11f4s+dMh1tKHKpRWxZ9j54B5Awua/l4yuQQGA4HfvDpW77/5gBW02nD3SjWCDNTabQ4ZoOsX7LG5LoWimhcGYv3DlXTmlopDvsepTTOKJxrSbkw9MPSm6zpWrz3SOAMRlnSdECXwmq1pmk90zAyhZEw9uzjhHUdjVcMw47Vas0wVY+ifkehl1LqlPDWkmJktWpZdw0pJqZxpPGOrusk5WoldTuFwMPuwG2c+He68F99fcu6cZLBq9WHlJPmr0W0JiEWgt2AE9bdGCOVYdZIOXOwWBdJ2ZFjImcN6MqIybzVDloaCeLj9C599mOMn2uQMkVZvL+ccjjSiUJjFQrrruGjjz/gva9+nV/59q9wfz+StcY2nqIsd7uJzWrFGANf+8bXmcYD3/3jP6Gcbbh+84btZsXD21cQJkouHA47Docdu90Dl0+esbu7Z7vZkmKUXgs3b+naFdeffYa1hm59JlbIK0McJ4m8ncX7DlUS3reoDJ33mM6gSqHzDTkn7DSifcMAWC9q8GEa8E0nJm3DHqcMc7WIsYZpFBpv3TYorfGbMzTQ7x9I48htP9DFyJk6l9dNo9DIykqs6BwxRMmo53lHyAslPet+hFLJC1CZoxxde/m4Wu1x9FepCyMAc1WPmKOpInRrrgtnKVFA14nRG/V1qONCt/xUF1oBPbVMtO43s+X37JJ5UgDJwrzUGZSqAj0riT6tF2Gi1YXWGEzTkGKmZGGLnNOEScRxvjW1ymemkA0lR1KSHjYzAJnPl14OUI5pBixKCRsiQETh50ZHFTCWqoEp6miXr5grWKRU3TsD2YmRVZRFXcqSwWox+2u9JYcABVpnGMeIMeKbkGIUo8QwoUvh2dMnvP3iLa0VYePdfpTvqcR3YbcfRMdiDCGGyk4pjJXKi5RzTXtJY8NcEp13lJKltYOqJnmz98hpCud4ietmXit6gEXXUE7mxmlE/+U3OB011YGqKSWF0PmohX1QyHekzmGlCsa2rLZPsSmhUi+bdwmIwHnGQQWKFl2TEfZDGgpmSfelcux9g0xc5YwAi5kJKlE+e862TgFl9AI+lU1o31BiJE8Bu1pDjmKP7xyqFPI4ooqjWIc2VjQtSDoFleW+TwJ+5JrJWqK1JsWANp7106+jlOHw+o8hTYuG5p05uQQC+hiULCDyNLQ4sRNYgpdjsJOz6JPm+8C4Bre+xJ+9wN58SlzYlBk01nuo/plT0WLhMPHJD9/yvbc77qdETKDn50DV1lQopaWJo3R91xhTU7YJVs5TlJgzqsoSxyokT0V0Q3rWH+WCsiJq92TOzs4Yh4OYMIZAmCJt2xGj2ENY67DGg9LiDh1HKBZFYRwPNI2j686ZpgnvDK23aKVpnJGGltFgveRpGmdRShp5Ki29dLZnF+z6EZQFMjdj5A9/eMdvfvsl3jd1vZA0sshQNAFNMYaoDKHZUow0LLXGivWC0pTs0DqhbRAmKmRhg7VBGwF91s5zSaw+hnH6kVvwvzR+rkHKLFaUrUUtG6fSCucsrTNopIdJt1kzThM/+JM/wgw7fuEv/wa/+hv/NduzJ8IYFPjks89Zbc+IWbE9v2K9ecU49NLVcScllTEMlJzpDzvJ348j/cONCJRiwhQoccK1HbE/0LYNeQrkMIK2rDdnGGPJMTLe39GuO5wzeN/inMcAXdOiUloi7sF6MoVVaAhhYhx6bAyUkigh0jrPNI6gDcPujmQszXpNjhJJdb7DpkyYeobba2IKpFzoS2a9XrG+uMI5MReKIZJjghIxzhJSYsrHm3/OFy+gsOSTP7L0iK5C0hW+di9NNaIT7xMRzWoSRpXZD4pSINXrp4tQrLnSv+bdveq4F53S/dSFcl4kZ1HYCT29MA11lVwC63n/KpXtKRFjpKlbLoVpmEhFMYwjIURUgVXj0CoBmcZ5UhCA2nlx9y05iWlbNqRgGWMhVFOocRaQlVneJ2kcXZv5QXVBrnHnbFg2i9sqBGeOYbVS9RzVBbcUrALXevohYFpDzrWfUL1jphDonON8s+HQ9zRWsdZSqeC1weuJyUiKSANN69BPLph60akYbbm+21UzthW7fU8/Bs7Ozii3t4QYpS+IER2YCkk8IkIg57g45/rWUpRovpjBbwVbC6CdcUu9zmouRebkOs5s2oz76tmZy7/nufNOfUGZP+d4rqVqrF6buWy+AmxFQelC255hQ5T0Th6BQCmxfoBEkuJXkgR8ze0ZS0FVbw1V1MIyljjV47U1U1UDAq1RxlXnTwEAc1m2glrpIwhGp0QZB4p1KN9Q7IpSBhgGMZ8zHSWFI5hPtcHhvHbmwOL7Qu1+naJsYtazfvoxaeyZbr9XP5clCJj/sai+ljSMOrl+x5t4TsHPfTdmlnHuTLx4DSGbnWnW2O1z/PYJsb9HlVTL9OfrWK9pUeQKFGOKvL2/4T/88IY/edvzMKaFqSmI9imliF4OQyp5nLMoI6Ddec+cspsN9uQWzHivGYeJXLQAGGMYxqmW+VZDxZKYpj05Tkxz0GEcfb+rzIQmhhGjNecXF0xTZJwmcoq0zuGsJ5XI1fmWfhgYh4HtZsPZZs35+QX9NFawl5nGEa0yKUQOY6JpO9p2hSKzbhu80UxTj1aeN8PI7SHywdlWPIlUFR3Xa6GUlKxPpiH4LRqDtD4RRt+Y2mDUZWw1h8y1v8+cEtM1t6cUS1rT+/4vFpNSchGfhbqga6Vqozcx1xqCqONVCNzudnRNw4cvn3J++YSLzZppf0tuO86untKuVrz37Bn9OLIf+uqY2ZBL4NnzZ4Shp23eY3d/i9aFh5trusbjzy8wKLzrGIce03Q4YwjjgWkYWfkWs9qI3fh4kLbZrcdvnqFfvEcOIyn0WGW4evoMWwqbboWr5aXTMDI5EXGO00gYB4KxRN+I8GqaiBQa7ZhKwXtNohDGA1ZpPNDEgZwC02FHDiPTODGGgI8jd1ZjvaesQAWJtu/ubohF2ICu7TDaLAyILNZHRiXXyOeUzZoZEm00rXd0Ne2glKL1hsZqvBYxp1GQKZIbzUfaY24ct3AuFcQcaV1OKnaOQEUElfOv51W0/nsWXZaZFmZJo+iqbwIpfS25EKeCaTQRzTBE7ncHbu4fcM6yaTs2bUNKowibnUM50fXkHLlYN8zdccep4K3FWsVhCsIAIlHPFOM7PidoQ6obwCy2LTkvFWrC6EhUn0pZau+d0XRebueiFClExmFi27UEMt41aGXo+0HAQMqkGNiFwNXVBUZlOqs5DEHs9Z0hd55YClkZUgy0bo1aeXJ0TKM0BDRacXu/EwFizjzsDpJP955UPYVKSRjl0U6JOBGp6mrbhmEIKLRoaZyjf9jRNs077NgppvgRNmSOgmdIUhmReY5QyjuEzMk2uYBXAYpq2XFPe0Wp2ZNnoWoU1m9pXYcdAzr1FCZSDqL30HNPGY22vgKWInoSpWSOpCTpN9RSlVOmEeaCoRBRxsjaFQGTxaBRQZ4F0IXKyNRjNgq0E6AVA1gnZcY5YVIiW1Ofa+Wz6jwpKcEwyj1dy+TFk6VqClQhEVHWCqPy8luk4Z50eMPCVM1WAPMpmu/PPJ/fY2n3DFbmsn3mgKccb3LBPLmmfuU+18bjugv89gXT3WeU6fDOdYQqvK9psZQzn716w7/4f/4Rv//ZoXqhiFvs7EeU631VFbfSe8Y5rNU4IxUsRhtxl0UM9qwRPZJzCushTpGHw0jMYI2lc4YxRGG0jTAUK+cIJRGhaiiT+OPUINJqQ0yJh/s7Gt9S5j5cwLPLc1IR5pM0EYYete64vDyTwDAnDv2BaTS89/J9jNG8evWK25sbHnYP9P1Iv95gvRRxrFZr3l7fYI3i0+vIyxcFqwzHdL2ci1IgFkXQHUVLHzatLcY6nG+wrgHAFxH+p1woqSyOv/Ofuf1HqQDNWvsXi0nRugoW6xKVdDkpVKx23kVEWKpk3nt5wa//tf8Jv/jtX+Xq2Qvc6oJ+mLD7e+73d8RpwriGdrUiFnjy9AlGJfYP90whsGocL997xjgMPDnb0nQr2qYjhwhoyvZcqlYaTxh7Skh0XYtvNxjryGFk3D1US2WFazqa7hm5H7AKNtszvLaiCWgaUUzbntg0xBgIYSLsHUEZpmmQkutG+vFMMTKlhLKy0h3GUksGIyurcJ3HmDUxTvTDnpwGKJa7t1/g24bm4jkPhx5ypO1ahjEChUkHrBMQQTX2IgtFXIoI/8q8oMyMSr021jm8d2y6BlMhQOst3iqcBaMKkFBZwBFZIjujCtpKbrjE6n1Abdg2R2ZlWe+WPWyhkI/x3ElkPj9xXtDqZjQr9zlWjhilyVWgKOJGuDv0fP72hsZoyBlnan8kJ+Z4CqlekQZzclMaawlRk5PCGAQ4TIGYoWscIcQldy1C7wJFgJus36UK/OrxFZEHhiROsDFGrILGWlatBwUpJmE9vJVu00ZzcbZimGSRWHctpYiDra6utGPfc3V5Rhgm7FS1EGRaoxmMJlY2wTtNioqryzOGYUA5y/MXzzg733J9fStN0RQM48BmJU3zjLE4XQW7dXNy1uCMLPjDuKMoxb6CmzEkhmFcdrTZ70PYEbl2agYu8wZ9cs+f6hsEcMCivTidJBz/XkqQ1VH8vbxnRThzoK6No11dYKYJFQdgAiS9EnOhpEmgtZMSUrSBaRIxpu+koixKGVNOEe1AKSm3yQV0mAQY5SjpoNmjRUtVELGgjJeDMVJiXuIk38I6OdYQgL3M7zCQNaixR+VM9o2AmIq8SkoCJGIAJSkGcqYQxBXaeVBG+gLphPUt65ff4v57D5TS19NYy2j+HIZq+UcNDMrxJpVHFtdTtbhaw8zY5pP4QolvyvYZrjtnCuITArk2z5ytnIPcLzlwGAM3Y2aMkZiTADJKjfbVsnaYegymak6cyTTG0jWt9MVK4IyhrY0FnTes147NxpOmwMO+5zBMpAxN47k/jByGiTEmnIJt19BdnrF7eGCcAkNIZCWus7Nh5bpta3pG4U2DNgatLNvOSyfyONBa6C7O+eDFM1orbO3t9RfkovjwW9/iw48/ZoqJJ89f8Id/8B1ub2/ZDwNlv2eVC03TUJSh6da8ff0535k03/xgzcW2Y+a9ZlYupkwsluS3aOexVv5439K0K2mRMVeSzSxKpgasiUwRr5WUa9ApyjlnHT/p+LkGKUvUUwHgqZhuRoVCZWbWXcvZ2ZoffPePubpYY9hx2G3Ynj8FRtbbLcYqrq9fo24tz5+/5OMP3getePP6DZ13tFpos2mcaF3D9uycNA5Scqk13jfM8nXrX+CdZbXeQiq18iISemnoVVAYbUSgeqHRuVqSG3eMAm3BakNOLTGMxLEnAsFqwtgQUySlRPCBkGRi2NajlRJQkwLjuEepDLqwahvi5QWJRLmDECZigfvra15ur7g6v+DN27fc3d6zWm9qmaoB5q63x5t8SflkiUiWqpwstLg2Buc8zhqydxWkpOqPoWvOUr6oGIslrCooC8qYaqIERmXGITPsxOl1rlOpRTLHRU8mxDGiO1kwVZ0rR7By3PjUHDzM0RyIWyvVfqvA3X3Pzc09pRRCihglQlqJtgrb1bpuxIXGeYxSGCv+IofRSDfjPBBj4HwtmqJ+DNJzp4Kk2S0To6urqaS6Ukw1wlZiga9E3JZTRJfCpm1wVqoTjNJ4I5oPpRWtNsSQarUB4lFgDY2zrL1lnAK7w4A2mhdPLvBnDX0u9LsdOWdW3hBbR5+haz05J0llpcLF03Pu74aqJ2n44MOXvHr1hkM/EMaJvZKUayrgFt2MlG07b2m8+M4UBARO48Rme8bDnZP2DqfXcDYzPaIVQETHpzSJqozIXAV2jLHn0u6T+VFfJxrXCmqXKXP6nnVeqaoNas9xIaGGHSn3FEQQLWJqYbZU0VAmaZ2QM8a0FO1RRYAqKZNTQMdAUcIDl5xQqQIRVd8jZnHKV5oUgtwXSi/CUYympALKkMcBXQDnqV0tUWGSkuJaGlumEZ0zJc3BRqGECVKghIB2okOQ+zqJzqWKassM3rzGrp/SXHzE8OZP5rvxmGKtzz/eeHKTzUnNpWmjOgYbpyjzeCsXClnYwlK1QdZhunPM6oqy+0IYn5RqWqG6LVfwNU0933t9y20fFwZYerTJvZ/m8v1aiWiMEYdsVWidoXWWlddsVy2qaFSWTt9d12CsYrtpWHmDImKerSVNEwIpGw4Bdn3g8zdvZbMfB7ZPr3h6viaGiYd9zxTg4f5G9grrUNYtHZq3646uaWm7Fav1hr7vWTVnGGe47yPn5xtevHjJJz/8jOdPn/Lyw6/wS7/8SwKolOG9997j6dMX/Mkf/SF/9qd/yiwMMqbB2Ia2M1w8ecbu5hXf/eSGX/2FRq5LNTAsJRFjYdQrSntO07Tio+XrH9fgvKSqVAUpKVZ9TsqkLOn9ue2DKRmxFZJ7/51Gkz/G+LkGKXO6YfZ/PG2IpZcbBHzrOD87IwS4ePE+Vx98lfOnz/j4K1+jXW3w3mNdw36/Z3t+RX/oSVPP6uwJ3nnWzkC6EE+PKaByprGWxjmmYaIkUXr7poW6GKMtTdvhNhdCP/aSQiqrlRyWtmLSlLL4HYSIrtUwc18co6q3R5KSRJUy2skiZ1Bk1ZJrfbrkrqVapsRIzpaYHGXVEnIgpAmTMqgWY56htebu/gGdIYWJw/0NTzdrLi/OyJV3br1nGHpiksirLCLZmUnhGPGciNFkQ9K1n4Mj2VCrVCJGC6BzzqCtXK9EQmeFrTlqrQ1JaWIsUKKIwqjLYQWmsxB2bnp4WkUwB2oyBdQCUE7hy/Fxob2VKhRVFm+HAhRt2A8Th75n8ehQCmsMjbVsVytyHOmajvWqwWmFVlKSrI3iYT8yxYHNqrBqLaZS9t/94Wt2VZQKCqXlRnfWQM6EKN2NY9UhmPk7FrHj10BKEWc0jXfEmDkME9vWzVOeECJRJVZtIxVLQFIS6TS24XzVkBvHfpzIMXD/sOPy8ozVds1wmOgaQ6MLyRjSONE5SxgG6S5jHEoZfOsIUwRt6VZrrq4i+e0NYRwJU+T8YkuIYcbtUq6tpTW8UtA2jtV6RckSYU3TxHqzRmlzvFbqCBRm4775ss5pmgVb1N9pTqLychS9UufM4v5XXzl71Mxv/GW9rny2+JA45VGHB2J4QJcgTIaY4tQ2CYbiLCiNniJKW7I3UtabIsUY0jSgQkBpcftVqfqZaAMpSLVPJwJYVQGSqvc1VRuAEf2OygWMnAdVmchSN5wSAsRQU26SdsuxanSsJ+eJMg0QB7KylOmAci2ldtyV90So+iKgWVmL1ob2yccMt68g7imzqpd6D82TcC7nhqX8u3xpg1qAysyezOnjypAchbWImLXZ4LbP4O33JPWxtDzJoplQCqUzn75+y//rD99wc5D+T0ZbMIUU6xpVqVjBs6IzckQ6Y2ksrLxi2xoaAs4Kq9K2ns2qYdV5Giupa+8VKiWUliYOY4LbfWIcJs5azeubB7LSDLs7Lt9/zsX2kjgF9odA6NcYbTlMgaIb+uHAoe+52G548fQZbSf+XVAw2rDrey4vW548f87F1RWqKM6fPOXDr36FDz/6QLywUGy3Z3zwwYd89PFHkBN/+mffY5ymWjEIJU08uTjHUPj+61u+8XFk1TpSkeCnFMWYDJM5w3Qb2cesx1mPMW4BdcZICtEU2fOCSgsDLIAUmXuyyMreqA0/6fj5BinAjJzrTyglduraWLSSUsq7fSDGhG9XnD/7Gr/0q3+djz98n1W3qh1tYdV6npxfElLiME6Iy0Vm7Hu6xtI6T+z3hCkz7O/EKrlb1Y3YYNsVvuvq4YjASIRIkt/V261sgClSlCw0pWRICWUt5XCoxl4BbSolJn7KkA1aF7S1FOuwNpKzeCZkDca2izPqfNdrJLccxj1T1mQcTQoYBhFCPnmKNYaHw0gfMrv7B56+jKQUGaZE07ZM00gIk+QbZ0acIyjJWcSts0blOBTKSIRgnMNGR9EFXfUBzhg679FOi/lZMcRZ6Vhp34QimIJShsZHdpwEZsyX/CjUk299+q/jJCk1up43u2VxKseIrqoYxNRIIbbu2hKSREilFKaQ2HZ+saBftQ3eeLqmoevamsJQi5bEuI7VWUJriEEs6h/2A5+/vsZpcbbN9ZxITxQtjf+cJZVCPzdxQxZ5bUVhHEJAlUzbtAz9wGGY8EZhlFTySOpMovJ9P+J0JzoRq7nb9YxaMbWGTet5su24P4zc7w50jaPf92xXDRsrJfuqaGJOqJywOVF0oWSFLglnpSzbasXu0LPerNntDqRQO0TrqkHRshE4a8XXI8vjzmguLi64vb3n0I+cX5wxmsyL51f1Gs3gQeZWVqdX90jXM0OV+VozM6snkHVmX+AEkNTrPs+9U7Dyzj9ndnQLhz15vKeEA6UEYkpobdHeQcyo1kOcMLGQnCNZjRkOZGXQriGVAdXvKdlSvIJ8EIdabSklokMQQBTGpSSfJKBVVcfXgjRxLPO1ri7byjkoCYxFpTn1lJdzoAowjRATucmkKcCwF4amCMOSc6DoAs5J4KOolUVJXKBTQhmD9h3+/DnT9XdPrpOUOh8pqeN5X8KEk3NdFqBY15KUJWhLFaAsr6/VVkqjfYvfPkO358T7m0XYq5T0i8klc3t3x//9v/suX9yPIrwvIgOw1i3rljFWXqPEy8kg7SwMiUZrGgONg84ZOmdZtZqLrWe7amisBDXWQtNY6fzuGlKR9NvVuWKIgQ/fv+KL63vu+yDXaByw65YnT69ER5kjxrYoZRinzM2t9AM626y5vHqKa5pagGCEkezWPH3xEtd1rDYbvvWL35amnxcXbM6vKrgXjWHbRb797W8Rhh2pZP77P/iP3NzfsO46QsgMY01T5cwnr3d846MnCNehpesxDbE5xzUCUKy1GGOF7Z/7ZCnFsc2HrnNN17T/rOme9wvRYS1Vaz/B+PkGKVWsuUz6+juvofESDfSHkVXncV4Q4C/90rf5+KMPOD/bklOmNS1nmxUpJkJMOG142rYYYIqByXqmfkccAnlKqJjwBdrVhs35lXSVtCIsUlVXoJSurlsWMFLrb+TvUi35q9AAkxM51cqAMVKslfwwQKzmTABJ6HysgyaTdM0nRzHwQSuUEZMvPYvuiqPxmr7fE1LCGS1+Kf1AiYm4XtUuuolhHBgOe8BSUiBFi2s7rC3kcSDUhnhLPclpymep7KlbRmVDjLX4piHHCZCKIa8tjbM0jdjmZyNLUC6lGpyJ702o1GxKqdK4zJraucfcEk0vm82pSJaZLZHH9Ynj2/Iesx/GXMNbPVt0FcGmWBiHiWEKjFOUkl4EhBhjWLWeq01D0zY410jlkhWzrgSstIJSKwpSIsTCNGW6pqF1A0NIOGOqrb0wDWPMGK0pStF4RwH6KdTFOsnGlAtOgdOKYQx0RvHh8wuK0tze7TjrPEPKJKU4DIF+GIXKthLFpBhr/w7Lpm0lDaQU9/d79rs9T6/OWa9XeAUpFsouoTCsVi0pTxymgC4FqzLn2zW39zuUdUxBsz3b0o8TJgQoWSrsjMxVZzWxSNm1qWJB5zVNI6WyWhusqnb+p5j3JFVwUj/yLhytgtllM67PXK45CCtZTuZGkc3muH6csHEzHVdqhY8/wxSLGm/JoYfat0n67yjSYahNO6N03m3W4mexuyEr0KtzMoE8DHDYodsNTHLPlhTRjRZgoTQKTRknilHycwLtFFllSYdGKFlVF9pcU0aaMk3CgOgKwIOYhWE0KmYRlqYkzx9H1BQoXtp+5NrOQPSaWZgd48k1p6qUqSmihKomRn77jPH2h5DF7mCusyzzvXmEJswC53cu2Wzso2YhayJVAFvy/F6ZWcwpBLXFduf4zTN2X3zCNA1QslTJpEKYIt/5sy/4j5/uoW6uFAkycpLSa1mvRC8l/lnCmmy8ofMO5zSNhc4V1o3ifO04ax2tB6+mpfeNt4bGGWEWnEW7hqIcpWi2xqFIPLk85/ZuJ/os7VEKmrZjtZJiiJTBNStA8/xyQykCptbbc0n9Gwfa4ts1q+0Z7fYM37UYZ5e7wLcdqopadQVfZAkSP/zgfb7yla9w97Djs09fodA07YquWTOMI4fdgR98seeD95/UdkyGUGDQa4pfo41Hek3J3iZeWYVcZC/g5F6bU6pqvsNKIudY9SrSiDDG8CPz4L80fq5BClDppWNkXFAMITHGAVfzfEob+jHx/MX7PH/2RNwya3Ok1jv6Q09GJl3bOHksF9FOrDpsSaReIgjlW8xqi7UWb0XgVH3gAWFy5gZgS+Sw3OTUvDKUKigiTag0kStzwzgy9xySdMBcTZPnJQClQdc6/GPXz4Imo61DO5moKov3QRsd5EA/SVmsU4W11ai2IyfYH24Iw8hhtyNZz9BPoAxdu6JtW1KcKKEWUaoZJORaeVK/4jz1avmZtI831fLckLPCFoszhbZx4kRqNcaIVXdR0lspx0IugViy5NhrvnkOaGvB5AnFf7L4LemAL0XH9czJHKkbV31RruW187MyGW0NuUhL9v2hZ5giRmusscKAUWiMYt11nJ1tao8bAWXamqMnTN0UUIqiDYfDgDO3qJy52KxEGFwK+5wJMZFTwRvDFCJFa5rWMowTTmlMI1FsHwMbr3l6tibkDMnw/pMzzjcr+mFgfbXBasU+JPZjZATiJMxLyZbGiD5kdzhgjZzzddcKSJ8mzlYtl5uGi02DUYV+yDKvlKJbNWjtyPc9JieU1rjGcHCWfhjZH0YuthusdbTegZJGh8YoijF4b9FZDKKKqq643YqDkWqC3W4PFKZpXBhB8UGq17He6HN6jhkXn6YYlKqmcaVWs6jqRcLy2gXgcvLeJyuKQm5FSVMpitLYdgOHgVImUhhEfKq19HMJko5BKVQsBOOg30kaIAJNJ6XBRTQgKhYxcSsFPUSwlqRESqJNI2X4OaOVJdeDybXhW54CWhlKGqXjtFKgkjAfRVW/E0n9LAznbNZVGTico0ySCiolUggsculhBOegaeVx5yhLF9B63quDsvErtPaQpyNhNZ/cWeQ885vzTVrvSaUq0FqYq6oZycuCUoHPLLatWjc0punwZy/AdgzhlpxC1WkVdvuef//DO8aU8UY0X6ECoBhjBVDi3UPJOKvZtoan5w3nKy+paK1onKFrLKvGsHJgdSLnQowKrRzWt9I7y4ohoW0sxkkAqu0K7aR7ctt4zjZnsm4oh9GlBrQWrQoxTDjnBUxuWlKWx5puA7oBbTGuwfgW33bSfR2W/UDZZhFen7JSuWRyHFm1nm9+7SM+f/WKMAVefXHDNhXpUtw4Strw+vqB+/3E2aYlF8WEJdpzsB1gpYlsTtQuDwKEKstmqjdEqYxVqZGk3J+ivYpxYqr+MCHEd9nKH2P8XIOUuv8vm3c+ZRQLtI04/Y0xc35+xi//5d/g/OIJMRdUkHyvM0aocK0pqvBw6MlZxFM5RYbdPWXc02hD07SUVmFjRBehvOVuEpaE2ihsRpELIxIKJXUU04AylNqFlJIoYRCnyhhgypQYRahlneR3yxxZyGM5jNU+e8arRTojNx5t5RjS0FcNiDgu5hTQOeONkZLEkumsYZoirYLGGtI0SjlzPFq+t01D27WS3sixNgFkSUGUBaTIhFyAwJwCWqJSYR6slvOttKkaGmkkGHUhkonV0XZKkWmKhKAkks8nF1yd2OEvM+FEjFcXtKXLMHOFBxXtM7v/CzipYg+xnp9vQENMkcN+YNeP5FJovSelTOsNENmsW84vztmcb7Ba7KWZwaKSTaHkLN8TqfIoHXhvWTUWZxQ5OtkAnSNNEwm43KxIOfMwSgPDnETQN8VETJmN03z95RVPLrZc3+1onp3z0cvnKG3Y7Xc0Wj5/N0Q+e3uLpnYpzYUwTdJ6ISQOiOOmMVrKHXPGW8OqcazbhhIDpvM4nQWQOydCQduQMkxTYJoi2lppGFkgTYFpmnBWzoOtTs+iYxGTtpVvGWNiHAdCiGy2mu12wzBMjHUB65fqnnp7LT8cmbA5XH83xVcByPziE/Q6SyFUqf4zVZy8uCEvgJZlHlMqs9GcYbKhDHvSuKcEKeFNU6CWdIBSZAOgUXGCg/gWlXYthn5BDNvyNKGVWfo9JSTlQMziJdRaVBSQApLeQRUyUcjIXMhaCbWfs3wvoyuoCke/kRRQUcSLJSZZM6JU8uiUpa2EsRAyJUTpJ5QhTwG8Z7Z8LiqL1qYCEFWk8k0hho92dU56mMuB652YC6eXRHECXo6X5B0hc16YkypunQuG1Ly+LC9CW49bX2HaCx7674tvlDFMIfD2fseru+G4LyyB3rwWCNupkVO78oaXFw1Xa0fbGimz1YrOObzReFt1HCVjZvNAspR8l4wqcn9oY6FYqELy2X7SNC1KO7T2aN+gSMRxlJRZLbYwxgKVxVKWgsG4Bm1blLFiWd+0omkrmZKCNJK0Hut8NSxFgKyqqfjaS8g3lufPrnj25JLb2zv021t2hz3WGpq2oy9wPxQ+/+KOrmvJGCY6iltjqsFcyZmYQecsCgRjMdpWn5qyBI/LtaseP7lEQhgZh5FxnKQP0HR0D/9xx881SImliNgSFsWw/FfQbUoZaz0fffQe7aqlH/diuoZMXuvt4pCXSqHvR4yR97q731HCxHrdYduWfNiRwgAhiGrfuoqQRMBGolYhVAfJKHR3qYxGHnsKBt104DpKGOVPf6hi3GN/iCX1I8saADlF0jTV96zRoZGNvqQkx5Y11llKvREpYtylVSMb8ThUG/RCnkZMnmjIPFmvuN8dGPqRIfdY31BKEupaqWp6lJjChFJa0PwSLR3dU09TPiDRpbGebAdQBouko3J1SkVBJhKqhXrOmRJhnCLjYSJGKMWg4uxgIkMvHPI8qoCy9rlZtinFkho4PrPM5EwFMzP7MrNEqjbWiuwOA0pJL5+YpYpAK9g2De+9eMrmbEvTdZilMWINIhHdRtGz/b0sxi47zrZbPvzwPT7/7DW3d3t2Q6BtG55cnTMb5eEcu+lADLULa0r4kmgay8dPz3j59ApjDMMUON+0WA3rdcvZyhGGnpgzymhyPmPdHBiGiayEPdxXABBCZJhEvOuNlGF2F+d4a9nve7rLDWPM9Ls9jdZ0XioaxlLwEYxpURG8sZQyiMg7J1IIeKPJJdN6J9GscaLV0Uo6vqa6KSlTKx4zXdcQk5z3vIBSvvxDxRJHBDODiePjch3JC0QWMFMZGfUlEHMUXNcXURFtnkXZGtdeUPoBQk+Jk2g3UkR7j/YOpaRzdEkjKgdKLKi2rcxGJClFdSYkTyPYFp0LiYCOSTrnWAfaiJbnRACrtLBtRc3sakKhsO2qVoLVdSdJo0ZyljRPGMkxS3NOlSlToFQb+Xme5RgFoMQJrCcnAUAUKjiSuUctU86lbsxVJ0EGbVckpVFFOljLfSdrw6IbmyutZnZsvgKzgLkCoGWjq2n8fLxSlTmQMnYxd9tguksSjle318QsOsS3u8hhipJiLGJFb62tjNxpiw5JL6+85nzt2bQGa3V1YnZ0zi5tKWIIZI3MYSSlR4pgGsCgbQM4lFlR0kQcerT3kvow0mgPa7HeQbbMJoUArhE7ipQzqkgKllodKXrvjLGmNhudp7NcZ6Pnrs/zGpxJoVo1xJEco0ga2pYP3nvJJ5++5tmTS/qpMEwTTdOSKQwh8cmrW148e472jmBWFNtWjUttjFpTZGjRQ8ofLevz6Uq8GHAm4jQxjRPDYWScJPUYKpv1k4yfa5Ayo8+ZDoRjqWMuYna1WTXs7m847B1PLi9Zrzu50bRlmiJRwTCJIZe3Cl00WVuaxqOcZRwnpjBQ9vf4krA5ixOsVtJRFIT9cFqo1lLkpg+hGtjUhdIYCooYR5TZQwjkvqcEsVTOSi+U2eyfrubFNdUyOuT9FJqsMgVZsLR3gJFuptUbJsYgbI6iCnAl0tc54Kto08SAVwVXIpfnZ9xnaTRWaklxDBMxjLRNh3OO/WEnrBEs+oZy7DZYr8lcBVMpzdoJU6lS00+ZSCGRSSmSkyw8ZChZfCCYNGlMhCmL70g6gpR58f7yPACOGpMlfJsVNGreepbIba49zifvMUc/zlhi7AWMKkWqi6yzhlwSq9WKzWaDb1ZYLyBl9geoX4RUa87kXFQcmwqbzZrnz5+TEiht+OL6Hus8K+/wVTB7fxjxWlGMwtforTGO956c8fzynNnf5aP3ntE6ifwaZyCBbVspk3YWZx3PrzY459FaM/QDt3cP9OPIMEX6MRJCwChYrVd4L+66dw89RWlcI7ocbw2r1qKtaBvW644xZEpQeN9Rbu4Zhl48i4oIZpsqDLdOmjXmCvCcVRhnKLkjRvl8XVvCa6sYHgamaTpeo1Pc+84lr+DznZRevfRfBi3IZdH1Oe9E9pVVmyuOhKSZq1UUut1IiivcQhykGqYK2mPoYQTrWnL/gMoRbIe1jaRVUkIXg64pjJIyCi2PxSQusFpRtKaUINc1QklJzNs05BgkSp87gVfxbCoRQhWxlnktVKJhK5WRBdIUa3pZxM/CoUAOiVwF4UUbccWu4EDnKnJUekljzUFHyQmV9aJ9ce2KcHJNZifgqvpdgoaFCFuAypcua2XHZm3KzJ7MoCJXJkUaNYLxLc32Ct9s6KfP+OTtHV//4AlRaUKStgNTnlBFemWlKFpBXUGY0YrWwpON47y1rL0EeM4YrJE0pa5zLKfErLcRVGhqaqraMSA1iloHSSfXdJv42whI1CRKFldhbaAUu8yzOS2nSVWUqlFKUmpyTgMlG7Gqsw0sn1nqNcmUHClGGs5SCikM5FQF7BQuz7esuhbvG7Q1hMkzTjUNkzKf3/W8uhtYnW1R6y1We479rGYigDp71HLrHVucSLRXCpSUj75eYWKqf0szxfSfuKH/0+PnGqToeZE5+dK5KtE1hZA0+0PPqlvzq7/2G/z6X/kNtLbElDAlEWsfHuuc+FuY2jdGyUKQS6IfesbXn+DSRHFS+tdeXEoUQxEjpQKoICV9JVOmSdIyqZbm8qXAX9tlcy9Kyr5yilCpsExVT6e6iCElp0IvFgpJ3jsn6bBbmYFURJ0v9KaAAKWKIGIt0W2IgZSD6FpAWIoUySGyO0zotsMUREQXRnLwbJ++IBbYP9wz1L4fttjqoTK7R57ocOoQEW9lT5JM6FgiOWaBV9qgsZKLr8ZwOSR0BJ0gzV1CZ9DGyXZ08lHq5D+n3VnfkeqVUjHLjyyPy+tT/QRtdK2SkRRFjOKQ6qwhp0TXdXTrNb5p0FVRr4h18slWaPS8sMvNPbsuOtdwcWVxruH582e8fXNNSJHpMHB//8C+F2Gq0ZrWSrXCyhtePrngYtOxaoUeTkXs5B1yHa1WEgmTFx8UUz13bG2bnlPh2bNL+l4iG+s8wyDzd7c/kKvwdxgn+nFi34vD8Xotab8UM3E4sD6/wriCj5mApnEezYHGKrwTHUWKEWct3jiygqwKzjvatmG9PWPfRz795HO00jijyRi26y3DrpfmeZxeplMm7OTazqXFdSKUep0F3FdAuwQw8wvfrQhj3oPzSRUMLM9QdiUC9iy59ZKzbOg5kUvCOg9JbMzJCZsHYpDeMqYYcC1UzYAqCd10FTTVsl6tIfSAqrS/3LuqOKid3VEFggQqWRWSzqhpklSh0ZhmRc4Fu2opw0RBU0KUlG+uwU4Sw0llNXmqDEoKZKPJlb3KMaBWa+lFE4PspqaaOMYs1VVlZh4V2Vhsu55/cTLqzVnm5x/BpPxbLc87/jQDlFyDpDnwKcvj8p7CWlpvabZXNKtzQrbc7EaMGri+H6TnUEmkJO/vvcO46sacU63MUaxby9XGs2q0OGE7I0aOFdXmIlYKR4Ql5eyqCrtzlmajOSeMUcTpIDqzGTAaYbUzERUzKktaTQI4YceFba32/4ImQUtlVskR7TtyyHVOR0kzGalFSjFgEVDHLIqOgRID09jP2XEoBe88V8+ec/vQ87Ab6NZbDvs71hux4Ng/vOWz6wPvn69ZuRVmEcwKGNWqpnlsXfcVAsgqkDTIdc1KOhjlJO0HRIcSCFHMJHP+C5buKRVhKyoFRkXelU4bhxGrLU++8pL/8X/933J5+UwMb0rm/v4BqzVX52c0jSPFyH63435/IKdMt2qJw0Dc7yhTQpVIUmC359LdtuYJUikQAypPlKoiL9NUUzChll2pKjSSqoaiAiUmUoy19A/RjuRqSGQ8qSJi7bxEMxpylF49CsXUH6SVdpzkJiGDzrO2iZIm0iQLprIe6wWExShlxiUJjahzobGKhsDaW2gatG8JKYASvUIIicurF+zv3vLZq88Z4yiRjimVjqYyPUeCVjZ4YVMSYhCVYiCkAwWNNU56Y5iCVSLMSikzpUisGhqVMlNMTCHWm0JuhCMooUbCSzgMX3psGSc0L7AIKGv9L0VpYgZXe1KIp4ein5JoLmCxzl+tOtq2FSO2UpjtzJfPmSOgeQNEoZRUT6gsm2fXNXhn6RrHYbfnweyq3f0t3huMc6SUsFpzebbiydUFbdPQOIczSnrhaDE0KznV9J5YVWutajm7UNrOWbQRkbLkzsWDRVtDjoX+sMM2DfcPe/phoB8ib29uGYaRZ1dPKShCVBgTaH1TzcBEzzINAW9FQOd9gzUWrCEpRddYnJW0V6KIr4IF7xQFh29XpGJRRRPSwKppF5fi+V4uC/CdL6ZaNEY1lKu/nVmXZUE4eaxOBqXr8+p76pPNdQG85WTeaJRtapO5IGtANU1MJZGmSZozKin5JxeK8VVGokB5SuyJRqFqNUkJU2U5BKQTBZwbbchYtPfCM+YimhIgMUn6sKSa2snE0KOsJSmF9kE6ow+jtAnRfnGRVSWjWwEvxnvxZyJKlF0KaRjFnj1mEcmSUUmJLsXJOqcWYqkawZlMmQZU24F1FG0hhSOxVc/3u/FA5a/UCaCc70PFu6aQRUzBFMd0rKRI8uzcj9Yatz7DrC8JqsFoxUPIvH0IIvCvKTOxc1dYZyAXQqnpMqVYNxZrDd7p6oQ9m5MBJdcqSYU1tq7jMGvvRBcoWpAYa2CYZP0uWnxxYKzMviEbaSsgVTitGPrFhGnMkiZPpaCU7AdKe0qRzR6lpY2C7yhDxrQd6IIujjiMKJOPS08Wq31yJuckmrsiBJz3Ull5G0f5floRp4GxH9DGg7ZY6zHVD8UaJ9WrRtgTrWUOG22kpUNZjBsAcSW3uhCrZimnREoiWI5BxNkh/AVL9wj6PlLq88LlrFz4s/Mr2tWaD776TZIyZG0Yk3imnK/XdK3oU4ZxYpwmbnc7bO3gOBwOlb6Okg/Eo5qGQiFOg+hki6pzNsqNnuVPjoGSCikFcozEJGInlZWIRWf7aslJSXmyMShrUV5oNmWUTDS0OMROE/HulmmKJGrvD9/izrZirKOE/ssItRvjJItayaQgjRHDcCCGIJFS7TjsVKY1hXOvGHOg15AVdE1DDCOTaxiHPevtBRfPP+TN27eEfpRAC9BFyh/zrFSrG7OqtvK6grMpRob9gZQmrHZ4L94EjRIbfGGWEiZFdI6oHFFIVDX3spnpXopeIrqFapw3pjpmIHO6xakl4itLxD2zL0lLmg9tah+aukHkglbSg4hSMFphvZf+N5UCLnkGRwKUdU0lHUEKTOPs56DIMUhOGYWyFrc9x1uPdRaUIpcolU4J2q6haz1d42m8o3EOW30aRI8g/imuMlbH/koJY0Ww7Kx04TVWY6wARq8c7WqFNZ4wbhmmnrPthvvdDt94cvqQ11+8kUobrQkhYlzB+lZMAJ3HNS3OZnIMWCW6GKUtEfDas+68UNlaVX1pIyXwRlWDqBumENi0G1IOXJytubl5ED8V+NJipt7FKjNqXdhUuf5L0q7MybuT18wVEfNUqXNq4U9KXnCPUkq8TYyReztMpHGUKpGxJ06DvEprShK/FGM8Bk0MBZUVxVAXcunkq7VUjRUlotcyjVJiqgpxHDGuhf8veX8aqu2a3nWDv3O6pntY0zPtsfbeNWRO9E3eN9gqrRjQ2A1O0AT8IAoGhAjiB0FQxCAI6geNH7QRGhWUprt5FaTpgCi00B3SmlajppJKpWrXnp5xDfd0TefUH47zvtezE+23CoSm6AueYc33uobzPI7/8R+OiBwDKCFNHsPZUvTEJDYFtqqwdY2uKtBSFKZY7sV5J15LPsn9cejBB5FCJzlZsbjOpnmWDBtTXE+nCWUqdJLxVIgB1zUSBjlPsh0FyNqiUxa3VO1I4SCE8XRf5OUjsfm1h/DUHBzx79f4bKlsrEefFDLiTP3a5ea1MZBrOrqzx6iqZh81v/bpwKEXQvZ9aLigvIJ0gVEKZ6SAXnUVjVU4rXDWYu0xZK8UDGUxM9oIWZn7ZjilKNLaEInTRI5ShAfvCSGUghgZd9sKVy8wJLQSk05RZVrCOKJVEoSh5DipguYqU0satJKiVYcZVdXYnNF1g3IWm7M0nSmikBGiTBoDKCP3ackcspRCpe2YpgHvB1SGYRxlrTIVZIMzFVbbUqSYwhQ4ruUGoyS4t0y271GyIwapjntzKrLyVP5kgv//s3EPHDfEEzgrMzilqKuKB1cXPHzjbRSK89UaA0yT52y9oq4M4zCglXSVwzCRQ2JI0mUsuprKGkJoJCdn7LEqsQuTJEo20rUeTdkkOl1uWFDEKMhAjIk5BPI0YaoGV1UoW0EGe0xBBVQ2911E8DAJSTfFQC7plz4nzGJF1a2lCIjxVMUeu7oQPNELu906IzwClBhO1Y2Q4I6Vf1ZoJX4XjYEuzwyHV9BeoJcrXF1jdMbPIynOrNfnrJdLxn7LNMkiba0rkOhxFSrV9XGHVlIMqawIcyD6gHbCtUlZE7JAmLnAvJSuVSLtxRckxvR6i8ax9FAZ0Pdo82kE8N8o1Y8EVpnzHhEVMQkLZFnoXyuwrJGFRhUDMmMk0ddZcVu8fy28NpvlJM87hiTGOIPKGCvESGMga+SBTeJQ2zYVWa0w1uC9FNI6x8IVqajs8fUkVIGhj+F4ZdkUxUoW90xlLDlHdHkd1oqXAzlhrcNVDufkd1kszolpzTxNPHj0gL7vSTnx8PEDrl+94nDYsR+ERHyYZsZpYlXXWKNPhfB62XJ1vmJM0E8e5iCqJO+xVoZS1joqJ55CTeNYLltuN30pYBqaxrLomlORcl+UHIuR/Fohml/7p2xcyPiUnF+7vse14bhTvnYHHQs6Plffnq6nSDANKo2cIiGK/4urG0kRVjKS0daV/CUpbLMPpDkWcr5CZMKR3A8obSQVPWZ0q6A4VsccUMlKI4MShE+LVT0KslPoLIWsrmuMc6/J9DWqtlLUK4ghkeOEURY/zdL9pkzWUlTG2ROmGV03QhYPHoLIxrN1JCUOtzlnwjxhK2noUkGOTePknFsjhdQYTy6/6jQKyMc7s/xf3yt/yr1bgIn7MU+UMdqx2MnHWYO6v24yxlC4qqJbnVF1C8Y5Mk4z8+zLhqpOY8OcM372NE54X85oaqeo7NEETmOtjEVltcySLFB+lj46ecdwehEpyXnRWonAQE+Egioj7YeMgpXB2Jk8R2zTCDKOpmoX2MqSpiCqqwyoWAi+iZii8Bq1KCCj94QxYtoFSpfGVWniNFN1S7R1pARxnmVMo6ToTikVGpOi6xqapsPqLaqu6A8HILFcLtgfDoSkycZx8jyhcEwKAH30wjnygsiZFCAUTmKKkRA8YfakYuMhCPT9U/db6ITfxvFdXaRopcpCiVS8xuC0IcSEqxSH/Q57/ZLf8Tv/1/zgV76INppF1RJjwPtM2zWM48g0T2SijEa04+rqASTPtNvgt7eoOKN0ZhwORJVZtBfEqDGmJhsl451ijQ2ZlBRkSSMO00CaZkEDtEWPI9lEjBIXQW1E4ZCmHdF7yQipHCmMqCjwqrKO6rKlse40TBFALTINB+b+ILPIVOao1qCMwk8TqQ8FppV/Fao4M+YyTxXeSuUUy9pwmAKbccMcPK7uWKyXtG3LOOypmiXtcsX8aWQOc7mRddGY3vekrwHzpwhwrYWnMYfIFMXfIzlF9Kq4tEo3FZJwUHIMxX6mmHtRPGHKXvNbJI2UiqVgzqcHS732yk7NeH7tyRGlUVBG8lW0LYXu0VXxfmuTYD7hpujCrKcsmNJhiSRUl7nzkZxLMoJY5JlcipWc5QqGJHyGnBJNU2OdJXiJPleFU2S0WOMbfexWjmc3nxbwXJ4H4SCV+VMWomMKWcI3jREEKnswCmu7cm0U2joWqyVKwfp8TYqReRro2jfY7VfcbnZcX98CiqZu0cYQ04yrDOv1EjIslzV5ghAzJCH0VlbTrpb0IVM3NU0jVvCazBtPHhD8C0KYUVWFsZrFoipIUdnJjlUilNdeUKp8unry+x9rmGPRcrotTits+fxTiftacateQ2SOxYxG2SWkRPYDceqJhfxnrBWnU6WkqfAjBkGQlKtIcyKNs9yPwYO2eFQJPC0LfQwo12CjGLLkLDwso2TjF+QkE4e9jIaTBy/8Id22sIyidFEGZQ22qUVSfPzdtUYvFhwToWNMmELSRVtiHIWPkj06KTKaPI2oqobkMVSgRR6fUsRPs5x3ndFG0pYpo5NsamIQJU0u5+T4TL4el5GPcwd1j/gdz3nwsrEdM8COfUZK8XNW6q+XqMY56uWKi/U5baXZbIfT1T1+A2cliNNZh9YyJu1aR2MydUFOjBE66FF0obU0VWRJU1an9aNYC+RIjvJ7al0aHmchKOFUa+HZCXlek2xJwlZgyficZQRVNSgFPvrim+NIxFIQyzXBaHQyIioA0rADY3DWyt6SAGMw8yhIvELgjTLGNlYKV6WhchZ08SECFsuO65evEEFhhXUtOaniopFl1JQzZC22VyV/TSlFOF7XYuQZQyL4SAwz4fjHz0UcIWw/cZ/WfKfHd3WRchr1gCzw1rJadmKMhSNksK7iK1/+Ml3X4rPC+4mu7VAq8+r6lrvbO9q2wzmLqWuaqmEaB3KMIldul4RhxzzuqZTCLirCPKNNLV3ONBT1TfETMA7GQUhVXqpdd3YBU4/VDcpQ5roF5dAC09tmXfgsgTRPstCjSh6IQilJ48wpgTH46AnTQJxntLHEwlw/dgIpymxW17U464eZrBUmBuKw42hrrLUQcbXK1JVhrWDyiuvDnnw4MA1brLFUdYutOtYXD1l1HfPNgegNsbg2nkiMx0ZJaSHsmjJqMBZja2I6MAWP9wrvDJMBp8GK+YV0oqVKt0bRKsUUNINKxTr+82S7+43sfvuBI7ry+ufK56lS0Mo/R86+IqDxMQgHJ6VTIVQ7i0+JyurihCo5GkeOkRQjx2KoSBwLugfCI1CKkttTDLNOwW0J5xzZWFSIhJjFi0Er8S4xVsiWpUNLIYkyhoLcKJkMiFtreR26GORx9D4T6Jjyc7W2ZMR6PHqPqYUYaZXILaumFagZiixYZPnaKFxdYa9vyShmL86qlTGsVx2axMXFmvFmwM4zZEtKIv9s2xYVMs4J6tgfejKJ1fkl3aLh9tUNbVczj4GHV0uMOZbi5e8T4vFbkZRcKrTP1atKnWT6R3XP654b97dKef44FpmcMmaicqh2LXD1NEhOTLkvQhA0UltFmGdpMohoZcqzOIsRm5/FuLXV6JwKTy1glcIuFmRl8NMoXhfO4ScxTTQJfJxIo4x5xXUVdOvQWgqEFDxKVSgnoaQhBPE4CQHTtGgjhZB2dSk8Col4nqTjBpJR6OLPgnPkIKM5m4V3pIvxWIqxFILHEalwPkQJCMZVjDkUG3S5ENJcH5PRMyffNlU23+OlSlKUzONI8JL8LAjV8bKrQmC9bwTKV2Irx+LsnAeXVzxYVtxtdqWAlPNlC6J5BOBEBSfcE1v8ROS+EdTjiMCQizcKRdobfVEqChIJuVBdlST9EkihIEUorJMcNTgmLmtRhvtiK5ECqldELwqeRCnGoCisUqFWKdKc5BpqWwrpSJx7jK8hz2RtCYMGV6FJxClg61rGkMXQT6wgZK13RtHUlpubO7Q2tE3D/jCgjWYYD4QoUShaaYJPBWkykrWmIinMhFkaq5h84T5OxFk4lZLzBso4gjL4acb7CR/l/ISTv8C3f3xXFylyE8gdOM2BkBJ6MFRNg0qZ9z/4gD/0h/93fOWLXyr26mIDPo4HDoeeeQ5YY1ksOlKKWDQpzNTtgq5ryNPAbjiQ55nKttS1A5MIGSoyyQ+y1pXk29DvSEHm02EcydqhrZURkLJEohDEjQUHfhrRSdz/wpgLsU6kvzHI/O5oRhQLVVspiCkwH/aobEpXEvF+kAfIZFQufI6cT3Cl0pZsLSp7tNWnmW/JDBR7aKtYYAlVBZVmDKKq8eOeHCYIM84YjNaM40ClimW4akq3o+6LgaM1vhF3xljPuKbG1TU+RnwC5kjUmWSUzM6PXA7AKoU0EobaZlCxQPdHwyA49cXq3g1FlQXk/g5R5e8syALHAuYEP4gaBUXImoSMMLRxZawTxSq/IBmpdEESIqnL730MOTtuq6+/roKoHDkSORcps8GnSGA+dRqKLCOunE6bqkDGsj5pc1xxRZp15H+qU4FCGelkUij5GWTQ5gTXy6IlnXqMwgNAWVnISuHlqoqMqFMqpMiomy0hPGfRNfSzjC3IEWcs1bqGOLNcL6j2nspqMg5jFdYUf4koPCfhb2S2+z3r8yUPH6wY9gfiPLPZeN5794KursrlFcj6dSrRqVE+3QGlWDlyCKBUZ8f5wPGukGugtEJpJyNXJbbjpgQmSgGcCH4i4TCugrGXuX5OxXBMNgmtLPM4y6jGGCFEG/GNMFUFOYAWG4SYkIYlesn8qmsZB6dInkPhSmn8NJHTSELQXq0kRyr5AEahkhMEpqo4qkG0KfbopTiIPpL3d3L7tTVpBdaaYk0gI5AQ/EllIe4Exa02pVNhYIrpZIpJ5NBKbA2O2TeiPJExzTxHgpfuPUVJLj66noq4QQQOkscDR6K6AlQZi/e7O/rdVp7D4u+iijFIThnsUQJ97/KmjaZbLrm4fEhbV0WBIp8vWgOxaziiqVpDXVlyCFini627qGNO0+lys+mTP40m5IgPnqqqxYsp6xPv7lgFRbLcL0V27TMoldFGFHchBlQUGXFUGjXO0mAoI947yZOMk+dTKRlzKY1SlhSLQ4wV99mcAn7oUdahLPipL/uCxFeINf0R0Tphx7ji7dU2DVVdUVcNOR2wLjD5QAyecRqY51GucS4NjDUYk4lzz7zd4Ps9WgW6ytBVltoZbCN7UUziJD3FyD4a+uTx88AUFDEr/HG09R0c39VFSoITLJ/JhJAZJo9rFlw8ekC3vOC9t55Ql3jtFAL9oacfRhLQNBXn6zNs5TgcDgQfsZVA7kYbfBR4Xy3XRD8xjnsqH3GLlnE8FPjQgJ/IXtJkc92S0SijCPNA9BMpBhziLWKaJVVlaJqavDxDa1cWmcS424rFM8KQRifRlYdILP1HSgKNxgS5dJzaWdrlFXXbitxUBWIYRKc+jPSHA3HomfyIrUxZiANHkyjpgIQNbzUYlViuFjRZSGPSQXjGccthGNkdNvT9DtkCpcNx1snmx5FgJpuedY5U1aTQ0HRLUhCDuHEYOMbby7NUPG7gVDhoNBmDNRlJ82rI01R+rhyqQJOUwuPzBUzZzMrkoKjx7j+mhI8S0cSsyEoWcK2kEDHWYrU/dWIpJawR+bgUYOXxydzbresjisLpdRitpcgsb2tjUSmjaiNFlVKEEMUK3cgCTkqnjffY4R3PqypFkjT/+XQeci5dfnGQpRRUQPFLkBMQsxSXJgViMKSqAmXE3dIIpK1dDSmgMqQcWK4WXM5X7IYJa3sWS/EbMsYUo91CrEMzjxNdU2MNKCVwvbVgrOSr2MrQ9xM5JZ48fsBuO/Dq1R2tMfS7DbX9PFpyf+TTP/fIybEIVZz4JQV5Ua9Lj49Fo20xzRmmXqNsh7IVxhbXzxzJ2WPnAZ8gmYp5viHOA8QZVCwzf002CYJsAvmISioDKVJ1HWZdF2dlS0yKNHviMJGmUYIilcE4VaLthUQbh5FMIjuDClE2n5Awq4728UNM69CqmIGFSBo9HAZyXZXiU2NWC+gyYb9HbXaEvidenGGsIw0DMUSSEqRVOSFHCtk+wDwLqT9nSeDOCVUUJrl8jTaSJSRFnuzsrl2y8YEYJNBvjlKgxJxPhbBsejLaSqWiFpQi4EPg5vlTPvvwm1TNCtO0VE2Nq1zhgyn0ETUvCKWMnjR107C+fEw2rRBcT8URoDWNs/h5Fi6ZNszTzKIWPoorVIFYeDJHpFT6LCWcPS1E+JQjJ2FClhGplB9y3bV1MlrJCWUrNJoUZ6KfUFYhmWgZnCGbGh8TZpo45lGJx0hEIkDENgKt7jPGjMFUHWiFrmpyVoTZU9edPPfeYyslmT5lLKWOX5sFAXPOcnF5wWZ3kMajbgppNrFcrBhnz2EYccNAVR2JzWB8Jk49YXuNHfacVYYH52sePLzk7HxN07YSxWKEcxT9yDh7NvueT15t+DBMPLs9MMyZvvf3FgPf5vFdXaTITFjY0lXlWC47lqs1i/UFD68e87/5yZ/k8VtfQCtFCIH95pbnz17gXMWDh49ZLpbCS5lnYgi0XSdKGWC/2TDu7khjz9xvCf0dlc7Ui45x2hNu9rRNQ912WONEneMcue9J08icZD6nlaZtaurVGrdcYlKW7AfXoa3jqLknJZyrpNAJkW6ehSzb9wyHQ5E6it9FrusyQ7RYLWROrRWmyIyNBtJMSCL9Ooueedrjxz27zR2qqnHeMx12MtrIkZz8cUQMCRqnUa4RGNIamkrGUx8+f8puv2EaxUW2UaZ4hUgdcUzFlC5PnH+zq8iuJtee3C3L5heZ50kWwiINNapQLMr4JinR3TujWF1e8c5v/1FefOM3GG5vycUPhnxiory2KZVf4ghNK3Uiwh13t6O0VWUKYVYYuCFEaifXJGch01FmqUapYj1dUI3jYpZk4co5Y0oHVQwKTnNbIQmWogNDzIWRrzU5qFLoIN1PgcU1ButkfEPOMspTFEhaFjOjxdMll65RRk7Fp1iJr0Y6zpW1xjjJcYp+JhpF1Io4Qa5s8bVxZdxTUAcMOVkUI01Xs1guaHY9s/dUdSvKN2sI43AaBSiOaoCCrWmLUkfOlJaRalHI1Dbw8NE5r15ekyIMu4Qt0gxVuBpH4AsMfO4a89oo6L5gPTXbx68rn2Ncg1k8wjTnmGqFrhaYqhBQ9bEwFM8JEzzDdsc89GQ/M/cHTBZIXtc1YRqlaDyGCuqKerGQJsfUoqxRgnColDHdAtZngooEDylKurRR+H4k7SZwltx1xCT+K9X5BVXTUHU1xmgpvo62o9ailqty/2ViCmLQNnuSNdjLM0JdETc70vMbcldDijLyq2p0ZVFOrBcMokZKx3FGmEjBYKhOSG6KnuAnrHZkJaOeFIMgMzHT99LEhSAOpikXNUcJDIyFGCuWBfK8HYuU2QeefvaM5fJDutU5Fw8esL44l1GDc5ClOHHWSIF4bApQ2LpifXWFbltCLPlix6JDy7pvjBKyeoHhKuto6vubJB5RxxTv61kjiipxf7WYYmJ2Qlx04QOpXIqVhLKyRsi971A4SBVoh3Ittm5RpqhfsiAyoh4Tsq86joSzjExkIqnQ1kpmXNOijJD2Y5J1R9vqNUgVQhC+iZwDQXpDDGWkFGhqcX8+jtcWyyW3mw0xRxZ1x+wzh8PEFMp4MEVymFDDlvM08PbFkjcfPeTBgwvas6Xc822DratC+JbxXQyRB4cDVw82XJ2/4r988zN+/dNXzOPhtUby2zu+u4sUyv5emMV9PxJDplus+IEf/mF+7Mf+B7puyTRP3N6+5KNvfIO2W/P2u29ydfkAZzXDOHDYbamqhrqq5MELE9Phju31MyyRNB/QOaBdxaHvyeMBR6JbrDBVizZWzHd2d4BG1RVNjmjb4ZoO1y4E8k5KsAelIYiePRf0gSQhYjnKQqIy0oFrQ9N2VA3iWqsKg7tIiMXNVTb5XMZD0ZTNIZeHRWlqFFpJV9fvtzjXotcGM+2ZZ8heziE+QpI5Y123uBJvblSmrhyLriOj2By2uHnmHE5jAlDl9agTScoaQ3YWKgdJ3BJVjjL2MJo4eyT7WDp9DSdkTN4WXsF6veZ//D2/l2+9+Sbf+tWvcv3JJ8zjXuBV8sl1U/6Wrvn4Ln1swGXcLAWLLtNt2WmIGUF2YsbUQkJ0BebWIWKNZhrncq7Vfeeuyv2XJNsjA7lYEecTObkYdB3dG3O5Bwjl8+XjWitkLCiOoZzGPELkU4rXEBYKVH0shBRJZ0wZ51hjxBdnHvGF8W+thpgxVhCP6BNZR6IOxCBF04n3USB1pbQkz+qOJk2sl0tu6jumaUJAaDApUzctCYPJUYiI1lA5+T2N0eRZYHyUYtE1qNShSMzTgbP1krOLJfvNgXGGcQ7HS3lfZFA2mXyPGt2DKcfCUxaEI+IkxM7jhMxAc46uz9D1OaZZYtsOW9VFqVVGZGXcRjaktBFb+Fx4Gymiir2BcRUxK5iDjHpqA1gMwi/KPkLURa0miIRBMfc9MhyANPnynGbs5Rq7XIisc/ZUy+XJOEuHJDW3lVEFKaFtLbwJp0kqYpQlhygqj+AhZUxTo50lHXqiD1KIO0vU5X6cxSMl+ohrFlDJRhPJ5P2dFPd1U7pkg6Eut68U3imKFUICdvuBaRjop0lkwFFI/DHJuYs5iRVD+fp8LLZyZp4D3/r0GXOyNIsVH3zwJd4pHJFGaZLOMsq0RxK+Pt4NGGtZrFYsVxccw+2OkGaIidpJPIqwWRJt17JctBgT0eao/klFtuzu5dKxGKTl4y0m31cXHpMpkmWxSQBjHFXdYF2Ncw5X1TJGKsWDMhZblyyebIgxY9sFOnlivxEOoxYuS4pHRLZC2xrXtuh6galXqLopiiJZMbWt0NqSwkQuTalwwSqO3jKvk1WD97im4cHjR9xe39A4zdXlFc9f3eBjZvYRPc7oILlpcR5o1cgXVhVfeeMN3nh8yepsRdU0mMpimwZbWUzlpADTBV0k064blucLVusFZ6uGttL8vw5fPz3P3+7xXV2kyOw7F5mqQuvE+uyMywdv8n3f8wPUrma33/Lq1Ut2N9e8/94XWZ1f0rQLFDD0B67vbtne3fHw4WPGw56qqhj3G3a3L9F4xK46YWrHYd/DPFBbQ7VaYusWigQ5zTO6asRUKwVMs6ZanaFcgw6jKHy8BwSmxJjTtiyNt5akyUK+zEpIs6akm+biHeDnmRyiKHTIUnXnTIozZCUPSFufnAbV8QY1FaYGlzyt1sRplN7b1MWfY0SFwJxmnIIUPX7q0UaCpOaxZ3F2xfl6iZ8827sti0VkdEVLryXPQyBZKbx0kU9WzqJSJfwYpWQjzZFJgVeQvRcb/sItKZaPEjioBHquqoovvPcuy0XH+cUF3/iVX+HTb3ydfncnyqayQ+n7rUvWQCBpMAWpUFCkkmUMohWxzHBzCdPKUczRqroijpG6UuUceypXoyhKmRJlkLMuBYuUVlI4lEC5GMSTomx+6bjIa9k4VYoYJ9eS8nkKUIWoa4wRKLicT6WOXhRyr+QC5Z7yUfJrdtnkgoxIsKQPCThmr0iJH3PCIByDhJCyVSlwKJCxtZYUPFXKXF5d0pcAyrvdDo1iuV7QuBYfIjHPNJWla2qcizgj3ixaiwunyZl2sSDlSIojldHoKrNeLdhv9oyTZ78XGf99G3KP0ACvFS2vjftyud+Pn3/6nHLRbYNyMuLRVYtpWlzTYpzc3znKuclZy4hViYMsKYo8NwsEn5AmwWqLcRUpKIxtynhMXFlzTqjKQJB7QlUSDZAxYtaWJqKfhTOhNaqryFosza1y2MWCwrRE1RqUBN+hIBdjQ5InzBlMLfd4jESthHidkhSdWYp83bZk40nTJPecQoodsvgcZSBGsdS3Bp0cGCd5YxnQrRhYZi9IZ1GUqRhQWtEslphmzbjbsz3MbDY7hskTiv1CymIj4MvYR1TFqvxOiikEPnv6jKEfcE6Ro2e1WFE3FbZy4rCs5WuNUyeEDcAYS7da8eTJW1grqAEFUwRkVFWaAKNFdh+jx+dM50xRD8qYKMYMKZeg1qNwTt2T4ZGRvTYWVzuEjibPadU2VF2LqVpxuLXF8yRnyEHCGKsFSst4UVAOKbpiXRP8IH4nlMRrpBC29RLdSPyGbjpBU7QWIrQSVV6MEW3Fx8YcbS1ykjE95f+ANRrvPc5onFXMfuLwYkfdrjDGkoBpCmUE5vH9njMb+NLbV/zgV97iyZuXdKuaqqqkWdPSwIj4KkAqMTBFNm2cxdYrXOOoW4nWMPHA/8kopu9gn/+uLlKUgrqqSlZPZNFW1HXH22+9zbtvvcXm0HN3e43KkS9+z/dTNx3GOZqmIk4Du+2WD3/917l8+BA/T1TLFeM40B8OVHWDrivmw4Zh7ElTj84BQwBTUS1WzH5m7vfUztA0C4xR2KbBNAtUe4YxmRw8yl2glxX4Eo9urMwUx1HSmGMiBel2c5ZrneYgm2YWAx1UhgBGWXDHJGF18maxrsK1jQQf2gL5JymMgh+P+jpss0RVDb6eSJvrogyJOOPIymEj5Mnjo4LJY53EBsQYCH5muV7i6pZhP6KTonEVtauYrZU0UK05xuodJchJG4x1uOpoACdLttWKUSvmsSfO4HMogYyykYcsZUdMgrosFwustTRtQ9t1tIuWT379a2yuXxL8LAoKXuuwobAViv/J/dzgeAeVzUN9bk+MfqZxHZWrGOcRow3TNKGVzLG1loUgJlHJSOFTCpQYEQ7jcRZfJJVRFBFH9CHHeCpYjrZjxwgBPwVZwCQesnA9ChnQOumKY0JbJd8nlVl/FEdOlSDPAWuNSLtVpnK1dIxzkLGTk0IkZkGxsqbcb+LVcxwtKa1BGwwKHQLOSnbP5dUlt3cb5iQeQ8rW9IeRMHnaboE2UFlDVYnbsRpmSdlOEaWW2KolpYBzhqoWrwpjNHOgBG2+fg0pHek9J+U4Zz+uAyf2iVaQlJi5lQImK42qlmjbyMinarBVg3FWXHCLlfkJidFFVuknkh/EGdo5QWSiF45YTrimkdysqiYOI65yhbxY7jWrICZB5qIUgq5tSUGUbskl/LQvm2ikruTZUhriIGaMouYT5E8rg+k6IZiXEUBUQExoK6m9OSes16SDfG1IGXxCxYzRthhMerS1kvUSohRbRkP0qDGTtZhKgpwDojvJ7GPxZrJaSKAZjXEVrq3JxhBRTD6x3Q8Ms2cKsRBny9iR4oiswJ4I3InD0Jc1IfH002/xwXtf5uzqknaRUErQmBQTqjo+x2UkqxRt1/LOu+/R1BX9II1NLuvMsWlIShBfU4wJrcmQzX1Tk+4zenJSJDyUIEWtFNoZjnb2pngOGXOPHmudSL5HxZmca6AhK4upllIy5YyxFbY+w3ZLWRfDLPL1rsNERwgTMdwTao022LrGdUu0a1FVgzISSJiUpFADwjdKEkwZj+takuuvjUMpkVJbo1AkhqGnaVoePHjAi6dPOex31JWFCMln5jQxjxNN7Pniowf80Ffe4Z0vvcnifIEhcmKy5wxxIvmZHAeIExiFqZ3479QdytTYxnH24JKqrlA6UNeO/X1w9v/i8V1dpFgtcGosD5BzNa6q+cEf+CEO40hnHev1GevlqqASFj+PhOHA4bDj0299RN0sxNTKGXKcSWEuktmaHGaGfU/2XgohL1C2axrubq/RKVEZR70WVKU6v0JXHdktC8EropoKMBCDEF3jTC7SYUImzSJLjJNYzZdBQZHRicpDFgNZQUVBkE/dk8gMXUllhpgjaRyL/HESYySOmQkZ0zjxVTCG2K3w3hMHf9owlVYy+leRkAw6ZuY84SrHPA7oqsW5imkUaWTdNFT1hLEOa23x8gBK1y9Qo3iPGJvIyaByjSYV6bHikGFMPSkqfCHwkhKRIrMtLbO1hk63VM7RNg1t29B1nYx/nj/DT8OJICod9T2ucrTflqOYFCkhzqYyb9ZKoXOEKJ2XNbIYG6sZp2KtohBYkzLmKXwTXbgfKQZZRVMshn5BNsoy9tFGn+yiU8plxi1zZwlCk0VOoSSgTmtcZU8S0hTLzwFUysKPLYjcMahMpSySVB8wVqBxPweaRhas4OcyTzeCyuhKIOQyCz9GNSgrc3KtLWiLy5HkBxat4zZNXK2X7PseBcxzYL/by+bjFHWlsVZTdx26brBmx+w92XtymKmcY9cbgtaE/Z7loqVbrGTkou7h6XtfGHkL7sc9x1l8PhUwR/+U4hBWKhetFdgWbWu0rWXEU1npilVRaKBROr+GPkpKsB8PsgjngA8ZEwIqZmxVEwuBMk0zxjgxbux3JapAnlpbNVSqAhQxjFRaEm5t7Rh2B1LWxHmkqoQPlxB9sHaWHDzx9o4UwF5eoJYLtFNH8hchBsIkEmjtDAR9Eui6SswmY054ik9TlgIVIEwj1tWytswjzi7JaEHy5rFA94acI3EaC6InKEMiE6YRo4x4PxXVW4gTFIQkpMw4B0YfiWW9ojQJqrhjGy3jwKNaaPYjScHd3TXb3R3zPIupoTGyHhR+jCrmkRlBV1xd8f4H7/Hk8RUffvQZJqtijFmQJCUogjHg55mqtqeexBrJbsxZVFhaaZKXhGGlZR072uOjFcrogqKKLYQuHJGjg6xW8lyqJBxBLQu4nJPJk7WouXTdSUE0H1AkTCX35TyVoljdy6KlQL9v/fJRvZYRhY9SKOKJXxWDPzW3QuaV56NtWtqmorKGzeZWxvGVY9fvwVSoLMKBPG1g9jxeV3zlrXMePlxQ1wpdHJlTzhADcRqYD7f4/S1+3EGeUdZQNS3N+RlufYHt1mhXYZylXa+5fOPNz/nefDvHd3WRYsqGXVkjxCygWy752jd+nTfeepO333oLU8mCb51hu73DKBgPB+5ubmiXS9mYkySCHoaR3d01aR5Zn5/jx4MQo4xh3m9R0aNtze7uDjUPWGupzy+xizPc2UPM+hGYGhVG6biUQWzci21+jCQ/E8aZYbtj2h8kVTXMJ8g6+xkKidUYR0qCYGhbnzb/VCrlIwaZkgQHBj/hx55pGk6bU0wJ5SSPxlaOFLNUw8pIB7RYM/tJiqTi/0GMzNOBaDM+Jpq6gmyJCcbdHWfrpfAaYmQeB4ahEifHSvIejiZCEmwoVFFtbOkKJedEK8EUUorUMRBDZM6yUcYshkES8pfLv/cqF2MM1hoJrOtaFssFH/3ar/Ls44/o9zvh1lAKlePoTB3Nu8q2p2TTV8JERWVTSJPyEEbvsW1DXTmZ0UfhpcSUJZ9GFYmfEgJhKGZ+KYlnToyRGCLez0zTJDwcVRY0xLZaIWZ+WktCtra2zKyBKMRV50RFdCSbpRiLO28+BSIeoe9cQhqVQlwqkwR8QcKoLMRHZ8Q3J2tSttSFuK0LCqZUACXkWV3OmzJaOEPKYuuWtXWc3WwZ+4ldf2AcR+I4s91uMUpJV1ZM5axzDNNYwionxmEgzGtMW6FMzTgGNtcb6uWbRDLOWaZTCvJrD/uRHHg6E/ej7d888jlVJ0WCqUyFdo3M78tCfuRO3ZvG5eJSenyfBH9mPwMZPwYMirqMYnIIxFEsx03bkTL4gyCjxIgPQTbgoFFObNKJkeDFx6Jad4QQCZPH70ZMrYi2QXdwNPpDK3TbwDEKY+zJhwhOEydPJKFcLddtNuAqKWA00vWnjEZjaydrUFWTphnls7z+6OU8VJU0MUHGfTkFmMWtNlsjiFIf0XWHUY4cxMyxsg7tLCiLrRpSSPh5IpFKCJ2EtMaUT8UTBWVUimI9LyRbcU+RpmzoD2w2N/hJBA3JWVSEEIXLIzJjGR+mlKic5dHjN/jCu2/zrY8+k0YrlBwdMrYgKCmK6disPItO/FKc0WjpiaQpPJqD5oTE5snPOhpXqiOCI9ptlCoGesdcKEp8wNHvKAqPjZKZlcY7cJoUxDIiTpLvk21CG3Va53LKp+IoJ0lIJukyUtGne1Rri7IObRPZWFIQ+wQpRlUpqCwxCIKx6FpcJaagTeW4OFszTYGb3YBnKqMvTcvMurUsm4xlIk8HQvLis5TEhXy4ecbmkw/ZXb9inAcSEVtp2q5hfXXB6uEjFg8e0KzO0K4DU2Os+fxz/W0c33GR8m/+zb/hb/7Nv8kv/dIv8fTpU/7ZP/tn/OE//IdPH88581f+yl/hH/yDf8Dd3R2/83f+Tv7e3/t7fPnLXz59zs3NDX/2z/5Z/sW/+Bdorfljf+yP8Xf+zt9huVx+py+HqrL4EAkhMY8TTz/+mN/+o/8T77z9Ns45QVCswc8jRivG4cDt7Q1V0xJDIEwDlesIYWaz2QLQrs7wc2S73TEdBpQ/wNxLcFOYwDqqqqJpFnTLNc1yja2a4s8gG132k5jY9D3z7JknT5xn4jyLo2iSlF/f79FlZghiqGyUwKw5KjF8UwrlpD9MMYoyY56xVSVyxpiY55EwjuIe2LZkI4uADwkVIkklQkg40xQSYJCZonOYuiWOA8lHlEpYbU/y4H63IYYFTbfExYmcIp1TLGvH3e6AOvTUVcVcVbiqxpipbLzHWW55sIu5m7VOCisUOiVcm05jE1TGT/J2SElc3Qp2LojDawRdrbFri7OSrLtcLekWCz75xm+w3W7KTD6VZeN43D8dxxHPMXYHVZxiozhI5pSx1lA7y7bvcbVjPoglunVCRk7FqC2jicEzT70Uil6US0PfM82euaRbh3litVxQOVfQIaidxWgp4mLKWCey5JzjCRbPRU4sTrQyxojp6NuRicETQ8b7mVCMt7yfmbwkZ4/jhDOZZVvTth1aQV072roiLrIUFc7gmpbXc7BOknKlyMZStwqVZ7RRnJ2tub27o6kX7A+3jCFxOPQsF4viLDyha3n+pt2Bpq5JnWIaRrJS3G03zD4zLWp8NjiELdg0zWmMc0JOToVJvn+vun/P0dFUxm7HfTDf++EYQVEwjRQoVgIXj1wD+UaiILnPd6I4AZcgUGMlbK2WHJv+2Qs0lqgVeRgh5TKW1Xg/MfmJNAfqKcnIrq4hiY9NzJmoBSH1UbhCWnnSboeaHXlOWAWmEs+V6GfCq600QBH02ZI8Byn4s/DbcKIiwifhVChFSOJeamyF6bTwiqyR1GMSafIkHUWxkxLJC8eELOGeMc7EpKGq8MNAVbcF9RDbgOg9uEB2Btd2WFcJYVPNqDLiNRHJsknCfzraJ55I54VLfoxvyDkzzZ7dfoP3MzHKOiQFRj5xsNAKFdWpdu1Wax5cPhF0PeUSAJtFfaYkJVyVwsOQaCpNbeXePyIzIrUuvDQlRb+MPq3Iy8saJsVBhdYOY2tyjhI1oAXZVOWeNMGjXSUFsG0hTxg7yL1VnjXCKNxEr1AqluYzo00tvCWTQfVklVBG1FbK1gXFqdCmEe8UbYoYQ/KlcvDFIE6d1jZXVazXS7pFS34Vub15hXUtSWmsrZi9Zg5iElfXnhz3HLYvGG4rdJ7RrhG34uDp717x6pMPefrsU57d3nE3DszRUzvL1arjjZs7Ht5teLDbcv7oIc3qDFMtYAr33cW3eXzHRcrhcOBHfuRH+FN/6k/xR//oH/0tH/8bf+Nv8HM/93P8o3/0j3j//ff5y3/5L/P7f//v51d+5VdomgaAP/7H/zhPnz7lX/7Lf4n3nj/5J/8kP/3TP80//af/9Dt6LSkfq0lwlcU1C9774Hv43f+r381ysSbEiNWB/jAyTQP7zS0vPvuEdrHE1TXzNLJadsw+MNzeysim7ohx5vbFZ7z89GNaq6T6HQ50XVUIUaB1TbVY0K7PccsLVNVAjuRpZNpvObx6zu7uhl3fE5Jiv5eMEk3xt0gyss5+hCDZHSqBSQlXEjujD1RVg3YOSw8IUUospAMxlYReI1EAAUWMnjD0pDHjUyBqI0ReZ9EpYmMSuXHygjAZC67Ddolh81IQqcJsn2YPWYkvC5mhP6CMZbPdcNY6bm5m7nygrhxtW+PGAWuNdOvmaHhWlDpH+NJl4dLkDLbCKVDpKJ6FPmVCkPjzo0omvrYJnVxeke+3XC6x7m26bkG7XLFYrfnsW9/k9vqaYRxkgSwukbJnqdNWl7KMe06dOaUQLGoxZyy5qrDTgA/yca00TSPzepnqRCHi+Yn9fsdw6Dn0A/Ps2Wx37HZ7mqZhuWhICebbLRfrlRj+xUhdVTTOUtWujGvcybNGafHDCKUPTWHGh0BIMkaKMeJ9YBpHhmFimiW7ZJxnvJeIdFWs8EmBpnK0jaNbLlguWiqbOPMdVWU4Gw/oiwtc3XI0nkulGEwpoaqWFAN1u2TYvqRZVJyfLdn2ElA3DJNsJDERw4zJ4CrHNHuur5/z5pM32O/6kshccXt3Q84OHl2xas/ZHgaMVixXF9RVfYLjc7kwR73X/dVS5PIcFeXz59Y+dSSqKA2uFcKik+dXW3OPoHxuhKSkIC5fLyM6gdq1AeUcKEuaRXLsKof3EbxswllDGD3DNOCjJ/ae6dWBZcqkpNE5Uy0aVFOT77bkHMizJ2x7chVhmMpvJtELymSUURIImkDXnuriAlUKWZOBlPAlbtgikvmaStA3FZhDYA5JAgHdfdaSMlpGS0mfRqQ5R1SWkaPOoJwUr5SmwURxukWBqRxxnlB1h6okBmIeR0KYQUFVVdQRQlZEFD4EUdWl4wUrfDB1XMtzMZYUhdp+v2eahEx6Wu9TOuV4HQmtglpmXN3w5M13aCrLMKeiHpIfZY2cL1fCLZdNxao2NFbsGlKW7KV4RLRRUrRmQU2MKQ6yxTNGWSlWtDUI2GEJRbUXYyzj0oS1AVvMzUxbuE9BPLpSWT9UnIVwlCM5jEJYP45DkkiIc5zIcwKXxUVcG7KpxCXaFCTLWLKpyV6jcyQZK0ToIMaeRyfq5aJj2XUsugX73Z6cRpbLM253NwyTR+mBi3rinXPN48sFrqo47LaE6DFVQ4qB/XbLs6ef8fFnn/Hh9Q1Pdzvu+pE5JLRSnHUV7z5c86Vdzxf2A08OB64eXtEuzvHZ3BPIvs3jOy5SfvInf5Kf/Mmf/K9+LOfM3/7bf5u/9Jf+En/oD/0hAP7xP/7HPH78mH/+z/85P/VTP8VXv/pVfv7nf55/+2//LT/2Yz8GwN/9u3+XP/gH/yB/62/9Ld58881v+7U4Z1mt11jn6JYrvvL9v52f+L2/jwdXlxwOO6w1bLcbZi/pxE8//ZgUI1erNeRE09b0+x0xBpqmIifPsJvY3rxk+/wzlIb9/hZz2NBYTZpn0BpX1bTLFc5VuOU5mJrgE/5wR3/3kptnn/Li5TXPNweZyabMOE4chgmVUpEWaipET27yjNOarqlYVCUEC4WKiXEacNZhbfEiqRqp0q1AenOQyjlmiCEyzSL/i1rjcyIZQ8rC/nZ1JaqONDNPAyhFU8uM0lQN1eoBw35DHveMfU8flNiw50yOskgM/Y67V9f4aSL4wBjh7m7Homuxzol3i7VYbUlaiJvHAiWVwbRSCXPsnmJRN5Fk7lyg8hDiKYn0yNU/IilHi2zZWETm3FSCEqxWa84ur/j0W9/k1Yvn7HZbpr6XwK6ci+25IlKIotyjPTnHos4owO1xtGRM6bCF3OpKnkkInmmcGPY7xv7AbrNhuzsQQmKcZ8ZxkiJjnki1pVsusUoRgthKay3EtxC88CGUjIGc0RgFMQsR9zj6SnEmxMA0l9FeCEyTZxwn+n6kH6VI8UE4L7IWeI5hibJhGKaYcSGRtIEhUm0HLveTLMDGliRYRHmixPvh6PwaMhhbQdzjtKK24oUzDCPjNNN1LcNwYLVYYJ3j2YsbNjcH3nxDuDW5q8nKkpJhHkb6w47zswV1NBi7w1SGR48vZZ+QVUWKkbKbveYrK9yl8kYur/H0vuMoyFiwjaicrDhAvx4AWe7IgsiUocSxdkmJMAu/q2oqQpzxsyVPE3a5lPNiAgkthXVI7PsD++2Wqq1RzhB1Fr+jwZP2E+3lGt1U4JyQ5afEtNlhC1csZSFZG8CuJdslFJ5KXTUM44Hq4oJ6uURFIa5m4+ialrqVZGqNwjiHwkohMxwI8wQaks5lg8wYZ/D9KITSboGuG5KPZD+R4oxtWuG0ZbkXskJUUDmB0cRZbOx1Smy2O16+usYqh9MGV1marMBajAuMs9y7R9+VY5ESYpGsluLAGI3VimE40Pc7YixhqIgzbAyCVB9H/TnJ11preesLH9DUNXPwZK1OfkJayb1iySxqw/myZt05FrW4Zwu2kwoCU9AaI2Zqx2LW+0hWWXJ5ynrpGklD11pjXSvWEIyFhCsFVfZicJeGHaayMspLBylEjEb5Uda3FMT+wsjo19hJJMsKdDRk6nKjR1H9aUOY5EY3TYZkZKRpHCkZaXKs/P5HRZjWhqauOV+vaBtRGG13O2wtCdtVuuPd84n3H1/wxbce89Zbj1ivl+iUmceB3cunbDZ3PL/d8NHzl3zrxTUf323ZDDMh3Fsj3OwGXm4GXm56bvYjH/QH3tpteHh+Cd36/jn7No//rpyUb37zmzx79oyf+ImfOL3v7OyMH//xH+cXfuEX+Kmf+il+4Rd+gfPz81OBAvATP/ETaK35xV/8Rf7IH/kjv+X7TtPENN2LlrZbGcsciZWr5ZJ33n2bs87yta/9J1YXKx5eXdH3IkeLMbLb3BFT5vzqUgLNyIx3d7L555lhNzJNnpQU427Lfhylyt3fUpOwS9GGu7rGNUvqbk13+Rhlaqb+wLi9YX/7nOfPnvPNT15ysz+w2R7Y7Q9s9j3jHCQhMiZSguBnFInaGi5qMfRZNxUPL9csFwsWdUVXVdTO0boaZzVWW8I8ikGPNsUu2+D9LNbuKdKPM7f7nu04sxknhpTwKVBbxaJtaVsJedMkYgxYq+gqx9lyTV3X1Ms1TQbbjxz2O7rlQubNyZNmUZ5E76VzTrkszCOH/YGmqfB1TagaYh2xKYMVuWEGeTCVQRmpuJNRpCC5JjpFXEw0QTbhafIykgJeL72PHdTRiwUAo7HW4pxwVJZnZ6yvLvnsww958dmnXF+/ZL/bEmcPxdchH82Z9DHpuBQhqaQ2lw3MWpFYxyiuv7XRNE1NiFHciw97/NBz2O2YxpEYEt57DruenDMXF2ecna1oasvspRjWWjMchN5ui9X9MTvmiIanmCRksDhb5iTp2CF5IRT6wOwj0yT3bShutVVTY6LwJ1KWmbRztpj8laJLW4ypICuM7fBBc3u9YXF5R71YYVxVPFvknCSlUWGSsYICZR1NXdG0HRfniZfXWwmvA6ZxZm4UagWHIXFzfcf+MDMME21dY7RhN0yM04xG8eLlK4yOuOYcoxKWicvLBfKDBCm955nIn/y5tznuefJfgQROrx1doUwl9vfWyoz+yID+Xziyn0SGnBU5QBgmVGWo2hpTd+SsUAxQiYHcEDxjDATEMQWtyJ3hMEyQEgMzY7+j9pUYLqJIU6Tf79D+aNIVhEw7TXRxCVpLirFr6M4rqvUl2AVkhS7k3soZkgp4It5PUsbNY1F3Qc4zZEnixQmKpJ1FA7GfCMOAaVuOae7GNUSVifMkp8kZtKsEadIKEqTZY+uOmDy7ZzvsHLhaLNltR5q6JioNJmFjpukkaT7EcO/rgxScscj9c5ZxUEjiiLzb77i9u2MOMyknGeMgmVa6cN5AzNpkadFcPHjMerViu9+L+2yOp4Lfagm7XDSGs87RNUWNiBSnOR49U47jqPJ/ZZhTxnsZHbsaWmtQFikqEaSNSpyAtTaiKoqxNDJieKdzIAWPMRXaGYwXAnaKSYjus6ibVOGhhHkWd+BUXJ0BrSvIMjZWMaHUAWMPqOLPUrVLURoZR1biVRRj8V9RIrrQ1tC1Ld1iyWK5JHg532et4e3HNT/4wRPefestLh88YHVxTl03hGnmcH3Ly6ef8snzV3x0fcuHL675+GbL5jCVEWAqNvyyJ3sfmL1nP3pe7Xo+uLvjvQc3rC+vxDTvOzj+uxYpz549A+Dx48efe//jx49PH3v27BmPHj36/IuwlsvLy9Pn/Objr//1v85f/at/9be838+e29vbE9HqyeOn/OD/8DtwtmJ/ONA2DcEHQVNmz/nlpeTOHHrxAFFwuNswHPZ0q3OZQabE7c0Nu5trrFVUwdNUjhBm5knTNK1svE78J+ahZ9jtuH3+Kc+ePeXlq2te3u2ZC0cmBo9TEaUDsw5MhwP9MJ8MhlRluR5kselrxxQ93WbLwloWXcvVxTmh9TiV6eqG2jqwjjRPEkhmjGRlKJi9567vebHZ83J34Gbfs/eBwzAKoTNFVk3Fg7OO87MF7bKj6zo2h4Htdsvji3PqpkNrgzPizZCzFc6FD1hdMXmPNZDykZwK3id2uwPr5ZLU+sKRiCSXMFmcG48mYccIcGWPcG0mK48yTtw665a2CcLhSSUVubiufa77fQ2WP27w2mjWdiV8oa6jXa1oVyuaTxa8ePaU7e0N8zBIl6EUx3zT4/fSJYtDl84upUTVVFhrSEWdUztHXTdMU2AceryfQGXWZ0u6tmEZEoeDFJJaKbply2rdSZEwjczzTFWL5fc8SfekjeRepJBkYQlRPDQUpwUgF41XDAFtRCqYEZi66SwVpWvKCeMclXM0dU3btjjn0LpogJRG5SSEO6XQVUVlE8ko9rtbzufHNE2HcZXMx4+hclmQvKwVxrbUzcTZhWecRlEMaDEa68eRVZTF/+XNLfthph9HhqGnWra07YJnNztSRAjZKrPb9SxMy9RPhMqRfIT68wyiYzddLr6QiTIUGK78X53el8u9ga3kWhjpgI/BkKex3/F7cORE3P+kFDNpSpLtozVgwBqiUkx+JqMJ3uNnz+RHhlHs9GPlmHUW0ntKpDniN3vQilkJabnRmpzATxP73QGjhHxOgn4ciIcJnzymrqlXS8yyY0gzt08/wX6WaZYt9fkSVzmSXTIdMn5zQGmRShtncdZQOSPhmAnheMV48ujBZJqz4oKbIU9FnuycfL6PxNCjVjKKPG0uWaOCJ9rAuA28+vRTzpsLFl/4UV49+4i+qbnptxzCJHlYWdQ/MR3t6gshNAvvp2lqJh+JSPOoteHVq1c8e/GC75mEYKr1MbTvyGHRYOX7HkeBy7Mznjx+xNPnz2XDTJIernLCakXXOC6WFavW4bS464qtvSoInBipaaOEDpc0IcB+sxMitFbUbUXUEFSmmjwxJKZpBiWZcZU1WKUKQfSI0nAaIwbvsUZ4RtoKByrGQPRiQ3FMNQ8xofUB01eCADYTugkkU5NQ+DkQssG5GmUrVFXTLpa07YJ2uaSqWqpugbaNmIZm8T9RGaqyhi0WC4Z+4jDMXCwqvve9R3zw/jtcXj2g7ZbUtTQrKWb2ux3PXt7w8as7vvXylk9vdmwPEyGk4kWTClIuSJuQhiM+RHb9yLNrx9OLa968ekUM9yO8b+f4rlD3/MW/+Bf583/+z5/e3m63vPPOO7gyT5xmT8o9L/UNq7Mz6iK1ikFyIdq6oapqZj+z3e9QKFbrJbubV7x8+hm6aWmNIs+R3fU1u/5AVob5sKOr5UEgIFbJWcYSKKRw2R/YvHjKixcvef7ymt1mByHSOkNnHakzBG8IKTLNkWl1ZMHPzCX6XVxEK46eAT4mtn7El7TctF6zahw2K2wnzpIgMHAIiZjl/8M0sx8G+nFgnEYmPzIPo4wcYsCnxK7v2R72PDgsOb9Y0S16VPRMyxadI6vFAWUdXdti7ERImXmaiGj63Y6vf/1DfvlXvs7Tu/HetiIlDsPEYRhoF50QPGOQByM5hDjw2gUV6AKFRkVJjtY2Qo40bUeKSYzc0Oz7Hv86u5XSJH/uexX+i4KsNY1SXD14iKsqqrajWS6oFwtefPoJr148l3NSmKuqOOO6MrcmWwiF4Jdlni3wqoxMqrou+T3yIHZtg1GiWEoJfMhcXj3knZwJ84G+74nRo63wBKyRa++spW3Fu8RVFVXdCReoEOfyycc/ow1lfi9+DXFOEsdQ51NCLEphSxy9cw5nLdYaKiejQmvkd3BaY3TGWUtdVdTLDtc0+BDAbxl216zOL4XHkWRxIxZnVO2EV6A8tmpw40BlNOfLlvWi5m4jzKKcNcOcmA8jOWaaqsLPAT/PdMuWcZolrA1NPxxwrmalxX58ngJ9f2C9uDohKPeS4+NFvyfSqmJqpUqlUq7q/c2hpZlQRqTU+hhaBydz0mN9A5y6fABTN8JB8VEC/pxj8hPTYVvyiBwxiVvpbrdn7AeGyZO1ZtodsLaCmLA5odviCHuY5RXWNSpnQk4MOaDHhHELMW8MkVHLi3NGeGaHw45odCHaBsywxd6+pO5a6uUZ1lQk7bDtgsV6hc0REw1V0rigcEpLNg9gaodJuRC2VTmHGeUqiMXELiqCn5hDoF6siEH4dspYTN2hXMsYEp9+8iEf/tp/4Gp1zlfe/D7eevML1KuG0SS++tFv8NmrF/L8Flv8mEuBpIxcp5xo6prNocepirapqCuHc45x2EugonotgypTggrv5fupGPG5uuGDD97nP/3n/0zIWiwDkHGPs4autqwaR1MZjiy4EDxJycAvlpGFQRyer3c7nt/0DFMgxUxVOVxlaF/uOFsvce0CtGboB1FpxcxyUbNsLIuupq4qTA5YArXVNJXDulpM8Ma+IHuWME3MY4+fZ4kLSIFhnkgYYlZMEYJyDNmC7VCuBjTz7OWZrqTpOT8/Z3l2zmK1om2XnF1csby4LMKIQymWKCMqoWstlx2HYWa1aFi0jdwTKkPw+J2Mjm9f3fL1r3+db3z2jI9eXvPsdse2n5i9hEPmwsfJ5flRJU4gJhjGQE4D/TBwvdlz8fSG2f//sEh58uQJAM+fP+eNN944vf/58+f8tt/2206f8+LFi899XQiBm5ub09f/5qOua+q6/i3vt05iuUOIKKUZhoGv/+qv8rt/1+9BUUu3lCI5BWKOXL94TvCe1cUZm7tbpn4QPst6zfblS0zVsd/dsb25YVkbnE4MU8AZIxkydYd1rcChMbK5vmWePa9u7tjs9szjiGscy6aDFMleMlK8tsxR4YCFkco2Rcs0G7z3p4cuJSGSmRJuZ4yWAK55xBuIzjFOYwn904ScmENkioHRz/TTzO5wwM8DjQlcNoqVdQwzhAijD+S6JqTEZrvn0B+4WHecna24ub4lzjWT72ibhlQ3KAPTPMuoYhy42+z45je+wc3NNT5I5LwsAiJ9HccJPxckJcqDLSRMXciPnDYRpYQgpnQqRlkJSyy8jGPuh6L3EZ9GPgfvw+k7nbakE0qTwUDlFOv1WbGwliRmV9VYV3H9/BmHQy8dmSkBilb4KRJQFsXDofiOGCPOlEfZs7PixlrXdXG7FWhXa03b1tRtK0WLl+44+FmcN2MUVKPYibvKUlUN7WJdMjgSYRqKxbUQmHUZa2WlCJTxTSPJvfFI1CtnQXwVjsLJ49iKUmAZKV6MpnIaqzNtbVmtOprVCtt05OiZ54MYxWkr3glxFkZQ8hyLTaUVWVe03Yrz9cA4zNw9vORus2fTT2jtGEbP5CN936OVYZ49WjfMPrDZbFh2a0Y/0zpF07SkokRzOnF9veHJo1NJytHuXPac+5yefKrjjtwU4VrkI6FFi3cFiCeMMvo++6YgJqc7KB+/nvJT5dvGHFE6Fsm2YdjvGIZB7nudmedJcmuGgd3g2Q4zhzkSp5l5HmnrlotVR2strW3ABHKYSApclGtmm4o8BnRXEEGl8Qox3ps2ZAUTGa+1cKlSlFws17JcRNJNz2rZsThbo7PH1IrFcsU8D+zvDlTW0bUdOiuYB5Z6VWTvkh0ENSpHUAnjWtIspOwweVRbM/mZIUV0SiwWKzKZKYjN/H53S/ADu03ktn2Be/QW9aRZndX86A/8CPWHv8HN7q6seUdvIEn3FW8RqCrHw3rNV97/Au+8+YiLsyWtdTRNQ2PEwkFrGc2KM2zxAzo6MOdMCMKn+sL7H9DWlsELlytMM7Yy1NZQV0YMzQripo1GJQ1Z+GixEHunIfBiN/HJiwNTyMQsxoR6kvWpOniebmYO8ytSykw+i9llTLSNZVlbVq3jrK1YNYZGJxqjeHi55uLiAqVGkjLoMoJM80gKgh77lPEhsO0HxqTYT5Ht6NkcAs+2IyEbqrotKqxM5SzLrmW5XLFcLjk/W/Ho0QMurh7gaoerLO36rCA0hfBr9Cl+JedE0zrGCM83Cefu8MNMV8kUYr/f8+lnz/no6VM+eXXNi82eu2GS1OTigi5mhLmsp0LmNSUdPiUZS8eUGT3c7YvB4Hdw/HctUt5//32ePHnCv/pX/+pUlGy3W37xF3+RP/Nn/gwAv+N3/A7u7u74pV/6JX70R38UgH/9r/81KSV+/Md//Dv+mW1dMc4BozX7fc8wRWIUSDX4iRx6pnFgs90z9Xu0tRzu7kCJmZC1ipvnz6jrmmFzi5+DKBwYT4Qs17R0yyXN+gzbLgHL9m5HTgKD3d5cM/Y9SivapiaFSWaRsSAdSdj5tvhhZKXJSkhbwTmCn4t9ejwpO6y1VM4AAR9GxglIiabpcK4S1+4UGf3MME0M80g/TdKl64jVmUprUu04W9QopaicE6lrzkx+4u5uS98f2KRA3db4MDKMM5fnK0wQiHQ7DYTOMQ4Hnn32GR9/+BGH/YBVitoYmkJgs7YUVH4mzBPRe2KQG9mo0u0ejd4K30AV1cQxd0drQBuqJATNNinaKaI3wt84+YHw2vf5TcfRz0AbcDhWq9UJ+tdaSJ7OWV6+eMH+MJC0EA+zEdfGZCMmC2vf+0BbOk5rDCGDc05IqAHJ9jG68BbEB0WhMFkQkRTF70YsVFLRO+diSa/EdMlKcq7RiNGYBd8LoVqyanI5XVkk58FK0lGUzwkhFGDKYAGlTNmkpbsEyaXRSp38aYxSZRTUCOKiNJYElcW1lzLXVopsNBIwWCTkJ9IjBVmoWV1cMPvEW2PgZrNl+/Fz+mHEx4pxklBB8T9RVNZys5849BPQo3Kiq2oUFmPbQiTWTLPIFE9y1RNughQrZVE8Fqfcf5RjAVLmCsWrR59IwMdcqM/Xu699/9fRupQwtiKlkRgj0yjI2DzIqHWaBw6HPdMcCGR6n+mngA+JcU5stx6TB54939JVhnVbs6wbFsqw6hYs604UN9FiZo+Oojgjieps9J4we2KMDCHQz545iXS3rh2LpeQGVbZmJNEtahbrBX6/Ze+9WArETD9umduRdtGhs6fa7aHtUHUlv65VEC06ZfI0EfuBXFmoLX72bJ49xTctb77/RZzgDFTnK7bXr1gox9pe4GIkHvaM22eMXJKCol6teOfJY7G0L8aTJwTzyPtSglb+b3/3D/EjP/y9dK3DqCivY5rx8QaV3hBORSkujrLko48PIC7KSvPwyTs8fnjFx89eFWNFMXKrnBFPFFVQlBLhYazFYGTPSImQFLs+cH07MAe5I2qnaWpx3V10FXOI3B16DpMUQkZrxikUlGtmHCybneLawqK2XC1rOqOYfGYOcLZeULlK4lkKyhfTyOw9m0PPfpjZj54hZPYetpNndxi52U34GEXerRXLxpHrGj9umeNISDPD1DPOA5mIs6LoqZpKmhVrUWTxe5oH4jwS5khbt+w2Bz58OdHPlpvbgYVJzNPEZrvl1WbDs5tbnm97NoM0H1KgxDLCKwWKNhhb4VxVzP8g+IkYRxEuFBO/o/Pwt3t8x0XKfr/n61//+untb37zm/yH//AfuLy85N133+XP/bk/x1/7a3+NL3/5yycJ8ptvvnnyUvm+7/s+/sAf+AP86T/9p/n7f//v473nZ37mZ/ipn/qp70jZAwItpZypKktVnPWyqQhKSFP9bkN/95J5ntlt90zjLLN/FBfnZwyHA9effcoUFU3XYa0ju4p6aWE/oyuxXm+7hnYlpKQQ5QFK2uKnif7QM4fInABjxeExJMASswdlMcrganPiOeTTA2upcpJCJXj8NIrjX07k6AXy1wo/J2Zktws+CIRfORl1+YlxnugPB2Y/y/y1LMTOKlwlN01d1YU0KEXF7Gsuly39OLAfRhkVHSSMTpM5vxSFjpzoRPQSBHjRVbg4Ca8jp9PDnVIQP4d5IvhZ/gSPixFtbPm5FIi2QLVojJWCJSqZOSsjs9y2VP0JxfXu8No1P4H1/1Xu4+sFyXERXHQL8oOyBenSTTiHu74R224tBUiKsqFaMlqJkiD4gDFWLPLDRFPXJTxROvBcJKqKY+5PIkyTkKSDoGSp+K6klIq8WgoIY/Qpp8M64Uxk5UhVhUKuf06SG2OcIaGJ2qJSIqSZyXuCFyRFzqMubrhFXp2KrBNd5PqC0rkSRGitKQTEUggZyYdJWbhECkdSDmXFNyP7QozTUmDmnLH1gqtHCu9ntptHPH21xWjDOM9Mk8cnRVfZokRRPHtxjVaG/X5PU1kmbxjGmS5mknG061Up9gqnJOX7sU/+fH5qPmFzn78DjtQU2QzF14LiLHvkoSgQ2fCRQ5spOUxF/p2SqDWsJexmEorpMNDvDozDwNAPbO8OjPPIlAJ7H5hjImKZQqLSlqVzDCFgSYxjIs2e3g6cNZ3wrKKiMZ7GLVi8dYXSgowZrTFmJI4j4zhymIPcpymf7qUxRAyayqeiwukYzA3MM+1K8rVyUlR1R910DENPjDNn50tCjqhxRBXeilIaNcykmAnRE2orvJth4uAnzPqcJ+98gco2xCEwbvZEdYOaA4/qNcqdk8Ierp8xx57rw4H8ySc8ev8LrH/g+1l2DfM8QdInhCpTxjFllLM0ni5cw93M4XBgnmaRXV8pqocfiBOucaijO2xMaH0sVDRKCRl/fXHF+194m299+pycM85KsKazCmsUPkZikjwxWYRknTAYUsx4YA5gjWPRGOra4pyhaRyLtqZpxOhwmKUY9SEyzJFXm54YIrW1xfxFiLpWwxwzbe3YTTPp1TWzn7i6uMDVDcoYrKswITDebLi+O3CzGwhZ4XNmmOX5XjSWBySc63CuoXINdV1jXIXShrpt6BYL6qahdZZxN7CxGxbdGd1yTV2XvC6VBBWdevI0UbuGKSacjqTQsxsM2Ueu4yCKnv2eu/2OV4eR7RSYYj6tJTIaLTIEpakqQ1VJYeSsmNt5XTFNUda9mDD3tn7f9vEdFyn/7t/9O37v7/29p7ePXJE/8Sf+BP/wH/5D/sJf+AscDgd++qd/mru7O37X7/pd/PzP//zJIwXgn/yTf8LP/MzP8Pt+3+87mbn93M/93Hf84o8R4KIthydvvsl777zF2aIm+ZEw7vB+5ub6mtvbDdZVtIsFzjhiyuy3G2HO10IwSmSU1VgCql3QVIbFcsliIXN7Y+RGnpOMBqZZcnhSgeEzEuwlrGwvFyWLt0lOmdl74ZlECWNSZVZqy81GhhyTPEhZ1CTKKEiRpnbUi5rF6oJFt8Q4Q7/fM92+YvYTIQY0+fTQG+NEmVI3WCczXjGwknNX1xWNn+lqx6Kt6IeBm9vIOMxMVUnOdQajYJ4nVIavff1Drrc9ldJoFQmRQmyVEUmaZvzkid5LTouXsY/JDpWPP/u4Kxy7XMq/hhQLwdHVKCc20VobVjd35YofSQTqc8QU4RfcjwHUCakBg6GuKvJiUcYG8jHjHHXTih9DlLGZn72EHGqFjVJ0+RAlGTYlyQlpatnkCicFZcoGJ8SxdHSbjaIIED8UIf/6KPbxMQQyshkdKzdbCcoVYhTvmhriHIlZkXPEGkdIskCEEBiHiWmcT8myOiSqMiarrAVrC5cmkSygNNo66rah7SqsiphKk7NH2fr0PCltSP1eUnvbNdgabdoiHRUfCUHFRDqeAUfL1eUlbzzY8cFbD/n01ZaxQPvkRNc1WA3THNjshDje1BIXMU8jMa1QKMZ+h7poubw8l7vkNSLKET2B0ykr90I+3QXHAeDp0EJIzqeu/UisPaIynH6HU7FTbiIVI0wzKouCLQZ5NoZhZpxlsZ60RtUNMk/NjGMkGwlwjMqh2ooca4JWMA1CcI+JYZ5ompph3rPozlg/OMO1jSg9QqBOMwsFBz+RZjFHrJQhuxrtmkJ6VTSLisWy4epsRY0n+cBwc8dwGMBWGFdTNZ66bkjBM/Z3hGHPommoq4ZlSqjzcyqr8SYSVSQbi98H5rsbpq7i8r0PWKwu0HUDWTP5nsPL51Lgpog5DJzPPf32BZu754yvFLsXe1b7RB1mHjx5RL2qxfPoXn0M+RhZIQ7Jw+YVm888wXvm2ROC3OtOrWjfES8eIZPrElgYsaZYxSslaGXKmKrlvS9+QP3v/iP9MFLVEleglZBoZx+YvaKyDlCEEBFAVBONYY4B5Squ3n6CbdYsuw7tWqYg6O6YFdoobC2j02meUEPPG1cjKXkx+wziIt5WFRZI4x6tkgTi5szddk9TOdZna3RlBUGNHjLs+xkfM7Y2JCU5Zbo5Zz/MnLUTSmXq2rFan1NVjSRbqxI1YDVV12Btzd5rhs3EXO3YpldcnC+5PF9gSEzzyIvra27ubri4eoI1EmnigKQ0QwjEcWbqJ3bjzGbyHHxkipCzBCpmrUsWkJxXZy1N43BVVZ47Iehbo3G6oi8ITE6nB+7bPr7jIuX3/J7f8zly2W8+lFL87M/+LD/7sz/73/ycy8vL79i47b92aKUIMRYCT+a9D9b8Tz/6QzRO8fz5Z1w//4S7uw131xva5YqQEv3hgGvg0A/EeSIow2p1Dkox7bZYV6HTTA3UWuEMdIuFpESGWGbCIudybcs4B6ytsNowTj1ow2J9Rpg9t5s9N69uUDljdCVdWUqiCgmBNOyolSBB3XJBXcnMOo4jYZ4JBpxRtG2FdYbV+Vp8YbQpDq2a2XumaUQhM2WlJJkSZZhjYnt9I7bllHwY56isoa6skNTqGms0jXM01nFzd0cmM/uAMiJ/c9py2PV88vQVN7uRo9lXjhlX1BXOiu33OPZ4vyAeDeeKFE8ZGYVIh1xC83Rxoy3+RbIQyWJUNZ48D1jrWKxu6AN8fgvKRQJatpgjQ7/sPEcY+JgkXFWOxaI7kby0UlhjqO9uOPSDdP5loaKyME2MSYyiqtqWxFLDYrEo6IR0DzElKMWBOAtLOJd4vZQEZGQ0531kDuJgmqKQGPWRwaZk0bbOorIlhyxJ2UEKAq218Ft6kfz5kJhjZpjEK8V7j1OKthIn2bapZaTT1OgErXVUtqKuG1xTUztDu2jQKqKyFNQpZMI8k4OnTQHjapTSRIorp3EQxXW3kF1QCLegW5/z5I2eV7e3PLvZCUoRA7WzuMZinOEwRVKIhDnQna2Y5pGoAaSor4xmHnoePDrjeLVPBWj+fEFCyuV6cyJR/tajdNmokiX1+YL2SGo5dfcFmU0pk+aJuNuQ5oBCMU09h3HCVwsCFanSLC4MxiSWw44HKPb7mUhFU1nmMeLqhpgDsV0TGsPd5sDuG99AzQNhCJi1KLOahZEQR2vAGdKs0fSAwTTndGdLei/XxRh5jdoogh/59HrDJ5vnLM8WLOuWlVaYKRL2PTkrdNXhVme45GGeOOQtNyFzsTpDf8FBO0vsg7Hsdz3Di1tMU9O99YQn5xc418nGpAUt9IcD+7sbGqNwxhHutuQ0YdqK+HLi7mbHcDPQxobtp5+wfvUS3T0W1KTwKKRXSWU9kLe3t7e8qjwJRfRJDOgSdG5LCtOp+RDFm9gnpGxOiswYAykI6vnuO1/gnXce89Vf/ZCYMtEosrZMyaBiYg7Cz0OZggJnEopx8hxUy9UH72GtYb+7Yxxe4WZoa/F+ScoQ0CRTk02Frmuq6gK1jIRpKBEYXop/pbh68wnzbiDsbnB+S60DOge2uz0Pk8dYg22lCQgoDlNk1I6YVzRdi/YDbr7jUSeeSiklnEvU6kDFRFt3hJRouo7zS/H/Io+YtiKonuH6m/znj36DW2+5evCA977wFnq6I9uaOUqcytvvvU30j3j57Jm87iw8nCklphAZ58hcPHnUkTOpBPXWKGqr6GpHWzusM0Q0PiZ8UlQ6kbRCZwfJy6j+v/qs/reP7wp1z3/ryCC+FDFx9fAR3/P9P0TTdrx69gkvn37KOPTkEFifnzEHITe1bc36Ys1wmLjdXmOtxQ8Hdps7MDVtveRi0XFWKc7aikXjpHKMskha60SeiWJOkufSVFbsiStLc/WIw90rPvrwq3z88XPWiw5dWZ7dXXMYB+ZpIqXAsulYNiWAaooc7p7TLlva1YpcdSJPHWcqkzFWfAHqpmV5fkG7XAsB7eULbq6foSjdexI3xLkf2d5u2e8GhpgZYiYazRRkNty2FedtzdIpzpYtb775WFCXyrNYtoxz4Tp48eRoqppPnz7nMMwnSXAuLpVJgVOyaUY0ehhZTCNN8KcC5Vg9qxKudhw7Sb6FPcl1hRku5mnkQPYDVV1zdnVD/3zD50pw2W3KEle67hPf4L540QowmpwFnZCvzSfOg4T7bXHDgFWaaZzI5jjnjmQF1shrNCbTta1kV3iPjlJcxJjx08jd9TX9QVx5E5IIOw4j4yiyZ2d0MbQSsq21uiAoBvJR/iqvPB3JaDFiFGIX7ypCyuyHmZAEmbi52XAYJkIQ0y3nRLWz6BrOlh2rRUBZRdMY/KTRakmeRnS9wNUW42piisQ44eeR/rCHKJwW7WrMUhf5bSmmSraTnHQtuWcKVK44v3rIu2/u+LVvPWd7GCAlnLPi5GkvePFyQz/NBBS1NaikSH7m9uaG84szFm0NIXLz8ob1m2eCmL1OS0nHIU46vfN+/FfGb9yfw3veQyHLFoRNODu5ADHH71H+nxIpBobbVwybO0KO5KZm2Ctm07C5fUm/uRNjxyjNzrbv6UPgJhuCa3A5MowjS2dprCH6mbquePL+F3jj+3+AV1/9T/TMRNuClUXb1Zbo5XeZ88w4e6JdcZhGNs8/ZdhtUYiiqE+RfRJewN0wE1SmNhmnM8um4p0HF6y7hlZpTL6jfZRYPHoLq7eo4YCPgeuhp00i+X1+e4e/3dBky9V777I8X2PmAD6RdUS3uqjglMRvJMnsSlox9HtJhzewfPiY3aYnpcxMYL7dMmyuifFCbOVfu5gnx98kD/P17Z5VJeM5QcgRVdo84OdRxnDqXuklzsYlpyqLD4lSM8ZEHj244kd/+/fy1V/9VvFd0Xx8N/ON64nWZhYuc76quTo/4613vsR++xmr9ZrFeUe9eETef8j25prDfpR1wkIVaoIx7GfYDZGbg8dnS8awbCuuztacr1esGuGjxRjoh5HPvnrLGDPLi4fsueAsbVnqTFSam0PGTQ1ttSK6FfqJ4/CNHQ8fXmFU5ObVKwl1dZpWN/Q+ctvP7ILF1muWXcMXP7ik1vDy5TOG7Z5HT67QtibpQOssl+sF77655Jd/9VM+/s//kU+/9nWSjrz5pOOtt9/lK1/+Ap2qaB89gLrl9pNvYgHvDFlpYkGH78enqpDzxarBKc2ytiyaiqoSdWEGvIY5SCOpraZSjhws85z+a1P6/6/Hd3WRUtuaZBIfvPsO73/pK1y/eMbNzUsqHdnud/jZgzZEH1itzhiGgTTPhP7AuD/IwzSL0VTSjqQqVNbsNlsuH1+yOjtjuehQGeI0kXygXqyFCR4jxhmCdajFmrO3v8jNJ9/g5tOP+PibX+db3/iY3RTIOvLxx3dsxsQ4TUQlHgatN3xhfU66e8WlSaxXLbvtnt3dlmbVMZWxz34UPfxjKlzdobo1vm5J44iqG7xx9HMsmT6R4a7n1c0dPinMYkmP5dPNgEaxH3rZHOcBd7vn3Qdr+hC52Wz53u/5IsY4yefAY4wmIvLEfugZp4GUi5V1CW5LORGy7AEmSz6ZDTB76ZhTcXmVQxWFhQTqKW0KcVZM2IyxwlExYrIkDLklebFkfX3H02ebk5rj+Oc33+wnQqQ6/sTjzy3W1liogGX57HzPUzGi80UrRfQGjEVbjZ+lI6qbBp8nuraRvdpoQkj4OTD0PbvNLYfDnmwdu+2Bu/3A7jAwzWJqRAyoFDEkVouKy3XHZbembprigioopFJKeD4xS0DhHLCVoesasJZx9qKuyTAcevabPYdx5m70bKZQDOA0ylhBSwysFjVPLtd88fEZ7719xfd8z3u0a8eLb36N1eUl3dUDtOsKcXNDNprDPKK3r2i1mMApbbnPLpEiLx8RFUAZja1rHj6+4ivvvclh/Ijruw1aa1JITJPnsN9LcactN7utKC5sReMMrm4I8RYFzHO8576m8p8jNyVLMGU+XT91T0868UvudTsSxvb6uEcqkhMy8xoak4sZlZ89r7Z7rrPBlK55Nh3DcM203zHPQQLv5sA+wl22PB8jWw1+HHnjwSXX/YwfMl2V6IdEO84c/svXOT97QfPW29jdK5q2olq2qLbBuBZTO6Y5kPqJ3tf4YcPtzTPuppmkrKReTxOHFLC1Y84wWMUwR3TSrFY1mzGgDxMhRhplqLBM6SnWOczZiiHD4nyFWyw4VJa7j79FuNvw5IPv4Y3LKxqnYPbM+x5lK1zXopwRdBZDSEmcgw8jU07M80BjFdo4zh49Ybc58OL6jnnOpLQgaknn1vq+SDmN13I6obIv94GHl4nWWYyxuNqIg7WGGLzwPJAi7hTgmQJGiaW8jRPMe/A9sdK0qyVdXTH6wByFG/b4rOWys8x5ZjKeN3/8d/MHfupn+J//D/97iD3z7o5VuGEY94xzQsVM21isgetNz2ebmSkobN2isGyHmXaxJGTNq/2MqzNhf0DhSXN/MqUc5xmGOx688RbVmz/Mh9/8KskHPvp4Yrn5jOXyQAoz4zTy4O0PeLQ27O9e0ThDpWqcNUxBc9AtW78lKctus2O779nsd7R1ywfvvcftYcuzX/513nxywcM33iTbTBxHTNacdxXfmEa2N7fUi5qr73tI2I88Xhhe/Pv/yO5Xa+o33seYDDFzpN2fOF5HBEzs6yQPSSmcUeLF4zTOcJKKGyRRPiuDU4pKZfxsOaTvTH4M3+VFyvnFOQ8fnJFQfO2//Ae+9OXvY3/YkuYRdIOPkWFzzTzsGXYbwND3B2JKDMNITBmlDc5VzD6zXK7KQ1KLhHTs6aPciLZuULVkaoyHEaUN0VpWF1es11fsp5nnH3+Dl59+xMtnz7jZHcA6+qQ4RIVPiWGaSDlw3j0A52jPrzDdisPTb2EPPXVTMw0j++2OwyzdVAL6CPbZjshHvPXywLppSTnRH3Y8/+QlH316TVUb4hQIsydbx5w0SVVUl49J00vwPdvbjTy8Z2fM48DtmNkfeq4Wim996xPee/8LGGWoa1HB7GNm9AETMyEZ6qZmLsz64MNp7JWLO6lWJTn3xB05zh/vCWqKAh0bIwFdxhbOTIXRFmuFP6OUFo5NnFifX4H69dMI5zdXKDIWOEL3x7fumf/HQkUVGXHKjq7rhGVeVCASiijOtX6aRCIc6uIDELHbLW1MtG2N0YqkNcoZxn7P/u6WV69e8vTlNc+3I7eHiU3ZKGxVgXaCUKSZxlmWreF77RMePWmouw7nhAwrJiRiJZZLTkkIAbsQz4WgFFqLJForhdKObT8zTJ71+Rn9biDFgFGJ/Zjoh8DUWgYCeuk4vJz599/4FR78v3+VL33hgi+++4R3/Y5u3HN28RjdrHGuYzYzMY2ENBGHnXCE6q6YjapiGBYk0AyZh8vKZWgXLZfnLatFhzOmBDVW9OOAUZqUoTKS3hqS5EEtF0sqI2hHiJl+8nKZTxXpseBQpcB4nTB7wtIK8KJPN0hWllyC4Y5oynHMc1JOHdVT5eellPHDxP/1//h/od884ytffAeVA3O2TLZhPwUJ8cy5hFiKOdqUMklnglY8vb6jdZYVmncfrtlu9oyjFLvzfuDxxRlf/MobtPsDsV0RmnMUNcrD2HTEhw3zIeHHW3TlMFHI1ionskp0RnF2vuKAZnN9DTmwHwLaO9qqImdLa1v84QApEHyg6V7SNTVN03I3jXz84in261/j3csHvP/9P8BFV2NzlPiL3qPnIOe970mLFaaqUEqTncWnhDHCv+seXeJ8oG0bqtUZq33Ph1/9KguAZUPsaihE6GM3fiwMBfcUOfFno+G9ZDirK7paGgRtLVVtihnZvbLsNN6JgvKNm1ccvvGf8NefMPdbbvbXvPrmx1wta273mSlHTI4sbeJBJ74stnPkp7/O1/8f/zfm5x/y4vk3CKbhe9+/gCRFee3EFuFwmPn4uqeqO95+cMZIxXjwhP3IOE08fnCBrlq+8v3fy6tPPuGbv/6rmDRDTjinQBuythwOB5bDlu99vEYTGLY73DzxxtmS7uIRd3c9L3pNpbZYozhbduKCHgKuaTivV2x2I8M08fzlKx69+ZCqOWOzm3n6yWd0iwq9vOTXv/mUbFrefqeV5nWeWSwqftsPf5kf+ZHv49d+/evstze8dbkg3zwlffwhCsv5Ww/YucScsiCmRfBgVMYI0QFR54jAQKFODsExJXTSZRQsyLYR+BNNxqpMbSBa/dq6/O0d39VFyt3dDWO/QWk5HZ9+65v8cm24ePgG3/9D/yP1FRxeduzvXrLb3TJPe84fPGK1WgMS+jfPAVdL5x6GO242ns5qxjyhWgmguv7kM7JyLM7XLCpLyhplHaZbsX/+kutPf5nnn37E9sXH9NutWH47h6oXUC2x9YwKBxarJdZZ6u4MrOV8taQ1ju3cs/3WN3BqwNaV5DdoJbJebXCrln4z8IUffsIPfN/3sHpwhbKWm2fPOeSBjz77mO0QStigZt/PROV44+2HqNUF9as93aICoOkWWFeRqpbzRrN/9ZwUEzfbPQ93O5rFElNg1egTow8sWkO9WNC1FXfbA9yXIYAUBkfb6c5ZrC6eI7lsakf5sdblXyVeL9qU4kCsnKuqpqoqnHXC1cgZlR1tuzhd88+xUvLn+LOnEdDxs/Lrr1AdbfQ11lhSVdEdpaxKFx8Gg7ZOSMM5iTFaVWM1jIctmxyprMUohc+JHCI5ziQ/Mx56truRvp948PgN6iny4tOPUDmzv9uCkcJJa83FYsmiEd8Kq7IklWaFhEreh5xFH8kxikOtc/ipR+WZurEYA8Ya4hyotWah4cn5klebPXWlqF1kmAPLrqXpWr74vT/A4/OGz772NT756BM+e/Exv/JrH/Gld5e89+YFX/6RH+Pigx8mtmfEu2e42pJixMcZPfXiOeJsKQI1KIfSktZ8Ovk6o5xwnVYL4cNI1o8TpVjOJD+DNThjSTnR1hXrZYfJU7Hp9gz9SEyyWOYkC+NRxcGRIF24RzmL27LcD/cxhJKN4shKYOtCajjdJp8j753ecURmFPP+loXNcNhwzMoy4w4fPSlkCF4s5HOipijCgM6A1RqnM+eLjvP1Cgts7IF5lhHN9b//ZbZfeZsnb73Bw4slZ1cdbbNAzYnN9ZZXdxtUHplzIFoDtcMWzyVNZlHXrJqWRdPyfLulqjTrpcZZi86Ji0XH5fk5k3OMfc8cPdu7DWdXj1ldrsh3d/Dsji+89Zi3zi5o55k8DkSjsbnCKsOMpF3nSjwvnJECsqpr0jSRdntylVl251S5wWlL1S1pz1bEnIVYebHCN7ZYD9yjKCd1Xr4/55NaMuolttbF5VmX5F5DLm7ZR/QzZYhKSOk5RT79ja/xi//z/5m4v6O1kCuRNX9wVfORhc1BxpcPz1oenFdYLQ62Zv+Sb/3f/ykXMXL5sMM0Hc5ksjXMKpJMKsGchi+9dQ7aoq2iRfFihDcfXjDNgX4/8vDK4XevcExYldkdDjSNpakNq3XHrByqecB8+xGH3HN2tiSOPT4qNi+fgvIYVdHUV6yrAGnNvFqzPwTG3R06R1FrWktlNF96+5JuscSYmvfeeYPKZIbDFldlusvHzEnhQ2LZ1ri65uJsyVVV8c57j/Fh5Bf+n5/RPFkzfPopZr9l+f576IcrNv2Gl+OBeRb0SdZNMCoJMlJUijFHQk5ELQUIKeFsFNS1rMBCtldoJYTxFGMpXL6z47u6SMk5Mk4SuKSNYRp2PP34IxbrNZvPfoPL5DGTx0UF0aBtjR9HNq+e4SOMuw2Tj9SVZdk2hGlCa7BkXE64FFgsL3n43gfs7+64ef6c7fNB9OarNXpfsbu55tnH36Lf3hKmSMLhFhc8uGip647KOFZ1x6evbglKjHQaY3iwXPAgZqrQ07YNZ2+9y9D3DOMBozNnyw4fPLPVpFTRtRXKe1TI4MHWFcvVGU8ePeLJ1Tn2MDMNHrTlyYM1tatZaoXLE+lqyc4HzqpGNl40Dx5e0djIpta8fP6UbDL73Z6m63DWQE4ip0PRDxN3h4nNbjgZ+AgikkoMOjROUzuNM/eBgMfiIFEIsur4byGDGtm0tRb4UOvj2/qksweFtZ838nu9MBGwJp/kxqfxA9zvOaetS8yjjNHYZMkuQ1fs4rUS9VfbEmNEG0NdS9EU54HnH/4Gw24jD6ESv5GsMm3jePDkEe1qxeXDO549fUX1+DHffL7h+rmjampmH1jUGp0SV8uOLzy85OF6TVc3VMYVUq44TfrRS1iXL+GTStM2LQbQOVE7S2XFxGm9bPmer7zDZrPDTzNrEnbRMOdMMonOSfJvgyZ+9iH7l4YzP/HkS094642W7/1tb6GrxLd++SO++SvfYhdaurMHtKrFpUzORkLPYkDFCWUzOptTci1aFf5KOeEqo3VCIcqLRdey6UUptli2LJcLztYzfprxfqJuO7RWvLrds1zdoE3HuutYLzu2+z1PX11jjNxf5jh2Qq6nIt8XHYXfoEq7rrVGWTBoDEJKPZm4cU/IPd1P5T2qQCpV1/D9P/j97D79DZbdknF/IIfIUsHaKOaQQCsmoFYy6nqzrfl0mvFZouDeXK1442JFnj0uZpbOkduOYZ64PL/kYdugpgntA1VWMmatEm6aaHpFtplgK7StqLUia3G8JQSWXc1Z26C05stXl7zo98QcMdbxcHXOD7zxBl2GuV1wOBzop57VYslCV9Rj4s3LK87ff4fGOSFU1w2VqzG7iTSN0FZCnpwH8lSjZuFA+SwxEbcff4pTd+QpE8PEwraszi5pzi6orEOHjKpr9HpB6hrh3RU0TEZ1pxN/nCmQ7YJZrcB6bC1eRPJcKFKYi2mYcFF8koI0WilU/TTw0afPsH7m3BlWZxWXbzTU7YpkDfvRU2vFotF0FVglHX8IPcln8U4xEZcMXbME7xl0Yo6J5bLBWFVSpR1T0AQ0RlVMHlK0tBU8WWemVx+RfOCdR93/h7z/6rIsy7IzsW/LI64y4Sp0RGZWZaGASqhqjGZ3kxw9yAc+kHznTyR/AZujHzAwCIANFFDoKgAlMjNShHJl5ibuvUdsxYe1zzXzzAIq6zFG38wID3c3ce2cffaea6655sR9uoM8o5Tiy5cj315NYF/z955Hus5wttlgRkUMBe9aYlB8/dXPuFLv2P7oA7Rp6TpNma5ovGacAmbe8/mFtPSeXnxI369Y9WsuLi4wbcv22TNKVrz++teYNNP2a7r1itV2y8v7wKpbkXOibdsqvDfEN28o00T79By9btntVtze3DOHPcM0E2sUglUIs12SeHpVz6QQCzEGxkl0Zotzt4bTuPwijg7VhO/v+vp+g5QqpMuqgBIX1XmeOQ4HLv47wxNVmL76lps5MbUr3PmK1eYp4zRTgGa9Y+095xeXfPvN15QYudhuMNMIx1vG10eGt68wT6/onn3A5edfcHxzzZtvvubd3T2maWhLlghw32I2Br0qnK83bHdndK5Bl0yaJ4bhRRV0KmxJFQgo5lkxqjWDd6zPt0xhJAz3WANzDHx1c+Rs03PZN8RhwvoGv1qLGMk7npxd8PnHH8DrK9JG03YrnJPNuWSZDjp/vpXwriRCM+sFz4YYcWpLiQOtU/imgRSwjcFYx85bGu+4v9/LqO48A3JIaC0/izOaxmix+E4ZHRJzjKS8nFx11HCphBfB3OnPHrWCTjKC5c9EI2IrWFKPQEhdAfXXk/rkPaZl+ZBlYlmIlsqqGI0pFkehQ4yIXOOZpx2FauDmLEoZxvtbvG+ksrOiaFdIWF/brTCu4Jse5xxxCnzz66+wQ+CDsy23h5Ftt+LTyzUbm1l1LRfnG843PZt+hXctzrRoowk51rTjjCqg0VjncU1DjgmdC946Vp3i7GLHcYwYVej6HmMcYU7snCIqTdEWYy1919AazcpC3ztWT9Z88HzDj3/whE9/8Ay38rTqjL/8szfcfrNnuiuE3mDPxUpfpl0iOmaKgWLq/ckSAyCMV4QqrlMonLf0jWfddRyGkRJmDrd7Vpuey92Gm9t7pmEghkDrJa/m1as3PHnylKwVz57s+OkvvuZf/Zs/4eJ8VS3GHUYva6JObWn1aCnp2gYDo8WAcWXPMSseMSmVYavMyQPTtnTfl/aP5uziknL9EmU82Qd0CnirOetWTGpiGEeK1cwx03nDB8bQW0UwClWgHUb2c6ju0ArrDHOMGGtZn3c0lXHZbndsLi/wqxXZGtIUePv6FZqEa3u6eWLlW6b9AeaAcRZlDWE8svKeP3x6wT/ZfIruegwKmxLlfiROM16DaRrOfIMzFh8Cq02HW61Zna1xxtB50YDYmNB9S+416faeWAK5GOw40BgNSlK4Q5qJNvH1X/0CowJPLy/I/TlqjrSbc3zb0DnP5mIDFzt039f4jEVQtmTt6IdWMNKmm4sjawXKVo223LMUF6PLQiYTozzUMWqUzXR9hzOaNMyMKDbRQsp0TrP2wtv0naezGp3LyUuoMaJXKkVL5ARUMJVpGs35disW+kmKMmMdBUcocL5WxJAf4i1SJmVxti14rNN417E/Rn51vef6PtDZEf+8oW8aOm9JvceZFauLZ/inH/Ly7TXz2zd8e72jXH1D1zvG/VhF9wqjCi/Wns/OvExg7XasLz5k8/QFvvf4viNnw4fPLxkP91irSNPM3THwZh/54LMdi1j5cDgQi2b95II3v/gl9uwM6xyr9YpN36DzxM1+L/qUGDFa0Zgi6fSI91OqQvNjFLuFyWYanaQeqOP2IOaVi93CYsT3d3l9r0HKXFmQQvV4sIYpJCjwq1/9ms8vNvjrl5T7I/umZ6NfEHcbctaEqLC+oV1tGI4jrWvYXVzy0YtntMycG4XXhZQU01h4+de/JBtLs9vSPXnGqszkkDBZoVLGaQXW4nxD550Y7eQMMZK1ZUiaOE7kJEF91rQkpdEY8WrIheN8RKdA365YrTtiPHCMhm2j2TSFJ8+e4DcrTOPJpWB8w/bsnE8++oBDDLy9uiOMR9KksEjWRMGhlKPRisZr8UqxhmI0rXb4FhoH+/t7QkoYq+l7TykRg+HZWcfdzRU2T1hdOOZc9RAKjQYFxyibvNaFtmjUFOnmWOnY/EC1P1Y3LpWVeqhwlzFQeZWHg0WJzqAUHnE0j15Kvf/rQt2/R7m8/x9aKTnkjAVXwZCz4hR80qoUMXiyjsWd0jlz+rLimp9QRRxp26bl6bNLoLC+vedymsnnPW1jcVoiGrqu42y7oe9aydCo1thqsX2vxngqJWy1MzfW1/TsLK7B1lFsy5wU0zhT7g5oZehX7sEK34gRlXcVqHhD13nWq5bNypFC5vbNkW7MPLm85MWnM7d3hRwn5kkz7MXB1lgrHjwpomKUUV7EYt7EWW6IqgZWSnQaBiQXyDnQ4nQ8jiOrsw19aymxZX8ciCnRuRZIpLlwf/MW/0QzDEe++u4t//O//nPWneN807LtHI2XUfLGW4xRUrVVykziAzRWa1rn2Z5f8mH7jOaswAkcL0vg/U1ymfZZ/lih0CVTxoloxGrfOIUtjrNnF4z7AX1zCyGhyEQtid4+Z5mIUYqklJSfRpMUECVIcr3uebpbU+aZ9WrN6uJCHKSdx1jL6ukF3ctvsWGkdxrlPW7dcD9LQJyuabZFKcZUSDf3hPsjzjpUbXeZupa9a+m3O5qUUSGhesvqvOX+6p7h5VvWusF3LW3boL/4kGI05s2BXNt2SmtKLsTxgB57VIxYVQgL+9XA2Toy6YnD3YHu+jVufcnzD5/w7JOPsS+e1cmwqkFRCyxcAIqIoBdxZipaBMLGSPhebRHLBvmgY4EsoYU5U4rCr9esu4bjXozPXKPpVx2pRBqjsdWdtXUaYxSU+jXFGUvuuNZQgkwe5kDnFX2ra/p8Q0mVi9UKv1CJncP5BoVhmCRscxpnlDF0ugHnuRkTx2Hi4w96WlXY9pp+1eK9Y7ddsd5cYs+fsP74Yz67v6HwU7CODz77AkPhVXrJeNhjlD7liKELxhSsOuLsiGEkjzNznDCuo/eW3cWneGv55ZdfMifZ95+cbYnzQIoRhaZbrXj++z/i3Zf/CbcWm4u+85xvO55uPN+9mrk6DDjkfGutRheNKYkhZ0Ip0vYuhTkVUizMtT2k6l6ulcIYYdCcKuIR9nckU773IKXKDPHOUcaJthMq683bd3C+olewKolboOvXqBgoc2S92uG6Bte1OKvZbqR/vF6vMeM9m4sLjFLEKWAz+ItL5uMdd29vub6/J6mRy+dP2LZr/MUZl08vRBg7T3htJBchBEgJFQNeZawtxCzuoKok0jRBSmiVQCVcTmjjaC/O2bSWOMu8OlPgbLui7zu0MlWwakR97zu2qy1Pz7fkFLm7HbCuxSATSXE4PohTvSVL9hOJzBwmMIbzsy1nuzWlJHqn0SWhnccqzUfbhr8YD8zTVA8CThVRRoYulFLVAkERiozGhhjEFn7Je3kETE5KRUA2qCperJtRyZmstHAwj5iX5VMWrPMgpF36OhWYPBZWLr/UNMTH59MyTaONxlS/D2PMCe3nlGpQIhgjRkVaO4yWQEMxlao5Ioj9dtt4zs+3IrAexQ5aNBUa5xyrdc96vcI5j7Ne3Ca12PDnIC2uFMSYr2scm7MzjHWkMKGKxhuL0YpNSXDWkeJzjH3H7e09KYuo1hpzSsBtvaVpZEze18yOw6HwXQjc3u7Zbhr6dcvT8w2GI3OM6KKIcyIGh42PJrS0kRo4TmAbirHoOJKrnkflRIpz1RsVnDM4LSaHjbPc3dzS9Ru6JmB0xzgFhnGg9YacHF4ZLrcWncVW4GY/824/8fXre7HzrwZSjZODRxiVRa8i/g1Wa/rG88nHL+ie/j7b57mu0ccsXjnJIU4ypmVh1X+s85K/oyK0HevW0bUN8xxpXItThlTN3kwuoDNdb7HVyA9thInTkmqtFFhdONv2rDV0Tctuc0bnGzQKYz1YBy6y6nvOnOf29h2XqzW+bzFz5pAzKSdJ2VWgSkIZTbLyqdYZrPdYY2RSr11xfnnOru/oO880ynSfUwltFJuk8EFjX2zR217MBJ9p8jwyHw+kacJ7TxhHyvGAMpp13/Hi4gmv1mtsGokhM7mIGkeG+3t8v+XDH/8e6w8+ID05k4t5YkyWZ3ARO5dHZMri3qyqqF49OBvnpQiSZ05TIKvq3GxpViueXG652b/FGAn9bNqe4/4djS1crFvWrRhTGm1Oa0GRJS1ZC3NTcuC4Hwh0rIxErWhtSTESY6hGchPKSBgsuTCFyDwnpnEiRkAZDIUcNSkUPDPrTnH99h3/8PNzNr2laay0yRtL0xncuqdZb/n4hz+CPHJ9gI9/+EP0fE/bOL796humYcQoBc6TV2tS13KMM+r6LXkaaNoVpl3TnHt22yeVbgTbbfjlL7/lR7/3BTkN5DlKa3i7wRvD4XjH+tkFvl/hWk9ZdaTdho+fnHF3u+d42DPNAWs9nXOsnaE3cNCF45wYkKnOVN2QQ86oyHt+VFqJ8663ilasuv9Or+81SJHKU9TGkYCyjvv9EaMNJUZC/ogVWlgEa/CrS45X39HsdlhVUEX0J7pkmYV3mtvrtzzpHtJkjYbWOtngcsNmvWJ91XJ7e8Vwf0DPivPdCrwhDPdM00AyDTmKKrvkRB5H0jydqvGcZuJ4JCt1SjXVYaLEif78gt12jdeJ7HoJXWtbdrsdpcZfxxhFLKw0yjc0TcfZaoXWiq7Zc/NuT9Ot0StJFJ72e6bjgWmfwRTiMkliFH61hhxZb7Z0jUPnQCmF/f2RaT5gqh7g3X5CAZ3TzCFXnFJOB31lEQkpM8wzIaTFHZqHSooHIuV0E6tWZPGvqF4npVTL8sdA5RFjcmrtPOoePUboYvS2FGwPVfIpDGt5TwsjtKwoJdVYzjVyvH5P5yytc/UAkKpdHIbT6cBbHFu986zW4L14kIC4REpWjpFxa2XQ9kE8bIxc51JSrXQKrlvR9yuMMqQyyrUpBYnZUawaxeW2RyU5hKdpls29tsmMkYmXlJGohhLFvCpqwgzzBMNxoLkxNH2HMsK4GKNxXoHKQM0GIktoZlIknTElgNZEXaewEJF0igGtxI7cewc5oRAjrHkKhHEgovDe441hnEbiNDLnSGoslxc9lxfnlPK1fNcsIDDkDGWhimvMwDLx8ah9o5DD7HqEH/7DkY8L77V6TstkMXJb2oCnHUWYu6IM3nv0ukednbHWEvMQw55Vv8L7nrEU4ncvYZpJxtBbXVndAhgKmmkK0lq2Bue1bLghsm537JotGou1Dda2JGeIxwNaKTbactl0tNsttnHoUlAxcjguQMOdtFEaKCmTTZY0a+uwTpgnPQ9km1D9mt3FmrAfOfu9T+i6LSSFUg67biR+IyXmOBL391AKcQ6oMOO1pUwB1Xpa1/Cjf/ZP+Oo//yemN99SgkwPBWbm4wGlM/35GflsB41khknN8PBwqtOD+lBIKC0Oq6hUQ/AexNIpp9M6KCdXddlcSgHX9Tz76APy25eEMGGskknEweGM5cV5i0NEnbrGYshzrVEpkZGCxVmNM4H2k79HuP8OHfakIBYCse7lEn56rLlshVwkjsU4h/MtlFJb+WIhYFXhDz99ytXVGz698BJyqBVGZ6w2aBVonASdXnz0KdP9FeHlNak/4/J8xaoXw82XX7/iuD+QhwDzDSr0uLOn6H5HNqDaNe1ux+7JU9rVlqINc0jsdjt+9CPPk11HmGbmMTDNkd5b9levePqs57jqKRq6rscBJkTycCCHmXka+dnXbzAqsfEtu9YTQ8MwDhynkWEODCExR0VMEh4YUqnhsqJjcSazbiwXnWfdOv7VzxUh8Tu/vtcgxZhaQalqDIZUkiHMjKPiZgg8MQ6UZv30OSpO2DLTVyv60ohw77C/5fLsTLIijMzn5xhQVqoh13eAgdKSs+EwHelmx3h7z9t3e+J+xSc/+oiPPv2EqzfvmIaZcCxoLWGHpmkxzhJCENfRKRByIKUgDpypkLVi9/wDdmdnNFZEa7E4OmvYrnY0zqIUTMd7lLN4ZYRqNxZdD8++EyHmqukZYiaEhNIaf7EjpXW1IE+4mrKstfh/tOs1xIk0iEumdoaz847b6yuOw5Gz3nO2amh0JjkRDk4xM4TMaa0VapskE3USu3YNy8a/GJXpE+BY/mpp5zw6RB63ZhZvCx5vcu99+KNyWD3SGah6flV25vS1K/e2/B2PGJU6/fPwPsTAzTcN50+esL97h/UehbRiwizq9ZKlRZSijKcqLXkczkvQlrHSdjFGQ/UJMMbirOgBJKl56dnmetCLFkcpA6a6kaoWckTrUjUxllWjYCMGc8dhru9bxqZRCPVfhcmqhvNRMioXUihMxZAKJCLeg6KhbTx9b3FtI8Z6KpCxqDyILbtqyMqL0DlFQCy9xeBPwL3VCmtEN+KswVmFUp5pFtAyjUdWjWXdWmy/oUwDl2cN282G9Xp1uienuZBSI1HykriaJSvpMUgpNRtLKb67uuX2MAlY1Xr5kBM4eVhi5bSE6mI4XVvrNMZZsm0Y5gGdskyaZREz+ydPSO2Km69/ic9JnGxzJiKJ5tOcMEDbOPn5jaLJkTQG+tbi1i3KWrAGVJbWyt0t8e6e3bojastEoe9b+t5jLbx9KaGtcwl4Z7HO0/iWpu1wrcc6S9v3tNUF1GuFypHD1Q3R9tigsdstru0pCnTnUcUQD0fGb9+Qx4lkMmrTnYoJlRN5DqQScdsVu9UFn/7Dn/DlP38rxobTjDcyGWdr+2PyMiZP1YAV9QhgnJ7ph+uvlCYpU5lXEdObqh1JJ3CaKWXJ/1ncgTPKerYvnnH9V44SR4zJknmVCznBpvekeRZN0/KEK9FT5dqC0Fi896gwUK5+gW97ku+Zw4hqHR0ZlZOk1qfCHBM6ZFLRaNvgXIuxBqMURgPG4NuW/vk5vHzNMz+yacAa0b7klFDeYr3DWo0hod2azdlTujdXHG7v8L//e6zajm61Y7vZcPX6irubPXOUFvN0u8cYT//Bh/jtlqIyGUXA4H2HZebp8yd8stoy3l9x+/Y7jgdxwz5br4iHdww3hr5d4Yym71uy1ZgkMgWjIOXINE+8uzmyaR1Pz7Y01hDCxDAcGceRcRqZZ4l8maNMXaUk4xLOKHrvOOtbnl+es7s44//57/+a498BpXyvQQoouq4BpcQfonotWGeJKbAPMziHanounn9MmG5ktx7u2Dx7QXKaOWVaY1iteqYwo1IihpnhECEONN2KdDehlCVkuL+/g3lk1Xc0Okqfs18xpURb04TjcJBwQOugKEKQdOIYg2S35EQKM3OYMd6zPt/SdR39ekfTGFKcSNFALpz3K84uLmmsxbaNVMIJchR/Bq0MxrYY5UhhQGvD2XbFmevZD4Hh/p2EeykBJFR3WlWpzxwS47trCS3sOiyaxlpSScx9wxwCm7blxdaRO4ghMY4T93PizaFUu/oaZFdbQEulqtCPQMkiaq09YGrfqdTD88S4PLiJnsS09VV+A6ywfMrJebaglvCremiJ3OChcsu1Givl8QH3GKg8BilFdCObDS8+/YJ5f48zBl3KKVHZGkXCQIwifShZslYq3e9bX1OFq2AwGUkjrvolZ0WToo2qB6+sDWtM3dwr/e0Xz4JGDrMUUMi6V6rQL87IKEpdw6VI9WiNrmBFcjZO7QIUZEWKkEKhWKHDFBlnHF2/BqPE4p4EFpRxIhxOo4Am26JSASSLajF1c0ZjtIwxe2spYcZZQ9JQVKZoEV+7Urg437DdnLFZi47KVUdnpTX6JMCTg+1xWOPjNfAAZASEHsaJ4xxg8UkpC4v2W4vn9N+nc5OCdpIQrFXG5Jnbmz2dNfTdilwCcTrSNi3PzjfM1x3T8UAOSZ6DVNsy1tBZh3OWXBLeWXaNZ2M9m/MttApsIhtF1JaiNHlOpBhwjWOVFWkcIMysztY0/hmugCmF2+NeHKxjkPZUo2mxNAqaHGlwqDmA0bVNaSmHjNKFfrOR38cMU0ZZK4nJuaBaR9GZOAcpftqGeZ5EOH2EYAqmWF588Tlf/9stKkwYwCtNt9oIENhsmNpm2aJP13eZvnp/C69D7UsfWS8t2KVokE9KKYugXJ36zfU5LljbsL18Qb9u0XHE+wZSZh4nUiq0a08iiSZmsR0olW1VC7sia0frwnDzBqWdsCPGM2M5FE+ImZi8gBsj7t5LXAbGoJwF41BWwkKVVsw339GFtzR9RueMUZ6SM2EacU6sJrBOPs+0rM+est18QzKJ5Hv2+z2mbTj7dEf/9MDh5h3DMFO0IZaCXW/YPnvOansmE4clMI9HSsn0my3GOJTKpBSkNXecmMcRqyLrVYs3MKaCsxanNVhLaVs420KJpBQJc+Cvfv4Vlsyq73h6cYZ3mhAD0zRIjthxZA4TaY7EEIBCYx1907BZ95zvNuzOz1B9W40Bf/fX9xqkjHMkpnjSAlgtgilnPeTEnBN6tWLtd7SXT5lHDfoMCDQpkKyk3HrfkBLc393SGM0E+ORpLIRZo7QjhSNTgTIe6S+f4rY79l/+Oel4JN6+5dW7N/TnG7rVGbvdGWzFjXSeJqZxZHSG8TjIjH+K2LZlc35Gv+5kBLCVNMsYAgWDzpFWFdarDedn57iuo12d4bs1yvrFM0cqqdWW1faC/XFPJqOtw6vM+mJDPFsxToHjMDIdD1LtKoMqWVTXRmG9kWwhqGmhmhwCJS2UpULnhNUF7woqw36qIjWjxCa/iGDPmDqK5mx1Kq0tjSV9+JROXIGLgnLayR7BmKWSrh8nLc5MzgqlMiovlfZy1BShf5f+duFUcZ1aBOXBbv7xblkWbUJFRLpWXFiDyTI1sr284OzyQv6u6Kr9sHjviFF0J6UUis3oDNoanHMyDaQ1IBM7qo7CiuuuloFMJa2iEGS9pGkkN41oG4yIdpVxqBxIZMS3VksuzBxIc5DJHyNhemgJVpTMFancFFn8O4wR5nEhr2o7T2CjTOZ03QrvV2BbjK+hj7YRkbdyFOMgz+g4kI1DWQ8kKBUMWckZarzDe0sshdZYxnGUibxc2HhPY2DTdlxuG/7ov//fcXv1JdPdkXBihB7INh7dsZNN9yPwebqntSVWqjsyj9Kw/+ahgsdAZWHaQLetGGkd95zt1vgXz7l+dytsLIU0z2gFnkjnLfmoifXrWavw2otjamUNtXVs1z2dMZyv1jQXW9FHZAtBkceZ4ix6vWHz4jnqsGf69WtWzhNDQM+Bs/WG9lNH03hWb2+5ub/jOA3c7g8ch4F7f0dvLa2zoktqGrabFWe7MxEbNx5/0bHEQRStyCFR0oiymrJtifd36BqaqpyjJCQJvLJv011CDdIe7ldr8l7RFrjcPeHixUc465m6DpxkdZ1abY91Yo/bs/V6i4YhPdgcLc/+wrouwKQU0b8pLaPNiNvt9sMfsDrbUYYRpS3KesKUeHc9cb5aY80SlrDc8crwFHVi4VOYwLsKkKQ9anKhLROdNqjGUlpNIVEyxBSk3Zshx0wZIFG9oXIUQKcSrUmonIQVTJL/pqw4OGvn0X5F4zts05PPn/LiB3/A9cuvmd99TeMatJfpv+7iCeef/YCCIuYkKesxyEOcIxpxA7ZNi29Fa1lKIYwD0+HANE5oo8k54pzm7OKcVgeOGWzjMCVRlGSVldSQ85aUIp+GQJxnXr66BlXo+57d+RnGahKZaRqljTvOlBgpKWMAZy2r1Yp+vaZfr+hWK44los1DIfi7vL7XIIU6ZRIzHMcZEB1D20KKkSFH3NlTztw57vwMFQ06Tww3b7n57iX+oxXGaLT3XL99y/7+jqdnK1TbghK3z1IGigrMw0BOCd14XN8S33yD0wq9W4Mwi2TbUEKgVHreOkXJGlSDdnKghXFgbD0UmdTw1qJJhGGEHOVRjDM2Bbp+ze78GeuzJ7LwVmf4ZoVy7cnsjDDQdhu69Rld85phOsoYplE4lfDe0jaeTb8inl0QYqIUhWTjTGgyxjqU1qQwUfJMSUisetEn1mGaJlQIQGaYE8dJqH2vClEh2hWj8VYU4q13MhJagwRFe7EEC6o6XaOrSy3UsxpYgAaP2jSyOaWUTr/X74GYuhz47UJNvkz5rX8AqdrgQXfLw9d8oP/FbK1fb+j7XgBSWUajNSUbqdASQmlbjSpKnHOtlp/RiGumeJHVA3NhjJaWRgpM88w8zdWLBkKUqprG07SSJBslGoSiEkxCq5aY5HtqIyCsalLQD4zJAoowSw6Lrl02CVq0rr5n43Ftj2paqazRGN2iTFM5sMpKYMlOyUSJ0mgdUCah2g6TZoyVqbGLzYphHum3G5zTjMeRcL+nIbPrVzw52/LJ55/wwe//EbvDM77+X/4l8zjWG1efq1xODMlv3t+FDVuYlGUlaK1rS7MyKY8+/gSFH0RLD7+COBO3PdPxSDGOfLinWW9ZEblPlnXboOcRlSasgvW6IxyPKGPrpJ/GV4Cq0DhnWXUdOUUabdg9Pcf2Hdp0ONfhjEW1LSEnSt/Tn19gNisohru37zhME+OQ0OXA5vkFbdex297w9s0Vd3d77o8HUorEXLifZo4xYLVhoxVdWRGjmO75ztLsenJKFCJ5qIcsiaIzKcwUjXhjKLGXSSmgkqTGO28keBRNGgfOLl+Q5lecbbd89o/+Md1HT5j3e0YnEzqPEaZaiofTHVqewfp3VV+UT21hjdKLriGhVEZcZ7OwY8v+X7VszdlzVk+eE2/uMLohjYnj3cybl/ecffEJOt6d2lcycYiEVFY3YmEhEjlE2VtcRlspXLS18mfmVPmItk9lspL1mWIBvQiyC0UllC6VQRWQZoympAymToGuNzTrc5zv6jOq0K5hdfEU2/bcvPoGtSrkOFNyITmHsq5qakRArFJCOxmMMMbLQIWWPbXEAFjZZrQizDN3t/dY73lx9pwPP/sYMx4Y39zh2hXEGnpaxOfINw39es3F04sTO5ImSV531tNt1ihnySUS5ok4BVSRVralYBFbi3bV4dsG5x1lHni/V/+3v77XIMUZOejE3l4sepkjmhml4W6caHY7fHeBmu8Y3r1i2l9zd33N7ZA4f/IppnVMw5HD7a1oB4zBKkWOiWG/l4WbIhiP77co44mvX0JOONvgtEGtPMpZ0pwhZkoK5DAj+bGZogrzfKDESKotJUpGG4UpBqsM1orRWVaQg0K3PV2/od3sxO3StljtxZ6qUpG5UF4EUQAA2ulJREFUtjnadWKdI8P9Ndy+RXuLtQZFxiiNQWEMOGNovJdwwtyAbyk5iu5BF7JSzFNmGidJRgVAwqRkW3igXY0CryuDUnPnnAHvNa03OPOo9VwLokUIt5jvnRxoF6BRN7LFVEspagKupAgPo7SzlkygE0hhYSg4tQRANhhTK+mFiXnM0JwO6zq2S3WeBWGAUIqSqzDReXzboeLhYSySLL3zlLEGitEUCgbR++hSqlOmALpSqO9FWk1KicjTN54cM7EK9HJOpDQzx5Fpuse3O2xUKJ2klZAUGcM8zQzHgRCyTH2ViK4TJdZ5BDnJgXCy0l/M9E55NvV9KPGBkI00UOjBCNAsqlDUgHhKeAoWrZ2Mb5cMKch1UhqaHhNHnNFYMq2z5Bl6B81qy12JjAeDyYXz3Y6PP3zB8w8+w5iO3dPPeG3/HXEKpzbebya7/00eCw8ApR59qk45uUbW2ImKWQBNbSeyFPiLWFudDr7+7IwYM2YKDHf35Ntb+sZDnrm5OeJ8Uw0IoV+vSLFu1EGExo2TaaDWWJz3pJQ53Ad22y3tZouhMmTKYLxHG6n+mRPRdui+hWLoNmvu31wxZM3tuzv2X7/GPrlg9+GHrM933L694u72luM0EZOkbi/MF9qynzVc7Tm/VKzWK/I4iL+NL8xZWkVpmiS1fA7gII4T2jSkY0B5jdYzIPuraxpoe46/+DVPnz5Fr8958vwFZ599hOoM0/09kvEkzxcnl+Dajl2e8YIY1JWaUEkhJ1X9lXhoDyslh3F5/Od1suvRM2+aFe3TT3nz8y+ZbvaUVBgjhKQ5BsuZloyfBy2SItfIC+Msp9iEgqzzWJ9vJ5pHU/crWZfiH6RLlp+xKIoRRP1QBGlUeRDVL59HvefON1jfSqveyVogRbQ2okVbNXTbM6b9jbAvcZa9tulwTYtShlzEONF7KSiKq61j1ZDmQLGaXGaRDwQBHsoYXn31DW6t+Oj5U/qnn7D+6IhxTvaq+j611ZhkcG1Dv91wESUG5c2rK8bxwDzNrDYa71uK1rgmklcJKiNrckalWc5oB9qCjP38byy7RypVdZpoKAW8k/7/OIy8vduj1xts23K4/Y7j66+Zh5FwnFHTzP6rX7H74gsO00DTePq+Y7taYZDo+qIywoc3+HVPjgl13KO6FSZWMaJvKQgw0QoSkteiili6pxQwJaN9R7SRlXeC4KumwXuP6zpJAc6JEGZSFHdFrTVhnhnv97TRoLPDdkIRqqjEllzLAd11a3bPPiaXREyjsCMpVUa/YGtWijEi0tNODpicHMsMZtaGUoqo2SeZp885U5L0U3U9sBsFWwchyyESMkJ1KyQBNE6kGB5GO08Pqarhd0sLaBkHrNQwDxqUZYNaQPcwDPz8r//q4T3VhOIF0EjlteQDCSByvpHNwDmsFXMza+xpw5GDzIrgrY4BK1W9N5RUc6WORVvr2F0+ZXw7PLQTqm07QMmqilvr8Se2IeSUiCpXa3DxqDHG1QkGGbU01lKyVDqlCs4oEMLMPIykVUdyFosmpsI0Zo53txzeXTONM2Rd/UoUOYpfkKotHE7TTHIAL0xW0ZVdQcTi2lq5FsaiS4E0oZGUV4HPXu5fDgJqXX/a2NFZLOhDkHFu43CNQ+covj9Wc9YrdqsWfTS8ipl109OhWDtP5xpyNqio4BDQUSrdXAHFcj7lfDpi3ltWJ53BI6AromM5xJaD4vFnv1fLLQdiWQTVsDo/x5+dc3/zLYpIsZbp/ohWmhWF2Kw4GiPTNabB92uc8zQoWmtojcY7qdJjLgxhxhbFarWSyZwpUWZhwUjSQsVqVBKH5VgiZYikuwnjG8zxyNoaonGEq1vC9Q25+lZ0qw2maQipSGo2YlTmjaLzlq5p8I2BeWBKidlGfOuZjwOma5mHAyppYo7oBGUI6LOOIg8EOSVA40wjGoVporz8hs/+6O9j/QVqnInjxPjuDmUdue7BLCDiMWlFZYCVtFRVEfiSc2ROhcySYA0oaVeoCm5ULYpO97k83FSlLP2TH3GY/iXT/hajPTlbnHe8vB7ZXRrZM7IIc08uxRUwSdtI1oGx1W+oxKVkAnLVayl5vnIGY2pLMmOUoRhDylJsaK1QSc6mFCLGiCHlYgjpfIdSAvgF0FTjM+tJGOJxQMURjYiAU41hSGkmTXuUsiL4tQbaCXKUwtV7VIooLMbNFIqwbPPMeNwT54nXX3/F7rLh5lct7WrL6tkzNEdyjnJaVKsIa3UtoFrW27VIBJTm9t2e2+s3dE2Dcx26sRjnSCnKPUmBNO4J+3cEAmzX0HiSUgzHoRZuv/vrew1SZHpAC4qk1CjxGeMdWilCKATfYZ0lHA7Mw0CcIjkVjLbsX7/k8kc/5uKyx3rPuu3obSEPh0o5J5LSNJstcZxgnmlWKzHESQnrW6y22DhSMJTqPitGmFJt2+LpV4585lGmjmtqRYm5UnyyEeeUydUnZRyOHO/2TOOEMfd0zZpVN7G5KDgK1juyThSjRXRqHSYG2qan25xz3L896RiM8afqWW62bAJiCuVQjYCVkiMxjIwatO9QKZGOo8RDFSNW4FGySigZDThV82gVzAnmlHG1RTNPEyHlh8pXPYwa6zoCuNheS8H1qAcNLJMd1M+5vb7i3/3z/7mOApbKtCyHrj6BPjH0ktaa9x7Xr/FtT9uvaFcr2rbDeY9zFtd4mqat2ThemBUZSTqBJb3sjgbazY7pxkl75WQ0ZSglibtjlkosp0QuilRKdZCNoKhTPg3WNeIcqhTGiRZpGiZijJUhkvcQY2Q4jvjDgO82zFNgvrkjhkwcJva3e7nmxst1s8KalVJQWTbIopRQwyfhskzJaCN28UaBtZa2cTTOSnWaFSoGmUQKQb628WjjyFrak+IyW7ULyqCMAxqZkLPVT4VCowuuabm4WLNrO4Z3nm9jRqcZfzyg3r6knK8g/wFFtdgxYYHFCKqAsHoPqlZhpR7/WV0vp/9GhM3a1Aq5ApcT6C3L7xcB5SOtRJFWZLdeo7yIlA+HA9Z3mKJQGZx1uDKIUN8IGOy1QXc9Dml5KgAtHi0p58oORRFiz5KIXZQia0k2pl1BY6X6dY7h6o7jm3fcv73m5t01IY6sn57TtivRMWgrhdHKkYqMHo/DQJhqxW0ldkKVTAoTIWvyHNF2Ahzz0ZBTgOORlMG3lqIgJkXUCmLE9z0hB7xr0I0nl0DJijJPWAPd2uG2O6af/Yp3v/6GuGlpP/8hRQVp1VSwv3hmqIcbJPcrFwELStVAzcQcJV085fKoDZxRiytwyY9rlxNYyUD75GP86gNubu8ZxoDSFkzHzT6SnmhMZVnrtxZcX4HUA2QRfZi2GmU8Skmibw6RrCS+QAT/Gle1FaKREn8lHSPayVtLBQEsC3MM6CosN16YLmWMMDwlkkNAtSt01Rxq5cjziNXQbM8oKRDCJDnESouhXRiJCkrWGD+hYou2Ir53bSeTqqWQwwR5Yrq/Y+OgVYXx9kiOiqgiKs2kICJ9tBHHXyRwtfENqk84pbHW433D/vqO/e0V3rU0ZYfylhwnchxJ88B094rh7gpFZr+XkNWA435Sv1Vs/G2v7zVICVEmDoSik8XlrSHmIiOQ3qD7NRpIMclUTJEln1CEmFjvzlhd7tCIQaRK9SEvME8DKQbGm3dQEl3fi7FRCDjnSbYhDXtSvanWOpSyWKVAWbFzdx6jHbZp5I3mKGInI/kHMro6yyhymBnub7l+85rr6ztSLmzOnuDcWrwuwkAKjjTuUb6nZCPlusqnTd35FoVm3t9Ik8a02LaXXiaVyrRS7VKr7ZyElsws+SiBUmR8OeXCHArvRgm7E8OuwiQFIKh6LTPkWlSnLCnJS97GAjREi7JY4C8tlmWD0Mue9oAQTmdKYbi95Vd/8qfiO5MrzVqZGW0eUoyN1ljv8U0j4KPtaPoVbrNhtdmy2u5ou55utabfrInrTX2fpX5+eQBItUVFQUYKuw7jPSkMj9pMUoHl8gAGCpyo35QyJcnHQR0pBqijk6UkpuOB8XB4+LlZeufSJzd+2Ugjq17hcsM0zxzGIykAbcFqjVViMiUgLpKKOl0TU2MMllykJbFaG3DVGj1n+Vm1MWjlUEXXrlaA4im4Sm8/0ONKW3SaZG1rJ/471lXmKNJoWLUtT84azrYb3r20dI1h5cWKXc0T4+01zfAOtXqOTZxiB+SHXmh/TvrLXB63gZZ/l0fX7hFr9PhAe4RF5PfL93hgxIR8Khjv2b74kOH1rxmHiWOYaIzBG0PJAZUsmSLTRxRJ8UaJA3ZMpzUdYyTFyDQONF1L24ppmtp1UOMpYgyo454SZmLJzCWLdqeAvbikK5F3v3hLtplnm57u/Ix8GIWJaZ0QWXYSV9uUmcJEiZmi5JmPOUoLGTGNTEU0BUqJ9YEyDrQjJ06WBlkZYs4i7i4BggjyU4Zu5VGffsT++i0XL75Ae7E/MD/4Ee+0piCTbqVefGEJFhWKgI3FBPL0p6WQ0jKxox615eCkoOa0JOrz/95txa23fPSTf8rtu1cc0xHVOHJTuL05MERx4S6IXlEVjdW5MqaGXGQHKkXSe3NOdRjAULJCK0sIkWSkfWsXsz5jCEHSwLURF+sYNCFmQgykmGVNFAkEPbWTiiQ5x/HIfHgngKoYUtOJ6CwjbcKQCMMNm6eWZnOOr4Cn5EjOMB9lkqfUMycFad8rCvNxj9nsyDkS5wNta1Bl5sn5RnzD2nNwK8J0izVyRqqi0LYykEqjTMG1DUqL0aX1DdZ4yIXD3S32StGHAdt15DQxD++YD/fs795ye78nlo7iHcFaRqXYh1lkGX+H1/capMwhiR5FSQJvSpmABqIoj3OWNOJ5JqdMSpCyRrsGry0b33P25Jk47eUZnYP0KhUkreUhL5EcI9Ya+Rpxlgj6okjTKLPkWtGtely3QmeNbxqMdijfSiVQpz9ynChxllI2I62REJmHI2GeON7dcfX2DVe3dzTrCz79/HPWu3NB/EkeDjGUSpQiAqRCrG2bSAwzMSSy9kxjJM8Hop1oM5i2rwyTPCC5ZAhi3JZTJIVISlIpqawocyZMiTCnatiTGafMnKihUeL+qLQ6pdBCBSmnUdHqNqsXUGJO7MkDUBFBizLq1KI4tXoevVJIjHd7+du6QS2bII/bPlTgUE3TtDE0XUe32dBvN6y3O5rVmtXunM3FU7Yx1UpIWgTW2tPki34MpkqRB9S3TIe7ulNWACMlkhzmIPdWldOhX1RtvSiNa/rTGLMyLWlOHMcD4zBJq0YSEAVYKIU1Ba8Llx9+ijtrUGki7A8Mf/4zpnEkpfo2jEVXATRKVfFsHUkuRbQPxlS2Sa6VdeJ8qYpGKdHRWG+kiqzTGTIeboRCThnlXQWeIkhdvjc5oou0fTCtiHEBb2DXKc7POjZPz2lby9m6o2+9hFFq0P0a6x3KW5w2GOfeO5QW9uM0wPNoeZSy6Erq75FquyztxZNo9nHPRz38/gSGHr4+gLaW889/yOv//KcoH5hiFlGl9phsKEE8OIqWVqKKGW+dVOtK2gEpZuI4M40DKUTOP32CipniE6Uk0ahNAQwwHEkhUJqGQsY6R392CSbSOLi9fsObb1+ijOaFdnTrLdlbSi6YvgHd02x35FIY7m5k2iInSkzkkgjzLCyXUpQSyPMsVbZWlDKTJo/pHCqDbZqqbQJlBXSFWPV2xjLe7vEBvv71L2l+9Ee4jz+h0ZDPLpn2V5wQJbLHPUiepZpUC+Yo5eEuKAVkUlHkkkkFTJ0yl9DKysSczjfForcSAkxhvefDf/rHvPv6Z9x+85dMIWF0Ik33aM6BQipiAmcVlY3IJBRWVYO3gui+oqSgJ0TLYozF2AZVNzthWmRtGWOE64nC8KWciCkRg0xGWm1kU1AabTvAkuZE8TLqbedAmmeUy4TxSImzMNVty/nTF3z3F99xUN+hFPjNRdXQeCgK17SUnJjmQRhu62UfdR1pGgnzUZ7hPEAOxDCzalvaZs3mw89F6xIPFKfrc1OkgKqCc13T211lqrNPaO3IufBy/Iarq1cc72/qFF/i5jBxmOFQ1oxpRVaGMsN49040UCW/bx/wO7y+1yAFOBn65JxpG8syCiomWo4xzLQalDGkoogYGt9j245ue07TeFmcRosOJQZKiZClGtDagHfkJLPt1ojQK2VRmyftaaxFNyu0djTdCmUlcIpxosQglUROkKJsTkn8FGKQqaFhf8fx7pY3b95wsx/ZffAZf/CTf8T2fIu2hjCOzMORFBNRKeY0U+JMThLfXnKiGMM4TQzHkRgKrjsj6Ylx/45QCm3KmCCH2GL3rEo5fY0UM7kkoSwriMhJhJpziIScCbkmwFaxLNQNpzxyh63/LJWpHHT6lG68tHV0PeQfaPpK+z7+s0dniDz8lQLOCFCBk15hwQy5FFQuxFRQBFCK4/HIfn9Hd9Mz7HastjvG+z3zONV+O1hjSV17qt60egSaquDJWIey7W+1D7TSFL1MChSKMjIZowByxTKqbiod690ZaRqESVOJPC55QbVCzBq0wbeSzeTanrvrN6xjS2MUvhScthJ7UDQTCm091iUwVXhXTem00jLBpmWCQWstzIkVAbN3VsaSdcE1MjquncVqaUehhdkogCqBEmZwHdRNXS6FAduK2FApqFqbxhi80my7RPfsBcp6VMx06w5rJA9HO1BWBIkxG4pvsH13urcPrMl7R93DmjmhFx7WzPJX1MPvMeA9gZvyaJ2p0yeXuuiU1jz90Q/55dkZ49uBmOSQ3h8HWDfMseCNR5uE8058cbSWillreb6nkek4cbc/sL3csVnvyHMUB2rtCBHUBugVJE3WCRUiNmQa19IUhd9uGI3j/Ow5P/vyS8ZffYXRmu3uEu9aMZzTCtt0KFfQTYt3nhADh3c3jIdbSAqjLFFFEhGVJKgvkSkZbNuQKKiQKUy43JBCwDWWHEWXUYympILThZuf/pznz54xpczrX/ySp5/+Pmn1jBnJLJLbUZ8kpchJSUuZ2l57jChzvX+lEBOEJKzksldQi50UAzmnKliVVqJWD/uJKgplNJvLJ/zh//X/xl/9v4+8/eWXbJvAH37c0WgoWVoNWuk6Jkzl1EH5BjB1IgehiXOS9pYqZJ1x1lWcVd9fHXPXSpGrHijHSAiBeZqZpgnXtRhtUbpIm8eKsD1nSQ82VXCtD+/IMZHmg6SfG0e3e8ruxacM11cMr78k+mtpFRuFbtaAJlXE1/ZrwrCXTC1XLSqahpIjh9s3aF2vYwbn11x+8AW7T3/IcPiOHEdyaurWbSh1OkiKAY22RfYka8EXlGvI2jANM7++vuXqzVvImv3qCXs0c0mkOCDC/Yw34ia5aiyxThD9XV7fa5ByEsRlSEpcAFvvWTViGf366i3XN9dcPH+B7TcY85YpSqWTU8aWjK3VQk6xWojLwQyilUiqLr4qGipKDOBUjNVZsIAX07aiLPMYgAhhgjhBDJi68ZWKInMMpFKI88x0PHK4vuL23TVvr25oz5/x4z/8B5yf7XDOCnhyljIb0hQZjgOxphGneZTqSxuyMQzDkf3tNfN4wCAiPasNb779FaMf6LZrcb+tRmE6CyiTMc9MTqmyIEJFoiCTGaeZkApTLkRKPf4WwVu9GXXcVSq1hW6XHufpwNeP2ZOlpaJqRf4InLzXB6ofV4vgE4hZ2i2PtBYCKOqnVa3B4nuRUybOkXkaGY8HNsNR2lc1uKvtWuJ6fcoJoQKpRSejlGzUzWrN/dvaflnGO8oifBNFv6qVk0q50hzloQdfIKvCzdUr5jmivaWoRIwzKQVSSGJy1rWcXZyjXMurl9dMd1/y4mLD0+dPMU3L/u4gLcBSyCFhU8bnjMkyqm2r+E/SnE11gDVy73KpruICOJ3VYtmuHVoZiYzQkmmkcFVkq0HZ032Rn93IKsgJZXxd5YESM7oorFGsjeHsk+fYy0+4+09/RrvecfnxjvH6JUpFeVZyhhQFfHYrVNfx4Chax4/rc17kX6c24MKM/NZw8unPH70eOgTvaVge/fXp4wuK9cUlzcUT2ptrYW1RYhIWkwA7Y2i8WK+7zqHQlJCJcSSMiXEYOBxkmub5Rx9iqo17yolwHNBZk9peGAobRVCPFEF+3WKiRa8saMfu4ine97y6fcvqzRuImrPdJcb24sQbAmquSeTO4rUjb9ckA+nujjQf5RknyxpVUEKhGEXOoWaI9ei2lakmK22XnBMlFfy6JeSIWW3xZ894eTiS26e8fnnP3fw1m2c7TA6EFFF1XS0TdTnHk639CSRmEcTqsgBGYfNSprJ/1cG6ri9qvMQSzyU3bIGstUWrRU/x9OMfYv4v/3d++v/5f7HeOnTjCOmeaawtfaFGpZWVgBTIOVKoAEUtWT7SKlPaYpQWl1glAvmTrb7ipLnJKZ3aRDIFWXDW4ZsW5y0F0QdNORO1Ic1HjNaSj1QCJc/Mww25OMiKfLhj9exjNh98znT9NSonCCNptlBdlJV2aC2aHNv14m+Vg+jH4iwJ0tPIHI7c3CeOdyOXF1s2H3+O7Vv2373DlEIICY1Gqwy67l2akyRAWy0tKRSYTKc85x8qbu8OXN8NDKpjXzIxJ5rG4awlZ42zwtbmhYkO5m989v5rr+81SIGaoVIyprZj5iCLxGmFUoE3797xB59+Rn/+hObqDcd4lEWVIm0jfWS8k2yKUqDGUGMMpCyHT5EepdKFPNe+nWslM0VrlO2YQyYebwWhx4AuWeyFU6wCRk7q8hQjcRplcud4YL+/4+Z4ZEyFH3zwIY5EPO5JsyVSmKYj4zAy3+8JhwGVs4gTa3VSlCaqwjweudvfMuzvsUVTdiOrszNSsdze3RFSxHcN2knsvcnIk1ivYY6ZohUxi4h3MX06zjNDkNTLjCIXGbsVgKxEQKbkUHNaSRicevBBWXwqFhAhG1WdW36vvfPb4tnlPi9g5gRuCiefk5M+pP77PS8MKjBYRLxJaPs0B5FRGIt3nvXZjngWHjFAvAecFj2H69bCHKj6Z0qR1eIFgyTUUmRSiogukFIiU0g5M9zfk/LEVz//KX/5V7/iepz4yR/9Ppe7DcM0MgwDbetYrTqUMXz581/xL/6/f8LVqzf8ox+84P/4f/rfg235+V//klisuK2UQoySMaKsxWUtgMjk+r6UjKVqGXU3tVIy1qCKIsUoZl+qiG23kZFYXUWnWst1l8OkHhxKUzDi2QD13lgB9CFgrQRVbs9W9C8+JKuGt1+/w3RnbLeecf+KPEdKqdqsOVBCoOk7cfCVvs174tjlXi4M26PhjofqbGGtFA8f8IA8kEblf7knrlA1jLLqUr74gsO3vyYPR9BKTPSSjN8vGgPTOIx15Cgj53nOzOPIME4cp5H1sx3eONIxYGrPP+nMTIJponiZKFPGiJP0ccJ6A11LUorsCs3Zhna9Zrx+xdube1oaVr7DNgrlFSXUqbZsUcVThBzGe0fqWlTM5DSRR2EkFg1fDiLGV8aChmbdUYomJ0kEHo6jMENxQmvN9gc/YLwf2b+OvJluuL/9lrPxLX/v4h+j9ok4T/K41z0zZbFwSLXQo7Isp2eKxf+oXtuyBJeq02SPrIP8UNRUYFPjteqEI1WEL2L051/8fdT/8D/yy3/1PzGMI/FYwa5W5MWjqICuDsqVKhSGHCVGe9qwuGYu791Vz5RcHYUfWhfi4VJyEjCS5LlZdRItkaIYj4Z5IsUD1nqJq0iJfHeF61a4syckvPwzHgllZrz+Gn/5McbZ6kYdZVAkTCjrK2CSZzqGkWwNKUykeRKmPxdxhZ0nro8WkxXnH3zI6sULxv0Vw/0NXSM/oy4FWyoQtFRnWGFGizYoYylIm8u5jpVuefZDxdt3I/urezCKtm2xRljYUhIpZ5RVlDAT0oh/pCX6XV/fa5AyxoQrRQLRrDhsliLVBEUTQ+Tl2zdkVbj86CPcqmf37h5TNGU+svn4E0opWOOIUMd/0yNKr46Q1THZlMV2XRZpYFYWbyzjdESPgxyPc0alVP1JZAqmkCklonKmpELOkkQ5DQPH/R13hz2HeSYpTRgH9tdvOd4ZMlnGUMPMPAem48A8TWLc5WUapZRE1popBKZxYBiPhHHAK9BMhBIZU+D+cMscA+3cVOMfi9cyfqu0ltHeFMDYOsacSVWRvJ9mxlgByqJYVBqnxBsFKiWfM0ErdJGwspiFLny8Jpf2iVIPQOLBs+MRQ0ItvPTD7/XSz16qod/4exYhXqmB7qoyKhVQqCRanDhFhnzAWEvTdDRdz/7mkvOnT2to3enNvg9SlEJbR0bLdViYITJKW7LKoBLGyLSWTKBUcKQVaFX1R0eU8VjrePP6FX/2H/6Cn/zRjwnDxJwiXnve7Qemounanh989CE9sN9H/pd/8xeAJiuFblrx4aEQi6wVae0oTNGA5WQFX9SpAlWLj4iRPrPrDE3f0jYG2zYySq01WP0wIaQXJqim0BY5VqjAfqHUSk5k8c9Ha1hdOJrVOeH2jturI8Un7HbHnCJtEnYRDSUGzHSk7Vf4VX/CFoJVHmzcFmHy0q55b8pnqbLrz7y4Cz/GKf+1/fH9VpIAmmdffMY3/1Zszo1W5KOkgTu3OAFbVBFAXjQUHQgpM4aJYxi5DwPb5inDzZEcJa1dTTMmWxL7CnwidrVFaUMZZsL9HaHxqLGVZzMcGcY7isrsVj3jOHN7PNDf36Ic+FLwbYMuVL1bAm3RTuGKIuLJzYweI955cjLEKGGUS7SGVlpyWoYR07QoY0kx4Z1MjqmYcWcbbl9+x5evfs3X3/yMq7vXZKPJrnA/HGHak9Mk9v5ZtHwhSd6NtGvKqYDQlfmwSslUm5V1lHJ1sGZ5xgWRLp8L5bSmdYFcEqWIk5NsCXIHfbPi2e//E46vvuTtr37OHA7sYyHbglLS7HIGuX9K2nQxzBXML4zPQ5BoyUkOaVVqy6jIAISSvaCkgPiwLC1PTWsbMXxMkXme2e+PlZmAFEeyURzuD8zDjBkjei7EbHl7s+fVlz/n48uej37wKWdtJ+2oIlEXddXL+06Roqzsb8aJvQEQw0RCEcPEOElS+fE48eLZEz75p39MzDNvvvmKOB6YMphJwB0+gcvQeHIC5SRs0yhDwQBG/JOspXFrdrrn+X3g3Z//OcZo5hhP+6Jw7qGKhmVIIM3Df+UJ/Jtf32uQsvSryYXjGCRx0UpPTSlFKpm//OUvuT/sebo956Mf/z265x/TaMPbP/sTrl+/5Hj9ju3mTBZgLuSioC54pSTptWhNSZDSjC6ZYhwmJZSFNO2Jg9C0JRU0WqLqi0Jlsc42SgNZqvgoAtVpODIej9zv79mPE3MuzDnz7ddfk4YDSiumeeRw2DPMtcJXlmQ0tm1p+17aLSlIS2YYmI4TYZ7IeaAxhjQfGELgbpgZxoEYxXq96VqMscxGSQieMiKwUwliFsQfA6nqNeaQiamOC1YaPQJjLkxVjyItFoWrBkdt1QYvrYGH1s6jNk01T3vcUjkxI/Xj6rc7vU4H7fI1WLiY8vDv+jEGyFpJu62AeACI30YIgcPdHU0dTz68e8c0DHKd6zd9/D0A0FoEntqRUhHQqeqbyglFfuS/kE+FvNYGZTXGSGJqCgnrep5cXvKHStNtVzJWaAzNdsv9MPLu+I4vPmn44oef8fGPf49f//rX/Pm/+P/x9u5A61u6VSspysLLo5C8mBgDJmiKNVAdTqBWmjXwbwHgqibDNlqcj03jMY0X0axRdZRY2g+lLAcaqBrLvlj8y/3PlaXQKNugjWFzuWH7bIN1K26/e8Wb1zOUCb+dSVMhxEweC60yOFVQN+8w6y2m6VlYk5MHyuMHv4LHRcDNslIefVBOUsWX34Ad78OQhz9/+LhH/10K680Ou16R7u7QIaKsxtcx9lIUzjX4rgENMU3MYyDkmTEHbqeBfZwZpolXhzc4bemaDm8t3kuuUxwn9K1Fu2uKbTkORxKZxnfkbIhxAhLDuGeYB3ablmEfSMAYZ9o5gB4hZ2zr0An0XMAW8lxQrcGYjHEeG2TsuSiFDlYCTomApPiiZR+gEa+QXBnbNE+4Zo1qet5c3fAf/vpP+ObbX9B4x/nFC6xbcXN/T5wPhBRIGRHyx5k5yAGdo0yjKKURTaZU2xoY5yAmslkRa4GxcC0P92UZQV6ATmVJ88NHLKaNMWUKmm73AR/9k/8zfvuM/Jd/wvXVNaUoYkhoY3B1iiWlamhorEyxaE2JSc4RMiUp0d3V1oewzgLUtUHavUqJnsUobFE4AzlkxmFGo/j6q7f8+7/8BtcYPvnwgo+eX5ATzGlEm4ieEmU/89W37/jFL7+lizNNuuTig+esC+AacqwsTZwwGrIaUKqTwql6phjrwDnM7InzgDOWtlszzhPPLxy//6Mf0/Yrrn/9Ndev32LiPXEChUx8dust7aYn06KUp2SHSR6NxWBRxqJpUMpQrKU92/H8h4Xbd+94+/aNOBanOuGZowSxhpmSg7SbH7k//66v7zVIMWrRINQDTS2Ok2LVHXPh5dt3/OrVG3b9GnP9hs0Hn6FdQ3/5hFgi96nqOrKSxaqrk5+S3nGsyZcxBkp9aJWBmBU6FuY8kUMWo7dcMNZitMWiMDlVZ8SlRSHz62GemIaBw2HP/TAwloJ2DY3KvLq64nB7T0wzV+9u+frVNft5RjnNarXmyeUZL55dinV1FqMesa2fGQ8Dw3jP4f6W3jrOLi7Q4R2xageGeQa0UMHO4oyuP6uDnBHFSSGVQqjlTCkwVzv6RRuwjNpGlEwMLGxG3TCsUjX+XL8HRk5hg/XQkw6Ofu9woYKC09TGo0NFwwOTwvsU/zIVpOrGtohVzelrCchSlfHJpRCmwOH2ltVmx7A/MA1H0eKcDqkHoLJU69Y6tPVySFeArJSWqYRcZCQXoPavtdL1wK921miUsfTWcaEN3dkG44XVaPqnlJJ489VLxKVAczwe6XzLpu/xqzXj7UCxhmJUnWKy1Qgwnto+RiuSE5ZEHGXlAC85V+tHEapa67DKyAgr1QbcKJSX1tCiJxXmUEmAWhGdkqrgTI4L0QJQEtQIhNWz5xgMvgsY79n/6ltKdGgdCfcHGqvxOtN98IL+vEPNN4zvEs1Hn9UsILn3C0NWysMiUY9/rb9Z/n6pMFNKkoP1XrvoRCWx0P2PV9jpcDy1mWR64tmnn3K1H4j3d6y3K1Z9CyHgTUPjJeB0nmemMUiE/eHAYZy4m2cCiru7A1d3gc57zlcbusbTNBZ1y6kQiCEzKUUwmoDmMM+829/ReM+T7ZqSI841bM8vMP6GMhfmGBiHgRwC9H0NbYxY79ExoXqHKgXbOko0GOTwjSrgOgFI5MQUI6Xe05wFVJumkXtrDMbLKH/ylpdfveHt9RX3x5G27dmsL9lunvDy1bfc3LxjDEEyp3ISF95Yk4NjZDEV1FXPU4qAjMNxZNNrivInLceSdgziQptOnkuP2bwHgHoyfCu1ECmKVCzu4gc8/8kzdLPh65//lByFLVkGLKRNLc+QMfpBw6bEnTrljK3gJ6lQhymKhLMWxHxRy3vQRmORe+qMYhgLr9/eYY1mfzhy0Ymh5t3NAWctTy52Yj1RIoyJtzfv+PqrV5ic2FzuaHfnbD78A9puQzSWPNcJnBjA2dqJkgLFOieSgpQw3tO0kqM27G/EfXzWuDhx9vwZhJG7u1vm6R4miXuZY0Z3l/Ttmo2+xKsVFAvZQLCoJCaUxhhcsaenRRmD6895/sUXHO5uyFPiNswsmUjDOAgDzTJMsbBjv/vr+w1SqtPsUl0vy1q8NGSM+P448C//9D/wkx//mFwM4XCPWRWUcyRtuXn1kmP6SsKpiugLSo3vTlk2/ZQyqWY6lCILN+Okv5gScUpCu2mNyxmrRF4aS8aqarimBFDk6tg4jgOHeSQaLfbdSuLcS4BXr6+Y55lAYX22ogmOkDI5B67evmbY3/LZ55/Q+JaSpHqPITGEiW9eXjEdBzarHreFtnUYq8g40hQkNdVonCoizioZpZaKswhQKTLJE9ICWAStiBBfsmsiYkS3gAPZ0+VhFo+rCkxOtuSPbhQPLZsFxDyIVaob6okQqfyIUlXUtrAoyAH8qJZePvq3SP16JsFyiKkT6JrGgWE4Mg8DYRiJIVTBXjkhoaXls2yySptTpScMEDL6p8xJNLf0HpRW4jJrxbk1yw6KotCtOrQRdk0rRdf3pHnGWcs8itvs/v7AHAvjONCsOvxYbbyrTmTRloAkIpeqJ0op1sgDqVgXV81CqUJXh0ZoW9UYaB3aixGhRiaUdD3Ms64Om0gVXpXWKCtXP8dJDKCUpmgDtqe5/BTnN5T7r0n31zgb+fjjjub5Bc35c0rY077+C9YXK8yvfsrt/Cvcj/8Y3XXE/cjiVfNeq6a+n4Kq4+3qBCjKqdVDlUCVmr3Fe5tiqVfh8e8fflNOraKlVQeZzeVTbppfoEPH9mKHpTCno7g3W5hjYh4D03RkmI4M88h+GggpsdpshOpuNW9u7hhTZOUbTBXvh5ROud/Raq6nwC/eXPHuuKe3jk3T8fxsy+cfPOfy2Qv6VUNWisPVDSEV5hRxjSeWBMOEbZyAYmUoxVEmid9ovCMVRTIBp72kxjeGEEa8sVhvKSh835CVMALzNEs7JReiUuAt++lISrBqVzw5e8qzy4/ZjyP/+t//e4ZhkoyXQl3rmZQyMcnUYCnl5G9Eff5QisMwslGaoi0xx9PtKuiTeLrUacpS9KO79qgFdAK0pbb8E6VoUna4/pKLz/6I7e4J16+/wRjZx2KMOCc5OCkXUA7rbD1HC1S/myq+o4Bo2YwGkzFu2bvkWdBJ15BOI4JWZbi7O3CzP5Ao7M5XhCxap3GKvLsfsF6MMqeSiNqxvTinc5anT57wg3/237P97PchzRhVZK8Ig+ydOdd2TxbWLEUpFJScfyhhw5yXOI93N0dU21HiTBgOhPnAPNxQKtN1Pync+pLkX0DzHKtc7QyoU2vOFYvDEJXkfpUUCcNMShrVXrB78Yzxl1+y6Xtu9vfkVCcel7FjVfVt6jf257/l9b0GKctarfIATqelUoSQsI0YV/3FL7/my+/e8t/8oz/GdiuO795yuL7i7vaO8ThBN9KVnXytea6be530iRFydQ20BpqWME+UNBJiIEwzKUQJH9SarC1FO2EUUGSlUCpXS2Pp007TyDBPzKpIwqVt0UoydVZbD9ry9u1bwuFI33XQteJGqxTaiTDz/vYdZb2D6iY7p4lX1+8YUmJztuHJ00v63QbnHUZFYskkBykEwjyjigVrqseJpMoWifMkFzFrG0NijvXY1wpdlfeL22rJWUbbqLVMEVMxox4mfZbWzW8qussCSFiEtY8ATAU8p0+p91n6w6Uensuh9ZsL/qEFsBxpy8eWUqqCo45C5iJ09GHPdLhnOhwqq/bwOQ8TR5zaJMaKDmHRY8h5KZR5jiIEXUCZNotdv1zDEqUtE6ZAiKFa/Gds47FayeaaC/M4cXAGc3OPnwIhZ7q+Z5xSHa+vDhHqYVRa3mciq2oUlQIuWQEORto/JRXpi6s6c6YS3mmaxuK0F8tvJVqnpe1ZchHhXClSIWnEEyZHspYeuJTgSnTYrhHQslHo+UC8+RVnG82zyw9pPvyQ1J5zuH3D7X9KjD/7dwTXkf/xf8PuxQcEeu6Po9yrKlZcMKbgI3V6xqn6IWklPtyzE3BhcQN9aBs9Xk8Pa+TxP/V/tcovOdOsV/h+hVIG61t0ijjfYhtLJhCnzDCPzCEQ0sxxHjjMM65xbDc9q7ajNBBK5uX9PW2Z0VMhB4gUoipo78lR8/Xbd4zTxJPNFltbcevtBbvtBdt1T9s5XGP5dhzIRwmYnHOAWCjZypSdMQRdUMMoibMJtPcSIukaCoYUAgopyEqaQSucazGNRbeNAJQpYBvwbQdNi/ItCU3XrrncnfP04hNwjv/pn/8LfvXtK1TJp5H+h8m48v4zWumvvLAY+sEMjQoOc1Esw0A5V6O3KHssylSGtxYMJ81VBSxLxEfKp9gNpQ3d9inbp59w9fql/H0umOVzKqjSWphdaS9WFlWLE29ZALPSp4lGpevEUXWtLTXqwjuNjVlaqNbIs902DONMHAOx9sHHkEghUbRlfXHOenvG4e6Ovt/wo7//Ey6/+AJKohgnBm4KcSqu007KGiiBklzNDtJo5+RaKC0akDADhjFkOm8x7RnkyH5/w1x1lNNcCGqF9Vvc5oJ2tWWOijBHyAmrFc5Yipa9RNkaHuvBITYWMp4tidCvX73kyfklx/HI4TiSg+xxRcl01d/19b0GKQs1q9TDPEeuC9c5C6pwd5y4P17xr//sP/HH/+3/QBgG9q9fcXd1RZgjrl/VgiwTpolwHGQO3comqMqDxTi5kKdRvElSJIXCPMvYqMoZ6sERYyCRCEoObFKWj8+RGCbmMDHMAbTBKStGQjXLJmlNrzTPfcPd/l7o3Fyt4HPCOmkfDPPEfHeL0iLoHecZ4y0vPnjKpmvZbLf4psMaSwkHVNEYI5tDylLBiapXUZSowHPIkrtAISTIRcbcqJ4oKKpjbN3cK1OwjIsuFvdGga8CzmW8eDnkleKRDmW5keW9+1mPeDmL4ARYTm0z6vv5rddjcFL/ZPk+9dDSaBG4Lt8rLXqeI9PxSI7S7jkV32X50dWDF4xSJx3Oks6sAZwSL4EYELG0UNSmbqIpido9ZdH9pBxPhnfGiKW9ZAw5ijLcH0ZygU0NOzRa0bYOlNxLpVUFh6o6QqpTH33Z2GOKWGPJMZGXIEsj1aLSCe+lZaGMB2NlkzYejEIV2YR1pcfyyaG1HigpUscApIKr2R3FWFCKrBpK84Tp/i8w+RZfGsz+HqVa8i/fcfOnifRCsfs//EPO/sFPoOt5fVCUrjmtqWV5PBAivwE23rtPlfFiCZTk5Cb8WHS5aBcer5P3KJXTehShdbNa4fqOOEs+imktyinxPAmJEGcSmTEG7qeZ+zkQKJxvVnSNxzcOGo2bG45v3/Ld/W2tTOXZmdHkKNM0rves1i3eOTrX8nR7yWcffMjFekXbe4wC1zh2T59x/c13jGFCzVrGvlsl/k7BYLyR7CTlMF7M8YzzkGWaSzkrJ0ZQlLmQlRZ3bN+hMSjbkKPo6SSx3JBVgRR5urtktVrTrM75l//uT/mrn39VBZ2VaeV9H6SlHfywdpZnXIHKp70jFTHbFBP8WrwoMassOUgRpWrhUR6A6elhPYnxH/78lLzuO9YvfgD/+U+kLauk5VmyrO0Tq8tiBCji32WtZDSkDCqfWrcLiFK11SvmoRYJLwSUgBbnHS4lceR2jhgL1jUy/KAM2jesnnzA5YefEfe3WKtZ7TbMh3vyEtthHbk0cr3me3KJ5CCXwJnqBm1zjVuQ4qkg3k6YyPXdxOeff4hfbzm8u2I63NZcMrHOwG9QvpPR+iKJQuKmIzpLbyzOSCtbJjoNxonpZM4e7xx9/2O6foP3/5Hr717SrRouzzUv37zicHtbzwP7X9i7/8uv7zVISaVgFrvJItMnEqktiuuQC0sk/bfv3nF3d8PGaFFxW8eq35Dv7iiGCkxstfeVzb3kDEbL+BeAbZmGI1p7YiikLAdazAFdZ+YDkEoWR9GSRGibpc2TYiSEkTlKmJbTLQXxQUBrtPHi/uk0NA0b72jGiZhmYgyEMDPNgWmemKdELPKAW2Np2oYzv6brWtZtJzbdRiY1cs5gFCEF6bVqWYApIxsUgrxTNd/RihOAialIpEB1yS2qGqpWLw3Z7GsrplarGfEUWSLDHxiJ+k/9nAczsMUSX5/U7wutT/0srTWN99WmXqrsnMvJLfb0qgeaqr/KXy28DRQlE1pZpKqQYR5HyRqaqr076gTETq+6J+pqMJVzQZVci3lTq686flxyHbmsP3sFZTElQkg1u6KcQNsC4nJtpTVNg2s8JUfQkoOkjUEbjW9steCvB4BagAonMCc/p2TGpJjIJpFsFrvvkqUdoOXhb3yDafoTVQ4ZnSJFeZTr5GBIEWFV6rOWC8rKz6pSqLfVUVdCvZ8CBJM2hLsD6eaK5llLmR069+g4kduB1X/7h6x+8g/RxvGLq4zeOlYbXy955cIqo7JUvacb/Vhb8hutROAEZspJ4KRO1/oEdctJkvlw2NXPKZXlcm2D7VrKMKG8R+ksOpAs9z+myDQNHA4HhnliTJmm7dht1jgtacwBCCT8psEfYT+M3E6BOWYOGbCatXc8323Y7LasuxWX50+4WG0573e0jccZGXO31rI7f8Zhf085HElpJuKYk8LOSiIvMLWlBGqK6MYxx0lEviqLADKDbQ3FasIwykh1Nsz7I2arcZ0IoLVzpBggFzrf0a93uG7Lv/6z/8z/+le/IKXMaeJkAfEPXERlScojTmUpbKqzaVnuVSZmscePuRCjXN9Mqd5Vj+7NglEqcF0WxsKcLq7aejEdNJrNhz8iZo0rUuyBktRopVA6U9Is7VFt68QjUmCSKVlCCZWTwk1G/0EXRZylnVFQlDChEQCjtTDpRUlBZ4yGEmkaT9P2KOOkzWQ8Kidab1Hn52I3MQcUEEJl89tGwnRrpHCc9qANVntSBVOkQlKyr+SSyWEmpcw0Bm5vb9FpYrp9y813v2Y+3opYOiuUUxi/Ei1hPaessiIjKAWrwDmNt1XqECM4g1+ml4omW03JDu8+pWt7duu/5OXPf04umt/77HNevnnF1ZvXdXrycUXwt7++1yDFvHf4cVqwqfJxzmphWoC3r19xe/OWZrNhmsZqpZ3J00ECnVgoRFFQC4UuG5cyouI3vkXbwngYiChCDMw1uRZt6miqTADprFBJRtNymuu0QWScJ8YQUaYBZbDGk7WX5M2mQxtLDjMmRBxKRglnOaCU0VLxGFPjveVH1tpgncMZTdu0WN+hjcM1jQjMmpZAJs+ZjKkUaoKcTzkKmUQqUdpKRZiUpDLTlBlDJD/sMIIzlsOwbj1LbHoqMKfCHDlV3vV4WJjeasjGSYui1AIj5ANO+4562H6U1ui+O9nFq5xPrasFEAgoeai+T19ALWJaEZ4pVdBFnVo/OeXKjgkD8rDhPfqZH1Xsy/vLdbpEL94jRjGPk+QWnc5FLZqRymDFHKHo0/XTVXsRp8Dd+I4QZobDHquLVMAUwjjUQEBdNzp+Y93nE5tSVJ2wOW3WYtN9SoA1BUrGKFkfoqcpKGsfxM0lCo2eoGgvPfkFfNSUaBkdrsxLiBTSaW0seTbkyHx/xXj9DV5nQpgwc0C//Zb1U8un/49/xurzj2mU5+18ztCfsVmcexdm9MSi5NO1L49vwoIey8MCLXVU+lQpLwzMo09ZXo+JmPLoyy5foxTZC5rNhnwYZBamFMI4QpxRWcL9hnEmlkCMCW8tzy7P6buWrCyl8Rz2d0x5ZnOxQbWeVVozDjMhikmcUpr1es2q7zm/fEqvLU8+fEEzF+y6E/CXE8pZspIAxM3nX/Dt//qn7LIHJ8Z+JQd0kJZDQCNDXhaVC9qLlknMK+U6W6XIxhKMFFMqznS7LWa9IoVRWngpi/V7SKybDYdux5ffXfNnf/0zpnk+oeLHwPkh20o/us51KuwEXhAgiBihpRjIqZCT+MXkRciqqKZ+GWuWe1R4T8pWgdAJ9FcgtHjeKK3YPPsY26xIxxsJz9OaFJO0L4vCVMMIVQMDlTbVpTWLF4s1pFj1H66y5kR59pRCGTF9U0b2nZgjc5gIUSgPrcC2nqbpcE0P1jGMM0pracWUiHEtJWdinCvLKi3hMA20bUPTWIzviUlM26CacIaAtR5ykOEPpcghEVPhOIzcXl/RkHj95U/56puvAGEFSxHtmW28eCjVn1+rmmFE9dtx4kbNFE86I6UkUBclQDcnKdTPnr6g8Y5Ga95+9UvmKfGDjz5n1a149ebl+0Xl7/D6XoOUmMWxUOsFpSaWgylnmVCxVcC5XXWokpnubwjzIMZv97fcX79hu7mUfJVaxWttUCVi+o049+UE1stBkSIlzcQ4EVOUN6KUGN4oTQkzqhRSETIilSq8TYE5zOwHMeHRSgvTkwrKK5QS8yzTNnhriSZSZG70dMhCrUtKEpquVilKaZy2NDWXJabqelqK5Es4jykJlWZI4oeQU8Ea0OrRQZ0zpYrcYi4kBSgrs+/151yo20WASt0IFtagDqVSkjAVS5bMiTVYaqlHehVQp3FW+RmXP+dE+0cUe8QsrtWqBnwZtLfECgzSQ+pcBaHlfVZl8UCpVL+qrJBUB1nARUyP3sf7bMp7Epi6MZrFqE8lUirM80xMqWYXgfVyiE5zkJHbXE4sQ6nvRytFiWLUNI0jrmlZb9t6rTJhnmWtKShGoUs+Dfwu11SVZYIMlKkarZKryLXqK0r1eyiSIO4bi+5b+fg8o5OluLWABIOs+VKk7acfWK9snLQ3c6Zo+3A5lh4LpW7uiauf/Uf0cEN3tkOfXxIvP8NcXRNdw/qHn5HvDtzvXqB2n/KFMwz316f1Xh6xG8vBdLrBjw6mhz94EL1qIxNtuTwCJycNwiOxtVziB/BSHkkxTx43mnZ7xvjmmlQqDtaaaR5RudSx20AIEUXh7NkTmu0OWk9MmfvDgXmKaNvgKLQNNKoKpWNmGEaUdaxWPZv1lm61prFWxJdrw5AzdtMyT4FwN9KerUDNdOsd7ulTbr/5jgujsM4QYkLriBoDNMs6NhRTMFkO2VKUaDaMgGXtLT60EuegLVmDSYk8RVAB61uZGlGwW53xttnzH376bzgO0wOwrW3g9wBKZa0eGC25EY+ciEQzQt1XqqYhF1uXUqVu4QSyJT4ig5afYwGnD4PIv/1KSZ6W1dklFx/9kNd/+W/ISVMqM1VS3SeL+ICIpKyauAEKvTxGspcVxTxHilLMdaLRe3kmjBPnohjnGiArz5qmoJ1me75jvTmnZMM0R7zxoAxnuzWbVY92LbOFOQRSyhjfME0jgcx4uMN7w2a7EW1RkCw5CoR5prQdOdRMNWvRxjNMgf39gWnOHA8Dr777ilASjRVLgoJBZdHZGasxBpQ6NdwkJd3IuLy1Rgw/SyGn6qpb8inyRC+McDLYy+d0/YputeHVT/8jt1dv6NstT57YU0H7u76+1yAlxIw1uhr6FIx+eCgUBbJGWVG2v3h2SS6BOSaGYU+MgfvrW968vebsxyugyLSEdZScUUm0Lqpd1ZtRyCWRS0WOy4ZZfUGWsCmlraT0ZjnsUx0xm+LMzd0duu3Q2oH2zDFT9kfIitIWcIY8DmgrWQ/GaHTbYjRYlYlTZoqBUEDn6nSaszQZYiSpCgp0JGtdxbayGNGGYixKZxSSIZSTUP+2WqALCyWgIuqMtZYS5RBfKPRFgPqgM9Gna2GVonOKVaPpbamJwg/ApH5CnZU/cfLL3zwCAA8gZSmfQy5chYRJipVRrK2hVXK/bG/Q88w8TeIlsBxI5QHaLewPp42mMhn120ocQvotMPUbMOWkTo8pY6mS45Ip8cHCPS8aHaOxVsZhU1l+pFxBWz0KSyGESJxqEvYktvjDPJCjbEKpUr/GGbQ1WC9Ga0qrU2W6LMfqGYdUhPIclJzFXK4yjMZqrNdYLVksBcA2skenQLEt4MCIc6mKEYyXa5oSMsauUClQjPTnyQmVUk0plkm0HCO//vlPeaInzppGQLy28NFn6GmEEuGLn3C171hPA8M4cX1zx/5w+8BmnLi0B4CiTofSY4DycPQpHiaDcgVOj1kx9ejfD8DnYUpIDsdMKYklrLDdbrGrnhwm8iwW/jnV3DAiKY6EY8B0Pco0BG1ItmEY7ihAs24JBPbDgLNyqGtlOMYRlSKr1tOXgjcG4kRpLanRTMaB0UyrlqIUx8M9h8OBRoNuDdsnz7mbJ8rdiMpi7DXNMyrLRIY2kv0bY6LohIqS2F5KPqXCy0SMgmSwvUX5hpik9aiVFWah1DgR1/IXv37Nt2+vJcBTPVzzh0flAViWRQFLBSvvAUHqc1AFzkUMIHOWAmfxl8q5VJZF2ucLGD19pwUcn27psm4EbOZS0Ficb3n6g7/Pq7/6dwIAYka5KiDXwlRm5NksKRFiRGtzmsjLgDUL8wtzkOnHpm+Y50Apcy2EhBmiyPiya4Sp11pkQOLI7Nhtd+yqELXfnuNbIyZw7ZaYIuNwZAwj8ywDF3ke6LwlpZmz8y2u7cnzQAwz8xSIJWB9hzj9TxgTiFPkuL+j9Zaf/dV/Znve0XatFOILK2vUqdCXDmqs8oMa0mCLABhrxdOltt5iEi2jFEWSAq2NkzMvJfxqy9M/+Ee4xmP++t8yDNfkearO7r/763sNUt57JhahXZYDzlYLdRCq6vzign57xrbpMF3PzZuXDOkKtTnDb7ZAPi1Ia6QUzSlDkVHOEjOpiF9IMQ6UkTE/bYQCN0KTF11bRlUQWZSY2tzc3pGNwnhPSJwqj+V+pZKZ5gkH6JSwxmKNQZVM03cob8ihYW57Vt3EMM9iWlSoo6j1BF7YjEpV57pZJw3K+bqYNHkeKWnGWmEnag8IFCRT0IJ4mOaZVKTbvOhBTtkXCsRtVRZzYxWNXYz0lgd1oV+Rw/nRoS90rH4PDjx2eFUn5CKbwX7OoAp7pTi4zNY7eqNx2uC6jsZZwjCQ5njydFkOH8qipan7mVpAylL5ycGkTZ0I+BsZSanaHihsYUtKTQ3VWgCAiuK6C4UYxIE0ZZmsKimJ/idGYoiM+4Hhfi+pqKmQq+31qfegYJnHXv7TeovvG2wnFC0KkqI6YaqK6x7uU1mqzyKUs7eKrvO4rkHVwDPtLPhO2gElQZ4pyVBsIw6cRSR0mHqttJPvEScW3v2BsRBAFA8D45D4eh7Ynu15kiZKnsimJ68awu4JtJc894owDVxd3/LTn3/N4TBRkLHQRxjigezgASy/d1/qcpHPTSfAkX+zyq4g7sS6PRBAJ2CbH7NPJWO8p2gtNHySENKsRBc3jpH9PmC7Dd0nHxHGgdQYjsc9Ic6UUjgeR47H6WT2l8IMS3o0WTyVDGid616k6qEd0b7lOE8UlZgah7WOeZrp0PRPnhGU5pB+hisZY8V8LOaCihEVrYh9rSfPCd0aEvLckRLGejk5bUI7L895KVijKVbLejWeYjVD1KR+zS9e3QDiCbVcvN8UqBeKMG0lV1xSH7rTNX/EcAE5TqT5njhbSpaIBqNkEKJkeS4EvJST+NxUp9j/2pG37CaliKfHxac/AteSwki2hRITxjqmGCXXJwu4lx9CkWLixNVUsLQE0oYiWrkYMhQxRpznCYXC6ELfr/CuYTwOjMeJeY6kNKDLnrbt2Z2f0283NL1luL5i//oVaGg3O/rLS/qVx8zwbrhlPIo9wnhIDOMRZzK7s22dGk2YxpJjYAwzGI9uOvHuOYyM93vWdmaaj0wj+MaiVHVQLsKmo5Iw67WoQdUWci36cx111lbJ/oYMAoSUZPKzWiIolIAWRMtofMP5D/4+cbzl9pd/ipqO6Pe4tL/99b0GKcvI9dLjVKctbGEJa8WlNf2qZ707RxfodueYtqM9e0pG07SeMB6r54RDUUR0pjMxQNGFpMLJrAukD5tzAlVHUpUkYeqqAQAoJZFIHI8HQkmsNuekYrFGo7LEf8uGOsEc8U6RAljrMbpgrWhWSoqkFElZYWxDu25Y58Ic42l6IeeaYkztJzqDVmLDn1JhDhOH414Wm7GkonCIxsEoRaw6D1M0OcoMfq4tqZMAVD1UEYtmRyoeASk5Z4a5MGZxVy4VAMgZ9vjuPK6LH/2+HhLyezmgMg+HSKgVzVzbPzOJlSusjZYWkHXoToGeYJygCovLo+9yqsDqr6puTDnEuqZEX6KqM+KJNXr08dZJZZSyaFuoOo2co8QqIOwTuZC0IqUqYk1CX6cQiCEw7Af217fM44TMHdW2jao8gFIoVYV9anmzQl9Ph4EcZ3znK7BSD3odrShZ6HOrvIjH0RL/7gzeGZq2wTS+ulRKa0SlAKanOIcZbihTNbZ7ROE/DHgXUBKAWYK0F4vS6BJlRLJk7u+vOaTIxflz3gwzbbui847kM2p9iemeYn2DU4UY96gi/kYxPhh3PbAnnA45pZb7+LCiHgP+BYOcAuqWg+y902xhXfPp+5QToFv+SVWfAK5tcX0PIYgwsgmkuzsxeyxA61l/+CHHlImNZX93w3AYCfNE6x1xmsgZvLOEeRZH6jr55pz40DQWWqcpKmNU4e71S3JKrC6ekvsVtu2IxpC1YlKZu7t3dKuO7UcfoZqGw6/+kl1dt3PVMUUTCSqglUMbVYWggBZRvMytPBR0KWbUPJFibQtqmSbTvuOvvvyWsxcf8sXnz/nVr1timKiz/A8Xvz4zSyvzxGLVm/A+oFBV+F7IORCmPSp1OLXGUqfKSjmltcteV5mWXBBrB1VH5Bew9Nu7i1JUzybL2bNP6Z58zP03P8Wkctq3oOpTUCd2qMApWmFZD1TvlnEQF+6m9fi2xRlNyJGcMt4a+m7DNAWuX92wvz0whQymwboeZ1wFTQOHuz3eWwGsldXyzQ32u29YP72gubyg6zz7m2tUUYzzQC4T+1tN2xhhU3MgxllYlGkmhgPOGFIoDIc9pUQ6pzlOibvDTNtnvJdcOqV0/Xnl3FCSrQAkWCagSvVdKk7smaqXW0lZ3HurDEApkSbkur6cN9L2Vw3nn/0hw5tfYIfDI5b8d3t9r0HKaR0KRnnYyCr9fYqZKZmnlxc4Z1EJjHPoGPFtSxB+EV0Ro1Srqj44VRipDZEKUpSRSrd6SSlrZTYdJcCmtljSNFBUksj0caTfbsjK1oRag9GGksUiPySDanrIibZR2JLQw0yMiTkmxsORcDyKUVLmhFqlZypeHzFFEYmZgvNWRE5WExEL+5AC0ygC3lJBllGFnKC46n1RdB0BRKh5FOMca6vidIEfaPNaPefTvZBrZpWSg+q0WTzoT5ZfzYkxKacKVjYCdaqYl5tcKgPQaAlWj0k2iCNJ0pltpjea1ihc0bimFZAxjqhUINXJg0eb5GkS4REoOon+Fl+Tv2nJFbC+kUkylPhMFNHgpCgZJTHJRSlIumgp+sSMpBglxn2cubu95/5uzzjOpGlG54LTBu9E0JpjEBHbcnguRlgKabdYJYCj8zR9i208TePxTUNSUvWlbPHaY6wIfK01NE1z8m+hZGkZpoiOIkbMZkVq1nL94khRlmIbuV9L6JjSkKO0VI0+sXDSUhLPlNurt4Qpcn8fefLsCe7FTzBnz4jxQLt+irE92hjyPEFWdH1H1zrRzVTmLi+gcnnQl5u43Jwi5cliwLf8lVympQaud/h0gFVw8+hrl4d/PWr7pNMHaA2+X5HGUVgUwFjLMBw57o80588w3qNiZgyJkDVTLSCmOYjTa4gQAmkKWDRuBbtVS+kaVAHftsJqzHt0crSNZ8yWu+u3vP361xKGZxylwPrJE3JMOG1IObF6/hy19hz++qdsnUY7GXO30ZFcJoaALtKWKzNgFNYaYQdquKi21Ym6bUnvbjC+oViDXW24S4ovv3nJD9sN/90/+2N+/suf86tf/HU1DtMnxmkBe/L/cnq+lgu57BnwIJ5XKFISk8mNbVkbaFRGZ03JtfCLoZrzSUGmcyYrfWqtLkXqbzI0LN+jhmU2qw3PfvAPePvrv0aFiMdIW8fY2uUolS2kFn519VRRilKZWGCcogjv50KxyLlQRKsRMLx+c8v+es+0n4mxUIrGGQg6MmpD6FrGacZphVvy05KYsCkn2kL9zXdsn52z+eAZpIHxMGKdJifF7V2m6RvariPHwDSNgKl5ayI8DmPgcL/HOYu/2HL77chhUpylQv+oCBDCdUlwrtYJ9d6puunl8iBKPpFmVbQbI3U/EeH+UjhrIy0jyNj1Oe3FR5jbN//bAimSs/BQpXNKaF2qpIKYhRk2q5UgRSNsRc6JeRzAeFKcpddexJgnp1oFJ6GMc4gywZOpKZZIyJ92ZFXqKFd9SA3krECLG2CMoshXzpOQMeeYZkqJqJTI40TRTtTeIXK4f0PcD8TjSIxFVNrUQzxnSoiiVUgyFpzIMo+kKnuklWw01mCcJqlMQsYfQ6oaFWewSmO8tKkW4WxOYjKWomxc5MJxnh/XJPXyPrQRcpYgwiXpWSuELo2BOA2PKPmHc0XXn0ctle6jygVVaqvqtJUBouPcaojAhCIiDE/ImRKlvRSLxmtFW8A7LwFki/YhL+zMg5dCQdo9i3DSGI219vQw/ubDJO9P4dtWnImXe16rrMX22RiD1hJVABrnLSFGUsjVlOr/T96fxViWnfe94G9NezhDRGTkXDOLM0VqoEiZtGxJlm0JltuNvla/2jLgJ4ESYMsPhg0/eIAt2C9+kv1kyOgGBKPV176+lg23BkuiJmooSpTImlhkVWVV5VAZGdOZ9t5r6odv7R2RlLqvqIaBJnSAqqzKiDhxztl7rfV9/+8/JIZtR7fZcXq6YvXojBqx1O6VFD86CwwrsQpMhUlUMITEtus57Tu2IZI0PHf7kPc+c4v9g32Jlc9ZfHzwNC4J+c06nLHC3YoBnYxA/CqJVNJ73OYUsoGmJTdzcvKo5CE6snNTd6Um+H50vCgdNRG0ONeG9Sl7C8f9u+9y+5lD5osFuZoT6wOSabG6nYrfpqmx1nFwcMZ6fSmEbERKix+P1BhqKvou31sjyjMxkYpL6PRzX9PHTxd1KnDGAmUkGcs/Chmj1fMZ26MjQgSlDaaS+TuzffaefC/d+QNUW7E5PSaEiLVirhZ2OxwK1Q+EUFR2CXLnYS9QzVuUq8lktkePiJsd/dlGVH/zJSEFQgj0uzO8l6Jg8B63WGAbS7ucEf3A1dtPokOke/sOy6pl1/VEnXCFQyXyZUfOUrQoowtKJ/eyygpjnTgak0khYpdzzHzOmw/OSYhYYTZf8L3f9b387+tzjh7cnapCqU8vkKmLAuUSwl3WkKJ4DU3FZs+8chw0ikpldMriqpopxWoqfLMRNU6TP8nlsd/U7EzIrzStaRr5Km6+7yN88XM/S9evUUqM5GxVUPIAtrywccyhSpM28g5zyNS1wVUWYzQxQ997/JBYrQdW61OGdUerNAeLBbdvXmXWtLInVY7gA0pbfO8hCipU1S160TCkzPHqhG63RuvAm/cfol97k4ODBqs1lRNlZ+h7mqYVt2qtJa26GoTuqjVkRfADwQ8slwtitFTNmgeniZtdZN54UmVRo0dM4Q+SLl+3XM5U4etlLhRVhQBASokQQOkgZwBMn3Ug4awgxKaqWdx4htMHX/1TVqTAZCDG5YNlHEkozd7yKh/4po+zOluPUWuiPAgDWmfiyDnJ8WLDykULXsiGKiHduBepVxorXmPRCByPFdtp2cHGjkw6yqrkYOQsm00IAastDIHUiUxsWB3xsO8lJDAWuWoGpRLGGSF4BU/sBqwSYy0fIz4GYoGkjTGTn4ZSStKWcypjqYSrLfNly8zWuKqmcgprZAadcxaZojbiZJgMUcHJeifkqLLg9ehXn5m6mJG4GUo3nXKmD5m+zJEntCIXeWq59810s5YLOH785c9L3vgYMvOcSAoarYrvBIQsDpUhQVcKF4CoMtZabK7k8CzXV8GlAgjxTQFUyjjnsM5Nox7UH72eqqZFGUdK2wJHJzm8NRL4lxIhl6RhZ6TrNpow3qOy7lmdrBnOdtw4vCHKLO+LhEDktrpwE5SWoiCXQjSmyKKtaHaO88Fzut1xfHxO5SSLCSUjKaU03kd2ux3zxRzXCsIkG30mdT2mVlDec64X+N2GanNM0leItiW7GTkFdBhIwZBNLYid0mL+NpFMC4LCWOh7cthxeGXBV76y5vT4EcP5XUndnj9LTmLHr7UmonCuQinF1YM9rh3uMRIeL4APdWnz/MMbweNfEvRz4j+NIN3EUxrLqrGbZPq+y6iemNOVoEilcE1L1w2oEIXgagy6Mty49QQp7lDtnG53Trfd0HUDVeWwwO58S1htyT7T+8i284SUaJ3ldkgshozRnm1e40Ngu/OcDyd0Pk7uzu28RmlwtUjCQwws/BVU9sSUWV65gk+K2e2nGc7OICaWbSs27ll8bcaRRgyD7FcpobVDIYhFCuIKGvtQ7uEBYx3eNbz01T/A6AYUdH3Pzdu3+d7v+cv8l5/5j+zWZ1OBN62rx5qMy9DXReEgjaWscY1i2VhiSpytdtRaM68tSkNQhtjE0khJgSej96m+ZCpN1SUQZUJuRwmzyIddu+D6cx/i7pd+G6s1KojlPDlMTYu1gnorRC0JJYzVKHSOYoFvNM5oYu/pdj27LtB1A8vGsbd/lavLBYvZEms0Jit01dIu9zDGSV5QFsKwsTXV8gp2tiRbx259xunxAx7cv8PZW2/xzpsPWBw5bhzOmbUV7ayF3HB2/AhiZLZ3QL1YEkIkId5e+MDQDVijuXLtCtvNltmiZzg642QT2Z9rySWy5RLkwl68XNxN60r4hTk9zj1SWhqB8espmoIsy4UICUzOxZ4h4fauY9uDi3X5x3x8QxcpUD5EdSF901pJsZAVV649w/s+9DHQmtUuihtfzgWmjoIc+A5lm5E3SS5pvyEmQU9CcQkNqQRnSRFjtJPiRlGg7zJAUE44IcaRdaaytRDutCZ76QCIsN3sOD46Y7ce0NmgY8Yk4UNsh8CuHyAlnFEYp9GVJakszHCjqKyRKj7JwjJKo6KYHw1DYJMSx12PUnB1XrM3q9hb1iyWLYtZS1s7GmOpjSGniB/keZwyDBF2Q2YXMifrjUh7L20yEwmu/N1E2SgdWVCKdciEpIoPwohqCUNe0AE1Qb+TpwWX6kQ1AmPF4wSoi5tcowRRCUrhFXgSPitS0gRgUEhytQasK8hML4jK15xzqvxLWUO7WGCretpkcxIkS3/NmrJVja0auvWZmIGVDVNBYczLG9BaRiGKPNl7d/3AsOvZdT3rbceNm7fYX+6Rh4GwW5UYhvFlmmIEJxuudTLnrec1rm3AWoLSrDZrTs5OOTs/52S1wtUV84Wmcg4AP3hC39G0Fc5YySdKDj+AXXVUB2LIpE0mzffod+fY3RnGDWRXE92caGqIHhV6UUIYQ1aG0b9krAS01mAqut2GzXoNOTLfn/PweM3q+A1m8wNcO2D1AkUl3i9Vw/nRXaytsQbm88WlJrzslOM1mBCxi0t5uUC5CI0rTqOM3z/SZ8dK5A9vJNP3ZQpkfdlADKpZi21b/NCj6wbTVczmSyoHXYgYrVkdH7M7P6f3gc3G4H1kfbZhu+mIKePHgsc5jn3k6GjF4S7iyrrd+cB28IJY1BWLeYtTELpBJN2PzlkNPVXreOLGKQebK3Tdlma5jzYVe1f3sX5g8/prLGcLso+EIQjHjEIIVoY4eExTQcz4HBhCxM5khWbAaIdqLaqpuXtyztn5hps3lzLOSB1VU/Pe972Pb/mWT/Jbn/tlou8vfdYXPLDRsRXyxMGZfHAmVFYRQuLe2Y4uRI63HQcPz1hWFcva4irDIi9YDkOJkShE2NLcyD4im1ABead1DePof3R8Fhv65sb7iS/9Abt+g6osDBFbKZLE3xBDmkC7cX8LIZCTKKYaK+ix1VAZULVluZhR15a95YLW1WI0GgpaGxLEjrBL6HaGVo2ENwLaRrTLKDWQw5Z2ppjv3eb6k/s8/fxNzk6PuP/gXc7WG1bbjpgTxhri+TmL5ZIQE6QtxtXEoFDWEIYOPwzsHewxWy6J2dLOdpjKc7yFG31iERLOFWQbCW2ctnUF4n2kSCkS4iAmbyW0dPxHrmcuCezSoEscgazFmDLWCmLnZktMu/c/F0n58R//cf7jf/yPvPzyy7Rty5/9s3+Wf/kv/yUf/OAHp+/puo6/9/f+Hv/hP/wH+r7n+7//+/k3/+bfcPPmzel77ty5ww//8A/zi7/4iywWC37oh36IH//xHxd49Ot4jFD4uIkL1CTV6Xx5myef+SBKaTa7wMOzNTlFYdIXt1FxOJVNWyUxS4IE0kAJszsFhiEQvITz5aTJSYqDPHpTpFFNXzT5WYyvjLPCzwhanGdjJGVd1BuOtt2nMhmTLE07Y29xQGtbKlthjcFpeU2+XwkpcxiIQ0dWCRWjmOzULVXdyMgpQ9JGJM/ZswqeZDRaR1QecC5Q15bGWWbOUhkLCYahB6vR2WGxhBxRKrDyA2e7TuRopU658DxIBf4rdXEWRndAXBy9D5J+ehk+LF3qCNGO5MhpcwMuTiORRY6/TwM2ieU2SuGUIilRL3mlGHKiz5mUDVGpQqwrMkzr5DOPZRwxFkHlNSnEjr5uW/kcH1tEl4i3pYJy1lI1DTu0+JWMLV2BsY1RxJxQSSBQ6eAi2+2WRyen9Jsd2/MtptI0rVigK2DdQed7ccHUIvlz1lJVlmZWMV866r0WN2/QdYW2Dqxjb7vP/GSBfuceqfMMKVLnSKUqsTNPnpQTziqaxZxwckYu1ughZKxP6Erem00dvm4IxSBODzsp7t1MChMUOXpsSsTCD5nqCIWMOY2l6xPb81N2q3e58cQT3L1zhxw7jK3Ynb5D+/QtlK4BizaDjCCGHrRn168fuz8uj2EulSaXhghM8Hy5OWU9mtFvY+QpXKpMxiK4/P1YLI+S5TESY/yxDKAts/0Dzk5OJddEa+YHB+QYscBqu0KnSCxp47u+Z7vusVnz1N6SijLmGAMhU8anhLaWPARmxnDYNuy1c/b3lhxcuyG5ORpCGEgE+n7Lw0dH3D095c7b93n36BHPvy9w9cmn5fUtFsSD6/R7j1DWQd7JeC8DSVyllVaYypK1JlUFEeoDfuiZpYWgR0bhFktyPeN3X3gJhRZr9uTJKCoqmrrmW7/tE3z51Zd4dHQXX3xNRk7KuJQvAkZhmhdMHbsuRYFn6A0P+oFHZ1wcbMZypbV8vL7KrV54eimbC0SscOekWJELexEXUbZmylg6BPzgOTqLvHx3QM0OiedbfIbkJR5EF3VUImGKc3kqCDEFxVQqUzUOYzWVMaKObBWucoLeWlNcvDPaQApBEIcc0TGSfMaHAaUMxlmUSqi4LkRWJZyYYjnfzipUXuAqaB4dc3Z+ToyR9WbFwcEeCRiGHXEYaOagixncbhdIWXFw7VBs+V2krme4qmO169gMiT5maoodQhoJ73lCHcf9WhqxSIhe/MhQwEhuL67BSXxTlMolY20sDJPc70phXIWd7f/PLVJ++Zd/mc985jN88pOfJITAP/yH/5Dv+77v48UXX2Q+nwPwd//u3+W//tf/yk//9E+zv7/Pj/zIj/DX//pf59d+7dcAibH+q3/1r3Lr1i1+/dd/nXv37vE3/+bfxDnHv/gX/+LrevHLRspAHwshq2wydbPHhz72Z7D0DOstScHDo7VEaFtdTGpk/OK7HTqAs40UKUW6CGqKexfS1kD0PSnKjepDX/T3Uhzpui3ma6nEiIuaQxspUEz0GG1wrka7ivmywmiLUQatHVZZWtfiVEWlrMwfrcXWFm1F7py8J6xXQnIscJypa1GbZCHmDSkwxJ4+9RxaRVCyIFLs0HSSiKo1rRMoOgwerQyaRFKxhGlBNopHqzVdSOJrMlbX46ZfNgmJ4QY1Fn5ZbPHlNkxTZ3Yxw+FiDl6uo3Qs8gvEzlpLgJ+SUY400jKnHtskkR8qslZYNFUGpzJdioSsCeMMsMjjtLOo6CaOwTg+GVUxdVUx29uTGPevmWdfjGjlfWtjmO/tc3L3LUhJxlZKlY1IuhFrFX4Qt+HgA7vNhpQis1ZcgGvr2FsuccmQhg6/2xJixM5bqtpStxWuMkJ0rSxVY7G1QRlDVFrUO0phyFR1zf7BPl3fs1ttqWsnYxVdXGK1Ll1gotmbsR0GfNfL4WU0BFGBqcoSBl8SjzU6dGRTy9GakZGoimDthanW1CXnMgJyYBx+u2a7OkYrODi8yttvvMYwdOiUUMGjlagJIJKVoW736LoN6/PTQlC/GNWMDzUaez12Ao5fewwnQRk5LMaObvLo+COedyQJXhRCY4+uUdhSfFmMq1kcXmd37z6hW1PZmqapWB+dkFOk223odgNkg8uZw6blZjvnsGmo0YQhlNchWTuy9jXW2ZF3TNO2zOZL5gf76ErylDIJHzUhRXTjuFU5rly7xo3TY966f5+3v/o688UeB/tX2NtfgDZEDEMfcHVL3G1luKVF2aczJA1uMaeuG4ZdT700GEQNUhknxOym5a3jc96+94B2tofRElCZy9omZ65fv8rHvvnj/MZvnBI3azGEHK/XH8HrGtGTyW36YmlJ3AMUawX5QAZqZvaA3QB9EROgzWNPeHlPmlDPaewgRUaMkTD0rNcdX3rlPn2XuHXjaR6dvIPyYmyJlyLFWiN3RYxiA1GUUDmK/bxFDmBbthhjdRFCJFKQUZ7SJeuqILIqiXIoJ8jDFh/Ge1zTtC2L/gRVydmgnez7xlhy8liXmSnHQWrJqi+cPoWxSLGjNa5pGXzEEvFhR0iOvf0D6tlMzicr95mzlu0A5zvF1UE+I6OVpE8nT86xWNcj+0ccibWJFAMpV5cQ8DGVWpXRW5xQSCHlS6Mp2UwyCq/2rgD/E83c/vt//++P/f+///f/nhs3bvDCCy/wXd/1XZydnfHv/t2/46d+6qf43u/9XgB+8id/kg9/+MN87nOf41Of+hQ/+7M/y4svvsjP//zPc/PmTb71W7+Vf/bP/hl//+//ff7xP/7HVFX1x34989ZiNfQhyWgBRUDzLd/xfXzwQ5/k1S/+OvM2s9qcc2V/JhJhW7gbWpNDFPWHSmAu5KEpKWIa1REZ33fEEMgxFFOsjEqi0U/lMEyDRyXIMZGVeEoobaGYX4kFvsYYi8oyBzbWSpS2sTjnqJ10vlZbcaINPUYHdLYiWTQK1wi5SxmDMqIwUBqGIZKyBxUxLtNYSzJFFl0btKlJsaYrUmsQ+DKWw4sss+9ccnpiyjxYbUiFsT2e1FO3woWpmyJL8BSKqHJxW42kIITjEXVJyIwS5OtZaVTZb0o5wHgD5/L/43EhZ2JidFVJOopVflKFYCqvSWfY5kRAE0pTLORqLWnA2mBSxuY8xhOJgdJ8wfzwUFyFxxli5tJmJ69qxH7m+wdkLd4EzoxqoDxtykpJMeN9JPgBawz7e0vSQiS2FEJe9JHcBbI6RFVa4gmCuJeKfb0CLfdZyKBiRmdxhMzSoOCsw8wse3t7aDTOyqhHayPmnFqIu33fQ4xUyznxaCdEXhUQJnkFMaKcg92OZCqwNSB26cQBTDtdqaRFsj5G2Mt+q0BblG3p1mdszs7YP1wynzlu3l6yOl9xLa9p5ldBldBMLYdRs7yCtpamdjRt/dg6n5yNxwuWYTQBG0/E9BgSlzFGpP6Tb0weL/bFz1yWlo8/PQ6ItDZU80Pc7MrU/Vur0Tjuf+lLxBDoug1NbUkk+mEgDF7GKFnR2IrZfE5jLbPaoGJCzRoopn8ZIbFqY6mqCucqcE4CKp2lS5HUdah8kZ6uSlG5XO6xr6Cpapq24a1773D28AEn99/i8Pp15nuHqOU+q0cP0f2aSmmRUmuFci2VEwK1q2vCIONHW9cSqGc0ve8x8xmDsvz2F39f9galpxRypcXZtmk1lav4lo9/nOOTh3zxi58X/lvME3BygZhQxvF6Kp6BElhaiLG55IblMlVXioO9Q24/9RzRRPreF5Txa0ZKFzcK07xiLFySqJxSiux6z6uv3eMrX36DT33bh+hPLaevf55u6GjKlU/bgWZWo1TGldHtWECOqhWloOsGwKFspjKWYos1nQ/GCM8npASIWmcoaEPwA9shs+2k2Ywna67szZjPKuqmpp21NEFiTrQ1oBLGaebzGWHYiReLEdNQozK2oL+urolRkbMihMhyrxX1XFZiwmYsDoWPms0AQ5BCyiqFTlHc0kmTiBAEXRpRv1GsobRiTMEYP2M9RhgU1MqoC0+slHIxetO4xcFFA/LHfPz/xEk5OzsD4PDwEIAXXngB7z1/6S/9pel7PvShD/HMM8/wG7/xG3zqU5/iN37jN/jYxz722Pjn+7//+/nhH/5hvvSlL/Ft3/Ztf+j39H0vG2x5nJ+fA9BUlsYZ2pQZImRtmF17nk9851+jNnPenr2MGd7l5n6Ny5nNZmCvWWB0lE1cKSG/WkPIkRyD+F4UgpXRWqzM0UQl6bE6RyGq5kxKkRQGYYTbStjmZXyQk4RO+WKNnJVBW4vGSkZEzjhrqJzFuQprHbaQXrWFHDNUggTk6Bm6DqsNqkJiubUs6ui3oJTMBHUkGznUlFJUSuHaGuM0SiWiN6gU6PqOfvAFTZJjVytFjIIuxAybmGXUc+mGmvqeMovU+SJYUJJSFSqK0Y/VSoq6FKYudXyW8TH2rAIaMo2M8gjZTDudfDGnJN+nFCoVyLHAu1opHFJQtUoLoqI0BdcqQXKKXPJKSHLzS2igYba3R9XOphFCzpBUvoiFGV9FFnB5sbeHa2cE35EKOQz0JSm7kF61MVjXFKdfBUhWRi6+KSEl8r7cD9EPhL6XRFs1KtMoe26We0IniVxQmehFtWOcsP6XiyWxlxGTtRarLTnKJ5BQrM/X9NstVhtizHg/oHXF0HuqaiAZSffNTSNTMZVB2XJIa0amv6BceuqoRoRizC/BOLanD6nbRNVkqjZyZdmSeuhO7nHl/c+jspiVjZuhtg5XL5nvXZ3GLwLhKy7HGYxjnrGkHSXJk66n3C+6qJguQLCRwF3uuvEzHUcTeTxUpeC01QxsK5tzFl7aEAJRGcxsTn92hEX2ir7v6H0vzsGlWZlZx1wZKiuZNzEKqdEgSGIInj5ksrHElRQQWgs6GIYOlwxVcgw24RbihWO1o10uManGuJrZ4SHXF3OyNZycnvDg7TvcfOY92HoG7ZLUrsjnvSBfAUzToOoaXYlrdtIWpaUI8l2mdhrlozRA8wVfuX/EO+8+op0tMcZMBYDWZgoGtFpx5WCfT376z6O04rVXv8h6tSKlKM2L1mgj/DljDNY6SeZFGsGcYjFHzNN1T+WgG5U8TTNnO5yz2Wzpuo7Wuoux8XRHlHZGXXBUZFQjn733nte+epfPfvYF9tqGw8ObvH73FZq24XS7w1m5lULMqJ2nnVkG72HwzPdmZB8YvGcoYoAhwDB45ouGVCPuu6kEyxotpozFxTVdKpjICWMUba0ga3xMNE4TYk8/RJQOOBsJuoLKUbkWY2p0DiSXaNs5ShtC8GhnCCmg+h3WZVLSDF4xBEXTzGgbyf6SvK3CBzKKiKPzmSFKkaJB/I1GlWtZL1rJWFJUTrEoE+MknhiRlDxmh5VmIsYoRW0Zl4UYRSiiwNSLyQzzj/v4ExcpKSX+zt/5O3znd34nH/3oRwG4f/8+VVVxcHDw2PfevHmT+/fvT99zuUAZvz5+7Y96/PiP/zj/5J/8kz/093XbUBnZ+FtloJrx1Ee+k/3DJ1BR874PfoLP//p/5FMffpJUNn9jpQK11gl8mSJh2IGypBioNBhlZFNKEFKiDwHfd1N1LBqGKDNGIIWyqFS+QB2ymKiNEd5KCaFJY7FKshyctVTWYrQcnDkn4iC68zB4udhaobLwUawRX4sUIlqNRZIv7GmDtpWYNmmLVQZnLbaW2WmOEYyjqmeCDg0bgQpJZXYom0Y3BHyMPDhb08U0dRH5az57RTE+U5mc1AWBVFHGQ8XPpHgbTEgDF5D8ON28wOinPy66osvwfB7BjfI8F8BFgZGhBskp0gqfMiFnsdouaA9akbIiIoqhnEEZTbuY4aqqnIOjlLGMF0rBlPPFxllVNYvDqzw6Py08Jx4bJ+RxE9YGLBidZKGWzyprMbCKQy/z8yScpRyLe60qnB81vsksqA5M6IDKoiwyKlNbzd68pVtthZysNVpblCpZQVqx3XVszs6ZtZLXE0MkukBKBQk0PYoK5bTIjpWRebK2oMr4SBdLfNRUEFCulxwQ4mC7PXuX9gqYmeadN17nyrWGK08+yen9O1z9wHfJPVHMxSCDAeMqFvu3qevF1HmPnKZLYNalP/LjN6ZShSRNUWJcUviUz488AiOjpPnimNMULsGl8UGimCH2A8NuS1O37F27Rndyjxg7fAmQi0kM+7z36JyojC4W94mQIiFFul7CMCVfK5Xr2REG4bo5IxA/WTPkxMYMWG1IvaeqEMmzj3S7jhw8dtZSNRVXn3gKd3BABs53W+a+R1lNtdhn6HuGFMFq/NBR1RUhJVwtIx1bN7i2JvSiWhp8x2x5He9mfP7VlzGuxhpDXTmsVlhXiT26tYSccTlDDOzN5vyF7/7LPPfss/zO7/w6JyfH5Ixw65ylriqquqGqaon9KFcm+MA79+8KCpHLGLZcjwT47Tlp2HFyfs7xyTlXNztcM8O6fGmPGIuTaUeBXDK5siAp79x9yP/4hd/grTe+zA98/18hZcNu09O2DWtr6AfQVUIbRUiJoZf9HWDYeYxWgoKHVCID5HDudgN952nnc2or6zF7yYxTSqGTjEEmbp4CrQwmR8QsWuFMpq4s1mQqp3F1hbKWrDL90FE18ra0dTR7C+IG6HUxh4zE5EnekgbPboCM5cb1VsQJU/UtfBFrZJQesiaksr60RhGZpPdljxPS/7i2SpBhjKgCf4+FVxrR48J9yoiiVBsjjbqHyootgR19lr6Ox5+4SPnMZz7DF7/4RX71V3/1T/oUf+zHP/gH/4Af+7Efm/7//Pycp59+mnY2RxdugnE11Ic89dxHp1b4xpPv48azH+X47A5PtoplpbFGoGprDa6qyXkrYx8ts0Yy4qSoJZY6+E7C3XLG9wNZyaSaGCHEMofTxNiXxM3R9Fcu+sgoHyttpUvdXxwQldbi35IF/vZevj/mhB8Cw9DRDx0pBMnyIeP7XnxQjPTIop9vqJVAhFZbmrrGWiWFVIJsNM40BD9QuQrVZuFBDJJ3k7K4y/oQ6RPcO9vIuIQLKPyiK5U/Uxa4XnwMSqdfUJDL8KB4Tjwu/5xQEnUxRAGmTB116XgZ29yEBEoCJCWTggToogAmy3jIaY2OotMPKhEUeCWx47mosy4ewkmZLxa4ppZ3O26UeUR1ZOGNih+QzunazZs8fOsOMexIlK6J4oCZpMsIIZShVfEX0TKXTjER+oGhH2TvyqXbHz8HNeHl8nxlEzZGNuZxA1JZMqsqp7G6kY63mA5KB3uBVXU+cnJ8hr6SaZwjBU8Kgxj6ZYfyXnxzlJX3XMIIxefaFJa65kK+e6l8zZSLIMTwemG58vTz7LoF7zx8A6u3vO9brrBWHfgNuEDOAaWkaSB5tIV2vmS+OHis+Bi5BSOK9bX34eXbZLyvrLHYkuwsf3tZUSI3Wkr50rOpSVKfU8lfirFILxNp6GmahqqpaK8cUs0XZJUZhh3KOEK3YdftCClRlbA/jGJcRCmBMoI++JSkeB2jO7KTMV09w1mLL2Mjub5yVupy6MXoidlgjKHbnlPvL1nsH7C8doN+9Yj1wwes50tJbVeabAyd94Inxoz2HmUbtPc4PRaBkMJA5yPNYka1v89nX3qNVSfjbqWlSKF04srImtFal0NOcXJ6yqyd8eEPfhMHBwd8/nd/k/Vqg7Pys23biNFgQY211nJgAi+++kX6wU/3dLrEedttz7j7zlucbU956tYh3XZDs7ck1bJWUhqRsRIQO6Io+QJFOX50xs//wm/y0h/8LovlksMbN8kpMgyBOin291oePFjLCMwImZkgoa1aZ3FAtoIeVZWbUGFtFH2IGG3QnUfXwmXR0+2Y0XkMGy2Goch4OmbY9X6Kfpgv5rRtRdVW1G0jSJ/WbNcr+t5jmxqMYRgCfTfIHuRqYsoMu164YLoiRMVy7tjbmwvCm8eFIUWSYFYKnww+ZuHamMItS74gwAjqY8p+VbhnMQViCtjCQ8nTkLUgkmncsi4Kf6CkJosTb9nSvq7Hn6hI+ZEf+RF+5md+hs9+9rM89dRT09/funWLYRg4PT19DE158OABt27dmr7nt37rtx57vgcPHkxf+6MedV1T1/Uf+vvl3hWutC1bHwm24cqT38zNJ56ntpasEsOgeP79n+Tl3/oq79lvaJu2GAQljDbUdUPlLEPJlxBLD4Hkoo+YFFExQBIvEsgyG7auNGCRnBQxhbLxCYQdUySriARWUchFmpxAqUjWmpjAhw6VA9pptK0hRRTi/DeSc0PoCWEoEucISarU8UYxukJrg3VihlVZiyvoi9JWoPksRkVKW0wVoOtkw7cGnYQEGSIMMRJSYuUjq74f0fULWJ/Hpj/j3wjsGhOmnKux3PwxjeZLuQSIXS4OLkZAl4uRC3mpFAgXKAaT+6PJ6sK3T1+gKqhS5OSERWNyljwdFFXxLgkpi6levngzGsVsbw9jq2lscLkDH19TWefTZ3Hl6nXm+wdsj3YyTx8LqBQlfKsccmiDGsdOCILh+x4/dLLRl8JOZykQVAig4tRdRhC+06XyTVHiCLQULNYoTNXQ1rWk06KEKFdJ5+K7HcEHVpsdzhncwR6VMzI2jFFUG8nC4OX9OYGIR7Th8sZbSsML2GtUJUwcJU9fzbk6/wTbRzuaZ6/R7R6y6Syz5Q3689dpqlugayEMjR1Zzmhz4VMz3R/TWPJy7ZIv/f3FGHIKu7SScXMBLY/3mmKEsElFGh7lns1pVJ6JF0csay0GDySqtpagPltj5zN2u40Y5ymFD56u37HrOtrFElUZAhFjlHTVGhlxkYhDKlwhcHWNbip00rjZjFTNqHc7UrchxoKSKhljZiXIWoqBebNHjYW6hrpicXiVfGWfB3ff4cHbb9K2C2ZVjSqGdGiDrh2USIcwdITQ47TYBhAj3g+09RXuHp/xlbv32fYJ5+rJrNFZJ+hiLryEgnwa6wjJ46NntbPcuvk03/u9h7z99hucnz7Eak3bVNTO4awV3p3RxfwrU1dORitjg1AMAsmi+nn48C5d6jk/O2GzXrMYBkGR08WlndZnKepBxlhnZxt+8Zdf4Au/8ztsNyd86CPfxGIxJ/Y7qrYhnMq4xehEPyQh2OtIyEgiemmOTAZrhGuicpzQmxQlV8znBEPCGYPRo69IGT2FNNnyiwRc7snZrAVthIdpHJKn49DaIXi9AuXY9YPEBLhKiMnTZifjmpA1KWr6XY/RluuHByVVekSbxjtf3Ht1KVKGEPBDImlEMOIHUpR4kJiTGOopyacSrzDhGcZLwZIj2Vx2zYvrdnljz6X5lTDgr0E//xiPr6tIyTnzoz/6o/yn//Sf+KVf+iXe8573PPb1b//2b8c5xy/8wi/wgz/4gwC88sor3Llzh09/+tMAfPrTn+af//N/zrvvvsuNGzcA+Lmf+zn29vb4yEc+8nW9+HsnnmTm3L52jcW1p7n63HegjLjobTYbctLsH9zi/R/9bg706yKfGtNgc6Jyjrau8cOOEGSRqKyKaY3BGKlWjU8MaStQLZkcfFEBZeFcxEgSvFgWCZQOJcr/KyEzoUUupwzFlyWStGIYJMSKFIW8loUNrvIABAxRwg39JYdTZSYoXxUuxGRTPt4dSYYcMUgqbTYQtUFVFToNeA8oQ8ITUiRliCjuna0ZRi7NZUTj8uRlXENc/J3WWpJhC1wefCidDuMEbPruPP5dyhN5dvz6VPyPZ8+lbj1TUJTyF6ooAsaY4ayyFIOlrLexxM4r4bvYlGUD0pI3ZLK87tliOWUwjaTg6U1PL2h8+YX46By3n3uO104f4WM3Ec4EQYrSJZUCJGbIOaKVqDxSTlSzGVobxsFXDBJvEAozXuVIzOI1IJ912WgKmqeVxAuIEszgKsdi1hL7MCF+zlWCBGpN6BLbdUfjLPOmxs0qQMh80QesE7t3FcexTi4mTxGU8AhEWXHpqo9GeeUiaqUJsWO36TnrMvfePaLfeq7fuMXpycDe+65ydvdN7PIjmPYA8iUfnRQZ0ZkRzZIN8DJ5+fLNOHbRj6N0GcSYz1rJQ+IyeVNed0rj+45CII/lPk2ZNOrTYiJ6z9Dvypg4M3Q9wSds3eKahtXqlJ33bHdi4KYBN2swbU3Y7koxosEK4lfVTu6HQgJPXuS+RltMcuioUHUl7vh+R98PYmve1KUgNWgUw2rL4tZV5k88jZ7N2W43NIsFt59/P/fevCOmaKcnLBdzqqrGD4G6kqJQoTh/dExTz0haC5dCwXx/SbA1v/n7r7DpPFo7nKuYNa0UjlrjKkGDNHIQB5DXV1XUTlNXYjO/aBd800e+hdXqmLNH9yEOWF3ypfQYiyHX1+ixeCz4nBr3i8yAYjX0qOw5Oj3nfLXioO+YlcJRCvnRWHK0Q5BE5fPzDZ/9lRf43K/+Gquzd0Ep3vP8e7BGkXWmns048Zm2StSVZruL6A6amS1IDGVUo1BdYL6QRlJbLXutNSXlPImLrBVLeDcieDmJ4E1rMW9zlUiQswKjmbcVTdtQtzPq+R65SHy1dbLejaJBM6zO2XUDhFiMS0WAobWmHzKZil0XCFHxzJPXmM/bsi7L+ixp0rIAZF/xwbILmt2QaJRkw7naF07KhSv3GFswVoEjuqj0KAMfR+PjsiwIS9nbxyYv+Ig3Zmo0v57H11WkfOYzn+Gnfuqn+M//+T+zXC4nDsn+/j5t27K/v8/f/tt/mx/7sR/j8PCQvb09fvRHf5RPf/rTfOpTnwLg+77v+/jIRz7C3/gbf4N/9a/+Fffv3+cf/aN/xGc+85k/Ei35//ZY7Tzx4Tkn657n7E2eW15Hoel2W2KKpJipasvN5z7BbGvJcSAGdwlNUTRNSz8kut1pCUYy5BgxpevBVqgqEvot3g8S6+AcIUUysagMSvcVpYtOqhiQKS1qknGDLHHXRmtBMSJCaA2R1G8xWpQlMfSiuvEeFctstIRXpZhwzk3ddC6FUIqebBTe92iVUNmKT4Q2UFXk5NmuT4lIxSzcB8ReXmmCygzJ02fFw81usuLP00EwbiFTYS5FGnLEGq2wBT42WpAPHwqScOmmF5n4JZVPaYMkn0cO9a+lVV1QJSnpwogHAeMoBll8pXAai4pcRkAjwqKT4O4mp8ILkVegtKaazy86eLiAZrjcwedxmlUOT82NW0/w4PrbrO69hQ5hkiLGNG5y8npT8clBgbEGp608hxIjtcmcKmcwCV1JsKQEwsWiipDXYJQoh4zWWCMRB8466tqyvz9jd35OylKEEYUQbpyjX62JPrEy0FaW2inhxZIxPqCDl5RT5UslqsjZMHIEUONRcpnImqbrR/meza4Db3l4fILfes7PNwxJMdtfcvLu25A1vjuC6hZGWSalRsokwsVz5ctoydc+8vTndLCNjVxmQhbHe1ecqQsJsHggxRLQKcVKupg1Unw1SmcZh4CxgqJ47xlCQNmaoDSbzrPxgdP1lsEHXO2wTcW268k+UCmNRgvPJ2YsoNumIDkSw5CVw7qa2XKf6889S3KOB6++RH8uUvVag0PjdEXdiAJo0IoBw9LVzPavsDw85OToIco0XH/mWR7du0vX91SVxbgKcYBSpAhDGCBb/HaHaRzdZgsZlnsH/M5X73DvbE03JPldZFxlmLcN1sjVt9ZO3AVFBmewWnP08CE3b9zEOkcIUjgsF4csFgfsNqcMm2MYdmgCE7aoRzOxiyuqlbihgkhXJd0+cnx+xma9Yug2pBgmo0hBc4v0VUnjuNtu+c3PfYHf+vXPsT57RAg7lvsHXNnfRxFRGpp2RhcUus40tcaHSAjCR3FlpKWQxkspxXYzsFzUBRHXeO9p6hpdUO0YR5VZKgiaNBBag3EKrWV0ZtBUlSjnqrqRuAKjULbFOYupHBSPlaw1s5zZnRwTh0RdW5StJaQyKmKq6QP0PnL1yhVuXj8QU7YUydkydYNlPRlA5Z6uV6w6x2oXqVKPzh7dd3KOpFFafBm3zGVfkwZLo6d1n5TCmIvvvOgpR2SM4p0lrsFf7+PrKlL+7b/9twB8z/d8z2N//5M/+ZP8rb/1twD41//6X6O15gd/8AcfM3MbH8YYfuZnfoYf/uEf5tOf/jTz+Zwf+qEf4p/+03/6db/4mMBHRdxGQm4AgYoTSrp4lBiwqYZ0+FF26RE2FB+UFFE544yhaWq2dcPZ8bGEBZaDVKXE0PeEENDGkLVk96TkpxBCUZwIh2R0CJOo65G4KHNSWzq7ShusrQBF1TiIieQCyXuReo7QnDZoQwktzMU0rMD7yhSE5IIPMigvabhaE2KUeaW2JJUkWh6BH4btQPId2Q8T632ICR8CISbWQ2Dd9SLBzvnC8Eoh72/sbgs6pMpGIt28MNmHKCiCdBi+QOhM6Mhohz+6e5Y65dKxMx095fsuLRaV0UlNSsOp+CFPM1ExUlISZaCY3GvVOH8v70dn+clmPqdZLKbCa1xnuYwxpOl7HKYcX5Oxlmfe9wF+/+gh/W6FLdq8MbH1AjzKoIrORuny/gpPJaeSF1XyYqb3K4oapUUZ4azGKoFgTZGzW20m1YRzhms3D+g3G3bbHl/UZ8kHiZb3nhQ8OkdOjaJ2Gr1wkDLGRGyv0c6QtUbZhFIJZfKlMYoUNGp6/6l0alkIs0rE6LvtQKUbTrsj/BDZa5b4BKv1wJXeMrsyZ3vyZZb7H0BRT2WpIHSJcoUKcTZdoCgFvh4Hche7YZ5qyrGAdK4WouOIxpX7JaeMj1HIquMzZBkroEV6TFFfydgniGOrC2hrQWtiipxvNti6Fsg8ibtyCJm9K3tlb5KO2mahpjTtDNVqjNWEkFDW4WMkZ0VSUC8Pqesat5yj6pbnPvmdPLr3FrnfoaPH5YBLCdM0aDfD7i1we/tUs7ms+7rmyhPPcProGG0N1596jnffusOuX9PUknidy4HVbztW2zWVBqXFRO/g6jXeOd/y4tv32XkxiZQiD7wPxf9kPHAEDXB1JZLjnKmriq4f6HY7qhShadAjsd9VLJbXsVeuM2xPGM7fJfudhGeW+3nECS8vMq2E5zUqXs/Pzzg/OyVut8RQRhPjQZmyeKjkRNdt+e3f/j0++0u/xtnxKcH3pOipKosrKIhSMF8sCFniI2a1KN62fSYGGf0pLSpFpxSxFO1DyFSVRidN3wWMzcLtyeLXJfxCjdVgnbx+VTadmBNN3eL9QChZOC6JDUaKEVc74S0h50zVNti6ocqJatewXq9AOZSxxCHhg2XbJza7HdevHvLcUzcF6Y9y9ukyMZB2JU97tcYTBsV6Z1g1kbmK1DYJATcM4qSOK0WfGjfVopZKYh+hzdTMSaEfhW+Z9eX5/SW0BUIMxb3863t83eOe/6NH0zT8xE/8BD/xEz/x//F7nn32Wf7bf/tvX8+v/iMfMSYGH3HNguff+834oGgbc4FgaI2PnpjhzqC4OZ/xoeUprqBfwgPI6JSorSSE9hs/oR9i5COs5EpX5Kqhj+LMFwuMFkruj5DtFMY5rBMVkIwPhAlvNVilcFWLK+F3YnmeQVmSqUjBi829tmgf0FZCvox2WD0I8U3riWE/hl6pnKQI0hpX1xgrTqghdNiqJpAZhp6MMNJTFn6Lj56QsxBmk7jF3jlZ0QeZycZCIJxuumkPUeUwuVBd2JIcfNlUScKnfDnIynfnqVZhAucnGH46ZcprHcuPxwuEsTiZ6qc8/jO+VlVg+3KUpYvfrcv3jkVK0go3m1O1M3JmWpi6KAVG5Gc8KdVUYI0HpOLg4JCn3vsBvvoHv4eNvXSICUbFixiqKSE/oCekRZEx42cZC6JWfGuEMpEFiUkisNHaFJWBEGitlbm+hokz0LaWp597ktNHJ+z6nvPVju1uVyTJhvWwRcVArTOb2tDaGabRqBTlJAha3IeNEPUoackjipMvwchy7QqMjLzWjHi/+CAHW2UMKYonSIgw9HDz8DrbQTEMnRRetpVxUZ4u/yW1RrxA7qaSdHwtl3eDixJ3lH7rQu7UxcsoJxiCx3eDoDRl1JbJZJWIvWTVKGMml9GUSqESPNoXxMtW3H94wq39BoxA+TGLw20MUfKbsqgbnLE0WdFULVYbFvtLNpsNAbAxsd3tSD6TcqDrhMAfdzs2Q+bGk8+xaCuqSvgRu+NHzJb7RGcxdUvQhvnhPnUzY7vrWK/WuGbGer1lvVpTL+acr47Zbja08yUohXOWbRbUVSkIw8Dy8Ao7U/E7r7zGqosiTQ6RpqlwRTqcEIuCFD1JaWZVQwwea0UVqbVmvdvhzs+ZVTXLlIgJjFHU1UBOM/R8zmz/NrPlNYb1Ef3qXVTYTWO48d66HBjYpEyrAphMjD3r4weEzbOCMk8RBmJjn1Qg+IHf+70/4Jd+4Zc4PjqWSIgwkJJ4peiiylQK6lnL4toTbNfHtFYTnIzjQ5TmM/iEV4pkNc4ofIicbzJzVdPWFm2iODZXQspPFF5jSuiCmsZI8ewxEjhrISUth36Es9MVrnKEpGnanqqucFVLUolhGKS0yAmrDVpDUhoVNRHL6dqzXnuaZsbt61dIcSApRzTFXO4PRUFktEpYFYnDltVGs2oU+1bCt1OMhUwfwFYiNzam9KcXzVqMCWMutwllX0iq7M0Xo1oK4ka+VOQ8tpn/Hz++obN7fD8Qo+b2089w7fA2xlWSvhojVVPT9wPB97hKMUTFF+5ZDtDcanuRcQZxmNUpUlmR0267LVlLYRGTFYhMi+9CshWxmeG369KVRVIepVtyKBo5k9BlrKOtxVU1qvBZtBbym3WuyI4RVYzLRGsxJf8guyTx5U5BIweU+KhUUp3rCxg8+kHIk67IRE3hZEQxmEIblLbEbgXZI1wZCDnhY2QIGR8yp73n7ukZCfkMR+LrVFXkEUVhCvIrzS0xZ3pf+CjI10NME6R+eW451Txq/BdlDY2BhRRmwfjvi8PJTPPRsUXOxQOlFB8JCstUGgAlXAByFvVVLoVBTEQlz708PKSaz6euYHKc1aO19ghtMxFEx0cGlNY88/x7OXl0xNEbX8EkkaYbc+FPICIECQZJGaL38vtk9YpTbxAJcpliXRA5U4RU0kStvUBVnJb3WoodXSSGi70FOUYW0dMuavxuR/AeozIpSH5QrzJhbskHCWVrMFZwd+1QphZW52XjrZTlvirEciHLloIyF6WKkuRvaxLoQGVBBUHXQk4MXc+mnxM6xd6tj4DbJwYv4yWhMyPCcKY1denmuLTyL+6li79+jNWArURFYoyRMSqKvhsYdh0xDFhXoU2GpKZQxpwTvu9QxpHJxOgLEuhxqqCbSlG1c5RxvHu2xc73UduOqmklaiBHgo+kYaA5OKBZLGi05uDGk+B7jHPkroOQ8JsdTWXoSLR1hXGGugKzWOI2A4tZg9aKZj6HlEX5dGWPXR/wCZxRKOMYMujKYauK4wcPQSnqpqHfBZZXr7M7ORJX67ljs97KKLbrxW6hbcE2vPD627z56AyfFFVjcc5QWyeW6lbUkCThmVV1hfcBbRReiG1oYzk8OGReCZdpu93iXEVOimEYaII4mqZ2TtO2NAdPUC2uE3YnKNuwXw1sM4UbJPvoYV1zra5ZOoPVii51tMMZaXMGQ4ciyd6sIKVA9AMvvfgKv/hz/4Pjhw/p+56Qyh6Uoe8l+0cbJUnG7Yxbzz3PW7/9+7RzcAbaDAMQtCYOkcFHdn1k1joaoxl8ZDjvSMuGypgigsjshijFXErQQ04K48EVWTFIEG0/SCGcsiIVkUXqM6gtfujFQ2UxRzuDcjXKWoZ+EO+VrNh1ohY8P/OcrjpMgg9/6IPM5w6Knw/kqehTXC5UxDPJGSD27DaaVdvQt5llo8RRvSApRl9ef6o0joXOUFSbeiLWM6Hr48Yu3ipSRI48sfH7vt7HN3SR0vUDi/qAj374W+mCYgbFaht2ux3WCaN86AdiUmx8zZfOD2nUA5ZmgJwwiLeCU4bFbMbp8QmRiE2ZSCgcEoVWEXHjE1O2GCDlOHXMVWUlF8NknJWU0uhFnmaMxRmRG4//r40uDqoaZYshTso4W4MR+FyG7FaSebUtFvuF45ACRAnMU3WLLnNMVMaIlSkpVvgU8WGQ0ENnUH0uBYQUJjuf6IbAkOBos6GyihBhV0YQl0cPI+lwlOHKASy/0wc5mGMqB0zKhZB4OQn5wv9Ak6eDSBfUQIDOS1ghFwVKeQXyw2PRXtCQsSCZYP88IifqEroi4548IjfIz2qt2L9yIK6Nl37juODKlICRN/HY6GkslpSiqio+9M3fwgurc1b372JJZTwnXh2qoA1KifNiNrJ5hhCnIkUpxUijSXnkyo9diXyGKovCwFYNtlaoOBR5d3GKzKIome81DDuFqy3xKc/RvSO0CoQm0++K4Vs1YGpDtVdhaw1WkatMNqX4UlI0UNQlKgu8Po17cpzQIkE75IOdtRbdeurWEX1PrR27mBh2a3LYZxgSM11hjBNX21zeY4goVVLFYRovTJvc1yJq43XgotYlSyF3/dp1mrpBqzKC7D3B9wy7TTGjUpjMNJpViI+R3+wgSrHqw0AYemkWCtol4c+WgyuH3Lv7DipqhhBo5jNQmtRtGPqeqhZlkc+KW08/z8H+AatHD0mDp21mYhy23mKVAa1o5wtUZehX57gmMZ/vE/oN+1euFKlvxNYV2VRU8xZ8Rwa0q8SnQmncfIlzJ2TAmhqnYR0DHosPGd8NpDzguy3DZi33yXzO57/6Jq8+PGc7BKwTx+/KWayVcWPKiPQ5OXRS0mErRdblULbQDx1Hj47o563IjV2F325pa0vT1KicCL4nGMVARNuaum1YLJ/D1QtuV5l7q46TKAV9W2me2Ztze1azaBzaatY7RQo74voItVtL3IiSEYb3nlde+Sq/8PO/xPGjR3g/EGMgxjFUVs6EzXbLjRvXiaGjriuuPfEMb7cH9P5hISZnjBZ+oTEKm6QI2WwHvNPUVuIGHoUds0YzXzSYxmCsENXFhUEz+CxKzkq6pKwTzorzcEiDxFZkGQv2KRKVok4OYyCcRbxSmLqlaWti7MUTrJ1zvg6s1htW20jfBd5z+zoHyxkqdSWzaET/1AWKMe1sxa7AgNWiWusHRx8yPmaqNBC7DdEP2PZiLx3FBEx7k5xVTIIHWS9QePW5tJn5QqI8jY3+tBUp2rZcu/E0N689yW4XmC3k0IspM5vP2XUdOktYldh0Zh4NLV862+ebFw+oiRCD5Nb0HbV1WKXZ7bZkRA6ZEV5JGlMxSeLImDKWjNJOLtr4mig3A2K+pECKCSNjGo0utvnSfWrrUCoBDgaPqwTF0dZBFHXRmPEwqhhSjOAzyondsikFkPi0yAFEtIShxxmDjz2x7zBaCp4heHxKDCnT+UQfIqdDZLXdUGnoRtQEOSBGPqo8lLzJeNHtpsLOt3JKokI5YFKR4k2dai7V/cXhPuZ7XI4Al3/UxYiIi6IChGeStChzVPk7dek1jrLZSCp5GXn6/cKNlIPYKLDaUJXkYyj+I0ZfjHXK79d6lMWmaRxx8buEqbFYLPnYJ76D3/6Vz9IfPxROh06T9bfSVvg4ScZzpETShhxzUQOUEY9cbYH+peqbjJTIVkaUSonLsREvBolsCOSS/uushUo8Pm5cP6C2ic3mnMU8kpLGucDyOixuLZgfLopc10G2RagzFgRKij2VmG6EXAiTOTNGtU93h4LZ/CpPPvsUx91DTnYPUB5qrdkOHauHx9wND4mru1z/1h+gmj8JWRNjgErIyJPkPU+TpIvP+uIunDa8C6Qto7SkKD/z9LPsLRbkrBj6QfxqohAq5fNvEPdcUCaVa29BG3H+LZ93SlkKnSDJ0eMGPJvNcSgebnqiF0BLl/vIakXTztB1zd7128z2r7EbdrjFEvxATJ7+/Jx63ojx3WbNybsPyNZQzxdcv90Qzx5hqhm7rgNrZcQ7a4Rv1tSkQaOcBW3xMeCsY+gGtK3wfUfwA8kPuGrG3pVrqGGLUok0eEmzzgFbLXj7dMcX758ylMs9RoaQEnVVoYwWTou5yEEStLHcCimTcqTrBiHKo/AhYJSmsuKtst7uWLQ12RrJf0kGFcD3mbrkK+0vZ3Q5cz4MkGSk2VjNvNYsZw5TWbQa2PRbhtUj0voE5cXCQeXI3bvv8ov/47OcnhxLc5RSQYJTGUMq+q7jzTfv8Pxzz2CsGA8ulle4/swHOX31XWYmiccQ0ryYLKhDztAF2Ow80UWsNXRDoE+WqCNDSOwtW7lRS/BsBFLIZJ2JOUwrJEUpVnIZS/oon1k3eEZn16wUuyGS1JprN69S15nQDSRVETDcOzoiK8t+XfHcs0+LW2z2oKtpzJLVRHeHYuSmlDSHTouBXAxiRrfZKTonSFK3WdEMPSkmIgpT7DoETM1TbETKUfgn41ZRzoKc5D3rYvImzZ2a9pM/ASXlG7tIqdsDPvZN38qQNM2sxvuBvDVC2AyBpm7Z7baiySeRc2C963ltWzNjwfPVETZ6bAatArnbMKscxyeP6PsBWzfYlMiuKVHpoZgpRWH8K0kilke5GFlmb8654gMQydmTVYUqvglK28IzkNeayRL5XQnXxFjpZmwlBNsc09QphhAgpRLSV2zpyZATOo9QnwLrBPnJiSrWpK7D90KgFV+URO8jQwjsYub1h0ekVPgjBSF4/H7Kf+g/cxYfEpT4dDir0THTq0Qsv6Pr+gtEZryRJ+SjFA6M8EcuWREX5Cv1Nb87I9SJ0uMDIwH28UfOxdsjX5BqKZ25pvBMSup4VZXxxlQeiGOuKriPHuexKEYlzlSE5YsZq0Jx9dp1Pv6df47P/+qv0J8+IucB57IgaLbwO7IUncZIJlMqWMHQD8SYS3xCJk5dSClMY5Qk7WRIcUAlCQ1T4cIwL6VUUA0mH4qmUbhbexykCh/muBaamaKqHVVTl1wNC9mQgnRgqnSfKuXyAZcCNKULMvV4QQRiKk7AGWUann7mm3HbV9iebPDrHhPBJc3q+JRZfchbr34Zxf/KrW//P6Nnz2Ow071xudnKE0R8aZJdbqDHXsZYzCjNs89/iKeefoa2acjRE70iekQ6ihaX2EHGwGRK7pN4OBhniX0olusF6dNiomZjlNsoZXE9VeB9z7tna+Yq0jgnBVe2zK/eZt467GxBFyOh24mbab9lu9mwPTujaeeMQZG78zP0YkHnV+xdHWjaGYvDQ3a7Db0PXLlxHa0Uq7NzXILKOXofqCu5h8+Oj2UU01b4YVduAIfRXpK9o6NuG4xRDH6Hs5ZTn/jd+w858wmlLVXVoLU45TZ1Re8HnGmKAk2V3Bw1maRJQGcWYm3h6uUUqVxL5SwhBhotXlQxA8NQuH4WZTVp6FnFQAyeWVNzEGe8cx4haPoI5yGy8gHlPY5IJGGNpt+sGNan5O2K1C05frTiF37+Fzl6964IJvLFtRvvKdCkBK+8+iqf+Pi3sHewJAZP0zQ888Fv4+irv0s3nOG07Hw6lwBBDdjiUh0VXcgQPLNZjTKK1abHp4qsPXUl3K0Us/AZy34SMwxBLB4oPD8dBKVPWdH7gHEyB44xMQwRHzOusSICkdqHs7Xn3rtrvFpQ6cATNw45uHKNHIJwFy0FVRU/bUG5RyJ6RilRtDqlsLpIkftI12t6r2h9xHdbQr8TZeFohYAiZlHFKYpYJCW0yZMJpQwUVGkEC/F8RKMVjCpHLo39/7iPb+giZe/wFu957v2cbgKzfUBJsJJC4aqawXucq4opknSmxmqMqnh1cwUXttxWW2xO2JIF0xgZEXTbNbbrMN0OtdyTmyx4ANmoyybWe2GUpxLg5UPARI1SNRZLNhZFJEVPGDJ2bieUIuZEDB5jrLjSWkfKEWuUjIHUqKIRWHpU93iZNZXQMBnKChfFkFHEGIrcNpCGAWLEuobBnxOCl7C5UOatPvLG0Qmr7ZbaCKot2cVMY5PJIXasiUubKw6RTIfiOKIYZzo+RHa7XZEhj+jKZX5Kng64CTy5jN2r6V+A8BrkbxQ2F7j+8uHF+FzyvGO3PWrzLwmMBZUZD+EsktTpMCzz1OnNXuoAJrfVAgaNTYJ8UYqZGzdu8snv/h5+73OfY/3gLqnvqZygatMoY3qNIo1NKYvHDIK0SOCacH1EgplKKvcgLHqVMFZhbSOKgKLySqWbk3sngpIuyjhNrR04jakyVe3QzjIG/OUsaKE4pAa0KYTY8TMyxUBPvplRSjXa0EtRI2hFRqHdIe3+VdrFHt36IRqNwTIMngf3z7j15NO8fTewuP0F9p9fgL4pnVkhvU4F7VTAls/5cbnZxX1Vrsf1G7f5i3/xr/DE9atAwgcv57XSJZVcyPDb1RnzvYLaKI0uzrcxZ2kp0yjFBJQRNVzwst2ngHYVs/09mnffxljF3aMzbuwfUGtF1bR0255h22GrGf2jI7bHR8xmLdl3bM7PqdqGnR8wGIYQiUCOiXpm8Ckxny8wTcPq3fsc3LjNuh+wObPedRzuX6FPiExdgfcDq/Nzcobt+qxEVEiTM2w6dIo0sxkmeYbtGcYo3N4hv/nlu6yTVOoxiyt2XVUY8WunKiaa1sroWdROcv9OyF+Scctuu0V4RdLkhJBoKhlF+SEwb+viPBrY7nZUTg7pbAwxRuracqAMtetISRHJHPeBlAY4X2MVzGvLrYUjhMB2fcawXTEcnfBrv/sqb735BsF7QXNyunC6nooUQQTfuXuPN++8w7cefkQS1I3m6s0nefKDn+SNF36OVicJ9lNQbKzJJJxRUGm2PhGC+KLoKDtK3w30fWA+cyzmgqxTFIghBnKAQYG1GacNEaEZRO/FrDEkdBJ10DAE4fvYCkWm8z0+gbKGd+6e8O65p21qbl/d56nb16maGbq+wuruGZZM1iIznwQHFBReK+FKmoQpRFmdIjErQhIduLWanLygcCmiTOGgZFPQVFl5qZgcjgj1Y/vuuCJHlPMxGebl7/njP76hi5Qnn3mW/YN9dmFH09Ssth11K5bLwzCUrJ1RHaAgBYxy0qO6OV/aXAO75lo+gRhkk0yeZeUEZiUTtltWfkBVNSllKiWqimjEVVUWRBRlRulclQeVFXWtMVaKhrGw8cMg0r6cyEHTDz1to8s8MxKHBKqT7j5EjLUT7K0UQvTVAhvG5CXkL9tCj8ri/ZECWQkRM/iB0HeEFEgqMIRA5yPdENn0njePTrn76FieU7CXqXCYHpcP4xECKd8isK8w/00ex13yQ4oSCxD8VJzk4u57UaOUpTTe5BMxNV9aGOUALmMRi8IkGfuoRDEdkxIqZ1ElqdIBTHNVLmTT0/gpIb4hj07x/YBvfOHZSIE4dtMXoyim1zMpmb7mnpS3oLl27Qaf+p6/wBdf+B3uf/lVcuehApLIXHOUeybHWKTHeXr+UdInDinypD5nfAolHbtArgg/Yj6vSNqKk+VYP8VYjNgEUVJDRjlwtUMbjdI1WStQkew9uQ9kn1HZoE35YGOUmdrI7ckghKA8VpNTCUtOqBRIoSNl6aqNaWnme6R8jIoKhyFmxep8x9v5hKff9x7u3bHk6g7t1TnG1mzXG04eHU8f5oWb5aVihVLkqYtb1VjLs88+z//pr/1f+diHP0hTWSG2K8gIKdh3PUqVtNhhx269ppm3ZK/JRrw2cjEFlFRXRdbibRSHc4L3cgjkiFKKql0wmy3Y29vj4cOHvHt2zvuefoa9vSUqJDa7yP2336Fqaiqt6XpPt93hU6aZzVidHKOIdCRWux3DesPy8JB9rVF1Q58iejZDVRXKKLbdQD1fSHq4coRhIATPdrORrLG+4/z4mLppscaw3e7Iw0DYnEnMRhxwKbGKid9+6yEPu8CQvHCijWHWWjG4rCzGuULQFkQ2pyjJuzGWw1d8ooy2eD+wXp1LYGlBeI1RGGexWqEt9H4QtY+CbBLb4Ekxsbe/T0Z8lppaYj125d7aRE2Mnk1SWJW5pSy3rPg/bbc7TtcDr73+Bl/84ksE76cRT0yxOFxfWrtyi9Ltel758lf4yIeep6qlYXSu5vlv/hSP7r3B2ZsvMnMl46bwo4xWOCsdVJMVXhUuDoraaskoI3O+zsQkAETtZFRUO8kuUtrSd56oM8FLExSKlLtuJWdqvRtIuSjhcqatLCErzs93ZAsbn6gqx42l47nbV5m3DSlmrn3g43Tn98nhGGUcScmIPpWGTxV1m9Zi8CymeuJTkxD38xCh7z2orgQNBrAykdBazOXGUU9OokS0VuwULtZhLs7bqhgiwmhNMDWif9qKlOu3nyBljasE+rRONO/90FFVlhAElRC4MolCJ0WsE68DVe3xYvck7007DtOGHIPkOTixlt/2vRgX9R3EjK0cIWXxKVGQtSL4yOAHgfAy4sSHkHqLaIemrohK5oQqBpHGZoXWUlCFJEPt0HuqqmIoZD2nLSYaRj8ShRRdMYTS4CfxAhkhtsIRSCkw5cDESAgdu6Fj5we2nWfXy9jrjYfHvPHwiJwjFRqyLeMoWdgjP0Jd+szzeOPDBSclX9z4YspWGPcZgh8VEsIIT+VnZEp0YfEOZcA0EValKsuXiiJgQlDGQmfkmcgjFdtlsZi/qKvKtRkJDmWxZKXoQ+DRuw84PzvHtQ3GOHSKEweFS69wInLqcQwxlmLlq9PvkD+Xe3t84s/9Ob40n/PVF16ArieZIBwihOwnRYqMaVLxToghFjt88aoZCXA+Ciqii6QhBU/Xd8zmNdrYsmFoSJE0JFQeSqGS0CbinEWnCqIlDuC3HXHYkfokagRt0cZQNWL3rZUUUAUmKyOlgqCUQk0UVbmUTAHoIIvZl9Kadr7AKI2zBofBGSEon56ueelLL/Os/yBG71GdvoY2DY/uPuT+m2+WkkRURHm68bi4oqU5U0oxm8/5jk99F9/95/8CTz5xm7oyQixHkljFb0WMpGxl0c6Aqokh0Hcd1jqyj8UtOU8W5tlE8VEsRG3hG+iCaoqCr1ksadZrlss5b711j6adMWtr5sbQ1I6z7Y7u6B0Or1xhuVyQbI11FcfrHdvVDldX+JSo9g7YrtfQzMhVxZAT/WqFaVqoKtbbLdZZspZgOLInJM/67JRHDx4Wn5ABcXr2Ml5KoFNiXlf0p4/Y9juCsrz4cMVbZ50EqMY4SbVjMQ6M5VgYg1Gn1qPsoUD5/khlLWerNd4PzNuaZdvgVEIX4n9GMqT6PhKjZ5e8uOZqxf7+wZSIbKzBYqitnsI1MZKfs58TKisqLeaHwqvrefPdDb/30pt03a44M6cykpcuP6di318wVKUEkX799Td5+PAhzzzzxDQenc2XfMt3/QAv/HzH+TtfZV4JcTaXfCWrZSSYc8YaSu5NYpczldW0ThOBzbaHrIhtRVNRBBNO0pORPSekSMwQ0MQUqI3FZ0Uy4uLaJVlYPsEQxLvFZsOscjRO89ztAw6WLa6q2Wx7lG7Ye+bbOHvlFybDuFw2YTk7dPHd0hgtaI4xBmUDSSmGnEkYrM7kFPG7LdEPuHo2aYOMNsVJfIzrGGNO1ISspyTqVeHojY1snlbtBbrz9T2+oYuU29evEdDUTYOxhjiIhXFdiV+BoA9yaFjrsMYIjFXsyU1dodwNvrKGzbbjYDgvHW1m5hzbXUc/RJw1JN/LAs6Zrk+gUsn0uEBTkhb+CDljncWnRJ1U6fQMKgaGJEGBtlgbG6VJg8ZjqOuKXb9DJbHsj8qUADmB20bHzBF6JSMy0Qx5iIKejGSxJFHhMQwMYSCkxK4PbLqB813PWydnfPnBESEGjBK/ECieG8jI52JkIv8aUdPxPhsRqgLsERG/FK1KSFXO7AppMU1y5sdv3scf45hnLFTGG14KBY1k7ujxZyfER01z0ZHbOdUjeSTLlqqpdOaj6dwqJr76hZd4zxdfpFnMhUCqFLYktV5UUJdLtYuy6Y9edGr6BmcrPvbxj0NKfOWFz5O6AavDVDjHcCnEbswKidIRBsSi3RQztZASLmn5U4nRVLHaxAgURuwjuetIw0ak0CmTbaZZOFAaH6E/79luV2w2K7KPaOMwtqKpFVWdhVRoFFkHkc4HX4rS4jxTUD2dxYuhKJEZOVlSAIKqrMQNNBYXFQ6NGgKNVdQKTk7OeOmFF9icnPLsez9IyIZXXvwDzh89nAoQraUzv+wuOnZ11lmeeuppvvt7vp9v/dZPMJ83EuJWYGylRXWVYhhf8HQ/55zLJp7wg4d8YQBpnZViRmuiklyjkBMqDCjt5BBETPa0Eev4veU+Wt/niy+/yL177/DhW7e4efNJ9uZzFLAbAtuTU+GeOUMKEa8t3gdcW+NjYv/GE1SLPVabjqBOqJuauqnJqzVoTegHIkK277uBIXQ8enCfbtvJiCwGYt8xrDeoFJk3FQ5Q/QabA2s0v//OMW+d7wholHbUjSMnIYM6K0hKVVVobXHWFcdUKUhHelKMiexDSXMO9H7g9OyU+axlNltQGYO1hspZaVSSZGYNw4CqKqyG+WxO3bSTD0fVNFTGMmsqTjtPSoJCXJm17FVgsscSxZCtEr7LG2+/y9nJCWU6OI13pCGKF6tRMY18cw4cHT3k5Ve+wo0bV2nbwv+zloOrN/m2v/DX+P3P/neO77xCY3IZk5iRL42zghqTpXAZgmT+5JxwlZNSPSeGwjkZsmJ7viWGSF1ZjE0YZyUaQwlStx0C6EzdVIQQ6QdfEtkN3c6jsyEMAwctPHF9n5tX92kbhzGOB0cbnugGlk98gOMvfx4TzzCVoBepqNRUzmhjJ1K01lqmBjkTY8BHLYhjaTLDsCP4DpclckWpQpCf1J5qQr4f28ZVnooRdYmDMjam8sXH99E/zuMbukipbE1GyErDEMhKoLVQUkOHviMhzo/jLH3skI0GZwEcfXvIHf9B1n1gP6/Y7jpRKdSOdT/gJyVLEAJYccVUORUXUEXUQrwLQYhbWEuOEb/dElLEVQ5tLWk3YK2lqR1WC5zoXE0MvRxJKaFjJg6dkG8zU3LuiA5IlklC6+KLkiGWkUeIsYRERcgw9FsigT4p1l3grOt54+iYl9++z7r3aCRF2Zmx8ii/IavHDoXHMQN5TFbuSsRTJmWULbPPUpylWJCmUjylQrpSWiR4eZz9fo3KR252NakIKGMLXW72i7VR0ByEv5HJEi44PkceX/tFfRUT+JxY5UhUGnW24eX/9b9QVY73fscnWO7tMZqJaQVRSYH4eKFSuoJpRFX++mIyNH5IKGX46Me/naad8dLnPsewXmPKAk8plwiH4iczjcWKGV2xIp9CC7OR9+asbBo+ELY7gi1Bd7uBYXWGIVJbyUlp9yqyN/THG1brHWenGzrfE1FUdUPTatpGYFtlwIYMxkv3FSN0naA0BekafWSyzqJ0s+UzVvHiAzAa1Wjme0uuP/kMx0eP6DtPn8ErA1XLXFcka0lRs1ttZNwSIsYa2qbi1uEetTHElNj2Pdt+IMSE1pq9gwM+8YlP86k/813cuHkD5+xUUcfgqaqa+Xwu10/qEdmgS6DheFcIh8eTQ6TbeYyp5D3ack1VUVZlReoHjJU0WImV0FJE+0hbNSxmc+4dPeLNu++wOz7iuftvc/3Gkxzcfh5TL+iGnsH3xCShpdRzMpE+RKp2Trt3yPzKISkOdIMnKnnvPkI7m+F9T0yJ09NjUoLN+oz1yZmMWWIkldgOnYvbbejpzk7B92wCfOnRljunKzKWpBQqR1RMNG1D42RP0roES5IL8ZoJJY4piYuNQsZ7WYjgD48ecWVvQYiyJ/qQ0V7cRa01EkAYfLl2hrZpadoZrhKHcKUV7XxGaw2L1uFWkagNzmlms4pFrSAYcjGSQynun/e8s3042bHLGFkVBIVpVDs2WHJ/yn7ih56XXn6Vj3zoeZ559klBB7TB2Jqr15/i43/hr/Hiby25++oXcKEr6ISCkjukpr1QMohCFn+XbteD1lTO0laGxom7bfASMroZIrsgFhXGKGJWxGyIPomizke8j6I2VIrGWLHnr+UMuH3tCovZjLausNoQQuStu0c8u9rRLq9w3ryPg91LuDxILlSKhOBRVkJojXNYqyUlPoviNWSxj4g40BZFIsWBOPSCRpa8HZ2F1yWFiKyflOLkBTUVIakISIqXgvDVuGhe/rSNe043O27cqIhdgmzEw0QbdApACWDTUtVrIxCwHrtABcGLcZOtHGl+yBEfJqSMW3+R1O9QgNOKzns5/McfLIeeVVKRGouYiSphdSeVSrEiCzymSB1rlDE4V0EMdD0YHVBkbPBoowm7SAqR2ok753a3lUAuJTwBnbJsSEkWpHZjNgMlnFTQnRhjUSEFkhKuyflm4GS94/V3j/jyvXfZDB4fC5fDQEjyfWbsVCdFC9NmPT4ugSlSJY+mo2VMZLSWMQVioT30PcF7XJUuDvbyxOrSc/7hR5mtTN9TKvXRnh+m50rlvw0KW2CU0RhufP7xvxOZgYQFrihNpeD87fv87v/t/8H53Xt87Pv+Eldu3RRX3yn+fXyOy+Moef/qa0YR06eTL3kKKM17P/xhtLN8/md/gXx8QqVk40uXcmQgk6MQZ2OWIb74QAR0jJMCLPiMri1BA+sN26NjvA8Muw6bJe5huXTUreXc92zeGThbd6y3AyGDaUTtMbeWGkPOhhg1IYIfEllHjAooxPXSFIv0sSgbPxdtyyit+ERcFqxbpRmWjpvveQpcxaPjFakaCJ0nKiF0LmYNbdswbFfYquH6M08zPzjg6esH/Plv/hDOOLwfOF5vuHd0QlKap9/zQT727X+OZ596Rjw4CvlXKZEyu6qinc+IKRZTRVn0psRGpCjk+nHNpJJvtN1tqK3HqgSqwjiRJKM8Cj3Jd7OVJGKSjDtSPxD7gXb0ZUmRfug5Pj2j32x59O495oc3WV67jWlmBDLaZEFJMpPho64XdOsVp/fu8OjRQw5v3mK+t2C+3MfaitVqTVXXKKOx2tBvNkWh0ZG9J4ZBxmpKXE5PN1tC3zFox2urnjsnW6LSoGKB/g1149hfzKmdlUiAEbnKGR8CdQmJi2WsYcv4TCHoQ9dtefToiL35jLqqqZwT1BhE4VJmo91uR902kmjfNDgrBZExBq00TVMxrxzz2hbhgMPqEU0zWOfIRrHONfc3Sx6sEln1RRhxCamlSG1V8SxBSL5pRFUV5Bi5e+8B79x9l6eevIW24yhLo1TD3pWbfPTTf5m9w+u89ru/it+eCSKFCBU0iLRQa0xS2JTxSorJlCJhyJwNgZ2z1M6y3JsLp2jnyQn6PtG2Nctly3qzwxgrayzL63ZKcbCo2Gtg1lSQI/P5jLZxNE7QLqUVX/3KW7z89poPPNpweAvuriu2PMtt/watlaYw+gFtKpRrcFVFVYv82CBnVkyeIViGqCSJOfXifO47idDQ9YUHih6VjbJPpRJKaybQpBiacon0nqVwvdh9/5QVKb/9O5/no+/9AIOxNFXNEBJ+EGUDOdO2Dd57oh8wui45EYq6dsSYUMqQiKAztnaEdMCZ+ibaBPbeFzDBSyaNVqSQ8CGirAVVSHZWIPYQpEgIhVWttCb6IDp9VMnFkfwfZXtqV2ELIc/VklKr4qhjV2LbLTICbAmRS12aDh8oDpA+kL0gJiPjOqQks88sPiFKa7Z9z/HZmjdPzrnz8CHd0NOFJFkTIO6CjESrIu8to7ILeS2P31+X0YzxbC7HuDFaghGVdDTDMFxSz4wjnUs/Rr5UBMAFhqMeU/uolFGpBD+OhVkWcqkqC7xSupBPuZwXN72+jHwuPmfarJkhXY0fAsdv3WP30z/D9vW3+eb/5a9y8yMfomoaMfwrG+bFP0zkTS4tSlW4LhQ+Ty5Iyfg6nnzmGR6+/wN88b//HAtlWGqHTolh8OTgxSE3i9SXEBiCp0eK3lppctOSrWVj1pypTE/E6ox2cujoMqoyznC01gwJhgxJaSE1ajDOYpJCRwppTrq6rAwxGrwX/lTKCZV8SWWNj0G7Spzw0CphtJCmycKBECv/hM6R1mrMomb/xhJdKdr7j7j75dd5+IUv052vqDTkYSDnRL1YcP1D72G2WbFoK25eWTCbz8hZcWPwPPHse7j+9Ie5/fT7mDUt1ioJYSt3SwgDTVNTl2IBLUZu4+gPmDJ5MmJQNhYsygi3bbvesqgqSRw38sPaWmwWmD8OQ/GvEav8cRQ1bDspkrWMJzNKNu+c2a3XbDZbTh+8BcaRtSEqU5R5GldVzA4OaWctm9Mj+vUZzhhMTpw9FAlrPZtjjWN//1DGCkbSi+PQE/otqYxtjXLonFidHJNDplOa11c77m8Cyjl01oXYqotlfS1rUYF2TvYXpUqelIyBrDZTO6GLLFXGoXD/wRFD38FMknf9EDDGEKJCxyhOsV2HczL+qZyM3cdFOfqv1LVjOXMsZxVGb+SKGuGuWKPJ2XGmD9hywG5IRN1RVa64vMayJ0/D3kLgldwcpVQh1hfDRJXZbra8+NKXed/zT3P95lXxmSpcI1PVzBcHPPehb2e+f5XXfu/XWD14A5tGX52y1rQSSD5nTFS4KCNnHzL9ILy/zjn6QUJWq6ZCaYN1lq6XVOgK0DlgtcVkyb9ZzmC/tThrmDknqqumoqkq2tkChaPre37td1/mLN9gvQsobTlfdxx3Gr//JE/qB8x1T06BFAeM1iWt2mBMQsWAHyIQiNkREyQEbUllbJj8gK0vb8wapfPkV5WijFZHqfF0LuSxX5UGU3x19MU58nU+vqGLlNdffYnff/FlPvD+b6LrvWjovaepHUrLLM45S/D9VF0bI7C1dZrKOTlAU6GLOccQFxwv30s7BJp3v0jqT8gp4kqw2Bh7nwEfElFrTDJYK0SrEBOhEB91zsQs1s1DGMg+Y6oaHzwGJZ2U0RKiZQxp6DHlYlpbiXV79HQRcsjonCT1FoX2AgXrcTQQUilQZBElmJjuZ+sN99eBt07O6IZQZMZaDnnydJONxY2CkglzQZC9PPaREYZCZbEU11pNvi2T+2hBslLODIMXH4VLlc0FHfXyvy8xPMYRk7r4uirdEKViz3n0Y73oQAyqkGcvwJ9x7JNJ4sCbEg2KuTZT5pB2mm3ybNYr7OdeoLtzl2f/8vfw3u/98xzcvC7kyizEsDELhsKZmMatSa735eTey7K8uNnw6Esvc/Yrv8Xpy6/zKMMN23KlbmRuTBJFWlnpKkRyKKOBKDLVk3SOz5FVjhyHgSMGdinSGsNhU3OwmLFcLqiaGqWVBJTNWlwtXii6EOpUFifNGBIhpmKYLRktIWTQkUhEZ4MpRaEu6Ik4tGoZDRhBG9IEtQcUwtXKxRsibXek117j6LO/zb2X3ub8dCOy+CSS61jGdd3mhO7eCfdWJ5j3PoGtDM2sxVYte81V3nf7/VT1XNZwLkVw+eyNRgL6qroUFqa4zUo3V25k8ZLxwikZ+VRS9mZsZUk6E3xH5SwKcY3VzpUkABkP5UHylWIMDDGQtWLwA3HwQs5HMWRNpNgDIFyvlECpyBA8Q84Mo3MzmUdH9/Bo2soxdxbXtqQMi9keGc3q9Ejyl8qI2eSRoK6loC0RHbvNitwPZGXZJcMb6w0POg+mwkRpYBbzBQcHB1R1JYRQRcmF0jjnCFFGi1VJ19ZGS55NWX86J/ww0Gd4+523UQhiuOs62rpFIRw88aeSQEdQtHUtuWVlnKQmI0pFbRX784Yb+3OMOhLL+GxJpiY2c1ah4myQMMqce5xzOFuV7UjUR1Aaq1z+VJrR90kVV2EJDYWUAnfeept33r7LwcFSRk+IIaZSYsxXpcy1J56nXR5w5+UXuPvq78GwhZzL9UzT+NM5STuOIaMtIjWuNFlpYikS4tAXBL7CKI0aIm0tad11VYir2VDpitBHnJOxUl03WGtoZy3WOMDyzoO7fOHVt3ny+ZsopaWoNXDv0Qne77FNT/NkOuJwtkLpXgqHXNRGJgI9xAGrK7Sqyji0EKJTIPQS4qiLo6/UKAqNKfuuFF4ppRL1UuTao3leLo3MhHoXteXXd8TLWfgn+Jn/v3nUDl544Td54olnaZbXS46EKeF+hhB7KqdQriphgWM1J8SeEAKztsUHCTLP2WOdxe0f0tsPs+sDtf8ioT8SJrux5CioSC5wosrCio+JSXUhG1rCGgkWBDBITk4MPbsgVtzV0NH3HXXdULcNvh8wSpJSBz+gMMTQS/5Iadr7PkoGyyg5GIuUJIeNKr4pUkRFtl3HSs0Itz/GzN1l+9bLxOGETJgQgZEPAmVsMnJDRrSjHMq5+JRI03wxm8zl58bzWDa98nxJUIAYQvFLGcXSciXG0jszZuGWIVBW4ppYNpzxh8aAxDSOoBSYrKiUwKViElEO+TLySQXRSYXEZYAaTa2U8HxSed1Gs9GeTfCc3L1H9x/+N979gxf50P/lB3jyYx+mmc/JxpCyuvSayripjHbkXZXPrsDPpMTuzbu8+tM/w4u/+Ms82JyxI9PlxJlSPGHnHChHIhGyEGZlI1SXDtdUDvOMLxvplRhp0TzKmQcxcDJ4bqTEYYYliqapaQs8PyZnA2QJLcL7zOAj/ZBoikunLfeSH0aCeSKpiM6KbECParlieicfQRLpbsqCLsSATpHuwQlv/dYf8NVf+wNO3xGzsaAgaoXPUsqEnKfRYFaZoBR9hCFAl1uuXXmWxZXbmGZfZvXl/k6lWPbeC9/LGFxVYYzwz0KImMlJ1pCSoCZay3UeK8vJ90apEt5p6XYddT3DpBIloXSJrDBEKob1OaOsUvYC4WsMfigFtLy3Xda0SpdCWA5JZ+00As69p3KOveWC2azh4dEx212P7j2VNoSup7c7XN1gtWVzckLuO9qmIYUBBczmc4zWqBAI/Q7rLKaq2Xr46qbnuEtoU5OVkJyttRKsqGQsKwhhIfEbKVRq59h0spekHMmhyPdJDD7gjKJuWh7cf5fddsvhlQOMMsWcTJo358qhZgx9P1A5Q+0crrJSVBohpo8+GgZYtBXXr8yonCalGt3cJCwOOCbRBS/xBEqhlME5Jyq7mKZ2Z9xOoBRvpUYZH+MhmQsR/fj4hFdefZ2nnrrN4fVDuXYFQUoJtKupkLXz/m/5c1y58QR3Xn6BzdHbpBSksdAGbUvwp9JEAzmX9O6UJ/GG1kb4Jc5Kka00bW2pnaaqHXUlBZcPueR6ik1BXTmaWq6psxXaCDLzwot3SKqmaRe0TYWzopBab9YMQ2K7m3M0P+Dasub6YsPV5UDrFM5onEvovCXlgaznZN1glfATIRFjotuuab1nTIzOZYymtBa+Ty5FSeEYSvOvC2FZTgRF8YUqIz/ZK/6UjXtIkUcP3+LzX/g83/Ndf1kC+rRo67XOVHVNTr7kUBh88NSVZSSFKQUhDCglZK6UJVRsN2TWfWaYP4XLUOcXSef3SDmIq2oWVnfKErgFoAI4JzeswlCVsZBSMsOrjEHc+TOVUQwx0Q8d3dCj1itmdYurK6waZccZW+DmoQ/YggCpDMSE9x6jFCnEogaRQkkVC9wQAl3MdLqBm+9H19e5ffAET73vW7j3+ou89tLvsl6dokm4cviMnSWMkF1BUi77YuRLmwIXiIgCjNHigzXyUYqDove+KHzkdY4eBnoaEU01ktzYZGGUF7TiAk0s3dxoIpQF7bFKfGbG8U8enyjJoT6U3+tQ2AxOa1GaKNm2tJLnabRmG6FTCZ8ThB273/kCR6/f4cN/8Tt575//FAfvfR5dVRPhTxweL3cJgkxJ1yYH0fHnfpeX/u//kS+9+CVQidZqUd2kxInKvKW2QM1MaQLiahrUCE3LGkeP4zd5axbpfmcJ9pJhqRKPHNx833PoEEA7krMkbfBJun+lZDOxRpVrAOgAasA5g7UBpQ2VM8UzSKFiJiAqIWMzKmqUFk5DSpoc9ZR4HUMgbLZs337Evd9+ibd/7Q/YnKyJJhOtJiikMImJkMVbIiSRWstUT4ldeoYnnvkmPvDtP8ByfyGojRHJayok5hQkYdvawmsw8ucU8jbCy4VcHocgd9pImlVjzIQRHCUrlAqQE6vtjtnCU8UKlcT5ylhLNasJq0Qwjr7vUcpIRkwhhAsiJQnaWSl6Mh5JEbZKEnazVjhjiL3Y7ddVxXw2Y7bYgy5x4k9IZIKPMnKKkdjt0DEy7IR7QozUVUWKnu3paWkIEvPZDFc3rDy8eb7jqPMoIyOGmBKLdsa1q9cF7dNaPrui3jHaPLYItVbMZ20p0C5xMXIiZcNmt+ONO3cIUfxOdIUUYEk8ZmJOKB8YBg8katdIURtTWR/j2SXXQ8dIrR2zWc1i/zZX9p6mni1IsWfot4LuhCBokpVxUQwiNVYUiaxKRCJGC6Ktytgn5QtbeIWsqawzMQx8+atv8NGPfIDl3hJl9GSsGIurtzYOUysqBdeffD97V65z+uCr3H3ti/RnR0LsSGXP0WpSRlZWT0iyLp+ptUWKb60oyLTsUXoUFMQyrsoGbIXCYKyMYJq6QRvh8ay3Wz7/0h2Mbbhx80nms5qmEnVoiAGlOs7XPd1O8e6RxVjLooXbB5FrFlK2aG3RThR8Jm9xOaNjUdDFzLDbEPuOGDy6EnkxmUIWL4q+spwmQqySBlNNiLs0r7pwgf6kj2/oIiWlRI4DX3n1C9y+9TTvef5DhIyQ3crXna3EqCwXWW+KWCdzTKvlz7quCDmzWCwI8ZQYezJg2yXJPUtXz1H696nO7hBTECJX+dQjGZ8kcCsNoGPCuVTmd6ZAsnLhrNGYnMhK41Sm1pa+ZOdsNmvyTghxdV3LgrfiTyAQ2rgw09RBpmIIpscOIUH2mZjBJ+h1Qzp4BuUOUAq22452vuTD3/H9PPGej/Dq7/0qj+6+hko9RpdOI6uJPKdKdzmlGE9H5GODGUA6l9HV1xmZ+8ay2L2X+X2KApNPvICRx/HYM+VLM0516Z/C2C9SY13mnrYc5HlcEeVVkgSQ3GXZyFyW71Vavt9O/rOCqiklhFuHplORjEgTg8k8evQA/svPsfn9V/jw//JXuPLpT2LqelKKpRRRSqR947vJMRJ2W97433+Or/w//ytvv3uPRy5wgGNmLZUCHQ1D8myi56s6cYOKK5hCRFP4MoYwWQqwRPlMEc4ISqGNorGGp6Lius90Jyuq995me7zDmVHFkRh8lINYK0n81orBSixCCLEgXrC/r4gzcJXkU8mhWBwrvZ/uC6PEc8EUGe+w2XH05bt89Ve+wKOX3iLsBjCZZAVHTgpJpC1S4lwcS1W5YKPPhU7y31du3eDJp5/A+yhcMF0UdL6n6wJay6E4pkJX1k0eHiMXocCEDENHTrlwwqw46JbrJkGfI74nxYizjt12R13XqEGI6yiRZdtKU6UZfuixthJCsVTyhCL3HAn1KoqyKCfQlZFDKGdqbbC1wqAhZbarDTlIeV6VcfDgA/1OvFGSMjKyzpnee9zg5XpEya2pm4rFcklVNayHxJ3TFQ93kayFkOm04fqVKyz39slJXp+zhsoIL+4iqVsuiHOWXV+8jsS+FAopX1lDUorVZstut6GpJa8ox0g/DGhj6YcBa+Sa94MnhUBVCMwxJlxly77GNM5ddQN3zgdeOl9ycGOBso5h2JGT7B3TuLGkcovhYRnlaI21ttzDZS0WThUFlb3AbqWdUEqanUePjvnK63e4fuOQ5f6SPCICBS1XWsaa2dXolGjmV7j1no9y9eZTHL97hwevv0h3foxOxZhRKZy+UEdZJeoYZ83UFKHK3mVdQbM0oRRcORd+memYtXMMGVfVEsaZNf0Q+J0/+ArHq54nn3mW208+zXxWi4twJd40ikCImRgCfhiIMXJsNHcfyHmi8m3y/m0O5mCSx9WB7Ho631OFgUzGhw27s2PmhzdFinypUSxAr2DpORWOyrieL8i1I5E+F/22GmU+X+fQ5xu6SJEPSrNdPeTXf/1naZqG20++h5SV5HQkX7wMVJF4RqwVYpAxmr4Xol0/SNS699KZ1e0MpTV+GNhtE2l2Dfvsn2H9VkN79lp5XjEWyyhCAh8lFwEgGfGaGCEuVeam02gjS5VutZYubeRuhESKnt02EJxhm/LE9RhnryldLDCNEMJikYClKAVK5xNb1dDNr0OaYbYDrhJpXAqe9XbH/s1n+eRfeoJ7X/kC9175LYbVEZTuOqd0oafXYqTEyLMYWduMYw3pCI3RGK1L3kUWZCaL4dHgPcGPgW3pouiZbKvTha6ey1ySCy3+yByX30uJ1ChqpHIv6LJwKByHbY50ObHMmnpEPsqgQpW9y4xBhlmUQVoJOuKJWAwY2OjEu7sN7Z13sD/9X3iu0lz7xCfELlwp6TaUKgGSiqAU3fExr/xv/5XX//PPs9qsiEahCyoRk6GqLIeVY5FqzoaBh2ngHTqOleWmqlhqQ00mKFF0aaUJJbAgTQqaTNbCDbK1oUoGHm5JtzwH15dsTnbivosgWikLxD9eXxcTKUgWQooiHfUxs/QL2rnCuAyFSCk26MV0LuWCdiW63Y63XrvP27/2JYav3BNnUqdIko9JzKmMC0q5WbpZFeW6k8f0ay7NCxHFlNYkJUFlKSW22y0pB+Zte3E4FVVKUgpdGgBAXFkRonDwA7YUMMFLkJszQkjMOREAlSLaWOqmxZiK3XZHtxP+QVYV2gq6aZzDJKiaOd32HNc0WOdEIRLFRLAqhdAyW1SErBM6jeithSD3YFtVhJTxfWC1O8GVLtUqXRxkB9xuS920ZJIYv+06Nrstfb/h4GCfK1cOaKoKpS1dVLxzesrD7UAy8ndaG5Z7Cw6uXEErgw8BHwasNeUAloNLK4M1COLsB/lMY8YTCgdISK6giDFy99591qtzZs0NnNGgDLWzoDV1U2G0Lq60mb3FbJKIG63lWpQCchyR/vyLHdeP5bPOaiD6XlxP0+iSJGOenIHRkr1srrmo4pQW0nhM8RI/Lhfundxf4/hFsCcY+p6vfPVN3v/eZ2hnDaboeJQSDqIea11tsHVLCprooVoccmu25Nrtpzg9eod3X3+Z/uwRyUsa/OTyqjJGiSrKFP6bG50uC4dQ3pIU8EIuhrax1LXD1LWgXNrik+LNd474337x91CmYbl/RaILKodR0FQSwWKNJRQhRsYz+C1+2xUCcma3jdSzQ7RbYOs96rriTjC8u80Y5WlNzyK9hVltuFaaU9lt0pQNNI7dZbnqi6WrZdxFluBZXQr40RAwjajT1/H4hi5SpBqtyTmyPn3Ar/zK/4vv/p4f4NrNpwg5U7sK0X2nQvobN0Y5zIwZZ4dJTM+GAe+jEJVcxdnpCa6dMXSajQ/UT34rKzujefj7uNShAKctjYWt94QUBUEJTF2uNbpgXsUMqSwAef1CrjVlJmuNFBmiPNKiPAK5KQoUp1S53FoXQpM8XxJZCKe7yGuPBnb1gpnVtNbjVCDrRMyRykK/26GUoaoqnvrAJzm89iR3X/kcZ/deo+92ZSEXIyNGCd8lFKXgfHLoyAFmrcZasZKWXUEVv4JE9J7BizQ6FdfSlNIlTocUQRP5VuuLMZLsLvJ7U9HrgxzcFOJslkNt5CkkoEuRIUZmKBolM+OLIqeYDSnZwPS4wFLCFWv0aETWXgEt0BEIOXH26Jg7/+XnaZ58ksXt22gjSg9/tmJ49Q75/gMexsAXfuO32bz8ZXwKwjFRiiorcRKNERM1JsPMaBpXswyGVQo8yJ438o79ZLmhHW2xndZGOnCHZsgRXzoypYSalHLGmEwdFaev3EG/7zZ5CAxpIDtHEPNWQvkZYzTZWrC5WBrk0vFoYlIMPtHMwDhXNvxMiJGuEx7Vyekpb7zxgNMvv8PynVNa7/EGUnUJ9SJPvCcZqRVuEGm6rhpBI8cCRopv4Xj4olRLJLzvaZuays0Y4xNGJEtSn13p9srXlCS39tsz2WBzofqlLLwVrUGDURaVTZGASzaX9wND35FzEqJnDGXcJpuwsQbXNjjXSFieUljn5LDQGqcN5Mi8kSwuiWkAZ830ekMoJnzlfeTxQC1eSEYbVFbEPjDkTvxylMHUDVjF/7u9c42x6ir7+H+tfTuXuZwZhplhgAFsa9FCG1papK36oUREXuvt9Y0NNniJpkojqKmtNtUPBiGamKjRekmsH6wlNmmrNq1KoBYxlFuBQmkpLbQzpcwMw1zOdd/Wet4Pa+09c4DaosAwdP2SYYaz1zln7Wevvfezn2trews62lrh2g4YGEJBGDhRxGC5BqnVPtu20NjQiKbGRl0BWqreT0xZoWzbhm1ZELFQ5wKptOKRYhmO5ajzVN/QHd3BmDGOcrWGgf4+eLaDXEa5cQDVaDCbVanDkiSKpRJsS8WiJOmrKk5FjRdxDOYqi2UgLISxCrpWFnKBKAz1ea+KG0If3liXYEiuT+BMpzMrxUUIG7EO4IS21qSNNym5ZioFVkqgr1+lI09pa0WuQWce6fYY6W1Yu8O4vj6JOAAAOJkCpnblUJgyDcWhAfQfeQH+8ElIGavms1opStzWtm1DkoTNLe3OZXpNqOu466p15DjqQcayOIgsRLGFgcEi/vDkTlSqseqAbWVguRndzBZozKv7XRz5yOVyyuUrA7h2FlLaCIIQlVIRxZEhuLUimlo6IEIbFHoIuIOyZQPMA/EGMOsqvM4deCN5zGr0dOyeUliSh8yxir7QVrEx9z9BB6kD4EwHrvNENTw7JrWSkrgOGLcgRIjB4y9j27/+jmX/83+w7UbERCoaWepiPCAwi6uWJFBPeZypOic1P0iDH6UUcFwPTYUWlMsVxJKQ4S0Iq0XkZs5HmGlA3LsdXlyCZQl4tiqFXw1DhHEMCR1TYnNAcjCLgQl9sljKVD6m2RP0OatueJJAWn2XfMwlkTwFAKRLnTNdtdZCTKpLZymU2N1zEieKATKNFpx8M7xsDiBVARacIxQEWVNP2JGXQeC4yDV34PIbPoLhYy/hjcPPYrCvFyCh3SDaBwkg6buTWFATtUWlCVpp2hmDWrzpE4s2zUptzpSJdQT6w5jKfyAoP+74TCEkv6FM8oypYFcLXD8paDkmvlEQAikRSIEMY8iOU1Ck9l+rC4N6QktiWRKTpUPaYpFYvGAhB45REiruBxLFnmN45e+b8e5P3YpcYyNICJQOHkL1qd2oDAzi0Kuvoac8jLxrw7Vt1ZwSgNDGoghqfmCAJ5X7qdG2kScLBeFgUER4HQGKJDCDXLTCVgGf2oTMpMqaELrCo2RApE2vFjG0jcYoH34dozkb3bM6IDhT6xs6doek8uvrYFe9yBCxGFWdSssiiepoBaEkCBmjJgWqfhX9gyPof2MQ1nAZbaMhWmsBJGcoeQw+I1ik0pGV9RDa3EmpiT2xlyk/vVofNjFIptsAMFXTIo4FAt9HrM9x23GUyRzKbZMEp1u2DdtyIKVMLVsqw0OiUioCpFy+SVaS6vhsqZsl1xEEem3GOnZKWRAtlEtV5LOqCrGEALO5Dq5VNzAn3wBrxIabycN2XXCbw+ZAxNTDSXNLDkHJRwiRpnRzrta+NmAoS5O2+EAH51pgYJYKdAVjqFZ9hACE48BuasbM2bPQkgMyGU9ZgwTgF6s4OVrWBfpcOF4eDY2NyGazKigTTGX7xQKZrKtuhIm7ASp+zLIcfUMnuFkPqsOc9p5z1edKyhBDw8MI/BpaCwXkPFcpapZSRFzXA2dMu+hs2Jat4imYun15nqtajZBQMWyOKlxGMoYIA+XCgXbbACorkLTbSSsLSdcZR8cfcc6UO4QxQCrlTIikQWvyKKMe9pR2zHVWHoNghEqlhMMvv4LZs6bDTuq8MDl2bUofniyVFm2p5AYSNqSIwMgFtx20unk0tHRidOgEBo68iKh4QvWzAqm+bVJZH9U+UBpbpxR09ZmWjpVk3ILqZOwiih30Dxbx6NP7cLR3ELbtwMk1wA+BMFaWKU4MjU15cMYQBDUIGaOpqRnNzU3w/TKiUDnWLasFVd/H6EgR3LLQ0NiEKPDBLY6IGAAL4B7AsxgIm7B55xuY01fEnOkNaG/NI5dVrqWk6zogdTLCmNU7UchA6qFAcl1LSmcUni2TWkkRMkQYVMEt1emYMcKx1w5iy9NPYtmHPwbOcxBQOf2qvLiqb8KZSrPKuC6COE4LFHForZdUVUDGHOTzORAYwjBQKWZhDU775QjsLEpH/olsNATPBjzbgoSDWhCoLCOLQwhVi8BJFp+lk3otK73LW+DpTV8pANoVQQTSFxCFVlKkSnG19cmS3vjB8HrJx2ClBmIcceSjUhpFJt+AHJdwHJUnH8Yq/bhaCyEkQwYMJSHgOjYap8/D3M7L8MYr+/Dy/mdQ8gdUammqAGjTJ+lHSlLFSCymakKoMAPtGsKYEkKkGuYlvsxkzonLQu+2PkH1I6t+LxJlhikTKiNotwzSeiRp4yuo+66AhMMY8rB0nIgO/AKNWWB0ifQx+SrF1WEMVQ4dvqrGNMBGEcoKBKE6xp741y6UI4Fr/vdWcJI4/uLL4H0nVGNKi1BhBI8Ad8wzA49biIm0/18iJOUesBnTNRMsWIzBsziahIPXRIBepmqntJGtspCYDhTUSoAq1geQvsk3AMhzB1N8hlFEeOmFXkzvaAG3HESSAbYF13VS152QEmEYApCwLAbbF6gFPo4Pv44jgyOo+D58KREKAotitNcizAokrFjCZ0DN5agwiYqIkZVa7UuCnvVRSYy9PJG3FnriduMMcKAsjzGpYyR0fAG3LEgGeLarbu466BcM6gaXVJBOCoeBEMcB/HIZUkq4Xka7Klla1G3M/KxuYqqsOsF2HFULRVAajzFaLAEscWFAP2Grhx43k4XrZpBvbIKbzcFzXWRsG6EfIus6aO3qRKn/BGK/BrItSJKwbJXtIwmIwhiRVlJ4cpPSiroggmBAOQwwXPMxGgnUYol8LUbXe64BGizY+QxsxhH4EQZ6BxDGMXK5HJxsI/JNzcjl8rAtKw1cF1EM13NgWzZymQwcS7XdUPE2HI6jegSR1A32iLSVykalUoXjZFCrBqiWyuCMkMnoQl+2sqbmchkwzhCEEYZHS7AdFw2FAhIzfybraIVCxZR4Xia1bkRhCN+v6euvTC23YRTqBaPLHWjrlsUsta64aqFJUA1fucVhSV3SQdc9IW11IZGkIOuHHa62kWQ42vM6jg+cRC6fg5txYTt2OhdCEp+nLTbgYLAgpQMiXS06dgFU4QjC1Gmz0Tp1OopDJzA68DrCk8dRGx0BCYKMANdV4QhMK++cq1sC56oHmm3bcL0MHC+HMLZx6NDr2LTrMAZGyshlM6jUqsg15nHl1ddjWtc0uK7KqslnXW1lUmUfBoeG0NrcANe1wXkWtdFRNDbkMG36DMRxL6JIIAxCpXwxmYZPEFUBVgKzighqOVSKeZw8UcCUQhZTp+Qws6sFjfmMvheoQpTqvCZ9LvL0CTY5vsmDNiUW9LNgUispYVAFZxYsqRYSAWAixME9W2BZFj60ZBkiSSqCnTHYlrpZqYJLAiFnICkQAACRCvziFoSIUY7UwYujSEdwC0hwBLFEXKuB2w3AjGsxdPQZOOUR5LIeJCmFKAoC+HGc1g8JONOufZVLn6T8qQCvU26V2rlH49wc6saklBRLnyyRlCChSvBHkqESA6PlGsJQR/QLAT/wEfg+Ar8Ky3ZAALjlpOm4pVIRtVoZGS+DmsXhZ3JoaC6g870fRGv3XBx5bgtefGE/BgcG1ffzsRsPAwO0jxXanBpB7UosaCzlVxdzC/yadqfFYDwAdFqnZTuw7Ej91tkZqgFZUpMDCP2qijGJBDK6fksEUgX1dLXbxO0T6/LxWW4h4lAXPClVaXQoawbjEpDaMgFlolQp/YSQJIQk1DjB0enT6ikU8GOBci1Sabh+jOLW3dgWEgqdHRh84VU0FEuQkbKkRWTBJ4ItJQQYIilgcY5QNy+UkmCDQchYZSdxdWwBZU7O2C66Iwu9cQ19UQgpCTkrcW+o4yBIuaskA8A4MtCNFSlGNnZwTexiZ6WEvuoApna1KWXGteE4FoQQiIjgRzH8WMD1HPBSBZVKBcViGQOlGqJYgEuJ5phhmuToYjbyMVCLBYaZRNUGQgDlONIdsC0IJtJ1wvVClkhMwQoLSeaYalmvFBg2FhjMVNacXwtU7AQx1EJ142JMuQu4pdwyidVEZaeoEva+76sAVsdF4AdqUSb1L/S6YpynpnZJqodSHEVqrdZC1Co1BH4VfuBjtDiK9mnt8Dw3ddUKQQh8H0JyhKFqZ6/u11wrWQSvsQUo1gBBiDI2fKEaf6oAYpV6HUt1DC0pdf0l5S4NYolSGGIk8FEKI8QEeLkGXHf9Ylz+rneDoiqk8BHEAfpPjuDoaz26g7EHN5OB53rgXMVcBEGIQNeDsh0LjQ15uI6FKKhC6k7rZDnKHRSrAm6+X4OMYtiWhUoJsF0XQVhBcbSIgYF+9bAEptN1VfXmKAwQRjFKlSqCIETb1AwYtyEEEHNl6atUK7DDUCkaQQCZ9vWSiOI4PV8TC4nUGYLKXQSIWJ3TjmMDIF0nR0IK0kG2qheWNrUhqZOi4lbGAvbTPDlS1priyDD27X8ehaYs8vksXC+j452UBYhbXF+feOoOB6m+Tup7dXNHWIhrAUgK5BunwHNywNQulAbfQHF4BKMnhxDUBFxLqK7PkuC4FohxFbuSzcPOeIhkjKFiCf/acxjPvjKAahCCM44oUqUCqpUKpnV2oLuzAIpqKBZjxH4JURhABGVw24aQEqOyBsflqgEpCMXRYbS2TkG5pYChk0Pwa1Uk7VWEUCXyiZi2aKlzqFbMg0c1lIY9DPTZGOjvx8zprWhpzsN2bXiuasSbJFpYtn5sTKz/bMwl5NeqSEpZvF0Y/SeJyxPM6OgoCoUCAGWWTSwQCvWUblkOsrnsuJiH5IE2ecqr3+3xOsEpf2K8hMbMXGqhk1CLlKfff4qCkaD9dafB2KnDcNoh0dNlZ3h78k1ESjmI5ZiZkjOWLsDx7pNkaqmrRAd5JRdvADqANEYY+IgjXYitbkJAYmlIzPZ1c0osL4BeuHZaljypjcD0Y3Xyu14kY/8XcYxqpQxXf8/4/j7pl9S9kMxy3Jqo+8RTvq9OlmN7Ot6OJbUVpm5PmbKKMc4BIVRRLVJjYynTmCFKJ8fGrb/Tvzt98hi3JemGnChTdZtP2SkGba1IdFuuUt0FSAU9suR1XSeEJYXodB2MxBUn61sKWAB0u0UwJAXUVP0ZjJvGmyzP0zjTuPGHMCSCnckgk8mO6en6H3qz82DcKU1amTmrCYx7LygxXVO6pJQLoP7NJFVpcCHUjVG5JigtJpjxXJXxQcqsL9UXjL2fxq/W8fs17lgkc4JyAXiepwNYoeeprJRRFGkF7NRz/fT6FJwn7g4a98TL9HoYP79xbSW0dTRRIECkM4PG3gv9oJC8Nwm+x7jPSH6PPz7lcllZqHhybTr1WkOn/X3q8U2uuem1N3l6Twckv8Z/1thG0sc443lj7p36g4Iz/Pf076KxOTAktaUoPe5Jh2ZgLCU6uZErN89Y0TkpAT+IT4viULE9FvINDdrNrt4bC4FqLahbY+PXFACdPGKPZUedvjf1fzCkysf4atsWZ+k15c2uq2eGMDw8DAAYGRlBc3PzW4yfpErKkSNHcNlll030NAwGg8FgMPwH9Pb2YsaMGW85blK6e1pbWwEAPT09b0sTM5xbisUiZs6cid7eXjQ1NU30dN5xGPlPLEb+E4uR/8Ty38qfiFAqldDV1fW2xk9KJSUxITY3N5tFOoE0NTUZ+U8gRv4Ti5H/xGLkP7H8N/I/G+MCf+shBoPBYDAYDBceo6QYDAaDwWC4KJmUSornefje974Hz/MmeirvSIz8JxYj/4nFyH9iMfKfWC60/Cdldo/BYDAYDIZLn0lpSTEYDAaDwXDpY5QUg8FgMBgMFyVGSTEYDAaDwXBRYpQUg8FgMBgMFyVGSTEYDAaDwXBRMimVlJ///OeYPXs2MpkMFi1ahB07dkz0lCY969atw/XXX4/Gxka0t7fj4x//OA4dOlQ3xvd9rFq1ClOmTEFDQwM+9alPob+/v25MT08Pli9fjlwuh/b2dtx11126k7DhbFi/fj0YY1izZk36mpH/+eXYsWP47Gc/iylTpiCbzWL+/PnYtWtXup2I8N3vfhfTpk1DNpvFkiVLcPjw4brPGBoawooVK9DU1IRCoYAvfvGLqoGe4d8ihMB9992HOXPmIJvN4rLLLsP3v//90xoeGvmfG7Zs2YKPfvSj6OrqAmMMjz32WN32cyXr5557Du9///uRyWQwc+ZM/PCHPzz7ydIkY8OGDeS6Lv32t7+l559/nr70pS9RoVCg/v7+iZ7apGbp0qX0wAMP0IEDB2jv3r30kY98hLq7u6lcLqdj7rjjDpo5cyZt2rSJdu3aRe973/voxhtvTLfHcUzz5s2jJUuW0J49e+iJJ56gtrY2+va3vz0RuzRp2bFjB82ePZuuvvpqWr16dfq6kf/5Y2hoiGbNmkWf+9znaPv27XTkyBH629/+Ri+//HI6Zv369dTc3EyPPfYY7du3j2699VaaM2cO1Wq1dMyHP/xhuuaaa+iZZ56hf/7zn3T55ZfTbbfdNhG7NKlYu3YtTZkyhR5//HE6evQoPfzww9TQ0EA/+clP0jFG/ueOJ554gu6991565JFHCAA9+uijddvPhaxHR0epo6ODVqxYQQcOHKCHHnqIstks/epXvzqruU46JeWGG26gVatWpf8XQlBXVxetW7duAmd16TEwMEAA6OmnnyYiopGREXIchx5++OF0zAsvvEAAaNu2bUSkFj7nnPr6+tIx999/PzU1NVEQBBd2ByYppVKJrrjiCtq4cSN98IMfTJUUI//zy913300333zzm26XUlJnZyf96Ec/Sl8bGRkhz/PooYceIiKigwcPEgDauXNnOubJJ58kxhgdO3bs/E3+EmD58uX0hS98oe61T37yk7RixQoiMvI/n5yqpJwrWf/iF7+glpaWumvP3XffTVdeeeVZzW9SuXvCMMTu3buxZMmS9DXOOZYsWYJt27ZN4MwuPUZHRwGMdZzevXs3oiiqk/3cuXPR3d2dyn7btm2YP38+Ojo60jFLly5FsVjE888/fwFnP3lZtWoVli9fXidnwMj/fPPnP/8ZCxcuxKc//Wm0t7djwYIF+M1vfpNuP3r0KPr6+urk39zcjEWLFtXJv1AoYOHChemYJUuWgHOO7du3X7idmYTceOON2LRpE1566SUAwL59+7B161YsW7YMgJH/heRcyXrbtm34wAc+ANd10zFLly7FoUOHMDw8/LbnM6m6IA8ODkIIUXcRBoCOjg68+OKLEzSrSw8pJdasWYObbroJ8+bNAwD09fXBdV0UCoW6sR0dHejr60vHnOnYJNsM/54NGzbg2Wefxc6dO0/bZuR/fjly5Ajuv/9+fOMb38B3vvMd7Ny5E1/72tfgui5WrlyZyu9M8h0v//b29rrttm2jtbXVyP8tuOeee1AsFjF37lxYlgUhBNauXYsVK1YAgJH/BeRcybqvrw9z5sw57TOSbS0tLW9rPpNKSTFcGFatWoUDBw5g69atEz2Vdwy9vb1YvXo1Nm7ciEwmM9HTecchpcTChQvxgx/8AACwYMECHDhwAL/85S+xcuXKCZ7dpc8f//hHPPjgg/jDH/6Aq666Cnv37sWaNWvQ1dVl5P8OZ1K5e9ra2mBZ1mkZDf39/ejs7JygWV1a3HnnnXj88cfx1FNPYcaMGenrnZ2dCMMQIyMjdePHy76zs/OMxybZZnhzdu/ejYGBAVx77bWwbRu2bePpp5/GT3/6U9i2jY6ODiP/88i0adPw3ve+t+6197znPejp6QEwJr9/d+3p7OzEwMBA3fY4jjE0NGTk/xbcdddduOeee/CZz3wG8+fPx+23346vf/3rWLduHQAj/wvJuZL1uboeTSolxXVdXHfdddi0aVP6mpQSmzZtwuLFiydwZpMfIsKdd96JRx99FJs3bz7NTHfdddfBcZw62R86dAg9PT2p7BcvXoz9+/fXLd6NGzeiqanptBuAoZ5bbrkF+/fvx969e9OfhQsXYsWKFenfRv7nj5tuuum0lPuXXnoJs2bNAgDMmTMHnZ2ddfIvFovYvn17nfxHRkawe/fudMzmzZshpcSiRYsuwF5MXqrVKjivvx1ZlgUpJQAj/wvJuZL14sWLsWXLFkRRlI7ZuHEjrrzyyrft6gEwOVOQPc+j3/3ud3Tw4EH68pe/TIVCoS6jwXD2fOUrX6Hm5mb6xz/+QcePH09/qtVqOuaOO+6g7u5u2rx5M+3atYsWL15MixcvTrcnKbAf+tCHaO/evfTXv/6Vpk6dalJg/0PGZ/cQGfmfT3bs2EG2bdPatWvp8OHD9OCDD1Iul6Pf//736Zj169dToVCgP/3pT/Tcc8/Rxz72sTOmZS5YsIC2b99OW7dupSuuuMKkwL4NVq5cSdOnT09TkB955BFqa2ujb33rW+kYI/9zR6lUoj179tCePXsIAP34xz+mPXv20GuvvUZE50bWIyMj1NHRQbfffjsdOHCANmzYQLlc7tJPQSYi+tnPfkbd3d3kui7dcMMN9Mwzz0z0lCY9AM7488ADD6RjarUaffWrX6WWlhbK5XL0iU98go4fP173Oa+++iotW7aMstkstbW10Te/+U2KougC782lwalKipH/+eUvf/kLzZs3jzzPo7lz59Kvf/3ruu1SSrrvvvuoo6ODPM+jW265hQ4dOlQ35uTJk3TbbbdRQ0MDNTU10ec//3kqlUoXcjcmJcVikVavXk3d3d2UyWToXe96F91777116atG/ueOp5566ozX+5UrVxLRuZP1vn376OabbybP82j69Om0fv36s54rIxpX0s9gMBgMBoPhImFSxaQYDAaDwWB452CUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUWKUFIPBYDAYDBclRkkxGAwGg8FwUfL/bP/nAMd3xKMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAACtCAYAAAB1Le/5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Saxt2Z3eif1Wt7vT3v7e10UwOvZJZoopSrJkuCCVNTM0MKChoHlqkkAByokEjQTUwNBAggc24IELsDVxVQ1KkAUlnBKkkjKLZCa7YPQRL153+9Of3azOg7XvfUEyU8mQ4CIJ3z9x+eJ2556z9z57fev7f9/3FzHGyF3d1V3d1V3d1V3d1a9YyV/2E7iru7qru7qru7qru/rT6g6k3NVd3dVd3dVd3dWvZN2BlLu6q7u6q7u6q7v6law7kHJXd3VXd3VXd3VXv5J1B1Lu6q7u6q7u6q7u6ley7kDKXd3VXd3VXd3VXf1K1h1Iuau7uqu7uqu7uqtfyboDKXd1V3d1V3d1V3f1K1l3IOWu7uqu7uqu7uqufiXrDqTc1V3d1V3d1V3d1a9k/VJByj/7Z/+MV199laIo+Pa3v80f/dEf/TKfzl3d1V3d1V3d1V39CtUvDaT883/+z/nd3/1d/uE//Id873vf4xvf+AZ/82/+Tc7Pz39ZT+mu7uqu7uqu7uqufoVK/LIGDH7729/mt3/7t/mn//SfAhBC4OHDh/y9v/f3+Pt//+//Mp7SXd3VXd3VXd3VXf0Klf5l/NGu6/jud7/L7/3e791+TUrJ3/gbf4P/8B/+w8/9fNu2tG17+3kIgevra/b29hBC/K/ynO/qru7qru7qru7qv6xijKxWK+7du4eUf34z55cCUi4vL/Hec3R09FNfPzo64p133vm5n//H//gf84/+0T/6X+vp3dVd3dVd3dVd3dX/D+vJkyc8ePDgz/25XwpI+bz1e7/3e/zu7/7u7eeLxYJHjx7x3/y3f5+/9O3/PTFmnF19QlSSTCu6riOTJUJKvHBsujk+eowweOvYG98n0wWNbZDa0LRr2rZmUu1iTMFyPSczGUUxonOOzXaO94EYQSmFFoJqMCHGiLUNWucE3+FDxIeIIOIDtK4lxA2eBtGlr3kZEEogkSgUGQVBBjQCEwUZmoHOkUKy7hrsdoVsO4ZXNfdmGfflPvmmIzhPiI4YGkI3w87Podkim4gpp0hzAFYgmg66LWpc4TZrRCmJ0z0wE+jWuCJyNYWr7Skrv2HbOpwQ6LyiHg0wD47QewMaYbHC47zF47DB0W5bpMoZVAOyfMhweISzG06vP+FyfUU93/D08RMuLy6Zr5YoZQgB1nVN1zmEVGgt0VoyGg7YmUzZGQ7Y3dlnNBpz79ErjPYP+fTdD/jv/s//J779177Oi9Mlq3lN13b4CEJC0JCPSnYmI/bHY6aTIaNJSZZrdGYQUiJERCBACIjpH4GECN4HbOeom5bVZk3dbLHOAwKjFWVRMS5LBlVJMcwxWkGMuOAQCLLMYDKDkILgHTF6pJRIKVFKIZVECkmMEYRHkr6HACJEIhJQShMF4D0xQhQQoid6T4yRECMhBJxzWOfS10JIHz69KK0NCEUk4p3He4ezFu99+rkYCT4di4hIn8cICKSUGJ1hdIZU8uYgQX/copAQA94HvPe44An9wVRCYZRCCYVQEilEOr5IhNQYYyiLgrIoKYqCTOfkOsMojZIKiHTOsW7W/L/+H/89j7//Nq/dP0BKQVUUWOdYbxo655lWGUYrFo0l05rJzpTxeILzHucc8+WSpmkotKK1FtsfByEVyhgKk4GUWO9xziIAISUR8M71nwtiSIfAu45cK4R3XM1XKO+RIuKsZdN4lFIMlWe5bVl7iEHQWA8iooToPyACUmsmwwqISK2wETbbmmbbUTtPCBEESCGQUpHnGZFIrtOOU4hIdJ66c3Q2PUEfI8RIBEKMaK3Q6ubWnr5nO4cP6WdefqTzHkmvUwqBlgKt0/moW0cMkUyna8E5T6YEmdFEIqL/27Z/IxZaIQksO0+6wsTLa/wzqoIQ+/di//zapuV/+p/+BX/5r/yV25/50/jx+J/8TPwZvxP7r//sd+PtI7z8/p/+lRA82+2S67OnnD17ymK95mq+YrlqUNKjo0UJyPKSj5/NEXlFmeXo+hpn5wihWC+uUcakGxaghcAoiTY5kUBbN2y2W9q6JsqcgAQimVG024a23RIRDEdjdg4OKYyCdslgWDI9eMDx61/h4OGbxBjoupZ62zBfzjk7O+Xjd3/A4w/fY7NaEYDGOqwP+JDe++k+kF65UoJMS0bDEfcfPmCzuOLDDx9Td46v/fZf5dGb38S1C7rWIoSk3iz46J0fcvriFCUFj15/nePXf5O23nD94hNOXzxjvVrjrMVZh2s7Pv34Y2KMjEajP+WM/Xz9UkDK/v4+SinOzs5+6utnZ2ccHx//3M/neU6e5z/3dT2siL5jPByBuM+z5YcU5T0mo4Kr1RzhHYWuyEYl15tTUBEZDNY7ilyRR8VgMCEOplzPTpFaIIwmy3MIHpPljEf7FIXh6uqcerui3NlHhIBSkigl2kiU0nROk8kMIyKNbemco92u8coho0JlBu2BIEFBFBHhIxpBJQx7+ZgJFYMgUG1kuZqTLefITc3xUvKg3qdsx3BRo9qGEBqc3dBuzwhuxbBQaDlGUiLqMXEZcFjk8T7SrhAxIxqBX13i68eY0SG6nNK4lvb0jGFoGdsdlJtAPgCtaaLh6cxzWRboYcnMXtNaiw8e6yxdF5hOSw4OH7Cz9waus1xevk+93eBqx/ViwfPrK1abFVWZk6mS6+WCNnqEkulN4iw+KuJmi1SagKSNl2x8xJtnvDbaYTDZIwZo20hwQAApJFIJooSs0JSZoTQZeWbIC4MxGVlhMFojpAQRkVLf3DpvQUoMEAJoZYlR4GxLjBlKe5CCzBgGeUFRVuRlug4zI4kRdAxIAcZoTJZuQDE4YgwIQCqJ0QmkJFCQAKwQEiUlNwtEjAElEnCJAP3vhxjxwRJDIEZBiAHnHVJrpLXECEEk0BFjSLBXZQAEAsE7nDN4rRNIifSAxgPpNQQCCaAopNIYbVBSgxTpuKWjdXurD9HjnScEj/O+BzjpfCipUEojlOrbsLJ/rRqtDTrLMXlBlufkWUahM4wyKKFAgA4OVKQsSzKtKHNN27ZkEqSWNDqBTesDRabQIhBjRCvN3v4+1nmEEAgBM9Ix1CH0F4xEIvtFWCCVRklBSyAEj1Y3xx60TIBLa00IHttC9I7ZaoUMjlwrus7SdY7SCDIZqFvPpou4AG2IECIhRJyIGCURKpIpxXiQMRkX1DbQuUizbYguEEJEREHCA4I80+SZ6S/UBJadtbRtD6KQaAk2xPSctSJEyKRAK4n1AS3SdWe9T9ejED8NUiLpmr39SiolSEAkxATwImRKEGRazJQgAcsYQEkyCa0HL8AoRRYCrUuXTrpqEvBKkEggBYh4AxoEQgiqwYDxeHz7HH4eUvz0v+JnPv/Zr/35IoCfeaQe5CFA9AenaRoWizMunn2AWy9YbTqWqy1nZzNm8xnOdghJf00InF7zxsk+n5ytmS8XPNwb0smCzCi6VjMej9L7Qyrq5QLXNGzrDQGBNpoQOrrgadsVB5MJFkVeDpjuHlIvrljOrrl68ZSrsxdMdnc5uneCcorLp4+5evoRanzAq1/9TSYH90AKYoy4rmY8nXJ8csxyUDDcPUGW+3jXgYhEoYgIbLula7a09QZBoKxKlDGUgxHKGBQKU1RMd/cpzB7OeQSS1eKK02dPEOeXmDxj/94rvPWl36DICy4vn/PJ+2/z8QfvcHVxjqhrnHX9RjH+wlKNXwpIybKMv/AX/gK///u/z9/6W38LSDfP3//93+d3fud3fuHHeXj8JZbrS4bFmEwbcjNg1l6wJ06QUrLdNhiRIwVMqgNm86eUZsBic8b18pSdfIIQCqVLtNTgA9FZtNLUzQbXLMmG+6g2YzSYIrzH2Q7XOTJdkFWjxA54y6gcsT8+pnFbnr/4GNfWWF/jQ0BJk7bFEbQwRB9wscH4wD0HX6ne5NA9Qq0DcjknXl+yOL1AOEe+gXKtEJenBPcYJUusdMT1BbQbCr9BGYPoFHZbE2OLUFsEnnw0pfnSm5jrGfzkjxEXl0igMxnatdBcIdtz9pVAqwniWhOaOUJdoyZD8r0D4sTSPv0UXt/FTCuufGCOS6xPVjCpBuAE52cfMKuvWC+WdE2kXVpyMcA1ltIYvvnm15mtNlzOF+AlksjueErnOrZNg0TQWUfTtmnXLheUgx2uLy/ZzmtCiNg24H0khv4CjyCkSqxUFKgAMUSCBxCImN6A/R4U+l1qYlYEIoqeWEmPJ/rFUDtJjIEoFEpotNJIpeAWWEiQEH0kEgmkXbeUghDTDijGtHiEKJExLYAxBACUTj8jYr+7DhKpNEJEiJJcD3qGw6NUwDmL947oWmKgZ18AIdOzEaQlOSpilEgpUKTdr5aeKGNiBZAg0oItSIuUQCKkRMq0+1YygTohZWJ1Yv96+QxrEwLBB2KIxNiDHxle3vYjPSiI6TUhEEHhQ+zZDo+WHicSWAoyJsYihh7ICZSSDIoCQmRbN2SZIYaAc56oIiJmCUxphTKKyXRK6IGXc5ama7mczxEugRAbAloKVIwJlkWfAJf3IARSakLPaUmVQJoLPjEr0TObL2iaDkFiUJrGomViilaNY9GkxTwIgZIgEQgpElBVAiMlSqZFelN3BAFITW4M0nkwkSoD3f+OkAKlFNZ7fAjUW0uICUyGEJEiEETa64cInQv4GDFSEkLEZIZBURC8Q3WC4BOLZkMgBIgiLWKRiPek91xMbK/1HmMUmVYoIej6XXemFd4HOu8ZKJGYZUhsqILGC3wQDDONC65nlfv3Yv8ekyIBnZ91a/yXKgvFn/HfP/sz8ec+iwmsEQne0zU1i/mcxWLGcnZOvVnQrBesZzO2m5pV3VJMdjnYmdI2NZvNCtvWxGhY1C0+XPHo+JDvfPcJC90ipUdLw3g4YjyagJS8ePKE1fyKLM85evCQerni7MULnp1e4NCMp7sEITk7Paepa44OD3j1jbc4fu0tnn34AVeXp9SbJc+fWMqiZDweM6gKZh+8x4+/98fsPXqN17/0NQbjKZPxPrZtOTw8wVrL8StvcXjyRYzWWO9Z1w3X15c8+fht5rMFbbthb3eX6e4xw+GAzfwceB/v0wZgOBgwKcvEqDuPbVuE1EipyPKcyWSP144P2Znu8rgaENB0Nr3nl8yoG/u5z+0vrd3zu7/7u/ydv/N3+Na3vsVf/It/kX/yT/4Jm82Gv/t3/+4v/BjT4SGz5YdcLS4YDXY5rE748PonnNrn3B89JBeK+faaqR7yYOdrFDrnw+d/QqEGdI1n0QQMkuE03dhnsyvGkx2MKVE6Y7teUBaXCO+ZDCbkUrPYXOOJyODZG+6hjOLy6glGCqzruF7M2TQbvPfomJOlLTEQ02IVA3jLqKv5cjvmre4NyvNj5GyF6DYIYfEXFwyfPcd3YwrnEZstfnOGUIFtaBJNvZ2BkIz27tHJHNnWaKGQ0qKNQAaNUYb8vZ8glxfU19eYoiKi0YMJ7eqSsGpQLhC9I8QaukCQYLIcu1xggmXalnxlf5fT92suJ1umBwWPZcel8ohSsVom6jMbjBFKUBVjqsMR9bbFOsGX3/gKo+EQYwyfPHtOYRRDM2FZr9Fak5sMhUQaSdM1SEAL8EbThYzx9JiPP/i3aVfg06Jys/OLCESMyAjCRegBTOwX0RA80oMngREpE4KPIdHTsd9ABh9TOy8AUYJQIBOguOUQRASRljEfQk8DB6KIaeGL6e8mYBKI0SOERvm044gi4J1DCoXOdGIwhCBTOaNixKiaIpCUJiNTOUWWY72jbhq0UnSh4WI+Y7ldY2PLfH1FxCJjwAeQKKIQaXcbelgW055b9IxGot8VQqbFScS0e0cIpEjADZHYHm7p+cTSpFZRwHuHdw4f0u7fx55NiRIXAk5JVHAIoRBSIaRGIRDSYp3GeI11CqXSOQmAjgoh6RfNl8fYKMW4LJhttsQAudb4KIjB03iPVgrVMz4mLzB5hXOO4wevEAV0nWO1XOJ9eu5C6bRQkhZY78NtW05KUEiUyZFa4kK6sSoii/WKbdtiQ0SEdK1oKRFKULcW23lkjLiYcKxMtAVGpr+lpCRTAqMTEGg6T5SSsjIMDkYI72gWC4K16ToPYGOkblpad9MmSi20EALOezqf3g/xpl1D+ntGS4zW5LmhyA1EidcCF8BZj7KO1nlcDyCEECDjLd0fIvhAYm+MQimJsD79jg/kWuF8wPlI1vewFBHdg7GtDXgEhVGs29QO7N92iUvs/47o24h/mrn08wCWzwtuXgKVeNtqJUaazQpnLVlZkZUDtqfPePHph8wvLtPrTeQYeTlgMh4TTc7583OyrkMNJM12A0JgfSDWK/Yrw3YxI6tyRoOcnck+2WDIp598xGa1IM8LhqMhTz/6mNVyzovzGY2D6c6Asiqpredgb8rVpeXTTx+zXl5zdHTMZO+I3Cgur84hBIwEa2tm13ViWIl89OMf8uGPf8TJvSNeffULZKMpG5der4qeTPdtdiXp2ob17JynH7/HerWgyBSjL7zB3tEjBoUmtFusizjrCN4zrgYc7e7hfUfTtKw3q3TNGU2WFQzKAeNBzuHugK21XC2mDMY75OUAvd4Q+83656lfGkj523/7b3NxccE/+Af/gNPTU775zW/yL//lv/w5Me1/qiKSqtrh8voFmVTIomRvvM8nlx9xUO2SK4O1NdedYzBYEzsYZgPaziNVZFhOqeuGtn1ONRwyKCuabcNob59yVDBbnHF++YTR6IDOtzRdQ/QJoGRK0DbX2K3CW8vaXbBcXbNY23RRuw6tMzKTeu7eW5yzhK7lYNvw7c1Dds+n8HwOzSVeSDjeRYcV9XvfwaxnmKaneOsa79ZsQiTTGSYTjAcjkDk+eDIZiNLjXIuINgGseknorhguMkI2QIyPCS5gYyT4lvX1p0yqKdQSg0cYhxUKKQUtW4IT2DpQFPco3C6HFGRPP6HsAq+OdzhrtvzEnvIitoSyRL/+CLO3S7NZsd40FOWEwXCPvelXWSwvuZxdsTs94NV7D9HK8Mc/+T7L7YbGeUZ5hRKK1nas7ZYYPFEoqsUpH3xg2S6ubkFKCOFWnwEgYn/3AKIPeOdT77NH70JEZEzthyA9UgqiuGFXIsFFnI/YzuJsh3eO6AO4HohIhQ9J0+C9wvpAEBHRMwpCpp27EgIhQr+ge4J3oEBmaZFKd2mDUjkylIyyIbujCTvjCXleUOYViASWpVQJzMrUKnG2pW07DqYnOGexrmO5XrPaLFhsF5zNLnG+xseWIAJSaAiC4D0x+ESe3GoPElgO0fdsTLylt4kJqEWZjk0vdUiAJCa9h/ceH5J2wt+ClJB67VIhfdKnSNEDFC2IWiAdSOnoOptuji6dhyDARYUKAiEiPjgikcViQ9O2VJmhyLIE8LRC+cCm6UDA7rBCGkVV5Qwne4k2D5E8Rva7jrauaZuarm3RQqBlujELAs6mPp8WYHTSWEQCOlPYrmO1WpEZg4+RzaZlvbUYo4ghkmeGrmlxPiJJugyjFd6Fno1IbE1EMMwUZd+mCjE1G8siQ2mD0JIyN6k1khmi91ibGAhnA15IpL5ZyEV/fUDAc9PUSNegxKjU/lQiMTBCSJz3ECOt9VjXqxwEPaNBDy6BvgWT2JT0vEOICeR4T3AeIyWdT9e80ZLGhdTe61GCiBEpIoWWLDtHZhSZCtjQNzlFvAUq9JsGIX6e2/j5e/zP138u6/JTbaCb3l7wzK8u0DrDFBXXszkff/whTz54m25xRmjTwrraWhabhkGVsZxf0LlI6w2ZEkRbU5Q51lq8bbBWcXKyz8cffEhVFWRKYztL0824Pr+gLEq8C1xfzTl9ccpsWbNpA+Wg4vT0gs5B21ra9ZJhDqWAUaEQdLjtFa5LOrXOO7LOoo1iNB3Tti35sGI/y2ic4PTimuvFgqPDQ4bjMcOswDUtnW1pu8C2rnn80Xt89O6fYOsVIgaGowl7x48YjXdQscV2Hdu6wVqH7RqMlkxGA5Qes922zJcLqsGQzBh0lqGzjDzTTAY5u9MBeZ7jbct2vaRpEsP/M5TWn1u/VOHs7/zO73yu9s7P1ryeczgZM5+d8eLqOce7hwyrAcfjI043jznJH3IyfMD5/IwXT79PpnMmxQlbs+Hy8pQwqVivX2C3WwZtTVYUjIa7bOvrtCsVoJVib+cA72rOmxpVFgQJm87SrdcorcizjLZe0znLOM9Z1woQxGCJQeAAozJCZ3lQO/7yiz3yJ5Hw3g+QzmL37uFPHqC2l8z/8L9Hzi+JsgJ06jPnGV5rKg8yBiaiBASqtdTNjKzYQVRTnM+IvmYzP2W1WbA/PSQEUDKg1xeowT7BrXjx+EdJ/7C0TKkwaKIUhABITecsQUdMZzGbJfbKkAtPsZ3TPj1jZ/8BJ6MTvpl9lS6DGsfFTxb84PAp3b0Rg0HFXrGLyXLmi2vyQUm5rciNYWc8po2e1+4/4r1PH+N8TQAyKZkUIzbtmuhBSU3dLrg8a2hW29Tf965fTNLOL4rEiihiry1JbIXrHK6zWJNaIEqnNo+Sst/qSiIBosD7pPOwvsP6jhAdIThCSG+mGNyt6NSHgAoenAT6xdmnVoUSCQiJnnmIIe1Wc1MgqBjkA3aqMSd7R+RFQZYVZCYjBIc2SYwrpUotDWvJ8xKpVBK+OklZlkkkHAPWOcq84HBvn852HM+WbDcLnl4+53pzBUakzlSA6ERqj5HEvrKn+BERH24Wu17zEuiBVmo3xAg+xlv9ifMJ/IWYQMoNuxIg0QfBE4QkCI+UGgXg08IcSAJUrxRdd6NZSQulkiExIkS8d4QYqZuGi9mSBwc7GCXTeUQQM8Gqbujalk5LhsWIvCgIMaB0SZABZzuKqiIvC5ROrA0xaUOyzNBZC0S0UknX1B+Tzlq29YK2aTEqASjv0uJETHoLbWRajELESIHzSaiKEGRaJa2STmDTSNBEtABQVLmiLAxbH6jbjlAHWpt0TaTbdwJ7CjKlUEhsCFgfcT7go0/MnpSIEBEy9uxp0qEY/VKs7ZzHuZD0TTGB8tCzX4IbVjEdlxumAymQsme4+taR955cSYL3GJWAj5KJiWxsoDAKeYOhSCyoiWCtJzOK0KX2qgv+RgTDLVy4BUmp/qx160/TnfznVvzs/4fA1fkpeTEgRPjg3Z/w7tvfwW3W1I3FuUjTgXWesiipiiKdV5M2h08fP2W4s0tWDdisF0QfEQq6esvu3iGFkkwGAzKtcd5zeX5BmeWsZnOqsgDvGA+HGJVzdrXg9PScxWLNar3l8PCQr3zlS0Rnmc+ueHq6pnlyxaOTKUeHRwgpaJYt282GUV2lFqNIzPJiuaLpLNO9fYbTCQ2Kq6fPyIJnvZyzmp+jq4rr2YpnT5+gomVvZ0rdNNx78Ap7+yeUeYEIga7rsNYl/VpI75OiMIxGA4oi5/xySFFWKGMSs9mzNGVu2BtVTIYDlALvLYKIyRKb+XnIlF8Ld8+fVdfLC17Zf4vd8S6Pzz4k04IjdcRBeYAQnqv6kj1ziJSC69ULjgZH5NUQIQuYCLxbgY+M84rp5JD5esbl7JwQI2WWUxVDvO+wLu3GZHRs2w6cJ1OGyWCCkoHNdkXwgTKvCDHSdTVCRoRQSXnvHcI5jpqab11NyT+wNO++jXAROX2NcPwanH2P8z/5HymFYKwmhE7S+Q4ZBV47bLMlzyfkOqdVCmM9bdMgqh2EGtIuFoS6pusWRAWjnb0kkAyKZr0iIMjMjKfX77CUNXuM2W42KOPYr47xoUTILa1oAINzLVoJPI58u0V4Syl22Cw+5Xz2Lq8/FPhWUTiFUZpJIbk3K/mPzZp37heIQYHttmgpGQ8PmIz2eXRywvX8iutPnzLd2WF0eUWlNCYr8SEgZEQKDyZd5PVqSWxyum3bMylJkxBubBdCIG5cKMRbd4cLFus7pE3shY+RpPMTyUETY3+TTiyBDQ4XLT66xAzgCSIxKYrEFvhev+Bd0niEGIjBIUTERYERHqMURJBC4z0M8iGHoxOOdg84OjikLKtbcakU0LUtmc7Isgyt0m6+8468KNAmwztL8J6yqhIT5D22a5N2pEwaGW0trwwndN0h947ucXV9xbJZM98suNi8QEdPFz0ipNZDiIKoEjAJQhA8PWBLAl4hEyNETDqbEEOv3UitHudTq+fGWZQAjyDGhIpEjAQpkH3bixBQMhB6wO2CR3qHdOn8RSJBBry4OY1J5JllhovZklFVUBqNiIHaOaQpUnsPyapp2ckP2Ns/pOtaSlP1615673Wd7RuDgqZryYuM6D0yppamvNF8WIcPlsura7abOok/BwXCBRaLGi0VWa6pigyiTG4rJRExUpgenEaQKl2PEYE0GQbQ0aOJRNfRectybam9oCOJW2XriEAWPYVWFIVBiSSIbV1q5YUbF0YE6LVAfcvqpo0ppbjV8oyHJWVV0jQtzrrk8rI2vVYfkoYoxs84iVLrq+cm0/dcQMmksREk10fwkSgVLoSkl3EeHRLIcTaQZwolI5WRbF3AugRidqYj5sst66Yjxtjrofrrhj9/U/05N95/Tt0Ao8BidkkUEhclL5495YN3vg+2AdchXEvsHIO8IGYJ0Hvn0DqJuo02vPXKPaIEqXJE8NT1hhAcwnmE80yGQ8ZVhXOezXIOztFsNti2YW0dgshkMMKYgA2STW1p1g2DPGN/Z0BuBMVwwN7uiPVywWa95Xo2Q3HJ3v6E3fE+i42l2dasF0umuwdII1ltz5ktFpxfLZiOSo4fPGSys8tqNkMHR1ycYeuCSmW88eoJWTWmmpxQr65BKbSCSGLml4t50p8J0W9IPMZIqiJDCkFVlSilMVqj+w9jMozRjIeSnfGIyWSHzBharXon3+erX2uQst5cUzdbyrxiWo15sTinygqmeo+j4T0u4ikX6xfEoFCy4nx5RlGWFNmIYrTLbHnB/ftvspi/4HpxgRYqnQjnGE4PKYqCtlUsrs4Z75ywbVu29ZbSFHjX4uwWL5MOoCyHCKW5vLyk7RqKskIohVIGFT2j1ZJvPdfknwjqRUTEAj09Qk72kB/+Wz59918xHE8ZsodfWrzoUCrHYJHRMx7ukpe7oArcdk5drxkcnCCUYPbiI1bLS6qsohoe4I2gzKfIZo40EbUNCGkIrWcetozzAdVG44TkarMkipy9yZg8HmP2CjYy4rZnhM5j1x1eWkKZIblmHea8P9yy3mZ8PX9A7IBW4JYdxTznr2/usbNo+KO35rhxjnOWzbZBKo3vHMpH3rp/wtW25cuvvclsdsFiu01tlBAYDocUWpNpDd7R1pbZfEEk3UjDjY2y11PIkOQjienw+OBwrsNaidCx14wEVJREqYiExLz0zMGN9sC51Ma4YWpi9EQhSF319NjOO6SVKJUW5BhCAg8hEHREZhKCopAVX7p/n0f3HlCWJTrLybOCGHwCGErTNQ3CR1R2I1ZVBO8wJkcbQwScdWRZgTLJZUIEZQzRud6Nk3bOISQlx0BrsqLgnhQsZjOGesCL83NcPUOL1OqxIeL7G7UEEL22ITqQSVRx4zKK/ULmY8C7kCzH4UajkvQkaQv92Q+VdnRCIEhtByGT4V4gE7sTUkvM+971JCHKG3FlWrZ0v2ufrTYM9ia0PrCpLQOR2AznE6PQti1ZVgISa7v++aXnnmcFw2rE9fWczqVFOg8BoxXa6MQUuWSrv7yas1nXxB5sFBK2bZsYBaNQUtI0LcPhgFzmbERyD1nrsc6TJfUyNkSKQYlRCmFb8I7GOurOEQJ0QONj72SDKAJlZjBComNIYCJEOu/xvUVe9CBCEFEqtckEITFBQvQsVGqfaKUwRiOlpChyTJWjlaJtGmzd0HUdnU8tqdZ6bEyPI6S8daUhUjvHhfQ3CUn35X1I+nMhUSQhrAvpXGmVzq2PAaMkA6GoXUAoyf2DMYVRfPxilq6dSGL0boHXL1afh0X5qdbO7ecvdVZd07Jab6jG+7z//ju8871/h1/PUaK/v3hLs1ohtExtDGUwRmHbNa6BQTVAJn86tl0znQzJMkG9WpFJRbQtO5P0uq+ursFaxlWBiREdBYvlEpNnhBCptOTr/9W3+eTJOdvVlq5psNETfIerW1RuODzYQZ8c8M77kfOrK6KMFFnGznCAMyXLbc1yfglFyde+/kWeP7tktlxxeXnJ4idvMxqP2T88wBnD1vYb7cwTsoKdw4cUxQgVHa1te3YtUncN69UiOXGkwHYtddckvZXRhP7cB++RSqUPKTHGoLSmFJHxcMBwPEUbk5x+Wn9uNuzXGqTYtma2Ome32uNo9yGdtzxfX5AXJaN8n73qAB/OWDQ1ZTZi0bScX53y6KQgz6bovXtcrJ7y7kc/YXl2xZe/+FUevvplnr94zPn1JfcOT9INw9bkTY2MgrJMavxBPqRttxiT4V2gGOVs6i2d6xiPpwhtCMFB9IzqDd+qpwxmGeXb7+KOHhIfPCJfLGl+/C+4XH7M8eGrKH0PsdqAWVLXK0xekaHROiNIjfCS0LZY5xkc36fxa56+/2M8gkk5RBQGZxyhs6xch4mSkeiQeooaDQlyzrGqGPgCFwTjcoopMy6bOevac1QdU6qHDKspxfQEd/URshYoYQnLBnE45PjhGyzOP+SZuYBVw29M3yKsOoT3+HaFeXzJb3U7nIkr3nl9hBkUBN/RtQ31do1yASEC0/GQpm3RbcVASbyLNHXLYnnF3tEBg/EIVgIpPVWZE0PEu5DeMKLXeMSbBVPgvUhMh7e4ILFOImxiCUwMxKhAp112DMnNEoi9c8bfgh+46ZVLhEjMwI0QNyZhBUEkd4wkiS1N2nKyOzziwfSIyXjC3u4uKsvRSqN7O2sM6Q16w6YopTFZnm72XQdCoLSGGPHOJcZFqdvXHKLD+0BZDgDYbDZIJXGuQ0qFyTK0NoQYGYw8X3yz4vjomCdPnhJ8w2q9oHUdNng63yWwIgJCuFvgQXSEIHozVNJRpJ18fwxIVL+QSY8hei3DTY6KkEmPIqVG9+4oKW5uYDr9rujzU/pFuH+Q/tjH3m2TWiaL9Zb7O6NbQCFiorWda4hesVzVGF0BKmmRvMW7lq7eUg4qOud6FkJgrSNkAbIcZTTr9QYpYL3est42gCSGQKYUTWepbWDbNBilsSJQGs04i2xqyLKCTdPSuIiBXtGi0CIS24YuROidTI0LBETSqghJ5wIiepSUyNjn3gRP1zNP4abNRuydWILMqL6NGJBCkZskdA69dVb1jiznPfPlisw0ySlEakcarYlCoJVGyEDnAq1L1ncArWRyzvUso0Sk+5pSWOmR0aN7UOJ7eGq0Tu3SEBFKpLZWBBeTIHnYW6jrzYZl3SGiR8Q+k0MIXtryf7Zu34k/9dmfVn8aGPlPfe/GbdQ5jyp3+OC9t/nOv/kXxHpDVZZkgwHttiYGyXg4pnMd1WDCYDygXs5og0GrBBInO7sMRuNe+7Qi00OGUtB2lm6Trj8jBePRECFEH32RMZ6OGC+H1PWG6c4u29WW9dk5r93b5eIKdncfMtnb4+mnzwmu4+knH7FZL9nbnfLmq0fsjkuEyqibjtlyg1Ewqkqcjzz5+Bnb5gPGkymFFrz28D6z5YLWWV68eMEbr7/Cyckx69kC17WMD45ot1uuTp+zXs6Y7O1T5AXT8R6hW7Ldbm/1Q22zZb1ZgEgRHEqrFJPgbCKoQgKxxhi01kgZKYuMoiwxJn8p3v+c9WsNUlarFWfXzzDKMK32ub/3Ch+c/YTL5RV5PgIh2R0eI8WMs9NrptMTZlfPOJ+dc6Q0LhrG+S5fef03+EnzIy4urjm8lyywn3zwLm3bMh6P8c2GqigZFmM+efo+g6KkGoxSvkGMjEZjiLBer1C5QRiFcw5FoOo6vvbCcvyjC+JljQpz1CriXnzC7OwjVj6yd+9NquIebuvwRrJazyjyCqU1wVsaD3k2JTqPzxXl3h7z84/5ePGUvMw51lOCtxhVUW+2eCEpBjnl6CGyc8Q8R1UFfrlmay0DM0Eoj5EZuRlgsjXXccM76w/Y6c7ZLfYodl9ByRK9W+AvnxM3S7guKQ083Ahggh1K3j9/n9eqezitENaz3ZwzOM34q+WQ68maS6NQRpPJyPVqi1aeIBS5cpxMxygR+eT0lFW9YFwM2KwVF1dXjHanlIMBUfT2U3omJb7cycvbHI++fUGvkbhhVLxAKOidroggoBf7xSgIhL6V4/Akl0oUyS2ijU4sjEwhbDF4QlQE+l2gjwgJ1bAiOjBW89r+Q+7fv4/UGXmWJX1ADx5k39+PISBkClvL8hJIVL4QCu86lNJ455PbxqRdind9rox1aG0wxtC2DcE5IprgA5nSadmXgtVmiw8BbXJ2dzOk0mzrhnx+wWq1YL5eoIFok1jWC0UUvnf6cKs5Qfb2YwGQFiJ5KyPov34DMKRECI2UCZTc5KMomVxmRqWWluqDxkxvd5YyuVZSeBn9572mQ2u2rWXdtGRFQRc8y22NkRLhA57AcrHgenbByaM3adptAihtS9d1zBdzXly8oG7qW7DpY1q05/MVwVukEFzPl9RNaqPJmHJa1nVN01i8i2gZmY4G7A2yxDpJmWhtF8B7VC/clsn73rNyEesijeuDzVRqO710FAlCv+i74FDEJEz1SRabdCKxbxtLiiy7vVZCCOmGH9Pv+J6VkCKFhIk+f8j1P4OAuu56gTT4mPRSKR5B9BkrESWSTTwKyHoXj+8zfqwDKSJa9u2g0AOjGGn7UDmFINeyjwgAoRIgW6xrtrW7zelJmhfRi81/sXv9n/Vjv+iS97M/5yM8e/IBH//wj5jmGl3tkeU5hclxoxGyz7Hy0dIsrpg9v8bFkunRPfaP9hhVOcK2dG2DyPP+wG6RpsO1FkQ6rqYoyIKj3dTYZkPTNagsSwJrD1oJXn/rNS7OzlkvNuyMxzRtjVotefMrX6ZxieF8/+23efHslLdef5WBiiy7mtGgIgTDerNhs90wGo3ZGVc8fX7Os7NrqrLgYH8XJRXj0RDrO+r1mrIaUOQDPv7x28ze/zFf+Ma30AqqXIPb4kMLBJpmw3q9QfVZOtv1huVsllhYeROE6ZLYPaaohBA8Uuv0/leRMs8Ss6KSXusGVH+e+vUGKcslzV7FxeoJQknG2S73Rq/wyeVTpBfs7exSlGP2x8cIIZlfrNmdHnH24hMKoSiHu5hyRDVRfOk3vsVmccVicc3O9IjLwRneWT54930mA81oMGAwOWI82WG7WeCjhKwkRMtsuUCpDCEVRklsSP1GuVzxxuNrjj9Q+A9P8fWWptviP/k+dVBUX/gmu7WjKnZwTqDcGh+X5GWJcwHVWYq8RIoBKqsIpcWz5ONPfoAHXt97lUwN2FxcUSiDjx2jYow3EklGs75g0xmKYkzetayaFSJEoky9a9vWDDDsZjtkWcVZN+fF6opN1zBorimyjEJXiG2XRKdNR2frFOS27HiYv8Lz9pSP7Mec6AO0GOO9Y72+4mDxCn95LvkfzDXXwM7OlGhb/vjH73Bxfcmr90547QuvMh2N+GJecn55SV1v2NvZ4fz8lOurK/aP7zOdHLC8nvdAId7+K+TNDa4ncuPNbjb2IWgBGQIypo+krYi9VTTpHlLMV0iZFf0NUwqJ0AaVvtTfiEUvHPM9e6KI0eNajyg13/jClzjYP+Tg4ACTFyiZwtq0SS4OYiB637uQBD54hFBIY4jepccXDkg7lhheXuMh+ATKbNIiEElOgU1NCAGsxXYtWZbjXWA2m1NvNiijGFRDnE25P0oIHhw/4rH/lKZtGeYl23rNtu3tp7I3s4ok4RQxEHvrckSkLIT40vL6clfaZ85ImVxFfW6NQCY2RedkpiDL8lthXdbvtNSt/Tddj1IKpIgopXuxXtplL+uOqdLEEFit1kwmY7ROFmdnHe+/+zbT/WO6tqGzHevlAts1XF7MuLpaImLocyFS62a5bai3NcNCc3o5Z7Vte3s7TEcFq7YhE2C7Dq0EmdYMjaLpHOu6oygy1k2T8l6QyVocAjZ4GusJPtmIt7ZPHhYQbUCpJHB1iP44iRRAR8ovib0IG5EW0RhAhIg2ScSrZW+5FhIfEquY+SToFkKghSDLs55xiX2LMrGBEHsgKIk+cRhSJKA0Hpa0nU0t05jsplpLXHAJWAFZpmi7/pxECERErw0TUmBdxItAnmUYejCYEoTYbCxlpokxo25daifAn8GiwM9Cis9qUv48UPJnfz/e/tN2LY/f/yHX73+fk3FOo3eT9bzURLvBbzZ0Tct6sSQr8tSCnuzio8DENWETsX7AaDJFoAl2iZEKNRxglezzmCR5OcC7jnq+4Pr6iq6psUIgs4z1dgves7q+5vDomFdfe40/+c532dufsH//Hh99+IzlfE4MkXa95ORwl8vTc54/P+fBo2Pccs7T6wVVVSCjZ341x1vLzv4OX/3KG7z7wRNenF+zrTsmowFSCcaTIdum5cnjxzz6wmtM7z/i0/fe4/3v/BHHr3+JerNhfn1JlN9h57f/Ok29pqlrpIQoJF27Zb25AgJSpA2itV0fapcYOedu7mMgEJRZ0qnc5PB8rv5eX7/WIEWhMVmGdRs+Of8Rj3a/zHR6jxNveTZ7zCDLKMwArTQHk2NUuGB+3bC7d49PP33Ca69XVKM9UBo9Mbhuy+X5GcPhmJOT+zgko+Eubjvj6fPn3JPmNo3RiEhR5GT5hOfnz9gsr8myHCki+EC2XfO1jy54471AfL5gM7uiW18hPEx3XyWf3COqMTquENs1ol1iqxwhd7AXC7QUCGVADWjllHxYsrr+CU9m7zI2FbvjAzK1jwwly/ACNRnjWovJBsjQEumAnDg5QE8GNNdnEAVa5KyXC6SHPBisaVExpwgjTsoh1jusC3ilWbmGutmSdQrpFcZ58oGmLDOebK446gKvmns8rh/z3uIj9syEo/yQ4BvcquGLzSu85eEPueDDDz5if2fCo+P75OWAqCJPnz9nd7zLZGfC7mTESgtKI2m2a9ptQ55lPHz1VU6fPAboI9jp0xTTNZBuv73jJ6Sbcwg9Yu8Bza2LoH+TiNgvrCIxGMl+GRHKEGUf7MYNaFEpIqX/fRECRSbJsopMFnz9zS/z2quvkucFSpvUe40ki6nsHTtREpzH2TbFzRNvF+kQEwjyUZAXJVKnvm7wqR0QRHLaOGdRmUGKxKh0TY0pckIIKJGcNevVisXVFSF4RuMxMgYQyTIrRUVWFLz5xpe4ut5nubhAzZOeRbgOFSVeeNAxsUqQ3E8RUqZMT72LmES1NzJLIXuA12exRMXLpFnTg5QMo82tsC4zqQWmVNJ6qL6XLXsRqFYGH9IiarSkaRoYDZACaucp2g5BSljVJuP87Jzv/uEfoHRGAGbXM2aLFacXl9TblFhrtafIMzob2G5q6k2NtzBfbrA2MR9SpZRW6T2+14pkRpJnGus7lusmtb+EYLVuUBLyTKWU6cbhfGDbegKJIUGA1ilILV2AEhdTC0cZQ4wRfdNGi7F3UsUeiCRrcx/7l0SySpIphc5MYrrSCaCzLqXJhohUkui6dJ5ECobrSbF0z1QpR8U6h1QRFxJbaLSiaUNaEPo2kkQkzY0PiODRUhJC70aKqVVlQxKfKyVxIVJbx05hiC4xk3mmiV1yyo2GJVGkfA1BcuT9WUvWz4KS/zLx7GcASr3lx9/7Q7anHzIRHus7ctFiTGC5qNmsNszn1yzmS4aDtLifPp/hbcvu3gHje48YTnYZDAY06zXXL55jm21i7mZXGJMxnUxQ2YCubgiuTe3iGBG6oK1bms2G2XJB3bYc7ow4ml+zs7fLF7/2ZX783e9gvePe4R7b1ZLZ1RUffvgUi6AajLi4nKMyxb0HB6w+OuP8/JrDvR3GkxHLxRK0piwqHtzbx7aW1aam0Q3j8Yi2tnjrWY83XJ+fcnxywnJxwMXTpyzOnnL4xd/i7NOPiJtrnj/+PhfnLwjOJmG1ANs5mk2TrkuZtHib7ZrOdrdsqO/vvTeVm9SyvmVR/v8NpAwGQ8qspLURrSyX6/cQMbA7OmSzvubZ7JI8rzDBIvMB+zvHEK/x3ZB3f/h9qmrAYLxLlg0IwqMUDEdDLi9eMNnZQUdF27WUgyFa55Qqo6NFe4PwjhgcbbOlygdkuuj7zi1Z1/Klx3Neew/isxq/3aJNiaomFMMjhNoHtYPJJP7iQ5azp1THbxC1IWwvGVRTYr2gyAscFWayw3b1PvPLjzguxxRmSM6ULI5o2yUyj+TDCRHPpp5hzCjNFBoMYTRke/EM4ZcEFfG2JXhFFjXKGAJJGLbdzMmGuzzY+02auKTzAdW0KNnQ+RU6KIw0aGc42nnIbDrmk80F39D3eZAd8sJe8Thcs7I1b5b3sXbL4DLyvxsf0p5E/uWzM553DUVuGGcFrW1YrrZcXcx44603OT48YjyYsFpdE6Pg7OwU3zYIXzOoqgRCYnh5ofcL5U28duy/7kMSeaao+BtckkSNaUPZq0l6ICJJ9LZQAinT4ybBZ2I1lJTIkOySEUfXWHJZsLN/yNdf/xKPHj0gL4tkC0VgshzvfUqQpXcf+ZRRoW9aRz2NH71PmSxCEKxHVVkvhE12zZc5Fqnfq/u4eWvb9PykJDiLVinLpV4uqYocUyRg4FyaHZMXqU1RFBVaKcbjEVezHXbGlzw7fcL51QXCC7SMROkJyhOEIPYgJUkIJAL1cqHoqZQbR0g6nml3JXomRSnTZwWZn1b/6/5zpdO8H5mswEnjIlBSp7RSKZEh4CNsmy61gUSKto9IlusNJjPYEHny+BnbtuV6saa1jrrpaFuLlJLcKIz2DFvLZrNlvalptg3rtaOuu6RPkClhVRIZDys6a1Ex6Qvmyw2Z6sPypOBqsUVLxbAwFEbiu4YAdD6do0jsQVekczfJvGmEgVTytoVojEYRsDHgfB+iBkkbItL5l8l6Q3QOYxRSgiEglaTrXT+51gk86ETLB5Es30KKFB5IEo2GEBNIkQKJwsWIcAGBZFhVWLcml9DGQOMSK1lIQRMjLiYAp2X/N3wCOEalcyV7YLZtPMPcpIRdrdg6T2YkrYdyIPExo2lbUoRLvL2UPlt/1jImPvP9z61siBCD5+L0OZuzx4jNJSiB1iVOay4uX3Dx/JzZYtM/1xGzxZqri0vKouT44SOmJ/cx1RQpFS8++ZDr0+esVxtOXzyj3dbcu3efnZPdpPvxHX67puks2hikUNTOJ3dh06CQ5DrjxfWanaenTPf22dk/4OEXXuVHP/ghb33ZoJRBykimIo1NuibrPZuNpW0cVaFZLDu2my1lJtndmbBcrWkby2y2JI0CEWyaDp3VFHnOeLzH9dWKIs/ItOHVL7xCt93iV0tOdnMGw68z/+S72O0Vs/MXvWNM3W64lFY9/yVwLrBar5NWsD8nzqWsn5vKtCIGT9u2fcbV5z1xv+4gZaegHFQUdsh8cY4wnvPNu0yLV3l4/CUen73Hk6vHHI0PqVRGrg17kzFX8xX3X3mNp08/ZbK7x97hfRCaohwy3bnHk0/eYTo6JtDSdB3Bw3L1hMY1hNrhYsTVW6piBEoQoiM3ho21iGbDFz4+440fN/DJEuE7VEz2vnz6ACF3iF6ipIeLn3D66R+x++pX6fIC1WxRLrKplxQ6J6oRcnyEEEsuL99mb3eP2ED0OWFZ43f2sHJO0B7bbelclsJGZUCN98nHhzijcL5GkKObyEhG5v6aLB+wcTWVVtTtGutafLeiKAZUXcbO0T22s1OYXVOWU1bhFG9r8ioH2/LWwSPO/WMaE9g+r9nNR0z0gCu54FwveLAPm8tnTETGXzcDxPiIf99ccT6fs1isOLu+5nK5IjjL86sLfvNrX+WVV77AaLqDA2bzGb5rKYzhwdF94Obm1etGbt0k8WX8AtzaZr1/Gd0e+g8Z+t1b74YgJgagdyOnva5MbQrRJ7DKEDA6Df+rql1UkJzsHPHNr/4Ge/v7ZFmO0klbEWNybUil+mjyHCUlPjpEliVGpGtT1Hp2YzF+mashYiD6QHDJ5aFIbZDoXZq/En1a8LxN4WB4TJ7TNg2hsyiToTODMoqusZRZGg2QetJJtNt1FpPn3D+5Tz3dYTjexf3kB1xenRH7fjIiEtRNO6yP35LpcW7aanBDUH12j6tuhbCp3fMSnKibf3stilLpe1kvLFayBzo9MNRag0xJlgKRFrYYkBLqzlFVJSGSmBJjqeuaTdOxXNW0NjmxbkCqFRKlwIXAum5YLNYoIo21dNYhYlq8Q0ghZKKfe1K3LdvGkkuBzASb1qMkFCZjZ6AZVgVtW9PFNK8nij6Tp88faW06Lje3cCkSk6GUTFoQKfFS0kLPGqVrMtwC7p49jCT7uXVUmcY5R6Z131qO6N5NEfucoCAjwSVxqFSSLMsSGO6BvtJp0GJq8ViEgFGRUTcaI0lZKMHjPHQ+JZS2rU9un75NdSNwzrXEuUBu1G3WTS+DQZA0LJ33GCExMbC7WzJfbntb+0vW8qY+u4Z9fonlz9Zn6FYi1jkW12eE+hKIODT1dsXy6oLLF6c0XnBwfI/Jzi6np2ecz68YjMY8fPOL7O7uJ22ZrXn/7R9z9uF7bLYtXdtRmZyRziiEwG6WCJslvZkQeJeG2BbVkNV2jneRoqxw3qOtQ2vN+dWMxfUVWV6wf3DE/v5zzk5Pee3NLxKiYTodkXeep1dLVJYTgme9ajg53uPictanv2q2dZus59ZzcbVIeiefXIFtY1FSspxfc3B8j9OLNUalES1H946Znb7g+Y/+hEff/stcPM7ZLlbsjysyk4IXkX2CtFC3G61t0zBbzvr7XsoKuomJuCmjJT54mrbjs4MMP0/9WoOUvMwJIjIe7dM5x4uzD9jdU1xtPqbMBjzYe8AHT77PtRWMqjEiVwRvGQ9L7r16n+effsyzp08YDMdMdx8SYmC1mRFDoGlX6LygyDOKbMJqOePq6ozDwxOefvwB08MHCOtoN1u0jBTViCx0PLha8+bbLfHThtB2RL/E5HvIcrdPVvfEcohcPuXJR/+ObH+PbP8+iAHeO9r1lqKsMGpCGJ6Q53D+8XcYlIZoFcIrgt8iKEG0NGGLyiQqFpigWdWgyzHV8Wtk0WK7a3SmEK1jvVmyU+5Q5Iqlb3FCUFNT5lPwCiFbVJ6hwhpXX1A8/C2U/D7b9TWmHBIMbNSKp+dnDLeXPPrCF1gvZgStsFuLqQxHZo/rdsW6OSPbLggvcsarjP/DvT124ob/W/2CZ5enBBc4nk5AGi7nF/zrf/9v+d90DV/98lfIi4rdvUPqpkFGz7Ac3L4xbmeO3KAKlWalvOzmvAQlKdsjoEQfMiYlQfYalSD5DA8An9nF3y6kCKJ0CJHeeKWu+NaXv86rDx5SDce3kepJt5GADDGmHm0/V+fmeQkh0HlO8DHNGdIGbRJwCN6DlHhrCT6kVFzvUWVq9fhgkSmZLf0tGVGFIe9TLoVMNmkpfWoteUHoszFEDORViVIZ1nWI4AnWEWRHWeTo/X2++qWvc3V1yPXsisVmiZcBLxxBJk0CQiJVP+zu5jjzkqn6LL3bx9VCPwNHad23ddQt0FEy7cjTse5nBqnkmEKI3h0kWW8axoPi5o/0LMrLm54xmk2zQURF5z2dDTiXzpXvFyZJspOHKPE+cHW1TG4uAa7zaZCoTkmyldEMBsla6uyarhfABq3S1GcfyTPFqCqZDrNkUw9JvNrY1KeXpPZH24vqRXwJom+Br+i1RkH0/8bPUOE9AE+Hov/dtIx7nxJcc61AKgqjKISgtQ5cGhNAzwAKCYXRCJmmFstC4l0CMUqK3jWWHtMHT6Ylu+MhruvSjCIh+qGRPVDJFN7dJOlKlEhheFoKMi3IJKiblNteZE2MZCIibwK8nEfZlmGhaVuo/c2b+OfrPwVQfjHw8tOPG2Nk27ZkokXlkqvLNd4Luu2GixcvELrgtTdepxyMWc6vWM4ume7s8+prr7C/U4KwLGcbPn3n+1w9fUImIgejXczYYJSmrIYUkwE6N9S1RZca3BojobWOGEhjSkxO3WwYliWtsmmURHScn10yne6SV0Nefe01nj17xunpKa996U3e+0ELcYWJAYugs5aIQJuCL73xgD/50cepldlZdFbgvacsci6uFyllWSvq1iJlRMvAenHF3uE9rmYLXLulyjOkEpyfncM7P+Qb3/4rfP8//s+sZjNGVc62i0QhCTFQb1c09Ya261hsllxeXfXnPLUV27als/7mppfmoMcEplMmzeeXpfxag5Sd8R6L9oKd0UN2x4d8+Pxtth/XvPHaCeeL93kw+RoPdr/Iu5/8ACUCh/tHiHyIzsccHp3w9W99i8cfvc+nTz4hoKkGQ7Atu7sTdncPsTHy/NmHDAbp5iDJOTs9RwqDiJ52PaexLXmm2UTYXSx49ftXyE8aom/xviEf3yOLI6JrEdYhpKRgy+mnf4gYjhk8/E2iLInNFqKlmByQe0VQY/RowPrZf8TJDZko8a1DxBYTFMEYoojU2w2jwQC6HOUU5eQVygePIKxoLj/G01HkFd4MWZ9/irErqlBQIohlga8c8rVvUD7/COo1YnBIxNAt32FQ7GG9RFPCaMCqu+TJ9RmLiWAl1jzQAVVk+AL8qkMpT6ELKqdolzNUGGEXa7I6wywD//X0mCKL/F+qmqfCk1dD5ssFO4MhZ9eWP/rj7yOk4MH9R0x291hcXWE7R5H1Lp6YWhzc0IZKfKblwC14SfNHUg6Hdw4nRLppBoEIEkJyJQjRMwF9W0XeUJpCY6RK81liyveQWjMtDrh38oDheJq0ANstJkvTuSMCY8BZS7AOneVpYVVpUF+S0ki0SQmoKkthSN5agu0ILqXcCpE0HTd6jRADvuuSxdMkzYV0BiXSwK+iKGjrLcF78kGFVGm3QxSphZGXaJMRiSiVpUA7o+msw7cdm7phun9AORyiswz7vGFrW6Q2eCF6G2w/3bjfRdHDr2Tn7tN/4810ghtaS/JyLk4CHWnS80v7tVLqlnlKFlp6Bkb2QlqJtR4lBS4ERsMRMSYNRtc0aK0REro+rt/2wACSBkOKZA/XSlEaRdM0NF0SbroePWYyTePOZGRUZAjXJd1I6B06AUYq9dqLPKVLl5lkVChmm47GOratT8+XCCEghaDoo+MFqe1i+7aZvmnfiAREvXO48DJITYpkP0Yk8H0zY0dJgfOOelsjCkMMLrVttcKIBJCjBJNrohY4JxEqJRhXgxzV2+ZDr32RQtAYmezqVUle5Ait6JRgtamhc2meEon9sZ3D6ARYPRIvwSiBloIyN0mIi0CJNP3bITAizfoRIaY0XQQGyXRYcmmXDEqN9YG2+fl7+89qUv5L6mZUQbu65PnHP+DJR48RUuPbBNp3jh9y9PAViqJgs5pzefqEqiqSgLzdsjqb4X1kfr2gCpbxvfvkpsDoDC0yimqIzgtitMgioxrq3k3oiHHAcrlBeJCDnO12g84lrVPpnGiFlGlj06zXSCHZ2zukMBkff/Qh3neUoxHz6yuUhM16Q8gNwQfW65ZMSnbHA56fXaOlYLNaMRyP2J1UzBfLxFD297dNbTFKslmvGA4W7B0cYZsVjd+ws7dPGA4prKNSW15/4z7f+6NLojSYPBBD0jxt1ytsZ/E+BfjNZwu6rksTt5xndnXKbDHHujSC5OJ6wbOnp/24h9Drsz5f/VqDlN1ihyfLa+bNigGCLxy+wYcf/ZjTq0sO9o+4XH3K3vARj05e58OnP8L6yMnxQ7Rs0OTcv/cQAiwWc548fp+Dgz2MHrJer5jlZ2RZRWEMRZ5ztHeQkKrwRO/wRExRpB2gCIxsx2vvXjP8YI1pWrzbUmQ5Ug4QW4fqttTrNXp6SPP8fVAweeWbSFkRbbIHKhHJql2ClcjRDmLxCc3mgsIMoRVocpxfIWOBynYJTY0jkoUJtAKlCqrpkM3T79F2KzIJYiAppl/Eescm61g0Sw71LrvsELMDROUQ63OM2iPEJaa+IEaDDxnt+cdIp7BhQ9d46nUKY8paiSw1601N2WliGWlk6km3IbBVUHSekfBE3+LqGtYtfl3x16oD9keS/2f1KbPjPd4TnmcvXuCDJ/eKZ09fEFHcu/8AlRk2my3jqkjLnpT4ziVGSohbQau41W7cBEQlsOK9x3qRJhY7bl089HoOiYTb3W3a2WuVoaVCCkmhc/I8Q0TDl159jTdfe42d8Ti1XJwlWo8eJMo0+IBEgRSoXPUtoAR60GkGCsHf5qAIKXFdS7fdpkVIvYyKF4AyOi1EzlKvl2TDIWU5oOsahOl1ACql0A4HI+pNjdQGF1yfVhvI8pRNIJXGOott2wTg2g7nHE3TstlsyJRkOBjw8OQ+8+sLrE95MFFqPH2CrEqzeOjZqrTGx6Sz6PUz4iZoD4CkH7mdON2DFXX7r77VmNwEvilxE1QmaKxjVOXUneVgOmXTbDG2wxhJiIoueLqu7dFRQCsNXQfciPoiSiaLp1KpDdF2juBCmuYbksMr15Iu0DM5AesDVa5Z2w7n4q2mZVl7BnlyY43yHBks601LXbdJb6QEwfVuFy3xNvSgDFyMSH8jkOpD0oTE+xS5Tng57C9h70SLp3A7IEa0lLSdxeKoCcjckEmR/o5WqR3UtkilGZUFaJEcQEqRkebtqH5XHSJYazFCI6kwWt2+B4TS5FVBbR0qCmyX5lKpTKcRFCJlqrQEikxTZhobuZ2yLEhibC2TPiGGkLQ3StC4SGeTgDmTitY5BmXGdtvd3tNT8/AGsn1eiPKzW/SbR4uslzPe/+6/4f0fvo2PguloSLV/j8m4ImhDpjUiOi6fPaZZLlmuGnb3j9nM1zgVadYbjIBytEeucvK8TEJ3pTFZgTIZBIsXgijTe5Mix7UtZV6wWW+oc8m2ELRtiyeNd2hcpByWlJkkOMd2sUT4gNEZh3s7rM/P2TvY5dnjT9I9InhEkHz86QuUOOM3vvQF9neHbJuO69mCzXrFaFQyKDKGeYYNITGCHpCS2TqNfLg6f46h4/79+2wby9X5OdPJkOgjV6en3H/4Bb773R/RBRBKYbSkGg3Ic0OWDfFBJaC0XGC7LsU+OMeTD9/l9//g/83i4hmXsznf/ZMf8IMffJ92OSM6B7bhpez+F6tfa5AyNCO+sPcFPrz4EDN5wMnuQ9btNc9efMyg8pCtEOEJg2qXg51HPH7xjODh3r17GF8RgmBUGCaDB2hTMl9csbN/wmx+ydX1OdPxDsYIcqVo8Tw//RjbNpTDEQE41orpcArdhuO3H3P4ozX5JuDrTRJGVWPoWiIC19WoaoTcXlHXVwzvv0Ejx/htTYohjxRqgBdD3KAit0va+goklPkA13ikKRBSgBiTj0qu589AKrw3QIvTHZvTd+lMwJQTfBsZxwIXKpifc2Qq1kbx8ewUcsG4uEchStaPP6UZniQHy9kP0dWUMDggNmu6sIbCoF2HwmJcGh1fRIGdtYyGO9T2GXI6wc8WmEJRqiHGOeJYI3KF7Cy23sK2xdUdr4UjfkeM+HdPT5nef5WfDKZ8+tE7nC+XPDo+YlCVTMYTqsGI5XbJdr1JF3W46Ti8jAWPfULkbeCCuBHY+iRE9DdGY9e3iPq+vDIpLE0mS7FUfa6B1miZckO6GHjr5BVeObnP0dExg7Ki226QukBpjRmYdHPSAYlM/w3Q6wR6G0QSyvQ0PLc2ap8WtX4EulSJmg8+DdIL3tLVHVIKMmMYFAOEswjXoGQCB223oWk6nPWAILYtUmW3zIvJknC1azt819HUdZqzoRUQ0BKGgzINdIxQDYbs7OyxtXVyh8gkFk2GHUkU8hagpEj8Pga/BwqIm+8lRkQo9ZKdkvo2bfcmpO7G1SP6llkvZACRgv3UzpDae1xwvUtK0HRdz+ZEgve3aZcvwabAhwRklVR9dkhKhqWft6NFP+dEpMGIN0MdjZYoJTCxYdsld8qwMPiYdEOd9eyNK4wgxZE3Dik1hZEQkw3Y+UAX06kvFElsGwQxerQSOJt0IoKYcm7645ms7f3P8zJULUMkxkJBI/qAPR9w1hGNQGd5Eis6i4rJGbSpE4VfZgZrO6Jrsd6x9T4xdGmYSmJ1tUAbhdYqjSzQSfCqjUIElTJ7+rkwMqTj5aUgJ7E44/GQECPrbUPbpuGRIvo+kTR5qUMEEULSZzlHWRZMxiUX12u6zv4U//+fYlB+EcHsT/1+f2w7a3n2znd4/OM/xjaW4ze+zN7umKurGfPVir39A4yEs8cf4+oG1zgmoym7k13K6KjnK0bVgOFojMnTzK2yGmNMgexn1oBAxJRpFGRK2kVKfF4TuoJcKepMY4SkywrarmNQFHRElpsNdBGNxNkWbwuInqoscN6Cc1RlxWK+ItcKoxUvZmuCc/zWV9/g+mrFZFSilGFbb2nrlkFRMBnmLDYNPkrqLmmvBJLLxZZDUXF1cQldzd7hEbnJWc7XEDuGecbrb34Jmf8BUSryUvPg4SN+65t/idZueeedH+G7wPd/8B3OXzzBtW2vmerwyyV/8C/+B/4//+J/vI1SiD6Qi4gVkWjkn38Sf6Z+rUHKcrviYG+ClrC1KwovmGQDzsnoNg3DkeZ8+Yxx6aiGU3Z9xyenn9DZltHOHsNqSJQRjwWVMdndZ7m6Tm4L6RkOJpy++JRm22JjZFXPWG8WTLGU1ZCm3hCc5f5sySs/nJOdrontFhUkpthJb3Lp2D57B4uiOniddv4cU01RO68TlmtCs0XkJXp8gPMCTIEJlvr0Q+JoRFyW4DVRgA8NUQ4pDk5YXr5LJ5fsT6f4TUPtF2xcixkck5UCoSZEu8L5EpWVeHdJpiV7+gH5zgHX7TXSXaMZ4bqOxem7lMMsgSWZoyqB7TqU9sTWQlOzYzKuY40WApzDz2v0/Ud0j99FZpZyUKFEzmhQ0TULnFeIwYTOXxCrksx5RN3Qzs6YhDF/o55wkNUYITj8ylf45OlTykxzsn/Acj7j8N4DttHz/e/+URIP3rgkSLt40UeE31z0QibQEkgpmPjk3EnyQ3Ubxx5iRJvUolEkVuU2LVUplJb9OIOcPB9x/+gexXBIdBalDcVoQD/0BpOVSVoaQWqTQGTwvYYDiLHPQ0mEd4guhR0pnfQKrURneWIalMQ71cdhbxGyd8PkY7RShK4lUxKhBdI6XNsRuy22dsQ+Hp/YoFUOUqQgwLZlu95isrTzNlqTVxWZyxFINm1NBLy1kOfs7R9zMb9Ms4+UIUqddoV9VH4IKTTP9+F5N+xARPSMVpqTBPL2NSmdZnuY3qJttLkFKlKlnI0UHHfzP7DO4XxMg9iIFDqdv2SL7bidM5T+Ei542q4DQi+qhiJLYk7ft2Bu3DtKJqZCSY2LqS1U5hplMgoZyUXAIwmho8zT5GvvA+NhTq4V1joWdUeWG9ousTAyijQio3PQMypGCVxMibREgZZgfXqFWim6fnCbEok9ETcBWT0rqMTNTJ4koo0xCcVlf6xt61BSpkGVLrmFitwgZQIdUiYNgASsdzSdJcY0F4leS2RMCp9UGrRPzh0tJVnPrliXGBgRfGJsQtL5ZCYNNCzyJAiv6za1Xvt2YAgpoZeMNIPIB4wRGKUJXccgN2zLjNW2STOefqZ+EUDy87/zs9xLcvtdPv4JP/n3/5r1fM3rX/sG2mRcvDhlMByxf3SIa2qunj9ju9owP79gPByQ52OMs0Tv2JnsMh5PqEbjpCvJC4rBCG1ytM5SG81ZQkzDQX1wRAVSK6LRBK3RQqKQZKagqeskhBfpvbLZVsyuF2jvqOsNajxmu6qZ7k4QyjBfrjg4OGQ1W7IxTZpQbTRtDORZYt+2m5qiqtjbu0/X1LRdy6AwLFfrxMI5R2bS/d37yIurFeyPMOua4F8w3t3BRcV8XvPBD3/AK299DSkk48mE1994g29/+6/z8Ucf8u/+/b9j/a/+FYXJWC4XeB/IjE4iaUEKIA0BEETVDxdVqS2cmYwtn58h+7UGKe9/+A77O99kf3rMJxdvE8ojcp2zMzzkevacvFSYIufF8hMOhg8oB1PKzYLz9QVRytQnky1GZGRNx/70kI6O4+NDqmzE7u4xnU95I21bU2YDVBAMTMGwqBgUBWVd84UfnjL4ZIPqOkSMydYWI9F3NI9/TF4OyPa/RFxvcb5leO/rKeYekHmVBpoZhVMFRgrqT38EBspqH2uf4FVATcZ4p8iHYxaXHxHFhuneCbFTiEpDOQEFXQuFKNBZgdtsEVToXFLLZdodrzx7g/tkw5woOxarJ2SmopCaYueEwWiMoGW7Oce3Gwo9pFCCxtYEqdkf77Dyluv1BsMGuZwzqb7AZfMBGMVECLI4RI4GyEyizC4bfcpo8IA4W6N2HCo6GrslriJfvzBMy4p/vT1nFjR+W3N8dMLYR1Z1ze7+IcfH924Xo3CTdnXTtqFv/dzknvTupiBlmrsT+zC0EPtdbeoVC69AuESx98ltUkqqPGdYVBztHfLGo7fY29unqKoUXqQkWTZIAlmh0CZD6pSuepMkm/7+TRuJxJyQABT9axB9YJwQEjHqFR4xokyG1AbbgM5Sy0eZpAPxziFESnjMABU8so9wN0NNEq5Jutbf6mx8Z3FN2ye0eggpv0UpTZ6Xt5Za7zx1U6OcoxqOOT64x9n5kwRKkkwSKQ1AP8soIkXA4xEh4Po5R6JvtYX+BcsbsazSaG3QfV5KmkysXoIU8VJblGL3Exjd1A37kyHOdnhEb1VO7hvfub7llAY99gN/UQi8gMIoJlVOY10KXdPJuqxIrpqok9tHSkmuNblRuM4xnA5o1hbrAlVuKI2ibjqUkBRaIwnUnWU0KLDW4zqL8D4xYyHcHgejBFGAioIYHEam0UixzyCJvbVaCIGKKQ/lptFxa4uXgkz3osM+z0SLlFMSeg1Q21i0fDnwzWhFpjWdc2zqGiOgKjJm24ZgXUouDp4qzwkIWufx25o80xRaYXRGGKaJ0NEHBlWBsw6lRZot5ENvTycBR+8RMQmL2y69nzKV3F2NCGgtGFcZ1oO3Lolsi4o2wMGeZlAVrDfnP8WA/FmtgF9kaXsJbhIYdM2Gj/6XP2C1WPP1b/4mJi+4up5x7+Q+xmh8veHi+ac8e/wxKgaM91QhMKoKlFBU1YCdnX2q4ZAiL1BCYPKCvBygtEEqDf08LB889Im6MabBlQhQJqeUCpMZvLU0gxLbtUAay5FlBbkpsLZl2XXgIjrPMdUE7VrcdoMSiv2dXTabDY21GCnIBxWz2RItBI3zuM5R7BZoQsoWiikA0AfITZpL19rAeFBQNw2nV0skI/Iip643FNWIbe2YvZjxvX//b3DeMp4MObu44P/+3/1fuby8TEnqStGJJrVLM5MciBH68U39sErxUghORMqIQSCobtvav2j9WoOUy+2Cpq6ZFhOGVcEsPOfN8V+iyu7xv2zPuZrPuX/4iEExZrG4ZKh2GI93sV3L/uQhdT1ndr3g5P5bPHz0m2xWT9hsZ7z66OsU5Yjl6gojBcPBmEtfc7x7hBSRoigQxhBsx+GzSw7f22BqmyhpXSDVDjF0rJ7/hGI4RY8eISjYzN6j3N8jjO5DN8e6NZ13ZJMTsApdVfgXb9Nuzph+5a8RVytit8UUQ2CM3D8iLj+BrmX34Ws4m2HrLU5bkBWjvVfoVp/gjYbqAH25JKsGCN+wFpaQC/K1p3MWPSmxzQaCgsxjEYiLp2j5KuPJITJziFGGqgOxrelspAuW/eqYaqC4XPyAjWmJq0uUKDF6QCRQtwukz1BqhHYBdfQQVh/i2pp8d4/m+gnKC5QRrNZrurOGeycH/B/LV/nKfuS7ow1vf+9/ZjDdJRtPuWo2lHnWg5K0oMUbh1svMExAJab2gk6agDRjR4BMN3epJFJLdGYwWZYyPG4Xyf6G7x1XqxW70xO+8trXOD7YJ8t7PYySdHVHsF1aDKVCFmm3yo324ubCvPmPmG65Qghin6Nyk8wIAqEVuigIzhKtI/qAVApTlChj0ptZ9i2MJg2a9FGnm1+EXNxMJpVkeZZaPbnABcl2u0Urg8qSJkWKQCxA5QVSmqQ1kIqyGlFvNygfKKo86YFOXiU4x9X8LNmiQ0jan9uJ0317Inqs9KRsmT5MLwZESLtaeQtQNNoYsiwl8Bp1o01J1mDZW8lD9LeaFikFzvvUAnMJUKhIskj3wk/XO1qcT7k4fSQNSghGRZa0FAKqTPe7PEW0DoJLsfAxXU8hhr7dVTAsM2azFUZJxoM8DS30gaJI1l8hIoMqZSKtFjW5BK0MziYgYV1IOS4945cpkYZb0r+w0Gujep2JjwEtex0NkBp3KTNGS4Hpg92UligZiTcJsjHllEQi222D7SxZbmh8SkW2bUcIgcl4QJFr2KZBhFKIZAcWoLMkXr6aL2mtZW8yTNOhgf2dKV3XsVlvsDFC9IQg+pbkjZVasa0bMpMSRa3zdD65ipR0ZE6QKSikoBpUhMxQGIXONTJI6naD64PA/nMEsp8FNH8qsImRzcUL2tWKV195RMr5iezuTEHCdrOgXs+4On3K8uKKaTVgdzBiOt4nG06QwbGzf8RwPKXIczJlUCK1dZXJe+YrbYRk7zpM5z4JklPGj+/ZXIFUOVIaZJanieK2S2y1d5g8o91sWc9mYFuyosJ7j1IZEmhXc3Z2hmy3I16cX+OcI1eKi8sF23WNyQzrzZZxs0XJNKG66WwahuoDgzyj6RyN82gRmQxKatsxW7cUuaGqCrSEpm0gWN7/4x9gzZAXF0uazqG0ITOKPEshlYlADdykG8uePfM+4LzvNVWpQrhJ7Uv5Op+3fq1BysMHj7jcXnOSH/Fg9y1O149Z2XOUGDIdHnN9dU5desrRgMv2glk342B8gigUH1y8x9TkBKl4evkEM9pjs7qgXtd88uxTsqxks7kmV5q6rcF7vIqczS/Yk/sobykv55x8/xy1iQiTIV1EypJ6fclmMyOrdhDD+6CGtFePibIme/TbdEFiXYOUgun0BCVLQjZENzO280+YvPoqaveE7uoUPdRQTZFOInRL3S0oDx7i6pyQ72HjjwnOo/MWmY2ojl9n8fQ/Isf72LzA5gWZ92hhsNsNmRIURtLWgnw4ZtbOccKST47Iz1fotkYM9skyQ5h/hFQWgcQqUCrjYn7B9OiYe6MdWu9x2iG6wKDcY2uvMPsHNHgGAogB2a4Za8PGbRiEHWyr2KoVbnmFdkWK/W8CedvyFZdzMNznX9af8odPf0A2GrN3cMhiNk8nPPZaiL6HHXk5+0OIl/HqWsskChDyVmuSmYwsy8mznDzPUTpH63SjTa0JTWsb2rVH3DfsjkaoPtskeo9rLVJqTJ4RfRKnyl4UmoJWBMTeehdF74y42df1LY2+NZKe743YV6Rp2VL1rqWI1BqpdfrtnmVQQqN8QEdHDDaBSxUhSzt2SUQpgxMKQ0psJQpMnpFXFSrT/Qyg9LjBp6Fgbd1g22RtXq9qykGFNBn3H75B6yzbZoMLHkEabCek7G3CAh8lMd64pTxB9OJJGW9Biu4dPEYbMm0wJkPrGzdPyqgR/eodosDhQaT4+NTnT22+Ku9BhxJorQnOpbwQKdEipbPGkEL7835xN1rdXDSpJ289WkLrk2uHmDQqoWfBJuMhUShsVFRZam2st10SOoeIFhGpJS4E5qsaBRSZpo/qwwuJDq7X+IQ+hROMFHhEL5iFTCXnjw+BXAkIMg3/E306bQ/CtEzHQd440UTswW7sd6NJIOyIcBOiJdMCmak0zqCxFmUGqP6YKikpiyyJekmtyVxLNtuaC+c42JsmCj/LkZlibjvy3GBbT+ccnQ0pRDAGVnVLJgVlZpITjtRaa6xLIV4xoJVhYwOiS1qH3EiEUWTOMx7kXC83uPCz7Z5fDLL8LEARn/2sF3hfvHiKKUtam5KZ5xeXCCkoCoNrVtTLBdvFIoliVcZ0vMPk4IQ8S6aI8e4hVVWloXnc3C9Er5FK2jJiyi4iBEQMfe5Saj6pWxB8MwRAAIkNVEYgpEJ7m/RA3rO3u0NtG/LBAFevU1ijVMSuBa05Otzn4npFCA2buqWuO5bblolI7pv59YxqOCJIQ1Vk1I0lMwLvImWW2HtrO47294irxIrO1w1ZtsVkGaNhznrdINY12U7JaFhhrMdkFU3X3R5b71IyefBpw+T7b9jOpkGePauqlMJog/Pu5k74C53bz9avNUi5v/8K8+4jatsyLg4IY8eT+XcRy0N2hodYF5htl8iq4ni6w9OzSz65+pCBHrOZr1irAmNymtDR1lsW1wuOjw+QUrFGUuQDatuyXG/IB4a1XRFU6iWKesurTy7ZvehV8T4ivYHNGtyKvBwiRIUQOe3yGXXzlMlbv0nQA9xmhSOjOJyQFQOgRPlI++mPYViij15HSkNoryirPcI6p6ky8qsnlKOMrnbEDqLocCKQDacoMybXgkCB8o4yc+idA8JgSLe9pG066DxaFagoqGSBK4eE/AJRGLKswL2YoUJKpA16hB8+YLX8AXnvormMLUNd0rAhGImUAZtr8I4qjJAsMFXGZnlBIxTFeIfm+gmX+ZpZd0rejNClJmwjyIqoIghHu9ngVWSoR+RXBf91cR9VBj6t1zx/8oTFcp2AiRTEcKNBEbeaj9Tq4da6anpBJlIijSTPMvKsJMsL8qIgz/JkH9Q6zYAROk2spuPo+D7/1W//JuWwRIs0h6Pb1kgpMXmZBLFaoUzWzw+SfXhV7Fs7/XSbmGyIN88xMSqf2UXcajn6TrpURBEQ3qVfkqp/mT0oyBKjoYIGJyGopIFRDcoItDYQNUEUdJ0jix4lFCYv0HmOUOqWxbEuDUCjqVHSIFXXaxXSQiMFDAYjvvSFL7Lutjw9O2fbpYnLiNRyu+n/q5hAmgiSINNgQh96kNKLZPUNSDGGPDNobW7nyKTjkto2IXpSUm1aaJOt2KU5MSpFsgfnMFISswzZdrQ2JbEqlxwlISZQkGlFnmmkiLguQIhYXJr0LFKE+01SjhZpuvneuKDZpoyQYalZbToICVSkxScg0LStRwtFVWlciATvUD0unpQZTdMQZRIIipjcUSJCEBKlE2BVPnAzCanMND7wMgZfpDh70/f6JcmCHJBpZx4TGEgC4GTJR6Ypy9EnNqoLMTFWQtHY1IYxWvdjB0gpqErht1tU8FSZorWWy6trssxQ5BnrbUOe6TRvqIPOBZo+bFAAeYBskNHHs6SWmY+3TFjnPESLUjltl2b5+OgY6AyjNKOBZH9nzJPT+U8xIf85rMqfVl3bsF1eEpXCdp52ds3i6pJyUJFnI+rVmqtnF7SLLcNiyO54j73Dh0x2Dvqk5oJyuo/KUuCgDOk9K0WaTB5dAvc3cX30C3MSqMZeo5NekaDPzOmzdF5+9YY5k6gsZzjdxc4uMVqhQqSpa1QEnMN1LTYGjErDSpvOpbZcFHSdYzSquF5viUJSd55casrCkEWw244iz8lNxrLesm1aBmXJcrvF+8D1Yo02knvH+zStpbWW3HZU5Q4oh1ImhQOKlMFknadr2wQ+ep2TFEkY7ft7WAgBo1KUg42RGMN/1tn9tQYpyhgqMeR0ec5ruiTXOZNyn7P5CmOGHO4f8PziMe3W82j/NeRJzuXlFarN2ZuOObu4YLOe841v/DbSGGYXl1xdXHF89Arj6R7LxRwvFdqUrFdX4APTfMowH1EuTnntwzX5qkN7hfY51Fu6zhKQ5GUBOqc+e5ummTN564vE4T287YgSit19sv3jZMO8uGT90R9T54bxwRfwYoRcniOkpfZjwvaKYqKxXZN6lxfPqcaPcLYmzyqy4T4yq8AoaNboTCI7h8wmlAPN8vQxYbGha2vCTk7TWMpo8GuXbGFBoq1DtgFcBsoh5AYvVyhZsKxPcTLjBVd8NewzNPfYaE+drRCZIguK0msyeYgPFW2R82L7MfdsRiZGHOj7hPaMrXvO3ug1qgxsDIBDhJpyfB/Vrek6hTaPeGu35N7Jb/Fs8yF/uDrjD977MUCawwO3oCCR4v2bvF/0blgTpRVCKXSmyLOCzJRkRUGeF+RZgTG6Hyeu0+NIz3g04n/7lb/K3s5Or6uIfVJnuqnnRY7qE1CTU6encm8i+unBSgRE6PNK4mfcC5GbRM5+q9dT1iLtwuBWoJoYFHn7qKK3thLTghS9hJhhTAXRQqYQKKTIMcpRQhIBmwxpNKjEXMQQ0wTkXuj7/yXvT3os3dK8XvC3urfbjTVubt4cP110GZmRCcmFulSjUt1BXqFEQghGKeUIkPgAzJAAiRESYoDgE8CAcQ6RUHVMUhRF3XuTJLuIjNN679bs7u1WV4NnbTM/kQFklBhUiPfIj5vvbbZtN++71vP8n3+TMMzzRCISfADlsdZRNRUpdrx9+1KKSa2JyHgt36FXCpUVOpcNOYGEykFGOClWGyojPAnnnOT4GHuPQiGoUi5jK5XFzE1ymAQdaJqKypiSFq2Yg6epa4bDQMiBEKVAbZ2E4LXO0FWOHBIxRMJ7I5g5Cj8lp0xSojyo6orTVQtJMfiIVpmh5PmI8giclcVWF2Srdo5F47jZD1ijhbeiNabwYQQIks91DJngSxaTNoQYhFirRTGTc5DIg6SYlSAunRHuCooiHdaEOZRMI/DCYr4j0oaQRYWkRZYey/05Z4JPsukUZ9rZB6YQsa6iMpopi1FeZRJ+mhl9ZO96jDGiQPHhrhhPsaQ1I6O1yhkproy6Q59yPsq+DTElZi/usq6qud5P4sRcSWTE2Xop49z3juPlcexFfvI4jnn+5OAgv/dVpr96Thqv+fLzz1HG4ayc693qlDkYrjc9b16+YFV1PDh9yIPHH/Lg0RPhoI0Ti4tHqG6BVoJskSS7i6xIyUtVmlRZIwopKr/33HK8u94lGfquarm77pUyQlZKGaUdpoa2bgjTKHYFwaNypqoaplnS2le1pTIwKy3XLFJAnpQR6GZ3IGKEm1XX+JSo54Cxlhgmmrqin2bWpuF02ZFioNKZ221P1+7FfsoY0jDSNDBbuW59kLTuMQameZI8Ma2x1lEbx+glp8hqOSdq52iquiRsK1EH/v9gOftzXaS8Przl0WrNrr/l1fVXnKxXrOsLxgee7fUr1uoRnV2xPxxwTxc045JHDyput1ucbfjk9NvcvLthc3vLB0+e8b/78/9Hvvrqc07PH6GVIaaAqZaoeWJRdxijOVud4mPk2e3E6ZuECwoVQYVEmEbSPKFWZ6AqDm8/4+bmax5++5cxZ98ihUSuGlToRVroVuTDjvT895hiorv8Jew0YKqWcfsVXkX6/XMSE6Z3VDbSTwGfJ0K3JGwOkGdU1VEvTmD/hnF8g3U1aTcS3Ql+OLA/vMUbTx8DXg+4XBNHMNcH2rUQQPOcSU4Tz5eYbsN09TXj9i1Dv+MF13w/PuM7cYlpIvQK6zqa2GOUYs4zNiRUA2F4zX5+QwoeFRWJmrpqOGkv6W9u2I3X1KePMfuvqc05sTaodcP08i3KZ8ztQFjW+M2eB6tH/B+6MzY/esH/g59cmI5MS9kopQO3OFdTNQ3WybzdVRZnG6q6FlZ+IyQ1V0mHr7UpgYBwcfaUx4+eoKuK4TCitRUb9K4VL4SqRt8b1cqmCiglvhdHO3RUQQdSKovUMThICXm5rGT3bgFZCh5k4T4ahYv9v74vdPK9g0TGcvT/NFUDVgqaLImAYoWOEiWRNhyf+PsOBcYY2rbG2Aturq85HPZUSkZfc0xo15AwbIYtICMRlCnIlTk+88ILkg6xUIfui5SColgrqh57dKHV5sh9vnsPIgGSdOFGa6zR+BBw0Za3NdG0S8LWo1PEKFnofUh3XihWicMqSCevjGXOXjJuNPioCWUu7oqSq1vUtE3Nvp/Y9AOn6w4fElMQgnDtJN3cGEfKxcCssrjK0rW18HFiprIW7yPZRNpK1EvBB+Y0l/GVRhuDn2coiI+7Q7eky1SFR5NTgpQIFC5Qls+vqsSWXgcpQIQQnguvQ4rlSt/RtchZVDl1iV5oawk2nMaZlGZCihJsmGUz1VphnCZGT6WFP6OVKEKORbhW8vmElBnmgJ8irXOE2dNVhpAyPkSsVkxJ+ESjj9TjSFaal9dbzk+WRGZJk//PNNf3JNg/eftPHnc0sHLn4faa57/3H3j3+i2KTFM7qrrl3ZtrVhi2mx1ff/4VYcwsT1Y8OL/kZHVC4ypsDLTnD7GrE0H7Sso0OYIR51ylNMcTXpUIBnEUzqgU0cchplR28tyiWAcoY8jxOALSaOWISrgtKYGrW8bNNck6dBYDtbapuH1zK6icgnVbMYaZw+RpnWOeZ1RKOK3vEql348TDdYtOmWVTMyVZmxaVox8HUk7UztEtFszTgDJwu9nTNrUU2wrCuMfoFa1z6K4hec92tyPnxMlyhVKKGCOzn4uCq5JRWEoYrcgkZi+2AUYbaXR+xuPnukjZbF7y7Pw7PFie8vnbz0icsj4547J7AuEl2+stJ4uH9Lue3/3h/5uHZw9ZLdfoCj77/CuuX2749Nm32Oy2LNcbLp98zJNnnzAfNpytH6Mz6DDRtI45Kbb9DusHzKHn7Me3qF7khjZa9KEnDDdE12JS5nD1Jbf9Nd1Hv4w5+xgTIVlHyOIs67JBj5H47i377TX6kz9D2g/kriEM1wy3X7J9/gfobEl2LdWoqRm8xStFWpwSbg9En7APLtAhM7/7A6IfaRZr5tRCrZhuXrGfdoQ4kl1kM7ziNJ8TvCa5wPVwzdqc06zX+NVI7WqmMbKZ3vBHN3/It+3HnIQW161Y5SV+fwXjDcmMYDPb6zcY3bEb94xhSzYT0cHCLcihR6mGPJ/QVk85mFv6wwsWF0+pz76DP1yhU0DdzLT1U0I90dgB/+6a+dU7DouWD/5Pv8afe3SLUv83UXYUkhrHYNlCptXaYnVFZVoq21LVMspxlZPCpaqom1oIcFWNc64EZ8mFpEis6gVdvSCEKHJkJQZfR46ILnwAUZ9kjknJR2tOVW4/GowpVOGgCLkMre/SlI8oCvk+vVmUQgU718evxWODfDTLync7kNZO5nBociyFTYh36I8qpGBVCqN7d10ZHWUiVV3hKgc5YZ1hnGZBqbRmuVzwweVD3t5+RVABkgMtb7zimG8k12KWlh+yBOuBmOMdpcfV+0WKlgRorY6cInlPdZLnKe+7Kpk+WhQ7xcFymgZy8uTkxL01HREYGTOFUgyGlJhnf+dam5JI1q1R+JRpKkFyurambRv8NDKEzOEw4HTDg7MzXLVnuzmIi6pUXhhrJR3ZmjvC6KEfOD9ZAXAYZITWNhW2qgRFyAqrZqasiEox5XsfFK2gtjDNougxRpXQvuMiLxLl1hrmBLlY1dcVjFO4U32FKIZtVivqcj7GwvmxCtq6RhsjsHwpjGIIpCxGfalI5LWWcSkxM8URjGH0iTkGrFG0zmCTOOH6nPFeIgpOFzWqtmzLhoxR9LNk08xBTPL60bNsaxknTB5l5fz9yUJE8X4B/xP3/mdufv9np+HAqz/4f7Hf79jtR04vHuPqmt3NlYzJXMuLr79iux14YFsenj3iZHXGen1Gs1xTtR22W6GdQ4lWvVynoZzpCmWsIHFGeCgqBHL25TkUxDOr+xFwyWQSBVy4Q04V+d5ksvylj3yhLC6uOsP+sMNpuNluiFgWtWM1efp55uG64d0EOSsWbcu73YGYM/0kqrdp9NR1Rc6e9WpJnD1zrAgxEKKlaWpxTR96IQFby83tlvNFjakG7GJdimfDnALONjw668g5cbPZchh7cs5UriaHeBciGmJgmmY5N43F2oqY5p/+wf0Xjp/rImW7f0lO3+JsccHN7gVf377mO87Src/46MGHvGLD9qanrRe8ef4VtV3iWkOtHM8eXbDbHfjs3ZcMNztiiljb8vjpt3jz8gswS3ofWNQ1Bz+K5tsoDsOWh6+vWX12RfYRnWv06NlvX+KNwS7OGfd7DsGzePZL6KoTJ1BTEccdWY8s2zVmTnB7S7h+wXaOrIMiT3vm3GMCzK+/IOrE6fIB4yFjvSfrmlB079pYslJijnVyQbp5zuHwhuWDJ0wHg2oybrjh5u1nxDgSfGLZrZmmiVt1wzCOLKo167PvoOJIuz7BfbQkh4hTp6htjRnBdhWPq49RriOlmdfxlsfZEn0kB8OUZ0z7gBnLze4lJsGHT3+ADR516HHdCrKl0o62qpn1Hr//Y+rV94imErWGPxCjJ+uKEBLT7VvW3ZImzmz+r/9PYhayZ87pjil/J2NTgD7ayJdCxdbUTrJxnLM4V0mR4qpCnJVxkNamPK4iJ1gtTjBa5MrOaYzTKCRXBiAXJ1YFxfW2bM75SD0R1ERlhFBXjoxwIqRgKVBMljVMKVEOYdQdjH0kRR5h7zsEpMD/lJ9DlRToUvgIQS8VJOcIUxT8OcnvFoWRQeuA90H8SpShalpUP4CO9MOMazxdpyT7SEd8klygnDLZ5GI7b+5GX/KrShGmBOq37xFmrS1Bgsbe5fcIt1k+x5wTaFmQjBITNmfkfWxqJx3ZOOKsE2Qd8cgJWWBk4fEkQpYIixwiWVumeSZnRciJGKCrtST0auhqh9IaP3kmrdgdenKK3G4T52vD+cmKdVuz3/dCZDUIYddVnHQdRmcgkVKirmr2/YG6knTxqq4IOWNspqorQUYihAyV1cxzxGSwWs4bpxVRaZy1pDkQkbFRjEkQF2NolxVDP6NyLCoNcX9NWaTiDkWj1b3nirG0dUfbdOQ0oo1muWhBGRm/dB39OHEYZyFeWzHV00oyhRIyMozzTJgjTVNhtYeQiT6hi8JoN8642ooPjTVYpDBTRlQg1hiGOXIYPWeLlhElyIpxCM3pmxGDf5pe+6d/jzzv21efk3LgsN/StC3rh4+5evUCHxTTlDiMM1dvXnHS1Hx0+YiT0zPOHj+ju3xMtVyKlYAx5ZrhzmBPaRl5YXIJWswkZST+ws4kIiqm0jiIVksVlFHI2ZIsfjcWynL+6xzvRqSijkm4SsIrwzyz6Dr22xtqY8AHEgmlMl1t6IcJtGK1aMUHRxsmL+aH0zSz3Q+cdE05xzTOOaacOatr5uDlPE3QtS3DOLPdHzC2wlpNP85U8Zrl8gHDODDHhDKWRddiUWz3O3wUnpc1DqMd2Wicrcg50U9SsFdVLS7eWs7vn/X4uS5SFPDl2x/x6cX3uDx5xtvd7/L25opP2xWm6nj2tOIPhuesHj0lRMm+WLqOh6dPiLnn0aMPmFLN7/6H/8ih3/Ojz3/IlAIxZOLmFavVijFM7A83rOolT08vUTny7c82nPSWSlvMpNnfvmTSifbyW/h+op+2VA8u0STq7gS9fCAW6NFTuw41HACNChumzVt8MoRXX2PziDp9itrvUN5TUeFncRu1asJmhx1uWZ4u0FajfMCisJue4dWPUDYzq4bh3Zbu2Tnx5iXztEVpSUhtQoOuO17sviToSGdbFsunpHdb0tue9vyCcPMSGxOtaliZhsN8yyknjPuBKe+Z08AhHBgt1K4lJsPy2VOq25HQf8Hq7ILlyXcYp6/Z7V6izQPUuMUmTWNPSU1iN1yT1VekUBEOAaVnUj7Q1I84fPEZuYIFDWfnn9A3gc/2r4Ej/KvJd14dhQuhpfswRhZJUzZD55zwICqJJa/ujMTkfgrSoRScrB7wyZMPZNcoG3rwAaM0CQvRo4xF23Lm5Qy6jHko9QfFGr5wASReq9jkHjsrkhBB1bHjKkUMAhejjoWMdGj37Lv7YddxtK2KidpdW3m36b9vPP0euqMKgpMzxFT4FVLMpBCpnCOkKHHw/YHz05W4uRY1x50yieOmksumpu8KrOMTlJgBUS1JEJ0UJ/d5PlKkHJ+6VhqVyuKvlHTeU2DdOlE6Rc8YMlYJwkAMzFNkitBU96GTCiH3TkUlM86BylmGOZBJ1M5iELdar2HhHCkEtHIYrRmLkmuz3bFYdFycLjhdNCQ/Q1Y45whJRky6JP86a0kxUFtLRpAIkepmkg/knOS8U8LFmgqvxxolCJISuEMX0rBXCm0Ui6aWDKoQcVoI4N4HnFK4bMVYzUi4op+DoIzlfdWFc1U1FW3bMg4zIUQSikVbobKoqOYoeWIqiURZGbE79z6iS8ZTSglXCek5ACFLoZLITD5ixoCzIw/WC7qmph8n5iTFa0hJfGkyTHMUonFWzCFjY6ZxQqJ+b/D5Hlry0wkpP61AyYDKmbHfMo89t6/fQDZcfPRdttevmENmux9YnJ8zDDsWBp49fcbDhx9y8exTFhePcd0SrW2xFSijVl0I7xGylnP97prNijzPZD+TgxcX3yDZUEJgLuiItmirSfMgtykZbqJMmQKrsl4kiEFQV2XEJsE5+sOepm6Z5oll27Ede/wwiJ9kjNzc7Dg/XRGCpISrnEVhkzLbw8SDkyV+mlm1LWMSfl3KkUVXM44Tu+SpG0vbVWz7gXc3OxZNxRwDw+gxhz2zXmCqmqpy9CGwH0dyVjRVS0piFphyxlhTGhpZLqqmlmstFHWPOD3+TIf+r3/L//8etXN89fJz3u6uqeyKTy4/4vVwzdfvvsL6hqU+4898+osEe2D5bMF2OvDjL19wu98z9TO1r7ms1/zFP/8/8ujRY4x2vPj6a/phJx1TDOicOanXxBQJObGqWx6/U9gZcpzxww3aGZrTS/zUsx9vMKsz7PKc5oNfImtLUoqUZmgXZAJqLsmnw45+d4Peb7m9egsqoC6f4DcvwXrqk1PG6xGdFY6ETwaTJlwKKBWwSYFq4c1r+nefYR6cMQULKaDVxLB7TcoR5oTLiso2VKojZk+qArppSf1MGBSGSEgHcroi40l1R7KaK33FbXrLPm6IydNYzY3f8qXeMqaZV8Mbbm//EPa3rNaf0p59ghuusIcD16pnn3eY3R6VRtL5M5pHv8isE1f7FwzTLVm1JGXpw8BhGMVOvDpBxUQ4bMnDyDhcFTRA3Y1JjoqeY+aILh4Qx83RGos1Ml5wxblVF+v0AoHcjWiUSTw8fcSq6zh6mM7jRIxB0AmQby4btZgTqXsiXEoQPTkEUjH2IiWS92J9HsX9QtCOKOMi8p1UFQpKVB5f0nU9OQuErHKUwuJuxlVeguLuZ95/foLaIItdSmUBTeVPJIcgG1kpo7QqoYPTyLDbUTnJq0kxUhlLYzoq20oekSnFR+m4RUJ8hHcof+S9sSXcT4pCfR8yqNTdz9wXOeVrbcqzEqTGGAshEX3EFGv1Y7eYlQT5Hc3wFGCN+HRYLRwhSV0V7kaIuWQeGax1jF5IgOPsOQwT1ioa58hF3pxjZLcfCDGzXHQ8vjjj/HTN+emKxplypogE2mpF2zQsu5a2FYRQG3EBlgLZ0tQGpxKtMzRGUxkxkqu0IcWi4smJxsioiwyr5YLFogOlqZxkzFhtaYwgU9Zqutpysu5oKovRiqqWcVPTVDKSM5KLZLTGT5PA/86iVBaPmQy1qwq5WMIAI3LfMYKgbQR9rBsx5ItJXn1lBBmc54hKkm8kaJkqxccRKRPDsykkkjYMPjD6Qhj+RjHy3tel8Hy/RP/pfBQpvGOcmecbwuGa+eaG5fljRp+4urohKMPz12/FfbvveXh+yeLyI04un7BYn1BVYt52R4ovxYNU8MfoDe5JV6gieS9I6tGxuhTZWsvrSjmRrSEbizJVWX9EUSjEWokaUOW/u6gIpVDWYasGpQ1tJyZoy1WHnyZUlMJ1UVmGYWK372VdCRGnFaEUS2OITD6WeA2D07kU6YmhH7DFeO/d1Yb9Yc/JqqWyhnHyHMbA6DP7m1sa66hdhZ8j4zgzjDNT8HeZXCGI/9Y0z/gQMcqyXpzSVA0gnkeyBP13xkmplcLWS7569yMa921OuwvWiy/5+vU1l901J+6UylR89OSCd29HPrg0vHv9kj/64kdcnp5ytjhh2l3hXMf3vvdLGFPz9uoN291GZo5JPoSoYAgz+2nPxbt3tH/wBQQxeVK6wtYVKcH29hX27JzRB5yx+MMe5zS6abBTj9YJHQ1hCmRrCDdXzMOW0O+pP/mA9OgZejPRjxsqVzH6lhh35NaSB09QEKInmBY1e8bDnsXlJWn/HJ0Tzp1weLFHtWv0uMfHHVZHNtOWdXUOvsY1FbW1JB3vuq1oJ6g10+Y1/jDQGs0YDiy7NftdZp8C69VD0J6Fn7kaNjxYP6ULT3h5/bvoC83500+Zwkz+1iPi7/0OJtYMdaKvZi4WNdZ2pGXDfr5l1EkUATowT+9YXH7MA7dmujlQrR9hFmdwuyMNW+zTb9P6l2Wqo1GxWC1n2bJF2VM8N6yYsxmjCvehXPDmuIkWaDxlKH4cSiWsMay7lRQQsSA0OaKyK+RXxdG06G5cQxnLZMnbScVBMif5eekIIyh956VwXH/vVEocbyo4xHsSRtS9PFHGScefKas2AulnLeMGVaKIcypRAFqJcRjIIqsK/J7EeVYh/IfkvSQdk6iaiv7lDjUOPLh4CDkzzRPOVbRZ4ZFgzWO5RJZ6SKkj4lNey7FQ0fdFihSRZfF9r8CUpyqbmVFH50opcI7mUZnEPE1iCmU0eZqJPhByprKi+gkFwaorS9dUxHEmA8taChZnBU3U1iBZawqnDX4O+Ch25uvVApUCrTUsmkren5zx0bPvpUA6OzkhxEx/GADFPHpqJ+cdSuMqxxwCaHH8bZx4U+Sk7upIHyKpkmDApnZYDfU4k7U4t2ZrUDFhc0LFyMlqIYZ/ydM4R1XXpBgYtzvCKEjRctUQrCb6gLWGuqqxzlI3DZVzNG3D7GecsULsdA6CYp5EPZJCRCmYfGDwvtS5ia5VtFZTNTWmcFc2+0nQLK2prBCcrbX0k6dua2kIQqJyirkUzEoJj6Wf5HUqMnMQZOXoe/TTj/xewfAnj/dvzXlkvnnB7vlXrB48Zm6W7F/8GG0dt7c7QtaEmDAxUa8f0HQL2uUKt1ihrTs+iHC6zP11d3edHrOrjo1JiiVqQ66grA3ZFEQ0ZchRyLB+uOOYCU0lyjgtxMKJE8Jt0cffpYbnKHEX3XLNbrNhuT5lc3tNW1V0VeKQoKkdh33P9e2eyzL2VikTgnBLfAjsh5nLkyUaQ6Uj+/2BKUvBMIdA7QTt3O49thIyrVaKYRRrgv3tLQ8eB3zyzCGQYmIaRzKZrm5xxmGUkbGPtdS2pq0btIb92BNiIsZMyvKzP2uZ8nNdpDi1YnUW+OL5c17XNavLX+Tj0x/wv139Dj968WO+X31Cd37G2i5IreO6T5xfPKLSliFl0jwR40hdB4wynJ99yPL0FFNrHp4/4+3bL9nNA03Vct6dYFJi+cUL6usBJo1NEki2Cxu2mz0+Zc4y2AfPCNOWanFGdI1sYNqgZgnZm/YHnBuYNq85HDbYhx/hzj9Ah5Zwc41SHnPyIfOPrlG1JfkJMozbDSEkRrNAbw8YV2NPH5B3f8Bi/YzxtSK8vmbxyUdMm8+wBvrRM6rIaVOTdwFdz3ccCFst0cuOw7u3TD96R1NX1GeXjLcvebv7IYmZS/sRzeoBG/OapTtjPCSqPPCRfYxyTzh1n7GIiuwnfL4hvByo51NoLevmliZrlHZ41aDevGDlHNk+pW9H+tuBWnk4XVM9/D5m8Y6535NyCTCbIq9e/IjNuy9l7ytk1WNHpbL4c5hkMIhSx1hBUaRbl7FKKp10jAltIjHehxM6ZVi257TdaUmkLfC3KsF5sXQ6+tjrlK4JBKVIuWwgURawKIWJMuYeZSkzfqVyGQ+Vy1QhrrjHRVoXiXLp1BSqLIbitYE+Wu0XUu4xWTfFUviUFGIlLpNS68hIQezL093vFy85URPFaWLyE8F76sWCzWbL9c0ty+VSZubCMCnPVRBFUlGEqFQ4KKXcUhpdNhVJARYy5113+N4ffXw9mbvCTpVUZGcN61WLNjD5WVKLcy4LXhRTsyywcogJ78Um/9GDU+qcuPLyfjsrnV7bVKjZl48jE5VIgElS4ESlGGfPSdvQLQyLVcvkZ4Z+oj8EHl2seHu9YbfrOTtb41xFP4ylWxaOxuKkFafPaSZGSQxerpeEIMXT7CM+BupYSxduxFukcpasNCkq6kax2w/U1gnKgkKnjKvEJVgpCN6TyeIJpJVwRWymMhX1yboYhVn87LFlFGqNQesWZbTwrSrHNEzCS7IW/MwUgki250BGYWuDzULITTnROsduHOSaQrxoMhmfEguj6UPkJGeauuIwB7TOd9lJSolR3WH0VLXCWRmbTHMoWS/Hq+Jn28KO0n/ITJtX9F98Ji6tp4/ZXr2S1SKLnN0ajT/0TH3Pw9WKtqmomhZ7NG3M3CEguZDLCwFKintVrsESGJkRhEgbQ/Tl+ZQiJitNVqYQYBMpRDLCdyNmlDIoCzmFQmK/R2jQhqzNfWGmLU3b0Q8DVbuirnY8OK2Iu4Mo21AMMTEME8vlgsrqu4LQKC1cFVN4NkHWj30/gTFYo5i9+PyA5rCdqevMopZiP/jI5GemeRJOWpT3JcWEdYKaKSZApPLOSmbZFD3zOLPZblGFAxXTTPT+v1KU/snj57pIefH8LT94+JCzB2u+fvuC0/qCh+snfPToE37/y99BPa/4gWmxDZyeVux7xRevXvHu6jUhR7rmhA8ePGCcA37yfO/boE3Fze2WswfCnjfZ0jYt6+WadNhxvg3o1KDShMUwxD3X+9fMQXN69iFq+Qh38TH69ivqJCe17nuC71EqMW+uIVnssGHs35AJLD/8FWyzJB9GsnFYLLN7SJqucA9WRL9lxNNPe1xbk+sTpmHEnZyg88Tu8Jbm/M/C52+orELrme3+La6WRWAVDSYnfI5oRZnpG6w+RTcPsM013G4YJ8/q6TPe7X/Mu/yWs7TEeOEBLMmY6UCtDed5wWI3cWheMeaJkEYO/TvepGsuNorV9BQTHe3Hv8ru6odQ9fjrN0xsac/PZUGYes7Wj4ljT+X3xMMAl4+p1RbVH8jbN+ynPf7djmH7irtZQsqFGqFKDo9GI6ZVRh2lrdLNx9KJKlSRcoIKWTgtWoHOZB1pbcOybsgx4YNHKekQfZhpmg6O/BeOi5UpSElpjRUckRChn8T7rwu6IHLDDDre8VjuWsz3FuachGx3LFTEX0G4Fqo4V5JSQTAUkGTheG+5TlG8E3JR3xx/X/JBOuiySGhtBI0qhYFCyKp1bRj6A4e+p2tWYtgWhVsRcwkYzMKkSXevQd2tsVZr7HEYojRKmfdQlIKg6PcRlXug6fhccs6Ms6cylGJQ0VROPqMEES023sXiPufMowcnPF4vudrsyKg79CSUTT4iBmcpRjLCPdJZitcYM8EPqJRYtKcMw4T3kcl7csq8vR14uG64vr3ldrvn/PRMxkh+JnpYrJeM48gw9ISQUVnz8MFpKSwVREmr1krhqkrGboh3StN2uEbcOf00kyOkJIWaczKmzElqUlss/v0cWFZi0mfrCghYlakqK7EKVrELXkZ5SkmxXdRpMSU21xu22x0hRqZpxntPCv7uvUhKUSnIMaBdU9CERCipxlop2tpyvRuwVvKArLEM/cRivaKuHDGI4dwYjqilwiew710Th2EkHtVo3Nfrd7SU9/7/047jpRf9zHx7A/WSRbvipu/xc0+cJ+ZpRhnLxYNTtld7TitHozWLbkVV17IepigqHoFPRIWTjkq2gn4qitIu3xUoGE1Gk40tY1pdWGdSGGV9X3zn4s56fIVKaTBOSPP+eD2XC+FYpGRB/STraySFSNd1GD9znhUh7rHWoqJnP800bYOhfHYhoiopUvbDJGILJDbCZhhmj3KlqJgF9Zl8YEqKcQ4sajETTDEyjZ7GLTFKUbmKuq7RShP8zOwlgkFn8D6wH8a7UM4Qi0ReO9AVU1b8jDXKz3eRcj3ccHuz5MHqghwTP373h1TOctZd8mj9IV+8eQlK88nTJ1w0T3i4WvKma7l+o1mohkcnF3zx/CuMtpwsTnj96hUfPHpK5ypurl6SsucwDzSpIvgW5yOWFfmiwh2+IOaJl7uvsa7jwfIS7JowKdLXPxR/jtMa1Z3hN69wlcZ7OXEmH+lmj5+3dG5Fff4YFSf0LmBUIvuMjYZoFI3R7PYb2kaTppGmOSEFzWG35fzyKRHPPgfqqmaaZ2KlYbhCaQkJCXrCZYfxBmJAWUejWlF0UBMPPelwjWekcmekfGCf3rHJExf1A/QmUiWPWmi8OXAdtrzUe/Y7z4v9SFsZXLfALS84dR39F/8bfV3DeuLNm+fkmy0qPyUGS150IsMcJ1ZPPyFULa8+/5q6/QhHz/j2OcoPVPMe318xm0BrHJfLFRy455GUfVFnhT46i6FkgpNE6ZGS2FOHINu3Lqm9KVssRvwOksYzcru9QaVIVJlpDCwWDd4HAl7koEYuE3Mk1OWMNrp0XBTTrNJ5lQUXmQSVRem9IiSm+7n2+4uSKsDy0UEU7qyldeFX5ONIp1zlOb83Ky9z8+PimZUqGRsZZSQHKJPJwcu/oXRwiA/HXPKIlJZUUyOW62enC+qqY7/b37vAIpyFlBVJHcdYx6Ijo4wV3WsZ+dyREAvv5Kh4uENVMgVlkuLyOP5JSTqyFAWC9lkRfZQwwSzPYYpROCN1w3efPiKOE7f9jDIVi04yUm72B4GZs3yGbVUTQkBreaDoE1NIVEaMqWIpfFLIojTSUhTM44jViv1hoLJGyMc5Ubctfb9n8p7gA11Vc3ayxFmLshKjgHKQJqyxpKTRjfDAnBOlkdUVSSvGw4g2IgsNMUvIpDFiImg1hoxOYBuJZXCVxTqD9xM6iz9LCJ6orMjtS6BkRjFPE8YgxOhx4nAY6IeZOCdSCqXwlGgJyQ7S5BTwIeIaCdVUWn6+aSzBJ0ICU/g+xsDBR06NpmsapmkWFKGQZbURk6/ZC6oRY6IP070t/k8UKHfHf75GuTv8OGDXT6h2A4ftwGG/heiF8Kw15InKNfhwQ3e+pmlbmm6JcxVwVOWJEZ4uadMcmwIluGYuiFAu6IigpqU5sVo8ipTcnuNRiSixGzkJ0qe0eKXIsiAjwgxkV5HnkaTE3C+TpZEqw1WFpFzXdcV4UOgMXdOwDpHdFPApM8yR7WFg0bU01lAbU3g/mpvNDuMcjRE/qcZqht6TjAalCRFikfP3w8hQXGsbA8vGovJIzlNZ1CJaQwiecRyZ5lnyevCSjK5rlGvQlcYpi+vOqZeXtF1H9gMvPv8D/NT/1z/UcvxcFynWNPzws6/5xU8+5PHpY55fveD57Qserx1t1/JBeszV9go/K3iyZp62XJ485vSXLkjZoFRi2XScn3/I5Hvm8cDNbstq0RHHgaZtufHXDLGnHVuW/cTZq3fk2wPRH3gxvELZikXzEDVVjPMBOk0ee+LZQxrXYg9b8sk5qa3xn/2I/aaHpmHcvyMjmQhmmAl+JO1uSMykUGH8TDaGRmfm7FG6LmqWhE1BvA2sYRzfoZJBz5KbYJYN+/k1qYJpSJhs0I3FJotzBjXNLPOSXLcYpdm//gq/3xPmzMnlOZvtc6btNWkOnKQKqzTzmeZGT9zqW/4ovuGp6XgVtgRteLb6AD044uEFg73ij/xz8vKMug98efs5lbW09hJr1ph2iV4vCfstLlu69Ue8efgFY5YRwfTuJToOkg6bNFadSVrx7ko+8Hw/VkgFLpfb5d8pZWIhWWpb1oCcCTmhU6DCgs4klTAI0U2ljJ8Tu80GH2C1Xon0b5yo65oYJqKXvA7jqlLcBLKyHH9JjrFUB+kOxVDvjUCOx9EQKhfOyf2wWzwTorEoI8TSnATxASVcmcD9i71jE6b7IiVTFuNjvlF5ekmIKcY5KYRSBiU+MPmOhZ+wzjIMsqHMk2cOUcwMjWW5OOHt7WtC9vgQCRkCWTa1I+pTChFjlEhzs/oGIVY4NEfE5X0kRci3dz1zeRzROhwDFGWpz0ne66MaJAJTEPnvpw8veLpa88PtKw5TZCYyesuqqVnVURQ+k3g0GK1Yn50wT9Lxuajop4FsJWNnDjAnaIyDmDA5YkIm9p65KKVubw9Yo1k0opSYRxnBVcpwuuwklbhtSEVh5ABnLSdLy2EKoFo0kdppTCXS+zllIXo3TizMu1ZQhpyoakuXTEFiGpQtKe6zx5BxdYs2ZUwRA/MUqLqO5XKBU5rFakncbkgpMA8T8+RJQQpDY0EFXSB5Ge9UdUXjHDEIvUJrKSrGYcYoWLeGrw5TyalRgr6EiDYV89SzqhfsnRUbgIRshikxxULWTVkcVGO4Q1K+ca38lK/evyX/xD3aVahJ0sBHPxDmHt/vJYgySaozMbNYLum6lnZxIqRUo7/5G1LkqK47mjGS1T3BHeHqZDLZapG6I2MnGQHFe0foUvzcydgKYHPHGyvjWbQVUZ9xKB3JWrKA5FQr3U6mXF+OpumYZg9+pjGKReNEDTcP7MZA24rMvXWaaRQjPd0PNIcetxICrjMaq5DRnrX0s5j6GQWzD8SUmGZLagxNbfDTCKZnKq7MIXhignGaxVtJa5LSNKtLugefkm3DdntDv9+gqguq9gF6uUb5/XtI8p/u+LkuUpTJZJ35nT/+Y37w6ff48OxbPL9+wYt3n7M5bFi6Fb9w+X1e73b8+PaPqGbHsluwHfcs6o5pSngPde0w2jJHw9Xb1+z6hrZrWJkVDxeXLKsFBuje3uC+eoG9zVyFDVPKPFw+IY8VPkxAQEWgqyEl/NXXxBCwT/8HosrkORHnSHXSsnn7hth1GGry/pawv0F7T2UNwTRkn1ksVhCviXrG2FpUO0lhtKciknyP99cstCZsezKZtqvpb7a4ynIIAw6NsS3hoKlMTYgDZrkkJMVw+Jp3/Y7GGerR0ZmBzzdf0VYNQ5CLauwyebpmMAdu/IG6czw1D+mvX9M6x3n9gLyfUDqxUh0XZ0+YNjuW7ikrzng3viZ2AWc9apa5dDAzdYgoc8LHp3+O/vXnuMsTpl5InaZdAgMqT1RZouzhuPEjncuRqHmcAedMiGLtPocAIYtNuxh6oJGwQeI9iuG0JPZaV5XFAkKawI8M/YgxmhACgRHtShIzWhAIlYBACl6MsAqxNiPEO8WxKLn3V1BCvpCFKxSI+6jM0bqQ9jTp+NJU4Y7IDKmMkO4XzDvY+ageKoREEfnISAhjZJMx9h6tOYaiHf/EdEeiNka8OcZxYhhnyeYoJnSzD/gYpEjJYsMetWT5aKXJGqwS2/3IESi/L0Z4b+5+/x+gjvEG92P5EMRK3VoLKotKB8qYRlQfwxyJKJZdy//0536JJ5cXPHz8hMtXr7m6vkU7y8P1ksYi5lI+8EdfveDFrfgiGWs5WTXok8TvDS/RyjAF6D0445h8JPtAo8HlRK0cSWWSkfcsB0+Kiv3e42xFYyuWXc2qbYlKU1eW7WYjEmdr6OoaHwXZOsYuOGdwbc08zugpYlZr9oeBaQxUjWa16kh+Qhto6o7Je6wxzDlhrUKrimXXkEJkHAeGw8g0TdjaCfcmZcZJihKyJsxSTIlRnjgUp5yJhYOVovjgxJSZY6StHSElUopMIZBz5nzVcHOYCTFjTTGkq2uszgzTSJwN2cw0VjE7MYMzMcvoI0QS8viRjJ9lQ7yrU38SRvkpKMo3CxT5Iesq8ciJSXgPyeOngagcsw807Yp+07Nar1ifntGenBc3Zn23HhwjLeQaSYVPVp6S0kVNl49scVSJw0BD8hkCKO1IOpFVaQByLk6zFBGe4r67un8NSmuUq1Ehobwne0+OwnfJyaF0RikZNWtX07QLlKnw9DRmLhmngiCHEKmtY9kk+pCYYmRWcLPd0TiLU4Io1s5AUozlsz6+lxEhOScic1BMsyjgcqPxEUzVoVuNtTXKbuD2VsIyVxcsH36CWVywHyZur67Y3jxnlRt0vUC7Ch3Cf1/jHmsNJ+dL3t2+4/e/+EN+IXzKau14c71hfxjps6euVjg1sd8dMPaC2+3EcPBYE6m6lh998Tu8fPc53/vOL/Dm5i2321uW7QljmFnUHVVTi0xunlh9/Q62E/3Qs99uuDh7jAk109AzhQP12QW6azDNKbk6I++2ZGYMMF7vGPYHTNeS9YHX6ZauPiPPB1YocprRzBCVoAcelEr4wx4fPMMw0KuelXuAcZZOW9JhEPgew7gbyVVL2u9JMTGmRD9OPOweovWKKWjqy3Ni+ppoI1+/e00dHNdh5Kl9iDMt/XDNu3HLCRWPqcFpeu857dY8SAf2t7BYnrA0pzy2nl2cqNAMuic1Fus7HtYf0Y8/ZOIdz9a/THg7w+DBBJxuCHNEqci8u8Fev8bZChP36DnSrZ9yOFxhmhMgYNSauLlBacn2yDnLNEXpu7h6inQ3pkDMgTl5XNCoIIoS6ZQkE0bWHRlZaKPvlDTLekFSCmXF2ZQkndI49DRVxRRiCXmTCAGiL8WAQMCCpAhCorSWoiXIPBoy+qjWKeobGaLHwsU4XrEJkocCzXOciZdxyh0HBsjF+fKoNlAFWUhzmXPrkqAcPCh53jkntJEk5KPbbDo+r5TRGeqmwfW2QPGRcZgEAs6BmCMxTPgYCShiFmMynxXZFM+TDCkbKsVdCKEYrQky8k3LruNmo+6LEwrMDqiUUCEy+0hWCuesZAgZQwyJKXiGGDHG8ezsnA8fPWF5suTs0WO+/b3vkbN4gMSYmKeBl599jrKJ//FXvst/+vFXfP76HUPIfOvROXVleH21YZjF62HykZPlUjr/1KOy5AfVVSXEUpUlKDBBnGYhbOtEWxsWbYOxDm01w35HTpnGVRzTEKzRVApCDKSj4Z9StOsFte3Y73e0bcN+PzCPE13T0jVLnMuYuqKtGsbDAb/fk2MkxYxaV7SdE2QiBCGYh0icJmhrSXzWmiNrqV4smPcHkZRrj5/Fxj4EIeNWlaNpKgyKRe04zB4NbPuJurLEnNkPogqZYmIKkWmeqWqLOvJMUkbFQFc59mOQKAJjJCE7C08oxszsEyl9sza5O0veV/SUsan6yduPd+dEmPak8UBOEsaYsjw3HxOnJ0tsTNRNw8nFY2zTiQfQceR4LH0Ud0U8Sbhr2mjBTlJBRtSxkDlyz8r6og0pR3J4jwhbZr7i36PJWvxCsNXdNa6MrA3aWWyuyTHgpxETI0lpQhYjOEl5VxhrMNaSx4EcA7UVb56uckwhMsdE5yyLyrKqLHEKJBSHfqLvRlaVIJ7OGvo5Sc5TVozzXKwVuAusDOketXWLExkhLs+wTkamwc9cX79mnD2NzmhtSTHSb6/ZvPkROeyZrxx748R7hyieSz/D8XNdpOQ809YnfPLBEz578TW/8/l/5MOLp3zrw+8zXSR2mz2kwL6fsKZhiiPO1szRsz3scGFmtTxl3SxI2lBXLf/DD37A85vPmA8ToJimkRSFtd5u98z7kV3fo12FdS25TygjabCVW1E7S1AONSfC9ddU6zV56Imf/SGb119j25rd9VeMrWc572jdGnV4i9/fEKceTp6QdEPe7yBMTPMBV1lyAO0MqWvJ2lDPipgC8+yZs4YazHLFsHtFzJmb4QZypNYalx25bZinCd2AsZnNdItJkAIkt8I0S678LSfKEfPMR8sF1gd8GAhpTZ4tJMeleUC3+gAz7MnZ46qKd9s3tNrSqpZlaNmrkU244Tx/wsnqKbvrV7SrFlWdU1XnGNuSxx3VZkM8eyijiVpjVr+Aef6/Elan1NrjFw0mRPK0kf25rCO5LFiFAkskiqwvB0KYCVGjYsJkjcGUcUIu+9+9FbsiU2lNpSuM0dxud5wuW7TSTENPs1rhxxHtauZpQqWISh3W2TvVjszcpbDh6J5ZbLSPBUnKqciKS2eVEiqLVXuZ0IhzbEriWKkFrRFDsOMcvBRk5fdKoSLvhdJWpI0+CmJibElVlvchqVA6MjG/y0fDOZCNA/FsURTOxqJB73bC+1GahGJOHp9k9u1zwmeISjFnTSwoktKaCi2ePuSSU/Te9frNi7egRcfbZaM4fs6/+ukz/vff/Zi3Nzs2w8imH9gNIwcf5DuNQVc1tbU8e3CGMo6MhEUaLYVpioBKLBcnfPcHv8z29Wvebl7y7OEpSil+9PUbNHC+WvH0wRlvtnumnEUdQ8Y2FrymTobaWeq2I4weHzMuBawTzo/RmuV6xcnJEqMVPkaczfhpwNmOhw8vuXp7Jfk/VY0Jnu1mYJpnlDfs+57V2RnLhw7dV9SLmkXXsrneYZ2lO1mj01xW6yxKnYJ41Y2THJ4wl8/PYCuFVhk/zxx2B1SGqXj4cDQMy5lxmpkmz+w9SimaumbROqyt6Nqaxhm0zgwhMgdpBpra8m7nqawmK8VhkhTcFAKpltyeyUcyE7U1WETho41BWYuaIyGCjxBiZg4S93A8jlPQuyr2vbPm7qsjy/q9sjdOI9P2lrnfkXKSdGCKNYHWdG3DvL/h5ORMBHvWiCFmidw6Fh5HhFZGslLEp5zujNqUdXdjWHkaxYXWajF8mwMoi8qBHCaZHB1jonUmz9yR1LMVJCOHmRSDFPRZoXRF3Z2g7EAaBmzKxDiilZgiOpeJVSJ2iRBhN4xiKmgUwyT5PZU1GJU5W9RMGaaYmULAe4+uG3EERjNOE2MS5ASl7+IYVBkz5ywI2zSOnHU17fqMbnlGwtHve3wZbztXUdcd2jaErOhv3xKGK2pniMNbDm9rxuRYnpz81CLzv3T8XBcpTy6fMMUbTpuO7z55xh9/+RU/evEls89899NvcXn+kBwU7cUTpnlkO+1JOVJh6A+DkCuxnJw9ZF0taE+XtIuGdd+QTMN+3FLbhtpU5NmTQ5YFWWnqqhYY3WZyNjAlVA4kdY497PHhlv3uDfXZGeHVS6YXP2aaBuxCE3avWZ04VErUTUcKAVtMf2y7IvvMfvcVgRvGJMTXPoyYrHCmpRrKeIKZdDuy1xWtjUy752R/wyZv2M+ey9yxHQ9UU4WzmXn2mGAYxxn8zA7FY7Wi70fWl4aeA+enS276PdWoGacBZ06wPVzf7jGVpe5OyM0aZSN+3xNyZPYTdtrT+Ja2N0wqsve3PB5vuOAB1+oFY9izWFqyM3g/k9KADlvUdI4JCt1WqAdnVLeWbu3QzbcYX/4h2ndQLYD31qx07KgKi14JvJqKL0FMAZO465C04o4HoXVZuAoXwihNZSpSTvhxoM9etP51LYoQP+GDR+cW5RVOW1Tl5NwphltKKSG5HWFjLWNIlCAmQBnzFPRHqeK5lsk+ykIWEeg5xALrZjGv06WcKjJKQFSRR15KIZuiNRhZPo9TdrFGN+X7kcIgiErnvuDLd/JL4fHKczRWsdvektJT2qrlwelD8rai394yRU8gM2vFjCYWJ12VDDErqjwx0TKrJOMRCvXvCH5x/PUymkr6PVfJslmcnZ7w6YfP+OhJImYlG1oMTCGIo2nMOOdYtTUPzs7IdUVQYJIQpLPP6BBpm0rkvUlz/vgRrlMcDj/iwXrB69WS3mdc1XBxfs673UEWeGdRWuFDLLJURVM31N0CUyW6xYIw7KlNljwi5yRYrWS1GKfEaTYp2rYtluAVk59xNtydtxRJ6jiMWGO4QmGVwyexHj89FVdblTKKEuNgNHUrpmzzHBinGRsD02EmzAGjLTF7fAhkbQijeFuMfhLzviK/nqZA8kGs9euKuqkwtqJrHE3bStaKUez7/R3iV9cVN70oOZxV7KdIyuCKLUiMchINc0ChuTjt2AyB2UcWbUc/B1HSGCGLpiQFyv34Jv/EKCC/93++8bX65syHnCOqyHmVSuJjVRCAymoJuVPi4xFJxVSRYi1QiLNFiXNsCOT60aRxRFtHLmqxfFTPHZFNrSFqcpjviLaQSvNQuCplfCTjZyHuK2dhGpFoLkXWmeg92moyTuTfIZCCw5ko64qR9yi5SAwVdR05W52QlKEPmdRPgrYUuXTrLLX1ZVQnTy1EMZEUgz3FHATpOqJEqRD0FZKqrTJo7dDVCtcsyYgUeZ56FInlYsXoI1W7AG2Yhh2H269xVmOsw/sD+fCK9vLPsDy9RCvNfWjIf/34uS5SVm3N9nZgsI6z9oRnzzx/+NlXfPbqC4iRX/nFP0euHdfDnofLMy7PL9EKpjzy7nDL8xfXtLXl3dVrbt4pnjz7mDdvXtDUJ/SxR2VNzmLEXvuAfXlDTDLfrozDZEPKiRhmmTPHTNhtibsXjEpjzp6grGHabonDnpPVEhdvuY0eHQ2oBletIShOm0twFpqO8O4FMVwR24hVHTlFphRoTIXLDaZXxLohzyM6dXh/xfz2PwKe2kITFR4lVuSmom4WKCsMuDwqkhtRNnNQiVo3aO2Y9J6lMxzGAW0q1FixH0ZObUDZkdu4ZWEaqjGT2wO1F+jfpw3WZwyGtBswztAo8CkR5j21XaLrmmneY3SEEEgpMIaJaZxwdcKmFmMa8naHOn2GH2f0qgU9EBYj+3l3Pw5ANu5UJLBSoJSxCEe04rgry88oJUZKymjZy5UoGKwVkqa1tkDznkM/s+xEjjwMIy4nxr4nr06pVou7jZ3gyzxaYSpHnEu4mBLzuKyKT4qJdyurEGJLd6KQ2TP5Xu4Yy1JdCqo7ddBxMVa68FFySSQuRZEyKFehKlkAtRKnU5RCW0Py92MFZS1pnu/fG8qISN1/nVPEVY79IeBDQBvNu92GrT9gKkueYI6BGY3PkUjpAItV+JQDY54ZcmDOSV7r8bPhWKghpEAxbClz//vOeBpHxsMB6yztYo11laiSjC1mfKqEPor5ldUyjy/zQEIYMTmhMcV4LpeMkZbLi8dcOMu3vvUdfvjjr/j6+RWDn8TLxhxt7TXzNBVpqiABzhgq1+CcZvH0Ac7Z0gkntMCpbHcbyJngPV1Vs14sRTHjNJU2VNYwz4HKOoZpZppHeW9iYjqM9FpGJBrD5cMLEpqoBOoPMTDHwP7QF3J5xJafTUHOC+MMhEzdSC6RNpZxuyMWPomyVmTk80xX1Zwu17JhGlnX6kZkzXf+IuXzyjEyevGqaSvNbggcRpEsWyVdvMibIWdLt2hpq4o3m0k8VSrHGCJdbVCqZvBivX/8xO+Ak5963F/LP/3eTJxHEop69YD++go/HJiHnt04c/LwCdPY03ZrpnnG1o1khcGdouz+oYuYX2uSBqYBrSuyMaRRDPxyjihl5RzW6n7sHFNJSFZ3CCVhvi9OSqQHxgg/JyUpPlUSHkuKhWN7VBAaXCXJw6oSCwFjDCYanDJEbUi1qJMS4BPs+wmTBSU2pXmyZaRri+tzKuNdn5I4N2fwXkbDWr/H+yuNl1aKumlxRjP1t+yCgay4vX6Js4auW+KHHm0rUorsbt8w7t+gyMzzBBjM+S/SnH2Adc1/X0jKsmm5OH3AV9fPOfgtK3vKpw8/5svxOS/fbrHtj3n26CkPT5+Rc+Jmt+ds1fHw/GM++fjP8yvfG3h79ZLf/93/yB//6EfMOXF5eUk/zowhlchqRfQBPULTPsOpH4oZWgaisMbTNFCvLqmNY3r3GXOYsZ/+OWK/xStFf3NFzhWrRce713+MSZr5JlNXoJqatNeEaSSGGqsP3PYviHpkUZ3Rpx1BiTwwagMhkeeJhMzPR+2JocRuG0vMkZVZ4uOGbKB2DTqKoZvOiqYScysfIdYG5SuW7Sk+DNh1xX7fc1Gv0BGmMBAN7PWOL/xbftB9i3E/ouwb3sQtr6qBH+wHttYzpxE3V/jKw95jnMbjGTZbqotLdi++YB73YAwHvyHPM2mtSSqgYiK+3FJfLGnqJdPmKxQz49BzM79ljsMdaIBRpFgkqkXOd1xklFEokzBGFnWlxQrclL+t0QXi1aVrSlSuJkbPq1fXnKwWhHlmN4+SX1K3tE4Tt3sqY8ldXRbsUEbXAY1DV9JhJS98AIzBFAfS+x04H3lp0o2lSPATeRhLZ+ZLxyVOkTkpKXbivTpAGYvSjiMZV1lbZuigq0rGPNIu3o1OlFbk2XO/DRQib5JOUWbtxYm1SKmDl9GAUjDPXvg+xtPnAxElxFGQcU5GPD+K4R0xCnkvB2YCXhXpd7lm39sL7v+RRe0gQI7cWDcti/VJ8e8I6LrDVpUUhdqIMivfQ/S65AuFeUIZTZpHQdy0AVcV5VdEaYtzDdlZ6qbmz//S9wkx8sdffc1h8ry4vSkQtiBhOQqXxxSPCWsMy8WS09OWqqoBmcMbVxP9xOwHUpyJM9RVhTGWEAOEQL/bMWiE1KrBGUUympAiXVVR1Q1v9z1DmLlJnrZbYJXCjwPTPHE49ByGQeTB1tJ2DTmJTbnOlLwqS7VckFOi34/sDgfi7Km1RSnJbamUoms6chmNaWuIOdK2FdY6rLbM88hu6MWAbXcgA9OccE7jQ+IwSYGiCqQhJNxEazTG1Tw8WxGV4vow4awjZ+nKu6pCmZp4mBjG6b9QmHzzNHk/K1n9ib8VKWvGSUIlo8A67DZb6tW6jF5mVLNiOPRUTQOpuUNSpHhO5JKlhVZkDXno0SU0j3kWuMgcOV+q+KioYm52b/aWiytynkYxh7SFKK2NkOpzLn5FidBPxOBROmG0AYucs1mRpkGiJIwhIiGQSkl8giLjjCXFRLKRUNecLyIfPlgTU6IyVoIIoyojNClaVE4o5FqdS0xEPBKBj9ciUqwAdyKBatmgxxt2ux17L98zDHsuHjxCq8jeR7KumWJiv91wtPvPKeJOPsJdfB9TN/iQ/vsizl6cfEp90vBy/5b9GKjrxGqx5slTuLnecfVuQxoNwyFR1RWnyxP208hZBqcNrlnCySXDx99h3Z3ifWDeHTh7+JA2VZyuz4gh4A9b6mFkcfopLn5JDFt0VeFjYB57/DxTxZH+EOjnW+rFGfXJJWHs6ddn6JvXGGXIw4bbeQM5sa7OMKliNApbOdSsMO2CcXzDJlxhLTg0hxzwaWKTE6cpM4YJbGbevGSad/ThWiSMeuQNe85Vh8s1jRXpWe9HHp1dMm2vqPUSFWaUU+wtPAgNOlqUy0yMxBkCkYqKaZ6lIFoproe3DCbgkiPOgWHesBv21DrRpxFzmOjmBTORxAar4KACEwnre5ruKYP9EjUPjGEgBs/GBp7qhFUeU2fisGfc76iXhoO1NKcX8EIRtcaUkzqVqPtoiheKEmLbUeaqNdhK42qDdVbcZ63BOJk/m5I7Y7W40yqTaeoFTln2YWa7S3RNRc7g6pqcAvMQ8ENPOlkRQyD6SQyyrJXgvRRx2RJBuCjH/JnCTZFOTd+PeY4Qdk6oIB4s0U/gDXkcIArKoYyFbAoRVtQAShnuGKraFD8SK6Z2rpaFj8JjKVmF2cjzifOMdkJqk4VZkBix35ZnJTlDgSPJ11rDMA3004FVU7EPNfs5oG3GKY1KYLIIlTIalTWVUZgoXh7q6E5ZPFzed5s98grlhVFquXx3W90tOXnwhBAC/X6Hnyd0VWGP+Sr53mBPFct9Yyohux62zNNA8ok6GVynSxGUxLnW2vuMIKPpnONbH37A9b7n+tDjlJYNIYHKWXJ32o666WjbjuWylXGgc2ijsXWLMQ4/GU7PTxh2O5JPaFVhqobt9VtSTDg03k/004jPAqvnDItuQe1qnK5ojPjzXN3c4kNg2S7o+0EcgUPAaoOxNWEKGCsFeF05dF1jjfy7aWq2u57KVaSYMMXB11UOVxuMq/A+ijorJZq2pTKW4CcxZdOaIcLQj9xuduLymzImi8R/mBM+lLgIVc77UqhgDBdnHc4ovnq7ZZojDx50+ChcmjlCP/YcBlHF5YIcvH/cFybHf6u7f6v377ubUQLGMk8z436LnwZUQSzJmd3tLZgaUPh5ZDX3hNDdPfpR7E8uTs4olJ/RVS2I6DSXaAlTfI64d8kt6EkqBnjZKHGA9pEUIQVxoMYYyAEokv1i7KbLCClqpLmIiTwNZD+VZiajlEVrh2uXME/kOOCNhyAFtE2yjtauYt01HMYRqzUpQTgS0cvbnHK6651iQSRzTkLKLW8pKhfU0FAbJC9KQTVfc6I8bbNmO07o2tAtVmRmTHEKn+ceP25QyjDHGVuvsA9/GbtYk1JiGuf3xAJ/uuPnukhZdWtO647tx1t++NUfs/E7yIp1t2LcZTbvtuzTgcVqwRRmwgwXy1PevHnFPB6ompZMxceXH3JaOa63e169nPDjzNNHT1DOEnJkfXrKB9evMX/4v9LvrpkIrOqW7DNhHnFNgwqRMBwYw0R1umBcVqQvb6hf7ZgGUG3F1fg5k00sabCVg6qF2qG8JZqRFK549+73uYp7Ltwp4zCw9yPJKoKrWOdHjIeEVXsO8w3b+IZYRfTSMpE4jImH3kp37ytyHgkWsIZat2gtsdpqsHwnnuDaFpUVh7THaI/fT5yojuwzt3kADVHPXA07qmVL7COmUgzxltkllHHUuqabPXFKLJY1N+ENSiEeGloT0p549QbtKqbDllQ5FEqQoXFicJN4Cvg9av+ayjxApVvScMaie0icA9VcJHsl1l6hROKq5YI/Wqwba6nqiqqucK7CGFHjWCcdprEC2Vsj9vmoxDAE8jIz+Rky2EUrG6FSHLZbKqVoagkDyzGQppnsHGHymLolkwleCz/FlGKijAuOG/Ix+VS9t/QqpcUASmuYNLmqSE1N2u3IQTwStNLgnGQPlQ1NoGRXog0MqhLliLFCGsUasgpkH+5GP6auCMMkWSFlUTxKgo/Q9tFdUwzwPCFGFouO/eGAV4nz1ROS6hhvv0RphzOJEJWEhklMoSAKWmOzxiSFyfLnGGQoC+W96+xx3FTenDK6Kh+1MhhTk1VFd1IxHrbMwx7dLTFVLbEHqhRuRQINGdtU5Lxi8pHd7papn+jUGbZpCl8pUbuGnBImyWcT5xmrEh89OmOcR1IMGB2ZerG9r11F07QsF0varsU4Qbmsq7C2Fe5CkXMr61DG0LUtVdcQg8ckMf9brJfMoyJGGEPAx4hKGafEgycrWC9bBg951vT7A11di/19tnRty6Jd0rqGmCL7fscwDOV8Fn8aa8SQbLVYMeqJtlvgKjF2M9YAQoRUyuDjLO7BxRtHOYcKijl6Rj8z+cA4ijcOSgqaGBFFTpbr0aCprUarzBxg4eCkteynwO1BuByt0fisOfSe3TAwzrPId/8E/+R4ffwE4YS7y/+uKFE/sdFVbYu1MB9u8dOOGAOVM8zDQD97Hn70Xba3G/K0Zx4q8jLcyf+Vojyfe7QT7aQhiMJBRJVwUIEnhaiuIcUof1IU8muKgm5k5P3UZXxbXuIRwc13ppMyQjOmImqD8hM5KnIWok8KsWRWKbSW+AK0XGtKe7Iqo2MtgZdOG3QWtRFl7RFSrb5DK4/rUEiF01fWVG3knqMrudNgcsYBlTJYpXn0wcf8+KsXNMZwcnpBtzoHtSe/fU4KgwTWjhvmeUIpgz37LnnxEKUVMXimMP33VaS8uvqC7376fT59+G3mvOerF1f0PlDbmkcPHnO4PbDZ3XK6O+HTj55Jt6gy77Zb/Ozpupau7fBaE62hWZ3wSDnmYc8YJnycaZ0jjgeqP/iPDF/9HlMcqJoWbWrSMGNyoNaOMM8c5h2+0vDoI+ar12z377hoPmJWoJvE4WZTqtYKW62Y1cS0f44ZLtFTIE/XvIxXqGTw00S1POXgHB/lM+ykOfEdPg/06YZX4R1Bz9iVoyGx9A0Pw5oay0TmVksYmTaO6GVmvhtu6KolpBptO1LJHvJ+YNlpqnDC0lQc9hMeaG1LUoFtmjnJDVOYWTeafRx4mya+pU5QV4ZmslBV2A8e8m73R5xNkU0XGV3G9J7KDSzOP2a//4p6cSnjiimSThV11zLlBdlPuLQjuCfYccZurjB1y2Yfif0BuC9QuGPeU1AUg9EGZxyVaahcS1U5rDVYK4ZS1lmBsq3DWF3SfDUuVdzcbqQTHiYGK2F0TePQWkknpA0ET5oH1HINCCdGzTPaOXKImNoKEU7d+y4IdKoK+sF911iKDa002lZEW5HmiZQrknGkcRCfhCyuudpYVG1k8QtJNmQjSIpCFYO5DCqhk3A0QvKFB5LRxuJaQVg0wkvJoTiZFKVBSumu0DPFM2UYDtQps7xYk+0p1fIh/XjLdt6QdCf27VkVUqwuCbCSXFxjaLIWn5tS/JRyjfdlx+qugAMhTh5hZiETisDC0qzOmMcd42Enssumk8DEnNAcjbNEUaUqx+LBQ+rVGfvNNde3W5w9kJKnaVpALOiVspCyJJwHz8my4/JkwTBOTNNAYwxRa6qmpa5qmq6jslaKAWuASEoD1jRkhDNiTU3XnjKkLVXtSCVawdjIPE1Y11A5Q2sMt5tbXCveNDnMmKZiWTkaHOtFy7Dbs9vtOTk9pdMtClVC8TrCPJNVxBolPJTomcYJqorLp0/RykmBZBymkg0qhlQC3hIheuJsiEe+koYcRZ6/P/Rst1u2+wPz8TxBE0IiK2kMtAYtvmVYYwgx4xScLlvmCMMcyBi6WnG2WrC9GYgpip/O8TPmPerYN8Y56u6WezSl1A6l0/8pNYw8th/Y314zTRPOWcZBctNSSKRhI6m8Mbz36LnI5HOxKchSWKSIzhaFEaKvOhonGmKKxBjlMXNJOy+FCknI8CkjRZCRmAcpDoVInsc9mFZSk5UmWitS55zkMypWCSmKQ3TyMykFcXVNsTjDisxfCsfE0cDfaI2xUgCFUPLHUMV0r6yhqgSi5/dIsuVabJwhZyHX+iCKRR8T87DjzdyThoF5e0M0C558+CG5qhiUYuwPuGaPP2yJ8wGtwNUNWEdOM/M4CH9r2JaG6E9//GzWb8C//bf/lr/yV/4KT58+RSnFb/3Wb33j/pwz/+Af/AOePHlC27b82q/9Gj/84Q+/8T3X19f85m/+Juv1mtPTU/7W3/pb7Pf7n/Wp8OL1S5SzPH34i3z/0ff41qNnLJtTnOtwpuHjZ5/w0Qcf09ULNtuNwGHLUz55/B3mlPjhiy/40fMvefHmLTm3XF58i8tHj9GVhSjeGyln4suXqP/0Q7S1pNrRrFbkeSaEPZWpcDoRw5axhvb8nOrkMfWQOLn8HrnqUPXENL6iDx6bLednH2PtKbd+YoyBxp5gEWLURfuYy+aMB90FLY5P0gOqZNAqc6t3/JF7w+/wij+0N1yZkXqoeMgjHqUnnLqHBK35Mt9wlUZmrUlR8+b6NbNPTDoxNp63es8fqT07H/A60q0d1jiWqwfE5Ngz4VWmVo6v9YGN8zxyC1zQEAImwoNQ8TQvcSlTfXCCelhzyO94u79iO4hKRvJGEiolWmPptS9GWJk2GUzdoRcrtA5MYV8UCwk7n+P7G/rNLRyCMMKQi+yoBhDwXmbARkuooHM1lWuorCApzlV3hYm1VkY/xmBNhTOOxrasFishlyqFrgyb/QFTfEK8DwTvifMkOS+2EvluTGjjoMSzq7oiOxm9qMpJB2WtkFmtE4TF6Lvxz53bqha0wFUtrqqxVYOpG3TTopoGrJHNKGZAJLfaWkFqSoGiskJnfbfip5iKwuToMCtGWcY5TFXJc9AiB83FX4VCjpR5tTxO1zaM/UBTO9Lk2d5coww8On9Cpwwndcuq7lg3Laflz0ndcNI0rKuapanotKXSGsP7ne/7FMmj8+b9ApqPvjdRNgKFwiqLUYa6W1Mvz5mmicP2humwJ86zKKhyQuy6pQBxtqZuOk4eXnLxwYd0Jw9IpmHT7xn9yOxnvJ+JeSakCaM1XV3x6MEpi8rQORldaVdR1w3doqNpKpzTVLV8psY5qrrBOIfShrrpaBanuLZjeXpG5RoW61MWqxXL5ZJuseT8wWNOLi45OXvAxYMLFm2Hs47T0wecrFaAwk+RYRCC53q5FiSldtS1Y7fbsLm9FkfVaYCUsEbOpXaxplucChncWRbLNe2ik3PLVVJ8Vq54+QjvxmiDzqJa06X4CN5jtSHNAZWS+K+WjSUW70GrFSWnFO8j3kdWXU3XtewOI7fbkdpVPDlfAZMo7rSmrd17JQjfOBfU3dc//ZCy4psoy/Er6ypMt5ZrkoRWMmqcp5GLh4+Y97fUOaBSFLl0lNGmIIlyPaaieMkpyXVb/H2y1hIYiHiWBCUZRH72jPteghpnXxx7BUFWriCryhRuRiKFgJpGSFaQjigFkrZOrANCGR2lRAyBECK+nKd+8oRCVBZdWCZjQDnhW2UpILWxVLaSXJ0sJm0pZ5zREvtQHK1TKciAu6DPYwPho/i8SESC8GP6/cgfffmS/+13/5AXX71md3OFHw8YrQtqZdGxJ843aJWw1pAwJB8I/ZZp847x7Y/oX/x7cpr5WY6fGUk5HA782T/7Z/mbf/Nv8tf/+l//E/f/43/8j/ln/+yf8S/+xb/g008/5e///b/PX/pLf4nf+73fo2kaAH7zN3+Tly9f8m/+zb/Be8/f+Bt/g7/9t/82/+pf/auf6bnMMTJNExcnH8LFp1JZzq/obwKNa3jx7hXLuuWjJx+yPjnHe8/Xz7/ka/ucxiqeXHzI25sr3l2/Zj9G3mzekVMgzZ6koHIVC2Nx2x3tLhIKLKe1IymZrVlXCbTs9+jVOctHHxGvt4yHa8yiZXjzFcnVzIc92nWcNyec1ZeMfUB7iIeBkF6RbjeM1Y7BeG7Slu+qhq2/YplrtsOeSltuGHk9b3leD7Re0dkVZ/UZna8wOTDowKu44cdux6VacN4+og0tB3XL0A0c9iPPtxuu48CDpuVkvQCVqddrtjdvqOxMUpnog3Sp2rKp4HxoqLxjzInDMrPVFaHu+JyRT/PIbvMWP2RO1CMCHj1XVNriignStPd0T2smNTH6A04ZdLvAuYzevKZmQawCk49Ub6/Rjz4mvv09sp8Zh5nsy1KktFz0d8FfCqMt1liqqqauG1zlsM5SWYu2WtAU4ySPpESgi0OAIZEYpgPn7ZL9wXN+vuLq9RXzPJEmT/QRqzJ109Ktz6iahSxmPuAqOZdNVbggzorvQSFbCOJzdFXN76E/R+VRQYQ4utMa6RJLZLzYpnjSHAh+wDkpTrR15fGL5bw8BPc2/EeehpUdRN2/d9bq+wIvRVBHOXImZy/vqDbFv8WyXp9QWcuQNFFZ5hhYrE9pr1qquhEX2LvspGJ9j0YrgzOW2jicPr7+km+U9Te2IpXzHU+Hwg5IuXSHUXgnwh+RVlBXLcY6pv0t/WFPZSty3VK1DcYakhKCoOTBacChnMZpTVM7YjgjpMA8TYzDgFEJtJjC5ZjEfdlZ8E4QGpWxztF0rRCw78jXTpCYLO+31gprNLlyaL0ixwqFpMJmJe/pWilygKMAuV2v2d9cs73eME8z52cXNEtox4EQEt57xt2OqT8Qo+Ph5WPW6xN2+y1V09JUNRpRWuWsMLYm5kCMGec02jlBaTTEKNkxwQuJuqpqXE7s+x5thCNVWcM4JlxVse8H5iRIoC6tdypS8MQ9HUSRMTmxrB0nq4558my2B0LWrNcLTlrFm81EnD1KaxbWsDFiwf9N2P99aOS+EFHv33XkoN+xVI4/KqOQxcWjMrJIqBSZ+gPL9ZpFW5PHgaAS0Y8kbyS5HFVQDk2KnlRSxY2TZkRZJ+ObMJPmQPSBQGbyo3wmw07OL2sL39agYkJXTlLHC7eLGCUFOaZyXRpBGOaZFAJoJerQWd7vnAXREi6XJetISMWY0Acm75mCZ45BcrS0xkvqo8jhYyblWcZ4oYRaSsyx8IayuHPHYuVgigUBWb5/ChFntPDOEAsYTeR0scLPgxQ+08SLF1/znbOPOF13PDh9wKGfiX7CWoUxNcmsiXEmXf8hedrCfIsOQ2ko/vTHz1yk/Pqv/zq//uu//lPvyznzT//pP+Xv/b2/x1/9q38VgH/5L/8ljx494rd+67f4jd/4DX7/93+ff/2v/zX//t//e/7CX/gLAPzzf/7P+ct/+S/zT/7JP+Hp06d/6udSdQ3/6av/hRnPxfqch6cfsXsy8TtvP+PtzRtsbXl1c8UUPb/y/V/lyeMP6Psdh/2GYBzj9JL1esXlxWP2w0iYZ1CROQcO+5G2aVAxcjkHatcwM1DVcltKHm0qYgwc/MhWQWsTi1/6i+gvb1HVO3y/wSqNNmtutEXrBrRh3t8wq8BNfYupOp6xoD5T3IZb5v6AU5nkDG/nLfNcU2nYuJFNEtXJYoJfbC/4sLkUG/3DwEjkxbTndxc9S7XizyyecuLW1I3lITVbtWeTHK/jnmfTkk5b9sOB5apBPXhEvT8whQOm6njbJtaupZotH721uLSiWtXYj0743F/zcvOGKUx0bcUu9Ez7HVbVVDnT2prTVcvSGZTTRLJIhI2isY6mXbPPVzSmQXtN7Pe49QOshX7+muWpRvuIsqf44ZaQxGqbQpDN+b730hT5qSu+JnWFsVK0WGsKaiC+JUprzNF+XRW6XFIY43DWMg8TmxtFv++pVKa2lq7rWFaORWWoK3nMI/dEKYVpG3RVoUqmj8yq78c8SqkCT0sWyLEXvHNcLNwTsnRZOUcU4lCrjSFVFbqMuHI+esOU0UYsxY7WpXYTxYuuRKp7XN3fxy3uiieE5Y+SLiiHIGOfFLDGkkuYYVM7lEqE4HHWENNM02rx0qhqppxk1JOkWJEYAIG3xWfjHqg9BjBmLYnGxcdbrP/lO0TdVDrZnLJ07ymBEgKxUSUSQFua9RnzVDPt98SpJ2uoVSMFjS5mWVphbCVdaYaQNVGBVpnatThlRYkTJ2KUsYZweGqYA/uQOMwBWzuc1X9COZmPcLkPdzWn0grbNBjVlOes0aa6J3oiXWyMmaZd0zQnOPeW3WHDPI1CGD6/JBbS8XyyZre95u2rV3w9fc3F4yfYpmM4HLDOsViuWNoatKGqGyAzDQOKTBgHkjOkQvRUWYpCYx0pwjxH6rop8H8kzDPL2EGCLw+viCmhi9w/HAnS+b540CoLZ8tCVcn7vj30+CiZN7URttJuPxJ9pqss1hgaZ5iQSAOVjyPAcp4eq5JvgCr3VcqR2yEka/Xe+yp3iJUAzD6iXc3Fo8dCfjYQcsJoi4pBSupjsvnx3AyxkM8BY4k5oKLHzyPTcGCaBm5v3jLcvmPqD8zBo7IYKYYYcU4UX4vFiqZdlORfuZZU4asoHdE4TJZzQpBZL9lcWoqlOE8FMcl4Ej5FfJgZ+gPDNLIfBvqhxwcvhYaxUnQEj+CJGV88aEJKWKNJOaOVoqksSunCRykjtFJMJY5kbsnlUkpLIGQGVKJuNbuDGPvpHDE3N5y8+hGu7ZjmA7e318Q4UzlHyopx2hL7t7KuHLk/9n1m3p/u+G/KSfnss8949eoVv/Zrv3Z328nJCX/xL/5Ffvu3f5vf+I3f4Ld/+7c5PT29K1AAfu3Xfg2tNf/u3/07/tpf+2t/4nGnaWKaprt/b7dbANbrJfv5DV+9/AOq/AMWq46Hy0s++WTk//Mf/hOHTc/l+SOM1nz59WdU1vDh0494/uoryEJ2fP36JZcozk4v2I1b9vuBzWEjV2SMaO8J00Qs0atWVxhtMTnimord1HM7bAi2pnv4Eel2Ih8m7DQT50xfT7wefsgLc8XjUNNHTVQj03TgJFnqXjE0EXLPq7ilUw4VZ6Yw8jiumZjIjaVPPUllVq7iMQsu3QlNrlA+UZuWbAInquf7vuaZO2NhG+ZwQOGosmEbt7Q4foUT9m7ikGZ0rTmoCfY71mdPUGGk7z0fnXyITQr2A+35Be77T7ja/JhweEe4vsbe3lJhWa89bZo5BCFzqTwzGXFMbbLBG1DKE1UibQ+cL58RXQ0uc3Z+TrU8Z3j9hjQPmLNz4vWPUS5g3myITU0wihAnRn387N/bCBEPDEtBSpwVtUNR8XAsTgqxUvrXQmTNiWOwnXOK1VKM+ba7A9PYk5c1VePQQFvVLJYLqrorfiISCKecxdQNWUshlFJGZZEhpuBRMZOd2PnfzYOjJ0UvY5kQSNOI1uY+zycex1pitiSWqTKjJnrSEKVAyoUlUBYS4WZYlMrkKJuH1raogpQQO8v7R/lZpTTaHbcHWagJoHMsCcEODDTWMaMZyPg4o3VN23XUtobSrSWlSKkoPYqTpTmGCwKUiXnOkZQK4TXdQ8y5IErydy7pz7K4pygZScrI4kq+57FUVYdaaMb9hn6/IU49VbvAVZ3A/ub4mrO8t7MnzxPojDMVPgWmYZLASBLojFGa9XLJcOh5t++praKuLBrJTRFyjSz6PghxMSPeOLr4kogaQ85D4QUVL5tSZMuIRV63rVtc29H1e6bJU1lH1UnRIXLuhm61ZrE85fr2hqvrDZAwCuycSLbl8vIhy9VK/DZiwllLCJMYu6Wyjmm5PhwSIui9IWsxI4xxInnwPpC1kMjnWSSvOQvWl1CgMsYIehfLeV0ZqDU0VjGOE+PoCSGxqB0PVi2vb285jF7WhMrRTx5nhN+ClhTzbxR/+f5Uff9GhRBQ5Vy9o3bdHSklNtfXDP0obuG6YnV6Ui4hfxemOQ8DJsxI6nZ5hJyLOaOVfBmtJSctTAQS/eGGmzcvefPiC/bXb4lZYZqWlDXBH+j3e5HvK1fMIR0Pzi9Ynj+Q7KkohYKEb1q0deWaFAmeyqaMO+UaCEms46dp5LDfMo0HDoc94ziyOezZHQ7s+4HtMLHrR2KGx+cnglYqKTSmaRa+igQOidonJ0HFyBzd7u8bmVKoFG+cmARtqaxjnBP95NnuPTeHCessS1fTDxNXN1d8uFzTVE3hW2oqZ5jmGaM8VWNJSeJGxNbgZyPNwn/jIuXVq1cAPHr06Bu3P3r06O6+V69ecXl5+c0nYS3n5+d33/OTxz/6R/+If/gP/+GfuL2rTyAdeHnzNUTFx0++Q206ni6fEb9tefHia6y2VE46rC+ff8n29obHD59QNRU4Q9aJbb/hpt/ICCBmatWiK1nIGtuwipYqOFJr8IWTYJRjCiO7eU+uKmxlONHnTP/Lf0Iv1szbt7wZN1yfJb7T/QU+2rUcTM+0nRibTMDiDdxsr1mrt2g/EuPEtDakpNm5gclFeu0ZzcSoA94orDbMSZNyz62KVEHR6BY1zPigeGyWLEyD7eWEiExMWqFC5MBEcoreB3SnCCbS6JZ6N7BuP2T2GxbtGYPuCX7B8GhNe6HZvfyctL9hHTUmZl6GAAtLCmC8psEQyaToyZUBawk6kRqHUZY8R5gnbLPk6vpHpNCjVCZETaod0/SOtnlGtVwTpx3mekA/WTDv3zBMW0KKd+wpJQNZGfUA9pi2q47jHCW6WJU56nClUKGQ3wriUdJ1D9OWL1685Prmlm9/+hGh1oQUmIYRMLQPH1I3MmJQWpwWbSUQrwwUNGEY7lwoYwwCHfsAMWObhqPzbI6Bo/tkmuc7Qp1yRhxjg8z/BS1AFANezKByEP8UshDbcggQJBRMWysIUiMLRQy+IAoOjEUZKwiQvINlU5B5s1agfEFXtMNpQ9O0DP0oihBdkVTidtihG0vWS9p2gUqKCoePkVjg+aP66F5mnN/jmhz/JEF7VZbPtLjV5qMh1t2SKVlLWSXhC5HEXPE4wVJS5Niqpl2fc7i9Zr7ZUR8mqnbA2VpGY87IjH/2+GnC9wdwCl0nkh8wOYCSULVjkVQVA6zgZx6s1lRWyi2tlBRfSYksNyuiTmSVsarCKTkfVJHiomS0pbUp5GC5P+v7dGgpVByuWzCPMyFM1E1d3qsA2VI1im615uHTZ4ToGceBfhhKEaSwzqBIOFuhnMD3h13Ah5mcE66q0caI+aKXsY8yDqtU6ZwDWieauiGnzDCOGCWvN1LQIiUmd0f0SJQwwpUTpKXkWGVYNDXf+eCS1bLjR8/fEWJmWZJ6Jy8ohlGUzBp9j4j8545yp1JHhPIn7gApNKolwVX0Y099ekplMofthrZbkMumO409VTAYFNaK0jB5MbpUjRPeWwgoAvthw+H6iutXL7h9/ZxpmFBuIbEZ80S/7xmnSc5765imkbHvqV3F4XDgbBxZrNZYJHuqqsSjxlgnuUkoYtDEEGTUMo2E4nA9eU8/TmwOA7vNjmnqmf3M6AWBslXFUsm1/9WbG/7gy5cljwxiEkPArDQBCD5QV06amyQIo4Q63hd9gvBJVs8RzJpjoo6RbCz73cTiZM21OhAA0y44uTjnuz/4ZR6dP+TNu2u6rqMudgZs9+X3pWKjIOdGOpKafobj50Ld83f/7t/l7/ydv3P37+12y4cffojG0JoFr6ZX/PCrP6YyS85PT1Ex8eD0hJv9FfvDHqMcMSZ89Lx484I+DKxPzlg2S5Z1S1d3zCmy2x2I0XMYdgzzgcvlAxwJlSyxXpKu31JVtcRZ58B22vMuDYw58Oz0KXpMTDdX1CmSxsDD6gPWm2uqy4qbqHmu9zw/D1y5W6Za8S4dMGj+L7/wHdbPe/qDZqMGgoFUT6TOkFcduXFEowXCi5EwBlwER8QmcPRUPrOMNWfBMgZHO1va/YidpClxpqb1njFGtFM8n/ecuYplW9HZDhUit/OE2Q/ETqPXC1L/jmlM2HlJc/uCmGsqVdEoS+sdTVMzT4qkNdlplMosQwn0i5E0JGoqdKWJThNt4uubL6mnzKN+JE09VVdx++YLVr+8oLr8Dmb/hnzSsR1f8NXwgqglyAyPjAeSkEXFKrzIWwuBVTrZ44jnCB+Ln4p0XkayYlQuhUwipURVZYyG3XVP7RR+nvF9z7OLC4T/dr+QamdF2RMTU38oG2sizCPzMDD1e3H0JON9IHqPUVpi7MmkGAT+LIuWsw5XdyijySEUwyaRJ8cQxN/EWIwz4isRhfTnD3sJQKFsGNpg6gblKrLREoQXElkbrHPUyzVGW5rFEtu0om4prrXa2TKtSlglvh0xZsbJ07mED5ll3TApyXl5cPktrl59hsEQVSKqY1FYYHi4g+3vgPpSoNy5buYsbP97/P7uteQMOUpAXnQGRyUdZlRlrCWSXhkDgakU6uSU7TRxc/UObQ2Vc9RVg7WuhKUJUjDNPdqLhbnEzQcxvEMQrIRsvqqqUCguTtZYZQhBis4hhUJSNNR1g3H3yEjM9/4t4r+XC2clF2M5QQCh8BeUIikwyqCNEBhDlNckRGapyI728QAmV7i6ZbXyaCUbTQiBMPXo4AlBnFSruiINif1+x+Gwk1GoqchZyWssijOtxYtIwjhVkbpCUxmmWXKZtJLRqjTl8vNayWMoFamtpi5BnI1zfHT5gKcXp+zGScYgVjKOZh8KNypj41HrlXkP5+M4z3nfvK2cIXdjweN5dT/GBG20mONlhevWGO0YDgPRe3Ybcdvd3F4x7A60p+fikmstqjSdFGmwBkKYmPoth7dfM+wO2KRYnz9lDJ794cDhcGC32XPoB/FnmQNKJ5yzaGPxCbaHAT+/4uEj4bTlFInTiM+Rqm7RGXTlMJVl7gfmcSAFT5jlvBz8xGZ/4PW7K4bhwDSPMrJTyLXuFBZYOcsnTy449APjNDP6gA+KKUSSEpdZX0aSde3uXKwFIStD6KISykrOTlPGYDFnfIykpAlR8LSTZcsv/PKf5emn3yPrxMPHz3j98isO/YG6qslI4TtVnuATg+8JBT1Wx7XqZzz+mxYpjx8/BuD169c8efLk7vbXr1/zq7/6q3ff8+bNm2/8XAiB6+vru5//yaOua+q6/hO3vx0/46I946Ra8fXmNX/84segv4W2Cm8jH3/4bV68+po0R7IHVTX0/Y7N7Q3Pzh/RuYrr/Q3JWLyXzmO7u8FVIj8NaeZwmMnXb7DTgGk7wuwZw0icpfubU8ApxYP1U8LzLTodmL1hXp9zMJ6vxg1fmP87v/fwmtdm4ODEm2K9WtLWayyJP37q+T//z/8Tp6/f0V2/Zh8HYqXRTYWtLK6uSEC/OzD8f8n7k17L1vS+E/u93Wr33mefJk509+bNy5uZZDJFqmiqgSRaECEbFsoT2RpY8EQjCRDAgUb6AIQ+gUaaGBAMaGR4YANVUMEl1cSWSyVSIEhmMpnd7aKP0+yzm9W9nQfP2ifiJlMS0zAMJGpdRNwT50Tsbq31vs/zf/7N5BmGcU7alLnspBR9yGyU4gf7DrW/oxgzF6eWZZ8oBo06/ZCi35K+/BH9FCgnxXJREwZPsa7ZdXcsiyV3/ortmw3q5jVuVbI4uyBNDUMqMaomOs/COVxZYpYL9t2ebDOq0ByGgVgpqEtGIkFBNJ5DjLiYCOmGi6LgzvcEP+H3W3TtGIY98e0X1I+/iR56Yut4/urHPNdbHi1XOBVgI+dco2RUkN9xUvSMFKjZ9llGOsxwdb6HMY/EUm0UrrQUhSLkyK7fUy9bppQoUqZZNOxv7rAz8dAYOy8QUgSllMjTQJg8/WHDsN3RH/ZM3Z6+39OPg2x6RjEOwsz3w0jwIyZFlm3NxeOHLE6WOFuh1QZnRfZr7ByEMhNNtZnJeyqToyZO4ncSx4Gp65jGnnHsGX1g9IluGsUNVFv0nJZqXEFVN5yenNI2Le3ihOX5A+rViXCslKBCzEmrRVFC2srrIdGUC6wzFDbRHzb0rkXrmslv7wMCs8rIJ3zMYzmGP74jO0oRkoTX8BU3XoTHk98xaMI40h925MJBlcQHxlhBovSMWGAwWoMCU1SYh08Ik+ftyy/le1qLgZm14pQbIlOMxykY2hi0eZcuq+dFOprEvh+pnKVtKvrRs3v5Wub6OQqpvm6o6oaiKFBaY4tyzr4pKXLEWYszVjbTxBxVoAR9YEYnDHPm01yAGAUY4n2sw5z2jcikQZFiIEyjJINmL0hGSkSfGILIU4MPRAXOFljj2B9klGTdKOm5c/6YMeJYHGfJa8xSaBbOUNcV3SgigpxFhRXnEivDrKqT4jNkUDpTOUdtS56cn1Kaglf7W6YQsUYzjEKcLZ0TuXwhI440G4m9K0nejWDkOM4E7yk9/DTuIj9WFIWiaVv67Y5x8KSsmabANByIKdIPE34YaJoF7XKNNUZOTkqzyyuSpD7sCf0OUy6ockGqE9aP5KGXTdwWuLKi7jp6P5F2nYz0tGaxWBKCuBtnrdnt9oTkicFR6rnIVuIia5wlBC+FYpAE6+BHgp/ouz373QY/jYQg47eEnKMpSKjpEYlTynCyOqGNgaHvOQwTh2HAz+NSpTSDTzgHzEVmyu+UknkuflISqwA982jIx2DCyLJtIMK3v/NtfuO3/iYozd3tNYe7HV988ZLbuy0ZhSsqiqLgcm0YyprtoeYwdHT9npzCPQ/o5zn+f1qkfPzxxzx69Ih/82/+zX1Rst1u+ff//t/zj//xPwbgr/21v8Zms+H3f//3+c3f/E0A/u2//beklPirf/Wv/lzPt+/eUtvElPcondjsb/n0y89YrVuGOPFo8Ziz9Sm3txtGP3I4HGiLhvXJCT958Rlff/KhQGujZ5omhqnn5nDNWp9ytnxAaRRLDIvNTyj8REDhtGbrRzb7DVHBoDxnRUPtam53b/BxYAyKPzK3/HfmC75f7FhUSy4vzvhg/ZTSCiHr/PwBKUdO2xPqwrAvIg9/6QPOLxsWuw25FvhezWmjAP16ZL8/4CePNo6yLFE542OgG3re3twxpcheKXbs+J4+oGxEG09ObyiWFc0H8Cg2/Eos0TuwGEk4tQ+ZUsfYQD5A05a8tB0XzjHEgbI6xUZHZzeY0pFniNmnBCETtMfZmrdF5DJPvFE9J1PPRVGSu0Hm1n3A6prOTgSVKPyAyQ2+CAyvf8Ri9Zi8+pBp+hw9TTyg4eHXvsZnr38CzPqRrGTkM1uEHRU7ZjZoM0bfG6kdN8d85DjMqIdWml9+8Mv8yqOP2YeOL96+5Vn/nFevd1yuV5BG/CSBbUKCFTm6MZppGEhDN8e8gx8OdPsNh9tZGRYjpXWE5On2O6a+Y3t9w3ZzR9/1FIXj/HRFYRGrbhRxFOOppqlxzmLVbDanNbZsUEXJNBzu3VtjCAxdx9jLnPpw6NgNA7t+5DBO9JMQQZu65GS1ol2sKGuHVQmrEjl07K9f4fs9ZXuCa1psWcM8gmgXC15++Yx+6Fk8ddxlj7IltrLst1f427e0WLphgNIR81GVIzJNNfdoVmWSElRJEKzj+fjqRnOfD/MeAfJme8urq1ectEuWwVO6kqIs0K6c82EUOokKTc8bfVFYHn74NTKJNy+ecbe7ZT9O3E2R635i7yOHfqC0CnLkfH3COE2s2xqjNR9cnnF5skSZzP5uy3rZ0o8Dn+335BCoCstidUJdNcSY2d3tsLOt+jRNaGtZLFvKoqCsaqq6pm0aCltIMnPWKJvJPiHyUWZH0XfsHTKonGY5rJiF+TBKYnKW6xCEXD2NHTlFymZBuTohDj3dfo9xVvw3UkQZaJZL/DQx+VGUa7PXhtYGZR2FE/Kn1poUI23bMo2eaZTrnxDmIEhRTSWtMFZB9NgZZYxJUTpLUxiK0tGNIwaojGbvo2QrkamMImhpFFJKxDSPBu+PI9nkaF7IV6cD79W17z4yRYwT3dvnkq6cM13fk+LI9vYWawz9ODCOnrqsadolVbucC0ghtCtrxHCsH0nTxDROYn44I7NaORprqBZLxq6nGXoWi5GuP7CoK6a5mNN6ViAi4XrOSEipKP3AFGIuaWbOElEzRRkB+2liGOVcD33HYb8lhgFSlNT0IIVJWzjKciF2+TMSFLKYyC2rhtU0sd3vuTscOExBggkj+BBJ2c0E9NkOf/4YU37nqaJQc6yHhA/2StBBayy7bmR72HN785a3V1c8vXxCUxiaqkSbgqZqIWVC7sku0FQlISbGsZ/Hj/9/QFL2+z0/+tGP7v/86aef8gd/8AecnZ3xta99jX/yT/4J/+yf/TO++c1v3kuQnzx5wt/9u38XgG9/+9v8nb/zd/iH//Af8i/+xb/Ae8/v/M7v8Pf//t//uZQ9AGEUeLPUFaUeORxGroY3xHzO+cmazXbLuj2nrgf2+53kFaTIzg+MIfLs6oplu6Q0FUVTUDiZ7SeVySVMeEpdYuyCnA8UqaCLHdvDFmsMSUVu0kA7KdxhwKXMJk/80G/5l+YzPs0jF+en/MZf+FXWdXPfWYWcqKuWzc0rtsOBURWMmy3po69x+fABBZFgg+TzTAIPJxLkRFG8g0lTlEyfEAJj8Oynjv3QMYSIqgxV6cQ91BlUzPQ6wZMln2fNVC2orjoe61PeTj1nDz/g7u0N5sWeF2cHPoqwbFvGzYFyMpi0oHCOQ7EXqVwKmKhwk8HYmps4MbUlYxE5vN1gTzOlT4TuQAyerD13tmNVtoRxR0aUJTFJnkicIiYEYnPJMP4RpMCjasV0t8HMPiA5zbkX81xaK8lxMUaIinrmAEjnN0PGSWD8HPNM7k3UpuLXHn5IbQ3r6pzLcsG5z7x9+YdEP/Lm1SvG/R3qyVO0NRJshzx2t9+SUsC4GSqeBpyBZlHfy2VlLBWZFgtxIV7WdPsF+91OAuVUot/dkH0PWXhQxsJQllRFRWktRVlSLVagvXiGhEn2ixTpdhuGYWQcDvR9z6EfOQw9wXtKDXVlaBdr1qdnrE7PqJslRbOkrJe4usEUhXgzaIPvd3g/Uq1OMa5EKcmFSUox5cSUAqgOZx3JBIrCQz/gs2ZKXtwxmX0bcoI0W/mrJGmz5Psi5N3xvuyYdwXKsbMDXt9c86dffMbD9RmPLy9piopmLCmqUiSiWhENZKMx1qBUELQsKc4fPqZsW27fvuHF9Rv+33/yE27HxPnDJ7y8+oy2qSisJXrNfj9RLlc4V/Hf/Ifv8+R0xSdPHvBqe2Db9YzRY3PkpCqp1iuqqsSWhaAPBPyxmJgVSP0YmaZBfIlG4SY1bUPhKnGGTZDTTOqdzbKOBoCZLBLfEIizrXsIwkGJZMl4AUIUMzlX1sJl8ImgR6qyoraWMM0jH63EtG321lA54ocg1uQxk1TAmEB0GldIzINxjrZt0NpSlRVv375ls9vfv9YIIo+V3EWss4QoXimLUszAdtsdbbvgcn3C2dUNdzc7iqogpIxRQr+KWTFh7u/jP3scq5N3iMosnOOY1/T+9dPdvKHbdQQf0cqhtWV385Zp6JlyJmsZBy0Wp9TNAuvc7BdyHEPKKDcOib7v8d2AKyr0jGzqWWWW50KBGPHjQBgnckw4I8iUsWLOp61F24KyqObmKlFbS6VlFOkKK7y2mW829T3d4cB2u+dmd8uLV6/o+x6SENn7cUShqWtHW5U0TUsxc42OvkIhBkJMTN7TVgXLuuR23/Hm0BNjmmXNCatn/2f1rkCUfFYpjo0190VuSpl+DPTdQF059ts9b19d8/bNK97ebjhpWsZpoHCzH5XKGK0IwF038PbmRkaQQjD7uY3c4P+LIuX3fu/3+O3f/u37Px+5Iv/gH/wD/uW//Jf803/6TzkcDvyjf/SP2Gw2/NZv/Rb/+l//63uPFIB/9a/+Fb/zO7/D3/7bfxutNX/v7/09/vk//+c/94uPPmJTyaq4wK5qXuTXvLnZkK4NfkisFys6c0ucIlVZc+iu0WhOmiWryw+43twxTYFoB4KPOOt4cvZYouOtxZIodeLkf/Vfc/js/4H6wffo9jvaqhTSUxpJKePQTIctm7Th39mX/Lduw4/VgDMFHz95yLpe0ig7w5uR6Cd225HoI+sHj1lUK8bNa3784x/SpcDl6gRDkIVpZnpnRELmrGEKgdvthskLi3vX9+x2e4YQwVraupAk11kJE0OgrRv8NKEU+BwYomb4oOYuBQ7DLWvVc6kzJ9/4kP2d49OXr/mN/ERksslJDL0z0uVpxUAmT5ku9pw8OOfDs1Nu/Ib6qqfaL6lXllpL3ofPHmuh7D2mqKhcI+RJY8GesL78GDMocpxQKjH1d4QY6Lyi3BtMeG9qnWb6QxbI31pH4QrsbAudoiziJiuOPoziR5QhgjaJsjCY/pZ06OHkFHA0Di6bktubK7abDZVRVHU5hxHOJEdkIeuvr2WBsIbgB4yz1KqV4knPm3TOlM4ymYzRAZUHdB4YOkkW9sOeqd+TQiYHcZWdmpq0bMlVCUSMsagURY7MrHKbevpuLyOecWDoR/w4wTRRKCiLkmaxYLE4oVm0lK7AGStz5pykK9biPmvrBluVJKXxQy/Kk3KOEyhKdEgsmnOs0fRakRlh6rBK0fcbhjygkkJlLQqQDIqARmPysTyZ83hmmF6EjjPacvTpPo6C3oP6Y4YxRG52G1KaWC6XtFVN09eUrrjPZSqs+L8oLUTcFBIhZeqypPrgAxanK65C5n/4w+/z/POfkIHgI3GCPN5x0lasbcHFsuaTv/JrTCFx6HuGKTDFyDTBctHSrlaUVUtRLajbFowhZSXcmRiYhpEcPNYUKDIxZIY43hdnqlHoUiIMUFJMHcePkTjbpWdSioQo4ZMphfvwtzh5Ys4zSVq8cmwthY9CclikSxePjhQDyY+YYJjGEa/l2rTGosp6LoqER3a0co8hCCpZOJxztHVNXVW4l8+4vjugg7xXn+UztlYz+SiNQOnISjGlRER4LVEl2roi5h0pZwxAkk0w5kxhLSHme0REHfG1Y3DlPagir1HiL8xPFSiwu7vm9Ysv6IdRzMesYTjsiOOsUFLS4JycntPWC6qmxRXunvtjjHgQTX3PcHNFmsTtu6gKUaT1Azlmhv2OfntHv9sTlJEC8jBw2IkNf4iRZrngZL2iVBqrI0ZlGQtaR12WlBnKqhI0WitSH4gxMA4j27s7nj37ks9fvWBMaUaNEl03sj8MojbcHlhUJYt6T1WW2NlA0s0W/DZnslY0VTV/Shof0yxRFnM+M/PqUv6zqKZWCjt7/owhUTqLDfOgTye+9bXHbF6/5MsvX4BWfPnsFeM4Sgq3jpB7wjQKLWKa6IeenPz9ff1+2fnnPX7uIuVv/a2/9Z+FbJRS/O7v/i6/+7u/+5/8O2dnZz+3cdvPOiY/8ba7Jo4v2O32TCPURuSRi7olBM+r13usKnj2+hkpBM5PLiArXFlxeqHpu47dfo9KClcUdOPAqmk5X53j80TlO8J//J/gy+8Tpx7bluiEqCuUhGJGldj4Df+D+oL/++KKz8jEbDhpa87Xp6A0Y4yEqac73OGqltXpA9rqhDhN7KY3tFXD2Aeef/Ep6fIxZ6sKXVjZJI/oAdI5amsZJ8/r6zu60ZPQlM2Sy7qirRuM0rNpk8Y5x3DYM3QHyaGImcIYclaEaBlz4OJbf4nXP/kjrsyWJ6cLxl3EjAl9yECBLzLYDG3BfspEpzERDuPE6vwxtrVsX31BtqBCoEieNlq0Pwg5VWUsCTtMbONImQxBT4RCobZ3NJ98i7C5IZEwJotSJis2/ZYPlx9SFmaWDJv7jUzMs5yYuNW1bA5H2Wo4ciGOs1axnM4qoWNmPx348Xe/y/a/+/cUn5zz5H/z22LGlibGacCHkTx4UpxmPwV1n29jtDDr/bAXcUoKmLJEuzmwLkbi2NF3ew53d/R7MeOahj1+GogxzI83W4CgUJbZOjrjS0HAlJ4JrYUoLmLyhNDjp44Qxnl2HaQzMhZTO+GNzAtWTp5hvyFOA67c42qRUQdboqsa7ao5tK/EVa0kOc+IhzFS/JkiUdVLptST80Do9ly/+ILHF0/Z7t/Su4lSG7S25KzJWTq0LDMLxPlzfo/q6NByXBSlUxYEZV47eLeANW0r44UoEfIhZ15cvSbHQFstWNYtdVFQOU1VCe9EGyVOwSFgiwJbt7Rlxd/8zrf5+sUFt9s9GfG6scCycqzqCmeNSIiNIitNPw64wvCnXzxDK81iseLB5SPW6zV1LWMcUxRgHEoJKTSGwDj0TNPEOA74/kCKnskH+nHCFCWmcKBl3KhIZG1FCTTzQRRi659n/CllJPfFaPn3xmCMmyWsoh6KShK33fEaze84QmiH0hnjErXWFEVJrKXjnrwX5CnP44LoMSphjAMipEBZGOpKTOwyzxnGiXi3Z/TiYio8DCk4rLHEEIla/HZUTjgnDs8pI6o4KzJYi5nRYJHm3qtMOI7+eA9pE67Q6HtefvbHGOuoFyeo7Al+QNsFzz/7HGUNOidcuSDFWwieom4pVDFnE400J2c4oKoaKe5mh1a0+PWMux2+H1E546yek8onxv2Ot5/9hMI6mtNLYrlkc3vLfr+l60cGn7HKopXl+vUNN2+vefTBE05PTtBqhLIWcjXgjIRkaleIoVyIRB/wk+ew23F9e8vtoSNpccE+HEa2mx0mBC7PznkwO7lrJdjuNI2Ew4gfdgxjhystTdvMGV5iT9BWFX0I7O69gL46bFUziif8FjWjKIJ4VEZRaktpNE1bsd3f8fx6YL/vaJqKq7dXhBBnErki+Mh+t6ef1ZGlK/FBRATHIuWnJ3j/peMXQt3znzosBQpPzIHClhJNvr0lnhgW7ZLL5RmLMvLy6hW7uy1D19FtDyhlSEZmp9pq1ivReVd1Swhi3zwkj1EQp8D4k58Qug5dliILJBNjRjtoR8VtG2imG56pjjsDSjsKbVi1LZUrGIaB/eaa17fXDNFjlyv0m7csLJwvWjSWhXU4pSgKx83NhrK4oFLg5k5Rz9H0IYGdFRvWVayqBVVVUhelWFlnLR13P+G9Z4yR/SBGdVkbDJnh9sDYTygl3dI2f5foI1sGrp9/j8UG/FnFTb8nHHoWznGiaxpVcTm2BDXAakldren6gcPLz3Fa05mIahX1YAXJkOAVihke7X1A2YIyJyYCZWWYbm9xu3MW7QK/v0G3DzAmsFjVDP3EwXe4pkLgXiM+KAqauuJyveDBxTmr5ZKyloC1nAMhhLlLkBwOHSWxN+WI0ontYcuLrGlLy9v/15+y2Vzz0d/8G1wuMlebEVxN9B5bOHRZCyl3hgOMs5Amxu0NthCvlBjmzmG35fr5M+6u7vCpoFmegjbsDoZDb+k7mLoRw8SyNjRNJfNpY3GVo3COqm5pTh/Qrs4p6hW2qkkpkqcDeurJ+RgfoSR7A01SAuXuN3u6XU+KCusqjC0oy4KqkrwZpTJnp2uW55dUp+e4xYJsHEUzUa4thtlFVyuapuT1ZsPbNy84vazYb96wvX7Fwid8f81m9xqzWuAss/eBeDCIRwoc3UgVx6/nL7jnic7v4lisvPsOQM6R5ckSnT3b/kDynkePHnPT7fni1QtKZVjULU1VcLpoWTYVWin6rkNraBdLGQGWNWVZ8I0Pv84Ukhh6uQIVMzHMjp8pCo9XyeZemMhJ03C6WlJbWfTrpqUoKlHg+DAXO4LgJCXKl3rZsC7XxGmg226JSd2bdU1TwNiJ0omiS9Q0GrRBKSEsphhnBYRggO8AA0nyzlnUKwTISoZpyirMPGpSGHQM5BgliTcmUkSKZ5XRovv9agDmLPcIcWIK45yDpGekUqGxnJ2fMQbP3d0OHzPDdDcnX4uKqO/9LG9W6LqSNF3vcVXJ5ANWv8vr8UHUPpV1jCFQFsVXPU/y/W/3bz8DRdVydvkRn/7Jf+Dmj/89YdwTpwPJLnn6rb/MsikZU2CzuYPoKYqSQme8N+gc0K5AKSGF1wvhc6BE0ZSB5CPEJKaPRqTIfhyY9luef/+7nD76GrFd88c//BHf+94f82ZzyxQlcboyikVhOWkXWFcRuo7Pf/IF+aMPOF2tMK6gKCtyBlvVaFugQoIQyT6QfMQPA4fdljebW7bDJIGsPnBzs6MMkadPPqBanXI7el5tX0kOl7UYjewb2qJczc1uy03Xc7ZeztyYhDGatiyJMQo3av5cU3pXlHDvHaUIUYIUC6txanacVYrHjx/yehfop0iIiaubLQopPpUyFMqJpF6bWa6fcVXJrvNMTPfP8fPv87/Ax+3tjgfrxywWK7IrOKkmXjVXvH5zw37fsTu/48NHD3j4aC2VZ1TshoFDd+B0nFifnsuCoRTLxQJjSkKK9ENHPw0UxqKmgO4mbGFIUeGUfGS2UGTt2WdPnxOXBtZIZ7RoK6y2uLlL2txd8fL1Cw4TLJ885M0wcre5pTzsWJWaRXvCRVOxqhtOT1rcomEYvZgvWeFcWO1EfkpCz4oTV1iMcdSuwCiN94muP7Db7Ljb7jj4iU7Bi26gP+wpUmLZNpgUJJ02eXyOmPohxhQsF5quu6N/EPijqzserJb8xarlKUvcmCEYlKtZLR6Rzy959cPvshoyalKMyhNV5GRRU1pHy5w4rBNTjuihB5+JC03cBrxx6MoShzv01JHKBn94i7ldo5FY9SYbYhiwdY0ylnZ9wWlZ0lQll+sljy7WnJ2vKdsCZRJTHNiOt+zHO0LyQkJUiPoiyUgCk4Atr23Jb/zaN2hcz+HmLbff+2Ns09A4w4spwugZx/H+JlZKkzWoIInDMUvScDQJP+x59ZNPefnFW7yuGY3j5eYt4/MrNrd37IeOqij58HTJ1x+doRBi5nBzYLWqcKV4ZdSLlnq5oDq9oLx4SlUvcUVFVjDtbol+7tJjJmlPQNx437y85uZmT8gaV7XYZoHSJbaoWboKtVjQ1A1qCnz24hn62XM+/MY3OLl8RNE2RB/AlbhmIfP5jJD+lGbXdTSHBNuecLVlvVjz8uoKtMWqBVaXs9z2nSW+VlaclpWaCxUpYuQDVO8pNI4LlpKxw1EfCVxcPuCX/+KvY9KE8T1j73nz6i1T37FcLnl5veH1rqO0hnVVsaxLdlOP0oYPVi1uDtd02mErMXcLeaSyJUXTkHwgeU1gIExR1AxaiRw1RIoMVSGqwqQsh2EUhGkSvkHYzqPiJOTx/eEgY5YUGWNEFxWrRUvjLHVZUBWOsB+IraIxFq1n3xWtZ2VUlsSEOUdGazWrpQzBH430BemJyjONg3BVcsa4ElfVImWfnXqtysKiSkDS9wodSCiVZysFOUcxeZGzq2o2HhQlWQ6BjKKoSk7PzshKsTscWDQVcQj4lFAxCJk2BLK1c46WE6Kl0wxJVEdGi9pI+Xks4iy6sOLxcjRp+8/01wpYnT/m1//af83Q7di8+YLd9WuSKgTVConx0HN49RIOHVY5/NjjygLtI6vzS6ZxlAGbtrMqTYpjrQ0+jKRpQOUkTuJZEKdnn32BW5zwerfnf/x3v8/n2xFVnnDjQDUNi8fnPLo84aPH59x9+SX7L59RaMU0JN4+e4F6HFBWmo9Si3LLZMiTRFJIiGAiTSO7/ZZ9PzKFgEHjR4+JiZOmYnO4Y4iecrVg7wO7/chqtaJZljSFY3my5u75MyIaP07c3B2oq2J2ls2UhaVJpZDNOSKas23/0YNKqVnaL7J6xUymVZoYFb6P3O0CWjmMCYRxIgVPSoZhHNCmkM9XSaMTUiSGKI+Jeu88/3zHL3SR8vr2ClNmVictYOgPiYvFGZfLJ3z2/DlfvHzGzfaabzz5kKoqMLni/PSS/dSzXp3gbEFVSN7LUaaaMkzeSz+hFdo68uIc7XYioQqZYRiIMRF0IobMWz3xatjiYuJEGcxJg8YyhkC/3XK4uuZ0ecEvf/wxZ9/6Oj/48gu++PIN/Y9+yIOzmnTylPZsRdzecAiJRYYxQzFr1C2WwihwLXkcydN+vsDFSGoaPTmODL1Ag3e7A9txwi5rTFXTHzydO6fbveXRoxU5jrhqQd0UXH/xErW546StKRsLsabTPe1pw3cPt/zy6oT9dYffjlRn5+zrzKurZzzIPXf9DlMtUduANVBqI063SmRvBZasBNUYxp6pgDGNuOA5GMepH0k+oiIEVTHd3lG0HhUsF6vHHHLFq2mLSpKo+fVPPuFsteD8pOVyveT0tKVZNJjCEEns+x1sMuNtx3gYxNsCuWFSMJikQQl5eas6puUHlKsV/rDBjYliWfH4ouH7X/6YRVlKZ4XMzJXRszdLIoeAcQ4fB9Luih9990/40Q9eY5qa63Hg5jDy3ZfXjFPAdx3aaWxdk60hhcBZoTi/WKPUgn7s5jBLkdGWy1PK9oR6cULVnojsVklWTBg9Uz8w+EhgoO89z758y+ZuR9YFnXL8yZev2fZfcuh2NG1LWVc8PVvx4fmax5cXPL68JI0jP/n8S56kxIMnH1C7muRHcphglvorBXHoWZ2uGQ4D3asbLg89ufP0NrC4OMNVC6yenWAVItFWGqMtTjucshhmZ9zZrI05u+foGnt//NTKpXMkTh1F4aiahtWJ4/LpBbdXG378/R9TlQWbBIP3TGlP25as2prnVxtudOZk0UoIpNPYskBlTZwOVPWaQmeCGLoSZwlvCJNwWmIiDBN+8lKIFRUhZ/b9KIVUDOKT0fXcHno2u4O4cQ4TripBKU6WZ2z7t5y1Jael44NHDzhfn1AWRizGjUVbUYGpOR5AJcnGSTEcYScyRgiPKc0JTzANBw7dnldvr3lzu+XtzQ13uz1F1eBWD1hVmrPlgvWy4eKkpTQSUVBVtXiByCROfE6UhOsZZSh1jQlzuOOcE5Ozn/kgiaIoqOuGoqyoyokxCpcKoHEao5WkPFtDXdcolURKO06URkFM7PY9i0UtBVOMWGcgh3vE7aePfP/7XNJmsYCvl6fUizWPPhbS8ugnvvju7zFe3ZD3A7kPLJuW2LTcbd/ibEndLCTTqCgkpFO6l3uVUZomUpyEw4xcq1M/sNsf2G43PNsFfvW3fpvqLnN+csL/9f/yf+b73/8j1md/nSkp2vUldbvkrmyYPn/GghFUZOgHppljlWJivL7FrS/ItQgh0jBKDEgMTNMkHKYkHBxQFGXBdhp58sETvHKsHjxiev2SH3z3+5xfPuR/+Ut/GZ8NTz/+iCWZz350oBsl4uBotq2UxRlom5KpTzPB/z1TPDW7JefZdwkpnnVKWCtjRKMNr19v6LLFulKKlyTp2DEmhnHCGAmVBAgps+96IcoqZn7kz7jR/xzHL3SRUlSG275jHwbOlydgLV/cvKK1K6q2QSnL9u6W7/3pT/jwyQdc9a/p+4EUFYt6ya998zs8PjujKR3GOaJSZK9Q2pKyzGzr1ZL1X/kb+P/wgjyNaCLZZEpb0sfIISeuwsjL/o6tiTx99IDlk0uuN3vuDh3eR4p2wcnpOcvSUUV42JYM6Yb11865eLRme/Ydnpy1TK9e0d2+pmhKYc0TyUqIjM5ZsinRQ0/2E94HpsEzEfHKEseJsRs47DoOw0DR1jy4uGQ/eb7+YMX2bsA1Z3zr0Tnbbo87fciyrnER7u62VKsKkz2eJMFlMRJV5r/vn/G/Lk6pisDObPh0+yXBec7VyF0xcXA9v6IcmshWJxa6wOqMjRldaFRhMKPCR09NzTh1xOjJVlG0J8QiEb3GaQvZs3/+A1SMVBe/ypA/p337Y57dblkul/yF73ybs5OG81XN6XrBsqlm/oZhSpHbw5ZoIlMYGcOEDyMhBKJSxKgxaLJxKByDmuhby8WDrxN3G9YPPyAvF2Rb8/TkGf0YZ+tq6S60Ei+DsN+jElhXMox7Xn3xnFcv7ihcwb6PLBdnnD9a8bob6WLGPFhIkq6r+a9+7dssDDz/kx9y94PPefzkARcPH5LjSLU8wZYLbLPCtitcs6BoFqDtvZ9BUbVU7Qmu7yFvSUk20cFvMYuSs8dP8NuJwW/JhSHXFdtk+NVHH9G0iv/4h98jxD/kO9/4Bh8+umQ/BOq7Pa5qiVHQhJyka6+riqYsKFWkLkqe/+BL+jfPufgrv0l1YSgWDq0sKgkBEyUmUEYb7Bww6JS5Dynj6IGSjxbn89hn1pi+25Dm/2dxI9VWTNWy0mgND58+YnGy5LPPnkuKQAy8fv6MVVuhETO63k/cdQfQFpTCWfFuUNELkTJF2QSyGKzZ0jHFkW67J4VA8BO7Qwe2oCoLjNEYk+m7Hc9evuHF1TXX+4EpwHqx4uvf/jUOncRplIXlerOjqlsuHjyidorF+SXoiUAijD3FWFEWJYUD0OSZCxPHQM6iqhASbRZDPkClQBw7tjcb3u46WF7w9Y9+FffsBa9/79/x5vUb6t3En+7uMErO34N1y0cPzzhtGxZVxWq1pG7aeS0BVRSSDK6c8FOU+G8QxGcl5YyaVRlKKUF0rXgG+RiFzzJzogor4XpD1+FPlizbimHs2fZBPGG0kHvHyaOtI+WMPRLh57P+/njnfd7CV1G34zcFucsK0tAxvH5F7npKLGpxxt3dFd1wIBJZrlviOGJtMTeedn6I+dqLAWbLeFEECrLRb+/QacRpx6//5n/Fk+/8Cl/+hx/w7PkXXF+9ZX16RnVyTnlyIfLybmJ9ckZ6GEi7A8PdNScXFyyWS+HuzOVYjInovUiKvRCCnbEzwV1iB8ZpxPtMP05cnJ/y4Ycf4O9G3t7est3uWJ2c8PVPvsmBglVhUNNEHkYeLht89GzHgTJqcUGeE9grZXG1nIfKCpqn0nH8k3FaUp9VzjilcNqQtSQsayL7KZKLkjF4/Djh5vc0+ZGUBzlndUNpDGVh2HX53orfWk3ycSbX/8+Ik7Je1GRj2e0GUplxlSOqPVeHG3QqcNlxcfKAfuh4fX3Dxfk5lW24ur7m7dvXfN8VjOnrPMyJpi4pXAGqELJi1GQt8zx9N2CyFA2BhEfyMAIy7+1QfK4Tp+WaJx89YfHggjh8RkHNcrVCjZG6LGm1pkLTLB/yYLWgSiN9WfLh06cs44BfnaH7A027pKkLOfFaTKlUSsTxjuhHYoaQpNPygxe/ltstYfAMPqCdY71csKobyiJRcaB8dDLHfw8kW3F5dgb9gYerUx6vz6jrGnzkTmv6foupG3SteNNf86ne4tLIy9vn+DzwwemaSlWMSQyaKtNiTSQxEnKiVx5GR1Yem2UEtgsDy+aMKXe02hKJxOwxMWBebiguz7EqM4zX1KePWFw8IWeL37xhd3fH8kHNr3zr65yc1KwWNaeLhrZwcmPNxOS6qUk54KPH5yAd4eFOukMSOSgYJZ9l0pHr7sAvn12i/DdZ/dJ32G+v4faWDx884MfPXxOjjCpSiGircUWBOT1FF5aYI3m3I8SaR4+foLTB1adUy1NShgfrU37y5jXdOFAay0cXD/jlR08wk+fRtxRv37xh7HsK5Vg+fkR7UtOuTqjaFeViQbFcYspGyI8pohSEQkykmtUJi6knYdluDqzbNa5qqHLm25cnfDd5wqqAouFRe8K3Pv6IZQiUH2s2+x37Q+TlixsexTWrZcCHSKvNV7xlrNW0bUXsDxSLUz745U+YFgaePMYV12htyOloU5/R86hHKY22Qii380hDHzkqR8VGvqenfMXALb/H/h8PHa8++4LLJ494/PQjcpoIKaCSoagqApk31xt+5aOn5HAppmaTEDoPY+Bq16F0gbJWxokqSizCLPnEe7E/zyKZtEoRp8B+u0OpxHb0lE3LalFRWc3QdWw3G3SIfHB+yTc/WGCMo3A1rqzoTEWlNPVyybe+tsBqh+93nBjDSVKoLCPjfUiM40RegNzcIp8/cgdSRAju6ZgnY3BGoydBcKps+ODkIamoSCkxNQs+evyU4eyUfpx4sGxwMdGWJT71PH/2iiujOF0t+ODJQ840uOJU5KLWyUatkQI+S3ev5RIgp2PeCwhcL9y4kGCKmZAThbaUhaNyDhOjhAf2PSfLil03sh+necSiKGaDO5Qi3xNu3417vkqYlT/PT/0VTtP9oUBnKKqas7M1ty9f40nooqSvFrIhWiEMp3FCF6XIfo+b8azukRGFjNi0OwbwZfADDy4u+eTiCblZEm62fK1t+L2Xb/j4k1/GVg2Vs3x4vmZpYBwH0maLCgGswZ2tOT2/AC3xE8QE5YIcE3kMs5BB7hGnLYWxGK1wGsYp4RTUywUuBK5+/CMeP3rKkOHi0WPOHz2laFuMH/j6ww/g7g4mT0qK1lkOkyRemzkOw1pxXy6tZgqRpioodMeQJRtMH0lhM3G+tIZKG/Z+FNKzPAhOW7rJz6qdObxw9m/qUi8Gp1biE5yzhBkls1YTVBY/mZ9zn/+FLlJykVk1JTEkdocDT+olHz94yuhhu/W8ePmGfbacrE642+/Jb244Pzvn6cMPGMJEUoEXdy/YxR1nzSlnizNcWaK0Fc8IPVI1Cwr3Cp874jQxRDFCMs5K0mYW8543J5GzasXFao0qLKu2whnHxeqE2A0URUPjody+5fL8KcW3f4suRFYXj3hU1eh9ZptHlk3BsqqpC0XMkq+hcgSfwHt0zhTZYkYFGOI0EDVMY8KHRKHlpl3XNWUGWztyXBOnLaqwWFvyzYvHXLQtfcyYEsbeY7IFIot6idZBJNjKEbznf3x9ywd5gm7iMTUfqRXaZR7rBWu1wFU13u8obcXr0FGguKoip85xZh1j4eimEULPrR5pYwajyXVNilfEfk8aDpi6QBGwTsPLDXUuSH2P05G6KvjwyQNOTmqWTc2iFJm1MMYVVYw4Z4k54ZMnpJGMB5U4DIdZPaHAQ7LgTeRmOGDOnrBqvo1uF4yf/4j9Zz9C2Yb1opTHnsleSktnb6slpSsJWXNqalaXHxOGAZ0CKJGlxinw4PSEb3/4SGay5HsL7mgS6/MVq/Mlpq6ZUmR5vpYCpakxVTOTGzUYLdeiNugcsXVF0TbUBJrhwNh1/NKv/hJf/3bBsNljVObjp0/4GwHu9h3JGB6cnXGxOmHZtPCd76AKQ32yAKPpNxuU73G2wBWljB5mtr9SUJUlbuhIPnHy5BEBz2fs8XkP1FIEKPtOuaPmxf7IR1FzHh/3dFjuiUK8j5+8l+0jsAtGKxarE1CGYRiolwtMEuXFj754zk+evUXFSFOWnH/8EbvNhu31DQDXh5GUFXVZUVcF9qBIfkRpTUoeooxVJJVWgU/kKaCzOHR2aeK6H/ilx47SaUrjWKzPeXR+iXUFzpVk7QgRQsgSVwB8M59R1A2LtsESSWFFmhJp8mAX0pUmDynPJFnhS2Wl7rt5UibNadBKCQGxLAtSCtSn5zQYYhQb83HqaVvLo1/7CyhXYssSwkjsezDCExjGjmka8GNH9BOHzQZLhqokFo66bnBlgVIZqxUhzknj926kYsImY6dIjB4fgoQWzqfUWktbV2Q/CX9rHue8vt3Sj4GqMNROiMYxSxqzTzLizFOUguC4pvMOMznWJEf1z/tIy/EnqIx1BYvFCfp0Dbd33Bw6mrIixYB2wo0b5uRjbWbSsn43cjwq+Jy2qLIAMsFPLFdnuGqJqyqytoQ48bH2nH54ymfFN9jstjxqHOdvXtHv7gh3W3zXizuwNbTnJ2K1oGeeFhqdMip6chk4UpMVIq0ubUFhjKwXRuN9wFrJ+hnHyPL2hr90fs7eFOxDollUPHlwwSJHdsMBlWZb/RgpjUbnJCnnWlNoI6Z9CQqlWNYlpbPkfiQihGGtxJpAIxlxWov1vjKWpirocxKEZ5qAJCqxKc3jIQUkkSMnyQ1y1lAVlsJauaZSZBwnrt5e/c8HSUk5oYxivao47D27w4HLtha2uFPU6wWv3rzl5tUeFeFqGPjs+ZdcXJxz+eihzOyLkjgFnm0/JZ5PrBYnFGVJ2yyoTYEeO7rv/xB9s2NSSQhg2hJTxMxyLrwYpqUHFeftik0caKqGwmQenp4y5huUc1ilafcTVfqSZbPG1AtUf0vevCD6QO0jpV2QxwmKgkopmnm+rzO4qiDrkeQzlUkwDdRFydNf+RZf/umP2D9/g9UVzjXocaSuSyrd8ujyKcp+RN0sJF8CzXAYGFWNyQNEz0Ti9PSUslO0jaGoC+mccuIPb6/pHrT89u4h61xSx5qrdCOcgzFjsqWPmgn44XRD6i1DXaPx5JgJOeCRDcCbREPBDkjjgGJkiBPNeINWCVfAFAbciw2TdqSiYDN0OLvi7KRlsahoSkc5u3jKUqoxOaOM5iKvGf3AMO0Ypz39tGOIPdEHEhJKOE6eAsXeenotpnWHZ5/Rv31FqQ0XiwasnhflSPBRuCw5iMMthtX5Q04unxBDpN/eMW43EEZS9ASdKXWFH5ntrqN4Q0xBeA1WxlM4w8nFQ5rFQub9xkqUvNLv1C45CtxuRLaojaNsWk4uLtHasb25YTzsWZ7UFEWDwXCRM369RDlL2TS4pqFarqhXa+qTE6qmRB3tyWc5vXJO/CLm0bFSUGiNDZ40jrjCEhcnbKZrkokkE1EmCFqSzX2eo1YyVjNKCXTNew2wko3hK/1wPhYq6d3GOH9Pa+m40zRh/Qhh5Ieffs71buK8bPnk6UNO25YURlZVTWobHp1IBx1SYBh6DntLDhE3c1ui94AS/lmKEhY4TkzDQM4ZUzm+fH3D6+2ex2OgcRXrxZKqLOcsHTO/Wg2FAjtzcjAoZXBGPFzKoiDEKKGGY08iEdJExTCPUTIqp3vH0xQTKYhFACFhrcUaR8izbT2WlAPkiLaOwlVUCyOmbBls2ci16Sx+GDBWMxz2QBAb9CTqihQ8mYyzjrJwgg4aKdpSRjhD+aj6QXKoIoxTxPskqkaEw5Dnc0pKFG4epRwlrRnebDtiToxRcYgKc7RfjwmdEXNNL0qR4yFU6/xeLftT3CV+elwgMuj69CGp+ILlYkGImrppaZqKQ39gjAlXtuhC46xEXQhHQp5XFD0Ws1yjncIPHcY6Th4+EolyghAVfuooXeDCVpyoC/aN47C9Y7i9EksBpYiFI8SMLh26aUmmoDAlhRIUScsFLk3IzM8iZgxGwj2NoZxztfYhMfYDpoZgLZuhQ+0srXWclRVNmtBvX3Kz2XDoOvqhJ2bx1Sr0nGxmNGVV4aygNFobQjY0dcWiKrjtRolhgDkpGSprKbRG5TijjJrJWIbkudlsGbxwljiuFe+VlkqJ4mu5WMi4PHpWTU1VExg6jQAA/wFJREFUOEpXEKPiy2fPhX/z5zx+oYsUkjDfNUCZuQ1bzKGkrmsWC9gdoCkbduOBqRuJMbBctJyenXNyckZRFaScOF2u8aFhyB0MkSq1+DxwZz0mRh7fbiB5YcUb4QiYLDBdGzSnvWE0kaGMrJ8+pHv+OXVhKdqWDx8+pFcQsmJCEzCokIibA3mzheyJWZNtjS5aYtwxTQd0NCwrw6qusUgHkjM466iWmvMHp1zvDzjT0N2+ZfvFC+rekVtDEQw2Gca9J0x76oXCOcc4RSblSCj6fse+uyEkWCxWYrKkNEXTcrI8py4LpjDSFJau2/KnP/yM7ekZi7eag5n4nr8ih0iqKx4rQ8Yx5YltHimTsPtz8sSYiWMguCwkRm3wJlNqQ6EUvQqoEEiHLUl3+NShO0fstmjTsNQNZRZIvCodpbPiiaHVXP0DyLlAQRMrThdLbpsFN5XDOkXWgcBEyJopaaoopLCDG0hVTTaGcbdj8hO2qqguztFlyX7bCYPdBVK0lHVN0bZoY0XRkBKMI2XdEA97huuXpNCTSaiU0WEi9RNqHBm9FGzJWKhaypM1xekp1XpFU1RU98moYk+ek4TdqZlsqlCYukYXBZZMXYO+KDDNit31LcP1G6brl5R1Rblc0a5WZG2xRYmrK1xhcEahcyCnAquteCnkDNbJTng8chKkYZxkZj6OmLokFiUmOxq7lEwhpVFY9CzHNbMRlNF6Vo7oe+m2+umd5n55O5q45TmlWn52s73jj773XQrrWFQNjx49pCktP/7iDc46vv3wnI8+/BBnFcEPohxBpKQnyxXj1ONHz+RHjAHvPbYoxT9IKQEtZp8K3/WQM1FlXmy3fHq9oYsZpzQuaUzKmCiyY0EXMkrFuRuPEm5pnJAPZx+UFL2ESeqMKR2QyENAZ4XVYNWcQxVnUmyIM5M3YbJIgFWW8UMEkkkkjCBzyaOyFDIohTUWnb0UeiFiVYQ4UZpj+KRCq1ryj4AYPPceJfPIgyyFUoxJ6uJ7DpEgXSHn2dU0khX4lHHOQBIExjlDzhGdI8Yohmnkbhjn+yTTTaIysXOcRGMUKWa8l5BP5Db+yojnnqc0c2J+Zved51yjsqSsWwpbsVw43IMLosk8+/wzdIyotiBmQSbs/DmoGepLIYuLMYkQB+FglCVGO9LYkW0jI5BcQVbst1t8nMhhxKqEqoRjo3Qk60xRL6jXF9TtkqIqqAtLZQsKbSkSWCeGeVIIziZ+Su6RwmiqohCyuZbRjJ7jPpzR+GlkSIEURvpuB/PnmxS40tJHyYCScd6cKWVk5C7nW5LcK2tY1g5nNSpmrFK0s9fQsqrROnHbSahh3dYMpmI/JfpxYpgkINXZAmfBKEVROtqmZnWyYn1ywvl6RVOW5DhhEVv9pDTDJDLon+f4hS5SbnZ7NmFApUCpS7a7xM31l3y0fsDjkwd8uDDUXrHRjqmF3WEn8JlSzG0DPo/cHq5oXSMhVPSMYUBNmSHu8P3E17qXnGkJM9PGEocBaxUuSlLkg2Tp94Fpe4euGlZtSZwGzk9PefToIX30DFNiP43sp0RSFTo3KKsJycsilRP73Q3gOVmtWWg4aVZUzko3riChiKaAwtKc1py/3DH1Hq0iHzx8yvRyR2llFKGyw2ghtB7urgROPnYMtiAHydwp6yXaK6qmhn3Hct1ydnqOJmAnICW+/sEHfPnmFf/T7S3/28Ul482OJYbKtkJwXFhMKECNGC+W9C5pdGHnBVJTKMOQA9FPDFjyBF71TNljNGgdGYYNQxjQuqTJHpM9OicqJzJXZw3WzGnHWqyb380SlBCMraEsLGUh3iAxTfgUmHIQ34psCEkW5HUZsGWFUpqyaTGuxCwWVBdn5KwYDhM+TITosaYBbcnMnaYyGDeblwVPuVgRx3O6t18y7u8I00j2HrImKYuul+i6RZc1pqyxi5bqRFC7Us9ZPUj2h3LmPvDsnkSojczTlVyDrlQoIwnKRb1gW9TsXz0jdrd0hy9Eul5W5HoBbQvtEsaeNKyIK2FTle0CZS2ZyDSN8hrmsUsMYYahrRQrZcUEVGVDtpAxJH0kH+qZkyLEWaPMfcrv/Wag3sH2R7KsFCbH0ULiHSMFLs8f8Je/9avsdx3D2HH96g2f7veElHn68AFPHl1SVIUYjamZO9Q0rE6WFJ3FT46pGGf+i2bf9RR1Q1H0FCGKiCJEsvcCQ/uRL9++5XvPXvJ237Nqa9ZW4HmT8zukSGsQQ2G0hhQzhABGkTTE7NG2IGpFNpCV8B9ijvixRxMprUGrPBNPA3G2ws9RnseaeVnOCU0WMnJZyPx/KkhTkM8ric25MoGsA0QjacVZvFky8hwWJ7lWWgL1rLbzSCnNSMz8K80jnRnhEUBLk3MkxowP4hbMnJ5dOovTklPjfaAwGhMT1hhG7xl9pCwcPmbGkLFGMcVIPQemTj7NHlDHAuR9EvVXy9qfLlCOA8M0B3G6usEtl4SqgTxiqhJ3tsRPI2/uNsSmYLe5ojQlzr7b9nKOM5F7xgPChO5GspUoDF20ZFuI3b4rKbQTT6u6om9Kurs7+sOB6CfQjqZucVWDsSVVU7CsC2xWFFacn22M6NJhikKK1pk8fERtrTI0RYGJCaM1ReEANftlWaw1czCmnpuZjEmJHAMhjKChbSohRM/GnwqJ3lBZ3J8l7FqxKByFlmT5yihqA9on9G7PRVtRFgWf3mxJiyUHH/EZ6qYh64G6aXj6+CmPTs8pnTQjdV1R1zWuUDSFxWpNoQQKHLxniAn09GeQsf/S8QtdpCzMCWMIHHygsIaVcwwhMfawerDivIk8ala83U1cHQacNfSh46a7IZjIKq8oq4Ku3zH2BypXYKwTRGWM2AxpGxjv9hTLmrpac3e9wccMJIY4cacCOUfaZEiHPeGwo65aenvg7PSUZVVia0nt8zGzmzriKIFtmlo2ozgR/IRxjkXRcGoc62pJvbggO4uPnsM40U2jyCPHgf1uJGknZmBFwZOnLdspUkYNVUUsCpytyRoCHp97olLYqqBqV4zbO0xMuFyQug6tIicPznj45DFWe6Y5J8QqxaKqeXpxxg82z3lRnfLEOh7qFVuVmcaAWhqUzox+4GASQVtymq28U0FKGqMdGyZMzsQAGMXU7xhCT6pKclKSbWMjRRkJKhGHDmwizSFm5j7lWN+7tgLzpqfunWHFf4IZEZiIwZNCwicZERIlW2dfTkTE5MwUBYWrMGXN6vIBedfTNQeZ508DdixxthQfDVvM1uT63ok2x0jOD3BtS+j3+KEnBJERMo9wlJmDx8oKd7KmqioZl2gNBojyXrUt7pVF95B3zlKkGEOeJgkftAZrFK6qqaqatqrobq/xfsDvN/h+zzTcYA8HTNtRnQYqErat71UuIMoL4dwAWazZc0wc3rzAZYVyFhZLBi2ZMclEspLcJJAFXkzc5PzoGdk6ng91/O/+a8hf+R3ebUOygp0tVnz97JLYBg53O/bjniufmFTibNHirMzumY3QtK2gNITGS4GYDdaJwdswTPSj53Z7R4wTlZ3HWlFm7Hf7ns/f3PD96w0vDwNDynzt4pRlWc2zeUm/JiUKlcXx9Zi3oxQpWxLCH0rvIXyZJNEM0ZO7HSZ5QR3m001K9y7QJCDMVWlOszQYdJJUaYyhKEuSs+Ryth9IMiKSiksyp7Weq3Zj5441Y61DG+ENhJjFtTqKaiNm8YZJSE5Luld4achWrPljlvsnBEKSkU/hLG1VsmxrfJDX0i4W1GRiSnxxdUs/RRo7NwtGLPhRiKmc1qxq4Sy8uT3MV8DPKE/Uu2sC3o0Cj9/SczI5lSY1NZXRhCCFVtE2rC8fMuXMQWf2x/RhO5OVUyQnUFqsAeI4glfQLHEYObcpkqaR1I9MPkjEwDThx4nkI7ZsqAtx+RaOixL0snAs1ktWdUU+9GhToEPEWoMqJc7AZw9KzsM0TjIWVsIfQSl0VkQUEWbfnFmNZo0YJhIlZiUnospoZ1iUkgiv59FOVrI+BSX8lOTnnCIFjbNUzhCijFo1mTxNKJ9oG8e6aTC153/3v/+7fNnt+fJ2w/PXt3gfWJ+c8Oj8lEUxy5FVpqpKjLLEKJEOaItn5k/F2WAz/XS5+V8+fqGLlEdnF7StY+gFTu/HkSUWnUv6KWCLhqKCB7qkblZoZ3ixe8Wm37O73XPdveVifYpWGh97tIaqLmmKGmPBM5GsZn3+lOJ2IESZJQZA+8yt9Wys52wyXJqCL6bAtNvRniyo65bTswtKBaPJGALGiO58GAL4iEkjKEUI4hVQOUvlJ+psqB99jRHL3asv2Dz/nO76Fj9NokmvK7qU6bOlLU4wFCwuF5w+/Rovfv8PyCGj4xFCDrTLGreqmNJEuTpBVzVjBh/3hGkPU0/VLnjywQe0y4qhuyHPzpU5SZT6ul1RVa/5g/6Ws/YMv4V+2GOKkmHsiDky5MgiWQkTCwldW6JWBIWQp+KBOimMtYyVRekFWC3zbJXoYiAbRZETPu3RxZqJyJj3KHV635HfH/c6Vjh25UqrOWvHoHE4KlxyjD6h0+yFE0SdcHu3Y9N5zi5WVGenlFdLuq7HHwasLajrmqnv6LXGuZJUNaQYMElSfkE6a1fVkCMqB2JhiXVFDP5eZphmtYYqCpR12GZJ2bQURgyTOBp6OUm3ZV5YZEF+n3mqMK4gTRPKCGxrEHTFLEuqqqJdLRn2O/x4fp+e7eoCXcrYR6UsKajMz5OzjBa0mQsj5sA1hc3gdwfc6QqA4CzKRLIGdEabhMoGiV+R16oyHOU86mjjOhdzzIs4SmSOX12ujmwE+bnRUBYGT2a5qnFeU5aW3g80tUOriErhWGNJiq0ytO0KomcYOxkB5kxIiaotyCqx2W2FXOi9oAcxcxgmxhjxKTNFkUx+cLqmKgpBpABilBwTJ+F18tBKUAXrhOysNSFJEJ9SWQzjkif6Dksg5oi+944BQiJGP3NRRFlDjMJ4yeIQa9Azj0GUPmgrSFZWswOtoC/Jz7LqFCEnjFGYPBcFes6xykr8Z+65P3IZ30cTJCG15qRJSUuRpRQxZ6Yo3JEYEjFlysLx4GwNQPIdTekkL4xM9JEvb3ZM87VflA7rNOPoJWtJa0EGjLk/3/ek2Ptber72M+/d48cC9901c7w9stgMixN3GAVhsE7UcO2SFEdslifISQjKZDDGkryXgjEptGuQ6K1MGnrU0GNdCa5EKYO1Bb70hDLggxf34fkcxJhQxlDVJYv1isXqBD3ziRgnTExQlVJIhihp7lHC947hfxpRmmWlRXGGeI4oZ0Eb8fXRiqRETWetxcLMw5JgMw1S5Mz3XVIJlSbSHEQ4f3Izv1LS4dMcj6ByorSK0irGqadZLvjWX/h1fv3BQ549/5z/+Mffw0cZ+xAjIUwM0yQIj84YY+aGTRFMwCgl1ziKlDKTf5dn9ec9fqGLFFfVFAtLdpFwN6EmQ+8npmmizCXr5TmYhCVxWhZk67BNweu7V+z7LaPveX01UBYObRNaZwIVIfaUtWFhGk4efgvzf/xfYP9P/w3hR9/FeyEnRQX9FMBkHqiGfU6ocWJ7dcXpw0e0zcTJ+gnKH9AqYFRE49E2YmsrEkOka1FGYVFYoixIcSK/fcvdmyt++P0/pB9HAgrrCgq02GsvS2rV4IeJu5dvyfGC9be/zcX/4a9y1+/Zvdlixp4qZVZ2h775FH3wmP4AYaJMGfTI6YM1bXHJyZPHtKcnpGmPDkHg4uCJIZAjVLbk4ekZr/trnrkFHxQVh35LLsDgMKXFDG9IlSU3JXfTQNKwGfb4NHFWrUnjgE2Q8RRDxI8bfBho1IqUwSsjqEkONMFTrC2bbo8xM8Htp7gN+diJz2ssGbQyOFvQuAWr8oyz8pKu8Khpw5AigYhPYkW9GzY8u73jG4/OKS8uebBYcvXDH3DzxZdUj56KBbmGcRBvFz90KC08DhMLMO/GTs5a0hzcJkuAnrkkAW0VpmrQzqGsxRWV8AjkTaHUsUvKZCUjOWH9y/FuQ1do4zBFRXIC9eaQUMZRoKGscEVFtT5lOuwYuz3MXb2rSrRzskBH8WYwhSVPcd4kZgB9LpIK6yidk/usqEjGokyBM9I1HRm29zUJ7yl87pEUscvWs4vq8df8Vo4TH44MTPnkpCN11lKUFdokUllQ5hVLAn7qyUxYNY809PxvlBa5bt2ysoZy2BKmET95tLGcn5/StA3jOHJ9teH29Ru6rqdyjilHrLNkJcVD4SwfrJYURtR1GrEd18rKCAxgVkTkGEVy6hzKyIaRQyKrgIoewiQckiR2bHp+DiW7ilzFIclGmZPIzfNsHhLFLU1GTAodBWHhPdJqyiKdxWmIEjaoUhKr/3kcopTEQhwdVtWxMImZLAQUQepQXyn8cxYzw2Po4RQ8vReC7dPLCy7Oz7m5uWG1bDk9XTEehnlcFLntJ7KCsrAkMt0wYq2lLO0sO5Zkd63fbUHv39nH39VP/Sx/5e+9/7cVuV6g20YQoxzRKIy2FK6gZC4AbHGv1lMRyWBLCVKSBPP5Gsy+x8ZE1HNxYjQ5BrTKaD+hZyl7Dp6s9ey3U1CUpZB2ywoTo4ykNWgfSErN68VxnNuDNqQYpGg+ZusgaBtKE8kyGmRGO1NmnCaylRRlNVebOUvz4ZyjMEZ4k9oQUyTkJI9Dvv+7zCNSq2abABRaZUqraI2lLS0hJPYkriePvb3hsy+/oN/e0a5WTETuDgcRRsTA+XpFjIlxHACRMRdWeGryVjQ+RXw88s7+/McvdJHyyeVvEPQdb/xPKOpAtSi4vR3otnc8u33NaXvKx08eg9P4kGmdYm2W2AXcaEc/7Smdw1pF7QpKa6CQ+Z+rLYuyYn2mOf13f4J7/QJiT5c7tnhWwUBSrFNBqTSHmFkMmvjihvxJz3p1yqIsMapn8eCSctEQ3j5nP3UkrYkUUsynIAWKlnwOlzK5KokvXvHyD/6YH/oNGsW6aSkXJSYodOmwiwvqxSmLxQNuPvuM55//gKub/xv1x19HL5YU2bLOG4rdAb+7Zuh6DoeeZA0kjSscl4+e0DhFYRRNXaD9QAgjaZrIXpAA8VbxWON48uAR9JH/+NkrPqo/Ydk15EmQkClPdDGzCyN36cCgFP04onNgQLrWPvec+hIMVAHwUsErU5KyQ1NRLFaUwZCCxxcTUzdiK9kWjvv/n8l/OG6SM//AuZJls+B8eUZ3csAPgSIbhkkQtzF0ZOfJRvHi7XPUr/8yWEN9uebx6QX7N8+43W3pe09VFUzjgeGwxajZKrxsyHWN0pqoDcqZmbg7j520xRQG5cqZQ+Ik80eJSsdoOzuwSsctb0EQB2OtLKTWCelh3jg0mawtpqylOJsd5rMPgEYpi9UWbQqsK3Fti9tsmKYBphEVEyZk4aegIWR0AlUURO9F+qvebWQ6QxpGXOEwTUtvDQaLUwGFIykpnO5D8ObzwJwRJOcpz7Lm+cUC78iY96yU+/cvRlLyfkWyKJuytpVsICpRVQU5jzJYP25Zat5syeKymcEWkjicknS5pyfSZftxoCotD87WXGnNqzcbvth37BLsJnF3XRWOtmnvCZb3C/u8PaqZVKo00uHeIxpZXhaZGCIpTLNxnJjaGyNEU6Uy+EhWQUx4Y5Ri5/i4xwI1HpEnGQ9pKWUlkTyL2Zqe+T85JzCyIaR7sqyC48QR4c+II4uoi2RaJsjCcetQM8qVsierJFyaGAghMo6BfvQ0TcXjy3NWbc1+o1ifLNAKhnHEOsMXb+84jEGCMbOkgasAcR4VWSv3AUqkyO8Ca786/PvpAuX4+n7WJqeUQi8WqNUS0yxEeWkkwsCVBVWaWC7a+0RwSTUP82hrbniyxBkIkFhA6bAxkfxEjhNmmsQTxFgxDjQJlJMXa6AwGqcVTish62akUQlpLkD0PWppioLoJDlaJSGqp9nCXs88Psw8BlQyntZJo62ZYZNIYk6F1rJnVc5ROFEQZSXXPikSjgq6nGfDPhnrke8vLzJQGU3tLKUxmMIxEjkkx/W2g2HPizevqBcN1mr8HJTqU2DZlpTWiI4sJUKKjBNMGiENF2LPH7wnxvBnCUb/heMXukg5WZ1hbMO6bFEKdsM1jyrPmitev9myGzw+KrQxTGES2B04jD3d2DGmgUH1VLkgG022mqwCWz+RU0b3npPDDeYPB/z2S+6YuB0HgoJgDHc68TjWtBRsGKmiZrrasPn8S775l/46pVHY9kTGPG3FZVtTbG7Y7veMIXI0TnKzSZJyltJaVucP6F5veTlOhCJjgiIpWVxwltOPv8Hpr/w61kfy7pb24QXucMfrzz5junrFttuyenDCXbLi5VBaIlpmmxHKlDk7WdEuGuqqYXVxSblYEPwg0CPiDJhiIvnA5CeqoqIsa8aLjs+/eMFt6Pml0yf0+55tN0gYH4o8eu7iDteuscYQcqQwFbkq6MeI05qQhLg4zTLunEUmaYxhCANNcYIhU6xb7KahsSdywr/Sib9bwhSyUQq0LQm+Vd2yXJ6wXu0ZhxEVM53aM6SOwUaSmccRccJnyRXBGIq6oYmePkW6z+9YLBPZD/T7LcY6chqwbSbkeG9upawVuFkBIaBTFESkKEU2PM/Ac8pzqrUiM8PzWtw/M9JtGOvQrpjdUmVryrP6AmUxdSMbUpzE10PbWRqrSEo8FbSRIEn7oMQe9ng/QPLkccKgZBGvG5JPmBmRMcYQEfJkzhkdE3masHWFWrR0CukokdCyhCLOnBDI3NuMZ30/ZvrKcdx18nvfyPmeB3PfDc/nM6aI954YvHTbhUM7SSrWpibPG13OMyKZBT1IPpKjvw+Lg4w2zD+DqRvoDz1KwUnTsGsGrq63bP1cACiNdY6iKmQExtFH4/jqBIq4D/Q7QkmII668szxzU6SAyUeIKUVUihhlsFlJoYIgLyq9/zke/889WdcYIUwmJTRlcbU/CvDlszzu5lobtBbOjTbcQ/xHxY78uyhvLCtxS03CoDnW2op073jrQyIkIc5aa7k4X9OUFqMyq0XFsq0ZB09MMj77/GpLVgrn7OxdlIlIwZKA3icKtIyRZp7LV493F4p6v7h976c/829XFWFZYlYrrJrTxrNCTyP60NEyo3tGjOvkflRSOKYkXCNryBFMXRMnD2kCbcjdAXMYSc6BFa6YtUp4akrQLZMSJieMDxA1zKIH1Y0QErlycv8bSbDWWsu9btQ9AZiUSSphnUUpQ9aC2CQSBC8IqDUi8deChpZFQWkMhX7vXsrcuyqTub+v84yi5RnFF9L03Jxog7Wzn4oreLG5hZMFUwzcvNngs+WkrkhJeEdTCgSVKJyQ/oWOEOdxexSZMvJeheQNMf68OMoveJHSVguqZs1BGVyGpWsYq4nGrCjdFSEbDjHTGs0YE10KhAJ65+nyxDiMkCIDI13RU3WFFMYpzgmq8FbdcXezZ5FgP99QzhoqU/Iwei5VQdaGL8cRQqZ+OTK93bJoTyF5gp4XFO0omhVrV1Et9ozDdna8fDdnVdZSVRWLVcv50w+4+JW/yGc/+AP+4//zv8dZcUtcP/2Q0ydPUd01fuzxd3dw6Hl08ZAPPvyEYT8y3e4x2lAuF+imJOjAmEbuui2bm2t01lx88DWWdUu5EgOxrCBGTwgjMcl8Ms8wsFMG05TEmFm0LY01/NHmBb/05JIL+4DhdsugenobGPvIVZ5YIbBwTBNOVUwkualIeBRpDEwxSIepDDjHdegYh4Fi9IR6xeruU9quwIUCEOj7zyxV761Yat4MjDEUrqSqGtq2ZbVY4McBFYWjk7wjhIh1jtX6FFW1qDl3JYVI8AN+vxWeibVAIuVAt9mCK7BGYXOQhSbluRAxmKKURdU5XFmjimJOUD4iInnmAMR5sUBCI32U+fiMzjD/yvNMXh3VaErGPShNHPyc+zL7TsySYizi7aC0qKZcgfUDcRpIxQhZYZWQB01RkaZREJkER8WI0rJRLx89pF4uiFXJ5DtkgzPzuEMWundIkMDkGiOci+Po4KfapvfwCN5tmO//VP4/TSNdt5FmQRvMZLCVpWxbnCvQRQFaCzU1JlIYifj5/PlZAiyFTspZ0IDuwHa/pR9HVFYMnedtP9LHTEQK4KjgMHmmNIkCRstnqZQV1dKM2M20HLQRPpExWiB8pQjJoJN8CjmNhORlIw4RlxPWzkVIRnggQc5/Nu8+1xngBy2pxVgDxmAQ2bBKgobkGcHh6BicE2iRCStjyP4YQzC/6CyFm5r9XoSEku9HbnkOICQrYsiMU2KaQwGH4GkWLU1To9CziVuD0ZZx6rB1xfO3N2wG4SCUs6Pt4AM+yrgrKYUzIrsVf5SvjnB/1lc/6+p59633NGHGEdenqNMdZr+XNWwaSZtrxjdvUIWlaKWJOZoHHkedZh7XkcWxNiex7Q+zK7GyjtQa+TpMaO/RKRCNno1spGlAO1FD2YByBeRE0KAWNcoJ5QAUKsxmfVZGP0eiecqiGJVidi6Q50+JPNMDsoyfCmNwdh6rzD8XblICpQmTJyY/n9N5BJu5VxNNIUhYaU6onNlN4mnili2v+olnu54njwpCHklhZFEXlEbTec80eLq+pyhFlj14Tz9OaA2lKQStU2CV+EoJATv+3KMe+AUvUlxRU5QFfjyg4oQxloziYn1OUbTcHAYyohmvq5qkNGnMrNSKwQxMccQPXgy+UiDmhEsKky26URijqMoFjYWYDvgYGDWUShHIPDYLCmQmfBIc2xwou0SxSxRz9XjcXHKMkCNaZ8qqQOuF+BX4IAzynNFWSyqoFRvltpn4+BsfMex+jVefv2B5ecnZ06coIrE7EKYeXSjJh4maeNdhU8AtKjSGbKFLHTc3VySd6PYHbl+/5eLpB7h6iSkMaRxJyhIV+K5j9IN0gjOcj864clayAJWrOWtafri54e12QzccMH2kWlt2wyRywghx9OhS5I+VtSgihZcbKYZMVpZK13gKyvYCSOg8cRkdU+iIEcptpMyW8W4A8cm8X0zvu84/AwzP26URG/u6rmkXC0Y/4tOITz0+GEIA61o++fhXcMtTjFWQEqHf071+TthuWLUzB8E6UvT4mAhaMfYH4jhgjdjjKwyurGC1wjQtqixRRYFxxeyFMC/ESpQUOUZSDMQwEfpBsoCaWgK+8izFvX9b6n4hPo6ztBO0JHQDeRxJ4wFrS/TiFOpKChVn567NSmqzKwjFJKMFFGn0M+ETSUHWM+yfIypknDGc/tI3CNPIXd8R1buRh0LIpEql4wmZkSA1FyrvnDTfpzq+X5zc8yCOm/WxWJmvO1uWtMtT8e1ISaB5a6Qw0Rpr3CwFlhFHTgaiRCGEIFJ3HzzDOBBiYBhhOBw47DtSzgQfuTp0fLrZg1LCcUFIit04MUxeum0F2SiU0VKYpDSbgenZ+9/MgX1aOsb5+7IXeKYYGSbPOE24GGmPvhXIe9ZZUH1JQtairkEUH8rINSPn275TtuWZnJvVfHlIJ6+1npEbc99gkOcgwLnxiilJEvhMmM4xcVQp3au9EK5LSCIdHb0npEhVlhL4WFYY53DWYpcLNrd385nNfHF1xzBzbVxKxADTTBx31qBQhJRng0MxODsSto/HseiQK+Wnt7X3r6Xjd47XpcI9eEq83qKnSA4R1XeEzQa/32EfXLJcnco4a5bY31+DSkEMaFvKoyXhh2mliD6ipiAk1Gkke0lTTinD6LEpzXb7ljR5QtTYlInOiQQ4F/L4M++JKZKcZNmQhGwrCLBsx1OIJJUpmJHXmcc0P+kc7DePt30kpXEusMQwkyyKrJjFKXicRoJK7z4tJZ433RjopkBMGacEeYspsx093319x80U+chZNpu3eO9p24acI5Mf6YeeYfQ0ZY0PUcJcM1TKyucS8ywv14Qsz5HSrEr7OUuVX+giJUSPj4aIJoSMJeMjWFuwXsr8/mZ3wMeE1ZrKKLIxrF2Lr07x00ifIU6RPGXifHMlq9DJYlFkbRkLzRh6JsQ51TiHy4ZDDBAUrXEsC4uZIPsEbw74XU90VmBE5yALc/oIaBttQEXSEc6cUym1FgWH0ga8pywtTz7+hOnQcfroIVVVEaZR5tRVQfJSLY8+oFMSktXMCej9wKvdlpdfPufh155wt90yjh5XVegcSSEIMXTcihOhkgF2uu+sZLafRz8vuhljLU3bcqVe8enuhl+ZzqhzIWS9KVBmw6Q1VRDUQGdHWdeM04DtI6NLBBRjCKzbGqtPaFdn9MOPsVrUD0Pw1E4RJlncOMLo9133u038ParAvLln7pctLdCoyLQNplAoCxCJKdDUCx6enhD9AMmgsqK/uWa823D+9ClrV/D2aoOuGlTwJKWYxkGcGYeBZAXit02DqhymLFCzW6RRBpO1jIHmVVdl6SRTioRpZNzdwTTRPnyEW69ko7OWI7tRZX3/fo5qIgDrnJjQhUiYBsLuVma9IaD0AwyVEDedm91BLdppSfROSeSW80ZOTCK9LB1He3oVAmQZH/X7jn3syaWdP//ZWOvYmM+jiXxEGGbVgZ7/noBbX6U7czxlSt3zEUQt825rckVJ2S5kswwJVEQXRsYeVvgM968F2ahTEDg5xsg0iZHb/tAzjCPOTITRy9PPviQvtwdijDiVRRasFEkJlK6TkBSP454jHwRtxLPG2Hfd6exfk5GNPkaZvY9+ou8HpsEzDiOFc7IxzkHHOYtPRjaKpKW8SzHhfZrNLCI2iYcMBkHlsnmvwGM2UDvK1Q1ZGZIWf5UcxWhO2SNql+S60vad/Jl3m0aeG4CU5mTgFPBxYsoRHyNFWVCXoiKrCif/ICb2Q6AksbnbseslydcaTYgJPwmiWjpLWxU4oxmzrCOuLGmqGmuu31vVhZ10vEi+oji+b0rer+Hfp5iDLhu4uCTf7oTA7Cfoe/ztLc3jx5R1NasWZ+l/PiIJAIaUIzrOz2UMuBKcl8aiP6DGEZT4ymitoCjm+1WRElJEG4h2Nsqb0bWcMjqkmQuDILo5iUnoPKIuXEHhLNtRCMgKSS8+Es7z/UeQ7pVYOoOakRxRfIk6LCZJsw4xyTgyIdLs+R6PObP3cl5JIuNXKRPIvB0DbyaPspbT0wXdfk/pChQZP450Xcduf6DzidMkCcjdKCR0r8CHiDMGZ8UxOcdAiIGs9Hur2J//+IUuUmLwDENg2/X4acQqhc1ZpFVlTeMUEc3+0IlRUZZqftW2YDROGzbuln7XM/Q93XBH9IFCRYxzVLWjnzzRaqqixmSPTRpS5i72dCnzsVlRWcM6FAQb8SpRHnrGmz3Li3NUjjN9Qi5aHUWvLoPAdzbgKWdMUljnMHYuUkzEREW7WHDx9BG2qlF+REcPOs3LyyyrJRFdFi2+zqjGoVTBNEQWFw/IqeLN89eYytK0NTpL2qs2GqsLstbEdJRlRtAZYw1pnGeZ0vqhlKZqK1Rp+F6/5a8vP6FMjp25FhVE0kSVsGWJrWs67dGu4qa/5nac0FFhlUMHz1lWNMtH1K3l7csX4mkSNYVzNLol6IjKGk8kZ/uuq9b6vuM+HkcZ5f3nkeIs45VwwZQSMUSi94TgCVH4DtvrNyyUR5UN+82Oux9/n2ZVUJ0+ICoobjdga0KYZPaPBA4q4U2LtPfsDNMuyfMYQlk7O0jOaHp6VzjlEPBhZNhuCfsDq8dPqB8+RruCnMKs+MqyEDF3tulYpCTIsvEUVY1KClvUmBTpX32G31+DtRQnp7PJmXonB57Rh2wy2Viy35P9JOjBNIqttxFjtJwS2JI4jGx2d0zNzDUBvtrDatlQsvAmJPrnHXR93ESOKJL8X95SVu/O1z0a8B4yY43BFgU+ZZl0aNBOVCFHu33Zq6V7TEnugZwEpQopMowju67HB49RzJJg4Wi8PXS8PYy0VvPN0xMenp/y4dmK3X7kP3z6nAJHzhqSoKApSQaKfDbqvpOVjUPGLDFGYgyEKAhK13Vi/50zJkNpZcymjCQw6jxfQ8ISnmXC0pXmLAqULkdwWQz+mL1mlJk3qyhFy3ufcc5JTPlCkD+DNEDzmC5hIOZ7JOf+3kH4LzmIr8VxIw4xMh2TerUWheGMHqms2e46xq6naBzbYSJmMV2MKeG9jGhLa1i2JYtFM9ffYuVQ1eLvo7+CpOSfPemZj6NQ/f3jK1iq1uTFAu3sHDHgCZtb+pevSBdnPPjkG/OYh/tRWfYBlTW6EL8UCifPkMTtNVeVnJv5njJ+FMO+PHNZciIbJ2uS0eIRMhwkfdgaQaWDFxTZqDmTC5JBJMhR3H+bqqYta3bTyGEc6IdMdumeHKu0XI9KyRpxHx8xRywwE/uTluI1BlHeJDcjaPNaEmLEx8xhzqtyCnQUsvSD8zV/9HpDILNqay5OVyyahsIVpJQYpolxmDiME0o7yc3rO7b9gfVyBWQZ3xsl0R9JcnuCP8rjf/6Bzy90kXIYDhRz9kZI4oinUsC6CqcdhkhdVYSkmcZRpFYp4HTA5ExlLMtywaHs2e22vHg7cdffkHSiHpdUucWkAr8ONIsWux8pdMRmRVOUNFoxhUQZDCprsgaXYNElNn/0fdaf/HWsPnYG8wabgvAQpmle0CIhCmnNWRlNaedkDp0tSnt0jlRNK9/zsqCJr0IUx8owzWTUjC5AFQXZJMbuwIOPntKuPqTf7Gg+/UNcUdAsCgyBqDKuaVBKMU0d49Bxb1DmZ2v02bwqBoFoM0LqaozjSg/oukBHxxg9XQ5MZMqsKI1FOQOFI5YFV7stn9Nj65qvUVNli/OGfLbGT1dsD28JVhKmP3zwBDUuCfbAOE5i+JYL8Wk4kr2Yuwj1DmGRTUsKlOOvEIO4xvqRnLyoFhAOwKtXL/nRZ19wohVdfM3u7pb93Rva9ddIPtBvb4l3N6hlK4uyNYQ+kkrQSYHV6Loiu4LsZDSklBC10+yBIeRcISRGMnEame7uiIcDrqypzy/QpkTkyqIwuCcFp4giSceVxbiJHMU1uCjQbiG25LZgvH5DHLewE8TDLZeYqkY5Ny9uWky0lCIFL11yN2BKJ6OGMJGUmMXZQhREMWViWZKRSAlmVQTMCIp8MdvDZ/n6OKI6HvMOcvx39988FigcgSZxOM3qCDsdZaIRVBbb+Zlno+bqQCGokIwp5kdSmZAyU4oMIRBSIKTMGCJpmgjTxG4Y+fS2pzCWv/ntj/i1b3xM2zaURvHq9Zbnb7YsTInLBsc8QvEZZQU+0nORpM0RGZGuOM7Fr/cer2Ca5sC9Oa/JFrPPilGznDTNNZnA+uQ8FwizeInEOAbiRhCsoioxJmOMk0JljuY4vm+lmS0MEjnN6JY10mnnIyaUOMo/7seK83nMM2pjZn+WFIQ8qzMY48Q0TYFFxg8peMaup7KKN9s9z2+2UijOj2mUprCKqnScLBvKqmT0ERWSGJLN46efuW29h6D8WRTuP1PFALquCSaTh14Q7LKEpNm8uXr377UoovKskMoK0iz5TkcZeBaJOYjZY0gJqyAWlai55p9JjTmjG8zrUfCEMEGuSMNIHiZy1QATypQYZ1FxLnpTwFpDXVU0dUPjBzo/MXq5rpyRwtOANB/yrFJkwYxczmRgI3lO0XtiCuScCIMXGfJ8rRkEVRnGCavEv8SQeXyypK0KduOI1ZqzdcvXHl5QNy2FK7nd7Zl8ZArCUzJW0Q0jw3AQxVCUX0K70TPqN6/ZUuaRkuFnn/D/9PELXaS8vX3GabMiJrFWTgpQmikElPdydVtL2UBWiug1JRmdAk1ZyomqPEPd0C1aCpX5dJJFpqLkpDjhbLXC/tVvY8Y3rH7/vyVOUVw4AySVObENrVJs/YBF4ulXqmD3w0+Zrr6DOi3f2XYHT4gTcRoIXlxdQ8r4JB4tupQNQluLMcUsK7SSiWIUWWu0AzCkECU0LwQxWIqCFGkFMRywuqRcNgzTnm7zGd3djvMHpyzOzqicIRPQ1hCyx4+jSDitFYj4uKnMrPswTcSsmbwnxIgrCs5cRTcceKvf0oyWfTVww8SdSnynWrC0JZpAu1zQhY6dH8lG8/HylCIYyljiioryZMHVl3/EPnZk61g0DynLxyQs2Qe6uGWKIzlnMU+KFmfNPaJyHIYAX7H3TkkQq8lPTNPAOHVMfpRFMctG4+PAdz//CR+cnaK7W0mKtUpSk18+Z//2iusXX1I8vGBxcYbRhlTIRhpSxqqCFEEFZu6RjBFQijhOEBLaWuE1zMhZ6HtC1xF9wDUalSJ57GfCrBQ6RLE95yhNlZLhXrXiYyST0W6Bq5e4RUuxPGd4c0s83M3dpvgDmVzOELPwdDCKoeuIyROHkZhFJi0vL2IocEWNnwa0sQSV52JLibxYz2MP0UbKiAolkBHmHVTP/O37/eS9fvfIb8nHAnN+f2SBrBFORoiyEILM7IV9Mvt/RO7TgvO8QEs43qyyinlGZzQhBLqu47Dbc3UYuDoMbMfEX/r6Iz65fEClDBUGmzSFUpy3FZWz4kmEwokT0Hsdv0KsnMP8J0VWgqJM00hUam48JAk2IpwX5lGVsQ7lSrLWpGki+SCc6pkXhwatxYJea4MPie3dnlZpyiLPBosWrQuAe/MupWZsNUPWx5GQwDWzankePUhBfyz2j0jpkah9HPn6mIQfQcZqGWP6SdKaVdZM44SzhrfbgT/68g370WOymIqlLPkwbWkl18lIRy0+IfNoLSfC5N9l93z1KiEjWN39ODfLdWGOyNHxff/UvqBcgVm0xKsNZrVm+dEnVCcPCI/PCcNIVTUzKibvO2lmbxnIMaKVjPmFUyhmliGDDZ5YtTBN4EdBa2eULDN/xgqyEtM1U1czEVbGeTYGqCp0KeaKaRzmfCcxlSvKgrqpqcYS11m60TP5idIZalVgtLkvTt6NgdX9/SSoopeE6ZzwOc1fz+f42OSR2U1SBOUYcQoumopPHj/gD15dM4wTCc2iqVidnJNVSYyaoRfn5n4YICemaWKvFMFP1EU5N4oisXZmjjtICZ2l6FVGUbj0nmLrz3f8QhcpN5vXIqnUQixTal7GgmcCQR6MRSsJdUJJfkKpQEVxzPPjSGhreu9pSsdq0XK72VA3LafrC84uz2g/v8F8/gfkfkNIAYW4S54UC2xSRPy8cMhNaJXi7s0Vt9//lPPf+CWI0hnlMOH9xOQn6bZiYIxiMFY4g3UrXFGilZWAPqXnEZWYBIWkxf3SGGJSsweF+B/ELGTXkKLMo9EiE80jKXjaZY398NFcecdZ5qoYDnuUk1TnMAo0TeXmQENht4cM/eEgxZOzFNryjfWaux38JF7zF4oLqgijgewMHy7WLFJBHCeSS3SHO2605/9D3n/F2rald73or6UeRppppR2rdlW5oouy8TGugkOQhWzdyxt+uxIYiSerbAnMAwLxQBBY8MKT4QmZJwsJCYRkECKIcAEjjn2Irhx2WnuFuWYYqaeW7sPXxlhrV5Vxbc69VyqdLq0w5xxzzjFGb7237/t//7Bs5yxjhc01KIdzMF29zbPb99ilxIVecOfiDbJfYfLIaAJXdsMm7InpgnEK1FWgshatpDs8TKnlAhHI3YeA9xOjHxnGnmHYM00j3gdSUGgc1mSyDTy6fIcvvXuPj5ysmMaJPI1sbteM25Hd1Q3Pnlxhk2Jx/56cY2Px1pCGPURHNfVUwx5dy1qj5GikFEneo4JsNDkrQc/GkTwJohOjp7t8IjNhq9F1Q86ZMHRlI4A0DjIuqBxKZXzfS6K0TSWsrqJerLCrE8z+LqHfkqJHxZFpl7FpLpC1D2AsqjKk6GV2nSOx61FNA056VquLZNRPCPYzFqRCNhK5GR/0J4ULgZJANFXs1A8d+gEtOdxQy82phK4KelL+pCzjrEOIXzoYmunCc6GoUaQ2kvf5mDGjDjQNDpZw4pQKSRl673l4tebtqw3byTNGkY+//ewWG7/Jg/MlL1+cs2xmPL65JRclmcpgs8KU35kPiLkVBcyhmM9aCSo6TcIlcBUpROEjoErWity8s9Yoa7FNQzSWpAwqDzJ6y4KGmOJ7kYqqS2uDnyL7fU/MDbWJaOWxNmFLPIPOqfQUL6hdisxW/AvSc0VZVqSQUKnUlmhyDsUGPhOCoI8+i5rxSApG+D4pBCJSYDy93fF/vvWE226kKjyMSmd8AqPl7NaVxVhBwQDaWYVRmn0Q3suLRcphhAaHyWA+FiQyPs3PUT1dKNzfuelpQ1rMMds9dT3DmAr3qZpsDFdvfpu8CKimlrWXDohIKa+VLuvouKBkFD95cA0+ZZiG0pPImj6uVSvoTAxevFH2IxDIfScS70WFMRW2mWMWc/y+QzuxsbfWoJ3DuorGVbTO0VvPPgTCOGGdwaZUOFAUmTi8AFWWF2+ORf7Bl0ZG4IfIg0wIkXU3ME6BuVbcndV85P5d+gxXt1sxsQRWJydkK9YR/faWXbdlmiZUzlTW0E+BcRS0SitVCO7yO6KfSFbGi+LoHhn8RD+G45jq+z1+oIuUp7ePyZUQyiwVra6pTE0yjspYrLUYV4PWWGSmnbQGY6mVuEMya8hKMYVINWtpFi2L0wVRK6pZzTT2hN/6Mvbpt5lIeBVpjaOxNTon/BTRVuGzdBwuZPIQWFSZR//tayw/co/ciFKI6PHTxOAnsZlOgSmLHKyxmrppkZpTnA8JAZcVydY4V5NDlC5CK0L26CC20kJQE1dBKyA4IYhsVmktDHoixsGsWWKNJeWJGCUPJqdAihJnTyE+Ga2YMkzdyBg8aIVzgu7UTct8MefL+TEVOz7T3mWezpi85Tw5VrqhCtCHiWnacjNs2brMJ9WCenKkEGmrgdvLbzEMW3apYzKW08V9rD3DmgVxt2e7f8abac3izik+RLa7DmvETlu/yHEoBMyUkig6hoFdt2Wz27Dvd+y7PV3fMQ0T0WdyMuRsyw0o8D++9SXiqz/ES6dLrHFMaMZu4nbfczkFnn3zXV75zCdoDw6Kyki3mCJKVXKj7XuoKrKW+b3MnaW7mvruqKRIkxDltK0I48h2/RZhGsW62hlUSsQCU+uciaN0bK6RddwPPdFaxjwx7fcs6orT1V3mL32M6sErcHNFjlMpYCNx7EjBkPYdWIdqGwm/Cx6MloC64FHOEqbA1Te+zcWrd9k+ecTpSy+JxDbKGEAdPFuQ1NWD34ZR8lUo+R9l/HDo+gRWPxQvL37+8HEpUAphGKQYSkrk0jofxkGH31I4IsfCCQ6BoYcCKabMGBP95Lne9by73tPHxOliTu00rsgxv3q15ktPrqnM28xnNf3gef3sHJ8iUR28PUSxJghHGUAoRSpuqTEFfAiM0yhky1ys6mMklrwYpQw+Z8YYcTGhg8cPgyAalOpHlWRhJSGDISUpVpVY0w/bjgQMiDdF7SJV1eJchTnUgEoeX7iV5d9cCMWJpDMpi+9GpmxcB6pAQSpCEkdtGaiV4kKBD4kxBN558ozoPY9vt7x1dcumG1jWVooNBcporBIRg8uKxll0jMSkMdbgqqqQKyUR2hw32O/gmb3wvwO/yRhbir/v9bjnR1qewPWNjP82a1x7jnIVs/mSPBXCsjJkjXDcDqfAGlI+WN/I69fDQHQ10XsIQr42WhOVlkJQCSFeBRm/p2EU47w84IxDDR61WlDN5tiqwi4WmNmMrAu3SZUGxfagRDlmjKPSllFpeh/YdwNuYTD6MN7jiEgchqZJKaLWxQVWuE2eJITVUt/HlBgnz24QT5P7pye8fnbKyXzO29c3kqRSUNez0xXjFJimiXHs2O13x9ymVTOD1EvKeMlLOxAbJj8wTQGlBUUEhQ+RfhzpJlGyfpDjB7pIebx+yN5sqGyNyyI/rtWMk/qc02ZFWzU4Nwk0ao3IQktgmHOOWoPRjeQLeI8lUqvMzIicrJ45zvyIUw6lK3zcY52FrCX5UtUs3QJdJH2aTFVOyAz4+rff5v6bT2hfOxNSa4YwiQXylKRYCVlcA+uqop6fic4+Ckybg4xzSGKVbLWRQiIiN68o6Zax0Xi/YRomsPL6wuRxtaI+GImRqdsG6xSRiRBGlKlAQ/IRrcEYfYRqY0oEH/FTFDhvdYJCSHVZK9Y58LW0556ZE5RhUi1oxcerO1TBcd3d0M4ND8ctOcOrec5LYUG9aFlvLum2Nww+AJExRy6qU2bVOZYFGej7K9ZpyyxpmvqMYdrz9Nk1WuUjcdI58ac4dDMhRLq+Y7275Xp9xc3umvXulu1+Sz90jJN4wIRYQttQpKzY9Vv+yzf+O2+v7nBnec7cVsRhy9PLp7y3vuLdh2t+9MkNb7x6FzIEPzJMAyplqtqScyT5QVQCuthVJyU3QyuQfAxB/BSUwlQ1Rs/ptmseff2rPHn7Pb71zlM2U+DkYsbrr59y1jS0VtZtVqB3Wtw/p4nN7Z6vf+mrtLOGz/yuT2F2gdndj+LOZqAgDrvC4zBHG/xc0o6zH2Vz0gqtHVrZQpYNhC7x7n/9Da6/WXH/9Q9LR0Qm6Vy4MQEShRQrBIisUxlnmtKJpmPXLcVIKVDy8275OVSdC39BHzdYkOIhHYsXXbr/UBCO4j7M8/HEwak1x1RIgZHRB0YfGAbPFCRR9ne9epc/9f/6f1K1DZvLNdvbW54+u+bJzZZ3r9d8/dENYzexWGT6fk9VVVQFraxVXczasiASWhPLmMn7KDLMhHANkODHPE0MKVI3LeYgV88TBnP0b4nkkrlSjMZ0UfFoiwoiqVYpEbIgIU5ZUox0wySF4YHrYxwHJa0qpFcx75K1Hou8PEfEhj9nKWLKex2TjFNjDKUDTygMrRNPoRATU4w8ub7lG+88ZAryPhsFMyvck2GS+1Io46JY1krKEIM0c2H0hJDBaEKUhiIULsiLx/NyRR2BuecTHvX+R74gAToQiO3pHaaba/S+J+62+MUMox2uneFzJof8XHYfo/B7Sh4WSWT6OWeYRnJViV/O2KOVyI1TGQNlWxOi0AtiiIQwEIeBnDVZV9jFErNcoRonKFUM+GEQ7lGQIjZpS9CGqJQgDiGQMLhSqAxpYJrEO8gZfSzYDtO5A/IYY+FgZTFbTEqKr8P5D2V8101ip3A2a3jjlZc5m83JfmI9yP1RohY0jbOE6IGISomh79HaiUN5XeFD4JDSbbQTg7fRM04d/TRQVzOmwqtRZMYp0Ici3f4Axw90kaJVZrvbEeNGwr+sJcQrrrpLTptzztsL5vWCxjZUrqbKCau0WFkri3GGxhicljGF1onaGZZVg9KaZlbT+gH92iuk9l3sXpN9JrvMarmkUTWmQKfYTKMVVbnJugRn68TT//ZtXr84JTZZXDRVYNKRLkSGILrx1iWRr1YzsLWQtZQla0dWJb8jgg6TzIZdRU6i7tA5obGEmJn6Ed+PEvJkFNYp6QJTlAUdPSoHsLVU/tHLc21mhfU9lQo8Enxk7EZiHLFNhVaFDEpkzBNvbW8ZY6JSFqUNvdpzP7f80PIVttdXvBnWvBHmPA4dd5slH/ILzucrdsOaZ/1aFqoBkzTGVdyp79CqljxEstqzHa6Y0sRcVdxuRsbZxOPLZxgCKXpCWNHOWqpiN59iZBxHNts1l9dPeXb7hJv1Jev1NftuQz/2hBBIIROzEJZjjKSYyQSGPNL1HW++/W3G3uOHkTGMhBh49GTDW+9d8sarDwQ90YkQPNvdjnpW0TR14UGIa6WOEWXkRpYmMVAjyIWKEZ8RWzdgLd7O+fa7j3lytQarWL91w+b2Geenc15etdhKk7XF1g1V1TCMgUcPr1H1nMXJimkXWLzxUZqzM/HyqCtITgIigefbuSgPyAk/jWijxQ3TVuL1AfjtltdeuUt9umB2dsrTd95jmE1gStqvimQtTq6qeHbo5zuHoCfquWJNZv6HQuWFjeW4p6iSFiw3RqXM0e7fKElVzvmFQqSMVCnhevkAsxf/hRCfj/tGHxiHgWmacM7QVg0XleVsZmnvPaBCM1OJOnjOjeOV+YyPnZ9we7vh6tnA9mZNZWusLFMq7cQgDUUKWQo2nclaMcXAOI7iYp+LyZtSLNuWq6eXrHd7qmaObhwTIyEkKmPRBwVNuT5lbCZjau1qQXFyEr6QsSxWK+qmlbdv3DOMvYxisgInKeGHQkWKKdmAD+qnnKTASl4QrFTQlRAiPk746AkxMIXIMEVCyhijyBiiF47K1e2G/TgJ/w1wRtPWjhDF4+eAasYkw7sIhQCacSGKF4jyaOMkYVpZnrNQ1HFxfG9y7IuDoPd/5ju/qq2DO/fpb7+BvncXfXqByRFVlaJr8ujWFusHXbxHtDRthdumlIKqIkUvTtIxFIm3IEIxGUGPYhTxQhSJr57NROAQI3maiEoRu1EalbxhGgeq+YLsI0o7stKS1L3bs92uud3smGIU0YIpo9SYiD6SGyEaq4PAQVGSuAsnpUQRxPIaMkIERonxIF4eP68tF+2cVTtn1s7YxYgPCVdVqJBoZw2r0xXGKcSwWBD7xoqKLxJRKkm+l9L44JlCJqbANHn5XJwYvS9FiqzTGD8YHwV+wIuUykgU9VhBchnjFK1xGDLePONpuqb1c1bxLk1YsUgnHAhOGrCmpjIy/jFGU+cGnRN1sSR3bU1dO6Y33iDf/zrx6iEWUfbUpkYlDUFmzaYxNKMphLCMDnDXON76xtu89umPoi9mdHakUz1dTOy8p9ttxJCpsfjRE8YOV8/JCAyvTUVCIsE1CaeMqEpCwrmGbKzwDFwA5VCT5+E7b2GaBlvLeChohTIZo+2xqw8plLhyIzI5rSQ7IkgnGlNm6kb81JM0zGrp0EOOjN5ztdvxtN9z1rS8tDyDMBH2t3zaXLCwM74xfpNYQ+8nrrXno7olRXCV4+nVLc/iwLmpqZUmRmjqhuViAYPBnjR02zfxaos2hsondt2eYfR8+90nbLYb7l7fcPf8lLOzU2Ztg7WGECb2/Z7N5prLm6fcrJ+w3lyz324Ypl5GPVMkhSzy45gJPuEnX9x1UzEFy4zeM02eXR+5vLlBkfn6O+/xB3/P5wSOz4FmNmOz3zP2HX4xL7lsMtPXOqEO6Jo2somoJMRJV2Fdi3ENNYlXP/c5bq5v4be+RPQjop5SGGXYxECdJnJ2LFSNWZzQLCyvLM/Z395ip8DFR36U1Sc+gZo1oLREuOdGCJlFdphiCRHMiqQS0Y/4SaGbCquF00WGJ4+eMesH3L37vPPmQ/qmwi6cFMzKkNGFK1PsxovZ1eFfpRQm6xJbX473yVwTBwlpLq2xqLN08fc5oCTC45HnlY+PExv6g8Q8kXUh0CaRhXs/MQWR//Z+EmdZrdExsYqZ6XrH5vEl9f2XmfZrnrzzJm++c8lXn2x4a9dzOwX6KdD7yKe15UdnC1wZG2s/4ZXCqUr4CXi0qwTdCiODHzG1yFLFUCtTNw33X77HOI34IMF7XfAMk6C71mic0YRxYuoHTFUDUnQ7N1JVJVKhblguluK0W0YdWmv6IeN9wMjOIy7C+uAsKms6RfF/ysj/D1lLOclal8TakquCKA3FL0pJwHNyYvCnS8ig94dpA0ZB7bTkYflYMmfkDMZUDOeUYgyJKUoDWBuNThoVIpWrit3C+83cfqcjFx6GKn8f6t/nQyP5vfXpOdPFHdrTC3TKMAwoHVEEUpggHaIqlHjnlPFjCh5lBO0RnqMi5UC0xffKGoL30nQkQV5QoCuLmS0xtkYPnnC7YXf1lMl7bm9vyUZzfuc+VYi0KJHFK8MUAn3Xs9msuby+ZrPf4WOQVOlS9OaStyN4vSpE9gOakoWjY508No4yzFMCuqcjslkI91px2tQsG4cqUQjZGlzbEqaENpkf+fTH+OjHPkk2Fl1l+t3AcjFntrwLfuRmvS2jKuiHnn4aCVGK9qZZYV2DcnOaRYXSThq2HInDBOq/fqDz/QNdpPRpJGlDg2PpGiprqStHpR21lZORgsXHDX3sCGoiarlZkGW+bI1G6SRSYWNxdYuxiZSk+EBr9uM1+tm7+ClSu4raiWRUa1GapOyxg2GWJak0aul+bEhcbtfsv/I2Z59+nd18z95mhgTTKKOc7Ae63HB7c83Z+SWumlHNVuKmGZJcKNZibUOuNco0JCXTf+loHa5JLFyDVprHjx+y2W1Y5RMZ82iF08XpsECEqkjushLCYQqTwL0piErIJ/qxB6c4WZxD1qK3z4ntfs+7l5e0zvLJV1/hVb9geNpDF3l5fsp+d8k2bHlQuolFdNxRTdm0R55OWxkf6ExWiawsMzsjdAk1n4Od6PpLrLPYCaJzGAX9sOXNt97jsrG8aQ3nJzNeeekOdy9OaGcVMXr6Yc96e8PN9pLt9pq+3zGOIz4IFyiFSEpCBvY+EkYxm8oxC1E5JcIY6fYDfT9xsxuZvMz/v/7tt+j2PfVqRsqa2WJOHCf6fqKdPCkWmSZiea+zOHpGkri/KrHeNvMlVTNDK0OMkdXFHT77kz/JSx96nUff+DLXl8/Y7TNxhN008DgkZssO16yojQbbULcL5ucXnM1OePkzn6FazUHZMsvWSD+nwAtB9iD/Uxqil/BIjCP5AHUjLqkp85++9A3+3//yX3H/pft8+nOf5HO/93MoZYvsUWOExVpGM883CQXFZ1ZIcoc5+wGVP/BPvnNDKUyDAl/rMkaSUZIiFYmqjJRSFAJtLoXOgWEZkxfzNj8yTCP96OlGUS4oNMZkfBjZmohX8C9+8+vYdx7z5S+9yVtPbrjqPV2CKckNXZct8MvbWx50O9qmpao89Hvq6ImxxliDshqTAiF5hjCKK215rRRCr1Gi2mhaTUOWDlYpdv3I7XpH6CYZGSrL6dk9Tu/fF5J1DKQ4lXuUmJ6ZEmSolChejHWoes4w7vFhKri/eOCowt0RkEkKE1G6HoiN6bm6J2Xx9SjFbCaK3DUErDYEJCU4hiDusyEc+Q0oxegDIZTRRwKfpACNWRDlyUeqMv4ZfMAMHmMMzjmUngpN6YCB5BfBlPcdGQ7hzMdqpFBGXyhO3o/CKK2Zv/Y63G7QQyebdDeJt1nwpGAxyJrCFMO0I/kzkr0o3DKC1OYocQNE8fzIJfdHG0vWiLts3eKwmMah2sD63Uc8/tabvPXOW1TtHPvpyFJnaSStYxwnNje3XF0+5snVM57erll3eyDRVDUpCoJlDlwoCkn8eP2U86uFbxKIxCwj+1DQFLSSwMsYy4jQMK8qZq4ix8gUoowuraXzE68/OOMP/sTv5uTsDttessuiUpyd36Wa32F/e4V2mqVdME4T692OruuI2VC3ZwSW6PoE1d4hubm4Xitw1uF8hzb/nBim73uf/4EuUgiZmCP7IMF19cxhkZRZsiVHTbaJZANJwY16wn7oWI538D4Xq/pEaqXAMQqUtrJItfAVxpzZzixNDaYyLOZLbDUnDhE/jSgMziiUtjReou2fqZF7SZQaSwxP332H+iP3GU8tIXj8OMHoqZOSxT7suLqumK+eUM1OjlkR5EBK5RJs2iMBKmbw44QPQbT4yRPGkWHoGVE8ub4mJ1hJSyG5Ljodb6RSnRcmeoacEj4mfBCkZL/bE3NicXomXIOUmGKm6wYeP3nKMHneePkBH0kzmm+O+N3EWXvKrK74z7t36HXktfkF02bPKxoqNK2Dzf6aSzNyL7YkBSFmgjLUtiF7jTk7ZRwf0axO8FcD+IE7dcXXxw3TOPHee0+wzpK8Z1Flnjxc8urLdzg7W6BUxOeO/XjLftjQD3uxg46J4AOphBimlPEh472Yu0kaqCInRQqKoQvcrke6UZQNWRlChsc3G955dMXZciG8oByZrVb0+46hG1Bz6XAsSgow4DC7SCmi6oZUtxhnZVShFGiDqRqWp+e4j3+c+XzOs/feZbO+ZRgDu9tbxtuKza1nNYOTO4nVWcvqzj2a+ZK6mYvqx1goRatk8BTbdmXIKoHWKIQ7o5Lc3HRlCdMEyI05Znh085Rv3l7xmMhHPv8ZkfQjjrlK62PE/FGifuhmDzLQo/OpFrdcmWHw4s2Vw3cVNPPYFRYuwaE7O+bQxDImk6FQ+RnlJhwj8YCg+InRT5Ih4sWArK4qun7PmCPegjKa33hyw2/8xleZfMQgHi+pFE+HkimT2YwTb21uePn0jFmM5CEU0y9IyWKUJUoUJ1EnjLGEdChQZLNNSgy7tDGCMmhDbQyz5SmnZxfstiJFn83mNO2CqqqkCKks5LqEF+ojMpBL16tK8ICxjirP6PZrQNRBJoiFgKgNBXU5xG5IiB0y/ikbWVa5ICWggpJCKCcJB41glHgjhZQZJgkRPBwiUy7rCUF3DkIdoxXWyvqPB2UJSCGVxUHYaAm2/H6OQ+3yQlkLx8/l7/js83VmXEVoG3IMRDcKByhGQr8FMnqxFNVVmMRjpPxM2RsAY4u/VYRwiA3IqMrIuB2xfjC6FnQpJGz0ZGNwizmL+/e4i2X+0ku0Z6c0qxloReh2qGqO94H1zQ2Pnjzm2c0tY/CiFsOwDxGVMrZytFZ4i0YZ4VUW9BJUIeCKhDopcVXnBd8W4YBIcVJIKtRK07jqaNmQEwwhUjvF7//xT3Pv3l1I4FyNs4Hl6gx0jY+a3o+ElKhsRYiR0Q+MYQJVk33G60hsLZqKlC0qGZw1VNphbPweZ+p/fvxAFylWC1ks6ITXiW0e6KZJPDicIRukCk2OuZqjlWI3bRiyl+RPhZCnUNRVxhldmMq6+BYocsykxYJ0ccLy6UCjW3Q27PqtyIprYe5bZ3HBApkdnjNVoWLmBMP6ZGLWjExmRQieXJJqp30QgqWa2O5uefi4olmccK9cHKFIWQOaMAgSECaPj56++LmEKBvtGAKX62u++e7bXD5bc/n0lo+8/hr3OSejqKiKY2cuoXn56FqYUsRPQWDHQWanq7NTjLZipZwSwzDx+PIJV7dr7p6d8Prd+9x7d8RsO2xUnLYL+rDhndDxxuqclW4YdebEBHQKKBW5Ch2tslQK2TBxDFUujopzbJ3ZPd1TLe4QwmPaRcuTYcd63JCawHq9kZt29PQqkPtb0nDL/mJFPbOoxhPNSNQTuCy3cp+O+Tm53JS1VZhoSmeaUUli8SRjAvpRDIvUITiOzDhOPL6+4dP+1WN3pa1jdrJiuN3hqhohN00oW5UiochPqxo9m2PbBmNlBn/YMMiyBq2rmd+7S9aKelax363R2mNaS0CxmNfM5jMaWzNvZ1SzGco6lC2SSaPE2VIJKTYdkDN9SHxNRwNBVQLeRG4phUBIiWebHdG1TKphuxvxPtI0ZTyqCkpSNkkhux6cZQ+fBylSSiGD4kjszAj8z2HD5fDo9xUI6ljUZHLJMiLJOFLrDBhC8vgwErMuKMrEOI5MPjAGzxAD0Yvr7H6/Y8xQNw6rDD4LynWgajqlcGVzEl5sKnwKxVvXN3zmwchqNqeua0xdkStJyjV1RVYJH4K871qVtOHSvRY7BKsMVhWeCrKetDbMZhVNMyvoQDFeMwgHQanChkzHPB6O50uJOqegoMpYdNUwDHusipLijBJeC6CyGLIpigIuS8ctG9MhBbdwMLQCb8hRYYjisYKM4XIWwrm1krVzRBXK65TJg9xD67rGOVv2RU1tKyFQFifbA6dCgkDdC0TYMgz8TjTld9jT8v/kIUopdNsS+x6VFSFExv2eabNG+0C1WB5DPfNBBh9j8ZqR1G1lDHSBfCDNIp2iGkMJcpRrrY6IEWIoidKAm885fa1lpQxYTYhyf/XDyLjr6fuBrh/Y7AaGyYO2JC3CBWssbWtZOEttDE4LAmW1OXrFZP18tCdLqVhTlGszpnRcnzkdCvJMbR1W66O3z20/ctl3fPxjr/DZz/0u6vmKqBzWQ2UUenVCyBq/2TN2G1IMTEnsHVIIaDRTSIxxh6EidjtUBJ811eIu9uQCbSty8r/zCf2O4we6SGlsg2sqggrUtfh+TDHSRU+lMk5ZQlCy+eQ9talJObMNa4ad5270hHyPqAzzBLW1WC2FilzMkPxEMIbT+3eYfXONymByicnWmdpWIho2Ih12KnGiLVEJQ361nHNzOuOpGknDiKsakp2YvGcwHoyiUhZPYrpdYx49RKmaWVUTfMCnxDSJO+g0Tgx+YAoj3nvx/wiRfvLshoGbzYZuTNSzFfvNji9/801CDLykITGjmkv4nIoeXcZZOQmzX4LQBnIKLE4W1OX3xxgYp8DN7TUPHz3F1jUvP3jAGZb2vStUF2lci27h4dUzXq9W/PDsLmbKaJtxY2IdO6yzjDlwHhz77LnjGrKHNoOagW0yhD3OJ8xWsiuoxZGywpJTL2ZryIUVCSyMpt8r+lZj6zmNM1T1nEq3pCymZ9NYPGmmIC6MMZECJA9hzEQf0dlgs2XqJtabsZA1CymzmIullPjat9/h93/2E1RNJYWpLe6ui5bgA7psQJkSNKc0WSl0VeGclaRSH0sHK6S3lIPA7UZi19t5i1Hn1E6RfcDWQu6rmhlNO6eetYVYKVLVVHIxVDHxyCmKNTyQjZbAtEmJbwIjWSNeE8MkqcsASTrlPkairhmTZr2XNZrL2Oo5YlJcdbU+jnyA4+e/G2GRQlB241I48UJH/GKB8sJXXlSngBS1MWZiGBAJsnAkvB+Y/MQQPX1JYh2HEaU03nfs+z3aNbRWM0wDrmk5qR19Em8jpRAktCBK4k0kJl03+47H21vur05FSlmShJWTxGGsJpc04aykIYqlICQfpLUieZcEcIUiEnVAVQpVCJgHtYMykstEOSepvH5ljKBi6bkqJ+ZY+CVgrEO7Fj925OSptDnEcQqnJ6myzsp4J+fyGgUhOIxJchm3KJNRUQibz8+m3BOdtcdzS+EWKSWjY7LIqStnmM0aQAw2m7qmPtr0y6yick5QFKUwL3BSjrXJ9xj7fCeZVn2P/714HL5dG0NeLgmXl+RO1D7TbkcKgZl6TYRnupzHKNc61pKLAsmWDK6kiwJoGklDDyAGa8njksa2c0EIXQn7CxFRTAvpNFlQIZO9EJS77Z6bmxs2fVfWl9wvDtED87pmXhkapcWvx8g+Y4uCs5wWec5lLWBELp8OaK7RYhUQAzHJOVdaCY/PjzJWHj1fu15DZfn853+Mi7svk03LFMH4CWcSUIna1O8Zum3xX/EolalrR8yKfj8xpR0aU/KrenANzeIMayWQMmf3QWuUH+wixVqR5NbGUVUVkYQpFX+tamyqcEYx+pExjYwpYLzBRodPE8+GJ8QpE7LYZrdVLUZh2hTToEgOEyEn9J0znKvR0RHrhmkwWBXxOR5vxhpN1Ipzo9AR1kvYrjLXM0U17qmtxbkZSmfczJLbM0I3wTiQfU9SmkdPnjIOE2fzM5Ky+CCkthACPnqGoWN9c8X11ZquH2WjMAZlLc1sxqLW+JiJ2nB9ecWX33qENY679xTKKHKlyVa8RiiM/5QSMUWsMbTLBqsE4hTmf2K93/LwyVOGEPjQKy9zPpvTfPmS6pnMl89WS66nNZnM5+Z3aKMmJ89t7NmngVm1IKlIkzT7nNFK4ZJjMIl5srSuxmlH7ieqEOnGS2yr8ONEHiNnyxNUtylZM1pmqyqQgj4ajRmtqLRcCFjEAwRIi8J2T7FY1QsxMIUsSp8pkD2kfWSrdih9I0oFKKQ6uTEvZjOerbcM/UDT1Oi6hqxIB8VCzkjIjEU11XFTKexBiRhIyMdJnh9KujWc3JhspaisIa3m+MWCqq7Yb28JIVLNFqxWZ9SrpYxJYkRbjQ/T0WlZQscKAJ4P3IMSbxCKc62PYGS71EaIg7rSdONA1hVJOaao2Q8DPgSOyEjZruT1PDdxOyAfxyRZXkiVPcIrh3k6Ave/wFeRQz54n/FbTqJGK8VDKnESOUsKso8eP3mm6AU98fLvWMaWIHxGr0z58YlZ3WCMZuYU9EJB1MhmDLlwvUSZk5Hi/auXl7xx565A7cngZAXKaLiqSFhUHklJiOIxi+NqjlGcSHPAFg6GhIqmEgoa0c6VVGrxdVFVi3K6mKoljiOyXII1sjpKSQ82ATmLYZoyDl21hKFnDJ6kIvbITdFlZKGIKZZ03IjEyRX4XYmjr1YJnTIpKnFgTYoYMx4Zfztb4glUKiOHMojLuTR3mXGamM0arHNivEYxulTCbUo5U1fueUF3LCfyCytClYiEFz79HaSU7xdsUUphmob04Q8zTj2bd7/NzdUTzMkZ5zEdf5pBxiUJWXviXqyOHiooRfKT2EIcPHoKupWrGlU1xEmyc8Juj9LiDJ6NBWfISbxDUDANI/1+z3a/IeBZna3AKszQEbVCW02tFTYf3ruCXBa7oefXCUd6AkXqrw7TACW8IFFeCRKHBm0y/TRxO3qmmLhKiQ2aH//fPscnPvU5TDUnoiGKu7DVcn1PPhCnjugHDgnhzloq5+iGQMzCacxqQ/R7YuiYX7xCVbVURgqjnOx3FZu/0/EDXaRoHLNmITbpDpkTJ00/dAzjRFSR2rUYNFW2+FFY+EwjM7dCWYUPI7vdlpwzYxOoXIOztoQ2BVmsIeDPVtjZjDSAtjPAUlcVzraSkJsTqjL44DnVFTuX0DWECq6Ch5tbTgJUTSPeFwYIkWwMydVAYLZY0dQ10+j56lvfYorFNTNKaq8ferbrLbttT4xC2LLOMm8a5rMW2zaEnAg+Y9uGdrGk2+548/KGZjZDG0vKlpR1UaGULI+cMUrjKovGSMBZie3uppGb2zU36x1N03Dv9IT6tuP03T1pCjSuZjmrubp+xmvNCQtdE8NETJ53hx375InjnvPFCjMljDPMs6UyhkZJZW2wNHqGConJRHAww9KPe7rkGTt5jjl5SKBjxNh8NGQ7eGfoA7mzMMus1QXKLQFdhdQps3ElsKxPhD6xv+7wYxRSMUAWrxqrNHdPV9y7e05dKXb9xOmpJFrHVEic5QZwyHTJQWDgsB/RJ5UoJ1JGO47KD61EXVM1c9kkvSdOXuR+2dKe3mNx9wG+3xPGEW0cpm5QbY0yiphkzJBSIvWdkKQzJC8R9MpouUlGCdyLORCDKJmoK/H7oTSsWrGfRtq6QmkZL3kvKq/D2Oo7eSjlLSpfe46qHAqU46PyYTPJR8Lt8ZPHSuWFzelYy6TC76A4veri/ZBkzOm9JPSGIM7NPhSPibKJx8CYJoLSOKtpm5rNbodR0jQb2V3LypENVgNjjMVtWZ7Hk9s1b948Y9nMcdEe5/tKK4yz1Ba0l+A1azXjbmS/3ZO8p7KWqDStrTAmEWJG1U4QFpXJEwSFbFwZUhrECcZaUhTOVM4F0tXy+kOIkmCdRV4MHP+fciop3DKGwsj5M8o9H+0eOAhKVEiqICBCbkY4cll4KjFnppTwMROSmELO25a2cozhsEnm8twzsdizj6P4nzQg95yYsEbhjMIoyZOOcaIfJ8giHz+e/xfu798FprzwwWEi9p3f89sdSincbMbJZ38UdfdVNr/573nyza/ysvdUdS1y4XwYPYt9gPceW1ckLcqplAJEQQaTMWhjZTRnMskI6TTHjH9ySd520DSo2RycJqlIDF5GPV3Pfr1mv78lq8hyMeP8wcsMN1c8vHzMZpwIKUhxHiLjOBALgpKUJRspWszhejEGyXEro7IShCg2A6LsSyiptbQ0sc92O266idzUzM4v+MIPf4qf+IkfZ7k6xdiKGCQCQxktKtYoDsN91xFiEh5c8T6SqYMEumolI8YYJ3IOVLMLtD6oCDWBD6bkgh/wIiWGgImS7mpTjTMNO7VHKYkJH8aOyWYq10CULJgwweQ9/XSN7rdUbs35OHI3Z+oUSXUmuRpDROcIKYD3DLVBOQeDhLxZGcsDhqQCsXQWvnQ9VIrGaFyODGGk7yswA8vtNXV06NahQySNIyiJoK+bmuXyjNY6mqbl6996mzffecL1piMEj9NCzHRa01QVi/mMdtYyXyypm1qkcWnC6IkcLcxrGEYeP7miqio+WllmuikQNdgXoHZduDkhCmqTk2IYPZvNhsurK3of+fD9e8y04vTNNfZqIGXN+WyBShHrI6v5Ej1OGAtP+4F3446LoDlvKuba8iRE9jbRBsW9kwXPbnqSU6QkEu5u/xSvBmbnJ+wvb7kMHdo4ztoldI9RKWISqBzlAkVIe1mJM2RGOj9lSnBXyCQdJRfJWqyVC9eUoDxdKYiKYBN6gttmV1QLgFJYYzg7WfDg/jl37pxSO8vOe0KIKBsxriIHTwxJgIxxQhlNCBmNJRsrCczBi8R76AnTSOUc1WKBsZqw3TFdXtE9ecp4c4vvB2FGK83s4oLF2SmZzDhsmIYBZRVutcSeLDHLGaoyZK3wXSeoUArHGb+2Tkiz5f2QwsWVGf5hPKMYU2IKgbPTBUZrPJpQCNtK6WM+z7HGAI6IiVR0lAdzePuO/x4KnBcv3CO6ItEGzz/O0r0eru8kacAxBrHznjxTGJiKCi0h5lhDCEwxMobEOE2EQqL1YUBpRe0sMXoZ5RpTiMZjeQZFnJmSYApKYbXcPxKZIQT++8P3eHl5gnNOkNuyoecYqdoaoxvCOJDGPeO+I04ZusC6u2UIntNFy+lsSb0VBV7T1DTLFjursM6hnEYnRWYixIQ2hpglHyqmjDJGssdA3otCPp38JKhSSPgY8ClgFLRGicM2Ynx4sMUDkW0rgWWONvhyTrKgf1mK3BilkU5BuHkxZprKcWdZUznN5fUt+25fGihNUhBzGTfqLKNqPaFtLBwucXJ1BgkwVIIaCvH2ebnxXKGTORjiv9+H9rD6PvDUQM6t0czunHP+mR/lahjp/IRtW5TWJUen8Hm0jDQTqiBAiRwmaWKsRpWiL05eRtC+yL2HidD3RBKECTMYXD/B5ImVIehMv9+x321EKRUCtdKsZjMGP9D1C3zasBv90dpeeIkJqzKV0agciVFjbEQpJ2O0gs6qpFBK1hAxoXQuo0NQRZ7+0msf4eWqpV7d4eTinK7b8PFPfpLTkwu0q6XQzVHUpdqSlay1bhjYdB24Gp2UeMMEcbYNUeAmay1oQdCsq7HNGdaoozz9g1riww94kTLkHdtscL5hlhdkhRgEaYeKDqInAl4lyBGjHa2bo6Ji6Ee8H7ALR6gmttutRNm7WIywEil5cbqMnjElsq1QVUSrmqQFIj24NlKkXkprIrKYEolqyKxC4t2wQSvF3WXL4uwMo8tNxgdQAWci1lnqqqFpGh5Yd5gIkN98j+22dFDAbNaynLeslnNWpyfMF0vpBhSM00hlJ6weMcVTZb3b87W3H9HOW15xd9BWCGHmILNGZsopJsIkYWcxRLbbDTfbLfsx0i5aLk5XtE923Hk6ESPMl3NOZxJieDqbYaJHW9jHia9MN3QGfkjPuLBihU/KqAnOmwUzu8SaiYWZYW1N3z2m655hzk4JbkZCxjMvNSu+dDtAJa6nKCWQdOE3CK9D4PJ0qDDyd54b2ShjsWpHgykcCVNuSq6yGFdxIMKjFVVlOD9dcnFxwunZCuc0t73kCDFNNHWFsoboR4iISWBO5ODxJHBITk+YhAcQvYQHpobkFJuH79C//R7DzY6pn4hTkAwqrZm2e9JbD6nrqlzciBS9chijqZoat2hwqxPmr97HncyYxol+s8aYAsWbipzFSVgfEI5iEnTsUpUV51+luHNxRts2TENx3CzX2bGGeGGzyAVBUt+xU7z/84ctRh2/vQyj3v+zMxw5K+VrMcajbDymIDb1PgsHJwQCgZiVjHkmCevsR/G3ORQ0w9CDkvdPac2AkEaFjHoYXuVygz2MVGQAIoREed8f32742rMnzJsZtnFUXtKMTQQdIFtZO1Vbs7IVc6/xtz2zquXJ44d84xtvc+fVFQ/OHsA60diKxbZlNm+IlYUitZZKQkgeoXS/WSPFpbNgDUMS6WZUsB16rnxgvdlDt+fsbEkzb8ltxbxyNFWN00ZqQcTITWUkfDA+H7GI43B5+5UWIn2MMjpLiamgHXVVcb6ouFjWvH73nJvtlqv1lt0QGVNFVhXed+S4JxVVmSn5Rd4nGbcbTVNZmsrKCMy6F4Ibv/t435b2YoH8gUuUw89Q1LXj4sED0o99gfz4HVmzRoO2wt/QRRGjKLCbgv1ATBlTaTSWqMAPnvXtLeO2E+m3driqxs5mqBDAisp0mkbInuQTWBm/JIrk2we0tbicmIoCzCgtKrxcSPBlT4lJikCZS4rBm65yee5aCLQxyZpRUhgcNP+qpCc7V/HKJ343q7uvoLSl6zY8ePlDLJYnuGYmCe4544tgQ9kKYmSKnn23ZxhHeY/8xNB1dH3POE3ElDDWYqsGU5+h9FZGS25W+DOC3scXOFDf7/EDXaQkIruhR2fPUHsqBhw1mpbaZWo9p1I1VeXkVqnEKS/OVmw3G/b7jjxlbNZURoywpGfMkOXmmAkoIi6CtnOSnVB6jqvm2ArimMlabHKU0lhrmBRUBcJVAe4MmtyMXHU73DNDTJ7Vak4/7fFjYOj33L1zTmUcrbXURhOt5uzkhE989HWMTjx89ynTGNEK2rpiPmuYtY7lYk47a9DFvrquxPBJYYoN80SzrLi52vD46obzsyVNZYlOYF+ltfh5pIyfvMgTfeR2t2HbDey6gc0w8uHXXqb2idfe2TPfZlTTcuf0jJQC26GnMqLoyNrw1c0NV0v4EXOXZRepk6LSmk0K3Fr43cu7TMFwMltQ5wbjLDc3b9PMGxavf5LU75iS4sw0VEnjUwl8U2LVfeAOCBFPFe2/zMxzPvhsPO+2clbiexPla7mkkh6MmjK5oAwy/jpsvHVTcXK65OR0RTtvsVax8Xv2g2feZHFsVcIJsEZUOzEWczgd8d2Am0emsMVPHj9JJlJ/fct4fcN0u0UHg+8npiAXejObo5Ji7EbZVEoHohLUixbrHHXbUoeE6kbU1Zbtk6fMXr6DOVuy3d4Su1vqusI2M2and8iVI04BFRLGiaGfyEANwRimKaCV5vzslDtnK7ZPbp+PZVQ+jm+Ot5acUQcvloO5FPqojnle1RxM3V70R8lCTC7X44vGXIctSSHwcZAgERn5xETOkSkFQg5FgpwZvPBR+l7M24ZxxJLFBTploko4ayQNO3ja2QLjRlBFrqk0lbMcUn8ra2RjjsL3yIhh3JcfPeGV0zOqphElnwu4XInxmVG4yjHTLS5owpSYMvRj4P7pPUzQ9GNHqjXhpKJZnLLb7om7HbUWJDEoRTZgdCJaIeEmbdAmEfs9brHCnLQMoePRw0vM3fusn23ZPNtwjuaNT32I0wfnBZ6P5ORp6lok0yGRDSUUT0ZZYj6INA5KFHA5SCLxFBPeCx8tREFFlBKfi9paKmtYNZmLVcPd8xOutgMPL3fcDDWmOSczkrnF1gljZDyitSglD66oXT9Sl0JFv6/SfbH8eP9mpo74ym8/6vmdSpfD1+ezBh48wGtNXD/F6Br8JFJsW5HGjpSkRtFZS1Ceq1BW4g2GceDJ40fcPH2C0xVueUpVGSqrSaGET+aMHzpBIqtafnH0qCTvh0JG7gd+YIxlDzFWSKYlHDAfZNpG8oLGJONMU0tmk0aKcFLhj5V8JlGDSa4UxZ5A1kOkv7kixol2sUQrRUyKnMRXy4dI1w+EnGmaVmwcEkzjgPITLnj8NDKNI1OMoDV1JUZyVbvELe5jqhXjuBGloxY+zlj2uv9bBQyq7CAoQoxkJjCWPkzYlFhVZ7TNktq4YsUMqExEpHCVqdDqFu8DPovUV2sZBchc1kvWRQl6O00OVc1hzEJKcy0oT9KSCnog/WUnXZExSowIJ4W7HDh/xfKt0LF7OmD8nlX9Oqt2xoaRbdex7wZCN5CbvowcNHU95/TM8sYUcTGy2QkXpa4bqqpiuTqnahcYV+GqCm08fhIyp8oei7g8tq0j68jtds12t2c5a9BBxhkqihNh8JHoxcit6zr6IdAHz6ObWxarOfPa8eBxz52riEua5dkJ2mi+1T3jZtrx0dkKqzSPph3rPPBj7oxx8gzDxHw2o5sCA4mPt+ecVTPWU8fMzIhTYHP1LaKJzO69Sr24IARLDpaTasblOHCT9hzn32W6mo+zTRkXiOxTup+DSZiAKuUjSRITVCVrdNbFbUJzTI+jOFAWfsWsrVksZ8wWLXVbY6wmqsyT7ZYPuRMZwVlTGP7SocZhRGlDGBIhKfKQ6bsN/eaW9eU1j956j0dvPmG1mFNlg4mKru/ppo7Z6SkPXobsI95Hpn6EmLHOkULC7LeASBMXp6fMT05wzrLtEmp7gztf8PjyEWnacv/eOfPVGTpr5ifnqKpGaXEBFRgbFJY+xiPpcTlvuX9xyjuXazGIyrIOn5Ni1XO78FJ15BKAl0sxgzqUiCLp1Pr58EepgyfGc0JkVupYuBx/DdIJHrqGHESxEJJwLWKMJCJDiAzTRNePDN6zHwZG76m0ElmkAmeFS+FjYFZV7PueGMSmPSEcoSF7nBE9zOTF2Cwf/i7vwXU38ZWnlyzaBaZyMvoZHBgjfh9W0+gGQ6abBlytSauaNEzcOT/FDzX9u7ecf+gVzs5W2Af3qRYt0zCwe/qEbhi4+7FXcE6Qk2Gzpz69w9hv2G83VCdn1Ms5bHdM1xPuauBOl/mh117n7LV7uGWDs+VZR0hZY6yGII2ZvJRDofncfzSVApjE0Z1WxkcQkoTWpSyjIRmXWazJwjFQijtVw+liwelizm9+/ZIuL8gsibZmMj11EzAEcRQmo5WonmIQtd00ju/btNRxhTwvWN9PkH3/SPF/5VBKYYD5vCHcu8tm84yM8MRygZSytsdrBbTIzrMTTsc4sV5veHZ9RUqZZjnDNTXGKOLQY2wtmWJB3GmNMjJCUYo0RqzWuCxcJUyF1ooQEnGMOCUKU6dLurXSeC1eM7mMZ7NW+JwZkkwHrBIULomjJKQsqjEgDUJ+VcUywCjIt4+4fPYYHQLh5Bx971Wqu/fg9Aw9X8hItJDWNQatLTlGXJi4qC0jc1CaMSbGkHBOAjGnrDDtEtOuaMycpOR85+jp9x4/DQzdurzH3//xA12kmFzhckVIATUqjLLUtiIlSYKs24q2mR2rdSH+JWIO1Lamdi3DMNK4lsVsyaxusVqKlANzXitoYuTe4EjZQt1IRxonDEks+JOXKPIosJygMBF0RifNMHjqvWI1a3h7f4XzIxcXd7iY3aOazTiNljCs2dxuaJXB2b3Avxp0VTNfnfPq65bdfkvf9yhVCx/H1jKzT4k0DmQSPmSmEAghFqt7jzWas3bGNA1sdlvunJ9jQiDVDh+FoBWGCT96pinSTwEPPNt1JGO5e3rK6c3I62/3NKNhtmxp53Pe2j3lze0tPzy7wJbO+Hbc86F6znuhZx4ys7ahco5nfU+L4b5boDNYnRmGnn2/xhrHbHUX6+bgFdon6jGRGsO18zwad0dyny6ksAMsHg/8AACFMOGFDk9SMovVyhx5KEppdDEmM9qic/HpOChTEM8HlGY2n7FYLWhnjUSl1xZlMld+y/2wRA89unZHlVScJCfFxEj0oeRo9Ez9mv3mire+9TY31x27LrC5uebZzYbopaB1y4aPfOhlzIfuUGNk1j14+qdrrDYQ4eZ6w37bsbtZgzEs7pyxXM05uzjBtjVv/9aX2O5uef3Dd1mu5lTtRPSjKLdSOnJV5KavScYxpYmDVXbb1jy4d0LzTV1UQkgxcuCdlJ1BpLrPr0NVir1U6pSkxNBOlTGVoFO6ZHg8VwUdRkOoA06jjgVmSolQUsNDkAA/H7x0hVlC67wPZdQT2A8Dm32H0oZKa5wGjMOnRD8OKAXWVaQgkv5C+5SpR8z4OMnoj/KUtMXaGuNarFtg3Ix3u4E718+kKXAOVzu002gyVkkiecrPkThTW+pVi1pHXKqYeYO53hPbPahMjaFdNNj5h2iHLSf3L8BI2Ol6vcdZh2nmpNs902Yi9JFwu+fV3jJrGhavnOFWM3Rr0QeuSUEzjZINPeaiiEpezBtTkcCn0lTxnPjoE/gAIYgizie5l0Q5uzhj0MpgjYTKKTQhRdrGcpIUq5Mz/L7BB0XG0ocKl0da06GJYhpXRrZN5VBOXJffPzIsxUm5povF0fd1fJDC5VCo6NphnCP7SWCTKG+i1iKfTocbgtFo2+Cjp7vecvXskt1mQ/ae07t3QUUJFHVzKmswtqayVbk6DHiP0pnYOJQSn5phHOVa0prRS7Cj0hqTFc2sJY+jpNMri9WC2GYtnDuKL884eVTdYLQWdDMeWFYcx3faWuHspUhlMvb6XZpnV7g4oW8ekx59G3t+wfLiLouzM1id0zZL1s2SSQ3kcaKeRu7XjnG55MaM7ELCjlPJToPKOiyWaAwxjWhrmM0XWCZif8U07ui7XYke+L9RkVLbhko7uTizdE/ZVlR1Q1aZ/bSjaloqa7FaYY2T2VzO1FXDvF0RYkQpTeWc8AHIx0rvAGY/GGB+m+lVQrkapp4cJ5w2TNETcjh285GEtuAVVNbSjZF+DORNpLKWBYZHXce3Hz2jObkjngLzJfs4cftsTd4OuLolo4hpxDpLNV9iqpamXTANka4bCSEwjRGVb8WmW0nMus8yBgshstttWd9uuN329ONAtIb10LFe31CZBWrWoLUlxOno4NkNI0OMbMeRZ5sdZ6sTZkPklW9vOdk5ZrOaZt7yzvaS/375Hh+en9MaTYUoFU5sxe2w5zzCPd0SyNgIW++Z1y1nTUuOHt/13Ow7Zs7iXIMzLdY1uADdboupK9ZhwyaN1HMLaQJVZrKl2znkxhQwReBNo9CW0tVrybIodu5Gi7mWUhp7cFBFiUmY0sSj8gYqZ1nMW9q2paoc2mqMM2gnngeX/chLGKzRogxIoShRophdkfHDXjYEPE074xOf/V3M2lNcdAxPd4xPr9ld3TINAa+h30Te+U9vk51mNqtZtC3dZuTu+Yo8TCxDZlm1TCcOYysuTh+weukes/tneOdRrqJqP0S1MBh3QCiCaHHJkvTdNAXtMHSUdNzyBja1486dFauZ2GUfsn84IB2AUvlYoLyI2r5IqAVJPlYI7qWPj/1umFecZQ+FCseNM8RA3w8lMDDivaSHQ8IrCD7SDwPeB4bJc7Xe0IfErJKiqnIabRpiiHJeNShlOVmuePZsi1YihT28PpF4GqxrsNUCpWYoPSPFCm1m5KTZTE/5P958RFU58b2pLMYqHJqoEsa6kikkPIKsNbq21O2MGHby8z3Et58SakvuTtHzOVk7NJnNu5diuhUj09XA1ZtfoSLjQkKbiegDtbWc3L2LWzaYZU2uJEJAZO0GRUIbVQrnRIwU99R8VPDElGUvzlKoxCjoSQhZuuOY8UnyfkKWYV5txTWUA+nemOLNIdXEmAzRLqSxsmUV5IpNpwm1ZlntMYf1FjxYLWqfgjD8dsd3Iinf6+uHlZX5gIUKgNZUTYuXN0o8gWThitV94eyJASaEwdNt1jx79C43T59hFOyuT6nqhnm7pJoJOVqLzAZiInV74nbH1HVMfsIncTuudcU4dng/0fd7xv2ecRzQIWNNLuGxMspRRkvSpdHFtFH4dImM0kIziEGyHZQW+wE/yfguP597MyMy392yzCNzk7AhUm1HFkPPbLdmvjmhPrvPfH5O3Sx43LZ4XbFMkVi37ELmtvdl8oD4OhmLqRumbBijJags3WJ1QgodfvuEMO7BZ6yy779xfB/HBypSfumXfol/8A/+AV/5yldo25bf+3t/L3/9r/91PvGJTxwfMwwDf+bP/Bn+3t/7e4zjyE//9E/zt/7W3+L+/fvHx7z99tv83M/9HP/qX/0rFosFP/uzP8sv/dIvyVjmAxwzt2A+mzHYniGMGFNT6QajHBhNHzv0eCs5CroqBEJJWjXO4cp7JY6MpRsOngMXHhTN6PnUDai1FwOt7Ahph6ksOUHMk8giSWQlMBwKnNJUGXwKIgcbEIJV1rS64uHVDS9v9ty/uIMxiaZu6a+u6dY7Qo50ITPlhLYV7WLG7OSCmD3j6MkBVNKM/UhMMI7D0aRp6jqSi6h6xvpKvE2mYeKVlx5wce8uSifGOOKqU5q6IqMIvtijZw3GEELk2XqLUoaZMiy+fc2H1zULV2Prikfba/7bzRPObMNL8wVzJQ6UIQTCONIqjbWWr40bfvfsgsknOhX52PwMmzLj1HGzX5OMw1UNRjvpxX3CDB3EPUMVuQk9KkReNnNIXdkky5lRqpgSaYwSJr4gJZZ8UHFwoG1SEBRxajTKlf+bQiRN0gUXcy9rDPO2YbmcM5u3Is22CmUNyoKyiqthz2m+Q41GJU+aBJEw1op0VIkcOGSPaipWd+7SNCe0zYK2ajEfVWivURFc0JjK0e22PPqtr3F1fcmYJwiRUJ1zWp2wXM6pPrzg5OwubrmiunuGWdRkkxjSyJAmXs6foN9eMfgtQ7cWmW2C5D3ZSfcmr1GTjaULY4kcExi5riynJwtOFi1Ef3ROfa73PEDwUlgochkHHS+X8pc6bi4Hkmw6PP57SRCPO9HzbeYgl528rCvx2xCEJcXMNE1Hl+R113HbSZggzqJypKps6dwDOSeMdqQEU5hoa4vVokZBGaybUTULlG5AV4ApaI0QV2OSe0JKI9f7Hb/xzW/TVhW6uKUuckWtLDaHEnUv2TUJTXQO3SrMFKEfS3CiRnlIb10T1DVGW4w2TCpjqoaUI7MEJmu0dUdH2GbZYmYVZlFD7Ui1Eb+cLFJfraUAPzRZKQqJOEYxv4uZ488Sro2Md0IQmbGPYoAYUijqIrkujIbGWZpiXqiUldJTifeOT3DVQTcaSck+xhdADJpdashZsXQbbBa00edMTvqIkD5fBocL/DCYOqyI7yg/SjE7eUlvNsZJAONh9anv+o7vfQjEJk7UWpOC/E6tiuV9GZ1oJVEYyU/EYcDmjE4yNtxeX5N95rpL3JoaGxKqqjGVQ9c1egrMZguRXicxXySD73t2mw2b3Y7bfs8ujPTe41NEOUMyqqAnZU+pLMqWovSFMayyVrKclBGaQuzJORGiRHscYieMVjQp0YyRVsMiZqqQ0CFhYyKqRMiBuXaYoOmGkbGrGJs5jZOgyypBPeyY1Y5qdoGpG4xrGGNm00/YoInZEbMRIUYWBMnWM6oFqOBLivL3f3ygquDf/Jt/wxe/+EV+/Md/nBACf/7P/3l+6qd+ii996UvM53MA/vSf/tP843/8j/n7f//vc3Jyws///M/zR//oH+Xf//t/Dwhr/4/8kT/CgwcP+A//4T/w6NEj/vgf/+M45/hrf+2vfZCnQ1stWNg5Tje0KeJ0g7WN2IUbDVYUHf3UiStno6mtkgAoo5+7JMYoCaESsySzeBQ6BN5YT9x5GJh2O3TtSKOG4LGqIqsoc/LkSaJHIeSEQWDKMSuCVuJE6SN6HaWDqiog8ta773Jxek5bVzTzBbPzTJsVKQUub9dcrrdsNluub3fUt4MQPZ2lnS2xUbO56lBZUemEa8QzJRJY3nuJ68unKFszuYqz1ZLX3vgIq9MThNMAJ4sW5xw+eCid6RhEznm737PuR05mC9zbz/iRG8eFbXCt43K/5j/fPkFlxcfuXbBUBjVO6MoyZkU7a9n0A9t+4qP1ghPj+Maw5bRquNfMqY1iPfaEFFk2M5yrsFVFNXNiLqY9IW3pGdnkkXvzBbFXoC55ftsRzb0xpiQ5m1J0WKxyUnyUiuZAmD4k64pvRCHXKl0IfaWbK92mMYbVcsZqtaCuHdYZ6cSNFiKdUsQqk+dLbGXJSjPtdigNPoRiay7W2NF7jDaYhZZRlFOYWuNqh9or6MAtZ1RnC5Ynr3Hn0x8m+MD+vcfoXCS6GKyrMLOG+vyUlALTzR7UhCehZxprK5JPOL0kTQaVAzp7tJPNOvlBVAJJzJn20ROIYkaFkF2dNawWLeenCy5vt0w+Fgmy4oAtHrqyo3qnjFHfX6g8L1COfx+/sXxd6hs5P8998Q8lCj5GfCpxgkpjtJUATIo6IiWUrRi6icvbHWPJHTEk8eCpLQrHEENBGgVNq4zFuQp0ReXmuOYMdFXGfKoUI7FsAEBOZAI5e/F+AB5e3fJ/fPNbWGePcQRLBXV5AbmMGCPCEUiNQsUZJiuZpyixTTBaPHmUkiLVGItzNUorQvHUSCRyDphaY5eOXClSpSTioiBAB6fjw0gul/lnjofQwBJCF+W1ieeQbMA+ClFWLM2DFCo5lZA6uW4qJ+MZow8JvBw785wS3QSP1xkfVcnoeV5gZAUkzb5viCGzNDfUSlLeA0Vp9T3Liecly/fS8mQyjy7f5r/+l3/Ps6ePmZ/c4aOf+XFefekjnNQ1lhfjFn77QymFnc0Zbq7KmiwS9WmCCKa16Komh1E8Usi085bVaknwnn03sDy/w8XpA/SY6Z5cMT16ir+8YtsP3HQd2sDq7jn3Pv1DnH7oVXY31/j9Ht9Fdt2eZzdXPN2u2Y2TjNnIJI2M/pCGx7WW2WLG/GSBrQ6urQptxT/FOEHRJp1LsKCcazEQLL5YCk5XS1zfU00J3XshVaco6ejFG6qe31DVjn4a+PYY2TZzXrlzj2U7Q9eR1ekp9dkF2bUkXTEGeR3JjrhgGX1mnDwxB4yrcW6B0hW1nVBx+MCp1x+oSPmn//Sfvu/jv/t3/y737t3jN3/zN/kDf+APsF6v+Tt/5+/wq7/6q/zkT/4kAL/yK7/Cpz71Kf7jf/yPfP7zn+ef/bN/xpe+9CX+xb/4F9y/f58f+ZEf4a/8lb/Cn/2zf5a/+Bf/IlVVfd/Px5mKyjaYVAMHS+EGV89Q1sqmR5JQPz8x0qFrxLgpiaIjlROTDyTZctNNyXO/2/PZG0Xey4ajM6ihxyrpkiRzMhBI9DmxT5LvkLNm8uIU6AvCoXOmHj2zkNhrRxci71zf8sZ6x9nZy1hlcCEzjw5nK+pmxWyx4+b2lk3Xs+8nIhmrYWYdM9eyWi1YLRecnC6Zn52TDTx59xvs+4l5nNCzGWrV4BYtJyczmlo246Z2NHVDyOL5ESZJwuymkW038ORmQ9u0rLYdP36reWBbIHO93fKV/pqezI/fuce5qUnjJNbtxuD9yHYc6CbPnfmMl9qGfR+57fd8dH5KlRVpCmx2G6JWzKsKssLHyKpu0W5GSiP78YYudiivuNsseDIEgWGLpE4rsYi2JUr9YBd9LFa0LRtgOZTk+Gh18D8oRY4Wc7dUbpS5kELb2nFysmS5WlC3lRAQDXDQ+2uNqg2zZU3bzklpjt9vmboNSWl82Qi8LwXgsCd0DZV1TL2oKJy2VHUFwZC6iTQNpG2Lbirqkznu5VfJXQ+VJo2SYIqC8fIZfhzIWmHOZuh5S/I9sXCSlNXoKVFZK4W6Etg5lDGEzhmfNbvoyfYw8igYh9HMGsf9iyWPn63pulG4C0Yj7Er1AjVFvfDnQDB9viUcHiMFyvFbRb6oXkRjXoTzFRSicy68E6Vl40tIkRhjIUkbw64fefjsmn4csUpTK6iNZjFrOZk3JK0Z/IRP4ixrjHg4jGZJe3pKSK6E4nkqUzxJELVCyhJvgBIkIedUPJLkeX3r8SWVNfxvClK+IJNZ5JJZg0Jnuc/kHKFy0q1bixom8jgScwl+zMV4z1UYa0UJkzMqeXIewYGuNWrhiI0BI7lfGVBJoP5Dtg5FpaNyPubziJt0SS4uCEmOYv4WQyTEVAqViE8Jnw72+aIOsSpTO4ezYnUqjUEZOaRMyoon28xtByEVJ1Z1KE8FN5NRjGIMM3LONOkJjRY/H20Oa/DFI79/TfB+DRgIovb08k2+9N9/g7fefI+cM996621+9//+k3zqY5/j7nyO/f6qFEzTiDfNMBVTP402DlcJwTep4pUSAipn6sWci5deop4vGceJ2tacP7hP7Rryq6/gr3dM12um6zWv3tySfBAzuH3ANjMWrzRsnzxF7Uasssxsy52F4XSeGKOnjyN98kwx0IfAlBO1rpi1DYvZHG21+C+lJPJla7DOMIR4RC1jkGgG6xwxFI+VnLlY3aW6t2T77lfotx3WR3Tx3dFkTKpo/UjYbbnqt3z1duAJlifrLW/cf8Dp6ZLF3Vc4m5+iXEM/RW7WNxJO6BVZG6YQUGpCqQTOou0SlAMdUXnBMc/r+zz+L3FS1us1AOfn5wD85m/+Jt57/vAf/sPHx3zyk5/k9ddf59d//df5/Oc/z6//+q/z2c9+9n3jn5/+6Z/m537u5/it3/otfvRHf/S7fs84jozjePx4s9kAoJ2RFNiQSMWu21hR8yhjy40xY40mZcUQZf4X7ZyKCoeTm2aBojUUUpnn3tTzE9eZxbOMnybxE4nqeANVStjvoZBsxVAqYJz4jUxZuAlTEHa1jhnjE/MAqfHcqsR6u+etyyd86LWX0U4RnWKcJgyWWbNEGcdsPmO+2TBNAVLGpUxtDYt5zdmHLzh58BpGW6Kx7LcbqAx+u8MuHKcnS5rFHGUybWNAeZqmFnMrEsMw0u32dN1AP0l67OObW3yG2TDykYd77vSOvRkIxvE1v+GZ8vz4xX1eqRfQ++IEb5kUvLu+YvKBe+2cua2osuG633JCsUK2hvWu45n3XCxXVLoh1g5tG5xboqoKf/suO79m7wfmylEpi24EcdBKHRNmnTHY4sJojHBDpFCR+SxakYgoRMILqnSdRjaHgqIcg/K0/KkqS1MvuXP3nMXJnKapUTaDFlMtZQoPRlu00zSzBh8Sp699jKdf/c+SWZGE0Z5SwhjZBPfbDSiLNT3FpxZnLG29xE2K/lbRujmgcE1VunRxjNUo/DgShgkqQ64M9mLJVGcmv2Hc74kpipupzVgSqRLHWa3ccbM/WKNvo8frLHydooo6bApV5bhzscRo2HfD880hS9f53dOa5wiJOhQtL/JTXixQDo8uXAbpS18gAAhJgJxFLdDYihA8qEjSiRzBWkeMmWEYefjoKbfbHQqodWZuFYu64vz8jHsnLUGJXP3ZzVrMukzF29ee9/aamCspeolYA0rbY+FkbUXKhhhBKYMxmaHrIEe0ccQowZ5ffvcxRms+90aW2IqwZDarsdaUkYMETOYsN2uWDWnmUKMlj15kvz6WUEhNziPT5NHWgM2oRsPMQePAVShXHUnhuhTo8hYLd0ilggRFIalKKHMZ9cRyjksEhg+SbD6VGAEfoyinUvn+IKM5o6Fy5mjPUBmK/4bkCN10ibeeJcZwMIaT6yMB6qD4SoeiFHxaCcI4PcIygUI4Q9+xol48vrPOUAg5/v7F63zowx9mv92x2+3ZPHvEt77637l7fo+z9qNiuPl9DH1MVRXDvPTczNHIulSFOC7WS+YYSJgiWDdH2wrtA3Vlmc9baCvSrCWcnTDd7RjXa+K+F+JsSOSvvEluHGa/o+pHFrM5WSnqEBjixK7fE8fI6IOYs9mKyijqxQxTO7EWqGyJ+pCCsG4qLJY+T4KWBfESSmis0mQiKoOL8Pi/fIUP/4E/jP3Ij3Crvsp4+ZgpeB4NI9OY+XxQ2D6hux2P+sC3bkZus+Jms2acRj57+mNc3HmVZrHAR/C7PcoYUX1ZsTnICFqoqhVKz8imlaYxB4Lv/+cko+9x/C8XKSkl/tSf+lP8vt/3+/jhH/5hAB4/fkxVVZyenr7vsffv3+fx48fHx7xYoBy+fvja9zp+6Zd+ib/0l/7Sd39BabCS2kmBheUiDVgF2Wgm5Ql4UJmUAv24I5uJmZ6TqQWCL9+bckKlwN2p5/dt4fSpIu5H8BFtalDiMJqVI8VMjhMxekY8Q/TkHNE4gk+oShF8IkVwWmNjZK4M3kfGXYerNR2Ztx+9x6b7OOeLCtU2jHGPGjpMEG8XnTWLdklaGIZBFqFZLanvnrF4+XVo7rC9esTNw2/hx5GIoz6dU9k57clK0nmZhMyZMrUWZ5AQA2M/st/v6afAdpy4vLllNwaW7YyX3r7m9a06Xq/7caByFZ9frLivGhijGMK1FVjHuzdPqYxmphqsNZwtT9lt1rw17njgFsxsg6mWXI5PaBpLqx2uabGjws5nUNUY7bnpHjOlgNaKs2YOUTGFAaCorQ7IifyxzmKtxVgpVCpnsFZKTpVBBvZy4zSpdEnYo02+LKOi+DEaVxlWiznnd89YLmfYSou9uJGgskPnqhAXUI2mtpo8X3D66ke5fOtr0iWDECiTeAyYnBj6Pa5qxNJ9GvB+oqlqZmZGnWp2ocJlg1UWqx2mrQjDgMqK5L10uK2RjjrcEi5HQpqwM0lFZkpok7FOE5MjlayQLAAUGsOEpouerCwcwvsOnBMlSqPTkwWVM2x3vdwIj+XFcw/QQ/3xvCtSxzHQYYMGynucjxwCOQ7clAPdEUFq8nM7fW20jKqmIlEtzpv9OLHdD7x7+Yyr9VYKSzLLynDvZMnHPvoaq9OVyO9z4uLsDGcdu13Po/XAo03EMyOj0DmKWaNO+KhLm1KhtRWZOqBVhjSichRem6skeDQOpBT4H28/JsTEp159hX4MnKzmLBZzaldhlPCbDhlKSil05cAZ0kz4K5JSnIpqw5KpSNagjdy/cK7EOsgaPSTuHq4HlDRFSie0MuV9Esv7nGIJKSzxMzk9JyLHxBQDU4gMwTMFKVK8F4VfyFpUZ05TFf8gaxSVMYD8nP0Q+fpl5KY3BZGWQjaJ/Wm5H+eSon0YrUNSK3wasdNDyKGssed717GYfX6j/+5bP4q7d17lJz7/h7l77y4315dEPePBa5/h3sldqt9uivS9Di0Ffc7C3zElYkJUbKKisVrM9FS2mFxThxn1fEnGkIcJq0vUQtIYp6C1oBpMbYhdT5pE/eP7PUw91hqq1ZKQM60fMJVFRwgmMFWZ3iv80NP5CCpTJxnJxZxpbIVVWUIPSdRG/IWFFZ0JXorQXEZyhz9+jLx3uWH+7W/x6uf/IEnPuZ4/ZOr39DfPeHd9TRgUEx5D4N+sJ66CIWvoes/1ZotuV8xPzrGVY9p3Ip2OGTikpHu0SiLDdqeoaklWViIBhh1D1/3/zyfli1/8Iv/jf/wP/t2/+3f/qz/i+z7+3J/7c/ziL/7i8ePNZsNrr70mxjXKSsYAcgsNMRBNwlFjskP5A5QFtXJUGFywKBNROqKSFqMjAiZ67oaRn7gJnH6jh10kbbcYVYObkz0iURs68rQnhI6UZMzTRU9dGbIvoX0ZCTrLiTppmtoxi4bBD/ghMRIZXeb2ds17jx9z8bEP4ypLPjHEZkT1mdTJgpuSJwYJhfI506837KeB/T6i8tsMw5pu3Mrs3Xnmpwvqpi6y2Rkmz+WGFQY04ivT957RBzo/sd73bHYjV7uO5XzGyW3Px58l6mDIBKmSa8P9KXF31kBSBKexSIcekqBNVYS5dZxXc/IwMgw9WwcfX66YtXd5tu8Y/MjcGFzhOpjZDDV3cLIk+y2baWLuFnQhk63Gp+eyVClEVUFQbBn5CJLyfNyjS8AWaFWyYBWFMFtIi+rATylx91oKHucsq+WCO3fPOT1b0cwajFVkndBWIGCULnYshhKOjkFShpcPXqHbbfCXjxgTou5IGe3qwoMweD+RlRgFdt2e6+tb8TVIChsUVRDvFKdMkTCK03BWGj2vSY0jt4bpckTZyMnFGasWQojoUGGbRsiWhU+StUE5cf1UpmabPFErCSMsSapH9r+SDnWxaDlbzUQ9Ezw09YuASXlPn5NjZct4YUd4AUkR07jnwx/5XZoXLE6PjyUf0luzRMgPPZMfyekQ2ZBZ73oeXz7j2c2aKUWcUqway4OzUz76xivcuXtBQhEnj9WWtorE2jKOlkddpI8VEgUuCFKKsuFmDUrL3D5E2fBzToQUyRGUmWERO35XQQyW6DtiCnz53ad0U+ATL41c9CecT+dcnKyY1zVZZ0H2Uib5KN48hfeQS+BbzrmcCyUFtTYlNFJGXBqKY9fzMYrAvmUMpVJxlQ2FWCyvKfhAKEFwpHyUcgsHRa7/0Qe8D0w+iOGdj4QovjdWw6JxGC1Ff11b0MJ3mELi21eB99YSoZCzGE2K4kcQSnFtFR5LKkhM1okcDdrdI+QJv39P7BZ4vmaeL6HfvsqQ+4DjlZc+wZ3zVximgZBh3p7SVhXqO9fk73Bk4CCHP9wzpLGLhNGLkdsh/ypFTF2RkmQRhQnS5GEmTVTMsYRjRkylQVUoM5EM2GpBmqy4Uo891WTJdkm1aNBDR+xrxm4Hm4j3IyWCiXHy9NPEMHnqJmErGRdrLY3Z5CV0MkUhmedyn0ul2DJZsd8PhMlz+eabvPKZz3HnpY+gZheYrsefPOX6zd/imzfP2E+eMSveDIKYudKQVO2K2fICZSpGH+kGzzB2JatNiLrTOBBjQts5up6jbC1Gif3A9uYh3fpSRokf4PhfKlJ+/ud/nl/7tV/j3/7bf8urr756/PyDBw+Yponb29v3oSlPnjzhwYMHx8f8p//0n9738548eXL82vc66rqmruvv+rxBNidMmY+qknMQR5JKOBVRydDqSu6LOqIBpwoRsvBPco6oPPBy8PyeDZy9C2kXST6jzQybK3KEeL1GdTcov2eKA2OKDAS2yeN1wmlL9JLjEnIk+CTdag2t0sxHxcYapiGxCJm9zWzHiYeXl3zmo2/IpltbgtNQe3QTsbcZOrFRpjL4YaD3E7fDmnV/i1Gafr8nMGFrx4NXX6Kdr6hcxOgK5yrJLEJmhEbXTH6gH/cMo1iJd0PkdtdTVTVVTDx4Z81FcKASF4sFTlke3655/WRFzokxCOxt6wptK9abLcF7lnXNxeyE7Tgwx/CuH7hjlyxpydryrfQerdNYDLUVg7K8zFTtHarFnOG9J0wesnPkWU0AGD2qqG506ci0LhLi4hIrFtCmoCSCROQymjgYs+kDUbac80Oq6IFkobQE0Z2cLDm/WLE8mVM3MkfNhZxrjEEM34Asxk8ShCdZHmHoOH/lwwzdjnF9S8gGaxyVNkV1oMk6ow3YylG1NUnBOE3s+5FhnJj6kTh5cszYQ4aItbimQveWCoeNBldb5rYFmwi+IyZPVS/RtGRbkbQXB0pn0daiTMWEZYwDGUm5VkiR+SKtRGvNrG24c75kGMORVyNNWYHvy83/QENR311ryCCnjFspG9fxIQcDuFy+4Yi6yPeRIfqJrtsxToEpZNa7Hbt+YL1Z8+x2Qx8CtVasGsf9izM+/kNvcHp2ilKKWKzGtZICoW4qbq4HLveGlJyMt3KW+4FSaOsISRxqlc4YXeFjgGSOHbYUi3153yLG1qAast+RU89bT67YDROv3bvgdR8gZ+zZmRBkC/eCY+KUeh4Cp0r4pZHsKVFviGvskWBYJJ1yrtRzG0N1KALFxZWClEQvhnch+sJFKVk6QZCTyQeGUqBMk0QJjH7CT4kQwSdYLhyrRYMzqgQyyugnlfH2w1vP15/BGEu1VAwWU2HLqjI6OTSPOWViQVokyqLCNq+iwkjK2+M9/UU05cXje5UbqjQebXtC25y87/Pf73HA8nIZX+UYUHVzXNhhnAjBY+oGHb3c33Ey/p86WTdZOHMpStuSSxq5KjC0rlqS1aQplDR0TYwRNoHsLWaxIrmadJWZxo4hBnyS1qzSkrvlQ6Dve/b9QN1UzN0MoxW2ksYrjVKg+hifF6bkYiMgKPqTzY46errtnmdf+i987Pe/RL73Cmocmdo5p7s1j29ueHsKTEosBO47oVXkxRkf+eRPMFteMEZNP4xsu5HNZs1+t2XoR/p+z363ZvABUycRl5hA9CP7q7fYPP0G0zD9/9bMLefML/zCL/AP/+E/5F//63/NG2+88b6v/9iP/RjOOf7lv/yX/MzP/AwAX/3qV3n77bf5whe+AMAXvvAF/upf/as8ffqUe/fuAfDP//k/Z7Va8elPf/oDPXmd5KLPRhGMwJtWSVJpTiLdMhrZXHQmqIgnkkykKt2U1x5L4PWc+T2D4fTdCd1HgcPDAG5JShVq6KHvidMezwTa4n3PmCKdDzgnpD6fElZpiBByLmmkCuM1Llvu4NjYxOQjlQ5Em3n07JoUE04ZnLPUlWWcDPu8Y1Pv2PVbhm4k+kiYMjGKH8t2VFgFOEczW7I8mTFvK6xOVNqinJhqYYsKQIm50AHy7caJfee53nRkZzhtGqqvPeZjo8Upxf3lkllV8fVnV9TWUAM5ZmZ1ywRoa0go+qlj2cxY1Q1919NazcPdDU8I/Fh1QW0co7+m6QZm2lDrCmdrstWcnN/F3HmZ3HXs1ze4+QmPhhu2NtJGy9JYrJe8kkPmCsg44EDis1bSSM0BEseUROLSTannIz3FoXB53rEdihxXFxv8s6UYuFWamLOMBMuoJ2f1fOgRo7gTl5+jUyKEwNnLH2YcvsLQ9yhTQdNSO4eKiRQnMJJz4eqKWQhiWjaOjMMoLr399Lw4KPwDGWuJz09dWWZtzXzelNFWJAaFcel58WZErmicJSuDqU8Yp4kitpcbqaIQLc3zXUCBqxwv3TvlzYfPGIfhhRlyfqFQKd9SCg1RfRy+VjrSMup5vq2WX/EC0sKL/1X6+Jn9fuDhe5es9x3rvmO368gpMXnPmCLOWpZtw4OLU37oox/m4t4dQkzEA5fCAEjQmk+Gb14GxtAAJTQ2S8cLBdQRF4+C4iTAkZWWJPQc8NNIDJMEOAJZNWi3ojInxOmWFG+52uzZT4H9OKEyNE1N5ZbUVsj5ztoyUhKS/yHwTSkpRGV/V0LcTYUornLhznD8V9779793OYuSTALfvAQmHr1S0hEtGXygn7w4Gk+SezSMI1MpUDCa+bzl4mRBVelybqOss8Idue0TX71M7CdTEB0hdafi5idL5GCyKNyOSC4eJAcCPKBnNKsPo5+998Lr+o4lcVh35avfe/DzHd/4QY5iLpail5FkikTvQRtyBGNrtHXH4STayYJxoFVN3k+M3RZlHHWUJODDaJJSrIiiXRCogCdqCNNEP+zoiBilmIaR7a5js9+z2Xf040gKqZjayffGZPCTKIqSkgat0RplhapAkpFdCOKeHr0nJ7n3dZPncr/njrb4lNleXjE8/ArLj32eUK+4jRlbz9HGEibPLHvuVZq2rQh33uD+5/4ffOzjn8TNGrppYLObeHb1jKeP36bf78gR9l3H7e0N4+Sx9Za63WHsEj8N7K7eZtpfEeMBuv3+jw9UpHzxi1/kV3/1V/lH/+gfsVwujxySk5MT2rbl5OSEP/kn/yS/+Iu/yPn5OavVil/4hV/gC1/4Ap///OcB+Kmf+ik+/elP88f+2B/jb/yNv8Hjx4/5C3/hL/DFL37xe6Il/7NDa43NlqTE9TGphNGGVruSuihS1KQSilySRjMhe5KJBB2ps+Ij1vG/u7u0l7co74k+EqcJTINrT0gjhN0N+ImQEkOe2BdviilEVATjZI4p5l2i8Bi8JyBkxTgprLUsQ+DUaPYh0XiNzZFnt1t248RdVYtfiM4s5jOqekYzP+H0zkC/37Pfbem7QVjdiCKgNg7tDFVlaeuaprbUzmKOZlOO5DPWQPSafhjEWyBEhsnThUhQifP5kni55oc3ibvKsWgraq15b9cx+cRLyxlWSTBhP020C7FGHro9J8sl474jDRPzqubh/oYbAh9xS05cQ11ZNreXzLOGBHXlGIHz1Qm2PcMYy9Rdk5xhchUjmm6K+CGxUE1Z04KgCCJC2QeLT4ouEkwlah1dSLHqhc306Ch7kJYq+X9xUUFrhXOGxcmMxXJOVTtpfGW8XjaIg+GY/KyUopjLCbEJpRIqTFRVxdlLrxMevslm8lTKwHxBW9XkcSAMvSAfLlFFTwwe2hkk2WSm4q6aEcXEAeEwWkuIlzG0TUPdtoUjkcQnw1rJ9wgBZTTG1ihtiEFRNwuc6smxO5p65YNFbE4v8HMU1jpOz1bYJ1fs93t5ncX47Gi+xgHW/15bR0EL8gtd7XEneTHd9vmXDi4qB/Ltw6fPYOiPiFUozqQxZ7TRnCxm3Dk94bWX73N6ujrQXohQzr2AmCllHt4OPFknUnagZMav0JBkQ82qQpuWHEcykRQNytRoK2q0TNl4ceK9oh3GnaB0I4m5xhFGTQpXjFPgrSdXhKDFVqCtadsKpxTojMlKil0l77N1okQ7jH9icQyVN1iaEakmiwhcqVJgFhSlKDNiDPgYmbx0/gffpBylC598ZPSeYQoM08Q4+tL9jkwhEzAoozlfNNy/uxLzSyvBgMZUUIzdxpD5+tPAs50qCESU4jSLTF18hwSFOEjLU1FxyWhRkDKtpMvXZoE2zfe8v3933ZG/52f/Lx050T1+m9Tv5GOtSMmDcWC1WMKTi3NvlIIgZbS2gmD4RH1+Rp4C49RJk5yTcI1iQFeuuAgYUtyjVEYl8MPA5AWlTVnTbdfsh47dIMabfhqFL1WyxLSWBOdMZixCDqUEgdOq2OqHyOT9oW8ghYAzDpUUb18+o4+RaB1BZYZx5ObNrzE7uUt197OobCRyRRvOTeJ1rbl7co+b13+M+rM/ycuvv0JTG/o4sb3tuXl2yZOHb/Lw3W8TpgnnKrGx6PeSyD3t8eMe52ZynYUBawyuXJsf5PhARcrf/tt/G4A/9If+0Ps+/yu/8iv8iT/xJwD4m3/zb6K15md+5mfeZ+Z2OIwx/Nqv/Ro/93M/xxe+8AXm8zk/+7M/y1/+y3/5gz1zEOhTG2w2mCKVzFoJ2a1kReQsRLKoIijJI7DIRafTxIdcy+9rzpm/7WE9QoAcAlpbmJ2hTAObG9TQkcMenzo6P7L3IyEnhhiojcElQz8VUzAD4xgYo3TDROhrmRtXwXBqHDcqspUxJjfdnqc3V3zspXNBBBRUxjBvHAtnmZqGcTYnXtwlRiRVM47YqpaAKaeLE6suxjk1lbNys9agrSZHMaaicEgyEkMec+ZsMScMPQ/euuGNqWJmDYu2ZuMjj7cbXl+uWDYNFklUnbWt7ABaUc3m5GHCZwVGMUwjOkGL4eVmgfUZnGcXdjTW4pXCzmZkKmxdka0lpZF+e83VsOdtM3Dtd3Qh8vp8yak6YU6A/aGfygUi18+RE62P0uLD/6UYObjR5iOiIl2wOl7IspOKLXxVO5ydUxcb/KiEFS9UY33cTCGXaPoSQqcy2pbnYSxjt8FVlouXXiU9fshmu8U4izWW+XxJ3QpHKBMxIi0hx5HQd0zjQIjijxFTkITaw9PUIm21ztIsTzGuFg7WOGCrGlVXxCjeB8Y4OcepQuWEtZqZW3G7vy5O9zLD1seCIhe/EyEmzxZz2rZm3/WEGI6KDnEcLXeZY0pd+RplZKEOIPoLhd3hki3FyGEkdChmjlVLGR9thgGrMo021KacXyUjudVyyd2LU166e8H5nXO0dceRgiJL158p1uOBrz3a0U/Pi9OMFo4RmpyU2OUfx1SanA1aWZQSr4dUAi4pIW4oVdSDTp50BGMblFqglJjHvXeT+G/fvuRkPmPRNtSVGCeKXYuS9N8imVdWRpFkxBYhRUAiHHWx9z2kcx/KvFRQksP4xfvAOI5M3otcvZBAQ4wyRgyJYZwYfaTvB7p+YhgmfISExtjM3bMZr9xbCWpo5PeaUpySZB2+eeN58zoSc/EYShKwmEHURQUdOlKPlEQsqGI7fPRQKXkyKb44K/zO4zvL2P/vHilGhje/Sffl/4Y+O0O7mpwF5cg+YGdzUg6CGHtx70VF/DhSVXWR0xtMawkxMWz3OFeJP4mVUE98JCcro6BaitCQE1FlklU4NyckGIaRfdfRDQPDNAqvJEn+FFoV7p0l58Q0jcWFFmwn48EQhIeSsnCPchbbBZUVfpp4tN6L6kopAqJG625uMLffRLFA5yVpStS2ZrV6hdnJh+he/xHsxz/Hyb1TQoarbc9ufcX26bfZXH2T9fU7jPudFJslGsQo6etCTPihR2OkuE/5iGR/0OMDj3t+p6NpGn75l3+ZX/7lX/5tH/OhD32If/JP/skH+dXf84iI6VDRWBZzpIzSQmrMuXRNKaMTZK1EqaHBqsxrzvF7lxcsn2jSdS8pmFWDOmtRwaKzg3WPvr0B//9p781jbMvuu97PGvZw5pruPHTfHtxtpzuOh9jpDARkCxMswiSeiExkhgcKOCIBFBKIAn+gEAskJEAQBonwB0n8iJQEiALIzw5J/HA8tN22u+1ut3u6fYe6Qw1n3nuv6f2x1j5Vt+0k9nu229c5P6t8u+rsOrXP2nuv9Vu/33eYM/MTqsxig8A06UYIgl5WJsdQi5IC13gWdROdKFXEMGS1Q2nwXjCUGZvGcIAlFxJrHJevX+ex1z6ECh4hNEpAoTRZqdDGkmc6iS9ZCh3ASzKtyXVGJrOoyaIEpqojUNiBKjXSeTweL2Jf0tRN8pQR1NaSa00uFf65XR6zHQZKMex1MF5wZTxlkJX0s5xFY2OVQCm8Uqi8IMs7KJVhlnNq39DNOyyaKdNg2CwHCAvdXkltJ5QEZlVDUZRkQhNUFh+0UR9XTbk13WffLLnNnEXWIKVmc3ObfnMaGQws0gLXLiapDSJTr16kZEXIo53cquMsWt3TCE5sqZttf1wGidKKvMhRQpPlGagjnY4WJBpL2amnLiJOKJbo4+QrM4V3kiLvUE/GoDQ7Z88Trl1l9/I1wmmLPrFDWZZomaOzHDxJyEviTU09m+AJWGewpkpiXjE5CBA9U6RAZVnywZAU3T4yz3EBQm3RMgOhsC4nU4KiVARXkw9ORKBfzHjSji+kybaVvZcICWWRMxr0WCxi0pQLnaoux+aAVJGIiUk7/Rztdu/4WdpVtzLqIFaGaUfvd/wdApkIZBK0TDtJLcmLgq2NAWd2ttja3KAo8kTVjpWGVjvHOYdzjt1JxbVDgw9ZZMwQlWTxDu9BhMS+wafkKlpMaOWSwWj0qQlSx2QyxF201BkhSITwYKPrrMo6SJGulx9wZQ8+8dwNumVBcWKLLhon40Qu2huZkPAnCXSaMB2ka9OW+tsWSUi+OzFJSdRhY6mbhuVyiXNRy8N7R2M9TRMrpk2yEVhUDfN5RWM8QcQEudsrOHdiwNZGLxrCEVLblCgq5mMV5frU87lrNVUjESrhHUSbwLtor5CcyKG9p8TqvgnHq2khisuF1Bb6/ePLW96+GNPypVEuIQTstWssn/gU88WU/sYWSsiVWrVN7CihFMFHheMAOGOol0ukLtAyQ3Sifop1FuMtwonUIBOY5RwvBV7ImMhpgVk2VHVF1SwwWCQK6z3LpmK6XDBfLjC2SUlcnLOkEFELRSUwcgBjDdJIGmPI0rlZ77DJmynpM+K8Z3++YF4b+jrKL1gC3lrqumG+f40tkbPrzlLVHp+fYrr5Wq6cex35qVP0leZwPIamppoe0Oy/yPzgOZbzm5hqQSbi/KWVxlgb7RJ8wkgJUEIiZU7Z6dEsPbZpvqzreDzuau8e4xqMtfFBkAJSv1jgUQl05n0gCI8OAhl0fCiU4XSh+O6ds2zclIjDJco4QreLLwcwC6hcw3hBNr5NtdyjDmPqUmFMznx6iFMBFaCbFQQClYu7bqUl46QcaIkyyC6A03FnZCVkHkY6Y7M2LEykDz738jVqEyh0O5EGcA6dJUaJ98gk6CVDnFx1lpHnOVoKcqHpZIJaSxobe6vCRFlwCThrMKbCWk9lPOPFHOscG/0ee1ev8YcOBNtO0et18FnGc7dvM6sNw05OXVvKomTYK6MGDQpZlkidc7B/iDMN/W6PZrbAWceGKthQBb4J5Lni1sEBU2vxCPr9IT4IsjLD9ruUvZzJ4ZSpa9jPDfPC0DSeneGIM+cfZHh7RB4O4Tap5H4sWU46FEqrBKJtwbWs5iRPAuytkBHphbZ9kwouUkYVWCVDLOmSwJUIWj2PFo8SlEdknqLIgLb9EVYASBk0/cGAg4MDGms4cfoMUkpu37iBc46Tp07Q6ZTQJKO2pHgrQ7xvhQdna4T3BGdoTB19pwirCc9ZDckzQ+go+e4aT56XSCWpjUQR9RuUkARb4aWi6G5gl4e4lLTGJekYfyqNXZ5lbI76TOcLjHUUWZaObFtm8TdWvxs5zrTdtHZcRFu1SkeLlTNhcvVpF+pX1ID7nYITwz64WOVCxHZpv9dle2PExnBAUbZaJykFVRolU+XUWerG8uyNBfM6OtoKGSAk7Im3SKkIIfXzAaEyvI3MFmuX+BAxSFqXCNnB+xoIKN3BC41sQfcisYFwIDVKeIKXeJHz7K5Bi5foPKo4vTGi1PF1EULckHiZZiy/Sk4AgnMr8COElT6QTy0eb+OCVFvLsq6ZTCZUVUWhIu29Ni6CY+towlg1ZpWc2ABCaIoi48RWj9M7A7plHltkqfWnZBQA1FLiPNxeGD718pJJJVdVLx98sgrxeC+SyJtI155V9VLKiAHi2PMbL1tIIPTj9PQ2vlSz53dHphwd87v99rFjQsAvFiw++1n2b97CaM+AqM3jCQTlkMFjbQ06j5s7Y6P2jIuCbEIrkCpq2oiIz1N5hg0BpTRmPqPC4FyUkbCVAy2pakNTLVkuZtTOkAuoG4sPDUJG89tYLWal2SJFdPJWKt2rIprKGmej9Lw1OBd1r7z3ONNEEHhW0NSGq/uH8TOL6JWktEKFCKbev3KDfpB0FjfohiHN9qNw4mEWnR7L2ZTlbJ/cTJD1IWF5Aze/gm0O0N6SKRFJKUpHgLaNVcI8y9GJ1VNmOS6I1IJ0SWH4K4u7Oklp9SaUkJBpvJQoJASBIsoECxGQBBrdrFghPQlv2dzkpOkjFwtEbQha4btD3MzC4T5YTXPjBovZmDrz1KKkqRum1W2s9AgbBcUkmkVVYb1HJdOtypgVPXUBlFnGMNNR7E0rEIG+l5xWOTPjKfBcubXHS7tXeeTiWYQPOC+xzqKliFRrWh0CGbUWGo/0FkK8SURWooMlKE3A4ZwgYAlO44LFuaiAWtUNiybqrWz0+hwc7vPI5YoH6pxOUbIIgif2bjE7nHNPd8BWv8Nm0SUjTn5KShrrCc5iGsPSzNFCMVvM6RUZjakZdgeYypPrDOcN02qJlYHN/pA869B40JlCnjxJPTtkYhbMCjjMHHPt6WYFO5vbDLfPIKqK+lYU7xMyydmnKUgm2qZqKypC4qWIXhccb0WkG0aEtFtOU9gxvIRQEcXeJjhH1YE27Y3HBwUqU2wOz3B6dAExn8YJwIcECpSARRAYDvrs3brN/OCA0dYWmZbs7+1xdTnn5KkdBr0eEgmZwWuF8xGfEk3/4kLrbIMQ0FgDPu6YvBQErdF5Dy0UsvFoXZIXPYQQzGcLhA/0+mVqW8Qd+MR6OhsnacwCvFnRXGO0TZg4lplWDId9DsYTmsZAtwvBtVv9o4ew3R2vdsniDibPHYcF0jU5PlG1dZNwtNsOMOx2OX9yJ+LDPNTGEAQMB302R0PysowKskKlMrxEyxC9ihLT5eZ4yQu3KjwZUiYMUfpr0Y8nS9W5tp0FQeYEb3DWIXVnhetRSqJ8WIk/SlcjlEfqQFQaUAiVJSZMVKsNRB+Tp16+iRaWt33ra9nq92OLTbRVwdjGCsIfGU6ncYkb4liRwLdVlVjdaYyjsYZ5XXNjb4/ZbEYmYSEEVWNYVhFguUwMLRfAuZA8bjI2Rl3uObPBoFsmkHHMj1TS1bGhvWqKmwvH4y/OuTW2WJ/ArylRDT6JYQqFT9cguvmqo+eLkOi8xPsnqQhLvjg1eeV98ZVEgJXmyuocv9R7hED1/IvcfvllppMJIY/VL6kzYr3SY61DpPdyIQpW1vMKJwLdQRdP3BBLWSCVjxiwQmOWy9gyEiI6zIfoJm2cw1bRG265nFMZi0BSL2qqpk5WDFHdVxLtY3zaFCmtkxqxSAmhJ1OxWtpYT+Ycy0XFclnhncM2FqUzrA1MZjOWy4YsqWu74OkpTaFkNCi0cHBjHyk6vF46vtB/Hbdkzd6tW9TjK3TCAX25oAgVdT1G+oYyU+nZEwQpCUJSOxshBz5QZAUIjfEGISSmqTGmitYz/kslpL933N1JSjDY0OBliceCBE2eds0hll69x4VmlaGWWeC+3oB71BZibAnLimAM6IJQWWSzxOkcN5vhpaLOS4KvkbYi1HOaOkqF97IcUSd9llYqXQkOqyp6+MhAj5xcBO49cwlnAi/uv8RQZvjKoAvJUOWcCJZhcLxkLB/73DO87uJFtA94G9lIcd2IGbbzIvHgo7y58wKdHnXnGhTJzTWYtNlREBwhCGrbUDeeZWUwjaWTd5gv51x4fsLrpxqlS67ljiebKeO64uF+jzOdDj2pUM7hsgyvc+aNhUJTDEZMbl7DSIe0MByOKGygFg3SCYTU5IMh4/ENpBZkStIpi1hmFQK5uYkYbLC49hy+I6m8YqqgUB0ujna4v/sgXLvF7OU96vHhCstACLFnniZAtaqIiNQDj23A5GQCpAkrfe9JRRQ4SkaIv0eb3KTFQ0iRqloxGZI6Y9Adcnr7Ihd3LiAWM0y9RKTFO7ahovKxkNEjaDQYMB4fUh2O0UWXk6dy6smYyd5t6tkEETxFkZMlEKWpK6yJk1Zj6ihlHuGTICK1XagMmXXIXUZmNZ2yROkcZxrm40MEIQrRpeqBEHGx++yVMWcvnmZjeJLp4TWsVLRqpW1Hph01mUwWpZCYxqzAyy01s22ZtYlJvDSBI/zPsR21aHfBx6soRxUWsfrjbb8Dyjxn1OtSW0fdJAo+kkGvR1HkUU4dwHmEUEiRNE6Cx1lDXdU8c33CeBEFuaSE4KN+jrMmVU983AW6VE4LqSyfALU4lzxxPME3MUlTSfMkSKS3NM0c5yK2JGDT+SuyLMfYyCjLdJenXr5GL8v4roceQPYHRAhdQKYSOUS4C68AFvrUGgkiAohdKunXxjBZznnp2i4HkykCnxh70YS0MQ5jDD5Emm6mdKqe5JzcGXDx9AbdTh4XjRCrgFILnItVEQG4ILkybfj4cxNu7MdER8KxBCQmm1K21zm10hL5WKZzjpI46ZoLEK1MRuDO9mH7UP6uy1hbvftdfiO1QTyRDfelIoSAm86ZXb7MZDxhfnCAl1XUNZGx0uB91PFxpjkC5GdZ1HrRmmZZUXtL2eniG4kOHi8CqsxjklBVMVlNSucoSTCLtBYJgsiQocH6KLkvhCDTml63h/Mx4TDWYH3sAeo8S+flk9aNRYhAKSWBHGs9i7rGOkfdNPH5VApXG1zdUApBJYDgMcaQh0C3iAq7VeNx9ZTeZoczskIvn8Q3u9TjW/QW1+mrhm4ex2XpLCLhv4SPJocIjxCRyWSNgSDIVYYXUcHZWU9jGkSIys1KHW0yv9y4q5MUiYagYm/ZqiS3HYGOMjmYemcJLmapQge2tOLbTpxGzAWiMcQFTuLHY/IajMlQ8wV+MQffkIVAg6CuptRiico1mS/InSAIR+MsNR5yTeUsV9WSTScZyIJM5hS5pq+6LJxluxywqKs4UdYeoT2n8w4XK8euNDzxwmXeOZtxaquPtBYXOaIEGfEuXkQpfueiA2dQEqolLmhCFtUwQ4g9v5AEc2wwmMbE/rSxmABeSCbTOcNnb/Kt45wqtzyZT7g2rxFTw4NFh/vyHj2ZUWY5QSiC0sydRwcYDkbMJgfU3lGONlGLOarTxUxrgpJYH+j0+1gJ+/M9ag1FlpPJkqYJuF5OceE1qMUcm2nqeskic/R0wT2nz/Pg+bew/bkbhKuXEbamkK29XVr4/PHlLe3o0vexFRZFwdrUJKR7od2/x2RCrACkUWwq7vBCOFaqTjbtUij63U3On7jEma3TlGWH0Cypm1lKEWXSTIlYD6kU3sYHUWeSXqdEKcVkOiHokny0g53uMTs4YFlXCBGwwZPJiKOyzsd71wekjODvsGLVSIqix2BjQNnrkZd9sk6HxXif5eEeeZnT6XXRScdcpM8qg2NyeEi90eVtZ85hlhOWzTRildpCetJ2EFIgQpTI73Z7LKoGH5Jq6FFjiKRqR6ttEkGp4miQiT8jHE1Kqwkqlfvba7dqHqVKjbGGg+mMxjici6y9zY0Bw0EXKWWqXkXVY5lyDO8jINBbw83xkudvzPFeE2R6ZpQihASC9RHkDAGVZRBAyiwyiKQk+GTlEGK7ZHUveRC6jDUG4cnKIcY4rF2sKk1SlqA6CO/JteQtb3wUKRo+/cnHUcAb77nIztYmOtdIotBgK6zXJikxEUg4lXR9nI+JR+0ch7MJn3vhJXb3x0BgXtXUjY1AVo4o91plaJ2RFRmbwz4XzozYHpUUmcZav2KtQWwhuMT8qh28sF/xqecPGc98xDt5j5CJmp2YdO21a8v4EauuY2IVIHixgjKtrnHcPiV20h1k6qN763eLENNqlyqX6o6EDhrXYJ2kk2leKTobAuADzZWrTA/2aKYzlrf3MLLG1RVHzMAIzI90MYvIiljNVjr9nYCSmnqxwGYuerkZF5mGRQSq17MFebdHU1WxdRdcnGOI7xmEIO8OCd6xtBMyLcmlQktFURSRzWdNrE7lSXzQxefTeUdVRdBukZdYrTAuYlGMdahMY02NqZYUSrDTK6icw4VA41vjwdj22z2MTKJ7g6I/3ORsfkBHVdzXa6CTI4XGEJg5x0xG3aC5jVCGWO+NXj3LuqZuGrKsmzTLYnssSioscd7Fz56KBV9J3NVJikKiUKmCKFYCXZkQ0QUThU0ATeMblHQ8tDFkw+aIeY1wLjL7pCQ4h7FQL+qIkO528BNLKHLs4T5eWGoX0KqkQGGWFUooamEwUmCAw6ah5xRdXeK1opGC8/0dCjFgWd9Amrj7rElU6SDJc80Fb3nJWa5NDvnwpz/L93/vd5KJiCsxwUbdBAeOBIyycTEUJFMvEVC0xnae4Hx6vurYn0+06tr6WP6tLf1r+3yXGzIVU54sDthfWFg0vC7vcTHvkIeoPzIxjkk9wwXJcGuDweYOi8ZQdDp4a8FZ+uWALO8zw+CEwkjBVqdkMd1lKQwz6+mWPRAKGwJ64wSZVDT1mKLT4+DZT9PpeC4NRrxO38/m/Axib5e5q7C6ImQpvQitYml7B4TVrn6FaUjzgAisKisiJGSJjAcEcbTAxhJ6PC5IkcY56s8IGVVfT21c4NKZB+l3uyCjpoGdHODnU1SrnBpWp4jUCmlUVHsNREExPJ08Y1nNmUzHoEtUZ4RfGqaTQ6bzWXKkjtRRBAQfYq9bKbTO6HQjzb873Ka3eQahNPV4zOTaiwThKcsuRZ6h9ZHyblsixhmKxnF9f4a8dJoTp+9h96WnMMFH3xhxdP6xWCJQWjEadFhWkdLaMj5WInh3JCzpX45E2uIliUmQaKnjv0sZP6RqyuoyBocSITJ7ioJ+vxu9qIp85WospUpJWAKTuqhTU5uG52/OmcxFFOKTAoRCiMTGSriB9pxD+vve1wlDIwlCxU1CkCDzeI/5uADIrIxA3WDjoiwSiF7Gd4sWGhIhPcNRhwcfvEinzJnO53z8059kbzzm9ffew/nTp+nkGVqplaieSFVZmazUvRC45L/TWMuiqdi9fZsnnn2O63sHyRSxjWSeKSS5ztA6p5sXbI46nDs5YmvUod8tkVLgU1UjFq9ald/4dVB5Pnt9xnNXp9SNjvNjaBITSaUEJDHaVl1CueoEtpTZ2AJNZ3a8aklkXqljycvvubdOVcqYnHgWy5qDyZhO2affK8l13CpY65nN53iihk4u1SveOOD2DqivXKaaz2iqKlJ/3ZxmWaVEtbUf0JEJ2dQEJGhNtz9gsZihBDhjVzhIVzmwDpUpjPPovINQdWRAxsFA6RxrTGzhIsg6AwixKqKEIljQumDQ22BRzSAk3ycJXgiausaYBusiItYTgct10+C8pG4iq6vIopZKs1ygtSJLqtellMy9xwFTG7VyIDBvGm5NlmAdF0ygqGuKQZ+TnQ7kGufjBrfwoIxnZhfkWQZSUvvomL0wntmypjFRWLByFcZbrI34QmOiwrZMlaqvtI13VycpUVNErkp9KzqciJOuEAKfZJyllOxozWv72zAziKpB2sRwsC42YbMOouOgl6FmS1RQLKcHNNRUUqHJyYLANg1KKWpnmYiGOY55Ew0QT+gRRZbTLBr6oqS/uUmYG8KiZqRLekXGuF4ybZY0MiCWgi2R8UbZx7sFjz/9Od708AM8ePZE7D+7aBTlXBSGa1xDSL4xQmuE1FgLmTJY4g7Yuijn7Z3HGseycUxry7SqubW/z/7nL/P2w4xglnxquc+NwpMtLQ+LHudVSe4FjRJM6iY9dJqN0QYbG5uExiNkYLZccNjMuXT2PvBdmO0xmx5QW0dv1CfrSg5vjJnKgFYZ3bxH7QJ0crKTJxGzPby07D35OeTeHhujAedUwfCpK6idPj4scN0M8+A9iOFDiF94Mi24YfUlxJEYVrvg+AAyxHE4AtgefQVWnYiUqCQ2gohtGi88aEFR9tganuDkiXs4vXkySYN75rMKNz8gTA9RzqaJOeFRUtLjfOxRY9o/HnUhykIjRUnwSw4ObtNYRxAZ+WCHrixYzGcYZyL4V0dPoqLbiwDpokumNR2tYWkYP/c0Qlh0oSl6A4qyJMuzpBsjoo5C6rDjPcFYNlXghVkF3rK9vYNd3sv+7ctYEfVFkpAupIROKkm/3+X2wSJ6Rqnj04U8Nu5tHCUtR0ljWrVWu6eYcK4WrHSNjgNnA1EI7cTWECl1bIUVBVmWkWtNpiRSxfcUCa8RdUMibXN/uuTZ3QlOZImW3i6YPgqyhUiV9cEgRQZkkRIeLFJn8RxlFHKTCQelJMi8RAidPpJCKkfwDUJE8Gyb3OmspPGAkJw8NWK0MYwVlDe8kavXdnl29zK740POXb3CfadPc2I4oiiK1ZgrJcl0bFu7EKicZTafcfNgn+euXuPKzVvMq5hQKRmNNpVUKUmSaJ1TliUbvQ5ndgac3hnQ65Wp/ZLIBK3Cqo/3awiCxgUuH9Q8dXnMzYMaH7LkT0Wq5mXRlDJesKOW3bFcldBqz4Z0LWMLuvX2Od7i8T62VcOxSltbKQmrb2PS7pyPO/Zlza2b13jx8nNsbJ7h3NnzDAZ9BIHlfMF4ckBedrD9IXlxVEsJIUBjCC88j5tPcMZg6opqWXMwm1AvKkjrROsLJoTEmiquK0WBQ9LpD2iqBSKL7Zzl5BAlNHmnxIuoCaOkRJUdnA9IqXDLGk+D7vZonEBYh8BTVRXWGkwT78myLPF4tNXkRayuOm9oHYqlAOOi51PEkhty6zCuir5WyyWhaWiaJoJjpUYER5bwms4HlIhuyXvzmp6WVIsG4TwvTZZIJMOqoVdV5N0OvdGAkEtYztHBknlJ5hwTb1O1UVI5waw2TGuLDZLKe2rTYF0Tq4qtNUkQCNSqIvmVxF2dpATVSiwD3kZNAZn0BVAI3z43Hk/NheEGQ5ejjEMFRVCSoB0iBGS3jzUS4XVa4ARBekRdoZ0ma3RUuA0OJwO1qBn7mlljWDaGQmaM9BDpM2QIjP0MmZXUoYdWku7AEFyNWc7pZTnzouRWM2fhHf2y5Iwu+JYgeWI842NPfo57T51EKY0IBmwEWYWEhg/eJXMpE9Vkg6eRAXycDFwA5+POYllbDuY1tw4mfP7Flzh86QaPLTJ6JvCRep/dTkCYwP2qy8VOn9IpJtZTKE+n1+NEp0t/tAm1Y344pXKebHvE8vCQne1ttCxAeMbTPQ7rOTuDLWRng/FyykQZKgJnu31AU+Pp7GzS29pBVXssb95gcfM6pQDtoVf0WexPGftPI09uY37grxDe+gjiyY/CL/yrxD4I6cuzkqU/XllJuAYfAEeiJMfXoipqOrIttRD7/ahY1VIy5+zOee4/cx+9/kb0x4g3BFVjWU73aW5eZ5DLVYLcimq1O2FBrMpIrQheo0PU08jz+HD2QokgcLC3z8H+LvPZHO9cdJwVSd3WGbQRiOWSIAVORV2EeR6VavNOh7LXoyijWF6m5MrkTMpW9j/QAu28sQzEkmYyoGk8uiM5efESYrBBdXCbxfwA4xtcelqEEKAUZVFg7SwyfPK8bQzROicfTTpilfytLsfqv+PrIaRlbfUrx7fX4VhLK7KL+oMBWupoeZBFa4I8gZslpCoaqSUWkrqq4/rhkvFcEIgO0GpVvEmYGRkZE84LnCMlPCI+W8EBWdRQSW0LZAS7h+AQJBH4IMD7WM738b0lSS8l60ATJQfOnNykyHNkCJzY2eLtb3sbH/zAB7m5+zKHL1/h2eu7dIucXtmhLIok2qXIdayULuqayXzOeDZnOk8y7CkJbMHibXVRK00nzxn0upzc7HP+5IjNUY8sVda8S+0cEoDRe3yIrZNxHXj62pTnr09Y1gLn47OhcoV3NSCSd1Wrg5IqZsdagLJNWgOrluxxQcVjM3c6LHHuREwiohNzFO5rjMG21F5jsSbijKbjA6699AVefP4ZuqNtpvuvYefEKfK8pF5MqZqK/miLxWhJp8iOJclgr15F7N0ElQD2PrC0hmvjMYt5FXV2VFKmbjc/PuBNE60GVBbFE108BqEIQpJ1csqygzQGY+tYRdIaATTzBS4lrKaxKPyKroskYg1FAC0T9TjSv6PnU4ZdRLiCdZFSHucsu8IHWQTW1DRNg2kaXN2gdfQhw0UNLe8iJtAZhw1RmbtqHB0RpReUUThjuH44p64NbtEwHDRk3lJslAhTUy/nLK3DESs/HV1gZc6kEdRLQeNKKmuxYYkLDiUVuY7tU+FDHKvwlaJRYtzVSQqinecibkOoyL5INeCoxEfcJfSV5sH+CLGooXKIoPFSIK2P7RQkobFIJwl1TbNY4Ga3cC720/Ksh29MvAgyUNWGqTEIoTjZ2yK3Bc5LnDLcXtzmeTHhHJLP732MpbTcPzrNQ2cfpDdZEA73IEhkLtn3FYfGUMice/MRCy/53Gef4/MPXuL+c6eQJpY4jXLJVTmW53GxdK1Shu1CwApACJy3WB+oas/BdMnl3T2+8OIL2L0Jj4YOeTB8ZDZm0c84NW+4UA54zeYmZRB44xl0u2ghyTpdsrzPfDpnMZ8y2N5hmHVpZmNKBIPtk7DwUC25dbjHqOzRsRmqO2J8+wWmGLIsY6h6mMYjR13yrZNkGqr9W9x84RlUJsiLEUXWYzYZIxHMipzu//nn4LFvwwuxojWSwLE+CfS1jBoftZ9X1RLfIiPS5Cd8mnhkK0Z2tD4GKVBKsNXdZtDb5tTmKTb6I3SWmEOSpFcRNRKq/QPCbIzc2LiD/hraCs+qShPpyHEuU0gX2z9aObwSdMuMsDVMxwiq2QxvGryLaYKQQPILEpkmiAx0hsoz8rKg7JSUZU6WabSUaScdcRZS5amnHr1WgovGaKKaMpuMmDUO7wN5phmd2KE72mS4WNDMxzRNRWUrFmaG846O7tCZKhqTcBMrY0CO/k276uMPZlv0OmoDwaoXkJaocEwMLsBq902IgnVFp0SJo1ZIrjU6tXraZ1/FfQlJ4J7GWC7fmmN8sjEQKWFNVTaBIgRDwKOzghDi2HmhkkKrAdGg8g6gY0IkM7xbYupFvKdEjpA5oMiLEXU1jvIHElTWSYtSQGnBaCNWwESIjJf77r3A5p/5U3zu6Wf47FOfYff6VSYHYwgHR7imNg8UsS0SVhRdkaT0YxIaU8SYrBR5wcagx+mtIWd2RmwNu+RaJhxOFHbzqWIS/XwiqaCygSvjmmeujLl5UOGJxnltNQkB3hpU1klJvogCZsfAsgjwLrUD23M/RpNrqy1tq61NW4QSiBDdc/fHU55+7nkm4wOW0ymL2ZimWuBtEw02kwVFs5gzPthjtn+b2c1d6r0b3NjYptffQBAwUrN9xtAtu0gl6XY68flYzgjPfy5WvDoZQkcRRgvcnM6ZzxarpEsEkWw2FDrLCVikUmRFxmwyptPpIrMO3tboPGe5nOOcpVeW+BAF23SeY5qoUG5tA1pRKB1biDQQwKSWTZ4XUfzMmTTmAucs3kUX68bauBn3LqpTK7UCw1d1VCB3TU1wEaOV5RlaqjiHeBA6kAlFwNAQW+ZSxfPc7HWwLnneWU+1NIyNxzmDkA1a9yhkxrSBZd0wdzUyE+RFQ19qPF0Wss9BlVE1PupHBU/INIVQaOlpvMQ4y/lhxkMXz/LS80+zdF++yeBdnaREXxpitis8QQWC8mnHE9A+R3iJFnBmkHHSK9TMIhcOL0E0nrA02Bv7hIMlXnXwXmF0h8Y7mspHpHc+RCzBupoaTyMtJjgyWbLT3aLvSqZMmDWHXG32eUlN8dpyIJa81JljKkO3UTy7f4AJ8MbeDvcNTqNMRZiPMfWUSfBIFPd2twl+yu988rPUteW+s6cJyyUNFus9xkWQbkRQxSqREA5pPU4FQjIIq4zn1uSAJ55/kd29PU4sPK9TPYr5kvHhgvN5h7OdPuc2+nSzDCkVtrGIjoTRKKoVVobZeIozNZsXL+JnCxaT2wgExWgzMqkyxeHNq0wlbHb6KFciwj77bsbLwfCacguNhlzQ29wm3xhhx9e59vwX4iSyMaDoDDBLF3cE3R78xf8DvuPbUsndHbV2pEzUvKQREJKYX1tBSZ3rlnrYAg4linbfL4kmciJ53JR5n9MbFzm9eQadZXHiVAqpEtbFxd2z9QGzXLD/8kuc6KoI0E19fSGPqJjBJVlq7/DWQHBxgVICiUYYgxABpSVFpun3SgRbLIqcarGkqSt80vtRKtKrtVZkuabIM4o8Jy8KsjxPFROBkvE4pTOUjrRaESKmKfgo3OScxSwrFoslMxuwiQKaSYVTHtXrMeiUSKLQX5MM6ZSU7JxesJgckvka502qYnHUPgupTpUyvzsE2+Jg0GKo7shejuUuiNaiIAErlUJnGoUkYjJlwm4k/Iz3KCUS3iSqh3oXe+23ZzXIaNugZKtB4mLrRunIQvAWIYtUEYraIELnCDKCt5HuLfOVKJzUiqByvGmACHwMIhy1WYJPnz0jyRmR5TmD4SCKDnpWjK/t7Q2+/dvfwMMPP8jlK1f43FNP8ewzn2M+n9yRpMAxobOUlMkkJti2urJMszHqc3JrxJmtIae2homVFRe1VlSLAMEFXPD4IKiM4+a04bkbU67eWtBYQQg6XYp43aRU0fE3y5Eqw/m2YpLaGkIlXEu0KjgCwYaUwLS1tuPcruTmEwTCS3rDHsteydPPPM3t/avMDvdYTqf4egm2QToTr3WIGBZB3KCUztDUS8bXZ8xvXaXQOQiJLfpMJjPMvGJ+cEC/12NQCHZ2n0fdvo7fPo3KZdRDkp4az41lxcFsgncOIfJUnUuMvkwSSZYW23hcXWMLjZ03BN8gVUHjlggXIntyviTPNHleUDcNdVVjqxqVZ5RlByUiZiSI6AuGkggdxTt1kaoqTaw6uhCB4LElFxNwnyrpQimEjhXB4Bps1YD3FJ0iSWNEvFDE29m4mSOy34IP5FJSZIpuJvCDDmPTUFtPkc7FVTXlAvpdhR5lkWHqAt4rhAPTWBrvyEVgB9j3mkMGOCXxEoKUTHQfSU3RmXNPVvPm++9h5+SJFZvty427OklBQFCsQH4SwMdeqxcNXhiUVGRC8FCnhx5XsAzIKk6UYTzD3zykmc0J+RAvchAdGidxQhPyARiHtEtqN8Nn4JxnWRtuVxWnTryG3rKkqg+5srjOFT9m6RpmeskDTcmhXpKZBrzlgWKLejTk1299nOfMLm8K9/CHH/0ONiqHvXmNenwLIx250pzr7TBbOv7vD32Eb3nkAc5sbpBJKHVJESTCOFQWdzrOxoTMiEDtHdOqZtE0XLu1x4s3d+mKku8dXeRk4cnHczpbAzbPFhQNlGiUCzil4oNXBprGYhqHn0zAWXaGO2yfOY13nnGoGGxuUNYZQVoEGV56ZvMJw7KDshnZ9oCb85fYE4bTnSE7ckQIku5oRGdrAxHmvPyFp5GFpDvaoOwOsIsGRMAA1fe8ldE7vpe2gR2LEkd4j+CjSqX3SbTLJ3qqCCDja45jpnZCJCXz+B5eRiBrpxwyHJzl7NYFOmWOk1CLKBjWlQKdWjjx4RYYWzPfP2R8/SpnH7gn7mQFCO/TDtWn8wsEHzUDgmsSuyzqpuCi5kmWF4SmiU7IzuCsJrgCJWNCYq1J/dzIeNWZJs9yiqIgz4so7CQEikRjVUR8ktLxnJNEdaIzxDFznmaxxDaGhY04BO8DSnq0iIyBOkBHt7YSscWSC+iVI8TGkKaqmBzuU1XTiNYXbR0pxmo9Da3aaNsGOtYHanffq1fb/zu2GhMXdKk1MpW1Zdo9ti0bpVSqooSVHT3B0zSW2gpAJ0ZSnBNiCT+CEIXUUVYAj09ibqL180mve9dAaFJbxxJcBJL7IEAkRmFb0UubIlAo3cW52FLqFAVbo0Gi7R5TRxaCkGWMhgNe+9BruP/SJV5+/ev52Ed/hy88+3mW1fxoijuG1YmfPt77rY7N6RNbnNreYGfYY7Pfpcx1pOEHCNF0Kt4HAYx3TCvP7Znh8q0p127PqZvYqIrtG7lK2khYguAcWVbifLKd0NFKIHiHT3idtqIiYmaUwMceESRHNaBU0fKAjxUgleV8x5sf5OPVpzk83KNQNbPxIXVV441BOosOFh0cgjjGinhNMxFFFWvb0BiDCUt8CNQcMpvPmR/eZu/6CbpFxvkiMHLL6E+DR2mFVrGS4wLMGsvBeIq1hkAZ71Fi283a+Fldahv1e32WlcE6j1ISYxqKsgfeslhWVMYkk784nlnRYTmb0ziHF5J+pwvEKoYXGpmF6EelM0IjI05Na1SWEbzHOoPwAlsZhJSR4eV8tD1Jz4Kta4y1lEn5VcooRt9i9wIhmhzGoWdmLR1VkoWAWzr6uaKXZ8way6GzsfVtHctGsqhqlPCxzZgJCp2hiigu6irPpKoxywXdak5RPsC+3sEoAVqiBhucHzV8Wz7lTEcw3OgB9ite5u/qJCWTmlyWWBHwMt7IyICmNeuK7ZCTWnGv6KFnDlWnTHU6x84WVKZGjraRxQ74HG8l+nACQSLKDgaPqSoYdjCLhvl4yc3xhFxvMtAnqRcv8bT5Ajf9BOUcPRc44RQbQSCaBWXTUAnBsIaDg5rCRuDTHlNeGu/y0H2vZ7s7wN8eYg+j7sig7FB0BLv7e/zvx59kuDEgyxVaSoZ5h43tDc5t9FgYz8JZ5vWS6XTOZDajMRYZPP2i5LWbZzlT9tioAnIyoSsK8p6CXGNUNFzT1tEEx8Gi4mBaQdMw6A85U3Q5uXOWft5FIlmYilJm9Dp9QtPgyw4+72IPbzNrGnY2TiHYwXU9t/YPcFpwf7ZF1kiEVmTdHn5ri8Obz7P0FZtnT9AZbcDSo2zAS01VdtF/5G2oLF8tLC17R0qBliLKdKey9wrvmrya0pKMotVUibt6IQJCgdCSbjni7NYltjbPoosSRMCq6AmTRxQCsgVzQtzhh4AzjoNrV9GmQrXatal4EzeT7QzMqifvfQRyRjxDQCiNzvJYDobYG3eRYuucTfiaAm3kyqVYKdA6I88ysjwny3K0UsjEWFIqijwJQqw6WUdQAnRkrwQXjc68d5hqiTUVdbKUbyXxIw5GMKsdXkoyJZDK411cFCsEpYJs0GVUduhMpyxnhzRmmUCXyaJ+tXvmCHNCiz1IDKuVmF5LEZdHFZVjEQ0VxapiJdKh0WcpIkZU+l6EgBLxq7IeF5KPktCRlZIYO/HTSKQqsN7hbIPOOlgXjhZaJEKqKKQW+za0MFBnolS60hK5knMP0ZDOO3TeB6kRzoKAXr9DtxN35i12J7KSiFUh4k5YK8UDDz7A+QsXuXljl+e/8DRPPflpbt6+jTF29fut3s/mxpCH7r/Eia0NNkdDyiKjk2nyPF+1DD1x9+1R1I1lf1px9faY3YOK8czgvcC3ejBtDtnSnp1DZtEeABl34FGmPUoJuSSo2Aq6iZXbdXtVE0A3pHpmm3+malPbHrxwZovv+fZLPPVxnZKiKMzXOLAWsAHlA8p7NB6NS+23+HQaHzA2PXsiPnPGGZaHtzH1kuV4jyJTPPTAWVQwUA5Rwz4hROKDV4qKwNI5xtMpxjTRATudrxQxUdE6wzUNShIrpckAsNjahjwHLHXj8Rg8UNcNoMjzjHLUYzafUS3mBGMoylgRcQgqa5O1gEerDOsDSIVtakyqKFrnqY2JGBpBBOTLWGWRAZbzRXQ9VoosyyKdvZ3/aPPTRO33ASUFY+fYXzZc7Gl63YxOriiyDYx1jJuGyht08BgjmVQ1whisVigtyQqNyDRYz5yKWWPwAYZiQT55BlHdRpddVOE5mZc82u9ysb/FsFfQKRSdUiO+xPP+e8VdnaSgFDLLKE10IvZaYLKoKilthhSBPFS8dtCjqFKvUWqEsPh+B9Pro3t99FLhrYMslvd9MNFW3IPMHGqrQ1NPObx1nZuHuyxrw6nuKfLxHk+555Bmydk6YIWhCUu6YoHNMzoaSmvQDSiraXavsVk4pHOc72SUsmTv4BZq7tk+eQZTQg8D3YLDrKLX6VLbijIrGFczDufLqFR4OePec6foI1iYGqdAI9nqDtnu9+kJxSgrkMYklpJG9EtMr6FyFjOf01UFC2Po4lksK24v5+RFzplenzMq5/RgSK4UMi9Y1ksOJrcppMZsnUQtr2Px5LbBjm8z7HYpQhe3tcXh4SeppKMbMvqigw+WrNcl73eYHlznxvg2Ow/dQ2cwQHmJFTVeShbO0Xvd6+kVJ8n2I5Xa9gKuG2dQkRKS6EKbzP1SyVsoAdInv4AoFZZKMLF9oyVaZ2wOznHfqdfQ6w9YCFgET64UQwVZaHukYlXyjpuRyAxxjWV8/To9raNiaGgBsz5Z2McdaPCe4A2QdqitmmgICegd6a+eAr/wSCWTeZiKVRRjY+k8zvu0TRBI9EjdmgBqsqJAqCx+1FQWjslJYm+YhNRwBmcb6mpJMHXSbYhnSIhJmRaQa5EYAJF5gYDaCXqZQiX9Lp9Lsq1NyuEIVy1p6pp6OaNpFtGx+RijSqz+FaldIduXjv/fsX/vlOdvq1+r6kr7fiKs8ECi9bkhVr72ZxXGpXpL0uHwOISSKw0QITOyoodrlinBjdN6NKaMAHWtZazWhYB3MRtVUoHO8c4QvIxMH2xMYQRkZRRpiyrXgpM7o6Qtc+wztdcygbWBVF1w9DoF991/H/c/cInHHnsrT37icX7jtz/EbLFYVZ90VnD67EVE3qMKBdNGcXM6p1OU5HlgsZhjkiZSbTzzyrE/njGdN1jbpodJZ4Z2jOOuX+Yabxqk0gihCCFSEFzSR0GA8xGT0rbgVsDpY9gTH9q0NMm6pZZQrA7GBKbTKXnszZcoe7GlhipiO01qjK9pXMAbH6m93iG8QeEjy0oGSO2QeJ3jAuxJeBs8TV2zEFM2Nvpc6OaE2QKkR5Y5ovHRk0fKqDQuJZPphLpu6CUmTVIoQGc5GST1WIurDTgL3jE92ENmGZsnTrBYzGmWCw729iiLkoCKwpEqQ5YdhPMsaofugBWKqqmovaCqa4QUlMqsDCNDiIliXVU0tolj6uM1bTc2mVYEG2npkkBRZJF9F2KyedTujcmlkq2iU3zOLi+WjCvBfZtdLnS6DPKcB09tsHt7H7lsKHV8rg4bh5Bp45ZEObMyI9Q1uRbkSlA5x6iXsRVq5u4q2nYYZZpv7ZzkxGCbU9sjNoZ9yjyPz+4fpCRFKkAuMaVBCYkWGkWHAFhZo2h4UGleEzLEtMb76MUhhEB0SrSXiBrUeI6SGdKCtQaNI8iA1xYrPIfVLW40u1T37qAfucRWZQlP7TLde46NqkKaOXP2qHoCdnZgdC+qe5pMliyXV+l8/gnmwx0q9xIXbEO3tsjg6PTPEJoFpjEIYvtjNruJy6KRYK40A1FQCoVFoQc9pFY0S0OvU3B2tMFsNqUsMnpZgZACayz1dMa+O6SsBHnjqb1jUTXYqub24QQdFA/dc56t/oiuzpk3Swa9LtoJtvobnNjYQRpLyEsWOK7evkJtDBd3zpLdvoUQCl9khOUEY5b0O0O62QCfLdid3mbcGB7ob8S8oczJB0Nsqbh6cJXBpTOU95xDBGgmS5pOzrRxTJqGSw/eRzGv0S9MEEVDvtmhybux3C8FUgeciA+dS0ZaWkuUJtJMiewFJeJkKDRkumBzeIYTO5fYGe0gJMyJk/NQQSE8agUDiK2OlBaleTXRNGvD5NYeWyOdXou+K8G3Ymt+NRFDnOCjFHhc4EKwsc3gmsgokQqRnE21iiJOjfeoVJ7xIbFJdBQci0wdh7cV5GXC/1qC8ZDpuIMXEiF1wh8kno6NlRRnG6q6JrjIIFjRQWmF8gK5jHim2geWiRmVIcjxqCBRAQoJXgR8LpnrLqrbZ3u0ga0qquWcqprhnMG1EvoCkh7A6rm901Twjv13xCGJY4kpx75iYS22wZLbLkK0+RzOefYmC1xbxUmJanBJp4UkKIUCmcf2oDMoUeCDwHuLUrEW50M8j+AsiMhqca5BhhCBtCR/rdAQgkFJjdQlxiaMi9ScOTFaye0nOtLR50+4nRWNXslkqSBYVg27N/Z46dotkCVFmRGCQqoClXe5esty5eYeQh6gtI6VD5XF8/UhAWNj1ch7n+iqcgVcjZUvsVJTjU7eMlZhksLpqhUnNaBSmypehKgFo1asJrECJ7NKVkQ6LpbYotpsTFDi37333pPcd+/JaDIYYnsxSI0L0XusMQ7bxMqgDA7hY1VciGgXYW30NsqyLCZc3iOVXnlcNcbQ1ZJvP7PJ0DbYvM2yDYho0KnynF5ZsjXscfPmbaplbBkJFX15VMLk6IQLa+oo66AEaALGe+qqYrx3SNVYDvf2cKE1b3U0Zk6n30dkGTLTqEBUXy01oZHU0wbjHFlRojPNZN4kTZxYvbc20o9dCNTGIJXEuEBU2pB4a2mqml43J1MqYYOi1nYr6te2F1shSziSbbhmDNPrE67cnrHdydnuK77l3BAzrWkawyIEZtbhAmRORChk16HLikLWFNZTLAK1jUrYW6ViURmkslzoFexsDNkc9tjZGFGqhAyUrwTZ//5xVycpIbe4POBoErc+uthKNHkInMTzxmJENvHgNFJocAFXRm+BbDxHNAFX5tB4vK1xdQ3eIESNzRpuhT2uZXO697829lIlVKdyDrdOIj7xMeRzuyx1zeTENhv3PkK5cYK5gKrx1JUhz05jNreZneuwfM1DjNx9yGc/T7FcsFOO2L8yZWEMvXtO0+1pylHBoZ1T7S/Zybp0Mk9WaJTqUeNQnZx8FHuWw+4AVTuUCiyqBTdu3WY2ayjmDdrUGC/oZQM2fCCTgiLX7OzscGI0pJAq3qzdHqaJXhEn+iPOXbgHVRtsyKlUznx6E13mbO2cxB/OsMpiGoHsbTO7/xHCeI+6snS2u4yvf46rZg5CM5QxWewOR4iyw/XDQ8TOJp3XXKJScUdrNrrcmEy4Ma+Rm5ILeYM7uIkvp2RbCjGZI0YnCA6yTNLt5kkCPDJ6BIK80GgtExtGIDWoLNIxe90dLpx5HTsbJ/BZNHZzQDctvLIto3PUkmgXEt/uumMdmaa2LGczss3tuN/3kVEUsRDpfkz937hHjecnovUuSmYQJFL3cMLgnSX22aM3R6Zjuda5CHKN4D0F1kMW3X0JDhxoFVs7ofEInSFClG5HRmXdkICi3lm8ja0kYxvmyyUi90dYjdWDdPSfDZG+Loi2C8OMuNDHFRUCqRcOHQG19NGluNeh0+vg3XYyszTU1ZK6WeKcWbE6QvsH20RldQ3aakuaRElaEIAMcXJDHCUpIrXhosprrLwt6opb4zmCfnSyDSEtgjEpcMagVDLsFBKdFdimiiBEYsthVT0LAS2izoTQCXuBjlUUZ5Aq0oWdifghpXv4cATQzouC7e3NtGinio9o24JHA57yKKTUGB944aVdPvbRx7ly+TK1caC3ot9Xiy9BpBYbiNAqJGuc9QkHdAwH0rYZhVolKO3flrJtiab3kpGhI5VOyVd7jRLN2QdCFEwhCIVwYVU5iUlYXAhT0Wll0ClSZS3+/Xh+w/6QN3/rvehcpspjbEs5D8bFikHV2FjddtHiQvj4tBACprbMqzm6KOgXXYSM0gsqKxFKYaoF9XzGd5wc8m2bA9x8jOp18DIjGAdSRd2dTod+p8v9O9u8fPUqk9mcHetWi3hUtI/Mz1zHMfY2gpGF8/SHfQ5nU25ee5liOGK+qMiVxmkRNUasZTY5pOgNCFLiiKaSWZnjFwKpHL28oAmehalRZUY9q7CuxiShNB+iuaFNnjfRtE/hnaNpTATVq6yVfIr3hPcJM+fjmiWO5jQZotCpQ+CFYoHD1Q0L4zBNjqod/Y6k7OYQHDcXlrlzlFIhhQMJuXD4PmAsVjnyUiGDoucVJ/BUeBSefifS4QulUM5GwVUlV4/+lxt3dZLipEGoQO5KQnB46QgikHvDGeH4dl0wqkCQIYoclulB9j62DZzB5prQ7SMOakS1QLsaG2pMD27KJXuqx4nuWQ7291FIiizjyvgmve4mvbe+mXDvFrP9y3T62wy6Z2lyDVWNb5ZRTn20waR/grDp2eqOKCYgL2kWN3d58fnH2cgusaxnLJcepyrq6ZJ+qTk1GtEZltx2FfNmSbCxj1pkOcPBkPnS0O90UabhcD7h9u1DqspyZrhFkS0x0ykdp+iUGRQZTkZ/CDOeowiYxmKxVMuKfrfD+eGQk70ueSfHUFC7ObPZHnY+Q+I5PNxnQ5fMxnMkgtH8FFYo9ps5+egck3rKbnPAjTzwWtlHCUWR5wjfcG33Ks2ZEZv330MTLLWGMBpyvV7w27e+wMMb22xvjrDLJc7eRAxKRFCETokfdlDzOoLdNBHZLmWUZFaOkBlUAXmRURQF/d42W6NTjDbPMhqdYJRnaacXUpumtUDnKKNv2yqinUw5tnjGCbs2AU8CtKVSagtBEVJwh2Sr92nRFXHSJ4CLO1iZZwgdfTWEtEhpkQGUFhR5hg8mCkgRk5Ss1JGGLCMjKM8ykhEqQmpU0YnAFZlFeIf3BBk1P7y3WBfdR5u6YjJbUJ7WFOpIxryNECKkLaQkxPtAR0ORkoHV8rZqWUR7PoNk6QMdlV6UEcSedbqUgxHBOZy1EUBsLc5ajIvKm9HwL6wW6pWtgIw6AkfGBj62XznaEXoffXLaSlbT1Ozuzbg9meFEGdV6k5aFT5WlCIxVqcsVAbJS5amKElCqhpAhEstllUx5ixcyYk9EAJHHsw4B7ywgEarEpaqAEILRsM/2Rm/1+dr0tR3rNmkTKgJP98cLPvHEM3z6U59lsaiAkkCiCaWEIbJqYkIm27JScjWKoyWBWOKXMi5kQPIpSm0toSBZPwQRk6dYgYl6QwEQPn2mRNdnhb9RcfzE6taPv58AsytB/hVYq61Jtm8sybKC1732HOfObqzMGuNIy0jDNYamaajrJl6zBIwX3iGFRyTvIudc9CPKe+iiSyBit6QIcU4Llj9833l0XUevo1lFNvSxwqg0WdGh0+sxHPTZLkuevXqTW7s3OHP+LGo0BBExOwSHDIKsKFdbGFd7MinQUiJDYH54iCp7iKwACVm3pGlq6vmC+WxBJ0h0WVBPxiwWU07snKSTZ1xfLLA2iq9tbG4SmpoA1MYSMo3zlsZ5FnVk9Sgl0+ZC0DQG7z1lHvVY5AobBEpF9mGbfEYVXYEWgpxoGWODp/E+4uGIlaGJ94xMoNuTKB3QAWovWBoQypO7QD/Ajqu5kSmWwkEh6HcyrFX4GrZEztyaKHgqA/1uGefDAIXWkb10bFP05cRdnaRkokCSIVUgWtUEMm+5GAJvEpqtRbQc12UWAYVlRvAKbQJkJV7KuPNYeIQ1KBs1UVwn45Apu1i2ti+y3D2gWhguXbgPysD5jqKqJHNbce6+R+lun0U6CEJjjSMLio6EoD2drGS5tY0qAoUuMNUhXRXQ99zHvhpx89plzu6cA11y7dZlrkyucP7iGYQCnXe4Z7jDdHHI+FAx2tokyzK8ECyyOctmwWxZc/XmTW7t3UajaaxEOk9n7umPOpRbG8giY3825srtXbZ1jgbUItANAW2WnBmN2N7aQo5OUOUli8Vtrl19nmo6ZrPTp1duMOgNGW3fRzW4hR7fRsga95n/B2thuLHBtcuf5KBZ0LWas/0huYg8/aWrER3BzqlNZtJS55qqW3LLLvm/Hv/fdJ2ht32KbfpI57BmRlY32Apcb4vw4hgu70UQaSbQhUJKjeqU9LdHbO2c4uSJezh54hwnts+xORhR5AVOiNj2IfVkjz0ZQbTUWFYLcEufbSsoKimVitRH90JiRNQf8d4l8TWZ1pDYfW9JLIlkGRF+XiCFwouAVHEhiQA4RV50EB6CNcgmUomlj5gVYV3qjcf2lXdxoiBVgLTSiCLHOhOrLDruqr0C4WxkYBCiRoozLGYzbo/nZOcLVJavyvftqFgf3VoDUAdBrgUDHcetVUYJ6bO23QoIlDiWIuK3tIzv5hK7gzSRZ3kBFGn3H5A+luet80c06ST97kMgy3LaNkJbto4ts7gQRkXhuOi7EKm2tXUcVg21DehCr9Q/AyFWs7xPGiMRf9Hu6qXIUKrABnBmSfCxshJCiNorImIyggxgG4TMEMl1u2VxxXZNEYG2IrZOLpzdIs9jCb4VEWwT4LZ9hZTYAM+9dIv/538/wZWXr+NsbBX51sCt/f3V+IvU1mtF3OTRYi/aKolcVb4iaBikUCubhJCAIqsEUIjVeJDE4YTSOB/vyai/EduOpOcqpMQpeI+zbXIZE7f2XCOeXa6qOUVecN99Z3nDt56Pzsuh1YAJFHmeKk3Rrdlag7eRVqtIInzBI4LHWRtZLh4aoVF5FMwUKiZmmdK8454TnNvaxBzu4Wwg1BUyqwnGEJRGKk2n22WjO+DsYEQpHFdffIH7HryfvCwSTTak9o5EI3FSU/Y0QiuaVJEr85Jut0M9n6Glpux34zMtBUFKsk6HpqnAWcoso6obqskULQUnt7e4du0K1XwO/QFKacxyRpbn5MFSV4Fl1WB9wkMh0Fpikou9TsJ/7aYr+g7JiC8XpKpaW30UFEAWAnXwdISkSJYrpYRGQuUt3glk0UEqGC8a9o2g1ApRZPgikOfQE5rTxtErDc0JhXCOSSW4gmeiogHh1BiUDGxvDmOl3nq8i/PTV9jtubuTlBOD8+RZybKeAA2ltdznG77NKEZLEfuTpYpUwyIjDEaEBvy8hixH5Dl+UkdFPFsRMHgc40JyuTog3zpLPZlxMG6498IjTN2MDTVkqyu5vZywWBjq3NDpjqhdoDImyh4HS6Ezyp0+fZkTTl9ADUpsbVnqSHMdjTqMg+DgNdtMbSDPLM+//BzP1y9z2Kt48NxFdq9doz/tMxp0OX/qHGXRxdU1i6qiIOPq7nVu3TrgYPc6p8qSDpqhhfvvu5+eL6EHY294ZvdF9m8fcCJknM9GnKRAdSQbw21Cs6Qoe8jhSZbbp9m79jRXn3+KrIETZ+/hlMzRtaFfjnCNRTQVIe8hyw6L21ehM8Jrz56bM24qdkyHjlR0swxRaJrM09/pU3cUVVdRd0uWpeS3PvMpbu3t88j2Bl5YOnkf3Ti8GeP2wPsceejRV5aoy1cwxlN2+5y9OOTUuQd54MEH+bZHX8OlC+fpdft0c00ho/6BD6DxEeyVZsx2qTtqM8Tj4gOdagMRCo9OVNF21yKlQGWahexhjE04Dx8t2lvMQVrxg2/rripN2CIq2pJEsWQRF57gYivHe1yybQ827oBzoRCFJrGcUUKgM5V2SIJMR5M3Vy1QKocSvGtQKic4F+mxMpqeBQLeOabjGdf3l2zIjH6hV595hScQAS9g7iLuZEuRTODaKtOxmSUc+ydAhwg0DD4xItJOWqwUJtv/T+wsIZIOigKyuNiGVj8jkOUlEKKAV1vVEkdJSkg/DsTkKkiBKEsGoxGdch+rukTNjyg/DoBsRc0MUuokhmYIQQKRSYTUUdIlOJRIvX0RrQYCAhfq1YduVYalEEiZASpde8i05p6z2ysX4Ljwp3YVcUEPwLJ2fPQTz/CJx59iOpklMz6ZwJORCdS2wHyi9rbJQKsZFCtGUT37ONA4atmk31+1mogXKWnPeJ9qMKG9vmJVGRHEZGuV2nuRbmmX2oFiBbptP1NL7Iq5jGwLa+R5xvlzWzz68DnOn92g181SgiJWyrSdTpesgCAjjd45i23qqDfU3qsh6hBFhVWDrxpkbZGFi1VFoQl4Hugpvue1F/E+YIyB2iCXBiEPkPMFSI2Wik63R3dzg5ODLR7e2OYLn/k0j77hTXTKDt1+N84bNlkeZCV5BhYfz0dKnPWURcnW9jb7kykyK9A6J8uiHYNrohu99RETVuQ5LqtwtoptrbpCSMFwNIzib6amquuESTGY2qJlRtGJIorWWuqqAuLGpczzlKQItFTR0wqBEqIt10WjVRHTlT5wT7oX6uBBKhYi0MsiNXvpTMRmLi1yo2TXuajxowWi0JSDAlUusMLgDIwoEVJiraQrAiEHvGOGQ3rPYNih1y842I+CfJXzFEW5mg++3Lirk5Szm+fJOjnXbi/JF2O+xXleM4HOpEFmIAata2QA6SNF00lsWYAHv1iiZhUsHJgG2yxZdAS7csxYCS6NRhyO9+j3NdfGV8nLLvPDQ0SukF5SesF4vsCUfZa1TYwDSd7t0u0N2Tl9CrNsyDqQ9TSL8ZxiMMfojM7WFoUuoTZM8j439/cZDHPOLLpMDw8Q997Hue0TbI826Qz6IKMI09wb5vOKK/s3uHbzBmd6fe7bPsup/oCu7jLo9eltbtEo+OyVZ3nm4Aa5lbxl+yKnVclguM3G9lmql15gONpkcdAglaLWmr3dL7D79DPcMkvecuZ+Tm9fYPz855k2Fl3McZMDGgRlb4h1gYmu6J7Z4DPLF3nGHXI6aO4bDBhmObJQVB2J6WXYYZfFqKTaGWL6BV+48hwvvPgC925tsN0fkHdHoEr8okE3S6gCsjHo5mU6c025+yx5scF3vu0H+ZaHL3HP+TN0imh8JkWkJmeC2IMNrFoCiCNxqdS1aX/MitbKcRCpWHm9rNbktEjkZcGis81kfp3+hsEbi09aHu37kJKctuwa9SYE+NjXdwGkjQtjMC62jJyNxnVEKfjgDHm3kxakIwaTFAElBHkeqyCuqRFCoTo5zkZJfU8SqQOCMTgbTcdc07B/MGVSKe7bPEGZ5a3Qa+xOBc+hDRxaSSEDG4qV9PlxzEhb7k6fNv1u/Kl65QuiFR1b7avjWIejd1mxkVugCSCJvimxqhXfSxJWCWTbVbOpeSKyHNXbQOclG6ag073JzJZIr5JmTdSxkVrRylFHJ4WWOi0hSCQCrQqMD6l65pBCR/Gz5PsjVRHvOakjWDOkBV7mhKBiJiyhyDWbG/146VvXhtS2ad2OZ/OaD/6vT/K5zz5HVTUrb5vYXjxqxR21w6JYmhQCH2yU2A1theboWsZ38Mkz5Rig1cfyV6zAHCUH7S+LdJ/HoqDACx9l8I+9Hq/OscSpVWZVCq1T+0MphIgbsWG/4PTJIfffs8PJkwOKTK2eKylE0o6J95bOCnSnQGZF/NS2wTZ1BCunz+69xzQVTV0RvKVAE7IDhNDABoXM6CjJW7ZLNvsDqskEO56TBYsw4CdT9GxBlnWwSpNnGXmnR6fb57XbJ/jY5Re48tyz9Ppd8kwnqrnAWIekQmU62oDICApXMt5Xgahzcnt/j2AzdKeLECG2b4WIzCAV2TgIgQ3R5duEQNbpIhEs64q6rghIZvM5VW2QKqOfCZq6YlHVWGtjZTW17pWQscqTaNKqpbWnxl/wDttWEwmcFZLXdgtQksO6pgFuWsvCGTa7OdpDP9OooGlm0Rds5KLIaFZmDDScCh6x8DQmJ8iMLASsDQTr0M5jvEcCG6Vga2OELroo5bEobBBovjIhN7jLk5Ru2afT0xRjy2vzktPXpujbBpQkaBmpoSIQOgVa5SgjcHked9oHS0RjwTqo5gQanPRMRM1t0XDm3tfgFhXDQc689Ny8dZMz2SkWNkBtkd5jVEXIOlQhEGRAZIrBRo+SwPagh+708FmGlprKVmSzms7JHfSowOZdagtbmcDkOYveNvmmpnx6wf6NG0znMx4cnSJ3EmUdTSGZ1HNeuvICz199GS/gRNHjjC84rTTnu9uUeReGHebKcbh3m2b3kNcNtnn4wgUGXiCdpzh1luXWDuLKCyzDDJFB0IHnX/wsxjRsDzc5MSs4O9hEYBDf/Ycpd19k+fJ1vG8QRReVdzmYHvByaThdTLly6wqlVtwz6HGi00cVGtuTVCNJs9WlOdWjOjPCntjhpb0bfOLyDTZOnmPU6bJTbKJ8iVo26CqgmwaWhmAqnLGoGqRsuHDxPP/H9/8RchVokHHhSPtkEyJtNs7RYgXs9GnmDohXEkxWC4cULTckrZPiaAFdJS9SkHc12c5pbt26ySljcMbEhU+KWHJAJPn9o8QotpCSNLsPBBfFmUBGenAIBBd34sEZgvNkWR5330loTKS2h5RRTAwRcE2DkBJd6rR7jZL7IURX78jKjROHtQ31YsHu7SmuOMn5cxcZlllKQuL/6iCwQpKLwJaGLO2gbVrHdNqhH6fTEuI6aeInTzt2qNPvJKgnUkQ9h6PN05H+6FE15+iixEmWCKjEryo9wR9Vc4KQkc2Ul6juED3cIe/02bQlvcGLzCZ5ShYVQeTxLL1BiqhKGmmQflVVwNsVxynTJSF4rK1xoULpHIlLc0n8rCEJ2YEnOAlZFhPP9DGG/R7DXisK1rYD28qIYDZv+MAHP8ZTTz6HNf6oGhGXu9VYxvJUas+kQY/Jmkp5zCozOarwEFs7EHFTMtkjhNV7pTZam7C3zaeU4MQCSItdgZDk/FNGSpBRxGxjUPLAvWe4cG6LQb+g28kocn1UXVkZ9aVEyrt0X4tUfUridqt7QCBVjlRFTGSdwZk6JiQh4JMA2mK5wJgGJQKNCzRB42WOyAqyouRUDq8/McTd3MfsH6BmS3wvQ1UGLwPN3iGZysk2NsmKHkWnR29jxFCXnCPj+Y9+mDOXHqCb53QH/VTBiuPgagt5ZNBolZHskCl8EZMVZ5jNlphqSZblKJWh0GiZYZoKE2pUloFzOF+RFfmqRTWbz3AeqsoS0AwGJbapORyPWS6reB3EkXZLrjOKLCNTikynKkrCF0mRkhQR26jBx6ry6UzRKxVZJhlkOd4FzjWCaVNRF4FSaDay6AFmhKbfL6inY4pSs9VXnAk1uRPsuYLxwtHYOTYEsgA9FZ83EwDpuffsKbpbZ6mdikq5BDKdYcOqEPtlx12dpDjr2RaKkVX0X9hjvjuOD3Cex6zVWWyW49wElRco0YNM4LICkefIw6uopUdOl/jasjCWF2TDdHSO+uaE6d4eG90O3U6Ph+95iN3DfayJluwTU0E3Yh+Wdh7xBCqKyi2Ep2pqgpmwWFZY31AvZ/QDnBieQvf6VC3S3lU0tWX3+tNo12C6GU2n4PkrV7l4z4CAYOnn3KoqPv/iC0zMnEG/w05/wKNnH0BevcnABZyHubS4LO4OtS751tc9wkCX6ODwswVOKA739zB+ickM3RAR5S/s73H98JB7z5yin2eIrMdMw3RxyGwCdnadbim5cfuQC4M+jZ9ydXqFl5YHNHqDQwG9TNI/vcmyyVgqx6JjWY5K/OkOfrNkOih54cY1Hn/qGWa1o1f2yEOOd5Jmf0pdCuZeo2wNxuKqBdQNjc/YHxbIA49dLpl7y9JHPYQWKpjLwJSA9RFL0Wk35m3Js92BC3GEgodj7J742BxbK9O/SevBB5raoLKCpw8Lzu3UdKVEWYPMdNodR9NDHyLNNZD+ZlIk9dZg6wbsMlYZHNGThChc5Z2IKschAkoRJDxGWwIKZA5EHaXqdV5ghEM4i9ABhE1gzJhZedNgrKGpFhze2ucLl+dsnH8jJ7dHLBdLxpaomBoChw6mJu6AOoWkEbGK4QJo0YqwpWqJiIuuC5ImxIXCh0CuFIUM1CEwNZ6qkWx1BAMt0BwlIm3jp0VatHo0x9tCy2WFcY7KNLRUcGRc+ITKQGQg88ioUT0IOXiNDXlKRAQeG8X0gkdqjXNLFB4hyqjk6V0CYcdFPTJaoo5Na3rnQmT8HS2yDqWyqJsiomVDe3+IYJIDt2RjWBC8o6rqxEKLi4vSCu8FH/n4M3zu81cieyclbEG0WA53VLFKSQLpnm1xICIloamkEYXlCO1tgsUQKb8yAXuPksGQMCIkbMqqEpOGP3iJlJHxI0Ok+YaUzAmh6He7fPvrH+Q7Hr3A1lYfKyTW2WOGha1NBXhn4y47VbPaP6JSO1VrHYHVzmKrGWjFcr5gPp8ym81YzCY0dYXzkWlmnKc20YdKCtC1RTcBKwt0XtLv93ndiR6y3uNwvMTcPkBJhSq6NJMpIpf4+RRuK0wdmGd96pBTqQ6NlGxlOS88+xwvPfkE6tFH6S0XqDyLmjBCRNr1MmGdpETlOS64KM7mLAhF4yyz8QRJbMuCiJ5DxlBX0XXZmgrbmNSuc5jGUhvL0hj6/T7WNNw+PGAynVBVzVFrEdAqJnhIgfUxgRSIyMwSUfwwiIBPbd7GGJZVBCF3tMCKEGUWimjUWeRQ1B0OG8vmVgTVGmBKVOKtVATRmskUMTLsG8l+Bc9XDdcaj0CynQlOqkAQPmqmFJ4zDz7CuBEcXN2FxqBCIHhLU4fUZvzyQ4SV+tLdE+PxmI2NDTY2N+MNbw3Cupjpr2qrxFVIHhPnQh7NlhBXh9B2CeIuxQmiyI9PN4Zs1StTDziEOyaMldfGK3bpK+nv1ueEyDZoeevtL7Q8eGfNCsgYTeag1FnqVETp5OicKZKhXDRG45VGTStjr1RaDmH1tYK0xR7YiuHhkolZ9IKJnyD2wVtGQpy4vXcoFUvdsZQYy53ee2RIWI70WaNHmYyCVUISpMA6h0nn2zI1lIjtiVYWKkY4ahsQH6yFs4w2No4m49VIw7GmzrGx//Jva/Elf3L0++kjURuHM5ZCs9oxvjLC7/F3X0k//aJDX/n66mevPNF2xX/Fv6884ZTgeOepm9hXL7tlovAeARxXQ80rqMlfIo6PzOrPtK+l320V+dsuzu/9ll/86nwxx9Y1efbFKLujMU+lMXHEavA+UDcNdrVOfomxfCW25vc4ueOLd/vN0edPuI1V4nDUDtNaUxb6jr9+PDmraxs9We44nXDHkavvf7/b+I4s4xUfrT3ZOz6jOBqH1QmkLP53HYujDFNJSVkWaJXmvlee4iu++VKXoX2v9s/N5zM63T4IEUGxSR/E+/YePn7PHX3T4m9EMtdUWtHRCn2M+SUgAdgT/FspkK3IYqwsBecIJsoCuODjhjbPWSnqvmIYXjkuYXWOqdqU5ihx7FLGcQgroPDxgTmih8d39N7jUlL3yuX5aH5rx+D4f3Pn9Q6ktmRMFDUR3/alIvgQ/crSW/j2K+GVZAjoWKDDh8gEdMfmjLaJ40L8Xhclrcpze+8LEd9zOl8AcHh4yGg0+pLnc8dnvhuTlOeff57777//1T6NdaxjHetYxzrW8f8hXn75Zc6fP//7HndXtnu2trYAuHz58peVia3jqxuTyYQLFy7w8ssvMxwOX+3T+QMX6/F/dWM9/q9urMf/1Y3/v+MfQmA6nXL27Nkv6/i7Mklp2xSj0Wh9k76KMRwO1+P/KsZ6/F/dWI//qxvr8X914//P+H8lxQX5+x+yjnWsYx3rWMc61vH1j3WSso51rGMd61jHOr4h465MUoqi4B/+w39IURSv9qn8gYz1+L+6sR7/VzfW4//qxnr8X934eo//XcnuWcc61rGOdaxjHd/8cVdWUtaxjnWsYx3rWMc3f6yTlHWsYx3rWMc61vENGeskZR3rWMc61rGOdXxDxjpJWcc61rGOdaxjHd+QsU5S1rGOdaxjHetYxzdk3JVJyr/6V/+Ke++9l7Iseetb38pHP/rRV/uU7vr4mZ/5Gb7927+dwWDAyZMn+VN/6k/xzDPP3HFMVVW85z3vYXt7m36/z5/9s3+WGzdu3HHM5cuXeec730m32+XkyZP82I/9GNbar+dH+aaI9773vQgh+NEf/dHVz9bj/7WNq1ev8hf+wl9ge3ubTqfDo48+ysc//vHV6yEE/sE/+AecOXOGTqfD29/+dp599tk73mN/f593vetdDIdDNjY2+Ct/5a8wm82+3h/lrgvnHD/1Uz/FpUuX6HQ63H///fyjf/SP7jDYW4//Vy9+67d+iz/xJ/4EZ8+eRQjBr/7qr97x+ldrrD/96U/zPd/zPZRlyYULF/gn/+SffOUnG+6yeN/73hfyPA//4T/8h/DUU0+Fv/pX/2rY2NgIN27ceLVP7a6Od7zjHeHnfu7nwpNPPhmeeOKJ8Mf/+B8PFy9eDLPZbHXMD/3QD4ULFy6ED3zgA+HjH/94+I7v+I7wnd/5navXrbXhkUceCW9/+9vDJz/5yfDrv/7rYWdnJ/y9v/f3Xo2PdNfGRz/60XDvvfeGb/3Wbw0/8iM/svr5evy/drG/vx/uueee8Bf/4l8MH/nIR8Lzzz8f/uf//J/hC1/4wuqY9773vWE0GoVf/dVfDZ/61KfC93//94dLly6F5XK5OuaP/bE/Fl7/+teH3/md3wm//du/HR544IHwAz/wA6/GR7qr4qd/+qfD9vZ2+LVf+7XwwgsvhF/6pV8K/X4//PN//s9Xx6zH/6sXv/7rvx5+8id/MvzyL/9yAMKv/Mqv3PH6V2Osx+NxOHXqVHjXu94VnnzyyfCLv/iLodPphH/7b//tV3Sud12S8pa3vCW85z3vWX3vnAtnz54NP/MzP/MqntU3X9y8eTMA4Td/8zdDCCEcHh6GLMvCL/3SL62O+dznPheA8OEPfziEEG98KWXY3d1dHfOzP/uzYTgchrquv74f4C6N6XQaHnzwwfD+978/fO/3fu8qSVmP/9c2fvzHfzx893d/9+/6uvc+nD59OvzTf/pPVz87PDwMRVGEX/zFXwwhhPDZz342AOFjH/vY6pj//t//exBChKtXr37tTv6bIN75zneGv/yX//IdP/szf+bPhHe9610hhPX4fy3jlUnKV2us//W//tdhc3Pzjrnnx3/8x8NDDz30FZ3fXdXuaZqGxx9/nLe//e2rn0kpefvb386HP/zhV/HMvvliPB4DR47Tjz/+OMaYO8b+4Ycf5uLFi6ux//CHP8yjjz7KqVOnVse84x3vYDKZ8NRTT30dz/7ujfe85z28853vvGOcYT3+X+v4r//1v/LmN7+ZP/fn/hwnT57kDW94A//+3//71esvvPACu7u7d4z/aDTirW996x3jv7GxwZvf/ObVMW9/+9uRUvKRj3zk6/dh7sL4zu/8Tj7wgQ/w+c9/HoBPfepTfOhDH+L7vu/7gPX4fz3jqzXWH/7wh/lDf+gPkef56ph3vOMdPPPMMxwcHHzZ53NXuSDfvn0b59wdkzDAqVOnePrpp1+ls/rmC+89P/qjP8p3fdd38cgjjwCwu7tLnudsbGzcceypU6fY3d1dHfOlrk372jp+73jf+97HJz7xCT72sY990Wvr8f/axvPPP8/P/uzP8rf/9t/m7//9v8/HPvYx/ubf/Jvkec673/3u1fh9qfE9Pv4nT56843WtNVtbW+vx/33iJ37iJ5hMJjz88MMopXDO8dM//dO8613vAliP/9cxvlpjvbu7y6VLl77oPdrXNjc3v6zzuauSlHV8feI973kPTz75JB/60Ide7VP5AxMvv/wyP/IjP8L73/9+yrJ8tU/nD1x473nzm9/MP/7H/xiAN7zhDTz55JP8m3/zb3j3u9/9Kp/dN3/85//8n/n5n/95fuEXfoFv+ZZv4YknnuBHf/RHOXv27Hr8/4DHXdXu2dnZQSn1RYyGGzducPr06VfprL654od/+If5tV/7NX7jN36D8+fPr35++vRpmqbh8PDwjuOPj/3p06e/5LVpX1vH7x6PP/44N2/e5I1vfCNaa7TW/OZv/ib/4l/8C7TWnDp1aj3+X8M4c+YMr3vd6+742Wtf+1ouX74MHI3f7zX3nD59mps3b97xurWW/f399fj/PvFjP/Zj/MRP/AR//s//eR599FF+8Ad/kL/1t/4WP/MzPwOsx//rGV+tsf5qzUd3VZKS5zlvetOb+MAHPrD6mfeeD3zgAzz22GOv4pnd/RFC4Id/+If5lV/5FT74wQ9+UZnuTW96E1mW3TH2zzzzDJcvX16N/WOPPcZnPvOZO27e97///QyHwy9aANZxZ7ztbW/jM5/5DE888cTq681vfjPvete7Vv+9Hv+vXXzXd33XF1HuP//5z3PPPfcAcOnSJU6fPn3H+E8mEz7ykY/cMf6Hh4c8/vjjq2M++MEP4r3nrW9969fhU9y9sVgskPLO5UgphfceWI//1zO+WmP92GOP8Vu/9VsYY1bHvP/97+ehhx76sls9wN1JQS6KIvzH//gfw2c/+9nw1/7aXwsbGxt3MBrW8ZXHX//rfz2MRqPwv/7X/wrXr19ffS0Wi9UxP/RDPxQuXrwYPvjBD4aPf/zj4bHHHguPPfbY6vWWAvtH/+gfDU888UT4H//jf4QTJ06sKbD/H+M4uyeE9fh/LeOjH/1o0FqHn/7pnw7PPvts+Pmf//nQ7XbDf/pP/2l1zHvf+96wsbER/st/+S/h05/+dPiTf/JPfkla5hve8IbwkY98JHzoQx8KDz744JoC+2XEu9/97nDu3LkVBfmXf/mXw87OTvi7f/fvro5Zj/9XL6bTafjkJz8ZPvnJTwYg/LN/9s/CJz/5yfDSSy+FEL46Y314eBhOnToVfvAHfzA8+eST4X3ve1/odrvf/BTkEEL4l//yX4aLFy+GPM/DW97ylvA7v/M7r/Yp3fUBfMmvn/u5n1sds1wuw9/4G38jbG5uhm63G/70n/7T4fr163e8z4svvhi+7/u+L3Q6nbCzsxP+zt/5O8EY83X+NN8c8cokZT3+X9v4b//tv4VHHnkkFEURHn744fDv/t2/u+N17334qZ/6qXDq1KlQFEV429veFp555pk7jtnb2ws/8AM/EPr9fhgOh+Ev/aW/FKbT6dfzY9yVMZlMwo/8yI+EixcvhrIsw3333Rd+8id/8g766nr8v3rxG7/xG19yvn/3u98dQvjqjfWnPvWp8N3f/d2hKIpw7ty58N73vvcrPlcRwjFJv3WsYx3rWMc61rGOb5C4qzAp61jHOtaxjnWs4w9OrJOUdaxjHetYxzrW8Q0Z6yRlHetYxzrWsY51fEPGOklZxzrWsY51rGMd35CxTlLWsY51rGMd61jHN2Ssk5R1rGMd61jHOtbxDRnrJGUd61jHOtaxjnV8Q8Y6SVnHOtaxjnWsYx3fkLFOUtaxjnWsYx3rWMc3ZKyTlHWsYx3rWMc61vENGeskZR3rWMc61rGOdXxDxv8LnEGX+V2Hz0gAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -705,7 +713,7 @@ "from mmedit.edit import MMEdit\n", "\n", "# Create a MMEdit instance and infer\n", - "result_out_dir = '../resources/output/unconditional/tutorial_unconditional_res.png'\n", + "result_out_dir = '../resources/output/unconditional/tutorial_unconditional_styleganv1_res.png'\n", "editor = MMEdit('styleganv1')\n", "results = editor.infer(result_out_dir=result_out_dir)\n", "\n", @@ -726,7 +734,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -734,9 +742,9 @@ "output_type": "stream", "text": [ "http loads checkpoint from path: https://download.openmmlab.com/mmediting/video_interpolators/flavr/flavr_in4out1_g8b4_vimeo90k_septuplet_20220509-c2468995.pth\n", - "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 35/35, 0.2 task/s, elapsed: 168s, ETA: 0sOutput dir: ../resources/output/video_interpolation/tutorial_video_interpolation_res.avi\n", - "11/17 21:40:25 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Visualization is implemented in forward process.\n", - "11/17 21:40:25 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in forward process.\n" + "[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 22/22, 0.1 task/s, elapsed: 245s, ETA: 0s11/21 00:31:46 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Output video is save at ../resources/output/video_interpolation/tutorial_video_interpolation_flavr_res.mp4.\n", + "11/21 00:31:46 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Visualization is implemented in forward process.\n", + "11/21 00:31:46 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in forward process.\n" ] } ], @@ -748,8 +756,8 @@ "from mmengine import mkdir_or_exist\n", "\n", "# Create a MMEdit instance and infer\n", - "video = '../resources/input/video_interpolation/v_Basketball_g01_c01.avi'\n", - "result_out_dir = '../resources/output/video_interpolation/tutorial_video_interpolation_res.avi'\n", + "video = '../resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4'\n", + "result_out_dir = '../resources/output/video_interpolation/tutorial_video_interpolation_flavr_res.mp4'\n", "mkdir_or_exist(os.path.dirname(result_out_dir))\n", "editor = MMEdit('flavr')\n", "results = editor.infer(video=video, result_out_dir=result_out_dir)" @@ -773,20 +781,16 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "11/17 21:09:41 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - local loads checkpoint from path: /mnt/lustre/liuwenran/.cache/openmmlab/mmedit/spynet_20210409-c6c1bd09.pth\n", - "http loads checkpoint from path: https://download.openmmlab.com/mmediting/restorers/basicvsr/basicvsr_reds4_20120409-0e599677.pth\n", - "The model and loaded state dict do not match exactly\n", - "\n", - "missing keys in source state_dict: step_counter\n", - "\n", - "11/17 21:12:44 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in visualize process.\n" + "http loads checkpoint from path: https://download.openmmlab.com/mmediting/restorers/edvr/edvrm_wotsa_x4_8x4_600k_reds_20200522-0570e567.pth\n", + "11/20 18:13:55 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Output video is save at ../resources/output/video_restoration/tutorial_video_restoration_edvr_res.mp4.\n", + "11/20 18:13:55 - mmengine - \u001b[4m\u001b[37mINFO\u001b[0m - Postprocess is implemented in visualize process.\n" ] } ], @@ -798,10 +802,10 @@ "from mmengine import mkdir_or_exist\n", "\n", "# Create a MMEdit instance and infer\n", - "video = '../resources/input/video_restoration/v_Basketball_g01_c01.avi'\n", - "result_out_dir = '../resources/output/video_restoration/tutorial_video_restoration_res.avi'\n", + "video = '../resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4'\n", + "result_out_dir = '../resources/output/video_restoration/tutorial_video_restoration_edvr_res.mp4'\n", "mkdir_or_exist(os.path.dirname(result_out_dir))\n", - "editor = MMEdit('basicvsr')\n", + "editor = MMEdit('edvr', extra_parameters={'window_size':5})\n", "results = editor.infer(video=video, result_out_dir=result_out_dir)" ] }, From 23b6c0dd6461861e8fb701580d8b5a71c8af382e Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 00:41:01 +0800 Subject: [PATCH 55/68] [high-level api] revert inpainting demo to global local. --- mmedit/apis/inferencers/inference_functions.py | 4 ++-- mmedit/apis/inferencers/inpainting_inferencer.py | 4 ++-- mmedit/edit.py | 4 +++- 3 files changed, 7 insertions(+), 5 deletions(-) diff --git a/mmedit/apis/inferencers/inference_functions.py b/mmedit/apis/inferencers/inference_functions.py index 92d901ad2a..7d979e465f 100644 --- a/mmedit/apis/inferencers/inference_functions.py +++ b/mmedit/apis/inferencers/inference_functions.py @@ -257,14 +257,14 @@ def inpainting_inference(model, masked_img, mask): if 'cuda' in str(device): data = scatter(data, [device])[0] data['data_samples'][0].mask.data = scatter( - data['data_samples'][0].mask.data, [device])[0] + data['data_samples'][0].mask.data, [device])[0] / 255.0 # else: # data.pop('meta') # forward the model with torch.no_grad(): result, x = model(mode='tensor', **data) - masks = _data['data_samples'].mask.data + masks = _data['data_samples'].mask.data * 255 masked_imgs = data['inputs'][0] result = result[0] * masks + masked_imgs * (1. - masks) return result diff --git a/mmedit/apis/inferencers/inpainting_inferencer.py b/mmedit/apis/inferencers/inpainting_inferencer.py index f4b07aa483..a0d4a05788 100644 --- a/mmedit/apis/inferencers/inpainting_inferencer.py +++ b/mmedit/apis/inferencers/inpainting_inferencer.py @@ -54,10 +54,10 @@ def preprocess(self, img: InputsType, mask: InputsType) -> Dict: if 'cuda' in str(self.device): data = scatter(data, [self.device])[0] data['data_samples'][0].mask.data = scatter( - data['data_samples'][0].mask.data, [self.device])[0] + data['data_samples'][0].mask.data, [self.device])[0] / 255.0 # save masks and masked_imgs to visualize - self.masks = data['data_samples'][0].mask.data + self.masks = data['data_samples'][0].mask.data * 255 self.masked_imgs = data['inputs'][0] return data diff --git a/mmedit/edit.py b/mmedit/edit.py index 23f83e0627..b52d94f571 100755 --- a/mmedit/edit.py +++ b/mmedit/edit.py @@ -49,6 +49,7 @@ class MMEdit: 'gca', # inpainting models + 'global_local', 'aot_gan', # translation models @@ -59,9 +60,10 @@ class MMEdit: # video_interpolation models 'flavr', + 'cain', # video_restoration models - 'basicvsr', + 'edvr', ] inference_supported_models_cfg = {} From 91d71373761ae3bc85b18e0d88483cfb4b3a55e9 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 10:47:15 +0800 Subject: [PATCH 56/68] [high-level api] add model setting and extra parameters in ipynb --- demo/mmediting_inference_tutorial.ipynb | 137 +++++++++++++++++++++++- 1 file changed, 135 insertions(+), 2 deletions(-) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index cd2da27f70..76df873fdd 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -336,7 +336,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -363,7 +363,140 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 3. Infer with models of different tasks\n", + "### 2.3 Infer with different settings of a specific model\n", + "\n", + "There are some different configs and checkpoints for one model.\n", + "\n", + "Take conditional GAN model 'biggan' as an example. We have pretrained model for Cifar and Imagenet, and all pretrained models of 'biggan' are listed in its [metafile.yaml](../configs/biggan/metafile.yml)\n", + "\n", + "You could configure different settings by passing 'model_setting' to 'MMEdit'. Every model's default setting is 0." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAACVCAYAAAByxgEHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9SZAtW3rXC/5W493uojkRp7t99klKmRJqUgIElEzvyVSG2aNgQM0w5mJAMkFVZoBGqiEDYEaBWZVRNFaTMqOKx0MUr17xBEJNSZkSqVTmzZu3O020u/F+NTVY7r597xPn3HuTRJnXFN+xOBF7b9/uy5evtb7/+n+d8N57buVWbuVWbuVWbuVWfoBEfr8bcCu3ciu3ciu3ciu3si+3AOVWbuVWbuVWbuVWfuDkFqDcyq3cyq3cyq3cyg+c3AKUW7mVW7mVW7mVW/mBk1uAciu3ciu3ciu3cis/cHILUG7lVm7lVm7lVm7lB05uAcqt3Mqt3Mqt3Mqt/MDJLUC5lVu5lVu5lVu5lR84uQUot3Irt3Irt3Irt/IDJ7cA5VZu5VZu5VZu5VZ+4OT7ClD+wT/4B7z++uukacqXv/xlfv3Xf/372ZxbuZVbuZVbuZVb+QGR7xtA+ef//J/zla98hb/zd/4Ov/Vbv8WXvvQlfv7nf56nT59+v5p0K7dyK7dyK7dyKz8gIr5fxQK//OUv8xM/8RP8/b//9wFwzvHKK6/w1//6X+dv/a2/9f1o0q3cyq3cyq3cyq38gIj+fly0aRp+8zd/k1/6pV8a3pNS8nM/93P82q/92jPH13VNXdfDa+ccl5eX3LlzByHEH0mbb+VWbuVWbuVWbuW/Trz3rNdrHj58iJQvNuJ8XwDK+fk51lru3bu38/69e/f4+te//szxv/Irv8Iv//Iv/1E171Zu5VZu5VZu5Vb+G8o777zDyy+//MJjvi8A5aPKL/3SL/GVr3xleL1cLnn11Vf5/A9/ih/7U1/CxobJLEXrmNXZNZGISXREbRpW1RVlU5PGc+4cnzKfTwFPayq0lsxnM7755re4vrpms8n5xCc+SRzFXK+vyKYZWmuqsqCsC9rGYK1FCIVpLEqn3L//kDTNKMoldbmmbQ15URHphCyZYqzlpZdeZjadsN5siGMFeISSKBVjrKEsSuqmJo5isknG1dUV0+mMtmk4vzjHOUuRl5ye3mM2mXJ2cYaWmulsymq1Yr3e4J1jMp1yenJCVddMspQs0ZTlhrY1pEmMEIqmaWnqhulsShQlGGOYTDKc8WyuNsznM2QkqNsckUAUS+q25fzigounF9w5vsfRwQnGGA5mc77z5jv83/9v/0+SSHFy5xAtQWIRwuJ9DUgQGkhAeIw3CC9AQNsanPNMsozZ/IC6qlmv17TGIIVCSE8UCax1GGMAiKIYrTV13QICJSVCSrwHZw1SWJIkQSqJsw7vPUIKvPN475FC4vB451BaoZQEPM55rLFYZwFJHMdY67CtRUiJ1holFcK3eGdxzhNHEVk2wRiDUgrvHMYatNIoJTDW4p1BKpBS4z1Y7xAojGmpmhaBREiBdR4BqEjjAdvdr1ICqTxKSaI4xhpPU5vQd94DDo9DyYy2Ubz37jlCapIkpm4KvLB4AQyGXIn0jjHx2LOQk8mEtjVYG8a5UgrvQ7/dJB/EXvafCyFA+O61767tu79lGCNegBCI8AW6Q/E8e+1w1+6F1979ggjOdt24G07ZN7+/zui3czef/+a+8KDAOY9wApA463HW8e///f+HH/6hHwIfnhPeIbzDerrn9+z5xz+7732EW/b+xr4Lt33zc/P+I/Qp4EcujM+2NfxYa7HW4pwjiiLiOEYptbNzVko9dyw97/3x9UJbPGDBeyKr8US0UtJoy//1//J/5v/0f/g/8jOfeoU7WoC3tLFCCoe0NdJvxyZ46IYJAhDh/IJufArZ/e2H3+Fvtt+DYX5JJeGGsbo/r7zvvts1wXuP8x7nwXowjvC3A+s81jmcg9YJrOvWv/7rPhzrvMd3DdkZOzvvhQ9c/0W6uTeaKmHcsjNqBAIpRd894T0P2oNy0GiP1RAJQeYgcRKZTPnG+TVvXq5oPMzn8xuf7Vi+LwDl5OQEpRRPnjzZef/Jkyfcv3//meOTJCFJkmfPc++IT3/+Zd5fPqKoVxSVoRENed5iW4vD4LQjXUxQyqIPQE09RbmhMjlZnPBkc02t1qR3JJX0FGJNMjuiKTfkZWB6wCOlwGiHiCRJnGFqgxcNTFoaYVm258jYMT+aU10UnJ2/DxuJUppDZsymEfgWpx3WtkilyA5SUpWSNJL1OgxilXnyq2uU8qiZRNQ2TCBpyf0VWjuWzTnOO85KWK1W3Lt3D2MMNiqoow1lW+B9QZbOUdQ43ZJMIqJEMfGa77x1xvryEq0jtFJYuUAgyQ5iotTjaIi0I53FoDxN3nJwnCD1AUkkWJdPqMuW6+tH1MagEohjCcIQxZJIBbDguykjlUJphfOWujFBUVuLcQ3WeOrWoGuPdRahGhItSGKNx9I0BVJBJMMSJCUgLUK2GGMxNiwuSiqEAB0pdGzRWmCMDaBESoq8wHm3o3QlGo/YLgZYPA4pFc4bjDUYa5FeIlWMEhGJAiXC4hBFnjS2OO2BcLzAopRDKoH3Fq8MUkuUDvNfWo/DoJQl1pawrAi8MeBBRt1iID1CuA7cSKR0IDxSe7S3CAVCSLwPANLZGuciwOGdoWk9UnrcaLHtl3LhxWghFYMScM4xn88wxnB1tSSKJNYGMPNRFEiv3L0PYMQTFnPfAaP+/V4peG/D2ui79oQzP0cp+04pfATTrgC8ZEA9w3fDguy7Zdj3S7IAKbtVenzlQZE92yYnHFJ2l+pvBkjThDRNwTsQDrxHeIdDPAc+7Cr5vi+dc88Fih9Vvmfn6QDKs8p2Cx6cc8OPEII4jonjGCnlcJxS6sbzfxAA3gcpYBHeEbcxHo2RglobZjpiIuBQC44jAQ5KDPiGRNRI4QZwLDpQIoREDOCjnyMC2f0Wwm9/D8fQgZp+5HiEbMNzf6bt4fPtGA+/JTHeS7zzHRAJq6gRAZwYHBZH6ywOgVERVsUdKHEBlHjR4xw8cvR8BMZZjLU74N934MSzXSt6QCalQGu1C066KSRFeP49sBIEcKKxNFJgNWgkmRDEQN3kKNOg/Id7vvB9AihxHPNjP/Zj/Oqv/ip/8S/+RSBMwF/91V/lF3/xFz/0eSpTcrW5YLk5o6xzvPMooYgnmkkyQ2goTImIJDqKeXr5iCcXlvlixmSaUJmCR08f4b1DqYjaV1ytz3nj068yPXqVq+VTrpdXGBOUjK0szlusVkRSk6UpcRaUX2tL4kiSLiKO9SGbesNmXSAUVDan8Qd4bWhpUbHEuIbG5aTxhGSqqYykaVq8aMnmMa2vmM4OOI2O0FojpaLKS/K8oGpzptMZSimm85MwiGKNlILGFqRThRKOsl0BBoOhshJvLVk2pahWtNZy7+A+h4eHRHGCEpKJTqirmrJYh+9sQvvzfA0eklSxWV1T5hX3Tu9zMDug3LSYBkprSOIaJSQyEUAbFJIUSAVKeyKlidMJznmapsa6llZ4pHQYW+Odw/kGnKBuLFJ60iwKyiJoOoSQSCnRWtI2DcYYhFDDgiKVwzkzgJOwiwOlQXoRAA4C70Frgehe07EtUorup9vVCBGuFwm0Cios6kCOwOBtPUxqKT1KeRAWi8BLh/MtOAEutMe6bhEBpJYIAdZZrGkQUoCQaKUHkGRtg/cCIRRSCZzrzu8M1oQlSGmF9R4hAzCC0BaP67ttR8SwQLCjgwMgM2STjNVq3V2L5zIZYlDue+/L0R69Z0P66+1dtyNXRufZggURuoOBAhLhbz/a2X4YEb5TJJ7+YkNHeNeDKNcxC2GB36Vahht+LoPive/GZ7+zDp8opYniCJzrru0Q3mM7UHyT9Iq9B0TOuecq8efJi5iv5x3/UaVXfkKIne9ba4fXPQAWQqCUGtiTHqCMAfK+fBiGbvf6omMkJdILnBAoEdgzb8A1BXiJwqG1xwnbsXFyYO6GAdmhFQEgt+zeFj4HNDqwgT1g6XqmOyj8dUPfihFA3YJaiXWAF4FhA6wA7wWOwJV6JM6DF2HzgbMIXyOcD+utFwEEA14EZsX7AHJwHiW62+nmrh+1Ndxjzw71fezAGsbzIWxw/ADWxpse6TzKOSJCGyUKjASv0DpBi48GOr5vJp6vfOUr/NW/+lf58R//cX7yJ3+Sv/f3/h55nvPX/tpf+9DnWK5WnF+dIzRMFxO8dcziOb71RDqmtRafVzjvMXVJ3TQoKQCHdYa6rkiTJEx+IXjppYc0TUvdVCSxZJLGFIXCe4MXYQeklUJpgUQSx4q6Kjh78oTV5hKdgNaa4+MTHty/z2ZWIIRCSYn3FqkEpjVMpxl13eCMBeeIooRYa2xrwk7LeaqqQB8fodIUaw1JpGmloi4rZtMZL7/0EnmxGRYvIQTWGaqyYD6f0bYN1phwXhx1WyMjzTyJiNKYpigRWmKcpSk2zOcHlE3F5dUFeQdQUJ7JNMU5S9s0nNw5ZT5dYBrDdDLD1oGdwEMUwXSSkESKNAkLhTE1zoe/A2vicN52CioAgShSCClo2xYlZXgWXiKlwGNpjek2vmFySKlRSg8Lk+zNO87ivSNLJ/QTqf9sS12LbjHr16Jg3vEumHiCUqADBLI7XnaLqMQjERKkjvFYbNvSWoNWEqkkWmik9hgXlI/UEdJ7pHAorXHeI7Dd5x0g0hrZjT+pNWmckaiYOI6om4qi2OCcHZ5xpDVKRkSRx1kfxnFbBUBF2KkiQEsRaNvRGh+WFYGQW+URfjO8LoqSg4MF01lGUZRorQbz2jPyIv2xw1Jsd2pCbHeMYsSLy+7wnR1lf4l9HvkjSs+TDC/690dYhd4k0tPe++iNsSK54Qp+uJUOrHaUuw/jK1wsqBjRAb+bFPBYsf9RBlj2QOijyHYH/iwY6tu/D7b64/ev9by++CATz3B9fGfBE7jOquJEUJI9NxZFEiU9WIMU4JXCOD0ASinlwKDAlhXp2T4hBGoAIf17oSe2IGU8nzweBcL232C7Nqkw5rrx7r3DeYFB4IQKwMl7nAgj1+AweKzwWAnGW1y3uZPe4QHlJbj+qYgAYHpA5bv+8ds+8X67LRDDMxibq8IcVUJujxrGuRj2DNurgMITSwESHALpQfVd2gPIG5/ozfJ9Ayh/5a/8Fc7Ozvjbf/tv8/jxY37kR36Ef/2v//UzjrMvEtNarq9yTl45oHEVHsOmKImISOKIJErQdU1jG6q8wTSG+dEBEz0hX60pyxItFfkyJ5tMuHt6l+Vyja8toIiIkUaSqYx4kpLLOuy8lUb5mMPJgs2qoFiuiXVEFoXjYxKO5zGpTMmyKVprylXB8fEhy+qaJq85WCwoiwpfW6JYMYkmmKIlETHzZEp+tcZWhizNMAhMadlcbrCV4+W7L7OYzJnEGXmRg/c0TYMSEVJ7fOMwjcEJg5zGVE2LknBwPKFuDUVVI5SmqGoWh8eUm5z26prV5TXWtOhIMVnMycscIWPapkTHGWk65ejgiEmacXW55GJ5xdtvPe6ehqAoGuL5FCWjMOCjDu072YHw4HtjjcMaTxyneNcvjBJjDM4G0BHpGKUlzrcY02KMQWuNQNM2DiGCD4+UHufo7NyWzboiiiK0VgSmpJtRPkJJ0fm2hGua1hPWCd+BoqS7E4GzAiUjtBJhR+0lUmicgNJ46rpimiaUddnRvZ7ZbI5xoNMM4UXwE2lbpHeYpu5YDkmUpCAly9WaSHiatkXrCGMgbyp8Imlbh7UGKSKQirZtAReYEScI67vswJ/DeYPWyQC+eqDS3z7ssxS9AmA4wLkAsC8uzknThLIsOnC3VQaiA5ZCSJyz3CyS7c65v54fgOJg494BSFtzjhAM9/G8TfRNqnt8bH+uYNsf7Wj3SZGhb/Y4E9+3edtXEMwRW3OLGExWKgJTAxqsceh+w8G4/8SAfZ7nH7LbttC4/UiHm4DLs+aOjybf3ff2EDBbULHvRwNhTPb30vs4fa/aKkRgTJyA1gLCY4AWh5WeWhDWHhqUDsraCkHwjxNbptH3irkfv75jTiTSe0xPrsieSegYh2Gcj3777hn6Xs1uR5hzYgtQAO8CyHBC4rorOumwNph5jAOLxPjO60wInAgbKtkBHI8IzAqdcd2Hm+rNiV4E9nHgR0ZMCfTG5nBczyj1DExvxuqNOh4/kJE7ZmIpw2YP311PYL0KG1YULYLnbHdulO+rk+wv/uIvfiSTzr5Mszmf/sznsHHDurjifPkE7TSNNWyWFXGW0TjDZDanWl0xS2fcObhDEkdsliukEWyKNcY6muKahycPyaKMq6fXHB3OKMqSiDRQbbVAy5imbqhrw53DQ9I4o/Ql82yGjhWTeUbbGMpNyWJ+hIshkjHOOBQKU1sSneGsRXlNEmUor/FGoJwiFgmJSpnEhlgkuNqjk4g4Tmmbloun1zjrOHz1COkFZVHSFi35JgcChey9I81SbOMQUQTEGNMQZSnGhp3C/OCI8/NL0mzCfHHIo8dPmU2mVE1N27akMkHWBqkjUBHWV5jKcHF5jRCap0+ecnF2Ba2iLBsAlIrQOkEIDV7hUThrsMHsjkPivMW1prNHS+I4AIK2td1EkIjOB0SpCCUltrUdOIjQKkEIQds2SLG1s1rjsTYouEjHOOep6+DropTsTGQ9Y9JPOjoFKwiKXo0WpZ496Y51FueDHbhqDFpLdJzROhsmuwctJet1Tmsc92eHnNx7wJtvvkVdGiIRnFwFQXmZNgBE4TVYhfSCSbagaWrqpqF0DVopPIawhovQNwKcFUNfKamDD7IQnc+KYKCd9xV7t4MZFpcb5pP3jrZtMEYQRZr5fM7V1Rqtw8I60MVuy4rcBCACEJEwUsLe2y1gGRZ0BgXfy7456HmydWrcBSM3/QaCo/QOg/PsdXpQNKJunjEj9Ap2zAAIEZywe+bEK7od6n6/jP5+8e2N7nH/HM+aVD7q9z/K8c+TP0Jy5wNFiDCmnQhKVnbP0AmwMphJHOFv14EKJz3SW6R3SB++JHowK4KvieicLYQMilkAdCZB4bdsQ/jpLir8jk/sB/Wp6xajnkkR2KDYfWA9gkkQ8C60wXdOst4FMxZghQrmnNCCAFB8MFr2pEcPPpzvwPFeu3r2cOzYHqaAD+0YmKNugfFb37SesQkwzmGFxwmPFYGxDaBL44TCIbA7O4EXy8ciiud50jQNVxfXVGKDij2L6Qxbeaq64fpyRTZtccojpCZNp6RRglYReIE1lnxTsN7kTCYTqqqlbS0nd+7x1re/jRYJTeGoGsumLmid4eD4EGM8m3XONJmzNNecPz1H2ECDpUlG226oyprTk8AOeC9obU2kNWXZMJtOKKuKtrEYY4mSiFjHKKFoygZrw8xK4gQpNXGchMiT1nO4OMJZT5ZOefTee5ydn3F5fY4UQaFYaxASTpQOLIXzTGYaJRPms0MEEdZ4jo9PWC7XHB/fIcuCCUdIWBweUFUlUgmKqkTHEZvNhuvrJQ/u3aMxhqIomGYTlFqiRMx0OgnYiBBR0+0/8NaHKBhHZyaRCOGCr6CAKIpI06xTeCVNY3Z22M4Fnwqtg/OrlJIkyQLzYSzWdkrOi+Fz5/wQUSPldndm7bM2/P47YUKG6duDk+B86nCuo+eRHWjSSK3RkSRSAlvl3D+9S5VvqIoCnEfKiGqVw6HFVg3aKxSghUao4KjppcIj0CpBRgrnYD474OLiHNNadKy6Nm4ZBtnRCUIIrPU41/WBNMGvxgftKLv7kkJ1PiR+tBi8OOdAuF7gx51znJycUFUVpm131pNnTDTPyHZJ7I8NF/B7h2934H60Zg4Ln39WyfftFHLs/OeH74/ZhkEZD+DsGZ5k1P7dC/VOkftmhpvMXbJTgkJ1riaiv6H+vPvXE8Dz2Kc/nvI8VuRFbNHOe92OfszE9X5BW15D4JEdwxD+ip0JTpv9+OuGR+8jLUQwU3S6PqxuXgxPsbd+BBcUv0tZAsJLuHGO9G3szcoBVKgOQDvCWJIurEPSOyzBCdX6znnWQUOERQ2gpjMidkM++FN1bi2DSfNm9m4LZvqJGJiU4Wz93XfARW2nVf/97kgrHLZjtKBjhUYM10cxJH6sAUpd1pw9eczi7gTT1GRpTCIkpmpJYk2WJrTeslmtWcwPidM4UPRlQV6WtN7iJRgXfr/36H2O7pzgpeByueLsYsk6zymaHJEoJkcHEEUY76htg/BwtbrEG0/cxsTzlCRNQtRKpEmFpK4bhBHYbnc6maU4b2hti5Sqo+QcXkDrDFVVUxYF1jvKqqQxDZGOcMJzfHqKN5bGtBRVSZKlpM0EJQNzsilL2qZGaqiamnSyYD63mMYivCDWGmNasiTm+HDO4WLK6vqcLFUYU2B9Q+NKnHVs8px0MgkOo1rSmApTt9hpynJdUlYrDqd3SbMYZKC+4yQCTOfP0RCiNgRSCZQOA1oOijUoMedM99MGoCQECInHYkwwaSCCs60QDrA4F5SEEBKpBFroDugoTNOgu/Bh5/xg+hFi67PS/4RLebyTgx27m2JsQyQDLR3wjkQKiRIQ4Xj1lZf5C//dz7K6vOS3fuM3+OrvfotXXrvDvYcvs8krfFFx/+SIOJYBWDlLYwx1a3ASWmsRSpCkKYvZjKauMU1DFCuUCrsrKeiWUxtAoI62/jlNi7NN8Ou34IzBOTr/li7iaRBBsAaH+9uVsCga49E6fLeqary3LBYzLi8v8Tu7wvEG7GbFsmviGbiO587lsZ2//15v6rnp4CHiZvTju/DL8Tm3K2inUrxnN+561MABTAnGIbdb8wnB4VqFtrpOSTgPIoIkCU6ZaTKhLi11WY5O/OHZiT9u8l056D5jqwuMQwhz7cd/YEWk656+VwjvOpDhkXiUB9kzir5Xv36kbmHwnBAizEUxXJCBWdjxjbLjRrE7BsfKvjMVdnM8nCt8Ln1oT4BT4Wjpt0BMdqYh4bs1qwdZ9I6v/X1099SP4cGW9ayMSZVhszD0SzdHCfNnAGg+tDowT9stkBd+5NvuOiTX9f0fFwYl2Ac9cSzIqwpjHMpKbFsxm2TEsSbRCdfrJY/PH3F69y5Ensurc55enxFFivnxAqU1sbXUpqYwOfPjOdWm5uDoDuliRt4WNLS0OFprqHxD7VuODg/J5gmP3ntM7GOyYsLJ6T2U1FjpSBcZzdIQyZjNZoMXlk2dYzAIL5FO0FQ1XnuyLCOZJqhUkUxioixitVqxKlakaYo1HhUFJ6rrzTVGWpI05jg6ZJ2vaJqWKFWIKMap0M7Eetq6ZbNac6k1B4s53rfUVc1sluJpefT4bYRwFEWJUBKhLW1V4WRLawtiHXMwnzNfTFlfX1GUSw4PFhwdTzGdEoMQZpykirZ/T7QIGfKOSBnCpIVwSEIESmtawHTAwKJ0ACJKqeD3gcO5FiHpWBSHp8Fjkcp2DItEKj1Mfyk9cRTjvceYJuQ0EeH7zoW8KcHRNTAsUsqwy5Cuy5MC/c5fq+BjYUwwUykXGKFEJ8RScHww53/zp7/MX/zf/jzlesnrd49J7b/iF/7C/8AXvvAj/Ot/8+/48T/xQ/yZP/8zqEjy7be+zfuP3ud6tQ4gxRp+7+tf5+zykny55FxA07a0piLNJmE+W9NRtQbnTRfWJ5BKEtErSRWcboXCoRESlNQhrNt1TtcC8CNHt+foSikESsluV2dZrVYcHBywXF7vsFsD6PiARWZ3wXteHo8tQzFmKrxnB+DsfqO/9pZhCgzYlkkJr7fH7LiC7LbyxTcxag+A1ozMPB6tJXGimC4isixFoVksjrk4W7Jelbe45L9CnuckeyOg8R3o8J7IBVbSe4+SgXVQHpQLptxgKhF4IWlFMPCKjt0LqtfRWzLGoNkLhxduB0CL4Iwyaue+8++L7lAGRd4xKGEtDDmBvPAh/4lwWBFYCUMwTVk8ljD+PKJzku0Mt37L2G0ZxG20XSB5bl4DxvlxRgYdwHV9KzoQsp2vA1ChA4OAEB0QGc4QwFXofTeEGX8Y+XgDFCmZTBM2+Srkh9ASU7c0TU0aa64un5LMJrSmRChP61qsMGTzjFk1Y5OvKNuKVKUYZ0gmGZera2bTGU1juXN4ROstcnXJxeqCq9US6y2bvCCNl7z2yivcfXiPvMyJ05iWtpsJHisN6SxjXW6Iooh6WRPHmqLaBAc6H+xxCo2XHqEEKE/btDRtg441QoWBGnKdSSZJymaT42uHl56nF08QElpT09qayTwjisIjDYm8HFJIIh1hrSFNI4rLJUpL0izkZbGmIoTnWmQkSeKI1tXMohTvPbNpyp2Twy6MzZLnOYeHE+YHM5gkaFqEAmODcjW2xou4s9MG0OGEAVcF0OENPQtinQ+5WISgbUMOA6kkSnf5EzrlGqJxHK0JCZ+EdN2upQvj9V1SIufxLvidCCXQsp9Int4hLCSQ6xeEboJ5H46RYS/Qh0QGE124fppqIh0R4Ylty/3FjB/+5CdYKJhnCX/6i19g/e67fP6N13j9wV1+5k9+iVffeIM7L99HSMcPf/51yrolrxrWZUHdWv5f/+bf8Gv/+T/z9rvvs14vySYZSjqEsB274wZzgZOBdbKuCdE7wyZtgGe82EN+xF/f9KkAqcBZFxwAhWC5zJlN52itCcxYT0e/eF72Zpdg7vhgDT0s9M+cY//7PbvRK68xGBHDdbff65z3BuDZ98Mee3LD+0KJzjwQkq9tQdnWB0drwWI+4/DogGgiMW3DZpmTJFUX5s4N3X3jm7fyPRCBQDiPcMGvRLmwCZReDqNf9myABys0Xo7MqYPeDs8ozMFujZAdKyC3eVG2AKZHxQON0Yl7MUDx21DzwdTjFMF8EkLRLcG0Y3wwm1gHTgQ/Dy89OIt0dmB/fHePXW41PCGyxo4MXc/vvZt+h7w9MAImbEOuhe/nWsdQd0CxNw0JQHbflF51W8QPLx9rgKITQTrRNFJRm4amNbSNCXk9lCSZJFyvrrDCIVSCM5b1coNWgrZssKXh0dNHZJMJxyfHtHXL1fKaKI5pnaFpW+aLBXXTcH25ZCpmXC8viUyErz3eeOazOS+/8jKbzQrTWuqiZDbTmLZFSsFsNqPYFGRxjKlrZtOMpq6RUYpOU5xxtI2h1S2JSjhfPsW0IXNqohKaouX08C6boiDOYnRTMU/nrPM1eVVwfXXVsUgaLRWzyQypJHXcslkFc83h4SFlnbMuClQc0TQVSEFe5TRNjZQhBwZCcL1ZM8ummLohkopZNMFVhvVqiXeOKEk5u7xiMpkx0wneqU5hBMYjiiKUjojiFOEsZVNTtQ1CmE4HBCWjorhjMEImVaVBdqG0rjMCKzTWOqrSDD4kbRt8d4SUSCFw3hFFGi01ddvi8URZRpqmOGspy4K6rpFChonT+W4KQqIh35mAQj4MgY40WkoEnkmSIIEsTUnTlFdfepnDKOHq7Xf4ofsP+czBIfpyiagKFpuc7PoSdXWGXN3hE3fnZFGLKN8F1aKrFlk5jtI5d+Z3uF5XKONJZIS3bnDuRUqMdURKg5AYY0EooigKfjbWY22LcaazsXuMdeAUpjW4LoJB9kp5oJ47BS06mncwujxrRwlYTYKEi+trFotDLi9C8sC6boccMbLzRtx1OhVdGGO/xPX0OQMG2KGP6WniXjpzDYF6pwNESkmUCqHTvksep2Tn09P7C/XPF7b+B+NbGzPt3Z5zUBCjq/dt9nQEVBfFRXdPzlrSVBPHitdffxmtBY1r2bSWOM5C5IU1IwXW3WR/woGKf1ZE5+jeK6xBARKeW58Ruc/uOTg3Donl/A64217DD8+g/47v6f9OEQeg73a+LwgZkQVb5mjbY3IHFO4qP9e1xQ0/QmzVzTjk+HnyYfKjDOa3TmU6KfA6XM+KCE+E76NoRAsUBJf9BC8i8HZQtsNYFbtjcxi33oeQWTFW0X7oW98D5sH/iB3Lzz407g1Kwa82sKPOEyCJDzlFhihEQXDoJfiUaMB6gSM4oY6tlp5uw8t4I9aN9QHUb8fAti+794XowpH7+99zkGV8re5Wh/dHZjU/njsKIUJiTPfHh0HxVHXFsrmisTVxHLHON9BKGlqMd0ilKKsKDxwfR2RJQhLFrJMZm+s1VV6H/BU+JC5wzmNsUIjL5RIpFalOefXBK5jWEHnFYj7FeYvyijhJiaM4TO7WUG1yJIoo2lAsckSXZnuaZBStIZEaKS2mrBFxglAKIVW381e4xnF1fk5RVNw5vYfWMTiJVjEImB3MuL66omkb4jhEtSgheXDvQaDohSbWMc5c402g5bzzNI1htdpweu8YS0jXr5QKzobW4FpL2eaAxNqgiE7unZBFGdJLtIiGZBVFVeFciVclTQHYbbSMIrA3dV3Tu51HcdwFdYiA7P12J9qHqg45Sfz2vYBTNAzZVGUY5L4eAMs46ZOSkiQLqbSD/4gJzy9Ju1h+1wGTsAOS4QRoIfDSdwngNEprjDGYtiXRAbA4a/nE66/zydMHlA9f4Uc//xlOFoeUF5e0myX58opYeFLhaMsVWZISRx5R5/jrJ1RXG4rKsWkVhU8oXcTZd96jLWpm2ZTKGYyzzGYzEI4+wVwPToQQNE2ImHJdIrF+8QoOwt2ORgbgYG2764MiehtHr8h2ZtLOK+/DPJBSUtctP/LFT3JwcM63vvUtvIMoiWiadvTdvRWnVz6jT7e7LLaOhYOi2TqjCrnNPdMrONn5MdGxcmqk+L0fJ5UaLcg9cTIsujcsIIyiibr77m8lKOzuPFZtwYZ3JElClkZ84U98FrCcnT3hcrWmKCuEV2TZjLput+BocKZxz1zzmRb5/h7Cl/ssrHR9M84hMphAhhP54V//3Q+SAawMO/mxwgr9FspBsPu5oHMg355p93f/97ZTbwIlNzNl3514gqI20nTK1+FCWrYOelgQTadQNaKLGhzMEb0yHgFdsf0AQUjlLjxh3RyxDD0SCUcOSHAAMi9odMd6hBeWsLno/c+E71II+rARULghyZ8EGgChOoDUgXvRs39iOwH99vmIflNxw9Tt7no0d8U2R9GIXemtRGL4j9EJxTB/u60gwZwV+sw997rPyscaoGgdE8cJrnIU5Zr1RqPjCGc9y6slZ5eXPHjlFSKdsS5qZtMZs2mGs47FYoHAcXR0hNSKdJJS1hXGGNq2JUtmtKVBKU3btnjnKcuCIi+4d+8U7w3WGJIkJc835Pk6LAiFRuiItK5p2oY0ThECptMJTRVs0ouDBauy6upT6BBOay1eaeIkIYpSynrFer1mcXAIUhInMWVVc3zniMuLC4wx+G4Bms/nnJ6eslmvqesQKvz06RmH8xMEcHl5SV7lqEhx5+Soy7zskZEITp8qIo4SsIE1sbUh0jFHR8cUm5Ky2GCMYbaYs1gsWOUr8nUZas34LqNiFxHjnUV2CdccrsuOCtZbQk0UFZw89xbEPreEtVsHzj7BVRRFw/t9Nsooiob6Ht6HPDBShJTx3ruQ4Mg5JCFdvLctUoDqzTjdMu66iSOlRCiJl51bmhB4KUMocdsSS8E777/P5vwK3RoevvKA9/M11fqa66ePqfMN61ix9JZMwGI2o/UK9eia5u33yVcV13nDH777lDqa8OBTn2OuIlxZo0UoDWC8J0kngMOYAACstWH8+a2T79A/nUa1NvSTkCLU7pEhRT2wVdTh1Wj2vFgh9IpQCMFv//Zv8/DhQ+I4Bhra1nb9b7lpB7wLSkaMiRCd+Wj7Olxr/9sMJpveQTmMDTf0wb5JpwepoVYWgy9KWPf7reB+O3d34r3JKFDtAH3oZ6d2vMc7R5pM+NSn3kApxTe/+SabfE3rPK1xKOFDHSXRZSp+RvH2r29eocf3B9t50Zsw98dAf8wAZEb9etO5bwIE/Xv9efukbf21959x3z7rdufw+Pf+975bAPK86J5nr9tlGH6mvbtt6Of+WKXuj9NBNYvdvhL7xzOMVsacYf9ZANQfcN+jwbr1uenMNd0YFoTM1i7ECA+smgBU50vTs4F+YD96IDIglJ3xvh8+v9+329/ba7JzhwyAbnw8I8avZ+dGPfKR5WMNUMq85uL8irzN8Th0JEmimGw2JdYTnl5cs15XGGtCTZJuF2qaljiOODo6Yjaf47yjMQ0sr/FaEkUR0+kEYQRZlrDZbLi4uOCdd97m4uKcJNHM5lO0FhwdH6BU2HVjg52+bVvKsmSzWhEf6RDhEkusM2zylukkYzqbUpgQteK8xxuLjwVpNiGblCipyYuC+cEBCGhaQ4eJkULS1A2Xl5e0bctsNqNp2rA4S0nTNDRNQ11VKCk5Ojjk7t0TGtOQr3KSOAq7TK9QImaWJSyODllWBU8vrzCu5ejoDlpFXF8/xhpLU7comXDnOOP0eEYWF5jcUTUN/fajNzmEhEwCrRTGGUzT4mTHGdo+H8b2B3bTY0O3WMpgv4wiTds2gdZXgjjWgaEhXNdaOyh0hCfWOkTyiID+pQAdh6yu+GAiscZgrAeV7KSytt5hbWBZfLcoODzGO776+1/jIJ3RbnLefvQu/+7XjrB1TpWvSBNNU1aUBwd8Po45rBpSnTB5esV7v/uHvPX2I+RkzuNlwXXj+NaTK77x7W+zWi1xqQ7+U10m4H731iuCpmm2ylrKnZ2x65REHMc4EwXnYeG6Xa/driFD1z5/+zJQ+GOKvxufZVkym3URPb4DRc+Vrc/GLhhxjB32dq8rhkU93FcAulGkUToozAA+PCFJ3P71t20eGJSOXXmRjtjdzW9/b5kFoEuDLxEkWcIbb7zO6eldvvq13+HR4yuSJCQHC0XdLM4WOCto231l+WJwEu57t3bNWLah19saN8aY4Mh9Q3r5m+6z968aH9Mrqj4N/ZidfB7Q2PbVzeDke1E76MN8f2vi6cFk/wGDqXE8NnYhROcnMTAn0Nsbe/+KkAek+w30vlLDLBIB/I7NaVuGTAzn+jD3N3YK76NdOl55y+CJLtdO7z/Xl5Xwna+UD9FJHVc3AKgtRbR9dmOQst+O0asbGT/RvX8z/O56pwdoo/v6qPKxBijeCqRISNOQkK1tWyId0bYt0+mEB/deprKOJJ2TTMKOO89L0jhB64h1kdO0bZicSUelxyGzIHiUlpRlSds2KKWo65p79+4xnc6JIj1k88yyKZO6pG4qWjMqkGUsWmm88jgb0sUXeY53jsOTkwBqup2Rs+G3FDoUwFOKw6Mj7t67h44jbFUipaDIC5RW3Dk+RuCZzaZkSRJCk23Y2a7XazZ5jvQRq/WSJE05Oj7AuhRnLFGaUtUtVVuzXuZgPAdHGtt6qrIijVPuHB2z2eSUZUUSp2gtSOIpWbIABJVwtCYPGU77PChKDbVslJKoSEIbHGjxEOkoVOvd22HtL8b9Iim7yqFxHBHHEU3TDKn94zhCqZBhVYhOQTuH1sF/xDkf6j7EmjhSlEXReZiHRUlphdQSgwbZ+75AP4md95R1zWw6BaCqa9I4wUmJzDKumoazt76D8w2TLMaWG5SA0+slxTe+xdXFbzCJM45tw/k3v8mTp5dki2M2teFsU2AuznBJzPGDu1wVK6rVBpQgSrPQrk7x9CwRMLBIgzlEbOubhNDWbkwKj+78M0S/SIshGPCF9OpYkfUAybQtRVHw6quvUtchm3JR5N3xz56jZy5u2pn2TMVYeuDVtaAzc4Ql1ti2M2n1yq83k2xZhmcX+n5T2nEfPeB4zr3uvte3qbuJrlSD7PpvsTjg9Tde53d/53e4vLwmilVw3u4YE2e65FtCdskBxxTW88HhuC/G82K4b0J15H4D1G9Cxozj9v7H/bUFC/sp58d938+5MUPZAxmt9c45w/oWEiiO+3GfDX1eH//Xyk07/35g+5FJafg1UshyACK9kg2DZWA86PtvxAKwz7T0Sndk8uhARL8bGI59ATq+icUQYntVKX3IIzUwOr35tpv/eKTwKGTITNtHBI3a2rOHO+Btj0l7HtM13N+2A7cMzqh/d/ulW2NHqGbbgx9dPtYAJZ1k3Lt3n0rGXOePiXQYgGdPzlhMTnnppVd5/+kFUmtm84w4jjFtTVmW2I7tsJ0SiIlDdj4bMpXmxYYsykLZdGdI05hXX32FT33qUzhnQ9in3NLOOgq1f6rNiqY22NaTRinHB8c4G66jVJjoT87OiCYTsvkCPCipQtpiJ3A++DlXVcN8tiBJU66X18HnJIqwxpLGCffv3+fO8RFpEpPneTBreEuapsRlgfOCxWKGtZbLy3O8txwcLNBK4q3D1AZjGpZXK9q6YbY45OzigkQn3D25R5pkXJ5fEUURk+kUieLw8AjbOp4+veD87BLtwLWjvBOExcMYS9s6tFUIJYiTBEsAa5GMh91w/3swCY12joOCRJAkCZPJhOVyyXq9Jo5jptMpcRxzfX2NEKFKal3XhBT4QaF452ltqLtkvcB2O2Etu+rHUiF9SC3tbtgp6igkV6uqKuRxEYLGOCSSFkLFThRFXSOEJ0tS3r68ZlU7nr7/mHJTEaUeYyuu7Ib2rMAjyNIZ1jUo75HW0EofTGAmmHoQYZxYa2maZgcsjBVNv9O11lLXFW0boqfkQBOPWNh+4XrOXBqb1/Z31kIEoH52dsZ8Puf99550RQmfr3xuMu8Mv0cLWLhPN6qaDNsFvvdT8p2TrMK5nvreMnDee6wJ4OVGBuUFbdwFOVvwtJP3xXc5KqRksZjx1ltv8f6jp8GxHInp2BMgABQXkud5R0exd17FwxMQvChRm3OOuq6DGbcHGX7Xt6SfP2Nm7aaU+P18GoPb/rw9wO2rC/fHGWN2xl0cx2itu4zM42tsR9RzfVh4Vgl+ryUAuG1rBnaHZ4HpFlT0R+wq1v79fhyGz3e/T3+d/kOxjaDZPeaDGZRnWYytOaYHFT1zss322m+0wrll75MmglkquKKEc7jOn02KnhncBVA3MSjje9i/5+374rn9wnCNHqDdQLV8SPlYAxQtIsqyppI1IEmTlFgkKFGxXuWc3n2d1ikurq/oK7Naa8F5mqZF4IiThDgJTpxlXQ0T2lkHXX6SOI65vLwiyzLm8zlnZ0+pm4rT02NMaxBIDhaHPLj/kLfeeouzpxfYyGJri21sAATGspgeUBc1hSkp85JsOiPSCaYxxDLGGU8SpcyyGYv5AdlkEpw9ncN3zIEzBm8dWZIi8bRty9XVFTrSqEgzmU1xwGc+90lODu6QJClVlbBYzDk5OSaKIvIiRwiIopj5YoGOAmtkW8MsnTGfTmjbBuct88U8hNfqhPPzC8qs4uzJORfn17x0/z6JDj4ozjnqpgme5jKwHioKvjMnpyeUbcnF2eWOuWJc2RSgqqodxWusQQkZsttKQWtaPN35k3hgVmxXd0YphbMhsZFOIpz0lFWJ9y7kRyGYaypr8MaitCSONWJka++Vlu1MUf1CrZSiqisQDiU0jQMrbJhBMiRAq6xjlZeYxrPOa4SUPFkvcZlAnRwhUOAE68ZgG8M008ymU0xR4HKJM4bWW0QXxSWEYD6fI6WkbdvhPa318Np1mSYFbjB7hAUshGYjtrpxnOJ6h67t7vkms4JzDtmZ0Yqi4Cd+4ieIoohvf/s7KLUFkuP+GyGNTm5WTvuL8rC8CTGEOrOj8Pqwze25t74SW8ZgfJ4PUozP3em7MA5DMq1QpHI2n/DwpQf8zu/8Lh5Da8K40VqEIm2+3+Uy+IcNu+2hG3rweHMcjxBiAOI9ANFdQcngQLy9937+jPtyzE7uALjOBLT//XGG5fF3x+xNP+6UUrtsihOdXxLDGB2f/ybflecpxOc9p5uOHR+/a4LagrgAWvr8IH7LcITDhghC6fpKNSMYMQCrsWmlgwMjYP2ikbXLnD3/mOeOzz41QkizEhzeXSCtAuQVXYqjzqlXBEdbJzofkI5R6iPk9k1dHwYw7s+/D7q3MdOzY64SIgSLCIlS+o9PFE9RVlxdLjFJgRMG4WsyqYn0hPWmpixqprMZKElt82G3HkW6W0ACfR5pTTtkJw0KQCJompo4TpjNZ1RVcD5dr9fkeQHCE8cJxtS0xtI0NZN0yr2T+2yuii6hVwwNZElGW6xIojTUAtIJWmpca8gm88C26ARnBaZqqDYVx4d3SOOUumpCoi7n0EJiTEvbNCTdrqYo8hBtpCWtaTk4PCSbZNx9cI98ueZqdclms2G5njGZxEym0y7CQ9JaQzqZoKOIsqnBh2JxVVWiteTwcE5VVaw318Q65cmjcx7ce4k3Xn+NJEqJlMYbN9B+IYrHo3Uw9fR09NXVJUVdUtc1sU4GZdinDR8zJuOoHAhhj8YamjYkgJMyOITVdYW1hqbtIlucQzhYTKZURUlTlnghiFTEZDLtsrgGPxUdZd04UNgOMPULeH/9JEmGxW8wo0QxkVNEOkIoQYvFCo+KVFCe3qNkRNOEEPUsy9AyxiKJVAxIvAK8ROkIlUa4SOAiSBZThIJJlBJ5SV3Xg8mu3zH3O1itg19TiOoJi6s1CuMDleu8x1uLlCNv/R4A7C0OYyU23h2PFZ51nihSVFXF5eUli8WCo6MD1uv1joLo/5ZSjxTL83mbrRIN3w/mwW5F7neSAyDxnX9NnwdlPyGWRKm+DZ3vkHMdi7GNynie7CtC2YVpRlpTVY7ZLOZHfuRLlGVJURTDnSFEV28q5OAJl5GjxH+934Mg2ELHXhA3K+o8z7m+vh5YjTiOu1TlNyuL/rj9XfEYwIyP7Zm5MAe2ppx9c1F/njiOaduWqqoG85IxBiUjjo/DpqcHKv3cvtm/Yrd930sflV0G5YZ+Gv7vGA8ptqkHGDN94zNuI/7272F43R8peN4w/0B5pi86GkiKYHbuyMTw/AR9pHrHlnSbju77fbDkwJiG29228YU86rY9z/nkxnd2j+/7amsiE323C9GFw394+VgDlPV6SdveQ8Qa6xT5uqV2JYvskEkWs15vUGkLMiywpg3OZNYY8iIn0ookTanqmqIuaI0hmqQh54QDW4f06weLBWmScnFxOURUTCcTlFJsNjVFXqCVolyXZNmU08O7PHn/KYlLOUwPkVOY6glNWzNL50zTGav8muJ6xSyZcjg/QnpNZS1aKObTGdlsSjJJWG2uWW9W5EXO0XyBVorae+IoIooUV1eXTOdz8nwTEoplGU2f7j2VmLKhagqay4LHZ3PcE0eaZkynU4qioqprpkkcwrOFIIsTTNPgHFxeXVDXJd4LrpcXHB4d8/rrD5lPj8iSmGJVcH21Bgk60mRZRihbHACEUAKlY66XS1CQZilYQRQFP6Gepeh3aeNIjO1uVKC17Ch+2UWpQBSpjqkJQ7hpGrxpaVfXzNMMVAABQmmqtiWOItqmwXrQSiGkBhRaOZIux4gg5FVxdpsgTgDG2mD/Zzv58QolQvYC6UP2VgBcV4VYgfeWhYgQtURYEZh+JSlaR2VaNmXJhTU44UAJvIWmWhHZsOB474ddad8nPbW/pffFNqX/UJfou1wpb5De1KWUpKpafvd3v8p0OhnA/r5zZi/P2yn3C9Xu8Z3DXV/WYKC9uy/QkzLbv/cjaMfX2/W3kKGP9gDNC8V3OXIceOtIIkmaxGRZwte//l9o2jb4j4WbwdiQsfQFvcgWGYob3tuVYLKrB7OKMWbHxDOWccRPf+9jBmXfdKp18AHr/VeC35be2RTstLwbe2Pn3QDGAjCfzWY7IPUmFuX5Cu+PVgJAEwjX5VASwXwpRe/X1CMBuMmEsf96+0Q7H5TwweggPjiKZ3w+30cO+YFf6+OOpADbR9RIsQVWdInZRGfi8V2Ych/23DnT9qnxB75IbE1Lz/NBGW7Hj94fD+MeAY3ut8N/DON8+PXdjYGPNUBBhgWoqloaY5EIqvUaeTTBG8jzgliYUCsmkRRli21Dpdg0TUmTGCEEZVmyXC9pjSHzlrY9RCHxnTOYUpL5fE5dN8OET5KYtrVsNgVVWRMpTeRjDrKYLJry6oPX+OynP8fpnVNOju9gvaOocl5741WatuU//cb/Sl6ukMaxmM65Pl9Rb2owDlO3TI5DkcCmqijznDSJ8TZkWu39MnoaPM9zqrpiNp8RxzFFWWK8JZnGzPwEpcEbR9UUPHr/MffvP2C+mGNsy6bKcVHYWc+mEw4OFqw3S87Oz3j3vbdRkeBwccDR8QGv3L+PEC1VuURLz2SS0NShfwczgfdD+Klgq1iDI7BDeDmwAT29PPY76c0WYbcgh53yOOSxt6H3u7/+t9aarCxYxII/8cUfwljP17/5LbSDsq2JCLsS27Q0GIg00rVIrRCRRHXUpfM+OBMnSdi9+pAbB+8R3uKkRUmP6tqsRAd6BAg81llUovHAJE6IrOhyF4RKpLWxCNPinQVvkDrQzSFUcBtF1AO4KIqGUOsx9R76SRFFmiSaUIqu4rHz3zuQ4oNPkTGCNA35T6Io4tVXX+Xdd98lz/OBCeuVpRu+Osr50YMLngUz4Xth3GyZtLACDuzM6H+BHDaNAxhx2/P1ac6F6HyNhMDbln3ZNQ9sRTg6haOwpuHwaMaDB/f5g298g/OLC4JJM5RbkOpmGvyDQcnNAKXvw32nVYlHyOejoDEoG5tz9nOh9M7XEIBQnufDGNtnOMZRXfsMp9JhvkVRNICd3fDv55ttvl+yZWoDMOn/Hqdu78EJA+DodbAHv8sADMc/44PS/e58Lz6MD0p/vgFQSDGA8J7h6f2aApgH4bqx1607YnRs707T18iBDpD01x6u90E+KLtRPNt5vBvFM36/Z2rEANBGB35E+VgDFKUk19eXvH/1COsdi9mCw+kxppGB6urMOEI62jZEkzrnqI0JZp22xTqHsyFzn3OOqqooy5JIKpQHY1qqumI6iQYqs0fTge5sQYTKtMJJUp3xmTc+w8N7D/npn/xpjg6OUFJydn7G2+++w8nhKUUZatys6pY2qkmlRlhYTGfcu/uAxrR889vf5PrpFWWboxDcv3cvLD7dAmOMQcdhh7VarbAu+IsYY7i6vmK5vsa4grouEA7unp4iLCRZxPGdQ07vn9I6i1xeUps2OKJOJySR5qwqsKblE598DeManDVU9ZpvvflfsA1MkwVZPGE+PaUNJXWwxgaK2AdnRa01QoVFUCtF40IK/0Sng+LtAUn/euz81y+Og9Ib7d7G/hdje/kkifjk4TE/92f/LH/2z/95NnXL//jv/j3/7n/5/2LqKlT4VRGVdRjviSUIobCtoanqwSEwjWOsDL5KdVltHXm1RMUSoUL1ai1VSPLXTdZAwxusN8gkRBiFAo0S5x2tNxhvMd7QmhCRFOmwUzeNQXhPhEBHnS/NSOn0MlZCY0fjSTYb+RP0O+fvQcVcIYh0RF213TPxXF0tSZJkZI6DHkw45+hLwe4zJWMGZHT6AYww8iORUnX32vnF+K0x3XY+J1t2RTyjvPsx8aJkZc/b2Qd7v8DZFqUF09mET37qdf7D//prGGeRSmDaAGGco7v2+DojQDKugTT8PF9x75tneiUS8qA8W0l5/J3+Zz9MeHxcP3b6dawHK0qpAfiP+2Zscu2f7/inqqqdCs9jUHSzE+j3TwZzWA+4BGFT8sxY3TW3jJ1nRyfrPwZ6B9Xhje35PnIUTwcS8VuQ0lllAijoHGG79vdhyIM5RwjwbmjXuAbWdouwvcebTG07Ji0YAfD99589vsciw/MWPWD6Y8igTKeBXqzKBusdsTKoeQooprMpXhlaWwYlrTR3T++iteT68gohQihn01Ucnc9nzEQom56laVfTYTswg1+F7GjSUFHWmCYsmMbRuhq845WXXuFn/tTPsDxf8uiddzFly3w2QzhBJDRvv/k2xlteufcSWSQ4uXPKyeEd8mVNls64c3jMd97+DmkU86d+6qep2oJf/61fpy4qTk5OKYqctmlDOLAI0S0PHjxguVp2tuKGq6srLpYXRKmjrgoipTm9e0pbtcRxwvGd4y5tuGM6n6GiiCSJOTm5w9XVOa2pmE4TsmmClxGL2Yzl9ZL11YZJmtKUFdfLCu9jTL0dQqEWzpZWl1p0rIAlUTFhwSYkV8OPQIYbQudUV4nYewYTTqSDH4YgUO+iy1UjpaRtGoT3TLKM1+/e4X/48S/wZ3/yJ1A0zKeav/zf/zkOsoj/x6/+ezaNpXUh46xFhVBjobFKYY1BquBonaQJzlqapqU1BhV1bI/wuK7ooRWgRZ9hFLCdYvYOhyOKIxpb08oWqwEhsY0JEUXKQ6KJRKh+G9JBgxCdT0DHlrRtOyiIuq6HTLJjZ8Vedztrh/o8YvDhuEk++q7WulB12VhLkiQ451iv1mRZRhRFGNMGRS3GZx/busdRO9vzim5nZ7tq00pt+9N1K/PgQ9EvdLJ36GV0fsBvzYOwdbzuWZabFOSLdvjCe3QUnvnR0SHvv/c++SYfvufolbobfDjGDrpDo3f644OlZz96gBJqT3Xp/D8CIzH2NxmDi97XaOxvNTYJ9fc3Zkz2mZixz0s/RvuQ/335foATQffceyZh8Mfo/E5wIxNPYFP6Hf/2DOM/t8p851Z6qqIDDx+FQdllTfb6SPhQzNBvWYowt/zQhqG44aD8uxsdIuT8ACw6CEY/ZQagcoNpdntrWwC28/foXp6dy91vv/17W+14dO/PXO358rEGKEmsefDgFJ05qrYhTjKEqhGxxsgapaHMCzyWL3z2C8znh8znMx49ep9v/MF/oawKnDPMFzMmWYpOIoyzaNU5P/kQ3hhQqEdpTdW0xFFClqTkxRrXgqksaSy4czDldBGzPHuHKq+5vlhSrq44OT7FO8EimRA5RZJlTB68juNLZGlK2zZUyzqEyZqCO4uUh/c+zd0HD3j3vff44Tc+T15XIR+ElSihqcuGOIqJo4Q7R0dhAXMW6wKlkW/WzPWULDsg0TGClNlkziKTOON5+viaYlMSoZhkE46ODsgywfJqw2QSlMbV5RPiJGKzvAYfzBQiinj95dcxNVw8LVjlRTDxIBGuq16sCIUOpQfvsE0bbKNagyTE7ANCuLDZlr0zWjDpBECgQQQwE6kIV7dI5Wm8pfEG6x1VWTHVMYmxPIwz/vuf/DO8+tJ9yseXHMYGeSdDt5Kf/tzn+ObZFb/1+9/AFm3wGxExwkmsqxDeEOGIhSIRDtlWKCFwvkVGEj1JUXGCVIrWBAfp1jqcipDxBOUErmxCW+KIRJRYQMQTQvUMHcLQY0dVN9Rtg7MWISGNI6ypsaZByZ5F6lmybTZZY0xXldkNrEMUJUSR7rIKb3d6QgQqX6obJo0QocYN0O+9hh3W3kLV+zwYQGhorEH7ENZYFQVZmnDv9Jizc8c6L5BKdI6s/RlG+TAQPbEyXKvfCVrnO4DSm3pC2LHciVrpk5SFU/Qgdnv+wNz1kUtDhgqxvzRu73e4y9GCCmAcaOGQWjFbLFgcHPDVr36N9brpfIu2pRml6NeKPsyiR2nB4h/SNtud64PoHBcHbTE8kWA20igdBTzvXHecDPkE2e6wBwXTKcfxffX3rZTsHNLdkFoBRGeissM1+6zWPXPVAxA652Tv3dD/fZ9Z48nzgslk0qVQ2DI2W6Xbt2M/RPnDgZcPMhPtmunCb+kEVgQQKX14Dp6g7BTghUMBShCKxrAHPNgfN2MWrP/cb2vvEB47Yvu9Z3w29mQfDG7vZxt0EF73J9k68/bRRb4P0ZFhmPWAgO7o3fo844v7Ifnc9vzDh2yfWt+o7e0PdRH7q3iBEF0fDlRP6E/lHdqDHua+6mfFh5aPNUCJs5iTk2OmB4p4EpOXBXnRBDu+NEynM9alII0n5OuSpvK4NkDro6M7TJopZZUjpKdpG0Qk0EpSFRtm6TQoGQIrYIwlm06JGovoEuN4I1GEwoHWFDx84yVmsefi8VtIEeFMjRUW6Q+RPmKeTpjIjOPDY+J0ivUCY2ucrPn0a29QFCtaWzGfHHJ6ekpdGx4en/Lw6B5f+8YfcFXneKtQPsI0tosaECzmC+q6oqwLrDFoJWmqkqbKUEJjvCJfGxanJwgnOHvyhLLMWa3WqFhzcidBOsv5xRMas2YyzYh0wmR23C1YsFxuKF2NcQ6L4GKz4tH5FcWVCSPOeoQlgDspQQustyE8WgiwBlMZggstocBf57AHfcikwDnZpaP34Vq1DeG8tQXnQk0dL8jLCts2KNEwlZoTofhTP/RjXF8vuX7/G9w5kehJhc7hVN/hpdc/wb/7ja8xERFFniOlYJbMiJTn+OiYw9mMJNKYpma9XuGFZ+MdedtQbta4qGIym6Fst4OJU6xUrBtDQsRMT7h3eMr94yNEJDHa46JQSTUSGotiXdZcrDasypLVZsX1+hohJSr2tL5Ba/Cto6nbwWSWJAlpmmBMqG/Um0MCiGmxLlDzwlucS3AuFBULtTqes/gLwbBMPIfe7VclD/TuHQKG82olyNdLFrM0hGpvwOOQWvS2rsF/yHfziNHiLUQfWeNQqjfzbIv+KbXdve/7NAQ2wDDeBfqOQpYqRPkwKK4tc7OvyCBcN5yPgQVCglQeHQs+89lPsdlsKMuKOFZYY7dLuAuKDuc7ZbCfIwQCOHFdO7bXHXaxe4/G0/lHdL5uHoEVAvoIoZHiG2rh7CvXzuG79wHaAo1t3qFxeLLqIpaGRIed4u37JrzeT8oGSTwhjhOiKA5tFnIAPYEBHUcQ7UYafS/kxigeL5AOjPRY6dEBxXYF9gQaMAIiwrh2vdbdl12qZPT2Fs32ALuDnM/c667/1HNkvz/8+L1+nm6fsxg+dngcdMksezZyfKwfwHL/Ufg8/N/7ozw7ArdNE+PTDSHL/ffE0OsguhxT4YVGEgor9iAlfNcNm54PKx9rgCKl4vj4mFXheHr5mOvViqqyXK8qsnSGO/UUeY2zIUNqEmes1yvOzp5gXYuOeu91QxwHp9Q4jqGzgRd1SZJMiBOBMS2x1CRRjLOOSCi80rz64CHFxQXri2veeOV1JkkGVlBXBmcc8TQlSTKEVyRJQhRJrLOs1tdcXl0jFRwczphOpqSJ4q3vfIvFwYK6ari6vMJLxfnZBWkiOV3cobYNRbUeBop3IdFbXddoqcB47t65R/2qwQnBdL5ACc1sOsc7uDy/ZLPeUFUFSmruntzlztExRbWiLEIIZZqlKB1TFwW1rfFe4J0gS6coHXF1veTs7AKPCjlkNEwmGYvFAiU9jWuoXTvQg1JJpIi6Utyh4ePET2MKOuoyzYaFzmO7PAXCObTQJGmCVimyVkRyjq4rKBrSJGFx/y7X6yUGC97RvH+OEDNqFdOslkwEJMLjTc0bn/wEn3z103zm02/wyU+9wRuvv87RwSHCW8oi53d+5//H73z1q/zBt/6Qq82KxhmssUxkRN3UxJMUlyQsHtxhFk14sLjDg/kxmewSTScKH0u00iRRgo4nOBV8YFSS8q3vfJv/+Bu/xvXygrZ1FBvDpqrROiLS0Ygm3YYAp2k6vDc4JqqgqJSMwEfIrlig/yjJBj6kCBgsNx5oasPZ+Tmz+Ywsi1nnDTIK2S3HX+qZEDGscD0S6HZanWmnbc3wuvejuGmXHcbHlg0Z7wKfpwCftxPfmjP8YCKLtMAayendu0gp+eY336Rt3VY5sVUF+/zMPhD5qDKuqfOi+3mRiNEudufdUXbb/Z1+cD7vo+p6cBK+NzYH9cd65wdH9+eZz8b3MfaT+W7v68PK/hMYiBzhtmHDvemht6Hsn+O57Xv2Kb/wiX/E2wyAZ8uE9v4efW6TsRlp8Dt6LksT/gvTYzxaP9r4fOEtvOBD4cft74HVHyOAUhQFv/d7v4eh4O6Du3ihkaqiMRprBHleM58fMZtmxHHK2dMz0izBe9hsNuhYc3l1xdHxAYvFAa0NlS7jOAmhlVqRZilpkmJMiEJpmwblJdNJTO0cL929y70//Wc4f+873Lv7gDJvaWpDUxsW80Pu3r1PmmVYC603NK3l4voiRA4trzg4WICs8WtPmiZYA3VtWK0eY6yhtQalHa+9/BJPNjnJMkIqTwjH7BYL6ynWJUkW40xQcpN4QjqdkU2nOOuJpMY0FtMa3nvvPZwzPHz4kCwN4dNNswmJ0LzAGs96tWGz2SC1xlnQOmE+OyTflJxfnOMRzGYz8iakum/ahjxfo6TACosRFi9cSMUsBZHUqI4G7G3p46iU3ll27GehtAIfdpGhfLpFWIMVkiSOkc5y/949qifnvPaJN1heXfDk6il3MKyvN5y9900Why/zrfUF/+k//Qaxd/im5Kd+7Ef4y3/5f89nPvMjnBzfIU6SrshWWMmirOXP/LkH/Mmf+lkevfsWv/2b/4nf//2vUeZryvWKCoVSCY8vlrRFQ64z6os1zeGaRZIBnrzKOV9eUlQlQmu81LQOGg9CayrTcHF1RtNWSG2ZzWdoNaMqa6wVpF3W4T5qqQ/L7h0Z++RZUaxC1NCeL+aLonhuiq55kdxUMt4LiGKJMY7JdIqQEuMuQfiuiGR//vFPt4PrF9YRVey6vCG978PYL+KmqJAw9re/w+fPbkhvvJ+9g/qoJ6372kaCw4MFd+/e581vvcVmU6BUhDHBCfy/oW7dcQbfcaJ8wcI+9iUYfj7g8/3Q0m2/b9uxH0o+blNwkA1lD/ryE7sM127Sv30/l/G1v/fRPjefTwox5NpxLvh/Pf9h3vT+qP2Cnb9vPMN3MVAGNqZnQHZg0HgesaUzRvNp+M2WVRTDF/9roPN3IT3jIwUhbOWjM2gfa4AiEbz00kugWzblhvVqjXWaNJ3Q1g5vBbPpAZFWFJsC7xxN01CWBVIq0iRlMZ9zenKCQOJtYE6UVGEXoRR13VBVLd4J5lMQTlDkORmKiY4wRclrL73EZ19+iVQrlssVxkKkUxaLIyaTWVfvR1M2FU1ryOucOFHcvX9AHGnqJqesGqLohHv3HiK1JM+XnF885fL6nJdeeYBxFUW5ojVVR52HRUgJifGgkGTxBCUVeZ5zdXbNiUoxZsMkyUiihHyTc372lDzPefjwPoeHC9qmoWpLGlOjtWIymSFFRFkWRDpjcXSIIIRyS6mRUuOMQ6CZTCaYvATCLr53ZHXSYZwJTAI2ZA4UoVKwH+3C+oWtXwz7ejq9Ijam6Xx/QqIq6x3OtFgTds+mLql0xKuvvs6P/+SX+Z/+7f/Ed568wxcOI5wsKR9dYOwBX/vmY/LrNdl0ztHRMf+7v/gX+LEf/RLT+T2kSsB6XGMRMkKoCOsUUTRhKmo+9dpnePnBS/zMl3+as+98m7fe/Ca/9/X/wlVdsZGKi4sral3QxAXri2uoW1xrUBKcFDjlkUmEl4raWOrWYkUgO6WANIlCwUUd8vRUVYUQoaTBOMtnn468V1591WrvQ8I7JbqoHksozCieVQZdxwN+tEv7EACF7cI2XuAc4E0IVVVKMUkTiqoO33hmW9fbp3fPLEQoFxF26XRFDvfByLNKrb+V8L19v5Ibbnmfut45jx/OZS1EkeT111+hKmuWyyVKicHs5G4skvi9W/bHzqz/tSaRfedY4BnQ0L/X//TAYstoRjuvtw6Tuya4fbZkfPz48+89GLlBeqZu/+0eoIjOP2NQnM+26eZ23gQYeoPH9+i+xPYaPQMyBsU9iO+Zk7ED6r6Z52YG5Y8Oouz4gfnvDrB9rAFKOkmD/VMJHjx4QJRkvP32Y+qqIY4mzGYL5vMFeEdpDAeLBU1T82S5omoqHj2qODk95sH9B1xdX9HWYVd6cDBhtVnRWIsrC8q8IlIxmohIKIS1YFtmWYataq6ePuXh3btYJAfzIzySbDKlaS2r1QbrPNlkSt02tKbFipb54YRYO64ur2lbT5ZNECLkN3HekaYpdVNyeXWGo6DC4bMF1rWdfb4buM7jjUPLiFk65+7pKecXF1xdXKOFZprNeXD/PgeLBU8fP2G5XrFYLEKyLWcp8xLnDVEUcXQ0J04EdV2T5xWLxYL59AjvoSwuaRtLHCVMpjMQIfeI6YoF9rt6Lzwilp3DJMPAFCLkjmjaBoTY2qp1SFd/5/iE6XTK5eUlZVkOyiJLEiKtsTbkERFSh50dIaqkKkpe+9HXMd7zP/7P/2/aSFAeaMpE8NAq4kLy6CLHGMFUJ3zph3+YH/7iF5lMZgjjME2NjieoNAMRg1Aoutw5OryeWcP0zl0ezmZ84Ye+wOc//Rn+l1//j5hvGwSCq7ygbQRxptFpyDLre79I0SV4630yhOtAsMR1zm4NUJUlUSTJ0gytooFJGsKwpe4mvMNZgzUt1rYdqJwQ6xSc7tgTiZCwn221l33TBDx/8dg3ZfRm7d66LpTk4uIiVAafzSjK0O6ewRk7MY7ZlABvtpE2wRdiq/B2zAk3Mihi573vRu/1wKQ3i4V5mPDgwT2cg29/+zvUtQl5Vdzzeu57KyGkeFwIaLtzvkm37AOPrcIMbe59a5wl1PpyvnOW3TIaUkmUlBhjh01DL1qF5G7OdQkMcQxReqMIn/2olPHPcF8j59t9huh7ZvIRQxYewhgb+3B015Igfec7cmNqGX9jX3c3ePPfN5/lQx03HEY/37bReQFjiGF896z5zhcYP38/gJddE1TPrLyYjftey5bR++5StX2sAUpbWZRU6CQUHDs5ucPjx5fUVzmz6VGoM6MjJJ756SnXV5dIKXn99dfx3vKtt95kvdqQbwqs8VjjWF6tOblzikAhCCnP28aiOqRtjWGepTjTgItZTKdECJqqRGdTkiSiblqU0jR5RdNYkjTDOEtVV1hnaG1L05ZY05IXS5zTTGdzvHcURUHd1njfBr+KgxnrzZJ4NkXgmWVZcPJEgQvtUUKH1PnGkyYTkqjkYH7M4ckx09mUw4NDrG1BeD77+U+xXC6ZZGkIAzYhmiSbBoBkraMsaryTpMmcJJmyWq7BK5SKwQsibVA6JpZxcIgVEMWayTQNtKkWNLQBTMkIjUAYiwSiLO0AiqPPYpkkCbPZbEi4NoRYGoOWAmctpnMYFI4u4Zsg1TE4g5CC3/zq77Bqanw84VuXKyLtOZw/wFaCax+Rzk+4c3qPL/zwF4mSDCsUsvFBR4qQKM1Zh5cClWXYfINoC5SwoBTCBJdTVVZ85k98luk0ZTLN+K0/+AO891xtNpw3NTiJ8oqD6ZzDwyN0qkF7vBAYY4ODcBLj8NRthfWGrIqp26KLTAmVrfsaUGOzTm/m6dPgKxUSZtHVuNj1EdiCgeBKsF3NgrPl7lza300P5xlo+X6BC+yL88FJLtaSpgmJ907u3EEIwdX1FXWXUXhIGifYYVUGR1khOsdMMTBE/ef7u9jtTlyMfCTY++0DihrJOJpkrCDHDrlCCKJIcXAw5+TOCW+/9Q55XmFMMKUqBW2763TKDf24L94/D9bsqor+jIGFFDsnCLWWetp+F6yNAUH/vhBicOwPQH+bCbYPX98HDGOgMa6R1R8z/k4/T9t2W128f34BaCr2WaD9Csc3MTnj8bt9bjzz9wt6G/q+8ENVnt3zi20K+SHJntgfZ0HR33D2wbVUiN2MrM8c299rjzRG93HT/QHdnBrLYKsZXn5obCHYmQd7zXjxVz8koPJ9e/dNXb57bxzj3R/3EVHKxxqgWGdDtlgfCrdZD/PFnE3RMptNmU4zlBKsVyvevTgn6uL1HZaDwwM+86lPs8k3fOett7HeEkU61LVBMc0mbDrqWgqBaS2+AwQNgiRJOTo8oFytyPOcti1w3pF1tW0Ayqqirg3HKkI1Dca0IfGZs6zzFZkO+VWePr1ACMVifozzEArieaazKfej+5ydeYgiVmXNNJsyzyY46wNksg7bhoiezaagrgNr45xgNp11Ox+LdYbZYsriYIbUntl8ymq1pLguiCPN1dUlT5/mtG2F95BlU+rKcPb0isvLa4SQJC4owsD2KMpNRVWV4PsEYpBN0hDB0xisCyYzLWUAGW0oHSBGpopeAfepvcfp7/Gh6nJrDa0AhAIvQk4ZlYT7N468KHj76RNUlrECjJRcCQHpEZeN5FokiEmGyqY8fP01ZoeHRD7FFx6cQwiHVwKsoVyv0FoTS2jyJYn0UOU0qwtwhkg52vNr7h0s+O/+zJ9CKcF/+t2v4r2llRHWS3ASnaZ4pfBShRTuXRFF5z22bfB4ItmZDLwj1jF1U1FVFf0sHmdohdDHfYItCIkCnXOdOU7QmuBc63wId9V6u1aMF4keHIwVW/hoq6x2xPdrS7+zCwAlRGwFxb5er9FK4bsw6JBsr4uM6cLIx74v4+v2CnGsuHrF2Ps27Cvh8Of4XvYaPNi7x+agoQsGgBI+Cx2UZVNee+01njx5ytXVNfhOmTmP8fa73OX3Fx45iA6f7Pbn2O9jDKS89yghuyrVN1xh7xn2fdkzIfsFAceVjZ/nNzLOaNtni+2ZlG2Olm0ivHFSuHHCNwgO8fttHQOX8fXG7XueA+6L+tp3jInvwUr32vkQTAA+5JXBoaW4Meb1JoZhMJD0IIqRrhVbc8YOtuTZZ/Nh7mA8SnoG5dkxPpKPgj722vK9YK52SKV+Tm57bHgWPZPyUeRjDVC88ygVAYbNZkNjWsrKMJtlIQdKucZazZMn73Hx9Iwf+eKXWK+XJDqmLku88Lz88CXee/w+T58+pSgKVqsl5kc9SZoNHt9KKYRzSCVIkymmqNgUOQ6LcQ1SQutaVsWSA3eIEBFVU1HVFW1jyIsNMhI4Z2ibKjwyl9CakNQspJu+oh+UaZZ2eb8E08kcc2Somoazqwum2YJPvvoJHj95GlLvC82qzLm8vCIvSu4/eIm8CLkJZIfAnXc8PXuCl45VsaTxNd/6zqOQd0VAtcnBe0xbI3AcHZ/QNpaLyxWr1YZIRyRpirU1ShmmsylKK7xv8Z0tI9KaJIlpmprORQYpu/Lt3qK6CsdeyJ0U9957ZFd6QIpgXmpMKALoTcs0jVFRTKQUSI2SEYnQ2KKi3ZQcH8zxwNn1Fa3wtAiiSUblwOsZ768qnhrHwXzG7PiQbD5BCY+va3ARTb5GSodMW4TzmNVTyqrkcDHHFRsaa5BtQ351SbG+ZjGLEb7FWc/hnTv8wp/9c8Te8xt/8AdUUYTVCWXjaFuPlxrjLa5pux26RguomxrvQkiubRpM00AHGASEEgvW0oySdjkX2LV+N9vvaIXeLuL9GhVy0QRz0HPnzg0L2k07WCEEstsEuc78IAQgQw0aKQMzVlUVy+trjo+OieOYyoScIbJjNUI+jl2QMAYj/fXGYKxvyziyZdf043DPWkOeKz1j0pt0Qnit6HxfNC+//BDvPY8eneNdSJTV+3s9pxfZIr8PqEZ4g4xZk6ZpaNqWuq67e+kUiOzzrcgbw8YHM82oJk94T6JUdKO5JYrGu/6t4gt9E/pknNXZOdA67sCKxFpH296c1Xa/bb2TbZ/9uZd981BfsiLpykvsR3Hd5GD7AVfnGbqhS0kflH5vIXmWlriJFQmExA1h4ePjbmieH38mtn+P3x+TJFvKc1861S5GGwnPR1b433MZAZ3h+ezsirbs63cjH2uAYqzl+npF2VyyLK5Jpxmz2RGvP3yFJJnw1pvf4t33HlPmOW+88RqffOMNzs6fUhQljWnY5BvKsuThvQcsFgu+8Y1vsN5sqKqabJIgBq/24FQVaHpDbVqyLFD8kYKzR4/JNysOowOKdo0gRhsDwpFMUqy35Js11jU0bYX3hliBiCLiKA50rG3wvgUB1nVUtwChJFm6QCrDImtJZMTx/JDr8yu8dLRaE6mIoih489vf5vVPfJKiLjk5vRPSdE+mbIo1V+tLyrqgtiWtrVmtlnjnmKQZaZwwSTPmk5Ou2rDEWljMD1HynKIo0TpBKonWijiKaa3pUsMnoEBFoUp0W4eFSMaKLEvDAm9ahLMd2xdmX787MsbQNiFxWV/3JooitFZ4o4kVyDjCaI1BEqmIVMQ441GR4fT4NCx2WqGFZxrHxFNwRQtSc13XmEnCuil5evWUN9/8OtlMs2hnyGtBXqzx5YQ4jtCRwp49olpfU+UHSO9pjSOLY7R32KahXObMYkW1XFM9eszs4IjPHB6zPL7D26s1tVIks4zzqzXeO6IkxnoBXZFKSygwWJuapmxoTINpGyyOpnMKjnUUzEojRsN7v1PorWkCve6lQAiF0hmCUNGXEYNxk4yZjPHiP46e6aVPDR6ovW43NLQrzMFYqyHT8mw2wylP7fpKy31tpbFZp1O8XTFG77eRIPvU/76T525Y+hjwbJXz7iIf2imlQohnQ3i9hyiKee21V5FS8rWv/T7OtYTMtH3l5F2qfNSTH36xes5zcD6Y7oqyJM9DxfX+rCEPig91nJzZ1lcZKYW+b/rMwkCXoXkLPMZ1rIY+2pObzCnj46WUlGU5MFp95thnFPkILI3BhbWWx48fD+zIPkMEwRH85OSE+/fv79zjhwcpnl1gsgdSBIQQd0CoYQx/aLuD2IUzWyPS81szXHf09xaMjI4bnXhQ7SPGrScDvRtFwXWFv7frxDbT7EdlVL5b2baw29SMGJQ+k29oz3eHUD7WAEVJRZEXfOvtN3Gy5Qtf/AKnd++gNCAMk2nCfXXCg3tf4MHJS8yzBVVZsFwuWSwWnNw54fzyjPVmw8ndUz7zmc8ync5o6ibYA8U2NMp3FWO1jkizBCc859eXTOMYtGCZLxGpZ14uSOI5xkFjGhKlKcuCdRMy20JI643zCDRSxCitcc5QNwUeR2vL4EuSTLAu0OiuLTiYLlAywpQt0gniKKJuW+bzOUdHhySPEy6WF13YLMSTlKouOL94yp3TYy6WjvXFFXGiOTiasVqvKZuc2WLK/GhOImK0iMg3FScndzk5uUdeNLz//hOqquXw6IDFYkqcRDR5S1mWoYgeUBYVy2WITPEKEBbrABzCOnRXav4mur7fqY3/BtDOECcK03pqZ2g81E7RekXSCtq64fryCi8cFrDeomhDcrhIgHcQCdLFDGcblqszvv57v8XJYcps9hr+0tJsVsR2ho4VTCLs07dZvv8O04cPmGRTqrrFzQ4RxkDT0toNFRa72lBfb/Bn19yZTfnRl1+jefNN3lytcMkE37Ys8zUGh/UGb1usadFKMp9mwdEZiLQCGVO3LaUJTsRGtkPf9D/jqsFjpW2co24MaWoxTdolauMFm/6waPdps2FXId3k9yHGfob9QilARzIklHMOKcJOuchzdBTymvQ+EM5B29rh+8FtyQOjfChs27B//fF74z7ZoZbHL7zY5d/Zmi96v4o+j0ocp7z22uskScSbb75J01R4L7tU4/33969xw+78I0oAPqEIZdM0VB1AGe9Ee2Xugt2uY6N2d6v9Pe2Dgt4kMDDAo+88z+yw7Ztn2ao4jimKYmfsjc1v/fH9OaSUOyHxVVUN9aN6wANbYNqH0qdp2mVN1jttHIOU/Xbv9Szsg5QBjPd9173V18+58Vne8J4AwS7LOPTlRwE6LxDRNXQgI8ag1PdFBN3AoIw5lB3fqD8CZmU7BkfPo98ciK5lYvfYjyrfc4Dyd//u3+WXf/mXd9777Gc/y9e//nUgUMF/82/+Tf7ZP/tn1HXNz//8z/MP/+E/5N69ex/5WmmWcvfePZwqcbLl4GDBdJpxvVxhnSeKBNlkwWw+wXnH5dUVRVEwmU45PDwMNU6amsdPHlNsCqazKQ8fPqQsS5q6QQtBEsWIDNbGBSfFtiGLIpLplNq04CwWh5OhTkvZFlgE3tasNyVT4zGtwbYtaRqBsCglglOrlVjrUUpjbcMmXyIk6C4zYxSntC1UleH9954wm2RkBxl1XqGERkgFrkAKwWc/9zmmRwfUbcvi4IA4CdEx3/nOI1bFisnJhHQSozYa0VG8OhLIOCZKNM5bVus1WTxlNpsjhGK9yoO5xkuKouTg6JA0zWhNTb7JadsGa1qwoLpEYqatsZ2dd6in4l3nWyKJdIQQdHk7BHiJNWCtwXeKK44C3SudARMyA0sdkeoI6TW68YjWkMUJZZ4jE4WexEhb01Yb0IL5wR0UHh0rdCpoygZTb/iD3/9t7swijl/3zNYZMZ6olMjaIXwEV08oH72FS0EeHlMtC3zZULWwuV6izYa6WiHWNbJsaVjT6JiD+3f5Ey+9QuHf5dsXV8RSs5hM2DQ1jfMhvbYMmYqllIGNcMFBWSuNccHhO5KhFpG1lqatu9wNclDofaQFXfdJEbLyBuatyz8iOqbhOSaewTrsd0HK1tTSHdcDATc+Zxcb4RyVDUpTCUL0FoKyKJjfOegivAxaS5Rynb9Cv6izs/7LLvNpf82hnd2B+6zKvgLtO+N5m8YeDIzPr5QcqjIfHi743d/9GsY0mDaYdXSHb/d3ux8kHy5Cos9tspvnplfovXLuzZ9aAMJ3RSm3OUvgWYDSgwPvA2s0BhT7yn3f32hsTtwHMU3TcH5+zmw2I04ShBCkaRpMQb2pdg84Oe9DIVYgz3OSJBlATc+E9YAojuMByNR1zXw+f25OmA8te4n1dl6InpkQ+5++4Hw9On/BM75hc/Dc/cL4g326pcMaQuzntBkzJtsm9eBEiEBb3JS8ze/9vkluauf+FBgsOHsGpr6t/XZjJ5XBd4nn/5swKF/4whf4t//2324vMkLDf+Nv/A3+1b/6V/zLf/kvOTg44Bd/8Rf5S3/pL/Ef/sN/+MjXUTriwelDXnrlHmdXj3jn/XfI8xpECNeMk5Qkjlhe56xcw9HRKS0S52G5WnLv7l1OT05DZE1r2KzXTGYznPfUjcGrULgtFYq6rDGmJlZRx6xoiqKhRrCYn/AwSdDaY50iL2pMXVGVLVk2YTrLsEYDnjwvcbZFilAZYpJmCKmZpBlZmiC16t2KKKo65E3JCy4unoA7YXFwQF1XaB0qBJd1weVyycn9+3xq8WnefucdDo6Ou8rNUDdhV3JxcY71NXgbdrPeMZ/NmE1mOAcX5xdoF3P1dMWrr77GfBoy3y4WCx48eEBZFsynU7RWbPKKi4tz8mWDdhlIMK2lKDZEyuGFxNaCOFVkaUQkYlwNpg01VjwO2+1gbWsQzhErhfDQWouzlrY1aByRELTWYLwHZUPK78YTmWDOMY2hrRsSpTDrkkhDGkUcJXcoGkkaRyxMjVGKyXTKenPNO++8z9nxBXCARNCsCpq6ZLbUcHWNzEtWZ+dYJzi7XsN1QW1guVzTVJeIakNcO1InkFZQeUG1XHLy+c/y2Tc+wVn+VdabnNJ6rAj+DUpHZGlCEoeoMmMNpm2QkUIoQWwb0iTrKmwb2romUhFRrMmSDC+69PZNi3XBkTLSGqEVFoFpFRcXzYg29viddWFLgYgdRTXeme6nNe8qKgs5Ugzh+wLQUhJHOoAo53ECirZi4Q+IpaYyJVGscDLUWJKSru4Sg4lHSon0QaGGkeG7BReEHXt2eIzfZo4NNXA6drPzo/D9zBHbaIhg8qFz1O3ZF5hOMk5O73KwWPD1//J1irzolL0HL/De9tz0c1af3sG1A1aiX5BDng0ldVdLqbu4Z1BsvgPw3j0LyPoEfBAYYqW6vEx7fjr7inrfROP7TYEUyD7KRvQ1e7pnPdrhQqhI3jMufXt6k9k777/H73/zG7z+iTe4/+ABs4MZMkrBOmwbWEsDIWmjCaaI1kmsh6ZpWBYVp3FKpOU2xFmKUGG8q37uvacoCy4uL5jNZ0RRvNM3NzEp26fR/x9snKJ7KAPwpcMr0nfjt//GswBlbF4h2KW7P+Xe0WJwyd0/QW/R8CKk1A9gqAsa7O/Dj87lu/+Ex3d1fhAymHT6tg9jLoRJS99F1Anoqxz3c9h3c8CFXJdhbsk+8Hr33gbTITeICGsYgBOBPxpKAHUgZXDeFgLnBVoE64MUAuUtAocSDin19lY/pPw3AShaa+7fv//M+8vlkn/0j/4R//Sf/lN+9md/FoB//I//MZ///Of5j//xP/JTP/VTH+k6UkginaE1HM7vEb8x4b1H71HVJZFMsVKg0ylHdw7QyYQ4SSlbS+om5Jtrzi/OeXDvHvfv3uV6uWRT5Cyvr4mzCZuyxktFntckOmQubasKTagvlUQZSkY0tWFTCSI1w9oG78LuuKorWtdSFJtgj+sSajkcOklY5SuU1DSmRqmINDtgNlvQmFDx1uEo6xxHQ1FfYURBOk2790t0qmmKmuvlFRdXl1gpaJzDWtAqIk4SqrplcXDEZJFiKUEbjKtYra+4e3ISJrCBqm7ACFbXK6q8QrzyGkkcY03D4cGc9WrFZJowm02wpg2KtUPFB/NjcJAkGdOJwrkNWsQYNN401FURzAFujvIROhakaYZ3lrIMjsYKgTUGISVRFy7rhQyFvjwo4YZcK6Eip6dyDa6xzOKMfL1mIiOSWqB9zMvJAw78Ie+uVty9d5d55Hnr7G0qKzm+/zoPHr7BxhmsveJAxTRFQ1S3iKXDFJa29rx/fk3sFZdlRV5f46ygKkpqs8HbiolKiFE0dUOSTpkdHnNZ1JRKMD84oEwibFkgWkdb2U5JaaTKiHVEIqCqCpAe5w3CWiIZTHNSKKI0lCeIunTi1plQniAWGGuwtqWpK2gBobAuDk6fgk45gUq6yArfL44iUNTDirfdU/WmF/rFDrpdXFiSvR8zLKKrlxSAafiuwPlQCFJ4x535gmqTo4TEWoPAdwUkGXwvhPchu7APqdOd6JLMyZCAUHpPIhW2acPi5zxCS4zxSBVWW08oENhXaqUD5qGddBFUHSjyAXwdHR1w7959JpMp337zO+TrIphcRYjACtvUrUlqK2L46al+IYKSEsp21xFINNPJlKa+Qkg17Cf72iUej3X9T6ibpDofEucCUzsoSBc0yD5jsm+a6T/vzUId5fUMS9Irk5v8UVS3SdjebnheZVPzB29+k9/6/a/y7vU5ByfHvPzKa9w/ecgsm3UmahcSDdY1WkXkRU5TN1RVzcXFJZvlNT/9oz9MlmVD5J7sooEQIQmjUBKcYL3ZsMlzDhZqyyLstfsZQAZIH5hGiULiUENJx94xNryy3oe54vvosj3ncHajkvoNY4A/3fMX4XmGkOXgJyTGwKT7ceOY/oGt8QFgiBE48AQnXNUBWMI8HhJCd7/7/C1egkTiRaD5THdRT5cZmRC5BB1Icg4nPA6Fk2oARMK5Drx1c37UHgjgyvbDqeuHfnMQNivgkQOj0o8xLxQe1YH1ColF62RvPn2w/DcBKH/4h3/Iw4cPSdOUn/7pn+ZXfuVXePXVV/nN3/xN2rbl537u54ZjP/e5z/Hqq6/ya7/2a88FKHVdD97tAKvVKrxf1CyXKw5URpqm6ESQpCn/+T//Ou+/+4jXXvskSsYk8YzDkzlCKRaLBe+/9zbf+sNvUKxXLGYzPvnJTzCZz1FSEccS7yytMWSTFOc8dd0ER0nA1qFIGUJgnKdsW7zUWGfA1UQyPKzWtNRthWokUaIDaKlKpBBkkzQ4M3pH0xa0eUC1znUl0r2lbiuMq1HKY70NWVQJC7t1Ft96mroGPIvFguVqydnFJZ/89OdJ4gTTtlxennG9umJ29BJpOuNy9ZSqrJjPFtw9vY9pLZdPLmkqSxbPEJlmdZlTlg3OwibfkE4mSKmYT2ekkxRjKvJNzv3798iiithPwUOkY2bzKXGcEcULvEyxVBhzjW8bIrtAiJhsmnJ4eEhTl5ydPeHq+goQxHEaUuNLGRYupdBKE2kdcl6oYLJovcUbS1u2tEUZKvZ2O92f/smf5OT0Pj/0yc/QXF7x9K23eP21lzg8PeLx+hXePXufh6+8xOc//RlMXlCtNoE5ayrcekNmBVVZclE31HhkknOW5+RVQ6QyFIJofohpa1qlSdI5E69RKqZSirI2rHxLYT0yyZDGoVyLiEJOHSEUvmO1AOrWdBElnROnD6pPK00UJ0N0h7UhW6/rdti9uSxJIoQUrPOS1jjaVg8Luvc9m7DdPYbd5/P2L34wvfjekbVTDNZ2zIDss26GlbBnJ4JZKTjTCg9lWRKpUPcl+B04dByyCDvhAzvRL57ehuW4A039RtIPjXEID0orjPdYEdCG7ylCGHJN9BRzb0oSCugSlUlCOx88OOXll1+iqmq+9c1vcnW1oWlCDSDnx7tldreUL9j2hYKiDq0FwoXsyUpKvHWIUU2koNK2YaR9sjPYAgvvPVVVbWstdWG+oY5XyD/S18DplWjPuoxNOeGZ35wj5UVmkqCktuUoICi3vCg4Pz/nnceP2FQFx3dOuHfnAXdP75GkGVVZdo7bQbkXRUnThKKXzjliqfjxH/ocziU77Qn5fLamqKhL0VAUBYvZfPBp6fMjjX2xbmj53utdfqQHKcPRe1+5iZkZn82Pfu985vfeH523I+R22tGHl7u9YwU+FDR0AbR12QJwCLzwONlFlkmBcQRWzQqkEygZAIn0wQnfdXNCIgbzW2BLBMpCP499N4GHYd+tFz3Qkh4iF/qx88gc9jeqY1SkCGBJCLqNiB/uaOCvOkD3EfHJ9x6gfPnLX+af/JN/wmc/+1kePXrEL//yL/MzP/MzfO1rX+Px48fEcczh4eHOd+7du8fjx4+fe85f+ZVfecavBQIIKPINUeYRBhpbYTG88YlP8O4777FcLhFecef4XqAcTUU2STGmoapL6qbm0eMVHsfi8Ig0yzi6cwcZadx6Q6wT5rMMUze0VYFwfV4EhxcepVWIXLEtrWnQosF1NGBtKhrTIGtQKoRq5vkGLRVxFEKjlQoe93Xb4tb9ZNVIpXDChfBXJUnilKOjI8BTtw1lU6O8pLWGNMtQzvHk/ILFYkGkNZvVmslsgjENi/kMLQUXF+c8OX9EnoeFo20csUrwTrLZVEQ4DueHPLgf4Z1is6mQMsZa0WWgFNR1w9XVFVEcc3J6yumdlOpagIIoisiyGUrVeBEBoWaQcAkogVZTsmxOlGoa61FJxp0HD8lmc4pig7MmLIz0DrMO7yzWgvNhYvb5NJAKK4Mj3XQ6Bd2gtORP/tiP8sUvfInYWL5TrJm/fI9XTg45PJry6U+9hJdfZHl9iblacqASpNc8aiqWTUNVFFDUVGXB06rCK48vC56sVqzyCi1yYp2gqgi8Zz6JadIY7xzr5RVWSOLpBDGZINMZqVYsZIJNGqQPxfxCZeIM732ocyQFi4NpyNWzWVKWOUKEvrSu7ZyyNVGkEQKKIqdpIqq67CJ5QuK/vKhAZDgblJ2SEqHAuG1ESDCNuLBWyJuDE/fX5sCMyK6IXA9YtuG6W2Z3N4xQa02WxmRZRmsNvvUIqbAd29FjD+cctmM1+gqwUgancCUk2kq8sRgDOu4+UxIfe4yjc34JGqB3ZA8OnWGf62xwhtVCMp9nnJzc4fDwiCdPnvLOO08oixatO6ddEWpQbZX4c5ejvrfo1ZLAIZ1HmABw0iRmmsSdEnT0Cdn6/bnv+nbMhkgpu2cdco5UVTUAFe9D4r4+eV+apsRxHPy0bggNV0p1dDvPgJGtg/EuAwFdtE/frg7ZegGTZMbnPvtZvvPO2zw6f0q01myuV0gjwBjSNNvWhtIxjbVoqZgfzMmyCVmWcTCbMpmEYpf7WYJ759mtb0VIN2CMIU3TAYT1iR1vdOb+MIaD0XgNL3s25GZm5qNKT5CMsa3s3cB6hCK3Zp/BBDtcUhLwtx9AggcsImxQRRht1ndropUo69GOAIydGH6EB+k9zovAfDiwvn8/jMje9932pr9Ru9zQfoH2HePDljsUIug0iQgVpLv3ROdHKDpTVd/P4xXnJpD3PPmeA5Rf+IVfGP7+4he/yJe//GVee+01/sW/+BdkWfZdnfOXfumX+MpXvjK8Xq1WvPLKK1hr2eQbvDYks2A+qOsapRT37t2nqlra2lKWFUoIlusVkZYcHx3y+c9/nrYqgy9FnvP++++BUBwvV3zik5/k9M4J63zD6npJJCVtY5AekigeJliapiBk8DcoNyhZIxE4a6iKEukFWgvqtsK3lqapMEJS5CucbxDCIoQCFM7VVHWOUlFgD5IIvKCpQwG/6WSG73anRdGZe7wnSRJsXaOk5HBxAICONJcXlxR5TpQInjwuaX3DYn5AmqR4PJFK8VYiSZBOYwysrkuaymFagVYZTdOQlxuUikjilFV+zbe//W3u3jtmOp1xcvSAR/YqUKVKAZKyMnhhENKB8gHgGEHrPc7XiLbulBCdspKoOEOYJiT+Eh5nDU1TB8dZbzHGdZkfJUrHaKmJ427HIGF6uOBovuDhyw+YTTLY5Lzx0gMm5gjKDe7iKeXlY9LZlKM4oSxbyjzHIWgQNGlGkZTkRUUlBPlkSqslDslaKAod4S1IYzG1QauIizbHnq8w1hDFCUJpjuKY4yTY5b2zKKGQOkIJ3wHP4BvQtoY831D9/8n7rx7btjy7E/tNs/w24eP4a9Jnlssiu5olEC00GhT6hYKAgiAUIEIPfCYgEXznR+BTfQcCelSDANUiuolmU3TFMqysyps3rzs2fGy3/DR6mGvt2BH33KzKEvshwXVxbkRsu8zec445/uM/RtOQZjFxrFFSMZvN8d7SdS1l2W/TffvB4M57RxSFCUqI0ba8Z1WWSJWxWHqEeD2sfsfMkaF84+Xd6PNLbG5nwh7ZFzFwwSM9vzvZSikGT5wQUeCFx3gVnICFG/xZwqAZ9iuUJJVUCOEx3LEoURQhhQpMmVR4M+Q6DUyOH5amuzV0SRg4rQngJE9j9g72efL0CX1v+OKLr7i9XYKHOB6M5AaWKKz+H5Z1vmG7x0R5YgWuhziC/VlOkSVoGSaJXd7kbqYKz5cyuFU757ZiWWDLlkRRFMohQ1fMOIGPj3/Ymj0CHRDbSeZ9IOUhW+AhlCnEzmQz3uEc3/n427j/1vH5yy+5XS62pYT5bE4cJ6Fs0we/EznoZuIkIY5ikiRlNinw1lKW7bZU+NA1eFf82zQNV9fXHOzvbwWzI4u+W37ZuSD3zvLXr9fORCkCkzDetgvYvolB+YXb+DriPjMjCABlvD1EXgznewAB/gEgMGrkHO6uT0iTl/duH5JCAkBwIKxA2iDT2+pWEDgE0kusD98L4T1yPP8IrAhCdyvvPi+7zj/b8zmAIzE872FJxw2fFynAy3GcGMW6v4i5/cXb/+Ztxnt7e3z3u9/l5z//OX/n7/wduq5jsVjcY1HOz8/fq1kZtyRJSJLkPfd4uq6hX1RkNmG2P2V/b5+u6zD9grpak+cTvAspxN5aehcyTKJIc7B3ymRS8ObNG7766iXv3l5x9u6M+XTOR9/5Fo1S3C4WoU1WqsGfApDhgy5laLXUkcS6jqbdoKSkbRr6pmGaT0nSCGd7qqrc0tVNqxHS0PcVSmm0SvGCgb5VeC8wvRk6YQzWhrKSlw7TdbRtS5xFW8MuZy0nxyfoJA37JUIfunM961XI2kkmKYmM0TLm0eMnJFHC8naN7TymCwLWfJKyaVdcnN8wmx6QpClapaRZQpKmrM9eI4SkaVpMb5BKhjZjC11vqOvAZHgjaE2PjAZqVsRgJaYP8iwhBX3f0pmOSKugXzDBcjRSAilV0F5IEToErBjMy8J6wg9fqmIyIdWaIs/xAv78p3+GqA2HacpREWMvr6muzzDlknkxwZYbGhRSZuREoa1XWm42Nec3C9bLNTqOUJMpHZ7GQy00LpJY6XAGojSlMWFf4jQDKVhUIYjS1iWsV0ggTzMwlrJtMCIwIVpp0jRFKcNsNicZuiFCMKIF6zCm21qIy21QiB+6YYKpX1WV+GECT9OYyWQKpJR1e8dwWI/QAwsyDKCIb+502W7iboIOpRKLlHpgYO54gLtyz/Ak/AA4BcvlAkFome7t0JkSSUxY0g9MWBDRSR9a00cAdM8/QQ7GWEIQRXEAiM6Fuv727UXQj3gQg2eL7S3CC2bFhMODEHlxc73g1etz+r7GO0HXuaEEBVL6AajctdoidgbnB2PO/fVf+K6pUI0iSzRFEr7z73cpHZ41rNrl0P2mtcYYw3K5DO37xpAkyXbCHks6I8sylnnGfw/9XRBi694bDO3ud/Hs3ua9x3InqhYjQza8XpKmtG3F4f4eWn/Mu3fvuL654YuvvmSzuEUrjY4isjQfoitC2GVXl/R1TasrbFPx7uUXVOv11sNnZIfG4xzLV3mec3R0xONHj3HWbstb43dlPBf3z+tfcQLcfhfuChB/tfblX/yi47NGMBI+w/4+gN4+KPxPwFa3Igjrh16IrShVuKEkMwhipWPrSeRt0G0ZIakigVUOawXWgbEBqlkY2G9wPoA6bSEemVQxsh0C5bcED96HfRk3p+5AywiT5ADIQqLWXUlYCk8kPF4OQt8RNO683i9zhv83ByibzYbPPvuMv/f3/h5/42/8DaIo4l/8i3/B7/3e7wHwySef8PLlS373d3/3l37t8CWV1G1Na2uavuaQQ9Ik5zvf+R599wnnZ1f88Ps/ZD6fs1zesNosQy4Ngs2mxFnLfL7PBy8U08kexlhWizWLm1v29ueI3nLx7ozWGNRsxqSYkGUZeZriraUpS5pyTd81QZCHxfugns+LNLQ93y4oN6vwJfPQaUWaSoRwWNvTG4eyYSKIkxTvRVgBeo9WGueCI6sVPb3pt6KsUZsTJQmL1QbZWx4/PWSxWuGc4+riAqk80/k05OZ4yePTx8yKOdZ6vKnwVtE2DiwcHz3it3/8t9iUJddXV1jTcHBySBxryjK41T579py2q1guV1ye/zGXr9cIJTg5OeHpkyNwDcXklDTdJ50oJoUnixSxm2GcZ1Fe8+4sDHDrckPd1IBDaQm9Cym+g9KeLV0twTiM98MqrQkzS5HTeY8SECnJn/ynP+HTP/5zjrKM40SjVtfMsGS2J9cRbd2hk4K02EfGOWr/iCaNwUume4dk80OMgKpryZMEaR21V0NrL/S9IYkyEhdWmzJSoMCnEaH81nN1c8Usz5nEMe1mxXJxjYyCqZVWoTTT95aqKmmahiiOiGMVOnRMj7EtY9De6CMSRRFJnKC1Ik1y5vP9oR2zo+1a1rcLvI8pa42zoLUKn5HeggqDjfQW78KIovT98LHhN7aD5nBbACUMn+sRsATLfiHkYKk/Ape7rhYhBVmekbUNrq4wxiKFHHQe45LybplprcF4g1MCdGizjoXCW09Tt+AFaZLSO48zXeho8jbssQvdICLsGrjQKrs/3+Pk8Jg8z9lUNa9evsILSd/54ZwGR1SlRrDlkCJ0r1gLOjTd3Z/2tmWtXZI6PEhp0Anszwsmk5zloh2AYUAuAvU1jcK4ctdah3iFOHStjC3HDyfhsYV4LOOM5Y4x8mA3CbzrO+qm2TItYxnlYRbP1n+I4KnjwgXFDwnTfvDcmM1mWGtJ4piT/QOE88ynBZPJBK01vbHBE8daQG51Ut4P+hpnSeMYN5SndoHXw7LTWL7qulBSTtOU6XS6PU+/DKDYhdBfp8buru57O4Pec9uou9o+d2Q5dsDHkJwwTOoDSBnLSuN++5HzGd6H0GmzLf8RwIl0HmkDEyNcAMJiACjOeZzyeB0YFi9tWMRJP5Q7R4NRGR4PGO3xMghrx462sAVpgnyg8nUCrBhB1MDMDocdEtnF9tiFYOhAciCGCBGGv3HfFDL9C7f/7ADlH/2jf8Tf/bt/lw8++IC3b9/yj//xP0Ypxe///u8zn8/5+3//7/MP/+E/5ODggNlsxj/4B/+A3/3d3/2lO3gAtBZc31zx+Nkjjh4fcnl9zvnZBVEUs1isefLkKXvzI969u2C9XtH1Dfv7c16//orZbEpb15RlRbkpaZqWo4MTpsWMxWLJ6nbFfDbFWc/B/iF923Ew3+Pk4ITNekW7qYjjmEma0DcVG29J44j1aok3lixJwFvW6xWbzYq2rQdm2lO10DuBli7YUTuHH1YUWRa8LFQcc3t1zf7eAdY4NpuK3pbBolsryrJkvdkwnc8QQwZKNsnoux4pJKbtmM9mgXKPY+pNw/7hPqeHjyk3NdWm4vzdFfWmpVpV/OD7P+Sjj74VGJZHT3jx/APOL87Y1BuM6Tg7e0sSp+E8HYXkYUmL1hUez+/8V3+T//P/6e+QRoI0PSDN9ikKTZb00DfILsd7T9WtafqOV2/f8W/+/b/jJ5/8lLpr8LggCDYtAgM+lDSkioiiJIC1KKy0zs/OUUKEJGLpsHiUFGyaEmzM2WbFrW050HBVrom7FrFp2CxqnI+QcYJTEY++8z2ib30Hqwf1fxwTZTGzYkZrLVkU0/eeq+tr0jQnSyWzyYymqTHOo5OIuqup2wq8R0vHJIt5dLRPIiQLLLZvsUKhekVdN6zWa9IkR+uI09M9iiJjvVlRlism0ynep4GBEII8z4cJJGhwQA6tlx1JLMjSCR5HkhYYo1BRKFE454IF/uBEOo6lAViIAXXcfY/uDJ7EThnnLpDvzoiLUJIc8IX0YWIP22CD7zy9CRNg2zY4Z1B6KE/owJyEtuAgjhVCorRESYXTEjuAmLH7yBqYFglRnJB6T7npBrfVoQXagY4itBB0TU8SRezP9zk6OEKhOD+75OL6irazCOEGhtK/p7wAbhDvKjUCuJ3a0fBXOCejSVmINIh1mIg/eHHEyfEJUZyzWLzalsJGzkXsgLKxhXt0ZA3nV95jFnazccbyxhgYOXqmjNqNkVVo25b1es1ytWKxXGy1G7vXejebZ1vaEIGBkkoRRTFRfsfSpEky2O0Hy30BzGczWtNinR3MFXcBw9A9NKgWtqWKQeD6EBxtRd0PwEA9mNfd3t4CDDo87p2X7XFw10Lt3NCqOyLsrfrn/hY+8fdByr37H2h1xq+SH3/uXNvtfcNXyQ8M2fbaj+8/jPViKFMJwkJbQBCTWxGYwOEz4pxnm18mHAaPjCQiUTjnUUKREPRT1grwQyk10kNbr8Za6E0ALJ0yNNKH1nATFqYKgXIe6TzKyaEUFNgSO+y4F0P5VIDyY1dcYLLlWJ7zIrRxjwcrB3bFDRUH9fX2+L9s+88OUF6/fs3v//7vc319zfHxMX/7b/9t/s2/+TccHx8D8E/+yT9BSsnv/d7v3TNq++tsOlJUZcn+3h4H+/ts6hWrzZrNpuLs3RV953n86Cmt7Lm5ugThmOQ5t7dLFosFp6enHB+fkiYlq+WGPMmZFTPWy5L1ckNVVsRRjNIJjRNEKJp1hak7kiKlXq1J0pjj+ZxYGqp2zdWmxlpLLCOasqZeVzR1jXPBDyPSYxJojROeotBIqXAIjOm3av62rIh0hLWe9XrDZlMhpEJqgWmDiZdj6OBZr4njmP39fdrWUm1K9ud7ZIlAasn17Q2RFgg0i+sVTdvR1j2Riin7kt/6zR/z/e9+H60jhNCDGLPjYP+AfJLTtDXf/e73KJsVq9UN8/k+1hvarmV/fwYWjvYP+LUf/gDX1wif43qF6ytMvyLGEjmNs46pksyjnPlHH/HR8+e8Pj/np599ymdf/jzkBdETRQJcT9t1dK1lMpkR6YS8mDCf7fHs8QcsF7dcX56zWt8gVITUkqZuEW2PEdA6E9qbPWQiZPisTcNm3dC5BpFIrsXP+JsvPuYwm9BGkvO6wsie2jQsVhu89yyXK5arJWu9Rseatq7pu5beWJxwdDbQ1VoqcI6bsqJe3hILRVvX4EPAZO1qnAvf3EkxY29vb6sz2N8/IE1j1usVbdttB+ssC6vN0N0Qc3h4gLWO87NziIJPjTEdWTFB6wmXNyWRlhgHSigsD/NSxqHyr7eJcWl37/XCS0oxaIQEWNtjTAjsXKxMGOmcGQb2MDiLAQx5gomb9w4vFE6IwPgQdE3TaUIsY1arFb2zaBXRewv4uwHPhSTyPM843D8kSzI2Zcnt9S3lpsTYwNpsOY+xNPSgLCDE3aR1xzAJhLzrfhlXndaG3Bqtg/fDdC/jBz/6IZeXN3z688+5ud3gCfd97Zx/QzXiF3XYjGCk67p7WpXd542lHikl08mEYpIDcNf5I+8f14P324qqBxptZB0iHQUXWx9aibu2w/Q9Qnq0CuVYwagL8VjHVrA8JjGPfirju73Py+WhqZwZmKGyLHHOkWUZRVF8DVyO127n4n6d/folt/e1Yf+ymxjqq9457ABIxfBl8d4NPjCSzg8AUopBzxFa7r2WuEjjtcRogVEeIwVeC0SkkVFEnE+wQg7J8ZB4w2ZTbkNHvddY4zEmNDtge5xpcH2E6wz0g7jWeFwXxLTKgrQDEAsOi4MhowxgRggiL1BSDgBl4F/GcqESoVt/KPvCCER3gNpfcfvPDlD+6T/9p7/w/jRN+YM/+AP+4A/+4P/v95IyYjpNsM5QNwFMjF/ULIs4OzunXDd8+PxDjg+Pub6+5PL8kmpdIxRcXd0ivGBSTMnTCa53tI0ljQtU6omUxnaW1WJJvak4zOdEUhFnBdM0493iDX3f8mh/zjQ9YbGOuHz9jk3bYqOeXjnapmG9XqOU4uDgAA9UdY1zlkQrlIyBkGo7tpH2fYdQMWmasVqtuLy8wQMHR4cs10uurq+Yziccn55sV0hSCIoso6qWaK2IdMzeyWMQnnLTcPDokDTPWW/KEPTlJUf7R3z49EN+40e/ztHBEX/6kz8NWpkhYycvMtaXa5wz9CboYIpiynKxpm4rqqok9ilo+JM/+iP++f+wxwdPTkj1jCLdI4kcsSrR0lCtF7jOkmSasutZNC1WxzTrFeevX/PTn/w5aEGcKOp6jccyn++hooTNpsaaimzTUW1MSGHerEOSrg7eIV4K0IHK7LwPeoc4JdExvvfMCkWRVuyrmIvra67XSzbrFVev35DtNzCf0JmWxijeXYfgxaZpEUCR5VjhaLpmoO2BYfWQyRipQ/1cIqjrksuLa/Ce/fke+bSg6hqUVGgdU1Utt7e3ZFkWuq6iMHFMJhOSJGW5vMZ7y+3tAiEkcRyT5wXGGL788iv6ztK2LavVCu9hNpuiYk1vVizXlq5zCKWwxt7NwX99TBK2B7hkSwSMPyWDhkCihKDvDU1TU0wKlusVMNjMK4HQwbNDycFJxAUvBoHAKrEV4kkh0VLjLTjjMM7RO4dTAi0lViicMSgdfHOKyYTDw0OU0NxeLVjcLkLpw4dy6N08M85c4+R8t/IfB1HPmHzLdrIcJ1/vA3PbNGFSmU413gk+/u63eXtxzeeff8VqsaFth/cdX+PedHn3+/jauwnGDzORxr93reKFEFtdxjb2YNBnRFGE0moQoj8EV+7ec3ZZjHEl78b9EgFo9H23dRRhdIeWkrIug9ZFhiX2CDik1Ntyk7V3x7GbcnxPoPueco33QVfUti1SSvq+5/r6equ/2X2+EGIQhu+U3bh7n18WYzzcx7uf8Mt8mbz3gaUYRFZj5wxa4mTwTzHO0luLjiOSLAUl8bEOTRJZhEs0fSxwqcZkil4LGmExyiOiiM5YOhuS450PYbQLtaLLOrSKB3NChbMC6RVZ78naBGF1MEK0hFZlK1DGI3qPax2ut/jeIpxDOVDOh5Z554fYlyFEcjjVgoFBUUOJSYYGiFD93WFVfqkz+CuexXNwuMev/9b3KNvNUGveUJYlV1e3KBmzt3dInCS8efOGx6cnZEmOw/Hi+YekWcJqs6ZpWqyBSETs7c05PjiiqkpkYrGiYVUukULw5OQJHzx7Ab0Ba8iimASBazpoOvI8hnTCyeyAvmzoygYfRUMdvSNJE5SK2Gw2rDZrsiRFC01TW4zp6KxFSkUcZSA1WaLpuo53786x1rO3v0fX96zWa5I0QWtN17YYa1hvNqETwHuurq6YTmfEccyHLz5ksVwwn655+uQFSZbx+vUbKl/RtT04z8nRMcvlgrN3b/jiy8+p6jp0EknJZDqUj7xlvVnhsezth7JRnEZkWUxsE5SDLFVMs5RqccuyWuD7N5j2Bu1XFNpRMEeaIN0SSUqN5Gy54vOLSzZNzYunz1jXJVYYrO/p+oa27bG9Ic9n5HnOtJjx6Pgx8rlkvVlwcfGWiysD9BgXBt9sb0bbtmxqh4tStBNI09OJBJ1pvvetjylffsHZyw6sw9U1ZX9JubqlnU9wuiBKIyZSURQ5cRQRxRFeg4oipNC0TU9dVnjnSYduFSkEvXOkacF0dghSoCPNbJrifY+Umkkxo+ssVRkG3aIoOD4+om1bxqa/uikpXAAr+/v7Q2ePp9yU3Fwv+OKLLzHGMZvNKIpJYN+cQ6AHPcXgHKokzv3libN/2fZwQX8HTu6QzyiQG7SZOBe8PIrJBKXD5BKM3FwQQ2uJ8KFdRngCWJFy0JaMbEeYBDtjwECWT5DWUpkAGoVzREqRpRlJlDCdzImU5u3bM1bLctD8RCADwBkVoPfbiAUId2+C3JZ7nN8KWYfF4Xaz1jOZKJrGonTCj3/8I5I44d/9uz9is67QUqNihe8avBhZlLHMMPDnw7YLRHYBym6nyygg3d3HMRl4N/9mN4jPWAPC39OejFqUh+89lkLckFDspbjTHQhBnKV4E/yHRqsFMbyv2cnREkIipSJJRu3MmL/st/eLMbX7PfqOh+3HiFDmGdONLy8vybIsLPT8g9cZwKbwdyUY/F9ZOvu17ZtAyi8zvQYdSTgLXgoa7+mEx0pPHwGxRmY5Ok1IpwXJpMDnisZbNq6n84Y+ElgtII/ptafF0kuPyhKyacFeMUEiub654N2716y7BaYw2NgBXRCNW4mTEqyixpLSo5FooYiEIibCoolRCDOAqh68dUhjcH3Q4EkXhLo4EMbhm26w73AI48C6YL4ohgsgHEJ6pA/M6jg+/DLbrzRAubm6ZTafkZiYrgsgYL1ec3FxwccffYfnz18wnx7gTDhxkYqCk6vWoVxwcEiRT8izHFMbFtdLqqpjb3bAorqg7AIrY/oOnGM+mREh8F0Hrmc/n7K4vWJxfkE6yUFLZsWURZJTliXGGaxzCC/QKqJpWjZlRdN0KBSpzmiaUMqwQ0plkjSkaYEnfDmttRweHJFkKdeLG5RWHB0fBaGvCB1OUdtS1w2vX73COxdqxkIiZcT+3iG//eMj8smEi8sr2tbQdaGrZDaZIoTgs5//nNevXnG7umE2n7G3f0Dwhehp6or1ek2aJehII4UiSVJWmyXeek5PT/Ae+qbj8uwdzeKKVE5oNwblS6ZJS0eHiyqOij0iKYhSwbOnz/jg45iTq2u+vLzky4t3iEjS2oY40/SmAy9IowlSxIE5aHr8wOK0XcNsto/HsNpcYWzLdDojSTJ0UVBuSmoRYdswkHW9RbeGp1KzEtBlMcpYvDG43nF+s6KqCtpVzuTokMlsgkLQNDXXN1dY6Zju73F6/Iw0BeElTVkjnEIRIWVwBRNpSp7EyCR81qTsEdbjnaBuGrq2Z7OpCeJGw5s3b6iqCqUkCEfTbKjqNU3TsFwuQ/eKVPSdYblcs7d3MLTS6y1TEaXBY0XJ0LZjrUEIOUruH2x/vSH7vm/Gzs8tCzFoJqRAKzFkCXVEkabpG3SkMYPl9pZR2K6+wTkbzKVEYGSUVHcOqTLoUoJpWYy3oYW7yDLSNDg6t23L9c0t1ze3KKkRUtKaPoCTcfU/rIDvJsuBsRF8DaSMfi0jmBmFyyOwqSrL0dGEb3/nWyDgP/zxT7hZbtBK03SGKApCZedGaSHb8zS88Ncm6N2yy64uY7f99q7rywzAT27Ftbs2+WVV0vYhoG8UunrC6pctmJR3x4cg1qFbyw4uw1aE69T3YSIKfj5y20aMlCgpwVhC30jws+n6HjlePyVxPohtlVTbMsB9Zop7xzyCLSXuAgellNs8oCRJyLLsfomHO03IeI7vQMpf7zP/NYHsL/l8AbjegvM4FVxiZRKhJimTwzl9qrBpBFmMTSPKSGNjQWMb2l5gnURFiijRSK2IpaNQmjhNKKYT8kkBaUyvwbYrbpSnEY40lfRKYftw3jEW23usgdo7ehlAphIaLRRKWJRXSC+RkQyMcCYQXiK8DuwKEu0hEpLYSSLr8W2PMh66HtcavLHEnWXeebRVGBdM4aS3W83KL7v9SgOUt2/f8Mmnn/D0g0ckOib2CiU9P/j+d3j+7GNmk4JnT06xvaVcLmhqh9IxFsdyuSDJUvq2B+s5Pjhhf3LA5fklq9UKoYNBmsNilcM7T13XOCHBGpxp0HGEl4LFakVkWqIsQUcxeT6h60PKa993gEDriMViSdmUeO/YVBtiHdN3HU3XEfrbBUJs8HuaOJ0gZczBwREnp4+4WdyQFjn5rMDhyCYTnj57wqaqcEISJS3LQRMTxZrnz58ipWQ+2+P45ISr21vapiVLYmaTgr7rSNOYzz/7lMXNDdZ1WNdR1is62zKdzEizlE8//YTNZsNsNkMoODo6oJgUFJOco5NTJskUD/zhf/wjrl/9BXuJRhmN7zzf/vCUb314TGUbbtuSRbqgbxsaCy/WGw5fPOfs/IwvXn5Fr2VIZ7btYP8Ntjd01RqcZJLPySc5VVlydXnJ9fUl785e4elAGtqu5AZLiiKf73FTt6yanrY2+MaSW8EEwbOmoU0Tpk+eYDcbGm+YZjNo12zKDefXV3xcFHR1R1NWbNZrWtuh84R1tWG9bpmkU0zbsVlusN2dN0XbG4yEZFKg04S6bZCuIhaGvu1pW4MUCh0l4AXL5ZKqqphMJkSRCi3aWDabRWBVhskkTTKyrKDvDW3bE8cx6/WaclOiIonDYqxCqCneeaI4HiYX+7XvjOebVjHjEP+L14h3QMWPtS7GtlUI3QQqGrpLTDc4gwZvFNsPzq/eBfDmQzCPG1ZcQg66DqlDMKQVaBnjpWOzWiFiSZwnCCFJ0xlJEocVXNezXJes1i1xHNO2PcaMZaVg6+2tHxSM9wWWo7jyIUhRkWJ02RTeDcc3ngNPkkpOH50Qac1/+pOfcbVYEqdhYVC3LbbughBy97yHs/Ue9cvO3gxc+ENfjt1S0Kg1GZO/d9tux/LNyJi4IY9nzPW5p/sQ4xkIv+qhHcMNJVMH+B2rduGDy8J4QNYFawAVDcyHYwvqlNZEUWA+vAuBgqZvg13AjkB29xgflrmMCREJvTWkPnSzjUn0aZre+0x+Q4HnPWd4+7HdftDfpzPx917B77y2Dzopz733HNkS7wd7ez94piUSFyt8pIiKlNnRAcnRHuzl3HQVq66kUx0iEogYZBwjdc5UFyg16HecJxIxsYjJZIL2nu7NitXqHJsqoqMpOYaTqCCdOkpb42WDjAQYicQTDR1aVgiMdATDN0vvHDiDQCGlRqKRBL2JEKN+JJgNag/KOyIP2oWuNW0F0mqEleA8WWvJSgedwnaeMDwbnHeYodzz3nXTN2y/0gClsYbr5Q0HfUERz1mVt3z00VMeHT9hb3aE78FWS/quI1GOymzYlA1IRd00XF6csV6X3N6ueHT0iB/94EfMixnT2QSjepTROG2YT/aYJRlN39Bag/cGiaNXlmhvgm0Vq76iWq7AC2QSc3D6iEgnlJsNb968CuLHrqdqNgjlEV6wrgRpnLHaVERxhneSul2QT49YLCt0FLN/cExvHDpKyZKIpmvQUUw6mdIjaKzFSEEyzTlIIq4uL7Gu4er6nCQKLo43N9fUVUUSSaZ58JQpK8tqeUnTLGn7NXEScXy6T2d6TN+jE4FXHdc3Z8zne3jfsbxdo0Ww+5+mE6TLOD9bIiR89O1v8dvf/4CJFmRSI51DK4+c58z3Z2RpjjMQe4GoW/704i1qdcPeyQknLx7z9uKCvurZrEvW1YbeWlIdUSQFSEFTb6irzZBV0rFY3GBsz3q9wPmOKBpKUcaRtBYz0JGJ9TR9QycUSy+4NBVqMqNee6yymMmUSkji+ZTMdkyRyN6wWZfcXN8MZYYQhtZ6Q1cZXpVfbKeZXf8hOwza9iqo7mfzGbNJQVnW1HVNnhUUec5sNh/Efk+w1pJlOVGkODs7482bVyRRwtPHT8my4DqbpjlJkrDZbGibnvV6TRJpjg72ccLx5uwNiYqpukDrIwLjIKTYujnCWNe/E5SEyWDHvp7xx33RyThhhMntbnJRMgS/jZNj33uiRA0CWBFKhUM02ZhsnWgFKgqt20JgPHjh0WmE6VsiKZC+oS8NcbyHtZLZZM7+fEJZXxFnFV5loCe0XTBhbJqapunAWfrWIbxEy3GCH4+BYXYdD2zIINkBDHcdLXKwEg9CXNM6kjzG9CYkZCvN82eP2Zvu88mf/5z1YomWAtMZBATQaByuCx0VXniEl4xDsycwRsFfZiwlDf4/UQBg4bwOHkGO4Tq5rTX8eE1G4SzcdQGNwAUv0DreApjdEsrYpcWYo+KH7hfuSnaKgXUZzyGDOd6wyR1hgfNuxDvhvQTEWjKdToiiCOccTdNsjSbvIhvuMp7G8tO2Zdp7NND2PVHfoaREacWbd29JspSjg8NtJECe51StGT77IXTSjpd8/HgPuUYBXfh7IGU8L+GhAyzZQZJ++JoMjS/BJ2TU3HhBjEQO+6pjTeMtrYbNxJMcZEwPD5kcHSDyjNIbKlraWKBkTqIFMtaISIMoMKalZYOzNU3X4UwM/QS38nQXt9x+9pLy1Us+PJ7zvW+9gKJj4ZfEB5J4L+M67jHzSQgKbAxiY9Ab0G0Yozoh8SYIYscDFR58b7FD8joqHj6XFuc63JCnpaQiUkNoonAIFbzAIhXcm2sjafYkuo1QtSaqOurWofsO14ERngi4C675xduvNECRSlBWFVGiubq+4ObmisuLCzSas1fneAPPnz1ls1qR52nIwIklVd0ESh1PnETMpgWr5S0/++Qv+N53vsej02AaZzDBcpswnNVtjfQWvMX54HLqJBAFEVLTtdRVG+gyK0milDRNyLOC8/O3eNnjpUVFQdndtjWmN8EsygRhZJbP0GpwgrSOtmvBe4wL3gZRomnaFiHn9NaiooisKGjrmrqpEUiapsE7z7e//R2qqubm9h03NzcsVwtms0kwA+samrZGasnRyRFJmobWPDzXNzcopWiahqfPHvHsyTOePHnK4mbBYnHLalny5tVrutohnURISLKUvYNDpkrg2oa2KWn7ntuLkv7sLAgcjacuG/reICNF1basy4rWGjrT05iesmkw1iKUJI1jiiQbnEZDt1PwQQgxB9Z2KCVxhm1rJl4ge0scJ0RpFKj9yYS6btFKc7tZh9W0gKbtEadZ8GdZVFw3Feu+Z6/r0HHE/uER0+mU282Cq8UtMg4tqmkSb6n2cVWbpil1XdP3jjiKwu3OYvueNMmIo2QrYKzrCiGCYLxtG5bLBWNIXJpmOG+oqjq0ESqN9/XW4HC92mBMmKS6rqPpa9IkwRMh+7sV6bYMs/uF2ekouVtIjxPk+Pdw//Zx91fyD9uPR6FpEKbHoaOjC+WHvm2ZH+yhbm/C6ipOBrBn0DL4gmgpg0mY90yyGG97EhFT5DMiMeFqveLy/JLJLCbOIo4PpzhZcLmArgvnKejI7Fg5ubeJe7+8h7fYnqe7J45gxToLwqETeWcQBjx69ITvfe/7fPqzn3FzvRwcgrfPfP9gJcTO+b//uPvls/udNeN5ZtDkjILZkTmJomjrmzJ6noyv4dz4vGFl70a2a2RkwHtzj50Zr/XDEsz7Ttx41zc9tqlrmqbZilrH/RtBxd0x3j13fJzzQ9OAC74tbddtu96EEFRVRZVmIRZiYIvGMtZ4Jd67DZ+RLQ+4cwzfcJgMyqFBxjSCWHHvKnrnMC5ofiQ6MFARRMcz8qeH7D95TK8VC9siixQRgXMdnWko+4qyKakWLb1JqeqKvrvFmBLTe5Sb0W9yfvOD/x1fff6OL//9lxwaw/OPX/BEHTNJEn780a/xr1/+J3727/8c+UGOnGpErtDJBF0IrOgwokd6TwpB62eCj5EUGuHAWIcc7fCxCNQAPD244OIsgN7bLajFe3ov6IUayn8eoyRaQOwlidDYOCE2AhqNjbqv9Rb+ou1XGqAcHBzw+PFjYp3w6tUXnF+8oyk7lLgmUSmzYn73wROeOIkRSlPVDULC/sGcOE45PXlE3xjO3ryjqtcgTogihRXhgyacw3pD0xsiCd4Zuq4OAAVP2wU6Po1T6lXNcrlBGMEkL5DOo9FooWm7lqYrUXEIAHORp29bjAHTe5y1PH18SpEnXN/eDhPUDEEICDS2p242CKWIlSRWmq5raaoquJRGGTYO6blJlFJMZtzcLrm6vsUYS5YX3N4u2ZRr5vMpJ6ePuLg4Z7NZ8/jgkMdPH3O7XFK3PfP5nM1mw3Q6BcD0PXES8eLFC2IdcXu7JI4KfBc+p2dnF/zRn3SIuqavK7ztUZHCeIsVHpUkoUW07VEqYjKdULcdKMW0KCibGt81wYDOhBZKbx11XRHpGK0CQPE+QUeKvmtp2gopB41J16N1oLGNMcPA5TA2AIYsC0Cn7812smn7jsZZ0kiz7lvWXUtlLRvTsb93yEExoZhM8DcRS9sitWKWTZFesFqttivA0dG3aRqSJNlac4+eFWFiUdR1zcuXL0mShKOjI5Ikoe97yrIEYDKZkKYZVbUJk65120ljfD0QQW8yrIoTG7NYL3A+aFjckEAmRBCd3o2gw0S4HYfvig53247vg+DBRHl3X2i9DbcrJYdIArGdiLRS9G3LcrFiOpuSpSlt39K3HZHW9Da0qqZpjMQTxwlSQqoFKkrYK2YIE/Hu9Q1KJzx58pQ4kxweZ8wPIl6f3bJaX1PVLU3TbE3BRgbh3qTjhzLNN4wh76X3vccaQTHJqKqaO5tuz3w+40c/+gHv3r3j1cs3oXV3KFFtQcoY0vdNA9cv2B4yHdsJe4g6eJ+1/RiwN/qDjLoUO5qwDSzL2AE0vsfXvEQegKP3lZl2f6Zp/rXHjttDVgSCXi6OQ0bTQx+U3fcaAUpvDEJJiiwwiLvvf3V5ie0Nz549A6Dre7zQwWrd++3kuWVK3rsNfMluGe0X1TcZSjli6JwfgY4HoRQIh3ciBJpqST6bcPjDj+kKwcpVeB1jC8GXNy85W19zW61YVTXGWZAGB6zLsDCNtUN7h6sEshN859n3effFFW++uET7DFzDxdkaXbdYs+a///D/yH//G/97fvLHn/DZqzP0SYI+KlBHM5jmSBWjCoewDmV6jDOI0WtqsK7VyMGoD6T1CNfjsVhvBo3kiO4EPkSJ46y9c34OaSd0zuCcBgUiVggVwnKFTujSlvaba5xf2361Acr8kG99/C1Wq3M26w19b8nSHCk11nrSNB0sk0/pbUfXtwjnafuWV69eoaOYjz/+Fqv1gmk+4Td//OsID+vVCtOCEw5vLNI5DA7pHI3psX1Lb1qUFEE34B1926GcIJExl8srtIxIJgdkOsPr8CGQVlLEU6SGrm0wKnR3eGPZlCvyfMbpyRFNvUZi0FpQrq/DFxZP5xxxmvLs2XOkBNO1Iciw6uiEoe96NDp0UVQtX33xkourSyC0JLZtw+3tgtl8xqNHT7i+vkKKiN/5nb/F4dERTdeyXFdkacHxwTFt1aKFRgtBU5UYYzje32M2nSHx1JWj6XucgfOLS2gWRDhmecp0UhAnMVI4nBQUkxlpmtEbQ7kuuV6v6a0ljmPqcsNiuQwBeH1wyg1tj5I8jYOTqRq/AMEQzA0dH9770DETBwtw0w00MYJIKpAanSR4E0zLdByhlGa5WNJ2HbfVmkenp7hYg9V0reWm2rCsG46PT/CLa26Xt2y6Btt6Ep3y+OgRxji6buykGLsqJF1nWCxWQ4lD0rZr8jxHKUtZ1uztHZCmKU3TYYwbAgRz+r5nuVzjvR2cY7OtB0qIMwhxBMB2ojHGYFxPbw1C3m+9lDJoU4C7is0IUrac990acNuVI+6zEGNZh+GsbvURIjwnsCl3xlLWGJxxFGlCFMdM8wmz6ZQvv/yKqi4BTxYlZFEQquZZFsoAWpLnCQpIo4x602G7K7q2whrPzGdkleKLl1/w8t0StMZYt52UBXeTevg5HsE3j4TfzA6EYzN9gxKOOE7ou2C++L3vfZ+XX73iiy++oLeW3jjiJAmOcrg7kPLX3EbgsCuQBQYQ3A1MVbYF4m3bbo8jZPDcdf6M8SAPgeau1uN95+IeEBVi6/Y6Pm78ve/vG6+N9++WmXZT6EfvlvH1R4Ay3j6+rhs0K4gQkqfEXeJzpNSgM2p5fPqIw8PDEBkhZUi1dndFmrvC5Tdcjx3ssj1+H579Pj8aQUjw3bWnH+8wfnDD9gojPDpNOHxyQh85Stnjcs2r5Wt+9skrSt9Qmpqmv2vV1QKUkzyeFDjroGvxlce3Mamb8zsvfsz/8//9P7D+8gpZd+wVEctlzWwief7hM04ePeHx8+f8jSc/4vX/+C9pziravZrysMQfFoj9DD3NyCJJ6hVaaqKEEIpqLL73WGdw3g7txEOwp7VDN6APKfMEL5TAoA2W+R6woYnaOk/vLL3TGAydhE46NIEtbRKBj4Du/Zfk4fYrDVAAsIK6atEqZjbd5/HpU4p0xu31EqWDdXxRpFzdXNJ0LSBJsgSlBHVV8vbtKw72D9nfm6JjqDYVOhbBXbZtgymNlmgpkc7ibMjyMa6nMw7fDWK03pJHOXmcIRysbpfsZXP28j2m6YyPnn3Eq7dfUVYrJsUUn+VUTYNABHYAw3xaYE1HXTdMZxOSJObl66/o2oamN3ih+Y0f/zaH+3tcL5YsbpfEaUpRFJSbGmFDoX2SJ3RNz5s371it15w8OmazWVNVG46OTzg5Oeb84pKyXPPRx9/m6dMXbMqS84trlusSKTVN03J2ds7i5oaby0u++93vsDebIYCmqbC2v6PFJUgtySYFiQxug7WxNL7FilB3XLW3FHlHmmbUxtE60FFMZz1d35FkGUIq9CCqDPpEg7GDy6ZSKBWHwcDcOW9aa5BKbAdsITVaavBia6bVtV2wMfegpCaKY1arDXGSgVRM5ntM5jO6LKHbbJBaM5vucfLoEeVmQ9k2ZFqQZinPTp7z7PQJfd9T1zXAdkA+OTkhikIr+dhhoZSgaZqtD06SJNukVmMM9RBTf9ep4RHConU4D96zU9oSW1+IYLrlqNsO60M8wLh577c6kIGL3f4+rFN3vkA7v+8Mutun8oD6H/4TiKFk4AZvCjXoUhRRHJxhpYDry0uePnnKk5MTbhdLlqsFXVsjlaQ3Bte1iN5wuLdHkmnqsuJ6cU3XeJSIgIbNZoWXhnWzYr1ZEMWa1tyVnHa7bsJ+7hzdVj/xy2weFQ06ERUCOx89OuW3fvM3OD+75NNPfz54FjmiKKHvTFjM7ABB/wtX7t+87U7eD0WjD8HLHbtyx6yM5Q7EfSO23cePrMbubQ/LLLv/dgHE3b9gPDm+/6gpGQHQrvX+uI2M426pCrjHCu0yKAhB23f0bbcFopM8335v2r078BOSmCWjyd69ff1LrvUuOPtFjw5E2l07/W6Z1AxMAkPitlASmWjyg4xSGL548xmfX7xFTfd4fnIQSvVVS3mzobldIbqemBhRBedV3Se42tMtNdJozv/dp+iblj2ZgjA8Ptjng+ePmJ1oDj56wh/9xU/4f/2zf86Xf/ElRzqn6hzN0rFpW6rbhm6i8LOIfJIyyTOSJN4GeuooGhS+LcILvLHgh9gD4QdHWo+WMgSgEkpa+LAwGM95SAM3gcn1Fussyns6YVAYEhHTS/cN3YXv336lAUrXdFRlxWw6Y1MtcXVFVXfgGqbTOZMs5+b2FmMnvHz9mrquwqSGJ02TkGXSNGzWK25ur0gijTWW69sbLi9vQ9xLlpBnKZFSeNvTtw3O9QgfkKW1JrQ9eknvOiQRWZJyvr6gKRv25/scHh6gY0mep1xeX5DkmrZvgSV106B1zGw65cnjR6SRJo4KhAyGUFqBVdAsN3z4re/x4YcvePn6DZuq5vMvv2IynTOb7ZMlOUUqubq8JpYx3gluF8vAiixXVFXJfG/GdDqhaVu6rieKYnrT8+VXL1mug1Pnar2hNyFB2PaWtqrRShJJxdnbd/zZ9Z+yv79HmmXEakpfBUCSJhH5ZIrrGjrTobxECU3vLVXbUbcl18uSST4hTRNQEVXbIoUkSfPgCiprrDGhLW/o5FE6tC7GcWilddZjekOWZsRxNEQICDyWqiyDVXecBPAkJEppTG/oXU+sY4xxFEXC/sFBUJfbUJIQQqJ1RJZmpEnGwd4Bj08f0+2FbJzr1YJnH7zg//Df/He4tufly5ccHR1xcnLKxcU56/Wap0+fYozhZz/72bbcE0UR0+n0nqBx9LDYgqodWl4PxmPO+a2rLATvDTswTsb0lNUm5LWokFOkpGQb3eKH9kL1PlXECDDu/r6viN1lWe4EsqMOIljM37Ew3rttaa0dUrWl8DRdz3QyYbFYcLB3wMFsn6P5IULC1fUlVVPx4sNnwd/i3Tm0hsvX53jrWa8qzs5KpAoasbpzoRS4X6CiYmibNSEiYjg/cjBWG89tOA3+7qB2z4D37/19PF48eBe+f9Z6Hj865Qc/+D6Xl5f85M8/wROMqqI4pev6YQDvd5DRL4dMdpmS8e9dBkUIMeTT3AcEamATxjKiUmoLCKy1VHUFcA8s7GqJHr7fey3k3wOIxtfouq8Dl/H9xufuimBHkD0+Z9dgbndfRoAipMT6O6BmraVpmu3jx5BBa4Mofav3/mtud3KAX/igbcfOLoWitQ45U4MPUdt13NzecKpnzGc535t+zP6LQ2ykmB8dcHr6FGEkzXXN8s011dUG2XmmsYa2w2x6+oXBFjGpPmWaPeH0v9nnT//jH+PbFbnqqNbn3HYV//bP/xOJBG0srhUcT/YxQCMtS9Fw25TcNj31omeV1qzzFWmRMJlOKCYFkzxHKYnQehh7Q2kspBdIYqmDm+wQkhuiWcIJEGOdyw1WAdYQxXILEntC9UHhcN5gfwFr+b7tVxqgWBMG7M61FPmUtgu1cIQKVuTeU9Y1X371Ba3tyPKMru9p2ia0e0pBkSbMZxPSNOby+pxXr1+HEDGRsLrdUOcph4f7aCnp+4Y8T8njCaZv6HtBb3uMs8Q64u3btxwfnjKdTjk42Oc3f+M3+eijjwMAur5hNtujaWuqtqTrepIkJcsKVuvNvS9u01boOGJxfo1zPZNpxt7BHocnx3z5xVd8+epVsLdPM/IsZ71ec311SxInKBHRdj1CdjCUGS4vL5lMCrIsw1rL+fn5MBj5IDarKi6uLvFK0nQd0zxHSskHz1/w6OiQaVFQ5BmXZ2fkWYZzAQyINEWrjOCGLKjqekjbFNSmI5MRWTEjymBPB+aiKqtwvpKcrJhxdLCPUpK3b14jUAgBURyYEes8qLAia/seFTmyrEDqOCQ8C0+WFxjb05sOqRMYQrSMcXR9SysC06NkqBFVdYuzS6SU7M8PMFcXdHWLsBALjbTQ1Q3r2yVffPIpzlqqpsaZnsX5Nf/T/+dfoGVEWdb0veHm5pa+DwFpV1c3waCsmOAc5Hk2DOKSvg/C1jTN0dpsSzdaR0RRT9d1xHFItQ3Gax6l1VZ/oJTcghPnLNPplPV6TbUpEQM4cC5CSsLKRegtqNjt2hnFEqPYdezi8fjgBKvGrBobVk9K4PwwgWyfHtiKPM8Ys2m6vh0oXouSkiyLhzZXz9m7d8w+/i4ffPgBv/ajH/Iv/qf/kShR/PlPf8IHH71Aes98uo81ntvbW7RsyRM4fXKKcZbVqyt611C3CoeiGwSx4/clkBV3JmUhpG4QhG47Fb5pYBSDTiN4naih00d6TaQkiYYf/vAHrNdrfvKTP6fvuuGcQT+smh3u63Ke8Xx907sO12KXtdj1QBlzcEbWYbx/7Ih5OPGP4COO4zAxmGATv1qt7jnO7r7m3fn7eplm3HZvh7uyTGBK9D3gs+tlMj529z1G8PSwxPRQ6yIHf5V+EKGL4TGj0633nkhrDg4OtmyMdUMgHcP+7q7Sh8OxzuIIXVWmN+g4sJRC3AeJfynnMuqNdsqIIzfpfNALeim5vb6m+6QjfzHl6MVjTp+csHKGVdvz+RevSeM9EjElOfgYnQr6dcWHTw6RVcVBts9MzekWjtPDD5llh3z1xUsmccMf/dt/idncUN564lTwWEhylaGjgk6EUrAVksRLUh0zEY597yk7w4313DaGcmmooopkEjHfn5NPC6I4CuF/WuIlyFijEcFxFnB2MPpzIghrJQh5F/bohUNKh+gNUngYy24E0C/fUzb7y7ZfaYDSmZbFYokXNUIInjx6SlVbbm9XYINxkDMNUilM6zDWh9ySKML0htPj42AVrhWr9YrF8hapQccRT0+fk3xrwvn5GWVV8vjJKW0b0bUNbd9huoZISzrjQl0uiojTGB1rkIInT5/y0bc+Ik4izDIooNu+Y1VuuF3csGmCVftkMiEvCibTGUmSsqlKur5HO0tZlUynBUdHh9Rtz+XFDQaBMZY0KygmMybTOWnmuLi8pGlb8mxYgeMHu/PgKhnFEcW0YL1aorSi3tQgPOvNhjiOKKuSVV1y8ugRSRrTtjXz2ZTJyQnr5S3n786wvWE6myK0ROmICI3rPDhIs5yDo2NcH1pykyTl4PCQOMmomo60mCClZHF7HVZCdUOaJxwdngCeqqwoyw1NXQXzJzxCZjh6rHUIoei6HmtL8mwS8j58WDnFKgRjSdFhhQ0uibkKpTMh8Q7iKApJnwiMdfRNS5GkTFVEGsUBgNY15arEOE95W7LKb8jTjLTISGSE7wy3Nwv8wOKMwtc8L8iznKZtwUOeFcRRgnUhITdOEvAhN+nxk8fEUUxV1ywWC8qypB8EjFEUghFHAWwomzikuvt9s1lzc3OF85Yo0qEVWQgQKZaQcaO0JooT2r56z7dG7EyObBkTKQTWhlbgLYU9Dv5bh9KR1g6DehBujnUNt+2OcFga01EkOXsHe6Q6IVKKrmqIlOY7H3+b/+V//Z9J4oh6s+HR6SOUi3j51RuuLhY0XWgbn0xSem+IY0hSRZREuC4AWNfXyF163odymHOjd8Nws2c7wb1Pc6K1pml64jikKHddSBFOkyDK/q3f+jU+/+wz3rx5S28sjK23DKBo6BwJwuFhmvJhgB/dgf2ooB2ZJ/H+CfB97MZ4ewAYQdcxpv3WdT2Y9gUmZQQhURQhpKDr+61nysi6PExIHl//3gT9AKCMgOahgHZX6Lq77yPjNr73ePs9AKLUvfbnhxoYISXZ+IHaAaOScI211kF7MoI3xD1Y8b4z/BAQvfcajKqVh6Wh9z1lh3ARPmTSKEIagPcge8vFTz9nvz0kJ2LyXJMWCTaNSfcfU9mIsomQkznRyRyM540pEV7ypu6IuxtUo/jp6i/Yz+fYak10qnn2g0ewjkhMTd46VG3pS4OxFbGToFOM8PTW0uLIgKnXVM6SAIkU1J2jaT2m6VhWN2yKDek0p5gWJHmKiuPwufaCWI/RCIALi5ZdLZv3IVZDSIWUEcL6oel6TDqW4AWaMS7hG0//17ZfaYCyuFnw2aefcfpkH50qopgwwEtNmmZMpzNurmvqtsVLRdtboMO7kF0Txwlax9zcXLHcLBEqiC21itib73M4f0SeF7R9y2w+5dNPf8q7iwucs8Rasj+bUkymJFFMhCef5TjheHfxFowKg/R0hsEF4ywZbKNlFUELbdciakmcpmR5TpxlbMpNEIoOHRleKHrrBv+WnIP9Q7JJy6rcsF6XvDk754MPPiLLi4BQHYSOpYg4ikMLp7AIJSirkuvba6wPIXdCeG4WNfv7e+hY4WtL3ZYob1nf3FIv1xzvH5LHEVpKTo6OMc5iAS0jNqsSTEDS0/mEJ0+fYdoG05lg2uQkSZzz+MmHfPDBh6Rpynq9pK4b3p29pamrMLE3FZFOKIqgx3HG0Jt2cKoIXhBxnOIcSBGRJBnei8HCOzAKIfNDBbfbobMhjWK8B2MsfW8Ga/rgQFnWDWVZodo6TMyj7wUQqYhZPiONE5IoJk9SrIAojjk+fcRmXRHHCZPJZNveHAbkAIjCSvX+CrgoCk5OTnj69ClCCM7Pz2nqhqqsiKKYLNPDqiwkk0ZphJQCY0JAmxCQZSngqeqSpgnlyizLiNMUFRXoVWANsQ5h3t/MJwjAg3Hy9KOragCFzvshOuThCncELnfuo2ElzzaLZwQwURxhTU9nDd6A7xzG2MCedT0//q3f4ub2kr/42Z8FDxPVEEnJ8+cfEUUZl9c3fOvbz5jsJbx8+xXTucSpoHex1ofulAdGX8EkbLek47/268Nt/GxkWTQwWgalwjFLIfi1H/2Aumq4vrpBa03beuSg9fGjK9e4QBy6he4xO9xN/gGguPHBbPNJ4OuT8wP9yHj7LhDQWg/71O5co2ESl5JUp9iJu8dqPGRj2Nm/LeP0nvLX+0pQcCeS3QqVHzAoD/UtY1v+KLwdS5q7j98eixjN1zyjpmcEKBDKO3me7+yfvOdb8nALl2nYPx4e4/t1KLsv5WAITPRjasLdA4aPQQjNC5bw3np0B3mpWH9yiVs7nvuI4qOnmFyz6j2d1rRFSq9TrIxpGkPuM+bzGbFRpEYRdYL1xQ2f375BtSVtVtOdJKgkx6w9vm2Je4e2Eoekcw7b12gpiaUgwdMLQecVhY+JHKRGUDvLxhlK46mNpWtquqqjrVrSWUFaZGR5FtzXrUUIhdBhbGC8Dj50no4dPQxgxIvRPyfk9wjvggsxAvkN1+ebtl9pgFI3DZv1hhO3j7NQlTXF9JAoTimbmsVyGWKitSISwRp8VVfMpxMenR7jreH66prLqwt61weDNmsp64Y3b8/wfYQDZrN9jo6POL+84PXbd6E+qiOEiimmcxSwuLnASIu3LVY4zi7O+bd/+O/4zV//LVZ1yc3ylrav8UpCpPBaYq2nNR1119CZPmALqYIZUO+ROqFpexbLEqRCxRlNYzi/vCbNc/aPjrlZrXl3fs58Pmc6mYAPEdxxqlk3NZ3pkUrQdi1nZ+/oupZNuWK9XlIUOXmeUUwyVpsFCEdZrbFtQ981tG3DanlLIzVHR8f84Ic/5NWb1/zRn/4J0+kc4aJB0R3C3fIiR08mKCSr5RqtUh4dPaFuO159/obDowPKckVVVbjegwXbB9vySEXBAMh7Wl/T2/DKwQI+5JkoFWGM5+278/CeUg4lD0cSx+TFBClGEzEdUo59AEo+gHiSJCPLMqTUTOMEW9foOCFOM2LvKGaeKMmYpBP2JlMmkwlxmlC1NUmR8eL5C9brDa9evcYYQ5qm9H3ParUKzr3zORAmkLG10znHwcEBBwcHTCYTqqraCmNH2j50JnQUxZQinyAEWGcIraUydDLhARdadZUKWh4JxoWOtd747Tl7H1sAMHbfjAP/3cTit95AQtwBDu932ZNRsDlS4XYQY8qhPBJ0ADJWyEiiZYKrDcY50jRjuVrzv/6rf83/9f/2+/zD/8f/nX/7h/9f/tk//2dEMkeLgvnkkCyf4cVnbDYlt5szZOw4fTLletmgIkXmFYv1ZtinnUl8y+yEqWg0FNtS8e89H2OLutspb4XV+Y9+9Ov0Xc9PfvJT2u6uxNa75u5F702IwcRMDG8aQMl41zgB3oGTEcy8Dxy8D6Dsik/7vsd7j9aBQRvb3HdBjBuOoyiKLVuxC0oeakGAr5V4HjI6W33IlpFx9z5nuwLf8ecuQLlfHpLbMtbDz+q2RMRAOrkdoDQ8dzKZkGXZ/ff+Sya/8WMwTp53gG+n1Mb9Es89VmYEoeMd40dvuKQCjwKsA2ddcOY1KTqOMW8aXnY/Y3q1ZvqtZ0wfPyKaBWZ0JR19ZMmTFGFz1jY4LzciIvYSdTBh6k7xmyXu3QTzuqB/d0l9tURkJU1WYusG1VtE36GMRzmHdB5lQSOIRIT1msg5Jr2jEYqNVGyEY+ENa+OoK0tjS+q6Ic5S8umEIs/IohitQ7QBTuGdxQ6OzFYMxnjjZ0d6lJY4JxEDUzJKaYPHyl9+nXa3X2mAsr+3x4cffESWxBBBnKZoHTGdzvAuCMWMNdR1g/HBHdJ0PXHUsVptWN7eYE1HnKSY1rHcrJnsTelN8KZInuZ4AcaEAfbFR9/i9Zu3vHv7GiUFTMNqtzdBh4KCxWKJSjRCC372xaccnBxT5AUGR226wHZJj9Qa0ctB8a3wUtD1HWVd0xmLbTs629J1LVGsyPM9Do7nTOczDr1AxRoVR0RpSt219DfXVE3FfDojiSIWqwXL9QYngjg3JDx5ZvMJ872CiwtBWa5BJMOE4xGRpJjm2KZDSsHTJ09Q1qOQXF1c8kX8OSiJHhKYD4+OkC7Ce9hsKm5uF2gEy9sV+7N9jh4dYHvH4+PHzKZ7rNZLVrdrymoT8jm8J9YxQkQoqeiNoW1a2q5HKhW8D6RHCom1oGSEcy1t0w9iOUfXNUgpmM6mSKXI0sBEhAEwCrVhHwbvvjNsyhIPaKVRWpNMCvL5FJUldNWKxoV20U1XcxAfcHB0hIw064uGum24vLrm6PCIFy9e0HUdaZpijOHRo0esVgF8WXunERkZltGrYpxM6rrerjzH1aUx/WBJHhKOI2KEBGs7jO3Jsoy2rSmriqapEQLSJEEhiKMIHYXB0zmP6zpk/B5eehig71qFAzjxHuTQGXQfoDiEuP8Cd0TF/Y6GcVLtjCGKNFJLvFb0peGrr17x7PETqqoKuog44r/+r3+Hs8sz/uxPP+Xf/4c/wvZiEJ16Pvz4EV3v6U2F0g5rW5p+QxLPcW7ochI7nSlmd8J533F/fVQcV/LG2O3kf3x8wm/95m/x5uVbfv7zz+laS16klGWFGKKsg6HhMJlt8dFY4hF3JZ4BLLthYr3bh50gwvfs00NwEnb/rjzinAvZY0lCmqaMOTW7IlchQ6kvjuOv+Z68TyC7+x67v99jqfxdF1DoMnp4iu/Ax0Mw8xAUjaWg3X3aBTijUdvosTE+RsJWLB4Nhoh+YLK88w8+qzv7Nu4f4z4NZQvuAxT3TeBk+J/YvtiwTyNWdX4rnNX4IYcJpEuhs7i6pa1XtOuKm1fvOPj+x+TPX7B3dEJeCIxT9BKMmGN8QhSneCRlXyFihZcxPpkQFS+YP31CtGxh2eDKNavzNyy+fEV/doG8uiVb10x6T2oFyoZgTuFCnk7qHHvW0AjPJlKsIoeyAiUssRY0QtI4aMueurrlVt2QJhFpmpJlKXEcEUfBONOYENGC1ig/aIWkxUuPtwJhBcqNAEWG9uVvWjh9w/YrDVCmxZQnTx/T9OUgphw7CTQHB4dkqWa9usFZw7JqKfKc/DADYzk/v6Rar2jbGh1LZKxQsaSpWuIooet6NlXJ6ekpIlIsV2uU0uwfHfHy1Vf0xpJmeVAlC0GS5QgRk2YzsrykaQ3OwNXiGivASjCD7beIIiZ7eyR5mNyiJEXHCcbDpmroekOSpUgJSRShlGTTtqR1B4slcRqTTSZEcczTp0+5XdySpDFJHKGkwLgeZz11W4EUVNWKvu9RUhLFitlsynw+J4411lmWqwUIz3w+QUUS33mavuWmbiiijFhpPJ7zywvm+/t87/vfD/XNxmBcAF2T6YST40d0VU0kIg739smTiFhH5EkcQgKV5OToCCGPqOpgd51PMtabJRBWhFESY7FIRchaEaFrJE1jujYMdJNJYLqqeo2xllkxZTqdDpbxYaLI0sCUOGNpbOjt15Gma1oia4lVhGhb8iwlL4JAzDuPt4GujKKYKE1JpxPSPGXZbHDCc3x6wt50jtIKax3JwKD0XYfSEZPplPUgTIQw6UcyZm9/n739fdI0oW5qEJAXRRAYApHWFJOCDz/4gPl8H2tMEJwqSdc11E1NHGukhP3FLVUV470jSjRmKClJ2SMExLGm9wwaiK/z3l+fIIaV8JA5I0Rojw4TzZ0GZXj23apfBtYgiGbFtpQhBHS2QzpBEaXoVPDu7C0/+M63OT0+4LOff8Lpozl7B1P+u//2v6Gpes7eXJGlM4xxZHnK937wAbfrd3z19ucsywX5xLJYBbPAKNZ4bx9MbruT7f0yA8Pqdtz/u/NA6MaJFM55nj59yuPHj3n39i2ffvpzTO/QUcRmUwaPC+RWV/Jwu8+YDEzB9vY79mvchREkvg8cvE8jEY7N3ZvIx+6dKIq2beswtu3Kr73WQ73I7u1ff6+7x7xPIxJAz8hW3RfZjqzIQyA0sjzvY1oeHtcIUBCBnR11UgzalxFcbvdrh9b4pinQ+wAcvAsg2w2T6sATvR/cjn8Ol3C8klvQ5O9ASvg7RGxIHxZWyocgR4VAliXW1JhNxaLsaF7fkD16RPHoKfvHjyGdUUcSE4GPPDaKiGNNGzsa6elUjJEKF2l6JfBZTyk2VC8mRN97wuRqgfnsK8wnX1JdLPCbnqQTSCPRNnyXUwu6FyTCD2NyMFSTXhKjqFAogtVBJ8A4w3pTUtY1eqWIdEQaB8Y3sPUCPWqJhMCrwdjFepQJ1vkKi/MW5bdk2F95+5UGKNaFGHGpPXVXkUVF6NMWgjzNsX1HnhRIBPnUoaOgdhdEKL3PcrXi4noJOCaTgv3DfVSaQCdYt2veXb4hn6coq9BOk+c5L54/5dXLL5gUBdO9AxCevmsRvQYseDjI9shnR2yWGzamxWxuUUrT+PBBzeeHGGeQrmMWJRTZFCs0dS+pOnAo0iRH+RihBVY4VGd5/eYNBweHfPDxh7Rtz8HhMQdti7cOHYVIa2NavDUsbq5p+w4VxVRlSVU2xCoGPJfvznn+4XPiNEYqzfXtAucts2JC1zcBGOURygvatqOsSzabirOfX/Dd732P3/6d/4qXr15R2ZYsLUBBmhecHj/iq5/9jFmSkGtB5FvyJGazPOfzn9/ghCeKFXXbslyv8QjSIsfant4NGUfaIfoOvA11XzHmizi0lkwmEcF/KiVNQn5JURTBOdYbOqfRStN7xzSOUdoSeUMuNIVS5EKxF6dMooQ40rhYk6CYyYjn8wOmccpkb580K5jOC6JYYOnJJilRnDCbzwaaOIhtizhF6Jiud8RJhheSJAnixCLL2DQVUZpQ9y17UiJUxOnjJ1xe3wSaPtL0pieKNNa0XFy9Yb25Hcy4NG3bUzf1wLoEIXFnLFJrnLO0naFuOoR0XN2sQ2nIdsHYToyks9gKRRk6TqSSMJSRILC3xvnQqimDxXhwmgxCud1Ja1yRh0Dbu46MUQuCdwgsUlqSVBFHGtmXXF19zt/+W9/nN37j+zx5NOHq+gyh4Ne/fcLf/NH/hYvLJf/z//KvuV5c8/pM4YTj+rbl/LpE6uDuVDY3eHp6J3Dm/op/W5LwDkYvjeFaOQS9cSgZNDPYcMxKabRWzGYzvv/dH/DZZ5/x5s0b2j60fwdPETDeI4XDPhD4CbgTAo4r8TtaZRC2WkZj9C2oIvjI7LIMuxP2bnnlDkDI7QJ0LGUZM5QAhQwlJhHKW0qqweVzKL0Nn4EwKd+fhIWU4IO4k5ENGwW/DEwbY1lvt+tnR18DQSE6Aomda3JXPrkrnjzUvuzeNp6LUSyL93f74j1ehST2sW35rvQ45grJwK6NTAYeqQbgIz3WWxBR0K3dgzO7mp+7v7d5TSKwk0OlZwtKnIcOd3eOCenQkQcxNCpIIZBE9MYjO4dvGzYXL1n97B3Z3ufsPTolO9xHPTkhOz4gnu1h4oTGJHQ2Y5pOaH1KL2K8SCBOcFrgxBXWK9Rkhjo6Jj0+ZLM3ofr0S7q31yTXJXnpKHpH1EFsHTHBcE5aEL1Hoshk0MUsAC0VMo3Y6EEH6RzOGLq2p697GivACYQLWi2tIpSOkEojY0dceCIviFEI5WhUcK21xuG84Jfxuv+VBihN37Kp1hTTiNAyu8Z6RRJNWNwsibVis17Smw6hbWg1TnOiKGWzLpnP9+k6y+XlJet1zXS6RxrlxFFEJWvOb94xvSmYz+dcvrokyzJOT0/57d/+bWazGVEUsVgsuLy8BKFC+5UU6DjmcDrn+PTxNhYdJ8inU+q6RkrN/HBGPiuoNjVN2dC3oUPg6PQpWZ7ihOPi5jKsOrQgSVOKmaIzHZeXl3zw0bdYr1Zs1msOjw5ZLxeU5Yr18oaq2nB7e83ho8c8e/aYSV6wXm74/Odf8id/9GfMD2bkk4LJfEoxzcOILYJtsfKCw+MjYh2xWa45e3uGjyRRkUCiOLu94qef/Yy26zg4PKRvQmmr73vO351RrzbMD+dUy2t6Lbm8eEVZ93in2NQboiwkQLedRUYxRBKlBVEah/57pbBWYvoO29f0BBCiFGgd2CStI4rimLGzp64qrDPEOgIkorehEKwqEiU5TQuO84KZkBRekjlH4j3SOv7VH/4RejZluVxwdHTMwXwfneagNYkQiK6hKg22aSiSlPVySVXWCKlROqKsapwXdMYRJymi70PJzoc24SzPSScFk9mMOEup2gZtY8qqoW1qnDfUdYnHYEzHZr2mqWoiHTOZzMnzCWmWbzUqZV0TZgxJ7zsEivn8gMlkRpSsEPKP8TikVLhhwro3HQWksg132+3okSET/d5qWGyp813GJdwv1R3HP7YeCwGuN6SpRgmYFgnffv4hi7NzHh8fcngw4ZO/+FNefxmTTxJevXzJf/zjP+bFBx/z7e/8gCRylOtbnJbcrkpevbmhNZYoEbStRdMOk6TGBvVksIryQXeB81sh3jjHeOcxzhPHo7kcSC1wFvCC/f0jXrx4yn/4D39I09RUdYdUMqQsD+BjXGmH499m+m7fJ0x1A5Ozc5/3Lpxrf5eDE17jzivi4UT+TV0mXxegBuFw6My5L34NrfaDKDWO0SqYHT5kQ+5v92s236RZ2ZZyIvm1/X4o5h2fA3e4bfd1Hm4jOLPW4u3IRO08dgCND1uYPWBE0Fc5Z3FS4Ad9VPC/B2NDm7HBhY4+6XfjqXav2vbnHaAMpT3rHd909u64mPCf8gQ2zQ2AR4TxSXqDMQ4nelA9/arh9nLBMlNsJo7JixNOX3zI5OSUYnJAlu9hkoY03sfpCCsj+jiitVD4OQpB5zaUVOhThcwU6ekc99Vr+s9f0767JV51JHXwSWlcWLhI4UmHJUxiPSmCOAItgkO6HDohexdhuh7XGmiDCZvrHd6A85KejoA6JF4ZxMoROUmExkcOG1tQnklnMHVw2+U9Sevv236lAcpmuebzzz5n/yhHJRLnHZ0RpHFHuao52N8LvfRDa55EYY1FKcfjx49RKD744EM26zV93xLHGiWDxXoxm1C1LW3bcnZ2xmKxYDKZsFwuaduWb3/729uwrr29PdbLW5x3W8+BIIJUw0oprKR0FKF7GwZSD87YAYEqdKpp65Y0GQLXtGSS5zSmpbMdtu/Js2CR/u7dWybzGWVdEScJi9USJT2bckVZbZDCc31zxeMPnpMkEUkao8Qeh0eHJGlGUYQSyXqzweECAMqCuZuWmjwryOKUvuoDza0jdCR5/sGHFEXBelMCwWHz/PU5wgbb/cX1NWkcofDcLm7IsojeOryFrNijs4okjYmzFOslUscU0xlCSTbVmr6tCdmIlk4EPwG5M+hZawgUrqfvLUKEVW6Wp4BAOoFZt6RKcziZcJxN0H3PgUwQV0t8Z6j7jrbr8G1LbywHqcZbg1SagzhCpmkYBKIYbxxJ5yiynFmcgtDEXpAfHGCMo2o64jhmvS5pu5ZiWlASLKHxdmsyVVcN1tzQ1CHU7ejoiNlsRqUEdVOFPBsnMKbfuuSGyTDQ5UmSkBcFUqtwvaSnMx2R0cRRipIRh4fHyDgfVsEe4RxIta3Jj+tfwdDxMIhflVKMgGMUiXrerxm4m4DCxKukCivtAbSMWqY4SvC9ASVZLzf88eWf0q0bbi5umaQ5f/GTP6U3DU+fnQ46npwvPv+KTz97w6Y2GOd59fIN16uKVVWi4whTd3StB+mGFvO/OlcsRDBdEyKwBEoNxlrC8fz5U54+fconn3zGar2m7y1ay1Ac+wYdyC+zjWBPsuPNcg9IuHuT/sPOnW96Tbgr8dx7HzmWdkan5a+bs72v1fgONH0dWOyWXx4Cqm/Srbzv9n6ni+ebzuV4PoKuyOIGvcvuvozAa2RQ7s6bHwzE7o5JSIVA4Vxg3I13GILLqfCOrZLzG7ed74EcOZmvb+/7rPhBezGWncQddAHrkEojnMe2jrqtMbcWN5Eslm8pv1iS7O0zf/ac+bNnZCePUbnBJDU2XiNVghIxscgxHLCJItZC0Xqwex1J/oT0MEUcJMiv3tG+uaQ5v8WVHu8ipLFo51EOlPWk3g+wO2QJta7HEpiUWsb0ncDFEhcHkGMjC4bQgODCsQJ4IXAeeu8wrgvjUVh7Y6sG3asAGP+Krca/0gCl6wzv3r3jZinYO5qFYDcRsaiWJDoNORUuJAJHViG1Ii1yus7w5s0b9qZ77O3tk2YZ02lBkkSAw9keFSUUsxlVVXF9fb1tGR1D4aSUXF1d0fc98/mM1WoNzpBlGVEUI0WIfFcqWAk7F+LpdRTTNS1NHRxaJZJJURCrmI0uieNka5ssCTVCMbQkKiR5kWFsz6vXX2GcZ29/jo40cSRZb9ZEWvLRRx8QJ4qqKbm6vqSuG/amezx9/oTf+K0fEqcxzgedSde1KBS5yvHGUbctn99+Tte0pHGKt4ExjaKULInDCkJAnhfUm4bF9S3ewOpmxVv1FZE13MYC72qs7ULbr065OD+nF560yVBxTG8FOsqYNDX5ZIJUAuMcbdvTdz2mt1gX2AjnQkie1hFxnBDHEaHN2IU67+i30FlmRYYta1RdE6uIqO3IHES9RTQtsXdMspx4UtBby6Jr8FpSxRGyqpDOEU2mXFxdMT0+IXeC5c2Suu3I9/a4XVXkB/tY66g7w/7hEc6FlnFrHV3fI3QYlnwj6IxludpQlhVaxygpWS5XrFcLmqZCa0ndVhjTorUIqci23vpatF2DboIgtKprpFYI4dksgp9OkU14+vQ5ENxUvQ8T8JCac9dsIAYR27je93daghGgjGWDXQ0HjCCGe5OoUiqYY7mx7APeS5QUdJVjPk2JUHRVx/5kxsnsiGme03YwmR1xeLRPUaRY1/Ps6dPQgaZT/uW/+jds3lxhbAB2QkicE4GWH3J/2JkIRz0H457L0Ak26gy2FQgRvn8qDqZ51jr29/Y4PT3l1atXXF2dg5cDIA8GZLxnEv2mifWbQubGMs643elmwh6/TxfyviC/976nv//aD7Uk4/divF67f3/9tb7+2rslvYf7v/t+u+Bhy368B6Dgd4//PujZPfbt+2qB27HNH583+rmM5S/vg/5QCIFUEuktg5553AM8wY25FzYEmHqH8A4h3q8penisIzB3I0M2BvIMv48J6eEbN7TcI5FDLch7Pzw3lNuwFuECKyOFRHrQXiKsxK8tVqxY6zXVl9dcHnzB/NlTsscnZE8ekx4fEecFjYzo/QFOz9HKkycaI2KqWmOcRO1PyKPnqJM57sMT2vNr7MUGd13j1zVR1ZF3jqTzRDYcjhaW8J8jIgqBr7HGxQrZC3wiMS0MAhWEC9osCMfrpMTgiZxGWknnDT3BdgIrQI1FsL/a9isNULIiCBzL5oaq0sRJgtSKtu2ZZNMd+2dHWVZM96aDZbijKKZoHXJTPv7oQ2azYMq2XC1I4xipPU3TIIRgNpuFILuuo23bbTbFarXi8vKS7373uxSTCevlLZeXlzjng8hSBWsaKSWxTkjTIQDOe8pNxbu3byk35dZafTqdkucpaV4glEAqjxOe3nRYZ2mrhsViyXKzYlNVPHvxnCjWxLGmrjYcHO4znxUcHx8wmxcsm4reWKpyg+l7kihlvjfDM6xmFBjX0dtAmdbrksXlNednZ9xe3/DkyROePXvO6ekTjk5PcAK+evOGyDuEFywXN9i6R3o4nM34+IMXqK7B1EucE6wWDc70YfayHqkl63KF7GKiOGO6t8/R0RFSazblJpQlBt2EkFGYaHygqpumxfvgfxAsrjV5PgEPZVUihWSa5Tx/cYrsDHtRwvPpHnHdkVsHmxLaGroOZ0PHjMNwmCiSPCU62KcTEh8nkOW8ePoMspwmMMHEKBQSkUZb91ac5/L8HCcEWZ6jlCBKYpzv8c7jJGR5wXR6CECapCRJgnWWLM24vDqjLNckacIsyambitVyxXq9xvQOpSKSLPgRFJMJUinKpmazWaG15unTJ+TZhK7tWC7XXN+uB11JWNFotTOYAqPEL5SA7tqF4X5r8h1bEu6TQt6bDMNzRy8Vto9VSqGVJE8Vynr25zM+evEReZzz5uUrqrrjy5fnTCYTjk5ecLu85vb6lsmk4e27G756846fffaasrXk0ylJlmPbBmM8QqsQSUDQVBhrdo7pLj1YjDftbEFbGYBX31myLOOjjz7k6dOn/Nmf/YSzswuCnsOSZiF+4GstKtvX+ibg4N87zXkfPFvsDgs17tN23vZ3Lbi7TNVDkenutYGvi153mYYgbL7rqomiaLvIeghkxs09ZB/eAybG99ndr4cC2vd5mwChY/E97Mku8L3Hzji3ZUR2gY+Ucts+PVr+B8Dsh04Rtsh0l1EZMvDo/eD34y3b5f3dp2cA80GMI4aLtS3x3DPZu/t91533Lv06jJN3zw+v5WTwc8IOfj7CownBjjQmGFXKEFZrqgpzXXH15hI3z9An+8yen3L4rRdMHz3G5x2VrBHeoaXBK0uioNURTnlapbFZjj3cx334HLnYwPk17eWCfrnBVz2+7NBVg+tbWm0xsYDc43OJn0qiLA7hgb3D9j00HlpwPWAHkbzzgA3yH6mQXqNdBFIF5sl5ppMp5trSiJa/6vYrDVCiOISUdV1HXdekWYqKBFJq6rpmf+8R67UhiiIOjw6Y7c+5uVlQbiryvGBZL/nt3/4xH3/8MZcXZ1xfX2Fth8BjvA+17yjaxtvvKuWvrq62K9Dz83OOjw6Jk5Tlao01If69bXqcdSihSJLAAiwXqyFIznP+7ozrq2viOOZt8prpfE5RFDx58hTnXWBEkhgVa7SSxDpiOivYVCXrKlDxOtYYZ+n6Dq0FUkLTtbRdQ9s1VFVN2/RYFfZ7Oi+wztG0LdJImt6jlWBvPue27snijG998G1W+yustcynezx98owvXn4FWjGdTlmWG5o6dDvFMviVHO7t8fT0FNU3CDela1ckHz6h6Tt6L5nMDmm8pyFk8xgL+WSfLC9ouh5jHXGckqUFwnt6AcKIIQgwQgzW7XEcWitHoCKEIE7Cx1hJycvrt0yjmLbRUJfEZY2uG0RZczyfMc0S8IpYayZZRtobXNcT5xEuSul1xLo3SGdYLm5phWR/74DjLGfZNGGF5C3GefqmpWnroG/wFms1KlI4YxBCMp3NsL0n1WkYYHuDiBNsb5hNZ+RFymazoOkq2q5EGc3R8TFH+0cIoZnP5iRpjnWe1WqDcYbNpuTy6oqubzCmp9rU2B5m832WZXCyVVKi0ghrQYhRa+KHfb+btMaW1d1ywAhc7iakXWAi702OSt9NpGPZJNaaGEGRxhRRxsXbC87enrO4XZKlGcYY5rMJ17dLrO3pupaLy1t++IMf8KNf+zFnVyVf/sUXZJ3BEvxvEOE7bUxH5yxJGq6397uZQqPWxA2kOvePwwexXxzF/PCH3+P4+IRPP/2Ss7MLhAz6lrxIg5NsFEoC79t+2TKPc2Ob8d3zv6l7Z9x+UWlnNzBwvH7vK7uEl/26NuSbGJQA4u53/ryP4Rhvfwgodt/n4T5vf8q719t93jeyUsPND9uWR/+Uruvo+z50lEAQoAowvsMO54aBZRv2/N57h67Xe58g7niXAOZHgbAQYiu49e957Hi+w3l8ePxDOz4iGPwJGd6boGca04GFAIkGY2HoetHS4zvo6pZyVbG5uqU+O6c+O2Py+AT99BHR6QmzaYGVEislqdK0UtLKhFpDq1Ma6zCFQx/uIZ/t0a/XyLrBNT3dusKv1vSbDZ1rKGXPWlmWoqeWBEbYhzZhbRWqU/Rtj2nvctM8fksqSamgU7hegAyu1lpJJu2UTbZ5j+bnm7dfaYDSdz1tExiNsnSkWUauUhSCvb09AMrNhmJSMJ2GFsZyU6FUxAcffMhHLz7g0aNHTIqcl199HgxmPCwXC5I8R0XJFrWPwVQQPnTr9RrvPXme4/2Q+CklWRrcDZ11xAO4aZuGST7ZDlZplrJa3fL69TtuF2uOjqY4HLqJsM7wndl3uLm54er6MrTRzudh8I800/mcR48fMZnPcQLKsgTc4N1SkSURvek5Pz/HqBC4Z2yPABKXUJY9eVGQZil0LTfrW4rJJHSS6Ji9WUjcPdg/5ODgkLwo6Nuen33yKXGe8OKjD1nc3hLHCUkUUaRZMEOzhjRN2JvnZPEe3u1zu7yCGjSapm25LjesuobeOKROWaxbTrwKIKXpaJqK4+MDvHfc3FyRpjHOgrOgpMKYoD3xrmFxuyRN07Bq15q8KIKjqkiwTYuXcLtekreGQx2hkwgvAs0apwkIz7pag3NoJE44imlGIxTGeTbOYAV0ztJu1uRKUnUtF4sFepLjhMB5S55PsUDVNJydnwWGSEEUafIkIVE559dnSCQfffwxp6en1E3FpipZLG9o2paqrmm7JqT79pZJNuXxoyckSQZIhFT01lKWwYZ/sVywKUNictv1KEJHQpEXKMl2pey93DIo3o9sxzjJ7U4MYYDVWg+/75Ykvlm7YK3dln/6PugClBAYB1k+4fbqhuvrJQKJMZa66UizjKubFZfXK4oiDnoYZ7ldVsz2jzg4OuHR4w1fvb1hOs/wBAG3H1a/Aom1d0xB6CQZaH4RTP36zqEVQ67OkLprAp1/cnLApCj4+c8/45NPvkDqIPZTGjrTB92TGiEOf+kkOm5+93zulJ0YXukhK2Lt+1mI8f7RBl6pEKcwtq0/fNxYvhFCbNmRcB3vSnijd8lu++9DEBImb7a3va8E81Bj8vXXCL93XXfv7/Gnu9cBdFe2+SawYnYM6IDt70VRUNc1FxcXOxERMV4otBJI4TCRpIsc3skQUSBCicf4UGZxXuBtYBMfXMn3Xd3thdxxTmG0rvXc5cxsebwBmAzS6eF1xu+PG7CPwIuhPXfo/+lEjxce5UG5QZ7dhUVkESmiPjQQlOtzVp9dkp1+weFHpxRPH5Mc7CMOD6iTBOslTscYFCmCSEUY52kwVFrTxBnOaoQ10EbIOoFuhrA9vevoTUvXlpimRvZBL4nzyFgis5jYamQbAGLoBAr5SWJsk2skolf09Dhp8FIhhELF0X85acbjYHJwcECSBQ+KLJ/grGK9XnNzfUWkJXt7e0EjoiRSKpLBeKYsSz755KfEseby6hIhPPO9GUWWcbNasVmumc1mHBwcbL+QaZoCdyClLMsAQoYvZeie8DCIPNu2xdjQ4VBVwfujKAp+8P0f8d1vf4c//MN/zxdffs50b8Z0MqXtWy6vr+it4fGTx1gXylNN09C20PQdH338LfaOjhBSslwtubm5Zrm4IcviUC5ZbyjLEhf74LnhFbNJRGeCyVmUxAilUFEwclJasVitqK7WaBcGZ9Mblssl601w7Tw5Oebs4pyL83OiNEES8nO8D5PY9e01r9+8YpNKVrfnlJtrNuUK6wVOxKxrA0mCzFKQEcU0oWoqDo5gPj9Eygjreo6P9gHL/t6ci4sz4ijCmJ6rq0uUCiWe4Lg6GcL3UiaTCfv7++zNpqwX1+g05zuPn3OkY/aFQpc1qXNoa5HOEIZKS9+2VLfXdNawKdespUTmE7KDY5LJlJPpnF5FbHpHvr9P01umy1uslPTGYbxDJjFt7ziOIrI84dVby2azpi5LpPdM92d89OEHzGd7PH78mJPTU8qq4vzinCxPKWYFdb1hU6+o6xLXOfq65+27C7quxzvJ6aMnHJ+ccHFxzc31kqdPXzDf2+PNmzfgNYf7xxweHFN1FmtDyqxKAti4/y9sdyv4uxX5OMeECS8MC2NQoRRyEHvvGIENjx+FmWNAX991HE3mSARt3eB9yGWK4phiMuNb3/o2682Kv/jJzzg/L5lMFeu14e1FSZxd8Wu/+QOK2RTz+oLOmC1bb4fvUJhkd1fhbrC5B+sCW5SmasgWGlO5e4o8WKM/efyYd+/O+OSnnzOZJFRNE+YTgpAdKbZlAfEApOyev4fbPc3F+D+/M9lzvyxzFy/A18L2RiO2EVCMQOV9YX4Py0B3k31gwsbSyAhQvgl0wN11f8hwPCzL7ALWXbAxHttooDYCoxE4WX8ngB07cbwPpfRdr50tOHJh37XWRFHEbuK3MSZoDLdsiAep8U5ihMMg6VFIZ4LQFvAutJt7IXFe7jQGPyg5veeab+8TDG5WI2sSnuGFvPt9hy3b+UTc/fRBT+iHz0UQZIOTglZ4vHAoIBKSyAV7eOkgciCsQBuBqQVOO9TyhvZqzfmnZ4jDPSYfv4CTfeSsINsvSJKY3jnc8NlrpKBWCWspqNBUvqNJHDbxiF6hXYxwCaLPSOoInaYIYzCDK/bIEHnv0SZCtg227we9pAIVwJ9sNcqGIF8cSCSRitCx+i8HoBSTCc+ePmNZXqIiwcHBAct1TZ7OWd2u8c5ydPiIJEnoraFqmkE/Imjblq+urqnriiSN6LuGLIuZTib0Sc+mrskyuU37jeOYNE2Joogsy0iSJFzwpgFCpkcURag4wvWGJEkxXc9mtSbSMV4KpNb43rDebHj29Akyi/nO975DnMXM9me0fYe2Ma1rcd6RJgl5nNL2hihOWK/XHO8dcnh0Gjp40hQvBFEco7SkrSs2mxLvDJuqIosTgoW5wFlDR0uaZ6R5StO2oU1RCowz9J3BCznoF6DrOy6vKpI4Bil4/OiUr159yU//4ic8//ADirwgiTXp/hwv4PXbt/h2Bc2GRNsQWhhJpE4QOiKf7jM5OCQuCuIkZzLbp2x6Tk6fMJ3tYyxY03J+fsXPP/0LrGmDSZkyxHHM8dFjsjwjTVNCmvKGpm2C/XhvePnyFS+NQTQN0yiifHlGeXbFx0fHHMYx3c2CxHsSKVDehZJZEtHRIZMIJyTOGMrra8TVNXq2x+ubBS5JcVHCzabk8uaWdblmMp0ymc4Z3PqZzvdD6u56RVOXNG1NuV7hnSONM/JkysnJKZPJjE1Zbs/x5fUVy/WCbJIwm09J0xjhJeubJdY4Do9OMNZzfbPEeUnXOyaTPabTA6bzPZ49/4hYa7z1RFHC63fnQzu2QiqJGco3PBQM+pGKvrOuF4JhMlBbVgTGQMD3D9ZC3pUNtFbb1bozBicMs9mUvJhQNS1Sab73g+/y7e98h3dv3vD61RugYTYtaPs1Tedoe8umqvBaEadiSJ4NLdHeh9WrdCDVLkAIk4UQIBTblmM7ACetJRLB8VEIBn318jWL5ZooUkPS9HBWtuLH4VV/AWHy/vPx/idoHRyL2ek8GvUw7wMXu66vDwHAQ8CwCxx2Sz934IOd97tjW3Y1K7vHY4xlF7iM/+7CIr+uRdl9zF/2eGPtcC3vl6OyLLv3uPFYIqW/dtt4jMaYLWgZO3jwQ6YWHtSoYdnJbAp7hfPh3xA9+N7rtqtd2d4mQknIjX9sz/EI8AfezPstSA0P2635BF7FjR11I8MyTPpWOIy3KD+0oaOQXqAQeBM6FYUZUsalg0rTlo7+7RKXV/TnPcmjPcRBSvpoSnY6IcnAx0Cs2LM5zudsFCykYIFg6QWdipBCoZxH20DfzGVGG9fUfUXbt/S2J7TNe8AgnEJGHnoRxMCDd46WCh1HxCRoF/ZfekGRTOji5r+cEo+WikePHnGq9vFDJnTbhchxHUUoGW+/MFmWcX51yWq1oiimOPv/a+/dg27Jzrr+z1qrr/v+3s9l5sycTCZMQkiMiYxj8Kf+MiUESgEpC6hYFcGCAhOFklJBxSilhhLLEigrlFgClmhK/RkEhWAqgWCskJCQSCaXuWQu55w5l/e677tva63fH6u7d7/vec+ZOUOSmQn7m5zZ++3u3Xv12t1rPet5vs/3Mc5DMBlz5uw2yWJBECjGkwnJfEaWZQz666RZxuHhYf1wJElClmW1ONjm5iZpmpKkCcaaUs125lZ7KLS2SKEx2u0TUjIcjTDWMuj3mC0GtEeHTBYzeoMebb9LoQvaYRthnZUdhC7Usba2zvnzF5xAWLtbWt6KIIgZDNbZz3OSRUYU+QRhxNHRPmEcIqygsDnddo92q+tubuMUTLXRFJlLGU3ylEgEtFotut0OxmiODg/IkpT5dMyF8+eIooBeu+VqgMxSCmMpDCR5jrYG5Uv82MePPKTnEcQdotaAtY3znLn7IoP1DeaLlDQ3dPuKc+cvEAQhSvp4PuzvB9yrM3wlGB4dEPkxIOh22+RFwXw+wzH5LaPRFN/z6PW69HprtHyfdDgkEhKbZnitFqrbZZEXtNbX8fKclu8RS4UPRK0Y1Y+QrQAVRQTdHpNck0rFE89eZ5xlCM+nsBlzreltbRL3OywWCwrjiJxprplMJ+TareiEEHTbbXqtGCdYJmmFHcLAI89TOu02YdxCKsX61iZ5kVFYTZonhGFIr93BOytptbv0+2s4aRgfz/M5Gh45cqi0rK8P6PY6HOzuMR6OGI8nTCZTTOnRyosCqRRWLHka4pRZt0mIrUI4TU+JUsplKNwC1WdcCrgiDgJ0kaOFQvkBhclJs4Rur482BV/4wmd58otPMF+MeOBr7mNjYw3/sad45uo+k7lmniROedlapCjlzsucJGutk5lvTLwnQymVtyUIPIrCVTbe3t7hvle8gsuXLrG/u4+2LgSXFjdrMdjGub4UEIJja/TlpC1qD0rTs1HVb6rbU45fp3FHmqGWJj/IGTqiNjSrhZQrD3FrlayTvJvTeCvLNGZxTCit+q6T4Z7ma2GOe4pOXk/TCAPHGTJ6qYtShbGqPjsWrrKUoUkBwumcGKnRVjvyb2lYuLeVaQCn/dLWWqcQftMOSg8MYEUd5rFYV1mb5nZnrrhoaYPXYqu/yt9YOhK+ra5BuMw4i0Fbx3KXFkzpxRRldhrGhSwLpbClTo+XWUw2Irk2wrbBnOvAPT3MugdrHmoQ43k9lOwRxT5dz2n9COmRGbU8b5mqpCON1AEy9/HzlKzIKUxBYQqMyTFa43k4ronRThzRaCwF0nMZQK6AqsBH0fE6jMPhHyEDRXkM1tbI9ZRFPiNJU7I8w1cFnXabVhyRZ0npUtSkaUYQhGxubhGEIXEcs7e36zJcwgDPV8znUw4P9hEqLFfoId1ul/l8jrVOZr2qfVGRtYwxzOcLEIIoiCkKjTEJnbhTrw4KrSmKAs/3CaMIoRx5KIhiwjhChIruoMeVa1cZDAa0uh2KNCdLnfdkPlvQilou++PokMHaOtoaAj9CkBEEEWfPniNdzDg62Ctr2qSo0A2EYejqu+zuXidJNQjF2uYmQRCQ5C48FUQBoYoIWxG9bodWFOJ7gtl8yt7uDTrdDnHo40kBunD1PzQID9a3Blx85UW6kUKRI6XGD0KiVh9UiyBeI273abfX8EODQRJELTY2txhNxgjhsbGxjtMlyAl8RbvdIZtnpTscBv0em5tbLuwgBfulwRkEPlEUEvoed911FxuDPntXr/HEI4/wxHAfPy+w0xlrvs+r77mHszvnGMQt2usDwp0BwvcQfgjdLptJQpobTHedu1/7OhYIhrMFxvOZLRY8e/kZzME+SrmQYkcpJpMZiyRFSYGwhsBTSKDIU1cI0VfoPMULInr9Lt3uAC8IsVI4wnKeMhwd4fs+58+cZbO/4Yw7PyaKYhZJymw2I8sKvvD4YwSBR7fbIwxanDlzlrX+gKOjIYejsVtEGosXOlKxW+CVcXHssckSqknOva8m/KLQ9aSnlKozZk4LbVSrfK0tSkEQBFw4dxcyy5ktFmzsbHHhvoijo2G5iDDcfdcZ7rv3HK+6/5UM+gOSzLA/WpDbGX7gk2WpS6IRTcG4MkRiNdbIukCZteVkUIVUsARqKYK2vb3D/fffz+HePleuXHey9rkhSXPCyCfN85uCYLcyx27HQ7lVmrHvBy5zTx9PCc7zwoWUoA6DVOGdytioZA1OapnciodSGTpNQ6XaVr16nleTy08aCsZw6vaTaHJCTm5z5zmduOtLUYdPTiPKVoZYtc2TS68cLNOmT3JX6n4t9X2stVgjsNqJ5NXZSaUqWxU2dIqv9qYJ81aGi0tIFpWdURshlVem2rHcV4ULTwkhYd1zaVzqMtaJAshs6fW0gBYGjSvKJ8r2ClyKNNZgUGgEnnUChTZNsBODCQvSxYJ8OkavCeRGhL/ZQvbGqG4foTv4NqIXekSeR6Fc2FoLReEpCiHJjNOY8LSHn2d4RUZucnKdUZgMXeTIQGIKD1GUVeULJ8OhRYGWGqkUQgmU9AhyvyxI+vzxsjZQpJLkWc4TTz/JZO5q1AgREIQBCp92K+Yoc6nCaZrR6XRotzt0Oh2uX7+BsI5Ye/36DTY3Bly5coU0mbO/t0d/bQvpxXieTxhGhKErdW+0wVOKMI5K0qurMyAAYWUt3lbVk1Ce56xb5ZGlGZ7nE8eOSBvGEUgXosFK9g4OXMpZ4JNmmataO09d5opxtYcWiwSjDUdHQ4IwpNWK0FriqQAvCPCVYDoakSQpQRTiewGB5zOfL5hOUnSuOTgcE0QRnUEfPwjItIv1x62YIslZJHOsKchSJxAWRU7iPQh89g92XQmBKMSYnOk8xQCFFeyPR8wmBnRCGCpXn2iSMZ5pEG0ujHO2txKUHzBY32QyHTKdJbS7Hbwg5A/+4BGOjm5QFAt0kVJkBbPJgizJsbgwAjg59n6/hxAwmUzIc1fReDwdoz1YWx+A0Wyd2SL0FG0lSfYPeeaZp3ni938XOZmz0erwda9+gD/1DW+m3e+hwpxsvuDy3gEHszmplTx7eMQoWZAaUHHMPEl49solN4EKxeFoTBjH+EFYCgBKoiB0GgzlgKykQkqPuN2m2xsQRh2iOKLT7TNPEg6HQwprEEKxSFKefvoK+/ERF+6+hyiC2WyB8gKCIMLzAi7ee5H1zXUKXbB/cISwmuloWBJtszI+7MpzWaGr/ADnSj7BH1kO7m5wXWpQuEHXTQAnJiux5GY4zSC3ug583xUulJLHv/gEZ9fWSfOC648/jvI9tLXsHu6RJgukNeisYDId8uCb/gSDtQE7Z3Ywe9fJyhV+qxWRFDnaFuXkCqIkmSvrxA2NwHlURJlBYEtNiXISP3t2h7Nnz3J4eMgXvvB5itxJnoMljgNmiwzRFIX9UrlNGnj22SvEUUSe5Q2jRJS1kxTGaLIsLyd7x2u7cWOXdrtNu92ueRzNkM5JL0VlSDbDIEDtLam4G61WCyHEMcOiefG+v+SgVOc+jcBavVZckwonDbiTf+e6ONVwORmmqj9felCq69BakyTJMV0eU4o5Ipa8EIMtU4qdrL3zrDi6qgvtVJ63Rmr680CVemxLY+J4JR/33C3jOpWlUl7L8Z6hFnyrPJzCcU2UFkgDWoqS1G/ce6sRwiAxSGlQuHISnvHwTFl7SUlSa52QYSGxE0ORTLDXLa1BSmdDk6xNKDZ28dd6+L0uKo7pxS1kEGGUh5aK1JekCuZSkBhFLixWGoxyRpXBYHDqsFIIpO/EOUVZnDeIIlTmE+AU0QUaYRuyBs9fBuXODZTf+Z3f4ad+6qf45Cc/ybVr13jf+97Ht33bty273lre9a538fM///MMh0Pe/OY38573vIf777+/Pubw8JC/8Tf+Br/2a7+GlJLv+I7v4Kd/+qfpdDp31JbJcMr+/pDdgwlpkbARtHnN1zzAZDRhMUtIpEAoD40g1xbPi4jiNrk2XN/dQwoXI7ZFgfQiorDLcH+EzRWzScYf/xMX2dne5ujoEAGMx0dcu/os2hScObtDFEekWUYUexS5h84TjA5Kh5sEYylyFyvN8hyLJctTfN/nxt51rHBpo4O1dTSavSeOOHvuXKl9pfCDGCmdIm2r7bO9s85oPMJXEqkMa72ILC843L1RuugFQeCzsbGD8BRPPfsYCMtgZ8DB/iFKekRRRLudkxuD1jl+FCEzic5zZospepEzCRRZHjGcTuj3BkRhRNxqgzD4rRYqUBgKp86pc6SEIIjo9rbpxiHZYornQ9xqEcZtOus+rc4a29vniKO2U/X1PLI8p9UKWVvrkWUpF+6+gBKG6XRMUWSMshHdXkS4ESBL4yTwPOJWCz/wyPOcnbN3kyUJh0dH9PobrO8MOH/+PIdHQ5T0aLViAk8yjG8Q9tYZXn6G/cceY2ENs3ROq+XR6UVozydDEW1sEEVtjvZHdNa2WYtapFqzPzpikWoMHp1ui6JwheR2ds4SRXE9+GtdQJnqqpQkTRZYa0qXp89gbYDyQ7Iiw1pDt91hlixIrKTdGdBudRBCcnB0hBBDwjBCKo80Tdnb2yPLUrTRJOkCozXb29uEcRehQjY3d5DSrRGLLEN50q0XhfMTW0s9IN6cqdHQwRACrECXEwCV6xzqVagAlFDO8LGGVuC0XLI0odtfY2oF++MJWa5peYosLzCJ41b5niI3gkeevMyV/SFKtUgyy2yeUdiRM2hygykMqhrshSkrPSs6nRZB6LN3Yw+EdS57bUtVZsfh6PUHbG1tsbu/x/Vr19HGghKYUu02L4s0isa/0u2CWxHT4Ok0JmduNaFV/cOx2egj/+cjPPbYoxR5jtaVsVF9XxliLUpPSVFgsXgq4P7776fdblHkGVURx8pYrND0LFQ4HvJZ/q7VqxAcI8NWlw2nGyInDaLmvma2TnNf04NzUqvF1sctwx2mzso6MalXP0fJ11FS4inP8YoEWOOUpCs+B0phrEduJUYLQFPIFEOGwtU409YHXFE7g0Xq499Js30n4NquqbkrQjjDuArvVDHG0lgSQixDPJU3sxlErBw7paHjnC3CaUFVvwkWYURZQdvpYrl+K405Wy4XVH0XY7UTUBOFxRMS4YE3E9hhju7kFAOLt65Raxl+r4XsTpHtCNUK8KIA1Q7xA0WgBBkKjSKXPgsDCyyZEOSej5EGUZaWUDjdrgJDGlv8NCLMFYWdktgMYSWBUnhCPl+Ve+AFGCiz2YzXv/71fO/3fi9/6S/9pZv2//N//s/5mZ/5GX7pl36Jixcv8uM//uN84zd+I5/73OfqDJi3ve1tXLt2jQ984APkec73fM/38P3f//38x//4H++oLXlRsHcwZH84ob/WY+fMXWAFWZJSeZKElIznC/wwxvMtQRAjFLQ6HbfilIJWt0eaaZQMaUd9Bp1N/E6XtfVtRuM5RwdD1gZ9knmCNQYX4ciwVpEVCRZLHPuYxEChMXlBkmT4MsD3fIRQJGlKZegHrYDRZMSNG1dBCuJOGy/wifyYKOy4LAzpM59lpGmB347odtsYMtJshpSKWIUEHkzGE/Z3r9EfDPD9gEmS4fs+W5vn0MLyzOWnGQZzPBmysbnuiL5BwCLN8DyJNQWGwomMeYJCWeazMVobRtOEg+GUe+69iCgKjM3x4xgvlBSmYDGbEocBUkCn0+fMuYv02x2iyCnbtrst4laHNNVYEeB5AQLo9ft0u133G+Y5yWyK7/uc2domT1I6rb4L4cR7tFox7XaLKAqdcmwp0mSM5sqVZxFCEEc9ci0ZDw9JRwvG3pD93X28sIV3ro02HpmIidd81gqDN0/wxiNC3yObH1F0PVIbMhUhiVRMtGGUapSKQCt6/TW6a1uoq1fo9dYZjYY8e/UaWkvG4zlpolEqpMhzZvO5i80qV4fn6GjI0fAAYyydTpd7soIzZ86jlMdkMmZ//5DhaMR8NkNKD6QijGIC3ycv3AAcBEEZokwYDAZoXdDtdB1JUHnMFzkIjyCM0RqksnhSlYOiWZIgSv6Gm3RsI21++UzV8fxGHB1hSsKeANx5BQJjLbHv4QlDPk/JDfT7XYwfcDRfsEBglGSc5seyV3INwncFHceHIwIxR+E52fs4RJUCh8KUHAhtMMI4sqmUhIHP+qDP/rU90rkhUBB6TnI7mRq2dnpsb2/x7NWrjCZjkqxAVpwDY8pwkEV5DU+ELb0wrkeopburWWTpdlq+b8IuJ5zm5DYcDvE8tawrYysSqS09BI4jURkpReH4clmWgjXkeebi+sZghTzVWGgSao/DhYyqYoLg1JdPD900ixKeuLRbhLaa4abTPCmneVSaxspN9XQaIRt3jKzvGSnd/WaNQVCWZNCFM07t8toLXHjCxU0KcqmxIsUDtHUGirAWq4plSO+Uy2um2tfbSsNhyXs6+UrpYWxcf7Ovj32RqI3U8uSuT0R5kvoz7j/KUhpE3tK2Kbk0CIHV7sMCCKRElPV/hPSQuUBmEmYGOTJ4wwJ5uMD2NHqwwAx8dFdQxALRjxDdCFohQeQTBR08v4tWilTCrIDUehQWdHnPC+O8m9IIMiwLKYlp0xISKxULaygs9D3JtdDny1qL561vfStvfetbT91nreVf/at/xT/4B/+Ab/3WbwXg3//7f8/Ozg6/8iu/wnd913fx+c9/nve///383u/9Hm9605sA+Nmf/Vm++Zu/mX/xL/4F586de95t8ZQTKXvl/fdz9q4zdFohRZKysbnudDOMIbMW6Xl4MgQLylMoX3Lh7rtdPC3NiIIAW+Rk8wTddYqx48mQvb0bLOZz9ndvUOQpR4eH5HlOp9MiSVKkrxBI0jylHbZRnkJYl+UznydkRV6mw3oYU4m8WWw5QAVBwGQ2xUpBMkzZ2t4uU+gMYRgyySYoJZ2MuBRkpqDVbZOlOaPphGmy4NrVa3T7fdIsZTRyCqOtVptcZ2xtbhMEPqPhUTlIwqNfeIJWOyJut5AKFnmCywNzLl4/lhTaDYTD4YgsL+h0e8StiCj2iKIYa3MW8xQpPXq9NYoU7r77Iq997es53N3nzM4Ga2s94k6E5wdMpwnzRYHW1YBrjslV53lOmjqexXg8LjUfBFtbW0RRyOHhAb1eD6UUw+GQ+XzO3t5eHZO+dOkS0+mUo8N9okCQZobBYJ0z5+6i3e8jpGVnfZ35/jUO926w1mozP9xH5dqx1qXEer7TijXSKRIrj6jdptXuEsYxKvS4EF4kDEKKomCxSAj8ACkhilr4gU+yWDCZTDg6GjKejFDS48K9PV4VvZowDAFZ8mViojCm1e5y/q57a92SLCucgF7JJ6hc2xV/oFIDXSwWRFFEFEVkeU6vt0aaLhiNRwCI0pV6km/SxK34BadORraaf4+vcqV0IVbpCVpRSBy36HZ7XDk8YjR1Oi1NImPz3NWE6lLwC5Q1IEFjCZWs3fIVjLXYonChrb09pNYMujELMSddWDDQimNe/ZqLdHs9Pv/EEwyHI9K8QNtln1RNuInHwQnvyIn23q7PboeTCrF1tospau6JNdTelSp1dj6fl/W8GkRVaU/9fW5nCFSfbWYC3Y5L81x4oQbJ7UI7zfTqpsem0rhxfzohQW1ytCk1XwQglzWOhDVYqzHWlW/QGHSD++Pu3tKbUXo0TOlgfK4+dZ93IU97y6fqJJ7P/SJu++exTdUN2nD6HGtJFQY0tnYL2qr6sjaYMjnC5AWLWc78yCIPJGrgowYBoh9iRxm2PYfYR0UhojUjbU3w4hA/Cuj6Hi1PuoxPyuepTIXGWrSARBqi3BLnrhZSInwKo2inEj/yTu/wW+BLykF56qmnuH79Og8//HC9rd/v8+CDD/LRj36U7/qu7+KjH/0og8GgNk4AHn74YaSUfOxjH+Pbv/3bbzpvWhbtqzAejwFY317j1V/7ary2T6oTF7IIfEJPUeQFWEsUhUjfw5chVkNe5OhC4/keGIsnBBLItKvZc2Nvl+FwiN+OmExH6KKg0I6XYYwm8H3a7Q65yVHKJ4pbpMMjFosED4848gmjkE63S1E4TYx2u1srdlrrbhpRsvizNMdKSaGd+qy1jmgYxzFZmuKV+hKj8Yij4R5bm5sATBYuU8jVxrFkWcpsPqUVtxDCxa7TJGHQX6MVxYyHI77w+S/w9NPPsLm1web2Jsr3wHfx/WQ+x+agFzlIn7DVptNpY62rb1EUOYu5MySybM5iOqWlIuazBVLBmZ0dLly4l+21LTxfYnRKnml0kWFwIaAgDFBS1EXOqkGz1+vRbrfLDCsnYe3qH7my6evrG7RabYQQbGy4sI0jyxo6nQ53330Bay3T6RiBoR23aXW69PqDuihYOhuRGctieEQrz2kJiZfnmCRFL1K08BGe04UZeB1UOEDjYxGowEeFHiIMKLKCXrdLHOUI4dJYi8KgpM9gELO2tsnWVsJ4PARc4UmLK3IY+GFdY8cREp341nQ6ZTyeluq4kasnUsqTV6vjSgsiDEPW19eZzWbkeV7qwhTlhPrcz+gybCE4mbp5+sTlVoHLady9VJyPIPDwPUkYxoRxi6PhmPFk4jRJGpNrM2X2+MrbnaewBul7aOPK02dF4Wr9SOlIdvWxBlNo5uMJpihoRzGhKmi3O5w/fxedXo+nL11md3efwgpU6FL73XedPpGe3k+nq6Te6eRepbnWPdggttZKsOU041KMnZcjTdNaxr3SDJEnfqPTJvtqe7Nw4B8Wz4dnciuD5Vb31Unvy2nHub6gHiech6nA9z030ZpSoVU4g9YaF37RVZ6MNWi5JNVShYxseU4B0t7cR7ew0cGWz9jztFOf61Y5zeB9rvvrppBbw1pZ9unNYTlTzjnSgjDOo2dyjck0RaLR0wIxzLGxQrR9vFaI6hhMJyNpjZCRhwwDTKgg8CHwoBQ0lEI47hcCoQyRsgRFipd7WDFBGYU1AWQK8vyOuF5fUgPl+vXrAOzs7BzbvrOzU++7fv0629vbxxvheayvr9fHnMS73/1u/vE//sc3bRdC4Iceuc0Zz8Yu60RKR4zCYKWl0Dla5yzyBQLlJiwhkJ5E6wJrCtIkwRTutvbDgP76gMHmGlrnjEZDp8dgq5irJcszRxSy0O50SbKcyWhMphOsVRgNURShtWEymdYr4apGhZCS+XTG0089TdSKCaxhe2eHKIoxxpYu3ozJdErkB47LYnJuHOwzns9chVvPkRKjVsxwPMKTim63w8baOp1Oh+l0ynQ6JU0SAt/Hkx4mtwR+QJZkHB0NibttOv0uQjrhMiE9rl69jlA+QgV4nkKXrkJrbZ2mmOcFQigGgw0Oro0QwhmRu7t72NzQ7bZot1sI6dJFbVGQZq6ejpQQhgFhGNaD0tHREU899RQHBwfs7e3R6XTY3t5ma2uTVismjuOyEJ570I6ORuzu7nLp0iU2Njbo9Xpl+FBy5dpVZpM5ea5pt9p4nke/2+bcRhezSJBZgcoyYgTM5kRSIHWBzjKM9V08W3lYq8l0gUE4D4stWGQpvU7fke+0JYocSdD3nfGQZSmLxYI0zSgKSxyHrl/2bjCfzen1+mxvb9Hp9BCNjAPfD+m0nQidVLJW3KxWlcBS7Eprjo5czSdrLWvr62xtnSlLArhUwWpADwJ10zNTGQRSHk8nvh2qgoLCNswUAbrIUaEzspSSxO2Y8XRMluYYdTMPofq76VFwKz0JVuB7npOFL40ZK5wOS0VOrL7c5Jbc5LTjkH7XFfS86/xdXLhwgd/68Ee4tnsEvovZ68I2eA/N12oMOf2an4+n4vmg+m5TrW5PeG6qYyoo5WHtMt04iiJHAr+FIVL1b7N9L8Q4eT4T462Ou5WRctLwuJUHpamh0vTySCnr6t4AWZZijXbZIrpA1/cPLjVWuNK5LiveFZgsimbWD3VWjevPyqg/fhPYct9N1wmnbn8huFNvXPO+sSfupZvPffJ3Kj9rBUJLPC0RnkBX/ZgZ9LzADjUiVqiogJZBtC30QfRydCjIPYn1XT0yEXhYTyAkTs5ASZQQWM+CMti8TVF4aDsh05JcB2RzST5ZfHlJsi8GfuzHfoy/9bf+Vv33eDzm7rvvZjgc8uyzl+ltr9GKY3SR6iVocgAATZFJREFUMU4WCK2x2rLIUhZ5BtKnE3aIfFd4zfNd6qSSHtaIMstlxmI2J80zdvf36Kz3KGyB8iS+HzFLZowmY6QSBNMAIQUqCAkCl5GR5wWL2YwCgxcE6MKFcPqehxIKrSshJVOmBLpid0EY0u506Ha7hFFUMt01Bwf7HB0dcGZru9Qb8Gh3O2RFTl44waN5mtCJW/i+T+B5eKVKrs4z9vduMJqM2N7ZQVkI/YAHXvUA4NRlrTaOzCkthSnwPYUwgizLidshe3t7Lm44WMeJvUkK7Zj7ea6w0iPLNUIodAFSBqyvb5EnKZPJiMl0RNyKCaMWgR/jeR5SGgJf4fseWutawrvf77O9vc3169frkE+lMzObzZjP57RaLXq9HnEco5Ti/PnznD9/vhbPE0IgpOQV99/PYp6xmC8Q1pImCaG0+DpBK4+LZ88z6HXZOHeO+85s0Qqd2F2gPOIoIvMitPDxo4DQj0F5JEVKblI6cY90kYMWLBYLRpMpReGyM1qtVl0GvtPpsD5Yc4UBtSZud1yKuee5sIi2SGkotEF5PlErQvkhRmuQltAPynpNkqIoGnLerj8ODw9JkoT19XVacYvd3d0yRX4OgO/5SOWY/7fCyZXY7bAUrarofI4mGPoeUgriKKK31kd5Pkmu0daidXOQXKb9Ng0DN5AKcqNdQUCpyIqCLrbMbGrofNpqpehCctJYkmnOKy9u0rnQY+/wkA9/+KMMx3Oits880cQtn1mauYWevdk4uXXfuGs8mWrbNK6eL2pPjFlOKlLK0jF1vMpx9a8o8tLQTYmi6Jg351ZGwGntbIZMmn+fZrw0jeHT++R0A6VJiD2tXbcyRJr/mt41XcoxLFVoC8IwKMO+LuRThYclFmMVxiisKj0EJTcKKg9KM7276kewWrgidrcwuE7ffiKkckofHjv+Nseednz13bdD8/cUDTLtyYY2PSn111iwVmKNQBqJKD12UoOvLaIQkIOdWexRRu4V5O2CvJ8j2x5+HCIjHxkBocZIV9leSIFU5fWIAtBok4Lx0XaMNQqKgHRaYCf5zYI7t8GX1EA5c+YMADdu3ODs2bP19hs3bvDH/tgfq4/Z3d099rmiKDg8PKw/fxJVYbiTECVvYv9gn7XNAUY7l6gucoQs0+ychxrf9wijgH6/h5SC8XhEUa5MarKgsJy9+xy9QY9uv0uWOQG2oJwAPc+do9Pp4IUhVjh5bT8IENLVAdHlyjXLMuaLKe24dYyY5nkeYRBg4ph2q02ui5pzoYsCqZzGynjslEg73TZWG569vkeSZnR6HTfQGFNWCFbkixQlBKHv8/kvfI6tjQ3msylKCBbTKZ2NTXzlE/dCXv2qV/P5x76ARuN5QZm5YVGeJJvmRJHTU3n22nXmacrO2bMURY5SAWmaoIucIi8w2rC7u4fMHWnLGEuhNcoLOHPmLFIZN3lrS5YXjo9gCpQyNX+iKvJlrVOG3Nra4vz588znc9cnwgmA9XsFeZEzGU9RStHr9QAIwqCUya7qj0gWpW5MGMT40mX+xJ5A5TOyQJDmCXY2ZjI84koyoTvv4G+uITbP4IVdgihE+23ans8816RZhhHg+xHCc0X4ilSTZS7M2On0GI/HTKdTQJQueae5M58v6kwHV9zMDbxhGBIEMV4nqFfLxriwY55nTKfTY5NIxUHJ85w4jnnlK1/JeOyKOYZhSBi1kEqUmUTlRIArHCmao5M4mW58/PU0BVBHrixXYKWBIsr3nhS0WjE7m1vkecYXn3ma0XiGLhVga/Ok8ojU/5bFgqu/hRClkJdz5btME3d8XpiyzpybIbSGMIo4e3aLLM344t6T7B0cMk1Sl3xZGPzAYzZPnLS2EO55qcYNsTRSThoty/nB+fJPm4DvBHVoqOrD+vcQy+rCZUZR9T1pmjKfz2sNFGNcBtNJTwTczHG52VN0e87J89nXnBRPruRPO39lbDT/gbvPTzOmmp85Jo1f3o++76M8l4djrSn3FWi5vLclgLP70JQCddJgzMm+EMiynKQzmo+HL21NuDpxTeUxoqLA2uNMFMEtQkPlfful8sjV31c/n5SPdrNPoRJlrAyVigQtrcRahTbuaZbW1brCGExunKGhnPdSKIFKBSJRqFgiIxC+AT/DBgLPL408YVgODBphNNYqCltgxRxhJZ7OsJlFzIrnttwa+JIaKBcvXuTMmTN88IMfrA2S8XjMxz72MX7wB38QgIceeojhcMgnP/lJ3vjGNwLwoQ99CGMMDz744B19nzWWo8Mjrg136a+9jq3NLZ554nEObtxACUUQRaxtb6KNYDqbMB6OKYqcTrtFniRMphOSJGEymzqXqilYW19DlRWCk1IZVGvNYr5AKkmv26PT7RK2Yvb297ny7LPsnDlDq91G64JknrNIE/wgZDwZE0Uxnu8hralDRMkiIU0y9vcP6K+57Jtut0euM5SUHB4dMRodEYYh8/kMrGX3xnX6W+uEgZuUW3ELTyl0mhEEvhNmW8y5evVZ7jp3ljgOCHxFGEYcHuyxsbFJv71Ou+3CHs/uXmM2m2OkpbvWJk2S0h3q0jW73S7r21t0Oh3yPEMpWCycV0JKSdQKKWzBPMncpGE087mryzAV1mWSBArfd5NxGPlgCwTFMcGlKrYshGA8HnPt2jXG4zF33XUX29vbtfeg2+nRbnWO1RQx2iKQFHnBZDzlcDhkmqREQYgSHsJC6CvasY+fL8j3D5hcu4ra3cU7PCCRmld07yGbehQyIGitkdMij0MWmSGzgiwrWKRzjDQEUUA77OD7AdvbOzU3ZG1tvQ7jVZosURTV4TA34YyYz+e1gTWdzkqeiYcQ7nPXrl1lODyqawxV+hWVIVcRZefzOdeuXUNrzcbGJkEYE8VBSUotXfxlH7ksnGoAOz6onuSD3GrikFI2iHoupVMKF6rDQpIkDIdDjo6mznUuq28qyY76eAhiaSAsW+N5stQIsSwWCzxPMZ8lBL7neFilYWe0ph2GnNneIQwCrl2/wcFwiFPKcSRbKyj5G6L+bnHi+m52gx+fYO6kDs/toEqNkiorqCaDGoMQslxQOX5a9Sykacp06sakyoOmPP+YMdD0klScrub2k5oiJ71BzWOfa/KsROSaxtppRkgzlFd5Qpria87wVLXAZdXmppJuE06d2Hmi8yIjL/KS+1QaMlXoUSiXmqsdmbqwCpAU0qJFMwRW90Z5A+AsiOZ315625QLBLm9lt73a0PQa3dT6hufvlFvmhXjiTr6vPIzHz3P67O/CjMaRx8pLdp+WZca0QkkQ2hW2Ek6+FqUFNvMQUwG+QHgC64P1LLIyUKQrmSKwIAWe9TBWuSwfBcJYhNEoa1CTDN/CaUo8p+GODZTpdMoTTzxR//3UU0/x6U9/mvX1dS5cuMAP//AP80/+yT/h/vvvr9OMz507V2ulvPrVr+abvumb+L7v+z5+7ud+jjzPeec738l3fdd33VEGD0ArDsiSnK31TXypONjd5/rVGxzt7mFyTdRuEbU6nL/7bg4PjpikY+bTCSZLydKMxWLG0XBIlmd0+h38oI22hvl8Rs8fEMYt4iBEgnOLxTF+FLJIFiyyBXmesj/cR3qC9Y0N0iwhSTXT2YytzQ5x7Nz+Siq0cat8W64SwzAqhePa9PsDNyEVAum5TJXZbE6eZ/z+73+SOIoYjoa0eh0mozFxHHH+wr10Wm2KPGd4dAjG8PnPfY7BoEcQ+Zw5u80zTz5B58wZ+r02h3t7mMLSbvc4d+YurJQ89vTjIC2dfgclfZQq8L2Avf19/DBgc2MdpMXzXVHCNE2RwuJ7zuOTpllJagQ/9Nna2sBq0CYt3dcGbXCDS56BLWi3glqJ1/d9Wq1WPYg5781ZWq1WqcDrSKie55ccFABT6zlYa2ul3263R9RqYRBO1Ey5+idSQiAtNhmTiYy+TTDSMNM5HU9w9twZsshj5AXk1pLlmsLXBFEbJXyC0BkmRug6E8rgyipQhseqlEQlFcpX+NLDDzwshsHaGkLI0pvi6gu5CtjOw1TogqLI8QKP9c11+oN+XejO87ySfyPLaw3QWtNut12pgTwnimKE9PB8SRSF+L7ADzzHH9IlIc1WBoMtx9Wb49lN3DxhlfttObFKJ5TmK49uJ2Y4OmT/aOzq3yg3+p0Wqy+pruV3uMlEQM0LEGVbpHVHR76H0dppyniKbJETRT4X7j7PWqfLk089zf5ohBa2JEeaes6xjW9133cHge8vIaRSeMpz9wwNj4qkNFKcZ9YY5zlZLJzXbTqdcnh4WHsLjdY1D8tdz/GQymlZOtYuJeKb4ZvTig42cdJoaaq5Vgu2iiNTeT8rY+Qkj6QZuvJ9H8/zjhX/O+n5abZNSh+LS1JIU1dQ0K/k+7Umx7jwjvWQwpZha+20TgQUFgrROCeVbSHAVnV4SuG1+natgorLcGTZIGdkivrPY6+3gl3mrh/DCyFc/6EhqMXfqiSNpaGyfGiEW+WAAKkVMpcuC07hqhUrgVUWnB3o+rMsAC6kRRlBjucE5pTC0xZloPAkYQo+kvx5ElHu2ED5xCc+wZ/7c3+u/rvihrz97W/nF3/xF/k7f+fvMJvN+P7v/36GwyHf8A3fwPvf//5aAwXgl3/5l3nnO9/JW97yllqo7Wd+5mfutCkc7A+J+h3uP/8qOnGHa0dXmI/nLGYLktmcNMkY7h+xvX2GXqdLO2oR+j5Hh4ccHh4gpWBt0Kc3GODHAQdHhxyNh+wfHTKcztje2kF0JL6nXEVjU5CmCdNpymg6JG638DzJeDpibWMN5TvPiyndf1K5WgrGOr+0p5yhYrSh123xNV/zAGEcucHKWqI4JkkTpJSkacLVq3tgNHmaMxzNGY9ndNoxm5sbxH7A5vo6i/mMPHGT37lzZxmPhuzt7bK5sc75cztEgU8YtEDDfDolWWQIqej3BvQ6fQpRkGeaPMvxpM/m5pZLfbYWqSRCKjCaxWJOliUIK1g/u+HKbwtXyRkJaZIwmoywGqzJ8DznInQPgU8Uh0gZYnTGZDKpXdmLxaJ2dQOsra3VD6/WhfNAleXjK49CUwocnGw44CZt7dzAaZpQ5AatM6zJiURGFPi019fp+JIiCggSxxkSSuCFPvghiXDVgOeLMVaEZejOugfb6lqhEizGLGPnvu9jrGGxmJf1gmSpKGwcUdNWBfpgNpsilRuwjXH6Jr7v0ev1EQjms3m9Ml4sFljrvApHR0fkeU6326XT6RBFkUttF6rsL5dWKXUpyl0NpvX6/Tiarvvq76qfm5k+WjvDphyD8D2PVhwy6Hfp9bocHQ1dGNOjrBR7u6e2MTBXRopdTtYClkJ3CLQWTqNHSNY3ely45x5Cz+PylSvsHh45k8RT5MZgpXCpqeX3CKgzGr/CU0GNKjMHe9yjgXUEciGqOjamnuwr7tHR0RHb29vEcVxL+zcn9GaYpRlKgePekWoBUOFWXJOTXJXmcRW/qhmCqoyf6rNNQ6SZfVZ5SJqFEJuonuPjnphK/VXX3hdjDFZK5wkAhKbWiJHCujCekPWklktcQc+qtlFp+FZhj2V4sWlwVHdKzX5aPh+lV3AZjrv1714ff8z70th3hx6ULxUsGucyUTgLQx17OGy9UCgNFRQKD2GcKJ2wAnTpJS1FEoWkHhwk4FlnyFkFQhlCDZ62ZD6ogvLgL5OB8mf/7J+9reUnhOAnfuIn+Imf+IlbHrO+vn7HomynwUNydnOHOGwxPhpztH/I3efO01I+u9dvIJRiOp6yd2Of7Z0trK3KgXsu3p+kdDbW2d7eZDydcrC/x6JMi93fP+D61T26nQ47W5t02i185eL6rXaE53sYq4niAM9zqZBWQGEMXuDXD7mSZUEtqZaDRZGTJglrG1v019Y4Gg/dA4hld2+3lHR3E9k9d9/NaDRiNsu4+uQuF16xRdZqo9McWxRMJxNGw0MODw/p93sMh4YbezfwfcEDF89jC83ujUPisIUUPkejCaPxmO5an26nzySZUBQu20FZiTGWMIrpDbq0Wi2msxlJmjgFU61pxW3W1tY53Nt3o7+s4o8updYPQ4xWGOuqX2ZZTpZZhAwQGHSeugrJuIwuF6bYqDVO0jRlPB7T7/fZ2NgkLGsmVWGhPM/rkFC73S69EaX4lRREUeg4WBZsLEvvTYLJDYdHU/Ye/TzyxjVa8yntfEFncC/SsyzwydMFcxuT+iHWC91Em2uMySlMgrGaRZoym89rwyEMQ6IoIgzDMpMnq+X3wzCk3e6ipONTKKVcZlNWMJnMmM2mTCZjtCncNUqncWIKS78/oN/v1+Xlu90u7XabxWIBLIuludTLDIRx4l5lnLzyMNVBnRNh9dp4aQyUN0mNV/2KqmPstszqCjwPpQTT8YQkdTwbY11BuHpFdhsc5zMsQ9gSFxJSQqKEJFCaKAppRTGbW5ssJnMevfQsuU7IjEH6ksJajBQo3yNP86VhYh3bwNraf3QTvtxzREXelnb5d3X9wpQGYOU5krLkJwUYA/P5nOl06oxy5d2UndM0TppekpPelaahApQeG1MbLtVYdSsSa7WAaN4blfFRGSVNqf0qlf4kf+fkeU9rY/NvcIuk6r3AXWtR5E3zgVxkaO0jfB/l+bc2UEqvyJJi0vgtbnEjHGtX9RCIm/v4VnghHpQvn+FiceUORW2EOMiGx9PV+Km9XxQUWGSpjy5Kzo4wrqKy69BqIeAqxfsYrCjQuJpkvgXfCrR2mYCmET57LrwssnhuhdAPiaOYdL7ASMt6f53PffrTBMqjFbUorGU2cR6VwA9KDgW0Wi02BmscHBxw9dkrzJM5fuihPEWgfJfK6wWki4XjZVhI0pRcWPIiJdMxfqCI4pB2t4UfuqweISXKU5jC1lkAWmuwECo3+Xueh8Eync3J9b6r5eL7WFEJNTkiWbvd4ty5c2xtbbE26LE5WOOZL16i3+7QbbVohRFZkjI8OGQ6mTCdjDGmoN1ukRcpe3s3KGYHnD9zhrVBn2ef3ccL2ggLRweHKN+nFbc5nA4xmaAVtfCEZbw/ptPv0ul0MaWkuuNSZMRxi/vuu4+dnR1Gh0cM+n2mI5c2ZkqvRWpTAl8SBE4QT0iFJUMbMGU59yAIUErR7/cxxtS8mCrkU6200jQjjmOiKKoHUNeWvN7WHJiVUmVZAkEYtgijFp7voynw/Rat7W3i/JXkgUdx41naOiSMAozvI5qrPOXhxy0sQbmKKLAEGFPQ6XVoL1rMZvMyVBfWfBFnNMX0ep0yFdtNu1laYHEZO861LYjjiMGgz9FRRF5kxHGEUpL5LKHIDO22y+yq+sXzvNrzJKULE1U1n7QR5EVWhwAs5kSIpXRXNxfw9YR5fFszFFJ7VITAKlfjRipJFIZ0u210UXD5yg2SXLtMYZx2hTWnGyiVlL77znLFjUCVqzU3cAonZCihFYXMZ5YzW9tcvOde9vf3ubF3g7xIyEyBVZBbgy7PZ7Suy9uL00P/Xz7cYo5SZYjHNjJ2pJTowiJK2QFrCqeQG7pwpbXOi1cUBaPRqMxoC46FTZqTatODctIj1jymMkiaWTIn+SPVM9B8rTyYTe9NpQRd4SQ/pfq7ef7TCMfVGNk0ttx7t8qQaqmX5OZAV+Kv7vayGGBqDNIaPCx+6bYoJBQ4XZljBmoZB7Tl/wTHjYVbhT2r6FBz2+3w0vGgLM05aS0Cp7klrfMGScBUnBxR/n7WgjBoLEYUCCRKuudbCbcYl1WIqHINC4OgQJis7G8FZAirUFZSFsb4o2OgBHFEGEdoUQqZ7e/iSr53CFqhU1edT3j26cucu+s8VaaATnKXU28LhNUU+ZwgarO+3mYynzMeW1QnZOfMNt12i06r7cpJW8NolJMsEqaTHH/iIQxs7rQxuXvIWnHEeDitQzzGaoLAJ/Q8F0c1bqCYTufMkpzeWp+wHeIFCukJ4lbA/v4RYSjY2e6jiyntVsigvc7Z9TXacYvB2oA4FBztX+Nw/ypYiKOY6WTO1tYOnZbi2cvPMBkegJDcfTbi7PnzTCYJg8EWhbbM0gTlSdY6fawSJIsFVksK7dI987wgN5rQD5lNpkgEG2vrvPIVF+n3emSLOfPxjMvpNcCp+krlU2QZ83lCklj8wENWxRGFjy8lwhq0cfyKuy9cwBpTK2aGUeSMtCxzqzajGU/GTKYTrHWkzDiKieKojnkj3IrQE24S31zbYjgaMh6PUWniVGA9j+l4glwkSFxND20N7VaINRolBWEQQRgRxC0KL2Q0G7k0amNRQmNM4SqjCoFF4vsBnufXq0gpFVqbcpWrCEOPyp28mKfsH+w5D1TLyfa7lalkMFh3g2ypibKx4fhARV44nYJMu/7Szuu3sbnBbDbj4PAApRTtdrvkfCyHYDfAV14U96yU83a1AFxurBd4zosGICT1wCMEGFzNDSUFoacYtLus9ddI85xMX8NIiecJ0oVGCFDq5vRclq2jJiaWjSqERUpXBFBog9TgSUk7Drjrwg7bZ8+wv3/AI59/jEWRuTi4BGsFVgikcpOQTg2ls6r65iUnpbFiri6+ynSojm0O5MsGHycW38oQEY2dzW9RUqE85dJaGx3uJkVd8iIEutAEZZVhXYbojNWMJyPW03Va7Taq5PAY4yaYKkxhSm0naytOxXLVXxn71eSfZVntgWyGZ6pqyNXxTY9I5T05ySupPBMnw0HNUFTVhuq4piFyaj/WRpBLt3YlADLSNHPkbCmR0snfq5I/Yoypw4WFKdBlsUxRikxWv6GuPIrWNLxs1IvJk6HOk56e5QTOTcfeEiduqermEA3Ox4kOuP35Tp6obH+DHrN82E9YR1UxQ2HL0gfCmQsInLFSLhQqr09VBF2Wj6sUbrEiyrCOtcYtKKTzqDgbxzqjxhqwEgpVhuIsxgZYijLM9PzwsjZQNJZEZwwnhyzSBVmREwZtrPbIcsO1q7ssigWtfpurz15j++w2AhdDzfKUKPLIc0u3HRGEEt/6zOc5eTohM7C1s0YQC6KWYjyaohDs7+/RaXcIvIDh7gi90PTjNbRXkC5S2p02o+HExUatq4NhjUZrUQ/4Ukqkp/BCnwLNYjyk1Ysh10wWRwSR0xWRNsdqy3ovwmSWeZ4TRZKzZ9dJkzFXn32K0dE+ftjC82N6nTUmo4x2a4377hvwxS/+Hp/9whcRss2rXrnFPfecQQqnX3Jjf8/dSKZFqjOE52qgnLvrboKwrMacF8yTObPxjDM7O8RhyOH+PqPDQ6bjMfs3DpjN5u4hsW4wDsIWQsYY64ixRruHP80zciFoRb5LyxYuJdsYgyjDFUIIPN9HlCTapAz3VBoi7XabLM/xPK8eaLXWtfJuGLh/gd/C8wOEpyisLQXiAubTlHzvEH84Ij/a51o64lz3Pqw2DBeSadHGbnbJ4pBZyakpsgUmz0kXCcZYBmvbeH5Uprj7RKFTyMVKpFTuWozzunlKgbC0Oy2C0BHAmwN/lTJZCawtFgum0zlauxIHVQinUhWVUtLr9QiCgDRLWCwWHB4dIqWi1WrVastFYVGlLoEbq9zA5OavyovRGCDLydtTywmrerXC4vkKigIlQJXFwZJZwlFZpqEwFiV9hDR4lBlW9ni4wVaWkRDV17ntwmKcTjaeMYQWAqnoeB79IGK91eHZZ67w5NWrZNJiQtdX0pY6DlBmIUiU1yA2Np04ZbjHTepND06Tj3FiFrENbsKJSej0la9pfN2y3rPnefhegJG24UESCN+lyiIkUrrCl0hRywxE0gm0TaZjjoaHRFFEp9OlknyveB7Wugk8CJxnzk3+BcbI2oBucj+CoNIUOc41OklWPc3oaP6etyPaNg2imyb58vqboarTQkvV7+QqPru+Uop6XJWliqmouD1CuqlPFxQWPBRSuOJ0qkxHzm3hpCEKg/Ld+GPt0nhqYtmGyqJwiuOmMec/p3ECx26r6pl7bs/J899vy9BX1cZlm0+ew5b/V7WX0W0uwz5i6ZeqSOrClCqxVpYGivO6COdycYYiLuyDdd4VgVfe/x7KKDwTI4wTNk1zSWEF9nnn8LzMDRShlAuvpG4g7XQ7dNd63Li8x8H1G+S55mg4phCusFyr2yYKfaI4Jk3mpPOcbrfnwglJyjNXLnEwPCButYk9j8VsTOBJwnCdZDFnMhqTJHMG/Z5LiZSQpAnD0ZDO+gAQ6LzAV14ZzqCMHVuMAKOrla3EDwKCOCLLM7Iixc8UQjmL1PN9lHArQs+XDPprBCrkmcV1rt3Yww9DolbA0WTCJFnQDSI8peh2B+zeGLN7cEC32+Y1X/sGHvv8Z3jks48xPEz4Y69/A/1OH6Sk1x0wXcxRWYEtXNpztxXRXxugPMVoNGI6XbB3Y98ppXoBEsl4NObw8JDpZEq2yMnSchVlDFmagbEI4UqCS6XcAFM/lJa8KI5NXpX7Nssy5vN5bYxEUVQbJVVqcavVqgXcKtlra219fOBHzCbOUC1MhpWQaU2R5wQIojBiY3uHXiTJREqQtAl9j8Ro0AaFoLCuHIJblS7dl0I5B6UssxCkVAR+QBCEBH5QZjLky9WoLIuzGX1sIDtJQKzCXdUq1dXbcdLd1d9B4FKIq+ODIKizn6psn+W5K2J9cwV180D6vAZX3ACYJDnKWkJf0WpF+J7HwcEh+5MxWW6wCoqykCOmrKHS+M5bxtqr1yoeXoZ52u0224NN0IZLV65wdf+Qqdb4Xd89S8Z5CoS9OaRxvO3Lb6qME3dceWW2aXvcvOK8E9zqU57nEwSh65Njq3FTGw5aG5TyyppdBs/z61BmmqZMJhPiaIjvBzX3qEotru6lpqek6T1p9kt1TLOw4Enux2mvy367/XGn8TLu5Pw39albppdGSeOahKyYVqXnoHx/zINoMIUzRoypdGaqkA7lsc/vGbh1+26fiXMylNUMz93mpDcZxKd9p3u9k7tVVHb38m/XylsdXR4hlt6expcJYZd9bus1EOC8mu7LnAHpvqax/Q7wsjZQ8jxnvpgzHI8YT0Z0ojZn7jrP1jYspnMWw32COGQ6TxiNRqRJhjWWQCq0tlgU7VaP0fgIL/TY3Nim3e2TZCmzZMF6v4/neVy9csVV7o1Cwu0d1tfXOTo4QihJrgsOjw7ZOn8OgaLIDb4XuvosOMVYhHWDjzYURUa6SEnyDC8KmM+dzHye+8R+xKC3RjKfMJpNMLlhsLWO73fIMo0Xtdls9ZBRzHA6o0ASdnqM5wuEHxMZQ6Zzpos52ha0owEX732Ax77wGJ/+1GNY7fP/fMP/Q+BHrJ3ZcfF84xjZQRQRBRFFWc/orrvuAlys+fHHH+fqszcYDAYki4LDwzFFodFpjtG4e78mWJYuXGsw2mLyAotCeq5YY5q6VNsqzdBlsriJpjJKqgG0kvqutBMqvkkVEqom9spYUTLBkwG+L/FlCAJ8Yyh8hWcgn48ZD0fMb1wlv36djp5wYaeLpxS9dpt4sMYkCJjmmsDz2VzbxPecseFWceB5Qe1WrgaavPTqVG2srsHF+qssjdMH62oiqgyUIAgd6ZVKoNCJ6eV5VnIG3Ofa7Xa5onYDuTGmrF+0FEG7U5zkLlRej9BXeMLSbrXY3Nik3+0xLo3JMHKrIl1oZF191vGxTp6rtAvc/dIY1KQGv1yVddod7rrnbsjhyScvMZ1PsJ4iDBRJ5lRqg9BHZ3kZsjren6evTo9zMY6v0pfHP+fk8QJQhUtEFduvvBVYjFFo7dVGelVcsZm2W3nFktR5zCrByqaoHnDsfqy2NUMwzdpOze236ovTjI2T709mDd3q/a0Ml+eDotCNDCJohuYqT0ElvKbK0J90VSdL442av2JtaZZYy4lc9OeNmqrxfA2OxnWf5A7d4sDbhnmOn+fO2//CcCvD3d68XzTuK2zjd3thz9XL2kCxRpPmGVnhMmCyomAynRLEAUErwk8i+i0f6Uu+9mtfixCKg/1D1rqvYDDY5Oknn2AwWGcw2AIFs/mUuNNje2eL0djJtWdpitU5Rhd4UYTwJVmeOhJfOwYgLXJmsxlB3CLTGqU8dFEglMIYkChX9lpq54o0bgJXylVClhKSReLSKT0fv7PGYp4gfEMY9ZjMcvJM01/bIYoj0myOsSlR3KGYzYhbAX4QYRFIT4C0DEcjlNH02x1eed9rUbS5dOkGN/aGvPrVD7Bz9izTxYLhdOJk1GVAOk+4ceOGK5g3WKPd7rCzc5Zup8/e/j7JImE+T0mTgul0ji8lgfLBQpHlJEnitAjQeL4gjEKnHYJy9X3sUtQHOLYSrLwEWZYdcz030xRhKepUZRHA0kXsjALtxNGSxLlwhYtH6yxDpwkKS6/bxd/ZZiB6+MqjMC7VVVpAO7VFTzrOQJ4XpNqWwmeKLK/UiZducbcKXqZyFkVRTwSOW2KOGVLVMdWEVBknjp8S4ftBndHh+9VqusAYXQ/YJ1OtjTEsFglag6hkp08bFOythwopj/MS3Bs3wBTahSjyLGc8GTMez12ioHBiaIW2+EKghMRia7nx6neGxhDXME4EECmF0IZBv8+Fu+9Ceh5PXHqKw2SK8ARJWuBHHmGgMGmGaRT/O43MeDOOr65PO/6m6/4SQcoqnNEI7wiBkqIMw3i1F6S6n6t7oyoWqLXLjKoy2HzfvykEUxHIq2emSR5vGgkn05GbuK036gVsP2kAnYbnmty1LpZK3EvSSB2PcERN94xL6e59ZaVLXRfC8Seak6ttek5eyKS5zJB7PkZK8x79snlQvuyGStVnldBAta1uVeNvU1mB5aF22ecvoJ0vawOFks/RX+vTX+8jDEjP5W13+z1Sk+FFiu1z27Q7HXqdLv12lzzXFHnBxuZZbuwesLG5xvrGOv3+OrlOGR2NCUMf2emyO5uTzOd0O22stcznU/I8KD0jlG5ZyyJJiFpdFwbAOjKm8NDaxfCrrY6nESIUGFswnQyJ4xZB4JOnOaZQxFHI9tYZsjRjNJqhteb++15Fpz1g/2CPyXiBkj4bg23iaMGVK1fQ+YRAxXhIiiwlnc+5vD/mqN3lFRdfwebWOWbzgjQz9PobtNs9lOfS8gJlSLK0HgDn8zmHh0Pa7TY722fZ3Nzk7rvuIcsyDg+PKHJLpz3Ak6DTfCnSUw6+We4q0SolnRwykqJIXY58VZa2+gmFOOZFqFZ6lUeiSi+uVpTVirTyolSrTaWUC/0UBZ6niMKQvMhZpBlFnuIby9UrVzh47BEGiyM2zYy7uj5m7jG3grSnKRYBk3jCWMbE6xt4ZfFGAwQqxPMDjC6OTWqVodDMUmiubk8O0pVh1XS/V39X1+oGZc1wOHRcnLJIYzOdufIqVb9ZM27/QuZYa3F6JyxXZtWr8kFJQStyhOMkzVCeQGhIMqcNI6UouSCiXjktz700UJrC4tWcIzWstbuc3TlLnmse++LTHI6nSF8ilMQaS5IXeMZNOEpW1b9v1gQ5/dqcy/+kt6TZtudc2b5AuCwsD1eYbpklI4XAmqU+TmWoGmMwviH3XIq+p0qjtjRGKzXW6v5pZuOcNEKkdJ67KqzTvO6TuBVJtIkXEuI5/t425t/myrppMBz/Z8vFQFXLyxkq1f0jGuOOPOZZcZwJsQzTlu1oXtELMk9OOF6ejwfl9t69mw6+Iw+KPW5+ffkhXHj11l4VqAK8lffkD+OTfFkbKEJK/MBjLVyj1WmRpxkq81hrD/iaVz3ApauXWGRzMpOzmM2whcYveQPd7gDT0oRhzPrGACs0aZIxX8w5Gh4ilcvc8D2P9cGAw+ERR4cjev0+rTjGWsFkOsH3DVHUQhcFSriy0waDFKpeKQVBiLCQI7AoPN9HBmXmQ5rieR5aR67AnXBeFIFiY+MMs3DGM08/zZNPXeY1r+zgE7Cz7mrdaFPQiVJmR05YrR+3KWYZ+XRGNp1jcg8TSg4PJ9x11134QcxTT1+iv/YIa9fWuHbtMkk6I2r5pGnK3v4es9msnGBdKuvBwQEHB4elV2WdVtwhjlwarckXLOS8DvEEYYg0lrgVIMSyjLwQpW6HcXwQy/EKt80BtFoZVhNv01NSPZiVAVBJgidJAriaHa1Oi0JLVEn4jMIAr9XGLBZsbG7Qzu6lO+ugjq4yT50Ym5SuGGOaphzOjzgohqxLRWdN4gchnvSwVpKmGlfLxnAyvl+10RFdp8znTmzNVRle6otURlccxy4Dp0Q1+bhj/HoS8jyv1nqpMi0qo6wy2k4OfC9kwFoaNktVzcoL40lF5EsXbrKGw+Ehk0UCngBtERJ86WFTV1dGeOJY/9Tt004in/J3lEiUlAxaHbbWBhweHHD5+j7Gs/ixzzTNUMJiPRBWojwPk+cUham9cM374iSam07yAW73uZPHP599ToL95onI8/wyRXj53UK4onYnJ3GlTHnPu5Cw5/k1z6i6N04qtlbvm4rDzpDX5aR9PKunGWY66eU4yU15oWie47jxuCQxn2xTuZWlYbL8/krsTioLxiCq2i8cN3jdGWw9dVrX4c2G1W1YFsD8yuK0+/DYfnfQTdtvZ9w0U6VPu6ePGeanfL7pba0MumUoknr7MsX75PlPnK8R7vnD4mVtoLRaMdtbm4zTEUoKrOfRDtukScqly5dAQdxuQTpnPJ0ThzG6KJhlrpJxFMW0OpLJdM7OzibG5iwWM4SB0XhMux1glXLk1sLS63Q5s3OGVqvNjRu7+Mp3rkUhSZMEayytMCRFgc0psqImM0opscJSWOeGDcOAwiwQwnllWq2I9bUNzpw5i0Cyf3DIfJYAijPn7mI6mvDFx59grd/H9z2S+QKtC4SEC+fuJgxDppMJLS/glRcucO3aLlevjjg8GuKHEcbC9vYZ2t0Zk/mUo6eOCCOPNMuYzIdoXbAoq+Hmec5stiAKI+L1NiA4ODgABK1WB6zzHPlBwGI6A+PqsSwWC5QFhMHYHOfWk0gVIL0QX6mysOLNWQPN4mCwVK50eigplVprGIb15F0RZ4uiYDKZuH/TKVEUEvjVYKvQSpMvUtJcM5pMyScT7un12YkGBNYVQhSdHnKwhtfapC8DbBSDlKVSpStYBx5OQ+BmF7lSiiAIai/HYDAAwJYFzpoTdUVqbIa4miq5cHzV19SpcEaLX09Mvu/c4BWh1qHq21MeGnH7caNa9Ui5nMSNNrR6HQTuO9I0RUpL5uxYF+LTrkSboAxtVaOWcaREJRy5Ees8IMYapBCcP3uO7cEa0+GQ0WSCF0pSY8iKHOmVegvScQqyLHcCbtKlPlftrS/thFekidMq+N7Ka3KrAf62RssJl3cVkmh6UCrvibXWqZ7a4xN1dQ9URkhlzFbvq+dlOp3W4dDqmakM1eq14nlZa8tilMfl55vXVV3byXBM9Yw2n8uTn6v+vtXvcDy8VPbUie1VQc3qOqrwluNkBYAzzj0f8rQMAUuBwmVmifJVSguyyuApnwFVhtlwhV01BiUE2hQvaAI15uZQRdVPzWu+VV81cer9dMq9dvtzlKqUJ9pzGurfvW7zyWtYvl+G2UGWqcjHw8aiHiPcvqUnTJRhTVPe89VHTnqwng9e1gaKznKyxZw0W5DlCUp4LKwgmaRkScEsmVGQ01/vsb21js41aZajDUznc4Tn43kBFAW5NoS+TytuMQ9C91BT0DLu4VPSo9d1bug4boFxxe2GoxHGsyQ65ejggFe84n5MG3Z398lsRpqmbqCglGiufmhhAUMQuMkmjmLW+gMG/T7GCqazOdPpDAN4QcD65gbJ0Zgrz14hioJSXVXQDltsbqwjhCCdL1jMpkSBzwOvehVCXOaRzzxKmqasb65jJbQ6LTJdEEUBw/Eho+EBUeTqxrRa7bqScKsFUknyPEVKzxUkTBPm8zlBENDv9Ql8z8n5S0fMlOUdHgQByguWaxnhgfTAGPLC1a5pVi6tBuZqkq0ItMYYZrNZLXOdpqkrlFgafbAMEc3nc5IkIRSRy6BSssyMqH5jiDoduhsbdCJLHFp832IXE6yKsNInNzBLUsZFSrFIEL6HH0bEsatyjPBQwpCliZPSLzOOKsOgGYqqQlZ5npEXWe01abVaBIET3apCM9Wk4fg1LqShpMICeZaV3BLtPG/iuOonwrl6Kze/Gw8qbYzTn5tbzbO3Cg9FgU8rjl0VbmPJtXXKyWapMyLLOmQSQCkMxul5WFBlmyTg+QFZmuN7iov3XGBjfZ2DG7vs3rjBdLGgEC7jTXiqnFR0qWvRGPSseUGTy4sBF6r061BFPZGZMu37xITt7gWFUsvUW8fBWHo40jSty0QkSUKWZa5KehjWQod5XqD1os76aU6cp01gVRilKaxWPWPVOYBjhk71uWYasxDimM5KZWADTCZj8jwlLwryLCMrn5GmF7Aoivr6NjY2OXvmDGEYlWNG9by5Cryy1DtxZrF09WGkQAlnoCAERlETtm/CsVDTc0Dc9OYPhVsZu6IUkLvV8adyUGzpRfkyhChP5+s4Q6UKMy1DcY3jmgbWH+LbX94Gii5IZgvSYkFWpAReRFIkJJMEnRtyk7M/OuDxpx7l9a9+Nb1OD8oH3Q8DlOfSlLXJmc8XFL4kWSzIs5w4amGkJcuKcnLM8X2NLiwX772Pu85e4P9+6tOMDydII1ikCcPhIdZqfD90XBRhsVYjpe8GGAWeX6rvSUPgBZw7dxZrLIP+GkZrrl65gjbWcSdMgfB85ukChaDTb2HIOTo6JDcZ6+vrpEXGIsucFH8YkOUZSZYilc/dd59j/+CQS1ee5dLlp9jYXkOFCiUER+NDpLCcO7fD1WuXEUB/MODixYvM53Mee+wJ0jR1oYhWiDY509kIpRSdboQ2rqaPFI57oKRHFMcsJlOm0wXKg8r5iPCxQqGkwFfL1V0URce8CkVRkCRJnW6cpimj0QhjnGJrZRBsbGzUn60G5iiKGAwGLrVZOL2ELM9JsxQrckxWcDSacHQ45Gi8Tx4YFpFk0/cQQqJlAF4IpY6JNoZsPodkQV5o2tYiVYApcrJ0UXt1mt9f8ULCMGwodmo8X5VhvKbh4ojV1TXBMpaOPU50NMZNUkkyBY5n/hhblKtNVzkcKENBHsYUNz80d7CEEUKU4kyy9CLlSJzOSmWYnHY6a5ckWaUknlKOgGwtySKl12tz74V7CHyPxx993Bn5wmBclrIr4Vbq51QiT0KCUBJtLFhbkh9f+lBK1jo31aTtQn+qFJu72aMgpSuCV6GSd4eyknh5r4VhSJIkjMdjqgJ+7Xa7/p44jmvV2KYhXPG3ToZ/nGfseB0ma10dqNO8LpUHpyiKuvLyaRWNnWZRRhgGKM8Z4n7gE7dcWCqO45qHVYV30zRFSY9+f4DFjQt5oV32lyx1OawA6ybq+j68xT15K9ST/HMe+IfjUjxfVMbJaQZJtf0YB8XiFilftqdh6RlZ8k6Wr+5d+d9qwcSJvhLO8HohBtTL2kAxWcF0NKbwUtIsJdUZySShE/aIgphO2EJFiuTKjKtXLiPOnaewEmMk3cE6FpjNZkShjzU5169d5drVZ4hCj06nyySZMZvOAcEiLTB6wv7uIdeuXKfb6bK5tsX4aOJ+HinIs4yj4QGtVpcsT10hN9dSV+zLmnLgduI6URCgi1IxNE+ZLRIm0wnXbuwSRBHtbpeNnR0KnDE2Mzk6tNhIcpRMyEcuIyUsMpJpgWyF3Pe1DzCfzxkejihMytZOH+EZNjYHRO2AMFLs7h0wngwxRYbaHNDrdhiPxkRhyGTiPBa9Xq9U29UkyZxFMmM+n9Dv9whDD88TzOZL/keSJEwmEyh06eIrCWpSIaSPQWG0K7bYDFtUQmWVB6Wa5KtwSSUjH4ZhbRRU2iiVEdOMmRZp7ngOVIO9j5AeuScZbO6wFvkE03XkdA+djsmlQqgA4wVYL0CoAA9DrjVxFBK3W3R6a4RhG20E1hTYVnRsIAbqgXw0GlHxRTzPeaaykoDs+35ZpVmU4Rm/rrVTrVgFLhNpNBrVPJaqf8IwrHkpVbopwpDnrjzCZDLFWlfpVcvTvSHPhZMTUeUOLvKczBoiP0Ao0AasOv0c2hhQLpQjywmZ0iu0s7PB3efOU+QFj33hMZJFhvahqIij2h2LtY70XsvAOolsI8wLuq4XC74flKniJ0IfeqlIepqHoxnqMyXhvMoGqwjZnufR6XTqlPamcGFRFEyn0/qZqtLzmxlxTU2e5jNZGTvNrLPKqG4KJDb1Vyp+VOUFre7RqlyDlE7gS0rqY6vjK35Nda1VX3jKRwhIEhei8j0fawyeciGeykCh1NzAc9ZGHeKRzoNyWnivgr0Dy+OYwNnzwB2Hd07Zd5JXcpMHpeLxnHIRXzKPSq24fNI4qbgv1GHvuukNlWZRpoaXv9Qd4WVtoMymU77w+c9DbIm7LXzps97dpN9eI/AjkBY/9gjC+9Dpgm63Q64tFo8wDMiylPl8wWxqyLIFgbIMBgOUsORY0lxjEMRRCyl92lHM2tomw+GY8dGEXqdLJ+4ymU0IPI88z1jMpgR+iDEFQigQkqLIMNhStMs98HlWsFgkmKIgCiMSsWA0dLLuxhSMx0fMkjnttS5GuMmgkG7iDPstsrFmuJhgfMl8L2fQ79GKYogCAgk9KRnvHTEeH9EfdHjVA/fhBZLd/escjY7wPYUXBW7V1YpZLBbs7++jtaDdbtHtdgiCNTY21il0weOPj0nSGTvxJotkwmcfeZTJcMp6bwNwqxoXCpPIUovDDUqqvI0FnvLKCsfL39BaW6+ygDrtshpUKiGzatCrJn9oakwsi5UZTek2LtwjJCRGSOJ2B6MEYSSJ2gLZloRZi3aq0SIk8UM00tX6FALpObLzYjHHWIjiAj+I8JWqNV9OGilVO5uF1JSSaO0mi2p/dd2V56RZzdlVQXbGWb/fJ8tcmLAK6TTjwy4Wb0uOgyUMXRFGW57n1Iqht+GvncYtqPrZUx6+5+F5quSALOeGm8bGcpVbGRyOcxWytbHJzvY2s/GEZ55+hjxzCqhTk1MIpw2CNfhSIZGYSltFCowAbQ1InPiTPeXaXoJwE7iTqD+2vVRCPWmgHF8hi9qr4CpnLw2C6t5vZrZV4Z4wDKkIslmWsVgsWCyWXr+mmnHTk1Kd66QBU+kThWFIp9MhDMM6tNn0tlTPbGUQHddmcdL9rmozgC2Nn6VWxtJI0mXY0pQ1iUoBRM8rxfmWRoVrq8CJt5maJAvU33NrA+QOjJPqP38Io78+l711OOYkcfikB+X4OSrD5LgH5Xbn/1LDZcdRewjrFjX7qjLs/qh5UFw6acz61oD+xoAszTnaHXJw44hOu0d/rYcKJJ1WBxFFSCEIAx/lRYyPDrl89RphGBGFAUW+wOu28KSPtQWzyZjZZIbvBURhSOgFrA/WWF9bR+cF46MhRZqTZglSQKqdQqpQLrPICoMuV43YUrQG4zIchEAKH1lYZqkrrFRozTxZkBc5yvOYjUaY+YI8TfGjCCsMs/kMKQRZkRO3W3hdnyzLWaQLvJnC83wnlW00izylt9bjzPkdvCCksDnjowlJmtLv91BKUOQZe/v7IAasra/zzNNXGPTXydKU8WjExfvuJUkWLOZzwiCgFbcYj4YskoROO+be8xcJRcynP/Y4vq9oxRG60M7LULn5tS5LxWs8pZxsunXFBavwhRTShdRMtToWFIWrqimlIs8189m8VqbVukBJVZO4TDnACQTWOG+TMcbFnn2LkIY8TTHpDGMSTFZgs4Iss7S76yB88GJEFOJ7IZF1dFjlO7VYF6JTCASF1ugyg6bygjSNjopHAs5Qch4mwWCw5nhCaVa3PS9rjUgpMEZj9FImPMucmm3lPaqMs+q81SrW4rIalPLQxhk5UjgDqSiyurB5PTSUNXqOr4UcJOLYezf0u0/6YUQYBlhtMEYglCs8Zstz0jhW4OofSyRWCOIwYG2wRqvV5tKly4yOhk42u6z5JAOF58lafVkpiTRLNV2hPAprKIxGKunCO/Z42wXL1ZtEYKytr9naZctsYzC/1ftyQz3Viebnbrm9HqWXsS9L6SULSwN0GbtvchtPpghXk1LTENXaXYeUjp/SXFVHUQzY2uORlkRSrQ2TyaT2xHme50pClKnqFaG7WgRUXpnKyK7QTGluGlIn/668LVU7jhvVAiEtzfpHN0+iFikFSgX1HRuFLTy/JKvbSu9IuXtYKHcfURlbBotBWYUqydlSSXwpy4J4lty5dTHCGYiyXtcv7yRBc3Zdvn8+SqjVSN+8xptsIOEm9tNgROlVa9xjzVeqUGHdsuYTUN7rx9rZeLXOD2mELp/10rMhqsKJLqRrWV61oAzPlBwX0fj++qesjBMXSiiLAbrFuRVQ4BZOWvpYIe/IxntZGyhaSpQXEgd9yHymR1MuP3ONoig4c8YSRhGh8em2e0ShQpscbSxFkTMfj5FFQrsV0WuHXLp0g2w2cUqZvQ2yNGfBHGksoZUcjY5IfZ9OFHJ5d5ckSfCDAD/0aXVirh3skuSGuNvHCyO8klCYZRnCiqVLVJWDgPIwWqC1E2zKchAyRCpLnhckSU6r1SafF7R9xSLNEAkgIZKhS9G0itAPODo85NrBNR74f19NmjgOTpEb/EGb8/de5PLly9zYvcG58+ecq7jIMUZS5JogjJnPczxlaUVtiiyj1+tx5ZlnuPz0ZcIwJEtTjkZHYCyhijizdZ7zZ87T8nrMj3KkhiiIsLbADzyMpkwDLXkI5QDuCKBLXoUQEt9z3pBqZVdBnggfKLm8VX0vqImHrmBVuWoAVwLc87HCZYAYBAiDEBrrQSwCTOEzySWT3MfzenQH6xTGMk4SMgQpEi+KkV4A0kcKH6ysZ3olfWRQ8Uaq7ASQ0kM22unc2T6mktsFYFnlWgqPOAobK1hTu+rdICzLUFGAENRxfjfgu0FaFwW5XiClJElmLuXXU45oWxpKjZ+iaak0NpSrNu1WZS7rwRlkzpgOiKIeQRiwt+eqYidpVlZGtfUQinCeDq80ygWSMIrodTu0W66OTGGsG8CERCuFlRJlBaROeVkIhTXO6BRKuKwJ7VRjA3AeGXdV5cC4vByBPWakLCGoaq40jRDBUszMneL4VHLy2Fu+t84wFmWWUiWzjoHQj4jDVp0Wbq0TKrTy5vTe5vv6/OW90Sxn4Eo/+Pi+4zq1Wm5/rzdgNBoRxzFra+tkWcbGxkYdHjx5rqYHpdrXTGGvjrmVsFvTC9NEk4tSGT/WOsXs01wWTSOmaoPW2vHOdJXh435Di4dF1RovxpZ+QgtCeaiGp82XEl8J2kLSDiARmrQVMcs0GEEofIQRrpZMVRmvfKkmXCuWhmnVH+XXnWLCUNfBPLn9JMwpmYBWOAPlNNzKI1IX8HMHLY0HUdUoqkIs7nglc5TMMY27XeA8nkpKTHUvSLe4wBpkWVqC0vgRJxYk9cUCRkiMH2FxROZMWhIh0EKSygDCBCUgf56eq5e1gTKdzEjTjIPdoRug5wlJmpBnOc9ML7H77D6tVky318Hzq9WvkwvP84wszdiLj5A+7F0/AAzdwTW67Z4jzi5mJLOUS94uWZZxrXfI3rWxq1ZsLMpzrkzlKZIso7CGjw8/iR/6LKaLOr5a1WOpmNaV+1tnBUWa44XOVZqnS1Z7lmaMggXT3ZQgDNwDr+3yRqxuOiFI0oQiK1gM34/ODcm8DAmUbtTF3LH5rz2zT54W6MwJP1lr0SVnxPc8sjxDGEsQ++xdP+Cqf+RucgVFVpTEvBlROOJSe4+W12F8OMEa+MjvfITLz1wmjAJHthM3x32FcImop5V2f6FoDpCyXtNWwQ1ZDjAWpSxkOQEamyyYT6YIXRC32kgvIDWahdYQ+BAohIoQQrmMABxxVZQDljktdHIbnBZvbqYNN7MdmqvTajVdTVpVrP64bHlOoZ0bPE3npUKpLbk54EYoW3o5KrfDLd5X07qoSrKXHiqdc/nydQAWSUqWFhTaYs2JqqRNQ4iy0FuRY/WCZOGInpPJhKLQKGUoyiyfat150maqV5In21st3U68F6IxJZxoi7WnVFAtPXl3glPvVStKjkmTO+Be/7//778xGAzq37M6R5NzcvL1NDTvk5PhIFgWoaxI1xWpvHkPAfX4ctr3VmGeOkOsbOutOBy32r4kiJs6Vdqdz9DkJtR9VabuVkaBNhqjLZ7nrsmeCAOp08aM+l4XpXEMHhZPCC49+RS5FVwfJhxMM6zWLqMMTWGOexOp34uTt1DZH6de8rET1I/bbd6f/K2b3sxT74JTvlhQhhBLz0bVB1VXLJvkDBUJILRLGz7lZEJUV03poRK1wV2NI9WixR1T+Vga3icBSiyOXZcRkkIIrJIcTBeI0zr2FhD2dk/FSxSj0cjpTPjcvBC0uF+i8m1Xs9VJfZnm3egBBUtzrWjsF6AC0OWKCFXuV9QraqnKCbH6vuoYH26xaFh+98kng/Lz1fU0F98nj6u2eUDe2N+83uaxp21rovJaVOerStfXqRXlOaprKl+jKCxXXc+/jPZJ3I7I9lyoB9NyFU3ZtJKw4P6VA5GPW4mXTsgaefnPSPfTVf5NgUKW3hNhLUZYV478Fm04idvFmu/00Wu69ZuQChceUsJVj5blBPnleLIFeB6l8W1P/Q5VPkfGnGjHSU/Oy27k+dKheb+fJMieds+c9GI0yczV55tcppM4SbRsvp5sw8sWsjRQ9LKvVPmvrABSi7VX00Op1vS88cKXUsdxuynhheBku047z+3afvIxrY4tgOK4M/K2X6IstDg+ttYLxtJDlBh33uFwSL/fv02rXqYGypNPPsl99933YjdjhRVWWGGFFVZ4Abh8+XJZlPbWeFmGeNbX1wG4dOnSc1pgKziMx2PuvvtuLl++TK/Xe7Gb85LHqr/uDKv+ujOs+uvOsOqvO8NLub+cJMKEc+fOPeexL0sDpXKP9vv9l1znv9TR6/VWfXYHWPXXnWHVX3eGVX/dGVb9dWd4qfbX83UsvPDA/worrLDCCiussMKXCSsDZYUVVlhhhRVWeMnhZWmghGHIu971rqXc9wrPiVWf3RlW/XVnWPXXnWHVX3eGVX/dGb5a+utlmcWzwgorrLDCCit8deNl6UFZYYUVVlhhhRW+urEyUFZYYYUVVlhhhZccVgbKCiussMIKK6zwksPKQFlhhRVWWGGFFV5yeFkaKP/6X/9r7r33XqIo4sEHH+TjH//4i92kFwW/8zu/w1/4C3+Bc+fOIYTgV37lV47tt9byD//hP+Ts2bPEcczDDz/M448/fuyYw8ND3va2t9Hr9RgMBvy1v/bXmE6nX8Gr+Mrg3e9+N3/iT/wJut0u29vbfNu3fRuPPvrosWOSJOEd73gHGxsbdDodvuM7voMbN24cO+bSpUt8y7d8C61Wi+3tbf723/7bdeXXrza85z3v4XWve10t9vTQQw/xG7/xG/X+VX/dGj/5kz+JEIIf/uEfrret+us4/tE/+kc3VVR+4IEH6v2r/roZzz77LH/lr/wVNjY2iOOYr/u6r+MTn/hEvf+rbsy3LzO8973vtUEQ2H/37/6d/exnP2u/7/u+zw4GA3vjxo0Xu2lfcfz6r/+6/ft//+/b//bf/psF7Pve975j+3/yJ3/S9vt9+yu/8iv2//7f/2v/4l/8i/bixYt2sVjUx3zTN32Tff3rX29/93d/1/7v//2/7Stf+Ur73d/93V/hK/ny4xu/8RvtL/zCL9hHHnnEfvrTn7bf/M3fbC9cuGCn02l9zA/8wA/Yu+++237wgx+0n/jEJ+yf/JN/0v6pP/Wn6v1FUdjXvva19uGHH7af+tSn7K//+q/bzc1N+2M/9mMvxiV92fGrv/qr9n/+z/9pH3vsMfvoo4/av/f3/p71fd8+8sgj1tpVf90KH//4x+29995rX/e619kf+qEfqrev+us43vWud9mv/dqvtdeuXav/7e3t1ftX/XUch4eH9p577rF/9a/+Vfuxj33MPvnkk/Y3f/M37RNPPFEf89U25r/sDJSv//qvt+94xzvqv7XW9ty5c/bd7373i9iqFx8nDRRjjD1z5oz9qZ/6qXrbcDi0YRja//Sf/pO11trPfe5zFrC/93u/Vx/zG7/xG1YIYZ999tmvWNtfDOzu7lrAfvjDH7bWur7xfd/+l//yX+pjPv/5z1vAfvSjH7XWOoNQSmmvX79eH/Oe97zH9no9m6bpV/YCXiSsra3Zf/tv/+2qv26ByWRi77//fvuBD3zA/pk/82dqA2XVXzfjXe96l339619/6r5Vf92Mv/t3/679hm/4hlvu/2oc819WIZ4sy/jkJz/Jww8/XG+TUvLwww/z0Y9+9EVs2UsPTz31FNevXz/WV/1+nwcffLDuq49+9KMMBgPe9KY31cc8/PDDSCn52Mc+9hVv81cSo9EIWBae/OQnP0me58f664EHHuDChQvH+uvrvu7r2NnZqY/5xm/8RsbjMZ/97Ge/gq3/ykNrzXvf+15msxkPPfTQqr9ugXe84x18y7d8y7F+gdX9dSs8/vjjnDt3jle84hW87W1v49KlS8Cqv07Dr/7qr/KmN72Jv/yX/zLb29u84Q1v4Od//ufr/V+NY/7LykDZ399Ha33shgTY2dnh+vXrL1KrXpqo+uN2fXX9+nW2t7eP7fc8j/X19a/q/jTG8MM//MO8+c1v5rWvfS3g+iIIAgaDwbFjT/bXaf1Z7ftqxGc+8xk6nQ5hGPIDP/ADvO997+M1r3nNqr9OwXvf+15+//d/n3e/+9037Vv118148MEH+cVf/EXe//738573vIennnqKP/2n/zSTyWTVX6fgySef5D3veQ/3338/v/mbv8kP/uAP8jf/5t/kl37pl4CvzjH/ZVnNeIUV/jB4xzvewSOPPMJHPvKRF7spL3l8zdd8DZ/+9KcZjUb81//6X3n729/Ohz/84Re7WS85XL58mR/6oR/iAx/4AFEUvdjNeVngrW99a/3+da97HQ8++CD33HMP//k//2fiOH4RW/bShDGGN73pTfyzf/bPAHjDG97AI488ws/93M/x9re//UVu3ZcHLysPyubmJkqpm5jcN27c4MyZMy9Sq16aqPrjdn115swZdnd3j+0vioLDw8Ov2v585zvfyf/4H/+D3/qt3+Kuu+6qt585c4YsyxgOh8eOP9lfp/Vnte+rEUEQ8MpXvpI3vvGNvPvd7+b1r389P/3TP73qrxP45Cc/ye7uLn/8j/9xPM/D8zw+/OEP8zM/8zN4nsfOzs6qv54Dg8GAV73qVTzxxBOr++sUnD17lte85jXHtr361a+uw2JfjWP+y8pACYKAN77xjXzwgx+stxlj+OAHP8hDDz30IrbspYeLFy9y5syZY301Ho/52Mc+VvfVQw89xHA45JOf/GR9zIc+9CGMMTz44INf8TZ/OWGt5Z3vfCfve9/7+NCHPsTFixeP7X/jG9+I7/vH+uvRRx/l0qVLx/rrM5/5zLEH/AMf+AC9Xu+mgeOrFcYY0jRd9dcJvOUtb+Ezn/kMn/70p+t/b3rTm3jb295Wv1/11+0xnU754he/yNmzZ1f31yl485vffJM0wmOPPcY999wDfJWO+S82S/dO8d73vteGYWh/8Rd/0X7uc5+z3//9328Hg8ExJvcfFUwmE/upT33KfupTn7KA/Zf/8l/aT33qU/aZZ56x1rqUs8FgYP/7f//v9g/+4A/st37rt56acvaGN7zBfuxjH7Mf+chH7P333/+STTn7w+AHf/AHbb/ft7/92799LK1xPp/Xx/zAD/yAvXDhgv3Qhz5kP/GJT9iHHnrIPvTQQ/X+Kq3xz//5P28//elP2/e///12a2vrqzat8Ud/9Efthz/8YfvUU0/ZP/iDP7A/+qM/aoUQ9n/9r/9lrV3113OhmcVj7aq/TuJHfuRH7G//9m/bp556yv6f//N/7MMPP2w3Nzft7u6utXbVXyfx8Y9/3HqeZ//pP/2n9vHHH7e//Mu/bFutlv0P/+E/1Md8tY35LzsDxVprf/Znf9ZeuHDBBkFgv/7rv97+7u/+7ovdpBcFv/Vbv2WBm/69/e1vt9a6tLMf//Eftzs7OzYMQ/uWt7zFPvroo8fOcXBwYL/7u7/bdjod2+v17Pd8z/fYyWTyIlzNlxen9RNgf+EXfqE+ZrFY2L/+1/+6XVtbs61Wy377t3+7vXbt2rHzPP300/atb32rjePYbm5u2h/5kR+xeZ5/ha/mK4Pv/d7vtffcc48NgsBubW3Zt7zlLbVxYu2qv54LJw2UVX8dx3d+53fas2fP2iAI7Pnz5+13fud3HtP0WPXXzfi1X/s1+9rXvtaGYWgfeOAB+2/+zb85tv+rbcwX1lr74vhuVlhhhRVWWGGFFU7Hy4qDssIKK6ywwgor/NHAykBZYYUVVlhhhRVeclgZKCussMIKK6ywwksOKwNlhRVWWGGFFVZ4yWFloKywwgorrLDCCi85rAyUFVZYYYUVVljhJYeVgbLCCiussMIKK7zksDJQVlhhhRVWWGGFlxxWBsoKK6ywwgorrPCSw8pAWWGFFVZYYYUVXnJYGSgrrLDCCiussMJLDisDZYUVVlhhhRVWeMnh/wfZqwMIJPpp9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "result_out_dir = '../resources/output/conditional/tutorial_conditinal_biggan_res_setting1.jpg'\n", + "# configure setting to 1\n", + "editor = MMEdit('biggan', model_setting=1) \n", + "results = editor.infer(label=1, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Inference with extra parameters\n", + "\n", + "Some models may have extra parameters that could be configured to perform inference.\n", + "\n", + "Take 'biggan' for example. You could configure 'num_batches' in a dict and pass it to 'MMEdit'." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAACECAYAAAC6TNA5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WbCt23mehz2j+ZvZrWZ35+zTou9JigQpELKo2DQZlpO4iXih0oXjuFyppBLSFcOqlFhJmeYVL60LUVVJxWVduSQ5rnSSrchiHJUlkaIEUAABoj3AaYCzz+5WN5u/G00uvjH++a+19wEOCJAAimtUrd3MNef8+zHe7/3e7/1UjDFyPa7H9bge1+N6XI/r8UM09A96B67H9bge1+N6XI/rcT2ujmuAcj2ux/W4HtfjelyPH7pxDVCux/W4HtfjelyP6/FDN64ByvW4HtfjelyP63E9fujGNUC5HtfjelyP63E9rscP3bgGKNfjelyP63E9rsf1+KEb1wDlelyP63E9rsf1uB4/dOMaoFyP63E9rsf1uB7X44duXAOU63E9rsf1uB7X43r80I1rgHI9rsf1uB7X43pcjx+68QMFKL/1W7/Fu971Luq65hOf+AS/93u/94PcnetxPa7H9bge1+N6/JCMHxhA+dt/+2/zqU99il//9V/nM5/5DD/xEz/BL/3SL/HgwYMf1C5dj+txPa7H9bge1+OHZKgfVLPAT3ziE/zMz/wMf/2v/3UAQgi8+OKL/Oqv/ip/9a/+1R/ELl2P63E9rsf1uB7X44dk2B/ERvu+59Of/jS/9mu/Nr6mteYXfuEX+J3f+Z0n3t91HV3Xjf8PIXBycsLNmzdRSv2J7PP1uB7X43pcj+txPb63EWNkvV7z3HPPofW3T+L8QADKo0eP8N7zzDPPXHr9mWee4Utf+tIT7//N3/xNfuM3fuNPaveux/W4HtfjelyP6/HHON544w1eeOGFb/ueHwhA+W7Hr/3ar/GpT31q/P/5+TkvvfQSf/Hf/re5cXzA4DqMEWSmlMIYSwjQ9wPaasqqZLGYo7XGWsswDOx2DRAxxtJ1LSp4irLADY7NdktUhuVyQVXPKcsK7z0hBGIIBDdweHTIrKo5Oztju91QlBVGa7quxXuPthalNWVZYozG+0CMMAwdWhvm8zkxBpwLaK3QWuGcZxgGAKqqHNGl9wHnHAAvv/xulIq8+eY32Ww2GKNZLOZstxucH4gBtC4IIWKtpapqlFKEENhs1oACIm07MKtu8enPfpHz5pj/+f/y12mIFAUob1Aqgm4JHNErRTQe8qdzVnDCXimApyQLYwzEEFFaoZD9AIVSOn8qvS9yNduoI5gIKAPGQlSoGME7FPI9EY1XimDT7ihGVs17j5IXAPl+Y8347xjCeM+83YgxymFN3pdfUzGg4wXWb/Fnb/F/+Wv/e/4//+Dv8YEPfZigA1F7tCvRBHT0qPidJV9Ryc+VV584N3IuFOrK+4zWOO/RWqMUrNdrfIAYoN3tqMuai4szirIArTk4PmK2nBGiguhRyOmSqyVXSE02rQCv1JP7+JRrP34ucmk/o7r8miPKa95RWc1/+L/93/CZf/HP+amf+BjO9zRtx2I2xxYFfXo+YH8fzucLIpFm1xBjoO06vPMsl0ustTRNC0Dfd5RlhVKKwQ3EGDk8WKG1oe87tDF0bQcoytLKvaoUs9mMEAJDP6C1Zrvd4YaB2XxOXVU47yiKguADm80WbTRVVWKNIUZw3tF1PYU1DM7Tdx1lVTCb1wyDwxg526dnZ2itODg4xHuPd57FckHXdbRtizFGzrNSHB8fyfFHqOqKzcUZu80ZWhvQBW3vON80fOYzn+Ov/B9+jdlyhTIGpRTRuXR/qPG5e2qmX6vxuiqlZG7V5om3mac8PzEE2dX0WZQieE+8cqOE9BymjYzbYr9ptNLjDaPT9r2T71KoS/uf/1ZKobUmxohz/qnHOh6T0VhjMUYTtWw3BkWMCkJERc/f/L/+n/lXfvbj/K//V/8LrAZtC2xZ4pyj73pAtldWBdvNDmsNWhl2u5bCltSzikik7wdOTs/4p7/7z/jM73+W3bZnSMcSVcQ5x9APDIPcn8ZoYjreEAJo8MExqyogUhYFL7zwHD/2sR/jz33yZzm+cURhLMYYfJDj1FqjtSESGfoe72UuN8ZgjCFGTd/3KKXSemVxbsB7T1lVFNbinMO5flxfY5RnI4bAer0hxshiMccYQwgeawuUknvMB9lu3w98/g++wP/uV/53hBhZrVZP3nNXxg8EoNy6dQtjDPfv37/0+v3793n22WefeH9VVVRV9cTrZWlZrubEWFJWlr7v2Gw2KB2oy4qqspR1ifOOGBwhKobgaNuGEDxayQ1clQajrExKdUlRagIaHwLD0FDPZDKJAXzf0u56ms05zeac7XYrF9ZWzGYVhwdzAAbn2HUtdWWxRUHXdoQYCAG862gajzWGsqrQWhNCQCmPNrLIFIVOAKMCpRj6nqqqKApZdLpuR1Fq6roiMlCUmlLVaG2wpsT7gNaa2XxODIHz83OKQo9gZbmomc0XMgmVNXp5i9IWDK5DxVrmCtMTwgFK9yjTotKkocbJ7PLE9PRlPhIj6DT56Cj/vzofPu2zSnnQHqUiCgE6EQhRE6MFTPqkShOXksU1IRVNHP89LvKCsNI+RCIRrTRX59irE94UyOxfC6hYYeMxrnUoswS7ZHlwSLQRiCivsQoBVFE9dSG/fNARdQXHxPGPJ07t5YUfCF7+ZYx8SdCWvnMUZcngAsVsjmk7ytkMjEKXNeV8idKGwkRUmvTTGjH+THaPoK6+ytMXuLfb7ytj8AFjFH5wVAaMNSzmNcc3jun7BuIapRRFYTHWjIsryLW21sikOysZhgFr5xhTyIKOpIS11uMEqpQSAOA9s6qiKAr0Yo7zjlDX+OAZBke9kGd5NpujlHzP4AYKq2h2Ow4PlxRFwTAMNG3D0Pco5TFGUdWW+XxOWZTsdjuaRmOtQSmN93OMVmil6LWiKAoBfm6BUopFXaGNJvggxxA8BMtyuaIsCkIIVFXFer1mvdlQ7ApUdGgVsIWlKEu0tThZQ1iuDlgeHOMCeO+YLe14YfKCHTJImIygGJ8PWeT0U6+zCvGJ6xxCGMHJ1eullCLEgPce5xwhyIQQ8w2jNSiF0npcREOIMmfrBLJigBCemEgyEAHG/X3aseVj12kbGUQJMFJAei1GdBiwhQECWgfqusDYkqqeCUCxhqqqxkU+1AXWGIy1zGYlCk09q2n7HlTk9PQxb755D6JG64JZNSOqSDd0eCLGKMqiHoMtpRTOOQlyVaTvBRBZo4kh8uD+Qz7dfxrvBv7cv/KzvPfd78ZaizblGFjn79GLxeS5sSilGQZH23bEKEGtvC7rhDFmXJ+MkdesFdhgjKHrOuq6BhjXaGvlem23W2KM1FXFrK7R2lKWX710rb7T+IEAlLIs+fjHP85v//Zv8+/8O/8OIDf0b//2b/Mrv/Ir7/h7ttsLQjikKLVMClXBbgd93xKCZz5fMKsrQrB0Xcd2sx1PsCyyEULEB7nwIcqFDyHgoqOu68TEtCgVJSL3AaMgBC/gprAywRHo24a6rjHGUFhDHQuIwri4oRP0qUBbwzD0dI3De0c1kwvsE3hSSjGbV4To2e42wshoTYieBw8fMAwdMQYWiwVVVdD3HUpFur5lVs+whaHrO7pdhw/CvAyup+tbiqJgNpsxm82Yzy2zRc/Z+RmdPyGUS3wRUdGg0GAcMXgKeizNyJJ8J9ZhOmKKmXKsH4myyj3x+SejuKAUQYHVHqs8ygR8NHTB4jFEFDoqdIyUtCiiMAuQrqO/tJ/7/VYJsshQIx2wB14xBiCMIEbAwJRBkW05VeBiCbqCIbKcGVSA6CMojwp6jI7iE8v9005YlAn/ynjq6R7xjhp3XxkFSuNCoO8GNruGzWbH8dERbT9Q12CKksF7rClxHpyPMjeHiFJBAEpUaNIE+cQ+XtkuTwLO/MaRbLv88cuvaY2Psg+2sChl2G53PHzwgNm84vDwkBACbdfig8MYg7U2RX9wenrObrcbIzKtNd57+r4fF8c80YJMpEop2rbBuwHXtxweHhIDoCIhBkqr8UOPtZb1+SnGaJbLBVFFjg+WLGcVXdfx+OwxZVlhtGIxr5irmkAAPE2zpWm2Iys6OJlTyqqi2W4ZBsdqtWK1WtH3PaU1FEVB3/fsdjtZbL1mUVccrZYopei6jt12y+OHDxIYswzeEaKj2a1ZLJcYWzH0gyyY2tL1PUsUWmnKWYUKPSGESwtXWZZXLzEueEK6WgEBCE+5xFit0VeDFa3G501m2ri/UaLcV8ZK8DZlNqJ8mIgWdiVGfEgBh8mAIxKjQqPRarL4ToCQ9358LUyY0un78sLvnBvnHh9V2kUn+xI8uBbvHdooZrMKreU5ETZcUxQG53phwpRiPq/puo6m2SVwK6AjRo9zA1/92ld581v3GJxCqxKFpWm39ENP23YYY6iXws5pLQzK0PcMw8DgHUpZfN8zDB5rFf3gOD8/53Of+xxFYdEonnvuOWZzPV7jDDAzWM8ABALWGhaLmZxr7xmGjrIs0Rq8H+h7n95vxvOllEoBc0FRFOM5F/AkmYm2bem6jlu37jCfz+m7gaIsrsy+3378wFI8n/rUp/j3/r1/j5/+6Z/mz/7ZP8tf+2t/je12y7//7//77/g7mqah61q0qXCuJwRHUdiUKpGTGLxQqLNZhRs6mqZBa4tWe+Qco6aqCqqqou07+r7HIuyEtQX1bM7JyYkgfecxUdIymS72I6Wuca4HLNoaFPtIxw39OEEqFIXVaGXwrsd7QeAhaA4PVxRFyWw2o6pKzs/PWa83VFXFbrdLUYRCKct6fUGMC+pZSVUvYBPxwbHbbdMDGlFKIoiisBgzY7lcAZHdbg2hResOHbfMqsCF32KKEoIT6lQNKHp0NOhQp33fj6sLjazz6vJrMRJiHP+vLv8xuVWfBChGRYLv0MOOw7nh4vwx1ewAWxyy9RqlSkyIiaGwY0ohpujfPBHlA0HgUv5TUkB71iWvvhFPnlbHbxlZF8aIL2oFeHlX8OgQSY8rkQFFgVaBoAJOGeCJ5f7SGVVKp9r/JyPDy+/Mk3kCTSG9lgCaj4pN04EyuOC5f/8+m/UGAGttYpA0Slu224HVUTFGrSMdjkKj9tHv/jRMwNrT9w+QtNEeO116/9XXtIoobfBeouJ+cOyahrbbceP4JvP5gqIsCNHTdbIwNE0zRsHee5qmYT6fJ4ZhfunZrOt6XKS01ux2O4kEXaQbeh49enRpsfbejwxMURQYq3F+EJC09cLKRqhnldDpPgh4KgpUhNmsTukFR11LmiaEgHMDMQaGYUCFOB5DjkbzuZzPhb3Ji+fJyQl93z+RohiGgbqumVVz6kqzWC7pnTBokpry7LY7bHFBUdboQWNwI+DN7EKem6ZAwcWA0ntwN13Y8qIv954lhv0+QST4QCSDiYi1kp7SiRGRwNBLpK81IXhC3LNUKJN+p0iZNpQywuLGgPeOSMBYTYyyPxmUTI/r6jOUz1nebmZxvPf4EEAZYWm0GQGKSYxv30nqxVaSDhIWXlGkdOAwDCldOFCVNs29jtXqAG0Ufd/xzW9+kzffvEfbtthiiVEW5yMxKIYhEIJiNquxpiQENT4vMWr5f5B0l9ZmDJqiD7gh8PjxCX/4xS/y0osv8MydZy4dZz7+zKhI8B1GNmoP4uTJDOnaxCismwCxQtJYZTmC/nyu870h3+8xBo6Pj9P9X9P3PU3TMvQDPj6d0Xra+IEBlL/0l/4SDx8+5D/5T/4T3nrrLf7Mn/kz/P2///efEM5+u1FVNfP5HG0iXSc5Lu8dwzCkPJqjDUHyvfWMxXyJVnJSrbVpwnAUZcFsNkcbDX2P0ZbFfE5RVknLUbBYLOm7Hk+PAbTRmKQziUryhkWhsUVJiBG8JBkKW2JNQbQyIWulxoc0BE/X9wy9QylNUVQcHh6kaEYYgKKoqKr9zbRYLCnLAu8d63VIOUuDtXG8Ebt2ABTPP/8Cxhg2mw0xkRbyIAfKosT3A92mRcVDNAVVMSdqTYwVWp5Ooiold/kOHXMuaxNUWjQvx9v7aOrSW6+8BwrVU/mO0D/i4uwR7eaCo2dfknyuMoSg0VGo5N7WxKu2PtPVMCOhq/kTGHUqKuOTGCFPhtOPh3jpeOSBDhgGwEN02BgpiIQ4ENUARHR0CTR956hBxbyL34lpAaUylZG+ObEeRPBDwA/ChizmM7q25fbsFn3bU5UlPoBSGqKS1OfgKar9pKu1eQLgTU9lPr3jLjz1fW/3m6uvqz1DNAE889mc2bwcwYhSit4Ju1CWZdKXNPT9wGp1wHw+H6O7zLB478dFd7fbjYDFe0/bRrpmx3xWU1azxIrJBShKobkH57DG4EOg7SSKraqKuiwpy4KyFFq76zq6vicqsEqYkKw7k20JhX54eAAo9NJQmD174GNEGSvMli3wwdP3HTFCCANt3zMMjrIsKKwsFAdlSdu2tF1HaFsUjrbtQRcYY4GBnLmI0dMPHaEL4HuKwo6LUlmWlxb0fH8HJfMcEZSVZ1knvUzWfkAcF/j8OefcGPxlMON9YrAS4JqChQwyAWEJBofSBmuLlBbLzIff33fEMW2c93nKlFzV1VwFdZnVyikkrTU2RgbvCdERBi/zeAgUiaUpCiOpQ21wzhOjSgGpzOshBJSP+MFj64JZJddzGHoYcipaMZ/NBDAL/JfPeAGNZVkAkWEQLZSAhzimJKNsLD0zStanBJADkW++8Sb/6B/9Y+pqzkc+9tFxnSuKgrZthfWvqvH8tK2w6saY8VpkkJcBDjCmwjLgmZ7HMUWGgHml5N6XZ1CyF99W6/Rtxg9UJPsrv/Ir31VK5+oQii6gQsDaIp2sgvm8oCiq8QFZLQ44Ojri7OyMvhskzWMsgYCymujjKG4LIaKUSauE3OhNIxd2vpij5nNimuScG2iaNomOIqv5gtlsxnqzJni5sR4+eIhznrquUEnroNBURSULRQy4GCirivliQVmWdK2I+oo0AZZlhXMDXZuFfC0heup6RtM0QEcIBTFk4OVRCpwLGCPfsd0myjgEFoslWmuGbYt3hqgXuKEi6BmyXJfCLsSBGDXOOoJ23/F6PE1ikdmGS6/FmFIo02v5ZBSuvKOKjnkBgZZ+OOfhm1/nqDpiMBWRgpnWaBNprEvaiP0I8crqmaOwq/sYL/Ekoi3R8ckF1uTjYZycbVRoL5JdiKgImgAq4hMpE1Ju+51gPKW4JEr9tiPvdgQdFSHK3OV9pG8Hoo/C9BWGoQsEF3B9R6xqgvNEFTBqCVrT7joW9UxSZBFJgV5JiU1OI3ve69tDqSfO9VMQTXjKFyigKCyz2Qw3BM7OzvDeU81mGFOkqNqgtaWqNFU1Yxg86/Waup4RQmQ+nyegIOLzLA7sui6lhyKmKEAb2l7SHvVsRlQaTxKE6sgQAsv5nNlyIUGKdyK8NJbBB3aNAB8yE9L3xBApq4oYIrumZbU6wGiDD16o8UWJdxJ1O+cIMVDPF2x3W/q2QynYtT06CThXh8cpxaLGxTgojQdIi3n0HRcXG5QpsEUt7EUQtsH5HhUDIQbwbkzXZBCXo+HpAtV1LUpprPXE9J5h8ixrrYVx0/oS8Fdai6hz1Jl4lHMUtpDnQGtKW2CswTtJe/SDE2YkFwpESfcV1qK1QadFWcCMAFCvIm7Ysyb5vExBaQY3+T17TYs8sZlRA8bzJPscCVHYTK1VYmcMSpmU8jBS/JDOb8zMY0CC4CBpMe88FxcbWbDLksViyWw+oywLQjCEoPDBEYLDFqIpGYZe5nCt8d6N5zIzUBqDyhoz7xNg0wIG2pavfuVVjP7vOT0/42d/9mepcqooxgQgJLWVgUmIAY2mLAuMtXjnuH//PtZajo6PaJodIUSqqpZ1Yxgoy3KSEhoSgCvSOdbjNchrcF3XGG3H97zT8SNRxfN2Q6KTgB8GYhTKNeeXrSnougF8oNnuGLqe09NTuq4TBGkLtDIUZUHTNGwudhSVpHMAht7RNj0RhUtRTV3PWS2XtM1O0kuDQxmDTehz0zR0zuGGAaM0wQW6RrYXXKAs7ThhRh8x2lBVM9qkmO67AaNFYAQK7wWhaqW5dfM2MUbOzs6lmgCdKNICpUgPsU6RU0/fDXzrm2+yWMzHaNINbhSTDoPHVjOKakZsNbEo8BrQoENE4VHaoeKAYUAzfJsrka4HT4+mryr3ZRWPTzIcV5YzY0CpOcNOc3x4zHJR8+a5I+gZsVzhfYVHo1SPpRvz5Ze+U119wT+xnRBzZREpvRMhBjLsGD+dFuuoclZdoShAGaLSCYxAUJqgNVEbSXNoiyJMxMVvPxRMNDHf/o2RPZiRSUoiSz8EXO8xyqIUeL9Dq0jXd9SlxahIUVW4EKmrgiFEml3L0Fuq0qBRiaJHKj8m27l8mWI+YU/dPwXEq6Dzybshfffl99WzGYvFQoCFS+K9QioDZjPJ8bdNhw8i4rSmwBOYz1cU1uIneok8keZUSl6gyrLEFAVlVck84h3aFgzOjWkknyLgoODwcIWylr7v8T6w2bX4IKmlup6xmC8IzuGbjj5KakdZTVWCNUVKZUTapmO93uGS8DPT5UNoaXthaGazWRLqe4wRpjYEuYZd1xNjYD6fY8oKU1YUWqF8QVXPGXykH+R40AprpbrEWknj6SBeVJk5yLqCfG7yfFEUxZgKz+/NEf3ISGhFVAYfGY9jyoxkljovjrAHCd5LWscAJABkdBIFx4DRBmvNCJ6c98TEJMs5YQx0coQPjKzN00YWgfapmqUoir0oNHrmQYBdiJoYNCoqQtdiTIG1JRqhwrU2dK0wakVRMJvP92yQtShUOm5NWVToWkDFw4ePhTFPImnnBpzrUFoeYB8dzjtQEaOMHJ+StKfSKuHAkBhHJdc0RorCUhiLNSUK+MbXX2W2qPjIRz7CM888Q9M0lGVJkTQ/mZGx1gpjlLRdWoMjcHh0kNKdBYdHB+O9MNW0ZODTdd3IWsYY03mYitNFmBv8O9cujtfru3r3D9no+4Guk9RKUdZYaxID0RF8TGhWs9lssbZAa0NZyg1oTIFO+dXVqqSoJJVhrGUYBLVKYK0IXp6ik8enuMGhVMTlnCVSpiaK7oHtrhEaTCmKsmK2WGJTKfPh4RGz2UxU/00jJYZlSVWK4G7oe4L3tG2boqqYIsmCsihZLBY8c+cOR0dHnJ+f8fjkUSrBI1H1srBWZUXfDSwXc3lQBieMkY8YDW3TUZQF1aKiPqrhQYuqAi52mNJIWXBwoFu0Lim8Qbknq6iujkjkHWUXVXgq/X91/Y464LTjxq1DisFz8ugMs6ih1qi6xHUKByivqXz5xPc9+Sjk5TGVLe53nFzauE/xeLh6NJNILf/tjE0lxcK6BbK41+KVJmhAaUyM6LeFcJNNRP02qZErR5MX9bTPKt0rRoEbHMF7SlsTcRhTcu9b3+TRg4cs6gU3b96m7z1t79DGYsoKYmC3bajMUoS2MaZoTf49VaGolNtRMVVDXd4pMnq6nNbKYpR4+X2TPy8ddZRnrB8Gef6UYrFYCZUdRB3TdQ3GWMpZJaxRL3oMYQRsYjtk4StTSWjOiXvvqeuabdMyOJmsnXf4mPZRa9Ai/ZyXS4qypO16ttttoqxlN601hAg+BC42G4aux2phdrwPaZKvcC5QFBKBdyldY6sKhUqi+oKmbUAZfIDdrkVpS53oeKUUlbXEJCDVSoHSKCWp4qbrKYnMFwusD9gioouaGGTxms9qolIMTiLzHCi1bTtGwHmRHwEJiqgCwXt8FqBGAfRZc4JSxJSayiDE2qRJSayoCK1TuidF3CZF4kNiTlCKwhYEHTBETEqlhhQsaK0xSgBvjJHoHd4F+pRemqb1cgHDNK2TdUJa91hb0LYNsGfTpDoo4tWAUpoQNd5Foo8o5wkhcnGx4a37D5hXBavVKoFl0Trtdk2qSArjOdDaYCMUs4qitLRdy3a7xaf39H0QW4rgJbiZ6ECyBcUlrU+UNS0qmeu11hRGWA9rLVVZoZTM31p77t27zx/+4R+yXC5RSo/3fQaK67VUx83m1QhcciVPFk3nVFieaK6mBLNma8pY9f0wnnM5t2IrEQtGEPlOx480QDF6XzK4XMxYLGYoFPNC/AXWboO1iiF4lIW6qmnblhAjAU89mzObzTk6OsJ7x/2HD0YhGjGMeWSrIyo6jILd+hxrJcqoSxHb7oVekmbKN1Xb9yiraPoGdKSal0Ql/hi2EOrQ6EhZl1ij2G23tLuGtm3TA2spy4p6VrO+OOHk8T2WyyU3btzgubu3qEtN27RcXKwB0Gi6bqB3DmtgXluh/IcBHXvqQhD7kHwBthdrmvUOHeZoH6iLEh8jJirAgLIEZdNE/RQF/5UxLjtpQpou+DluznqP+LQ8xhOhtQZdsB4cIS7R8+eo8GgFNiiUcrKvyhIU7BMt4+N05WtTfjoL+rQS3xDnZXlUkodRZOW/vryUpi+OadGOQFBZIG1BdWjToWMAX0D0UgmTFvinMSNP5mSfDmCeSH+NC77AqHw+Oxfohi6xOREwGDujnq2IPObs4oKvvvI1lDKcnF7wP/2f/VvcmM8w1DS7lqNDiYYjko4MhP22p4RX3NNTbxcTZQDzxH5f0QGJWDlBRy0L8BAim7YToFWV4ANRMbKKAMvFnKIUTcBsPiMGqUSQZziVRipDcC49r3VaXMM4dyzms7H8t2kaIpFZPUuMiyycovvQUmW3i8xrCSq89+PvnfN0bcvs8JCqrAjBU9U1IaWA3OBAa/q+o57NqGeiW1CZpel7qsIyn82wRTGm19pOKkhCSF4q2lDMZ8L+aI33oiOIVhOCoxkc1pYU1tD2O4iK2WxJWc4ISmGM+HoEt4+gsyB3KoQFMKaAuOe8xgU/L0YgCw8CLqbVUt55fAIKRRZ0aiUAK32PKSoKk0tWRXhKTGXNZh8MxLAPfCQIklSqCGk11koQF0OkH3oUegRJMT/z6XtDqm5TSAWYd3vhtCywRUpzaoyWfKsxPqWVpIihtIpduxsX++OjY1CMWguQYy2qgqIok0DaMatrPvLhD/P45JyT0wsu1o9RxmKtJnpQMXlNqb1g2Zh9amsUJ6f1pbAFMj0L+xtVROmYhMORpvV87nNf5tm7L/LBD3xgtJ6Q+SiymAlzqNEYDC44uqZjNptJiioGKlslrRRcpGKNfK5GrVK4XEk1n8/wfiAiFgDb7YYQImUplamKt5vlnhw/0gAlInXazjnRl7Q7ZvWcWT3DKE1dVfgwyASTUKM2muglpycioYaTE4me9iI6hTGCErUCW05owOBERKjSBYoeokqTDUQjUX3bdhSVgIvNZkNdljTtLuVQSWKzwNC3NJ2UJy+Xc3a7DWVpE5LVlKWhLAytipSlIYaBi/NTtDY0TUtVVRijxzp57zzNbsdyMcMNHSS/gL7zWFsRPPQ+GcTFyLCV8mEjRXuivyBPUgYwBK0So/DthxrzDqlKZlxU1Z4eURmJP4VreWKlU2hTYPSMRbVksDPc7gRDou3xaVvlaLC0vzf2DzpXXo+TfEXQgN1H7zmCCVfyQ5EJc5LBjFIoJWI9yf4EUE4W3EAyp4vocZW+fIAyyb8zyvOpzGjM+y3VWhExBRtcjy1qSNG5sYobN27Sdz0HqwXPPLrNs88+x9e+/io3btygSh4pPZamccznEqkH4pjSiXGyDxOg9e0Y25x2euJYrryaLfvGMmylaPuex6fn9F1DVVVYa9httyxmNdaK8aG2smjsdjucF/bk/Pw86ciknD4mJqbrOmwhkaH4fkW0gu1uK6kSY+R5AXpFiiDl/ml3W3bBo3SkSD4sRWEoS5vMACMxOLQGolSvDM7Rr9c452iaZqxOiTHSdp2koQZHVVWyTyC+SGme6pM2ZbfbgBITLK0qiFAU4nMUQzJBRFJxAWGR+sGjteXk5BSFpt21aLtBp+oLnea1bFy592GagIIY6ROLfFkUvtdzZECjp1c0+5UohdKSSpPnJV37SYnv/h5SI4gIIeCTX9SlRXmybWMMSmtsqgYKIWC0aApzKi0LOHPVCUQGN6RrV45AbCqqdX5IwmadYBCoEOTfMSRZYqBtOnZth1Ka+XyOLfYVQfn7rLWj5cRut8UYMQPcbLecnJzQjSk2CyoSB/ChH8/r1YAka2vE7E6N28rsUU6rKeVGfdUwDHz1q1/n7nN/yPvf937R7ThPH2X+rcoCXWp83AubtRIdzCXQgRYrimRUePWnT/qtvN9iCufxPtC2LefnZ3Rdx2y2YLfbvmNwAj/iAKUqKxaLBbudp2sbLtZrEeLYAjdIhDC4gdLuBbPZAwTkonedlBVHGMsLc8lYzi/m8iqtNYUVCrHv+9HddVrKlWnO+XwOyfXw9u3bVIXl5NGjlNstKYxh6FPZYoS6rsftTIVH2+02AaeBqpIc/Ha7Zb1e0zRd2u6+zFJrqQDQWtO1Hd71dKkeHWWYLw4oKjl+bQzKGlQQwZcx2VtEi9BTa4hp+XjKYv/EiE8uWE9E/lPQ8p2GQkR+bkBVMXnZbDha3BHGRCmiSqJO/c4bcz9tn6ZMxnSyvjpyxUFOCQUVUEG9Y6DxRxnvLG8rKMI7qRwRSjvTxXEU3NV1zcHBAWVZcHBwSNM2KT1qMc6x2eyYzVdoLT5Y5k+o37lSKkW78n+tNavVCj+rKUt5vnabjdzbxiTDNkM/SCp0uxPqPCLpFmskldQPrVQiKEMk4MNAcD5V++iRrp7+5HLl7PUwLpTejeWZOV2U6XClFE3TsD05pSzr0VzSuUFcRbWwLNkr4vDgYCwrznR60wh7mvcjV7AIgyLC/s1mS9f1KV29p+GHbmA2n6FKRdt0VFUhBlopxWSsJWbAqvdpxLzITXui7BmzfXXVWGo+WdSn6ZvpHZpZ7acJVafgZFq9k/8v51p4kimjMwUx088z0bnk9zvnxkUzz/t5Ts3nbPr+GHMlkiPobFS4367N/yankTRFJQHAwcGBVFKmcu98DHkeH7UehaXdtazXax4/fiwePcbghux+bpDKwT34u3qunJPUrc9l0bmyZzxv++PNIG273fKlL32J+/d/lrt3n6Es7eS6i/9XBij5e/K6Boz+QvP5nGomFa0ZAGXGJAf/ufghB6dFUaAKzc2bN4kRrJWg4U8Ng5If9r6TtMwyiXE2mw1ERT2b0fXNpRI4sZiXf1srEVDXdVIeOKmNz4p/YMwtWmtxMTD03SiyE0Mbg/f7h0JATcngwwgcunbvbAhIqaASM6JCywU/OzsDGCcuiaB2dF1HWVrWG1Fyy+QoVTwCtiSKLIqSw8NjfPS4oWfoO0prxvLLh49OODtbszw8ZrU64nC1EsTMnorXWovvCUoA1ncBUMY0CE9LXVx+5ztZdJUCqxRGJ4v7GKirQhy4R9ZCgVZPBShvtw9XI8X82vTfb7d/l343zbGrRMV+F/HBdysYe/ILJgKQKIBCjJ4smZOQaDZPJsmLQot75NHhYYr2DIOT+3u32+IcFOWE9fqj7t53eXxjxVCKQBeLBX3XoBKj4Z2n63qcC4lqVqOTpfeBpmmxRYEbOsqioqpLQJxX8ZG+73Btz+AGrJHnom1b2ralrutRYD+NQIWelyq9wQ2Xcu955Ai/rmuKsgKlRxOrthXQoZQaUwB1VVMWllBV+xLXxNBOWYMsWmzaLe7csVysiDGy2azFKqAsmc2kUqmyFdWsIvjA0Is7a144ZrOaqq7pcrQNmPS8TMt7p9dBa508Ny6Dk7yPU1bFh71r7FVmZBppTz87BRr5e0YdTCJipy6v+bxM3ydHcrkaJ4tgs6Yif3cW/07n+Pz9eZGNVLjgUEp8UJQ2aMAkoXKuCjTWSJGD2fuf5FLr6fnKQlylRDC73mx4/PhRmt8zsApEBPQobS8d35RJyffD0PepMsuPwCtfv/z+fJwuib1ff/11Pv/5z3N8fAixoK5KtBY336F39M6PLWAy6M7akgzsZO26DD6n90UWPTvnhFlMqaistxHApy8B0ncyfqQByq7ZcXZ2RvA9WouFvkKx2zY0u471eoMt7VjLnenWnEebXvyiLEb2I0dveWG/uLjg9PRUyhzLKmlDaupJnxuFwWjRHQQPdlZwcCRlg+v1GptU2wq5cQtjMVpTlhU6+Tnsdrtx29aKE9/UHKko9Fg+OZ8vuHXrNiEE2rZntVoxDCJ67IeBtlHUhRV1tlIcHR2hlKUfPE3X4f05BhiGfjRjMsYQVZAeL1GNaYw9QPkOAs8r2HgaPU0Xf0nxvAOAgpRJCh0+0DU7tM2RRdo1HRlFrldYjG+3QOZzepW2fhp4edrIuprxs2P64zse1jvex3c8kmDWe8/FxZrDg+M0oVmpDkDy74vFfJz8+r7HFhVt0+IPwgisAZzrRyfJ73VcPb63B43k7A6QDLv6YRQ9Nk0DSqp7dKosCkA3DFxsNlhjWK5WKKWYJ9dVH6XaYdsKxW5LS9d2dEOHCxrryzEYydqxfF8AwuB4T1FYvJcy0Kw7yAxKXoQyM6WVSWkCSS2VxqLKCm0MNulcDpbiqdQ0zaXKmXwvZU2ILGSB+WzOdrdlt2suBTniUyHmYFpp/M5DFH8oWUtjSjHsiMYS0nVXPmA0o3g4L2hXDdiuAhO5N/bR9aWUy+TaTpmRKbDIqaSpqPUqaJl+71TrMP1c/m5jNDpVZOXrON3/fEzTz40BYmoZkM9jtnLPDrjBe6KT0nEdHBCxRn7XtR3KFBTF3iwwxji2PckAd7vdUhTCZMUQKazl/Px8LIIgpsoXLFpHso/TFJjl+zGXyU/BwDSttG8bEEaglj+32+34vd/7Pd7//vfwvve+J62HkuL0zrPb7ZIr+R6g5+swn8/H77bJ8yef52lqcMpASoGHVEv2vaQ1Z7M5WUvzpybFk6PBrh3QWhZ+4t7muG0bFnaWJlt5OCXqmKVocTfeRDqVCk9PfNd148UoCnGaras69W5RKZobEoOS0WM55t5son7ruiY4h0qlgdk2v00mU12a7EAmjeVyOeZOl8tlcoR0zOcVw+DS/heXJpDFYkHX9TSNsC/L1RL8QPSOoe/lQZkt2Gxb3MkZ3nnOz8/xzkGxv8mUUUljo1KzMEHOoxjh2wyV9Cd5n576HqVGJH51XEXXOgaUTyyKkjr9bbejabaYuU/tCXIuPHLVaeRp27gKPKYT3tXPPm1xvTp55xLlyw3N1Ki/mNa/fG98xJNDSlSFhbNW0216dHLCjCh8GDATY0JgfAa0thhb0XVbsgTRaGkZ0feO2awUqlan/ddq7FCgniIf+l7Ilv153p/vZtfw6PEjbhwfEmMYF9PFbDE+a845ZrM5BweH4yKfRbJd142Rn9YCAuq6HoV6ovEyqFKaAWZKPC9aki7VKaUTU/qTMSUkYsD5GB3nBSGm++Hi4hxrDIXVWCMBUZWqaeqqxLkwut7mtESO+nNgkvVQZVVKSktJVLxarQhJ6F2W9WiWZQvL+mJNENU0TdPghoHHj0+wuwYyGAKs0WMfoXxvKKXGKNoYgylm6druWZ08ppUcpS0wac7Mr13teZQXvRzxT6tGrgILlDSjDCGMrHTejwxscqpKJ2Ce9zunFqYaisyG5YU/+3/k78z7qDSYwuB8ZHBeqseieLjIfiT323SsTdOMzEld1+M9uVxKj6bFYjHuKwqWyyU5kAghoo1NGpQCYxTOd+NaMz1f+Xsz05PB4FSkOgVleS7P+weBb3zjVV599TXe/e53pbWrRSuFNeZSn7tpCizf15AYGls8kbLL92teswC6rmdw0hR3t21SmlRKs537zlrG6fiRBigxhmTMVHDjWOjqzWZD23RYU0DKtOYoJwTpX5ORpUxSKXJJ1HIGJfkmz1qUfOG22y277W5kWzIbkx+I7XYrC0ZhudisMVYmxrpMDcG8w1ozTqRN0+Im35Un2d1ul5DnLD3ojhiHUati082yXC6JccNms0Fr6fGTciBCM9sZGpV0LFDPltTzJd7D5uIiRT9qnOC9iqlL7pRB4QlxyVMjYZVZlCffd5n6TW+efvQpgEAhqZ3oHMporNbijZA0CJ7pw6mu7uIT232ayC+/Zxr9vd3xTd+XjxdEYByNvpTyITFQU17ne9GpPBXwZb2GEhAZfKQoRJmvdDZm0mht6Xspz93utiznc7wXx9EQI0M/JCdVmM0WbDYXrFYzckXgVXYJdfXqfW/HcTlyFl3BbDbj+OgYaVCmxvz++cUF3iVx9Ohf48fyY1tIea82liq5wxprqSqpplgdHICSijnv4/ic54Umg4McGGQGx/thvLZZ9FrX9cg+jMBCacqiSOxoOWrJTOpwLH12tszmSw7nCyk7negJ8iIL2c9DxLdFWVAWJlUoyWQ/ZQiik2tbFqVYLERFVUqj0YODFYvDI4KWsmkVgjQrvJJCyWztOBfEfcotX6c81+W/nXNSjqz3jfkyaMvXNIOtzCzk9+XmelOWJcYo3jmKicB1f+9cnU+m6Yb8/VMgNU39XP1cBgFj+gk5l9YUlGUtwnjvYejlelYlq9WKOPQMPo7XKkbRx52dnY2MA+xN8GKUkv38nsy6gJxPbcQWX0c9XpP8nVPQrLV+Yh6eHudYQZXuo/x613ecnDzmS1/8Ii+++DwffP/7GNIxFRZms30Qf5XhEiNQeQ+TdS6f82kKK4+yKkGJ9f5mveX27dsTZjL+6dGg1LWUCMcoWg2rxcwnX0St97RkvtCbzeYSvQhCpe6aJjm3ltR1zWKxGAFHRuB9cojMyHiac5wi3hCidBRVeryQWksJndw8YiCnlKKsSook1suTXa4mWi6XHB4eSoVS32NMROu9Ec7JyWl68PQY9VhboIxOVQVS2lKUItr1AWxRMwQpryuOjynKks6LBbPWWkrVQmr9pfS4yD5huPWUB+XtHFCvLvZvx1pcHbmLqlWyPxqwOvUxshoXpaWXCmlhu7o/T9nnKTiZRgFPAyhX9/uJ15TQ6DpKfvVPdoijZgykPh9BUosJuBbW0nY7NpuBqiqxRnQRu21P7uVElAqkcZLxnrK0nJ4JBW2UxejcjyhXZv3JHJ1Swk71vfT2KIqsq9Ew0dTkxcc5R0QMCJ0PAtZdFk8qUI6u96hNQ9c5lLYobUZgkiPvMTo3ZlxA67rCe0ZBbJW0IznVkzUmxhgRMXqfbPDLsb39xcXF6NMUY6DvOobBj1bjmdmqKvFEWq/XyVa/QOnIyekJR4c3UiBTstu1nJ2dsVodin7ADcIEKc2m2+EGYYBNYnpWBwcMQar8pHfV05+XvMgZYwhu/6xeBSn59aIoMEp8Wa4+L1NTr5x+yO+ZalOuPlcR8Ik1y/Ns1mBcquohdzHf738GTRmQTNNDeUyBWP5cjBFUxEePsSXGCHiPzqUys709gfMOYwqGQUBXBrLWWlar1SU9ygh+EiN/CXSoiNUmsUkelJhuZvZ+2mtqep6mjNb0fGTAlAs4xmILHXFD5A+/+EXe+7738P73voe6loqwkNKRU51mBhxT+3uAqPYal+ncmjs5yzkw49rlnGdWz8dz4pI4XWvw77Adz480QLm4OOfmrSOGocFoxfHRgeTd4yDGZssVTbdNvWjipRspazzOz8/ZbDaYwnJ8fExd1yMwyTduFgtZa6nmFWUhlr8XFxfkFE4GQWWuiLAGT0AblYS4PdZogves1+cE56krsbEPk4c457Wzqjor+5WS0sOu60djnGyyZG2Zyq09N27cxJYFQ+rj4cOUIhRzJu8czkUOFgsRVKZuoTFGmf8zEyLKtyslwzKeGtFHnsr1P/nZPXgcP/o0RiakTtAMNEPPZr2m8RvMMrVaV3miM091aX0qiJqwAVeFe9P9eFolzzQyG79PK9To1R4vTcJ/fCPrX8TO36hI38sEYI00tru4OOf/94/+e77xja/zl/7SX+KF55+jqkranTg/LhYrun5ASnJTTBNJhmIlu6ahtAty2izmyCd+LzzQOx/OS8PPqhQB+jAMiD8NEyF6MaZup9fLJOp8GCTtVxY13juMLug7ufetKYhBelIVhbCZOd2Ro/u+71ksFmmiVuPzlkXsOeLMn5WOxJZFYj1d3zH08l4/9PgBCmOI3hNNoK72wdB2ux23ud1KB2TpOF5Lp9v0uyHNAd4LgzNW/blBbIMSWJCmqVLhFII4kWqtpV2DF03FFLBfZRV1Svfl3+VnZLpYjtG+85dSKnA57ZD/PU0BTQHP9G8ApfdiyqsalPE9k89Pn9MMWPPn8zw6NQjbu+LGJ75jfz4lfZrMtQExuevajug9bSffmxntvu/HsvbcRXsKhLSRFOL5+fm4+MeoxupJqVySSrss3M6g7JJDbgJreb3JTFDeh2llWAZDKCkpvnfvHq+88gqPf+oneeaZ2+k5lqqpzPRNdSQnJyejLvLOnTsELoPVKTu177+kiWEvd6jKOl236Xz7nZ7+/fiRBig5h1oUBTeOj7h58ybr8wuGbhiRJEiKJ0c/Gcl3XTci7aqSMjxRZUesvcy8ZEW+bLMcL+TUMnu1WtG27Uj/Ki31427o2W42GK2pE9Dpug6TaHltDPP5InV87Dg/v0Ap6W/Rti273S6h2ADKj4g3u2auVgcJ8YZk+S3194U1NNsNRMlF1rMZbduz3p5jS3molJabSbGfbCQ61SjCFQblskj27TQmV8fTUjcJyTzxvqvDaIOtSnQvRnF1VVHYPfOhVApuUmj/tD16+rb3tHJ+z7dL7eSxZ33SdyTNiTF5Qp0wKckOn3diW/9HHDEmO+kgYrRhcNS2IvjIl7/8Jf7u3/1/c+/ePX7pl36Jl196njxJ9F3PaqUlhaMyg6BRep9Pvjg/5fhgOZ6TPz4GJV7+dxL8pmUOSCnSqsINnkAkakVVltRVTVFY1HIpHX3nc4qyZDFfUdiSECKbxIC2XYu4cw48evSIpt2hlRLn5OiTW3OB0moMAjJD4IP4Jl1cXFAlu/CsMzNGUo4y+UJI1TA58s/P7mxW0/eik1iuVoRUHdf3/diWXms9zktZXKm1Zj6bo5Qm+MD5+YWYN9bSCsA5qWT0MSTHbIuKmtlMzglRhEPaGLQxRBOJTkG8DKSn0flI3WPls1oR4z4NlPU6OglKjUmAJbNIITe/y2J2YaFytWMIl0v1Ffu4RilFQDqgw16UK4t0TuXKwq5SaT1JEEwkpf2mZnN7lm3Kakw1KPu7T4IeQnZsnQYpMbmDF5hoKMJlkDTtT1PX9QgyMuMwX8xZLJY899xz3HvrIW3nGXyq1lFiJjoM/Qgychrt8qKuRrYjB52ZXcprUtZOHRwcjCXyZ+enLOYztFK88fobvPbqaywWM8qiwBpxTs/7++qrr/HVr32Vr3zlK9x78x73HzzgPe9+F7/yq7/Ky+9693jM0/YFWRKRfyevuXTvZRZJY20CY39aAMpyueDOnduE2AOBzfqCYeiJRJwb6Pqeg6MD6nmdBDqO09MzIKZoqeD4+Jiqqtgkbcl8NuPo8AgQvUjTNCgNbdMK2BgcjGprxTD0PHr0gJs3b6U0TWZoDNtmx2YT8MoRfMCakqq0VOU8lUZbHp/tqF3gVllTzQ64US7YbDYE79AK+r5BB0fwoFWB9700FyxlInK90GmzUnLJtiioq5qtGyirmq5t2DY7tm2fGJXAsq5ItpxSnju2M88/e4Ou/KOeoht5crxdhUZ8yruufNdT9CshDHRDj42awe3YNGva4Lmxeg5jZPHCSXO+d7x/ce82G0PKdSewOL6FcbacfDKkRVqAh1JS/qwxmBCJVkEo0HGGGN1FtHBo7BMk36+xF6xao1EREWETMYlVabY7iJGXXniBw4MDIGJUcs4NnjAMWGMhetGjEMaJ0OiSoRdzv7oSk6sRqD7l3Lz9Xr6zEZVPtvganVw8dXIJjXGgUCWlh1VZcXSwZLY84ODwmNViRXA9Vkl1T7VcoasFw9Dj23PKqsb5YxaHN1gcHHP3uecxpeb119/gn3/6n/Hq179K7DdcnG/wycdCay1W6yqiCsOu3TJbzNEmVbqhmZdzvPPC2vmI63uMhUVt8UalVCS0ux1KOQ5WK4wt2O0aLi42wvAUFegCL+QG8+VK0kMhMjeWoe+5WG8wVo2eINaWHBwJyxt8ZHABH9JiHhWzak7wXtgn12NLC1rKYongeo9CEby4MedFbcowTP/vvENhIOb7V/RBMQRM0goRo5hfRiRy9rlFiLiVKp3SryoSopMUshEn7xjk97k1iPR/EmYwKUaIk6AghDwvRaIPkCojQwiSjhl/AsTMXMhzPmV+4LIebRThMllQtfgb6xjHogiAGCLOO+r5YlzYZ6lvVGYbsnZGaz2yz+JJpDk8OKau5nTdjsJIi4PgHV27o2230j8uSqNJa0QfFRyEEJNIN9APHYPrUUpcYxUSSw5Dh/MDs1L0ZMoYFssl682atm25cXjA5vyCV77yVV68+yx3bt+m3W1RpuS1197gv/lv/1v++ac/zdnFOf0wIE0xe07Pz/nGa6/yrne9e7R7mFUVzkubgtywMTMqgxOGzmgzCtSl7cOfsjLjsiw5Pj5Cm0Cz3XJ6dsrQO+lFgGbXdCijmC2kxCmzIRKtmDHCAeg7R9/vuPvsXdzg2G63qWqnoqwKCmtxbsANQldJzk6PZXzn52esVqsRpBhjMAqJ+o1Fuiwv0vqo2KitiOxcT4+jc3KzGVtgC89Aj/c9tpByTzcM6Kg5un1MXc8wRvP48Qld19O3A3UtrMvNGzfpvURjs9UKpTXrjfQPkVr/SNeJe6zrPd4NyTo5jIuPUmlCygDle1FFPmUoxVMXuKdqRgpDpRYsVjX13PLwdA2mQNmIDgajlfgmvMMGeypOmKB0bKPYUtCKOOoSR60Dk7LoCBD3mh2J12KasDU6pLy29qA8Khb7be83+j2PCAIsUYQAfpBFRwNo+Lmf+1f4yZ/6cXFRLmu6NpVSak1dlJSFpaxn7Jqd5IR9DyoL5SJFUdM0fQIoKgG3p2t94O3xyjuBtDlyzQBFA4XVHB7MWdQFzx7f4mh2yLIsmVUapwp6r2k2G2LfsZqVaKvQQ4nHsNteELYPuHAB7Jyucxwc3eLu8y8RdeCFl17mQx/9EJ/97Gf4F7/z38PrgXbXYI3h5s2bnJ2cE1SkrEqGnceFQFWW3LhxC9cOeKdYLY4xWrHenlPVinpR0PcdhYXoAjF4ZrMKW+RUiSdGn1K2PS4qZosDlstlYnerUTDpnOOk7WjaDud7jNEcHR0Ky4tcB1ukIgAfUNpQanHW22624rJaFqS+oLgg3ZIJCZwmHcD0eZumyEbRrJLrrVRmGqIwq/IQTNI2+VrGfRsJlQGA/Nv7gTC5IcbPusDg9mJdkBYAmmwCtwcThd2LbGMCSyRb/AleIgQ1ApUYw7g4Trc7LZCAvQBVfFCkx5HSyRbeD/sqPUTT5/3eHM5aO8oIMpsC7CvL0vdrU9J1A87JfKKNkVYIu4b1xQXdIIURZVFL00QYK7Ji0g32fc/Q94Dcn5nt6rpWWiq4AYWIXm26p6qyYrdZMwyO0pa88eprfOH4BrOf/imU0nzpK1/mb//f/ms+89nPUc3nFNUSW0e22zUEzxAGds2OXE0XgzCROZ2Ur4+1FozBFmkOZC/Ezk1qdRJq/6kQyRZVQde1xCiltD43AytrClvQdoOIzfy+tbS1lvV6zWKxGHUfbdvivef4+Ji2bbm4OOfk5ASA5557ltt3bo1lY+v1lqF3o44FROEs6vzd+H3zeU09q5jNaxQa5z1t0yV6U+zHF8s5S7NiO3QoZdlud3Rtx6yuqaqaZjcQAhRFTVXWYhpkDMPQUdWrVG54Tte3aKMIfeD84oyi2psRKaVYHRxgm2bMU+bUl+8TPag1trBYY3DZGTX7oOgJjfIdh+JtlbJPvO/KK09hQLTSKGvASwmsCDqT8E5poZhTHwrC0/fvMuh5mjLrcl5VXkmupqNoXicSQY1pFZnoErOg4vcVwL3TEZVEh97LZCwiZ6RtemGYL2eJBpbmanVdM3QteM3Z2RmLg0jbdlS1VB5oE5B1LlCWFV3XJ4ZJZeJpr036vo49+MudomdlwfN3brOaFxgPcWixlaFt1zhTQ3kAZclsMcNamC1mKKtZN2dcXJzQnZ+y2bUM0fLCyzNWByu6vmO+nBFi5Oj4mJ/7C3+B973nJf6bv/t3+ee/93t4H8FU2Nmctu3QUVOVc5TR6RyDLmcUpsIry+Aj0c7pXMPpqQQ0y8JysBDdyPpsQz90dF2L0ibphByLxYy+6Wia3eh5ktM6WouYOTO76805dV2O6R9JKcGsnqOTwePoVmq0WBAUBaYsaDfbUTwZvIcsNtcZdO9ZhEzZ50V7WpUxHVNr9WnFSR5XmYopS3MVxebvyLqHzOK4EDATJ9enpaKmn7+aRs5VVbLdywaZU71JFpXunVH3vwsh6dxixCZA5JynH3oqW6NS2XvWa+R0X2af8j71gzSGzKZuWS+VXbvbVtxld80OlHSn38/deZ/3PahCCBhrUWHvj3K1rD4kIOEHR9u1Y4qv7wb6YQBl2O0amqbl4mLD//CP/ymf//wfMp8vKWcz6sWCs7NTEbUOnsLmec+j0rmduqhP7wVtJLhzXrIGsHdtjjGlhr6LmeFHGqCAdGTs+4blYi4NtEzBYr6gtCW2qGi6neSt042dldTZ7j6rlxeLOQcHB6l/gubWrVupyZHk9c7OzlK+j7G9dJ4Y5vN5cnuVieT09JTN1nLnzk2KwnJ6ek4IgVk9H7sYq7Sw9d6z7aViousGvPPcvHFDHqiE/p2NzGeSHx+85B1N14KGepF8EEqD7z1vPbiHD2Fkc7ITbX44skZmMZ8LC5FcWLXSid5UuSsPjGVtiqseI0+rcpFo6TtTeJGnaz2elIsElBK/iogjRrHtVsrs9ydPKu8oxfMkSwPZt2Q/gUUi2si2BfFLQzSJDiVNEpGHNqqI1jnFFLOE4u22/h3377sZ+bh98ERIGgpNVYvrZYgySe52W4J3bNcXrM/PMEiVWZ6gw5UFxvtAUVjanVSDWCv5/n0kzTtK8bzj40BLlDgmwgKl1ZTR019sKZQmUnLmd9gSFreOOH7uRcr5MbOyZFkbnrt9RNvu+PRnf5+Li1POHz3m0ema23df4P0f/jB37j6LLUt6F4hKTA99VNx87mU++Rd+gUenW7712mucXTRYU9C7He3gqOqKqpwBklboO8fgPFqXzBZLCpb43RqjLBSaqKWPU0RRVBXd0ON8JAzS50UeK8NivmAIjDq4zWYzLnhN0zCbzVgul5SVxRiVotUsWCaVRHcjaAHRQtV1TYiR3rsEssXrQil5zsuyInoBKFdF3xmgTMuPr95vWfMg29uXtebfT0HLE9U5iTmdgoRR76L21SHeuZTC3Ff7Zd3FtCryqmDzErhgD0aEjdgLe68KdKf/H11xtZV5kYiNmQWQ71JaEYIfjzNXrWRBa+4PJxU0Kmkl3YR1EQ1NP4hJ2m7XSHVVYSiLatQ5SmuEbEInTJaxUl2VTUdzcD2dv0RP0lDP5qNAGmBIwvNhcIQITdvzhS9+iX/8T34HbQrKcsadZ+6C1jx48Ii+88SgsLZiVs/GqsoszK2q6tK1jzGKBYDen8vcvToDlL7fOxa/k/EjDVAUKrm9tlKKWJaUqLGcWBuxPB6SMjorjZ977rnEhqzZbreAgA7xEhFDsLquqeuK9WZN04pj7Ww24+bN23gXRkX2brfj2WefJVf7ZAHubFax3W5SlUELwGx+RD0r2e0atpstZ2ePudg2rHcDRhWUVU1dzTk7W6cSx0hRGg5WS8Am8xupGupSl9MYoSiMpIOsIkaDDpJ2Wq/Xo9Av30x5/7pe2sLLmpkNptKDrtU+Uh4Byjtb/N8hz/IEl/F04KAplEW5PTsWQhzNyHQ0IxX9zqrWhDqWcVnwq3QCZ0rEjtZ6jBa2SyH0pHOSxgEtlKuPDHFIkVdIRxWf+P79UX9/R4gxLVYO5wNVWlR2zUBZWbTJIuw5wTlc31HeugnOobTGJEH1dNKPUeNcl8pGxaV4NqsorBxDkjt8H49GkT1jolLSgVlF+qbh5N63KHAcrQ7RlcJ5uHPreV760I8xu/kSujpAa82iVCjrOX/8mIcPHnF6esbpxYaD4xv8xE/+NC++/C5ClCo4W4lPSIgDgcgQI8++9G7e/5Ef5/R0TbfdcH6+oesGrBV9Ft6jgqPUmvm84mB1yN1nX+C5F17kxXe/i4tmyyuvv8obb7zO5vEj2rUI0e8cHHF43LBZX7DdbDHGsl3vUMowny3ASvovzxu5d8pms6HrOg4OVikl3aR+P+KlUVf1aGOulBjNeS+O0d57opo4Q3vPrmmo6hZjo2jfglitj+zKxGcji3UzUJkKZy+BiIk48+2Aw+jRkgGJzm014ri9q8BitKmf1KFmwWiuppwCnKs+IdM+MePiadSYhpqyLk9UFCUt25iaGtNMYdS5dF1H12woq/klZiZXlV21oFdKTDQ3my1nF2ecnZ0n4CFAYrvdJrNPnfrc7M+7+O94EezGkP7f03Ydu912DDbzyNeqKAq6vsP5QHAiSQhRTOYG7xlCwNY19956wD/+J7/DertjsVxxfOMmH/7Ix3jt9ddomlacnBV8+IMf4e6zzycdTBhZp8x8XWWyei/l+WVZSuARY2KBwp+uFI8xlhs3bnDnzk0Ukc3FOTFGzk8vePjwEbP5gqouaPtu9D+5e/fuyJ6sVquRYciTddPsaFvSxNDy+NEjBtdLlcBsxma9Hi2nM613+/btxN4Y7t27RwiBW7du8fjkIU3T8Oyzz9K2LaenpyyXS+q6Yhh6yqoAbbj31muEoFitjiFoTk5a+r4TJ9zFjOZGw3pWcuNogTGKYZDoqLAWW0i7d3ngPEordrtu3LfMooiSvubo6EhK2LyI/OQBVGgj7cWDRjrxgriIZm3HFQCR+1IAY046P9Tw7RgSWd300+7Qq2kfYrJMlgZUZVkznxdCWWrheUJw6QF5csmMY658v+18vHnHhYXIVUzyY42mtAGjUyVTapXsNKk5tMLFSCCgVEDp1OROhct4bozunnJw34eRH/z1drf/ep3PRaDvI9rkiFXu6dLOuTg9SQ30UnSXIlhJd+0XDGst292OxaLCh4jVcs6+z/BkBI0j/lMQhh66jqrStNsNLigOjl/kuRffz43bL+LKY5wSM62u6/nmN17lG1/7MqenO6DihZffy8d/5hN88CM/Rr1aocsCRyA4mTzxgcE5ds4TXOB9H/gw33r9m7z6lS/jfcBqw7wsqIzBhID1PUWEGwdzVosCv3vEN774iPXpPX7ip3+aH/ulf52HJyd8+l98hj/4l59lu7lI/aE09WxB1w3MZ3OWsxXbXQOmwFY1faLop91vxfG2HBkNqC45e2pjwIXRnjz7rbihT/eApprVNF0HKjkE28x2hNSHZ0/T52qQnALP91ZeZKcAIEfQUyZlWso7dYid/oylzmZf/nuVqcngo5i4oU6B0BQMXX4G4t6xNd9Xal+pl4WaOdV0tVx5/NHSHmFc0F1P9B4TpHqySEUVwXUC5FP1SmZ5cnnx1NWWGMe+RzEG+tTHTQS23Wi8V5Wz1BTTjKmQvPC74IhRqnx8YtCnVhT52mSGyFrL8dERMarkt9PTNprgI7um441vvcmtW3d4Vb3Ol7/2inSdRvHMs3dpm4bHj09SFZemLC3/6v/oX+PF51+gTz2Eps7LOTU57QU0DANlJdkEMUxlBCgCcEdS5zuOH2mAYm1WTBcYrfCup09dPQ8PDynKkj5NSAcHBxwcHHDjxg222+3o8pjzvTHuLZJjnLTNLgqKUoBQ27acnJzhU7Oy4+NjDg4OuHnz5qSfg0lRqZhhaSWeDAcHhwxDl6iuMNLlwXv6tpOOxlVHb3J/ClJreM3p2QVnZ54YbnLr1jHOiSCyqgt8cPgARanlBo5yE+Tcdo6k8sOeS6bdMNA2zZj9l1SPsAh50VBJfxKfsibpmH+3z5NOl355bR9V7ZH+VKA6HZf9DOQtkgaLhERNimJc+8hlmBFS2ucqJc0EnKTJaHTHzJFT1prE8QcViNGJCZqWqoUQVBZJpH0L8qMD2iA9b5Ioj7gHavtt7w/96j7+UYeQXpGu79GmSLsWuXf/Tb74xS8zX8zZbtf8+Md+gju3b+HSBNc0DWUqrXcxEgeHDyE33x5TR2VZ0jbb8Tpe9Zz4voyYAEq6x6TqAazS2BDptzu8Krh54y4vvvfDHN56md7X9J2kOwujuLg45c1vPmCz7lkePssHP/pxPvTh97NYHTAAm7Yldj1FVad0Zlq8YmRQmhgCBweH/Jkf/3EqIvde+wYXJw8JrmcYWtqhRQ0bKgPl0DCcPwKl6AfH61/7PK9/7fP8q7/4P+bDH/sYP/8X/gIvvfguvviHX+Drr3yJ7W5LCBJMxZAqQhCA79JC07btCDRyk8S6rtlsNux2O6qqTHPTMDIDPlXLZD2ZUjBLTtRuYvRFmkes2XczJuzFnbnhaQYHWb+R74OpV9CUnZhGzPkzUz3HdLGEpNtSClvs2xHkz09ZAO89WdLlRtZ07zI7ZXHy9mDf6HVanpu3mwHCJZ3Zlfs4RhH4hsQkhwhu8HjXY0Ig5C69Wm5SYw2ovTFc7mid15W8r4N3nF9csF5vOD87T/MktG1Dnzxysk2BtWUCeGHcd++lWWVMgVo/CHsy9vNJI5v8zecidZjVtWietKT99I0b2KR7uXf/AeGzn8Uay67rMaagqiuUirz55ps8fPgwHYPnYHnEB9//PmZ1jfP9yLplPyDv/ZiSzGXVTd+w0iuMNgSVWBPF+PefmjLj3BL78eNHY+lbWVYcHR1RmIJd07FYLbBl7uo5kxLeEDg5OaEsSw4ODvDep5SIJ8bAMPTpBo/M6pqi3Hd6PD4+pkvN+e7cuTO6PrZte+khffDgQVJXD5yenHFwcEhRVlgrHSmtLdJ2oK4s26bDuZazc0HnShmK0sgkNnQUhebho1Oatufw8IDDw5VoDHQB2uIDDE4Wctc7sbmGMfWUI5Fsrd3sdlJqaMTWzxjpahs0KGVSNYj4Hyh4wkk295vJ20j/GNmUka2Y/Ewnvney0OUy3jjEsdGicz55EEiorXXS8cYn01D7be73h5C3nVmPxPwo9kwIAhxNclwdQVv6I4SAjgJSohIRqTMirc3f9d0Iwb7bIRoecqW4PPgpgnr9m9/kb/yNv84ffumLLFcLTk4e83/6q/9Hbh5/UiLloR/TfLW2oytxTLl3P0arYGzuDdOzWNSpLPT7fzxTjXGUSyT3fdejvWd+8wZ3X3oPx3dfoo0lrvXYOlJahcXx4NF9us2a+WLBnRde4oMf/jBFoXBuICio5zNi6k+UE3FaGXElLkrpO9V1vPvll9g+fIvzb73KebfDtRtUDHTdDu17Ot/h2x1HBwfM5jXRe7rNjjfWj/n/DvKed330Z/jQhz/G7Tt3eOnlF3nla1/iS1/8AsRITEZfhS3AFvSRMaDJtuhXO8i6ZKkuHi45lSKVVll4KScusvM7AHyMuGSWRUSYHIVoqGJmQuSMZwYjMx9Tcf1VfUcGAFOAkt9/VVdyNeUD4MJeK5G3O00jjfeDkqqcKSsyBTIZ9Fzd1jQVBUz20eBdvPLa/kaeVgbJ7w0anUBlgQ7JhAxwg6NrW8pajUzHlD3I52I0g1Pi51SVVfpdwPnEnnQ9mW6NQcwD62qGSykS54Zx/4ZhkJTQZsOu2V4S+E47OGcHdDcJRjN4ytcVJRWuITQ4L/5aWktTzcenp2w2F4TgmFUVP/HjP8atm0fEsG/R0rbtCKwvLi7QWvPCCy/smz92ch4je43Vd1tenMePNECRFusN/TBQlyWr5ZwbxzfwLmC15ejYMPiBalaPN41SalQ8P3jwYKQZ63rGnTvPsFgsuH//Hm+++SZFYbl564Z4mmy3HB4eMqvnbDa70QY4O872fc/JyckoSN3tWtq2Y+gHlssFR8fS0GyxmHPnzi1WqwPOzs4oy4rj40M2mzc5PzvDFjXGlmgdCL0jEAjRUxRzttuGoXcUtmK1PMTOKna7LevNhqIwLJcLce6rvEy6yAOcOyXnKp4YI/Vshus7iHsvguwboIKU16HF7TDmsPbKmLInsI/oM3DI75F29Tkik+g8RyrT8TTQosbPyYRhtB+NnghpslUxMRZX0lBhz1TlYXLtZQYmWqhXlXNOKozvM0qN1QRa7481ajA6YoIsFDqKZ8cU7Mj3PCki/n6NqEQy2boBEj2NUnz2s/+Sz37+D5jP55KLTrRsXoBCCMlHw4/MmjaGVLg5WWhiEvMZttsdy5TmEZbl+8uiTK9cQABKiBHnQHvN3effzfs++uP4YkbvA123ZU5gWZU8vPcGX/zsP+Hs9ITVrTt88Cd/inXfo5qBelZT1BXVfIGyhog4OcdAKqHVRBWIw8DF2WO+8rnP8qU/+Jd86xtfozk/obJQWY3VMGBY7xwxthwcrAje0ey29O0OZQq+8Puf4eLsjF/45YqP/vSfJ6I5ODrm8OhGWsg8Q9cx9I6qLMfS06k2bJpSiTFSVRWL5Yy+F1t7rW1aBDRBxUvmWFor6pRmdt7TDj0+hes261HScyzPwH4xny4e04CCyf2QF+ApQ5L39WqJ8vSzU0fZ/Gf+nicY07w/V8Ls6T5mhiR/9xTkPG2/c4lrZs2eJt7df79iCCltkoyGtFZYJctkZjpEJCufny7+wKW2BwIwHboUT5nlcsnBwSHOvSHBQhAzPK01tijHCh7JJe/P3zD0bHcbKbBw+4a3VVWNzFsGjwcHYtyZTeyqqmI2m41as74f2CQGJgwD2hoG1xFVoB962nYrJeHBcffuc/xb/9b/hJs3jtDAkDSc+b7N351NBauqkpYzk0owhU4mp29DIX+H8X0HKP/pf/qf8hu/8RuXXvvgBz/Il770JUAu4H/8H//H/K2/9bfouo5f+qVf4m/8jb/BM888811vq+87Ts9OpQ12coLs+571xYbNZgtoispS5Ek5PSwZjT969Ihbt24l0ak0clJKcefOHelvMfSpA+W+qVhIF3273San14bT01MePXrEgwcPadtW3m9rjCmIEdq25/xcenEUpVy8Z599hqGXUqwXX3yBEALfeO1bhL6l0rLguEE69qIiXd/hW0dw8PjxKW3bcXx8SFVLHwelxMwnppznVK0uQt1+/FspRVUWYKR3iKmErdEC92WRjUm0mLrYxiuL0jRqyUNNtBZXI5lLudLsYfAdhlZSSGQLC8mf4BJVHn0S9CZwc8ULZTpxyT5JRQ7szaP2k6UANa0jRoPFQEzmUCqO+y1ARWEwmBhRymKiIlYl6HwNxjMypi4UTwKUd5qHfdrIrNaQ89BKNtK2Xbr+ijfv3eP07IyIGgWV1lqCtWmyyZS4GaM7SVNqvBe/hqIspQooHI07HXnKwXwPQxiUy03EjLEURcViUXP72Rew9ZJNhKbbEQMU1lPUc07eeoV7r3+Zbbvjxt3b7LoNuzNPbSzKGOx8hjYWtJKqAiS1431m+zyb8xNe+dIf8rnf/xd885WvsD0/5WBWcjgr6fstQwg0HradRxcFRTVnCENiMA3n5xdEFK9943X+h//hH/Pej/0MAcWDBw/58le+yoOHjwh9T1lI6lWjGBSjqHLqxJnt9ufzeQqcSk5O+1EjpZRU5cSkFTLpHvfOs3M7aYaagjHvHBIsJGFiuuHG/kRctn3Pi2xewKcpnauN/qa29fl78ndMS42nQMJHSaFMWZWnMRnGWHS6N6ffMZ1rroKqKTs7BU1KTVLBcV+5dBXQgKRvSlsSolQYhwgK6Ws2fp/ObLC0hMgOtXm702sZgpg7Zhv5oiiYzWp8SltlEa44gq9Gh+LM5si94VLD2h5xJJ6N4CSzIwJsZHvL5Ur+7QN9N6ATEMw6J1NYbt26RdO0bHc7ds2OzeaUfmhZr8/Z7tY432E0PPvsHT70oQ9IixgNhalEp5Pu2SnAbpqGzWbDer1mdbgar0X2c/mjcsp/LAzKRz/6Uf7hP/yH+41MKLn/6D/6j/h7f+/v8V/9V/8Vh4eH/Mqv/Ap/8S/+Rf7JP/knf6RtKWRB3u42tO0Wow1FUVHVNbvtlouTc2ZdqrRJ9sQmVTa88MILbDZbNpstBweHPH78mNPTU1544Tnu3LkjLdNtQQj7hmBHR4eYoqC6qPnG11/njTe+yenpKSApEluIZf1m10DoWCSTOG0ss/mMzXbDo0cnhIB0LEaxWFhu3nqWbeO4uFgTJr0yrDEMbiAohTElzsNu1xGjYrdrUDpyeLTk9u1jtrst3g0UpqSsSuqqYrlciR4l0YTDIEY/Z11HVdVjFBlsFG2HUgQDwStMMFIyFpQ8qEieNqcAYpysvuMiGccHD8WT0Qvp97lKeCKq9UEU5yApB4Oj8C0FHh8dmEipPDF0VGKOwhA0LgSUUU8E9pfo4/zrZIVNTusIJkvgRCJRoxRKGVRILEhK7cgmkk4lPXCzQtrXMzNAuY/Kxd9WzkHan+8FkOQx/Q5JWck+Wq2wRnGwnNNstzx++IC26/j4x3+KF55/XsSRyR102jU3BI+mSBGrRysBZSFG8cHVFhciQ4hYla/1O9vXdwRhFOIuKgRUOkZF0BqzXHH7uedZ3brFetvQqIG2E6OxMgyc9mu++carPHp8X/Rlq5oH3/giytYsD1YYdZfl0RyUpncRdInH4V1HdA4dPKE95/Hrr/HVP/gsj++9yeZiza1bt3n+2Vvs1ifsHu9ovWPAMIQgAJlA3+0wymOJ+KFPadaeV1/5Eg/vv8rh4aGkbE9OuDhfY5SiLmsODw/xw8DjiwtigLYToeRqJb5GTdOMvXhijNR1RQweku9F2+4oS+nhVVSWqpYFT1clSovF/G67w4fIbiudaL1zuKGn7ySQsWbPWeXKxqz1mC7YU5Yk//5qaXL+jqkAdSq2nYphQ/AJsMexjJjkJquVlnL5GHHRjXPG1SZ2U6YmVyhmXcQUxEz1LT7mwFRj7H6+IWbeMMsFtMwjPhKVOC8rxK3ZGKmyiQGIIjYuSzVuNzMUU5M2kAq7EMUqYbM+5/5bb7HbrgmuF5bWKOazgtmsREw0e3HcjQGfUkFd10FU1NWM+WLGfL6gLKTppLXSeTkDFXk90nUtWotNBeS+UTFpaCKEyKyqufvMXd7Cc3Z6zna9o+1aVHBUheLZO7eYz2oiHpcAvS3seJ5zFiHb/I+dvZH3zuqKwYm4VylNHIND0WG+k/HHAlCstTz77LNPvH5+fs5//p//5/yX/+V/yc///M8D8F/8F/8FH/7wh/nd3/1dfvZnf/a721D0LOYzifZ8kJOBph8GjLVEDW3fokxks7mgbeVCO+dZr9fJvbEdy3DrquLiQm6ivu/kwdeKui5HmvT4xiGb3Y6Ts1Ne+car7LYtjx4LkLl58wbaKiwQ8aKfQIFW1LOKEHO5mqJpB7o+0ncdbz04pSwrrK2ADev1GdIlc05WYterksE7yrJGaYM2omEZnFjx17OCelaIBb4xYq3ddnT9wGJWS3+Vi3MUltIaiRDQlNay8w4Xpf02ITCgCV5RR4OzMMSICqID2ZMUexCSAQC5l0USoY4aES2LDsjfSkXsVLimBJAMQ26Oldqzdw2mW1OqyOPTh7JwNo76wBC7c5ReoPQMW5TEscx3P/IESNyvqXn+VSpKakiJuFUlsaakdRQ2lejm/U+ZKbTKpYhhpFK1GyiUkzIUJTVHIV17rVSyh0778EckHpS6Ak4SZFQxoqPHaqmy+cVf+DleePEuZ+fnaK15+eV3c+f2HWKKxEKK8PphwBg70rHpNiXg8Unj46OW+ilrafuBg0UlepycDXvKPn7XI0aiDkSl0aRI2Cuq+ZLn3/8Bnr37LJQlFxcbzpsBHzWGwHF1k/Vuzb37Dxhc5PjoGL9b012cEpSiOz7m1q1DDJ7gHUpXhKDpmwHXNcS+I7Yb2Jzw8Buv8PibbzA0LYerQ37mZ/8s7W7D6996g/PtTrQTyuBDxAdH3+6orcIYi+tbguspqoqIJvoWQ0dVRD7wvvdy71vf4pWvf5379+5jtKUsSi7Oz3l8cY4qqnHuyYtxDqAyaNhutszrGh1T998ksnXDgE/lqW5woALL5YyiKKmrAucRM0olJnMQsSk9J6JLuVhZ2J8B0bT09mmC06muZCpclUu5Zzsy8MnfFWMcS4cj4PyeHZl+n9YaNRFrTwX+eX8yI5GZgfy7qwBqyrIIo7xnoUZBcNgv4kprcIn1zd4xSFCCEmY0hkhV1anahxGQZQ1RTrVcOpdIKwqjFVVp0clZ2FpDWVjqukAplwoBWnLJ+W63Zbvd0Pf9mE6ZzWqMlcawwzBQ14ayVBRFxXy2kG7eLrnVwqidzKXs0lZAixZyGCisZbU4ZH0hDSmDcwTnODxc8tJLL1BWxSg01nbfvyiDwieM2rRmu95IUBbE7qNezDC6BKXxYe/K/U7GHwtA+epXv8pzzz1HXdd88pOf5Dd/8zd56aWX+PSnP80wDPzCL/zC+N4PfehDvPTSS/zO7/zO2wKUbK6Wx8XFBQCFtSyXSx6fPGK73WCMpqpqdk0DiEtsVcoksNvtODs7pywq1usNm82GGzduslqtRMy628lF6zqObxzhuo6j4yNuHB1irUHFIJTYdstut2O7vuC5Z27T95JbDiFgtZLJMHiWixkqNTpbLGc4JxUUZ2dnVNWM7Va8UDbbnZSJQkpDeZpGuhcPw0CIciMvF0uqqpaeIEnAG2Mg+IhzgYcPT7h79zZ1VVCVVWoe19N3HV2zG7uyGq3wgyPqSGHKtPJJWKyIFCYF5SoyVwONV8SoCSqr5vX+gZ5MTONQ8dLv9oAAcvhtdNJsTF9PUUo2MQohUgfLqjBszx6z9K2kNIYdhTpA02HrBR2RoKBABLXTkSsHpiunUbmoNe7TCjGM4hLpAxOxSFt6oyS6M7nShyipJyUrekSlCp999Y4cu/x8f9UaV4biCZOs5cERn/jETzM4qT5q2l7AkRItUnADpdHJIEq0VD6EREunUk+lMVoTBpdSX5qm2XF8UBM8wqR8P0ci4vaJRMV8teKFl9/FwXKJ05btpmO9FVdMwsDFTEO/5fHJQ0L0KAInjx+JY6otiPMly4Mj6momGiPf0+8a2s0Fzfkp7eaM2DW8+fWv8tUvf5XzsxPm9ZwXX3yRw8MDvv71r7DdbYhAUZY0HShtcRGGEFjUlfgOsaOo5lTzJa7zLA+OKco53RCZLw/5+J/9c7x5/4T/x3/9X3N2sUVrQ2lLbt66QzsMGGNYLpfEGEcBe14ArLWp8gLKWkTvs9y7RmuapqHr+7HMUzrqzrFOdGvWGKRXyiBp0RxFXwEfUxfXpmnGdGAuGx49VSY6vqs6lDyueozkMtx8PPmzU0AxbeKXGZGrYtOpXmY67+TPXi1Xzt3nc3fqnJbpezc+L9OUVj6Ozsk1keaxAppLLSJW791YA1CVVWJ8GVNzuSAhf6ek6zTO+ZG1X61W1FXFrugSYEpaleRGm6uysh9ONgJdrVYCJN2QUq6MgGU2E+d0UKMF/eAG+r4dncPbtkn6lFSpqXIlo6w7B6sDTk4fJ42i5+joiFu3btF1bTrekl3yCctl8E8DZUopVquV9K/rGmnKWWjKUqOQ+/FqsPXtxvcdoHziE5/gb/7Nv8kHP/hB7t27x2/8xm/wcz/3c3z+85/nrbfeoixLjo6OLn3mmWee4a233nrb7/zN3/zNJ3QtIAv4ZrMZm71tt1uyqFMutGI+r4BMPepUDiVg59Gjh9y+/QxKKR4/uM/F+RnPPPMMzz17l4cP73OwWqbuuQhT43pOHj7AhUD0A0THyy8+zwfe914ePHjAxcU5m81aDNqMZjZbcOv2LYrCcH5+yuAiVS29gN566z7nZxcSlSVl/WazSVSiYTarJQ9t5f8hepzvWNQlxCA3DmIW1uwa2hYODweWy4K+dzTtjrIsmM1mBDew226BKIZdw8B8uSQg0ZUyklvVMYJ3FBTMC4c+e0Rp5hSrm7RRp2ZeUvGTV964z3Yw1Z887W/gUj5cJo208CtG0AIQfCQOHRffep2vfP73iTGgy4JWGXSz44YpWC1WYAqiMuiwTxHst3X5QdBKYUZDuph0IbI4Gy1UrjXSBNBEj8FjtEapkCqKkqYkyuIfHURjuSSp+WNFJJdHjCTa1iTjNWF8QpRj753CWikpzwtMXgSMMaP/T9Pu6NNCl8+TyouClkCgbQe8S16vynyHPfsjHQ3jyVOwWB5w89YzEkW2HefbjrOLC4yNlDqy2Spit8V7N6kYkEZr3luWRzdZHhxKlYnr6bY77r3xGvdefxX6Ha7dcnH6mFe+8grr9ZajwyOODg9ZLWfcv3ePB/fv40Og63qU02yaQO8Du7Zn23QcLhds25Y2KByG6CI3n32eD33sJ8HOeHyx4+HDb3J6uuYnfuoTXKwbvvG1rxE1FPUMFx2LVJKajdly2S/sy4fLomBI6bjMsOSIOuf/80LedS3n5+eindB2tBhXqW8USqO12KbDHtROmZBcMpwXzpyuyWzEFHxkgDPVfeSRgcjVlEz+3DQNNP3MpTsiRelPA0XTe3m6f/sO0nswlcFY/j3sNTNT0BOJ2OQJI3ozQ2FFawaw2zXstlus1gw+m6sJCJpW82RwIr8vkCZ5ZmSqQkrL5msXknla9jbJmg5pi7AYXcGbpmG33Y06pSx6tVY0Sm3XJhZmIKQqrml35JyGkdRhPYI+YwxHR0c07Y622bJcLrl79y6L+Zy+7zHGSJdkW4xzR9a05PTO1Lcl1VeyWq1YLhdELe04pEeS2Hi80/F9Byj/xr/xb4z//vEf/3E+8YlP8PLLL/N3/s7fGQ3Svtvxa7/2a3zqU58a/39xccGLL75I03QpVVPw7LPPolSkaVqp/x48s1lNWVVcXJylKhU7InmAR48e433EaIXrOpbzBR94//tZrVa8de9Nhr6nQTojx+AJ3rOcL3h8csLpw0fMZguee+Y2H/3Yj3Fy8phvfetbfP2VV/j6119hCJ7DowNiDGx3DWVlcb7n4GDFdtNyenpG1w0URTmqoGNa7auq5MaNG9Iyuy5ZrZb0fcdbD+5hjFBkzju0kpu+bVvKquDRw1Nm9YJZbTCJCi1Sdc7Q93SdGLTZNEFk226sNCnDKwqjxJhod87n/uk/ZNMr3v/nfpHZrecxVpC+6DemJbxc+ntaCfIkaJH3+IikPtQ+ZRBiKifWUirpvac0ip/8yR/He8ej0xMebxp6C961qJSrNcmY7NL8ltMQI4OTqhCSoFhSNxqjFLPaYlIqx2R3f0/yTBGqNAQxb1IjjS3bCCFCmJhHfR90Ju90OB9TmaAAdB8jRcKOXR+lIiYI+MvN14Ty9yzmc2IM1NWcpusvLUwxCdu01lK1Ey1dL+lCaR74xzmE0Wualocnj6WsMxY0Xc9mt6NtzljOCo5WJWHoMIUFb4lK4aOi63qq1ZI7z71INVsKYGl33Hv1q3zun/8uD7/5GofzAuVaHtx/SNtE7ty6LdFi23J68kgqA3vxmeidIzpF00ba3uGHhlmluXl8xK4dcEFRzg84vvUsP/tzP89HE2Pyf/9//r94+PiE9XrLj33sx/iZT/55bty6w2d+73fZ9eIIKu7PdkyJ5Mg/sxmZXejadvRvmc1mdIP0VCnKUlhF79FE1hdriqKjKGuqejbRZUj5uNZgTEEWfedUwnjmlRpTTjk6zvdBXnymrMfU52SansojA5ZhGEZGIwOfKRMyZVEyKMksSy69ni6oU8b2KsjIr033MVe55CKBfMx5zh0ZFsA5sY4ffU8Qp26QAo9+GChn9cgqASNLkRmUDDwul1CrZHfvZc5jLzbth4FuGBj6XjqRN43M3UXBarVisVhc+v4MiCSo6EaWSmvDMLR0XZ/agwiT5r2Ah6bZJm8tKEqLcz0Rxnvw6OiI3W5NVUlwHNK5KQrRqGUQ8jSWK6fdjDHSPLWQVD1K0fY9VTUnor7rip4/9jLjo6MjPvCBD/C1r32NX/zFX6Tve87Ozi6xKPfv33+qZiWPHC1cHbJwCJtw97lnUCqmhlwtWhtu3bqNtYa23aUbmZSzlNzZnTt36PuB09MLCq14/t3v5u7d5+i6jtu37lDYUlqgOylnFpfRAoNhVtYcHRxw8/iQ1bwi+iVV8RK+79hcnGGqGdFY1ps1XSedIKtK6LiTx+fEECmLkrKs6JN5VmZ5jBEgsN1uWW8u8N7x8ssvsjyY8+DBA9qmQ2uL0YbZzDIMDqLm0cMTjDa8//0vE8LA4AYpaQw+0asVdVnJAtZ2if7P5bYGgmhQTAiE5oJ7X/ksZ7uB5z/8E9S3npXUhlFJKJuvQO52mv8/vTpvcyOml7OxWCb2I1FKI30S5hlNdXyMNYFhc8bu0cD9xw+5/dIhvh+Y2xKPRaS1mcZIIl69t1jOVKZOVThGKUmVGYVVoseRPjtRehAlIWzMxxAiEGSxT/14RkGncujQM1bSMNXkfP/GVUpUJrKebnAURUlA4VxgGGQ/igK6HnRhcJ1oqcRCXHQoPgR836NtJ00inZOFSWuCkrNgjBHxqol0StG2HXUlIrwRfn4f0j05rTNWPCnYbNa8/vrrLBdLVLVku93Sdy1Nu8V1ke72DWpbcOPmLYa2JWhL0AXlvOTuy+/mmedeRClLs13zrW98jc/93u/w1c99mlVlaHaR7cUpMcJydpuXXngehaLZrNludjRtm6I8hQ+R7a5hiCVRiS/Jdtdy/9EjrDFsu55nn383P/PJv8CHPvpnmC2P+Nrvf4Hf/5d/wJtv3cf7SFUv+NCHP8yNW7c4OLrB+vyEqiyYmXJcpPLCBnvviMymdGlxyo0AKxibk44VI2nxKssK5z3r9SaJ6CVlCllDsrcqz46kmTmZ9sSZgoCcAppG3HJP7rv3ZjFsXiwz4MqgoG1blsvlyNLlz8Oe9YC9bmSa2plWxcBeAJtZpamWZawY8n500877LrqO3dje5Pbt25cqfqaMCDkFAtIeIEbpDF6IHX3e/2mlUS6kyNdQtDHSKLAopdnebDZjMZ+z27UMLozzvAvSuyZfkxgj8/l8rObSWrNYLLh16xYhBB4/fjyatQ1DT1FYqqqiaaRztLVqnKMjUqk3OOkN5LciGxCWxlOVNU1qJjurpW2C9566qgipYtIUhpAYngwgh2Hg4uKC9XpNURQsl0uUUnRtS20qun7AWENVlXg/EKPGpwKQdzr+2AHKZrPhlVde4d/9d/9dPv7xj1MUBb/927/NL//yLwPw5S9/mddff51PfvKT3/V311WZbnqT1O8bKfONUM8EcW9323ECsLagKmvm8wVay01bltJs7803vsmN23e4eesO6/Wa9UbqzrVRzJcrfCRV1xhUMAQfmVUVN46PsEZx4+iAuiqYz2vaZsfBbM7Z5jylleqUH65ZrQ54/OhMwJX3tF0nosp0ow9DTFTtGQcHB9jCcO/em8znNR/6yAfEvc+dE4OIvna7dkxpeR84Oz/n/Pycui6YL+ZSQt3s0oM+k5blPqC9J4aANZZeVhpiSr+UgK0ML9054q4y3D5eoAvD4BzW2LFfyqWFBQjx6cnFPdOyZ1XURMA2vmdC44YY6bUmFiWOnmK54mIY2DQNt0Pg5P4D7ry4plrN6X12gJVta8XoVRBCSKxMEDOyLA9J2wwxpAqSvF3RpHilCKnUSOU6nLi3ZQf5jFGiTS8KO6ZE/jiH2q/j9IOkMU0h5ezZgOlsfYHWVkzIdBJtp3x3JI6mTtVswbZpqKqKtm05ODgg+zsI45R0OlonoN/C4WovOJ7s0/cyolLjnaHTF/Z9x/0336Q9OOCZF99FbZM3TwCMpusd9XLOwY3bUmkQIsvVAYvlihfe9V7Kas7Z6WMe33uDL3z6n/Hql/+A0JyjVE0fB0Lfom3F0eEBVitOT0/Z7S5S5+G9pfvQO4gS8SpIRn2I9X9Z8PyLz/Hiu97Lu97zPmbLBU3TcuPoBh94/wd59OgUOys4Pjri7PQUjadrG7abNb1VzGbVyOhKa41uXMAzCCiKgjt37tA0zUipO+eoZ/UeGBhN8HsGRlJ/YTTWyiJH0Uvtm2BOHVmnFTxTTcqUtciMzNSdWik1Mi5TXUtmS2SOFd+OqyXN023m8z39fpUYo5zWyudlytZMP5ePNZe/1nU9HkNOKRkjTe5yqiXvr9YaYy06+JQOS+gkBHTYVybJHN1jrBkFutO2BFMzOQFKJAbHjEZqeZ+nICvEy+mpnEqZMlXSDmHGMPRjNkLSPH0CZ2LqqbSIuQW05esr90XT7IgRqqqkLIv0WpPAnGK5XNC2O2azGavVQWKiXDJp1E+kAMXzS/RsMUZeeOF5los5EHBukBSs92htsIVN7uTvfHzfAcpf+St/hX/z3/w3efnll3nzzTf59V//dYwx/OW//Jc5PDzkP/gP/gM+9alPjSmMX/3VX+WTn/zkd1/BAxhrWS5X3LhxRNNuiVEqFI6PbyaauKGuKg4PD8eHLARPXde8/PLLnJycUFXy4CzmK158+d0EZdm2PbvOSZVLWaGLGnRLCNB2Dl2ULJYH2MR+eIJ0NHYD5+sL7j98hNOWoBUHi4OxEuTgYMXt23d4695Dgn+doqjwAbzrR7RfFHZEp+v1msVyTtPseO2113jm7m1u3brN0Ec2m4bgc638MIIA7z0npyfcvXuH+XyONYazpqEsCqytOD09JTi/z68mpsFHpKNxStHgB5aVoajn1KVm0BFJY6dFa0q1pntOxyfxyQhOlBoXsqdF3fn7poKrQRSKWBSVtujCok1kMSt5fLHm9P6bvOvGXS56J5XDkz4yMXVCziXBKkr+M6SlMGuVIgrlk5x13HeNi0oAV6qUEVZFJ28EMb8qLFQW5mZF45b71M+fwIgRut6BUmhlQGlOTk/5+//gH/CFL3yBu3efx1jLv/7z/xrvfulFcpfpLARUWjM3WqK21PwyXr14SGqA6CmLku3mfFzsvm8jYdrLWw707Y6TR2+xu3jMcrnk5s1n6bo5m/NTSW0NGmVqZgc3efGll5kvl9iyZrE64OjomOAd97/5Kl//0ud47atfpDl7TKUCyg8416OUwZqS+WzO+ckJm80F64tzFsuFTOJBOr86FyhsSYyGEBw6KLwfWCwWvOe972OxOub23RdQumC93tHFDqvgYx/+EK7viMCzt28yNFua7QXRNSxqi4+e7XZ7KSWSF7W82AMidkxdcctaNCeu74h9PxpQrtdrqtJKqqDrWSwPKGxBUFLiP2osYmY9Ljfxm+pFMoMxTVFcFcFeFchOq2ymVTl5TIFEXtymn83vyfsydZDNc6H4S+1Ft9MFMn9uun/T/kB5X8Yy2LTv0w70WQvSJ6dln3K4CqSUPLuwpv0JxNHwMwOKqzoXYcGKBDIUR0dHPPOMmIEWZYnz3b58W6kUHO33OetasiA1620A5vMFu92OzWZDVZeE6FhvPH3fUZYF8/kcpWJiVgratpXWB8hce//+WxwfH6OUpuv6pGsqxu1orbm4uODGjaPRTd3Hy4Litm05PDzk9u3bfP3rX+fevXs8//xz0gm9bZNQtsMFz3KxwvuYvHne+fi+A5RvfvOb/OW//Jd5/Pgxt2/f5s//+T/P7/7u73L79m0A/rP/7D9Da80v//IvXzJq+6MModUamqYiIgY/ZVmxXC4ZesmXOTeMJVZt29I2PcZ0rFYrQogiKvOBfoj8yz/4Q2L8AqL27iFKQzGlpawvxkihDavZnKKcUVQV2lg2ux1f/NIXmc0XnF9c8K73vJeirtHJ3dUYTT2rec+738d223Dr1n1WqxVnZ2uKohqNmYTlsFgrTo9lWbJYSKt3lObk5Jzbt+9Q1zP6ztMmgaDO7b+tdLN7+OAhh4crTk5OUMDQi/eJpLgGNMlG2koL8ZQgAaNQ0SRBKFRGE9xA9G5sJJjnHXlWrwINPQKU6SQ2nUDk3zp1Nr10MZnE5JDKWZWLGOUp8BjXUTJwMNcUquP+m1/jhfe9j6pY0Me9Mj2OvgdZgDtxx1Qk236ZEPZZqDhhR1TSbKTUT5rUwcv7tJQhl6WhNIrSGAaj0/v+5EQo4sorIMMawz/47/47/s7f+TtoY2nani996Uu8+o2v86n/8D/kubt3REg3DOClm3GXcudVPRetxaVrkEZCD8ZanPP0/UBRP5lu/aOPnN4j1VUJETa0LbuLM0Jh2J095NatW9y5cUTfS5uKtvUMgyHqGm9q5sfPYKoZlBUbFwnrx7z2yld44+tfZX3yEB0HjBJxs3cRXdaocsZ2s2PXNGw250Q8wfdcXJyLEH7SOG4xr7FtZOg73NDz6OEDPvzhD3F2dkLUNXeeezeVETPIdr2m26y5cbBicD2hb7g4aXjjG1+jMuDjwHy+YNv2I8DQWnN4eDhG6lkroYIwFJlF0FqzXC5H8eOY5gjCGrSNdHYf3EDv5XpmplBK/MWb6GrJ8FRIelUTIvfanmmIV+7zaYXNVS3ItNImp4GmrM1VRiZv66roNrMheVytAJruw/T3GTzk7U8FwVf3ZdoAUVLtouUzwY8ATxtDZUt82BuyZUB1tTJKND5ZPGrH3jlFUVKVZdJKOpz3mKIQG4MroHAK4EYRe2KIpOS6px9azs4cTbMjhMCNG0cUhbAtmb166623xqq9fMx1LSxcDHLP1TMpBPFexLk3bhyPQXOIIsjNIHPKUFlreemllzg6OmI+n4/MybyeSwA9yLnoh4HIdzc/ft8Byt/6W3/r2/6+rmt+67d+i9/6rd/6nre1Wi45OjoSEVYYKEsRwp6enNI07WhDLEDFsdlsOD05p2n2teZ1PZebyNZoU+GdY7GY0w89ijiKy0AW+jZEfOcJcWC9u2C9WXN4tKBpGm7evE1Ec/vOM8yXc6p5zaNHD3DeU9eH3HnmFhfnO97znvdwenLB5z//RbpuwEU3CsGKwiJttd2YCz08POQjH/4IP/YTP4bCEPyrbDcdZalH51ofHEqB8wNxcCNbUVUVx4cHia30IvZ1ScSlEnOgUhdbnYAB6cGIkcF1+ARQrpb7PX0x3ttAy4iT/0+AQXzarRrHKI8YsSgWEW7OKuZ0FK7F9Fvc7oS6HPjWyRs8Onmdm8+9FxtniRWRqCczQ3qcOA2gcfkRUULaB9Qo1g1kBTqoGNBRWCOdKyEUaJWcZq3Y3WuR7eBcnijfhiHi+6ufjTHStF3yLBFg+81vfZPtdstiecCDhw9pu55/9nv/nJOTE27furHfvyQcLAvROFi7n/ye3PHsxhkpi4K2aVjU1aWim+955OIoSKXfEUPERM/Q7PjWa19jdXDI8+/9cRbLZ3h8cgIqgC4pa0vQFZseSmuITlHi2T26z1vfeoPzxw/pdmvpRlwaXITeR2pTgamIIdI2O/q+w1jNo0cPJHpWZkw7Ohcok3VAbxyuCzx++JB/9I/+ET/2Ez/Na6+9ysOzHe/74EextuTB/Qc8fvAWJ48eSeARBr7xyiucnz7k+bt30HXJrmtxLlzy+cilwlcrS/IinrUpmd7PHdpFnxfwo99FYjGCMMYCZnqMsUlIOVxiK6c6isuXfh9UTEt2p+mRfC8Cl8DJdBuZ8ZiCjJyOmrIqGcxk8y/YMyuZUdlsNty/fx9jDDdu3Bj7GMHeEDQLO6fsSw5Sr2prpiBovNeVdHdXKeUd978e50ZjLbYonvB7mQIkEY6SWJswdi/O4FCAWfJ+sVYKFtJ5nPawuVqFNK1gMkZ8v7x3FIWhKGoWizlVahwpa8o+XZS/1xjDbrej7wfqasHBwQGL+YymicQohRvL1UruNaXE7G+iPZmmzfLreb/7rkfbfZpxUc4JHobUyfm7GT/SvXiM1cwXc3a7NThNlcqdzs5OePTwMUVRcuPGISF47j94xMMHj/EBmqZltVoxuIjf7UBFolMUpUQuJEQdpRMOWglLoYuCIkqe3/seWxjeeOMB9x+WHB4doMyO1dFNySWXFUZp6tS07+ThYz77mc9y88Ztjg4O+MiHP0BVFDRthy0rXn31VXa7HX4Y2G43Qu91HZsLzXK1oCwqttsd89kSMDgX0gNlpMx0jPgT5RkU81oEWcboxDTtROdhcsQw4INDW02hEW2JBhsHghc6sFJQRodVHpQfe74IsEkXIqZaFyUVGEqJj6pRARUGQuzQMVBoRQwBFxVeSWlsSGCErEOIySpeRYp4wSysqb0l+gbvOnQqj10tZ8SzB5w9eo3ZYsbi6AUilsEFtLEobXCDE7ZIBXR02KJgE/SoLQkq2/jLGPsEhUgVFYXWWAtlkQCJyhBrv58eGEJk8B5UanCYOjCHK74s3xNImUasZIG4aF+0UsTgWM5qtusLnBswheHk/IRZWVEWBdEHvPMoZeidAPpqIZNNl8rus7hXR0VUIhhWgFIG7wfKas6uG7gxzezlzFgcebg/2lBq3B4qsNnteHx+xs2DJefrc/7wCyLYvvXCB3jmmVt0PtI6cQUOdkHnxbel2W7Q3Zr+wbc4v/8t+u0Zvtvhui0Fc0KIDFFjfaDUitnMcno6MJ/X9GFge95Csv5v+0FSgEqq/EpTEb3H2oJZVeE9nJ6dszi4BUS+9tUvE1zgtddeo+0Htk0DN46oTOTx/XscLmac3X+Lw9Uc7QNVOUsLIXRdS1QeU1iGwROipigqVHR4PyRQLGDm7PQMH0T7QEziysGldIVls2sYfGS368gVXnKKNdpo4LIGIqdEMpMxjbLlc5d1Kt/uZ/rZKUsz6luiGKON6SBjscV+Ic73oS0KrDaoCdvx1v17/NPf+af8i898Gq0VH//pP8sv/vwvJDZWtmeLAhVzhUlAK2E8///k/Vmsbdl534f+RjP71ez29KdaFlkkJZESZVGyJF87FmDLaZzY90FAHoIEiIEANmD4wYABB4ENAwGcPLh5sAG/OAHsV/siF4huHBuBb2SJkijJFHsWq+rU6Xe79mpmN7r7MOZce51TpeuiWH4gPIFD1t57NbMd4xv/79+Mx7u7sBpRiBcKsQEVCYB1FmMtuYoLHOcBKUmzdDv27SIdo1R8LCyyLMMHR2/NgO4nFGXOZFIO1gYWKa+Ny0ZkZ/z/cYG9bauEQPCO0XhPKUWSJnR9FGHkeTF4o1QDkXfICpOxqK2qCUrJLSFbCEGeabI0o8wjHUAJQVnkVIP7+FZdKqK/ybiNZN7xfEoZLTzSNME7MdhzSPKsIM0zemPpjSfL0gHl/njDwo90gSKUIEkTUp9i1x2r5SXeB/bnU86eP+fqcsXi4hlN2/L+e4+wVvGzP/eLSKU5OXuO7XtM36D0SNwStF2DdYYkjU6tLniyPCNNMnprMMahhcQHBSGPsdw24fy85/LqlIODPebzCUqnJEqgZUJdN6RJxrMnz7g8v4yma4ni9q19JtM9Fldrvvvtb9E1G7Isp+862qbBdF3sRwp4/OgRuki5eUvTmT62KbyMKZ1eIkQSs2nQ4Az1uiYcBtqmpes7VqureL6yhN500S5cBJquQaaCFE8LKGUpQ0PnNzEV2XtkX1PqaIZl8UitMXbklURkIXgXkQTn0cKTSQ/9BroV2rfo0FNogTMNjXX0ImFklI48lSillFvH3dAsqHLPfL7PZiWorcMlBZcbw/RwTpVqzh58l8fvfZ8v/ux/xNGtewilcCislTF92PZkUkDfMMlm1E4TVD7Mqh4hJCodOhk+YL0lUQpvLFJo0kQi1cBD2SHXioHD4hhWuQNJN+AZsRgxFG1jM+uHsW0LvDiAeetwdkANZSBPFZ956w3m0xyPwJgGYxp+6os/wf7eLDr3BkjTnLbtqMpY9JZ5iZIjF8WiVIJUcSJRga1HT+8EQmfUmw02DMWa+PAR/aDslC1yMjj7jnECvfecrTY0xlDlGQ5B/+DbXDQb7r/+NtOD2xTzA7JqD6E0nfXYzYa2WdEvnmJOnmDqBa5dg+vwpsO7BGMNKitxvqUsDxG+w5matCrpNj29i2ZeQSi8UNHyJXjwFtsF8AJjPSLTlOkE4yXFZEpWlXTGI5zD9R2m7ZAioq6XlxdoIXBdS+IdsjOIXuCMoXEtQVjSMkFpjws9KsuJnbhApgWJBu+jDw1BYU2cHCaTKma0+Jhci3dY63EuFs/regMiJjYnacbo5Blvy+tJedfjZHfCHgma46q56zrqut6iNmNA3MvIy65pGlyrXVyIyriIYI6FjMT5wWJASlQ6cEtcQAuJ61oEgdXikv/rX/4Lfvt3fpveR3uBf/t7X+Vnf/JLHB4eEQbitPURKRbBI4gpvSIIehcpALsF2MvtoeBDzPgUEhcCxjiM6WhMlP8mWUZeVjF6IFxzbkZkaRc9iUTb+ER0xpIrTZKnZEXK0fEhjx4/RYoOJWKIJQQUkVPmdto68VTJQUhhEUEMqFBD2zYoJcjzDOeS6CKclxTFNCLGQdB3jjRV7O0d0vdRzZdl6aBKjQrGIpmSJRmmbzF9T14klHmO93YgAWdblGvLxYGtF8qYKRXPqSfTOd4avAwIJWk3Db2xSJ0RXPjYxQn8iBcoTd1G90Vv6LqW87MzZtMpN27c5PatW3zzm9/i4aP3yfMCaxxCKh5+8ID53h55oplODjk9e0zTbTCmpyOuJAWOrg2DRE+xWXWYLkUnGuUsl5dX3LhxmzxPsR6Wq5q8KADJ2cUl54tLplXO8cEeWVahdU7btUiV4AKcX15uk1Y/89m3+P2vfxPjaoIw2ABpJhAyWgy3fctcTwjCUVYVm8HJNvhhknIOH59whIqTYm8My6sFJ8/T2BP0dqiko3JICsF0NmNeFhTlO7Qi+oGMoW3BG6zpBpQl0DQdFQNU6QVBQlCjDC+qYwgOHSSZEJS54OnDR/zb3/o32HrB22/cZ69KuXPjkFmZUXqFFTFyYJfUJlUsUAKR89Ng+ODhY377N7/CrRu3me8f4lAsrq6Y7u9z79Yx1XwPLxXLZ+8h7RoXFDKtyIsJWmnKRELbcv7sEWLvgMn+XVy4Hky01JGnYx1KJwQJ3hnSRKGEJwyrdKEHwd7AyQghrrIcga35UAhDVscOuvTvYRMiKniatiUvoqsjXvAf/fH/B3fu3ObBBw/53rvvEYTk//nn/jz7e3svwLt9b7i4uNjC6d57jLNMRwx7LKW2h3G9Qo6FkkdqxQh+yS2s9MMe2XXfSCcJOkmp29gT702P2rTUTnJ08z63X62o9vbJJgc0bUddr7C2pe9a2rbl6nLB1WpN23SEzoCNLqBSxRyQNNEkWmL6jhDsYLBYA4F6s0GoZJhI40LIWo/w8R4IUuCAdd2w7wJJWdA5S2cdWZFzcPsW7uISLQXrzYZMJOTzGfQtfVvTWEtZTmiWa2xXI/TAidFxUg6uJQkyyqqxlFUaJ5vekmgxOE7HZ6brOqQUWAJmaBtJJeNCSicDf0gNhUAMqIuBdno70ewqbna5IS/7noyr+rEdvesMu72C4Vrt87IsGCIXI3Lf9A5Jd3xvlN1aExWGKEVnDN5Z3n3/Pb7+9d9HErh/4wYQWK/WLC/POT4+iotIBJ2Ji8uARwYfFwkBhL8uUIAXCopxv0MAnMNjcT4q+pTSyAGRiVlrCe26hXHcG45vbKnstpGEkFjTvTChe++H9PiYw7MtjIa5JgwJ7Wo498kOiiIQtF03jElxwRTNOLMBzdAcHBySJhnWXl+3sZA4PDwc2n3N9jOrckIm8/iM9d0gUc4pq3xo3zjcgKaPaMrIhynLkq7raJqGoiiiKENrpAsYEXOIlssV6/USRIxn2Qyu6R93+5EuUKpJRVVNePbsMY8fP8WZnqPDI0xnuXv3HtPpHOsMbdcyNZAlBc50PHjve7Tthi984XN87tNvcHl1wQcfnNE0XSQDdhHa01rhtCYER2sj4zqXgXt3bnF4fMDVYs2tWzcHBZHFOjkGmrDa9Di7IM9SkjShyDOmewUBT5amTKYVAtg0Nca23Lt/h8ViMWjgDXlREQmZik9/+lO89uorCC85OzunaXqkVHTmWncfrZgdAUuSaJwzXJyfY61BKkmaJRRZQTkpQUBZ5OQq3jQMQlol4oPsrYkDNxCEZLVeUdYbkBqpE1IlUESOircGvCFVGgk8f/aYD85O+OD9d3j07nfZnxZk8h7S20go1QplHaUCmWr8MHGGJHqUiLiEwYSAcT3L9QaV5uTVhOMbt3jne++wFwR3bt0kyTPyaoJOVGzVCEXvIKgAIro+rpsabEd/ccrjk/dR8ye0lriiRNBbR5YXXC3W9Nbz+uuvc/PWHRIZ0TEthxXSwAVAyAEjif4tEVhxbGfrMAShIQYy7iezjbDoSP7tux4/oE7OORIl2ZtN+PKXfpIvf+mnaHuL9Q5IMG237e+PUOxIdBv5Da7bhe/jd16DRuElfoElSyJbJ4RPsh67/pQszdjb38eZjlRrbN+x3tQ0T56QVd9hcnCT2/mMoFKUTsgyzaaz9F2LThKObt1lfbXgpO9ZrpdgAzYI5EDALUxP19bIENGi9WZD3XZ4MSjbCIzRC1JopMii46dpQWp0nrPcNJwvr7hrLCLJ4hghNJ1KWDtHlhU03uGdYFJkyETihMdKSIJjv8o5mGYs61VE7awFKbF9B16A9fjgMUk0WMuylOCvif9tO8QVaEmaxJTv2B7R9DbmrozSUDXwc6QUECIP5WXi5Qtkcq49SUYZ9Fi8xPvx2hLgo9CSXSnxFvkTMmYuDZk4UfY+tE2H4leKyANL0hRjepq+B+F5fnEWxyNrefP2HYRzPOWE4/2Yt2RNh85KjJAR4RJx7BKD9UAIbutNMhZkIzI0klcjKXZUUskB14A0uebf2MFAjXDNFxk/Zyx+tioeORBrB1Ky9zFUsCgi11AnGq0DJjhGYv9YOCWDB44czq21luBiLptk4NUJaPtuezyjQETJhL43gwooFoypih4u63WMeRl9drTW2L7HOkPfd0BgNpty48YNqqoiTYf5QVyjbOO/MU15LMhGrk+RZBR5QW87XOeiTb9OMDaGJkoxWEt9jO1HukAZNeBpmvDaa69xsDdHKc3V5RV9Z6iqCb/wi7/Iyckp77//gL4xCASJnnBxXuP7mr3pTSb5ESdPzrlYX9APK8rDoyMmVUXbdRhr6Z3h6PCIt16/S5VpEIr1yrFeXWBMQ6Ik3kkSlQ+wtcSTstoY/Lohy1Mmk5I01WSFJkhNkias6pZyMuX1N97k4cMP8N5z48YNsixmBo03i5DRKfZyEVVHhNhaSbTEW4l3kTsRvGd/f8rB4f5AZorrfNN7XJFtb6iu7UDqKItVgHcoPKkKSBM17D7EiHTXbNhcnND1HVIoEq25XFxguhbTNXTNBi1AI3j8wQdcLS7Js4S9TCD6msvTp6wl3DyYkKmY96OcQBETTJWI7PioNIimQloLUq2ZHxwjhcILyWxvjxu3buGsZVIV6FST6IDCIX0M21IyAWFxHopUoPIc38O9+R2MMVw2lstlzebihEdPnnFydo51YINAiIQn736Le/dfRemc1jiCcBzdOOYzn/ss5XQSB1yhGOmcAlAi+qFAJOUiRkgBPilq7PUcEId0N3gzjJLAItOxSLPRObTKEpo2DrYmXBcYY2EyDsp1XW8NltgWJNc5HYLROl9uX9O0hiJL0erj95L//x7bR/1Oa5KsgOCHgTzByZbOe06eP+ODD96nOjimCJAVFVpFGXnbNAjTsldNeePTn8U7y/nZKQTFqu5I9MBhmtuB59XStA2r1RKLIMiYF2KsQ+uUNM2ZTucUVUXXdzSbNYEQfZaKBpEkrJqGaV7ilaY2nmXT01pPleakeY4gKhiqNCGpKhIB3WpNpjQqSZjN99g/PubJ6fOY4i0FUngSBK0LAxlWUZUzQLJabYZ8l+uWjPd+8Gkas3XiKjwM3Ii87+Pz7MAO2SxxUhuJ0vqFe2QsMHZbQPCizHgkwO62SnYLlA/9jshtCsIxOj9LFffxcrHk9OQM7wOTrIzSbhVwWDbNitPLMwKOFHj/W99mP8+5d/s2B7MJznQ45zE20DqPkJEwFjl5geAtfgjKHMmlSRIR6tFefjw2ESRhnECFQAhPxzUJ3jqLCqPeLG5dFxevI3l5LEass9tnZ8wvSxLN/v4eZVmwXtd0rSH00V1WKonw11LrqL66NsPrnY1tL+eomw19326LwCyLCddSRCWrEAqtLTE7zUV3bme3RmvX58Btzd6adkOWKW7evMmtW7e2EuxYtEmUvpaP73rijPs6+vj40fdEa3KRxzabUEgzIuYff2z4kS5Q+i6GYBV5hZSeNMlYr9dUkwld07NYXNGZlsPDQ27fusPyakVb1yjhMX1DXV/xvW9/i9VqyeX5GmcsRRpda+/fuc3xjZuxbSIkH3zwkIAnT+NqLc8rkJJnz8+pN0syQOp8IHhGSFWgSNPoPGttYFN3XC1XrNYbkjSuiCZlRZZNOb6RYIzg9OyU2fyYg/0Dbt0K9Kbn4mKF9+CCJnhw1kVbZGdjCKHt8W6UgDmsMxRFRlXmkfS5JbB6vHN0Xcfi8pI8SenbDlEGUgVaC3IBmZMQHC44hIM8GJL+irOnj7laLLBtw9Onjwi2J5EiJnWKQJZkJFJxkILzDi2i/t+0G5zweNsTfEpaVEgEbdtuV1c+jJByfE8k/2ockrKsKNIMqWPLShBItURLGVcp3qEl6Czm8sRE9Fj1B29Z9w0qUXRtTTCOKgEjHK5ZIUyLlglKaG7euclyteEbX/vdASkJ1G3D3tEh1SThldffxDjwQpPlE7bRCSIMeqBB2hzEbkUx8FLGHsgfDmsYH+qBrwbEnB2lFVppnAsoYpCkUhJjA4kSdH2cZHbj6EeFwd7efNtDrttmKBav1Txih822u3Lquo4QyoFAOrzkD4mifFRnKCAwvaFpO2QQIDVpovFSkYq48jw9fc7Bsycc3hAgwWuNd5aua9lcXtDQM0kVh7fu8kq94dnDd+mcAQltb+ltlOIu12s2o4onycHDtJoQhCQrJsz39zk6voFKopHaZrOO8fFKsa8UQqcEqRE6oZyl1GuDEgmJivwepob14oLV1YKQp5RKorTi9PScPC8gSRF5yd3P3EWtDevVEiEUyhskMQqjSAVta4aJJRsQMAC/VR8pKTBEHx5jDNbFVi9izLsSqJhbQDKEzO2qb7bXmxdRkJelw7tS4PF3u66vu4qgXTQmFjwMrSZL29XU6yuapuHs/Jx3332P73zre2w2DUWScXx0zJd//ue4ee8m0/3bFMUf5d1vfYOubvjM62/yJ37mZ3j/2RNu37rB5arGCIWXCUpIAgoXwAWLH3K0lI5k8l2ezYimjPsXfEAKhXGxxRMJvJE75EeEw3mCj3y83WJtdOLdVbQgIuLhx88f7Cu0VtvJXmuJTiRSJljvsYNKZzzHYSx2Bmv7xlrq9QpnDUkaLSliIanQOiq4YvaPBBRSRv5IwNM09VZdNaJicX9HLy3LbL7HK6/cj7yzvkcIidbXXjEj4rY7lozXenTvXTULQvBMphV5mcew395gXbS5+EHWND/SBcp6E9OAkyTCXVZHkpjpGxKdEQbFjlKK6XTGvhSkNw4xfUNbr2malKpKubzMgZxpZSnKkrwoSRJJvV4xmU6ZTCe89eabfO973+Ob3/g2VZEy398jzUuSRFEUKc71BBknRyHAMaY8juz4gfilU/o+EkpNb1kvG5SIWbzT6TFFvocIkqtFO0gCHc7GVbIzhr7rYGCnIwPB91jb4r2FEKiKDCUFm/UV+/v7tG2H0gk+eDbrDXt7+xRFwWq5jKnPYSAn4hBYgmlIlafvG4zrsQ5ys+ao8HTacHHxAa5rqcwCRSBBoNOoRBB4lMqxXmARNM6SphnOGrIiizbHIeCcJ+gEkWSslkvOzs627PfYS1Vx4tIanWTxIUkSTG+Yz/fwzpDoyFVp6pokUXgvSJSOMulR/kiIrPuiiGhSmhL6FiFjlpHzHjH4sSiteP7s+aDGkUhszCUqFEeznNXFCb/6za/x8Mlz8mrGl3/2F3nrM58hTTISCZJx1Si2E/Z2i7KfH+pej4NeDN0a2zBKSQSjcmJAO9zIiRk8RcS1dfhuqFqc7K575nlexBaQkIxBaSCx3g9oSnxfTM6Nnjregx5k1n9QcfJRkusPHdug3pFEvg8AUlBWVWyZCSinU7SJ3h5ZUbFZLXnv+9+lms1QaxETh9sN3lmWV0sePn9EKj24npsHNyiKjMcP3qNpNnQusK5bZtbhEUilyPMCpTOE1Bgv0FmEy/fm+xRlRTmdIaRks16xXC5pTQ9CovPoZGw8JFnGlAKM5OTxU9qrNfOqROctkxBwXYu0jnpdI0RCbSVCZ+zNbxGKY/TcsT81dKtL6sWziEomCusds1mBc/H8F0UVT5EUgzIvsNmsSJJ0CI/TeNzWhXU01ov8AYkS8ay/fJ1e5p98FJLyB8mRtxLTQdkx3nPAdZhe70iURmBZLy54//13efToEd/4xjdomx6tM5q6w0hF3zW89+4h1V6BzvZ4+OB96vWGGwcH/Kf/yX/CRCoeX5xxcbHAS0VQEqkUEokLkcNmnEEPKFHko7Cd7MfJ9gWER4yhsook1UilkdITBNtk6NHGYGzXjLb04zGOjr9JkuC8oyhKmq7beoukacp6vWYyqbhILlFaIGV8lnt7nYi85f+EgB0+U0rBcrOma+v4DLZQVWUsdIF6UzOd7AGSIRN1S2z1/jrAMCp9BidaH/DB0HY11hkODvY5OjqMrZjBjmCLRBHbwHVdc3l5iRiUPWORN5/PYwFkLCcnzzk7P+XoxhF7e7PIfendh+6df9f2I12gpElGohOkCKSJJk0ysszS1A3e+1iUHO4RiEZWMksoi5w+FRhnSIMjKwsm8wNu3rKEEPNGQgCVZmgdWdGbTYOUkjfffAvvLE295vJqQf38Eus8p2dn7O0dUuQVbdsgRE9SlHhv8AG8VwQUQkY0JXiwIRKjJBKhIuwlnMd5gfBR1aBUIKDwwdI2HX3fDZC7w/uoQDJ2AxgEntlsyp3bN5EiBpF5F/1QpIw9fescAtBKs793QN81ZEWGEQ6JAQ95EqBrgR6pBdZYVosz3v3m73F+8ozlsw/IU8lBngzKEE8IIylOoaVGqgQhFE1v8F4MhLOwXZEHoLOeNM05u3zI//3rv8nt27c4vnGD8/NzHj16RJZl/PgXvkAxKUmTZEgVjq0ggmO5WrFer3ny7AlVVaGE5ujwmP2Dfa6WV+Rl5FmUVYlMsihttuCI3AznJUEqdJoBMk4ypsMHQZJI5pOc+6/c4Z133+HJw3d4+OhdVnVNYxxBJEzylNXilM9+7vPc3J+j1dD0CRFBEaOJnbieCj4pRsoLk4QYxFARuhnIdfF3wYFMBMpes+9jS3TIeOnMlvimtYLA0Dq69pNQUsYgPh+2fWfTNNs2wiexCcKHkJTIT4hFllaKzjik1PiupW1qyEpCsNTNCiEhNVkcuPuevu94/PgJfbMi05LT58/4sbff4lOf/XG+882v028aFpuWvT4S50MQaJ1RFBU+SIJxbFYNnRVsGsN+07HfO6rZFJWk6CwnHbkOUqGViufHBbTUJFKT6YR+s2bTb6gyRZpNUb4iGIMIYGVKI1JcWvHa57/Iwe37JHt3WF9d0K/PaMsUuhVJKjlbLpBCc3GxpGttDDbsDFdXl0ynU6SMqGrXd0yn85gZtNowqfLIExtUcX5YxUdW84cnit0CZZdvMm67rZ7dbZcUO/qXjARagMViwXvvvcf58xP2plPKKufgYMof+akf5/6dY472J3z9978FQfO5X/xxbt+5QzWpyIocmSq+9ftf41/87/87zliOjo75znvvcfr4Mcf37rKqa3RRIlVCpjVN0+ECKCVQKkUrEdt/Drz7KOLui4ompRVSR+uGwECmHUjixljquqbKsy1iMvK6RgRh9B3ZGu3JZItgjtEp0ZizIMtStG4RMgCeJElRQ8u238k3Clz7w3jv6LqW9Xo5KKlG2/6A95LLywWTao+8KOm6DX3fIaWka7ud0MbrbKKubwm2x3lDVZXcv3+PsiyQMiLcUiryrELKOO7Udb1NWR7bRGOLZ+t3oxKyNKXpaoIIg+JsQtK7wRbhPxAOyth3cy7eDGsfFS3WepzpKIo4eKw3G3yaUFUlnqiV3zs8pOvK6D2CpsokiVRs6hqQZFmBdQEhNUUp2dQ11gVu3XyFqqxYb1acnT3n8ZMPePz4CZcXZwTv2ZsfAIKmW2OG1S1JihQpxnvs0PqRciDjKY93/Yeg010DpdHyOLZ0OpxvIVi6foPpY2DYZD7jYP+AybRAomiaYbWkhqRiAYlO6Ls+khyzjL35lCxLMM6SKIdDoKUh+Jau27BcLwhW0G8kV99fYdoGiY/EQmswwROEHPqtPhLVElBZhdcK6+PE4/ywyh6t9Ak476IbY5qSZglplvL5z3+OBw8ecHZ6ymw+YzKpcCFsvUUEkTT28MkTfuu3f4uyqjB2CPJSGU8fP+fOvbs8fPQBxhiqyZQ333qTo+MbIBROCISObbJhmIombEIibXRYDd5jXY9JDGcnj6nXlzTrFa01iESTEoMGb+wX+O6KvlmhDuckSv6BBUhgLM7+cPf5qDC4Jq+GweH2OqU4MmAEnXP4IGjanvWmAQSZVLHI2zH7Gvvv2/wQeS0tTXQytAYiwhThErddKTbORQ6E/Pc3fDgXja10oml7T28t+7N5TOl2FhU8fd/Sdw0Hh4cRaRnOsxSCLJHYBrqu52pxiVaKL/7Ej3P31Te5Wm1oTEAm0Q06XTc449AyxbrA/nyP23emrLsOJxWISDpNOhPPchAUeUniQ0TldIpUCVIonPckeUZR5rTNkquLMxIsuRbMJxUHsz1mkwlptU95fBerK9KD29Q96HxKbh2TTJLNMpYnDzg5fUq9qaM6Ryq6tuXRo8ckScp6vUKpmJOUFzmbQQochMRYw2g2t3VJDQLvxQBSfTQKsssdeRn9Giehl38/jl3jhLU7hnVdx3vvvce//D//T2zdcP/2rUGl6PmJn/g8n/70p/jJH/8cf/Y//o/5nd/+GlJlvPrGazgcbdfSNg2u3rBXTbhqe9794APef/8BVVGwd/KcZ03Dl37my2jhaZcrqtkcMzhsO2twpqfvh5iKHYO0XfXRdTtKjgPDeFaG5yAMx6dIs8GV3Fr0Tl7S7jnceoQMRNwRURmdiYsy5+Bgj9OTU66ulqRpgtY5zsdkajMkGyOiaioIhusX6PsueuaEgLU9veki2d15VKZp2ygFP75xTAhmyzs5vzhnsbgcEpB3ogR8iHk5Avb25ty/f5fpbLJFRax1ND4G2ZZlTiBsr/PueRyRM611RCSLnLzMkDoSjrvO0IaoJv0PhoMSkyBrQjCRl5AotIoPiB+SIo2B1WoJBKQ6Gk5eXJV7qUiCopodkcqAbdtoXy81oFhcLTk7PePhoydIlXDnzh0QGSqdM0sq9vYPuXP3LmVZcHF2zsXZGadtw+H+AQfzORtnML3DmQ68Q8okkltlCsGipEVnCpXEzA3nYubJmCljXDTRstYQAjjjMbZBYOm6FT5Ybtw4IM8ia7oqK4TwMaxwNhnO0bBKdDGnoW06pE64dfsmSgmMabE+Y7O8xAlJbZYk3SVdv0EoyLMS8py2bxE6JdcSnMEFT9cb6mZD3fVYGzBtR5ZkVPNDivnBIC1LY1LnMMPGRzSgZMCZBklPqqGpr2jrJfiOPBNo6XF9A1qjZY6W4jrQzwfqpmO52VC3LcF7cqmYT2bs789oNyuulksuL8+4fesYeeMYLwCiKiKqUkArQEWzOC88QTn84Mi5XCy5OHsMSlAVCdO0QCqFUAnLdc28VNy7f4eDacmkyrFpct3KeeEJDCCGAuMTuu9DGJJpGQbFgfLiBchE0tQt//dvfIVvf+97SBT/2Z/6U9y+cbR9/7iSGl0prbUxDTcrBqXS9WAbr9c1j0BIgRmCKcd9AT6aTPJDHWMY0Md4v8ihfZqkCZIYu2BNh8CTakVdd3RtixvJkAMfKBBQWvPw8VNcgNdeucete68yqUo+9+M/xjRN+PY3v8HDB48QQjObTvjUW29zdPsOF+s1tTV0vSVIQcDHyIgBFtM6obfRadp7j7eWQIKXgWI2oe4WpGVGfbXk/HzB2ZnifDqjKkqkLijmz5HVIZPbDTapcEKihcGvT7h89C3M8jl1W3OyWhGC5OjoJpNJjLAAwcHBAdPphCTRgMP1hvV6g1B6CHoDISVKDRk0yMjDwH/oYn2UZfzLtvW7Rmq724iWvGx6FttRBa+//jo/++Uvs1cU/Nin3+RrX/9dkgQSYfna7/4WZTnh7c98nj/65Z/m+bNz6mZFuVdRVjPefvNL/Jlf+iUeP3zMb3zlK3zw8CEeODw+ZrVaEzysNi0354ds2pbLxQIhIM8SlBQkW3RR4Zz4EMoDbFf+sY3uI3IyFC1KKvIyBWJIpFYaXFzgjSngu9yTsSVmrUULSIRAZ+nQnrUEHEWR88qr96nrlovLBV0XJ3epNG44z3bHb2TXxC4uXCNPz3nHer1iNp2RFzFDajrJWS7XnJ+fo7SPruh9v7WniByUlLYdsn2UoLWG2XzKK6/c4+bNG8xmkwEZGYruHddfqa6t/MeWUbTcN9tCTGmJQqIThcdF49EtevWDmd3/SBcoMBL5oNnUhCxFZAItFTJPyfOCJI0hTdZG++R6ueRg6K8rmVBVmjzLySSsAyRpjpCSto1Jld/81jc5Oblg/+CYSTXn3r2UoqiIDoA9db3GWc+tmze5e+c2J8+ecXF+waatKeZTiixFST2Y/rRolQwoD/RCooNEuRjV3XVt7Isyst9HlrlBCo3tDG3XkCaCNNXcuXuHWzePYeCXCOGjnHlyRKIVi8UV0UkyDJVroCgysqxABLi4XFJ3HV5bmtUZMkno1ueIZkFnOkQi8cJjbY9MEoQXeONROkEKge0Mm97RB0laFqgkQSOQiY6KAT+y9z3O29juCAFCdJlVSmG7msX5c2w/4dvf+LcxgKvdcNVucOYeuZ5SaE0iJX5Iar1xdIOf+dIfQQx9W6UlCYJMpySp4urqkqIsuVxcDrB0GLg2gkQpcD4WPN5jXfS+ca4neIMClIbOgrGWSTnh/qv30IliXa94+7Ofpak73rh/i7fffovL2uL7yAGKnBcBShKi1vjah+ETK0/iFgbEIBYngwPr8OTXdc1v/uZv8H//xlfI04w/9rNf5taNQ/ywmgO2vgV910AQ0UhpKNbicxU5Dt4NoYsMPehBWWCdG75ucJtlLMA+mYZWlmfs7e1te/xKKeqmQUqBSlKCdwRnkXi6ZkW9XLNaLmnWG9p6jUoUs/kUKST1Zs1iccXjp89o2p79gz3u377Prdc/zUFVsTGC1iXIAFVZkRQFrTFkRYW3Fic6ENGbI0nSQVVhMSEasckhlNJbR99HP6a2jW3gV+7d5I03X2W1uGC5uGKzXrFabcgTQ+kEV0+fsvr2t0lnh8z3DyhSgbRrLh5/QL86o5pP2ZvvxVBR55hOMm4cH9G1PaZrWQVLlqZ0XczgmU6nJFlOkuacnV8OFWQkRY0oQfCOUakFYVtTXydZi20RfP3zi6GB12gejIm5Lzuhji2KNE35/I/9GEezKXdvHuNVYP9gwvPnT8jPz+n7ngcffMATfRoVOIni21/9Dl3bcXl6TqYjafaP/vwv8Nrz52y6Dp2mkWRvA0maYZ0ny3I2dU3TNuBSkkShZSwypJagro9jRDnGwmpEBIID4yzWxT6pUoEOcH6wkk9TgoGAixLwHVJs1zRbJ1ofPOv1BuMgdRYG2brWcQE9n+8hUDx/dsp6VeO8i6RcrSOhV4rBg8SR6IiEp1pTlSVds6brGwQyvsZYXn3zDs+enhG8pWs3PHz0AXmecP/+PZomWi70XWz3JFqjB88sKSR5nnHz5g3u3b1LmmbRCFDFQE1kRO7yXNMMRHq45heN13d3XDLGgAgYC1JLiqKkrtvB1l/9QGuZH+kCZbFYcHZ6QpklXF1ecm46JtWU+f4+SmmMc6yfXmBMx+3btynygq7uwHpas6bexDTIu3fv0YfIgka4CAc6y/npKZvVmjzJsa3l8YOnpMl36bqOV1+9j5SaxeWC5ydn3L17i8MbR1STktv3bvPo8WOuFpdY01EVOfPpjEmVUVQZ67rn8fOz6LlgE9IkwXQ9bVdjOkmWpeB9dLK1jvVmTd92pFJRlQW5zrl35w5ZloD15HlGMtODjt1HS/K6pprOcNZvYcckCThn8E7T1DVWZQiRIO0G6udcrdeR8R48IUh6H5CJx4YWoVKCH1pMgBKCi4tLGtuTFAVpLpGpRgsZ0zURkVHvLZJA1zeoFFrbQW3JtIweJ8Fx9+YxZVXSrpdYazmYTSjKks3FJXVY4VfRvXL0esnynBvzOZPphMePn1CWFfu3jlE64fT0hNfe+gxZntE0TQxWM0O0e4i+JnVX462NfV7nMd7H1WWaRWgVUGmCa6FuDc9PL3G+I8uh767o65rf+fX/L4+/+z7Hd17lrc9+Dq0ip8UKYvIzo1W8QKDhBWHiD7bJgYi62+aRUhCciURe2NrEe+/ZKwtu7x8g2hYpFFmeYkJ0uzXeoqSi6xu8n2DaBiUFrmuQItBbt13jSBlI5WCXnSj6IYAzL0oWqxWT6STuk/fDyvzF7eMe70e9LgyS+URLVqsVSkp0msQiumvwIZAHz+Pvf4cci5KSbnnC00ePWS2vUNKTJgmJVOTJDC3itbxc1ywd3PlcyaWeMtm7z/2fukFy9DqrixMWZ8+5so4JMJ3NaeqOpu5xZgNucMMkwfokJp6LHIIiQbNpNlw8e8Ti7ITpbMbh4RE2JHRUJAcTjo9T9p1ns1nTXjxjcfqQq+Wa9aZmvz9if/8t2mVN13csr87ZrFaQF9w8voUxhmZTg++xtiFNol+KDNC30UrdQmwJQBwz+p5AbJc5F6X3IUCqYkhoGBO+fXzeXRjzU3QsWry4JtYqiZKxiJGDhBkY1HeDSHCHGzXm4SilKIqCvf19QoAPFivU/Jgra8n27/HqjVeREhaXF5w9P2FxdY5UCfv7N7l39y6mNzilOFlc8bXvfJf7919BSUWqE1QZIy0QYwgizCYlVZFtib5q4HCMTrW7xNgR7RhRROccbMnlMSRyywPxAWs9fdehiIhwN4wVQkYyeWdtHBuVJi1K8lLGsNmhreScxXYWrVO6tifLcg4Ojsiyp9RdTFq3A/rigyOSER0EiTU93sZiOBq+RVlyKiW0hp/89Ns8Sh/y6OlTGt9w7/Yhxsbk68XFKc1mhRaCokiZVnmUTQePTjX3XnmF1157lTdef5NpNUMEiRIaicCamOFEuA6xHCMCdmXp4zGGEAgiKp2atiUQSblap+QiGYJwP/72I12gxFyKS/TBHmq4SRj60IvFgrbv2awWVNUQKBXg4vyCZ0+fcXh4SAiBtmm4urzE20CapJRVgVKR8KR09PxQSjGZTEmTnIvLU4IwFGUsJJ6ePOVqecXt2zfwITDb32PiZ0xmM5bLJeenJ1yen/H06WOkEOwfHVNM58z3Jui0xIdoBNQ0NX23od6sMF009km1pt6sccYwqQoO5vsc7O9TlgWz2RQfLFLEzBkzMMATHbN/YlUrQEWykzGWPC8IIfY4i3KCzkpCgM1mxcP3vkvbdXGyn83igGYtrfeQ5yRSIROFDgIZAolSlGVBc9XGvBDT0rQ1qc4QypJlCi3j5OWsRwoo85xUp1ydXfAbv/kVDg72efTwEV/84hf5xje/gTWWxWLBz//Cz3N+ds7TDx6xv3/M9779XTabDa+88so2LOxnfuZn+J2vfpVf+7Vf47Of/yyvvfU6z0+e8d577/PFn/wiD95/wGc/+zZ2PufyBCBw48ZN+rolURIpAvv7c65Wa4SxdJ2hM4a2H7xyEqiqGU3b02w60lKS5yk3jo9Y6SsWpx8wm5bcu3WDSa7pa8+2gR0CyJhps2v+/nEULR+9ieG+hpjbESfvCCv7IeBwQImALEn4j3/5T3Pv/isonbC/f7iF+61zlEWB6ZI4SRFQA+fEh+vk2eifMJq3RfRpdLdECIwZnrXhOCPqNxz+dq9/OBRllEDKQTrtrKUfyIZCRhnRB99f0a5WHB8f8/TZUxbnF+RFhrUhqjqEQCWayaTChwaRZSyantW65mpVc/MYZgexuD2vKuZHx8znM7Isw/nA5tFjut4QbCxyvekQMhBIMMbSu+geW69XnDx/xurikmbVcLh/g70bx2yalidPL2j6njQvqCYzinJOsmdZL54NLUdPMmQ+da2jriMknpUTrAssFouB5xBYb1ZYY6jKiqoqcSbypqpZSZpmGBuf79V680L4XPQZctEvxF8XEuNEA6CGTC858DXGyXvcdid1w9jqGe4BeY20jMRRuE5GblcrOuuw3pMohdICrWIL0fYtHsHB0SF5WZAkOYTo0WSsQw7Iznq94fd+7/f4yZ/8SZq6Rmc5YWg9xHtWvSB5htiqiQXYdctkl9u3e/xi6JP64VkKgy/TmPQ9eoboIf9K7HCwbAjkRRERYNvGSVxLVFDbz9/KcW3clyyLUQFCSkIYgly3PBmNEG5AshzeRzO3sT2V5zHoks5QCE1u4NN37pEYy/lqSR0ca2vRaVT4aRWLs0lV0Q+RBYeHh9y5c5vXX3uV1157lb29vW2o4+iMe92yiwKFUW0JDGG7+fbcRw6TR6UpbVNHhaHWtG2LSlLarqcdcr8+7vYjXaDooU9Wb2qmVcnB3hydpCRDGNJowqOGgLnYRum2BME8z7emaPV6w9n5CZN+QjVkXOzv75NmKb1xWN+jgmRaVLT9ikeP30dJyfff/R5BeA6ODqMkeVJR1/V2P/Is487t21xdXXJxccHJ6Rmbh09I86gume/tY5Tg/PyMxeWCrm22sOzB3h5VWbC3d4vDgyOm01lEW0wPEpSIYVFq8FYYvUSizfH1A+hDQOlhpSGj7K6sKrxKyZKEJ5dXXJw8440334x97XLK+ZOn0e4ehc6KqG4IPvoDeI9WsUBLlADXE4ygXq2pQ4sxGfN5idApUkUVRpnHVldZVFz2p1yeXdCuai7PL6iykiotyWYZl6cX2NqwP93j8nzJ4mrBg4cP2N/fJy9zrLO0fcuzk2d4POWk5PLinPnzFLoWu15w9ugB3/3932WeKZ4Az09OUFLy5qfe4rvffwBS0zvH8c3bbJqOtCgpq5KJSul6g3GOREVFTmEcq/US3xqqSvFbv/1bFInGGMP9+7cpUon2liTEdsNI5I0GlmPTY3jIf6i7/do8bTRw8iOssssREVE2+8or9zi6eQvrImM+8psyal9vCwfnPL33aET0jXBuyBnxqCjQinyogSyoVIT+xyRU7x1im7vyCRJQGLgQA3QUe+WKzvSkg2rAe0+iE+q65uzsjNPT020fvO97lJQkOkGJgOt7rLOkWYIQkkpInj99woN3v89+OSMcHZNozf7NO+R5FjEvJbi8OGPTxNarFNHNVQyqtLpdYXrLar0GKej6hsXiEuklZTEleMVm1SKUpsgnGFvTNQ58QyJTMp1inKD3MJkfkJUTms5iHNggSYsJeZ5jvWFTN+RZvLeapo0tCxkTcl0wtE0LaoXWKc7FpN3YuohFnLUGZy1CxElK7lwqtzPB7ybmjom1u0RSYMu1GDc5cHPGAmCc8LuhnTDynbz3JEVBrsZVtIsu0sbiXSBJc7SENC8gCGw/OKCm1x4cBwcHfPWrX+XOnTtx3LMWhNqqiMZ2w6iwGbexBbPrzTLKjXfD/UIIhAiisNsSk0P1bZ2jN4P3kwiMSdTjfDIarI38jHiuhlR1OaYgjyGKmq7ruLy8xPQGQuQhjuc9+pswFCXXSdcj7wMh0FIyqXJ+4Us/w9t3X6G+uOK1L/wMl5sl3z97zu8+eAc1LLBj6rOMxe/gkn77zm3e/NSbHB8eRCXkUIDkeb69ZuPvxMAf1FphrRmQqCH3SLBt8/S9iZYf1tJ2LUmIJOK2adBptkX4Pu72I12gjE6a9XpJmWexEOk71psNo0Zbicgk//73v0+W5ZRlxcHBAXVd03URojPGMJvOOD87o2lq0jxFKcXR8RE/9aWf5Nvf+R6nZxesN0vOF8/I8oRHj99lvVqzuLrip3/6jzCbzzHW0hnL4dEx1hguzh3z+R7OWcrJhFdee4O6bnh2csbjp09ZrjY8f/KIzWZNvdmQ5xmTqkAQYTznehJdoJVAyBgWpXSGsaPteuBysSBJNEkSrYuV1qzrzVahoYUkLwpijkM/kIphs6mxvgHv0FJQ5QkHsyl7kwotFc16HdndSqNUAkJFyNBYVHB4Z9jf32c2K3nne9/hcrEYVCMZRX4EPhCsQyQSrRSTqqJeN/geVss13kKxN2FvD9brhiwtCD5QVVPOzi+HtGnL87Mz7ty9EwdFAcv1kvnenN70ZHlGURYIAa7rSZWiyjJOnjxhfzJBhkBVVfj9fS4uzvnut77J+4+fMpnO0WlGXRW88/33mewdUs0PODi+RVZNKRON9A5nLVOd4gIYuybRKXmuaTcr0izj//q//g/++C/+SQ5mJTJYZPDIEA3Txs7/bmvnk2ChxMGViJZsV4q73IGBSEwgSzXaw2ptsGZbqdAPLqJSKbIsj66teTHwT8JOGwmUAjvwDMJACsyzjKvFAmc9XultGOInuRljWK/XQ/89royToJFaD0W62crm+75DyTgWZIPKQkkRkRbvSLQmSVI6GzNF5tMJq+WCB+9+n1du3WVSVcjpjGr/KHoGOc96dcXFsqbpehBRFp8nGW5Ip726uuLk+XPW6yXO9mgtKcsSvGbTdjgHaZah04yut+g0ZVJNabqehw/ex/WXpEpz5/4r5FlOWRZ4oOkNQiXozCO0RnqBdz1t1yOlQMtoVNe0LW6YwKvplN5YVutL0jQjHZJp27YHYoBbbwxCqOjKvHPv7CIeTdNsHVFH+fk48Y8T+AjjXyuDHG3b4FycWNM0Jcuyrfx0VCCmWQYhXqvgY3yIs1E9kqZRpuo8SKVpm54iL9EuhiCORdT92YzTs3MuLi954403UEmGHHw+tsX5joLoZSXSuGAbJcGj4mgkyUKU5iOGmAohI4phDUpJEq1QMj4DYUCMXl7wjuGJEbU2gCAa1Q4SbxGT6Iv8RTfbQPICgXc8plgs9rRtS9M0tF30cRIBiiTl/vEt/ugXv0ThJLNijgCqTKDuZPzmO9/ku+9+j81mw2RSxdbokIJ9995d3nrrU9y6eZPZdLKVCo/I0liUjPLoLMtI84wsS4eFgBrOaZQ+J4neuZcGXxxjabtVLBrTjLqp6bruPxwOyljpl2U5hBcV+E3NcrWOA69SVOWE5XLBel1jekdTt+RZgZSKoipjhoKMwWCrekNnDV4IsjzjICu5/8p9pvM93n3/AaenJ5w8f8LpyQk6TTk4OOLW7Zt87vOfxfnAcrFmudmQ5QWSa6lkUeTX1aPQ3LmTcufuPa6WS7x3NE0TZVoDqdJ7F3vqXYMU0NQNXVtH5ZHPcN6SZsULcdwhiMGeWZIk402UXLOvhcb0UfVkrSNNc9KsxHWGWZkzKXKuLk7p6zWJzlhdXUGQsccbJNb4mO9gDMnQ791sVlR5xq3jG3RdjXOSIDKSZIazBo9FJSmmg1Rr8J6uabHOMzk44Oj2LW5pjRVQ7u9xeXHBG2+/jQBaY0iKnLv371GUsXjZ1BvyPOfu3bs45zg5OeH1N15nPp3StWuqouCODTw/eU4uFGlekeQVM6HpXcyKmM3mHN84Ji9K9vYPWa837B3fwgRNbyyN3SB1RpFItNRYLyjLGcYJPPF6eu8I0tG2G7pmxXJxRte2kXi7XXXKFzxQfpjto8yNAtfqiZGbMg7GxtoYamYGX50oRiY4RyIlIniCNfhh4LXWEYTYrjQZ7l01BkKKaCYlZcRekkTjBml58B+WJ30SeMp4zGNxorUiEOj6aFQ4GlelSTXYd8eBUSuFH0mdg3xSiNGYz0bYXUCuNevFBRdnJxwdHdG7gMwqNJJ6XbNerVFpynQ+5+njR7TG4BBs1muWyyXPnj7h8vycRAuc7amKknw+Y7Pp2NQbLi7PUDrh6OiYLC9QgO1jcejtGoSPk7YQSK0RSrO8WrLa1CgZnVClD6RZhrTQNDVSJkxms+i7MiAT15Nw2Pb61bAKXm0akCIGyuU5YbgPRkH8WFDsFrYj4rw72e9O+ruwf1SbGMoyto5fbgmNK/DRM0OqBOsco7JNDxwRpSR1sx7uXcfF5RXHR3GiT4WMyroAqU549fXXeffdd7E+kA4hiLvoyMvupi862brtPe69J03TF9Qx0XLgenERycQuqgf9NdHYWoPQ1yGn47kbZfzjf8fPFtuCyDmLkGEgt15bzisladuoFjND1k90qfZb5GQM5bPWkqQpidJkOqXKCso0p0AzLRJc16OU5xsPH/D40aNtvk7kGsXjT7OoSL137y5lEefOiLCoLRI0KrCapuHq6oqjoyN0mmzRqd3zOe5j/J5A38W4GJ0k2K7n6uqKJMvJh3n6B9l+tAsUa5nNZtFoxjnW69i7rcoK5z1N0+D6jrOzs23mSNd1PH36lLfffjsSz5qY7Ng0Ne+9+z7WeaazKT7AW299msl0yvHNm3yuLGiaV2iaFZcXpxhj2T88YjbfH6Auz3Q+x/nAqm65c+smV1dXnD95yr3795nt77NerxBKoZKUrm2YlDkuBI6Oj+i6bihKWtJED54OAa0Um/Watuto2pbNSR1XKGlKs1xuTXMgoiJpGlcVUid0Q5Hy9Okz+t5w7959JrMZdd1yfrmgLC1915EnCUWa8ODd7w9Oohrno+ttMhRzIUCmNdIn4CxuiDQ3Jg7OVZ6CSGh7QdvFeHqkoO+iXbfpG54/e0qZTdB5xuzGISvXI71hNfjYUKQs2g0Qw8LSSUmwlq6PGQ/zvTlCCDabDWmacufenUhe845qb47znuOiYv/OfTabTaz6y5IkBNL5PlII3njbICWURUndNHyuepskr/jeg8esNyuSYooQFikEvTf4oGLaqNBs6hXpTCGQlEXO4a1DlssLDvfnwyrSDm0X8clpiodtdKmNSouwhXuvOzzXZYFSapsBYl30OYCYdmvaDa4HQsA1KdVkQm8dzcYSrB3aAg58LE69HUzUIoMyqnl89EKw1kVlj5QvVCRCXBv7f0Rt9aFNimti4riNk9voreBclCsG/MARG2Puw4CWVtGfom22XAKtJJJ4/IvVAms9aS7woSErStarK77/zve4fecuE6E4P3mKcX7osDryVDGZTnn87BmXiwt0qjk/O4l5PN4ivEPJLIaBZgnONGSZYj5PefzknL4PnJ217O0foFqJsY48L5hNNF1nMMaRZSnOBYyJDsZ7ewd0XcsknZJlWVTnhGhSN53GrLHeRJ7U3t4BbdtyenpKkiRUVXQH7dqOIFWURI98BhmdrNmZsF9W6Yz/vevJNF6LUTq7GyoYuS1RJbeLsuyiLi9Ijwlkicb7WMwIRFR1SMFktg8ElssVxnrarhuONSY2p2mKtY7ZPLbxfYjthLGY2t53O22m7f0lr1G4Xc8WuJYaj0WG2LZ2Yisv4Hc+O45LSEHvzLYYGROex4JjK9338V6KhSRbg7TgA3Xd8OjRI9brTfycMaB4KGYQ1/5Xo0PvuL9jG1dpzfHxMVIINusNWVZSpClOwOnpCUKMTrIxCFBrhbGW119/nc9+9m3KskApuUXMvPfUdRQkjAjm/v7+FgCw1tD3bXRF93b4uWc2m+FcTEivqgmJlGw2G3yAyWRCURSDsF280Hr7ONuPdIEiR6OYoUB4/vw5UiWkeU5dNxjnuDg7xfQ9XWdQKt7odb3hW9/6ztDPhyxLSbOMrCix65rz8wVCKn7zt36Hoix481Nvcnh8SJrGFdHB/h6XFwvqto2+JipBJ4ogotkbQtD1PYdHR8PfNC6ImLZrOy7Oz+naBi0FeVkgdEJRVWilyIoCKaHIc5wxbDYrpvM9zOUFuYgowHQ2iT32pIyQe14M1a9lvW7oXZQr13VNVSmSJKNpOi4vF/TdqF1X9H2EXjfrKNG0XUfbGZK0hCDIyglZViGUQgLGBkQI0fnWRbezvo96f4nAeYuzYDpL73p6b2i6NUL2fPDgO4igkSFFZinrbkNv4spADr3eQMAOk65ONMIHdIgw4sgS35pJiTjISCGxzuOEJE1zdBJbAM7HAK0sy8jSFCHjulHLSNgVIeYc9cbSW8+68xR7R0jFdsW2TfBUCkJkss/n+yTCMsky9vf20Knm8fPHfPDw8eC1wgvFyUBp/fAffsDtxcn7GpbfElPDblNJbP8XPOt6hes6NpsrFI5+s0EEj08VjbcImZAKyNIEs+O/4FycaEbZ+3Y1PawQu65Dzsqo4iZsv3HY4WHA/Xcf2/bs7Lw4hAjJM6TQShEXJEkWXSr7vsfuTA7pcL9DTHoOQ+S794YQPJu6RkhJSo4Inq7ekEjN+fkZ69UV89mUZnHK5dWCu3fvUk4qrLHM5nOysuLh17/GbFKyXl+xvLqkzFNuHB1S5BlJohE+TgbGW4Rw3Ll9xGgO5l0NMiFPFcFt6G1AEBOGkyTBOUvX+W2bZJxMjTE0bUNdr8myDOOik2mynVTBD3kyo1Kv6wxCaay5XtlbayPXI0Tkczzh4zXdToovbWObZNzGNsh4v20RAhleKHDGomGX2xEn4RCfpWGLE7EAD8I5hJRIrZnOZkynsy0/ZLzvRruEyWRyzYsYOCBj4TGeu91tl2czvudlQ7pofxCLqCDiZBqddx16i8ywLVKaVYMfeSsDKrPl/A2tmlioqe35cs7jvMf0dlu4e++GdqXAh+vikeC3PJBxP+OzFwMWvY9tu1W94XK9pDIChpZYkmU8W5xHewdndzgtjoODfX7iJ36cW7duDkTYWLR1Xbe1+R8LlSzL6PuesiwJIURS9pC3M56zdJB7j+/N84zN1RIpJVmakaTZlr/S9faF5/3jbD/SBcrYJ22ahmIYoKRK6HpDkqbUqxX1piZJNPP5nPl8HpGO6ZSTk5P4sCcJBwcHMcXYCW7euotzgb63LDdr2s7w9OkJbmCCH+zNuX3zJq+++gbvPfiAzabh4GjCfDaNrG4hsYORTgieclIhpCYgaFpDb91g1x5ohmrVSs2NW7ejS2eziSuGvESWAoeg7zuqyYw0jXySvfkejx8/wTnP/nzGfL5P1/ZUkxlSSZp2qMqJUd+T6ZS9/X3msz3m8zknJ6e0bUeeTaiqCaZvuXHjJkcHhyyulvQWrlY9vZUgkghx9g19UyOTOGFJrSjKHD3A5XqYnKwPnJwuoDYooaLDrDU0XUffOoJVtNaysQ1Cyu3KQIg4IY6DopQRig5mGNh2BtPdJE0hRFQuBOLKalByOedJ04QQYktilziXKIm3hlTHBz1IhUxL7r4mmOsElU3wjKtIkEIh0GTJFGM8vWl4+v5DLvYuOLxxRNv3vPfuA7wQUbK8XTECO2wUdn77g2zj6o3h87YEaBVJn+OfRlh715hESkGWK959/Izvff1rpMGQS0Hf1MymcyazfVRSkBQVp5cX6CylKosYMZ/oLQQSURGJlQIVBFmaUtcNgv1ti+mT3cLW1VZKiQTSJEUqMcheYzZK18WsLUGIZFYpB/RREpO8JVLCZDqJg7EL2L7F2kCalRjT8+TRBxzvT9De4pfPsBNJZybk0wOkSrn36mu8891vReNAbxHBIYXDB0uaTUiTlMXlFfM0Rwrous1wzTx7e3OkiPklpmtpu5i8K1WC0mlUH5qIBNihZZ2maZR+W4v3EVnJ8mJAUzexeDOGK7NkUlaDKCCu3rsutoi6rtt62kRStWe89z7K1+SjTNh2vS7GCXIMm7v+B87Y6AMUrpVBW5nvjrLGW0c/fLYL0U0aKQekLaquEKDTiJAY6wYUI97MY1txMp0N8uIYkri7eIFr07mXCb7j9jI35YW/hZcLlJgIPBY2fW/wBPROaN5Y8Gzt7YfiLL7nxe+OLVFB8DFAdPt+H1HI7XUR1587yqPjsdlrwFQJHjx9zK/93m/zubuvc+fwmG5dI03CabNCpwm+Xm/HPyHh9ddf480332AyqYZz4+m6a4LvGCA4/vfuOAtxLPUhIpVSSnKVcXV1FVtmWUoInizP0CpK1e3QFkyUBqH+w2rxjCFpWmnKqiJ4S5YXPH7yjE3TxMl5Eh1Vj44OKYqC9XrN1dUVSinm8z2kjPkkV1dreuuYTASJzpnvTbhfllxeXmBchzGOPE8wxnNxvmTuJEmSE4A0y9E6ZbWpaboWqSSTvMA0NcvlGqlTemO5XCypyoyiKJlNCuZlwezgEJ9PWC6XnD5/Tpqm3LhxTPCe1XrNalNTNzX78ymEHqUVbd9RDsFTIFit15yennF8dIPDvX2SLKHtGnSa0tQ13kPTdFtuQl4UVNWUQBLh/cbw4P0HXC0WFOWE1gRUOkNnJdYJsA0qeMosYbI3i26ipidNNGWSgosulkp4uk3N5eU5dWO4dfc20/kxxjZY2yNCQl8HPnjyhNZ4DuZ7W5naWHRYG9tuq9UaEKRp9gIrfhc2HosZrRV4hwhmIN1FRnmUCRJl0L2h7XssSVRkBI9VAeEjGdE0HSfPnkRVxd4B5awCqRll61olNO2a0+dPmeUSHeD05IwHTx5TW8NmXeMJCK0Zp4KtAf3gZfDDICix+BhRhhFGH5fCDND0gPhsJ6Lhb1KytzfjF/7ol5mlitDVPHjn+3z7W9/m0XsPuHnnFfaObqIP5gSvoiRRD1TfYZcjZ3AInnMxKG29XERVF7EQ+iS3rW32uAIfiK8hBLq2BWKR1rbtcA8F3OBDIYSkqiqcd7RtjQ9x8HTW0jYN3gXKYkKqFZuu54MH7/PW/RvsFQqxOePBN57w1ue/QDKbI3XBbG8fATx7/AHgKYuEyaTk6OiAvjcsFlcY6zg9u2A+32M62afrOlarFcGvmE2nOANtbRBSM5+UCBk9MiRD60wpUq3RA2LlrYXg40QmY6GvpIomkSK2RqxxkXcWBL21tG0XUachTX1bYIho/z+u0K8XAddtmF0uxbbdsVPI7BYdu8hKBMokIF947wvIyUiudVG5IwekROgkqtEQiLEjIwTeOc4vLl+YnEeug9aaoqzQSUTNpHhxn8dJfdePZSxgdpOGR9Rot3gRQkRkWIAncvpCsAQTcEMhYY3BB49Kr4M2bWTBbknB4/dExc04hgS8F/jgIsfIumsUeLgGHvBmdGi9fuZ3pdNiOKbe9OhKU5uer7/zXR68/4C9yZRyMkEVKY+vzggyRJQkUbRty9HRIW+//RnKshxiYiJHsSrE1r5eiDgfKqW2hN9R9XN1taCalAB0XQtAWRYgIq8lTROct2RZjhSCrjfbwtcO113rf89Gbf/6X/9r/qf/6X/iq1/9Kk+fPuWf/bN/xn/+n//n27+HEPgf/of/gX/0j/5R9LT4+Z/nH/yDf8Bbb721fc3FxQV/6S/9Jf63/+1/Q0rJn//zf56/+3f/7raY+Lib6bponKMkhMB86E/eunWT84tLjHUcHBwCUBQVZ2dntE0TJ+hyglQKawxn5+cYa3FOcHF5xeuvvYl1sL93yCuvvIYPhvX6irzMyZKEzdWad9/7IHoLiMByU3Pn3l2QUTnkxwfGR8Li6mpF03YIAW0b8H3LrMoQUnB2foaeRb6MdZZ23VFNSsLQsqrrOt74zjOfVnRdx+nJGbPZjK6Lvevz8wukVLHv5z0osR0806QgzzuWyyVlWXJ+fr59KPve0XUN1lvqruHG7Ru88can+d67j+itpo0kdAKOqkgRWpHmkePSCgaXUc3l1RVXF5dMypQk0UwmJUoZppOSvEoQ2mO6jiwp2Vx1XC4uca7lxt4eR8fHJEmUhjof2e9nZ2f0dYOxDq2jYsP5gLUOrQVFWURjpa4jzTJmswmXV2d458jSlPneFKVi/kyE0B0Xl5f0Fx1pGlUaRZYjfR8jCJRGhGh8tby8ROqUajohDrpR3qm1Zr0y7O3tI2xDvVyigiAoIAxQ7oAk+BBQA68C4V/Q9Pzhtg/nV1wPwtcZRbtQddziJKKU5OL8jNNHDxBdzeu3bzGfz/lP/5P/DOegmB6wahrkfMbT87NhwL2WLwsR7fQ9QyESPFmacmkMzkZOiEIyrnX/MJvgha98YeKE2L8vigLnzJCX5CAElJCDOin6BllryZL0QwSYJE2RQkApaOuWLEsQSqCF4OLilNOTJ+RHc4pEcvLsFNu3HOzPWHSKu3fvcevmTS6efYBSgmqSU03K7WC+3myYTvdQKiEEiRQJaaKYVIq+bXAmUJVTJArvHVU5JUk1bd+gVQxPG1ersU3T4W1MApdEtCp4T9PU5Hk+3I8paZpsrXciOmSQA5k40Rq1vSeH2AIXJ3ARYp7QLjn2o/6NE/gLbQalXrjG0cJ9bJ/I7cQ6/jxu1rpYfIUh9sJHpMK6iKIIGTkfrvdD2vI1gjPu53hPRD7EkIUjeKnd464NwwZEIhC2Rd3uczMSUa8JtdEBOogorRdDbowSMdHb+RjvkUhoN90LJOWxNTKON23bDvs/nr/4Pcb2aJVs+TNlWcbx3Udbg3ExpgfbCDc4OYcQF299G5Vozlu6vkWlgY0VGNtz2awIF5K67+iDHfXSmN6QpQlf+qkv8uYbr1MUsTgZScISxXq9ZrPZbIvJyWSyRaS6rsP56GdinWE6nTKbzbbKr7jYn2+f1y06Nfyfcy62zFXkjP17bfFsNhu+8IUv8N/8N/8Nf+7P/bkP/f1v/+2/zd/7e3+P/+V/+V94/fXX+e//+/+eP/Wn/hTf/OY3t6vl//K//C95+vQp/+Jf/AuMMfzX//V/zV/4C3+Bf/pP/+kPtC/edKRaI0XUl6skxnRrBbOqZHm1hCCoJlOMNdRNh1IJk+l86KlVCCHojMecX2L7FnzD7//+1zg+vsmnPvUpfuzzP85sPuf58+ecnZ9xcXHCN9/5DovLS37xj/0xOhO9VhKlo+1xH2HZ3hiaekOSaGaTglQRUQcNm6bHGMmm7ehNj/J9zNzp4gS6ujilbTrKLCfTGmMsk6JiUpVMqkCaFNsKfSRnXl1dorVkXa9Z1xYhC1555T7VpMd7S1FdsLxaYG0fi5WiYDo9ZDadcnLymHVzwRd/+sfIy5ze9gghsf0mynSVjLbiUtHWG6zzJDpFy5jv8ezknG9/6ztY15OnCbcOb3B8eINEJBT5jA+ePY79ycSR6JTpJJrM7e3tMZ/vocbwOmMx9pKimjPba+k6w2S6FxGvpIAQLdY/+7nPcX52zuPHj3j11dd569Of4t/8xr+m6xrwcOvmHYSMkkAh4kNTt56icHHAlopJkWNMLCYiI0BH06veYJY16jBH6hwXDF73hFSSJJKmWyO9QaYp9XrJTCSkHrwx6OBRAZTYjg3DxDv2XP5wW2yhjCqC61bONXGWWAiFsRUzKLpCRFMSJJ9+8y2O5vvMJhVaCurNmuLmHbquZ9E0dFIi225QmvTIudyiItvvJJBoSaYlzvaI4Gm7hmw2eSGzZ3vcH/sAr79DDi0r51z0LkmHIUrGILVody8jqc9apPAEF91UnYvqN5lAbI4GtFR0xqJlSloVSN3jZUIHpAryYfL57d/5t7Q/9jmKomSt51y5DCtz8lxy99YN3v7cT/D+ex8wn5VIHM62tHX83L29FO9jynhRRPXDZrMhIMnyuOjqbU9WFdi+x3qLlglIjUxS8AEXBG1nhskKiiL2+5M0IxCii2sAgkEPkk4IGBcJtEEIdF6gXJyQvIuqHnxgvdqATGLKsXOoYTJXUiHVtXw40XpQr0Tic6KjJBkbnztvPbZtoh37CzyPQbUSAs7YqEyS1/kxu8qw8e6w1o+XHi0jqRk3JAcj0DqJk1nwdIMqJBYTAu8bvA8Dr/AauXmRnB3J3ON0GEKIBZu4LtgixywW1uMDE7l0joEOTggOJEQ/k/gsmqEVvYvKjMTSMTQPGNphPWmabNtjSkaDvzTNSZOOaGnfk+iMpq3x3sZiDWh7g1ZxQdC2DZKIEmda4RUkwiNxpGVC8IE0z9k0DUmS0W4iudgbA3h+6gtf4sc++xkO92aUWYKxhlXXUU3nSKlJspxMSsqiYHF1RW8tykZ+k1CabnCQTVIdKRVFJGTneR4DKsO1AqxuGoxx9IO6Li8KdJIOhqJuy/38ONsPXKD88i//Mr/8y7/8kX8LIfB3/s7f4a//9b/On/2zfxaA//V//V+5efMm//yf/3N+5Vd+hW9961v86q/+Kr/1W7/FT//0TwPw9//+3+fP/Jk/w//8P//PMZDvY27OOcoij14NpkfrDG8di8sFm3UTe2CDpfnl5SVSxrZOnheDLLlESsmNGwaBQuslddOw2axo25a7D+/yyquvkGYZt27domlafu9rX+Xb3/0Ob7zxBrO9OcvlMkbQm2iys1ou2Ww2MKgHYmVvIQTyLKNratIsIcvzKFkNjtB5qiJ6oGRpxsnJGc55lm3sqU+qKpKPNpEEmCQJy+US5xzL5ZI8zzGmp+tamtYgdcXF5RV103L3zh2yTFOUBYvLCwKBLNMoFZUoea7J8oy3Pv0Gh8cHvP/uMy4vF2hdRELupOByuUArTZbGa5xlOX1vSBKBDgGVpqRlDkZSTqpBThYLhPW65tvfeYfWdAgXOJzOKbKUvCgoigg1KhVl3kH0BBFN26VKSDPFrdt3Katp9JgA3nnnHT7/+R/n7OyMJ0+fsX9wxM/93M/zzrvf5cnjR1jvSLIcKRR5liOVojeGcr3h4mKBCI4s1YRgKauCxdUSpeMKNVERYm83a2zbkBQCKT0Cj1Yp1rZcXJwxn2Ro6UEZVssVNNGJVni2niBiiwZI4Adjrn/0tisnjnBvP/ABxi1sX8BAXB3eOaAqAYENgt54zpY1syOPlxInJdXeHGMcZVlG9dsw8Y0tpfGfgBiHIAf7bmsHmH8gxf6hjmxXgxS3kWRXlLF9Y63Z/n2UYka+jdgShtOhJWRM5KBFXoMkFRlKaXyIAX9ZLmLeindkw3ldrhs+ePKcL/zkT/Gzn/kJ9g4PycoS5aIp3k984Yt8/fe/jmk3rJcXBBfQwpJlCWlR4HygaRuSAeru+yiDHgdwiChJLQZ7BOdiWzoE9EBSNNZGiXBRRJ4CEUKP7/doKTG2wzmDlDERPWa7aIy3NF1HkZVMpjnNpsXZCIFKqWJCtdZoHyMYdvkno6nl2MKB4a4dkRMpSaQk6EASkm1xcu0/IuPEbcZ2zpAQLkcE78P25teqGYaJ32+/P7Ztkxf2cXzPNXdkbK9cB9nt/n3kTYw/R7WQ3CHVBoTwL+wLQKqihD6IiOowclGIRPDeOlzfUFXl1nF8t71kRj7R0OqJSb7XXJI496QoFa/zfD6nKArqusMNbuCIQfgRAtYHZHBopSI5Pc+YT0rSNCUvK6bTKYeDlF2nCQ8efMDZ2Tlm0UduiXccHezzqTff4GB/H0GgqRuKyYSyymBoN42+NUprptPpFqkaUT1jDGU1Zb1ebnk2s9kMYOBONlvLD2MiKhY9VFryYeweiWoftziBT5iD8t577/Hs2TN+6Zd+afu7+XzOl7/8ZX7913+dX/mVX+HXf/3X2dvb2xYnAL/0S7+ElJKvfOUr/Bf/xX/xoc/tum77kAMsl0sAJpMpZVXhXE9RREMfISVCRFls0zbRKKaumc1mHBzcpSxLiqLcsuSllBwfHxHJdJKiiG6ly+WS3/293+bb3/0m1XTK0eEhTdPwzrvvoLXm059+C+8dq9US7z1FUWCtY7G45PJyQZ6nWy6E91HOK4aH2QeLMT2TaoKQgrZvUSoOqE0Tq9HJpOLi4oKiqKgmBW272aImk8kkEoKl3PYTd/XrWVGwWq04Ojqk61uaxlBVBdPphOAdXZ+hhKSua9brDVVV8MorrzGZzMnyJVJq2rbfysu0SpEyQScZbdshVQIirpR88EglSFJFEIrJtCQvEnSq0En0MMhyTdPX0c0006RZAhaU1uOMu+UcjA6P3se+r5SRmBUVOfGcrterIfyx5+pqwWq13HIwrO05OzvH+8Brr74Wv8NYkiQdIGqJShTT+ZTpbMJyvY6Dqtbs7c2YTPeo6468tKRlVBR5AlKKwWwuQSlH01yhpME6Q9856qbDMQx0PsTQQCBOvZIfdhOCraR27O9Hg6cXGaof1d8N4cXE1rG/DFxnkBAH6rHYHgcmpdWLRNmhJz4ml/Z9PEefMAVlh/gohsk4fnffqy0ZUUk5+FMMcfQDgqIGJMBYS17kZErRm5hLUzfNVrZelVXMMZIKpVMWlwvqzYa7d29jPfRtSxCStqm5cXTIj3/+c3zlN36NbGgTJkmU8uokISvKmBi73qCl2hqM9X2/zS+5niwl2aA+uri4IMsy8jynKIpta2XkAaitEZlHqSitHV1a87wgz+IiS3iB927gh5kh2iJe4y1JdbyRwrXfzbg/24Jve53FCwXCy6qX8X3juR9RmPH+3H3PdQvlWqWyO6nvOtmOyODY2tslx4+ozMu8kRfUfcPvRv4SvEgAHouZ8Xt2uTi7qqAw8LpCGJQ0Q+GVaI30+gUS8Lhf4zXe/TxrzVaCPBq3gSRJ4nForSnLgk3dMooDcB7TG6w1aCVxLo7twQfu3bvH59/+NAcHB8z29tnb22M230MnKavNGu/hwYMPqOsalWQoJbhz5w6f+tSnoiVH8CxXK5CKLC/RaYoT8RhHDs04j4zXJ01T8jxDytjW1zrZ+mmNSErbtlGBOThMbOoNeVFydHSEHFRnWumtqunjbp9ogfLs2TMAbt68+cLvb968uf3bs2fPuHHjxos7oTUHBwfb17y8/Y//4//I3/gbf+NDv79arjg9O8cHS3BmMGWKA9SNGzdYLJecnl2w2ayZzaakaTI8tB4hJGmq2d/fHwZZyZ3bd3jnnXc4uzxnPp+y3Kx48uwhyGhUVRQFd+/d461PfwZrDe+88z3m8zllOeXs7Cw6/bUtZZlvB/qiKEjTAlfEFoUzcYCxfc9sOhuMiyLhtu87mmYzhDEJ8jzl4GCPGzdu4JynKEqeP3/OarWKk/1g6Q9QluUAr3W0XQtIjOlIs9h3Xa6WdANnp2ubGNOuNdZ66rrld776u5jf/D1WS0tde7TKYCBpOQ/r9ZquiwTW5XJNWeaDbbHDe4NzBut66mbDJE3RyRypITgf04ZTTVbmzOYT+raPFszDjRuJnAohryFgqSS271mtVhhr6C86siyjqgoePXpI2zYcHOxjbc/Xv/F1hIjx803T0nQdddPwqcHSv2t7lNSDRXi0/hdSUlaTwTEykj+dM7RtjTE9Z2cfoFKFCwpCgk5TAobNph2u4YJUOnAa46J6J3IoxODrsdNrFQwk2R92u27t2AE9ETuNlT9ImeB3EkjHwdkYw2q1esFrIc+LrZdDHKglMlw7y26v1TCQaq0GeJdP3PolTjie9Xq9/TlJ1PZ+j7b8A5+COCm4gZdQ5DkeIlTvPVJHFK0oigH1cXRNS1u3HO3vY21spfTG8vz5Cdb0GBc4Pz1hvrdPIgV9sPz4T3yeb/z+7xCswvaCIktZrpZx0FY6IouDt1JVVVs052Xb+FEaPco0R8n2eF26rovu1rPZ1u06TobRhHHr4uoBFGNSufdQb2qyJCVJE+p1VMqN7q5BxQhL4d0Lk/G4by9LccfJapekORq77Ra143GNsuDdlst43+1uuy3K63vtGj0Z37NLaH15H8fPfNkxdpekO/78gheLeNF4bnefxraQJ/LjYx7OcL6GYth7PzaNXpjIx6J+99xBbNXNZlPatmW5XMbxbFgwNXUzIOExhDAaC0qUlkgflT6oKB8XwSFE4NbtW7z++uvs7e1RVBVZlqOTFKUTdKcHgcFqWKgL8iwaW965c4ciz0AEsrwgH8zz2Cn+xtbdbpEyFnRN08Z0aJ3GCIbRE2cgR1vjcC76u3gbDS2FVCidoHR0ORfhxeLy42w/Eiqev/bX/hp/5a/8le3Py+WS+/fvgxjSH010l3TOYnqD6S2HB4eUVUXZtCitubi4wBjD4eEh1aCASdOUoigil6OpIw/EGdp2Q13X9LajKBKq6YTj4+gae/fuKxTlhNVqzWQyQSnFzZs3h7YOjDJYay1lWZLnOVLCfDYjSxK6tmW5WsRe68AXUDLFGsfyao3SUT4Z5YYJTVtzcXm+rW5HuWyUFHbbQXc0nWubjqycI7Xm7PwUY6fszWa0dTOQn6roEEq0wBZIurbj2bMTzi9WWKNRsgKhkJLoC+Il3gkgVtNd13JwuE85KdFCEURAagEmFkKzvNhm/yRpMhBtw0ASi2Fb1nkECh8EIur64srY2iHuPKJT7wzusbuDYNc3WzTm4vKcf/Nvfg0YlAMyFgjOB+qupZrN8WIMwgtY35NIxen5Ba++8SaT6R5d1+Od5/T0FCEuSLOU04sHdM4QyEmSGYgErSV5Hjg+zqmqOfX6HNsZEDlSZ9cQZhziruW/I9n0h+ShjJtzsW05tmBGtv+HC5RrdGE8d+NAnKYp1dBiqOsaYwxVVXF1tWQyqYZ77NrE6pr3NmI0EbGK/gmRhPgH7e8fZoveDDHhOw6WGu/jgDn62whASwU+rt6liAoQYy3JEH2x2qzRfUQHlsvlwL2QqCzbDsZSq0FaCg8ffsDv/s5X2T842spYox5Lce/uHT715hu8891vMpmUiBAoiwKdphACZVHibCwwRgTk5fOeDd/b9z1d3zOZTNhsNlsfCaXUlrxYluVAko/BjkrF3JtIKo+LqthW6OiMweGwIZLyZ5P5VjwQhpaOC4PxmLNbUueIfOyqc3aLA+AlRMBu76mx2B3HpvHn8T0v348vt2xeLhp292n8267iaJz4d4uQsbDZJfPu8l92EZhdQusuWrOdNEPkoJhB2i2k2KKPDHd9kqYkeYJzZmtet6soHK/dOEZXVbmd+Pf29pBSsVptBu+TaLJ548Yx5+eXtN1wXcLAgHEuOtZ6jxSBIsu4c/sWR0dHZFlGUVbRaVgqkixHJZpnz57RdV1cbLhAkRccHR1RVRO0HlE2RZqkUbZtLVURfWXGInm8FuN+j/4mV1eXZFm6vQ+MMTx+/Hib3TM6BussYTKdkRdFNNQbijfv+8E08uNvn2iBcuvWLQCeP3/O7du3t79//vw5X/ziF7evOTk5eeF91louLi627395GwekD28iyu+SFO8MV4vLaGIkBG3XIZDMplP8JFboi8WC5897bt68iZQz8jzj29/+Jk+fPuXi4gopFRcX5zTNhvnelIOjVyiqgsk0TupZlhFwXF0togeEgNlsztOnT2jbyLBPksiI1joGGW5hO2I2hxuyLrSMr/MhkGbFto9OgLrZIKVgOosBTs+ePSVJUoIX2xWVc26bPtm20Zjt7OwM5wNJEfN0ILC4vIiW5jrK/I4ODyjLkq5pgWy7IrYmYC1YA064IaE0RB+SoNEyQwzmbtF8alj1CIW1jqurFTpReBuLCzn6EgxkjL7vkUksQpRQIBVCK8TgUmttJFAtVyt8uJb54SxNUw+2/ZbVqt+uunZlhd55XPCgFHfv30M6h1AJxsWAw+AH4iXR1t0H0ElONZkTwoq26Wia1dZfw3gzTAIKq3uMsUxnE/I0Q4kJkyqjzCvCRNJvYl8XrgdBIPI+Bn7GJ4EuRAfHOPkrpeI58g4pEwQ7DlzDfwUfU49fhsRHlcF431yvMq9X/F3XkUXS0Y7UeFxtxUE7TRKenZ0QQkQBt3SVT2Ab2w5KV9tWqRSR/zJKIhMdI+GdiZk0TV3jnSMZTM3avtuaOY6TSAiBIsvJ0hSpJG3XIUmwxiGFwPQ9v/mbv8l0OuPTn/40Ak9ZVRTllL4RQCT5tU2LCG6wJVcEH1fBELbtr7ZtX4D+x+MyxmCspawq2raNcPxQLEFEasdJIs+LoaXV4QdVYJpqsixGUPS9oe8M1ltUpkh0ijdRTSIStV3dt02DFSCEQgleKCZ2Wy67rY9dRODl4mL8eSSL7gbnwYu5N6N3yu7kN6Ihu4XDtfngi0XObtEytoHHZ3987Xjudls9u/v5Qvtm+Pv42vGYvfcRLpaCIOX2Xg8iEofVoGCKaInDmI7pdLo1VNttHcXYAb1tx4337NXVcusFMpvOmFQz+r7n/HxB2z4c5MxjsRdNKhliBKaH+9y5fZv9/f3Y3q8mzOZzVqs1gTjPnpycRE6itRRFxWQyYTqdkmVp9Ojpr83fiqKgM/E69X2/vQdelpy3bcvIPYxjr0MIhdYjVwjyvCTPi4EXdY2OC0bEMBvypH4wJPkTLVBef/11bt26xb/8l/9yW5Asl0u+8pWv8N/9d/8dAD/3cz/HYrHgq1/9Kl/60pcA+Ff/6l/hvefLX/7yD/R9zsdWjdaa3lu6vsdZz9HBEUmScnx0g7pe8/zkOUdHRxRFwdOnTzk/P+fk5ISmaVgsFsB4IwtW6xVVVfGpT73Jq6+/RsBTtw3ORr5K23YIoUnTZPBhaGiamsViEavawTY4y3I2m3ogDkWiXLPZ0DYNUkXioh0Y723Xo7Ua2h5qIO8KgmebmyOIkd4j7HZ8fBxvsGG11jQNk8mEsqqQSbTC3w6SzrFYXLFerjg7PaEsS5x1zCaHOGux1rPZNLStQRIZ53iB9Y7A0AsmTgbeO3zwGGsH5QIc37jFF3RGNSmpN2uUJ06aQqFUzBpJ8xgNv1iumU/nKBknW+dj0mcYGJYBMRDfot21CAZjTWTcDwNrHCh2ZDJB4G20vCfRpEVOWpXkkypKGkV0zvUu4ARoEQe51bpFkJBlExaXG4yJ3JcYb24RSLyPvYtMZzgrUCJHyYo8nUGoULli6dd4FEiJs47gIi9n6IjvICh/2O0aJYkr6ZhhMiohIBYjW1XnTpEQBr+QcaIYczcgKvJG1UH8e//C5KCUHCDgnQ/cKVbSbOytO9Jh0P0Dukw/8DbyZHpzjQI5/NCKcwNiIqOZ3/A7uPaiuFxe4Qkkw06NjqtFXhC8j34cQkZ1gXOooeiaDKjS5fkZX/u3Nb0x5FlGWsaWzeLslPlsSr1cYo3bTlpSSLIkpWkbfPAvhOU5F3v1Y2G96+2x2+YZr9EYDBePJ8FZPyg/EpTUNHWH0ooinyCERghNRsAEgzV2a2HeNsP1DJHoqmQks47S2t1/u2Zsu66yu8XBLrqyuzgYPYx2t5cLg/G/dz9z9zPG4mO81uO22+IZ7wu4TlUeuTMvF1K7/JeXj2XcRsRgF0Hy1oKSeOfiQkBGBVXc3xjshzdkWYJS+fa4xgJt5AKOfKKu6yjLkr7vefr06cD5mwxIS4jhtGnK0eEBz5+fsNk0g/Ivyor9EEQpCWRZyqSqtp85FrJCSparFd/+9rdZLq8IIZDnOWVVMZ/PmU6nxCRrhZCQIfBcG16OSNAuj2jXWTZK39sBfY/k7LFFefv2nRfabNtry9iOExFhHEbBayXXx9t+4AJlvV7zzjvvbH9+7733+L3f+z0ODg545ZVX+Mt/+S/zt/7W3+Ktt97ayozv3Lmz9Ur57Gc/y5/+03+a//a//W/5h//wH2KM4S/+xb/Ir/zKr/xACh6Ik1u00O2o6wZrHSenJ3zqjbeYzfainjxJODw6pOtaprMZz58/5zvf+Q79QJTTOhnIQ/FBu3HjmIPDw1jQ5CVZkVP2HZvNhqZp2GwadBLt69MsZTqZkGYZ8/mcNE3oun67Ioo3RlxW1ps1y8UCJSVllUciXZXF1ZS3bDbr4YaLPb5x0DKmJ9FhWO1ew6mjBn1MzRzDnXSikUlCXhZRY79RdE3L6WkTpZnDzZglkVhrrcfaQNdZmk1HmuToJBD9p+M/a1usCluLbUT0B9BJhvMwne6zNz9EqChf7dc1AYXzEotns+5YLjcE63CJY1JMQfhtqqpUcuDiRHOf1XqDtW7gWXQxAXULwzJMmjvwLRJFEjkHIqIvZVkNiqBopBcNHBUuODrjOTo8pijmfPazd1hcXnJ+esnNm3eZTksuLs5ZLxcRJvUxuK2sUlCK6WyCszCb3MTZhjzPmE0sl+dnjETruEjYyniG7YcoT1566zWJcOyzx0lHbs2yxt/F/x65SuPEF1VfZtt3llKyWCyYzfaG1w6mVNaTpB9e8SglEdYPbpFxkJ1U+R/6+D5qi0hOj1bRudL76HsS/DVC4X0sYhOlt743o3kbMk7MHkhlnHAEkCYJIowJyJJMKrpgtt4aYUCMjOnpFx1917NJE/RqFQdwAfNJgZ5WeJfjnGe1rokeqfH57E1cMIyrxdEKfDqdbts9aRKD83Yn92g9rofn0g4TRHzmvLs2zBJCEjyDC7Og73qavsVLhwiSyd7BdrIMIQYs5taCUhjn0R9xP+3yZMYW9WjUNRYw49gDLxYO4wQH10XILvqxy215+d/uin1sG+wiEWOrAV5sEY0IzGaz+dDft8nEO8XIy8jKyy2ksbgZ/Yui147HCY/wbutt5b0nUQpjLFrLrRv5LgL2csvn7Oxsiw6N13+ks0spmc/n3LlzhwfvP4xKzYGuEIbMoiJLkEJQ5CkHB/vszSNyPiY5O+cwveHhw4ekaYYQZuv7M51OuHHjBlKKgRyuIxI+qp+sw0u9vfdG7uR4D45Fs7Ua56Ivi1IqIvphjNwY/Wriue/6jpQwoChjGy7u77jQ+rgt4B+4QPnt3/5t/sSf+BPbn0duyH/1X/1X/ON//I/5q3/1r7LZbPgLf+EvsFgs+IVf+AV+9Vd/dbtqA/gn/+Sf8Bf/4l/kT/7JP8lo1Pb3/t7f+0F3hSSJkiilBPN5hLGmkylCCh4/fkTfG1597T5llXN6esp6vSIvMo5vHG3JROvNitl8SpYl7Jdzbty8iR6q8sPDQ1SiWa02aJ1RFIYsX5NkydAT91voTg+5Gsaa2OcV0Zo7PiyeSVVy4/gY07XUzSY6ryoV82tMT5IoyjLfrlDatkXrOGhWVcVkMhtInG1cIV5exnwOY4bMnbjCUzrKho3pODlZsVyuSJTm1q1bmK6nbdo4ebuAs0NCVYh27iFItM7I0mJANGIfNssEKsliUuxAyJMqwslSjAQ4hXNRjtvYDb0zpFnUv99/5TVef/MtZIDmasVqeUW7qYeVQPSiEVKiklicOR9Dw9q+R4Zra+2xOn+5vy2Iq4hY7GiqsmL/8BDr46o5z3K6tqXrO7JJye079/j8536Mn/u5X0DLhIuzUy4vlvz0T3+Ry8UZX/vd3yWYKGvNygzr4fCoIq8qPv3Wp2jrGoFiuex4/vyc9XpJvVpsiwI39PhjZfFJUUev4XhrI88iK6ptMfICXM9QoHAN0cZ2Qb7lOOzvRwXA7upYa01RFPR9t50sdKI/VCCpAcVBxEl1tVpxfLT/CR7rtTJEDyZ+ckAAIE54dV2T6gSG9mDXdRElGdoNMkTFRZHngyLCkicp1pjIDgrEdulAnN5VsVjb491IuE0JQpBnKUVZIoPH9B2pltgQaNuYXuy8QCcpOtXbSXVciUI8T+PgL4ZJsO/77fO8WzSOE+nV1RWTajrI8MOAGGiybLaVgqdJTlFUOAImdORpgVSKpm0w1iAGxVCWpgStUd7DTsEwft+IJsC14msXuRj5CLuT/Pjfu8/ly+F7uzyN8TXj54/78DIXZRf9GP+N370bc7G7j7vf+1Eqot19fhmV2TV6G1s81ge0dwjhBw+o2H53zqEQAzfvmkg8SozHbeQgRZ8Tu0VVRhXPOGkXRZTj7s3nlGWOEFH16YYi0bkYyqcHBY13PnpT+evCcTzPkVoQi428KLl3/xV+5ktf4tbNmyilqKpiQIcDDmIAKC8qsMb5ZFSJjkjg2MqKirrr7KexYxML0YEDJCRqUOxY6zBtS1mqrYvwxy1O4A9RoPzxP/7HX7jgL29CCP7m3/yb/M2/+Tf/wNccHBz8wKZsH7WN0JyUgSKvmA1kUCkUkwBNHeGysYhomoY0TSMHo+/YP9hnb2+f+XxO00TvkpPnz5jvH9A2HfA99o8OSZIsEil9oCwqkmzMfQjkeTHYAF/RGBOJe1qjZJQsJzpBCCiKHCUE1hjqZs3VYkHbtASiTbAQ8aYHT987rHX03WZQJ0Ca9kh1TVgbVwtpmuB9zuXlJVVVUVHhAWNNbBlJQdc1pEkyWEMP7w2wqZth4g/RtXUg3nadG1o4LUF0ICJMlyTRWh9iNkhWFiQ6xZixivbILIPeE6xHJzlBK956620mkyld09CtNnz/ne+xGeLVe2tACFyIZM2xn2ptDHmzzmwh6Xh/QQxVu5b4CQTG2jjZDKuWw8OjiESJhExpnj96hCCgVWyjPT855bvf+S6ms1xeXOCc4+EHD3n69BGr1ZL9/X2Wqyum0xzjHYeHJW3f8d3vfg0RJIuLOet1TZJEApmaxQiAOJHuqBYGxOeH366Pf7ScH8nDHqJPRXjJpXGoVEap4GhMOK706rreFihRncGWwPkibP8SAXZY+SmlmM1mLBZXeB+iFf2HXv3vPq4PBQ1yrQgZfSUmkwkET9/FyPmubQmJJ0vSreqlKssoBe9aWiI/RCC2qpqu7QbfFhHbO0NrOJp+RT6OVBBsdCRWKnp5ZGkGScwZMaan3WzID/aRPpBmGdPpDDe0O11w24l2HGtGqXHXdVv+gTWGPI/clL7vyLJ4LbM0HTgbHmcte/t79F3MulFa0jQtWu/wtvoNaZpFB2tRRPfqgWw+BgYKGc3IItlSEsSLHijwIiIy/vdH+ZfsLgx20ZVxotwtWsbXjJ+12ybafU2ybQ9G35jdttC4b/CiJH63mNlVAO22hz6q0Bm/d3eRs8un0ZF8h5Ygg0LKAE4N7YmIOtgAiVRbPmAsVK5dd/Uw5kckyqCU3nqJjJLxcU5qQ79VzqVphlKxTexM9M4aCy89vL6uGzZ1HRfiIqIixsbPPTg44OHDx/R9z42bt/hjv/jHePP1V9FpNIfLsgQQ6ETTDcVCNanQUm8REWAr7thsNtvnfBflGrfRO2c3q0drHRcJQ3KzVHLg7fRs6oYfNBLjR0LF8wdtfdfibUNb1/RtAkGxt3dIoiOs1nY1xs7oTRcHQRnlnyrR7B8d0bUt1WxKNZsync/IspT1ZoOSiulsTts1PPzgwZDoWA03Vc5svkdZRslrPqAVEZEwJFqSJ5o80ajgcX0kGJmuHVoz0ap9Ot+jqCyTScFytYhJrCFE/4IspwstfejBx3Cz4CwueKpJQVHkFGWKtQZnLdNZ7EuO7opZVhJEoKs7FBKd5nR1g8hz0iSh63s606PTaNTjhaC3HmPNgAQJskIBBYiURAnm0ylFUZJmGW1vSdI82t9LBcJHfxGhEN4hD+ZRmSNE5AEIge8MiVBkszlvf+5tLJY0SREyBmo552i7ltlswmazRuDJspQQ1NYRUorYDpJiiJAflBcKQZbEFarQkuXZKY+GUC1jLFpINpsVx8f7BKVw7YbL05avrs6jI65S7M9TjFlxeDjlxo3PkmfZ4GQ6rKCLPOYYZTlpmg+oxeAHoiTr1YL/z//7/xUngh1FjQBkiEyUj7uNrxQMHONx8g7ghcAGsMRWy9jvHdtZQUSUC2IxI0U0K5NKoIW+JpMOXKJoJNUBgkoKtI7ck7qumUwmeOchxPcz7I8PIPHRVbbIOb04pfeOXIpBmi7wLn72xzpqMXKQBpUJcZ91onDGk2iFkoH1MirlgvFRhdBbZJqTZdH0ryyj/bwwhumkwnvPerlCDD42KolcJNMbEi1oTUeaZ7Gd6H0M/0sr+uApymLw1olyU+/jCrbvLUEorAOZZCgU+0VF23WRB5ZPSJIoa7bGoBNJUWZMppH3VTfNMJFaujYSaNMyBgH2xpAmiizVlHlKmaWkaSRaKq0Gi4R8G4JpjGGxWGCdQXoGLyJwQQxutjGzSAzIYkRE5dbl+Lrov0Yg/sB7Muy4tb5UyOwiJ+PPu0TLF4jjw7bLWxjRlRE1GwuS3QJiV7r7ckE0/gwv2uO/vN8vE2RfRoSkkIRBvh4Yxi/vwV+na+V5TiIFLkSZdxQCKJwz+CCipYQfVW8K7y1930c1pxCEJCII3geC32kzKYUDZJLSO4v1MW7CWYdVkiA0STahtZ5N2yGTbFho29iKCn5oJRpeffUVfvZnf5b7926R5yk6VQgl2XQdiU5QEhCR5C6kiLxIOfosxXGj7xvath4IroqiyKgHr5aRBwls1UrWWq6urnDOcff2nagQFZBoBUrQtj15kY4D2sfefqQLlOmkZD6f8P9r79pj5KrO+++c+5o7MzuzXq8fONhACIEQAqJQXDeN+gdWU4r6UlVFEZVI04dIHZVIUZW0VUv/aYlUqVJbVVR9kUipipqo0LRNQikQt6l4FAoBQ2VIILYhttdee3de93nO1z++c87cmV3ADsH27t6ftbI9c3fmnnvPPed7/L7fd/p0gixPMehnOHFiyUwcoNNp4PDhwwDYKrRdKLfv2AHPaCO0220IIZCMRkjSDFu3bkMQBBgMBjhx8oSpICD0ektMgEKAHRcBnUu7KHONhaUTKFUGIoVupwMhCHmWgnQJCS7lsjlNpUooLaBGIxQmdaMhkOclRqYMOG7EyNIMUgj4njQCbxqF5HD0aMSkUs+3ZDeNolTYvn0bFhYWYbJLUEVpKnXgwvxM8uW/o0aELPdAhkDq+xG0HiEIgEbDcil8NOMYm2ZiNMMAc/PzuOTSd2OpP8DR4yeRpSx7zx2XCwgokOIyb6sZAMGS0mXJ8v9pkmCUjliEzZPGE2Ry39LyEl478hq385YCgSehlABJ++CMvTwr+uN50hgJwvFwZltNbOl2nPpsHMdotZjgJUy+1S5oVe+tmjPnEOWYf7GapyaEgCBuWKnyyAVKbMrFFrXYZ/KtAin20bWaIhVH11FaCIRCaxS2q6k9N1gaGkETG+KA9RzHCzyRNikJ5bqccpqBK3dsZY8VR7QeLWlu6MaKsQQp+PPDKIQi5rdE7bbhaVS0Wd7iGR5n48mNjwR7Z/1+D6Q0/FyizCMkoxECPzSbM5fxN819LYoCg+EQSZKyoRHz/Wi3uQqIvVeJMArRiBvMX0lTZFlqhKiayLIMp06dcqlaG6aP4xiNiCXrleLNqyQBX3hQ4KqILM9RKgVfFa4M3kaAbKg8bIbIi5yrPkx1mlaFO4bl5iU3gvN8EDR6/WX4foQg8F0qCIATALOVIqUq4BdMnA6DiI0Rj4nbTKQ0JbVTJFKLaQOCxzpWSX0zA6Vq6NjPtiTKKnG1+n7VyHBzWE+Sd4FJ48R1Iw+CiehOtUR6eizTaZ5qyfQ0sddWNBKxerAm7mDvG07ZZKqIuW2cwtKuk7oVUxQmPS6lBqgESI55cKp0981ei6wokBUFq8cadWY7b6X0+Zn2ApSmwnG530dvMHBk2MFwiM2bN+Omm27ClVdeiSuvvJL7TUl2YApTaZSbqJqNqtprpVSJJEm4J5rR2PJ97ghuo9bWCLWVflXDNAxDzM3NwVap9Qc9xE3unaWFRre7CY24yf2TzgJr2kCRfohhmqI3GsH3QqRZjsXFHjZt2oz5+U3wQiDJUrTiJqJGNNF+HBDYunUrgiAwXUfH+fosy3Dy5ElkWYZut+ty3FJKdDubUZQ5jhw5gpmZNooihR+w6BurWHK4XJXK8EjGJVdKayjNJbjtRoM9DaUxNzePLfNbcXJxEYN+DyCCB2FykoaMCAHp+ej1ewA0wshHkgxZqU9KjJLEyGKzV2XZ5HbCtExJI5dCB0izDP3BWCIaGOfJq2WAmjT6/QHizXMYjVI899zzICGhITAcJSgVwY8iU2UAeKKEJyWCKDDMdhM6DSTCKEAcS7SLiMmrQTQmuBEbBtdc/T5OLyhlIgFjHocLEZsUmvX8wiBAI47cgm05AHbhYlKXlUYfq05OC1PxJuFDiIK96lJhZcWDPQ+unIGWEJK7e1bDyxZvN7njjBDzHzJ5cJvX5gV1fDx7Z5NVEpagZ/P29tpYYhzntLXrIdPpdJx422SJKS9YfM3YeLM6PP1BH912GzbJtNqGdzZQqjQl6RJFoSGF4FJJ6bvNNssz+MEck/qKAlnO3b4DL0CWc4lvu91y47QVf0xmZ+E/K9HN95XTxbZrrpRcmTEaJSDtYeylj/kl9trYiofc8BBsxHU0HBoDUKHdbiPPcvT6PcRxjGarzekawTc3yzOkecZRv1aAMAiRZsUER8B+n00X2P4nnu+BoMGiiawo22q1TIrPPuf8PdIaK0SrbuoWVWXYagpoetOvzjWLagQFWKlNUo2+TD+P9jNX+75qSqHKfZk+nyqq6aDquFdLYXmez2XFpmoQRjdGGnJrXhSsLO17LlJk05BhGDoawZhzM658mibx2uvSarch/RBBGLqqzCpx1zdCZ3Nzc2i1Wmg0YtiKIusoNZtN7N69GzMzMwBg9HY4Oj3mxrArUG0VYVOR/DnSRCE5tVkUBXq9PpTSRpmYHT5L9LUcTLtOuLUc3OfODzycOHkaw2QIpQjNFj+jZ4M1baB4foDSlKr6gcS2He/Crkvfi2PHjoOERNiIOO9rcoDCejKNBvIidwS2MAyhmzF8z8fASJ/z4tZ2N9GW9JaqRDLKTJO+3IRwuSfBcq8HIeCEvzKVm2ZLnrPKi7JAoBU2bdrEWibdLtrNNgaDAeJGgoXjC+jMtACt4HnCiDKlKIoS0otMeI0fiM2b59FstpAkGRYXF+F7AZSiiaZVUkq3GANwNfSNokRe9N1iBXDjJytiZzexIAjgEbPYS6UQNRpsCYdMHrUNzoTvoxkLAKlpwjU2Loi4CkETGUVXH0bcFFqPPSe7gfLrrK0RhQ0XOQEq+WSASwENH0JVCMvTCxFgdRk8U5o+1j2o5p/tvdZaG10R5ttYZVhNNk7Bfwja9Otgw8WGQN7u5vyGsIVM5u/xwjw+oHo97d/VVurW6ymKwokLumhQU0yQJasGznhcbJxJKeBJDyQF4riJfr8PvW27k6d7u1fAnmfg+ZAeC7JJYctkeTObn58HEWEwGDiDKooilEWJNM1M92NCrzcwFQqhiZxwM8woisHN57SrXCmKAnNzc26OZBkThgeDPkvLG8fCGgiWLGh/t9vtOsI6V9lwuW+/N0SRszHRarZhuwATcWdi/hyNKIrh+9wHiXV4yG1alhRvOQFBEDhJ/SzP0IhD7rYNiVGSoShyNznGaRaWClgtIrJiulWMC3vMapwVe2x1E7bXz/5YR2g6+lJFteS4eg7Vz7Cv2ee0+vp0RKT6WdOf+0bwwGnparNAD8RVYFIwl8+TLsJiDZ0qR8MaK0QE4fmQ8Vhy317DLMuc4RL4Afw2a/3Yii/rSBCNeSh2DbdVjdahlFKi1Wq50uOiKNxcqRqX/Ls5lCJ4HpCmuXnOQihFCMPIzHc2kFg2owkiMhIM2lWQpmmKxcVFzM5y5V913T21eAqb5+dQKo5ybtm2BUEQgYjVp88Ga9pASYscp5eWkBYF4tYM3rVzF1QpkOYFNJVY7vXRallJdwVNvHH7Jqyfpqn7LCImDSZJwqFj04dmNBq5BZwranxQA8iLDEk6RCecMRMPICijX0BoNVtQhUaSJFzqaG6iYD1+Z0BoBbRaHSwunkYUxWOyXMAy8q1WA2naR6FyxEGEsBGCjVDePIfDBKSByFjts7MzSJLchets1QDAi8bi4qILxaVJgjRJ0Jlp4/1XXzWRk7WLn5TcIt0DIKQEjBcqfR86LzEaDiA9Lk/zZYBmzCRUG/2wnXUFCGR67EhB8IRhgRNYcEuORZOEFKZ/gwCR5hYGtuso71BMyDQeAkGgEcUcXSit8JJJCYG1ZFhBUcGvkMGqi3NVaEoIAZuor3qB9rrYueB53BCRSFcWPzrjxfCsIBzn1Xll099JNrc9EfHhRnQ2XFz15qynVl1gbY45iiJnnFQ9UHvdiADP91DkCu12C4N+H6Uq0fDHnXbfjjxdVXZbkoAXSkjPQ6k0CrMhzc7N4fTp01DEnVxVkiAvuc8Vt0UYp3/CMHTt5LMsw+zsrKuqscaErWIC4J4bG2nKsnFjRq31RPTEzhkbfbTv2wodW5578uRJ19YjbjZQlFyVV2QZWu02IiOwVRQFpMddYfO8hOf5zlCyqp25aQPh+76rziKCSUPzveKeZTxxSGtoAogEuPh6ZXXLiilX4YDYf0+nPe3f06mZaYNlNcPDfnb1tWnHonqsnbtVwu3071SNl+oY7LlP/87KQcNdMwulTBd0o0dUFAVKrRxJvzrmarWqnWvViI+NvFnDoixL5HmG7x56Da8dOeIchGoUJooiE0HZhNjwrGwkyRp+Vn7e8nSqxqAdgzXoLAHdPt+Li4sYjUaYmZlxomz2M+z4Wq0WlKKJdTqKIgwGA3S7XQDsBIZh6OQ1fN8DSqv0q5FlZSWac2ZY0wZKlmXwg02IwTnlwbDPPTKaMXq9JSwvLyHt9zA3uwmelEhGiQuX+SAMTTkVe8ysImlVa638tL2R1lABNJTOEYYcKh6NhpCSu44W5bhvRjLiSEKV8KVNuiAwZW1JkkAVGoIk0iRFqXImjkKxgqAgCI+5Jp4noaHcBNaK+x0A4AWIyISuWQ/GGli2l4k1kKzX1x8MEcfcgI9VabsoitIQL41SaMiGHCmNsijhgSA9oFAKgWTuRdwIobhlBDwZQIgAWrHFrUojGW0iKZp8CLAMfaly88AAUpbuOvm+Dw82t08g4mZxnhwvQEopwPeZNKrZMMx1wYxx4yWyl1u6tA0LDEtWlSUyxs44HkIEcICE88eoRAsAu3hqaA0IowPDC1nFAxXVaMYPDrwgABActyHi1vGTkY3J9M449cDzxC4qlkha3dis4qll7dvUpBVrsp4cf49d+HjBtlG2vBJGJtLcg6mymb3lGI3xKc18UUohS1OoUqERR0hGCUq/ZM/WLMgsHTBwJdQc6RiYBZw340F/aFKCPrI0dymsKOS+OUpxhGl+8xbkeY5er4dcsEHDkuCsr5OMek6DxSrtNptNFx630T9WmOZnKMvyyoLPAoSe6dnj+dzBW8oS7ZmGMW58I/rYgzC8LbtBTZcuV1N29n4L4bMRpgmeH5nrb7kU4ys9ndZZLZViP7OagqlG06rH2WeyGgGpbv72M96IwFo19KrGiMW0cJw1pqtckqpRY41qa0DY36uuxdMGiv1dD9wqA9KKFGoIUtyAkoyqaslpHnv9LVG0+h3WWNBECKR06649f8t9s07wa6+/hsXFRZcu4eifmuDdAAJFXiDqzkxEi23ZvZTSccb4GtpWGJb/xhFWadS7PS8w98cz84OjilnGjvtwODLqsMLMab7uNi1qv99WB1pjqdlqQQhCe6aFPM9QqAKeFyCsKCqfKda0gQLiNAgEd8g9eeIEAj+GJuLST09iZmYG7XabdSMiLsdbWlqCHwaYmZlBnucYDAYY9Pqu1tuK/1S9KutpZVmK4aiPuBGj22XNlTzL0O+XpgKBJ3tZlIgjzs9r8/AKIVDqEqL0nAVdFDmOHf8eL8CKexVolYPKEnEzRK4IUvqYaUboDxJAKBN2g7G+C5Om0UbQii1VT2buXIQQOH78OBqNBrZv386TbDhCGDQQRSFGwxEEgCgM3INj0yieqQBwuX9meiExb+mp+QAAHTxJREFUAnEQQLPZMIRUAY4qC2jNERBBsuLV820rSUFU/m8JtUJw2mQsNmjSCCTMaybkbDg5bNx4zIDnVq1MYqTJdBFgPTUFIU31D1HFoIEbs/tmwSme6mJWDZfaBZFLOUt4vi15Xz1c/oOCPXeI8cJtI0eEMamwSujlUvQxF4WIS7oBDhtbr2tpiavJFhcX3ebLAoThxAZARM4ws6W0WilWRvbHpOOzGxgmvFbPk4gaDZR5gcD3uZGaiViFUYQ4bpjeTQWGoxGk58E3z1QYRZhptzktm+YoC252JgR3AO50upzuK7kdRjJK4UkfTGDUrplb3IhRFCX6pnu65aLZ+WU9ZOs5WsVY5vKMAAjMzHTcJtrpdJyxxw6JlZtnorxSLJXfiGNwn6McoQnj2/vETTv52bYN6gBOiXK1YZMNUq3Z25Zs8AkpTGSFDWx7j6qRkarBUI2WYWpeVV+vpmzGc3TMlbGpuiqfZbXU0LRhY9eDKkF2WmF22hiw3+3Sg0bDwxpH1e+vGkbVKSiIORRWd0ZrBUHaKMuadQorjTOllEu3VaMXUozF6Ow1tq0biqJAo9HAdw8dwssvveTGFYYhdu7ciVOnTrn0nv0d3/ecszkd4bTjthE2ITxYJ4udMGHSOco4b4YTIz20WzOuUlJrMppXGlEYGed6XAll57wl2lbX2SzL4JmGh0TEvCvFgqCBz0b42WBNGyhalSiyBErn8AB4sgEJkyfzA2zqduARcOTQYbRn2pjbvJnJhdLyC/iCWllpO7ns4tNut11FA9epc9vposyQ5WxQCC2w3FtilVbNXrbVX7AhdEgjJOZxR8zqQzRMBwg8H5p4s48bEbJUc5WL9KGVAojJpkHgQ9G4y6bWQFmmTjSOSl5AGlGMNM1cGNqS/sqyxOLiomnvHoHAqpogw+4XY0lwAj9AkBLwQ9f+TpgyX2vIZGmKZrOJqNHAaFSwcJvge6M1uSobG0Xh9UcBgsvoHFUF47CklbUXYOE5YUr+rEVTbQVO4GiCLXmx5E0rkMSegnTep5DjckjWUrERo8k28UJ4E8YJL2bCcQfGglESgM/8CD02un6wEKuQOsaLuV2cqyFfO0a7INu2BzY1ZTdSa3x4nmfSZITTp09zlK3f5yilEX8ah/onQ+A2R94f9NE2Et+e56Hiup01bDWETYvmacFtEbwAXuC7jtSe74PyHMPRkPUbmpyiYV2HcVogzwuEYYTZ2U0Iw5CrzoyXbTVKoijC5s3zWFhYwGAwhO8HThPG9oIajUaunYXdCKxHb6OvSvGkDsNoPO+MMVcUBUbJCJq0axbnyIZKwfcDtEwPr7woIT3fpXLshlrtn2QjWEqVrkkcc7LIPcd2o4SJLNnu1lUjY7qCxs756iZeNcyrEZyqMTr23seS+NPfwfdXT7xvN1u74VcN4ukIiZ3TVdJ39bur5wiM0xur8V7s8e78NUGb6a3NWhV64z5XLiVsIpj2GlXHWy2XjoJw4nutkZIkXLV58OBBPPrIo3j96DF4vg9ZMm9jZmYGy8vLjoTK0Ux2SHu9XiWtNzbsqlFP27vNrqdCCAi7ZupxmsfuQ/Z30zTjMvwma7lY8bWyLDEcDVzKstlsQikmfvPzlDtKQbvZAoF73zWbMbQwLWkwWdZ9JljTBooqMgQe0G41EQYNDAc58oKbGukyQ7sZQZDEjh070Gq1ELe4O6iAScMYqXgpJQJDfouiyBHSOp2OCx9bsmle5GA1PuVCe9V8twAveHmFbFjtMVEUBYqBckYDQSNNh0iSIYIwQFEqlKpE3IgRBhFEwBt1VmQoiiFIeBiNhrDhuLm5zdC6ZPVLXSJJR8gy6y023AJi8+OJ0WFozbZRltabIliVWhs+H5OePEB4JmQ+9mCiKGJDxZNohAFC30MqcwAcQtQkofICRVFCiNKcB3feEhKsn1IxTmxkgIh7DglilzpPM0jhmfbhJq9bcImsDV9WvTubflCKtVLY+2LDEYDR87BpmTGptLqg8bFsxE6Hu20o04oUscYGOVnxdwKiwj+hyvXic11Z/TB9HtLzDPu/4d5PkgTdbhdCCMfNsPfd5r97vR6SJFnhAQNwmkJkDLu42cTy8jK2z29Z0dn4+x2zJz0zV4C4ESNuNrm9hTl/u0FY79KKVWVphn6/716z98ySCm2lnn1uXaluWWJ2dtY5LVYAjtNhkSPiVquo2DHRbuEGhOlA7DuRNu7Hxam1LMsghWSdFckpNxvyF0Kg3+9jOBw65ygMWf3W8ofsfXBGIOCiRnmZO16d5/tQuWkPMPGz+vVeTeCser+rc6C62U4fP22ArEZctX9Xn6lqKqb6+dMkz+nIjv33tEGyWiRoOlpq58bEvNMESKNsLW30Yfw7WhslXsMDs8+UnYt207fRraIsQHq8PlTHk+eccvQ8Cd/zkWQJoijC9u3bXfsVIZjrMTc3h7m5zWi1OHpu9y27to9GIwwGA3Q6HRddKYvxujZt3Nln3J5HlUdljd7quOy1qq4Plhhu53g1HRyEgYsqa2LVXHt/zwZr2kCJowjNRgMQJco8RSuO4UnORadZhhICm7rzaMYtLBw/Dg1Cs9lEZ3YWijRef/11lGWJTqcDCV6ohRDYtm2bs1pZ3bSPPM8x05mBEKjoD7B+BMCee9yIjdMouGmcCeeNElb/a7VakL6HwLC82RML8b3XD8PzBebmuqwEmbE0e1Eo5FnGioVCmc6sHIbmSSUQN2IICZPv5DRUqbhMMwwjk5s3fReURrc7C8+TGA6HiKIWGmEIKYwhAGCUpBj0uO8IV60INJozEB4bOFKYSQ5gNBoiS0bQ2vTRUApBxI0SwzBCFEb87yiClKEJ7wlASBCMYJS5XnbjheC0EuePPXdtbdXMONphrXGCFAK6LKBUCSFszpzPXQjhIgDMEal2/bUEWWlIvdXFz3JZxuWC4zJBaVRAJbQqAaNaKo0R9XZTPDbUDEzYcHARJwKkGDd2q0p1M8fPeqv8E5pFhY04xYqqSrH0tAnlpmmKdmvcmTUIfMzOzprPtYtUCa2lSzEJKZwoXbfTwdKpU0bkyp70WVyHqY1TSk6D2s1ZgLuBa4IzHCzhzjZm830fy8vLjntgc/k2emgX5Gluhd3YhsOhu8e2ZFRK6TYLK0dfNUjsJmWdlTxnqfC5uTmEYej4PXEcT1R6qJFGoxVjqd/jq5TwmOFJpEWOJgiNZhOhkesH4CopgElxMr7/gNIlQMLcU4Ek5SqeUpkUiLAy4ys37dW7xVfm5CqpHHfrpqIk1WhI9ff5vo5/f5p4be+bU4iufKf93OomP3USRkaCmJxZCc4SVhpRVeNoYhNXynUgJyEAKIiKA+P7nOoutXJrS/XzfCa78RUmZrgpw2HhqkMed9SIoEcaF+/ciQ+FIQ4deg3HFk5gpjODbncWW7ZsQRD4+M53voPFxVOI49hdwzAKocxccv2WsgylUmi12pBSjfVweNBuXRCSix6sEQXBqtRFUZh0IF+r1PCcyqJ0jqHn+aZqkf9v1dnTNEVgUj1lWSJJU3h+C404QpazEjlrUMmz4qUBa9xA4QgEEzOFBIqCoD2FLC+gIRBFLSRZjsFgiLQogNzHMDmN3nCEbrcLT/poRDEz5aVEEEbI8gKnTp3mkmCzCBIEGnETRAKlIigtAHCUwBMehCAkSYY854UgjpuIWy2UqkSuNE4bT1RDoDXTQig8pGmOUmkkSYrB0OQYRQg/8NBszXJY1/MxOH4cy8MRojhEZ6YLAvfQEZKNpyxP0WrHzEkouWSRSGKUDOF5BCF85Dkfu7y8jE6ng02bNiFuNDAcDJCOUvSXBzjw3LfgSe6kLEwaQyluJpWr17hFhZTwjIESGOnvCY+IODVFpmpASA9B4CMMQkSNBrqdWczOziJqtuGF3J5bAC6/KaSAbyItzIFRnMO1i15lkSIilxeWksuxOU0FoIRpRMhVPjrPURSJSZtNlubazJHNN/N4zLJm1HAtxl6hclwXIQiqLJGkCZSRTbcNtRzOUD3RLqbTh1ttEWm5M1qhIT00Ah+Rb6IMtsQYGsLyDLTi2iddoswzTmepEqrMkScjjAYhWu0WQl8i9GP4kqNkgScBrRD6xkPzjPS3IOZ9Sbt4a5OyJDQ8H4EQAPF9dwM6kzET85BsGgIkTD+PADD8o6LIsbTURxDa6i4YnliBfn9gcvMRlpeXHamUNGFGSgRhwAqqpJEXOQicHholI8jcg1aajV5P4vTykutkm2WcvuwGs4a0zpu/3XwIMKlbD5oIyhg3SZrhe0ePYaY9A9/34AcSSZqZzdBDkg4xHPYx0+W8v+/7IE1oz7QReB4aQQhtnIpByjL43Oo+chuIUqXpn0UoC9ZX4mfUA4FLltkoIcSNAFEgoIjL54Ufuau/ui1tUz9m/hHPQW0Une2mbn/IKBdbsT1IYUrCyaW9nYAZxhFB+yU26jk2mIT7PE0ErbR7Rl00EQRBBJYt4wfH6RbbZ3v8AJmjbISHoySe8CbHAkCQdveWuVZ8/r4xRIOwwZ3tTZqsP0zgB9wUjw0XjtIKz3drlz0X7mMz5rWFcQwtBOa3bkN3dg6XD4dOcj5qNNBuxtCqhCcFdu7cyerIRNzw0WeH0Qu4oWMUN9HyA5CQUCTgBSFISpZ00NrcewGtCAAfQ8IYKRhXBUmPnce8yCEE8xp934cMPJAqxquRMdioKJHlGevGFCW0KpHlJQql0ciZYNueaTvn1PbxOdNIypo2UL53/CT8iC3LNE0gpW/CwnzB40YfpVKGTZ+47pxpkjLJrijgSfaeO90Zs9FwxEIphbjB8uZW3MlWOrAsPRA1Iue9SJOTLIsSYRTBDwOz8RKGQy75PbZwGtLj3h4ErvwRgq3UMAxx9Cjn/tvtJrIsh+97WFpaRn8wAEhDqxy+Z3O/3Jej0YgxGKaGa1IaDRIPSZJheXmE4wunkSQseZ2mKRZPDXDs+CkEfoBAeuj3l5EmCQ4ffg2dmQ4WT51m79xwCJRSxuiYDBP7ZjIDgC0nZaNicpEgjElkAoKvZxSj2ZnF3Nwc81cijvRYL4470nI6rTQPUHUBWxmhEKY/ic0Bc+RgmsVvX5/GaoqZbGCIqeNKt+Da46zXuLi4CM+T2L9/P44ePfq2oyhVVL8LAPqDAXq9HmKjW1MlLvp+MHnaZJoFGnE7pTXKosDRo0cRxzHaRv2VJa1DY/B5AJhIa73EapSmGm2ySNMUoyTB8e8ddSmLahriTMeptcbCwgLyvMTCwuKEF54kLB0vJUcoPU8izTJnYHg+d2tOkhSBzw328jzHYBjxJle5llIw0dvOj8D3QSCMRgm40oE3keEoAZ04AW2eA5YoNwu356MRc9WEXeg9GVRKPeFC4ZZwP04PKpR5gVIpDMshsixDb5krhfIix2jIJGYO0/cd4VOIsXZQNRqgieXSpcfcGq009ysihZcOvohOp8ORH0XGQHlrT3a1OSwcH2ochRyH+SqvwUYtyIlgWgMHlaPcM20qRd78uaHx9wEQ0Obnzc9bg+X/p5/nFekd0vB0gerctmv7cNDHoUNH8PgTT5lomQff97g9iOnqneUZtLZpDo5y8l7EFYkCgPTkhNHmOjiXXDjgCM3m3tpuyXme46WXDkL6Pnyfm9OO063jqJN0EWS+npa7pDX3S+O5yyRYIYWrFJuOkNlIYZXP4wcS0899kiRmz2Pyre+xsWYNKJtOsuTfAwdeeJP7uxKC3qnE+TuI5eVlDj9j/GxIaUtOGQKcuybmfsKkFk0odDxVrQdt1uSJz5DCEqW4jJbAnzf5GI49DXus8zwq/wbM95jzXMm/gPsl6QGaK3TNA2IiAWp8PC9Uk78rZeV1TB5rSvkdBHiJ8uX4uGJKCLV6fV2odOXtOGO4XG7lZFdTX33D3xeTeegLAVb3woY8bRj/XKGa93+zYwBMGDnV/6+W1/9+x2A/72y8JGDM07IbrjWG3vy7Ks8NKs/WBYbpa2HJzNP3bno83zfswwpAmGZt2ix6QvqgM3/k3sY5VMIv069VQVOrkqi+PmFpr/IlHEE5g5PB6gbZ9PkQuMvVSljjvarjYddlKW0UdurTzcJJ1YVzta98gzOrzodqumrV41e53HyOKzVhpp/3d2K9Wm3NmV4XlpaWnIbKG37OWjRQXnnlFVx++eXn+zRq1KhRo0aNGt8Hjhw5gosvvvhNj1mTKZ65uTkAwOHDh9/SAluP6PV62LlzJ44cOYJOp3O+T+ecYiOPHdjY49/IYwc29vjrsa+fsRMR+v0+duzY8ZbHrkkDxebJut3uurhh3y86nc6GHf9GHjuwsce/kccObOzx12NfH2M/08DC2dX81KhRo0aNGjVqnAPUBkqNGjVq1KhR44LDmjRQoijCXXfd9ZbiQusVG3n8G3nswMYe/0YeO7Cxx1+PfWOOfU1W8dSoUaNGjRo11jfWZASlRo0aNWrUqLG+URsoNWrUqFGjRo0LDrWBUqNGjRo1atS44FAbKDVq1KhRo0aNCw61gVKjRo0aNWrUuOCwJg2Uv/iLv8Cll16KRqOB3bt348knnzzfp/S28Z//+Z/46Z/+aezYsQNCCDzwwAMT7xMRfv/3fx8XXXQR4jjG3r178fLLL08cc+rUKdx2223odDqYnZ3Fr/zKr2AwGJzDUXx/uPvuu/HDP/zDmJmZwdatW/FzP/dzOHjw4MQxaZpi37592Lx5M9rtNn7hF34Bx48fnzjm8OHDuPXWW9FsNrF161b81m/9lusseyHjnnvuwbXXXuuUIvfs2YOvfe1r7v31PPZpfO5zn4MQAp/61Kfca+t1/H/wB38w0aFbCIGrrrrKvb9ex13F66+/jl/6pV/C5s2bEccxPvCBD+Cpp55y76/Xde/SSy9dce+FENi3bx+AjXHvzwi0xnDfffdRGIb0d3/3d/TCCy/Qr/3ar9Hs7CwdP378fJ/a28JXv/pV+t3f/V36p3/6JwJA999//8T7n/vc56jb7dIDDzxA3/rWt+hnfuZn6LLLLqMkSdwxP/mTP0nXXXcdPf744/Rf//Vf9J73vIc++tGPnuORnD0+/OEP07333ksHDhygZ599ln7qp36Kdu3aRYPBwB1zxx130M6dO+nhhx+mp556in7kR36EfvRHf9S9X5YlXXPNNbR371565pln6Ktf/SrNz8/Tb//2b5+PIZ0VvvKVr9C//du/0UsvvUQHDx6k3/md36EgCOjAgQNEtL7HXsWTTz5Jl156KV177bV05513utfX6/jvuusuev/7309Hjx51PydOnHDvr9dxW5w6dYouueQS+tjHPkZPPPEEvfLKK/Tggw/St7/9bXfMel33FhYWJu77Qw89RADo0UcfJaL1f+/PFGvOQLnpppto37597v9KKdqxYwfdfffd5/GsfrCYNlC01rR9+3b64z/+Y/fa0tISRVFE//AP/0BERC+++CIBoP/5n/9xx3zta18jIQS9/vrr5+zcfxBYWFggALR//34i4rEGQUBf+tKX3DH/93//RwDoscceIyI28KSUdOzYMXfMPffcQ51Oh7IsO7cD+AFg06ZN9Dd/8zcbZuz9fp+uuOIKeuihh+jHf/zHnYGynsd/11130XXXXbfqe+t53Baf+cxn6Md+7Mfe8P2NtO7deeeddPnll5PWekPc+zPFmkrx5HmOp59+Gnv37nWvSSmxd+9ePPbYY+fxzN5ZvPrqqzh27NjEuLvdLnbv3u3G/dhjj2F2dhY33nijO2bv3r2QUuKJJ5445+f8drC8vAxg3LX66aefRlEUE+O/6qqrsGvXronxf+ADH8C2bdvcMR/+8IfR6/XwwgsvnMOzf3tQSuG+++7DcDjEnj17NszY9+3bh1tvvXVinMD6v/cvv/wyduzYgXe/+9247bbbcPjwYQDrf9wA8JWvfAU33ngjfvEXfxFbt27F9ddfj7/+679272+UdS/Pc3zxi1/Exz/+cQghNsS9P1OsKQPl5MmTUEpN3BQA2LZtG44dO3aezuqdhx3bm4372LFj2Lp168T7vu9jbm5uTV0brTU+9alP4YMf/CCuueYaADy2MAwxOzs7cez0+Fe7Pva9Cx3PP/882u02oijCHXfcgfvvvx9XX331hhj7fffdh//93//F3XffveK99Tz+3bt34/Of/zy+/vWv45577sGrr76KD33oQ+j3++t63BavvPIK7rnnHlxxxRV48MEH8YlPfAK/+Zu/iS984QsANs6698ADD2BpaQkf+9jHAKzvOX+28M/3CdSoUcW+fftw4MABfPOb3zzfp3JOceWVV+LZZ5/F8vIyvvzlL+P222/H/v37z/dpveM4cuQI7rzzTjz00ENoNBrn+3TOKW655Rb372uvvRa7d+/GJZdcgn/8x39EHMfn8czODbTWuPHGG/FHf/RHAIDrr78eBw4cwF/+5V/i9ttvP89nd+7wt3/7t7jllluwY8eO830qFxzWVARlfn4enuetYDMfP34c27dvP09n9c7Dju3Nxr19+3YsLCxMvF+WJU6dOrVmrs0nP/lJ/Ou//iseffRRXHzxxe717du3I89zLC0tTRw/Pf7Vro9970JHGIZ4z3vegxtuuAF33303rrvuOvzpn/7puh/7008/jYWFBfzQD/0QfN+H7/vYv38//uzP/gy+72Pbtm3revxVzM7O4r3vfS++/e1vr/v7DgAXXXQRrr766onX3ve+97k010ZY9w4dOoT/+I//wK/+6q+61zbCvT9TrCkDJQxD3HDDDXj44Yfda1prPPzww9izZ895PLN3Fpdddhm2b98+Me5er4cnnnjCjXvPnj1YWlrC008/7Y555JFHoLXG7t27z/k5nw2ICJ/85Cdx//3345FHHsFll1028f4NN9yAIAgmxn/w4EEcPnx4YvzPP//8xGL10EMPodPprFgE1wK01siybN2P/eabb8bzzz+PZ5991v3ceOONuO2229y/1/P4qxgMBvjOd76Diy66aN3fdwD44Ac/uEJO4KWXXsIll1wCYP2vewBw7733YuvWrbj11lvdaxvh3p8xzjdL92xx3333URRF9PnPf55efPFF+vVf/3WanZ2dYDOvRfT7fXrmmWfomWeeIQD0J3/yJ/TMM8/QoUOHiIjL7WZnZ+mf//mf6bnnnqOf/dmfXbXc7vrrr6cnnniCvvnNb9IVV1xxwZfbERF94hOfoG63S9/4xjcmSu9Go5E75o477qBdu3bRI488Qk899RTt2bOH9uzZ4963ZXc/8RM/Qc8++yx9/etfpy1btqyJsrvPfvaztH//fnr11Vfpueeeo89+9rMkhKB///d/J6L1PfbVUK3iIVq/4//0pz9N3/jGN+jVV1+l//7v/6a9e/fS/Pw8LSwsENH6HbfFk08+Sb7v0x/+4R/Syy+/TH//939PzWaTvvjFL7pj1vO6p5SiXbt20Wc+85kV7633e3+mWHMGChHRn//5n9OuXbsoDEO66aab6PHHHz/fp/S28eijjxKAFT+33347EXHJ3e/93u/Rtm3bKIoiuvnmm+ngwYMTn7G4uEgf/ehHqd1uU6fToV/+5V+mfr9/HkZzdlht3ADo3nvvdcckSUK/8Ru/QZs2baJms0k///M/T0ePHp34nO9+97t0yy23UBzHND8/T5/+9KepKIpzPJqzx8c//nG65JJLKAxD2rJlC918883OOCFa32NfDdMGynod/0c+8hG66KKLKAxDete73kUf+chHJjRA1uu4q/iXf/kXuuaaayiKIrrqqqvor/7qrybeX8/r3oMPPkgAVoyHaGPc+zOBICI6L6GbGjVq1KhRo0aNN8Ca4qDUqFGjRo0aNTYGagOlRo0aNWrUqHHBoTZQatSoUaNGjRoXHGoDpUaNGjVq1KhxwaE2UGrUqFGjRo0aFxxqA6VGjRo1atSoccGhNlBq1KhRo0aNGhccagOlRo0aNWrUqHHBoTZQatSoUaNGjRoXHGoDpUaNGjVq1KhxwaE2UGrUqFGjRo0aFxz+H3bgwRzto99uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "result_out_dir = '../resources/output/conditional/tutorial_conditinal_biggan_res_sample6.jpg'\n", + "# use a dict to pass the parameters, num_batches means images output num for one inference\n", + "editor = MMEdit('biggan', model_setting=1, extra_parameters={'num_batches':6}) \n", + "results = editor.infer(label=1, result_out_dir=result_out_dir)\n", + "\n", + "# plot the result image and we could see 6 images in a inference batch\n", + "img = mmcv.imread(result_out_dir)\n", + "plt.imshow(mmcv.bgr2rgb(img))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To know what extra parameters that a model have, do like this." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "http loads checkpoint from path: https://download.openmmlab.com/mmgen/biggan/biggan_imagenet1k_128x128_b32x8_best_fid_iter_1232000_20211111_122548-5315b13d.pth\n", + "['num_batches', 'sample_model']\n" + ] + } + ], + "source": [ + "import mmcv\n", + "import matplotlib.pyplot as plt \n", + "from mmedit.edit import MMEdit\n", + "\n", + "editor = MMEdit('biggan', model_setting=1) \n", + "editor.print_extra_parameters()\n", + "# 'num_batches' and 'sample_model' are extra parameters in 'biggan' model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Perform inference with models of different tasks\n", "\n", "There are multiple task types in MMEditing: Matting, Inpainting, Video Super-Resolution, Image Super-Resolution, Image2Image Translation, Unconditional GANs, Conditional GANs, Video Interpolation. \n", "\n", From 5dcc15a051efb4184359c08e15ce3b4e2be008bd Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 14:32:33 +0800 Subject: [PATCH 57/68] [high-level api] add README.md and more instructions in ipynb. --- demo/README.md | 154 ++++++++++++++++++++++++ demo/mmediting_inference_tutorial.ipynb | 39 ++++-- 2 files changed, 185 insertions(+), 8 deletions(-) create mode 100644 demo/README.md diff --git a/demo/README.md b/demo/README.md new file mode 100644 index 0000000000..fdc1ba8fb7 --- /dev/null +++ b/demo/README.md @@ -0,0 +1,154 @@ +# MMEditing Demo + +There are some mmediting demos for you to run with command line in this folder. + +We provide python command line usage here to run these demos and mode instructions could also be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) + +## Download sample images or videos + +We prepared some images and videos for you to run demo with. After MMEdit is well installed, you could use demo in this folder to infer these data. Download at here (url) and extract it to MMEdit root path. + +```shell +cd mmediting +wget url +unzip resources.zip +``` + +## MMEditing inference demo + +You can use the following commands to perform inference with a MMEdit model. + +Usage of python API can be found in this [tutotial](demo/mmediting_inference_tutorial.ipynb). + +```shell +python demo/mmediting_inference_demo.py \ + [--img] \ + [--video] \ + [--label] \ + [--trimap] \ + [--mask] \ + [--result-out-dir] \ + [--model-name] \ + [--model-setting] \ + [--model-config] \ + [--model-ckpt] \ + [--device ] \ + [--extra-parameters] +``` + +Examples for each kind of task: + +1. Conditional GANs + +```shell +python demo/mmediting_inference_demo.py \ + --model-name biggan \ + --label 1 \ + --result-out-dir resources/output/conditional/demo_conditional_biggan_res.jpg \ +``` + +2. Inpainting + +```shell +python demo/mmediting_inference_demo.py \ + --model-name global_local \ + --img resources/input/inpainting/celeba_test.png \ + --mask resources/input/inpainting/bbox_mask.png \ + --result-out-dir resources/output/inpainting/demo_inpainting_global_local_res.jpg +``` + +3. Matting + +```shell +python demo/mmediting_inference_demo.py \ + --model-name global_local \ + --img resources/input/matting/GT05.jpg \ + --mask resources/input/matting/GT05_trimap.jpg \ + --result-out-dir resources/output/matting/demo_matting_gca_res.png +``` + +4. Super resolution + +```shell +python demo/mmediting_inference_demo.py \ + --model-name esrgan \ + --img resources/input/restoration/0901x2.png \ + --result-out-dir resources/output/restoration/demo_restoration_esrgan_res.png +``` + +5. Image translation + +```shell +python demo/mmediting_inference_demo.py \ + --model-name pix2pix \ + --img resources/input/translation/gt_mask_0.png \ + --result-out-dir resources/output/translation/demo_translation_pix2pix_res.png +``` + +6. Unconditional GANs + +```shell +python demo/mmediting_inference_demo.py \ + --model-name styleganv1 \ + --result-out-dir resources/output/unconditional/demo_unconditional_styleganv1_res.jpg +``` + +7. Video interpolation + +```shell +python demo/mmediting_inference_demo.py \ + --model-name flavr \ + --video resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4 \ + --result-out-dir resources/output/video_interpolation/demo_video_interpolation_flavr_res.mp4 +``` + +8. Video restoration + +```shell +python demo/mmediting_inference_demo.py \ + --model-name edvr \ + --extra-parameters window_size=5 \ + --video resources/input/video_interpolation/QUuC4vJs_000084_000094_400x320.mp4 \ + --result-out-dir resources/output/video_restoration/demo_video_restoration_edvr_res.mp4 +``` + +## Face restoration demo + +You can use the following commands to test an face image for restoration. + +```shell +python demo/restoration_face_demo.py \ + ${CONFIG_FILE} \ + ${CHECKPOINT_FILE} \ + ${IMAGE_FILE} \ + ${SAVE_FILE} \ + [--upscale-factor] \ + [--face-size] \ + [--imshow] \ + [--device ${GPU_ID}] +``` + +Examples: + +```shell +python demo/restoration_face_demo.py \ + configs/glean/glean_in128out1024_4x2_300k_ffhq_celebahq.py \ + https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth \ + tests/data/image/face/000001.png \ + tests/data/pred/000001.png \ + --upscale-factor 4 +``` + +## Other demos + +These demos are duplicated with mmedting_inference_demo.py and may be removed in the future. + +- colorization_demo.py +- conditional_demo.py +- inpainting_demo.py +- matting_demo.py +- restoration_demo.py +- restoration_video_demo.py +- translation_demo.py +- unconditional_demo.py +- video_interpolation_demo.py diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 76df873fdd..2f47911a1b 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -255,7 +255,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. Perform inference with MMEditing API" + "## 2. Perform inference with MMEditing API\n", + "\n", + "Next we describe how to perform inference with python code snippets.\n", + "\n", + "(We also provide command line interface for you to do inference. You could run mmediting_inference_demo.py to perform inference. More guidance could be found in [README.md](demo/readme.md).)\n" ] }, { @@ -268,9 +272,7 @@ "\n", "Take image translation for example. We need a input image to be translated.\n", "\n", - "We have prepared some images and videos for you, which could be downloaded from here(need a link here).\n", - "\n", - "Put your image to some directory and make a directory to save processed image.\n" + "Put your image to some directory and make a directory to save processed image." ] }, { @@ -285,11 +287,32 @@ "source": [ "# make a dir for input image and output image\n", "!mkdir -p ./../resources/input/translation\n", - "!mkdir -p ./../resources/output/translation\n", + "!mkdir -p ./../resources/output/translation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also have prepared some images and videos for you, which could be downloaded from here(url).\n", "\n", - "# put your image to input dir or download our prepared image\n", - "!cd ./../resources/input/translation\n", - "# wget link" + "Download and extract it to MMEdit root path." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "# download resources\n", + "!cd mmedting\n", + "!wget url\n", + "!unzip resources.zip" ] }, { From b77d7942b428068e9849d88b95643d2953015bb3 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 14:38:48 +0800 Subject: [PATCH 58/68] [high-level api] append to last commit. --- demo/mmediting_inference_tutorial.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 2f47911a1b..9b5345b533 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -259,7 +259,7 @@ "\n", "Next we describe how to perform inference with python code snippets.\n", "\n", - "(We also provide command line interface for you to do inference. You could run mmediting_inference_demo.py to perform inference. More guidance could be found in [README.md](demo/readme.md).)\n" + "(We also provide command line interface for you to do inference by running mmediting_inference_demo.py. The usage of this interface could be found in [README.md](demo/readme.md) and more guidance could be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html#).)\n" ] }, { From e88347307ac404c93a0e645e9bb9dc8d95b0ed00 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 14:59:49 +0800 Subject: [PATCH 59/68] [high-level api] fix typo. --- demo/README.md | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/demo/README.md b/demo/README.md index fdc1ba8fb7..64a79d4c9b 100644 --- a/demo/README.md +++ b/demo/README.md @@ -1,12 +1,10 @@ # MMEditing Demo -There are some mmediting demos for you to run with command line in this folder. - -We provide python command line usage here to run these demos and mode instructions could also be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) +There are some mmediting demos in this folder. We provide python command line usage here to run these demos and more guidance could also be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) ## Download sample images or videos -We prepared some images and videos for you to run demo with. After MMEdit is well installed, you could use demo in this folder to infer these data. Download at here (url) and extract it to MMEdit root path. +We prepared some images and videos for you to run demo with. After MMEdit is well installed, you could use demos in this folder to infer these data. Download at here (url) and extract it to MMEdit root path. ```shell cd mmediting From f15e2e2174333e2f61d116d2848af34a644608c6 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Mon, 21 Nov 2022 20:27:58 +0800 Subject: [PATCH 60/68] [high-level api] add ut to refresh building. --- tests/test_edit.py | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/tests/test_edit.py b/tests/test_edit.py index 1bf3cf40ff..f48e848144 100644 --- a/tests/test_edit.py +++ b/tests/test_edit.py @@ -16,9 +16,23 @@ def test_edit(): with pytest.raises(Exception): MMEdit() + with pytest.raises(Exception): + MMEdit(model_setting=1) + supported_models = MMEdit.get_inference_supported_models() + MMEdit.inference_supported_models_cfg_inited = False + supported_models = MMEdit.get_inference_supported_models() + supported_tasks = MMEdit.get_inference_supported_tasks() - task_supported_models = MMEdit.get_task_supported_models('translation') + MMEdit.inference_supported_models_cfg_inited = False + supported_tasks = MMEdit.get_inference_supported_tasks() + + task_supported_models = \ + MMEdit.get_task_supported_models('Image2Image Translation') + MMEdit.inference_supported_models_cfg_inited = False + task_supported_models = \ + MMEdit.get_task_supported_models('Image2Image Translation') + print(supported_models) print(supported_tasks) print(task_supported_models) From 6c40d799b9581ee302013afc4595cb75c2f1e545 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Tue, 22 Nov 2022 16:17:06 +0800 Subject: [PATCH 61/68] [high-level api] fix readme review comments. --- demo/README.md | 22 +++++++++++----------- demo/mmediting_inference_tutorial.ipynb | 2 +- 2 files changed, 12 insertions(+), 12 deletions(-) diff --git a/demo/README.md b/demo/README.md index 64a79d4c9b..4a26194bdb 100644 --- a/demo/README.md +++ b/demo/README.md @@ -1,6 +1,6 @@ # MMEditing Demo -There are some mmediting demos in this folder. We provide python command line usage here to run these demos and more guidance could also be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) +There are some mmediting demos in this folder. We provide python command line usage here to run these demos and more guidance could also be found in the [documentation](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) ## Download sample images or videos @@ -16,7 +16,7 @@ unzip resources.zip You can use the following commands to perform inference with a MMEdit model. -Usage of python API can be found in this [tutotial](demo/mmediting_inference_tutorial.ipynb). +Usage of python API can be found in this [tutotial](./mmediting_inference_tutorial.ipynb). ```shell python demo/mmediting_inference_demo.py \ @@ -141,12 +141,12 @@ python demo/restoration_face_demo.py \ These demos are duplicated with mmedting_inference_demo.py and may be removed in the future. -- colorization_demo.py -- conditional_demo.py -- inpainting_demo.py -- matting_demo.py -- restoration_demo.py -- restoration_video_demo.py -- translation_demo.py -- unconditional_demo.py -- video_interpolation_demo.py +- [colorization_demo.py](./colorization_demo.py) +- [conditional_demo.py](./conditional_demo.py) +- [inpainting_demo.py](./inpainting_demo.py) +- [matting_demo.py](./matting_demo.py) +- [restoration_demo.py](./restoration_demo.py) +- [restoration_video_demo.py](./restoration_video_demo.py) +- [translation_demo.py](./translation_demo.py) +- [unconditional_demo.py](./unconditional_demo.py) +- [video_interpolation_demo.py](./video_interpolation_demo.py) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 9b5345b533..231c3c1887 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -259,7 +259,7 @@ "\n", "Next we describe how to perform inference with python code snippets.\n", "\n", - "(We also provide command line interface for you to do inference by running mmediting_inference_demo.py. The usage of this interface could be found in [README.md](demo/readme.md) and more guidance could be found on the [web page](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html#).)\n" + "(We also provide command line interface for you to do inference by running mmediting_inference_demo.py. The usage of this interface could be found in [README.md](./README.md) and more guidance could be found in the [documentation](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html#).)\n" ] }, { From 49e13e7a0fe14b89b508c09e41a89f89c02d2531 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 23 Nov 2022 10:09:42 +0800 Subject: [PATCH 62/68] [high-level api] refresh readme. --- demo/README.md | 66 +++++-- demo/download_inference_resources.py | 107 ++++++++++++ demo/mmediting_inference_tutorial.ipynb | 217 ++++++++++++------------ 3 files changed, 275 insertions(+), 115 deletions(-) create mode 100644 demo/download_inference_resources.py diff --git a/demo/README.md b/demo/README.md index 4a26194bdb..ece8c6a772 100644 --- a/demo/README.md +++ b/demo/README.md @@ -2,21 +2,67 @@ There are some mmediting demos in this folder. We provide python command line usage here to run these demos and more guidance could also be found in the [documentation](https://mmediting.readthedocs.io/en/dev-1.x/user_guides/3_inference.html) -## Download sample images or videos +Table of contents: -We prepared some images and videos for you to run demo with. After MMEdit is well installed, you could use demos in this folder to infer these data. Download at here (url) and extract it to MMEdit root path. +- [Download sample images or videos](#1-download-sample-images-or-videos) + +- [MMEditing inference demo](#2-mmediting-inference-demo) + +    1. [Check supported tasks and models](#21-check-supported-tasks-and-models) + +    2. [Perform inference with command line](#22-perform-inference-with-command-line) + +- [Face restoration demo](#3-face-restoration-demo): + +- [Other demos](#4-other-demos) + +## 1. Download sample images or videos + +We prepared some images and videos for you to run demo with. After MMEdit is well installed, you could use demos in this folder to infer these data. +Download with python script [download_inference_resources.py](./download_inference_resources.py). + +```shell +# see all resources +python download_inference_resources.py --print-all +# see all task types +python download_inference_resources.py --print-task-type +# see resources of one specific task +python download_inference_resources.py --print-task 'Inpainting' +# download all resources to default dir '../resources' +python download_inference_resources.py +# download resources of one task +python download_inference_resources.py --task 'Inpainting' +# download to the directory you want +python download_inference_resources.py --root-dir '../your_dir' +``` + +## 2. MMEditing inference demo + +### 2.1 Check supported tasks and models + +print all available models for inference. + +```shell +python demo/mmediting_inference_demo.py --print_all_available_models +``` + +print all available tasks for inference. + +```shell +python demo/mmediting_inference_demo.py --print_all_available_models +``` + +print all available models for one task, take 'Image2Image Translation' for example. ```shell -cd mmediting -wget url -unzip resources.zip +python demo/mmediting_inference_demo.py --print_available_models_for_a_task 'Image2Image Translation' ``` -## MMEditing inference demo +### 2.2 Perform inference with command line You can use the following commands to perform inference with a MMEdit model. -Usage of python API can be found in this [tutotial](./mmediting_inference_tutorial.ipynb). +Usage of python API can also be found in this [tutotial](./mmediting_inference_tutorial.ipynb). ```shell python demo/mmediting_inference_demo.py \ @@ -106,11 +152,11 @@ python demo/mmediting_inference_demo.py \ python demo/mmediting_inference_demo.py \ --model-name edvr \ --extra-parameters window_size=5 \ - --video resources/input/video_interpolation/QUuC4vJs_000084_000094_400x320.mp4 \ + --video resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 \ --result-out-dir resources/output/video_restoration/demo_video_restoration_edvr_res.mp4 ``` -## Face restoration demo +## 3. Face restoration demo You can use the following commands to test an face image for restoration. @@ -137,7 +183,7 @@ python demo/restoration_face_demo.py \ --upscale-factor 4 ``` -## Other demos +## 4. Other demos These demos are duplicated with mmedting_inference_demo.py and may be removed in the future. diff --git a/demo/download_inference_resources.py b/demo/download_inference_resources.py new file mode 100644 index 0000000000..2fb88b9d70 --- /dev/null +++ b/demo/download_inference_resources.py @@ -0,0 +1,107 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import os.path as osp + +import mmengine +import requests + +RESOURCES = { + 'Matting': [ + 'https://download.openmmlab.com/mmediting/resources/input/matting/GT05.jpg', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/matting/GT05_trimap.jpg', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/matting/readme.md' # noqa + ], + 'Inpainting': [ + 'https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md' # noqa + ], + 'Image Super-Resolution': [ + 'https://download.openmmlab.com/mmediting/resources/input/restoration/000001.png', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/restoration/0901x2.png', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/restoration/readme.md' # noqa + ], + 'Image2Image Translation': [ + 'https://download.openmmlab.com/mmediting/resources/input/translation/gt_mask_0.png', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/translation/readme.md' # noqa + ], + 'Video Interpolation': [ + 'https://download.openmmlab.com/mmediting/resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/video_interpolation/readme.md' # noqa + ], + 'Video Super-Resolution': [ + 'https://download.openmmlab.com/mmediting/resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/video_restoration/readme.md', # noqa + 'https://download.openmmlab.com/mmediting/resources/input/video_restoration/v_Basketball_g01_c01.avi' # noqa + ] +} + + +def parse_args(): + parser = argparse.ArgumentParser(description='Download resources') + parser.add_argument( + '--root-dir', + type=str, + help='resource root dir', + default='../resources') + parser.add_argument( + '--task', + type=str, + help='one specific task, if None : download all resources', + default=None) + parser.add_argument( + '--print-all', action='store_true', help='print all resources') + parser.add_argument( + '--print-task-type', action='store_true', help='print all task types') + parser.add_argument( + '--print-task', + type=str, + help='print all tasks that need input resources', + default=None) + + args = parser.parse_args() + return args + + +def main(): + args = parse_args() + + if args.print_all: + print('all inference resources:') + for key in RESOURCES.keys(): + print(key) + for value in RESOURCES[key]: + print(value) + return + + if args.print_task_type: + print('all task type:') + for key in RESOURCES.keys(): + print(key) + return + + if args.print_task: + print('RESOURCES of task ' + args.print_task + ':') + for value in RESOURCES[args.print_task]: + print(value) + return + + to_be_download = [] + if args.task and args.task in RESOURCES.keys(): + to_be_download.extend(RESOURCES[args.task]) + else: + for key in RESOURCES.keys(): + to_be_download.extend(RESOURCES[key]) + + put_root_path = osp.join(osp.dirname(__file__), args.root_dir) + for item in to_be_download: + item_relative_path = item[item.find('input'):] + put_path = osp.join(put_root_path, item_relative_path) + mmengine.mkdir_or_exist(osp.dirname(put_path)) + response = requests.get(item) + open(put_path, 'wb').write(response.content) + print('Download finished: ' + item + ' to ' + put_path) + + +if __name__ == '__main__': + main() diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 231c3c1887..2fca8682be 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -10,27 +10,37 @@ "\n", "In this tutorial, you will learn how to\n", "\n", - "- Install MMEditing\n", + "- [Install MMEditing](#1-install-mmediting)\n", "\n", - "- Perform inference using MMEdit inference API\n", + "- [Check supported tasks and models](#2-check-supported-tasks-and-models)\n", "\n", - "- Perform inference with models of different tasks including:\n", + "- [Perform inference using MMEdit inference API](#3-perform-inference-with-mmediting-api)\n", "\n", - "    1. Inference of conditional GANs models\n", + "    1. [Prepare some images or videos for inference](#31-prepare-some-images-or-videos-for-inference)\n", "\n", - "    2. Inference of inpanting models\n", + "    2. [Perform inference with two lines of python code](#32-perform-inference-with-two-lines-of-python-code)\n", "\n", - "    3. Inference of matting models\n", + "    3. [Infer with different settings of a specific model](#33-infer-with-different-settings-of-a-specific-model)\n", "\n", - "    4. Inference of super resolution models\n", + "    4. [Infer with extra parameters](#34-inference-with-extra-parameters)\n", "\n", - "    5. Inference of image2image translation models\n", + "- [Perform inference with models of different tasks](#4-perform-inference-with-models-of-different-tasks) including:\n", "\n", - "    6. Inference of unconditional GANs models\n", + "    1. [Inference of conditional GANs models](#41-inference-of-conditional-gan-models)\n", "\n", - "    7. Inference of video interpolation models\n", + "    2. [Inference of inpanting models](#42-inference-of-inpainting-models)\n", "\n", - "    8. Inference of video super resolution models\n", + "    3. [Inference of matting models](#43-inference-of-matting-models)\n", + "\n", + "    4. [Inference of super resolution models](#44-inference-of-image-super-resolution-models)\n", + "\n", + "    5. [Inference of image2image translation models](#45-inference-of-image-translation-models)\n", + "\n", + "    6. [Inference of unconditional GANs models](#46-inference-of-unconditional-gan-models)\n", + "\n", + "    7. [Inference of video interpolation models](#47-inference-of-video-interpolation-models)\n", + "\n", + "    8. [Inference of video super resolution models](#48-inference-of-video-restoration-models)\n", "\n", "Let's start!" ] @@ -135,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 17, "metadata": { "vscode": { "languageId": "shellscript" @@ -146,23 +156,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "Cloning into 'mmediting'...\n", - "remote: Enumerating objects: 18482, done.\u001b[K\n", - "remote: Counting objects: 100% (43/43), done.\u001b[K\n", - "remote: Compressing objects: 100% (43/43), done.\u001b[K\n", - "remote: Total 18482 (delta 15), reused 3 (delta 0), pack-reused 18439\u001b[K\n", - "Receiving objects: 100% (18482/18482), 10.21 MiB | 36.00 KiB/s, done.\n", - "Resolving deltas: 100% (12504/12504), done.\n", - "Checking out files: 100% (1280/1280), done.\n", - "/mnt/petrelfs/liuwenran/develop/mmediting/demo/mmediting\n", - "Obtaining file:///mnt/petrelfs/liuwenran/develop/mmediting/demo/mmediting\n", + "/mnt/petrelfs/liuwenran/develop/mmediting\n", + "Obtaining file:///mnt/petrelfs/liuwenran/develop/mmediting\n", " Preparing metadata (setup.py) ... \u001b[?25ldone\n", "\u001b[?25hRequirement already satisfied: av in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (10.0.0)\n", "Requirement already satisfied: face-alignment in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.3.5)\n", "Requirement already satisfied: facexlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.2.5)\n", "Requirement already satisfied: lmdb in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.3.0)\n", "Requirement already satisfied: lpips in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.1.4)\n", - "Requirement already satisfied: mmcv>=2.0.0rc1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.0.0rc1)\n", + "Requirement already satisfied: mmcv>=2.0.0rc1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.0.0rc2)\n", "Requirement already satisfied: mmengine in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.2.0)\n", "Requirement already satisfied: numpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.23.4)\n", "Requirement already satisfied: opencv-python!=4.5.5.62,!=4.5.5.64 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (4.6.0.66)\n", @@ -170,56 +172,60 @@ "Requirement already satisfied: tensorboard in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.10.1)\n", "Requirement already satisfied: torch in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.9.0+cu111)\n", "Requirement already satisfied: torchvision in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.10.0+cu111)\n", - "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (21.3)\n", - "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", + "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (0.32.0)\n", - "Requirement already satisfied: scipy>=0.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (1.9.3)\n", + "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", + "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", "Requirement already satisfied: scikit-image in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.19.3)\n", + "Requirement already satisfied: scipy>=0.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (1.9.3)\n", "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", - "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", "Requirement already satisfied: filterpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from facexlib->mmedit==1.0.0rc3) (1.4.5)\n", "Requirement already satisfied: typing-extensions in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from torch->mmedit==1.0.0rc3) (4.4.0)\n", "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (2.0.1)\n", "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (3.6.1)\n", - "Requirement already satisfied: grpcio>=1.24.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.50.0)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", - "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", - "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", + "Requirement already satisfied: grpcio>=1.24.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.50.0)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.8.1)\n", "Requirement already satisfied: wheel>=0.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.37.1)\n", - "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", - "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", - "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.8.1)\n", "Requirement already satisfied: absl-py>=0.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.3.0)\n", - "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", + "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.2.8)\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (4.9)\n", - "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (5.2.0)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.2.8)\n", + "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (1.3.1)\n", "Requirement already satisfied: importlib-metadata>=4.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (5.0.0)\n", - "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", - "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2022.9.24)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (1.26.12)\n", + "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", + "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", - "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (4.37.4)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", "Requirement already satisfied: contourpy>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.0.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", "Requirement already satisfied: pyparsing>=2.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (3.0.9)\n", + "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from numba->face-alignment->mmedit==1.0.0rc3) (0.39.1)\n", - "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", - "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", "Requirement already satisfied: PyWavelets>=1.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (1.4.1)\n", + "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", + "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", "Requirement already satisfied: networkx>=2.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.8.7)\n", "Requirement already satisfied: zipp>=0.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (3.9.0)\n", "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.4.8)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (3.2.2)\n", "Installing collected packages: mmedit\n", + " Attempting uninstall: mmedit\n", + " Found existing installation: mmedit 1.0.0rc3\n", + " Uninstalling mmedit-1.0.0rc3:\n", + " Successfully uninstalled mmedit-1.0.0rc3\n", " Running setup.py develop for mmedit\n", "Successfully installed mmedit-1.0.0rc3\n" ] @@ -227,8 +233,7 @@ ], "source": [ "# Install mmediting from source\n", - "!git clone -b 1.x https://github.com/open-mmlab/mmediting.git\n", - "%cd mmediting\n", + "%cd ..\n", "!pip3 install -e ." ] }, @@ -255,7 +260,42 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. Perform inference with MMEditing API\n", + "## 2. Check supported tasks and models\n", + "\n", + "There are multiple task types in MMEditing: Matting, Inpainting, Video Super-Resolution, Image Super-Resolution, Image2Image Translation, Unconditional GANs, Conditional GANs, Video Interpolation. \n", + "\n", + "We provide some models for each task. All available models and tasks could be printed out like this." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mmedit.edit import MMEdit\n", + "\n", + "# print all available models for inference.\n", + "inference_supported_models = MMEdit.get_inference_supported_models()\n", + "print('all available models:')\n", + "print(inference_supported_models)\n", + "\n", + "# print all available tasks for inference.\n", + "supported_tasks = MMEdit.get_inference_supported_tasks()\n", + "print('all available models:')\n", + "print(supported_tasks)\n", + "\n", + "# print all available models for one task, take image translation for example.\n", + "task_supported_models = MMEdit.get_task_supported_models('Image2Image Translation')\n", + "print('translation models:')\n", + "print(task_supported_models)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Perform inference with MMEditing API\n", "\n", "Next we describe how to perform inference with python code snippets.\n", "\n", @@ -266,7 +306,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.1 Prepare some images or videos for inference\n", + "### 3.1 Prepare some images or videos for inference\n", "\n", "Before we start to perform inference with a pretrained model, some input images or videos should be prepared. \n", "\n", @@ -294,9 +334,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We also have prepared some images and videos for you, which could be downloaded from here(url).\n", + "We also have prepared some images and videos for you. You can download by running [download_inference_resouces.py](./download_inference_resources.py).\n", "\n", - "Download and extract it to MMEdit root path." + "This script allows you to see what resources are available and makes download easier." ] }, { @@ -309,17 +349,25 @@ }, "outputs": [], "source": [ - "# download resources\n", - "!cd mmedting\n", - "!wget url\n", - "!unzip resources.zip" + "# see all resources\n", + "!python download_inference_resources.py --print-all\n", + "# see all task types\n", + "!python download_inference_resources.py --print-task-type\n", + "# see resources of one specific task\n", + "!python download_inference_resources.py --print-task 'Inpainting'\n", + "# download all resouces to default dir '../resources'\n", + "!python download_inference_resources.py\n", + "# download resouces of one task\n", + "!python download_inference_resources.py --task 'Inpainting'\n", + "# download to the directory you want\n", + "!python download_inference_resources.py --root-dir '../your_dir'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.2 Perform inference with two lines of python code. \n", + "### 3.2 Perform inference with two lines of python code. \n", "\n", "There are two steps:\n", "\n", @@ -386,7 +434,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.3 Infer with different settings of a specific model\n", + "### 3.3 Infer with different settings of a specific model\n", "\n", "There are some different configs and checkpoints for one model.\n", "\n", @@ -438,7 +486,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2.3 Inference with extra parameters\n", + "### 3.4 Infer with extra parameters\n", "\n", "Some models may have extra parameters that could be configured to perform inference.\n", "\n", @@ -519,55 +567,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 3. Perform inference with models of different tasks\n", - "\n", - "There are multiple task types in MMEditing: Matting, Inpainting, Video Super-Resolution, Image Super-Resolution, Image2Image Translation, Unconditional GANs, Conditional GANs, Video Interpolation. \n", - "\n", - "We provide some models for each task. All available models and tasks could be printed out like this." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "all available models:\n", - "['biggan', 'styleganv1', 'gca', 'aot_gan', 'pix2pix', 'esrgan', 'basicvsr', 'flavr']\n", - "all available models:\n", - "['Matting', 'Inpainting', 'Video Super-Resolution', 'Image Super-Resolution', 'Image2Image Translation', 'Unconditional GANs', 'Conditional GANs', 'Video Interpolation']\n", - "translation models:\n", - "['pix2pix']\n" - ] - } - ], - "source": [ - "from mmedit.edit import MMEdit\n", - "\n", - "# print all available models for inference.\n", - "inference_supported_models = MMEdit.get_inference_supported_models()\n", - "print('all available models:')\n", - "print(inference_supported_models)\n", - "\n", - "# print all available tasks for inference.\n", - "supported_tasks = MMEdit.get_inference_supported_tasks()\n", - "print('all available models:')\n", - "print(supported_tasks)\n", - "\n", - "# print all available models for one task, take image translation for example.\n", - "task_supported_models = MMEdit.get_task_supported_models('Image2Image Translation')\n", - "print('translation models:')\n", - "print(task_supported_models)" + "## 4. Perform inference with models of different tasks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.1 Inference of conditional GAN models\n", + "### 4.1 Inference of conditional GAN models\n", "\n", "Conditional GAN models take a label as input and output a image. We take 'biggan' as an example." ] @@ -631,7 +638,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.2 Inference of inpainting models\n", + "### 4.2 Inference of inpainting models\n", "\n", "Inpaiting models take a masked image and mask pair as input, and output a inpainted image. We take 'aot_gan' as an example." ] @@ -681,7 +688,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.3 Inference of matting models\n", + "### 4.3 Inference of matting models\n", "\n", "Inpaiting models take a image and trimap pair as input, and output a alpha image. We take 'gca' as an example." ] @@ -735,7 +742,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.4 Inference of image super resolution models\n", + "### 4.4 Inference of image super resolution models\n", "\n", "Image super resolution models take a image as input, and output a high resolution image. We take 'esrgan' as an example." ] @@ -784,7 +791,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.5 Inference of image translation models\n", + "### 4.5 Inference of image translation models\n", "\n", "Image translation models take a image as input, and output a translated image. We take 'pix2pix' as an example." ] @@ -833,7 +840,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.6 Inference of unconditional GAN models\n", + "### 4.6 Inference of unconditional GAN models\n", "\n", "Unconditional GAN models do not need input, and output a image. We take 'styleganv1' as an example." ] @@ -883,7 +890,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.7 Inference of video interpolation models\n", + "### 4.7 Inference of video interpolation models\n", "\n", "Video interpolation models take a video as input, and output a interpolated video. We take 'flavr' as an example." ] @@ -930,7 +937,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3.8 Inference of video restoration models\n", + "### 4.8 Inference of video restoration models\n", "\n", "Video restoration models take a video as input, and output a restorated video. We take 'basicvsr' as an example.." ] From 945ac86855df2967e61b1f13819889029587dc91 Mon Sep 17 00:00:00 2001 From: liuwenran <448073814@qq.com> Date: Wed, 23 Nov 2022 11:05:38 +0800 Subject: [PATCH 63/68] [high-level api] refresh demo readme and fix typo --- demo/README.md | 58 ++++++++++++++++--------- demo/mmediting_inference_demo.py | 35 +++++++++++++++ demo/mmediting_inference_tutorial.ipynb | 27 +++++++++--- 3 files changed, 92 insertions(+), 28 deletions(-) diff --git a/demo/README.md b/demo/README.md index ece8c6a772..10884a0838 100644 --- a/demo/README.md +++ b/demo/README.md @@ -4,17 +4,33 @@ There are some mmediting demos in this folder. We provide python command line us Table of contents: -- [Download sample images or videos](#1-download-sample-images-or-videos) +[1. Download sample images or videos](#1-download-sample-images-or-videos) -- [MMEditing inference demo](#2-mmediting-inference-demo) +[2. MMEditing inference demo](#2-mmediting-inference-demo) -    1. [Check supported tasks and models](#21-check-supported-tasks-and-models) +    [2.1. Check supported tasks and models](#21-check-supported-tasks-and-models) -    2. [Perform inference with command line](#22-perform-inference-with-command-line) +    [2.2. Perform inference with command line](#22-perform-inference-with-command-line) -- [Face restoration demo](#3-face-restoration-demo): +      [2.2.1. Conditional GANs example](#221-conditional-gans) -- [Other demos](#4-other-demos) +      [2.2.2. Inpainting example](#222-inpainting) + +      [2.2.3. Matting example](#223-matting) + +      [2.2.4. Image Super-Resolution example](#224-image-super-resolution) + +      [2.2.5. Image Translation example](#225-image-translation) + +      [2.2.6. Unconditional GANs example](#226-unconditional-gans) + +      [2.2.7. Video Interpolation example](#227-video-interpolation) + +      [2.2.8. Video Super-Resolution example](#228-video-super-resolution) + +[3. Face restoration demo](#3-face-restoration-demo): + +[4. Other demos](#4-other-demos) ## 1. Download sample images or videos @@ -40,22 +56,22 @@ python download_inference_resources.py --root-dir '../your_dir' ### 2.1 Check supported tasks and models -print all available models for inference. +print all supported models for inference. ```shell -python demo/mmediting_inference_demo.py --print_all_available_models +python demo/mmediting_inference_demo.py --print-supported-models ``` -print all available tasks for inference. +print all supported tasks for inference. ```shell -python demo/mmediting_inference_demo.py --print_all_available_models +python demo/mmediting_inference_demo.py --print-supported-tasks ``` -print all available models for one task, take 'Image2Image Translation' for example. +print all supported models for one task, take 'Image2Image Translation' for example. ```shell -python demo/mmediting_inference_demo.py --print_available_models_for_a_task 'Image2Image Translation' +python demo/mmediting_inference_demo.py --print-task-supported-models 'Image2Image Translation' ``` ### 2.2 Perform inference with command line @@ -82,7 +98,7 @@ python demo/mmediting_inference_demo.py \ Examples for each kind of task: -1. Conditional GANs +#### 2.2.1 Conditional GANs ```shell python demo/mmediting_inference_demo.py \ @@ -91,7 +107,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/conditional/demo_conditional_biggan_res.jpg \ ``` -2. Inpainting +#### 2.2.2 Inpainting ```shell python demo/mmediting_inference_demo.py \ @@ -101,7 +117,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/inpainting/demo_inpainting_global_local_res.jpg ``` -3. Matting +#### 2.2.3 Matting ```shell python demo/mmediting_inference_demo.py \ @@ -111,7 +127,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/matting/demo_matting_gca_res.png ``` -4. Super resolution +#### 2.2.4 Image Super-resolution ```shell python demo/mmediting_inference_demo.py \ @@ -120,7 +136,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/restoration/demo_restoration_esrgan_res.png ``` -5. Image translation +#### 2.2.5 Image translation ```shell python demo/mmediting_inference_demo.py \ @@ -129,7 +145,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/translation/demo_translation_pix2pix_res.png ``` -6. Unconditional GANs +#### 2.2.6 Unconditional GANs ```shell python demo/mmediting_inference_demo.py \ @@ -137,7 +153,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/unconditional/demo_unconditional_styleganv1_res.jpg ``` -7. Video interpolation +#### 2.2.7 Video interpolation ```shell python demo/mmediting_inference_demo.py \ @@ -146,7 +162,7 @@ python demo/mmediting_inference_demo.py \ --result-out-dir resources/output/video_interpolation/demo_video_interpolation_flavr_res.mp4 ``` -8. Video restoration +#### 2.2.8 Video Super-Resolution ```shell python demo/mmediting_inference_demo.py \ @@ -176,7 +192,7 @@ Examples: ```shell python demo/restoration_face_demo.py \ - configs/glean/glean_in128out1024_4x2_300k_ffhq_celebahq.py \ + configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py \ https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth \ tests/data/image/face/000001.png \ tests/data/pred/000001.png \ diff --git a/demo/mmediting_inference_demo.py b/demo/mmediting_inference_demo.py index 1943f184ec..96d0441142 100644 --- a/demo/mmediting_inference_demo.py +++ b/demo/mmediting_inference_demo.py @@ -59,12 +59,47 @@ def parse_args(): action=DictAction, help='Other customized kwargs for different model') + # print supported tasks and models + parser.add_argument( + '--print-supported-models', + action='store_true', + help='print all supported models for inference.') + parser.add_argument( + '--print-supported-tasks', + action='store_true', + help='print all supported tasks for inference.') + parser.add_argument( + '--print-task-supported-models', + type=str, + default=None, + help='print all supported models for one task') + args = parser.parse_args() return args def main(): args = parse_args() + + if args.print_supported_models: + inference_supported_models = MMEdit.get_inference_supported_models() + print('all supported models:') + print(inference_supported_models) + return + + if args.print_supported_tasks: + supported_tasks = MMEdit.get_inference_supported_tasks() + print('all supported tasks:') + print(supported_tasks) + return + + if args.print_task_supported_models: + task_supported_models = \ + MMEdit.get_task_supported_models(args.print_task_supported_models) + print('translation models:') + print(task_supported_models) + return + editor = MMEdit(**vars(args)) editor.infer(**vars(args)) diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 2fca8682be..f8a33a17a8 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -269,23 +269,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "all available models:\n", + "['biggan', 'styleganv1', 'gca', 'global_local', 'aot_gan', 'pix2pix', 'esrgan', 'flavr', 'cain', 'edvr']\n", + "all available tasks:\n", + "['Matting', 'Video Interpolation', 'Image2Image Translation', 'Unconditional GANs', 'Conditional GANs', 'Video Super-Resolution', 'Inpainting', 'Image Super-Resolution']\n", + "translation models:\n", + "['pix2pix']\n" + ] + } + ], "source": [ "from mmedit.edit import MMEdit\n", "\n", - "# print all available models for inference.\n", + "# print all supported models for inference.\n", "inference_supported_models = MMEdit.get_inference_supported_models()\n", - "print('all available models:')\n", + "print('all supported models:')\n", "print(inference_supported_models)\n", "\n", - "# print all available tasks for inference.\n", + "# print all supported tasks for inference.\n", "supported_tasks = MMEdit.get_inference_supported_tasks()\n", - "print('all available models:')\n", + "print('all supported tasks:')\n", "print(supported_tasks)\n", "\n", - "# print all available models for one task, take image translation for example.\n", + "# print all supported models for one task, take image translation for example.\n", "task_supported_models = MMEdit.get_task_supported_models('Image2Image Translation')\n", "print('translation models:')\n", "print(task_supported_models)" From face3a8edb15f67b0c0782cbdc13e695fde81973 Mon Sep 17 00:00:00 2001 From: liuwenran Date: Wed, 23 Nov 2022 17:15:33 +0800 Subject: [PATCH 64/68] [high-level api] resolve review comment --- demo/README.md | 17 +- demo/mmediting_inference_tutorial.ipynb | 254 ++++++++++++++---- .../inferencers/base_mmedit_inferencer.py | 1 + 3 files changed, 214 insertions(+), 58 deletions(-) diff --git a/demo/README.md b/demo/README.md index 10884a0838..8178ec90e1 100644 --- a/demo/README.md +++ b/demo/README.md @@ -28,7 +28,7 @@ Table of contents:       [2.2.8. Video Super-Resolution example](#228-video-super-resolution) -[3. Face restoration demo](#3-face-restoration-demo): +[3. Face restoration demo](#3-face-restoration-demo) [4. Other demos](#4-other-demos) @@ -38,18 +38,21 @@ We prepared some images and videos for you to run demo with. After MMEdit is wel Download with python script [download_inference_resources.py](./download_inference_resources.py). ```shell +# cd mmediting root path +cd mmediting + # see all resources -python download_inference_resources.py --print-all +python demo/download_inference_resources.py --print-all # see all task types -python download_inference_resources.py --print-task-type +python demo/download_inference_resources.py --print-task-type # see resources of one specific task -python download_inference_resources.py --print-task 'Inpainting' +python demo/download_inference_resources.py --print-task 'Inpainting' # download all resources to default dir '../resources' -python download_inference_resources.py +python demo/download_inference_resources.py # download resources of one task -python download_inference_resources.py --task 'Inpainting' +python demo/download_inference_resources.py --task 'Inpainting' # download to the directory you want -python download_inference_resources.py --root-dir '../your_dir' +python demo/download_inference_resources.py --root-dir '../your_dir' ``` ## 2. MMEditing inference demo diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index f8a33a17a8..13b6e0e4ae 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -10,37 +10,37 @@ "\n", "In this tutorial, you will learn how to\n", "\n", - "- [Install MMEditing](#1-install-mmediting)\n", + "[1. Install MMEditing](#1-install-mmediting)\n", "\n", - "- [Check supported tasks and models](#2-check-supported-tasks-and-models)\n", + "[2. Check inference supported tasks and models](#2-check-inference-supported-tasks-and-models)\n", "\n", - "- [Perform inference using MMEdit inference API](#3-perform-inference-with-mmediting-api)\n", + "[3. Perform inference using MMEdit inference API](#3-perform-inference-with-mmediting-api)\n", "\n", - "    1. [Prepare some images or videos for inference](#31-prepare-some-images-or-videos-for-inference)\n", + "  [3.1 Prepare some images or videos for inference](#31-prepare-some-images-or-videos-for-inference)\n", "\n", - "    2. [Perform inference with two lines of python code](#32-perform-inference-with-two-lines-of-python-code)\n", + "  [3.2 Perform inference with two lines of python code](#32-perform-inference-with-two-lines-of-python-code)\n", "\n", - "    3. [Infer with different settings of a specific model](#33-infer-with-different-settings-of-a-specific-model)\n", + "  [3.3 Infer with different settings of a specific model](#33-infer-with-different-settings-of-a-specific-model)\n", "\n", - "    4. [Infer with extra parameters](#34-inference-with-extra-parameters)\n", + "  [3.4 Infer with extra parameters](#34-inference-with-extra-parameters)\n", "\n", - "- [Perform inference with models of different tasks](#4-perform-inference-with-models-of-different-tasks) including:\n", + "[4. Perform inference with models of different tasks including](#4-perform-inference-with-models-of-different-tasks):\n", "\n", - "    1. [Inference of conditional GANs models](#41-inference-of-conditional-gan-models)\n", + "  [4.1 Inference of conditional GANs models](#41-inference-of-conditional-gan-models)\n", "\n", - "    2. [Inference of inpanting models](#42-inference-of-inpainting-models)\n", + "  [4.2 Inference of inpanting models](#42-inference-of-inpainting-models)\n", "\n", - "    3. [Inference of matting models](#43-inference-of-matting-models)\n", + "  [4.3 Inference of matting models](#43-inference-of-matting-models)\n", "\n", - "    4. [Inference of super resolution models](#44-inference-of-image-super-resolution-models)\n", + "  [4.4 Inference of super resolution models](#44-inference-of-image-super-resolution-models)\n", "\n", - "    5. [Inference of image2image translation models](#45-inference-of-image-translation-models)\n", + "  [4.5 Inference of image2image translation models](#45-inference-of-image-translation-models)\n", "\n", - "    6. [Inference of unconditional GANs models](#46-inference-of-unconditional-gan-models)\n", + "  [4.6 Inference of unconditional GANs models](#46-inference-of-unconditional-gan-models)\n", "\n", - "    7. [Inference of video interpolation models](#47-inference-of-video-interpolation-models)\n", + "  [4.7 Inference of video interpolation models](#47-inference-of-video-interpolation-models)\n", "\n", - "    8. [Inference of video super resolution models](#48-inference-of-video-restoration-models)\n", + "  [4.8 Inference of video super resolution models](#48-inference-of-video-restoration-models)\n", "\n", "Let's start!" ] @@ -145,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, "metadata": { "vscode": { "languageId": "shellscript" @@ -172,51 +172,51 @@ "Requirement already satisfied: tensorboard in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (2.10.1)\n", "Requirement already satisfied: torch in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.9.0+cu111)\n", "Requirement already satisfied: torchvision in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.10.0+cu111)\n", - "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (21.3)\n", + "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (0.32.0)\n", - "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", + "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (21.3)\n", + "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", "Requirement already satisfied: scikit-image in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.19.3)\n", "Requirement already satisfied: scipy>=0.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (1.9.3)\n", - "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", "Requirement already satisfied: filterpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from facexlib->mmedit==1.0.0rc3) (1.4.5)\n", "Requirement already satisfied: typing-extensions in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from torch->mmedit==1.0.0rc3) (4.4.0)\n", - "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (2.0.1)\n", "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (3.6.1)\n", - "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", + "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (2.0.1)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", "Requirement already satisfied: grpcio>=1.24.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.50.0)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", + "Requirement already satisfied: absl-py>=0.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.3.0)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", + "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.8.1)\n", "Requirement already satisfied: wheel>=0.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.37.1)\n", - "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", - "Requirement already satisfied: absl-py>=0.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.3.0)\n", - "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", - "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", - "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", - "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", + "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.2.8)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (4.9)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (5.2.0)\n", - "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (4.9)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (1.3.1)\n", "Requirement already satisfied: importlib-metadata>=4.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (5.0.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2022.9.24)\n", + "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (1.26.12)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2022.9.24)\n", "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", - "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (4.37.4)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (3.0.9)\n", "Requirement already satisfied: contourpy>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.0.5)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (3.0.9)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (4.37.4)\n", "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from numba->face-alignment->mmedit==1.0.0rc3) (0.39.1)\n", - "Requirement already satisfied: PyWavelets>=1.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (1.4.1)\n", - "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", + "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", + "Requirement already satisfied: PyWavelets>=1.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (1.4.1)\n", "Requirement already satisfied: networkx>=2.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.8.7)\n", "Requirement already satisfied: zipp>=0.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (3.9.0)\n", "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.4.8)\n", @@ -227,14 +227,16 @@ " Uninstalling mmedit-1.0.0rc3:\n", " Successfully uninstalled mmedit-1.0.0rc3\n", " Running setup.py develop for mmedit\n", - "Successfully installed mmedit-1.0.0rc3\n" + "Successfully installed mmedit-1.0.0rc3\n", + "/mnt/petrelfs/liuwenran/develop/mmediting/demo\n" ] } ], "source": [ "# Install mmediting from source\n", "%cd ..\n", - "!pip3 install -e ." + "!pip3 install -e .\n", + "%cd demo" ] }, { @@ -260,7 +262,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 2. Check supported tasks and models\n", + "## 2. Check inference supported tasks and models\n", "\n", "There are multiple task types in MMEditing: Matting, Inpainting, Video Super-Resolution, Image Super-Resolution, Image2Image Translation, Unconditional GANs, Conditional GANs, Video Interpolation. \n", "\n", @@ -354,13 +356,89 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "vscode": { "languageId": "shellscript" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "all inference resources:\n", + "Matting\n", + "https://download.openmmlab.com/mmediting/resources/input/matting/GT05.jpg\n", + "https://download.openmmlab.com/mmediting/resources/input/matting/GT05_trimap.jpg\n", + "https://download.openmmlab.com/mmediting/resources/input/matting/readme.md\n", + "Inpainting\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md\n", + "Image Super-Resolution\n", + "https://download.openmmlab.com/mmediting/resources/input/restoration/000001.png\n", + "https://download.openmmlab.com/mmediting/resources/input/restoration/0901x2.png\n", + "https://download.openmmlab.com/mmediting/resources/input/restoration/readme.md\n", + "Image2Image Translation\n", + "https://download.openmmlab.com/mmediting/resources/input/translation/gt_mask_0.png\n", + "https://download.openmmlab.com/mmediting/resources/input/translation/readme.md\n", + "Video Interpolation\n", + "https://download.openmmlab.com/mmediting/resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4\n", + "https://download.openmmlab.com/mmediting/resources/input/video_interpolation/readme.md\n", + "Video Super-Resolution\n", + "https://download.openmmlab.com/mmediting/resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4\n", + "https://download.openmmlab.com/mmediting/resources/input/video_restoration/readme.md\n", + "https://download.openmmlab.com/mmediting/resources/input/video_restoration/v_Basketball_g01_c01.avi\n", + "all task type:\n", + "Matting\n", + "Inpainting\n", + "Image Super-Resolution\n", + "Image2Image Translation\n", + "Video Interpolation\n", + "Video Super-Resolution\n", + "RESOURCES of task Inpainting:\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png\n", + "https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/GT05.jpg to ../resources/input/matting/GT05.jpg\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/GT05_trimap.jpg to ../resources/input/matting/GT05_trimap.jpg\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/readme.md to ../resources/input/matting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png to ../resources/input/inpainting/bbox_mask.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png to ../resources/input/inpainting/celeba_test.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md to ../resources/input/inpainting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/000001.png to ../resources/input/restoration/000001.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/0901x2.png to ../resources/input/restoration/0901x2.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/readme.md to ../resources/input/restoration/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/translation/gt_mask_0.png to ../resources/input/translation/gt_mask_0.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/translation/readme.md to ../resources/input/translation/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4 to ../resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_interpolation/readme.md to ../resources/input/video_interpolation/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 to ../resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/readme.md to ../resources/input/video_restoration/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/v_Basketball_g01_c01.avi to ../resources/input/video_restoration/v_Basketball_g01_c01.avi\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png to ../resources/input/inpainting/bbox_mask.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png to ../resources/input/inpainting/celeba_test.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md to ../resources/input/inpainting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/GT05.jpg to ../your_dir/input/matting/GT05.jpg\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/GT05_trimap.jpg to ../your_dir/input/matting/GT05_trimap.jpg\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/matting/readme.md to ../your_dir/input/matting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/bbox_mask.png to ../your_dir/input/inpainting/bbox_mask.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/celeba_test.png to ../your_dir/input/inpainting/celeba_test.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/inpainting/readme.md to ../your_dir/input/inpainting/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/000001.png to ../your_dir/input/restoration/000001.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/0901x2.png to ../your_dir/input/restoration/0901x2.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/restoration/readme.md to ../your_dir/input/restoration/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/translation/gt_mask_0.png to ../your_dir/input/translation/gt_mask_0.png\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/translation/readme.md to ../your_dir/input/translation/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4 to ../your_dir/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_interpolation/readme.md to ../your_dir/input/video_interpolation/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 to ../your_dir/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/readme.md to ../your_dir/input/video_restoration/readme.md\n", + "Download finished: https://download.openmmlab.com/mmediting/resources/input/video_restoration/v_Basketball_g01_c01.avi to ../your_dir/input/video_restoration/v_Basketball_g01_c01.avi\n" + ] + } + ], "source": [ "# see all resources\n", "!python download_inference_resources.py --print-all\n", @@ -653,14 +731,34 @@ "source": [ "### 4.2 Inference of inpainting models\n", "\n", - "Inpaiting models take a masked image and mask pair as input, and output a inpainted image. We take 'aot_gan' as an example." + "Inpaiting models take a masked image and mask pair as input, and output a inpainted image. We take 'global_local' as an example." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": {}, "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9SaxtWXYWCn+zWMWuzjm3ijIzMo3TNjz4DZKBxBJ0kJFFAwlBA7mFENJr2Q0SGriDcct6jV/QwPQQtJCBNhIN3PuRLfMbvYf9nhM7y8iMuPWpdrGqWbzGGLNYa+997rk3wpm+9pkR+569VznXXHOOb9RDeO897tpdu2t37a7dtbekyR92B+7aXbtrd+2u3bXXaXfAddfu2l27a3ftrWp3wHXX7tpdu2t37a1qd8B11+7aXbtrd+2tanfAddfu2l27a3ftrWp3wHXX7tpdu2t37a1qd8B11+7aXbtrd+2tanfAddfu2l27a3ftrWp3wHXX7tpdu2t37a1qd8B11+7aXbtrd+2taj804PrVX/1VfPnLX0Zd1/jqV7+K3/qt3/phdeWu3bW7dtfu2lvUfijA9R/+w3/A1772NfzSL/0S/sf/+B/483/+z+Nnf/Zn8ezZsx9Gd+7aXbtrd+2uvUVN/DCS7H71q1/FX/pLfwn/6l/9KwCAcw5f/OIX8Qu/8Av4p//0n/6gu3PX7tpdu2t37S1q+gd9w77v8du//dv4xV/8xbhNSomf+ZmfwW/8xm8cPKfrOnRdF38753B+fo4HDx5ACPGH3ue7dtfu2l27a59v895jvV7jgw8+gJSvp/z7gQPXixcvYK3Fu+++O9r+7rvv4utf//rBc37lV34Fv/zLv/yD6N5du2t37a7dtR9g+973vocvfOELr3XODxy43qT94i/+Ir72ta/F31dXV/joo4/w7/+//wfm8zkAQAgZpS/6KyCE5N/xHwghkpQ2PUfwOQJ8nAT/iPvjvmx7uk8634Ou6wE45+E9fayzcM7BOAdjLKylj7EW1llY5+C8h3fEkThnIaSC1grzegZdFNBKQmuNUpeQSkEp2i8l3V8KCRH7I6gTWcu1wx75dwD5viNa5FzKvVnTLG6QiA+fF8aJf9Bv8OuLfcyOhQd8GCsXz/c0gPDwaR8dCOtsHF9rLdpmh67rMfQdyrKCUhJCCrqnB7xz6LoOQ9+h63oorVDoArrQ0EXJb5oOtsbGPhhj4J2Dcx5FWdJ74XkkeT7S3HA0tYSElALOWlhrMAw9rLVwxmIwJhszz/OP7+pdHC/BnfYAvPPw3sJZBzP0sJaOk5KejycqPaekeaO0hJYaSimoooBUMq4TIWneeyHS2MdnT+91PCfSOoi/wloM61HKOFeFEJH7FvG+ElIAUirquxCQSsXxDNvCgKRrZdcAIPa4ehG7zkfQNz4Psa/8VSrIcG2ZXTvSkHwep/HIRibO1dG8dA7eO3hn4b2DdRbDMMAYAzv06PqOznF0rTDPnXewluYbnIPzbm9Vib3vIutn9mzhq89owogWhL9+9PdQi+PB8wXZ+5VS0ruTEm3X4X//x1/DarU6eq1j7QcOXA8fPoRSCk+fPh1tf/r0Kd57772D51RVhaqq9rbPZjMsZjMAU+CSCWyQQOlG4JIMRNgHLiJiCQxFBLBEiBKIhYWaFmwCrQy4rI3AZQJwWdpneZIGoCNgKjCrZyiKAlopFEWBoiiIwCgJrTRNigheE9DI5tkIuEYghj9SwDX9vnccEkPgGZgCIQA8LC9w8CJ3jj7KynheZw2cNXB2wKyuoZSEcw5906IoSgCANQMuXr6EtQZSSLzz7jvQWkMqlQgcX094j6Hr0ex2aJoGfd9j6HsUZYnFYoHZjN6h4HOlBIxxcNbCWUvA5RysNejaFn3fo+877LZbOJ471pg0Nt5D4MDYMFEM4++8i8yMlApCgOcOAUB4r4XWzEQ5OMdEkZm0ajaj45WiZ5W0zrRWfD+Pvu/jtZRS8F5kjAOgleZrSBRFCV1oVFUFKRSEZBDSaV4nYJJ0npSQUkJpHYFLyMSogZnKsGblCBQzRnZEtBNtCGs5MBbxGCkJOCNwhfvkdCd/B/vzPAECMRuJ2XL818I5pgmmhzEGw6ChlNxfF47OtfyOnLUEXJN1EroksueJ5O8VwOV9epDpOrwdcOXvR8T3m3/y41+n/cCBqyxL/NRP/RR+/dd/HX/7b/9tAMRB/Pqv/zp+/ud//gfYE5G91fCPGH8H8rk7+S3SKXvjTlzN9N2OOR2RNgox2e7jn+lto/AYTsV4AqZfYnwmseZ8nogTb/SdL3po3+ThD2x71XFTqWnMpR9uScIIC937NNE9SJpBIAIBwJgQGGMiYAkgbjPDAGsNjDHouw7GGMB7tG2Dvu9gjYEZDLTWBGJ9h6dPnxLoSYmu7zCbzVAyQ9XsdhiGAdZa9F2Ptm1wfXWNtm2Ja7YWQkos5gRcs7pGWZZQmoADAKy1LNF1GIYefd9TP43lvg4ZSDOg8PBIQYyXZOKOSEgTM+WZG48Sz4RBCYS/KisopZhQCxpTHtuma5hY0rhLSfcriiIyDX3XwUMwuBA4e2bYrHOQrBGQijhvJUl6TZqDAovFHGVVo6oraF3wR6MsS3ip4CURcpLABIQTUZqKUpzj55YqgpgQfk/ayEErSsNSRik/DpP32fz1LKlO18oNkx4ewot0fr7OoxQUGGOX+scrPMi3UmTrmRlsMHMR77S3FEV2D0y+T+iH8HFtipE+5lB79ZqPHRIYrfnA0L9p+6GoCr/2ta/h7//9v4+/+Bf/Iv7yX/7L+Jf/8l9iu93iH/yDf/CaV/I8KDcM2gGxePQz474Sd3LsWmnSjI8JnF74nv4SXrzeCxJhyozxKAiN46eJIJZLkunhck4q/PCsUgoSVgICPzou33ebXt+49zY4dbBlUhVz9cSpscQVpCqM1S7OWRhrWIq1EAADS4eBpZiu79C1bZQ6BmOw224x9D2MGSCEhLEGbdPixYsX8N5DK4W2I+Cq6gqzeobNek1AYwz6YUDbtliv1+i7Lkp5HgKzeo26qlDXFUkbWkNp4uKdczDDgK5ro5TmWAJ3PkiRPHg5o8HbAmerGSwCkMmo+sbonQOIQO9YhSgADGUPpTWDiI7ckQcw9D0GfkZrHSQT+aIs43vq+54UmSxxSQYZFyTATLIJUpBWClKy5kAXaJsFqqpGPasJwKoKVVUD3se+KQTJkom995EAB61D5Px9UP0ygc/Xpw/rRiY4OaAiE5nEE+7jD6zvQ2q4eI5I0kzkSyN2CX6WMD4YLxqPCJZ0b37nYO3OhNEd3fsgYI3Z3YR6PE7+1cvUH/hFtGt8yfyYsI7z8XyT9kMBrr/39/4enj9/jn/2z/4Znjx5gr/wF/4C/st/+S97DhuvbK/53NOBPCw/BE4MCYxGUtH0WJEuFFSIe12bINCxvSLfLbL9It1rcs9ICGIXUv+TSmQiwR3YNO3Pm0+pz6/5RKOjWgVABKJgywr7nHeR2HvvIgCZYQDg0GWAsttusd5ssNlssFqtMJ/NIITAdrtF17XY7XYwxqBtO1yv17i6ugKAKCEFaUMIwRIcqXiCxGot9Yc6TyBxtb4eScmkyqI3K6VEoQsUhUYAYXjwXxfHRAgizIrtPgEsgm1UcB9zNYyQAmVRoigKACCVJz+H9x4+jJnz2LW7CGS6KEi1WZYoyxLWkU3FGoPBkMTqnCOw5Pv5YMMJBEqIKE3Ffnmwmtyx5CQzyQFxnIuiwGKxxGq1wmp1gnv3H6CezVCWFcqqjuMvpWK1reD5kdSLzjlSVbkECiJbz0IIBvfAEAkabu5nmousIjsqbR1n8sarPzGJYV17NjQKKeBdoCG85o9eM9EEAuTDN87NJcdAda+zmUD4WVoEfTElPbl99M3aD8054+d//uc/s2qQmZBDNHlE9hMAYfLOAgmZtmy7SPsJy5K9K59X+TGRs5kIMLkQFQEx63t8oL3upI7njNi052Noy58tcWkAcZmR8xupCrPtR7ryWdo+g+WPbA+EYrxfsGTiXTBCs+QQjNVs3A6gtduusd1ucXlxgaosYIzBdrvF86dP0XYd+r7DdrvD06dPIKXEcrmEEALWWux2Owgp0fc92q5F07UROIORPAw/3Z8XKKszwRqXYIfKJZ383UfHASagWok49kGa9PCQQLKvwJMzjlLQSkFpcs4BPIZ+IDuqt5BSwhoCpd1uB13oqNKq6zqCxTAM8dpKKTiQFNaZAU3bRvCTksEOpKYLb6gbBnpGJui5+tNay8cxiDGgCAhY7+I5hWYbLQQB/gA0bYvr6zWePX9GKsT5AvP5HLPZDPfuP8BytUJZkrp2vlhCsZ1XCAEngj1FQXhH63jiTCGFJEcTwfa6INEoQLgckCQkS6dBag3qVe8D6Eh+z4cYR/6zp8Pz8ZgI8kLACxqjHLQOEnsR5ly8Wpg52T0wkj7DnJu2fEtcW5nm5VCL9OKoxjBcSextHjlhvUF7K7wKj7ZIFAJQeHhxCIgQqAVGaINsnKcIdPB0Md3AXwM45sjIwObTdDt2ixEjtIcY6aSEXwcm3oSLjEJZ3uVcx56D6VSF+BoTasIov1Z79XkHWBKfvAchSPrI1YRkD7Loug7XV9dYr69xdXWJQuvo8GCMwdD3aJoGm+0Gfd/DOYftdgulNbz36JhgG2vRsJNE8ubKF16mQgpjN1HLBuJ2yOg5ZYoUc8YCiPYlwJNaTgRWxEMZMm5rpVCUBUlgwWtO0JqInmveM4AQuASJNKgRrbVkH5MSwVZFtkEP6y0vMwdETzsQSPAzGksMA0CSYO7AFFSE1tk4RmG/ZQbEAxhM5myBAOQ0Zv1ArGjbNthsCKh2zQ6LxZLtjDXO7t1HXddsPyQ7nWcAFQj98YCQpOITAi7MfSnJK08CEkHiAuDJxielyN53sF9PpC2mPckWlgBsNOdHr5/Ug+F74H5G6xdBvYvEAPHlo0Q2uklaM5FmBRLyCvCiDgYaQDcNV5tO38TkjgmWBw3zMTrqJ+Pzpu3tBq7YfHzpr2qHQS1TCU62p7PG+0bQl2NVYFLyaxyl0Lej+GExT7dF8WsEqFlfI6Hju8WvyVA8vXD0IgtdP9jVfVXnq55kOgRj7tGPjtuX+XwaRpaIyKuNpIAAWN7ZGKzeNiRJXV9dwgwDjEnqvJOTEwxmQH/dY7PdYMfef/7lS2hF6iIbVY4+AkjgtKPDAruyh3ELUzA6RICkM+p24l4PqZXCT4WgzkK8biAgMt/G95EAlJIotEZZFpjNZ1F68qCTpEiAZK1Fz6CtVPLUC8AnBpaK4hwgAmUtOalY62C9Y9WmhlYKxtr4DEpp/iTX9QiGLr313O7lPOAioRQo2RGjLksUWvF7M9gNA3a7HQDgydOn7FWrURQF3nvvPZzdu4eHDx/i/v0HKMuKnEa8j5IYvYfwktiphSVYIQSE9wRiYNwCYF2am+SliSg5hpUihYhqWhEWzU3U+0AToDCDMOZisq4z/cP+ghsLWKP7TpniI2x9Ol5kak+f5m4AslE70JWDzaf1Hq51TLt52/ZWA1cQnt8Muw9ILeFvNmdEkOYiTiRVw/i4w3fwo73Tt/UaPT8Cyjmkjvp2AGzTOa/2F/qhtsxGkgNGdgC8d3CG7D9d16FtG3Rdi6urK2w2a2w2azx7+hSbzQZts2XbjIUxBt/69rfQtC3atkU/GCaiDsMwZLFggGXVYDKCByGfXetzFeBEXRKkkdR3MVrk49eZ3pYJ+yKzEkBr7AmWOHtAGKDre4gG2O62KAvyxCvLEkrJ7BQGQQHyrjQ+2pg0g1Cwg0VJj+1HVVWirmdk9+t7bDYbdF0fuedgb/Kuw3qzJemRwzSC5GWsHTGY0U1akGuE9+S2v2sbNG2LtRSoi2Ic2pFJGoPpEWxc680aWmtUVYkHDx7i/r37ODu7h3v37mG+WKGuaxRFBa11dGV3EvTdS3bdTvFRwrFUaJN90Xlyu5cQcI7O9Z4Ah1zWw7u9BQMtRkPB54oIrPs2Lo+cOUov9ca7ABCj/16rjTt3sB3eczNVDmv6s7S3G7h8RhREALHbvZxcMOEt/G/YkdnFwp/8+Fzs5gmWg8VRQes4nhxpPpf2jz7fWA2ARPhG/fQIKun8+LFXVCKv3mc+QqPnGa+c45Mwf9h9bi3df39HIPj5Jz8wxDpZa9B1DXa7LZ48fgzDgbtXV5e4vLxkAtvAsa1FQKBpWgKurmNpga4/sOu6YyBymU0qqVOJuLpRv7In5uOcCIx9OM/B8YMF1Us+TuGn5BsSMRdjqXcyF4Pw4CEAjtPq4WCtg1b0LEXBHoJKQWoN50QMCwBLd57tXIbHSIa4RQ84ZyA4xqwsaygpUVcVubizBNsPA4ZhiC/TBZUXAM3u+V4A1roIdJJ8+EfMVmjBcQTeoxt6ZhyClCSiihQQrPq0EUjaTsE5i2a3xdXVBS4vz7BcnmCxXOLBg3ewWCwoBk9ISOUhPDtmIDF+EhIQLkpAKQzBA8LBCUEByI7UnuGYsOY9v/eR9iKb8mMpJbzUYDNLqsJsb0brEsjBBzlsXwOCvTk2biM+K+uQDxsOEK+R9ibSiOz+BzRDYTWndZBpG97UxoC3HLjSg/s0NCM59LiUEv+K/Chx5JTEuYyvMUGhjEHy+fSMs+/wa72pjfTKezPx2MwMs37KpafnG4FVtkpG9pjxChtd6zPMuXSNV+yIqjkOKKbVm7wIh2GAswOapsF2s8a3v/0tLJZEmK6urnBxcYHNZoNhIPtU8FQbjIGxlI0iEFwPHwPBg7NFGh+MFpt1efDzuOu5ZBSILIGDAzkK5gCcSxHUXJBAWJwPNMwG9WA4U6Z9QWrx8DAGGGAgIDAMPbmSlyXK+Zzsd46cCAi4ACEkhmHAYAzc0APwKIuCbVUChiVSAjkKGq7KEqUu4viZ62v0g4F1NgE8KGNMjyEMYCRaQdUWgEsqmTJisLdmGOu+ayMjAXjyTmRJTWkCDWstqfQsYIyANQPW11dQSmE+X2C5XOH09IycXdw7mM1mUEpDFwVLWuyBKSlw3/F31k1H4CIPRQEBCeEc2xTJIEZhGmnp5PZigfHST1q3tMBy2iJFkkSn6yIn/MnTcSzjTIT//SbE/lE5GWMasB/DmdGEQCuQ2f74MJ91PAfeeGve8CfaOSPpY3nbK6WZHGwyMJpg0OiMDJDG6rhX3I5n8fFj0iKPXw6+y7wDgYjmHoPh2+R5bugXcXc3TBwhRo4lNxx4rNNv2HgRhUWBtDgC16uUwjD06LoGL1+8wHa7wXq9RtPucH7xkhwpPLDZbbFrdmjbNkoUlrNTWOvYfX1MAIKLd1iKU++noGYdc7/ZSGTA5QXgXZYhgD8u3i1QACQuij3tLIkXgeYzU4bIlHnLIKlkJpFz3xhYB0Ng0nUdzDDg5OQEs9kMpycnuL66wq5psGsaKKXZIxMww0BSn9bQWqOua5LI+h7XV1dk2ypKLJdLVEWJeV2jrkpstjt0HDRt2AbpRLD/kdp1MCaOFwVfk+0pZHwIdi8AMY6MsnqE9EYOgyF72m7XUBwcpzsLWULo3Zq4Trdti5cXF9CPP8Unnz7GFz78kFSIZ6RKnC0WWCyW5IbuHawQkF6NiHf4L7nV+wh2ZA90pDLM5kLqD9vCMqZxNNsnwke0AYXJIoLEl4VXxPkznn8TpUQ86pUk8UgbA2FQi2O0JoKnLR0lI7YdRF2+6mE58fXaWw1cPiNoU3F1Txd8U5uIuNEwekCNkR01OUZM9oFfYop6/9wbU6ygfpnenv6m7ckfI6lVg6GfDuBnD0R5Mi5j6S9sC0tj+oQ3SYfTc8bHBhUbcZ1J8iA1HfXfmAFbVgOen7/E02dP0bQNPICiLOG8R13PMBiDzXYbPeuavkuA5ELuvsTIkAqSgEtm3HN6igRccSFnT8Cx0fHpnHCQMYYoeM3lYBgcA7KL8XbvRMwpOI7DoZcRnB6CJC0ERuuBHAtYcjIG2+2GAq+bivtKKrfBmhjHZWFhWPpRSkXXf5JWqX/OWnRtC2ctlNIw1kDCo5ASQmsCZ+8QgoO9p/RbzlpKZwawgw04d51EGg2WsjlWLFgGw/a40ryHYamnsOSar7VCpUsoRQ4dg7EwdiAnFGPg3Dm8tzg/P8fp6UvcO7uP1eoEp2dnOD09w2w+R1XX8N7R+/CCCTPNRSttlkIq6zGnWHMukya5EYAFV4/xciA6lbiS8KyCmdO0+vxkHubeoRkTle0TB5Zbmlp+tOTyEJiDpoi4VCMbOWHewp0dpE8ZTEbXzqTE6PjxJ1XiykXVEBUfNDFBCBsJrRkXc4gPOSzHZL+mdqS98/OzInIdZy1e+eJygjnuaC71xf5MhK3xYyZ7lQ+AKnwCLwRuL2XVyF18p8+cuh4e8BDA3wD6IyI9uTbA9hvBnGpiS0MKprbZYbNZo2kaXFxe4MmTJ9BFgbquoYsCzgwUlColE0B2EGDVl+frCWCUz85ZFyUuTIAreMgdchiJ39wEkgUrk6SEkgC5ZoMXbnjGPJ1QPkoeZHHhQGV+oQLk0QiAMl+E6TntS+ir45RNbYu+6zEUHZaLJZTg3IQ8PkJQ0t+Y1sk6OLDkIATKoqCEvYbsiN47KBVc4cltvBAUQO0dzSWlFDtm0HlSsns+e2Q66+ChkLvaW5fySkYay3NeZsyUdzRu1ipe+iWKwkOzus84C2PJ9d8KSlzb9x3K4hJXV5e4vrqiwObrexje/QBn9+9DCgFdlklqYAbHCcBaAe9TMmsIChimODCBUJfX58shMNWBHATGerIURD4BwmKeoE+aiwkEoo2VxS0fGaCcYWVQ9OH39J75QuSPCyCVdXI6Q7P+hfUUTQ3xzAmAheP2VJGv195u4HIhBVA0Fe6TysNMfdqWU/4pGh1Ap1wdNwWTo3T6pnZIvqcdWTcmoJl3d9rvQ0i215izw3HvwvHiEkf6OMKUg9c41G4/X9PSIZtWh/X1Fb71zW9E0Lq8vMTjx4/x7PlzlFWJ+WIBpTSeP3uG9WbDuf8GCsZlt+0oAXB2ikC0KbaI1Vw+qPSy4c1tCodAC+OFHmgI0QFLc1UIFIUit/vAhYaUSwLRC5Cy2wNKiizzfyDeMqazssayZJxGW0W7GoMWyPZUlSWUVNBSQfBxVVmiqir2MiSPQWtJOupcB1R8PQBlUcJLDyUlnPcoC3JbN4YcNLy3EAKY11VSqQtyyjDGoirIrqSUQtP12DY7yvphLSBcBLh+GAAhYhbxQBThPTpjo+s5QOpSJcle13Y9trsdexeSV2WtNdq2wzAYKEnj1rQNrq6v8Oz5M5S6QFWWuH/vId5/7328/8GH+NKXfwTzxQJlWUFqTcBnuJqDs9CaGSSO+TPWsmemTNK7pxkQ7JtAcHjxk7WcCLsUDCoWGRMqImCFLDEjOPMpJCOCZDYnRejLVAq7TTugYhHZb+/cHgHwJApyrsv9Glu0dhyES319k/Z2A5c/IK4KH/XT+20qMYn9PWKMBTlJmEowkSnKuMDpbTM+A3svKsOWV73C2J8MkIL6KBCJPP4jYlomhsVgxxyusmNyg3K8V6S+GXeV/Xwdrikt0v3yC9lBED4F3wbVRN8TaH383e/gxYvnkFLg5PQE3/z2t/Di5UtcXFygms1weX0N7z26tqOcf8OAtuvic7lgf2HwCs8nkCUwBRIxQFq/oznj0xjm0lWUqCCi/t97QGsZn94YA6E1tJSoqpJLoVAZlrIoIsF3TBCDSi+8bykklJNw1sFqFR1MQtb0YNh3zlFmDf5YYyE0oIoSStPSl2wPEyFzhVTRFjgMPQEDO0QEwhkYCmsMek+2H60456CiDB6BOajKEkppCClxfX0NCFLN3jtdYTar0LYdLi4vYT0lMC6LijLmW4eB00sF9Vtd11Aq9G3g+C+PQD+FoGwc1hGYtF0PLXVkRnhiARDwLoFk1/fo+gHrzRpPnj7Bxfk5Hj56hNPTMyxWJzg5PUFVz1DWFTabLYaOEjErThYshMDAWfG10pAqLWrnwQHM2ZoZrYXMRs8aBiFSTscwF3LgyuMxc0ks2ONoLmbXn2pFIgPm42aRSXikjUEEp9ypJniMwo0dk47JBymMIWP5mYYFrcGbtD8WwOV9BlZBtxAX2HE2I76mjJvI1X0ibUzSTbZt7zrZr8P3yvp+6HkwtoYFsX8MWnnHjt9v/8aZqjDbLjypOoLqYOy1hLEKNlxJ7HvT3Xzvye9cFBkxdZmkEneRqma32+Hy8gKffvIJrq4vUVVEfNfrNQUQDwO8EOQd5+yYAJsh3oemhh+7swNx/uzXbBo/60ilF4GVCadPwCIlXSsG3nrEcfbOw0sHKC6ToSUo9ADkvs5g5eHiy5KhJITg3HxmgGUCF1VFAtBSxqwWxphYQkRxdoicDSPnDlLNSS2hIaC1w2AGDAONIwJYSgnHEmsYxwDMEkgAWxBJcd4BxkBIinEqSsrDGDJoFFoBglRyG60gLL1/rRWsJdua8Z49FdM7UVJCArG0i/MeNhJWD3JsJ2JrrYURKTga/O4FA5fzHhISRlr0Qx+TIzvnsNmscXp2hpOTe3j3/fdwcnKCU3EPpL4lBmgYemivo01NSQUnZJQSo33OJxst87vZWsotzsS1jezq2XxL9C6jBfEePl80+R2YmT+QuJvPodAAytQveLuxlA80WOeCpFcUBYZhgJAChSpI3et8TGodnkRx4mQh6P5BowlPIRI5DXqT9lYD15T4gLmRY+hP28Zqlb1jxKE9OVId+37sjkCu8hpt9TeozabC2QFV4aEeHO8zRsA+yleIffDKD8+vuN/dA1Lc5M45hxmfhVUpYSGPVCzcR8pIQF5iT58+xsff/Q5+5//+HYQSHd57XK/XAIDFconNdksLTErMZjUtJpOumbhSvsdE3We9h/KkzlNCwGGfq8xkMnhkHoKBYxYCRVFgNqNcgCFbfN/38CIl1Q3BuFIAZVlQ5otCsyqxQFmSqssMpMIbzECZKrRGWVbYrDeAG+CFw+r0FMMwoOvI8WQxm6GuazRNg7Zt4IyBLktU8zkRpYEArSwK6KIArEFZljFUoG07KD1AF5rqgQ2OQamgLCXGxDniPUleLitxUlUVIAQGM2CzXqOTHYq+4CBdsp81ux1PMIvlfEbqSedgrEFB4i8ggc5x3Jx12KyvMed6ZnVVoTcmqinBcyhk9Ah96zlXI+0fSCoUIWM9eLtEqTSM8+jNgPU3/wDf/u63UegCZVXjyx99Ce+9+z6+8pWv4Itf+jIWdQ2hFDbbDdXFKyt4AAMDrOJ6Z3GhjkX2oyso2JbTxnzypdRZQiiiYjLLiu/G2g8/uUzmAzKicVJJlGWJxZxUoxTYb7Ber3lK05iGjCWnp2e4uDiHUhqr01N6944C+89fvqSrKoGKValCCBhn0bZtLC+0qBfw3qPtu4PjcZv2VgNXEp8lc09JAA9SAriIMZATHf41ou3iyMQ6ABiCAfAmDIsbMykndnzyHIc2jvYd6FdksCY+i37CsWVyIHE5Adn9GLB4PEZxXNNHCdfJDL+hxpH3fM4BriHKURNkE8iN7bTTBXWHp6DYYejRNFu8eP4cT548wYsXL7j4JpXXaHhBBNWf5bx5VCKEssOngoh0F6rhdWAwwVIEA4z0pDIJlWXD/BJCcDCxZ/BJcyEE9/Z9T8GuSqEqS1xfX8NaAziPotAoCvK+6/sOdhhQ1xXmdcWJfoO3YDoWLch2U5a4d+8eZrMZ2l1DAOaB+WyG09NTdG2LgQnPYj6HVoqlPlK7SUFZMqSUNF5dB+dsrIu1XC5J/cbVdQ1nEzHGYDmbj2LTQqNM8QMGMxDwlCWBhwB0WcIaw9lN2qi2q6s6XqOqSpQFlUbp+wHbZoeuH6CkgEfP8XVUYLVtW3R9H4VMDxoXStHl0XU9nKWM9YXWWC7mMdVV0/VoexO1CjFWzjlY68n7kKVaazx6a7HtWrS/3+K7H38Xv//7v4ePPvoS3n/vfXzpoy/h7N49QLAzCTyENZCuAnQBH+LUpEBOKARyiT6TinyKHRx59vmUzNc50j54KeO6DetLxMPHFCOqIo+0oihRVTXNp7YFeJ7P5ws0bQNjDObzBYqyhLUUWlEwk1OUBbabDZSSKMsCp2fEQHkPrFaryIDOZKpEUBYl6rqCcx51Pxzt16vaWw9cI25ajN2MD7YDACPEeNPYXpRhWqZSDP8IpO1pJ5jFOUAgp5uyXUdbumF2+PSEqLQ6eo08P1haMunhc1dV7KkNx/cTo7WVgaOYHhMvPulONrYIHn2WPdYGODaiN80O5+cv8eL5c1xeXka71WAMuqHHZreLYBuSxwZvM2MMea1lUnmUtrJBGD1LJodGtoHVUJRVQVB8lfXxFWdDDHJRp+ewrKrTSqGua9hhYJAIyWgBz+7DPmazoPuMyoAAVGyRpVICIIGiJCcBcj4hO9R8Po9lVjRLHoExEBBRcirYscDFQNrgwk7OF0rK6DQSjhuGIfap5Ezz8ES4rbNw1qF3VJdMa40ySEZSYuh7hBgl50gdmdtxnLIIcVjUN+q5sUHt56IKC1mcXeAmk0RNUltosXwLyF1+MDTW1nEGDL6GEx7OS9jw7N5DcjaL9W6DXbOjcIKhx/XVJbabNT744EMslgvM5gvUdQ1XGg4RKFCUJaTWkJwmSoT+xr8eQQ2bqwBpTYz9k0ezczSX88knkrbEjwwOaU1PJ7sI3q4EsNZaeidKRcYlxD3qghx4LrfbLKiebM8h3VdZVVE97gWVrgGAsqSYPSHAtdto4aQwlNdvbzdw5S8y++QuoyPF8l4T2Wc8uQ4fN92Go2dkdO/AuekJ0uf4IdO7R2gOLGfQet2AW5MOjbiwo+7wB/bR96wvMbs1a+p93sOc+O8LccGGLdkO0g4D2maH9XoNYwZsNmtcX1/hm9/8Bj7++GOcn7+EdQ49J8z13mPXNDBsQDbWQEuZlaJPfQmAlUpk5Wlo0nHBEmitiwNPRRknkoYHvA3puHyUwEnl6OD6HgJAVVao6xqrxYJSE1mLvu8427uArhRCSOZut0PJasa6rmPwb+DGrSUwPD8/p7x7SmG1WmG33ZJHYNPinXfeYQcP4PziAmagyslVWUFKCuqt6gpFock2kWV2N8aiaRq2NWl2X09ZLdquY3Wgxnw+ixkuDFc3ds6j63vsdjsopbBaLSGVQte1aJhIyZ6qO3ddj5yLa0NBTxkKS1IFZeepJH3I9GGtywK4x+s6TC/qS49+AHZtGxPxrhZzFBwf1rQdTJaHUEoHE+KwIFAxuJdakxOKHdBvO+x2W3zve9/D//yd/4kvfuFDfOHDL+DDDz/EF7/wEcqqRlFWsMZieXKKqp4BhYqM4EHKwuBlrWdvSZHlZkxy01gjkTNfYwlLAEkbAF6XEy1MBE4PqkYAkKOPMVBSAVKiCYmn2fu2qirAezRNQyDNhU+bdgcBgWEYcP/+fWilSBXctmiaBvAeq9WK7KxcgmfgMjifpb3dwMUqDQmVOJZ8fza592BHRLoUtmD/KGDv5BtVim/OQeQtqf/29W4ZLd67+/G+TQ+eoMgBVImQcwhxjlwuGpoTsh58isBRIqj3jEEPh2/8/u/j4uIC6/U1qqqkYo7W4k/96I9it9tis6USJevtlgjRaoWf/HN/Dm3b4mqzxpMnT2IRRIAIWJTADoxbAK+cP01ZvpM0FdiaQODjFkppF48HyHkALFX0fcfS14CqLDGfz1DNZ4BfYMtVk62zVIpDa5Sljqq9vuugpUI1owrA89mcx2aNi/Nzsk15IjhCCLLHlCW22y1MRZnRl1yjauBcgpTTLzwHKNWSIgVo9Bj0iHaP5XKJzXYD7z1lqWAgtdZivdmg0Jq8GIUgYsYEerfboOtbNG2Dk5MTSKWxWCxRVTW6rkXXUR20EEArpYxhC845zOczqjWmFWZ1DaU06rrCYB3avkc/GLT9gCRzjNdH4OeEILUXpYSyMEOPWV1DK4WT5RJN18IYSx/r4nWkEOitZVd7yYwJEXktFRQcBuvwBx9/jO88/hTV79T4kY8+wkdf+AIe3n+IqppjdUpBze998AUslkvoojzsHh49NQEVVIsARObgE9nbCXNO9trx/B2lmgNo7qsxA5qvgCBFe+9RVRW9X/ZwndV1lFiDjer09JQYGqUwm80wm82p4Od8ASEQ7YbRfi0VVFlShXD28DXWoq4qFFW1Nx63bW83cLmkKuQt2UsMs5d/vgpXsuNyw6qYbM8vl66XwPGmBE9+9N0f3Xesf/ntbn9wvjmTQnMObKIa9HzMcbVhfslskbB0OFIXZqgVJNogKTvnOE1Qj7Zt8PTpU1xfX6FpGty7dwYPKphY16SDL8sUb+S8g9wprLouc/uW0Z4hBHmO+Tg/UohA3v+D7yE8iEjy9NhGl+A4DKMQSe1CBCYnIB7gbAwSYlROxHvHJUlKzGZVlJYEE1xnLJwmoAlOCXVdk93HGHRdDykl2YCcI1UlMwSSCxIWRUESFKdCCtKRVCI6VJjBwAwDds0ORVmQOrAsoBoZA3c1lyspyhLeOfTGwA8DESFWHZKrOr3svutwdXUFXWgUuohxdGVZwrN0Ft6V1hoelBGl63pKCRVtVzYWcQweaUHKgxcxu0jufJNklaSGM86j7fuUdFhIFJpi58gblexIjt+1E+kqAoCXlBVeeofBOQgMQC+g2gbyE4Fts8Pp6glOlid4+PARHtx/CCklHr37HmbzBap6FoPiBdeRC5oSAS56KRMTGMNdovYorLMgdWUbD81oH+Z74MDG9mSApPi+76FY0g7rMjBw3nt0XQvnfHpPPnhmOiyXy1hHre3amBGlmtfsVUgSe0ilprRGXVDsXJCi36S93cCVcx6JGblly0SuA2g03hw8EcXoMLF/4OH7ZDLHGLwm025vA591BIemp45uGfu2f6aYUO9YB4ivM0qyycceUxUGghHTuAiMPBbTOKUR9CE7gzFomwbbzQYXF+d4/vwZSQxmwHK1jGopIYCyKlGUBSwT5cEM6IceRUGedhAhL1xIyptAmnAogDUzI/GVHJLUs2EUOSlI4xbVtEFNiKROzPcFD0U6hyRAIVKOPe8JdMuywLyeoSwLgIlHsPcJIdCzm/xsNoPzHtfX1xgGy7n7LLrBoGFu1nBOP7KDleyxWKAf+lhnzDobk9vWdY1e9nDOom0bDrLVXO9Koe977JodlC4wm81QzWbwzqFlhwtdFKgVOX1UzrJLO0maFxfn7GVJThJlWca6YR7geCwXgavve3R9B2UVtHUYrMFg6DkFu/YXArBWox8MZeGXqTClGdhOw04RoTQNPGDhYVqK6SuUQl2nMicA2UQ91weLy0em0iaU/ipJ9DoUqrTAp8+e4unz5yi0xjsPHuIL73+Aq0eX8N6j0BqO7UdFXUELDQE9UvkF7z3BRStDhv6RajrTw+QxW2nOjtWHYbGO1mduRgHZoZxrYa1BXc8AIBYS9RYQlgL/nfNQUmG5XEa3eWMMFoslaUxYRWwMMSKrs1O2a5F3add1ANvBCOxEtIG9SftjAVzwQbmWiEqMzZoQfdKm7YthY4HsJvFsilSvFH9ueACwxDj6Odp9/D6HfufP84q+ZdQ7+pDkBH167AS8ju0PCwxIizKAYZDmAkFudg3W6yucn7/EkyeP8fDRI0AAT58+we/+7u/g7OwM9azGH3zj9/H48RM8f/E8Dox1Hs5YPHn6FAA4F6Eb5WPMBzEUtU1lQ5L0GA3kk6GN3LDcfwMR1Fiic3BQXkBJklZkKdG2LbyjZLdFUcCYAW3j4KsqSmjOGlxcnKPd1RDe491Hj0h1A4+rq0ts1tew1uH8XGGxWGA2m+Pdd97F/Xv3sd3u8OL8Ai9evkTXdej7AedXVwxUJZaLGTt5kDdiXVcs6Qmst1tKoltVePDgIU5PTyGlwOnJCZ4+fYrtdouBpZOqqjBYg4uLS6w3a1xdX+HBg4cwXJTy008+wYMH9zGfzXg6yOhNGd8G2zqur6/x/Plz9H2Pk5MTVGWF3hDRE0Lg7OwehBBomgZX19cAZ+lw8Bj6bvSOpBJUudhZ+OAUwMc6O37HQCr4GFTUA0ugUkgoBvGqUhgGw6ouGTOukKclWB1GKauKAAIC0M5DK49hcPjW97+HT589xcliie9899vouwbvv/8h3n3vfZyc3cd8ucRssYQTAorNHMb0UZKRXPwzfA6t4xE2jb5NNAiZ5ATwWvc+aZXAmU1sR/XVwnlI9NVEmzKwa7Y4O70H7z2urq4p3IID+b1IsX1PHz+OasbBphI6V8bg4vwCUgh07MX4Ju2tBq4xn+EPbEstk5XihlyiCvahkTQhpuQq/zm9ohjvf5XkdxvJMNPo5aC2d09g3O/J3lziOXQPivEIgZK0GEcehnz+1Mgb+hVjlI/sDylgALI7BTWXtQa73Q5dRxzdMNAEV0rj5cuXePL0CS8Eh92uwa6hWBIpBRR740kmJPCBUPnRs+caO+89nKCg0zRm+XON1SxhJjkHCJXAOaZUAmW3iEZ1mQhgVNM4TxKmJeIKhVi6QwBAPYt5AMNiLityN57VMwgh0fcd+q4jr72+JyCqKlR1hbOzUwxmoPHZNRh2O/SDQT9Y9GaA1gVJdIXG0ixQVSXmrHYFyMbx/MVzvPPOO7h/7x4W8wWkELi4uMD19XVMyVSVJepZnQpJbskNX5cl2q7D5dU1mrbDyXLJjh9g1SCDB0tbp6enqKoKz549Q8+u69Wsxnw+j3GZSinoQqOsSlbhOQ4md3EuClbLQoDtmtk8DZWWfTYXBNlfwvuVIlWodjAQQlMQLnvUhaBxx6Vugmt3qPpM+UnYRuuoKrS1JHWHbBPOOfjvO8z+z/+BL754jh/bbfHRl34EQ99j6HvMVyu2YXn0bUuSoNTQmsutcMkVqWSUKnPVNJkqxQ2kJMxgwVqUtEbz8QnhJ5F5ZTVgeB9psZAqtW3bKInmlcJHffQ+gliyIQDeWkrm7P2fZFVh4CR8ouxj/EIuGIu9f18tLxF2iTGI7WHZIQnsNsh0m3ZE0rqx4/vQtgfcYWQESUP8BWA1334WjYy4T7k9ESSXlG0+uipnxALMkVlD9pRh6LHdbilwVggqR8Igt95s8OzZU2w2a1RVRRnEmVumGCsyWkteJICLWpx85OPuiSybZ0tJ0qeIKr7JKI2aFJRHD0LAApyRIgXAElHke4QyJJlqhzJWKHbHRkyXROVaBiitUJYV5vN5ZB66tkPbNBgGAqPT0zNoXWAxn6Ndrdg+otBxAHE/DOjNQIHEUlLpDw8svENZVVjUM3j21ru8vMTJagVx/z7u37sHwwb7tm2x2+3gnWN134wS9TYNtrsdqpIkOAiJza5B03YoOGWVlI7VdDR6we1+uVxisVhis9mi2e3Q9R3q+QxlVZHH5TDAezq2rCqy2zFxdNYCMnMv53kggns8/3beHjQZBDvlyKMWPmbRCHOX1L0EVjlhDu832CfJ6cPFigJWkEeiYoCwxqBrqIjper0GvEdV1TjrOpJmNdkLIcgrTxWaHWNEVidMQAo1kbymupnjyhKefJGzzZMO7Kl3RJrtuce2Rya9Oo+2azMVZgpDgBOQSoxohh/dK/xONu43bW83cIX//KFXSe2V9H3vgEz6euU1Dl7gle3VkBauy5MsdimIicnRIIHq6Otrtoxw572b2MLGxx65DKa7fTREh9xy2+0Wu+0Wm80aH3/8MQAKWAwVi7ebHaqqhpCCuN2u5e7QAxZFCSVdzCgBgGOPxvcPtgvinn0Ej7EkGp5IJCnJA8HjkOxWSOmWRFKjSCGgCw3pHOe+M9BmgCoK1HVF0iAvTs0qOgJNQAoFeKAderSNQV1VmNczLBYLVFVFXn2rJTp2Ky7LAutrSiz8/Y8/xvbeGlU9Q1XPMK9qLOZzeACzWYWr6zU22y02ux3Fu7EE0nQDFm0LB2B1usLpyQkW8zkef/8TPH/2HNdX1/jJn/z/YLVakv1HKXzHe2y2W1jvsVgsKOmsEJHhUEpjuVrh8uoKu7bD9z55gof3zzBjb0hregYyhfPzl1itTrFYLPAjX/4SXrx4iaurKzz+9BMsFktyIlEKV5dXEOwEMpvP4ZsG1nmy5/F8THkgUyoiyWmGNtstBmNh7f48Da7iYbYLAJBsC+P6ZUGCSyTesxqxpIwsnitGG8Meq8SwGTaOaV6EUgCFAJ5dvMTl9RW++e1v4ZNPPsFP/NhP4Cs/+mNYX13i0XvvYXV6QuVlug7OWnYc4XplSnLR0BCnxVN8wjweWL0Hma6DLWP2PQJdJeaLckEyMPFxQZLOLS4HS7eEsc40HuF9fVbG/q0GrnxQcgnrdk2kz0SNNoajnDNP0pUAsHfSwXvcske5HnAqMox+7t90X5oKvyfAKqb7g5AVdX28K+zzsazJ2Dnj8HLIJbRU9j4FWTrr0DYNqQ2FwPV6jU8//RTDMKCua8wXM3YgMPDOQqsCZVFSBD/nuAteTdF+xt9tZk+LT2jD/TNg95TKKYwZuSin2JikShHjcWUws3Rg5BiVkiO3eWsNjBQoPRVhDE4KxlAmCCkpo0RZlnwdi91mw/WytpjVFQSoHH1RFFBSYbVcYb5Y4GR1it1ui2fPn+P6ag1/tUZRlnj48CE5TdQ13n/0DpbzBUmsL15i2zTohiHadDZNA/vCUTyNsSjLCu+8+y7Oz1/ier3G7//BN/Dg/j2URQEPSqUFIbDebNBwXE9dVWiaBtZYGNtDqpZd1oGu7XG13qAbBpysPM8dQAiLwRq0bYvLS3Kf1lrh5GSFrm8RSpzoqoZSlGdyt93Csrt4WWjAk73QODoWkTFxHChL2TIKTTFq1tqYp8L7pCoM7zqq3UAByNaP14EQIX2TjM4S5EHn4aREqJ0twppgQHTeQwWHD+dBxUENrNvhf37997BpGlyv1/jyR19G13W4/+gh3vngPQzGwTtHORCLkgtl6r11nAlQ2WQ/siYxWfbJqBt/plHAHrk6FOsYwNznNASI61w4ESq88PlurB3jS4nJvV6nvdXAFUhVGpCpDmvSmLtOksv40CjFHL1IIGUZ2MU5JSaHvwZo3dDyaPsIWhlqxr7vIemoy3v78s2jjBqC9eH59yP2rXhOBmhj542xzcyzXjsEtHZdx8GglMtPKsqyHdymybOtxLbZEXd7aHyE4IwPLkre4+fMAzrH/R0fxUs8H+IDzwiAbRjBiB6ujzhOnglpWVZs8xJos2wOZMdhO5cAqcKshbWUecFyVo0Q7FlXFZazJcqCbF/b7Q6b9QZdT4lhF7MZ1dZSCnVZAn4OBYGupVxwUlJwt+GEw3Zr8PL8gstzzPDg7BQeVNLl5cuXEAAWc7K9zWYzsmt0HdqhZ883yWmWCEC6rouqTqkkejPAtZ4dQ2S0/QkLdD44C1CaKq01ZtUMbdciqHDrukbX93B9D28dZQVREgIyOkY4Z+NbgydblFesshUTP2Beqy5/h/Gf8E5oQx4ZJgUXBs3eO8AhDVKNmMhwn3hhT5DmvYeFj9k6nr58QUG+1qOUmm1ZwNn9MwhdAKA1oHVQueYqwox5DP8E0Mgnba7ey1FugmJ+BF77qsdIwSbCQTwgMouZzMeMsPAibc3XZfie28/eoL3VwMUwPt2IpCvKt+9TpH3J6oiE8kod3A37RjPgFu2QZi7vuwjAiaQqPCCFTR/l5pYmnkAmZQEHJa5bXTEen01qZFnEOUbny1/+MnbbLa6vr7HZbGJ+QsXuysbMsN1tMZghAkIAUcku2MIKGG+iamOsLvHReQOYDm+SsJJUNn3XgWPOiJvjwqVeAByXQ34XKg5717WYc7LbQmtcx0zxFAgrxByzusY7Dx9gd3qCtmmx227J6UCR5HBx/hI1qw/v3bsHgCSx5XKBrr+HzWaDy8srvHzxAs1uh2a5pOSmRYGq1HjvnUdYrpbYNg1eXl1ivd1RVWDv8Pz8AtfrDb7/yaf44ocf4HS5xGJ5gq5t8OzZM1RViS98+CGWS1LhOe8gtUbL7uqLxRJSNmiaFk3botAUK1bPZ5yWy+DpywvM6opUbHWFQqsINtfra7Rti0LrmJXBOYeh7/HOO+/GwpcXF5cEPILUxkS8Wy5ECYigzuKMJN57eOsgvI/Slg7v1LsomYeE8x6Ay22jGRh4ALBUhdk6xAwSIbzADAZd72EsJ/llhth79l4E5U91AFejBkoJPHnxDBeXFxi6njUJ5A375a98BfV8js12m81BirUj9/5MahkvK4Su51M3d8QYHcq2vNEcP9QyMip8AKhDZCXXfggKh5kwusKncU3H/om1cd0GD3Ju+wAwHdp1E1CN9mVSUPx9iz69JqMxvYMQ47iyo+B15CKHn4ykozing5QVviMwWUc6ny8kn2/yo0mqCw14skmc3buHtmlQliVWJytcr6/QdS2Gvkdd11iv17DWYjGfw8Gh74doLAfAqjpyuVWSUs1Iyul+0Dgf+nRogRO3L+MjZMwrxfX4YJsSmZFeUob1UDpEkaRkDanEmqaBUgqzWYV333kHu2aLjl3kQzqcQhOgUfLbIo6vVJQFPr/OYrGAAHldzmczaKUwn83Qdx2stbi4uIAQQD2bo6wo60HftYB3uHd6guVigbbtcLVeYzAGvbHoNzsMH38Pq/kcy/kMqwVJWm3fof32t/HOw4coywInZ6fohp6rCivUZUEelZa9RK3FYAy00YCQ8JAwHlg3PXpLcUHL+SyuGCkowfDAAeRxXkuBq8srFCWpygiwSTEVCoIWRQGxXpPK0HvO4k/vvG+7yM1LBIFDxOS5AyfjRSg1AgDCY0RC87kx2WQGA3gwmEhIraC8hzcmnzXpPBkqXpPEZsHu9MOAb3zvOzCweP7yBX7k4hLVrMY7772H+WKBtmkAZs5EqLicdUoAFPMVKmEzDcgTYIf5S3M9WG3TdiD4B0ylLZFkz4wRvBXW+VDcNwDmDcTuT6zEdVCGPdLEPgCkH4csR3zUa3g70PwUkWCnrftwdrTHk0MPeyxOT3hVr27aNulJpv+O3kFAtHeliT/q5F5dr6AymKoXpJTwzkNy4tnVakXctCHO1tmQzJXUiVppWG05pkVQZuwg/hySuIXInKPG9w/qVCXTWObOGkmd4SNwB1fhNG7771KIFHxMKZ+I27Ts9m+MwayqUVc1lBCUwdxRDFTTtBAAOQV4CgwmcCB1qfPknXZ1fQ3JpUhSYl3yFhRAvM8QyqgM5CTSDwOMo9pfEJRodjarIbsegzEYBotd01CS34Gyu1eaMku0bctBz5Q3EQG4WTVKOSYp84ZzPSfPNWyXIcJqDAVDN92AQmloraA5c3rIdm4GQ8G8QgCWcjYWxqCs62yC0beQ9UIrDQcKGA51xvJ3JTJGjDaTM02I4wtpeuMrH80R7G2ndwH0xsA6D61cLHuTJHZ2nmDJKNdjgDUZFrSWHDzWzQ5Pnj+HtY5sje+/A6UVvrRaYRh6QACFKJE9RNYfZqAFksou0yrE7BaC3Sw4LmSsMmc6lYFXAq183ud/E004tPbo+cOqmu6nZw+X/gy49ZYDVzaeN43BRKLOGk22IADn8tMxYWx87vTb67UoMe6/X/o7kuwOSF4HttN5h3p9JI5rem66APUxUxmOMmpMrpzzcz4IpZ6K+gkAVoTsEhIWllMKVfjgwy/gxQvK/K40SU99T+VIJGc7H4Y+cpZlUWAQ5NnkXYo1c55jeXwiFZGV4MeJ4MLZrJOKg57TRg6eNsZRCBKtCEQB8KzisZZLYUjAO0GVhRWlOIKnoNntBqiKAnVVYzmfY71ek2Q59Fiv1yiLktJfdWST8hBcn8qSi7fWuF5foSip7MhqtaIsF12LrgOnQ6Jg481mQ16FV9dQhWY1lUNnDDTX+DpdrdCWHZq2xdY3VK6Cs+5fXF/jZDHDvC5RVyWu11dU2v7+fRRFQVIAu4LDE2c9qytK4eQ9eo7FE1Ki1BrODTHzBZzDYlZDzepRYC9A0rMHuC8GUmtorgElORA4pIASnuKpCOw9l5CXXJSTvDWdI1sYBNk/nZvaOVldhSwXhhgT02Sy4uOch7EpQTJVkeaZJiXHVY3dx0P+Ri9E7KsAoKRA7xyeXZ5j02whvEdRF+j7Hl/68pcw9A3VFhSeEg0zYxMdgSaq7cBkjWyxCB6PaUlPM26E46Lklu3L8yjG5xqdlQ0mAyhlzpExRVdORMd87GdALbztwAXcVtgafd/TrN32CuP3cMNd8t8HBe0bTj3M0SOfqAcvJ7LPD6AdYKgOHQJQTSspZVxEKSjXcabxBd555x1cXV9CSonFYoHHTz5F3/cQUnCRQw3nLSAQpRrjgnefz7yWspb9lggq1lSiTXDl1+AhSGDoWH3EfQ+cqAgcKl1X8DNIDNBSwQIw/YC+7bg+UQklSWJUUqFtOxS6RFVWuH//PvquI4cT77FcLGGtwWat0LYUqwVQYtOyoBIZ9axG13fAJgUwKylhjQEEYOyArmtRlgXOzk4xn83w/Pw82vwEgKHrMPQDuraDLjS0lDhZztH2PUsxEsILDH2H6/XAZS7IMePi6hr37p2hKktopSnvopTQSnLWeIGy0JyqitJQaaUwKwsGEYuuo0rUxlicLOc0PlpDFCXgHKw1GKxhVVqPPkqV5F0XA9edg2Y1bYw3VJLUuvz+IlOIEKCewmZctj8eA/oR6cOk5VPL8e+QxiksuTxPaX5ty67kItvuPOAEx3+1Dh8/+RSbdosnz55AaYkf/9M/gaIssV1fQyodVZ0RoHJG8fDyi/vGR4kRJz/10B0/8ziWa+/CQLJTeWZgnYeTpPoO2/iu6RqfA5l6y4GLpoGP31M7CCO3EjmOAUDati9r7cPZFLaO9+xYHw7c/ZXg9Rr3uG0L98wnrwAEl1RNkz2fmpM3kqlrRjyXp3o+w9DDe4eqpPglIYCm3eHFi+dUHqFtyOPOeVJDBKkqk/6iepJF2OkIBMBxoBQ3IcI/9zSjsgup9DzZtxxnbJgyE7xQ2fZFRR7rND5CwAwGgx+il+SsruF9Da0KiIpKnkglsVgsY/zOZqtj1ePtdovGUQYMsJRJ3pVUM8t5UrmyMz89s/dQgjJxLBcLDkQ2sGw4Dyl8HAf5SilRcIyZlAKlLlBoypwwGBPdup13WK83GKoKiznF2EkXYnl89IAjV3QTmQGlZPSsNM6wRAV0XY+6qqAKibIo4Z2FMALaB69BDuylFBzwSAyLAGWwr2QRcyp6AQyDQdt1MYkwmbJElJjCixMY20DzNxs0IJlAfkBRluYvqdQCNIzlibgKIpEfz8VATYT36K3B1WYD9eQJ/s//6//C/QcPcHJ6AgdQ5epDyreMWfNZL/304URQFYZ3lbrlo+rutl5++bX9eGwRxi1L2B2kscmpRzbcur3lwLVHIkftIPm+NYK9+rAIY3sSU96nAHiTae8nn2P3eJWN7RXi46E9U5XJ606gaE/ga5EqIhGDtD9xbKHII1UYRgS93W6HHQezVlWJqq5QVhW6vsPLly+w3ayxZm9Dy7FcIuh0MtXOwVRTiBoM7gv9dXDRI1MgeToWWlO5EAFYQ0X0Bk41lFLfJCYiqEKEEORscnYGiODh1qPveipz72iBD7M5rDEQVYmSJZe6rinI1jvU/Oxt26Fpdri6viJCzCq1qizRaYXdbheTnWqtabSlBJRH07SAp4zn98/OsN7tINsWllU31of0SRZCSM5FWPJzeVSlRlXM4JzD8xfnUU1XFAU26y3MMEAKj9lsHk0sYZyVFECpYyVqy1Kp1hKq0ABLY8YOaBQVtCylRFEW8F5zcDNlajfWwg1DjMfy3kNqDcBzPJyEYG87KRV6Y7BrWh4vN0rvhIzRIy8/AcFVrUPf9ySCyTzK51rcF+eVz87L19aNrgkIeUU8AAug7To8f/kS//23///4sR/7Mbxv30M9o6wiyXZH819M7pMQd/8+uaqQ+ivSeaGfB0DL733Jf2bnxBvkohyDKTO5cSQyLuDm0bm5vfXAFRuxD3ubxzLQmMgLMZFexOTQ8GV0Wvbjs4i88b5iIuUdeJmjBcFTV4QpnF8qc+seTe7PUQI70IIabZQeKhsjn4GMh2diQ9zz5cU5Li8vcHF+DucdqrrCfD6j0t8AmralJJ8ueBOGGlqhZe7sdgxYtHc8quE7dYnh1XJWAA3Ak6GfAk4VSzqGUwLR+RLJu1AIoOO6W/AOy+UcVVXh3tk9PLh3H7sdFcZsdjtst1vKtsHxTT06XF1dxgKPRVlQ7saealO998EHGAbKrH15eQHfe8iBpKGr62uquTWfo6qozAiBJGc1IETFalZjOZ/hIe5hvdth17ZYbzaRqHpn0DYmekruvIOYz1HXNX78K1/G9XqNruvQtR2WqxnAzEao4QSQ04OFYzsjUJYazkkMg4GzBoO3sJa866SiysrbpoPnsZ3NZpjN59Hu9eLFS8pRyFnjwYS173s4joer6hqKVYSQEhIeSgKllgAUjHUwlgPGMZ6PYW6EXA+ev9NSTMHGYS5bTvkU+cxMczCVgA7PuP1VHfrgAAweuG4a1FpDmQHX2zV+67//Fj764hfxpY8+QlXXGPqOqw3r0cVCOqp4k6NYMJUXb9eml/PTv/mXKGGlOnc5kzsNVPks7e0Grlc+ew4K0z2HkOo1XmwEiOxetz/54DlCgLM3jzcmPfpYuhPZsyUX+cOgdcw1QwBRnXIUOEf3Q1QDhLbnrDGRflLSWepXsO30Q0+lN7RCoRUeP36Ki4uXUFrhxYvnePniOSwTsL3rZtzuKF4EicAceuZITkbjGMbec2FGUIiWJGeR4AgQVEgh8FgIgeBA7xzFHVlrKNXR3GCxWKDQmtIxWQK2rm2x2ZBDhlTkYdlZytWolELHcVJ930O1TbTbhNpGEAJKSzTNjkqAtC2WiwW0okziNiNkSro0/6WElhKV1jBlCQ9Wg7JKLqgK4Ty6toE1A7y1mC9mmNc1mqrBbruLRnxrTRpED7INOod8XSglYbOcf0GdSypaoOsHeA/I8wucnVKMVFkU0EWBgktrkCMEOdNYY+G5NldwDvGeAqKloADsqiyhtGOHEIO2t5FhiqSb1bu5RCGyOcVZp/cmypRoH18ttyXKIl7fATCRORI4v7jEcrHEvbMzXF5cUnLqfgAKwBYWyunUtVdIdvGZApSMmPAbzhztCu869zhkrUo8nl9uYFCzQU5jR9JhsHW/aXurgSu4Rd8Gv27ElRv2iVzyehU4iSyOK9ceHGr5KrgBM/Y8c6agN+ofIqcdv48kzFwOSX1OE27KlWWu4pnSP+ei4nMGI3kmDeXgoDgOxUsVuURKGKs447bE+fkLbLYbtF2Di4tLKjQY1INx3QSg9oh2YQavdO88YuXQmObjCTAe8LXItiUYnCAlBc4aH58z7CNi56KtbOh7doDoAU5MqyQ5EdRVTZnGhwHNbgdTGmh2D++6Lj5DKBXS9R0Tbsn2IxFfs+SCmUPfozFEyKuyRFWWVOKDVZteuSSZSwUpKKFvVRTw4JpfHBSdZwEx/cAZzAecrJbROcYOQ8zQHqrgCkGSVAgxEJKkHcfXcoJz3rHuToTxF4AxDtb2sPaanHKsg1xReXftNKV7sjaqcomxkOydZxmkaZ9Uimx7WkMDUNKQ84rrYK2PAcvBUXs6O3LCGlVvmQ11ClrHtsU5NjlqxItmUpgIE9JTyikPoBAS15sNLq6ucHl1jdXLc8qJGcIIuLimlCrRv0wiHBmxjrYsXCDv6xERa1xnOWkt8mNyvE+X8+Nz4o/b2tQOt7cauIAxSBxr+7BzSALLSf/noGhLlPDmqxzFQzH6PrWpTP87eP8AYG/0ADe3fTvXkZfAYBtUiWQvYRUQgKqqsb6+wvnFS1xcMHC1DXZNG9+tALISC0HqS7fw7LUmBJVXDzErQL5QkMYuAjsb+mPJdA/NrvIU98N59rQC2DXYk8cGuSp7smcBLIVpKhBJRfIMXj5/ToHFSmG5XECIEvBA37fYbrcAgBmnPZKK0LMoNHslUgwWhQaY6KwQg6UBaK5sfL1eE0CWBU7ZVd4ag77zUNwnXQh4MwDGQPiUGqkoNLSqqOIwO1H0/YB+GNC0DT795PtYLBZ459EjvP/OI+yaBtfrDdbX1yiKElVV4eRkCa0LSKnghaDM702DzWbLUqmAUGDnGnoHlZIxgWvTDXj24hx1tcFJs0NZUB2vQmt0IZGy9zHLPVUiprRPoTqyg+ASIxY1F7uEEJhVJfrBYBgMun4g25fnml2evfuyeeI9ewHGxPahYvebrJLjjQh/0hh4CDhrKTGzkHj64gW9d2OxXm/w/gfv47333yPAZicdKVniicz7cfnPi8N0INeivMlTTHGPJOopAzxZjX4/w83rtrceuFK7xTCM9EMHvx4FKXHwgDEkEuk7INXcpsXDx6LXFNcOR25lkpYYA5m4BXgd73EuZWVHMtEOKsxpMPJevxg1aLG6qOJqmgbnL57h8ePv4+OPv4P19VUiUlqxd1mKTzlkRA4g41j9E+xToRpysFEE6YoeNCRGJeJIcVhMYAVldRCKJS2uIlloRa7LzsFxAUIhBGRVZqyDR0jPG57ae0ccvyGpRngQoeXchENPCVXrusbJyQnKqoQZBrRdBy0tVF2TdNr3aLsOw2AwDH28P0mAEg5A31NdLhk8Aa1BcEGoa4GymMNYA9k0GHrD6hygYFd4yXnzRKmhlABYzWf6DleX51jMF6iKAo/u34dzFl3bk8end1gultC1RlnVEKBxFQA22ybW0vIBDISHVwJaSXhFY0Q5D3tcX68ZzKlPRVHAWw7M5grFlOtRcR6/sWcoPDD0YXwklBCoiwKl1iiUImcbR6pE67JM5ZmwESWDTGLIpYXbrOxXHTMi254Dolnp4b3Dtmshrq7oeayB1Aqz+RzL1SqtvUxtFzKH5AAcLp6OPaR1yZ7smMYnXC9XE2aOGYk1n0iSB+6UJC2PP8Epn8IA+tHEuklGCm7QR+HqIDBNdu8R5/3fn51BS9JMuGoeE7HX/amYvnc5gZRN93V6eAzWDm0fQ3cOdIBnychxEUkqLX91fYmLi3NcXlxQrjkkycx5h+T+fpzrHW0W6fyo9pke71L6Js3xUKT6SyCtBKcJ4oTAEoCVZFsx8FFlqLUmwAMQAjaVFFBCgYzU1EFnbQwhUFzYcRBA23Yw7J5vjEFRULnzQpPkBYALVSYCbczAjiqh3LuMSVy7vqe4JxnsXTRzjDGoKnrWQilYDHH9kJ+dpKSyoMBaLSWcIZB0xqDZ7VAozY4UNc5OTnDpr9FvdujaDmVRQClKWxWkv9lsRoHH/QDr6H75igoZR5SUXIXXwXcdpFRwTgMFgY0IBSPZ3umdJzUZghrSQciUJ9Jm6ZeU1lGNqLkSgADghYcXefkSTu01nU+YEN5pyxajyI4aSfpIRD0/bap6C33woBIuu7ZlyVpjsVwSaAERtLUuEPUeucpwwuBF1jGzSULk9PNwO2j6zo5PAJ+DYqYVwXGV/WeVYN9q4Mq5pNFmD+xT8kMDOFpG+8ccHHM67kaQeJOWT44kGtBPIfYeRSDjuPeh4g379/qQG5ivo5rCbGF7+JSOSBf44MMP8fXf+100u4aJdhmlAOsdhE0LMJjhcg7QMWGm+4jRX+tstNlITu6axoQJthCRoMV4JWeTRIYsWJnVaBRULGO/JBAzvRe6IGmN343i45y1JHk5qst1slqhqioYa/H8xUucX15hvV6j73sUZYHVaoX79+7h7OwM6/Ua2+0Gvigwn8/hvcdmvcH5xQWMsUw3CaSdBwbOou8UB2mbHn3fYbfbYFbXKHSBQmvAk+TovIO3BqKqoMoSQmtUZQUIwJoB1gxsU/LYbK7hnIHWEl/88ANUZQmBF3h5foUrc4HN9TWKskRV1SjKEqvlAlVZYbPb4fLqCsNgx440PH+11hDCsurQoW1bDINCryknYl1V0XFju91g4MwqAFUGMMaiKMtoCzOhlAyXmw9SqQCSI4eWwOCpEGiYWwjENgUZ31bKOrreblhSh87J72e9RzcMeHF+jsEYnF+c44P3P8CHH36IR48e4d79e6irKjF5sUqCG9ES5xGDl8GSXRQpgbT9xpaOidqPUBMtHOHJ1Z7Sw93SzvyG7e0GrkPNjzmfwy0QudccwFyA+Pyh68gNb3GfQNBFfvx02rx6PI4L+cB+Pw6yDAwk8SUwx0/BsyFN02p1AiW3+PST7+Pp409xfXmBQkkUhYpFH81gRh5ycgRMzGcKWrBxjTJIBoALhExpCSWpMF9RaFZjEVWS8NAhQS4EjE3qKCnE6Lm0lBBFAQAjm5PSKhWazOo26ULH4pNmGLjYpeCMIBJVWeIrf+pPYbPdoe1abLc7NG2D7WaDZrfDMAyYzWa4x271gxngrMPp6QmqqkLXddg1LdcvcwRUA6laHUu0KsR5saTrnIUxih04uP4TZwzp+57shFsdHUUA6r+zFn03oGt7bNZbSEGqvAcP7lHMG8fpWWux220hmgZqt0NZ1QA8x625lMqKUzQhjhk57VgBiuFipxEfSr1Ycj6pqopSTzlQ6RMLeDjOsqGISWEJC1JF+6A3hiRpTaVElFRwigBZCQ6B4PlqPcgRRLBTyZHVcusmMOHsjtils4sHL0NhLXzfw11dxYrUz188x8nqBO998B5+7Cs/hrPT05gBJtwnd5EXUmRSUQrrCB5+r8OseiTgAkJWEu66DPuikiXKD1PBjdapxJu2PxbAdUAZ9PoXEfmXKWAcBpB94X//1yt74rPP9PoiEeoEmiP0PNjDffnrUDsGUK97zKFnHU9REoDpqGEYOODW48XzZ1hv1uj6LgaSem9jpol0NRGdIeg3LQMqVSRHRu6918jqQucdpLfwjgoBhppNSnhOd0T1pLRVEbiC2sUFZwb2XgMQ1Z3OOa5uTE4ZLmRtEJRnEDJl9y6KAlorDH3PxJgkkOVijrquUFc1jUdHcVxt0zCnHKooa0BRBolCF+T6rTSpWBlIndaR606Cu4eDgHcWztJzhRRYMWdgLKMebII8ymxHCgTJOYthANbraw7WJgcPaS2slxDOR+AxbYdQ4kMKgbKuMAwGxoioro3vU9BzCUGJlsnu5eEESZEA2c0KTvMEkFRtHVcDcOxEYX0EQsp9KUgKDXkRnYNkjYzzwX46ZmBFmK4+/c3bTezcsZV/8zmHm/eeNQ90BecsAI+27bDebFBUBT76whdhV6sYF5lAxY+uk0tF6ZGyXh3mQ/f3+fF1k4oyaEWiHpL/jG2+4flpjN+c+X+rgesQYO1jwC2llnDoa7ax9HX4ArfuQex4rk4JaozMqzDeNUyJ8fGHxcgczt7Eo2cMYqM4LhxbwOkuSmk4B+yaBvPFAtvNBv/r61/HZrOBMTYmwA1ZzpVSnPCWs1wEEHEOEsm2oyJY7Bt6aeF7lqJ8dNuuyoIr5RYoNbmJhzgnzcRTCLDnGkkRijOhK0XlUzq6AQTA9h2SUuh5BrYpUTJZJQTqitJZ1XWNQWtyTtntqALuvXtYLhZ47913sdlusNs12G63OD+/QMOJZherJU5Xp6iqiqUhAs7lYomm2WEYKEluoXV0/Og7Uqk5a+GEgAURbu88oGQECrCkiuDoEQNuU00reHbvZ5vgixfPURQliqIE4CGVjPYxax363mDXNNhsNggZOpanZzGguuu6yL0juP0riUIqit1jVz8hBIZhgBkG1FWJ2WyGuq6glCLvR5aopKKKzeRtp1CUJQqt4csSgkMUhmHAYBwAx0DrswwbqQxHpCGeVMEum9xTAeUYPInJ/N8/bsxekmfhZFUy/TeOVM3OkQpwu2uwbXZ459FDmtveRa9b+iRVYUhCHfVQLA7ljhQ3EoNDNuKpHY2vP8ptGO4TsmYckAM+i87qrQYuaj77c/uhuPHIQwLXobNuiUgegD94nH8tXM3vG2jN0QnwRrPiAHv5qjNEWgA5r0l2cMHcPl1Ta4333nsPL168wCeffIr1eoPTkzPK0be+wNAbDP1AWRNAOQXJk8+n5KkMRoF71iwBSaUiuNGTiOjaLmVeOdZHb7SQNbzvepi+R9+1UJJy/w3DwPYrKtuhdEWjw9m9a46bAohYemuhtMZqsYAxBl3XYcb1p7xzaHZbwDv0fYe6qjBfLADvMQwdrq8u0ey26JoGJycnqE5WOFkscP/slL0IB8rAcXWJa+9RVhWWqyXqsoKeKSzqGoOh2CtrBmitoTU5bAxdH0Gu7Voi3n0fqwpLKTkXJEkkWlOiXOcpVyHZkqgp7ykFVEFq167vsWtaCKmiVF3oArPZHKtVhdOzU6w3WzRti7btsNlcc5YQBYEyFoAcWN2rBDEVEjMMZuB7kypXCIHdbov5rIZABa0V5vMZKB6QSo14UC2Cfhgo7lBQ1n6yoUl4IdB1Azu7kA1SegrEDm7yQfN1SEJ6Az3O0SbAsY188RDqEUNMklzCeTNJbSmEhGLD6/LkBLP5DGVVZkRGwNn9e6Xey70tr24sTsVPOjmMWWBmPdtDvfQxpGCcICAxCp+lvd3AxeOYe9Tcvh1EptsdPt14GxS8Td8O4MaeN9LUUeOGS41ATRx/4rEL/23Ug4elrz2Vi6ANIjIVpHa7vLzErtninXffhZIey+Ucjx7dx/e+913Kz9f3cbHGYWPOMXCmQT9vraV75KodkO7dGLBrOKfxmfQ9FPYD28Io2zmleQp2nVBjKwomTNyDfSZc0XEuQKWSh2JdVVHV560hKY6lIQEfvRqtB+AcumYXc/gppUgaBMemOQsBlv6Eh+17wDp4BmcFAEpBSxEzvUsBGKWiqtPYBYahJ3tZP6TUWyCp1FkHyeo1eA/rDAZDsVKWbWhUwXmI3H94NfA0nlRLrYVHiUoqzOqa3hkHTJPUqqPjjOe0WY49K6UAqR7DO3AuvgPvXaw5VtcVqrKEtQ5t22HXdsz4i5ihXoiB3yXXdtMFBkNBzc4lG2asL+YFVUhm4pyUp5PZL6bb/d6BKcZxf/XkFxLZsaMLTKU8kMt8cEgyzIi0XYuePTGjihtAytouWN07ueBteNRJt6IkFVSRmU0tqgpBNcBicl2fgEsAnKUn0YY3bW81cI3H9U34oVfJrDcMbIYIr+LI9oWqsa7B3zCRRjauEQrlCHG4awReU3LNt73VcL0axKYZ2oNXFm9Ans/COYe2aWLW96/82FcghIWWAvfOVmjbLfqhx3q9GSVKDQtCyKTuCJ+QySGoP0IBSsosbti1XJGbeXB7ZxAkvLCctFWgKoqY7UJIga5tAQSvNx5H71EWRXSTD3XAgsSiWDWoZIW6KiOQKYEYh2SGAXYgIj6ra5SVIueHtsGVoerPs9mcpBsAhRLQ8xkKJWLC2b5vMXgPCYmKwUEJUCCwAIQUKKREqSkRbckJhM0w4Hp9jYvLSyYuVI4kJLYNKtigLh0GKjjZdZRJw7HUGJgFHdWnnuOjBux2FsUwQEBgsVixd6XD+fklnJRw2qKqqhisXWiNvu+ZEDoqj6LIkYXi2UjV6BzFaHVKYbVaUo5G79HNauy6LmpdnPMUr8Wq5YrVhkVRYBg4cz3b4ZJLPs1S6T2EIyk/gFesgTVZDXtr6tACecU6i6A0WZBBQxO2h73WkSdpPwy4urrC9fUa8xnlxyQSka0Rl9aiUuwM4V+HWiZwyr179y6QqwpDnkJHOUmZ20MiYEEy+5MsceWcjp+MZbb7dm0fXj7bcbdtU8UEb82ZryA+5V3gv0ESSK7xk2N+yM0D6NqO0hTxAthuNmi2G6wWj1BVJbaba3z72y/w8uU5drsGhktqGFYT5m7/pAIUEahC2ZHcoUMKAVUU0V1XShGJX6wazESS7FTsycjeeVorLOZz1CcnKLjisLEWfdehp8qNcJbsCpaJfak1hBQxt6KAhRs6aFGSU8ZiTuBmHQQ8mmYH0/VozIDlYk5elXVJmTKaHXZDh5OTU45hEhgGi1KSHagsy1T2w1j2hqM8izChkKOAKiuSvJSEgkchgcVihnfunWD78D7ZoHY7DCy1AhQjNnAuyaIklRzgYYzF9XqNpmmxayiomCSZUF6FnCu0LDGYAXYYsNls0LZtzJAxn9XRBtN3DYOeRlmWKLWCtRZ932G5mNN1nYPpewiQDWy5XKLrOqyvr9F3LU7PziClIvthodEPFsaRs41nhoqS9dLfWVVTnTSlSG1qiOlQAigKAuBCSmjvMBhKh9VbN1pKtxFU8mOPnefgOSHy/rFx4YgxdRAABrarYjB48uwZPvn0Uwgh8N6778J7nwqlBpWd9yik4pRbDkIG16ZbevUFaZqvF79nQBagMGTICZqXFEsmDiP9Z2hvOXABY+llDAKfRXEY4Wmin71x8AUmVT5vav7Gn+maSWIKmSoO9flof47e+XUl1GN3O3Adz+oPDnoO6Z2sM+j6DmVVoCg11utrNM0Ol1eXePHsKa7W12i4npIHcZuhCGAAZVocIjpzxDx+4Ngqz+olIEpXQiKquqAVlCCQEWyDC5kzBMBBuKwmBEhCsJbtLyUKTZncQ+mOvu9z5SOUVhBCsRrKk+OHM1BCUjYK7nNdrMjGZgZIbwEmkFrwHLYefbODLgpIpXg7OVbYrom5/ySourLkODN4D8sej7ADICQEFHShUQoBLQDpHU4Xc6zmMzy8d4btboee454GYwg8uQaWZA65qEpU5X3ydux6rNmpxjkHXZQcN0VBxFrJ+A4tF36kcjbhfckIYNYOGAae28xEKCVRlRWU1hj6jt3ygbIs2AuS+tjsdijKErO6wqyuAfTwvQEKHWdmkswtSW9KARKoqgpAHx1RqHQNIISLqmLNNc+MpTpuVM87rYTbraB09P55e0rI0Z5RDOPkSGsd1psNnjx9Cmst1utrsssykD988IDq23H6rEC7xmEet+t9qIzg+J0lqWssMVAMpudvrIXBuALz59XeauDKXT9japbbAseBgTwmS01B7RggkA43dC5tjHD6qo4dUhVOOiem20cn+ySCHezcK+5/y3Z4DrIaAOS6DhfeiYiEHoY4+npWY7fTuDh/gev1Nc4vLvD4yRNstlvKJ5dVsQXYYB6dKwDnifhpUMLZoO7xbEsJdk/BgATBgcVCRNdiGeKIwFkyRAAu+uushQW5wFszoCgKFFpBSspebq2BNQYKdO2QhUArspMVhWZbEJVc1yLEK5EKrOLUSO1ui65tyelDAkVQhwKwfUd5BUMORC4d4hgwSDWqUSqqaVUWlGap7/voci+8g3SAhkYhPCQcYBzmqyXKqkZZlRTk3OzQth06M6DXVN+q73si2FJAa4VqVgMQsNbhvCywaxr0/YCqqtH1fVQ3DobSYw3Woh8ooNtZCyGp8KUUAkIqjj+zMIOnch3wcfoWhcZ8NkfHUhYFqBcoi4LTPw1o2wbOe8znc8xmNZyn6sqJSgYp0rCnYw+UBbRQqIqCbWEGhtM/Ub5LUhuGgHPtJb3fsLT8cTXh4XVxfNHlkpSfbBmrDvMjqTnvsGtavHj5AgOrf9umgZQSdVXBWovTk1OcrFYoioKTKIdLJX/ksL5iC/ZiZLiUqeb3JS2+BjI1JR9w0FMyJ0SfAcz+GAAXIqft046JMjZ/8UcI+43tcHaKN2qvAR7T+xwHrT8qbX9SCgEY9sSjooVUb+vFc4uvf/338Mn3v4/1Zo3NZk2eYSz2eBccB0QsKZI35xwFaMbikskIHwBIipABQ7DTAQDv0Gw25JpeVagKzZw+KNgVHhIK8BJaldCSMgHYoYcLthAzkOu2klicrXiRUuZ14anqb1GwW7ohV244chlXImTfoIBRbTUqWUdvxUBkICSpJvsBpunglaIg3lKj0HWkHJRiykH5Aco6KqWynEcV3263Q89lUmzn4Dnbve9a6EJjWczx4IN30XYddm2Ly8srNJwT0ToLoSgTxa5p0O02qOsZTk9O8Oj+GS4vr3B5dYXtdouiLgCUcEJQHkBL3p+7tqMSI5YS3TqWfLUSKIuK7XVDVJtJIbBZX1P2cwHUVcFj46O0CxBDcX5+gd12A+8s7j94iKoo4azDZrel9E1ColQKhSLVatt1sMMAOLKj1aVGDw9niEkJDI+Hh/CeM6VIeq/OwXp2GAFlowizPYDWUaUJ/z22/xgQHjsran4E0HPwdz2fQRUFNus1vv3xx/j2d76LRw8f4gsffIg/97/9WaxWK/I25QB6IpHBwWaKxqnHIc7Nc1HQ/R5GXWLUkkjv92nU5yxyvdXARS3y5VH6ilt9iskYvZfJTBkNaXCGOCaSHf95pHt5Dw7FmY2fY+8Gh164GP05eK1poPJtBC5x0wq78WEFqwj4zkw0wkBTVgq6PnHHs2icD+/NAzFfneFktoH5kFw6g/ooomdTSrsUVIeU/0AKkB2L1XUeKci4UAreWf4uoQQ4NolcuTVLBN47eNPDegUFj2pWcboklexh1kJ6Lk0vACU8qqqIpVq8NYDX8L6Gt2RUlwDZdBgwu7okjt8YDs4dICRJOavTVYwlCymOpCRniqIoUhA1S3laUd0zpQAlKfN+rSQGU2EYehSaiJa1BnAGpt1hJzyEp7phZ8s5FlVJxSy7Hm3fUSolpSCUxIuX5+gHA9s1WNSnePfhfTw4O8Hz5y/Q9T3FGwmypzgPGAdUVYt+MKSKZEmRbJKGXNRBYBWcTgCyEza7HZy10BwfV1UlFlxs0jmHYeihlcTgLANzBymA1WKOrm/ZuYckzFCDqi41nGVVmaWyJ6WWQKnQG3Y594jMsPWebaGcuUVQGibp02KJK9u/anWlNXhoLb5qyaXVRfeWQlIeRimJQWgaXF5e4Xq9xvnFFRSvp67t4YzFe+++h/v37+Pho0codEG206CCF0HNJ+PNfPTqzenXpHNuIo2BnFuC0094WHLAzZzYbjFWr2pvNXCNRdiwLQ3x8eFJg3pje0Mm4WaQGAvYrwKxlMpp0qn8z5F+7nM9/MfHJXC4p6/13ARaIy+hkKcsCF8BxARxylVVYjarUc9qNhbTgcGIH4h1kjBTGichgJTkwWfbBd8LrO4IKg8RVXiFVqiKEnCGVI2ccLbQKqr3VADJYP8SBAKlUqhKjbIo4L1F31OG90LSftJIOlLbaXJlF1pABZVkdARB9HITAPpSwxoLY7gOV9eSWkoKVJyHDqDM7+SAQglmy0JRGivJGTkYmM3QkYQpBeZVAVcoOFexmzqlyBr6AcMwQHgH23cYOgUlapS6xGw+Q6Uk+mpA0xZUG6soUNY1lAfW2y022y00PKq6hlRz2KEnteFgKEMHzy8nKBC47TqyXVoXgavtOn6FFOQ8iMCnEIiZgYLGy7JEWRbQqhgxI0KQ1Jpqu/VQqkBdlSi1xiBstHVGpbWUMaBdwhPjIkGODH6ApZzOseSGBzh2ClnIh4AToXqyiMvFHVlKectX+6uksLBvCl4+THJBUrl1lO7qer3B+SVJv7umgWY7oh0M6rKEkuSYtFgsIeakvveetAB5/5JX4kRxday3GdAH8CLHmPScEbQEeRinfW8uhf0xAK6gKpxEcsfvyMb7oPz1Q2k+/nPTEWFh7CsN8wDFP9KNiXZvqLbUbrfDfD7Dw0cP8IUvfIhvf+ubABvPKYUPfbwLYctEqJSQ8UklFy0MeQBT1mvHakUPaymRqlKSClWyyqdQAlIVJGEpheWsRlWW0FrBDQOsMZBCYhGqCnOsU1lolCWBV6ErOFclT8aQ2cA7CNNBSZK85vUcJZfUCPYnETkrnrOuTlk/mCB1XYfdboe2aSi5LCeYtSxpXF9dwZoOQiqqPVVw/4oCvtJc4kVgVhUxe8cw9Oi6jmpNzWfw8LGu09BuYfsGvS5wenqGs8UC+kSh7ztcX1/DWgM9dPjKFz4gIrnZ4NNPH1MaraLEo5NT9PMF+mHAZtvAAdBFidlihW3bU1HES6ri6/ldtV3HtcYGdB2pWaMmiiszU9CthbWUUaXZ7WLKLXiPWU3vzgMYuh6+8KiqGvNZxXYrYi4Me3qGMiZaKnboqGJGfe8tFcBkbUFgomxOKjxCIeHopBGoiRKhbE+m8cH+Er+N5uOmM4J7vgV5Sl5vttjsGlhr0DQNOZkAGJyD6CkkwRqDrmux3WxxeXnJGVBCqi854YtFZJb2ueKsL/Swe7Q3JN/1XJ0BnHslT1SA6WXfoL3VwJWjUlQ5ZRLYSMzNgeyYKPJaTUQx+M36fcOW7Mfhy/vRzqCGO9yXHACzs2/D8r1xY1uQzyQpSwldy7JAVSn0/Qnu3TtDWRWA8DCGQMMHpwPmrgNEKy5tAY+R63tkPvlRKEsGZe4QUsSijKTO8/DOULYBrVEqjUJJVJqlsbrkKsEK81mNuuKM4wLsPCFiSRIpSuLcWUUZAmpDZo5CaVRVCcX7S6VQlyWlh5ISW04NpQqyOwjmUo01mFclTjkDR8gjKJVEXS0gpcSjs1N0XR/HSrLNrGAnjlg8Mn6X0GpFYOUsur6LWeS9p8S8fd/DDAM211fodxtopVCVJWZawlrAdB12Fy9hnYe0Bid1BesBbx2cAEpwuY16hsE68p40Bo/OTvHg5AQfvvMI15s1uq5HNwwxz6CxFh17KXZDj2EwFMfFZVqMsRQqoCQES0lSklrUzeZMsCnRsDMGvW+xmNUwhjwk27aBKnVUXYWku327w6zUqAuNeb2ElqCCk8bRHALZsSyrGq116IYBsCyBeZGAFsHF3B9YhImZvtVSm54/Wqzg9eTgLcd48bwjJsQmL1zvqfq0J+9DKSlF1nw+x3K5JEm9LKJ6MOb7TI90lLtO0pWHR0g3xcdGMOOfCNlI0rWJgTt87du2txq4pmAFZFJXDlbImFxxBAxeF4AOaO9e3d/jv2iLj//m1x47Ck7OG820MUAl0JqgtSCHg8O9eJOWOLGgEog98J4Cb1kKKMsSQlhOOKvj35AdgU5PsVtB1SfYXT0UjATYdT0GFZMaJ8wDKcFZ3xVnZUdU+9VlgaooUCoFJYCqUKgKjXlVxiq7c3ax1prsXy6LuSk4G7ySMtqXQvwMgiMKq/AE97MsihQIqzUEB+s6S3kZBat+dKa6cZa93rhwZV1VlBNxPoPp2WORM+6H/ugijGnB1yUVmVYKkrNoFBxw7JnQOmPRcYxa0+xIdWYtXMioLjzrwywU6XsxryqyRzpyF6d3L+CkgDPsku885HyOqqywXMwwr0vsGiog2vRdVIM7ABeXZFvb7HYQSkfQ2jUNBw8TkxEy+ZdSA0KSF6H3VIKFS9pXVSgv42EUJzkGe+p5AQvAGgd4Cy1JbS3h0XR99GqNdc6UgHVcLsY7eOFYEhNk4+GZT5LahBuMoONHK/HwyokLJmkQ4oIaH8TCDrx16I2h5M5s0wsAWYT+A9i1LeqqxjBQ3kozUC5NpTWEcMluPLrhqFOj9bzvZZj+ivy4jD4naTXzO/gMxOftBi4OsHMHBnPktukPku/9dkwS+ywaudF5N6kvX3UdgdyWc+wm4wqnh7XIr6+uuLFjAMaLLTpFeM8cNWV/10WBelZg6BuyVVmDuiYvw5A4NSS1jewHqx7C99yupdhDLkg8iUQEBwXJKkECrUILVIXGal4n4ILHrCoxK0ss6iqqEOezmrJalAXquiS6zaXi4RGLTBZlAa1YwtHBQ5GLUAanFFZ1BhtXoSSWD+7DO4uLiwu0bQchJOq6gK6q0YKPxnPvI0CFLAneuRizFR1VuFxKURTQZRGzxhsuc6I12YGs4zHm92aZoO22G/RtC9MPlCnDUuXmuiwgNUku3gNlUVKQrrHYNi3kQDkHpXNwQw8zGPScnPjk9BSny/t49wEHPW83ePr8GcqqQlXXOLt3D8+fP8fl9TWevXgBVZawjvJFnp9fcGkaDa1LDnGQbF+jhL4B0Bquqk25DWncrdVRquj7ngLRAZJGrIFWwMlyhtPVHJttg812i812h6oqUVYV6tkMvTFou46k6a7HYB2M8dH/wHsqhRLtQtnSIMCcrpibpa8IIizZ7e3PZjqlthJxjYRXWpQ0l70QuN5scHZ6irKqKHuKMWjbFqFOmcw+aUVnD8R3hUiehSF3YqS/SNvHoHVAmvsc2tsNXAHpw2C5hP4J1W8pouftswDVfidv2ODD//unsYh4CKhSRu+w4bN28vNr0/5KIVFVNTynRvLWYrNe4+L8JZ4+eYz11SVM36EuKVHoMPSwnvLaHTMMU/onkmTCe/cCFCfEOnoqQEhZ4KtCoeZM8HVR4mReoS5K1GWBVV1jXleoywKLuoZWIqr3yP2a7FqabVR0f1CSWhlqbklOb0MZ0sM4BK2+AKBF0Pl7qhXFXm3vPHgIz9k/DKvvAoNiDNWi8mBHCCY0WkjOP8egzoTLWQcf1JdCouJqxABJDDHejDoYvwt2UhFVheViTpWGjYEZDEzfw3LGfg+ujlwUKOsZJEs9Dh7Weso0MRhKrNs0uN5sAKmgdYHCOzTXFxBCYFmVEA/u033LAmcnC1Ra4HQ1R6kEPASMsxiGASU8lC5QViWWqxNcXl+jaRq4ocOsKqGqEsu6xHCywma7xcXFBS7X61hHaz6bAeD6acZAsFOMd45c8B2psE9PzzCra6yWc1yvNyirMnrfdUOPsiCp+nKzRdtREDYMl7ChNzHKbRiD3wVJbNZlgPQ5thBqktYGrQ8vBIz3GKwBrMfj588xGIsPP/gQDx8+xGKxQMmqcO8B521MwRWqD+yx1FG6GvchZ4RzoSEczz/weULX2w1cUykL40HLbVz5pDksed1mUA8fE2Wcg6KMzz5j+Sp+358hsZdv5HlzCHjz3595/dx0cfqdK0fIE9DD2QG77Rbf+/g7+OT7H+Py4hxd22HoBybSqYjj6GoCEEIi5CsMqjhynmCVoRDQCjFRblVq1EWBslCYszRVaY26LDAvy/j3bLnAvKpQlQXqUkOL4MGI5GbONjDFgEHqPwomlkqm+DGZARcEkTKeFLEQJgiYJMhsraWAlAW89rBajwpjailgLbl/FyGVj5Sj4GkvmfP3gNdp3KRIaa5CgLaxKdO4DM8iKRg4SfMeXmtSPRUGtixjEVDH6bekUigKdpOXpIL0LFkYa1GVBdpuhsV8llRoQqA3A3HoAKSoOVWUgoLDvC4hXI32ZIFd02EwHtJJLGcVqqrGbD7DydkZYA2EpZIpSnhS81ZzDNZBKwEzDBwMzbkjuRI0fMpJGILkXZBdnIVzpBbVUqIqNNkHJcUQOgY3ITizh2BnEudhBakghRPkDAKqm5ZyWXp4b+GFH9nEbl1aKKcpmQIoXyI5PSN64jnbiAe8Q6E0emOw3m3x7PlzzGY1+qFHwVW1tS5QFDoy+dNq4hBJ05OEgtR/ms8hbyficaFD0asznBvp9Zu3txu4HHGcLos5mLrH04F7X7hNKfzNICEOnXLbvk5uP/092h7vJ47eK/crPNp+gJLYWB6iv2HCeu/hLHk2PXnyKX7v//5dfPLJ9/DixQu0bUtu4G1LGcpdUImpeNWgFoyZ2gEISZ5cQoDtVwJlqSmhriJ38UqT7WpZlzhdzlEXRfbRmFUlHpysMOP6XFoRoJCNDZxGiT0TlWSVoM7KoIMWNQJRlInV8JThIyxP6V1UcYYijoIJiwSrwiqFIVb/pYwZ5G1JAbiKHROkoPyFYZIHMAT3I7x3JWQkoJozJ5DTA6mXpCZJMji0REO6VPDaw+sCuUogODZQOqf0lpWUkFw6hAprCixmNc5WK/bOo3N6Qym/+mFApSUG5uqFGVCXBdSshjlZwfU9BJUhxsm8wnwxx3K5wr0HZ7DdDm5oMbQ7aDjUhcS90xUGQ8mazUDSYdv3VN4k1LESnKyYJS7nBAOogLOWspeAGCwlJbnFW4uuJ2eSwRjKhGINAEpr5T2gOGbNSo9+oFGh5Mrk/TgMlLWD7oUIXsHx/Fbk+8A6zoFE8DwMRMUD6Ic+Mlh1pWG9x6Zp8O2PvwPnLU5XJ9Ba49Gjd7BarXB2dkoMJhdmBVIIivOItrBxy4qBCoGYkD6jwVHliEwDlgHYm7a3G7iQARYTvKhTHelYgTB+ntbDrYl6oAOvgwFT2Wpf4+X3jg9EYyR9RQ7rGHoJJpzx6+37eVA6fLM2BlswYch0oN7j4uIlzs9f4Onj7+F73/sYjx9/gvPzc1xcko1nMCZ6DkrOQBHgmUpSaCKQ7CkF7ziQWKJUGlVZYDUnyanUGpWS0WtsOZvhdEHANSsLVIUmcFMKi1Kj1BJaC4rpQVDVkRNGKB5ZFGWscpwnzIk2CAYkyQPiERyBs9fpuRqSAEtcnOXDU0ZyIQVqpWBAxQOtMdCc4R0crCt8kjABkVzpPeWJk6DEt2FeeGPgBXlDVkXBxJnSUOXSI4WtCXKX504Hr84wqSi/H62hUF6DSJADzEBT1zlIZ6GFR6EJaIMDhlCSi0gSGPSmJ0kOHGcHBT+foa1LVErA1SW0piS8RVlAmg4LreAWc5QCULpArRXmCtj2FjMpcW8xB5zDtm3R9T15VbLkWZYFlvMFvPe4vrrCer2GYcZgt93GJMih/puxFptmRwHxnr30jAkO3vDSw7CDjBIa81LTHNEy5tmUoDReAgrCOlj4Ucb3kaT0ho2uM6Y11nHmD07K7J2Dtw7ff/wYSimsV2soIdA2Dc7OztAPPR7cv08lZTirCyB4LqdClXSPXN5Ceop0Sjwuglb21x3Qqrxue7uBy+17toSI72j3CvsmCrr0sg8rDRNYib19+1unHZt8DcCZb7zhxR0SEMWBb4fPDbxcdtwE0Dj3bZpvt55Dt5BI854wuFCF3gGm7/Hy5Qs8fvwYjx8/xvX6mmKL2L09xWMl2x65e7MCjhmS6E0IicWswqwmVeDJYhadLupCoi40Kq2wYFVhyfaukuO6CvYqVAJQ8LHEXnCuGH1YvRf6EXqXg4jIXtzUazNXv6T6XgnsJAi8IED5BcN7wnjOCSCqGSFAAdxJ+IseluGdh9kg4SEFSQFOIisZ42PMnCdUQ3KAkdOZlJ5Pipghw1myf4XJTmPKBn9WI3qQG7cSgJaAqAoUBQXQWgbtAbRvXhbwJdckq8oIxEpr2MUchSQJEiCHn0orGC3hCgVTFthKiZ01MG0DWdeoFgvUFWW6F5zxpORrOOswWBOJqfAeWghYScmctVQkWQkBVRZc582iHwwKL2GkhNUKxmHEMJBLvaTCpAKAIaB3nEEljeTxdjsmNONAs6/h3YZg70LpWFh1Pp/j9OwMp8sl7t+/h/mMxoe5FSipWPtBHqtBanYcq0g3yM0vqYgkzUMxAqYgTACIpoDc6epN2tsNXBP1YAAv2pcN1s1Xwa1hQYyP2Ts2k6b86GcOmmlfFJf3kGOKfK/uXbjeYZjF3tZ9me/Yka++9yHoD0xEUMP0bYum2eHZsyd49uwpnj9/jl2zi6qTuOh90oJF1ZoASVh87VCmpNAaq/kMy/kMq/kMp4sZSk2S1KxUqPl7zSrDQsoYE0Q2MsGA5SHgIL2I9icivqwCRKobK+Pr8kygZEzQG22qU8YkMA5sK1C8MTxb+NC5jvLk8fEBD0SmvqG+8D0zDjeOVWBdcgcMIF5TcJ7zmO3bZcGzPr3P4KkpJvORpElPtZc8OdyEByXVLRe3VFSGBSCgHAYXQVkXGh4ULG3YjgRORlwzaFU1xdIZS8HBUkqIeY1SScA5WOuhtEYpJYyScEpiUBJaAMIauKGHKAvMCo3FrIaWArvNluLn4KEFYr5L4Rw7v5CtUjl6flNqiIG2lXUFIST6YYBACw8GbufRGQsKx0CULskBRsJwRvVQOy4Q9sBYhH+zIb59myy+XJsX7tm2HdRMQnLoyWwxx+npCd5/912ccukeGeycIGYIlh1abGBq8hRQ+220feJPkPsejAKW/8SqClkcJztXEsEdc06KDuIPJgP12UTV4526ecdI8vN+ujtrN01lMZLkkH/PwPVWHNvnoasYXY49qYzlDOoDAIdvfev38f/8P/8Tv/mb/z9cr9ekHipLDINBUEsFSUuy+3KoQ+cAvo5PNZy0xKIucW+1wIqBa1mVKKRAoSRWdYVZoVBIKrBIZU4od52CJFWWABQcpAekI0cFOo6kOQkP6UhecMYQQZbJ8ypkEpeCgmOtdZxFY/IO2J6VJPmQ8YO+a5kydATHCUgB75PKKRAQEsMIcMnNm7PxM+IQYKUyMBASmTYTUfsQckF6n8CPQS93/oh4Gt8wgWuQKgPIjubbXvJWerdm6GHZxb4syWPPCwFlBKywgNOoyxItS6TKs2s9p6hSRQktFWRZYqhKrtUmoeGhnIUwPXzXQDuDVV2i0qc4WZ3gvffewdnpKZbzGb75zW/i+uoavbVYFRpzJeHmNbphYMIsIJWEsQ6DdVDCo0FLWTXaBtVsBl0qVGpGdcxI7IWDRNcP6AeDzlhACjgvyOuPa2GB323uxHDT8ttnRN+sGfZMFZLmbNN2uN5sMJ/NYK3FcrnEvXv3qIoyQPFeQTJi0Al219i3SYejA0bW+Ryb8pCWPHzpTdvnDlz//J//c/zyL//yaNtP/MRP4Otf/zoAoG1b/ON//I/xa7/2a+i6Dj/7sz+Lf/2v/zXefffd17+ZD4sIEcUTkidPwzSsfChumBAikZcjB7xuJzPpaiwJHj7q0KS4GVdu2nc47ivjzJiqHTcSHzr/gPLIB+82uo5SKqm2hMB2u8HFxTkGM8BYQ5kOmMsNBNN7T6ozGSQKupaEg+J4rbLQOJnPMK8rrBYz3FstMCtKkqqURKVVzIZRSi5X4l1U9WkhMjAjIJOeVKfCMcftKcO19OAM86T+kuGcoLpkSRBBPe0c298ygg26bjoh6PBIBhIkqsUJIuJ8DdcmaUvmUqgP1aFCGZB8RmdMmkw1ygByQohSGE9GwcfTdpbsvGWDvIhralwWPpfjECVOiJBLkueSc6DkRLTN2xScHTwxPXK1mkwB2jxv6rKClgqD0mQX68lRYuBy9VILlFrB1xW8c+jbFpUEVFXCVwXKQqJwFtL0EFbjwckKy4qyyDdtS56FUnKZFco+EZwx+sFg05RouhrGWRhPEl6IfYKUXMbFYtf0JKlLCY8BA3siWsOxdsbCeRvnQFp/gaE9tMpeTWsy9iK9//FOOHjOFWlQSIXzi3MoIbCaL+L9q7KKFcbhkVJrYTIPPHnKjvrLKpxoZ8/RC0wT2HmESLZnteMfIeACgD/7Z/8s/ut//a/pJjrd5h/9o3+E//yf/zP+03/6Tzg9PcXP//zP4+/8nb+D//bf/ttr3yeAQA5YI7f4yaSYCCWvbsfRbdyPI9/j70PIc0DYSiTrcE9zae21n+EPScBM12a9tgiEUEIqD88Etm0p8JRcq00MMg5u7hCUwSEY3xLrQERbcfbzqixwspxjOZvhZDnHqq5JPSgJtEqlUGrJ4CQo64MnwFEQ0EKwTYtBiIm38JQ+SXhJkgQ824V8LC5JRRWDGo8fPNpUkXMmPPdE0nsGIJPseCKC16TgeQt4zzE53lM9syC5+CBJ0T0DWOVSXLhW/pojCEbpJ2UWSSCJqJIUIDuUc1n/+VmCZiPNQpHCAFhyDMCVV1MlbQipnQiAkzo2NLLncQkR/ngACgKF0nRtD8pqYclpJdiKhFcQ8KgKDVtozAqNWaEAoaOaUsNB2AHCGpwsZvCzCvDArmko7k1plHUFayz6YcCuaVl6Im/Hdhiotpg1BOhSQCoNVWgMDHQ+q9Q9cH0vESg10phHKp+L5WGskDZ9Hi3MDQ/ELC1GKlyv1yi0xoPtPbJPek+VDwryDBVCUFUAOS78CQR6m99EIE2jCYCGNYH0N6fX7o+ajUtrjffee29v+9XVFf7Nv/k3+Pf//t/jr//1vw4A+Lf/9t/iz/yZP4Pf/M3fxF/5K3/lte4TBtFlBr+p/jR+zxbsaxPxMRtxvD/THzfcJ07nkTx9+Jwx5+VHE33/8M9r2r9JYxIaJV2SUqw1aHZbbNbXaNo2ulVLpaEkT0Hv4SPHR+cLBq1CK1QllRSZlQXeuX+Gk8UCJ/MZaq1QCDK010pCs2u8AiIoSQFoQXYrLZIjhgJJL8IhBvQKxt4ojSGoD8M2DzgTASlk0iBgkdlcwxi8wvjwtqQqZBDySIZrFxZ1LgcnoJBZKEBOLDwDSLAX0v1IAvQujCn3i/cHiTd4ilEwtIGzqayMyAIUY3+EJBsX6J5SpudUUvE7BNfmcjHfItm/CFCstTHfnhICXiaGJUhmAIMfZ+Goy5JK03DyXDv0GFqB2WyG5axCIU6oVAmDSNvsUEpAewtpB5zNZ9CaKim3LQUnS61Qz+fJbZ9Bqx8GXG93aLse7dBj27bYNg0GS8AEAVR1ieW8Rl1WuLhaQ2wb9ErBeUTnFAgJiB6DcRPWIl83f3icZRDqjfewzuD8+grGGszKErOqxHw2w9XlJR4+fIjZjMoOAcx88juQ7IwTGCzaL7I5nt8t6Q38ZN6EOTZVPb5u+0MBrj/4gz/ABx98gLqu8dM//dP4lV/5FXz00Uf47d/+bQzDgJ/5mZ+Jx/7pP/2n8dFHH+E3fuM3Xhu4ctKdGw8PucNHyQejL7ElzvXza378uqI0FbdnrMsIu0J/JyJ36mlORqbPEjjvQHTG5332duA6IoPWjGgHr6bLy0usN2u0TQNrLBFgTeqZSBwZoAgE2D1ckLqo1AqLusK8rnC2XOLde/co20WhyS0aRMirUF9LeCjQRyDkKGRnDIkYiBo8CoNzRPAglEpBs50nZKCXgeiz5x+ZeVgKIT3ZSL0ZeOv4YboerwkwCAWHCh/VjUCo/5RUcLSNgUupxMz4VEyeArTpmHBD7yWBUZx7SKqd0FOf1g+shXA+zpsQ9C2FYlUSXzebDSFBcCzdEvZHjps+yTZIzI3wDmCQdqCclrYfAOvoHSgGQEvAWxUFwLFigEffDaSq6zpUmuLralYbKq0gtYKZlez96NFs1oA1qKsK8/kCy3md4sx6LgcjAA0PqRUFo3sP6SyUoDCKRV2hZ6/Cq+2WCowCmFUV/MkSRaHRDpfojSU7u+AgdqkgAaSMl2m57K/gw2v11it4n1yMWjcMuN5s8fGnn+L9hw8pO4t1ODs5gVosUNdVdqFcQprYpnxghXya5DyfRrcNi+FzbJ87cH31q1/Fv/t3/w4/8RM/gcePH+OXf/mX8df+2l/D7/7u7+LJkycoyxJnZ2ejc9599108efLk6DUp9qOLv6+vrwEE5jYDqLD4s9+5eLInEYU2HdSIYuKNBnzEY+Ry9YgZ95NtUyvcfktJhCbXfWVfXv0YkXma3O3QIkrkeTonGZ5dehbrLC4uzrHZbChnIYgT9XzTwHWlKH3PxM8zwFAtrHlVUjwWZ7qotUYhRCwGqRG+s3ovqqYSUI2ASGCU1V2xqkqFUiYZwATvupHqOapMPEs5ad3GtZwR6pC9InwPHoAje0AAcX4fQib3ahojGc+NHYkqJxGnbM6FkSYnO4ffEkldALxg9aCLnLAP6tMAlMG1nfsDIaKBPXDclCXEjyZRGh9Ex4DgyBGCfyG4/pW1FHNmLAQ47ZaQHLdGLtpaK3ieM1VZQUmFYRjQWkrdFPMYFgV0QcHVVmu2QxkMfYeuaeCtRaE16lnNQcEO3nqAnWQoYwnNZcmSv4KPCZvLwqHTBrtmy05IFlqXKLWCqUqKXxM+vlOJ6fo7xGymYz4v2Wu0NrMp47xHbwZcb7dYzmZUOsZYrDcbVLMZ5oslANJMeJ8k5OnVRwx2xuiENRzIb96PYzb3122fO3D9zb/5N+P3n/zJn8RXv/pVfOlLX8J//I//MYqgr9t+5Vd+Zc/hAwAwlbICR0A78wPx+U2Hm9ph6NnbmktXo76l7/nrnfZ8790n9has99lfBa+cL2L/uhMl5bEOeYS8gSCDtLUcX+Rg7IDvffxdnL98gabZoSgoit9x9m/LDgMiOhKQOkUCkEpAa4mqUFjN5zhdLXH/5AQVJ8eFpTIpmoGpUhIhash7A8pK4Um6UixlRUmLvfkEuW0rKaF1SpGkJtJRIsgZB+STF2Q4NmrVQuLfDGhym5BkQp7HfoV68CHfogifXNUY+3KA0cnByWfzyo+zdsfzHTLVoE2Bod7HjPKUQZw9PTl62rPKk1Ih8WpzPnqOKZFNPkGgpRDAmsBKAdBSwyuKAzPWwg0G3hiyT3IyXCUEoDnDf8gkAoFZXUMpRfXJMi5fCQFZligYuDzIlDBw/sXLy0u0ux1LQ9SXGEeoNYRQ0FLCGcqO3+92sF0HOA9VCpRFASfIZX+91ui7DkPbQUoNwfkwy0JTailPzhlBOs/nziFqdCOFekOp5dg1rffYdh2eX5xjsy0xLytorWGdh+bckKHKQFlWAILjkiCQj9f2SejPVNBR68XHjJjuuC4OAeLt2h+6O/zZ2Rl+/Md/HN/4xjfwN/7G30Df97i8vBxJXU+fPj1oEwvtF3/xF/G1r30t/r6+vsYXv/jFKHElcTYwoX7yyQZ5tOCzlnGpn7n5CUkZCX6HVYXxmDHTOtk3nvzjA9687Utbr3Eu/5MkJlKICAC73Q7n5y9xdXUJrQusVqd4/uJZHOdg9/CecqtZYyK4kL2GvPnqssBqVmNV12TTAklYSpEtSwsRP5LHyYHTNolg20oglKsItUS8p5bB0QCgBZlnUPeJexSZao6vF/L8iWwc9zjtoMEDRkDos3eqOHeg5Iq1EYxCF3KdMvctVw3uTeGJRCbAdZzCfPIOCBKL99F+kduEY/aMcJrwcVyECnI59ZVyJJJHmnUOEiZeKkqcIEk8eJZ6M0A4CwkK/lVlCaV1dBCIU19JWCMoD9/gKAhZUVXr7XYLgHINWmcBVNHuZgYqAbNarSAANE2Dly9foCwLlGWZUngFhyElOAkvOcvUoYinMdg2DSAFhNY4Wy7g2MPRm54cRzxQFVQ41FiPwRmWWFOs3z5regvQ+hxbbllatx3aYUDTdWi+3eJqs8Fmu8WP/uiPoiwttDaUe1HJCD5CClAMRYitDGsjE71u6PzxKhe3b28Oebdsm80G3/zmN/H+++/jp37qp1AUBX7913897v9f/+t/4eOPP8ZP//RPH71GVVU4OTkZfajRwkrcZaa+8BmA5WhwA8czba+NZRGl9reRGjN2c0K4xvxzrvieYttrTeJjx2Y6JcHfY+2rqa5pdBJ/Ep2caFNFUnEBMGZA2zbRKylkJw+lS0J8EqXZsfE2UgrKyl6VVPaEizpWhWYunAi8Vio6TgRJKiRCDU4ZqdBjqsdFMVN58ccEKFR6ymdxTi59n3AWYvLOgjfidPSm2wJw5W7miZwlSW36LqeeswJIUlm0bYUXn2sfmFjwzXMsDPcLUqOW5EARckKCwczlnyCZxSkhDn5yFWkcZx5TF0qyGHIECdJSKIhZcJLbqMqVgp1tkkQaxt1z2iV4ivOjzTS2BRfSFKxipPIolFC2bVuKD1PpWvCeAIil0FBQsypLlFpDCcAZg263o/yYnLhZ8Hw3fc8ZWihvZi51xz7ftmUM7+0bp+/id3NMsgskxjiHwVq0xmDdtnhxeYGPH3+CTx5/ihcvX2K9XqPrOk4yHF53mkv7Xt3pHvF+2Y9ce/BZwOtzl7j+yT/5J/hbf+tv4Utf+hI+/fRT/NIv/RKUUvi5n/s5nJ6e4h/+w3+Ir33ta7h//z5OTk7wC7/wC/jpn/7pN3DMQFzAyQkjcYxjIEjHHxRpXjE5XjW8B19SBNQEOGPlTg5m+/Jg7tiRd+DWc9nf3PFoJon5n8YA9KprR4I4uU/ImOAc1Xfq2hZlWZJnIScyNZlayhoXoTvYmCi/msZ8XmM5m2G14AzuRRFjZQpJ8VpBggpJZMOckOy2rmQgxgRWoUZX+CSiypa7zAXdi+AdJVKMS5C22LYD7zgULshfYDDPuc8kaYh0CYr7yt5VyDgfs2LkAz1ixhypWYK6MXjfxdcTmDePEYFg1eR0aiipIIWH95JtYtkk8Q4OIqoEIQQ855SMLvAQEHDx4cL1A8jEScN2MAIVE+1DIZ5PSAkUOtqapAA8HILzvMvUyJoldWctjBkYZKjateFK2s45lFUZwbbdNRBCxGKbu90WUgqslotUVdtTlWg7EHBVZQEIwbn/JIwxGIYBu80Gy9MzlFpjVtUYmhZ2GDAYi3J+gqqkemXbdmA7XUgQbUdMTJohcdA/NwErvAeeBaN7hrllAbZJW1hn0V9e4nK9gXMe7z16Bw8fPMCsnlEOQ5nV6+ILO84KEi3iQuyR1/hkrNohIPfZ3Hj99rkD1/e//3383M/9HF6+fIlHjx7hr/7Vv4rf/M3fxKNHjwAA/+Jf/AtIKfF3/+7fHQUgv0mLNJ+5uENpRfL/Dl/hVYN3+8HNoGZCRDJikANaLo2NrnMcWMV0w7QP/nANrz/Ulg0jcWMSxvXY7ra4uHhJXoXrNZqm4QXE3H2pMMghTmaZSURFoTGfzXC6WuLB2QlWixlmukAZypkwEAQvwVzFF4LSlUwfndm4CiVHnDyp57BPUNh7DUIALgFAkFLje3A+Eu0oiSIHKnY0CEAT7pFjG+jdhaKQMtTZytXOmf0pMmDexxiivPPpNM+mB5HmXjZBc+CjaydR2gMxUDSf2/HpMmcRxVIMOJN96IAUIjGXLmW+p2Bkz96elLEhuKOrXIr3nt6NlHCDZekXKNnpQiuFWT2DhGBJkaRFaywa22C+mJMUVlWw1qDtekghcHp6gvOXL7HxHoVWODk5pVx+UsFYi74jRqYsCgipKGFuGCsh0DQtttsNBmPhnUVVaBhXAsJgvd2Q80ddo9gNaIce3jvWEBi4G9bv590iEyEmG/MmkvrQOgfjenzju9/By4sLPDg7gxkMPvzgA6yWSxQF2T2nFwvg6I/R1Ix5IlvwZ6NRnztw/dqv/dqN++u6xq/+6q/iV3/1Vz/7zXxagdHJIbNrJZVbWki5zBPbLcbwdsMcRbvJptC3BEp+eqjP+ugnEy1SGj/ZFi876UUyhh7tZpxIPstwfujgDCp9OidDYvrXISZ8TQ4ADtYO+OST7+Pq+hp9PwCC3WoBqq4HINhplBJRnacV1UWqywKzqkTJAchaKfY4CwHBLJuwJOI55x1x5slbMKjD1MjNPXn6Je9BesZgIwtbkoJjzL2mbYiOF7mENT0GEQR8BDqEc5FUaqMJkKtjAHjrIBVzrz6UlhgTjDzbAZ1j+VIMdEj9TGy5iO8Co2fktFfhuiNV4Hhs4mQgJOLpkhhKweq+UFssrFVSFXuWjGXWJTH6pOuTHUoKoCoLTrpLvVAyuMzTfJBKRtVzkMY8wBIEVVoWURvjSKIvNITgvItSxlyGs7qG9x6DGXCxviaPvGGAF+S4Aamw6TY8ZoiSI2WEYaD3uSQURjhvN6HM67c4j3mMoobKhVfOcXjeI3gEDtZivd3CWYtCfwuAx8P793F2ekKZ+pUaqT6j+tpJQCZHudHTiLEe4rO0tztXIbIF7ZEt1CgMI6fsewR+DyBwFKH8gd1+70v2I5f4InOc8a0ZUOX9S/0PgOGTZJk91fS+4XJTaesI/5M9j4AXRwZopMBIBxyATyQFkWf1gYX3VNX308efUAmJmBmDmgWt4ED8KAs7OUyUHHQ8q0rURQGtJHsCpoBgIbJs6N5xMLAFvGN3d+yBVMzcICZu70KkjBgeyG0T4b+wW7L0EsdGpPuEgyJQRQnL56fEa00Jc35fn4/uaK5M+Vr+lRGK0TuKuQPD/BKxj/n3kTQVvwVPwHSepwem/Z7ffZjOYQ1mhCsAn+D3LUGZJxznGLVsn4L3seZaZEYQbxWl7MAACE9gUhUFBBe87IcBSgmqt8UxbEJQiqmqqjD0A3u+mkh4rTHZ2DgopVGVJZTScU15fjdlVZFDETw2ux1a9JThHkBRlZCFhLzewvoAghlzJPYGOhvlVxP0QzToNk1kJ43og/CjOTcybQBouw790KPvO1RFATv00EqintUoyhJlVSZmNpzHUrcT5HHqJ2a96Ej02k8xbm81cEUpJoJXkljG8VzZoPqxF1cwcuctEZ036M7B2ZekpQhi4b8R2B6/7uHNuZLRZx/xxpP8s7XAMFh0fYvr9RVenr/A+flLOGNo8rMaL6iFgq8ScbcSpSL397PlCg9PT/Hw5ATzsoSkvEGAYw42y/QeUjZ5TwlNCQQpXVChJNu4ZLJp8T1jclif3rcKSArEuKA8fkkg8+IDzbNwDKnFWLJAkKIScxTcxRMHCkDp6CEVvfcywIRIkkeebkcqiq8hDy9EKSLecPLiR/ay2IlMVopSG0mbAXzi4Uqw+zhzBNnz019yYvE2OEq4dGlBfQxl4imImlzbYQ2sDxWGSWqRLDENhkDG2ODdSWpiz84Usigic6h1QUUs+x5910JpiRCmraSELgoU5QJSSux2O/QXPcWOecp2UpV0LWMtVKmwrMgFfNe01E8B8kIsqCK21grX2w1zRwovLi9RzeYoywqnqxXOr3fw1pGDhpQQIIekwHS5yZr+PKSQQ02A6Y2j2Mj8nQVmxwExnCGHFA/KMblrW3zrO9/GxflLtG2DL330RSwWCwCeqmdLCSFUxqAlWhQoUS4xJ83Em7e3G7h8/AeBC93LnjECh/y88OWzk/ZMtot//eR3OvKwvS3nVvftVAwIGdc9Asjsh8+IcP7jpieNMsFryPEjVUeY7YLVdd6iabZ48eIZPvnedxGyiXtP2bGtpTo/8ElaIdDSmFcFFrMKD05PsJrNUGsN6X10YVcIDhcpJosWHdk/JIOPDjW0RhLV2EkCqdv03XkgYlSSgKJtA/kCDNkhfJbTTcTy9kCQCjOgi+8tVa2VWT/Cu4jfRbgnSTn5OxdKR7uWG0ycVYILN4bz9l5aGINRDA29yaAtAnyKIQ1SnAMQ8q7m0mZ2BZJXcqEigWWoWZbmWJgredAzXTu4xMD7WPkB8JA6A0+IeJ6D57g4ibKgatbee6rzFd4j96uua4Sqx9vNBqYf0Ox2sM5yteuUXBYCUEpGNSZAKjCpJOq6wmqxIDd5a1k9aSE4M4dWLau7SzizwTD0GIZhxFDm3wXSGB5tGbM9eq2TFz197YGVzZU8NBV4T6a1outhpH1wHth1PcR6jU+fPMGjRw9R1TUqIeiZPcclcgHKxJjRk+Uey6lv+8zV67S3GrhyUBqpKaJ0E97UAaAYbRuDWib9jgl0drQ48otvnH1NfRkb2oPkdQTgJmrE/HqHHU0m/Qt6UH6e+PuGdkjKPCRBCiAWORzfFSAy4tAPHdbXl3jx4vk4yNaLkf4boIWnhORqvxqzssJqPse8LFCy52DwHiS39hB3RaVHgtcY5RIc265IskqEK0p4GEtaUeDg15kTO5n1MycSAXyCdMU/MdJB5+MkxIiFyLNqjLnRHLxE7E9ilEnqIY1lxgoJIt7h5DjGPB4MQRG4AvB6n5wyhA8v3QMyBRgDGBfHzK7NV0WUFIWgQNV4R0QJ0kWNx3idRmbCO3gqxxw5+Gjyz5kAvl9wio3vQCsoLhgJ9gSM4QXeQ2sFgPLzVWUJawxMP8AaA8nSXs4ZhvNdeAcgJw1dFFjMZ+iGAU3XQytF+R2FQaHLZFeVIgblU2Lpse4sG70onfgDR9wC1vbaGKTCP+NrRFqSH5tN33D0YA12LfDy8gJX19eo6xqz+ZzuIRy8EAiV5kZ3oBeTcYuJbfwMuPV2A1dizCbG64xTjFxfftxrTIB9WAqT65D7Qza5RqrLHBjzRevHv6eSYXa/wz1jLjD7JbL+IfT9FqD12Rr123oq3eAFZczYbje4vDxP+n1QWZvoiaY4YFWQtKUkBREXAljVNWZFiUppSGu46i2rBzX/lYC3HGcVpK3MzV1AZMP3/7L3LyG3bd1ZMPq03vsYY873XZd9+e45ySEF+fEgKCgEwYJiQCOIipVAChbEgJCCWBAEFQyCIBYkIqQogpZTsBAQLaQSggrCOf7+kHCSXw74Xfe6ve+cc4zRe2+n0C69jzHnWnvtvUVc+TI2715zjjku/dru7WlGVNvW6f/aVZByJlAmZ4RctbE2jk1e9jHmdt5XhwsQjYgDHXKGA88SiJq035I5jUjDsQIZaOH5Gn0YSDAWaUj6WkbN66ZMvBcLtPB5VjBfa7eZQ5VxmEbI3H6DjmmtDXXPEUEgz45m1qwSYu1mTx0PY1RRE5VTjGBHIGdFLJeeDzGJKatfv8z+XNOGzQRNIAzDgHVdUWD4k9GRXCxAZBgSntzdgUvB47piXWYEIgyDlLmvKABJ9OqQEkIgrFS0v4QhDnj+9BmWXHC+XHB3POJhXjCvBXfPj+KX44q8Vl3jNgZtPwe0fRq6X74Ye3q/wwSLJsx0P27ldjCAwtu9wQCWkvGjl6/wf/5f/xdev3mD/9c44smTJ7IkWFITbK0w2IUye10Txr46OfqwGddOXxEaw7u/PXm/8QgoXdlrEddc6+pm9npWTcLhXVvcBNif85c2ZtueuZ3YW+ZFe5+ZduykSKbXXegvo27/XGtO7ziuBTYY06qsScRBMN1Op0e8eXiDhzdvkLNA+lgFWDOFEsQPlVIUHDhIQufdJExrIFIzIW1gm8RvJaatXMWfIqHVUZ37ffHIrYZ1q8NNYne2sGVolUFRMQl7rUMHc1ujyOz32kc1d/VjKCjy7dkMC+9qkybMKQJBowbJKup2AhNDBYAkOV2hN3MpEwI5o3DBrtaWk0MkRKpK3x3lnQhUq/hwlItY4UqAQVX7DQmZN0YctFxLI2Cb0QJD1gqxaIYCtZUcK1FMr9F3qwTcsNf4Iup1VtPetlTYwZJV47E0BNN6apV/hyHhME0omgfGVQKKYkj6XDF8GvxWSgPmZQHXinWZkYYBd8cjnj55iqenCy7rKyzr6ikNlSvyusp6TBExZlBhrT5geI2+DHxmN8tztyZuH59LqNqj9NKrO3bMi7AdVrEUE0IMeP3wgO9+//s4HCb8H3/o/8AwTeI/q+xCVJPJ+YpJOd36CtzrA2dcRpCbl2kT6MDt93c+wxjFe8z/ZtMoEeyZSnv99Tv7qB1nZNDt12mC11rXjWfy7gMzms26VwxY1HiGl6EQ4tc0hrcfzYnqryf7hXebSYibmejm+YJ5vmg11dIIE3oprEVbWTDFYRhxfzhgiFE1HsUaVEne865Ui7EaUfacTTSgm+KaccIY2D5asP1q0uGWiLhWtZNu2scmIjDvnc/7edtKJi1wgltSMtTsx5tBbtYWtnVHgrLVmQhtEVqKAKquga4NxlgIhuhggSedKavL75JuB393iASu4WqtNn8Ga7Tqfn21CDZrUVDmWNUBZqZSIZxBAk/c3myBLxJE0vfFxjRoqL1NvM+/BoHIuxkxBqQhYhxH39O2hqsyHhtXGxtDgck5I00ThjTgeDiI6fHxjFmTqi06krn4kqHNKHR/xow7rXy7O9lNorcoGe+HeXfRXpAFsIEm25zvGrifOdbzy7ri8XTCixcvcD6fASKkNIBJhA7ErYC+XSM9rXw3XX7X8UEzLla1Y6vVmBOyI+iw63rG8t5vwbuI+1bi2zJN7M9yY3F7zdCaup/L6/b2J/r7LKhj128S8UqYVtsgZnohbf4NWW/fjY5ptc3iCz4EDEQgYlTOeHgUNPjKAqZbS0EtLVu+R0a38u/3xwM+evoEHz9/hlGBdC1JtSFeBCWuBvIqjMtQ3z1vq4d1QmNim+44YyNnCHbOy4p099HVvV0n3rZGqBcSbFDbHJIOJgMeYOLPs7pWDMl5M4ZthqWrdSHPMvDbmrOHmocoQS79IJjZMOwCEvp2GnrI5h5mICpDqbt2uFnU1iO6BaYaELfACsBqPbVbm0YOrY4sfS5sKCvCT7hUN3emNOgrCFFzjBrDahtL3i+MMsWAcUjgg4S4UxDTYIxB8t6sH1UFwiC1BgVpfkEcBkmAPh7x9OkzPM4rMhMelhXjMOAwVRCd2vtVCDHGZOICdGfa0PdmQ5vZtzGtq/l/y3Frme5lXzsCibeKOqGcIekrVCoCpGLHy5ev8OLlC9RacXf/RAOGQqNpvXVp8ypd/1+eb33YjKsNqzKq3Uw0DWen3fS/0xeoJvzOlnQ80t/Hm0m0d96WNPjG3+6KDU/qo4R4cw3R9m43rryDB7+bPd86VDq2YWeg1AyJLCz43ne/i9evXiHnooUjm81bAGRJk4kVmzAGPHtyj/vjEYdhgOViWe6WobXHQAgQ/0nNKyRSUVHBHdap83OZ1N1rVp125ph8kIhHK+HhviAluD2jotgQI2yjAvA+miZD/myY0tIxRzWthQ6Kl0UAuNrqNsC9mbNLuN1yZPbFyO6/2jNZfZdpWNE0O1ZzGbeFtNEujYMLsQ1Rkk2rYzlCx0GQMYRpwufdxqEXLE1giiGgAigWuGPjxCpEBEYptqv6FSj/1VrUd6e+U036sshF0YLJcQpjDJhTxFATCJoQre1LQ5K5K4oqb6j9G8GXsCwSyk9EmKYJh8MRhyXjYXlQBArxiVUuqBCsv0Rak8vJVZvfXvy9qe18lYN3y8ROm3y7u9jwHfsUD1kX4hKYV0HG+cEPfyD9VyuJBNdI/lzt0Iy273wbDXz/4wNnXEBjE/LZN6D9pwztWpO5PXC3CbhKvWbC8J0jxGRvKpRXdsyRbzCw/gZs27dtGm/+bcyx+313vZuq7FozM5Ayms5sxOhLDnwO4sY7DgZ0g0s4/JvXr3HWwpFW+M/MIr0Zz/ADU5DQYQEyJUWEIKXP0q6g15sJjGvVIofkiAvN17JNOO61qcZATYOxmlrXfwA6zUtu7uGb9AJ5Rq+d9Vpcr88aEd+/o1t4LoXvp2IjNVP/wHZNxzwlGEMoVkgiDW9sQfYPmcx/a090C+m2ONTGqDd17XOGeKfhuma2e3TP1KnV/WrEbrt/qHtAH51o7zGTPEiCSPr2y/oTH1uKoWlpJEw5AlgL3KDisrEKNaLtMSpLoMkwDBjGETFGMC/OgKvu+xA65geDWdL2dWNhI77di1fizOb6t1zm2ppHjeL9jl45d+Yl3wBIv+d1xZs3b3B//wTP5hkxDQBJzl3OAgMWY9lawHbv+LLHh824bCXpn5vM7De5qOlb7xypt/ymr+gZQY8sy+jO95pS9zrbahtmZZsRbVJ7U+Ft5nW7zSaHNsbTpFZpLm1Nhf0LevVsp5S917rqTUO1QsA6M16+fIXT40kgdoygkaGQt+Tf6JGCCcdpxJCiB1YYtBMqI0RDgJfcEQupj55gvCsWGbYEsBE08mZ7bhaaWcqvNW1px2TIw6uDSvSsQ0DuErLb0L2z8RbTBuTvmgBD39eCJwxiCdhjvJEzHpswYx0UgDgkOPlLabNYbetsCZlpkA0wt1+QVf9tzF4Taff7Su8lABUCwhqqMnvIOBEkydhtE2ZGU2bifi7VHKvlUnXtIYjvx8qSCNBv8H7EEF1YtDk103LVZNtW9Tq10HnANeEQgkTK9oKFMrs1V2FcRYJdhkHKpKQ0ALgArG2TQZKoWYZgDUPM47Uj6lsxSObKTW/UIDHfZ4/S1b9tDW9TUdpD+qUkOXCtVI27FiD10yozlmXFy9evcXd3j+fPnuNwvBNmThUEQkxZmXgF0CwTbcl8ec71YTMuoBHNG1rPdkM15vV5nL7XZq5lFFs2221vr+tZyZZ5tk83tbHGeTums3la+79rlTv5s2eyHUn8KprUex1qGosp4HQ640ef/QD//b//d7x48VI3AAA201jTRABhTkNKuDsecBwHqWysgRiCiCHXxhg9OZQVmSEE8VH0lYr7EhoOB2VjovRfIhSVSO0Wwy1NC7Dw9dB8QsrkuYt2a+aw2wusBT5o5FWg/kd/TqOQzm7ttvZ8Np9XaGuGxa9lb/fij2aONC2RoGC4+uyN+E7SP+72FKOtT2mAakxoa1YukyylypLMjbZTWFHE5XHdZPR7hAV5I5esY98InKFNMCSc3fvYjZ1cKswrpYhRy43Y2nEfeK3gWkRzjtQSjyk4o2jCimjxAAQlgki1JkbmBWVdMc8LcpD7YxTk+SdPnqCGiDeXBWmISFxRiYSRg4EKZN4yi/6zCB/StsLKSDZU7t2HrbQNlfqcm6/0O5d91dpBYmpdVwgqf2WcT2c8Pjzg4c0bfOub39AEeAl6GbQAKNRC4mu705y/7PFBMy6++pd9odv/jYHtr7XPvrH03NvYVHtDZ2ZjALRbTLqo2x7njo81v1QvfbSHNd8YNvf3DPf6Pr+ElE3xdtNb4qRItPLDNjjDiAx5H68GuRucTY7RLjzpfD7hu//jf+DFZ59JxBFLeLw8x4IrpB1DikgpYRwGAUrVGkxRQ92tFb0k3MKm4ZGGPRacKSd9orCGEbbfTKIXkd41rt7vFDRnipzL9jKu9t0k1bfa9PZHW026dJR+G3loUq3/zxhiMA1Nx75nYoAXPqwalUgAOJn5S5ikrT8iC3Dp5SP2V/aBTb15zjUg/W3bNVuXNihtHtp+sXuvfR8Uglea5m4vNM2VQIbAokzU5kY0v+qCGwiSRrFLJqbNZzgzkzWhgglF1caoK7ioe6wW1ZBMaKlY1yyYfgxcLgvWnBVAWOaplOxaZGRGDPosMEJtKyI0GeGKFnm6BrY0q7/mtqx0Y+zfcdBmvLvnMvveiCEAKaGAsNZVzIUPD/jRZz/CT87/D4zTASnF5i9WlY5NXUQbwB/bqEKgSQZtxm+xs+2ZtvhlDLdSN3eroi2VfqE0s4Ewif2T/dPOHNhPVAt/7+/dtvL6405bvKVRGvPxkGwlABa6b9Jk1173cXVmoNbb9zzU7HU6n/Hd7/4PvH71CvNFzCUxpobTR60uVlLpVBjXiKS+LtHKDJjVwt+ltVXhogyv0DS4W8xrezTm3DSxNmZGYPugC+1WG4cNs9i+oNeUiDrirvld3VKChWPLtWF7/15QsM50+ICbd+uat+g6Szh2hkfhOqzdzJSuqckjabMWjchbO73zHS7iTo934qj3KLKJ7wi7V01nfr+ZBUPQKswaio6G7ciqVRfmNn6t6doubbOUwUaw4ewtGTo+IQTEFD2wxAQWCkHyzGpQ35a1B4qbKDl7IIH3yjljnhecc8FlWbFkCRKxYqm5ZPfBMqSuV+WKgICgWmjPoBv5acIRocmHPfNqI/02gbtdafPZC8y0f4rtgd3zWNex7Y8hDSAQSslY14w3j4+IMeJ8OiHGhJSGjbn+ivZZi36cGZccG87VzvQDs/15x/He5/nAZrnsElldi3JpojGxXtppzGyrfXWK1YZgAPsWtgvbPmTvivmyNm2+prN4y8kvcdg4yPse3rzB//17v4dlnlG0hEQMSkC17yFExCia1jgMGMcB0zAgaTSYgKNqoibBK8+iVtS8yluNGNQWFNGUFGMgndSKxpQESV4IiSgyfIvTNf2nZ4TOeOpmhpgtcMTu9O3Zik5272CjVhQ2ROtmI/qm3Wina0XKzGGM1xAyPG0ArfYWIPldnUBxZbo0c6A1rCP810d3npoggCCsq9YKzhmuKXXRm2BuhRwh8xFgmQHmu5U/7dF27CvLs3XA7D0WVi5FK9sdQd+fYkINVYOHtutFIxqcoXGtyLlinmcABAoRxfcuK5J6wVoqMhNevnyFVw+PAAj3d0cMueC8rHKPDD4EOr2C2Fi0RFZ6uR9mMOomuOnGaL/XwZVRTfbwPsLkBxBI0ll2F1RltBwqwBGIFaGrCv3mzRtcLhe8KAXf//73EWPENE1glnw2UkSXHkGlckso/7LH7xPGtWVdfWh822dvYwTdSVKhtNeTiUxQbUTL1F/VtvbPawyrSTpuCtxJH1sTi/2uv23Fnk5a6rW1/fMaT92ypvZQtovALhEB6D53fqgbhFIvBmALUIBHayl4fHzA97/3Pd/wRbUAe0dUM1VwW2Abm83jAamjpOVMuFQt0V61kKRsAtIegaHmnjZXRsy3+qVIz8RWGDCCdqPENi/mj4NpL87KfLw2Cmo/XCbI2DyQMcD2LLIFtxMg2pnr8/55w+0IQJDwdH+XRBW6lu2NIw2Tb0yIeortJmRb+/b8rX1A/D3WBBYivFMf/C5lIpVIoZcUmLhnlGCArUJydSGQufi7DazZeLnvpVoFfFfnqWgYOgEeUMKldAnRpgmotgXy4bA+1VI1sMR2s5nKooS654ys5q9xGhEuMyqvWNYFLx5OuCwzKhjTYcJ5XhEjMI2EZS0ozh00cR6SNC2l5LZIExYpaaFVttzqZp1c07Qm77Bfa/Lt/qaGCgnbMu33bo5Nq5cozIRhSLicz1IRoFZ89uIFnj1/jqdPnyEZcr9ryG15WJj8j7HGdU3w2teOUXUEhHeX0v4W2j2Re8HTCD2cMLISnz3jbI7t5rfamgq73zoNyp56q+39931/jZkZMbSQ9xboYVwZajaUTnC/W/Xzpo5pE0FxfRgTlPeu64LT4wkvX7zowFl76aoL0HDiZvld/VuknZZMTEDTGrgLed4x+D4EfdPkPgq0I1A+XtRt3L0gsFWU9tLAbv0wdlTHL1dyKW0MHVkx5nE1rvru/kX2rp0wwSpgOJs1s2M/qNTGfMu00Bj0huEA3amuTe0d7XHmR921Gb0Q1PsLtY1KKV1j9H/lvPhre+bBPv96pzBY5oaXSITK5IKJzwMzKrGPDXMXKr8/GG52ZTRQaCJJbpZIQslPBGsOGBFqqViXFW8eH+U3SMJyWDMCCInSJmKS2jZURA6tHg1GH8gDiM+udgLErd34tqOnTdsfeHdNG6/2/M7zapqSju2gSPxZhY3Xr9/gfL4g54yhbv2YToc29OrLHx8042rbf/t5e+iSd5GDnaBsr+oJSE8Rby0TRm8q7AlX79huC6N7G3dt6P7adXx1+55ZmUbZohHRnmWBFr2Uvfncd+eLboHrI0bZcKVkvHrxCi8/e4HXr96IJNYBsTLgWlgIESFGzX0RyU0CNYIWf9T5VA2qqrbVCvNBqh+jwqprNQ3synLfvnVzZo5mcgeyjM9bR6RbEvvgBWPSMaX27s48Z5zZosT2nLD5HfuW69rruXoPN2JX3tj91Qg/VyHoQhkb4+r700Ejtd+6dnQMxuCOpL2d4LNriAl53EvWXEExgiyIpGRsDm5BEggRXDXtgYVJVG6hEj6W1lSdS3u34YBIEHYn4VvbiNSEac9rEak2H8K4AISIUjKKomcMwyDFLy8XzJcLCghZ9+q8Lng8n3A6ncCKm2klT2yAhyEpQwTKvKofTlMkcoNFizH4+FZlsqSft2EjW9q3X783KNBbj8LVwaVtDgOkGrkMs4yxBUgRM+7ujricCefzGT968QLfeP0anzyecDgcnTn7IGMrlH+V44NmXLfZ1VsG5i30Wbff1ZnbzySXvGSBNxGime96Ccf8UB2T6mWNjjv5AmP9375rvLn86pn75vfnqOuhy2xGnDQpGYBiGrLS995M1Lewe1UPwUMB8+WMklcMKW1GsvmcLCm2aUYpStjsoCZB93uAFaUbQFSkdgqa39X8Quaacfrea0NskENtPsDsycO9htJyvqLnWTkjYUDqdDUzn2nJDR2CADZSacEDWp3Knr8Zlf1YaguFsoJJa0kxJDUpRnPO2A3OUOQIqjm1NpNd52bJ7n3GMHP15NTrAaT2j+V31SrQ4fbmQLKW2Hx5vZAUHMKKQcK0fB10eT3sxqwmiAbpk+UQCUKL+X5IBZat0OjNVt2BdK7BglbB/fvJzIVt7EvJqAzkwuBg4fECT5VzQSmMlBilVBG+0oDz+YzH8wVrLohpkJymXHEpBXOuyMuKcRilInK2ytyWMA+wBj1Yiob0mtzUVnLZWF0IxljYa5/1q+C9xND3kFedzTCjVmwQZphlDPK64u54AHPFsswoecX59IiHhzd4/vwZcs4ioKam6UpSuYZT3pK63vP4wBkXvoLC4NRse5b7xdBMIGREgnpDmtnedw/Yq8j2Op0sZ2ab2zpT4Y37N34tvmp268sNJbF91Za7qRCAJicDxrSMSOwjDLF56EaC1V8eTydcLpfNPT0yRK9FgYTAeEi7mas685oTFY2QDCCHiBJae6uzt8ycu6MzpfUoFj0iRtNOmhZG9k7VYt1/2TOTVoHRx2VDXJRI7ke2a3773DXVO0T9DyaAiAYi/rr+Ib2AdN1/W8H9Gm3v6vq1H8c2NFstbtN+XT8eKQgPgpAm6IrkDjbMd5YJQ1uhon82ex6aXgcz/Hbjrvebj8Ua6Gu2awMDjoJhkdsyzbpfNYKw2j4NCrhbWQpEMjAOAyoFHJYV62UG5QWlFKQxInJASn3UnmrflTfry/IFo0Um+sRs51RYdxs34PZ6ettBuxX4tim28TGrRrB9oudjjBg0pSWvK5Z1xWU+azUIqQhRaxUIKRtzbuP+ZY8Pn3FdHW+hVnsmxd3JPfPqnmST5gqKE4tmXGwaVLe8OhOg0Y3eVt8T/nbd1tRI3bO23dg2uNfkzJZMu1IPXY8A6ggMQRmDbnyV0O2uHVnafu6eUWvFD37wA3z22WdYl0VOUzdOhBumMt6EzQpCQYvMM7MhIMm0kazelknNXf8ro0gpVj+/Z0CNQW2Zk2mC/fmgkvp2pMkDCpiEmPXlQQhoILncpEw3t7XF4Sau/gWbWTbzHWEbiMG9faD5y0gJKbwNO4ba98IYgf3mZjgG+jVI+zXEfj+I2vv0nVKJul0jCdt6r5oIufd9bE0I/ud7hasrgqYNm5nKItY8dcF4ugtIUoYDqrFV3U+9lmJgzU2sk3mNQZEiGBINB1nFa16R5xkhJgzDKOVkiFCqaNp393c4UMCby4yHy4xSCpZlUa1jwHGY4HmUXKX4JFU0nVT2SIoRIRpxb+bWXv4QRtKCNG4zgc9LWd6IVFdnTX9nFtOlBGUImr6bZitjTAOe3t/j9evXyOuC00kQc3LOiHFFrSMo8DtSVb748fuCcRG++ki0yLpbGkZHofcCvt9/zYBa2PuOifUErJd29YNbXDZ8gvc3t+d2wliDdtqQN5dH7VX7ERN+xa4LfP6Y9hKbNDYvM+bLGY8Pj1r5VRzbpWQxESojCmBEyAY9TCMO04hxSM0cwYwQTbqTNwVnfHDt7LqF5lchQCv8BkDR4oM78EP3Pca0CRbZPHgjlCr50ihKl+I3zLEbHfeZdDuVGxN/66q1nR2s/hYEiSJ0v1G3DplhiB6mCXoNLcZmvbR+wNskj7COquZmV4YAi0mTeSz+vEjRPwtuZL824cTZmCFUc7Y21dKFoKvgAAfEtcAM7q5pTKmyaD8yjwnjGF142prObb1zawcaoW9FNNucEbOWS1E/VKlaZkrWyvlyAueCXARxP40T7u6f4HHJKKVi5YIQI0JKSMOAcZowLytSBaZDxGGafH+vpaCGBAYkQlHnLCSSOmFF8rzO5+VqP5PuB+r2/1aH+nKHLf++UnigNl6sEFnjMGAYE2qWMPdxHBEjYV1XsbpQG/ltu9XMv6+r8gWPD5tx0e7fL3j43sdthPg+WspMhWw7CPDPpgU1SbEtpj5iirt/+yltm8021va3m23fSOrKxIgFl9CkfWvDhpk1NgbrlwOiiuYlDLCLSvS79Og1HScIjPsnTzAdDs2GrddKNFZwJAMZHpHAYjQm0mlC6BKJ0aQ0Mw/6edcA4BK3MT73z20YlcqQ+i91kWj9eug72fMz0wIapbDoML3foietnU442/Nt4q5MbPZWM6+5ZtqYlSFgOIky7bhr//Xi4I6J0PZl3VgJL9W59/52SBW4Zd68Ic9To0mbaEFfR+3/V4e+wFeqLWFbF9xWsJFVN6XuxhG2X7tHExE6vBDvK3w9yTlBmu8LjchFpmGWXJHLjGGSc+M44ZwrllKwaCkZs3yILy978UqzpBiSBlcWbVDXteyJ6GbDGKNiMZpA2TA1xeLfOy62I9uff/9j22+jbW3Ja0HOGDBiUK04aP7WAYFI/HJWVNKjKKmTmWzeviThxgfOuOjGl88fi2vGsfnIzVJuNm4xFXK7di9B97ull3B9A9vkt+tdQ+vNgL0GtmnyjlzcvEaf2zEvH5P9cu6DSgjNrOiEq/3eiHo/SMYyTOsTSflrX/8GPvr4EwQFNzUGmlJCSklDiTXVkgz9grxarUcMUvu3Uz78s3YKZqcXem6bQVpWq+R7EQn2XkDTgoyINYT3jpz69LEwkG7cJDahajsahp0fNmzOM42pdP4ZvSYYmyV9F+mPxrRC3EadWEKxCRRVNfNGDzYMYq8NWbQaiBA4bNYm1HRJ0BBxQ8YwXmdCQbfuwbURON7tOx8HY5ryr4+Hjn0zLcjLbB1thjSQVFs25mWCiIagi4nZjG32enJhro9GDM705SrWhgfXMZRM2ziSmoKLDLSYkyNKWXBZFhwogkLEOE6gy4x8mXGeZyzrqtofnNnVyshLRsnGvKRy9VoW1FIQhsEjCYch+dhZbTnLPQTUgkBBcQ+lt2SyTDcOX+bYCyaA+f1kDFJKWJYFAGPUABLbD0+e3IMgwSy1Vt3TEj3cUkB6wfPHlHEBewn58wZiP7PsA+8bnjb6SLvvpixz4/H9X6eNtGsacdmw0M6U2AhZe1v/Zxfeilb0lKW+P53WdHuI9CblaVv5/W1jas+U9+ec8cmnn+Cb3/wGvv71r+H1yxfOuKZpcuYk5pnqdZYk/JYdMd5ptb7ZrpF6XK1FRueFeO1lxNbuRlC7rcLYjB1tL2zP4MauBZ3cqLg0sAkQ1GSZ/m1agn6jPjCAsJV/qrU1BFBKcO0qRmVgweexxyQkCFOm2JKBNyH4dSdzW8SmQ0Bt57GNVC+tc9d+CbGX9dZjHYrm4Ncyd5ag9twQDDOxAiu7v4u5KpSXhllvJQhfB6xEnJk3ycvcmR5lbmSPVasJZU8hqy/VBdxYL0gYVwhyba0MVrR50gCTumpIPxFyznj18hUOd3cYj0cMKUkZj5wRowhpKVWEXFTrEqEnUkClgBqEsI9DlBIqwwCTAIYUsazZTZnjIObE4kIfNOF/F435DubVrYLPFe6Vkrim5DXNwAiK7whlUNPhIJiNeZXxi9Kfy+WCJ6Uz3W6Em/eh1e8+PnDG9dUHoD827Mg2tZsKTbxtGktHupsGtWMxfJPBoDEW/dzRkM3Cc+mv+9v6zJxL6nOaqbDrgj5XtTF7uptfdFmb9uU5Ol2j0G9ylUytjxDiIyjcSdHFocSsSeu9GVAQuRVrMLQcGmKz24vE20LQ0Qhap4l5u4g7SU7NKaG9c7tpPmcV9OZWG2M3L5KC9Lb5aUEYVlCxhVmzc+HuWd4O8lHsTZegTsV02YnbfPBOYrVCieBt7wiiqQQCODia/MafxwSUoi3QxwXVPqiZjgHrZ9CxvsH8bA8oE2vrh7ZjyTfMjr62RVPZVvLW56uSZhJ+M8t3FpRun9n7GsHuk6SbUMo6hrW2vVU0jyvEJNGGVX4PQWp1hRAxLxJFh5hAIfr6N0uNJd7HEDUvrCKl6AJXZkagikgSqFGi1PxuZXgIgVgYYanw+mTa7kBAVYGOocwRvKEtFgxi07099uytjUe7o81bVcQQrhUZwGWZNWgjYEwj8rr4PFsOHowedYL01vzw5Y4PnHF9xUOpaiMeSohUMzEGI/vbxBkj8m1CefdI+7cPcd+up1467e+9JSt1v/cPR08E7V1CaPxz30l/vhwe3eSMqDEt1t291URN9uVdm9thJkfTNvv+2xI1c12MYevfCn17bR6MSDUzoJ0jan3on21bbR+QsRmnK5HTmIi932TObqyU+LbClFuorL0QxWjmFUMeN3RDq3O096EIwzKmpZ9tVDpsN2OgMubQ0HAdub5vak1gGOPvAj46hs61IyZk86AUESJACBRR8DloBEhMqAaOC9USNmZwfZH5fnuZDd3Iq7Sjn/b7YLs3+m5WD5hp/e4ZXv9/a47tb2NUlduccWWUnFGYtf5bAzC2Ol8xJZSLmgUpgNKgALMawG7jQZakD3Ax5HhhfLxmBMqoZlKLsTFmIq1NIjXoYlGTYTHGz7DoV1lm+m+1dedLZ6ttoXV+s3e7UbbrLUTLRtIYF+n8zEuV0iXpgHEYUPKq88BdHb5uXrrnfVV94/cl42q+hf7YsYUr/tCmtulStP25f+SOAF5pVhutqGNo3P9112njZK75qn02+dtNb0S2fxa5xGdjsQ2waLBVrsG4fZB9sfaE7NbhfetCoOd1weUy43K5CJFWppNi8mcSxPRxGEccp4MgZhge4YbRVQSKnqgZqC37ToHxXdYkVPiGNrTv/XHFZq662O34ttWVn7Q7N8KjaRZxO79B86ugkrRz3S4twGpK9X4ANxf6dZ3vxxeDfq/cMcVtZ3qfkQdoWMOdkVhCqPBKh9YK1OyzzFuUeWVSMv+lwz/cMS1tk8l91a7thr2JCreY1f5zV9fL95i8TxhQt3uNAXSjJ/MhQkHWIIpSGKUWZVxCoJdlwVoKUpF7rYqx+EwTxnHEMCyY1xWny4zheAcaBhwOB0yHCcO8IFeWxGMOYF6xrgIwPcQIigFpXpBLxpozSs7N11wZ45gg1hPCuhbUHJE1t8v8wqOC11YIQy21Ys0Feak+ti24zEaljWa/hfZHL8pB+297+ng8AgDWdcHlcvG9tK4CgVVyxYuXL/H0+UeYDkcc7u4RYi9AfkWuhd9njMsnpeNQV/ypY18yoe2UCi7djeySomw8lTVcZGsmvn7jbaIKjRvdYGh9+7j79O7DzDAdU1TJzt7tfhv9vmFeXX8ak2D9PzXkDGrPdune29C+i+1bUB4kcioj5xW1FH9uQ42Qw8wtKSV13nawSzoRHjdG2Gpj3YOMGG52IJlmFPwZ/lgdJ3YNqTvIAjyCv9c1GyJnANUqw+rgu3/FeF1oyBuV2fOrGlyjMS9rgmpDRipsUioDoUOj2Es/u4P8mS2CS9a3rtkmqXQct8nivSnVfGlUGRS7MHtq6xh95Ki936UIE0K6hGNAGJydZzMLNgxKgK/kJN59Y96edWFCzXy11oZYBYJoi3Z3hQNC2X5BJ7SxoERUrgqkW1DqRXyVDKwaGs8s5j8rQFkgkEeUixSLrOwFR0MpIFJTrO1DElPnNE0YLxesOWNdV18bXAnTeABCQGVCrYtH5QYipBgEbWYcUGpwjSsrygZR2xbqpfJkZZNV9yNLkPAU0/HtXUQASgv+KKXgfLn4bxUszHddMU2jyjcRJVvyMStazg5y7Csyrw+acb2963t15dYVHcfC3lQI3/iyDzuC0jMwe1bPc/ov+r29oWsI9/ezM7/W3I5g9d+xeYT/bozTIsN6Uyaw7cNWC4OH9VvXGpJBO0xbM2Jgz+6lZFaTSjOTGAdEN1nyJagGYua85o+SPu/D442+bOG5qI2z0+TOnLcbp579OvPqrutRGgjGDKg9w94V2rxYkIQ9OiqklfXbnmNhw32koREzfXnTVBhwf5kxGBd+bBkYE+/HqEvuJmMmKsj0jGs/t3vBxLQpACDNIdPzPrc9cgX3E2RMDkBt0ZSNYRnyu3y2xOQWotL6Zo/p/VdtZapZvBdO0HxkRml9dzDACNulCBNO4PPlz2eAaxV4Jw3yK7nouhEkfl+/DCyXWcZHcQnF9Cdzzmxms269sjCvYRgwrBnL+ewRpUTAkMRvVhnI0XLWLG0kOGIFFYuqJHBkhGK5kHv5aCvE7T9S/9fvA2rrgyF+u3VdEUOQ6Ec0E+Ld8aDrKaAUqeQgVodeiKTtBHzJ44NmXLZf/Dtd/dppHnCiwLuJo+76njT6+W4j7Ed9z07M59WYFfZXwNhMI0ztp9va2FuORhUaYcNOw3KGc82wADjEk692r4nSGLV/7ImBnguBUDsfSYzRUQUIIn3lUpCC4b4xci7ImtOSgmheQxoQIcCdBEZKETEKxBOrxOheKOYWxdY1XSrFmimoMe6mVzitV0k9bGZT2ttMi20ojOjqeW27mTZ9eVALGGCG5vMoHwAQtCKxJEfvhRA9Uwo8kg1ozN+1pG5VeKe6a6QTWwZm8+Vmv27NVCV6XH0Oyf+3/Ze7e7hYpWXa3kOhWRQDSzkRu6cW1FIc2UMc+KZxOQZE6992hACwE1IzAde6reXVCxT2tJ3e548jBJDmOMYUYHhPCUBKEblIgm3JRdKwmWFZ9JHEV0WVQaqJrurvGocRBwAcCOd5xbKs6vOpCGFArQV5Fi1sGAY8fRKw5IxlXUEAhmHAYZqk5lepWHNGWhQRptNMh2EQfMUs5sY4jM7cSjeXkfqgju2I0u4P2s+s4MAEKEKMjZeY4dOQME0ToHO4LIszKACYlxk5r+BapAI6mk/X1/VXOD5oxnV1XM1Mr+1cMxkzf/SEeGex6hWsbt3b8/p8po7pdJKpnW+fO37TtecWc9pIwH0ftQ2MG31SCbudEwT1W8wLpBF8Lgg2KVbev2XU3lbT8jZ1kwQhflkWXM5nD7iIiuKQS9EnSQTVmAYMmrsilh7R1igGpBQxDgPMSmWuFiJB4tiMi/XVBYvOjCrJLzICnYblcEQgWCHHPuqt+WS2pl3TloyZkTE0f67BLskY11oAIgTHKycwBQmpvponab6hozuEk5mPbL5UM/Cwdx0HN7cRCdKG39eY/YaD9zW59DP7mFZ5lydCtzkX3hQ8mdY0SRfYuLgGY6HrPVMiiK9E/GKNcXF3TW+doNBAi2unNYZgyCjWBos0NQim3dogAsUmqAjqhAg7sJw4NHMjSMzZ0PIlDrLBGs8ZRUhbLzMeTyfRjvKKgorpeEQqFSlKZe9xmlRYyTpFui+6eb07HDEMo64rWbspCRNkkqTeeZ5FfqkFNRcMKWLu1m0gQgoSTs9LVrQZmd6Ga7gjZTanEMBrEzIMj7CtMXJtaxwGt64cxtHlpXmeMQwDQpBqyA8PD7i7f8Dz0wmH450mIwevl/ZVmNeHz7huUfz+J37LBdzMg26TQCehEzTyXQgF9WHwLl5yE3yNWKJjYGhMszE8IyTXre0X0o3mbvkX9z+0312pJ2q/U2dCbC13yacRZiER8DEwbaxvbMfZ/fXyeV0zlnlWyJeGWNH3UAIogoYOqyTGDa5HiE9QUM4uT2VnMjRhAWw+uI7J9Aytr1RN7jnbjbw8p0dFQffZtNiecTWpoWVEG4CwTXV/T1PzhCHsE229j30Ccj+H/ejr87ibg7aOWYgk2bw1hrTZD8aslAHT7j1qM9pKcoauDjiBAwDaB4Bo31kiPRrz6j7z5s9Cp7eCh2v+3J9XdtU2QPvrbuufs5m3NuM7KdUEy+pReSbQCDNTbHrW/LkgARG1VqzrChrFD2ZFU62pBNKcLhm5kquvi2EckUtBzcIEnTqYEKb7Iep+cA1IBYZwy2JAhCFGlFD8PWy2f5/ejvbZfZ02xIStz9mWLrZAySYwRE09KaV4bbKSM87ns+MWSlCJ5f51pvgveXz4jMuP7aK/ZlfOYVymA3RPEDZ5Bi6c6sYRGqaLqVPBunXQHtZpXeg+bhvVbbb+dyPGn9PLt/XdWINzMmw1rLd9di0CXX+hdG+/uEgWnlNnfUaMEZfzCW/evMGrV6+1TIMyJzapTloXUxSHLUgL8gGZGIkAQhSQUU36bONIGzGxJ7SbCEeSP/E9iTYVaac7KnGpYKAWj/arbGm1aJqd/mblWMzcZuHfPU+3cHNSJpbCKMEaWuaFNBTaxtzaYvdSNB9H6PAGO2bc3ddQLFqfmsTVLQubo66wpx97aaiXdXywbWyrm0gBAJoELQyxwSFR/7wOWLfWArBUyjXToGlbtViV410eGqA5ZvJrNZMgiblRErzFVCj12vr918+L+RI7k69ppdytH2VapRTUKjXASKUUsSgwCheEODQAXxY8Q+TizO1yWbCsYr7LJSOQYPuNw4jXrx+UiEc8ffoUD4+PYmJULUQgpEYQICH5paCYRo1O44aE2dv3oGVnAknUbim5DQURKt2mLb0YV0tpFubQlo4jligjD5omUUrBmjNoSAgqTBi+IgA8PLzB4XBEsaKbgCDka2TnHzCu3bGN6jMJRbdGL3l0X+yUmc4aoaNGFLY/bO7bP9Y1kR2z3NAKO7Ft/Y1PPSVqbLf3p3l3YBtSrzFzoD+K/Ekm0BK4XUetjzYypq15K3Tcqkn4Pa82gk4NLSA44QeoVq/BlZJBwYikSprXFdXxDRtDZVpbUtoE0/34baVxu5a6ulNShtKEFu40i77PPvLKVK6PxiTIxFL9NziTUnNQi+kXIrwp8WG/Sdsa9dj3j9of3bzgWtDoB+wtYk/XURhVZLONqUa75YXsxJ+tUrBh0oV2Jatfy4Iy9n+S/N40LiJsYLb2rU2qlUg3CU2D84bpjewjZe0VGKs2r4wiCBa1s3QEQtBEbl/HQWCOGAVrWVFZEOPzmsEAxumA+6eMH71+A46iJV/mCzJLlN88L2AWX29KA6ZpRFF8wjdv3gAgjOOEwZKZTRiojMLC+BAiADEdiiVCepFi1B5WNQmKiTPGKH4tnaqoZmwKLSnaogd75tGqLrNHTAYKWJdZx0/GYhwn+S2w557VWjGNo49vSgmX8wUPD2+wzBdM0wEcIkoREOKvenzgjKvblW8jYFebti1u50FGgI3I4Jqo+8bYmJBsE2x9WX27mt8L3W97fnWLoJiOcrvbTUrsNllXY6vjMo0oc28C1G2skpid7yX3phRsAz6MIbtJRNmLVZpt7TQ/TtNmyAjkDWErUIucAsw8YZFNNioEZyy0Hbt+rFxSdM5CzRTnEri9hDbalM+Aaj+9dGj9BWjHI9Qsgz4ii1w26S9135YSRmN45EyrD2nnpuHaQBDJ/HBvEvZmtP7Y/HD7qW+vreWeT3r7NDrPcsx8DH0M0Myg3V9blwCh+UBds9T/tXHcHk5Me+GjG78+F8g0NDLmyqR1LaWdVmqStU+VGSFUWOHLzX/G5ch2r7WZFGMTYF6w5AJGBSIDWtYkKEyX7AFGqYK8YbWoWlCD+KzWnLHmgmVZ1UQogl0MErCRYhKzpGP+hQ6QmpwM9dGvgagrKdPPY5s3uZbdkrKJ2t0sITkjkZEBtURkGy+3EJCaCaNoo7mAB8DcEpYes8wLHh4e8OTJs9Yuzf/7KscHzrjgi9K/X/Ex3l1thEOJqkYEOfo7mqRmhEe+6IQZL3TTw3V79u1y7csv4HZNf6/v7z1V76nSjdP9w0jfuyFobbFto+yMAO/8XN3tV3JBp5G6cADAaiSVWpt2xCrhkaKME22e20KECYSAFKMjXgCa7Kk1nZyBdcxFZOO6IWw+Ska8lVlZMrL825gYqEFQoWOUgUhzsoImEFuj974pUh6g2hJUoOmEBemn+Sf2a9aYZvD7lep28+2USvsVmhn71tLoOGpbIr1kbZ+DvqeD5GEAHjCxJVKeqxUqiAOqz0drJxfWOemDLCyMibzdrW0tUrBv28ZqcNXuremXYEgTAaxmOKiGBbZAe93vFo1KHVq+rn+v572RBaR8SVBB6HJZUABQHBAnIHMFgjCvXCvWWqVIdK4KqAtlHPLfNB3AmJFzxbpkcJIxjCGA4+D5XfMi7zEBLITgJnRDSmkmPPl95QzdWJKPZpBrveDSLSUD8LXONrgoOWfo9MMgkZC1GPSVhrmTIoisiyRRWyQiQXLQSsGyzHjx2Wf4xje+iaCCmZhid0LuFzw+eMZlRy8N9D4BIxJN8Nuyi2YdM4mw+bh8lsHYaDH9jV0LTDrcvWL7PnTC5DuOvcWnf37fZ++Y9YF3EitR976mOfVRdHKZ3UON+dn5z2mnba7Hx0fMmklfahXCVgWfrayCrZbGAaaJWVFAkJhABi1U5/SRAsQ4pHA7rHWCmkgJKwZoxItoxwDapW8Z9y3oqvB5Yzz71Ajr8PUzuhUjZ0zT9GcYEzXJuGMkodO2Nurlbn2ZVvPuGbnxvesFdYxWCbkLN7pwKSiSyU4q9iAVEDgGRZlnZaYQgkkF4m6yyD4dT2sH921q7TJYL2VbbT7226wbZcsT6v/s6U3oNF9lACClRYjFJ0tRyB/X6qU4SskoNQMExEgoRSwJBGCcJhwOBedlxWm+gGpFDQEFQAGLX6sIEO9aNOVDtalagXleMAyjr2F53gHDIIjr8zIDRDgcDuI7sjGo4ntKGoHbI+VL1yIOxyP4fJbEX2UuzQy6pRvGyHIpCFVRZkgYTV/1YFkWZM3ZmsYJzIySVzcBAxEpJqlgToIcHShiGASzca4zuBS8fvUSl9MJ4zhinI6u/db3IYRvOT5oxrXpt89Nz5T6CdsyK2cuhO0mUQKxlQbEpAYDqN0QfXLTTzN/9Ixq18ibn7s3dZvUdJENBd69osm0ylztszMiZVbe2dtIGv7yDSPr6cx1exszEKJxenyUiELoZmdtP0eYOdU0HgPBFTOIlTXpamZ1o0c61oRefmjytptN3AzYSe5XhhD9jdpn1yQAkLbFo/u6drTh31JSUubXMzUGPOqrmVhN06NNMJAA19J2XTEEEt9bvu01+AZRohs95m3bvf/diHg4uq0XW3mhi1wEC0Cz40Vun2F9MSR1eS5AVH3u92u+sdRm0txDdL1NcOrN1pto0tpMg0YgxYwoIyNYhIIK4h4zvbfWKsxwo9GoFsni9xmnCYUICwNLFaiozBKgYfPEFjIPEUgMQcKYSVZNLKaAcUySj1Urxm6d2fsNhSVA1xNplCAEsUUSfQv6VSnFL7kb96sFsBFn7IXtndHXrSDFEEaNFkQtbb4gWh1BYd10X9Uq4MGsYz1fzjifTjgcj5imww0x74sfHzTjAgDjGNx97f9tkiTgdhr9bKHA/tnoDnfE3nmATnWvmUA3zq45fl4343bP9hzn5qp6jy53/fHumI+rQ2Aggqa+wgIsbh1b5qXdtJVsHegl/c48aEyLa8Xj4wMu5/OGkGydv61wJJnzN1g4rYb7qobrU9WF7QnxbIKGPBOec+JF63qJ9EoBMQbVm+jIiYRXSVYHMm+EmF4Q6ucDTqR8DIkkSpABqlWeY+epD5jptCyiTX6WY9fZW2i35U1jancIoe3vuqJQPYnT9VJtvrRsRmgMFp3f0pkXjD32668RPgk2ge8TYXjX7bCnCKGT/glc0raPNmfm++T+hbo27bwzrQ4Cyuu6ESF78nNFYPF3ucam0Y+mEbufkrNXQR7GAQWEoQLzZUYpjNVM5CCE2Ps5AwIxlpwl6V5hkOxIUTSWlBJCWCWPC+jC8UmDH1gqD+sYsO7LUopCK2WFWJMBsOKUTqYY2xm38VCaR/rcqpqT7cNSiof3W2oLp9SexJJkn2JEGgY5XYWhVhWSa62YLxecHh9xd3+Pp8+e+Ts/n9K9/fjAGZe5VuVzI6j2uRFA92v1Epp+twkHgOsvPaX0ndL9a01h/3NtrmdSu3Z//nGlet3oefdemElwG1XYa4+EljDtzv+NhqWhAPvzN45+DCWXZcEPfvBDvHz1Uisgt9wghkQfpSDI2gbr1LQR9npbBBYkIAI4wAt49kNgcxk6Qm4mjh4R3kLYCVpM0nxcVoRwH3yhYboSHt9L/k3C9NEIDbnd71eCYKVMikn//UR6yHxoD3OkC9pcSxYSb2u7w0i8FpmsnSZsNQ1SBLC60erks4xDAAQBQf2TLfEZIIgGZQ513vbGhR7mDkmDyBlcY6yqWdq+IUGtYGXOVigxBNFwbNQ21oBeyNC6T1UDIVTUB3ND5jCBtJba7oGiveeMVTXlAqh/triftlXHhqLFFyyZsRSgMGtx1IK1rii1gELANAxAiChswkEGg3A6nbFaErPtsUC4jwmlVvAiiBlpGMAAlnVBTGKlQIHWulJ/U5R0EQpS8yorOgsApDSAmVBKVX2vwdfFoJWUwVd7WiIek+Ivkid3E4KbJSUXLeE4TTifT14TrpaCOI64u7sD14LL+Yy8ZoxDksKYzEApeP36JQ7HAz792tcEqorKTQDs9z0+cMZ149hoIUC/gOVctyn8Zz1HgEXTbRQQ51PsoKWAqexG8Dfy53Wzbp692YFGXKwBt7/cuLXrlzHXqv3RFgihaT/f0rbA1GgkWh83zdANbaY9ZsblfMIyz107mlQWqSUjs465O5ZVyrMKyL3gQJCaRGQv5i2yuPAYUvOj4R5uS5qYczsoIoUzLOoQ5Mn8LH3JkSaIiIBvomJnXnTNTjmvaRHUr4tW8FGIb+yQ4rdTDxUcYLlcgEYP1u3s24K6tSSIhODEKJpdFWFgy7Q64YsADgLF6kZl6yfrPBLB1V07160H2ULdytM1Z2Hovmxs3NhSy5ppSoazWTq4X8+d2crTF8zSQt08aO0xYtHiAjdTZUBAVJzJonlpbAE1rnEJfqKYaTvNnYE1Zyy5IrMwO+0GKksZjzEOEi4eE3KWvK9QKlJKijqfUSsjpohhEKZFRRKFp2lSMGahVTEuqmyK4BFiAgXR+CykfV1XQLWhaRhQWfZScZQaW43wqEQKhLwWFNOubf932he68bZilaUMGNOAu7s75LyiZEHJSVrV3AQEo6WlFN0OAbVmnB4fcD49Iq8rEiljfItQ/D7H7x/G5ZqVf23aj13Cm8vdCuHWiH5D2j7VRXvt49LvO9PMvkGbX29/dAbas5z9lCodeevvbFqU90uZa09M7FnOrOTsxue1aUUbNG8vGTtRwkLNMb8sC9Z1dbNrm5Nt5JjJoyLty190oF3RO9xX1V7qYc/9RG5Ng40p7RmXRQi61mXo8RvzYh8qv/ddbmYCxrRcg7IJ0hwxgyhiPdfgk6IzSmd4ZqpSlP3+N1+fRiU3jWkLgtAEBR0YbZuYkGs3q17c0hyGJqUEraVlEZY9c0Obvz1juTpE7QQRKdpEa6qtHkNZZzYNTy8RFQdtdbYNbXva1uWmrhrBsUp7ghhCUMKq3zVRt7DiLZI8xxKl3VSr8wFEn+6qiPGZgUzaB21fzQV1EEtDSkmT72U9pTRIpGER1PkYA9KQBPooS3sPh4No+1WvCQEcZb1HTkjD4BF+OReFSJOk5UgBKQ1OIOISVVht1hMK0Bp4EXnVatOAQ2qJObCtRxdQmB1jkpkxpAFDEsindW0m0JwFM9E07Kr9NPPuuiwe7BHS0ISjL3l82IyrH1yVjgF0psJ2mf7gRKKZEtknFzCibpsI2H3BtYi8HX3u/r25rd+y19910P6LEbW3PNqZCto6RLeI26rZMgBjtPvxuOK4+rs5v1mp0LouIo2pc9vrBo0jYpLNVDUBeRwSxhAQSQpNBAAR8j0EVnzCbY5Ro30aPqCBHVaEL6gp0piTIbUTifPYmVaIrpkBzTxIXjtLX1OBhqHXxh1uhNE5MNNaCI6S4UEAxjTTIH6z2EU9+pjaeqRWpXhjRqF+IuXQIIgr5kHwRGdrdy90WI5TIxwEpKS46exajNwuEZ9gFi3EJuMtDKv5+DTloFbEYJF/rUAkQyICi5Y5cUxLvYIo+voiRAC9nw3otx13f/5TMCZPCGxJt4q8oRYCYkFVr8zI+mf+sBQjsgZSmL/JwtGBjJwzzlkSmC2Qo9SKx9MjzsuMe7VEpDQgxYJpGn1s5nVFTGJ2e/PwAEAiHMdxxOFwEB/SukpeFwNEFQMNmKYJwziKqY5nLBp1mEJQDW5wNJp1XTHE4AEjBPGnDUPCOIxYlhUGgrJX+k2gtL8YAvIqVpNlmTHPFxyPR6SU8PjwiJIzTqdH5HXBkKJXdSi1esK0mBmjCrcz0mH6alwLHzjjus0ceoa19WnZpvF9x9tlz4CjR/S2dTKThKphLc+X3osRfd4lWy2HN1J3i3i7NdHd7jUmC5M8G6FrjIi6y5vZ0DS0XlK1/teNqdEf1sZHseaymg6yhtR6wIUGY7BJiIG03HcU8xkkGD2gJSgHAFvS3pDZyZmWbaxOk4qNIUnWv9nsO9McTPuKDY9NfwsUu7EWpADTXIKZAW0+dIxDbNqUFSgECayxm/tCQEhRCLqasyxF42pG3V8Gl3xtVhoDMvOVMhotguh90fFxJQ0QhqlrxnKp7LcegLW9yxBTtLuqvZmU7qbBXsBRM3qtRZz0irZAej+b7wgADwOoivZDO/bTWz3kREdd3TxivpiGDt+0NHSfSLUuNTUqg4whaAQhazh8RuHqsE3Cq1kShQsjFxt3nZ9agRQRQ8QwCFr6YkjytYJCQkqENAyYlxUgRogRPM/IWnDx8eFRNTBhXKRMCASkIYEBlFW0r5QixnHA8XDwIA8KETlkWce1arv7cjht/8cQHK0mxYAag3QhyD6MUUqs2DCP46TBHxlg1ohfsVKYsDgMA87ns0c2xrujlnsJSDH4orLqD0TAPF9wT89kHd7A63zf44NmXHLcZgsbLesWe1PC4UTdJFG93mztvbnQfFzcURJ2E2J37vNa+05ORk6c4Ua5Jh1f61ktSdoYTEtK3QZsXGthcv/tBrHf253ZtxTM4hcoJWNdFqnkSqRRg0FLlVMDaNVNJBvBeIYxBN70r7HZ/fjIPc30Fz2knszPZVK/MjILGhAmpIXtAnk4r4Skd4DA7N4epZNmRuxYqgsV6Ahq185AXmPJRFtX4Nugds/qfjOmdPNiNEvffr2p5te0Q3Rzv2MA3u7uqbZf3JdbnSP0pjm16F3NCyvV5000YpszOQJCTOIHq+TCz3693T5uS+p89bvNnf1Zu7gJhYAjsVeNoJNKv1bhRLS1kqvCNPXPo2aIUc2EOaNUKfExTtHXqCTcsge9SDCTaG4WFHKZZ9zlLIILLLpV4KWGIWlwkzALA9t1Hy1ZIExLDm599ibCI2ctapS6qEIYhJTcM6Suajm1oK4QJN8yqgn2fDpBCsiSzjl1QMMVtera02kpmttmVpsve/w+YFzbw82GO/MW+5/85vtWf9wiEDjJ2jAF28+b+lVoTOv2xrth0vMNTP6uq6OjMb1i8I6eK2+lhgaNxqR6utozbIu6Y2XCtuBrNb9UpxnY2HTPtnpB8yzlHeZ5dp0lBKm1ZSAQBEO6jmoaavAwIYiExpXdrXA9JrZR4abAmNImlD50/iSLKgyKQu8hynqeVbNSlUIZa+//6wdeNbUYdV3o5lQHNoWAWBtCiHBoCwZpyOEgRnAmaQPZCJFNUCtT0hN8+D2SKySzblFgxrRItTy7l0GI1MSAPkDJ9bBewKud1K611riWBvzr09FFMWq7KVggCNxy4NJciDreGgai/qVaWnThTRZEaKkBZMIfawFFNNO/CWb2f1/PQaIVXcvcjacC/tZaUSo6xqWsW82IWSsBR8UdXAAHkCUl5MuSUeoDnoXkZuPLPKNWYBxHpBilunIRc2Bl2QPzPCPnrBUT5DAmOE2jI8SbL0uAeqtHAYIZJWdFYi/qX9OqC7WtZoIixZCgfjQLcHBkd3ALfyeQBGgwo2ob7u/uQYFwPB7x8OZ1AyWuVUyuBOSVpfwJi++7lBW1ZluBbT98yeMDZ1y8+cS7L7qnXFpwKdYlQeFEzZQG17yajaR/T6ed7JE03quVG3LoYrMRwrdctf3u2gne/n5uv/HNy0zbtAAEC3qwcZCNDjTmtuNdYJbky3VdcD6d8Nlnn+GHP/whXr95I4gBVBEroZYg4KPKLVMaxDxBQRDYkxDV2GlcvYS4kRZpV3lWmZDnhXXRhKaFNa2raVl9KLvVvvKINMA3L2kdLR9DY24xgljQA/K6atKtQNc1BWybI1i5FTYMKXVEHYJULjfZzaK6VJUwHOSxXyO2PkmXqX5OCV6IqVsvbAEh+nzzzcg51lBy+Zdc8jbqLRBPTfrTNWQReH1RSSJQInkeFbm3rTqomqUFCJUpdMnPtw4POvLhZY3S62CDGLhKFmPLUWvg+JbjVbj5t2OMSDUBKACEmFcWLatY+KAS8LVUZLUeVGbM84yH0xmzBivUUpBLxbwsGCCgtJJ7JQ0QiKRVwWYJiRKYGZfLBefLxQWQdV2xLitqrRjSIAm+QaoeW9DRkBLAlseoPq0i2IZDSqLNESFzRs4r1pVwd3fE8TghBgKfzxIKr/6vwzTJWqkNuZ9ZQt5LraBAWJcVd3dHDMOANWeM44hlWWCBRSlFBALWZUatAetacbmcEVPCMB6wrCuKAwd/+eMDZ1xvPxqz0u/cn+9+o04D6S7cmtbM1t+bCrdmrXbsCcyt3/t/7St1H3szRDvXa2/NvGZP6y/unsvqrXhLWYPr1pFvbvPF2DNdY9V/xURYsCwL3rx+jcfTI+Z5djNsqRWhSNkQsvpBas6zCr+mafQRh64dgf03K0zp5kF0UXk2NsbcOtOcnN+GwAMaLo7ebKIk0fjZZmy74YQQYGl391z3b6GtOf2f92xvTiRq2nuvNXAzUTdEe2tcp+5a23wczKfWMa6gfaWooeJoC94eU6vcZ//aeQbEVEgwYFrvl4rqptEZ1mfXNHhCXjeOplldWUZ8A0LXrK1G/cmGwLXhnkF187RL2nZFbHO5jjHg5jOvh0WESkDRvlcNp69oOH1F/0hhjkqtmOcFpbRil6UWJGYPnECWMimWb0hBCoySluCZV4m6C1oKyIKkYoj+zlir5lsFDf5IIvzZ2tWkawt9tzGOVoFBLQIpRtQhIS5hM+ZDSgjBqpRnAditIhgW1ajWdQUA1wxTSsglI2vYfIwSxFLK6guh1oplXT3quJog9BWO37eMqx0d87Iz3DYOqfnGiFHvr+qtHL6R97zqBjPYX3KbBH7O4YSlEVWluW7e2/zuzK694yo/a9Om3vas+IV6rTGtwLt0AkAlMbFfF2Vc83zBZ5/9CA8PD5jnGSkJ4nUpFeAsDIfZQXYFoYLaJqam5dgYmQmRnA6TB2BE8zd5o/Q2kuRizxdz5ibmOmda9nwL7DDFp4P68Wu6KWsBK+zI2mkYZexDEOw7NnDXbuxdCkEj0KbhtoeLtmNUVp/ZGLDMFV1p+vbcIAEYKhSwgd+6Nhm7d0GLP2o7A+TdvRbYPRqqhTtjkkEQ+B9NJG4TASBrF7nDgTSBB73Fw+4IQJentvF9OIP2XQkwCzYemubTrBa9BtZ1GC1IS4a3BfkEFk1ImDcDFSi8IteMykW1O0au8rmUimXNSNMk65IIl8ss1a01wrUW0UiHYcDh7g58vuA8z6KB1YQYq6cflFKQTwKXRiHgcDhIgEMSbWxdV8SUEKOF2cvfqMEUojnKniQAIRpor/Sb1GTJak4MQSInU4jIWULjS2m+NDDjogwwUFBIKokANZOmFYYchwHrumiUoqQCTNOIWrLTzJQS8rpiXmYsy6zRm+8hRb/j+MAZ1zsYwY2Fe0v8agyrf+Tmy43v79eym1d39GtzIXcEUxnT1rdhlzetqmlfn9M89l52D2ob3BkWdBPAgi70jZ1JsdbqzlcKUKmv4vvf/77D9TBY82VEcjseJrA6oqsiMBCROJpJiRCz+KwCIUWJ1pMwaWFcpq1ZnpR316RN/WwanSfcqhbCILdyuU8tBJCG6TIzChhk9YrUl9ZMlx0jUaZHgRDNrIem9ZBqrHKNJB4HPS/ajmd3y1+pQCmoWlBQ/HIBYUhtcveT3TMZ0/aCMKimdZFqUGYafYuGA2r39+uJAQ+H79UaImFa1Qh9bX4x08T0/Vv0jwr1IMFrcgGgSCDoPNRWXQCAROKxhtOraQ+6HkVqZwBlq1H5Vrf3tuZDTd+evyecT/2lAwYKKExAuIAx4zyvWNeMeV1xWWbUMCCrsHbJGasmEHOtWIpAQ40HQq1nQbVwnyNhzSuGaURZCuZ1xjQddckQ4jDgfDmjMuNwOGCcJgDAOFWczvIsi9x1pBDo/tN9O02jlxaSfMoKsEQkAh1skwottoQkuAJY1xnMCZJmAsRhQBoSDheNMCwF87Lg8fERMQQc7+9w/+QeIQXM84xxiE4rhnGQNoCRxgHzMuNyOWNdV+Q1I9GPu6lwt6/353dWAv9uk+3ahsHPeJl7vZo6ZoHbStf+nUpF36F6NcKrZNBbaUTSrnPNw9Qt/10Jw4YR3ggE8Q9tFFy58WsYZmIhAAg2NhXMrUy6G3DsvSTS7rquePXqFaZpwjRNWJbZF3A1Dc3fvYvM6lEvXAMz8F1y3tO0gRYw40EQPRF3xkItQCPExuDYgH5VQ1FhQSw8Ww2wD5bYmgStDAqJhsV7JkCgiE2IvOdlufq+WxdKkJvpsJtAB2hsgo2bJZ05678xNGK5Y/RwQcRms2e623a5MHMl7MmeYPUTaoqxPKuaFKTPMPOj3ls7U6iUyRDmFZMEvIBMA7w2I5n/zIaHvAhJ0+TsYPbeNea1f55Db7F33+Y1pVHGjAIuS8aioLhCuDNmTbjNpWAtBWsuAj+Vxb9Fa9ZqySzJthRUS1txTy1waBgHibJTE2CpEmFo+wpAQwsxzUwZZdJcMEs1WZYZ4zi4CV+YleREMqqbCWMMyFkDZEJACLJ+ieBlSUIKGIaEEJO2Q8dI18fpfMYwDDje3yENIyZmDVqqLqymGEUzU7OvoIsUnM+XzdL+sseHz7iAz2VedmwVsN1CZ6ChY1zTlne+3uhWT7x6swoabdo2ruN0uxc2Pxdtz/Vmw81zyFVzeSJvpVB7Dd62YJpWKbB2beP0DLKZ4WRBr1V8XA8PDzgeD7hcDliWS4dYIEEcpATJ7PNmhgjUCtYZE2v+KMB8ED1dNSLlBJmar4UhDC1YrpaaFwE4A97kXYUALirla/CH+dTsLbYgLEKwz7ViJlBHnL09Ftln18a4kfp7BQYgsPrmake0m+VUZ8366Wgd5AyLTbvSNtpndu3OmJQNZNOOmvjUhK1miWDXSPs+itmX4a4Kw0K05ysTaMKhNUPDpC1HCGJecj+NBrpYG/x+E2J0SmRYJILRBatuXJvGZYKqDXjXNu8R+2oKJLlXUNPvZV5xWVZcaEUtQniXUrFWxsqMpUrAhueU1QKsKxAKcmVQuGCcDii6TxiCDRhS1FwtBor4q8pSYJGPVU1zpRSVj6riHUokoWAlSv6XIHqsSGoSLMoINwyPBR4qhoCiYx1jQClqvqcgyBcx6hiIadKii22xUox4PJ8xjCM+quw5aGlIKHlFXheUXDCORxdcDLkkl4LT6aQP+nH2cfmm/vxjT6z5rb/05+hzVKxdU249rdcG9he/hYvsmdY2eKERma029n5Hz8Bu9csST6s6n00DaZI6YFpos3mvuL+/w/Pnz7DMZzw+vO66zQIaCokcpEAYBkHOGFLEGCHSY4gO+OBScGj4hkK0uG+Aj63kjJn0SRJjEIOEykfVuKy7DMQ0yLOjMEhh1oIMXrPC6AQSdHcdAyaprUXMyqhMoek0PlsrboZUU18IHr0IIvBammnNbqIAxOS+m9ZP6taJBkIIfk/Tsuz9IQAh6W+G5qHaZjETXad5Kz6hx0sDnYZEbjiQhdE2ggsOpG0BACSASmOQpsEHUn7J8LDzUnC5XFDyAiKIdO9RZmImNaihnAsspN0CekDQ6AmHkW3mQbQt5fJpv8eo7S/J47N1oVogM2iZEWPCYRzw9P5egoxCQK0Frx4esFwWXHIGpySMlkgCFNYVy7wiJCDEhFIqcqn42t2d+I6I8Hg6qdlNAjqMCZ1qxTCMAum0Si5kZQH3tarKoRRM04RxHH09D2oqPJ/FzEiBMIyDANzqIp2mCaVk90sLUxMtMOeLwjMZ5qDW2qKENEgayd39HZZ1BTPwta9/DefTGed5xotXr5Cz1OsaYsK6zCilqCmyzUvOGQAhl4IHRQsxy8qXPT5sxoUmsfoO+7yx6FQjk+aIzGwi5gryDdqInW3i/eNd2/L2GJ6hv2arOVHfTnkf1HZnElIfbNFMhNfaVj/vV2vgilPvT7yLKZuUbDA4imdmo62mmJxXzPMMgPDp176G+Du/Lf2AAIC6pJWz5jJxy+MylGsUhy5yIuNzZJJwxzy1hRYc0WCcWnVjc+l4gBlt57NFqMkGcsLvpiOTyrsKyOo7kNBtI34kxRRd0JB3uSnPfU/KaNS8R7HpjEZxpV2k06Jav+BeCbPj1i7rNwcJRtmYCjXIgHvGBe00myZubwigIP/6eHdMp18LfaAIQTQCI/jWdQBAND8Vg6ElQjQkHR0WpGiXUZ/FsJyr7UI2E6uNQbdsu7HgbkP0gR0yx2Y0tG41Rm/rIQZCZXuOCDEUFCcwEKYhoR4mgJ/iNM9ID4+ob97gcV1QQMgIG9/kmg1IlpDr6prW4XDAMosZ3RiFwVvlvGIYJ1RmPD4+4kl4AkCAfU14q4DjFW60TD0vUYnBy6VIORYJYx/i4GvUohElJP8EIkHV6MsCxY7+SJCIVDuotWLS4pe5SMK11QOzUbfcLZDs9aJ0QJBIMs6XC+IwbnLWvujxQTOuDV0yovEuztWLX72pEFDfQi9V9vLlO5+6bZEhmd8qQGSLAT0J7ojl5jloRNDv6S4zQu40t/PLvcfhphNumpQTdiNGBGVeSqgN8kcJxLpmlw4/+ugjABZyC+SSdbhZIqzIEodb7a0YA6DgnZJ1j+Yv6vwhG26D1l9jWCb1976zPbPq52A/So0IWnSb+sc0gTiEqLEEorFsSGNPbK8+98nA1PnkDOUcjSFt7tfvYft89naSR7BxiBqQodepdte0MSX8oQueYBVCSNch6Yi4VtXtja4agplIXR9ji0RVhhwAcJT8Ldh8sgt+veYUVEuG3m9r19axbc+Gf9hAj+27mUqpki1W3S+M/VYw9mo7sP/dipi6wbcPHGFGCoTDkBDoiE+ePwMTcF5mPM4LSmVkrellZu48XxDioAII4zLPIAoYxwmvX79GGgaMHdHuUz4AYF4W3Ok+KqW0mlw6PlZipNZW0iQQKeiunBChy9Dd4Un/lSvGcVTmsmq/qycs94KF7RQDQWYWc+Xd8ShgvaV49ehaMgYPJiIsOQsogDNDVlpQscwLyl1BiF+e/XzQjMskwPc6uP3TmcKxWd12hp0vfI6lkLa/+p4XZtTC1nfX7fTELRGF39c0rEbAxPezRzRv9/qGvME3bx/bHl4zL0niNJw6G/NSM06nE3LJiCnh008+dQRoBtTEI88qqqFY0TwD33SJuGqyoyV7kkSrVWi0WmqbqnFqIRRA04IYio1oJdm7IWgEr/W0+W10sxOBOXTjGjywg2KSpOzeT9YzGXdidwykbwTbO6uHXN+cnxB1CAK8SBmU1FKnRaUk/6oJyv9Y5yikjnHZxFpDbjBaa2SARAz24fI2bn3QRK+VWT4BkyRThwgOtZnq7AFmDg6E4cBIim5ukalNo+3Q3GMD3HVtFy2wJ0D9gnaDhfVXQX7v96T1mXScXEcIAUMgFGaxqIIlCrYCZZnB64rAwN2Y8M1PPsI0DggUsBbG69MJy7wgUEKKAaWyJNnyBSkNGMYJP/rRD3E4HPHs+UdY1hVBQWdTGnTpVHz88cdY11VSSKLATtdakdcVd/f3al7MmtxPYgavDasxK6yU7E1D1CBQAUrJGqEbEWPCOE4AA8u4NqaovmhhhlWCTdRUKVMskFYPjw+i8QHgdZVoynnGsiz4+tc/QaxR/HFrRtFgK/MxG2LNPM/I64rxx5ZxATDyf0uq/tzDqRq/B5O69V57nUlwHcfoGQfdvs+kRJcWzYDT2X9v+bH6qMLrtqi8+XnMayONmtlBnxHkmYaaATJm38KVmRnDMILoHgDj4fVLCeGO5hfTZ4LAtSAEIKWgvq2EpMCeoYq0G4mQYmjA5lVMVhQIQUPUmSQAIFgxSlR1Hos0mijBgjla+H/HvnaCgF/hGl91gsYs+IukiAFNIe8iCjtmwf2ryDSFLsDDBphZ6kApnlCrhIwmiKkm4TlZOqeSRKzmwWCmx9DmjlmTjFVg0oCQDYQVhWYZtHcRac2vjlExCQPzRbRbc4TGfK1fPk/yHooDBFy3+B84yHs0nYBAoKhaWimm7Miq5F2AYdc0XyI31reXTLF2Yjvv9jBvrwkcph2ydo6lSgGxCFA1V4wh4fndURlXQXwRsJbXuFwW5AqUwkgxKQ5hRWUgFwEbjsOjmEhZoJyOxzvMy4yiCBQSgZdRc8GyLgCAGBNKLj6HPaOR1BTJwVqXRTSxwYTDJOj3pWJZF4zDiBDEjJk1iXhdVxggNQD1uQUMo0BMLWsWRhuCRCzqyF0uM8ZRNLeszLbWgnleALALFDmvIJKSLeCKEIWJmY/vxxxkt+kvskZNx+m5xYZ83DzexrTclLJX7rpz7V5qmomZWHrhFrS5136gzvHtmgVM6+pe2TGwFsBhe3HbEqBpTVd93Z/v6KrtX3tHg3xS6Jxa9RrWBS/1eUDkjmMrF2JaDUOk7KialoW5A3DcNBsSYVo6hprYz4WFaUHpbmcaEuLUUBCcEGvH7L+twND63+PcuZapDEjqNcFx8phIaT5p76zF3J6Fdv3VO3SQt9h69mybTLQ+hLCrnaVmUYqwcO7NAuk1C9jnbd/k+tgm3W4lkn7HKO9U0+jmNtdSbqwrbn1zkx4JoZLAlhahCgRQDI0DuSAmptomStmbdC25dusv9Hf1Q9onGruwsmlq84V5W/1fdEysStUCkQVkzRNAgwQ3fO3jj7DWijlnPMyLaHlVzG5rEfgnXhYwCDlnXC4Xf2cpotVAGZDtMwtRLxr2LgEk9cpESIAGQrBXbZ6myWuBGZZniRV1rmoEUCtHVTQQDTpxwU3nW96VgFXqa4UgqPWhNPQMy8PsNeq8ZqQUPJDF2k0w06MIscZwf4yxCrsFeYu5bNjXbWL9vu9ofMaYR8eE+gvZWE6DYqHuCXT7lvaDRWP1r3B6fP2MzbM7RuPMqOtoz7A2zIu7f1glZrBbvGyhN+SI6sRXFrVIeB9//DHevH6Fx4c3WNdFTBd6j2w6KYZXwSgsEngzuTFqLiiKWF2YHG2oFhsPVppSwSlhVMJoG8uQ6Ddkz6OkNO/IMBJ12EQT4AZqqwMsUZOKjA4zxzZG0bumgA50VzVn0RKVUHemLE+mRZvTNu5tUfj5zfx0ZNzWofn3gGay886hYQnm7BocXIW2oCTrgQV5sDw3C2q7aW2E4nN1tbeMYZVWkJEBiaw0XMTSyq+EOPiYS0K7CgIU1VcmGqDze93c5gsTvsKO4C6E0Gp8wZPkG9PrD88AcwLO3MaUAM0/lJIrQ4qIte2zQIQwJvzkt76F490d7u7v8OrxgmU9gUuRGlkhKOr7BYfDHXIuePPmDYZpAmmQg9WLq7XidD5pAn5AGEevpQUS39U4jhoUMQgeImVPSDa/8jhNUpokiCnR+riuGQwgpogRgvRSs2hJUdcmVwnCGIcB4zCKNqVFIomhAVrAmguYZxABeU36LhFgc84YhgkxRpzOj7oUBUIqKND0+XwRJH5NqP6yxwfNuDY+DzlzdU3b6m/77dYv/Uve8rl7btvKJoW/gysqATQToDvnu03m/is0M+GVv0u+XDXNzI3O+Lo8l6uOd59NkjbpU/4hMJvpTYkFGzQQVNLLjkE2DAPGcRRTYEqadyIJlTEljOOANI0iaZoUzlUkco5SlVYJEGJAARA0Os3qeqUhumRdGUgxCRyOFqr03hjhIisTLuPL1AgCLKxcTUFcqueM2Zg2EkdbYaIfeQIIwU1tzFImgyBBEqTCjDGkYJKqSdlkCgu3ZdDNrWsxzEAFAqt2FAJQWCMLu3VXStOAatM+XINEFyUI0lwbhjoZG8IHAAoJytk6pqVrRJkHijjnuRSQRpmx/iu3cGPgbh1qTEw0eWHoUvuuX29XmC/X4wItP1Kq4gnuNLZ+o2tbTA6xd1j6hwTSMGrNKDnjcp41QV6LIULWbWC59NOnTzEdDlhqwG//3/8//I8ffoYXj2fJhQoRJVjidVFU+Irj4YAwTQqNJpGDa17x9MlTqZbMFaXMsGrMNIwYxhGHg4S19/mRa85gZozT5FG1FrVrY2TXhxAw3d1jvlxU24qe71W0jh5D9vXpfMayrk0wqLKWCHAU+ZyzLQ0FE7YctJYvyCwAwk+fPsMwjkiDIILUr2AmBLCr1/cex2/8xm/gL/7Fv4jvfOc7ICL82q/92uZ3ZsY/+Af/AN/+9rdxPB7xsz/7s/jt3/7tzTWfffYZfuEXfgHPnj3DRx99hL/+1/+6x/d/+WNHzGl3/os+im6doM2pxi+bFtafk3+29xiha+eMULZ2E11/Vja2vY/au/eMDt33dotqC93re01h/7cxx/CWgFo4rcE4BRJbtlR77XpEFklI7gOz343IlMoOXGr4h2vOyCVjVamvZCWuaIET8P528r8Sdw/DrkbMNEeFG1hqrVrCvPb9NiuRfCZ7pv3rTL37rn+0mW/VrLywX23OF2szwTUTMw1SFPOQR8d1bevNccKUrE+1Pd/gl6r4jASaqajWw+6n2/y1xaBjZv3sglRMg2M0RqztKF62vfqatT/u3ud5bOhLhpgQIsQxl6ol7nkDaFu5mQoNvsuQ5Vt7+4Vt67Ru5xZwZtfPZ394rAkLA5OCk8UmXYg3Se2AMQXcHyZ845NP8I1PP8GnHz3HZKV80CwEplVKIEXWQIvGhAQirFkOTBt0xqPrQITERZ/RTIzGTJyakOUgakv0/pSSkxoB7G0wTaalSnkWqa3HxawDDeg6xhZdaogc5iuzSEIpJilWFmOoKSUcj0fpl87vlz2+MON6fHzEH/2jfxT/4l/8i5u//5N/8k/wK7/yK/jVX/1V/NZv/Rbu7+/x5/7cn3P7LgD8wi/8Av7rf/2v+Hf/7t/h3/7bf4vf+I3fwC/+4i9+qQ70fGLDJPofv+Sxv53ai7oFcn3DrXZsiOvnvaNnQMZ8dgRhwxzsXmphtS3E+zq4Y/9S1yqMV9l539s9M4MmLhb/sw3x9NlTHI936DUeEbRDY1qam8QAcpUSEQadsxiETilY14xlzVizwOfkoiXYyUqZGJgueRtNMjSGaFJiVelf/uqGmfUMrWk9u03VU1hW5qCmpGq+jNo2uGvSzgTsOtFK+ufUvMq57n43R3bMdTt1vZ9MNEUu1RmU+Vq4KPMqBVwziGvbJ51ZjAzmCk3bMsYtZ4Nr23AGoEypFJRldsZFRAip04LVgUmB2vxDEQt3glKpAl672Noq1aGVLBeoJRyreVDnud87viZsjg342E3HreCijepmb4WOySrz8oi7WkAQzTwSIxEwxYBvfPoRfuo738L/8ye+jWf394gEn2tbZ4BoGmvOuCwLzueL+7LMZxyTJaGTWnklsnBZFszzgvPjCZfzBcs8o2TxdUmF5NTyvZidaRkDs4KYXiySgIP6xIjIKzfXImM6X2aNcixS8VgT+lNsYL8Svi/9CiQ+r6SBVxLQMeJ4OODu7oigEY3CuICiydBf9vjCpsKf+7mfw8/93M/d/I2Z8c/+2T/D3/t7fw9/6S/9JQDAv/pX/wrf/OY38Wu/9mv4+Z//efy3//bf8Ou//uv4j//xP+JP/Ik/AQD45//8n+Mv/IW/gH/6T/8pvvOd73yB1tgG3J2lxiI+j3fd+r1pN02Lcuaxuef6G3f/b8yi13qaJrJ9o0ln1v6OOfafe4LT62q7QXBbPSCSfE+MXXq9lja3R0+87NbmTzAzkOSwBHz9a9/AyxcvcLi7w8vXr92zkDScvSpCQ6kVa8mIXS20uoqTO3BFBGNKEWOS+kOHcRTfVQwoCOAwgEMCKCJXRoBK3sQIqA7wCzO7coDlyrVhUiavshtpP0uV+6T2V5tfkYohxN/CvgmOw0ikYb/Urg9j0sg5IWKs4x6HBPMb3Rhy9IzJ1krLB1OMQiuAyQTULP4xm1LzGxKpCU4ZeJTw+RBTC6MHlNmZVljks60Nv0ZMgqxMiHNGni8o64IUJPqNrAwOaxSc7UMzV0IjQhOcIVftq2hae78HI6+rVxI4HCZfiZXZNQ5pZ9A8bFn1wnDEBOlz7/lQ25UfdFytXltUMze7yi1tKbW4xkIEjEPEECIKRfBa8J1PP8H98Q6lEv7P3/n/4vsvXuHVeQZXgqUyBCIPIZ/nWUzrw4Dz+eJguikqbqH6BEsuqtEEt3BUW6cxev00QeooyOo/M233cDgoY5Pij4+PjyhBUDjmywxUaGCF+KCnafIxBgjjOOEwTagsAisBSDHgMB1Q6+iaWG+dMaoVYsQ4ThiGSf2B93j+0UeYDgfNO/tyx/9UH9fv/u7v4rvf/S5+9md/1s89f/4cP/MzP4Pf/M3fxM///M/jN3/zN/HRRx850wKAn/3Zn0UIAb/1W7+Fv/JX/sr7v7AnQvtTN/Wbt9y++9yfpA2Xod1vjZkAynSMXBsX6tnLpr3NN7Z/uTFJe0yvbe0u3EjPm596wsGNuBoB8eZ1W5jt/7f4GXVmli4KyrQZycIPKnElN20R4JFLVhpBJGXCytLOoiG9tC4IXJEIYIxaG6mCV/VxMVCogGlFGhhjrUjDgBgl2guFEZhBVDf9Ie7MHQ4hpcQ95yamEPmEdOWn/Ek2j+J30Q3ahYCzObpVewgpgjTggXsia3A8vNVyzDbZ+5i264B0HrhvlpojjecxqFo0onTC/Eao1D3HBDHraOffZGsr68QrU+OqEZekuV7y7Kq1mEJVhBXTYM1n5Rpc8aUeQkQNoh2KaVALN/LWp1WrBGlUliADFwQsYV3H301uuz9b+ywXubnQ1jO0570Psjf32rpxTVqtCcQGjyT3RQCHFFCmEd/45GP88NNPURi4rD/CXOEM2hhOrQJObVG4BlZNRBKlq5NOEI1qSAlDGpCXRSL2SvG9JZraoIYBRbcYJ0FizwXVcwaDj4u9J6rlInapEx7UwrqENPowhYRAi4vrUh5lgDGsvGZAfdHCLAePcjQGbb8Nw4D5f5fgjO9+97sAgG9+85ub89/85jf9t+9+97v4xje+sW1ESvjkk0/8mv0xq3Rix+vXrwHs2clbDHGfx702T+ifeusq8k3fa0CbnCFb9GyL/l2v3V57dQPZW6n7jq0215sNdy9jlpo6tWesnUbQmFd3j/+vnem/NgJR/XsuRRMVSXEDLYCCYbW3rOZPcyzrxi8FoRZQKcByQWAxv4QYUSkgM7BUVhNFwFqBtQJDLpjKgAlBKs0GgKGag85PI15WZysgRZN8dWyKJYoLgbCE7iY59vK5at+2sc1PYiNV25jUUlCzScPBmT0IYtYLuznrmVWvbXVH+17hVn5CQ8Nw5kfaVurWYejuL415+XwLlqGYA4trSc0kyR5EIlpUlRprgPhCqqyzEEJniqvK4M1kq7BIgTSxu6CC1BSovk5u/gsT7CT/vWpOUbM4mDYJZWAiEFX/3s9hC+TY7hvzIwGEaCgjvr8tr9JAmU3w05I/Re+ngICARITDEPHpR8/w7W98DYUZP3r1Buu8qlJbHSHfGBWzaE0M9ryqEGLTmCBI8BL4NOB8QtNMyRhX0oKOxWQQpJTE7LqsGjYv50upHmQxqHkxxohhHMEMD3IxpkmAmjODh9n3SzalCObqZVcYEYkIx+OdX2+5YcMwIsSIaRwR04B8y+LwnscHEVX4j//xP8Y//If/8OZv1H94J5d429Fzg+353o91KxT96knkQvPVs6/O9c2GhT7LJ/NR0Y229ZGUgd7eFrtWzHikkdkdwQV8Y9xWsdDOd5JY78SVRa2I1VHMcTUXzPMMCyMekjhsZdcIo8oanluWCyhnZ1apFkQCUgiYEDAvGcwrUBnT4SBhuoUw1YCxVqwELMiIa0WIGQRoNdYiREHDsFOKGKIgG6QYcX88YhwGscnHpMoHgUpFAPlGgyZQAlCIqm78u+GRUWzGV8OpL+sCcEJCUlNKd2/nM/M58nlhG3Q3baFkBAUHRiDNPVbimlsIOmo1QzWgQgXXCqaA8XiHkHSB5tpMjx7UIf6wqmYyYsYyzz6OwU2BLMhSZFBJhLKKNm1h4MwSWdn6IME8si7lr6h/cGWgclCthLAo9p2MlGlxjHktPs6Sn918c9V8cp3y/z6V8QABAABJREFUanExFrEo/IkcxkvqgBEA8bXWNTe/C0EDJToSyejMW7JeZKYDME5IYQCGiI+eRPzEN78BChGfvX7A/L0fosyra9hc1XenjCvGgMM0YVXh7+7+HiDCuqxYFqnRlnPBMi+4XM7CSACJQAQkZ+x0xjBNYBByEeQKuf6C8/niVpxnz56q/1PMlQSI1hcjHk9nrDnj8fGEGAOmcUJIyUPuiQjTOAigNQWUnLGq1aXkLAE1S0YtjLu7O6m3FwXBJY0jhmnEME1Y1hXp/TSKtx7/UxnXt771LQDA9773PXz729/289/73vfwx/7YH/Nrvv/972/uyznjs88+8/v3x9/9u38Xf/tv/23//vr1a/zkT/4knBBstBS65i5b7vaW1hsLMdOAPe5aA7LPTdORU8zCeIw90K4NtxiRfze1nFu32ju2jIw2/Wnt3PLdBiJqQriVGrGjaRTSgKZt8eZ37r43h7qYayxXK8XobY8xSrY8REpPMWBKA8aUAGZcLrOYWtYFkSsiERCkKiurhnhas49ZCgnEgmY9lwVLZYyFsTIhzLYENBpqldD8xaRZSMj8kCJSDBhiwNP7exymEdM4YRpHQfHQIpYGi4MQUNUBHWDmTqBCvvdMR0aJBGWjmy8LCa/qX2mmyEZdqya5MpOa9Lox57aORNAvap7SmdcBr1kDREp1v1ut4h9SGzFCSoJsz+wIFQbOW4sEiZQ1Y50XYTDKhOaL5N0wiyBie8OgqypXlGXxdZRCdB9orVXYjvZzWRaUkjWNopkNWQUesDDDdc2ucY6jmaJEW2nBI0Wj4kSDqy5c2TP94W6iq5pMy+jBnzUQQ5mSoKg307ohVVjQhoEV+4YgAhk+KUEFL8L9NOCjp/f41tc/xfdfvMS8rqhrbSboypg16MJyEcHZtalN8AiLtirA1eyMJufSrUERFJZlxcPjI1JMmJcV61o2mqlBboGARRE0QgiIsATl5k4IGla/5oySi2p0zRpgIfEEsZDEXaQuhaiwV5KDdjgecX9/36Da/lcGZ7zr+Omf/ml861vfwr//9//eGdXr16/xW7/1W/ibf/NvAgD+5J/8k3j58iX+83/+z/jjf/yPAwD+w3/4D6i14md+5mduPtcKFL7toN3/b+k0V/zqJmO79bk90X1P7zQVdvfy/oFvb/+1snibiXYWwu6ctqZjXgw0Pxc7/boyFTZrUi/xw5/iEj+M1naagIm4aiKykF8p6T2i1iyal5YZH9MAroy1LCrhZ5GyA4EQwEMSiRGMsq6wyKgxSNBE0Gi+lYGhSD0kcBUTIUtNonldseqfmURM00oxYEgBl3XFcZpwnA64Ox4892yMESkOSNoHhmhaUKbFKgwYOBdvB6sROIiekFmK9Jn2sjnMj6Th8KYdN9CNJsHY3Nq1FQCppkREEviRJWIyRqkvVkvBOs8IpEQxRNF4qQMKDuKjqVkY1rosOGvZDdGqIlaVto1xmTXAgyssMlKXflsHMjdG+GsVjWFdF6x5xbIuXdQbkBcJwjhME5bVSmNAGK7uB4sf4VpRtVRGjQGRaUNUgzKijeZV1cwNSHCNCjoULIk9OoMtuQiyB8gFFtiYo262tImHqvsigMXfNSY8vTvi659+jONhxONlBtYMwSCU8VkVUil67SxpU85ZeaJWLK7tNwDuL3rz8LjZn6VIza/z6Yy74x1yXrtx6emKdCDn7PRDauMZfFiLSpRyM82XLUtWfF6BJP+LNOG6RoH3kjIsAlYdU8I0TRjSgGEQBuaA0F/h+MKM6+HhAb/zO7/j33/3d38X/+W//Bd88skn+Kmf+in8rb/1t/CP/tE/wh/6Q38IP/3TP42///f/Pr7zne/gL//lvwwA+MN/+A/jz//5P4+/8Tf+Bn71V38V67ril37pl/DzP//zXzCisClX/tkHw4i+feunq38AbvCV/hmNOb01n2p/K7dlDLCboXpNrbW/MZH+XM8gNw3dMFJzGH8+a+xt0m4+JKu31CL7Gutq1/dRWO5PkC+d6UeSMi3HpNaCklclIoSnd/e4OxwxDaOgyaskHiiohAsAjLNJkAYYCgIoYEhZNhIF1Z4k4384BYCLS8rrOqtPRKTreb6glIpIUvMpkjCUJ3ePuDtMuDse8fGzp7g7HHCYRtwfDhiGilQLCjMOlQWJICawQSH5PO5G3efQRgtidoQSt1ptkdpgtnsslyvs1wh5crFpzmAGSkXJ5ocgZyzCOCKIpAZZXrKvFVY8u1AKKEYrhgwAyOuK8+mE8/mMVy9fYVH8vHXNHuI8DIOOsxSADCGIcz+Kj+N8Psv8z4uvr6AmMF9fpJI2My5rQSmi3S3zjPPphBQTPvn4Y0kd0ACE82XGYRLNmEBY1oyySsHCZS0eRbiuq2r3EcfDUQByTaDXSMxSRKskIvHpAI6LmGJAHJIkx4Ma8dWcpGZdKd1+beBfqFkFgoAAwt2UQPEOJXwd3/nG11Eq43H+kYg8QZ+vjMaEJDOzMFccj0dAtcLz+YQhRqljNyY8eXKPaRzx8tUrFNVsKCRcLhfM8+Km8qL7SbR/Acw1v1ovjBPgwoqt0ekwKeh09YRm2Vcr1kXrqI33iEW08BCC+9KsX2yM63DQ5Gut3jyIybvshbkvcHxhxvWf/tN/wp/5M3/Gv5sJ76/9tb+Gf/kv/yX+zt/5O3h8fMQv/uIv4uXLl/hTf+pP4dd//dfVdCTHv/7X/xq/9Eu/hD/7Z/8sQgj4q3/1r+JXfuVXvnDj+2CJdrIRdqCjAf0X15gaS+sZ0i3N5uYzqEnEQnt3mlfPObt/dzGFaExuyxztETe7eNWmLTs1Kd022SbyUSVHYvGncSBlFL0ZkZ0Rt5IjLcfJwD0lMVTaviwLlnlBXjICZAyTJq86MLlpdwL9AJBGVOXiG836aGCn81pbqC5FJz6RAM02Fr9BAXJeYSgIS1apdllE6wqieZ3nFWOKmMYBbx4f8eTuDvfHIz79+CPcHY+YBolwC3EAMZBAWEsr6JeiBdFztxyadGCRlw2zioHQzIq9Zmy1zQCANLDETVVBS9o7Kq7Mcgg2w7IwYuwCIqpoKSERhs45HwDAIsw0f04SfIWhPT6ecHp8xKuXLyXht1YJkR6ymowC5kW0svkyS0FCJWiiPSzIOStRk0TawzRhvMwi5OSMUrNrbLnktl6ZAYpYS8EPfvSZ+K+0X+fLjGm4YJomfPT8KUIaAKgfp1ou3eqRb8zA+vi43QvKMENMKCzl5JdlRRqSlxIpVSJTjRVZdJ4APfcVGAIsn81kSQIANsQOma8YAsYoJsNvfPoxzvOCF2/e4LLI2Nq8L+sKaLFSCWYgXC4XLYwa3XxHoWl/VcPel2VBYQJFRlhXh3aSwpHCYK3GVi5ZAH21TIox46gmRzpfcJkF2NeCjCwlgLWtRIRhGMF1ltwuCqiKCGI5X0ZfGqOXKMJ5WUEkfs2BJmHg9X8h4/rTf/pPbzSE/UFE+OVf/mX88i//8luv+eSTT/Bv/s2/+aKvvvU2NM2oMSpq/7t9y9W5xmCaktNpOE4jttc1NmWESE1t5P+7eu9NbW2v6rylrYQtQyXv47u1gF7LkkvUvNFdb4zC6a/6WJpysAs13iVxEkFKd1t5cRUOzKHvYbgwqVs0karmslIlB4u0XTGarkKK2yabIobmuCe7glr2XC6sJpAguUGVseaKNauWlirWQpjXgMuSkas4/ec1S0CGMtIKYCwZoSYkZsfFC1QBRAcHDjq+sib6sZF2MgVwaH6BfsA7MUeudUvz9WIwq6zIRK1GlUvp1ISKAGV6QYoZiomNwWsWIocoQSw5Y11XzMuMy3wRxrRm5Fo0yTxjVq2amfF4OmG+zFK9WEFipQ7UNmJUNLSEORcMMXqiNtcGHMvG+DR5NqYkBDmvYmIMAcxJUDmKMNrj8YCUojJmKRWvfFgCK3WAclnVGkVO9CWfT8ZR0K2KBmgwiA05omrKALUo0M1mbHBsrv3aJoFG1eoekrSOgGmIePbkDk+fHHF3mJB5QV0tF1IKK0ILOcbYUknELEguGPbroJQCrKKNVdXwShFoNUtHqVx9v5HPkTxTKknLM4dhcFoQQsv7M8bnCPpqdg+xJZUbUxNGauZNYVYGOUWQHL9hgPctEAEdc/syxwcRVfiuo5d4+4gv//+GgW0Nfa7RdP/23Ms1sF4b6xnlTpMC4BpF7/m6bu3n9MlNk7T5bmbHTS/ewZ83286YVyCgyg0hRDTIFtPINP9G0nq9U435dESq28gAsOYVpYjJJKlvIhBQ1ow6Nsd5NUmZxcluZqFRAyjE6Z5UugWYRaLOzvyMKCn8TghIKWIcRvGjLAXrepFNRgHDMOF8OQtMDgMTDSgMrFyxPJxxWTIeLwssofn+eMTdkUEhIVcGggR1AAAxY0wJQxSpOhEhhRZCX4rAHxkiAgBl4oxWG0s/2zpT4tSMjLfnlDXUm0Ba70MnnyWXquQCEIMSIwbW6vZCJNZchKCnhMPxgHXNmBeJOrtczoKAAsJ4PGI5PWIpGfOy4jIvmOcZD6cTXnz2GS7zLAUIreYZV8zz7NL9/f097u/vxDT78ADTFwMRxmFw7ZirmMMO04gQE+6O9+IzyVLnjWvFWkxzrljyBYwX+PTjj8UveSCsS5AcQgqoyyL1tHJRtBXxwVnirZnESMe/1gpaV1SWUHPUhphuDB+wvL/mIxKTNVBhqBimLQtDiBRQawZzABAxxYBnT454/vQeHz17ikIn4HxBmReUUrEskmuVhwGffHwn+U8xaZCGJhvnjEJAJtk7l8sFRFqGJA6w/KzDdHB0i5cvXyB7mxs1SCkhrwUF4rMK4QAG4zJfdE7lnZfzWWGkggujRORIG1AGalq7MVpSLXyaDmpqFBrx9OlTNcNqNGgIyjS/3PFBM64tQQfexhhMO+n0i46hbVQYf0pvNkR/dsOzyCVnc9GKovU5KrC/0uo87ZA2Oo3uSirp7YbdT29liUJR/bMFbMjBnhxcFSvNECHElNg/iN2vZaZC/4UlB+VymbHMc8vXISXaoWGb5az2b4U5ItaihaZuiD0BAGEcE9Iw4vmTe1geEkNCtKu2IwbDRIsYh4T05B7306gEQcKbc60YooZTUCNGzCzEcS1grHjx+gG1Mk7HGc+eZeRShXAvK54/eYKUouaSSY5SJAKShNOL/6tqKHlVSZPUbaUmQ1Y/V2VUsrYIYxETo/okDMkhhLZWoBGdKhEHJJWcVfoHgZUxLvMCnsV0VJix1orH00nMnMMAGhLOlxnzIgUAcymah7Pi4fEBjyf1VxXGZy9e4OHxEa9fv8HlMkuycKkodXaNJJD4jGKKmNeMhx/8UMYnBAyjloznimkYMY0jRoUFAsnz1lwwz6trahQTGOInXZZFoj1jxGVe8cPPXmAaRzx7+hQhjYgJGMYRuShmIosWfZlXrOuCw+GgEj5cyyNA/GjMSOrvGdUsSwopVjxfsW0C6tayBCbkTjNrVhcuBXUFaoiIccBxCLifBtwfJxSSc6ATTpdFIiWh+VNV4Z3mWdEmBhzujqjjKNiGWfxLh0nyoKZpkkrYyhAOhwlJUzxevLAUANaAnQIrKVKyonIoYLYIfgOowyWUWnvSo3Ecsa4r3FxNJNBVq8xZiGOLXIQE6KQk67NWxjIvGKdJ1igDl3lW68bbiNbnHx8247J/O2nKVONOcepuoO29VxpTp7XdUMc2/KL73Axgb7f3XSlGyu0I2KAc9Bdsg0K27bdGbLXB6/4aozIGeT0obWiI1cKpEhW698vRRRJ2DmrW0GfDOzOzWNBooxijdpRbXhGLSSsZICcRDuPQikwGSVQcxxEHQ77WeVjn0RNck0LhpCjwUKVo6K6awdZcsOZVkOrVHNSQGsSvVrVd87Lg8RSUiZMz5FyyQE9NE0YaQCzQR1U3vcF1kZVQ0f635F0xQbFwOEnuNZMTAhDZtUfTurxwOjPI4J0IMN2sMoMqIwQ9QxIdV9WkaUjkRT8vCh+EKom8l2XWIoDS76wpBOfzBZfLRfyVa3HzoeQOkSMtBEMCUXNRNMGQWZFUKjIyrCovARodJ2anElk1amEW4FWwCUtxSZ1JfFmseFaWVJsVqWUaRxcmqq33EFF5BQNexNHWbS3FGRdq9jVVNE3Eg6JchiK3oLDNp+3lQAg1qPGiot0qM0gsKC4BjMOQcDeNuD9MWDhiXgvSMqCcLhJBQoQUxeRWQlHBb0JMEdM0ooSCZWEvzBhiRNJKDGvZWkWs3b3PNVBAIdHWrU6WRW32KQRB+8Qq0NphgTk2Rha1mXN2cN8YzTrSAr+aWVVN2FxBFDuq9b/Qx/W/07GZIGcuzr78mp6kbwIv/LY+GKK/trvOn9I9/y0SQ88e7fnXFxuZutGnXgvsmKm3d8N1b774yuZkeG37G8y/EoKZCNHe1xdENOnT/F16pxNJQwfnlkCdtPBdUmewRVIRJEdoCAGHQTAJpxRxGBKGGJEUOWAcpZzD8XDAoNAxMYl2YmMQlXnEYAXsNAdGIXXWdcX5csasBG/NGafzGfMiofOzQfBwwbwuAEtAx5pXzPMFh2nCk/s7DGkQf1wgVBLzVyRCooBKiodXNaeFoD4aYZRURTjxeVWhgH2c2eejN0tJ4rCtWS1hSQYrWIFgwMMEaOkNVKjmUTygZFX8uhCldMxlnnE+n12AOJ9OagKc8fD4iMv5ImbCy4yyZAQmjGnEoAnY4rck93MuiySyEmsu0DAhBwn1rrk6nl6tQM4McEYOVf1vEmVW1yyFC7m2SMYUsdYqlYWZcbjTEO95xg9+8APcH8W0dn9/p8JDEObNF4CCoDOUqonO4j+LwfLwzIwYvCKB7T8ZT9EkhfUAlngPtPXtyOteEFOpgzMQYWR304ind2IuPNczzhoYkktRlHzGNI6oJSMTQCSAu+MgWtVKq+S9LQFpHDCMgqJxOBxQzmePzis5o6gFIpqVQ024XKSNlkNnZlRxMUsCsYXl2zgYEzocJhSt1iBGhqia8ipMNCYp+RIask5VASQqsHIpIijItQI19b8UZPd/p8OVI+oZRDvnLKO7Ru+8YnA9b9n7tPwhOy3oSo8i8pwpV2GuGu1PvdGfzvTZ8cUbnrmbrPCLHM3/IhvPcjNQpT4W9w1o4QPu9PVf2LAKs5a3Ep9BJMIwCNOqquFQIVBKuL+7x9004vndEVMAIhgRjGf3dziME46T5FUJTIwwM2Faspktqk6YBDmslBDuqn44TYZkVge+hAKf5xkvXr/B4+MJD48nvHj1BkuW8uNWfoFRsS4LTpDEWGLGZzGpFrLgMAgKxxil8F6ASJMBEBRt0hpbZvuXss2ARViGuNVmVRN2gcFNhC0ohIL4GygGFTJkViqaMNEWsDxnzSuYSAWLFVBCA2iUn6KelCr1tMq6oqwLuBYEMEaNDCyl4nJOqEV8l5OCHpt1Y0jJy1mAoD4ixWs0xPCUcDqdpETNmvH48IBlWXA6X2RMD0cxm9aCh/NZTL9KzJkZIQPl1UuM+q7j3VPkkvF4viDnqsE8op0KBBIhBGGqMQ4IVD1dA5DcvqUUhFIxDBIEAdUUSU2cspZHT6bmnOExGQQBMwapwFZ9rpjhYMyBGccU8dH9Ed/52sd4dVpwGsSsPU0jigqB8zzjMA2IKSjo7smjY4mAvC4euZlzdgxAQHKw7o93WLJYB0Yecbw7OgORJPhm0l+WFQRJZAaAWgrmZcagfiuxWgiOYIwB4zBgGQfwLIFPFrizrivGYQKHFpRkkYhZk5stlN41dTWB+zh+yeODZlyqYrmW0gh+r23pdf5v29ymjDVT45bx2cbcakBo94O8MB8DzU8D7CIjdv/e6sfV99aWpvLdZHddy/uD288A+ihHi4oiO2WM3hm8658+hl0aMqyrjLoxyxUtcWJ1eQDSRb6CaEBK4ouaxhHHaZIgiERIJMzryWHCmBLGJInC4yDRVsOQvDjlOKYGiaVaXdRQYSJSxmVRWdI5Jnhi57KuuD9OeDyd8PBwwjhEnM4z5mVFrsXnPBCp8136dzmfPQiE6oiaIpBYUO5JE09JwFaF+ciYu+eDFZiVgkvkMj1Nw0LXLyjxN023liyMWZN2TQuwir9mpmGSyLDCtSMObd6D9uFwmLAuhHm+CAgxN215GgdMwwArIVNKxXEcEChgGIRxAeRa7jRKUUTD84ujQlMBgNWJooCHhwddLwWnx0fM8+wEUhAyCLVK2LYUDU1AHdX0yqot6fwk0jUmh5TXEVNtGlgjCNXoSs0EHhTiK6r/xUzGwOBm8JoVczJVJBhArieFibaM3j2gIF++odT8VhkURCg7pIBnd3e4P044rRnHtUjZF7NioGr9uaAaLRQdQ4B4QWbWa9GjWbUgGTcpSYIk+09AeeUvA8hZ/FLzvGC5zAiB8OSJAAWswwoCHNXEEpP7wAsrTcS5AfvW0gMbG/D2TkkwS42ugRCjnyvlx1bjaszFuFav6pKrW3Ci35hSO6dP8/u6F/hvvc7T32JM6xa/6p/7bqbVgidumfPap07T2vSnZ12mHXXP9df0zKv7wezgqE60K22vEQVg27uqEpZJcWte4QmLuvDl90V9C6KFTcOAaRxwGAc8OQ4YiDAAOA5Rk4QZI0H+AjCkgGnUjThEzfIXTWscBtFy3GwjUESspiNjyLVWRaGveP7kDqfLBY+PjxhTwJvHEx7PMx5OZwcqDSS+K1YziuTWiOkzMKPWBFbg10QK+B4IlZXhkOIAoieiulqIuqFn17iMKSEEgYhiK0svkjMnuSzF5AxazD7av2rYec0f00irOs2jhl4fDzhzxXJpfjgCIwVhTqIlDUrAGHk9YlINWKIDJWAiaRmMYRgEgSIGDAfBuAsxCAyi1l56fLgXTbhIgI0UKxTTlSW7rnnF4+kEhkj7st61jbWiKAZlJJJxUKa+aI5S1dpdlo6xNYgYUKxo6oVZQv9rq3YAbqHgoi0rkK5unxa5TNC4WvcxNhrCmvzMCJURuGCkgKfHCU/vDjjnglMuGAbx8TGArIUbVydXhJwTSlkRwiTCJpp/U/bWKrifql0bNqSZzpMKfQBjWUiT8mfM8wVDkqjdYRoxKIqJAeW2GmEyV0WDrSzEPWnNMK91VwuqRSpraZigvl+zyEgsEjUU+tJqlH2Z44NmXDDJGE1T6LWEXnug/nu/mHfmFTvb/r/9qfc33WqPSIe912x3SXfWwlRp97tfp1Fim2f5+2nTv/4J5gvp+Rbvfu+bDJgtXAivMTKQOv2pT002k6Es8vlykXDoagtRnOhgxjrPmwKikgQsgfZUC+o6g8aANEQcYsRxEL9XiqIRTF1hukFRDYgBVJEQBa4HAmtEKsm5ny0ghIZWwRGgkBSlYMK6HrA8u8enHz3FZVlxmVf86OVLvH7zgNP5goeHR1xUI1i4SJKr/kv8DGMeUPKgSc2EFAhDDFgWYAgB4xBxGDUkWEedAjmsTr8IzUcReJteYJPYSoNU12oCRZ8TYwyCmJD1GpGQl3lW+KsCCoSaV5zeSOTa6fSIhzevsSyLhvlHHJ89EdNfskjNURlUcl9j0hwxC6KRyr1aXHBIQBSNUOqvKbI6BawfrS1WRTUET2jX9IhSCi7zRdao5jeZ7CnAsBes84w3r1+jdsUP12URc9qy4HI+t5SNWjzVA2j4hMMQMSlGoCVcxzRIUrL6u4xBldqKUUq0nRZsLD2KhuladivB0x8qg2pFrBV3Y8L9YcTTteDJ/R2gKR+XcxA/3JrFNJ4GcC14PD1q0E1Rv98AC34QwUKCOpZ5kX1aipgU1wXrMmNdZjBDfcSSPF1ZtLvz+YzpdFLU/YAEYF2rCgErchYUlGwm0o5opGFAGgZczmdkTYNJScyf4zji7u4ofi9mmZtJNGGwYGNSuElB3/v4oBkXoWlZ/l9vbsFG2drqLi6R2eeeOTXN65YG1jQe2mhdsIiaK+Mt7f61z7y7qjHYxqeaNnnFBzcd27KvDawToCXbLYKoMW9rqveX1Snt4xjaePY3qRZhlU2josCbyW5ZFv8bh8E1JELnF1M/CxvQaVXsOBKTG0HMa4Qg1K4wPIuUABQhxKGL5vNItxhQuZtQzV/jEAES880YCXScMI0Jx2lACBVPjhMu84KHhzu8eXjEvCyYLwvmywmcV9S84jAM6sOoWFIED1KgMZI0L7MkRQ+xKAK7mLiYq8QHcusrd+uVLDfLqHt3hG5sRcIVDcTG0zAbai1glZhJES9GJBBPavoUDTIvM1AKhhQxpePmPZP6dySnbhDBISbNMYoebBOiYtnZ56imoCRRpMXWia4bDmGzpsQ62TD4LJhlXQ/NMG3zyRU1FzXJmikXWi5HiO26LFguFwxDknQIJd4tSw4NtSKqyVH9LvZuY3hiGhM/G2UJjsi1tG1vDJktRQHaTjhNaQKm7M4AYEwJ05AwDgl3h0mhqRg5RkUzKThfLjgeZT1EDS6hECRQQ7WjECLunzzB6XTGAglVJ8VbXJZFTXfCkFNKACIqB0XOECaWS8blchaYKGVeUa0Y5jcu3MrRmDZaqvgRJ/OR1WYmLCWglCilbkyLBRxwmouW1NHE6S97fNiMq1OrjdnsP9tK24Z1dzfLl0b8e2bQVqkuxutHAIQ9m3pLa7efr/hWL2W3a661w8Ywu4Z6W8yvIwTNLpMPe4SPzZOpWaw2/q7Q+m9Hb4qyUPQcopdrjzGqk1dMN2Ea1ZynEEadTdyQUy0cnEgQth2VwkZYI+x6ubaCUZYqEn5oRRwJANcGjgpCp6mEzRBKIjGQIgG4w91BCvDdHwZMY8Tj4xmvasVyOSOv0s55PiNoJOEyRwADpIyLQEFVZuTMyCkDiECIML+iUlvlv51QYMENbYCboEQWfCJMsGpouxELsGhlpEzdihXaOFIIoJSQ1ZTLJYNzRgBjSkn8SzpWMRDGScPMNaHWChlOY9KIz9AYqeactVIr7GtGTK2s2hd7KZKo0WXml6vMMCyHyhVlHP18zgKWzLUig8BF8sIGL3Ev/q35csG6zJgVNmlYFqzLgDkQsgafVGPoGjTF3Z4XSyQDLBF3Hryk/hwmMWEbM7LfuFaVNZpptrf+2J4zujSmKH7cIeI4TVjU57fEKInGynis6GKuAsk0DBIwYsDEVjwyDUlBeVsKRg+MLKZ78fNJ9GT2gAnDFMyKL2plapAiIoCshtDiaQTNN2UgvICMW60F0SoNKHaoe0DUomOmxcBw396XPT5sxhVMiu80A3Sayw0tbKuN9VpKzzCMYKC7rhER0LUR0J7IYGx+vCVUXJ1rz95EQ6K1g5SqN+Wr79vN0QGRyZnUqVa4YpiNaTXmGSzMm1rgg/HxNkxiFrTIufv7J7g8OeHy+IjH16+RAoEmSRZ9cidMYYhBpc4Bx2nCYRxwUL/XYUqYNJF4GKJGExpOXAEXybeSSDPH+YHlUYGrmggVrb7LVzHt02Rv0xCkTpBoGGMAhjGipoApEY5jxOn+iKfHCS+PE+ZZcpouDw+o64p1Fq2l1gPAI8YUEQfVFZmxrAuAUaCFQoCVSBRzTUfQov4eGlP1eVD0AjvXiJGVwhDiIkxBiOGaJfQfKh2XUlBWkaqrJn4PMWCIA4jEb2UBNeOYMI6j+5dQNJmaAsYg54L6EVs9OG6wSyUj1CpJsSFuoJMkdcH2rKU0MIJbA9QcWot/Nq2SiDCEAKTkeV7mLwlhlb5FKYiYhuSaTl4XnE+PuFzOinyfJX+vyD3EEvQBGt0/BkjBxZCLlJ1JEs4/jpMKgE3LEtlLGWFPiw0ZxZg1RAg4ThMOueCwJDx7+gSn8wXnecYQA2gYsAJYV8H8dJixkPBU/au1skfullKdKeRlQQpBI0WLM9OgEZKGJZizaFxEEjhlZvVxGFByBjEjBRIGXqQ223I+Id0/QdJcxpwLoprxG9xXQU3RKwOIebV02rQyuFLByXy3P6Y+ri1Tat9dVcdesepVdzvVMYObjGr7xo6dwJmcr1bzZvD2ge/oQbuve0NPvHotq2udfeqfI8TbOiHGI88RMtNK30Y7bRiFbL/2DBI+nr1JtZlZDXOMcP/kKebzCQ8vR/FNQCTnlMImysmdxyEiMAEsZqOgm92cz5kEi80ggmopkjTr9ZpayH1MVp01NkDSmsEQu74hHoi5Q0KKC1fU148gzTUBCQqDMZpIhLtxQHr2FHeTMK7LvOB8Fr9BXRecHhicM+o6YSBCinfCNKEAqqLuKWCq+j+5CSktavOWPEMO8EqB3Kdi5SWYBeIoz7PMmibXkvrFJMFYizUuixaE1Og89ZV4ZKaij6QUBe2jFsGnMy0RIp1bukGwAJIYQerTYiJwCPLsGB0v0f1cYK8bVrtlTyBP+ObObxQIQAiuvQukFXlwANC0TuIj8jggr6tqaRJVOg5JTM8a3biuM3JesSyat6hmQhF44OVMbAOI1UKjGQO5MCRaIKvg1PIhW590/hA0qENMwymKxnUYJDhpWVeEhfSZMj+Cui9BPuuyIA+rM2oKhHGacDgc8fr1a7eQSHkRqZYcokRMDuPgiyqvEq1pfr9aJO0j5yzmOzV9B9UYI1ccUkSJ5GbxwAGDJrmjil9Nh8BNpFHTWKbp0BhkNeFRxkhAiuG5c1/m+LAZV6fqN2JLm/NyIZzo9tIs0eZBMO0Dft2Gg7TnOdG2DPHOKWs+JNd1NgY+f9dblbLOPARjEK11GybsjBiNE1sTRYht5iZWqZaYOuZ1fWzG6NbvO0HBUT9AOEwHrb2TVGKXKCTzb8UozmULa3YR1YIP1HJYKqvfCiAWx3vNGTVrpdUsZojgkXtCHKx2FpiAQsg1qP8nAtDzZmok8ZuVUjQ/RyTAvFb110X1GxGmlCTaThlvgBQ7zFkgnvK6Yg0By7LgWA4eFl1rRQ4FsRT1bXULYS8tvW28AbAg+bY1zPCoQrYwaEA1F4JVNGbVulCKFLmEjFmMASk16CIzh0VNLWArBqgSOWnwQplX/y3GCFJYnzAkZVoEiglUqjKtqEJBbFo7d2Kf+0816Iab3873l8t2Mm+EZl61QByCRas1fxgHHYcQFPmhaskd0UgMaV2e09XmskRua4OZQzWYoCqDEV9Zs/b04Uu9AA0X9uTaQJI0nzTC0/x1QkukCoPNBdDMcLlI9C4RYRgGjNO42Y8MuOmWiFDZkoWNeUgwlZn3yMZUhULi6sUkYyCMIQAxgiF15RJEIEoErGDUwljrovtWDf1qIYhpQEqDAvJGlwP8UKHrfyk6/P9OR7BJx1aC3TKxnrjvtJcd8Xd9asf4NubF3SSYfbzpTn2ODrpP7yZSWzq21ag20ZBdm/cN2rSLjU43EdAJZ9eybRxJdx69IqlEgyS3JLgfRSV/EChETIcDpnFCDIQhEippEbpSQCR5OXfHI2KRyrx5KcixohChhIqcNcrMCmdVCZU+vXmD5bKIeQoBVkwqUADCiLVWxFIQg+EDakE73RgxJUSKPkYpTYJrmJKEUitqxOnxAeeHWc2LrKjlEllHgTDFiOFwxJQEC3FdM86XRfqYC+bLguWwgNAk5sJVfCweeCJEJuqScGQMHX6X3EHCdKitLCiRbEQanuwsQReqQeSMuq7gvHr15jQJ9lxQqd/WlaGom0mWi2AE1qzBMxqmXeYZy+kMVIXqGgYNeY8Io2hYiBFhGKX0SAhgCl700gIKLJVhSBKVJppQdTMuSANZTOMhCxYKoGiQUZKGYAJMA3/Obg7dCIZKjAlw7U36Ln6bygXLMksF7hgxTckZFukaAJFo6Kr5lVK8HlkIEVy1NJCZppVxIwSv3CzMovqfmXgjAUOMWLQfQSsHm/WBATw+PGK+zEjDqBrXQawMUeYgMnukXikFj4+PGNKAcRj1nDC+4+Hgkbqyn1SALAXTMGiwjiDaxyRm6nlZgBBRGGBUnLMCA1dbk9C2Ch2IyrRiGiX6MGkehy5yd/Xiyx8fNOMyqUzQnzvthm4wHeoF3d7c1p7VtKHOCHfFa6i/62abdtzgxuXGyPQ61dKMsVpfbknk+77159thBr9GCNvnG03umgBIs641uV6DbW0NFBBDwjgewMsFQxoxDhPGNLRSBy7RazVUllIhCVYvyOBpXGiWekMa3vzw5hGogt83hoBSTMomZI7gGlEpgsMAZjE/1lK9T2smAa5QCXpAQAGhVCCGERQDxnHEOD5BySvWdcbDw2usS8YyZ5xwlgrO4yQ+lHFApIQUVoCDmkIY62XB45tHrMsggKcpQrMLtC3kRJyiocOr1BN6B78tkbCd/916INJq0ykpQbbS6eLHAloyOKmEbwIQO8SRrhg1KS7zLCHny4Lz4wnz+QzOorGNQSIK4zB4PaYQE4ZxQlBGFocRcRjdVAhFCQER8io4kjVnqQisXU8xIkTV/FJspsYYEIJChoUg5W1qRSWSKtXQSE1mcAECDY5FaME/ZRWQ3kHzyqbDoGjnxceh5gxUlkAU8zfqnpAAF9W4GKhapqaaZoim5dk+aZGiEGaS2fsa1QQdwEAtCOpjm4aEPIwIlMV0j1YTrNaKucy4zDNSmr2Qp+wZ1YaLmC8Li0lwPl/Ao+SzsSTTIelaGUPEECKYKqYQwCkhHA4YAjn02vODCKDMFbRkjzQeRkLghMtKeJxXPC4rau1yBaMEaXm6tgkgYMcKje+w+Lzv8UEzrj2jutKyei3JrrN7jTmYxNAe2jicnXCFaWtedIPgniu4Zrd77ls70hOn1uDWjN7gaLfstbFOMtfS5M1S2HDHPLKte52Av3bnnUHZGO264ZcFyaEK7IXvLCk1hIBQJUlz2z4ghogIVtBNqKZhwRNC6NdcsCyrBkQU0bSIUADUqhF2YQBT0r/Y/SsTYj4BKVipwxoCQpTBlSRrKbbOIWCMgtwdQsQyz8hZMNZyqVgui4PYj5qfFZWQi1lQk0JXKZiXYlK8QmPGBobL3fjqHIE75gZAzWGwKEPqkFnsu4Vg2xpQybnlscELZwZN0A7R0OSVqXN1LaEqAb88PuJyPks+1Oks/jMlejxEtS6ZqUzvtciMWgVhnIQRUOSWjBqDQCBBgjYiaQi/alDrmmWOomAMkvot4zht0gQsPL4h/JOYMp2ByHWCVt7QLmKUcHIiBZpVkx+XplkSNTQQC7iw4CRjXEG11ZawDDXx+eptc2GT73NnZXiomQk1GdrAqM1c7tpwEBJtgRWsiBkW5m45ZbD2gLu9zq6VpiDBH4Ou8xQjwIQhRXABECPGGOQvBByi1BILREgsNcMKA0NmBE4YNMBmXTMWfycUyd8YP3uwRv9nJOZaKXj/44NmXGbmAOCMqg8gaL9vtYWeJ5n62vhVYxDb6MOtpOv3m2az0Z7QXfD22bFntti/7Xv8qp5x3rimZ9Bswoz/K1/cpGkSNvvjATu/Yb7te1tgjTkSNBwYsohqLE7IBU9OMM0ZcGw+gJCZgSi5M6ECoCD+EUDLSIqKsqwZ58uq5UkgEYpEWJlBiKAwgIYDOAr8EsUIjiM4BFQiUBIEh6SIDlY+QtaFYbhJYmVRojeE5BL34W5FzYIPd5nPeHh4jXnNSMuKp08V4YIkOpGqEVEhwEQBcchCgAsjVqkthVDVBKaVdZVZReVaFeYbgj6/QRrJ6KtBrSMCmxwoDfuWSLmwC1oRpg31LbCFiOcsibxqZnt8+RLn0wnrsorvrNqzBoSYwAQp65KLag5AoRmhVIRYQFFK0kgBzYDk5qJBxiWIyZjSKHWdmZGXCx7OJ6lebebCFJHGEdPxzs2StbAGR0BzkSRviZUIWgBP7fIEc86+kFMSsxXrGBatll1zxoWkarL7mwzVQRmXjJ0AzFZqPtqekfch8VXzCptJjD34IkWBPZuGhFMwFJjgzKTqRiXVXpZ1daEIDMyKOiJgxNGZeAyyxwS2S/L2ypoRAEzDgDCOonVFwf8EGNMwSH5dyTikiIGAIQBTAJ4fJxynActx8AoLj5eKYwqYS8TdmFCWFQ9LxTlXjWwNGglLCsBdulJIWwITduv7ixwfNONy5zKRbvatFgI0hoZeEzPxe8fQ4Pc0En0tFew0H8DZjhx867Lbj7hhu+vbeJNxbrS/Wy9oXEvlr5svu/n6vRBgGqkuMiZ2LUsQXtrmDCAxtUBCMgx0FhRwd3+HT376D+H5t38CgQgXABdRCvGiEzT25k5+2oI26EYb0c9zJ034p5mBedn1Vl/cd57V52NBTjyAw8fgEcDA4CODn7fSIv2G48OWOJmgQUSgQsCFQBeA3gAkqHEgWm6O++ed+3M/8QQ//WQQRsNVhXj2SDEP1PDlbe2UdlmBy5JXCUjRhNDL46MjUsyPJ3CpiAwMIbWISxDmZXGT50gRMTAiMSgLrBFlBqiIlZIITBEIK2IcMAwDCJLcOsQovjcTbWpBgvhHahWIsHXOuLwpeEyDpCyME6bjnZgio2QZ1Vx9fTSsRTheIoYE5knNp6JdhijBArUUXOoZXFf1jwFEDA5aosXNW4qCrnmAbtkNJEKhadMseXStgoL2jVnqpGnlBQM2JiJHwhiSQCati6LYF0ZImj83DM64Si2INeL169eSvjGOIohpRGYMgrBRlrWlKhCQiDCYBaAIIDQXALWAphEEKcGSKGAIjAFALBnHADw/DJieHpCL1Lc7nWdkEAoFLBzw5DDi+68e8P3XD8hcUPOCvCwYpqkJWLb7fKNb/t+XV7k+eMa1YUhG/DYaylvuNU0GQHcLfNdv1arrz2Yq3HEAC7l+R6tvgsZvr9hqUe+8tmO2PdH2cHgAblJx0xQJE4I1dct0e//W/v1XI2q2PbBGTMEBZ6sm/B7GI4bpgDhO3Vtu8u3/uQdffUDHZbqDustsUcTNT1+5DeXWybd9v30siu/mIdlGNB3eyBKwW6MFpUTWeilNszLGVXPGcrlgvpyxzjNqLk6c2x4SUx1DtGOEgBqSmLFiksKIMSnqt2AdWnDCmgtAAblA/GhZUCKSAhMHMAKx+2GgeVxUisCCVYEnquuCsq4Yj3eSsqAaGJtp3BLae3PUjeG1MSqFAYoIERgo4O5edH7RjEwwkBtryeCqkYsW2o3G3GTtq3jAlikom8eEC3uWgU4vyyq4mIAGYwhKSa1SXdlgsja5TvqskjPWRYQfouDBNkWBhglaVicXcMk43t9jGqSUSF6zYDwCyFXgpUCEEqOkjzBAkTClgPvDAc+ePMH9cfTgl8vlgsxAQUBGwFqk+sK8rniVzXTcsB5LqerbMibWJuOrbK0PnHH1f6YmGxMiZ2L2XW6CMh370v+7JdR7bcytiJvbRILfWgrfxS7f1Z+tFtUHlqDro3fqxrNbCS2STaR2eGFa6pi3zX71hO2HxvZ2B0MDOABzTAvwqSJeUEUiyenhEKWkuIUY/8Hx5Y/ayt73psL+byt8SNACKxxsNfTvRaCrOGeUNWM+n7FcLsjLih4dE/oZIAlKIICDmGVLTOCQEMOAkEYgDoIQgoDxcKeVcRNOpzNyEZ9TXjMKZazIGLScTSCW6tS1gjXplYoELfTRgusiBS6PpaAeDximg9sVCOQMqarmZSHigJlRRWARsxUjVwZRUj8RMB0mNZ9KHTZy4UBRINAzQtOsRWplxmbfCpxXaP5LF5ZkvpZ1xflywboq4kUIgowxjOKjo4xq5nNLSfCZgAM/m+9qSIImkrVKcSCpE5d5Rc0ZTw6T7MEYMZ/PqtlWlCzRjIgBZU3g+aypFxGHYcTT+zt8/PwZnj+9ExzTWnG5nLDmKmkrFLAyIdeK0+WC0+uT9JeL1+kjXauNebUxvIbGe//jg2ZcQQmlLd4t4C5gi2sTuLHfkp9rKtyGRTTz2a1jp37Zqf3V7/hKXTva763VbQFvTYnvPJR59U4rCwjY6lqtCzea4aZZ6gaEAiGwAueiIhFjIGBKgmpQSBAa+oqqf3B8ycNtLtjlcZkpTLQuUrws0aiLoxuIWU78LGUR5I88z8jzogEYUefXcuOCMiz9Nw3IIPlbCFQAyoyhAikxUgRiilhqxIQRh3REeHLECPEdLeczUFYgZ2BdsOYFqAXrkoG6gmtGrRnEgvwQImnCq4AIXy5nPOYV5zcSeTgdjxjGAdM4KcK7MKlgSc9aBFL8msJ4h6TaoJY3EQJaMM8n5FqUobVimQK43lUZ7nKPLCjDzZX9BOk8EAFJhbYSJbKzKpBwRVRtK6EWQgwrYpB0kEDAklecz2f3GYUgCffEjJozxmHA0yf3GIaE0+Oja1tDSAIgjAUZjE+e3ePj58+QYsLv/d7vYUgS0AROoMBiSrw/4LSeECDI+5989Bzf/va38RM/8W187eufIsaAUjNObx7w+vVr1xbT4Q4hJcy54MWSEQcpBOvRhD0N6fyBt90c73980IzLSbhpXWhaSvPQoBFZ/7ilyltT4fbK6/ftGQ0A7jLnlfLT1TP2z6PuejuzUff23XxLi7rObZ4g2pYhZ/R1w4h3ni9RGrtreMe1brxZI8oM5DmgotaMiIIxCWJ6LgQgKGjnHzCu/ykHK2xOtcKF1cOmTZylbq0YMQea0BUpuLZsaBz7GZYgDMZcMpbKuJSKh3mVkhxrwSlXFC3BEoZJ8pkowqrcTtOE50+e4u5OqhTfHY94Mo0Yg1TwBchD93tzmkQoql21ApGD+4wsGITAEjhzrqhrAq8rXJoihYViMQtUQLQYkMJ8mRkzCBAs1DcWhGH30bkOpdVVaWjGLm7nKYCoOt2pqMrDKszTbN9DFL/VNE54eJyxrlICJQRBbImJgRARhgjMhMt88YCHGBPGSVIyYoqKUSjmT0uMD0SIKWBKEXEcUKliIMZxTDiMI45jwjglIEQMkUAs4x+54m5KSFxxiIRxiBhHqcA8Ho4S7ckVFAZkhgbvFDx/lvDJacGnHz9g+v6PNPioF95J0DUYG63LtLAve3zQjMu1DzP9UfvcNIZtoIPxLOqubZxtx9CMW5ipcPNyX5LoH+H+gc9tOYzrbX1kV8xr932vCjlT6zkbaTvYQ8MNMcPZJXXMltsz9j6S/kXNRt0s1er5UEiYggTGmCysmNXnMXylCKI/OOxg17IM7UF8XJ1/i0yYk5nmzVzJ+Qrxs5L6hEyDt2lnCLL7nCvezCtOa8bDkvHZ4xkP84rXlwWvl4wMeRaH5KZnruxl5T9+/hxP7u7x9Mk9Pnr2DN/85GM8Ox5wP40YQ0TVJOWW62NwXyIUcWEwt3UjYpCu61pRlgLOq+RDBUXxCAKIWxFBxKh2V4D8ngzNgVCyhvAbLTBEdDShzpiBvV862flpiDRrIaDWAFC1mVKGq33R+wKRFkQdUd9cFDtRw+JDEJikwEjToHWwxNdlmtk0TRKVGQKWecE4yl63encSiCFMKdUBTIwhSK27u8OIu2lAGmQMUgyY54sklRPjeBgwKOOahohRIcBiSo6iMcURx2VFjBKE8TRN+Oj5jE/efIRpSFjCdXWMFhKPjYb6Y2sqdNMVmqYl59vvvTbVJx7LBZuL9VTT4K41NewYx/uou2+/xnld97hNSL+fbvqjn+8a+O43bHSr1od+821/3VznZlcyZte0NYJtzAKqK4ZQcRhINocmfaZ4wPFwBKU/8HF95cOgnNTHIUEGit+oTCwmCadnCEMrWYsLxqglOOAgrEFhrEYKEqhRCpY1I1fgsmZ87+VLfO/VA94sGQ+FUQ53WGPC5TjgTCtqTKgU8Or1GY+PJ1wuFzw8vMEf+SN/BOnZR3g1DPhP/+//DwKAp3dHfO3ZU/zkN7+Bn/j61/BTX/sYd4lwHAYchhFYZ/z/2fuTWFuWLM8L/i0zc/e9z7nNey8iIyOjqqhWQgyAAUgI6RsAWYJMJAZUTUqqAZ1gVCMGSDArgcSEEQxg8oEYwJghCAmVmJQQhT6EPgkVZJGCyiIiI15772m2u5vZYrCWmfve55zbvgRe5LWI8+5ufHtrttr/+q+aF+q8JfVLKQbu8HCeajXGE+enrM5AoYuiQ0XUmiaW4kTA3nIF96Zo5QHRPs85Gk0VStXgBdCBsophMGrzYHdxjEcWiogVw6sG0LCVKGD5qNpyzbv1K3jhdVCq4sS5gBSWbEXI6h5t8TzYdDjw7PkLggi5ZL797jt+8pOfWFfwIExpZBpHrg8Hyv0NIgNpCjw/jLw4Tjy7nvjxy2tOS6ZoYRgS9VQQKocU+M0XL7kaEtdD4jc+e87VlIhU759lyivEwNXzzxjHmeV04hiEHKw7xGf/6//GN3PmVLITJafNw8LnpBpTiTySY3+f8YNWXNDCIpuC6k79g3wXO6DDudC/VBR7VXWp6M69rvaf97cc3vSrbYq3U90py3ONdnFu2173nhbua7VUVwsV2v5b+LBtdRHAbN5mNww8pBKctduaixA1cxwCOlq/oRgjSSIyTMQUe63Wp/FxQ7B8URXp+YLW1gKvdWuht0ZiGhxWnYL3j5om1jSwpBOLRMtzVfUcxi2v55lTLhSJ/MbPfsZPDke4fs6cRl7NK1/fnZhuZ2pIFBXqr77m9fpzcl758Z/8k/x//uJf5Ge/9VvUWvjVd99x8+oVJ+Cr+3vWP/w5X736hm+++4LPjxMvDgO/8eyKl8eRIUTi4QpiRJaVuszkdekepiEHjeVcptF5BS/6t7ErZfdGlq1bgCH/qoGUgpCGaGFEraCBWANaDfZu6ybQOg60MGYjiFWsHrDJlIZotCJm8072oATrwG2NLEv2+jlHdda60dc15ntT3AbhN52bvAYNY/9fV6oqKRp/5jgYB+iYItfHA/fLrbH9B+H6MHAcoyEFx8hyf08tlWmI3NeFFOD5dOQnL695cTzw4njkJ5+/5NnxYKULTj5secFASMZ8Y+hkeKbweS589vI5d9+85nRaO4iIuvew6PflrDj7A8YPWnGdCXc2Ib95WTufZe9RsSm8B9L/7OVeQ1x6OOe/a8DYB1+9/0X1vwfq9NJZvDzvnTZs59j8o44q3DZxx8uVlbCVN8nZXrE4S+0Kf/ufNy539NU0BHIKXpgszlJh/ZHqJ8X18UMrVOkhPhyYUYp7UGysDo3E1KISBpkevCVIUIwyqSq6LJR5drThwnw6GWsIwvT8GS9/8zeZXnzG+NnnfFMq8fUt8zevqIdKkUgu8Oq0EsavYJ6J44gGQWMgjQPH5y9YSqGuK0WU2zVTyg1jEuZ54nYcmO9uWF4+52oaOQyJSKDGRBish5TrYROG2QRiCtaCpXMAokAr7HbWDBcEInhJWwvbOZgrCFptFofgzPZOCKzV6xbd4MNzNPvI/tYP7Tw8Zp3E+0Y9f9db3fsza4CaWt1odAULbFDy2or9QYKQs3EO5nXtv2+hwgCkFDhMAyUZf+EUlSlFUlCSVKYUGCNEhOeHiTkFhig8P4x89uzIZ1dXvLg68vx4sGcRgt+rRjZsXISNYBiUgyrX11e8eP6Mr25PyGndhQQ9nM250tqzaHzI+GErLtnc+PAIIOMcuLJJ47NIX3u/m+R900u99fAMHnm9+Stv0l+PPbJ90e8jF/DoyXQvcvugb3XWgVQfP6pZTRdchhebNU9L3duyOL4fpxakZkQXno0jJRnB7ZIrGo3QVaQ+3Omn8d6j5kJZrZWJOutFyRmtXvcDtJYbDWFoTP2RMVkRcIyRFAKxVuq6cBKYT/fcvnrF7c0Np9NMGiaO19d88Sf+Pn7zz/8Fps8+I1w/42///Od8e3+iauXl55+xVuG0FK6urri+vuJ0uudXv/ol//F//P/l5YsX/Ok/+2c5Ho58/qMfscwzz6cRKRmpKzPK13f3fP3tN/ztb37FTz//jM+ePeM3vviCz1885+owcTxeM44jZZkp80w+bb2fAkoMICQkFErGiXFNSAZnRW8NAwxfWICIUVzVTak0AuQYSERqNnh5KaDF1nMLc+EGXjeLHQSy9R1rXq8zeJwBnSo4vD6vq3dxtnPJeSWlyTzERZi9WFxVybk42a7l/+aTFYsHEW5vXlMn63MXRTgMA8+ujuj9RKyBQ6gMAUJZYYVjCnx+fSSmgZ/85m8y1pkoyhcvnvFbX3zG9TRxTIlDiowxWp8wv1oJEfG2PxpX6mKM9geB5/WKn/7Gb/Dl6zu+ubknd+DNuTFlBgBW7vARMuEHrrj2Iayd0tmHAtv38ohi4Fzm9/12FQgPlEdP+Jz9YOfGbK8/6LE8cri9qnpSh77rvnfrSBsoo+Ez2n3UTVnts2uXAJeAQlkIZXGqGKsVur25o6q1XzheHRmSoI3U/dP44FGLMcDXUo2uyZGEMcZObopYZ2hDbFnOaxgNyScIdc2c1pVXX3/tXZ0zQxqYpgO1KMerZ0iakGEkVSXf3Fp4qCrXIfJ8GHiWErd3d0gcOITIT7/4nFgyP/nsBXc3dyiV6TDx8urAZ5+9NLqieeHF1ZHjkJiiIHlmub3h7tV3fPflL/l7X33DL7/5lv/jF3/Ii+fPePnsOT/67DN+/PIFYxBSGtG0glZjzEJYVrsHsdi1G8nvRmslwRghqI4exEPWVSgN6oavJ93YR5oMMSALD7yDzWDeGiK2TgQdMedF4aVWwpAMVCLitE8Y4bFmUvToBHA4TBRVXt/edgb7q6sr7k53xtQB5JJZlpl1XXg2TdYsdF0gF66eXXFIgaiZQxIGIocYOQ6mhA7DwM9++lPWXIkx8eLlS56NEWpmDJaHPMTIIMHa4PhfaDcpYF0AWhpite7UIUTGYeA3f/Qj/u4vv+TwzXfcecO1s7BgDxVWlI8Da/2wFdfZ3yZo+787pXMp7LdQIWyvdkpJHn6+F9xnO3rg8n6YJXFWgNyPIeev37aPi/31BSdY3N5Pt9+a3ZuNALNd7/Z6u1Wb6g8CWguRynGwNgk1F9Y1O83PyDgOHTL/aXzkUEUaQMPRaoJ6yxBvpS54Gw0T4GkwTyvESF3N0l/u77i5uaEsC1qKw7AHhtHwdCGNSBqgVvL9neVLa4VSSTlzQJmz8eZpUCatvJgGRr3m2WBtQGJKBqcO1u4ixsCL44HPn13z/OqArDOvvx34TitfTwfm0z3LunJ3OnF7mnl1c8erm1vu7+95dpi4GhMThdQLia3gvYqQkq93955KyQSHERm5r9MLeWNDJHQPyZc52oiGnfVhq7A/n7ym06RHNKo2JpP9Y3IhrReeGJjh6P82ct2iSl4XJ/+F1SmeBG+AuVuLjUqqhehryVRRKMUKuqlIyUwxkFCGCEMMHA8Tz58/ZzpckbMVSF9fX3E1jWhZkTwzjSMJCyVTtVOCodpvh4gYwnDXcidgivj66sBxsk7g97PdA+kxQrvojwkP7sevheKCnWci23x7qNjo3sK2g+0Hj8zTh8fZf948lzec30eNM+W1ofveaxddQW1ZuDPCXZFtAbOFRfZh2I1Sy+poWqAwYgi1QZTnh4m63HmH4sLhcOBwPHAYjQvtk+76+BEa8EBbY0h7TqnlEi121p4yIsI0HRinyfIjJXOaT9y+fs13330LtRJD5JAG0jCiVVnX0tugaK0sNzfoaaa+esWSBuK88KwW1uLsCGROd3cctTCNiXAcuH72HEE4zTN1OUGpDKXw2Zj42Ref8ZMvviDVzFfTyJcBXv/qC778+kvu7iuneeG7V3egXxMFfv7ZZ/z45XN+9OIZP335nOshMAaAQgrmRQ5p6F2YS1nRIs6xmA3B1joxB2t5EkKkM/J7yEp1C0M2hn27jXtP61wK9FKEBnf3m2/vt99pNQnelq86t2SMgVQjuRZu7u4YpiOlwt3dHeI9rBpYAyzsWXIlBiAKtayUPFM0EWsllEwoK1IWjmMiVhgoDDHw8sVLfuM3fsKzFy85LUYuPY0jQQu6LuT7G4aSCaUQcrWmrWuhrEYNFvZr2CH6fhMQscaYzw4HrqaJaRiQee5gL5uzrXj7TMN/8Fr4QSuuPeLN3u8+vtgG2QTwuSpi++1T0vWJzd9wYsDjCu2RiOKD3z6Ew++Pt13Px2iDvaMoXXnZWbVbtvc0z8h/EfeijGT1EAIvrg/88vU3zKeZXE04WKGrkpfZINifxkeNWorzzxVnQfcQTLiYTbqbHrt5koaRq2eR4/HI1fHo+TFFsgEz1mVlOS2IGFy8qlpDSKddIq+mhKLw8jhwqpVTySRZOWmmqBIYuNLMMA6k43Nev35FRQkx8FIz6eYVWTMhCFcl85PDkfSn/xxfPnvOq5sbvv7uW7599Zr704nTfM93X33N6btv+WpI3P/kC/7kb/yIz59fM4wR1erEr/edHzE4KbAx4BszfEheAB8KdTXWjJASQQullRZsqsfC4L7Gyv7OypbXOgsfXiSHt1suTv3UWGpMwAdVNBeGNGJgdCElXx+ipGTKrFRrRDqf7hnGgShQlhmplSQwApMYk/sYIyHPxDJwFY25XaoQifzst36LP/Wn/zQ/+enPiIcr5tV6t4lWpKyQV3S+hvtb8v09+e6ePK+EdSUuG0JQWnjVOrZaR4blRBDz6p5dHXl2PHA1jeRvbggMaCh+Z0zB99rDj/S8ftiKy0cn2+UhuOFNumjzxc6Dhv1/T7hgwvnne7Fxjttj9/rdHtRm1F0e5fIc9mf9Jh3WXa6dxajsf7Hv39M12h6scnGEfZgxCqQo1swwF9ZlZV0WarH7EEVA80dZV5+GDW0tIkr2RpmOGe3dKpsX0Xj2DIUWQ0QG66gbvG3LdDway3ytsGYHNkS85BYwRF9pSfRaSKocUEKAIQSOJFaEq3FkzoW1KgUYp4lxmri+fsZ1svmUYuCLZ884DgOTViRXhmpw9ZeHA+HlZzwbJ67HkWNKvL654fWNUvNKQokoy/09d3e3HFLgODzrlv8GHjIYuWsJi1A1TaTWpVjCglZrYiqyITRVazfQrNxg52H5PrZpvyv+phl+tS/xLlXEOgyXHaoueS+sFAL3pYAaYm+cRuuaXZVpGin3J8+7mXdGMWZ38fBwDMIxDVxNg9XCxcRVChxTIFGRoiSBwzjw/Nkzrq6fMV0/Q6YryMXypesCuTU1xaD5y9qNFi0bnViDtfccebvnVS33pcb8fzxMHKfR1/uOCLrB4qt7Xp9Qhf56/yFd7rLZP/tJaH+XTstDNfe4z/Pw+21/jz8L7f+Vs0/O313uuefpdubzY+csfnDb5OI8z/JW5x+bjtod+yJf96halP1dMcWUvJC15MyyLMynmSoGVU5R0NJqaz6Njxm1FKpYHVNr6a79eXjuq+U+HFW4zDNCy5XQtiQOIyEUQyBKCwQZR2EHN5RsQs6F8ghuqBjvHsMIaUSHiaUqa63cLyuEyOF45IsvPufVlAgCU0pcjaM1mszGTxiwxoMyDByev2A9XvH59RVXKfDtOPBVUEpejN3CwRPz6cTdEPns+TUi1ro+tq67asSunU9QBEo1VKuCilBWb3IpGMEu5rDWqptM8P+oSO807M3D/P5tfdDsOBhgsMMs8LtpxltpBgXGBzmmgTEl6u0MYlRZ0+QNPwWmaeL+NNuT0up5ImfNNz3BEALPDxPPD0euppFnw8AUlENKxFrQupKmkavpwLPrZxyOR9I0weGIVEOmSghoEMimwGUYKI3lfwfdV69fky4bNilkuThBgjIOieM0cTwcoCvyLc/XlVczrD4CrvXDVlw7r+Mx5oy913AW+rrUXrttHznIIx887t9cRHDPttc3btNOQc4VzJm3I5cbP7GX9x1PKc+ejfVD7dFB/oexewe/v7lU1rWwrivT8ysOh4FxiMxr5QmN/mm8x9CSqboa+g16i5H9M+ltTkqh5MptrczzTHWUmpZKXszrkAZPXrMzchRXfMVBAJUYIWJWeYgDuSpLzpyqC6RSIBQGsTxbOiYkJa6urvjRy5ccYqSWFS2F4zgRVK1j8TiQXliS/9W333E63VNy5ngcuToM3P/oM27vf0xeZ/cws6HfUmQaEsM0Ml0dGceRcRyZDpbHU1oNVKF4W5SYNuUWYuzKSHCPLAiWsd0ZmOIk3njBdzMUdp2nt15g29ro9Vi+bmrBFCUmeVIITGng+nDgJit3a2GtmaIBDdnDg5b/UhmIKTGNVlwcgCSBFAKHFPnxi5f8+MUzrsaBKQYOFCiZOt9yPE786NkVP/nxF7y8vmIQgXWBySiuWp4MtcaatWTrLi6Ww65ayNnChdVDyjYEUrJr9UayYMp1SInrqyMvnl336xdXvk35tbquRgP1oeMHrbj2uav+UfuvPOKdPOpQXWx1kT86//YJ5fZgPBYqfLdxHgB85PzfdPxHldljikl2m/piPTtNufh7bJzBhSwx3goixVqTW+rF+/N88rg+fuxgxd1nvzAkWh2Xeuv6ku31nGbGYfRQT0Cx9h6tdb1zQXWl1wiUWwPFkIzkVWpFBUpRNJqS0pTIHmAM3iQwACXn7sQXP05TIJTS81HTcUKlUkpk1MrxauR5uWbNL8jrQs6LdSvOmSEFxpS4Ph44TAeG5Bx+x0MvkrUeXluRr3hfOAlbvtZIdZ2CSAQoXaiy6+21FwfbTFfPo0GHPOnFc/J1EzCvrVZ/VsXg5SlYF+RMJufKnAvLurKWwrwsFHUFI4FpGC2PFAIpKFMUrqeR3/jsJb/x8jlTCpTTiYMIBCWr8My7Fw8xoHmlLifK6Z44jHaK1eDs1gAsA3WTL17sDNXyhK2bM0AwBg1jvw9YLc321zzK6DB/CwTU3b310HMHa3zY+EErrk2sXigeLpTNI1vuARD7PM5DMb37nZx99MT4oxbQwpu8rctvOiXYZcfLy9/JBp1/3MncafKLY6l7Z609t+AhoB4mKN8bDPaP/TjHXfufURadNVL07RpUe1lWUhxcgEfzerAQWacycq+rVocMhEiMTpcUjcePaiG0IhZakjSiaSSoGtBAAhoCMQi1lM4laqGnAu79aAy9aHo8TFQqtSagklIEKhWrUcp5Ia+mvJK3uJ+GgZQGYgjEGKxRabLQYVUlZVdc2ho/NoDEjlTXFZeIOKxdzgTsgzzMPowucr4MpcXem5LTvtyCBKOH8maZovbZmAaWKiSyAWRKZlkzy7pY/ReCRONljCIMQRhRrobEs8OBL54/5/Pn1yRRbpcTUzD8bhwCz64OHKeBFLEmnPOJOt8Th8F79KlXWGOdkLWyYd59uatu1E3NYJIAMfWeY5vBZPMwBjFi3hAp4uRbZ2CWXWTgj63HBZxpk3cMFT6ugS5fv1lBvOl8HoYDn3hAjztDO9dqU5qPqeN3dP/ePNo16p5lo5HiXFTH7Vo/tHoYo3XC2kR4jsXCSo26JpvA+qS4Pnq0yGDveA/WqbdWVMoZrqbVdRUPbZVcyKVYw8JpQmMkh5XFvvSGk+1A/h8BgtKKcRQraI7DSNRAHA/E8UA4HCkKFWvpvnqNTwrC4XBFGUfmGNFaSENick+psX5MVwdCCqgWRJRhCHY8NSVaq4UK18XyXR0EEWP3ADQmaoioBNKQiGOb1573qxYipRbEASZBrObtHAZv9/dSsJ4LX5v/MbIJ9OjbtKhD2cLj0UOYxb2u4HnhGAy0MmpiGJRTPpFz5nSaWRdj1hiGwXLFQRhj5DoKL44Tn10f+eLZgedjRPPCzXwLY2KIwmGc+OJHn3lNVWJdTix3r0miRKp3VxYa26ioGsM+G8+jUj1nGNDcvC5McTX5pFYUL1KJYqHnGMwjHmKiqvTbo06IfBnW/tDxw1ZcDU3YlNP2xeNK57Ho1/cg+/eBhAdjn9x6izd2hhTc69a3xggfHm5LJG8fPpY/k/12/Ts5U/4PzlqaJ6fbjXerFQzOa+0QgoWGollfn8ZHDnUSWdmMY5OIxeXtVpMXRMyzkl0oqztiYkSpbRKoOvGrh3SNLgIVNT0RHKyB9a2KaSCERBhGgrO1qwRUhBoiuVbrBeeMHhmFOkCN7k15k8Xoxo8oYxiAaPOu5u4FGkOI5aqCK6qObosOzhgG4jCYBwBet+VGFs37qcQYqQ3sQfUSDY8yePiwVnmwnFsd4lag77EZV2INIKNqbVT2YUXjTQzdywpBCWLKsyxLZ9w4TBP3ayaGlRCs9UkQ651mNWvWYytRGQPWM0sqkmekrFyNgWkQxnHgeHXgRz/5MWMyxg6tlZpX1tMdESUmA2BITCBxZ6MUglRCUESq6ZlS0Go5LsWNBbHmMlakbGHG6qCeIEbzFmOE0pT5rmbOPeD96w8ZP2zF1cdOIz2W77rQVvL0i7N3Z18/jJT5bH1MaW1bmbWx/+4Nymt3jKavHiiyy+37uT3c4FJXbrUqO2gvnHld9rbdy913cvaLTR8LNE7u/SMIMXhPLiGFyPpJcX0Pw/MucKa8qqp5IpSdMdcQcft5IB0tFkNAYiQykoqVlAtCFUWr+P62GaN+nEb/E2MgRGdnt+QWjRgwErp7qMHh9TV1i1wC4Aztvns7Vxf5Vbdr3VMGbWUvprgMdGE1WY2KqCFxW2TASGsVNHivLa/vKtBIyLbQoXU96BX2ujf29Gx9iP9Q0daCq4cJt7yj/8wZ6WHHAg/dwxOEcUiWr4vehTpFAsY/WP0JBKxucoyBKQWSOC2TFq6mgRiFaRq4uj7y/OUL63Rcq3WeFqglk+cTmhtF2NgVkZUGtKJ2u5BuOLhnjO569fmc01JQCkr0usLar7Nttn+GT4Zh33P8oBXXJZDhcY1zucHjLlcPJz7IkfHIb76/0R7q+7eyfkqTvcNkuLhp3tikX3sjE91Cr+36g3+/We6lClmFokKMA0EitRTvNWTPZxwGlhDI73mFn8bF2Ieq8DnbvCN12qFWhOsC0uJZ25yujjIcnXC3NfkMcXHG8YFastfuFP+lzalSK5qzheNisryIFrQsiEbA+ktFJ7g1FlyhhMhwNue0RTvZda7CY0/0WGhT0kDH5TWlnCLDMHpnYGsj0pouqivrplx6uYhxlKHFabGq99DC+PZqta7GLd/bOyec5Q19tUhbaxdrrnmDu/etJ5XVbJkhZwrKVlSUwDCOHA8Ta87EGIghmXyryoJS8sqqleeHxPWYeHGcGIMSykoS5eVnz8i1MB4OPH/xnJeff04aDYhxen2DritaMiUvaPauzkNxpW+Kvymu0OeKFSovy8ywrsTs9Zi52l8p1GWhaoEgzKos80Jesz0+53EM7vHWhiisxbgXPyJ78INWXDu35MIj2j7Y2NMvUYZPKbV3Oehjv9+NbklcPJl3eVDde9ouaH9ml6/fvKM3HbDdnw3e2xa5JbAbQ4acWfG2cFuiO5BVWLNymjMSEoqwLItNfjPTvafPpw7I38/YhbaAXnvcBHrL+0ig5ymtJ4YVLTvx66qKDgMyGN1TCIGUBta8klfrFUUtXupgAryU7Fx6GQ2LG90VymrHi4E0joQyQDAQRxU5M3S6/9I9xC35rx5aCxKQuLFXRLVwlkUvzAuMjiZs8PZ6piw89yfmM27mao+Z95Y77UtV9f1scmOvmh6aujb/RbBom5rfUT3E0rYJIoTWuqRWRGLvgowa52IWJZbS28+IKkMaLIRbVq4OV5TTHfP9HS9+/DN+9PlLvnhxjZRMWWbSEHlxfc23NzcdUbmWSkojw2EiDCN1mdFlpdzfo+tqRMVV3UHy+18N1m6dmIXs90XdkHkAVGktV/BnnbO1Xclr70G2kRR7KHXHnPExSOMftuJ6IM4vPKq95/Xo7Lvcbv/lU99dHvdyPKG0Lr9+dK97xo6H+3/cKXtqWen5W/Zi45F9iDWd3CaTnKXWugPW7ptg0GPECk/nZaevtVv8QYQhxB46+DQ+Zrg1v3+mLmBDEM9bOI+cGBuC+8i0Jxv2RogLKyKEmAgObxdZyN7sMIRmG+5yZR2c455IrahURAMlePgsBPOmQujdf3eqg+ZhdfPKdufhvWgaOWzCUkSQaFD3LvJacfAufNjCm+YpYSGuPombZ0f33MRzbBtrRnD4uvfzUt1t615f93h3/zavTCrNT93Sv2YMNuRdwHJXoT8D9RIE9zJVGZKRVmvIJG/eGCg8uzpyGEfGGJGaOxhimiaG02x0VpLI2QyUJIE4HXorElGo4iS5Kn0ydUaLdr5hq98sXiKhtTiQw7xxzeZZhRAIw0D03xurCzul1WOmZyCXP7ahQhsXAvEsJ/OIsHyjIvoexxYSf8fxBqWyf71DougbfmVbv6vi0wdvN8/Vl6ov8tbZSAGJkYqw5MKr23ty2eLbxrDQWsPLJ8X1PQyLVO1Mi35fxXn6ogMywpmCMHndvKdAaLU8Ih34kIaBmAZGCZzSibCs1vOJ5nEpjVhVghj0PETvcNhg99YXy6Wjdb8aBqTlvNitCZHOX9tadoj5MF5K0byrBr4S0jShqpRaWNcFsBYusU9h7TeqeVrOb3sZmIGe/7JcjoRgoTK1ZpIihpaT3f+ie3bt3gt4HrdFExQ0EkIruDVV3VVdU/BYuUBsCs8VV2mtaoBpGDwsZwwj0/HAVTjw8vlzxmR1VBHheDxyfZw4TBNXV1cQE+N0ZJlX0mkhDBPT8YDEAcZKCImSTtRsrCjiHqKhKpth5AwqDgxZ15XVQ4VjKUgp6Jop8wyqpGFiur7i3j3ZoropLVrYdZvH3ev641rH9WD0nMxeoF96I81Ca++eUG7/dym4tuczZ3FDSvYv31fwX+ijdx66/eNz2nMoO1qcrsSgqlAL3K6ztboQ4frqyGEcOqFoSzh/Gh83DKJsreTbXAzgIS/7zDoCW6jX9NwGY04hEALEKBAiVlbkHlOpaKikceTq+hl6VBNY84m8rqzLjFYHY0hAwmB5kQbI8Llr3IDeVKR6cfMeNLFvwRKlOTW99c1Gxm6WX3CXr3lcAJHUgScWzobCSscGNLTaHlhR3U97UjbQz681lVS18CqNGLfi7VJwT2NfMoIjKw1Zp+61idK9FKESCWiAAeEwDsQ1Q1mhgdPVQorLYkohl8wkwmEaeH6cOIxjr417+fIlL69trYUwcHWVGI5Hnn/+BRIG5jmz6i0aLA8YgsA0QUiEbITNoTh0v6yoGqpSghLiALJSKSyL5T/rssBiBoPOJ/LpZCHWGAjjQL6DuRRO62oF4NpKNnAveQsR1o/wtuAHr7hc9TwQ7Gda4L30jTx49/Yfnz+Cx7fX3d/Tx97DTTYl/Kbt3/jdE1+3yvXLE9QzraU90dxyC3twAFh7cvUTzKVSik3i4/HI6An6VrfypnP9NN5t1FopUlwP7cNXHoRrYZwePtuGBAgqu9YoGzoRlKoFzYLIYsl6CaRhoLXsWLMT+/phIoEYk7FgxBays30h4goxeNlEyxdZmKB2b0S6IdQbYLj22VgWdqvZWTBAemsSG9pzsgT1+qENXIHuVt/e8m9t5XtU/eJ/+7CqhxRV3YPty0u7nmxcfP2et3NSK2GIIsaoLoFYca/LjI/qDRtDMM+uPZ/mfQYx70783zQMXF8/4+rqQIqRvBbGwxXH6+dcP/+cjJJRSlXWomiAiBCGCUkgRdE1w7JCznZB0RjgpVZj1I/RuCob80Wt6LravVtm8mo92fCWMWvOzOvKvK6stQFwdgprHyLsz+TDxg9ace311bnt0zZob88/72EwYTcBz7/90PFxdsTleDfF+eRP927X/sR2r7eF1pTU4xNtm3Bt/0KxRAOKmOLy/k7XV0cG5zOrTnHzSW19/Ki1UjDFZaz70nMinl3oOaj9OOurpgZ7VtkEtHqoD11RrcRhcqU0MIwTihCyWdFtDtQQIA3EafS8WluMJpBUlehhvd5YsYWNaqWqC0uMAFh3iraW3BWKuHY1MIr/z70+u97qRK9brqqDPfbKa2c2No+pFQvvmeG31kfQjOJ2bSEI1Sb9Du7t9UhKB7/0XNH+3iNe05jMENBK9JB6EENsChY+TCl2r0piRJxnMoh4DzXjZ7y+fsbhMIEqp/mOZ4drrp59xvXLL5jLymmZmdeFUgEVVCLTdDRvVYElUzmhrFAFSQ7OUCUMIxIHJOTOuC9a0WxF3GW2LswxQCtKPi0L97P9rbVS1QyX2jkK65kM+Rin6wetuN443klSPualvfvuH9z3HlvbfaSPbPfUHs+drQ88sw8Z+ujL/kG3fre6Hpq9GxJVIms2xnIJBu3VWg2YkRLpwvr/ND5s1FopWlv2xoUMZiU7crCF3ja4dpuSEXVZL61ANEQUMc5CMAQglvMpWkADaRw4jIl0GFnmmdb6Jg0DaTQS2FqLszFs57oV9G7JeZtGDRK993aacvHwZ9yaFCrNc6FTRIEJw9oonZzXr0HZY0yolN7RuIWltrIxvy8dKdeO7vt3D6vXeWHvg5yXrWhngtjeXwIOzFsytyqKQIpGdIxwSFZUPJTC/bqwqlBrZhoHptHKw3WFvJyYZOT5NCIUpjFydTwwHQ7OWFPIwOHF50wvPyc8e06qlWldCHlhOE6kw0QcR9LxaCHdojCvaA4oC1p9/gQLKQ5lZVhXSq6s9zNlWSjLTJ1PiATqMlM1Mx2OhCGRgW/v7vju7o5Xp5klF+OANCebombYXnq5Hzp+TRTXpZf1mIf15tDaBx7t0aGPvXvLkzpb9A+O8Paw4fuON57O5Xfdmj63XZUWQrEci7WYSKSYPNQhD3ocfhofM+z+11oRMeyaKoTQ8kGewwn7idLmX+08g7UUJLY80KYMxJWIOkgg50IdC8GBH+PhYII7BGdfkJa/t9ox7IRqLV2eB+fPaxOuFeJu4eedAuB8qohqh/n3ol82RShE8yTqNsksROn0TWiH1G/Hrz38GBx6XhvTvYccY0w9klVycf5G86pCCN1l6xRRbijsCXz9VnTvTtrrunkvKQSGGBlCgHXzQFMKPT+YTydiWRlT4NlxItRCFCtYTmnoodbheEW6viJeHZFpItRKiELKARlarVayuj4RO6Fc0TSgBRiFUB2VGoWynnq4sJRMXmYrXl5nK3vJ1qUgDoOHCQvzUrhfMvfzarktmoHvtWz92fUZ8I7z/uH4NVFcPh4I9k3Y7kOK32848PGbf/bp2cN6erxZsT6uzP4fG20huiCzpLuFQmKMNOnQcy+fxscP2WaQFdDWDdwQ1BB2QTDXij5FjNbLiXirUqUgJSMaHTXva0RBpTqc2ULBqsVChmEiDanXP4UYe1hZ3NMWMOJWO0M7j52XBFvorIUsTIFJVwJniqv9Gxq4Q52RHW9hEkwRivQcTO2ksK4gZLcn3UAB0oAYpk3Iu/5aNo83YoB9Lymn/TBvsG7b9Hu4yzvu65XUj78nrTXFFUg7607EWEm0WFuRZTlxBUwxcDUNhDyTgtMqpWhUXDEwHhPxMBGmCcYR0UqMYmTGIuZdt1yihIbqMcLcZN5m0EZ+jCuthETvgL3OlPkEy0yNFS2b4qoSWHLltJrSul9Mcamcz9lNDGzh5A8dP3DFtVNC8iaF5KEtYdd4b//dE+G499EN7/wM3u2BnfXm+qOPFb7TENl7W5vH5TPdW6Jb2wotxdBqKhA+9eP6XkYw4QK4AAWbT4VarZVIxWptei1O+23TcN7LK1eznEMDWNCg2eYtVT/GmheyCOspMR4OXWnFcdyQaupt3f184n4x1NI+BjYmeuvJ5KfG2SaUujH+9iUgcmZ8dsUDBr3PzfvxuVYVmne1W/NRwrb+lC3n5i1Q9gWyghUKl+w5t7Jd1z4FoGqEtJfgjLadPyVUrdVLqQZkigFnu08kh5FHEcY0UMhoMLb94yBcjYmrcSCEypgiQ4qIWKdmQmA6HIhTQoYAKRLjiK6RIIFS1o4clZwJabD5kxLhcEAHY8IImtElUEWRYbJc52AoRs0ZXWZ0nin1xLqulJKJ48CqcHt/4uvXd3z9+o7vbu4dI7m7D7v3HZvxEeOHrbiaQH+AKNy/3Wat7DeRR7Z5RDm8m77QC8dXd59un+wf1sNo3AON+ujYPf53PLszsfB+o6+6baHvj97TX1woMRHrxRQs7PKu1/ZpvHmEEIky0IuHPcxlo3XlFVpuJkjrO2UsG0YqKFtYzCdt9KLbltupPnM747+qCa55pojR/M0ixlfozQRDjD1MtiEebZ/9DGtTsi00B+yVkHtHrZj3rEjVQ4WhdS3FPX1f/8ELngOmmKq4UiqFjl5k+9NqSr6FBINIJ4LWvfLy0CHAqt5ws535rolny+X1gmnYvK0zJdcooOxsbY3YPcjLypILuSH7VBmCweanITImA6gMQ7T6yHHktK4WNA2h91LTmpFxNERvLax5sfMshZqz1/wJGiNhDDZdBoV1RrVAXojjRJomxnkyBKeqKb5SyMtKrcUMnmAUb0suvLq55+60spS6Kap+T7TLwO/DhP1hK65Hxt5/eoz/Tx559fZ9fojL83h48FFL40kdpG856huU19v02pP6bIvP77Wt9H/PD9FDPcgWigBvHhkgeIfkT5rro4d4G5mmuBoRrv3fHkwrYBXB6Ys859LCh21o64BsQlpaTnI72q77r+93Xf15W2ites0TIp1xPHhLm3aecjYn9p1wtSsgxeqmcGV31hxTtzCbhQR9hnbwic8sB09UCSC1Kydtyrwv4S121WmHLOa9LYnuPfm9CYJU5zDs53xeK6YOPmiNK4VdLyoBQ/WdC++GeBRn0SjF84q68QWm2BSXkfCKWpPWmAwSL85eoWoM/2Vd0Zx7OFX8vjalWmsldnCEGJ9kw6FUU2oSIyEZ435MxmWpbmyY52asozFZvqyUyrJmbk4z85ppzq8fwR/jPjx4aei///g1UFyy+1cefOwqbKd8LsKLl/L04S7ef+zjae+y7du+6Pt6nzN687Zt2T89Ni/rwZ7a+bg1beJT+v1UVXIpjia08Mf3CSz54zu2uds4+/rownirdeqevxoKL6gxfwdpCEQTmFIb1a1zz7nREzEknIpgxakGUii1ED0MZ9NSKMk5A4PVKpmnErtgrw4T7wLN2440pWYtvDY2C8RbeoTd+hZX3vuwoZ+rFShb6NLQa3RAxU4jdcV+dh+bgvQ11nt09QKtbTFLCFB8W90My1wyeTVOvxCtnY+1ObkQB0FMiVXvGO4GYUzJn5O9bzVdEiPPjgeeXR24Po4sdbH6rxgYp4G7+Z66GnhiubuDGEmHA+Px2O+JhVR9LlT3nGgtXTwf3ZKH3u7EctWmuCRE62C9roDXpAXjpaylcpoXXt3c8t3NDffL2guPOyClXf8jkZsPHb8GimsbLWxwLmkfl5gXKuyJb988Huqmh0+kb3P5lTaro0F+nz7jDup79Ns3nN1TE8Qt9keV17sqcvFjCI3iGrCFlx2GbKEQzlBjn8ZHjLM54LGFs1C4e1dyMYM9j1PyioZIiEbHJS1WWA1W3qiZOsGyHcD2EcTbyQsSIhAMkt48Jw9FWa7JPssO5NjPs17U61yEPWx3ptQ8BCmBmGIPIwbZeY1N2LLbeVtRatoqhHh2L7QJZ/Baq82rq067lHPm5vVrVi+0PV5d7yD9to8W5Kyqvd6qfy8eqG3eVIrgMPBaK7mqKay9TyJGjnw4TCCBeZlNMQiMEX7zx1/w+ctnHKaEzoGcV+7ubrm9uWG+P5FzQcLCMAzUFCnHIzU/Q4bR2qMM0b1zMxhUq+XrqjjIwnKboVYkWz6sGRpVzVioRcnZkI5FrTt2moyU+fb+nm9f3/D1t6+5PS1e8CzOtajsG0hqC0R/ZMzw10RxXQaiHi9GfrvV3/yzj/C2Lp/Gk5rr8si7wsfdwR//lfBgw77128/8jd7WJmG6JWtvt/0+vI8m7KrSwx1tP/KGq/g0PmD0nJF7HbLLDbHn/YNNkGO5Ja2E4J6X7vNQTt0kAKELY3BhD733V4eXe8hNesjPjbCdV9PzVP0nrrQa56HKtjTK1uCkhwoDaPX12Ky33fHa9tsr7QbS1oeLDkHv96yd/kVeyk+a7Czn50eQbeFceBLdsgyC1N25tfvSIhPqSqs6unHXTViwbsdVDYIfsALlMUZePr/meBiJAcZpIARj6n/16jvyanm6GAVdZ+o6UtcTmlcDXwQDS1VvSSL7+1tAs/fU8po4LYY4bcrLauFq91arF5RbOjSQa2VeM3enmbvT7PWc+8fUQwFb6LR/+uFy4QetuJ5SMG8S3U9HB9+8p0f3qRf/Pjm2h/d9jEbc+f4/bObm5Xl0MXX2yb7qv/3+PG8oZ3+5FNacWZaF1DXXFkz8NL6H0W5rezZePxX2YbYuwF2JaLFQT21gg4EaSvdsUhysIWOMvckjmBVem/KplZAiBCvTVWc5388JxZodGsmqW9qlnm1j3pPVMeGtVzbl0nSAWFE1FbJCjGgIlh9rHuFZGEL78WHjNwwhGMuDZqO0UmtkCaChksuGBAzBUMeth5ywKZ4Ox28dff1IewUaQrBQn4QHytUu0ZSW/TlAI4SdEIdxGBGJpkyWmSjKlCJffPaC4xBAM8+uj6Q4gFb+8A//kON0YEwD45jQ+R4dIvV0oC4n4jggYWSYJjIYMAMsNKxALrBmA96shnaUWuzPm0jmdWVZVlIIfg2t3MEsmbUWTsvKzf3MzWlhzmXnTe4ej251b48aDO85ftCKqw3p/3niy8sw25Na6AOUwT5MsfOAH4YRH/3R+fudh/O0Wr783Yf7hk/uUx7WpVjoaFcMerEwQwiUnFmXhXVdGOKF1f4pVPjxQ9naxLP955Krc3s+7nFJA6jvDSgLBeVSqKUSYyEGT8pHAyRQxVtaWF7rcDz245SSN6BIC885ciKGQAQT2F3xWb8p4xtsABNXNmp5tTabo5+rkdNC1YKIhaeMHd9g4K31hrjXGdqasTegpkQlCKKWu1qdJNacgeoCuvbysxgCL19+Rtkp7XVdttYedoNNUe3qxjZF5kqpeZBiBl3x3lT2pz2k3lCbKOQ1s67GCVmXhcMUeXZ14NlxImqmzJnD9RXHwxUhJL761VcspxNhKByOL4h5JS4n4nyP3r9Co0AMhGkkZpBSkc58a2Ab1hVxwl1qcQPCG4bmTC3WXyuOY+Nx9nC0si4z3y73/Orrr/n5l19zN6/k4pN0s50ADwXX5rXV7sl/6Pi1UFw29ta/f/KId3X25fc43iaW3+Yen3Ok7T9/837fRb297fePnpGfT8uhbN6X/Xdv9brosgVcai+KBFNaWvd9vj6NDx5nD3qnhFwJ7O2yHj70gtkYBXbw77M9aUPQeZNQB5ab8NkYDxp4ww65ee9Va88Zdeh5P77sOgAb0zrattvQdxK0X0qjbrKw6IWxtAvLtQsRF/zKtl66+SfOayiKirCUbEpF1VBxaqTDpdR+42L0MGM19GQPFrbiYwQJ2pVO793laISm8NpTqqrbZ34vjJm/esNF29eyLCzLyrqsBK0MceT51ZEpRVP40RpNDkMihIHD8UieF/MkEQZVYs7o6Z5yZ6zwGoSgV5ALwZKJvXuxLoshRYu9x3uCWcjQIO+1FOeOjD4vCiLJo7uVm9t7vnt9w7evXrOW6kzw4ha89DnE7vr7tH3/FdDHr5HisnHmsGyf7j545PUbXTYbu0j3W7fZPngorD9afL/xNC+/3HtFFxLrybDheWjQ/pFNGu4RXXtVq+pxcm1RBA8PqHPKfVJc38c4f8It5LJ5LmcLoHklbZ4H8WLbc8492c2NvaHUPGVhy521bVqeqoURe8gNOkTeLHRnAFS2fJns81attsy9QzWvp+XCtG3fPgsWrjQF6IrD55fg+bSm2FqkIMQeIjutmXVd0Fo5OtefYMS+7BVkE7YtNCbBap/aPTfUAup5q7C7762+zhTyprga7VH1v6Im/ItWSqnM88x8WqhL5hCVw5j4/PkzxiRICYQhGQFvNLqn62fPeF2+s/WmygBIydT7O+rtawJKpVp35RAJBFNO62oUU+uCLq04ueyKxZWaV/e4CrVmqg6WJ60FScaakmvl9e0t37664dtXN+TaigQ2j79FBvZKawNqfPj49VBcl8pKHn79PTtYbx57y+J78DXOVM6ZcPrw0e3VtkjfuG3zvs5/DyZkqshWw1KrM5fTF9RjVv6n8f7Dcih+71v0tVpLEokBs7ubVwIEIYbts9Dg7Lm64jEFEiV6j6zoNVjix1PUC/caAW2vzWqJ/mBceFocNbcuVnyOQbzPFWTox7W50QScUGWbJ5b+2oVLdqHQvK7mYSTLyQFQqx9Tu9JRzOBPQzIPKgilZJZ55v7ulrzMpM8/J3n9mSEUmyHb4ON27UECEg141I0FqntK5q3J4Fldv1+6Xyt+/hVlyZlVLXVXNVjbkVxZ12KciyqglYRyHBJfPL9iNHin9yEzsEUaR8YqyKvXlLwwn+64ujoS1Z4B84ni67IsmWGcrIdaLrCszoSxdM5BXPmra5qaV9blxDrfk5cFOUymCOtKIFJVWDO8ur23v7t7clW7dzuA0MO6z+1/H+Nz/Voorof66hFUIQ/fbp/JGzd5p/GUYNZHNrgM1bDzamATPH5GD8+pPfTzbx7f7unzk0c+bkJp//7x4dDr6gWOLdxQK1RtctN6CD2xh0/jfcf+me8Cz27hS7CaOfVwjQmNsBUGa3Shz5Zj0tahd2POaLVSIcTuyRkIrn0eNuQg9JCyCSr3gKqh82KIiNc1Sa/r2ilX95CktnnnoUpld064tyXWWqNYsW33/BWkNnFY+/1RsLqyFuKsagTCeSWvK3nN1q0bT4n5vaR7hpt3+FgN0mMtf7Q/I21ARlovL5FAVlN21lbS+tjlXMhetduAL2MMTFEYg3mKJqYaH+hATCMh2mdVYV6zoQjHgSFGNA6oRGqFUCqyFqtBL9X6b+VMXVc0L0bztUOCNo+rrCu5kelGa7fS4PS5FE6l8uruntf3J+7n1Tqgx5YL3+7f7o5d2Mgfbs3+WiguOBfacvbiofKSJ776oxu6PaNHlNZj4/L83vVUNz35SAjwIoFvm23BZmETHo+fULt3u7yDs3+3ya/OEScOqzbWhk/u1vcxWh5UoCPeWmhqH4npdUQVF24WamudkxsyrxWjtrqnLacpnTTZBBVb3VObAXsD5yKOrtVCX7VWaqwkBlJKG61Uu5ZH/raQtl5sd/7alGM4F4ztHKUHqQxJpzswSFc0DeodOy1Wu5RtTXiIstT9KfVxpriqbp+JNNatLR8ozsyv6gANU1zFATKlbKjKAByGyCFFhiDOPYmBZ5xfMoSEhNoV11IKkgbiOKHJyHMN4SjW5Zhi3nNVpBRHEi7UdUG1NMuEluMqOVPyasqtGCN9jAaCMVh/YV6U17f33N6fOC2rM37I7hk7ybFs97Pdk67UP3CEt29yPv7b//a/5Z/75/45fvaznyEi/Bf/xX9x9v2/+C/+iw8m4+/8zu+cbfP111/zV//qX+XFixd89tln/Cv/yr/Czc3NB1/EW4X/TjC/k8J6xFl7n+M/mONvUlZ9400oNUf7nSDvH6l8nwKFnN23livo1ng4+53WSlmswZxoscXRBIFT53yKFX78aMzsEsMmvGKEEFwobhb8uq7My8qy5l5bQxyI04Hp6prp6prxeCROE2Fwep9hQFKy/bVZ6C1NGiVT85CCN0UMIdJymSiEmBjGiWEY7bsQfR+Dh5H8GpwuquWjGjlzZ3roeS47j1oK2dvZxxgZhsG9qNpbmNi5uVcSjGDWQl6LowmVaZo4HI6M42RC1REhdk7ngrWHueQxu/NcSDSo++aJbt+XYh5KLpYfiuNAmoxVPVcLE+bV8kmiyhiFn37xGb/5xUteXh+IokQJpDQwDgeESHH2jiDJ7m0ckOMVHK/QYSJrIBelrIX1tJDvZ+ppQdeVOs+U+Z58umO5v2W9v2edT5RsHta6LuR1Ji8n8jIb92FHYBZyqSy5crcUfvHVt3z9+o5TUdIw9oLzdrM6d6MbuR3EIh8nD97b47q9veUf/of/Yf7lf/lf5i/9pb/06Da/8zu/w3/yn/wn/f00TWff/9W/+lf5+c9/zn/9X//XrOvKv/Qv/Uv8a//av8Z//p//5+97Ot2D2nsEPHj/mGB+J7XwlnFuHV56Fg+zW08/rM2Alkc+P3e3z97v3vZQx1Nnq48egnaEls3YLPsWy+GBMrfojfV2qnml5sUsQwXV2g3nukNSfRofN5oS2brI1l43pRjkGDFmgtrQbv65cdBVQlVUDeQQUvDeaUAzQ+pW22RzK3gEMaCtKFcs9KgVE2a4YFLvyaYjqspUDYSw8RXuQpLOjIHINscD3SvEw03qcPXq6D5jpI89OrCR4W60Ri222XM2alRXhGgdndXr3lLsSjrG6MXOjU9xQwLa8bWzXzRm+4aWVDaPtD8a6CCN3Kid/D7CZmQUz5PlbHRRUQsDlWOKXI0Dx3FijFYkTkjOG+i5os79CBoiTEfC8YhIy8e1qIizlxQDpuS7O+oyU5bZkIb4eQXnkXR6p7JYuLBRfwX3sqsqS668vl/49ube2TKqscp3RdWyWNLn1yZA3tMzeGS8t+L63d/9XX73d3/3jdtM08RPf/rTR7/7n//n/5n/8r/8L/nv//v/nn/0H/1HAfgP/oP/gH/2n/1n+ff+vX+Pn/3sZ+98Lo9e/qUCu/zinT69HBexkDdt+YSEfiIA9+TJyIPPz4/d9NV+n/KB2sEERNv/2/fRFZ8jyhpstosctY1a2KV+JILo07AhLvCtvkn9HhtDqgnMLVxVPQRltTNqIaZUQAIaCoN7QjEKrUWKuJBvOSqqOqM8binviGUlGIS9Bv98C+e1BIeoWsdmnycNDdhY46EZW+3g7JTcNlpoDwWVgIrVZm0KVrfwaTeULGTdQCRtLjZvrbU8oTW6bCAWTFkaz2CrO9rqj7riakW0NIOwPjDO+vx35WJK2gqVi24hwqYgA1bDNgiMUZhiYEyR5IpLG8NJ3/lutYZgjPDjZMpqXV0etEJsu4d5mVnme8o8o+tK2oXzNUZaX7MeKsyZiCmthg6tCmup3J0WbueF05rNeFJXXGd2drOW6d769zH+SHJcf+Nv/A1+8pOf8Pnnn/NP/VP/FP/Ov/Pv8KMf/QiAv/k3/yafffZZV1oAf/Ev/kVCCPx3/91/xz//z//zD/Y3zzPzPPf3r169shct0duG7D7ef3Dx8vxDuXjF++ip9x4PBbjNwMdCdk+p2u5keZjjvcbl5rbizSJtZ3QZy/TQSSMA3b5Xas3GFl0LyetMgrR8ilv7bQefxkeNphg2A3ajf2rPqXlatSp5WVndGylZKUVJw8AwFfQqMIyDddF1Tj8AqhK8g7U27p6meHb5ryawteVGhLPv24jQBXw/VR9NSG7Xd2E8+X6Ct0+hqudTdUe+y/ab5mW5wumAA99izdnWTgxEJ4hFMF49p7wSweiOaN5Qde7NakXIrrAa2XBrRU+/RotQqHsnuaH1RBBJ1Lp6eNDIade8UoutnSkEJklcqTIFSAJDCAwpoQSqRIaYCCkZ8KIEQ/WGQBgGmA5wOIArI3Hv2WSFGZh5ObHMJ8oyG2uGg21CSnYfVK3o+HRiPc2UZSGlxBATMVghe65wv2S+eX3Hzf2J2e+rGQMXcqzNiV1+do9M/dDxvSuu3/md3+Ev/aW/xJ/9s3+Wv/N3/g7/1r/1b/G7v/u7/M2/+TeJMfKLX/yCn/zkJ+cnkRJffPEFv/jFLx7d57/77/67/PW//tefPOYW1HrMB3vHkOB7eK/7eLc++HT3jVvB+tgml4dv6KmL14+eZ9uXXO70oVd29s2Z0PDQBRfFwd0S3p25C0xxn+pMwGgBLQiFIQVKisRkOZdikSuivPHSP413HX3Bu9CnCYHgXoLltzaGAkw4U1E9UavlIXKp1iAwREJUgij0EJ4fB1eHeaXmQqnFhG8IaFNMAeuiDBuNTzPJwYR5CwX6b7e5Le4pNe/xscvdwCKAew0egAqR0MJ3TbFi81aC9D5heV9DqMZ8oRKQJAZu8PtqxoCz0UtxL3QrMm772Dea3ASAbdevTaV7bW3/DZxRqrKuxVCAfllaC8v9HcOYiGPk5bMrXlxfcTWNbvSZhxs8f9c91modsNMwcHV97Yz0xmqyOlM9akhKzZmyLNzdvuZ0e0NZVkJVBgfNhFJJ7qWWkjnd3bGeTmjOHA5TLxtYc2UW5XbJfH1zy/1abJ17nnXnR/PYQ93m7P/NocK3jb/yV/5Kf/0P/oP/IP/QP/QP8ef//J/nb/yNv8Fv//Zvf9A+/81/89/kX//X//X+/tWrV/ypP/Wntg0ehNIeaqGPuU1dRzz2xf7fy8/PXr+b6Jb9K7+up879yfNqR9tbNCJnyeb9DjriSi48o0fim33CtSSrWoFiySujGNlnCMELLsUZtD8pru9jCK0OqtUcNSFu+R1V2ZQH7Vl5kWyp1nbDty9rpsRCHCpSoykh6IW7XQiFAFGhWiitASd60r3NT2ejUCdh7VOt7WvXu6u3XekoiHaFuv3Tp/9GImydtPc35Hxt6OXnO9Lbfk47oSm77Y3kwT5ppQPix2vKah/daMqr5b1qo7Laf99ChEiPWJTqXI6q1jokrOYdaSWIMsTAs+PE1XFiHFJfjyLBwpnSmnduCGARq5mbTyfmdWFeZpZ5wdC9ajVaHvo73d2RVys6bhRfwQ2K6oXIxZWcNeGEcRisZk6ErMpSK/dL5uZ0YqmV0rzu/WjCSba3l+NjlNcfORz+z/25P8ePf/xjfu/3fo/f/u3f5qc//Sm//OUvz7bJOfP1118/mRebpukBwGM/nvI5ngq1PWUJPP2bN4yzGIg+8vmDN0+Mx9B9Z2rsPc/tPVVFO/0W/tnJkHbkXfqCnl0pmbrO5PmeSazNQ4zRWh+oCdvUs1+fxseMEAIxJLRmSmt2JGbpB1XP/QQLEQUnm1V6l+TWDHIFltNMCNFh6tHynLJ7Tk3QO8ovxUhTkrQwz26eSGhNBqHVYVlTqdjryPwiNvJajzduesuVbotDwhYBUGhtcnYfeFgs9hKANowxJBLRznCuSKci604f9FYk7dcxpZ6fAvNaq1ZDV+5q2Eo1IZ9z7s0fGyt9bShDdfh7VXItvVcYEjhME6elMC+ZIQYOKXA1JT57bh7XYRpBjQDYDAiHwkfr3WWsNNuZf/Pll8x54eb2hmWevY6SblhoreiyMsbEmAYOV9ccDscOslrmE6UU8rKQ5xm0kmLkMB0IMVIR1gp3OfP6tPDN7b11bFbthfEPjOmdcd8Mh/6M/t+suP7gD/6Ar776it/6rd8C4B//x/9xvv32W/6H/+F/4B/5R/4RAP6b/+a/odbKP/aP/WMfdIwHDtf+/btK/Ec115t8msufN0u3/ffC2XpUj+h2lHae31Py8v3GpqUuYRTmjG3nuV2Ke1vrTFlPUFdjM3ChVnIr4gxICh81ST8NGxYZNgnQgDjdsBWxRoqe/FdV64YbQcRBAP6X14LwyuDXCCm5GHCFse2ZzXsRIBq8neZZtLq96h6gQ9273yF0AlpDF279sUDQ0EKf5nFsCqspsIpIwlsZ06NmmxTsHlwgeMiw9GNezjmjaWqkxBc9C8QppPxt8s6/KSXuyh1rznZtHVln0PBSirXx6cfbvFx2z6higAwD+wVitNzUNCSeHQ9Erbw4JD6/nvjs2RXHw8A4GERfQkRSQlJimCbSMKIK45DI68r9/R3LOhOGwbzZAIdowJsYhLwuLOtMXlekCsPxmsPxmusXn3E4HAGl5JVlmSmlsq4rpVbGYWBIiatn1xAiWZVV4du7ha9v7vj65palK+L+OBDYup43I6Xnueg58I+BbL234rq5ueH3fu/3+vvf//3f53/8H/9HvvjiC7744gv++l//6/zlv/yX+elPf8rf+Tt/h3/j3/g3+At/4S/wz/wz/wwA/8A/8A/wO7/zO/yr/+q/yn/0H/1HrOvKX/trf42/8lf+ynshCvt4kzyUN3/9IePJW/2ez2BvVLax17HvfN4X7uaTkcl30sH6UHnt0V8X56bVwoRmmQWGFMnOh1e0IlWIWml835/Gx43WPt26HBu6UMAQd7KFuTqqrqY+x86QcLUwn06EGBnSwOHqaD6xqpNGbIQ8ElrB8oYeBGgcg+J5MVM0mwRreS2tVpuk/pse9mu/7W5P2EKH1VWdNmXgJLmtHQetNpDzyMAuD9UDCLJB5mut1r4EOjhAMQi71d7aPcLD28iWK7OiXIXUOgbvGTN0Zz23+lXzDqVz91aQiIh5PrlWAzapEoIpoSEFhhgYUnDYf+jdqg3FudXUtVtt57Vyui9MHEmDeVOjU13FIAxBiAoLwjKvHYJfEfeyLdy35kx2sEgQYYiRcRyJMVHFIfxVuZ1nXp9m7pbV+ih3pdWQpbvX7bb0f/Zv/m/0uP7W3/pb/JP/5D/Z37fc07/wL/wL/If/4X/I//Q//U/8p//pf8q3337Lz372M/7pf/qf5t/+t//ts1Dff/af/Wf8tb/21/jt3/5tQgj85b/8l/n3//1//71P/lFn6uwmfdx46IT12XLmGe2VxduBMufuVz/GJULy8tjv4I3tF+/j37fA31vOfX/hT3qKak3lagYq45AYU2IJweh+arH8cQyP7eDT+IDRkXJaiTHZU4yRvC5G56Nea9NADGmzdtW9lpaPWeYTIkKKkevnzyxk56zoZ488urcc3PhQBY1ooAMnlLD1JWlWdoO+F+c1VDo442yuXzCIWwQ0b2m8bpkrjeHBlNaGRtzCllttk9VN2TrtHpJWqA4waehA/64pV1VjE8HzeCG0ejKllNK9uK2GbL+Gt3tiYVrjJ3R1RlADhFQvEF+r9cACZUiBFIQYIAYhenhVYlNarrhSghDNs8QUV62FOq8cppEhDBzGgWkarL1MEERG5hhJMbEur1nXTIwrSy4MDpNf1pV5Nq+MnEkhMIwj4zQZqa4IBVhq5dX9idenE/fOltEMlU1hnYMv9jWhbwSevcd4b8X1T/wT/8QbYYz/1X/1X711H1988cWHFRs/GHL215Ouj2mzHVLqXSOHj2+3U15v21NbDA8/Pt+dL/jubfnDfWrvH/LcDUj8xC+feJyXXB62rW4WZ81oWQlaTHGFyBgjQ4zcZ7Ps1lrI3tvo0/i4obX0Rn6xKRRVYOjCuxXqqjokOgihxi35Xi1cOM8n8rpwe/ua480Vx6srhsPk66RZMRauAyAUyEaoDAJpQEO08F/jIAzChszzORxGp+fZSfg+FTwBo81C8nWag7GV52zHsAvujSG1Fuvwi+5kUTtmoNbVYeqm4AFkBx5ov8nZPB4rMTAPr8Hei29nzO9WgKtihctdwV0+H8XBSHtXwwuY1WieCJGiMOfCUmpfYUkMfWvFvsbGH0IgOhM8aSCkgTSOpoyzGY6tp5jWShQYgnCIkaG1FXL6LVFrGBokuNd1YjjOhGGklsz97T3zslg7lSExTSNTSqRhMEWfIrnC63Xlm9sT393PzBUHjJjsDSL90QMbM4q/3qi1pN+bDx0/bK7CXVxNHnz4cLP3zh+9RTdd6p+37UrfsOEbzvqt337UeEyhtIWnD7dpzNjqHVLxbqk2aQNRzLJrVq7W4Errk+L66OGPpbVUt/qm6Iwlu2fkTOsNNi2loEkJnpOqobJmY1nPy8oyzwzDQBpS76hsO1LLY4kJQHHF0ENXKl1JqSMFxVwGRxPitVe6rSWL0/nlePGvyAaJFwdviHht1S7A1NjgxXdUO0W+h0wDEiu5rGiuDlwoHTV3qbysHUoTqokt67WFVWutHvYzZVoaatI9pfY/aYhO72sGWwuU1vW4KOS664DMJsKDKEnEva7QBYYqqLgCG0ZCGnrBf8lGEpy8vmqMkTFFDzsOqF/HWlf3hgIxjhQ1Q3KeF+L9Ca3mAUoIREkkKsbfa9eQS2FW4b4ot/PCTSs69no6oc2D3VQVN3vd+xTOzWDpz/HDxg9bcfVxeQPk4u8i5Pbob2w8DA++aZwnsh+Pqp2rt4fb+Ax9yhXcn+8jB9DHNn3rd2/WyNK32lu0+58r1EItq4UKtXrVvy261Crw1fZRPKTyaXzcaCS0LTwkzaNq+SE48/IbvZJ5W1ZTZVE9JS6RnLPxGi6LIeNqIe77bvVcWQMeNY/KWDfASF6p/q9gx2sKRwAt9Bl1FqVoprm9b/B7xR2wIHg8khYvwJGCUlv1YWFrRwIiiqopc8hOgeX3qYvN7V5utWdCqDtNQTtdZ4Pw+9zChZvigu71CV1peWCz78u8OCXX9lcpTSn1p6Xmcbnn0m6XBWPEenANIxIT2gqim+KKEQkWbhxSZEixA25a2xXzLGEYBkoVigrzPPuzMjb4EIRIICGEHVt8zplZlPus3MwLt/PKvbNltGfYCRR2oUIRA83s6/Gejoq93/iBK669X3oh+eUNN+d7c1fgMW3S499n27yD5L6M/+7W+FmYpV/qO4QrP3D05STnmMIQhEKlamZd7il5IZRM9GTuECMxBOZ5ZmBkGAdL+H5kq+5PowlGnwhNOHhbepOdVoqwnzi1VEpwxofuoRhqrpRKqSvLurJ6mw9wC7npmlJ63sgcIuM8RJzaQZpCgc1FaAItQPKGIQ56eBh6xtNVjgTs8l7O2TH8vK0WV/zF7ithE5bOZ4iY8pJSO4FusxERGFJiLU5IPM/W58r/9gpqazW/8T9qC71qU1Pe6bmUHZjFnpNWI+Fdc+V+WTktds+re7RRlRiVeDgyROuqIN2zjUgYCNFChe2CtRRqzgwhIOOAECy3NQwM40gcRlPIgISBZS0QMuNRKMzUZeW7V69YciZFIZBJJZuxKhZVqW60LMBtLnw7Z3713R1fvrrh1e1MNpLK7YbCmWcVHKBxNl/3n33E+GErLnnk38eE//dwo7onppw1iXu4xTvs5I3jiZO/WMMb4oqzL97lEHvvR7oCfOpc5ez7bkhrJecFLcYcHYNbeiE4QGBH3vlHo1v/+I2urEyoVcWZMmq3aK3tvFn9NXu+puRuSDVIMmwedS7ZapJqJezDjjvk3OZhuIUdqzM3eP1Wa2tfS0cmtg7I/WdtPreQY19Um9ek4BG7vQdZd+6HfW60UuZ99bCdh+okROKQGDAWCPOGHITRwoVqhL0K1FpY84qUQmnejisrdWOt1byV4rVYtdDYSwgN3t0il9U9Y7FoJhuIYyPc9XXloBlRsdYhzXNx5V2bl9ueWynUdaUsCzWvBuIYR4ZBGA8TaXSG9rgxbFQCoYJUdVb8iISZm9t7Tnd3BIEUlEMoxGgt9jwhgKqyaOU+G1vGNzd3vL5fuFsyuRkM7Tqc6LiFCDtiA8+btmcnH18e88NWXH3IxatHQAUfO94UQ3wnbfHmr9/tQT61E5tBD7690FA7Y/3dxs5R7Jfv4Sq0WudUNUs8Bk/OuuKy3zxS0/ZpfPjwvI80rwNjAe/slU05uEysamUJLV8DTfbv8KVhEzJ7p5623R6xB71mS6s3DhXxZqLFjyvWprnvJ27em4cUL4l4DcGHe2RsOS52LUu0nbH/x4WkeWkN1u7nG0y5x5TMj9utgz0qsAEKLKeku4JePBxbt+2CQdRLNWTj5m3RPd+msKvzOm6KazN2978JTSGp12r7cdqzsD+/Ty54qrNa5GVBSyUNiSCJ6TAwHo4kb1MTYqLlC61tV7EcdGoNQoVhSKzLYvcoKDW5J9keoZoNsVblVCp3a+HmtHBaMmuxVjmNyLf5DNtDOp+2/bH1ANkfY8W173mzDxU+vCUfocTepLAuNtlE9cU37yi1n0T9wbkSevTk3hw27EbeO479HWvCbrOC2zbGzpBiIHlRahRhdDYGxXjTaoifNNf3MIzuJ3VBCXhRbVMExs3X+AxbeLDRFbXuums2DyvEwBSPXF1fM04TaRisTokt3N3RhW5Vq9MI6Sre7dr/hsEU6E5JWa1t3DzEnDvQIQw79CFb/RlAqC64C3CheC5uiCkp3fJVDb0qIRBIpJaD0qb3jddxXZfO4NH6d5nurJTsEPNWYI10lB+4QVCyE/RLZxVRLV0BlwpFK6W252Zr1EKZgei1jYISqzCAEVQ7DL6KUBAi4p2jA1or690d96+NbzCgHK6vGaeRw7Mj49UVYbCeZlocYFKt8Nu8rGroxTgwjBMgfPvN1yzLjJa1R20rduyiprRuK7xeCq/mzLf3K3Op5m35PDGF1AHvmxy7COFu+bAPXAC78YNWXHtXdPehh0S292/e/iPG21wJfQdvQ4SHT/JpFbbB2t3L6koEzpqzPXS/zvb/+Kk84U723MhW+GkWozEphFo8vGHQ4XFIpBQpqiw5c0gfVyX/adhQD8SgQskb2WujGQK23IwL69oS89DbczQYeEiRNAwcnz3jcDwyjIOlovxIrbC0kebWWlz5efCnhRCbp6RbA1EDaVi4SmJEYvKIoHlDEuNmDJ2FIpugC6hsTBbazVTxMFwLS9bOjwimmEpeHQZuwJDgwArjJRIEU57FqZxaQXfzpCwcmC0/WLKhOFWdDX5X4iLna0ahhwEbOKPWSkgTou23gVqNyURLJvk5j0MkpbgL9VqYsLbQMErNmeV0MjqmUri+vubq+TXj8cBwfSQcDkbRJUJdM1IqoVSyLoRYCKVS1tLpwK6urliXmSEFlhkCxeu1LDy5KMzA6wLfzIWvT5nXS2atG9gqtjyrRwHO6rdkF/vSJp50U2QfIRJ+2IoLgL0y2l73ifXR+z+vgHryXu91xgNgxgc8ozee+Ka0ehiGc7316K9225/rqPOrO1NgZyirXagDPF/ggsDj8iKQYvAUhi92PmqOfho+PJcP7Fts1F5bhG61Sc14a2wTgnlIrR2HxEAaBqbDgWGcrKmiSFdy6otnHzasndrJ9tUjQzVAjdB6eEn1vmF+UjvrTS4vxhXXBudv62WbZwY3b+Z7299O6e0UdTteC4+KJ6W7V9CUijiDu7O82Ck5fN2pnIp7XU1x9bY+/rcvpNazC5T+SbufXSb1HbTzE4e0W4uSFipsBPv9nKtSamZdjEMwxsA0jYyHI8NhIk4HGEd6PkyFIBWlWJgwhAdKJcbAMCa0Dmhdodg5Z4QqkRWYUW5L5dWSeXVauFtWct3uxfZMt3jgvgC5Ka9tEm8v/1/NVfhHO3a9qextX3APwoPfk5P11GhraTMRHylQvPjkPBTz+PjY0367n7X7/rGJ9ITXKK6wqiPaUBA1qpyUBBoqSfnUSPJ7GtYc0shb13XtXHmN76IJXQvHyIXiYlMSYq0wDscjx+trBi9qzXXzpm0uRFSy14XZsfZNHgPRVqC2f9XyXrYXUzJeS9VAC+o5HZXiDTEvzBqtm1Lb57faJGsCXbcMqmjdclNsIA3V4piBBtXm7FjqIb/eb6u2vltGnFuqd5N2j67W83nc+o71HKJgIT2/jCrqhcy1d4JutrW08KOI54eNv7DnuFTd0GxgJ+NEXE8nUhCGw4Hj9RXxcLBeXL2vmhuTUYCCsamsNFb56HyL9pwtPKnDgOrEOlvjz1wViZGTCHeqfLvO/Opm5lev73h1d2IpBufv8mJnEPd7I8JWP3chQ9qLjxBuP2zFtQ/9nYUAd5aQyAdo9u/hzj7Y35uU074wb1O8jx39j1j/np2TvXjM2xSQSEgjGkfjXvNeR2AhIg82mSzTT3Vc38d4dXPHL5dbbm5esyyrKyFDEqboYb+jkaa2brdNUcVgobkQjFT3cDxyuLricDwSUzTBDCDW0j6IoCVAC3HJFjKrtZJipYaKxEgUE5hS1VkckrXSiIok88IkCjUX89JDa27YLB4Pdaq6xK87RaVbPdmupEJ3whcxxoYevooB1ELVRS2MLQIUL/6tluOa56V7V3Y0dSHseTiMAV4koGzIRTMMQm/f05eK80dWb/XRgBm1NaT0EGF2TsAQnPFfoueJo9VktRym5wDrLr98uDoyREfvOvV7j7Z4KBQPe1IFCgjGmiEDLHXdFGg09GXRgpSIhsSaM2upaIrcFOW7pfD3Xt/zh6/v+OrmnrsleyhR3PmWvj97MJwLqT8igfWDVlw9mCC7+/VHcqMeV2Sb/fUGxfS+AvuR8Oa7XtL3rRtcJtBUa7OcGiQ7xEQJ3u6gKCWwQ4S1hoeNJeCT5vrYcX8/8/p0z7pWyy06MGCaRoZhYBxGrq5McdVauLvBQAjFOvoOg9UojePIOB0YhsHqnTrSLdCaMIrXZmmMBK1oiUgUS/prIRclYK08kOxoRyuG7k0dpUANXVnZuAj1tc/a3y4EKC0UiG/vjSNp73fK7rJQvk3D3qjF82iKIQc7aIWLSIOAqCDqJMauOLRFDvy4IlvobwMe2LEsj1i8Tk5BA7kU68DsnIm1Woh3fx96HVrYFfTSQooBiWakxB0QJ9ZKqGo6vbHfW5ij/9XS7vkWzuuKJ4YNPIOwKpyKkrPyei28WgqvTis388L9msnOcGKXvOMh1b7j83vpGz8qwz5CJPygFVf3qvy1yj4ksH3/8PUbxqXF8Ngmu2TRJYrwjQJan3zzyCm++am+w2k+3M17KfWdf3UGammzNhDiiEqiaGQpC2WwmhEVb3SHR4/qJ4/r+xj388LdaWEcBw6Hg3HKDQPXV0fGcWQaJ6Zp8JChdcDVWyXrgoTAOE2M08TxcGA6HIxdwQVzI8ANjcy1UTlVg5SHWghroupKLZUlLyQGIqAZCM5TFyMEpz1yga8eRn5y+u3D5f31hdJyYawezjsLMbbJ5cJYdQOMtDYkjW3E5mTZCqrFiratdMwUm7hSqYGNXcM9qR729i4I2sOym2dUi1pBd6nGwK7CkgvrmrvSNuaTBlBpBd6N7y/0IvAWMgzB0IhDiN5OxgqnSQmiKa/WctzCsljOqqoZLqX6texuu3tnjekkK5wK3GZl1sy3S+HbeeXb+9kU12LtTkIMtMz2ZtLL7hHI+Wf+nwfi7Y9tqPBMWT0eKvwjG2+UxNvia8J7H+Ddc1Fs1sjDc97bo0+bLH9E1+lWWSsW7Oco1gpB4sB49Zz19jXrsnJb7nmOKaxTtdi+KTFhXnNnHPg0Pnz8yb/v7+PPTIHDOHY2C63FClejodJKzizziXmejb1kMCV3fX3N1dWxM2tYmGkXX6uOrLsw9uKQDJUnVkSal4V1npnXFUoGfKZnIQJhHBCih7qCM8b6Pl1IGtu8mAdw5jk1BcS5Amvfy/a6umK23UpXAqqVsq69QFjQDrAo/XztOLF3jgbU8jYWyitWlF2Kh0a1h/tK2XpvraUQvdBXwVGIphwtvGpQ+9JjiVYAXMW81jEEkoMzLoV6lwYKaUgM04E0DOZB+rMPazK0pgSHvme8M5ndNsPku+e1eZlqHVYsvBsTGgpZAq/nzHf3C9+eFm4k8839wtd3J/7gV1/yzasbTsuCAlGS1aC1WeKhzSBNPshOEu9k8uaYfrTY+kErrs5g8VgO68zrelyhPR4A5C3fP64sLvXYpqv0wednP9ov1rPxiHv9Vn97t8EDxfrGKjH/yVao6tJj9/N9rtA8rphG0uGaumbm+3tmNbDGglAk+PMRStks4E/jw8c4TRwOlgfJXjhanGKo1kJe1VpTLAs5r8ZmMiSGlBiG1CHILZezf8Qbw3dDnwVvg2XbSqzWGdhZI6IzwletxuBgOyHk7LVmxcACtboX4BEKrztrXAriSmMDKm3gjKacW56OGDA2PWBP3twAAB5ObB5M6xXX+m71bZytogE5qocgW+1Wzplc8haWbBNXdUPuihC9IWKQ0MOIzUCLDvdXCb0wGdSQfClSh4ExBEYRxiC9f5bQWPwbMlSIw0AcBissFow5vxREXXF5DdpmJT8c56b05ikVICssxZgxXs8rr04r35SVr27u+Pr2nle3d8zrQnGGnD0X4ZmZ0z/fhV+3fMN23EddsPcbP2jFtY3LkKAvkqdiqx98x96stN7mg33oeKvC6dvpGw50Dut/8/7Od3JWVLgLFUocSNMVZc0w3nDCCi5PFQqd/KWF3j8pro8cMRoqrAnI4n2dYgtblcL9/S3VIfHTODKmwXNZXqfkTCd4vyhFN5RZC3t169gUWAhqua6YiMkVV4rGNOHej8fliKVAybaPUAwqj1yE183j63miWjfl5aE63f11MEEQAi6kG+VSn1em9FqYUJ1BXb0NDO7kNRqjPZXVHnRSayHnleLnE+I+Byj9nA0V2BSX58F2TBsxJlAj1d0nEIxeKaApMYTAEKwVyTAkVwqtyNkNBmcACa642n1GjHVEYtqiTRdBjb6KXdtuhqmizmafq7LUyilXbubM6znz6rTy9Wnly9c3fHNzx839vfcN2+7BBoxrummvtHho6Pbx1Ov3Gz9oxaUeKvTpfiGWzz2rZmfobus/ghPiTHfoxRdPjN0cuNjZ2VYff358YHCx2QJtgah1Tc0IMl0xiHAQuP32S+7XW757fcecHcEWIoFggvLT+KixLAv3rEbkWkoPh+XVuuCu60KeF7PIURgG9pOyMYTbM1T3hoSqgjjLAkBQY7vQGLrHBdZyXUMipco4TazzzOph4FKrcf2tizFmxIKUCrH0zr3sFCTO8GBKUy3s6N5VrRuxrx049DCm7OZiY8FQVTS3wut65iHldW0nTxqShxP3QfiNcaP9Gb/hrqSg/0aIKdEOEELsyt4irwHB+BBjCtRSyH4/EHGuw2yK3gEaSCBghcdpGKz3FuL1eoFhmEiHA3EcPZ8VkBwh2Dlag0/pdI+yuzSt6sXOhbWYF7lWg+ZrreQC393PvL478dXtiT+8m/n65sRXdyd+/t1rvr294/Z0Mng87GrBNtl0Jtna3NqZEpx9t71pQK8PHT9oxXWe19rG95H5udzH28KKT+5FL95fDOkKYf+eDWIqT/x2f4LvOQO0xxXOj70v5NyjtC7y5X5Is8ZVAhoHZLoiXD1H54VFIjJOCGptxsv6R2Mo/DEbd7e3vLrPCMoQLWy3zjPrMtM6I0ttfdAqyzz3hpNDGqil0uDznbtQd/yAar23olodT2zWeQ8tOpo0RIZhoJZiSf9SDThRLGwYMKkkbPlRc962uh5RRRwsQSm07saAMWFU3y8KGq1Bowtc82wsi+rmq3PLN8/I8l7qNEtWwCxYbeGG6uuRNdWuAJtiEy8GlhBQiocam7KkN2gMrXmmNq/DqM9KtvqwXAqF4MdrPcD8vHdCJfjxQjQvLnrNVUzJjD7nX8SJgTfFasfrqEK154B7m8bdaKhBlYCKUhCyGv/gV7f3fP3qll98/Yr//ctv+Pr2nm9vZ749nTgtC0uu/XgtdLkfjxvd9PXeddnZb0ywPfa7dx0/bMXVRwsNspFZPrLVu/lZuu1EHlGBjyqMbdE8KDLeffK4ftmH4Nqryyf91pN+99ETC+1GXZ7vTjmdKar22QY4UYQqAZUIcSBMR2Q6ItOBNB6Qmmlhibexenwabx/zfOJOZ5IIOEBjmU/Mp3tQIzpOYVNKVi+UrcgUE2ibIjG0W7efW96pVKpYgr/nI6QJWS87l0iMyUhnQ2NN8bBbziDRkvexIBoRLaY4FDC1ZvVe2cEUOdPtNJGzMGFXRvj6dsG/tWjZVpfu1mE3CMNm2rcQa2N+32IwF+FD2YAG26LsJ2i1Wu4ZwhYqhD3LhXmhVZXqxfg9n9YLlncLW2QnClwphWCear8Dzar1/GOk5y3tVP3aCj30WtU4I6sYfVSRwKrKXCqvl4UvX9/xq+9e8/NvX/GH393w7d2JV/cz9zl3SqytIH13jtuJ91f9ki69q0fm8qXB/r7j10Rx8R434Xu2/B/zqPYS/x3G9+GNfB9X1S3OLgK0J7b3Pcaqw2qbvVsJFBUYjxxefMYXNbPO9yy3N+T51Pf5yef6uLEsM6f1jhSNj6/Wwnx/T14WbyuTkBR7x9mSs1n+0ZpG1myoOgmBcRy6xR6kheKAuInI3pqmPzjpQjXFRI0DNRZyWK1eqGZUYRALNSYwL9DST14ga5Z/yZm8WgPLZVmZDhMpGUBhy0/Vdkp2EkXNtaieu6qb0mqMG15GbWpX6IASY8BwzkE9w/XanNatK3F0UltEHIoefDtbA6UU8pq9QaOdhimp2ve1BzqVUr0Y2rZrirMGC9NWNXBHyYUcsxkfbAAIGlmuKqweIlS8meeFMtl1bi7VPL61KKvCooG7UrlZMq9PJ/7Pr7/hf/k//h6//OYVv/j6O3756o7TmplLofGQCAYMNeDONg3Oo0KXCq2ZQ+fpgS5ZPlJpwQ9ccXXS0T52Vknf5u1CXR/ZSN7px2cR3ncbun/ZrMOdW/0B40N+92jx5dkGnOlh4MFi78l5dXGhJlsyYrQwYCGOuCWdP40PH8MwMMpgUHCUGALH45EcQ/dAGsmuyTtl8RxPTFt+pxHQxhiJMTKOk3kgVaxOuOVH1GmZfKVZ5E17GK/WDYig3gHSvK6F7GZNiIP3hzKAQaOGah18q+fjaq3UUizEV7W7/uIL0bwsUC2OoFwdo2DKt4f/6r43V0Mjit8br+Wq2hGvzUjbPDEDZNjhPd/mLo0EIa9rp4Zq9U9NmbWlXdSZMwBCYJlPrFWNNLeHB82jslTjHm5fyaW4QrTt1zUTCQTfLqToBMbdX7Zr3inFrEpRIRO4WzOntXK/Zr68uecPv/2WL797xe///Of83V99zau7e17dzdws2ZSr7zGINaI84znsbrhfBue8P90Ml10+kt1vPA3xwON8z/GDVlz78S4Kyjb8wBvWhPf34to8/GhvzHSLhjdd08Mr3u/2fU5TH7zW8799GOXSA+sTcfcvBpqpblg07vJPHtfHjZQSQxjJ6xZWs35MeL6pONzctldVa3MSxL7DQ1Uldw9LJOyemxJK6T3VmjAXr4ciGiiH6tyASg8dGpO7exJ+LFNclZCS5c2Ch7jEjiViRk3a5ZPspKApH7uO2jsjdzBGrZ7DApE2F+v2vR+/keqagtgQhMYpuF134xOsfk+aWbknk/WT8cm8q1ui1W3te5q1z+k0UxvS1i6yrbCGdGzs/QbPh6zKnAvDmkneDFJrJSrEiIcR1f/vOUYPUeairEUN5r4Wbu4XXp8W/uBX3/D3vvyKX333Hf/HH37Fl69urCvzWoz1XaQrnX34dm9a79RTl6VNWW0fS/+35TXbnDwvu/mw8WuhuPTi36c3/ACl1S2kx7966pjNYnu4Lw/C+QJ44GU/Mt7qMT5ysg9OWx4PSJ6BMB7sdYP4NqGwj9F3RgE1FviSC0XVrMEU0SA9LPNJaX38GMeRowhlSCzzycI4KTGOg3lRubDMczd4Wj2SiFDEuAIbgSzeGj4m/PltgAWw4txa3COq1q5GxrjzuMwrkBCJUa35YMU69NaMFsjrQoir9fkaDxaWTAopmaKaRhKG1NtDtUWr7a8R7sq20tSLae1gXuAM3dsotYEf2MJZbm2uJTvM3e5PbTmglotyBW7tOYKjLulKGprOEi88lv4Z7HRaiKhYo8XWcLEqWADOnk4QU2gxuoKDrnBitdAeayHfzZTDwphhSHaNY1GGYSAlP7qHSFsB9LoW5qzMa+F+znx1u/Dldzf86rtX/P//19/n7335Jd/c3PD1zS2nWtw79MJhMUqpEMzg3IeJmxLDP9+3sNk23F4/9v3e6H2fdMrl+LVQXJfKqAnK/0cEpj6izN74kC4LezfH+/Hda/tV3/VDXfzwyt/ZG/XVpx5XN+u29HoXC5N4uwfvgtwYyDsyS1qXVchaGd7l2J/GW0etFYnw/Plz5iFR1tVyRPPaQ22l5DOhGmL0liUgXsBLLRCCd7ctaM7du7J6JLXaMAdCGN1QxHIWTSnYZ6phI6n1OW6ghU04VauaRWumZlc8aSAMwbnyjANx8z8aKMMFctNd0D9HoGqBXCgiRnGlm/JqykeCKZ7s+R5rbOmeUt1AE23dqbB5o0F2Qnb7XMWUTGjuYzvrlsdS+34tlSVnc4/E7mf2UC4KQwAhkYKh/JZSCaESVThV4e/+4pf8r3/w/2O4fsFPf/On/Inf+i1+84sfcTXBkJXAvIVe1T2tquSifHtz4ttXt3z16oaff/kdf/CHv+TnX37F7/3dv8d9ziy1smilNoUiFhsJuouytIuNcq6cdjHARrJ7VsfVlddOkvUQ4+6e/vENFT4t4rtz82D77Xs5e/H0uNzkEjn4tt9u/77pd+//ELe6nDcdeX/Nm9l41gBv73U9Fg7k3MPac7d1S72hmDx/sqwray6UWi25fv+a8C1ENnLW6GsiBmufPsZoPYk8DNMWQdxTBZnZ18lge5imOvO3toR5a6/erGCDLFdV5nmxVhYNZee3Iufi8HFDvpkAFg+nbY0bLTznTBM7mqRaihWLdti3NwD0/EojuY0hdsGZs3H/2Vrf0ehgIIHo+8p5ZVxnllqZppFWBFqKwciDCCGlzRJWg7SHaECJWmtnuyi1UAVjK193s1lB/JyKmAsVQ4tbSxe4VenUUaCsJRuggh1IwZWWqnl3IXrT0ehZ6RqoRfrcqh0l2OZSxQhjN8OuVg9ZakXEyXJbULCFCdF+bxSl1K2/Vr+xbX89rLh9Jtut2GxNn3c9nOmJqlZK0A01dQBFUfeyXAX7MRXZ5mU1pGZN3im81s7QlFX45vaen3/1Lf/L3/05N/UP+eIXX/HT//NX/Lk/8TN+9PIFL66veHF1RXLdWWtlzZUlF+6XlZ9/+S3fvLrlq+9u+NW3r/n5l1/xq2++5ZvbO7I4ViYABL90oRP09iiJfbYp7hZG3K3D/n5XvL4bPhXbHe1y6VOosI9zt/1pHbG7sXuN9GRI8H39tocHfpdHdOZtv+doc+DJn7/Dfms9n1RbGLDBance2E4xlNKaGlZnoi5WKHt/Yl0XaqkMUQivviLdfM1EYaAyCIwBjhGmGDkOiRfHA1NKjCmZMhOj1RnjwJAGJBqNVEiRmFpLhi2hPTuxaa7GN7e20CYQQzIPo1S+fv0tp3lmnhdXDpYruL+7Zxqn3rNoWWYEIaWB1YEEqpWr6yPJFVRTRKrKsqwcj+276Ig2C8Od5pnrZ8+4mq44TIeuGG/XW9a8gNDZFlpOYRoOTONAjJG7mzvm9Z55hWkYTGVUpTjcPQYDWiiDIfZyMW8rRghCLoU0jpa/qoWKkktGswn7FA3C3jxqc2oUGQaiK67SkXuWb+teXV4hmxFRPFfTJqXW7N6IMdpbx18xqZnVvL8u9OyYG1z9HBhQS95waqo7z19bG6otPCg2m9d1pTjv4LbANlBRV9u775r32HJhEk2BhpgIpVg7l7KxgYhYcTG1KeyGLrTFp0r3IU2ROtdgU2TuoTWltSj88pvv+N//8Gv+l7/3K37/q1ekYeD59ZG//0//Kf7Mb/2MP/EbP+bP/OynHKfBAS2VeS3czTPfvL7j9//gF3zz+pZXt/d8d3fim1c3vLq7465kKxHwHmUi7RouzPou9i4V0RYy3BhX2PgWZftdh9BfmPr7GsIPHT9oxbWJ2keGPNyup0NVHhHmT2qudzuXLcp2Hhp848PZtbF+cPJPnMfHnebD3e1OdWvbcK68Nut5l/jW8x0YUi0b6zXVa3wihGChphCtyL9anL8FhHKFFCxHkrWS1Mo9jYPAnlnRStBK0J31rSb0TuvquYHKvK69lYQBREADaLVEd6nmHeRamZeF+9M9L1684DBNpGQcgMFDGbVUpnEkiheCAjWaB3U1je4BgmUHbBGPKVqRrOeR1MNCVZXjYeI4jhyGgdH7Z8HAFAP3d3fc3d3y6psvubp+xuFwZJoOBriolRgCLz/7jGU+mvB2+qYmGBr5qy7Ks2fPSGlgrJWbmxtyydZPEKj3JnBqAzO0kJuAU8MSkd5FOYRA1OjgjIo4OEC1UrOFIUUExtEAFuOIpIH5/s7YIdyLWJeFejqx5Mzh6prpeEUaQR0eH1Jy5Ck+l0o/jpVbuRFVsk18n/sN3WfLYeetBlPAOa+sXgLQJHOrrcol9/VafV/N+xIv+A0SoAaie+At3BUkQpLuxalHMCRYT7IQDGkZU4XcQDHVPb+8rTHMYMylkhWytOhC4uffveYP7+64i4m7EMhL5uv1hl+8+tv8rb/9v3E9DvzWFy/5/MVzJjdI7k8nTkvmbs7cz9Y3SyVwWlZO68pSs4f9eFR+ODnX418+JW92ntfbLW+vFfwUKvShT7w+8/u5uPnvo+332sIV3+7jllT+kPHGX8lbFJjs3/DotibCvSX7oxPlEQ+x5blcQW0orb4BDdmFB2tKaYzaeatVcYSURjy8F4gBolYiFa15Mz485NZyBUZwasIoqno3WtCiRFFEA1RhXmYaaUCDIBsyytFyCJICEiNaKpqLCSVvvGihQbOSY2DrDE9liIP3TKoELGwWY2SIoaO/UCWMjopThw97KLMxVFSF4zQxpkjEwAcY25LtaxyoeeQ0DEblVDKqhWH0flmyhfpa+HCZTzYFYiQFE6IlZ5bFvMgQAuM0eg8oV0LJ8ztqnlo3ssRCbU6A0T3L6IwVVeuWm2lh46rEYCFKlQAxee2WGCF5McVd5hnzOuzc8ALpgxh5rN03Bz80tnijgaDBFrQR56o67J6uuEOQ3bRseZnzflt9afizbAbjFh7Urty3fWhvU9IiuC3igLjHGUIXwrW27+kGQV8rbT0U92SlGXMb8rCqoXDXCvOy8uXNLd/dn1jt1Ci+v/tshtf9srKWwlev7xiSedxrKQarN9PR6ryCstRC9jCqWwc0AdJ6jsnuNr197LyrR757p6H9Px80fviK61K2718/qrDa+zcphKcUweXO9OLev/lBXH77hG1zPt62wc5yeWp/Tyut/ZnsPMSdl7V9vh1PmzLT7TuziDcKoA49rgVVm2YmaBKRSqgFLdlYBbwNhkprI1SJGvpBTTGZJV5V0SwQLC+0rKt7V4HS5Z/R/VjEy3I/IUZKw3WFQBoMyZZi9LBb9ZCHW8JqAAUL6RkkfHAEXwpCdh44UaXBFkQ8vNks7pi6F3ucPASJdoLYliObUkLHkeM09WaDqsowjm50bPk3C0FGdJ7t2mL0vloruVaWZWEYB5IkhnGk5aZCjKTRYDJaDNDAziAxD7Z6D6e6u/ceUitly10B6sCMXhwcAkbxZIXH1fkUs0OsBcjrDPMJrZU0jnY/os+jumeIbdWZ21y0c6pbAKN5OQ5r36ZuRaucnSv9++16m4dkwI/NA1L/roUhz1G39r8gFiIOuuXP9oHGM0DHxZpqYTabC3alFrIMZAKlKvf3M9/c3PHqNLO44dNg6k1B5looN3e8up8NBeis/iEm4jCQBudNxKIN20o+N0BbEmoTD+9Gh6A+L98oVnay+aHPoOhH1Bb98BXXU0NbwPviY//Pm3TXex7o0U/cNn2nPeyVyv8TnH7SEu+7sa/Nqq3QuEHjG5IQ6Lxrcn7uxck9SymIjD38psEVSRXWdWathVSDMQtQCYqFWxBi0B7iEefck9raUdC9mcYmVPAcQjWanZwNCj6mgZwLy7JaH6kQmA4Hrg4HxpQ6aW1MiSjBYMWsaLZCX2plCMIhJY7jCGLFvwNuPWPCL4XAYZoYxpFxHN0TtRBRMu2IUfJZDg4RpmlCgHFMvHzxnIqxgcdhZJgmtBrzwv3phKym6IZkCjEOA6M3lFyXGbm/p+QVFQsfxhS5fnbdARolF4qzpacUWRZjlx/S0EEgpeYubwwlV0EFqcKyLj00NwWxui6nJNqDDmIaiaOdZ5yOlHUhrzPL3S3runA/n5DbG1SVsU6kYUBroznaPIJWhtHC1M2IeHrNXYS3wYEL+3yWe8PSQtE237StQQ975VJZ19WUjbPAg7gxYVyCZVl7nZaKK0MVltNs9FqYQTMlA/NQNyZ+WzuQc0XUPS0PZf/i1Q3fzQu3S+Z2XroSRLxDQIjeUkV6bgy1Z5pCJMaBKl4/qdUQlkqvhesGtwgbhYO8oyV9eePf9Qfnkk0/5Fi78YNWXJf9YDYVf/753prYj6f8qse+7693N3znjzy5gz5P3rihPHj5MEioZ97VmxzGh19fvNsryieUlu1rs1RbQqCFUlrcvhVNqrYcmZ1DDAZQqIgpgiAUUUpRikCt2QAPWkhRWEumxkARJaiRphqZVLt30sNdpRZfZyZ81lxYy8ppzWZjihDTYOGXqqx39yhtkWt3JCvKumbUmxIGIESrsRlTtGJPEauZiS6IRa3XFRgoIiVTntU+r8OAaCJFI6JVlNaDyurfrJh2dTRgjdEg4WqzNsVISoN7JAOkQPSw1bIsVAehaFULW06TUUBVA2PEFH3uWPGxihDV6n6aIaG1GAv5wJknEEJg3XHTxRgtHCrVX3ueplYjew3WKDQOg3u5wbzQYJ5XUWBIhGAhUQkQl6HnnizMq0xoR2NS23y8/LMZ2RBwFrLbef+7yd/mIWd7aMpsXyS8zXUT7lvkogGPaq3Oim/PJ0jshLgiuRt2uYWlg3R7WXzdhBBIIcIoxFL7Gs5ehlAVMjAX5VQK393fM9fKXAqneQHoSNvBw8ChkfnWtla2hplVK1HiLly5IWL3nqBKRSV2YEbYoQIfDVI9+g0PRNP+c/vJ48LqXQ37x8YPWnFt401i2j/r8exeAcVbTYxHnoZe/Hv5+mE88A2P5wnN9/hzfiJsebbxLqyhbV9PRK8f0aQ7W/cs/PJgcz23bFuX2I1he48Gs/yLptDPrrVer97Qr1Pe6Ka0mld1xi3nwrSoJ9LFwixrLsxr5rRk88xCREKj0fFEvOz5O6SfN17/pLWQJKBSu4DIasCIaRwZHH4fgVxKJ5lNMZlCpFKKdoMjBjHuQK/9aTmoUqULtQafDghIcACLEdgGDzXigJGhbIK0gQJSCMRhsEhdjIRkNUEmSMyrq7W6cUIXarUJ05QARwG6EdieqZ2LceiJrwPFCspzKYRSiA6EMSFoz6LQ2p9YnZiGgIgrJVET7Itwurvv+ymleE1YC2nvAUE75eVeffOcmgViMPiNiWKfc7Y51IjTdWd0thAd3qm49Svb9tGUneW6TBls9UqthsuOW7xGDB6CrQTz8DT4KvOwX2n1jxhZ9VyMluluXlkdtLGuuSP4gpgCDDuqKW3rcffs8LC330laqLJblZvvuTtDN/gfBqnOrqN/19a/bPLt3EF4Wil9HzGlXwPF9fRteLcb9Ijyeosr9uCR6DZpzibK2S/0/NVTz/XRY7/Zy/rocanEHijfh2/PIK0eyunJa7CmeAS0Kqdl5mqyGqaUACdjFQnEMFj7cAmGJuzKy85LSyWEzKgJJYBsymzfTPF0WilAigkJyRCEuZiwByRKT4qLOL1P8RzFaj2uiNFaqUcT6klgHAaur47O1mBCIUlkGkaGYdjx1cGSCtPhwDBOpJBMgYnloWIwVu7W3yq5Qktp4HA4oAhDKRRAQ0QVwjB23ry8rqRxsLDougJqVEqufNIwMpmrYP2kqjJOE0oDIuAhVfcwxMJe4zRxur8HVXKtrB5eTWIhy+LMDwQDuOAErCrGNm4lBo6edIt/iEblBKBrAQlIshaQVa1vV8s7tsaM+ym4n1MP5mcPSTeOzNbS5Pz3e5uwFefu6ZsMjOIKOwRCNDh7UwIhRGJoTa5k+9dDhsaa7m1IamC9X5FossT6dJlH3dk1VKneIkRC4yn0YGKMkBK3i9Ey3a0rp5xZSvVcqymsFBMxbNi/vfG4ZwwEet5ub7ZKU/vdqD2PUV0azA+jPrt73L7rwmybV80rvtzB/im9WbW9ffzAFdfZo3r41SNj0wv7O7p5Vu2BnKmzyzv+lrGzEZ/+sr0ROsLprfmttziIb54Jj//4/HT2Ctct9933bY5u3Yybnbv7XgSRaIvX+wAFNlDBOEXIYuuVyVqfiLCWwlrMsoyAOtlq977aWYmdVy2FJRdyNuqhGC00STDC2ft5sTwSllNb19nqvXJhHKxWbBgn8jxTVsv9aDRWbnV0m4hgkAM6O4gAYxoY08g4DCgWKpMQuQpCGsatcWIzaFzpCe61eQPCJnCqmqAf0kCS2JVECLEXL1uuUKxmLHqzQ0A98mQe1MDtzWtqtZ5dx+Ox5yVLKSzLTBDheDwSY+oeVkqJZZ5Zl4U1F1JKuzm8eTISDLqegJCs827BlHFnVimVNVu7j2EYkDQaahCFqKgEKsG7KQ/EIe3Y1+mKRFv4uZTmoPgU9Rqplm/1OerTAlWDvDep3K7BoB3bWqN7bpsi7D8A9ziVomZkVUCqEkN39HY1hIa6bJ5zr3/EclJm71TWdUGiecjq5RvqbVHmXLg9zdzNCwWsSD6v/dnKLoJhy3Srn9RqBMhdkbmSDmeaSHpaYANV9RvUVnxbZDTd0/TPpczYe1zsftd+uM9oPJXd+JhWRz9wxeXjDNyw//xDduax6u3tw7KvfQD9/MVbdn1hGe5eXwYXHrd3tvdN1+6iH2868CP7engS+tjnb7q0nYa2+erKV8SEdwt9uaywUJV11RWskFiKgpFaGLBCTdDYisWV5/a/dhuahW/HFqJAbSExVcqafT+ACvO8sCyrtbp//hxNhsAS7yTbhFM/drdPcfqrVrcZIOIFu97gUGJnQE9pMKRbF7TbY7eQj+Ww0FaiEP0ZCiEO1tHWFT7Ol9fzME3xOblqz096Eem+I7C4p2cIudprwoIrSGmGQa1dwFXdPBC8tYay8ehp806Sd0hGN0YKNiW3rLmznZuR4+zyaN+HXSNd8WzP1u+7e4fV/Gx/JufAi81mla65VBoxrr2pbIrGBGq7NsyDlm2bvu+wY4Tw+xJU0UgPN1pEzhnd3XjqS0Y9dF633hUt5NiqzZqBpAJFhXk1Q2wtdp9XzyVuLCz7EOQWGmzW5P78m4HZ5sF5iO8N6/nBeMTQbRP6ibzVdhB54u1uNf+xVlw7h0vOX+w2eOwmb3fzUS/rke3s3f69PpwI+/dvUFSbX7ObkM37esdh88cU7X6vb/PcmqXff7PTwxtmazvb83DDw4vZvt8prWSw3GEcOIQBVbV+UrqSqCSBIUUn87S7WtSrd8TzVB5aM2Fk+Zni4AGQLnRjsLYWpRTLZbkWSt49VhFuX99yfzqxrJnj8ZohGadbUawZZoiUouDeItBzb2suBMU705q3FMRCoaUUQlWkbtZmF75nLquHKpMwDBMhJGo1frisoBq64mrPoZUs2fECBBNEaRgoee0eE3Vn2UogRvEi2EhtAq8/c3HWC8g1d9qrECy3Nox232JK3nzQFM/aFFQQYjBvK+dC0QwhkIbRcy+R+9PcmVSG2Lr5Bg5TsvNLibws3Vu2CFzYSF3FORFLm2htdZ5Pxp6XYbtGtJBr2RkgVlxdfc4Ezzu2+9saQqo/a9v39tumHKpUoqQzhVFr9X5ii807z3sZ17AVG/f55edfxUAQhIik5N6gcHs6MedMVqPqWrLVQw4pYc03d6tv5yW9i4XZLmevRPd3di89hJ0n1N2u9n1TmE94S01j9mexM0q0b/C2032n8QNXXHL+3/cQ+pfjDT4JezVz+ekexLAzgDZLUre/J3f7Uef22PabYnqbcfRgDXT54EJBLv72S+hMeYlbh5GigsSBKoFcKzIm0iCkoKx5oWqmBiFFyxOF7joKKokqybrwyhaoaon0ECKHgwlZCYG1APPCus5kFyAOF7D+USIUFabxgBKQsLIuK/cIpShDjMQ0oVW4u7sjhJUyKGMIiPMfqrGqMqZETVYfU3QlSHVEI8RYrBh4qYYSdIRf8lxOGkaaZVwRE64V0jCYFR4ipbgYTuaVTccDBl4pzPcDyzJTiwFGdLCarBAC63KyJoQ5O92UPat5WcjL4sXLofd/urm5ZRyGM08MhWEYjRbK4fMSo4EKfCJlLxgHo+JacmZxmq1pOjAMA8MwEONAkErFW9eXSixCjEIKhvhM40jNK7mshjYchj6T8PkrDWXYldQGprBNneephZRVt3on93pEZANcYAYBTrtUaqsLa0jGnWLADLA0DG5gmHIvtbGwW/4rxEQaR+bTvBXJ+zmqbB6axEgcBtaK5+QqYRiIIVFUef3qhlWMbHdeV2YP20Krj9uZh8HKQvZLdr/Ez83xN49tyZsRdfbbndg7l1/br/ZHOC/4FlqXacS7CjQ5+JFKC37wimsbcvZiMy8+XJWdq6tuo7h7/9h22/tL3+ojntZuZl4EMe1I2gJaT5xDX/TbxGo9itqQBxOT3S3c/3f3tcfBu0ILoee1pFmUzQplFyBQg1YPyVFtEry42M4jVqOBKkoneFUt/VaIW/yKkEqlaDavSwzwYOzcHpJxpGPOhrJKMcEYKEVZlmy1Q5MVE2eFtSj3a6FUyDFAXolBKEmpeWUIkTllYgwMqRJDpORKqurXHolD7Yi8YRypk4Ak4hDds/F7bcVfSEjtwhBJfr9MwWhtnlBgmo5QlYzx9bW6oRCEGiJVavekg7Oi53XLg+yfXy2FVaH1zirVmiL2VvE7ZbXlO8QaOVZ7juYdBUJIaFkNXViqoTlz2dgiqjFg1GItPEjRm4sGpAra4e9+jC6fZctHNXeyxcWbJ9rz0t4k0gWjhOiCfTN4GgVYdcuy7tZCCBGta/emamktTtqD2iDsLYe2rquHYoMZH8t6tsq3dWFrQ9RCgMVzUKqwViUk7UAX9bDuaVnIrVFnbGbiPu6xDwHK2Vq/eLF7L5vn1Z20DVB2KbH23lkrFG7hyEeHnv/S9rt7vfv7PsYPWnG1QMEbN3jXsb+fcg4XVS7c54ea6pE3jzygneW3bfM0q8XZdNL2+3Pv7yxUeDkpRCzUtn3Qd7bvq/P4XNo82H1IBtkERghCqMZSEVwA9ERyiMY/FyKKIwAd/j5ORw5jYhoG8poN3ZcLGgIhVEJWcjFFZPDu2gWpiBhzBMKQKutajGk+BKZxYF4zdfX6r2Kgi2VerO5JAsM0cnc6OVCjggTyaiCPU1HKvDJLYQhCXWdSEOZhoMwnoljL+mkcmdJIitH2uyS/9kgIq9f5RMZDZcqgmkij1aDhRoO1GBGIVgAtGEcdEpyYtxDCSkqmuMZhouZs4a1SutCKEhliojonX5PxLXTW4fM9T2Z/67I4oMJYCoMTCzfofGsRYtRGNhekBCqm6BJidWYhWajTmUtYC+s8nzGR4O1voKJDQpMZLr1NSFNIezdeMJCKSEs52oVVWwNV6SHmqub5dhsvRaSIM91vRo+yQciLlwlELz+otVKzUSa1/FLrO9eURFNspVSWdSUpzlwyGAKzVlOY2hSie4QhejgY74RsqNbTsjJOIO6V43mwe5+fLfd5tiYf+Vd27ztz++5WPljTXeH7f7sA2EzjFt7bAzpaiPSBGf6ULvP91lqpwVumfE8K7AetuDYTYvewti/P/nl0nOmAvV98sZsnvO59CHB7uJw5WY/5Qn3KPNRLF7bPw1M9/+QtmrmF33bW5ZtGFxC7bZu1/Zjdt706X1whRA8bjazjSKknFyyZkUII3s13GKjZl7F7PGB5jzEZVD4GIdFYtC1E4+2lulBLKTAxcIwD47KyLCt3p8WKkY16gnxaWIv1KzotiyGfEX5VvvawTCavxrQ+pGgMGTUbG8aQiFpIMZDCQry/ZwjGDxcQpsHg7zEkr7Ox7+5e3Xueb+T44pZxMpaIlBIhNSWfmZ0dQYIwDKM/OuUubl7GmAaz2rVS8urUVN6mvWYjlS2ZqtnyZZ2Bwo0T1FnvjeC3rislG3P6NI2EFAgpuEjd0Hodai0WFmuAEXFUZkiJQ60sy0rOhbysnOaZkhsDh3mrJa+MY2IaBw5j4vo4QS2GOAxCrZlaBbVKXxrYREIwleFr1BSVk+JKaxWC82Ta843RcpsSIjkvnUQnxmgQeL8z0Q0rkI44XVcLf+4Bd60jtBlNieAeZas/M8BLQnNxgucd+7w0aIrlvubF5mWVwP08s6oS0gDujZ3WzHc3tx2q3w1GzKDoHudjhvTes+GhdOgyRLYftXPrXmzb8OLHjymafQnQpUHdn5YqW6hwVyRd6/s5Fhfjh624zsaWg7F323/fZ5zffmWDFNrTbI9bd1tfKpuexNyZJ/v8F+wmwkcZHk+HCvsWbf6fHexhKGGHD+mhxAa2sC8eHmVvt8E5A0eIzaIW7ucZDRVCZUwb+0CzSkOMNL6HltzO1dqTlGre3JnAAuMbdBBBVG9dsi9ilQBESrH2EVECp3nh7n4m388sS2bxjs3Fi59LL4SGED38NyTC1ZFpCBymgeM0MIqwzjN5Xjjd3VNXK05NIZHE0IYpRESFuETKPFBL5pS8aDmlDQauGD+hU1m1nFiIwVrT+9yLDl4A9T5hpriqVrIaA7mKIrKr29JqxdceChyHERXrsltrBi2Ilo393QltOxJPQDV4jke9pssE8mlerIV8VQji9WdCGBJhSAYHz9nybU4ou64LaEFLcqJk66s1xGD0XCEQovdEazNL9vO1eYOtaNr5VXb5HtQ7CwvOtJI683vPQVUrogYhRtDgz77loxozvDl45kn7Ojjja3RBLNU8dxELKa5rPiPcrWq1hIRIpw8WsWaeipE/x0AuVnS8rBv59D711hb0echup4TexZvZ39gu1/belN8DbXNo29dWp+qfb1Z7N9pFLk94PzY05FZs/mHj10JxnbnTjzlf7zg21XTuSsvuv/Z/Of/Vo37z9m//+jFl9Yg3s58Tl2e22xm0AMZHTIC+j51l1+/nA/22d8m2f5qy24+mmFThNC+EpMQkhMGEcgyxC9jGBSdiPUiqek+tUslBSHGzYBtXnTg6bRiGzkMXveg1hECKiRAGSlFiiCSJJAmUeSWsmXI6sZwWCoJ4W40YooE7JFBDQMZEvDoyff6C60Pi2fWRF9dHjkPg5rvvuP3uFaf1RNFCY4XQWhANlBoJxRgqypoo60zL28QYSUPy67WwYKuDCk4APIwDNVl7DZt6jZVjE0yKhV8zzkeXDL3XBNFmCUvvNBw0ILVQ82IhSq3UuiJVOtNIKzAWjEpKMHSneXQ28+ZlJdZKKJXozwA14yEk61u1riuDA3aEyjov5NU6IZvXXIkCDIlcMqEGVJMbiz43GuOJag/dqTZO3s272d0do+/y+ZWGhK6udB2Q0drAtPmy91KaURSj19O1/B8YCKSYl7tnI6FUNiYN/D5tpu2WTzMYvnlzoSsynBg418paCrm0kuottHke/dO++PafP8xWPTbElcs2miJs3nVTXiZazl28Nq9Ez+/bdh93nv4DYbwZwR87fi0UF1zen4+/Me802kxnmzRnCkf3E+381SUCZ/fmDQfb//uGGOb7jr6rDZp/iSbcn9lZyPCR34TQPCnzHvJqbOQ1BUIy8tg4JGrJzPNs+YoQSUOkFiOVnVGGIERRBonWYr4aM/c0VYbBUHuHcERSJKyJhmw06iUHcVRlDMLzw4H5+pqX48R1TNzc3HN7d+JUlPHqiuF4JB6PZKAEgSExHAeef/aCn/7sNxnHwPVx4MX1xG98/oLl/sTp9pavfvFL1rsTWgopJOb7mfV+Zr694/7b11BW1joTTq09B93LDNI47zDFlbPB/V0JldFrpqKgpW4WjXsYBIEoDvcGFe1eXAsxxjRACMa4H6MJrVpIpRLVPBMEU94pEqdjL6COw2R5iWpVWNXNf3VEYS0VlpU0Tt4KRYkqlOXkObdKEGvFEobIidak0kojarWQZwhX7i36uTRCZYVhSNRiubiN28/WgOWh8H5s5onj159rgbWaR149xOjQdes3BuMwmsIJMEwjuq4UZ4CRaPO3ris5G9luRMhlNc94MICQKlaaIFY0XVuPLpoyDYQwmHEYMqriHr71kWt96TS03Jr23Ja0EN6FHXnmcbVUyT5M2JXw25TYeUSmVmvhEuQh8/teZnX0JltXgbb27Xfh/Id+nsLWcPJjvC34gSuunoT+gHHm9Pgk2wMwfN2fv/b3mxLae1PbTpt82dzq9v4N59OMmrdtdHG9T20uF/8+8fMNnCHbGtgU2CNw+P63VfLbfvZKzv5ijIzTxHg4IOKtChVubu9ZTydCtRYopRRO+Z7rZy+s5mcYQa2OZc2m8Ho+Awsjihr1UppG4/NzARcHtX2uVvyqIkzjABUGEePYq5VjTEwifP3qFikZ1kw8Qg0BYkBTIk4T8XAgHA8QBTlMxKsr5HjNeDiSnr9guH7Oq2++pZbCyxcvESAvK/PNLd/88ksDVFQDj6B2bnlZnR/RoNWNcmmMkel4MK90SIwvj+bFUcmnGXI24Xt/Moj7kJiujoQx+f0xoVfWTFkz67oyXV8zHA5MV9fmoeWV5f6O9fVr1tM9y3zicHVFmibCOFIJ5Oz8kfOJrb2geDjNQnGneXXkaET1xppFlkxQIK+I9zDLxwPjYHnDdV2ss4BWa3ysleQ9y4w+KSJxA2yotjiHh3BzcYHp3nxVVF2hNcPLPdTGTViWtZNAh5hIcQC8Bq3WzhU5jKPdQ93q9xRnEane50qtfUkIARkE1Jpurt71oC2oECJ1tb5ZVZQQBr9vWJ1eKeYpZ+sO7drC0KxFWVdj5Pfs3q5o+cLYvYQ3N9CFmtepIfr6foga3F5vyk7cs9eKz7sm0M7DkU1YPWU2b3lRl887oXN+Jn/MQ4Xvev1nN3r35kxJ+Qf9XrdYb/tBszp3ez2PKV+44W/QRG0SPHn6uunDber0H4NPDn1kH/7tRYpuM98U7bmsy9H44/ZK7syrYmc17RTd9meHazmGYRihzpRqzAD39zMlwBgghbhZqgrgDfZWY5LPUqkqnu9pyfiNDHUYBkMvxkBeja1bi0JdrLVEO0ZRpEbqOCDHA5ILuqzc3dyZ4FkW6rKgznRu9148bBipEWqIlJjQYSIN1qpiPF6zeCHy8x//mHEy9N98e4ceJuNaFIPGg3lW6/09eV2prmD0629QVQ6HiWcvX5DGgTAlrr54gTGgZ5bXt7CulGXh9Oq11WyNI9efvSAdJxoIp2YLyS3zwul+5vjiBYdn1zz/4keUmlnnE3evXnE/jdy9/o71tXL80eeMV89I08RpzshpZl0y6zxDSDRDZF2zs7qvrLnlxTJ3N7ec7u+p60oCIkoKxrA/UKEOiA7Gwq+muIqaw1h9Poq5Xsb+4WujluIK35VQ1V3OLFDVCo07CbPj3XtuUK0QuDsnDfJfAyFsAruFZ2utZA+pNuE/DAMlWCNPLbrN74beYKcoduuwX4N/VtXKNJCAOhjJCuaBIFbKsePXZEfo6xfXVuK5tfmU6HArWPUyN70pIGlCr0uBTbY1YuX9b7pX1z65VIi6Ka39qe1FafMEt+N92Pj1UFzw5gjbmzRD//H+9Zu22U2EMy9ri7/vk5WPbNi/v/jmYtu2GOkKrFlEdjpy9sVjl9kBFnsl7UdrseyH5QSPhwobkKIvpvZ5U2PSGKx32wWDgMdhYD0ZJ+ArvUemBGNknAbQyjgOXF9fE4eRnDPzaYGSkRQIJKOBChFiIgwDNXjdSwiEYbCIWR3gdDIrvFS3avE+WZE1L6AZ0UwKcBgTen1gma/57v7E7f0dr+/vCNfXyOGAlCtOUpFp5Pm8MEqCJaN3M5//xoHp+hnDOLLc3qE3M5oz9fgcPR5BlXC4Ji6FaZy4fnbN8cWLXtiLNsJeRUvh//yDv0tZV6Zx4vnnL4nTQJgGxpfPzcfMK+urb5A1U5eFu6+/Zj7NrrheEqZpe+a5sJxmltPM/f3M4dkzDtfPefaTn1DWhXU+cXr9HadXr/ju269J337Dn/n7/36uP/8Rw/GaV7/6mvvXN9zf3fHt/8Xev8RMsmV3ofhv7VdEZn71OHW6+zS+Bl9GgAUS/BGSGySEELIHzGAMRmJktZHADBCIAQ8JCyaMDCNkRhYSEgjJIMRTIMAIXesOAF985fugsd0Pd59TVd+XmRGxH+s/WGvv2JGZX52qc5p7VfSNUtaXGRkZz73X87d+65OX2O/3sE64GF++fIWXL19i+s7H8KMFMiOeZ/zyf/1lnF69Ql4W3I0D7nYB+92A4ckdKHuFpht4S2BYFDbgkhu7RzVICFoXxgU5pdYrrFqWpXpmGspkIi3mVYb2okLfGOFBtBbOmRZezJp3EzTgWrdmnaBgU0oyQ7jmGy3GcQRqeDNnWFPbu6RWtiBtdmq4zCDGJCFSJ0q/eqkpS4jXKDS8taJR5pHp1RGn84KUGc6pZ/mI8NoY4NwphyqLoBRTNygurgAXzVNbRUs1fC+OdvV7qvKphYs69v7e2+rDjqzNWc2jgvlTl/9xFNcjy22ewdUiA9AJ9WZvtM/t6xt67VrprOvbsVbPemutYB0AdOu3Ny8GnVeol0DYdHCtA2Ud2KyC4ZaS2h6QNzdlXdZCz7pi+x2pwkJTaKY1JmSWpnyC7pXvBXhBUuhpGIMNuDscRLikiJQSLIt3WENUMReQKQiMRkVUwMr6LYIkpSjw+pyR4qKhX7l2Y0kFlNQ8OW8wDB7Pn97BOIvgF5g5YYoJSzpiOp1g5zsMwyDV0GwBtijFISbCNAmT+uk4Y44A2CLBYgh76ZzsRxTzCYrxgA1gcmAbhDW9JvuZgZTg909hUoQLAf7uKUzwoGCRoUXcloDxDnAZsAtol5HzEWbcw37wfUhpWZ9BTABmEGZYnmHCHmx3iJFQskVmj2JGnPMDij9g/CDAP/kQxe6xZAeEO9i9gzcjQrH44EsfwViL8+mMp26HRB7npeDJ4Q4mF8TThG//1/+GPQBTCj589gQvnj/BYT/i7m4HH5yO2aKghfV5EaCKQ1hQRBG1gSUAEWulozYXRGVvF7JhAxQBOFjvhRW/sPYb46aUmhnIgiRMWu/mnIfzHtZK3VzJWdhHtNdZk8MKxLBG+rERgNKaTCrKlQvmKAjHVFiPu47dxIxYMmLKOM+zdDbglU/SWIsYM6bzjGWJsEo5trVYuzmn8qSeZJUqdCG3Lqd5kz2X07wqHrPO7XVPK2Tr5kJbedA9vu02m2PVhrS3d/k2y//wiqsuIr+5Cecq3quaauqqUw4V2dl7zVVF9K7uVaiwt2g+q1PceWsrdLTLxVF937nrRBsl1iOECCsbOdY96fcXEwOX4YUbJ3YxWG/mwUyfB1Met6IcgRryseqVeeewxNQ6tTavTUNBa2djLQSlyqu4Wsgyl5WxAVogrQAIAxE6KAU5RmRnYV3GOHopjCaDpUxIMWFJWtPDjPPdActpwv5wAAphmTPmpYBMhomM43HCsoj3UNgI0ztZaUhpvRYVW0Db2ksISGuVCoOpgJwXyL4LMM7DOC8eJpGwbxNE6YFBxahSjGA3wu6fIp2PzcMvRsAG5AgwjAKPUgxyAkomlGxQ2CFmApPXHOEIhpPv4cAmgCzDuBHh8ATGWEyRYXyBsR4M2zxblIxdCDg8uYM3hA+fPcHzZ3fY7Qbs9yN8EDh6TBGUKuckN7vcquJqKFRI6I6shVFEn9RnCRrQ6gisbO9Q5SZef2mKj7nyEK51Q81QNKTUWNqipFT6pyJ+H0ldV+bUFF0dy0X7h5Us7VrqknOWgoIaAWEFbjA3byvmjCVK+506iax6j1GLqFPOjS0fXA3TOt+uFVMVNZ242G7xFk7N1Vzvcyc3lltKbEsCfL27GlZcI1EXQLZ3XN5rxfWpHo9+uGG0bByojUDXcJx4M6LBWpgZ0Adw7SP1ocLVXa9bqGXUJzYfeWo1Gsj1WHVgVu1ZB5UmTLm7sC1LRr9DfdvntCo7uaGLePb14NsUVrdr5utogNLbGC3+rKwE1nuUvKAUwrxEGJMxkEcIAaOziu4SoUAszOvBWTgN5+TMyEZ7cIFXImCzpd+yxgKGAQtYx9Jo0Uh9lYHs3zqLkhJKyciJMJL01HI+IBVgyUfEJYGmBQ+nI6wxePmFF/jyl38d5phx//oeLz6YkaMoxpffuccyTwiDtJ9f5gWueHjn4MMIp511iQEqKusUIcjK1iDC0sCQBdgArAFY63QcZYC80P84C9gZGWcUM8DunsEmkjBgVqQfBaEx4oS4iGJ3AXIfE6NEQk4EsPAK5mxF4DIjRSAniEdcLKwZNaRjEZeM6bzgfH/C9PIVMM/AMuHgDZ49+0DDhCO8F882eI/9YY+YI3BmFA2nMYCzKgnnHMIwCnOEUTCCE0YOskJqm5YFc4pIheGARp2UWGqijHXIJbWi40o1VrReqxW8AoIytBZhHJoySynBLhFg4Y4EgGmeEWOC9zJOa6PJeZpaSNFoyxLxJrMAL0i8wBgFtDHngsgkjU7nBad5kWu0tdWPh3Ues0L2syquRviL1cjEZs12frZ5eikBPkVANtlI6356FPHtRIIor0s08dUxunhmk2dNXl5exbst77Xi6perXOLGjXr0V/r3Rtzwckc3tF/VQ9f71FfTYuvubynb+lB7RXXzbDvdVaOd/WVcDoRbl18pXLb3ipqy7kcrd5fQjnDrHCtIQ3/clGljwDZYorBXAAn7QazsSp9kiDCdz5jnBUQGu3HUPZWW4E4lw2RCjBFLtGK5lywM8yQCcI5nzPOEHCNCGOB8gCVqgitnZQ4nBjkDP3iADaxnuJCVkTvD1zqw0wnmdMZ3/s+v4b/EjPtpxsN5xgd3z/H8+TMYA/yf/9v/jo+/823s9jvchR1efOkLoFBQaMFyOoOdgzMGPiRRUNyZPcyKapM2KIZIlFoqGt7NKKz1RzGDYMGREc8Z95+csMyEZx+8xHk6ye0mAyoGeclYTjN+9Wtfh/cBu8MBwe+leDYTbLZ4+M497u9fY5rOyFPBk2fPsdsfgJiQjhMeXr3CL/3iL+I7v/yrGMcB3jm8+s638fI738bxm99AmWccvMUheLz40od4erfHbhwwDkFBF4Kam+dJvCjrEAyJIlEUYFBWEWG6kPBazUtKqE8Kk9laGO8RDgdY58BGyJvP04TCBc755oEx0Jp7GiOgmJQSkBJyzgghwAVp3nk+n5uwlianDqEU3N/fgzM38EwxUthecpacl3oL53kBWcCwRRgCYqmteRhLiphTQSwMdoO0vAlBwpWa69rvd3DOYRhGLEjtGNeG8S0hxt3/63haPZtbW3bRklvi7lNlZVVU67aXSOKeBGJTJF1lZTPw+Uqevsvyfiuu5o1crhMfe/WNuK1b43+4Um7ytvtf/2OmFSqqQp67A3M3YOrq9f32u7f2j7kbcO0hd+dSz3cTluz3fxnIXtdV5QX0iqyGIh87vzU/10+MfpK1olfmRnhaFRnrtsY6hCHA+0Eb/snvcoxKRyQWcVwWZUeAhIMgoZekHIOGCrJVS7rljNbrNFq4yqgINEWEWWroMlgDzjosDDAMHrvFN+UcU0AhgjlPeP2rX8cnD0e8PJ7x3/73X8LxxQdw1uAb//fX8PLj7yAMAf/H3RN8/OELvT6PeZpw9/QOwRjkIcjdr0lp7u5ZJaTNRQQlqkKDNqEsQJQ8YZ4S5ocJ0/0ZnA3m+6Pki4wQ6+aUUJaINC04vXwtYIHzjC+8+AJc8Mip4Hx/wsdf/xZefvIxTqcHBHL44kdfxgcvPoT3Hsv9Pc4ff4KPf+WXMX38bQTvMYaA4/0rlGXGrhQMQ8BhDLjbDXjx9A673SiUTkOQ56l1Xc578TDAiDmBITmkmmNy3rcwYX2EkrgHalEvWQHhOJDmwgAu6DzMmpxRc6esrW9MB1MHkXpcro37fh6I11uL4eVnazNGCTuOwwAyEhJcYkIqVV6obNFHW8mec50sRK2ukZUxvy8r2UZsVuOwIvRqeO1Su9TI0CaC0ymHR+fzRSjwWtGt64h46xi0ffRe1+qpyT3Y5twYvJ5Xk2zfyx7XheC+EOMbV2zrcldFhqaQapiujsFavvDGUCGvAn3jMTG6B4T20HD5/urcm2myvu2Oe1X1vo7qyxtzcXuq8tX70JBEqyJrOr+7pjfl6DaKmqtCq4qrKq86OS2MdfCBsN8fMAQn/IVFBHdKCcOwg/cezjos0yTErAYg0kJRQOpvsigtx7WZ5Hp2xljAisARpVZ5/iCUaaVoA0sLpIysRb8FjHE3IMa0Pj8uSMwoKeHV17+J1y9f4eNX9/jF/f+CD168QPAeX/+v/zeOx3sYArKi8IZxxO6wx/MPP8BH3/99OIwBw84rks62Alt5LCQItVyQAJjJgJKF8Rm+DsBSQIuEFeNxwumTB5xfHlEWxunjVyDvJdRmC+I0AcuMfDxj+uQVlnnGvD9g+ejXYXj+HHlacP/Nb+Mbv/R/4eUn38H5fER8dY/lf75H+b4TPnzxAuePv4OHb34Dr/7b1/C6JBgCvLVATnj65A5fevECH754jv1uwDgOOOxHWCsekhTmynMqAIbdTq6RC3iemlc0ECmfpZPaLVo99awEvaRhcWOd8FXqM66M7wIdlxCd96HVcOVSOwAXIWTW/ZBRxeXcZqwSpCaMHDVeQkHHai6MpMYq59wouQqz5OZyZaEvqNDzCvsurF6gyherXt0cozCS1OJzhvYmWw2/Fr2oFmxTNM1iXOP03ap+nvKlnKmhfXQC7dLOpfUeS1sh2qQr6r3vl+aAqZFZZc1mOwaYOhmDCzn6jst7rbiuFFX1gIBePW3WVculxtpRt13NC1V26L7dbHnz+Ixu0F1YT4+f8/UFNQXQnf3to7/rUtXQo/igrbKt9Dqd9bexmPrcWn+zO2VrlJZp2O0R5zM4R8QSG9ltMVJwKaG0ASEMkGhZ1vEvzyIqg7wzBoSgHoq0n5imWXj8iIAiiX3jxBLMKSMjA2W9amMtTAhwWFFfrDfdGIIPFgzJUQVLmKYZx+MJXwoBH37pS4hf/BJefefX8Po73wYBeG4MvugDLBj8ax/D0ktkAu4J4C+8wO54xHMiDCDYMcA4B9Y+T1bzO5SBEjNyYjA5UAYQGWkq6z2NCfk8Y3p1j5df+1W8+pVfBXPBwy//KsK4k5yatZiO9yjThDyfkV++gikFyVj84q/9Gp5+8ALLsuBb3/wGyre+hWdc8OEworx+jU/+t1/Awy/9En7t2TMs0wlxmvARAcNuhHcWw+Dx9Nkz7HYjdvsRhycHuODhvDCeEJGQ5aKCK6SotrDAvpcY8fDw0JSIhAhNC+tVVCRRbcSY1POSGrmUheXfKKjCOIcwDCt4whpY8ggAYkwKsolAjPDBN0JdKUmQsRCC5rlKaYwOtTecrVyYxsA5C2OAEDwYjJSiEPHqkM+5CFGyleabiVkAGJZAkP501QMLYURMRT0uI4jbZVFG+Hxl0F7P4dWLkQtf50lvbLIq0tVwl3IDrPCVbq/yr3ZoJtVCXCQvabWOreb5uBSJRBABWs4AoqbAVm+1FxNy7k1+9EL6MyzvteLq3KDOseLmQa25nCpNa6gQqJg6sQSoMzgu76gKe1V416HCTtt0v2gnKKbdqozaTzY/uHyzPT7Xor768Ndv34T/u9oTA3RjH+v3vFFeTXHeDDvU+1lPZA0TyDg2agFLEpohsPi0THhtCZQD/D5oQt1IXqNTgEZDQpWbrxRGRtnmqyJJ2wynubSK9mKGcQ4CQROvzLbQkVFKKmoC1mQLtqIkrHPwDBgqYM3XGA35FCYEJpghICdRiIEIO+fgjYHxDOrYx8fEcN95jeMv/Vfw/Ql2GATq7j3cMMB6DxcGfPPrX8cyT0Bh7A4HaejoPYz1EvJkIM0zluMJ0/0DXn/9G7D391LMfDyiWItI0qQxz5OiKxLCMgvyj4B8fsDp4V6QeccjnmTBZ1ptB0JlgY0JFoBPETYnjCFgtxvgBw8/BNw9uUMYBwy7EdZ7UTK85qMA0t5e8vzCMAicnQ0sC4FwqXMG3AATHr4xwTchrM8ta24qKyLPQVndieCDtFzJmTvkoIasOou/MOv4Es5Ga20bB1JSxy28WAEb1lp4dOhWkt+llAQlmDIqfsJYKZpOOSMxhA5LIw6S75KQYqzNKwHtsyaw95yLGGed4Y3NO7knlyhgbnJnOy8v89DrtLrec/u+M9ZbWLKP0GANR761xKHNnysj/nak6O2W91txAejDc6oj2vq2tmv+SOi/XwVvU1f6hqGhimrh0Pq7bV6neyCb57BVWi2ednX+l+fbrmRzPWJFrfHkjYdIdGMf3d66TW+7b5cDqlph6yC+HS2/WNPt85IOillCOPN5xmsqoJKw95obMGbl39P9GGs2k7IwgwpUaRUYyjqZCwiC+iqa+AfWVhRcilAF1eunroi6NvmzBcRSV2ZdraFJCIMXi5sMztOMnApMKRiGAcVmcM6whXHnHAbnEKwFFW5pVGcc6PUR87Rg+fYnMEqrZMZBKJacBzmHX/vVX8H5fEaOCfsnT4UmaxhhvaADCUCcJpzv7xHPZ8SHB4zWADkjR+mKXC1mKhlOLg1eG0UWZrAhxId7MBF2ZOBIBV8ucNZKCUIu8POMol093TBgd9jDDwF2HDDsd/DjAL8bwSThMao1U1p7lCpTBQmNUtEByBAvqza25JJWVndGQ6OyPrOquGrBsBQPLyvy0FDrKlA46XFrKEuFu6neiZyrVZZ3q8dqI5vl+4pTZw0DCl+hVXJiyYEtMQolVD0WUVO4KSVBEaaiho6M+SUlRGV+F1Z6hrXaSBUSYYi630vVspbvrIjgXiY0OdMZfWsxMLZf3Ji9VO9Be1e/pBb+q15yNz3X8ODVQu1/Bq5+V3+4ieR8huW9Vlx9eI7Vqqrrm8KpQrsK4E7418e0ifleKoU3Hn/9uz2XVaGt9uX2nDfX0HtkTeF157ExvPScu2T2p3ncvW67fRXrBN96i1XZru+5e9VJUvR7yVdBrNgsVumyRCG9NRZkPTITHk6LFAGD8cHTp+DihSbIOZnQxiInmcj1HtT+SykL1Lgoa3lOFjkn5OQlEJIlPxJjVMtc6H2Kgh9KkX5LWSHxrHVFRTkYjK25tKThJ4JxUnc1nSekZYIzHtaSQP0LY28NBmswOifbE8GCGsyfiMDnGTxFMAiFpJatsCjtw/mMfZHQkT3LdRZjMAMqZAnggiElDKXAEcNlbUNi0HpWCT+g06HCkpcxyr2HorkkUQ6JxRMChJrJaE3dbi+kxeQt3H6EHQfAOWRnQIMHe4ei8aCiAdioDRgljJYQFdLtwqDGAcEbyS2lnBDjIs+PpLYa0Gsw4vGktCqrUvRVuwakiFKkbxaRwNGztijJaqQA4pWNIQBgodUqDLIyb2oHY+FOFKGcc0ZWFKuxBoMJory9E+NHW8SkrKFJssJ2z9AC+YzzvGCKGUWZRkDSgiaqMkuFlUTZYHAOu2FAKtKUcloW6TLwyByVWUoXay48p+pp1vkJ/jQRpgY6cCUCsU0rXMuZrdahzfpVeV0efl33ObQW3nvFdcPJqO6zPsAaKlwfw2rJtCiiPuB1V/2W2CL3LkOF9XiddmqKiHGx3Srsb8ayN/u4sXJjI+l5vpPZwhdul+yD+/PulJJ+fW3hYavAqsXK+qqUOFmBFK3tRG0ZQkBmwpwyTtMMYsZgDVxMUixrCMuyNMVidBLaKtiysGxX2t2ShVdvv9uhRtpP5zOCly7FTj2hwrJt0fCTFC1vTAYYL+AJx0rqqoW2YTfAWIMQPBAzkMTb8EYYzJ110q2YSJWXNGasY0yjpvL4jEU2EkoqpYCcATNpXY+VvIE12hFa+5ZBoNIo4ukZ5drhYjXkvRpv9WoctPatFEQFA2gcDzYIHZExhBC8htAMht0A8sIUT4OHHQbASk1dcWvuyhgDS9pFTSePtGwRwt8admsdnTkrO0UUnsaSNWQnxkTJWaOE69yQwnHl7CvSrLK2v2FmxLRIcXJOCEFh6nXgariSwXDBg0AIgxfgRkrI2ivMOru22EE1DEPbjzEGqQghr+TTaizctL5lNVfa6gyLdPxlGBQwYiqYFsmLTeez5E/HAGeNEhcXLMvS2OJvweGrcYyNDNPRS50Yan+3cmG7bvuXH0041Il/S/tdK6errTq5Icen5klz7X/2GZf3WnFt/JgqRKsgqh5CtVWYhYWgelx1EDTFtqIKqxLb5LW6Q/a3uykmXAyOy79Yh8mnXVG7qk4vrufWm0dystfW0O3btCpoGelr0SA3xwqd4Lixi6v99b9pg/JCmdXcQ6XBYbXWpRtxFEEfHHxTSEBMwuoNRZhZowXGqFBrgoUAPDgzMkFrwoTfLWoHXrCE+zZKt/67nNzaUwvGSCsMgnhpRLAAjLPwwSOdJhSTQSnDogo/08JdEo7SEJIe0xA1clgyBpYl/JkiA048H1FcRtq0ON/CVETSCJNLBpeMHKM+RwEWgEsnEMp6bURaU8XgFDV8JkW6UgIgXIHDGKQg1hr4McB4VZ7ewQStsbLidVbEnLCeCIP5Omplf2v5g4wNoXjSZpd1TvH6HGrOUsZyDfWJ+biS7sozqgAOAELRlIX4VzpH98oH6z6slU7azmHSAuKSsihsJYJuxigEut+H21pONWcNieo45vU6BRVvQIZbiIOZUJTyLKaMaY5YlkXuG8m1gSTEWVu29GG52/Vcm5hI+9vmYi+q2lzeWOWdurq9MFZGemCN7ly5bzfcuTfts4+OSR3m96ji2ngInbVVJ8f6QQU88xacQM1vWWdG3U7fv/H43d+KJry1RW9F3npUbdD1SnejwroxWVfRdv2nKa+qmqtirue12YZXpcPryvWcbpx8G4wtOV7UU1o3zkk44lLOyAASAwmEYhwephngAoMBFuoxaGNFjUgBgAAZvIVxFjFFmfzOIoTQLPmHh+OKMNT5z6W0SUiQEJIPfn3OSRRAYQkV5qrQrQHBCtO4EVg9sRGhTgDHBKQMVxikLe0LgGI1f2Kseh7QvlkKQlFYPwEC5ODcLCW20sLFeQsbHHxVxCTekNV6tZSStJ0qRerdWNqjlJxRstAUCUzc6LUCJiXtwit1UdD8jfUW424U79BqWNSocUEEdoIaK8TIOYkyNAaV4QN9eUb1lDTcmvVCqchDHIZRioK9KJAK4kkpY15m2JwE1s86Jw3BFOEoTCkilwQmQSNaKyzr1XpfxzU39onaE84pGKOi/0pOsNaq955VwZu1YSTQmnsCwqIxT9I12w/aKqRo92WVOs577KyDY8bCwFQASqxjawVgpKTsMGSgVQBSE1YV182ZfL1ulSedgsUa3KvKvhq7W0OtDwBe77NnxED3/pZ8uRU9ui2HVvlRZcT3rMclD2ZVDuD1RrbCWmZIEXFdBwDcwhvyqfOyukGyRpbrTVfuOFR5fktZYbUmL2Q999/3v6tKq9NVm702pVrPcB2AVwXI7YLqFujb6cjv+Tr23RLbTflsvadmJfHaiVheGg6sn3NBySy1Vim3vkdyj0UIV9qmAkJmQiyMJSYMyidriDDshlb8mVVREdDqtponagiOBLacc5JaIusw+NAE/bIsG97CvtklqadBmk/jah1YgMhKx2AHWNaQsRZN0+BgCgTmzpK8J+UjrDkqo4l7pyzl9aSNNShJvCNL2qxRQ1A2BFgvKD43jK1o1VjT7ofRcVdKBmISRGJK4JhAJYNihNHGihSUB3AcWgsNaQMjit84K14VaTNKrYWSbeuYq92Hi+YMBU9TB9VKEaSQckCUNgubO6zsM5cMwMMYwrzMolxLBhlCKAWssGtuA1fypDFGzMvSlHMG1LChdk/isjRjpDaKZACjdeLVsSh5YwhEtTZLw9jM8N7DMAR+X4SrspQMQ6aN+8wFSAlEQu20aAeCxIALijTNBfM0IxZCzNy6LZecQSgYg8MYPHZDaN6k7JsVqH4Rtut0zWZ9DcFsNryl8Pjix70BXZXSdrf9e9JIAakV2XhINyd3vWzlSydTWcaSodIMg8+yvNeKq4XouKqYzvtqoQjofator9VSqUgdketrzqs+5yvmjHqUS53T/b+GCi/Osb6/fNZX+7r4eyPUuIJJuE3WDbLwxnhaUUlcEccXt5K3Hld7rQSlrbarsTtXi1eUU22Nviq0rAKg1JNYJ2qlx0Et1GSR3Uas6RCCKJJSRFCpssyQrr017AZoCI4ItaV6M0z0fsm5GhQqdc0mFCSCUq6v2q1NeJLyBtbxUVg6B7MIaAcDU1j5CAlVATGk7Qop+7expjWPJCfltKYUgezrU61IPhs8bBgEheh9q12qoS/xJDMoZ1BIwgYSE8hHoZTShpOlFlsr/B/1ZdW7stph2WmPKHALBepd0iwNaVqHpNC4QsTVgGiksN04rc/LKGCAyICwdsqtY64boOurf945NwZ2AK2GqGyEXudlWavKSadHtw1DUaPVwM0XYAgNcbYcbc6w1rXeb6QcghXKE6Mo0awhWPEAZX1kQipQwBK3KI63FsE7eC+iV+jMSusp1iuUx9RCv17m8m1v7OYP+ZYxW3cGHe+rt9Xe1zHwiOe1/rxTbBfKizf/86PX9zbLe624+pgpNsIWq4JSj2tVUquA564yvNo5FXxB7f3qjdXfybG3uulmqPCGO//YcLzUd/UnN7dmNM9Pzm/VRFvFqVfcDHpqAmBdViFSJ5goni2zdq7IrpzXsJQqp5yFgSJp0jun2Drwpri0HBeYWtiEGJi1vqUQgYyF8wGDMsWPuwHLPEsNTEqAgjasAXbjAOuE546MKhWSHEZRVFuOGUMQFg5rbKNR4tzVgeXUUGu55A0ivzKP1zo0aK7JgGCDgxX/Co4MKBWgCL9vtW8KC+MDKdMCg8Ha+RjOSZE0RPHlCoMmghtH2EHg8hgGUAgwXtp+VNYCgrShrzkvMwQgZ5ic4QkgzXVlvfeiXVDdWfW6SPN56mFBugEXzZtxA7MAZKRflTVSV2ZVMbTohp47A8hcYEotPC7aPLEeQ9B7gjQVz9UYMVKM3ieJnZVWt1Vh7sZIHRUzt7HGWYAqXAqKdiseh1Fh5vq8ajwO0sqkKtllWYRWS3NcVPuCMWOJEfMSlSlDPAQyFj7sEFNESgVLKjjNEwoZwFpkEJacMS8RS0yYC5CYkLPs0wCwIAzeYvAOwVsULcyeo4BM3hQ5e5OQ75XXVh0QrtVMNdPXUmRaH9G6Q6yKCGjDZLNNnXc9wa5s07mJ9fybB7E1jD/r8k6K6yd/8ifx9/7e38N/+S//BbvdDr/7d/9u/NW/+lfxm37Tb2rbTNOEP/2n/zT+zt/5O5jnGT/yIz+Cv/E3/gY++uijts3XvvY1/NiP/Rj+5b/8l7i7u8OP/uiP4id/8idbXcPbLtX6B2wLFQKdN9UEiSoVWpOV1Lva1N/q1a297X5vTuBKkW28FayO0Xpu3YTv2iJcH6bztOppMtZ6tLq/+hmPWVrV62SgqDfQLrv3ONENJga0U219oUhzxlISSkna/yptFVZOgtorGbmklm+Z5wXLEhFTarciM+O8RJzmBd4AO2cQS4EtBJMTcrI4HY+YziekmDAOA5wzwlEXBXhBDD0nDcW0vBhJ12NmeFcQtF9TvWarXpCFKpicQVlYBQRQAg1ZqZAn8VysNrMcQpAchSoycQlFcVUJzSzhI2OthMBiRCJCyQkwTs/BwfmgSEDx0uxuhA0eZggozsF4UVzGezhnW3uNtCxSRyb9SpBjEr5HFgVEYLiSwZ1yJg3vMeeWmwEApXWU606SxyJLsCxhszqApVxpnRMtvV/btGD1lARxVxCX2HqmMYDpfMY0TyBDGMYRYQjS84zqPVfFzLXx49KUlhhya2FySpIzylH6q1ljMI4DYrIa2uwmnT73GuZuUQoSsEphRlEk7DRPrfZPjArxqJw3KDBIHJGWCdOSpI0MMzJZTCljSgmpANMcJVSYCZykHYt1Fk/3O9ztRoxDwJSFvX6JqfWsuy1vHpdBPU8hd69bcqA3ofnim4LLtpW0hgYv3eHO67r4ZitfHzuN9sv/hxTXv/pX/wpf/epX8bt+1+9CSgl/7s/9OfzwD/8wfuEXfgGHwwEA8Kf+1J/CP/yH/xB/9+/+XTx79gw//uM/jj/0h/4Q/u2//bcAxOL6g3/wD+LLX/4y/t2/+3f4+te/jj/6R/8ovPf4K3/lr7zTybdxeRkq7DV6F0HbuDPUsWXUQdwZCs1p6zwbYPXC6qqmFB51zy+GSPeRNiYMtttdfVYls23Qs1GcNz9319sfv1071sEvHuxFXqvlvPo8Vm59iVq9TVtXNuvllZrHVi86lyKWaVwwO4NUgvbcKigkFrGADIqGpupZk3DOKnMFWBFhnOEUOGCNtDOBCr9E69RrYa1NyEoFYuWbq9cOSCsS2wFWSFtjGANLRkKEtUlUlQCktVzDKEWvRkAXxhkgORGEWnxshkEfixbWjgpHD168AGfAzoCtgCokP2VhUJCihFxBJKg/1r5fOraIC0o2MDlLR2mjz7eIwq/Pmrpn3Qhq1YuX+SShX2IVbcoLZDTv2JB/qLx9ykaRV882piTQcg3BGZj1PnNp43kN4aMZlFyfEVcvsPJTcnvGxkrYTxgpAGANUdexTSwFwSudGdr3RZVrM1wAqf2ilTC61t0xhMIpltzQhJkEORhzUaUpv89JiuKJGd7ZprScteAkSl36zAHYqIPLZRv0rKuoGzvV278ErG29rnrfeimxPV4bPxeHXjufA49rpkfOnKr3RpfffKblnRTXP/7H/3jz+W//7b+NL33pS/j5n/95/N7f+3vx6tUr/K2/9bfwMz/zM/j9v//3AwB++qd/Gr/lt/wW/Pt//+/xQz/0Q/gn/+Sf4Bd+4Rfwz/7ZP8NHH32E3/7bfzv+8l/+y/gzf+bP4C/8hb8guY23XngTpuvzFr33hY7dve8OyVfKS63ILvxRn3GXMnncTrhSXnzj4+1f336EN5SeaJo2eHum90fPRZUW8xomqH3H2r1Q77WGX3sAhuQZUqu3qQopRanJaV6XKqmUhCsuNqu41k3J+Vbi0WmJOM0Gg7OIVWkVQgajRLF6CYTgfWu1bo30jioxS58nhhQDa8gnqGdiIcXIhVmEplrcttIKdUirmq8TaHmnzJgFYce8ihQNSTprlY6JxNNiNIFFei523AkfH5G0sFcYNopQUhnnYIYRRgVPIYC8BzkrNFaGAEtgW1CQmgS3xoCVF3BOESS8RSIcNKzZpFgiwCYgAZLnLaAC8boya7hRlBOrEljDP5Udg5CSUhsZgFnzY7VJpwIYoOjBftxIN+qEJc5SzMtFo4EZKcVmJPrgWwSgjtyeNb62sVmZNwoqDVFconi2GvpztBofOvKbssrK7EGdYq6hcNbZYYwBkqLeNMxd87LynFRx5YJiCCgFSRtBxlSQGCCoJ5Yy0hLhLWH0A57d3cEPDrAGZWZlkO+9lG2gbfu+m9NNcVc5sVVC/Zo++rPKivX+XOatbqpN3aYOLVPXXSiwavPUk7jSb7T+7pIw/F2Wz5XjevXqFQDgxYsXAICf//mfR4wRf+AP/IG2zW/+zb8Zv+E3/Ab83M/9HH7oh34IP/dzP4ff9tt+2yZ0+CM/8iP4sR/7Mfzn//yf8Tt+x++4Os48z5jnuX1+/fq1vOlDddwxZ7DC3pvXVadDj4bZtvb4bizNxmmKoFv3Lm7xLX2HVRb1I+vaorq1P93q0vCCTEiNMzaBIKAKCcOkJEwH8jliWeamjGJcpHAyJcQUlY1AXiknBSNsPa+UcltPLHQ4U0o4LQumJCG9YgiHELDfWUBrgOZl0dCf1/sgocth3MFwRWdJIShSxpJiQ+IRhMyUSYqDK9edYRZYuHNwBUhxquaA1D+pd5lyxqjoPqeKRaDQyipkrQi3JSFD8hnGSMEuFMHHGYBTTka10pkMFtLwG0nOKZF6EzkDDEE1FgF2VFogY62E1VnO0RpB7hELICSbSlgLYeTOAEi9K9TcHFBSRCJGibGhSdchU1YDDqJoliWCSFqohBIa5Lx5Lxq5EPJVA0PA6KUD8nI/N6/LeQ8YgZDX9AAXlmswVlGe0v4l5tSEJpfqzQi0fJ5nLMuCaTrDeS8GVFwkdKlzu7a06Y27CjQpqSAVYcMozMpW77E4hzzNrT8c9EVGclmpMJacAStlFQWE0zzjHCOWLCPAWAfHBtZkgAssWYzO4bAbQZaQdOwvMSkTTG2N8inCoK3jNv83a6sR30VI2jPi9Tc9L+IWMLF6bxvltzmT9TybD9X2R219v/QQp4ou/n9FcZVS8Cf/5J/E7/k9vwe/9bf+VgDAN77xDYQQ8Pz58822H330Eb7xjW+0bXqlVb+v391afvInfxJ/8S/+xav111YEVoXBVah3G1LdVj2PKsl1wsmfXjOs73nzOKuho4ME/UN9fOH+DXcP/da2fPlmux+6+QHdANouK6T/yo9rg73k1aptdDv54nX5vQIbNmHBnLrvq/W9KkTOUjRrIFbrvEScpglHr0WvXhLlok9J2RE0SU9a7AslSUX/gvzOWjhDah1Wr1q8yZRTe4w1lCy8d0I5xEnuRSVhzUXuS0y1w66BXZYWKrSmhirF4RA0IVAMkIkVyUhgaC0YJEkPVXzEWZ+hMGdwyVhHhigfw6KAMgQ8UQqAIlfGJMwddUyJThRIvkp7ufpMYiyARdkqEs4YI3kaQLzHOirqOSl57iUQqtjKdCGAnyoIpQu1EcSl0oNbK4wgZG0znpoC9sLcnlVRVmUIBhKnJnhl2yBFq7mGBSX35Z1vxLkCyLArytX0HiQ0PArt1yZjIKvXWX+fKzhJw6QSIpMwcmKs+SgjtXtJyznEIzOwVqimiESBEDMskYAynEUhpclqodQu53ZpYLZ5ente31rWOV1F1A3lhtXoXeXXZciQ+h9p6HY1/cVbvnVGW6RA32iyAT8I2xz/Oy6fWXF99atfxX/6T/8J/+bf/JvPfPC3Xf7sn/2z+Imf+In2+fXr1/j1v/7Xo7rL1Z+p9xd1bbvhdeUt37UqoRZRa3dcdFxVfuqs97mwtoNuxVsaEWuc+vFE5s0IINDR+tSQx8U+9cfrNkAVPpfn2e5guchj1VxWUz6r0rrMcQnKcGUXaKFEhcfnDTw+QVwAOYGYM6Yl4XiecfQODozBiYVYVFhK+3V5yqmUljdqTf5IrDiZTKJcnLFrjVthKMm61visXipRZYyvbeWLGhVS91VQw13CPMEkrVGcFraStw34UdRzYkPSskX9MmFQEEFvQCAjEGuq41eJaq2GSZvSMlZYHHRwruwV2kxRY76m91oYyvSioRjN9TU0JxjOUgMCkCqFSm5bNGQot5LgFG1XWEhiWaVh4QJRT2uYuU4cad4oirUwa58u3yiY6tiqiD7vPfI8SY8rQJ9lHUelUVWJcRFbrsVayReGAm1BItyUzjl9zjIu+1YmNWdLJC1KKqtHybltIzRl9T5UpQ0wMpbM0geMWUA3uSCVoszvogqc8yicAZa5Y8ASKhwCvDOIGpLPpQjxrtaToRlaLcCJZmV1ccO39VOaVOwFY53zTT50xv2NpeUb24+rd92fD3fbXxvjTaTSikTsvbbPsnwmxfXjP/7j+Nmf/Vn863/9r/H93//9bf2Xv/xlLMuCly9fbryub37zm/jyl7/ctvkP/+E/bPb3zW9+s313axmGQZBHN5aGJtyEAxgtV1E/qtLqQ4WrZG9b6vpVqWy3aXtvf1cvim9rmttnve6/Wx71wK7O892eeA2Ht8P119KDMVoBcW7tJCQ/FTfcg0kT7k1BNTh5bqE1ScgL1HeJUcKOmriu8xCGMc8JyAWGC57tBuxDQIbBwzQ3rwnOYfBekt0xqTehrd2zsLWPhz0sFcR5wjRNcJbgnaD3vDUwxun1CTKyWfZkYKQHo+TPqKBoaHltlSEoNoYSujLgfYB3HpUcp1r6lctPCI6ytIBnYZ0wJNRN8CTM8XoOWfMphQuWuLTw5TAOgBMPBix5MYI2YHQOXBhpibKNDvTKEZgVJo4i/IzTNMGol8sFQEmosWxWpVZSQoqzOmOq/KGWtyHNHcmhKgCDwFILVpSHjgsIq2d1fDgiF2l5b53TyAbjPJ1RmBBThnVelFUpWOYF0/msoejYjBLoMWMqiJkB4+C9hWMGOS8weO9F+VkrLVWMUaopUVgxJhyPJzAY+z217swcI87nCUsU6qiUMgADY3xT8IUZS8p4OE+YUhIE4RIx54w5STuTWcmGnZdxnnNGWhYMzuLJfsSHz55gDF7KFNRLTbXYmRmGaTNJq/p649zuxIMOxHUfdV73kaX+7+XvHzHs0X9/8fteN75xWd0vrJLubeXl9fJOvhoz48d//Mfx9//+38e/+Bf/Ar/xN/7Gzfe/83f+Tnjv8c//+T9v637xF38RX/va1/CVr3wFAPCVr3wF//E//kd861vfatv803/6T/H06VP84A/+4Ge+kP5RrPf1hoqpk3X10XDrBn72W3pjT7cPAWCrM7ebcff/p53UhWXF3Czj/nP7131ue+BKhqvoOqxglxpuEKTY6oXVRHnRvxX2XFiVWxJlV3JXxNwuQ7jcchELdkkJc8o4zjPujyfEXCQ055yEYlLCrDUvlT4qlYyH4xEvX7/GJy9fYl4SyDr4YYR1AQyDnBlLzJp3U6RZQ0dRh5TSQma12mu+r547IMqpgTIAvc7UPM1U5LqXlDAti7KJZ8SUlEFh/T4p5Y2xFi4EWB9A1iDmjJgyUmagy6/AOFgnfbz8sFMuQye8gypYU6moTvV0U1e2oHVTjNLylPX5CZhG2NKF4UG59KAAl5yUM5LQ57WKsqNwx94ux4vyinH1XIhWYAURwm7XaJiq0oiqrOZ50RKKBRWAIYW90rzRWItht5N8oxYF21ovx4x5njGdzzifTuu407GcG8CD23NszyamlksFjBoBjFSEzX+OCUuWliVC6WWRYbQHlwAzYiyY54Tz6SwKeJlwtxvw5LDDfhckLxyjeG2F1cjLnTCoYv3dJNDl1i0KVcOCl0Y19/Lhxvdvczz+NLXaW8q3FOJnd7neyeP66le/ip/5mZ/BP/gH/wBPnjxpOalnz55ht9vh2bNn+ON//I/jJ37iJ/DixQs8ffoUf+JP/Al85StfwQ/90A8BAH74h38YP/iDP4g/8kf+CP7aX/tr+MY3voE//+f/PL761a8+6lU9unSx2ia7ua5ZH0gLp7U4LfBIKqu553T5xX+H5RoeerncGBY3TulS2dW3/a+p80LXUOgl2qgHlqxKrq5vFpyyAaweSQ8n7hkPVmXWfsdo9Wj1kdQw1KJWrAPwZByE3JaUgicLIi+nCG+d6J4MTNPcBGLwHkNw8M7o+Qnkm6BsGwoc6IlauxukBLiCouMGa96eN1XQQ3edtdEgSlX+WTrEZg8mZYAnNJAApbSynAOioGkNi4IBcpoo16JtUawWZFRAl0q/JedVsiggS1a86HbuufW3Eq9GuQ4Jei/Qwr4VZt68LEB+r5EKsl0pQRsnknPbIFF1m3Ucrc/aqPIL3mNZZgX2pM5JEAVVAUA+sOahJM8oITUDH9Qzyh2EX3+fYsKyLJjnWZk0VnTiKifWZ1ufcy4FnBKMH3R7o2UcjFgENSgsF0pXpsCMwoQlFY0oSJ3hMs9Y5gmcI/bjMxx2A8Yh4DSftTxEirOrkbHmfjQz34Xy3tY5qfN4zfPfUlo3DOJ3XS7mztspr3VMXa7/LMs7Ka6/+Tf/JgDg9/2+37dZ/9M//dP4Y3/sjwEA/vpf/+swxuAP/+E/vClArou1Fj/7sz+LH/uxH8NXvvIVHA4H/OiP/ij+0l/6S+988nUy1DDJpeDevKert5uIYNv+M9zPrV93PUjWHd94xFRPYK01+u+yXCjqdp5diLOfzK20gNY7u31tf1O4QyRq36JcqaDUE8mK3gKzUBMZwJIDSNqcTHOCJ0JwDnMpMDGJwABLv6KUQDljcB5gCZPlUpRpnfD6/gHeWVhrRHllbdpHQLDCGRiCchiqAYNOuN6Ozss3eVlkFVWvTKioSs6NT9Aag7l6VwDs4EFWW2sYh2oALDEhxQxrFwktDQMA7RNVGIaEUipp+xSQsHC4AhTD4MytDCEvEd5K/7K4LPBOywGUh5FBgLsq7M4AAKB4SURBVCV472AMWnhXFOYaVqq8inqJkpvL0BorABo2FEUgUP4u176p16p5RtLcWd2p9U7AGM4jjKN2xF4wTZM8F81FpUZIKwhV6apsGl8hEWEYd2IgqMI8n8+ST1KYfh3XJedmqFSWjpQEon8q52Z4WedUiQDBWDCEBUSiAVlysakgFmApBXMW9ozEQCaD87ygJh6XJWKZJ5S4IBjGB093ePHsDs+fHnD8tRMYAiCqfbxizrCWmsKRcXLBcPOWgqGAgVJgzXVMqUmfBnzayqPrOMzFQr0S6j+/veSSnBl93kjhuymut3Enx3HET/3UT+GnfuqnHt3mB37gB/CP/tE/epdDv+msPuXz+tBos4Zu/oK2X33K4fhyxePrqXeBqP1/M/Tbf9uUMnD7xLjb7s3L5vlRb51tX3W32+e9CiC6eNWhXmttNq/Wn0vBGgoQEEAII3OSZoKFmkDwS8Sr4wkxZwRnkZOE3SwR9oeDFJLmBC4F3gcQGQkzJcY4Dhitgw2jKEcwLCQ5bpXfMOeiwpmagCOuNH4WMKIgDAu03XFt755bWYarFEVR69O0dcWSxUMx3jUvDURajKolAlnAIdKmxcAlbZehOTdSJIl0NpZH68lKWI5qnzBlMtEQZclZ0WsAciWIVWSlIakRA2CsdCYWN6kngGUpKNbmTiXX8CiAiv7qhnUFWlTPs3pIqWSsNd5as6eKzDgHskKvxNAiX6iS0x/V3FAtVs8lIysSMGl3a4LBNJ2xLAu4FBwOewHsWKOekwAzTGegVI+qhoQrMEIMEQdrGZUwOjMr4EKaQ1Yi3VjE85pTxmmJeFii9JfTwF7KGSUVnKYIxBmeCp4cdvjg+ZMWJjTaWJNZwotJPb4ayqWed5BumVK9td3P7fqAVHldyqAuz7XqjNWSbdGV6g2QQQWO9VgK6te1z3ShyC6XuoMLmfs5rPT3mqvw05fP5RB/9xYCahF0P8BW4f8pv33TwkDfWuLNtsV2uxr+q15H/74hqbieKzZKC1jDbdV6a+HCCicuQsBbLsKKciZ6rFKEM5IJ85LgCNINWbvHBu+0XRV1HgKrADKtTidH8XSMdbCuIOv97qPBRduIcA0bGiMoPyKAeH0exoAor6FFY1bWfEWK1UleuCjBLyuqj4UHUEESjS+Pu5xQllBeNrbRDYnX5roQZGm0QwAhUxZoPTUxIDVyKbZCWXABsWshPBhSMIYoOdZ2w9YKd6Mg8VejqClzlHU8GEEnUn1qen6NO7EZJhry0sGyQvJrmxfT+AArjyH03jZwBkSAN25LKNMFs46hClmH5uUWGCKE3R5grN0E8vqMemOseZqaN4spKalzzRNCQ5JiZAnidQGsFzJdZu1iLEwXS4xCmGwsiu4/x4Q4T3CcYL3F3X6H/TjAO4ucY1OkuUgdl3RO2JJCX2msNzgoVaY89v31um7LbfR0+4uNN6Xj4iovvG56Tb57Q+sCHVDk02TVm5f/ARTXY5L9tuf1WZT8Z/2dLE3MbD+2b1eI6MoL9hYn1O++OkmXTt5jP++UZ1+bs4b96qjqrDBgbYTYCgg7aKsK7gpAWOu6OhBHEyZio2YugrqDsL6/ejgiLQ5xcIiLxXAmDMHhww+eYQwehhnH8wlPxxEheATnhQMxSnfZqPmVzCy9qCzBQRShsMyJR+KcgXcO3jkY6yX/BKgi1HxWyzkItVFmRdSVop6MFDeXokqDDMhCCqSdoAvTssAoXyE0hFNUcc3zok9IPEDjCqyTlvKAQUpSs1aFftY2GwxhznBWcmpxmYGSVWkxRu8kL5UTBBsnzzAuM9jZltvKHWM5GSOMGgyxtOtzKtLGhNTzRJFnRUAD8tQxcwk2gTGS51MABSssP5UidXxRCovDMMB619hXZu0EzABgTCuCF8JbJ8z5RrzPFJPWcdn1mWn7ktqYkZRJg8go0EYNMkguigEYI2IwZgkLLqcJuTDmJeFhmuB3wje5MDDljAKCG0ak+weYwrBWwDwpRsR5QY4zvAFG7/HFD57iMAZYS5iXRbzfInRn07JoBII0VCjDZKNEeqv2RgBExmiz59qY7Tfn7l0NMrzzUpUTrYXE1djZns8mjrRZ352FvL5XG0n2buyVRnhnVfOmcNwbfvI5rAZh50azYDp//LPv9F2WTlFV65lrwWpL8K5hhVaDoeGO3v1naHv2hjhMK7Q+r7muknMLVxgNQ3ENHipRaUoRcQae7EeQNThrnsMCsDFhogUEg+ADhnFEIcKSReg/nM44LwuOZ0FzjcFj5y2QFhHwJeNw2LU8l3UW6MAmWQEm0ryRhE4JWiys9E9WmSu81g7VeqJ5iVII64QUd14WpLIASfYblyidd31AcALvT1GqvSyjgScARoFQBdU2HQWMZZ4Fyk+E3TjI/csJOS6tuHg529ZhtwpyKWoWjsKiXmS1oxvTgamdmyHFyrVYHGhKTDoukxLO+hZOAsR7KpBwmSh3A7IOLgzK+m5w/3Avx1Lo+zRPWtfH8M6h5KK5qtza28iYyzpcGc7IvW9doEvGPE3wleFdOKmEANnaFgYWcKawXwiBtJYpFAaXBGs9MqQcYkkJKUte9WGaEYwDrENig4fzrAo5oDCQlgVlnnH/6hUsE4IljHd77B3hC88O+P5f90WMwa2eOYS4d0lJKLeYN2Kkg2TIvWJ+ozyooHm5r9f0b5fKYk3s40p20SPy7FKyXn/bfXp0QzH/axTnXVGMl8t7rbjqQn385EJ5vfmmv83y+fytNy9bD6u53peHvzqXz3JOvSnHW+uOV+RcH0K8PbjWM+4LCfuwTO9Z1TqoTXGr7rfUCcfi8UTN4TAVjN6qICx4OJ7giOCNwc5aDJrUnpZFhFgpGv4zTTC0zrbGwHsvaZqSgZJaR9zqOYIYxrB+roW03F+yAAd4FRD1/rQQSZcrI4k5Ic5L68NVijKl5wJnrBIECxt7JXG11q0eOKMDFki3XGGBj1hyhCMR9s4QFlVcRgU5Wdc4EsXIZhRTPWS5JGOk0xa45qG6UKy+jK1F3Rr61BAZ1LMlvRfCnm7bfahMJgQN2zEAknolgdPLM5qnGfMyw5ABD9wQhj547XJsMZ3PKIVbaFfGrnREFhaQro6ufxYa9jREki/T5qatlELZL1jLDbgq3gKkzI34NjFL3zMYFGtxnmcUEGyB1uAlMUhygrcOwVocQsDzfcCLZ3d4ctjBOSBn1sJsaNlALQ+hNd6H66G3nXq9u3Qp52gTcmxeDTP6fl23Z/S1NPmscrPp2c2P+5gktzDh92wH5P7uXHmsj26pSw0Mv9NR3mJ5y2exeba0qtjrUOHlDq+V1u3z286A24HTPkTY1bs0D6xijKqltJ45af5izfl26EKujPK5QdKr8loVV4deYiF/nZaCYAFy0gmYjXSZPb88wnDB4Dzo6VPsBxKrOEYE7yXnwCwFpTpzyEih7jiMOOxHWBQloxXwgLOuAQJqTsZpUS8bIGJlTwcUTYe2uSAoUxIudqsWQMkSZksisOfjSeinvNPwUARnhjfigQCiv3KU8KFzrikvAMgpwVkjNFdWeA2XnDEdjwgEuN2IcNjjfj6LErXCtOGMgfdORgAbhbOvzxgshLlENVxbB6GS/Yo+04aXaJKoPj9GI8EHkSghsnKOit3X/RTEeW7COaWkPbGg3tWE0/kk950lp5lSwuHuDs5LycMnn3zcaJ2cFah/ihIOBNA6WTfKJwAVkVeBEOLxM5YlYppnrRfLIOsFIWotCioHoaAFRZERmAgxFxAxrDM4TRNSYbiU4YMHx4iYIogZjgiDs3i6D/jyFz7AF54/wd1hB84LFiinJFfDSpg25PbqXCVo94eLSdtN+csyjq0aW+d8A1tc7AaEbi6/aekNN7r9HptZvFmaM4FVkbb/q2z5Xg0VbuAt2y9ub/7Wn97um3fZvPeTVo9FLf4bP3r00r5LSxvinzKKO/8KvQJrjes24US1pnowRi3kLV2rbqrH7oQMCAWSF2EiTDGj5ARngMFZEEuuJ3FBJlYhQFhYWrXHlOFDUKBCRooF9/f3SMuEEkfstHnf6D3GYeiACFVoEGzwCihImBcpdq1Fx7V/FRmCr0wVQkEhDRaNhbUWy5KU8bsgWPEaS5Tmg9YY2GBBICzTDAaw3++R1TPIS4QbLax6ODlFIIlnND2csSwzKGc82e2wHwZ4K32+QvAYfMD+sIezYkyUlBT5SNLsMHUhGgZSjqJkaw0UKaJPjQ0ww1paCWpriLh5qaR1ekK+a5yDdRZ+t8M0L0DOcMaAGVjijGlZMI6j5MNSwjTP8GHAngjLsuB0PoMICMPYvGXnLJ4+faZsJat3SwTsdzukKKHUEDRPWbIiLSXEWYqFIYvj+YwlJRgbpMYqSi7LkTwLZsK0RJynCefzjIfzCcNuD+c9nj5/gVcPJ8RlEXJiPyLHKLk4LfEQMBGQ5zOWNGN4OuLDZ3f48PkdggXmKHm9rJyXcg6Sly2di7IK+87g1Lfrmq1W6z9tTFV9bplLU4ZNyTVjc7tP3kgnqC2zzv/2vt/kovvypUV+pWirMfy9Hirsua8q8gXohT5tbnT3wxt7etvl3W56P6DeFAW4+eGW9vqcCu1mNKK68fq+Rw9dn8b1CbSw4oXCXS2t/g7UcMEabqsoJWYgloJpLmALsCOMwSN4i8HVOiAH673WL0kn3MwFlCVZ72zAfhgQnOSpUkqIpNB4Y4BpWttxWBYlxjKGJDejaMUiATF5n1qoTc6T9TuCdYqcS7ovsPTqMhXyzXpPxctKy4KsrOcVAAFmIGfkZZHckBPvKccFJUKomJjhrRXIfwgSGswZQwgYgkdQL2W9z2t7wFYkjdKouZj5KociABWpOSMiQLcrpcCGoGARi5iSUnlJeM8VhgPgh1pykHE+n8VjidJJwFiLIZi17s0Jc3yMUb0m4U2MUdB3IQQNozLABSkp7J/WQmZnrfApApv2OjUXK1RPEcuSEHaueVHiZQuaMOWCaVmEvSNLF2PjYyNVln511HgT63OLpTQvGyXBGcIYHJ7sd9gPHqN3sJoDrK1TWvNLRWGuqN3OZ+IKL5fneKkb+hm4VWjbWd1ChZdRmsvJv7VNN9vVwvVPM6L7tALV69nIDmrbVUP3DRVjn7q894oLQBN63UdsFdal+/KYt/Uuyuvdl5YbqSd5YcBcx4bfdKY39n/x+TMNC74eTle37oYSq//3ttvmLDaWlqwrfesM7aKbUcBJuhnDEUhoV+F8QAhBugp7D+s9nHet8WRmlo7AStq6P+xhwbAsVnFUD8uahKhhOe+8kLC2vlLSy0rYyI32sBIvixpTlCpYDe1Ya5riYtYuwVxbYHQTlOWuMAPzMqsXIzkSY1270WlZYHwByIOYUVJsNFtOOQr3wyBhqlIQc8IQAoL3CjjBJsRZrfgmR9TVLUXOrHmeGjqXejKL1hmrIj9ZQpBk5ftlmjDNC+ZllpYgDCGdBbRliBQFQ5VYTBnGJng/wGv3Z1I0ZkoJwxBayG+ezg08UxQdCBbqKWZhtw9+3d4qk0jmtVauITmZkZJ0GbZDzSkZKcHQ3m4pR0zzghhTKwp2KcO4srawYS2n0ElaCiNrng1cUFJE2I047AY8u9tjP3jhyKxjX2vmBGovocui7CfVUKxTpXlE3VRrs1Lr2y6jN5vp1nbF/ao2X1uR8ZtkDV+uX5MZ2822IclNny6qv+sRhRf1op9xea8V16aR2Sa21v29ELJ9Funmg3+nE9C/b/MMVGj0x2zJ8l7ptgHyuR2rtzuht9iqnQ11cNhaoFgRhhtFfDG4myd3EeNmQatJp+GMTAC4gJCRuCA5YInSev58PuFuv8P3felLyAw8nCecPz5hPp9hjYVzHsFYpFJwnmcJ4XCBI8I+OGEMLwXH0wRvDLwfMI47zPPccnzkxAswxmJQ9gau4UBv9RrQwBYiwCTXBSs1Rrvd2K57yZUCCg06X0qBGTxylkLb+5cfY9ztMYwjhuEgSMScwMsCgpLdWoNh3MP7AONEkaMIYW4IXlgxCBuBsDKoiwBfZjSIuCGCC0HQhlp8DLWEYWoDRynyNsaCmVqhbEoL5iViUsaLeZlFoYYBIBJlRYSYJNzqg3a2roTMKcModdJ5mhDnGeN+j904whrxZF6/eoXpfJI6Ne3tVlk0Kov73eGA/e4gKME2tFYuRTDAGTDOgIwDmaznHbFEoRYb93fgXDAtEa/vj60QWoAqBiALGIfzNOE0LSCnHqAqrnmaGlI1nifsnt7hwyd3+ODpAUE9ZoAVVCK5tjku0mA1d92SH5mS9WOreeyMwGtZ14Xsm1a6lH9YxwbLfldZ0x/tOjCpP2xz4FHhdEMOX0qZz6u0gPdccTVhWj+pRSzv38J7+sya4V001qft6pGT+C4nubYRgHWGXN2lFrbrarSuTm0NPVUBWVkK6Oq8uXtVi0snWZfsr61aSENUiQHKsuEcCw77ALIep1kEJnfhLmcJhQoyC7s554xd8HiyG3EYByVkDchxwfl4xJP9flUoigzLGrKr1+G9g9eOvaZSJzVBZFuuiMx6BxU01pgk5nlWGWLgfJB8kzEoOYGQYcAYgsPglcEeDCpZHQVp2zF4Dx+CgC1IwAcotRklgzMjIwkzBgkgwdbuxIDUdLEqQC+9w4hIi6GlELYoEwdQpMdZBpggXIC0ysGo5MGn04QwDOLxGFGkdd7VGqykJRAO2gaGCG4ICLsdxt0eqTCiKpDDbsQ0TYBCxp2xkvNMCbvdDtN0lnwf0NoKpaS1cEwIfpAaM80jGWMV/CBQe6Me3hwT5iU1kmMhbU44nk6IOcGb0IqRU2ZQygCnFUihBLvLEnE6nTCdTvBGIfDeYucddsFhFwKCNbCGmrFWZ4LkESuvI7evxRsmPBpAI+qUyzqn+22r0rr+/W3K3tWIv1aCjy0iEt5GLt1QXhce5ecxzd9rxVWN/FVJVYHabbD+uZ2nubx31D/KW+YKviv6ag3TXCiPTvnK6bzDIKGbo7bb5tKSona8pnAuwq6Xh6jGArrfrMXIpnlgZOp+tobFOo/XGpYanqyhBkAQXbmIuoi5oMAggzDHiDRPAGutjrGQzl0ZhgrOpwkpLii7EfthABkrzOtGqHmEqb32QsqaWspa4CociJVNwXkLLtpgEjUEp9B4Pc/aabi1syQJxZQs3gKL1hBlYow2tyzKtl7gtYDWCdutdEjWR0kE4VfUZotb5Kacg6A11QgmudtcNSjLeVQD2SiK0kAoqKphUtTzbc+kJvarx6UPL6WEZYmY57kpLmkNI/VDuUjotzArA3pCIEDg/AbGeul6HII0hdQwHpHBPKmXXFGCihAcQkBOCQvNHTOHQSmQAmSlwiKsZLlkTANDmKJdBqxDWlJjxcilYIoLpllAGbkUOLlJQqqbs3SGzoxYe2aVKIS6y4LzWbxF6y3IeOyHgF1wGL3DGJQvkqjNyVavpUZbbQtT/RvuJXubIaLL3iaBwRd/23reNnXsZvH6vjf4qzrr9c5bGtDX4rX3uLjX4Y+c7dsv77niWi29rYe1qp1LeqLtg+g8itvOxVsujz+A5rTUTTaHXI+9CXvi4to+z6k9emJyDI3CN3qieqyei7CpV7p4mZUSyWiS3FoJy0mjRQEZWGthOzaGjVV5cesKlKYIBlm/XzLw8v6IGCPcB88whJ1EciAJ+Skm5GnBGAJiYYAs/LDD4ekz7PY7xCwNHY1zePrBCyAXnOYZKWex7KNY87tx18IYzjkBB+h9STEK3U/O8Na33AoBonhzBqx4O2DTEvU1PDY93AsdlcLqOS0CePAezgCGijAuqIIj9WT0AHJvlIUkxlkEvFI4VRg4IAXNJRcUBTpUpVILwQGIEs+151pqaE8y1HJDFVwRxlHyXiBM84Kkhb+Vqd1YQXuezieUYwFZJzV5MeLheMST589AZFrPqdqTbX+4w7jbY5kXnM6SL4vzhGU+4+6wx24YsBtGBOdQhgE5J3zjW9/E7nCHYZA+WmQcGAbzvMCSdjCvZMZKwDvHhELSHgfGohAJdRMDL1/dS5Hx+SzKkMVjnGPCORUwzShkcZwXTJMUtRMZzPOE8+kEUxJgCQ6ML754hg+fPcXzuwMOY8DgPawhNTJUURUot6F0Ta71bo+4SdvpupEPa9nKJpvce3d6TKph8MeiJ/qq3cLXdduIy5siWJ8uq74rlv5mea8VV5vYG+VEFw+ZttvfWPv51cJnd8MuPao1qblZ+ZZWz+V5XHzunUyu4YNVCVGpCDqp8blSVJXqSS3tqrBsNrAqlF1VXE5CbSn7ViRc+eZABOJa61PzK9xi7pkA0maOTEBkg8wGuRDO04KJM5y1GAeBN7f+SlasaWl1b/HJ63vM84wP7g4o3gI5I8UZwVjsQoCz0kq9skY4Z1vBdC0WBaB8i0psW/kI9T5aIs13SS0awcJZAgURXLO27igpCszdSN6pOIucgZIlh2e1UJrVEi85AajIRrQOwrYICbAfgtZDkdZsyW+OD6fG7BGGEUnBHbnkhhAz1qp3iObJ1bBrZVDJWUOdhAZiqGHTYAYscWmKbtjtMM3S4wvGYhwGVVTQGi2AOeF0Emb0VBjOOVTmklcvPxFaLrsSDNdxX/tjWefhfIC1TqmwrCpUxjTNWu8mYzMmAYywsrZnmFY7VWmd5hhhtZGk8w4xMWalDQvjiPMsfbOWrP3BNKcH1twfAc4QvAGCJXzx+TN89OELfPH5M4whwFXLiqXQvjAL3yGEsDfl2gZl5WWUdiYX03eNJa3jsf+rx7gsPM4smrJSljGvkRSqx8LWSDVkmsdrdE5I89NtK6Ctt7auX9vHrMeqIfUWXSH8f+CMNRRI7SFfhgOvLQDa/Ll631bc2O7zLhs9cl3jcPN03nieb3G4dQRtd6DEqRK+23pXFYDRzrG3xnQQF4WT10FuO4SX7Tyt6oVZk1FMQaYKR9Yz7IEaUKUG9RL0VHMRCzVm6UJr1IolEvhzRWYVkECt9RjzkmAApP1eamZSwjJPMMPYuAmd90IlVQl7VYCz1r4QKZpM715FiVF9EaHG6piU6JYgQAOrE56F66/yBBKgdEYKWFfhImwXVjsmZ+RcmUh4he8r4758ZoVqi7jaCgN9doxGtcW1eZdeL5Eq0Vpv1z8Lrve+chOqYFIvDjE1BKZzDlafQ9YQpHXSQgaq2KXRpoQQaZ5bAbG14pVaJ4qoKmiQ0iNVtn0jPbiMgoKktYyM0cKagzJShlCKCGYmkueu3nvWeymNI7MS5ApbfubYUImVoqpwUii/vJJ65igZlgBvCIO32A8BT+8OeLLfY78bu7Y5GiRjCWZXL6gy01djjjsNtBHna/y3fXxsordQ/y0AlIYne3HT3nZz3pgbUZUbryoHejnZvlcZTOoB68mgepXfLd/rvVZca21Kp7za3+5BdR7LbVf29jd09eaxhbvXuy3rgNiM0U8JD94agXr4x/359fzaRJG/ctxKgbR6WlUBVFokIoI1BlwMLDGK9qAqG4VVva3Qckfe+0a0a4uAxGsBM/VWJdFaJwMReAzGkhnnRRLtwUsbdHDBg/ZgIiIRnn5A2Dl4a6U1kgHYWDAZHM9npLggLwt2w047JQ/Y7ffwxmi334xK2EaExjwPCNNGQUEhEeRcWHNraKS0pWQtjhahKh6aEOAG7+G9h7EWORdphumNwPubEAYOT+4ACALteBRGjJRSK3BunapLQSFBKZ6XCRJcZex3ewlHqtdVvcOShdkeyjdIyjRhjJFSAi4oSZsyGqF78sPQFAgZYBhGgcqTwfNh0DyW1DtVr/o8ncWDtRbDOCKljHlecJ4muBBQcsIyTThPE4YhIARhNwEzyDJC8NL001hR3AaKWjXY7w5ClVRYmTVklnhfc5MybpkgqEAQ5uWEoq1HMjMKodE7MQDnvPR3owmnecYSI4wb1NgqWOIZS5QQae3vZkgAQXvv8Pxujy89f4YvPHuKJ/sRo9+K1MqEX5RVPtf2N9rtObGMdbMhIrhCMWxquaoeoI2Qe/NCnfFZ1WNTPVXhQOZ6JZCu46O1nblQYMJa0m3Xol2m7R8gFJQLxCM25/FZlv8BFNfWU4C8W13rmx5Lp9luPfg3a41bZ/IWW9D1g7pyrTq19cg5fDcdQADtnsm+V2+qBwnUAcpMKAWKsmOYImgtUwqck5BgKR5DHrAMS+uIvGgLdwBakyOWoNG6Hy7lRla5e2+kjiYWxnmJePrkDuCCzDOWKLU9NEfEmEVBOIvROzxV63fScKIxBsN+Dyg0/jxN2CkhrnT3FcFJRgQOmYyiIcO8RBHuCugoFkLzY+XJVrgyVe+LCc4YjMMAZxxiSsou4bDfK3t6YUyzgA6cCxiGAX4YNXdG2N89bYJalL3cQ6vnylDqKlSPKksorYNfV08FBKQYG/w6K3gBECVI1aPRZ1v93Vy0PYqxghhUAZz0XBjAovlCECEMATFGWACHu53spZPJy7Ig5xmv7l/j6d0dgvMIw4h5OqEUbkoXZIVqKTMAAZgcDk+U+Je1Bk9QjzLucgtdk7HIUeD4p/MZxgeQk7xk5TZMuYByASh3ioyQC3D/+rUiR4WNo6Skodsivd0ABAN8eHfA933hBb7/S1/Ei2dPsRuCMvdLQ8zCRRlLqsdTBf4aZjeZkfkRIc4tmF8n6K0Z3M3eVTE1hVSVS+vzJmUc6/HWUP1mr72C0ijBZUhw9bIuT00saBm23Nasl6UUcLcu5y2X91tx1b/Ux2/rm6qUqNMDtxXCBkVz6wAX7zUC87n93seOu/FCbpzC5U94s35rtV3YcNc7aMbdRUig3rE+fLixtmqI0KKY1eOyNrfi3uQSnEvNC8s5awsIA1NKU4bi2ZR2T3vIfD3FarnOCqE2GvIyKuTJiEU9K5sDSmldj1PhltcBCVpxyRkuRglhVUXNBeRF8HNOzYE3hhQo0uXjtNlhjmuifJvA5tUTtA4m+cbEYJxC2w3DZeHFc14Qd9VirffWJAnxVYsXQPO8Ki9HFVDgrkU9gEYCTNCcUPUo5Xm3nmlcYMlojknvOK3PhYyBrX2nmIEiUPlav2eMkeaVLPtbUoRlRkjSaLF2B0CKAMT4ySkhpyw9yUhChsxyLyq3YUUHpqz1Z9ai5mJqGQM0rFp7XRYFIhQGUimtfYspFSTRo9uUOFjZP2o7nmmaYH3YzKjWEgeAt8DoLZ7sRjzd7fBkN2JwriEh2/ypuZ02pldfp14HKaPLOtKvBcJ27RuEThV9vM7fy7kLkI6L7a62MmRVUu16br1qTqsfcxIz7z/pXqpxt4YxPwdV4futuIBr5UVV2qBTYhuXeg1RNR1G69/brveq7S6ed7fJm932Lf5n3ZQuB+pmH73SvTidm+fQn9wt9XZLS3ZhCSKAJHeSqayDtxv0FVINoOW0SnHqcXnUbsdSeCqCIPgg/aRyQXJROvsaRjarF6YkGk0JADWhy+BCyIaBzOCy4NX9AwbvMHqLYC28huFOJ4EoxyLoOUuSw8kAnAswENDBogKPSsGSBIJejEGw0ljSkAg97pk9dOLVnJF4KgDn1HJUVbCSnjtUcRnr4UHKlIBW4GpAGHdW2dwdfAji67BgKwmQtisgYfVQ4WedA1g6L1fwBpEB2VUEEut+9JHLOSrDPaHRMhVFFXILB6El9V0IosA1F0hG2s1zpUViUXY+BIWPC5PGPC8wJoGs1K9FNSaWZYFzsh+5R6Xl7MIQlEF/aV2TjXVSm7dI52ljDIZhUGqrSlgrY2wcBwlJZRnLBdIhQHKA4mEuaZEuxVUxW4vMjGWRouolZsSUJKyZSztPa4BiABgRmIMzOAwez+/2eLofcRgCvDbtbCKba7sg7UfM2iFZ1wPyDAyvY7/O0tsz9jJBdNMkbVO5biFKd+2fJ4oMLYd7a4/X8x5tXFdvq4UHO2NNZJyOwTXB1fa9pry0MejnAGi814qrxVQvfJFeh2ys4NsO16ce5b/b0p9j1Rv1q0td+7an8ahm/ZSTqOdhCFAvqFrsRsNahqSRoNgBcu/7+iLvNZxWCrxfGiBghWFr+AQEGJLeVy1MSADn7tRXzwBAyw/MOWIIFtZZuGGA0CPIvpYUkaHIOeeRIWS9Lx+OOAzCbRisxZwjpmnC6xSBFPFstxPhc9gjpwU5A/M0aQ8qqPCSfF9tfqnyEcapsmKAc8bp+IBq5TofwAw4MiArXX5JH64Pg7BaNAYS8WqcC03xLfPcclvkLBZtn0H1/rd7ZMBFwlnnOapQsaKs7OqFFfUSmRXVBwmzpYSNQWKcgyEHO3g8HI9YlgXT/T1Ye2EJus9K7mdKqnAB2xCEQCriudwNg5YBJMzzghAGDMOAh/t7CePNs4TWQkDKBcfjCbvdDmIkWTF2MiMr5VY1jAiADx4lG5zPZ9zfL3Bewo4P5zPOc0RMRT1s4Ql89XBE0rDouNshQ2D752nC6/ujensG47jDeZqxxKmhMokLHBg7CzwZPb7w7A4fPX+KJ7tR6r+YN4K+KlRmCYXXsohKPp1S0e+pUyrcFF6bBbyWvkvu9/EJL7ml6v3r+Gzeneb/oDmoi1Bd28uVV3UJyEA7XwLWSEDz5qCRjU53bRYFqVS6q8+4vN+Ka6Ov6MJt7S2KqrwuvJnt3noR3r2uNrutGB59BpKf2KBsLvf3tssjbtfVO7o+Ibo48ctzaeCWDmFoyEi7eHSDuKih0JRXB403NVyYFKjhW+da5xxc0jomK7BuQ+ba48R67r31WkMTYCOUPfOCs7fYDQGlMGJacJrOAENgvcsCCh6ulJYbiyZhMYS7IcAGasWwRiHxuRQsywKQAC1Qah6H1GNUhoma/9sEZOS0Wz6K1mQ3dUpBwmK2teFomSJei35XdJYoHmPl95UtxJgahGGsKEYDS05basl55ZiQ02oA5BbOy0pEu95l6a4sYJjM0tKltgSpTCBMpTE/RFWCVTGkLMW9DGDYjU0ZG2MhXVzW49cQau2PlRV8AsaaW+pfigQkfRYgLXhWDkcQkGIGyMB6UX5zKlhaXy1BNJIxgmYkI6HAGlLMWa9HQENZPbSkAArDAnzxzuDJLuD5YY8XT+7wdL/DPggnYQ8ZrxBwAM3DqmTBrGOEa9X4Zk7ehiv0ymudGFuPq41DlYEyBrpcFNDGVeu9Vsex/rgquHU+3w4R1pPoFVg/YfuQ/zqjr+OSnwcS/14rLgDdDdXPWAXKxZbN2t24Nre22a7arNsMofYMb/j5b3HOt7/EI+f23Vhkx9z9350UoGEEQ0ZatN8YtOJdyE1ZB/aquIxxm5yWyx7OCijBOteEdgUOVO+hnt8VhIUFDECKvDPWYUkJNEvOIXgvfZ+SWM7C0mABEhBDKIxUAC4JBiKADvsdgh+wcxZhEJYD4wyYpWfWmhRfI/85RRW8WUNCqynUC4fSR3SMaUXaLZ5PUi/WIN+V2YIA5NK6B8u9NA2mD0UocskqBLMquyw1TFY8NqtgEiHgzYgpasiw9qqS1iVZ6ZWMtUptxShZPIUlzsglSxNM1LBXUUUiYb85xcbUn/W+Re3mvNvtYKzUfhltwFkNgwoO8d6jlIicE3KKCAp1d96jkdqq0K8w9sgZg95ghih5QZVq52VjYHLBw/GMyECGMLpHBZQYazVUmOFyFgouFpRfhainrMS/WQA9OUko2FrC3kt48MWTO7x49kRRhF5QqXRrXuu5duCHXpHJgKlzsmfQqGOlF/zVwyaoQ7OZxUTU9YuTuWy6aFRVSiBpNbP29V7Pu5JL2xYGNG1uN7HZR4d6hVgV2IXR3F9PKw+gz6e0gPdccV16WBvN33lh1D5f7aD7fb++38cjv736DW8G2uXOLm2pHgRB62b/7yyqi+ukk6JT0jf9QIUW5kqCXRSJwnmL1O4IYsjDu9CS/z4EBA25LM4hVxSY1i3JvkvnlW6tMwYQoxR9WoPWoDJrQn0YArz3cGHEPM9Y0oIwjlhyxpwzCgGWJPmfOQPWAs4BTqDgqRSkDMCuSLIcE6q4MJUBoctTcskooFYSQAoHrmGzUhhZUXwxJlgfYOxao5TjgtoaZZ5nkDEYdiNCGLTH1YJhGCGtqKSGKKVF27ik1ueMc8TDMivTh3QObklzFJS8IC5STGuMbXRWMS7NKyrs5bmSKKhlOiGlBBs87p49E2U7O8xRmM1TkjCgLwWeJbQIY0EOKEsEWWHvt8agZGmtYl0Aw2CJCeY8gRl4cncAEeF0OmGJ4mk6a4XAdp5xPp/gnTBhWGvx6tUrpBixGwcc9rumuFIumHOBQULChCllsJFzmuKEaYlIWfJ4WRkrlpjAKeN4nnB/PCIVtE7QDw/HVtvmrcFgJaf10fMn+J++8BzPDzs834/YBVFarjLIkOQS65yqEmkdzSSgPpAq6QAq29CZ5DgfmafbpBcIBEsWoH5kqqJSsmRrbFNE7dwMgYqUehA0QqHNSm0DWtXfrDD4dd/rGKvjvvfeb513r6dqNOGRWOJbLe+14qrLKvwvFNnlfXyTYrhQVrc8r8+9NKl3O1L91jugizU3n//ltteuevueCbV+a2POXSni7YE3Ia1NQbLFWoxs1xCiemLGrh6FMYRcuuem51Pj/fVkG88fYUWeaT+lJQrg4jwJewMz43Q+41wK4hzxwdNn2D29AzEjLZNY5NOM2RqY0cMOAY4EIl9SkkaB06SOuZYCFKAkpU3KwpNotY9WWmILEwn6ThWHkuEKX6Hks4hI2r3HBaWwKDqJH8l6DeVIbkHY2EsuSHFRziDZNsVZvMBlQYoLojGIsxT91rxWVYBZQ5yiQliNfA21JamfMpaEiaMUGEvwRopz4yIdjCtVV/XShmEU5eS80CmVgpwyYhaaJTYOQwiYlxOmacb5PGF3OEgXYxDO5wmAeF7jOCIdj0hxwTJzCw1bYxDjIshMZ5VouOaslAkjRZzPCxIzmDIwJ5ANAAm3ZczCVcgMvH44IiYBm7C1mBdtGMras02V8qKoVGHft9g5g31w2HsnxM1DkN5weo62htWANQTIN6YlabF0Vp7MIoYRaYNOo54tctGWP7gpGGqovk4XgvSQa96eKlFSGLyzVmoLDWEltlQOR6wG6zaysobxW/ixV1htjK4yoA9GcbsBiuKsMm8jj76HFdfqrdTQzW3Xhbr/cbHFo2G7Tz32Spv09svjD+u2g3fTVbz98Y3j4CKE0X4jo426UMTb3I963/uBu4YNBbRRJ3VtENgsvwoc0FBaCxd2A7+/nAbA0efM2ruLYVCYWqFzbL2bgGmO4JRgyGBJCZmlnKgwcJpmZEMolnCwwOgsUjYSRkqlFc0K87ueXz1OjOAkDR2dlesAp5Yv8MMg9Tm1TocIbIyCVsSLK1ywaDsVo9+BCSVn8RyshXEOJUuTxRQjUlz0eCIcSxYFm1MUSikwShJFalTD18aFLXdSiiLqVgb7JS2AKXDean1YkXAjCTgnxUWZTiw08y4hWCUwJmOVmBatzMAsCbAZAULvtCRBIR72e+1cLfVr0BDqfjfKfYDUeSXt3jwOAUnLJgzZrugYCgApWJK0JWFjkbkglQTjhoYqzIVRSIJi52mWejrrYHzC8XSW8GBVgtqZOKckbCfGYHAOe2+xD17Z3z0G5+CNUeNFlFetDwOz5LA2YZ6qCIyGPitjRpH7Wo0jZhkHzMINdTl3N95cfSlVkzVtjlBVXKpcxIsyLaJRPX0ufahPf9eUUZ3fFwrtMu/Vzf16mpswYJfrkjpHUoOYPo/eer8VVx9T7p2tPga7KrWLL7FxsPq9vvXx+RGr4U22BANrmcOFl/f4Xh7d6M3LO/5EwA8FlKl5G1f7q68usdsiEKYO/K7A0nahB631aoWi3QSQ/beRjzrZdYUk55lgvIExHsxChsqaqyECXBgabyEDODx5gsN+D2bC17/xLVgDjN7h2X5EJosMA7IBKQt4o7YVkXwKA5mB0uUnojCGozBoGNR7gBKZKhpsWVbmiN0I46SdSOGCeVqkiy6JkAZRg80bDZEdTyeBnzuPYRhUaQlac78b4RUNaAzBeSd/nTRSLCVjWSYFGUh8plXSVMLdzMjzLIwb0xkPpwf4wePJ0yc4HPZwVpGiECVinANpQW1asoQavYcNXjoGa2nBaVpwPJ/xcJ4wF8KUCxKEw9IPO4xs8Or+Hnf7PYYQ8HA84zxNCN5jubvD3d0dxnHEg33Ar/zKr8B7D+ueAmDEoyj5w34P79Vr9w5xmhAzAD8IijQlpDnCksXpfMZxOiNreHKOCakA5zkClFCMxcPprF2PxViYY8IyR6kBdNKm5Mkw4MO7HZ6OAc/2A3bWIBiCM1JgXjswt5yljmFjKoEuGreida4pKsk1MkBSW1fZVoQazKDQ9vldT0PZdzUOpbFmP5fqlKJGxybRjQKCtAECZT2/fhvTPPbWcw8VBi/KdwVvmO0x0ck23lqhG6DGRejwsyzvueLChXCuWn/94jZQo9+2ffpcC2+01WphvL1LfOkTrmv7HNN264vfXt4LADXcdz1QVjeNAO1ztHpcvQXVjt/8y+sJdWk0yPsaQlSLk1ZOvrUOpMbKFfTBEGsfZfPkWJVYzozqFXgXYJ1t5+acBceEkhKmeYYxEcCEj/09RmsxBAcyDjEzgiMFFojSSsQI7gALQiEDWAcwUFC0bQaERsh5GIVUM0kRr7MWzlg5Pq+QbbFqJSRX23xUiPS438NbUTwrF5/HWAbJGRorzO1cJF+hbQmTen1EYmhYYxAV3WetAS+spMBFp0L1ZLkpypwSYpFWHTCmKaCUs3ixSvcwLxGWAcsifFNKKDCgDOwPQQwRItgwIL18jfN5whIz7p4N8CFgSQkPn7wSZg6SHldzTNKSJGUYG5AZePX6HmEYEELA/u4Oh7s7AJXH0cB4r80vPeYl4rxEjAzAOthgQUuUMC8Z2BBwfzrqtVmcjkfxxFQ5Za2l8zkjA1hyxvE0YRxHgKU8AClh9B6HMeCDuz2+8PQOT3YDnu8CdsEjOKEVq+O4htI2Yrp6XqzF81lynSmtXiCpJwjmVo/XgBxN//RCrkezSqWf0zrGw26vHrN45NztyxBaFICUtgoEaAvONfrRe1GbkOA6dyvgY/Ndkyd9cXevqNa4KRPrNd1Wym+7vNeKqy69xn9UAdE6h6nf8JYy6I2Wph23G27TP3zjPV9804K/TSBfq9RLV+z2Bd1WcZ+27rYCrUqrn3a90XYZNby0owDeKKpe8RFWr7jFzQ0pTPo65LCe7vqZa/hSj1gT18SkVD2KpqrhLCoQnkMgpgJrMqZpQdjvQFStXuVCZGkKmEpCBiPuitRplYzIACt7d2GGqyJD27737mfN7Vn1murJOivoxpxTg5UXLprbQFcjsxoJ1dsBJDTJqEn2FVbP4EYmbAjIOSoXoQqsKjhRm1uaqwdZao2aEUYRZoGAC/DF6jYMTgmZWRS6yh9m1rYm+sBUaDOtOT6GdFw+ns4AM5waAjkXMMtvK2pNuhsnDSdbYW0vXZ1RFZDWIvOMGDPYLCCyQpekSrEAyDCYYpTQJQNzVLYOsHaDlmtfloiUMmLMWJYoBfTqRbExAspwFqOXXluHccBhHBCcFaVltJzjwqKsHnQtb+jZ0Utmvcfctqst9GpOaI2x9IZ1nQurtyWNQsU79k7yhLXbddFOALVmDOAW4WBmUOv+gKaEGq0TLubljVcVDP0cb2atKt2+NWA97rrUUOH3rOJaBVx7d8vreMPvL720NgZ7qU0XP+H+w2dbeiVKVwd4i9PuP26snE93I6kfM0TCptDuw4Un9Q5ndhUL75K/pr1qiLDztGroVv/WGLxoeVovDVWRCTpsXjIiCY2Ucwas9TqFCbAOiYElCzsGGwvjA8K4g2fJL0znGXwuCMQYrMHxPAmThCbp4zIDED7AwXlYJhiViNmIsLdWSGfBjBwTGNImY7y7wzAOmGPEaRagh3MWlgWSXZttGqts5lpDtsLqSwMpGGMxjENDhRkn4SkBgIiymc5nQSfWW0VAThkgC0NSlF1UWLoQMKUkXppzGPc7WGsQk/T68tq40liL07yg8AKyEcP+ALIOTAav7x+kUNl5AID1AYe7p4CS7cZpFsMgRgF8UMJ+HBsDeyEpbXA+wHmP8zxjSQnee6m50pmRwaCiXgQZMAl28PQgLVLIynNdmJEyIxXGrPmqmBLO8wzr/KbOMKYZ968fMMWIeZbw4OAT/BAQnEUpCd4ATluWjN5j5z12g3Q2lhCh2Y7XajQQVe3enqFsI0X0KWUtPu4A7tVYq7VVneLrF2aZQzU0aUAILmAcBuz3e/EWwdr1WsiZY4ooJWMtckaj+eI272oYcDvDt/NUjZ86r4naeTfZUfNXq43eJFINIcrtqYbV96riavesuyv656YCqp/fsK8bH96wvEUY8C0jhS0yd8Pp+n9uWQdhu4cX769+sbHkWQYuoeWdQNeX34wNqsaGTtra4PamMVZFsvyVOh+p4amQdmtKu93S8ygBkHqeJ0+f4cXzZ/jw+VP8yv/1f4DjDMcFTweHbAnZWoTTGd4pEasneOcUcl4wLQuCsRisw6C1O+ItCLURWQUPaI6AOePV61cSgisZd0+eAhpajElQiyklYXBQKzyWDDIWzofGMFHzVbmwTP5ujBYWgIX1ATsNNc7ns6IPHcxoVqaGKOS0MAam1pHlGrKz8EHg67mUxuqxJCkkBzMyCA+nM6z38GEUyPo0I/OEbBzuHx6wpAw3jgjjDjkmfOfjj5GStGBxVhjapyUiLhExM6aUASu5u9P5CMSEgQGQRSoZcV5wOOwaYnUpwFKAOTGO0wQYBzIZyAXnacF5mnGv0HqGeOdTTALZVwCJCwEDGTBmQHNDh/0ezhkM3mPwDsN+wGHwuBs8nux22A8BQxASaW+lZ5U1Rp/H6g21N4TG21jJpWUO1T7ZaB4x12nTeT/VmKyCvQE/gIYQtBqC340jduMOB80dyjFY851CwTVN586zV69Lj7vls1zzVtZ2dVxWw/2mVYpdiYzL5TJNQjp9efP9Z1/eb8VVl41yWu/iahFUYXnDg7q94vYxuuVNt/2y6K4Ozsd9mYtVnXCiW58vf10/8I11jyzNkeHuQxeoeGwHGz1F/QD89IG4CelSN0npYr/9+fN2pUzLau2ZVTmykOxKWEIKT1EKEmmdT0yY5gUPxzOO5wkeBd5bWOdRiiiXwoSo/bhiSgqEECHiyMI4D++Fl86SJtIvrrvm9CrNT2OK8E7HhaLkrKItjdAMgRheiYLB2rGYamrqMkRjOwuXBJ0G8cwAau3ejVmJdJN6WAThfhTBvhbDtghnZRHXxLz1XpplGotpkfzUvCyACk8uBafzJL83JIowJSxxwTzPCGFUYQpk7ZsVsyABrfIfkl2QWcZ2zBk2BHCMWJYZIKfEyTNGFoOEjUEsjJKjcj4CsRTM6mHFlJulJblF6XRdJ5OE2iRMJw1E5TqICwwYg/fYBw0P7ncYNK9VlUUbt+jDfIxa5N2UVlnDgnW7es9rALyO+xp2bPmyDj5ujW3bSmdx28bZMAwYxwHjOGIcBpCiE8XLkrER49IpLoCLbR5h6zXXR0ouoiErQ8YaHQFW8MmtpZck4oiRhNh72fg5dNd7rbi2icu67tGNuzddTuXTNsdq6wM332Advmty8hKsUb+rA7JO5rdZql5eI5ePnDtdfrzRSuXm8gaVevHzzbl0lZKXEPo6mdcJSM2zuoLTNg9Mf9uN6CuV2rw0A7N5SJupsiouSA7jk1evME8TXn/yCU4PJzw/7DDuDtgdBsTzETlFkLOY5gnzPOPh4YjDfo/gBP48hAGDCgdbhLfOEuABoKQaHWrXUAWCsxakCfSUNV/mHIZxVEZ4B1NE6FnncT5PwvYQI2KMcIqiq/kZUC0ClxCatRZxjhoe6nNowjaRUkKKCTkndWVFqYqiZq0ryoiJUFiRh1QBI1J7Z5wXXsjjGadpwvl8xt2TZ0JuDODbn7yGGwVlWb+fNYd092QAM0tOKYviysy4P50krAjCaZ5xOAhUfkkFT57cAWbCeZkBY/Fweo1Xr1/j+fPnCMMAOA8mwnmawUQIpIXkLFRU07LAWvF+z/OMnOSeWEMYh7F5GDkpvZYjpBiRCSiG4MaA3RBwt9/h2ZM77MeAwQkQpY79GhHcROdVMTaC3cJCKK3GQ87ciHYBDRXrsN22ChHOQdJtrFm7dHvv1esysGSw2+2w2+2x3x+wG0c1hBgpxaa45nluhg8VasaqbJfXeWXWfG3ty1Xboqz0UReCoeqibi5uJSPhSojc3PLdlvdacdUwVvt4oZy271ANjnWcrUbIuy2dk8F8uWp1kW/xc7UPtK7m7lfXV3D96W2WKweG3s7CuT7Kp4VC1/Dgei8v3MsGnZdJWcMRK3y+WnVS07Qq3O0duFTC6xbcPrhmGUOYzZmxxBmffPwJjk7CfN/3xS9gGDwyWcyJMYx7BAOkAsxLxLxIcn/ROrDgg/bSEm5DihHOGngj0GhOEdC29mRqSxJCIY1+KgyZUUCWsNvvJXRVMl69PMI4B+c9RmOwxEVbcci1tA7DzmBZFhTtfVbh7zEuyEng8ihF+BqVhHY3DACgoToH1vNY5hknZWGHEXb6msMYxl0TXH7wmveKmHJGZqlTc8MOIINZWdWts82DePL0KV4/HAFDGHY7TPOMaZqFPHe/B7Qe7hwTcJqw5IJxHPDwnU9gjcH+sIPxUpxN1uP18YwlM8g6/Mo3v4X9/oAwjgjjHksBpmXBxy9fYooJc4yYYgQMtTDebn/AMi/KUC9s8c45BOeQotS5xXnGGAK8s4K0yxmDdziMO81pkRpJkj8Vz2NtxcNVgxUlUuqMNUEOiiG1xIg5Ji2JIMmTNcSea97cZb8rr4AXYwyCVwo1bdmz3+2w3+/x7NlT7MYdiNDChHIpCSEECcVD8546XUu2KGYt+G4C9SKsUr33Oh1X6inGSjJP6zx8K1fq/wsVXlgCzfBZP1C3frPRLUH9aaL7hqelWmdNxHYBNL6EiPL27eXubi69N4HtBT42SJr7sln55gN1inhV7pee1I1Dbfym6225bkVYJ4hO/tWD6xBKGsbpFfz2rLarq+AgkMa8GM4aMEtfrRQTUrVYnUeBwZILeMpwCIA3YAvEZQJA8D7AmlpgbKSWynlEG7FYC8cFmbSgWe9PrU0TjwWo/H6tg3QXWpFmhwaksPqqNHIpWg8kV7hBwcXYUIZrXkJe1nmloBJkXq3hqmFKUZLC1iC8jwZhCA2R57xvBapGPURAaLZSKSgQK31ekrAtWKd9twQA4UIQJF8uwijhPQoIqcg+Mksd3sPxLJ4QEcK4A4xBKtzyXgQxFkg78BZmcFqQGSDrJWe1RKTCiEH2y5Ai55iE5Fd6ahVYx7AWCj9XBKVab6xlANZIbzQ4B6chR2JG8E4UWJG2LwTXcrY9DByZ0f51ArtwpWASF5y59pPj5u0YY2GxMshQl7dq0HV9dl4NGGOMelxyvs45CRFqnmu3E28y5yRh2ywMLd77Ng+ZGTYbaRZbQ5MX81yG37XgpAsrv5/fN/0qnZe9iKJLIfEZl/dacd28B9Ulru8/z766pSklqIdU49Yq7Juq6mKFfRFo+01DzLU9b/70a99kkzQV1GIWt67j062a7YDb7ujT7x5dhSO3iKFV4a7Ka7UoqIvrN4+sxv831of+4moGdH4ur7UzMELJVEjboaSI7B2YhFcvMcBLxlwSvBEFFw2D4oSDtpO3KuRKFut1sU5qliBMG8QMWIZhSKt5EtqdfmzkwoBRaqgaptNzrwwjzrvm8eRSYL2DrRyR+hByKchqQdfi5VboXZRlPmckAM4HUTQlrwz1loFCyKkISs9aBBsgfPCA16Q+iKUvlyq/eVlQyDSKrfM0KwhFrk1qv4SL8mESVKAJA6z18DCIqQh0ncWeOE9nhDAg+IBxt1d0G2OaxZMsOSOdTo3411rpGVbJYY1xiOoRm3mSgnPmljdLOUs+c57hCsM5qJcqngAZ0+YkWNhPjNKQcU5AybBE2A+DtLEpwlxPer9bqFBICYGyhgV7o1W6Z9t1TjC0/1RVoAbWMphco0QztLLLWFtp0US51lCxNQZeOzk7azvFtdOQoSiulJKy8Qu7vfe+nSNzQTa5eXe94mrzcCMDVuXVbMmN8lIVXZVUW//Im94G/xxJrvdacVXBWd8/Lmo/Paf11kvvNFXPGCtzQv9q3lafoG0KsP5DE/Qb5VaP81057XcZIN3Q63JS63e3/M910oIhyqO7hssn008Y0ErSWYuQSZXx2yOPViXGalEbEmudc4IlYD8G7MYRwzggMoPJwPkByXl8fHwApxlfvNuLoNazLSkhLgvOpzMOw4iUM+ZlAbEHq0fng5L35oI8C+N4ZQsh7wEyYGNh/SChpCwdnL3XkKkfNvcyDGPLceUs8HDnpIEiID21zqcT9oe9hC59EI9Qhbb1AcY4gIV3kY0AWLwPQAgKzz8j5QQfBgz7PdxuRIoRMS5I04zDQclvF+lgzCAUpIYqHI1FGEelu5Ii3jCOsCy1U69fvhbv0Tkt5rbCZ6jeV8yCtHv+/Dmcc/jmN78hiixn3N+/xsuHB9QSiqd3dzidT5jOJ+yGEcfzJF7EsMNyf8IcIx5OZ8Siva+IABJm+pgSllxE4RgDThnOOhz2O3zw7Bnm8xkEzUNyhifC4Cz+py99iGAYjiSPubKl1/B2rd+SMVpzVq2zbykw6qXWOVD1pYR+LTxZeBtah2x5WVVUvhU3W+2BVtlnvPZC6xXXbrfD3ZMn2O9GANILzU/iZaWcMTwMrY6QmWGtdqSGSkZVyFKu0pEC9HO7cHPCuJOmrKieCnzsw4Zr5OnGPP7sOgvAe6+4tgtt4q2XqupttYAOwv43G29Lt2qWW9l4V+BV+dTkd6/IKiMzd9tdFir259KOyQB1HF9cW7A/4hp1onxzf9Zv9bKIr7qyCFy2D410kcduEl7ckfa3hQQvLbrN2WHdb81xoayJ71vW2MaD5ouvpJaKtGYpWEnYU0kgFOQUcZ5OmFPCaVoURhxQ7iM4zrAsHkthApOFcwbTPIsSVPRcTgmRGYNz7coTs/DaEeCMWPDGGA1F+bZdAYHUsrYQz4+IIO3OVFFWq5xVGGj4kGMESCHY6mGkXMAQ9NyyJORUUGAEnWcsCEJmyx1vIVe6qJKFbNcQ5hRx+uQTFZQSJkwQgRQLBNpPpGwP0nV4SRkcE5ackVjyPqlAeAlLwnkRFg7MAggpTDDOw9okqEzvxYuNC3LJGIYB8ywEyZkZOeYWqYgxi6API+4fHuCDhw8Bp0lY3yf1wGCphRgZ0ALmGjYTZpMwDPBenw8zgjJyWEOwMPCGEKwB5whjJQ82BvH8aqiwFfICTRFUzsnt7JO/DRShUl/g5YAHgbzmTe3aQbwqpNq3Tr5bFZdsJ8hCa6W+b9xJuHAYRXFZpeFaFqnJM53356xFthZW2woZw+o1red6uVwzeXRTv/PErufrI+vbfh//7tOW91pxNaMdFzKt32bzhh51zKpa2wS3WMNgVAV9p8D40kPqw1Wl87huKCjCxe+w2f+6Lz2jTn8SRGkRdxffX+0jsv1WnJmqTu610tXd+3Rl30KlFw+ihf/qhKiTt1u/Wnx9Dkx/358OPT4HqIYNVeEaIgTnsDQFKEWvuTDStMCGDAYL4CFF2JIQDBALI+mNcc5DSHWETQFQKieQwpyFTy7nAgKDLInS8r4JNueC0v3UXJfs0QItjwQu2lqkIvzKGk7U3FTNbXnn230U1KJsm3ORomtjkTkKy0YdsyTggKUoK7qzoOJhWNB9S4w4zzPG3Q7DIMIxasg1sdACMYtSkhAkwDEjYWlhusyMOWUt9i7S/iQlzTUJY4Yxruvy7ATYMc+NGy+miLgsoqh5pc0684SnT+6w2+0wLQuG/R7eezxMk+a1JFzpnG/Iu6Is+gwWL5fE6xwUkWcApLg0ZUOAdMd2BoMjDRk6OGdayJIUnCBNPakprfr3kh1iYzTS+qooQUcE4z2s1fowH+CrUqpdFDRM6J1rXnz9XDsvDIPU+4UgL0CJm1HgJ1GKlci55xik9rdoVKSb503vEi4FK6s47E3WPuZVcC1Lt5P1kUn8jst7rbjUlLm1dmPdr17Y2y691wWdBLL0IcBKB1RK0VYLRbnQVHl1tRwVaVQUUWSNbR6YUUHB1HllVbFhDZnVfNK7hj3fZNlsJlw32vpBua2/ujGeO2tso5SIGhVS7fOz1qBoSKLRP61eWs3vvH2osN4byTcNzuDpYQdaBsycsSwzLKBMChEms+QQnMV+8ID1YDBenyaMzmMMFn63wy5n5CUgL7MIC1WyKUkvsJkYOQSM6gX43QHOC3PEEiOePn2GUoTFwTjXnoUBQMorZ4w2O0wJ5/PUeouFELAsC+KieYqcUcIKpQckf8eFMe73KMzShn6WNiRWvb+oDPDH8xnDKHU+UM9rmSYcTydRtj7ADoOEKJOM2YWBMiVhwkhJWUky8rxgyQnDuIMLA17eP+DhNGFOCZklR5ZSwfF8AoEw+IBxHAWwkdf6ouNpAhfpkE0EwBBOxzOc84hR7kcIAec5g2zGePcUhUSxjoc7vDpPSGAYbzEOyizCysyhobHBWXij3pQBHAE5RXxyegCY4YwwwH/hw+fYjTs8O+zgOWMcxOMy+oysW7sbyHxfQR/Vs6rfAeKx1k7KAofnRnPlHIHIwQyDelmiuMZh3Ciupqi8b/NIQsc1NyahwwrQGIYdAIa1C0BACJPe25pPxkqk2ynt7Ztu4cuPldXjenu6+MtX315GSOiW6H7r5f1WXNXBINqueJOjcGEm9B/7mqNr66mGyMSSy4Wb0ip1YKqiagpM223UUCFU2RFRp9QKCpW2noz05Wl5s8IwZlVgLf+jZJUrlPX2ZT52D5pFXj2lGqq8cY/llnR5KTW3Vg9x+wNBylGzUsnQxtqrL2stLBnkWjNCq+KrDmV/jP46H7s+LiLMB+/gnjzB7Aw+/njGMs9YMiOmjOADchYL3+xHEKQVyJOndxj3I4yzePVwxHx/DyoZgQhjEKShAaRvUkXoDQTrB7gwwvoBbCBhPQhCjtUjccZIc8ki/Z5M14NsmWfMy4LTWYAJ1jnAGLgQMBoDn4OEmIzVvl6CuCu5YIkJU0zNe15SgfOm3aMlJek7FTPcADhtD3KeJ5E/1mF/dwcG4XgWVOU8T9ovCqg5OnKEYKxAumehc5pjwpKB43nGOSZMc8TrhxPG3U4Z5R2OD0fMNiLmjOAEjThNZ6SUBGJtrDKcaJ8tfe+cx/MPdnh4eMD9wz2O5yOC960NTtZx65wDZekMXU06Z4woGpK6J2lBI/3BZA5mGGVkd4bgrQFKQkkLcrJwVAA2MAbwwUu9nXo9pbZKUeh7CySoEVGLi7NuJ/ROpaUCjDHw5MTTGgKcC7DOIfgRwzDAq6LqFZfrPKz6XaWw8l66CNQQbPUKGSxhVe+FVkzLTND3vusF5YUyugzkdDNMQ4O8kT39z5tMrZGQ6520FMFnXd5vxbVZLnX+5bIJAq42AANEK0x1dU/Wm94rrj4E2HtTG0XUv+p3dUCzJG7rei4MNvK+QqRZcxnVA2shQp2aUoEua1aPiSQHxtfX/6jb/g53tV/ThwlqKK4fn2tksAsDmq0XVpmmr1ipe+XVeZyXXmb1sFCf0OoegwAhQz3sMRvG8f4VlilJN16WK6gIK9TzNATrgwhSZsR5RloiHAFD8EKJBG37UhhgIac1VgQajOTUOMv9IBKvg9u5aRNBFvSbqSAUoo23Lj2kpOmj8xr+yspQbwQoEVNu+a+cM2IWaibnfWtfUiHsmcUzKxBkX4EwMUgTxoyYMqwLErqLCww5nKcZOWf4MKDmUEmvkxV2XkiiByVHTPOMJQk8fppnwDo4x9ppOQlrBzPC04Pk6JJ0sJYeUrLUjsPV4zZW2sEYRRZmzfO1B23Ue1ESESnIFeSfd2IQWWMQ1OMwakwwycta+c5ZajROxghY0HsL74Smyjq7li80QcsXjBNr6H+NxnBTcJoRAGsYz6px4lxVih5DCAghdIpL0YPONu5I+ezhnCIRTVVsAdY45SqUc4pxgdHmrWsXBl7nF9bIyVVEhtfr2hislxtpeL5+Al3Lmd7YfZcIyqct77Xiovbf41tc6vumtJqwr3ke7u4+o0+wqLEEBhqFi4QKVuaBXHJraLh59eFCiKXOxsDa3EIOVAimaF0PUStQlLORAVcAgXhzTaRWy6e3bB65GXTjmx6RcSH01zum59ApoE+LUq75M2ooJaPIwRoe7N3iCvttyo1pc7xrkEY9wIV7SCzAByMCZz8MeDbeIe0HTA+vcZ5eIgHYBbFAvRV0F6CChglzSnjgDMcFJs4wLKzmYRRruKSMtCR4YzGOQ8s3wAhB7f3DEQBgnQABsrajrzxvrK1DxAvv2mFoPZEPAxYtoCVrsf/gA/GqlojzdI9grITYHh4wjjvx3AFM84z9wWF3OKAY2o47iQ/BOCGvrR01z9OC1w8nPJyO+OBLH+F4nvD6/l66SjOkzmiwzaAz1kkbkJRxOk9ww6AMHAX3x5PUbBUGjCirXFb0Wk4J8zRhPwbpeUYQsAuLp+ucw+k8ITNjGHfKsi/9wg53hxa5mJdFuP8IIqitBawFnEXwXsEUHns9N84ZUXNpUxTeSq85SACwxAjWYgwedzthyrjbj/jgbgfvrHhuNxjg62IUsQlUozY31v3C4v3XnE/9LGhTBxMC3CCclN4HDGFECBI6DCFchArdGmp3qxKTHl+2eYS1Ro6KlC8I7F5ptUja7EiI8Ib3c3Mua+FxtxFV7aSrqydnyHQKsPPEWiSHL5TXLY359st7rbiulqsH0CufGlPd3riqqzaNzwjA2oEbFdbZe1s5i9KphZ1VICXtxFuFR21sWGqIsaF5DGJK7Wx6Ik1DBjmrYKeCUkT4CQDNoI6c25bQZ1sux1Dzjvpaqzp4zda0WmmsgAqO6D2tlSFDtjFd6HD1wDSxjs9auqDtTQCgMEpKOOyewI4e04sPMJ1nvJ4mHGNEWQjZOuQQJKdDhJSAX/vkJZ6OATtnsbMGu2FEGDzCbqfceOI9hMMgHH7WIeUEJjE68hLhnMXoHLxSC7ECBQpEGTkEKbxNeQ21qEGypCi5T5D0yVoi5mXBsixgQIuL1XiCjMeUkoQPrShQJoPzLNRMKUW5HVosnCV2iJSPMNZj3B8AJx7WouAV5oL94Q5kHF6+fkDMGcZYjOMIY60UblsLFwYt+E2wziMu4lWN49iMuxQTnDXISRBuBPVenQHRvnUCjqVgBLBE4RpkMiBLcDonpChaws/TJHD4eZowDkIM7IxBms7IAGYAaTdi8AHBe+zGQb4P0ofKh0FDvkKL5Z3B4AzuxhHBGqBkpBhhuICstFhpgoBk/lUiZRRu3H6pCMKzGpONbLrLJRG0F51zMn6ch/fSh2wcd6qwLhWXelXWNcVlFAFqtXhZ9iXeFSBpBMkrOy1mts3jAnHXWqj271rnb71Y6uXLpZzpwvg1Fy2pDoPbyxo5aWs+h9IC3nvF9VhQ9jqyKhqfWsitfcmXv1st+d7TWvnHinpcRVm9tYan87KaVa3kplLWVH+fV8WniWpDhGw0/JNz64ZKRF3DOW3LfuVp4CL/U6/tht/e/WgdOJd/130RobU+6L+r51yubv7WW2pelzFX65sn8obX5mE2p3L1FLfeoU4OzZMsywJDgiR7/uQOL+92YjjwjFPOSCr8hnGEswJfF+EuBbyFSMJ6LBx4sAbEDkYZvzOz9gFbmS+KNmIEWfFQUmrI0aLw7OZlQRQPaqhZoy6VZSKlgnOFiCsqMWfJqzgtKK3nAWBlxlAvKKWMJaZm6IgyFEBQZlFGPowwPkiTReMQtE5q3O3hfMAnr+6xxAxjGRQTLAus3zoPJoNYFixK3lv0uDUkXItni7MAF+Q4g3MGkYNzFiEEqelKGfPxCJB6nSwNF+v4zEkZQ4qUShgCvLMAZyU/lq7WhrwYojlrF+E1HFjLCIgIzgcBcRRBgwZnsPMO+3FAcNrdWHNiro8GaGytH9M68bZhcZD2dKslMOhChWh5PaNwd2MNrKk5rBWYIa8VSdjqvDpovCGrzURX5STlLcLEURVcj9rFY3OsW7Zi47bSAjqF1yJba2++R3e68Ru+Vz2uW7FCHSS0XaVyvOaLLjSWmkl91EyU1eptVWXV2kzkLHQ4RfIPUZsFplyhwCpEUtrUcJWywlJ9kiJBmeiV0RpNidXvQJUrrV5yDbVxy0H0wBIAHcvE9Uhq4dH+Qq+2IYXjb0OFrV6FJV5PJasnVWPn+n8fJuy9qprfuvC62j76kMTFc726lEtdDUFxRS44nc7IucCPAR9+8Byn04PQQAGYXp8RpwkpS2iKxkHapQPCYuEcChdMWa5t8DNePHsihLfeYTmfQdkBRkJUtScVctFWGw7GOkzns7ZeIdicWw5AvHVFpuWiyXQAZJC0W7KdZ1G+ajFzKZhjhDEGw36PZZ6Q0urNp5QxzYuE6RRSnwtARoQrk2vFztbI9bnBYRcCPnn1EsMwYhh3eHV/xN2Tp9jt9/jlX/2mNGcsDI4JXlnj3SB9teYlCjM8CFGLpkHCpBGCx91+j5ITnCEgRaS0oGQHQ+JhMBHmZcG3P/lEhLlx2O0CpvkTMeogzBfz+YxlmbFXtnY/DMjOgHNGsAZPD3vc7Q/SAHRZUHLWXJETnj4N1TrnxaMtUtdXm0Xug8Ozu700kiRgPw6SJ+vGbBP4hsAseao1B80b1vhmzJaClHsZAm2IWTsDqNK5UlpeYfh98bF4T7WOq6IDATTaKKNyoVBp/dRaKN4YINNGca3NI3t5V6dUzfuvhnKd4zL9L9QbqUvA2+xzEzFVzKwJ++9hxdUvvSZHtQTWGimRShebc/X/+wdWSc9r7qM0y6kiBktVXHkNFdbwYNLakjcpLqtFjNYuax0I1sr72kG2bgcAbNrjV2Ug1lvRvJQhWhX2W0Xabrib/bctrN+1CycDotLCCNXaA8TTqSFEmRi3vSx5WX3RWgBqDFJTYOsZvuEUN+dqSKzrMk8AF3gvCDYC8PzpHah8GXe7PZxxuD9FHGPGkics8wwiaeZInPEJ3ePsLEZDCKYgFwfvLI4pYec9/BDAKeMUE6aU8SIMePVwFGHpPZ483Ul+Kxec5kUAAiGgkDCQLzHidDqt1rshpFQac/zxeBJm9Vzw4sULeB9gjMHxeARx0fYhLAXMzFimWbyumIBpAayF9QGOAVOA03RGzhlOz9uo8jnPs3hR84LztGDcWYQh4NkHL3CeFyyZcXj2DOfvfCKchJxBgQRyfzrDWovjtOA8R0RlfZcO1EaLj2cQM54/vYOlPbxhBGukr5W1OJ1P8MMI4z2ev/gCPn75UsOJMo65MFJOCN5j8BaEO4zOyVghghsH7EPAoOFAydw4YDcKdZbmgay1iEmYRaaznLchI8z+pIprCHAEWLDyWa45JO9dm2/iPQva0NGKDM45b/I7WeVByhlzLIiptrgpMJZUcQmYxuurgjSc8w2g0cAYjVhX12s/NblXle+SWr8sYtOMRqMoVFVF3XyWiUNajL0xXnurdgP24quwIde0xS3LcrPfzi2okazPES18vxVX0+C0hvgUJi4f+aZ8rrXiLSBN27BgRQwxd8wXtTXBheK6zGsJsWVqYZuc05rj4hV9aIyFs7GdXF/dbq1tHke1otaHTAAVHT9SQGi0K1T1pKovdmtpSkE1HPeD6U0jifoxy6uC6gEVXajw8je9R2XoFjP81seqE+E2QEN3vlnP6gVKV9gvffkjhCG0e3jYDUhxh+NhxJMxIGNGigXzJL2kUkoI3mFeEogBP3jAOLCxSCBMWTziZAwyicFgWEh2i4ZUyVrASIv72sywamKGEMRO07n1/CKSAlcYSWznViwrYriyZgif34zmsp1O2B8O2gV6EUZ3KwztQwjKI5jhQ0A5nzGnjIiIJbNY59biHJOE04ooG0EdMu6ePBW6pCWCQdp1WMLCmQlzTLg/nTGEIEz6td+V9Y0lfvWk5fq99zD7PSwV+OBB1uD4cEQ6nlBAyDCtwJkgAArmghQFtVgRg+DSxpojKeK1JOUJriuxaKUUkLBi4YKSBSSSUxLl5z2ccfCaIyOgAXvWWqfO2EJnEBuCYfHCWvFxKauXokcXwv7S1q3REzlXZyVPWnNVK+Fufb96Y6ZTxHX7FnOhrk9YPQ76CMbqA/Xn8hgI6spfajqpr23VAHTztKDzla+O1ajvunt460jvsrzfiqtFVsWjbSEzXpVR9UCYuw25E+xN+6+hQkl+r3VUtQ6rR2vdUlwpi8KKS+ygzflKcVlNeDu7otqa4iKCTemG4qpepPZKUrPJFCNwekB4HogvBqf+6soYuj1oHqdaWgOBtZatnk/1vqSdBrWfrMHDPnxIIIUdrzDdFZCxVV5o3mQzMrh+w9VZbveQC8Nbh/1hh9/wAz+AcnwFLgsAxi4ElN2A836HDw4jEhcsZcY8nZFKQUwBxhywxCTe624ErAFbi2wMppRRGHBGYdVY2eHJygVZ75QeSQwYdYuVGUPCYg+nM5yzSAppJ20FzySKq4dfx5hQWHI80zQBLFb+Ms9CMKsNGQ9Pngrs2RoEP2BZEkDi6VX4fE4ZMEJl5LzHvEgdlWelAVLKpqfP7nB/PEvYMWUUEgqswoxUGHNMOJ7PKMyYtK3JkjL2ewEU5FIUBSfCmbnAWYPB70BFuBfJEI6nE14fT1hywbC/E+CIzkrnHUpOWMAoKYsh54RIGLAwZGHBQMkS/lJovbOmMd2nnJFKgnNW5qyVnFhK0nySvHQz9ta0pqDWmFYn1eZPnTtNfsg8gzFAKUKDhdIiJ0AlDqjUUxUARhvPyFqrDBgrgMJ0CqvW7RljN6HCWrxvqDYhXTsANCBIWcOWzXrsDVP97tq07byiW7IBfeRwNe7rvapOxOY3F47cRrF/r4YKdZiAgMYBKN1nuTaHlZvTCd7+VrWQIFaYe/++1LyWelmrIpLkd+ryWos266s5ijXGndZ91xyXFRJQBuCTg/dC6ZPVuyMSlJkrHduCMepVKqWL0QmhOWJjDQoqNHW1glbl9cabeGOpiuR6IF5GFqraMc2iJBh05Lm0KqHVwxKvolm1Gvqo+2p8fUaeZztX2rzR/ZrmxX3xoy/hB77/+/Db/3+/A7/0H/9XHD/+NaQYsRs83N0ezgBLKTi8vMfu1QN+9dURKUUkEJaY9LkWjOMoz7N4GOvxakrwRgh7BytFr5aAh2VG0P5OYRixpIiICiMWj6WoEIrak8l5jyXOKCUjlazHkuOmyktYHKZ51tYmQvFU+3GRMXj98AAig2Ecm4VurUNMEWdt5jgcDiBjUUA4an1VyjPO04T9fo9xHEBk8PEnr7Db73DgA3ws+Pj1A17f3+M4zbBhQGTgeDwB1qGAEIYRD6czpmnGskSweqzVwNqNo9QleYvT8YjgLQ67Ec5aLDkhL1mYSciiTDO+9Z3vYJoq6jDg6UG6Dn/xwxcg5VUkEvopb0zztCwBzhoctFyhjhtnCCGM6gFKPyvejfjyF7+IeZrAOcOCcTcM8FZYHb01CN4heN/KUUQ3ZZS8jvVa2mCMhRCEMbLKgZ67sNU3NuNK/gYfYEOA92ELY19niMwonSPWWKw1aisQo+WGa1QJFZnMsC0nJ+APUWIKgyc0Y/FKFNR53RnJYihzO/+btViqFC/3qeb/utHm/edb3m/FpcqFOihmqUWMkBBWi59VpcXrLWR1d2v+ilFpnABWqG6r19p4UFK8mVJCLuJt1fBg0lYCG8XFUlVfQ4+rdwUk7zVEVNusy7mGwmBXC4zFGgQAsr3rrUJejD4NGdTi+Op9fYriql92A68vmq3/b8KEm99vw4Cb95tux2v9VvXSjFq0Vy0WLk8RpKx83XlVFxvr8bj8/9v78lhLjur8r6p6v8tbZnsz421sCMjxEkLAmqA4SLZsE4RI4A8CKDFRBMEZorAEIRB7lDghUhQlQvAfjhQgCRIEBREUs9iIMDjBwTK24/lhx2ZYZrzMzJt33126u6rO749TVd393vN4xZOH77Hu+L57+97urltVZ/vOdwjLy8s459xz0esPoGImua3rGkg5dzDoFVju5yHkuzYtsV5bVFWFmZqhVzCiLooTGF1Bk4AREtPaYEoGsAb9LEMs2PsaTadI4wipjZkNXTOLReQUCSxBWgIc4lBIBnUI6Yh7Lbg+yc2/sq5Dj6w4TjpWs3aefiyl8+iYjWNWVlDGQmqNLM+DAaSthSYbPCVYQlVrrE9niPMCESRqKExqA9QW0liIyQzrsxKTssakrDDMe4gkAUJiVlYOKel+CgeFTOKEjUdnuM2mCmQNpMhY2RoJAUK/l6OsWLGujSfM+0iELMtR1dqVG9TQdYRYAlACeZpAoCEylpafgyxv6kI4BhaeC8bF/MkaGO2K/msdiphjpRAnMbJIIVESipj7Pk7ikFP2pLkyTPrGU2kzw6OlpBrDlJHD3tgNnhd5EEe7s3ADVmoXOLc9qMbr25AzhggebViIfj17b8r9E3q8CR8haU+rLaIxbj/w3txWvllnK9jwtkB3l/AOgf/Q08ltedn2iitYNu2woXtCbnKxiJayaoUGqVFcbZYLz9TtARjc18kXFRvHOtDKa2mu8dHGBMWlbZfyiaxXXDK4yQyh7yquJm7sWKcJIMeI0EwKtuotAcLCKQALK11DPOECLy0l58UrFz+Gwr3YDUdS6yNN+O+xZDMAY6NC2/jehufuNKJ9zsYEdNfq32ozaYgmDAPC0tIyVvbudZBuZp7Qhmt4IqWQxgkGRRrCZw9nCUo9Q6lrRq657sSc95HQBNQEQBtYXcMaDaViGCUQk8S4qmDIcnfgpIapqtCwMhYcThLGcPG5AETEBaGQDMG3IFTaAG4D0tpAKhN6efk5TKIhnlUuJEdg2LyKakhrIKRCnKbMmiElKy7LCqyqNWC5BUllOMRlIFATMNMEqQ1EpaExxaw2qKxFqZlGicDRidmM2fK9de3XWRLHzfVpjbKcAbCII4WqqqCFgLUGcRxhWlYYz0qsjdYh48T192KWdkOuQN8akBYwSiDK2ZMSxES4ZAwEWQjiBovMfiFDqEq4iyKnQAgAGQMyFnVdISt6SCOFPE14zAAIEqFZI4COMmnF3Ts5L7/XeGnyW83e4UPqfhpbooD0666HtoJqHtI9sIVh1+SmvBHXWeKt49BqTeSUVMsY8kduUl4tZex5DjtrcMO9NzvTFp6c+6flzAUT9qnKtlZcTQM3G8JiYYT9jwNsUFiN0mpcezhWagohwQ5xbquYWGuGwWujW32QuNlgICN1KCbvdQXry3uIQmAmS8zKsiFUrWtH+5KiNhpZwoWJxhJTwSgViHoVEUjxhs6JZLexSwlpwcl+28S+jX/emqheQhuItsdFXeTRZtOq5fa3laILSQjBHrD3pqQPdzgYsAobw2bKpyZcQhvOs3nF+GXM55FYXBji3HPPw4UXPg+D4RC9/gDrWY5qPII2BknEm10vS2CNgSSL9cU+tNYoqwrjyQTrjk9PKIksS2EtQa9PMSgyLko3wNQQZrWGAoGKHCQsrKghplPoqoSSEmlCiA0hNgaJ4TYdxhLz06UJZFVyjsQNIoHbrMuIyXGFFM5j5/kzLUuuDxICZV1DKFZe4+kUUZrCd1a3SkKmCSLiQFapNaZVhUlVIU4lICNkRQ8yjqEBJvEVEquTEqenJbM4ZBniYgCalDi5ehpGG0ynU1RlCSWZeT9WEWqlYKRGmia8Noi4UFsbaFFhAjAjhuGQ2uraCFHCKMn18QwqNsGwmK6PIMgizVIUcQQlCPV0gpGuEEcKSRSh1+8jyTPEUYQsSRx/pKtTI/YKY+G6N5vaFfsLFBkzYWit0XN1ewIW1hpESiBNufDX7+V5L2c6K2sBsq7WihWOD4tZV8rAARKe4xylaUh228QFnt4tL3KIJOWways/5MN6bRLckBNz0QoBsSHg0bH04BWQ8MacCzf6kpSOIdry7tohvrbnyD13uB7uiUrYMzrJrQ3/bxbvU5btrbisnygtiyFYQ7wBeifVWzxbelne07LUEOR6ReUmaKjRcoCMRkEx5L3SNYxrHV7XdUvhdcEZ7WRm6XIYURRhOpshSzOkaQatDepMI3WeW+bqUlKHUIqUQkzN9q5cSEKAw4RA0x/I140RMeWUn6SeqaNRSS16LNG0mffvdjw2+EgJdV9z68ErJSE3W4i+eLNJQresyc169QzS3DOILb49u/eg3x8wg4CQSLMced6DVhF7w0oAscKwyJGqCEWSorbAeFZjNq0wqytM19eZIqgqMVwYhjYYxg4hiQAyUFEMGA1B/HuUSYQ0UihrA9IVIqVQW0BX6yjyDL2i4DF3sP/aMhUTSe56zGMvQEoh7/cDPFr7UgsHiKiqmg0fKWHcnNZkMatrSBduFqMR8xAaCyMEcwzGMUgKGD+2UsIQh1DLqsZkNgtGTlkbVE7RjqdTnjcOkVfNSqa6ymJUVQkILkZeXV1F7pg1pATSNIGUgluV6BqAgIoiTMqaPbuwEfNN2LpEL0uQxhGGvQK9xLGyk8Kw30OepsjTFFmaIFZcmBtHMecRqamN9MbPZDoBLHfBjjyBbm0QKwmrK2jjSjAEIxjzokCUxI5RnsFVbXutQfdJ7oNG5FhsXKF1pBwLiG325k06htfDyu49sFGC0ghMyqZGxyssZuZQXk11loNfbt4Id1+LYLyFoujGm/HX2DHo/VO0lVZbeTnMQOhY0Vzn1tHBMy/YMJTiCS7tJyDbXHF5ywAh1NJ2f30OC2gpLmKWgo0sGF3FZTo5qo7i0toxE9QhVFhrVlZNjku77/QMGt1Gknx1gJB12MTZa6uRujbmWmvUadoUPCdJCPlZh3qCaH5AIS0EOawGyY5SIRdC8aFDIbaquuDp1VhMCCEKtI71SmjjJ9E6blMYL7zXADGaXMHGhdT5VrSmPbDBZGvQjawQF5eWkBc5M4ZLhThJEacphGQUn1Ya1sRI4igkupf7FZaLDGtZgrVZhYmuUVsDC0b4+bYQeZ5zjoUsylrD6hqwJvR/0q7eh4yBsgSDEtV0xhyTMW+Kng1Bk0XtvXjHpOJjKVzQHIGkRF3XqOuaqZ/qmgveiRt/SsPccxYc/hPEIa7JrGJoOwiVIUY9RhGgFOcJiVhhEgOMyroOhc2+0Lmqa1jL89E4JSYAV1gfgYgLnn2HhKqquB4pFOs649C2DEXXukUYvwE6miAQYDTyjBVTHkcMrlASaZxh2CuQpSnSOEGsWv2k2HIKa0q2Zog1FkRcPK6Eo3cSTKbrw+gCaJHdqnaAhpG/YX42KE9/LyHS48NwjneS33eweHes8WPgwmlLi0vQMsJ6pTGrJx2Drp3Hcotq0yqlrZYCvGHYiay3vqsVlOvYo40yayukjXm7rdB/YRfzl8ohry0uNHxp891whvJWcccnKNtacXnIOUvXbW5bJc1kAzbC2wN9k1dc3svaAHn3CkoHZcWtGoyziGtHTbOROaMdKvT1YQieT+NtTKeTUDU/Gq2h1+sjzwsMh0NUvRppmiLPOJeWxAnSxCCzjk06auUcvNHllJwQCs1UaYJvbSvIHenqwTj0yoWqAAnbTH6ndOCKjQUkJAHkQ7VoPLVOjN6fR6C1SJtaroZdQ4SkuBQM+288VIQ4uf+/EIzEFILJenfu3InhYIAsSxEnCdI8R5KyJ6CrEhUsqsgR5MYCkRBY7mXYv9QHdIVa1zg505hYwqyuMBqtIYpjF761zCAO4qLbqgQZBirU2iC3hCTLQCRAlcZ4VqGuSlgpodIEs+k09CLj++H7YuOGAR1JHCNVBYfwdI3JdOIK2g1qIohIhZo9cmhDElxj5o2Wqq4dkhA4PVpnLyuKoJKEOxcT1/1VLlrg+4B5z19rjfW1EYfVihxkuJg3ThKMzRhlWWMczWANk97WdY04irk2DYQ4jjGdTiGEQJKy5zidlZiMx4jj2IXMeM1aXUOQhSKNftpDGknYcgqKFfJiiD27diGLYriCKFhjUZcNkW1ToN/MHSGEQ/nVAFkUSYzEMVFkqQNguOkYR8oRLbNS9g0o2XtpKJM8GXNVVY7pHmEtCCJI4tC83yfI5bmMsSgrDQPlkMXArp17UAkJtT7B2rgM3pCQ3ohziNSWQUfW5dBEd6P3hlsDTnKK2xnznXwctXSJO09jQre/09mtXmm56EAnMhKO2+T6NV/SOmnjMbYxhm3E4ZOX7a24DDf02/gjWDZ3Qnx5qzyW5xn0kPcmj+W8LPdaYMEwTOvElibT2zTgDB8ebGq6rGmazbE3B4RYPOCsIA9O6Papmk6nGK2vI4ljnDrVR38wQJ4XGPT7GA6GyNIMeZahrFKkSYw0iWGIY/+Ryz94BUGgDZ2ERaO5/JixyQR4j4e4uFGCQOSuiyzINtYhhAQJAw9j7Ib8fBIY8MrZK6Nu4tnXpHAIzbPId+Pxjy0Eahi4LWH37t3IsgLcDVgiTjOkeQ6VpFC2ghAWdVWB0gSRlIgShYVejvP27MSwlyPLUzz4yCpOjKd4ZFox60RdwxqL0WiELEmQJBG3imd+KFSaECcKWihMa4KuuMjVao1Icj4sKpks14dtoijitvWGFYkAQ5gTY6HSCgLcDHE8ngS4dJRxoTAR2JgSHLaaTGdIs5y1liFQ3bQ/Gc2mriNxjbXx2PXIYq+jnvH8ZiLfkqME2kBrLviNFbOvZ0XBdFjGoChyR3lEqB2gKHKEsFKy8ZAXBaqKORYt/NznEJw2wnEIMoFuliTMFRgp7FhaQJFlKNIEwlhESkAYg9rTN7l29Tbm655MJxiPpwyYspbZ4ZMEeZ6xwqUEsBZZmnJRsWSWCWtca5EoQpwkUD6cLRig4TsU+31YKRdmt0zt1lh7TSSgiey08zp+37EgwUaGkBLDhSEoShFnPRx/dBWMNG3ns8Kq3GrCt06xMWjH5wreoENUe2/RJ0H9V3gOUgrX311XYX2dYSFudLI2Sidn3o7cUHu3fmqyrRWXdbUvXvzgdymb2sW/1FJWBsY0bBjaQViNy1l5b05vUFy1NsHj0toXILdonoxl78spLO1ChcGCaV1/2Mi9lxFi3OzBVVWEytEEZdkEZVmirnkDqeoeK0mTsNcpWqjExIcN3ASRTXJVwE/ghudQEKPX2gFEIRDazXvrLYQcRLPYGX3YKKy2bERJPeYjLNpuojj8rvQYEFpiSi4QAz56RR9RFLnfHUjSDGlWOCRXBJAOvwmHCgWSOEK/YCb3yhhoAEkaoT65hnpcoTYGdVlhvL4Ok6YwOoF1KDgPiIiNhdQWs9rAGe2hH1ZlCKWxqEk4r4jnwazmOWQNFzxHkQIJye03XKh4UlYolOvbJAS0n6/EiMhaG5Sa4fHcAbmCcZuQIcJkVqJyXlVtGEEHYwFoWLCXUVc8v2ZT5kYUIORpChEBZG3wUHRtIaNGcVZ1HeaF3wyZMaQOnoBxKFvrUJ1G15ARF94nUiBPImRJhF4SI3H1VJKIFZur1wIs5xKtBVwPNyguFCZrYdy9J0nMyiuOEMeKN26ykK1p6RVSaGQawoHUCWEHQ7gFtmjnrzoexIZQWqMIPKLQIQzBrOxxHENlOYyIkCYptOXebT7S0M45+f86341G0XQ8GOoaxe31F8AZboVvDBFuWlpBET851RKUUwhztr6yraxa+8dTlW2tuLSDoHvxHhaARlFR62F948cWzN12eQeDx2VsyFl5xVXVTT8lVlw68BHWG3JhgR3ehSPb+S0v7Zi2krKT+5FCohICk8kE4/GYW3TnpzFaH6Pf72NhYQEL9RB5liFPUxABaWKQJLG7/5hJZYm4VbtXjKFxSDO5PbzcRaGbySVESEJ7z6mJLXKoUPi4ZNtUJDfpW5uBV04NYkp0NhEpXbHkJshxa9ycIeluMOQzIDnJXhQ9Zi53IeGi18dsMAiKSzgvuK5qRFIGtBpSQqQksiJFXmRYOr3mQA+nMSoNprMSp43FLImRpSm3ynD0OyZLIaOYQ4SQiCMJKWMACrWpURpCVBtA8KZpXUhnZgx3EC5LSBcmJBUhmlUgYjDEeFYiKQrIJIGUEapZCW0sKksoq9LNT4t+nEBXNdanM9TGOhom7RpIurkP5kr0hpm1FHpVaW0wmU5RliWKNAvjW1UVfJ1QVVeA6/VVVdw80lMsQQrE4B5as9kk1FQxWrNk8ASAupwhkSliqZBGAkUSoUgT9LMUtmbPr1oHBr0CUZYhzRKAJK/LugTIkc5KhX5RMLuJm9exMyY4ZGYA4qafRB5xLB3hLpr15iMDYT1yngnwBhEBvoElNesALYXVMGYE/yvkuXyERVvDvbgcC0aWphBRil6vwKzk7hFRG00YIg6t9dbe5NyDl1k7stRSQi1DM7BtSNF5v9OGhFrrN5yqDdLqXkt7uXeg+iHK0hpXNPsyhAv/t0OXT0G2teKq6jpwtAGNsiJsUFytkGCAuZsN6MEAXzcdj6sTKvQWpPWowjblU90UKbd6dfm23Q10v5EmbNZs6gEaG1BSnKQXcoLR+ginVk8hSVLkWY7l5Z1YGA4xHA6xY3kZRZYjS1P0igJFliGJeaONLRwMHWzZc6wAgXK+FfYIf7essWbONdcLAVg4xKIFbOiu2vWmAi9h+Jxo7rWlrJXvMuuUGlrnbteXwY8leDHUVYUdi0vYu3cfQBQ8V4LAcLgIKmdIix6kqVlpW87NRJFCmiRMxus2qShW2L97GQvDHpJYAdbiodUxHh1VmNYVt62fzrAmBNI4RpKwsqxrG3KQw0GfiVkjhclkhlk1xWhaQkq4cKgAJKBdZ+CyqmGNQZoYIEogpHHtNBIYmWC9NNCjKZSMAjx+VhqMpzOuCRQSZW0xLTVGkxLTqsKsLFFrzU0YAdTG4PRoFHKG1jJDRznj1i5k2aNJoogNH5f/jSOFsiwBUIgwzKoKk1kJIQSSJIGMFK+NqoK1BsJymE8J9ppEJEN4LRssol/kKLIUaaSQxgppHGFQMDM7g18EEu+VxVEo1xAA5y1TbuBpjUFVV/BFvabVpUDFUVBKptaupxWjAje6F43h2BBaA3BwdguhWnlagmtdg47S8hRPHPb2eUwR2HG01iBIniN5jqLfR0oSvV4PlibM9egK1j0XoRKqq1jc+duenGi/7qIPG6MZTBScQEUcakbrGDcAaCskH2X0u8Lj+kRig6G5wYZ1S7ZBNvtygcf73seRba24fCgvuM3k2dybibWJILejuDiMp13uqtMU0jaAjLbiagqQdVBS2jUYDGFH7SvnPSt0K6yAZjJ0J5jc4vnG/wuHWixRlTPUusb6eITTa6cxnU4x6A/QK3pYHGpURY0sSaG1RZYmDvjBZ/elAsoRqIbos/Cz9rHDBD4iyPsvQ7q9peknp0dZdcKHnfBA81w4RRZAG+48jfXqF2lDPdMuYzDGIM8L7Nq1K1wje28KSZSjNxhgx67dWJuuw2pm5baWN+G61kii1G1oXO+WxZyv2b9zGafXJ8iSGBJrODmuUFtCTdyqQoNck0hAW4ukLF2HXg5bRUqhLBlWrWqGZUcOUu2TjlZIkFCIkghCRai0Re14MqXgMCMqDWNLWCrZWLCEqvaM7OxRrK6to6wqTCvmF5yV3HxSRgzSqHSN0fo48BlGoUWGgomiTo4xcX9767wsS85pad1pbOl7QhkjYA3B1NopLgMRceNHKwXSiNGbkRLoFxmylOuvelmKNFaII4U0agAT0s1QKQAlBbKs8QCFYHAMWQOy2vVDEy4P5drHKBnmIUCIE2ZWjyJnFLmNtd29eNMc9/9Q07EBRKH4ukte0GzB7bnslWg7WiFVhCwvkOU5agvkeY610RhlWSJLs/CZrfrXPaYKcUs1eDE+rN9aXw0naOP5NCE79u5CGDScpqvMtlY1HKfxIA7hxp1a63jj54T3uJ56lBDAdldcuoZWslFU7VyWe26C8mrCg9ZZrh6goa0JSV6voJhHzjpouwnFx15xBW/MAzv8o6W4QpggKNUmorwp/+MnPDZOXM9S7UIIhgl4SzHDeDLG6ir3UhqN1rG0uIThYIiqrjGY9ZFnOapKo9crXPw/BiARUxMnl63zNp5X44m1gyBtaZBMFuTqRzwFTQB0tCHv4XNtXdZ4Y11F11hvQKtOx73eRoFaIvR6PezZteLuoLE0k1QBgyFW9u3H+PiPYcspQ80r7RBfFXp57rjiAKoqKCkQRwmSHUvstWQphAUkncak0phpwthaLrJ1YbdZVTH6MM1Q1hpJkiCJE0gibkEiBRKlEMWEyCpAEOIoAmQESIM0502r0hq1trDO0C5rA20BKV1TSLfZGtdGxFhCXdeY6VWekzXTQFVVjcmsBEkHl69rrK+PkaQJkjRlvjyHiIN1+aGIlS1cXSQRc/BNpzN4GrWqqplA2q0jpZjPTxDB1DXIaMAaxIhBxMTBedZDmkRIY4XhoHDEtgrDXsYtTiRTX1nNHZQDUM0Vqhd5Bm/A1FUNsiZ0om7nqqxogC9CCl6DxiLJUgdwadjepWCPULipzZutR+e5uU0iLIPQxdq2w/4NgYFbKiE0ziwu/JKSChBeqSoURQ95lkMai16vB2MfwngyRr/X5+7Goh3GbMJ5W+qulgLw6zmQaLj782tsK+XXAUGdQZGEchrCBpPWgTcc8nDjd7cc1bAuw3npDE0nn4Bsa8XFYYwN9VluQ/NJUWO2UlzU1Ge1Q4UbIfC2BbQIua9GOTV5MhPyBp3zhPCkj3e3Ll50J1cgmRUNQWt70gm4Y8JE5uR/OZtgvC6xeuoU0jRFluZYXtqBXTt2YWE4xI7lHVhYWECeZciyFIN+H7FLZOd5jiSJEUds+TbKy3f54lAlV8nYTffA16Tgga1SWjAValMcvimHtcGrbGppIgjXEdYjoYTw4fymXgtAKFcgArIkxdJwEXt27kIaM9NFWTHfn4gi5P0+zjlwAD+69y7o2RTC1K5RJKEq2fNibyiGlQYwBAnCMEtxyUUX4MA5+/D888/Fvfc/iJNrI6yuTXDs1DpOTzTGFQMyytpgJmYQkg2JKEqQ5Rl27dzJiDu4MI6tWPFojV6vD6Uk6tpguFiArMX6+DRG40e5wDyOMFobhV5M5PMGAiASoWVOVdUOxcpzNs0ylO612eqay3FZl1tAsEEEuAhdRdwMU8CjdBmqTsRKcW1tDUSENOUmlBzmZV7CurSArtHPM/SyBFIkgK45DBgpFBnTa2VJhDyJMRj2ONRGFpny3piEqS17sGDl0esVzCgTR6jKWRPOU9KtbWa0iCMOgfF7KRcmxzGDlSyhdvNPOUaKyHVDhlPKDG3nnm2MjFQOYs9jZGGCNxEiON7rQouY23uDLSOM4fQECEYjGld8nqQp5wU1YceOnbjnyP/DI48+Al1rnLP/HCSJa8UjG5YZIZvIS9uo3SQhTtcyAoNR3D7Qve4NRGx+z7/uFbMx5HVz63gRAFxCCBdy97OLwj7F4LMm2vJ0QBlenpTiuvHGG/H5z38e9957L/I8x6/+6q/iL//yL/GCF7wgHPPyl78ct956a+dzf/AHf4BPfvKT4e+jR4/ihhtuwDe+8Q30+31cf/31uPHGG0M7gScqtbO6TGsCtbsUe88qeD+moXJqAyg8EKNRXN6T6kLjO15V67k1DSqRn3uofVuJUneGCDRKSwgI26rHoMZCaj/nbsNdxdVMBgNjapSzKWazCdbWVlEUPSwuLGJ5eRn9Xh+D/gDLS8vIixxFnmOgDdI04U0i4nblyjNeuPbjIbDgmKfZ8+MdsM1CT0KE9/jRhfgrKWFcLqvdWbZ5uNi+iqCUboU3eJLz+DljwjHuCwIGgyX0e30URcHzh+BKEQgkJEQcIy4KLO7aDWE0ypOPIo0TwDToPSU4hBbHMedKQLBaI01iDPIUcbQIhXOxuraOk6dHWHjoJB5dm2B1vcSjoylKS8yUActIVSKUpHHqhECUcKPAxLFJEIDZbILKGPaAiXDi1CmQJZSzKeqyQhxzw8BJWUFUdVj8vm5JCNHMO93iyaw1Sq2Dh2+MhYoVYpWgP+AiaOk8nLKqXU2VdS1T4EAHvqbJBEMMRDB1BYBDeXmkICMFAQslgIU8CSzuWZqjSGLEkUQSSSwP+kjTGFkSYzjscSuPSLXoxwAkCYz2pQFA6rxCnptRBwgBwHmDcWBV7/CMOvRk5JotRq6IXEXcRsQrIRB7wgKqUTRStoxGGzyDdp68QRKicUHay1qIAMJQhpwxx+fyABKvELI0Q6/oIYpi3HvkXvR6fe5EHSebDDy0vUERNo+W+9OYdo3OagzjZtvxn3U/pn/fH9u6F79vtX+qdhDQR4o8cCWU3bSIvf01NNffDks+dQX2pDTFrbfeikOHDuElL3kJtNZ43/veh2uuuQb33HMPer1eOO7Nb34zPvrRj4a/C0d5A7BV98pXvhIrKyv49re/jWPHjuF3f/d3Eccx/vzP//xJXbzWDCXeSnGF7qQ+pOQ9IadM6lZOamM34zY34Sauwg3Kzysr41jgvSL0JJvWeXxt6wVolJa3fITcrLg6SixMQl68QXF560kwmwcgMJmMMVpfQxwnOHmyj1Ond2DQH2BxuIjxZILBYIjBYIDaGOR57jgSY6RxwgtdNaXICNfOuTGuA2onhwUcAU7rv66F2FZOmxWWsyJDTyIVutQKyWS37C14HknXmt5aSAjO6/V6rBhcE0H2dB3gX0WI0gyLO3fBTCeYnTzJABUARAxHt67ORynFChtM9iosIXWFq2mssDzsY3nYQ57EWDi5hhOnRxCkMaktKmMxNUBpLDRpmEpj3VhmeU9TZIYLoQHCeDwOtUdxFKFyAAiyFnVVI64jJAmzWlgH7pFKBq9AuHskV+Tq0bW11qC64lyW92glb9h5lqGazXhsPBGuizTVTjkBHDouZyWM6xcGYg8UhhU613gp5GkMYS2UICwVGWxdQZBFP8vQLzLEjg9woZcjSxnIMiwK5HmGNE1c0b4OnbPJ+oaLxATFcYws43CiD9WHaxKAtTEbKS1FBGrCypFracIevQqoPePu1SsrAXSZXML69OuPug9sXssexRT0gY8cBE+Hw+hJEjdKQDARc9HrIUlTPHj0h7jgggMYDoYY9PqNQSub9YQWlVrb6wqFyf4C/GfDqfy9NciJjtHsv8vd0yaIf2ffasJ9PvcsIFyotRmPsH+BIKnbTsrf/7OmuL7yla90/r7pppuwe/du3H777bjyyivD60VRYGVlZcvv+Pd//3fcc889+OpXv4o9e/bgl37pl/Cnf/qneM973oMPf/jDwVV+IjIrZ2wZUith71qR+FyXaSmaLg9hg/zTTvE07UvaXlYLIeiVUlBcbWXVWKhttoyAdKRuDdfGBCpsk2+yQnYmlv+RZesz3nRprBnh1y4AoDYVptN1rJ0+iYce/inD6dMcg+EilhaXsbS0jH3792NpcQn9/gDD4QB5krliT4aKh1oXNOEZtkZdOIXYmmRAR2PGeY/LN8PjJngGynJdkFQRpDQh9Cm8QlOeXkd1lJaQCtb9JpU2rCid5bZ7z24sLCww0gwefCK5CSIEICOorI/9B54PaQgnfvwTGNROQQOGDGpdAaSQpQlTIzlQTVnOEFOMTGZY6PUx7PewsnsHztu/F6dOr+Hk6mkc+d8HMZpwG5C1SYUTa2NMKoNJTRhVNbSuUU0nKMcKMuINRBuDejZmFJryCkYijmJACJRSQpUzVlDGh5qb+eHZNwgAWUJVV0Hh65pZNCIp0S9yVOUM1WQdk7VVboUCuFo3N2eNZc/JNzaVElSWsJo7JGexQqwU0sgZLMZAaI1zdi+hn6cosgTDXg/CzQ9rNHbtXIYSAuPRCP08QZokXEYQR8yrWdeIheDuzz40JZp5zQz9ztN2CotzajLkI+u65tCilJCJDF6QEMLluTxa1SlxALpir1FIidQ1tIQbQ3Jz3FoXQiO7eSP3HtaGyIkXcmEy31kOzhsk4s4ERa8HAue90lRBTioMB0MsDIc4uXoS37/7+yhnM5yzdx/avo1n8GAuSLFp0+e8IDV5JGc0ek3C3qdTUN6Dcu95QJQP7jWhQdMoO7+6hQgcp34f4rGzndc6e1vHh3vm5GnluE6fPg0AWF5e7rz+6U9/Gv/wD/+AlZUVvOpVr8IHPvCB4HUdPnwYl156Kfbs2ROOv/baa3HDDTfg7rvvxote9KJN5ynLMuSzAGBtbQ0At0cHmrxWUCKd0IFD9wVl1aD9ukqoDdzoKqpGwXneQRtCNVwQ2vKyQpEzPzdhUTSwWS9NAnOjp0VhorS9LSs2WymdhKePWbuF5Rcb5+BqVOUM65MRHj3xMNI0w9Ef/xCLDtCxc+cuLC0toZcX6OU58jxjyzeKGNYseJInceQIQduTUkJIQMpQ1gwhLaTie/bKy1oL6SG/kVdoEfeBajFgCyGCElNGwSiDWiMYE0IxOkwKgcXFITNut0IqBIYi1waISCBRCbLBIgY7dmN5736sHz8KguXcmrAgrVHZGnHsvD0wbNpo7uisleZcigMWFEUOKQXyPEWacKuOsuKC4eOPnMDq+gQnTo/x6KjEtDaY1QaGTFD8iAAi44AGCHkIMjWMdals6ZF9IgAI2iGigAlwlrJwORwpLHQ5xXRKsFMFshqARQQC1RxGRM0ks9JtwsN+BunmXBormDgLCq1IEiRxhCyJkcUxBDGqb9hLMBz00C8K5CnnTKUUIGNQ9ApIAL0kcgXBEdKEPeIkSRDFEeq6DqG/KImhXK2hJQ5BW4cYtuQpmJqOvwRwk0hHbeRRhETNxuu7v1mjYTQFMEAcxQ4RqULbEhIWsC6C4Ly+TnFx69EUw3vPCyGM2YHI24YxBGB0Y3/Q5/uIFCLi/GJR9LCwsITBYIhjDx8HhMDzLnwezj/vAjYw4C7K/fTeaOm4N+CIiFf+bPQ1hsDGsLtorbNwHBiE4qMssrUvob1rhTxa+9zNJYUwYHuP8v+I5oWNYcknK09ZcVlr8fa3vx0ve9nLcMkll4TX3/CGN+D888/Hvn37cOedd+I973kPjhw5gs9//vMAgOPHj3eUFoDw9/Hjx7c814033oiPfOQjm143RqNGo7DIUmBp9ooseFyt5/71juJq5ai6sPk2bVP7uxs4vfXM0OT78NimrUE7xNAOLwDw+SGeHDJsTh3QRhMs7npcLekma73yalmL1sIAqAHYmdsYhcJoNMLJkyfQ6/Vx8tQJ7FjeiX6vh+FgyJx/aYos5XqwSLFFnucZkhZKy+e5OKTI05FC+FKCWQG6DyE3hAV9qEZubLDX1HoFoAtZRCJyipRrYdI0DYqLiyYZqMPIOwCxQpQVyIeLWNy5B5MTxwBjQcJCKoFaW5DLbfowpVIKda2DN01E4H6KEnEkIPIMccwbc1XVqI1mNGeRYHVtHYv90+idXMdoUmJ9VmFWmSaMo4Tz8gm19hYr5zkrzwTTotHq/J5gpeVpL6WU3A0YFkpaxADgUXeQkIL4IQXSiDct6RRlpJhlfXmhCB51nmZBUcIapFEUugP3ix7nQMG9sQb9HnpF4Tz02IVaKfD/JZE/B9eHEZF7nkAKEUpZYmfIQPC4wIVBQ/86F4HoGn0SQrYVV2uMbFOrRJZ5Dgk+79pt0kgu2uFbeAi/ZjamrzrhNGod4xDDLUO2E2ZzCjGKIuR53niC4JxulmXo9fro9/o4/shDeOiRh/HgDx/Enj0riOPYXWO4hGb9t5RHk9tqXm8rpe4+0nyXEO3j/Nd19yhWcOiMf+tXQAj7tKKV4fxbqaenER5sy1NWXIcOHcJdd92Fb33rW53X3/KWt4Tnl156Kfbu3YurrroK999/Py666KKndK73vve9eOc73xn+Xltbw7nnnouqLGEdQszzEPrGjfy8AUmwh9Rsfl4pkaUAzPCfbyuqdtivS5hrw2esaUKT7ffbtWVtRQI468QpLX7JbHazw1wTzSLzr7R+/7Yl1Za269+OW/sq+3J1ilOrj0AIiSiKUeRM7Lu4sIjdu3ZjMBhgYbiAQW+ALMuQpSkWBgPOiXlexCR2vbZEWPQcGuWQnZCAVDGkspCWIKXuKC2lIkSRhYp0QBSqKEIcJyHfCN30pjJEiHzoVEoMhwOHQosglAI7Sz5MzIrLQkElOYrFHVg58DycOvZD1KMTqKsxUlcDZKxGWU6hpEQUJYGBA8LThvESZNY5IIk4J9jLC2jrPBkB7Nuzizv8rq3h2EOP4tTpEU6ujnBqbQQhFCA5v1ZWNeraYFrVqGod4O2V9YXfbL5a4vlswA4bK2TAgf8gBJAoICIgIYlYCeQKgATSxHJreofq6hU5kjgKReiDfh87lheRJ1HIpeVZHsJ0ZC10Vbl2HxbDhUVmaslzAAxmiR0isa655UrsioOttbCCuADes+I7QEqWpCiKIhBTG+ONQRcWFCIwTPh0gCYgkUlorNiZ586YDDkhJUNISygJKBWODfVbflMHQMJx+bWbP8J7aS6vSx5J2KQamrVEoaDcG7bCoQgBrkdL4wiDfi+ELgkCURSjV/SxOFzE8tIOPPTIw3j0xKP49m3fxvkXXACpFHq9XlAuQaWI9voXmxSHzy9zbgxBSTd7S6NSGuOz60j5/GhT77bBWA77jldsjWLsvN762/t6fIpu6uTJylNSXG9729vwpS99Cd/85jdxzjnnnPHYK664AgBw33334aKLLsLKygr+8z//s3PMQw89BACPmRdL0zTAcdvClfOMIPOgC7uFcgm5rxY4Y6NyajPF+8lnqAk1BmJeskEpbhkicLFyb4nRFkqLn/PPyBueazVC5MKFAHxC04UOQY0CC5ZPmFDUmVxbGzWtayBq/c3XWNcGI11hPF7FyVMP46c/PYrE58UGC+j3+uj3B9i1YycG/QHyPEcvL5BmKQM7ksSRlPrzu965BBirYUkAQnJ/KJfzkhE/V5FFHHMzP7+JyYg7+kLIpi4OroOslIgkF8sWRQ9xmjh2bT/mzR0TCVihQEpAZQWKpR0Y7t6LETRmp2bcfDNWIFiUVQkpFVIC0jR3ZLUUWs4oS5CKEDk+PKW4eaACs4MDhEhI5HEMNRggSxLs281MFpPJjOt0VAStuZyiNgbTsmK6parGdFYyea37EaezEmVdQWtHnOt+NuOL7N1vOOxl6OUZer2cPQw3E5JYBa+w3++hyJmqSgggjpNQBqGkgDfrpVTQjgVGAK35TciLvgvvciDOGN60i6LXeDDguWy1xmw6BVnLQIs05QiFIUxnMwBw+Wk2SLRDihIIeZ6zcakN2oaeFwGOtvjcnxB8nUIISFcEZ8HoQhXFUKrxWkM/uFauRkrp5pcIeSwGPXkErevubDfML2rQjp59xCOUrfEoSAdoiWOkWcpz1O0NcAo6SVMsL+9AHMdYG53GTx76KW6/478xnZX4pctfFEJ/FtTwGbY8JeEMbr+qgyKSnB8OCl0KBkooCWlVR6G1gSg8phtKVzYYyyEk6JR/o0xbyrF1rb627ZmSJ6W4iAh/9Ed/hC984Qu45ZZbcODAgcf9zB133AEA2Lt3LwDg4MGD+LM/+zM8/PDD2L17NwDg5ptvxnA4xMUXX/ykLp5zEOh4XF4psRLygIl2TdcGxeVfb+fF2s+p+bszUamp79jqgRBG2OzxdKRlLXXGOmSL3Pui+24wwQQ/Z++teb7Vl7bj801IoFmMFgYcU6xQlTMoGSFWMcaTMfKsQF4UWB+tod8foMgL9Ht95EXuYL0Fsixr0ev4mhYE6zUgx4R0m0KX9smHBpu4vGiMCdbiIbcmBCfe4yThEJVoPEyyjOZsfh8AUkLGCeK8h97SDlTj05itr8JQDSEjqIi4o7XWkKJGkmaOnNjPHeMWoGiNY+tHdHyPSkrmhgTzz2VJgiJL0EvToLjY6OFW9ZXWmM1KlHWN2axEpXWw8mdecRmmBGrPQ7baeWx7WcKGRC8PG42SjJQUAoijCIPBAFnGHgtZgzhJmGLJjVkIAhFcPo43dK11+M3yogcI6UoTuFEk132RAxCw9woQE+G65oxRHEHFESQpLmB2rUHChij59/Prig0CwFgTngMIipFsA3jqhKQIHHZtdtVueM2Nm5INUnXTZipE8xpP3s4G7EOGfm56bdGsfes8zmZcub4scsCzZh/ghquuli5NWYESYVaWePDoDzEYLOCCCw5gcWmJ1xIvckYXCt+/iDcQEraJ/4V7d3PB56QlIHwIOhQlo+UltYdBhD0neHBhbKj1myCcM4AxOp/rKrfH2JqetDwpxXXo0CF85jOfwRe/+EUMBoOQk1pYWECe57j//vvxmc98Br/xG7+BHTt24M4778Q73vEOXHnllbjssssAANdccw0uvvhi/M7v/A4+9rGP4fjx43j/+9+PQ4cObelVnUm0awnert1qGBW6ua5O6G+rkGLLk+qS8m5ECLZzWbwhW7chE8FZ3l1F9VhKi+AD6a1FJPyk2OxpeWvW+Wqd0MHWcqYZ4pRJx8ryrjwvQK0NtK4wq6Y47cJ7x+IMecbKqt8boNfvoSh6jrVjwfGxpdwO3dECyZYSA1k27qVXXs4aU6pltSNszFwEzmzmXMvENFWQkqHmsVNcaBSXsUxSaxx7AlkCqQgyShH3Bhju3otyMsJ47RTK8UnkDoRSl8xHaAnITI4oZvJcH2IWrd8c1sIaAcCjz/j+oiiCtExzRNYgkhIKgCT3nooAcFsNIRnFZ4lRXHVdoyxLCBcu9XWD1m3mZTWDMQz3TtMUQogQ+o7jmAvQ8yzw+ZG1KGczAEw4nMT8WlWViH07duKaNfcUBEbAqShCFMeYTCach4pT9PpDLtyumb2lqipUVYnVU6uw1rgQsEDtar64Jo/bkUiXOwQc96DzNjxYoaqqAHmPk4Rh64ArIXC/q2kYaYwxLh/J32OCx8A5Zim64bGgtFxJQXtdsoHje3G11lPLCAWa7t3eK2MYug3H+ToyozUjWp2Hl8Qx0jRDluYhdwflxsejdwPgCTAg3Pe/9yOKY+zbvx+X9C9zIVmB2M19SG5aGua98xABBiaxTpPuHDH/NkLCiCYl0WXNafaSTmBPeE/chx/90LT2llY4MIRyfTiyrdhaO1Lbc30q8qQU1yc+8QkAwMtf/vLO65/61Kfwpje9CUmS4Ktf/Sr+5m/+BuPxGOeeey5e+9rX4v3vf384VimFL33pS7jhhhtw8OBB9Ho9XH/99Z26rycqta5BZFuKy/Xc6gAoup5Yo+CMS/423heRB3Q0ntQmpWWbYuI2ce4mRYUNHtiTFgfccCqKnLXF04O6yupxvr8TogzK0v8VzFNsCmUL992CQOCwzqysUZZjCCHx6EkFJWNEUYw0ydAfDFEUBfqDARYXF1AUucuJZKzAhGcX4PCGJeIiYQfgiNPMNTc0mM5mmJYzjKcTzMoyKG2porBJZlmBNMugHPpKEIefhAZ0XaOuKugoAqUpKCKQFEAUY3FlP4yuYIzGo/87RU0aAhZFf4jJ+jpTHc2m6EW84caKlQgZCys0rBSoyUIZGQqMeahsp4WMtUxmy4g52VJcbpMRDCaJkxgEIDWuCSExoi9NE1c+oBAnccihEFFAXUZxwsz3LU/Ab4JVWUJGrrxERCAox5cXQ9cVdF2hKlmJRYoBN7WuYUjAaovZbIzZbAYVxcjzARsCRIAlSEdSHCkFImJv0t17Wc6YDV1FwSsSUqKuKjZCiJAmCcgyIIZ0HYyVOE9cIbh13pYrUdGaf0/NuTSvXD3UXbQmLaFhjE+T1IUhrQsx8mYf6rb8+rROAcER6Xpv3TShfiGYnxNCNrVTzlgla/lYw4rJKwQlJVSSIMtSZFkaUMckKCisOInR6/eQJikiFcHoCpUp8b9HH8D6l/8V995/P4bDBfR6AywvL2NxcRGDfh+LwwWkmfPUACR+XrWaUobtofV3aPDqwFC+ELm9i3iAVec7guGMrhZq5bdIdLemreXpu1xPOlR4Jjn33HM3sWZsJeeffz6+/OUvP5lTbynWoeUCkS61EH4bmOHDhPHeUssbe6xw35bv+QBNWxmQD9q04tcbhmrj0InOE6fwmqetN7f4osefGRs+0lZc7YvpWk2bJmc4jkNb3jME+R5FElpoVLpEWc1Q6hKjcYLTo1WcXjuJLGNYfd8tytAzydWVgIjhys5KJaeQCcBkOsV0NkNZVeztyIZd3m9ySWhi2OJz22D5+n5q1kaAdCi8NEM+XMJw5wrWHzkGO1lDXc/Qi1PESQ2ja9Q112DFAlBRBHYArPPANADX20k43jvBlm5AN3qjQxGssogiE6xechdLW1i7Ko6Z41Cg4b0Tzdg3iityrSraxbOuWaJlvkilYlewzMWuohXiURFb8AIcOhSu42/sW9ULtthlzUX+HpDgFaNSEaxgJeBzXACY3FdGrk8bFwIHrxpc5mCd12gFuJu2kEwX5BROOw9rbYuxxugQmfB5KR62Vqds+FY5KhgRwXh0iso6LysoLv97eO8rpAIaAzQsl8faL3z+C/46hEN0soLwrO/hNxSG2fqd1o3jmL0vJSEM/y5lOcMjJx4BfnAEWZYjTTMURQ99V3S/tLgUol1FUWD3zp0o8hxZlnLUgQASkg0bqUK4j1ohz86+cAYJRrkf5FZIMGwgW30OAi0dj2aEttgkn4RsS65CP4hlWTFbQmtBWzTPN4b9/MT0pLzGJfzbhJnGNlB2D8poc5JZy+eg1mc2578aJCF5i+yp3ita6itYfq1WC23Z+NJjKE9qTZomt0G82ZALUba+Llhs1JxAgEECggxgBTQqlPUUni0jiiLEMYcM2VrsocgzFHmBLOOutMJ/ubUg4k2w0gwtP70+wvp4HdPZjK1v4dku/O/BQIK61piVPjSlXENMgdpoEFlubAigLBNGPgoCdIVaKIhiCMr67GVNNWQRo4ZCTRr1dAotBAODsjRw+AkpIBUjrqIogoEreBVcg8SbpQibmTYaRltUmiCEAVyZtFdc7qZdWNTAtDZg0hoA59ZkpVGVMxjLYb00sZBxjEgbSBmHECvTJvGmlCZpYHAwtXYoWp7fzOIgQDLGbFZBSnIKKXaKGDCkUBkCGY16fYJIxS6EGEFZwUX7xjCoxnLofjyeBZAFEZBmOUeFrQWEhJURCBZVVQcC6khJV/xvAF+b6Ruyah04QsvSdZFWCgYa1tYAmnBiO5cSWUBZYKYtEwATQUURlGm84mA2uDE32sA6Ng+vtFxoJaxvTzTQMOwYx0Ti+/MxGTcEQVuLUhsgMphVGpNZibXRCLKsYWWCiiTWx+uYTCfQ7ndth+601hiNRlgbjUAt9ok4zpAkKYYLi9i9aw+WlhaxsmcPDlxwAZYWF7C4sOiY+zW0rlAZ5q6sXJ82T2rs+VbbD8B3O3IGoveYBc+rjpHYki4augkNdnKGaNQWiML5nkpEStBTi2OdVfnxj3+Mc88992xfxlzmMpe5zOVpyo9+9KPHRadvlG2puKy1OHLkCC6++GL86Ec/wnA4PNuX9H9OfK3bfHy2lvn4nFnm4/P4Mh+jM8vjjQ8RYTQaYd++fQ0jyBOUbRkqlFJi//79AICh6wA8l61lPj5nlvn4nFnm4/P4Mh+jM8uZxmdhYeEpfeeTU3Nzmctc5jKXuZxlmSuuucxlLnOZy7aSbau40jTFhz70oSddtPxckfn4nFnm43NmmY/P48t8jM4sP8vx2ZbgjLnMZS5zmctzV7atxzWXucxlLnN5bspccc1lLnOZy1y2lcwV11zmMpe5zGVbyVxxzWUuc5nLXLaVbEvF9fGPfxwXXHABsizDFVdcsakx5XNFPvzhD3dYwYUQeOELXxjen81mOHToEHbs2IF+v4/Xvva1oWnnz6t885vfxKte9Srs27cPQgj8y7/8S+d9IsIHP/hB7N27F3me4+qrr8YPfvCDzjEnT57EG9/4RgyHQywuLuL3f//3sb6+/izexc9OHm983vSmN22aU9ddd13nmJ/X8bnxxhvxkpe8BIPBALt378Zv/uZv4siRI51jnsiaOnr0KF75ylcy8e3u3Xj3u98N7VrHbHd5ImP08pe/fNMceutb39o55umO0bZTXP/0T/+Ed77znfjQhz6E//7v/8bll1+Oa6+9Fg8//PDZvrSzIr/4i7+IY8eOhce3vvWt8N473vEO/Ou//is+97nP4dZbb8VPf/pTvOY1rzmLV/uzl/F4jMsvvxwf//jHt3z/Yx/7GP72b/8Wn/zkJ3Hbbbeh1+vh2muvxcx15QWAN77xjbj77rtx8803h07fb3nLW56tW/iZyuONDwBcd911nTn12c9+tvP+z+v43HrrrTh06BC+853v4Oabb0Zd17jmmmswHo/DMY+3powxeOUrX4mqqvDtb38bf//3f4+bbroJH/zgB8/GLT3j8kTGCADe/OY3d+bQxz72sfDeMzJGtM3kpS99KR06dCj8bYyhffv20Y033ngWr+rsyIc+9CG6/PLLt3xvdXWV4jimz33uc+G1//mf/yEAdPjw4WfpCs+uAKAvfOEL4W9rLa2srNBf/dVfhddWV1cpTVP67Gc/S0RE99xzDwGg//qv/wrH/Nu//RsJIegnP/nJs3btz4ZsHB8iouuvv55e/epXP+Znnkvj8/DDDxMAuvXWW4noia2pL3/5yySlpOPHj4djPvGJT9BwOKSyLJ/dG3gWZOMYERH9+q//Ov3xH//xY37mmRijbeVxVVWF22+/HVdffXV4TUqJq6++GocPHz6LV3b25Ac/+AH27duHCy+8EG984xtx9OhRAMDtt9+Ouq47Y/XCF74Q55133nN2rB544AEcP368MyYLCwu44oorwpgcPnwYi4uL+JVf+ZVwzNVXXw0pJW677bZn/ZrPhtxyyy3YvXs3XvCCF+CGG27AiRMnwnvPpfE5ffo0AGB5eRnAE1tThw8fxqWXXoo9e/aEY6699lqsra3h7rvvfhav/tmRjWPk5dOf/jR27tyJSy65BO9973sxmUzCe8/EGG0rkt1HH30UxpjODQPAnj17cO+9956lqzp7csUVV+Cmm27CC17wAhw7dgwf+chH8Gu/9mu46667cPz4cSRJgsXFxc5n9uzZg+PHj5+dCz7L4u97q/nj3zt+/Dh2797deT+KIiwvLz8nxu26667Da17zGhw4cAD3338/3ve+9+EVr3gFDh8+DKXUc2Z8rLV4+9vfjpe97GW45JJLAOAJranjx49vOb/8ez9PstUYAcAb3vAGnH/++di3bx/uvPNOvOc978GRI0fw+c9/HsAzM0bbSnHNpSuveMUrwvPLLrsMV1xxBc4//3z88z//M/I8P4tXNpftKr/9278dnl966aW47LLLcNFFF+GWW27BVVdddRav7NmVQ4cO4a677urkjOfSlccao3a+89JLL8XevXtx1VVX4f7778dFF130jJx7W4UKd+7cCaXUJhTPQw89hJWVlbN0Vf93ZHFxEb/wC7+A++67DysrK6iqCqurq51jnstj5e/7TPNnZWVlE9BHa42TJ08+J8ftwgsvxM6dO3HfffcBeG6Mz9ve9jZ86Utfwje+8Y1Og8MnsqZWVla2nF/+vZ8Xeawx2kquuOIKAOjMoac7RttKcSVJghe/+MX42te+Fl6z1uJrX/saDh48eBav7P+GrK+v4/7778fevXvx4he/GHEcd8bqyJEjOHr06HN2rA4cOICVlZXOmKytreG2224LY3Lw4EGsrq7i9ttvD8d8/etfh7U2LMDnkvz4xz/GiRMnsHfvXgA/3+NDRHjb296GL3zhC/j617+OAwcOdN5/Imvq4MGD+P73v99R7jfffDOGwyEuvvjiZ+dGfobyeGO0ldxxxx0A0JlDT3uMniKY5KzJP/7jP1KapnTTTTfRPffcQ295y1tocXGxg1B5rsi73vUuuuWWW+iBBx6g//iP/6Crr76adu7cSQ8//DAREb31rW+l8847j77+9a/Td7/7XTp48CAdPHjwLF/1z1ZGoxF973vfo+9973sEgP76r/+avve979EPf/hDIiL6i7/4C1pcXKQvfvGLdOedd9KrX/1qOnDgAE2n0/Ad1113Hb3oRS+i2267jb71rW/R85//fHr9619/tm7pGZUzjc9oNKI/+ZM/ocOHD9MDDzxAX/3qV+mXf/mX6fnPfz7NZrPwHT+v43PDDTfQwsIC3XLLLXTs2LHwmEwm4ZjHW1Naa7rkkkvommuuoTvuuIO+8pWv0K5du+i9733v2bilZ1web4zuu+8++uhHP0rf/e536YEHHqAvfvGLdOGFF9KVV14ZvuOZGKNtp7iIiP7u7/6OzjvvPEqShF760pfSd77znbN9SWdFXve619HevXspSRLav38/ve51r6P77rsvvD+dTukP//APaWlpiYqioN/6rd+iY8eOncUr/tnLN77xDQKw6XH99dcTEUPiP/CBD9CePXsoTVO66qqr6MiRI53vOHHiBL3+9a+nfr9Pw+GQfu/3fo9Go9FZuJtnXs40PpPJhK655hratWsXxXFM559/Pr35zW/eZBT+vI7PVuMCgD71qU+FY57ImnrwwQfpFa94BeV5Tjt37qR3vetdVNf1s3w3Pxt5vDE6evQoXXnllbS8vExpmtLznvc8eve7302nT5/ufM/THaN5W5O5zGUuc5nLtpJtleOay1zmMpe5zGWuuOYyl7nMZS7bSuaKay5zmctc5rKtZK645jKXucxlLttK5oprLnOZy1zmsq1krrjmMpe5zGUu20rmimsuc5nLXOayrWSuuOYyl7nMZS7bSuaKay5zmctc5rKtZK645jKXucxlLttK5oprLnOZy1zmsq1krrjmMpe5zGUu20r+PwKBWqaN2WKvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAefklEQVR4nO3df2yV5d3H8U/Lj2MRTmsp7WnlhwUVxALbALvGiWY0/TFCRPgDsMmQEAjYGhFkriaCmGWdumxP5pj8sQVcoqgkopEoS9fSEmapUiUKaENJXVF62lnScwpIaen1/PE83NnR8qOl7fHbvl/JlXDu+zrnXOda63un56bEOOecAAAwIjbaCwAAoCcIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMCUqIVr27Ztuu2223TTTTcpMzNTH374YbSWAgAwJCrheuONN7RhwwZt2bJFH3/8sWbNmqXc3Fw1NzdHYzkAAENiovFLdjMzMzV37lz9+c9/liR1dXVpwoQJeuyxx/TrX/96oJcDADBk+EA/4cWLF1VTU6Pi4mLvWGxsrLKzs1VVVdXtfdrb29Xe3u7d7urq0pkzZzR27FjFxMT0+5oBAH3LOae2tjalpaUpNrZnP/wb8HB98803unTpklJSUiKOp6Sk6Isvvuj2PiUlJdq6detALA8AMIBOnTql8ePH9+g+Jq4qLC4uVigU8kZDQ0O0lwQA6ANjxozp8X0G/B1XUlKShg0bpqampojjTU1NCgQC3d7H5/PJ5/MNxPIAAAOoNx/3DPg7rpEjR2r27NkqKyvzjnV1damsrExZWVkDvRwAgDED/o5LkjZs2KAVK1Zozpw5uueee/Q///M/OnfunFauXBmN5QAADIlKuJYuXar//Oc/2rx5s4LBoH70ox9p375937tgAwCA74rK3+O6UeFwWPHx8dFeBgDgBoVCIfn9/h7dx8RVhQAAXEa4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmNLn4Xr22WcVExMTMaZNm+adv3DhggoLCzV27FiNHj1aS5YsUVNTU18vAwAwSPXLO667775bjY2N3jh48KB37oknntC7776r3bt3q7KyUqdPn9bixYv7YxkAgEFoeL886PDhCgQC3zseCoX0t7/9Ta+99pp+/vOfS5J27Nihu+66S4cOHdJPf/rT/lgOAGAQ6Zd3XCdOnFBaWpomT56sgoICNTQ0SJJqamrU0dGh7Oxsb+60adM0ceJEVVVV9cdSAACDTJ+/48rMzNTOnTs1depUNTY2auvWrbrvvvt09OhRBYNBjRw5UgkJCRH3SUlJUTAYvOJjtre3q7293bsdDof7etkAACP6PFz5+fnen2fOnKnMzExNmjRJb775puLi4nr1mCUlJdq6dWtfLREAYFi/Xw6fkJCgO++8U3V1dQoEArp48aJaW1sj5jQ1NXX7mdhlxcXFCoVC3jh16lQ/rxoA8EPV7+E6e/asTp48qdTUVM2ePVsjRoxQWVmZd762tlYNDQ3Kysq64mP4fD75/f6IAQAYmvr8R4VPPvmkFi5cqEmTJun06dPasmWLhg0bpuXLlys+Pl6rVq3Shg0blJiYKL/fr8cee0xZWVlcUQgAuC59Hq6vvvpKy5cvV0tLi8aNG6ef/exnOnTokMaNGydJ+uMf/6jY2FgtWbJE7e3tys3N1V/+8pe+XgYAYJCKcc65aC+ip8LhsOLj46O9DADADQqFQj3++IffVQgAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMKXH4Tpw4IAWLlyotLQ0xcTE6O23344475zT5s2blZqaqri4OGVnZ+vEiRMRc86cOaOCggL5/X4lJCRo1apVOnv27A29EADA0NDjcJ07d06zZs3Stm3buj3/wgsv6E9/+pO2b9+u6upq3XzzzcrNzdWFCxe8OQUFBTp27JhKS0u1d+9eHThwQGvWrOn9qwAADB3uBkhye/bs8W53dXW5QCDgXnzxRe9Ya2ur8/l8bteuXc45544fP+4kuY8++sib8/7777uYmBj39ddfX9fzhkIhJ4nBYDAYxkcoFOpxe/r0M676+noFg0FlZ2d7x+Lj45WZmamqqipJUlVVlRISEjRnzhxvTnZ2tmJjY1VdXd2XywEADELD+/LBgsGgJCklJSXieEpKincuGAwqOTk5chHDhysxMdGb813t7e1qb2/3bofD4b5cNgDAEBNXFZaUlCg+Pt4bEyZMiPaSAABR0qfhCgQCkqSmpqaI401NTd65QCCg5ubmiPOdnZ06c+aMN+e7iouLFQqFvHHq1Km+XDYAwJA+DVd6eroCgYDKysq8Y+FwWNXV1crKypIkZWVlqbW1VTU1Nd6c8vJydXV1KTMzs9vH9fl88vv9EQMAMDT1+DOus2fPqq6uzrtdX1+vI0eOKDExURMnTtT69ev1m9/8RnfccYfS09P1zDPPKC0tTYsWLZIk3XXXXcrLy9Pq1au1fft2dXR0qKioSMuWLVNaWlqfvTAAwCDV08sQ9+/f3+0ljStWrHDO/d8l8c8884xLSUlxPp/PzZ8/39XW1kY8RktLi1u+fLkbPXq08/v9buXKla6tre2618Dl8AwGgzE4Rm8uh49xzjkZEw6HFR8fH+1lAABuUCgU6vHHPyauKgQA4DLCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAU4ZHewEYGmJjYxUby/9PuhGXLl2SwX/3FehzhAsD4vnnn9fSpUujvQzT1qxZo3379kV7GUDUES4MiFtuuUUTJkyI9jJMi4uLi/YSgB8EfnYDADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAU3ocrgMHDmjhwoVKS0tTTEyM3n777YjzjzzyiGJiYiJGXl5exJwzZ86ooKBAfr9fCQkJWrVqlc6ePXtDLwQAMDT0OFznzp3TrFmztG3btivOycvLU2Njozd27doVcb6goEDHjh1TaWmp9u7dqwMHDmjNmjU9Xz0AYMgZ3tM75OfnKz8//6pzfD6fAoFAt+c+//xz7du3Tx999JHmzJkjSXrppZf0i1/8Qr///e+VlpbW0yUBAIaQfvmMq6KiQsnJyZo6darWrVunlpYW71xVVZUSEhK8aElSdna2YmNjVV1d3e3jtbe3KxwORwwAwNDU5+HKy8vT3//+d5WVlen5559XZWWl8vPzdenSJUlSMBhUcnJyxH2GDx+uxMREBYPBbh+zpKRE8fHx3pgwYUJfLxsAYESPf1R4LcuWLfP+PGPGDM2cOVNTpkxRRUWF5s+f36vHLC4u1oYNG7zb4XCYeAHAENXvl8NPnjxZSUlJqqurkyQFAgE1NzdHzOns7NSZM2eu+LmYz+eT3++PGACAoanfw/XVV1+ppaVFqampkqSsrCy1traqpqbGm1NeXq6uri5lZmb293IAAMb1+EeFZ8+e9d49SVJ9fb2OHDmixMREJSYmauvWrVqyZIkCgYBOnjypX/3qV7r99tuVm5srSbrrrruUl5en1atXa/v27ero6FBRUZGWLVvGFYUAgGtzPbR//34n6XtjxYoV7vz58y4nJ8eNGzfOjRgxwk2aNMmtXr3aBYPBiMdoaWlxy5cvd6NHj3Z+v9+tXLnStbW1XfcaQqFQt2tg/HDHX//6155+qeE7Hnrooaj/78hg9PUIhUI9/l7o8TuuBx54QM65K57/xz/+cc3HSExM1GuvvdbTpwYAgN9VCACwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABThkd7ARgaKisr1dnZGe1lmFZfXx/tJQA/CDHOORftRfRUOBxWfHx8tJcBALhBoVBIfr+/R/fhR4UAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBMIVwAAFMIFwDAFMIFADCFcAEATCFcAABTCBcAwBTCBQAwhXABAEwhXAAAUwgXAMAUwgUAMIVwAQBM6VG4SkpKNHfuXI0ZM0bJyclatGiRamtrI+ZcuHBBhYWFGjt2rEaPHq0lS5aoqakpYk5DQ4MWLFigUaNGKTk5WZs2bVJnZ+eNvxoAwKDXo3BVVlaqsLBQhw4dUmlpqTo6OpSTk6Nz5855c5544gm9++672r17tyorK3X69GktXrzYO3/p0iUtWLBAFy9e1AcffKBXXnlFO3fu1ObNm/vuVQEABi93A5qbm50kV1lZ6ZxzrrW11Y0YMcLt3r3bm/P55587Sa6qqso559x7773nYmNjXTAY9Oa8/PLLzu/3u/b29ut63lAo5CQxGAwGw/gIhUI9bs8NfcYVCoUkSYmJiZKkmpoadXR0KDs725szbdo0TZw4UVVVVZKkqqoqzZgxQykpKd6c3NxchcNhHTt2rNvnaW9vVzgcjhgAgKGp1+Hq6urS+vXrde+99yojI0OSFAwGNXLkSCUkJETMTUlJUTAY9Ob8d7Qun798rjslJSWKj4/3xoQJE3q7bACAcb0OV2FhoY4eParXX3+9L9fTreLiYoVCIW+cOnWq358TAPDDNLw3dyoqKtLevXt14MABjR8/3jseCAR08eJFtba2RrzrampqUiAQ8OZ8+OGHEY93+arDy3O+y+fzyefz9WapAIBBpkfvuJxzKioq0p49e1ReXq709PSI87Nnz9aIESNUVlbmHautrVVDQ4OysrIkSVlZWfrss8/U3NzszSktLZXf79f06dNv5LUAAIaCnlzJsW7dOhcfH+8qKipcY2OjN86fP+/NWbt2rZs4caIrLy93hw8fdllZWS4rK8s739nZ6TIyMlxOTo47cuSI27dvnxs3bpwrLi6+7nVwVSGDwWAMjtGbqwp7FK4rPfGOHTu8Od9++6179NFH3S233OJGjRrlHnroIdfY2BjxOF9++aXLz893cXFxLikpyW3cuNF1dHRc9zoIF4PBYAyO0Ztwxfx/kEwJh8OKj4+P9jIAADcoFArJ7/f36D78rkIAgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKYQLgCAKYQLAGAK4QIAmEK4AACmEC4AgCk9CldJSYnmzp2rMWPGKDk5WYsWLVJtbW3EnAceeEAxMTERY+3atRFzGhoatGDBAo0aNUrJycnatGmTOjs7b/zVAAAGveE9mVxZWanCwkLNnTtXnZ2devrpp5WTk6Pjx4/r5ptv9uatXr1azz33nHd71KhR3p8vXbqkBQsWKBAI6IMPPlBjY6N++ctfasSIEfrtb3/bBy8JADCouRvQ3NzsJLnKykrv2P333+8ef/zxK97nvffec7GxsS4YDHrHXn75Zef3+117e/t1PW8oFHKSGAwGg2F8hEKhHrfnhj7jCoVCkqTExMSI46+++qqSkpKUkZGh4uJinT9/3jtXVVWlGTNmKCUlxTuWm5urcDisY8eOdfs87e3tCofDEQMAMDT16EeF/62rq0vr16/Xvffeq4yMDO/4ww8/rEmTJiktLU2ffvqpnnrqKdXW1uqtt96SJAWDwYhoSfJuB4PBbp+rpKREW7du7e1SAQCDSK/DVVhYqKNHj+rgwYMRx9esWeP9ecaMGUpNTdX8+fN18uRJTZkypVfPVVxcrA0bNni3w+GwJkyY0LuFAwBM69WPCouKirR3717t379f48ePv+rczMxMSVJdXZ0kKRAIqKmpKWLO5duBQKDbx/D5fPL7/REDADA09ShczjkVFRVpz549Ki8vV3p6+jXvc+TIEUlSamqqJCkrK0ufffaZmpubvTmlpaXy+/2aPn16T5YDABiKenIlx7p161x8fLyrqKhwjY2N3jh//rxzzrm6ujr33HPPucOHD7v6+nr3zjvvuMmTJ7t58+Z5j9HZ2ekyMjJcTk6OO3LkiNu3b58bN26cKy4uvu51cFUhg8FgDI7Rm6sKexSuKz3xjh07nHPONTQ0uHnz5rnExETn8/nc7bff7jZt2vS9hX355ZcuPz/fxcXFuaSkJLdx40bX0dFx3esgXAwGgzE4Rm/CFfP/QTIlHA4rPj4+2ssAANygUCjU4+sWTP6uQoOtBQB0ozf/PTcZrra2tmgvAQDQB3rz33OTPyrs6upSbW2tpk+frlOnTnF5fDcu/1039qd77M/VsT/Xxh5d3bX2xzmntrY2paWlKTa2Z++hev0XkKMpNjZWt956qyTx97qugf25Ovbn6tifa2OPru5q+9PbaxVM/qgQADB0ES4AgClmw+Xz+bRlyxb5fL5oL+UHif25Ovbn6tifa2OPrq4/98fkxRkAgKHL7DsuAMDQRLgAAKYQLgCAKYQLAGCKyXBt27ZNt912m2666SZlZmbqww8/jPaSouLZZ59VTExMxJg2bZp3/sKFCyosLNTYsWM1evRoLVmy5Hv/iOdgc+DAAS1cuFBpaWmKiYnR22+/HXHeOafNmzcrNTVVcXFxys7O1okTJyLmnDlzRgUFBfL7/UpISNCqVat09uzZAXwV/eda+/PII49872sqLy8vYs5g3Z+SkhLNnTtXY8aMUXJyshYtWqTa2tqIOdfzPdXQ0KAFCxZo1KhRSk5O1qZNm9TZ2TmQL6XfXM8ePfDAA9/7Glq7dm3EnBvdI3PheuONN7RhwwZt2bJFH3/8sWbNmqXc3NyIf5hyKLn77rvV2NjojYMHD3rnnnjiCb377rvavXu3Kisrdfr0aS1evDiKq+1/586d06xZs7Rt27Zuz7/wwgv605/+pO3bt6u6ulo333yzcnNzdeHCBW9OQUGBjh07ptLSUu3du1cHDhzQmjVrBuol9Ktr7Y8k5eXlRXxN7dq1K+L8YN2fyspKFRYW6tChQyotLVVHR4dycnJ07tw5b861vqcuXbqkBQsW6OLFi/rggw/0yiuvaOfOndq8eXM0XlKfu549kqTVq1dHfA298MIL3rk+2aMe/0MoUXbPPfe4wsJC7/alS5dcWlqaKykpieKqomPLli1u1qxZ3Z5rbW11I0aMcLt37/aOff75506Sq6qqGqAVRpckt2fPHu92V1eXCwQC7sUXX/SOtba2Op/P53bt2uWcc+748eNOkvvoo4+8Oe+//76LiYlxX3/99YCtfSB8d3+cc27FihXuwQcfvOJ9htL+NDc3O0musrLSOXd931Pvvfeei42NdcFg0Jvz8ssvO7/f79rb2wf2BQyA7+6Rc87df//97vHHH7/iffpij0y947p48aJqamqUnZ3tHYuNjVV2draqqqqiuLLoOXHihNLS0jR58mQVFBSooaFBklRTU6OOjo6IvZo2bZomTpw4ZPeqvr5ewWAwYk/i4+OVmZnp7UlVVZUSEhI0Z84cb052drZiY2NVXV094GuOhoqKCiUnJ2vq1Klat26dWlpavHNDaX9CoZAkKTExUdL1fU9VVVVpxowZSklJ8ebk5uYqHA7r2LFjA7j6gfHdPbrs1VdfVVJSkjIyMlRcXKzz58975/pij0z9kt1vvvlGly5dinjBkpSSkqIvvvgiSquKnszMTO3cuVNTp05VY2Ojtm7dqvvuu09Hjx5VMBjUyJEjlZCQEHGflJQUBYPB6Cw4yi6/7u6+fi6fCwaDSk5Ojjg/fPhwJSYmDol9y8vL0+LFi5Wenq6TJ0/q6aefVn5+vqqqqjRs2LAhsz9dXV1av3697r33XmVkZEjSdX1PBYPBbr++Lp8bTLrbI0l6+OGHNWnSJKWlpenTTz/VU089pdraWr311luS+maPTIULkfLz870/z5w5U5mZmZo0aZLefPNNxcXFRXFlsGrZsmXen2fMmKGZM2dqypQpqqio0Pz586O4soFVWFioo0ePRnxmjEhX2qP//rxzxowZSk1N1fz583Xy5ElNmTKlT57b1I8Kk5KSNGzYsO9dxdPU1KRAIBClVf1wJCQk6M4771RdXZ0CgYAuXryo1tbWiDlDea8uv+6rff0EAoHvXejT2dmpM2fODMl9mzx5spKSklRXVydpaOxPUVGR9u7dq/3792v8+PHe8ev5ngoEAt1+fV0+N1hcaY+6k5mZKUkRX0M3ukemwjVy5EjNnj1bZWVl3rGuri6VlZUpKysriiv7YTh79qxOnjyp1NRUzZ49WyNGjIjYq9raWjU0NAzZvUpPT1cgEIjYk3A4rOrqam9PsrKy1NraqpqaGm9OeXm5urq6vG/AoeSrr75SS0uLUlNTJQ3u/XHOqaioSHv27FF5ebnS09Mjzl/P91RWVpY+++yziLiXlpbK7/dr+vTpA/NC+tG19qg7R44ckaSIr6Eb3qNeXkwSNa+//rrz+Xxu586d7vjx427NmjUuISEh4gqVoWLjxo2uoqLC1dfXu3/9618uOzvbJSUluebmZuecc2vXrnUTJ0505eXl7vDhwy4rK8tlZWVFedX9q62tzX3yySfuk08+cZLcH/7wB/fJJ5+4f//738455373u9+5hIQE984777hPP/3UPfjggy49Pd19++233mPk5eW5H//4x666utodPHjQ3XHHHW758uXRekl96mr709bW5p588klXVVXl6uvr3T//+U/3k5/8xN1xxx3uwoUL3mMM1v1Zt26di4+PdxUVFa6xsdEb58+f9+Zc63uqs7PTZWRkuJycHHfkyBG3b98+N27cOFdcXByNl9TnrrVHdXV17rnnnnOHDx929fX17p133nGTJ0928+bN8x6jL/bIXLicc+6ll15yEydOdCNHjnT33HOPO3ToULSXFBVLly51qampbuTIke7WW291S5cudXV1dd75b7/91j366KPulltucaNGjXIPPfSQa2xsjOKK+9/+/fudpO+NFStWOOf+75L4Z555xqWkpDifz+fmz5/vamtrIx6jpaXFLV++3I0ePdr5/X63cuVK19bWFoVX0/eutj/nz593OTk5bty4cW7EiBFu0qRJbvXq1d/7P4WDdX+62xdJbseOHd6c6/me+vLLL11+fr6Li4tzSUlJbuPGja6jo2OAX03/uNYeNTQ0uHnz5rnExETn8/nc7bff7jZt2uRCoVDE49zoHvHPmgAATDH1GRcAAIQLAGAK4QIAmEK4AACmEC4AgCmECwBgCuECAJhCuAAAphAuAIAphAsAYArhAgCYQrgAAKb8L3uWrWd0nKDdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -684,9 +782,18 @@ "import matplotlib.pyplot as plt \n", "from mmedit.edit import MMEdit\n", "\n", - "# Create a MMEdit instance and infer\n", "img = '../resources/input/inpainting/celeba_test.png'\n", "mask = '../resources/input/inpainting/bbox_mask.png'\n", + "\n", + "# show input image and mask\n", + "input_img = mmcv.imread(img)\n", + "plt.imshow(mmcv.bgr2rgb(input_img))\n", + "plt.show()\n", + "input_mask = mmcv.imread(mask)\n", + "plt.imshow(mmcv.bgr2rgb(input_mask))\n", + "plt.show()\n", + "\n", + "# Create a MMEdit instance and infer\n", "result_out_dir = '../resources/output/inpainting/tutorial_inpainting_global_local_res.jpg'\n", "editor = MMEdit('global_local', model_setting=1)\n", "results = editor.infer(img=img, mask=mask, result_out_dir=result_out_dir)\n", @@ -708,9 +815,29 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "metadata": {}, "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGHCAYAAACar6kjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz92a8lSZ7fiX3MzN3Pdvc94kbEjTUj18qsNauql+pmN5vkaDQcaQRRAiRI1IMgAhwM0ICA4csM5mn+AfKJTyQgQBxq4Qxn2M1mV3O6u7przcqszMolMjJjv3H35eznuLuZ6cHcfDn33KxsEpqqlK4FTtyzuJvb8rPf7/tb7GfCWmu5KBflolyUi3JRLspF+RUq8pfdgItyUS7KRbkoF+WiXJTJcgFQLspFuSgX5aJclIvyK1cuAMpFuSgX5aJclItyUX7lygVAuSgX5aJclItyUS7Kr1y5ACgX5aJclItyUS7KRfmVKxcA5aJclItyUS7KRbkov3LlAqBclItyUS7KRbkoF+VXrlwAlItyUS7KRbkoF+Wi/MqVC4ByUS7KRbkoF+WiXJRfuXIBUC7KRbkoF+WiXJSL8itXfqkA5R/9o3/E9evXqdfrvPnmm/zoRz/6ZTbnolyUi3JRLspFuSi/IuWXBlD+2T/7Z/z+7/8+/+V/+V/y05/+lNdff52/8Tf+Bvv7+7+sJl2Ui3JRLspFuSgX5VekiF/WYYFvvvkmX//61/mH//AfAmCM4erVq/yn/+l/yn/+n//nv4wmXZSLclEuykW5KBflV6QEv4yHxnHMW2+9xT/4B/8g/05Kye/+7u/y/e9//8z14/GY8XicfzbGcHx8zPLyMkKI/0nafFEuykW5KBflolyUf79iraXb7XL58mWk/Gwnzi8FoBweHqK1Zn19vfL9+vo6H3300Znr/+v/+r/mv/qv/qv/qZp3US7KRbkoF+WiXJT/L5anT59y5cqVz7zmlwJQ/qrlH/yDf8Dv//7v55/b7TbXrl3j7/7d/wtREGKsQWtNHI/pdNrs7u1weLiPTjUbK+vcvHWLSxuXiaIQA1jhUJwUAikECAEWEAKRvVxx3i//WZR+l1KilEJKiZQCqRRB9tlag7UWYwxJohmPxvQHA7r9Hp12h+PjE46Pj+l0TonjMUa79ltrsTgLkZKKpYUFbl6/zuXNTZrNJmEYUKvVCcOQIAiQSqCUREmFkAKbtdhamz/fGI3Wrh1pmpKkCSbVJElKHCcYazDakBpNmmqSJGE0GtLptOl2OiRJXJoJgTWGslPQWhfIJATUanU2Nja4sXWdpeUlwijEWMs4TojTBGsMQkA9iqjXIwKlSIxmOBzR6/XY29vn0ePH7Ow+ZzgYgjFg3XyBs7I1602uX7/OrZu3WFhcAunaBLj6saggoBbVCMOAIFQoqdx4SZlNtZsfnbox0lnfR3HMcDhk0B8yHI4YjUaMxyMGgyG9fo/hcEAcx5lFb4Qxegq1iuzlxsT/lQLqUZ319XWuXbvO0vIKQRgU9JbRlMDRpJLZ5+x3K4q5NcZgjcUY0MZgtMZagckmRmS0KqXAeXDdSwgQUubjEYQBUS0gUMo9w7px1NrRTRwn9AdDup0up6enHB4esru3x8HhHoNBH2tcv6QUzM/Nc/eFF3j11VdZXl5GqSDTjqxbD9noGGOx2pCmGq11Nv4GY2w+x1LIYl1lY+D+uvlDSLdOtMEkmthoDNaNFQIhQSiJVJJIShSWlaU69VBzenpMbzRAhQptE8JgyHAA7723zfOdDofHp5yeHjMejUtr3rdHokQ2v1m7VBDQbDSZn5un2WpldBcRBAFhWCOshTRqikZUY3k5YGlphqPDPqkOsNQw1qKwSMAogWRMXexTrxnGdp7uqIk0IQiFCiRhGCCVzBefW+PG0YLWJGlCPI6J45gkTUmThHisGcdjxqMRw9GAfr9Hf9BnPEwYjvuMhgPGyYBWM+LO7SvcffEKjZrm9S+9zNz8HP3RiD///p/z5PE9rl3aZL21SqJi5pYWuLS5hQrqSDHLj3/0CX/5l2/T740YxQnjOCFN05yujLHYbDELDMJKR58yptZocmXzBnfvvMDq6hJKBVjr6Nevb7AIKTDZGpFSEUiVr2s3JNl4WIPWhjRJGY1GDIZ9eoMundMup8cdTjsdhuMeOh2jrGF1bYHLly/x6cNtDo46COHaJoQkDEPW1tbY2rrO6uoKjUaTehShlHuo599JkmTjPGY4GjMauvEe9PsMhgPGozHGaDcOWLS1WAsW10cnA8heGmsNQaBYWlpic3OT1dV1avWa4/dZh/26gEJu+aiNQga4tYG1TsZlTKKow8u14jt3iUBkdWjt5Ig2miROGQwH9Hs9Tjttjk+O6HQ6jMcjtC2e7+ej4ItAxqdOTg6YnZ2dwj+r5ZcCUFZWVlBKsbe3V/l+b2+PjY2NM9fXajVqtdqZ7+tRjagWOUJMU8A65qBClArAQKBCalGNWr1GFDmG4AWeAKQQCCnAToITQEwHKJ5xSqkKxqU8YBE5MWhjiOMEIYSb2CRhXKsRRSFBoDImnjohnE2qFzJSSZSUBCqgFkXUahFhGNFoNAjDEKVU9swCKBkyYs/qcETlhEAYpiSJRsUKHWikSlAqyK9RRqNUipQCYzRhGKEC93t5DKxQEwRoUdm4BEFAGIREUUS9XieMIoy1CKmQqcJqg1SCWi2iUYtQKkDpFK0tQRjTaLRotWaIojrJOMaSMShRjL3FYrRBSkktihBKVforsYSha0MUhYRhkI2VOgNQjLZu0WXMBSmwFoy2GJMBAWtJU00UhySJGw9Xl3J1nQnhmgQojjkoUdBMGIZEtRphGOYmzkII/2KA4truhZLJ2gnWM4HsXbV9DqD4sVBKEUYhtZqjRQ9QHFOzbizlGGMsSZxQq9WIoigDesoxRWGArF/IbK3VadSbBEFYCA1PmdZiNDnDS9M0o7+CZgvg78B3mRFLGWQ04MC4TlNsoAmMQVubM10h3L2BUgRCoqSh2apRrw1IEk23f0RqG2jToN/rcPPWdY6PerRPe3QCSSAVqVSZzlKsdweQHAgiW+cqa28QBERhRBiGmQLhaLAW1YlqgihqIISlVg+YnasxGIRYW8cKgyAhCDRCWkRaJxILRKrLbKuGiuokcYDWijAKCAJJEKh87XmA4ujUoBKVA7wgTYmlQgqd8yRjNUniAIwONSoNEFISRQEv3t3im2++TBK3uXnzGptXNugNhiwsLvHKyy+yv/eUB588RmxIRnbISf+UxCS8+eZvg5ljOHifIAhQQYBKdUZvMgcajgY8aw0QKBApNuNlQRgS1iJq9TpKOmVSGAvWoJTFop3OIhQCp3g4HiqydWQqY6K1JpYx1hpSE1NLI+phkyiMCcIeQSoJUCzONblxbYPne0d0ukOUCoFiXXuajKKIWq1OvV6nFoUE2frMeWgG9AUCYxxwSdPE0UQSogON1gIprePz1jjFwhisFKU59etWFGs1dPw/CmsEgarwDUeXxWfPIxy4K8bc119g7IK/eD0952IeyJgyQHEgRSDQOiKJClp386AyHiJKz5sMwRBgqnL1s8ovZRdPFEV89atf5bvf/W7+nTGG7373u3zrW9/63PVIAVLI6R0tAQ6RCQ3PcKAkRnIttwpCpr13f71GSukaSi//NN+majvKVphyKa5xbXLWFJsv7OozP9/kQiHQfDsqhC2rVqHJdpXbW+1rdXxs6VnGI+ZSfyp14AWuyIGiBwHamExAy2JiJorRhiROSOIYnWlWHrhUh6Q6ZuXBK/pY6kd5sUr3qi7gTGvLqymAyDkjnz+/wjBKrzN3lL4/Qx/ltjLt2Tb/1oOTcr3VIfDWmomhmbje99FfX4xH0UN3fZmxCjKb2pm2f55SjEF1jVX6m09fRnsZiHAaHygEygqkBYnAIjnpjjhqd9FYdKoJZcjJ0Qn3P32fOOny8qvX2diYJQwsSjreUozFJC1ZwJSY+uRcZtdXxgXixAG/KAJhXR2uHykn7Wc0mjFRCFY0wdaoBRLsCCtSEF7QnJ1LJ5SmgeXqmp18WTRWGKwEhEEFCTs7D5AiZWVljZN2nxSYmZlh49Ilrm5dodYIWdlYZPPKLXrdhP2DQyxwdHTA4dEx1ogJYFxe98V6QgiQFkSm3Wc044C4xKJyOhdC0GiGLCy23PU5FK/y5vPWoxACiURa5Z4jDUIYpLDMtEJu3LzEcDRkZ/eIVDteWR3LSd5S1PtZ5by17L6b9r0bh7O8pQAhZSvJNBly9kHV9pTXdPWe0noty4IJIFOsBTuFpgpLztn681aQ0/3nKL+0bca///u/zz/+x/+Yf/JP/gkffvghf+/v/T36/T5/9+/+3c9dhx8wIWwGHPJfgBJzybl2STDYs3WV0ed0kFK+wz/TM6pCe0XYTLucDnyKz65Nro5s4nxfhMEajUFjc1eTn9wyKCoLAl9M/iqusZW+nQFMpbbmBCmrxOVdUOXPk8U9w2CtKcZrEgRmQzQ51jqzCvibbKlPueXAGuIkJknSXHOsjml1nM+0cYqw9n/LC1GWwJwSmQWkxDCzys70v1TzlLbJQpBMobEqE5hSY4URVE25pQ5Wxmuyj0XrXL+EdXJC2mzEjXHvjXV/S8KtACkZyKVorxPEKcbo6VYlW9b4zgLiSdA2/b3J2+6tmzYTbs5JIhFIhBFI6/qmhcEoGGvBKKmRGMMLd+9yaf0K4/4QncDJ6RFxfMJXv/oi62tzSJEipXFuCFGeR+usN3mbPf3lSCUXttbi3KeZm9JYjTWS0SgmDCVKZCBIWLRNuPfxexwePmZto4UILIk1znKAyDpsAJ2PxzTFwdOv+64QFhbHTwqFJHOJSG/yV1gr6PbaJOmAS5eXMSQkJiVqNOiNj2m2amxubtFstbi8eQkrY+qNGiAYJzHPnu0zHKZYKzHG0YZCAX7dGCQaSYISCYEcEaoxYZgSBCAlCJmiZIogRZXWjxAQDweEAQRSlsaAnPaqdI7jv8I4q5QAYRXSBlhpMMIgMczUBDe3VrFW8+DhDuNYlKzZsrD25Oum4Ol+Dfi2lHnReQrIZ5WzoLx49qSM/2wA8PmfM8knq2128kOKs2DorBw7q3BPtvfftfzSYlD+zt/5OxwcHPBf/Bf/Bbu7u7zxxhv84R/+4ZnA2c9bqoNW/qGkAXmCozzpAq8XVwZScA4RTCJXUVkgOcPO2+IXksjNwtNBxdlirM3iCyY1cZOZTWWVqJzUz6/NW3ymfec/vEL8U34jAylVxl0CEMa5lKr1ZYxT4EziXnsvuVEcQIKyGbgAmqZotwWjNVqnVSCJwAo/x86l8Fcr7nopM59sxuwDKYnPBamfXRcliOXmK/u2xPimL15xling+miqEJEqPZ4F6ZPtcNpk8WvZMgMSKUBTjLd3F0wDFZUeC5OBE0MB3qvAvUKqE2M6SU+T1xUM24ESYcu0ZZ1FwrcZizQGKUWmsAmUtCgTYQmJkwQlaqyubmCjU5LYQAvm51t881tv8OTJY4ajAaBw1U7T46o8wFsIvAbs+mOyF1g02kji2NKoW8IQdJyCkIBiPEr5+Qc/5/rWTWYWFf3TBKShHkUMBhIhnXJy3hi52LeqO7b4vTreBdBUKOFcQhbJeJRwefMyRqacdA+YmV8latTY2X6K1YbWTJMrVzeYnWuRPk+o1esgyOK0EqwWzoJmBeVYE8jAntJEoWBuNmJ1ZZGVlSUajTqpsezttanVBfXakDDoI6xEEgASDFhpCAOBVAHoKs0XCqpfa1l/M8CaKxXWXRdIQRhYrmys0mpFvP/REzp9jUFlEDQDdVN4u8gVw+m0PDkvkyUHAqL47K896w4p0dc5jMfHyUx79nm0cvb+ybrLCxVHexNGj7M8JwOCwoO7vyr/nV5+qUGyf//v/33+/t//+//O9+eTW7YEZEJuqoDyoKMy/lXrQfn7MvOvCqjCnFW898RXZqaldslCC/0sxFn59lx3wGebDsu1VG+dpnkVWrkQJv9cdgVNmmsnBaF38viANmchyH6VVROzPE/Q5Z9LY1QSo34hWVxsj9ZVC5VrgGBy3s8I1pzBCKpWt+o9eQD1OfX8Yq2gvHDPZy7lPkyCoDO/42wEumJerdLoNHopGGsx/q5+KvX7h1TooxSkWo6R8XNRdMZgbOriTYQHiGcgLn5tlmNOXJs/WzOsmqdzO1G2Am1uVZEWpDYEqUaOUmSQBbAHEVpqEqnRdUG9EdBo1VgONtE6odvrsrG+wZ3bl9jaWqPd6eZBjAhPf5UW4dd/5mcqjavnS65t1loMTqlIxy4OJ4gMJBYIkQRsbGzxwUc/4E//4k/49re+zcxigyRNkEIDipzTTaHJSUtd2ZIy+V3xVyFFgBAJ0hqkhLWVFVqtWT669ynDZMzdF1+lOTvL8uIK77zzDs1WHSkFQRAiZcTO80fcvLNFoGrEY5OFFnjm56w2DiMalDKsri3ywt1rbF5aZH5+lkY9QipItWb5+TH37j/g0eMTmvVXaDUCUtN0ICOz+BiblmhK5m7doq+GwjxbzICjVQMCJIZQaC6vL7K01OLho21OTpMMnLh7PC26qff06vkNZ8o0nnAuexDFKvDXnTXy2spcy8l4NEu+FrI7ztCmn2utnXXeWussaKU2W2tLfL68/s7ni9M/W8peg6I9HnSVFba/WvlC7OL5rFKepnzA8nH0DL5MyBMLV1R98RUhcWZC/CQW4ASmEZjXnkrPkROaqCxAyzS0K5g001cJZBrImJQHZcFU1kIn7z+3VH4rgJ1vbz6eudnQBX+5XRuT5kqbCTb33o9JFIQkQVqKTM+ELN6gno9GDnysKeqvCMpz3Dfno/lJgDYNeBSLvxCQvwicFPe651fnZhrQ+TzzMR14SCZTCZx1+RSjOEnrE9jkbBuntJkzzNjRu9vVpPEMSzBJP6JgYmfouZg+D1jOdd/5dgkPTgqLjTIWNR4huwPUcESAQQYh1OqoGYWYFehEMw6HLK3OMz4Y8+OffI/n2/f4P/3d/y03brzIr//613i6vc/eXg8nCMvrvAw8pW/EVNpwX9nM1eNcPmki0aklCA1Cqqwqyc0bLzFOOrzzsx9weHTITKvOQrPB9SuvIKKrGNvM3Fhn+cAvcnP6MfW/ezedkhKJoR5a1teW+bVvfwVtRuzsdHm+t8fBQY9GI+TyxiWEUHzw/oeMe12iN2ocn5wwHI1YXl5FqZqbL1MV5O5lCULFxqVllpabCJVw1D6iOxqQjGNG4w5CWX7ykw8ZDmKENPQHQ77+lb9GWGtgjdvtIqxlOBxhdIBA5kHjOVGXWP9ZoS9ASIy0KKGZnwlYWmzxfGef5ztdjA0y64pAW4PMQAAlq8xfRbieH2/mrGC+TdX4puoc2hLorc7pWflTTHXxHB+YnMuxieZPkyXF5ymdEr49hf21kC/V924MspvySar27/OWLzRAKQTLtB+rGmxFfufCIPOnT7gqCiBzHpLMnp2bds9vo2e2WL94foGAEzibhCUT9jYX2L6+cv99g84DKFI410cZeBXCx1lNpJROizJVIV0h4lKdZy0q5aus01Yoa9F+nGyJgF2bAqUIg2zbdDaX+diKbA68xuABR/m/0iLPlN0zba+OSfH7JHjz8+Pb4bbQqoLrleYgn9eJOaku3jJzK7Z+l3/385bTRlaHFyTTihLOzWEqDKFquSsHWBczMFkKTc3dI86MS9nqlgPtqS4P8Fs8y2vOR0JXLCDSIq3AComUfix1pT35XOeWs/KaLM1FReFwcCJMNLLTQ7U7BFpjJeiawizPompzJOOY3miPVmudWq1Oqi3HRwMOD3osLh6zee0S3/61r/GHf/g9egONECpbOFVXQgH8qrQxOSaeNq21aASphnrNoFRAmpLtOAy5tHGN7mAHgeHd937O1uUVtq5cRymNMQKBKlkmLdZUAWA+5tnYSSGdUoBf986t44dXWkMkNfPrM/zNv/nraNMj1gmGiFZzFaMN9z7+ACksS8srfP8vf8j60gL1eoMbt65hA0u/m/Dw0+fEiYuX87EfLv7NENUCZuciRoMO24MD9g8UKoywNmQ8GmNFwsLyLHsHA6y1NBuK/nDsYlmVAevSCBhjGI1itFYuwD6bBr/TL58X63bzlAYqlxECS6MmaM43GQyGbO+ckJgAa9OMx9p8vMr89qxLtgCj57tRivVS8Glv93PvpRAOfOV07ACMwwImo51sh12l7nP+2kypE1X6dLxnsn1lIvWXigplu/U7KW+KvlVeuZKYc+K8nmIDQ7GmP2/5QgMUoNCgMo2rEFXuV2EVoNxfmzsjcubrTH9OWIOpDLq1UObF3t9NpsuIDNkL67yd5cmy1k22FgpIM4AyIQwtGQPPXESZKVFYn9Mh65OxYP12PeEYZkkQWkEmrESJoATSOjNovrMGv3injWPG1CZMwX4RWizKPZDCg+P+N5Xv3K4JZ9orGLi3VLltdW43g3+OUpIwcPk4gnxBZ7uYKBg8fu48APKMo0Tvtiz483krAy1Z1CNKPn3r3CcKhbepGc/vpNvWYd22sRKNSIwxRXvPLDzPdPzLtdtajRQQSD+HJRB9pv2FYHZfuVgD64WAdA3NzeDGbVf14MS5F3w9GXOwFuXppTyItvAj++crAYFwW8kVMnu5HTI2A5ze2uHpE6sy+i+YlJIuD4a2MvveZM/JArmlo/M8NFoojHBWRiMsUqgMlJniGivQuHUps+gcFyQLQZIQxWNUkmARyFiRzrSwWhHWWhwdniLMmNWlJba2rvL+uz/n3/6PP+GjB5+SpHB8fMLcUsQwHmG0BRsgRYLLwBJkw1nVfClpmLmCkc2BDw/TRjBOEupSYUgRVmENCKGYW1jltVdusf38GZuXV3n9lZe4cfU6e8cCK+JMaITZo3UJNHt6yQBCZt0pxInFCo2V0m3RlW6nU00K5hdr/M3/2W8wuzjDP/vn/4ZvfOtrvPjSHXq9EafdI9rdLiedNrduXua1V19DD3u0+8fMzs1y69Zdtp92eP7sMZ3OGGPBCI0QhkBZanUFCuLxKXPNOu1OSneQIMSQNE2wKNLUcLDfQ9oIJUDZhFdfusmXXr3OaTehczQmGaV0uz2EnEULr+ll9GoDNx8kuPgfhbQGSEmtowcjQApDSxnETECsU57sHDBMDdpqFzSbs06DycFHEYvleK6LMZJC5jznrCIk8HFIZ3hoxlAEztqEcUHQhuxZCIRweVJE5pJCWBeULQTWTFqGsm3+QiLz7xW+FzazLBbuybOgxgfCexYgvVIhqBqQHPdACOsCmj0IRqKESzPg4oZEDsbJ6N/jnJxaPz8++eWeZvzvW/KBpqx9UoABv3BtgXSnWTC8RnFGOJRGcprptAAkjrrLYpCShjtplSg054l2UKWHIqCqqsEWwqoQ3dMWSqn1ZwdvCqJ2cRclV1S5n1Puq7S7pPFWrDxTNAmfp6B4vkQFiiAsEt+dBRhey3duJJ3tFsmRfmXczptnjww9UDh/J8207evTrUt2grbKViIotg0ytS4frFh2MZXH0s+1Y3ISazMmCQQZYygEVDYbVuK22csKmPXPLW8XLjetoPsSA/OuSLJ8EFIipDxDUtZm86qLGKQS9iMPmvS+alHsMBPS162ysShciD7RFMKWNLPi4dJqJCnCpgiXZCVbi95NVGxK9Z8lAaFsMuwbkrHm1Ze/xMsvvc7h4Yjvf/8DfvTD93n65AAhwyxhmAOXxvo4C4m1hcDybSp22WU7bjI3l+MPLuDTbc5xY9+oCaRIEMIJRSVqfHr/CaenPVZXV1leXULrMStLM9RrEAQxjYal3hCoAISDiuSpD4QTcm6yvLRxkyyyHEBKOAEbKM38vOKv/bVvs76xxr/6V3/E4VEHawPiWPPkyTZPHj1n+8k+R4eH7B88pdvbp1YX9Hod3nrrbVTQpNFYwiQ1jA4xViFsQBgKrmwtMjMnSZM2szOS3/rNb7G8tIzRbgyElNTrTYwOGA2g1VhkbfUKrcYc17euML+o0PqQZzs/IUm33TjZYp3ITEHwIjG3HmVC29ogsyAZpDUoNI16ilLQbg/oDzTGSKyQIKSzyuDVtyrwrK7HMr+bpgR5N1fVvXMePyqsnBasRhAgZIggAqMIRIBCuV1fCs7ym0LOnZVPVN5P8jj/Q1FHqV4K5uD5/3lyzPPKKVKmeP5n/PZZ5YttQfHoNNO0RCm3g7WF8PZjnWGVymAVA+0vJIeOuQaY/16dwDMTXiEQgTetVZ5nSxNOdaJz8veM3bsEJgmyTHgV4eSJvmhBNkwwcR0TbZcyswZA1RqULyJRqcu3rxgVmLYoy+0o+mTxO5C8IHIJiVxStXNz25Tq8MG4RX+rwajTdjHlmqynjAnw6PswOa+TAKvMjKY3s4riSsN3BnTk4LAUlDy9z6U+ZQAEyDIhF5am3BpTAuWU+5yV89iJe34pAHmi/zIPej57r88KW57Xol5P3cX2d2SWQdU6UFywfxCBc/+QWyUmx7pY1DZXSDLBYjXGGqy0WAXaWlKhIQRkTGpSavWAeGjo90fMLta5du0mgVhk52CH004bJQQmiQiUJiHGAQ4ogjO9K0OC0Aih8eDUYvNs1Sa3LHmtUpDGkIwsQQgq0KjQgQJjJJ3OiJ29Z7xw5wVq4QLNVh0jUlopgELKmFotAFGnfZpitNcxjQMrXpiJNBt/J4AFCikMgbREQqIa8OU3XuHO3Zv8i3/5P/Deew8QUcAH9z5lHI/Y3TkgVBIZJGxvH7K9vUv7eJ+vvf4a43REqlOiKGR5ucXBzj5YBcbBtaAuSGyPTv+IKIBrm6sgYhIzdsnmVB0ZCCBAoAlUiJQhjfocQxvz8NEzbty8xKOHH/L40T3C64bNjZcYjSXGytxS5sC5LQWz+4Bibw23CKsJ0MhaitBDRp2EQc+AjRAixW9wcBYHl1xucm2U3Tz+c25DPuPSKyyXZb45Wc6CFYNSkPqdUGiUFCgMgXAgHN++M4uv3L7zzBPTwVHGyaeuZ5HVVijTk3Joiuyp/HOVTDUsf87yxQYo5WJLqDYTWODGtWySyoFjrvVkAr+qPFYEcTZNVRRaAS9TBHEGdiYnUIjCHXSGaDhLXtVAK/86++xKPZ4opqDpclvPv99lyJzMt1HODeCvK2sVWCgDlIy682cUQrZov5QSjM7myaUnn5Z/hfJ8WIstDDAZU3FzWt5tMSkkfUNFNtLlBVgGf3IigHnaHBYdnGhn6brKQynGxmd+La7ztDgxpll7rLUZEYOwKdaGTnuWGi/srTEuBiBzAXrAW4Ri2QpQ/2wmUYBgR+uOFiZTYvt6yu2cjLHx81NmoBWAI4VLoGXdTgsXpeHMLzLzv0vpkooJ6zU5CdYl8jJC4tiYRWJAaGwgMDVFWg8wCWirSWsSVR9Rn20ySAyt1gz1mqE37CFRzLVm2bE9BHWsHtFp90mTEWRCMJ9r3/jcxl/Vtimt7UK7xIEZoREiwBpFmhjCmkHIhNSM0KQ06gt89Stf5unOPHOtVcZjSbvTQdWGBMEsadpgOIhJkjGz84soZdHatcVZpgpBIrP15DPOCSRKGFSYQqi5ffcmd+/e5E//7C94770HjMYh6Tjlo48egkixGhYXZri+tcX161s8evwInQYkcYJONXGc0u6ecGn9BrPzknY3RogYSDE2pdvrYgzMzTTY2tzk+fMdUq2RUhLHkAzGaDNG62Kdtppz3Ll9ndPjPX7y4/e5sXWdo91DhNCsrs/R7zU4OB5jhHXuBCmRpfF3+C8TjkIjrMvpE8gUK4bMLbVod7tYG4D1wc+ypMhWFa9JxeXMKimt1TLNVxVa+wvvcUtTVtyzgUyYn6kjjCCSEAqFsOWFW26j/y7naBPXuc9nFMdzlKFpZZq8mxwZD0jKzz6rnJ0PoaaVLzRAsSVmWAQUFkJc5IzkLKFMgofi9+lEeWYupyDZCl52nDRjHExkbZVIoc6daPDal8l3xTiXhA/+KrT88zC6EGcBkq+3aH/xu/8+1+SpbknN66RgKB5sFEb0rB5jM/5d3dZcuKMmW+utKLKSxtk/syB8/wx/rkehqTuhlfmMSwuwbD054/z0/uzSs3IQKapt8Luwyv2fDiknxjkftypIKb8mLT/VMc9GzppCyEmnO0Y1QVSTtGbqdNoxndMBVkh0WXZS0oLctxN5XvMnF88s3VPOI+HnSEmXil9nnh6ZnQPlwIlPjiXyyix2YqhKzLM0lkJaECmIJEuhDdggO3pAkwd1C0BlOUq03w7qNGejQLSa1MN1gtE8Nk5IzZggHBFtBIzkGMM8cRLSmhsRMySMZlhbXeLBJ88JAlDSoNMUY4RTfFQxmN5a41w22d+Ku8fiLVDGCGfJQSNklg1WaCw1ksSgIoNlRG9wwvbuc9JBAPQxaLczSxhGyYBWbZbxOGXYS1GqDoHBpNmWWwE+xgThz4bS+RAbka06a1laaLIw12LUC/nmm6/z0f0H/Ozd+4xGEm1qxNpw2h6iAoM0llok6LQV2KsoGbJ17RZXr14nVAFpEvHs6QFR0CBqjDF0GMddpLRoIxiMDdIGrCzM0ohabD97QLeX0OklGB062sdklkAnpINAsbiwSrO1Tvt0h4efHtBqLTAaJfzs3Z+ztHQbYyOscG5GIRV58IUNcZlxNUgNNiUMM8CiR4QNyY07d+gNdnn87GNEfoyCV1VLSfdK1hHPQ85YAfL1WXV7VH/z4LzKB33dZWXOIhEigMxSsrJa5z/5j/8D4kHM40fbGKEJVJApINN4aPm7TAWzlGiyaO8ZvlMBFaV+n9PPs/0v9d0WfN7X9e9TvtgAZcL1UTbDez/4WRMUpXsKIT1d+xX4wNn8/oqAn5iwslacT3KRUXWSWCfBweR7bBWEnfndfTGFCMSZv9ZOIvzMSjDxPZQCZdVZt8bkswQSn2OgPEbFdSX/Jf6soerzvJZcPifm3OcJ6YLxSi4eP77SH/DF2b5Olvx7a87MiR+r4vyV6YCyXNdnFQ8WfX98TIMoMQZXx1mLT85IstgNAUihabYUi0sNDo8fQdBCKOUYnMkSl4nCYjVZ9y/UnEpj6q/3AM3lZHAWtqAUr+RDX/N7pHXgppS92QqBMO5K16LUHSlgySwmUG8o2p19xnGXWj2gVV+jUV9hOABrNWE0IoxSavUa45HEnIDWIcbizokKAlSrSa22TAgYnRLqDsZuczDYJxTX0KaF1ZpOp0e7fcjS4jyrqzUWl0JGtgayxmB0hDVB1laDCxH3bjiLRBeuBGkR0tKaiQCNJSaMFNa4aywaVEpv2CYIlghoUm/NEjUSPrj/Ic/3dhEi4tHHuxwdHTO/UOc3fn0R1Ii5+RUa4TKdY4vRtSwHiWEwTDCmlq0/D0zKYF3mio0UrhX1uuXVL20SYOn12vzgh28zHIK2YQYWJOOxxY40rXoNnUK32+XBo3uA4Mb1m1y+tMmwL7hzs86jZ9v8xfZbzM7WiHUPhDsrZzAco1PJ4lyD61uXefZ0l6dPTunFAmtrWOOFZurozAoEQS7Rm81VZhsbpHGP4/g+axvLYBdI0mYmhZ3VQ9sEYSOXFF9IB24zlS0IBBvrNZoNxScf7hHHkmfPuxy1+y7QVlqP7zIFyzgoLpwbKY9GyflPyfpQ4v2TPGby+8m1fHapFVuKwYLRKGEZDQY8efo+i3MRK5c1IpBYLRkOz9bpwhbKqR/KFsuzz6u+nyb3zpYKmJrCk/NrpliMzuv75ylfaIDiisjGuJSevbRX2+0mKBjppOo4zUTn37uK/bY8796Y4jYoNaV4m4GUbPFIb6KfmDD/zNw0TgGicpTN+cQz2Wbv4nA7fyo2mfyZSkh3BgeCIm/BJPovgz6Zm4dykGYhDz7OEyMVmWEnx1UJFytUPnSteI7ruVIiPwjRJwjz3h1XfREhbmwpC22+jbBaqm0oLGuVfkqXFt2Wzm7yroxim2YG3MT0+JjPWnxlzcJfW2Z6hfZxHl05WpaZti6EpdEUrKw06XZPGY80/d6ANK07lipDR3cy051sfnpQXlu5Xb49coIuq31zv3nrVhiGNBo1wjADb0h3iJ1ymWiLXUDlAN8scFDIiY1kPp+IpVYLmJ+PODw+IdFtlpdvk44tCR1mZ2tIFdBszXB4eIIgARKiWoPhQIBwWUBREluPsM06WrmDL3USs7NzhGoIhEpJzRCTxBBr4mSE1jGjpE99ZkhrlDKODTdvrrL9rM2gH2MBmaVtFyI7NVo4oOXsJholYow5pd6ExaU6o/iEw70Bwi4yHEN31KXb3ie6eYu19RusX2rx8YNPOTx+gggUJ0dHDAcdlpYW+c3f/AbLyxGPntyjXjdcuzSPlBalUgyGcexOUTYmcPNrvSWgRL+ZYiWlwEpDoFKESEF0qTUa/Mmf/ISjkz7aetedcxeiFRiJ0QG12hxbW1fo9g9QYYplzEnnmHqwRqu1xPpajeOjkNPOUywjgiAkGVsEipCIhVadVnOOd376AaM4wFqFsD5lv3PTuV0eAdigoD0rQQRYkaKCECGbaF1D2ywo2Lq4H7/13PGxNONDCpcLecBR+zGaOjI09E8lB58ccnTczZNHSuvnz2b1ZDsmM35Udhe7scz+5l/anAeW3ZvVtTOdt1avcYn8nB0lRKKZaUZ02z0e3D9CqDpbN6+ztBjidr1NHBtRUXKcUj2tVORM3odpci9vHJZpCnBZgSsUk7P9+vcvX2iAkgspSsm68kkiJzT/cj9NEwI215qrpWyBqCLp/IoyIp24s2QXwQug3I04LceFtUzWb201IPSzrQK+reSE5eM3qtdbF/s+oQ1U6pJFdLbMmPKkWVBMmA+tBauL01W9ZX9KR0sPqm6xdW6eIDNRllxJfot4Br7sBBAqydHSeJTGakLrOW8+3e+ydM9nb3RzdHOmhql1T5p1CxCcMcgppuDiXpOdGAoraw1EcMRx+z4ytKAaIGrgs7ja0lqoWKzOMqPCkkRpjIo2yvw4ewe0w0CxurLCC3duEkUhxhjSxJDqmGazyeLiArVajTAMSuNsnbvD6HxsnBLrBJQxXgFIGQy6SGW4c/MuVs9zOhqxe/AAK9tsXbvJOJkFGzAcGESoSYldfKYJ3LxJB3QJpPO+GIhTw0G7x/DwgLU1Qa/7nHQsWJpbpVGfQZsBh8e79IcnjMc92u0d1tcvEYWrPHy4T5oYjBFokzU8n2OBT+turKbTOWH7+Q6bV+fY2JhjOH7O9rP7xGNDbUZTj0KuJZuM4jbdYY2fvfsevcGIUawZjTQzMy1uv3ALrWP6/YTWzAJvvfUz6t+oEyezpBakaSClyyPi3ExeqOPS/VuLNdpZuoTIzvKx1OqW9bUZms2A0/Yxh0ddUh1gSd0REbggX4xAyhCdCoRoEEXLqOGI5aU6tVqD4+NjNtfXQFrCoEarsUo8HnLS67lRyQB/FEiubKxweNhh97CDoZ7xaIOQpsjhUgZXFG55IWOSdMj87GWsaWJFmCmeIVkiA/wZP8jMxWwVxmqG42O03eXh0/dp1CJm69cwzDEeg9+GK/3OOfzW9ix7Sr63NnPPw5T1WKwlfx7TdGD/eYtwrjGtUViatYAb1zZJYs3BIbRmmnQ7IYHso4JGcVd5HZc+T3iqKm3q9XqZglHUk4dBlLU8zzfwAerTNw9UXtkd3oqdK5emvMM1U54/Z/mCAxRNqh3TM1SDD/PiKImC6CbdOROM+heUz4MSM7LJD5xTqppFtgKiclni840UJbcUnDGpTQMnVaFYPIeceCfNfwIXQ2dL9RVj4ZiNkgot3RkrlafakobgtQ9bPf7dP2Pa4i0DBEtB/MXR6WS5UnzDvBmRynPK7S6D1Op8ei39nDErY1ohqGYe5gxtFJ/96/MsuKp5tDzOZYDsX1UQ49pkbUK9oYhqA+59+kMePfmIS5c3iJpX0GYRLYZYmyJkDZsHH/pzMQRly9VkO6YlJ/DamY9FkkLSbDZ58aUX+MpXXmdlZQWBIIlT4nRMmqYEQYAKonxXmHv5o9pTdKpJtUVrizExxqQuUNIIhBnSPj2hVlNE9RpprOj2O/zwJz8gqPVYXlnitNOmVbtCnKYM+seIIMLaWZQMENa7nfx4O6ulwWCl5IMP7vPwwS4ba1fBNllsXWI8CrFIao2Qb775LdqdAd/9k3+N1n2iqMXKcotGc47hULD9/AhrQfoD6LwCZEGKkFa9QZrUOT44pNkwvP76LVT4gHsfbjMaObvCD37wFnv7OywszPP06SkLi8t0O4esrqySRglPnz3mnbcPuX59A0RMMhqjv2JotZp0eiGCBhBkoC5zExrv4sgsIdK4PDnCZufswNJinevX10jTIZ3OAG0i5xoSGoHKzi1yljRjNDIMgQBrG8zOLjEedfnk4yfcvn41s26mGVmH1IIFasEyWsFAD5idDfjKy9fYWAv4/k/eJzEGpCEPjsrseFKR576RwqCkwCXFMyRmgBCCMJhFm8Cvnqy9JgMWKqNTZ9GyxrJ/8JQf//SPmZkdMzcveXB8zMt35lmev0SnNwArkCJCEGaAyLlITB4sew5Pn7r+3fSX4wvPrJ8p352x2kvQ1sWXhYHlzu0N5mdbvPv+Q/pDRX2mhrY1tBaooCp/plk+hBD5bsXJZ9dqNacAVuSF17IKnlDAcA9QqsegTL6vlNwS9u9vRfliAxTttjUKXIrifIsjtkiFTCaIM9fCBATIr5ic4PL7nAigEKbn3JPLUy+Ec0FQPMcLYq+lV55lJ5aInfyiJPAz+eiNfF5hztG9F7Juz2MOVKQU6PwwL9crH2Mw1VJTEmq5AM2Hz8Pkom0VU2fWx/PdVdVxtL5/QqC1QakJjR+fOrwYVyGrcS+T4MTiD1fMu5IzigKQlK0XJRdPJXEd5xRvdfDvq8A3vyZ7W4A4/5PNXCMiH4NiTD3VpaS6Cyqg0x3y4OEntDvHLK4skiSW8ajP7t5jrAlYmr9GrTYPIsBtWfRbkCnA8ZnOVBlnMX1uHJSQKCWoN2pcu3aFOy/cYWNjAyEkOjEkOnbbjLX29kKwlABKik5TtE5JU0uaGrROSE3icqdogU4H7O51+eDezxFhyurqTXYPnvDg4SNe+9IdFpY22N1/RCJOefj0Kb3hEQJBPJa8ePfrtOqrBEoQqGI7NN6CUAvoniTsdp8z7im+9KVvoMKIKFzi6LjL2++8x2/+1io3bm9xd+cFdrafcXjQIU5GiLGk24F8o0ymwWOdMJXKuJig5Rb11grbz4842Nvj2tYyX/7yTYy2HB51OT0eMegNWV4dc9reIx7X2XnWY+/wiGF/wNLcDHE6YnltgXavTTzus7q4TK1WJwxadHoKY91GbSUMkFAkenR/fRCxD1y31tJqhmxdXyAM4OC4y2BsSXSKVKAULobG+jSOJsNcNkvFL5mZafHJJ59g0oRXXngVk2+F9dEbIYFcJE17YEMCkdBqGIIg4atvvsF+56fs7PRcsj0kAZqwJqk36vT7Q9LUYGWKyZif1QlpOqDRmAWcdUoIlSlJGTgRGZjxViwBQqUEoabbO+b4pMPdFze5vHmJr7/5dR5/MkaIgZMBWVZeD+qstwT7M6Ty82NEaZmU+bjNrQTFOjkrN2BSORNnZLYPwBUCpNKsr89x5eoCjx7ucXDQxQYtrARjBVIGpZqq8mayvkpWrlJb6rVafl8FkJUs0MLzqqltnZCZ2cuPZT4Y3rI94UegEImfq3zBAUrJxWOs+5waKMVf5EpOvgOmXLwwcoL5vNTihSBzmTRFKZmKuy8TaIgiC6lPRS1ELoxK80ku2CdRdp6J0mmAxrgMgi5Lnw/UKwSpO9nVJ/pxxOieZzLeJTJfqxPu0hpS3PfGuL8u+1TVvSCyjIlSOR+19rsBcg3A4gMgLc40KgW5JcsY93yTtcPlF8sWihBY6RiEFeXU1J7xOUAZBI48fQIskQtW4ywF3gXkvnHMy30ozuvxfuksg+O5mhDl85KyQM6s/gpdlBiRt4DY8p7nCiwuJRyjiJvRWme7kPx84zKkinKdTivMqAljj3m2+1OMWiRJmjz8dIeZhYjHT3YZDeqIpMuTTz9gPB7x8kuG5uqrWGrO1W+zpGHCba3UGIo8o5lwK/EqR1pOEHgaEsppemEU0mg2ac3M0JiZQUiJ1paa1s4NaEwOQnPGaEzWd3dWj9EWox392WxbqtFgdEKtmfLTn/0pvc6Aem2Pu3ev8s67q2xeu8TDZx+S2FMS0eWdD3/E6VHC8vIss60IuMHyyjWUXERFEAUhrnYYDCUffXgPbJ0octp4b9Bjfb0G0rK7f0JsNQftZ7z74Tv0e2Nu3LnNa1+a4Uc/eIu9nR6jfkAgw6xPmTZpBYG01OojltcsrQVN+3mH2dkZmk1nlZidD/nyV27w3rvP2N15hJWSTx48Q6eWNBboVNNoGLa2lrl8dZWDo1OSGEaDiORoxJWtFURkCJRBiUzTzoKPgWzrtQRSjNPEHN1kSdui0LK+UWNpIWT7+ROImtgAajOGqzNNYJ4P3h8w7Ds1x/qdQJkSZo1gPNZcXr/JXHOOxfkrSFFDYMAkGAxagNYBJlu3kYTO6SnbOx2uvnibufkZ9nc7CGFQUY1LK3PcuH6Z6zdv82/+5Ps8eXaQcwBrE5JRh1ajDrKRxci49aBywKkyOrYZUAuyAw8FUhia9RpqdpmN9SssLNSZacxh0yOXYBDnBnS7qWzGFzIlxYKL6amu5JzfZVmgc96dL/lCqfG7uYqsyh5KZPwtE/wWgRECI1JAoSzMzQTcubPOYJjw8NERiQ5Qoc2e6XiJpMjBJ7J16/lFRcHKF7TN25HlectBtsMhPr5QlPrteUMVYBVWY5+CIgN4QmCFxNgiD4oflorrPev3X8Wu8oUGKE5bz4bEkB9W5QmqpI/6Oyhr7GVkWdaoy7/597k53pY/+7qqEc7Fb+XJnXbf5I4X4JzP5d0fBYIvXydKQKxURHGVF9CuydW+Fmn8S32W5bb6ESxvMSYDCL7vTmNO07TQMLKF5E2Z1jizs/LgMBubPAFYqd/eouPHrzydedso7nNauy0uszhkNKlmTJSzbg//DOlxhjPjTpwqet791bpKD7eFFmKMAytKTmSCtRTCh2wXmIqJkwO03EdbiU5rjIeKldU1njx8zPPHI2bqC5lf3XBw+Jhma4V67Yrbkpnt0LATVrMi62mWSTNjUsJKN44CEKnz8UuXVj+KQhqNOmEUIlXmVsgyg0prs3NSJnZFSQetbWZxcLpCttNEuq2h0iqMTjk8bJJqRa8TE4UdNq8scevWVYJQ8OGHH7CyPsuJ7XN83GZ/b4SUMW986U3WVxe5fuMyQiwALvW30SmJgSQecXzco93tUq+1iFPNafuY3rDN9773XWaXYGNziXa7x7vvfsS1zascHx+zfGuNxeUVkjjM4lAU2njLhAYLtRpcv7HKlWtLDEcDhqM+rWaDmRmFy3sSM7+oaDRc/4YDiOoN1tdXWZgPOWnvsbI2y9xik/6gQ697zPz8LOvrazxXKWGthlQ1opo7AVmnbgZtlkPVJSYrhIYTWoGzNsiUZk1y5coi3f6Ae588Y2ahwbUbt7h+a5nRqMfG2gbLy3X+7M/eZud5ClqgrUYpUDIgUiHra3eYbbSohyH1KERJTZaf32X/9XQqFBLN4mKT+aVl3v/hHvee/IxeP2W2WWN5qcXa+hoWQ6ff5c/+4vscHB05G4xIaYQpYRBTaywiwwY6y48DNsPxLkssmdVECYEU1ilHSqACw/xcjfW1JYTUBIHg2tWb9AeWwSjJ5PCku73MXPyCLv/xa7rY0Ud+m+ef5TXvlT1vsfRmW4mLD0sxztwDNts5hEaphJs3NpmdXeBHP3yf/shgUG6HEsKtyewZaZoShmGW3LB85hlFeybNFCWekssPkUvEkgwEr6xOK06OTciJisx0PHjSvVQeScH0uqeVLzRAAa9pAh67WVuaNEM1D0ohgKrMujpg57l7LJSyFvrfz15X+rX02yTgmdTgq3U6QWaKvgibE1kBWKoLpdyOQrhrMgCdv6bRx3RAVt1tYzMrzXn3CzxoLOJQ/IKouDryCrLsl+VnVUBTOQdBod5XxjMbx/xQOj/H2RMqoIEqGD3jCy4xHCkL8MSUxTatTAK3ym++dbkLLNvhlT1D2ALsFmc0WaTQ9HqHPH7+IePkGBOnvP7SdQJZZzQwmCTiZDCgJ2LqtYhaKDk6OmRt/ZRWc7Nwq+EtfKaC9myWQzPX87IptsIdZKaNJkmGJEkMGFqtBo1mPfdjl60l011s1UFwgaxOcwVRnHOknRspSWE0NPS7B6R6zOHRKYf7B9TqIf2OptM5INWafi/BGFhYXGRj4xJJOqBW1zSbDZRoIowFq0ktWAasrW2wu3PIt7/1Wzx68ind/inf/bf/He12j7A1jxCz7O+dMOprBCH9Xsz3//LHCCHYunGNL79xm+HQMB7HjMdjdJqQao2SY67fWkQFI/Z2D3j0aJu7t24QRQHGJiCkE9pLdRqNgOFAE49G1OuSjcuLrF4K6A/biCAhCgMadUmjDkcHB1ihmFtcQagmUb1OreYAl9fUbX74XJU+vRAOA83GWhMpLZ8+PKDdk4zSDnHyETfubHF0uM+PfvynXN64zu/83hs8e3rCo0d77O8foFMIVYAkIpSzKNVCSu3mCgcKrDXZmTJOgCoLkbJcurREu9fhpNMnqNW5emWNuZkm0lpOjk54ftCm0xuhs3juKLSsrzbYurrKbGsOFcygRbY7KePfNgNjZaXGkZjEWIu0KYk+5ejwEWG2hfjypXVefPFLPPq0T2JKq3DC7VItZSVjcjeMyHmNteV6JpVgvw5cOywZf0O7lwgw2Ox8sgAhBmysNbh8eYVHj/bYO+yjCdEWQkuW4r+wiXjg4yyjcPbQHOs1trzNk23NFWh7nuwiv64MvKpjY7Oz6MqPLoOTvMXFSE8DhJ9RvtAAJWeM3lzlwUgO1bzZ3vsSSxhuAvV5UADnaL+5cD5rVTi3TRPfIarPrVgMiovxE2uxWaInk+efKNfnLQjl+jxJGKB86Fsu87LcJ2fbfH6U9pnmle6bFgBbjrFwfSyBn+xVAIRybEx2BPyElSIfO7/wsh4VY+D6mnuezoyzH9Pq92djLiYE7Jm+f/bYlK+r/HVPzjUVP0lSeJdgBhBsNmeA8JsfhaHXO+Dxo8fAiH5T8PXXmwSBot1u02g0aXf6DEZDjI64eucud+68QmvmEmkc5AGUMndx+VdhIaM0FtqkpGlKnCQMh0OGwx7DQY/xaIS1mnpjnnq9nrvfPqucGQchM9At8znzRi8pnal5a+sWX/rSN/jjf/P/ptms8/DRPR482CGOA0axZu9wn0azycL8Ksn4hMODHqenfcLQsLv/CKNHhCqiWQ9ZnJ+hMTNHvWGRMmVxaY7f+Wt/g4ePH/D9H/4Bdi5kOJR0TnuMBovUowWuX3mZ2dYs8/PzHBwc0+mcEtUi3vzmV6nXl0liU4qnSdBpn5PuI/YOH3FwcIxOLcenp1zavEyrVSdQilRrrl9f5+tft3zvzz5gPLLsPd8Fety5u0GiJVEtQBjL5uVNJCEP7n+CMZL5hUWarTlUWKfRSkisA3XOXWEycOfoSRu3ZVZlW19bM5K1tSb7B8ccHscIsYC1fZQMGY0TLl+5wcxHD3j/o7fZurrFV77+Cv/Rf/y7nJwMePedexzs9YgihZQhUimsSDKrYhEL4mk4AKQdMz8fsrTY4uNPnnLlyioz84sMxwMOTo/Z320z6I1IdIjNUu+3mooX7mxy48YVkgQGQ8tcPSB36WaH3hWJ8KDYrZYdBCsscdLhweMfsHV1ha2tb3F60nF3p4peb4xPN3FmDZ+h2YwTlNIvVBW2Ik2CX8uejeT8oKwUlwSywPMUp5jZFEIhaTUFN7aW6XV6jtaz8SHbUlw46N0zAuXch4UCeFaOCG/m4ewOo0m2VYktPCdAJNcJszVbyNSJvmeXFK6eKeDpr1D+fwKgQCHwcpePLR3jVSIyP8l4YSEKzR88yhMFbWXPyk1itjCPlVrymW3Mk1xVBJsnZpFbO6omwmq/Jt0H+eISVeLIXRyZ5SEHXSVyKTd+msD17+W070vtLmEFvDnHZicVGx8DMmFBEaU2nh0riVRZJtlSG4tdKKXnl0c+wx8CsgyTcqKPxcv3Y+qiFaW+TwFLk4DkvKDSyb8+q255LsjmxuuGpVqrljGhGYw6Wep1Q9wYobVmZqbB02fbBLUaUkiiMGBhYZZXXn2ZjbU7HBzobOutcwU6hlW4Bx0xZ1tks5ilOI0ZDocMBj0GgwHj8Zg4HqHTBGs1KgOyLpGezDC75QyDnhiPYm2JDCCLXDsWAoRU+bbTufklfvd3/0OEMfT6x9Tryxwe/IC9nS5Xti5xcNRB2Aat1hyH9Dk86PMv/+UfcfXaPDNzV/jSa6+SJEO6J/scP3yMJaLX73B8ssvySpO19QUuX/414uQYqVL6vZif/fxteu2E3/mPfpej/R5/8K//OV//xjf52ld/jZ///APiJKXebHL50iWsCTFGY0wMxjIedRjc33HjImFjY43FhTk63SHj8RxYaDRbiADu3Nqkf5ry6OEBFri0ukk8SolUE6lrWBMwM7fB/Nwa75pDTo93OT48RNyCWqvOnKlRb9WwooFFYUzqtvWnbmux1gmpNiSpQScJC7M1sJbjkxTkDNZKTCJQ1ImHkrhuuLx5ldP2KalJ6fZOkeGIN758l62tTXZ3Dzg9TBiOEywhSkmMTZBhQtRMkd0Ey4igNma5KQhCy9Jsk16vy2joto8/f7rLcadLd2RIjXPrKWEJVcrK8gxvvPYijVaNDz/6lEZjnZu3LoHVKC+QyZSPChLQzgLu40cY8/DJhxwdb/OVr95hfe0Kr762RJyOqEUtknincr6YlOW8WGdptggTOEPNUKrHg+uqJdatYS/I3XX+98ABO+Fi5YQUhCrl6uYitSDgZz9/RL9vgBCTHfngYBXO8kmJb9lCtvimFVbQTD5Z/0OWK8r6hBy+jiyZ4pRyRkkXpb6dUeT8PTr/zTfStSWLm8Kz6ul5WqaVLzRAgcyVkTN/1/0KcVUEeIH6yoDE+fjcZ5mBk+xqvFrur3NfuUOpKsDnHNP+ZFuLxeGecGb3CaV1CC7AcCLnR/5cWRBkpVTATlaXkOAzTk7EnziA5LZPVgSyrC5ma12gZ3khOC3CCzwnsLwFJdfYs0WtkO4w8xL48sBC+rYIUUrSVrUAgU/KVAVe/l6bjZ8o9csZJlz7psWIFPMsEUJXUtp7YnFbxavz/VkWlOpUWIoRY8o8nnOjZ37G0O12SY1mFCegBe32MWtrK9y//4i07w7Ga0QBrZmIweiEdqeD1ctIGZDqkWNOkpxR+GBZIyRGa0wyZjAa0Ot16fU6DAY9kjTBxxG5YTSQJVTL42otTlAIjXex+X5N/0s2D1m/vYvCuJkUQiBVwNLSJf723/7fEUaSex+/x/z8Jp1ODysHHBwe0ekMCZXFmIBxPOLwcEivO+Lg6J/wwovfZ35uhppSfP2Nb3P79ovc+/h9lpcW2Nl5zPd/8K/42//h/56vf/nbpHqAsZZ2+5Qf/ehH/MF//4fMzbQwJmamtcy33vybfOXLv8dp+4S52TmiWsNZJ40AG2RCL6F9eko8HrK0PM+L61eoh3NYm3K4e0C3c8S1rcs06i5Y/aW7t2jUaqhAcfvOq3T7fTqdXZYXlnjxxW8yO7/Bwvwyzx8P+d6f//fsPN0l/eoILRKGyZDlxWUazTVSLTE2dXF32m0MsNagtSHVKWkcoGhjTIuF5SbDtMN4tMtwmPBsu8+mbNEd7FBvznH9xovUa4Lbd+4yOzcLSrCw3EKoAQsLlkePTjHjBG0EBsMoPqYz2ObR9j7JSNBoWV569RIRt3j28Dn3P3nM7kFCt58QDzUJLj09NiYQmmYIt25f4RvfeIWd3R3+8vtvk2jF1vUlhIgzt4HEkji6QILVmOwARBcs6rL8SpHS7ezw/vs/RdZi2r0xG5uC9uCEQNaJwhZo4YCBLKczKJKMTfJxZz0pL0yBTwSar+vMeuRj8qprvroOvNxxYEBlZ0+BFAmrqzXW1pbY3j7g5FRjCR12lybLtyayfRM+riVXu3M+L0q8N+dLXh6WQIjbTu3740e2ys8n1201NsX/VlXQRUUJzZHRxLhMWlI+X/lCA5SCwbvJmzQfnT3GnlzoeIBQrmvyfREMVNzzixLW+FIAJia+K7f9rEXAI/R8dwweIxXZcX1dToBkMQU+M6woW4lKKDfzFTrzW1VwVCPAy+NXtR4YYyfa6zVhf0h5EWNRxI5ki1NkWS1LmRe9BcG3RWYnUle0m2wchHDJ4vzuE2tcHhwofp9K/jb/b+ocF25mn1ehdL6TcOn3yycNnx2j882iec2iAE353Ga0KIR3B/q5EL7bGb1K1lYvMze7SL+3xyhNefToKZc2NgiCCJOAUpZmK2BtfYF6Q5CkIxACbVOktGCzfDICkO4MGWM0o1HMeDyiN+jR7XYYjgak6RhjUoSwyGybqcORBiMgCBVSue9MlnWz3PvJMapYArN+ZtSHN3kLFMZmOT2soNWao9logdWsrmzyv/xf/G+YmZnlu//j/5OPP75P+3RAvz8oQL4JCVST58867O6+hZCaulK89867/Gf/2f+VS5dW+cbXvsFH9yIOD5/w8OHPUXKG2ZkFgiDi6uWb/MS+zfbTbdL1Zf7ab/0e3/rmd2i15mk0BfMLi9kYSLDGCSa/kUZKRqMRo9GIjUvrfOm1r3Dn5tdp1pfo93ocH+3w7rs/ZDh4QiANoYK7d2+xvLLGCy98GRXUaZ884eTwkC+9+hXqMxtYo/jOd/46H3/4NjXVBGMZ9Ht0u11u35gjiuaw1BxAsU6QeRI0WmP0iM7pKcLOEdauImqQ6h1Oj44ZETAaJJyejFjaqHN8dMxoOKbXPWUcX6bZvAUohIR6s8nu7kPiWKDsHMYoMIrRCJ5tb/P+Bx+QxnB5c461tQE3N29x6coaH3xywEl/TBwXwlSaMVGQsL40z9feeInVSy0ebd8jMbB1+xIqgGYjJqqdEGsLBqIwRMom1jQxVqHQaGsJZOg2BMox/eEhT57+nE77hNPRiH/6f/sXvPzKNf7X/6v/OavLl9jbOWLQHRZCONtG7Xm5p80yw/AKW0bB+dos6Lu0AWPiPC8QLlgdlSlf2VEOuLgdHwio0LRasLbR4uCwzaPHbRIdOcBP4iwdLk9EFsA+jcf4LMKcaYN7ciZDKlb0iY0g57Cu6cqXrfD1fDwgO8hQli+lACuTz/ns5Jfl8gUHKLkMy0o2gC4lYMb8sq1lQuKSAFURbj5h9mzd/priu+ma8y/Spgu30HQXT1n7zKz//sbcggKetcvcgpDHM5xDZXmTsnXk877mAl0UYKEsQH2fpPC5QFyKd0MZTRdacL4UsnYVMSiTW7vPLvZ8/KRfVJkVS4gyeVeuL6y9Hnh4ge4yQ/qOF1ak8+fGz0UZeEpZ5Eg4D4BOvp8Wi1O+LjPQVpLYIYpxFKUMlmUtRIqQjbUt7tx5mcOjE4adhHsfPeLq1SssLMxydNRhZq7Blc05Ll9aZW9vj+XFDWqRdVvvjUFkOz2ksFhc0rQkHTEaDuh0OrS7bcajIQhLEChUZpmTGUryhzjOzLZYWlykXq8jpcoYaBV0TxubfExy06Rbl96Ib0z2XWbK1zqjHWsZJTFLCws0my7Yc35uljDYRwhNsxGCaaAQ1MKIqF7jtNPFJoJECU6PTzg62mZp2dLtDtBpwNLyGqO4z/LyHLWaRKk6ly9fpTUzx9HBHuurK7xw5yVWV9ZxwaYBOjsEEWtRKkIbjRAaS4K1Cc2ZBmFfkegxhpiZuVkitUCztcLq+iZXr77A3t499vc/5vn2Y1ZWNmnNLPPH3/1jDo8PIO5w+8Y1Hnz6Uy5vvUartcLdF1/k5ZffQJsDkjghqsPp8RFGDwkDQapBKumUBuV3uwgIDfGgQzweM7+0SlhbIrYjoijIdtw4fpiMLbOtRZJ4TE3BcDzm+bMnvHDzyygkg2Gf8Sjm8ZOnKDYJAjc/xkAUzvDC3Vf44P0HtE97zM3PUa/NEY9GDMcBCWAkmbXUIoWlWYeX7m7x1ddfo90+4O13f8SXv/517rz0Mrt7z7j34Xs8ffyU4eCUIKwRhhHXrl1jbvYKybhGmgaYbKusMRoZaBLdY2f/AVHDbXHWqeD4eMizZ08ZjXqsrKyyv32QJ2HzSmqV13nXvdtCXF7Gk0qmv75Yu5kM4qx7POfxNlv9wmAzd6sSligwXL60gDGWp8/ajNMI488Sy/XijI8Jt42XTBl3bSv4e9W6UVg7rC211183cWSLH4/J9TppbTYlxdav5vNKWa4UKn6hmHzWvZPlCw1QMoiam5iqsRpe8BSnVoKoEFnOPMt0Jz7D7F4qZYFVdkWUP5ddEWXCrbhRfJvKxFRaFy63hC0E8LlC8/zFVOq9G6sJH6tv65m2CTd+Mg8MmzjHwUyAO+H667KGao/fz4xb8VciSt5mIThrQSmNqcy25Pp6y3OdVee2vFafmN8/ba78d5NxPtU2yzNjX7p76j2+j5NCe/JZhU3Kg7mydmHBKqRoUm+0kIHbVfPk8R7dzoAb169yePAOjfoMm1cWqEWKmeYqUW0eo929gjAbA5/ZNWYcx/SHHbrdNt1ul9FoiLWWMAiwxh2bFihFFIaosEYUhdTqitm5GWbn5qhFtQzEibwP5TVUpvlJV5qt0KmLY3GKg8ZmgZeWLK+NsCR6yDhV1ExAnPZ4+ZW7nJz2XdbaSJAmhoAQIWNW1he498kDdp7vMje7zO2bNzAJfO/P/i3Ptp/w7NlzpGqxde0FDGMG4yG1CBqtGrPzizx88Ij9/X267b6LDal5nhGCjLPkiylSOYEhLBg0Bnjy9DlHJ4ccnfZZW3mBW9cXSTPXe2N2gUvqRbafP2Z1/Roba9dpNpc4af8b3v/obZaadW5vbfDn3/tvSf7sj/nyV3+Tr7zxm/zab36Ht976IwaDAVHUYnfnCZ3OPjMzl5zCILK08dZt8XUKi6Hb3qEWKaLWkkvIKNJsbWVAxlp6vTHJOGFpfgHBLFIssrP3hKODHa5u1TnYf8bxcZtxTzEzU8Odop1tQRaCer2GJuHrb34FrWOebe8xv1XjYK9Lv6NRRhAJjQhj1taW+da3vszK8ixvv/02u0fP+LXf+CoLSy1aTcHcTEirWWd+fpGlpRXiZEAcD5idCXnx7jWOj1KePuthdYgxCYYhwiYcHu1yfHKCFZqoWWd9toUVmktrc3xy7z7X199gMIjR1gGmgi7L6zPnEPlvky6aYt1P3lO9rixzCo5LDsUtZPmiEtZWG1xaX+STB3t0+oIxWZI8BBKF0eVTwRVkLi23viqscWqZzsrExPspsrDUpwpIKV0ncsWqJG8odJUKX5763P8/AShV40FVmJUH3oMAZzE5r6Jq8ZNQ/e6ssPGf/TNthsgnT+3Nk7lNBl1OYiRRfPKBYVVBP/G3AjSKNufxHTYTT1Jm2Ve9BJ8kTNfuYtdTMW5SFAGzhXnP97f4WPZl5rEp5UmqgL8J4JIt7EApFyhb0nAKrWHSOlKMnQcu5bEqxvsXL8BJ8JF/tm4cvDWpAt6oljNANZuf/FkVkOLPVyp6UPz1LsssVbvV6HRMoNxBa+Ox5NP7T/nKV1/lnXfeQylDq1VD64RWawNBCyEDTArulFgQwqJNyjgZ0uv36PXb9HpdkiQu5sS6rK8SCMKIIAgIArc90qSGQbfDYNAvLBz5nNiqFfCc8cgQrP8xP4W1MsdkcU/CBYE2GiEf3X8HheL59mMGA1hdXWVvfxdsyvJSk0trmwQ1Q2M2ojc+ZW1tnt9487d547U36faOOTj4Hs+f7xOEDRaW1hiOU4bDEe3uMePBU5IYJJJLG1vcuH6Vhfk16vUmUgm0Sd082CzltwSTnRk06HawZgQG4tgSRTM0Gk1OT0+xViOlYjTqYXSfk6M9VFDnzp3XGQ1S4jRBBBBGildee5XWbJNWLDjsnpLqPtpqNi5fYfbjJT748B7x+D0OD5+zv/+QTjdGBi20iZmdm2NxcZ0oapKmQ9LxiF7/kJXVK0hZz4Y7we9yc+4LwXCU0Ov22dxcRGCZm19hdnaRo5N9ltYWePr0IffuPWSmfhPTlCANWiRoETNMO9y7/xG9fp8gCghsgIpjhA3YfXZA3DUEBmZaES9/6QVe+dJLHB+3+YM//HP2jg741ndeZuXyIrs7n9JoWXQaImTErTt3ee3VrxIGMB63mZ9f5NrWdRaXUw4PP6LfT+n1D9g7fEgc9zk6OOLo+ISFxVk2r1ymO2gTxwOElehxwONHexzsGZdAzGdr8GC6cs5OET9RVVK8EPdLt0ynZaBdNrsUiqmzTFu8C9y5Bw2zLbi0PsfpSZe9gwGJUdgsHYTAZjxHUTklHn9gaKFuVkv5+6pi6PnPNJnmXejlayffCyEQpmxtL/hfRY5NVJ2NbKlFxT2ft3yxAYonPDy9iczF5xi8ysyyZZHhLQV+sN02OZf51Vc0bQAnLSSVAE4vhMhiQvDC3BAIiSlZb/JzTcrbtDyKsH4aC2997ioR7qwGF+2Y5XfJzqDwlg5RIgYo0hqVepF/IzKhBd7YngkM6UzHQrqtZIGUpNmOFg1ZrECRCwGb7YXPx4Y8W2qeeEWIUmvKiYUM+Oy4ZRCXWW2wJmOspgTmnLndWO0yk9pii660bu6tyCLl84U6PYhZCJHdlGkrJbOnlAIlJUoKlAAlXGIohUAYm/uVyzQxQTG4eJKStcSWY3T8jhrP/Pw2SoE7WdbiArENUg7ADN0BaaEliS0PHzzj229+jcsby4RNdzqssIIgCFz8v/XZYt2kaDMm0SMGwyHdngcaaR6UjHHxPYEQKAnGJMSJJk1HSOHOSgmjgOGwhzGJo1Dh87lQwR7lMrlOCvBdIgO0o0FTOCGtEQgbMNta5Aff/x5SWuLekHfe/Yi5xQ3mFuZoNCTJqM9Hn77P5aurqJHg408/5W/89b/Or//WX2dz/Q5/9Ef/Lw6ODlAovvK1N7lx846L6egNmW0u0Dt5TF02+T//H/8PIJqsLK9z3DnCuHODMaSkOkVQyyx4kl7vgO1n95hrLHF0ss846TIc9ej1Rnzy0X3+5m/PIpCk4x4/+ss/4Gj/E+ZmWtx99TssLl9nL93meG+bUdrn9Zfvcm3rMv32Ka2gxeLta2xevslMa4VQJlzeeIF7H7/HvU8/YnUpon38lO/9/M/YPT6m1Qz5vd/5PZq1L9HvhZwcPEUYTRTNUWssI6hhzKhIgiizZHzCgZQk1nS7HRI9QjPHtSu32Tt8xB9/90/4yY/eo9Md8eorK2zOhqTpkKPOU/oHz7n/8fs8euhypezsHLKytMTG7CLjWNA5HRMKwfrVeb72ja+wemmZH//kh7z99j0GA1haneHatTU+eP8dWs0Ww5GgFrW4cvUOK6urhPWQ2VaLrcUtZmabiKhBMBgjZYjQCfv7Dzg4fsCrL79Kv3NKp3vI2kaLb3ztyzx58pB275irm1vcvPllDg4SRsMAYSTSCDAZP7LeQuv4qtf8CwWsrARazu5OAR8rltfj14G1uH3fjl9robOMtwJFShgkbK4tUA9DPn24wzAF7fmOcTzVgRWbxRNapDQIMl7nActEjqrqX99Gk1uEzipUwjVRTgcL06yg1t/HxI5U6eNkytUXqTbykfv8hpO8fMEBShGf4QW6MzpkLgxZMEdRue/sSJVdLv7zpAY43bVyXj2l97J6XyWleqV+CqZdBuU5scgKBPlFODTHP1OsEeUr8hon+ld2a5T7V/5bJV73zp2LpCs7eRBFyyfrcG3IxkZVt/eSWVZsdUByi1XFOiJEluCybOUoxnyyD9MWoa+vegbP9DEg2xlVuPTKY5sByBI9Tbp5BFDNol/S7koGMguEtRARCpbXFhFxDR3H7O084cU7W7SHJwRhiLGSZ/uf0Goa5ps3MNny1lZj7IhxPGAw7DMa9dA6yZirQFibHdQGWEMSJyRYd/CfdMAsCCAKFYFUKJmlC/fz6VffxBiU53mai23SYuX769CmRhjJTGuZ69e+xPPnnyLCmPmZGdJ0wK1bd9nf2+fJ430S3Wdj8zI//dGHnBwmvPfe+/z2bzxnNOjw53/xb+m0Y37j13+d23fvEgYhaTxkNB6gQsHq8jq9kyNMfMiNW6+DVBx1ehg7ZH9/lw8++glHh7sszK1x5/aLbKxf52DnIfHwlJWrd5FhxMOnHxMGMwx7XRpLLVqtBQyS/rDN/Xs/w47azN9+mZWVTRAN6vUWve4xa0uLtGqKk5Mu9z/6hK31JS7fWmNleRUrDLV6xO07L/PWO9/Hmk8YjUeMel0GJ20Onx9xIGMe3/iYrc1rSLXIQmOD7afvsnXrCjJoAm49gQIhXXp066xFGEG70+W016HRlCwszhCEARbDW2/9jPv3t0mNJdF/QSpOODo+5rh9yjgec7rXZTgyXNpY4fb126T9McvzLQhCWgs1tu5s8vobL3NyMuBf/rd/zNPtx1gB65cWuHZzgU77iIW5Ta5dvY0Qkr39PT59cJ/Lm+usr6+wvLjK8vIbTuglgqODI+J4AEJzef0qUhxz7coqCwsLbO89Y/vZNru7T7h16wZaX+fSxjUGvRppYjOFTiBEgMhO5nYWOpm7jMvC2wv0yTJpWfHWVHd8Q844suM8ikXtlC2FsZZQSi6tz3D5yipPnxxzcpoiCLEUp3x73uE5vMgsN1VLd2YJzxVfKBQ+StcV95ztUxGGUOGh5V6W16Yt1mv5+3L6DCbqmMoT8bukPl/5QgMUbIlwSmbzYkyqbpVJyZ8DknMk/eSkTdPCK3XlgMTtOffJpwqLyfmvc7s4GR9hyczNWfBvtRUeaWRtclaSKrKeBClUCKsMooTMFpzK/nqCE04TcTlIXWyKD4gqzuKZDJIq6SUVS0LWPg8MsvGT5yB71wOb5aIoBQ8LwJaBVeaqmkhu9wtLJVj2bMK4Sh0lWpsUwGULQVn4VubTNzt3gRVznNuYtOake0qvP6bZXKLVnEMaS9zpM+p3uX5zjSXT4rB3xMHJCYiA1swqQqYIE2JFijVDB05GQ4bDfpYBVWCsAYsDHLjYoTSOSZMYKQUmCJBCoHWMlDAex6RxmmXALOhl2hbjyc/TAP+ZoS/95uxZhlqtyd/8G/8Jnc4Of/qv/xuGA3j/o49QwrJ5+RLdTpv67Aqn7TaHh6dobXm+vcuzZ/cYj1M+ffgR9VqTqBES1WpICyJQhJEgToY8uv8pp7vbzLeaHOxus3H1Fu3BISoY8tH9j7j/6Qc8e/KEra2rtE8esHX9BdZXN9l+fsjbP/9Tbt56CakMgVJ86xu/zQsvvMrC4ioWiEcjmhEEQY1r116i1ljEIqjXmywvrrA0t8De3i4np1129w+ZqSluxy79uZISayKWV65wfetl7n/yAUK2eb5zxMLcHL2PnmADy4NHT/j2t2JmGyGHJ7u0ZuoEtSZWBBSCKcBtFHCHHAorUEIRJ4ad/W3uvniNIKwhpZvvtdUlDve7nHb7nHSO+PDe+8Q6Jk4MndMR454mDBVXr9ygIWdQNQnE9MYdvv1bbzA3e5n33v2IH/zgfdrtActrK9x9+QpXrq0zMxvQ7/cZDVO63QGNRoCxY9Y3lmi3j9nbe4bRCZaYOy+8jhItjo+OSdIEhCUZHTPbXECpOnHS5srlZa5evc7R/jZf/vLrzLRW6HUEg57G2gCLzvmeF8SFxdkrfOBkxdk4tKl8o5D7RbHlc3o8SFFgVX7K9uxswJXLi3R6Q57udjDUEC45b+ZKzKouoaQ8vX5JTlUt+GUrbMWEQc5dpgCuqmIwXWH3f/2zpChSOVS7X1bKp8iXf4/yxQYoeSkJQ1FMTZUgM5McE4wy+84Xb/k4r3yW9je9ZR4tllw6eMIr2n7+/VRPB/bPpoxai0XmbprcDlyqTZQBT0a8Ey6Iytj4XCgqS4A2AQCr9v3MyWUMRmtsntK9lEzoDKquFiHcrpFy7pXMVpLlqhElK5kztfo+u2q99pKnJ8v7NmnFqIxnRSsoXHDTwMpkHFHVjeGeLfLZKz/b9STfhp0drOeFR14HItu250Butzvg5+9+zNzCHNtPDxkP28xFdU7bHfq9BgPdpT/sgVLUazWiSKICiRKKxI6JM4uBT77mz5uTHkBhSeKYeDwmTRKMdkGVMUBmDVNSkGdNkLKYU3DfT+dzZ+b2vO/L45j79wUgFIuLq7RadTY2Nrl27TUWl65ydLrNS6/c4PLmBrtHz/jv/rs/ZjxOCUNLGmsODp/zta9+k+9859e4f/8evcEpg8GQVr1BalI6Jx2CyDK7GFKXyxw92+ZwxxJFBmoxB3tH9Lu7PH/6hOfbe2xcWqIz2OPHP33C7TuvcXra492f/5TVt68gUfzOb/0tvvmNv0VjdgEkGD2ie/qcwAxotepc2rwOMsTalKgWMD+3gjQRuztHHJ6e0mrNoGqK/d3HzD19n3prmVq4QRA1+Mabv8ajRx+wt/8xh8ddXnv5VZYe7HPS6fJ895i33n2bN74Ee0f32dy8Tb3VwBIDAfmhbha8W1gJAVZydNil30/RBpeETWuwioWFRbauGxrHJ+wfHHB81MFIQX8QM+xZokBSb0harQbxsM9aU6JtwvP953THir/8/sd8en+Pft9lt0VqltearK636PWHPPj0MY1Gk0ePH9JsRly7foUb129hreT7f/kDPrp3j3j0Rzx7esCLL72GkAFSWPr9Q+J+j0tXXwAxx+VLEbf+9jU+uv8xH310QvukzeX1u+xvn4INMno0DoiL0nrOaa4c/F6l38ldLL7IM5w1U4z9v/xaB9yllIRKoBoBN66tUosU9z55Rn/klDnvBhdMxEeKKR9slVd91poq2l5WrKetu+rDJuvP7/Xt8/0rXeOTWjrZmjW01HaRs2hv9fn8AOYLDVCqUcbFd9b/NYUwdhNFRaMt7vUBqVQR4i8wR09pUW66zwWxKAjBL5CqRadcRBk8uxqzLbv59tSygPeILA+cKlwKZ3eleJdDoUmccc9UiNnVU07UVhXwRc3GeySyxlcBSqmXGfFOsx55wOXaNuH6IgMiYlKL8P2naHPlsKHMhDllpqaVvD1lQCsmMk/6rpSsQxO1wNRFaLBWFIDVz0+h/pRq8GZpl858cWGVUNRpH/UIZJOwFXLn5g1efPlFJB1IhjSjOa7euMr+7j6BrNNoRKSxoN8bMhoNGQ5HpEmK0Rqt3aBIYdBZWvskjtFJjNEagRNYoQpQQUhd1QiCgNnZeZrNFmEQFoA168sZBW5iXM+znkwy2zwIj4KZZZszqTVb3L79Kl/++l/jp+/+Jb3BHpBw79MPODnpubgVYUiShI8/vs/LL77M7GyNsAY/e+8dGrU5Xrj5Av1+j2HaIx4OaB9vsz63hJGCNNV0To5QTc3B6SHPdk842D+k0xnw4Uefcu3GOitrK5x0Tjg4Oqbf7xMPH/LGq99gYXadZmsZqwKwKZ/e/yl/+gf/d1ZnLLX6cpZyzJnnpZU0GvPMz63QaXcZD0esLK+xurFOMu5zfPiUeNyhFixisCwtL/Cd3/pt/vJ7CbVwzKXNTX7zN36bH/z4h2jd58nTJ8y2BMvzi/THIwbb95mdG7Iwf9Vp8KIQEkiwSmCMZDgEkza5/+Fj1peXMWP45NOPOdxrEwY1amHI5uUNRqOE53tHdNsaTIC0uFT/ZkxrbhYpYsL6Aml6yrNnAx482Gc4cqdcGwS7+0fc/+RTooam2ZxhPB4xOzeHNpb33vuI/mBMLWqwtrrOwsIKOon45P4Onc6IwVAz27hMMhxwsv+ElZUthFpkPJbcunSZeNDmJz/+Mc+3D3j6+IDF2VOSWGCNytaczZJv2jLRnaHDv5LOX3Z35NbqLCA2569uQRiTIsWYhTnB4kKdj+/vcXyiMQRokiwwVrkjKSjiNqY1M5drU0IPKtfZQg5Ur6laN/x1ZaVt2hp1Y0gWvyTydpQumDKAnj9XrcxeKf+85YsNUPJ3hWDEWwRKcqpsEcjvLU9GBbgUkzsJTj7LNVOZ7EmhU7GceOReenaleJBSgKuKK+Qzy3QkXCbY4nub3yGEO/p7co9TARq8sCzqLuotvnNxP+6v0Sk+oLVscKEcXFYeuxIYUFm6+qpmXbRrAp9n1xS/CFFazJxnTaq2uwqWqr+XLSdnk7a5sSnSY08RuKJkTLbkgHOyHdX7ih426rOsr1zh4cNPmJmd4+Uv3eXO7TvM1WYRaZc4MexuP+Lk5BELS0tsbGwQBgGnpzFJEpMkGq3J3G4aox0zTU3CeDRiNB6jdbZ7R0oa9TqtZiPLPSLQOsUiiKI6UVR357JMaft5lrFp8SeTfa58FjbP7IwVzo0oBSpSGBHQnFvlzW/+Nt/7/r/i6dP3QaY0mu7eQClUYHn08Ck/+OFfkiRut0q30+O9d37M1UvraBKM0IzjMeNUM0hGnAwGNJvLLK9t8vT5M54+7RAbWN9YxyLRGg72u1y9epdRHz799AlHJx0ur27Q7XbY231Cmo4JVAsQhEIy6J4g5xZZWLlK2JjBWuOOuxOKMGqxsrbASy9d5+2f/ZywFlFrtlx8pRb02ieEwSyDUY/RsEuzGfLrv/Ydeu0d6kGNr77xNcbjEaPhCUoNSMYJrcYSidD0B9uMRmOW5jbx6dXJRJ/fRICSCKuwcUS/PeLH338HSAlUwDg1XL5yheFohEYz0xJAyPHBQ4SwGC0Z9DUf3fuQyF5m/to1nu12eb5t6XT7JIk7KNGSYlHotMHTJx0095BKc/B8xOnpmPF4zHgk+fjeY46OD/jyG6/QmmnRaNZJ05RWcxmbzDEYa/aePGZ+rkV9Zg0jXa6eZr3Oe2//JUopZmdnidQS7ZPUJZRzxJPxgkJL8a6KSYXjjKo4RRktKy3Va/3T/No1GWBJUUIThAmrq3U67THbu11SE2ZWFzAqBV2qM7OqZnaeirI86auZFu9VseBkbVNKln77bF7orzvDj7L3UpxV2LxVSuHGVpf4eblNv1jBP1u+0AClGIAiFbzxgsK66S1yalT12rKAKW85y10nU57zWW0QXipmZdJ64QnbL5Di6O7pzD13EpRAiieE0kVuIcgCbHAOkbkvS9slc2FQGZWzAiQ7ZEtWrBpeUygQeZn2XZsz0yoeBLnTO62sWnasnYzVceCkemr0ZOZBD9o0Fu3mL3Mx+cBUUTr9eVqZXIzlRXTGunMGmMrKXBSupbMMpAJkpx0lnddJfr9nch641aIWL7/4BltXbjI7v8zc0iJhFBGngmYUsLZ6jW5vzINn2+w+/5SZ1gJb1xtokyCUwFqFSQUmMaA16JQkSRmPR8RxjLGWKAyp12vUazVazSazMy3qdSco+v0+cZwAWdI+qfL2ion4k2kg5byg9GmfHc3JzG3kQZxBSA3CWTmEkARRxOzcLG/99IcEkeB3fvebdDtj+v2YzukR8Sjh7Z9+wNxCg/F4SCAlT54+5r0PfsLO4S4pmpXlRZZXFlD1FrW5OVauXCGaW+Qrl7/MQfd/4Ps/+R/p9bsoJWjIJlfWr9OKFnjrrbc4PeqwuLRCd9Tjg3s/o9vp863Od1hcqmGNpaYC5lpzrG1s8eJr36bWmHM0bXAWIaFRUczW9SUOT1YJaookHaOEYX/vKZ88/qdsbl1FKMGVzRv0egPax2NevfsiJ/vPWV29yte/9k2ePvwpnfZzFheXGDJEySZhGKCUyiw2zqrkgm8KwG+BQAikEaQxdE5iGs2Q416P3f0DwlqDWq3OYBhz9domK0sJD+4/I05SrLWkMbSPeuzu7/P66y/Q3ztGk5Imaa6fCWmwRmJ1xOH+EGM084sN9vcMu7qNVJqwpohHKTvPesSj93njjZdZXV0kiQUvv/h1bFxj58kDakGducXbpCokkJaVhTniccwwsUDE3dtvsLx8Da0DfF4dd9iet4qW1nyJ5n6RsDzj6ilba7OirUDbTIgLA1aD1ShhCJVmeXmGel3wzjvPGYxlFrvnreECH9xaCR6deJbvw+ct07PkTl7z+SusGO2n1FOMbeGm/axnf97yhQYoXoh91jiIqhSZWodAYCaTkOX3nyXi8+IXmHbdBPJ1hFYScqVXJfOqIPf7VeNCPKByZ6OUfajCJyOypgK6XA4UU3nWZF+8wK1YC4TMc6AoIfLDF7Pm5dE1tvS/d12YiQUmpURn0epCcAYQlHOM+JT3UxdQVqcxGozfRi6Qgmw79+dD6ueNQdG74rppgOUX11syq+efc9NO4bKb6oMSWZp5i996vLZ+HdYsQkiMdPVYqYiTMTONRS5dvsrc0mWe7ezwySePWFxaxdKiFtVQaoROY9IkcRpaGhOP3OdAKcIool6vE4aKWlQjjEKEclktdabRqSAkqjUyC0pAbg7KrWLT3TjTtLzPmoviRoXPbJNTmBYYM0abHuO4zZNHDzg9GjJKxiyvalSgODw4pHPaZ9AbUa8pZuZavPLaC+zvHvHRe222d58x1gnD0RhpLBtrq4zGKTsHh9y94xJ6LW+s8hvf+Q94fnDAe+//mEjWadaXqUd1drafcHJ0wKsv3eXRzjYnJ0OaQcjB/i5vv/PnvHB3yMnhMR+/932ajTpLqzdpzGyCVFhjgQDDkN5wF61jmo2IxcUZTntjRuMxzSiifXjE4ekBMhoxGo2pBZbt3QPax5rXX3mRxI4wqocKxuw8e8TNm1cIaxFDPaBVn2XQheXFWaQKnVsxIzOJP75BoqRFCk2zpogWFhinffYPOmxv79Mf9bl02KE1V+Pk9ARthqwurrLQanF40nOJ0QJJKGBleYGgGbK0VqfX7zEzM8PjB6c4UvPpHMCmAceHKf1uzHAgMSZTroaWWtRA1WuM+hGnRyFXLn8FE6fYOKF9cIDVMetbd7FhC4OkphSLM8scHO7RnL3K1g3N1ct3UaqFE2kKIWK8NVwgs4MuCwtKJfg0W3Ne8ZKI3O5bdqdX1SR3bdVi4a2rIEmRImWupVhebPJ0e4fTfoKzoXm90NGDs7a4YN6K/cMr2d6STcGj/bo5jzeVlYUqUJgOys77rlyH51fT5J/MFTY/Dl6JLfNXmIpwPqN8oQFKMTnus0e4hXV80kVRCMcClVYFc5kAPuuZ038rvSkj73PbPVmX17ArppjqBJcBTA7QqtYaby0qX1No/tkx7eVyjvUgT3VfOihLljQwKVz8iZNRHk45oGV0scvGd8mjaiGqY1xuY/VAxbLGU8yzn0PH8Mtj/vnAyWTx/c13BYmyS2lybIog3ElkUe1T0XF/mjHCnSdUpLv3YPVsHb49PveGLTEomR1WaYwgRaFNjdbsIvVmg5m5q/zkne/x5NEeV66+jJDaCXU9AmswqSEZu6yo9ahGWItQQZDvdjLWkGrNaDQiVe5wtkajSRjVmZlbIKrVSwcn+lEQuXkbPltrmzb25ZIzQmGx3tqHRRKBEWxvf8TjJx/z/Pkz/vzPv0uvM2AYJ/T6XTavXEKnFkGNRi0gNWNOTgfs7O2xvDjL3bs3GCQpc4uLbG3Ns760zMrKIoPxACEsqU4YDbv8+Kf/htu3f42//jv/Me3OKQcHOxwcHnPz9lV2dnZYXV9m/dI6u8cnmHGX4SiFOcs4HjEYjvjn/80/RY72ePNrX+PytVcQQd2db4REi5R2b48/+/N/xdalS0jRwqSQjA0PHjznhTvXqNdrfPvNNxljeO/dD7n34X2G6Yil+RUOjz5mGB/x+PGPae8dcW1jiYVWi+c7+0RzEfOzN1lducrG2i2XrE8bkCq3dEnc2TCBNLRakiiSdLpdur0hz56e0BsYLAGaiMEwRWvDyUkXPTIsLczQ7XaJmoprV1e5eXmZm7cuo4ImSbrP/JLgzTe/zh+N3+bT+89RMsKkGoQ70FKnkn6SYLJzW7QWSBsyGmoCpVhbvcHayh0WF5bBDDnc/jmnR4fcuPEqJmyhpUJZy2yzhhCK49MxQbTM7ZuLYCOECJyFWABWOcq0Oj+uY3K9Q1VR9CvWKw1VQUy+NblQFpmQMSJTllzeoHpNsTwXomPNzu6AxB+sicuNZbIAWZvxTFviNeB4qv9cTjBhcz53tv2llURhWT6z6qrX5X/PKq8epOQ7eErPOhOfKCUurWN1Ped9sgXv/rzlCw5QyJmklwH+DI9iYvyAVomtKLbKXPF0d5bZTtt2WtQ5QTDZd/YM4WQY8xygI6gGrzr3js237fr+uhVEhb7cbQ5YOA1A5wzf2uJiDxBycFdCyl7gOILLzqXx/ZYSq3VmyhTVMbZ+JJ0ATo3JsumSu6tE0fhKKQf0FtabkgtuYvDcgs6Cc63XsjMtnmJ+HUbw/S7NFaULbOnb7JlWSEwOXkVm8UidO8mvMgEIn5q9qL8a71NenLYyF8XIeP+wyK/PW+TPzRAZuBMWYZ0LzArhLGYaRjHU6g2EUMzMzPLaa99Cp0MCItK4wzgeuwR7WHSaIoAgClEqy5OSJtnOHIVRFoEiCuo0Wk0ajZbbniuVs6DUHUDxljVPAiJ/PzkWZwb6DN1PrjWbGcFdxwUIQ5p2GY26PN99ynd++2+xurzMD77/ZwRRSF1JOt0RaWx58e4dRsOYNHHuA1TCpw8+Irx1iXFsONzv0O2PWF1eYnFxnvm5BZbCFRq/Nsdsowk65mDvEevrt3jpldf49YPf40c//rf0+x1mF5d49PgxtXqNdrtNs14jChT1SDE/3yAex6xt3GRpcY3kuM3S0hqNmUUsjsEbq3m6/YA/+dP/B08f/JTnj1b5+ldeZ3NzC9Qhz7afMYrHNENJu93ByAZG17n38ROMjDlsPGNpLqFRr7O/v0N7e59La8vs7Me89/FD7r7+Eq36IkuLt1HBbBbU6GKPEpOSps6CFikDYcpR55DhcEivn3B0PCbVCms1MnS2yEF/SKoNs3NzdHt9gsDywp0NFhYjbt26TZ2Uxflleh3Nwc4x65eWWF1dxpo0c/G6RIepcbRnvEJhLWTn9BhjUdIJf6TCZCndTTzm5OSA9Y3L1FpLJKIOSAKpmZtrcHLaJjUKQeBsDNlBpEiBNSl+Z0zBQ6qWbhdLUd5wkHN+prqGvbDJKNmd6g7CyiLFYmaFl1YipTt/aKZV5+P7TxnGbs0ak+br3qfIdHxMFEZoD1U8n4b8uV6pyRh32Tnv3CuV9VaWMaVNBfl73yV30Ky3kU8qwtXxmyL78nflFvixEmR+zX+n8sUGKLh9/Y4us0mxnr6mm8P8NtvSHBeEVzJRn4kfKD93ApgUiFe6Q50QiMz/aUrXTIIXD5xywZj78912XgdW3ImVDndlMSQ+Q6sVTjPKtxKW2mtNtkBxWVJt9hJZplsr3WFw1hQgyjrzpvDIWYAVmbjIBiyHOVZmCXAtLl2ZyYSsE1TaaHTlzB+JIJ1Kp+UgWQ9QhJSZ7pzrDW5MhEQbi7EC7a1lfkFZ1658yQgPEix5llYXpog7/dliRDbeWf0OCEgQMj/A0J0tFDNORiTGkBp3BoslBauRVuUAwj2rHKTntCWf1sWBKHfomrHFkq5aUfy9JYaQ06Ov2rnLrFCkRlGzITo9RkaSqD6D1TVItTud2IKSIToZoNPUAQwlSU2KNQYpA6JA0ag1mZ2bZ35+kZmZOeqNJioMQbj5lEqiggClguzE1mxuct5aRoYZK8wPFMzta1UzdqlUTMr5mob+4Ii33/k3PN99zNa1l9i69hqHx4fML66zc3BKr3tCPIK9nUNqNcHS4ixh2HTWIARhIEjGmkZ9kWZTMzfXJB6NGScDtF2mHsyyvj7DoH2EEIZ0FHN4/IDly5t87Rvfpttt8+z5hzzffcrJ8SnjwYAwFKTxGOyYrZtb9E4PSUd9wnpIo1VHDhrUZ2cxSiANICyj4YA//qN/wb37P6DVkswuNKnPzNLo95mdGdCciRiNxqxtrHF6eIwWI47abT558pwgSllfiej0u6ytb4AeM6q3sQHowNAddTlqtxknfYxJUN5ih8JgSZIx4/EAIRLStMPx4WMsCmtbjMcDjB2jlGVtrU6jKdi8tIgKV3j46BnHh6ck4yGtZsSrN69z9cocszPrJL2EeBSgA8PdO7eYX1wkiTW9/sCdVSQsxqZIYTFGILODTguxanExGwKsxBh3CrDQMd3jHRYX51lc3cTKBjIL9q1Fgkaryc7zEzBRth4ExroxdoqAd5d7/lClOL/eBD6ODlzrIGVyu3BBmwaLOzHK7WpxbEQgsxOl3QOdEhEGhoUZOGl3OO5LUiOxWjjeIByPVQKMFQiyE7KRaJkpo5l88rjFZPPp+YwVFiOMi+uj2AwgPXCxPiXEWSXBfeVd/p73GZwFKluv+ZgZjD81eTJ+MRuXijAtL2pL3p5/1/KFBigVN4otbS+G0pjYYhCp/HCmTMs2Ovl5GjjxQrWou2y1qNavlMq3Z7pFctbVU4AMKkTmBUK51jKgKrc//106EFMFauSAQEqJ1mlF2y9nUZXqbJI5m2lA5f66fmTeW+tOpC3vVPH1TRsXZ8IsXDtqws1jrS3NmoMtPhD3s2Ic3DWFr7mwnGRbAq0DMNZbf4RBGEso3KFo1iSM4gGdfpeT9ind7oBuZ0Q8HrvgUm3d4s1blx1HgDu8bRqtufgcf83ZNk9cjXcpFeDEueh8MJo7rkchlSAIA+JxHyVn0VJhhTO2Kqmw2mbn7rjxHMcpVkpqYY1mo8X8wgJLC0ssLC7TmpklCCLITldNtTu5N1CKWlBDycABvUryk+zEVtfJbJyzl/UalLcoZtaiDIjZMl9zJ/C57OHGjdFwMGbz0k1OD04JoyZCCVQYoIIa3faQ8diQaujHY/ZPjlhcq3N16wrxOCGJRyx87XXmZme4feMrvPPue/SHbcbjPp8+/JSoVgerOD4+4mj/OS/evMM4Tnnrp3/GzMo8N66+wSt37vDs0Xs8ePwp9fkmQQj12YixTrl6/TLXtq7y7tE+QRRycvyU0eCQS1cWic2YVGuibN4Gwy7Pdx9xdWuTvZ1dtq7fZX3jKv3eiFq3z8ryOt3OMXpNoq1gZ3+PDz/5hETg1AAlaM21ODg+YWF2ic3rlwmU5bTbo1UP6Hf6nJzuEdWWWVxoEckG0moCYzHxGJ306LQP6PU6NGfX6I8Mw94AI0PqTcnycoOZuZTf+PVvsbRyhUdP9/n04TaDQUIyTCFN0XFM0uvTj/do1FZ49myf5+0nbF5Z5PWvvsGgp4jqAimKTKe2kgbBWXaxIdKGQOqCaWV27IhNGXRP6PV3uXLtRaRYxIgoSw6YMrcQobWh149BKAwpiqDMijIBm2Wxlu6ZHrBUlCBR5ms5AU5fiRNucPzaUxqpU6QCoTM4qMYstSRKRuwc7LuTp6VTLgUms76UOJrwYL688j1PLbm9hTiTmj5XpDm7lWDSMllWAKpuLpU/M1ullXZYqxH2bEzLeYp6zrM/k7d9vvLFBiiT1hEoBGBJqMsSEeaMvVR+0WCe79KhMmlecLpFWakht5YAOaGJCYIrCKikWQh3gNtZv12G/rOXR8JCeJCWBcpaMgtMgYA9esaPiS2b6ovxVErl2rYHKvm6EuCPoPef/SLzu6mKGBSRWSc+a3yrAElKmcs3KYrF4RR2V9/kVl1/f7kPrmnZeT++grwLXnD6MdcIxgRCM9vSDIdDTtu7HByf0u116PeGjIcpo/GYOBlijEW603moko/JgJHAn9lhMzCEKHacFfP4i0FKgbEz0y0yBxAyDJABRMEMca9NFBliE5Fod2aOTQ06ThxwtAaTaoRU1Gt1FubnWV5aZXl5ldm5eeqNJlI6i5CxYLXGT7uS0h0gqNw2TzdqorLemKTTymdPl6aydnNVEbKD0jLNS2iwhmZzjtnZF9h/fkCaOrqemZvl9S9/lXsf3aM7aGOlpTEzw9LqHFeubXD7hRv0TttcvXyZ0ShByhozM6ssrazxgx99jw8+fId4f4hJJeurbU5OjvD7K2Zm5/nk2SfsPH/EXGOR5cWQO9fWGA0PSZVChJJGY5ZWa5FmTTI3V+PO7VvMzczw/ttv0T08YGvjOiPtNtpmBhRmmov8zm/9LR4++jHt/RNuXN3icO8h7e4zZufrWLnI82d73L+/y8nRAYenh+g0QSpBI1IsLiyhVJ1eb0AYNjBxn8OdI04Pu6hYcrjd5uGDR0i1xNzsVYwICUiwSZthf5fj42dobZlbWCdNa6S2hxFDjNDU6iHNVp00OWH72WOUCqgFltWlJiuLN9l5vkstgM31TeYijbUpxiTsHhzTGw/pdBocHBwSqAYLCzV2tgUidnNrhXLKRH6EQ5ZE0bqtzm5NSKSwkJ5y3H7EyuoyUbSCtjXHBWxCGFoW5mY4bZ9kLl4JmZuycNF7xUMUOzqpKl5nrOpTSlmYOzKeUIREZrHGWZiV0EhrkFLTao5o1UN2DhLGSR3LMHe3+ezfFjBCZFZXv4YozgUq/XN3ZW0wls9kFxNtnfZ9rv9amx2DFmSKcAYUK7xSooTNU/h/HuBx9vllReavVr7YAGWi5ONWJsrcwmRLr9I9lJjkmfrE1L/l38uvKvqerK/43bXrnF0qnnhKAaBm0lJQeZOBE0EGVvwz3G8+iv5MuzOcXLVyVAFK+Xqf+t5/nY+bj7mdeIjRpeRy1j+zOm5QImZb/Kay83iq1/hESOTfTSL5qQG42bj7v54D5FsGMwCXn2+hxqTjLqNRn+WVGfaPYXu3i9ZDpBiDdGm4tU7R2plpfZ4B95QsOK/UhtwCVGIMZStKuQ9naax4VecvA9sSwihCRaDkDMGwQyATrGowGmmXHTRNSeMxcTImTl0m0Wa9zuLiEuvr66wsrzM7O08YRiBdVlhjDcK401RdTKNEKIkMA0QgySzIpVFW2RfVmBxwrsXc0Gz9NBSR/3kcjv8/A7lSSBCWRnMGjEGpGoNBG2s1gQr5zd/4bT6+/3N68QnHp23GoyGDXsD+7hEv3bLcunWL2dYMgpDROOXo+BitNUGouXX7GsuLa7z11js8fvAcnaa8+EK2jUfD8UGf7edHXLnWoRVIbt25Qn22TiwVf/a9v+CIY+I4pR5a7NVlXrh9EzNOMcmAhZkGlzdfYOPGqzQbcyjhzluJohprqxs8fhLy4ksvoU2fWLcZjtsszc9hkIigwQf3ntEbHLGyPosMBUGgmJ+ts7K8TL05TxQ2qdcj+qMxUX2Jfr/NpbXLbM5cZ6a+Ri2YweouJ+1dmlGTD97/Ae/+7EcEKqTeaJHqEG0iJBEqs0wMh0NuXN8gCuYQQhKFBqxkY3mOuy+/BlLywfs/Z2FhGTE4QihBO+4hIsPG0iW+8tUv02rN0e2eEkSWKAoZ9JMJndzFOjipqAuXqMjcE2ZE5/gRS4uKhaUVEmuwjElMlyBICetNlJqn3x9hrEQEPomfczMzASoKa0fBDyd59ufV8ivXWQs22/ZuBcbG1KIEa8fo9JSZxpBENzntpRhCLKPMSntWcc1XRsno6P/mL1Gy/vo1hQfx/+5WCu9u9jqaFcVBsMK3N9dJq0rkeZ6Ec55EEZ9W7uUvLl94gOKZ9VkG70c2Ezz5UikkbG7uE8707K0f55muyvVPn4yCMZ8FLJVWn/uTF2TCmXtyQVwOBi0unP7sya/P9gcHNoy/b7KeMtFxvjk0b1/WVvdFBnw0WuszDMO7eSpPzGNQQGTWoLPZW32G0SwR3IR242iAQgKe6ZOLvymOGBCAqgAVgQGpkYHg6PiY/rDNl167Sqjg5z//lE4yJlWQBO6cnzQ1pDZ1wcSZRuUeVwDGCplU5tPkwPOzmKT73YFM58LLQJh1jCQIFWEUEIQCYSEKA6yJUYEhSRPi8ZhkFJOMxyRJikHRbDRZXFzh0sZlVlZXmZ2ZQ6kIIWXpYIbsP2mx2ll+ZCBQKjuALiPhwtGXxQsJ67Z/lygr342QzZ13ORY5VNx9wuKEVkYHRmeT6l2iUrhDDq3g4YNHvPveO5yc7lGv15ibneP4+IDtx0NOD9p0Dkf83u/9Fl/56lexRtAMYnb22rz/wXvsHWyzurLK8vICa2srPHm4ByZgbeU6MzMrdGqnJEPBw0+eMb8yT9w/YaU1h4pCiMcsLjZ59OBjOu0hM40mw0GfYTemfdhD6JCtS6u89OpXmb/0IogmRrtD+MbJgJPOPsedQ155+SapHLBx9RpBfRYpQ/70vR/w/Nk+e4eHzC/VsMoS1gJmW7NEkUAGIbOzs5hRjFI1mssL3Lx2mWFPcfX/Q96fxdiWpnfd4O8d1lp7jDlOnDnPyalOZpVrtKtsY4P92f3ZpptmkrotuSUECEtIvkBcICEBEhYSEuICmRtafdFAi0+tT93gj1bTBgzGE3aVK12VWVk55zknzxzzjh177zW8U1+8a629d0ScGhA3JVYqMk7sYc3rff7v//k//+faZe780E9yUhaMTna5+/HX2Vjt8+iTQ3afjbh58yWe7R1TlI1vUBV5xQCZiE3v9p484rOfe4UXXtiirGaMRjlCBCbjPT792dc4PFylM0ipckNvdYNPHj6kt5pw69ZNlNIkOo1yOOGwzkRizDeItHnOI3MCjiArfIjMbCIqkjBj/9k+w5UbWFmh0jHTWUVhDrDFiNW12+wfO8pihYCG1olVL4GTc6mMRbBc/1PKixuBNiDmwvYiLaAG2YzHUoCDopgxOnyEKY7YGGwxqXJkEiDYNq4sluOffcab8e8i8mNRBtBMbmX9hSU2aCn2XDwxbY5x6Xh9FP+HmtmMjsyy7lAcEI2e5wLwd+7nzHEtH+/3D6Z+sAFKK3CaL4vi1hZ9njl5i5dnfsvx3BN8brMXAJbzy3LO8yy1qOrOms+7YUUz2AtRW/ZHV9Z5EL6YfnzessgyLLIqZ7e/9CDI87na+KFmw/X325drpFwDiEYPJBrwLZ7zgLZ6DJa2256L5zy4y14izXUM83sAMT9fwrczmMVS4eY8S0CKQFCK04nh0eN9fDhhdc3w4gvrJOIV3vjGO5RVFVun18A2Hmd0zBRzPf/S9RH1ATTiu7YXzwXs1uI9t3zOm9lgaNkHCGitUImMQdwHer0B45MjlDYgHM5YqrKirEzsqJomrG1ssn35Ghvbl+j2hwSZEqSur2NN9SIjCPQhUrxEY69ERXG1AlzwjfPDPAA1PHV7XI3MuTnWGtLUgvLa0qW+xjF4Clmn3kQUeHo8UgaUAmcrRBD0u0OG/T44C85TFRUiKIrcYgrLt751l9c+/Rqf/qxFkVGVlqIosdbinY/pSwnDfo+11VU+/dqX+fKX/yeq6pRef4VEpjx68JD90WP6XcWf/fmf58mjJ0ymhyg5Rnct/aDpZCkuKD744BEHTw65tnOFL/7Qa0yKCYPgaga34nSyz6PHd7n/4EP2D58wmgzZubzO+sYO+A7vvv0u3/r62xztTxGuAqep8opOknE6PiWfBW7fFmgtya2jo9aYzU55+aUX2Np5xpvvfoOvvv0OVhSMT/b57Gdep5Nc5ujkPj/8I/87TsaWp4cn+GDAF3UVS6zokV3Fy7dv8eqrl+gPUh4+esDd+/coTeDK1Uu88+4blOaY3mADG3K8KEn6XZyAtY0Vrly9jDexuq/bHaB1hrWu9fxoxor2/g4+glMpcDgkimFfYMtjrl69xo3bL7PzwhqfPP6Et975Nnl+QpqVPHr4IS/d+jyrvS/g6+oZ0WhNaAaa8+NhM66092ObRznPdMJcYHvREtPLINEEwGIQZATfx8wctih4+OQY2euR9bqosa2HA7G0jXP7GeZ/nwVY7Zz0TCxpAF8sbGhXu3TccHa8nceOiP0DWgTSRJEbjw1NX9h6klVPDMOZifvyds7Hw+fFpIvG/++0/EADlAZZxpgY5gGzIa7qGTsLYOVcqmQR3bWBcOHmYBn0XLgfYoF9YX5jNO81wbcRyZ6zWV5ab0TaodZHBO9rPUdo9+Xstr/Tfs3R9MKPj2DnouNsZuyLfiTnQYqYe3vURyqa89esy/slBmXpOtVL3F709FgETGfZmvbYxTzu+bqMeVHLsVgeKJib8M0b8QWamcXcFyeGQBEs3pfYMGP34CnTasr2VpeT0z0Ont1nZ+s2P/7jn+UPv/omxaPj2HDN14yR8ERNbO15IjwtC0bdmY+FoF2TDHEcnAPks/fCWYDs8ciFy6+UIM0UWtfHJjVpNkSII4KfEZylqgx5UVCaiiTpsLW2yeVLV9jc3CHtDPFSxxLjuqOxEKJNzxECwnsmo5PoqKoVOMv+02eEEMGREBKtElSW4gOkSRIrsEJo7/UkSUiShE6nQ7eTorVCJwlZJ0UQkLIW4klPCBZJiPoCOghU1Gl5S5aleGuRSK5cvoGSnt/+L/+GTibROpBmiry0GOsoS8+zp4949PAjVgc7WBNI0z6ffv1LvP3WN1lfWWfvcB/jHT/5Uz/Jz/3sL7K5eZ233v4DOr0hm5tbzPYfMjstMLnk8ZNnHB4esbbeY2drB2cTxocTkkRzZWuTcSiQq5JhljE+2ufhR9/E2RmD3g7OBn779/8dH3zwHoOVdezY8sbvf50EwfbGNQKB49ExZV5xdXsdmUmMMPQGffYP9lBBIb3GFCXj0YidtRcopxmTyT7HowM+vPchv/eH3yC3gSvX11lbiU6yvX4XIQJf+8a/pzIpM+MRWoHVCNdB49m51OHFl6/Q63seP3nEG2/tc/feQ7yoWN/M2N65wenJkCePTnjttZd4eP9Dbqx3yF1B1tN8+vU7ZGlG7gt63T5KZZyMCoJflGw2N+28OCB4AV4hZKDXUWyudRkOUzYvb+MTwTsfvcvDx484Hh1wfHjM9euXCEnKzVu3qWYps2lMK4qw/NwvPkdhPqice+/CcXNhXvFcpqM9ovjsS+9wQiCFZXOtS1Vd4dSsMh2DKW09LF3ElC4wPCJ2hl88U2f39ez2IR520/CzeT8yk/G1i6qRFhfvPTI4kszx+mt3ePRsxNO9Y1TtuuJa5nkpn7u0b83v7xTTzk+O/wcBKIvZjrlGYoERuWDgb8DsOUblHPqco9SzQOXsOhc/P9/+WVZi/pwIIYgu981M+OxxNTQoEGRkUJgH+4tU1Bft++Jnlm6K5d177vcvcru9iGWCBnzMX2sbHPrYdfjC7FNNbZ49FiHqRnQ1qLloAGqA1jKVW2e5z12vZt1i/lML3BAeEQxBVIRg2d9/xsHRY0anzxiurzMuE9796H1OpwVXr93ky195HWvf5N69/ZpZaC6siNeK+ayuYVNC8MvnjEDwC74Q9WcbIHXR9W3wYBDz4mulJEkiUbI51gSpenS6PSbTU1xpyfOCwhpUkrGyus7OpR0217dI0xQlQDiH9ya6tDpDMZtFBsxaZtMJj++9z/6Th0ynp7HlPaCUao34ogeFREiF8w6tYwdd7z1KSpRWcVtKk6YZSa9Pp9dha3uLVz71Irdu32Blrc9gmJF1JVlHoaRGig2kWEeqTp1ClKRJFxcCLgSkVtgAlYMk02TdgPWBEDReBlId2H26ywfvvc+VKxO6nSF7+48iE5PAcLjOt779VfZ3R/zET36KldUtEt0lVR1cd8if/Omf5Xf+8Hd48PQerrQ8erjHzRsvcfvGTZ49vYc/FayUGZubQ65uXWYUjlBrHVZ7msSMSB69y2T/AYVIQXpu5of0hpbKnrDWyTgtHDzcZS/9FpWQrCbwyo0trl6/TrbWZWxyhMrgA8HR/glFXjI5qeh3NqhMwub2i5RlyeHRCafjktkMptZxfDwFNCeTU1SiuHzlCr/xH36LyczS6XW5emWbnZ0rTI8LNtc2eOnly1hxwsf3P+QP//gtpjNPbivSzLN9aYMvfu6LpGmPt956hBYp0njW1rY4dlPW1ztcu3yF1bWrHB2dMJ3OmE0Mo6Oy7YcjhGfukF1POIKPacIg6CrBtZ0h1uZkK+vcffoJ43vvMBqfYCuDxPPiyzf5oc/cwVmPTnr4JEVISwgOKXQ7/jxvaSayZ6s05ZkxezkitOoMWlaxZrHjBCQAHonDiwJjjuj2ugS1Ci6aKHo/IwSzNGbOx6YILsLC63O7B+ZdMerXzjnbLqzr3NBaT+TOMzL+7MeQImDNCe+/93W6KzeYW1yEeaxkrpWZs+vy3Dld3K+LQMj3y57ADzpAmZPHsHgBw/zKL9J7DQ04H/cXQMvztnAGbT8PFEDzCC6uelmD0ICUhk0513CpAUTtAxePbVGr8J0Yk+ctZ1H4d0Kxot7BZh8XQcpyF+bFm3/xFo6LqxkU3+Rqz00NlgFb87sBmm36a+G8hhAIcuHc1M0hF5mi+bWeM0d42bogtk++EERnA4uQFik9xSznwYOHPHvyhOPRPsN1xdqlHZ6NjjnNc0pX8fqnPsOf+MlP4/1bfPDhM7zVSBQEBXW5XrPXkalp9lbMj+HMD/Un2vvxzP3W0ryi+UQ8zlQrtBSEtoWAJMiUrNtnNNrDlgFTOnwQ9FZW2N6+xMbGBkJIxsdH5LMJ4/EIY0r6vYy93Wfs7T7FG0tZFJRFATYnuLINMhGcRMAllYo+DD4QvG1Bi9YqllI2rRKkxHuHdQEhVXQfVvAfpSDrJHS6KYPVHtuXYm+cnctXuHrzDq+88iV2bryK6g4QKLJkSF4U2ODRwNbOFf7P/5e/yv/zf/1nHI0PSXXCla1LsQ/OygoffPhtkuQ91tcvEfyUk9NDptMjLm/fJM8tu0/HvHDz00h6KJUhkGRJykw6fuRH/yRpf5N3334DPzvhzktXuHXlKsXoCDMZsdqRdK+sojSI0122OhblKwQO6SqSWYKYHeCdQ0rBRgisJIqSKawpbOiizBh571t4p7jUSflTL18mdHuU/S6jgxE2WNY31jneO0ULx/XLl9nauM50mrBx6SZFMWE2nfAzP/0zfPDhXSZPdzk9nXHpymVOpjNK42I36rRHmgo2dvq89vpNtte22Xt8zKCvOa2e8fjJA45Hp5QVnM7K+Gz4AFLSHww4Hk15/+77vHi1pJcYnJuik4rLl/oo4Rn219DZkHsffcwf/sHXmJ56CIoQbLyvhZuzJgBC4kJA4dlZH9BPLSubPbav7fC7X/0jnu4eMj2tEAG6nYBWnoODPX7yJ38aGS5xf3eC93JB93WGIWnHp3mkn08Sm+dqPg43fzdj9uLq5kzxgndWM4Ch8dKgzBRkhVArGJ+BMHXqUkZ/FualwMtFAWFO/IZ2j+fHcGaC0oCOCyUBLbhZjofxJb/AUDe/a2Y5ePL8EK0zTscDQujO900Awp9hwy5ezjIoFy3/LVqUH2iAIloaay44bNmQ+UR5fuJEoziZo/kmNbEYQC9kDdqTH+qrvHjFG3C07A1CvS/z3alvHDG3TebsuttQNn9pMZg1AKK9WTl7uZsA3nyuOSdi4YP1uqDt07O8hmaGwbwXT1OHf+HNFZZ+ArGKx1kXRXIBGqey5vqIZkMLkXcOhOofIWjMzufnvXlQlweP9uyG0LJSS4xWkBGoqBCDiDBETU+FUIaymvLg0T32Dw+YzkpA8fDRHiY4gswwXpB1+hweHjDLx/zoj36WTtLl2+9+Ug9CNfBtBcPzwaApNV6cEc1PV1PZoNt1zPGIbK9ZO2DVniJCCYSuWSZfp+REiG2YZIZUHUw5QgTHoNdBK810POK9vWccHJ1wfHzE6fgYHxzOmfhd5wjB1ekrH6+dqH0bBCitUA6qqlq4U+I90suS2jcnghPqZxMhUIlEeYEQFolHK4UxNuoQCsjzisnhmMcfP46lzGmC7vx7BsMtti/f4qXXPs3tl16hmyrKWYXJcxLdIwTHYLjO6CTn5DhnZ/MKP/7lP8HG6hov3LzJ/+3//n/low8f8Oqre7z6qduIIEhVRr+3wt6zCYd7E/5Pf/5n+MxnP0+a9lAqQaqUWT4hEZLP336VrfIYd3QfNXrK5OkHyFCwbmbgDGl9oUzlEN4hcPgAWkm00uhUY7A4Ax2dUlYzlLMkArJOik4UzpSsWIm3ii2dcpo7no72yaZj1HAVm2QQHL2O5OWXb9HprnL58isknTXWNm4wOnwLa0bcvr3D3vERwRuUyDg5meJDoNvtcXlnh7QjeP1zn2J9c4Xjw33uP3mfj+4/RGnN9voWVeGoSo8znua2mxUl/9//+O9IdJeP776DNhM+c+sKaSoZ5YbcjHiQfcLK6i2CTHn2ZJ9337mPqeLzJgW4ViQbU8fe11U3Ijqtbm50yDolV17YobPWxzjBybEhOIX3FmcdTx4fk3U+4uWXXmNjZYfgE5rKr+aZaUNfWJjth4Vnrf2siClD0YxJzTg5By7x+W0Y1oX7vJ6wRQuEOCHAeWx5TJIkVC7DhJQgHYiqHupV+6gsT+EWQETLMM1tKZuPNKCqGXmfl+5p9m8RXES9TL2dFmPE1iWBaOSphEeKqE2bVb7daKjH/8brKNTbvmiCuziB5QKWpJmiLZ7L73X5gQYooc71z51WoWEdmvryaB62vCyC5eZCLn7muSyFgKXKDAEN+TbfTr3SICFE468FvESTOmka8TVBq72I1Oucx+P2hpCtVoCIlBugshi46x2L5tKydh0kWkAvgJRljHUG4oi53bwStD+SRgY6Bz2hRQqhDrZxf5wPWOdbnUWkMNv7vX54RFxjWD7fDZir7/d65hHPcWgif2hEtM235pRsA5NCoE6lzQWqwnuErEAYCKBUhdQVH3z0Ht9+5xvsH42wzjGezDDWMj4pIARKb3jrrQ+4efMy62s97t37iC9+8Q6p1rz/4WMKY3EIEFFP0zo6olog7alp3ToF1g4mLcCqS/yaezfIehLo5iC6Sf0Jor23iNcZBM5VOO+oCo9zHaqqIpiC6dGIJ08eURUzZABvHB6onIEQGTop5g3VnIhjt1QCULHnkvMY43CirtqqbyDvPEEpZsZFQOmjK6YIsTJAyuj4K4AsSQmuwvlobKWkwHkTZ8LxQAkuECzY05yjk4fsP3jIu2/8V1TWJev1Ga6tcrR7zK3bL1HaiuPJAcVhzqXBFa5tXmdzdQvrDA8fP+Ty1cs8PXzMH/7RH1L5EZtrGyihUWrIyy+9wp/7P27xw1/4UdbWL+MEWGfRMoGy4OCDN3H7+6i9d+iUT+g4T1VMqZxBKkXwPmqvpUQrkFrgXLxekVkCV5nIoAhBcBVZIvBSoGQgEwLlozdIRztciLPugbJ0ZMXqQDPSimOdMd5YRWWC/mAV40DpjOjknHD/4w84HH3C2maf9dU+x4cjUjLK2YzDwyOuX7nNymqfWTlGKUWWddgb7ZMHy+7xDGc9R8dTsqRDUZW1L4bHeSgLy+Mnj9BpwtpqRpZJuoMBaWfA9mCF/ZMTeoM1RqMRDx/s83v/5Q1OjyuCqzuyBB97syzOyImizkRatrf6DNYTVtZXGc9y8r19nu0eYUqPVoGVlR6JFvT6nkFvnZXBJWYTR3Cqfa7nI97C4BHipFU06VCxyD7HfWl9qFTt/i0hWlOHdryhnnC23w0GRBGfUeXi2G6OkeQouY2pujhZPyOxaHwhwPs2diyndufeVYSw4IPS/MT/4qg/N4U8mwZuUy01oAkippFlEHXrDodDIGufIVFPmqQo6XQyfOjjXRKf/xpAChQqKAKWuX7oglgh5vHzfLSN+7Q8Tn/vyw80QGmhxYII8rvpM+o3599uO1r6pe+cLZFqKLqz612i15aYkOdteo7UGyROk5ZqTUVEHVTrCfkZ7cni/gCtz0T7twjnjz/E4OhqcNCUrJ49znnX46hxmKd5VJuWmkfL+TlohgkhQqSHfcB7hyf6BbTATAaC80vfXTymuA0VewB9h3Mdzl7rZsYwX9t8/cLXswFPVZVYP0MSqewkq1C64N4n7/Fk9yFSp+RFGYcUHzDGo6XGmUBeeNbWL7OxtcLuk/d54xt/zI984ctknS7fevsjikpgPQSpscEhRD1Iza8MjbGZD54gHE36S9ReEDG1vVzJg1BQB/x4d0gSBFoohFQEITDOUU1z7r33Hk8e3efp4wccHR5ycjyJ5dDOELxFKxA+IKVC16ZxSkQgF7yrJ5bR2VeLWKVkrYMQ0FLgrI33hBKouhRRSqJtvpQ47xFKxR8RqKylzEukgKK0dDuKRCc089yAx1S2ntnGqp2qMnVJcd12LFjKqiKfTjje2+XxvXsonaCEINMiXidneTqa8ZuPn6F6KSGBtJ+RdQbcuPkSt299iizp0O/2GHSu8drrP8GP/nhGKrooPJPJMR+99xb7996k2v0Wo2DplgU+P6YIM0LWiToab9HCI7TEOd+WXUshY88jF8XLQkiK6QznLForOmkPrRWusiRakUhwzmGNieJfbxBekErNUBh6VFwJnpGZsHVjjdNsiJs5Dg92MZVDqU1+7z/8eyaHD/nxP/UT3N8/4a13HyPHJT4kZKrLeFzSfWmFy1d3uHTpi4ik5OD4IU+ePuV4NMVUHiU0lbFoVZJ1JL4IcRKkPNNiSqefsL7aiRPABIySeCUIqsS4GQTBgwdP+c3f+H0ePTrGOUG0p3OIeqbeDkAhjndKVqyuSi7tDOgOEnb39slt4MnTDxgf5kgR2NruoaSmLHMkCS+/9Dm8W+F0PCXQadb4fc3HZfCRPxAJigwlErQELR3GGwQ2siZIRLBzG3nvUCKQZCVOPmZSVtzaucP0ZMJs8gnD3hqV7eG8rlPKqp5AOhDzLvKEpopQnBl3F8eIhRFsIVZ8p/T+8+QHcZMNO+QbTggXHEp6BJ4gJiRJgikz8FlMTclmXPa1g+zyts7ZTlwgkP1+tSbPW36gAUorflpgBhr78/heHbRq3rwNbqL53wXrPHNyz+bWvlNFz4VrXAjOQix0gV28wEIst/hm+eFrUhfNzFsq1W6vJToXbua4zB+MpRDZnIuFDZylDRsg4ls/kjmF1wCHc4ry+n9LQlkXRbKirWSZH8/iuZpfr3rO0D4E0fRsWacR2iDflLU257NZ4ndZ+g6AkIo07ZCQIKVFSRhPPuH+o2/S7UGaSYTUIEqcd8xt5iMoK4qKd9/9gKybkqoedz9+SJl/jT/xoz9GqjR//OYHzMo430BIAq61tY4DVASTQNvjqFXvh9pvQDbvi3bcijA8OtZ6PF44fCLxaUCrgCtKnn7ymLfe+CYfvPNtxicHOFvinSV4GfsWOYtUITqxBoFumqnFXY3OsCECEklkAlzb9LG+xoEaeDTdVWuWC6IWpgZeQugIwBCxFYASGOPw0iPK2AYgSePQ431AaokxBuEdSkfbcudD7ccQ8M7G/WqElzLEHkM0oui4E3lVMjsdYwnIRJH1u/Q6KddWrpPKdZQQaNllfXWbTtrHaUXlBNX4hHf+6D/x8dd/k155wKo+JVMWURpE5QjCYXwOSUJHK/AliUqRIXatlUiMqcAHpBLYyqCTtD0+JSWyrsBSOjJVEhBK4kz0INFaoKWNQUVFx1/I6SSCrjPkImF2tM9RMeMPfud3cHnK1as3+cJP/TRZP6E3M2xd3uLwYERvMKA7sGT9lLST8MKtVxkOVxjPnrL79JT9vWMePRzhjSJJBWki2NjosXLzEvfuPqOocoarGVJ5kjRjOBjgTMXu0RO0lGysf4bJTNLtvsDxkWb32SmjkcNUCdbFoOyDhYbhDYFGCyJFoJtKXrx9hRduX2L/cJ+8KHi2e8LRfoF0ko2tDtevbVJMctRql5u3XmRj9SZHewYfFAgXe0EFait78T0GxQgkNTqOnTIghKPbSZDCUxQCg5kzsSHWsygyQEe2Txo2NgesrsHh4S5eVVihMQGCjCBM+rj+0IppITb9mu/nfH+bSWm9LMz95hMw2U4W248tAIXlz4p2XGyxT6S7kfXzHV3KDVoJnJ3S725QVdn8+wv7E7V7Cvyc+XgeSLqw4GNh31pO6IKih+ctP+AAZR4YW/akuVCNGdRCH5nFpSUGwzJCff7S3DWivfDtzF3Mkx/NTTj/2jx/14TlWG4sFxiJ5p15smmerohiUL9QsXLuPCwg6OUy3rpUdJljoykxDgu06yJVqJRCWYkTc/aktb2XYuGhiOcj2l7UdGokBPDB1QGy8SmoU2OhyfY2+7jAoNAwQwu5XiGWHjqaeUBtpR9LjRv2ZJE5WvzdPKkSIXSt3veYqqCsPLt7u2Q9xXB1haJobNhrQzICQViSTFGVFY+fPmF7e5PVYUJlFY8enfDVr/4xX/6RzxECvPHmu+TO151WF6FhU/wu2/RY8xPNyRyB2tJeinpwk80tOj8/CKRQ8QfBaH+f9958k6/91z9g7+lTnHEIEVDKg/dIFMEHlIyMhhQaLVVNgYOxFqzHiti9MPZuipUWVWUQSiGVRimJtbZm3yKOkiH+2xgb2yCEgFYJIdQV2HV6x7um0WCCdZZpYQhFiTWWfq9DojUuxHRIpur8PgItJdbWVRChKUkHU8UqEBuiPLhxHVZKxjJkIZEBprMRPgR+69/+Ju++eZ3rNy9z+9UX6SbXowOo84xPRow/eZ/Re19lp3zMUJZIVxJshXWgVEoiBFBBZSBNkEKQSMh0Sl5UVKZE1G0HlNCUrkSq6LXiGxDdMFUQYabzETBnKd5H3Y/WoEQgWElpBUhQwbCuK3rmEHFoOD1ZYfx4j09//k/yP/3cX8BVU95552sUZU6n38WYnOPjY4xX5HmOD4a19U3SVDGaVOSzGUVuWOkPMfmkbhIJt164QZ47sq5mWjq6vT7OF+TFlKoaEmSgCiUffXKPF2/f5iS/TJ73KGa7HB+OsLZT2xeUeB+vkw+1JirM2VopLds7XV7/7E2u3tih96RHt7/C3t7bBDdD4Nna7nHnUzfZe/yUH/rMF9ncvM14rHAhqXXoHlDM/Yzm4+BFY2QLkISO7E49bksJSgX6Q8GnXr+G9Tm7u7tUlUCKjDw32EqQJj2Gq4HCHDA+DfSHjodP3uXuJ3e598EuG5u73HzhdZJkq053OETQQNWmmi9eFsemdphYOp5mQhtCU0m0nOZ5bsyqQYkX9djb9NJpGI8AhBwlFFr1kVLQH2hk0mV8Op3vc4hALbYBma88nvrzB7Y8XjcM9pkd+x8HoCzPuuevL/zr7AWsL3hkEZq0zTICXUS57UVoX18MfPMM4XJAXP4eLOODBjidQ8Chnq03LE29vqZkF2pvj++Ao5Yf0hoMLNwsvm6ju4iSm8DeDrJKxRJRqVBKt34Wi2e3PTdCRh+QEHu3tOE4xB5C3tWMVgjtGbvoxm7P3Bm2q93DMw9jTMH42sSuBqaCpes2BzuxsV2Np+rLI8kLx8HBKScnOUOR0ev1MDbHGBNTFRJ07YyJiD4bVWFJpGAwEPSHkmoGDx4dYN0b/NhXPk9Qlj/+5vvkJbiFrsZxcK73uxkwg0IIPa8wwseW86KpjIqpKVEPLIEYqG1lqCYnPLt3xNf+8Pd4/Ml9TscndRVNPAfWWhIVU0NS1F1mnMV5CFLFoKhFbVoWWbImnWhsVWcda/bCO6yVeBd1M1LJ2t4/oLWmP1ihLIq4/QDUJm/ORrbP+zhAWhsBayCmD42HSV7SyeIgrbSOBl/eI5Wub695/49YvhzvqTgpEBhr8SpEcOJjykwKBTKays3ynOO9Q0ZHJ7z/1rsM1r/OZ774AMGAy5e3uPutrzO5+w06409I7RjwOB/ZNTzoTKJa4O1JkwRvLXle0ul2kVJRmQpUZKqKWYFQirwsowdMmsbGeTU4j92joSwrpEpQSUqoNXQKiRaSoCDYeJ6yJCPgUa5EMcHNLF+6ucPmjXWeHdxla/MyQWcc7t/no/c+ZjLJefjwCWvTDts7A46ODtjelGSdFaRQKKm4fGkLu56yMii4f/8x+SxwMsrxTpDPSiQaa2s9lJRYYQla0l/J6K2v4cMqu0drFHmGqDy2UnjTIGnR3qsRbdfB0XukMPT6gvVtwcw+YzSruPHiNV5+9VWePhmz/2yESDwv3LrCnTuv8PpLN1gZXmU00hDSCDACKDlvRMgFY+FicGzHQhFqPV7NWgrq8njBdDZi/+iUV16/wo0Xb3NybJlNKxCSqvSYyhE4YTIrqKwl7RZknYyT0wl37x/w0f19Hu0d8alXPsPaYCuyzMRn+OxItzSBPPP77Ofa42j/jse9WDDRahPPplh8fA6byU+Dg5SQkeURCu/GDHpDZlND2km5dHnIyUlM5861M4HA2bE47lVs+i6WJtotUbCwL/Wr5977XpYfbICymLa58H1apqMJfKENYhdTVedSFwJY0HSIFiA0qZq49fqanX9eAjRW8OduSTE/DpqAf+ZA6szA0k159hws/m7+3d7AzB/W1puEsPSZdvMiznZC8G1qZ7EcukmdnE15tQPTwraCjx2NFzsOn6UIl9JczXvU3ZN5fs51WUm+vO75Z+ZgJXhRK/c9CENA1ELYMaPRKWk6AAJSO6yr2oceEbUVKkCSZSAlaZoSbMntF7fYvrzKR+8fsftoxuMnx5FJ+dEfQgR44xsfU5iACxbavkuhvZdECMgQz7cg0v6x+aKIJmX1zEcFj6tKjg8OmM2mIAW7T5/w5OEnTE9GHB0fUFVlBJFCYb0HKVBCR7M8W6G1JpU18AsR8CSdBOcdXgnSNGE4GJAXBSEEOp0ORVHg6rhaliXOg0ySCC50QmUqjHFUzrWA2jkPQuMaQC0F3lqaXmPBOYKQWO9iqqhWQReVjSkiKUh1gjeGylp8XbHUSVMI0eLb183SvKOuLksgBLybCyOlFoTgSHTKoN8jryqst7hCcbp3xBu/9ZtMd/f48S9/EXnyCcnpJ2gxjXoRBCI4UglaBFQwURQeBEornHMolWK9p7IBawOTosL5EpWkGGvRIepLhBD0eqoVTEul8d5FV18kaZKCiBVyOI8rHWmm6OhopW6sQ4qEgAINKlguq5xEKT65/w1+/6v/jh/+iZ/n6WjMW2++xdNPnuKdYjrN0alhb/eA8ekYpeI529y4wnQ2ZnSU8/jRId5bZNBMxyUfffAMpRRlEeh0h5Qzj5SCznqGTCEYTy9bYb13BZ1sMi66zIqMri+xTtfA29QPnyZyWw1PHccNqaA/0Hgco/EJh6f7dLvPWBlcZ31znd6wQ5I5bt64ytbmFtXkECkSygIQCi88CknwsXs37Ri2PIE5y6SIGigFYQjCgrQgo7mi0orKBh4+3mdSTlhZGVDlUT9z6eoGvVXF8fGYyWnOejpg69I2WVeSJCkBjfWO0sDHdx+yt7fPqy/e4ode/SKmlNQyv/p/NZMm6rEJYpq3GRZahv2C4H5BUD+rSTkbG+JkswYZTYuPNvxEtlupAp328SIl6Wj29w+YzmQNbpoO0ZFxEgtUbrOZi+QD5zMVy6JYKeVcW/Y9LD/wAKX5LSDmI5dOnmoDXVyW6TRPk35YvtBtIJZxBkH77YCo+xXUGGUO5EUNOs/oLVqWRcwvZRM8451ZW+K3/w91cKrvZOoy6qVS4EUNxgJ4OXNupBAgweHn4KRB4gupmoZlEQKEEpEJkREhtyW/LUg5I15t26o3oCeeKR9C3VBvbuveGBMt3rBnBxIlasp+ocvzctoqsjaExmZ+znwtgrHmtbg1386gfL2Pp7MxB4d7TGeneG/r2Z6jKGd1cIuztarysX+ciw91lqU4b9jde8TLd15AZ+tIqXnw4YSHjyf4r77Jn/jxr1CW8K137lKaGOWdB6l1tKknBmxNIAmggiDYitksZzLJ2djcJutkyGApxke8//ab3P/o25hyQmE8noTTSc7J+BTvPYNhFyEEXrj6vo/lg90sxVtHt9tBqoDWtaet9SRJgveWJIlDgNbQ17Efj/OBrs5AxLy1cyllVfc9EdHvJS89PlOUhYkpCwSVi2WhzWAptSLR0VK+uRJSxC7ZIQSkUjgfA2FpLFpFwJLohGBNDEbN56ylKA1aaypjkFJFMSoNsCMyflIQnIPgcL5CK8Vqv4uRMDku6WhBR1Xs332T39//mGurkmsbCjoCYSq6QqK1oXICtMQGFwGqStFJFE1HETVgLaUxlDbgvCdVAZ1kJFojpcE7C84hEtXm54MQWOdJ0xTvLUppCB6BwwUwzpAoQZpG2YINDi00mYgABekxFKyZgs1E8/F7b/Nfvvpt7t17gvUBhcaYisqCMYYPPvyQKzvbPH70hM997ov0u9v0Oo8w1TM+efAAV2XYSjE6NCht8AicK9DK00kDwimyoJHZAGNX6ehrEBJyLxmbDjYMIJxg6l7Q8flrdBXzKkawDHopppixu6s5nc04PNonhH2cfcDG6g6DlSEbm5LVYcLh/kM2V9aZjMGHpB5nmzRyUo8zMdVzfo4/H0/asSqWMhJ1gJLoIF0ynhwwzccEETg8rMhnOZ0sAwzjkxNeePEyUq5ycmT41luPOBwd8drrl9nc2kRqyXC1izt2WOsZn+R8fPdDfuj129y48Qp37+0za4sv5qmNOCLNJ1hBNP9enmQu/jucGevOj3Nnjz2uran+mfcgi2y3CAXe52id0B2sM5kZTk6r+HzTVDLVD65wEGQ7ti+y75FFYYFFWY6lEXzFQ1ucNH6vyw84QGk0CvHGJSxe6Dkz0La5p0nRLFz8C26KJVZhaXuLgfmC974D4m0FqCLm7dvAOV8BgrmeYgl3hrAEeS7ap6XUSFgO1AFqvwtXA53mxlkQ6QrZUp6LFvdKLetlFm++lqGoN9mYsjWnxrmY5gln9uei9E1obmwRc6RKRWfV5b4Yc0QY6vMSFt5ZvGBzVO9BNtSoQARNVZWMRifsH+5iXU5/mKBSy0luoj+H0DgrWqGslGCtIdEZLnhM8Dx4uMdgtU+WreCDxQsonebh4wlf/eqb/MiPfAHnKt55/y6V9UiZ1o3RVAymOJyZsvdkRJam+FBx79499vaP+ck/9TOkYsDB/kM+evsNDh4/wJenpDpS5bktEMGitUerhH6nw6zIqZxDS0E/1SjhWBmkpFqTJAlSgfexrDjYCMKzrIN3ljRJqCoTmRelqKwjLyu897gQq3V0LUZUKsIRmSWUZUnWTxEydnUVNVDwnrrEPKachFRoKel2U6xzyDrNs+j620yxy6rCy9gMTdYz47Is0UohtYiz6FTVIlJQHkLwpFrVbGXcHiLqaKwLKBNTQOv9HtYUseKocuwfT5hOPcenCTc2Omx3NUI5kuDoJinOx9m1krFSKHgoygprJbZOL1XG1NMegbXRY0coSSdNsSbU4lhBcFAFj3cmPkt1oAjWo0RM/3kpKGOHxAgkfRzXbDCI2vRMy5TEOwa2YG1tjcfFEVcvSULV5/GTU/LK4RzkueXZ7oiT8ZgPOvcYDnpU1rGxvs6TR4dsbq4xHO5yYl2d/ovAP0mh1xMMegM21gYMskDHrXJ6MmWWrzBMN4Bao+QTJF0UXVzkntpxJdbv+DjRwZHoqPcwVjDeN+ztVwSX1YZrKVqUXN65zq2bW0g/xFcCKdaY5YKAno8rIbQsYCRumynPedZkeRyOz77wHuENwqeo0KWbrTLREypXYCvBxJXks4KAw4UKnSY4m3B8ZDk6rFDacmlnlU7X0BskbF0a4EzB0fEkVpNVjoODZ9z67Ke5mq8xOZ2QL451bSnEmWVxIFv4wFmmZHHMXHz9LKCJq/K1rYGKU/EQ0Hi0LBF+zHBljW5vhfHUcHpqwHfwomYh64mOI6aJm7i6lDb7npfwnN/fffmBBiiLvAO0cZmGhWhASv2vc4hjjq6XX1somv2e9mI517k882/FSe1+zdmceXrkjD5DnME/YfHY5vt5Nge5SLU1tHvcD0+rCfGRTZAh0tbR7+RiS3slJUE1Alm5JJJdGgCWHirRHpv1Drcg7m06GZ+9wRdTNUI04rVl1Xr8XM1ULZzz5fO+AIDE4kNbs2kiWlBPZzn7B/tMpmMGQ8HW1jrH430O9kcUucc7iffxHCql0ZooABQe62MBZZg63n37CZ0k5/GDU4xXSAmV09x7eESn9zZf+NwdKlvwwce7VFYghCZLO/S6XQiWD95/i73HjxDe0O2lnE5naN1D2Anvv/0O9z98kzA5pIelv9Ih6fW4/+SAysaS3qybkaYpeTmFEOjIQKYCW6sJiZb0OwnWOJwtcMbjnME5jwixOspZAwTKoqyPD0KIHjreBypj2yfB16BCYFBakySaQb8XRalaEQSkGqRQGBuYFhWVdVTGYIQlVbq+d2p4KURkSESdcqxLlLWqU0QEUp2QJZrZdIoXsXlRkqR1KqYu0a8rhExtsx/kXFSIiCyE8A4dYmeRJNNU1lPagFGCovRMyxmjccn1jT6XVhJWe5FJHCiJsZbSW9I0w6EwXlJWjsp5XA2+pVLoRLdaHmctwVtE0yyw6Y/YzGeFIPjI0nnvwDuU0GQyoTKeUrjagqBO8dVGlAKJkoFUWISZcf/ZPtVqwmuvX+Izr7/Ehx8e8Dtf+zazEozzHB5N6WSCEEYkSnM6mfCTf/LHSNIBxk65efM6d91Tul2Bq6J+J808n/7MLV64cR1vHOPRLmv9G5yWioINTkwGUiNxSFkiQnTP1c5h2gmERwiHCK5mnS29bopWUJYKU8UqLS00OI2XGu80KyuX2Nm8jcnHJAPFbKqpKvAhailkcBBUBMLPmYVflAKPzG9s8KlkXXklYsVVknQZ9jYYTY6ZFacIZdHKo5OUvPC8+85j8pnHVhIfHJUJmCpQmpJOL+XSpRV8KbG2YlZExvjp4wOebT3g+tVXePjoKaez2tuonnzGes3mPj1zAGFpMD0HPM6mxy869njvxylA9JnSbZqH4FCywNoThoMbTKae0YkjhDRGoZoRbwwNYvuOKMhvpAHPA03LY/V8PPeExUP6vgDOd/ewPbP8zu/8Dn/mz/wZrl69ihCCX//1Xz+3Y3/v7/09rly5Qrfb5Wd/9mf58MMPlz5zdHTEL/3SL7GyssLa2hp/9a/+VSaTyfe7K0BzUeoLQxO4iAF6IUUx1zrM82bzuXg4t87F9S4e28V02nkKbq57aYzdYjVNs39xH1v0RJBNUJ0/e6IOso1u5nnMzNLrTeBuzsfieWEhqIf5ZyOQW/Q8WWRRxDkWZfF8xk165iBrvnjvcX7e1Xnx98IOc/aBjD/LVU7NZ1tBLLGbbsOwiDPnvZUYC4kMjVkaFFXO0fEBx6MjrCsYT4744MOPePhgn8m4wlYSZ0PMCiFRQpPqjET16OpVEtUneIUQHWzVY/eZxVQpAhmZFASVE3zw0SPefe8jvvjZT3Pr2ib9jmQ46LO6ssKwqzh48iG7D95nfPiEg/0nPHn8gOPjffZ3H/Cf/93/yv23/gtXOzk/9qlL/Ninr/HZV2+Q5yWnhWFSWlwQdDpZNF/zJT1t2RxkbKz0kdKjgqU4OSKxOT1RspJYVhLHMAt0ZGwS5ozFGoeomzWayuJsNNdzLoDUCJXSWnbXfK61jqoymKrCOwe2AmvIlETLyA4Nuglrgx6rwz5aCqwz5PmMvIhCQ2Ms1kUL9MiyxVQPQiC1xkuJITCrKmyIjEzj3KkRJEAiIc0E/UFGwGGdwbpoQtfIvrz3WBvTJ076qCmSEiGhrEqKylIGzchlvLuf89bDEfePLGObMHWCmYGigrwSnMws+yczRnnOrKpAadJOlyRJSbQk1RKtBEpGBkE1QKnRSTiLxJFqQaokSgS6qUZLiQqgXEAHED6KjCPTAomQaBnF6omCjg5kyqOFxNgCmRp6q54vfPE2L1xbR8tY5RRQGF8blgVLcXrK3XfeQ8uUkxOBkH1WBx1Wh5KN9YztSz2u3VjnyvV1Bisdjg726OqMpHMV5G1mswGgSaRmPXNspacM9YiMCTKUdW8sUY9vHiE8Qno6maabRWfZsvB1+bggOIVqqt1CbBchhWRrbZ3L21eZTMHVXYMXR40o/Izj6bzz7kLAbM772ZFGQPQlcSBialIicUaC0ygUiZZ0h5Ir19bY2VpjfbCKzR3FrIygSwhOT0v2no3ZfXrMycmUrKe4cfMKr7zyKnde/Tyrwxc4OppRlDO2tlbrsaeJUQ3kjxiiYYVinIiNS+vgsMCELCwyWhHEVEycaDReK/OotlihWRvEEesHtfJoVZBqy+nMMBpX+KAjiFgwvvO1FKDmTeP5rcH/YnWlrCs968H23Mx6WYESj+b7IWC+bwZlOp3yuc99jr/yV/4Kf+Ev/IVz7/+jf/SP+LVf+zX+xb/4F9y+fZu/+3f/Lj/3cz/HO++8Q6cTDXZ+6Zd+iadPn/If/+N/xBjDX/7Lf5lf/uVf5n/5X/6X72tf2ssnBI0uYfHNpTSNaNDrQoVOG9zmaus5iBFtCmEOGBare84H28aaXYoF9XbzMC1oPpqLFC9U480aZ42R2w01vT0/pDOHNv/3c9JKza3W6DQaQBRC5OB9EO2NFZFz4zsyvwHreIFUy+Y8Z5cmxRNJjPiP4KMHRKN7uWifF8/PnP2IXitaJ0ipz2xvTudC9NyID/IFpOHizCPE2YSzltPJiIPjXabTCSFYjMlxLqBlH1ud4m0sZ41OiholEoJVYBP6vR28KBlNH+OtQHc7lOU05mq9av14nPfklead93YZdLt8+Uuv81+/9i55lTBIJdXJHma2h3KxssbagA2BsrL0dWBNTnn1So8Xd1bpJgLnBR8dTHh0MOa0hFnhybxFBk9Hw7CTkSqJqzUbZlbQ7wt2ttcYaEk3U3Q6UZxYGsd06jiZOca5Ia8M3jaBJeaXvakb79VlzqI5wc4jpcJ6MMEikwRdB2NXi2JFHZi1CHgRSDKFJKUoK7wXVK7x8hFoINUJGkVzJ3prQEnqgqF65hZZHefBOUuqZdS2qKh7SJVGdjt1WspibQQzSgoSqfHeY5yIs8eaaYwVToGqtJTe4INEK8lRFcifTCkrwe2dFToSRFDIKqZngnXoJJag6yQh1RrvKpSANJGAI5hoiiWlbEuLVf1sSCnIdOOcW2tysgxnLRYX02whGmSpME8Ct5IsD1oqukrQ72VUPU2QntKM6CWSm9cvcf/BPtbF9FLA0++lfOmzd/jxL32B4/0x33znMc508cYy6K5QTPfor2TonqaTdalKwe7uCb6SbF++iu7sMOj12OqestbJyZLApZ4ntTl5PmEqcnJhozEZgRDrnoCAUoFhL6GrFYenJbZ2lvZB1uXHArC163xAiIpE9ZnlKaWR9bQuiseFiExdaCdINER5Ozos/2N5PAgylt0GEZtbhhBN24RIUUKRqoTrNza58coqa/0e06OcYugZ7Z3gTEV30EMpwdFhjvcaYwqm0wmD/oAXbr7IxvAmyqe4qsKWM/b29+kNevPts1DoEPNTUSyPiB3riWByMRWyKB1AQMDVzwMoBOCgvs6iCeeC2B+sFgaDRQOJCqytKmYnU7I0ZZJLLKqOLYEQbAv2FsfO+FRH+wIhRdwk9bjQWFE03lOLGQSWp62tNk0qvtfl+wYov/ALv8Av/MIvXPheCIF/8k/+CX/n7/wd/uyf/bMA/Mt/+S/Z2dnh13/91/nFX/xF3n33XX7jN36DP/qjP+KHf/iHAfin//Sf8qf/9J/mH//jf8zVq1e/951pZyjN337xrYV/iQY+n/m+oPHZO4vqGnX4uU1+L9RiHaRFDVTO03Tz7V90UC1F3ayORcrs4u0vbvfc5xZvmhBLHZ/XQntpPxd0J4uMxrmyNpbHhIat8W6ue/leaL05HRvTSlorzqZ55tuYC3+bffBn8rLteVDgvSIvSo4OjxgdHmFMNHva3L5M1nE8eLiLtbHFgNZxm1qm4BK8UfS7a2yuXyHIHMsJeT7m8tU1OmnGJx8fYytVt8mxscOql+Qzx1vvfEJ/fZ0vfPlLvPnGuxQne8jqBG/BBMnEBKwRCOPoSM9r11d57foqN9e6JMpyOAvc3ct54/09jguofHNtozZidWVIL0soi5yyqMhkYDULXFvvcHUzoyuIbEMiSNMMHzxmBQoLR5OCw0nBwbjitHQEGQWcPsSBxwdH8G6hxUFDlUsqY6kwqCRBSNF6eSAEUjazxPgM9TopWitmeQlKYa3DGItWKqacRJNSVBhf1QLreF2j9sOjkwQlBQIZdR8hkKJRiaSyJg6UCLRKkFpRFAUWCLrWRogQHYxrgCKEiLqWToeyLGOJtJB4KZlWgo8ej5nMKjaHioxAqhSJknS7MVXVzTRJqhHOkypBkki0jj14CpcvGNnVnU+sI9GCLE1aVtLbONLLOpVKXYKMC3WbiVrzE2IKzHsorcB48DIa72VZgjXRi6W7vkLwhkubfYyN+iSVSj5z5zr/+z/9c9y8fJ1Hn+zz7CAlLwQ60YyOJGJV41WB7HS5svkql69+isnpKfL0Y1Y3XqIUHbbWunSVp6NLurpi2A0UM4fBI72E0PTHqT2WRDTLWelIBhlYJzideRwCLyQEhZceGUqa7sAySLI00F/pMsllBDFiPuNuU7wtC3wm1XxujFgalWgqiwQOGeLzraQiS6EsQATJ9cs73Lq6xuhgHy0sX/j8pzk6nuLu77F5ZQ2pY4l4WVYkGi5tbfDirTtsrL1EqAaYwuPCBIGJ7s22ik/Cwvg91+RdtJ/tyEWMBQtCg0DNNNW2niKyVKGdITbgR0V7+2AiMPaejvYMVgRaTSnLCXqwiTUDQkho7WQWQ5hvJo7zc9/s63J63dfXrzGlW2TzaWO0OBODvtflv6sG5d69ezx79oyf/dmfbV9bXV3lK1/5Cn/wB3/AL/7iL/IHf/AHrK2tteAE4Gd/9meRUvLVr36VP//n//y59ZZlSVmW7d/j8RigTUU4788E7uUZecuKLN0czUmraxBa19CluT6LfRzaV78TSGB+ic6Kti7KIV6Y06uZlbObmd8UF7MmZz+78MfS933w4OaVFs0sufnxjcmdaM7xXIPSeKJ813MQQtvR+DuDq7OalgZln9egnD0P4cy6F9uXt58lztiNgfF4wsH+AWUxRRGwlef0xNDt9zk4Oqht/nUEGCFhehpwxrE+XOXS9k1WVzYx/oRhuUFZTTjcf8QLN1/GGcUnd48jdU3tyCoETkumpeOdbz/g9gs3cfmY0+M9hDckqaRyYD3YYFjval65PORTVzpc6liUsIwLydff3+et+2NyFMgINLI0djEe9jMG3QxvLd4Fulqw1hFcX0u5tJaxmjoyEUiFJEs0OhpC4hSEJLCiFWudHuv9HnsnFYeTktPcYAOxtDDEOXik7sGGyPiE2LCFEASuzqU07NucZI5UtatFsomSdLKU0rhYESME3jkqY8myLPKHvq7YqYWkzrm6qWas9oksjqtTJ7XbbB3kBQGtE6Z5RWiEqwGUj8yIEPMqNt8wp0LUQFhTFCVZmrC6sk4+UUyqkgfHJaelZpgIOlQMuhqZ9kkDJFpHjUUwJElSC15tDKo+snDOO1KVobVG1uJDIUTrBaOTmjkKAaVVbZOvMI0AuJ2ohJbtVVphiJV2s/KUaZEwKWdsDNfReh3hR1zb3ubOp14EITkaH3Dn5dsMOhkPH32CkF1++Ie/gBRDPr77bQ73R7z84hXQivWtO+ys38G5DDP5gF7WIeguOOimnmQgkcGjqMjqsmdZW6iLehK42Jelm2jW+57VQZ+PH4ywoam79e1nvGiMBwNd7Rl0BF4EZoUjhMgI1nmQ+irXY1mjQfoO48/Sbx+iU3OY31P9fsLlq1fRyTaHR894+vgZJq94+NFDqtkMJRMO9vdYW+9xU2zTW0mZTMekmWLQyUi1ZGU4YGfrGjJ0MdLjhEEKgZOONOlyfJKfC9AN6Fpk5CPIkO11XloW40bdLmA+GdcL52GhgjTYmr2TdDPLoBMZwMn0iOADlgFeJHGbXLTNsLQ+0aRmnuPAvvDF9rwvTqzDmRj0vS7/XQHKs2fPANjZ2Vl6fWdnp33v2bNnXLp0aXkntGZjY6P9zNnlH/7Df8jf//t//9zrcyLiLDoL7UzpnP2uoLbzFvNswQWNkBbTMYuvidoGvAE3ov3MAlMTxOLX5sF/gY1okPE5oRO0rMtiRVJzYwixvO45ZXj+xlkGSPNthRBV+A0D0exHaxHflKmH+T7FwVyyaNq2yATNacv5l3wNUBqW46JSOSHCudcXS5sbMHTupq5zZOEMO9M+rM2lIJY8T4sJR0fPKPIxSljAo4SnyHNMlbGxvsFkUiCEwhlJPjGUhaff6bO9dZntzWv0OhmneUW/u8Hp6R5HR8fk+bukagOVGIIReBf312FxXiArwfSk5MH7H1OdjiimY6z3mHFtBe8DKgTW+5qbGynbHUGmYWI8f/zxAW/dP6YMKUmaIIRntZ+S51NECPTTHjIYrCkRrmSlq7my3mVzJaGbCFRwJIAW0WdEE708hFBYb8lSRZYKhj3JMJOsdmD32HJaeKamAlQcupRCelqQ0DQX9M5jRCyjbYJpm84TdfuGQOv4KwWkOrIvnSzFWIedFbFvE3X5ogelNLK5H4gCXYkEKREyBvPgHdZZcLH0W9Vlx90QyCuDtY1BHVgX2YtGDB41Nq59LrWOnaSLoiTPS0yQVGiETjkqSowX9KUkSM/QEZlFIaCuHkq0Am8JtShcKklwHqV1M1yjpULrWnjuayM9naKkpKqq2P1Yx/MoktocUcRKoRgnBASHcR4TBJVL6PfXOCiPSdJAJ1vjtdf+JLev/Tz/5T/8a65vbdJf3cRri/S75JMn3P/4HllnyPbVTzE6ecrdB3/E4cljhvue//nn/jyb21+imnY4PRljZ1M21tZxPiV4icSSao+vHCoEtBA16PJQp3diStkihCMRnpW+pte1jMczpoXDtYG4Nr4L8ZxKEe+0lV5gddBnNgtYrxq6ZPGhb5/yxTHkgoHv3PshCGTIkBQI4RkMJStr65ycnPDowVOkKvmRH36NldWUR0/vMg3w9Ok++4djVje26XVSvC24eXWbmzeuE1zF8eiAXmeDbrKCrRIcOUrlIHM6XYG1iqPD2XmiOsyPoRkX58t3AwDx+CJuUy2rJGpBS0wRKSQeREWWBVb7CbYsmE4NRT5lMFyhcFk9Mb94E018C37O9rQ/fhlHLVYUnV3d8yQI3+vyA1HF87f/9t/mb/7Nv9n+PR6PuXHjxhyMXCjGiYPbnKWaD3iytvpdFCGdYzHg/MULiy8uCDFpZpFz8NHuz9JD1rADyy6y59iVxWMQc/Bzlg06rwk5A6bOgp+WoQlt4G71Ke13zoigpKidQ5ddZS/AfTWdR7uP4QIG5TtRssv7ELd99r3mmjfMSPA1UGlmIu1sq/5cgLIyjMcjprN9bl5fhdBn79kBo9EhnRUFwTMdO7To470kPy0oi1hRsrmxwbUrV9hYX4+mZ1WKosvq4DJFXlDkFZ//yotcu5bzjTc+pMyjO6tQElBooeknmunoGcFO2VjrcTKtcIWvA71HectQOy4PE7qJIveSD/dPOSgTJk6xNkhZWRkwmZ7SSyTCRVGbsybm9L0jEY7VbofVjqKr63mVE8hEkKYKXXcPVvX1VTrFBotSgV4Q9LRkJU0YpF32J469U8PRxGJ81IMsagCaZobRUC92OlY6/h0HsXk6JUqq4t9aaYT0OAHBGxKlsVphjCFJk/ZGss61FV9JmuBd1KaEEM3gZO1yHIJDELDGIhRIqehkCZ1uxmSa46yPHZOto7IerRTUHhhQ95vyHq01nU6GUoLZrIhNC73HOIkNCl8FZCdhoGVsgVe/H0RAyuhj4pwFwLvYe6eTdfDO1N2O6+q3Ou2ZaIUNHu9c82TH74fYjoA6fdFqgGRMRDfuoJ4UR4dut48OOVJKrl19navXPoO8vMEHb32TKj/mx37sc5Ruynvv3uX+h0/ITy1lXvDVb77J08NTimlBOSsoKsPaxtf5M/+HL0MnQ44qqsmI4fY6s5lEJ5qmf4qtRdRxklNPAHBQd9wWAgiG1a5iYwjD4ToPn+xjfD2xqrtxyyAJwpFmlpW+pp9ZNobQzTqcjhPCAot7nvXmwr/b18+OdxA7ZvvYiqDbjffI7rNdnj494uhgRJ4fMDp8yg999hargyFHe4ekqebOZ15jOqt49/27vPLqbX74i1/i2pVrfPLgY/LplF5niCAw6GtMljI5LfA+VmftH5zgrGyfifkYtrCTF45vy68tL7XXCMQSbuHamBQrFWMKSwtHpxcYrKSUp47JVOBt1GzJJMXOBCLMxbVnU1CijVvL+7RY5HE+3cNy8GrQ03e5Xt9p+e8KUC5fvgzA7u4uV65caV/f3d3l85//fPuZvb29pe9Zazk6Omq/f3bJsowsyy54p04J1BToYoXKInvSshLN73bG/32iugWqsf0tzr43T8E02wjLK4AzAOMiIDG/KeZMS2upL5ZvqMWeFN8XYl24ueb7Et+SUhJkXU0gGoDSeKPMzdri73gjztF2PGZ/BqAs7l+7Cz4aFS2+17A9Z9M88/XUYk7vn3MNawV6iAzFLJ9yeHhACAVXr+9QzaZc2foUT3bvIdOKJ89GTMcOX3UpC48rLVo4VgdDrl6+xuVLl0hTSylzRFEQgoOQ0e9tkaaOECw6ESSJosxBiAQRIFUJK90UXIEzU7odiQuqDuaGbpYwmZzQ6yquXFqll6VUwL39KXef5Zy6BOehKCr6PUNHK7QS9Pt9xrOcWeXopAlKKLKsS6qTqNRHkEiFAnxtACYcderJk8omhSDRKmpLUiFJhSbTmm4n0Ol5tJ6yO8rxxiN1ivfxXkyTBOdMff08xgWUTKPpWF2eKOvmgVJEFoUQ6p49kUVxLuCco9NJKcpYoJokCcZamsqsueukQEgVgYuKHZRDPdBrraMIOgSCt0ipcdaRJYqpMYTgCHiq0iI6stYXRb1HbHvvMcYQgo/VPUQhq3cea0qkVlRekDvJuDCsG41xCh+iN0dlLfjomBvBSmQJlJLYymODR0lIdUoIFmMNWsk6ReWXuocjFoA20UfINUAggEfhvcJ4ReET8sJjjeTFFz/NnTtfRierSN3l2gsv8963fpvjo6ccHDxjelQxmQiODjwnsxEfP9pnXNpa4JtwdJLzrW+/zec+/zY7lz/L+OQpifKMpwYnHVIqpI4iaKl0dJbFgVA0pdNtIBOOThJYH2g211L2R55JBV7KeoyOHb6FCKRZ4LOfu8WVrR7FeMK1a2uUxmFMAop2PDk7djxv4rXEzgrRntt4TgNKWQKCNO0xGo2YnIK3GXFmFat5jvZPuPnCFbY2tljfqDDmhFfvvMLlK5e4ffsVtreuIIKmyCXPnpxy48YKqZxiyghSrQFnM6azMabytbnhfH+9n4/rzx2j68A+n7AuHl8z3tdGeAKEUIhQ2+v76I806Em6vYR8ZpmMAzZkCHGC1AIbkrieIM/EpvNAhAuASPvjQzshXRh6zxzK88f+72X57wpQbt++zeXLl/lP/+k/tYBkPB7z1a9+lb/+1/86AD/2Yz/GaDTijTfe4Etf+hIA//k//2e893zlK1/5vra3hJDr301wbIDBPBXTgJk4uPlwviy2+f5ieuds58XQOAMKQZsHbB6QeiuCedxswMXiPi8G33m6ZAFo+AZkNSzNfE+FOL/P4oJq8QvL7Jobi7BMg565v+YpKYH0sbqnYU2aNM/5nGo4t62zGpRz+7OgFTpLczbn6LnfCmFBgLtwzCK03w8hUJYFx8cHHB8fEvyUk9EJxewYiWB7exXjDaencGm75PGjPWxVIKhY3+jw4u0dbt+6ynClw+n0GTac0h860FA8kXibsbq5xR9//S4noymmUtGmHoOUmtVhh8yXnB7ss7Wxxszm7O6PKSqFlAHrDFIJggzMSsfRpMRJzXsPT8hDirWGfi/FmcDh0SnDQcKkCJTG4oWiNI5JWdDRkmGmGJeRKg/es9IT9DJNQBJcIAmKJEgS6XDeoqVEI+veMLUhX6ZQwqO1JNEGaTU4xcGppXAVkMT1EdM1sganomYiqio29otOsY2uS0BdHSADLSumpKDCIpXCWoNSkiyNHYBDFScbkeGoxepSIInl4h4iGyLrDuDeY72h18nqfkAxvTLsd8nzMjYdlAJrHVBF/YjUBFORpJoQYspFa4VOFcE6EiUwPjpoeiGZVRYdPAenORvDjIGNVW6xu3T0O0proavzgcl0Fv34VaxwcDVYU0lSi4BdzTBFMayUav46oHUEpyaENk3mvKDwnplz7E6mvLv/lMuffpEv//DPsL52HUUCynPr1Tu8+c3f4pP77/Lhe3d59uQZkyJgnWY2y7EupSoqQseTphJNwuHxEb/9u7/Oz/38Ks/23ifpSh4dzNjebMa7usIvkVhfgNDx+oqAEgHhIrejBAz7irU1jZQJj54eUoVYQSZC/EwMzpY0SRkfnlIcPuHTr14jSzNG44ogBhewyHXcPjdWzJ/9OUPMfExuXhceIQ2dVMdy99xGgKUlSsPGVp/VNcHm5hAZDL2O4sN7D7Gi4jOf+xyXd15EJz3STpfj40PeevtNHj1+xGDYZ3Vwh+B6WFtgTElVBbxXsVlm3VpkYWRbmlOdlycwj1/txJEFwNIIUushPGgEaZ0aDShtGa5Iupng9LRiNpOxjFg4THnIYJjifJcoal4wLq0n2HPH8vm5bLWLS27kAd/W8y/oCJl//nnZqu8HqHzfAGUymfDRRx+1f9+7d49vfvObbGxscPPmTf7G3/gb/IN/8A945ZVX2jLjq1ev8uf+3J8D4LXXXuPnf/7n+Wt/7a/xz/7ZP8MYw6/8yq/wi7/4i99fBQ8sh+5ADOx4xFkYJ5pfzWz94rTI2aUJ5IsB+Hs5uU2QDw3F1XyXMwClDvTtQE5TnHd2tnAGAJxjXs6wNt/Dfi4BjOe8L4XEyzmbobVuwcmiNmS+z4trCy2D0oKUC/ZpMWvZnhsxTzM9b1l8aEJDVYpaX1QHQeccp9NT9g/3mOU5wQfef+8x21sJW1sZ9+7f5eGjA4TqsLU1YGfnJkWek6aS4YokTTUbGyWddEbpDJlKuPHCLYTU/OZ/+Dr7u2M++vAxeV4SQoqzgIizko4WrPQks2dHDLsa6+CTxyeMKwuhoqM1EPtlTHLPx09m9NOUylvGZSDpaLJM4mZjhFbImlXIK890ViJ0QhACUxmMkuSzisPRlExDRwk6WrDa02yuZqz0UhLvGaQpawPNsCvpZwlSxi7HUgDBgvB0M4FOYtDJZEKme2QqZ/+kYmorhEiiaFqn9a09L1GOM1ZocKX3jqYPkVKNYVO8j33wpImK4lDfCLXj3SOlwrW26aHVi8S0j0dYWgBdWocEBp0uztuYQkl0LCfWEtXLyEtDmqUUeQn1LDNJNEJpsqxDUczi/VYDLSEUSE9wETz4EKhcYCZgd2xY6Zf0dOxZ0ksVwVekUtalvQLvLMY5OklMxRlTNx+shYcOiWy6NktJEOAIrbYnhBB9W0Qsr7YBjI/mcGUQlMDYQGEcX/mRH2Xn0nV6aWx0mZtDOr0O/cEK1lbcevEVvvyVv0g2vMTdj7/NG3/0n3lysMtoNsG5irW1LQgWrRyPHt/jD7/2b+jLDoncim0VfGiTCoEIPtvnNThSYehnFjHUFDOHlJaNtYxeP+P+gxFF5ai9E+pnPDarC9IzmZR8ctew2Re4m4HD44oiSDr9rAa1or6/qIPgxSPWWSHmYlBtxzIpSRIFwlCWOS44kJYkswQ9QXcs25e3QXmOR4esbAx49c4tnCjxfoZOYHVlEB1/MVy+dgmdaqaTCuclIWgCGR6LFwYfUnyo+/6cDUcL8WQOCEJ7fzTNQdsxfmkcXAQQCmgaKDqUNqysZCSJ52TsKHOJR+KkA1fgzYxe5wqjaUogJWAXTiKEJR1j49k1ByTNM95MDOeAhZY5fN7y3VL7z1u+b4Dy9a9/nZ/+6Z9u/260IX/pL/0l/vk//+f8rb/1t5hOp/zyL/8yo9GIn/iJn+A3fuM3Wg8UgH/1r/4Vv/Irv8LP/MzPIKXkL/7Fv8iv/dqvfd873yyNMr+hnWjYkSbg1WGw5lTmyLRlKJ63Ypaehe8UMC9K1dQ7F9+/4PNyIdDP004Nppk/XOfyfHDm77OVMMufWUS1i9+bv75wfGL+72YflxkfVYOUdg2LR7Ww76INLg1A+V41KFLJKBhUzy8zZuGaz787T+t57ymKgqPjESfjU1yI/TJGY0dlpmxsXSNIwSwvGZ2c0B8cE/wply6vMxxu0u1qSnPC6fQTkgSkrtjaXqXXTzg8LJjOorGgNYLgksgqyOjboLVmY2VAOT5BS48X8GDvGZPSIFWK8BZbWYyNFTlCCnanhveejLGVw0uNLQxeKIzX9HSgIwVKaQpT0e12IAQKu5BDVooqCAprObUekQcOcs/DkwlaejpKoRH0Usn2Wo8rmz16iaCbJQy6sZlggiNLo5dHN4ksiFuJ11UrzdNRQe5C1NfUfj1K6dinSMQZ1SJglFK0FTOEaJxo7bwRpaqra5JE4VzAO4MxhihUtnjVAPelOwQhYlo4CIFxHhUCs1DSSWXbOyt2jI5sRJqmFNZjfdTmBARlaaKo1RmUqtmQ+l7VOouMgfBUpYm9dURsARCE5vHBKZcHGQoIwdCRUYeRJZo0iQJeQn0fK0ljKGSdJUs1EKuVQm0+pxNNk9YKPj6vVd1Y0QeFQ2BCBCeFl1RIJlZgvaYsZ3Q6cHJ8wMMHT/jGO1/n5vVbSGWY5jmf+8KXuPXSn8LRYTx+xtb6EKEdx/khuc8RAlKdkXUDWgnufvwtPvvaj2H8AOOneCHnE7660kQKjUDVNmEzBt2Kl2/c4Gh0SJIk9Lswqyy7xwUOFbUO9bVr7wcBiRL0s5TVYYdO0ud0YqEv0TiSxarK0MKb5g5oY/bFuobzbG4IDqUgLxzOefJizO7BU45Ge+T5EWlng6IwFNMcpSTJEI5GR2xe7vLJww+ZTgxbn18DbynzA5Qq2NxaZWNjgEoyXKWI1QUShK9ByvkUSByullPri6/X756bQjfDbQgyVgsqEPEOBFGgs4r1tS5KSE5HlsKmUTtGwEuHcCdoAd6k4DVO1PcozQT4rBXE4gQwAhUfonuy8/EcLo7tIXC+AGkhfp6NZ9/r8n0DlJ/6qZ/6rgHmV3/1V/nVX/3V535mY2Pj+zZlu3BbsmYf6p94jRsKbc6vxMA7H+za2Dr/9RwWYR6oFwHI2X83S/MQtcBHNOApnAvlc8qh+f4i1TZnFpp1uroSIjRVQogaHzTfWVzXmVKuFpjU8uv6YWi/0dSvL9W91yi+DiTOzXvznPVCEbVbbliYuTRU7LxSKJy7OUVzkln+EbX5z2JjwkUQFUGXiLPMtmQ0LJxTibEVJ+Mxh4cHVGXteBqiGdpsVvLbv/MOMKM3HLJ1ZYvRyT75NPB09wm7e4cMBwN2Lq+jZWQJUi3Z233IwdETKpOxtZnijaGcFhhRk3d135rN4ZDydEQxPiTTltM8Wr8naRJ9PxD4un9NqBydVFM5zyf7M4YdRTfTOG8gEWQ6IdOeThKvUzfTrK+tMJ3MMKNTog4gCihlXY1CsDFdoFNmtcZCORVNvvLAg/EpvSenZCogZaCbSnqJoJ9Ibu6ssTbI6CSSVHdZG3p06kiSFKU1uycFuTUIER0+G/+DQC3ClXHQjA7CgujfFjUXPgS0VnFWLhU+QD7NCaHxXzEEoh231Kq9n8+Cf6liJYz3rhW6Vs4TqkAnS+swUXdSBlSi6SqFEh1mswprPWmisc7icSReoGRsUilFFKwmaRbF4UJjjaG2tsGJ6F3z3qNDXr15mcwYnBakKiAVCB+BqpbRUTbVmuAtxniknKfD5AIb4axvBd9RMQPG1QECG+8VJEiNCwlHpeb+8SGP90741/+vf83Wxior/ev82//P/4O0L7l1a5usl3H45JDReITB8fTRe3zwztdwZsZXfvSLTDjh4wf3yfOcmYeB02wPV3C5QZQJIUkJYlZXwsXuvniBCBpEQjRPsyTC0e8q+j1BN/V0eoG0l3Lv7iGV09HAEE8IFV4EAhIpYgptZ2uFrZUevpwwLTzTk5zVTuw55IKIpdthMVU/T3kIsTzeydonppkcNTatAY8PDoTFhpKyjF2inzx7yLP9BwRluXrtKonUfHJvj6tXNkmzHr/3u99AJJZXxE22thN++3d/h4Dlxdsvc7B/j/HJLt96e487r36ZYUe1QIqFMU7KqNFpRvNm3xdBy9IEsTHrJLJMktiPjLY/TjziUJuSCglKlvS6hvW1DO8Co+OSqoq9dxr7thACtjhia30LYzv4oIk9yurOxRdMgIG6QnKhPN+7mEL1y/5WvtZzhSaMNMfGRQDyXCT8jssPRBXP85YQmpMQw20Ioh7gGlupGOxCA05qECMWWQZCnd++AKKIwLwh4XdPnTQhP4S5KiQ0ebkaVyyCnXgDNn/PK2MCZ/J3Mr4WWKD+aNppN4wQLD6w589VFJaGaPHKwsaYg5PzqTEhRdtAcC6Upba7l3jfVCI0DNUiiIi5/VCLWRdZreb8tp7kTS4zDt1E3Uv8PaeI53Cyud7RcbTJedavWcc0n3E4OmQynUQ/DClxtsR5R2kCVQmVcaTTQ24NNzD+lN6gS+UU+/unHI0qHj8+4eqlS1R5ygs3L9FbX+Htd9+Og1xlePH2C4yOxkwKSwgKJSUbwwHCTDnef0oQjqIKOBvz3bI+p07EQCVstF333qOExARBd7iCsFMyJch6GmumSJVGcy5T0hv0YiqjscRuQKsUseeMkkASqWlXgogzXoSKtDYQguLUBMYm3p+qkig80lvujQ5Z6Uh6SrCxkrG90qHX7ZAkGVsbKTLtsH8yYZqb2JOlrmLxtS12K1KvAwZCYGthoBRRiyFk9FExlQWh4+AmZF2t0ggJRc1m6KWZnFKqrR4RMpY6N/emtZbSBEIiUSGeU+8MykewkKUSrXuMxzlFVRto+Qh42olFPRUMzkYCvTZWE/Uz6IMnd4LdKbiHh9zY6BJ6ilUlkUmKSgTeRC+MRCckSSwFtaZCSh01N6EOwCLe15WxUQOjNJX3BKkprKsnFNErRGiF0IqSHvdPKu7uHzEzgYcPjvmt3/wtvvKjP4HxOQM9ZHV1k5uXP8c3fu+/8uTBfTa23+X9t/6YtW6ge2WTze0hdz71Ap6Co5OS/cMxVQ7rocf1zaskXlKG2IaAEKuVRB34jYW8rIgaIUeqJcN+nyePHtNNLMNhh9PccXxiCKETx8QQxzofLFIINJ61fgdsxcnxlLXVIaRDBFnssRSIDBZu4ZGfs76RSmg61cexJwbI0I6FEew6ZvkY5w1ZBrPZMdYN8ViELNnY6LBzZZs8dzy+/5SVjuLKpUuAZjYVZP0N3n5rQqc/xZop3373XS5tb1PmOdsbV/jMnVtsbtyMEw5v2wmyQCKCInhbj4f1mBXmE60zo3M7rgkEMkRrxDkY8+29EP8OSBHQwjLoOdZWUmwFoxOPsRk+zg7rNXt0qKiqCUrtMK0SPBpZO9e2seFcmqwBHra2CYirdM5jncV5d0Ej2HncmouT54HsYtb9Oy8/2ADlzG9YOMHNIs4kcc7E8IsErGe38N30J4tq61bUtLC5Vqjbghzav+f9b9zSupYZkMX9e57VfmigOTTI+4J9bpmU57RhWqQe5zOBeYqnMbZaTE1dhL6BOCN0bkkoNv9cc1BnCc342lkflOY77exDCBayB+25hkBpS07GJxwfH2GsoXleY8rJYKyp+8EEKmPY35tyfFjSSwXrl7r0upbjWUFReD48ecju3lMOjna485kXyZIeDz++R9KVvPKpPiubK+weHpMpzWq/i2LG4d6TSNjJBOcdxlmkCHSy2AgvS1OKokAB/SzORoVOyHOLtQUbwy6ZIvbbSWOwUlKRph1Oi4pxXlEUFa72BnE2xC6tIuCrqBXSIiHYWEYsRfSLMSY6rkqtcXWnaGc9Lkik1AShmM4se3kAb9EHhh6nrA06KBUb7Q3XBmT9LjPrsE7gvMKj0WkEA5E9E7EnTnDRu0TF0mFBBFLWOUxRodOYp3f1dVUqtjZwLnZSbq5/2y5BiAX/kphOkkHQTTMgkFcV3lR4L0mUYNDrxuAqau8RE51vB8MMYxyn0xLrA15EV9kgJFJFti+K6AONWLe5z62N/ZaMd0gCOItf74CTdNLYtVkEMM7hpaRyMT2mE4nzDusCdU00lQ/x/DtBXln6XY2NXXzqubRASI0Pcbo18Z5HM8e3H51wPK5AC/ICvvmt97j98i2+8IUvIIBOusq1K59m/FLFt9/8N3z49m9RVQUbl1bodLbRynHz2gbGXuPNdx4gfLT931pf49XXX6G/eYXDaRclJjVLr9txIPayKwkkaGmRncDqyoCPPnxAomLLiMcPn2JtEhkTaSPI8VFwL0VgtZ/RTRXGVJS2wlKQHZ7SG6RskMxTOKEey86MgYuzdOr2DgFLwOJ8xdHxEVVVsjocMJ0dcXz0lESDKS2rKzc4GT9jbVVx+eqLlMby5NEDyrLg5qsvsrW5xTe++YjTE8nRcYnxsLKmuXxlg7sfPuPq5Q+488oddncd3ZtbWJNgTT2O13bwcWd9+zs0yCQ8J70hakPEkCC8QAZLUIZQH6MkiRMMGe+bFE9CxWrXMugr8tIzOk2wLo2TuhBTlo6AChW2GpGkniAUzqs4UUVAiKX6Z52+W71JzZb4WvgdUzsRTDc/pgbXvgYsi8FYsPTnf9PyAw1QmoAUfQ3mlrtN2Sq1hoLmp/3OnC6MAP/5WpSLc5zN6p/PptTfvhA8tflGsQxoorjz7DrDwg0+D/IR88R25gjZZn0WiPDngJNQU+zPARULYEMp1d68UobWSTZqQ76HSh7mKZ7FfOR3Wpb1Lot07pl9DWeRfxw8nXPMZlOOjg6ZTqcE72IKwVsqYzHWYkxV/xgQivw0wRYDpBqifIdUVyhZkDtLmsDKeo/jkzH7+8cIIUkTzeufuUOv38MYQy/LWO33KacjprNjOplmXJXYEEt5lVZoEUg0JKjIDEjQIkHWzJEzhrVhl16m6KVdZtMp06LEVpZemuACjI5nVM5ifCDJMmZFhVQBW+eBpQAZILWWbidFBOqOxLHcWjRMgI79fZyLbqypElhjaO7XWOmmMUgqPKfTikRJwkmJ2i+QKpafI8CHHJWkyMoTgiVikMhUNuks56KQ1piyfQ5tXT9bmTohoySVtUtgwHvfirKVUm2FS3P/KxlZqaoq0VqTZRnOWYy3SJVQGEeqE/KyQItYsuwJ0TY/UyRpj/FpSWU8VWXpdDRKEn1KbNOPKbKhSskIZhwRHIuEqQNZOuTxjOAkWSJIZcpqv1Mfq6QsSyoR6HYylE6iOZ21CKmRKnZWDlLilKYwHi1TSiuwIomzXykwQTIzCU/KDt94OOXB8QlBBcARvGA6nfHRvff5qZ/6CyQyI1EDlB5w6cotvvE1iyhP2N68TJL0ybJA5Wf0ul0uXV6h94li2O2znna4evU6V26+ihEp9uSYRBnqDjFoIIRYJq6lJEsSpCjpdzxFOSV4Q3/QY3Rckk9jL55A02wumuZpLeh2FSu9pE67KGYl5N4iDk652d+JqSxEdH1tJ0C0g0ecoNSMrwh1QswzPj3g6d4Dnjx7yO6zPTbXLnHl0g7e5Tx5+jFaKF558bMc7j2mKkdsX9rCVo5Bb41LmzPSIHjhxi2ePD7m7Xc+xlhN5WK6xRnBzes3uXxVsDJcIy9KICH4BELSjkVxf2pQUvfIWWJ9Fya6c/PKOudD7Z0lAsi567ColT5BSLwIaDypNqz2A2uDHrOZ5CT3lHiQ0SxPBRe7eCOQbsbs9CmbW5uUVgNJzeRaRKhT08BcazLXnlhn6w7oUXNirV0CKM45jDEUZUlVVefWcXZcb87Fd4+b8+UHGqC0S8tKzctov5sQZ+kkNZSxWL6Jvv/dWGQxmhTKfH3LAf1MPxvRfvTCfVwUADfbanB6O5dY2MZcqHqeYXoe47H4frP9xjBLKZYYFNVWIJ0XBy+yKotOsg3DtKhcb1gh6nYDbfqr1r7EDrf1wz9nENtr3OQ+g4iMTVEVnIxHnJ6OcdbUFuqeyhiMcRjjsHWQsDZgK8Pj8T69To+dF27xyqsvcPfhmxwfvkuaOS7trBBUwAtJaTypCrx85xZXLl/j8ZMTsLA+6HI6OmA2GSG8iZ4EPqCCiQJIpRDCU5qyFlxCR0uc8ZSFIe0m0WkUz0qq6KsSkcaKFOk9O2s9xpMS3YseGNPSIBOJFhmlibR509I8BToioJyjtLHyo0nCSRnQzoOujatkQIrYVCzRGufiAORpGt1F7YgNMS0UUATroyeXjCydMRXCGFTd3TIQm0s2DGHwFmfn5Ys+RGGtF4DSqERQlmVssFlXBC3eR9bapedy7hsSRacNWKkqF9MnzrX6lmlZ4kMW/VuUQOoEgospKe9RKmFtpc9onJMXttayxLSLRKCFXJpdJmmKUJK8KAlIrNaUImFsDVkR2LQKGxQuiBrcRy2NsZaZCehEkecFxlSEUDIYDKO3iQNCQuk9lTdUHjwS4cFoOAkpHx7Dx6OcNz95xNSWGOHrJotxxl7Yit5KD+kTKjPGckDuD/HKMpsecP3F1ylNh16/x+zkiMpKVlcvc+PKBD85hLxgZW2by1d+iMJrnux+G2eOED4ChkAEd8F5gpEI7/HmlN5qwsnpKUI6ku4qew+PMK5JlwlEUCjhSJPYmiGEAuMMzsN4WlC62Cm7U3qQSZzZC2rgUSeOa4AyD3LNPRID+XhyxB+98bs8fHwP4ypev/MZPvv6D6OC5Btv/BE2F6hMsrv3BG8MK/0es4nheHqK8/sIY7nzyg163T7/9Q//mFkB1jdFCwG8IU0kqysDdnZuMBodEUSH4DXBN0ZsUTsjIKbEhapZ8WZfl1nvOfCq3w0RyAVZt3xAIENdwk0sz9ZUdFVgfSjpZJqTU8FkJrFCgbCx0zGCIA3IHFfOyE+eocIRg/5VjqeCIJpiEg/12NlodxZFr865OSCpQUoDSiJzYlqgUpYlxlb1M77AxFwYYS7IcnyH5QceoCxWqcxf47zzewsclifyof3/WbbhvA3wRWzKcrrlLAgRrT5jsadPW8Ug59bxona4bFMY7TrqPq++AQ7n00jPPze07MsieFs8nuZ8nE0tLetuYjBq9nVRLPs8kNKcVu+jY+biuRNCtIBwrkehBSLNOVJKRX2AqK9QPSto9tOHmoIM8UGzzjGZTjg+PiIvZvgQNQPGllSVrcFJwFqPsw5rLNY6EpFwafMyt2+9zK2bt7m0cwkhuhwcP8Aw5vj4lEtbW5yeTuj3NK9/+jWC6XL87AmbvTXu7z5kOj7A2xgsy1kBwUdQh4wdVAEhok4i0xrnAzpNSJJOnKVUBakUXB1oXrq+SmCNh/vHTI3CeY31nk4vw1hH36a4IEHE4EdNxwZr6WlJpgTTyjGTmpnxFC5qPIJ3WO+YTqbRcp3Ickggy1ISrVFCYm1M1XgbO6eGpv8HYEV0Sm3Ec0JInPWIJIn+J7UfilIKqQXexuqeJM2wtW27rbtc53lB0wl1LrizbUn74qAZvVXmGoPaRqStkgl1E0VRV1K5ICgLi1QarRJCXUzjjEcFCDYyr1J61oddZJgyKytA46QgkUTdRwiRPRJgXfR5yRIdZ5QepgZU1iFHcJR7Lm1kVD7QTRKMjzqZmZUYG8DAyYmJz7IzrGLiuXQBvCPLBODQtQC5ECmn9HlYZXzt8R5jHwg9gcwtiUiR3pEqgVIpT56N+Nf/2/+bK5d2uLS+SZoFnh0cs33tKidP77F/uM/K2m2uXP80N++ss7+/y+7Bh2i/z+ToLv1Oysuv3yEddJmczOj0ekBMAURTtnrmH2ui0cpRlad0sh1290d0Bz2eHE44yU0En96iQqya6nZT+j0JwmEd5FVgfJpjXMCjULXQm+DnrGnLKDTD9uK4FAOhEIG8mPDue3/M4dFjOl2NqCxZCicn+0xGY4wtOTo8ZrDSozPoMOylDIYZdDWlmjEeT9jcHHL9+gZ3P3nI7kGO8Umc2LTVRzH9SEi4e/cBJycFly9dBpL6fowgsZ14BQW1jm45rb8Yp+YVjyGEKK4WYKk1RyKglaObRcZEkzNMUzbXMrKO4nhsmBUypoVE1FsJJMbNOJw+RkvJ9OiIfHSf11/ZZmVtjaNC4E0jfBWEmpH0nqWqnOZniTGpf4cQU8UNQGl+N/5D3wmU/DfM+X/wAcpikJvP/sM55mDhG7SiBNpkT/v9drZWf+Ys4Fjc5qIQKIQQU0sLQAiW92EJzNQ/iyLZ+F4DlkK7Z0vbbdxk29QPdTXTxcApBvJ5aigCHV8HnvOlyxed18XjVUqRJEnsl3KmBPgi/YxzLuoRvkNH44t0P0pFj4zWyK5N6IV6MAutgKvJfhVlwWh0zGQ2qTUQ8wBnjKUyjsrEQbJ5IEWAwbDHiy++wLXrV+n1+nR7K/ypn/yf+d0//Le8/d4jvIc8j83ktja3SbN17n38lCd3d9l/chRn1C76Z1SmwgeHVrG1uwvx9eA8wTkSBd64KAFS1Okfy7X1DneuDrhzc5PVjmZ8ckrVkewieHg0Y280I9Mpk1lFf9gnnxWUZYUUgk6mSZRmZW2Vjgp4U4KSdKRGz0p6Poo9o1BTYEyFF4LKeLRUVMZRVpbSRJGtqHUUkY1ICMHjjEWq2oSNSA1LqWO+Wzb6DFcD2BjAg/BRj43AWR9z8AS01hjTMHxzb4XmuhPA1RU6i/dhI4Rt7gmlFJmOrIkjIFTMvwMUpaGsPEJVpElCEQyJVGQ6plUkkcFKEo/EsTaMA70LsdeWsR7vLKmWqFhPHD1RvCNLNd7FrsKTSQ6+Ax58ZehmituXBkidEKoCj6fwimkF49mUvG5m2NESJyu0ACWiC3FRORSSLEkpZcIzpzkSfS5/5kcw9/8TZjKqPXpWeemVT5FPT9neXiWvct741jt8fPcNNjZSvvCZOwyGKaUJ6EGK7G5weHzM9Rs/RNZbxyerXLq8Q1nCycH/j0F3hSvXN/n48ceMijFr6zvIxNTjRkyhBGJFStSvWTodwcowI5/lTPMpqFX2R/t1tZFH+UCqA5vrK0hhsS5HKc3RyYyJAeNj6iLG9ijCjSm1Wvwtm8Z5zXjYTMoaNtUznc54+uwhx8dHbG/v4Jzngw/e5YP332X/2V5dMi/Z3FlluDJkkp8ynVm8XieTiq1LGduXLkHpGc9OODw+xdrI6CBUfayxgjJJMgaDNT76+AGD3g0Eq4TWm6WWGNBMBOuUc/tDva5Flv7MWFiXcNfKJ7xw6ETTSQVbK4J+N+fSRockFYzGFdM8MrMhxHtGBIX0Hu/GJMmEtcELiFnAyYeUVUlv2KU7ElSVjTHAxyILH3w9FvoLwEnDNscUj3ce6+bMySKj4rwjOmzPY00css+jkv+hGJTF6zxPX8Q3LgZsdVCvBz1PkxI6y4acP4lnA/J30qc078//vfh3sw/RpXUuWBUt9RPX2yByUVNxoa4EgqgUlzTCq4v0JovrbAJBUxJGQ/UtcCpn0zvNMTdCwWWhrDrHoJxNkQXmDMo5zxIW9SXL+zxnmhSy9UKRhNqNcp49czhv8N5RGcP49JTR+ISqMtGDw4NzNWPiXGRNGnGXjQ9TmiRcu7LD7du3WVvfrL1MUpRKORlPcE6gledkNGG1u8Huo1N+e/8bPLu/y/TwhCrP0TIFnZFXJUp5OoOEEKJIrTIxMMsgwVkEAa0CWSoJokSYktUEPndtnc++uEG/k+AcaCEYJILj05xUBDItamGvZXwyQWlNZSJLY2YO7ypOJhUET7+fgpB4XyGkYLWXkqaKTtrDOYMP3ajH8TDLS6yLAlHnBUVVxd43zT0jq5iWEQLtBWnQ4D1pkhKEhxpQSAKEuqqrufYutqmw1rZsTTPHalJ9TcomNuyrdU9ubvYG0c6+SfVEgbZYYgaVSkAGyqoiILA26heUjiyTC+DqZofGlGRKkyiFMWWtUfMoJdlYG3JyWlEUJVJKqmbAFQIlQ/TRFaC1jJVUIvqclMZgul0Kqbi7O0YnmtEsMOwoOt2Mg9MZe8czJnlFlqT00gyZSPLKkmiBtxWDbEhQPUqvMaHDTHZ5/2jMRE1ZU5KymJAS7+f1zS7XrnRYX7/GxqVVHj5+wh+/+S6z0wCUPNvd49nuXR4+/YTtjR2uXHsVUaX0eisoleAIzKb7vPXm1wjeMlwd8Ox4Fz4IfObTr3Pl+nU6XYEjIXiNCNH3xIcSgeVkvEd/0Gcw6HAyOqbT6fFo11JWTXWiQ2nB5noPISpOTycEIammlmkBhuhwHJc6ASliYSyNDmpp+I1AqU3/1QE+SVJu3niJS5euQPAcH424/9Eu1aygf6UHsqAoKpJuyv7xISqJTNj+eAonOdevbnDnzovsPhvx5MkRJydl1MYQCCHOIGLlI8yKgsPDE1648UOYaoUQUmjHsDngiB2YI9hYAlU0B3V2QhgZmJjaiYyTDQEREkwlqIoZnSRnZZiSZo7TWcnpDDwZhJSAiRVwQhPEFKGmiHCK1jmVOSLpVniVcjIdU1YZwSd4X6fZfSMBiAXJzURhEYAsgpA4bhqsrZbeawsh6meljQVnYuiFwOy7LD/QAKXRXMQOw6JFoc87B22KhDPg4gzIaWdt4mK2ZPFzF2tW6u8ubGtxiVR0TPHMRYGiBZwNM4JoWmvPS5XjdmQb3AVRGNnoxs6iskVE34KyhR4VNVGzAO6WQUoLFORcgzIXyl7c8LA93mZ2vMCeLKZ0zqaGnrf9pmi7MSZqBGneW3zwsSpkNuN4dMRsNou0dGj0LwFnqXu/GJyrsLaK5alBsba6zisvvcqlSzvorIeQsQmfUorV1W3S3UfgK5To4QpNXji+/dFbVDNLN5GxySyunZnoJF4zJQUJAS88hY1plFR6Lm302R4KhlmgkwpSDVfW+3zq6jqrqSQ3JdPKErQhSQ1XNzOGQ8XxasrMGILvYGyc4U/6UV2fV4GyCjjnmRrH0UmBcbVtlAj0u4Zequl1ErQWZFnK6iCF4KnSWPKbZB2K0jArUiZlhfFQGU9exXSYkAJLwNuKNFEYa+I9ETxKx0oirXVrxNUA27IsY2uJ+j5ItcabKIXUSlPVbpZJkhAr4OeD2OK9lSRJe19EkbdoGU7rLC7EO8RaR1VFkLS1tcFslkeWDYXzcQD1SuGlQNb6IGdjqlALx6CX4WyFcS6mnqTE+nqwtR4pAnlRkihFmkYAnecl00lO6GhMqvn2wxE763221jr4ccmDx4fkVdz2ai/Q7WaUIaAAE337MT7DihUOpYDBKqdG8s6TT5hMJmRZxrUXNtjoD3n09GP6g6h7ePfdj6nenfL5L3yGF27ucHj0CeUsiqlvv/giQXiG3T46qxgMh+zu36XCcTjOefsbv8/es4dcu77JW+885enhAZX0DFb7XL52lay3SZKUMb1TX5EQLATD/U8exDYOqebytR0ePC3YP9xHWNDB0hkkDPtrTCdHlKagNDArKqxTOJ/E69oy3LV/laC1NBDNAMHymLo49kqpYhNGpciyHiJ4uskqr9y+w+n0CXmek3YdxhtG4zHeCabHJYWxrK0OGHQCw5cH9LOMTrrBowdPOTg0eB+N6WL6JSHgcMFzfGTYWO+RiD5ZNqjH61gK3TC47cS4Br3xCTwzeRQLDP/ipFUIEHEMUUIggiFVcOXSBhvrKxwc7fFgd8L61g6D1cuMx3GiIJSIjBKGrAvrg03WNq8wPYEP3voG165u01/fYTxWVEWInbxDfS29bNPgjbdJAzwqE6sdzYIYtknnOBt1Kd77OYBxDndWVxFYAin/Q6Z4gBZgLOOAhRTK877W5MUuJkyWgy3LIORscF3UoAjx3FUuf67RnjRet4Ll7S0JrOJPqJ/mc4G8PeTzqR5RgyWCqIO2W7KsXiwBvoh+m+tmFkWyegmgnD9G6oe87i8SFt9v50ntds9+r9mmqIWay9eioU4DzlmKsqCoKsbjMcaUhODnMwDjcIZIVTqLdRXORR+HTqfHrRu3ufXCiwwGKzElgUBqgXAJd179HA8f3aOalQyHqygUxWRK4gSVCeS2RCWKEKKrqRSC4EL0LPFxZlQZiwyBjYHg2kaHF3d6DJVhkCo6iWJ12GVztcugo2s2qIKqQnnoJimJFKx0FZdXE/LSREFl7YFjXZdpWeFFBE7TwnFaOPbHJaOZZ2YDpY+unnllOZpG51CtNZ0sbj+R0Ms0iapY6yWs9VPyMm5rMisoEknlJMY4nAfrYwVOwJPWVTS4QGUqXPDIutqmjkHxPBBTmFJGBqQqq1prUN/5AqqybOlwKSVNn6umYWBT0dM8s0LoaEFfxVSEVBpRV8F570nShNmsYDrL6XW7mDIKarUCHQK2smgZ022xLFOC9ejE0e0muFmFIzbKjFJHRSCCV1cHhY6GLJHIkFBZT248eeWYJjAuT3l0XGJswPgMpRKCMZRTR+EnrK8N6A062BDQnQFGZxwVnjGGTjcG0pmZxWaRZcWl7Q5rQ023c420lzCrPAcnJzhX8vjRAdvbO2TJQ4rKk+eBfv8qL97sUk0O6Q3XCJXkrTf/iE/dqXjy+JjDJ4/YXB0itWBle4XHx7s8fTKiP3jG/5+8/3qyJUuvO8HfFi6ODh1xtUidWYWSQEGQANlk06yH1t3Gnj9wHmbM5nVsxoxj3ewmG6pQQAFVCVRV6rxaxA19pIut5mG7n3Mi7k2gMG9JelpkxI04wo+Lvdde3/rWun3nFXtbQ9JUgHBEsWcAao6OX2BryenJhCSp+OA7H/Lw+TOsD2RK0O136HQ1F+MxxgkWpaQyUFmJJx43GSKr6CAyfaLRSLWmm4hVkN2yzLQ+NkaPHSXb6ctiXUUIjmsHe5x/9oj5YsFQpQiVgnRcXEyYzwqyjiLLJVka84CSxCEwiKDxIY1zRtuBI2KLtHOaszPL/m7CoJsR2utlbWy+zCRDZHza49aWpa4uwNZBStP0IARKWAYdx+98eJ33371GUVpqt02S9RCih3Wx1Kl0u4B0IAv2ro14/4P3UTLj7372K6T0dLtDnNvl7FTgrSZgo0eMlwTnccHivMWaqNGr67rxEzLUZsWU1LVZalJa1sR7u2Z7f5UZWg7va2P7P489gf9aAEpbpqE1jFrSAq8/tOUOw9rkL1bHcoXSr+D3byihXNJdiADNzeeXoGDNrCM0XSdr+y1EkzvTBFRGkqd5zebHIJpSlF89r33vpX5FtPv8j3fo+NaRdr0eGtr9e3OZR7RlpSWj0ubyyEv78drxCE3ImbUNi8JyP9uy2ooaXT+mcsUOCdGslv3yfAoEwkcatq5qJpNzFkVBWSxoxZtt/bRdBVjjmq8o6FJI9ne2eeett9ja2UOnCUiWds4hSLTqsdHZRShDNZsxm4/BBzSBTEsMEut8LI8EjzfRj0QisDagJOQqcG1Lce+gw42NnEEa6ChFJiWdLGFn1KWbRUas9gFvLKmMLqhItWRpnHcMdBJLHYAgJt26vsYFMFZS1QEbUhaux/ms5mxuuCgsk4VlVnpKE4d6ayzjynKBIFGgJXQSybCXMepmdPOEJFMM0pzaCSxQ1haHoKgs1gtmsxKCpK4cSiucA+MtQkQdS6IVQki8ddTGI5RC6rCsV0uVNNkzjeNmY+xmnSfLc7w3hLYDTAiCj8nAWkdjt7KqERAneB1FpYlOsC6QZClSamaLEms9ZWWQQpGmCWW1YDor6PUynBQYY8h1gnchAs1gY0uwkixKg7GuOb/xPAgZjdYIUFWGTqoYdHMqF5guKuZVhQua2kGBZLi9R280wDmLsBVaWXyqKHtd6iya2F1M55TUFAhUV2EWC8pFgdKOt797n//xf/q/8PO/+k9YV/D+O29zPrng+PljRsMBxycVf/03v2R//xrvvXObL798TjEzzGeWd9/+Po8ffIpUgvliwqw44+c//zPOTyw/+N7vs39tj48//zvSTLG/u8nh83PGpzOm53OkOcZUhtAJwAItK0p3ik4ruqM+Jy/O2d/v8/TpMafHc3ItSHsC7ysuJjMWhWNWeGqr8F42KzbXTPrN5N6awDVGgpfGy2ZQCKui4HKhIog+H1H4A0J4FrMJjx484PPPf8OimpN1BELCYNTn5as5k0lJJ0949+0bbGxkeFPx1cOvuX5ryK2793n/WHL0Z582Y1O7EGzLPQllAXWtlmNXuyBsRmla9+vVmLY2yrcLMnElJW6NwI9C5ECCZ6Mf+L0fvsWHH97n8GjKq9OAznZIyJgvQBQlQWgkBu8KAgvy1LB3sM/+/jbnpxWHzx8z6PbI811mVRfrkiZGIXY1ehuwPjSakhpjLKZuRK/GUtc1ta2xtsIYQ238GjBpGepWA7jKRGu1NstO2isL+X/u9q0GKO1EG5a1vYi2W6z2OpvAGrWxVg95I3vy2+3DZRajDc5rWuRatiTEJFMpWsZExKDAVty6Vpu8WrsLl97nzaLWFtSIJUq/XC7xTdcEIqycOZcXVet/u/rA6ynLqwOyAlMrR9lVN9FqX67so/dRIOphxQQ1gslLQGj9c62MuWR7XK+wSyAw1jGdzUhOjqltTW0qhGBN7GWxdkVLOhvwNrY+Dnpd7t25w/Ub18h7OUEJZGPJHxDUVc3hk2eoylNcnFHOp2gVJz2pJSiDrRwOgW07iTykIobvdTNJIi03NlLeu9ljty/pJ4FumkQLdAW9jiRPPFpEwy5f121RkFQrlPcgIwOhhMS5gE6jjbpoRkil0oaxiN4dlfVYLzjoJ8xLwaJOKJzgYm4ZF47CwryomZWewgRqB8ZCVTtm5YLxrGbUz0hk1FqkaUKuFXkamZFBJqltIBMJtQ3YxgE2Q7IoLLIBCw7T3BMxzMx7h6ktqZQkWkNznghhea7bW7I2hlQLwponSprnmLYNkghilZRLNi4OiB5jLEIlLKq6aUGPNvqDbkaaaIxRWB9YFDVplpBIjQuBREq8t7FbKos5Mf08YVFaisKgEtm0jvqm9RakaoG1R/hAliTY4JpuhyjCzYXm6fEZWUdz/8417tzaQaWCs/MplSspFiWLJIASJEqTZIrFdIGpa27f3uXarT6fffELLsbnZGzgvCXREgWUk4pUdjjY73F+dspGt8cPv/sOv/nsK/4f//f/J//zf/j3fPD+B/h6zvPnTzi4tsujBy+4eecW3/vx7/HJZ7/i888+xbgZm4MhYTsQfML5sSNTKdaC9wsW1TmqnjQArUQmlk43486t93nw5IyyqkkTy9HpCcaDcwllCdYny+7DGHvolgvDgEfIdvG2JoRvax9ybbQIPjIry0E5spNKACFmbj189DW/+c3HTKcz9g/2ePfD65zPnxEkLBYFEs2dm9fpdzO2tjo4m7CYCx4/PeXh45qnzxZIEdOY4/UVCF5BaKIpfGjcVENch14ajwUsmxeacv0lwCLwbUO4aOYnH5Yl6/bS19KyO1D84e9+wL2713nw6BUPns3pDG8y6GRLxj2COc+Ll19xfPY1nW7NxmbK/be3EeI9tBJUxTkbG5tY342eRyEuTPEebzzGW6wD40w0WzMNOKnjv2NJp27Ai4lRFC4sHWTX7e/b2AlClPius0Yt278c55dRLb/d9q0GKO22FHteodCgFbaK9Qc3P7Q3ymqSfxNL8o1hde2rXGEOvPeob+huWTZhifb3lzUcrWD1Td0w7b8v04jtY1rPgNUNfHULrABJu5+vGeusAYP1/V6CBbVuorYyU1uxIK+/71KYu1wZNaKwlshae8pKu7I6buv7sNq3eOH7YJnNZtGYUzWtr4Rl106kJ9dU6bYmOEuiNQf7B9y/373coAABAABJREFU/xabW9tNp0rzmijqes7Xn33Klx//LeX0GGyNVJJ5seBiWlBWYLxvarkAEi0kEk+mHIkWdBPPtU3Fu7c22OkKOsKSiUCiAmmi6OYJ/W6KIN741sTViBISFxxaRet8xCp0Uaqmk0qK2PEgJamOLY1SqibTJbYEei+xgwzjBJWFwgYWlafygkVRM17UTErHrApcLCzTMvqlGOd4eTyPA2aqSGSgk2q6nYQsSRj2e3RSRz9LKcsa60EqjXeOiS6wTlIHz6K2yKQZ6AV4F8PoMq3o9XqUVYUTHtvEIHjf/CyaVmWzuhaVUniiTqW9plqfnLb1MYpoJc551NJFOTKTWiucr4D4s0JR14b5rKafpzF4TUV9DMGzKAoSqdFJQq8j0VpS1jVaR12NMR4vJUomGC+oF3OUThBC0c0yaqFYFCVeQmE8h4fnGGE4Pz/j1p0/4eD6iJoF9UKT6IzBxgFCS+Zlia0tJy/PGQ776NTz6vgZVbGg1+0xnUyp6pJFXXL4asLkAibjY4Ybmv3tTRazGU5r7ty9wyeffMXhyf+NP/zD7/Pv/s2/4daduzx79JSD/cD29g7OHSP9GXf2h0wLTbe3yTtvvc+9t3/A9u4HPH58DMlTxosvyTck995+ixt7b/PyyXMefv4PHAzfYr6A8aTmbHLKbDHFBon3aQzQDI3Ts3BEy/qwmpyCXd7ncQ3XllQgJvRClJjHezqyJW4JylvLBusd5+en/OZXH/Pw0acEb/ne937IB+9/RC1OuHh0yHxWUxYlnW7KYKPLbHbONd3j/GzCfFrz1lsf8ejrUybjqplW/doi9vK20s+9Pj6/SQDaCrmFF0u33rbFV5E0jT8GITypcFzb7fB7P77Pzeu7/OLjr/j0y2M6o+tkAx09sLwAGc0zD48e8atPfkqSLbh3/yagePr8IfdfvUWq9pDKMxiNKGuNa7QmznmCtThrGuPKgHEeayzOWKwx1KZqxs2mW8cEnI0MZvAusi9rX/gYySCWZar1RfPrTSW0x/i33L7VAGVdlLnyCVlxI+uCzPZ3a7wJ7YOXeXusJuPl48OqFHJ14r6qQ2lP2qrzpPl9WHEiUq7Eva9bua/v/eozxtfwzYldB2C/HRJdalCaz7Mukm2/nHPIxjb6TTqWJSBRknWxbLsfV8FE+8YhxJWyd20rXoux3ZLNbctU0csitrku24sv1XYvl77iZ4iIXsgIAC+rzmO4lTUGY2usi0biW/0B79x7m2vXbpBkXXxT+7be4a1hcvySZ1/9hun5IfP5DOcF88LiG0dU6wMiRHAQQ/EkUkgyAZtdz7UtzfXNhP2NjEEKHeFJQiwLdTqaTidDK4ESHmcNQkqcM2Q6jbV8keJ8wLrocdIODi2bpBuWRhBIZCBLs8ge0IbwtcdKxJTgAB4VSx4eXOhQ1JrCBmqvmNeB00nFxbyiMILx3FA5KGpP7QLTuWEyi2Zsw55hMMjQGDYHXZQIaCkprGVz1CEEzflsxqxSeAll5alc1K8oJME66mKBMS4apzXH3dpYmlXSI1X0XmnLgNGbxS6vNyUFNKJbRBRxK6WYTosGKETTt/aajw6mCWmiyfOc4+MLBLHEJlVMHZ4vZvhMkyc6djfINqzSI5UmTSXGmLiQaeznyzr66qSpbsy1DN6DVgl51qO/tc8Pf+8PmP3s/+Thq2ecTWp+9ncf8z/f+9ckXYk3joMb1ymto6gK9Fzw8ukrOmlCmkhcMGiRkqYdzk5O2BsM6fc3eXU+pyg1z58cstGT9KSig2T3+nUeHD5kc/8GeZ7w6uWc//3/+CsePf2aP/rJ79JLe5yOj/FU6IfnCATbO0OyqgNScXLymDSFRGoUDqUOKasnvP/ev+Xg2gHDXofxsUJhCSLhy4dP+PLxC7zI0ckeoYqlXEcMYUSGZhKWiBAQ2Nj5FQKgiLk1ARliNrIIGoKG5tz7puwhhcI39wLCMZ6cM5uNOT094asvv+D4+AWjjYTf/dHv8/a9HyClYlyMmYwXPH5yjDEGrSXn52dMp+eoJPD0yXM2Rpu8OjymrgBSolW9g0a4vRyRw5XF76XSRdSatONQ1J2sFoIhEBn04JpmhmhG5wAlozOsFoab+z3+5R99j94w569+/mv+4VcvEMkm6SimX7ele+cN48kJn33xMUU5ZXMn50/++E+oK8eLw6959ORL7t8esHd9F1/n1HONc4LaWYILjRg2MiLWNp2NdVPmsTXGxJJOZJ/bNmO/bCOOoZbx3hNXjkloGMu22+r1uWRV5fhtt281QIE3r9qh0Sk0E6cUMaX0ytR/+aer4OPq671h0l5//3YSV0qhpFoWe5aPXQNTEFZln9cAyuudQevsUPOp157jaVcdqwviyhJgSdzIS/u8joTbUtDlbf31WDImrR/GKpPn9WO1ukFj7bIFWG1AWvv+cXJnGRS3rnVpQVBsxWZt4gGlJVknIc2TyJ6sfZ7LzIlryjtR4NVLM25ev8Gd27fp9gf4tozgPWUx5/jpl3z9yS+Ynr7k9GzCvIwlE3xkAKSSaKka8CBQQSJx9BPLtU3FvYMBB6OcvvZk0pMRyJUmkYpOrhkMu6SJAnx040RHyth5alcjpIxaiqrGu9haK4JAr5W6lIiTdPAeFQLCx3A6IWMabqJiqrAQARKJkDFBOFdJY20tMDY6ns7LmtoK7mz0WdQ5NgjmpWNeGS5mNYczz+ksMJ4ZKuMZzwoqaxChJhDoZZpUaSwBhEXLwFY/ZXOYsahqTEcw0zXSa5xz1N4giF05xocmm0bjgsc5i0xjd09pLK0NuLV+6YGSJQlaxRwX3+TorAS0EfxXdY1uVppZniIIy9q6Vpo8T0mSlMlkhhSKPE1QOomDsfSIILBltP6XKpDlGukCEk1ZmIZpFFgPRnhq5+hmGo1vAKInzXJ++JMf8W//x3+DGc44/v8cUcxLHj9/xpdfPmJ3NOLi1SOu7+2T9rrUpo7tFRbevf8+hyeHTOcliRU8uTiink34zr37pCplMbU8evCcYlHRlYob+3fZ3BxwfnHG+HxO0jnlrXsHPHp6TFFXPHjwirPj/4Ob1/a5vrfDaGPEydGYT379NZWVWOG4c/s617b3OH92SH3xU/rbW+xuSUrTYdTrIZHM5xOeP3vBgy9f8fzwS+rQYbh1DVNLxmODW+rrYgkveNswEq2TdGOL0AxPoSmKx2iEaCUQqyWhAZ4QbBsIGSjLCQ8efM7zF48pq5LziwmLxZxOT/LWuwfs7o8IwfDq6AUn4wc461BKMBx26PdHzOc1ne6QZ89PgQQhJU+ePmfUv9GA0UacfWVOudyFc3UsfzPzvno8UWdDQAaJbKwioizBkSrDu/e2+aM/+A4SzZ/+2T/w2VfHlC4jSQRBOEKoCaEGoXDe8uTZA6bTMUkq2N7ts7M7JEs22d3dJtExAuL69fs8/OoY52P3mnMOZxzBrTJ0jPVYs2KbTSOUNXXsymlLqq4RwbZl7LbUtfLXavtVfTPHxMaPy0zJ6wzTb7N96wFK3K5M6KGVybaU04rBaD0drj57nYyKgGJV8ly/ANcZlfZv6wyLENH8RqKWKKedeFevwRI4vUkn8xrmCo0HSlvPFas/LD9faJ/b1kFX5RvfIt0rSuuVRqVhfmgY2EtgaAXclgBFyKXdfVzVXmY4lscs+KX+ZR1ctfvb6lDasLh11mnpJCsvs1FtiSPLE7q9Lmmexk4PvxLHOueb9uLYIhtvsmj8tbm5yd17d9nZ3UVqhfUGFRTVYspvfvE3PPzkF9TzC6qywjlAaJQSMUROBoIQVMYgvSeRjm4S2B8q7uz3uL3TYZAKcinQCKTQpFKiEHTShF43IdUggyFNErxpBaglAHmeRWFvXTc212KprWjBopKySZeOzAHeY6roryKliFb6UsRwv6bTynuHo3EqDXGAcTqyFL2mfKKSFO91FMLWjsp1WBjHk5MFZws4Oqs4vqiZGzAYagenkwUXUpLqNAbuSUhUIE+T2J7oBV4oEiWQSSAVmjQkLMoaQkBpjQxQWRuTkUVk6Kq6xpjGy6Spu7tmBe2cQ8n294HgQlP6EWRZXJ22C4LofWPJ8hSabBFbWbqdnCzTlIkgyRSVqfEh+uYY5+l3+9SLgqqsGAxzlGzKvULRGQ2YTguctbEEITTGOioRQEsSQCjw3nB49ISPf/1TOn3P5mYHJQU3b+3x9OlLytMCXzlk8FRVwWwy4+EXj9kZ7TI+W/D44RFWwPn5EaF2vHtvl42NPuPzU86PT6OYOhU4IXj87BVHp6eYusKXgrNXY/79//RH/Ot/3eHrJw84O58iVKCYj/nNZ59RLgL9bMjhqzmLuiTvKLhxwCgb8fz0BanQHLx/gzv3P2A82cGXnn/4/Fc8ffKST3/5OaHKGe7eIenvUlYBU08BG4FFQ0evEQ2NjgRCaFPlW5rfIaRa/U44grAE4QCF9w2SETGV+NNPPubp068xtuTk7Iw067CxOcAzpXYzXr56xFE45+HjrxiMFL1exuZmzuZ2hjGK8/MFw6zL+MKzs73DdDLBWdgcisYU0kcGRYTL67vlRPzNE+ybhaBRmxKEJMgA0oFwMa1YWDqZ4aP3bvDHf/gDymLB//q//YyHT2YULsMJSGUEeaYu8b5DIGNejLkYn+Kdw/nAYl4wnZ2zdes6Bwc3WMwvSLIO/cE1KjOJQnrn8TYuAJxtQEgT/VEbQ13XTSNBE/7XZu841/gmuSUocX7lVRNo55vmODUAr50/Ca+zKP/YMXzT9l8FQAktoltOhJEraUHAko5rSh2rEs7rrMhVBuVNZZ03bZcm53Vk0pypS6BasLpzL73v5cctP1/zv7YNk0t6E+INJS7/7k36jfYxyx/X9jsCGX/pNa4+Lk6QKx+UlnK/ekgu12b9Ko8nxGTZlV4nvHbzt4xSnGSja+3KKybeHEma0Ot26XY7JIlukFlzAzWhVu3NVhuzzGzpdTvcvn2bm7du0ul2sc4wX8wpF3MefP4b/u6nf8bi4oxExi4UFTypcggVGTFjPMY4UgE7I8Xt7Q63d7vsdAWjTNBVcYJSISyBVZolKBHo9zOSJJYwCB7hoS5rjItJoADW1Bi7yiBpR/lWDBr1PuCsRSpJmkTBrTFVfE2pkHhSEY3eJB4RPMEZNNEW3rW5SEk0y0pk7FTIs1ga8ghMrqhdYFFLkqC4NhLc6CuORwknM8PMOBbO45FUJrAoSuo6gmWtoMwVzkvmhY0JwVphg0UogTciiuoCmCBiGcm3i4QAQdHrpPhgmhKdx0mLUjKea+epqposTWhQLd7FOHhrHULBaLTB+cV4KbrUWuOtQ4mACwZnDab29Lqa2nkWRU2eppHlkwpjHUmW4S0URUkICp3ErjVJY7KnJEEkVMZjfKA2AlMZBr2MLNVY53j45Wcc3Nngg997h8P37vOrTx5xcTbm7OSIp+4RP/m9j8hHHar5jE6aUs4NYSD48ouvOT6ZYkUUdGsvuX3rFkUx52y8QMa6KT5AHRzH0xkbsoN0Hq1SFuOKw2cv+ckf/YB79/+Iydzy7MVzPvviYzodxcOnD+noIXO7oNfPuXvzBjd3b5BnXbZ3d+lt9Oh2+tSl5fhZwee//AVPnjxnfHHOwd4+H334hxxPBGczQ1EvCBTNtdqONVF3onTUHhGa7Cdiok+ctC2ItuOyWYAIT2yDbVbiIQAGHypeHj7h5ctnTKczZvMZaZ6xsTlAadDJgDTtU1vLxdljkBVCd/m9H/2ALx58xeHhBYuFY7iZUdYLtE54+eIYgWc4ylF6FYYaBbuXM2UujfnNwmqdpX7TpLtkypsyd/xkFoQjEdDver7/vdv88IcfcHo85b/86S94/HxC7RNM8IimQ1IJiVYJQiZYDxeTc+bFmMqUYA2vDmecnFxw+4anWNQsipo9rel0t2I3mamwRsSxxdQNOKlj/EdlqV1NbWpMbZvFXCwtRwBkmpZkT/Ctw247VxDnkvYYwHJuaY7alWPx25d11rdvNUC5Kohtt5YWX4KMN2g63gwzLr1Kw0isyhHfJJh9neqLN6UQl2muyyzDuuD1zXuz3t0QWZCWFWlBwdXnrkDKZTZj/d+XgdD6MVyueC499nILcaz3r9iTqyWqy4Ajvs96YGD8o7jUTXj1GAoiCk+ShCRZtTNDQGlJ3sno9jqkWcuehDX25LLhUCv4SpRib2eHe/fusbW9g9YJtip4+eQRP/vpn/Hi2SMWkzGpUohUkyvJaJBzNp1TGwg+kMnAXk9wMMx47+4GBxsJPe2bOnIswygEwlmUgjST0Vm2k5BmseYsQ3RYLRYFrulsCiFElb1rO7DaY79+fDzOxdKWFNGM0LvY0iylJNVJPE4+1rpbjYpvOmWUlLE0pCMj4Qn4YEm1RwpJnoAWGmMtQUtqK0i8o7uR4YRksaE57BVsTQTT0uCb6PdEZxRFzbz0FMZSe0flApOZRyZgXIir4hBQMsFpQVXW0e6+tljjQSqEVjHcMTStxokmSxLm8wJrPNaCCClp0tTkpUSJ6Bpbm9WKL7iA1FEQ28kzpAjRHA6BM47hsI+Unv6gy6IqkbVDiIyydPggqGyk1HtpQpqnOBsIPn7O4CxCeLSCvGk3ripLVdb4RKOVYFEZbPBkaYJf1Hz1y89474N7XNse8KkvmBeOoANCB56fHfMd7rGz2+P8aEKqEsqy5PR8Qm0DzsZohM2tEfu7u3zx5WO6OqPb7aB1XJ3LTHHt/jVGw5xqPCOcWkpT8+XnX5DlhoPr1/jNp0/5zWdfUfs5//Jf/Q4725v87c8+JRt2uHf/DhvpkI3BNs55tq4dcPf+uzx79pxPfv0bvvj0EZXTbGwM+M6H3+PenWvItM/xvAJhAUcQgWiFrxHUCOFQuiZ4G8tjCKraYAiNUVi0tQ+hXbQ4pIhgWoQQ9ShIfDDUZs7Ll4/58qtPODx8SW0cUmUkSdo4ClukzDl+VSJEEc0bvYXxAh883/3ud/Ducx4/eQFYZvMp3kOaS27c2Odf/6s/YHJecXZ0jJIJkgwhKqIQ900AZI1af8PWjs+rfzsILuZFIVDKM8gt/+L33+fDD+/x9cOX/Omff8rRmaXyGTY02p3gITikBKVSQkgJQSJlgjFR4xO85Oyk5uc//w3vv/cDBr0Oxi4YT87Y3r1LtxvFwHVNE5ZaN6xJ1JrUlWtaiWPXTnCt8NUjvEN4h2wY+PbctHObkiIaH3K5cHNpDmSdQbkiO/gtt281QLm6XZpsaeuYcq3U0pQ1GtXsN638V2zGlYC7tSvvHwcV32Rg1oIS2VqzvcZyhAaltu9xmS570xtK2kjuNwpVufy8wMqt86oK/ZLo+A112FjiWdner6caX9rf5ueISVbgYXXztiJh3bBebu315VLEu7LSZ8kgpGlCt9uh08lRSjalq5VF89JIyEdTNu8NMsCo1+f+rbvcvHadrNNBKMXRy5f8/Kd/zvOHX+BsRaoFg17srnFVhSkt2kuU82z0NG/d6PLRrQ12u5pUg5YBgomAy/mme1ogElBKohUkiSRPFVJEcaupzfJxnuh0GVgvG7bnL67itI7HJAqIo25JtddjAwATFSft4KNgVagYn9CcZaSSy2OldbRn9y4OTkpFT4lEBvJEoJuE4ryT001TKitxUtGpQZIy7MY2xzzPyJRABIsWXYraM68t46LEkFJWgtm8wkrN1Ag+e3zC0bii9AKtFFoK+p0MFwzz2lJVLrZ4hkC5KBl0U3SSRLYCEY3inKcmttk663AhYGws3yVpgilin9x0tqDTyVBSUBYF0+mEbp6QZ4o0kQwGfYqiQAlFN8+o6znOWdIsJwSLcY7aghSKRCd4HzC1Q+BJOzpmEJnYWjzsppHFso0pn0qRXkBt0Urw4vkRn/zqIR99/20OXx7yyeePmFtHcAJfOp4/fsg7b93l8YMHVGXFvDiltJYgUvIsIZUVN/Y3wWo++eQJH3zwDnfv7rKx02delGzsDlG552JxTDftsn9rnzvvpuzvb5KmnuPDF4S6opdmmHnBfLrg+vUdbt29xs7+TXQQhNohE8nh2QmBLmWp+cu//BUPHj7Byx5bB/f43vfeY6szRSWSeQXWgXAJIigChiCjwFTgkNKSSMfdtw74ne++S6/X5YsvHvLk8RFnZ3NUkpIkmkUxpyprIJAlDiUdohnovKsZnx/z9cPP+fyrXzOenEfHUyLLan3g9HSC8xaVFCQyIUkFSdM5phL45NNPuPf2ffJOQqfb4XwyxzlHmko2NjP+w//y3/NHf/Df8cu/+zuePJxwelxG6wT35nF9fUC9nLrd5Np4mu/rmkGHVB7pArkUDAeaf/lHH3H/3nV+9auH/OXPvuJ84rFBERrRcBwfXDPsiyWfIwL0u5voZEBYLAihprbw8S8/Yzj8f/HHf/yHjEab1PUcParp9CTOG6oqsslVHSM+KlNhTI2rGwGsbdkvR/Amsq7BooihmyrIBkRGnaKQEheijDnQaoracMeWLbk6Wf3zwQl8ywHKioFYn+AbhoHX2RKxpKRWE0FDUDSA5SoTcJUZ+eb9eI1FCQ35JdrAv9WeSNZs+i+xKJeB0Xrb7SUV+dq2bL+9Ehj4T9X6rr5WCCul+FV9zeozRfrzkiBYJYi1drKravdl6a1ReAtiavMqHDF+7mXL8iVPmxUYEgKkihNjJ8/RWjUgyC9DASMQWoEV7+L75mnKjYNr3Lt9h43hCK0089mUv/ubv+HZgwdIV9NNBbcO9rDGcnYxoapqRAjcu5ZzYyPl7WsDbu30GeYSZ6soYrVN213rMSBi+J+ScQ2ohCJRCW0WjzMeQtMNIgRBepRQeNccj8BSPxOPm2tWib5x/xVNGSSuYLSUa+fMI5tjEgea0FhHtFLEJoyt6TJLlMTXohHl6sgcCcjyFJV4AhKPR9rojttLJYlQ7PQTEp0iBGgVmcrgHXhF7RTTSiBUHsthTlMLxWkhwRnK6pyqiOc80RLvA8NehhMBX68GyixLYmdWUHjrSbIErSK7U5QVZClpGvU10sVJwFpHmqaoJGFRViyKijyR9Lo5iYIsE6RKYm1FVUqscZS1pXIFtXEkSYLWmum8oJvqmNtjQYpYSpIywVtHVcbQOxCkOgpilc4wQcYW9NqgVIbWGucMAfjk7z/lo9+5w7v330IEydRWvDw5YWvYZ2uwCzZh1NvgXJ9SVdHTRghFr99hu9dhY5jz8tkpp+cLFrZk62DIex/d4fDVIf3RgM4gJcn6JL7LxdkUW3iGlccZCKbDrYMt3n37fR6/eM7zp0/QdLh/9y5aDzl88oq3b10HafnqwdeMBtf4/Df/b46PJ3S336Oz9xGb2zvkGwpfT8nyEWcTifQJMgREEI1dehxTlfB0enDvrWv84EfvkuXQ60o2tt5he7fLF58/BiHp9focvqyYz0o2Nja4d+8m3lZ4O2M2rXj5/DkPHn3OxcUFVWmxVlHVBqkDOksoyjnWxGMlXYXIJSpEh+s8V2zvDOh2E6yZc+feLkE4Do9OsBayNPCjH32XH//4B2RZwtbWiN39Ls+fndAKet80zq7GsdXc0MwAl8f+tV8HofFBkEjD3q7m9373I67f3Oev/+YT/vaXD5nOFS5EDZUIDtH4VSkhgYRA0ghqKyAlzzvcunmXxeIillV9TVE4fvrTXzCenPDuu2/z4Ycf0Ol36I9UtKWvy0YA66mMbco+Bu9Mk5NmSBPodCT9/gCtBc4GqtLgbGQpgw9Y57DeU9U22gQ4gXWrc7+2tl4dgitsfNz+G+ni+WbmKFz+vjbJRreKqBlvV6zrYAYuswntfwTRWGlfZlHaCbZ9LO3jhSBCYSKNufYchFiWMVd4Zn1ijkg8Aq9Y3nE+ZkIsHyXCEqd6YumAJqPkm2uiLEGDaL7av4Wmhnz1WFxiZUREzREsRAZF68YFd6mZYEnZCBHrls6vu8C2xyN+kihAbEWfK7ZkRfusQFKWJfR6PfI8jyyBkITgmiyVKIht24qdtUtPmq2NDe7ducu1a9fI8w51Nedv/uov+eTXf4+tZ9y7vsGg12E+LxifXoBx7A0Ub93Z5P072+x0YbOj6CjBdDqNZmAhrm1CCLGrJ7hmYInAIVGKXp6hdGQvoj+JI9iAa46TbBxoQwM4pIjHzNjYArhUyXtLbPGL166WagmMWmYkPj8eVec8SFBCRdDnXUxbVhKtomOnD5DmOSJEQadrummU0tgAi9JQO09d1ORZQp5ItAokiUQ21ueyvS4abQZC0U0SkALnwAeJk5pBJ8WYDc5OpxS1wQiLbkpEqZCEjopGblISvCdXKZ0kkCUaXwHeoxNFKhVWxwmxKKuoC9ESHRohdYA0kSiRUsqasjRkScKsrNno9VAKnIOiKtE6Y1bMKWyILdAKarug3+2j8Li6wgmorUV4h3NJFOOG0LREa5wxSN140bjAaJAzHs+xtkbLgBKxbHfxcszP/+xX7O1vcPfuXc7rCwbbPRbTKdNZyWT6DIMh6Urm0xlBCbQU5Fqyv7tNkqR88dVDjPdUpubkfMzBjeuoLOfs/Izj4xmnFxeMTwq8lcjgeLnXZdTPOXk5Z9Dr8Z3feYcP3nkH6xx/+ad/z3sfvMPG0CBdoJd3cTUEo/nyiy/I0w1+54f/itN6izM3IM0z8GcELHUlcU7HkiPRdyj6fAQkjqRn+OGP73Hr7g6IgucvXlHVniwbMJ4VFLZkMpmyePKEYlZQVxVlNWE4yhAh4/joBcWs5vx8TG08N27fYjpfMP7qi9jk03jfWOuJ3mAO7QVFiGWZLFPknZStrR43b22yvbNPfzDi8NUx3Y6gyjNGI8Wd29coywJbnZBmCcORoj9QXJyFZp6guU8vL+JCM0iGdgHZjqVA61Iulx1JEXTkwnJwo8sPvneX/mDEn/35r/n4V09Y1BJLwDUO5CH4ho2JYZ1LQ7MQYpmoWbBdOzjg4eMOZV1ECUEQzGeer796ydcPH/LzX/wNH333Pfa27iGTCms9Ve2oTE1loxGbd5ZgHSKUjPoZ+9d2SNJAnsOdO7vYCiYTQ6fbodPr0uv2kUI2pSLL118/5tmzI14enjGbVXF/acrza2P8qgj0JqDyT2/fboDSOig3/16t/hueJPg3sB+v61G+8fXXUoajAywNqFiVUdpyEE12hAjLGXathNQgjXVBkViZra2XVdZLPGGN1fE+KqhbYo0Qc0JasOUD6DUC4jKjtAIisVXMNSvvy2Zt7c6t+7NcLtu02UWhsShvHifF8l6KbJ9YnpeIm2LvvFgrmcXjs87UNJdu8ySBiGnNzcFIklja6XY76EQ37ElYAqCl/sRagvfIELUh3U7O3dvXuHv/HhtbO3R7OcXxBV9++vdIP2d3M2N7s8fp8QUvjydsdQQf3d/k++/sszfSSFeBt5iFjxNE41BqnYvOorCknWP4I6SpJtESRFyZI0IUcAqBF6vVQ2zZE4jGVdgb0wjRBEonSNVoSXzLjsQJPIRoHS9EBM1yDeRKJSFEfxYhPaop/wXvcUSHWudi+F/SHEdjoKxrhBNIA9MisgRKarIskGdpdO0kkASPlmJ5JS/TiNvSXxLPvJeAUJgQKeobQ81717pMyxmvFtG3Jk0yrK3p6oDpKC7mDuHj5wUwzpGkGVpGxsV6MF7hEPiqQisZJywTy2veOWrvUFrTSRUiBBaLkk6nERhOCzqdNDIpzpKkKUZAVVToVMXVf5ZxfnZOqtuE59jdVtYVQmaI0LBUzZgQgZFHeo/y0Ms1qU4RQFkVCKlxVeDBp09ZzBdcf3uTG7cPuKESvn74BaUzjM8vOBmf4hNIeoGBS7ElaOG4OL1AhC1qb7l544BisuA3//AFx6cTzicFtTPYEKl7W0OiNbmCG9dvMuhLEnHG9uYB3hvGF4dsbw64c/sOwSfkSY4UUQ/18OtnTMcl9+59xL/4k/+Bwoz4i799xCgVHIwUoTqj00nwIiVWMwNORIhCw7clWcmH393nrfd2qOsFi6LixctDJlOLtZKqClxMSooiCjStba4Rqzg7mzOfHjObLMh1zv7eDd5+//ts7e7w87/7K4SKQY1SKBqZRDOOxvtIoFA6jeyWEAz6HTZHIzaHW/QHG2wMRvR7GaaqyFKYTM4YT06YT18RvKHbVQwHOYJZs1CIAHy92iOb+3s5nNM4u2IQxBI2QizdnoSv6eiCrespH3z0Fl4E/rf//Nd8+dUZVa2wTSxLTA6P5bHgJUGoyEwSECF2egUv8C6+7mJRNd4ksbNQIHBOsVhA0hG8fHVBHT5ma/MR273bDLauMXlaUtu6Cf8LeGeQwTAcKm7d3uf8fMrT50cMBoJrN3L+7uefcn4GaI/ONL1OlzxLESKwv7fHtYM93nrrHf78z37Ol189jhm9Ps5FohkrWkB3iUX5b9FJFl6n5CIT8I+4wF5iCa7+qe30Cbyp0+fq+66m46t/W2cn3sBqfMO+h6bmtCqtXC7JiLW/tb+Xa2/9+uuGtX+v/fwGALP8TGsakKtbe3zaMk+ruQlrepnV6zQMkLPLQ9DqcFpr/tdem6iriY+Lk26nG8WBWRYnbkS00I+aE491q9RkgY+TTa64eWOHjz56l/tv32N37zo7m5s8ffgV4/NXbPY82/2cw6cvWSwMt7ZT/vB3rvHhzQEjbdHeMCsrauMaq+cItGiBYAOEVVPDS5NI60sJWZqgJUgZgWWappRFtQSdsTRF4ysTBZ+1ia6oAkGmkzgIO4sQuvE5aUC3ag3zaM4DWFsj0NC4b4JHS4USAaFkQ/GuQvoyBd7XCJnhguZsMqWu52RZ2uhmIEkCqKifIXgSFflHLWMrs3MOh48lLRkV/KrhxrQS8XxIQSeBjZ7i7VvbPB9bxuUC4z3W1tF9Vyv6UkVLbhOw1nDhApWPwL+XSXayLt0si2ZyZY0k0FUKmac466gqgxCqmSCawMBkpY96dTZDJSk6aFxhSBrWI5E6ghEXbe4vxmOSNKWTZ9RVQSfPCMZQVNHcKs9SaJx+g/foaJeLD5EhS5MkXu+1iYGaKp7HxWzCbJIxn2a8O7wLaca18gDvBf3+DoPhPn/5sz9nOBpw/607PPj0CXZWUZWCp0+PYtbP+Tk3P3qLd95+h8X0Ex4eHSO0pDfqkiQBkSisqQnOsbOzx61bI3q9lG4+oipLXrw8orKS3d0dfLDkieLzTx9ji4p80OVHf/j7/Is/+Q/k3S0+//wJyk/ZSDuMUoVflHS7PRa1bLJlmliItnNSGXb2NDduDhCixlnTTPQKLeH47BzTsB7eG9JEI70kUX0S2eXVixnG1iRKs727w4fffZ+dg32sswyGHZQWBBdNHL1rojuaor2QkjRT9HodpPTMZwvOz6ZcO9gmy1M6nQ5Z2kUrjUpqytpwcnrGbH7B8ck5ZVFwfjGNrcZavj4hvDY+rZauDk2QtskUaoqpwiOoyVXJ9rbi7r19fPD8lz/9W756cEplUzyRAcaLCMqb+yYmE7tm7loZcy7Haa+YThfUVd2Ya0b9mxABYwJpV1Jbz+mZQaczJuNf8faNhCRXzEuDrQM4gQyewUDy7vu3CEFz/nBGUVg6PbDOoNMOzkXXZLdQTM4thJKA5euvj9HqCzqdPtPpYrkgb5zomn1fIse1Mb4tn33j4X1t+1YDlCXltv7v9kQuxZVXIQavgY74yytsi1jOprEk0wKQ8E2dN5cBSrj8z9ceuwIta/vfPDGyECshVkA2ymq/pBMlsf4vm+ui1Sa0r3Hpo33DDbf+qDexLe1zr/6uPS7rXiXxlm3dO9fqtCGWKLxfCacul8aueru0pbtVGmiaaNK0EcbqODR4D85Gm+bgLDiDDFGcl6SS3nDE7VvX+d3f/TE/+vFPuHPnHYbbO1gbmMznZMKyN+oiqpqdruT+u3t8eHeDO/tDhF2wGM+Zm0Btm8HQOZIQom37msttCK3GKA4siY4OpVmqYyuojWK3JNUU3lHXZvnZQwhIH5YmbFoIgooaFYFDhXhLx/KeRBPt75VSEfD5aJvfAvHW+C8eew/eIppYeiXTyPo0wXzxHMVjWBpPaeOU00kSUi1IJOTC4wUE4VEy3hJKyvieRGAWGmdh7yxCxhKSddFyXyMgOFJhGKSSvVHCnf0eh+clh1ND0k2RQqIkWOPoKIFtynJZogiVpaw9i4Xl1M7IOilzA2czQ5ZIUDVpiKW9EKDT6zUxB3Usj3pHnmmc8RgnkFoyLy2mLOjlKdZ5ytogRNzvvJMxnsxRHUVpasqyptvNEWmKqTxlZQkY0kTF3KYQqKqKJNXLe0criXWBuvGnyXsKHyxlYVjMLfOxYTGZMTzQ9Hspi0Lx4vkJo2EPKVKm0wl37wR+/yff5fFnLzg/npOkCS9evCLUFUmacXh4yObmkN29EZ1eH+NqEKCTlLqyzKdjkJLeYMRow/PTP/97Dl+eobQmzRW37u6zt7fBi6evOD8ruXMn4eD6Br/3R/+Snd0bzBfxesxkQRYMPQWFrJFqhLEKL3y8hnzsvAFIO4LBhuBifIQPQ87Oxkwnc05PLlCqjzWBoigao0NIdYILGm8FpnLYYEAUoASnkyd8+bhm4U4xznM+fkJ/oJjNTeM/045pkdXWiWRre4MQPJPJFK09Tx4fsrU55O59x3DUo9vpgfAoJVBaM1vMePDoAc+fvqCuPN4k1LazXPGLhgm5tGhry+MillMJHidiu30QCUI6IJoYZrrm2v6Qg2tdZkXFX/z0Y548W1DbDBua7s4gwQeEj4N4WI6dfnkPLxs7QqtLs0wmZ1hXREjjm8wf76Luq1Ix+BSHdQYlLE8OP+fW/o85PT0Gr5v7IvDBBzdI84S//4eHzIsKmcBscY4TJf/m3/0L/vavn/DFV8+o6gTnQQRHCKYB47AoZo05n250eH45qUTTuxVLvpo/oqHkb7t9qwFKSxfJpVak3S7/63VEvJrMhXjd1n4dbHxTK/ClCbxlNC7P35d/uPT89jUlb+r4WbIy6yv15gJYYprQrt+/GYBcFt+2r732t2947psB2NW/r0o8b3KTXd8iW+C4jG/asha0x7s9lrG6Hb+UCHTzBKXTRnsiVy3FbbkjWFIc3VzT7w25dfsW7733AR999zu8/fa77B1cJ+v2CUjOz865uDgnzxI6wrHRhe++d5/toWCgKuanx3gbwaGpTQSKjXDVE3Uj7bUVQpvVFGI7tICk6ZIJzkYNhY/sjjUxLC92PyW4pm0vlYpURiMy32gwpGj0LVLE9kQnm0MUxdAEvxRaBxdLN1pG34houNd6p3gEHq1jV48nRKbJeApn6XRzrHcsipI0S8izFC0DWRuc6EE1zA0NwIxApRFKN/X49dJle7VJHxrLeo8Klo7SDHPBrb0uD16MGRexW0Ym0XUyk1AJQ5CBPIu5P4kU0Imak0VhuJiVVE7EgEPhMYUlry1KgLWB+XRGkmryNCEEj60dzkTH3yRRlFWFVJLRYEg5nza7Lam9w5jYLptmiuAtQidsb29EAKIVWdah8HPq2jMcDkkV1MUCpSSmttHsTokmEyiCwqq2VLVB6+ijMz6bsXuwycXplIVfgLYk2YjtnV0ENfff2WE8vsCWng9/+D3mp4EsnXDr/j34xS84eXXIYHvIF199yeb2kBt3d6iN5NXxHOtKdjZ2yTp9ikXBX/3lL/HBsb21w6ywTOYleZ6ye3CDD977Hov5gl8/f44nIUkzJuMLvvj0l/R695Bi1IjuA4QSX9UIt0DIFB80AYNzkUGJmVCOTkexWMw4PzM8fXJMnnSpTWAx8+Q5FPMapVMSrQleU80dztSR7Uw0mbbI1LK1sYnWks2dlKAmFIsFeS9w7doWz1+cMp9bgl8D4iGQpilZlvHq1avIXCrBdFrx4OtnvPfhXb77O7/D7u4uea6ZzgR5njIeX/DFFw84OT7H28DNg/cpC7cMhLw6ThEuj7VxNIhfbZk3eEEwNbY44vqNLrfvHHByOuVvf/mYk1OJMV28r2FZOGrCLmV0LW6oqfizCKtFcojlHS/j2FhVRcO0Nh2cISBEHKNq4+jlCUkW9VZplmDNjHl5gtZQlwYpa+7cPeD69Q1+/flD5uUEmQTm8wuUqXj86AV373yHH/7kPdCeB18fUZTgvSAE1X5shFAE43Ei+sjgPU6Y1bEjat3WQcpy8vott281QFnCkBbdrlu1r5UZmh8iq8JKQ7wEJQ0Y+Cff7x+ZhdvSQmAtt2et3HH5dV4HPm9iMETz4NbPYhVpHTUpq6C+9oJeA0PhdaCxLoaNtc83l1ja7+s/rwuH4+/kGoPSCMIi4bp87/YAxORkt7YyuHTkrhzblkAViBDQWsWWUS2a+q9vSm8BKT2phizrsDHY4fbNm3zw/vt88NF3uXn3HsOtXdKsg5BJM3lKEpXiyimbXc93723wzk6PUTfBuQpXOcp5jRBR1Bq8jddGaLJ68EgJut1nQEsZrf9FFIj1Oh20lti6QqSxFBKsZzqbY70ny7KloFM0qzAvHE6EZU0a1eR1eI/1sUbdakB8s0+JlCSqGeAaq/eoBYkDlhShCa1smCsR/VOCEpS1ZTZb4IiUtsCRJYJuKho3i7ZsGbuEWu2QkKtOo8jixLq7ajU03jeZSyICyeCRQqGbsberJaMcNnJBJny0zM86eBeQCLpZShAV1lm0EHS0RunodJtlGWeTOQqFEwYnY0qx14pet0OwnrqqqMuSTtojyzNqJVkUJZWxBCkxzhOsQ4qCTGq8j8DSO4tONEkiGXT62DomuJbFgrKo6fe7hBDZp+Ad88UCqwV5ksQOJogmXx5YisgV3V6X2li8Cwgk3jrm4wXnxxXnT16Rbkj6m1NGw03yNOP+/XfIdBczlxy9POXs7IzrN/fpbWj6I+j0tplVE+bVjLTWCKkpqpqiNHhhOD17xXvvfpdBr8fzJ0/4u7/9lDv3bpF2NfvXN7l//y7DwYCXz1/x9ZePcF4yGI2QUlMVc37+s79Ayn2+98N/uyyVCQUizElTRWXAusaeXtKU/ixSe6azc4w1mMpyenqGYMzGxg7OaMblAq0zrAvMS4eto46p01FIJbEmIJog0to6qrpmXhQMt0Z0XNS8TCY1WqcxEqJ2q6GuMX47PHxFWVbkeYc871CVU87Opzx7/owsz7h79z4bmxuMp69Qiac2JS9ezAlO0s0HyNCjXEyQMgKw18ruV8Z6hFyWtAONaN5bBjns9rtsbnY4n5T88lfPOBtLjMvioqRhvkFAI3pvGfL4PitQEp225dIvyfu4IOh2uo3YPbotB+doNOd4B3UdIx7MwqFcYDTKWBRnhNAlYNm71uOtDw54fvSC8WRGWc6xdoFWgeFgiyePjnh67zHf//5PIHxIXQaePb+IoYM+mif6RvMHHiFjCdyG1vXrdanD+lH8pzpM17dvNUBpt8A6EGnKH81KV6xN2pfagWl//duBkxW7sva85bu3qHrVndJ24bx5W038reNonKzefALbz3d1gg+0ktm2Hrv2DkuGIqL/dT1KoPndmg39m0S1/5T+ZB1kLUFe8xVarxWaOvVrERdrVNCV1weFimbxKCVjnkrjPBkfE8hSTZ7m7O3ucOfWXd59513u3rvHwbUbdAcjVJqBaP1AmvwfD7Je8N3bI+65a9wdSjrUYEqEF7i6rak7bAtOiOBEEFA03TLIWP9tBMJaKdJEo1V0a5VAnmVNLlCsJydpigsR/MSW6Fi+ElLgQtTpCK1ifT3E1j4lE4Ito3mVljgfXTaVTPDBRcfTJg9JLgFjBFRZkkYdgNYg9LKcEYTEuhqpGgWuD3TS6HarQyzlpEqvXTOxayii6uaaAYJzy8We97FrKALeFWMnlaIlWYSPrz9MJXcORjw/O2M+sdSNVkMnsRTTzTsUZVxZCymxPupysiShl2sKJ8msRyWxxbcoDbNFybDXJxeCspgxm86pqxLduBAnSZxUSyeYl5agDLs3rlHMZhhrSQEtLNKBqyBNEjp5xny+oNfLGY2GvHp5RJ4nuEBsS1aa2kYzKyECKgSSNMf6GLYGsZQgTDSI80GQaMd0MuP4cI7udhifjqmpUNqxMbzH7s538LXk+eOX/OJvf0kIju4g59ef/QNOVIw2BrhQsX99iyRNgNhN0+vGz6lTOH71jEFvG6VTTk7PqezXvP3ObXa33+Ls5JzDw5dUC8PFxQW2dgSfs6h2uLmzx49+910KU1OU4yYfJ5BoQXAlveEQEzJ8aJsF4jlWCoydcTE+ZmBTQrfDvfv3uTi/YDabo5MOQsLR8RidZpg6kCjoDyRvvX2Do8Mzzk8sw94GQZUU5YwkFXS63cZx2KOUpq6i+68PsmmNtWgNiEBZLvBlvC4n0xmJVqRJjhCeooguy4N+j52tLZ4+c3jblD51QCrN3vYdZpOAIEcKi6D85rL4cjxtAi2FI+CQoaaXlIw2wVrN0XHJy5MxkzI6JjtiCZjg41oSotlaHAWaQZNm8djeQ6phT6JDNjRxHcPtyFCJGT4YOt24EDLWYjx4IzCFoPawoKaT5GjpsX7B1k6ft969Ru1mzEvD6dk5EOh2Mj768G32dq/xm08+RmvJaNgjvb3JL3/+iG5uMS5Ega11OGkxogZqRJtWLQNOrNbJEci14/6qjP9PNaesb99qgLKcKNd/GdraDSzjnluKbp1NYJ1BYVWmWX/9q8hlhUXWfnF5f9Yn3deR4tXSyT91opoJPsB6x037XuslmhBCE0r1+mu+RrC1Nxnrtc2VU664AubWP9/61zLM75IHy3rNsbkR17wDxBWfk9del8h0xF2MgCBLFEKCUp4kSxkMR+zt7vHW7dvcu/sW12/eYXN7nzTvIlXSnPfVe8TzbLDzCU9++Z+5Lo5RmxLlo81zjDIPWFNDqONEj8aHaAiVKEGqot4HITBNaSdJYilBCMiyFCkCi8WcwaAPBOraRIo/yQCJc4HC1RBcY3IXBxUpZPQUERIbPDZICuujiNUYtPQEr3Ch6cJpQvSUVstryIeAIoKFNNEx/M55irIm5Jrgie2xwpOmmjRNgCj6VVKhAghrUYkCb4EQhaCOZfsyzTkRTSlKSBXHUB99V9q/0zwGVuVT1VweHQXXtnrsby44ms2Y1xYyiWzzhoKgk6UEU+E8BCVRItBJwKeK+bjG1jGVWgSHd4HCGUSYk6cJOs2oy5q6jh1UiVJoJahciB0MAeaV58XRKcIahr0OSgl6edLsoyRLNJPZrGGI4PDwFUprrA+keY41NZVx6E4Wjb+alndbG5RUWGERApwz5LnGGklRW6qqZjYtKRaG/c0RRT3n8Pkr6oXn6FnJ/sGYQWeLv//7Tzk/n/D+R2+R9hKMt2xt7dJNOlTFnNu3DxgM+jgr8F5w68Ym4/E4BrwZQyfL0UlOlnfY39/jRz/+AZ9/8jnPnj1na3MDYwsWRcH2aMTuzpB5USDzLml3wPZoHx9KhDCkyqGFIQRDp7dJMU9WC6kQxy/rSqbzYwKGonJ0+x10IvmdH3zIF5894smTE7rdASpR1MYwGPYYDiXXrg146+0bTC7mcWyzq064bidBJwGpLcYtMDaycUu34MbbR2uFkNFEPrI6EmMqzi/O2dzoRxatchRFRZKkDAY9hNdYZ+j1BWkiScQGWm7hTNMltMz+Wo2rq/EsjhPxk8fSp/MORSBLDMNhFMdOFwmvThzzhYghmG26s2jaLoJvwEm4wuhfnhsiUx7/5b1BKY/3ktFgk+sHtzg8+hIXaqQ09HoZ1mhqJ1CpREuNswrnFPNJisThQslb775Dkkl+8fe/JPgOlZnT7XZ55/4d3nn7DqPRgNHmT7h+4zohCPKsQ7CKNMkQMpZzLI4QBFrFQT4437Bp7aJ8pf9cyRBWIbFvLCt8w/atByjfpBFp/y6vDJTLLazLa9tikVx7VAMF11aEiDexIu1E+I90DC33Z/V92Vp7CTT5teJB06LVpH/6Juq6tYxvGZ3XbqAr4GjZdt2yI23g4BuO1dWS0/rf1ks868LjuHpvjwOrSUyIhkWKxy+CFP/a617+iuyIlAFEFGQpBYNeDAXb3d3i2o0b3Lh5mxs3brG/s0enN0QmGQgNqOU5XfkvevCG8xdPePzxf2H22f9Jv3iKkg5UijOWOsT0Yy9EVNc3T020RHoHwiKkJku6VJXB2TKuh7xohKmKuq4i+9KaH3kPQlJVMQU4HovYYaO1JoSYGhqcR+ok0qYiUNaBk4Vh4RWTacEg0/RTSa5FtGyXitq6qG8REhscitgNFFuYm+MdAJVQzCrmxRytFVJELxnVXA+mNlF0SxQixzZ1jzOGJNEkSjXZb6GpIEa2RwYiSGnKSF60gBJoXIHjgnB1PbfLiF6WMEhr9kYJg2NBVcQrPa6IJbZyTTCmR4ZAoiQacDZ2fox6XUozJZUgZWzVXJSeoqox1pHnCZ1BH+ENhEA/z7DOUhiDMVE7E3ygmFds9nLSJGMyXjDsd2Inj7EkSUKW59j5IoJwHf13zs/H2KIi1ZLaOJQ0JI2FeaOopCxLVGPHHwGjRWlFLqNtflUZXFNCOj+ZUAWYS5jPTnnw1SFKZkiXkHf6HJ+dMnEXXL9xg7pUTM+mnJ2eY31JbQq8g52dHe7e3SfL7hG84OWL5/QHezx8+ByAbifh5rUbnLw85Un2hL39TR4Xc/Jc89b9u4wnp1g8hsDR6Qm9wS6JsmRpQapr8tSQd1NQPVxIEWJVqvU+4EKN8wtCsFQ2MF+UTBclKM+Pfv/7WP8rHj9+SZIpso5k99qA7e2MO7e3Obi+xY9/8h0+7T3EOMPe/k1++fHfI3VCkip0EvC+Yr4wMfDSt2WFgFSQpDLm6OBxoQlplYKAYTY7J9VbzKYVrw6P2d29wfbWHlJk1LXBO0We9hnkd6jmGoFAq2iGGAWy38wixz9ERkMFR6YdmTLoJHB6Jnh+6FlUEmPjdSF8ZG9bXOeb57ZThwxERmYpivXEYEUAjw9R45TmXZwtkcJx+9Z1Or2CojjF2golU+ikjKclQkG300PmGcYGikVBVSxI8pLdvRGPHz+nKA0ESX8jZW97k043Q0jQqefDD76LUF1m84KtUZeD6yPm1RxfRsCugsQ5SQgSIRRC6fg5ZYAl072aX9fL9+1c9Ntu32qAAg1zwBoz0GwtuyDWQEVYByVrk+ybgM7V7zTvwSVgsN59EmuhS2BzZYur+Cu/e8PjLrVktbnksAQnqxJMe7LfDCaWn/e10s3lv/1j2zoIWv8upUS2PhxCxJ9lCwMvPz9Ao0EJV/azPSq+ASbxSylBkI5uV3HtYJtbt3bY3t7k5o1r7B8csLW9R6+/QZp1440RRMOYiOVxpsn5qE3FYjFjdnHC85//Z2af/Sm98hnUC4KQzSrXUhUWY+N6xnuNVxKlQtMuaFFIlFTUwVPYagkyWoF1WZb4RNLJMkITNS9kpGal0o1/TRREJ0mCwFPXhk6eE5xFNY8tneCitPzm8RlHC8m0tORKsD/q8Nb+gI0cKutIG+IkBEumJQIfs3xsLD0EL6iNYTotGE9nhADDQZ880w2gEkSkoaKXiIgGbImM5SHZjDHCBRIdO4YQsXwkpKLVnYQQBbnxOEgcvgGsAustnnhthBBzg7RU5ELSzyTbo5RhV3FeemwDTAWCRClq70B2CSFE913psM211Ot0OZDdeN0oRVp5hCgpqkBpA/W8pqwMo15GlkoyHTOS+onE9BPOCov1UHuYG091MaWbdVgUhiRSZCzKCq3TZXCakILS1AgdYVZZ1wy6eXQ2TTU6SbB1DDfsdPPlIsK5aByIkiRKxBC2ANPpFHmiGXZ3Ud1Yqpo7RyfP+eij71HOCh49+JrxeM6N7etYo7k4GzObLBhs7JB3E2wQFEXByecPuXv7FrdvD6hMRRCBui7p9/u8fHHKl58/5i/+/C8Y9PtkWcJ4PGW0scHFmWG4scXnD77i1maP8XzM1tY2i8WMrY1tDvb67O330GGOTqE2YL3AB7c0eARBEAGpHGmqMdbT7Y4IIeHps0Pee2/ID3/3+wShefDgEWlXIFTBYDQk62jyjmb/2oDhxnscH52SZ7v88pefEJwg1RIpEpTMqaqauo5ZVPF+DwgZUNrHJGbvqa2/vOgSUJYLTk8u+M2vP+O73+ny3jvfYWfrzzk8KhBuwCB7BxV2oxYL0wShyuU17NfK5FfHyqg2tKSyppMsUEpwdgGvTiWVS3AhRlgEB9EUKI5RXvqGFVGxA6dhQwNRzxE1HS3T7Bvm3EYBbD2lNs/Z2uriZ5abN0bcuPkeX33xlPkUrMtJpKN2Bd56KuswdoELhs2dTTY2YWdnjyePXmFNoCprtnc26XW3qarAo4dPGG28Tac74uKi4tHTz3n3nWt87wf3GM9mPH9xhvTx4wjVlKRUwypJT2j2+7W5rp3Hlgvy/0ZKPOvAZOm62f6xBRsi0kvrWpPYd758IEsnk7XySdv6GoJbAo6VCdvque130dDDMYUTgoxGP2HtZhbQiLOvljnWv64ISUXj6xCiUDZS6Q0rchUMCRq319Vj2la1pSq8YTuW7bEhNNkL7deKZWm/rgptlyClFcmK5nO/9rjmjDSJxu3qvmVKhPBI1ZaLNFmWkuUpeSel283p9bpsbG4wGm7Q7Q1I0wQhdQQBr126HrBEH5BAVRUcHb7g9PSI8uwlsycfMzJH9BLP3Ijophg8ReVZVB5jo4ujVgoVmhV8IhAiJtN657G1wROagSzBNaBRtYLN4Ol08oadiDXbeCYVxthlt1PwluACwQWEUE3Uu0XLQJIqUIqLRcXcpYwruCgKTqcVB0PNqKvZG+ZsBEmu4kSYJYI8TfA2RqhLoXHBU5q48up0crJUoqRfNQeE0CQCO2iM7QTReVZp1VDZHohtycu4AR99aZb3i19d3zRGfsslg48XvKCxxZfgXaDf0ewMM7Z6Cc9PC7yPwMe52NkDCust+ECCIE1zrI0+JMHVZArK2qGloqM9apBiepLT8wXWB4KHqihIg0YFS/CORAh2N3og5kwKQ+0C06qimycM8wwZHN4ZjDfoVFMu5ngRJxbnoz14ohWmMpg6UKeORClmi5JERcGyavxsPGCdI5F6uXIWBFIVV+aLRUFaDdnf2+OrJ18ipGV/d4ckycFYjl68YG9nm+6wS2UNzx68YD6NOTJlociyLW7dvsP25i5fffYAXwsujmc8fPSM45NTFuVjTk4mCBGYL2r+8qd/y/Vr29TOUUzmDHt9eh1BkgbSLOOD97/D9ds7dPIeKtOkXUWQng+/8zanRy9xdkptfTPFyqYl1hGEwHmHTiTOxDiH+WzB8fEZw2GXEDR379/m5p1dnjx9TAiB2tSNuZ/EBUd/0GFza9S0mmcoITBFXDR0OhIlNN6CqR2txYME8CEKsl3silPa40KMnsiznG5HIGVgNlvw1z/7mOAl7757j9/73d/jr/6qpp/fJBO3cUZj/BypJEEqkGljUqgIrY17Y0zol+MuqGDJdIGWE5SG8RQuphLjExxzAtHnKLSdOaHRCrZUY5BLQ7fLrEIALwhCxq6gxtPI+8B8YdjcTTm4OeDv/+YTQrC4vT0QQzwS71QMC/UKU1d4KopywXCU0O8lHBxskmUp81lFOYOyLPDDPraq2NrdYv/aBt3BCB/iAmc2m/H88CX7W312dkecnJw384pvAlpBSYWT8T6Jus+VLxZt3WK1zl4xrb/l9q0GKLDOoFz+rz0KsrGblaIxElsCgeb5BFhjB9rXXLWTrZiBwOqpr5eVYjkoND+usxtL4LOWsNzux3ISX1J7V7Mg4uq0zZkJTbunWHuVS2UZ0SLVtZ1de23vXdOK2nyG5lhdYpz+keO9YpbW24xbL44V69Tuv19qZxo32YbRiuJXRd7J6fWGjIYjhqMBg2GPXq9P1snQSYJSKUI0WRVL2rDVFjlccNR1xXRyijczNjZ2yDpdqnLGxcU584tj5o9+zdAc0xUFVVVgg8C5wMV4xrQMTCvTTKLRrwRcbHVNE4qyjHSvb/QatEGJCcE4rK9ps28G/S4AVVnivaA2jkAUyNbOUdUVzslGSBvbmHWicC42AedacWu7T1AdhHrFs/OaaRHB06uF53hh2OgkbF7U3NntcXMnJ000ItTIypLpDBMCdRk1RaWxDEdDEhlfXzRgwlsfAwITHdN68SgRV40ixPbRGOvgsS5qXSKw8rTrn9YsMBAHKetaJkyswh5DLKesSpmBLBH0tWLQ0Wz2E7q6wIZAXVlkErOMTO2RKgJ8KSK7lCYZwRfL5UTwUeMz6KaUocYnEr2Zs6hq0iSJgEH66HJMLMl0sOwNUjINBsXxpGRRGk7CmA6Bna0+wkR3Yp2m+NqxKGqyPJqvSeEZDUdsDBWzxYQ0TTHBL43hYjt30z0lmrDMIBoTu4AWEhMEVe0oFgUvXrxkMV1QmSkfvvsOTx+/4OlXT1EyYTZdkI9zgoBUZCS9nLOzM1SS0Ek3+fzTZ9jqCRfHY0y5YDQcknQGPHlyTmUtBEe/n6GzlE5Hk6Sd6FWjc5yXHOxtk6SOP/ijH3L/3h36w0GzhhdLtirr5Owe3CTvSI5ezRFCcnpWRmGoFwRvsaZAiugKnOqEujLMpzVnpwteHp0hFNy6dZP+sMPp6Rid5EzHC/x+BDsBKIo6fi/HIAxKJcxnBaONfgR9UkRDRm8hxGsw0QoZJFVhMFqQd6DXUSSJpt/r0ulJ6tpQF/Dpbx5SVQWL4pQffP/HpLrLs4dT5hcZrvZoJSNDJiPzGbvVZLMAXI7OtE0JItQkco6SU3SaMJlJZguFcQEf5o2lQpvR5ZdJ9BBLpTEYYm3xuHwHmqt7tfANoTG59AlaZ7gaTl7NsbVh1N/m5bOC2VxRW4mzcQHgrMG52NmVZ5r7d++QpIHbt++glKYoapzVbIwSNkc9dndG7O5tsLU7wnqYTCc8evwV1hmyrM/Z+BRj62asd41WKBAas0IpFFJGszixPhe0IsTlnPjP3771ACVu7WR4mXlYAohLepP4t0sw7gqkW7It4nXh7DfuQWg7eMQKLXIFPLSPbZmctbLS61qSSy8OTV1+Webhzef8svak+R5WQljfTLTRjvXSp2YdYHxT2Wu9a6cVykolmwntzfvjW2ambUITgsFwyPUbe+zs7jIabtHt9kiyFJU0vf1CsNIENcZiADhCqHG2oiguODk/5vnLpzx5+DXdRPGD7/+IW3ffjV4kwlNNj+nNn7ItC5CecVUzN4r5rGQ8t8yNYF5HrxVBtEof5ClCxtwJISRKgFYaLxRlVcaSio1dPq15U5JrtI4tq84FpFI4byJzJGIbsgkhhnTZQKY1zgWEiD4dMkQhqZIl1zLBH7y9yWkROJ47XpzMeHE2Z24k54XjfFZzPrdMa8d7aoOekiTB081iu2JdlWgJWiiyJEX66BUiCQTr0Uo3AjeHkgKhEiBeH0rE7hvVTLDRrbJpXV6axEUtgG5bzBvjqXj9y6V4OvjIGPiwCn30BLCWfp6yNegx6CyYTusYQNhoXrTQmBDt6+Xa9SeljKJiFctrtTE4F8tWzhnyVJPovFlFR3ZI4qldBFFaQiI9IQ2ovEdwgvNZiakdo1GGTBLKyYI8T/ChxrkQjb2UxNoaJFTKAI6yqkl0DPUz1iEThRYCJWUMfLSRvfIiLlSkEOCj8Ng5hwqCal6yNdxmulAo1eGHP/gJf/kXf81iUfHk5bO4Cm85OBnPCULw5Okp1ntwAW+iad3m1j61N8gUUg393oBBf4DUCYvFHBcUJyenlNUZN/evcffmAdt7m4x2Nsk7in5/QFVbtNBMxwtMXeFcTZ5npFlCt2+wvmJR15RlHOMuLg45P3+B0oJup4+3CZPJBYQErVIWswX/8IsvsRVsjEbM5xWTScHpyZjpwQzvfNRvuQprHS9fHGGMQSUCncgmvVyjtGjue0/rqdHpZGgdsMbjrKCuHUo5kgQCJd4rpEiRImU+n/Hw61c4Z9HJgA8/+IhBb8qjr085fDalMg4pLBobu7mkBynxjaBfNmOdCxawpHJGmkxRqWA+7bKYp9ELJxSRWXCx/Bp8TQj2tTiRq52k7aI2spKi0X25RhkUBanOSSSKxZnk+YPH3Lp9neC3ODsHZyzexyA/E2pMMCBrUu3oD0dYW7O5tc3x0ZijwxkhSN5++y063cDNGwfsbG1RmUUzMUmePX/Gz3/+N4ynR7w6eo6ih6+3ICQoqfESpKwbFnzFDC/pQlbVizfMCG+cJ75p+68DoKwxFW+qF7ZloPbndUAiBM0gcPlo/v8J+C5v6wDpCmBof261Fy3N99q+rzNEvlkFNyUImmCpN2lJ1o+FXz8uvmV2WoV4pOdaAHO1zXgdnFxqP14DK6oN+Wupm7DaB9Egae9acZ1HqYTNzU3efucdNre2ESqlBSE0k9xl0XEgBIc1BWU5YTo54vzsJWcnh5ycvuDps0c8efCEg70b3DrY49q1O2iVk1Jjzx5zzZ+wmVrqkPP1i3OenE05m9ZMKs/JxFEUNdt9wd2dnE4WV8t1XTcrN4etLCKJicmJkMtyG8SMmySRDAcD6qqKuTmXgKePzrANgyAEywFPCoHGgbF40boxVnhvGIlAv6e5sdHlrd0uL87nnM4qKutZ1I7p1PDw+QXzuWNr0CGVAS2ndLRnkMNmP6PTSZuIgahzUVpBoyHQSiGFX/rYeGebMoVqOroi+IQIUoQQpGm6Oq9SRkjiY7dKS0O3l7xQkoBDIJtk1vg8KaJQtmM8g1wx7GpO5iXRiy6AkHgpkA6CjMZnidZLXYdSMR9HKUkSFPN5QbeXk8qYyZQmGmuieFHIJrhNR/+Y2J0kUAFkXXEwzMml53xecTatKGrHMMsJwWGMbRg8SZamWAvGGqbzGUIouv0BVVXh6hKfSqRIG+bWoZQiTTW183jRdJ9YFz02vEMKQaI0RVEwHA45Oz/ls0++5P/6v/yQTu9zjs6es6hjyUJphYzkLLt728ymY8aTkrIKCBxKWEa9PrvXtjmdnnLr/nW6nQzhoSod89IzLzzO10zGBmNr0uuKra0RT549ZtPM2dm/Tr/fZ3F0zHw2QcrA+fkRhIput4u5MNRV4NGTRyzmFcFsUddjLsZPGQ66EHLwKa/O55yd1jgfNSKdbs7FqeGXf/sVO3ujyK5MKl6aCwbdl2yMRty/v4FzNSGkFAV4r5cJ6QGP0pIkifon2dQnpZToRLO3u8l4fM58tsBbsCYamjnvKCvH5vCAg53bPHv6cy4uSopPjzg//y88f37Ie++/xQ9+co8nO2MeffWcly9qSsKSoRPSIBrReQgitsnj0czIE0GepkzLjKLMMSZgg8G4AueqhqUOMVfHX14IrpfNl3x+WzoKIc5lEO+dRpBMkOBiNtRiNmOrv8n29i2+/npGWekmEiMmehtvcV7Q7yXs7g44PT/i7HzBxfScYuFIkyFp0kGKWMacTUuq6oiXr55xZ34NqRImZzVnZzMWi5pPfvWIa/v36He2kSJr8pAcSnqcaJ2pTdTNyHBl4lyr7Sx7lVj73T+9fesByrJj4Ap78tpjaC6OJWx9XVux/vSrkOWN5Z+rr9Fc4A2GbH53+bWCXJvcX2MdWiqQS+/eghMffETUzX9RnbIa/Nf35RLz8xro4VLL8vLYLL8EwX/Da6291zKLpxGVCclSXLb65PGzhFbX0YAxIWIAoGjSdZdeJcvum1hPNrakKMacnR9z/Oo5p8fPcXaMt3OCqzFmTicpyZVlenHO2ekRRbFgMBrQz3K28pSeFpTzGeeTGUVdsagdz04Lnp4YSufZ2cjoD7tsbvbIUklVlcjgaExbY6SEcavzIwNS61g+1AolwVuz1GVYH3DeIEIzuTct3Eo2fipS4L0jSRMSpXF1jUXidQyxk1KgQkAGg7YzUqUZ7aRUI03larxOOJ0ZzgvJZ18d8/DlDBSkqeLahubudo5OA3nmyD3kOoLIKMCDNpJAqUYw25RkAgFrbSMAjp9Fyeg7IaVcMnDx2mGZnN0yalLSMEdxlF2C2hDwNt4FOlFRbOtrOil0k0AiomU8pMusIK2j9ocQqOtqCZakktEDpawjcJFgrSPLUjAGGRwKj7d1PN5aIYIj1dFLIsm6KCcI3pAngYNRghKOk7nDGshGPabT8xhISdRKFfM5EDOTnLdknYTZfI5E0O/2MeUCLxQ+BLRKkEqQJAmVWeCdXx6HuILPCEA5XyCloioMvU6PjdGIp0+fMF/MmS/m1NaAiucoSRM2hn3+u3/3L/n889/w4OFzppOaXleyvdPlvffeimU23WUyXTCbzpmMZ1RlYFF6xpM5nTyCS4Wn14mU/NHRhD/92S958fKUf/8//HsWxZSXh89B3uTBo6+p64p33n6XEALjizEnp48py5KtQZckqXnr/m3Oz045OxtTzB1nZzPqOjKIQkJtDHmmwCcspoH5xMU06YXj+YsTbt6eInjKxcUFphaMLyqqyqG1pKhKxuMLdNKL2rQsRYoqTuAeqtIwm5X0eiPqylGWBVo3HZvBQNDs7d1i0L1Nln7OxfgIW9U8LU+Yzf6O45MTvv+9Od//zo+5fn2LP/3f/4HJuIaGvRXEXCkvYtJ4gmWUG4a9miTpMF9kLMouNgScqPHCLss5eEHw8boTjWbj6kLymxobIg/ZzgEhspM+tllbW1DVx3z00Yccn9YUNZFla8r2nlgC00Iw7GeUxRRBYDgcYjzk2YCL0xqsYqEduzu7fPXVM14dvaDTTUnTDt5JTJVw/eCdaGCoElLdx4csToyiKeWIVc6VbI6VQkQ9YjsfL0s86+Dkn7d9qwHKN03IcQ58HaWtA48Vcl21+66zGWuv9MYSR7tdQsSiBSmve4istCmr57VlEtnqPl4rO60Gfx98w0I0mpE1oNUi7/XXXt/kkslhyZQg3qRQj6uF1Wd+M9Bbb5Fu9/81P5rXP/2l/auqirqum79eLlQ6u6BYzBhfnHB29pLTsxecnBzy6tUhs/EpB3tDtjdzZBIICnqDjLzbY3y+4OL0FeX8guHmNfLuBknaxyNYlI7KQpZm7G508DKn01tgXWB/o8dOX5EIj69rvLUNEJHNKRGrhqom5VQ1IExJGrtzQydLsBBFxsTcmjxN44TegDLf+iiIWJKsLXgSPB6CjV4vUiKDxJqmrQ9Ppgy9LL6uFZ5+kjPq57w4vOBsUWCE5qL0lKc1Ksnw0pEmko6CTMeKngg+AielCY0vS1vxTpJYEqmrqgH9jehzCT4b5qhxrY1mZCtwHMK6PoVl8nYL1rWKhnIOHxNlE8VGL2Wjn5GnJbMioES0hDfG4AjRrK5hCZMkQQiw3mKtxTuH0gmgYsZQk3kUfESUSsVMEq103Pe6QgiJMzZqRYInTaLmYHOQo3XgbFJwcnJMpxvbiuuqotvJmVxMG3M8G4FQiJ4yeZbigKJ2dBwopXHeNiUdSXAehYgtmEovz7sQMW8pGww4PR+zs7dBsSj5+OOPqeqSoiqaXBMZxcGmJkslpxenjBcTrDegHFlXs7vfR2lLVVaYynB+MmU+q5jPSozzjelfDMjrZJI8lWyOhlS15/S0pFho/uLPf0Hwkj/+4z/A2pp/+PUvmM+m5J0OR6eH5FkHYxds7w5Ik22kkyjZ4/GjMS9fnDAeX9Dtpww2BVaAM5raxEkzUSlaCvq9Lotijqt8Y1QoGV9MOT46Znxxzt7uHc7PLvDeELD0en2qqgQ0WZbQ7+VcpAVVVRO8pyxqXhZH9Pu9ppxXxHKPU1gLSiXkWR+EIs0zGBNZ2FpwejLjVx9/zcXZhMV8wbXdt6ht3SSJ02gVY9lTUpMpw/Vdzb0bXYa9LrNKU9Qp1mtcqKLXSeNJ431ovjfJ48TsoCDWRrkrY287Dy3H3uVAKcFHnQfesqiO2dkbUDvJ2VkVree9JWBj11CoIRjyxNHJBkymUCw8uwcDNnsDXjyf4VyCJMEZRVlIgs/J8y0Ggx793j5adpiODQTV7JcEF699hGOZaN+ywbKdB1otolv/BGtzyz+vtNNu32qAchWVXlrpt0Di0up/RTkJ2VBsonlsZJdXFPXaZPwN785Vzcab/tYCiPbSuypBvdqa+zrb0bI+zXAvBJezDVi+/jqhtjw27euFlRYlhNj2erkuyvLZ3/SZL5V+WNOjrKUeXwU87ephVT6Kf6mqisWiYNPFzJZ2s87w/PlXPHvyBeenLykW58xmZ5RVyfR8wtnJKV1l6agNVAqFt0wnFYuFZTopOD054uL8FdvX7tPrdUma8LrSgpcJ3RyMrXCppbuh8D6QqYKk8gSl8IK46mlcdpFxovaNyE01YKw5FSghyBId82+Uoq4a0OV9dHFtxMFStjHsEcAg42BmcTjrUDLQaQBB8B7n43ENgSZXJ5BkCQIwxqKkJ0vhozsbCBF4OXO8mjjOneDLw4LTi4Kq7CKud9AqQQmPxiOCwPpAZRyZVtTOxERlGVupfYC6NiRat0XxJhjt8oDaMhpXS39tcJ9sMpMg+pWsX/Ex5MyQysConzDoJkyMw7iA1KIBQHU87jbWtcuyJE01ot1XJanrCqkSdJJiTJOQq0CplBYqWe8RMpriRdoc0iyep7Kq6XY6aBwbHU2mupxOC4SQzOYFAJmPIkrnLKIpzVQmsly1qTEGNrY2mU6nhJDS76VYU2OLguBDzJ4JYJxDqZiXZE1NqBP6ac7F4RGzckGqQWqNCwJrPNZ6YgiBIATHxdmYzz9/SNbtY/2E+XwOoWS0kTAcDpnPK2aTirrwzCY1yBRr6+gaLGlaV6HX7ZCnXSZTw7PnpxQlKBWYjBf8x//4n+h2U6yrKMuSsjR8+ukD8rRLv6vR2pMmXfKk5NmTM7764gmz+YyD65u88/5thlubfPnVI/rdXX718Re8ePaKbiej3884v3iF8xXRXFgxnpScno3pdBNu37nH7Rvv8OThXyAV9Ps53U5GXccxK9Ga7e0RZelx9iKGNnoIQVIUBUIkRCsOx3wWWCw8Wa74xS//gdm0Zl4WKA3CgE4EiMBiXvD8+St++pc/585Nw/jc46QDCarhBEKwdFLDu3dH/P7v3qXf63BxIShCjhea4A3OuyZduTWkbISxztP+t2x++OYV3Nqw74ltdiKy494hMdhqSrAT9g++y/PDOcYkEZw0nUvxPSx54rmxN0LqlJPjmtLAw68O6Q3nLOYCQQ8pFNbGvKIs3+Sgv0WaKRYzoj9USBqGhMjgCImUkSFq/V9iSae5o5tMudViv5lHlxPS6/PVb7t9qwHK1e1NH/ybrwm/BDFx4l9dJFfBydXyyfprxN/LtcdfZl/an1rIsuyeEW0L2bqXyjd9rqYDJ0TKWwSxypFaB2jt4+MfLiP010DUCkz4JpXU+7Ys883i4OXvr7BXVx++igtvHRFXJaXQTILz+WIJrpaVSm+5uHjFs2dfMh8fkQhDvZgSQnRz9XXN44dPmF1cMNoYUHrH+fmM8dmCqnScnk45Oz/hVjXBzs9xk1e4coGzUVMQihIVDJmvo3OHaBmp2CrtbbSjlk3psAV2LEEiDV3vmglLrtrGvSdNEuq6jmyDMc1kLpex9K0PSex2CY3wziGDRHqJ9GAaCxyhJNJ7EtXknxDr8loJhKtJReCdnZRRZ5/HZxVPTha8HBsWledoavBuinOe2vS4tZnR15AIhw4S5wNVo43JdUz2pbmW2y4UYx1ONBojz7Ks17oOhxCaz6KiLbn1S8Dq22Mq4vkX7UKAuOrTUtDNFN1UkkqPEoHaO4RI0IlEeRXbGLXCW4ds9CjL3CchIoiSgjRL8VpSVyVCa7Iswzapt1IIrLG42qFTTe0NRW3RUpInWWQ5QiBJohg26wx4eTJF6ISNzRF1VRAEZFmCqaPXUXQRjt0KSimKqqI0Hj+rIkhqAKXWMp7jpiRmbWNgJaJQNjrbCiZnM27fuo7zjsn4IhrKSY0zzV0dBE5Inj89AQEX5+NYFO2kdLIRVeUpmzJYXdfR3VQmhADOBKRMCDawqCoOhhsooXl1dk5RGLwPaCl4+vQ5zhuqukRKqCuLNfG8aaXo93L2d7ejOH1+ztHRKyDwne/fJ+sKRCI4vTjBMmWwuckf/+vv85/+vz+Nx10nEQTrgEZi63huj48nXLu+zcvDE85PKs7Oz5fAt9vr4p2jLE3skBtk7Oz0MXXFbFYBmqqyUd8loT/IGw8aS7EomU1rzs4eEIDhaADSI5REJQ6VxC4a7wyJ6lEVKlrJi6ipUii08MjMcudGlz/6w/fp97o8fDJBdwboXkZ0u7YRmATXCOI93sXybcAuox9W42yrw/uGcf5SKSQK8KWweDvD1mfcv3+d+cyyKFrxuY0QyEOwAh0ko0FKmmY8fXHOolA4n7GYBawrETIn1axoTgSt8FULhbeq6cJRyz1CxJJ2LAM3PieyBSHrGsXWamL1d0Jbrgf+MXT2j2z/1QKU5eFoV/nNLyM4XXNjbR4Tv71+EL8J7Yn2BeOjgPWQwNfBCUtA8sY9Z2VYtpahs9wnsZzgQmgyXHhjFWsJghBt5B5rr9N+puZYXPm8LXW3cnxdY4IuPW4FSFpTI9oJ/RJwiXsaCYm4ymj/bYxlNpvhjEXpVeFNK0mv18PWJdOLE0a9lETEGmfS73D79jXKxYK6KJicTqiDIxhHr5NhTM3FeMHp6TmL2ZgwPsLPjgiuINWC2WJBXdQ4GydPrWNBztEGf/nlTRePuoj3aIhlnEtN4iHua1vuUULi6hqZpBHohSjms23XVPsJm0HLN+3iTWIUIsSciyAFQcScnKjvsSQi4HxANjO9DwJnPdiagU7Ihgk7gy7391IeHpd8fbjg6NxwPHdMHo55flbww/vb3N/N2co0XRGzhlQSHd+sj4Zb3lik1k1OmWwGyPiZrY32/FKyLLG0f5NC4Bp6W10aUdpzbeJnUREYBe/JE03HQzeX9PKEbuowRkTldlNGazy5mvdt9E4iCk5TrRFKMV8saCPXAIy1ESB5j24EvyH4GHZn6+Y8y0bEGKiKYmmZ3tGaxHs2uhln05qL8ynBx26dbpqgE8F4NosBi819WlUVzjlGmyNMVTIva/qdhOBBJwrvHcZFQbuUYjlee+coFiVSKIyXvHh1zmg0oGpAUKsBq2uLVrH1+uT4vCnpezodxY1rN+h2hpRlQd7rcn6ywAaHC575dMpiXmOrGISIFCR4elmfVCe8ePES5xxZlrGx0eX99z/i6OSQw1eHVFVFEJCk4H0874PeHucnluOjE+qqZv9Gl5/84Q+4de+AJ88f8ez5GY8fvyRNJe++l3Lr+i5/Uv6Q//Qf/4aLs4K832U8nzULQYV3cHwyY3t7k0cPnxAMCKHp91MSnaCQdDo9qnJMXc3JMsFwqDC2S5YLBAnOC87PZwQhY4mmnNHtply/s8vJ0QVHR1NUIuj2kmg2aAM6gySJ49doMGB/5xp10XSgBYmSKZIZua64dXOD3//JOyRJws9+/jUiuc71OxKcJ5Ftqq8nOBuzqVxT2gkBj8EFF8e9deb5yvi+HE8IhGUMSOPWLCxCFNRVxe5mh52NTZ69qvBeYm2FDxYXomWcdJ5Orun3Ykjh0ekE40CquPhQVpEkqzK8R+CFjCaUIkGExsMkaGIXpVsBJtGOz4q26aFFOe1iK95WV2wq1leey1/887ZvNUBZlTFYsSErGuTKwWpgo+DyRPNPvH586tUDe/VZV8o97W/Wnr/yAIktpYJ1H5F2wHtdTAWr83ypJLP+/7XfvekSeL3eeaVcs/a1/LzCryHp17c2zXjZaixao56Y7honhjggx32nKSvF5zvvmM1mVFVB2umCj8hbSsXGxja7O/uUF68QvibVKcZ5dKbY2t5FKyhmCybnUy4WczKRIUKGFRPKxYKzoyMWszkbWR8hMggKETzKG4SrIYio0zAmTm7NKjciuzhIrJvPybVz1mCWpf9L7GCJdKi1DiEdurGgd86twMka+xBN61pmToFXTVaHQ8mWfYqsnJIKIUNT643smbXx2EZdjCEVgW6SsqUSbgw73N0b8pefvuDTlxVTnzA9s9T+lBC2SQ9ypLd0ksjUSBETmRHRVZdGdKqkIJFqCShbwOS9bcpB4soKieXqt22NbVmzNuPJ2ThgKxEZoTyRDLoZ3VxHIznrcc6ilCJpWSdCUyKKg6B1sbPF2QDOowUUizlJmpHlGVUVbeR1EgWtqU5wwmMb+22MI02z2FmjAJ3EkMYQlUBSBLppQt1RTMqSja0BUnjOx2MQ0fY+CnoDnU6OEBpnPYtFEcs33qAlKBFwvo7MSYhCy3aR4p1FqgRrDImO5SgbPJP5DEc7MbSsbDvhBaRX9LtdskRw/eY2o2Ev6jZExf71A8aTBZNpxcX5nLqG4KJ5Gj4GVHY6ms3NDYQQnF6MkUIxHPTYP9hmOr9gXlzwznt3uLiYcHJ0ynA4oJt18Tbh1fMxZycTgneMNrvsX9tlUU14+SownVWcn5ecn1bknYTHjw5RQtAbaDq9hPPTGf3QQ4kes8U86hkI6CSwKBbs7+8wGxfkeUKeRX8kqQKJ1831A0I6ul0NdBgMcqrKUZYO4zRl4zIbfDQfm04912/uUSwMQkHeFdTWYWqPzgRZHiMUbt++RTffwpYuWmwKD1QkacXdWyN+8Dv3ydIu/+t//ltOxp479/apnUd7H5lPG8XfztFoTyzOVVhXRzbFrxy018ve7XSy/F3jjyXauT8IkBBcxWw6ZXerw/3771KXFuElwcYYB+9jYKHA0sk8W6OMRVHw9OUplTcg1RJg4qMvURudKlAQoh9TMzgjgmrGsjbjq7WRa+c11+y/b8b7FqTIZnyLwvm2o+dSQWG9ovDPwCnfaoDSDvptmesSQbFkACI70YQFvIF2EMuvJRUd2p/FkpZuD3DLkrwprfiqUHe9RBQntrXJCrk8ye2E1Dqp0Hye9gQ3bsjL7onV8LXyfvHEmnWL15Y68LUyTlh2yLQgJa4uXQiI5jGr/Wve9Eop5/L35rFrYCWsPbZNNCYEVng8skDeSYpFRVnVDEKIN2QAhKLTHdEfbpJ3+ghXxJVoXeB9hRSaPO+QpiOSLCGZRkFeVUfPhPPjOeenp0wuTtncGOFcjTUVtqoxtW1cUWmyYeIAEtcGa+cstPXUtvzmG8PU2P0ipUIqgbPRC8CHQBCx7dY6h04TqkXNJVatPSZXQWJD+QYB0guC9SyDhq0DHdXyWdIk6VaG2tj4ehKC9SQZpMKTZopBAnmecnqWczIpOa4Epk54elaSiQtUGPLeXkI3TwnBYp3FyOjxkWgV2Z0gcWVFkiZInTUDlGz8T2yToCwwJtakpdT4EDt9XMNKxmspHmOl1sRdDZsWmhJQphWZlkgfE6W9TAherplyRebEWktZ1kvn4ZaNVM0gXMwLur0uidIYa8iSFGNqpIh2/bWNJblOJ6eu6ibNVtFajAuhsE1NI0szNlWGdTXjszFSQyfPKRY1gWh937InSiakaUYgYBuwOi9iCKEQjtpUBHTMGWpiDaQUCO/Q/z/y/itWti07zwS/aZYLs/3x5vqbPpMuxUySRVGURAogUGCTBXTXg0xBQAPsJAGJgCBI0IMMJAICGgIaoIRutEA1qkChWqVmSaJR0UgklWKSIjOZmTfd9ce77cMtM10/zLkiYu9zbhrWS2drXey794lYsWLZOcb8xz/+X3jKMqMoCjItyDOB8yC0AhsnUloKkNFRWoZINpXKIZXkdHIKUlA3HcfHd7l765DFvEPqjCgZJxAykhtl8Oxt7TIaVEwmM4KTXL98k9FGyXx2wu7FYVQazaHKFJf3LqFkznTa8uTRPgdPpggEeQk7F8cUQ8XR5AnTZsrdW/s8ejghOEW7sLz2+bf52lfeINcaS+xWnE87LlzYol201LZDZgLnA4fHp7zv1ee5du0CXbtgPCrxvqNpDLYDgoZgGVYD8qxkY+SxzrPoWk5nDUEL9h+e4G2GdxZkoO1qQmi5sLfDyWSCcx6p4zOuctB5oChyWlPjqkV8A1BBsDmQXLx+gZdfvgRC8Zu/8wXefPeYaryNCxZnTNQdCS4+P8bSdR1d12FMh7VdTMStJ7hwJt7Eck/f2dZjtAn7C7Guu0pjAlo6Lu2M+MD7nkdnOfcfnHKykFhiiScEiXcGFTp2tnMGpebRwQmtiV1EkcXQbzGOT6nISHKQWqLmfTKCjMnREn/vqwwBZFL/XgLmIk2mQprMLdOflbR/1K5ZTtnja351Tr7R8m2doJzFkvpAn/6WAnm22kIfnM+SPc/nLGKZMcIqOVnC/XI9br93KthrYZz/ruW3iHWi6SobXZ+RLpOktYAWE5BVMzNLFOncRX8mjEji25xNUNadks/+sCxLnDlDIg2yicGtEsFSJNXe9e6eEHqZ6CiP3H8++EDbtMznU3bDHlKsxNmyvGI83iYvKlxncFiMMzjTcOoNTdOS5SVSCqoyR9BFtdE8w/jA4dEhR4dP2PItoZ1TZYom0xQeFiagpKezXTyLoZf8X0e8zhog+uDOaJvEck+IMt8qst19IDreWotUIf5t7FMoXM9fWd0n/QQmpOqGwC/9OARKZkBENYxx1G2LdxGt8NbH2aUPCBVQKupdVEHyHc9tobTmq48b7h20TGbw9n5NVSmuXLzMrpBk3iU+RCATRFfihHr1WhTO+Uh4Tc6+SkU7ACEERvjlOjGhjr5A/cSh5+kskadEGA4i1unbzqFFYFhIqlygm0BtHVJmqXy25mHiPVpnCLnibXkfdRi0EHTBQoA8ywnBU9cNmVKUZZESCUXwDiEkSut07waqPMM5Q1HkEQELgeA6bFezvVHBxGIDjIbDRMwUGGcRWpOrjHrexGSVwKKzbG4MCNbQdpZRFV2j2xZculbWOaSQ5CLgTYfIJePRENPWDKuK4daQ2/f346PgE6IkdbwmQjBfzMkLwaKtKcoM0zlOjlsODyYsFiDI01gQeVSb22OqQc7J/iFbowHT0wltmXPj2lXqhef2O7fYuVRx7cplHj64zfGTE4LLCDbj1r0nHB9P6TqP0hlag6fG+I7nX/oQg7FEy5z69CtMDlvmiwZnBXlRURUZWRHwfoZtFYuJo61b9ra3ebB/kOJxlOJ/984dXnz+Kp1ZEGYNVZnz8P4B83lHroYMqjHdAgZbis2tHU6nE04nJzRNzcULu0gruXf/gM44MhXVVOfTGVub17l37zGdbZFZVCTWUpKNFUIE7t67RbNneeWFD3Dv3Ql55nnx5g7XLud0TvGbv/0FvvbWIa3NKbzCGo8xLabL43MaYkeZMd3yx9lIenfOp4Q+TUC8SIE88VLSxG3V6Raf/di8EShzkNRcuXiNzc0dvvK1e0zbAkuRCPsOvCMXhvFIMBpqDg/nTKcuGfnFcWEpuk16CNMvsZwOp29fEl37aWQfUyPq4hM6HsNRWJV/lma6MiJBSxVZlp9n/buf+vvrL9/WCUo/4+1P2kqjwS+RhGXpokcj+oxwuayXPMQywK4gjLXv66/ve2BUq3bj97gA36BU1HfY9JDfs9ZZT2xgrYU4bmBtpnq2lJM+HWevfk0P5qlvWH/9PBfm7L4u26TXylRPbWMNwenNr3qnzrbrmE6nUa1URhpoEDE4bmxtUQwqaj+ja00qO2S0jeX09AjnPcNBzmBYJA5IdDctSslkOmX/4IBL0kA3j6RMrdCuRyyiYqpPz6P3nv6ML9GjtTMTEhgg04NtrY19/yq61rqkEyKI3S3WmGVpBziTkFhrz90nMYn1LpqfSSVjCUel60WcPYcQMMYgpSLPsqSq2uGMia7EBGzyDAnesFuWfO+Lu+yN5tzaNnz+3UMen3Y8WBheu39EFiqujTWF1oRgo2u2jbX4XEfRuA5Qyacn6+XuXRyUY1kvni8X4sAvILYFp9PXl3ZWzxRkKvIhWmsptWJY5WwNS4ZFQ5E5ZsbiTIfKokKs6VwSm4skwzLPo4Gfiro51jo8gbLKadqa3BdRgt6Y5F3T4lJiIoSgaRvKosSYLiWWsZ25aVo2NjaZTaZoJSkLcHg2hhUn04aDx0eMxkM80JiGLOTUdRNLOM5hvEdrSdsZsA5UINeCTEdCbUTfYlIke28XZ1Faom3AynjdvYjlRWQkjAuiB02WFenYW4SXSK04nSyoa0NdG4yLQc/jUcKT5YKLexdwrmVUZey9eIOdzQ2aRIxt6zmPHu6DDFzYvYB0Gd1C0swUR4cTTk5rmjYiSrpQONMlRCaw/+SIhw+P+eDO83RdR1mVlGWOzjU6L2ia2N2SS6gGAS0ytFTMZlOubFxkPBoymc9RQmOsYzJtuPfgCdevXuLBnXtc2N3l5RdfoJvd47mrr7K9dZknh+8w3iij/9Cb7zA9nbO9scm1q5fYGoxomprHTwyaHC08WhQIn9M1seSoc8A7Wh8Im4LWdNS1597dW1y/usXFS0MUBZevDCjKjE//x9d4+50jjIllTptKs8Z0GN2lBMWlBMVgjMFau1RZXjd3jdy7NURfxM60INJEUMRrJwTJwTugheHG9Qvs7O1x684Rk4XGSJkQjUDwHYX0DArLtUsjZnPDwVGDCxpCKl0vE4WvH7PSI/rU6N/PjXs+YkR6elR5lcCcpQisxYs19Dh9dLndb3b5tk5Q1pc+EK4nLasOG4kIkiBXhMQVAagvZcA6DJWmMGuZ5wpJWZV5VqF9fYa8/v5Z7sc6qrGGrJwpASwxnGUi+nQpKf7vbG7Sf2884qXc25kbZK1rR55tMz5fvumP+r06mGK3xlnTwPMksLDc2XS8yfiqP5fWWuazGaZrybIqrSaQImdjY4+dvYsc+TnOtxQ2j0RU4VgsOk5OTtFqk9G4oJ9h98n7yWTG/pMnTFRNSUvwlkW9oDVRadTYJu6LT9btiby46lBK4GtYJYE9PWU9Eesfwj5BwUWF01U5Lp7bPlAv227XS2EyJkS92JLr7910jrz3uBDRCE9KbGT8tIrKeInwGa+VUipK8wfIvOXV7ZwL44qq1Hz6qw85mXf80ZsdhbdUL2yyW0pKQXRDDtG8UYtYOjE2WrIrqVbH2JcLQ++J09sYpARKqQQ/h2W3j1gWJNNg5z25jjXwLFgqDcNcUkhLJqETfimDHpEYmzp4YkALwTMajmhbg5SRFBrNBn3i0ESeTNd1yEohpcIGtxwTrLUpMekJ57G1dzqZgQfrTWpXFlGCX0hOJpFjEk0DM7yPnWh5ViyPK8ty6qZmYzjAmo66NVE/xXuUEmipcCGJ98VMEikEdVOD99R1jW+zRE4GhGQ8GqMziWkdWZbRuRZjPYt6wWzaYaxgsbB0HfggQTgEgpdfepGLFy/wpdf+kI3RkFFWcXJ0TJaViLnlaH9KNRhw8cpFvFV89g++wuPHj5kvFrGQqRQqA51p6qaLOj1SIJXgdLLgD//gS8wXNcNhwel0QUCwWDQMU0v3bN4SCOzslIS8wHee2dQwnc64vLtL27R0JpbL6tqzfzilyEsGwx1Oj1vqqee7P/ZxxoObHJ/OGQ42uHJ5l3u3H2IbxfNXXubq9V32Lu9hfCRvmvar1I1B+I6yGDCZzAlO4kzkRpQF7OwU3Lh+lbYxvD15wHzW8cUvfJkf+oGPc3lvG+UHfOHzd3nzzQmdKXHB4oXBhw5rDcZYjHKpHGOWCcp6crKeoHgXlmKPkUnUuxaHZXSJQ0tEVLQIFJkh04bxeIP7j2YcHls6UYJQKAIq6aIIP6WsJKUecvd4QmOgc5Fg7kNCylMce6/l/IT6WfEiJiJ9cpViYWTSL4H7vuSDWI2R6+j/2eWbL/HIb7zK/+8uzwqwgdU5ielErJGtYKf+vaeX8xfrPKH0G+3L1/v3N9pOD4X34rKB9U6aeEw+3fh9In6+a0kgziIqz/6mp85bn4ic2ZflHffsfV2iJnKFopwn254/9vWkJYgoIz+bTWkWc1YXRyDQDEfbbO1cRGZ5SqY8zaKO+hBSMR6P2drajO7BSJrO470kywtaEzh88oT68CEbReyTCQiKvEpwuVjylfoupGVi5fzSzbk/n/F9lYSIVsceEozrnSfYFUqSKZX4QE+fU60UWqqoupjGkJDgUIJIHUApbAoZdUmMxZgoAOZ6sT7hk5DaStExQqzRnr0zLeAoheHiwPHByyXfcW3MxUoTyHjrccvtY0dDAUJhfCCojCAzjPU4Y+JMzaVZoHPLFvleur4/LkVf+oqePcKfRRK9c8kvxNObu3rvcLYjzySXL2yzvTGgyCSZUvGcLC0D4s0eCbgRphdCMZ3NMaY9U05imXxEsnVWFLGDBrDWRORMxcQ/yzK8D1RVRVVWCCGx1kU0KMtiEmktOEOhYTzMETjKImd3d5tM63gvIVAqYzAY4YVA5xl102GDBJ0RRCp9poBFiF1JiDgDj9oucYLUmdjhlKssCuRJKMuCn/jxn+D7v/eTsdUzQCYVZV5ijWcxa2kXhp4HoKVEiwzbCr7whS9BsFy5OGI4EGxujbl49TIh02zt7DIab/P40TFvvn6bt752i2ax4OVXbvDx730/Fy4PQJkY2npUTEJeaKRSHB/Pee0Lb/HFL7zBrXfu0zSe4DRHRycIIcl0wfzUcHLU4D04arJSsFjM0VJw4/IlBrmO7etB4Z3i9HRCmRc0C8ebX72Nt5LFfMHh0UN2L2xwejrj9dffZj6x3Hr7Dif7hxRCs7O1zYc/+AFeev4mo0FOnkl2dzaiXD/RemA4KHj1fVf5xPd9mO/8zo/xoY98mKs3LyMzwcH+jK+9/gZ5nvHHX3iT175yh7oLWKKcexACgsY7iTMB0xmM6eg6s0Tq1n+WnL+Q/u6djFNSEqdpgsSKoS+RCOEpq0BeOF56+SXmteTuwxmNjeT66ILeElyNbabYbkJRaE5OHYcnHRYXJyxOJCfktQToPWLPctw7U0k4/5lVgrMCAM5OaFdl/TVNrDPftGYa+l8LgvKe8T7NQFcE1H79VcB/6iPPyCKfhSp8vc+d3bnVhTiPtqzv53p5ZB0m6+Gw1dVclbDSFH2VzXydY3j29z7dtbP+7xW7/GyZ6zynpk8B3zsxWUZfljyZ5a8I2Z+eHDOZnLCzdxnWCF1aV+TFmKbzWGsBj/UG0zY0dU0xKKiGJVopmi621c2nnmZhaFpPfXICOx1KRhfO4AWdjeWQqDgZO2LCahcjzLp2/JFSExM1KdaSQCkxXQdEKfhMqbXzHM+BUgqX0JU+cBNWbbsqfUbKvlulR8QCsc00tRa7QK+3I6SK7Y2sxNJEUFgbZdzbtkMKjfeOvFAo5cB7lLDsavi+Vy+yPRrwlfsnHB4veOfJgstbI3QpGKgYNGUqO4gAmdax28WYJHkfW4B7YnYsnbDURFle57X7pD/OyL3xBBlr3Z1tsUFEzojvkEnfJc8VbccShemJ1lmmk59N0qqQMhIVeyg7JZPGWvK8QKootlXXDS5TyOQ0LISK8vMpgWyaBpmSBqU0bVsjhcZaEMnhGRkoosk100VL03Q4H5NNHzzGdnStxzoXPYicwwqJEoHgIvKhISYYskfmIjFdEN1npUhDsfPkUuG9Yby9hbdw4+olfvzH/lv+P7/0S/yvv/xLbG1tMh5ucJzNOG0XhCSnL0K8T72zPLj/AOcbdnejA205GqKLEi8Vx5MTpsdzrA80bUuuMsqyRKiWnZ0x2xfHvH3nLZSOHWMrZDGQV4oyKBYLx2y6YL4ISKEodEquRUw09vZ26eqGZhGw3YyLl3bY2bE8vHdEvTjhuZsvYNw8th5rxc7emIsXh+xubDN9skCLDKUlb9/6EoONkrLa5p23H+BdfJa2NjeYzWr++HNf4srzL/Lo8UPAcuHCmI2tPba2h4w3NdaPkEpSDgIXr+ySlRrjW0RmuPH8HvP5lKPHU+49eMIbb93l8HhBa1Q0ecSlMYxUyosCeka1CBEJ9s65JXrSj8/O2ZX8vF9NNCNhlFR6idcrAssOKRx5HtCZ47nnnqczOffuHSPzAblwKFxMZ1RgNFB0gBYlpzNL5y2tL/EYokGmxK2Cz9Pj/7kkJCzH5fMdR5xZT6wjv8tJLAm5jhop75V8fDOT/Gct39YJynm0ow/uKcSn/9JNBqubYxn4n30xnrU8a733Kn0sS0Ipvq9zDnpgoieRrru1nr85lgTDZQBdC56cPfa1NZ7a71Ut1CeEwCc559Wnnq4lnj2m8wlM/9CdR0+edV56Yqh3qy4k7wVNvaCuTzg62OfGjRfQaypCQuRUw22EKJBSozNFEJ55PaNtOqpRlWzRYxfDw4f7dLPYduetQzczRiisrZmcTpnPaprOElA4G4mKCFYJnxDRCr0/lrVkJVoRJLgyeKTQ5FkkV/ZH2gfpODjF0odWCnyIP2uJXUhlrpjwRd5HphXO2wT9B/rWgn7w0zo+qjYpRkoho6qtUhRSxo4Ja/AuIkXGRH5EEFFzokBwuXRUz48ocsvnupZHTyZ8WRvqCyXXd4YM80ApA4TI2YhtjDEZiEaDa+Uq55blx1g2iaJvSqt4jW1ENM4YUAYQIUR1VxFh+UW9wLQ2+ZbE6xKfF5VQGUEgKv72RoY68WFkmnxkWeTRZFlG09pIdk3PQV7kUWhOkma0nrKqWMwXZHmGtV0saUiPaRc4Z8jJISEqea4oCo2jQ+V5JCo3jp3dXfYPDvHEwBWT6qjEa33AC4dXOfPOUuAYakGuFdbHJEuke0aEQKYleVZQFALTtOSF4oVrN/izf+7H+JVf/hX+p//xf6SeNFzY3SPXinYx5+CRIZOCzVHJ6Wl06gaFlIE8V5SFwjvNoMzoWo/xlicHBzTGcXR4gusCQgvKQlPqHNN1BGt47bWvcOnGBVCKrBA438S7VSWyuHIMhlGIz7nVOOCDIy8zQhA0TU3b1ozGA6aTOYt5jRD7/Ok/86e4cvWEr3zuTZzveOXF53j71rucTuac7B9y/coG165c5t0v36bragbjjC6ccH3vJWbzOdYKmkVs475283mODk9488u3+aMv3OLx/iP29ja4cn2b4bDi+HjCYDTi5PSY+aLGBMujx/tcuLRL5wyLZoJjweZuwcbmkMXJlEf7DxltXiKIJnayKIcUHVkeqEYaoeZYN0f7CiEiUnEePYmJSS/I1lMJ0r97VDwkVD8Q5Q9kQEpDph07O3tkxSZf/cptPJoqd/jQUgiNsJbp9ARXBq5d2mU+hZOZYOEMnY88JyUsXqz4I+vxYR3Ffuq1tdjzXmV9+tF5LR6sGlFicnIGXe9D7ZlY8szNvufybZ2g9CekX84nEUvSTq+BENdKAWktizyzPsuZ7XvV5p7ajbUZ4ypwxx08f9H7zpceDlPivQmm6RAj1B5iMPW9iFqP6i9vrjWU4hlp7Nkb8T0P5ex+PCNpWZ8tr3/mWUTZ5T4l9CckcazgwTrL8ckJXXvK0eEBxrSovCJ5/RLQDIY7jDcvYJtjAoYsj7P8zvrEig+YLvqQaCkoN4aAQJxM2SsChZmhtYxtoCFKjxtniU6pyzRyubOCdYRo3cNoPaFgqQWiUbFTR0aIViZES6duHuf8U+Wz9fswBne5Oq8mJkJx5uXwQZFlUYUz5lCxpIaTaNWbD8YOqUjU63BCIUJBpnOCMaBi67CSgkp5ilzgLg3RQvPwyRSpPMezlmEhKWSOLmWEklOiIVV0QI7PRBwEQ5oZqqTK1rewKxVNBp2zkdgrV/eOTzpA1vUS2TIiDqiEBAUKrRCNx9topKh15J/0br42tQpnWYbWgq5rsTbgQyQPhwBVFcmroipSmSQiLdiYFDnnMZ1ZDqr9PWudI/hAXpbpvlfoTOG8o6sjWVTiGVUF3nccHx1SFBmtMagQOVgBkCpLPJnAdN5QZBnCBoZ5FhNQsSb45yMC99zNm+zvH5JlBXNruH79Av/nn/q/8KGPfoLv/VOf5D/++r/lt//jf4yiXM7RdB2L2YLhMOfC3pitzTEuBBaLBp0VfOADH+D7v+/7+LVf+XcIGuYzxcH+PgcHpxRVQSYcFy5usVjMo0WA1GSZYN566oVjNmtRmUZlnjzYKITWyCVnpygF1kDbCaTUkSuE4ELyFDKmZTqbMh4Po74QOtozZPDBj7zEweNTHj5+xCsvv8DNa5c5KE6pNnKODw9xz1mqqiBTkqs3LzNtn4cguX/nCXdvPcR0husvXGW8scFb7zzgweMT5q1lNBpRDQZARLLeeuc+R8cNbRtw1pGjODg45fadBwyHOZPpET5YFs2EYAXDzQH5SLAxyKlGHVZ4qnGGDYZq5BkOOsbVgqyosTYgREHwYq1bZz05Od8N2SsIpwFnqXsSCKFDKShyz87OmJ3tC7z++rvUbUdZVijhyLWIRoGzBUEaiiqjtRM29y5xeKfBJ90UnMKHjiDccnyJidJ55Hs9QemHpNXkOYHGy/H7DB3gfJx6xqR2PR64NemKb4Uy0S/f1gnKCkUQZ07A6v317M6vZY6rDpRv6nvOIQNfLymKA/mZF55R31tDI9a+Y30wP7N+utEi6WqN8CRWnws8vR9n9i3Emfz5GuOzMunlcZ47R+91Y50vU51Z1hKplY6LYL6oOTg4xNkJJydHdM2CcrjBCkGRVIMthqNdjh5HC/bRaINF69k/mDE5XbCzO0RKgVZw5dIOMpRMp6eoVvDC7pCBnFPPFzgfO0HifkSYVaZjkaInqyWPnfRgr9qKAyJ1HfV+TatkMyYlyy4eIdfO4xosuoY29SUP71fdPCENcH1AjSa+AYKIZNFEvHXWASrqkIjUZiuiCJjtoqx+UWVkmUa4qDzbNQaZ5WglkDhKKblYZZTXSvYqxbxu6eoFTd3QFZJQlHhUTCSEW+6/CGHpU9SbQ66XTHszwLODULz4fXISlWZjO3nTmSW5OtOC0aBCiRbhLRKP6TqKsiDPs1imcX4ZDBeLBVker1WUW5GYpkUlmfueB9AjOyFE076sil0wdV1TViVt26YOm4jG2BAwJkDmkVohgK5zWOujTYKPxOqqlHROUA0KzDSWmaJqaCROjgYVi6aJnR9SUhvLyGdIGcD5ZOSoCT5wcXePH/uJ/45/9v/4v9N1bTSXdA1lmbG5scPw1RH799/l9PiYL7z2Gs5ahAiMhxu89PI1Ll7aYXNzh53dS+RFyebWFT784Y+zubWBN44/+L1Pc/v2u5ycHDAeKW5eHzMe7nLxwja3bj3k7q2H3Ly2Td20PDyosVksaXWmQyiSh03kfQWrCJaYxBKtDTwgpacoMoQMVKMCf+SRIcRJRErIsrwCmfHmO+/QBcfprObevYdcu7LLsMq5sLfLg8dz3n7rFk3bcPG5y1SjMXsXr/CFz36ZR3cP0VSUo4LRcIMvvvY69x/tY3AUQ8FgQzDeyigGjsFYozJNazqCDKAC1kraVvLwwQO0jiXarNRsb+8wnZyyaGZMJxO2xwtefnWP06nm7v27VJmlqByZXuCFZzDepZ5qTKuXPI/+572kGs5PGAUhJScRNdE6MB4VXLpwiTt3HjCbTSjKgvFQUpYC00ZX7KwqI8fOn3Lj0jab4x3uPHiAclHnxom1sv+K3Lbkvyz3aR3VTPyXNI2M/K3EfVtO8Ilj0fpyhgZAWndt0h+5fSvF5T9JcgLf5gkKy8C/xs0I64F9LaEQsXtnWTYhrbck9ZwtrbzX8vWSlGWAXgMx3utyrC7we7xOn2FDzyw8C8WtunhCWG+d7jN2VjXQHr04B+WJ1Qae2oe+HHV+v84+hKtsWSm1hP+XyVY6vBDOHlfXGQ4ODjk6PqbKHUdHh8ymU8bbF2P7aJJvznTJoNpksbDYZkpRZkiR4b3k5GTO/GRAPsjJtGJ3a0jbBayFy8UGV7dKdHdC05llicS4KKympcI6S+89FGf0qwds5cwcZ9ixgThS8fu7R4RAnmWRAOpWs6YliTWhMd47VmW/fkbjl+dKCoHMU5eMiJ1Rhc6XaEEIsQW5FzeTycTQpZMrddT1UCJ55KiAI3oBSWepco3QgAwoAjI4BlpCqJEbgUVZMM8h8w6BpOkCWilyFciEx9nEM1FxShXVcMOS5KxSJ1csl608ioTs7Q1W940QkUBcd91yshCCw3QdSkQpqVxJcg1NCCwWC4oiT9cudkqUZYaU0Sgt8kwcSmqscMt7syxL5vNFVMnVGkEkNoYQy0QGQ9e2SLXqPovnLpaS2jYa7PUS+1plaJnRdg1agURS5Jrjo1OGoxE+hKQB4nDeMhhmlEXBpK6pO0shJaezOTvDgiLL8M7jfCxnWWv4wz/8AxbzOV3XsbM5Zno64ctf/hIf+dgPMj1t+LVf/RWePH4YRfJyzSuvvMoLz73IF177Qw6O7/Jd3/k9XLr8QcabYz7yke9HZzscHjzi+OSAx08eMZ2fcPFyyZ/6+CtUyqOCpaw69r7zEu9/cZt64ambiuFmzsPTEzoM1nexIwxN07REYrnEO8WwGjM9cQgiJ8PhKPOMR4+esLu7y+bGmGbRxtJSF52L287zxT9+g8OjQ7pOYoPg/oN9hmVOVeZ0TQNB8uTJMYvFApmBdYK2hrffvEc7cwyLkuefv8qd2w95584DZJGztbfBop0w3MwYbw949PhdXv7AK5TFIaY7oawEOo9+TLNJixQdo1ERZxpeUlUjus5xNDulnjpODx5S5Sds7uzwyivPM5sfMV0cEkJHlhl2dkpuH3UEV8ZnM/T3XV/COeunQ5+8rMeLpCcicWSZZzjQXL92g/0nxyzqKbu7I7JMI/G09YxMl+T5EOtjR9He7g7VVsWHP/oix4cd77x1iHMGL0zkngS5RE2WE9i1cs+ZZCE8HReelUQsJ8DPQNXjKO+XE9pVA8X//h6cb/MEpV9iUPZrnhyQZrxC9FTOBK8Feh1R+kp1WP0tEnPlvZKU9VnxeVhrhYoEgkhEPFbJQ9wXudwOJGlgkWbm+GWcjPEn7Z9Y33di/3xqNY3rruqKq5bO1f750LPHQ2wnJT4wQYj4+9zx9ft6/vfyBvakEksPC/ZW2+tIViJNhT4ox/PinGXWzDk4fBTbKwM8ePSIo9N9LvkbKJknfCva129u7hLkgEcHCwQdAkmelwgfaGqP0FEUzXmDcIHxaMwrZWCzcJjaxCTPr3NlwrL+HzkJa9cwpLtnDRnAx3MmZX9dY2nOGrsUYlNKE1zAhShm5t1ZQ62lHkiEjwiBZTnI2r4bR6dMzseguXSbTuWREM9dbEjTkYxJwNqAtTVFlpHlCiX7pCss9VKi0JpNIFogk56BDlRZwdFpi84V9bzDWU2rXKTMeNCpYyM6C4NLsK9NjsXRhTlxQIjloF5nh1ST7u9k0iBpe3QjBLRQqX07WgSUZYZuXOL/JJv5EFvDbVKtDd6SF5rgY0lH61h2KvOczhis6cjzgkxHMmVI7dlSZzR1i5LRfdqHiGKMhqOI0PjEqZFJWTghXTaVa7Cxg0hJjQieKhMspKRtWqTWsaznLQ6YLxrKQseWaeewBBqgdoKiyJG+RcXsnsOjI955eJ+mmdNZx6yOpOc//vwX+G/+9FtU+ZgbN27w7jtfJSsUo80hWV7Q2AUb2yOOjhs+99rnEaXkxVeeZ3f/Kjujjt/4tX/LZz/3OY6Pj9kcal554TJaGjq7QBIoxIis9Fzb2qKeW/b3JzRCoRYC500UFJUCvKKQBUIpGhPPRWcDUmvyHLQmtrWrAmMc0+MF49GAjWoMSExjaFpDvaj52tcmSCWQskSIHGth/6jmg688h84bplPNpRtXeevNN2Ob8OyUz33uS5ycGILVjMZj3rr7iIePH1JWJVWpQBl2ruwyHlfcunsbnUkG403GmxU4Ry5KqkxhhabzlmYRNZfKSrBoWu7eeYggwzQa13m01AzHm0ymU5quZTyu2BrvcXr6iL2dbW5ev0gzmfD4fofzUYnYE/BS4PB4YZOnjuzDSvp3Gif7Pp5gKXLIFNy4doW2aTDWsL29TdO1cYyVihAyWiOR3iEzx3gj8NHveoWT48ds7xZ89ydfxcmv8e479/BziyfHSYVwjrM6KD0SAqsW4TVEPaR2aPn1Y98qPoRVoEqItxAKhYoq6SnG9kDOcuKeYtM3u3x7Jyiiz+ziINgTk3qIXp5PGuIfy+u0jPv967BsvnkWz+IsuvFsyGsJafXeO2vv9yWOM9tJCUp/LEs0pL+7l5Pvnr+RMvKUmKi48dXxLcsyZ3vf++9PX7pU6Vzvcur3/zw69FSScubQ18m/a0lNuizrtUxjPXVb83j/AaeTI3wITGc1d+7e5fDgCd4alOqPOwpWbW7vcunSNQ6e3OHk6CHBGQZlhRKKtnWgLDJXUQOg6ahCzrbqEKYjCElrIk8hyzI6E8mlPqEQfeuqNcljIkmYL8s79Mz11eyhF3Xryxze+9hRgk/1VoFUMsqsS7FEsASpvENIRNB4TiJaE9VprTUp+1MpsXIJbo1ZjZIC7xxoTeRTJCdkEfDK4b2IJnqEqAtiDJnOlvdbj8oI4cikwAfP5qBgVGkeG0PTNGRZVAENzmJ9eq6IPBbnPC5tW/bQsE8u2FJijDsziEVNmFh7V6kV2AebEAuHC5bgBQoo8izJ+xvwUcdBqkgiVkovZ2dCgFZxmI/+AIKma6MKb3pWtNbkeQ7B461FaU2QCmOiIJ3WCm9iW/h0Nl3ew5nuNVd86r7SaUYsEooU7x1jLZnO2BjmHM8aVJZhfcB4Hy0Pwsq5OjUPEaTidNGQKcFQxRTceE9rDG3X4oVHCI91AYTm1ju3+Pn/2/8Vax37jx4jFFEIbmK49+ARb995i+s3LjFrDNa3fOlrX6BxUwgFs/3P8Bu//h949Pgho0HG7pYGP6NrLFkumdeLOCGSJYPBAJ1HXxyJA2xU3FUgkHSNYD6J3i9aKxaLlmySMRwOCXZBUQ1w1tA1XTxOIVhMZuS5ZmNjgxvXrvDw0RPmdU2mcwajIc5pZtM5Hjg4mvH48TGvvnoREQ6oZwuChWbheOP127z91n2ODyNBdv/okKAM480htekwJy3Xb15kY5Rx/+Ed5tOa0bgC77h+dZfXMkEhPC9dv8Fi3nH/0WOCVdSnXSTSF4KurRHB0NYBZwTZIGe8tcmm3MRZz2RyxOZmgVYZg8GQvd0tLv/gy/z6r/0RR8eJZxbhQiRxQhGQ2EBKXnrhTbEkwIfgKDJQyrG7u4l1joODQzobEMZhbMB5SyCQ6QqlM0IwaOV5/4de5EMf+gBvva6omwkvvHqTYjCgrAQP7x1x//4E4x3CBYRbycgmsGQV/0JEPPu44H1AyrNl/qfoC2sxIU7i1+OFWKHLcahclf3XHZy/+dwE+BZ1UH7u536Oj3/844zHYy5evMiP//iP8/rrr59Zp2kaPvWpT7G7u8toNOInf/Inefz48Zl17ty5w4/92I8xGAy4ePEif+Nv/I3USvqtLv1ZP/9qzO6WJ289zp8rW/QliLUXz2aW55avV/5ZQmX9ujyd7PTozKoMIpZB6htteyn+s9zcqnSwvm/PSq7W3xMhxI6Vc9t/+hif3dnzNBzY36xrSUrat36zPrU0Hhwf8fjJk2gL7ywnxyc8fviYR48e0zTNMjMP6VwNqgE7OztsbgzZ3hwyqjKqQqOVpDUd09mCydTgbIF0GUPvGGcSmUzZMqWXctTLThx6BKMXExOxtVbEJELJ3kQr7rtKSWRUmugJbitSWZ9UFlkGIbYZxrZVlfQy1HteF63Ucl9kXy4JUahLKxUl34GqKCjLYpkULUXQUoIpkEnpMnqD2NRu2wfr3txwVYeO+Nywysh0JM9K6SmyiORIFY0Qg48IUd12NE27/KzzftluHEJIpaDVfbIuVBd8SFL5ARcCxrqojZHKsnkexcm0jAmWVn1HlEuCalHQq+9kckl2HxF1T0T/mu95J1FzJUvIRp5lKBETJhccxlmkVrFM5QPWuYTGRyJwX/ZRMhJyY3LboVREo/K8wAVHriWjMk+z3yi733dt1Z3FI5NXUDxfxgWmiyZ6qUhBEMkCgkCQirwsEDgyLVnMZtx69x3efecNmnYWdTNCRiYyvPXs7x/z1rv3WHQWFwR1bSjUgC/+0ef5lV/+dzx88AApA9ev7/Hqq9f5yIdf5drVS7RNy8bGBpevXGA4rHDBRuXd1sREmeTKDQihaVqH8w7rDNYG2hqmJw227Xj+uetcvXSBYVGyvbnJsMrZGFV472kay/6TE4KPYndFVlKqAcHIyAszJqGCnnfvPOD+wxPybMS9Ow/oGsv0xPDaH7/N0cGMtjN0do7QluFGgcfS2Y7GWB49OuCtN+9i6oCioJ4Z2nnNxb1tRoOoXVMVkpP9J9A0XBgMGKmCburo5mDaKDBorMH6gPOR5D0YlGgNWguauqasKmbTGqlgc7PglfdfR+aJexYEykfXcY1EuKRtojzIWAZVAYQPSDxVocgLxWBYMa8b7t5/zLw2GAuzecdk0rBYWLxXBGRUFBae4bBkUA3obODmCy8wrecoFfjgB1/hh374+/i+H/wOPvSxmxRFQEq/ashYUgTEWpLRq3r3k9tVl9H58f2pWLhETda6eaRcCmX2yEqsDIhlG3I/oH4rPJRvCUH5nd/5HT71qU/x8Y9/HGstf/tv/21+5Ed+hK985SsMh0MA/vpf/+v8yq/8Cv/qX/0rNjc3+emf/ml+4id+gv/8n//zcnD5sR/7MS5fvszv/d7v8fDhQ/7SX/pLZFnGP/pH/+hb2Z3VyX3GSVwhVyElHZzn+ay2EVaJ3XqQfVYZZ/33+feX66UNiQQfrH9OCL/299rPmqbJksPA2o7RIyx+hfaE/jWeSqye9fd6krN8fwkOPOuGe3bSFM9ReGr9daJslHrooaEYNE4mp5iThul0SkBQz+acnp7QNYKHDx5S13PGW0nwTET77zyv2NzcoawGeDPAFxrTeUwXyKtNhuNNRpt7bIx2cCcHjKfvMhIn+GYGvktiWBndrImzQKVoraWXpfcighbeB4SMkvmk8kS8DD4Jk6VruLxO6bz7gMctz0GW50s5eyXl2jU6e4/2hNLeQA4iqqBlP5OPbbpZliEC0TAxBNDRQK/XhsnzbImq5TonBIeS0fguU5qui1wC53zUVE4Bs/fhUMqSacF4XGK7JjrtZvkShazrhjzLKbICZ1uMdUDcN0GUru9Rhv6+6ssjPXm4b9OOJarkzxSifkZM3qJuRKYkuZaIYFLLt44zPUIU63Mxoek6w2AwSOdYgxOUUtN0HQDGGLz35HlO4xxt21KWBeSaIDTOB7rW4EPUKFFSYG2XjifDIehccmxVcslhiglMvP466dEMSk3roV7YhI5FvpAPEFwE+pWM5R+tBAbovEejCSIkN+yYvI+HQ5q6pgqQq5yuaRHKIbRgPmtRQrO7ucHRdIIxgdNJSznI2Njc4Nrl6xw9nvHmV9/l+GDCq+/7ME1b8+6tt9nbfo7R6ApCVszrlGQGgVCBoszZHOzw5NEx+8dzFCGWOnKJF4ZiAEU5om0Es0mDEjmu82xvbJBrQT1vKfMCKRTOWKanDVCR5QN88DzZn2NNwHYxCJpZR+sNSgi01IggWXSWN999wKsv3mBrtMEszGkWlicPDvAuMN6syIsKqR2NqSPlUwSM80wXFmklo2GO7STz+ZTp1AAG6zym8Tx6fMjFSxssppLt3SFiCmYK9SJaSigNOBeLE0LQtnOkHFJUkh21y2waUbbFvKOuZwzLCc+/cIF7959w786UIBNJd7SBNZL7d0+wrQMXOWMBixYOXSikCEgdx/G6NggU1gpa42MXnov3vQwS7yMRXmlJwHJ0uuC1L32ZvYsDLl7a4ejkhN3tU7Y2dvnoxz7Ei6+8xMvvex/Tya/y+tfu4pxdTV99D2X3cXOtESP0/lbnY9D5cX81qe7NBM9PYMWynBXLPjJqFP6Jl28pQfn3//7fn/n3v/gX/4KLFy/y2c9+lh/8wR/k9PSUf/7P/zm/+Iu/yA//8A8D8Au/8At84AMf4Pd///f5xCc+wa//+q/zla98hd/8zd/k0qVLfMd3fAf/4B/8A/7m3/yb/N2/+3cjNPtNLn3XBWI1W1s50K4H57VAfn5ZVYiWaEvczlk04lllj/PB+ywyskpUnpWBvldgTxuKCefyoq/2td9UtHDqs9K1AHru+84gL2e8ilKidC6x+XolnvPHCiwzZ9Fbba8lYy7lPy4EFnXN48cPscJG6W7TcXxywny+IFjJ/pMDZtMpFy8n1+l0YaTK2d65wHi8TbA1WgoEOUUx4sLl61y++hx7F66RyYxHX/4D1K0n5Mf7SS8jR1mwZkaW6djKrDKy4LEpqCulccGlzqvkbiyipHeU+lp16fRJyYrPIpA6GumR1ou3XoQ03Tmo9Fn3C6RSiLOUeTS6i+JgCmctJN0M5xLkm6lUgojlKkJPXI13hbUOVGz/dC4qSwoh0DpDpxJW1EuxETlShjzPGBaariqo5wtynSFVoPWWzkazOqdlFLfDRxl0HfcvpJKKcz4Jqa3apvvunf4+0kpjEyKitMYnQTopJUWWSlPBJ5mpeF97H7VVwKO0QAhN17UYa3EuJEn6DKHEsqXR+CiON5nNyfMcEQJd10SOjGOJ9phE6NVFjkTgrMXb1QSity2IJSmDSERkayOJO5pGQpVrFo0hqAwhBTYYnItJblS+DbEVXUqMN3TOM0CggiATgkGRczqboNUWZA5rHWWZR9RGRI5HWWiKQsVgpyF4SbvwWNtx5fIALQe88dV3OXg8Ze/iDn/xr/wP/Mav/zZvvf0Gr795nyuXttkc52g95I233kYJy8XLO7z80iXKwZDL13bIBjmirHhwOMEZSdACRDS/LEsNfoAzgbaZMRiWbG0NWMz3WdRziqIiINFqQNdJFnOwKRAqpRiNNxAITk4mYGMZwweLlBFdOp40HByc8uLNqxwcHDJbtNjOMKgKBsOccqARytO0JXXT0XQdnTEIKTHGc3hY07UBpeDW7SOUEjQWhMx5cjJhbydH5oFHJ4+ZNRZdDAnW4KwkOEEmc6oip8py8mxEXpRsDUfgFYu5oV545hPL73/mC3zik5LRcINXX9mmaSbMFlO294bUi0O02gDZoGVAeIHINGCxUmBMg3ELyqxE6QpjPIvGYVwkEoOmd0dPbk1EZWhPvVgwnR/SNJKX33eVhZnTzC2vvfYFhuWYLB+wtb3F7u4lntyrefzwX7N/eIJ3gV5TqVdojmO/WiYqS+mKc2PTkq5wbna/jBG9LDRPI/A9wrz+2jJ2fZ1KwfnlfxcH5fT0FICdnR0APvvZz2KM4c/9uT+3XOf9738/N2/e5DOf+Qyf+MQn+MxnPsNHPvIRLl26tFznR3/0R/mpn/opvvzlL/Od3/mdT31P27a0bbv892QyiX+kROBsQI4/Yi27iyUesYRxzy890gFnKkDPTEKW66/9/c2Ug84kATwdqFaB/WzJKb5+DglJ/wlW3xHOrXN+OYOa0KMgMaFbR1iWqEvc2HveTOHcscvkhtnXI1cJU0TN6rqmcx3VuCLLC+bzOdPpJM6Gs5Kmbqnni1T/VhGWBIRQDEc7bO1eR2UZ2xub7O1eYXvnMpvblykGG2hdgW2Ylznz2THS1ZEHEmTsavFRBn/JK4knBJGccH2IfIG+MwURlgTr9c6kGKxWYmXBO/qCq3M2JceSvm7o1xKUJVH2WfdH720jEgHXRtExQeSRCCnSrDykbqlYfiDE0olWkTHfdTaqiiKQmaYvd8R9Ta2zQsRSj/dYa8iDTuUpxeZ4hJYtxhh00CCTfboQZDpDyziTixLv0BcJ/dr91pee+nuxT+6UipoisaSp4ozbL++0ZXKiJOSZQvsoSmeNQCpwwcYkwsXv64wFBEpnkayrVNS5MQaZacqyom1bmqahzLN4vYnCUk3dxYkDAZynzDNyrTGENGv1y+1Z55BanWlfHgxKmqZFKY3xFi1gWCga62hMdLV2qbuDdDv0gm5CCNrOYbNAkUuGRcmFCxuczk9jwhck1juOTk4x1rK5OcAYx+bGCBEkTdK70QKCFdDB5GDOG9NbHD45QSnJcCuj8cfoSjDa2qRzljfefIhWMFk4Do5mjMqMm8+9j42N93EyfcDepSvsXg6owSGvvXGL1nc4KzDWoQUIryCIaLkAnMxOuPHCBXbsJvkgQ0lNMbPMTh2NNbSmi7ottGjpqPQgXhvtkU4g0cgQlX+t9/iF5/DolPe9fIPr16/xla+8g+ssSkq6xib3Y8iyMVXmEKFFS4N1Dm9bCFDlYGzHf/mDr5IXOWhJWQkCluN5jUyThs46isJSjjRt48BFPp7WmiyLIn2xFX3I0fFjVA6Hdyyuy2gWp2xs3OZ9r97k7v3b5GVHaA659/AWpoVSXkApRVFAyKKz8Xy+wJgaIRxbW2MuXrzGrVtPmM8NHkXwOsb6kCacgoggp2HU45nNFwSvqGvP5z77JrsXdlASKu25duU2O3t7WFuRD0q+63vezxe++BKf/vRnaUN/9/XjemqW8B59Llb0HXjPjmee8y8/a8K1HC9hGQ9igh+W8dp/C5DKnzhB8d7z1/7aX+P7v//7+fCHPwzAo0ePyPOcra2tM+teunSJR48eLddZT0769/v3nrX83M/9HH/v7/29p98IIc62n1W7WUMplh0877GsEyNZQ1/Ol3TWPsEzN7hEPcSZC/0UOiFS1S+EZaBfzTSXX7/8rBB94uF56i5JX3w+MXmv8s7ZZKQ3fVsdc9rasrz0XkjSOkoVXzhrpNevE2/MQGcaqmJAnmV0Xcfp6Sl1XaO8p6qGDAcbtK2J/A21jqJFwbZX3/9d4Fu2t7epBpsoPQCRpeugsO0Js5OH5GFOmYPWFbNZNPfSOmOxaGMy60NsWzUG7xyWVVK4nuT5BFetJ8Drv9ePM5JhWeZl6+iSX0s+1j/bn/dMS0SIehL9te5B1DzPQEfpeuk9xseOnzzP6FqBtw6lktGgs5RlkZLtqECLiPyZ/lpLmS2dlbXOosOzysmUjiTNKifTOYdHp7RtR1lF6L4/FqkEzvqYFOnoV+NsRGm0UinhFUtSb086jnXoVAv3YQ1lEQSbuCxhlaRkWpJZCMjUyZAsAZzDuYBWGSBx3rJYWJQ6i9YI4qSmP9bFfIFWkqJQNHVLWeSoLKNtO6oyR/hAZ6O7MSImU1prmqaJuabor42kqirapgFWAsHCW8alwi065q3HK4FKiW9IfCaRyioIiTUBgoxQvhC8+spLyCrjnbce4IC6nccWTaFpGkue5djO0rSBum3J84JBWVIvPFJlNDPL5HiGkFAOM06bI37tN/8dzUwx2KwIXceiFTy895BZFxhsjBnpAS+88l0sGsvv/M4f8ae+90Wef+ESL750jZdfvs5X37iL9zmuFRjnUXi6NpUFM4lQkA8Kii7jwvXrvPrKKxw+mvG7v/2HzLqO1ju6uiEvBEjP0ekhXRMdkZ0TCJ9RFBVCS0zdEILgZDLn9Tdvc2Fvl7q18T42DusD84NTQCR+kCMaWUXX55CMgpRUKFXQGct0Ycgrx/jiMJZRmkA9NxgXixt23lJWGXkpqcoKnGBQFYxGA4yxTE4Nk+kxQna8/NKHePv11/AmR7gN3nr9hHoRuH3rNvN6QjWUUbdmc5t2lmGk52R6St3UZKLAm6R1sjHi4qVr3Ll7yGRSg1JRpoAebY+aOjI6dSHIYonT2YjgSWiawO13jzk6NJSFQouO0fhzfPhjH0Zliq6ruXR1gz//oz/AW++8y727T2LHGz1/sf8Jq581TlsfJ85MqMJK/Xp9ibFMrr2+ItiyRFH699fpBN889fVPnKB86lOf4ktf+hKf/vSn/6Sb+KaXv/W3/hY/+7M/u/z3ZDLhxo0bnOGXLAO0WP4H/UlcnqJnohfrgbYvy8C5YLJcbz05WUFg8f1VstTPtp+1LBEQseo0WgW8sPx8Dy+HtLGQbqgEb6SylVhCcOdLNWctv58WEVod9KpkdbZ/XTx1vvpt94lWD+XFeqM4l6T05ysG0sGgQinJ0fEps+mM4BxFWXL50lW2t3Zpmw5rHVmW0K60lSyvuHb9ZQhRq+KsyVZ/8xuGOjAYFTCfY7vk32OiemeWaRpr4nkP0BvMRf2cdK+kfe87onwIhOSM2z+8z0LPVNLTiO+HqEBqV2Jh61Bpv50QYqtmn8xGnoiLJROl6LqWqigisdMZiHcXXdMyGFQURY4VifgrBCFE9Uid6dT9A3meRXRFxEGu67rl4JMlEq9zFu/iOloKRC7JMsn8dI6xniKPg6i1JiIbKjoDx+QtIlKxFdtCf0+reB5dKn3FVuC4P9J6OueQStJ1Joq3SYVUMvJBlENLyDJJ1/plopgVGd0idpiEEMttWmvariPPssi3aVtCSGTmlBxKKWmdp0ukVakUeVEmhdzVeBCdkk3slOpRyphPoRM6JWWIJGRjl+iUloK80HGgFhobWhY2gJb4IGKZI6zuVO8FJnha59He0RrD62++SR0cbdeQZwOU1AQhKcoca1rqxhNcQ11bkAqldCpdSYx1TKdzZOa5cmWPxpxyOm35/Oe/xHiwi/WWru1wfsBwY4tm1nL55lVOnjzkV/+3X6FZtLTNKa+/eZvNHc1gNODP/rmP47zg9Tf2MQtL10V35+FwjA8dyIDOSh4+OuLw6AmLZsb1m1fZ2ttk5+IO9x6+hXWwqBc0XWA4yBEogtAIIdHC4x3M2zqeyxBRus7B/vGMtgvUdURgdJYxnU0pqoIQHM7WuNAikQwGI2azDttF+QDjIcty8qyiGJbIzBC6QFFEYq0SsbW4Mx6pwXcteaXomHLp8iUuXbrAaLDBFz//Bo8fPSbLA8OhZlQecO3qDq4tCTYjWMHdWzO8G4F32FZwctrxpN6nyEY4J3BGUBQ74BzBzRgMKi5fvs7d+0ccHS3wRGuLfmIXW49duk9iAgsSKQLWtkjpo5aRyuNE7mhBrhVZbrl15x6PD/bZ2XkehKdzLR/40Mv86I/+IP/6f/k1Tk/alW/V2tgf5QTOTnjPTqbSa77nrDxDdG3tGToTR5fgQO9mvorP38ryJ0pQfvqnf5pf/uVf5nd/93e5fv368vXLly/TdR0nJydnUJTHjx9z+fLl5Tr/5b/8lzPb67t8+nXOL0VRUBTFU6+vIyMRVV+VJ57mUpCCXt/mGc5s6VnLerBfJj/i7Pvn0ZXleks05SwPYZlkJNlycQ516L9vPW3qk6wQelnx8EwQ573KMSsTK3fmuM+fIyHOknVXTJpnl7BWn1s5Ap/fj168aDgcUJUFTdswnUwwXYsIsLO5zc3rNxmNNmmalrZpKAeb/Q6khCJpJyy32evXhHReHK6rsfMZwThMEwc2nIUQyaoQz7XW+swMoYcfpZTQ+8x4Eq/kLG9pfVYhhIBEYnNu9VrfMTM3c0J4ugOqn+lLkVqGVfTTyXUk11rTIYRAK738XNzneM2tszhjU7ePj+UE6yiKAmstnXN4ZyiKLHFiwlIttYdW43WOXTTBO3ym+0NHKRiPByzqls6E5MocOzm8jaeoT35D77wsUumJpIVCOIMcRd7LSjOmP+ex3CPwJvFhtEpJbkSWaF1cL8TW3sjB0QihIzqU69gdYwzBecqyXKImPv12zuMCZHmJ9YK2bRlLhXKOZjEnyzJMD0OH6KGjVOzwEVLijaXr7FqXoUCrjCjgHpat4NY5lJBsjUrCrGHe2mV6L9KYEHx0BnMCZk2DKivK4PnqW++wMB1aarTKKYuoKaIVmC4wmza4qqBrDZubZWypJorXtcZEnkcWSxlSKYRXOBfbyjvr6DpL03VkeYELDSZYjBW88cbbNLVlUAgI9xiNLC+8fIW9vav8wPd9jNnkDzHNMdOgKQdjrDMYt2Bra4Qzii989k2yXNB1ltu3HlJmNXfvPeb0dI73WXQet4Gpbchzjc5yBBHxM9ZjbCAkXpOXDuMEk3nkiQUJeVkiM6g2M1588Rp5HphN9/G+5vkXXuTllz/Mr/3ap3nyuMYaT1c7Ohu1XoRyDIcli1OwuWcwqMhHmky2tG0X7SG6hhA8bdvgNhdc2t1k/8kph48OsY2n1BWXd2/gOwW+QQhDXlV4o2gWlrqrqVuLaS2mdWgpGV+Jzth5Lmk7QdMeMRprLl2+xuHRgv3DGSZ104SEdvbJPkIhEjcwetw4hAwEDHmhEEpSlAPCZIa3jq61CCWY15ZHjw555UWDzjSt8eRZzg//8A9w7+4j/sN/+C9RIZmIZrMs66dp7rmJ62qckMuJbz+W+7D22TOx5Ozv5TizfKGPJXFL3+zyLSUoIQR+5md+hl/6pV/it3/7t3nhhRfOvP/d3/3dZFnGb/3Wb/GTP/mTALz++uvcuXOHT37ykwB88pOf5B/+w3/IkydPuHjxIgC/8Ru/wcbGBh/84Ae/ld2JAWA5g16H4Vdllqc/dPbEhhDSBHpV6HjvHO/ZSc06D+Qs4nCuNABLXsJKOOdsN0x4autn9ztmrdFVNq6TvBbOr36uFLROkj3/nat06By6IsSZ8/GsEpKQSXcmtbGuAn9fOnEURc5oY0wQgclkEqFz5xlUA25cf46rV69TFlF6vJ7P2dwOqXbvl+dN9MV8SMducaHDGovpOrrjR2i/wNnkf+Mdzhm6doEPkdehtUYqnQam8/ouJDQusCJ4KnoC9qqTYwV1itRiuJ6AWmsTiqCwxi3ruisTwogwxOvZa6ck8bi0Pz0HwrqoZ5BlmqLImM0Wa8iYXSq5ai0Bn3RSfEIi1BLFyHNNWZaYtlseb+yKiQlcbEmOMLAUgqLQlGVBUebkKqJT3vml5xBEQqmE1OHkl+aLhNgi7SDpzHAmWXH9eU3nTwIh2OSPE/dLKQlJU0WqxIFRElmVmNZhTEzsfNct71xjo3AepO4soCwKZiYSZTsXE52sKAgE6qZG5RlS64gQSElZlnjfrXUjaSAiO03dxiTLx7KNdZ4yiwGmb3sO3lLoglIp6mBQqojmnLGROO6oFLHV2gdsCMg8x8wkNiiUCFRVSVc7TNOhMkWuFSezNnaxKEEgckPa1rKoO4IK5KVE5o7T2SlVOUCrAQTFYt5hvCdXBdY6xoOCEDynkxnGKA4PD9Eyw3fReflrXzlkNu34zu8asTUuuXa54MnDlsaCzALetoxGGXs7W5wcTpkeWwajkn0758v+HY6PFjx+dMJinp4RL1LpEmrXobp4TZwJWCtwHgSKIlPIhEgZ73F4dCbRWcG0PkFkHeUYrlweMxqOuHpll+3tPYbDy/zB54Y8PDrCBnBZR/DgjCMTAi8M5WCD4AKHBzOqasDuzjZSwN72HtPJlPl8QjVUvPjiDTaKDe6c3uf5m5fJ85KyrBBCMTma0NWGpl7QtScEq3Feo3RGkY0ZDYaUxRCtHWXpuHJlG+8cr7/+OtXAcOniBU4nCx4/OUkT04SquQy8iAlaCCmRjaKMCJtI2h15IaJPl4zI2WBYIVxELgdbUUzxyf4B88URO1tX0Vl8trd3NvgzP/yneePNO9y69YQQHMHLyHlZiyfP5CB6WDVhsHR277WhYnyVZxKQ6DMlz8TA9TiDWJV5vtnlW0pQPvWpT/GLv/iL/Jt/828Yj8dLzsjm5iZVVbG5uclf/at/lZ/92Z9lZ2eHjY0NfuZnfoZPfvKTfOITnwDgR37kR/jgBz/IX/yLf5F//I//MY8ePeLv/J2/w6c+9alnoiRfb1nN0FaZICzDx7kTyDKQC/oAG9aqNZKeeNpDWc9KcFZB2q8CG2ulomVZ7hmlkbTeSmlPkGxelm3iItV2fI8M9UmYkKkWHmf2fTALS1QnMSiEWGFzaX+999GHx/lEoozwYf/TE1yXeizLk7JGrIAzgfjMuUltPFEcL/rbxKEp2ssPxyOKqmAymzNfzPHGkAvJhe1drl2/wXBzm6AiXL+YTQi+Q4iCpepufyzpOL1vadsppmuwxuGDJLRz/OIIITw2eJwLWO8QIbadSqWwNsmji4AU8WGNBE+5FAXrZzBK9Gd0/f5ZM75yaTYCZx/sELUdVmqqMXAH7xBS4ILA+9iiKpyLGgo6GslJGSjzDOcDrbFkmSaTIgquqdiimGeaLI++MF4JpPDkWYE1jq7ryLQm0wotVTTZC4Km6RLywDIJNtbGso3ShGTR7hEooQmpDNV2DTJXaJV6CkTkkYTgl+hfCBGl0AmZtNaiswwlV2hRCCHpgaT6d3rSXBC4EH0/SChX8GA6S3QzjuhMCD6K7aV1XCJS5yqWC1oHIdXzpY/OwsJZMAaVSjVZJnHGUBY5MgRUagevFw3O++hsHDyK6DDcth2rIUImDZYVYufxGAv42OqNMUkN2jEoNLNGJQKzpsEtHycBCKkTAhVb4JUI5FJS5gNOThvauok6OC5fJrmL+ZzNrSE6i87D3hsQlrLKqUbgpcOagGkNUmuausFZicjifjQ6Y1wNqfICu4hJvZKR+KqznHIw4P7DU2rr2djd59rlPTaGJVd2NxkMJfNOUagx1UDT1IbTyTyJ8wWE1ExOWhbzDmujJH70vOrNNR1KQa5znAVnPHhQgYQ49gTN6NCdScmwyug8yQSzoW7nzJuOre0NNrdGSA0OS5DR3VtICToK6GkXDTYH2xkf+NjzmNbzhc+9zmS+YF4vUELT1JAJje0EVkMuBhw+mOAXgkFWURQVDx8dMF80dK4ltsJ7RsNNynyXXG2TZRUyU5FrhWFjAz74oavozPHk0UM+9B3PUS+mXLlyiZOTjmJUcufOPpNJQ9sKhKhi6tobSAZHEFFFWeDJS8ulK5scHR2ymFt0psm1It8YUpVRp0VpKAaOzsyZ1sdU1S516wjOUGaOcqi5cn2Du3cOsE7gg8B7sRRp61XB4+84xsbjWY28Pa8tENaqAiuhttUQKZbSFOtCqRGJWcljfCvLt5Sg/LN/9s8A+KEf+qEzr//CL/wCf+Wv/BUA/sk/+SdIKfnJn/xJ2rblR3/0R/mn//SfLtdVSvHLv/zL/NRP/RSf/OQnGQ6H/OW//Jf5+3//73/re38GZ3iaLXEmS/RhFeiWM+V0QcTTpZtnLSH0gVmc+b3ioayvF9bWP7vHyyQgoQyr2XVcI6whKytMR8Sg1Hs9rFV5PJEzdhZFWiUn6z48y/04h6D05ZylbsUzyjVnz0U4+3khVrL9IsGB3jIYVIw3xgQCs8Wcru3w1rI5HPDczee4dOkyeVnhiR4989kMZw1aFWfgrCD6JM5hXUvbLfDWkukCoXJaAhuDgtKVTNsZnYvGioIYKLXKCSEGZqU11htW5asQ1V7l6sQu880e/eivW58Qh6iPomREHuJDuergSe0mUbyLgErbcTYG6P58BRG1MSQgQ2yNDrYvWwgGgyGmqWm7LpYjjFndayGa9IW10p13Bl1GbQ8BOB/XbduYpGRZJN1aY6nKijxXeBO7IaSMrrOeDGsMXWep8gE6y+PgGYhJX7r+tufnJIXVZUeY90l2YcW5iRozGmtiB40QscW4bbvYvpxKXqFnnvo4oDnvlj5AznqSXifeOUyIujESAUm3hwgK0VpPXhUIYym1oHUBoSSZkpA8bZxSCNnRdi4lVZpcCpyw2LZFSrUsIWmt0TrDmC5OhnzACkGmo66M1gpvo+y5VoLRIMNOOxpjQMdnVysVy4IhJMsExfbmBvsnj5BOsVhY5rM5AihzhexaBJKyLAjERLSpW4yNnIKqKMjyHKUtGxs7HDw5JaAo84rgWhocxlpwAWMF1gYUkq5p2NouqIoxB08mXLp8nfFGxp27U+7eneP8O9y8dorvOobDHcpxyaP9CfcPDjk57tC5QiqBwrCxOeb0dBrLpCojz2NLLEGk9vPYTjwalSgZSb/Bp+dBCYpSYmy3HIO6tqVrNbtbA5rZhMHAs7G7xfa25uq1bQQdNlhkCNy5+4h7d55gjEdrRV6kJDyhj7N6zr3Ht1ksOqy0GGGpjQULk3mD8PHezzOBF4rgHXU9w7iW7Z0dynLIZG7I8oogG4oSPvKR9zE9VkyOFFk2ToG6RRee7/ne97OzW/KfPv2fuHf3Nh/9yHfy2mtfYj6reel9L7F9cYe9ywMePtjnycM5+48bQogTg9jk4paTUaWhKC3f+4kPMhpv8Xuf/iPeeusuIlg2NscgPGUhGY1GDMcSrQSLxYJTfcrx0QTvG0aDLR49eURn56k806OvsVutj4ur1+IzLOXZMT+EnoNCiiVn0ZenEo8UU2WfnCD+RMkJ/AlKPN9oKcuSn//5n+fnf/7n33Od5557jl/91V/9Vr76mcuZSTxrM204e0LeA1kKxMxdKrXc2FOcjKcCtFj+fL0g/l4IzPp215OC3mxvne9Cj46kG8InU8TgfOK49OWUsAKD1pKTPkE5q4ESloF2RYY6y7X4Rss6itInVrFKlmbV6T+kYDAakmUZp9NT6vkcZwxaKS5fusLNmzfZ2NhAJeTGuSh93xlDVqyX3vqpbPymTGdU1SDOzNAY55MOi8RZQ/Ae07boLCMrSpT1SXE0ft5Yj/WRwNVrkITgY5L/VOknnD1GepE1nxAEt9ZBkhJVABk7OUgdPtG7KEm+pwTUkwK4FCA0TduBiq7GeZYTvKeuW7wLZAoGuVoCZL1qallWsQtICEqXR9Mw7xGsuFY2tfo2TRsTg6S10v8XxeBishGEol60hODROnbKeBc9foKPHTyC3qsmScLnOm0Xeq2QkGZSq3MjVm2MgDGR8JllGpFk9o2NqJGSBlyvBxHRKg9Rw4FYRgsi6pcImSGcJROezpiYwDjDpLXUzNka5lSZojldkKmo9CtlIPjYvq0leC1ZzBZQBYrRMMnxR6t4lZC3vi7fW8j33VHRODF2HwkhccltvMwUuYbOOISPx2+ti+UrRFQtRaByzdVrl7h19wkiaAgdSguUFgQcSmcMcx2tC3w0JYz3nCAvBlG7pfYoZVGyoK5biiJnOK4Qi47udI73Go/GesFwWGHnNd//Az/Ixd0L/L//5b/h+PSAIKM4n6k9s2PLYlMwnRme7E85OW1oGo/zgSAcKosdURrY3ClABPafHBMbujI2N4coleEtTKczyirn4qUtJqczmpr03Hh0LlCZxYYu8nqCRAYReUoykJeBl1++yvd876sYN8djgZyT2ZR6Nuczn36D46OGrguE4NBa4L0l6R5iTeDgyYRqMGS2WKC1QkqwIundeInMMzok797fJ88FV6/u8ImPfRc3bt7kyaOGf/2v/y0oy+XrI3b2Si5c3CD4GmMktnFImaGk4uq1ERcuFty//4AvffEtOtvw6PEhppV88fPv8u69B+SjksGwxLuOK9d3kdLw4P4sGvzJ/sGOY3g5gD/1vR/h+o1LKK355Pd/FwjPu7duM59axhtDxuMR165fYDQq2NwomZ7OKeSCw4MHTGYHbG7s8dZbdzk+OsWHSLQPxJJsHKtc1CLqVWXTOOuDX7rV9QNOPynya7HifD6wPm6ufp4VP775WPNt7cVzlnG8hg6k//UQ1Loiagz9/Uz4rHfIsxOSb+774VkYzjdK6s6WoVYtWWL5/pkyVFglRqKHKtJRxVnt09/dJyl9x0oIgfN3zbLc9U0uZxObWOoQMiwJlEHEPvu8LCmrKkrST6exm8BYtkcbPP/8i1y+dJmiKBMxNyYo80VD29QMRhv0AkPLCxr6c6bIspy2a+nalrbrmM9mZIsFG0mRNMq+R1Ex7z1dZyBIpMribIEokKa0Tm2xLJGN88caQlh67yw5Iwna7KHSMyq6ISmfJjl4mRK3mLOJlMgJQoikUB+iDLq1AheiBoxOCFvPGxmUVSyNhFjCkAn+M8aQ6wx8FF8jxECiVL7kzWgictJ2LV3XURZl5Kv4HoZbJco2labKqqBubOKRhNTZFa+xVtna4HP2vpFSYqyJZoPJDbi/v+TyHESFVhsil0IrxbCq0NpjbRNncMGlcmEsFkqhEDIGfKVU5HJYj1K9YJojU4rGRedl6zzSOQaDCt91y+RQhDgp0YVe8sHKIqNpDLNZjQ9uKWkfbHxmsizW7Hsek1IR/eqMRWodW0U9SBV9gpTUBGPZGOV005bgFTaAkHHwV0KBkHgpuffoARevbrO3u8ed2TTOPJVnMCxoFh3OG4pygHVwcHCIwJPlOUJonIPZomG4oWkWFlKwsb7h4vZ2TEyJ+is2COZtze72JhcvbfPd3/N9CG+4fOUyr3/tTaQs8a7lxtU99va2ODw85d6jAxorWEwtSmZRcVXFa5xlGp1LykLTlpqd3U0ODqbU9QKC5MKFS2SDknqxYGd7yNbWiMWiBhE5WlpLhqMClXuyMifPxsyPOzSxxbsoM4Y7G+zsFMxmj1E6YzozqCzj3dt3ePftA269NcF0CueiXGmc6OlYVVUqCqFNHdbUaC3JlEpJbhT+i2U6i5Y5i86AVjjp0IPYnn1RbrCzN6LuTti7OOaDH36Z4+MT3r79DteuvJ9FsKiQAYHBQOP8jK989SscHJziReB4MkPnFdZFOw7lOg6Oj9naGBK6Yy5dvsajRwuEE0stochR8+zslXzXd3+I0aji8OQIpQMvvHSZre2KJ4+PyAvNzu6Ynd0R1aCIrfMi6kvNpqccnTzm4YNHfPXLDzg9WSTTS4Vcui7HUiVBJnTFASpFEpGoA2nS1Rd8wtNj4xmOyVpsOPva2Un8NwN09Mu3dYLSz1hD4hGcUbvjbDBfElDXExmZIN/1LZ7jWHw9Lso6J6MnDy6TlPfIc561rQj3qzP7u1qW7i/ppupvlPV1VmWH8+Ud76O1u1vnT5zjqLzXDXN+X9+LUNWXQaSSIOOMXWjBaDxEKsHJyZTpbIZpWrRUPHfzOW7efI7ReLzkMYQQ8/pF3TCfLdjeCaludRYd6xM47wOLRU0zX+CcwRpDlmqdztoY2EJIPh6xA8M6h+wdmAMEb+NMPs0Yzp+HZetwIJE7xbJkJNcfuDNXa1UK9DImXRADbfDJSTqAkCpyPUR0zG1MoPUSayW5DGTBUkhPngnwHusMnQ0EZ9BCkul8KWFvMQQceaawvi8ZxvKPdyGpnzqCjw7RZ5J0Hy3NpIwEVmvj31VZ0nWLyF0KEfbVUkY3ZmejyJ2MKEpEpeNz5JyNyNA5/tfSM0jIOBMPsTPHu8RzEiIK3/XlNiFQQtJah8iin5FWiiwX1I0hhFgS9MEmcmFAKh0Dct2QW8+47Ggmx5iQtE0yjenaiJoltWKlBcYGyqpECBEtAnQGIRJ0rbXkOqNt22Ver5VellqdC9HgL6zam601FEohpGSQW2wdPV6C7MelQEBGrkjXce/uI7Qc0tY1WnuGI7hwccy92/tE7kNgPl1gjV22NFvnqGfTdPxZvF5J9Oz5Fy5z9dp1Dg+/itaKtu6YLOYImbG3vcFHPvRRXnnpu7h1+8ts7e4gRE7GiOsXc7Y2NCenh+w/mdPUClWUhLBgMBgy3igJMooT5pVCyBbrHIvFgqoYcvFixZ3bDzHW8fjhk2VdVsoxWZYnCwKLzATVsKQcZOQFFFVJcDnz46M0znjqZsrubkFe5Bw8OebSpWvcfucRd+4fczpb4KzCRKHlyFtyHu8deSXRWVT+DV5SLyzOBnTqyHI2IJAUmcKK6HuEizwWHyQox8HJATf9i1y9eZEf/gsfR2cOgmK0UfG1N97l6PSAPL/H1uAGrlV419J2hsn0lP39/Sj4GGDRdchSEpSjKCteef917t69y3Q6wVUNW3t7DMcad5zG08RpQ1rGmxVZoaK4H5qjowcMBgWj8TUuXr6M8zaW6YYZOlMU5ZDhcJN6YXn46AF379/i6LBmeqw4PmyxxkfJ/NR52Hu69Toofbzo4895YckeeSdx0NbjQRyT1yfa5+PGahvxfb7p5ds6QVlnGS9PVO8cuXYSloHnGSeqRxTeKzH5phGVdb5E+vPrlXnOL+tIylPfnWaSkdpwtpc91XWeKtMsOQl95046YNHXCDh/I53Ngs8nIOvbPb9/y2QtHbsPjrIsKcuCtm2ZzWZ0TYM3lkt7F3ju+RfY3tlF6xy/RLYCBInpDJPpJHWoZCnan0enBMFH9MAag/UG530koIZAlmdUQdDZBmRAqpxFU6eugXh1gpTg3VpZ8Onrv7x+YcUvigqjbnluQ0IE0h9RY0XJpRhSvx7LBDkGc+s9FkHjNcczy+OTObMuUFaBLDgubWZcGGk2hKfUGi+im3BVVMgQyLReuhPb4AjOUhQVZfKMads2uh4nYqmxkXPTBzGyDEGMmlJGk7NelhwhogpoiGfFGkNRqGQgaLHOkkuJ9255flzw6blLTP5zg5XWURuGcDYhjiUojzUGpRRlkTNp2uQbJMCBtZ42tKgyQ+koBx58QsWtISgJSiKkIgNQgu96ZY/djZI37x9y76SNpQ1n8UBbWzoTL4bWGUJJvDUx6ROatm0pyjxpxUSHYykl3oXkcqyWJb5oNujjWGIsme7JyZGDNCpzmqbBIzGp+y7eCwKUwgXASZ48OYZguX59lwuXMsq84ujJKV1DFHnznuFwiPeOtjWpEuCIHVAtWg3IioLh5pgLl7aZz2dMTxdoqcnzQNc5Fguo64bNzS2qYpPrNz/E/+m/v4Cr/yfe+PIf8vzzBc+/uMObb0/ZbDd47sXrvHvrPm3W4H3HdNqhc8l4c5PtrU2CrGnqhqYx1PMp482diJj5gPMChEMqmM1nTCY5xrToTFBVGVkuY4ndg+kcJ8fHNI1BBdjeyNncGlINA6++7yWqUnDv7iGPH86ZnAiaLotJIRmB/lkUhCDxtSP3RD5KskroOk+mA7ZzBAdCJZNOFYnKWa4RZBSFpKwKquGQup1h7ILhuODNN77G/XsHDMcZjbFIqTk6OmJUXqBpPNPZXd4/eJnOWBZNnXR0BLNZjek6DIad3R1uXN7jwd13o9Gp7TicPOLClR3q6QzfCWzwIDIifyfjyf4ht969R10v2Nu7zHwxo25OCQiqYYUXgkVbkwfPoAKV5TjX0HaO46OGxQxOjjuaWiBEhvciErn9Kl6EcLb8vz72xb/XWiZCj7ysWpFXI/LZ5TxVYn35r6bEk1B2+v/3hJ2w/n6a9fbRIaTp+hJJSNs4Xyp6FoLy9U76sqNjWW4RT23z/N/L/EOsyKXr662TZCPQ5tOg5JclnpUmygpnOB9klz/pv/57ziZQZz97Hrpbf+3Zx5JImUmEazgaghBMp1MWiwVd21HkOdeuXuPy5auUg8Fqn9Mv7yPkenpyStc2VLqM13attbfP1qXM0DrHyEUUlcwLhC5pOkPuwXaxS6WzlrwaMDueU1uF9Z7hoEQLBW6BwsfZVYjEPTgr4iZEImHSC4+xRGf6deP9Fa+D6ztBUtlEK5YzqhjL+yClWXRw66jj7SctD48apq0jyzsK4bm6qfnoi7s8t12BtzEBCHHm75zBNTUIgVIZpjMUmYzePUkFNcuy6NobyUrkSapdIWmahqrIUSLJzwtJIKIpQkZ58/m8SQJ0KZFLZayofrkyBey9nUSI7dNSrCYH66J9vQhd771jnY+CY5lCmg4lJYOqQs9rCAHvDCJoBAqV0lMtJX253hOici6OION1zQBvDMELXr5+kRsXtpi1cOf4YZSed5HIPF9YvLcMh3n0hbImGbL55FWyElHUOpYKhAChI8k5hBCTlaRrEksu4LqoXiv7ZNQHpPcM8wzbRuKwpy/zxe6N4XCDo/0jFrOWwaBgb2/IaBQD1MbGkOOujiUnGZM8m0RUg/corbhy8QJFEVAiiuXt7Iypqoo3vvY2JydzqiJH65K2dXSd4HS64M23Xue/aSaMxjsMy4v8yJ//b7n1xhfZ2q547oWrTOYW52e8+sol5pMj2naKVJq2qxlvbrF3YYuTySlFqYAMKTLmrSGcThKiodI5cOSZJMvg6GSfvBRs726hZKBrHbPZIvHqHF0rCE6jZXQTL3JJUQW2doZIYdk/fELddFij6dposlkVA6KGoYUg8Kl7yCnIhyWj0Qb7+wfx+mWKza0qtl4bT9t16Cwivsa1DIdDRhtjlC5RSjGdHXH9yvO89MIHybMhxnyBr73+GgFNUWxQ5Rs4G3jw8BbF8Jjx1gfxAqrBEB8mdNYxnS7oOoNxYFuLDpAjaMhorOPg+JjrF3bY2RnwZL/GhdhNEydgktu3HvCHf/gFhNBcvtxQVDl1O6dumtiObrcpyiiAWRZDrO2Yz+fcv3fAYqqYHBsWM09w8f4MyFjSCX1yK5dlm3XEvUdWQ5p89JFtNf4+Xd4Ra1Yn32hS/l8PgpKg3fXSBqyFsr72lTKZsLIk4GzXTWoo/QZn7usjIin4n+GQnN/Xfn9WF3ilvno2OVglDKS/408fEM5ANv23rx3beWLs6rvFU7PY/qx9K/ybfnvrfBjrPcZZqkFFlufUiznz+Zy2afHWceHKZW7efJ7Nza1U4ogDbZ9gBWKZYTqdUNcLquHm2XMpRErVoiJoWZR0tYojdlnR2EAuFV1jaJro3eQJzOqWiRG8eX/Gwgp2tuHSZkUZBJUSlFIhhSc1i9D7RsTcafUAy3TupFLRFyYhKSGAd56lS7AiNpLLKLzkZYh6ISISZl0A4wULE3jn8ZSvPupoQ4bxGlpBhmXedGT5hEF5AVsqtG0Z5RnOQ6511HrIM3yALC/w3mCMQ6mo6yFE0qYRUQ+ldzUOIeqqWOsQqbVaShAyqtq2naVtHfP5nICkHA9RREPE3gwx03pNMj8KhrmeLJraj72PPiRKq3jnJhQJwFoDImI2vX2D1hrvWvyatotGge2RrOjQnOtYivHe0nUOIQIqkYdVam9fNB3Hs45cnXI6mcVuKe9TizkMh8Wy8wYC1aCka5t4PdM+mq4j1wVSSIpcs1g0IFRqN06eLiYq1wlieSqWCaMRpUgE5UJnyEozM7PYNB9WKFtZVjgrODqaIoQC5UE65gtLJmE8HjGfOsoqQ816dd6YrHe2oyjL2I6sFIt6gQ0dz718EaVLjo9mCFTk7MgOIaJw2vFkwWtf+RKf/+Pf4/v+m78AsuL97/8IH/mO72Q4OqAzBT4MODy8w2S6z2I+ZVCWlIMhk5nh+ef3+MCH388v/a+/wXyekecl1sb7+uR0Gt14RRaJqlKhNFy5tkeWG/IioyhGHB+d8uTRKabzsRwso+aMxeNdoMhypFBMT08wSaPnQx/9DqS8wf/27/8I0zqyMhpWiiQZ4IUiDSjYznF6UjObtmSZZDisyLSgKGKp1ienYxdrrYBgOq8RImc8jh1Fly5dYTjcYHf7Is+/8BKvvvp+/uW/dHz5tTeoJxNOaTmQ0Y395o7CC0PXWrJiAFLhLZjW07Ue10m6Oo5NF3e2qB8c0/hAU7c8ePiAG1c+yJODu5DkBxDx3j44mHB8XOOcpDOP2dyu0LmmbhynkxNOpzO2dkquXr3Azm7sbAw+cHLYsJgqFjODd5Hv5LxDSFK3TiLFerX27/PI5tko1pet+3H/WdSAiJzKMzEBnr3uN7t8WycoIkH/zyLpnCn9nE3+Vv/u3xdiqS56HiF4GkFgbSPffEBf536s7/OSv5GSlPVkZKVDsl7iSMTXlJz1AioCnroRenKsMWY1+5cyyYWvkJVnn7+18/MNjivW7i11XRMIlFWFc47pdEq9qOmahlznXL50lQsXLkaZbtkjQNGSvj8U7wNNXTOdTNjZuQSp62FFRBFEkTtJnmUMBhXWW2S3RShHOC8wnUEpjfQGax2nJwv2J4Y3HrXs15A/arm2lfOx58dcHpd0zpBJgRJ9qx1JfXb1fX2Zxtn4W+sskVbT+elbkdN+RqRKoJSIPA4RyZ5CSvAC6wS18cw6T+3AEktUwRHJerni0czyhVtPuLqZcXWkKTVYF6gyhUBH7RSV07UGbw1BKjLtlgJp/TH091e8JyKZ0uOxnqj7IlQk86aSRWeiG6+IUAUqy/De0LYtMkRXYlhpAIUQaNoualromNhJoZaPh006NDrJ+WeZjtfJOHxIxFrT0XVtajGXaC2iGFUaKUMqx2R5Ru48zkb5euM9MnSMSo2WkdAq85zX7uxzO4eTeUtV5mjZQ6UBreP1kzJyTpwJSXEnJshSSby1LOaWQVVRFBlFmdM20T7BhUiQDSHEUoGIsE4PnSNi66hWGpU69IosSun3kLmUUJQFJ8enhCBQuWTnwhYyy7l39wnCC5yRVOUIRCAvcoKPyN6sbpBaUtcLbFdHPyEZ6IKhri1t7agXDUpLfHD44JDpYtVd4Hiy4D/+1m/x8ssf5vKl97GxvckrH/ggv/lb/zNfff0BB/untO2cBw8P6GwOeMqiorU5QjfcfH6b51+4wte+ep+j4zn1osXaSIwPKEjPkRQwHJU89/xF8kGNzhRdKzg5sckLK2p+gEMKn0p6yW8saE4OW37/M6/xwssvcnjQ8vbbd5lPpwgvGORjOmOQGoRTOJNQ5hCiyaHxCCyDoeDateuMh0PqxQzvT+JYbwTOK5xdTkE4PZli2gWbo4wXn3sxlWM9ZTHguZsv8Wd+6Ee5d3ufk+MFweU0TYsLLU2XcfveA0LIOJ3GUnLwsSSohEIJxWwyo1k0fN8nP8GNRwf8wR+/xuMjy3xeY7abqMNk4pMZgmcymaNzjfcZPt1v08WC0hVYJzk5bTg4qunsBttbm1hjWMynWBswtaCZg3cZiI7YvuxTOSxpS4Uk8OlXjRTL+JGsB1ZxpI9HT8eFZ9EA1lY687lnVRS+0fLtnaDw9coO4kyy0pd2+t/p5TMlnmeVNPptnk18+uTkvZGS9c/3ycl7EWTPfm9YlXDOfXd/A6UmMYRYIysJlg+oSAmXtdF/JZLTVm2SXqYHeU0/Yx3B4ZnH/d777L1nvpizqOfRFyXTnJ5OmE3ntE2HM57Rxpjt7W0GgwFCRi8dv779kHrtg6Azhul0hvN9sF0lg7FSl8onWUZRVihnEGVFkBqlc7r0fgx8ls4Gaqs57gKPaoFoPLNFzcWdARuDig0V8K6N3IxUuhCplg5E/YCQoPnIrYyDnDprmSCJEus2+KUUvQgrBVW3vH6S1gQOjxfMFo4QYuIjpAIp8UFzWkck4+Cw5ehiQfXCJjuD6MRqXPTN6Qm/UkqkzhAh0HWGsowzpsBKnl9KSdu2qfyjI+FUK2zXEFuDSWUbTVYEpG4i+dBGAbk80xG9cjZ2CfWIEPFYi7JACInUKnaxOJ86YmIZyCYEZp1ULqXEdZHwGjtxejKyRMuY3OlM4FB4F8tcxnTJCFEgpEKpDJ1rcuXBGoLIsUi++mDCZqUYlgKtRCLtpmOUHiEi2uSMw9uoMSK0RMi4nypTZJlCqVja01JhhMF6C1InXReZ+sx6DlZK9lWUmpdSJXdsQVVo5takhCuiWHmWc/foNHqiSMfR6SEn00OstYzKEdY7dkYFi1mH91H0zVqHMRYpMlRCx/KspOlaOut54/XbeAfOWpwFG1wkWmPQWYaQGZ0RfPm11/l//cL/k//jf/8/MJ20/N4ffJbX39hnWBXkWWB7dwPjW2b1KUVeMqgqnhx2CAlZ6bjx/AVu337M8fGUtnV4pwlJQ8MFiyCgBGgNow3N9t4IHwxNrSiKRD6XkS+oM0mmFY3xCB8T365xmDbnK196wGf+4B1OTzrqmSNYiZYVzdwh8njfdMlhuUexJQpnQrRxKAUf/cj72dnaZf/xAU/2H/HVr32VTGo0GUb0ATiWdBfTjs/94escHR/z53/kT/P93/8DlFVJmY149eX3cWFnl8NHE7KsBG1BWIaDixwfNczmJxwfT1N88ThjqUpNKBx7ezvMZ543vnaHbJBz4+oNhKh48OgJrWvwdEgRhUoFitnUYP0hbdfgg0R1Hj+XLOYNbRNYzFu8MJzmcx49OGBrY8DOeANcgZZlRDNoEaLDBZMmeElwcamH4lOZZ5VsBC8IciWA2s8M34uPeDYuPBUo+jWfiiHf7PJtnaAE1ssVUbm0D9+rEklf4kmcgVRO6JOSlXZsSjhCmgKLwLMTk74VmOX23ysjPM9fWf5b9PLmPb/h2RloCCG9HwjLZCTuo0wmTLE9jLjfYYUEORvoWkPbdHStxdkoR65E7BxxRF5E3xF09hy6lBKoM8exIhsn995Uz2y6hsn0hICjrGL772x2StvWdG2LFJKyKCiyCJnHsqeP8Gpqc+vhQISgs57JbBIdkLOkeLt+ipfXUJEXGxTB4swcVVYMsoyQSRZW0JkAaJyCo9kJtYMgJZ31HLrAa/dmDIYVH9grEKZNpYgY/CPF3UdPFqFie3IAQhQM00iEJ7YL+9S6RyolpFJURPiSWicCpcHjsG1HoORg5jlaeNA5RZZjXMBZi5JRAt/ogqYLqBPDlaM5e1XJsKiigqmW5Dr62Lgu+tSoXEZFVO+W3jFaa7quQ0oZhcKCxzvLojVURYZSIBPE3naxO0cqRV4WmCZqhRDi7DhTiiAV3lqk7ktWsfzSuypHgT6Bc7HM5L1bXrOl5lAiM0c4OD5XWiuyXFPkGQsXZb4LLQgLGwnNIWBcDFBeRQhdCE8mBXkkZYDOcU7TOkdtAgGHzjOyjFgKkJKms7FMJiSm88tyRFkUNE1NJuI1dUBnQ0rGPIOyRFQFbWcxLlBmOtXr420bTQnTWOQdmYrKs1JGBs1ASwqV2tSVROuc2ekU2xlUkdGajnZiwUvyImdzM+fmi7vkOmc2fbJEQjrnQCisDZBBUBKRK9pFi3WWyZHj3u39GEBDQLt4HzgXr+PmZkFVlNSzBb/76d+lc56jJ8e89ebXwDq8bSnH8bPNomVQQI9w+GDJ84xFN2VWP0HlsXsspMQ9dsYl/6dCUxSCzrQcHR5x9dpVsryizRRVdYxQoDMQ3nJha8CFC3u88dVHGAe5lmRScff2MR0OY6P6skASZBQLtMaxORrRmZiYRdN0iVYlGxubPH58EMXwtKAcSW68uM14W/Po0T2G+RDTdAwHBdZ55k281iZYGtegRMaDhxN++3f/E42Z8IPf/8Nsj6/ypc9/maP9UzZGGR/+2Ad4fDjhy1+dk+U581nL4f4Jtut46cVr5HrM3bu3GFYZIz3kwx94P9O64fNf/DIIx4XdC2QyY3fnEq3p8MIk9XCNFJLOKMIiYG2PLqYSLS6KPQYoB5rZxPLG1x6wmDZsVBvcvHaZ3d0NDvb3Y7u1kwThUvSKk/NeCxHvVwqy/U8izfZcsp5GEYOU77H6uC0RYixb/vQKs+lnOWivlY7Et5aufFsnKLCGKni/vACwQgTOl21ItbQ+LTm7sadfWn3Pav1ERVhewG+aSMsaNLZWd3oWerMqvbDMm5bfxXrJRwIulhVCDA7BR5XPxaJmOp3RNE1KyFY+CqvunuSlI0TKsFeZswtRkhpWPjFAarGMSI9zjvlizryekxc5Uktmx7PIPWkbnLNURUWm8yVUHy9CLC8sSb79+fACbwOLeUPX1FTVgL5DaP1BIZ0fJQLQ4VVHMdAgHMHbREiMs1khHHmWUUiJ9lGzwks4nHXceTLhynDMroaBlnjRC3m5paJiNMuLTsrRrwYQARcCmcxSq166r6ROn4sJX0AgQ2xZlZlm3sRym3XQOoFxccYZ0kCspUJ5j0qdQE56Og/7JzWn25ILowwnFLmO94tWijyPJZtI+ksz+1RO6T15TGdiB4yMzsmRM+ORIg54EFVkm3aBTKUJK5J1gYpS76FH4RKXpScS97ok/T3c679kKrbOW5sS5PQs2iQa0nseKaWRadYfbQgESgoKrdAqGt6J9AxmecFi0VG3LbmIJajI6ciZt4ZJ45jOa7wHpXUSq4sJsE3uykopfCq1OO/RUlDXNUKEWJJLHkt13aKVBAn1oiHPc5QQOFzkL/TPVNLxibwTl8o6kWzsPWihyJSi1JKFiaRkrTRd00WxuEwi0LStRSKwJiT7g4A1luAcCpDSo7RlVOUUVYVUkStzMj3GBpueLUVZjPg//Ph/x3Sy4Hf/02/zZP9JqpzE5zXLNQspaBrDH3/ujxgPRoxHA1whUVl8NjvjCZ0ny2L5xFpDXkI1VAQML714kycPWh7cmcfkBQEiOkRLFRgMom5K8C2337nPlctjrt/cIxtmbIwHtI3Bd4rRoCRTOd5C8IoQLNZ1FGWB94KmiTP+KADpUFqSFwVKRrsQb4AQdXCUCty8eYPtrYvsPznFBctgWDKfnbCoj9nd3ebypQvcv/WQUVXy/PMX2d7d5u1bj3nn9uNosSA1SM1wOGJ7aw8tBrzxlXd5+83f5jP/+bMQAjdfuMyrH7iJunXIl776ZaaTBrnwTCYTPvqRj/Ajf/YvoNWQf/Nv/xf2H91je7DL7vYmX37zHfLBCJkFHJbxeEwXWqwJlANN0yyipovI8UEjVYFSiq4D00axRZWeG60FOGiNocNz+93HfHb4RS5dHPLRj32Ad989ojUSKzXBJm5VXz3rY0VwiaQczvxI2YskrqMkPsWF9caLs9zPddrAs5bwLdIi4P8PEpSzvBBWJABWolnn62XP2MqZ91eVjrMn81n8jGeXgZ69nPn+PtauJVLne8/P7l38vFuKrZ3b9tr2nXfUdc3JyQmnp6eEEJLnxyotC6mcsfSX6ROllP4ED4umZjafE7wnT50hfcCD6Ky7qBecnp7ifaCscmbzOdPJlKau6dro91EWZdLf6EmRyQ9IrBCwZbqVkvJmXrOY1WxurU5CvKqxFCSExdsZnhO8mdCcPGJyekIhPdlAI13HeGPI0WyG6xZUyjMSDlEJ8jKnbgyF8oRmjpIlG+OK7WEVlTmtiYO5tan8EHUwEIHO2li7TSiO8w7ronw3KaHxiIjCxCyMgEticBIpdTxvXcdgXDGousiBUCoq46rYjZNpTWsMWRZbLlt7jMhyEElgMDnWtnWLlDoKUUkdSbnB03Vd4sComJxlkffTdS3e+2gOGGIAVTLybELwUeq+tT2YhUydPFKIpZaOWpod9kTT3gQwkGdZlKwPvdlevLd6gi4I8iKnbjqMjSWntksls57Hke5NGSS5UrTI2KKMpFm0NLM62iog0iy5pA0wN5aTWU3TOpSEMos6R1KsESJFnP3ZVG4RgtSyHAW+8izHdR14T6bjPgcEdWtASJSMyZNUCmNT2c5FfRupovibtTYGEiGiqaF3CKHIM42sDRIoq5K6nSO1BgmZiufNO4tW0DUND+5MubCzBwTKPEeXmpsvXmBzewOViM6HB8c8fliTS00IGVpnlHmOt56bN26wt7vH/sGTmFB7T902tGYQDQvTJKbMCqqqgFLT2Ya66XDOEIJDSw1O4YPl2o09xlsli9mCC3tX2N06YXN8jKSjXnR4r0F6ikKT5dEDCKGZnHbcvXPApSt7aG145eVrvP3GA95+/RAlSqQYcvvWMXUX+UHlIEr4O+dxNoD0SxXhIsuQMiZaXdvRtl3sIAuSMtPsbA4p8gyZlIDzLGd//4Dr1y6QiZKPfuRD3H77AaNBznMvXuP+47tko47BlmLWdgivsZ2hntc0c8fje3M+89v/gQf375NnJRcubXDlxiW2dreZvnaLIhtyctjiRcPlq3u8/wMvMZkds7Up+ZEf/SF+/9OfZme4xf17Dzk9mJBvjdnZGSOlwzpHEI75vObixW2Gw4qjw1Os6Vg0J+g8Stp7b6N5YTFECoWUHmMbjO1i16CCtvXcvnWftqv5no//IF/8wm2+/JW3oQtkKsckSQIBkCaG4UyysYqT63ooS+S8nyH08SH0E8uVPtezYt23ymk8v3xbJyjrAfUMlyGsjIzWX++XFVmVlCGwRFa+3rJe6viTEH7ei4z69UmqcUf7bDas65qcWzGkoGGM4fT0lOPjY5qmJc/zdLRJ5jjEllol1wm6a4RdIifi8PCQt959m8V8QaY0g8GAqiwpi4KyLMmyjJPTU2azOUVREDxMTics5gu6pgMPVVWRZ0VszfX9gwExn46oTc/TEIFlELPGMJtOY+DS+qnzYbua+fFtgjxGho7m9OT/S95//dq25fl92GeEGVba+eRzbq57q6qrq8lO1d3sJgWSoAJlkoJsyzAIGLBh+0FP9r/iN9GGJMCwJEOyKMkSSZESpM7Nqq6cbz457LjSDCP54Tfm2mufe251NfxU4Ow+dc7de6255pphjN/4/r5BgCRdMd2d4dOC9dpTWtiblLx1s+SN12/hMgwtwV8FJT1vXZ9wY2eE7514OHgn6IWXVUtZVrn372gaWUmHIA9t03TS2sitxBBiJiQbwbZSQCMpuwFFUpakROrb98IJjFHnLC1FH0XVoICkDH2XePJsgR4lkrLYsiC5BqUsKQpiY6wFJccrK3ryKks8UZp1g7VZ9ZDPY1Xm9yuV2zyCupRlxWrV4r1jMqpypk8Sl1ogQ0WIokSKNa2tFDAh0LUdRVFQlxWoofAQC/iiLMWcrHNCFg7COQrBSfhilIwdrRQ6JuFHIzA02UiuLErKwtJ14vzZ9Q5VRjqfOFn1zBspKutSUxqwGuqypPdSNElgpL2USGeuTohJiszeY5QhKVHS+Ah9iGhtKMqKujS0TUuf1UYxyO9jkqIlRFHViPHd5RiTUqTQmkLscanriovVBbqwuS2tqKsxKgXKytAsV4TgONw9ZFTXuBSoRgX1nmWyK6TYGC222Odgf4933/oK0+kBdVXzx3/8B/zn/9l/ji1Kko7s7x/ges96vaYoLMtVy7pp6XtPaTxt19A1S1KKQsalENdXEmURKExFTJ7X7tygMCVnp2t+/PCH/OB7H6CT4Wh/j3M1p+0U9aigLGXxEoKonIIP3L//lF/66luUlWdvb5+/+Td/jYvTP2J+umaxWNG2CWUMhkg1qqjqitFoyqpdkBCzSWsKgheCrRiu5TZaUoxHM+raslqsWC16gpfE8vWqJ0XLcrHgYGePvb0xX/vtX+OD93/Kp48e8vDZfV5/5zVO5w08Xwsah8a1ng9//JAHHzwV88GYcErQqrP5jHXTsTc74t23foXjk+e03Rnvvf0uVVHyyScf0zTf5UvvfYXf+LXfJrYdDz74n/BtoD+dY8rE62/d4/jFBXVV86K9oLpWcv3mHrfvHNI0jvliyWK+BoTrVlcV164dMRnPCN7x4vgJfuVRMRK9jBlJIV44OwW/9Ttf5dP794V/2AkvR9Dq3MZPgTikGg9zyxbX5LPzS15wDXNWXmCqJLEagxXEq7oB+RHYvD/Gn3/O/IUuUOSkXrKPXz65f1Hx8Mrfqku58F+Eivws8uvLr/n873D5updfOyiMtg90m219pSWEXP4YI13Xs16vadsepcT+2ZhhcpL/FY8Lc4kyKWSFiWjjnes5Oz/no48/5vzsDBIUxooNdVkym07Z3d2Vm1snSlsxv7hgfr6gbXq63lPakqqqxZkz80hStlffJEsrTcwFmMrFYiDSB8fFck7Xd4ysJUZwbUvo1mjlKVQHzRnWroldS2o6ogOXRkTX0TrNsu0pyxH3bo64V9RgS3rXo6JHaYX3kZRKytjSLl0OvxM7bOd6UpKVfxvE4twamE1rCmtJSWHLgm5UsVg2tF1P2/fZpVEmWpsLv8FhNIVAMhpbFEzHitGyg+RQtiJ5UVoEJfb7IUqroPeB1ntG10tB0HwPBIL3+JgoigqlxcHVZO5LClHyfMpy40ujsuV8MVx3fDYgswSl0IWmGtW40BNDi9WWUV1SGI01mma9Fn+KqtgUk8oMPAxBS6QtJiigyyoXab8miqIAxP01ROHYxJgQDqkct7GGUV3R+A5rxV25KhKp9yRM9thIjKoakrjdruZLThdrGqeYrz0+gTEwHZeMSo1VorQR/5iE1nGD1gAYbQVdyM9G13usUVRG46KjKAqSl8G37ToIetPuvFykAOjsGry9aIIQxYk2orBJMS4LesQwLw4FnIqk6FFY9mZ7ONcQvGTqKKVYr1aMypEE9FlDWRbYSuFdxBrLwb1r/Hv/q3+Xawev8R/+R/8Rz569oOtczqhKNG1DVVWUZYFzgdVyQQwRraTV17UNxkhW0LrtqaoxWo/wriNqQ+s7CYlUFp0mfPvrP+GDHz+FMCKlRD0teO3eLY5Pl6zWS/pWWs0qaayOYMTI7+T0jNu3d3C+4drNHf7W3/kd/sl/83XOThbEqKUwV4iDcNOiMgk4qXxWtcb7tCGvA9TFiLs37zGdTHj27DFnJ+c8PzkjRo+ymsWiJYSCsprgU49La+69eQ2XVnz3B9/E1oamXTMaVaTkURQQIThP6yKzazXXbxzx1V/5Zb7zvR/Qx4Y79+5RFhN0mnL9YJ/D/Vu4sBKi6sERZ2dzzs56zk4aTp4/wK1PuXPnOl0Lq9Bx2p5xcnLO+flCpOkhcX52znTHMp4V3HvjJqcnF5ycLDl+fsFy0bJaNbw4fsz4tTeYzWZ0/S6tWxFb8TOxhefw2h7a1Nx/9AFf/Stv89GHX+b3f/8bklua3Ryiyuqdoaug0oZ1qH9Ge2aYjz5vrhvAgu0CZZDaDzPUgDr/BTjAle0XvkDRSl9Obnm75GdcbmogjnA58auUNvSHNCDAW5Xe522fB1ttoyCfry767L5+tnIo5RXY5X4u4bWt/UD24RDiXlEUeTJJOSRLb1AMSbUVV86ks2to3ndMSdQgzrFYLFgul7RdRwqRhsE1NXJ+ccbpxSmHh4fs7u3RdR2nZ2dSGDUNOilGVU1VVBg1rFbZqsTFkyKky9bIcAwqCgR/evKc02cPqApLM79gdXbM/MUjytQwKiLar4hhhW8XpK4nLs7xiyeoriH4kKPSRYVSJEVsW0kv1fneiQllRInSul5WAkbIxyZP6Cl4khJiXohSdITQy+TsAlbBzrSSTJK+xLvAfLmi63r6qLBlRTk44g73QQqMSstOFZgWlkUTM2EtYZXGBHmYY87L0UnRrhw6yecXanCIFRwq+CDyYWsxxhJVhsB7jzGKqqoF5ckEOGNNLrjEJyNGyWtJGLreE2JkZ2dKXVk00uoS6a/ZOIWCuOr6ECBkXoW1G7fY4ANt225M42KM0iLKChiVNEYntAE1ZAYZDclj8/UxBoyJIk/1EEh0XYMtR6AV58sVTZ9YtD1tEG8ZozSjUjEqDYWRc+36jpA0MT80QxE1FOiKgcMmz1BdlxCDFHhJ1ETOeUKCLjhR0RQFZKO7BFmRAihDjLLKVxmhdDGgtRT4hdFoWxJCT+96PPI7Icz3nIdzUD17+wW//MvvcnayZLVu2ZnuAUkiBmxJWRpKm/C2Y7l6wZ/8yf/AjWvv8md/+seE4FFGyOfeC3/KZbVU8EEIxpB9REz+3pGyLGlbx3rdiKS7qIBE3/ccvzhn58mIFy8WfPjj56g4gaSJXhROWmvqyuA6jTUVzapDmcRolDi4scsbb93FOzg/6ehqDWpB00qAnWQzqVygCHepa1qWi4VkfCUlRmQxt4hNiTGK2zdf5713vsLBzj5f/8b/jDaJxfka1wsXJ8VE0wR++MNPuXX7iNF4irGCKL/9xTdYdGc8ffGIqqrReoHV8rwXhaW0JdPJiJ19w7/2N3+Tr33tX+PF+TPW/Zy79+7RrhKh02gKlBYBwsXZkk8/vk9la0JX81//43/B+ckZr9855N03X8Pakjfu3mTf7fO9H79PDJqdcY3Rkfn8gpNTy+HRDkUJ2kZidCLvbiParAlphY/nKFsR8ZSlxfUhE1YDd+7cpO0iT54/pG16/vV/83eZzxd8/Rs/yveBEFcHhU5Kl1liwxbT5yyAt8avl9H+K+j7hvP5chE/vP+V0+Dnbr/QBcrmZKhLDfzwf8PvgVeelU17Z/j9VmHyeUTXv6joeFli/Hm/FzKl3vQEP3txXyqCEgwqpO0vcIXsm/kkCgnSm82mTKdTzs7OCPmhGyy6k1GUdYU2mt51+OBIWmEKiy0KgUbXa+bzuaTM9lkeSdqwu3sHla82K+OL8wsW8wXNek3wkVFdM6rHWFswQH/CLxDUJMMnaCVog4zSUnjFEOmXS15cPOFb979D4ZbE5gLtW2K3JPo1KjqS79DJU+hIaRIWT+FbYu/xQVxdXUzEoLBJvE50iiQf0aRMOpOpQavMbYkJdHaVVVK8CKHYyaCuNEZFYmhRqpRVQkwUCoq6wBcGaxVt27NsOtZtTx8To8pirEhdpegITCzc2a9Ydi2rCKa0uVgWpQhaU5aGGZGbuxV7oxIVA0FBDD6b/F0OACEFClPiey8macZQ2hJy20QZi4rZ6TSlDRIQYiT0gabrWCzXm0A87x11WdA7t7lPh6I5xLCRicd87xljMUVJCpGks/labkeGKNwYY+UcShQAGJ2oq4rGS9hhYQ3j2rJoe1xwGAXe9ShTA4GiKKTlFxMX52uWXZJrjBZZq0mMSovVKXvbDEnLKXNm7Eb2rJW01SCTxpMoi/rOEfqOoizyvarEel8B2lBoQ1A6W9yLj0cMPpOHYw5IZLOiDMHnB1YI1qYsclik8LFSUiQVc0ERGY01ZRVpu7nwV7SmDz0qJEKoUMpQ1zXBOYoi4buGR48/5PS4xYdWzrFVG6QquJxxlBIqSetRQyY3S3EqlCkpFFEJ53piUBTGMqomFNby/MmCtmsp7R4xQNc3+BB4+vSYDCJBBO8DdVWwuzfi6E7F0a0dEtA2mvVFx/NnDzm7aHj86ALfaMqygGiIqWdaF0zGNZO65vXXbxG0pixHFHbKD3/0I5q+QRGppxN+6zf/Gge7t7n/8U9omiWz6S7NWrNcOaIKJBQhKJ48uuC//sd/yI2be7z51m3efvsek8kMbXYhnUOqIbWMRyNSYVApMZ2NeP31a/zmb32Vd7/0RR4/eciz50+5eXefnd1dnl90KCTDy8fAulny/MEH+LjH7/3u3+Abf/oJjx+dYzG8eNYxP/0pF2fn3Dw7wpeJ6DUpCAqmtaFZNCwXPbNZ3CwiXe8I0dB1HX3fUY8Tnb8AMyUiAYjGKHzw1HXJcrXm008fcPfONYwJHF6b8G//vb/Fi5MzfvqTh6ReFDwCWedFb8rtmSh5Q3I/ho1YYlg0Djl3rypOLudGfeUPL82dUtykv1SR8gtdoLw8iW8jC1dQjM/0w15CSNRg/iUQ7aWC5i+BRb20vVyBfqaFc9nb2RQow/te9f6XtwHyVDFuXfC8AikMs50pOzszzs/Ps0JBSdKqkRaONgYXA8v5nNV6TVVV7Ozssbe3R12NODk54fjkWAoU73KESLb6yfyG2c4O0+mEtuuYX1zQNQ1977DGMh5NqOp60yqTKj9bqstZRqWEdx2rxZzVakXbNaxWS8lfWZ0TFs+o3Bm7Rc+sSIxsoi4So8qgkkOlnpGxWKVQpSZpT8hy7KHoMUY61YQelcRtVOuYOTi5LkLLahe7MWQT1YACY/BO2hI2W7MrpMiJ3kmRsLGLjlgNk8owKmpmkxHnq57z0wvatsFYi61GgMYQGenI3R2N6w0Pz3sWqsTFhOu8dPa8o4qBd2+VfO29a1ybakxcZcM3UdiI62pB7wcIMCMb3kvartZU1hJjwHVdLszEFwQtLYPgIuvWcT5f0/We8WwiHiCZzzSohS7vsiRtqN7lFo/e+O6YLXRCuE+XhbRKA29lmLwHPxnZq9WKUVXSemmv9c7hQ8IYjWPIRdI4H2h9YukSqz6hjXidqJQYFZpJZTAqoE2BUUMCNfm4dM550gxJywOiMxRyMSbQNnOkZPgos+tsSomIYt1KdpA2BksOSQyDtLsgBFFHJchRB9Krt9ZgSss6uE2rLFvoURYwqmH/wHLtxgRrE21+Nq1RNF3L2WnEloqi2hErfhFQsbOzw7ja3/jcjLMyyfUKSQVPgvMLZRlrM908puyxImpAY0EpIV4aLQuJvnXYQlPWJaWd4Xyi7daCgMZE03YEH7ClYlKN0UkxrUvu3D3ii7/8OvN2wf1Pn/DsyQVnz+dcXKxJyZCSFccFgiQ8I8Wk1orZzpTf++u/xWRvhxQNH37wmE8++RTncguuGEHUNOslH3z4faw2vHb3DYx6zsX8FI3GR4UPEL3i4tQzn7/gk4+O+dM/+gFaC/9iQCJ2ZiN2d/YpjGW9XmArqGaai+UF/83/97/n0cNnnJ6f8NqbNyl1SVl6lG54cXzOsxcPOTl7StOfM519kcePFvi+YFTtkoLDBSkw650JZ4s5wYLStZzbJhJSQde1nJ+uRb1WlUwmM6pqjOt9bklKNlXv1tiqx5Qt1mtMCXiFNQUP7j9HoTjYn2IKg7bwxS+/zd/7+/8G/+g/+E84OV6ggjxDbNo8Q5E88LHMRswwOG78rDlO5hx5fjeLZnVV7PHZeexfIQ7K9t+vKkheVWhccjvy33x2P58rlfqc4uXzSK7b73sVV2Z49VCkvJokO1job6E06lWNqLwy1oqyLJlOp1RVxWKxIMaAVom6rvMK2eCc48XpCU+fPiUB43rEeDxlPB6zXq94/vw5fd/LZJ8LlGEbjcccHh1iCsPqdMF6vZJQtBiYTiaMR2NJfc2TgzwKCYwoSbzvefLoEY8e3ufjDz6gXS3p+pYQPdEFVHCo2GFwjKxid2SpDexNDIc7Fbtjy8HEsFsmdstCAvRKhSk0GihybktSkdoafO/ERj27iMqAPKBOMhgbDSkafAybQEAZ0CWvR94S88AuPA+FQqSxUqAIOiDnqtCgd2pm44rFcsHJ6ZzGZ9v2GKlLzZGK7L814/Y88ePHK14sPeuQqEuFJXLnoOCvvDbl9o5iVipil/AuMZqOsSavfKKhLEp652jaFuFS9BTGZpRI410PSVQ2gzdHCEGuidLZE0dea6wmeIdS8l1NDhxUuUXY52A/a2VCCRnNKYZJnMv7dVPg2AHBC+QuFyTZd8iZQXVZcL5uhfSnTPbtyUF8IZHyqs+HxHzd0/hED5SQr3liUhoqCwqRaldlJanJvReeh5KBXvxbrqr8NmqlTIoNEYwCrSRrKCKpxE3vWHee0Uijkvh+iLI8Qc4F0sYQfVbI5RahMWLQVlQlZ/P5JnhSpcSorjg4qNndS/zyL7/G7bs36BrD6ux9+rV4CYUAsXGslivadcHOzr4cm1G88fp7fOGt3+LHP/qQTz75kK5rcF0n9yOCrqFUJkbrXBUNCrrLCSslD0rO3WRUMy4nhBC4WJzRdEumswPKcszKrxiC+JTS6CJRmEy894HCwnqx5E//+FucL9acnq9ZLTuUU5AKlLJCjs+tx2Q0MSiaxtP2PWfzMxYnJ7z3lfcwRnN4NObf+rf+DS7OW0BQt8ODQ97/6Y84v3jG7Rt3KCzEtGA8MRxdfxttKz598JDlfCmInQ+EpFn2glImFMqAsY75Rcd4tOLtt+5hq5KzizM++HABOvCTHz5gfuHY2amIrqJdRp4+fMz3vv8Nnjxe5udBsbd7xOJC8c2v/5TRaJ+336po2jkhig29D0uc68RbCVHKdG2gT5qEZb12cLIkJZjO1vRtFEfcnOoegyKphCk99SThXBIvGW3xDi5OG56VJ5ydndP1PV3fs7tb8KUvvcvduzc5P12RgrTXZT0eP9NdGOwntNLyHAt0Shr8JrhKN4hZNTjkxG0nI6ethcH2XP2XEZb8QhcosqnLE7L197BtczbkYRykVoMjR4IoCMpVFOOycHmVlPhl3smw78FN8uXXvFycDEf4uQXU8LeCwd3m5SLnyvfM/ycZI2LQNZ6MmM2mnJycsFqtZTBUCltY0ArXOZbLJRfzOd57ztSlt4b3XuSG/pLsOHTMjDFMp1PqumS9WnNxfkGTAwHrIhdGZbWZ0GIUbksk0KyX/PCH3+OjTz7k4aef0q6XqBCEX2H1ZhUq9aNMZuugOG2CyDMvEvVzT6U8d/Yq7hwU3N2vOZpZDqx4koyswSSx9LdFQWksmrwijwmClRTb5NE4tAoUuR8fCOCFA2NsAcSMOAgkL8CMEI+HNqFKQsRECawenfAwCmNkQDEJa8YYW/DkxQVdL+e0qgsKqzEGDscFt/b2+fRFw3wVGJeJo5nhzsGE/VoxwpP67GhKJhGQcK4TjyTsprXgnNjZkz1PQvY8KYxBZ74ASqTQ664BU6JUgVKOohDOhSk0OuYWkmJTHAzPl/eZO6FyNlSEZAzO9ZnbIYjLoA7SWm8CFoc7VilZ/VtrKAog3wPaaGJPtt0PhCBJtSFAFz3rqFiuO3qfvW6UZCmNSs04t3dIgmo4bza2/Trp7GYbr0j6Bz+XIb04RvG4ISVpjxrFbDLGp0hohaNji4KkdC4wItYaVC6mXIi5rZTZVlpjBEpBW5OdZiM7OzssLy7wrqOuDO+8dYdbdyp+6Zdf5+TklG9+43usFlL0heBxXUCVhuBjPjeRUVWyt3fEr3z1d7h3+1f49//9/wt/9me/zze+/qe8//5PCf2c4LycJ21kmtEKrLStVNL5uR7cq4X0bI1iOhlR2QprFZMdy4uTM87PLtg/qCjLGtdI60rrRF1ZSmNI3nN4eMhkUtA2Hc9PlyzWPW0fxHwoCZ6jlCjOUpACTWkPqSAlw3LVcO3aHh8+/oTdJ1P2DkdUox0O969x68aOtID7lmfPHvP++z+kMCVlodD2gve+fI2jG7vs7b9JTJJ39NOf/pjFciH3bxCLgyGbhqgziqdYN56PPnnI7VuHhBQ5n/c8fPSMnb0DLi5e0DSRP/+zH/PNP/kRFxdnFLbg4GjC3s7r7O3dYDyZEYJ4yATVU5UaMKzbhqQK2r4jqBKdIiSPVYpIoHdCIjZK06wcz/2c+bzd1A/eO2KEGIawP8doZFjNHcaCd4nOeVKEZuk4O7lguWpYrtbMphJ5sLu7I2NqRgXlXxk5eUXxkPL9v6EPvLSIH/798rz78rz4/+/2C1+gDL3xlFewm2yavFKS1WJeIQwFxPA+GJCpfB0ujczYqEw+W+29slBBs1X+XIE3XuamkPc7XEOj9Gc4KDB41uZ95qTLMFiGx8H1dbvgGYodmfTqesxstsNoNGK1WrJqArawlGVFXYPrJV8lBiFKyooqSEaK93jvr0iac/eDFBV96zh5fsZqtWK5XNO1HaUx7O3usTvbAWVwLohxWQpURcVyfsH/8M//KZ9+8jHOdcTg0BmNiCoRnFw+q4f+pc5IB6DFx6FL4oq5Corl85ZPTloOxyveuTnii3em3NgroEqMlM+tBbO5H6w16BikzRODtDuUfIbKeKbWGqXlO3vv0FpTWCsISVR51a82ap/oJU8m5uupEjlBOIFKmOTRUVaXxaygsgecXqw5Pl+xmq/Z2ZlS6ERUgcOxYXTTkpKYepUqUumeaVGKw37SaKupSskvKoylN57OOyojpmTGapL3aGsx2kBI9LGXu9NK0RdDImlpX7koKMe6CTjfU5U2t1Kk6B2SeU02VUNJonKMib7rJLDOFHjfo1zYXDfvvVjEW0tC+EDyTIqBnMqIg0aRnMMkGFWWcSxR80AIDpfAJYhJJNqdS7TKMF93tC6Lc5UUVAoYVYbSJCZVRdu1BBeJRj47uG5j3KYRFCukKByqzLEZjO1A5PzWWFCFSN7XHWVlJXxOldJSQ/xPlL5s08Zs/KZ1whSikgk+XHLOqoo2ejFxW6+JiBmf3Csiy//mN3/C97/zPu3aUBW7hOCwZS3BkNYymo4JWAnmVJaDo+sc7N9Cm4J7b36BG3fu8Tt/7W/zX/0X/wl/8Pv/lOfH58zXXlRMKIzyWGUZqDExO0irqKVwR+TQ03EtWdJKCt6yGLNKLc9PTplOKmY7MxlRfce0NoRQEE1gNi3pOsdyGfDOYrWi1EAK0s5L0t5NMYLWuBBJUYr+0irKosRay8V8wScPH/GF6dsY11NWnloHumbFt7/75/z0gx8QQs/Bzoz5+jnvXf8ih0f7HBz1fPzRI6r6gOBbdvdGmMIxv1iTkqA8k2JEjMLdSEDTd4QU6VpH1zmsskSnOHnaMxlHTKxYX7Q058+4fWufv/t3/za//Ctf4eNPPuL4hcW5CucEUUD1YuikZRTXaIjQ92GozuRZMoqoyUGlQQpYY3Eu4P06L/BUntLkmXN9pO8cs1nF+WmT88sEWVEm0jlH8AZDKUKB5ZKLs45mtb4yDwVkrDIbgzaIaPmTRHkYU27F5xnm5ZnwVSGDcqyXRYqMhdlllksf2p93+4UuUIYeGOQTw+V/DyXIQEvZFDLyxk0bKCNYDBXFgISQd7d9Mj9fVqzy/w/VzvARV9s+4gcRNqjJwPI3ryhONtWreulzPnsWXjonZLRDUxYlk8mEyWTC6ekpXdewWq8zP6SS9k0MaKvRGa0QmXF65U0kN6N4HJycnrBcr4R74KTI2dnd5drREXU9pm29SAJzHktKgW9/65tcnJ3IeUqBRNgoK6RVojIpRF2iXUpwKa01IZuJhaRR2uDQhKRxS0d3f8F80fLF1/b5wq0dbB0oCfiQcp87idrAmsx/Ef6IzT4fRoHPpEJSpCwKuq7Pi01FzkHHFqKg0VoTgKgCYh8vxQ5IwZkGJYoSNEIphY9gpwVlsUNRljx6fMJ6uWI8HaEt1AUUCYiJulAU2mzOlTEV3vf44Cms3nBCrC0IKtL1HSRFVReMRpUMODn40Gqz4RRoDUUhhmKrpmO5bCWBlURdFYyqirosIfYbeFel7E+SU4yFBBc3SiIxIhOEpMh8lw3KR36v0Rgjq8iklKTXekcMEWsMlVbUVUEVBhRT0JEYEiBZQT4Zus6x6vyl+itGkk9UY0thDdZoUojUZU3npAC3RUFZlnjvpTAbcoSCuAYPxcVQ/IMoS4afoTW99xSl5Oc4L7LckB1/5Rxsw9lyP2xaxSllR15FOa45Wy6wpZbYg+iy700i+kCz7ri4WNE0Hs0IpSxWy5gxGLlVZcne3g5ae6JqMUa8aHzyKFNgS0NZlUDLaFRw4+YB5XzN+UWLa73I35OG5DaTz2AsF5zInsVNODGqhMOyOF5x/OKUNhhMYVmtAylZbhwdUhWK9eqc84uG0WhESrBatvR9QCsjnigeTBqM8qSoT1FvEqZjJqrv7+9jteH0+JSzkzlNHzk5WzJfrPmtr/0ur916kx/96Ef8+EffpevX7O5OqGq49/oN6nHBxfyUw2u36PqOh4+f0HRPqeqW6e4ECLStZ1RWHB4ckKJHp8jhtQN65/jkwSN86Ek+EUMpjtZN4uT5U7SGUTnCKMPtO7d4483bHBxMWDc3OD25QKtS5OLJoZNFpRz+qiJJBbxrcL5F4QhJRryUXZSNSWImGBxlNRKH15jt+5Ugs7YEbSJ9nzg+vuCtt25jrQblZRGthF+0bjo+/fQJd+58yu7uHmUx5f79Jzx89JQUh4W6PGADepK2/j3MKFdmgMTGyRz+kuhIhhEHRsW/Ui0etVUNXLZltkTGaXhdPqkpXf57a5NiQt6/IQ4NqXBcobR8piVz+e+h6ElX33Dlc67yV4YJGC4HxE1hlT/9ChFJXe4ncXmzvAp201pjCzFXk3ZMTdutRZ1TzLGFoetblFZMpxOcC7RNh8+GVjqHtV0qIK58E9bNmq7v8oozUlcl169d4+joCOcibbeSydHIZHb/049YXJzKZBe9xPBs3fAxRAYib8orWBDTMaOl5RRTpCwLUozS068sprC41nPRG/xJ4qI9p3eJX7k34XAUKZSYpqkM1xttKa1hSOg0VhNDFDKtsXR9LxJjQJUWozRFNhpLecU/kMJ0bqHojd5fZRgViNvcFpPfI+GBowqOdmtKc8Dx+YrlumE0HtOtOyor+TjJd0RjGI3qTLj0BBfQJqGjou9F8WK0YTIZ0bY9XdtIz1qVuN5TFOWmEI7O9vYAAQAASURBVFb5nKrCCgoCJGMZjacobWmalnFdURhFCo6yKEjRS7aQ1jgvPisD0jegawNqMLRyAClcUvYayQPUIDUeyLkpCdE2KYhKk5zfUkzFvNo3GITA6gOsO0ffS2jg0HIySv6MK5tbWHL+5VqbHCsQKawUtWVV0/d9tr1nE2AosmaxxRdb/7R59opSDMIGF2etNQa9eT6vIqQ6P696g+5oLCHF7BQMMTmcW6OtpapLvO/QWXIdYsf+tTFv+Os8fbAiuI5RWWJQ4nLcKtbLnsIIz8xo2JkeYs1I2nkxoiJ88tEH/PT9H/H222+zs3+H7/3oR7iP7rP2S+FqxIBWHhJoLFYXlKXGu07QI2tABWwR2d/d5d5rb/Pg6e/ju45IxKiCZtlwFhw3ru8zne3gY2A2mdC2DWVl0GVBv+ghFmgNwcv4oq3CDGqqCEkZlEoYC6dnx7xxZ5fgFTpa3CrS60ToIn/6x3/EyTvHPPjkAet2wc5kzNH+jN2Dkt29MWfnF1RVzfHpCTfvHHB444DrN6a8ePGM5aohBs3FxZro4GJ+AT6iEB+YyWTC3mTGYrVifrYSXom2mEIzmlqMhv39XUwKPHz0Md/+tsVaxYvnDSoWaCw6yTMSExglCKYxUqi4uAbdkYi4npwILrw5HYTfFn1HDC31uCBEjfdxs/BVJlGWUuCtVy0Kzagec8ZJLrIliVwpy9n5nPff/wmTccXzZwu+882PuLhoSEmMG5Pa7iXIWDYUKeLjpEToM7g1b9pCl3PMy/PNBk3h5SXzyx2Hz/7+Z22/4AUKmcBz5SdX/mubNCvlQ0Y70jZG8BIKsXnvEGb22aLmLyoiX5Yjv8wbeblFNJikaW1yUZAd+raO6pKEFK4c85XP2uLgGCNyxOl0ymg0YrEUYuxytcAWEjS4v7fHbHeHtu149OgJ8/lC8j80GyTj848/5YEOJtMJu3t7VFWNc83W4K55/uQJi/npRvVirBQ1MSqIW8VlhgdDusyBCFG+d0qJ4CTRVdouKis8AF3QhEhIFreOfPeTU8bWM35tIq0SY3B9BylglUUp8kAihmyFtTmkDwwpG8epTeVPipihQIxhswInJYlT1JeGRIMhWiQXZ1pL8CBgVW7/KNAVlLZmNq04OW84n3e0K0coYWdWoo04K8V8blwmog55GX3niSEKRJ3E/r4obT5vkRA9yiPScY1IEpWot3yItD6xbr1MeqHB6kRdmCw3BOdE6TTI9+GS8DrY1qckeTwDp8V7KZqEtyLvNdZsECwycTUiqctJWVwI+AQoKxC280jAoPATxlXJSdPhPDifcPHSs0cphQ4wnlgqq6V1l5VMKabNENz3PSFoisLSOydFaC6mhuJKwDudJcHiB+G9GPTp7P9itcTed73Hx7hB0oZnTc7J1jlTwucgSWigZDl5Dg93CcmzalqUtlSVoSotk0nNbK9kvG+4+9oRD67N+d43H2AHczZraNpAs3SoZFAYDAXXDm8L0hTl+/e+4ezkBd5F3n7nbX7rd/9Nfuuv/y3+H//o/84PvvMtrEno0tB1OpsVgvcdRmtskaiKETu7OyitaNs1xdE+RZHVHQpJpvYKkqfeHTOfL6jHE95443WIiU8//jTnPkmqblmOScnTrAIhRaxVEomgoes6QVltSVlX+HZJSLJEDCmBi4Q+UmWZ+WoxRxvFbGfMqNRMp5bd3SkxQdt6eu8wXWLdPEcrQ7PqsKoi9Cum0xHeR1bzDtdG8LAz3cH3HS8W55uoVGVhMq4YTytslcDKPXLtaIdCKYKDL7z7Fs4lTk8uIB2hlEfpHqN7QtFhcoGtsBsLhaJUhCit+qgUprgEjbUWpLPve0ZjTT3S9P1wr4PSEWWHlib40HKwv8Pz56eEkIiBjHbKs79uGu7ff4xmxU9/8gDXS8Bryu3nYcy9Ys+R1TwxBpIW3lfcmuuGZ36bU7nd5rncz+eh79vdjZ9v+4UuULZbPBu0IQ0oyitkwrldoHL7RW3eJ3t4VftmUCTI74ZPGpjM2yjL1XbOq7bPFCVb79XqUmr8im+6Ob4rF3r4DsNx5wltuGm0EqnnZDJhOp1wdl7gnKNrW5ZLRTWqOLp+jdfffIPFcslqvcZ5J4qXwe1zgAFzRsr2MQw3ao5mYdWsCSHRNo627YBAcJH5xSkx9BI8FiRTReX/VUZvCIqb4spIaRYDWCWENq0URXF5uyog+ETQMunZwuCC9LSPe837T5bcOxizX5cYlYhKEZMSRANACRoSQiQG+XyVhLBXDDyJ7JIqZE5F0kOuipBH/ZBvodg8mCq3VYxGgufyoC4TVkKrRKkURkkYXl0kCj1iOqp5drpmuXZcLDqKIiFgh0crQ0pQFYaUVA6qi6gU6WFTyIpDbMxIQEF0npSyOzDCk0GJudqwcl2tF0xGFTvTGYVWRBcoCrt1X8l7tTGbLKdhk3OW8H0vAXvI93N9Vn3py3tT2j5y5UIQ07ukRPIeUXS9AxTOCwHYFoZSib9JYRShdaBsfhLk+dMoRkViZ1xQFWaj+IGtgDlFNnyT9pDK7aWh714Ul3LjS0TIXynKNt8hDHENbIqyAV10A/9GbaGYKOEExW1HTYjRMdsZE1SUYzCa2XSEtZa6HjOaiGndrbtjfvCdxxhj2d2ZcuvGAQ+fnXNxtqBZeNw6cHL8mOMn/28efPqUf/AP/iGJgidPPuT3/+C/o+0u+G//2X/Jh48+5W/+7b/PG2/e5Uff+waFFQPHHnkehI6kSDiqouL6tcPc4lwz2Z2yt3fAJ/efbM6tMZqqsoxsycH+Pov1gpOTU4LrePO117h54wardk3n5NzrCD4onJNFoVFQFprpzoRVY7hYzKnKAqMMQVu0NkQSXfTUVcUvfflLHB7u8emDjzk+P6EowfWeZdtysSwZ74wZz6YYqwFL2zhc39A3nkcPntE2HUWlmezP0Mrifct63WBQrNaKtumpR5bZtGQ8HXOxmKNtx/7RDsv2HHRE24LAivFozLVr17h15zaECfsHjnUTqWrN+VlDUTpmpeLkWaJz0h7TGIwpKVKNoocCYtIQ4ybh2xgpaPCGvneMZjXKQO88IRpSJvZaIyZuvV+yP9tjVFuIkd7FnCYtCOBi0fL48TnR9SzmnpQMSgcIIlZQSRRdMuZmxU3+o7SWn780X/2sAmVAUa7yUuR9Wg8qMcWrMZbP336hCxTY5pBs/0x/9od5SxljuqrMefW+P1uw5Aln8/MBa/lZ73nFMQ8X+OoPr7Z/Nr2Cl48pbr7D5nXkXiUhO70OE6IMzKPRiNlsRlVVrNdruUmyamlnZ8ZkMqFp242/yZCJs52gHGOUrJStG3H4vonAulnz6NEjrC4ISeybd6ZjLuZnhL5HE/P971F5wtQZBrfZhn9Ttg2r8xjxMVHaUpCHlLK0N0tfFRATxiq0lswbpQwUNed9z8kq8PqBEWdNGIJviHlyEwWGtNVcL9yOmESBY6yR12lxn0q5EJG8GIfRhciOM8IibQ8pWIyW1aaE1ImiA5W9WfJ+CqVJWZ48KTVVqanqGRdLz4sXC5pVzyp43CRRVRVaBbSRZGQ5jATZ08P1ibKwlIXFaGkFWK1IhaEqLNqwsbtfrMVl11PQdg7nHUUxlfwYIirLr21h8O5y8BmQkystEa2zcZ9cvaIQG/yohQciE8bw3EhR1/VOCLO6IERFSIo+BNre0wdwXhQy2geik8DD/Z2ai76hz/4woj6RInBcKSoDo9LKOSIJOTsjp8aYDVpiM4dmGDyt1VwqzYYgxG31kbiopiTOuCHfryGKo+uwcJHgQL9hkV+2crVkxqiBpwLeBSgMXdfkIjBQjyv+yq9+lX655sXzhkfHDRDZn97FOwuF5b0vvs2/9e7f4z/+f/4X3H9wn4/e/4jFfIXvA7u7p+zvHRKcZ7Ve8Kd/8gckPJ1bE3XHR/e/h/pDz8nJWloOOqGSxVppbaKk9WiLMaPRiMIWrNdrIbLv7HF8eoG2lrfefpOffviI3jVUlWVSlzRty3K5ZjobU1U1H37wCdPZjIPD6yirUPaEs9Oei6ZHJc14POJwr6ayilEtGTOkkq4P9L3Du8Dp+Rm7+yPG0xqtFC+On3D7zhF7B1POVk9BR/bqEctzePHiAoCbt2+Blmywru/o2jWEgViaWK87nh2vWa0avJdiwBYjQjKMZhWmDDizZtGuKSpDNdKMJwVdKFmsFrjYsVqtmIwq/I0bfONbf87+7g06Z3l6/ISbt2+wdi/QQLdW+DSBjNZqZanthOCWKO0paoV3wmEigLaBogTfa0wspVXbO8oROC/8nZj5OqoMFIXGuzUHBxV3bh/w6PEJaS18O21LrKkxaoflhaJdd6Rk8xiWQMu1lkW2IiTwKWBeiozZfu6HMXl7jnv5ddvP0NakRlSIuABRyr4CXPmZ2y90gbLd1/rsN5c1uvw+bXrhAxfl6gn/+Vo2ny1WrrZxhte93MbZ/tnLKMj2az/rg/LZAijGgUCV04i3v8Swv0GDrtOmzTOZiL/JYrGAnJlSFJbRuMZoRdf1OCfW00qLl8hAKh7O36uq5uE4B3+MLjopPtCkVLFaLUkxbFoqRutMTpRJW+fVdcwqmpjiwEfN30cq/JCkLeOcwxqFRlo3ymohi0UvCECMhKhYtIFlH3AxEnXafF+FkFiHhxSVY/20TFqDIdJAJh1IzSlljowV+ajOPVoQdEF2lQ3fVI4PyB4rOgfdbSS7MfumRPl+VkFhhX8zLivGVnFy2vDo6RknJ2smu4HJqMR0YlKllKLM1vBR8uYBabcYlX8+JOoaWXmZQtCHpu1xfaAPPdpaRqM6W9hLURmCFHneS85PjJKM7L3fTN7Cu2Fjytb3TtKyhwC+fC+GmI3JMkLRux7nhWwbEYVOH6DpAuvW0XqdkR1NUYB2GnxgVJQcTEsa1+CUwiuNTZHSKHantSAswTGoapJSBC9KNzWkSudioiyLzbka+DPDv4diRe47QXzKosxDhyiYxEEXovckJBgweD8MEjnP6ZJLBtLWE9ArkaJmuVxzMZ9jS8vu/pTf+q1f5c233+LDH7zPcrHgeDmnrgvOnj0kBEknL2vLX/21r/L9H3/M8elznj95ges10VVYpenbxHKx5Ps/+jovjh+CVkTAlCPGO2NWzTkxJZH/+4i2UBlJKbbZvLEwNWUxpus9bd9ircJHz4uzcxarjot5S1FooKCqKpRRXFzMISWuH+1DhOXFgsePn/L06TFvvfM6t28eYPQ5Z2dnFNZQlxU74wkpdhgVSMazvz/l+KRFKUsMsqDQJnLt+owYNZ8+fkCfPKtuTjINd+9eY3+2zw+//TFoxXhaU1WWnb19Tk/PWczPuXnzCJU0Tx4dczFf0bVOFgRWU1cl4/Eu0/EOMTmW62OUcRgrLQptI6NpwXx5Sgga7wzeR1Ql4/5qveZscc7T58ecnTouFgtW3Ql1ZVnOWyblETGOGVrxSgVGoxJtxvTBs7e7x8nxOeu23/D8isLQt46QBOkNXtqCxgiBuW896JSNIsXpd7V+wZtv3yQmz6NHx7SNxuoJhZ5i0i59L4nSikhSvVT1asv7JMHLRYb8O9tpppSfn1dbd7zqz8s2H4MDLXm82/zHz7n9Qhco2yvun7V93unYTL6ylLksKNhu13y2kJD/3j6CVxcmV45h6/ev2vTAdyDTG15KfMzo8WcIScOxpZesiMlwulJstXmmnJ+fCR8DyeIYjUYoPZinZWmueIBvPjOBxNpvVox6wJIuP4fsExKDBOUZQ0ievuswefIeCplhMgiDB8Lmu8tdLPJOqe4HHxVgE5amcx884tEobFFhjaVQ5IlYHCSbvmPdNYxSXmEbLTwKazBaURhN7zw+Oumxx8GAbVDPiLsiKsvVtdoE8UkxIxApKRsb5YJLem0x18cq28xfdWhUpE1hHFUiBYdNCaM05dSwO9plb3fE4+NzzpYN65QoJ7W005ScC20ErbFGjJRCSHjE76QoilwYDLwY6XuX1RjnWwyR8XgkwkKjCSkQvRNn2qLYpBO7XJhoY+j6jhQT9ahGKSGiSnikWLcLkVRQPKU1Ptvhk6QgcDGRlMYn6HwQVU6ItC7QukgfwKd8TYLYvosHSsvBeMRi7ehyYZBIjK2iUIIoldaScgYO2sg51sOzIBOPtVJgDfd5jDJY6+EaqcsICtc7FEo8WYJcqKbtZMmgVba1F3+fEMSCv+97aU/kYlRcUcGomBG7PD8EaRdppfjyl9/li196F+UibdfR9I7ZZJ9f+sp7PPjoCe93jzA7Iz74+Mf8V//tf8rrb93j5s0jPvpgTmVrOl/SriPf/Pq3+A/0/42L5UOSbXE4JntjlI3sHxxxfn6BjhVGKULUGKuIsWc2mRB8ZL1qKa2mqmrOL16A6jm4dogu4WLV8PH9x6yWkgxcV5I2HJwEZO7ORkwqy4vjc4yF6axmMW94+OAhr79xi9s39ljO58wvelL0NE2HVj0h9JSVZW93h9Uy4ryC6KnKgv29HZrUkVTFuut4fn7Culty994+e3s74D3jUYGdlsx2K2wBo7oUI0IFu3sTJuMJ3/3uT0k6UI8Lykpj7Jiy2mE63UNrTdetSHoXXQRMCT40BL/EB0ddV/R9YlTPiKs1s/GYO3dusr83ZTwqSKlnuT7m+MUS71tuXD/AxDH1bMa6t4BHmw5tW/rmnL/yq++C7rl+7SZ/+Id/gn/RCIVAFcQoxVNwDmstfR8oOlG+FYWGkSYER/CRrgNSQVEaxuOSt9++y/x8SWV2qOxNCl3heiv3r+pRqheKY4CBliDls4hBBl5bjFl9xuD3nTLWncd6PtvueXmxfZWPksf0YQ7JC+6/CAzY3n6hCxS2J3SGdkPa/HKDemzB0MClxXUaTtnL2wCBXWYH/HzSqu220auLlOHv4c+gitBG50Ft6NFtH9tAuru8EQbHla269kpHSG4SaS9coigTqqoiOEeKibIsGY1GxBhp23YL/pYPvlTaXPK9h6JFkY/dCBFMWjIeFSCodJn7E4NM6oh/SNrqXxqtczGUcvvAU2YZr3NB0A49rMrFYEllS3NtZALUPtC0rRhllRXtumVUldnVckCkpN2gonibpJjQtpD0XbU5YaK4UCZbgotSIyIBdAkBWaLanswEpUtRYFOVhNhpjKY0lsiwGiFPjkkIbaKxRDxFhBcVU8ytLg1WUaWItZqqPqB6NufkbC6HteE9iftojD0Q6bsOay1lNSZGsZyvamnpLVcrqvGIgKZpJOfHaiWrsSTFaXDCDVBG40KgKkoiHmPNxtMk5eKt7zvK7AyrtQTGDbk+g2ReUIZcTCuFj1HuIq0IKeGjeJu0ztH0ARdh1Tq6XuGjousCPihSslTGYJJnb2xY9AHvI4WGsVWoFLBaDPXEx6QgxERZiYx+KKWVvgoxp9wqs1ryaAZX3YELZrVl3TYUZUUMkfmyJUTFZDrKJN78LGw959YWgq7poRhN0kbU+fprjbEFqushaUL0JDy2MDRNR9M0LNYrbF/SrByT6RRbaJIOnM9P+fNv/yG9szx5Oiclxe2710ix5P79h/ig+af/9L9iZ6/inV+6x+7BjM639L6h6yPzs4Z+saTvPeNqhPMdSmtms13Oz+eMRmNmswnlSJMWgZiiGAlWhtRbLlYdhCTxEqMJShuWq5aiKLh+dEBdWKxJoD2TcU1ZTWnXjk8++JTXXr/DF995jY8/eUTTRMY7U1zfEFzEFiOcD4TkqaqKQo8pC8PB3j4n6zmPnp2gLBADlbIkn3j86XPqouD23RvUo4rDwxmjUUVdW0jSqt3b3wHgvS+9xtH1FWdnp1RFyXh8m7YtCUGhlGMyqSgrKfp735OUpnUN84XHaMWN6zdZzB3Hz8/pu8j8/FNGI4vWkeA0F+eBvu9Qque9t9/l5NmC1XKJ6xykiCnW3Lox4eHXf8STZ5bf++u/hrWWX/31L/P975f89P37gMs5VpoySUvZ9dCsFUUhXiLWBlHraJEaN+uCFBUXZ3PqesJr995ifjLDtTsE5/LItU1FyG3HJCGSctdmXlgSjtuAnmgVSVu8LJldPt8V9kq7fxtJeUXLJw+1P/f2i12gkNfuw6w5/GQwQdNbVtYpDiPKFXRieO/2YLNdtHym/bP1yytoxSald/tYPtu72/7cQVqszaUXylWi7JUjuaLQ2dSneUAV1WzY9MA3RNkshS3LkvF4TDWq6bsGbRTjUc1oNKZp22xTH7eOb6s1tn2+lchxC2svYXG0qEGyjbbSknwbe4HdxR9kCGPbanflb6ez5bdIkoWrEEMkxKutNa3ZoAYKjbEVOjoSktnS+UhVlATfUxSwO52IqZq5LCgGO3OVpCgYuBVGfO7FJC6xkT0X2uTiS1oTBmk1CclaZVWC3XwvY+W6pphQUYojlScqKVKkHWGSFI5JKRKGmPkNKRsbacT502iNuTZmOrIs172gHLVFGSWBdygKW1COLTEkvPfUZcF4VGcbPxlamt7TuUBKhqKssSoXjynSdR2VtdjSZu6MtNK8F8KstRbvPSiVw/akpTEoV5AaU85tHti887lFKOcpJvFlSdlWv3dBEJMghNbeQ99Huj7R9aJKiMkSkyK5QCAwLgpGhaGLgdIaxrXBWrmTgg+blosPQ0ZQvpdyG0epAu/D5sE2+tLhVhARQeyKoiCQU3oTG1fZspDgS2PlfhXF3bDQMPm8ZI5aDgOMMafNBvHEGeTzxmjGk5r9/R3WzYKu6cXjZdmj2sSzp+e4tkclI2imVnTO8fDBMe26wCrN2dkTdnb3M38BClvx4ukFo90Zk9kBro80rWe+eIzvYHnWoFC40HN+sWKyM+LZ8zP6rmc2G7OzN8L5NfuHM/b2dpnORkx3J7x///v4GIXuqaEsC1arhq73HO2NODzcpa6MhCs2oC1MqoK6Kjl7seT+p0947XXFe+++wcMnz2j6xHzVyip97VitT0lJzl8IgdVKMqGWa0cfcvFSyucXKWGT4frRDXYP9jg42hc0tLTs7U25dfsaSTV411DWJa+9dY2DG2OaZof5acf8okHZiEoF69Wavr8gpjWz3Slg6JqI0VOCazk98XTrU07O5ngXcD30rWF+1mYeT6J3YK2QpF8cP6Ntek5ePOfw4BrOJ8zIs1cdce3mjI/uf8Ld+1OuX79GURUcnyxZLiPaOKwNlIVmb2/Kum1wvaFrRJxQVYrCiqpGGU0KgdXSc3qyZDqqSLHnxrXb9AtNWNcy7uMBiS0QZb84LisSetArpcuF+MsCiBRjzvzKlvdcLUqGf8d8Pw8FzpUihcvFuqA5stRN6eXC5fO3X+gCJZs1k5KGqLLTpxQgemjUbBAJUJsTc5VVn09ffll2o1WXniWDmax6VXEiO8gnXeXPvex5vwpJ+UyrJ+X1ujKwyRpNG2haaXMJuG1CnjKfYWgrETcThQyMEFNAJ5k0yqpgPB4xHdf0jXAmRmNJG3ZuJaqbQdqcYfPBRXRo42gthU5VldhCCqkQZEUb1FBMGFACfWtARTmfISVi7usPhmbSlmBTJFgjMKa0lxJFURKSqIQKowm+hxBJWPo82Y1KiyViUmJaFRir8OuGg0nB0cgwoqfU4loRg/BblDHilqhlstUq2z6TxIbcXbqgaq1xrpeVdT6WFD1KZzKlAvL3suaSIJunpWymNLwuFx4JBn7U0NrbYGYaUhqKk4RVkXLHsje1nM8Vi2VDIqKVIaJp2paqLBjXFZpA08nv61paL/W4xumCJ8cXxKSYjqwkKytZRa3bDu8Vk6qEeKng6X1g3fVMjaU0GmsulT0pCd9YirdAGAY4EoQASMJqSAkTIxEl7acInkTTe9oe2hBZtZ5VF1h1icYpfJICzVpFhaLxQhRMGlGlKU+VFKNCXF3FpEq4KwoJElQ6QRRDMmM0PmVJewAzDMiJzYLAuf5KoOCw6tRaCrIQI1UpHitEj0qyCAqul/OVbcqV1RIzMMByURCaoBMuFKA0pQrMZiW7R7f47b/+Oxxcq1gtLwitou0ibRMIOvDg4eMc16BQMbG7d0SI1/j0p9/DpEBpSsnmUZ69wwnnzxv29qY07ZKP339Iu274whdusbtT8eDRMa5LolYpanwfiIjZWtFHpuOKcT1CWc2zpy/wLnAxXzHbnXLkDxhXFeOyoGsDtqqo6ylnL+aMtOb29X32dmccH89ZNhEXCharnlENSllMZdDJ8vjxM+bzBbfv3uX4eM6zthMzQ6NxGOpqTLMOrFaeYpr4yf3HLJs1RZGoa43BUtmK/Z1dbt48YP9wj52dQ/b2rzFfXPD86QP2dnd55+23Obq+S9QNZxdnnM7PWC0bYtTYuiTMl5ycHlPoGeNqF9IOz48vODl/Ql2PAEM9tqRoWXUr2i4Qo0GpgpSCtAfR6OzsHWMiarmvHzx9zLX9fUyVmOyUGKvpWKNM4PZrh/RhycPHZxwfe378o4c8eTwnhOynEwPeBfp+uXGgFdRS4brcEkYxnoyZ7Yzo+xeEaBmP91g3S16/t8PibE27cHLPaFHtDAt4oyyBnuzsIAsHJUGnV4oLAoMrgBkW9nIry3x0pUCJV4oNQU0u17RXZr6UhjbHxnbh59l+oQuUTfW35YJ3yWe45JJsCBV/CWhpeHHKk/NlcbLd/rlKflVqOID8+T+jLXQV9RkAmEu0IHGJHlzp5WUYTqLaubKPQfJKXjkPq1tpMWjqumQ6m9C3Y3wMlFVFjIl1TiHebhwptfXddWai1zWj0UiIhiptWkJKZxtzpYlKoVTMtvKSUeP6IAQ1bfJKV0irMSDOnsjN3QePBO5l+RtBCLSIvbpOQ3tFY40SvosfHFMDbd+ge9gxkbuHYw5GikkhZNpNYyRJm0UpQSDKwm6uqR5Ir0qjs/vrUDzpLMccHkiR8sp5ukSr9ObfKmWlTS7cYpTAuZTSBmGJMbd1FCijrjz8irQJKCyMuKpaM2I6qli1gd4HnOvpekfb9WKR3fd0bS/tLx/RqhfvE5Xou5aqHlMXhuhabGEJCZS2lFWJKUpUdFJgaiUOuTlZVhmFtproIy7b/5vMMUkxSFvIe5JPFLZAG0VMmhhDbmMEUCIDdyngo6LtPY2D1kVaF2l6T0DM1LRNBBcJSQob55MUHUZahZYklvwpbkjJw7kfkJOEJMB6n9OTjSUpCYqMIeCc2xCgS1tk4nnCx4Drevquo66lnWO0piwLfJDVIhmhLctic71CLsxkGZFdomGD0iktLc6yKPmH/5v/Ne995avcfv0e3/3Bv+TR4494cv6Etmklcyconj8/ZzYaQxRU0OiaxWJN3wY0AV0WKGuEDE2Fj+AC3Ln5Gk+Pn/Li2QsO90bcfu02rn1Btxb7ADuZ0AWfxxlpzY1HBbu7O6yWLYtlRwo9d+7cwhSKzomQfTqZomipyhG9C6TomUxqxuMJ5/M1T5+fsW4KvJ+gtMPNPd6v8mIkoZLm9GLFqvuY1+69zp0713l2fExRGWxVoZOStpOBoBOPnj3h1q193n77HY4O9umajm7dsbs749qN60xnOyhtGI2nWF3x+OED+s5zeHCNop5wNn9E0z2nWXc8e3qKtSNCaDg56Tg9XZLCnBs3ErPpPvvhOsenz2jbjvG4xPViibC7OyElTd9J3X1pYkku0iUkT4lNM4uVoyyXvPvmO7jegYLJpEIrqCrD0eEh8wvHB8/uc/JiTQwGoy2kuLkXo89C3CRoXMjRAAO/T+sRxnjaPvLkyRqrFjx8dJ9bN++wd63g9HSFX5gMpovRpZDzh/lpixuS64+orkqFBQXNTrbxcoL5LNfkaoEi/72ZNDd/Xy7I/xVT8cRhkiZt/qSBL5EvxqZG2JyYSx4IXD3pn/FA2Sp6NkXJwPzYeu02p0TeJx84TFqfh6IMTaFXb5cwmYpxYwYWU+7rDwZnW0XS5vspLguUDDfLIGuYTUe4bkrX90KS1Ir1ek3f95tzpNSAP0lbzFhDXY+YTWcUZSmukNmJM0Yj3itG4Eg9FGoobFFKt3Noqylyi+CytTJcsxguq3VQJKVRBAorR+I6L6vRKNfdFBoVnHAnCosqJIW48I5b10u+cH3C9allrKXgEc8V8fLo2xZrKhkUSkuKZFMuCXFLuXDYLhiGllaM/rII2bquQ2tuY5U+mH8pvXngh6tUFAXB5xRYJajRNkFTnvHcolAqu3qKysckR11VrBrH8dmZeJr4wOnFkqoeEXUBpsQnReh6lNZU1vDG3ZtYYymNIrYtHlitW7o+UBYVnY+U1uCVRmePlBB6eh8oq5LQO1rXQ0yMxyXojGzEkNVfGqUMRmn6XlpAPgouhRb/ltZH0AYXAk3n6IKmd+C8tHpCDukLSdCxPiRC0mhdEGOPiy2jyqBsyaguCNFlcqHJYY4pn3sxoxvUObawNK0Y8YXgscZuFGvbUsoQhPcUgs/XVyS5IUh7K6aUSdoK7/tLLpvKSrQ4DNzSQiTfE9YoYk7PjSnx67/2Nb74y1/DEbh3Z8H52Zz16mMSsL+/w4uzhr5NrHxGNRXMZhOUKanqihh6khYC4+JsQVkndKU5mS95e2fK7/61X+fr3/4G77//gMUiEmNBs1gI/2CYWAgYnZiMR0ynNfOLMxbrFmstb37hDl/96rt86zvfY3d8jf39mkcPzqiqEd3ac9qcUtrIdGcX5xX3Hz5BzAungkTGHtetWSyWGJPY3dtlNpuhjOHpkye0H37Ivdfv8dr0FvPlnL7PmUzKU08qTKnp+8D1w2u8/fqbzGa1oN8JljlTZjweU5Q1Ccv+3pj33v1SduPVWFVxerYm5Lbh2VnDZFShtOXFswvWK09KgafPnqBuGWY7U0JouVg8J8UWY+Ho6Ih6VLJaOU76ZnNfpaQJMW6UW6pQGS+VOIaz84Ynz1+wvzfh/OyUsimoqzEpWk5erDl+sWSx6Ak+ZfmtpMxL9EPC5MBTYy0xSZEtrS+JJVivGuGGFQZrRzx49Iznz5b803/+B7z99hsEU1BN9+h9QoW49UwAxA2VQX5+SSd4mT+ymaNemie3/71doAzvG8bnbRHH5fsYavife/uFLlA23zTlAmUgkcKGDsL2CX4Jbfi8FszP/ekvFTdD60VtFTCfaedsbxnuuUrk3dr/FZAlbf6SAeYqwVdqorT5eUqDNj0IyTN6UnSZcGWIWSoYU6Jt27zSzHtM+dhQV3xUxuPxFZRgO+BQaXK1LlV3TAldlChbgOuvnLOXq/UwKGOUSJCjEjhfKbEojz7mBNjhvCH9+RixRuPzCq1KcK3W/Nrbh7y2p6mNFDUaWUUkH4Som+XD1hgJzsvf23tRoEQvvilaD7bl27yebSRLvsPG4l1d/Z3AmlqkflnxM7iPJr01UKThPpGCcLimOreGtM6urEZBZeh9wEwKjNnjYtmwanuarifpghAiy8ahgVIHikLQs0kpqFOhFaao8WhcSLh+jfeOpoVU2axK8YQQ6X2giom2d9n7w6IMoAQxcX2X0TmL85BiwiZNQuNjlBC43M7z2UyKwtD5hIuaLihp93hwUbCHmCLOB3yUtmZMUviSV65FqXEu4UPOUrIipYxccmKUUhS2xOUiQvJ8pGUY8yp4441izMbccEBimqaRIsf7zJ0RmbseZNRaYHG5HwZZupZ8Hi/X2hpJUTamJCYPyYMyhBj46fsf8O6Xv4a2JUdHd9nf/YSTY1HXvfH6m6z6JyyX4r9CjBRG5ODVeMTOwZiT5w10jqQTPkDyjkCg7wNtd854eouvfe3X+LM/+RaP7j9nNtsjdJG6LHnnnXc4P5/z/kcfsTsb8dq9m7TrFRen5+wcHlDEyBtv32Znr+ILX3iH64fv8f3vvS+oY4pCbLWKndmI2e6E0/Mlz4+XKAPVqIBkICrWbZ85ZOIWu1g1tH2ga3sKm+jDp9y9d5Nrh9d4+vQZXRvFxyMlzk7nxNTxL7/+HZ48fcybb91kd6dif2+X2XSP/cMpqIBWlhgLYnTMZjuE2IH2dF3Per3g/GLOixcLLs4bCr1L2zas131OtxZX3kePnzKbjNnfG+N8hbWRvf0xb711k5gCjx6fSV5XdvoWnlcghJxynmRMSFHEAt5FHj56hnNTvvTlN7l9+xrzsyVnJ4GHn6zAjyhNgbKOqEJupUvMwWg0ATRFWTKd7lLXNev1kufPn+ViO881ufXovaL3gbqe8vjROW3zMcZorh/dZTK7wcXJIJ/PzuSbySQv5jfTZ9o8A8MC63Jx/tmF/OWcdjUscECnxYjxs9Lk7Xnt591+oQsUaXMM7IGhhybKm02LZnjxlYvzlyxKEnm/l+bzUvtcXrxLaJ6szPjZ27aiZ/j789AW+YyrVe6AHF2iZ3KTbcvBNqulCIPzKMmL2iaTRtuuZbVa5XbNVjtCicSyrmtmsxmz2YyyLIkx4pzbDPCDCdrmqHOR2HeOyhSMZzMu2vUGYRr2/bKpj8oFESqTq3LacN9H0gZdEQKuylQvpcDWJTEEUteyP0r86hs7fPlmzUEVRDlkLSqmbOke8LkogoE4llfPcWC9XxYOA4ox+HgMk9+21fvL98Cr5OQy0ZAnWpnUYgpopNgb+sQpXrYJtYIUPBiTZc1yzkpJCUAHjx0VFNYw6QNrlzg5m3OxXNP1JSHU7IwsKPFz6ftGjtsYdGEotWJvXFIaxXLd4UKPDyojMi63oMCHyLppKctSMlQyyTWEBEr8U4qiwgWHD4HeC/cjEdHGEJKm6RwRjUfTdY5152l9ovPgksmFjMWHHG2gcvZRVGInPNzTMUnqdXYjttbig9v0vdtWEACMptDC6fIu5kJaia16CIzq0eYaOuew2WBuo6hTiqIoSCj6vmcgtMf8XEuAoEFrKXRjTJt2z+BSnaIkhCtlhTyuJXdIW8Of/cs/5Wt/7W9y/eYdDvYO+dIXf4XrR/8jjz66T11X3L5zyP37j8Anklc455mfLShnJQfXZoLwtBHXBaJWYC3joiR0S87nC376wYfcunOT9774Dn/+Z9/l7PQUqwzJRubzc07PL4ghUhYWqy3nJ3OIirowFKbg4vyEnd2atnV0TeTs5AKrLb4LWKWoCsNsNsGHxKPHz1m3HnRkvnqGNZK8HV1HWRimU/FLmS/P6ByEpElesVx5Pv7kMeO6wpqK+bzD9Zre92irUbpgSeDTJ6e0qePLX75HGYx87+eJdm24cU0JCmw0xJK+7Tk+eczjZ/d59OwxJycrnj9d0LfQd4n5eSsJzlqRlHDjBAmbcnGxpLAjjg4mvP7GETdv7HCxOKcuc0J4SngnXKYYVR4rJcYierkWRhtShFXvOT1bc/vOHb7wznVWiyUnzyMff3RC11SysKIjFZLBpFLi4NoR664ReXGhca5hvZ6zWC6JyYsLdxRjvRRbyqLm5GSBtZHp5ICT456Lc7C2Az7l3TePUDqiM6dRYls0Kit4oqyKLseuGIlbY9nL89NmHLvy90CQvRzvRKUYNy3TK2PhEBvzl4BQfqELFGB7Zrw6ub800b+MLL18sjeIir6q01Y/g7vyeRfyLzzk4T2bz7+UHF9C/Jk2k9s1Wj5ws2qLLzOhlc5wsB6Ama3jzATGzKGIIWCKikSiaRrWbZMdT8mTpLy5LApmsym7uzvUdQ1ACINtuXxOUUypqprFYr7p60cvxNl127K3v08zP6dfO+nX5gJjG8HaDOp5ZdsHMbtKSOFgs4eIzqZbCoX3yOCMxsaOd6/X/OZbu3zpuuKwFhMqnQKFNSQfaXOOTMqeJUMLZ7geRhtysCpsKapSugzEG6B8Y4aJ6bI9MAToKSX+IdISAnJ+kjHFlWts1GWy9cBTAXG41ZntrEz23I1h08CEhNVZzqwVs0qQkbIAq2akBKfnS4J31NUBJeIrYsi8Hi03VWmgmlbMxvKnD9B6z2K5woeAQjwxyF4eznlBSMrBQVURA3jniVHg7ZSg63qiNTgfKMoKH2I2/vLooqQPsO68BP8lS+sSrYt0PrJ2MkjGkPC9RytLUajMGSpAGdounwUt+USktLGuN9YI0hYDMbu7FtZetjthYybnvZciZGulJz4QgdFolE2HL3+OTplgLQRZmwnWMT83Q9u1KIqNPb7W4i+jVT4/WjHZmfLk2SO+860/4W/9nf8F2tTcvHGPmzfvcnh4xF//vb/D2fqCDz/8iCefPuHhhx8ym814660vcuu1Oxwd3eWDH7/P0/sPOTg64s7rX2Y8m/HjH32LD3/8EU+fvcC+mFONKhIwnlmW5z3eRUKwPHn6lIvFSopLZXj6+Cld2zGbFkxrOJ6v+ej9M8aTHZ49O2f+4oecPH+CTonkvSjjjPi+FMUIbQokGkCJl05oMEpjVeLwcJ/RyFLWBW3f4uYrWT2nkqZx4vC6aHEuZblxpoL6iLGKUlWELuK6iFYlZTnF+5I//fOf8v1vf8B4NOatt9/gzbfeI0VN265w6Yyz5WPOLi44PQlcnHuiL3C9YbUYkqoDWsuYqI2iqiom9SHrxYrlReD8bMnh9YLptGIyKbHFCq3zvRAyokcuUqIhOblHo5LCOSVNt04QDKN6RmUrjg5GHB83/PEf/BjXReqqEAt9najLCavVknW/IoTIqllsJvqisBzsT/E5aNH5nqq0GFXw7PGCyVSDX0NQeK823LayFF6e0hZFti9IG+trMu0Vjc4BrhGvpDWptsY1dXUi2UwsKiO+LyMol38CgzT58vdceRZ/nu0XukAR0/OB2PnZdsrncz+uoihXL0b6nJ+/evu8kz1cqE3R8apj23BXLv97u7K4CrNdchOGOHsS2UdEjluKm7R5/ZCnE4h0XUuXWzkxRUZViTGGpm3o+n6zEiSlnM2hqeuK2WzKdDrd2ISDI8ZLw6uyrKgqcN5xMZ/j+h7npIjq+sR0XDOZTfHtEgZmSxr6onojuxRDrpi/73AjI+F+WgkpNgS0kl60ybbmul/z2q7mt97e5Su3Sg7KQKETRVkR+kZUPynhg5AdjRFUYbBtF2M2WSFpJRyUofWkt4qp4fUCtV69dzZ93twe06icWzP8HIgxFx9DB03QEptN72SSY3NsMUnS6hCcN4QQpigroLIwgoRhKLKD6rQ0HO3voG1J2yxpWkdpNCpFRlbTdQ0xWFQqSaGhLCyFLRmXhrEu6JLcZW3nWC5XhKBRqiaERN91FKVwipp1Swq5vRYCaAn5E7l4IkSRXYbk8ChQhqjEeK31ic5FOp/oYyApkUwTNSiP8+IqXNiCqHNeCZCUoXcKn8gKBUGZBo8aaw0qanGp7eOmSJAHCewG6pafSXtPZPkDkTbGgCJRlmPWTYtzjr53IivO7scqKUGIXiJLy/0s+xrubUzONAkRa0pSEnO8an+fP/qj/4nf/mt/g+mu2K3HBPtH+/z6r/8es/0jmqbnf/xn/4z/7NE/oqoKfvkrv8K7X/6r1OU3+eE3f8z+0TX+D//n/yu37rzH+flTVssXuK7nxckZrossFw2mgJ29Ce0q0PWS6n2xWND3gXFV0TaeQiWODncZVS2lXXL9YMTHj5d89P4joOD+kx/Qt57CaJJNXDuccnR0wMWqpWkiKIPK9gAqiveHTqIodM5TlhZrKsajGetG2jg+G4YlFTFlgQuOPudGWWtIsQcfKIqaW3v7HO5MsH7M+rTgu9/5CT/+8cekoLh54zX29u6xWmixyQ8RFwOLhePstOX8zNO1jvFognfivipZVSKlV9pQ2JIUFFaNmE5HtM05j+6/YGff8aWvfoHz8zWj8Zyi1OhWgxOWoyysFCnqzO2J8hRmpLddB773nZ/yxffepqpnWKv5jd/4JS5OGr777Y9xLmDKAm0iq/USF72M2Rm5lXaOZ7oz4tr1GfVoH61hvWxZLBouzlqCs3QtHPdz+uwyXU/gnbfe5Ohoxosnz+laP5AOtuaWwQNsoAOkzXM2oMvbnMorKMrAv5Oj/UwbZ9Mu2u4q5HlNnHVhe479i7Zf6AJlmx28gZpe+u7bJ3rrp1d+f+XvV+3/50BHLo9lMFv7bNH0eQWPUoMw+fLfn/s5299zCz0azsGV10ZyGJ5jvW5Yty3OeyLiBmqspe07+q7NRc+gDFIU1jKdSnFSVdWmdhpgPZUH9tVqtUkY1lrjgqfvZUU1ZJTs7u3SXpzmwVtmYrkuOntxkAuj3OYg26inKASxCFqXm4cies/IwszC60cjvvbuPu8eKm6ModJGEnWtIvbktFbxyTCVoSgsA7nLWE3XtChrIQ1F0nZ2ihQ1220p+Z7if+Fcn3vRmWfCgO9cvb+stRtJYoqJLAfa8EuGV+vsOTA84PIb8ekgSqjhxvdHbi4Sgo5UVibsUkd2pzU6Obz3dJ1BRxgXlqqspAWiDT4FQtdTJTC2wIWWFKAuLVVRYBT0Wc0SoqQPRzQ+SPuuLEuSKSAqfISIIUW1MWhTuqD3gaStcJGiwnWephP/k5jBZpeJdS7fGyFmLpDO5n8KmcCjGLgZK47BWicqK/41TdNyGb+1tULLhW6RlTspCRI5kGFjjLK/oqDrXZaQpo0nkDaGyUSQr7brcnyEFKEDEhdzVTk4EA/XL3gvCgijKazJbWLFYrHGzvb46U9+wvs//SG//Ff3IGnapkNry2i8S1XtU5aKejTbOAZbPULHigcfP0Ar+J2/8W9w+95XGNc79M2CyXhK0uJe3LWeZuXRZWLV9KybjnG9S1FWLJolCUm8bdY9sTRMZzWHe4l6tMbFCqsipycXBK/omo7KlOxMxlSHO2JJ0NV0bWK+mpOUQWkIPgCBsrSyEFCKrvesVxdCCk0KqyuUikQaCUasRgTv0RaiC7lgF4+lcWW4c32ft956k3oyoWLKt//lD/nwo48pSrjzxj3u3L3H2fmCpj2mb1t8aKkn4nx7ftaymLf4ELBG4foGpT1GRUpr0cqyt3fEdLILsSBGS0qB8XiXplmhtWZ3d8rNW0c8enLOYtHTtUlMLof2zgaMEERR0G5BVpyH73zrAw6P/pDf/Ru/we5sF2s001lFSi1VOSaiWC3PScplfpNB6URhLTF5lDHszKbcvHmNW7eusb+/z6OHL/jjP/o2Z6cinQ5B1I0KqEeJN9444vr1XebLZ+wfVjSrsJmTlMrL+bQ1QqUtMmu6JMhuCz9e2c4mL5lfauPE7HeVtn43UC+GGexfuQIlbX/noWpD/czC4nO5HnyWoRKHivFz+SHbSEfi88IKtzkKn9mXulRxvIyiXEF28k00MKWvFFSv+LwYEr3ztF1P710mL0FZScumzUXLMGnL97RUldjjj0ZjmWCTwJcxasDmh1TRNI2sUAsjclVjMCbivRAjl+sVN3YnjOqS9ToSsgEaGcmKWze3GHoJKVCp3LUC6fX7kF1vAiVwZ7/m19/c4+6e4fV9y2EdqIy0PoiK6BIxBAI6S6prikKIj4N5m9GaXkHwTgjDcTjfw2pAjms7JE8pnWXNbHxUYpBj3r4SG9Ir2XwvT54xZhl1IgcfXm7SEhCp6zBQaCPqHVFtZaM5nREWY9HkUMXe47z4wdSmwJWW1WrFOkWqYiwtELQEAHJpKGciqCDIQfQOowzKWA53prRtz6p39F0vvJMkELcpK5S1rJpuQ2IdJhdjSolNCEFgfx1wKdH20sZJymSkUO75EAMhxZy0rEUGLAxiYoSmcyyWHmtLVFFRjQpqo3BdJ4Z55MI5xs2zO6wCU26XOuc251lpae8Nz4tSalMQorWEK2pNZQuxtk+XBNrRZIJCYhb6vgfE7E2eD7luKYmSJCEGbykMvCaHsRVHRzco6gnJJ/7FP/8n3HvjbSaTg5wxVUmLNsNskZ5Elwt5+Pof/yHPnzzgf/e//z/x1nu/hrU7BN/x4vQpL06eoI1nb++As+cXzM8bRjtj1mtwXhMKxdnFgrb3lFahVJBgTKWIsePwsOb6tRHV6IC1N7z/6RldJ4uWnemEuzePuHZtD+8DT58v6LqGFDVGi3ldjGIKlkiUVYnrelZNi+slZwklBoVlbSiKxO7ulMV8JR5DJskkHxIxeIoi8c6bdzg6HHP77i0eP17y9a9/E117fvv3foXp7pjnz8748OMfsF41uOjpW0Fr6nVF1weaFXgn7WFrLM57xpMSSOzv7lGXe1g1hWRQWgwB5cQr9vducOfOPsYqRuOC3b0xFxct61UQD5mBP6fYzDcMnlwECclMiaYJ/NnXv8PF+oRfeu9X+Pin93nw6VPu3bvOs6dzmnVOKjZhk0SOyipFW1DpkrZ1nJ4sOT9d0LYtT54cc/xiTcKCErKutKoSo4nljTdvcHz6DKPg+vUvcPpiQds4UhrGeHlgpE21XThsf5erc8ir/j2Mc9sFSkpJJMtcFjGv2v6VafEAMrHDlRM9DFoqbYMMeVLcXJzP3d1LBcfnb6860ZcFxlXk5pVIyvC7obuzve+t7/LyZ26jNS+//uXXhih+Gc51mV0tg2pd1SQS67YRZCPfuIqhvVNT1zVFYTOMLfsUcqyscvvesV6vIcJkNhZH07Ikekg5IXXwGrl2MOVp37L2Ynk+oBFDmyuGLYVLEJi4sGxMwIy2qOipVOJwV/Pu7Sm/dLvmoPTs1zAqDDEFjImo6PFrMcxyKSB2/7LqCVEe1IqC4ISH0HXd5pqllL1XkqLUxZXrtq1a2v6Zd6KiGGSnxhjEyF2ujBBhL9+3mfT0oP4Z+A4C7263kTYcJRAFUrwsZPWAxBiNNgkdwWghuUp6dKSuKgoruRwSIeCkcEgaUS8H4ZZYIwqqFDA2oY2k1dqqQplmcx6WqxXWFhhT0DYtRVVJYeU92op6JnQ9XR+yXbamC4HOedadz+GAni4kXDaki0Faoeu2p/cSlpZUIjfx6Bx4IMYW5RtsYWTFXY0yJ0RvVAiokJVhuR1nLTGKwdZkPJF7ODv6xlxkl1WF814CD7WYv6UkGUXifSLScEKkd70gPNZSFKJ6cs5t7o2BizIQaxNGxh0thdC7732Zf/3v/wP+x3/xL/izr/8+//j/85/yu3/9b3J8/BTXNjgnoW4pemLsSQga893vfoPT4zP+7t/9d3j9vb9KVJYUI4vlMb//R/89j59+hDaBnd0pL56cs145lu2cVdMRghaDvyio4WSkKUyg61d0fUE93mdvf4/pyHP73h3M6DpPjv+A9bpnf3fKe194g72dMWVlePDwCcvVmjDcdykiIS/C0em7gKInRi+eMjGgDBRWM9upGc9qml5R14bTk5YQIrbIJo0xUVjDjaMdqlJxdHuP3cMj/rt/9g0eP3vAL//qaxzeHDMajen6FlNITIMuFC+ez1ktxUdmuWxpG49KBZPxDKIgWHVZcPPmDb72m1/jwScnPHu4yNL2wfXYyiLAKvb3r2XULTCdVozHlqqy9IUTHl4a2iYRsSwRTp7Rl62MmDTLeeKDnzzn/R/+D1ilmYwrEg226rE+Ml832LpEJ40PfUayxXOliZGL8yVPHh8LAhvIhoLi3aQ3btKeokygLSF5UnLMdkeMppGdXcvFecPGsFTJvKEyL2oDxspg85n54/O3lHkoV8UBKbEx5NyelPL67C+Bncj2i12g6FyaqKHtkA2dsp+SWJrndLWkN7DT9iY3GRu32GEFfWVTl68ThOSznJLN/gbL+yRw10aGu8VVkAupUNk9VmMy7DY40WYX1zT0Awfmguz/la0sQKFlVQT4mPC9I4SOrlsSfEPynuAT1pRUZU2M0DYdyQvDUbLtFNrkQLCyzAO2fILOHI6YAgmBvVfLhsoaVBxLMrGPOMgkN0NZGGbjkjfsmLTSPHCBoEoxJMowibQ5BFFR2lIZjUqOolDEqFm3AasCeyN489qYd29U3NtV3BhHxlYmWlJA5TybypYEJatcqyxKCcpAipvMH+cuc4d0UdA6R2ErsVgnZRXIUAjoDbdA7o9BSSI3iqT76o1ET9p0ue8qnVq0Fstp2Udmv0e5h6VwCYQoK01jBvdHuTFT8Btinqz48zXPhGffCzKVUlaiFIpmvsL7RFmUGCUDWYji9Btcj1UGHyMqidun2OCLxb/OkzxEbFLs1hZLSUgKRc3FopHCVGmKIK0ljRSRPnSSpRNyQRgSjYt0HjqXWLWeJhNmY1K4pGi6SO8jLihCFCM7vBRpGoUuNdFo2t6jIoyLgmQUy66lsBZjC8kfMWbzfGzL/rXVlLYQjhGBxrWkoLEYXHSEtSPGkF1jhyDBQGFLlI445wV5jCJ/ryuZIKzWdK6nyBb/vXcUxhBj2shQI/m5QmHLklt3X+POm1/mf/kP36LrOv75P/ln/Okf/xnn5yccHR4QYo84E0fOT+cEp3B9z+nxE/7Wv/nvcu8LX0XpiszZZDre53DvOmVZE2NHSh0hRJwDh8P1AZIhEil04HCS+L3ffoO2D/zZ1z/B94Z1k1g2ltg3nJ/+iJv3vsjR7IDFaeDdN67x5r09jB3xyaNn3H/2AnTJeM9w48Y1PvroAfG0BSVZTtZYacmayO6uxaia9arFWphdG6FtokhjgmspJ8JJefO1Ozx7NGd+vmZ/p+Sdt29ycDTm8NoR3/7Ot3j+/AnjkWU6KWjXSy4uVnz88VNGowlFBbs7U6aTPX7w3Q/p1j3tao1Kmv3da+zt7JPQ6KmGFIi94V/+8Y9IQbKTxqOaVeMFPc160M41fP8HH2GKFfuHY/Z3a+a7E9YXEZ+dgvtexsyYEklBVYkUHDzeRbqmoyhgXNZ0y0RVV3TRszw75Xy1RFOx7nLcBgFy4jva0LRSBMtiwZKiEvVRMrIYz8VGRKOMR9mEKcQvJfrIuNLs7VbcuFnRry0PH5zKwltFohIDthQNUljGywkuLxjyILUZy1Ked9SV9szg65QJ85tFf0INyfQkUANivj1Tbce5/OztF7pAGXgBMmG/xM3YVIqDXXuWIG+3gjKpNCU2D7zKWMx2K+Zntma2NlE9XyZAXkFErhQnaesGyJOgUsMi/koxs/VtP6enl1Ef2XtejYtKYb44Z7E4I8UWrRyDgqesRmJe5TxN0+ZU4Tyxao2xYmlvrb1MhN36MKUUzvc0TUPvHEX2a09JzoHWmqrQ4kGiRdGxvzvj1t6E+bJl4RPJWLnhY6QylpjIqzJF752QxLyk1FbKc2MCX3lzh3eujzisE3VylFqul0YRXMAWBpJG5/0lpfAhMqrLrERxaATy9TFhlMD1RWmJ8bIVUNoKawfuR9p4xBRFgfcuh9LJZDgod4ZNQKHLaxujkOeERa+umHtdtn2uDgZD60dtzumWYislUjaYGFpOiZALC+HSiDmc2brPLlf5oDKikrCFxViZUIYCZ7gfUYroPSDXcVJXRGVQ2hOTxjkpUKSQjmAUgUh0ic4Jb8j3Hh8TrU/4qKQIyX4qSSlxwfXgQ8J5mcoT0hpUSBSBKSxJiyW+5PKknIIryoTaFigFRSkeMHIN9AY9ssYSQw49dA5bWnwY/GU0wSuCcyglRX1MiCQ3RVIv7xPTOEdQiApKiUsukY0E3HsHMaCtQWVOki0KiXjohcxcVjV3X3+DZArqSclv/Obv8Pu//z/z8cefolRkPKr48IMfsru7jzUVO5MxJCl0fuNrv827X/oKyhabcMqEpirG/LXf/ts8fPgh3/vBN2ibRowUo4KosGhiElJxWXjefnOXd96YkLTm009rHj5xnM9XnJxOiXVPszjl/oMV85MFX3n3bd558zZVVfLp/cf88Ic/gcJQ1yWHh4d439OsL6jKyOHRLsF3rJcOFxJlBa+9dsi16zd59vSER48f07hTdBJ1oC4TRzdLyqrmy196k/X8JywvFijds78/Zn9/n48+fszXv/FdlE7cuHWbEEu0HqNVoGkcT5/ex1jYme1gTM1qGVheOFSquHZwwNHhbYpC3LIF2XKQpHUYUyS4gI8dXnwGQQXQLbbq6HpHSc/p8ZLX33iDe6/d4OR4SdUk6nFNs4os5g2FUUz3ZozqCVqB6xt6eupqAspRVJHpdEzTO0LfgU5iNx8infOCGivDqB6zXrcoEymLgeOnSEHlGLk8/ue0conDsER6rIWilOP3sefm9QMODvY43LtGvK0py2PaxsGA6qrLIudymlFXugdX5rWUhjLm8ji2TDWHmU7eOqz0ZdGfrkAp6pVtpJ+1/UIXKD8Tgto6WUPtp16+CD/HyfoLi5JtzgtXCZKfec3Q2hnaQEomWJWLks+GBQ6xHrnqUoNh2MsIyrBfclsw4H3Pxfyc4+dPKcvIZFLKw5kCdV1SFAUX6/XVkEB1qVgZkJOhbzkURUPbqOu6nIDsiRRSW0dhn1e2oLA5rwLFsnGEnYLXru/SNms+eLpGGUkxVSmQfMwtDJnwojFoC0TPpFRc26346usz3r5eMTUdtTHoZAjOiQW5j5I0HEHbgrYXXkhKkpYskP+lompDdjUGgxQSQ85GYe2lwoNLlvvVonEwbhrQErJsWYIDB9hz0w5Kl/u4yo5n43a6fZ8MKzOlxI8jRjYcmLDlyKuNQQWBxUNWz6QUUaagKkuawm3CfgbfgxQDo2qCUsI5kgJLbxQqKffiQ4z0vby/KMqNoR5Z9r2/NxWjN+c2lt+iBhNXWJ/AxYiL4CP0XhKM0WLyFrqIsSUmRVQI5KWhnJs86QdtaBsxiVu3OYyShPXSchyNiox8SMuyaTucd+JDlFsspITrAyoJuhg8WLRY929GBUHxUCp/J8leMtqIjJoBoRUUtg8+pz3L6Q3Bi4OpNRhjaHtHUZWYoiC0XW7JaWZ7+9y6+1qeJBLvvPtF3nj7XT559AQIPH78hP/4P/xHtKuW3/zV38S3Kwprhc+jCpQuiSGrkVREZJ6Kmzdf49/5B/+Qpm0J/Y95/mSBcwmVDIqAUWB04ua1kq/9xltcOyzY2d/li+8uefT0Q87mKxYLx35ZgBrTNIHr+3vcu3XI/v41Tk7P+eSTR6yXC3YPp4xqzYOHH7BcNtgS3nxrl1/6pTfY293je99+n/XKM5nVlGPNo8cfcT5v8LpDI62W3vcUtqAaWZLq+MlPv8Pp2RxjNUUhBPQXLy74+jd+RNsH3n73K7z51tt8fP+HdOEF916/zdtfeIPnz455+OgJD++fCEk4WspyxOHBdQ4PbuT1foO2PYW1dE2k6xIxireMUgbvRcUXU4/SHeXIMduDu68dcfvWITH2OOdwtaesIMQGjWdv/wCFIvPraZqVoB6+JxGZzWr2DyfMdiqKsuL+wycoHSmKkrqsaZZi3jcZ72Cs4eT4AqMKTGkoTEXwEo0QgiDLSZFX0WJmd3BwDaULnp8+lPGgUNgSmm7NbPcWh4dH1PWYepRJ+slxhcA/JHt/hi5wlfS6aUvnPwwk2iskhMvXb1svkIZuw9YnXH35X7j9QhcoL2+XxYG6RK02aIPanJyhCtx645ULd2WfP6M4GeS8sq+r3ISX33ZVI375GSnLTYeJdJunMBQcmWt5dX8vtatU5m6kDTI0yJEvV9/DJFfVNVobur7fWH5fFjnbfixp4wh4KR2T/fSdvDcR0VbCB0N2TC2MTAw+iANn5y1ttNyoLe/cmNK0HY+Xnj4mWRWn3DhLCYsj9R6dEkdTzds3Kt65PuX2VHFYBiqVKAyAQeuE0Zq2WWOVyHtLK49SyF4sVVXQdI3IfLcuiljbW5mUcjhgYQtxA40R7xxVWaBQBC8radeLGZm1hpT85jyJWd3gh3HJRblcO6QrxefAQdkuerbvnQ1Bdssgbti0zmnL+fukJI64hYXQyUTpYsTHyGg8oqorrEkYXVEUBavFkj5njaASfecoilIKrtw+cr3DaiMuBpmQTbwcaLRR4CNKJYrSknwUB8kIfU6hjkrThUTnAi4qIcn2AY9GGwnOi8rgvKy4lZLYA600QYFLiabrWDUOW1TUdWK+FIKnzom6RmuCdzjXk/Jxay3Flc75SeS2X995VJmorcW3Dhd6TF2jdUFKYHWi1AlbSvaPTxEXHT5qkhLTQjGnkwKudR4NVGUpsmdEyTJI11GWrm2k6NeSXH3rzl129w8YyO3j2R6//rXf4uvf+nPm52cc7N/g9dfu8R//h/+I/+mf/zNePH9OVVRYW2KLClIBw2Igw+foiEqau7e/wP/23/s/8l/+4/8XL56vWS1PISmMMqAj9SjxpV+6x2zXIAZ7JXfv3KUo7+Nc4vh4xUE9oSpnVHXL0dFNDvf38T7x/R9+yOnpEqMVBs/B7pSuXzGaJmbTir3piFvXa9r1gts3RhhdEJLi4bMXLBYNnoQpREptUHLMOmXOmCRnG2uIDqqyIMTA0+cnOO+5c+91vvCFr1BVO+ztzvn44Xe5mC8oy4qYNDuTfdzqnKosuXH9LoXZQZFRk9Sws6c4uDZFa8WLJ4knj89Zt57lssP1gdlsh1FdUZSOo6OCnX1LUcsC7+T4gp3ZDKNLjOn5whfe5dbt1zk7W3B22kIwnJ2f5CR3TQrSAtfao7TnC+/dZdUsePjoBb2T9m2MZEl1oKoMZaFYLNdCXldgjMUWFVVpads1iSAu3ci+q6JkZ7bD0eEtlsuW45OnsshCCMbz+YJHj54QXMfbr9dophQ2EdNgaBhIhDzmpjwmXo49r1LsXM45l9vlYjh99nVbRY9GfXZf/6oUKLKK3YK/hxpDXbZOfib6sXnb9uvU1n6uXrhXOb3KdfpsT23TVvocyOyyuMgXODN6td5eZQ+s61xAbUFmwzEPbQA2N4rcFmVZcnBwQGEghAZSTx8cCp1TgiNN22QFT9pUVMPxiuV5RGd/lJjSJvHVe0/vLlsdZVlmYujlWUmZmJiUofeRhYObdcG13Zov3t0jPVrQ+8DKyYq7KMTcyXjHtIQ7RxXv3Zvy2kHFYa2pUk9dFFR2hApD1L2s2hNkS3LoenG59SFm0udwvoRgVpQlKUm/tmkkY0MMuwLaarwPKGRSM9aiEsJlsYUMFEHci1Mkc0vkAfdRQt36vqfUg0z5UrK3XZyklC5N2thCZnJWypCkffn6jGxwidiknNA7+OiIx4smeY8Pib7v0aZgvV6TCtiZihrLGEnntRiUMmgdMz8l5hZWFMWPETfPGJ2EpJGI2tA7R9dLWGFR1vjghQAaFEkbkoKm6wjK0IdI0ydcSIQk6iBFToBNChekHx4Z7q+wuU49YhxnS4la8EmUYkYpqrJkVJUE32N0IdyVrfRpvM/xDlHOiUmSPJ+d+GKSojpEURpJsGXLwUhzMBZkpA2RxkXmbaDpI50PMsBrK8TeKKiP8z63eSSrJcYoQYx5sWC0FGLaFnzlV/4qRTXKLWRItuDXfv03efutf8L3v/0tFhdzHj58iLGWp8+fc/rihLqS7B/XdYgVLST8ZjkqnX6FtmPu3vkyf+dv/7t8+1vv8+jhC0lO0JrdwxGTKRS15sNPH6ODxhbHJG5y/fptHjx5zvmiZ76esKsTBwd77B0cUFRjvvv9n/DBBw/QGgqrGNUldWHZ3Z0ymmoODsb4puPBJw8gKe7eucbuzoS2F27XTz85pgNsaSgNGxVbTB6FZUiRV0pRlJrrNw6pas0X3n2NO++8jndTSjMmhZLrh29xfv6C04tjOmPp+8hq2RN8pCprZtNDoq/wvSemNfWk5/B6wXjm8S4QOCWZNS5FOt+yWK1YtqfcurnP9VsH3Lxds7NX4mLg4mzFg0+PISnKsmbdNIxGM0KA+fmKxbyhW3tCf0kIVYjaCpUwReLO3SPGs9dYt9/hYrEWM8wUabuWWzdusTxvWS4aok+MqjFaVaQARTWmrmZMRjNidNjCUtmaqhxT12OqStx3Y1xT2DHJrXBtREdDuwz/P/L+NFaSNb3vA3/vFhGZefba6+5bL7cXdrPZZF/LlERZEi3Q8iIORrPYkiEBAwiUPliA4RHgD14g2/AXwx9kwjNDC56xKWhIQtBCaShSCyWS3ewm2d3s/e63bu1Vp86WmbG823x43siT51TdZrcHM0CPAzioOnkyIzMjI+N53v/zXwgDfOebb3HyqGc2eVa8r2KW1PkS8DnWntFH7HwTcX7hdF6VE8krWsTpaOd8U3Pu+lbu+/1MeX6gG5SR/KqKne/4o4rkS6HPHOh1F7vVPG0Nxpf7/QFPeb67LAf8Ma7K+CRP2GTEk1fju7WPdu01pDMqpFPOgjxfGvN41j7sFZSmNI1rUFs7WK2Yz/fpWk/IoI2lco04Fi4WhOBlNT5+ubQqHJaI94GEPNeokshJTLlikAJbVxXT6RRrHSFGGU2kVCLp5Q36pJhHw8JuspV7ru+IDX1V9bz7YElXiF2zyrDTGDYdXNm0vLhbc6FRVHiMlgwQYzTJCyyrjCaETtj2ZCprSGRCgej74InLwOaskcTRJCt1bRSpG0DFlURUFULjiLipMeCub0UGi3BQ0Lp8yU5dEp2zMurKJcVZS6MD4JyREU0ozYzKosTBCGHZlaJmLVqvEak5vVCkIqHNIKslo9GlqKOKr4ESYnVVVZzMZYbeNBU5C0LU9wODLwiQKfyamBm8uIJmrfEps2g7QW60kZGdguSF/6ErGdlVdU1SXjxvvCjDQtIMITD4hE8an2GI0PtIUpY+RGIEn5NwPVDEpAlhzO8QErKkHytClswdN6lk3KJgczYp+T+eFCNbmxuCCvaj0+2p628s3KJxvCWZ2II+2LpwQ/yAUcKT2jCZl67OmGrJaln6TB8021bRR83Cw+FyYF78UsaYBJ31CsbOINlDxVVXF6RWG8XOhYt87Ic+TV4b4SpluHrtKX7ij/4EN99+A98v2Nzc4v/wf/yzPPvMC/zc//W/53e/+M/Z2YLlyQkqxaKELRd+EKJ5LGnixnJh7ymmk+0ydszYWvH8hy6yd2HC5taUZ64+RaW32Nm+yEde/Rzbl/4Jf+tv/88cH7fcfZiZTrdopjOazU1u3L3DN779Bp0P1E4xcXDx0g5aJTamU7IKPLh3zMnDY3TKvPDiMzSNpe8PmC8CV648w6SacPhoDiYym2gmEycGmzky9BnjQUeDJqOMoe8HjIG9CxuEw5boW0JYkIIEa77w7A9xrW/RuiL6zMHhQx4+usnW5gYq1+SshAiaPIeH+zRbNdsXL+Jqy+Zew7wN9INHL0CZiLaZrR3N9ae32Nl1oCIqGcg1KUQePjhkuXzEbDZh2DScHC9ZLgf8kEVmbWqMUSsb/JEArzVoK+nfxlX4IYMBrRM7O47PfPYV3n3zHm++fgs/QO1q/KCLhw5UrmI2nWGsKouPCqNrtJFIiJBCGb86ThaREDJ5AsNS8bEPfYr3b9zgy7/3dfZ2AsdH4H0ijjb9nPclOVvX1uvUqrlYcVZKjcqjsvP09ieBAecX6PKV+AOK7Nr2g92glO10dH9a9M9wQfLaqGf9QOYy2yuF/g8a5zxGls1nn/u7EWkf+6A4JcY+fu+zsNs6cnLGqC2fvnZ5jeKtO1oMn7XOV4XAaqmbhpRT4ZCcWtxTLrSStyMoicljFLcgKCklhmEo0lmYTCbFGlwKTcoyI2V1XCIpafYXA7eqimg32LWey1sebRXbU839R0umE8czV3eZmkTullzaqtiZGDZqLdkV2mCVFGZfrNhzGVnlwptxk4bkfXGwdNhKkJF+8GJ5njLGxBViZGwlng1FARJjFLt0zAoxGoZAXdeIYRrF6bQgXVlgWZSRhgZQ2hBKKm/OGZ0NxfGF0wC6VIi8qbD4pWkZVymqmIGN5521dvV6RhRLW41KeQXTWiOeLjkJAiIkU1PGC5ahEEGruqIuFu+SwSQU3lrXrLC54gcRRpddNCErUhcZgjRrvhBeU9bEBL339KFcBJUruTyZIcEQPD6cHpuEQtuK3veEmFZITiocl6puOG4TMRkaVQmHJFGg9CjGgErk3cZaJnWDoigf0tnwRuHOdIUkm8hWTOpykglJZqC2mpeuzvjw9U1M7MhK04bE4bzj6GSg7SKbzrLT1Mz7wFEXWPSRUDhPmYwyVoi+OULJcLLaipeP1lx7+jkuX38GxigKAKWxruLjr36cK5cuoNQW//5f+D/x0od+CI3lhZc/xO986V9ycrLk1vvvcnxyl629Z8i5EYm0lgbyNK0o8J03vs1bb76LUY56krlwdYPtPRlbXLr2HP/qH/kzXL70MtY4Mo6XXrnHzuY2i8URFy9f5PrT13DOcOfBQ77x+lss+0BMEYxjujFj+8KWvPYAi9YzPx6oqhmXdrfIRN6/eQfnFG2XMfUjJhNH7RRDyLTziO8SrjHUjXC2yIk89OQo30/fS7EVPpjja29+jcnkJs8881FS3MBow6TeICWFIXHxwhU2N7dJuSuIWCo/isPDFtMM7F6cMpnWTGab1E0i5iOMseLq22SefuYKplIsu57FsqXrMstF5uSo5fCwJcbEZGI4PFhwdDjHj5k8WcbBFVaMBwuSbUxmd29K01Tcf3DM/v0Fh488VaPZ2jLs7Gzw6NEdrNE0dcVS98SCcMj4NhJjIHhLTppcQk2jChLWqTMQiDHgKoNeamJIDD0sTgLLuecTH/8Mjx613Lp5wnyRkVDFUQJdlsQr6/vHa9T6aFmpc4v487ySJ25PqGpKkGB1jkbx3bb/v2hQ4LRBGBuTdUKiNCYjoHX+gZxJDT5FM063JzcccD6W8by88fyIZ/1Dl7HEuioHzjQm6/suNJc8clI+aIiXz+4jZ4H0ZHUfiUlWlcY5+mGgbbtCJlVr71/GD4Mf6Icemxxj+FMMpUHxnhQTk8mEjY0NtFIs2mUpIMXHQynhZRSI73DREWIgbFncZMaG9exNIo2puDxTNFXFRpNI/RJbw3ajsTqSSBjAUFKNKysr9xCw1uB9T1M3MsNOUgQpYXNVVTMMPUMZexQ6vHA3lIx2tDYMwxLnjDSpKVG5ipSkQRv7wIyMj8QKX6TGxijZn2bVsFkr3hkZ8fLwBWlSWhGS/C7nFKzMnVJgyF4QmtUoLUtORlH05CQoTy6f8dgDKgTGT3lsvkdptCmvTZNyoHaCFMlIwmAKKdQ6V6LdC6/FWNCaPgQZxVBGTGiGkErwnwJjCbnIgwN0IeMjhAA+Rvog0uKYtaz0qtKcpNHwTbgqIAnAOctYyTpDyJm2D2DEtC0l8bIZG2VrrMhZY0Jp0RcIx2c95kEeIx43EingvZB3tdIMfsB3AzvbDZc24OPP7nF9I2NSRbKGYB2zI0OtEyd6oO17fDJsVoqdacPDReCkHWgLKTfG0+uNLk1IEYKitaaabBCVKSvISMaQUkArmG1ssL29TTO1PP30S2hbkxPs7F4gJui6zHe+8y3+1v/8f+Gn/vT/nqee/jhaV6TkyTkW8ql4Cb3+nW9xcnJIVRm2Niumk4aT+YJMzWc/++Ncu/5RlJ6trjmf/NQP88lPfpyD/Xd49cMvs7W1gU+e3/vSv+Du/SOsneDDgpgMPlUMUSTzIXhSSGxt7DCbTjC2Z9kdMww9168/x6Jb8OYbb/L0s3t8+GMv8sUvfoPjo544ZHwM+D5gDExnk0JelvFzJhKiZ2/vAm/93jcZhjmf/dyHmEzFXfi9t1pC54iRtTyscnFMJcQzJXrvWbYe9ajn/RsH7O7ugKpYtpHloqPvAsMQiXGQWIMHC6wxtO1AuwycHA8cHh7j+0hVNSzajmEYOD5piUEWg+PCTzb5/mud0Dpy/anLTCYNQ/+QxXxJDpZuEWlc5sLuRZ596nlu+gWkE0jSwMUk16ZUvJC8D2J7YMSbR+mE0l5ck7Mn5YhzpqjRMkMfOTqMfPFLX+e1f2XKj//hP8Lv/e63ODx4R3gvgruWBa4q8RLnzNqeUFQ+SIyyfusH1ki1Pj6iLJ//V9egnJ2bwenq6Umw1fqjTmdu498f388ZVGT1p/PztvMf0nlo67wPSlmvrjVSZ1Q86rFdnHssqw9fabWafcobkQInnXgsoxkhzVaVQ2tF27V0Xb9yllXFByAh/IWu63CVo6qlII+k09P8GrNKOJ6fnHDw6IiTkwWD78lZMjSNlqJjLPgkpkqh19gLjmfqDbZtZlsHKhXJqUf1LRu1pakcs4mhcqBK2JqrK0iRw+M5/eBR2jIxGmNrjKvIZLrBk0MQa3EFw+DF7bUUc/FASadjmvEYauESaFXIjikW59ZMVddiQ42s6nQZFcWyUs9KODkidxc0IMXSCFhLKKRZlcWFNRUTLx/CqsiOeS5jIyQqI2kgxnM0Zml6KMqo9fluKqiJsQZnLNoE4YJ0HU5HNhpLRpKJR28XUBhTFCJBPFjU6GRbwhpBiVw4JhnjRAhRkbS4fg4h0fvIshU5cTuE4gJrydoS81DM0DTeRyFFJ2lgYgwFTdArJYQ2gij2fSDmJKZTxavBOsnhMUX+7WPEar1KGx4LhRQsI81eyUYRq3lBniTsLaJTZGM6g+jZqQyvXN1kMhzI/SpDMBk2HMSGxigWbaQdMm2UMLs95XBWcdwGjntpZNF2xQcquilpTirHZ3/sNTa3tkvh8WgsRhvafonSFuMqElGOX5amdDIVIzptKi5euUK7WPC3/qf/gZ/8U/8OH/vEj6KsYxgWvPvuuzz39Ivcu32ff/HP/xnet9TWkkJi/+Eh6bhj7+KUB/ce8MqLHmtGt0+Ybk742MdfYb6vuXZpj6Qqfv/Lv8e9+wd0fSSngHEOVMWdeyf04R2uXtldjXvn8312dna4+tQu3aDZ3rpC5x1vvH0HZQyzacWVS5u88uJTvP7tO4RoGJJHq4TWgdnU8fwrL/Pmt27zaP+IZuKYTacED4cHLU0zI+HBHbF3cZeT44qb73VknIQTpkjKnhghRWn6Ygp0/YJl23Ky6Dg+bkn5Night/s+EUOhBGTNvfv7XL6yzcHihL5LtEvPcj6waHucrdDWsWwHOZ+QkawygnTmoAghoXTEFqny5lbDpYu7OGuZTGogFH5Kpl/KCMmaKW9859s82m+JoSLFcSFUQjhDAjzJyHVb5MjFoVwV5CknUf5Yy+ATKMPgE7//tXd5593bXLu+x5Urz7G9s8PR8cPTkUypISrrssjJj63KVyKNsbaeqWyny/gzo6JztRGlztar/wXbD3SDss4KPotEULgdp02A3LRe9Z+MmazzR87zTUY0Rq2sl8b7rR699v/HBcdnVD6MKI9e8xo5K0PliSfC2nsdP/wVgfIUfhsbrZQECpT4eomFR0Hb9fT9sArrO923rG6lSenl95yJa82JZJjIF/Xo4JDDwwOOT5bCc4ieFCUlU2spIsZ2mKpCq0y3hNBZ6mc2mU2hiQs2jBbr8uypraKpFFZTosKREUIIKJXpUyZqR06KsFyyOZ0yeIHVcwyk4JlNJuIVUFAN4ypyEq+XwQ9UlUPlzKJtmSpwtSAt699CbQy+cF1CiIIkKEXwgaqqIJ42FD4EnBHkxoeIKnCvQRU7/FjksK5IYDUpRLLOhXOhz5yncl7LBfT066/KmE3ygZx2aCgeLQmULkiHKtlFRlAjFNZW+ODph0FQCmtOTfm0Fj8FFQs4pwgxYMq5EGIQ/hFGOCNJohMi4BMMg6hehiT5IwkIyYM2km+TEjl7lBGpcj8M4kORhJuREZJqiKLAMVpRV5am0cx7T8yi8BCzY0EEfZSk44wQmI2R/yslEtUYRUKqtBwHhZCirZGIhhwzTVWhFTQq8eGnL7PbiOIgJ1AOkjM0dUWFYuFqjpcDc5857AfiwkvDGqEdMkbDSdvTxwFrLbPaoVVacZaqquLK5T264wOO9u/ih4GqaugWC7q+JXjPxb1dHh3dZRhaZihS1oTi9Kmt4er1p/iJn/jX+bVf/Wf83b/7t1ksTvjMj/wRDvcP+Pn/6X/gyuXL3Hj3PjfefVfM+4Cul2tZAnzn+c53vsIzz7zMM898Cmun5JS4fftd+m6f7c0JOUbefO9N3njrbVLxUYkhMZtuELyMCfb3e06O7zNtKoyO+OCZzwNH84GJs6SUeHR0A6Vrgh+49f59cnRUZsLWxjY+GObdkuB76sryzDPXefWjL/Pem/fQytB1A0OIPHp0wre+9S4xD0y34JOffQ5lluxd3uLOrSXtwst1KSeI8lrHsNMQeuaLY4Yh4H2m78tCTXUYk5hNGuEnFT7G/KRlMq3p2oH5ycDQZ8kpyplqoyamTN/70ngaQR1NBi2cKrIMcbWB6aTmueefwvuBxXzJ1SuX2N3d4u7NnhwkauL+vUM+8mHF8889hbOH3L93wnxRvjwlxy2vrAUCSWuUsiglo00o1zsyWhuaakKMiMGj1pjKAobbtw54tB8g7xEj5DyGXApWtbqCqfUaOP7/3AJ7vMZw+idVrkvjbEKt6l+ZVZQGR52Wt7IvvuftB7pBQYm74zoSMjrjaXLJ9crkHCVxM+czxVsuaiPqUAy0yoFdB0PONxbyseS139f/ttbsJBklPDH9Vo1mN8UBV42zudNPb6UuzmINIdySQs5kfN1yHFJpJOQ9FSOpnPCDp+8C/RCJMVNX8pH37SB24aPFuj49hjEpej9g+0HeT3FOXXlxxEjbBbquY36ypO87QhDVTgpBSI/lVfYotA7YYcBVFqct93zk2w8su9cd101F5RKbTYPLFSoHKfpxtAt3dO0S3QUqZ1BUoDIhDdTO0YfI1FUEP5TGyIgBUkEyYorUzhUvi4IgAFXVMAwDfTcwnTZEPH0IVNbilPBJYgKnjBAqM0WpJBCrzrKSD4M0TlkLKdv7uDoZYvQYVxNSpu8GZhsOlBDbhiy28qoUbevM6TlixKNjHK/EKI6bSmmUMeV8klmytcXjRYlvyDIojuetJEqTiDnTDhEDaGXRWjgg3ntB1XImDT22qoqaR/6egox7YpaxVMwJHyM+SZMYMrR9JEQhQfcRhqRXhGpyQhkluTequItSvGdUxlpp4jTF60eJI60qHCZLprKOurLECPNFJzJMbaiqCVaDIlFVkiklyAkYZ/AkjBZll8IgbpZyke2HgRgi9awG3/Ly1YpPPbfJxHiiNVg0OEN2SnDIRrFVVWxPDCc+Mestle15eOTphoDVELOijZqDecQYIZbvzCxKJZQ2bGw0PHzna9x766v07ZLKaQwQ+pYQBprtPXacp3OOGBby2ZqKK9efYXNjG8UCTWb34jX+7f/tv89v/Mtf5e/9vV/g0YNDPvujP84Pf/KH+Hu//Eu8+cZd5sserRzVxFDNLF1YYI3I7VFL9h+9xdVrH0bbmsX+Q776hV8nDkeojQnv3bvHN974NkPqyCqSIxA1KimW7VLGjVnTDz0hRDY3LMbB4D337h6Rc8Dd3We2MWNzs2ZzY8L9B4e8+eZDtJngAwxtRz/v0S4zqWt2tjdQNlE10jwuWvke7l3aZefCFu1wwHSrImdPCHM2NhpqF2ij2NLnKCOd4IWgH5LHp0Tfe2IchI8SS1BnubYNJjFpNMoWS/qoIFp0jvTdgrYVm4GmETR3uewhIfEXVlA+6yyhzCtzASCsVUw2GyazLd56+xbeD3z8E5/kmaev8c4bD2lbOSffefcuzzx7gz/0R3+ErekeX/3y2/z9f/DrDEOQJqcx5AhtJyqzlCJaGbIq6rQs6FNWAxrNxsYUVESpSD1p2NnbZGdzi5OTI1I0nBx2ouhKII7qkaziWqk6u0g/01SsaltRW52vTnm95km9y2PDVmqZLm0MZQy9tor/A7cf7AZlbTtFSQRF0AWZWKETK8LP2bFMHuf2K+4KHwB3nW0D87iv8bc1mHl1zzMr4rPP+/jfS0E+79xadji2Q2ebsfFkOIWwyaczxZgSXddzdHTC4DsJ05o0ZRzSFzOys69n1aSUQDTJsdGFyxJXty+XS7q2l5WwNhhzatKj9SiNZYW4pBQl0M2JKdbN+494p9lh95KjUhGlZUUQfC4z2ch8MYhZWM7MJg3d4KmdxVkN2uFjAqNph7hyLXSuQmkIOeKcpWtblDc4U95HTmAMUWWqSUPwg4xPtCGEXmS4OctMXCn6fliNcKxz5TXGslILhWFvURjGSAK5gMgKfpSnV3UJglNim2+MxfuBuq4JQaDmFV9FGfFiSSV9N0tDaoxcKCR7Rs47rRTKlIZbBUIMEiufReUUU6LtRfpcVSLNHryHKOiQNYY+ixma0oZ2OS+Gd5bsY8mdqQgpkzH4GAkx0wXhn+Qs6cikzBDFrdhYafCqyooPzhDwIZKzXNBySiXIT2bu0Qssr5A0YG0cWoOJ4r5rtDQ6IUdpyEIgEamsxmi7kmxba+n7fjUulSwVkYUnZQkJYpbIgZQ8OxV8+uULXN3U1NkTtMQmZK3kHMmZ2cRB1liXcElTBTlXhtRy1Af0ACGXhFuySOBDYoJmwxmmE9h2Hfe+8zuQI3XlMM4U3lukMZo0HLKTHb6pSONnYxPbkwmb003m8yXJJ4gwmWzx4//qH0eryC///b/H733lt3nwaJ/9h8d0bYvRkWmtmU4rlmHAuMys0VzcnXJhZ5cwQByWnMw7fue3/hl3br7OxcsT5oueN99+l8VyIREDWmz+a5dBe4yVsVoSfzF83xO8Z2fHUdcGSLR9ILQy+rRG4e2E5bxmcTLQTAyDD7RL4aLNZg3GOu4/OKBupiR0QW/FRj6mwMaW5dLmVTa3NzCmxtoaZwz1JIOKpGBkRJmijMcIhNSyWByLeZ4yJDV+T0AWoYngE954ya9SRQAQBCXOZcRprWbaTCCLEZ+MPeUaIEIqSVpXSq67zllSyhwdtNx49z5VFfFhINPy/AsXuXfnMu++c48QDNPJlK999U3u3X3IKy+/zGy6y4//xMexzgoCGBJvvX6Pd97aJydxSo66lzGxtPnCU1MZnSPNFKomEMKAto7tnS02Jpu0bYu2NfeXR+RkyTmsFa6RIHuKepyvAes16nvZVt6y65yTEjJ7ppg9Nlv44O0HukFRSglrIp/GRDMqYxQrKeDo3Hr+sKyItet/O4eenNeDj3dcEWEpn/kaqfXc0KigNk/K4xlPDrUqXqND6WOvcwynOnMAyusq+x8htTEMcQxRa7uOvm+p623qqgYkxTjEcDrSOreJkscXjoDEf48NihQESZ4FVretAgDLixst3Mc4ghgCOQ9SbNC8fxR4fneGzQOu2NsTIQUvnhLZsCiJsjEHpk1FHsRNNYZAZUUiGvuA0ZBjwposHhc5onMmIghAVVUMvmcU2Y1fpoBYsA+9GClVdS1ZJiEWy3hN1wt0H2IskmJBYkaDs5QSfeGnyH3c6hwc83lOgwStcFGyhCOCrMZQwv8gCxcjKyHVpmKlL5QQccGMYbSCl1Rma2U0onyEHGjqipjFoh2tGHzA1gZnK0JopZCiUMYU5A38EMq4UlZBShfXzxiIvidmTcqKPiQp9jHgfSLkRAhJDNpK/ozW4nKbcsYPg5D9MvgomSfGysX8tBg4VDLSQBZvHaUzISV0CDR1w2w6YfCdjCRTlHIUMknl4u9iHjO/M0ZSn6uqZt4OhBghR6aTBhdbXroy5WPP7FCrHqcySsnnmrUi5kjwQX7PmdpZMSDrPU1laSYT6iqhlacxkb2ZYncGm7Xh6t4mE5146tIOO9sznLMotcBVFqszFnBaE6NHJ+FoWQ3ZbdDOF3jvcdqxOauZTCc8Osy0BaUcuhO+8KVf4/W3v07r5/yzf/l1+i5AsqKAqiyzaS2yeR+w2VNZy/WrV/nQKz+Cqy/y/o2vc/fdW9x6/w2aCRwfn3D33iPu3LuHqTWVqum6gNJeTBd1FKQkBXwUg0CDpesSx8cDG5vipFy5mrYdWLZz6knNyTywOAKna2plSURCykxmE6wzxKy4c+cAoyfMT1py1qQIi/nAb/3WF5htG5567hJtv6D3hkUb6dt74DJJKyKTop4J+NDiY0vbnbBYHjGG7o0kfcHDhDgeY6Zd9qCSoCSNOMoOPhThQqKqpmjt6HsxshT1+ACjMlJBygHyaM6mWSwXoDW3bj7g4kXD7s4L1JVib6fi4594hr0LGzy4e0RTX+D9G/d549uPeP/d38VYxWzTsrlTEUNiOR/QbJMJ5CRp0Tl7qROZck5KnQtpoDFQ1bmkbCtOjpfEIbOYt1TO4n0uzUIotc1BFsfr8/OW76c5ySWTbVUHz9TKcUx0qk6UOvf4Qv27bT/QDcpYXFd8jlMcZO0grXV0PP4BnMp3TydqTzrgj/mfrO8rj43peVOa84ZqZ597NNkak261HpuUx+9/utMCBq1+1t1IWTVDIBblm5tbbG5uiS+Eq9DGFgXPklAMe86TgHOWAurLlyKVbl3MwdIKFXDOrZqT9W00jztrUFaalBSATK8M9+eeW0tJOfXdgpwjVilUkrDBZjJDe8XB4SHH856NaY3T0DiNNYpgE0OQFdSkshitEPsnQUuUMwzzBaiE8wGrxevFp4imZK6gaDtpvsji8lg5JxbTtmTjWIurqvLudBnNKCEPZlH3UJCAjBw7Z4T7oI0oN0IJnHNao7Kh63qcsUWlU77AShXZbxkiKmH0p5RQUZx5tRZzq5gSBlWeR5oWtKCGTeU46QLeB7SVFdei7clpYDap8INInRMiO1daOCn90EPhcUijosjKSpNSRj0+whAHYlaEpOiGiNbiKyL3Fw6MjyJPjUVZlUMqKJAcj1hUNs650+9gShgjF/8Qk9Bjk2QkOWuxVrwp+pCwRlK2bWn8YpQR41livOw3RYlCmNSGHBMmB2Y28kPPbLFbB4zKMtKirKjJWCPvHQw5aYYgzVYcApV1VDbROMXexLExmaB0ZmvDcuXCJpuTmsZWbMwmWKMw1tB1HeSSGRQCOcnIsqorhhhwCWos8/07LC49y3bdkBQlzyeymB9x6/br/M7Xv8av/OovcXhwQAwyOvMD5CBBcc10g5ShXS5AJyprefaZl/iJf+1/w0c//hM82N/nd37z73F46z0uX9zF1TO++a3X+dbrb9L2fhUiOQwBcsa6ipN2SSiR68YoGQ0iGTIxQrcMxdb9Mvfu3SerlrqZcfCoRyvNzlbFzs6Uuw9FFq6tKQsH+a4cHi7KCBO6oefR/jGPjvb5zI9/mO3dKekw8M1vvM3h4UNyiuxtPUvlXiB1ojBctHPu3btJUh1iTT+inoKo5jG2AaCg5XIdU3RdxOiB2VSUVWTJCjLGMfSxSKwNWsfiCSWIwFhrjK3wPuEL2hxipG0j87nF2Jq+8yzmc7SKXLggvJ/jg8hykYh+ykmfMEa4XIPvZTQZa5ZzUQvlKK85JyWjypzJo029EkWVsZB1hlaLpcP+I45UYjrZKI2fKUTb03olqMbZ6/b3uq2q0rl6KFOA8wvsEQA4RVW+n+17jxUEfvZnf5ZPfvKTbG1tsbW1xWuvvcY/+kf/aPX3ruv4mZ/5GS5cuMDGxgY//dM/zb17987s48aNG/zUT/0U0+mUy5cv8x/+h//hKin2+93UOP9aG+9o1FnkJH/waGV9O9WHf3CHd4aYero3xsN4/nF51Umce91rr2/9A12/fW0v5x8NjH4oT/7ATxsUx9bWNpcuXWG2sUndTATGbzvabpQY5xUClROnTV656HvvGcoqOIRQkJIsTqqlWRkbEVPsxVeNlzptUqwx2KJuQMkseN56bjzq6PQEVzWQo4xUynij95EhZoYAUVtU1ZCNJaBBWwIKjCUhturYiohmOUTaIUp+C5aMxgfhcWQ0FHfbIcRSTBNZGUZH4H7wGOfQ1hTPF1HlaGOFU2QFovcxlvGQtBhjsV1vNEv3DFqX58uFS2GF45FYecgI1yQKbI0CZfApE5K47Q5euDntEBhCJCmKWZovvityvld1RVVVZGCxbOU5GSPiJa1aZJqCnoTCxkxZ42PCF4WOD9IkKOsIWclPojQnkJWl94F28IWjY1FajKT6wVNsTUjFuMyM/BmlVmqyUZZujZYRZFWhcpbxTJJAw5iSjG4KVF9Z8awZuoFhOB3BjeffKaIq378QBnLwTJxi6qDOPS9eaPjEsxts1GK9H1P5nMqoNUX5THxIdD4wbwcWnafzgX7ocDpxcbvm2csTPvnCLp995SI/+vJlPvnsHi9d3uH67ga7s4oLO1O2po6tacXmtGJSaSaNo6osk6Zm0tRMm4ZpZdhUnvbuWwwHdzg+2AftaCYzcgx0yxN++Zd/nl/9tV/gzt07EiEQPSH1aCMLAGcNVWVI2mNqxVPXrvLc9Ze4fOl5Xnr5syi9QRwihw8PmdQWaxQn84Uo40qa9HwRWCykmFeVYWWLnmQhZY3FOoXWqfAeNFVVo7Pi4b1jUpgR44zDg540BDZnmmvXZly8OKNuKowWT5++97TtgHVC2q/rGm1KdEQyRC98rqpyNHWFMY5uoeiXiZgWWBtQOZKiZ//gIYcnB8znJ2KP0J9GeEzrGdN6k9pOqOsZ03pG4yYYVaGUI0dN2wbm84EUDVpVVNWEdjlwcDBnufAMXURlizMNORti1ASvSEncbPtuIATP6O8Ry0Iierhzd5/Do47jkyU5R7Z3pzz/0lV292aFilAThorFieH4QLNc1Bw8UpwcISaGyRNSkfzH8fsk53dIAW0yrlJUtcVYUxbLER8XGAvDIOIIkekXhHRE+9V5NP+D0ZN1lWFWaz8rPDrzJH+Ts9SI7320M27fF4Ly9NNP81/9V/8Vr7zyCjln/sf/8X/k3/q3/i2+/OUv87GPfYz/4D/4D/jlX/5lfuEXfoHt7W3+8l/+y/yZP/Nn+M3f/E1A4O6f+qmf4urVq/zWb/0Wd+7c4c/9uT+Hc47/4r/4L77vF79CkThrjnaWM3LuIY91fY///0noxQfd/kHb+v2ftK/VeCcrzjYs6szjEqfIzGjSNkr8Hmteyq9ycZbmp2kmTKczqqqmmkxJKNq2o+/6VXaPNCTjOl6x8pzImbHLVkmVi1VeyWXX39uIqIyck3FVO77PnBWaAsGX7iXnxKPlwElwXKqn1KqnVUEaohBou0H4JUbIob6k+FqlwDpCHOiLr4gfxI+iBxSJaVOzjL1EmPsonAZt0NqCMqTkZeXT98wmU/q+lYydkg+jVTmOuiAUKdP1PVXlSEqIz+Iwq9DWSGgewr9ASXYLZEE+wjj+EFls3dTEDNEHau1I5RwQAzgreJ6S1VoKgRATVS3oV9cP+CFQ1Q6bxUxNxYBGSdNjK3xYsli0tH0nK1ZjKFCG2MvHjHHC4el8R0bh+4Gci5RXyyoaJOF3KOiNGLalQkYsPKaUQGcJWCzNhvBLEBRKCT/BWlF4DEXCrBBzuRQll8Vpjc6ZHD1WW6zRqFBW7dYS2iXTSSNmg9aSlMJqQ05xldS8nhRtjKH3YiiYQiT5hO9lLLhjMz/60iUubhi0ymjlGFKPslrQmyRZQkNIDDHT9ZGTZUsbwSeNtRXXL22I70sUC/7NSUPjtNi4oymEITEG1IpqIuO0IURs7fBBZN7GaJxROJ0xRJa3X+e+rnBPHXPtQz/E9esv8LXf+y0e3X/IoHuOD4/IMdOHXnyN6go8ZBvYmDmmU82QHVcv7PEX/t2/wN3bJ/z+d77Mrfdv8ez1mq/99uexOTGZbXI073n7xi1u3ztiCDDEosbIEkkw22iIYYGrIxZFjLoUN41X4r/iqgqUYW/3KmEI7B94kjacHHQ0VvPsM7u88NJVHh20LBYyKu36Jb3vGAIo42gqU1YzQuw2xpGi5b137nL1qW2Mhc3ZlM3pDl17hDUwnVpOHgVgIIQWKATvQYwZU8gYXTGbbUHSNPUmGUlzT0DX90Luj57oA8eHS1KckJIWJVHrC98mM/QD2kHVuBVZNCeFUharNVubFVWjQGeOT1rhmCnHu+/cxdURHwSR2tmZcHC4z49+9in+zX/nD/Glz3+bN9+4Q7eMKGtoGsfGxjZHjw6Ry1oEFRgVO9Iiis+SkGpyMX1UkBPGeHLWuKqQ08n0nSdnUxbrksMkNUgMIj+oZzhPbRgNTWU7O1HQp6zL1escV85Pnlh879v31aD86T/9p8/8/tf/+l/nZ3/2Z/nCF77A008/zc/93M/x8z//8/yxP/bHAPibf/Nv8tGPfpQvfOELfO5zn+Mf/+N/zDe/+U1+7dd+jStXrvCpT32K//w//8/5j/6j/4j/5D/5T0S++X1sK2Dp9LgxgiqrbZ0z8oTmZPx9fYzz5AantIzrXWI+ffwTX1/O4yd7updzCMm6B8r6eOcx35XV+0inzUrpXkdL//Vx18iRyWgphhliSCwWS46OjhhKirGcd2tAWiku5TQrY5m4OpnHBimtGo985mQ2xqz4AKPteEoitdJZFIFZicrKGEPbe+4vItebCXtVR05tMUmTUZA1Ys+slKTMuqYq6IqHHIk5M500DCFxdDRnYzYV1ngfqJwV2XOINHWFdg1dt5RclcIrGEIU/osRq3m0QZnC7s8ZW1mIUS5smVWAntLC4k+FQ9EPvnibqOLUK0z23g+oMvsWmbqm74OgI34o/Ikxy0VIfDFKZodRitpqKmswThKXKW6Zi3lH1w5MpsWkLkpAmY+6uL0qprMNySUaAqRIU9f0PghcnMX4TZKLMyCkUDF4kHTkfuhZ9B6MlTTiGAU9iUVqnLMojkoqsrUi9/UxSCOYRwt7OTNTGXGNK2WFIhXI3VkDKUqUgXboPBCDZ+g1VV0JwpNktJO1JudQuECZuq7EjDDJF2ZEJa2xMqZUimY2QZsEoefjz2/z8We3hMwdEyl4gvegLFpXDBF8SPRJMe8GFt3Asg8o21BPpmxubcl4I2dMVeNDoHaOyknBiskDCUmJLlJqI6GEWmWUBqed+GiUc7wSzyx0XLC89Q1yyGxeuMzO7gWSqghZ4eyMbuFJKeJqTWM1sdW0w4DRip29mkkz5dH+CWmZ6OYt0UfeefM9fvOf/2PuPXWNu29/E+M85sKzTOo9Xnz5Krq+xtV2zte/9RVyDFR2QuhSWSIbtrenVJU01zFkMW3zmq3Ny+RYc3y44MH9nsuXLzJf3GPZZZzVPH1th5dfeorp5gZf+dpNlp3HTSzzNhT0QIpbKk2zc5rZdEplhXdxcnzM/v49ppsTXKWZzBzNZIuN6TYXdrfYv3eEX7RoLWEGQMmSkgVRVTXU1USI98SCcogDdFM1cv1pl3RdpG89wRdOXlbkpATxVXrlFhwH4VcJEd9gMGKepgS9M07TNJLwvVgOvP7tW2zuzMTCLSvu3nsEquPew5uo/JCPfOI6Fy9v8t47d2n7JbauOTlckgpiImncY9EXDk1ZsooMHI0fBrouUDeJZqJplx6jHZWrJK8ndqvrsMJKk4KgX6O8+OxY5nEURWpnqQ0FtpcYFvl3VSvK46XNHfc9ckA/uE5+t+1/MQclxsgv/MIvsFgseO211/jd3/1dvPf88T/+x1f3+chHPsKzzz7L5z//eT73uc/x+c9/nk984hNcuXJldZ+f/Mmf5C/9pb/EN77xDT796U8/8bn6vhdHyLIdHx8/8X6nmIKsvLRWK5LUeAg/CFkZofn17UyTMI6RzjQOp5a/T3zcB2ynxNyznZQ+l2isRlLJY+/y9DHy2a/N98aGYaWiyYQQ6bqetm9ZLBc83N8Xm/MQCoLD6UiC9eamzJCSzD3X+SmjA+0Hdchjs7LepKisVjC9Ro53TJEb+0dcqmdsbs2oqohSJWo8sVIEaU6/LD5J9o7RijgITyanhDKOIYi6w8dYPEMU3dDjGgetWl2EKueYTCowGp8iTVURgqdGvDP6rqOupWEeV+ejUZv3Ed+L/4YPgiCghVthbUXb92zOpjJayPK5xpRw5cLb9V05zoq2H5jUjqp2RXkin53WRb2iHVVd0TSVRA8oRQiak5OWRdvRDh5tLfVkQiaz7Ad8NpiqKU6jeYXmxBQZwkBTTRkLaCwjHZS8xsGLWiErada0hVh4NzFlhhCQvERVHGgDOUoyLcpIOm2URprMytQPJJ9EAbZkDqUsSiKjxLYcDU4bAqJOcMVFV6FxVUPKkayksdVKkWIgq4RzDTlrvB/KIqd8f0pkQEIRVWaiFFs68+GntpiZgRC0cFx6T9sLCqVypgtZRobaMSSNqSZs1BvUkyl1M0Vrg9UytivLA0GhikoohihNpRElFxlMafwrVUkDakwhPpeVMAPWGiYGVGqZH9/g0Xu/z+4ELl68gG2mTKYOZw26qlGVRitYzMUrYzJpePVjH+NP/9S/y6//09/gd774z/jyV34Ha3Z5eO8+3/zql+DkOhd2NnCzLV780Kd4+plXmcx2aIeB92++zS/90v+Du3fe5+DBEa62pBjpWs3UWlyj2diq8IPHmBpMw7PPvcrv/c4bhFBxcNSzu9vx1PVt3n//Dnt7Mz70ytNcvXaFb377Bu/f3CehGIJwcbQWGWrfBZY6kgdwpmJvZ5euXWJs5NKVbawD73tCDOzsGV547iP0C8NsMmMyPeHmrWNRrXHq62G1jE5ns23hWKkIxNPrbhYOVNe28j3WoklPntKQiNOyVhlnnYxzU0Zlg1YOlQuSoqTxiEGxOElgBpRRTKczlNLMT1r6LpFUpq4qTG25eGWb2eYWd2495P337zM/6Vm0gnZO1Q6PDnpCUGgcJFMWuKk0s2vX5HKNjUGzOPY4W2G18PCGHho3JQwS9jk6X4uRdl5bZI91UZ37/RT9WOdvqlwcm0bgJY9V6ExJWt3h9JHjv/8/aFC+9rWv8dprr9F1HRsbG/ydv/N3ePXVV/nKV75CVVXs7Oycuf+VK1e4e/cuAHfv3j3TnIx/H//2Qdt/+V/+l/yn/+l/+sS/jfxgqc1rLYoalTGl0Ct15kiqsiI7vz0+lpEPcHRTVmOzsyYpPtsynO5HjWjEuRHS6vd1dOcx6Gdth+Pd11//GRhNuurVuTaiNlnuN0pb796/Q4xBRjx9X/ai0dqUn3MJ0CqvDtvqFD5zbOR4f7fOeB1yzxlMcfgorSNZGx7OW24cOa5tTLnklpADKQqzXqHAGom6hxVfKSVRe+SkabuANVL4YkpoU1HVlhgGfAzUkwkeOFq0pDgwaSYkpTleLOXLGyM1UqRDjMToSQhKZEvjZq3Fe0/btkiIYC+p0CmCEkRFjp8hBIGZFVmKs1JYJym5MQYWiyXOVStpYiweDeS8KthKicW/dQZnFDp6bApMrCIZQ44VyigWQ2Deeu4f96SsyUoxX7Q4O8FaucjmJJbrIUSsrVBGcmlEBScfsLjtKkJMOD06yApnp+tkHJYKvJ9yFmdLrYnaFEmnfCZjwR2bXKMF/UqFmKyNFqKlWPCiSOJ+qxSkiFZifDZtHC2KpLXkCOmKXBrjELsV2VaaoKL8UZJqrLX8m8rCwjorK+wh8qGnZrx0bZuY5jA4hqBYLge6PkpukveEpNGuom5mTGohqmqjC0G5jO8KmJqzuIpmBUHFFeKYkmWUtcpipBgy6tJMFxt8aw0xQ1XV2ABDVhAzwR8y3Pwas7zJC5d3uHXvLlef3qOpwSMKGKJlWM6prObipV3+6B/5ST79w3+IV175FLPNmi/99r8k9u+yNa3Y2dpktr1NdIrp1iaTzQ1MU5ONo5lNeOnlT/CXf+b/zMP7t/m5//5neXjvvijbqOhOMpt1w8svP82dO3dwdoautnjnjbssF5lIRcqRB/vHfOwjz1HpJVevXuSll57n8Ljjq7//Nn2viCqRsheCs40YZ1DU6Dwh5I7FfMH+wyOefvoyyS556rk9Ll/bxYfAxlbEKNjda1jomkf7x9SNo+tPGIYOXUwPjVakbJlsbLK9uSfHXUVEDiyIXt93tF0r560uiIA2GC3KM6PEKLJpHJOmlgDMk46klJDex5HJeO3NgrRkjDTyRgjEpBlDJ6OrOAQuzBpeeeUFFouORwcn3L55sFIJVW6C7y1D16GUJUdVUIhyDUwaVCgNihDryZmMZX6UyEkCQUD8Ydp5zfKkLbcXHhFlrLNqRE6v4etXeXUe7Tg3OPiAJf5pb6LUajG7Xur+vz7iAfjwhz/MV77yFY6OjvjFX/xF/vyf//P8+q//+ve7m+9r+2t/7a/xV//qX139fnx8zDPPPMNpP3LaVY5bKZ2nzcN6M3BuUwVxIa81POUCe/oxjjqf02dQpztd29l4gV5/2iePls7f9oGjIjK6jJfOj1WkAWDVlOQ8fmnkd20krn53Z5eDwwOOjw8JY8ZDktUXGZQ2q1ETyOpT62KeVeC9VbO39npHYubYSY3HnZzPNjvlJUrnbaBYPwcfmPvEzf2Wj1zZ5vK0wqaBFGX1rItP/ZAyWYnrKXCK/mhJJ64qBzmgNSXUUBoOYy2urvF+IPqIRtMOgoTkFLAK4Y1oRQzCrRCbdOHQ6EbCBCutsc6xXLY412CtNBYpysjDWeHJLNoOoxR975k0FdZC7wdQgmQ552iaiUiLyVTWyuqmXCPWlV0iK5bxSdaCZDmjQWliI5k5WEefDEeHhyz7zHRak3Ipylkyi4iZunBOjFakwRdvh0J4zkoM2zIoLd4l4kZXfGxEd1zOaTF68gVNsiWET7go4/lRELgUyzklfBGjNWk8n3LGFsTQai2jMg21M2RjmTWOeyctVOL50oeWphJ/oyF4kk40dQNZUoyVoszdKQ7ImdGJt55UKBI7JvOJ5y5iUsfcB1QKdMFy0nrJSBp66qljMp1SNQ22bnCmLFCU+P0IzyZhXGlWcsI5IU8POZXxpZDBjVarsXUsEmhCRttRci7kcR8BrdEmEbMSjkjydCf3sPmYpzcMi2PHxDk2ZzMOjsV9NnlN6DNNU/HC8y/wiU98FlM1bO5N+en/3V9gsej44m/9U64/fYmoFN985wYHJ4/QNvOV77zBH/6j/waf+9GfhGzResLGxjX8IkGyXLt6ldu3b+NsTfIBpys2Jltc2Mm4ao879+ccHXgofJVE4uQkcOO9G7z43DYvPCcLzy9+6escHXWnBUspJrXj8uUtXvnQKxweZqK33Lz5FsfxhOP5koPjQ3YvOy5calDaMJ3WvP/+eyu/kq3psyzbOW+9fYOT+ZGQlp0mZ3FcnU222Nu5gjMNYbQvUAkfek7mJ/J9SpJjUy5taG2x2slVXWfIHmMUdePY3GzouiicmVXRWS/wkDHSRGRD6EsIaLarxkIpQbkuX77C8fwhxjisbejaYiKnZxwe+WLXn9ecXkcfEUOxDpRKpEq0RjakoWZ+kAtpNaKAJQMpqoLvUcY4p3EZ0v6cXpvXCa5PqknffSawOgyFGzPiAY+rWr/f7ftuUKqq4uWXXwbgM5/5DF/60pf4b//b/5Y/+2f/LMMwcHh4eAZFuXfvHlevXgXg6tWrfPGLXzyzv1HlM97nSVtd1yVR9uxWXIbl/2Uudgb4GE8eNSJP683HuBMYpWenN+TTC23Zz1k2spyg6QM+SAWyqlYl72F85PnRT167LadVl7le2DPi5yLfC7m6j5bmskIrqzMgo6XRyKdwp9GZzdmEp65do64qjo6OWC5aFsuW+fKEw8NHdMVjIZVEY5XFe4sVJ+Y0GXkdZZGOOK08WhKaNH5x5KCcebMqS9ZPUgaSQSUP2ROyYt5FDgeF39qgiS2TRgINQ4hl3mnoI2SlqYxGpYB1ArNqrYXLoAxDDPhBCs7GpMbZ4igbRX2C0vRDBHoap8EoqroReWAn3JCYgZSwRkYgXdetvA7E9t5jjUPFhDYZo8QhFa1pey9qFmOxibKik0avHwaGIH83zmCNpDOnWDJFMGSVV+eqMYJwxJSlkSpIh8iYNcmKFHbhIEfFshc1z97WBHGAERSksg6sI0cxwFMqYEt6sxTdLLJSLRJfsZP34igcC0dfKTCaMIQVgVYpkTtnnYk+Q0w4balMJV45TuTeghiUJijm1fgKpamcleOoMrXVTCoxntusdTH3k1FgThGFw9UTsIHjZYv3Lc4YrBUXz+QDMcRiHCfFJAVPjoatpubDlxsubWnmx8cEND4pfIzMF0u00mxsTNjc2mEym0mqtdElCDASU7Ex0A6jEkZePrrYuyutMUmvrR4VYs2vJJrASHNVmYrBi426q2qyUlQqo2PA54wOGZuDWOmjsHnJhWrguUtbpGrCVG+yv1wym25wdNgzrSouXJ7y4ovPs3vhKXIxu9vZvcTzL3+E3/7Sr/Pw5IDDO4fC0lCRjalhumnohxNU4VwkJZlHDx7cYjpt+LHP/Rh//+//XRaLgclkglWB+dEJk+kWh0uNx+Fqy+VpxcP9Q7oAWSusM1href/mLRbtbe7f26epNXWtCBGyaahs5PqFbT72ysu88dYhKUy4d/sOmIo2BI4XJ1yfXWBzY4JSljQYjh8FHu4f8U465sqlxKMHPTdv32a57CUOwdRUbsreziWmkw2MrgpKmPG+5+TkiOXihJQSlXOAoSqeUMY4cpZrdUwFaVCajMdomDQVs6YmzXsUScbdehQXFMOzDAWPJMeCNCKcIxm7J/EjiQ6ixQ89wXfEAYzeZH6Q6JdyLdVZGpPVIlfJ1VW4ePL6EuMYRcbdo7GTvO5i84Ccg5TWBnXqpTVyRPT3OHoZ16FqLInn/762WM+c1jVVrPnPWmd8743K/8c+KKlIAD/zmc/gnOOf/JN/wk//9E8D8J3vfIcbN27w2muvAfDaa6/x1//6X+f+/ftcvnwZgF/91V9la2uLV1999ft+7lOKhjp3u8KUqPmR1HP+kKxW/gWBWUdGxobkfENx5vf83dGPESY7z9EYFS5yQ4HwlEijHxuxrPZ9uuocEZTVfkozv3qWPHbNo8ZdyGK7uxeYzTbx3hN8ZPCeuw/u8OZbr3P33l1CkNydGEtDkDLC+D49oc43Jyu+jB6JVlJB9dpxHI91Xv2bAE8KPTlFamfR2kmeS4SBikpXqJTQGHkt2oCOWCXoUA6RHBM+9TLmMeIaqknkFKmMmMQNQTxN+kE4TNba8j5KTk2lCSmuJL5DTNiYMSWvyKdM6gPa1iXXJqOMLXk7GpWleNkyqul7vzJyiinTec+kqrDWsZgvqJwED/ZB5sIRYeNnhHsSEJ8DaySKPkbhW4BiDBlMCUFFskIVRn4MoXhrUCBtI6hIzOSk6XqRAYtz8BjgKEZwqqBgSWmCD2AldbgfpCgzynazBCSGknMjXBxfZOdybmotBLyMeC6M57m1RpCPQS7w1kgWkrUaJ15y4lNSGSqdUCay3SgapxmMltGdVagYSL5jGHpqbYQ7U9DKnCKmkhTmmEQRFKNnMpsImuGX7M12SMHT+kAbMhEjzrK2om5qdi5cYGtrE+sciVzM5iR8UI+NUgaJrc8rYzj5zsiYwNrSyMZcPsOS7G3sKr1cl/cfY8RYIcuqJCvckaNlVMbpSENmZ2poVcXcGKKX9OjdzYvMjx8yLDu2t3f46Mc/ibIVqSQmp0Fs3n0YODnex6eIcpamqTBWU1eKC7sXGM3LUIocMm+88S1eeOl5lMloHVC6p5pU7F3YkHNdSWhd1dRYp3jh6StMG837t+6ztzflxRee4hMfe5WvfvVbfOXrXycki2tc4W0FGmfRRC5f3Obg8A6vv/1N6mqbRXuXlDusroFEXddYvUndzHjzzbeIITG0cOvmAW9865jFSaRdyvhyMnNMmx02NzfJqsPUC65d2eHmew85Pj7m6HBOCAOgcU4zmVZoVRR92ZKyWknhxfpTobJmGDTz+YC1HZvbNYu2Q0qmJIMnlVcNwRhno8r/10UF4qVj2L+74CtfepsrV7axcQcdIypGukVi6CGnEaVcH7Wsj17Gc6TUH3W2co21QhaDegVsl5vO1hV19nk+aFPrTc04w3n8Xmf/O4528ojwj+j+45SKP2j7vhqUv/bX/hp/6k/9KZ599llOTk74+Z//ef75P//n/Mqv/Arb29v8xb/4F/mrf/Wvsre3x9bWFn/lr/wVXnvtNT73uc8B8Cf/5J/k1Vdf5d/79/49/uv/+r/m7t27/Mf/8X/Mz/zMzzwRIfkDtxXhZ/2NqzM/60RUhVoduDNToXMr/fMd3joxdhzsnCI353cxdgxPCBp8rIlRxY5/JGKeNgGn9zndZy5PlHNepe2OP2dHL+eeo3BAmqZh0kwRT4yEjwO3bs+YTCbEmFku2pVLqkoZpUfJcHrs9a93yMoUy3Vk7j4y9OXeo9eKKrP5tDomVmcuXrjApK4xccCEgW9/+yYffW6bqa4BKYw+iGLDWC1AZxKIJ+tMzpHoA8YYfBAXVbSS1S9SYGOU4umqmvnJCXXlqKd1kRBr5stOkBYklNAEK5yXlDEqM51OxIsAmG1tsVx0dF1HU4l3gzaG3vcoJWhfCpGu76lxNJWm61r6wTPd2EQbUQ75IZKNAmsKF0QyT2KJNdWGIiWX2XtWZTW/knHLWR+TnNPaaJraUdcVPsg5HEMQXgiQ0iAFxgrS0/virZAiRltc1RAZ8Cky+IgyDrEFjwwhoLQoe2QUJc3PeB64kiNU1RV91wvygTQmo/dJilGQuJzQOYlJmdUQ5f05q9ioNc6Ks26PYlpLE1JVTs5jP6BUpDJl3q6zQPgosjWEJDLpWBx/xZclo/zA3lRxYXPCYrkUdVBUmEqzvb3DZLaBsYbJtME6K+9HKZKC6AUyF3fg8h1Thpwzfd8TitPveCGX8EWNNqVxjAHvfZGQ69UqdrRojyGuDO5GJZ41erVK1ho6C4ZAHFo+8tGP8Ef+9X+bX//Nz3O0uMHWrOIzn/ksP/wjPw7KicQ5eN76zrf54m/9S65cvoA9HHh0dCKZUmlAmwnNtGI6qaXBylLoF8ePuHfvBp/+zGfpltIEd92C2SyhzaYcAyLNtGIZwGjHndu3+ehHnicOJzx9/QKvvPgi7aB4/e0HzFuDtonQB05OFjirxbnVwN7eBR4cPqRPx6QQwAwiOU8aP2ROTgLvvXfA3bvf4P6DO+ztbbI5mzE/esj8OJOSNOGucly/+gJNM2O5PKbr51y4MOHBg9vcf3CP+fGA0RZTKbHLryohviIKmZRk5JGLPxMK9Hg9zYpuCJwsWvb2tpht1rQdQvZXoiQbre5LcRBYDWQkP2IqSgE1vodvfe0mb377FihJ7Q5eC5o8Xt/PLOzG6/nji19yiecbAf3V86xezZnm4oO3J3Un6glNywrOeWKTclrr1qvuk+73+Pv5btv31aDcv3+fP/fn/hx37txhe3ubT37yk/zKr/wKf+JP/AkA/pv/5r9Ba81P//RP0/c9P/mTP8l/99/9d6vHG2P4B//gH/CX/tJf4rXXXmM2m/Hn//yf5z/7z/6z7+dlrLYRLjolypYTa62hkH/GQ3baMJyXx67t9bHnWR+3jOfhWfTktHNdjYCykiZCnXqXfJC8WOtTfocxI4Ky1knJI868uvE9rxoF+eX0tqxRqhybM125XCRTEAhxe3ubjc0pj/YPeOutd4ixL+oXijpDVoJN06y8LCRBd+TZRFRKRJUR28ORQKZWByaXy63cKoZuu5sNF7enXNmaUZGpTcPhwwcc39tHqcSHntlj6sCkhENWC1YLZBrLKEpoNkK+zYB2opJJKReai+XweA5JCpaPiZhhseykWKqGSWVZtguqGpR14hPTe1KM1JUE/T06PKGuDHXjiAjhVYibCmMq2kEKlbGGqrLUdc1iPkdpuzI8m25siHV99FhXEb0nJQSG1mJ8pa2FrBl8wCFKAlCliCWytitfnDHJtfMRlGY6ndEeS0J19EoafiXEZ2s1gx/ICGriUBhbkXPADwNt7MopIr4qMSkG30mTpgSpCVEs7Y11GOsIMZXwRDm/YwwEL6GHJmt8aY5iyOIJUs7laVOjgdpqaidNhs6Bxsl4p7JQ1wavDdlnFl2LUorKOFwzYen7U5QxK6zTWG2QD9yQVQICEY81ClJkZjIvXt0G3zIPvVjCuAqjKybTGRsbG2QtLq8ZIblqY1fNtJgQCkKYcy41yFBV1SoHSGlJeh7dbMdCZYxwaFIqybtKroOUxyjABy/OrNpQ1ZbkB0IAqzJaJWqrcBr6ecezL36cS1ef5q233yWTuXr1Kp/9sX+FerIr3wGVOT58wD/6+7/A/TvvsrvXcP3KNXxICG9XeFpKwdD50uwrcox8++u/R04tL7/8CnduH1G7GbWbyGgmC/+mMhSpuAIcR4f7HB084OMffZaLF3YxxvGPf/23uXFnHx9h1hiqesKyDdgqM9twbE9qQvAcnczpg0fbhFEOq63EMXjPw4dL3r11h647oZlC07Rc3rvASy9c4+HDBct2ICRFXTfs7GxwfHzM4eE+WkVuvfeQ46NDNBV1Oc8nkwZrG9AOcMIdy4lccsBUyeQRlY8mZQlKDdHivZy9167v8fD+CX2bSEmTxmK9Ki3nrtcF+T6lAsjYyQ/CmUrJAbrI44tv0riXP7CIr7cBZ+vd+N/vAozIfQon6DF0ZXz9Z/Z2dv8ffN+1Rfnq3bDqn1JOfJcdPbZ9Xw3Kz/3cz33XvzdNw9/4G3+Dv/E3/sYH3ue5557jH/7Df/j9PO133VaGZo+NcUqXiyw186pmPn5wznyY5z7Zx4ieeX0f56GrU9mxKmjLkxCO9dd9+kSnjqx6jDDm9LGrh5dmZ72LXW9SRrMqIQgmSqrciAcKZF0UNSEGtre32buww63mNnfu3iPnzDB4co4F3hZH2t3dXba2tlgulywWi+LeSTn2FDlbAEJJmB75N4Lfi5RUsdVMuXZxhyvbFc63LO/f5KRd8ojE/kkrEtXbRyhjePnaFpUxWMSxUpo+0e9bp0ixqIMAirmc9x5bWVQZpYQQMEAOEZOFb9K1LctWcoa891itCUFGDkmL2kVT/D66nsEPxFyBEVmwUgZjHUkJv8KHUN6rONY29aQYuw3yWRjxoknFuM45R1YKZc3q3FVl/q2UFthfiVpEkWU0osRpFQUhRbGdz5rOR5KpSEqtogusdSKBDZKbElIq+TcS2hhjJA1jcdIkXwzmtEarJPvJGleVsQSKoZMgxaTUyl1XFQa1UmIMpY2gBymK1DbEIKPL8uMqRWUMmozTUBtBEJ2yNM4wcYrKZCa1hqrh4pblfiskWOO09CDRklMsKeGWGHyRMVuW8148YdSAcTXkRJUT17cbtmuDH8Q92WfDtKmxJTOpmQgSllOQJiJplJExXanf5XqyDrWPyjRpSmz53oYgkQZaG5wtAZJZrPt7L6GMdVVhtXBTRg+NkUUWY0AZLQ66/QCIcV5W0IfMu+/e4Cvfeo+jR0dsbFheeuVlXnz540ADOTG0R3zty79J6A+ZVIrptOGTP/wjmN/9PI+OH5BVwtqMUo4YQCuDz4nF/IQvfuE3eOrZS0xmW9x78Ab90KOUQ2U4PDih0pqnnnmW2wcDGA9GSMH37t/n6rVXmG5M+M6bN3jnvQeEpDA6sjFzLJdzFB5nHX3XM9mbUdWK45NjQfJiL9k/SkOOGON4cO+YgUjTbFFZIGsODw/Y3Z2QVc+kDbiqYjrbIvsDhv4AYkvbBZKr2JhskmJkOpkSQhQXbeXwsaAmxXdGxqbCy1IEUJacpaHOQE6K3ivapefSJcfT17a5e+uQZZtIypCzKLpGI7NxEZZKbU4r5czIVZF75IKCyqWr2AuUc2CcvpzaY6ytuQsaPdaiU+Tl8e27tQGr2rPiDzz57ytOFUIUf3x78mPP3pqgqDcFFf/eLfZ/oLN4xm01dzuPUGiZl44X0Q+UOeWzxJ7H/5zXCv9421k0ZtzWvVTW+Rrr457z+16/7/n/l3tBITvJyCSSxw9cpVPQZs2XZEQ4RufH8eQa0ZxQxiZVZZlMJlRNxWwmWRFVVeN9v3KCbZqG3d1dLl26xMHBQVkxy7gmo/FRLiw5tqjsZQyB5ELkDFYbNieOS9sbXGgamtCS7t5hsZyzbCM+Z/oMPmQClsM28frNfTLw3F7NVAWMioQUS2G3KDI6lwTlNb+VkbPhfSRngedTyign1vLWGKba0i7nDD7iXE1SohLyg8c5Q2UdOSaO50t834sRWMp0gzQ8KSqmTSUOt4jzqNaKPkjku/MDPmfiMKCtwVlN7z3GCkfBx4CxVrJqQgSUoBJJxlV1U4khGUjjqqW5EAm1KJd8DvQxE7Vj2XlOlkt8FEWWq1yxgB9QWlNXjqrcZgsKk1cNJsVtVgvxrnyfxMNDPj+R7GZMWf0rpaCcG6Z8L0Z+T5ZrEbYUaFKCGNFGkByrEGKrySgCtdNMnGFiNZNKUztFXVsa4/j4cxe48eAmvpfE6UUUsynnFD54QpZs15QSQy/Nh7MOrAS4EQMbJvL8pQ1UHuhDIGuHR7NhKyaTms3NmTRMVhG8kuToXIItkcBCo3SZJOdyjp0aEq5/T0eDwowqElYZ14zOzCL377DWMG2mVM4SfC8Ak9LE4CGJlDWmjKsqQgKrK/o48OBggVre5a13b2KTkKF/+DM/SjO7iAKiH/jd3/qnfP5f/CM0gRB6nnnmWV773B/lvVvv4pkTo3CEhkGx/+gePhxj7Da3b77PrVvv8slPfxytG/YuXBBn6JhJAabTDXLMzJdLppsbXJjC0Ncsjjx9gvnQkR495CvfeINlJ5BmUyeuXJzR9WNIZWS5DLjqQlGRddhK0S+GstgQBEtpzRA0rtmjdjXEJbVzBN/i/YKLlzY5PknEnLC2ZXOzorIzcmjRKJpalDfa9jz3/CWOHnkOHiUGXxQ1xkMOoCOVtXRdT4oe4xQkhU9i1JYLBBJ85OiwpbaRp67sUT+1y/t3DulQ9EMgFaKsxGgUnlIuwak5yni28JbOgx2CQMo1/BRvGCH5U0RmpdZcmwT8QduTPKrOIO7yh+9pX+NrHtuh9Vp6pi5+wGPTudfyvW4/0A3KafFnBXeB/F98Cyifp1ikj6qU9e080fUMj+hcY3Fa9B+X+473fyIfJPPYfc6/j3LvD3htT3jN+Umn6bkT5glJlSPiIWRZj3GyAnDOsbOzjTWS1huCJwa/8piomwrnjEDqK96EvA7nRE4nhPWKCGQjHICGxKVJzU6t0WHJycMbLNsOm4Q8qE2F8hGdPTonjEn0IbO/gOGdh/hum1ef26ZhSVXSM4fOC5qipEEaC0qMGT/0GCNjM2Nktmy1YYiRVObtOouFe+49ddMIApITzo52/lpIuDGRlMbVE5ppTdsuSMnQDz0xZ3acFU8HJwTZFBPZSaie1gZb1djKCWqBqHVkxZjYmE6IIQhrX4taaEQ4ct+X4i9uliiDsULoTFGRlSbhWHQDfTbMu8QQFdY1ohpQkqETkpA3CYrBiyGVKYTiEf2ytiryzVSkxhKw1vUDcfAoY8Qjwlj6wWMRRE2yTqToGqVKwzPm2AgZtzKVcKxUxpVGTeeE1RFnFLNJRWM0VsPUGRonxNi60qASr15reO/6lIdDxWxzylt3jskpUxnNctGSssbVUwbvCSmKk23ygubERJ0TL13b4dlr23TzExZzj1LyfrRV7O5uUddVGVeIWi5Q8k6iBEKmLCM2lC4jFE1IAZSQjVFZFG+IYkvXtaAqMRGCELAz0qCpKDLx2kqjnKLkW1VVJeNTlYi9WPfLKEkk2E41ZA2P5kuaqHA6sTl1PP/c07z6iU+hTUXsO77wm/+Uf/orfweVFrIqz4ndCxdJqcK6hsl0KinmIbFcdnzrO7+DczU/9Mk/xp3b77G9O+OFF15EKc3lK5e4/tQ17t66TVM5KmeoZ4aoWi5evcIsGIblCd21Lfww5+1b71E3M07alqwyk0Zx/douk6m4AMfUklWFomJr9yJ3H9wn5Y7ZVBFaCalESYOotKYyNcbUBaHQjDw6ycUaeOaZ6xyfHAphVwe2rjdcuvQMt9+fs5gntrYaXnn1afYubtK3jm/8/j3u3xtIIRBTS9cfgYqkZNDOsL2zjdaOg/05o2urKHYkAKdvM4u5Ybkx4Ay88OwWxhoeHZzQdpn5ItB7QSuz0mSTiLnEOhQZaRprxtikKFipgArKIKOfcUGaz9Wf0+v8mQy3J1aPJ2+r+qTU99jmjE/wB+E04+J6pFyoM8VvzMd70jThu20/0A3KCiFYQzOkcucPaAxz6VTX5jhrXeBIKjqdppw9Qc62BGnt9tP7az3ev3wYxdF1nSh7vqkZ5+nrfcvZJuaUnLh2y2kXPr4Hxi49l6Xs2S58/TCMuSnVRKLZrTPUTY0fRufBpqwABcaeTifFkRRW5ORySAyekcaetUOhqOuKnVnNrlNwfEB394B2OSfmEhCXZeyTtCKaXCSBAqenrFh2iWFIfOPGI5pZzUef3kYNxziFNAGDrKDGVcWYXorS4iOg5XhoJdZwsVz0szaSShsTrq7pBi9Qe1YQJQ/HVZYYxeLdWUfIgHaEqMQvQ7siyTX4IIZgbT9gtKHWws9QxhKThOpVZWQzEiONNfS9mJuJkZkqK9tcFEtalDopUTkrDWA53ORcbPYzPlkeHC15eNxzvBjQ2rG12WCN8BrQppjZjcdCC/tWQc5iLpdQ0rwlwU9Ge/+sNEMYyCHJKEQLGXjkWBij0UqJqVUJVYzF9r9ycs44TblfxhmFNVBpI/9aTeMMTmcmztA4Q20UzmQqLVyUpzYMH7m2wTfvR/ooq90QAygR1ptxRFZQDWuLMWNK1HHgmb2Gj794jc1GBo7LpeQOoaFyhqZ2GFPMt1QpIiXjSkB5jVnL+LGjQRviXyIFM67g+pwFwRNJcll4KJFIawW1s9ROcoZi8OIPY53wmZR46diYGfpQxnWyio9EprNNtHHMF3Ma59i6ts0nPvlpLl2+Djnz9hvf4p/8v36JNMyZTh137j1AWculy9eZbuww3dhGHVhSUvgholAcHh3wa7/6D7l385AbN27xIz/2GWabDe/e+AZvvfMdjtsHzDZrQu+ZLxbMtmbYCjIdYVjSLY64dnmX/aPIfJhzdHhItgGtBnLKHC8GTpZHLOZLYpax7BBbVGPoFy0f+shzdDnx6MGCg7sDR8eewWdspen6juODJVVt2KsMITnAo4zCOkUzcVTVNlpFVE7MNgxbmxdJSfP2mw/xyXP3wSM8EecmfPyHX+L1b97nnXfeIeYeZcS8rZlUTOpNrJlwcij8LbmEjxwTkRWHlDg8GQjxEdNGsbvhuHpplxeeusjW9g6Dj7x74xYHx0vmy44uKJKWoMvR3FMpGXSMV+S0UjeKyIAztUE/ft2Wi++Z+gOjp8k6AvMHb2r17ymWsyoP4/p2fTE9LnZXk6EnP1M+vcPpcylRlq4lDH7P2w90g3Jae892I0qxIp6e38pITT7MnM80DuNOz6MmpyqesyF5uTz36Zhm/XM5bUbkJOTMPs83NhTOzAdLjTMjIfFUYvwEfstoBqMgF0j68UYml1l5oKo2V+ORvNb2aK1p6orptCEDk0nz2GsbybxC2kwiSY2ZvY0Jlzdqat9yfOs2qesIwyDQJ7lIazO6sqhmSqUd3fEJqh8KZyKTs2bpE8sh8qXv3MWoxIeuTElhgUERjcCmIvmVY6eU8EgUuRRGKZAxS1Og9eiCqrBKii7KoK2lWy4xUWONwhVysDai7Fn2A4EFOSnmC7HA397eZvABRabrBnofqIxYn/uY6NoOxgIHjLksSomXUPQehcJZK3B3iNjKlJWvjNCc0bKCT/K5mGLStmwHThaeQM3hyRH7B0u6IeAqxXRKaRAkD8daQTtykoRhCpenHwLGSrPog6BZKWdMVeFL6jJKvFKSF1O2um5WsRPCryiXRwVVZck5YnQp5BmMLo2JVlROzMtqragrQ+UUVicaZ2mskaC9nKitQSWRcW9Yw6WZYnF0yENvCDQkpUkRqskUoxU5JMiFbOtkvJe7jstbmh/50FW2G0kk9j7RTKYSa9A4Nmc1kqyt8CFhjMizNVn4Cams+rQWZGYVylY4REmUL9YYrBFuUIYSliifVQgSdGmU7MsaGfEJIqNWo2edxck550hdS+5OHPK4AiN5jzUzaX6GiCIS08DO5SsYV7OcH/Pbv/VPqFSP3aw4PllycDhn59Ildi5cZrq5xc7uJfw7EnsQUyIkzxB6SI5f+tv/d5567hm2tiNvvvstlkPPoltyPD8gJM+yWzCdakIyuGaG9wOLowW577lweZfNrYavvP4dkgpsbBlsspAVx4uOIWYgMtmakXIkpIHb92+yOdFUrqKqDAQFviUqw+FhR9e3DEMnSFayhBAJSVyRjVWAnGci1fa89MKzYALOTphuVBwvTzicdxy2hnfev0si01SbDEtY9AtGn5Pt7V3A0LeKk7Zl6DKaqox2hOuRlRFvJ53pI9AqhgjzZctysFy8sMm9wxtsb9Q8/fQOn7r4CikbDo5aHj464vbdfY7nLUMvxFqVRCicoJixlWKU8to19Sx6fro4fnJNk+XHd1fsnHIZ1+Ui8tjxeXjstic905ORe6mhnNYeTqca67Xyex1PjdsPfoNSttNRz0hUKiTZVW+R1+6nVichKq+gN/n72X2uP24s3qdeJh88LlLqyR/lB3FRgBWZ8IwS6bG3fE6B9NgBOUWETp+vWNavITg+DISYVtyBMTgwZUkXAYq65BReleCz1Tkoq/oRutTiiHppo+H6xOAP7nBy+IjcD8Sc8VmKlraGbBSuaZju7hGqRsYEruJk/4GYs0XhdYSUidnw4Cjwzbf3ubw55cpsSswtKkVZzWot+SDoFQJmV8RZdYqiyItk6Hu0EkVQKjXgZL6k63qMVmzMJizbnhi9HI8YReLc9jRVRdaiypgvWqwWEodSisqJfFGVfKHBB7SxtP3AMOSV5DanzLJtcQXmz4xurYmchXuQSoaQsqa8R/HjWPYerQxDyAxZczBvOVlG+h6Mramqmq7vUbnMHLIYs8WYqFxFioGuHXBVRVbFLl0JvOyDqInS4EmI5X1MFH6PnEN+OB0TOWMoXmt4PwiRVUtCsTXiBeGMJFg7LaMblaGxmtppmtpilKhCjBYyt7HCU0EGbRgyT1/e5tUXMl988xGHiznLbAkZrLVMasNGY7FJkK+YAjkmNmvFqy9c5fK2I4cOP2RA+FYqJJpKUzsLqFWuUMqQQlid82hxIRYzOknDlpGkNLoYucbkIsMf3YeNdmXEI9J2QTXTSJGUfwti40eVkJFsGmdr8UNJgyQ1Z2nAx0f7IYgRIJl65rhw6SopZL71+7/L4cMbXLq4wZ39h/RDpqo32NraKcGMkY98+OP87pd/A09PyOJ11IeeSzs7XL26h1GJd959gxDnVJMJizbS9pH9gyMIiWU30PeRoY10/ZyHtx+wt7XD3oVd3r55k+l0i+XRA2nCnGWxGGj7QNJCju7jIGRUo3n/1i2uX9pl2fbU05rloufgcM7hUeDouC/kblmkjIpA7xNNI+eHqxQxyVh2HIlcunyZGDRb2z0xaLoOQs7U05q+7zkOR0QfUNlgbM10ukUODUMXCT6TA+J0nMuCTqcCc4gyLCoxUYtYQrZ4ArcOB+4fP0ITaOwRs0nk8uWH7O3s8fQzz/Lyy9dR2nJ01PHee7e4ffsBBwcnLLtB+HalWZHrqLxPUbkIeVrphEIWYCmPHimnV/qxExAQ+TSg72xpWudA5lIf17GWJzU9aq1eUB53tm3JY1O0trCXi5VcT84OkD64Tv5B2w92g1LgfUaZbhnxCPRcCLLASDDNuRTsDJSCOW7iRSCW8jmd7nP194KerCMo4+2w1viUD1SY4QJBy0JNmo8Rzyjor1hjj8gEMuNed6CVS1OJwlKsouxX3relz6IEIwoSN/qWjHNMkUaKs2YxkCpQvTWWHEe/h3XfGIHjlC7yt5zIWa8gSl08yweVsFnC0C5tb3K9SbB/h4P7DxlC8SxR4ElEZajqGRsXLqKbCQ9jpu081zcUF6aJS3rKnYeJRe9llpvkSxCCZv8k8vrNA9LVKRe3GqyK2Fxku0rcYo0zoOXClGIkxURdOawec2VAaUtVWTYmFWRpJNphlHkqIcL64iJvrYxcUhDeTgnyQyGmbJXFGsV0MsGbQRoUJY6Z2jop5tbRdx3tEKjrCmfEy0UpKajSPDiIShAZLb4iKXtyTviUsdahjGM572XlbhxBax4eH3N00pOzLXJKT0wweE4vMFHQGKUTRluGzhOzl8YujEF+auXfkVKWvBsvPJWqqtbOwYgAZVqkzzqfBkBqcYV1RmM0kCKVVWKzbzWVBqsMlYVpY3FGYdBonamsKeF6YhintcYr4fJMDXzulYtsbm7wa195n3ePAn1QtH2gb2F6eVOOl09UMTK1iY+9cJlnL2+iVaSqLNYkQi3RAoqaSVNRV3YFp0ogpZjm6cK3GdO6U46i7MkKCsrokyAvI7ieUxROSRLukUZGWM6ach7Lftu2Q2tR9hhrSV4k/c5AjB5talQW3smy94TsOO4UhyGzHGAy2eLWo0MqV5HbRBwUN998ky/+i39M6g9RdY1xG9x/eJOtrW1O5nO+8bUvc3S4YO/iZV5+8WN8+fd/g5QTMYsCZd6d4GYVd289ZHtng+29qfgN6YRzFc10SrscaIfI8dGco/uPCKHFJbhy7SkOlz2vv/s+9bShPe5QObE48fghEbxH20xURTljFJV1DG3i0cGCZlKh5wNDn5jPM+0y0i4lYFMCIaXZrYyBgFy7rBDMQwp07YJr13bQNqNypKoq9nb2uLhzheXSIvEVCUeP1h0bM00MBqNmKF8TenmcIZK0nO9KG8ilDmQhcgvoK69HAUZpxoT1lDWJmi5H7GRg+8pF3nrrDr//rfeYTDVXLmxz/dJlnr12gRefu0SIieOjEw6Plty6vc+jwyXHy5YQMyGDSqWFyInKBj7xiVdQSvHmm7c4POpIGHHIyQqFKaOhwkxfawxW/65Wkut1cx3JKLaajy32x7+XpmdlVTsOl9YM3DKMohH5TpzyY8bJwPePncj2g92gcIoojI3D2O1prVax7uvQ0hOJp6Xx0+Ph1QrOISDSlIyz5vURz9ltbFJk3HOWWJtW0EN50rzWDoxwrz475sllJq7WDNzG8ZRae9zoODjuI8a49vqlqz1tnhKhmFk5V51KT8+FJ47HVmlFTpCKfboqF+cRgs7A9qTiokss7tzh5GCfEGRuK1E6GlVP2Nraha0dHqVIaDuGIaO0I1GzubFJrT2zy5tk5tw7aWmVICnGWrqk+Pp7B9x+eMirL1zilWcuYzMMQyJbLTEYWmN0Jnu5qMQMiy6gyqjLOs1sVpN1pPed+O1Gz+bElouTyFZzQZGcMUUVaKEQWF3hdESdQWlRx3hPTJFKiWw1xVjgfL0y5zLayNjDGJy2sJJxj7C7NLUkQVsUsoJMKTH4SFIJtBFoOQQetfD27QW9T8xqRUgDjVZM6opYUJPx/BvVJSAIlpzPMgLsfY9VMqKQUZR89tYI0qVyXpF45XHF+C1GnHUF8dCk4DEqYY00bTpD4yxGWTRZ5OJGMW0cdWWFzJskZTakhMkWhci9c/aEGEqD6NieNPzwRy9jJht84Rvv8f6DE2I2bG1vMW8XdPMTNivFM5e2+NDzV3nq4iY6thgF09kGdVVJCkmW0Yvk5BhyGSfq0syZgliFHOScZVzQiOTcWk0M8n2IJHLShJAYBs8QDbMN4XNpwBlLyKmMyyQ8MuuMTx5rHV2Q5qSuKrZmM0I/0KVI5z3LNNAbw+2HLTfuHKK3L3Fz+Yhb9x6wXHiWeMxiyS/84t9mUlni4hCrB3Yvf4Qfe+2TvPve/5O2P+Kzn/os/8af+rO8f+s+/8Pf/L8R6Tg8aAnZ42LAT2oGY/DKc9wd0z4YcNVVNk1D6gImi6NxTuLdEb0iDDIO29ieosh89Stf58G9fXYv7mAxxFjGds7StonZ5gRXGw6ODkgxC5+JTNtFQupx1uE9+CCfvVyuhHljXcTWGtvIwkOuzRSEsiPhmc0q6kbjw0ClG6bThgsXLqKVoE8hRYyZiEpHa8xozoa4so5XutMakVc/SmW00hhlgVAQd49S4CoxP6wnmYuXdnjmmee5c/dN3CTy4keucPPGXebzBe/cvcsbNx+gck1TVVy8sMnlC1tcvrzNi89dweiGw+Mj7u8/5NHBMSfHQ/FpUkxnFR/76FUOT47Z2XuZr/7+e9y9Py+LhGLtgJMmZa2mqTUH8A8ipZ7lVz5ex84/blwkrxWH1QL58ceeHSHlUhBXlfcDpgNP2n7AG5R1TkYssBOnHBRgvTk5IzVWaz9ZMAm50+NHfNVkpFVNXhX7800MjM3Jk1/v+fuP9tfrr2+N8nL6HtZ5MZx9zPldP5njsravcqporRmGAe8HloslbdsWvgIYkzAaQqglcTUJ9JhW3hCyN6M0jTFc22yID25z8ugRQwCyJhFJrkJXM2a7e3jreLRoWcaE0RliQunI/WPPbJq4bis2J558cUr0A3cXkQgYC62PLHvFfMgctg94eDLw4ad2yKYmpU5m0nocT5mVI+4QpcDXVjgqMQykCC0iH22cZeIc0Xvq6YycAt1yzvb2Nn3flRweyTdqmrpIQ70QQ72ncqagS7nctyhlkljV9/2ikDg1tpZE3pDG/B6LNcLLMdahkxAzh85jbHGIVZqEZtF2DEkRsDw8Hnjn7pKDeaBuajBgHUwaR+Us0VjariPEuEJGRvmjtRZyFl+WlPA+gpW05lXuTLGzF8l2OnP+GC0BedZqpk0lF8oYGHzEIORWo0Alke5aLcELxlCSimU1lhFUQSuLUtD5hI5qRd5WSuMTuNowrSo2as2nX7rIhU3LW+/vs38y4HHc2e+oNho+9MwlXrq+x8XtCbVTxAA5J5rKUTdVUdpIOKUQ0iX1WhWp34h2ppxW38lxcTO+/xizXPyzQOUxRlI8XT3KaEg+dxUTPkkTE2PCmAq0qOd6H8hZmiOMYr4YSCFy2LXMfeSoD7xz95Df//ZtHp1Etq5Fbi965v2cfvD07QA68YUvfJ6Le5tc2dvmheef48f+0J+gjxPqyYzdC5tcuHyRutlF6WMePLjPW+++CToz2840U5htNUztBI8napg1DQ8eHDD0gcpZhrYldAMqZ/puoGsD/ZDZ3m5wruHu3YfcuHETnwKEyGd/+NPcv/+It996v1xLAkdHJ1y8vMv25g6HR4foLMnN2mqsE7v5PAS6bimcHYTobEymajKzWUVT1WIcWXg/4qId2dioaSYVVWULB8pT1XUJaFSkFGSBl4AktgcpSp0Qz6a4toBUgqqX21iLClmhAMpjbCLrjs2dmu29hudeuMwnP/kxcrb80i9+lZt3bvHMM09x+emaq6pCm4a2d9y/1XK4P+edG3d5771bTJxjUk/Y273AxnbN9asXeenZp0ErQhwwRnGyWPLw3n3ev/s+R8uWq09fZ9HPOTmO5CSmjuhU6sT6dzWx3gN8d+XM6aL0MdRkvYacG/Ccr2XjlEI94W/nLe7/1zPiWeNcADLKUIVsaopJEpxBNOR+p/CXWivqq72qU4gM5IshZmQleXLVoMhrWJdPjSe8dLhl1DKe5Guw2KqJODPDW72T1czw9GSR2wGRs+a8srv/IPDsDH9m7HbKatFakRM/eLDPYnHC/v4jDg4OGYYBcvl7qDFW0zSNPLRwKABimWeaDJdmDa6bc3i0jw+BnKyMgrTDzHaZXrzCcmh51LWEpDHI2ESZyPbOhOQ9B0EzUY6KyPMXZ1hjaN++L0FmiA9HSIrgNUHBV9894O7DOVf3Gp67ukllIgQx2jLWYgqa5pzCZwQN0IVzAAxhHGtYUkwyf+464X4UJQ3aSMJvLiviIh/OSgr+4CPLtmdne4PoB/IKhcqrGd56sVNK0fUdpISzhkldg7Wi+lHSrFpnUKaQV7OE6/U50vpMFxK9d9x7OOfm7SWLABt4ZrWhqhtsZen7AWMdzrmV828sP2PGj6B0pvwkBh/IQG0qUawUqFgpUfXkdIqeKMSKvnbCIUkxQozUTjOtHU1tyQX9qK0WHxAknVUXcnSMCAKRZYVKqSG5cHGg2ARkQ24qJsYxrQyTWmHzlJ3G8c7tRxwtA89cvM7e1pTtxrDdaCZVoq4d2s6IIZFjEh6Mtas+v++61Xdm9EtSprjoxlh4WadNfAihoFDgrMZYJBxQZSH1qgrjFMPQy6o9SlMdAixaccJtGnHdbbtQZPzC+6kq+VxCijw8XnDzwZz9Rc9bNx9wd38JbkajHabxoAdmGw1hENLofNFDjlij+Dc/9WO8/JFP8xuf/z129i6ibUvVzLi3f4e/+/d/kRu3bgiKkxT90LG5Y6mmCza3t2gmU5rGMdusGdrAzVt3uXThIpU2bDQTuj7g8bR9x9HxCcps0A49N27eI3pR1bzy8rN43/HWW29xeCTHYbJRs1guuXN/n0sXL2FcjQ8BEwzEyDB4yJrgReaulZCprTUYm5g2MKlqSBrhFWcqV5BSNBf2duXapAQBNRbqRrO5NeHenaUsKJMqsvqywlSChCpNSXRfs4wglGJ6ij7mEeXOCa0j2zsVH/rws1y5vsmV67ts726wvb3Be+/cI0bNwWHPxUuRT3zqY9QN3LvziPffO6SeJLb2HDtbe+QI77x5h4OTnpsP7qDMwKT+DjsbNZcubbO13VBZS86abgjkbFkulwzqBs++eInb78853I8kXOGrFbpCNiBCeVZ0hrXJwfeKXMh9P/CvpWY9YRLB+Xq2Nmb6QGXtd99+sBuUgjZofTozGw1h9Nh9rMmQlf7APQnkXPa5vqWUZbyR0upkPj8KWSe+jo3FmSbxXMO4ru7hzLzvdH+rk2tsLPLpazt9/JNUPGNztQbf5Vxq5qn8cWO2ATnT9R3LwnuJITP0nhiDGF3lSFU5WXGHQNZK1DhJViFGKSbOsK0jywf3GYYgqpMsPhx2sklz4QoP+4FuaBmy9PkqZpIKNDOYTnoGozg48VRVRWMCOwa2asW1zYa0GDjyUQibWRAGHzQhG5YPPfcOB/aPej787C5PXdhB+Y449FJEUOQopDrIDDmDL4m6xlK7hpQzXRxIUWTIjTVUznJ0siwrYosPo2oqMfiW2XQqAWNoeh+ZLzsqq5jNZuQYCb5HWbGxDrnDKE1dN4Qos2Nri/GbD4WobCT3iEQ7tMXETaTY/SANz7KPDF4xDIqHD3sW8wyVxlmL0ZoYAzFJmrNJ4pPgnKPv+3Leis+K1jLi8MXt1BhDCKmM+MSvo3KuIIaxPEZcT21dSVOq1MrTpAh2qKuKjdkEaxR962VswkjKg9GsLCaFcxU+eAbvhUNkLVXdiPHd2Lg7R0TT+cxGkpm/MdA4w8YkcWGrYdpEdjanKyTHGtBWoZ3FWStIio9nxqrGiGGfjC4l30gpQbGU1hjtVty1kfirnCUXk7wRiSFnKqdpmgnLtqMfIvPeswyZ1iu6sOToaM7R4TG7u9tsbmYODg8JIWKqipOTBctFT4yJelrTec+dB4c8eDQQleXR8QlRV6QQ2Nzd5FMf/xTHv/xr3Ls7xzqN71RRZkXQNU89/wpR19x/cJ+26zi494Cj49/g1//lb/Od11+n69sCFCv8oDg68FSzAT/Av/q5P8qVnXe4eeM9QljSbG6xf7hgdzajtg19v5BGwMCy6wkHmaPj+xwdLUlZ/Gy2d2Z86Utf4+h4SdYV1dQy225IxtN1meNFRwhF2RUE8R6Ksm9MY9+YGpqmZmtrhnOSJmxtxTB4vA/UlaiYgoo4O+Hq5cs0tYMkI26tFFUFV65NeffdBzCo1bU751BQkiwI3gr5Gm0g1gwwT5UVhdcopNWq1vzJP/mHefWTT+HqzGS6yYOHD9l/OGd/f07KjqOjY9597z6bWw2TacXtW4+4fesRIQZSHHAzxY98+rNMZxO+/Ds3yTFRTWumOxMmW1OOo+fm23fp2xO2Nif82Od+lPfu3aH1AdMFMve4cu0ydR24f3cJ3pbXm1GqBAmuQPLThfOTlKHf65ZXheQUYVFPmCCcewSsLQLGacf3g57AD3iDcpbjcdq8jSjKGXTkHCoy3u/87+u3pUJwO32e05P3MXTiCftbf43iLVIa3TX0ZDU9VKcf5koiPc6rTv8Z73zmfa+eawXXyap1vMN4P4UB5dFai3tsVRFjYDqbAYq+H3j4MND1sbDo88qQq+s6Yk4SfBZlpRFyZjadQX9M6Fp8SMSsyAaMm1BduMB+37LoenyS5kVlyQFSVWRjY0o3HJLShHmf2LSOhdHsD5Gu63nm4hZ9Oua47wi5jA6yfCYeA1rRAm/eGzhc7vOZVyc8tTtF54iJmRzlglgrGWkoZeiGnqH3OAfTRmDcWOzJY5KiHBIYLyFw1jliygzBU1eWvvco46krSWDuk2cInt3tDZyXQDyMpR8CCsMwBOrKsew7KWol70cbSQ3OKGKQzJWMNNjDMMhxxOBTRdsGTo46lvOIT5n5SUJrcI2mqSziFyaSW1Ma0kgsyivxdJFIecmNMZUj9IPYrRuDc3nV5CslAWwplsylKFiZtoamqnBWEb3HaXGR1UaRQsbq06ykMZPJWCc28NbgCzrRDgnnhCMzJiQ3RrO1sUEzmQh3SgFK44cgTWbKkumjDFEZtM1sbDY03rM3sygNAUXWGuWEW0LhguWCghFHBIeCgEkYoFaQlYwDtTIrpNIWG/9MEvRn5BPpEjWBImnoouckJG4/OGHuDY/mnndv3efh4QnHJ0v6PrCxMcNVjuOTI5TS2Komxkzb9mKYRyKpjA+ZGAzaBFGw4ck2sXNpyt7FKT/yoz/ErfcX/P7vfYvBz8lJiMk/8cf+BC+8/FGSMjx8eJ+vf/PrhDigNVQTK9/dGKnqCrkCVSign3v2ti7whz73r/ETr13gjbe/ytHxQ2Ksefs77/Bb/+Kf0h52DCGwc2GLvl/gTxaYtufwREaX2IQyTlQ4hwux8p84MgFnLXt7e8xPeuGv9BE3kQZQJNuJlAJVpXGVYWNWsbuzwfPPP8Xu3jZt2/Pg4QGHB4fkJONJbXqcU1y7coXNjQ2ctaQ4Jm0ntO546rkpL+5PeOM7j5gfOVTQ5FTyj1SGpFZrP9liuVafBpuORVau3QHIaJ25cv0ily9fkKB3pjx88D6/+Zv/gjt3H9IuI/3Qs//ogAf7uwy3E4t5z9GJZH1durzLtaf32NozfOwTz/P66zfZ2t7mox9/iWQU9+4f8Nbr73F4MMeogclWw/HyhECiD5GGmpPFwDDc4/KlSzTNFu+/Nyd4OZZSGkwh8J6lNYzv5bRGnXIlz2+P1bFV/cyPLbYf356ErJy7x/fRJ/1gNygrTkjp5PL6hyK+BhRnzdMP5Jzl77kPY12dI81JSY7NJZlyrQs8KytW527LK6RFKUEOclagTjvaccZ0+npHB1xBNM6AZ5mCmKzNBte65PNn2hm+zdp7EzgwlzGYxhjHjpFVSBgk92SxOC48AMgpEHxEF/twN6lR0wnD0EPo2agsuk+rL7xBEYxjcvkyQ+XIw0A9tRivGUIkD2JQtjFrSMkzX3TszDZ4Zm+DPec4frTPvfstWzlwbcfx1MVNDgZPv4zFVCzLsYyFhKsNRlc86jJf+vYd3pxGPvTsRa7ubKP9gPGe3LVYpfA5oVTCOgUq4aOsqpSxUpzUmBghpmaiFgAfwdpagv98IsyXTJoarSD4zDBEYEmYZSZ1hbOSrNx2S/reU1UNKAtKbK99TAQvPinTSYPGMF8sV6dw7z0S6a7olpHDR0u645bF0UAbPEOXUFajHYQ0kKPBZEdlHApkla60rCq1omkaUkol70TgdMr3RkzXxMMkhCDur0pBSmiUqKCsKd4mAYXwZrSGSVNJNpJ2K66JypI7pND0IUJWDJ04pgqC4Vh23cqXBm1JyuCzwmZQVozMBLVRxCHgfS8qIWPovaho6toyKY6zQjOQ740uzraQi1RdRnU5B4lGiBmlbJmpS6OirSHGACmjlVvxiLSSy6OxMq7TRjN4L9ycnAko5n3g4TLwzsMl79484u7+CcfLjkhiCJEhJB4+eCSkfS1utHkxYEvgYgzlu6gLB0ZRYgTE/6aaOuptw92DG3z41Y/ykQ9f4J033mO5HOj8QNNUfPKHfojpxiZDUBwePCLFnumsAqD3mcVywDjNdGbxXhyXQZP7jPaGyk7Y2brMpz71h8k5QHS89ume7BW/+It/i2Ho+X+T9x/PtmzZeS/2my4zl9n+2GvLGwCsAkD3aKDHkF5IoSeFGgpFKEIN/VNqqK+OFKGGgtJ7ahBU6JGEHkmABFgFU1W3qq49/my/TJrp1Bgzc6197rlAgb0bzKp9z97L5MqVOXPOMb7xje9bdRvqytI0FmM91UxhK8e29UQ0T59cMZsdoE3F/fsPePb8JbeXHfP5koPmgF53DK1n0cyZ1QbjNCFaXKVZLCsePTzh8KhmsXAcHtacnNQoFhyf1KzXS5xrMKqi7zfc3qzIsdgsJHBVjU4BH3synoPDhr//j7/B4XHNn/3JC67PHSlWwIgiGrnLVenemhZVIc4mmAQ2x4k2Z1EGfvH8gnfePWO1vuan/+kX/Mkf/5RNtwaVpFW80oQYubpec3V5S7f2qCyootNb7Hdq+qHl+N6SD79zwsNHjzB15slnT3nx/IrbmzXDMFBVifV24PyipeslWen6BAl81xHjMx49fMw3v3PIZ59c4jsh4QutwEzHfTcQ2QUnsEP7f5PtLjVzJBjv1pxdo8YuQLm7turpsb8NjvO1DlCmYsad2o0q0tzmji/Om5uUPhTSbjwaGY0nmmkCHyXBY+F87Opvbw9sZB+7x0akZCzJjCWWHbl1Vw4aW5Gn597goewTYsf97b71+N+7QdN+QKaUmmr8shM5f5WtOD46gQ8S8/mMzfqG9epWmPGVKMzOl3OODg84OTyhntVs2g2XL56Rr65ZP3nJ0A8iLGIMs8Uhy3v32JI5XpxhjWO97rhdrRi2PX7osc5gdeSkOeLd2SHNkLm9fM3F+RVX60BYVpzGxKKueO9kyXV7wwaFV+Vcp0gqAVTMmWQV50FxtYpcrF/xwYMlj47nvHvvmNn8gOR76LconfAxk7K0quYsKqOmKKw6rbGuwihBM9pWnIoX1hFSZoiZShuGKF0qWQuiE5MmZE3nhZSrlCURiVnjo2hdmKLcmguSk0tdOzpFOwjPKUZo20QKcj7bVeD6Yg1DJvYKH4JIptcGnUXsyRkthMBcUVU1OQ+CwhTzQedcUdfdoSQyud9FBCdieeE4OWOLOByiuIoS0bGpE6bozBjhbMQkwniz2QKlDW3bk5GAK8WEMZaKhHEVzWKOMUI0tnVDwtCHJA7ECpSo5RPLzdEFTxwMvhAfDUKyjUV0yyiD1QqrdveCscIXEtO/TPSlLKog+EgunVriiC1t9hROSkYVsXHhzIh2jmYImRCSOFqjOF+1PL/q+fzVip998pQhaJQG4wwxQUxS1tLGFdl7ceMeUVUfgiwg2gi3rMwBKQJWc3h6zNPXT7nPGT/+8Xdx3Ofe/Xu8Pr9GBTEeXMznomo8RLa3K2aVYXFQ0XWBi8sNKSmamWG+qNluYbvdYK3YNLx88YLLy1csFu+BWiCGeYqqNrzz7jc4Oj7h9euXhQxsUFiOTuY0CyXGwOqMvk1c32xZHB7yYOEkyXqpiD2s+o7Do5qqytRNBjWQtaNq5sx0hY8DMQVO753xwx98Gz9siHEovJLEfLGgbmYYU5GjZf2s5a/+6lPe/8YR3/+tbyBaKZbKWVCZGBMxdjin+PDbB9TVgv/xX3/KzdWWmDIaQ4oleS1lkXGulJEjQe9UwZgmeIX3in/9P/wHXjx/yatXL3n+7JyuVWg7w7iIq0Arj/eZy/Oem5uWMESMsri6ZrXy/Pxnn/Hs2ef8+Ec/5jvfe8zL52ue/foJF6+vuL5YEbyaOCV9B6t1P5UkddSlQ09MJZ+lp7zz+F3e//CMJ5/e4HvpSNstUXdg97f8+zcHKF9dktnRCCQIuhv83HmlmkQxyHuJ+2+yfc0DFKTKnfeDgbFMokeAYvoZN2kdHHX87p7MXXAy8k4gTlLWu5rK2wi2O6LsVyjZ5t3r8y4qmco5E3KidrooXzU8JCreU3ZVirE1+u7nvr1GmFPa7Twr6qri4YNH3Ds7xQ8d6/UNMXmWyzmnJ8ccnhxxdnLC2fEJh8dHaAPrq3P+zT//7/j3n3wkbpzakKylPjzk+OSU+8s59x/cZzafcXFxxdNnz7m+vqFtO7zvqaLl0XKOWa05f/6Cvg/gE0YprjcD57Mt33hQ8eHZgvObFZ+tEx0iulaTduQwJUhASJkAXKwz2MCnry/4Zm/41gcPeHB8xqy7JW2uCV1HN0S2vQQqQ/AoIs4ZlMls1lu0RgjDqNL5IuTklDIxZlKEoGHwZaHWDh+kXEQWefiMQdsKHxM6RHxORfSsKFQWHopPmW5IhKDpuszqxpMHCG1L7jJ5UOSk8V5KEU5nwpCoFpU4Aquiomo0xjlcSgzDwND1xAx1vTNRtFaIdZVzALRtVwKZooKahL+hi46Q1oqYhMxYzypsWdyNUbKo612SMPhAra2c096zbntCkPbomDImilCXcxWLg0MJRPoBWznQBm0cKOQ9UitjyAlCwhAZhk6GuVaTGJ3SxTe7kFa1VoKYlO4crbMkIAqylYk05YwqpNeUoO9L0GMFtYxJyk+hcLGsrehjIA+Jtg/cbDr6PDBkzWfPXvPLz17w2fNLhmxIRpRnhxiJSZERPs/Q79Q0R0uK0Sgyk/HBk9GixpwT1jh05agXc3w0nJ18i29/8/e4vhw4OTllNqsJMVNXNWenZ+Id5QN9u+XwYImtDefn1+ScWSxrmrmgXnXVMJt3WAfvPnqHlCJ/+C//Of/t//KA+/d/UJKoTNKJ09P7HB+esNncQtb4IbGOG2w9UM0PqKoGRUWKCWU7Xl1fcsyclDy60lRzKf8Zl5kvG5JeYG2FMUn4JdWcoYXXr2/4w3/xR1xebDg5PuLl82c0Tc3gt7hK1Is3m471ref81TkxwGzhSNlSVaVkpGoqa+nzlr7foI2haQzvvr/gH//Bh3z22WvW68jlRcvt9QCpJscdcp1zKgupEMSn/DUDxak8R8XL52suzn8uc3MSF+0YImHQ9F2gqmeonFld98Qga4FPidRB01iOju+hzZaXr58yn5/wxdNnXF0OrG4GYtIoLVpIxtQMPnF9c8HJ8YLLqwwkbCXeWYMf2KwTX3z+nPfe/Qbf+s4jPvnlc4ahLDT/GXyTv46qsP/8V7/mbnlnty5Ob5oqBr/p9rUOUO52ssB4YvQUoOjd41m6OPbezZ06497JF2JsETSLRWm21N+mOPGN8sm+SBuoyThtx1+Rz7vLkxnprDuBtF1wtTvWAtTt9lUe3e1zV1ZSI4ymxkAo3X1N3s8Wdt9HK2HPu1kDasnR8QHGwGLRsFwuaJqG5eEBy6NDjk+OOTycYx7e4y/+1b8heoHZQzlHzWLBvfsPODg75ez+PWaNo6kcve9AQWUMVZqxoMdfPOf64py+9SgsJmsqk7B1TY8iq8TCKT44nXPZruliloqxlsWpsgaTpbyQjaaPCmUNLZbZ8THPY8Vnv3zKu8czfuude7xzf0l9e41ercixo/dxylp3ULtkslUzk0A1htKdlDHGYqybhNtChBAjSvX0wyBGcFpg3n4YIMuElwoZNgfpmqF4U7RDROVICpp2E9hcd6yut+ChUoYKh5LqA2PIqkFaEGJCYaSTJotOTYoDSlECEoEhRBOH8t2k/DIhJkqJRoQxIu0fE6mI/o38IxDHaKM0xij8kNGmknZzIGmN0YYQA8O2px+CfEdtQRspWWVINmPrmmaxwNUV1jmqpp7utVAk95USU8eM8BuykoCBFHHWFPsAEVqLiMqrHce8RDBQVEhVFs8VY614NyHideIPKEKFKUVE1j8TUhiXJyENJ8gh0/aB1dazaT0fP3vNpy9v6EPidtPRh0y2DTlkMpqbTVsQK1O4PLJghCifr5UqpOQyR+iiKJqkBBRyQtWKw9MjNm3PojvmWx/8fXxfM/QtTTMXKwal6TrPkycvqBfvcH5+zWp1Q+U0wxCxrmJ+mDk7m+PDFudqlgcNi6MK5+DRg8dURvHv/90fcXN1ze/9/v+cx+98h6OjM9xIFs7SEj+ESM5I8AoQElevb6gXh1zf3DKfz3l97ck3W5QSUmvvRSG4vbzBrQ2HR0fM5oekuMbVmtmi4vzimtfnG4w2/NG/+XNImq7tqJwiqYhWBmMzTTOn3SZSgMrVfPLxBZ98fM53vvsettIiUa80ziZWfoWKmVlzRDVX/PCH9/nwmydcX0d+8bPX/OVPn9K3oj808jXkJwkjYMKmi0BmLth3VuRkCb7MF4AohhtScBAtfQrCy8qgspMOrRAJQ+TmuuPp03O+850HVFXNcjmj7TesNh0xGaqmIgHWOVI0bDa3XFxdsDisePz4AZdXwmGqqhnDMNC1HTFknjz5gseP3uXs/gEvnm4lyJzWI0CNGrN3t4nqMD4xrnNv/H5nnZveW9abgvLvFXbeAFHuwFD8bbevdYCyX1bbCZWJ7sP4A3r3XC7sfMZWUMhEYo6iNFq4LDmWfvucp1Zh+QymyHTsbthHTUbiqipkPF2i71wGepJK+Ze+hVJmmph37Z87Ndm7JaVMTkJSVaUdboplJunyMrkXv4oRKdqVheR1OScpcSWZJEdUxhRVT0wipszt7ZqLi2t4+Zq6dhws55wdLjiuG7reTwRFk5MsCCHg5g1ueUA1W2AqIeUeLA4IW88JmnB9zuWzT2lXN6QhCAdEGzCW09NjHr3/If78Oa5OqNzzztkRL28HtlcD26TwCbQROfRGZZzKUEm7YbSag/tH1IsZN23Lpo9sXm3wyfHeP/wxD+8/ZPvic26uLlm3LW1XJMVzICZBk1KO+BhLl0tGB+FkZKXpY6AyltB7gg9UtcVHkeZX6BK4tBgD1hr6kOmi8CYymhg0McIwCL8nbCOETGwjsY2obcYqI2Ji5fJrBZU1xOBRKWGcxtUOWynq2rKoLbUVNGXbB8gyAZMz2gq6Zq2dLAEUo8mewSjhrFS2KuUfgw+DiM9Zi9Mi9JZixichc2qTcc7KeUsBo2HTC2rQ++IIrYovEBFjNbOmoapFp0Na6oooXZZAL6YoZOgiBT8SvUVC30w3vDYieZ5zJhcOhyrlqJQz1hQPoaTwPoDSk8CXKOUYKlcX8bkSPGToeikXaqMwGmIO+M6TlOO2zTw/X3G9GvjzX73kfN1j9OjBI/f7EET4LkZJFFIobedak7Uo9ColJbMUIwoh84QsQn82KzTCydGzGV2OrC42fPDhDxn6hl/+8jPa7Zq2Ld0lObHarPnj//CnKH3Ci2cvuLm9ZLnQKO2IacX9Ryc0s0TwDU3doK2jckse3XuH0+UjVITzV5d89Itf8OrVJb/9W3/Ad7/zd+m2Lf/yD/97bta3KGVRZJyDxaziZFHz7v1HPD0/5+X5JVe3N7zXNKhUkQZF27dSPnMztFLcrm7oek/X3XBzvaWZae49mGGGlvOLa4YOtDG020y/7ahdCbp1JUl3GBiGlhgLWhKhu0n8v/+7f8c//YPf4e/86NssFzXGQMqWGBW+74mhRaM4XM6xOnB8NKfb9uSgi4ko05zLqM6qQJeyfyw6WbtrJ/P4yA4sBUOZQ8e1JaTSJTgj4lE54JwmWcUwBD7/9DU5euazb3F87Lh3dsTrVxuSCrh6zmJxSrsduN2IIFsI8MUXL/ne97+Bdpqu7anrmpRq0tEMYyyr25ZX5y85O34MWqNSFLXZsQwzlvj3V51xHWO8BdS0Nox8x8mEF1knNHsYyVvKA+IDqCcAZ+z0GRH+XSL+17TTvrF9vQMUpd6mqzYhKFpmj/Ji7i7m+1uWLDOEXf87UEi4I39DXjpO8OVtE1Jxd3fjhc7cRVD+euhsv7xz9wX7by1iUikW/5ZUlBGB8r13ka0ES8S7ZaVdR1IGIgo7PZ9SQhdPmLbdsl7dcH15xfX1NZtuS0gereFkMePdszPCaoWuTKm0jCW2zM3tJV0K9Ns1VTOj22zYbnsOVGT1+gsunz7ldrMhRlDRUNU1s6Mz3nnnHfTpATfrNQenZ/T9NdvbW2aN5hsPj2nDNV/ceIIyNEqXSb7A89Yys5aDR2csjmb4HMg91PWck1nNg+MDah1pKkN9dsLRwYzOD1xf37Babeg7cTnOydN1vZjr6VEFVqNKpq9MIYQmGVg5SIlFK8UweOE3pMB83oCu6L2n6xO684QhM2w9QxcY2kHIvn3CKqiVxaIlk554SLkY2Mm0aBUYwDlDJoiMuhL/E2tlzI4OvHVl8TFOLbLe92AsVWlzjpSgyopnjHUWpRTD0En3jdG4ylKNrsFI+SulTO87ZrMGoHTkiIdSLkaPPiTQiZQGaQUt4014NqXjwmoJ4pV0NaWCDiZ2dhVjSUcbjVVKCKzWyutTonbV7n7XmvGWl9ZwcZMWfaQdsjmkSGUdsZgmojU+KdZDIiTxJHLW0Q+atg+0vuP8puWjT5+yHTLXXaJPThCTJC34fWihlO2ErCvePlVd0Q892Yg2U46pWAqM8uS29JDoYrdhqec1WVkuL285Oj7g6OABT754CfqKGAf84KnrGu8Tm67nJz/5CY8ffpNnn31Ou91wsFxyfHzENkYOjhb44YbT4yPIhuXyHo/vf4vT5SOsmZFT5kc/bLi8fsmr1y/46Ge/5OLVDU+efI7VkXffPePVy8j6NnK4nPPg/pLKenLyGKV5/eKCpBT9VsZL17WEIJ5e80M3JVpKSdNB3wX6PqONWDxYYzFKJOiDTygD2mWyUWQVUCpROcOsOcDkGV0XaJoFvVc8e37FH/7hH/Py/Cl/8E//IWdnh4SwZbW6YHm4oO0vUVmxXFYMQ+blyytevrgV3orO6KQRNlNBT4rhqFK+rC13EYT9ufyODAQgk4Es6hlNCkpE+7JnuZhxeLzk5uaa29tbnj67IvMxXZ85PDrDmnO0gpOTI4ypOH99IwKKaHLWDIPn2fOnfPvb73NxcUnOok68XC5xdsbQBtrtLcp4jPZI5XB0f/rP3e4mtuQsc1JZQ6UktsdD2S2Ge+dl7CDN03mSc/lfCAdlnyS6/+hINv1r3rgXsEh0l5I4/KbRVRKmk7vfR55VEboqGZ7KEnkK3LervelpL3/dtneBJwRFf6nE8+Zu5LjU3vFRiH17Fz8rFMX8KqnShTZ+XtoLUIqyZ9ESSEnE2FJMdF3PZtPS9SLeRoR+22Kd5vS9d/n2976Lv73l45/8Ka2+pk8J7RSRzNnJMet24NWzZ7Te029bmtjR3V7x6vPPuL1eETBCaHaO5YN3+c6Pfo8HH3yIOThgvbklXL/g+V/8Ry5vO+abjof3zvjg3iF9WnHVSa02FOh8iJ65tZyennFwckZQge2mp7ENxycn/IPvf8h7Szh1PXnYoE3CzhzNwtE0inunB/gBNpstNzc3KDLGGnH6NQ6SKImmlIu/jccoI8TXmIg5ToiCj4naNfhc4XtN1ylW64DvBnzrCW0EDwZDZQymGDVmZYiI7wdZOCFiWCcTgkYx05ahyiSnUESc0jhlRFcOIUFbpfEZnHMYbemHDlvabXNO+ODxEYYQ8V50SOpKuCNaje7JQEHTYhlTKYoJnhjowe2qm7xrfBgYvC9Bsvig5Jxp5jOWixl916KNIJxyTkVQymiFLR09wtsZx3jelWTL5GaMZjZvilJvBqOLEHQp1xYCeCxtwCGKaq+1RuwECh+mGwKrrqMbPEmJd5OPim3vJ55RSBCi4mbd8urylsvVhtttT0Rzte7Z9tJFEvwg1ypTRLMMxipMCYiqqiFm6P1AzgGQAE2VDqLRnC5nhXKOZnnIgOLy+obFoubRgw85PnpYAqkMyYsnTBY7AoPlxdNnPPn813zy8S85PjqELOTZg8UBlbZoJyaEwcOD03c5PXiMjksRyyOxXNzn+rLj9vJzuuE1n3/2Kb//e/+Ab33rm/zpn/6P9G3HzdUNXbdlPjvl3tkhB0eHfPLkhaAF2pJj4vBwzrNnt6AszmpC8PJdlSblUVNHPG2GLuH7yA++9w1++dETrq8GsKBMZrbUgmynWDyeDMfHhxwtHnNxvqJtt1RNjW8r2h5+8cvPOTic84/+4Y9JaeDwcEnKCecUs2aBcRbjDKv1NX2X0Frk9iNJ0BIgpzG7v5tIvtkFOWa8uehr7UokibFblGSlgpt7Dk9mfONb75BVJLJF2yWrmzVPn1zQdYGHDx8LEmotB4cHPH96TtcNO0uFmLGVYrvdcnF1yfHJIa9eXtC10lHnNKxWa+l8QxAfpXS5f3dr2Qhr7JL0iazAVNRSb1IR9ukDo2LtGIvc5Zl81WIly+uXS0S/6fb1DlD2a2aj+h+yWOsCE3/pPUxVmul5rQxKxTLHjZ41d+tsY/AgjxVfk6K6mRHUZp9klEY0Quu3ICl7n7/PRXkjSNlFpHvxbB7VD/OXSnr7Aa0qELraG4jToPrSeRyVckcUBYx2LBeH1K7m5PCUrt1yc3PNZnvA6dkRv/+7P+Lv/PYPCNs1P/1X/19uXjxHGwjBc3N1zdnRGR9885SXz59z+eoFm9Ult08/4frVOet1j4+CAbq65p3v/YAf/Vf/lOW9B+hmhjE1B4tj4vKQJ7/6hPn9d5j5C5ZzOM2OszCnfXUjHR2AT5moFWHwmCFwr1rwrQ/fw6fIfDbn/bNTHlY99eY5tluj0yBliSIM1lSWoBTOyGS4mM9ou55uCKw3G9p2EGRAZ8IgwWwO4HXGF9RAkbC+iLeFROsTVkXWNyu6zUD0kdgnbBaFVJ3BGovKGlNKGTlBzKkEwabc3IKIZAU5lgWwZFCHTc2yMcxqgzMSMEvjWiiaMSKoZIqZYlXXpIQEdD6zbSPeR6wFpUqrceyhSNkLaVXeOwYeGSNifAlxkbaG7L1I5Bf0wBYOTF1XHBwsODo8QHFICB4fRXPGe481lYzQMfifFgC5B1KWwN8YMd4TjyIZ4kaP9+4OzdyVrDQxewhRgp4MQ0hkZRli5nLds9oG1u3Aatuy6QbaAGiLM4aLi0tuVlvmBydc3ay5ulmz7QPNck7ve9AWbUT1duQjGWR9SilDyiSVMGgur28K8ZWprGq0FdXa4kqpjcFUjnsPH3O16Xj64jVaJ5bLOe++8w2smZGyIqeIyfDo0WM+//TnhJBoqobNzZo/+jf/A9YkHtw/RuvIetUS+0ibA9tuw/X1FVbPWM4fc3b4AVqJKFnMGR8Tt7c3XFy+xMc1P/7R3+Uf/aP/mk3bofSMvo/EkOnx9L1nsbgHwLbdcnSwJKRI5TLNXIKzoRdz0n5oAWnZBlkvYxQp+W6bubpYs5jN+Pv/4Pv86X/4BVdXG0LJ1LVLEnAmhTIB60RluZk5fA6YSpHNjMFvULpiPltQuRofPCcnh1xfb+i3aw6WFdY6qjrw/ocP+exXHU+/2MpcrMeETubwqEcEeH9OVW/8fndhnxK+EiBLd5CsC1WtePf9B4TUcnF5Sdt13Lt3n5Ojezx/+pKL1x3DcEGMUDnHF5+/4Pz1dekysmilJGkmoU3m1esLjg6PAEPwkW0QoUOVFbPmgDAYciq+W3qPCLIXTKjp2Nn7bX/BKzSFQgdQ4zKzYxjcWTfePEdTAFeS9l0zCG9dA/+m7WseoNxd+JUqRoEjgqLuxsNygdTeIq6mf0VhMuypbt55J8BXEF/ZG+xMz+8jMF8+zt1+p+FeanRaq8kYULJqtT+exjHEGJ+8KS438mHuRK3q7iKQS1iVCvSmVMZQYPyilmutZV5ZcjMj9AONrbDacHh4wIOHZ9x7cJ/D42OWD+/zze99j1//7K/Q3qNzYlhtePLJZ/xXH36D1G25/fyXdE8+5ebpE9ZdoM8OVTmsq3jnuz/gx3/wP+Xw3gOUq8naYMiE7cBf/sUv0NWc3/nR7xJe/QIzrLl4+oKLGw8Kmtrgs7SRUjkO79/jnQ+/xaN3vsU7jz+gmTekfg23L9iGSypWEDu0KdcnBtFSSdL6OXpYGAuL5YxZkn/9EEg+srnd0N5syUNm64OUGbS0ynof8EMrHBUf6futtLUOWYKRrKmUE32Pkr/5GNBZSki7m3m8oceAVAKXlCONcxhtsClgLeIMXGt09vge7KzCaTC1w+qED+D7AT8EjLPkbEkKBt+zaQNtJ+WYEDIpe6wVe3djJMDt+iilmiQk08yATxo/SGacFKjBE0ISxMlZKOgKKmErR93U1LXDWQ2qofdR2pe1jNExwTDGyLSedv5U432ktbhlu2rXtTH6eyitJrTJOYutHD4k6qrCJ0F8eh/EKVZbtn3i9e3Ar59ccL3a0vae203P1WbA2EpE/oyULM+318SUCboCp7lZtfK5Sj5LkhexQegHj3EO3w2gNDkmsBrt6iIEKPfa2G2WUkZZh7KGg4MD7j14wLoPvLi4ICvFbN5w/959To4fIEyrNN3zJ6f3WCyPWW9anHMMg+f8/AXvv/+Ily9fMWsqqtpzu2nJLtH6NberFq0iP/nzn7Bar/mdH/yY5eIeioqL8xf8/Oc/oao0p0ePefTu+yhr0JUl2wofYXlwyHaz4uWrS87uHeDDwGy2xONZbW5IqadpFsxmjq7tRKmVOCVNYhKcJHBWmZwMm1XkyZPnLBeKf/SPf8i/+Vc/4XZbUBeXi8pvBpOwLokPDhu+/1vvMl9W/NXP/ooQI0eHFffu30NhyF4+1ymDHzxDNzC4DusUy0PF93/7XS4vPmboZN2OamwmVyhd2rrGtWFPUWxC0qdH9kocY1AzzcORrDzNQuHqzOvzK9brDSEpNtvA5esb1iuPVoarSxlTl+cbUsiEKMi3mrziEjlA38sa8+zpBfdOH3B98YJtt8VozaypGTq4uViTgpHOu5zYD0wAxgaK/W0yX9krxWhVHh0R+nEd2tv217E7a5pSu3Vt2nVZsP4zKk5f6wDlTQ5KKq2zo0Ha3yQKswsYxizNQaaISo2TpJp+Hxf9u+WVu1ojX/UZbwY0u+f26nFlkN857r0IdD/evRtAMQ2AHddlF5TsozjSOl1UPIuNvNkbaPtqioZiMmcyzonGRoVlPpsXsSPF4uCI7/7Wb/Ov/8W/oO0GVIroFLj84nNe/PIjPvvkl/z6J39G+/qlZGJJoU3Gzuacvfsh733/72AXR2AcCkXyni+ef8Env/wVyW/5rW+9x7Of/xlHaaDC0g/SFdIPCZM1x/fPOJ0fEtBlETYcLE9oqiU6eMLqBnX7AtQWrzuUFJaE4ByKMZiW9tZEIBFBiZ6AsZqkFFZZVGWpVEJtWvrVQDVEBjIxe2LMbNteFnsf6AfxvlHIwqqTQiP8or3LIxni1NqYQQtsbzUiiJJzQfd20tJKy2I+axQHC8fxQQOxJ4KceyMCbqmUAPpB1F29jwyhI6JZr3tW64HBy/6cMYScsCZjdMYUL6CcpYvHjh1BZdYJ5bzFXCD74nGUQiaogNawcPUbrfZyzutaMsMcPVC+r7UTMTaEQE6xICNKOmn0DlUcRdLkuVLSyZLBWmMYfCAkIawOPrHpPV2IDMmw2d5yuw18+nrFL56cc73qSVGx2g7cdJKlV0okz11lCxdFNJXqpsFoJ23kpTTjh4APEedE6VMZxRATugja+JDRWnROijkXKot6L9qgnePk/hmHB3NCjtysV1RNRWx7qspwenJCXc8kuNHl/kZhXMXR8RkvXj0npEDKEWsVOQduV2v6ruL4yLBd3+IWGlcr6nmN72Hdrvn1Jz8n5Z6/84N/gs4NP/3pn+BDx6PHH3D28AHzgyOSySin0VWFayr6QaO9Ydt7njy7IKbI7dpzvdlQ1RZjFYnAfFEXCfwkHV7FKHNMjJRR4sUVK1IC7wNt2/ONbzR8/wfv85OffkpWrpBkM8aI0aStHCGJH9Hh0QxjNQ8e3qOqPffOLI8enJGjEsVa3+OcJfqerttgnWW2mFE3loePG07vWV6/8OhYowhlXiydORpBbdSXf8Z5WI2BE2KguruhR8PZhDaB45MFIbRTqWroIs+evML3UuKLKTK0ErxKs6XMD4KCShBbABoy8tx5XOHMguPjY8Iw8P6773F4cMB/+JM/p2sj4EjZT+j8OK+/bS1Ud+b9uwn2nb+nNebu+98MUnYHO+EnUM5SVrvk62280a/avtYBiohejZWQPA2cqc34K8KT/RMrCzhURqGr0SRsFPwZg4dxP3p6v/zoaR9f+ow7r/sygrL7O5FLO6gqGZncKPou1ri335RGB+dxH6IkNTYt70vy3zlfaafjIU6sudSHRSpaFS7Obt/l5tQa5awEAFLpxPtI2w9Epfjej3/MyYN3Wd9s6WNHDh2/+os/4+lHf4HJsNmsGbxHqxkhR5rZAUfvvEd1dF8manHtImfFR3/5V/zH//Bv+e3f+W1+9MMf88Vf/YQvPvuC6t0jtLOcnJxSX7+izZ6oLM3RKWufuV1vcSgOFydCwFQZvb3F3L5kyZZaBXIMDNFDUlTWCBSfZRwlxAAxT5lQhiwuyFkJc7/SM9z9E27DNfl6S+o9wYNKmrlp6HzG+4CKiholDstq7JDKZFVImErjtEyIVkt93mkDOaGJWG2EhxICmiQiZEYW+IFAyIGmks6dWW2wqsbHjNVaymxZ3KJ9iFTOkrLGd4H1tqftM5vW0/ZCwlNK4UPCRXBW/G6c1aIFkiLWGHxIUzebBB3SbkwMEylUIWPHWuGULJcLDg4WwsuJATQ4pcRvp5xjY6RjakJGtCZGU7hg8nnONBNZ12ozdeiMt2UoY1VpQx8TMWs6H1n3kY1XvLjccL1u2QwZcNysBz5+fsunLzeEbEg+4aNh1UVi75lZQ105NhuP0RlrFM4pjLKlu090UpTRkumiScnivZR0FJZRnNQY4YVFhAStjMYKlEAk0swWNLOaqORe2nY9KXlOjxYcLiuaWT3J9jPOG0lhtOP09AFNUxFDT1Nb6sYSYi6mmpnVeoO1muOjhlZ1dEkxDEkEFXPg/OKcy6uXfPHJUzKJf/JP/hlKV2SVickQk7SzzmcNpsok3VEvLYrEph+4urzletPRR8+92RF9D2bbM1/MMPaKGBIxSIAaSWhTWpQ1EEA7VfhnipvbDU+ePON3fufb3NyuefLimoghq+LGrYS4/Or1a/phw7Mnz4FMVRuOlg3f+84jKmPptwmnFgyhJeE5OT3BVXMq16CpMNZxdt/yox+/w5/2T7m5BHCA+HMVeitpCkruzp8jyv3GbIwU+DQ5RyFHEzBGCdE+3NB3XvRJgiJGz2zWEEJg6CIhSGmUZBArkh2SOvIYE4ocFSEpuhh48uQpi8WcWV3xxRefslgsefz4ETfXT4mFvBzSXkAwfZEvoyBv/v22tWysBrxt+1KZJ+Upl87TPPr29/4m29c6QHlb5KeUKEhaY97QPXl7IDE+biyApsoGlRO+XMyx5LH/mfJZOwnhr7qwd471LVdp/9jH9mhdbgzpRhxhvr0yzz4KkuLeILuLqLytzpezZKixtMIJCiP7KIkDKSlSKl0GKUvgozTa2GJiF+gHz2q15vWrc7RS+NrxzR9+n1effsYw9IQY6GLAb8AmRVKKbCqScSwOzzh+9102AdIQMSisUuWzNPfPHvDP/uv/Ge+//y5h9ZrLF19wvVrx6ycDjTW0fcJow/Hxki4pbq5X2MURRlfkJB0SaEVIA3XecDQLzHzA5ETXe5IfyElUVCXzz+TUA5IVqyyKr6O7cMoiia2UwjiDOVqQU2YIkehblMoiXqYVfegxJQtTWaFzLhNWMaMbS2okVCHlqShttDkmjMqolLFZylxKKVxBWnQ5RX0OJJ2YOUNlADxV7agxEJMYNZZOnmw1LmkiGT1kYop0Q6TrxQ1XafFsyoBKmTik0qoppZFJeVZGqaBpiDeOQODCc8qpBMbJo5TlYLlgvphRV9WUPQv3AGzKKKMxWlE5i7VauD9WhNc0GqvspPPhKlv4JqUlWSmqqpJj7FoJsFMio4loNn3k4qbl9W3Hxarji+fndCHTR+i2A4GKlzcDF5tAJOKyQRmLbWZsNi0hBYJyaGXQMWKzyOhbLSRprTUJQxjSFDQQAzErceRFlUBzh3ea8dqnVDJwaRknJ5wzdGHDphfl3xwDlY4s5xXLxQJtHcUhg5wEDVMoZrMlzmnmc0t9tGTTtvhhIKXMthvEA2ghKsLZBroQaNeR4COxC5iHFa9ePuf66pLf//HfQ6uK1XaNrjS+7/FdDyrSbq5Yr6/wqUXpjLU1Xd9zfbOmi5CNYrPpCYPME4fHM+bzivW6I5duQDU5aIO1o52HiMrXswpjLTfXPefzl/z4x99i3f6Ey5sOlaWLJWfDy5ev2a4sYej5dfc5dQXaDHzw/u9w7/SMyjkq5airimbh2A5XNGqB0o66XpKzeDRZC9/7wTukYPhP//Ez1utI6jPWSqCZEqDjVJGQqbckj+UeEBJqlkk6j+UMxUgGzjIkuLnucbVIWPStIkbFrJkV7yyDp4hl5liS1HHOV+Ou5fPHElLOYjjqE/H2ho1S1Lai67ecnTikYTMTcjm2t6xCf1Od5cuk4LKVUurbt0LKTV9uIB7f8jetj1+1fe0DFNl2ENzbOmHeRuIZ378fKWsDLmvIDlQEpabW47ufN74/kfOoRPiWq7f/uXm/pLR3XCUqHxMlCU5GLsr+LvZgxpxLcJLe+JgxmNp9J+HXjCZoEtiMIlH73ytlWRx3z0dytru6pVZgxMDt9etbri4vePbsCQeHB7hGcXR6ysHBUnwpchEqUhaPEBpd7TAHJywePuL5as227Xnv4QztKqKW7FgZxcN3Hsu94Lf86md/wRe/+gX9MPD0eY/VGdtUPP7w2xw9ep/tMPDZ02fSoREjdeXQrpIJxPc4Bo7nCtdpYcZHgXOHoYhkWZG7NkoQFxW1rCGGHYwfg0iPo3BaY2rH/GSBSTBXt/Q3AzfrljZkZgYsGZ+RiXWsT+eMo7TNasSkT5U2RiUCaiolrFLS1ZPlxrTG4IqWSVbglSJqBQbqytBUBqPFX8goA0lJGa1A1pKNFfRDq1LWg1R8h7KSgCCVoEarLD5/RIwWYTkQ00SjxzbrPC28qZSxyKlok4ih4KxpqEr7r5RPzRRji0w+RdtECJTWlLbcKNbxWWt0Eg0ZYzRGa9p2SwwB5wRpSQU29zGT0YQoqrxX64GPPn3JdZe52HheXnluNp1wjQKstiue37a0UZGVIsRApRVRKaISuf7UB6xRWKWFfJ0kj81klIplmpcg1xbhuBg9OXjh4qhM5QyVE0l1rSUx0FZa0Y3RYDRaZeaNI/YWtGc+W3I4rzg5qFkuGhaLOUrbwrORIGdEq6pSQpvPLPPZDD8M9IM4kQ8eFKZ4KFVkE3EmMG80fh0xGJb1Ia+ev+QHP/htXr0+5+Nf/5LAgHU1B4cnPP3iM3xY8/LF5wydWFPMFg4VMreXa0GRSlt333kIlr5JhBhZLGesV92UCCSkVJNSQhuLU5bBJ9CZtutJIZPnlpfPL/neD+d86xsPufnpJ8QsZP0QEsF7Uso4V3OwWDCf93z7O+/wez/+IbO6ApWxtScR0A5qMyOkhA+BmELRFMqQMs5lfuvvPObwsOHP/uxjnj/dEANyrVQmj23pahS+HNuPdyg1kypImObnMS5IWRGDpt9aYhS/rBTFQmO5bCAHOgYqL1ynEFNJhJKgqra4bZcyc84JYwRxzCqQUkQh942xBucU1pVgbjquvzlp/pu38btyB0IZeY53XzmWgnalnf3Xj6/5225f6wBFFehzxCd2Q0fvSiywy3TkXZSHuHMBygWVjG8s0TDVJ3eCbXIBdu1Y+wjGCMqNAYKaftTUl74ftOTpnXmCwmQx0Ps3g6wCu+PJI4Kyx21RkrWPxzLyTSQKH28ypsf3/RBypnRM7PYnPBWpmaMosufiJ/L69SUXF69QKrM4mNEsGu5Zy8l7Dzi/PcfHBNmgtMOqjLZweO+Ubn7MR8+e42PgcNbQ1A5jLUlrgpL6P0qTVCZsbrh69gUEj1VGgobK8ug73+edb/82s6Mznr98zknvubi8IaskSrI+o1Om8gOmXxPSGhUHEThTuSx4cmblHGS0ykXWSAn5HcVIGB4RtJg9SYvfi3FKgpQhMcQNLiU2IeGMovWJIWeGkEhjFlM8j5ySIGVcuKXdVKYUZw0VsKgqYhhwWnxv6tIBERP0RJIBO3PMZzWNczgbJ+JtCVelTTyLYm0ovkM+SL085UQch1pByDJy/UWzQuwdlFKTMJtSimzFvkE6FcAWjYaUs3Q4qUQzqzk6OqCuLWZsa1FFdE2N4xqs0dSNo6oclZHJX5OxzhaX5zgRYY2WUsl8Pme92dD1HUu7lCB6RNiVImbF+e2Wjz4/56cfv+S6jQRl6Xxm1XraTjRn1l1g28XSFgxKSzmr68KERvuchMtQ5herZVwUt4BSegLtLL0XRDLnTO00dV0xqx2NMxJ0pUjwA3VlqJ0jhtI9Q2K2mONDoh+kS0YTWMwchwczlsuauhIhuJgzNss9KKGR4ezklNPjU/rukr4b0LokVYB1UgpSquH+vW+xDbd03Uui7ZjfW/Lw7AGr1Zp7p6f0fcef/8VPaPs1/bBFaYd5+YpPf/0LXJVx1rAdtrzz/jHHpxXr1Q32dE7fD9xuxdTQR08KiXwtXBnXaKwztK3wb1KSEkoO5TpbTdsNOOsYBjElNFGTU+bZ05c8eHDGrHmKJ9M0GmNmpOjoVeb9xx/SVIn3PrD8/t/7JkfHB8QwoEwg5ijdcgV5FvQl0XfiJqxNhdISzGjb8o3vHHH/wd/j3/7//orPPr3k/HVXCOljwvhlUuk4fY9Lj5oCgrSb0rMEOzlqwgAoBwSsiRJM2FrGvIE6KEIUrpXIYxhcVdN3QjCuG3EhtzbTNDXVTON9z+amZ97MWCwMJycHqDwTVB+DyrFwPu5uee8r3O0m3T27S1q/CjBRe+/RbyAuSHA3vXJca3MRSf0vLUAZB0X5n1Kidic1fMj6za6Zsu25Hu9KZAIpowW2lD53ICdCMZRKaReg7Lpkxs+++xkqK74El2WRN98vTemyRInzsiroifigTMhF+VSB+gTr3SfXyk0xvm78NonRm0e+ay5kw/LsXoCiis28tNLujleIbkWNFI3BYJTDmArnGmYLx/sfvMvy+ITGZI6XNauba5598oQ0JHTykhEYy/zgEG9qrKtYLBY8PrvHg7P7NHUFWQiYKScsEEPPi48/Yn3+iuC9lKCc5fG3v8eP/+C/gXrJ6npFUIaqOcCabSmBZJx11Dlg+jW5vaILK1LekmLhk6REZcvEX8oOMgYkEJOMpZwYrTBZU7wOyDmJGJlRUGnscY32Hqcydt1TWcuKQBsjQ04kJSaTo1mWKQu7LFyJgUxlNI1VGDIVUJEZijZGinEaC1kpksq0MTCfNTRN6XoJAulqlwlZSjwJCfS0NsToRVnTZwaf8V64VaKeWYLpMaQv5yEjgVlUI7dE9DJcOX9SVok7XyGkvffw+JDl0ZLKgq0EBk85krLCGYc1GmsydW1YzhuclXNBkszRWcPIC0QJ/2NEkrKxHB9byXBzELGzrElkhgSrIfHpq1v+9KOnvFp5grKEOEDORC8CfN0gqOjx4ZwhBFHyLa64s1pT5zKjqLGcIuUjo2QZMlI9LHwtxLk5yD0mpoqKYRiwWlAzXRauFKV7BSvzUkiZlDWunnO77fHJopXHVQmnNZUT9VNynPg1KpYxkWTOMMpwfHDEs/UlGcPtesUQWoyV4Gi7la6aR/e/SzVzvP/wmhB6rIKPfvEziJ6j5ZJf/OIXDL4tmjGaOPQsZwqrK1QybFY97TDQrTvuf+eU5cyzXgeUPcC+9qxWA9uuE6PMbeRadcwPLcZpbAr4QaGVlOk0iRwiUQ1CftUZrRJZBSIKHy03qw3Lo2O0shwfzrn/4JRhSJy/2kKOzBrHO+8ofvS773F6doy1DSH2hBgL0pm5vb0kxkgzW+KcQ1krmkWmIQQlNhkqQx44PTvjv/lf/F2eP7nhX/6LP+XJFzeEwtPbD1JG41k1zf3jz7iol0kjj/dSeS4YlKnl3okBPwxU9YLl4YxqELQ8hMQweLQWr6zZfMHl+YYYo3RM+Y6UWw4PKk7uzTk4mPHFJ8/QWXF04vjmN97nVz9fyzhEup/eJoX29gLPl8MQuQfeQEnyLlgbH99H6Xf/jjhKgWgz6GyK5EGZL97Cj/yq7WsdoEzbhEJJBCotw+atYm1vhb0m+KVA0lmLZOf4dIjkLETWN50Yx7eO9cLpM/a6f0Yn2anEk/eOY+K03NVbGUtUu/KRBC8UUut4HNNryr7eHG5TNFtKPTuX57jHpynwq9J7CMtYRtqVsLTWuKri5OSExaLh/Q/e4Ue/+zvce/gQpRT95QVmUPzR7f+Ly4tz+hgI2UJIXL94zemH38Pcf4BpKh4+eszJ2QNsPUPrCpU0yhhUitx+8Us++dmfcXNzKceBws4POX73mzRH9yb/nHboeXV5xdXtDdbCvIaTeWSWL1HbG6q8orFRynZ23723BIfjNWd33sUwT0TaDCI6Z9wYtYlcOgg4YBcil55zZqk0ZuuxWuMYCNlK90iMssAohUrS4aGRCbIxmtpaXHFHzykT1Sj/nnC2Eql9MtlIyck4WCzqUt6JJaumtAobYlSECMoIwuFjZNsnuj6yaXt83NWnZUwmyXq0lrbhLCcmIYHwKOsdU0KH0sqvxnKlKpLzcnKMMdRVPXUD5YK2aK1wTuO0RuuEc3ZX9lFgrMMYGfM6S/A2+dZY6e5SWko9pnCDtDb0vuf8ekunHB8/u+Lnn73ietshSp7SyeCDWEkPPhIjLJdz6rpmGDyx8AVyzgxeYbXB914IwoBzpWU6U2wz5N7og6KPmZxC0TgpHXFB4YwiBCn3OGtLB4cQsfvBY60h5iy8IC0qstYYctpy9uCMFHq22w5/XHyJkgQ4E0qqBZVp21suL8+Lwq4lpiQBV0i0Wc7xYtmwWFRUVcPBfElOkc8/+zWvX1+zmDV88smnDL4TLlaMYl4YRaNGl/miqit8bLg8b7m93vLu+0fUszUHx3MWR5Hnz1e8ehnpWkHe2nYgMuBqTVU5CbJi3qHYGTKB2axGGQ3KoZXcA83MMAwDV5drNuvExdUt262MqfNXV1ijWBx0/PC3v83J2UzGDFYQzpQZQo+1ipTg5YvXLA5atLYcHR1TH89RyDU2ShGTEFsho03gW995zD/e/C7/z3/+R/ThbtfL3TVj9/v+vH23o2VcGShJqZSd68rS9z2oxPHpgpODJU3j6IdAGMQhe3V7y+nJAdHD7e0KrTPNzDBbLKgrw/LA8I1vPuK9xw+4vnyFsQMPH5zysz+/ADxZaUGvR57Mm9teBWYs1YwBxy7p/XIJ584ulPry7+N3V2pC4ncvEoQ1T0Jw/4UoyaoRzZgeKShK8bNB7Ud9X8FQHqM/PdJ7CopR6qY5g8njhBynwbir7OQSXTIhKRkhR+6Ci79GnEbBDh7M02L5ZnubKsf6ZRb5uJtd7XFEP3bnSDathTTnfMT7MHVAaC2Lza6klaaf6bwpKXFZY6nrhtms4v79B7z3zns8fu8dlK0J73yDCsv5i6f88b/+/zC00qaqtaa7veXq8485fPSYxfKYxXyBrhqiFlt1kwMuDKxeP+PjP/t3XL54wuC9ZIzG8eD9D/nguz+AogIpgYUutfYZTeM4WFQcNIqlHTjWniYEKpWKwJiaukNSMY0zpdY7nptxPIzBWM6y6KpynbMQawrqEsFqOKjFMCNGbBdYOEt9ULPuvQStuZj4JblCWpWSTvHZsShUgkhEZQghirR8GFtoM330DCmj5orlYU1VQ0w9fhDTwapuCAH6wdMNAR/EjbaPibbPrLeBVevRpYibAAEAAElEQVQZQhm3hRAylRYZs/0yjvfuGVRplR5JJOX7jwRayu6MVqQo5zdrppKmBCgaaxR1JSqiozuV1tIVoo0W/6o8llkNOStiEEKwseU+TZGIlHaGmNkMiV+/vOJ8nfnzj57y+mZLNgiMjqJtB3wsYnooKmuZ1Q5NAB2oq7G9PNNuxcLBAykXsSslfiwyBpVwC5Ri7hz9bUfbB7SRM2eKsF5Wino2I4cePwrFpUDKmWZWU1mH32yIIXJ7fUNzcMDF1RVtt8GqTN1YDg/m3K43HG5b5ocBlazI4OcoQa4ytN2K+bJhoS1Pn54TvJex4CpROTaZR48OCfGSX//iKavbDdZaXr54zmxeEwMMfsA5Q1VZ7GAJUewzUonKvO+BiuXygJwjn392zre/912qGWy7gLKZbWsY+oar3DG0iRSh23pi0szmNXVlJodvlEIbh9YZ4+R6V87gjKGpDfOFEwG7pPHe0LaRp19cAIJynZ3UHB4bTs8OqZ2UhDCCVhMhhEEEFjuRe99uW/wQuby44rvfc8waDblGVzO0qkuCklAq0PUrzs4OqGqLWgcZvyrx5mL85WBlRNTHx+/O81IVzeSYScngB0GIjYH5/IiDwwX3G0fXCsqnzcDhcU3febbbNX3fo5Xn/oNjzs4OQA9oNfD48SkPH1RU1mLVKdttPyUEKb29A/TNw3s7IVZ/6YV/HZdl/7kJuy8BmioJzx6+NN1vv+n2tQ5QgGnhmM5vyYQl4Pjb17zGt2ijAFMClLyrt+d9/kYWhWO9V84Zob0Sqe4TaPfre/vw4Bjpvi0wmQ6rRPRjkLLPFRnh+ul8TCUkNf5fvpMWK/iqcviyWMeClmidS7uxZMlClh0JwuX4Ch/AWifaBMZhrcOZGm0bzKLhWz/6Pf7X/4f/I6/OX/LLn/6ENERUCigF7e05XbfiYLNibhtMs8RWFdYnKmD16gt++dM/5fLZZ6K1oZ2UFuqGb3//hxyenJEKhyNlsLZi3tSYfMDBomFewUFtaXSkMYk5CpuF04KWQkYsNeacdyUNrYVsNmWq3L1uSim50VRG50IoljoEyjjsyUKIrkNEtYm2H3Bk6jKeYhYUiLJYC5WtBJs5M3hRi6yqWrppohAxI3kKjrs4sDg+pXOeqiqlkqYSuFmJ980QEjGJp03XZ7Y+s+kz6y7SDpmYVclwZEtlQstZ2syNVqDNJEhYDk9m2bL4Zoq6ZCwdKUnQkbqppJwSpbUZtJikpYgtHTvzeSOLQhSCdy6iaOM9O2bZ1hZZeiVoQS5aGrqUXvsusO48qz6yShX/8ecfcX7taX1iMXcY61AqCZ+l9/ggba4qRWnLbSqc1jir6HvhQvRZNDmS1ihtRIdGaVLvZcwoVVr0IeAZiYshJhJKFGVJdCGQVx1GSVeWdQrnKnL2hBiwSjq2Uoi06zUhZc6OT9hsRfFW0BVp49+uVxz2W8ysmgQbZVwmBt/iw0DdGLZdS4gBPV67rDg+OCaFzC9/+Sv++E/+ZAr8FrMlv/1bv8/p8UN+/tFPuF1fk9ZpUsKuq4aUfAlCNbYydENLGDJZ9aSoObl3SL66YdtGDg41fefwYWCVEn0XpSV2gOgSy4OGEDTddoNSlqqusC5inSzuShsqY5nPKlLyxBCF61ZKiVlFRu7f4eEpWpfzFAXhI0vnkipjtG17Li9vubraMptVDN7TNBUpRWLqydEwq22Zcz0x9aAy223HX/7sU/qu2HrsMykmkuwuMN9v0BgTO5krxol4v5/FEH2mSwAzso34AdarLfceLHj46Ix2u0Vrx0lbYUzF6kZBSmzWHVontpuehw9PQWVub644XDge3LuH1QdcXziuLrZo5URiQcs4+nKQUiDLcW0Y1zBGfiPTfDCuTW+iQ/uP729jcLJfRxrXNZECybtSw99i+1oHKCNalacY7e4Cn9l1x8h6tI+2yLYLLN58gmlAWivSwxmJhkfS7HRZCqN9HNaKuxf5y4FSSV/3iExjWWcnSlVQIPxewLKD0/ZJv2PAM/FPRoRn/Ay1C35GFKWugviOeF8WC8hFKGgkh6ayWColAZvWlG4Ni3QzjEJ2eteRMmv44T/+A/63qxX/t//z/4knH/1MWpuzdEyoGLh88hnriwuq2ZLl8RHHRwc4PJvLl6wuXtH3A33UZGNRrubk0bvce/w+xlhUEtUSVQS+jg8qDo4MCwfzKnN/FlDhlnZY0VQKW1VQJrmgKUZmo2LpXlaUx7ba0jWTBfJUY7kty3VOWQirSYvBndobiK47IJ5vcDmxdBaFx/SeISaGmCdkQjRhxJhvbBXXZQHMWTxvtDNF4EjRzOdsYsYTpbZfBM/quiIhnSe9D7RDZPCJlCzdELnZDKzawKoLDElsITNl0S9DTxtx+85pvH9yacHWk7+ToEB51AqbggkA6wzz+YzlomK+mKGUaAhppUhjrb/U7OvKUTtL8NLEPwl45TQhLlP3ghaipTOGqjIoXVCMqHB1QxwC19uOjz5/xdVmIJTybkqatgvi5G2M2AYYi4oD2ikWixm1M0SvaNuWlEToTSlxsI5ohl60JHLOJMTHx4cwKdTGKCUgrYX4S9b03peSmMwxtdM01pJTwqfIrJGyXV0ZFA12iAzR061WOGu5f3bG9c0VPsTSzg/D0BP9FjM7BG3LQNOQIycnR9TV9/nks48xxhUUR4tLslHM50vOX694/uIjttsgAnm1JiXFJx9/ivlOI+JhQz8FgVoVVE80F6T0NfTSGTRElPKsbwYePj5m1tTMmp6qGlgsFSGIBEFMET8oVLaEIdG3PVUt2jKzecVs5qQUOCuyBTHhjMW5iqHz+BDohw4RCdSFMxepq5qzk0cYFsLPo7hTp5b1eoV20DQzYlixuu3ZrAObjaeqhETa95EQ1jTOCi8rt1QV9N1Au8385Z8/56f/6RP64c2FfTerv7nej4HJXXR8r4bCeJtolKqL83YmJk+3GWjrRPSCvj18dMYwtMwWM/yQaRqDHwLDIMj45fkW5845Oqo4mB+W62WZVWf87MlTtutEjEVYc1qD3lKKyeMx7pKw3eGPiduuOPS2IOWtCXRZgd5UYUtj9WBMlP+WmMHXOkABCtSvpkGlldrz4cl7CzTshyhfhq3UW/6URcsWC2ljNMnoaVHZDz7UnRrk/gBNpXyy68IZs9M3vsYUhIxdN2++aBd87VRJ97ksWf4hpR1KM5Yr9geZtYaqKo62k6y/bClnTB65KGWx2TNlGwO+fSG8MXo2ZAYyen7Ib/3Df8r/6uaa//7/+n/hi1//Ct92MAZxaSC212zaa7Y3z7gwBqcVKfiiMKrEZVdbTh8+5nf/yT9jefKQWDDDrIRU7AzcX2reaSKnVWJWQVX3WAQW9VnTx0wtYiLFAkEmhJHAOkX5CVnUFHsluh0xDgXKKFKQUowu8MJUMmkqzIlmaD1D36NSEmg/BkgiyBa1qEdibNG8EE0XpSUDDLm0kiKwdSLTDj3O1qjKEpQ8PwwDwSm2aiCkTD8kui7Sefl9GAa6kNh0UbpW+kAqE9dYZp7C2aJlknIsipWCIpkynkTHRbIynWURFKM7CQDqpmE2n3GwnFHXtoyPHVdlFKMTQqx0TFVOSmvSTpkKWTlNCKEx0rXljBWirBUBK6UVaE2IilU/8KsvXvLpk9fErNEqYVwxWUwwDFKP7/qBmDXGyT2wWm8IdUWMkWGIiDSXBB8ZBSGTfUKNrZ7IfTB4uefFCNCSlHQChSgE4pwStRMfokVtcUahc0IlqGpDCh5TO4xWHCxmWBvYtD29j7TrWzkvlbT1t9ueejknBM+LF094d34qCZC2kKQbr65rVqvMy5cXrG43pSyWmc0alI5c3V5ysDym63rE7bpBa8u27fD+nL/82Z+wWMwJXsTCvPdigpnAODMtKn3v8VHk+1PMXL5e8f0fnuGMRiOE3sXcklPDMHT0XRRXYqVROZF8BKeLIWUlSQAwn1eT7pCYHhr8kLBGOnu0STiMdJllxdnpfTFNbD3r1YZmNhfbgBAYhoHt7Q3vvfcBzi3YtpHLiw0xBU7PFhhT0bYBRc/i3gkx9bTdLSlXaA755OOn/PLnr+m3jpwNo6njfrAh8y6M3ZDjXfTlzHZ/K88pkaMQp2MFGNLguDnv+ehnr9huAt//4WPee/+YbbdhveqoqgpQRJ8JIfHi+Q05Q7et0CSaynF84LE58dEvPsP7MlOpXYL6VZWZr+LUvO277Dgm499f9dq9NS3v/bm3Jr6VE/M3bF/rACWPK3LZFECRw9Z6l5HB7kTvR4Rve3x/ky6a0sGSs5CrSkY9ml4p7l7wcREfP3sMSqSMso/YqBJQZN6MYtVea+YOKnyTm6LL63ZQomTHOyn78TuMn7GvDeOcJaUo7XuDL2aBUnONZEzaU7vd6+6RBUQymynQUsiCBaiiJKiaGT/4B/+Y5mDJH/4//u989Gd/Rnu7FR5BEj2SmCMkjQ4QtQZlCHLmyApsPePdb3+f+x98h2CbHX9EaYxSHBg4OzB8MPec2ITVmayF3Gu0wSKoRwxMnJIRIlcK7Oj6iZRvJCsWSfIxiwwhTOcsxogPRUMlC+yfx6ASRZo51NkhaQj0l2sGosiFR0EplDL4FCQDT6qQPmXffUxgjSx+IaJSRluNR7EJPb3LVBhsylhdEbOibz3tEBiGTPDQR2iHTDdk2iFyu5Wyx5A0FM4LpTaMkok/oso4AJvBKoN0KyVMFmXZ0VPNKLBWsqLKGdHFiRFlBIkxSlx8jVaTfknlNE0jbq0jgyoj7d4T2kzxuUIIws4odFXjik4NFKG74pGzGTwfP3nFn3/0GevtgKsrnJNup95HogefIKQo+idZo2K537RjtemlvGQtKYOPAdfUJB/QKVDNKjovaFnIYkbZB7DOsW4jq25gG4TvlqMEJk2jaZymUuCMcEVsSZQqI2JjOSU2mw0HiyUqSQmoMhCip9+scWrBweEhPnmCl6AthA7yqDdT5pKciGHg2fOXvH59yWazLUihlOD8IMHOze0atAjbGWPpuyglrWqgWRhuV7dstx1DMXtUykykZ1/KjhlFzkXlWIH3mRgCWmVR+DWaus7k3LDdBrZrT+zlHjNK7uU4RLGNiKKZslw6jFGopDBVhVVa0JM+cHb/jOvbvgSpwgOq6wM+/OC7VPaQob3l1asVxydzOVakhGa84fLyhhgtKlf0PtG3rcjiG8ezpy9YzCtOT+7RaCuCkl6zvu341c+vWa8qYgZyz5vbnVKv/rKax50uni9tsTwn6MYOdbeEwXD1MnJz/przV6/53/3v/ycsZwcMfca5TsjyWuY7PyT6LrNeRZ6lW+KQOD16QOxvePL0GXHUxVKaabJmN2e/bdutPW+SWr/8HUeV8/JO3kyep+BjVBUsmy6dhbvz85bW7b9m+1oHKBIEFASj/Gds01VK3zmF+10yf6tPUAp0ae1LGguTDknZ8Rsw2Jh5j59zN3i5s+0P/IKg7Eo9+u579o77q3gqeZ/c+sb32P9srRXGamyyVMWSXjqVUinzSJeBYYQxkUGv0t4x7r6asLNlmdZKkeIAOWGaOQ++9V3+6X/7v2HWLPnVT/6c9eUVbbshqYzKRhj+Sgvn1BlRs9WW5ckpP/oH/4j3f/Bjkq3YtZIbVFZYEke148QaDhvN0hiMVsTkiUoXd9kEWfx/pENlx9uR75EnFAitpKSdhY8hBRE51845EpmQ4tg5N/FzjLPiVZPAkzAHDU08IqRITGv6NqC0wvtIUiVw1FpY7eyqcBnwJWMX0cZEVhrvNK1N6ErhKs1s7pg10t2zGVrW20gImuAVbQhsPWy6QNtHtkNiSCLMxiSjnVB5Z8g38msSuiBvCrImxoTJWbqVrGjHCK9KFYuEhDWQkXKkUhlVfHys1Vgr6szGCIoyGiIaLeWk0RRzdPzW5R6zRfDN2J1AWVZFA0RpQoJ1P/D5ixvOrztQFq0t3nucM3I9tMVvW2IIJWMV/yBrxMcphNHJWpWurMzQtxOyE3IkKk0PrNqBfpBjJMiY8CljAWdgNq+Y1xanEpVRImmfxWslFxRs6o5Q8ljfe5TWWGNIOQivKQy0K+EjHT04pe96hvnA0Vkj3VYJlI6AeCQ9e/Y5n3z6iSA7KGISFCf6yGbdg2pZLBuUztS1lNXatiNnhUmGGNSENkn5u8w3yBiJiRLcyTVXBA5Olzhjub25RdmINZr5vMGYKNo9laFuHNEnYog0tcY58exKSdFtA8ZG5rWoHi9mc6KHru3oewncF7NjjKm4OTWs2gtyjpydPcSZusj8Nzx7cs7jx6ccnzooMghVNWO97ri67Lm8WtH3Hm3hvfffIQbPZrPh8LDBWOl4W91mbq9bPvnlK26uE+SKjC9l68xdHspu+lWqzHFpr7FhL9AeX7ND13feUUxnOJERafscNSnLOdhuO46bA4yRrjalIzl7Urknt5uBdttxdZnotp558zGPHmpubjdyHHqUCBiDkvyluf8uf2Z3PLvf97a9fYzB7x1tE3X3/OSxFJalVDy+d+LbyRshvbk6ffX2tQ9Q9v9VFMJjaWFE3Y1+v3Ivf+NzpdRjhRdgjMD1d8XO9gOgux0Ob25v1vPGr6D2Aqw3yzL733PyGtrb950q6FcEYvvlJZGd1iRncVFUMmNIk8+JtXbK2HalKdmPnN+S2WaZGJXZHRtEEQtKEZ8VeXHI8be/y6OkuHnxgtWrV6xuLkWaO4oXRQZ0pajnRzz64Pt898e/x6NvfAtUIQhmP00EUmIRMSIferJOuNrilCAeIZRrrmVizJRFUUlgMPGF9tAzKfcocrmmIQSZXgp0noo2idG21LgSOcp3D9GTFZPAGHPL7OERSWv617fkQRYYEReLwufQdirLjWRVMoQoZoV9TugsbceDSiyqClcZZk1N5Rzee/o+0geF78VnpfWZq25g6xM+ZCLiTxNyJCvpCjJaMpxQFjZjxg4dhcq5yLXLHBKLXL8IsWmyF9luo4SHZa3F2BpTZOqN1qUrxJQgQ03kyxhk0VaI1Dl6bwIlFTRQxldMCZ2TeC+UcZ8VpAjrduDiZsOz1zcMSYLD4MWDJ4bi6ZQ6wiDKsTFllE5FkTcKXyMb6rraoWMhUTlHDInei8Detg+0IdMn8FGORwPzxnDgalE11prKKiorXVmjuOIkIpelO0oUV/UU3PsQRczOKiqjCH1PGCIVGt92bFcbDk4OWG83zDYr7ucSWCpFSoF2e8ur8+cMfSdjGgmig5dooxs6Ysok1XN4tCBlxeADs0VD8APGavousFgcoPVACIMsPSPamjKD93I/KAUJnFE8eHCPGBM3l2t0FUjKopBux6bRzJqKps74tkOTmc0lsPVekaLGD5EYE9u25TQ3OOMYOkFv/NAjJN0FlTvj+999l9vVaz578iuuLtasr3/O6dE9Tg5ncH3NZw8czeIdYoK267m5vWW+OGa7XXF9s6Hvej781imP3rlHGDz37h9T1wbve3KY8+yLLV982jG0NWCJ9OJDVAxUpzVFjedlF5zIdRzFO+8GJ/tz8Igr5LznC6eKeOb0nIgR5py4Xd1weDwrCSQYp3avV5q+G9ebRBhuaLcdx8uW1c2AwoppZpbEKxeU46uaLcZ5b1fCYvrOu9Xk7tq5j6u8uX6N5ImRz0ceg5bxDi44898SIPhaByg7590S+U9iZJpdm+NddGK/5LHbzy6QeFvwMP5rjMLmTDKGZFJBLPYyJHl12dHun7fBaDnn6bm9V04/agxYFG88Li2Zu+OVyX36yL1jVuXvLw2KkhVpXWSSQxQi617EHWMiaWnlG/VDVN4N0mlgjk6cUq2f9h+DF/dWFElpWqW5UZmVc5x++7t8UFW0mw1d1+K9p24aTu/f4+E773J6/xuoWUMyBpW1ICFE4WVkCSIUAat6TuY1x0uLyZ0os6pIU2lSTMSsoHj0jOWhMag0SiB/paQjKKdMjGGnP2PUhI557wvYLcEpsaydZY2NOU2oABlUpYGKuTomWku/6kjrjtAOGAMqCdolLrwGY6UzKaZEslpaW5USr5jKUS9rXC0f1w8DYRCRsVWb2A6w7RKbNrDuPWufGLLIs2ekHdeHPCUtUlpRpChIWkgU+H5skR+NK6XVXuWESVBlTU5QVZo+ePQQqSuoK4cxMjYFFSkBDwmDpXKu8GY6cm6IMYrTbBEeGwnCMoLKQo4m+DSVEmOI+ATboHh60fLrZze8ut5gnKOZLWjbDgsMIQgSNSQZJ0rGZOUqnCrrDtId1A2eqqoJXoidofXi5RMNMWbxbSoLybxSzCpDXWuaylBpRY4RRaKyIo9OllbSXCTVjRUSdAxegu9x7kF4Xj6E4hWWcaX8NY7L7e2KpnHMlzP6wTMMHdVyjkB8kfPXz7i6OqfrerHiSND3Pc5arLI0TcWq3WBdQ1U1DEPk5mZD3RjOTg+xxqJUJQFxiFIeSHJMWktQXjUVMSd8kERjuWg4Xs65d7KkbS9pV1u0FYSormdYKy30pqBeKYWCziiGXuPcAYPvCDExDJntemBWRUxSNKZheXZAO/Q09RHbbUNla86O56xuW3718S/QumN1c81TozBmYOufMTuABw9O6YaOTz59ytGh53Y1sN1uUTrxrW9/m0eP3qPbbpk1DUpFjJ6zvjVcvdaofIyxhkiLUoPMDVmTp5lwb1YvyLgumkaSx+18umAs049B994yoEZERka5GsswJVlMBHKOYlfQbyEn8aiyFUoNhSicSHlUm5XzmmLFixdrvNeF8F8sTdTIodkpvY6J8/S9xjVJDulLQdab3YxqIt+OSd343N6SwhiU7MKSXevGG9HKb7h9rQOUST9k/M8UjOwt0EWq/Ssjt9EOmcybsBXcDVJyylhtyCaRrTivphwZu18onJSSJ5bPzXdKPgK/7YbvWHKYmM5qbGXbBShjp4OwwXPhf8CoKDuWZUQNMkKW7M6MYnVf+k4lgCuaFZU1RGNIofAjUHtaKGNEnBlrm0IiLQO+fO+8BwBqJJAYknj6qChttaSET4lNVBwe3OPR428Jf6CqqJuGuplhrUMpJxl/6S6SCqYpn5yAQKU8h03gzCXm0ZOTJ5TsXxVpcjHvMkTN5C8E4n2TKF8pCfw/XuNdMCrQ7EgO1lMQLKdBJ5HHR4uqZ5rKQ/KD1fgqYo8b9LxGLWrUekO/7WCI4lMSS5uqBpLC60y2JXDJoJ0Gm5nXQkaMPhGTaKO0fWLbwbpNXG+k5XYTRFXVl/dDnMo2KQnPIwRZRMbJTAAVRWQsOY3k1jxpmpgMystY0wi/YDGznB4umdcWq7IEXlpk7MVnR5RhjZbs3mqNDwPOCPkvRUEEVMnY1dg1lAX1IEt3jVYQvGfVBZ7fJv7yi1v+7U9/zWaQe+Z2vSWEQVSAEiSliVgCiqyhrmrhezgji61WxQfG0G9FS0YmX00XM9uQCxE6UxkJTJazGldUTysrJHllEfKpFW2XHDNRFVfxLJYBWmm0E8QtRlFLFpRNEVPAGQdBlGqHLEiXyoIzrc6vaKqK0CcG3+HKNX39/BmvXj3l5uaGGDN970EprFbMmwqVNXXl6LylqRuUMqxWa1CGECLD4JkdNqQAm82Wru9JhaRsdBbH5doWQTjh18QAh4cLVI4s50teXN6y9oDpxWMnqsLfCChi6QCE4MUMUWlFiFGuDxAidG1gu94wMxWNndHMZjy8/w4xNqRoSMRSAjYlMSoaON6gU+azz6744z/+Ob/7e9+DBCE6vnhyhR8yve948GDOhx98yHJ2TGPm+KEj54QfGj775IacDqhqhzaBkDw5SblFOrd2Wh278n2ZNwtSNi7Mwt1JZX7flX3GhVnlUR5iWqnIeVy4MxDRJjJfzFksFoTQkxJUlaVpZhjTE5SXbjSdhVtnilO61vQ+IErkMp9pStAzQs3TpD/9Z0pkS8o7rT13SkHsrZvjxKdEoVbf3al838KFTJOC+fg5pVNvRIxGaOU33L7WAcr0hWGKRnVRnByzFRkX+yTUNzY1RoVvF3K7+1qB9kSRNUntNe2izLEUMgYaqDy1Du92XRjdCLR9px6Yi/iY2kkrT2WksQaAKi3IRUg77W6nmGQCyimRrdT81dQK++XvNn6OMQbnrKAoRWwrhIgzSuTE9xCgMRKX07obiDtDurLQFwg0BhF/GlEmXSLxULgvKmas0qAtqZgM7jRkmFRXyaXVNQ243GPVwEEFi1pDDOQUyuJWSJ1je2tmKluNWZBA5cUUMQq6YKxhtCEYz7vROx6TMWbShtEjSqDVVF7WKhN8RhSHhaMypEAcxb4qQ3NyiJk3tO0ggV/IxQE4E704KwcSxlj5TgqyioRhwOMIWtN3Hp8N3ZC43QzcrAc2faJL0OUdp0Cuz/i7BNcqlYC38GdG7sso464YJ7nCHSl3l8lQqYRTCqehaizv3Tvh8b1D5nPNfFFRNZbKGUwJTOraTe7DzlrxFtKCNvXFvmDKKbUWikwxEAQhOqssJOF1D+cb+Pnn5/zJTz/m+esbjJujVKbzssCOi0ZIiZAV29aTs6KurJg+YsAaQkigDClJoNINiUAkAb1P6CxmjstFxbxxOAVWZ5zRGG0Kx8ZNicWk36JBaUvMO5G/OwisHQUAFVppgvclgdCE6NHIIl4ZS46RSOL68pIH80O67ZqDo8h2s+bzz3/Nq9cvULqi7TZSDlMSJI/GcqggQZXV9G1LCgFXiX7Iar1l8EJOH3yaZASMkXbqqq7QVtP2rQSkxuBqx6rbsBkO+OTzV/zq0yccndUcHFuqpUZpx9D1EkLkWOwWpDRWLxwGRd95Qu5BBbxXdL1nvb5lUBrLgsNoaZpjthuIWZOVIfnEdtuJ9lKVqeua+ewIsmazveGjv1izuvqUd9874/YW2jZwu7qhqjTf+8H7NDNIecDYjDHC/xp6aDcZ5xYYW/RNuuK/lkce3tsXi4l/p0YOivrKEs/dhzS7xWhEC8v0ZKR9/vj0kPnBAm0T3SBqs7O5wVWKYYCURC7eGoNRQpxtmiU3qSUT2RHQ2UNr3jyovEM5prVqF4hR3pvL/Kmmx9UYbt0BP/bn/4kCUNa/rzoTX4Km/obt6x2g7AceI3phdGkz3r1mf22+w8jeL5K9sd+3dfeoEgqPgmcmJFSIjEztqS21rOF3u2520NjbboAJbiuB0ptS9zlT2oHzxEHZTZKyj/E9IUS6ggpUSu3UUIHJu3uK61QJUBzeS41YYokd4TamhEl6h/zovWN+o2wlwm/Afr2xQFw57WT095GjN80Ly5GNe5V2xQwilqfQOVLbzL2m4rTRpPUGH/VkWJ5ykMlV6+l7yHfdGSZOXVjaCKF2nGymgFO4EKJ1vncttSKnHeIiMuH7pozjzZywzqJUJmXhs4QQGQLEWtxc+xTxeSxHGC7WLUMM3D87oK4dOksLq28zXSf8lU3v6VKmC3Dbir6JjxJIKjI65inDSSXay4ArGZEkebvgQCPEzrFtGmSBtjvLTSqjmCtNbcAoceB9dLjgYFZRzTS2sjhncKUDx1pDZaXl2FVWkBQFzmqR4C9S8qK3Ip0/WjtpciheU2ThwfhsuG7h41db/v1ffMrnr25IWFHdncS8shC9kZJVTILgpZhL+zD4QsLsB6F/pyzZp3B15N6rjGZRwbx2LGY1GtE1KebDkIKI/YUkmfTYFVdqxEYbgu/JWbqYRo5CjJlRTj7ljLLC30kpUTkxfcxdJ4B4SWpiCrTbLTdXVzx6rycMW64unvP82Resty1JabohoMiY0nllnSXiUSoyr8XrqO86JClK0rWUpL3ZmkqGgtGT55Nx0t6dcpAxW66HNqLB8/EXr9DZsu28tMRrIfC6ymEdaBORKDjvUGDjcXVFP8hzWsv5aFuPihanFA9Oj3H2lNtr8EmTbZ5EIT/44EPmC42t4P79exwenJGCYbtpub29wVqN31YkXxGHDXGIPHh8xOnJPYIfiHEgRU/KA01zwO1ao9Qca2tCDBRgt8y/6csL9jgbTff2joMic/ndub28eAr2ZVLZmwcLkiJJkiB1gLR550zTzGnbAPScnM5Z3QrPqG0HOcYUwEmzQAqmlLW1oM2F6SHlo/JhY4ChFKMekRxjSe+/MnPf36YDf+s2Bkbj173zzGS8mO6++DfcvtYBigyaXcABMkmMLcZ/3fv2/igiVV+NoNxlQReUxogdvI1mV6Lhy4HGbpdjoDRe7F3EKsuDngb//s8UBOx9T13aqMfafSpCcaaoMiYd8N4zDH5CDESxcy+1LudnDLakrlp4GoNI1Me9rqCU9xqex8w8j0HKiJDsQX65OAGPgOkeCrN/XqfqUd4FLUYXIDGPCJks4FFB1gZIWJXJ/Qofe/A9SiPdNlEV8qqUItJ+gJlLLqB2Y8Do4m0U45QRS0sspBAI3mOtJY7GfVphMWAyMTBlxbsBotEpo5RDp0xUooVBioSYYOwe8aI6uukDmy4wDIbVNjCETBc3nMwbiIE6Rc4qR2U1YRgYWk8fRZUyBlW8NzI5RekLyJRyVBkvjK3loqEykee0mrKukcKnKAFD2c8ocd9ow9xoah3JJlCZiKJHKYuxDabWwqPRiqqyUwlSmzHDlEw8l/M8jlkZfwZbSpGjAJeUoooSbFLcDvDzz17x8fMrQjY4K2JpMUk5yBhHQPQ3eh9p+4EQEsY6nBaV0xgyIUMXIMSAD6WZIENdKRpnOVxU1LoowOqIKsJrVivqatTISIQY8UMogX0pWaVI0zSEHCdLhRhjQZGKZYJ2O5VeBNkLuvCekLZdqw0xRZy1+Ji4vbxgfXPFweEJr18+5eb2Bh/HMpVoy4TkURhuN7ckIvP5gmWzZNN25JRomloQjTBgjClt3xXDIB1NsJtTfBgmFCHlJN1+FWgciZr1aqBrxZHZWtFGGcKGZqkhW5SSoEmVuUWbQrbNFH6LRalEipptmzloKkKKnJwd0fWGtA30MaOSuB4fLA44PvrtUj60GO1QlaGpDjk5fkCIkWEIxOjw3TWVgZvLK85f9dy/ZxiGAET6PtA0C0KYoZURI0w1Jk3CuSO/ySfcu63VGJjoEpwUN+/SEZin1t7xvhuneel427X+qmkdkIBHQ9Rs1x3nry8w+mwK5s9OD/B9wuobtpvCB2TAh455c0D0Wua7tFtT5P62e0GA2vv37VokU8fR3lw84TF7ZZ43u4H2/tgVj95Ab/bXxX30/TfdvtYBSspjeytlot1ltfsnMJfsfV8H5G/a/rrun3HBt85i4zgh7RbZnBL5DR2W8s5p30qNJFnKYNrXN1F3jnVa2PMotFbM1vTe/pAOGuecsOJLgDKWcIwZYcZRoGt3XGbUa6gkGAlRSjwp5knddL/EsyMmjyhIuvPYDvFJ5aYqwYecPKZ6Z/neb+6fwqQflVdRWuraMaKSx2RPrSNHlcZ4TyIK+qMLZooEMrl8vlGSuZPidBOaQmbMmWKVIIuILU7HOcadouoOjmPMSqwRZdBQHJG1UmSVRV+maIjkXloEZeEVfozw3XZcpRQ1g9est5HOQ0hwfRvo1xsqBQsyy5niZOGoqWQIRfHgycCQoTQRl/OvxtNa5keZXNQeoke5ptNj+2iaGjV/QOeMVYpGKxonBFm3nLE8nTE7qHAzi6lUWXgUlRPkUhf82hhbkoUSxAIjoXvkdI33xRigyxiQRTpbCCheXd7w7PUlURkypmT90HbiwouKpGwIWbqWhgRog4+JbtuJh07K+JwYQiaWOcMaWDaGudXUVlMRqKymqUQafdTbgdLCWVrilR5b8BPeD9hCnAwxTl1fY+A6lk9G5HCH2kpCAAHn3MTp8t6jNEQvSUcYer745NcoDM+ePcPHUclaDC0zgaxh47f4bcRay6Kaoxnoh1BQR8gqs1wsyzWXnxQjCrGuqCpHiIGQBH0UlEv4WVU22NpBNihniRvotgPdzAEJHwMhWpypMUiilGPEKkulEyEL8qatLYGs3M9GW9bbjt5/hs8tjx5/E2WPIcq9GVNCa0dOGqMtEjrv5vfxPBurcK6haQ7oe8+m7Xjyacu7jx1X59coPJttZmhhfS3EdK1z0XQREnZKvviXCeq6m7t3a4lW+k6AkqYus939k8uknqeEcodajM+hMjkVHliCnCLtxjO0Ed8PaAPLRcOsslSmxqrEzbVwCx88esx63aI55ud/eU5KY+NHgUdVnObAu8eV78QGX0JOcibnt61X0+RwB3V/+/a2x++uo+Oc85tuX+sA5W2llJ1j793Syl93YsbSzdu2twUq469Gl8zRaLFD34sW37ww4+PTAHhjsOyQkp3s/d0gaxcUmyI3P/JUxn2M6I5zIow1DEMJUiRAMcaUxWiHoOzXya21WJdwQdCEFCMxaIIN2GQYybi7Gy7f/WHXmTRaAaSpprsLppj2sH/85TtmVQKvkcQlJR4dI7pb4cIt87xiqVuO5o4mzhl6hep7+iQaBxmEcFl4KGocC2NXUi6ie+yCE0FORm5PEu2bkSs0fT/KYl/4BEZh0FDKCCP6ErJ0gOiiSyD+TVE6RoLUi50xOG0wRKwyaJWwRpWyjMQgsbQEm5xQw4DVmoUxJAs5Cl8ll3GoUcSY8SmRSmYmZcCx/MQEJxf+toyXvauBAi1wTzE0VNRaUevErHLMjyrq04rDewsWhw1VLVL0gtxJcGK0xhpdUCXhktjxOSNln5QSVhsh1CWZT0OU0qDRmpghasMQE+s+8OL1BZu2o541dJ2gg90QyEqLUq9xYCqGIbAdEigxh+z8UEiZmZh3sgBGQ1NpDhrLorZUKlFpyVpFMXUUvYJkjHS9aEuK0hI7CkGmJKq9yoCzDj8M+BSnBMM5x9gePPoO5YwQhLXZC1xiuVZlDht1kJQi+sjN5QUv6y9YrzekLFO2yl6cfI3G5zIWlMLqGu8TMbbEIIJrOYtwmy1lJzvOi3nszpB7NJbvJ/wxIWHGmIgxk2LCusRsbmlXow9XzXw+Z9veokzi5FCJC7dREMV/xukZxITRAWctxoqZXV07ZnVNTont9orr1QV9yDx88CNSbiRJUaZw/DQ5aSiInPjAKtFFsaJJY63GuYqqmtO2Sz779S2r65+waa+pm4qjgxMePTxh3jRo5YhZSiYhJsJocsno0zWSYNX0oyiI4l6AMiZ/+4nbbs5OjIjF3srBmCFJoC5pSk6OoY2EvgR5NmLR1PNDDmZLKhe5vZGx897779O1mp/95Us26xaFcPfG+VJ8s+9+6tu2KWgZ59+vfuX0gqmc+Z+xTfP+30IDBb7mAcoOLisLtNZUxqK1ISu18w9541rdHUiynzcv0ZuBxd3Hyt+lJc8Ygyfw5vYm6jBmUHKh7+5r3P8uSn8jSNmD2HZCbm8OQsnanHPUdV00QUQK2hqDqkumqve4MvufrZVwCaLFhwGfMj5FdCljTTfr3qGPULYuXQoTK/yN87Y7dxMY+OXzNSItWSTRJdOPkBNqWHMQrzmrtzRhxYEZsAS0kfZctJaSTB8IWeocSoFVSkinE8fl7mSitCpwsvi9pBxElE8bEqpA4HksHcsCuxeUaS0TZ0pJ/FvEjVC+uxY4ISkh+EaS8B32ykuNc3S9p7aGjGh36KzQFGEzlTCAzqLxYbRoZ7gYsURCGRdWjwx+hc9SWhtDRjmfarI7H6X6TUGrBGkpVzcnGmuotcHmTJUiB85RGagczJc1buYwtSmqrxpXyo2CSghZU4KTXPQipG06F+0Qbe3EQ9put9i6km4bpdAFWex8IijNzXbg8mYj3SZBM3hPiJmMxhhLtMJbGHziet3RRyFrhxTxxW9JNF3kPNZOs6gMMwPLytBYSgnHlAVLzpcxehqP3vup1Km1IYQg370kAtHHPeHG3TiOMYkeTEEoc9zNB4kkwWy5P4V874hJiKZGC5dOhO0Cq6tzlvMDzm9fk2OEFLFOkIYQpEw0X8xwVPR9L8EbFA8sj44yV/nBk4DFfCat9llKRM5UGO2EI5VEIyeVeSqGjNce5yzOKeoa5s2Mo7OHHBwekm4rUrhlGAZqp6mdYWg7NpvAcHJAzoYcezADdV2hNFQu8+DBnOVyyc11w7bdcLB4QM4liM09OVeMpZTMOP9oQXKK3AIoohbRQGehrmZU7oB2G/j00ytiHKgqRX4443DZUFdOOr6yJDPBB2L0hBz3gpO3dHPqHUFW7qXd/PwlUU2ZJctanieJgrs7LOWQkvRt14lff/SS45MlZ2cNWmlmTc28UZAPefRgiTYWZw9oq5oXT/+KFMs6UmxPcsEhp9k03w1EFDsU5U5SPKpP8ua6V0KzPV7OW8OePJJvv/zsfgK8W/t+8yDlax6g7LYx8zDWTpkwmUlr4G+73SXH7hGh2D2ui6S3tRZtxInzS6jCtEh/ef/llzvfYbwRxkmNaeyM5FnJ6Iwxe2/Pd/ajNVRVJSTAtmUoHQPGGExluBNojStv3u/ocYXPIcStkZ8xdS0wIn67gGLkoGQopaGCnEyHVSD+vSGexzReqWlf+2jM+P1CDFjf4oZrjqoOE69wCuIAfc6lBBSRLzNmg6B1FqM4X+r8egywdvo4lNLOeE1GpERN16Aoz4KUjNgFYXIeNUqliRAp51+sEFQJdHRh3RtjcFmEumCUew9CxCytqjopdCG8KgRWdtrgtIYcMFhqC30CmzIqgB4n7wyGnQmiXNbSrluOJSMCcylmJs5JuVdIgUop5lrhiNRKUVtFoxO1MViVqaymql0RadOiVVK++Fh6FIRhNySnYHBvfEuXgCF7g48ZneT9vpRM+xDZxszLq5brdU/vM/0g3JGQQaWIqSxZG7btwKqPtD6V55KooBaOs9bQGEWlFYtaUBNHpNI7QnE/BFLOWOOATIwStObSLizdLiWoo7QNo6cyZl05+T0GEetD+DUgGiVWC88s5SyIq5LATRsFxbIiA1VJLMotU5rREkO7xVYNmoiPAWMNs6bCpx5Fw3w+x1lLu93g3IxhSAS/Q89CjNzcrtCIg7MxhsODA/quZQgGrSJNU0GfhBrsIYUo92aK0kocA5WxnBwvWRycMD98QNQ184VmaCNDf4siUzcWaFgshXAfx1KplgVVFRKxqzRHxzMOj2aEYGjXx3SbGTkW9CgndA6lu09LK/DY5z/KOBiNzY5kM9GJKWHT1Gw2sgYMAbohs972bLY9BwdeFHyTaAHFJF2GZDUpSbO/qJfrPSWOY9CYMzqPKGW+s17sz/m5eF1lTFGInmYQcqH1kzMxVnzx+QrjPuUHv/UOZ/cOOTwUTtchhzRNg7Mzgq/5q5/+kovXPSntgmgp6eZS3tlVDX6TbeL5vaVasL99JUfzb9r/XsL6t12Jv9YBSh5V//ZO7MTPGBf3XPgeeZ+Ydzfi/euu45tQ2P77YOzokTbdUbhNqX2DwN1r30YSGksi0wS+t4DuSji7ATSWsXZdPrtjSqPhGrJIVFWF9x4/DAz9UMzX9rMPShA3foZkWc4m6qomRRiGYUJJRm4JKt/h3LD3PTNMwcm0QHH3PE8cG62nazQ6DGediy5GCdislVJAhplTzE2gmmmCD/gQUYnJ8n7M4DPy/rHUpJWeOAC7AEvEtvaPU4zgysJe1F2nY82grNTO4x5Mqbh7A07XGo3OBcHLI7++6LMIllwykkRW4tw6OsqaLJoHonugqawTZCFmbFHsrZRi7hwhBwaYuC4aQV306BQMyN4LRwtN0iJgprUWfg7imaGVolaKBsXcWhqlqGzGWU1dGWxlqSppH8ao8mOglFR3I1Xd4WKQd0REW7pGygUm5kzf9oUbsi2tvAYfEl3Q3LaRVZfYdoGuz0RliTFTG0UMgZAUrQ+su0hQWmzmxzGJJBFOK+Y6Ma8N88ZiVKJUc0Q3KJXrpRSqtJ6mKKRbFNiqkpJUaemNlLJD3rUUe3Frm4LdkZg8ejAppcsiZ0r3iCCWWlv84GWM5oKuKSWquCXVVxQUxHccLWZcxa34zxhNXc/L+FZ07ZaHj045WB7xq18+YRuF8CpcIAERE4qYFFc3t7zz4AHLeUMfModHBxydLDm/vGDTdUUgxzOEUN6TCb7HAUdHp7jmGJ8ssoRUuGpJGFoUAW0Ss+XeHBsV83mDtZamqYHAwXKGsw6F5uT0iL6fs7rKwqnQYynZQjblcpY5JSnyfqKBcNW0GQoXpaKuGppmxrZzaBVJybDZtKzW15yezNH1gpQ0ISRi9OzMX7mDVKOkLEwak1EzBeTj3LtLdgrpNo/6PqMQ5BikaEFS8ph0ZqDcB2RytmzbzMcfX+JT4DvfeUBdO85ODpkvDpg1RzjT8PpFz3/6j7+i7wwKaWpAjSEG010+JmrjWFRqV/i5U9p58ztzdz2SB37DSGc3I97Z193tv6ASz7gojRdHlyxVFd8PIc2OMNW4mEgmPEpPj1k0St09tSPmzd3IcZ+cJZ8ptUnRXpFseix9SJa0T7TcP9ovIygwFVHulHgkQpaRpNlTpZwCmhJJpxHxk+y8qgwhVMQYCCnhQ8CGQv5j18nB1Con3IzaKUiSXYRCHhs7emTIZIokDxEhHdpxIcqQkgiEpayIedRS2UX1shiY4q8ipTiRzI/kHESgCUtGo4oVvFLiDttuVtQzhbNOJpiSLTMuFsZg9WiAF0SrZMoO8qSXMekdlJ+YE0Qt/A2BUErr7d2QsqwfjGRmCVLvtoNTxmLWoBDHYmcSg1ICJadUygYwayxDsAweFEE0DrS0KlugVolaR4wSyN2UzLJRStRurZaOnlwgfYWUuIpBl1aaVGr3aixvAdkWZ2ek2wmdcVpxUDsWpcRDCFil0CajG0NzPGe2aLDOlMVVoY1Cl33JRG+l5BYkS4bSRq4U2HI/GAmSUpKFNcYMSlCTjBJ1VNdwsWn5+Mlrzm97+qiJORYvI4VPggTdDpmbbcQjyEoqiKIp96Y1mkrDzGpqBcSAdnoqA+XChzFW7uFUBP3Ge9xZU4LKXNr55QJLy/+IKJaOsZSwlcMYQwyBFOUaWGuJIUDplktZ7uMYR0ni8rsSR+8Ux7KbEGGVVhATfrPm5Pg+ISqUdcQ4EHxg6DyuaujSQAjCORENHyksWltL2aQQU7WJ9F3P+cUF904OODpYcHy0YDG3zNwZry5u2QwBW3luVitJvJR0DmkSIWcsqiQikRwVhjlWn5DzimxWuEqQyRQ0MWoU4nx9cLBgPoPT0yXPX55zfWVZLM64eOXxQwXaoFQUCrgqc/mEvoEyknxoPa7tmqxLsK0t1kJTN8xmc+p2QT9Ego/0fcvt6orV6gClKnIpW8cSOKe4j0TsL84SNE5cw1HJWytUUju0dAwCpnlOSxICU7Byd5Yf/x2bCxQpWvo28+mvrhjaSAo1tw8yD+8/IB8LOvQnf/ITXr/eEjNTh2LOZV6Dr/yUaQ7Lu3VQfh8F4zJ3Z7rdfCf/qrc8++XP2fuYr3jt3ybY+ZoHKONpBUqJx8gNOOLLeXfid4NuLDuMjPpyYcogmR6fMqC8uzh713BkbCsKMXAUT9sLOPZLIrsjHpGQ3bC4U7tUatI5mZAgSmResjxjjDDFUFC8OCiBRk6ZRMIYhbGGqrb4YBkGz+A91jmcMSgzQoHyXXfiaKIEWjlh9Xs/iG9L0TAZZdHH81BUQohJTO4or5EJOxejqz0USo1ks31eipApY/SSladEVBVoCVMoTp0xBkxt0Vr4GH4IE7JDgcxzKVfoJAt6RpWSinSahD29FeMsBNG2yIV7MN7MUyB4p+QkgeJ+qUg+Wk2tyKmcp5gVnQ94H0rAOfoUKSljpITRFmcssYa2jzg9FERJo5LC5sBSa+ZOU6OJCuF3xIypRIfHWEvlI55MVIqoIZgiHpZFy0SPpHEZYCVIkEDMaC0kyCzlnAOnqAGdIkWjEu0Mam6ZnS6pZg5VrqHTMlZM+VupYloXBOEZkatxsRdlWiXtwbmgPsbhfSekYqOJWeEzbNqBX39xzsefv+J61TN4QWFQCaUtQ4C+T1xvQjFEVIWWOC4wGaehsVAZRW01xooK56hbI/PFqFkSUNqQivJnSlF0XZydIP0U06S3Kx0cwnMKYWwn3qGHpFxIqWKqFxE+VS4csBEJjaULLO0hkRK4780ZWYJLkzIMPeTA6nZNTKE4RjeELC7Pnz15SdcycWkmFLEglq62eD8Qo/hNnZwcYkxiOaupDWjbkA4t2+cXLGpLXEQ26w0KUZTtVWTdbnD1KSaEKTBD1xCXhKHj6PSYehZYNA7vod0OeB85PppR1Zmjo4qDgwbr3gV1yOuXgdWqIuN2aMQ0pzMR/PWIYJgyf0NBShVGW4wRQTbrDLOmoalmdLYl+kAMA6vVitvbNXW1wJiKmMu5j0UgsqzeelIBV9PnGKNRe80Xei8hHfWWciGrip2WPLZLSUeEWfGm27A8Ls/HYMih4otPWs5f/Jq6+ZT5vGExbwB49vSadhC+jMwVI/NE7QUbhfy+n1gzzu/jsijfKzImv0yL6ZtcSzkn/3/y/izWsiw760d/YzZr7eZ0EZHRZFZmZTV2uarc+17+uN7uBQvfK7/hRwQI8WQZBFhCFhIP9CBeeAEkhBBvCIlXQALD/1roAsbGGGPjvqvG2URmRJxuN2vN7j6MOdfa+0RkuQr+SDfFTkWeiH12u9Zcc4zxje/7xss3ufv6B89p37vcfXwtqr/R28c6QTmEpqZEwR+0eF5++FHLZuobChNCMb1Yvd19nbtEKOpmaK3VCqzyFe4+p7REqL3mlMYev5cmJmZu4xyQYRuk3KDGV/c8Zd7oqpKg7ztSTLP82DtNdgx1nHd9HVOmKttYw8J2JJPYsVPIOwZSJxgMtigHwsWiM3fEVh5IJbbmBCkieYQ8IqhjJSJgWhJWj4/mNMoZSFodYbX9Qd2wslii7Sm2I4Rrhu2WMWatGEUmRAyqmrjC8RNMi1apIYYjBZSpa8Uwo2KTCe1B0GgbZ0r56Ljr5575Qc0YLqXEfr8nhURnu2l91ifq8e16nFhiJ1A2tfWjh8gZQ1cM675TFEMqKJITlIR3vvIZdFqsEzBGB4aprXipRNgqj5zKqAKik3RTqm6tJSPiWHht8Xi0rWCNoiNu0WG9kl+dd4gtdY06dVat1fphP77kTJJwsLZ1HYt1OjNHINZhfhlDLgYjDtd5lhY211vee/qcZzc3xNySy1naGYvwbBPZhmNrcuXzQGdg4QRvMq6W25lMTBwMfNONPRblnJiiLagm11dLcZmQ0Kn1ag2+ttD0OjxWchij6FlhNmSbOWzz9eqcTk9OKU7vAVWWnDLW6TXVOCnGQoo7vCtgAlYs3vWU2toadwHTd+yHzH4MZLSF1IqWruvUlTiovf+it5yf9aQwEPYBsuC6Bc+vN1xdb0imsL5YsTfbg30ikEomZUvJQs4jhYizPaZYtjvLzVduef0TKx4/vIeUyKXc4kxHv/BYl7i4OGO1OsV3Sy5fWG4uR3JeglHukojFGF8Tf5X+tz/ezcjyxBE0s3DAOYf3Ce89i2VPt1PScIg6zfny5ob1Sh2QU0rEqMXCYTtknufWWuh6TjvrDpRoadqLD32w9DUKrbjV+NC2+rsh++BWZ6MpH8aQY+H2pnBzHTASMXJbE1ndJ0UOY1E5DiXSWqscH6faTjr8DMphkY/4WHN8K6W8lFi8ikw831cmUOA4ZoJ8hNfMq24f7wSl3qRWes3HYmqp1ESgDafUY9lkrNQ7D17nzsGcX3+GwqbkJnNnUavkOBUzVTwwJycN/r+bdd7NMKVWnhPZsFbd+lamXrwOIy8nYQ0BMHU2kGb+Fuc8zgVCCqQUCTFgnW6yk8pJmoNGhSkNiDe43iJZ1QYhFXxStKgWCEgqlJQnl8xUYBsz25AIqXJyKNqqafn9ZAhSf5RSERptCVlRt1gRQyza8sB6htyxi8JZ56q7bKlzgwqlxMkMrJTKN6rIl3pY5AmWnfk0M4egQaTaP87TxtTWhBirlW+JBwRgM71Wascgt8oVfOe1z56rgZqJpBixYlhVLkeJevxyzEih8mQ0Meqs0FvlyujIgsqhEg3ExggmF7w0dn3CknGkWvVU4riROsjNKOHY1laDtcRccEUJuEtxdNZMPBkRA14wzmK9qxObVS6qtwIHuoGmcrDWTNVbaynFigCGjKJ+Wc+79Qa/XLDZjYRxxHdquCfG4boejE6gTnVjLmIJSXh+M7CJhViT8qb8cqg8euUN3oItmd7ZmftCwXUO5xRlUphceWS6j9QiwEjlbRw6ER/C6YpqWlFVUoF5OjJ67CbieJkdlEXsNAai3Zr8uCXDKWdCDPRWPUqo1vgIpDGwXp2xGRPGG/qu5/pmx7AvkIVF3ylKVhUpBnSIoNMRIFe3N4yjqoS6zrJcWLLtGUchBMsuBp4+u2SzjyAZ63Yse4+xGes9qRgW/TkpZUKphQdFFWJGyMVyfQObX7ni9qpw/35P5y3+xJJSwHeG1x69RQwLvvzlD7m+tOS8QsRXArVMCqaWcDReobOWNubjkH+XKRPhvu3FXedYLhcsl0uGYU9MgXEcub66Zr080WMaI+FAANDWsD0oAhu3SkRwfvaTssZOE+0POYOHiWpDWOdd/qMaH7r/5jomQ4dUNnTWovz/ureJNta/mdtxItHw4VpITp/vOJYcJjZ3k5OPIsvq79rrHSZCL7/2N3r7WCcoDXZviYJmtE43AJgGvB0ekMLBwZb2+/q7g+TkMPlouvhDyDQdWKC3F9NBTrUV8g3pvQ9Mz6Y2iCYhWp16ROy0ftpFMCtSDr5VTX7mKkyhNCtKsky+IwWtGFyIOqunoTR6RSCYOgG2tnxcwfQWF5XYl1Mhx0J2Cm1GSSQCuUTSUCssI5QQSONASbGaIBkyXr+voIiHafyfY6KzJv5KMJVc/UiMo7iOJCdsw3OGCL5bEIzOTokhElNk7v/KBFu28zVxgMS8dH+7gBtUa8RM3iJtneRSMGVmobfEC+bBio0T02R/rp6rnIrKsKmkTe/UAbIFoxCn+TiUiv6gihxSAmu1dQKVQNzWTa6yZv3M5KRonplyc5wRvKt25lJ0/oihmsUVYtEJth5LJ5q0ppzqsEYQcVhvwKIuw+06c7UIyFnPl52PlVA5lmaG6kHRkhKDIkh1/0q5sN3v2e4it9sB34+4ruNmX7CuYxwCKTt9LpDFcrkbuRoSCch1iKQVPV6+JnWutp7Ub0YRO+sMJUU6K5SKWlTvWl2bWZPYztfCoPKFGr9M9w4dl5BTnIjAMQ5QDeistXo+qXyhVEgx1qRLFS3Ne0cT21TJ7Mod8V7xq7Ym40ELs2S15OuMZdF3xBJ1WKlJxDyyWnhOz87Y7QZyDBgy3jsoGWfctO4VqFOCcs6J5WrBOI6kZPjKu+9xeb2l4LAGTBo5Pe8w3tEvz8m5J+dVNYzbV2K28uGKGIzz5OKIo/CV39ny/rs3fOLNc5brC4bNjuubwunvRrY3Gy4vPeQFYjzWtTlnavTWRpZYMyu/5tY7U1Gg11CqIypmbxLvPYu+Z7Ho1QhvMKSY2O12XF5dVuKwrUWFFiRazFXpfJWQz0hFRQ3rOjhGWV7+03xy5r35JcD8JTQ+l8QEdEJNcNWwL+U0JS0zEXaOf3Ni8HJ8+aiEQF/ro9AT5tc9sPOf73/Va85JyZyilAabTO2nV4EAH3X7WCcoujnOicTU+jCG44xRf77U2oGDADUvoKOTkeeKPKVEyrm2S+L0Ovq+DiOiEjbRLe8u9Hf3vefmlC626f1roqVo0MxDaZCdVqpzlXr42nMCpfdp5aEXnHUjIQQl8EUHLs/HSqGGqW2FGKwBb9XXIAclnqYcSNWrIIn2MHMYGfc79rdXlLhne3vFh++8xz5k6Nc60l3tlKqE1nCkcqo+JmpNXyfxlgw5IkY5D1k8NwPY0XDqCl2IZKvSTK0YFXU4hGgPj/dEbBZzlLA0Pw4xjRtjK8HSTK8npqp3kqI604TqwrQRpYbY1MceBqBSFGdwtTpLsckLdc1psKjfu55qa6ATauumDmGs7rhtSOFkMifKTSkcqsE0EXfWQlHOST2wmBooYyWsGgFfq+2SVLmimy9ghX7dY04WuN5hnCZ/UpESKzodWe9T5HBSMrTNeToXmohbESzUwZS6gSnMDgnDh88uuRoMEQcYhpBJxZAwXO/2PL8ZUad3M3//eqw6A723+h4tWWs7gAjWO1KKVSCjdvrtwAtKaKWo8ZcxlnEYaje2XcsGKxaZgpfQ9z27/R6dGFyt4+t6FjH4rp/2Cw0IeuKbn0ZQhjTOabtATevydF3Gapzo0CRo3N1ycX7CzW7g+mbLbhiAQucFUzQpcwaKKSwXThEir8eyVLShiDAEeHa54Vs+85Crqxd8+cu/y7ObW8BgJLPuhYcXC771C5/hjbc+x+++e81XvvYBu71Qytg2YahjKSSr6kawJDKCZx+Er3zthputcH52wdnZPb782wFre4QV4rRNKHXEgHKCDlV+Ml1HOWekWtK3dnWsyK2riLMYJbM6p9OcV6sV2+2WYdgTohrrXV/f4FxH3y9rYVNb9M7SeU/v3UEbuJlNVqK+sRV5a+IHM+0BhwnKcWw5lvC+OkDPIylKbu1w6vlXWbiihJbJXrHtT0duta9GLe7GiMnS/+uBOofx5VUZ1svPoLYPjvaylqpI+/mNAygf8wRFWtDWvrJCgW7yIWjHqG6989MOFtB8m4/oVMnCFJhSinUCb6bUBEWzajstZIUDNbAVOc4yX8o4W3A+fM/DlEUOq4b54033NwQCmS6ew8CYDzbw5sFhvSNEJZaGFHFZ2wqN4CiVYArUqlzwxlI6R46e/TAQ4ohPFpcMZoykzZbNe1/h+btfZrj5kLR5gcQt4/NLbnYZOX9C6i+wKeKK6OTi3HxS2rFQBY/aTRtycpos1USl1EpeujWpnHEbtyzTHlO0XTVtYCnja1+/tW+kEqanC7Me24mX0qDdTN28Fd0x1bMBNLnIHMufndNhdKmZb+lJ5ij1rOcuV/5PKeVg7g0qk03UQYhVJVIsUkSrXwt9V+cuoTyDUvPSmJI2WIzOWGoeE6aukVbl6byRatpWnVpjiAiVM4UqXlQQVJEWp8iIcQZ6g/QG09mpLWfbpGxRDk9DS6w1OCu1hXQHjawbs6lE75ITYlwlIY8YgdOzU8YijHnH5W7kK+8+Yx9gHHSoYhDh+WYkVCxD23ZUtAn1bPHqmCpkOm/pDPW9KgemyT+k6NTglOfgJtUdWvQ57Wxp8NHnp6wunylEjJsTbWssYtwU8EpFWEKa2z4FPcYla3uSrMZ1Meu5LCXjXAckxrouU1IreV2HAW+dIoUxk6MQxkKOgrHqfWRMwTswJrNcdHTe17Ul7MdhcnYWA/sx8/T5hk99yvLhiyuevXhBMtpGWfTC+Ynlc9/yJv/H7/8Sb3/m+/i3/+fP8NWvXlHyQDNQ08Q0U4ggVpO3enwzsZ6nBZvdgpOzC4y9h5GlBnZHXaOtqKybOaKv35Q1B5JZndOkBpTDMBBCBCss+wWLvlfECJlsFpaLFavVit1ux76S6ne7LVdXjtVKR4EYK1jb0XUdi66j824+ZyWTSyLn1n6v15lRpFukKXgUVb6boNxNSL4uejAhwDrzSTB1RIuec02Up6h/pwgvd/5+/DnuvNH0p0WcGYWRV+c2ryi0X/3a9ZPUuw+TtIakfDO3V5Fzv+Hb3/pbfwsR4c/+2T873bff7/nRH/1RHjx4wMnJCT/8wz/M+++/f/S8r3zlK/zQD/0Qq9WKR48e8ef//J+fzYm+yVuD/ZqxliIorzjCZQ440/PgaEE1TUqpGXJO6m+gc22iKmHGkSGGlybY6mvxEvTXXu8lJEV/UTPZQrNGNlVCp2PdDdYef2Zt8VQIX+b3P0A/gXlCcHtfW50vrbPEkhliYkyJmAs6TquQcySXEckD5B3kClUbi+86lVAKlLDD7G/g+imXv/kLfO1n/0+uf+M/sfvKzxPe/WXie7+Gvfwq3e07DO/+KuM7v0a/fcaSyMLo2PAUErEUCrNMcx533lCUGSUoIhTj2cuKWzllMGtSPZ/aXol1gFxhDJExxGmmUMrN0rqhX3eUJQ32zhX1qlU9pqitNvV6E6gTheoJUTVW65UbUISjnvO2ZzTiakpz77ghcloF6lpryQul4KTQV/TKCJXfo4EtxOrpIgbvVAnkRNsazlhFajCKVmWBYqj3kGPGFKOPKaq28aKTfClFTQARvHMqY+4s2Ss8Yb3VNVlVFq2Naaza2ztrWCwWnJys6Pv+qAqmGpFpG0wH94UCQ9QNuHPKsRlC4sXNwG9++V3ee7FVCXFSR9QXtyO7WNdzPSe2gBdY2GrGZlH1jrdcnCxZdcK6E3pbsKY2N0Rl7xnBOI/vqqdI11XEpSacparhrDm6/mLKuG6u7UIImnRVuWkzQDhsPbe94LDSbn8/9DXS9aBJzji2WU5OFV9epxHnWFi5NV/41m/nc5/7IsvFGsmFvneICYRxy3Kx5OFrDykFrm9v6+uNKNICi4Xy9Ta7wH/75d/gd373XVJF4KwUHtxb8a3f8ibf/V3fxWc/+x2cnz9htTrDGEspqSbRDsEDliIJCIjkybhP3bwtRTzWL/B9j+2V7+Os0baO1WuIIuTsyNkTYyGEkXGMDMPIbrdnu91xe7vh+uaGm5sbLi+vuLy84vr2lt12z1BVijHGCfm01rLoe05WJ6xXa/quQ0TdoW9vb7i5uSaEEe8t6/WS05MVJ+sVi8WCruum89LaRm09t4RktoKo3lJiudv2eVUb6HA/n+/LNcHJUyyY2zntT5uxk+/8qZvT9GdGWA7/zI8/RluOUJf2/gfDaQ/j23GceTm2KUXg+HY31so3kXb8DyMoP/MzP8M/+Af/gO/6ru86uv/P/bk/x7/4F/+Cf/bP/hnn5+f8qT/1p/jDf/gP8+///b8HVEnxQz/0Qzx58oT/8B/+A++++y5/7I/9Mbz3/I2/8Te+qc8wDTmjVbUO670a/TAngq/qmd1dLO2VNDAWUlZCYKzkxzjxKWp1jhLebHV1nVsKMxzYbi0QvmQQN5n7HJ/SOdmqvVgjdR3OC3LKnU2V9xaZXq+hE/MEXn18I5uFEAgpMcaI9UlRlAI5DkgaKDlAShSj9tcmR0xKdBLJMtKlkTMTuV8y/nJH2b7Al5Hdfo8x6GYx7Bm2gWL2JNnQmwWnThg97MPAbndLv1zirK89fgAzHb95enImi9Xk0jhGt+Q2n7DsIuc2E3Y37FPGO6/VZgizdHMaLTAf89xaYJVbcNi/VfIipJIqxF+heiPYoqZwGr7yEUwvbp5smvOMXqR0zDdo7QxV+9RKO6t8tbriq1wbVeUsnFHmTjWHK5RJPaBSepn5HqItCmuoa1RdPBuClFOpviDaihSjk3BtHU0tpkwGWUWgWEEWFrPuMIsOu/C4zqvRX05HQbX9UVv3FoBaEIYhBEJUR1DnvKpOKOxCYsiWmKpKJyaubkd+551nvPP0muvRscuaTGx3A7tBuQI6JqfUggA6CwtvWHWK3HROsCbTm4iYkUVv8Z0npMzNZk8xmiAhgreKVkmp2mdKleBrAmidoo4i2oYjK2o0X1tz+0pEpddS112qnJbDRCTH2pKYFDwJOVDktdcyxhyNVBBrGYMmpn0Hjsy3fPqzvG0cpUQ++OArnJwsiBmMLdze7tkNz9lt98QYWIwR59T4q+87Fv2Cy5sNm+2OzeYpOdXk1Gh75975irc++QnuvfYJFovXsH7BYtVDa+FVLo61riafiVKMksltDWTonmQN9J2a/XlnMTZjjNNrOicgKYqYIVL03znWgkHfL6Zc2+uRUNGTGOtE6X6ha60UYkW7lOgKfd+zXq8ZhoHdfs8YAjkHYgwMg6HrOrz3rJcruq7TligckJgLJbV2YEUEpGCyersYcYikgzaPrftJS1YbWqGJQWst3209awtE31MpArXQaTt9RU5kvuel2NU+L7RYcfi743j0zfBADl+3TC2bQ3VSve8VaMqUnGBQadtxN+P3uv0PJSi3t7f8kT/yR/iH//Af8tf+2l+b7r+6uuIf/aN/xD/5J/+EP/AH/gAA//gf/2O+8IUv8FM/9VN8//d/P//6X/9rfumXfol/82/+DY8fP+Z7vud7+Kt/9a/y4z/+4/ylv/SX6Lrum/48LVM9cpF99QMn1AE4CE4KnbVqurmFhipjbVV3q4Bbi6BxT9p7zmz/+S1naDJPAcxa+xKM9qrMun0fffCMhswtnsMMXBSGrJhEQwLa3JDJat174hh0EGAIZGsBB5IwcYcvA66MSA5IDPROyClSYlDpaI5YIufecE+EtL9iHLcMIbAbAiEzoRebMRByZpf3ZL9mYc/obdHHbjcsVqd03QIxFZZtszBgarUoqqLKpiJCMh07FmyCcN8I5+fnLIaBzXbLOIZ6zKlzSKpsODcoeU5W1NPlWBpKRSpCydr+am6hFsBOyWRBapDUAW0cnBfnoFTps7Fm8mBp16QRi7W6CbcEpeRqOViVLQZwBtYLjyl5VsBLTUarv4KxTpU/Jevknmq5P3kkoEz9XJRrApDQ1oUV0VZIikq6rZlOzhowixfsSY9d9ZhO+/Nmais2k0KFvDNlmvqbUiSGNlCt2s0nNQlMGcaQ2W0TxcA+GZ7fbPFWOFk4soF92HK9jdzuM2MpDBm2Q2AMGecEK3ZyizVkrMCicyw7ixNN9DqrCNT50nFv/YCzpWO97NmPkfeeXfHiZkuxHWLchAaVFNW062Cf9d4rqbW2SaUowVl5DxqM9FiYKSE9RC1L0SDd1p4qy/RcHkqP294uR/uTcnWKiM7SqvtB11lSDtxePePXf+0XuBojnbN8z3d8Lx++eM6v/NpvsR9GNWYMSnQ24tjtBu7dO2O58Jysl+QUSSlydXUNeFUGWkXOOptZLDwnZ+fsB0vIlt46lqvVxFkq6OwqY+tk7exrYm6xtkMk6HUngrdG223W4sUjuIqOpqmYSLkp4BRh0/3rrjBBHz+O4+zc611V2zTH2dael2nPWywWrNdr1jvl67TXiXEkhFEHHHpD3ylfJ+cZWcjFKqJaTS0nqe5BO8eIIctse3/ISandzbsdkmnfmf5d21pHbZdp49D9/yCq0JKc6dkHRVgpL8eg9hmOE5OG0kh93zIV+yKv7vTMyUU5+k6lgs4vmc7Wc9Ee+9EcnFff/ocSlB/90R/lh37oh/iBH/iBowTlZ3/2Zwkh8AM/8APTfZ///Of55Cc/yX/8j/+R7//+7+c//sf/yHd+53fy+PHj6TE/+IM/yI/8yI/w3//7f+d7v/d7X3q/YRgYhmH69/X1tf5FGvSqi8M7X6VoMp1epgv+Iw7K4UHOyklIlagWY3X8THPLBKgXhJlMg16Gvl79fooO6CIUjpGdw6xWK5M6O8dUA6hSWdD1jfQ7t79LXbNSD4khUTkpqSoyauXsTSFaCDFShkjOO0wUepvp8pali5i0J4c9C5dYWUchMoStbgwxYIwQx8zlbUFyACy7mNiPkX1MjKmw2w+EoFyXLB5nM86MLBzspLAdB7bbG5arpW56eKQIkjI+7nFph0gijBtSicTdhu3NNbebW9be0J8U3Budch5WC1KMOGsZhmGq3EPSEeUt4RFq+8zoULaJk8K8LYBa549RSa+5WsAL1S0VTWZ189IFlAvkNLeK2kXfirA6oBhjDZ0IpcTaQjj4QwWJjCqYFlZYWa2iOfAYMVZHztOSqsJUXTWDuLa1tM3A2ll23sivQqqTRUtNxFA/G2tJruBPOuz5gu5ihVt0OK/crlIKxrnq0MvUTlWZuFrEhxRJo07BDTEzjLWNhaGUSCqZIRW2I1xdb1j0DtetuR0zQ7YUo3LyTQhsQmET1GXV5oIpiWXvOF91hP0WSuFs5Vh1nnG/ZdFZHt0/5WxpeePBCQ/PFjx+cMqqd2z2gWePznjn6XN2obAPCWs9lEIYB7b7gZBBnGU/aJVuXVUJWa1dFX1L2uJJFakCxFjIEMaxqj/UkK/EXAsEvUYFTQZTHaRY6rkkqzfOhLRWA8b9btDWrLU4CzlHnPXkHHj+4bv48wve/vS38caTt7j82f+s15EUcq6TiQU678lFeP7skseP77NcLrl88YKzsxPc02fkUug7R2fhZGm4f77gk2+8TmfP2OwKISWsNaxXK7q+UyIxjkMHGkXelBPkjFXelug1ZIzBW4c1liYxz9V4MaZU0ZG6xxZ1oS4TSDmTzXPWRLcNb9RZUJXzQmuhFaJknOgUBqmqueVywcnJCfthIIbAkDMlZ8ZhzzgO1cmXCc2VGtFLKWRrpqnKpm61pgZx5V/J5Co789+aN44i2A15+PrBeV4PUtu9czpwEF9eYfQ230otTg6K3vpvagzJ9WH5MJuQxo37+mkJcjjR/u6jlfvVNht9VDlCTb5Z5OabTlD+6T/9p/yX//Jf+Jmf+ZmXfvfee+/RdR0XFxdH9z9+/Jj33ntvesxhctJ+3373qtvf/Jt/k7/8l//yS/eXiQgks369VkSmVYUUjog5ZSYpttCUs/b3U0VMQlXrxKgmSSXPFU9ru9jaQ1UGen2f6TVfzhKP0I72AQ6ULHdht9b3dM5PCZaGqsZFyNOiB1HfCiNIi0TiKJVETA5I3pFTwMWBZRnxjJgUcOOAHzPLLrEygT6NWIlApjeWTjxD3NMTsCbSOb2wSynEqH3ylEO10ld315BUhq3tMbCuwxuhODhbWNIQ6aRg8560v9WBXwR8HLFlR7ndcLO55dmHH7LbbXDsOOsTp4uOJZ5hV3Cr12r/WxEGb61KVztl34+jqgtSDkpwLdRpvtDmaqSc1OIaUVJo233QajhIHQYpTMgUtc5QhMQqUbYSj3MuFPXjpu7Ceo5EvUQcQIaSDKOzRJNBUrVXL5r45IylsHSWnkLJldiZdeCfwcwmcqnOX6qVGsZrOyhVhQGCjl5o3AKZNhdFPxpBt9LIpYAFe+LpXzvBX6zJFsRWVVDOiBViybhipyQb0SrdYMgFhqCeNzEWwpgoqN/KECMpRIr13I6Jy5s9292eIXpuYuFyl/nVLz/j6Yst21DYxcI+JqZlXoSlh9cveu6fdoR9xCL0vRYmse95cHHKSS/cXzveem3B6/dPuThdUEpi3TnOV+c8vrdmFwo3uz2bzR4xKg3eD3us9Ty/3fPh5ZZ9zOQSWfUWI+q5st3H2v5DPXViokghkjHWKdIkQjHqm9FQFREliKe2b5km883VW6Pa32dF5UpV4g3DwHq9QCqvpfNOCyYKOQacGC7uPeD951d87Z33SDlgmr9CPXAxDljT43zPZrvn2YvnbDZbTk7Pdaqxt+QUWRrDw4uez33LG7x2/x7DDsQrd0UoLBYq2+36nlwMKeu4Al18es5FwFZulghaHFWXwIwWDZJjRTB0nlZoPLDcRl6Upn+ohUAVKuSkrcJ0PCfrsM1WDp+XK+InSiA+PT1lGAbGmqSklEgxstls2G63LFcLjPOYoqMKijHYUijYqRAUhb9qO7WQmnqt5QLSiLEyJSdVpDjJjj86UanIZENIKFNYaaEsU4vScoy663szFUkNQT1qHdYHTSgwM7rSMqDpWjv8TNIaSzK/zkFqIi2dKnP7qe0L+njltIgcK5q+kds3laB89atf5c/8mT/DT/zET7BYLL6Zp/5P3f7CX/gL/NiP/dj07+vra956663jRSrC4fmaa+M5a2sQVKbajhfUp6Cy+WPS/mZs/47q/dFurbWiydDcg59uLZGYoLa7J6KdMZmvpvZ5W9uhPs4Yh/e9ki/FqjVPmQmhMWpwbQP3dHGpeogKQRprKHhKSuTdJXb3HJcGch7pvCWHAUdgmTOrVDjrDCVuSWGg6zwn3QkiiVQCOY2QE6UlHhnGOireVv6H8nYKIaRKVNV2g/PVKjplTozBr5Qfk1ykpFvsboC0IQ7vQ7zienfJB0+3bK4Hei88urfg/tmacdwjds3zD645Xy+4vLHEXpMTkEpQ1WOqM1sMKdZBhKj1ONUDRAP4QdumtiJoawNDTiBStCkiDZF42bxrnoacJlUQVHRBVDGxcB68YxyTTso1SoI2Uo3jUqnS14IzcNJ5rchSQhqnpL63mdb1PK0WmJKkJqWGPBP9pgq+OtpKHQNvTEVGEliDXXW48yWLszXZW/XCMBWxmdqJWoepQ626rXpfHTYrIqPQvNoCl1wQq5v9EIXdELjZRa43e0KG2xh59v41N8HxK195xtc+vGUTMkPU5MkiSC6cdMKT845P3PM8ebBkvTil9x2XV9dY5xDWnJ0s8RK5f9Lz6MGai5OOVW8RHGMIGCLduuPcWE62lmGtQenmdoOzp/iu58OrLZ2/5Pn1hs5Zzk6WnKxXvLje8PTFhtvdDiOZIgXfexLCEBPWeZ2GnAtjHQg4tX9DJE/XZDt3eUIAimHiVMScaxsjqeFY3+ljnU4UVhWJI0b1Gvrt3/gNnr645ukHTyGPyqER3UdaW3rtPQ9eu89+d83V1RW3tzuuLreVf9EjxXLaOd5+8wmPH75GyZEQdvg8Mo57APpFT+c7bXfVtoJpYwDQNWpEx42oDD9NyGTOpcqp90ihFn+KsqWSOZx/NO3XVQrbUKtYURRqy9eZypm5uw+jCUJV/murx3kWi8WcpIwju92OlBLb7ZbNdstpOKNf1IGh7ZoGncNU7aXVpO/w/WZPlIkvJDInaOW4OP2o4HzU7vk6j5uQ1+Nn19do/zo2Vjt8/TLFHTn63TFfpmVbheOezcufaUZ2DqDgg2Tm+HkzsvuN3r6pBOVnf/Znefr0Kd/3fd833ZdS4t/9u3/H3/27f5d/9a/+FeM4cnl5eYSivP/++zx58gSAJ0+e8NM//dNHr9tUPu0xd29939P3/Uv3380OJ1pTQadeTu6o9QRMZMx6UVWVRwiqAAnVVlqDvyYsFF3gCiPqhTmTVw2HGTMlHy1G/SzHZKiSs86LYSZOzhdlI+nW3qa1eN+pVwOGnPXCHkdVqfioKgOVdAqYTEF7t4ZMFqdtirRnnW85kUsIV1AiphY2985OyGEPcWRllpilY5CgbYg8UkrCS8IvPbe3kWKEmJQIu9uPGpCTKmdSFvajVkX7EIm5AIYxKjqSwkBMGd8vWa979rtnyP5d4vWG3eaaq8srQkgMQ2K9tDy6iFyse5wr/O6Ht/zWu7fE8iEeuDg/4ereAnDcP12QUyDmoN+/Hk8lZyqHBVTNY5tbpTSOScsVK9cAIUuhWPSx2dIw2lRml1hVC1R76oNzOJ9HrSpFlFBtjVEEh0Db1JxRNE0wmJwxRWfVLEzhvOspMShMnQvUJFVq9VSvAJ0PUytQW0u5hrVZq34guZZwbcZLq0qNmGpOlsgGigOzdLD0JAvSiMKNxFkDUpvObIwawTlr6jo0VdJsyCkyRm2hOGsgJw3k25Hr7cDNJnC7j9wMgZsh8/x25GtPN7zzfMPtkMEalctGKDmzsHDh4dvePOOzb15wsfZ4UZj6YnFOTGq2tlp09G7B+apj1VRnMWK9o3OGHFGOTYFuaRmcMITA8mKJd64qkmAcdqw7w2rZcbrsWC4XnC09q0XHZr/iZNUx7CO3m8BNyFxuBmIMlUh9WNTU6rLtFXVtSJ3dpAhLxDpXvTU08MeU6DrPatHXvSrSZkPF6scT91u2tzc8u9xxvdM2uHea4IpQCdKWTGGMiecvnmMILJcdF2fnXL3YkiUS9hvuny958vCMN19/RO97NvuRZHYYMmEcKaXQdz2+87qvVQ4XHPPg6peevqu2dFQNud+Puidk5SapxL61yZpDs+7delWk6brMtSUjZUbL1e+lts9M+wxVDl6qGeAUJwRvHavlkrPTU8IwkmJiP+wZx5HbiqKsV2t85xC0RdN4VqnUovdgf2/FcVOz3VXrtN8fFjPfLILQHj/Fk/b/j0BgytTinRGM6bdtj+JO8SxAbcfd/fxHycrh4w9MMQ/TmlelHofn5X8pgvIH/+Af5Bd+4ReO7vsTf+JP8PnPf54f//Ef56233sJ7z7/9t/+WH/7hHwbgV3/1V/nKV77Cl770JQC+9KUv8df/+l/n6dOnPHr0CICf+Imf4OzsjC9+8YvfzMehHY6cS+1ZatasLV3tt9l2olprpW4QTXYaQiSMgRQ1S9cNI02vOb1TzRKFNr24TuNVdmF9C10Y+jPz0q0oZN/O5vF5atBbq0Zmd9NmtwwwjoHtdsd2s8Naj7GO9mvN2HOFi4UkI0iiG59zsRhZlx153GKsWjULwrrLZGNIRrjZ3LBY9CSEcQx4P2JKUhTHecTsJ4UCaOshxkxMobZ1YAyFIWTG2lcuUgi7PUPU1sM+BFIx7PcBJ4n7JwZbblnKSH9qCNEREyzWS3KO7ENivy2898GG80Xh4YMlBUeWwu+88z7f8vbrLIaAJ9F1Vme6WCHEEVORkpymw88MUinKNGUo7cIpubY+MuLdQVWipE91AlWH0MOx69TZRoZy4DJcvWhkdq1t57KUOkeoMKEYgr730urkXSN2gus11WvnWAuDyctWsfTKKWmoop2m0LagJxRKrnwOa2YzOsA4CwtH8QKdIRstIk01zvKTzXepvhFmHslQg0MtBYghMYZEioWUAsaZaileEOswNrPZb9gMkRebkWc3A0+fb/jw2RZThKWDYiCMmVVnWHSOE19487WOtx8veHTq6Uxh1S+IMbHyPcOoyejFekEMAwvvNGEryvewRZGj5UKHZaaU6I1h6S27IMQq04VMWVreuLcmnBW6zrJa9rpMUgKWnK+Exw/OScnwztNrfvvdF9iKAmhgpu4jyhlqw50monLISG6k/LqmYsJYR84JirDsO/q+15af0TlFMYy1nWHIMVEsXL+45GqfMf0SVQ4lOmtwXhiGUdUyJHbbPbttYL20rBYdZKqUNrFeOu7fW/GZT73BYtHx4YdX/O7TD7h4+JizB5kclcuyWi3oO1/Rjrrv0oij1KS1cvPqsW9rdRxH9vs9vrRWZpX11+QEqitusZSspHkpSdUsU9/mMPBXg8w7o03UZbnGhakZIfVags4vWK/WjKcj4ziSS2YMge12y83NLaenZ3Tez9yqUqpQImiiXgFrI7N8/NDzRz+b7gczp/Dlqcfttdvv5xBRju4/RD4OUZuXQ0sNKgLH7JVX3Y5RkiPs6agNcYy0HOUq03cuR92KVyUoL9Md7Cse9erbN5WgnJ6e8h3f8R1H963Xax48eDDd/yf/5J/kx37sx7h//z5nZ2f86T/9p/nSl77E93//9wPwh/7QH+KLX/wif/SP/lH+9t/+27z33nv8xb/4F/nRH/3RV6IkX+9WmPuWmlDUfmUuNJ2qrRBfQyeOk5PEOAZiRVAOvUNKrZTnAKTPtaZa2rumff/6mu75hLcN/I5ufPp7g851+aQjz456fVaY9PZmw83NLWKsJg7Ts1EZpHaogchC9vj8DCd7CNfcP/VKNEuJYQxsN3pR7zZbAO27V/a8yMCq1xaTtsMq4TELGZUCpwJD8xoJhZggZgix1CQlE9MI7ClYLjc73n9+xXZMLCw8WhXefGB57cSw9A5bMs+3gWfXN8QipFDoDbxx33F/7Vj0hptgeH69xd4/58PLHZ01nHbqpuqd52R5SpEbwtUNY2ltMANFDctyvfBy0gpNWxjz5F0jBe/stGZiMwQTQYzyCgrV5C0lPfqim3WuqJtzlhhrm6No4NCstFUSpq5V9UhpiYKlcLrw9LZgiqqYphUm1ADWyOFMn7HxTpQ3qwlRc65VWWiF4zETSY7qhokpFCf4dY+sOmznlTMjOpMmpUjXuXpM1KvHTQ6sVWqKokoZQ0zKTSpFfS5ibFOMVb7fZtIMKXK1DVxt9txe73lt5Xj99XvEFLjaJjbbQIqJ1x+e8/jBkntreHJvzbo3mCyQMuuFBXHsnLrt9l4YCwjK7YmmYL0jZp3J0zmrRlwokXVMmUUs3O4GXQvWsPKF5cNTxDour2/ovOH6dochcn/VYYzjbGXJxXF76+idutfWNFbdhEUwRWpS2HwtVInSZkYZEYxz5Bxo6hNjlERqvSaYIQTE+yq7rcibc8SYdI6TiXTWcnVzS+cdQwgMw0gYlbOSWkEh0Pue1WrBvXv3uXp+ree0Ex4+OOXTb7/OxcWacYBf+fUvc7MfWT94Xa/nmDAiLJdL1uv11NYxZlapUBETQ0UVpJL0pRCTtoLHcVSyurFVeKC7XT5IUKgcFDW81ASOmuyoY3FtsztVlrVZPW022WHVr9d5Y0/op3POsVgsOT1NjCEQKlF3HHXa8c3NDX2nBncpp4r87HUkQa/3m1pItP1duSY6zbj9u/kj3XWYPUw0XoUm3E1KjmNI2+c/KgE5TCgq1/IVD5tN31rxfuc9Do/j9PxDZPjuZzpMal7xsQ7u/2baO/C/wEn27/ydv4Mxhh/+4R9mGAZ+8Ad/kL//9//+9HtrLf/8n/9zfuRHfoQvfelLrNdr/vgf/+P8lb/yV77p9zpsm+TS/Ep03kyp2bSxDfKuwHfOjDGpwiRocpJzqcjLge+AHC8CRRHngYStt9wedVe+pc9p0uO5DTN9kjIb2hxmzSWX6U+TOLbnZZTfsdlsuLm9xXqPdSrLNgipZu2GqGoHM3La73hjGTllwBpY9h3eOZ5fb0gps9nt5+F5OUPI1aZfeRcxZcw+Vsms8kxybU3FOm7diGFMgTEkQhLGmNmHpNbSVbo5DJHL61uudyObZNCxbplkHH55yu14jQmQsoDrWfue3hdOu8KJLVgyCZWdPr0c+GAbGLJjvxvY3V7xhU+/TskRa2AXbrjdblVtYSylwsApqcpEAQ8zzYppbpGFFsyPk0gxtiqmalswp7rxMz+2btItwFBaJad+GDk2bgiAVPJ1mZC+ggaszhROOqPtnqyVd1UfawWG+o0o4sN03pyzU+sG1PrbCOoMa5oDZpkQl0aSRSBZwINZWOyyw/dVuima4KtCTivjnNtAs1zHMdRhdlWmq2TpxBA0qJGhWyzIFT3bDyO7/cAQEzebgQ9e3FCK8C1vPeA7PvMG91aWVAJXQ+HF1YYXL67pveGsh4dn69q20WvbOoezBesc1hmGMeCq531KIyVbjNUhh7lGUv0uijp67/Epw37E7iFUeG3RGZZdh/cd5MiAJaRbUoqs+p6Ls1OMZHah4L1ltVqyioYYE9bCbhwpeAoGavJxdI2XrC2E1vqt5yTlmowWTQpDUE7KMOwRgb7vdEh4yuSUdAiod6SkQyN3Ya+JYNTfl2wmabMgFKeDRruux1rDMG5YOcvJiePexQknJyf81gdP2Qbh5Pwx/fKClOsEb2Mmue5k419agnIczKRJt7MaCyZTJgSltHbClKzrWqK2czSRU4SGNvS0rkF1X1HE0XmvifSkdGxpfIU4SpPB6odKpVpCiuB9x2q1YgwjYxhJKbEfBja3t1xeXuK952S1IobEbr9nt9tRANt5JkL6QWurFaqNBDr/vUyPO3z8ywjJccH6dbkqB7Hl6z1HqIIJagLZ3qZIdW8+Rk6OEZqjjzT/W44ff3g7bEHdTUFmTs43l5zA/wUJyk/+5E8e/XuxWPD3/t7f4+/9vb/3kc95++23+Zf/8l/+z751VZPMxNEgprq+jrhSFLbOUm3AVWsfUiYGtUjXCz1PKP/Ra5fGztaDa43Qd+rm6FwzyirzxX+wGET0ImoDcUppvcF2M9NC06xUV9CM3uhzjtxgK7QfU2S727LZqNHZZBsjRl0bKTgCXRk4WyUe9yOP+kjebfHWsXAdQTILPxLGqIS8oAPjBG0TtM+23Y+U3uucl1CPV9EquE0v1ocajKjLaBYgBVIu7GJiiGqp/eJqw/VmAPE60LFuUC82hV/68hU5DhgxLDs1J7s4hSennidnFl8CxXZsy4J33t/zW0/3XO4Lz262PLlYc7J4jPg1IezY7COxVDk0UmWGGrxTLuTaBjOZKn301cV4noVTqny7tdv0PNojgnJLHHOeyc3aOz9MOCsKV5qBXrXpDnWwYU0alOin3KGFCOvOYtp7F6ZEx9QFllJSjKwSYsVoshGSTnQWMycnahpYp+1mnV6q40Sqr4wVysJg1x4WFrtws2NstYx3zXzNaUuvJc8mKwoZYwKjyeV2Hxmq5LzvOl3DY2IYE9t9YrdPbPeB293A9W7kZhM5Wy/47JuP+ezr55wvCilHnl5vOOsWvLbS9tWi71l3HQvnMEZVAc7KxPGw1Su3t5alXyNoa9JZq4MDm9tttSBwzuK9OiQPY8BKIUum956Vtyz7DsTgvWUIhcVygZTCwqlLLViGFHBOxx5YU1j1hhgHeifsAlWJk+ZWX9HRGK2NXGprzBqjCa8peOsnZVZOhqagcN4r4bjuV5oIZ0gBLx2dNexjgKLcjBwiSNJzXZOHmAqb2y1Pn36AIdN1mXsXKx69ds69i3NSFi6v98TiEL8kJE/KRscq5ETfd5ycnOC9J+dR1+ShiiYnTFFZ+yEfqaRMDEHnGlX1o14X1CF/1YhRlNybi5oYmlL1LNWF2Ii2b513dZiftrgPUWyRWZ2m1yJMyPTUsxdc51mfrIkpVhfqNPEnnXOU6li83w/sh4BYwwpqUVOYkxN1QH6Jl1LfT4OyrW2fw+K3xZjDYugYZTlMsA4i051/HzVoqDqjg9ebnzMVNK9Ifg4/tz5DJmRkVul8HYCkfuZvLAX5qFd5+fbxnsVDC+TzhGElvQZSKdjsiNWvIWdNRppJT56Sm4+CyhRmNKbgjA6Raq6DU3JCy0LL0cJqc1GyqPgOPqo39/KiOUxOFDK0dxaZXkjb3Z6TcUSsqwujUESRAFMSndnzwCfOzBaXBzXbqi0ASTr7xjvtZTfXTzFoWynWCscaxpAxUWelaIWu3iC5zLJn3WQtY9HhXaADwXdD5HafuLzes9kHDaZFDZs1IA9kMdwMkTSCKZmbW51BkzGcLBOUgYevLfngOvOLv3PJlz8sDFH5EWN2bEbDPnk+vNmx8MJunxjHQWfYSMEWmRCinKmqLCHluqGaVk0YDQzoBdlkuqBW9TkxrRmRWR3RbproClLJ0odKH7UBUA5LjIrYNbM+QZTbUDIGw9rB2lus9tkwYojM6/QwEdagR904dB7MtCGXRsw9WJdiwOTJaTmagjtd4i4W2NMet/a4VY/tdCJ4QXkbi0VP33nEVv5WnR4bQgZGjDWKnCQYxkRM6jES0h7rPfsU2ewCN5uBF5uB7ZjYpsw+F7b7yOlSCPtbSlggi44QBnqT6daedWcJqWCweKdJBkXPGwScWWjLIyTEO6wUvNU2zsJbFtVW3VdpsLeCJdM79dDJqPPsyUonCnedZdV3eGeJGXpn2QwDq77jfNGx6ix9VydzAxcnC+6d7Igx4O8t6Lzh+dWGdz/csRsLuZJfJ7VOhkxEDMRyoAQzM+Kq7R8d8BliRM3PHLkkxhTwxiEV7QtxQJzQeYMZIRs978veY21CnGUIiTDqLhRiIoSRxw8vWPRLvuOLn+Kt1x9gRXhxPfDiekOxlmy0dZZTJFSfkK5fsF6f4JxjGMapGGvJVzYyTRWegpXodRFjZD/uKGJwvq/fVwsDTS0duaiXjBGnKEoeld+EcnCcsXTO0fkO5zp1oa6KoqlyL3OB1dxbp70VKqqgx1cTrpUi6Qdy4w+fPSPGzKJbKD8xRZztmEY31CxfE6NUERstuLTUbFwTW2uQPEWA41aPnpPjNv983zEqcviYFp+OW0W13pkedbcL0OLLq2530Q05vP/QW6nUjsSd3tFHoSNTQlbVjP9LSbL//3crUzCfRt4nrXCbp0AjKylseIhSVLLWXWjrTlvHVoda7z3eO6w7JEXNPJV2AqY5LsyLMTeos8zTFOYlMAeeWnNPj2+vYVorol56IQaVyoWA79XJsdl1OyNIHjlxgQdd4cTpposIKewZw05lrtaQimVMCtWnCqsW0dp9em8t4adeavvcuSj3BxElQ07HPzG2eSspc7vZs90HxXWyWrGbUpA4cP/E8NqZxxvHMARiKhhnOFk6Tjvh/PSEwVj+29cGfv2r1zy7zoylr62Hwpgtl9vA735wycVZx3phCUMipcA9v8aVOuXUGIZxmC60GCNirHJLiBNSZkyr2BrZrkxEVmMqYsGsyJrY+cxOiRyhcW1gH2Qp5KowslbhautsnaVjGEQdXM9XHocmT6QKd7TPVAcGilBt1PVdfOd1eJ1pyJwcXRuTPJ4CYmuCkkkGulWHOVlQVo7UKdJjtTODFdGkwCkiY42Ac4Q68gGgxIQkbeUNYyJmYYyJ7W6k6xySIcSR7S5xdTvwYjOyGXbsY2GzV07Chx9es3vcs9lucB3kbFkvTggxYq2acxXAoufLVSWWkYyVjCHhbGa17Ka1sVxYemfovHqHdE6DraqOHJ1t1WFh1XtN2KXQ97YOaHSMQ9D1g6IbvbM4U+hMwTs1Hsv0bDYL8rjn9SevaYJycYrlGV99es0+K76TYq6GeWVORHLW0Rxipnbp1Aou1GGUGWu9Jv6m4Du1iE8xYyThRAuhRW/pg/oC9b2nc0s2+y0PH73Gu+9/yG0KdV0bxBS6zvDg/opHDy5YLTtShBfPrwkhYzuHdTUJK4kY1TOk73vOzk61xUjzhgKRqrQpdfKl0b2wRUwtBBMxBGCvLdCuYN2e1VpYLpbEmNnvCjk7JbWXiLMB7z3L5QLnekIsOO/onKezHm8807T3KQk/3ntn9ISpZWpacSmGvl9wdqoW+jllbrYbdrutXmvLpBPEJ6TIVkfr44RCbf9bS8dUL6rZXHHaDQ5Ivhqoj9GP42Rl/h4TAfZOrGhF9O91K7U4OnzpKW7xqtZLe826308JWC3ISy3Njwrn5pfSUnf9292XbmTmb/T2sU5QDqtF5cXm6aJWSeacuerjDpOTdtLv9s5mVUaDX5V3Yuuk5Jm1XqMZ+mjd1KVC8VYgi5DqCTl+30ZzKtPn0u/Tll0b8d2SlErGFSW/aqthUKv6mBCjdYhBUQJfIm/fszw+GZBxzzgknHeseq00czHTRFBBfWCaZbvAhBBZUdJbqeTS1n4KManssSYsQ1H30CElhhjZjZn9EMlZiairvqOI4XaISt1N2uIYkyGEyBuvr+m7JZt95GZbWK5OiCnzn3/1KS+2sEkwRKEUddMsZMaxUKwljoHffvcFQ0pYSXTGsu61+n10sSLbokTiGAnjXtGPUiDPXgEGKCljjBJksygiEsuBQV+BtknMCi+ZSMwqN56E7jrWBTMhLaa2Yay1JAq2GLyzWBvxzuFMwKTMibOQIrGo6qPkemZFkw+1VE+0zakRL9vMnWbF3ZC4BsGXrL4dmTY/yEIHeWEoHpy3VXHSzJqKjs6QTEpBTa+SfkehJaiQk85MSQX2Y2QMaeIgbccEYkhFGEJhOwQ248jVdmQTYbMdsCXzxsMVD187x3cOK9D1Ho+iCrHkyeSqczr9uPNWkZBK1nXGIk3uLOCs2t9bA4vOK+/KGkQ81ohOzi6qjonVOKyzwsL39Zw4/U6NY2UK5ERnLaves/ROpwf7Du97tpsBWxLnq1rEWM8QDZfbQLwd1MKsugIr+lQVXVa0DWMEZ4WUpfLOQKwy/H39bjEHTKEOLpzBd22VFJzVmUQpw2q1JMdIZ+H+2ZIP3i8sfEdIhb7zrBcLrGTWiwVhHBhGx+XVyHYAbIctkX7psE4R0pgiKQW8t5ycrCaSLGXmj4igcniae2pDjDKFpLtjGjBmoLg9fW/41m97g7feus/bn/4k203h3/3kz/LBe9f0Xrg473n9yZucnT/g6Qe3hGh4cbnFOK+eN85W9LiWfK21PqEScztHL0ndw/Qz18unGJztWS414UsxEXNiNwxst+pSvFgscd5ri7P6CWWR6dhTPYS0rc+kpNN9+7DlU9AJ0HN7iBoJSvvwB23huxjDlLjUrzOLEWdVJQf3NeS0PbdUlPWoxVOOnjbtF+3d1RW2JWAH6ExLbOo+IPXzS5mjGsiRHUIrDktrG3yDt491gjKfTK3g27TXpoHXg3eYwbYFcLyI9Cd6Mg4WTzNjc5Ut3mzCp/Pako/6b9OySqPyZq1ypJIcD05MqShLaYMF62cBvaDz/Fh9z2psMFXGiRgiMYzklLC1d6uOqIm1LzzoI7ubDzAlcLJe0zvBSeZ2HwmavWngiqEyYqReuEomU3tqU42JALHVeVFJsc4qyTXWKiBWW/OYiv6Jkc4blWPmzBgS+zCyD5loDKk43r+M3N4mNsM1b75+wocf7Hj+IhNkTyiFfVD/zIyoPLVm7CklhXZzoYjlchfZ/O4l5MiTB/c5C9C/2LFcLCilENKuBiVFxLzvCTFNs3ooSn6tVmkkMsWiP6nzZrQEa6eNNqdHrf91Xkebkgya4Bi04kpFJ3Wrd46aU1FbMDo0boczwtoUVhacCEG0DSUlqUW4pq11jc7D5EDVM0baaPa2KVpKnfdDTU5U8owiKJ3Fny8wJz2lWrG3qirlrEMERYmcmoxUX4lSk6Sitvo5S23vZEJK7ENgHBNDyoxJE7UxJlI2bIeRkDRx2Q7gxLJyhcf3eu6dLjg7WbH0pg481ES8s2qoV4qpAxUFZwq9dzUhkYqSqa+M98o58U6HIfbe18fKxB3LyVSZtrYAGwFYRy5UBV3KOv/GGvreE4MmEZ0xOmDQq2PwkALLzvLo/hl9p22Am92W/X6Ls+BEnYYbjwJ0UGCTnOasAxtNTZYaV6rkqPtXkerLUWXn1OGDdccxRrSFmBN9ZylR6L1nM2x4cLFiYbMiiRU5MTbTdY447rCi06Vj8fSrU/bxHbLA6dmaexdr+oWGhzacj6IJjrPKwygY2jA/EaYhjiqprvvctDkmFku4OLc4Hzk5Mbz91hkhXmK44Nu/+O3kMPJbv/ZV3nj0Osu+48XVNV/92vu89/4tYtaYbqnFhtNzhSmzj1jJMKk1WwYyhYkaQCsdoO7FrQ1ijGO5WpLzGakk8hXs93u2uw2FzIk7nbhGYoDckIXZ22NORmYvq1eLLY65KmrFUKP/FJcOyNMt1kwx7ODVirz0u6ObzK+j+/sdcuzvCWS0x9b2dY1vpbS0Sqqj7YzvlPq+lBmHKbW4E+bY+o3ePuYJSks8FV7MyVQtfSYXMx+1b+DWNvf2mlIllm3AnvaQ24uVA5hqSivR6uFw4RucKWRTq9zfA447QllqDnOXvKRyWDU+apN7TeUVmJLpTMabTBFDoFPeie/oO0FyUFRgggjbBTPzK9r7O2sxtqJJzZSnbnJSwDqrcu4CUnSIm5WkQSwFyBFrhPXpCmfVQfV6F9mNexIVUSieIRaevhA+uLylZEvJPVEGMHXSR9HZL82XQChKFsToxl+VWiEqAfR2F0gBttstRYRPPLnH0hWkFLw4tZrPc2ICGrwVXdALPuaiRFmqyVqbwZELKSoqYI2lJB0Yp8dt5jSllCZTNNA1pGqbMq1X5RVYRMZp/PzSGDpnyTFW63n09WsCblR5qeqIA0i4IYh1dzhaR769d00yrLW6v3YOWS9I3lCcEMizd0VKSG2BFBEyhlRMTZQgBuUaxawVe6jJ3ZScZk2uYsrc7vZsdiNFHLshsI/aCnpxuSOGkU88POVzn3zCk/tnrBeOHIdahUq9/owmS3XN2IpEdQ3VFCXxemtwztB5hxP1bmkqpBhGUgRje6xRf5TmS1GKurVSwHmvKr9RHYG9t/S5sBvU+2VKdCpnK+VEDAPWFDrf0VVuyqp3SB7obOLiVKcGx1yILXDmQGc9uaBJfVFUUKRybBoqnHSKso5HyBirNvqKrlDnx2hwy3HEGU/vLJbExdmCi7MFDx5c4Nw7+GJUnbQyWFs4P1/z6PE9Fus1Yk+wZkkqGeeFNz/xmNffeIuULMOgydowVLO2vtcBn6gH1NTSFiVJC4pCqidQpe2XgncGvxIW54aTpcFJ4f13v8qih5sXZ9yeP+PxozXC63ztty/58u+84PnlNal4jF3Sdyus6fT8WasePaItv1ILgbvKloNNk1bMTtywg4TAGJXKL9crzkuu6GeZZsD1fT+hC4dtpHablTuKod9t7aRUyexTMfyKIF3mzzwZ4h/s01PTRRoacTe/mJObumSm+47R+5pgSHuFGUZpbSdNRMq0f1VItf04OsaHBf3Xux094n+fFs8x/ySbmWPScI1DUk6pR/i4rzcjKzAfO73I5CA50efyihNyKLECpkxRTYsKNlVNRvscCK86RYfchiYPnGz8y2zK1bgROrwv4nwPIljfYwxEZ3nv9pbXl2tOukBOgWGf2W83OttFlFmvPitpulantgBQSiIlJoOupjrJYkhEJCu6UArVZyTTJo4KOqCsiKorckqMw4jD0BvHNkSMi3hvkGSIouiNGLA+IdlNE5G9txWWr6TcCldO8t6siYyaKAn7MXNzs2PVW8KXn3K9j3zi0T08iZU3LL2Q4ogU9cfIRauAmHV4We8tvg5q9M4itTp0ovNKJBdinjePhjzo5pcmWTmVTCyGyQ+hrbnD9SPopmlFOO86VZxITSpEE6VSqIELsAWM08preo0GczffBYgx1HYAQJ6QP6hryqn8VhEVmUYmqPuyTMhJSAWxRaceleqoKZoghhgIqaq6ss5iylmftw86OHIfMwEdvrcfEiEVtkNmN0bun654+/UHvP34gpUrlBSqKqfa8VtFLF2dWGuNOtSWnPFOp8/6SrxzNSGREhGxrBZLvRbGgRjUdt4Hj7da4YuzmJLR7KBUpNToQMO6D5Qx4aSw7lWNtPBW14fXtgtBTdFOFiq1XnSWVOD+2Zq3n7yG8z3Pr3ecLh3Xt7s6o8iy3w8UkxiTJRlbZz02jkDGSCHlhJWKTmCrn8yIOFeTYl3/RoQUI7YNcrSWzmSevHGfi4sV5+f3leTpPafnSzqf6Bx88q0nWF8ICVb+nN1OW5vnF2u+8Plv5a1PfobnLza8+94zUtaJysZYlss1y+VyaiXSdj4pSHVOFvFYt8A6RykD1mbWJx7fjXzqU49YesPTd96hc5bXHz5m6c74xZ/7Fd754B2ubnZcPvdcX3Yk6bC+x7olWI+xHVInF1txk1FmkWbl0NQzxyh5C/bztPrjqdM2z0nKen2iV5QI19dXDOPAsNsSx9ODvV6OguyrAvRdpESDeRutcUywLxWdneKDNIn0ASdlKoBh5rncfddD5Kg9D1TWXepPDroKx8lJQzmYHnUQE2eo6uA9XvX+898bIvs/c/tYJyhwnB2WGiByTkhRx8WjQzbp7O+cRJigcZWpyQS/K/dknnB51D+cIDy9icg0uNHkNsWyTBX04Wdug8J0dLz2TFN1lTzkMjTCpjHqkqsmW2WSxeWoVZYOL+zwiwXiApcps07CosDCAiXS+SXFRIaYp9bVmHSqrQ4azJWbQc3424XdFqqZFne7vznwFjLGGTBCKBBx7PaB2/3Ize1W5ahJZ2d01ikSIxkkE5OQiiCStcoURyyAEfV6MaIk3uo8mVsi1QY/VihcEPZDwFpPKML1ALdfecqLF1se3j/l3mnP2cpqtW2FMWmC44xDrEdK0uBdyYzNA6RxkXRDdFA5KFIibdNo604TSju3ewp10m+uHIRmKpgrgVWmQLTuDFLbaBZF3hA3VVfCnEwrom2mNRKzkjBzAm/Vb0UHImryY6whkUklYYuFGMnDSHfiMQXclNJzQMqunz1polIkTPbsiI5iICdiipq85KKjGGJSL5RRE5jdGBlCYRcKV5uBD64HtkNmZfecdI61K3RGv0/MGe9cddctOIHOWRa9mpWV0tXjplJs7z2UVPk9eu12nZ88OIy1eDOPpUhZHyugv+uUa2IqcVjE0Hk1obMx0jttpZSsnJfOCZ1V51mDqoLWvacgLHqVc2Pg4fkKJHN22jFG4cXzWwoGv+gZU+Td9z/k+dWIs47toHJ/UCmtriNNOn1VD4YYSTHSdZ5YDRy9d4QwKk/JCqbonKeTpWfRWy4uzrm+3WKt5fRiwfn5kjhuePP1xzx6eEEk0i/PKWbFmHbYrufexZpv+ey38rlv/TzPrjYkfo0Pnj4jBN1nlqslq9VqKthEFF0yYvR6KLqXLk8W7PYLdpvEeml47Z7DuIBnz6o/5TOf+hRvvv4273ztA37+v/4cV7c3BDZc3H9EMSswHjEF6w22E1yvk+N1qrOrDtq2SvHz1Hp46VbBgNYOvbsPt0KAmuwZY1kulvVxmdtbmZCXQ47g4Z7ffjaEvCHth/Fi/tMItcdO482/qEztnRYX6u/rHCBhRnBeJtS2xKZdyS+bvs2FeH0dOUwijhEeaZSC6Tevvs1J1GHSevi5vjnlzuHt452glBYoa2Iid0mwh1XuwX0TNPXyoZ9aM84eJCdz4nI3IYGPvjCMFUoxOFcAOy02/SxZg1UNYo0/M0lTaYnCzENRlrR+5pTS1OJRjxbLcqEzQ6ztSDFzVSx5O5Bz4Z6H3qqgz4uAakrw3lGqGFqyIUueg9TUP52/Z5Nrz2hPopRIae61RoHd2yFwfTuw2ythVmfw6KuZ6hBWjCiCgUGSgIFQxgobqwdHSqlKd+fz5mrvNlcHM1fh5lxKJSBaRgqmOEISnt+OfHj5Do9eO+fh/RVnpwtKDJAzvXUsO50lY42OaS+uwuY5a+LWzrnUTVIKiYRkDYrqo6IbxDyaQOHSNqm4ISulKMdBUN6DM0q+EzILI5QcJ7OunDLZKEl22kJE1R2ztFAmZ9tcDpj0zeUTDfwzXCzEFDGjYJPDgXqIFG3PlLrotOps67XKz1OcLPZjTHWwpnIRUlFEbRoPVyBFnWhcxJLIXN7e8uHNyFA8RVTNtOwsy86y6q0qhEKsZFBByPTe0lm1u9dEgeoEra3cGINutMZgMhTTkljRtUCpKjyV45dctO9TD461BoOr69JoKW0KHa7ywaqypgbezqujrq0OrYvi8E6TQ2MgV++OB2dLUgl0nWGzCawfXaiRXGdx/ZqzteO3vvIhL24CuzHOFaxoG1XRkDpLq6BrqXLTGlJSSpkcsI0oiTiWwmqhypcXl7d88GzH/fv3WJ/2xHDLyjtKHMkpsDy5z/lrb4M9J5gFb779Gc5OVjx6+CZvvvVp7j8aeX654+Z6QwgjOdf5QKtlRQZVrWOdKuVyNOQU6Bee84s1nbd88P47rPrI64/PePjwETmN3D+9h5iO//Jzv8xv//a7hBTAJfplQpyeC+u1neVdV68Rwft6nbbW80EwLOVwX4ej4MxMGj98/PQ8dN9IMDmFaxKmpm7DMNSxAFYda6uM+HAW2xwPNIl4VfF698/dz645yd2EQr+Peh3N+8DdiNMeL21py8uPOXzsvKfVzzK/3fFrHtr4t17eK19Zjn60z33nt980ovKxTlBav78lKMUcQ3twjLC027xA2sLS+1twsU5nPKhj7EFPuID5pmCrxopW9KGU4z5oynk61YfIibRM2VTynjEvnWxFUAZyingnrJZLVosFy15NgbJZsBt3EC3nWR0nXRlV4hATOavFc5OP1rb/zPWosLPOkoVGlxJUhROCDlQElU47ipIKK3cnhsB+DIxZCBjoHEMdwCG54jDWkUETphzJ2VDEUcfN1daIog6uVfWtugDEGmKIdaROqSRKCONIv+iIIRDCSBhV7TTkS652I713LPqOOO7oDTy+f8Fq4eldIfcqT82IDqArLTmbg72axStaNAwD1ln196chbUzmgGShTWrV+3U9pJSnoWgOUQOy0gKiq1WxnZBV3fTytE4FRRuMCLHM0lVXybOmtp5MvT+jgVmMwXhLksLJ6RrjvQbsqoApomRvVXDNSekYgrYbjNF2TsrEbIhZlVulGMKEnhRS0eM3hkgxnv2g5mw324zpHN4IF2cLrCRyiVjrSUXRHkHbhM4IXZU4l5xa84U2CbgAY4hYEYoDaqoRKx/JO23NpuqmOzvwziaMuoDNvPnWE2hsoVvoTBY3xmn/8FZJtUWzwAlldK46rroOY6nO1kvd30MhZ0NvwXWWWCIPTpcMj+/h/YaYEpdbVUNpJ7XuOdTRElERI1c9j5xzDGOEet5boDTo+d/tdnj/hC9/7R22O8OTNx7Td4n9beb28hrKCbvdyKM33+TBw7dJ4ljdi7z28AGdsYQgbLYDMRec61mtTkipsN3tKBROz8548OABIQRyzvhOUZ6chBQHVgvL+ekZ48N7vPX6im/91jc4P+3Y3V7xu1/7Ku+/e837Hzzn/Q8v2YY94rVgs8VSisqunROsXeFtp47FRhWUtpm6kbVFWVvNc2viuAUxB/9y9O/DmJAbqlkKSZSkLkbouh5jLKtV5vTkhL5f0Fq6ejMcRvSX2ySvbvU0X5TGS2vJSdtoZgPM9tz5VV+FRhxSFErdvMtLv59R2MObtKdO6MydR5RWLH90zGty6YPcZD4b9VprAWzmv3xjt493gnK00HKV5s6S2MODdJhhHiYo0wKQGT2xzmK9w1Zjqmb0pVu3HIwzp76mHPiEHN8vBzLPlKuCgxkxaZ9vauvI/FxzsLjbomug21Q9knWY2rKj6xUWzTGQ00gnI/eXlqVVGNQ5R06hti4ULrUpUxx1GmwLxKpeMCj7vxTFWIQ25tySbMHmppRy5FjojGAlYkrGoq0Xa3VSb0iRXDIOVSKkXAhDwDvoOocpoj4oougICK5Kd40xahIWUw26mlSFpNBuqm2f3jtySvjOs1ws2O22QJUVG0OWnnc/2JJSVtvwONC7zO0QuX92wtmqY4iOpoLpnbDoDF7AaWaqSWPbJIpWzimVCZJve6FIG6Y2J6k5C8bUhncqEwohpXC6WFSuUX2NiraorLyAqJKnLRKFgOf2W5O5l4YiOZVwG28nWHiqIgX8eknxluwMUv8cbuwtWRcphBjxnbp2xpiqU2wiFB1rMIbCGEdtYcXMftCptVm0FbIZBkICMZ5FF0lp4HTpeHyxZNkJne8UKUhJJbNUtZWryXG9bqTOR1I0QxOl1u6TXFQWjZnMAhUQkTmM5FyTCj3OTGilTMG+Qd5FKopTbf9jSDNJt16n2Qpi1BzOWUNMmV1IpBjpLay8JSwWOHEMYyJlB1Y/9xAzjy5OSWNiu9mx248MqYD0Op+pJG011utfE1ajk4WrtDbVVpe1duJ/5ZIIu4G3PvEWuzHxH/7TLwCJT775GmeL++RhT9d7zu895vTeJ3CLMyWzlsKyP8FgeH654Rf/+6+CsWw2O07PzrDW8sEHz0kp8ejhI77ru76rercocXa9XpGyEPd7FrYQ97d88OFX+cTrb3N6fspXv/JVfvmXfoGb6+eU0hFSZkyJbKHvHcM4EoKw2xZytnjXY8VjRZMTKxZLkxUbSjEUpJLFmfZ82r9KVb1NgXuOFa+audYShZw18WnyfOc6nd+zXOOsn/b5yYyu/pynFs8Jyozo3EVO2mfmwE7iMEnhIDY1scVhkZqn155/Ml0b5QBdmu5vL36A4k/Fs2LmR0hQ48sdPQkO7s/MQ//KlNyUg+N9+F7/o7ePdYJy2LIpuVAkHWejU6Nk/vfh7TAp0Z/zrB3n2vyWNAXJUqr+XnKtdORokbTPNCdDoilqUdKh3nSmzGE755Doe3guhdlKWlrj/DBo5YCzsOwcvTdYq6Jcygjphtfchsd+z1lXWBr9nao6YBSdW+OcoaQ5yWrGdhblzkxZf85V/68yY2tstRpXqWKImU5g0RW8T7q5lzq7JugQuVTn+1Ck8jkSJWaGHGiqAFtNjzSj11AM85RqQSZpm7NN0qcX7xCCylD1KOD7XudoGFvtxGG3T+QiDHXUwWrh4CbxfPOC89WC+6c9+2GBdZ4zJe+QbKJzgncWM0HJmhIYo0mRnt65jTO7G6uix9SL2VqHMYlEJOdECgliYlEh+7aB6cZrEYkIKv1V0KYRJPO0fm11KJWcwSiRVSoaUMo8IyTVn951WN8RUsQmi/OmfrbW00f3OtFWgg5/M4j1jENiPxZu95ExwxC1hReS8jgoUIzTzZ7a3snqjWKsY+kD67Xhc28+4Ns/9Rr3l0JBJcp2QgGEvvN0nSelSIxFkahQLeBh8p9pUHLOpbquuoljQk1cvFfEBtrw0IMN2CjhsDkik4uSLq2AtZhcapHREiNBshoRNpRHjeMK1rrqdyKkGFj36sbqzcjQpSptF2IyFCJrhDdeO8dYSyqF9z+4IeSAs25KPHXNCX3Xsd9tWa6XxKRS+BgjvXNqaGeURGwQdruBzfUtbzx5xMnSs93csLnteesTD3n0+NsJOdGt79Ov7lNwGMkVcVNfnTEXnr24nQLfonIyLi+vKAVOT89Yr84qqpxwztL3mmSm3cDTr/4mv/nrP8eDh+e8/envpl/d53ZYcftzv8h2yKS8I4vO9UqlsDYevxSc8VjTgV2TpNNk0WYwWV2yBUydHl9ya0OWeV+cEHS9bx4ke9z6nxKRO6hKixAxA5UfJgaMU8fhYzRmTj7UA+lubHkV/+Q4SSmZYwRlCv4HtAJjamupxZo7MeIAUdEyXQ5ehwlQKlmg+rA0/6oJ8aWxTZiOx+99O/B0qa9FOxdw9Ip6XR34en0dNObu7WOdoLQKssH+MxoyZ37CIdwltPkIhwtARHRGhK3j463FGKvGO1GJZ+o9kLWCMrUmK8qjkFbtHlgaTxyS+jmlemhQg31DePIrLhaYF3gbUDgz1BOtye8MOElIHonDDYRCl/f0Zc/CJs79QFdGTIwM4w7rLfto1bdiHCek4vAINaKYwPHFnFV+l2Kd74IGNIMQiYg3qogwgkhVxxgLUerQMpWeqhU3uJLpvWCdJ6S2iWQcTN81JQ0OqQ6mszRFT03oSqqTTB15ajtkxpxhP1QPGsM4ZpaLjv0wqiEWKkvOImzGQq6D8S5vb7jd7Mk5s1ou6OxK1VzoQHhKBqdQc1Y5C40Yp07FRqe0Fk1qrVWidQpKJNU2X64onaOgk1IlRJx1lZCatLC3XlGFnCHXBOFgk5wh4wpzm0PqHqSYFemqbr+tLw66aUsImKQBWHfkuhZFeRnN9yQVDSIxJvKY2O4H9mNmHzL7qFb1Vze3YHRGSufVCyRRGILO3bm8GbjejOQMD8+WPDnv+fybD3jjYsnJwtaEohoDTolthGKnSi/XYDObXjFdJw1SllJ0PIDRY2XqehZmw72WbJdcj0tR9GuSWOeshMTGwTKCWD0WzQyPUmoKrHuKiJLMMQYnlvV6SRod3nfYIVBKwBbDdh/pxDGGzH4I9NbhTzqsP9eWYkg8vw6MNVh1XafGgSERx4Cg6y6mNuV8nsxdYGp3MEa+9uWv8NonHnJxtqTvV5yfnnOyXrE67dlHeP2tb8X1aw1oYjTJR8Aov0rXVrVWqME616TM+x5cK8gO3G/HwO/85i/y/L3fZrlc8OnPfjf3Hn2GKJ63v8XzPd/7Lj/70z/JZrjE94mFcdxcZ+IYeO3BCavlCacnj9mHE7a7cZp5VUzR3jqZnGNFLLX40+Cu+3HOqSKFteV5lJQc72eHSUvdlmuSMY8byLkVDCPOOXoXaJOaVdac7iDxkzvItDZbgTcreY4L2WYPMJXSUnF6kToIsSaeB9JlEabzwcF+Obd65gSgHY92aynCTD1on5vJ4O04DlGLR2Z08TCBOUBoSkNvyoyoHN6m734HKPh6t493gtIy0XpCNJC2k9TieIP55ODny6iKVCjeVvOnpuCgqk3KncXeFpNW8/UETa/X3DjV1r0OcqHkpIqXXC2hC1UR0nqgkIu6oBbkCKURAUvBl8jaFe6fdDx5ILy5uuV++DLdjbDuDAsTWXtY9x0rM2Bz0A9qLPsxM0Td1Maoc4sQ5QqUWqUbo7NKpiy/SuKOpXmlBoUaKEpDEOq3NwVvhYVXtkZIBcmCydWYKAeKAet6lZMiRK1Rqn+CmTZcavJZagsqpaKU0VIqIpOxbrrKp++TswY5U+eWpJgIo7phSs4Kzyf9zrfbHVAJrzeBlG9Ydp6z9YLOGkYKpTTHR3UgbRwimeBOKom9flehJrOWfX2sOVprKuF2TvCdpROLqcGxAKakeqFXgrRRpKEltrqp5IMEHcRItcJX4XFTEzTJsKkba04JcoQY6aqSqXY/ONxTCqKGgDkTs0773Y2R3W5kOyR2Aa42I8+vd8RUcF3Hg3uORafeI7sh8N7zWy53hdvNyMIVzInwqTfe5OH5inVvWPeq7MotcdI8oU7z1cRMTQMqR6C56BaA2rJhVt4JDabXc5YyuDoVF6izmJS/knLCOiXftltuXjVpPn4UprauFKE4p0EiNc6YqQfPVLlzwXXqI5SBGByuGr8VPBsCy0XHZjfiug5vM0/urYj7cxZuw3tXe8ZYiGOAg4o3oihZKRBCoKAJrZHWxNLgkWPg/Xff4+LBGZ95+3U228Rmc8PtNRTOePjJb2Nx8pjc2oZH5bNgq3KsEaCUo1YqSqEWDCU3xo+QiyKBX/vtX+Y3fv0X+OQn3+LTn/0C3fIBu1AQX+gWa77v9/8BXLfkV37tpxCzJaWBFJ/hnOXRk7f41NvfRt8/Zj84Li+veP78Bfv9oO9bdF+h2epncxB8C9Pch3bK2r5fUTRqQdP4JrlZBUyUgPoeWkXOSIUUSlD0K8SM922vT1BViM3mvvkUtfPQbkYM+WCgoH4+9TaaA3w1UZz2h+aUrEVzQ2ZTmvfmedDgAVpxcPXOyfTh36lr9g4Ps91falBr99W9pRx9pwoIINWWwEz/VmdbfXIpLSrq9Ug9Tt9My+djnaC0jZlWWU6rkzsnsd45ZbozmRHmVoYqOUzdyKvNu8z9xcPsWxfNXbTmIEmRqRM5uaE2Y6tMy+4rZ6Y0lRFarRwECRGhN5GHq8zpWcfD9ZLXzzsenXesO8FxA+MLJCcWe1j1HnaZvHd09++RcyJgiFmdXkNQnUVKClOnPBsT6TGdGhUTxMtBxS4lYYsmTyWV2stXI7Smmuid4WShtuQnWNZLx25I7IOw3esUVOt0PH2p8PLSOwqOUjK52oxbq8fd15aBqdm7MtptTfoKJafpog5RURR74CeizrOVU9DaHLaSS+vGkAWVHRfDi03g17/6AauFwz4+58RbpIx0TlgtOzpVoerxqrbp0+ykupkbW91l23gF6oYE+DphN4fIsnNYm7BZP0Qq2jaTVuGLq2upKXTmDaltANZZRYTqZ2ptCCkgTtsHihDMAS0b6DsduoY1FNs2popQoZWbHr+KhoyJXQhsdoHb7cD1LnK9y7y4CezHTIg7dqHw5MEJDhgCvNhknm914KazmfOTnoWH1cKq2qSrk5e18U/JOn5B79MNbTK/MyrBnTdZJmL0nBC28RSzqVYuCgVpFTrPERJrSDFTahKvbq7Kq+jw6EC4dq7rVdFUXWKVPt6imhgwFQkqjbAvWAonyx43BHqrxoSl91NLLOTCqnMsOoPlAcZ2XO0/4Gqvk9cbMtRCxna7wxjDou9JKeG9n1Rk7cOKCDc3G8Yh8vqjB3xwecOHH25IudD3Jzx89C1ks9D9cEr20ABSVH0mlCq/rdsZc6WtybAWEEaEFEZ+49d+nufPvsr3fN/38eT1T1PMkoSitYwDxlhOzu7zf//9f5DPf/ELDMMlv/Pbv0r83EgIiYeP3uThw7fx7gSK58GDDffvPWOzvWXYD2w2u2p4ptShnEqd1k1dt8ownvaJVrbmNppiRk+a8klb2tV6oj2j6I5dn1qvMX1OKgU3Hat2yEtNVBqyOe8N0rLtelwPb6mJJCZ053DP1/XvrJ3UZ42iaIytPMaGxswBv7l+H7W5FGLl4MxNce8YaTmoMA8e0wqi0oru+jrzEZMa4fRe01ZVRVPm2Ds/b15wv/ft45+glDQTjcoMTd05/hzCcIfJiqkqGetMdQwVjDk+ce3k5TJbJZsyk4xmaE3fWBpyIhCLTqKIxRCyJeSqqhB1sSyiVbipq1Tvz5gS8TmxyCNvn8Cj11Y8vt+xkC023uKlkPeZGAtDUK7D3ghh4YGCuThnPzH926wiqg+HOs0mDCGlWrlWGXMu00C65itBadLgMm2AzphaeeRq8lUwptA5y2gTp0udf+IXK3ZD4PJmx/NNIuVIiIUYtHetxWudjpyrOyaiF1WRaTBZaoqaMhNDl4teK8nKETLCnOyJoglK9tULbrlc4r1ltxsYx0jXOazvuNncamIWM0kKUQxXu8TvvH+F8R0PT5asnaJJzsXaO9bPXRQbhgbtFqlBNasvktEkyFlDCrm2TQpWLN44vKj024oqqUy7yKVWH6LHIjevmgpz6CagiJfuQRnrPGP1qyi1/UhLHGsSnm2hOIvpPXbRkStho+2lU0Ve85WUdOhjSIUQC/tB2zY3u8DNHq52kaeXQx1vkDHdHuc71n3H5SaxHzM5FsQWTjrLiRcuVh3r3rPwFikJEYMz4DtbZ2kl9XBJSjiloplts5zJ42UqLCZYvF7DLZhSGpFbidk5pWlrsAW9Bms7pxhVIgmZ7Cy2KHJXahIi1kzgTRHBOFuPb1HOCtpmMC1wZJ0UbrAUlzBZkUi3VP5P7z3DGLAmEYpldXKKv84knpNF5y/lktFBoHq9qG2Bm2Y85ZwZhgHv/XR/KYX9buC9d59y/7UzTk56rH2M7x2vf/LTnJw+JEprRbRI2zZNEGZ1oS4Mtdov0zq3FAJIZtjv+a1f/W88ffdX+OJ3fh+Pn7xNMQtScQg6aDGViBQVCjjrWS+f0Hf3+Py3PaTrq/EcjjGAterIu1ytWZ+s1c11HNhudzWZzOz2O25vbtludorwpVzPi37qVJFuA3Xfm7koTfWZqky9qKFRTSbm5kMrfvXyzhOa2xBdPQ7mKK7c5SM2lLNkU5GWGT2Z49SdYF3XunO+qkjt9JxWeLf2zlEi9NLNcDjjrf29PVQL9Ba3zMHHaO2ZlnsfEAAmtKf+Xw5+0b7z0Xr6n799rBOUo9vhST/I9Q6rrfZT/8yEWGNl4p40NOU4+dBbzjpKXlp/ulZok1a8ndSaoEQKsSg8nuoQw5zqYikZ9UYRICAS50y6JGy8ZR0/4PF6z+PX4MwkLDcM+w1h2HMbMjFqQA5Bx5bbzpE6R0pBh7ftA/2ip4iw2+/VOwKZ+tepohW5Zfl10UpNvkyhlqaaG9jq5ZJSoRhFJyKpffUaPGDhDaZYFp1FrKG3Hb2zSKe+LZutypRTUctyclCH0EINjrOxVs66WR56ACgnR9Gt1uDzzk2QeJtUbE21wI8ZayHGhPduIrBaU0h16GHOWUm3GR1uly2/9d41Ty9v+fST1/j043OenHvMEBlNrt5QinJYmm9MXX31oDa+hM5PKRU+axtNDWy5UM1NFT1oBGEp1em1Qqa1xdSqPJUu63aSitrOu1YpWkWEjG3+JHX4JIYk0K973HpJmlATkKyoT0MEcoYUEmOMDDGx2+vPfchsx8LNAC82kfdf7LiN6sA6pEi43LMbCytnuN2NCMLaF55c9HzhrXt88ZMXPL53wsIbnSicdUtzzqoKy0AyOsNHRNR2XwSpTrGlqIy9XcOmFDrrdf0yb9ZqZ65JayyRkFsASZp81WvbzN0dKAVvhJQghRFfnXhzSmBUhq0wSS1aWocktplapvJU9PM5W7BWGMeA4OiK7jPbIbDuDLsxgVey9bgLvHix5fL6dkK8Uk6IWLKoP0/XzbykhuJOKjcRQlCOhLGWmAspFnbjiOvg4uIU49esLz6BGD9X9wftAf0yh3toCzo1GFaisJRECoGr5x/yS//9PxHjhu/7vi9x/+FbIB0hwhhSNVZTRVYuiTBEhmFkv49QEsZ6UvYs+pWqoXwhlQQ24TuL7y9Yp6yOxWGcEJBht+P25oaryyu22z3DfmQYxknQQA3ezQwzlzZt/cCSomSa/H9KUDgsYOv3bsGaA67jYVxB+TuUtg/KcXAWmZIOyYdrs0yD/uakpqivzCTUcBP/Sj12uJPQzJzHV4k12s/DGHZYcB8s/Po7c+e+dhxehXloMaZt1vkppSE7dwCCw6Ttfx+SbL01sthRb0vKdGDn7FZ/1RIQU+e4WGtxNTNtf5r6pr7D/D5HBKt8dPbm968VLNrrTCnq1OEUsbX3qZJQgWxJJJJYch5g3NKnGxbxGWfLGx6sDAyX7G8vFequVWysMKWIKga8EUQ6dvtA5y23mx0hZk7LGdZZxqRSzTK1H2p7pFYYtDbAAbSn1UOhkeD0mKk0rgXJVjF2naeIpTBijXp6tEm2OSWcBW8y3s3BI2XYjyPOJEUSjNVqqgZv65StH6tKRm301QcihIBYTVoaJ6SNB1CljJ6jGCLeCH3XY61hs1FX27a5l5xVhWPsZIemh0PN3i73md9855IwBpx9yP21wRJqlVHq8DrBJOXdNLRGrNTjVCbY2RjlRBgnhDEQ4ogFOmsosSrDqppnrMdfxNQedpnChSZn1WujeaPYKq+tu2cuit7l0qYP1/PqHaXz4GxF0xImK/nSNhwZKjlZkbdUUbUxZm62I1ebkctt5J1nGz64DkjfkUUYC+y2iWHccbq0GJTEfXFq+ezjJd/z2df45KMLnAQ6qwgDJeuxN83W3mKlTOZls4osaQKFcoCcUb8f5RBkmvetSqxr+7Wdy9xQqyYHb5wBbfmUpOonnYisxERjdRwE7TPU12pJUDGiuUrO09wmaj+eug5bpetdVWhlWHhFhnIyZJfxVrdgPxZ2+x05Rc5WHWMIxBhJqArJNdNCedkHw3s/JSltzRcxOi4iw/52g3UDb37m03SrJ2QxaHZVQ4UctMfbGsPMLQ+TlYCM6FoZCz/1k/+O//bz/4EHj9f8P/7AD/Dg4dtk24M40jCw3w3ENLJcdnS9eplYKcQQuLx+QRwHnDMsl2vyWlisTzDWThwhiiZaznl815Hzghj1mPTesVr0nJ2esNvt2W31z36/Z7fb6QiQMVaejhaDyk1SDmBLZF4K3kd/a0ckT3yVtu9xgJzMN+VCFckoJ08mAnPbU6hcqMP3bYhgaxE3An1LUOa4UiYU5lgNVJh8SD4iOfm9ExTdGyAf/Pvlx8xr7/h7V2D9oHXE0ed41et8o7ePfYJyeMKPoTOmuSLtgMyTXo2Oaa+j2p211Sq79q7NsewKmmy0HPy9jkyHl86lEv7mAF9iptQBelIKpegGoZue3mfGPW58wSK+YJmesyo3XHgouz03tzfc3G7RZoASPqW2VKCoqZFYQgjY+v1z2ROiTpxdLJd6kVFAVFZpRNCRo3n6oq0yOOw/KmOeqZWg318lgs0Qq3rZ0TlDyo5SgkpEs7qJqmdLpMQRkpKErfGqEEkKxWolaSZYsfEWnXc10ct478mNS4BWtoImLqU6tqZceTGiwwSbu2oumTRGQlCOgSJl6ojqnGMfEohyDrTqUrQiFMPVPvK1D284P12DWbHq1Mis5DQlGL03ahdf0mSoRdFRAM2jJ5eMWENJpap61Ja+61wNtGoQF2LS5AHqedIA4ZoDKi3JnUlyrZ+tdZ+uQUXMMl6MJnPOIH1PluqhkSGGgqny0pJ1/U/vK+jnHbXtMoTEmIVNKDy/HbjaB6IRxiES40gBlp3BdJ6EULL6gTy6t+Bb3nzAJ+6vWPdCSQI5EkqtLIuuJVt9RgrazipNXdSSz6KIRN3tMWKmGqLU4JHI2FQrVZnDjK1SUCV9q5KsmIpmmTbaQtVyTWlVN42p4tZ1aSa4nRq4MDW1rQhDIztidICcGsShrrop461Qeo8YR0iJYYwsFh0XZ2t2AWIYOF2e8f7zGzZB2MdMDoWYAyIzv6ZV1yLqZtxGAIhYUgxcX13ywdPnvPHGBVjL4098FnFr8kRqLwf73IwJUK8fKabuGRrcJRWun13xC//1v/LTP/3/oV9lvu/3/T958vpnKUaTE0SnL/fRwl7q7CSLWIezjvVqxX7Y8/71JVf7HX1/y+50x8mwY7k6wTpfk8WCGPXzaa2txjUq1cBvueg5PztVP6EQ2e92bG63bDZbbm5uuLm5ZrcbCLkOkJ2Ky7nAbOG2VDSp8UhaDDlUfx3fDhCBw/YODenUjbRIuxqP49NRolDqM6pC1E8mobaiJ6Ump20fvoua3AFW2v5wUEwfvt83miAcf+9XHYO77zmv/eOE96OTld/r9rFPULRq0g3jrmRXajBuMq92UTcTqOYU20h1sznV9NJT26XJzkD5EMbUDUvZYhNE2BZhqvNaUsyK/hWjm7YAol4JOQXIG9xwyyresuYKX54Rh+eUcU82a3bbDft9JCVb4bOMNfrdQor1PsjkiRQaY2IMOh/F94XtblS7czQwS9XJtOc2dUlro2jipEmIJnizJM1atfnORQNKzsqFULRe0YRkLMUKIUVCyhrYqsmaSGHRd2yD6GRgQN1q9XOlhmpUCXH7XLrw1WEyJe3H74eAs5a+77m6viWXgrOuVkl5Oo/W6euqZM9WlMViO0/ZD5SKqMQm+AJyDGDVij8KXG4iv/LVD9iMZzy6WNM5wRnorbDqlSCpM1z0O7ZjY43RIZYpYqzRnnhMLLoOsR5DRx5v2adBZ9mkTE4VnjYGYq7mcE01xLSWgWpjz1Tpq+193QiF6p8jSIOKU8EXYNSKvFig8xTqCANncJ3XIAjaYjFaTY8xsdlHXmxGnm8Gghidjp1Uhtt7OO17DNoeMlZY9B2GzMmyY73sVSHm5MCxWKrXiui8mZoYNSIjzPwTawyLvpsk+631MDv16iY8xjjxkmIIpJzovcdZvd69Mw0onGuLVqSauubryiy5kGOckdiqvCi5Xutoq0VsRRysGuNNM61q0m2cRXLEZKPy4WxIeU9M0C86wj7x4GyFc46LlcX3S06Xlq+8f8nlTtgl5cd4P8tNNTdqLd76Ner+Y60l7Aa+9jtf47UH53zu27+Di3tPiCIY8VMaq9+y/V8RnzaED1SVkUbh6vKKX/7Fn+OXfvHnGYctX/iuz/Od3/PdPHn9Uxi3AtyE1lknrNYLnU00l9aIqJ/L/YsLUhh5//132W6uGYYN2+0Vp2cXnJ1fcLI6nSaIi27sUDIG6JzTgYkck1JTSsT1insX54xj4OrqmufPn3N7c8vl1TXXNzeYVBPw1JSZWlCUUveYup5MrToPQ+rdANvEFnfvU6DSTFlPbYIcFc5tnbaJ2tSEXIzUsQzKP2kk79bObNyyj/pM7dzPvloNhZ3f76jVInO8+uikpT1+vkyO/3LnmNTPMRP6/+duH/sERYuZ+t/RiSkzNeTgpFhjJulWQ0yMOTBEOzgTLSlRR9B6OU8GXK33ezAptiYzKRdiTuSgnJOUC0V0zH0uCVMyJo3IeI0dP6QbX7DONyzLlrC7ZXd7gzGW3ZAYAzjpsOyBTNc7hX4rikHR2RStpZXq8EAxjlJQB8wiiG0beKm+AnMlWoFBjmSVMjOxVX1SDha61DkZFQVSFXVNcGL1sNBeeUy6uVvryHmoRm0Jgw5lm5KhVJRQas1koQ8wjmFCTYY6d8U6V1Urep5j3msLxBgKVic1VzLkonOcnp+yvd0yDAHvvHKJYiSVzDgECoK1jpgiiFEbf8o0siWJpSA8u43sxuc8v9pWa3zDwsGDsxWvv3bGslhM45AYM1nFp9Jm9QiSCxZFW+J+YLzdkYZB++Sl6gemje5wjesm0fg3ADnpkLhWRRsRsM3jQNsWHG4sOSMxkbcjDjCdrSTCQDbgejcF7SPY2XmKSSQsm2HH0xcbbveZMav7bymwNHDaW5ZVnRVyRqywWq1YLoQwRE147by5W2voahKac6kTmPX7tWLgMPFIOSJFh0cama/FSalVibVTkZIL4zAourLISFew4hE0IaKUg8o2o7BdRQsqGpWLDktEmBJqQKXbSdcJfQ2mBwgXUgOIRqcpsTRGidJGNOGqzHB6J7x2tqSzcG95Ri6G1eINloslv/61F3yQR5VMOzclbm1/slaPuTF67VjrQHTdxf0ILHj9zc8hpqutMA2bMu0BLfBVBVkBIUNOXF9f8cu/+Iv86q/9MllGvvP/9h28/alPc//+G/TdukYuLRI16ctT4WO9O6js5wq+7ztee/CAkgPPPnzKGEdi3BPGW6SscVZbwTArtAqCmOrLQiNx6obbJMVm0dPR06WM6zz9sme33bN89hz/oWc37AkhcXu9YXO7bcFhGiypCr+ZMFqYWxcTQl+P3zz071g63D70VOPKHPxnpOqOnr9e24rsa4Jiq6GmtjEThwnEcYtnft/jBGUuqNtzDp97+LzDf0/I4cE50yVSY0D7Xg1pe+n2P5+UHN4+1gnKIRxXjjabmruVMrV1JvSkEWOb50klxrbfTxv6QWU2Z78ybQpzS6mdwJYgFTUMSwlyoqSqoBGnFTWZLm1gf4ncvocbn+JkT057nm1uCftAipWxzw1hiPXDRPrOkPJIyoEiRqeI1lk52rbRBa36eoU1xzDipY6in2BIg3inFUBp5Nh2IWoFebj+midAq8wOyauNEKVJnFaTKn3MOGvpnCqYtsOOGCOd95ycQNkFVYhE3RRiSviuSuqKoUTl2+imqe/XdT3DOJKCtm6c75R8N45TwAtjqrCooia+mofdpJtJNmitI2XtZ4tR+D8kRW2MQG4kTNSVNUcNeKFYtiGxGXc4s2XphZWD69sdne/orCUZHQSYUqrya3TzFqsqoZCJ25HhZk/e7JEhIwdtK9u8FGqLRyrErjb4ogTsA/TEGp0oLNVPplK7J1+QXDObEtWqXQZNzExIpM5QOkPxFlkYpHOVK6Ntl8bN2u9jVYAJVxudRByUe6yPA05WOm6BXL1cSiYl2G9uWD96jWVvyWPAOJ1S3Dk7KRRyigeJRq5ckxmmFmTyG8o5KZ/BGlIJU1ICCseHENjvx6mKHMeRNA6EZQ/rNe5krW2tJNNxyimRJ9fkGRLPB66dMSVIHBQmSuwVp3weTIP1a1usmowJTGvJWUGKqeqkkZRUUt15QyeWhc846bjdZcZYuOh63np0j/ef3fLseq9rMwWAur6b1LbQeSW+RsmI0SKppETaD4ic0C3uk3G6vkpVxNGir5kCkRI3M3Hc8Tu/9ev8p5/6/2Ik8j3f+9185nNfZLE6A3oMFgjKq0rUoFwm5AXRv5oyB7zGpbDWslyuePTaE0wx3NxegxV6v8AabW1oIaHtUd2zO0DR03k4pxZ8RSpHiLk48P2SU+tZrgL9asnZxTkhBHa7gXffeY9cnrLd7iipZgF5/nwHEeagSM3VnFH3pBl7MzROSrtVkXZ9BTWG1GarGiGWurcWkelPQ0maqnSe3dbUN69GONo1MicnHIxmqZ9GGmfmVa/QPvvd7z5/R5mSqjkxFmnfcA4UDbX9qNv/SJvnY5+gNEFMIzG1HuPUXGQmxR6qdO6qdqYsshbvx+O1marJ9qKtapvyYlF1TIzqX5CKViCSlVtQjJIGfRzpx2f04SmeZ+z3z9jv96RcGJOiH7bvSDmx2w+1LSGIdRhjcblgspnJj5XERdYetSbAyr9QroqiAqYma9ZaQgQxKsEVGimYuRo5WGRtzTWJ3nQUxGCkTcJQeLTxblzN/r1zjAlk0EFvfddhshBKoPPCPld4s5pxtevAOYfreg0uB3OQlqslmUKIgZKpEk39BItFzzDqQLuGeFlrSDnx4vKScYw460GMbnBSz7FoZVaCzigqaOBPMCE5zUOmxIxY2AWhd4YxQloIbpt4+mLDwlkenHQsvNUEMYPJhRh0PY5DoIRC2A6wHbFDRsY6NLAcVK8tyNH4NFJbcdrCsxVhEdGKWc+jBj7jLKXU4YpiVBVRNztToAwBQb1RiA6SHqPFck3nPDgzc3yyutrGmImpsNsHYgJxjjwkRUQyrJYe55WIHYeAdc1CO3PvfMnDe0vOVo7e5wpdM0HYKVYFV4XXGyJnDqvWUhMu1DjOCqSi5zHWKrHve0qBYdCJy/vdjmE/kLPOqnKi3I79rrbIEJzXZFuT6k7RVFtXtDU1mbXTXqDcpIwXj9TE1ZoMEfWRsdVUD2ml71GjoCGYgiYPysUSeueVVF3bmyl1YBJDiJyuey5Ol5R3X2hineK0Z0HzBZkRJGuFkJJyOFIkj8LT956z3WcWJ043OElqslYLK732NUilFHj63tf4uf/yn7h68QHf8e1f4DPf9h0s1xfadjFCKQFMpmB1PUimMGJwukblYL+svK5pKjSAZCyFxbLn3r17uk7JLJYrOt9jFN9DpPo01TajqaMY4sQjqVW/tWRgDDoPSpVMDm89xnqKcfSLJSUldrsBEXUK//DDZ9zcXBPGkVz3vzkBmQPwYXLQEJUWvmc0o6KWH4EgiFhE0sE6OOCEHKwPI3OyeLdl05RHdz252t9n9PBlufO8Xj6KJHuAStESogO05ei7HHB1pqRkVr3qU/6vQVI+/gnKtKBqkpJ0ym6pPhpTFiht1s7c3nmJc3Lwuoc/pcKM6netd8xIygy/xZqgxJQ0QSm5zoUpFAIuBbpwycn4AT4+J4ZrSg5st3tCFny/ACmqbBE1BZqMp0SQBp/Wj2KsKgbEUOWk2q5VREXI40hs3yElrO9UIl0rVaikxEJ1Z52/2xE5inrt5lJ9K7TCDbElLSqPk1TNgupCj0nnzeSix8WKgLP0XWE/aptqzJBjVIRnF1j0WjllpI4EiBW5ghBHnPfsR23LxJxQBagQY64k2Vzn1eRKZIX9mBgTYJIOK3S2GtZpcjJUKW2DVdsQOhqXBDRhQRTVESXo2mLYiVDGkbP1yMWJKpKM9Ky9w1LXQ1VfhaEasqEyUFF7VuXxAMXoXB1rqLbtapdPVYSpF41MG0MpuZJKdb03/x5pPiaANdXDwkpNaC3UHrwQlcjpHd6KFkk1eCdU6rvbRzb7yNVm5MPrLbshIXitXEth2RtWnR7vIWk76GS9II0bHp16ft/n3uCzT065WFgWC0/nZ0+N3MjD+sHUrK1WZ9Rzl6vyrLVXWzszhkhKigb1ndd2T3UsDkOElDhbOJausFo6nBFC2BO3O4x10+RhMRbjPF2XGULEe23/dD7hXTfNqLHiKBLmQFGN7KhtGmluf1mPtap8lOAtTWKOPtyIKooWTuXZxumfECydK/S+KHm2klP75RJrLftBJx477ypKWui8I8VMiFHHEdCOZ8GgQ+Y+fOcdnr3/Hm+dndfavlnkt31OZznFcccv/bef4ef+83/gE2+9yR/6f/2/uffoMWIW6NgBNQMU0cKIYnScRVGEUAGUec9soU1QfoUO+KtBXATjHIuTNSd1rlDX6QyskAtpDBijgTfEhMSEMQ5MJbxXFWLOdY3XwYqxDt90NQnRCd6ZTKIYWKxPePKJjsVqyfpkxbvvvcfV5SXjEIhjJFe5MFNwL8ytjiaOqEpGeCkJUGR5TnIOH1OmeHSIatT2WjlwyE4JSNN+lrLGtFRRnEOOSSvKG99kSmza7q2VzSQ6aOhNg/va55jl5YffqcqYpbarDxyXp3cQJpRR0EugxUjdpuYi46VW2Ddw+3gnKDRfiDLNoWgZd6nVcameBFOgP5AYH76S3mam8tz7booXUy/MunkyM7xbayTEym1IiZBiPU8dxRYkDbi0ZVmuOZEtw3jNi8tnpCIUaxljZH+7JaXAernA9x0ljIRhIBtTZdA6f6fBPJpta6WdUDVGkzWUXIg5ak4lulHlnBljonNgpj620QFcTYkAdxbUYTtL5820NmVu5USdD6R+IlPdofLYHBlj0s2iWv53rsM7vbhClfiWUtgPsbYwNMGy1tD1C0JQ9c1+vydV+/IQ87SJeN+p02MsWKNLOiU9BsXAGNUnxGRVtlCUSOz7rpqQ5cpfYf78tdLIRVsOhhos1c9e1TvOUYBkLFfbwAdXt6SoAas7P8FbQxIdThhiZL8bMUWlyENtJZisSqlUWn6Y6JzBW8FZp20iMYiBnBsZcibozZVqO+81UUUdaxsvS4ySmKV6e5SkSpbmlgxqZObETFOIx5zZxcyzmz1fef+S3/3gkl3uGWOuCJk6wnpTdIBdFsYUuck3XKwMn3pyj8+/9RpvPliT44gzaqLW9z3DsNelI3XdCPP2VwnapW3OlW8UrcFnN0nsS0mUXAgJOlfIsbC53TLu9vQ2c9pbLtaWk4XHGkOIOgG7iCUV4XY7sh9HfC94LyrDzwOd92QxpBKxYiqsk6dhfAplt4Va9406iVmMpVQuFfZA8RMTCl1KHSmgSJh3Vl2VS0Xsiiq7vBV6HFf7kd1+R997dkGv2WE/VgmuIdd9xopKo0OJirgWENTL6PbqQ37713+ZNz79KZxX1KyI0dIpZj744F3G/Zaf/68/xQfvf43/4/t/H1/49u/GdGuK8bVKnvc9bepV4jxV2o49DnIv7a3zb6TS8kUE7ztOTk8JQWeDhZTY7LeICKcnS5zz7IfAsNshInSLrs6K0j1gDBGJkUXf1+GOuTofB3IONeAHQkoUEdbLBeuTNYvVgq73WGfovefy8oqb6xtyqIToure1whaamqxKiPNsnX/03cRUF2jq84+L3cPHzoV1De7VmHCs12NLxJqXS0vWD51wW6FQHQ00GZR5P1DyLfM6fekMyXyaJkRn3ve19ZSn13717eC7TQnQywnP/5YtHmpF0P49tWbqWVffL5ns6+EOxHaUUZaXDuK8QLWybFlh20w0dzETPNs+j8K4kGo/3puBLl8j4bkO9isF5zrGMdYepKmVsPZZQyhITpjSaFnzgCxq0tFmSmRq1YyOhW/ZfEGPQwFNQMyhSqccXFw1g5+SlBnu0725yj3r31tiNh1LJb60s0JrtzV0aWbc688QtRe830VKmXuguaIune8m6aevhFhjLSHDGFQ6nWpCRCkzz4KG3GiV03V9bR0kDcbGgVhyGqvCIypSk/5/5P1brDVbltcH/sacMyLWWvv2Xc417xSGhOJiAy1XZRusloXByO0X88QD5sFPJdsPxpYsJCSDES6JF6SW4KElhF/aom2prXbbbuQC05IFVXZzadFVZaCqKMjKzHP9rvuyVkTMOUc/jDEjYn/fd06eLPrliMjcZ+9v73WJNS9jjvEf//EfjQRtRNsmphcsVEIidCFSayZUa0WwHxKg5iyJ8uLmjiQn9v0jxhK4O830h0TX90yTieQVKnfHye7DneleMFn06h2M1R0mFSRGdyzXOW/pruqIVlX1brvRDJxD/Yt+iHoVjKveqs+dcTcqoskifYlIsNSP5kJWZdLC9Wnm0xdHPn52x80kHGthzGYNz4bEfuip08w4ZzIJrSYgeLbfkVAOQ8eQInOxsmytwjxPNr8xIiW7MJkfgmqIY/VKMdVKUdeuIC7l1HPOrusj6J11sdZ5Yj7espNClyJd8HYHtSJS2HcmBmfiZyYvcJwqJSRCsO7YMTQNFU+becsFNg30zOHz6sFqjnKTMletBre5F29NBKN9tFIpZEKMdH1PyIpES3nhmjApBSR05FqgChc1ErXQBeVs33N9e7J5F6G0VG3ydI0r3eZaSBIXhe1aRv7+3/1f+O2/5/fw6N2voNIRSNQy8cmHH/L//H/837i7ecI777/FH/g3/hDvf+3HDF0imPT9Isa1HlBNBf81m/zZxvqNjxGRhW8yTifGKZOL2cPD2Z4+9TAVjuPE6XRkGHouLs4JIXl5caFMhrLGINRsvKO7cQSB/W5n6by+I3i1lbX2CMTYMQx7Dodz5tlS4nd3d+S5VYWtyIiwCuQtDsqSalqJ1u1jrpzIzTm1Qa3stXUZkVqrtd6Qyd87LCq423NtRU+276uLXViqc3ztiTvEy8Df8zGW02CZojX9s0U8ePWJS1D+BWb+teuLljnDl9xBafm4NnitWaC699s6AacQF+TESJ66mTibtftpjdcnShbEbq3iQZ2J742gYrDoANzbVBbPttOJq3SivHzCp08+JKDMVc0Y5RPTZBBtEC+xTEa0G5LnskMgYIqFplbZZOEt36pFmadMXdAAJXUdqe9Jfb8s3CXHiVmYRqzK1fkvjjIBhkBRN3p1LQet63g70hK9giAEky9fNiJq4lepMjjR6jQZspNCoBRxHoV4czW11uoqlFy9yZY5V2WerRNxMRewwc2EwDzPRkRTj2wRq9KZZnI1cDJ7lIvi0aci0bpWN36NlhU9apGN1oyERHInZUiGSGktZFFqMV2Uu0n4+MUdh2HHxZCYSyZ1g6XiMAejAFPO9F0iHQJ6O8KUqS6JrWoKv0UNVu1iR3R+wrLOVa1M3deWpZuM7BujWOqjFEMCXF9FcTK3I4oZKzGupdIHy+Gjxo3A01rjnLkdM09vTrw4Fm7nwKkKY650AQ5dQr2UfM4w1WL9joKyHzorKVZFa6GLFuW3FgDD0JuR8+KZ6DwwI0EaQTg3cqLavE6TKRBn7ylVHA2Z8mz9mPLIeVe5PB/Y9yYM2OS8ResS9weBjHLWm/NyzDMx7Bj6ZK0IipVcEys5W9BgJNBVpkD9c+XJ9mPsOvPgm6NeBSiudmzPp3cBw1CJVcGj31IrNRdCgM6bRu77hObK2dDxzuMrPvz0BdM8E0WNo1YqpWQ656aFoIzTZB+wVoLLKMzFuHBPPvwe/+jn/z/8xFvvQUxQK6fra37mr/63/JNf+fv89t/2W/lD/8b/kYtH71OC8TYoVnG0kE/fFAlv8f3VSLL8sh3YbL+rRY66Pi64+vPN7R0iidT1HMeJgnA8jVzf3fLi+Qu6Llka8byHEKlqrTM4WUoozxPH45Gb21vOzs94cPUAnMsy58Lp9pYoJsI3zYWpVAiB3WGHYohdyUezAXjKdaNibUj1NnXhSJ426fxWpOHB3fJ3+97OlnZStEo/9UBrnt2me3fyhpC+yjnZOkTqAVoLoLedihvara9MhFnQe00N7s/pJgC9P4PbP78yq7rV1dm+3OuB/xe9vtQOyupZWhTTIndQF17q6KKLsnnlTgjcI5m117Fza1NOG+LCuF/eD4P5i3Mv2u+6mPw9XHq6FubZIz1s8aY6cRZPjDJxBEMDivLy5pbjcTKIPBf6LlFVOY0nBoeQTUHVDS0e2auhOuCHc85MUyaIOWBazQEIMS4+8sLXaXCe80XwiNV5fa7Gvkbt6Kve/2qsTFra0xUSFi3CJoYXQl00NXCHse8hhhNdrBA6spqCKCp0QcjzjJbKsEukFAkhcXN38vSLzYmKuHjZqvJZSkNTLCUy5+xluyb5LtX0SGJ0A5ESU87ezdnOFvFKLhFzgNs+NCg90Ef7QpVcrZ2BHYBwjDDOlRcvb3j7LAH9MuatTXupjq+FgCah6ztiUaYyUfHyZLEupkFcin9xCr1NgTtPpTqXSMyxKjnTeoukmBjnpvTryJBH+0ECKQW6XYd2ltKJKSIpeJWBOT9zVk5ZOc7KVCJjUe6svwJDF+nE+DpZ1dX6jKcTu4jUmYuzPSWPpLQnanIOVfUmkMUcq7A26bR1Zb2O5uxE9wplVsY5M+bKNBUn7dp8z3mm1onAzMUgPH54wePzjp5sqAy6ONkNqdE6L5o/+87IttPNC+qU6foDFZMBKN7GIZRATJFEQCSbPo8Ei7prdt2YuBBjwdAtwEqPfdwJQug7RCpdxZCq2VM0XoI3zZUgyq7vqKFwnDOX+453Hl7w8vZT+i5ZL6tivaRS33k1CqYr7+ux1kzX9WQEaqFOR37h7/1dfsfv/t9z/nDH8eYZ//Pf+Kv80j/6+3zlG1/hX/59/yqXj76C0tnR6Ry1wroHWjDXUNbNsbf+/bXg+ItFy8FtdM6F6+trVALPrp9zefWAIKZRlPqemMyZzsXSOze3d7y8vmW/H7g4Oxha0nXs9wd2uwMSI7VkjndHnr18yfHuxMOrB5yfnZOGHbvdgWmczGZS6e/umE+Tcc02LRW2RFT1s+PNTsOKRiivIhw+ImI8pOZANCC7FV5YNU9ckJBWKdqQjKXHDi2lYwFZyxKs9nljs31uFpG3N8xB+5zID0M5/J1lJeM2UGD9+/qZ/lmuL7WDAiyoSAjtcLQywK5LDH0ymejYnJNw73C1ga2bQdwewNhENQYfznN5ZTG2xWGlj/YaodrBnCVbs7NS6WpBxxvGmxtOY+b6OJIV7sZMLlBdUyKEyjRZM8E0WL49qh1E1jjP0YS8Qn2tAZaqCUKFEIjdpjJJ1cmqAIKEhFRYGgDiB9SG17B2cN7mWM0haRUYy+WpMhEh1FY1pYgY3yMEK8ms2ZCMoUtcHDpU4JiFqRpHQzR4DxbY7XtAGY9HUt8bkTaI9QeiRQkWXc/eDr2qHa65FKJlx22OJSxKjIJF8qUqc53dkMBc8GjXnS41IqN46wN1XQERQ7Jyte6m1Z0DUqKKMI4TcjEw9B27YSCpQB0tPa9Kl5JXCJmDIwrnfccEzEVBm1hTRGtm6RfiCEhRz4WrLCk+BVMQlnY42QHV0n4mDuf/dmi51IKEjn4/EPqItLUbTUsGhblGTtOJu+O86J1UNf7N0AUoLh2ugbkWCoGhM1XcIIVHD87pO9OX6QdDBKIEkq+75gxG5yCpIyUhBrTOhs7MmWmaTNJ8ypaeKTYWec7UPNOnyuUh8e7DMx6c9/RRScGk1VtKdvbK2uhVNA1ZSdJxvkvcHCeefPoRM3vOLs7ousCgvSGCogxERLMJpVVTHbayZquSS7EQooKsZf+qakiKqB1qqhACIQkdppRby4nF2LtqM15O3sdIHwvnu8T7b13x4jhTXoxML0+Wrg1hWfcihuxUqksNZOYaqQQoQtTK048+4Ob5J3R9x9/8n3+GX/jFv81v/52/g5/4vb+Pr37jxygpWgXVQvZVCJ4mdPMonuq5h5NsDrb7V1u3m8O52QttcZI9KUpkt9vRdR3X19c8ef6C0AW+8c1vcXn5gBAih7Nz+q6jFOXl9TU317c8efKU59cvef/dd3n08NJeegZVk/p/8fKGPE/c3tzw7Pol85Q5P7+0hpbnF5ScmfMEVIpm9vsdZZwZT27/3ZFt6F6sDZLQBa2/Ry3w9aa8KkdxH2V49RwKYU3plFqdEyjcH1S5Z4/FI6n2OiEY6rra5vZ4XV5HNk5K+xxszomljHD58+sibp/FKRFwQU157bn/XCIoLZcek+UWm7ebusjQ9wz9QErhnnPScvPA4ui9OrDtCkGoi/dsrGqrEirLohSRhXsijl4kAiTjjGjO1HkmnTL1dGKerBvs7SlDGuh2O+5O1+Q5M/Q7lOKCYWqcUsthuEnw8mK1UkKt+D1VN1gt71m8p4VtBnNrovd5acJeFp46kGIMm8DipNwboFeu7WZbkSulSc3XRUXTNsg0jozHyTgKamJyZ2cdRSrzzUjRwGku1Gps//Od59TV++oQvMzUSgwNwNBFsr1ME82NxGHLtr1zqYv+SVbokngTMYPyJQSqd401VMY/tViVlEX7dXEGgo8xzvmwXiuBw24gkKFWri4O7D19kLP1AWntBYbOEKNpGjne3PEgJItZU6QLhl6ZurHidTbuRLkmi0PBJuyGp27MoWrEPkWoblhbmfaiqiyAVBKBsUzsunP6w0Bxxr45X3A7Fp7fznzwyTOO00Qlmk5MVZIIuz5xGHrqeCTfZuZinJHTqZACHPodX3vvLQ4HS+XMo4n09V3yyhh3kJ3Q2foW1VqYpxl0IlAQnQhkYqg2vlqsD0+pSMjsznuuzjoudsqDi0QXCimYPHr0NZ5zgRhc6di6Kmg1NCVIpRM43yXGuecHT6+Z68Rut2ecC8PQ03UdWk8MfSRKZ6nMtO6Dxv2REKxip50Hqit6QnU9HD90gpD6RC2JPBfago+hVa+ZkxMFLg4DWSMvRvjw+fco1Spa5mykyqHfmUOZTWZAqaQ+mfihl7+mkJiPt/zD/+/f5Tb/bX75V/4B3/m9/wq/51/+V+h2V1Z5JNUckiKegnEbsj2wXjfCNK7aciw2h+WzziRdH7delb7reHB1yQd9z8sXL5hr5nC4IMae/X4PKDe3t8uanqeZaZ5AlH7o6Hc9JWeOL4+8vL5jPI0eONr9nJ2dc/bOBRfn57a3a7TU4TyTayWkjsPZOcW1lOY8O+CstFxkXeGOJWjZHr5riqdN/xrILsT7V8axBcTiaRf112lVe69TD2xOt6mcJYXvu7hxzsD6TW0dnXtOyjZVI4tr4X7L647G69N/v6TZuz38MyMn7fpSOyjWXG4J4EFsUlOMdJ2lXFo5MawD3khOFlBuDAr3J7tlRBqasNS5+0SKrFVDdogJMWAG1OF8KzVMhFOh5Jn97kDqRxgha2S8Hbm+PZmCIFZOXGuxA5BAqbZ4i6cUWu6xldXiqoQxhiWHWrWV2Rm8XOaJqh2RRI3quQxTyTRBL6EGO+CK50njUo/vvI6NU7I2Wwz+N083tDI4xTdvXSDI4ERarcpuSKYZEaya4Om1pbhS6lDUDrs6+0ETrFOpR4otiquYA2c6FWWJxqbcyq3dSQqB6uXPIVgVy1ysaLgWXDHUShTtvv3zR4EQl2Z8tlIMyZpFSX0PCl2E8/1ABOqc6c879kMkio/FZL1/QnTlXa2EKkjXoQoRWcTXqlgKz4zfqnViysS6NEOuKr4W2n05suEk07a+gzTuiRH+mqql+O8MuWjooJWlIoExw9ObmV/5/hM+fHrH3SycHKWLCn30XkQu1hQF7/SLI2TmBAzR0DLqbHszpoWsHcD6x2RDBvM0Mk+j3UvOBGZSqHShmJXSaN20sdSlrcOeQ7/nbBD6MNOHgmgFonG/gid4SkFUKNEc14wS1LhOIgXEnK6HFzs0BJ69uOP6+Yl+OGM+23N2tocuMkgygcQQPL3ma7J6GX00si2lRcCWblOXPlea5o/3w4qBbuiMHD5tSknrmr4LYmrIhyp0va31GCOlCuNsrR5o9swDturnqSpozah6qfsx87P/8/+Lq7ff5ff/gT/Av/BbfidpOPfQp6nJKhpq8/aX1I0uNnFzGL/6/X7w7U999aCSzTPsUds0yn4/8PjxAx58fMGL61turm/o+2dMZyM3NzeM04kHDx5wfn5ulYES2OsZl5eXxBAZ84m72yNPnjzhdBy5uLjg0aOHDEPP7nBgNwx0XQfANI/eY2pinCaGYWDYH5hOI9M8kWteEI9XSa9NOXfrhNxP5fhYtse/+mWHjQcUtjcRQer9x2+7ureS5Iaobs8qaWcSuK4SNPXXNq/3Z0F8PbIk6u5laGR1Mj7POVm/twL2dv9t6tuLsX79CNeX20FpHUexqAG8nHgRX1sn+366w8mdxdfIa8hBe55NcHtNk5UGDetBXEthzgZDQwet4aBgyI4OSK3su46uC0wnKJo5zTM3p4lpnikqSBWmuSIJkjsHpSqUTOgst5xd36UGcQKhyVyH5i2LOxaoC0ll1B0JqkOS1eDm2k77GO3xxfLgjThcm4VaFqo5ItvxFBFQ7+HiOhRVLaJfmuMFMTXXIsynkRiF3TAw5WxOWagEzXQJJCi5Wqv25CWarVuyhOjkvwBzMXXXjZZAccZsjMHIsg6bSHDkyXO0LcAtjeLg3VNbQFHapnSUyvq+rAygIEY5VS0MXSBGtdYFaiTfw77n/LBjN3QEz1dLcNJiL4gYwXOuleTqo8U5JgX1Q1/dhzTtiOpGsKqhKq0TTdXWZsGl1t1iihtTa+GAp7qMu6Q1k7puId/N00iaEqFLliKQyNOX1/zj7z/ln370kmO1Zoljse7GorBL5jRPZaaqzVVXleiDeBgC3/rqO+yToPNsZfYeRBTXblCrAwcqZZqhjEgdCaj1HZLCWGbqPFOyUmfTNkkBDl1gvxuIYg6iMNt3160JVFfwZdHl8MTVesgEMe2UOiMxoSZdxoN9ZIjnPLs+cRxnbq8L4+nE2cXBnncI7Pc7W5s+D6Uo4zgDwkDvlORo3lrEOFq4IW/yBo6mWG+gRJ5det7nfVGMdD2lkmfubm/Xyr3qXclFOI4nalaGPllwA7ZfsN/N02hlxSEwnY787t/1u/gtv/13EboLR1OLp7KtJ5Plf+tG1GK1iV/kWg+2N/gnbM4obevCHeQAQ9fx+MED3n78mJwrJReeP3vG0ydPePnyJbvDwPvvv8/l5SXHowlcajap/+PxxOxdsHe7HbvDgYdXV1xenCNY6vfu7o79MDAMRj4/vzjwaHzE7c0tqUtMxzvytCc70XyaZguK7n0CKx9epki3FZEsgW0LFu4hUNtDX3AqoUB19CLo6hzSkO6wIP+rU7BmBO4hHdo0g8L6O0fR1rmw97ZmkCvHcvPx3uCc3F8L92dzg860oKnZzcXZasgPoG94z8+4vtQOSoppEczZMqdrzeScbfK2KR3AedO0Bn8xRoJ6tMOKoNzzht3wtk7H1EChLN6iSWrPNjm95aCbiFNU4ywIhUpmmk+M45FxzJxOWDQvln8uxxO1i+w6CGqaFNGbkFWMn6GlYoL5ax64OOyvrtkRQ0SqVS6E2lqlO+KjFS2C1rZxMmA9IFTVe3m0DWGvuSxWf7+FLOboSUoJDUrV2UiNtUUYxqfoq1Apnl+1TSQaTLK+KFqqI06FUhRJiawQ1NNnToI2FdiybDRVIxbHZGWglm4zR6X4vYVNvtXIsL7RGtTuEUZVI8k5ZWBxcKLgr2lz2qfIoROS2OYOag4KXh5+dnbGfr8jRENGUrLyWgmO2ImN3zxNRDXkYxRHqcQimwatazXNF0NOxIQA61p6qKouF99QQDOcQfHSSNPjaJwPgNj15rxIYJd6giTqXOlDYBh25Dgw1ms+fnHLi7FyzMopC7OLTO2SydSbCq/tuCSCdpZSiEEIWolakWpNJPuYiNjc5mXdVKJUqJkuKClU+j64w6vcZUv1TONMnm08hhA4P9tzfjYQg/V+thJmG7uqaqhbUKIaZ0yilZOa6nFLg/naBprKbnPgBoHYC+Fqx/Vd5tnNxOnOS5qL24doa3GarAlnm9M8G08qkbznlDiHRbx6zO0OwRaZWsotpkSIlj7zW7JDq7jImQTG05HrFy+gKnmeIVjn4GmelzYAWr3aTwIpdASqI1urM19zNlKtDJRarKJFkx8mG+TY0R82kfByWC2/++FOy5ucFHXUsL0WsjplgnJ2GHj04IqPPn3KaZzIc2aaZ+Z55qq7ILm67zRN3N7e8vL6ltPdkffeeYu+79jv9wz7HcNuxzAMTOORcZy4fnnkNB55/7132R8GUpcI8cDb8jaXF1eows3L59Q8kfPsabvRUo5V1/SdtjPhVQxp/YS2vjZo0+Y8acjnojp8b7zEkc4tmv/qGWZ/31IXFsqBr7O6cZC2iMu9+/H7fKPfsXncUtH4xsetztH6utz7Ha/9+3Pe8JXrS+2ghBhMZlrV91OACjVXaq5kKUjctE7HF42PU4zRS3YrbMpLl8e6wp+6AQgOj0fBOC9glQlOpC2aDb4vmYLpKYRqMu/9sGO33/FSlHFscL1D+WLRcArBZdUhqlCSkMR4MDUXW9AqvvighaVahehpCnWtCMEqQQqV5LL71hsorKW44llPsRSP8TtWxrgt+s2mknbP1Q9lHygnHgZRKxmtQg1Y11gvna0lU4fENBdHVhTRmX2C80GYZzipQkzmkFVl9Oql1lBuztm5A7KUem4/RyvFFdq92r/agY5NkxtzvATXSacCBe9ZpLoYFxHjrQxdoGul6i7DrWo5X5VK6HvKZE5BEsyYiZWFmxNj4lHTXBhzNsn2rMQUrIzZDYqtUVP2LBVyNq6Jic6uGiF2cPk+wIYhOkoRohAxh8rE8kzZOHkTsjlPhNQRgtCfDbCP7A4D+0PHERMxO47ZWhUo9uZuXLo+EJNF3dUP0K4L4P2EoigpKNc3t+RirnV0zZG5FPs8JROoBKlEsomViVBntYqaeeY0mcAfiqVro6X7zg49+yECzrPy8uHFyXDnK4aAivWniq6ia4ioLFwQkeaIN8kAsbSQKme90IVEF5WXdxPXdzc8KxOnnHkYEn2KaC50ndAPvaVpFDQXJAZCaZGtczlaFF7V0Ak22ycFut7K0o2r4pFxaPNdkKq8//iKZ9cnxhEmAvOYmUcjf6cumZBtKYQkqEYIkdM4EaP1oyreuPSjH3xInma6XbekaJfDiqaj4Z764uDL6ph81vmi7nzc++X2IF9/s3nK8hj1fdV1HZeX5wx94vb2FsQ4aH3fU4HnL15yGkfGceT6+iXPn71gHo88fHjB2fmBvh+se3mMZherldPncuL65TMuLvZcXJ6h6t3mEYb9nr5LxKBM4x3jaWaXG/fMuD4Vd7wdIagUc9IbEoK4Hk71IMwHrNrevt+JuA1GcMdsMy5hecEliIbVybFqnaZ/1FJAxc8qcyzFySBSVzvxqpPTZku0zTW2/mhW1L/UuIGvTfdGhE7dgd02+dwi7f/ckmRXz9QmxFIZjQBZ7ICqDR2hoVsYoXVjCDzfuLyeR4xLpBoCxOSIi+VpUzT9DnWyaQjBVWfVZLG1orWYtkLaM7NzxLazqL1OVoUh7T3w30MWS+kEV50UvN26OzFlg5hY1QNLKWlRV75wrQEJlh/MZQJMOVbEODrNOy7F9R7UDm/L+1sKxAIoXXRG1DkfsUEC+EEQBFwkLXqFBgK9CtpH+1wU5mrVGBcXB4TE5eUVw7NbPnp+y82Umee6dHoN0StmiiEnEqKpndZsm0F0cUxaV19g3SisaZvQDC+r3V0M7gIPuclU6KKw3yV2XaAXSGKGbuny60YpSGSaJ2ItkGekFFJISxpwzoVxNCJp8fHVudCHuIyXrU9zuuZsxN5clFK8O7bq0nem+aYBMX0PgRRkKU1OXjFinRlsjGJKRvqu1rAxDj2kgPSRuO9JfcKyAuJry5AfqjlX9jJKCoYQVnfAaq0mZuaVXVEqh32i3w10w+BlsSNTNofOELACasGDiDdVDDBNk2lVzDM5+xhHoe8ifdeZumoS47RQsbo9QdWCgOTpHXMCwtIJVzbRf8vr+6J24UFvpGiqjpayk+b0RXbDnq4LPL2eefLkGadcOTs7sOsSZwS6zoKdqZgzqi29qDgfRRbnfkFTGi8uBFCroospECdbi1Y+HogpUfKJlCJfe/cRknryP/o1Pn5ZmDAnqgZMebqaYrNqoWhhmit5nhj6DhEotYAGvv/d73J3/YKr3WExiIsD3yCNRZbdD5oFdWxEzubAv3LotsX5Bju9/Hvz/OV5ywY04bmLi3PeefyY29tbxilbQ0CF29s7PvroY/q+o+8TMQhvPX7I5eUl5+fn9H1PyYWbmztqrRwOBwskQuT8/AzVyjAMjnhVrq9vubm55vLygvOLA3DB6XjieBxBWnVN5XjXeIbeskOauagLqEIbp+W/7vTpBjF65VrKhLUlkleHrp1Py9qkOeK+NsOa+sFJ/hq8h1FZURNpERt67zWWUV8cp5Vvt/1SR3Xvk6Ubl0bv/XtF4P7/c32pHRRgSTMs/6ZVOrS+LKveieXkXVG1EXvMfvth3tQ210mU9fRYFqxd9rqpS+BCbevfjHhXi2X4ZhVu6dF0wfn5JednJ56fbi3qF5Y0FUtaBRrSPzvvJJmFIex6KJWYEnmel5K0WoshDW4cTYbZ02DVOBaSTAemCYdtCVjmABjnIYogoanaenpF14O+VpjnSo0YUc25JtH7bUSPVEWtMiBWIy7HYGhWnaBKZd/tgMYjUsYpczwVdn0ykTLvVqxeujzO1hO0qAnlKR5sbJDDVm4ewup4NWNivAEzCqW0nhrtbxDd0QoKQxIuDj1DF5yHYk5rDELyrMo8V0JyeHye2Efh0dnAxaGnj2Jt5NVKmE9T5TgavN+T6CRx3kVSUSitwaERJXOtCyG2VCgtxcgaeQcJJDH10+QtkJN4GtLnK2DjXjUwl4zW6o0clVIzXex9PQix6yF0TBO8uD2Rq5BzI88akhdcX6WUbPsmRnIRCB0VkxQf+sBh19N15kRmF+JDrGO1lpmgFSVTBEQq01goQRjn7FVg5gzt+55aKru+c/l2Z+A4d8U6PBtq0sVAjCyVL6khnGJjVbX6fa/k4BBMe8N6frZUpi79pEx0LhIqSDyjH5RPX9zy8volt8eR87MzkwtpyFESQurQktHYCCibtddQmuXgEOenuD5Q1zGnTBQTICMbMjn0HZdnMGtkrPD+u4+4nZ5ao74QmUomz7MFL0VNsGwamWYrqw4BkMapg9ubl3z68Uc8fPu9RVPn1WqM7b+3B9PnRcOvlpR+3vM+s1TVf7/f7Xj77bd4+vw5nz55yjjP3oPLEM/dbmC3G9jv91xdXfLWW2+x2+2Y55nnz5/z4QcfcjgcOJztXbww0Hc73nprz+XFhZdo33E8Hbm7u2V/GIgxcjg7UB4+ZJomruNLt+nmcJzujss8boPj5Qxyu91saiOLbq+GTMN2bMX/vzo3IIuExqrbZehMm5e4sd9s1lStddFXaefSliNzf64bVWDrlCx3y+qkvj5Hr15rYP/Zj/tRkZQvtYNiTd1acSnNGi1ENMWRlI0XuYWcmiJs69fTnA71HgvN4WiPDcEFyQLLa9pwRydytscHj6Kst0wNMDIQugsenl9ydfmSp3dHro9i+htOcqxFmbWSugDVIlnUDtzqGLERc+vSHKsi3vxPyXOhalkMs6U+fJwEOlV32Fb438iUW6IV1IZK6GYTIsuCr863MITH+gNFaZtBST7Otd1/CYiYymiXrInXPFdu704oleNYOI0ncNhdJFhKSo2fUkp1eWoz7irGMXHk0w/3NSpo/XZQ9ys3G3QhB7M8ZEXVqq2AXRLO9x1DBCkZcfizYoeWUggSTKuEQM2ZVJWvvH3gN379Xc52PUOAPM6UUpmK9bS5GzOpCt1UOWhA8mTRna7ci1aBga6Rf9wm7FuaMQZSDJvD2IzXYmKkOaJWxdJ6MaEG/xYqGjGOSt+Ruo6swrOXd3z46VNmxcTkijU/q9Wc8RgTmguTN4mcq5LLbJBzLQyhEiRxGKKTt+uCTAiFmiffs7Z+VKyLNzSHzJy15Nwa6z2VrSGclbdQtBKiiXsZR8vF7dwYpxh8nQWrkArClPMCl8fYkD+7bB/bZtZgLe9pRtwXyRAgHjpiOKM+u+WjF7cbhAsu9snE32rwZpmWarZgOy6tG1Yxt01gpXYsde4wKYEuNU2MTJcE6JBcORsi7z2+5DgK+cMXHJ9d0/U9N7d3TKKECv0QkJTY7QfqPFm5bBBCEqgwTyf+yT/+R/wLv/W3m6rs5vq8A+TXC9P/KFezzSlFHjy45PGjh7x4+ZLbuxPPnz1b+qwFN76tSCIE5wSJ8PL6muPxyMXVOamLzPPMnE2FuOsSRY03hcD5xRmXF+ecX5wxDL2tvWHnVZSwPztjt9vR9x0vnj9nPI1ml15xwlaUTjdOCKyeC4tdfq36RhpitaISYUFPWt+4Zt/WdWuFz/cdnledQPG1+Bqvst3d8s/X/2bn5etz1B5XqW943fvOzJvWzBY9+2HXl9pBWfoTaF15BvhkSENBVpLQyiR2JUtPE0QvS25w2aISq5uDzKPxIBlXtbL3at9lS/yK3rzOiQRRKDFyDDtC6Rh2PY/PB549P3GrukTxVfHyTZPijooxrZvhDKsS6Thl776r3rvFGm0JtrmtIicC4oauEHJGYkbwyDFnKkrX7ywNVO35hjJFl9/2ih9fqdlLK+28V+u6LGsZdxAjEYqYVHmoTd3QxEZbsVRVON7cElPwdIaR0qIk5rkweMfWFlEvZcCs/WckiGmRuK0PuPy/z3cITVOgxQZmlGp1EhksG7jxOHZJON/19EGp82zjmNqBZZ+/C+aApmR5/lIn3rno+fa33uFyF5BaOE2F0zhzPJ64vjlxGjOaK4yFrgRCttSGRWO2Jo1DgaUnaM6gOmpuazd6GiiIGS7vSbd4W40AC1bFZQH+Ri8hBKpUpAvQCaFPVnYZAmOBT18ceX4zMhVbV8UdbMWW/Wk6WZdmrYzjaYNAGTeLqrx1ec43v/oewxBI0VIdpRSiFquaUauuKnlelIxLaQ6kOSjW68ZQwS5GgrbD3lIVQYSYEp1XzMGKnEQBqcXjFTsAFiVpeyjVDXopmYaaFNc6krq2p2/VCF0wZJFBeHjWc3fKjGXm5u5I3/fmEEmxexXTyGkOkqWcfME1FeRmlxyeb8FAEmF2npUXiS+oUKQwxMr5LnB5ljg/dHz4SXYV60DXdUSClSMDEEmpM75XiEzTZO0GBD76/veYpxPd/vyerWs/vxr9bkmQ2+tNHIPPQlLehL5so/n2t7Zez8/2vPXoIR99/DEvX94QxBp/TtPEPGeCCPM0cn17y83NHQ8fPuTs7IwQEo/eeszV1UNCSJQyMY4jL57fGIk5Ba6urui6nmHYW3PWznLaOc/W9LVWJEYuL87ZDz3j1SVXl+e8eP6C6XRiPI2Mp4laM1K3pNimjVLuH9yydU48lm6B4cLlWJH75jC82vdsOz+q6sUAzYawed9lhO/dx+vzGF6b63VueOWxrzg64ZX1sPG5P+uyc/LN7/em60vtoMCKbqgWz9WwDKDZhRYem5Na28T7QReq5YhjbfCYV3X4Abz1XEWsS+5awtwewz3EJZfCVDJaJ6I0TZRA5py78DYPH2U6FT785IbryUpmi7ezDRGKmmnKhtwZqRRDFkqF6A5W6NYeEVWLVU3ExayZwyLRomAxtdaCdUK15/jClkh0Iiq6St6rbAJNXRGKtsGs26apm4oKySFJVUsL1GplutGjxxirKXkqBMyghmgH29l+z/XRD8ZsMLWNsSwRfAjR03aew3Znbs3itRu0+1VWeLNxwBTdopDmnATxqinTnEhBLJXQXqfBuogfPhCl0idhnk88OEt84ysPePfxgS5Yz49pLIxT5XScQK3yhRm6MtMZF9LQk9gcQFAMGeu9hT247ZKAqY8b8a+0ahFP7bSIvOWqW/qrRWatCimkRKYgXYQh0u0HNIIGOE4TL8fK9z98ws1dZpzF+714v44KqpXURaQofTD12aqVLhiBWGrh4SHw+HLHYQgksQ7Tbm/J02gbiJUbljdVeG0OQ1iNcOt9Ux2lAVn1j7DINXqZdgrBkipayaUYjUrE+wtFWuor5wnw6jP1buVgFWOi1hNJXDdHDJuKVAjWWiHGPYLwyYsTdyVzHCdCtEd1qRjfpxjialU/vtiCOLVDvIM0xplrjorrOIVqnY7tEBNiUFdHVjpRLvYdKRQO+8GI6CIMfcfQ7zgeJ8TlmOd5YkgBLfaZq6eLVSrXz55xd3vL1f4CS3eFJeBb5oPVAWk27rOuz3M+ftj1JgdGxNKTV1cXPLi64unT51xeXLDfV/rdgGCcpbu7W6oGrMt6Yhpn9vsDqYtM08zNzR13d3ccjyPH8cQ8Txwu9pydn9N1HYLxoqrvLa3C0Pe89dZbjBdnXJ2fM3SR6XRkv+sZ+o67uzuuX7y0MuTZq/88rY02J9vGstS62B0LMTylIk2ryIj25R4KETwgLvccuC2if+/3/mXT08qJX0Vy3uxkrmTW1+ejZRz8kZsv//c9Q/q683oPMHjFCf2i15faQTG+iC7y8ytExmKg23C0n+33PtQNfSmB6mTU9tjVQ62rNoEYEbQx3+9RvbQJmglZK0VHrJQ5EaodQrnsOMlDzuQZlcK+t+qQOWc7iNWjJ09LmXJopItiWikIOWeGLlER6/Ir1tDKS90JIaFY4YVIRee6RJuqkPMMtVjFgAjDbu+tyL2kWcX7nbnkuDp/xcettTpXqnc6bQvReuI0aLI4R6AZ3xg8HRECfRc5TSOilRQ7kMB+iOyHwvXdEfWSWt2oby5zgjdzww5sH3rbqDFSiqVfltLh5cvXi7BZE2uTOqmVIQldjH6I+v0HKLkszpGESOo6hk4ZkrAL8K2vPOBbX3nExb4nCIzHmXFWpgq1CruuoxsSQSfK9YjMMyJiHIIYULIhIikuNxZd96WhAFXEO2Pr0qG71GJISzDTVwGKV3u9wmcKwXg/c1AO5zu6h3vCvkdSpAZhKpmXtxMffPzUeusEoe86QoSoVqId1FIIjZy381RcqJmzfWTfJx7slLOu0GEVONlVUfM0UaaJTivaGrw58rlEatXQH3OA1QXRCuNUfK00JMSrKLSgxVKSttbqAtE15E/awlUvMJdtVUNlewCbyJkSuo4G14tYR2k7XawfT4pKeDgQRfj45cw4j9wdFTQt9whmHwIdIh0iGzqh31NDAXGifOvwnGum5kIphjb1XU8uI1Od2Q0dF1F4/PCKj6+f0/U9d+NM33dM42haJ7NpsjQdpTlPECND6n1dw/WLZ9y+vOby8buLLX312o7Nq0jJm1CWX4+T8ib0ZeFYxMDZ4cDjx4/46JNPyaWyk7iM2zTNjOMEkii5cDoasnF7e0eMkZubG/a7PS1tstsPnF0c6IfeKslEOJ1GptPE+fkZD66ukCh0h479fmAeR2JQqJmaAn3fcX5+7gi1BYchYAJyY/bKQOceunNRXSKhOShbxkd0+1pE7quR+J7ddk/eKqA3m7Zt3bKJI1l4Ldyvovls7sgy+vce05CcV1M9LWBXXn+9z5rvV9fRF72+1A4KsLgI4mH9mhPcDHT7voHI2ndl1fVoj9kOcNVVhEeJRnFxyXhzdLbeKKAw12yHh5HmAVu0OQuT7MnDFfvH79B98ITd3cgRtZoEj3al6CIwJv7CgQLJFDKT6yjkYqRB9eohkWC5UzXegBY1kbdGGM2Z7BF57Hr6YaBUT9G0w7+lzaLShbiot2ptsKGyXZct7ZQcdQpxu5LXebHHmnHvEibMJsGlkYU+wRC9144queZlPmr7bK3CpM0NrBIpjoi1A0+Clb7WamPRDqo1T6xtgi0tokofA0Gztbxv5XnBlIGLa3p0EYJmgprWxtsPdnz10YGLIVDzzJghz4VS7HAOMZKAMM3Um1vCNKHVKnRqhTpaHxAbJkPJpGn0NPTXYB7r4SO6OIuqlk5rDpitXXMVa0MNPKWWA5QE4TCQHh4I54N11+07KpW5VKYCxB5Jll4E40UltfWRc2FiZtdbKbiIskuRQYS3rg7se3jnsuedhxdWap8FDUIumTxOhJJRvLNriyxrQVz9WQOW/gFH2ezvKpsMSS3EYGXLQUyNtktiHb3ViN4pWYq1IYS1el8lN9oN5WvOc906wLWa8mwrKQ/WBNBkRMzwR1UOnfL4skdD5Mn1aK0AijDlwmmaCSJ0ca3oQdUDHT/cG8/Fq9WkKV5rIVZDEKOvHXyPzblCiISa2e16bm9uyaWSUs80mghi0QjeZBINSDJ0pXpxQCjm4Odx5Hi8fS0af5Wn8MOIjq+mcd50/aiR83o/0PeJxw8fcnFxzsvrG+Z5RmL0SkTrih27gb7vCUHIc+b25ppxmtjvD1xdXbHb7dgf9hzOzri4OGfYddZq4u6O6+sbTncnhv5r9N5HStVUyhPKPB0NcdNq1VAcTJV2GNj1HYfDnk8/jTx58tQUr0sxYcGGNomsqRA1tKXtdYAQymtjZ2b2PmH5TeO/fPevleYgwP05/CwOyoIrK0C49/j2t/b291NMC1B9733uz9+vv7y4XV9qB6UZ7wWm2niU95y7JWJ6M9y1OBPulYINcnEYqxav8Za1o+WrCn6werzW60WgCDUWM8qe06+iPJ0Sl/GK/eUjHuVrjqfZqiYcmUFAiomMibYGakLwlMVcq+lGqEfXpbLve5YUFeIy8hXx8k9t91bttdrjVGGe5+Wz52yaHEnjuhD9dUMbTDtZTD3W62JyVeNmqEWmpVRLKVX1g9cOnhhMN+Ow7xin4geJtXXvO7g8i8gEx6lYE0VxZUTxxuBqzufidAS7p6JqJEo8dcVmEy+ZnyaIJsv6aQ5mDFa504VghFKtxBRRsc8FeGM6pQ/K5dnAxaB8461LHh86BhQtlrwwEtFs0G1QdKrUuxFG0+4Ii/HxQ9otjJW7urNhd+8uqqe3WsSvigXp5ti2TxfEHFeiRW7revdeTfuOeLmnnvWEXUfBnMa5ZMa5MmVlnAop9cRaqCUbyuFYQEG4m6zJYoyVPln68vJix+WDC5JOPHx4yeX5BUhkmjMpCjlPBJ2JTF5V1eZgnQtwzoWnOdTJkCkagigCosXKqYOJz8VkXaqXXH1jGnmbh5xN4l5Vrc1CNJRlu8dbX61tJKqlUIuV+pdoUvwhNZ6QIVYBYeiEhwfjch2zO4TgWkaVGF0TpUaWcLvxi4LrFrmz4m2DiENP5917ZTZ6fIqJPildrNZ5WpTTaWScZ09FRWKN3nPGG3/ONqJRIHQBDYE8F0IwMvE03vH8+bPPNq4bO/nZkfdn/+3V67Mcnc9DZMCqBC8uzrm6vOS73/0e0zTTDT1gHKzdfiDEztJ/aqn+aRoX1d2u6+i6RC2m4DyOxjnSmkkxMAwDXUycne1IUUwuynlH1gIEqgjdrkeGnmnqTGhxP3DY9+z2g7/nRCkvmOd5qaBcgiFPj7JJ/Wwdhnvn0vLfN/N6ts9/bSztgYvX8Orz38QX2szQ587Zm+d5dYS2Z+EPS/X8KNeX2kG5b4TdBsgrbaddg+BNcOSSd2UlI225JI24Bq87N69urpUL42hDzdQCM56jdGEwauWmnFFq4PzxtxD9Li9u7pi0MI+FohCqkHNljsbTDlpImtA5k8SiyN7lypM39craHARPcVXX0pgLsUsLCTFKWHzrUoqx+51HUrzFenKOyuRqvMH1VHTjEOJ8DMEOw3nONBl+k0PZLkr7HkMkBZYUFSLc3Y5oKQSNHIaEPgzIjR1sx0k55UoumAy8v94C1zv3IAYHT7W6OBueF9Yl+lZZkYZlPbhD2EfhsEtejWSQbvTP0RRZA5WU4HwfOd9HLvc9X3l4zvsPz7gcTFsmuxCWloKWShcTs4g1dCtiTdicuNyJQDK+UnNSclPBzVaJ1Zo6hqY4qWtZdWnIUEtrhejOoVVRqcRFX0dCIOw60vkezgdyL+5kdNZwjpnjnDmOVtZuVd+m0ltUyShZAyXYZ5wKJNT4LCI8vztRPviYQy/k8Y7zBFfDBd3OXMlOK4GZoLOJmbHqOsSUfE0Vg82rIUAttZo6S+kIlS7Gpe+PYGKMkqKRjavSOTKSc7aWAFVdG2SNJ9d0jjuhRK9ucsdDZCFkI4Zc1DkTa1g6CKfBUkC9Gon24XkHt5kZ0z2qtZJLZS72vKTVSpXV78d7wRDWyj+K2QnNZUldWI8vOE1Ha22hpoUzTjO3t3fkUlwnqFiLh5IpKsRo6ZEo1jBRUeac7XMG55/Vwovnz76wA/JFuSSfla75LNj/Vbv6JjudUuLq8tJScOXktqh6h21FsrnpLbW23w+klEhdR+oCucxcX1/z9PlLLi/Pef/9d7i4OONsv3MkQKxkvGRKnmna3xKg2+0onaFzpgyd0KqUrnOCdnNym56RcjyO1JKNC+bjX6vZ/vvjsFHk/oyx/zyE6tV0yas/b7kkWyf8TWm49rgfdv0wTsurj/1RnNg3XV9uB2WpNTdiK3jawNENEwsz7oaqR6N+CJjStP3NJq7VmYuDBC3C1aXTsfpzGhmpITUNWjYnpRkSiztrMUKulcsqVEHDnkLi/BB48FWDifOvfpe5VMYsnssUTiglWLfVmC3yrgH6ZH0lWv17lEAuLFEBYFUEIsyTVcaUbEq1KQbvxWORRqiVUoVYlZgifZcMIs/Zy7gFEeub0oTo2nJcFqZrXJRaqF63b+NoLQTUdUTaBgkouxghwRStBFA9z9mJct4JkUSKFT1W5mLza+XFa1l5VCMTNmNSvGmneI5g0ZoSwWu1DVavTlZUZRC4HCKH3vRsKoUgFjWb4p+RFHdJuTzf8/Bi4OF5z9V+x4PDwKFPHt0rZKvcKqqcpowEpc6VfeiI9eSOmBpB0mGTZuRyVct3h0AM7iyqOiHUEYTouWg/cA39ykvUJI5INENZEUiCHDq6h2fIeU8dArVVN1VlniZUiin5ToWCpU3yVKjqKB1CcNQuB2Eu1i/n7GyHlMzLu4mcIy+j8Pxm5Or8mq+9dWAfZkKo7GJBRCkkCNXbFxRHg9yxrNVFpuxzGRnVOpWjXlaKeMq1EFzuPHqgEXCSsCNrUnVdc74ExLkqTRUziqVAal0r/YLzUMSduwaINWc2uJqzCoSo7CRQUbImrk/mnJa5UCSQ50pJgdI4KeLIXwqOsuEEWkFLZR4Lp9PEOGXmbBF/FSF2idNppGhmroHbEebaG4dJWysLMd2g2dIRfbSD1F7dOFZ9Sk6YNyfw5ZMnVgpuO8gQSGkpAnEUsqLaULrPv34Y96BxQdo6XdxG1eV915S5sm0x8uDqirfeesw0z0YsV+tmfBonVJVzhf3OeHQp9aRk6eYgkOeJaZo4nTJDJwxdssqdFM3piAEtmXHKUKqhLsPO9GO0UIswZ1uY7SxIXq48KJzlwslFBhFBnj3nRbmmlLw4v+1sWB1lFsfazhNx4OPNzsM6trLYgzde0riWNpfiaIyIqxLDUgYPGPdpeXLTU2nTsp6pTYV5vc9tifMyY+0dFiTIXut1p/OLXl9uB8UXPNIqMfz7gqBAg8saZG4jVxej1SavMfZDkHXz+I/tuXYoNMIltH4asKZ3zEFp+UA74xQWI6hYl+JM4BrL0T/6itBH5fvf/5AffHrkdmRxgoofCrUqEaUm68kzlUKKClLph4E8zYROrK18KUYgjUbmymqRU3X9lla6Ok8zsQq5CjLP7Ha2aVtfGFWrDgrYuJrgm3vjPpyGRHj/HS0+3K25YiV7f51lUYdgRFStdNEqecbZuq0KJpTWR9sMpRR2yQjCsVhHXZt3m5fQ1kAthqKIEH2eLN1RXRXVniRi0lnF10GKsE+BfQqEaodziK4GrOrpBLg6G7jcBd59dMnVWcfVrmMIgT4aZyBXLEIGUBOcuz1NJA0cUs8ATONMyC7Ljt2XoSIFBBcPE6oWQwliYK6BmFYtDzCHuzrCgRtLY/AXNMjSO0j8sK4xEPYdsktoAqIf0KrWT6qag5AzHEczspbSDMQ+0TkJPWGCg0UrQQt9sFSXhEgWMaXYYvyNp8+ec3O942HqzMBrIYgS0wDFDpQlVafqQnxx4X50KVk6J3k1U3PUcNlx39GWunRj2EqhMXTAnJzoe8+r2XzMgmxKK0XuGVpVlqoeK6f3MmkqUiHGtKAtiDkyuy5QaqCUwu2UISYj3idLq+SYLWUQvZIot6jZdVGCULI5m7kpOiO+h1u5vR0fd1PmOMPTFyemKRMidBLI2Rz3fuiJYmmktt9zzoY+xWipHpcl6GIwZzGYdbNWHur9qNxBcUd6eyJ+Ub7Jm6L2JT0Ly0mp7eflYFztdOsPdH5xxte/9lWOR2viOOXsgpEu3liKp4pdIDBnqzhzJyuKcHboGLoAZYZSmOfJRN+6DumTCRKmSNcFqyJ0u78EZiKWWowJkUCukDWQpkw37Dm7vDLkEuE0T0z++lr8jNj0xlFVT/msJP6GNrdx3I7zZ6FLb/rZZ6wt7+UfLaOg3itl8Yc2TkRz6NfnbJ3T1Y5vH7+kl9pjliffe+qv6/pSOyiIl81V+45XAOARtD3GkRBtJDm7FFYHRNqC2HisrAZr8WtaisAnagk22muqLjwPQ/S2CI+ngZbNJ2QG7kJHCIn3vzXw4LAnya/yvScnbkZDDcoMmuxDdSIEjX4f1Q8SI/llGw4/JBpByyD0WatrhJgEfuvrM5dK1kweM6lLpK63/icCXQj0vZMJa1k2TEuFyYI0tTPEHTLfZIuz5uNQvaqmCeeBl2b7mKuLmcQQ6PtEyMpcxNrbJ+HmmC314I5Ae6+WStLFAbEeLKW2Te9nubFxbR1USAHO+sjZkKwSxY16wF7DSo6Fi0Pi8cXAW1d7Hp71XO0GhhCQWmkN5qpaOoysTHPheDoxTTPTXOk75XTKMM1eDmuRjHhaioJV5eCHv0cwKlaCHLzm2wxLXf6tmFNjVUtOxallea0gpuuTzYszPklNSOsR5bwHFZw4bciJpbXs9VoTOmjkaU97RaFrlsOh7VwrQZR9Bw/2wuUu0kcbZ3Wekerp3npppFUr9zUtkMZ3it5/JQSxHlt4+wR15czYkCXbAw4JLQdpU011hqLZCe8M3bhKLc273b9LtLlwWrZ7u9h4RyuZEzceopUkyn4I1uG5jIZS1QEwh7LkSgxNawnqXGzDYutnLoYUlmLpoewKyKUWptn+fjcVPnl2ywdPR55fmxK1OKrUiL8t5dqi3e3V9m5sOS+tC04cpAUgq51s5k0XA/jZ1xchRS4pn+ZNtt8vTkur+mvrY3Vkh9Tx6NFDLi8uGOdniAip6zgcjIu0G3YIwjSdOB2PVC3ejsBaCPTdQBcjXYC76+ckvHmnKnLY0/cX9F1vTjGVWvJyNqgbkhijzXdrkxJNB4mYkG4gDYW9CpdVrV1DKRxvj2RP+9ka8pF1eYBXS7stlrpfH3OPdrAZtSVlvXoZazbAg/eGTEvrcs/mHGwGkrbPZXntNbh/baZfmfd2Bui9v35eaupH4aF8uR2UzQdt3mEIwYxvCGhoHiu2IGgDpqxQ+CrmdC8X58p+C/Hu3ts26Mo2WkvrtFLhN/JVaEayLgtfFLIKL+oZgyTeerfyG/ORwvf43vPM7ZhgmqlzYap2agRViCBdYJ4LEJExEwhG8MLQlxAitcGS2hRGrUy0la+CME3ZcrkSlkO9FDPOCewA2NTfbwachnJUV3u1zxWtJLbJt3t4W9XQlLYJDOkKS2QZckZ8LmIXMWpBMflyUeaxogl0hoJzZqq2NicGTrpmijUSXNuLt41vXYqtp86hFy52iajV7iUKaCaKVWn0MfLoYs/jy54HZ4nH5x1nXWTnPJVK9dyziUdpBZ3VYP25WkdxFabbE/n6yM61T9rQhdCthriIKaMi3pnaiZMixmNw8uVCAsfvWczRiC5Y1/RgmspmUwNe94f1dpEUUY8q7SBVUlV2u8EIoVNeUThXSW4OBGpk6T4lIpZWmJwz00vlwb7y1UcHznshScEKztW6dZe8iOwBS3IhFxNVi+2A80PB0lxh0TlRdZXhpV27O6VOwm7/Fuyzmm6MOHpSV7RvQ4y1dLDfz0ZluNZWstzSksFVnAvzXEEqKSRCSKb1gzJ0wq6r3J5GqkRK7iipVdsZ2b5WY1NVXV8/O5/CQRCrdgvWpTlXKFqYc+HF3cSn1yc+fX7H7XEil9Wp12prJTgqM+bZRf1Wu9ccBONyKD/43vcYxxN96humsdi55pTo9peL/Xzz9dncho1zsjiQrz/2TeTKqqsjebY/cH5+xqdPnqGlevuMRIxeBaZWml3KTIqBPgX6Tui7RBDv7FwmjrcvrVHpbkfXddSSoJqApTqiUfJsVVQpEbyZpYghctajslIQaohINxCHPSEb12h3pjx87E5JfcLtze1rgaovste0ZV49urf8xjZ2Wz2URm8wR0oW9M2CAFlm1bqcq9Py2zvVewjKko67dxOvk17tvVtl6zbo32I36/1/9or54deX2kFpsuBWjSIIERFTcgwSvcW4bwqJyyYVsdLVdrVILGwk8kWbkwLbHaqCQaDtNZSl2+w2vVO1rOW+zTnx/NwrZoBahKfTQOne4fJ95d1p5qgfw8vKMUOebSFPQdDqcLJDxJIhhsKQElnV0RtrPJjESotTDJ5PtYql1KptMI0PRZwXwCI3LgIxpE1Um722vxltW4wlGxlwKe/NmeBw95oOq65A61LuCjH2SJgJwbRHplDBtTO0Kl1KHHY9MtrJXg+JlIWQlOOsjNlIsHUz5JsDkAAAjIpJREFUQ0vU75uzoV5tyA2+h11nzknS4uiEGZ4UrZJnCMJbl3u+8vYFV2c950NgCNC7U6Binau1Vpzmj2YY50KZqwm5aSCpUm+OpFMlSGTKs5WuSjCuQq3MeWY3DPTBe9yIkfrKNNIPHTWv0asd9CZy1vLCKUZzItXGMTfSnVdYiXQMXUdMnaMOreQ6IMn4SFKFEgPDbo3e4qKCWlfCM877CUKXEmglpcQ4jogEuqB8851LvvrWgV2sSC1oUCQk5jr7gSdESX5IF0MWoh0i7rGhryKTRoRBtXgA0kqKvSxb8LLjNQgw8rSTix3qbFICLSCx31UnlcblkGyHwUI4V+s+rqrgzRslusMYKoFIDLbfz3YdRSvjXBjHcY1ih4hOs+2RpqviFmBJQ7p1qKpMc7bKtJhQKrkqt2Ph1z58ykdPj9yNuA2rpBAdwfIWG94cUkSIGpb0M2AHspdSP3/xlLublwxnF1R1gvDWNvk8vBqcNZv5w65X0xJb5+RVAu1rh6BgnnxDoYGh77i4uLAmp5PxCKtWbyxpDUb7lBjOzxiGxGG/Yxg6UrR2FEE9xVqEMgtzUIJU5lG4u7Vy7xjj/WaOMRCwsvrs9r3ZsrmAhkDsB/ZnFxSE2A90gyEx0VWFhSdcX79YqiXdKN5DTupmrb3qyL06NlttFEtfNuz3/hz5oK8uw2uOhgfrr8zZ/VzD/b9t57G5KO2lRJvDsn3N+yjkG+f6c64vtYNiVTasYxQM2rZcfVigQ1gjiAZ9Bie6bZ2F9XX9Rf37Fi42TkYDynTJU9fiZbz+vXoZri1Id0yWCXR0zU9NoTLlwDPtyN3bdO/8Nt4ue2r9CB1fcFMha3RU1uCXmq1kV7JtsuqHLUFMGhtsdkuBKCSsR4hUZ+Cs5zauKMI4noy5ngzKJJszEyKoBKoLp5nTZzDiXMum/h6mafbxtpxrg81rvc9hsfysHyKhOBJiESbOd6m1LI7WkKzMda6Vu7G4qNc6XVsott1PIw+uG8sqds72nWuMGLJkzqMpUfYJ3r4c+Ma7lzw637EPnnd2Q110TUsh0VSAJ+sce3uamE6ZUpROAnGciUXpJBIkEFNH8ahFXaI/dD0jldN4dJss1kUYS+HEztI4pcKYC0kM7i7Vy8LtRCOKScIGYdWucWejFIvwa61QoEvJRPicFx5CgBqoHpFLTC74ZkG+lbMHh+Zn9kNPEitvH08n68ItlX0nfO2dKx4eejqpm2ou4xGhRhrXOpNSNAfPd1KrPA6xoUV1QYxaPx8Rcy6SCwra3CutqXYIdkBX10IRWQFtBUf7ipfmhsXIa7uLECwV5qhrqWV5H/fRzPG21WKOjhrBtWhZbE2XIsdT5vY4sdMz70RtZeu7YUCqOdeWsbpfqVGdTN8c+ZKtXH+cJm6PJ05z4TgVjqORiq25ZEZYP0+VJrKoSxpQdU3j0MxeLYynk+2fIFCDBVHNqV9w1w34v3E4tvf9wyD9LVl2myr+zMNKWcaz3UlKgcvzM87O9twdT5xOJ6acvex88KBK6PuevXc7Tr7PY7Dy7BSsZUDJE5OYvVnTL5W+760CKJngZa3KOBvKbOKRJpCpAjSdGiJ6iKSup5bM8e4GXKytZEONqxZevnhBztnH1ys+m5OyGc82ZtvKUtms2fa4lvpRLYi019uO2P3x083488r73ft3M6ibOX/13uyeX31+CwZ47T3exKH5IteX2kEJYoe7ec8W9cXkeWtYGNfNLdjm1bYTZamJbSzeIG3vTSMOB4vpZbT3tYeYKFYp8+qHVEcPalMC9A3uxLPtOmgKoCKWFnipO4b0VR597QG7/XeJ3S9TPnkKYyVnc0JGRyu6LhhKVEwJFC1LxFBUOc12wEuxHDa+SGI1giqOAjWYe86ZejxxOOyxwp2KBiWo5+obx0dXUvDWMJnMenHIvuly2BNULVKspZC63rgX5MWRs6jcn1+VWfPy2iHYuEdZxdIMQLLGhUYsXPfUdrO3Qw2UPgrnu84l4l1xFaVLVqLbx55OJt56cOCti55dKAzRxLoUS8Ogis51SenUWZlPhdvTyM00L4qSl0TiXBhCpE+gNbsCaiPCCVJNkK4ZqlZHhtphexwnE1wTSwPMpXK2G5AYlz47qsp0mhi6ZD2fSrFyy2ClkjlnmCZi7pC+87VqRE7xqMt4DoW708nKjIvcG8OKkosuB0AUBT+QS3Enkso+KGepkMT+lkvx3WmOqa0f2yRNYbPFd7VWUhJPV1hKpPHK1hQsNA776rCwjF97NWuw1jgZLK0d2u5efm6RYFW/L/E0j6VIS1mrEJpeCsGCnjpXapkpkeUxjTQfo9B1ken2SDk5SV0CXYtOBZLLBGhVa17Y1oREQlDr+JyLVa0E66lzfnbB2dkt8vQE3qMLaZLpgb7vmfNs4+A8tMK8OGu1qiEJMbIbduScmceTo4uGxqBOcnTej8IbuXbb69XDa+uMvOn37W/b573mrDQDTrsB28fnZ2c8uLrkyZNnjNOJkgu7w46hiy43UIhSlzFEXXAvrjo7iqXUFnmEjSNWVRnM26XOmeCp/im7XQtpWX9BAhIDXRfo+8rpdOJ4vDPHfbRqrJg6rq6umOeR0/Fo/acWlM8+3lbxejtur6ENPjeNpqC0itI2B+vzam1o/X3nspFgm7PyWVjGmxzO7X2tiSlZ/SC5/9zt9WqK74teX2oHpeuUrlP6DuYOhkHoOiF1SoiFbYgtnpZo31/VRrBxc3KZ+lMtZEakebAszkbwpm3mlRQE7wWEqUAa0lA9teJzJ2s8Yv8VlEBpeYlqAm8jHYVzzt76Ft+6OOP8B/+Uj773A548fbn0vlHENCOkELWSopXcdqJIza6DYqXDM44sFPEqCT+YskfqRPKUKWM1MqZEsgb2vemcmMS7fR6z0avBVt2K21mFQHE9mK6zBmutQ62JsmEbP8QFao7BGnh1RShdcL5C9Q1oiFUMQheFPsK+CwRX0q1eTtwiTmsrzxIytIMrBbjYJfa91SNHd07QimgmCgwh8vhiz+W+Z4jCEJQUzBkt1TdlUaTYa9fista5emdbNSdyKlADl11PooI64S4YqmNcCEE0Ms3WQn5LLgZMMVaE6nlvEWHXRUIUE4OqlZotp3yaijW8TIGYeuZqzt1pHBkudjY+tUIxPkg39O5wGudlmgtzFo7HkVZGr7oxJLbgbSvVimhF1Zw2dUSpp/K1x3seXwx0gWWNa1UjXrpRN2ivoWMtmjaUD7WS0Pb76Lo+1RG7uKRxdIkeQzQOzdI0jRUp2JKxm/W8F5gEdwlVmWfrdixeMSduC5qtDa7Q3EpFW5PDLM5nwVALESGJsBsSXQpMcyamRC6ZlJIhJxJsnYgpDVOM6F/EHO627kutlJyZPM0Xg3DY7+hThwSrEAnR+EQ5mzPYkJOcM9EbKQ59Z/vJXxOxvlzEyjgeN0HTds51cRAaH6XJrX9WRN3G99WD6NXn3Of7vfkxK9qsy/1IgGFIXF5esNt17PoOGXrODwP7IZnz4WTtVnaeYqvQxFHdujpfxcZinGZL3VRlKoVuznTdQIwdaRi8GzogQhfwKh5Ps2LcMVXleHPNJ598zPPnz3n+9BnjOJowHpggXNdxpKUhV/7IZzkJ23HZjCZrtN2oA22Y3sBz8T9Jm6dXX+8V1KNxwD7rpmyZNOPanJPNvL3ifyzzrG/43Re4vtQOyltvXXL1YMfF5cB4PNKlnsePH/Pg4Rl936NeChicOLSQjMAXVxvUzYxsIlzr09P0RhxmDiviUKu6XkiglrDIxKPqVQu0cN7fxur31wn1yEYnVHoPBaN1ACahITKcD3zr8oJ3Hj/mn/zqP+GTT55wOlqPiKvzxIND4mKInPXW40Zi5Pbm1jovh8hpnDiOfo9eSTMVy5GjZtAo2bgo4tUdx4kixn6PfnBo9ThD7fDcOnfNcLVcamsPYAqaLdKz8S61oCUDeS2xq5Zq6VJy1VIbbyNJ2pqPmAJmEkM1AkoWYVbbpNnLMGtzSnwPBBESyvkuse8glMnmT5WmcBuYudgl3n848PaDAwd3rJY0gJgfWoui2dJ5U60IEWIwETk10by+KjErD/uOPUqRQknexFHVtXkMmg8V+tZDR1vEZBoyJhZWl5rqRhakGuHUoh+TSN8dOkQC4zwTAotablFlKplOBudkydJ7CB+rBlvnUrm9G11szqX41VKaRtQUR0/M2BdPj4VoXXzPIrz3cMeDQ0dgomql5IlarcpC1dIrsel+eP297SdL68Ro3JwYmligTf5SYRKCR5t1iRCrOy7StpmYg+U4h68FQ1QMudG1U3StGIF2bfEgMRAkLQdDLl5mBeu6dm6LxS8tTbXYefDS/F2fGI/FHBDfH80011qtqWA7FLyUtVXmRW8EWbUiGkgxkec7pFp6QsSqn4rzciS58CK21mJwF3HZD7aeLXVhYoBpWEuq33x5lOal8G9yPH7Y9SaI/1WWg61l/YxDca1UETG08/L8wMXFOcdxRIBdH4nB/m4tCkysrpVJi9vzgs8fns7DStDLODHOhW6upCkT4kTqRlI3sJsLXd+Tuo6+64hdMnTOiwDm6cTx7o7j3R0/+MEP+PCjD7m9vWOaJnKt9NF6VInc5znZF7zRoXgVvdg6FRsUo42PP9gLg+6/3uL4+essHBifB21Bmgiv69000u06F+BcuLq9D938/MYp/HVfP5KD8qf+1J/iT//pP33vd9/+9rf5B//gHwBwOp34j/6j/4i/8lf+CuM48gf/4B/kL/7Fv8i77767PP673/0uP/VTP8Xf+Bt/g/Pzc/7YH/tj/PRP//SiAvijXD/2Y1+n6yN5NkGcGCJ96um6Huuf0RwTaMhIixbu13c74WcZ4PVvpjS7kls99loeatGccyeWzVRRV2sIrzy+mU7zW7xCoFr0liXifH/Lm/qTIpn4zd/E+9/6jXz8K7/I7cff5bKHi33ibG8kSIvKZ1QLvDNQq3VDvjtlnry44dnLO8ainOaR42jVASEkyM3oerO9qVI4USTSdcnIh36gCOYkAKTUUUv2qLIuzonWFnkKp9NETNUPxbCMQ3YdCCOGOSylFvFYqicuOirDMFgPkrEwlxmphS5YeiSmYGhGNHSrVIwo3GYxJPZDT6+ZXVKiFmKw9ynFKxqkcr5LvPf4wPsPex5f7dlFk1I3IqwhU7ViZNJSmcvMWK2CKpAo4gdtKeyrcJ56Dikwy4juAqHfGQJRjVcxV6VkkKJo9lJR97BEBSlCRJBqJdOigSyVAnQhUrzsO1qHJtdQaSCHLDBwv+vZne2Q6N2qU4DO9kQpBSTRundLiMzVxN1a6gFHPWIwh6Xk6hotVhUTUkKoBCoPzyPvPtgzRDsQiqtrooE8W0fn4LbR0BHvayXWQLIdqFZFrYtBDR4QoMX1PMKiAF2dX6VYFZr6YRRbesBRjq3RXl7bd3StKxIoMSDE1bjjaEbOjkCu3JEGsldXAl6q/aRFqnC27xizHZQGrtYlfdU8KkNtGjQr5JqXMuNSTL106HvKVI17NI/EAH2XmAnkKXt1luucqI37MHSoWoqvKQ03JGmejYzdiTAMQwuCfc5l5W61UfoRnZLP4jiso44hIsswKOLIlHiaTFWdGucl3W55QxDOz894/OgBd8c7Ss7EUD0Nb+s1NeTcUeSFVO6HcHEH1pzwRiaPxLkSU0ZCInWZvq8mc9B1RLxCNARKztxe33B7fcvd3Q3Pnj7h9vqaFy9fcH1z43wVBYkUb4+SayGX+V5aHFxM8Q1juzgytSKeomxo8IL0b4Lu1VGQzRpfHVQb8nUP2NZYwszN3JiNXon4670qsiDVn+WsboPDdbpXWsOPev3IXsFv+22/jb/21/7a+gIbx+I//A//Q/77//6/57/+r/9rrq6u+Pf//X+ff/vf/rf5m3/zbwJmtP7Nf/Pf5L333uNv/a2/xQcffMC/8+/8O3Rdx3/+n//nP/LNv/PO2+z3u2XihLUsEFgMFLTB3EKIvhll4zxsnIh2vb7JmvG8/5uFEIuft8st3I9QVm/W3BhL8vi9EahiUZA1TXPuw3xkfPoD9vvE/uGAdlfsw0zqWk6x2gZfqoZsXxcVehH23YG3rgbmCk+f3/D05cSTa+soO2ugkrz6xaqAbmsh95EhR8IMQ2dRZwrJkQJbOFmEQvAGa5YGsQ7MdmwVrZTZ+suE4IZOnAVfLWqtWH7eolwhOcRoh6QZ7hhMcK7UTHFhuUglRGWuwpijR/nQ7fdcvPUOj9//Kr/p27+Fy93AX/2//l/IpxuMSBgo2ZrH9VF5eJb42jtnvHU1cHXoLX2k6toiZhyNJO1ICXag19ki4Io5RjVDnQr7pOx6iHsIfQ8pEPuOXKxjdVGLPkTtMwXv9URW5qmQp0o+znQaSRliEYYYiSTLgavJmAMEifQbVqxpwbQKrUoYIjIEpBe0A225fFgc+BRMbOo4jZzmSs6Cmt486vLriCcjk7UqCH6YKkrQwqO98O33Drz/YAeYojDO0RIwIyuRkCJaZgitEyvm6EQjvoqT0eNCLHGHTY0EHDbb2rJOG0K4iwRu97PtPSd+Nm4JcTELBtPXBQJH75Pq0UrQShN6C+BBj1ra03duS5uor+F2nHZSuRwCx9zQReseGkIyTg52AMXoe6UEShXmWbk9jdZBOnXGYaEQ+oR6pVaZzX6gJmMvzgoIAYJCF3tyzsaRAydat2g6gERCv2d3uPDqixUJMl6coc+yHY9Xrs8juX4Wcda3N2tpbDt4LRfuxYQ+98ts0FzCEMxhe3h1ybMnTxhHherp+2ViMcRuM8cSzNlsgne1qPX6IvhRoEjOyFwJqTIghDgzzTPxNBp6WhT0lrubG559+ilPP/mE0+nINJ2Y5tnUZMsqqtecuwrkOTNP2dUuGooituYXh9D5AJvPrC1gUEtdhto6fpuX3KQV1rW7OcxU17Gr5mAsv6aYIyoNJbN5X5yUNwFr2twpTz+/Ye4DRhxfF8J2Pdgj1lLnH379yA5KSon33nvvtd+/ePGCv/SX/hL/5X/5X/Kv/Wv/GgB/+S//ZX7rb/2t/NzP/Rw/+ZM/yf/4P/6P/OIv/iJ/7a/9Nd59913+pX/pX+LP/Jk/w3/yn/wn/Kk/9afo+/5HupfLq0vODoeleqcJIdkkFIe6102iaoZl6zmu+Wh3cBoi0gykGHrQILlGhFuMmkdM6uW9Nnlh4+2293l9o5rn7g6KKxDaInDXRUHGI9dPfsAn/+DnkOtPuOSW/TDRBa+IEYPPA/Z+raeO9SGxnimhgyF1TFXpwzkXh8rF+cSz64knt5m7EijSEfs95w8f8vCtt3nr3Xe5Oj/n+OJTjk++D+M1iZF919lBo8Wrldb3q6WuOh5i/IDJdVwkWjMzy60bx6RUD3SlmiiZj00QI80WMUOWoqUiUhD2faIQqNWIoLko/VwoKgyHPV/5Db+Zf/E7/yrf+Vf/Dxz2e/7P/6c/z3y6sW62HnkHUc73icfnVq3z3lt7dlHpYyJJcN7LhsIEznOpTIuIlqWs8jwzz5lSMhIq/RA4v9qRkkKHHe5R0CKLgJ5gmh8NXpeCyZ53kbCLhD5QZmW6M+RhpJCQtVO0ozqCoSe48VI3NiFFMsWaofUdOVmH7Rg6YxunphVkvII6F8aSrV2CGytxkq1qNORHq6nOAlQjDEuoHILy/tWOb717xcUQES1W0VIK1r/EUiSmd2LqvDFYtRGLQ9LeyxGFhkI44mSOZTPX9rfoxMcurvL4jbeyRJ9YqqTUxglbN+2676Pv21UvBNqerkv6sd1nVfW0jz1lScP7nm7oHZi57xLMmpbUp9N2/cBsB7Q9vtTKNLceM8ZHmeeZrIFZDXnTkMjVhi6lwLyyFU15eThQS2bOs8sCWLpsnGb7bP5Vsb4++/3ZOha+2BV/XEN+Puf6vIqQz+IatHNxiyqvr4enk2X9tS5hIQB913Fxdsb5YU+eR1TafKodxM1WY7wgVKBYv7IKZqMcDShNK0g8KIlKcpRknozfdLo7eQAsnI43vHj2jNPNNdPpaPcVrOqq+PtWP4hDiJa2rJVpnI0npHpvzj20WIKANX7eBLv3wtzmrLEEubTAyf/XeobaGbKeQWt6Zx2fxsdZybNrluC1eWOdh+YM6SuezGvPUjbPWMLn1177s64f2UH5pV/6Jb7yla+w2+34zne+w0//9E/zjW98g7/zd/4O8zzz+3//718e+1t+y2/hG9/4Bj/7sz/LT/7kT/KzP/uz/I7f8TvupXz+4B/8g/zUT/0Uv/ALv8Dv+l2/643vOY4j4zgu/3758iUAZ2cHzs/OnKWdSKnzPB9rJc0md6eqa6khLHlZy83GBTqePWUkvlHVuSj6ysBuy76WTsZOeNN51R6QEMwIv6JambFItRdBYqISTeXSocnp+hnf/d/+Ni9+9e+wv/2A807pdKQP6lG9QX8WIdi0l6l41Y2lCaZqXWFjCCRg1yVSEg6HjrcenPHWMTP3D3jw9W8zvPVV3v7at3j01tt0XUJVGG+e82u/8Pf44Jd+gfn2GUMQCEqerRlWJRq/pTaZf1Mc1SWv6Y3KcqbZHFVDd5TGAzHSbWlGTauVJZdK1tbI0OD+wSPIGuxI6VOyckFVimZymXlwdcXNs2f8zH/z3/D3/5e/ZT67H3BBCg8ven7D+4/4yiNTh+2jlyFiEXlqa6hkFKvyyDkzz8qYTTQLLGVRqxKjUiQzHCLnFwPd4KVTXnJS1R8f1u1rPAjcuajEJNZjJ5uBDETqeUedrZpjzgVpghm5WhkzgWy5JyKmWxJR+hjIAhrd5Ei0gz5ZpU/FVFWDE/8qQs4uKNYQGZ/Dks2xS8EJnhi3SUSRkjkbhG+9d86DiwGRujgdqmrUhejl8B7V0rDOYNoNotWcmRjcAbDHtAPOys4bj8nGS9XI36ueyesHpfE6zCAGsdJb9cCj2QPjebQkbHCbwPL+7XWtFNlTMbUsdsFI2qbW3CLdVlah1bg8cxY0BC/TN6TPSriTpSX985RqZOWSTTMnJUNLxtPMzSlzfZz54NNbnj6/pVRTHU4xMIQeVWUcrdpnnvNSAFDU5jOkCPNsiAo40mNI0lp23BxT8bn3/bmGYm+83oSgfJ5z8sOuRqD9vNcQEfb7PQ8ePOB4PDLNp8WRtP1qq6yIVy6V7IiuIxIArSy3AlTXzLPePOpBx3RrFTlTsQaOtRTm8UieTq4ejAVr1TRSSt4iPi1lHZhPI7e3t95Q9VWcw+/HhRAXkir2GVZUpaG36gjdgmXQijNaIN04Pavj3BxjXQ3wOlvLHbd3bN8XJ6aN69bVaE6grgE5sPT2Wd9BNp/1vqP5Ra4fyUH5iZ/4Cf6L/+K/4Nvf/jYffPABf/pP/2l+3+/7ffz8z/88H374IX3f8+DBg3vPeffdd/nwww8B+PDDD+85J+3v7W+fdf30T//0a9wXgGnMjGm2PHks/mWHi0FaLa+5pnJa3Xu7YutRoW7IPNe95uCbAqRDoE38CQfDvGLBoBSH0KpJf9cmDOWLrin7teiueoQiYmBxi4ClZuab53z0D/8eP/j5v8kjfc5VykTTUDXOQTW9l6bHQKgLR0CCEWI1KIMY2a7UTHLlW4kCWghRiftI3iXeenTg0Y99lQfvf439+UNbfEGol+cwT4ynkU+/+4/I9YaihYo5D0cXTNNSLBJ1D705LK3UtBR17oQR9WIK3j1ZFwfPIj71VIAhRNYZ1hZ1MqKC9dtRI8XNtVJCpWogdR1D3/Hs4w/4q//3/5YP/smvouOdlYfHCLWw7wJfe/uCb757weOzyBAFqut8tIg+mp5GbhvRD58pF46nyYinMdKFFg8XhkG4OBvY7QIasjlFztBfiJUiS4RntsIRvmAqj11zeJNXkiSQDkzfJFoeXAJlykhVQg1QrOS15IrmSh8M6SmixD5Q+0DaD4Shp7YD3flXjT+Vi/Ly5uiN14RWwisqrjFiaS+qO1KegtwFeO/BwPuPdvTJUiFaC5pdpyZEkkeGMVgljDR0s3h6MzjPS9QIx7OV9vfJ0ol5ng1tcpJxFZy7Evy5tufXSjKxteNmvJTm8PgWXc7bhpJ6SXzrS4Mu9iKkRIi+Pgse7CjJYWpRjEQe4mJfFp5LtbRgVWWcZ0Q6pFiUriiihdi5JdG6CMF1qTNHKATmcaZq4G4qfPjkmg8/ueaDj54wTlAlMY4T/a5jGkdHgYQpT8QuIsG4Xn03rAejWho2djYQw9BbM0ZvA9GCMbYR++c4Gl+Ej/J5z33VAfm8lNH2MSLCMPRcXl7y/MUz8vVo/b5gcTpELE1RHDkx07z2Y2rIt0hrTBlc6NFIzdM0czyNHI8jo6duqJau7iJEKnjfsloDuYgXIbTPVBeHfRpP3N3dGR+opWPbgd4O/eVzb9yXppDcviwhvqA5y1jW9TWaU7GCJet46ua/7afFEZH1t/fRLfvdVutKl1vczJ8stPT1dVoW4NfprMKP6KD8oT/0h5aff+fv/J38xE/8BN/85jf5r/6r/4r9fv/rvokfdv2JP/En+ON//I8v/3758iVf//rXef7sOdNpWhbtAt2KuiHUZYO9qbSt/T448xswtGSTF1y8Q20M8WbcHS01Vp9vDnXtE11KEpf3aE3oYFlE1SOWKVQkJFQi1MzNJ9/jg3/wd7j9tV/ksj7lwU7WiQoJVVfOXHKvdoBmNT2YlCI5V885w9BFJpdlt1gRRCJzcAcq3/Dx//b/5sn3/ynv/sbfzte+/S+ye/AuMuyoCpeP3ubdr32T62cfM70cOWY7HCuQi/XIsZRStfK+FoUCMXbmzPjjRAwS6brgRjQDbdy8VwgWIZpio3i6wdI+QZR+GBj6yOW+559++JSxRrruHGLi2Scf87f+p5/h1777faQUdn0ESYRa2XeB9x7u+eY7D3l41rFPleC8DRNS88oR9cgyRGZ3nnKpzLkwzjNzqQxdT9dZz54qhS517HeBFCspGALRGrhJUGJsUb2b/7qai1bpJyKIIwal8YmSrZkQLWoPYMRQz2XHkJBsDmIpqz5BKZUShLgPpF2kNoSmRcXqPJBgLSGOp2wqtERb836wh6XzrneOFjNCAeVin/jWuw95dIhErLS9zMVSM1iXbRqkHdwcupEzjo+sB4N4ZYt3MbZP56JyAB4dhmh7khYpespiQVtgHWO/LLhYu0I3I7ytqIC1jNaCGF20VFSdeK2NS+KBT2icoobyOL8Ic6CIyQ67nE32QPAeSX4wqY1pqxw0VCMs3DQU5qKcsnA3wdPrI3MVYteRZ2ttcHNzbdylrAzDQApCiIm5ZKZs8gNNcyPGRNXZ5qFaevBeccKaX4CW5tmcXp+FarxagfJFHY01pXcf/Vqrfbye32bRfhaTPAhRODvfc35+xu3tS2YKTaxOFePyVJOjz+1eFu0I9c7uhjQHUUSz8f4cgil5JE8nptOJu+Pokg2BQbzCT8yWtcquXAQVU962Sqq4dkk+3jGPJ2o1VWxtSMY9LMUsZkP4tuO8HZ91zQKvpG+W6XvjiNflL+u7hmXOGyeIRY1pO6ftSY7mbH0pv6/mmAhhOXfFldy3qE6958T88Oufqcz4wYMH/Obf/Jv55V/+Zf71f/1fZ5omnj9/fg9F+eijjxbOynvvvcf/+r/+r/de46OPPlr+9lnXMAwMw/Da7483N04y2gCRsgWV1us+FNwcGRaIaoG12G5SbKBpLyybuWvvqMtj1J+3Mg3W71vosl3NyZmYIXQokdP1p/zy3/4b6Mf/iLe45WqPVa34a0m0SDbF4BtLXbBMDc6tjcPhSqNNlbRa9BnV2KRdiKgayS/UiVhHpuff5eOff8GzD/4pj7/+bR5+/Texe/DYyp0fPKK/eovbl88op5P1sBHIeSJXcYPu4+ucglYCGRFiNRh7LplcJ3ItpGDld8WF1rzTnbWZVyPbZmfN9X1CS2HXJc73A1dnA+9cDkBg/PCWowZuXt5yvP3EaqiqOpkzEKQyhMLX37rim+9d8s7lwKEzJ08qJCc7qlgJ4oKWeWBZcmaaZk/fKSkmtFaSRA59oIZAitaFWcRQBDugff6DuPFpDH5ZeghZZOdrpVr+uGk5EC1PjpghNRKsEtPa0VhCMX0VMJVghSoBwZo/aheYyCQjnBiiU4xjk4Z+ISXeuhFWT6+JS58X14AxW2hdmCORGOB81/Ng37OL3iXanx9EaIyitsa1KLnMpGjVYbYLqwFIgnO4Cl1KdNFk/8WDgmZ8m65H4xtY/rt15A2LA9IcDRBydoTEUQ5gqbhrFRXb3ibLYSD+eXzdipjTXF05WYKVbeNpg/Y4K2FtXZTVOGJ+kDUOFFj/IFAXhGuKoYYgqkKeZ2q1Pk/jrDy9vuP6OFMlmSNalZQ8FVSF5NL2EsXLXwt5royhtbYwZzC5NgvbNIo7XuvBKM2Q0mCn1Xe5b1vvpdQ2dvbV8dxer6blXv19QzY2JnjzszvsITAMAxcXFzx//tRQoqqW/qrGr5lLNa6J7T5CVe+vEz3YAepMLrMJVzqaIGLIWJcifZcYJ+uebJWO5piIpw+rqtk/9TJ0tZMkOgFdp5l5OqFlJkijzmpra2WfrXEeHVFsnzOE+0G1yHZMVwLzArj42L3iPyyfa/2tf1W1zu40VCasvLtlj9mj6zLPvPJ9ff6991TWs7TdP7KosH/R65/JQbm5ueFXfuVX+KN/9I/ye37P76HrOv76X//r/OE//IcB+If/8B/y3e9+l+985zsAfOc73+HP/tk/y8cff8w777wDwM/8zM9weXnJj//4j//I7//06ROOx1tWKeywTJo0+cO2Gfw/obGfJWx+HzbM47YAWm7WNQ/cOVkH/c1Rxb0JEwfjZLP57EGAF88FIZGpWO+gF7/2j8mf/BoP8g3nQ6XTQFBIwfzPKEJMQvKaEiN7BayG3cTiVK1suGqlS8Jcqqm0em62i4FcTACtCJRoSqWxFo7jM+5+cMvdJx/w8Xd/iQdf/008+sZvhG7g8t2vM5+O3H78Pca7l4hOXhJpUWrXdagIk0nGmhiUmHFcvHZxbkmemUNdGsGBHyye1qlYNUkM1um2c2JuH4VdnxhSYEjC2w/O+e6H17x4+ZygJuaWMe0NO4gKQy88Puz42jvnfOOdc3apkpLn4YMaAVWEOXurAte+qc4HCpvDL8bgB1Ol7yIpVIjQdxDDWkK47Rzb1HLxXiBt9WzJiWYIXHU4NMfFyMNtDW2WqIkBKojYmjCZdjPspRZTzgwVS2FEW7dVlygyNU0GYK6VMatxJTIrSdGdKgnR/PDmwqsZ355C0hmR3g77DWKo7qgb2dh7QbFxIKo1mQyth0BDMqQJ+1VSG3dwbQ+b14aerGRYe06KYZPClaVEuTmcK0r6etS+8MV8LEUrtaVqvSy1eJNC9cOIaqRYEUMkRANI8Co1pSCMJVI0Wv8lxOXzzVnJZXKn1ORok7eYyLmiQTjlidM4c3sceXF95PrmjirmlBsvrqnmtvEwInqplWmyexCMCBqDNRcNMRpXJReGYecl6uakaamLZsjyQX8IEtKuz0NWPs9JedPvGwrSKnt0CSLb/Vjw0XcDZ2fnHA7n3N2dmEshK0zZWguUupbxWuBkZfopmHNcy0zNk9nL2BPFt0iIDL2lw+ec6UYTamsq4s3CV7yBpLKQbhUWVewUYKwTQmEYEl3vRRhuDW14LDhbG6v6mUJzqlnOsPuDy2tQibpkwMpz2Th67b7VbUtV1BsI2pQbqtMQye0b2f1s3Z7Nz/duzSpKF2dy8Zza2VfZVoZ9ketHclD+4//4P+bf+rf+Lb75zW/ygx/8gP/0P/1PiTHyR/7IH+Hq6op/99/9d/njf/yP8+jRIy4vL/kP/oP/gO985zv85E/+JAB/4A/8AX78x3+cP/pH/yh/7s/9OT788EP+5J/8k/x7/96/90aE5Iddv/i//UOGvqO1F7eNZodN+67raNmkR5codoejOR8ifnSoR7F4GWHwnHyLCMVX4cZAbh0QWOaa1a9kg9iwIi6Gc1tTuRDQ+Uj54Je5zNdchJnUnKNSkWpNzVJtyoV2GJai4IeYVQCZummK3cJ9SF62Ke176+yZAuNUmBX7/BXmMpG0UueJ8XtP+e5Hv8pH3/0W5+9+i253zqN3vkqKPS+ffMjxxcdURmJ0LsM8W+mx80m0bsq728JukLl3QM4ufhdDBIlLu/lGBIsuNd/FQAwd5/uBFG0op1IRCo/OAl1I1Ljje5+84E6tTNJk0zND1/PNr73NO4/29LHQx6a4CaBWvqy6NHykQfgipBCYpZg6pUCKFqHVkrm7eUncRQ5DsLQORmkzjod9gtZZWMXKYoM7BW6B3Q9uC8MciPYn0yfxL4TW0LFFYO0+VW19qLCo7gYRtGZ3TAK1CHgzzYr3fMlm0OdqarStyqSt2qAQEeZimi9alCjWabcLM/sOdkuPP10OOuNIFVYSdCOU23gbx8uqsizNhCGBG8djqThhrezBD65aqjtaFoSYwa2+tupShm0cJ0MUlAxiN6soISRitD411mHYD3tvE9EaUbbin6VCyg+6gvEbmg3BDzbFEMA5ZzIdd1kY50CXIBYT1ptLoc6zqcuGQOoCRQsxdqDKOM3MFeYCt2Pmw4+fchyzITNq5comX6+L/pPltQyFmudM35vgXJ5nL2NWj4RtXXddx/n52YIyllp9rTbjJcvn+uLHSTOhn/2Mz3NM2nPXnzeP3ZyLZneNrH3Yn3F2uORJeMGUM3OFydOdFhi5DYxCn4Qg1dsAWDPLIFaZOnQNzXWUxXlN8zwzTRHr1WW2PiCIJKoa+pvrJu3nFYi2By1A2O06UnfuvtWKlphz0vgijghukId1HFg+fONG3nvsxrHR2t6jLjZiOy/br4VXorq0hRGf+8UFaaKIVZb71w0io8LyGeyZb7gv3/fN+a1fHED50RyU733ve/yRP/JHePLkCW+//Ta/9/f+Xn7u536Ot99+G4A//+f/PCEE/vAf/sP3hNraFWPkv/vv/jt+6qd+iu985zucnZ3xx/7YH+M/+8/+sx/lNpbrV37ln4JYKV5xhvoC84pDeG7EpE2Aw2ahCbWJe+qyJR65pydhVY0M0QWVlMZbESeXreiILk6lffnruUPSHJoQGopjTovl3AvD9Jx3yhPe7e+cgKmoNa2x99RoZMhgnjtBKRQTIPOoLsZgFS+qLi4EWipdCCiWEw0iSDRWewhK1DY2AY3WcjyXyfre5MLpw1/iyac/oPZnlHigxJ6aetL+AqFAPhFFHE1xLQNtQnkr5yEGMbKhOw+lVkvh1ECJViFi1QxmVPou0nUdF4c9+yGRxKTnXYyUMVdSinzt3SumuXIzFp4+r8xZmCqU2QDePgZ2Q+/wrhkr8/Vt7itWtWU8OM/Xe+WVYtF71yUrkVaFUpFqMVRyIuUiMFWNUNnQPKnVHVbx8YCG7VpU5xGPG50W8QVthzatLMGjN2Xj6S4poFJb/xonYmoxvQ1sLo270YjYkIFCZdLANBcXrXLTJKtiq9tRqmZ3fhKiSh+UR5c95weT37cUggm4WQ8GJYmluWrJUIznJShEWdaGKXv6+aOtWou19Dd4esv3V6uSC67kDMEh95WM3BCURvi1g1lBV4TLRNN8zwbX4EAXYrtijQ5LtXg3hWjdvR2JacRu85jsYLeKD+uZVCWSa+CUoUhnK60YWXjKxR1Zm9+5zpRa6DqDyU65MlWYq/D8+o7ruyMvXt6y1amwlF9dAix8HacuIJ4GSimhvXWbnucJJNAPcWkj8fz5c46nE/vdwQ+W5nC94pRsDkC470wsD/kCSMtnoSxfhET5Kkrd5jmljrOzM7puRy53JgNQrfWBqCEtKQp9jKSglDxR8rwIQi5IYoXo/XxaeXDrD9V3kVrTslaj94eqrYGrtn3pFFbBhQeNEzgMiX5RafXRXZ7DovdyL43iNkLdmfGdszgo7fy/xz1xv8e6FDTu0fo+jZyv6PK81vz1TZkB2l/c6WmVXc2hae+55XFp3dT6LPfV8FgPTjdFKj/s+pEclL/yV/7K5/59t9vxF/7CX+Av/IW/8JmP+eY3v8n/8D/8Dz/K237mlUvidDpxc3PLNI2bxe6oBm0DrAu8CYKtC371Gu1aXfXmiMSY6Lqeru9IyQ7NvneC2bLedIGJtz0r1pyuIzhYSZqEQEJIEqkh0dWJbhq5SBN9zIgYghODuiNiRj3PZuQIRpBNnUCZ0Vqta26IUAopmLBUi4wMGFgPAwhQK7vU2YaulUkzRKgiJBJVhE4DsYyMt3dMt59SNDCHgWPt2O0OXFw9QqZryjxxHCemXNExb6A8741SLN1Tg0UviDPe1cTdrLwy0A87Yn+whmZ94mw/cLHvSVKQatUxSYyYaNSDyvlZzzSOSAhcnSXmO6ij9+LwcPfTT59ykAvO0hmpj9aMzQ1yKaaUOufCPFnVyND37px6ikIsgmoVX1oKu92OrouEYETfpjKZZ0uxmZBeWEpPtxwEcORDgpOy8VlphLJ2FPljqysaaxPCEx9DdYjYNU00u9NTKWWyMZZEqskanWkTWlvugtvbOy+dFgd/DI0DIUlApVC9Csrw7EqfhPfeecjZoSOIUjwgKNmitxQDfZ+gesVOQ0b8XZe0j67pMBFTPjWybCV41UWxEhpTDG7uvwcPzYDX6paZ1w+zZkSr1Ht/V+eUNFJuq2pa0gyN8I7Q9YEu2iElLkOPWg+fpm+Ra2WuUAhkhLtZOc6CdMHIs6WQgkX13UawTVWRmAzFy5WswmnOvLwbuRsLxIE47GDOhOrcGSfjmj/ppPJsVSbmwHhPnpLZ7Xeglvo7nkZyrsQucXN9zQ++/32+eX5lWj0tQt4cbhaNr2ulIdWrzbzvmOi9x/KKHWQZ/y0q0B7XXmAb5d9/7dcfn1LicHbJbn+GynNTa/X1gSgpBroYiaJozdQ8m7JxDNa1HZOxKCVziGf0fUd05FRjpE+JLkVyNtJt8OaDWo0HVurKXFzTkQIUcp7Qmi2wWM4fD2ppKVpZxvT+5zWnc3FQGnrY5sDHIDgq8TpqoVQ10r8qtFJk/PHNWWlk7Ff5Ivh7tR1baZyv7RywvH4LsmTzu/YYXR6vHmRs1YI+//pS9+I5HC6sl0i4tcjWoy5ZqhUAtWJcQzCCpTLEDw5HkTc+xIKuNPQkpY5+2LHbH9jtdvRDxzDs2A3WnyHcmxQvO3WmU5RgfkCwDSNArAJSqcHFpoiE0FGunxDGH7BnJjITUyAwE0vCfHFFguXsheJy3pWuS4w5Y4vO4W+1iD4E07cwLQnTjYhBkdgcKLX29rVCNhVX9T4gWRRxoaiIpzDUSKS9FvZE6nhk119y9fAKVJnmzLMXz7mLI3NxPRlMKEtC2nAUPJqIAVVjtqeu4/zR21w8eodH734NVWW6u+F83zMwc/PkA+p0QxIlYuWuMQQgU4tVNJRaSAIXfSRoYbjYUar1p7m7veP2EBnPe/pgGga1KnOxHkS5VKYpM46TGbRk1FmtiubCOE5cn2bGcSJROPTCkKAL1fV+bf0VrRQphjS0dM5SVeJIi6+R1iJhQfO2l8Ptlre187kWQwXqgrjYOVnb2hNLLGm1KhvUU2WavBuxEZM1KJVIUCPDljkTRemCGJkVJaQOzcYDKapoaETADJjRv7y4QBiNFCwbQ12h662CpeRs6Qht6SdDlkxBtTOd16VCx6L7kt35FEid8VVMaM6cxloyOSvSdb6PnSQumBOMOXQSVvK6OXC275M7nhaxBh+btSSyONk4xETCe2yVSqV4CXohOYG1qDBX01bKpTKrkNPA9QTXp2LBh0PtQdLCW7AUhBEbgucszQQVShGOY+Wjp3d89OyOj55ec5pdc0jzKnXQnDP/7H2XzBHJJo6nApXAnH2vA7u+gx7mXDm+fM4//uV/zMU73yQmQ78UK4FGlbpUdKzoL+BSDlvxPO+VZEZ2DQgNBLiXdt8GirU2kv+6f5pSQfGqQPCPKVY+3w67JqRpcxbp+sERbntPUzwODCESagGtSCikKKTYE52MbchXZsqZPnX0nSNlAW8hkExzJwRrMOpIe8HaahgxNiwHSWtoSp4o45GaJ6oWGu+pORwrSh83fsPGscbSQ60EvLpjsYTVet8ZXByMZVm4DaBNoS7v0dDjxXWQRltdg3alkRrcVNMcqPvOZvs8C7L7RgnadQ4FZZ7/OXFQDF73hm+uFBpjICRT+ZQgK0kvRvrO+vSklLwiYFMVIPa4GBMhpAXmQxKpSwzDnr7vF+Z81yW6rlvy/cEPIcEMWxAhggmKCajXNUQ3TCU0AxqQoowvToR6ZEhuHdWQ54Z0p3am00o0XcFVGtfDjIlpHVTChuiZkn2mqqaBMBcjY4bomhY4KkOi1tkaoLkBaMbcaoKN5BlLpg/KVGZun52opxt2uz0PHj5AODdy2Jg5BThOFtFXhFxnO0CqugCbfciuOzCcX3L++H2++hu+zY/9+O8gpp7rly+IdWZ6+Smn8US9zkg5mbx5jIgq8zSDmGGLIbDvEiVnLh7s2Z/tmLOJLu0i7PvBmP5GqaDWyjRnajEy5Dhmbu8mhqEjdQqdUuaJu+OR29sTp9HGtEuFXbczLgu6EF+LRwhtDa4kWHFRMWh5dW1N5tx43K/wanD7So6tVdFg7FmtTW20LBGK4sJhbv+MGGlORVA7dFNLd9RCSBFJkVCNYG2HhZdZY6iFVdAb4XYuZUEkY4wUrVzf3PLu0BnC4XNAhRA6tApzNWSpcxh9OX2agfP5l2rNE6vVWlsKs7roYesx41FikLD03anqBOGGdqhFrw1mbs6JeEBSK8TIgli1o8L0SpzX4LYCsA7HUe69DiLUbBUicy6MrVrE05szgVNRrk+VmWRlxKJGzBSP7DfE3dT6TmElxzmbYz/NyovrI598+oKPP37JXE2XBT94m+RB9N5MyyG3GV7bt6sj08iOKXUISgnCJ598wt//+V+k6xJFq2l+jEeohdjvSLFbOFDtPVNM5nQCpWRPryuxM6FMU/m1tdSnREpul0NrDWBoHRVHERXBuQ5qazYXQ7cs2GtIoSFF4uhrI5POufLy5bVXbJnCrpWnVzRnpmkiBiV1cRlvUzO2PTr0A3OemPNILR3V50yCkLrO7HycKJIN8fID3HhKLRQW57N4p/XpxDzeUcvsZ7afDsKKZtirgIYNogmNm0Jbc4vX4SndNyBJ2xJk2SIiy16TFe1vqImqRROb57c0YmOjvXo1pGe1bXUJzEXUpDJee177LPaMrWDlD7u+1A6K+mQLBlvvd3suLi4Y9juDqoPlwLvU0XU9fT+4k5FeEXcyL1w8RWKdT20BWsmrQfHRnRZbCIFaHW3xmveV/2Js/saDMbtt0YKhwy7PTTu0bgnjx1zEO3bRIl4rgYjMCB0r5NnoS62szWS3VygoiBAUSs0IwcTN/H1EjchXq8HRje0dWimkOPeCQJBCsepN6/QZIrEzguUslSkXk9GPkXy643Y8cvPyGbHrOD+/5LDbcRxn0t2J01wYpwkTGnIBNDHnMXYDD9/9Gu9969u8/xt+E9/6F77NxeO3ySQeKzz5+AM0dszpl1Es4okhmnhbni0yUTvAkwiPHpwz9CMhBvaHQNed2aFTK4ehZ5oKWiw3bN2qzSjOc+U0KrlEprvCVO64OAxIKUyzlbx2ooQEh52RdYdOSKEScSKm6lKeu0CjWpccs23ihozga0/ufW/y5G2TB+fqtFJEQ0wa8VMWrQ5TzGwRqAlElRAMBYgdEhOm6VNcj6daZOfVYyrWPVuCQs32GqKoI2A4+TQSKQo3d4UPP3nG168eEXDNH0coiyqnbFynGBPqgULVwlws5Seq5qS7wS/VEQX/5NZd2ITWBDtwSslMOtnh0kjOcr8Cp8HHweH2qqtxVFc5zmVFW1r8116jBKVvhN4i7szZoSwpUubCccqMuTBVQ6IqkUmFGWGm45SFSqTve2IU+j7Re1DUpdjo9iQvYw3B+5OokItpn9zcTUxTpcyVQzdwN85MRzvs1IyMO/fJekLVvNhFWz32WYX1QJFgXItxmlAiVQrf+/6vcUznxH5HUeXu7siLZ0/I88T+/IKzszMrYSa45hOL6rbWwt3xjpuba0QC5+fnDEOPYOJnIViqpEsmHKdezVZqXtKm4PpGwZ1AP/yNBFrcWbS0OBoctbKfs6t7qyolz1amHpNzS4KV3Usha2aaMoil6MGdTyzI7fuOro9LtV5L4Yq0YLSj63uqmlrs5GXMubbeQZ7SDZEUArWcGMcTZZpAGzdyi0b5WpeGiaznELDsg+1s2u+FLVryaprMl5X7IQ3/uM/3aHvGft54tQtCsn3r9kCWcd7+bUWD/H7M7V3fYPMSwOJc1X9eUjx2GTQbY+Ly4pJ333ufy8tLU0sNJmDddb1t5Ni+mnOi914HwuJcFIV5ngmnyaoO1MsUHbavpVDc0EsQ1yVhIcB6+OKv3eA2LzBzT1UQNI/M1x+TTh9zCHeEVv1R7UWs0qdRpMzI16xrNKcshrYJwYXQHBF/d23G32Bm609SljSD+tKKIkjyjsrFUamilGB3HqRFDYWI8yekmsNRbdvMZeb5OBK7gdgNPLg65zRl7o6RMXfcjZmQXf6+KlePH/O/+1d+H7/5d/9ezh+/z6kow+HA7WmmH/Z869Hb/JrA4eptbm+eovmWWjM6Z2qeSDEu7QyEysWh43xvhNb9LrnwVwANdFFAA7enI43sXIoyHmfu7iamap8vCNwcZ25vT+w7IdSJROWsN8LdYd+x64To1T0iglRPB9VqKFyLYpvDSl1y1BXWnzebvnGe2q9EZCnfXca+Vjc+Fo23SD6ESM7ra4XYUVQZp0KNM/vzwSMXXUyiLV9vhhewhmhULwhxEqYfRNEl8GOfkBitdw89RSOp7xEC4zi5M+8Oge8nrSAuirXYNN9HxXV6xMnZ1gVZrVy8VkJdmyOqCtOcrct2SKDWUiLG6MJZPq7aNHDux4Bbbs9yjHu0jhi3h1rJdbLXc3KuiCFIk/NNclHGgiEnCrMaGXYiMlZhroHY9wxDb6Ru136xFKsYquJOl/ihGNSqT4zDErk7jXz66ROm44hOhc4lAqrY1zQX06jJisqEBKHrDdFNMVpa1w+E1Loc18Z7iEhIZFWuXz5nf3dDL8kacRalSkIjFA1M2YX5gqLFPn/0tgSqanv7NJk+UD8sY16iV9GlSCmz309tiw5DHLyPVMAcY1gQlJiM20S19MiUTZ8nV58vvNqqFoS6VOMEAXKG1u4jBdh1TJONg+nGVGudosr+sCfEtIjWrXtw7a0Wk6HoOVfmPJNroWigydC3ADnFgFCZx5FpGq29h6NFLbW7/rxBS1m5k69erZqU7V83/eBedVKWMvGFUL9FW9bHNjSjnZ8rL2h19t/EA2pI3ZrQba8DW0T4/nu+/qm+6PWld1DUJyTFjrPDOY8ePOLqwQMnkYqpDoboxtmdAlb/YfXw6uKhSkNlzFdZITnfXA1exjdKjDi5LjZfl1YCKHVFeqBSA6aXgBLqzPTyI8qnv8oDvaPXDKVaCaRrMUSMy5L8K4PnnNecpiw9eWRxRBbvVj2aL06WzbPBsWLw5ZxnO5iW1wR1Ia+YIoj1G8nO/Kc6XJ0suTEVhVAW2HOaM3PJHE8jKoHd/px+t+ew64lzBCIpVe5OMFXYXTxkd/mQIonucMEw7Li9vWF/2NPvzui6xNnVIx68+1VuP/k++XSNzDPRvFKI0cXViqvYVmIKREn0Drcqk3VZng2CrAhTqVQC0wTPXpx48vQaJJC66N2DC6UTpBcudoF9HxgSxupP0MVqsLGAcT1YDFVo3AcnmiJt5bHAoc3ArAiK56NhRWNYkYQQk+WzsZYMSmsloCjRyMvFyiZjDBRkSaGp34OVc4dFHyRKNDWdOtN1QJ6RINRcqFWcvW8ORxTrvFxK5W6eIVTuJuE2R846pROLrFUtuC9ljeir669ECWTnUCimvyKbUvRSrM2ERblrpUytpopLgKBxMdghbHWPVoMam9O6pDeWGNFRrODV3SZkmNVVY91xqNVaBQSfL+MK6ZJ+KQXGqqgGcqmMBUaNnDRynK0aZNf1dCkxdLKgrm2uW6ReqlV5KS4sVqEg3B5PvHj5kvF4JGjmkAJVoKbo6qjGNxlrZa5WKp7NvKBdh4ayVIwphuh5RolWsZhbtVIemU9H6M9AOkLoODu78MM9OUKlnI4n5nlGVdnv90hvc9j1HWfn545gD65ds9qShlE1R96uFt3rgoBpa8DYRICKfU6/baa5Lr10rOIs0/p4WarLU/kUSztVJXTJOmWnSIqWruqTyS+cOJFLJueJrjNOTc4ZYiJJXbRwwJtZhgjBKh+nYvdVtB0gJtAXBOZp5Ob6mtPtHdRMI5tDQ1HsrGlnulVhreqrzVbcz5LU9jabcdugFM2uyCphIKvWhZ8Hr1fOLCmd1gOovRjrXK3k5Vf+/cbXYj0rP+MSWZumfpHry+2gbODxKIG+Myg1xWSVDA6hCeKk+3WWzXav+TAFF/ZqfIEVemuPr6W6NLWuvIDWy6PBkjR4uBrc796QBjWVR3+3iKLjNeXZP+Fy/pi9ji5SYA5ACDiCYVwC0zjIlttVJQWHKms24TZX32xr+37pl8tskzb5QkArXQzUAKFYJ2QthaCWulERkveXqHWzeVx1Mfu9WTmrl0+KUbAES1fc3d1yGkdi1yEhcegiXdcTd5fsH7/PN3/8d/Poq7+Bx++9z8WDS2romWarPulS4LDf8/Vv/RjPP/mA7/3qr5DHoxmMMjJNd8y5ErTSJyt3DRIJqHUlzpXQRVCzKLlkppK5mzJ3U+H53cTdWHn6/Iiqia6F08ghwUVvXVMv93tzUDpI0fprxGi5Y1mac5l8eYzR8+gubsZa9tvW2fYglUaco3q/GRN/Ks6fr3U1FJbqMBi5OJejVEtBKp6iw6ulAohGRBKxC6S+88O6ohKJfe8G1Q6R1hwxpUidKn3XkVUYTyMlF1KyVKaqGmk6CP+/9t40VrLrKht+1h7Oqbr39u3bc7fjtO1MOJPzJjExJiBevbEIIR+TEIqiICWEQQmOSKQIJYAg/AFHQkIChIyYEvQFYQEiIUAGTAZDeBOHGJvEGRw7dmzHdrvtbnffqeqcPazvx1p7n6rudjDw2e6hVnTjvlXnVp19zj57r/WsZz2LrMV9Dz2GQ2sN2v0Nll3GyBM4lpYFitKwgW8cCAkxxKoVMpdjZ1U/DUkVZSNM6wV1sMrtCaIZ0jTSHK8PUdQ+jYxdypMF7QEkmk55qNQqglqyuGdJa+UiKi+IqSmCjQwttZeNXtAHKZGPkdHFjEQWGUCIjMAA2wbeL6OjqA+8zEnvh2qjlBKYCNYORNJUnCNtlplYKm84Bowdg8YG0cn3MkctoSUEGPSZ0GeHacwISdPRmQDvkFVJmmERQ4QjgrdWKo5ygnUe4IwYO1iOsGSQjTbMJCcOtxFEIKaIra1NTCcTNE2DpfFI1iQAgEGzslSrZVi5b8I7EuTFKteuBnY8IGnlHpXA3zqrc1+ahEYt+4+snDuUzRggk1UOQLqDW8U0jDWCsqYIJglOrXEwNLQukHk001yPRZ8nR5Fs8F6eGQtGVvVZkPQtSiznVip+nRHiNWLC5skNnHzsJLrJlpCNweDqmJRUzoCmVwdlblvTtWJmj6vvQdeSsrfV97nKGci15AKnDHsY5itaBw9m2OfqbjjjEcmzejqRf2Bn6V+qsnn9dA08Zg+bTcM+ETu3HRS9RLZErbqJpyhlZGRJo35BHXLKCpEXQmzhlJQNNwFsdAEhaTpWfphR9CEAyCKmzkfkDKSA5IDkZgBkKhGrLHyZCaUxHHJAd/IImunDWMMmTI4KhQPGMIwzMDnBZD1eQ1NTt3+JxBycTElWZ8E6RCLEEAEWImzm4llnrXixSrTs0TSN5odJGrWxPDyWrJAWIYJacELky5BUQCqJBmuRtW9O6SDtjKZKtJlW30/RTycgchgvLWO8sox9B5+FF373NTj4nBdh5979cE0L5y3IOTTjJfRdj3Y0AoNh2hEOXPY87H3wQRxlgKYnwP0GgEcx3TyJxhI8ie6LRGsiXKWUVUlzaAQ8DRlHj53EY9sRj20kbEcgs4F3Bo3JaBhoWmD3Do8DayPsGBmMvIE3Ot+IpFkYKcE+Fw4E1cXOasXWMEPnHcZh+ipip++nqORNaVqkzg0plJ1VO0ahVdLeM7KfVqSlpP1yTLBeCJ9lYRLtHouYAOflvoVEUiqZSJE9jWghJcc1JaGNHq2F8mEM1ruE+x/dwtIIeMaqgzVZrwnDWYK3XhzVmGfSo1Q3pazCcyU6ExqLpLhiTEjegrJUnhXUsx6j3BgBW2TDYxaCembV14GijTAalCvPJM+A37o5UBaEqThYxalhTeNIOwYSpCoLjwokejsBBsaNYH0Ln6XU3DcOzlvZLFNSdVnR7YiZta6QpReUAbIxCL2kQogjECfYvWTAI4sYVBmWSxkyo88JXQS6RJh6g0kPTCMjxIA+JWQv3ZJFINAAlhD7AORSDh/EDbYR3gBt4zEN0tgu5YRMBk3j4QxU5MwiWYvWW+lhQ5K2LhU6zqr6LhKgPCch0nIN+JgBylSF8EqLEkDum8wJIXSnFJEgxOasCYUihmYIUsXnTK0Uk1JtkfI3XjoMpxSRUoRX/ZoQQkWyrLMYmZE4L0ULhVnaWoQOZMRJ0eoHWFNoAUaCCEWsjKaQLRG6yTY2Tq5ja3Nb9qDiHBdeRt06tB9PXQ90nzp9e6tOSkUKGRWdGhAZvYYzfzhfNkynOSsVLS+fi+Ezy3dx0XUBqejbf3aOsk6c9lpBcIH6/D9RO6cdFEKGs4R25OGJwBywPVkH2QxyKqwGIQ8WouFsXb61Fka7GRuyKrEtG1wRAoohIIY4pFUweIblczJlpAiEPg7VQQI3SBbCSFTCxkoHYY6I3RbSyYewljfgMRFUxohzZGyBy6gq9ZXvlEVOS9NUORZ5Jl2Q1IvVDcmQQUauD0uRwC8PB6E07BsIvV4F6UxxvmAk1WQ0uteJGghgEv0QQ4C3MrljZrQQfgQYcKpqyJQwnWyCY4Zd2QNOAavLS1gajxEZMMyIfYeUMpaWd+jmapCNgxvvxOHnXYGmabF55H7kzUdR8r0xTMBcFsTCtpNrNe0DtrZ7qbLICZM+Y3MSwGhhbUbYmKIdAa0BWsPY2RpctKvBwV0eyw0wbrJWUImasC2LM0G+qzYMk+tpjRVZfpSNfiiVnHVQShlmET/iUgJT5/Zs8CTlvgV9M0TI0DYBZIULkTXNxtr9mSDpL2PReF+rX6Q816BPFpkNpjHhkeOb2NoOmATZKAikRGKZc0Yjs0zSZoFjQsoJ02hw14PryDlgx3P3whuDkffSr0QX/hgCpjEggEEkcylq2igG5bikJMqyRVdIr0TMAMdUvcGcIZu7BgtSWi5N3Izeb9J0hlxPFbCzcv8SS7nxIMWmVWy6WOccwNrgUYT7ROwOJJVvSVNqMROmUUqvIzwieViywlUzBO9FAIzBdTMuawu02qdUDjZNI6XdOQmvpA8wscfeHR47XSupQbKYTHuklBGCIC19zNjuMrZDxlbP2LSMSSRMesZmyJiEHkEgCSnfzhJQFJ4FmCsqFvspWhIEeXvrJPqYMF5ZhSFxML0zWN2xjPG4wXg0wqhtAR6CEcGgMgBtXeCstlqgwoycS9dlRY0Ao6X5rPI60gpA+H8JrKTr2YoUq0gfUYbJIlcf+07S4W0DOC+VnWZIdxuyiCFhOp1Cevg0lZtWeF7WFg4KFAWKAGRfYCNri3Xi8NdmlUY4RY2z4BSwtbmByWRL/1YR/IK4l40aUo0k7S9K2bSpD30lrs6mcOaqfnTdUSTwNJeBiwZJ0UrR1zCPWg6Zg1JNWOQ1VC25OFAl1XPq99RVSt6trhZzPfXZcuQSwM3qhT0RO7cdFMNoWgdwq43ZAibTdRiXMVpZksUla7UCq+hSLihKAdgUytTyqAFhsfVipiR/W9JFhaBKWjZHWg1UopPq2ZosMCSkeRuMqI76PAVtn8BqWMdKk+GSTIjEuVZiAgA5D4pCyGULGAh0KZNLO8bamV4jOo+lgGloMAceHDM5dugYW8rSQFAynTxMKSVYZ+GNbAql7EwIp5LaSlmbxxkCFbyTJKqIkHOxAIxGtgkG0xCQ+y08et8duOlD/y+OP/wgrrj6f2PtokvBZhUAY+RbyANmheZDVh527zHasUv0EVZWsLF1HDt2dsjTExjZjEauGlIG+hgRk4h+9V2PLkwRmWHbJfhxi7AtnJI9OxyMSRj5Hmsjg72rLfatOuxoDbxJsDN5Xd2py62uNyprZThRqZpQLZoaSgwo55yTglIiKwdVThENEVBdMEjSlE7z4FKuysgxg7SQq6B8rBGUMQ6yCUDTFsDG1hQdAk5MM9Y3t0Fk8PBjW4gsUWWRjJdqBEWEdDHrspBorRI/Eyw2A+GhEz0efHQLS4d2gAyw1LYwWgJtjHQS5KxE3pSRkkgCiMMkG51VPRPnLPq+R47SP0pKjKGLusx6IdJqOtGJjokWq0l0NlOdAy1TlbJQId7K+k3lomkKJlfdDWslPRSiPL9MJCkU1elIBAQGcjZgOwLbBokc+hDBnLC0vCSbnREEMSSuKCZBzrE4qDH38I1Ug3TTDmE6RYOMA6tLMMsOOQWplOMWOUPK4rM4KJMuYnMScWI74uQk4+Q0Y2OSJT0cDbb6jL4PyJbhGi8OHydRi2aGEMUzQt/DGAvnM5q2AZtQJRWQRVfKNxZNO0gr5MgAi65OSRWWdXAIAlkdy6ywPlU17iI3ELTnUWZJ00UW8TMpHBPhOdLUSpGQd0Z4DJyFK9dYQghJghsHWOP1Ptr6k1JpDSIcFWO9pPFiRAgBo9Golh+TzkOjTo4oQ5NWcaqDgqQxAIEoo+sm2N5aR+ynOvNmKvfKTkMD18Oow19IrUzDWlF3Gn1tINgWTpupa88pOIn+l2uoUyt+II5LcZXAs39L9fwKHaIiH+VYwsynyghmv7k6P6wjmEkRCUKs+y/jAnJQckTjDSx5WJKNsmkt9uzbhb0HDqAdtUrYk/x3CAEhiNhWjIKMdH2n6pWh9uVImeecGREN0t0/z9wMY/SmmsHb1Bw2GQKbBHCEYYKBl42WI1qeYBROYm+7jYaEFJvjRAhmppTZMUBWuxfLeLk4V7o5loU1hyD/1ofeOgvKLH2DCPDeIehGUMl6BdLUfGCOsVYEGZKHh1NGCgHQKBwQgpol6bCcNcchG2fpfSSoiTXiGGUG2lEjIlYxymYXe9B0gvDwBv79H4/jvrvvwOWv+D94zouvxK59h+DtCKluuEqAVa2bpm2RlnagDwFuvIo83UDTLsHyFEgR1jqElNEnqRSKsRcOhWswjRFb/QQxJfRBJOhXx4ylBti5bLBreYTVcYNlT2g1zScdaQFruSqfAnrd1fFLKcFY0YCAdspl5ZHM5pOllmfGSdEFYbabbp3bJfKq91lSR0kbfGXV0ymkWAcR/xKuBcFYKynNGAGvG5KSDO+99wF882iHLgH79+7Ays5VbD62jRQTWHlODDusrhBRQcPSZsGRIEUhGkQmHN/q8c2H1rFv5xijthWHWueQc7JZwBJiDMJTMrZGebLYSj17zBmUVD9GeSk5MULOgJVSX9nspETUOK24S9KmwNqi2QMNLkonY+FICX8DNYhgYGYDkxuUYkIKvVTsJPHqMhP6LGmjxIzIVsqybQNqxjDkMY2M6VQ0RJY1NRlT1KgRMOQQUkDWDt8pidZMDAmm60EMdJMJuJ+ipYzlkYVNBsQO5K1yHgh9UNIxrKIoCTu2I1anGSvbEcdOTGC3ElikTJAZ6LNWelkCcoZo2wgKG6P07gExfOOxtrZTyLu+lTg9RamwYZaqIwJKyTmMhXW2pjtJU7uzHAPh6ZGsZSS90JK2jAgpISf9G5U+kHRa2dJzRbicPl+cEkLfgbJ0aW68XJ9gDUKQiktjSCt61DnNgLcOo1Er8gtKEk8pYTKZVPXitm3hvUOjTojMIU0J6nPY+AZtw0i5q3L5KXbY2jyp6ElCqRCUeVgCD6AQVU/P9OpaU/CUkk4GaWsWJb3CVvS6VC6eakVMreCtKJVbuvaAC39HPl+2NaMBDA2O+yz6YcRJKjyisgbW80fJ/mgQd4pJao5rNiDj9GMez85pB0UmCWCdEFOdc1jduYZnHr4EBw4dwmg0mlmsxItPqvqYUqwiXjEGxNij72WC930vTaJCQNd19Sd0HWIf0PcCtyoHClBFztmNJ+ttsNWDFSCUcgbzFDvNNkaYAjlKFRBJOkgDK1kkYo/GSNSRNFdtjUEOkkpiFS0aqgIKxF0mp5ItOUsFRYqVsGeIVfQImvNNKDuw0l1kgS6ic6SEtVzIWFAyKlSTgpD090JUJCvsd4lqWXrpkEWyHollQ0qT43j4q5/DI/fdha999hO44qrvwzNf9n3wO3bBNCPYppVUW2KQcbBO9Gxi08DtOoBJN8UIK+DJY0hpgj5mYGkFO3aNceLYgzBbx+BMRsgGRA266QQpJow9Y2wJqyPC3p0jrLQGo0Yksa2RKBmQdJm3UqJsSEXZctJ9WzbSIpxXJ4TukrNLSPm3wQziVqHvgaiHMqXONOENS8pDHUFnStSV0TQeSZulBU2QWxKHOkRNCYEwbi0uuWgPVpam2O4i9uzbh/uObeDBHGV+GiMdmhERs4ElCQQYEr1OY0RiIQyzEj+2InDvsR77H93Gnp0jJA7iODVeBPpYUlR9ZPR9lOaSGJy1mlIigI3wb8i6WonkDemGn2TzMNLEzVjhg5S0V0kdSTBooLkdcFKkSzk6RhVEy7Xu9Lm3ivBIKXECk6QYI0sFScxCco9w6GkE60aImcAkjTJzzhiNRlqNJGrHopHhdaNyYI61WaJ8NoA+ASEi9VOMTYJHjwYE64RoywDIOjATupJSBGHkDDwxWuexMmbsXPJYbYHmxAQ4KahNpIwQPWJKcMyqhJsRoWRL4+C9RYOIbBpgNBa8SdHXSNI+IcUA641yMUi7kBslwOqMZYDYiMZNSkP1kkx64WsxaqlwyqbyESSyVudaVbwNTNVHQQpgFuJrilEQc9OIs0EZo9bDO0GTLVkhk6eEvpe0jvcOTeOQ2Wp632m7AIO+i5i4qWiieA9m7WyeGdaqU0bi9Dhv0LZy/kaD4kk3wfbWJlKOtREewVQ04VScQ9pbaMJG6/0JgCmcHCr0AfUVMNM7bvbTirMCodyWtKZ8hK43pFw81h5SeXCS5HOhTmCpviq+ySnnzMN6xlTQYToFySkzIVf/ZtBKKQnqjMdZ3c5o57SDghw0JygPm3cW46URlleWsbK8jKYdoQpSAKjQG/NMyifpT1SeSknpJJ3gAX3oxUmZTjDZ2sbGxga2NrcwnXZIIerxsz9JvW7AaJmZOKnSddaECE89GptE9dASsq1dRgQlsVZ0SQBNuzCIpFFb8cpL7rREA0W0a05VEAMJU9I5sqlwHgTEgFO8/BL1k3Sz5fL3WRvR6TR0VvLjIUHlwQVlcJCcN4EQYpAzUBKv6FRYwEgE6TgDYYJw4gge3FzH+rGj2Pf1r+HwC1+Gy170cuy66DJJVRjRaSDr0YyWsDQaYXzxYaTpFQjrj2DzkW/hsUePYHm8jLW1NWwcO4Ljj9yvKqqMaddja9LDpIy1kcPIW+wcN1gdWyyPCA5ZdBcgN4E1beas0cZfWiEw07Cv8Hw4smp4ROFR6PVEhpI+S0oRFS3BzD2ZtVJ1UuuW68wVPQSjmjTWyiLpiIRYbXWzYakwKLgNMyPHDoD0kGnaEfbsXMLuXaswtgHZBo9tbcEiIZKUIFto5UzOoMYhS44GYBW/ypBWCCSVUQSD41PgziOb2LM2xiW7HJa1BUBIEYnFUU4gBNUPKbLoTlVUc2Jkbb0gC6KkAQyXZ4AQ+ggmJzwZS4hMIuvO0hhPMwd6D3lWPFPAT+UJ5ZhmKmtiXQtCEkcsg5B1kyypocCidxISo8uMSBnLIw9otU/OWYXpbK20yykrUiMpMVggJnkG5LQZzjipFOm30ZiEldbAZAJxFEKqs0Lu1I2lsVBnKQuCBAuiJCXYlmDtGK6x8C6AcweMR9i/51l4dGMDxx49AuSE1kn57SRE2NZjZecueOeQFTmQ6Dshk1TFpZhAVlIrzkkQI46J1cAoopSPZt0kjR1aikhhgRX9EOXx9DHPI8K61xkNuIwhTWlLT5sYA1qvImxeZfk5glWFtQRppI6ENE1NMykdVXllU9cyay2Wl1cg5O/h3qWY0Pc92laUxzMBlCDcEhaBvbbxgvCkHpPtbXTdtJLly8Qr624xWWOLU1HSN+W3wbEo7RtAQ5hTgx0aloW6erOWBFDZ4YAZD2FweJgF9a7rzJCGlq8r/MnZz591sIobQigh98xpyX0sRMaZMdcjVF/pgnFQrCXdJJVJ7g3axqNxVqWVqeBlFXIb8mPFBs0JqNx1KXub02FQjYbQ95hOp/LTTRH6ki7qa8poOtnGdDqRnHSOCmuJ42E5w04S2p5hVaYeRoSCOCVY7wa4jCDCV5Dma6zwsKnwoy6MDHEeNGqQBoeDs4KcNWebYZyrr0vZn+Z462ZZ4AAxQ5rz139XT9kYcbrICHQtIYHAwFkEtmLOYOdQdD1koRIinQXQkLyHLBBmDBNsPngP1h/5Fo7f9zXE9WP4X//n/4FZ2VeRqJikd00zXsaevXtw0cUHYXKHzccewfpjx0E54cSDd+Ebt38WeXISliN6vYetZexaarA8arHUOowbB19LhuWSD9AmS+djhViLc2JIxfM0EgIGAbLYJxGC0oV26HGhplHR7PWXz5lZNCBRT676CTIXbZnHSt4uaqxsCI41rw9Jw0h1i8DvIaoDzRGUeiAaOUdD8D7B2IR9a2MseQOwBWcVQIvyHIQsVSOUVfFTUz+hLxVEypfJwL1HOqTuIaTL9+JZ+8ZgE0AmIqoAGZMD+xGm005heItMRkjoWpqKJNGiNYSYIkLOGHFJMTps9tJPBWRglJNjCDXlRaqHISRJnXOkC78iKKGXDbXMaUDSDiFKzyprHcBRo/2EkAl9NtgKjK0uIDHB+gzXR1jfwM1wHIyRct7CDSP1NkOQ9gLWO1VAzYqIZ7jcAXkbrScsNyL9jyyprxiLlLignkySt7FEYMrIJsM7wHgPEwFjIoicqOCyQdyI2H94Hy5dvRxf//pdOPrAA+gnE2nfsdTi0CXPxq79h6QxqPdCNjUqy2CEz8XGI1mtelREY0hXEHKSh0c0LkmqBHkWLQEAGUtSDZGcuK4LrOuz9D6T3mNS9hvQ9x1C6EAARo2VNhRWtHpiDAihk35G3ivxVRtPcIZ3Ftk74TSlBLbyuV3Xw5iAphnBe4+VlRVJcXk/t67GmISHZB3IlOeV0TQWzBZhGrG1uYGtzXWkGOvGfWYctJBX9Qjdjma3IppZC4bXBken8DpOOQSlvLc4KJj53FJ4o3Fp1faRH6oIDan4Y6kSmj3vYqqEVcdA1RGbHffMadG8g4Z6n08dwOPbOe2g7FhdQeMVAgXgnMdoLHlEKTs+xVdjfYDUo6wbBHRPJgJqZ5Xhj8o1zqw6BTFoCVsW5CVFKbHNSdJGXYeu6zENAUiiaiGVixmIHY7d/VXQQ0cFvuSMPvSV4FqaGAJa7giRZTdWSiCNwtcpShlx5jzU98+Qj0oemEskB22uVxyTnAVqJu1fUieSTNKYpepFnJ6oTQ2t9oBBXexzFt2Uxkk1icRKsmlVrQSrr2g1T1akQqo8hK+SWTRdYuqQO8L6vV/BrdsbOHn0Aey57AVYOfBMUDKAahvErJ/HwMquvWhXdmLX/m189fM34ZabPobpsW/B5g5lJWi8xWhE2DFyWPGE1gOWgjiBtQqqBD8kJYvWiCgdc03jDP7/gMIVLgkgsLixJVc7qKrOOiH178BgNrVC7FSTxQQ1wpEqFXG8cxSntRCVOQu50xlImspqWwWSXiewUgoKTuAgKbccCcvjJRzasxvLzYOYToGu6H30STZdskis5e1aaptTUodOrgsYGDnZvLYmGd/81kns37GEtnHgIM+BIQDJYnsqUW9rPTJEiTR0nVybhhBY+CXeWXleOFZpd2Mc+j6iD1tC6rSEsQdGbVMXXlJn11oaYHRChciJNY2gyGDOWmGTWMaa5Fplskgxo8+MPhlsRcKJScJWL2vIyALUBfgsKWbZQFgl3rWIOGX0Sui1TqrpEmjgNOQM9D0cpmgpwBsLisJbkyeI0HhXuTCAOFTeqmYRADhJwRASGktAQ2B2SMsWEyZsWQbFY/BmGS++4oXYfs7lmHYBiRjtaIzx8goCG2SVdTdIsIB8Rs4wiRRJgaIcw7qSMmCNqHPnrCkEAEzSUyhG4QbFmKsOjVSWy9hkbpuqIQTIHA9B0jgpCi/QEKNpXJXEt8bAesAYqbIs/XwKkpxihHemIh0ivyDpy4J2hxAABpxv6nmnJGgckeixpMTo+gDvDTjJ4iDvGeRI2O62cfKx49je3hL5doEuhhViZk1F3aV0TZhxJIrzbMpFLn9VkexhzyIMacwB/Z4hJ9fvG/5TU8f636xl/qWsu4xrDrKd+ztIh+s6ivJvSfczcT2Zsi6AFHSdJdbq+ZkzrHWPZ+e0g/K8y79DSHmlhA/A7t170I6XQMYOi/7MjT6TUd1gzvhu9UbFkSH4gkKUTVeRAdl4FK1Q1j/xUL9PYFCcAieOYf3onaA8EUn+skGRtJsHEcgPHVprDrGo0+r3iAx5yReLVgNofkKWVFAlfSXRUyilsYWwKNUkGaAsqSRwFY4TiW6jTcmELCWpIyU0eofMWt9OUqXgrEGnWiykqZKchAhHJU2igk2snAlPDOeli+o0BkwfuR9f/vRR2M9/CrsPPw97L30+/M5DGO3ci2SA7e1txO1tYGkFK6MVrK+fwB1f+L+YHn0Aro8wtgEIGNsEB2ClabDcEEYG0p1ZF0ppaYd5BxakejVA6Z2RAa1YEIezcEckUjZzUtmn9puYvScDcqICTafAwLP/rRwN/bsQgyj8QkihmXOVHbdGy2YNFIrPWgaqkzdF5CRckwxCikBqI1aXdmDsPbrHtrGdHNiI48vE4KA8JhIHXaqahC/iCWiMiKWNnUFjGa0FtjZ7PHBkHUvtGlrnYCkDbNEHYHvS14XOGSFnywlK+oSy6FWMRx5NY5ETowsJTQsYdWoe29jGeDTG0rhRXRTZXEPfoQQU0z7qBijPla+k5yIkJ2qqNR2qgFXkjNAFMAxiNugSMAmE9UnAyUlEhIVz0vTTMYvaaAayqnUAQ3BQeDZynw2QoI04gdx1MKlHaxJa7jByWn1jSo8vuc5JmzSiPC9gSUkowoQsoo9EAFtBNEbOIY4Ya2BsUsKRzYeQRy12H9qFZmU3+uwQIY4sK8qTGVXbhPS66fRHmaLFSZa5ZyXosVopBiE/Rl2LQ8xKzBcuW9K1JmNG7qE4czQETJJKnyLFBO8dxq20DBAAMQtp18ozaJ00Y7SW0LQNLBlMtjuZB+xViBPwGsRCUzlt2yKEIHOcE8g6LaIQLpdzFtY3ivKog1UcXSOoPTtCTj36bgKow15cEMlinIonyDpS9xEaypCLfIXVuTrvmMj8KVmCQpitUhflAzH3j1N9DRRUqtzDwn1LBcnKpY0G1XMfOHFDIF+Xq+qHFc9k5kvLgQZASanpdWEUJP2J2TntoFz27OdiaTwG9GKLR+wxGi8JqQw0563VW1qv6eluyawPUx7K2b8f4udyM0rJnnZxZAY8UNgfheeRFZK3qcfefQex+XVfS64K6dQaEc9K2gDQWCMPl6aYiAxCDHBGVCwNVK8BQnhNEZpiGMiyrF49M0tZp0rel02ypIBqeieT6qbI2EuLAEAJuuVY1o0bQGnC1npbVRNDymi9Qx+jLrLCqYm6QIOFg8KsJXaQTVV6AAp/waQOnANi2MbRr57AsW/eAb92CIe+42XY+8znYNKIPkTsE0zaxL1fuQ0P3fU19NMOI9fA2ARvMjwyvLEYe4vWCqxunSBVMWYlHPMQSdRx88xCQ4o+zS4cGn2zoGPFQUmplBnPziWu90LKJtUJibm+P+eUULlnAq0aGMAYFaMjWK88H+t0k1EVWypOcyFQS6UGaw4rKyci9gEhdZhuTwC/IpscK0GUhOBnAJhaEstwEHzRe4OlxqIBpIEiAI8AQyJ5z5nwwNETWBoZXPaMFSy3BtZ4nOin1YkusJDzDsSuisgxKQeEWY41QoSddAEhCR8kJWBr2sN5uaeF9+CbRgjMxiB1ATFF2FJOiqSIiXDMSJEMcZ9zTTckAAkMshY9OWxOA9a3Omx1CYmsdk+X0uY+BEXe5Bmt8kVa3ZcRkU2BzQ1yTKpTlNFwRoMeO1vAxIy2aaozIilaJb6nIGsYyzPOWbRoQEbSZpm1e7BH6iMsM8atQ0g9Rg3gO+AZBw9i+eJnY5LG0ifImPrME4RAbzWqL9yrmERGoKSmYxRivnWNOEkaABbRshikPUDMGSlmDYBK7y5x4EojTCIDQ7aiiyH06KZThD4gxqi6TFIZOB6PMRo1MJSRQocYejhieC/k1dZLKrMoazvnEEKPlAJSkpRPqdKB9mErzWIBVJG2EAKm0ykAcYS9c4Iyyi3T517WY2utyCjkBGsE7ZPWaZpWJEWYSzAys4mU57KmOtTxqKXaRNqmoDgqXNP6BCjHqgQ48wHNafsVDaXts1YdhjwgXClFrZqbrbGZR9bnf68fdoqDNH9MXcd4SOldMGXGO1bXsLy0pNE49L4pA3yGjDjctNOh9FPz//MQG045FpgB1gBQ3bDkFaM5v6zIhxDOcplMkHK5pR0rgPNIvWh9iPstTQcpl8kr7colOleE18h3QB2b4sBmZjjvayVBgetY3wNKU8A8CNBFUVctbPaCspRqIEAcppLvFsE3QToqXE7aV0G1VjKppkHi2m+IIB1No+oWWN18pJlXyRmXyiNxlrxSKgIzkJP0xogThI0em1ub+MaJR/DIPbfjWS+9GgcO7MbGdAfi+iP44uc+jX7zGIAAtglNA/gcMbYMb4wowBqBpVkjiardkEWWGxkKJQ+ENrmlDGgPFwuqugBc5o6ERfrgzzsnJdqZXawG5O3URWaAT7OWMhd0TcJZiXYplzmrv2Mg3OacYZzcp6KaCjAya8sD44AcQSxaH/00ojWAy4DNqUZ6ToYES6LY6g1hZA3axqK1km4jTiq2yfBG0oUggy4RHjp2Evv3jLBjVwPEBIMoaSYq49fraaQ6RqpguSoTW+vQNo2SM73I7FuPpm2xvrGJ1husLa0gxAhnrUbKEq0778Ck/W6MQR9DddiDkjlZ+76wXkNmCSQyS3O67dBhfRIwmQ6S6ZzFScgkSIlogkgli/NWK+60QicLtdnqcyUdsTMcJziTsNwQbJ7AOnnmrTq4ufZN4RldCdFBIqtoDEvlHLOgGCEKgdPqWJ3NaGEwHi9h5dAhNPv24sFjGbmLYHXQcoy67pgC0ChfSZt5ssx5kHTFFu0aJ2kUdbZjSsI1SRG5aNUUZBQDomdmNi6nZH7hkAT03RTTyQSZE5y1GI8aWGsxblu0jcOokcaB2QB96HR+RO0QLdL4McaKXjZNg5zTTFNYiDMZE7xXhMSW7sXyvjgt2hAwJBAJoVdaKKAsvoqSq8PuPcZtC6tBZdmCNIGFkpYbcJPyvKOe6zwyguFZL84KNJA+BVkd/iufffpeNXRmPtVm1wnHgLMJKcm8K33ZdMUY/p5NXUfmP7IEbSWWOy3kr985W037RO2cdlCM5j8HO1OiZvAhz5TiOdMNfDw706FlgsyfAaEAvKSCaqwRY8oMNgaJCJGkI6dsAsXTzEMdv058ayQqNyS9MpIutKxORVInJiuyEUOUqMrZWlVEqpFSJlQqjPN6DQYlzjIc1t8F6s0iJJek8ijlLCWF0C7IZtAMcVaErThDK0KEO9M0DtM+wsEgBRHPM1ZEjzIrTmC0M606QwKcS0rCcIbpN4B+AxsbR/CVk49gNBrh+S+/GsfvvROP3H8XTNgCeCo6CdnBG6BxBt6QOiem6rVYY2okYawga1qZKjyPNBNtFEeUS3ms3HyiAoFCI6hcr1+dC1RfqDNygNB1sWApjyyktirrXRxths6jAsHL79IPydR0BWetaIGSqUkaHDKLFkRm4S9QjpAeRVKOfGh3g82tKdzJhD5lNN5g3Hp4p9wKEmKzY4A4w1AGUdKSQ4gKstEUgWGtomBsbPfYs8PDcIJvDJZGjZCns/AzvPeS+otRCLUhIoSItrFoGi+doZX8w8zo+ilG45EQaENAHyKILLa2t7G0NKoIlrHCnQmcITPMqggYS/+czLXtA4ygMIlZKo1ixjQmTAMjMMHYVvkJylBTdKykRcszwerkhJQQpp1u8IV8moDUoSXGsgNsCrC5h3AnnETNylkq87MIShKVaiJ5ljNnwLg6R0KICIkRszj1SeeNJXmWNtZPYO+BpC201BNRnRlmuWcFtUsa5JH1MJoSSCTchwxJhfUhayif0Efl2KWkqLIZ0CkuG6Vy6BTZE3G0HpPJthCkUxR9GCK03mM8HquOiaBNVPR+Gq/OgjgfTtf+ruuRUkTjvZQCOyFUiwOgzkeMmPYidV8qkQRp4YqojEYjfeZljKX8vG1HGtQU/lAGkcV4PMZ4eQyCVIGW1AVrwABmsD7ng3PClcQ962yYmWVCH+76XkGz5Xczt48NaO6Z9rh5B2W2anCu0pMKYgwMqPv8sZL6GcLz8vqpm+IsjbacT/Vx9PvTBdMssKImQx5vAEu4Qm7/XTsdXQEKcjI7D9QvwKlttMsZFUKenJLF8uoujFd2oX/4KAIY1pX8vjz3GYVzIix6o7F6DKpVwhIV5pS1MVZSDRSJmDOXdBEhBC0BzBGl51BWUiCZAS0RaFEFyAr0zawN8AT6zTO6K0ZDTmOM5tV5ZnJL86xsDShl5D6IOicn+Mai67M4ImAt7WWQJdFFSCpxpnokpFEtZ4ZJCSPSSR4iwpF78e8f/SAee/Bb2NECefIYHE8FAobDyI7gKYGUKFr0XEi1JCrJFFxLRMs4MPPwDaiG/F+aSdcUGXOJIORxyswq+VzI2BoRqapmTqyVQAUpKZVkPDfXCvIiDqY6KzlD8z66kWmfD7CIRuUsPUQAaDJcqxJYI2WRlqec4aCt5QGgSXjhpau4eJLQR3X0k5CoY4xSQqqN2wqQyIr2iVNlYIx0k5biV4bNhBMntvHI2GHHkqS1xuMW0z6iDyJaJs5BRiblJmiqpmlF2HDa9QAnLevUR56zKppKGpdZOnPL5iHOeFSBN9GESSoAJnyIPkuFyzTIxsiAbD4sKciYB00OSb9mGCeIZik3L1wWmFI1glqWHLOUAufE8F773qSAsYkYOUJLEd5kTWE5GCNOWNYKfyobGxESSXDDuaw9MtcKusbQ54MEESrBhqSDGByBMJ1i/+5diBbo+3UkOIRsYZxUBspDBpWWF9QHSKIOretFyqxoHCEk3czAM2T1Qn0FnHUwEIfNkPxkJoRe0iiTaSdzUkmprAhRaQa5NB6L4xp7pNAjGMC0TeX/kabanIoRppTRdUG+r5BtFSUrrUe8b8AkiG2p1gkhaDnxGG3bom1aQdfYQFZd0rJoWXel4QfVddw7D+9bpKZT8m8pM9b5oDNGfDVZg4pjW9I3JfAZXjvzHjT3ftnr1DkpSMzpNqRX6jp2hh/5SKNrGOvSV9ahgTMnnzH/Xll7qhOi/5t1UOTvqIqdXjBVPKWqQhZMLshYNelVM2+zuf5Trb5eofjyyA3w3OkQ1vDSrBtjykSt6I1AsmSAlZVdWFrdh/Wjd4u4T2IY1SbIOQA5ou8DXNPCkK3Qp36QRD/axAyKshQynpDRBq6I/FsmUiEGAuoQYdCG0L2wvl+uRSmfZObqOInirjgRBTUQP6e42Fyhy6ybYOJCKpbvc6Z477LQG2jenlmiLeOEPJtFqCuGiGxE1TMZB8qAiz36B7+BO04exdruVYxth7YhULIwxiHEDGuV+KXVAhKhMqCEQHHmFKWoqa3SPmB+zhRnrsLVpEhHFv2ODNZmixi4FDkDqtoIRS+0MbQ4jHYQo5q9bwUzZc6iyaHpCEDmUJnvXqXgG++rY5VUTRPqvBoSMb0UA0C2brJgaW+QOKPlhMYBrVWHKWekPiJlg94RcrYImVRgS6vSWFGanJVTkEX6O2dYdfC2tjscObYB63fBk0XKyi9wDpQNQkzoQ4D3XjYySmicgfUNEifEPujnWozaFpaLE50wahuNYLM0rQSjD6luun1iqVhh2ShSKiROAOSQjUMszemyVKUkMrXqDZyro1meYWlUKM8OlZy9YRhHAElrhqyl3YZV1RkMcMDIAjtagxGAOA2wTYOsGwNxrlonZQMqz6GAHhpJF6VpJTUWxENdCXkEFXEwqnC9trYLjz12DNtb0uwxhAzDI6laIkFTCwqbFNXLSQm0nNHFLOmqzAAcYoKmC5VPVSJ4RfWEpyOrZ1IF766bYjKZYNpNhUTvpF+RtUbL14UPMh6NMB6NpATdMgJlxBhEX8m2whkxsgZFvSfikAsJt6TIQpAKoLZttdeaUfl+p0FXqjyUGCOc9XBetkNpCSBBlNPnKsQI70tKiGpAJ4iNGwim0O2DBz2RXDd4rmvjsCcwDKsXdwYUZEA5ZhyUqieFqhnznzkoj/9T2Iyyss07M5J2r2gLeE4Mbva/Q1qo1PhU12U4zhY05QJxUJS1IAmU4qlBofCCg5+qeHUmk71DMI9cQkTJkYuksECcAyCP0z6z3OJTsZahfge1gZVxFn7XfkzcCkZhCy1nZOe0MR9LxM2kLeVl2vcqylWUG0slDidGSFll1uXYsrmKQ2SQslQ0xBTrWZF0dKvOi/gWg3PCLN11JT2g6QYIWsIEcE7QtUk2aJhhIutFMDqpBQGw4CQdkzllSc25Eu2EWkXgDKpKrzD0DXKKulkDZIzovkAWU4MeefMxnJycQL/UYGW5wbhtAI6AYcDZeo5sSKBkKxFSSKwbUXkAdf6wbFiGhms557AoH4eTwu01ihHIhxhgQyArSAZphCNOoaRKJDrLSkSUxUa0QiwYufb8yFkJfgU5Iy/piBjFCTY6vjSgHN46gEtELgiFLMpRojgniqYScjJscQ4zwzcDJyg5IzoWWc4tZ0IfI/ppVyuY5JycPGe6YJKVSLz8b9olHD2+jVFj4WyGKO4mqezqIigzvCp2Zsg5hRRFr4QTGkfo+4S2BdrWow+9zv+MPkrk3GsVmwigFWeSsN3l6lAnVZdlkqq0UoKdmBGzOvckqrfMMl9qsEjCUbKmzG1dd1DSRhlsVEGXAMvSksDGBIseSzZhxRBs7GG9hR23GgeJEwlI08M+Zk2XoEqy5ywS/CEGwBaNEaluAomeTEGWjFb0ETmEBGzFhLC+ha995pPYfdHF2H3wMOJkCmN2Y7s3iCB0BTBUXhqDETmBk/T36lgpWLDSyYEccg7S1dhog06UyhBUjZIYAyaTicrJB6Qoz96oaeGcg2+Kdol0IXYkpcHS0T1r7x8S5Vh1BrwXDkwXewARTdNg1Di0vpBexRENxAg5gAPDQ2TynbEiiqdE0Ma3QCb0IYlTkghdZHRdhHUiq2AtaUVeqQLTVYIA3zSSbgzbmrIuyBJVHIGoCFcU52VAFghAVZUouV06pbpH9zWjH1b4SYYkrW4V0S7E7LpGVZR3QE6G8mJ5NgqfpjrBPHyE/E51jjKxqMmeImVftFSYy947gAJz6SUaXstnkMN/PDunHZTB5p2FygkAABi96Kd7p+X3WUiqIidUon2DM9ksEjP7idVP5uI4zQBhzBKVWYtDhy/FQ1/fif74o0iG0UeGNRmOdEJAuCScc1W9JBIJdqOwbyG+SrEDa/QkqEksKpbag0cgSFJuxZBWKLyTAtEOzQclsrI6cQfSsXrLBeorJN5ybXVSSnPFXFucM6ApAiHyee90gxFI3oAU5mYAAuGXTb1PA5wpAI1EtrBCWCUld22u9+imFqsrLXYsjcSlZItJ12PcGFiF0HN5mMpGxHJNyzWRkHb4nRRuBw+EU4liBJf33ivc67XBnTiGxtk5mHm41rKBxpjQJUlDpCQ9jXISFEDK02PlFTkn5bzOWJAlMIKmmjRuIwI5BhABUzrAmkp0JLIQvoNUgJE1SCEKgTkKTB6zamBkvd8k7RfYCOm5DxEjT9oO2Ojn6+SeceAyk4h7ZSCzwfrJiIeOnUTjHfbsbLBn1xjGiIih8UISjzp+cSJVKVfLH513iFnUR41ljdoNJtMA57wgdFFVQ6M8L2DhRUi4L+kO6zzIeEnLsCBoITGccpwEuVBBQy1j4jws2oaKtox0HLdGNj1vrTolEZQSnAG8sWgbA4cEkwJWLKGFpNaEc2I1dSKlroVzkmLJ85RHiQFWci5J8ixx1pYBFtZ57ZSc9fzlOQosQ9+YdtgRMw5ffAijnR4XP6PFqNnC8rLHN+7rsb0uzlnMXPo7IBRxSWaYbBByAhlJx5Jx0qnYCZJkjMzZlAJCH9H3ETlLuXDfT6WcVx3kdtSibdt6v2IMMLZF4xs0rZOUSE5IsUfrGh2fkfROLX6QDTlEhxgDCFQRjNKQ0DqPZjRGwrC+WXXkhYdiqyCca7zweaDpcUh7hRwinJO4gKw4R0bT6iEEaVxoLZpWnC1OYdjkURyQ0zfiOXQEwv2ou0g53Jq5YwmFozI0Di3vWzMUhfDMZ89zTzC/zvOw3oPEoS3pxTrn5s+yBhxnslN5L2fGcmZ8MHPmPfVMds47KI+XrjnlqMd9p1Zg6L8HJotEWwA0uh8u/SzB6PHOYcbl0TPgYRM3Fjv37MeOPQex8dj9CCBwzCIeZnQysiAizAU2E7JpzAIFD9AZ1dLinAYEJqUsZDACwEblqCUaiyoB7b0XFCoVDgUX/0wVOeehRgCwCpuUBUweGiMQe8pIpc8Iq84Kiex1jEnIvyibp0YyaXZBli933lbkQJwHg6QRpjFOWrFzgle5/KJ+SCyEuRMxwMIgOYfN9Qm8y+DcgBuL1qvQWREcA5TrIwQ+ZhZyoZHIVpwY1ItC6pwAgGsslhrJX7tSwmhU1M0UoTVxYMRpjFoNRdoPymIaEiZ9RGYLkEXXJawnkRnPUTbllDPQBxAkJVOg4TJfhV+ZVT2YwFFSC9L0UZziwk0Cc00LWOcBlRPPDHFeCgpijBK3k8wrRQZgUKFuIicpExjkKItcykAmhy4A25OI7S5gczsiRIZ3ESfXe8TksGfvGMQTWFLnaDpFSiI2x8xompLPN6I94h36TAjbU9kgfYsUIja2pfwVOSPFUHsnEYuz1TYGzo0QMhBZOkGTLWkcD6QOHBkNCNkoMqawtxSwiJdC6rwbK89jhmwW3jm0XvoXWUR4J3o+jc0YeweLDGOBxmZxYMygR5RyKb2F9uYZrn3ll2jVkKwhwtFiQLlGDYwRnk7KwwYAS5h2AYE9nB+DjMeJEyexe5TwzXu+hH37duOig4SHvvUYlskBmdAlQkoWbCQlFUnJ7YbgyNXImKw4Z9KzKGLaBUwnASF26LsOIfSABiY5i6q1cw5NI85J0zQAGB13iDEAEKRkaTyGJSDFrmqzkFHxQV1byjpkjMF4PEbfG3jn0Pim9k/LYEVnGi3XhToXoiAcYg/mBGMlNSPtGxKQSTg4hkDOIEx7xJzQeKdk7aH7e9/3sNZgZLxosdgG0fRA4Vjo3RqWzzNzIQsloZRel0CvquLV95R6PPxBfa84KLVx7RlQlLJf1eayWrWZWZFVKt7JbGqnIOnDflYCodmhzG9988Idc9WLGPZKoguFJPsE7bQc3mkHCOpSJwjU68Tw1JfMz7fzh4ZJKCs5V/Emvb3MSqC3cOMVXPyc5+NrD9yJra2jGBtpLuZYYNUyR2PSPLiEqaLqiIKGyENTVGWrGFtBMRi1/C0l6QxaSZGQRSbreVst/8xgLYuEltoO3UnlQaDhydLhFtJTVNKb9x5dL8hN0XDIaei7wQBSDJrKYnUYGG3jESKqiBwpWiR6MA1CLBspYJmQlPkPjeKkMZbIjh8/volW1U2d1UoqZnAmpEwwYG0fMIjHlXsn0Si0yqGgQ6IfIdGUbJht49G0TqNxEYzy1qDxVkWwRP668bLI9L04kMZYGC/qm54EpcqQzdATA+wQ2aBPgA0RXR8Ro0FICV1MyKmX2apRlaXSl0ke6MhZ9VIE4fLa9oBglGOr0C2syIAzSwM9nQs1kLMWMXB1OAkiQGeN1c7ZQMpCCu2jx3YXsT0JyMiYdglbE4HOhR9FcNZhu0u498HHsL61jdGIsbIs1SIVOQgBzIwuBpQWAyEmxHGLxjtxQgxh5BuknBH6HgZaqUWM1jl4Em5OU9SAncUkSsVJZCEdO5LxORC2OUn1ThZZf9Yo1VQlYQAsqIqomzBIcRdwBLKBJcbIAWPDaC2jtRmtSzoHolSz5aSlvEnVVkWF2hoCZtaoCsfr/UiRRZ8GojtSUtsxSy8YLpsACUm0Swl9SkjUYnVtDd/45v1YXlvGvoNr2LVjjMZ49JMJdo0T7r3jDvQYo88NYm6wsnMPvLUILA6boQxL0qgws5xv7jNit4X1zU10U8ZkIptdQVVEZVsak3rv0TSNOigjcRYsYTQaqfNusTQeY9w2UoKePXIKMlKjKR9IJ+ycM8bjsaY/ZV11qmuSs6T7UipN/gy8b2EMKYIJEEkH6K4PCCnDOAlUuj4iJMB6CbSMtSAnxDBSNEN0YAbtFEEYJYi12jk5oVTUlB1hCGhniaEl4BlKjAeHo7YTOSXFY8vcOOW9b+eglO/OlZeYKtBZAjooqVyc5AKEVkwcEvAOAWoNYmfGp9+E4qDMBu6SAlJqAw1HPVE7Jx2UcgEmk4ncYHx7xwHA3CQ4/U1xRooMln4LEgN9kOjGu6Hvz6lE2/LPspnJ2RkFjlnRu8Hz1EAUy7v2w63sxoljDyF7yfsmp8JXVsLRPqQaWbWOpC9Khec0PcGoaEDpwZMzgUtX1pJjNgY5DORZZMw4H1DCmpKPiZQgK5FS00iVBiu7MiV1tjjpBi+wLYwFImO7iwBZgUt17InFKWKFUTVDBE6CMvQpa17dSEVPjJVwB2SR0udSJSGfJ9+bZeMp6AAsQkyYdEHIdw7oEmNH77Ayshi3DoYAZ4rsNES7hESPoDTRKq0DyEkXV3INmqaB8QZsCIEg11PTXI214MYiUwJxFDifSH4HaV8VIRg6IxBzH6Xvh/QvkfPxjQcH4TA4a9FRQmTGJGjag42mhHLNc8s8lC6vjTUgiuo4AaNG3GWnsV2CNsRkWXhhDIwRRdchqhd9jRQyui5KSgJyrxKEw9SFiC4kbEwSTmwRtvuMEBVtNJJiMAQ4vYeJGR0Dqc+YHNuGd0DrO4wcwTcG41GLnKNwPaIsjuWztvuMptE+Qcxovaa2mCWt5j2cI3EeUoazDiGLU544SIWLzusS2acUAWvgPInaaRKHShghDEoRlhiNM2iLCF+WKh9SHlPqk9wHK8Xw3gKtlbFO+h5ISaqmICRz663whVjSGcilJbqsDIW/UDg0EiBoK4iUESGpQRCBbNHfkI2WiJBDRMyMSSBsp4RtSlhZ24XECQ89cAwrq5cixizPsiXYljFdP4GtCWFlZS/69UcgqFqGb0YYj1fgxmOwdmYu8wK0gkeP9bj7noewvdnB2Aa+GcE4VzljUhln4J0fugJDkD/vpOcRMRC6DpQTRo0Th9JaIWOW4IgZ06mki5iB0ahFZmnoF4gQbaxpbElXBiHDOnGi+67T1EgpWxedHe57pBCxubWNPmQ0owTXNOhTL2u0yuP3oUeO2mcrQ9cFEqXcmBBzqp3ecx54fGVzn/193njeEVGF2IJMl1QIqddTk0Yzf0OKeBBbFc+b/46S3hnQlBJ4DYhqnlmLS3Va0UAp6F1Bzefgk2EHlGNJREdPdVDkPAbtk4KGnQlVOu2T+YkcdZbZ3XffjWc/+9lP92ksbGELW9jCFraw/4bdf//9uPjii7/tMeckgrJ7924AwH333YedO3c+zWfz1Nn6+jqe+cxn4v7778fq6urTfTpPmS3GvRj3hWCLcS/GfSEYM2NjYwMXXXTRf3rsOemglIqSnTt3XlA3ttjq6upi3BeQLcZ9Ydli3BeWXYjjfqLAwhOv91nYwha2sIUtbGELe4ps4aAsbGELW9jCFraws87OSQelbVu85z3vQdu2T/epPKW2GPdi3BeCLca9GPeFYBfquP8rdk5W8SxsYQtb2MIWtrDz285JBGVhC1vYwha2sIWd37ZwUBa2sIUtbGELW9hZZwsHZWELW9jCFrawhZ11tnBQFrawhS1sYQtb2Fln56SD8vu///u49NJLMRqNcNVVV+Hzn//8031K/yP753/+Z/zQD/0QLrroIhARPvShD829z8z4tV/7NRw6dAjj8RjXXHMN7rzzzrljjh8/jje84Q1YXV3F2toafvqnfxqbm5tP4Sj+a3bdddfhO7/zO7Fjxw7s378fP/qjP4o77rhj7pjpdIprr70We/bswcrKCn78x38cDz/88Nwx9913H1772tdiaWkJ+/fvxy/+4i9Kf5mz1K6//npcccUVVZzp6quvxkc/+tH6/vk45jPZe9/7XhAR3vGOd9TXzsex//qv//rQN0V/Lr/88vr++TjmYg888AB+8id/Env27MF4PMaLX/xifOELX6jvn4/r2qWXXnra/SYiXHvttQDO7/v9pBifY3bDDTdw0zT8p3/6p/zlL3+Zf/Znf5bX1tb44YcffrpP7b9tH/nIR/hXfuVX+G/+5m8YAH/wgx+ce/+9730v79y5kz/0oQ/xf/zHf/AP//AP82WXXcaTyaQe8wM/8AP8kpe8hD/3uc/xv/zLv/BznvMcfv3rX/8Uj+SJ26tf/Wp+3/vex7fffjvfdttt/IM/+IN8+PBh3tzcrMe85S1v4Wc+85n8iU98gr/whS/wd33Xd/F3f/d31/djjPyiF72Ir7nmGr711lv5Ix/5CO/du5d/6Zd+6ekY0hOyD3/4w/wP//AP/PWvf53vuOMO/uVf/mX23vPtt9/OzOfnmE+1z3/+83zppZfyFVdcwW9/+9vr6+fj2N/znvfwC1/4Qn7ooYfqzyOPPFLfPx/HzMx8/PhxvuSSS/hNb3oT33zzzXz33Xfzxz/+cb7rrrvqMefjunb06NG5e33jjTcyAP7Upz7FzOfv/X6y7JxzUF7xilfwtddeW39PKfFFF13E11133dN4Vv//2akOSs6ZDx48yL/1W79VXztx4gS3bct/8Rd/wczMX/nKVxgA/9u//Vs95qMf/SgTET/wwANP2bn/T+zo0aMMgG+66SZmljF67/mv/uqv6jFf/epXGQB/9rOfZWZx7IwxfOTIkXrM9ddfz6urq9x13VM7gP+B7dq1i//4j//4ghjzxsYGP/e5z+Ubb7yRv+/7vq86KOfr2N/znvfwS17ykjO+d76OmZn5Xe96F3/P93zP475/oaxrb3/72/nZz34255zP6/v9ZNk5leLp+x633HILrrnmmvqaMQbXXHMNPvvZzz6NZ/bk2T333IMjR47MjXnnzp246qqr6pg/+9nPYm1tDVdeeWU95pprroExBjfffPNTfs7/HTt58iSAoRHkLbfcghDC3Lgvv/xyHD58eG7cL37xi3HgwIF6zKtf/Wqsr6/jy1/+8lN49v89SynhhhtuwNbWFq6++uoLYszXXnstXvva186NETi/7/edd96Jiy66CM961rPwhje8Affddx+A83vMH/7wh3HllVfiJ37iJ7B//3689KUvxR/90R/V9y+Eda3ve3zgAx/Am9/8ZhDReX2/nyw7pxyURx99FCmluZsHAAcOHMCRI0eeprN6cq2M69uN+ciRI9i/f//c+8457N69+5y4LjlnvOMd78ArX/lKvOhFLwIgY2qaBmtra3PHnjruM12X8t7Zal/60pewsrKCtm3xlre8BR/84Afxghe84LweMwDccMMN+Pd//3dcd911p713vo79qquuwvvf/3587GMfw/XXX4977rkH3/u934uNjY3zdswAcPfdd+P666/Hc5/7XHz84x/HW9/6VvzCL/wC/uzP/gzAhbGufehDH8KJEyfwpje9CcD5O8efTDsnuxkv7Pyya6+9Frfffjs+85nPPN2n8pTYd3zHd+C2227DyZMn8dd//dd44xvfiJtuuunpPq0n1e6//368/e1vx4033ojRaPR0n85TZq95zWvqv6+44gpcddVVuOSSS/CXf/mXGI/HT+OZPbmWc8aVV16J3/zN3wQAvPSlL8Xtt9+OP/iDP8Ab3/jGp/nsnhr7kz/5E7zmNa/BRRdd9HSfyjlr5xSCsnfvXlhrT2M9P/zwwzh48ODTdFZPrpVxfbsxHzx4EEePHp17P8aI48ePn/XX5W1vexv+/u//Hp/61Kdw8cUX19cPHjyIvu9x4sSJueNPHfeZrkt572y1pmnwnOc8By9/+ctx3XXX4SUveQl+53d+57we8y233IKjR4/iZS97GZxzcM7hpptuwu/+7u/COYcDBw6ct2OftbW1NTzvec/DXXfddV7f70OHDuEFL3jB3GvPf/7za3rrfF/X7r33XvzTP/0TfuZnfqa+dj7f7yfLzikHpWkavPzlL8cnPvGJ+lrOGZ/4xCdw9dVXP41n9uTZZZddhoMHD86NeX19HTfffHMd89VXX40TJ07glltuqcd88pOfRM4ZV1111VN+zk/EmBlve9vb8MEPfhCf/OQncdlll829//KXvxze+7lx33HHHbjvvvvmxv2lL31pbhG78cYbsbq6etrieDZbzhld153XY37Vq16FL33pS7jtttvqz5VXXok3vOEN9d/n69hnbXNzE9/4xjdw6NCh8/p+v/KVrzxNNuDrX/86LrnkEgDn77pW7H3vex/279+P1772tfW18/l+P2n2dLN0/6t2ww03cNu2/P73v5+/8pWv8M/93M/x2traHOv5XLONjQ2+9dZb+dZbb2UA/Nu//dt866238r333svMUo63trbGf/u3f8tf/OIX+Ud+5EfOWI730pe+lG+++Wb+zGc+w8997nPP6nK8t771rbxz507+9Kc/PVeWt729XY95y1vewocPH+ZPfvKT/IUvfIGvvvpqvvrqq+v7pSTv+7//+/m2227jj33sY7xv376zuiTv3e9+N9900018zz338Be/+EV+97vfzUTE//iP/8jM5+eYH89mq3iYz8+xv/Od7+RPf/rTfM899/C//uu/8jXXXMN79+7lo0ePMvP5OWZmKSV3zvFv/MZv8J133sl//ud/zktLS/yBD3ygHnM+rmvMUll6+PBhfte73nXae+fr/X6y7JxzUJiZf+/3fo8PHz7MTdPwK17xCv7c5z73dJ/S/8g+9alPMYDTft74xjcys5Tk/eqv/iofOHCA27blV73qVXzHHXfMfcaxY8f49a9/Pa+srPDq6ir/1E/9FG9sbDwNo3lidqbxAuD3ve999ZjJZMI///M/z7t27eKlpSX+sR/7MX7ooYfmPueb3/wmv+Y1r+HxeMx79+7ld77znRxCeIpH88TtzW9+M19yySXcNA3v27ePX/WqV1XnhPn8HPPj2akOyvk49te97nV86NAhbpqGn/GMZ/DrXve6OS2Q83HMxf7u7/6OX/SiF3Hbtnz55ZfzH/7hH869fz6ua8zMH//4xxnAaWNhPr/v95NhxMz8tEA3C1vYwha2sIUtbGGPY+cUB2VhC1vYwha2sIVdGLZwUBa2sIUtbGELW9hZZwsHZWELW9jCFrawhZ11tnBQFrawhS1sYQtb2FlnCwdlYQtb2MIWtrCFnXW2cFAWtrCFLWxhC1vYWWcLB2VhC1vYwha2sIWddbZwUBa2sIUtbGELW9hZZwsHZWELW9jCFrawhZ11tnBQFrawhS1sYQtb2FlnCwdlYQtb2MIWtrCFnXW2cFAWtrCFLWxhC1vYWWf/H5ptlRtoTq+RAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGHCAYAAACar6kjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABe9ElEQVR4nO3deXRU55km8OfWrpJU2qu0IAmB9p1FSGI1SIAxZpVB0CQhaU9y4saZJO7JOJ5JJ+6kO+Sk+0z2OJN0xk5OYoOxA4kBgwUYMEYsEggEYl8sAdq30lqL6s4ftKpdriqhrVY9v3PqHOu7t6reK+HSo+9+iyCKoggiIiIiLyLxdAFEREREn8WAQkRERF6HAYWIiIi8DgMKEREReR0GFCIiIvI6DChERETkdRhQiIiIyOswoBAREZHXYUAhIiIir8OAQkRERF7HowHlV7/6FaZPnw6VSoXCwkKcO3fOk+UQERGRl/BYQNm9ezdeeuklfO9738OFCxeQl5eHlStXoqWlxVMlERERkZcQPLVZYGFhIQoKCvDLX/4SAGCxWBAfH4+vfe1r+Pa3v+2JkoiIiMhLyDzxpkajEdXV1XjllVesbRKJBKWlpaisrLQ732AwwGAwWL+2WCzo6OhAREQEBEFwS81EREQ0MaIooqenB7GxsZBIRr6J45GA0tbWhqGhIeh0Opt2nU6H69ev252/c+dO/PM//7O7yiMiIiIXamhowLRp00Y8xydm8bzyyivo7u62Purr6z1dEhEREY1TcHDwE8/xSA9KZGQkpFIpmpubbdqbm5sRHR1td75SqYRSqXRXeURERORCoxme4ZEeFIVCgTlz5uDo0aPWNovFgqNHj6K4uNgTJREREZEX8UgPCgC89NJL2L59O+bOnYt58+bhpz/9Kfr6+vClL33JUyURERGRl/BYQCkvL0drayu++93voqmpCfn5+Th06JDdwFkiIiKaejy2DspE6PV6hISEeLoMIiIiGofu7m5oNJoRz/GJWTxEREQ0tTCgEBERkddhQCEiIiKvw4BCREREXocBhYiIiLwOAwoRERF5HQYUIiIi8joMKEREROR1GFCIiIjI6zCgEBERkddhQCEiIiKvw4BCREREXocBhYiIiLwOAwoRERF5HQYUIiIi8joMKEREROR1GFCIiIjI6zCgEBERkddhQCEiIiKvw4BCREREXocBhYiIiLwOAwoRERF5HQYUIiIi8joMKEREROR1GFCIiIjI6zCgEBERkddhQCEiIiKvw4BCREREXocBhYiIiLwOAwoRERF5HQYUIiIi8joMKEREROR1GFCIiIjI6zCgEBERkddhQCEiIiKvw4BCRCMSBGHSHv7M0fUGBgYiISEBgiAgNTUVEolkSnwviCaDzNMFEJFnCYKAhIQEdHR0IDIy0tqekJAAAMjPz5+U97FYLDhy5AgGBwetbW1tbejp6ZmU13eXhIQESKVSm7Zp06Zh9uzZdudKpVLIZDIYDAao1Wr09/dbjz18+BBmsxmXL1/GwMAATCYTgoODAQCdnZ3o6upy6XUQeTtBFEXR00WMlV6vR0hIiKfLIPIpgiBAqVQCAJRKJZYuXQqJRAKJRIL09HQ0NTUhLi7OrX/dP3z4EO3t7davOzo6cObMGevXZrMZZrMZcrkcoijCbDa7rTbg8fdJEAQkJiYiKysLgiAgPT0dcrl8Ut+nt7cXRqMR4eHhAICmpia0tLTgwoULuH///qS+F5E36O7uhkajGfEcBhQiPyeVSpGbmwuNRoMFCxYAeBxWZDKZ191qsFgsNiHk1q1buHv3LvLy8mA0GvGXv/zFphfCleLi4lBeXg6VSgWJRAKZzP0dzv39/di9ezc++eQTt783kSsxoBBNITKZDKGhoWhvb4cgCJg/fz7S0tIgkUgQExMDicT3h5zdvHkTFRUVAIDCwkL09PSgrq7OenxoaAiDg4OQy+Xo7u4e8+sHBwdDpVIhKCgIGzZseOIHqDv09vbinXfeYU8K+RUGFKIpYvr06Zg1axays7Nx/vx5yGQyzJkzZ1J7SIZfSxRF60DP4Y8Pd32MPOl9BgcH0draCo1GgytXruDRo0doaGhARETEiL/gZ8yYgRkzZiAlJQVarRYAvKp3qbe3F3v27EF9fb3bvtdErsSAQjQFzJgxA5s2bUJAQMCkv7ZcLsf06dMBALNnz4bRaMSVK1eQlZWFpKQkDA4O4v79+2hqakJvb++oX7ezsxNtbW2TXu9nGY1GGI1GSKVS7NmzB3fv3rUei4qKglQqRVBQEJ577jmoVCqX1zMRg4OD+OSTT/C3v/0NfX19ni6HaEIYUIj83IwZM7Bhwwbr7I/xkkql1gG0ERERKCoqAvB4kOiMGTMmvTehvb0dzc3N1q/PnTuH1tZW69dmsxlGo3FS37Onpwd79+7FgwcPEB4ejs2bN0MqlVpDymgFBATYfD9kMhlKSkpGPUalu7sbp06dQmxsLEwmk/W6jUbjqAYB37x5E++++y4MBsOoaybyNgwoRH5KrVYjNzcXS5YsGXPPSX5+PhQKhU2bTqdDbm4ugMe3Nj47jdbVhoaGbG5dPHz4EHV1dWhoaEBjY+Okvs/9+/cRERGB0NDQUT9Pq9Vi+vTpkEgkWLRokd33TyqVjjrEiaKIoaEhm1tmAHD16lVcunQJ9+7de+Lz79y5g3fffRcDAwOjvgYib8KAQuRjNBoN9Hq9TZtUKkVUVBQAQKFQYMWKFVAqlda2JwkJCUF6ejry8vIAPP5l6+4AMl56vd56O+PevXuora2FXq9320yeqKgozJs3DykpKW75zOnv78fDhw9x7NgxtLS0wGKxODxPFEXcvHkT+/btY0ghn8SAQuQj5HI5Fi9ejLS0NBw9ehQ3btyAXC7HkiVLEBQUZA0XwJMHbwqCAIlEYh34mZycjIiICK8a9Dkewx9Vn3zyCZqamhyeU11djc7OToii6PSX+5MIgoCgoCAsWLDA2tvk7u+dKIqoqalBVVUVGhsbnQ6M3b9/P6qqqtxaG9FkYEAh8lJBQUGIj48H8LiHY9GiRVCr1RAEAUajER988AGSk5ORlpY26l+OAQEBSExMRFxcnPUX62dvRfi7gYEBDA0Nob29HadPn8atW7fGNOslJiYG2dnZyM/Ptxtr4gmDg4O4c+cO9u/fb7MC77De3l784he/4HgU8jkMKEReRq1WQyaTYd26dZg5c+akvKYgCMjLy8OsWbOsy9PT4/Emd+/ehV6vx4kTJ2A2m0e8HRIfH4+ysjKv/Gypra3Fe++9B5PJZNNusVhw7NgxnDp1ykOVEY0PAwqRl5BKpSgoKEBhYSE0Go1107iJCg8PR15eHhYsWOAz40rcbfh2T1tbG6qqqlBdXW3XqzJt2jSUl5ePaTaPO4miiGvXrmHfvn12IaWxsRFvvfWW3dglIm82moDCzQKJXCw7OxtLlixBZGTkpN0y0Gq1mDVrFjIyMhjWn2B4VpJOp8OqVasQERGBixcvoqWlBQEBAVi9ejUSExO9NpwAj68hLS0NWq0WDx8+tDkWExOD8PBwBhTyOwwoRC6UkZGBNWvWWNcYGQ+NRoNFixbZvW5gYOBEy5tyJBIJioqKkJOTg2vXriE8PBwzZszwdFmjptFo7AIKAOTl5XEpfPI7Y96c4+TJk1izZg1iY2MhCAL27dtnc1wURXz3u99FTEwMAgICUFpailu3btmc09HRgW3btkGj0SA0NBTPP//8mFahJPIFWVlZ2Lhx44TCSWhoKLZs2YI5c+Zg7ty51gfDycQEBgZi7ty5PhVOADhdyC0xMdHNlRC53pgDSl9fH/Ly8vCrX/3K4fEf//jH+PnPf47f/OY3OHv2LAIDA7Fy5UqbEejbtm3D1atXUVFRgf379+PkyZP4yle+Mv6rIPIymZmZePbZZyGXy52eo1arMWvWLHzuc5/D5z73OSxbtsy6GqlUKsWSJUuwdetWxMTEeHw2CXkHZ+OMgoODrQvtEfmLMd/iWbVqFVatWuXwmCiK+OlPf4rvfOc7WLduHQDgj3/8I3Q6Hfbt24ctW7bg2rVrOHToEM6fP4+5c+cCAH7xi1/gmWeewb//+78jNjZ2ApdD5HkSiQQZGRkj7u0SHh6O8vJyREVFWcPHjBkzEBwcjI6ODoSGhmLWrFkMJmQlCILTVYPNZjN6enrcXBGRa03q/uv37t1DU1MTSktLrW0hISEoLCxEZWUlAKCyshKhoaHWcAIApaWlkEgkOHv2rMPXNRgM0Ov1Ng8ib2WxWPDee+85HCsAPA4nW7ZsgVartQkggiAgPz8fy5Ytw+zZsxlOyIYgCE7/gFMoFKNeWZjIV0xqQBle3VGn09m063Q667GmpibrdubDZDIZwsPDna4OuXPnToSEhFgfwwtcEXmr2NhYh7NrwsLCrD0nRGMhCILTsUeDg4Oor693c0VErjWpAcVVXnnlFXR3d1sfDQ0Nni6JyKnp06ejvLzc4Q7Da9euZTihcbFYLE4/+wwGg9M/8Ih81aQGlOjoaACw2UZ9+OvhY9HR0WhpabE5bjab0dHRYT3ns5RKJTQajc2DyBtFRUWhrKzM4VgBpVIJlUrFWzc0Lr29vaipqXF47OOPP3ZvMURuMKkBJSkpCdHR0Th69Ki1Ta/X4+zZsyguLgYAFBcXo6urC9XV1dZzjh07BovFgsLCwsksh8jt8vLyHPacyOVyrF+/3u72J9FonT592uFS/U1NTbh9+7YHKiJyrTHP4unt7bX5n+HevXuoqalBeHg4EhIS8I1vfAP/8i//gpSUFCQlJeGf/umfEBsbi/Xr1wN4vMDU008/jS9/+cv4zW9+A5PJhBdffBFbtmzhDB7yeampqQ7bS0pKxrTxH9GnGQwGdHd3OzzW3Nzs9BiRLxtzQKmqqsLSpUutX7/00ksAgO3bt+ONN97A//yf/xN9fX34yle+gq6uLixcuBCHDh2ymXL55z//GS+++CJKSkogkUhQVlaGn//855NwOUSek5WV5fD2Y1RUFMMJTciRI0dw/fp1T5dB5FbcLJBogkJDQ5GdnY2nnnrKutDapy1duhSLFy/2QGXkL37729+isbHR4bFLly5h7969bq6IaGK4WSCRi2k0GmzevNnh7UmJRIIFCxZg/vz5HqiM/EV/f7/TJe47Ozs5QJb8FgMK0TgIggCNRoPy8nLExMQ4PGf+/PlYunQpb+3QuBkMBvzlL39Ba2urw+MfffSR3axIIn/BgEI0RjExMcjJyUFeXp7DhbMEQcDixYuxcOFChhMaF1EUce/ePZw5cwZ37txxeM7AwAAHx5JfY0AhGoPExESUlZU5vXcqkUhQVFSERYsWOd3YjcgZk8kEg8GA69ev4/Dhw05v7RiNRhw4cMBpeCHyBwwoRKOgUqmQn5+PRYsWOV1ufLhnpbCwEBKJTyzSTF5CFEXcvXsXly5dQl1dHSwWCxzNXxBFEUajEfv27cO1a9c8UCmR+zCgEI1AEAQUFBSgoKAAkZGRTm/ZxMbGYvPmzZxdRmNiNpvR0tKC9vZ2HDx4EIODg07PFUURNTU1OH36tNMxKUT+hAGF6DMkEglmzpyJ5ORkSKVSzJo1y+ntGolEgujoaGzatInhhGxYLBbo9XqcPn3a2paYmIjo6Gjrzu1GoxGXLl164msNz9apqalxetuHyN8woBB9ikajQVlZGWJiYqBQKEY8V6lUYs2aNUhOToZSqXRTheQLhoaGcOTIEdTU1Nj0ily8eBEymWzEnpLP6ujowO7du+32OCPydwwoRAACAwOhUCiwYcMGJCQkjHiuIAjIycnBnDlznnguTT1msxknT57E2bNn7caRmM3mMfWAdHV1MZzQlMWAQlNebGwsysvLERwcPKppwVlZWVizZo3DVWOJGhoa8NFHH43ruaIoYmBgABcuXAAAXLlyheGEpix+wtKUFhsbiy1btjxxyeVheXl5WLVqFcMJOTXe3UMsFgvOnDmD8+fPo7Ozc5KrIvI9/JSlKUsQBCxZsuSJ4UQikUCj0WDRokXIzs5+4tgUotESRREmkwkdHR2orKxEbW0tLBaLp8si8goMKDRlLV68GMnJySOeI5FIsHz5csyaNQsKhYIrw9KIRFHEgwcPRjynv78ft27dAvB4Ndjjx4/DYrHAaDS6o0Qin8GAQlNObGwsli9fjvj4+BFXe5XJZFi8eDHmzZvHhddo1C5evGjX1tDQgGPHjgF4vL/Oo0eP3F0Wkc9hQKEpZXhA7GjWLFm6dCmKi4vZa0JjkpqainPnztm0BQQEoKenB21tbR6qisj38M9CmjKUSuWowolOp8Py5ctRWFjIcEJjIggC8vPz7bZDiIyMRFpamoeqIvJNDCg0pcjl8hGPT58+Hdu2bcP8+fO52R+NS0xMDFJTU+3a58+fzwX9iMaAAYWmDIPBgOPHjzs9npiYiE2bNiE4ONh9RZFfWrZsmd1UdLVajUWLFnmoIiLfw4BCU0ZYWBgKCgrs2lUqFcrKylBWVga1Wu2BysjfqNVqFBYW2rQJgoDc3FyEhYV5qCoi38KAQlNCeHg4tm7disjISJt2hUKBsrIyZGVlseeEJo1EIkFWVpbdGjvBwcG8zUM0Sgwo5PeGw4lWq7Ub9BobG4ukpCQOhqVJFxMT4zD0Pvvss6NeuZhoKmNAIb8WGBiI8vJyREVFOTw+b948DoYll5k7d67N14IgYNq0aZzRQzQKDCjk1xQKBbRarafLoClq5syZiI6O9nQZRD6JAYX8ml6vt+4M+1kKhQIqlcrNFdFUEhwcjBkzZti1FxUVOe3VI6LHGFDIrw0NDeHSpUsYGBiwO5aYmIjp06e7vyiaUlJSUuwGxkZERGDJkiUeqojINzCgkN+bNm2aw5kTd+/exe3btz1QEU0l8fHxT1wgkIjsMaCQXwoMDMRzzz2HzMxMzJ492+FmfzqdjuMDyOUkEonD9XdkMhkHaBONgJsFkt8JCgrC5s2bER8fj8zMTIdTiIcXzeLaJ+RqgiBAp9PZtaelpSExMRF37971QFVE3o89KOR31q9fj4SEBAiCAIlEYhdQZDIZSkpK7KaAErmKSqWyG5AtCAKeeuoprsFD5AQDCvmdkRbBEgQBS5Ys4WaA5FbOBmTrdDqHGwsSEQMKTTG5ubkoLi7mX63kdjExMXb/7gRB4ABaIicYUGjKUCgUKCwsZM8JeYSjwdqDg4O4c+eOhyoi8m4MKDRlpKSkcFVZ8irBwcEoKirydBlEXokBhaaMqKgo3tohj1Gr1SguLrZpEwSB/yaJnGBAoSmjqqoKQ0NDni6DpiiJRAK1Wm3XzluORI4xoJBf0Wq1TvfXWbp0KWQyLv1D3qWwsBBhYWGeLoPI6/DTmvxCaGgoioqKkJqa6nSasUwmY3c6eZRKpYJUKrXpyZNKpfx3SeQAe1DI56WmpuKFF15AYWEhwsPDnZ7HXwLkafn5+YiMjLRrT09P90A1RN6NAYV8WkZGBjZu3AilUjliAJk2bRrS0tLcWBnR6AiCwMXaiBxgQCGfNWPGDKxZs8bpmJNP0+v1aG1tdUNVREQ0GRhQyGdZLBaIojiqc8PCwhATE+PiioieLDEx0a4tODgYERERHqiGyHsxoJDPun//Ph48eGD9emhoCK2trTCbzXbnSiQSu1U8idxNEATk5eXZtUdERCA+Pt4DFRF5L35ik0/729/+hvv370MURVRVVeH999+H0Wj0dFlERDRBnGZMPq2vrw+7d+/G4sWLER0djby8PIdjUrjEPRGRb2FAIZ8niiK0Wi2SkpKcnlNYWOjGioiIaKJ4i4d83vTp00e8fx8XFwelUunGioiIaKIYUMjn3bhxA1VVVU6PJycnO9wDhcibZGdncysGok9hQCG/MNKGa5y9Q97G0aKCV65ccTgDjWiq4ic3+TxRFHH//n2Hx9LT0zn+hLyKTqdzONWYiGwxoJBfcDbGZN68eRx/Ql5FKpU6vJWTlZXFWzxEn8KAQj5PKpWipKTE02UQTUhdXR1v8RB9ypgCys6dO1FQUIDg4GBotVqsX78eN27csDlncHAQO3bsQEREBIKCglBWVobm5mabc+rr67F69Wqo1WpotVp861vf4v+YNG4hISEO//JMSUlBXFycByoiGjuNRsMdt4k+ZUwB5cSJE9ixYwfOnDmDiooKmEwmrFixAn19fdZzvvnNb+K9997Dnj17cOLECTx69AgbN260Hh8aGsLq1athNBpx+vRp/OEPf8Abb7yB7373u5N3VTSlFBUVISAgwKZNKpVi7ty5UCgUHqqKaGzmz58PuVzu6TKIvMaYbngeOnTI5us33ngDWq0W1dXVWLx4Mbq7u/H73/8eb775JpYtWwYAeP3115GRkYEzZ86gqKgIH3zwAerq6nDkyBHodDrk5+fjBz/4AV5++WW8+uqr/IVCY6LVajF79my7dolEwr1NiIh82ITGoHR3dwMAwsPDAQDV1dUwmUwoLS21npOeno6EhARUVlYCACorK5GTkwOdTmc9Z+XKldDr9bh69arD9zEYDNDr9TYPIgAIDAx0OMWYvSdERL5t3AHFYrHgG9/4BhYsWIDs7GwAQFNTExQKBUJDQ23O1el0aGpqsp7z6XAyfHz4mCM7d+5ESEiI9cG/jGlYaWmpw/v2ERERI66NQkRE3m3cAWXHjh24cuUKdu3aNZn1OPTKK6+gu7vb+mhoaHD5e5Jv4KBC8hcdHR0QRdHTZRB5jXFNun/xxRexf/9+nDx5EtOmTbO2R0dHw2g0oqury6YXpbm5GdHR0dZzzp07Z/N6w7N8hs/5LKVSybUsiMgvdHZ24t69e3btZ8+ehclk8kBFRN5pTD0ooijixRdfxN69e3Hs2DG73WPnzJkDuVyOo0ePWttu3LiB+vp6FBcXAwCKi4tRW1uLlpYW6zkVFRXQaDTIzMycyLUQEXm9gYEBtLe3e7oMIq83ph6UHTt24M0338Rf//pXBAcHW8eMhISEICAgACEhIXj++efx0ksvITw8HBqNBl/72tdQXFyMoqIiAMCKFSuQmZmJz3/+8/jxj3+MpqYmfOc738GOHTvYS0KTIioqCqmpqZ4ug4iIJmBMAeW1114DADz11FM27a+//jq++MUvAgB+8pOfQCKRoKysDAaDAStXrsSvf/1r67lSqRT79+/HCy+8gOLiYgQGBmL79u34/ve/P7EroSknLi4OwcHBdu1KpdJhOxER+Y4xBZTRDOBSqVT41a9+hV/96ldOz0lMTMTBgwfH8tZEdpwFFCIi8n3ci4f8jsVi4dYJ5FNaW1ud7shNNFUxoJBPkslkNjPIPk2v1ztdU4fIk0RRdBhE+vr60NXV5fZ6iLwZ9/Ymn6NQKLBixQrk5OQ4PB4YGIiIiAg3V0U0OpcvX/Z0CUQ+gT0o5HPUajViY2OdHm9ubkZdXZ0bKyIiosnGgEI+p6urC7t27eJtHCIiP8aAQj5Jr9fj7bffRkdHh6dLIRo1s9kMi8Vi0yaKIgwGg4cqIvJeDCjkszo7OzE4OOjpMohG7cKFC2htbbVrr6io8EA1RN6NAYWIyE0+23vypHaiqYyzeMhnSCQS6+7FeXl5MBqN3M2YiMhPMaCQV5s5cyZkMhlaW1uxYcMGhIeHA3i8nL0oipBI2AlIvsFsNttskjqsra0NRqPRAxUReTcGFPI6MpkMS5cuhVarRWJiIqRSKdrb26HVakf9GoODgxBFkT0s5DUGBwdRW1tr137t2jX09vZ6oCIi78aAQl4jPz8fgYGB0Ol0yMnJsQkXYwknAHD8+HGEhYUhMzNzssskmjSDg4Oor6/3dBlEXokBhTxCq9VCpVJh+fLlUKlUAICwsDDIZJPzTzI0NBQ6nW5SXotoMpw4cQJDQ0M2bYODg7hz546HKiLybgwo5DaCIGD27NmIjY1FWloagoKCXPI+kZGRKC8v53L35FV4G4dobBhQyC20Wi0yMzOxaNEiSKVSl7yHTCZDeno6nnrqKYYT8ip6vR7d3d127Q8ePIAoih6oiMj7MaCQy+l0OpSXl1tn4IxXUFAQZDIZtFotCgsL7Y7LZDLEx8dzYCx5ncbGRjQ2Ntq1X7x40QPVEPkGBhRyqeFwEhYWNubnJiQkYPr06dav8/PzERISAkEQGEKIiPwcAwq5jFarxZYtW0YMJwEBAdBqtZg5cyaysrJsjqlUKqjValeXSeQRfX19GBgY8HQZRF6LAYVcIiwszGnPiVQqRWhoKBYtWgSNRoOkpCQPVEjkHhaLBTU1NXbt9fX13JGbaAQMKOQSGRkZDgeqJiYmIi8vD1lZWZDL5bxVQ35PFEU8ePDArl2r1SIsLAzt7e0eqIrI+zGg0KQLCAjA3Llz7dpjYmKwadMmBAYGeqAqIu/S2NjIcEI0Am5kQpNKqVRi06ZNDm/tDK8USzSVCIKA9PR0h+1E5BwDCk0qhUKBxMREuw/f8PBwLjtPU5JEIkFycrJde0pKChITEz1QEZFvYEChSTVnzhyHOwzn5OS4bOVYIl/U1taGzs5OT5dB5LUYUGhSxcbGsuuaaBQUCgXkcrmnyyDyWgwoNGmUSiWUSqVde3BwMGbPnu2Bioi8V1NTEwfJEo2AAYUmTWBgoMOF1WQyGYKDgz1QERER+SoGFJo0HR0dvKdONErBwcFcKZloBAwoNGmkUilkMvuldXp7e3H16lUPVETkeaIowmAw2LXHxsYiKirKAxUR+QYGFJo04eHhCA0NtWs3mUxoa2tzf0FEXsBiseDo0aN27e3t7eju7vZARUS+gQGFJk1rayuDCJEDFovFrq23txf9/f0eqIbINzCg0KSqra11+GF8+/ZtfhgTfcrg4CCMRqOnyyDyWgwoNKlu376N5uZmu/aHDx86vA9PRETkCAMKTaqBgQFcuXLF4bGzZ8+6uRoiIvJVDCjkNjdv3kRLS4unyyAiIh/AgEKTTq/Xw2Qy2bV3dnaiqanJAxUREZGvYUChSVdbW4sPP/zQ6TGz2ezmiog8Z2hoyGHb5cuXPVANke9gQCGXEEXRYfuDBw8czvIh8lcff/wxent7bdosFgsaGho8VBGRb2BAIZfo6enB4OCgp8sg8jj2GBKNDwMKucSVK1e4vD1NeaIoOuxNvHPnjsNxWkT0XxhQyK0MBgM++ugjT5dB5BYdHR24cOGCXbtSqYQgCB6oiMh3MKCQW4miiJ6eHo5DoSlhcHDQ4QKFdXV11h4UmUzGsELkAAMKuV1tbS3OnDnjdCAtkb+oqKhweiwsLAyRkZFYv3498vLy3FgVkW+QeboA8l+VlZWYPn06IiIibNotFgs+/PBDSCQSFBQUQCqVeqhCItdyNkB2/vz5KCwshEQiQVhYGJKTkyEIAmpqahjcif4Te1DIZdra2nD8+HGHH7hmsxkVFRV20y+J/MWDBw/Q3d3t8Nhw70l4eDgEQYBKpcLq1auRk5Pj5iqJvBcDCrnU9evXUV1d7TCkWCwWvPfeewwp5JeamprG9G9bJpPh2WefxaxZs1xYFZHvYEAhlzKZTDh8+DBqamocDoy9c+cO7ty5w25tIgAKhQJPP/00cnNzOXCWpjwGFHI5k8mE9957DzU1NQ6PHzp0CJ988ol7iyLyUkqlEuvWrUNubq6nSyHyKAYUcguLxYJDhw7h1q1bdscGBwdx4cIFLlxF9J+kUilWrVqF/Px8T5dC5DEMKOQ2QUFBCAkJcXistrYWJ06ccHNFRK4THx+PsLAwh8ckEgkkkpE/flUqFVasWAG5XO6K8oi8HgMKuU1XVxeuXLnidJG2uro6dHZ2urkqItfQ6XTYsmULwsPDERQUhPT0dOtj48aN2LJlCwIDA0d8jYCAAKxfvx4qlcpNVRN5jzEFlNdeew25ubnQaDTQaDQoLi7G+++/bz0+ODiIHTt2ICIiAkFBQSgrK0Nzc7PNa9TX12P16tVQq9XQarX41re+xc20pgiLxYKPP/7Y6TbznZ2duH37tpurInIdrVaLLVu2YMuWLSgvL7c+srKykJKSgjVr1ow4GFYQBGRlZWHr1q3IycnhwFmaUsYUUKZNm4Yf/ehHqK6uRlVVFZYtW4Z169ZZN4X75je/iffeew979uzBiRMn8OjRI2zcuNH6/KGhIaxevRpGoxGnT5/GH/7wB7zxxhv47ne/O7lXRV4rNTUVWVlZTo/fv3+fY1HIr0RFRSEuLs7hsYSEBMTHxz/xNRITE7Fu3TpkZ2dPdnlEXksQJzi/Mzw8HP/2b/+G5557DlFRUXjzzTfx3HPPAXi8BkZGRgYqKytRVFSE999/H88++ywePXoEnU4HAPjNb36Dl19+Ga2trVAoFKN6T71e73QsA3m3ZcuWYeHChU7vv8tkMnzzm9+EWq12c2VEntHX14c9e/aMaibb4OAg3nrrLc56I5/X3d0NjUYz4jnjHoMyNDSEXbt2oa+vD8XFxaiurobJZEJpaan1nPT0dCQkJKCyshLA46XPc3JyrOEEAFauXAm9Xm/thXHEYDBAr9fbPMg3nT59esRbekNDQ7hy5YobKyLyrMDAQCxdunRU56pUqlH/IUfk68YcUGpraxEUFASlUomvfvWr2Lt3LzIzM9HU1ASFQoHQ0FCb83U6HZqamgA8Xlnx0+Fk+PjwMWd27tyJkJAQ62M0XaLknYaGhkb8WYuiiNraWvT09LixKiLPUqvVdp+dzji7XUTkb8YcUNLS0lBTU4OzZ8/ihRdewPbt21FXV+eK2qxeeeUVdHd3Wx8NDQ0ufT9yHZPJZO3OdnZ38cGDB2hpaXFzZUSeExUVhU2bNiE4OPiJ586fPx+ZmZluqIrIs8YcUBQKBZKTkzFnzhzs3LkTeXl5+NnPfobo6GgYjUZ0dXXZnN/c3Izo6GgAQHR0tN2snuGvh89xRKlUWmcODT/Id/X09ODAgQMjnnPz5k0uf09TSkxMDLZs2fLEz7fBwUFcv37dTVURec6E10GxWCwwGAyYM2cO5HI5jh49aj1248YN1NfXo7i4GABQXFyM2tpam7+OKyoqoNFo+BfBFBEZGYnFixfj7/7u70Y87+rVq1wThaYUQRAQGxuL8vJyJCQkQCqVerokIo8aU0B55ZVXcPLkSdy/fx+1tbV45ZVXcPz4cWzbtg0hISF4/vnn8dJLL+HDDz9EdXU1vvSlL6G4uBhFRUUAgBUrViAzMxOf//zncenSJRw+fBjf+c53sGPHDiiVSpdcIHleSEgI1q5di5kzZ+Lv/u7vsGzZMoSGho64pkNfXx+qqqqcLupG5K9iY2Oxfft2p4u4qVQqZGRkuLkqIveTjeXklpYWfOELX0BjYyNCQkKQm5uLw4cPY/ny5QCAn/zkJ5BIJCgrK4PBYMDKlSvx61//2vp8qVSK/fv344UXXkBxcTECAwOxfft2fP/735/cqyKvERYWhs2bNyM6Oho5OTljWrb73Llz0Ol0yMvLc2GFRL5FoVAgJiZmxJmPRP5gwuugeALXQfFuKpUKq1evRnBwMIKCghAZGTmq50mlUshkMhgMBmtbZmYmNm3a5KpSibySxWLBz372M4dLKvT19eH3v/89Ojo6PFAZ0eQYzTooY+pBIXoSpVKJTZs2YcaMGaNelnv4vCVLlkCr1eLdd9+FyWTC9OnTsXr1aleWS+RzhoaG7CYjEPkjBhSaNIGBgVi/fv2owolcLodarYZKpUJBQQFCQ0Mxffp0SCQSbNiwAVevXsUzzzzDFWWJiKYo7mZMk0KpVGL9+vVISUkZVc+JRCKBXC5Hc3Mz9u/fj/fffx8dHR0QBAEZGRl47rnnGE5oSnO2YmxAQMCI+1kR+QsGFJqwgIAAbNq0CcnJySOel5iYaP1vg8GAtrY269ft7e3YtWsXF2gjwuPbnp/eNuTT5HI58vLykJ6e7uaqiNyLAYUmJCAgAOvXr0dycrLDnhOlUon4+HisWbPmibsUd3R0cBM0ov800p5UycnJ2LBhA+bOnTvqsV5EvoZjUGjc5HI5ysrKMHPmTKfH16xZg46ODrz33nturo7Itz1pSr5SqcSqVatgNptRU1PjnqKI3IgBhcZNJpMhMTHR4V9w+fn5WLp0KS5cuIBTp06N+jVbW1sxNDTEVTRpShNFEXfu3HnieYIgOF3QjcjXMaDQuCQmJmLBggV2QUIQBGRnZ2P58uW4ePEiPvroozGtBltVVYXg4GAsWrRosksm8itDQ0M4c+YMKisrPV0KkUswoNCYxcfHY/PmzQ7/csvJycGaNWtw+vRpHD9+3G7Dv+Gvnd03F0URdXV1yMnJGfX280RTidFoxMWLF9HV1YUzZ85wU03yWwwoNCYhISEoLy932q2ckZGByspKnDx50u6D02AwoKKiAg8ePMCGDRug0+kcvkZTUxPu3r2LWbNmcQAg0acMDAzgwIEDIw6gJfIXnMVDY2IwGNDU1OTwmFarxZ07d3Ds2DEMDQ3ZHBsaGsKhQ4dQVVWF5ubmJ87oOXXq1IT/MrRYLLh8+TJMJpNdPUTe7NatWxgcHLRpGx6XwnBCUwV7UGhMBgcH8ejRI4drnrS3t6O9vd2u3Wg04uDBg7h06RIkEglKS0sRExPj9D00Gg3Wr18/od4Ti8WC48ePo7KyEocPH0ZkZCTmz5+PlJQUSCTM5eTdHjx4AKPRaNPW2NiIw4cPe6giIvdjQKFJ46yXorW11ToNcuHChSgqKnIaEtRqNdauXYvQ0FAYDAaoVKpx1XL27Fl8/PHHsFgsMJvNqK+vx4MHD5CUlIRFixYhOjoaSqVyXK9N5Ep6vd7hTsWXLl1CT0+PByoi8gwGFHK5+/fvA3g8fiUzM9NpOAkMDMTcuXNx6dIlXL16FYmJidi0aRMCAgJG/V6iKOLixYu4cuWK3ewhi8WCO3fu4O7du0hJScHGjRsZUsirDA8S7+zstGnv7e3Fo0ePPFQVkWewr5tcqq+vD/fv37cOrh3p1o7BYMDZs2dRW1sLi8WCe/fu4S9/+Qv6+vpG9V5msxnHjx/HwYMHR/wwF0URN2/exF//+lf09/eP+ZqIXOX69es4evSoXXt9fT0aGho8UBGR5zCg0JiNZRG1u3fvoqWlBeXl5YiNjXV4TmZmJgRBgNlsthsYePv2bezdu/eJg2otFgtOnz6NkydPjnpA7LVr1/D++++PaZ0WIlcZHBxEVVUVzGazTfu9e/ewf/9+D1VF5Dm8xUNjEh4ejnnz5o36/IyMDKSkpIx4K+XmzZsjzthpaGgYMURYLBacOHFiTCvWDuMqnORpwz1658+fx927d22Omc1mXL58mT19NCUxoNCY9PT04OLFi5g7d+6oZsPIZDLIZCP/M/vsX4yfZTKZcOrUKSxZssTutfR6PYxGI86fPz+unpCgoCCutUIeYTQa0dbWhqNHj6K+vt7u/wOTyYRjx45xnx2ashhQaExMJhMOHTqEtLQ0hISEjOs1YmJi0NvbO+oZCaIo4tSpU7BYLCgtLYUgCBBFEY8ePcLu3bvR29s7rjVTIiIikJaWxoBCbjc0NGSdeu+IxWJBRUUFzp075+bKiLwHx6DQmE1kATWdTofY2NhxdVlXV1fj1q1bAICHDx9i165d6OnpGVc94eHhKC8vR1RU1JifSzQRBoMBBw4cwOXLlx0eN5lMOHz4MKqqqtxcGZF3YQ8KjcuTBq06I5PJcOHChXGFitDQUKSkpODhw4d455130NvbO64awsLCGE7IY9rb23Hx4kW7dlEUYTQacfz4cZw9e9YDlRF5F/ag0JiJooiKiopRn69QKKz77jx8+HDcPTArVqzAo0ePsGvXLnR3d4/rNQBg7dq1DCfkde7evYuf/exnOHPmjKdLIfIKDCg0Ls6m8qpUKsyaNcs6FVmhUGD27Nl204fHKj4+HiaTCW+//fa4e04AIC0tDTExMRx3Ql6ntrYW/f393J2Y6D/xFg+NS3t7O5qamqDT6Wx+2Q8ODkKlUmHVqlXo7+/H0NAQampqRuzxEEURoihCEASnwaGhoQG7du2acN3BwcFcPZa8zvD/A0T0X9iDQuPS2dmJt99+22FPyoULFzB9+nQkJyfj4sWLTsNJW1sbGhsb8cknn+CPf/wj9Hq9S2uOi4vD4sWLXfoeRCMRRREtLS127Q8fPkRdXZ0HKiLyXuxBoXEbGBhw+FefwWDAmTNnkJGRgYGBAafPr62txbVr16BSqbBy5cpxT1seDa1Wi+eeew7BwcEuew+i0XA0xsRsNo974DmRv2JAoXEzm81oaGjAjBkz7I5VVVXBYDAgISEBd+7ccfj8xYsXY+HChQDwxMXcJiowMBChoaEufQ+i8QoODkZERATa29s9XQqR1+AtHho3k8mEd999F62trQ6PX7t2DYsWLUJaWprD41KpFHK5HHK53KWDVoOCgvDUU0+57PWJxkKj0di1RUREYMuWLQgPD/dARUTeiQGFJqSvrw8XL150uMy82WzG/v37sXDhQsycOXNMrxsQEOCwZ2Y8CgoKEB8fPymvRTQRgiBg7dq1SEhIsDsWGRnJMVJEn8KAQhN25swZhwtPAY8Hwr755ptQqVRISkoa1esFBwcjPz8fDx8+nHBtaWlpKCws5LRi8hpBQUEoLy9HYmKiTbsgCMjKykJxcTF7UojAgEKTQKPRjBg+BgYGcPXqVQwMDCArKwtKpdLhRoMSiQSFhYV49tln8ejRIxgMhgnVlZqaijVr1nBaMXkdtVqNjRs32oUUuVyOlStXYsuWLQgLC/NQdUTegQGFJkypVI7qw7SpqQl1dXWIjIy07iI8e/ZsFBUVoaioCFqtFkFBQdi7dy8++eSTCdUkl8uxbt06BAYGTuh1iFxFo9Fg06ZNDm8/RkVFYevWrYiIiPBAZUTeQRB9cHUgvV7v0impNDYymQxPPfUUiouLrSvIjlZkZKT1Oe3t7XZbzn9aV1cXQkJCnni7Ri6XY/ny5ZgzZ47Dnhoib9Lb24s9e/agvr7e7lhLSwveeustdHZ2eqAyItfp7u52OGD80/jpTRNmNptx9OhRnD9/fszPbWtrQ3NzM5qbm52GE1EU8cknn+Bvf/vbqF4zJiYGBQUFDCfkE4KCgvDcc885HDir1WpRVFTkgaqIPI+f4DQphkOEK9TX1+Pw4cMoKSl54rkRERF49tlnXVIHkasEBwdj8+bNDkNKREQEVCqVB6oi8iwGFJo0JpNp0lbDtFgsqKqqQm1tLd555x1otVrExcWNeHtHEATk5eVxp2LySYGBgZg3b57dbdLk5GQ888wzHqqKyHO4kixNmtu3b6OiogJPP/30uG6vDA+HamtrQ01NDU6fPg3g8eye0ayjkp+fj/nz54/5fYm8RWZmJjo6OnDs2DGb9qSkJMTGxuLRo0ceqozI/RhQaFJVVVVBEASUlpZCLpc/8fzh/XzMZjPu37+PEydOwGg0oqenx3qOVCpFamrqiK8zY8YMPP3002MepEvkTQRBQG5uLqqqqmw2zwwODkZ5eTl+85vfjLi/FZE/YUChSWWxWHD27Fno9XrMnTsX8fHxkMlkEATBevunoaEBV69eBfB4JLcoijAYDHYLs0kkEkilUuTl5T1xrx6FQgGFQuGaiyJyo5CQEGzevBl/+tOfMDg4aG0fXsCwsrLSg9URuQ8DCrnEtWvXcOvWLUilUhQWFiI8PBwnTpxAf38/hoaGRpxODDyeKvzss88iLS0Ncrn8iT0j3d3d0Ov1T5y2RuQLYmJiMGPGDNTV1VnbJBIJsrOzceXKFZseRiJ/xUGy5DJmsxkGgwEnT57Evn370NnZCYPBMKpw8vTTTyM3NxcqlWpUt21CQkJcviMykbtIJBLMmzfP7jZpXFwcNmzYwK0baEpgQCGvk5KSgtmzZ4/6Qzg1NRXr16+HWq12cWVE7pOQkICUlBS79ri4uEnbSJPImzGgkNe5deuWw1U1HYmMjMSGDRu43w75HUEQsHTpUrseRKVSOeqNN4l8GQMKeR2TyYSzZ8/CaDQ+8dyCggKGE/JboaGhyMnJsWtPTU1FcHCwByoich8GFJp0Op0OaWlpE3qN27dv4/79+yOeExUVhdTUVN6PJ78lk8mQm5trd/syKiqKq8uS3+OoQpowqVSKxYsXW++LBwcHIyAgAB988AFu3rxpM+NgeAfjzs5O3L171+lrBgQEIDk52elxQRCQlZWF0NDQSbsOIm+UlJSEkJAQ9Pf327QvXLgQe/fu9VBVRK7HgEITtmTJEixatMiuJ+PZZ59Fa2srdu3ahY6ODgBAXl4ennnmGQwODmLPnj1Oe0me1CuiUqlQXFw8KfUTebvMzEw0NjZavxYEAUlJSYiLi7NbP4jIX/AWD43L9OnTERISgpKSEixYsMBhoBAEAVqtFlu2bEFERATmzJmDZ555BlKpFIGBgdi8ebPTwX6lpaUjhpTBwUGcOnVq0q6HyJs56k3UaDTQ6XQeqIbIPdiDQlYymcy6GqvZbIbJZEJAQADCw8Ot98CTk5PR1NSEVatWoa2tDTqd7on77mi1WpSXlyM0NNRmtVe1Wo2ioiLcu3fP7jlXrlxBSkqK0wGwoijiypUrmDVrFsLCwsZ7yUQ+QSKRQCaT2a0hlJ+fj9ra2knbpJPImzCgEIDH4WTdunVIT08HADQ3N+PmzZvWWzfDvRkSiQSiKEIikSAmJmbUr6/VasdUz/Xr1/HOO++grKzM6WDAzs5ODAwMMKCQ34uKisKsWbNw/vx5m/bo6GhIpVIGFPJLvMUzhYWHhyMwMBBRUVFYvXo1srOzIZfLIZfLMW3aNCxbtgxyuRwymQxSqRRSqRSCIIxrp2JHRFG02RDts27duoWDBw+O+BonT5607oJM5K8EQUBRUZFdWJfJZFiwYIGHqiJyrQn9pvnRj34EQRDwjW98w9o2ODiIHTt2ICIiAkFBQSgrK0Nzc7PN8+rr67F69Wqo1WpotVp861vfeuLy5zRxgiBYg0ZCQgK+9KUvoby8HF/+8peRn5/v9um6FosFJ06ccFjncK1P2nOkoaEB9+/fZ0ghv6fRaOwWbZNIJNx/ivzWuG/xnD9/Hv/3//5f5Obm2rR/85vfxIEDB7Bnzx6EhITgxRdfxMaNG/Hxxx8DAIaGhrB69WpER0fj9OnTaGxsxBe+8AXI5XL88Ic/nNjVkFMJCQnIz89HamoqgMf73SiVSo8u9iQIAlJSUtDT04Pbt28jOjoaoigiKysLMpkMOTk5T9xfp7+/H3v27MGOHTsQGBjopsqJiMjVxhVQent7sW3bNvzud7/Dv/zLv1jbu7u78fvf/x5vvvkmli1bBgB4/fXXkZGRgTNnzqCoqAgffPAB6urqcOTIEeh0OuTn5+MHP/gBXn75Zbz66qs2gyhpcqSlpWHdunUu36tGJpNBEAQolUr09/fDYrGMeL5EIsG6detgNptx9+5d6HQ6iKI45rVNjEYje1BoSlAqlejr67NpS0pKglarRUtLi4eqInKNcd3i2bFjB1avXo3S0lKb9urqaphMJpv29PR0JCQkoLKyEgBQWVmJnJwcm+lxK1euhF6vx9WrVx2+n8FggF6vt3nQ6KSmpqKsrMzl4UQQBKxYsQLr1q3D17/+dRQUFIz6uTKZDKmpqQgJCeHCa0ROSKVS6x9+n6bRaLhRJvmlMfeg7Nq1CxcuXLAbTQ4ATU1NUCgUdr9kdDodmpqarOd8du7+8NfD53zWzp078c///M9jLXXKS09Px7p161zaKxUYGIi1a9ciNDQUkZGR1gG0JSUl0Ov1uHbtmsvee5jFYsHly5cxf/58l78XkaeMNEA9LCzsiVtDEPmaMQWUhoYGfP3rX0dFRYVb94F45ZVX8NJLL1m/1uv1iI+Pd9v7+yKJRIKSkhIEBARM+mvLZDJERkZi9uzZ0Gq1SExMtDunt7cXra2tk/7ejmRnZ4+px4bIV0VHRyM6Otruj7mVK1eit7cXt27d8lBlRJNvTAGluroaLS0tmD17trVtaGgIJ0+exC9/+UscPnwYRqMRXV1dNr0ozc3NiI6OBvD4f7Bz587ZvO7wLJ/hcz5LqVRyx9oxkMlkWLVqFSIiIibtNSUSCbRaLSIjI7Fq1SpIpdIRfya9vb1oa2sb9/vJ5XLrgN5h9+7ds9uPJD8/H8888wzkcvm434vIV4SFhaGsrAyvvfaazRgvlUqF2NhYBhTyK2MKKCUlJaitrbVp+9KXvoT09HS8/PLLiI+Ph1wux9GjR1FWVgYAuHHjBurr6637phQXF+Nf//Vf0dLSYl28q6KiAhqNBpmZmZNxTVNeREQEZs2aNa71SqRSKYqLi6FQKHD+/HkYjUbExcVh4cKFCAsLg1KpHFWvTFRUFHJycuz+vYwkKCgICoUCpaWlUKvVSEhIsJn6fOPGDRw6dAg5OTm4fPkypk+fjqeffprhhKaU0NBQ5Ofn48KFCzbtKpUKEonkiYPTiXzFmAJKcHAwsrOzbdoCAwMRERFhbX/++efx0ksvITw8HBqNBl/72tdQXFyMoqIiAMCKFSuQmZmJz3/+8/jxj3+MpqYmfOc738GOHTvYSzJJli1bNu41TRYuXIglS5YAAObMmYPGxkYkJSWNOeyoVCqsXbsWFovF6eDnYRkZGYiMjMTcuXMRFBRks3Ltp6WmpiIlJQWCIOCpp55yeh6RP5PJZAgPD7drLywsxNmzZ9HV1eX+oohcYNKXuv/JT34CiUSCsrIyGAwGrFy5Er/+9a+tx6VSKfbv348XXngBxcXFCAwMxPbt2/H9739/skuZkgoKCpCUlDTiL26JRIK4uDjrOTqdDoWFhQCAkJAQa7tarcbMmTPHXYtMJsOaNWugVCrR1taGyMhIzJ8/H/fv38fly5chCAKWL1+OyMjIUYXTTwcSBhOayjQaDeRyuc0S94IgYNmyZfjLX/7iwcqIJo8g+uACEnq9HiEhIZ4uw6sIgjDq8RgFBQV4+umnJ23JeiJyL1EU8bvf/Q6NjY027ffv38cf//hH3uYhr9fd3f3EVZD5G8pPDO+nM5rxGNOmTWM4IfJxy5cvt2tLSEhARkaGB6ohmnz8LeUngoOD7fbpcKa2tpZ7HxH5MEEQoFKp7G6NSiQSzJ8/f9SfBUTejAHFT5SUlIxqXEZYWBhKS0v5AUbk46Kjo5GVlWXXHh4ezh5S8gv8V+wH8vLyrFO2RxIWFoYtW7ZAp9NxkCmRjxMEAYsXL7brRVEqlXj22Wc5K5J8HgOKH1AqlU/c9beoqAjl5eWjCjJE5BuCg4ORn59v0yaRSJCXl4fIyEjPFEU0SRhQ/EBLS4vdDqefdfv2bYYTIj8jkUgQGxvr6TKIXIIBxQ/cv38fJ06cwEgzxjs7O3Hq1CkMDQ25sTIicrXk5GTExMTYtT9pCieRt2NA8QMJCQlYvHjxiONKhoaGcOzYMZw5c2bEIENEvkWtVjvcvHXNmjUON/Ik8hUMKD5OpVJh8+bNCAoKGtX5H374Ia5fv+7iqojInUpLS+3a1Go18vLyOGOPfNakL3VPrqdSqZCZmYnk5GTIZDKo1epRP3doaAhnz55FSkrKEwfWEpFvUKvVUCgUMBqNNu1KpRISiYS3dskn8TeUjwgODrbu9lxQUDChtQ4CAgI4zZjIj4SEhKCwsBAfffSRTXtqaiqUSqXNnj1EvoIBxcvFxcVh9erVUCqViIiImPDrZWZm4tlnn2W3L5EfEQQBBQUFqKmpQU9Pj7VdKpUiNDQUvb29HqyOaHwYULxUdnY2pk2bhvT0dISGhk749SQSCZKTk7FmzRqHA+qIyLcFBQXZ/eEhkUiwePFivPXWWxwcTz6HAcWLSKVSpKSkIDQ0FCUlJaPa+O9JBEFASkoKFixYgOjoaCgUikmolIi8UUxMDLq6umzaZsyYgeTkZNy6dcszRRGNEwOKlwgKCkJxcTHmz58/4fEhgiBYZ/Xk5+djyZIlvKVD5OcEQcDcuXNx7do1m3aZTMb//8knMaB4gaSkJGzevBkqlWpM4SQ0NNQ6cPbTlEqlNehIJBIOiCUiIp/DgOIBSqUSsbGxWLFiBaRSKYKCghAQEPDE54WFhSEwMBBBQUFYunQpFArFpIxPISL/oFKpoFar0d/fb9MeFhbmoYqIxo8Bxc2kUilWrVplt8HXSCQSCZYsWYLMzExuAEZETsXGxiI1NRU1NTU27QsWLEBVVRWnG5NP4UqybqRQKLBu3Trk5uaO+jnTp0/H2rVrsXDhQoYTInqipUuX2i3CGBgYiEWLFnmoIqLxYQ+KmygUCqxatQo5OTlPHBMyvHZBaWkpEhISxrRSLBFNbQqFAmq1Gnq93tomCALy8vJw8eJFdHZ2erA6otFjQHGT9PR05OfnPzGcTJs2DXl5eZg9ezYEQeAAVyIaE6VSiUWLFuHAgQM27RqNhssMkE/hLR430Gq1WLp06YhhIyAgAKmpqSgvL8fcuXM5+4aIxkUQBGRnZ0On09kdKykp8UBFROPDHhQXCwsLQ3l5udNR9HK5HBkZGcjPz0dSUpKbqyMif6RSqexmBgqCgMDAQA9VRDR27EFxsYyMjBH30Nm6dSvWrl3LcEJEk2r58uV2bWq1moPtyWcwoLhQTk4OnnrqKafHlUolAgICuMojEU06pVJpt+9WWFgYsrKyePuYfAIDigt1dnbCaDQ6PCaXy7F+/XqH94mJiCYqPDwcs2fPtmtfvHgx8vLyPFAR0dgwoLjQgwcP7FZ0HFZaWoq0tDT+JUNELiEIAubPn2837kQqlSI5OdlDVRGNHgOKiwyPpNdoNHbHJBIJgoKCGE6IyKVUKhWUSqVde3x8PHtvyesxoLhIUFAQ1q1bZ3cPGHi8yV9UVJQHqiKiqUQikaC0tNSuPSQkxLrjOZG3YkBxEYvF4vT2Tk9PD1dzJCKXEwQBAQEBDntRFi1axF5c8moMKC7S19eHc+fOOTw2bdo0pKSkuLkiIpqKEhMTMWPGDLt27oRO3o4BxUVkMpnT9QZ0Oh3/ciEitxAEASUlJZBIbD/u5XI510Qhr8aA4iIBAQFOdy1mOCEid1IqlXafO4GBgcjJyfFQRURPxoDiATdu3EBbW5unyyCiKUIulyMhIcHTZRCNCQOKiwwNDaGnp8fhsY6ODjx69MjNFRHRVKVUKh2OewsKCuJK1uS1GFBcpL+/H7t27XIaUurq6jA0NOTmqohoqvrsGBQAmDVrFsLDwz1QDdGTMaC4UFNTEwYGBhweu3v3LntRiMhtZs+e7XD9JUebChJ5AwYUF8rMzHQ6lc9kMuH8+fMwm83uLYqIpiSZTGbXiyIIAhQKhYcqIhoZA4oL9fX1wWQyOT1eW1uLpqYmN1ZERETkGxhQXKijo8PpbsbDDh8+DL1e76aKiGgqW7ZsmadLIBo1BhQXUalU2Lx5M8LCwkY878GDB9izZw96e3vdVBkRTUWCIDjcfyciIgLx8fEeqIhoZDJPF+APpFIpMjMzbRZCam9vR2xs7Kie/+DBA+zevRvPPfccQkJCXFUmEZGd4OBgREREoKGhwdOlENlgQJkgmUyGkpISFBYW2gxAa2trsxuQ1tfXB7Va7XAl2QcPHuDdd9/F5s2bucsoERFNebzFM0HLly9HUVGRXRiJjIy0CSJNTU3405/+hPv370MURYev1dDQgN27dztdO4WIiGiqYECZoNu3b6O/v3/EcywWC65du4bGxkbs3r0bb775ptMxJ8NjUjhwloiIpjIGlAm6desW9u7dC4PB4PC4xWLB+fPn8dFHHwEABgcHcevWLezevRsXL150+JyGhga888470Ov1XG2WiCZNaGgokpKS7Npzc3Mhk/GOP3kX/oucBLdv38aePXuQkZFhbUtOTsbAwACuXr2Kjz/+GBaLxeY5DQ0NkEgkSE1NRWBgoN1rNjQ04Je//CXmzp2L7OzsUQ+4JSJyRq1WIyIiAvfu3bNpj4uLc7gUPpEnCaKzARFeTK/Xe/1sl8jISJhMJnR3d494XnJyMjZu3Ai1Wu30HI1Gg82bNyMuLm6yyySiKebAgQOoqqqyaRsaGsLBgwdRXV3toapoqunu7oZGoxnxHEZmF2lra3tiOAH+q/fF2Z49wONA9vbbb+PIkSO4evUqLBaL04G2RERjZTabUVtb6+kyiGwwoHiBe/fu4d133x1xsTa9Xo+PP/4Yf/3rX/Ef//Ef6OzsdGOFvsdiseDu3bu4desW2tvbPV0OERGNEcegeInbt29j7969WL9+PWQyGQICAhyeZzKZrLOBtm7d6nQzwvEwmUwwGo2wWCw4evSodR+hZcuWISIiYtLex1W6urpw5MgRiKIIi8WCmzdvwmKxICoqClu2bOG28kREPmRMPSivvvoqBEGweaSnp1uPDw4OYseOHYiIiEBQUBDKysrQ3Nxs8xr19fVYvXo11Go1tFotvvWtb3FH3/90584d/PSnP8Xvfvc7u+/bZ7W0tOD999+f0PvV1dXh0aNHuHjxIs6dO4d9+/bhpz/9KX72s5/h0qVLqKurQ11dHXbt2oXW1tYJvZerdXR0YNeuXbh69Srq6upw/fp168Dk1tZW7Nq1C21tbR6ukoiIRmvMPShZWVk4cuTIf73Ap6amffOb38SBAwewZ88ehISE4MUXX8TGjRvx8ccfA3g8EGv16tWIjo7G6dOn0djYiC984QuQy+X44Q9/OAmX4/uGhobQ0dGBgwcPYtu2bU63Qg8ODsaiRYvG9R7DU5+PHj0KlUqFvr4+u1lGn9bW1oY///nPSEtLQ0lJiddtz97V1YU9e/aMGOpaW1vx6NEjREZGurEyIiIarzEHFJlMhujoaLv27u5u/P73v8ebb75p3THz9ddfR0ZGBs6cOYOioiJ88MEHqKurw5EjR6DT6ZCfn48f/OAHePnll/Hqq6963S8+TxAEAcXFxcjNzYVcLnd4TlBQ0IRm9Vy+fBkffPABLBaL9TbOk3R3d+PcuXMQRRFPP/20V01JPHPmDJqamkY8JzIyklO1iZy4ceMG11wirzPm3zK3bt1CbGwsZsyYgW3btqG+vh4AUF1dDZPJhNLSUuu56enpSEhIQGVlJQCgsrISOTk50Ol01nNWrlwJvV6Pq1evOn1Pg8EAvV5v8/BHUqkUK1euRElJCaKjox3u2RMSEoLy8nLExcU5PD4aM2fOdBgyR6OqqgoHDx4cdbDxFmVlZew9IXJi+vTpkEqlni6DyMaYAkphYSHeeOMNHDp0CK+99hru3buHRYsWoaenB01NTVAoFHaDNnU6nfWv26amJptwMnx8+JgzO3fuREhIiPXhr1uDL1q0CIWFhQ4/KKRSKRYsWIDy8nJMmzZt3OEEeHx7aNOmTePqURBFERcuXHji8v7u0tjYiBs3bjg9LggCZs+ezQGyRCO4cuUKxwKS1xlTQFm1ahU2bdqE3NxcrFy5EgcPHkRXVxfefvttV9UHAHjllVfQ3d1tffjjtuBhYWHIyMhwGjwWL16MZcuWISYmZlLeLzQ0FOXl5eMOKdXV1Whra3PLeiyiKEIURQwMDKCyshIGg8HaduDAAXR1dTl97uzZs7F69WrePiQagbNd1ok8aULTjENDQ5Gamorbt29j+fLlMBqN6OrqsulFaW5utt5OiI6Oxrlz52xeY3hg40i3HJRKJZRK5URK9WqCIOC5556z610CgGnTpmH16tWIjIyc9HEfGo0G5eXl2L17Nx49ejSm53700Ue4du0atm7d6rLeCVEU0dLSgvPnz6OhoQFmsxkdHR2orq5GYWEhDAaD04GxERERWL9+PbRarVeNlyHyRmazmYs/kteZ0Cd3b28v7ty5g5iYGMyZMwdyuRxHjx61Hr9x4wbq6+tRXFwMACguLkZtbS1aWlqs51RUVECj0SAzM3Mipfg0qVTqcMlfQRCwdOlSREdHu2wjL41Gg02bNqG0tHTMvQxtbW3YvXs3Ojo6JqUWURRhMplgMplw5swZHDhwAK+//jqqq6vR0tJifZ/29nYcPHgQR48eteuWlslkiIyMtN4KY88J0X/p6urCJ598YteemZnJzQLJ64zpX+T/+B//A2vWrEFiYiIePXqE733ve5BKpdi6dStCQkLw/PPP46WXXkJ4eDg0Gg2+9rWvobi4GEVFRQCAFStWIDMzE5///Ofx4x//GE1NTfjOd76DHTt2+HUPyUiUSiXWrFmDoKAgu2NpaWlITEx0eQ2hoaGYP38+Zs2ahYqKCtTU1Iz6uS0tLdi1axfKy8sntJjb8NiW4YBrMBhGnPr8WRqNBikpKVi6dCmkUilUKtW4ayHyV/39/Q7XNPrwww9hNBo9UBGRc2MKKA8ePMDWrVvR3t6OqKgoLFy4EGfOnEFUVBQA4Cc/+QkkEgnKyspgMBiwcuVK/PrXv7Y+XyqVYv/+/XjhhRdQXFyMwMBAbN++Hd///vcn96p8iEajQVZWlt3938DAQMyfP99tI+sFQYBarcbKlSuRnZ2NR48e4fz58+jp6Xnic1tbW/HWW28hJCQERUVFSE5OHtP97L6+Pty4cQMffPDBmD4kFQoFioqKUFtbi3Xr1rklzBH5MqlUCoVCYff/WX5+Pi5evMiBsuRVuJuxh0VFReEf/uEf7H6hr1q1CgUFBR4buDY8KHXPnj24f//+qJ+nVCqxadMmzJgx44m1i6KIjo4O7N69e1wr1RYUFGDVqlUQRdG6sjEROSeKIg4ePGi3m7HZbMa7776La9eueagymmq4m7GXCwoKwqpVq+zao6KikJOT49FfuMM9Kps2bcKWLVtGPbXZYDDg3XffHdVmhp2dneMOJyqVCgsWLIAgCJBIJAwnRKPg7P8Ti8XyxMUOidyNo6I8RC6Xo6ysDElJSXbHRtos0N3UajXS0tKQnJyMK1euoKenBx999NGIt2IGBgZQUVFhHQeiVquxdOlSm0F4E+k5AR5/0E7VcUtEE+FoMKwoiujr6/NANUTOMaB4iFQqHfdS9Z4glUqRl5cHi8WCOXPm4MSJE+jt7UVdXZ3D6YnXr1+3+bq7uxtr1qyBUqlEW1sb3n777QltQDgwMICTJ09ixYoV434Noqlo8eLFuHTpEgYGBqxtEokEcXFxuHfvngcrI7LFgOIhRUVFDv+SUalUWLx4sQcqGh2JRIKAgAA8/fTTGBoaQkFBAU6cOIFHjx7BYDBAEASoVCqbDz8AuHr1Krq6uhAQEICYmJhJ2R35ypUrmD17NpewJxoDR587crkcubm5DCjkVRhQPGB41djPLiAml8uxceNGJCcne6iysZFKpUhMTMTnP/953LlzBw8fPoRSqURMTAz27Nlj12X88OFDAMDt27cn5f17enpgMBgm5bWIiMi7cJCsBzhbNXZ4E0ZfG/ApCAKSk5OxZMkSFBUVISEhAZs2bUJwcLDL3/v9999Hd3e3y9+HyF8IgsBeR/IJDChuJAgCcnNzrevGfFp0dDQ2bNjgFzuKCoKAxMRElJWVITg42KVLzT98+BB79uzB4OCg3TGz2YzBwUEu4U30KTKZDPPmzbNrT0xMnNBii0STjQHFjUJCQrB27VqHy69nZ2f7zdouwxISEvC1r30NJSUl49rkUBTFUa3B0tjYiLt37wJ4vCt2VVUVqqqq8P777+O1115DY2PjmN+baKoJDw9HYGCgp8sgsuIYFDdavHixwx4SiUSC3NxcD1TkWoIgQC6XY/78+cjOzsadO3dw+vRptLW1jfo1nrSQD/B4DYf33nsPp0+fRk9PD/R6vc3x3bt3j3vnZiJf1tvbi/7+fkgkEkRERPjc7WOa2tiD4kZhYWEOPyCSk5P9fk0PjUaD/Px8fOUrX0F2dvaoniMIwqh3Sh4cHMTDhw/twgnweOXhI0eOjKleIl/X09ODXbt24bXXXsNvf/tbXL9+HUNDQ7zlST6DPShuEhcX5/T+bkJCwpTYdXe4R2XNmjUICAjA7du3R7Xi7NDQENrb26HVat1QJZHv6+rqwjvvvGOdOWcymbBv3z4olUqPr1JNNFoMKG7y8OFDtLe3292yGP6lPZUoFAo888wzaG5uxrVr13Dq1CkMDQ2N+Jyx7Gzs6P0KCgrG/XwiXyKKIurq6qzhZJjRaITRaMTp06cdPs9kMj3x/0Mid2JAcZOIiAiH4ykiIiIwd+5cD1TkeTqdDlFRUQgODsbly5dRX1/v8DypVIro6OhxvYdSqcSGDRuQmpo6kVKJfMbg4CBOnjw5pueYzWYcPHjQLtQQeRLHoLiJs1s8U30XXolEgjlz5mDz5s1ITU2FTqebtO+HSqXC2rVrkZqaOqW/xzS1KJVKFBYWjvp8g8GAQ4cOoaamxnVFEY0De1DIKwQGBmLLli0QRRGHDh3ChQsXJtzdnJaWhszMzEmqkMg3CIIw6unCQ0ND+OCDD1BdXe3iqojGjgGFvMZwb9KKFSswb9487NmzBy0tLeN6LalUioyMjEmukMj7GQwGh7d4RFHEvXv3bBY1vH37Ni5evOjO8ohGjQHFTUwmE8xms8ONusiWTCZDZGQkysvL0dbWhpqaGly7dm3MrxMQEOCC6oi8myiKMBqNdu3Xr1/H3r17HR4j8kb8bekm165dQ0NDA5KSkjxdis8IDw9HeHg4kpKSEBUVhZ6enlH/tTdz5sxxrV5L5K+6uroYTsinMKB4mMlkQm9vr1s21vNVcrkcS5cuhdlsRmFhIfbv348HDx44PV+hUGDWrFlTbvo2EZE/4SweN3K0imNXVxcuX77soYp8i0wmg06nw3PPPYcVK1Y4DSBarRbp6eluro7Iu7ly004iV+C/WDf64IMPHLY3NzfDZDK5uRrfFRISgqKiImzcuBEqlcrueFxcnAeqIvJuiYmJ7Kkln8KA4kYGg8FmBP2wq1evoqOjwwMV+S5BEJCeno5t27Zh1qxZ1hlAc+bMwbJlyzxdHpHHDAwMONxv5969e+jp6fFARUTjwzEobtTd3Y2zZ8/iqaeesmm3WCw4duwYtm7d6pnCfNi0adMQExOD8PBwSCQSFBUVsSubprTjx4/DbDZ7ugyiCWNAcbOuri6YTCa78RP9/f3o7++HWq32UGW+SyqVYuHChZ4ug4iIJpFPBhRf3i68pqYGRUVFCA0NtWm/ffs2rl69irS0NM8URkR+ob+/3+5WssFgQG1trYcqIrI3mt/jguiDv+3v3r2LmTNneroMIiIiGoeGhgZMmzZtxHN8sgclPDwcAFBfX4+QkBAPV+M+er0e8fHxaGhocLgzsr/idfO6pwJeN697KhBFET09PYiNjX3iuT4ZUIYHQYaEhEypH+wwjUbD655CeN1TC697apmK1z3ajgVOdyAiIiKvw4BCREREXscnA4pSqcT3vvc9KJVKT5fiVrxuXvdUwOvmdU8FU/W6x8InZ/EQERGRf/PJHhQiIiLybwwoRERE5HUYUIiIiMjrMKAQERGR1/HJgPKrX/0K06dPh0qlQmFhIc6dO+fpkibk5MmTWLNmDWJjYyEIAvbt22dzXBRFfPe730VMTAwCAgJQWlqKW7du2ZzT0dGBbdu2QaPRIDQ0FM8//zx6e3vdeBVjs3PnThQUFCA4OBharRbr16/HjRs3bM4ZHBzEjh07EBERgaCgIJSVlaG5udnmnPr6eqxevRpqtRparRbf+ta3vHon19deew25ubnWxZmKi4vx/vvvW4/74zU78qMf/QiCIOAb3/iGtc0fr/3VV1+FIAg2j/T0dOtxf7zmYQ8fPsTnPvc5REREICAgADk5OaiqqrIe98fPtenTp9v9vAVBwI4dOwD498/bJUQfs2vXLlGhUIj/7//9P/Hq1avil7/8ZTE0NFRsbm72dGnjdvDgQfF//+//Lf7lL38RAYh79+61Of6jH/1IDAkJEfft2ydeunRJXLt2rZiUlCQODAxYz3n66afFvLw88cyZM+JHH30kJicni1u3bnXzlYzeypUrxddff128cuWKWFNTIz7zzDNiQkKC2Nvbaz3nq1/9qhgfHy8ePXpUrKqqEouKisT58+dbj5vNZjE7O1ssLS0VL168KB48eFCMjIwUX3nlFU9c0qj87W9/Ew8cOCDevHlTvHHjhvi//tf/EuVyuXjlyhVRFP3zmj/r3Llz4vTp08Xc3Fzx61//urXdH6/9e9/7npiVlSU2NjZaH62trdbj/njNoiiKHR0dYmJiovjFL35RPHv2rHj37l3x8OHD4u3bt63n+OPnWktLi83PuqKiQgQgfvjhh6Io+u/P21V8LqDMmzdP3LFjh/XroaEhMTY2Vty5c6cHq5o8nw0oFotFjI6OFv/t3/7N2tbV1SUqlUrxrbfeEkVRFOvq6kQA4vnz563nvP/++6IgCOLDhw/dVvtEtLS0iADEEydOiKL4+Brlcrm4Z88e6znXrl0TAYiVlZWiKD4OdhKJRGxqarKe89prr4kajUY0GAzuvYAJCAsLE//jP/5jSlxzT0+PmJKSIlZUVIhLliyxBhR/vfbvfe97Yl5ensNj/nrNoiiKL7/8srhw4UKnx6fK59rXv/51cebMmaLFYvHrn7er+NQtHqPRiOrqapSWllrbJBIJSktLUVlZ6cHKXOfevXtoamqyueaQkBAUFhZar7myshKhoaGYO3eu9ZzS0lJIJBKcPXvW7TWPR3d3N4D/2giyuroaJpPJ5rrT09ORkJBgc905OTnQ6XTWc1auXAm9Xo+rV6+6sfrxGRoawq5du9DX14fi4uIpcc07duzA6tWrba4R8O+f961btxAbG4sZM2Zg27ZtqK+vB+Df1/y3v/0Nc+fOxaZNm6DVajFr1iz87ne/sx6fCp9rRqMRf/rTn/D3f//3EATBr3/eruJTAaWtrQ1DQ0M2PzwA0Ol0aGpq8lBVrjV8XSNdc1NTE7Rarc1xmUyG8PBwn/i+WCwWfOMb38CCBQuQnZ0N4PE1KRQKhIaG2pz72et29H0ZPuatamtrERQUBKVSia9+9avYu3cvMjMz/fqaAWDXrl24cOECdu7caXfMX6+9sLAQb7zxBg4dOoTXXnsN9+7dw6JFi9DT0+O31wwAd+/exWuvvYaUlBQcPnwYL7zwAv77f//v+MMf/gBganyu7du3D11dXfjiF78IwH//jbuST+5mTP5lx44duHLlCk6dOuXpUtwiLS0NNTU16O7uxjvvvIPt27fjxIkTni7LpRoaGvD1r38dFRUVUKlUni7HbVatWmX979zcXBQWFiIxMRFvv/02AgICPFiZa1ksFsydOxc//OEPAQCzZs3ClStX8Jvf/Abbt2/3cHXu8fvf/x6rVq1CbGysp0vxWT7VgxIZGQmpVGo36rm5uRnR0dEeqsq1hq9rpGuOjo5GS0uLzXGz2YyOjg6v/768+OKL2L9/Pz788ENMmzbN2h4dHQ2j0Yiuri6b8z973Y6+L8PHvJVCoUBycjLmzJmDnTt3Ii8vDz/72c/8+pqrq6vR0tKC2bNnQyaTQSaT4cSJE/j5z38OmUwGnU7nt9f+aaGhoUhNTcXt27f9+ucdExODzMxMm7aMjAzr7S1//1z75JNPcOTIEfy3//bfrG3+/PN2FZ8KKAqFAnPmzMHRo0etbRaLBUePHkVxcbEHK3OdpKQkREdH21yzXq/H2bNnrddcXFyMrq4uVFdXW885duwYLBYLCgsL3V7zaIiiiBdffBF79+7FsWPHkJSUZHN8zpw5kMvlNtd948YN1NfX21x3bW2tzYdYRUUFNBqN3YejN7NYLDAYDH59zSUlJaitrUVNTY31MXfuXGzbts363/567Z/W29uLO3fuICYmxq9/3gsWLLBbNuDmzZtITEwE4L+fa8Nef/11aLVarF692trmzz9vl/H0KN2x2rVrl6hUKsU33nhDrKurE7/yla+IoaGhNqOefU1PT4948eJF8eLFiyIA8f/8n/8jXrx4Ufzkk09EUXw8HS80NFT861//Kl6+fFlct26dw+l4s2bNEs+ePSueOnVKTElJ8erpeC+88IIYEhIiHj9+3GZaXn9/v/Wcr371q2JCQoJ47NgxsaqqSiwuLhaLi4utx4en5K1YsUKsqakRDx06JEZFRXn1lLxvf/vb4okTJ8R79+6Jly9fFr/97W+LgiCIH3zwgSiK/nnNznx6Fo8o+ue1/+M//qN4/Phx8d69e+LHH38slpaWipGRkWJLS4soiv55zaL4eCq5TCYT//Vf/1W8deuW+Oc//1lUq9Xin/70J+s5/vi5JoqPZ5YmJCSIL7/8st0xf/15u4rPBRRRFMVf/OIXYkJCgqhQKMR58+aJZ86c8XRJE/Lhhx+KAOwe27dvF0Xx8ZS8f/qnfxJ1Op2oVCrFkpIS8caNGzav0d7eLm7dulUMCgoSNRqN+KUvfUns6enxwNWMjqPrBSC+/vrr1nMGBgbEf/iHfxDDwsJEtVotbtiwQWxsbLR5nfv374urVq0SAwICxMjISPEf//EfRZPJ5OarGb2///u/FxMTE0WFQiFGRUWJJSUl1nAiiv55zc58NqD447WXl5eLMTExokKhEOPi4sTy8nKbtUD88ZqHvffee2J2draoVCrF9PR08be//a3NcX/8XBNFUTx8+LAIwO5aRNG/f96uIIiiKHqk64aIiIjICZ8ag0JERERTAwMKEREReR0GFCIiIvI6DChERETkdRhQiIiIyOswoBAREZHXYUAhIiIir8OAQkRERF6HAYWIiIi8DgMKEREReR0GFCIiIvI6DChERETkdf4/UiKKcPHVYCUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -738,9 +865,18 @@ "import matplotlib.pyplot as plt \n", "from mmedit.edit import MMEdit\n", "\n", - "# Create a MMEdit instance and infer\n", "img = '../resources/input/matting/GT05.jpg'\n", "trimap = '../resources/input/matting/GT05_trimap.jpg'\n", + "\n", + "# show input image and mask\n", + "input_img = mmcv.imread(img)\n", + "plt.imshow(mmcv.bgr2rgb(input_img))\n", + "plt.show()\n", + "input_trimap = mmcv.imread(trimap)\n", + "plt.imshow(mmcv.bgr2rgb(input_trimap))\n", + "plt.show()\n", + "\n", + "# Create a MMEdit instance and infer\n", "result_out_dir = '../resources/output/matting/tutorial_matting_gca_res.png'\n", "editor = MMEdit('gca')\n", "results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)\n", @@ -811,9 +947,19 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 17, "metadata": {}, "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S4wtXXbQD/7W2hHnnHzcx/f+qspV5mlj4A+0DBRWg/4SAlkMkBAMEAOEEFN7QMEATwCPPIQBZoZAagnxGCPREu4ZbQs1tPoP3X8bbB522fXV97yvzDznROy9erD23rHjnJN5896b+VWlK9dV3oyMEydix957vV9iZsY93MM93MM93MMdAf1eD+Ae7uEe7uEe7uFV4J5x3cM93MM93MOdgnvGdQ/3cA/3cA93Cu4Z1z3cwz3cwz3cKbhnXPdwD/dwD/dwp+Cecd3DPdzDPdzDnYJ7xnUP93AP93APdwruGdc93MM93MM93Cm4Z1z3cA/3cA/3cKfgnnHdwz3cwz3cw52C7xnj+vmf/3l+x+/4HaxWK775zW/yH/7Df/heDeUe7uEe7uEe7hB8TxjXv/yX/5Jvfetb/L2/9/f4T//pP/GH//Af5id/8if5+OOPvxfDuYd7uId7uIc7BPK9KLL7zW9+kz/2x/4Y/+gf/SMAUkp8/etf56d/+qf5O3/n73zZw7mHe7iHe7iHOwTdl/3A7XbLf/yP/5Gf+ZmfqedUlT/zZ/4Mv/iLv3jwO5vNhs1mU/9OKfH555/zzjvvICK3PuZ7uId7uId7uFkwM54/f85Xv/pVVF/N+PelM65PP/2UGCMffPDB7PwHH3zAL//yLx/8zs/93M/xsz/7s1/G8O7hHu7hHu7hS4Tf+I3f4Id+6Ide6TtfOuN6HfiZn/kZvvWtb9W/nz59yje+8Q3kD/5nTL4OCTBAgACQ/O8EiCAmCIIJWFHQBLBU7xnyB+VW3Cty93AP93APHgmRBAx6M2ICBEzBNBPaFEE0fyAIiiZBDVYY6yfPGS8usBdnEA0wsBfA/86DBw9eeUhfOuN69913CSHw3e9+d3b+u9/9Lh9++OHB7yyXS5bL5d55k1PQh85kyk8AiM6BEigBMSAJAiRrmBfZvSeWjwy/uNzsHu7hHu7hBxhMnI6aIAaC0SmYGEkNAiRLmCSQLjMtydQzf0cMlYCyIBJAIk57zUnua7h7vnTGtVgs+PEf/3F+4Rd+gb/wF/4C4D6rX/iFX+CnfuqnXuleogJiiI1AQsywmPI5EIRA8EknK2EiJJGqVTmLMqTqWgmbMa1yXBiaNed3j3evfZPjL+s5Vz3z/jmv95zbeub9c+7unriLz3ECqRbAnCoGjERyKmkJy5pYMpAQdmjndDu/W/lMnCHa6we1f09Mhd/61rf4a3/tr/FH/+gf5Y//8T/OP/yH/5CzszP++l//6690H82MRm1AiQiJZCMiPkWSIBDKEgDkq8CYJAOxhnE1QZYmhuvJVyHYoeOsS9fjskCHjrPkcfD4Lj7nqmd+vz7ndefwZc+5qbX67fac+z1+N/a4f0Mt1HsrhmXmFS1hpiRToinQkRBSw7ws36TS4BnDumOM6y//5b/MJ598wt/9u3+Xjz76iD/yR/4I//bf/tu9gI2XgY4DKhuWnLOQESEyxm2eNnExAEPFEHXGlDCKZ0ssIKao4RbCGVhmXJdtDoXpTgeuuQnp6TrH38/P+e38bje0J8SYbNe/DZ7zfb0+93v8lZ8jhZFZvpsrAmYQMVLsMelJumBA2YpQVApT/3oENyViftLA99a+++e68D3J43pTePbsGY8ePeLB7/8/CPYOj+wTHvQXLGSDbZ7Saay8XNTwKY5AIolVTUpNPXAjzbWydqHu4R7u4R5+MMG1K9OEswlBJSAohhCBgSVRTxnDAz7dHnGhj9mEB2zlBKKzuZVA/PwZ49kF47MLiB1Obc+A38fTp095+PDhK43sTkQVXgY9G5bygvf7J3zl5IIH3Tnd9hOWskGzz0vEGZbJxLgArGFcWABaxtUqu/dwD/dwDz+IkAV4SVjWwkQ6LJsDI8KGYwZ9zDpsWTw95lODZ0lIuiQxMTmTrL1J8h9rtflXhzvNuJb2nEfB+L0PP+UPvr/mw+MzHo/f4YgnhLRB4ogwItlUmKoKLBiKoGAeqGEy6ViBPMf3Stc93MM9/MCCE0ElZSuzC/mDJWdc2vGCh1zoezyXgf8gx/zX5xFbJ6KdMLDEpAMJJDFSYVoawRKk4bVHdqcZV7Az+rjmYfp1PpAXfEOe8i6/yun4Cb2t6SwSJGKWSDGHbFajoDsJXRpojIMCmjLj+l6+3D3cwz3cw/cUEphhKSFBEVFnXMkwDSBLnvA2Z+GrfCHn/J8Xx5xsI0dxwXMdifSk6okq2psxDwp5PbjTjEsYECI9Z6zsGUf2hNP0Bafpcxa2obOISsRIJImu7s4ykMU1LimnzX/bPeO6h3u4hx90KG4VQzzbGAgebJECxoJROyw94ELOWFigsxHJhR1cKZgSjYBMVOWNQwjuNOMyIiKRngsW9oJles4qPuM4Pae3DV2KCJGk7uOqGlfDvIo5sDAve9MZvYd7eBVoA8B+OzznHn57gYBJIY7OuAzFCFjcsOGYrZzTc86CkxxP6FECJplx1QDHoiy8+bDuNOMSidlbtaWzNb2ds7BzFumc3jY4rx/RlNz+xzywU+sE2vSBZJfhzczvPdzD1fBlbbL7zXwPrwPFf0JhXJoZl2AEFukBvVywYENnA4IXgzBqlagMjT/mBoK27zbjyhUx2uyD/AFgWWV1u5/huQeV65dL61FWiw1UyrXNTV81HeJ1Ui3un3P/nNd9zm/nd7t/zvfmORXaG3t0dklFJufPIh5DYJJIGjHNpR4koaYkK3RX8h2NwuBeB+424wIEofip8qH/GBwKC/SSJJqPyxnBFyRP6+7C0xwfOncbx/fPuX/Ol/mc78Uz75/z/f0cZH6MYZIQNOfCApk51eKwhYERQSJiXUOni59s94GvDneacWkKXpA4g+WfJJDUCKlM5qFJyvUKES7L2zp0bv7pm03+9eDLes5vZ/jttlb3z7mHXfhy5tCfkGMFRBpGlUjiPyU/S5pviAWEgCcbOaU+WNfwmnCnGZeYVy0uP2JS1VUjkZSchNx+q7C39u/9RDix60zq60/8q8GX9ZzfzvDbba3un3MPu3Bbc1gYzbwIWKsApmzpIlu0BMnFHTwArvjESj1Eq/UTXw/uOOPKvbaMGr7e8hvDmda+HGLlBtPfexe9THq5lxLv4XsF95rQPXz5cGg32N4V2TBoTXMTm3/m35r8Xa8Dd55xzQuHtpqTgSQvt0+b7jYFvMsblBy5R+h7+N7Bl7X37vf4PVwGme6K5rD3olUVhuRViQTdZ0+lcO8bbK87zbi8t1b5KyujlmoCnDsCJ9NgUbCkNRdKXoJ74fIe7uEe7uEakIMsJDQBF0rKofKJkKMGWpaVIAdslEC46ferw51mXHVeLtE4jal1mVce2XcHzjxe30dm9v0gn/3BXT5caz591ePL7vHyp+5//7rj/f6CyYB8V0b8JmB7JOb7HaadJTt/t2f2Pzt8Fznw7m+CP5fhUgv7ePWy+b/sDl8+FPtVyenKicZ1vudEebISugWM0t5kL9bg1eBOMy6Dqc5gnjx3EgpmShTJVeJ9mqU6BSdtC8kGxjzDVtyPt7kzKs7Y/FyNIpnC9YtGuce8TKetMYuaPBxB2SLq6x83Y7AyzgNzZdQM+rJBpbmH1Lnm1jHw6kLJ/uHkF50coibqO0WEJN6zzWbXTn7VuwUtwchdbS3Nl5vJmtOeK9+m5ozs3npnNi67bjZrr0a8hGk3mehsZ013nc4Ybfh1syfb93wpo7l6NNc53t8r5Zo0TZM08y62M51S/273tFjZw7exExvRrZJMjwy0rGEl8Urx6cDzy3g9zrBULkr8wJsKUQNVEguiLYj0GD1RcvSKGUG811bCCBY92oXcZybfZpI5izTxJr6vq2GKyDFPdM4LGFG0VKzPDDgKRNW8KQSzUqJKEUI+nhKtU9kQbdPAclywo3R3O3jcmFjb8liSsklVvFU3AqJoKeyYf1J+hgqoJa/KTwIbkGJIMKVEzJRWCbCL1DcH+/LvnJBZToK0/JkVc4cGNhU5AyrBxy0QiUWFJ9xF83KWehUjiNFvNh7vJX624MckdEBtDlg/SzmXx/eMWpeJ2nxP7OOS7Igxc8n78tKrhbI7fmwjWLfCRBkTII3mKMmXxwSkb1BhkvhNYkYJ9Tp8LbOpe58bwSUn7YZYyRUNiASwhGouSxdHevE+VSnF+n0rKyWT/6jMYKiC+NUz9/rga13opyCI9BVHYlLGoJgGREPG/4hYRBi9zB7BQ+FlYtT1xd4A7jTjskwOR1kwcsTAMVs5oZNTAj2Id4RxdlRlBISUpWmgSAuSo2Bm4tvuRj10zLTB281+6BgDyWTBEpqT0Dx4X30zS8AQRhFGUTZdIIrbjC3bkoWCbFlvMZdkphKMB5CtSJlWxLpXOW664Fph7oJkpJwYlyOUWmKRRgKRYBGVLWLOuDpK2gIkS5REvJncfGgOLyUeVxzDTipEqy1mMiyWiYITiCgdUQKxW3AuPaMEovYUVDEgyZSsrteWcVoW+qrHrwIvu5/5eloiEOktctqv6ZKvFZS1cAFIZG5Kq4yrVkrwuZ4YV9HCy3NsWpNMeOesCkpeUGU8eRTTPsjSuTjjMpR1CGzDEaN0DCFMXxQgv4cXJlg05w2a/nwCvof3GFfRBuRGcGkS2hw3fGqFXg21LWIDIgPRgocyaJlfF6ss04QiXKkYku8lUlal7P2X0KBXwqVJAPFCu4LSkyQQUQZRBj1lkCMGlowWSGQBz6wJ2CCvr2R5783F1DvOuBSjZ+SYrWzYyIaL8Bhli9oG82n0fWBuEpkzrqLm7kS+lKAOcQ3BMoErx4hXSy5Fe8WEJMlDQOXyY0j+24xkESVkU5SRirMzb4qtdmw08LzrGKQnSkcy721TnglkxlFKW03y8U3O8pzMZMaVkX0iQ0WKTwQbORnXLNJIbwO9bNAUUTM6EzRLX0mSmziaIV82h5rfN12yJoeOd6SQ5hnTe03IpYyqDPQM2rPpj3jWHbHVBYMuMAskc9pXlEYhv/ZM6t09fl1m1TCaS++9eyyX3GM6LqV2xEa6NLBMW97XC5bjhi5uIW3d/CQ401InOLLTnsJkzEwfZ1z0mQGU8RhJUzaxTl3HW7D8v49p/tl8HxgiRspMK0lgE5Y8kyM22rMJrnnVnnppZGKSfRWOKuOS6IzLCuMKmebfRoltZzJBjF4hxAHGiMTEaW/oeIHGDX0Y6HLH4K5TkkVS1mqTdM243OriVo24VyScl9Cg18ElSJCKvtdhuDAdtWMT3mItD1nbMSNLEh2TebbsHT+uhXptd5++OtxpxoWsSOGETXif5+GIL8IpvcFa324Yl28cSWSmBRhEZfKLobngru1JIZJNAKW0v2Xt4/DxlARdtDcTm5iMGZ069UvRQBbUsv/ZlxIlsGHBWb/ihS74TZacdcdsZcFGlt4HB5oMdWuku2Kquc05T6RZ801FcrO5LkX6NHIcN3yYzjkd15zEDY906xqYJUJsNcSIlI7UWQubSngdnsP94931sbpuBdlTLa/iz1WoOYCYuj9LhLUuOA/HnOmSj2XFb+gRz2XJc1lBvwRcsCBlAQb82ZXgtYzmVY5f93uv/pyiEXdEjuKah+MZf1Ce8yi+4Dies0znqIwgRqLLnNrQ5IKfZM3B5zX/kDUuU0cfjZCJ3tzg0Ej0kAsF4EJG2bs2MTDJVgTJGlcUIWpg1I7n/SnfZsUTWfCsO2Edlm6ZECWkhKqiooypaFMyu28t8WYg1adcCPXNgpKQFCFuOQkDR93AcRp4bzFwNJ6ximsepAEdkgt3opjFPG+7FSaa+bFmrGJ79OjVcUnqM1v8ca0uPzfhQpy6Of1FeI9n8i5f2PsMy2PGzTtEO0FYEqzDKu1TxDqwsqfm7/KqcKcZ10DHha34dHvCr78w1oPxWXqLpQnCgBEJla5nNR0/TiLZAT9JpJMhozlX6iAePM7EIG+IS4+tmFtcHgHDkmGyzDqKq+WFcV1oz3l/xPniiM9PH/MsHLHRBVtdMUpgqg9WiGb2FtnU1flGoTUZVGTKsnL2vwlGn0aWaeSELU82n3O0OWO1OeexDSxSpLNElwRJhXGNFVGoFoyr57AgmOVxXbk+lNYKRftKeP00N3NqDuW1rHWvQ8+L7ojz7ogvVg/4+PhtXnRLnoUlMSxcqjdFUqg7JOntELvbAsmC3ILE0XDBaXoBLz7i4fYZx8MZKztHxYlmIpAsawz5R61lXD5vzri0EkFK77vWxAyZOZH301Rg1YnqLuNyTazOrfnzRlGG0PFiecp3jx/yfHHEs/6UdVgRRYmiaDQ0m/6ThLpHq6xRtM6C81UDmVj9TYISQSOiI6e25TgOHMcNHz3/guPhmFXc8CAOdNEIyRlS0UaLUNbebX5cxbMqwF6XHr0UlyhMTRDRiflZsVQFzvUtzvUhzzjhs80DzpKbDpNMIfFSpNxiraHQkx9gxnVuSz4ZTlm+gKdrOBnfomeBMGJMavEkKaZqHio9Yxz2Mw+gUWakOeaAUUYuubY5dsaV8uI748o6oWsy4pvhInScL4/YHh2zfvwhT7sVm9Cz1RVDWXjJUm1lJkWqkSpB3hy0Vfan580Yl0GnkVUcObEtT8Yl3cUz+vMXPByccfVmdBaQ5LNvxIoo5b6v7H674riKIprLzEgp/Kle5zITy5I4ue46XnQr1osjzvUdnj38gLPFEc+7niE4IiYTdOyqGS1mX85dYV2FcS0xVlxwPLxge5Y4vVhytD1iaWs0R4omAlYYF0Yw5owLdcYliqbGFya5tUXd+IVxNOQm79+JoBWm5WtVq4fXdRWiCCPCEAJnRyc8XbzLxfKEF91p1rhyIJOUKD7B6CbG1cxBZVyN5F/I6U0bLYSIZDfFcdpyLFuO7QKeC8fbY1bjwMmwZWnZ8hOzCZ0idU+OVJvhdqn7B8Wa8Cr06OXHU6S2qkcLiEFKRrFUreUBG33EhZ7yyeYRL9IpWzl2gaHY1IHalSMLp2VmXhfuNOM6W5zwgsfE7chvbh+wSBt0eJtOstNSPBzDOX6RAMv2TC5BA+C2+EOBtW0YtGY8M6Zj8EVOeU3qsfnf82Nz6QvfYkldlXYGWOzZwhBgOO4Rjnm4+gZnC2GrykDIZq/J5Vl1IbMclXgoL+VNoc2/SI0EGJwwZEkqGPQxsdJIsA/ZXjxh+/kT+ouRLgldUhbao8l9itb6TSReMW/U3mnleLYmV6yP4ThTTIi1bbiVgp9OIAxjCMKZJNJqwbJ/Hw1fYVwuuOiUgZFouAaii+r7mdIr7grr8r2zIrAgsogbfu2ZEJ6f061d6hcp7xYy3cnBHOaEXitRyw0Fd81wUlpftBqXZsZVmMiheSufFbEyecBPFsYSkiNt4WIVWL71NQgnbPqeoc/+NhEY/bYuWC0aA8S0j8XKqIu218zQzSNQpUfLOLDcjnTjhk+/OGJxEem3xnKbWGqPIqSxMC4HnbA8R+4VF0eos6bmGldhxlfh0i5eXYZLKeNNNEOUyrimCRJGW5L0iBROeZIecB4esulOGGQF2YUQkpsurdKQN4c7zbhGWZD0lDMRNnFLkBENA6qu2pIzuJ0xTItfEAOmaVRXgyraFJDmmjc5hkw8q2lPcMLvZFOJbvaTxKhC6hXtl6Tufc67xKAwNBqib12pxNmdp21k1mXY9zobJxP8HI02gWLSQY5yVBM6gQFDuhXrcMomPKJfKCEqIQU6cgSY5dHWAU8M8ao5vOrzg8eS17T40uo1bYCJI/2gxhAituhYdo/o9BGjBC7MSCFrmpIJXZFOmzseen6VgG/g+Kr3vP79nGiPZixUWHbHPNMPCCESeuhCB8VMlHJQkXjKhRN7q9J4jdWV1vyTaCNNJ2FQwfo655Npa5fByXSfqslK9rkoqBHVeCEDD/qvIIsV2w4GGTCXPgldoKSVjEWbEsMrN+RxWXmiuObdEO1bkPwoWv3CEstg9H3kyWJDPwh9EnpTAtnc2hcaJJmJTAS/4nvWeKg4X1JPrk+Prvq84IwJRKyqY5KmIk6CkCxg0pNkybY7YtAlo/Qg07hK0kmLKw6vn3Z0pxlXoiPKko0og0RUfbO7PVYxCU3b6Ea6z7JiC6VMlMDe9N4UWJZgCoKIaUaYhOYeNkkSKQgWhBB6ej1hrSODZkGyYVzM1O6GB8Ckou8N4g0YF4bILpEpRML1vZTrlqHKhSob7RnDEiWg4lqZlckQrYRxf1PfDBRL/WTepEqtRXIsEu0YIilECErSU5a6YhRh46jrc6oCppN/uRnzbTCr9vgmGJdHDBqWIiIBDcqFPkQDaFCCLiCVfSlojbgteXnT+5ZozJRTPOa4NZFX8iyTFkz7ptXi29I/DRNs8woLkVYjauI8XNCFh2i3ZBsig2zcZ6PQWVdpwGiFaRlWGFfjk6zh8DVIoR7eKBhSA5AQiJrYhMfEEBg00IfO0yWlCAQlAEoqbcoDLgcz50YxAd8oZJxJ6uk74OPTyiwVj+73Mk+WffBzc+YUedxmzr4plb3TjIsYMBYMLFBJiDoZNcDMuXwx4c2m0naIfP0AakLqDW/eiXA2IyljEzevJDwElkz4TTtGlNEC0Twhub5AJkVVfZdrboPXyrD3GZyk1OaTPFmVmJphJmzHnhiXmEEMp07OxHO3EtHZiXbTuG8a6ZrxOVmV7EOcCNSUPFs07YHEgCAE6TGPOfZkrVJJw1pCu7uzJnSUA8ftNdc9PnTu0P2u/xxx4SM4cYwjpHBE1CK7d0jJFRRFayZkQyDz+0eZIgvnZiBPjveZGfM5BVkwBV/ELASVCD/za7L5azb4GmBh3l03ROiUIbgpc9TAKAuqdo0SklYC6zlF1giODUsXb4lU5JjbYFr+GC8wQCpanQBLRhae6qIdxTak0rmQalLfG6yay9tOgkWvrSduGEq6ikewW51jKRw4iAeaWYlEdEGU3E5KWonR7wiS7WD2g9oBWQOIc/2IImaT9FdClKW4YqlqtE/8fJ3bTVt/3/iA2weSpVonhqrBJcIioRqO5AKe38X0gzHlpkxExXnIbWguU94YTN4JcAUk95NDs6CQAOkCBE8Cj6nHiwF4Rx40h6BrwKKnEdxGyZodhXSalZnU0tTOaDZFTFqNWMkADdPcl41U7mjT/O89qzl+Xea1e5xecs2V98jSR0K84sQIRg+U8kglV9CrNcQimFTaaGgOCihReC5s5f0oWSNFfN6k9R9NicJTlQ1t1iL7wWrYfAs5irec73qGJEj0MB+TznFeDIu+nyrjYjLzekAWtJsgaS7pVZjaLTCA0smiKk8qrtlKh+mSGBe0ApGhLjg1kLLJto4+a8VtrcBbgTYdcUfFL/vCaZhmETEz1la5bSKTq/WmWDJeA+4249qJFpqHLDAnUGbOxBqTgDazVgWDukC3uBHK2Jxr+bitYUaVKDaSVJXSyoDzr8y4pD3fit47G+21jvMAbPfU9ArZjOQhy9XykisdlO/6de43qXXm6jvffMkaO3A0G3hRVQsrEG0kGHWJ16jvUOelrM/tKIm3Cv4KxXhTDHnZ32eFcWR/kkxrPfkffa8KhWjm7882XJ4vyVrUbA/6H/Opk+Z7OrtuflmLk1px2Z813d+y8OS+uYlgTsKpsCv4mcz3dTNZb45Lsy+35wVK7T8reGIZUdo5nG7U/iVV2JDbo1eH9njzKpMwJLNLW7lOqtRTOFl+xzdAoDvNuMyKWY2dOTDm7J4JGdoQzQypfFSvm25zK1AEzcwpzcw1kiBIKMmtvrjFl1LobEW8RgMqVXWkIK7Nq+K3dFbyOXaOFao/cPeY5rrZlEg+n6XZIvUFNcaUNZmWCYtA9jtmUgIhU5wpxe7lc/cq61JsVtUUOX/WxPZbWdHQ0OVKGU7kUpE6K1Ft9M5blnFuFDKFtkzsNYAHm0h2/jUMoYj1jQBoljBLGb2c2dVSPlUYax+o+7gJeKBEmq9LS4AL7qaU90075/5ZjsXAtKYT+2ehyPX+f9FSJqZViEbzXu0YmsdX/GmPG1w6hFeH8EcsOwms+dHMdJLke5c6kbtQ/IFpNscmjVn1dWjVdXHp0P5uz1U/NTVaU/OeMMjCavMu1tpsXg/uNOOaqwDXBJk2YNWA53zgdqFslmESrDSASCBZdNOZ+gemMvlV9rhqhoahCC3qTY/bPb7s893Uxt1x79KY2fvsDKnrBVMj2ujEp9QwU2cRB2nZdeB19nuyUkHW6aVOrxAH0F5QVYa4hV4zQZlDfc2ZBH2XONYczKgCRJXuZ8a1y2C++LWwVfXdXOvpzb2mwItJemwuyZYSwEs5Zf8JMeYQBtycORM4swYgJdG29Ssf0OybPXwd/Lns+DJcKudTygTXmEyGln18uaxTef7e/O9KjHXu3mAP3oJgXpOWkZJ4ciuPutuMq2x029m3InPcqL93tJTp69M1t6VllUcURtNKeknyChdVrI0i2rnBnpBf9LN04OKbAydwzWS2EnaRVwuDLY4ur2XVSMyyP73F+XhbYy+3ziKw6iQJ+olGOtdChj1fy/eV1DRPJ/ZygEDf8qa5QajDluw8L2ujmWEXLZPM2YLsIBeuZRnVQe/MwdffZhfKdLyLW1KkxVJ89QDJruOjMUkWH3COchTfVUrxVZYRlSc3LGSG6Icgj/+mA4VMJsVV8viKqSwHZqGJHM2eR1dMmXm8tah2+b/1a92iALVLW3c/3320NPiVX3NWkUSma95k3HeacbXWwOKvyuSJvTI8uzMuu/tzZxJveO9Wkp2JoWSCacmo7ZBEc/VM8F1sFXlbOVho3rfmhsU5kt40ZHOA+0Had8kzV+vYeZRWHC1bBPIVhRamBoNhsqncVnAGOds/Rg/l7Y1xyMMXn/JE8nH03mrCkpGy71EwQt4rhUebNdqFlLW9O8yrjFlUXQFpfqxwaN+cWT2VxryqpctNe7tKcYs5ez4bE6Gu36tJv60ENwmTVHlHm0tCM7aYPy8ChmtgBoj01ZUSqyY3IxDMRrgjhEytQm4GDEUlJ43MVJCJcYmO5MI+jsc7PjhH8zAbakWvvXe4Gdhd44M7vKqJMvu7bCOEyWUwSU2Zeb0+vbrTjOsqqP6gVvO6jLbsVCi/1v2vuN2V32ueU4UONSQIHlU4gA35fABdYDpWidOZQ5baJOYkzZQ3x24OxQ3BrKBvRqA0YWAh3IoTGtGevvOk3TEkGAamShXlpf1PUak8+rZAIEdtwjg0G0Kypiqj/9gAnSGLgPQR6ToICWPwRMtyM/GeY/79128//j0DA4iYef864lkWizvgCLpsghqZfEw7vqrXW66ZyuVniuKRhQhVPNoxJS+LViLrzCCASvQWIGxBUi7SPGDFjAiZ+GdcmNWdnsoi7cm1UvWtGwfNdtkxGb3lSh7BQGPOALBsbw2gHSLhSnz4vhOTrmMwKZExBgckm1eGO8243DfsEtdBGalxXLVR4oXpWPtHTVKy+r2XrcWrCzlpX5rLGpMLWAPGALrNBLIDWWIyMPU+SpNEWt6i5q+EXDHkZsUvK470Um0kt1eRKjXaJPmKV4uP0XOi0MGv1QWYeKukoq5kp/SuOeKGB0+yhGRR1yMap3mDrY+x/MiAJ9Umki6wYEQdMC0p68ZURLZ5l7sCVSI2RPO66YVzjNB5iDY5JF2NSdigqlZWeFhL/W0nsrVo2TTWhjLnTd6J1PviQUo1byXPaxAXKBiRkMC2JNmCrEG2OYR9RNTXRDBUBcxzBeNkEmAW3FE1tYbutqbwm4Jy8xJcGY3Sygg2+Fw3jS9zQFYdRqPI7NYT3H/QbezExtbTRgVOJ/1nJ4eoTLngOygmIaWiZZWxHnAdXBPuNuMqEzlZIji0dK1JcfdT2/tr2jVXTeqralw1Xs3ifAOIRwyJurZlsnXGpYD2mKxANngl9Qi5MG25xbSBBSmdn2+acZXac8X3lss8+dZrNDEBF4tHEhtMBrfdN2loMTUh56lseDmAiG8Ovka2I9azQ8jyfHdbCBuwNahgIWJh5QF3YcSj5/w+3nmg+Fr6Q1Tk+xdk+iWMaIhId451AWIHMUCM1BYuBWz+/boBMwMg7YSn70GLW4cwp0TQNmYlEd8/jMAGdIvZBmMLusbkAmTEZES03D+hFl1Issy4aPCNUnBtKkjbiLdULnNT0DzE/auCaciVry5wst7n8WWrhKU8940qk+n9pVvNZr9udOizR5RE85xgXMp+TVe35mApBiVyN6cbE1TvNOOap8LSzIbsnd6dqD3G84qxDa++QbJO1AVMBpKdQ3cGuoGwJtpzkC2EAUKEpcBiAf1TpBtQ9coaWMoVuqk1w1zgCTl4oIysIF+J7SmIe+h4d0bmx1q0vcz9VbOp0ITQVEwQEdQCIj3d6Ui8OIduA/1jUjoFO6FbvkUcAjYqRA//f735vB6ICNIFb4de3s1ypQaNoOd0Dy6QowsGPoV+ix7B4u0lywcrbAkaIsG6Knsm2XoqhoFYKWN0x8CU3jr6saN761NiUOxiQbAPiGc9NiwJ4RHxYgBTCIvpu63QBUy2t+uYgA5rqFWbxXKKhIGNkJ7C6hz6F9j2Y+iS/ywH0uIFor0zLZ1qJGoT0q+NMlAsBqXe4r5btT2xiz+XHV8Pl8ozQ9+j0jnuHv9WydaH/i0Y3oJ4AuMJkPu/XXdvvaok/VowCQeXP2+aDylKO7ur3tb+eD2404xL07QtHKSZi2lSahfPKsG009h8Zzeh8QY3QlmoZAmzAfQF735DePerD/jw6+9h3RckzjHZkDTCAuQooO/3DEGmkjo2VWh280bWhHbHW3NxbOc4I1g9Lt9tohnLcdGGqqSamWXrMG7MRSkzrpACPOvh7AQ77wibx/yPX3nOx98+Y/0JmD0EWRJCqfnX2EBuEOodzdDyrOIxztorqzU/+n855Ru/7x3Cg7eJ8hTrN3QPQE4DSRODjQR6SumjFFbUhNydyuJ3BwSNSjcG4o99lbA5hvURTz9a8f/7D5/wybfPsa3SySkQiImZdg9ZY95TxeaH0G7LXdzLn1bGl38sgoygWxYPL/jhHznih37XQ6+WIVtGGYn9wOK9I+QoYH1CSisVpnw8w4jaVFBP+/Uldt0tZcdfjj+vjkttJYkQlWCKRuH8d7+DDgt0XBG27/HRfzc+/yjy8f/4DHgMtoBc1eSwqnXZ+ZuB/dmS+Y8V7bRde3eHlCLgVFPMjtWjfvf14E4zrhJ+XW2lh8LgoRLeSa3ySWsaG8yY1iyo48bAF83pZgS2PHxnxdd+54of+d8ek5aQWJBYEyW66bsX0kkgasDbaWe0yqUpDENyjykkzctYXYlgzXFrNL/suEyH4c0Xd98r/5/Uq1urBXQt6LBCh2MW2wc8P7vgyRcvuPjuBdhJ3r/aOKFvCwFtqtgBHulYNYYIYcsHP/SYH/1DD1m8fezxCHqOLAds4RrsMAqdLihIGsPU4FBukXDcHuSxJ0FHZfG1U/rxFNYnfPfX4H/98nf4RM6x+ACVHF1ppaPBIWK2+6cduK582NyjotykzfvJbB7ULd3xlg+/ccrv/8MPsaPIhg2DDGzDQH/aoT2YRkrSgpH72hWs1ylJt2uiIWuQZOG/5NU1XHOr0bDpjXGpvrUBMWfLJWH88CEhHRHSMf3mLSSticM5H//Pc+DE3ynl8lt79rVy11YY/zIgMxyDWWToRHgouOUJ0jLtid2CEPdRhS+DVuMqkJNiOYBml+HdTUCNYBx58LDnvQ86fvh3wtA/9GAA3YDg5XYlMWrKkVXiRTrzxkk5p8UDJ1x7ULPbUFx82LUK/C74Rs1N2LFcoLWzDoYlMi45MuFX/g+j7xMEq0ic3PJ5u/ENAoiQxsZmUfaDjWBbjo4SDx8bHCXoBBRGRo/0NO97tFTvO5Y9ke5cl8LK7Esw09wglDlwezPHS4WtkgSOT6HrRoSBLgBjBBsR6Zg65GbYfecr11Au+V1uVNanKXUkIyEMvPtu4nf+HmWtp6TFCUkTa7ZuUne9Kq9M9rvoVPapCFyucZVHy6SVNbKuMjXJvOn1VLQ2tbUSgGEhM64lRyN89utLnn7k0ZHeRiZle4cL3PMhfdkMq8AhrXn/Ch9daWgSPLgMm1/wBnCnGZeJFwJ1ODSRjRTXZswb3KgD9hWgmCGMnrMvlCcfCR/9Dzg3Q0JAwgLRRIyjI14O4/YvtwVC3Y5fmuyp9r7BXyGuXPaN/JfCdNtaxAanCB5taDTVqw03oUWvxXOkxtnnPXG7gtRhldxbzmtpSgbdNBT1uYRVZ0ZWaeW44MnHym/9qsBRQMISU8MIaM1NUYRAsuJF8e7HIuLMr6zQVVqruE9EZlJ8OT4sxVu66n67x3LJvQ8/JxEpvaiepJ6QFLbw0f+Ei+dHWEpE6TxdwchtLQqVn3BuSt/ZYd5yaEEPcL1iJpglxnWuaZiQtoGnnwq/9d9hGyBKJEkkBiPl5HaVztu0MCVVG16xPO0MoQzRpNRib4YCtyT4CTUJWdyMaJbc1zUKIRkLgy++I5w96SAeAwuwrjLYMlXtPQ/lbN/G0Gcwm9ADCDsrqdcyuKY6yswC9npwtxlXtZ/uf7K/mNJ+unf6SxGYK6YIsOD55wO/9evnaBi5GNdIiGjwEjDJSsh1KcBLQzcEajKmFxJVFWxPq7wart0rWbKUWP5AJ2Lc5HhpEWFRhCUWe0g9Cwl89p2B7ZniNvvJRHjr814IbaFQBlMljwBpwSe/taVfPkGWWwjnIFuMrfvzRLJJ08PhU6YWWhJjW8Y1oyKHjguhb4n6zrFNY60VLK5177yebZCEXP6cxJhZXYC4JXAB45Ivvrvg/IWCrbKkfAnl3/nzoCI2SVzzL7Uh1bTXFGTMayMd4ybw3d9c8ytHnzPqOZHo0nuIOXfd1yKlnABPLuJsJQ9szmtbxlVO7Fqwbh6EEkkruZWCSUJN0RiQ1NHZMR/9xoLnXxhwBLQCHpOcSOlOfXujveo9djIgylEzkl3hZv79Obw+9ovZK4jo3yfw7NkzHj16RP+//SqD/u4DV1zzlV627lfe5jVEHQHYggyZQH4B/QaWW4ifU3xVpBGCt2xxp0y1yFPtHpWBcIB6XEEYr0EA9473sjVL2H0CHalGmWp7CZ4TZM64GI9gXEE8AnsX4gqsR6z3AD+BWan+Q/N2aGgvhUazqtVISsG4bGINLyB8AeFp/tmCjP55RcCmkgEyaS6l1MFdgso06sTjzrwlpBXEd2E8hrRE7BiLYWIkNcrtEmFx/2FXjKHd0zCLoDN8X3Ub0E+hy2vD500JqtZfLTTlZ6a/sZ3YAd0f/qElrPhVLrhKyLiGRlyeTQCLU3x4ir4MKQBvwfA+Eh/A+DBrW6WkyfTItjfaJMSWP66BGK+KS3sSiey/2s5NptP+BkuE4Ysz4tkF6dmZF5c0gOfAH+bp06c8fPjw5WNv4E5rXDcCB0XF5rNL961da2/vCxlO9JXemxrGDZxvITyaiErNmpRs1cpSvWYsq+XdQw6GyAVTy7MEbjIcvhIBwaVGC9TWFzoy5XaU6yUXtu28+sfY4eG9fTaDdBMjaAnLVfMmlxxfNfftNNQvKozmY5EeNfX+TR4DD2NhxGkqslaqIRdNrZwrt/yyBd83hfpO+X1GA+mB3pmWLZ1wptybqxJH2Z/f14Y5cpXAsyrIxAC2gu4tiD3IChbvTriRmvHPZG+blGvLpV6lnC3jlwZZ5p2Dp9Pl+mJihYNm3YKzVwU61fdVr0QS8GoZkgtSmZCGDsZHmB0BK9hDimbKODT916BH7X0OHR/63u61s+jSw9Cs6lxWLnN6XSZ7Bfw2ZVxy5Z8T7EzeHpPh8kV+1eMK3vDSRqBbZgLeNcgnSOoac4tvcCQzrtIKwgqyZAaXZIdxXbaLr8msZoxrEkvFBLEpAdm0NL+0+nndl0lAFKHDUnCmncLEtKyUE7rOvF0CV859s75F0NApnQADGzskHCPSkbbrieBgHjFolk21ssO4mufdJcbVVjgovdFiRKQDAhaXOFnQ5idDu6/23nnnxFV0qWpGLbEtFSOkFs0wUxgXiJ6AdtiQuVoRjEIx15YFodm6WZAqvrk69jk1dn+sZXrajkemC64Kh3+JxiW7jMvM/YUxF9YtJvjYgR2BtV2i26mV+kozt+BlDObQ8ctg93u79z3EBK96SCpzsPvBG0s9d5tx+QIelD12TlwysS19vg68imZ1yRjcoZ+ccckCL+u0cAQzJxTCshJMr7SRJsYV8GuTZWuJkEQzkxAO+/xe8R0OaS5VMtWcu5RLIJWx7V4u4tKlGdotSNFcmiZUWmjJqFXxrzOHL4Or1qQQsBJUUZSqUQh6hLAkbYTcY6a8RPNGhTBKQ29zhe5Xmc+beJ832ofkfTYFmIiNFN+kpc5v8spFj+2auJRnrvCALLBZ8xKh9NNKYENA+hM0nDBu1xVHHF9ySZaUFzNr722hYKvPbNa0oQdC2b5p96MbgfJ8Kb5fAdKYczkTlkoSdw+s8HqRDewEuUhz10vX+yZwaf4Ch/8++IzDm6CJ42yueX0GdrcZV9vqvoK+Mj+6Ei5dOGFmothd0EPKC2T8EDR0NeDBsl9IUEfGMX9VcHMbEcPDkncT9wx1ZC6Mryb4XTEW2zk+9A6z904zhLFCsIFJg2urCuDvYQaWiFsnHCKCdpkgAdpJrmgh1O5/L5vDq+b20DuIu0UiPhZiJKFI8vDk5UJJyUhbEHETjeXEWqvSv01RibVuzXXm7ZLPXuXdrrNWr/ScQsQ7306WkLDworbeOZOQ/Uil8tObwIyn7oxZLGtMOZQdDFQZc41pb0jdedqEgXJStY3qITOvVQhk8/SuCiI7P602M62l0TRwvQUo6biWn4X2rjGSBdCouFk2D9MautZqyTa9wcHyzod4wqvi0u7e2xNirwcTlZAs4GbfsYx5L4yvPdt3mnEdhlcQN66ctevc45JrriIw+XsiHs47r++WQ5pxOilqRDUvJFyYQ+2fJLmDXvPT9pt4nY166eel01H+v0iowJQ8WohAQ+DFHdLSFNZNsd4lWwx3seMlc/jSud0B8xYlRYOYu0Qkl8nKWWihI+ExW07jI209zNaM2Movdwsy8S6mUzOPcOsENSWNnrxLdIIq6vvt4FRfIX3vTstuKHe9Re4RU7U/oanSIZNlNuGpEzbxX2+6miYrhKSJcdUErV3GZbOxO+PLO7Jd69fFHw4c54sMyeMsw0kgmgtjh3wN+3t8T07yk7XewsuqULwqLs2eZ7O/D0cVXvLY2bzMOeqbigd3m3EVGjnbJM1sHjJ37CBQ2yfLJYMDl90SzJqpSXNSMpKqYZqgywiVsjlE1aW1sYw05fYTHNZC3hRqY8uK7c24bdrN9bxkviYTpyjxGzF/Z8a0bhEqoZsII3loztTqDBIkONOqxXhzBJgUoSAfl/qn5T53CsoGL/4igxQRDR5WboLFIoQwUR+5BmI0eLh32WXzlHFglppRH+XCjaR5Q/uyzUrBaunz52I5yzjvwYpfuk9AG8ZVmXitqHLFO742ZFyIsRE8ARMsaWZgWWgqr1BfeH6nyrjL691qYPh83V+ufEnzuZUsAKbgmJuZ3DvNuJLIPM/kFpoR3gYYXpCAoC5pBneQW0oVGVORHhcJfRCgE5KELFVSo9FnN221r1sZdYFM9GTnvGVzoQVEl9gmwcWADYaoO//d9ORYF0cDacKgbwOEqu05jcpBJgKWC6FLp6gaMW2doHQKK0VWAYJgMubCmJmoaVED7M5Fw8+Ej1Kl4mJL3CbiYBCOQDrElL5Tb6X2qvLFqwhPAogndrtwk7IJbfq8WNDiMDiBDyDBIGwIK2X1zhFjMJKmjDdSl0VqJ4MypCnadlKiU/28BGjcJAa1vnhJgRA6ggS2zxPpScTO3V8307aKGfUA09prByI3POBL4NWTs6U2Qk8S3BeP4N0ljB/gkk87JiZh+vvak3yJieqA9eqNYEeALWM1M4jFSWsTXqlBb3QPe47fCYSVkLrOrcIimAopueW87QQ7f4lbGv8lUBKQxYSAMrxQts+MYTNgQw4vD1pdGqKtr+yWoAbFZKJUay/m57apcMGrGkiX6B4Ejh4ruhBSp0Tp8d5PeLJ3sZR+Kbr5TYOvkRkQhUVUzj9fs3mypdhyzYK3oPHLr3tbB4OpsOou2M4mkolAV19iq12VWpPkEly5p50CXSSs4PgxpGVHVCOKN5+sa9qUd5qP0RmDM5XGdMnLTWCvCmJNlccEIXdDDr2y3iTGTRaAclkyaefxwA6zls7Vh9zsmC+D2eq8VKApuFaNmy4sVT/xDzrjKhN4bRpy+ML5LW5JipmZmNxUY9URW8wy4F2RDV0qi1OlO1JSH1oFglgQumjht0lDr8O4Gmtal3N9x41NJpgSwFHnwEPTZ5LmLYLPbkOkqkkwP1zzJCroUlg+EHTpaUQjudpNQ2dbC9pdgTpco+ZgryywPd+yCe1aGXGm0V9jgS67ZGbOumyjtpPbIkmqj/du2S7gWcGRzuhWQjqSmnKWdNptNXq9DHHnb6DWECyvcPOMa5KDs0LoOBI9RiO3NK8DEC1zINNcFEGgCGCVeb2qoP4q8LKbXm+ifJSl4seO0PKacLcZV2sVe1Vzxh60WPpl1DGUubkGqC/kceNuUsRInad5rCXnZTb7teTI1rveFiHd3cM7zymuoNwaCRKMCqMWCtkQpVL/7ssyswnXM3dlB7+JMAqMnqPMVj3oa6dfXiPV397QbwNKrI+qW0XHwatNTkSyhJy332qR7QB+XAv/2nvMRjQdllp49V6B4iC1lB+igVxm3YNwOxjw3OTYVZ485Y+3Iyj8sTym8OovASSB5GwQNeg7psVo8ALLxX6zVlKzJIvKNt3xyxk4+bmCR4JmqALnFcMQnB5ocl+eVWnizcZ+txnXLswo+CXXzMJiZsJ/sULfxsgu8bU2dkNr/i4bVBIpZGYVHDG99qjV2AdDqgmrvMil1We4fg2NtqDObNAtMRByBeuyQcV/Mo+K+vKanO0sfCkgewc7D8+Rm2rexb7UCtaMbyrzLAiZz9tlczg7vmx9/LHXWp/XfU5102X6Vyuu5Hc7mHi8N4WthaDRVi4jYjPubs3P7nmZzrVqeC231WruTMKD5DUSNxUmLWl6TVHq2T6cjFezgKKd97lJkKydFwtDceVZKSrQzom1szFVvnFNq537Lx/mYVpXE1zBqjI5N9jurv2rwx1nXJeRu2uSwRntkh0Eu1mYGEsztqruszPkRuqUEpnjla6TTtkmNb1DXGIu1d5t97YNcZ1qXFx+XAjjQTpUp2kacL1OcMqbxKXdPPb63jvv2JKsLwV2bUCzP/MbV7uOx1+3c1+Egl0J/jKG0s7h3rE017frc421etPn5FeZ0+m9it7l4iJMTU+tz275T7nHoX1cv9Xs6/ksHvhu8/1WtBf2JPYauZZ/ZpqWzG9V13jGPBvufkvQ3jpnADR7Z87Ii5DRpm/N4JCkdyvI1Eg+vKyDw/zBmXRNDLsKCu21rz/YO824ZDYJu3DZebn8+MsQYq4QNqb92NqkIl5dQyAYpnGOcjI1xJwhx4FHvunxbKCZ+JRgE8OlRyvVPNSZ7DzPq+gDJZ78kkm4SbgKN6w9sFxGqMiUnmODGimkzAS0vXoi9gcIzKsc38ZaXfUcsazE5BNSpA7T6XcxCRXmJcZU8qT56JDmuruGLQdpE+nqdddZ9DLJNj8lky8riRBzzlkSdm7bzEJbIqr56Pb0rUmIQHIlpJKrVhlD1qzy9EyWiiYicjZfO4x+j0HfFMxvPJdLLttxkv8vQSkyldbK1009ql8P7jTjunyRLnOefBmc6QagDWYQpRTHSJlRlN5HpadQ2Qpf3vgOnzZxxzh46plDSeAqF5X/ppscEiC/XBBm6mtjpJkVZy1S8pWS592AZP4KSffp+JcDb7DqB+bemiXc7cHVXMVh2uCta743UMZkjTbp++6wErWrKn8/wcSUfPQppysJllu5lJxIu1LpeDncacY15/4vvYIJWXZE5F2LxpcBLfGzfbnGit27+K9mpoViu5+0Lf/al7WZixbFnuJUJcvZiTxq25GxDjGAm57/HZ/mYapH7uFUtA1g5oRuuuW23vxaDfb7kYhcBZb/NeMuSdZVFGqR4xAesXfddPaKOa9r3mhelzxnSjsu5ZIa7Z1prLPtdmgprsTziQlcuz/d64I1JrRDH87GtPdm+bxOc/pl0KprTclcpy8jdSHPqjZco3hvQFS904zLd8EhJKIxR+TNXfdFyyIa4rsLN05Ayy9rHjuNQcozBVy3yiVsaDqgFksOksVKbYU05pv/FmD2nPKgNvrMDvxuTQO7YLc75Dq90xP2XG00cz9zlhQTTWZo00XMHOQWmF7iNRDytXD4zZ9TPKX+bi4dU/dc06trb013GY5L121l9Rq8UbXXnbGWNZGdv9vnyKz3b5XgJ2Eu1mtF5ut76H391tMzfHWVVsO+TeSRAz/TI6353QrWNr/BjhAgzTzeSvGMdg7L2hbaNcOtslapoUVF2CumW6na1yS4/EDnce1CRDyeKNOa1FzVxly19nqZ7YkJD1qVoMoRzbOvOt75nvmNtbHLJNO8AYRg6ghviciA2RZLEaxDWFWZ0/mwV453AWYyF04tFA6N+83ex+fSPOAi/663sSKrptwjT/HiSYlkIzFtCZZQvMCt4f28pPryWgn6dd7hkvexIqFHJr/h7k9CzREvWiSmEZLQ2ZKQdFadqtQxNov1GUVW3yd+19gTeU5ffX1e/zlVlreEWE6ERRAi2JaQegKGELHcAcC3XDacNnXxxCbmMi+8PDGVqUWKoKTCLv24aOKzSr6t1lcYYI5ylOSChyUGBswGxIxg0E8jnY3HNZzC8HKsYeWZxZc31Qmslo5bgmBTykgXA0MaIG4IRp0nyfgxrWOqQ2qjQyvZN2qAlsMV++BVjut9p7t2+fMSYDI3vbrjziS/Q9kvomjpSP1as7YPd5txZSJeiKaHXyakMC8zVGJzTZEkaX7DPPRqdnNmi7nXOK5BrKwdFQZ1GfHQilh4CZQs4WsVYQxNA6SBZAlJRpciYkIXR4+YykTUE0MmN6fYRJgu35BXBcSXTViOJ+JeFQ4xUv4BqZUHPAoqM66U6K2DFEm2gbSmS4GQQpbASp5QmMZr6fJ5u+5xqxmVNTGYQop35d0831Z+J7xkeqC3js5WJBN6S4wmuQh/CUt2UiepJRZXz+H+8Zuuz+s+x48CRkBQM0IaUNvmdRpRU0ih+lTNSoD5FLjReliLL9CfkphUgK4+V6rA4w0ereyh1Jb9ylpfFfDKvGZnnOBJyHFgSFvfa2kkpeQJySl5RZasSU34kDPimdI3rHYltjz2HYZ502DOIj2vCfpkbNNAsC2LkqOG5FypVqiziZdUpmuEsvcKTZC8DlfRoFfCpWaF83M9dsn/SDb/nmEewGTO4lxuFDqU0SIuyGacfEPz+p1mXILVOmBCQkkEG1EbECKB6Mfmn8ssqHgH9k5nsWa342mtqt1wOstEopodmmOZH5cO9UkgNaYKbbSlZCNiIzEZaksW6RiJiajRpX6bfnyvC0nSNRnXZRL9ZYRR6jyXr02MSzOxz/qguPYSDBbJUFsjdkFIL+iTEpJmMTH75grjssnUcNm8zY931mRvfebHlt9JkAZhChFNlXFFvOeYpcDShIWpa8UWXV9IZB9XpHTNbbvnXs5QXnVNXrY+7flDxy+7txPHYEKfjEWCPq3p4wXLlAhJCNH7rhWfXsIFC2nMqHXe8z3NSij3xNCKNuNz5ZvXJHcmtjzm3N/NYVfjKoxSmzDx5MJd3NDFFct0CskIMTGQCGV/SWkzn+/V+PB8popmUxq3vpxxXUI9WjH40i8KWdvKP8sUGNI5pAtWFvJYCw2ZzGhSMvVt2r5iEHbOG1SGfTUu5Xu/FJeolnNpxl+eWXOJG6HFSmd06UnmwmmHEIgki0x9By+byevB3WZchueKEulsQ2cbFrxglV6wsAuW9oKFnaE2EizimlhjjwWmhBZopZt2I9b9dBVYke+KpNt8r9xPmvNAlCKNeuKuP9pIGrmIxigKm0c82H6IdCvWKoyjZg+YG1wmh+clyCY2bbY61J1UwAYZCrTWZ7FJm0s5p6mYOMW00WFcawkkjqISty8Yt8+w7acsxkRX+yW1xM4J6qySwWxO98dZ/m4Ryj9u5sCymastxGzTe1nDuMp7xwTnKqSw5Gh4h254nzH0rIOxpa9zbQwuDwvV3DVnNM3L2M0cF8HGx82VMHf+NwIRVCla6QnRWMTEw+2W0+13ON98yvFG6MdJmq8BCwefmf1iQKJtwHnZWHYSbcuNra9jnElIVTCcEqITvgeHGFlj9JsT3t08c9zohDHB2KSITIwra3kTMjKF/UtOdTCKOXHOSKfjyyIWd3Gsvlt5e3Mmqrkqhpqx2ibOtx8zbJ+z2tos1KoI5FcR+JDfbWLFV9EqOfDBVZrlAf/TAXx0slUYVyARMDqiHLPmlJFj0MekXEB8KHP8/aZx/f2///f52Z/92dm5H/3RH+WXf/mXAViv1/ytv/W3+Bf/4l+w2Wz4yZ/8Sf7xP/7HfPDBB6/+sJwUqSQ6W7Ow5zyI3+FH3jPe7s94nD7mlC8IaYOmDZ1MWpf3wyoL4JWZa+m65FvB/UhuQqikVoqjuGm1YI2vw4TJeW9zCVSMqR+PMFqHZem3azbeKImLPrDuO54/fMgYP2dYL7mQBUPoiFKMoVmaLcmhZbM3lTRm2lIZVWbWU7JreQ8fWhDNdgBrEMjHV5hWK+MX4iAYwVzrPUojS1mzPDnnra885WgYWKQRxAWIMijL0XwJQSUHeiRDpXRcrlPM9JTCQKh+lvxGzUuWufHvpsbHIw0jS0UrEtiqsO4WDP2C9fHnPBs+5YIl56Fj0L5K8Vo1xBm5YGJc7fHLtJ/9Y9+TO4wrTfeeQr9t9m2Q6gOV/LZ1r0ryyiv4XATp6FNkOY68s3lBv3pG//4LHq03LMYBTe7H03qP0vg0a0xqiPguTCnhnXtzM9DK4OdC07Q+O4yr+LjKsjT4UhmnTSscBbZBOVsExtUS237GGT3bThlCIGqo99Zqyi1aluWxZUJuBZdb6S01c5eYDPyp2YdkzTHPcOlkjBBE81xlP5sVX5ugVixDkZNhw+r0GQs553g7ZF9jwVlnoO5PLS1PFHLvOGeEgoY8Q2ZEc/Or7x+d1iE34gTotKv+SqdPLfOamJtUc7DjS7LGJ6la91xksmgkCZgFEgvW+i5f8CFfbBO/9vE5azthKN3P0xt2J+WWNK4/8Af+AP/u3/276SHd9Ji/+Tf/Jv/m3/wb/vW//tc8evSIn/qpn+Iv/sW/yL//9//+tZ4l4lJ+x5aFnXFkn/H108DXjl7woX3MY/suXbrIjGucCI5Y7cSLdtP0izjjMsNImXFlSddAVXLjN6lN8KpcOlOxyrcayUlK2xJf/DF1VeLraxSbMSqcdz0X3YJPVs95Zp+zHhdcyBHbtGAUJWpmXI002rbHnoifNczFwXLF7KSzq6t03IlSJycHgeTZnqoSVEF8kmbdBJLobOAobTiRDQ+WG7726Dkn44ZFHFEGkBEkIeI28YQQkxC0c4ZpRhDwwJqJCbujuJgiCpmfgivm0WzFROVqWSxIV/py5ZeIlryMkwobUbbdkouw4Em34qP0lLNxxQuWjClrXCh9sfM3gg1Fip8xrpf5nsrxvl/LmmPB0JTPZ8JULD9W/Y95HzZKSwmJANdSomSN2QwVZZEiR+OWd+MzHi4ueBDWvL18wSJuCBane5gi1mdBLxO7ECvjshQR6xHzQoFFM01yGeNqwBGwJkH7lsvXSa4GY1nCFK/bFxG2oed5t+Ci63iRPuX5uGBrHUPqiZqJdtZwyvJImc1G8GqJ9UzYgxyIktykL1AYV5n/wqMVcrtopwSdBJJZNp02VgnzyoNulYic2hlvr855ENacjGsCWgVFZQSLPheiIMXUnQMgECwJIajTLIvZj2R57l0DFvH+akUW6LSHonliWGmWatOOwcQFlrKPMuNKhQaGKTgnFgon7pwx64gsOQuJjzjhN8/gt9LIC1MCSxwvv08ZV9d1fPjhh3vnnz59yj/5J/+Ef/7P/zl/+k//aQD+6T/9p/zYj/0Yv/RLv8Sf+BN/4pWeIzagRISRXi5Y6QsexE95X0d+ePGU37v4dd7e/k8WrFmwRW3jDKkqGCWht2hVvoBdI5F76w03zWETggF1MyiTdJK/Rsu8prOGV8IA1FVqy2E7ITMJA6IGLrqe87DgYz3lhZywYcmGY7a2yBpXcTN3lMgtNT9bNK7y5LCbL5P57ZhyPpgUopeyOcO9UJXuMyFryveophhx5lKYjRIJjCzCBcey5lTWfG3xlBPdsrQRaRiX5Y7NrgUoITMbMWeemp38MTN7E4iZcZXna5FrM5Or62A5/qmO2WqLjABVc074GqPKlp4zlAvpeKanfCxvcaYrznSFETAUb9kyIfXkFL95qITUGlQ3Z0Dt59M7lwSJaS8WgTqJkYITGFMn6L0MrHTD291zHsg5p3LBI3nO0rYEG3HMyIQ3BlTc55UkEtlQVkOAIAuEDkxI2QxfjWzWrMtsZ5ZXkobxN29WwvRLFK1LfJgoa11w3h2x1p4XYcmLsGSrPYP22ZstWWZJjdbozyhdx1sBrJ1z4YDpz3IGiqW6pwozKj6o0r5E6TErEZQhMxaoAp66leike8Fb9ozTcM5JXLsWheSmziOS8WMSR/N+zwJUis7U3TKRg1MUEGUs80rR1MqRALFqT6ZjsyL5CivfqZhf2wKVjhR+OhECVfgcTUm2YJQjvmDNKnVY9zaPCbywY9YmkFbtznhtuBXG9d/+23/jq1/9KqvVip/4iZ/g537u5/jGN77Bf/yP/5FhGPgzf+bP1Gt/3+/7fXzjG9/gF3/xF1+ZcXUyAltIa7A1ypqlnHOsW074guPxO5yOv8nCLjLjGsjb0rexUjUr90VmBEnZrGAFqfLSlvD18hnu+1GZFmHfLLcjZVaczL6XjD2hwaCUhFXqOAkdR90R63HBKB2JnoiS1PwHQayElrdtea2xxdvUxJcGWQVGpJoTRKRqO5pcs7T6j+pPzLGb1ACLJkpsYiAJZcMyDazSwNtxwyqNdJa8ZFXh+K3JwjzCrdjBKj/F3KmbpTyX+mV6icpKm8kt80K5Xayky/0LeSbyGhaJdkR4KB2DBi7ignfiKZvQs9Wu3NVRO/qzDWoLDdtd+DeEXfLelRPiOTGHv5SFK6AEJpQUCZNE1CKoGJoiwSJdGjiJW1Zpy8JGVnZBx4iHx2eTmQmSPMWhaKejbdzagXn0q8cnegflgiPS4sOuWbWAZA1ifq4whRphaFDCwg3h2HpObcEgHRsJrGXBqIGkHbHBx2Al6SL3IGueUn21GV9af5yazHC5Ylb9Th5p1vYVqRFzQYOb7fDeYEXC1Rrd7M9ZpC1H6Zxl2rBMW4r1xE2KMeOAeI8x8wAZ0VwLOQ+maNg+TVY5apuQIBKqdKUFmSveFfOis0XKes8S8KPTB5GpD50Vf3bRtoRoHVFWDBwzyAnH9h6rFFimBV26IMSeYD1Yl4VP3dsN14UbZ1zf/OY3+Wf/7J/xoz/6o3znO9/hZ3/2Z/lTf+pP8V/+y3/ho48+YrFY8Pjx49l3PvjgAz766KNL77nZbNhsNvXvZ8+eARBsQ7IzgqzpOKNLL+jsBQs2LOwZi/SEJU9ZcEHPFmHIBL5RuyviST524i1SpHWrGkoxGwKTei1MvhkKsYVKSncZVzYHtIqYRwhNsnIyz+vqLdDJBUN1embirYkk2ddgWpmXq+z1tnkYzogKma9bVjwcv4Z2V8aViXtwV3a0qcaC5E1aN10teOcSn9TfCWygs+jmKBtZZCNfLEExM/OeS40BN0tNja/8LRKxErdk02haxjWHkkdCRvjoGpyVPBopUsnEuArrFW+guJKOpZ0xxJAJ4eT3kJTnGog6BUuU+d09fh1oi+2KFUd8ObHPuOp2qoOZ/CoCJDViCeXH6Cy5NmKRZRrps9/F8SSbALNOrwhBNRNH11jUSoCK408JWa9lyKZh+OgK0d5RqspFZUn8z8n0XnX74h8uMg8dC+uIEhhQBuncx6K6z7jKfU1nj58KQU81NyctqtXS9ue5SrZkIq6afX2GBCVlvdOCVUFNi9aYf4JFFmlNZ1u6nDeXxSs07zdFiJlpJVKdz6pL5blSqaEnmFllbo4tob7LZCtxwpOqaFreSfLemd69uEyK6IaLKIh5BGrB+khP1C2ByIIX9HZBZ+uMc2O2jiXeBC8K3Djj+nN/7s/V4z/0h/4Q3/zmN/nhH/5h/tW/+lccHR291j1/7ud+bi/gA0DT5wRbcNxvOE6fcGQfs4jfoU8jHZ/Syecs+6cs7AJNW8QiJbnPMLzbq2+2rrTKhinYSIVocSKNu5SpgX2BuzCu+Qeh5LWkrKEky6Y5RfMGS3gjxmUSVnTEutGFYmIzyYQliefcZMY2k9QFyL6ndhhJcdu7BGdMVliiX6eSIHgK6mAx80Sr2pnHDeoOAc0MKBO8RHSJzIwFeLCF42QWQCd5y9/fN2MgmwzNX8CAkREzD6MYs7CA1Et8nmkk4UbTyFySTjz8OyToik+phhNnzRPJwr3rjCexI4n79UpEqj+kr7dOMkWa5cL4fsx+8HpLNF92vMe46rsIe5sPIPt1Eu53KAppMTEaEInZyR5ZSshEOhNVPOCizXdK4qkNnQoLDQybkWQQTQiVyPveMc1zGCQLF9OGmyL7LoGyHOayU8D3WWEiWpkfSLG0J/fhGIJZZlZFK5BJgGO0Khz6/bIvWdLEvLK1xQWo6bo9nN4VCuuBEkRJFp1d5TZEKZtVUxYAJEvDlpPvBUO10CWaTSyE1ITWiAseSRIopCxgdsHxRdCashgxYop02cVbkzNSayzNwxervKp9JWFuKq3R8waCh7dLcnNnfa4ZfVgw2AYY6eUFHed0uO9Oiaj4PMTKLK+Karwabj0c/vHjx/zIj/wIv/qrv8qf/bN/lu12y5MnT2Za13e/+92DPrECP/MzP8O3vvWt+vezZ8/4+te/zgP9DUTPWMVPObWPOEkf84Bf5UgDi+4F2j/nYnjGyEDoLOfrui7tx75RNUKKOaNelKFL2XUkRKt7iaKUwJxmG4cYl5/Y3RQDoyNSgiXACHGAtI2eECoCopnQew5VnwlxV6KKJJEkVVOMb6ji7Zkjlm/CaYNYVjRNQLTLYap5HkTyO/oFI745+wcLYkjEMLrZIkuFbU0SIEtUVafzcwahhvr7RJWwiUkDcmJl5waDweAJ1+UFjYSsIOTGjmmKYp5BE3jna+Tx33TW0SWBdSK+GHOSOjvYmblqZjNKYkFqCluUiDpxbRfAjN6m91XLqJgZcWt+OnRcHtse135c4qMoMNO4diCJkWJyR3kPlnuJJc1dspmIj+J+vnl343aPT/os+H4fMQYbiTlwUDpxyhwTRKPrAjEkfy5xsuKWdTgw5sqUy7WFcaWJoGa5CxWfz7j13yFmYadGviY6K3NGNef50mmjZdB2Z6ljsJTXpGIQM81oPuZpIYJUDyuKMhLrjy4E6SB11kTe5Tsnz9sMYow54GN6mtMpy8zJeV0TkBPyHOWo/fWQSDGhwGLZuR9YHE+Mhl5lHN9V1luBrwlinbkW2nMhGtuNB0R1FBHO18gkMzMSSPRuERlXLQhRxfva0QzsNeHWGdeLFy/4tV/7Nf7qX/2r/PiP/zh93/MLv/AL/KW/9JcA+JVf+RV+/dd/nZ/4iZ+49B7L5ZLlcrl3/mvvjLz9WDklcZISxwneHgJffX/k3eORBwGOht6Ng014tWRxXXDiJgPY89GjbzC64x6WiiyVkMW1IpSXsiWNNWIuTO56exsxZyapJXNiuk1wEbGYIKXqUysSmGaMVnPkqAmcM8ZVNJ2y9acHTVL19Oj6V8Idy3lT1lcy33Aes2D0x4FuGYiLQNKp3JHtYIHk77Zn3V6vlXF11SeWn2lSG1DGtIZk2JDfqTE7haUixwE96UghTZjU6CvT1E8UTEzBOsLaSDKQzsfcSXeXoFqOZpOpBZUVTgMl4KVoQoXZBJuiGds5rMdFeGi+0x7bFcfVv8hleULkufQoWcToVoG0CFgnpFD2fJYOJK9bnZd8B4MpF2S+i2o6RRbw0IBoIA5GXLupaXXUoyvBOjDNa3NIw7rMD5j3kZkT7GL+KkJ5aXWv54l0FrEc8TqNbfJJI1SXWBGUKkOoz2tmzybhYYY9VsYg9TvFr10o+ozJSUAkB170RnfSO/1YJDqZgsAkMy4vt5Wqz3H6FEh+TZ1CTdNuCAFLOaIwwvrFFgbXHsODJdIJQSPSZd992cPFH5bHUTdWEcJm69X69/JBUiQpOirxyRq2cUZMBBd47cC/hEwRqe0avAHvunHG9bf/9t/mz//5P88P//AP81u/9Vv8vb/39wgh8Ff+yl/h0aNH/I2/8Tf41re+xdtvv83Dhw/56Z/+aX7iJ37ilQMzAH7sG/D7f88DHodnnKZjVumYB8NDvnb8lEcBHqEs4jGC21dnpqFi04nAhbHenDkimnHycImc9shx14gfGfnLParTlUaMkcOLITu/iyg0BjgfsKdrxout9x/Pvpdy28JYPNS88dtIm7/kN1WYMROpak4DLWHMUYRFQ5A8LCVL5AEkQHfaow8CHAuE7c57tYmaaZoTZBLjrdlmOgVk+Dq4T8sGQdYbbDBs3aBSvo2uAvpwgbx7DDpmiaMVIW2a3zrH2fdnHTwbGQ2GJ5tp2XaWpDjRS56Y2iTsNFOXGZy/d6Ctfcd8vt/guMYjZAyf8vHy3DSIX5ehg8VpQE4WcNRBF6GJNJ2okeKycrNfZ4nsZX1sOk7loT1Gz+b51s3oCRanS+ThAlYKvUvbleu0cGkAS5EKcXWilkIrEyH+Gs+3bMYL4jbVr5W5qX/uzZ+1T5mvN41cwlzYaFZ7uufuRznXjSzQ0oF0hi5g8WhFOO2wo+h1ksSTnD3wIdOfmtNpzCpamOS9m5+jA7VkTljgdsgAA4z6FFu7/3/x3indMrhKGvLaW8zt7wqzKnjZvLS/zHxJanWLQjA6GDtsHVhvRko0o9VkWEgpW4KK2GVOT1PKvunKQ9uNzmvBjTOub3/72/yVv/JX+Oyzz3jvvff4k3/yT/JLv/RLvPfeewD8g3/wD1BV/tJf+kuzBOTXgd/73v/im7/7iIfDf+EofoeVPeFUnnFkTwjpjDA+RcIANvomy2a4KfJCXa8+V8ZPLjxwQMAWA3Js8MAmcY+CkIVxad4YcFitaqDFGMw3RQowBBiBkBitmMym24Pv1UpTZuLK7MQMjDkSXwXlOaWMY3mOFVNTAI4WsEjQDdBtmUrnZCJTIRMsw+e15JgV9U3IYnt+BxNInc9FUDbBKYcILLK2Z+J3jV2ExUA4GkG2vhYS2bN9tETXAtCBHcHFQNSRtfnXQh6ewtwZdRnkSdW8JSybEa87zzcNZduJ+TqNwJBg0Rs8UHjYw7IDG/AUjDbODKbamgcEsJZmt8cybcpeR9YbY9waHEU4jXAE9CMugTW4Mj109w2m49L6ICaXlijE3fx3NLhYEzUxCtXze8BiXM/MBLcDC9W+3sFhHQDZ+aNoMNEsv7GxFVislHCscBSxMIKmqYp9Ku9WVL2yZ8sThKnGo00CczKfm/L9rTJoYo37fx8cjXBszii1rMHoIakFZQuFaeelEpc0/6zOiUFc5lrVgUFdSK2pEkw0SjUQtCPIAtUelQ5Fs88wB8rkCEj7fvJx/Yt/8S+u/Hy1WvHzP//z/PzP//wbP2vJZxzxHU70NznhI5b2lCM5o7czRNeIrEFHpqKfDRMydekOhS4TR3FCnnREVJCuENysTUjR2szDs9MhineYlE12f0dG54EB0+yzYqIbwkRXyp6ahBSpG33GoGQXEV8uypTv131b6NeUh0gkD0ZTptqxmY8SlVduWHK6CgNvNqZkSUvTNDorGTZSl8RkLhMU+cJqkbcIMnq0pk6h8JP8UDQFqo/L0lDHL+q4X967NFSUTDtnM7sjdO+urHD4/M2Bj2bPbMN83eunknl1cMmfrlReyISz3MN8Lqv2kHHDTaS7zKtsjFYgEL9/yPfQ0RctJAiZcdXSSS00g21toi3jqiXBZNLyTFz+KSZi5kuzG8rOrqlrZ4HKvtqfzctwxnfY7DZ1+LkgQZmnotAEcaW28xQQKZV1DUd0baXZooo0z5OSNJwgqGv+BtiYv2KgXfUjIWSGheNIGCfhTnPkZAIJlv3Hc5wx2fGQt9Nm5HspdJZx0d8hjZajS7MYYWDJ03VaRlzTKihpCW+GNXe6VmEXv6CPH7O0j1nyMUt5TuAMlS1IRiAtWkCRz4qkWRDFmVOpwSeK5xqpQigUriHWhXFpKpSRl5KwGXFx6QMBxohprJFpmjfvjFlJu4Gs4W4TAr8M7Q6Op+zPiQ9S8gKlSJJZ0K2DUfN3lthQitzl1NzP0pIVKcxLGslS42TYSUZdkxIJlplXseQaUzCGleeXua/I0c5zfo6RCUVB3ubddEoIrVa0dg7L/MyIyfxY6n+3CcXvsb+ylUe3J8oWL30zNGZC54yr7hWzGu1RQrUFyfzetSqZRVjkzZFK7SBBuib/RyImoxNwnRLML2VcLW+sBN/xUfKemiI984YQX/9iZpLdNZKMHhN7Zn7hfBizMxMFn+7fnjv8FtP38jMkS0AGNbLQmUjEpNG4KtNqNpCWtSjgwralhITg72bia5DIeKjUkNzqOE1UDTs/G3LyveKRozt9sKzgMXZwr/k4o79QSf8Qn9sp0VrqHkq4CdGtmw3jmjZo3tWvj0B3m3GJ0WlE4wZsTWINDJhswQYSI0GLGN0ikoD0rjUZkDaE3rAuK1GBKTS4ULaCvDmb3ZlXvl3dcIcoyS6MHopO50Q8JGJxxTBnRDAJplUytYlplOvaAJ1X2QrFtF7v3zLY8qO7X5LZq7WS61TNohlNZVpzp70jSCupOtEqBq2Qrbi1vh5T4nO1v9sOkhVptjiAGgGyzI3jqFTbfNfhONkw7peCtQVld0xwNwjXXcsaWCBgOVem7tdqGbJGzpLJWlD28p5mItPil4mLmSiW8Ecp34yIhlySJEv6u5NfYZ+J+NkScJEfVtX+NG2y3ZzIVgDbHX77xJ0P5iOYmEgRunZ3cRW0duNos6Zlw0jf92wtYrHsOw8iSds14aR+vXlm8O/X+c+ll5gHkbhM6HZ8EaXmA4iBbVE1r14BSCrMpREUS1WPMqV1b0wiUSk1cJhp5eEWjTHnYZl52H2f8VYoxMRoG3uWGTUCJoFkSvTYUN6k9NOdZlxiCU2eRBk00eESpjF6Vr8KKeXM9qJsVcgIuLOrp9JolXRnrJgQfZfBtPEBc3HM6tEuJKYkZyvEuZUEpdnTFSbs3Hud14Aaigyz0n7FDzzx5sZhf2lkWPPLpDiC8slUkbIKssZEYEsycJ4/x2dnTgJTSF1J9Cn4nijY2Lhn8hhnVsqJte6NvqXfFN7aqgSNhIBLkJ4ouvfqNwrTPQ/M9yUPrOXIcgqBpWIusul7TnXqWs+IVdV2yn1o5IMEWkoBeYLtpJTtCHaX7pMdfJDmd93aeRO0kkTZl83lRcHYFw+tboYca9gqVPtzltd7uqY1mLVfOvA+JRw/+2+LBTA0sp160c3pTqmMqKl8K7j2ms23IkzycZ6KWtYJsi3dH2jW8HZtfMkwrbM1y7QzV2VLtEuxM5sUIbBEqDb1e7OyWczOCRUvIkzTiaMmeVNQa5eCvjrcacblbg9DLBIkJ7iVni/qDeVSbHwqdU2LJNLYxhrcnmFI/fYugr/B1GehrJZRkYY1yHTfNvqtPSifzZ7dRgo1o750fDvXVWbA/PX3o/5tb5fvS2ot8WgYeGbSe4SmTAgtjZ2kwfnllzDOAzC9/2UyNhONnc21NTfYYVEyv9su4t8YXPaaL3nQbLiWTdt7Zcdszo9bXrG75+tUmGtViDMua/frjjnz0ujB6467/X4zqNlpqdftP87z7Vo2We6yR8ALQS40YLa3X/IeZjUAsqURTtRz0011SbBkP85exIrbwqopd29/CbM1QGwSONW10lSEi7YeVMO0dqameb8Dr3T5R/WLVT4q75pfvTCqUhFn+slIlhmYa4I7NPUV4U4zroDSI/Q2Emwk2IAwUiJwTLKmdWixKuPKu6CYhg8+qUXKmXj4WqMGwaKCdPnxAbNYt/5uo/k69p11LgJyvbLB4JfsT6okXTSOQpOmU6hAV3ep280tm05bJJyl7dQPYnPFHuv3KUxCpYCihOQWLBvBUqyJoeW22oq1xRFXUG1XZCwanzFpaeLJz0E9YVNiGeb0NgcZ5YyYOwEpsuouc/9eQUneraZtNV9TLfy34cx5rwPzwcvOuSJlmDlRLCaeFErucQ74K/XtymwUMWwXdjZxGdKMWLcSVbOojQm48Ak9ZHKo4z2sae2lmOWgBzHbWchdXDrwPtVKYRheVaQwEYujO2fBJ6ogtOZBpfmeLbherbkt3cpTIQI1+9gMpCNZZlwtsSh++Cp47Qibr8wvsnk+KTNrhDnv9OCqUmYq5dZGCWFsfgaQARgzsTFqoMlrwJ1mXCmVPLhc7kg0Szl5XktcwKV3KLshTLEHghfYLElMJUOxbmy/m7QEzXbuuXOu7hUhRyBNkXTZm5npsXhxW/NqBUCtLO38o1KU+gC/n58vzvJ2OFEmSahlhU5jJnFJJTtV8yWW/x7N8v37jG+Z2s+c2PtzbFhTctAyn8kBMEjVNidb98RoRKBXzW0xPMw41OlWpkgWJqpXzBhStIApOdVz5qJXl2jMoJNQUF4615KTiTlZmStJddZTMRWKR3sVnb6UfMq0bKJNNvGAelyk6APH0o5pn+UD+d7546jGqEZUGJLSmRcQc7wAy6WeNO87zXM/Mensm7AdTpC8Z51fK2DqzvaUi+pK8Z+UDsaZMrcvO9sZ/k5TbpzNqfXOdf6TfUEIUQIm0esuasjSfmFkVr/SetisWY/9kfg6zv20+5DkwKdCNRgngUgiqpECXh1Ce1Dv2pDUo2BNcv1Bsx0emRczlQAn26NbFV+KSd3wuVGq6a5Koym5xKnqQSKpFJmeY2nJV6xIV27RLE1Jrp6im4Kby8t1VfXemVwOz3sVamYpAK8Od5pxRRGiqBd3pM91ABWVQInKqUm6jUZQFsaRqIbk+OdlPveYkcz+qhF+lWjuX9fibSVO5bl5IJKlvRLFVBhw5Zf1Fg3TyYOshFwKAk6Mqx2+zihDgzJVHc1VvovfIihREiOlj1Vf75ucjVTqX91PO5wrNfkpIddiq+9irfhZAi5kNmgRR/AZ4ak+ybKqRQgoIueBKLbynWZSSgzG3Lo6jdAJnnjTjmzKbSsBCJVS7D5tds/d4xIlmmRahfZ434xa/HzT4LO4MLv3KIkxN4ocpUNzxcck3uLDRL2qgRRS3diFxTIDygEAtLmJOz/mxLVI1/N92cy1KFPl/112UV62TEwjAM3QZ//5hmScB9VQovonfKSY3SfDXI23yeMtwqnvqWnCi+GivnoDqfXPzkaXxyVeuilJIooxYpgusNy+PonmyGEP7giWw893hD5pooRaeiVWa26Aea3DijOzwR7iAjL/xGSfFiJ1/uq32j2QZArtrVrB9MSWtpVef37PEmAj89/li6/JtOCuM66wZAxLthzTcwy2RRlYiJdTUTHc7gRFVp5F9pQFiV45vETnJfOS/W57yZO9y6RMp3vthd41YDvHOQJDC+NKeJv0CJaUSIfJgpSTimJjzqzBG2KTFGi7spTviMQuYXbQdqyipREYghHTiAmE0DF4aVuvUaonQCLZQEzqOVSFKe09Ib+ieti8WiSwdSm9EnvFTJFU2i00mzxLYZbNvUJ2dle/v2QJ0O8zvbLVv2caphSTrOWAHV/WmBlJVbaahTKUQQKD9C4Ylcge84g9pYRtS+63mclYw3t3jxMTwUwyxZtcdjy9XyZk+bcT5rkhOUoiaiSGSB+OCLpEpWcrg/dbynvF2+DkAAvNEyfuI1ZG/7FNE6DSIVkoIlc+L+a6voy15IDXKCMt9qMJWpNfFRCKtF0+K5J7S9gmAcdyNNqWyCgQQyCY5hY1/jsbL5ju6vFyNVKcSVFvLmpaAE3DnfvN0ixFY7pQ6/XeNiYRJbFl5KGckGTJNm2IaSR1KTf+Hby5fbRag1GQHNAxUNrJlKocXq90nh7gfc88lLDkJU9CgGRLilIDZTKtMXDzfB1//qh5WWmPSmKlSQ7vdeZVC1jnRxbtPyZIBJJ0GB2u8fvvnBuQx73DxF4D7jTjOpevctH9Hp6nc8Z0ypInrPgC4nN6W9OlC7xXV17A1jdigSyiepoL2TofoUsdOvawXfgOLh9SdklZ6F3RpSzGVfF+WXKxADHkTg1HbINxwRHJjtn0D0i69E0Qp3bhJdne+V+RVKfFL9KnZZPcroTo10zXJ8NzmkS8PEtyE6B2ymBjthAGtPsK2gnWJcawpSYdS5pMNUWSL7qZbuhsS8+Gh/E5Xdqg5vbuKm2ZuF0lKoxGh9Z2LURnxgGjB+8APCps8/VF5J8tx6TlVTUnZaTbBDR6+sQMZRrciRqI0jFIz7kecdY9ZKtLBu29eWPeR8Em8mhvENL7cigvCMIUmZmmxB0wIWliYGDUgceLtzhaHbFYdWzDmiRe4lVVoHQoLmbV7Bs+wvvVLWzDUXwOaaDm2LXOz/I7GgwbNAqdgcYOSb2viyhomIjmDC+oxLL64io0InzR2gh4ZV9fc9EFF8E4CwHTB5jkqr90JMsFb2XajZ7sGiemZRP+1KfuMVjJ+7o9nRm/zL9glk3e6lx8YHABYmnY8qusliuGMDD2IykkRnW/T1Cj6xJdil6s1hJLW3MUX9DFNRIvsrCV56HNxif4OiataapdTjOVQaHvQHrIwiISkVoKVwrS1/Xwoso79KwVJCvxyXg3ZI2RXSFAvI4ivg6lU3nrDa9iS/WF/oAyricXb/HRs3d4bl/hOBkrO+KUjsdhyZGdcTQKISXEcsBG8I1Q7LYWEzYYsqWW8kFARkU2CueZOJb4VqAtaVGLtdbQ70NShM1+TeYuhQhpGxjSkouu54JTNnbK8+5dhnDMKH2ulj35WuZhpX4g+f5FsqyMS+ZDEHYYVxl7+TszLlFhbBjX2fgOrMFSJGpuStDkibSJhW6ejaics0wXHNkZH2wiR9HL2HU2ohZzQ0cmbhzBNsmrw6fyXi76SkrY2khnEbqNF/rN+7462wvPykTGGqamSbHziK3TLJ3MoLgWMIExBLayZC0rnoUHfNa9x4UecxGOGHMzSYo2XiEcNC/dLEzmwqIfFwFIcDPUKCOjDjwPj1jJip6OrV14E05KtYQu+yeMIIkubenTmofxGSd2zgnnLMaIjhdoGhsGUofhwkE0uEiEwVgkkAFkna/pi6Sv1ETwlgC2sB/OmYUNKM09GfO7psA49Jyz5GlYseYtRlmQ6EjSM9K5STQbQ8uPN2S0Ksu0ie37qFoIwHR9mfP6CvkPg6pqFFftyECUiPUw8D6LtGIMichISpGYIiKRkJlVFwc6Ios08CA+460BjkZYjFskmxUn+7IxM+clg81IN3otQKFdAypXmbTr9qWLnmfT/dtFqNpuc3o0GBOsB89rT/Plc5pA3Z/WLHmlinVOd573GnCnGdd3nr3DL3/nbY75KqcoR3bMWyZ84+SIxzylGwY0bXMU1egOyxIdFdQrso8JNq45BN+HsFbvLzRCjdrQIq2Qf8Qbx0GWZi8bpc0Pi8Ymfhy3yjoueNE/5gt5yNP0iI/7H+Kie8CgKzcdZkbpWpRNAjC4jy4zL7WSN0HWXKjVBCpzazubeiSKH1upHeabOaYxK4aBo/URaRtJRG9imbWqKQwYRAKWOtSSm2vTU07Scx6lJZv1BY/jyEkcOLJInzb0FultksfMIJ5TyxCaufQs2dmcziKMEdZbhvz+otSavTW4Bl+fKNM0IwpbsK1NZfTyBBbrYxJhCD3nesyZnPBpeJtv91/lWXjIs/CIQY+w7JjWRopH540TbxamvaONESxlM47kzteJRNJEDJFjOWKRFnRDYCsXYEXQkKxx+aZYhsQiXrAan/P+9hPesmeM9oyjcc1iGJExm9U1E7YS5FJC7F8k+k0WMs4Nkwhbc6LZRr8cUKryazTn02ReNCaDRcFBM8yEzfaYZ+kdPg2P+ELeZy1LBunZ6oJBj0gSiBYaQ6oRGPNaNYT1Ej7anmz0qp2jTADqTfxdNYg3NJEEvfHd9Jh+WHg/N0aSOePyiFYjkOjjmqVtOEpr3hs+xTYDj8eRbjhDU4l6TpN0VaJGy2CGkX4b0TFP93Nz4a+j0WbtQJHd8pLGXOttIOXvFsRK4szrPKFZuKwV8KQsW6rCdX12E8RVBGuftUNC/vXhTjOu/+f/N/IffuU7LOUpD3jGSfqCd7a/yf/+ezp+x4Mtv6Pf8Gh8Rmdbr+Kd5340PGAwSw0rQNbeKXihcPHp2plc8MKlRfiLcdKyVWGIhWhLdRn4CWYSG81pKQ3dAmwibOSIC3nAZ/KIj+wdvsPb/Jp8nafyFms5IbJ0c1RhWkzRbc6SSlO6LAe2m6h5cmFebUyBIa514i1EJO8qFSEGv0MyY/x8RFUQpTKteveqsQnYAk2JYFtO7ClvpS94L31Gtz5jjCMpDXRJCcm78ZYky2KZCIY3vMuBGSWSSiLYBmyEeEaNMi4KADClhuShVPcjsLVEn4epQMglnwp+RbPcc6rjha34Qk75TXuHX7av8kl6h0/1XTacuBChHV2yurazFukvOa5M+iXH8/CaScea1q0Eh+TyYTixSBjD5xvSs0gKkUGWhFBMwZDyxAWgS1tWUTkdtvyu0fgaA1/hgs34nNPhGcu4QS2nQ2QanUYnGL2YV1IbveHp5vMzhidZWOiYjb6szS6Jmt6TWjvWw73dwuURtjCMAB1RFnxXTvi2PeA35UO+3X2dp5ywZsmGI7ayytqXBw4VP6dCTQWYawVzzJyP7yqyWrQyatfjZInOhCi5T/EQsY88wjB1MKQtiJtrA8781UYWw3NOkvLQEr9rhN8/XvBhfMFX4jOWNnpls+hM0bLWGMrmLnOaLRdisL54Vi3jUmSUQhMiYEIXJl9+edfCzFv/auuCSOaVbMSArffkCinHAodpLqXUrKvSx5z2lTHr3qevDneacb0Y38LS2yzDkk0MXIyBbnjCxaAMQyDxBYwBMc3NA6cmhmQppTYzLM3pzIspk2zSlrMmpjuxGsUSshe5eAmUjQa40hcFVcXCgrg44SI84BmP+Kh/ly8W73ERHhDtCHdyCqX+20TKSlSk1HtLi5xN+NChsHXDo78K46L8zhu+sMlkMb+z1PN1g1ZOKJAWqCSCDZykJ4x2QrAFa/kuo52T0jlqHSGpm3AzAyhh3S6RlXNWBknIAqfl3KNZAIPNkWI21801pfIXdV6mcfu/QCIwSs9GVpx1j/hU3+Xj7n0+XnyFcz0iSgfS0VlAsp0/5r5oU2bX9RnUlcc7Idhzn4tzkhJlVhUANUZGkrp2HBnRJl/Isik3YATbcGzPubAj3olnvCWRLSPjtocxoEnoYsp5fC5wh+S4Esp4ivCfCZkIlKDEXVQoa1SgRHVaPi45lFJSlHKuYLKsYRIY+mMuuoc807f4bniXp/1bXOgxZ3rMoEuP3kOzEOn1+bS0EvG3qHhRfMCWo3N8T00s7VJdoNXKRN1SYclrbhehTlNuNuqCX2zEG++vF9EUOeYFj3hOSs94EddshhNSfIaMnQuAybuXe9vv/EybaM1uj7bJ99ysTRluTr2pcTMzyaLZe5VOTBcoTFWkxolOtkJwEZwVQ3MQVGvGd2bp9C7WfniXFpl6KdxpxnUhb5P4ChbewWIH1rPhaW5Rrlj6BE0LQnK7stqYO3X694tpqTCtsnB9DuLJhZknydk4bGLI34NGupbpdEODG7FasBgYrENlQZJjNnrKC3nEp4t3+Gz5PufhEWM6wSNzYIoSamXCSTZ0W/40kEObYsZcRXek+0NfmEuq7bzNigxnH4qY0dnIJj5EWXGchK0+ZuQJxoJAIFhwc1tBhpoO0Eh6AgX7ikXT5qdn837F8KsAWNxpNUS6XCGaw8c7Blmw1SMuuoc80Xf4rHufTxZf4bkuSeItmHvrAc+niZKm0P9X4U5lT0izJg3nm17L6ke7Z8q71WhjyD5QzxmyPUnKTa9KIsiGDU8hrTiTz9lIzL6YFSH19GlLH5OHnkgJTKB2tJY8cBOraUNlkJctjzQ9njIK5H09fSmk+fdEAqN7gkicsA4Ped495lN9myeLDznvTnkuJwzaYwhJhC6XekspoSw8CrQgdB5zlGJ6LxXLQYpp7spNtU8ApBmxAWiaNP68P6zYyiwhklCJPJQzwviEpX3B2p6T7CGkZ4S0oBsTwSLBxmY0mcmStck0bZmSM6lQCwvs0qpW2GihroEdejuqNiZGfWbdd+0cNPu8NoGlWXERRK9Bc64Bd5tx8Q6DfMhgIw9E6cOC7fiUkTVjMjbbE4a4yrK05z9Uc1pWYGoeEo1EblMelcQiLQnkRo7T6rbfajnczmdNsdKUcr6MdqgsUXmAySljeMyFvMVzeYtny/f4bPEeL/QR0R5gLPLT9vOxdqOk5p9Obooq3R44hjlT3j1OWcQrupZaqZRgleqWArhqicDAkE5YqPLQtpyNj9joKUM8ZkwLxthX6S9okVotEw7HwDh715bVpGk+d1jQIbBMkErYbsyzk0RqKHXC0xAGVmz1lHV4wAt9wNP+HZ4sPuDJ8is8CysGApGOYB3F9Bp3yyndGPj+ufb6HPz+PuRsKDrdEvUBPUueX/wWFwxsZUtKD4hxTYoGtsZS3v8KoFhSUmloWiQCxqm2HqBMEX7SPNVRL+OFjI126d+aO58sM98FkRWjHrGWE17oY54GFyg+6z7gvHvAi/CApMFbE5mhwXINP0Ey4/JO21TGNZS2LnnEZZTgbelvDjx1pVa2t+T1DNWw8RmdHdHHnjWfMtpjUnqKDUeQBLERKRV1pL1jFlDbIKEqBBQJoo32bUxFu7hETaNmSr+w+bGk7LZ0GhjreFJzvZDo2aaODYGNBpJ1HvmpAe0CNipjSlhlO68/z3eacSVZYXLEOF4QrSfZwn8QopwQ5ZTEQ6IFhnhBYMgE2NX66ELAjomvJAGX5bOqgkuShlHsEkyrmfy1egKlYlneGmJIKBUZAkmWrOWYNSesWbGxJVtZMFqPscBkSaLHrEiT0yaZZK1dMSmjXyPRJz9dycyh4yIB0xxPhMVmjMvNMZKvy4xL/F2FSCCyNmMtsFFlkCWjHhPDKTGdMOoAST33g8m/ILP/WqFgH9n2jy+BjGBl3WK+v5ZQZjx0d5SOjS7Z6oKt9mylZ6QnSuc/umCUzrOdrOo7SHHq3ArYleuze3wdEAy16JUebEFkSWRFkmNMTknykCRr7wNqveeBkXIlFw+PlzLn2XTtay5VW64eJqlvUXFpEubK3inimCNjan12koi6YGDJIMds5ZhBjxn1mFGPGGXBQE/SvEZ43mMNRlHBQ+Ul+zb9weXeqe61xpRuoamUcVNgk3CWE8H9ZyDqiqgryPNvckK0o5wO7pFEo+aKf1XzcXOc1cT+WhGwvs9cim5V/uvgkl9fNKMakyZCtFB1SyPu3HnBqAuinjDKCVFXJOmJ5NqW5hXlc9hj881XhzvNuJCFS2RpIFqfK2gsGegY5IRBH7GVtyD1RFugeNt5jyJLezbiadEz8lCWPSu71RHpPpH51kgFXXNjO8mMqyRJOuMqAYjJhCgrLuQBF/qQNads5IgtKyI9Jj1Ih5k7nN3A0zKuPMI2JjWP32BuqnyF4zI/9SkClk2UU68iz9Go5QClzGnWbhC2CoMoW+3YyoqtnrDVh2z0BaJGZIuoZRONMPOVVcmwwCGJsZUMXwaTA7oQJU8iLrKmMmjHWk9Z6wkbPWHLilEWeU8FogRS/qnONgQ1fQP0ux4cWp/22CXt692rFJRV6zyYwRZEjolywigXbOURG9nSSUDFE/pNjKHMe8lBzJK4z15y82Fl5x4DOWmCpVLErsVgMtv52ATVSZtLmkjaM7B04U5O2cgxWz0i6YpRXLDwpNeQyxAJpfOYqY91TrpT0auy4Oabt/qsb2sxc6SlR+8KppL31oKYBbtRH7CVh2z1EV3qiAwEiQwiJNEcZZsZlyV6LdGtkmkE1We3jzOXHV+iZTU5mROZnNYHzHsJlruZkGTBqEu2euzvYccM4vQsIZV5zTrVvibcacbldlPFZMmYVmw54aJ7h6cifC5HnISEsWKRLgi6RhipeVBMy7cPjdmPCQG9mQM4wQqkiqalkkVCJEshOVPcGnSeQtmNMRkmR2y6U170b/Fp+AZP5S3O9TEbechgK2LKeSozaaqFiVHNGJowi7BrLR8tr77suD3nhDEwbWgouT2pvaYyQa9wMIQFm+6YtT3miX7IZ6r04SHCI47kjM689UzKRc+05oG1r9cy5evA/PstXkxE1EctuMnTgKjKIMqL7pRP+3f4PLzFs/BV1v1jNuGYDYGtuf/EKVxpqy5TDo3N5dybhuvc94BYc/DYY98WjLZiY8ds+/d5Zj2f2TGfdgNDeocjO2fJQMiVVcYqSGij7k0sQE09ItSKNlFSDVK9rlaAcP2n2V9jvbcWM2TRuCQwsGAjKz7tf5gn+iHPeZtBHxIzURzpMCuMSJv7+noVPI+40FWaxu7ufxF9aYDVq0IVx/LWKZrXmIxN6thwzFojz7sP+Wz4Bieh57g/ZpHOUfOmnDEzrZK/54zLWDQd2Kd+dbcJUpm75U3vjMvXPREYtWfQFV/wNb6wr/FMHrEOia0uGUvoaG01/vpm9jvNuIojyggMcsSaR3whH/LfziLP4pLfkpEH1tOlgWDelbXUbispGJXoCBN7me3o1mwYK0JoRpQqu0jWuCxljSsnhyIzTcyKbiaCWccQVmz6B3y7f4cvjt/li+O3udC32XDCQH9gM86ZV1XnBcrW3rvsJqTIxqxStM56fi+RVEmyZBMe8HRM/Nr5V3l2tuR/bh7xaHiLFaOTLRViLqtVSmAdfu41Yef7JfqOarZyLUFy0nS5dcRr4J13K570D3jen/LxyQd8vnqHs+6UIXQ5z6h8ow1RhJIeXMJ8ryvzliG3x1XmfYM1u1I4EfM9zYJIZG2nPJUf4n+eL/j8rOPTdeJ0fJ9F3Hhlh6xtp2oWnIt7xahU/J40jMvfY0q0k5z047mHff6+4WX6nQBqcpLk/q1IDMpIYCsLvtu/zbcfvcenx49ZL08Y5IgoC5KFmvdXQ8BnY3TkThnP92IGi9BlRWNhFlD10rV6yXF5H5HoWr4JZkLUBZvulOdR+V8XZ/D0Q3593fPB8IDOtgjRfVy1LllmXLilIjQLnA7UzrwRsCn/yv/USUgtndttYlwmQpSOM32XT9L7fHJxytOgrOUhUTu3NlvMNPYHtDp8rZQsSpQFW444l0d8dLHlYjC+4BHHZmga3eEqyc09efKLTV4MVKbcjzQrmjuVLZHMuPw70pwvZrTJUFFybApiF+nEK7ALooEUYQw92+6Ij/sTtvqAzdFjBk7dhEBXn3Dw9aX5vaNZ3S7I/pBk/keSnoEV5xb5aP2QsxeRo/OOk2HJQsyDZXL0197Xb3KcSBU+yESyhhTnqzxoQ1h3Pc/CERfLY866R7ywEza6ImnHbISHOEvDd19Fq9397FV1zFeFKQMtkOgZZcWFPGK7Puez5xecXbzFcTymj5FQk2DzvFVTsdR7lbEqxU8kM9+pVaGm4JcTYEkl4MhAnIAJiqYSAFUYF0QCWwl81p/wbHnK+fKYQZZE6Ss+5y/t/J7+nMosXm+n2YEtPs3h9Pvlx82RJULWnjAn8IPCRTI+G4+xs4d8dhb5ZOg875TcXxCq66EITXPxgWr9uWkQyC1KfMyFdrbNITXXL3S/pmGibPQRT+2Up8MJ5ywYZZWDvCLeXUCwN9jpd5txYbnumksvW4MXFvkfL56xtMQyPWJhSy8ZlKl6Qt0eLJolCV/wQMySOHg4cdEusgkLqCUXWrGr/eOAv6kda5LsoBUlhJ5hGBiBrQaeLVcsu1OWDx4xyGk1S01mQDiESqmqijYjnldJjO3drnPsX959n50LrD3hkXobgxdR+F/PHxO+AH2xpN+e0KMeLqsBqy3kXRcpJreZ21im6M/ZMZN0e/gdyvpNxJAsPmhbtQPvNLBV5VyV8eiIsHjM+N4Dt9Hnck+uUWT/p5X/mPhjMy0vO34l5rZ3UvZPXpduZfOoKUTtGPSI5wjPz59y/tmS3zh/xCoZXXKCZGMuGRWKV2jaB8Yk6XuY9LQHD2uNidK3S2xZzxlDvqsCfZ7XCBq9gLAIowhP+57u6AQ9OiKxcG2rZi5TcrIvncfLeVZrLZhOvcpazY+n9Zn+9wS1KfBDSapsrcMkcLE+4eMvHtA9NU6H4ym9wKymizhuhAkXNc+03A7j8rQX966XZ+YEierThmxdMrc3aA4vHVix0WMGjtnKAwYRoozAOpfKezPx7G4zrkbA8hwbZRR4bj3ndkonj+gLszGvE117dzE51dUsSziuMZWqE070Jn/GJH3mjQg7FH5ajEmPkOZzMIuoGCEoo3pq4qDC2UJI/XtI94gUMnGxgpOHGdc8DHr+2asj28uPr4Y2ydmZvRGI0vOMD0AeIGFL13sIvOOkNPaO1Nxpnxm9MvMtEnbWuKZIT7+LkHLNwRJxKAxB2OAJ4b0+JsiJayYx5SaNhkh0B7Vk5LU3kRtfBXaZ1ctm6IrjMvZOGaTnRVRe9A8577ZsOmURA50GOhaYF5T07uLYJFnXpHi/t4aYda2YfVvlqSVBvhmnqfuAjYxLOcEdN8HHrOGBF6ctjOs8JHp9QM8JfTgiqu6lAihtC9Mrpm8Pdj98hfnc25Xt/cqcCyqt0OPV5hTc1KmPoPsKoXubZFKZsWHei66aVabgCG/uWgTy29C4ChUsJr3CuLR50+KbDhOTI3kktxxhskD0iCGsibIBNkwi6euP+e4zriJhmUfeeCQYqPQMtszRUE7F3ME5Ma6iPAmlY2epPNEwLmsYVzY3Zhn9ynmv0prMLxOLtSJzEm/+lwLELjHqgoEuI35+1kyLm5ChSnKXMa+b2sd7yF64084HjdlV6uce7bSVldd+1CWhC7k5puTSPiV6yd91MkO9GemYkxFpfJpG8beUhNNy7SjKoID2iKy8/iJzr44A0tR1lOnVbw8KA345u37J8bQZXVvyKMutqIcx98fQe7Shpo6OrBXlpGUfxpxxWdaU1T2FkEOkycLApKk3Myjz1hhS1p4iHsbsGxtJaiTxHlyjjiAr0J6QG43uiw07Jihpdkh7ejq7d7Q/568sNu0dF8dCKtnBIjVJN4l3JjA9ImrnjTl1ChfX5P5VMU9HKAzFZLx9xiWW15X8nEDbzqUUesZyM15cgPE1WwAdSk9koBaH1t2cvVeHu824oLbkKIU4R+mR2vfaJ10ysjiiZaZVGZdfF3KvpbLlTMhtC0ofmYL0hZm0VeocJgm/UO8cBkzRv1KtVZZs9PEU3tgNROnYWu46i2W1ezdz3n+XYPvUnubNNsPhCW4PSmbafpgsJVS3fCU7kg1hlCVRFQuJEAKSFEt+p6A7yaw1nPemwO87hf4XZlWeN6VFlJZDhIBK7344DJFECGVcBozemBFj6sR8g0P+EiDl/8RgsEAKPSyOiWNPTN4uRFkhKKXog0NpWTHlOxapvGhcMBG1aT2bvdtIc2JT5XsX1CJG7hiszsBq/zHZEHWBaEcMgucR5ZJlmVtWM119XKYFJVleqNcW2K8wcrNQUz4Ar5yB1/VTzRUujKSQQk8MOeVCOkrYuNLnuSxm7yLMRqYKKfMgrtcV/ObHNgXXZNjtBefvF5DU5Qo30fUxMe8piBLMiKbTd0PnHQau6mP4ErjTjMv5Vdn0+aQUTclJe93YFFNhM+mNVDgKlCxyKR82Ny1boziCtQ2OtxKcIVlizOclE2R1aVRkxKJraqrCUDLqcbNICAv6bsVgXschevGqpqBzM6bK3PLmKv1zbpzwF5iYrzbTXfRUmBJ6QVyMNJceTdegA2jy7q0ScARcIrmcVapIcnPMt1ZCyKYuk4jpQExbr2EXlBQjYymW3CmmEVHJdGKJagLdejWVsjPKNANfYkTMjYICQYRehU57VDZgFzjjccaVgE6XiIVcBTwb1I1aYqjsuUTvybUWGhybJ5m2q1r0tvJXYut7K4wga4yRSERD5742FJMR0y1jMLYoMSdHY4nQhSnJtyQfZ+HTOfT0q47h4Da7edyRrC0JSlDB2DpdskSngnYGcoGx9jEtjrJg664Kk6VXLElKCJJb04AlQ0Pn75msmc2X6t1wyfFhi0V7YYmdbS1BJdgNTEL2hFrj6gBp/MvOtMr+eD2404xrIuSHTGZT3kOZ4D3i3zCw+p0Dq+UCmjDJHiXduJi5/HPHjZIAnMVUGTHOMNlgbJCuVPfNS6/O2OgiSQe3A2dNSzSixOyfmedpFN+XkXJV90LwdyXcNwVrfk8mj1b3o0jXhXGaokFR6Z0ZdE+wbuPvaIqMC2ABcprFitwllZb5vmQ4V0GjXfnSJqKsMd1g3QXYOUld6rWuIFHBpYgthNQfYWGJqSG6pc1fapsVIo00fWNwy8zQvMp4KDlOoYfwBXTPoetgsYDYA6ekcYukHpElhRmZaLMBnOR5Ol6rYTGtY2P+bb9TcMfNtxELW1J3RuIZJgNIwoJAysywH31sXY+Fc4wB16YTom6qSimhtTJF0excIyuFX9vE+7J988DgxteSipdmIQs9ri2VWjOiBt0F9OfYwkijV7r3NjRLUuqBJSWxu2qVGqaG7A3OtLvn0PHLPt89nkNLUws1zO+X59K16Gnu6zeLKavCDyzjos6L0MzJHgFvzFqtmaBMrHOa3Vu6JNOcnS9svrcVU9QUUFGTwtRABzRcIHqGhnNMM0KSCCVdXxOsInq8RZYXhGVCuoip1/j29RZ2u+0WVjpVtGgl3ZuESWsFdjQucnBDdsJbNg8Q6OkInRJOn6DjGnRErINxiaUjbFTSVrC0AFbUflHNG74S7ImN2YyiCdMLdHFBd3IB+sy1u2IjLDlaY/S1WAr6YEl/vISVIWEkIll6bxnVLRE6YO5DvEFGZj76zgKaQEdYdT3x9Alp/RwWAcYVklaoBbbPB9J2gQ3imtfs3W2H2l1XaKrGQURc+NIwIv2WbnUB3QsIAwQ3GZK8wJitDB4tkAcdy+MF0bakbLLvddK4fE9K40ZxRO5sProqiMo0rlsBU7c0JPUWSSVE0BIdgkSDkwvSozMsJGRcgqywtIQxsnlxQvEpVBG8RB2b7b7EzUKrkrUni6+uzGgRBjL9K+PUKojOhZg3xZ27zbhaDjNTcq85Ia9EG2znoqIdlMfOn2k2YnEL+pQf+r097371bR69/4CNPmOULYkRCzIV4NSB5amxPFnDMuUuv8V+nf0JO+HI07gmOeyWtq+zLSt9xzLpFiPK2NjBJ+aVktIRCFG5+OEN6cJg6OjDMTI+YLw44sXHx/z3//enbJ4vYXwH7PS6g3Fol739TNo/RqKc8/Cr8I0ffZs/8n99m7j4lKhrIhu8D0fpawYR79sQjgV9IKQuMchA9YkahKSNpHvb1Qp2992bQq7TaJ23lUnGUnqG847t+jE2KL08oueElT3iF/8fv8l3/vuGz//XFxA1h7G7djPRS9shSNcdimEScd/VJ7z1rvBjf+IDfucf+B2E1YaR5wz2AkVQEQZNpFWCJXSnHWPa4BGPlv3aZDNmLgqLMbWDyOY6KxrepC3MEyNuXtu10rxWO6J5WLxgkBIdnbee2TwgPd+iA/QcAQ+Im2PWz4/5v//ffpX1061bcccV3kG11Aq9lSFPcFlxC6n/7Z2fVe2BZqOU2AKdLDSvCXeacc0l30PSX3PlNSTYGR888LRLd4hIzk3IXywSvBjIlg+/9oDf/fuPeffrxiacMurIKFsv8Z99VEkGwkIIvbjJJGtlopNxroYgNzLjZIQpprz5K+wpIa913CRbZyLvNzaSDj5WiVOSpHkVcW9hothXHsIWJ3ws6eIJ2xcLPvmfHd/+P7/L5kzcXJp2Y/gOwCsIG5OWnViuOh691fG1ryvbxSlJFz72tKHTDhX1iuhFS+sScZk7C+cAn9q5K02VM9xEc9Us7q7EqxwXPd/npej88kbPcUKudF5KIiaW2pEerkjRSFHRdIqmJf0oPHjc8cXxQG1gV4c2FTKbJvzwur3cZenz3h91vPvhER/8UEe3ggHDgifhqwijRVKXsM6QpZKsp+CA98bK85XzJbHMuPKedOZVrC1Tvcn5HFVd8Jrz2R4f3gc1KEyVmCavMMlDYJSARoHHAxqFhayI8Rgbe8YzIXQjosmbQzb5lF+me3VvCa3s/ebDPRJZdkgRbKb994OtcTF/9R2dh/nGmn7bJd9wDcrmf8/ud8kIBKa2olLVeIeBh4963v/whA+/DpvuiJgZl2bG5XljLumLJqIM1QQibZ0yKxGR5VEpDzc/uwmdP5iwm4+LANQWFb3qOM1Mj5LryQmQiGHAJJIkZhOib0xLHQElmNI9Dnjcv2Kpp7cVm6cBzowQSiRaNnteOtcNklzGJy6DBEE7Fn3H8TFoWGBBMe1ISehCRxAlDoao5eTKyCBN9CBOHBUhoHV502y8Vw3uUHFTLjme1rF2JjCZHb86syz39r2p9FloiiwkID04LwtYXCGxp1PoeyV4WfXKqqSRqqdEd9lZijmWzenZjnhVkphFWCx7VisIq4CyRLpaL4JkkaiTabzGADemKMNjWae415ZIKpOw27QrupJxXbZW1xcJi+hhph5sBdUv7TtKPU2EnpCEThaMaQmjEkuwCeSk/cyQS02t16f914O9xWvB5kxr9qXdSzLDqhVA3kxRvNOM6xL57pJPjVxmc/o5hN9XwgGzUN3nUnAjL3ZeqGHEojfbI3lWg1gP5pUJyIwLem8DjtHJEaXm2iRVTRU8rHl4DRnZKW39Zqi2f2z1r4lxJQAdSBpRiV6NIr+X6iJL9JZNPT1iHYbSJ4jRAw0ZhKY8OB6+9hLz2+XSyv6F1gHHbJ8KLz4KfPxr8GIcsRCRzhDtsTFBighKLeQRvIyYt8eAWKY5M66AL3k0D8n2cbwJQzl0Ps99FjhK6oNeeyEPSSO+SRN9nSUdB4IKqsJo4oxejNMgPP0Yzp8FSMfAAqHz8ZY9fmABrk9PFczTDuKwZPNM+O6vj5ycusY1ihBTzMKCT0lS9ZQFSbndT75NCtU8GHLSdB1MQcpZ8u5uzZU629eYw6vmvDnemRNPsXE/l2rmP6aQhGButvWYrhEJiXEjvHgijMMJNvbEbcSTjmWiM6mRRG8LpHmldl5qHUqYJxVL+9XmaApwamf8deBOMy6AmXFM8hmrZ/I1jQS7u76Hca98sZnZZqr3Rcjp+kjmMQraAyf8t//6BZ+ffcHx/+cFMQwkiZiV5EGrY/A+QlDyNwxqqaqJ4LSPLdUMirw7STI1kbck9eb71861+Zo2sOOq41KXDPOWGJJzMGJxoFNqq5XX6fLeLhKj27VjDPTpBFuv2H5+wvqsg7SkJla2VUn2pGG5fKfXNbSdk4qw4MUX5/zX//ycj757TpSnIIObJ4n+bCncKc+kyhRoozkcHGesMq3OtLcKIW+dP9dVaS87Lm/U3rZ91V24NkMTTBd5f3uemsQIlrBuCSkgKRBSzxefLdm8WIKdZsLfavxMvr52VHvKQINIMl9DQbCoiJ7y4sWa//z/+g1+7ZefId3g4e82eM4TQmkMVfllE29tJSfI3GpRn1nj9oVa+gtzBtBqwS1lfl3p7pBc0tAPK2NWy+Hh5uMu5veii2QfZEpL4njM9uwEbAm6QKTzvWhNAQSZPeiW4BCrKaHxZCZWFme2fevXPWrXXGrFe/f9gDKuhmg0O8nmf7bzefgWu5sQu4RplZvt3qC5h0EtQy0BOOLzj9ecXawJq2ckGTEiXli0LSFVoqBKgqbuMC5/iDXHU/D9vN61M6WS3Z4oLdOdiWlmXO3xYWZVkMg01e9g4uHRuWRPCnHGuPz7INksM5kyPcAkpkAXnVDKRce4XQLLRhq+Al5rlzvBGrbC9vPE0+cbj1iTLTCCJQgt48rahKtTfj5YNgWXn6mMWGVQea5qqLfxhoxr5xUOEsMDc3NdQtu2/pYEcfT3XagTxaQwRGAJsUNsUYmrNQzrqtSFlzHaavI0AVkwbkeefPyCJ59tXLCQEWwEzbUtY5xuOItUg8NMiR3GVTRjr8oxTeoOgbglxuXPSR65WjQWK8UNikUl7x0r4+tgeAuvpl8EB5sWoNK+W4ZGcvJtWvZ4s4YcZloT5thER4BLinNdC+4442pgVzhvJNTpg52sb2P+u0JsrtfZ5zNffLOSBY9SSpByUUpV0Ec8/9h4/kmEcDoNTgHbMjHecvMsWe6ZYWaclEnaOSDazH5fhVGNxGSapaadY9Q1k5pAqBA7r1OVArmQWr7f2DxamkcVRi64I6WHuIQYEDtFbIHNuqLOfWrtVF8KlxLSnIhuKyQFbLsiLN/HbCClrb/TtlybfXdlHYbRf3fddG8xyPlDbutpUGh33maa41XrsHu8Q0QPXfYmIDCtlTffKXkNZisgm922gPSIlTyuYqpuhMUWF2TnIQ1vvGzgXrg4AIsceKAgDzNRjxBHgiqqyrjd1DFL8fsiroGEth38FpnCPvHuABmX6z5uGFcJ3GBKMn8jaNZqqtIheTtYTs/INKAQquQCljMyMnPzeWE8cZwp3YfrPd0vCLdZq3B+2HbUcLkjzK7bY1qZnKUqG3gaigfPDK89sjvOuA5h8C7Bb89zyWdvOAZLGeks598q1DDpFdjbwEMYx2kDBMFiJoDVtpkRclY5tPV/HED8/FF16Rd6calEn6+sx1kKtZbQZgQvzFPHGePS2CEpeE+yWDTFRhOhNU+CR0d6pKUlw8OjAowBkwW1I+qN55+VdyVHfQaQFXFdxlrMLZm51UAz7/SaYvSAjBSIY35/MdcGKlVuizDfJhy4f2XWr6HZ5SregqEpVaI9bnTSQC1BcgZRfFuXlhR+jdcv9Nfdw70nGg/imq8WLcSI20SKJcK2KbVlObfOgK5UiTcYB7co1DGV9Qn5vXNAUMtUanj2bayjj9XbHDm98Or3ZT+Rn7/IjEAgxCwYgScf+7iCuLZTu13kfna19NhtwjUEppl8ddmQBGql4deEO8249iamnGgkEoddifcS0XVvo7P3eUW2hg5MET4lv6n9QpaaLID00w0iYAsfQzY5TYjWSjptvkNebGkvkUbKsZ13oN778mNr5sum77a+tVSQ3bU0q92ds5mjlt0qTDgzxTpB0YmfkN0KoXmvnHQ8n7ibBSuECSduKWWi2OUp00k0rJUgfGyGYKmIBVnLQqd3tv72xl2h7MdmTS5bK2v9NuWYZr3z9XXT2Pw7eX08LyozifKqMDGHqlK8ZNizP/YJ1bQLi9DSTxYLyWklKWLmZrXqU0xNoWmM2g7FbFrr/Nn0VKXW+pvNk/+2K8b5ujBZ9NRpQE3c9coZZmVPBYSFv6MJ1edb36dZL6CY+Kf/2r1xU7A/F9Uavnfd/Jp8BPisx/qdbIp+QyHhbjOuatZhf6+9ZHL91GUTV/o3Hfio0PqW0F5SbsVPFCTSaRfX6/p6JHS+iUlZoi8f7Ur0xRmaP89SZ5a/GjPOdeAKYrhLGMvYNYfnm7eynyLwS1RKgb7Jq3HktDIfJSy2JI1eZ8CvtcddoKhmlD1BJ/9O3k9I8DB4KA1Kc/RkzdFzn6CgmGWJWLoDN74NuOZa0Qo6u0JPI7jVKB8npFOEfQlX/v+z92+x1m3bQR74tT7GnHOt/7Yv57bPCbbKxk6VgwKkoOQi5AFiK/bhJWC/HImSCEhYimSkiAckokSRCRJS8EMwDyDlIXEkkOrJKfHiCMVFUapyLHMqDqrgpGLjAD6cfW778u//suaco/dWD6213vsYc67rv9Z/9jp7973Xv/qac4x+bb3dersE8c71KVuX6COa09YMMmfoZkyUdu/N16sZHAl2JorDdnd2UvNig6DDzlBJhiEZdsyTt+Hj7e+Ra7fJmSc/V9VgpCcAt0S8xOehvRoyuXvZALonAguE4b/xRN2dXX2rtHEGSqgO1ndVZF49tr96/PFQ5gx4eEL1sx4W15/okE/3ovQbtNjlGf7xy9d6b0SzgZ611SQvVUGKE4AajO08d/djRa5W7whXP6UqbCkzJqJaeQGNy122+zpLx4XPTKEtxUbV1qpbfx1Itv6ZhuXncLdS4l2Xun9CUZlNU3UBb1fct7aGr4pLlwhtzp0LvoV0lrfFrXRHCMKnbsHXzLY7BuRQXdN+rurZe2UP4PAFbIQn+KLKMJRi6uzKTHHOki+pROoI78ettBzxEeXKSpy/T6jEdWG58Zock8wu+vuKHXWHGhqzV7+zE0i7R4lsy4nqfyazhwk1h8YdUYWOu4DiIFwyh7kwuy9xV2afeUIQnzSwJIR3NMrD0ve7PCyNW62OqbGGSaHkxdgr23iH6/w6itj84p5kJrSNB3s7q8/AXecwfFmfl350wVmqgpDtjznGT6hkGAo1gKaA3c35/I4SLqHeJQUMzNJ33DbhcqlOUnfOLdRb7Xef0OIRWmRoI1gyEf3ZnxH018RA3aSbo8s0Z0auW753CdfHtBz6mPlZBNCIoOEms26B016ubzAD3ubY0rV6TEV0lTrnfO+/h076ioj0dRLqBlvJCFmvqjqQXl5TWTIZs7seHJ/Z4GwZ1dZ+EOoFfo0yTiNcoYJKx9bu4160Ea6ikIYWvCSs8+peXYAYpT0YSYTsk7tYj+D4FMtppeBnRdaYlqI65eKEK86Pdkxd7H0Hn+ov+TN3AqbVPYZKWGsGCcWuCbLdBSfprQdj+kf2Qbu/9fDr7+XyKeH6LpQlOQhLcU2CjAOnn9ugY+TqavcJJsxE4N0OUh2oU38IZ730nNpl9Rhhd3mNJ2IUpSTLhxq0a1DzO0vhIpNBd8r225MboFzBP+t1lwVj3Wx6CjoW2IA8SO0O2XM7VcQXxgPIPGDAvSpOgHVgYKC8zOi2WIT8Ko1coy245js3K2acahJjWsH4YOTxZ0+YNuZ6pglkameqmWEvRniEOsVz5Q6mETyCDDhhhTG5AiMrZx9k9t8p6Euadeuyje63HvviE1Q+JVyvuYSbhqB+QMxwoQjooMgGNm8CJ4KO1aW33rtYBmddMFqu7qoAfMQP6kCtcF79WBupctdFpGoLE6bpSCoMYXi4V/RM2H3oEbrDAXRm8fkay0F/S9UhWMQSRYc98jAxPhJOPuNGKM5QVFwiytDd393pvfgdFVEsoroKKUPaCS8+VLZPnZj1yb0vnODrV5eWcHSXydw01gPpsZBOjd5qsuuuJECq7mnATEA8WpSmQLiLktS0hSHcJWAUYILdNiHDZLBY3HikM2IxY075JNKoo+VTwvW6SsXb0qkjXF0j4ZtiVwzDQ5AHgo6OQyret0bq4TpyyGYc5U21hbO6NNylZtIehkyNcLl2LQM7QQf1eweZ47YOCR6Sjzss53TQ8hz6IFNGNkJ6mNi8ldDBuPgSgQIFkMR15ZGPVXGeZxDfognSS9htM9sX0O7u5ozGd51Ad4BdLVWHgo4JOQE9BR19vyZqpvuZ8KIdO1aFxAYcKnflyNvYQwVzji7tG5lAVtL8ukLZqkcaWHz8SaVknxKu112kr2j3t/l2KDCtNnYIR/Pvn6k7KrItLil0KUdwdeFVy1WJGHP6E+NJ4oSrwEpN9YFHsTEzZSPS7R7s6kN7vcURoShF9kwpM61GppUFtZ/c0jru2OPKpL7K/SJk9RoP89tdD9jdaj4D3VQ1qIhYMIeP1d45xzQIDIoOyrSC7WgBXXIXfAKhxQFgRqNa3QmFgejd7mQNlFHa32s19adFdBJkgGFMlPwxWvKPYfmUcL3uUs3bXW9QL20dK0qxoBJiPzk1nbtUblgdyRaqL5t75tfbratAvVy93oLKuoQioQVUu5vDk/TV+6C4/A5Kdljm1+B3iPqD1V320l8yAqbDMcSogzENGduHav8iCrkL7ewBYO8P4bKAzLaH7ku3ohk3RC457QhWz8gAc5+oaPV1FWmUqWOIKm0VNWJLp9WI49bzir1qQoq/v7znFa5/XxzvzutCnBdpBDVT74sziqqZxJdSaMk/ap7z89fjE1g+JVyvq+jiN9KdIAf8uJV1opCx33FNNAPRUDd2kpjCQqF/u0ViAmGh5aEwanIVSQvxo8co8zI7iHd59qp+pg2ndbkQK+MjE13jDv2omiwyUx9V33zMi6CQHJmixlckfE/TfFku4i36kPXdA3eiVqyMhzFquiBa9og6XxhU1+u+T0vr9UrYKnGbQ8fxXdUL6ud/1x/7fvzh2957Xqo22W9+TpbjWRLIT075lHC97hK4TnFmTpvDazU9asegBremV2X0Fn8L9cYsFMw1B3Yux9j3EAP3uqdJt7jAjXAddH/szL2WspAOLr1n0/n3svhchYgpaQiIQ4nkY15CMhGgqFqOgYiOssDZ7R7QPzy+aPXPu1uGgEOXBsscyAIqy4xD7CbRhRWLfNJVDLsgwv211BIXfh/w42uYhFJcBe0LpyKeq2tovsoHZQFwwb3eI/i7jfIp4XrdZQmNigGzRwKwQLQO22EV5Y82HCqIDnbP5Yj0QAcmHQaqh/ZYXetjh/WGHOwjwWKqWbDTGqhXzGkSz9Ri10XiuYb6sEPfpbLsfinszabqgXfU7vAGp9ElqJi4i10wF/cSYSSXk5fgKIZJXZ09n9rVOKHKNN3RulTFXQ3MfJ6adsHQgZ2bqNZnOuevIHC3Huw5+uo6b/TLYMnhTFWctkl79MhUaqaG7/bZ+i6VTwnXx6a4+g1tPrIz5NIH07VPxYmWzkQcXfymw87H6lxQ7zjsIl3LfrhrFIPmfnogz1TG99gBu0gPdRvlyDzjGz32cRvzwTVOaJx6s35Z/P44lzrGYFYaYmwPUNVlh4FU+6KvX8rs+bDZB+eMo5eiZlq7TjqavbfUXtzy5I6s53yNo2+d7cm5KvW7tNu/B+VTwvW6Sm92e/BRVQwScQbDV0urkYNZEB4C+6zFczrXy+szNdGivlAUzi+iY7yOCIOD9Icv0Cx1n94hBrygaeXIlfdseVpqDDn2LDLLuvWxLgfbHguTjj/jpafNwIyp+u6UYEb0iFDVAR6Lz5GDx/VgHY6KNrcyXGCWu/OAzzznNZXlGacjvule8Ex3UT4lXK+7dAFwtf5bsGSNlrDRAqgXStxXJQvhoGVoDLO/e8Axe72Pibis94x3T/L6pKqzBKvdeOtZr1+kGQmLO/764MdRl3ZA70tTfSZQUYqYU3hOdgdZPH+VSbdNRbMUVPWCet/tVesXtXfTfuLpCMkoVR91Fyqyuyi6+GlKv2Vs2qsj9buDU6GdwZp+iwpunWvFUuo70pIugfeTWT4lXN+NEhSjcq5XB8K5bLXkt/SQUPSahp4YHSFMx+pHkUClfPMO+gN6qHo5r9wxYbtAoNPzJo/MUKJK30inYjqixblsPa9artPedfqRg3/Pecf9745CpsIiFTgXGzjcRukx//liSj+ntmv980f1irczxHNK9L4MO3rYa7CycuRLWRxAac9+AsunhOu7Uao6wzko6Y/bEa53cTtrb3akq+YWOS4FvPJQaURJfDjVclhbyoIDfDLLP3aMgtz1oXP0dQzPLcXN2TuxL92j/R51+2Gzuh73e1vE7Sb99LBzPs8U0SmWMlysqHQwvOzprkvA+sVrHiRg/tThfI69davlqIDUzukMknqv9gvXVO5kqPepfEq4XntZOiqC66L8TBYnAmKZNQSzzjsHjiMP1kLuutWy5MyrtjPRLCBxS7yOiNk4PkbWT5cujEC1hDTrQSXSfix91Ppm7xcWkQUhMoZEaSahkaLmEtXhZfj1TkrVbTYe4/wnFwxTY+7O37I72st6GXp8wL2M/11a2HtVPiVcr63Med5DDsw5eY1LZKnSjIaYc267Hg2hkxJurZynK1pqio4k5psfRr57Z/E8XHROTi1hnq1ELltX6St6jfp5jV2njWv2c641mtJyUnVquZ65ise6PkJr/N2k3cKyf6Ea3hx+2ak6l0XvDEbVmdDZkh7VBGD7cBDjjTsb230snxKu110qsPbQK7OfkLguUkEdHsrls7cF5Z26T0JtZgc8nEHju0B5ofrQIKgHbQkHhPiuDuVFxiH1q+Dez1vLK2Dlcx+5RDE4Sxd8E0J33X7k6FMzYtU/dlQ6kPlXdwV6Vywz14VIbFrnoN05EZrFbK8ujblzpwS4nVn7Q7vhzM+I/cji9BxTN35Sy6eE62NaGh49wmrNmObeRbl/+/aK4mGBDiSUILTutBsaTwni5jHxWuTdWx3XrZUYIzCTOOr3tA3pp6D9l3A4v0uICXC+hcix+m31c0npdb3XReavY4sbbp8HOz4Yp8DMYcFVhUe2l7vSWCyKLuoV2uqB7yZWk11+WpblU8J1UTlXxXTdBnT201x1m2xi5vAT7QKpIP2z9fEyb9qf6yU2nQ1SF/VrJpL0eITNJLEnlMn9kBNKoqREiigeKTI5Y0EX+4uxIHj9/K8s5Vxl8ft5xL9p9n3jZD31rxTMHcGRm6i7JTgSkTynUbX0SU5el77sBv1UAtTDpAVHrpmfJeOb5e+0+754X2s7LQVHJQjHF+icwSyf1eM/UubPxB3cMIFssQjB6sFjQsIvPtw4V9oGrxFEuOVRCJV20LQ4P9FGD6fzPM8X1aOV5i5SQbAK+AkRca3lHmTvF8UWt1RjTbWdmVr/mPKAr6t8SrgOykKiOCbMLHUkS81O/UqdHgRyNM4+DoDUXFdxwPa0Q2iR1wKPamUp5wfZDkAQnv7OIRBOSDvBxR2r49xdN4mZw1ffZ4SehTiJEonEBDtsSZ0I+/epi+nXES6NgzvnPW1msz7rh8glJ7atkz9fL+PnUb7bHX1uyDAIVyTOlGJZqOt3+GYspeAg8B/zMhtitx4iTTKWTM1aUHNryOx9g98F4Yo10NamP2z/aPcZghF87ba8h2/3acRz5vR5VTz9DLIH2YEoItlgSPzMhKQvAYf94Uw2RkmV3vaZD/DzKAfnp9UFh09N1Ej7mmZwN69H9z31t3MjDK6t2KOyd1iDGtKq+tcN/tNRvwqG9wD2brl8SrheoUhX0Smbriw5YKkfuEGg7EH3lmnRg5IlvxSyTMjFki+mHaDI8KYdOAqW+F4pZIoTNtCWMd6Rf/CbdVxONJRiqStwhCOVF0Wk4wz7enCM0vhOe19AMyKlHvZSEkJikBUwupqwWHZCEZAVQ0rkyVI2SJI6nlIEhrGtV0d0KkKYrfflHP3svSXfoQlZpKUXshEvJmAHDKgIWRRNGU2ZkjwlcARkDcIV0uh9LFqcQBWQFTb/PeDwJOrrMjLj8F3qN1hZqqmlrVFPuIramklCZEBIlJKYqy+tPZE9yhlVAhnUCWjxlCsuGaa9S/UnMDxAUkGkMVXiGU51psUQ0MHhz5kqtciNgDn8ByEL15KOcM3q9Rk/ddJkrjhjrV6fanNVzHKYFYnEIFuyvPBEaWd1fJYeYg2sQTZQhkbUctfeJ4x4fUq4bquMQ6tH0FwB9DnIh4bIx5eEaipToHTIegRWBU6EfdqRB7VDSyKJcaCFvXOiFv4pleDYnHB1uOIiMF4KkZeXILJBCF2N6bbwFvhoBWm0XEiDwvpbMCkUYdKNZZkcEgwjJSdE1gynb5CzSzkpm/qnjq5w5Kz7zM6ZXUivy3ptQ4zk9/dt4iralGF1Bg83lNMNL8ZMHieby4gjemdMJq1rMvMqvSelAJTMviSmkuz3yYfw8DnIiOrKsphmwXLFeakEIIjWsX0QZ9pCtSWYNL6Cs4TqGi1rTMVnZRgh5z2wReUZ48MdabVDVlv25WmF+TQksmZjjEZFNoX0ZMPq8RZZJ9aDMg3ZIp/Ef4MzHcCQjWhWOCDcODzjlW9puWUaENnL1ZUXcWqHLAye+E22W/Jbz5jWE+yMOCVWjJzC7hF5uyNvt6CPgQ3IaEJjdp+NYbh4EN9j5dqE6x/+w3/IX//rf52vfvWrfP3rX+eXfumX+JN/8k/W71WV/+Q/+U/4L/6L/4IPPviAP/pH/yh/62/9LX74h3+4PvPee+/xF/7CX+Dv/b2/R0qJn/7pn+Zv/I2/waNHj25lUjcvOv9dGSevnAfQqi6xdE0IjtTOePhGYfMAVg9BJaNMdhgjp4ETLh0LnAqn77ygrBQdTKIqqaCSyWlCJbfmy2ASlyNidRVJf6XbIh06nr2kHm33iVO044yVQhIliRGu4gmFkkygI7oX9KWyO5uQM0X2iaR7Jxam6ii7xG478eyjD0gPTxhOB1aPV+Qx7p6Mm72QJBwxv6dDEG32/T52v3vynkxC0DEhTwR5BOPnCimSK47Ue3IRDKFrqJbuH+GyDZbG9b9QhnGARyNyNiAuDUmWHggarT9orF9eccnWGBrzRxwRXfPy6xP6ssDORQW/MNMSKr0tjM/4vh98xIM316wfr9mpqy+TSVPV+CcVWGVWD0Yefxb2Y6EkJSetPEVR0LGNdsiuaNZeO6E1a7gCehnc3aAYQXTY1ka4UjaWTzJM7yTO3llRzkZSHoGRpGuG8pD9hyd8+1/u+dbXnkM5wdKjJ1J3NVCqZeQnQ/K6NuF6/vw5f+AP/AH+3J/7c/zUT/3Uwff/2X/2n/ELv/AL/OIv/iI/8AM/wH/8H//H/MRP/AT/5J/8E05OTgD403/6T/P1r3+dv//3/z77/Z4/+2f/LD/zMz/D3/27f/fVZ/TKJRCnV2WB9UzB7X97eg81dZwg81x0qQDP+Pz3rfnc73nIk88PTOkFRfZomvzaxNrMqaBDQVeweWeiDMV9XkcDeVHKoN2BE6Q0i74YdzwrbcRXJlz9zVVPuEpMSKFoMY2oqFkRluKjmUwqygl2wovPrhlyYqUDIwlKwtIKb9i93PDet3b8z//D11m/8/2cfvEhT77/ES83LymRUalmpT0s0sSvw92L+I79XnZvziU2lxzEGYNhTdoMjCcjJ0/W7MUQJaNQcvaL9EQqiqr/3EOJy8ywzTAj6UjaKbvnwvRibfYBZSA54ZIFImz3kT2EdO2SUAwuBxJjSaymNePZhn+ZP2T6tqLT1FL/Ksb8rPYwvITVU/6P/+b386UfPOWNLyq74Rma9qhM7POWNK4QSWSdmGQHgzJuElvdm6ovWeIdDdXz4FoBhaGEpJ3QjrXrzSrmjM/tlaLZ9CwFkq0MFPGzJKQi6NkTUhY26RQpK8gn6PYhT38Xvvr/+pd86xvfhvIY9iYNCwPjMKDA7v6B4SuVaxOuL3/5y3z5y18++p2q8p//5/85/9F/9B/x7/67/y4A//V//V/zhS98gf/mv/lv+MpXvsJv/uZv8su//Mv8+q//On/4D/9hAP7m3/yb/Ik/8Sf4+Z//eb70pS+9wnRuq/T3FnEn0iPBQPVQOU4NZOpQXwqmA3jBD/zet/iRf+MJ7/ygsk1qEtQwkbIbaQhkzeSUKakwnSrZEXcqfsslSkmZSrr80lZq+loQMlKNP9pIe9J7k3qkHFcSWuzy2/E56ORCR6LIYAQqJ4btyMjAKANashMuYSUDzz8Sfuc3v83//Ov/E4++8IN87l/b8Ht+dM2zkxU5xTI2AjRL6iwtddmynHd2r3SmXVKdMEvI1WZkH7YJyZErLpxhkmcLi3TFPj5GJavdvwwpuTHhIySbdnoWwst5tTQH93nxyWsH+gKMKqwmGM9g+Eh4+vU1z7c7ds+mlvrXxBwzpKOg+zMePlZOH8HqBIZ1QocBkiDjiuJMQ3EJWD0o9doNakTC3MEGX8pUxz1IGDAZgSqi0N2LUdXIt10KDAMyKFoE0RFhpOTm8D2MQEokTYyS0DIiOZHWMLwFDzYFpgkZBjTb/ZYCOWebT7qLcX98y63ecf3O7/wO7777Lj/+4z9eP3vjjTf40R/9UX71V3+Vr3zlK/zqr/4qb775ZiVaAD/+4z9OSolf+7Vf40/9qT91m0N69XIB96X9Q7p8Vu0ED0KSREqDc1e48cBYCYDxvqaLFwp5PzE44k5l9NaUJKUzWJBKvBrhKv5zu2jUCIaYGqW0PMxJBNG93XXhySRduhplxRAXfZKR5GojhFKEqYwwrpB1Qk4EHkF54FZ8UOepne9YXJuUc7S2V591Y0B67roaPguUQSFr/Rvt6lXQCE79vgV9csIkBpAldznVtGkFk9rcegPTRSv2S+dSiroKMisMU4J1Mul+tUPTDpNy9+DwIgnPaDzA+IBvfg0mnTh9f4L1DpWJwmTGFr7SpWSSS1PF2YgwyTchOHakMaHJiaS6VGWq9SBcZkko9VzdYol+JBuRthG4tsKNtRA3mFTXhIgxFPuBs2+t+OA7a9CHoCtbJ0n1PN4/6Hv1cquE69133wXgC1/4wuzzL3zhC/W7d999l89//vPzQYwjb7/9dn1mWbbbLdvttv799OnT2xz2LZQmo1Sjszg8MnB2Vnj2dM8H7ys7UbKYAJKKS1zgaidj+HY114QDrxcN4tH32x0yIxO3r+fw827MaNx/IAwoqXKo7XJbFVbixieKHVhMJz+q8N63hacfFlidogPkEfYr2G32ZOeCLaVLY/vDPF7ErRFjBW5yZrvQRnPDNrd6cymqkF0iFkoYoghoancLqja2+4Y6khMuBSYySRKSBiNSTqTDohWlZuiNEgYHwTw59Nu/lfAlShqBgXQyMMmZGRihmCn72qpJKJPY3zzhn/2W8p3vbDl5vEVWZ5SyJ+e9jTPcsDQzjFL3oNk3SrO2Exg6SUSc81HE78qccDg8JHXV+y0TLrt3zmSd7G5L9iRGgx3/L5H8btF/0gRlgkk5e/8R337X1kbzCDoa0R8cLuETc7cV5V5YFf61v/bX+Lmf+7nv8ijknDrup2QUS4tTrYSZS+kJv/7f/3P+h//xGdP4HmUsrgbTLs2IIK6iQiBXAwxTK0R/ZRm5IcbShQySrt3bKiXY76o3jIEqg06ET0+R1ClURyx+YgH2iNiFs5QNJW/QXYJtYsqZPRPTCLvVS7Kbnmdylbb630phkLCk7FbhYM6pWVlq/1zca3WSXJVaTfYVFVP9SuR6ViNW3kkle53UdX+KkjRcdAFV8lDIKRkX7yKXmYkHMyYkJ3JVHWjfAC3VvMzFV08jtyLpCePq1F2RilvLtlbKhCPjU9CB/+V//DakM+AF8NKVCkIjMmVOSWdh06D6oRmXU8fTnHfjOTeVD5GycmivusaLUqX0TqdasLHFHakMJk1VWFRswdYwPUHzCeSHwElVCxZVs9aFe+uVcdNyq4TrnXfeAeAb3/gGX/ziF+vn3/jGN/iDf/AP1me++c1vzt6bpon33nuvvr8sf/kv/2X+4l/8i/Xvp0+f8n3f9323OfTDUnUjPSAfv1jRSatlWpW4cGMEecT+RWG/GyjD6AYbcUqktiHVAi4cGgPIG+E6CLlUdVcxlqYCu/VS8UL435jOLlfxchHUNLmDaTiUhvNkGSGtvI1M0qGz6lqoB30tdHYPYdxrE3LdGWAmObXWDBeFJKDNB62zwtJu/GEsgxREjVCamqe5qYZSF1zt0xnDfOyLUhFoXMtKSg7m2iKfdFoDm3O1i2sJToFwsE3u7G33q26olJJFVZFkFn5ZICdD2KU4ByCGtJNbneYw118DJ8CuuZaUkNai7x7O+zseJ04Sz4iDU3umMh3hfB5rs4jneNtF+vAcms24JyLv6tiIazV+SSR9YGqJMhLnwohfNjN4+WTdb8EtE64f+IEf4J133uG/++/+u0qonj59yq/92q/x7//7/z4Af+SP/BE++OADvvrVr/KH/tAfAuBXfuVXKKXwoz/6o0fb3Ww2bDab2xzqJaXp7md/n1e0PSUizXxcAU4pu2K6sPEBdIi+Apya6iPUMuZ0GVzguBhCWfx9bDB3RLjAOcN2+DS67PsXNcfrqurzQ6iuIx3FrQB2Fckd7a/iECdi3v5cp38E0QigheJ3L5VFEI/44HsgNLPoGfn1PpMTTHWVYTDKFhQpTL7NLeDeEK4jJUmqbIHEv1Uga0TdVF463wEn2ur7a+tnTIr6HRoSkVM6GKi6PXEJyRkbVXeyDdhxQw5RyLtu0MkNPKgO+DEDDZ+7SuBcGtTmTi++xzojXNHO7RGCGY01LsHpqWJ3Xr4Qqk6YgnA1n0bhxFIbBVGLQ1cNwjom+BNSrk24nj17xm/91m/Vv3/nd36H3/iN3+Dtt9/m+7//+/kP/oP/gL/6V/8qP/zDP1zN4b/0pS9VX68f+ZEf4Sd/8if583/+z/O3//bfZr/f87M/+7N85Stf+ZhYFMLSYvCyR9MolH3BLn17YjfAfm2OuWJWQTB4s523lSporoCYVqkG3hCOcIkVbZQLhngdT64Y73n10g5I6g6PCkkb6bHAO24iPkXcP0z6KqHeESg7SFtYXXbggugtx9Q+mf8tsy+Ty7FtJh77UTzkUxhcOIfeoWj/3AmXmiQSjt5mZ5pcUuxJ3/0o4ipR3KQ/4MDjs8xiCVcSJfGeuYCIfxfPheSpLkmHFBHELit+j2ZO6pQErj4mh0YhWSSM4vESwxWlZDsfqfPzlMFMI4MK1Wgm0Clz64z16N2VdgTSJ9l9VT+6rH5pCS1FnGdfd5lcBe8wHoQrDUTkHEomFzdikQElVeukdLKi7IutQ/rUAfnC8o/+0T/ij//xP17/DhXen/kzf4b/6r/6r/hLf+kv8fz5c37mZ36GDz74gH/r3/q3+OVf/uXqwwXwd/7O3+Fnf/Zn+bEf+7HqgPwLv/ALtzCd2yjX4VwMcs00VzoJzdtRxUJJBIFwtV9Ragib2s5Q45TqFB/rjHOUhXiTVOvbxlDOOc/W9i14cqlLK5mZNkVJjqwExXxKzB46NTYzVBzBIQ7JJlOeuj/U8dWtl+mO/BoH6n1LI1Zxz9KXytB38tTsS4HWciOixnMLSX3vijKk8E/CDTjsSSn3VdqyvU+oba8HxTRin404mQrBHl8aBRGETO3qKvC/tPszSVD2O2BkHDcUzWiZ7J40Dfa7QLcZ/nfc2zipVKqTfWgXmaTSJ8WvwHDeKO5jjxTtGcE6Iycex9SEeoX6BaVJpnGdVRzeA96C4I4Q8CaC3XfZmYlzMGsMvxt0N4BPWrk24fpjf+yPOZd2vIgIf+Wv/BX+yl/5K+c+8/bbb39MnI2XRa4IkI0Lba8eg544CNq1G2oBQAbjUivhiEeaBV1vAizdvzGK2oNgbcwkvnjqqhKXnFPv5hxSXje1onbH0Shs60MALQvVSxD0GaFthCecqqvlGvj9uczXXBfjXHDUM9/xrpeYT0f2idVMiEd7SHZvU6xuBht4+MnBiKY0Zvl6pZc0z6vfRjnedkPXcYeYzfhCwkfP1jWkqtm5qBvTIkcmtGa+NtVq976a1CozSQhMCjlnyB0c2O/UBKlE22dl/ruey16SUudw1NRtB6Gq/LlEY6zgdrch+nH4qRJeckpdz1NYFXYD6FDNwXJ9wgwy+nIvrAo/HqUDm+sCdcUZStXzE1JKQwqVA0zSDt7g78Udz0xoULeSC1jvEXsP5vkK9cvm0CH6hqUMMWmy6FVV9Qmo+69JYtpi8w2iWjwg8bAhDaMFPQ38oWaqnDRR/GQOOprJeQixXVlas/XWhUbsgvCL/98QeaSDiUgPpkBbGaHKI2kaGXVkLZuqyY0QV+bLKjekQTcgVq9M69qDxUUbTR7gmR1lyKhkdrxkGBMpGbHY573B2eCO+CqEUiqp3xIqJL/nU01OrGz/A+xLDqkOqmqvZ7K0kUqgU4vTngF/r2Fz8X2t+5yKqaBnwXWjqf6OqNN21Ognd0gJipoVYA1CHN1PTWTUMYDWv4uxHgD9svKJK58SrmuXxp1fGXBmVnHz6OT2/bL9YjszAOtMyykU37fffcYHu9C9+rCuV0Ka6kzJk1KDx5Gs/+qMVihZLAq4DO2w1qs3scfLCnQ05Ff89iiBilQHWJVMOSeiQeXGl2P1OHi4CX0fJ24ZRHVUQTSRyoohr5nO4MNvPeejf/Ed8jaROGXQjd1qSSIXT5UhoEVoKViOqFgP6nAxFbqOWveifi7oUwqkyUKPsUNPCl/4Vz7D2194wiqNlLJHkwV2XssKEDSbdaAGoacuAeH0HqYuKSQuD/c1ysiYmgSFKuRSDZDkIE2MjdfCaQVT1LZ2ts0xN5lgpciJsHpzTRkGihSP7B8vGmxKJ6m3an8vdkwUvI3iC1b3QaEMFh6rbMgfChpeAPHYzFJYTSrrmdO7iE91D8qnhOtapeP2jpWeS5w9duSdWb4if7c3d08gK1i/OVBcAjOpan6w+rA8d1Xa2QhfJkfaUjr9e1z4C1IS5ZlQzpSyLXaf0eOE5BPWRCojQ0mME6z2a4onn9TOAVklL3jhNtu0vFc80PW4dBEO3doIVzxZ1YN5ZMwr5KygH45sv1GYXhZgIpXR4jNiYYTqtJ0jbhLCKxCU2SJd9vMqhMtzv6UJlQk2e/RRYfXmSBo3aBrQQPpBoMNKUJslJrWnkF61rqe6ZmFTEuv9yCrjwXa7sfTScb8CQpsC2iQ0us/CqKSq3TKMICcDqzeEsrJzU+JuruYKmzsZVwVIhR09GM9N61EiSkfU48GIUZ9UWO2F7STkopSXrhOtgY374NO+p+KNfTLp1qeE63rlCAHqEWdPVI7defWZTKO5ntgRfwsMynACT764Yj9IFxW7Q7ja7qFv2+l4NuyOHlRLZh+PdP2Ljydl2H8Htu9v2W0nSBsiGrmblxnnyMhQ1qz3IydnwpROa6xCu0Oy9Wxm2G2R4tJ+XnrCFZ/MCb26Y3L/qRliWJSSVYHheWH88CHy/kfwvEAZKZosYkdIB27mPe8v9revL39Y1K8jcfWS3WX9LPv0fipYTp5mZgXDxPBZWL0trNcnLu1rF12CucS75PLF1zlgxJep7OEUOJmE9UtllU/Yqod8ivvYyucdY+5i3Mui1DQz4Kq+CRkT6XTk5G3QdSKPQmGooFdXX6VqB9XH24h616R/d1F9uVPRRF8vcW6lsRwojAorO+qsdsBO2U5K+WjCQjvNk6w2prHb2yWf9gkpnxKuOylLaBraRxcRmJqR2KNojNjJX9lXOTFTc2UOCdddOP4fDDMQf8cEDzEG00IxvoT9M7VRzpxa47QnKGt235o4+9+Esycjed0IYpuHcc2z/p3hPkd52AifGomb3btLo6Exl97gflLY7wS+NSIfvYFsiwU8Tev6vt1H+CDKvO9D9HUbvHvUz0ONN2hPHkKOdCFnnH3tAR/tYL1xzwW1yAyW+FMqjVjeIV5UYmT7CfJzSO+tkRcJpgLZs18Pbv1+9O0Yd9dRrPvB/Iu7iCllBdMKpgFyKTVBJKVGz6y/g5DMgn50PEmRZrFYHVg6QqjdulxU18UWxAyKGuHyk+KMws65wORBebvxfcJCO51XPiVcNyo9J3uFsrR267/S7pMuhh6i6CDoYP6YOcG0IFzxZthKLI2t7qr0VxUVvWg71MVjxxViYH4rIs5ZF39QBs7e3/He72zJ20weM5FTrE6OLp5gqHfaV8wR3HyMQbhm73aOzMh8a4y+ClkHXpa1G2ckiiaU0Z5XRSI0Enqwt/eliLp6rxQkJ1788y3f/NoLRjHHbWjhywTmTr51e86Ze+dTNZZMygPsR158e6S8TIiu3KHW4WHWzJKCRHv4sYjdW2ycUxNF3cpemTBCptKrcpmp141wySHh8sdVqp9zqwfhWtQvJmJahaWwjrUo+toIYMIUEQOeq89IZVNlRqONs5O2NAfL971cPiVcF5YlCVia8MqRZ67a6nnvhdgCJKmBBnJScnJfzf7MFqkEA1gg/dsojvBnw9XG+AVtogWeFYGpuIdUwi7iI19ZjQsnUEbO3ttx9vSM9/7FC3NKrsQbDpxDg00911+t/92Nf2Y2r+3HfZdmU00JVit4600efPZt0rhiQsjasjZV3WklnPcNW2iV0pMqwz7x/Jvf4ul777vjuK91hGYCX6fOatQ+PKd5x+hJYL/HQhmdwos3kXxKkjVZU/NnSixEEweiGq5JnPnpJc/UnqtjEQ9c667jqsb4BQwNSlHxUF5N1VfkMAeX3nJ9JqnG8g6xBzSiFSkkInJOnXPPOFj9Lq8HPu7lU8J143IesroEkR183ROaTNU96TyUUFNr99AaUsycy5vpJF5J/dTNU/pPeuIyP1Rh7TsMwjSIKfLzhJbBUldEv7oCNvDyDEs69AAzYe7b7VnjfgD9fUtc0HfEbllmWCnQWvd+TDMVG8NmgJPHjHmFjok9LbNudcTNJkne15TpAkhWZFJOdQW7E/KLh7Ad3blXbG1qpJRgInzvQwqo4km3J9kZgnGEvLdXcgJ9iOaRXBxeBhyL9xZ9vck6HQj4Oz2Mx3AETB3vloxOYzUJe+yzqiXw/UtqWRqacUbX3y2XJTaoGuYmOKECWZWSsxF7TqA5HnQN+ToEuAe6uJ9geONy/wnXdQGtR2wzGtAQ9PzLLs7e/IHuz76hPhrGsdIj2I6r6kWYTvy3g+UR4qR7tlObzYZ1MP5Xq0dkiYY0FhhFPVqGFFcPtnmIh6zpRCUnOn7wJkA8v1AZIYLnQke4mNPRuIA42A+d7+1sn6X9PfcfmEtjqcA4WZzF/dj6EKE5iqoh9MGtvipXfJ+KjTcJDCKwxS6FyglsE0yjuRnoYNaBgSt7VXbP2MyYl25vthkL6+REUEePlqHNkXhmLThnqyoztPg8LEQP7xftKRMUPVFkb3nYdRJBqw4av4DnvFEJEJHmpdbCaEUMSKnJWu3nmL/ZkuPtzv9tj/misuCbDz/sv4jYlUcYhCUDec1yzwmXA3aPPGQO9MfLkYWexTq7yTiWHvlX6H+G9BbSTjwidlBLqNiENlbaM3delkDXT6GnuaLG1YqnNCl9tASYWcSVgvl4JZo1Sk/Ejw2iss7LQVGJCzRWtEoFTZLtpwHUcELmu+Rmk2WYGXTM9kehpkLO/Xf3pRj8CMIgnvOtJGMe9gnJa0RHkg5mqOGmo1IlW0e/QUBCjRiAmEbb2/0Oxj5CSrhF9MBDt43HU6AesFRHlzvgQmucTz1oH5ol43lM2y0fpjasSkDbv47UVdHwzxKhhsOaEaslvAfw3nba2AvKsqOli0L7o1X1vPEtGMhrlntOuKhzr36tl3JNQelbaJuLk1Ict127+XPdMEJ6CHWJQFMP2NdZYEpOuHCnXDkCQ7O/7oKSHZdSerJbRy4mqZkC3ychqflz1ReDBxVuBxQ7fUnoThSgMNelLKSz6hSuVROWhmSX9kpd+zrv8Cd/nZzuLZYU7G8xsFslU50xAWmNlhWqA8ow06TOolbglCG2sMbkxMPnC4ynsERoIvOjIvHPBbquI/AewhKAZkxaViw0V0ROEj/dHRM4b1YqszUb4x0V66WT3AkDJlCP0N/7TM7dHo4UWfx+TeVwPY9pMVo1q/FFLWKKP/8KFPf+Ey7pIrbQnaNaueRllfk7hy35nxdJAZd0dPBqSHjE6Vo81Nrs76tr5SLi/FrMZQ8wwKEkc1QimnOMzQd78eyrsJBHWfahfRFqv9n31r+lrhdHivPEicvxiX92ngb5Y1tm29QzH7EHqf70DF19ps59qSlYxqPsFuZAwSH1q4Nnjq3jUiCaPVvFZj/O2pq7EOdXsndI0e6inDOvg1OyXNaj58IlXpJLwbymc8/RK2T7wn/r4YfzYMbGHFYH8BuO454Trp7SG0SfvxDHoH8pinN04S8v1wAa6ftetHHkY11+jxzSyvkSXHtIVyrnmV0dEK2wdpLFITwc0Gyp7xR5LBe2EyO0+12JbVOBHNDgY+vQOdLeh1K344BRk/mf80p9uRE6X7xjnN+V1+MV970SryaCLcHv6GuVb7yEaN5WWaCfyLItEtHvu+77CcwI2AUzuiv4mw+Kg0US5qCjHEhkArMQjMEmws3VnPeacIUaoPSfHAHkWmZYyBOTv26HvkB0yy2rn/cf4NMYZlLA0n+kPn2RJPaKZUbil3eqnR9N8FF2b+Q6m2OD6jm0O0f6Sw4/OqYKv7b0i8gm/oDG8wFb0kz/72NpFnamwqkX5/1PD0sXcdk933cgLdxFmTMVVm93myqdg/kV9qc/S3dWqlAowDAjUqIR9glSsQguRdumHPOVm0Xfv2sg7OFgRuMXlPiIE+ksqo7/nqsxrnm90pWbv/kxKdWcFBZqG2Vu9vy6R3aNcjC249Y2BxqXc+p3Xa4ulHaYTRc/taED1v/1lnPhoo3pUD3ycQamq5U4HcqhU/uNG3ytZaFnEz0XlGa4wcvSZOjOyrKThaYk/LhkeTZu0PR3rVzAsFReqFrLNMHhVcjPvZa4Du8XFqR9Ft3g0GHvgCu7RBq/9dJrWnT5hQ1IFi8c06jVZIp3MMSu577DOafXrdvRaSwOa69aeq1L3usqDhZyPgrRToWj3R4t/ejuZTk2hwVHMYtKfoFI0pvuvfaN9Losfp/77EK9eeTp1yJ61bHYb+0+smPRNEY6M428TAS+y3IOrPfnWdu56d+aaRO103Z9UgmXAeBCDSSKpemNFS1IZ6obqgE4R3K4a9hYYuqm+cDIw3lsl3aGGu17IS2Iyl3pCrtQTDWj8+yBI0S1MQ/ituXandLUTf4ul3s2HP89o7uB80JtqC2AMeouR+HO5w0dl3ZfFxl+lX4agJtiNALOBtx1vlpH0o3M11OZ6aoX1mSvr5TuTHSSl3Z/x3OdX9dxouV4ovvoqvUZX3SkHupYxWFL/MQ7b21LqNTUQTWmmix6PEesvKtyCAazUfRh60R7cqQzniLqWlXyN/eavt+qwqOnQ7ufI1/R7cEFcPBaSsfNxwcSttZd6KPZM710iVbn5NeDMKOf7D/ztZ7r7hdDXTRzH2SV/hAutVA17cq5PzCf+E3ry/Zuo59jM+ofnXEYVyuvVQi4GHpC9RYkaD7Ti/dsuSrXqcs59UtLMNK9tkh6HPBaF/f88krD6PCavLqi9l5LXFUzcJTFCQ6gyydQP9X2YmW1z+vglkuMoxvPMshDO0SNY5lFf+hVIt27ps66O4nL4sVFt8tFb3MRle6TY211w14u/W0OX4+0fYyf6RnaThpX6LTNQsvg241T6VDecgK3MZnrotHrtrkcf/fI+bzfkRabWrscW4rbKjVOpFQbJ8si3jYm1LtJ+0gu3T4vZ9GfxdseblRm4sn552K+rT6RI4YPF753F0UPKou6Y1YxX1rBmLsWR0ibNFnD2n1CI2eImgpqdufXeSBLH2dkCbSRkK3DVOKQfdQF6Q6LddfJTZ3aw0Lk2bhEtTt8PmjHuDbcAbQmqq9PnFdfZng6rz4bqxbz8icSPTbQDKKV0GZe0qc06UUtWR7qO+Aq+8kuP1t83zMMSwdvmQ3UkUllga4KKDfl469bLmtP2zb4RHX5TFiJnofozx2jnv/VbZZeSFpGrfc7FlP1xskqHTxGGzqHbV0Cy1VO0FGOeVavgaU76VhCSds1N3skYEwVk1LSxftwAS185XJ0S3scCjXpJQsaKxYwLvK6qRRzFC/qROtoPpsrlXtNuJIWUvBUaiqzGglawUOT0yJJg5IRMTWXgZflERi6FPD27V2J6I03bTE7FAtbEAQs1/qgMDp87BMMJdI0aLNIqpjXxnsdK7HhCvWkxe6oqpRXLL7ajPooQxEGhaEESBYsrMEEntC96bf9+9dU2pIkH22bj9RP7DDZDhWSRzA3c2VtqcTi3m4mZb1GTucWyqC2V0ktH1TbX0eWXpqiLdatLxEUWkmWjvMAnd92mRuIO6NZ1dYGq6sCkbw5iz1XBFJqt8EHO9YN2JQberM6fh67hp2eehg0JTnRHLSNY1AYNaMlO5mNOSXQOD9NquSwh2ut49WKReTvCXzpvuuJcZAS4bh6cx5lA9+6m4/5XhMuZCIxkcpESra8++zx5hCn8r701XfK7mekxuxJJM0MDNWbWyLO3i0CQ9vKHgE0xCkYwKoqMpg0IzowFsvK60oQB37ae9oih7Rstbc2bO8nPEdi1NKQuDMKosJaLRj86NhrrwXKvqZsFx2AwXM7gWqp2/JaIq5ph4AlCFXPQ2eKTICQyp6RNahSsiJivy1uZLwX4YTuE9Ey1J/KYIxGhlWQHM0Ik88mQZlINRxWJ2GKSTFI8XMEiUTyuHTNdOcO9jT8mwSPsq6ITKhOJE2MMjA4Yy949EtxdjCkS7HUJsE+1naZV0NL1zvU9pq769QDTARBSpMKIwLWsIcxK0Uz+7L3dxPCYASrWkZXk6YF1N0VE6hdtmiPLhMTQymVkZiqACFYVJyCJyGtuddo0uMy2PU1y70mXCITiT1D2TImc+zTUpBkaQxUlSwN7UIhVaJVKvefNDFoI1xBtC6Kw3GTYrHIkvO0WoPqGDotiEZ8dSMMQxlYlYJml7w0lB6dtKBdPHq5Szmxl5N6pUGQ1MSqSCW0qRR2umOrO0ZNiE526GT0g6iUTl3zekKFhkM0rj5yAhQHUzNZ94gKYxHWao7fWiZywRgLlDJoPXi9uueoJqmv9xjnqvWrtn3FfozZSSQdGXJizMJGE2PZk8qWpGp75TuTZogzeHBjCgNegfn5waXSc+MD3byoE64kQlYlUShaKLpn0MSqwLAfDMmmZrEHkKV3JwkolgoTtQ/RA2J13foxIgaFJEa4COLlsXXTFlbThOYd+7K18WkiaequPBpzgCyX9+60F72qXF16NUIUWofAozYO8c8zA+hQYak9yysjqXtNuAbdI/qM0/IR691EQnmgwJAsM3wgGoSS7OZmYEI0V6BVEqKJ0b3WAYsu3Zt/31JRQCM5pMb9Vejii3HzHuxUd8p4NvL288J+mMipWDZXcsNFHW4Q54LV27kNfNdzdAF06heKGlKTf5vwNSyJIQtnHz1Dzl6yymesdG0PFmvDuDabSaxBpH24/RKkPFwiIgZh7G+pxiSZwvbsjFTg8fSEt8rbUOClnpGngvpgi3PGxl1ekQrVmDdXYdt9UfSKbV+jH7MvSQxlNMYoJx5MI/nsW5SX7zPsTxh0RWJgxVAjrfdOk6YmbhKXYFEfKoxQ7s4cvjjiVkGL9zMqk+7hTEkfCuPXH5BTQfFz7ockSTB37Vyb39ERwhXd0QXw7urX5UUiveUgqUpcxvT42LJw+hFsXiqnOTthszUVHSrszsc51xjcRTF4Kc6siLPbVfCNgYBftQy+dnuEPQ9Q2SBYsOU9Qp5wlZBd0dy03GvCNeqWxDM+N77Hav8UKVu0TAzO9mTPJaX1AldJZFJIVCGNqdgdV0enVO6ChykejkYrwWroACeyhiB1UmQvpP/f/8IwFFNfyiw7VuOgA31WPbseHLYOfV+b8QetqdtNamxyXYxGXHK10DWJx1vh9OXEdDYx6irETSNQbrBRgLBUtLW/be+MKh9QZUaN3EdhXKJNUsjKXnakIjzeP+GNs29DEbbs6jsmtClFXa3brcLhyvUGQBfVj+3QefVX68cQkTDoiqEkxpxY74Vx/y1Opw9I0wopltJkIFGyS1RihD/OzMxCTI0diajzfTSb2ypztK1IFoqbr0mBvezIUyFvM8MuUaRQOitYJOh5f8hN+lwSriIOidrVYwUdlKIec416dDGvRz694sZLsVZAsu+kwLBdkfYDshdE2p1W6sZX11VsRNp9/jrOT4V46QhnSIW1CHs54Wx4mz2P2E4PIa/QUjAl6Fz9fJNyrwnXmj2btOWLpy9Y7z5gyM8R3TE61NWUAXXBC4PrYOm4CFRmRCSA4/a5RkN4gOm2Z4TLpBDVQhFFByNU08tMTs0go/gAq4otuDJoqdC5uZR1rF5/+1krncNn0yIYh5j8Z8XGDuVKGRhnjseSjICpgHpq+HSEo3z10h88CKkrjFeCAMc9lYqSZY9shAfDcx7lj9As7NhTrSOLGuFCiYs+OXflLiMocLgrd0G4+n5snwZGhiKkLKxK4nR4nzc2T0nJCJepqaQS51STdzrxqneEbf/E276r8xN3QnXWfpkrgzDJnonMxIRm17RocaMRX4HY91i5cwjXq6oEjxIuXy+72wqiBCrZKK+fmWEYGWSozN2ScDXDK63w61DM3cheIWPZWNrEGuGik1rV39jKE54NG14U4f0dFD1lCmI9SwR7s3KvCdeT8YzPnp7xf/rSxOP8ghP9iI1sSZgax4obagCg1RIR7P6LCmB9htLLuUW5wjPHXgqLtJQ6rouGauLCuYgjSJlaivEwH9XOMrGzhrwLsG2ll7K0nuBig6gzaJLXc0MaEWS3I6qVtIqpTIGGXm6JTW+ctmIqPRC/VWxca9Ra0Kw9e0oqyAmM45oiyl7MqssYi0zlHrouos/blDIumttN+5H4tyRSsdOxWa3YvbVjf5IZ2ZB0rExVEtdEZIM9rWuoaApnUpDSSMR1zZrOY5oOx93OiWAqW8QIl10N2B1l6dSBiWFGvEqFXYfXkjrCcPvXA7N2XY0rrga0bZjQpCSEIRcGNQvnqRqHHRKkdv60k7nS9WHiEkCa9erUeEHi/VfblSIDRVZ8JKd8cyp880Xmn7x8ylSUXRmd8/CEsZ9Uq8InfJMvjGf8vsfv8nb+pzzI32EtLxjyFtGClPCZsMNmlkRuCSVKkS7n0ozr0rprSRv3aA6N/jmH9XqgLuDSULO4SZFOQe2zhFR2sqhWXbxIF+062vNKqjoD464rR3kXh6+TDnto7zy2sNH4eIrNUSShxflBMQ6+pS6XWSy2m16ER73uFb3tZvCjUjlDYwIaxyodeyyDrd+OHWWrlGQqZ5EBdYMSpdQ9TCXFq5dKsOfJWBfVryIR36SfqAmwjtVaC0k3hJ+RTpkhGdKXodsnxN1OGkJu6iInanL5Xl3nLNWxOxOSUjLCFTMbOynQJRVR8ehJh2ekLUEjXKbVuF1r4lpiPVxlLiWhUiiD+TfZnEzSlSJoKt0o5ve/NUmr1w2vDBUAEhfjoOuepVCnz+4DexsA/67IyCQrpnTCB8Pv4cke1tMT/lmGD8tE0lNgAzIyT+x6/XKvCddGn/NQC2+lb/KZ/C95KN9iwzNWbBEKSZSEWRhF6gqpnIxW7tukhjloQCcFBV7r6xepBjgfYdT7rcrjByponFV/gdyrXuxLb1HjjWhHF//eFO0dq8fc5jPp16oVn4eG8ayYykbClLZ/T+qCVYWeXL6GFyL3bh8a0QpSJtQIiXWNe38s9fUu7MrOHBT8gAqD8xhBuGw+g6dY7yX281YzeinSXBhmdW5++X/1fjpfR8zMf6iq8gHVFSJB9rOpfrtxBbQG4a8MFqneg8YeH92rG5wl+nak3bmFa4jSXtJqhBJm/9K10M5VdeNw/zP7sDNucmA8tDD0dvo6cQ7P3xW7S7fnbGzJrSHdb0twl5yAT2arKDTC0sOu3Z9J3bP+/NzGWap/S6iCZ7Ew6tMiQmbFnhU7Tkmy5ml6i0cirEti4DGJFSIrI7zOSNy03GvCtS7POMkvebT/Gk92/5xH+V1OecqaHYMqA8bFKKYPFzCE6lx+zUXEcfSb9CrbfFWQsHpVjUVOJ6Ui+bhHqQChHbDWFqI9b7PjJu0KR7tnrj6unkAd/WwpcS0uvjvyBkpNd68qqBZSSiTB48GI8wlaGYZ5FOybjPv8ulSSEJxuIC4nXCp1nYtz7SoTU25IvvrTSIcNFCdcbjqu7Q6ilxxuOoOZJNK3fV79yn2WJimJoqU5EGdNJHG0UKbax1jfboxUSYE4nQAcijPXmPUVz48j+ZGEFpPYSymUWCixf2x6wqDjrKVqTVrvZzqJyy0lr3p+qk/Tsq6yIMQNxSf/T0oy1WbJFMkgQipjRwzdTn5mVNMYsoDfgM+kbX+uv/bH64eBDIQhm6RkaKctujkmjGxZcZZPyax5VD7DAx04YcNKJsaUja0pe2pUkBuWe024EhOjTpyW5zziOY95yUa3DOWlR3uIQ+qqOWhqB5WqYlWhqj5mz3gv1+d7j1mNxbdNUlLteJbOvLyQade3walRv1/Qk+6PeGCJvm5itdbm0HPJfUfS/dkfZ+PARjfOt4Mb668l47YZHbGKuVxmecc59fPmoN2PYCa7qXLp2h16QSpSCJVh7vYn5X6sjkCVFo3Hew/n715dI13d5nm1+lL1OWt7Ua8rdUnbFVJjz0TdAMMkqUGHyliYB4khm1T6dRWygBQnXIJx4hpSba/LeFWb1jkcaJ2LMFSFsNZIb+KrYjKNILqve1at+2g+fIgR3IVdYWMIJeo4FfI5uHpUl3XUYSwYHmPc4rvkDrmJhBns5zqWxFglm1yUULmmkuoK9JqEkD7nOCGevAo+uvwsxRhs+kJyFZ8qzRHf1y8zIumENBSe6zNW5QVDeWnLWbKbHQioqzrNS/lG5V4TLhEPSaJGwEYmBp0YNBO+Wsfue6oawP9WQrry72dPl+6pm3GJ/e5IxxlJIEZpvQaxbYA6H80BE0QHotp/suw/vrxKfQ74hyuo9anlIBqxdYs+tX2Ko1c0u9qQephbGw7M587hOvU2h9ZDQdx3xI9kHXMzd1Ebe3GVl/QIoxU31aDGj/QyD5XVZtDX9Rr1HsrODcnF1fvptIRdkNq21xJEQCENQvhCzS0n6y2YW1dSOehQCIuvY90TObY/fX0Jez13Fp+XJgWokNxKr/pdaTBEcR8j9CRJnJWaw12ofbt1oamPg6i3elnU1de20OCpr8sM1ozOGTEUsDl4G4mJagIf72iYFMXYYkFaH/NyHXx0cT1OT2ODxQ3bbE5S50h3enbmaqF7cz0iHJIxhiglj2a1OPvXLPeacEVJJZPIDGSSWl08nXcc/hl+9A+CXsS2ysEzixeP1i/7fln3ozlD9Nah81GGFKQzeV/MVxd/3Lb3xkHpO5Tj4NYvl2IcVnzeCIOhOhFXG/bRoa+83terz46HYD58YfziG1+RsnTHW9v9UOrxaj9YMeRcXuEAfjdK5Bk7oA+hOnTpUpYCkj1FEK7eUbdazHm1NXvJXul5zyw7tgHXs6Mt6mW/v1I6OgruD9VKSDfV1qTrWxoYtM8urEsdU5AojtRBKz9mGWOcoUudDKo2utBCz9xdQiKuAyi1zcBtbRa3d34Uw4PBJAlqZ8GfDCai33PVxFD2DMnxsRuekMwNJu5B62LcsNxrwlUwSxqRES2JUiAnKG7mOwZULw+qI9/ekFD6QMXd5tx2kdlJ6/sKHsYvizU+OS5LH+CT11mkHbYYx9JGSBSPVEC7z1KtPna3HlDxvFKRUaA5Ac3G8XZnyB+avzP7rnT75rN1E0+7zrtfxOs8wBHfo3ox778zIDLYa8V5/V6k69u8taXoDisYx16c0Visd2/UEuMmxrhssSw+WAxZZy2ep1pbUP1L6tqL0ENHWH0q/X2S+OLbnWqarXOViwSG/hKUW1z26xbBOX27KR2ApJlSJorfk2YtTKUwTZkkp0Cy++8bdnmvCVctGrKKcysh+pt24ZDtRmcH0xCPdGJWp9rrXn2V+my4/Rcd/Dd32URwckmgNzlvz7hSQaBF9u4lgYvq2gHboh4jX5omdSOoCgVfZMEvcos2IsX50u4Bzuw/uO3TZ+weESHF1H8tfmUSM0tWVSTpufRU+pqODTlKn1BTmO3DndZfoQ3pnbKpawFUc3DtXrE7Qan/2f8hMc0O12KtunLjfdVZtdckh0SwLEUSFi0nVSLQD6zFf2htaD0Dy1m8yv4wqy+bN1V65aw6+pyqH52oScEh1tjdakz+cO7zHs/HQVd+rw1vfpbPYXzMDxWLKRkIajCrRzEfEpPoe7eYG5R7TbhsLy3YZwVGNXE29QAzf6HtQhAMR8DNNqjbQj8s/UHmCnVZ1olDIo1D720oYkCSyKGbF+PUes4/CFu9NfJgptLP9dj5q/WOWM2IUlef3eQvCVe7ILcStx2CSCHsiyLiQj/3tiRzuy2UQwR0W1wCVEKlOJ6VwfdTgBEz4IkoEHIUGUr9V4DB24x1vJJH0mI1rlJfXpbfXj/nEa4i0Uabd40wg5s8SJ/ApGCpa87FZbNysEXnvbTEmsdeWMB2wKU5wQ6oDFC6uJoB1gsT9wrPcpUZvFrp529dLvzGBESFMQmpKFIyQ/hqOYxXPFUWDV8RB51XP4br4vtm1NZe6nni+CqY6iJGvOq6VpwbvpuvxqHea8I16MRAYUyFsSgjmaFMDMl2tBT7EYHU6bKOc2mNrkWZXWQvPptxH+e9t6wLRnTqZfDU6GMd5GjX4RIOhe7gijqgNMKl0WggkGoZeRXLoZjFVer+u0puxYmlzccmoMhguYZGCkPZ03zm5gxiVR8u4DeIbnxV7wWuUa+j1ua4ncmUwdZ10sQwrG0Q2ay7Wppjf0d0proxg4fOfHCGMXNnAHTRGl62J329J1bX3avLLchmfEhF3OGTZaspfoeUNNVzEXJKSm6Fq0a0TLltDORl962zUV9EJ84laNqWJjGTwIrCROIlj5hkTZE1OgyVMC0h0T5r8pcZer0aQr1oQknTLDu0OnRKl08MYNDCuuwZMKK1Icd0LWakxDoUiPvIYdbEhTio8gN9PR5Y4rp+H7T7EWZ3oHbSk613GskyMIkwKeScKTnX8G6Gq/qIOtcv95pwKZBLYpI1O12xKytWeQTxC/UhQfL0gB1Sr2YQVWWULLQNQiYsZ26yohdxvXZblYsdlpQSKQ1VtJ7SCTmtyWnFCx0paSBSoCyPF5WrSTPc355Z3otdFemdV++IVp2Tgtga+o0zgxZGChudON0/Z8TypcV4YvVTXfV2aspshs2JNeq9o/WyvnwWQMS4vizCJIlp2LCTkRe6QtcPKWWgZFMVSmlWZRFeq8h83XvrzjlkKLNMsB97iWuOLIJZmJk9gxEupaqsEtJy1IndYUjZM+ieE3Zs3DVlLJOvR+XIujEsCddVOO8OW1awbJf8ESJNVZhkxS6d8sH4BV6mh2zTCdu0xoK8uQajV7tXwpUItd08tuXtlYg6EX1CMAt2PgzzmLZinSce5BeclB0P9Yy8/5BRd8aoS+fThWKprmJvL2JggsPT4/ULYC9yIEgvkYYfWfTnDsiTrtjpiiltQE6QtDZDJzEcm3y2FfBuWO434dKBgjDJCXv/ETlDnEiIDBRpBrDQ1IqB9gKFlprgsCNc117XJaDM60Vw8PSoC2LxEicVdukhU9qwG9Y8kxP2aWUqD1K13ponvxPPNdYJQtpbM91mCR+nHrC1k0xMpbHSwlonTssOcmJdtqx0DzKBm/6X8BGiD96Jh9+6XfvIIkKWxD6NnKWHvJANT+WU3eoNpjKSh2QGBxqEycOAhXN4dUtYkKoDQwztDmKHPJb3hEfvHQt0YXSufAd5YT/H+uz7oc6qSSFzYBcsk7XgEqeIxWl0hmUse8ayZVW2POYFD8uWTdlR5Axh6saXDtpu3/n9zUHPfWmX1HYO/FxJOLeb9FdkYJdOeTE85lvD53maHvNResjz8SGTjGbI5Wscc7ZWTZZpN8d+h3SLJVwtUnEVWuAcKWjKKMVN4QujZk7TGU/0Qx6nMz4jL0EL6/yCVdmycvZMfE96ULjYD/I8xuZyv84izfdU6ntzHy9IRrhYM7Ehy4YiK1RGZwwsRF0lXEfh4urlXhOuzJopbXi5+gxn+lnGlNGcmMpzhNzxTrHk6ryXfZo1LnHF1HRKp+ZWT39ynRLAccjJhKpCViMq4jFLTSbZkng2vsHLdMqLdMr76zfYrh6yT2v2Kq4oUPNPix4kCEHj4CJ6gSy46lctRjTprsOcaAHZnToHzZzqxGnZ8nh6yTvl6zzKLzgtZwzsiOSdZhEV470Jc3D1kmVkkpEz2fC+vMUHwxPeHd/m6eZzbNmwE2MORNXVmmAWg6kSikBmVZVWOU3b19QT9UP8f4Vyg5deoZ9gdHrwsP1tsQbB9jpCRClqMQITSLI75NPygtPpBQ/ycz5f3uet3Qc8yM840aeMMtk5UwWZMyNzOqWLaZw3qVLXXYaG8MpkuekKA9NwyvPhMe+Nb/P/5Yf4Gm/yTd7g/dUX2KYTJln5uUg+iBY0uLcUbOT89g5QqCADnyiDM6VY3jApCOaHui47nuyf8rnd13gnPeMHNs/5Ph14PH3Ig+kjTimQJ9ACaaxjj71q67isX1fadyJbmThTlZva3An8TLJOZNbs0yk7eciexxR5gLIBHUnFDE5wvAcr/7lZudeE6+XwJh8Oj/mXBXaiPBo+x4PhKVKeA7lyZVQLIwegEIFFOk7fuQkHgLvApyFxFDWEvxo3TMOKXVrxHqd8yJoPZc27+QEvxKSvKa39wtx03xErIJyXg3gZ4mw80VVA8zJFlHTPJ6pNGYHMMjh7UBgonLDnQdnyJD/nf7/5HE/ySx7kM9Y6gXPrObWVTbMguzGqGP11DtvxA2t69pHtcMI35THfGh7zu+NbvJuf8JIVOxmRcWWIRRSRRFGpFlGJMpvv7D9H/pb7LVWm59XRxRVmeQv92D2q/VFJQY1HZ9Ja82/z38kIGDnzoJzxmDMeyxlflKd8fnjKG/KCt8aXJN3VAAC9irk/U2FUxOKZgOP6tDSJa3bBrJgzK0JJAy/Tho+GR3x7fIvfWf9evp7e4pvpDd5dvcnZcMJeRkSH2q5o8T2cEy7cwOhCGnDthfeEmxrZzQdgcPwThGvPqNkI1/iUZ+nzvOQZJX1Ezm/yJH3E4+E5DymQ92gplJRcOBTm3mq3U6rhSsUE4oTL/choBk2iQmZDHk7Ypwd8hy/xrelLvC9vsF3BPp0ysfJUNDHWT6jE9YJHvJff5J8+m/hOfsGpnnDKm4iegVviSCilQlevbvXmSLQ3LQeqyuguinG75lefc2EcV+RhZD+s+Y6seL465cXqlG+Mp7wcN+yGFVNaVVF9KMbFGgiFGO+id4/NuOAM+QcKB4nwlvHvQtKyzzwQqwgRDzGjlGRjGVRZlz2nuuXJ9ILpxXd4PJ3xMG9ZoeBhb3IIJuKHreMUm7ArvXjH4X50nx2La+T1KSUmGdgOG769esQHmyd8c/NZ3pWH7GTFlAZkGN0y1aw3szaeuxGuNoI+sKytS5MA6hqGSsSHI+fUjw1/mY2gr4f/zqv3I/Wm11i6XsJoDFwg8BZXEiNcqXBaJh6VHQ/ljKe7D/jW9kOe7F/wlm5JZU8z9e4YlfqnwkWEq7Jn0W/Ax5yoCINpL9LAC1nxbDjl/dUb/LP0Rd7bvM0Hqzf5YDzlLK2Z0gjdXqF6SLg8ukdbmRjFFdiJC+AwEm5KsINqKe1xwmXfWcSfdZqYeMhm2pCnj9i9fI8XzzNP8nMe5jNOS0E8+3YwwbFrt066KuHqegi46GwFbOlMVVjSmpw2fMBnebe8ybvbxzxLwjadMskKnRllXFej1cq9Jlzvlzc4236W//e7ymZSVuUNxuJqKVelpWGFqlBy6GkNUFTUnJW9LUPSkSrkKuV6xK1y6G7lNOUJEaUMA9M48P44IG++ibz5Jk9PHrPbbNgNA1t/PykMKEMpzTQV53skTLgNkC48Q4v6VRhL6z8iiEcwGr/f8jsrQRn3mY3seDC95J+8+7/ycLflQbYLZQBVCyAU7geps3JroYqCsl0ReVTHsMP6lGBKwllKPH/yJrs332L35It8uH6ADiMMFjhX8+SRPgpZaBHhNfhM6O3l6lqrxaWLOSzX7SKCsozafh6xakT0/P2Z3WBc0g/0WoZow+6ktJt3tN2ibDh753u+IXEyTax3W9L732T9/nfYvHjOk/2eITQbiyPStlRZIq2AiSBiTUXV1nvQYvn0nCBmGSiSyJJ4gXA2rnmxecDTd75IHj7DdPomz5KwGxKTNKKl0u+ngEf+D4nrGqJUV7/MeCZiCwqiA6m4M3clAJmEsi2FaXgDSU/49tkH/K/fXvH2BytO9ztO8p4hK0MSkmDSWjABAQPXQ0tXKj2uaR/2eyioxq217ctZesJH6S2eT4/4lqx5LidsU3JNrUGt6nTjMd1rwvVMn/BRfpvdR4mVPmHQPWix4KAouRSPdJ2I/C9hnFGSksW5LvGLaDW+4kIz3VpuBiGRldnOYianwj4Vng6Fh0++wMPN53j58AEvB2GXYPJDKyhD8aTXlQlN1eS7SG8Of/slMsWK+/koSlYlJftsEIHk17O7LWfbzGabOS1CkpF2WyQ1/tugKRj51g9zZAzXQx09ot8LTKJsJVMePkHSW4wn7/DhKG6Sr2ZD7RkVhzGxl0y7OekIPSMgLq3YJzajRMRlRJOrfWwWnT3WOXU4tJJMXjtex/uhu4i/Xj/dnUWdh6lxLQP0NNsHI16+V7jcoMI6DawSpDxxlk+RszcYX2x5nC3Viyz21XrsYbNZmi59gVrPTbKMESedSFooCiorNA2UlDijsJuEXRko0xdY8SbD+IjnaSInqqSv3Z2bzohXrNIRXmjJ+C14q6gftb2Jehxa9bMklsgzSjDVKSlZC8P6CVs95cOnE0/O3uIkwyYLuisMg2k+Jp3qnfztmjX1xbQpvhzUi5Z63wvLmJAK7GTDXh4zccJ+dcJ+LOSUga0Z+XySJa4sazKnPEUZ5IEdQFFHroqm7H46BiiokMQ4lEJTWyk4WmpIEy4iActvrk4s1P8xKSVbKBQyz1MhyVuIPGHHmp0oe4kDZyqrktxtQ4LrDrP4ZjRwdyW1jn3Vilq0a/PjEdIAechMacVzeZutKGckBlkbovHxBrEauuzNoXzr9+BVvZ6yKJMoO5ko5YRRH3CSNuQhelMn+BaVe5+ESXL7Tqmm+yXyuoV0G+tQEiRXKQZBcaaiRRYXI2hVmtAr1n1G4sQKN/N7pX5ixf23FixnnUkEJQ307gVBuEaSJ9K0e1rSaFMfRl7wEENpe4oONffaXOXLOT5SPr4u+k3LLdWZSih2D4mnuheTlCChOrAjs1dlpyByisqKUYYKA+H60tvl+gIQqVmcTNc+6xL1hHXBZelV6t2ZsZppG2ZhnvxfRZkksQW26ZRteswzVXY6sGagpMIgjXD1+3TbpbE4bd9KLwnXVYtcFo53ETIjmVMKK0gbJs6caV/A3w3LvSZchdH8nxjpTdzjW3HLJgu7b4QrfDVKMnPyMHwYlRptPkOvtbikXI9gzLLtlkJJhTJkplVhl95g1IdmSaiRgsEIlx2kdqjaxanXK8K6fRBWDFfqzGvYGICEqxCLMI6JMik5jZwNb7IfEjtGI1zg5stCcnXBICHhKh7M5ooSl9T6Rca8Odn67pnIKqx1wyjJ9V8W3SOnBDIgSZgk7gsdxWXfJwzZFDDfuVQ5B6vHiKQn7p51O6I2zOp6xXo3o07VtezH6iFNXdZPgw9xq7+W5sVvfyNdRVisOUIvmivcTSQkJTQV9nJKSYKkDGlVz1pdpJAKZsekPROm9g0RYhHbXbotSo0go2EYIGYQEDCfgT2ZPRND2pCSOfDHGTciYcYZJvwo5jxeaI7XvQR2+TnSK9U7/DCbf5iSN1gOxigp7IC9rNHVY14KTDIypZE8KknM8zp75H6k7fntFrv77b1Jy7F+VBDC8MUnKYnMiDIwsmLSiawTc9nw5mO+14Qrs2YyA9FuPToUp7mFd1GLSB7Mj+liGy8xhJUsnjpBFnB2Ybm6yCtdAqeU1AhXypDOzI8rheNsqtKWigFFVqlSIlDH6TOYTf18pN/ql2nla30GX30rmeImDMmZ6yJCkjW6+gw5Dyij6b+zokVBBsbR9Pt5XzyhppGtqzEKXPmQ1jBOwwQrkHFEEuxLF9F9NViEFQWbhKvntGdJCpP0zMJSMTN0sDKc8/k5yE2YuQ0dPtPP9bzEJlfoc9aPtyzGQJSYszMQJsXFU4ms5jhvEUcUVWXrrlqjCCWdggyoFHbpxJhHbY69dRAVUffE1j8ZbVw5F4+w4DEwS/jSiR/SQPSZwYVRihEoTROkHSWNlJQoiUq0jtsJxz7mGc69u9J30p+j9knY6ZUBW5T0AB1X7HRgnz3qTnIJZ+zkxjuJ+KGVicOlpeqD1eEYqUxIMB22X9n/NugcCcbhNvzk7jXhMg4x+TnoTkdnGVh9u8UzySjOybnawFffLLZMiL+eMXyQgKs+3ffpkScA3EKqHjQJs+s+E2kHqPHncqh+Hq7CDZYr1oPYS3Gn7Xo9Em4EDrTqRhaqhriyG8XISEru+1XsjgTB4smlGNc11lAuxjNtuQI5BvlJ5OKWmOJpFpKrPmaHSWo/luwzVa68EtcqOfvivArWuwtm+Qr9aLeQodqTUAUFXu10ZtoBndCBX0hXktwfsjn26wE8BoLzwZjgbhluRIx5qFZ+zg15gNYcG+DSk2rxqOvaVLi49Ojt1ouonmPrxhIGBfZwb3V4teXUq9Rnkm7cRYeFYXKVMJX5E2g2IjXDtl95JFPZ2tx6A5u7KAbX6lSqSaVNSozea04z5/him+pPMBk1R5tJvDct95tw0TiwA3G8Yhn7acTI/g6LODpgh/nhvKjnVm4CMuI9BogHp985iDYLjMZ5X6Wr24bgkA79vNX7P6FDIt2B82FLkQhlhwxOJARK6SKwN0bt2gO/yGuhtlnjugUBM+RnArgjyUCOi/nG71I5/C5KwLLfuzDleh3F8bUtZTAf0mjVEsw7bBxG5Amdczoidb11ljdo3vVsxYoTrmS+fWGpGu2JSxnkWUc+9mAalizZxczEDB/MqEyctnb2+m1fgsBFDNSs/crgCGbV7NbBHSBLddmJM0SnVnGGQexcWVMxduEwmsttlBhb33Yf9PX4G8e+T7hWoxKuwieWcNU1XUJTXTChLbQDolyk2HtdrG/XXf0JTswZz+BEpSpc7l6TcYWhJmipC2j8VxCtOHSkAUbjJsuUgYQkgUGIaOIMQ+XQ7mTtNQ5HMAdmQDKuU7U0K1N2ApdY5H+vpuXN36cHtmPlMh78PBR4Uf1KPP0N+umWaUG7Dx73posv1SAwDmaJ2/zJTcGcp8nX08ciQ8+dzEsAVASIVd+CUkxKEZNIVCBXCtu1JWacIVhyUkTRlHyrz7/36ZmeY2eq9+O6Tl26fZDZnhwZQ52/Vg0FdIxfPFCNUKTOSQYn2j6PxmzfFYaQxe+rPa6LD+t+yKuH1brXhCuQ5SxK/oxoxUcBCf1pdHRbAcbZT65iDi/dr2tuQHAc9d0InRLe6PZx2EAFxxbEoeH4uI/o0dHdEF5FyEk6YtoOf/FeB5WK/Ozee485WZoxRNGCZJAxuf+GApMPPmZ3zXLZK+Jrm4ylV4WiI1PeU1RdTekHSgQNr2tCygrwCLgJRLVcoAWGv9X6ZZ9drz2Dn46ACVXdFneU52AeS4CIOZ6TlWTBN/FovEbFBpwxESp707cpHcz36n2cedABijvZJ6GQzOm5FCQNM4MGG6LUhIQagFnMMbdAp4rvutJuywIvdJT7cvvWwCWX1eOdY3sRZuUtIk3Lq5ealltw/JDsDBWl5n4ueOBjcB+gOyhytNoX8yXzWmW+G+nOft1RtZ43F7Rqud+EqydWHcNhVVk8GBygdgey41A1Io13X115IFd5qB9sB9TSi832nShdXWh4pMaV9hZKPV726Q0JwEXFEYWq+iW3I6JKYY2a6RI5pT1IceKQiEgFppbP1AMd6g69g4MX4t8QlF8gQSG3w5Ysm4CF4uH48kndgPinh5TXLglL3f+bvHsgbwX4tzU6WIjuYGFhn8zm1WN9pgIpmwgWollwWBFmaUYsC6SpEQ1NULrLe6d7RryIaGE++Dg/8/XXYAK1UFXEAo1JnJ+NxmsE0Qp47FeqI77Q1Zc/XFAP2OlYz55oq3RWnLHOdtcu8WzMoTqOO4MdMHwHx75OY1aWREzrc4fuOM1GNPgJrS+++mDvNeGqnD9wPjfafRbmxeIvHxCxuy5xQHqpK2OSx4SJJNoBhdJOsZn+1mCj/v7hqJfroEfq/aG6rN5YpMqt1y7Ca1sd/4xoUnQs6IOdzWevMGwccRWUnTOwcbHhgNzdR75y6blpwSSBEyFtHjCsH5BQjxEHpIQWacjxPOI1Kx2iY+4bdNFqXrQj59WPtcc5n1+1n1krobapiKVwoN5TbK9GnIpkZHRJYQA2WxifwTjBemPPhLGDRlvOmKTscN7S3cAA+xWUNehD2KzRLORJq6WnDHYWRDKRpblmA677bVaFDGvSODAMA+i2m7zDV0cAtUqA2sHg7RdrNflyLglbBOEuJjUyUHRF0R2UF06MVzCuqWcljs5wd67HBzNYAlT9ypnX/muZv9akX5ufc403Hs29JlwzHB0ItczXFOi4P6mwaz+lArHWi87+nSv2fy32Nw5KELAJxFN/yISmPSUJJU3kVMzPSNuBE29DO9VnnyuqEb1ucAehAKLuzqtweb02F+7GfgA7xFdSpgyZPG7hwbfggVuZlY/cV1RBz+ySJDj7Eifwlg9gj6hU4NEp0yPhTNdu7e1MS97VOaV1ImtYUelsCVN1llZUcvP90bjPmUtsx+pVrX9Z/YI2rlJXH/O5/RDKLINFldzh65EqtRTXQbiFayKi5GckJfZ5zz5nePwMeAbbnXUsU9fpBncC9I9cuyA7+7sI5BWij2CX0WcZ9g+BFegIjLaLWijlBYwvjTiJ91WLutQ3AadoOaHkDSI7CzpgO9TkJGvUx2SwcCeuUNCdOe9OYt2ZdRoxRzMjZXWCjltIz0ySLWsoE8gD3Asc0uqGOOiq4wbDL+0DDaazzSYm5U/0Ew3JEFpMyGBkCnM3juuVe024wkxzxiQd28hzL4edR5X2WDR3JTgIgnjel5W4hK4/pCvnOnEVS9qDvDQk7ybBGqqUuOiecTjLCS44/mXMGZb1mLO0w3ulevTiZvDq92wSAUsxwjucIU+2PHrjAY/fekiesuGhpKiO6BAEBUOSwK0TrjpWEBV2wwl7Ejt9gUp3V6J7UDeJTv09RYfJFCju86eKpqlJnx3hurZYdazcVDS7aj++lRrUTYrDoz8fTqJVr9vgV7uwYhaty5JGPvzims0XHzKwBi1O2H19y8oYg3oGTfUlsqlWdZJHhnzK/qORD/4Z7D6YXKLw9XVGb1xlxgeZtJ5QeTmfnwf/LeNEepTYPEisHgij7Gdait5xv/eDlC7e39VLjykuqC+RSaxhd449siqiiVXOnK4Gxu3E9NjWPr+cmF4q6JrqE9U7Wd4F4Yqh9jPS7oP2VKsew4kHixo45BMqcb3yXvX2zb4zx28PrgDOFc+Fj0Uc+FADuhpDtl7fA9nuB4YJxjMY9jDszJc4FUTUHXSNos5wUqcjr4evjrRnH69TD6CMurWt/dlTD0XkqlapgGwHsaQdZfWc9KWJ7/99T/g//L7v4yzbFUYZLH5g6Ri2uFMud3XwMAHvvffgW9/8iH/xT79hAxn8Zx+GBMJEaQOqRN4m38bs+1oXe7gZ4boI390m4TrWjzKH0Wp/jUtHcfmf0I7p0hIETsgUGDPjmHjnh7+fz39h4OHDSNlj4FGcV6uuEt1Pwq4ek8JYhPUO3v/dzD/+lT3vP3tK3qkxctmZo5R59Kbw+HMD68eJPIQLuVY4LBSmVFh/obB5o7B+XNiRKUG41MM7ifn0WainMI7wuI4uDZwfS7Jb4Jrb61h9rrFo988N+CvhcsfvCAU1ZOV0X9idCOsywgcjz76debbfU/auLkyDaXRD43pz4eVKpR3PI2x9T6x6ePMSAQ0Oj/j12IS+3GvCVct1kd7sUMurrN8cUWBMqu4UhmwX0OkZDC+QccvqwZb98CE67EirCbLHVhwKebNlfOMRJ48ekh6N7JOBsoF540wsLuH8cnemKjyAnJuy/l2LcdD9YEUakFQUkaE6H+a8ZVpvmU5eICcTfOaU6TNP2A1b8mogDwMTG4qmavUlw92Z+kdIoIGB6dHE8AY8fHLCIGu0WASIUQZE7NRP075Kvb1lWaAtoS17lHLAUVxSX5QLd+G2pKz+Kx//4ITLJI9SGRQrJulIMZQjUkii7rRv1n85W8zAcUykL07s3khwIuQyGVEJOq4rt9gNOd00DYk9QkLKwJBXnL4Qzp6BPiiY6jyDDL7gW8bVxL/6B7/I7/8/P+IL/ztlP77TycZmgWsZudW0aoOYgSK5+kSWWAmJ3WxnxdKwxG6fv8DNgCvq2rXg9XoX3eqWeNWkqrrYEu0o9epAYSgD4/6UYUqMe+Wjf5H46v/z6/z6/+PbMJwibKAkZNfxGueA0KuW48oqOafe/ek0WrBryoSCmllUi7N581F/DxCuc07qkttcFhNbrDKLgnDOs+d2rd1jflrdstd2raCy5/RB4V/7N95CHp4gq8n01rllld2PE5vHG9aP1/BwYB8HbSF6Fz+Eccdiif+OjfU22HNH2X7Qi3gwXTXuVbLF0xOxkE9TmZjKnr3uyadbPvt7HjM+zqRxz0527ETYaUZlpCBkzSbhSNhH3m4xQSKRdKAMMK7g0eqU1bABVbQ4OZbkhHf08UhFR201IwJ8NV72lVs4Jl+BoFyZ7rwi4Tr6lUs/kTIFZ4RKrVMlLinJZ5oR2XvU/AGRkVLciTZBeqMwne4pKzFXgyG3tkquMGo5z4oRL5lsb0oiZWUoK/YbpYwTLQV9SLYKqbAvOyZdO+Ozw2PLmKwSkU0olD2UyTUAVaJZqOb87Fd/KXR2Hxjr1Pu4hQtIvBLPL/ft8Di6Kr1K8U2qjdxWVYUKqA6UKSFlRSlrck4UTVV0cZ7DxlI1HpfgsFspS6Lef35YtaLOQGr9u63QJ5pwXVCutIlXeOhAOtbDagC1moMgUsw/KIFK5uGjxL/5R/8VHnxOSBtTp6RSjabYArIBWZuB1YSrWqKPjpNRqBaVMyngrtgu7y/GUHMteTRiESO+WS0Nyz4p280LyoOJfDIxDoWct2xLZlsyDGuyCPuyr4TiLk6cES4BBsbNmtVp4smjEzbrB6Y20kwpuUYz1/DqdAmzH1PqnE+G0jLptsj896eEo3jAEZTZPEKtJTp4YNwMjBQtICNJVqgIRTNFC2mV2Q97VDL7vIM0uZQBlH2VWS0JqiFoTZlUxIxesrLaD+xXSp6ZyRuhRBJFhA+fvuAb70IZEnn8kOI6CTMuceJT52BlFgbqyD71NjgH33F4pGafqS6P//F6rK1gEqsmhMF/ZyLhT1MjJoayRcoJTI/46N01Hz0bIG1sPTQ1ovnaQe8659QhaaZmv50Bf28TrtdZYj/DyjuZYyT7BDIwnSW+/U14MJkxUFY3tHO8vRM8KChMQ/PqSrTDNeP8+q7vGngX/dXoGBpmrjbQnCAPe/bjlv1bLxjeMkns7CRzphNbCmUoFNmbo+tKUSaq6uSWS65N7ilMaBrQNLKL6PBkyKXmFLNUEbkF8+gcTyNdOQhDacemWXfeJ+IlRHy8RrhKh/TD+MbmKQJDKkx5X5GuDMljBRYy+yp/MmREpqpQI7X7HSN8tlYqhSymKpS8Y0qFnEAHRQe3RmWEvAKEnAf+2W/u+Be/9T4ynIG8QAPZV8LlY6il5/xm02dmGXeRZuaich11V8+BasIsJo+RxijhjL0CfYOyHWH7WUTeRAl1NsjKh1LOaeZ7tHxKuA7K9TiKqk8IIO4danUAWSFyytnLif/Pr3+T8fQlMkyo5no3JCg5qVndiVLGVIOECunAub9qN3y8c8J1Bwi0GprYQJp6JQxHXEqRCR13lPVL+KGBz/zw27z94C3ORot2ryKWU6yqOrtkJjVg6E11Y8dUGBA3aFPcYCdlj2cN8IU1w6yI0afdnUFrW3p3/6rK0upTZL3bPYfUnvWckR6/8J/XIe5bjtVv3o+/5YlVWzDnNo8IkNssygpZJzQVTFXqEmdy1wFaDjOkJ/LQHI6ojrb4votYOKfB+ZYSqj2NO5AEjB7OaSS/TOSdgJwAD2iHItw1lkq6C8SpiwjXNVHAlR+sdMqJV92PXp3Sq/x8UdgYASvrFh0kzM9vSnTvebnnhOsOdusYIM40WUd0tUI1362BB8C407RGUma7PeN//p/eh/QUZAu4IUDxg5rUdYcKo8fNU6E6cB4w9dpUbLNLljvg/ruQVObjE5PuL/PUrCbHLWxeMOhDeOuER9//WXZTIo/unOxRvANNBuFKXaTriznRg8Exxzwxf7sQUB9zZDVOCYqaJDiIc/guYRVt9HMeWigIlxHtPLPg6vNIzS/ri1unHasnl+Za3e5qEom4u4m69Z/O7Ud9DY/349JO16dRt4DdMBowk/NKuHRoseW0oLq3uIQS/dGdi8bY2D1gtLKM8aHd2vowBIvQLxCsDMV9AxEQu1NDFN0LlI2PPXdtKrNkX310jfOcs46JKDchXFcplZsIUT4Y3Z54QfNxwuejnbntCKxMjSB0l5S0hfwElWsTrn/4D/8hf/2v/3W++tWv8vWvf51f+qVf4k/+yT9Zv//3/r1/j1/8xV+cvfMTP/ET/PIv/3L9+7333uMv/IW/wN/7e3+PlBI//dM/zd/4G3+DR48e3Xwmr7XMiYMRK+csw0y1GNCl8cQQ4z7Bfg+bB9U1a5CBokrJ2VSLYS04JJgi+sBIvdACmk8YNKLVEa6IZHFnUw+kJbQUFI5IZAfjC+ApeTsyTW+yL0+YyK4etDsu8TBLyg4YkNl9Usyn/6xwGC/O51uf1yNtOJIV098mUQYGsgRyd3IRwVrF2j9cPUU9aZ/LaF2fzfbTiMu83iS3uVyUO6xzXr2lEqWO9bx+6J6a9zPvU2ZrGmvYS03RDjQb61K3O8jg1Eng9kSpPScdEE1OPMdOCxxm4kpkL7aUJb7XFXYDxt3XRzFJL53aXFXpLk5sxJ0/hXZrOC9y/OP24gVfvmq54FzGGa7qQ+wuoYZ7ckYsDDR6PvVgzz4Z5dqE6/nz5/yBP/AH+HN/7s/xUz/1U0ef+cmf/En+y//yv6x/bzab2fd/+k//ab7+9a/z9//+32e/3/Nn/+yf5Wd+5mf4u3/37153OK+xXALQXfQE6bj1MoHKgMiatHrLzLCzISSR0ZnD8B/yA5s6sU07VWE3liZkhSoougyA76G7d6yNerxwlbrz8wKldNw2QbzAfNK2ICurDgPIxq0HByadmBSKBIEI43pm/czX+rKxcUm9tNHX5XCGwKW+on2m4eRENEhO31eTcOb9tHxkIWUc1ufzO++p+Rtt3Y9/e81+pFMp9356ixZ10XY0KdUbpzR1Xr0Tq3JalfDU05o0ybXbvy4ekKgZxVRWIyLgVJ5IKfXCV4yYLcMz1e1o4z16XpdhrPoyw/v92lxWv8ZZOrCk6P8OS0N/K9m7WoAhdsTmrzU9QyF5cs278oP8uJZrE64vf/nLfPnLX77wmc1mwzvvvHP0u9/8zd/kl3/5l/n1X/91/vAf/sMA/M2/+Tf5E3/iT/DzP//zfOlLX7rukF5DuRgqtBfVteORxSUvSZBGJK3QXDzibgYzAgAAlzxJREFUhGLZgXGT1rB11fkBc894M9AIRNGNSSpIdxzYTQ5bIKZjdQKreHTqbj2qP4pLQqVAObO6DBWlxc0HIoRCauidnu+E020SQVsBrevYPxZXk/FcaJ561Gy8SWuzofjrcbvHycyrtHLFfg7w9mLtddFqFyWh3bGp8Vb+RUByPCh4dgWHi0ObmwVpVo78re2Pmc259E/a75kg0zNlNPCe8RpyHNSWxO+1lJ4J7O94G9NqDv+NOTUQ7FXFXpZm8d/j5U7uuP7BP/gHfP7zn+ett97i3/63/23+6l/9q3zmM58B4Fd/9Vd58803K9EC+PEf/3FSSvzar/0af+pP/amD9rbbLdvttv799OnTuxj2NcoRzq2GZTLCY+pAoWRIaUQE8jaThrHCpqp092FdW5a+qjGUlSD16pGLQiXdlEtM59SZ4ZBGIKkxgEkKeYQ0gg6UaYdq8YS4BU0KgzCQ2LEHCgOymNNtF1NfhfSUHLGal4LVDdWliiTmmLD/W7stsrBIEbPxUAr8OJdAgr2qsCy+heq0REhqgUDF3AdkJAhZIZO7tQ6HWvXUHXAATcTWe4sWRaMomrOpyXLxS0eFZLnchhXkrM13SXvpsJvhgvdbzv3y9Tl2Pi77/uJ66sBKCX40HR+Sgk6+J2kgJU/KGv4xgrtwDJSSbT3SPTdXuGa59dn+5E/+JD/1Uz/FD/zAD/Dbv/3b/If/4X/Il7/8ZX71V3+VYRh49913+fznPz8fxDjy9ttv8+677x5t86/9tb/Gz/3cz932UF+xLNQp8ZELTwp+HSQeLkhBhirSH0V1fZOlh+jgjx3p9PEH+xfPOci3USqHHqqa5SFVD0+l9pPGNZK6+fo7E1MYW9/RSPsxC7EiQbYCGQcpinBaMZO+VO5W04zZDx8vu5Lp1DvaCaCX1QOJHauH9HdB/eb9mEWnhDSkjfzanBpkVhXgTFxzV+xo110/Qt1a3SO6VoI9SfGpSxESElPY+yAG9+EjEqa1fqeY964i72N3LqREjf6X+vVq7XtV4nWsftn3h/WesWnHuwO42KwFbykpVek253mboZgxWqXHh/g9Xm6dcH3lK1+p9X/9X//X+f2///fze3/v7+Uf/IN/wI/92I/dqM2//Jf/Mn/xL/7F+vfTp0/5vu/7vlce69FyXSA4lqgO6NUscwOKUpEKgTRrfJyunZBqxN5RoHlL9lxyZynGZXlXr190WZsRrXMedgJqHvP+t7qjciDDeeN34cZFU2iBuKFBDQ+0QM6G0OP7NqiKeBb3MpUgdgPv796P1S/7vtYDeWkDi2X91foJ6786o24vzKTCHGZrkKRYDt83qa1Y6e9QdfbOYVbg2P8esWutiySqY2AXYLqZ2zdGo07BYauqLHsjj/qsdOM87HsG0T1XeZ36gvhAQwNIMEpQ03tUnuc48alWmd3etLWw92rwn8PXv6fLncuXP/iDP8hnP/tZfuu3fosf+7Ef45133uGb3/zm7JlpmnjvvffOvRfbbDYHBh53V46BgFzySEekZhzUEUhG28GqeY86trh2GW1E0kVtRl6qNOs+7DAX6HX8tw/I2o2pL9FnMZWF25aLhbIzFYkHWh0ULDmGfZCCe68Tue0SG5K6sx/ow03lHaGE/V9C6zSTDEaAC36vAFVU8Wgb0l24J5r1ctQbEbxhfdHeRfUl835RPUm4CkCKu9bYjSQg2faJCJ1kPSSSm8k7Aa/+ROHAbGvbyHz0W2gRIvzvXrpTQJOpIEus8WhnpGSD99XQNRoEjs4gCo9+AjXqfS1ClfsOwLg0Ia4fOLdXbxCnWDSQwda5uLFQghquXrEIPASxbSVgUETJxW1GPyH3Wn25c8L1u7/7u3znO9/hi1/8IgB/5I/8ET744AO++tWv8of+0B8C4Fd+5VcopfCjP/qjdz2c11S0+33sDiqKH6Rl2pK+ncExvyP7sLSyrxUi8kSCejF221TLpb7j5rxxMi2KggUXVoq6pZMKm9UJWSf2k0doGOrsCMlFuYvDNw/bdF7pZxWKMynCMK0ZdGRkTcpjbU+A7POTo2vy8S+KhboaJFGyNPVaykxlS5YdrKDIHu3uwLQSn2U4cjPoOTB8mZW5CX1LW6Luz2XWqDKM5qJQcKQeCDysZWfUwNuKD7KdmcEzLxC5xpwYVmInbSzSjSfaegUp66BeGbt2b4V4apLijKkMdpQzHvJlxUWwa11EQsZPXrk24Xr27Bm/9Vu/Vf/+nd/5HX7jN36Dt99+m7fffpuf+7mf46d/+qd55513+O3f/m3+0l/6S/zQD/0QP/ETPwHAj/zIj/CTP/mT/Pk//+f523/7b7Pf7/nZn/1ZvvKVr3xMLQq5Amx0eoEDWOuhmAVAw/ImuX2txjUOBVbien8XYap6cHmKejP42yydlDj7uEcibtwwDHAyoqMh9/3kUpYKRQVJQbXiIt/GP49wf9ulraosPrbdEefCTaJIJSE5cfb+RHk5oS+3pLxBGBAdEPHo9gothNEdDv8WS5O6zDk5iZjBg0duIW3hpJAeKCefWXsYeROfIwVISCy9RIhoVWceOwO9mhBpilpJWu+EzT2hdLjeG/SYn9V4xo+UxED6s5QK6cFAWgtpVShDIoJE90xds6j3/fPVEWv4DghXL+Wbxa1FxwfRRCKRXyhlq+iZtphv5xVf6OPr/b1frk24/tE/+kf88T/+x+vfcff0Z/7Mn+Fv/a2/xT/+x/+YX/zFX+SDDz7gS1/6Ev/Ov/Pv8J/+p//pTNX3d/7O3+Fnf/Zn+bEf+7HqgPwLv/ALtzCdVy13wb30xKzXRywOCEEXelVHgbEwPBxhTBTJhlxqUFqd91M52tsu1fyrK8G9dlKeCqQ1bE7QVWavwsutIsWCpKoKKQ0+0kJhqsqQdBfDrqU13owVOjWMGMmyFCgjqQwM+zXvvfseL759xtm3dqTykKQrpIxuUWf3D8Xvgu4L31s1YaWZruSc0dEC36o8Y/XZFQ8+d8LjN95EpJCTQOcaXaXSjpc5L4itzmqNSAThUjGJKgtkVaYyzZ618+DiWGkSW9JUjUqqSb4UGJTx0cDqkTCeWsDqkto4+ohKIYD1gWdmxPgKa3kV+tZWwCODOOwF3KcCqwxn72emZ5m832PZC+ZM7bL3ILafxHJtwvXH/tgfa+aoR8p/+9/+t5e28fbbb3/MnY1fpSxFqr6EtKTtT1cTzs98AZmQFazePOHJOzA+AB1XnJWOCe20Nb27y6VWazHMy7jH+p4e0q3lgVHP1DKcsl894oV8jQ8+eM7+axP/ymffYL0+YVgNnOkLu08SYWTt9yj9+lw0oPPql6EM/6RnEg6+ddXLJEge2OgD8tOnTN8W+HqhyJpSVh4B2RdfhDCNv/tIx7dUKgYPbO4wuSo11FgWyJvEpjwi7ycYFFkJLawTiPYxKwONHl97+7TdhVaU61RDs7aAGmCRY1ZDU59FWLRqwSgzAqOqlOI5vFImna5ZvSGsnxjRkuTXZli9jjKIloPNkhhfpcgV6v06iKYKtSIm0I4F1nvYnyXKWSGXPbC+vON7AnJ3UT5Zxv/XLecCxvILab9rjLXzGxCWNwFS/w1OFI/WnWWPrkbKOpFHc3Gp9oSDv6NNkLsq4VrWkzYL/KiHkYLFuGh/96tQDSLV8EtJyrRSdLSLdVVLw0ARyB5/TyJ6hVqMwmr23K/ldcp5xMtGaYR3Hqw2+hRfQMUY9sTAgBEnySNS1tbctIZptECF2lm8xT3DfWF8l6IH2owfdIK0QcqKlEc0J1IaSRRKsXQj1cCi1xyAM7O+DqW/t4zIiephoBrjJjoiOpJ0YEAYUPPt02JjKtnX2qVj1zYoFm8yVJMa8aiSgAiTKJMoKQl5wAJYV8lK6l7ZuyY1G9HqLGFve9kl1qOVou6vL0ZgTQQTI9i9JiMo6lHG4L4A3u2WTwnXtctCn3AgysepOA+ZXQXQnO2TbNzvMMAAu1HZa1MIDnE3G0THD8cxoqTn1f1sRB2cCHWEC/++d6I0gtA42XhGkzKlYoOTkaQjSc0RG4TBqa2ikFzppPjF9XWkrOvUm/l9YxF6EmdqwlSEUQcGHZAspDKSdG0Lk9dGtKYB96puLVzApHz8SmyYNISY97TkcBvfsxUUGHTlEo3fgQFCPoLcGxGT0giWdmtthMtpG4Ll+xpIunLC5Y7hpaClNNVgWC9GeLHgO2rXjuyTQvIzs/gprpLsYaMye6L10zaLW1xvqJaZ3RSQ0vz3zZBSGjM002HGG2HeL21NXoXfu8flnhOu7xay6Lkf5dDCCo5zRdeBLqcUG0tJVAbYCuwHA94kiQmqpZKInGvTla9ZPzaT5EaFyU94+DyVRR4ki5JRYAdpP7Ca1pyURJ425DJSZKoB5VWEyb0rk1iK8xre5lXqhJ+QSVsl5ZpUMs0uNCKjk3H0SRNDWTNMA6s9bPYnbHfCdguUNegaGQZTN1ncXsP/dxn84w6K9uCYgNUK2FsW0LJi3G1Y7zest5B0wzisWI0nqEwYlJmxhmhCNFVJvSJnbS7NPfINqR3Acn659DolxrPEuCuspuTWdUaZ0jA2IjVpQ9x9EYxRCuI7iDU9usGHKCWirc+yEMSA5qdGZ31ch1EKSVLqfZ/VG5Hs4wpI6qzgS1u/OX6po+q4xlCF3HP0/Qrlkzvzo6UB3+UlsJZc8EoHpd0BvqiHPkpg/7yiTNoiB7QDIA7HdxuJol5kK3h8BONUlwn84tCXNau85mRasXoO45jQIZGGoWatsMPcHXAX+8Qlt3AA1t7yclFv/lWKlGbWLcXa0/p+EGBXVkl8F1KjqYlGEkMR0hY2+zWrCcgF8azHMZ6qGmM4jkw/pmUGexHTWV1SV4upuc4nnE4bNi9hXRIliedTGxHUMxlru6NaSN5VcqnqRCuzTBy+5ogwIIwvYXiZWOcNwhp0MOIFVC/bRXp68YYU9fASBVJGSyGSYWrErj1C6wAzi5ca06PCc4y/dMGJVaTTUhyrGyymrp1Y5lppC2Nr4cTLrkxNy4JObRHPtSeQ4/TtfoDhK5fvIcK1kJkvog5X3txXgYKeaC2/WnwQ5/Kgv4VKA1wtMlfB9A/dFdwGrQj3F+05QKkD8IcSsEK3A/lp4cXX93YLnZRhdPPrYlx36qLZal0HrnVPVzVfzrXWujPXvatP6rUtdATZkUQWd/+ZEtNHCT1Lri5suZLMsrPF+tNrMTwfozJDfGILVlawTeSPlJfvbi1LdXIaIg3vVvzr62+We7Y+4e59AOZtq9uai2fx+Sjx8juQX6qpF3y96xBrxIzW6ELW77ghPdyO6qE8Hwtu7XpsaY4pSqr0dMX6YpDzeoXByFPnZ2r2czA0qsrju1IuIKTnlSV+uIVyzwnXscXScz6/TptXWeRXBJz+9YMDnjzTKcbtu+NxSpZBuDL7swN1keT36mXWtEt9561VIiF6yrNvnPH0a0/557/xAbDH/IGSc8eCjBsLqnqsI7lm/aB0VLC23SOvDjlAqxfjmSVt0PKINJyyWj8GGZhUyTl7KilHpDmi8N0zVjf8oopSEIaUkGR54D969yUf/sszfvd/+AjouH+gimlBfeh+qpQRTkg9M0MTfWbtKVAY8yP4aMX0vwFnaygjMB7CXW1rIYzEHdgwkJJF9zgUVo4wtRegC138ftX6IZgIpRQmhV1xHzYpnuE0YLOnnnJeQx/r0uTL23PXudeEy9TWPQtVBXXOlXj6ve/LbE1lDheVPeuVeMfutRabcoQrqlyqHI6hRquRhNlYKQzO0TshWx7GCBKruKrB1Yn9GQ/4V44bZET9wKqQUJf4mlQdTavLkoo6MluhTC8GykcDfEsMEenYxCpczahhQdXHDxfmURJ6x+p+j69Yr4uwQKYx3p4Iq0Uo0UHhcyPyeIWMA5O4z9HY9lHreDls92NeUhCdZGlmIpb7qCPlxQAfJfgGFvGfHlhjDfvo8ksC1lta+nMqoGsaDPmBEwUyOSvsFJ6dwHRqsDJDT9p1r34WpGlp67BMD11ULeDzjEhS/3jt15Kp57O6AQWxD5P96mTdpCrBz31x8dRDviWJbNks5nib5VjDfQSURI8PqkQr7QlDX35+WkRljmahvmK514RrXjoCVnVI5+ymLN45tjkV2cUjC+4x3lvgq/NkwPM/lSb5K7SAp4cSTQgKc6pER830+AC6YV6k3mBRnx2Imd5nLi4uFZTVrHga4OUIH6zCtIuZH9ts/SOiRiC/Ttd3ad0RoHb+VNqtnfqzcXD6rjWIZsxhsmdWGZ6s4XRF3KM0JCh1qfu7jHtRelCRltfJ6IEBokwjnK3gwxWyNwMKyxJdn2SOvIJR8P0NJqEnXAiUDW2dSyNeTGgZTE05bUBX1AzJszFXzu6Qg+sevJSF+K5sWc+x0jB7JeTx1BKndMSLw88P3Ehue26zY3/emp+DP2fVI0zjK5TvIcIFVZdqt6PHgXuJ9IHqe8VxvHdUJXXeHhz7vNvwo9bzHX6t6R/q5Ut800NCT2WCh5uld7z9ejXvjwHHGHopx6cU9GE/wG4DZ4+srgMWg81b7lJWNAn26AZdox6L2SLDW3Frx9RUXRKEVBNaI8nvYcio7kn5AalYzLiWnMP6Eec21NtuYz8GNMs1u8F8rlW/qD1pstMM56SWL7qsSBnKWSbtNlAGcur3J/YtN0aACHqbmJtZ9t+PjekggCSMEczhWNjQbsm6okBRZHBGL4mDUOy3zsAw6NtBGweIVg9kydstvl6qZuIPmN6/35fu2d4x0uG0MY/9mQtmw33qBjls7lbG3pW6fhc/dmHpeZ1XKN9bhKuW4Pjcblk62qE9MnYW2hn2YKhLNDHbkKU4fLhb5zsuegc1OKlU5rQ27UxrPX/d5WykM0/zFuur8ZfMardZorcWQ73v2YYuXezBtp5mcjYguoIyooyz9+fJGxtyPVQPnle/SFVIN974PNdX7RzOJS7jeDMUoehgJvT1bSewuojtOlvv265f9tkN2u4YJQNlmSGUUgZKUWAN6numkQDVoSzguap7HK5R/8yf6e/BdGC+d0FlomNnBLRb3dSNW1KHO6Pt/m/fJV2ulH0nR+6Glucn/pL6jV5YV/+rpiDxd+cZin1+EbXDO7IwjWpXc4j/Tc0UTgKyIkk8/BMegJdK40x1yJ2Wc5UtHHe/iR2fO1wPiHpg4Qudb65WvkcJV5Q4PA2SBYh8ShVV6hKc43UJ7Dv/bFHm23fs+yV3e+S5+qe2jMf95WwQVu2G5V/MebfzkNvNSj+3o+fDkZmeA8IiLs24z49WBNekA6lz7olVj2QuIlzztg7rPsiamLCRd/u1RGbdHanDSdsGuWARXl85RArXKzr7fcGcVNC6PvFcwGOsb6xXPKfd71DlCv16GjDH39BCYHQT7Edb982/7K1Z+63uzpB9rZ0hUxC2efs1lcuFRc+pQw/557MYjTnTSPtTE2n53yUSk3aMm+LfD22u0Wg9AncHe4H6ZrckMvu24bbL2lKXyM/TIl2zfG8SrrrBHRsZwFwXzg7UPKHdcaXPZYhpDrg9ol8Qkd6qqrG7By3p8hAuOUjVakhhTUWf7rvSvX6s3o/3sno7JeXowY+/6/PxiATXGuscq+1qN+242jjERw1eXrU0wh9EdjZQldlj/eSWRof941GWLMtF63lVMjwb7pH2OOfzK/dzDjjLrBbQPAPGQ5iVvtcgUA7c1QKpH6XOftUBHUHKRniKSRkqcw/mOEcxlEofg6yrEYdA/gSR8tpsDUpHCwMnzNnA43U9qB+ZHA37RwJPRULFF+dbzWCmEq6SW3R89ezdIXEKFxD72yNkS/YPlkYt7Q5y1qvMV8DG6bBw8MXNyvcg4VpunFk4BdCWCpjz5wrzA32TeGW9j9HxcbWMwJXpiKFcxICE/tBxQu/sOX+loaeLjtFN6rZmlxGWZd9SF/XV+KtbKnV5Sh1QoLlWgkBH4sOGLy9jbi9bw9vek1fpZ1k6skNSkww0DCj0gr0/MNtetnrwAj1UVcu5njZq91w9I0oahYrvl+2VApKhTBaiSrFbgtEbr06/B1ygzdUZLal932YpfXetczUVYSjPLd69TVjSWJ+pxGxJEJi6BlfcRalBB2KrpFu8ay3TEue+Gka434RreS70vC/ss8bFysFzR40m+naXrPcR4tcO8RIZLkdhnFfNE1ubVJrllF98awP6MF+vacqrGNABQGR9nalhFvU4QQd28+fU56TogOmezaHKVj5Xz0SrkhDJaISpWd6c35V1nnZLoLifltSRxu+qqgxutr7vESJS11j97hCOPralF3o4AsthWr58pyL6ajY0/7o2pzOYPze/2uL8BHiFRXWpFAcQsWtqNWbCCEw39p7AyQRpgmGPpDUSQXctvDwHcblq3EKt8zzmiHw7xVemElC7Ea5ZdVQgrVDJIHvQnYdyG5A0oHlFNX5RHBF4sLKEr+Ph/tzS0HvLfF+rwFvSP3akzJAIl6tkr17uNeE6ikCBdqF0+KW9syAYUWT+2XzZo6bzh2d6vQVim/dqb3m4HJVySASC8IkfRHfkDM5fukNmH5Q5kakIqWu054aP1uOdLtjUrN6eWdLy46VLOyHFEUoGEVcJ+gFTOoJ6YYO3UhrxakSrj+RwsIbx3mWNvo7BH3Z8sz5nk1m8f4wBPm9NjpyReeMXrZp053PxcfRVg0DGYxmY0MgCjrqzoT8vFuqJIXeEKyFJENkh4uGgYibSn4GOAN4h/xFJOC1Tgd37VjSkYoYpskNlB/LSw8Wv0LRG82Bv98xXNdzytatudbcPizOidSxszTGms3GD/mfHJBwi1muXe024jhcXtY8xxstybUDtrWEu4m60+ynGRYUKKkndUHEOrN5RzaI4eH4hQOWkOe91Ut3xw+YSnQOTHtQTWp9JRFp20WRe+0fqMIc3g8nDxIGCZdQdNCFyAuxReQHpBQwrYKKGFYogq3TMM9xgTy4uS1e85RXX4mlqaKFjEuXRsfUN9QTlWP0q4u2yfqw9zvn8Ov1cVKT+HMvEdvzZq5b2fD+KWXDZoe2BsgXOQLYwTsDOz0Xu7GqKJYNLEwyZzEuynjLqhpR2IKXaw4bQopWA9iM4j/F81WIDLZroI9ErmclhMsmG3bgjr3aweQn7EeQUhseQBWWDuQwwPywzhuNcIL2lEp11fRzjoeTYd73fX3x587Hec8K1QBq9wNF/Ex70x94/+PyoCEcjQlD1TkcanUlnUuzAyUv/vTNNlRMf4/6OHZZih3QsltwvubJeCpLUceuCcIh2zTTgkiN16Z6pdemyhNW69NcDBzy1ztQv7nSMgCTjFMeXMLyA4ZlFV5cNlD1wArqBcrqQWG+3yOL3oat0X4KLLYv9cGsvx6VzB7/7WnoEJFWAqalr6nPBVTvsV2gJeDq+mrPVkYNPmO238wqNqw/mwe/Y2DKc7FidZB5/RgzmZI+mqR5FpaCSKTKR08TmnZGTN2H9pLCVnaU0OUK4msl6d7ZnMziPEbiIaThWj3VO5jISkpJmBGVQYaPKg2HL/tGe3emOsSSkFJgyH/zuFt0LWiwIstGA5Iay3T6+jnIUkZ5HMF0qDOlsli2Uc965WrnXhGvJ7/efB7+oB9/rEQCdv3/Y9rFH+j+0warSCWMmOaX1ljSekcaXqLraIpC+LAkACAUdMmwKPBgYTwbSyco4x8HTNABFShuFiy2HvOyrl3PdBaTEBKiESy11yEpWlN1LysMX6MNnMJ0geQ95xXRW0CmjeL4WTV0Ht3cAl2gGjqMWrU58HYOiTdao2lvtM0wtmN1zy6vO56qE8ppST8foxPxSaYYoQiBF7YjX4ZCWI+uFgYOhafRNh+sWwDULpltAzhhPJh68Vfj+f/UUhmzxOlNoEpQiCUVMoShw8hlYPy6MDye2ZGfw5me9eCxDIczhi6mya9/9gT6Y3ZH6RYTLDFwquzBbAnM42Ghm91CZngnbz46sygaZ1nA28tG3zpiy2FmRCMEF5gXW93PH5UKT2stgdCFxvSLDeq8J10UlcOFBOKwZgmq/LjQZm62xcKAmnNEwfzg49+GMh5/d8+CNzMnjCU1nqEyWsl4MaZYOAuIg5TShK0WewOPPFVYnaxgSewrq0laOTFKdjrml27idUhnhc9tteSMa0kuMKbF7a8v2rZecPdoyTEKaBnQ78Z1//oLt85UlZtyftjiGd1DOW4nZdh8QrQI6kVBLra4wZjNcY8Btv6qStbPyPIatj/19k/pVnru8PSHiFKbmqGD3/KCmvB38z1ImOjtzmoGGYd6Dtb0Mhx4TRMANEfzAirgBTYG0h/SUh28qv+eHVvzU/+Vz6ImSx4k8PKOdQxu8SqGkwjSY5JVTNqLmSLXh1ta50al2n9vYkr7tY/VrSl/1nDcJLAiXAKkI6/yAMQ8MeQ37xwz7FbxM/Pw/+cc82z5woD3xNQItYkYoLPfiqszODcp5zS73vGB3jAqaC6VkZ9q1MTCvYExyvwlX5QSXnEAG9UCxEf6pfud3SotIDaYisefMc73fozjZmea7MLTviln3GBAlVCaUCcoO5AW/70fe5gf/tVM+//2FnEqX2M5RZTc8QyyWTjwnZbeaWD3YIIOQSyGrGTrI6JEqKuFdSpJyQf26qg5DJL1VkB14QSJb68ynQ1Ayku3aQZ4JY04MeYDtyP/t//pP+Re/9QLyR/Z+3ce78eOqyGgGJgEDXlcFyX7ZLSgDYxFWE6x2NMuqHC63zkEL6Kzhi4jKq8/lNvoxX6LOy06pwS5GgL1AhkkGM7RR0LjfDSfacDyeXdbPOLjujMXPUrKuoqz7LYlJFHHHhULZYyGnBzOm0+KELhg4ey45KyGqSIFBE6XQEkgCQwmC0RMudabM93FGvC5bx+6UaEMzh3UbQxuvE//uuaQwFmVQZUAtQDywn3BGKruafQesIA0tRU9lorq1v9VimhUJy1OXVOO6Q4PXAOapqZOvUTee5AdJ48zfrNxvwuUHoqqyfFW1iqWh2umokNB8VOIjTR3tl5rxoVn9OOGSIGDJnqrhb0K1lBBRlEwpTryYePxoxec+85B3vgB7jwJdAs8vOFfjvlwSE+VsmEhrezjnTC7FOJnB8/dUvOADDsjqidWBCXyPbK5ab/rpeuzdv0eqc2E7rYWJgcSgA6sHAykLaQLO4GQNQoaSGcjA0BDjbRcBPcrZ9QesSVtStBGps4yOMCXIlOZD2W1YJA/0rq5VP2e4N27vKv2E4TQ9n0MjXCIJfQFsswk9CqLa3aVEu75msyCvcWCi1U6Ui3PYSTTqDIvUcyugyftyKYqBvC2cPS187Z++RDdb8rCjDC9mZydVqUspyYwxakRy2rlq0k4YHVlizBhhMCIXsX1H6xcQrt6HTKslqgFZ7U9h1EJSIemOlBX2G/bPV5S9hUuSGhAqV7xWbxnuxKgk5ldcLSvURNJ1Rk0OVZgdDnEmtlo+OmPQgPMTS7gAjEMRcM7JCIzzN25+Lp3ePgh+HyOjGNGZIaR+D/wA6r5yTOISggikBPtpstaSkCSjZYfqlrQulL0yvVT2L2AnHij9POFCLediHEIZFT0zp0o8FZRdSGidQ4unt4wI4A2eW78aCpw5bQb/pPZdcKvzOxCtKlChUKbEtDWGUV+CTpb1FlXLuKShRrh9P5TmTLAsfhBj7J3YoVrY7zP5gy3lhXD2AezKnlD/BqcrgWjP5bQP6zOMd3zA9furtHezfrT7gRbUVhjTCnagO0W2mcHdYoOQFGkBiedttDUVQthyp+BKFvwZ9T4doSWonHjJmWkys/eUlMJDXr5/xru7Hf/3X3qXnJ6S00tTuc9mEMXUhb2TfmhTUlVtiCnZHYdW/s8tfIvYO8Cl9avsyax01xSFhEqTvoY4Zgolj0h5gOQnTE9PGadTkm6woMQmnUoZqpZzSBy5y3v1EsYvlQhpswTueeKjvRbDq4MM7GGGQw7uTa9Z7jXhSkysZMdJfsmgO5LuQfeMg61qcSSUEIYFRu/VgSoRbqV93xCAUC2cZPIPBXRspuICpeRaH1ZCZk+WLWX3Hv/0v//f+Pr/tGM4/YhpmPxglerTCs3Qwg5SkKHCJHtEjPgmRk9FUey/op7PMCHmqdkBUI/BLgpEu6zHu2FFZpZcsU4qxblwG2dwyanjphWlpMlInMJY1qSyQcqGYf+E518vvHG2YVRBpjPi4vpijH6z4i4y9Y/mGNvCfYUhBkBy5DWVCX0q5ARTygwl2z6I3UeEr5oWnS/1RfXLeYTD+rVZ/yu27WoFDRVtwM4wMOhAKkKahFUaOiIERcQRbs8ohvOxkyYdHI7PI1wV0gGYNJOSr6djwmp5J1v05Rl6tuVb738NSTtIE0X29Yza+e0IQgdG4g+E0VAsk0qaLYc9tiTot1sM+Tez+2AC7EdI2sVNlBHKiE7f5q3pM2jeQvmIrLkSkVFOYuRo6dxqbnHAdpa1GfBoQhb7p7K8XhGmksiyRmXNODwkJ2UvlieNGiX/5uVeE65B96Ryxmn5kA0vGHVLKi8Y1SyJLJlc8bAqDZoDNI0rM3F9qLrZAJx2COudWBAuBbCkiL1SwRC169vdPHfKH7B67xn60Ut2w0fokCmpGHenDZ+oeFZgGuECNUMOlxrNoihIWjGkI4mqgrkx4Yrnj9dN5VJHhFYp1p2K1UNpBWJwdU2oMjUnkm5IukHLEx6+WPNwf8JKM2TPd3UX3CJBuMKMQjyVic+rkxDQSqYhWIO9kEWZKM64+O1EFg9aXhVv9660MH6KyOBXDoomIUkiqTCWgaG4ul2Lq6/dIo9YQSNegXyhES57KAiX33goNMppzxdHxjijU8G5FGAPfmecy0tEJovAIsXN3HvCZeV8wgWxwyV1jiIV1O+KaDWNUCVcUK0hK+HqiaZYGiDRNUPeu6pwNKMuQFQYiMSccTJvedRuvp61VMnU4CGuBTwDQ73rCogQ9mzY8ZDMKVqUHcXUubO7eG683PeccO0QfcYj/TZP0jNO5AVDfp9RzeE3Oxc26PLavz+AQbgWPgYO5FJWlfPoDyFq3uzx3DgOFC3ksoddYRiBQdlOH5FenqHbHbm8qNas3fn0TZ/qJ9LnLErF7rUUEqPfz5kqLqVQM0jLS1TL7bH+jWhZ6X19ekE2FZcURU0V6myz7iaSviTpiiRnMK1JZc1KnlcsU1is/20UV1lmd+Q2JNVyyfSEq96T1kDC4vYCTppqahlxA41AmnfDnb+2oiBprAxJiTRACIOOJPc1Sm4MUYBcndI7E+cwavAsABWGOrhMFdk1bh2wzN0lkK8ht0IhF7sjTkMipYRqJmmGIKKpSRmzbZA5JNXEpkDcK2Wtjy7A7vb301amdIQreu5wkNuq1gxvKqQ0MAxr9rtvk2RkGEY0tfHp5HahMqcFtzdwW+dcgvEzdWbdR5e8QsVqox8oMrJLj3khb7LlES9z5qysmRSaL+yrDe1eE661nnGSPuIHHr/PD7255zOblzzSZ6x5ZmoKhCElE01znnE0pvKQehEv2oKqWgmVhlvN1XBFLn1p/xwkSVS9bTIJSjWzL1vS4DHXOGltuNgdB7+kRlqlxvMDGYRSsnOMI1qC84VhcMBRMbWhiw3HSNVF9cuKVs4qxtd92SGJVG/9PXq9ACKIbjBLWGFIhZK3iO4Z2ftSzA1qrj7yi+txOa/SzHDDlm4WEaIjxEHKkghZQv5SSJaOJSkwVZtCtEeeXI8lOFauz1Zcr5+6QuoIHSGl0bllJbMnsjoPmpBihEIorjJOLikY4VoiYiVUSXUXut7DArXfJ4OuyBCQUJek7F7ZwjaZKjzn4jAGSLHUVC4lHVXzQ2MCNcJt209OTRk+c7s8smavXkqdWwywt2C2JSmIptr/VEAkMQw71BU9IkImV2jTIiQx6dauRG63qI8tLDNFlUFLk7iq64/tV2agyIpJNrxIK97Ne759tuW3v/E+e31E1pFtDffGKxGve024VmXLCR/x2fF9vu90yxcfPOON/DU2+iGiEyiMkowoaTZ1QuUOmqgOcQgP/elrgrzZJjXOKRBd8eCt4q+oZopmM6LACJ+dzeLvq0sogCg55bqPMku4VyhqnP7IiuLcpopWU/+wLLW7sBZSBm5D3mJGzuMzXNKsBErVJTFbn9xZ340yUkpTMabNaCuVcXUnzrHX1s8Z+XXrIQ3YAkm/j0hF1nMzfx+FCO12Bkwla00NY2vbuH4qaFx0WX9VA86rtndu3Zf0vH5sRx3uVUxV6M9MTN6/MGoyoqWm5rG7DL+TEdqdTAw4WD8HEJUgKLEfTT3YYy4pxujEWTI9rJu8u+m9kGBs2RWQQo61r2yIjSUIr+1XU4cPPtQiWjOlCM3g4lUQ6UVFpY0RmqM+mBrb4hdmpCf6VX1bWK2NYS3qjFI1dw6Ni8H47RNdlxU7pmJwV6N2lqg4NctAlg17OeXpsGO9hyGf8bVpYFWEsZwYE6sLF5oblHtOuM44IfFW+oB31s/5PZunvD39czblPVLZQ1EGEQaUJIVUwqxd/RAONLPYUonXXDXW63NH/7SQ6HT3IuSpGTPIYMYahcwwrizFggqpxil0rXaXVGtOuLw/xdQlYpzVSsYaI7BIQUQpoTYWqcRU0Rl66OsX3XYFMxv1QPF93cZng1YnXCGxNhViIXvWVi2wHtYUsfvGUpT1aoUI5MlCYAmWxqEEtkVo6TSiHkQ+6kGQzq/3qhdxzNyCXBnhMqOYjnjVaBFCVjdKQdDULFNXaXAGwaSDgJekNAQcdX/nWB0OiUvSxuke1G+hnzr7CIQMaGlEvJr9I4wMVRNhhCs5y5bqmoYfWCNcOGPlCFl7hBpaBe2gzQ0LvA0hIUOqz+Tsz2liTKumEpdClrm5u93FmTYl1qa/Lx6Uul+VcGlHuO6oxF26lTQ3FPH7usTUqVgFSStKKUzTxOlqTcmFnCcYExHhQxgoxVS46fYNco0pJlFk8L1WBt13Z6VhFpVClhV7OWGXHvLeCDtZ83LcsZkS6/yQUQeSrigMeGs3Htr9JlxkNnrGafmAx/k9nkzf5vH+t3mYv82IOy4qfvgyCfsdBCdX095E8gOKEwXqU51OXleE2C/VIVmhwDDYZqDClO3QiSglt8vMOd+pM2OGXB0lG0cmGC4uxTjksbvjKuJWXqWgBcZVmucxuvUSBDcIa6Azgir4GnoRW21VSF268UKGrYIWtOwZx5W1kxfqu1sozuiSkGoVFa2HmrjI3GC+3tskmJxwkaRzRxJWnS5K28f3pMQ+NqOSHKJHBGN2IjLIiJRKuru5JmcCGvEMtaMh6Vy1AnT99FEn0ox4uUTlpyPvcwtZKFCKwdEwDNXTNSzZesIVxK6/dxRNdd+DqTKpi/recuuaLiXavGo9+p2zgUHX60g15guQiaDB1VqXRNEBkUQSobx0PCNKmdp9dkpjjZRzJ3etzkArKwwvFQYmw6Hq86y+rYV9WrHjAWfyiAnhDT3lsU6sdcVa3mGFab1KREp5hbN+rwlXA5TG9XaoBNF2ZTjXtQcIxbO5cmy9pZ8snmemPOpNVwOYih/oRjz6ezU75KU7LO0eRmrHQioDNcSS+MUuyfMFebtuyjw4kqXYHG4R7y9KFxbHdZOC2h0ioNpJrDBHbL4GS7VcksGkTqcw8z26jWLINHYg9XeT1WrUBlk1lirVIdbolRkKJAyLClDUrtItOtEczd2P4upyhyEdGtpPJDd5BrSYm4XEO1ZEzQLWPpUGy8R6xoovLS5Ddj+0gKtaArVA0jGeOIgWUHZqwfvdLLJGawJDomIuJIHIUwm1+0HcF59LB5/C4hmhudfS1StEHanTfRYr1NT34imDWu6vuDc3WBJgEEGKGXOQElLdUYIh9hGW3mn/bsTGdma975kRVah7Gr4lGME+RJweW3177qY2ufeacAVJKjKSWZFlQ5ENWU4QHVydUkhi5u5SJa5OX2+Z2BhK327pYLvnyXr01B1M6eT0oxhM6udSXCpx1Uxw/f3rY90Ws4iLJHFJ+u0yc3/jSl3d0nHNt18cOFO7vBIRP4i2ZsLUntaRcJm3mdpaFae9InbUIwbAXUgscd8SkQlEnXjZ6DtEFeriMNuwue4lU6SQKYZM3EhHFQZJiIjdY97HInZnUrSY+slTC4+6IklEhkmuFtRqORYX8R0rduADSTWPvgyZ9srpeLeXXGYDJpCjRWMQU8GHWtBhTCWzH9xKVZQk7m+p/RluTEsSn1LghF4yAi6Wsq6ueK+9JzOmmiWtDO7JQ46NMoImR/hSDYDMHkLb2MPQgbuR+JupvmmaRBRVU5PHuap40FWFmRMmOSHLhsyKIiMqg6V06RmGuoY3K/eacO0YOZMTXshbPB82PB9O2ehL9ukNRPeoFk+LLR6NIiPd4ZsbZwT3dVe8i5UOb7qefXbiERU3KDF14D7tXar2uICucwg/rnCKDTODuxp8qGVEnE5rcLmup9ZMqtHqk13AEj5mEY6nHW1Ry9sVa8GlSO4GY66Hy0elkJxFV2mfx32iETdTe2TJ7FceVzLuwRRDKCsbdKz7vSwuuqgUMkouGYpyohs3gx8ZyoopWzBoGWhES+aEy4hX28K78MmLkktGVS2wdFohhr5NLpaJnPbs1i+ZmChaSKwQjbBk3Zg1ILXBRAlr2PocXEy4rkEtpFkVBuGSwa8Q1DQWSS2izMDAOIzOKPlYFgwuCGOBuPtdZpi4jWKMfX9OlLHk+RL43Czo98gkJ+zkIR+N38dH5XM84zF7Efa6YlK7mkm3cGruNeHaDw95kd7i3ekFv/1iy7PyJk90xVo/MnWGmjm8aIHsDnCOoQqHVoVAS6x6B8WPeN3wvAjTIoAUYSgWn1tTIY97S2WiOnc4d6625fYJNdjts17VwRCOZDxvRhP1ol5B9AQJwtWF6I+L//6CuqquuGWEVwllxKycX8T3ypwoYwIobMuOSQtlUMqgaJ7qC0IKWteFDrtnpYTYK+5DZ/txqhvSPpF0YCUb82XT7r7KN3gmlWi7oaL79k5IV6q6QsKqTotSdG+pgNYF3RSmNJHJiI7tTnYmTTUJLqTsgBX6uV1KuDpO9MK6q9FELGauCsMwVGZTc2HFiGTIZ5k0Can0PnFWmlGOEy6axuO217uulzQV4DALOdSrkZUiA5k1k5zwbHiHr/3/2/v3mMuu+r4ff33W2uc888zVHsx47HCpISnUsSEpJWaKSvgWy4aiKilIvzRBCVQRCHdA5VKEQDRcosQtldqqVUr/qaB/hKRFgqLSFIWbjQiGNA6IghsLKKnTxIMB47k/zzl7rc/vj3Xd+5zz3OZ5ZuZ49nt05lln733WWntdPrf1WZ/VHuPU5AAXVgzro8NMpys4I+CTt+h0x3VbasbVygrrsp/HJwf5i3MNZ9cN+/0aI/aR9nGZ6A6PdyUsjATm5CRJFIFxJam6O4B3B1lu0WIWcTHmU63+i4L1Nki1xuFGLRqCS+CcVgMpZJg9Y70PJpQ8UbYzqTZO5wgFkKOFZ/fyrPRHH6FE39qVuDBexTPstYaJnn9pfdDvgdYFRLdnLc3W4/E1u7QGFMdE19EDFhlH86BvMzkWMVlOWE7GFfskEnRP0GCMCuPJCHfBQQtj2Ye6GGmieKd0ZSOtLBb1ZfaGcUm0PoS84wqyKs5PkRXFYhhhccbhKs/UNJ997vPIuOg5FW2bcdXpxXMpsUVjQtR6zQ5dkn8+1gb1ytrkInrBQ5uE2EIzkqeoUUIYu45L+m63edoHGUaAEOMpZjd8QbNpVwmqwQgnYy6aI/zQH+DxyX4uElzkXXXETJiEO6/tUjOuiaww1f385cUDnFnzrGhLM92PZUQgPyBxY67teB/FQLfYzLhMx/FC8oDfbaRTkDxlHaDPuAxhf4c3nnbflNH+BgxMowdBGq9iyZqW9yG0lYhQXMljplt0H+/6TleTXqpVDWOI/v2U+ITBYaMRE/ZmTRV/3iBOEF9H3k9IXpNRqKiY9+4juKwXt+1uOdl8mQWAFk9La8fsP3aQ8aExK81KtdFYg1t4Cq9l/B4QjL1D8v5rmqAyJqZkCWGe3AXHmcfOMDk/ZaQr2LinMBD84kgAUO/F2WuX8lD5uJeJNB6bbEJTaRkfaFi9foXD1x9EbTwaKM+zMrsLvY8al6T9ZmXO11sKZgLrxjxyms2Dp6VN9habTZImbjg2gDUNI9fQti0/Pv04F35wESZBiBUtbuOJRQbmlWKEFta4u1DCfrmwly+tq6XIGWXLcyo9uLh7RkzMChfNiHXGrHOEdRqcKDAJWnNq7x1WeqkZV2tGqBzkNMe5oEewTLDNBBu313sVwtpLtWudSKdFOowruHh2Vrz2pM71ERs148rSfEx542AMoxsaDj31EM3qCLUGbwKhaXHRbhfzys4n8zSAS9W+smyaKy6ZcZX/rRNoFb/mefTbP0AmgnUmnKxb7aHKa0pULb0HjCszFEnabrXOkD5ZEIiL+9rixdE2U44cfQr7jqyy77p9Yc1E4nEZRMcGwFib81sGJKLXRC+ENPIaabDe4poJP7zwI9bcGiO/j0ZG4bk50nHaShLyjY4TFV/bkxmUGJAqiM3OTRO9wKixrI5WuG71EG4UzIVek+BFODmZSlCRFPU8ecGRx2jNuGp5bsN9dhQm1t8TmUadNTYwX69I3h8VNnuP/YjWTfmh/JB25BA1NL7B+KYSIjX3YWJ8hQfsrvavsSHSlhE0BCvPwbUjtUkyvgfSHtSphj1dKisYe5DWTvAyAaa7shaz1IzLY/EyZl0O0MoYo21wEDDBTBiUEU/aNpl3UmkgxD4dKUA0FWbGVUeOljzokn9cud5PJ0PdbJqYB5SFySLtV+pzZlwt2nhGoxGy/wij1TF+FKKVO8KBkkEQS6pC2lu2WeikrbjzCv1txzXj6hKosI5lEWwrMA2bEc+PFGJIGuslHgXSYVU9Ile35uZtmNKz/VPSxSyUCHYRDGpNqwgQDiUwLt9MMKMbmIz3sT5eYRoZV9K8ksbc8SjtYaNe2E56M2w3PwEaV4+bsEfQeoNfaTk/NlwcrdG4FayOQrvONfdWnmKa1hCrVSKdN3/q9PbmUtB2YyoGmFYBNcrEX8Aaw9SOMfYwzjqmpg2iXOzjFOUkM674LfnOhYwrA3ig1V1DRCEhhCDTsd4bpuN7aLRYKDFoQNxjpop1hn0yxjUt50bQWodYg2WEZVSt06V8NYaMqxlXep/t0aOUnumfmGf9LsYbiudyCUCQ2lTiF68WJxZkxEhWcBqECNL2imyq3hmWmnGpWFoa1OynyACQNxmqxDBIMe5ZRYy1+kAKsptQBkR10tVMWqm86PCZMHfS4qk3GteToLCp/EZEdQZnJ6hxiLFIc5hmNKKtDjV0+MC44n6W5NKLbJdx9WXDeeku46rXBNJmaYvFxgGpxrNmW9TGs2vFBnNMaOnwu1SdmHuq0Wy7zWvDOr24fzpFkESGckXTW4oSznDzqGlRaVE7Qe31jOwK42bEhDYwrbJPFlCc77L7Rel+JJL+zqA6vUiU2K1yAEY2CXBR4vcG6ww0cKFR1kfriKxgXJH2oR5JiYBJzjvt3anL2bh/tjeX8pjUJOxFJxmrTGUVa4WpGWHtYdrIuJxJOylLeK56v1aiDbnOOvum2xP85s2r8uvSU2H9HVXwIVzafsZo47mwYmjtFIzB+nFwj49CdmBSGgWFKu+occ2lQRvSo03mUiZYxGgrvXDlQod5FcNJbEURUEurklbJCuOas4iwVSw148JbMA2uGvZAPJQQwt4nyBvlZjxvQmemyZ8mThZGiRMv7mERNdntdH5aooTVGzRSBr6Ip1eJqiZp4EfvLWOx4wZGBmdhXZUWzTbysCeEsJdFIDCF4JG4vU2T88hkP9BTvKPFZdgKeJ95J9oATkLAYDGARf0I500QIqo1kYrbBqaYA7fOtpuiG6SryaZp8TdNwtK6RVzpwqf/NWpc2hKOr7F4sw9nG6YGptIEM61RnLZxw3LQKEvbFCFyYbr0cGqFmXTqBb+V/HZYjrMao1tpOOhPw5YRAzg7AqtoO8bF8DzJIKxVHvWoLVuSyWdZK3T76hLnEtlqUo3TJAFZh7dCa0a0Vmgby9QYWu1qBGXqFSOeUJ2/Lf3EdoTAjRlXaock+Zi4TCCE/YUNBjXgzH7UTMAYvBnj/CiX68RnOSIcNVPmaG6V2IYpnmBpw+3NpWQBSlRSYnvXQmeuD3XbhvYzJookXvP6fXlw59oWLDvjSgM6bgotCNJJ2qRYprGZbS8NUyGtF2ZjUu6M1FOR7OUNtxun8wbDOh1lmboO9SAIgycN7EAQ01qKSJxmRrLUnzdLRrNJqKNCRyqydUkbpPuyu3TvRxNQ8NAzIZwVYX1BNHhIhqoHL0RNTFSSV1SlE0t621JENgGRRLe6DXWTtESC2OurBM1G4tnuB+qjTsprezyC0+BFGbetE2L6FW0ukthIIDpFzk/3/m6Y3kp+Wy1HyCHBNLVVIqNGwtTI8QuD0JE+gfxUbZTyjv09r/zyTNVXlzqXMKHGeY6Q80bKgkAIoBTC1nZMWakd8g+7O4rmyJNbwKK5JLP3Y/unPXQujl0RBSvB2xAizUpzpnaCgBTgOPTjvLldtVu6vtO5FPMOlLNLFwt9jH01h4yopD1qZY4Ud9z0jjvDcjOuuiU7fWfLtbTvoHO/GqLxemZw0ntG+mWkdJ/79J6R6mad7g+yarbHWBqxg4PU5jVuuSG68hqJe1nCKkuOOUrX9LkQGwmQ2be+nyYSPi0n/0ogezliExqCCJs4iCUt3EfNqyJIVFmX7/0+2aANN0z3+qF6R51HWQkvk6MCaOoDG7VEqpXDuMZQS7lJlN+k2a8KJKYhldCg0QFBUr+lB4VArkofpuczbarbW/N/VVls3j9bSdd5zKOeqZOlMK42fjS/M513LknpdN0lLLv0sCij6t0ygQ9Tw2u6VLSyEOQ2ze8k4GnHMWtG8tkOPdpsLsW8/cJ26d2QwPiK6SBZg6RMc9XZ320Ty824Nnv37YhQ1UDaGnYmn22ebZiA0YAQL0mmlV6CV6HPHCvcmDHs1cpTv6pbEve76UDUpMesYvkieFUchalldz0fNBSZk+3VgrhcFePhhUmngPjIeiWaRQEXXKeoN4Ndje+0OSIHMoL3nkYFm9R6r127Yo8fXTV9mSuThInwPVuko/WuDqg7L4t+eq/eqzMVe4UkzaS6Ej7z9jpdTiEpVXpemfMaqqI7SbkKoeEaYviVqiF23tLLzbig16D9hpC8/rL4R3OkxD3HRtKYbtCfM2IsSdIEMi3q4BJnYaFbUZKqSkh7mRQQLYv08zHnnWe47G6jb1LqEo6aUCXmVSTuShLv1DOJydUMXQZta0OUdqp3JaSNptJ7wR4vy1c7hP/Sher52EIszlq76msKGzGvPWfENc3OBQfmFORCyWbAbWMvKz+P7PTLrlVVWdSi1XVRuITN+8vPuOYhSsPdZivEnXnX+51yOQbClsqoR41WBKG+XjLU/s92FT3zRDYpljrMs5ot3KJ1OUT2eYQgtmG9ay9YL7pqZudXmRimPrji+sYuotdjmTMF9aXfDumRPmau7XUTLQjIm6pfaGmXGGg1f0T1sgzDUmKuUZUqG6DnyeFZqSRZMzYoZC/Vxfqv1n8rSaGvoeWm79GxBeLPVvHkZFxZnE4tOFftmvnJZZWcY79tucjMJHQ+d2CG1O4y5tU0nXVUTbgs6pIFq34uu2Di3j42sAkl55dUYZXyN5nq00bLJwe76go9NRkJS8ICks6RKqfyQu/9L6edrY+F65ULv/QeK4KW6ZnjpPp/hgpvmO5T7366X7d6C08IVNy3DNZ7HWd+vpVru4X6dfrXtHctGmd0ZrCYXavj8jOuukEX9XBuwVnPqLl5bfTMHmKRtpTJjFKIyDxCcVmrHCZkf1NxBzNEZNF60GWqeH/SVdLhvKUE7b1WEi5nM6uvbUa85oik2/rdpaTncZqKONYDsBKOtPf8hgwrF3sZB2PyLtkIff5R1dtnt+9aBOtT491Kl+8Cebl0M3SqP09w3QOmNcOj4vrvvD6e3/qlLWccxy6xvkvNuNIu7VnbVPzb00ZnyGbV+JeNZ/VU7m6Nkm1AZ3hBV0ae+WH8uWxtFlwiJNkrsnljowZLM7NERwgi2eLH9wyXmHfQFvtMYN67zGcQGw+s7TKjrZazaHLQGW7UQ67PsbeEK62Ozit/kbbTeyTiEmK+bgvzzH2ZlvUYQmeqQdmrdxnqqvG/ejT0rTpzWZcSfQvmVHKX6r7kjCsmNP83XxPJ6naM/p6dDEpjV9tiL4Mpq1dX6d/ThTaCdDk7QVTP+CQp7wX6WqBCNhUuUj5M2nkf3Tay55d263k5mdWMGEk1PuYoifUzKtEL2VS3+21+udKXkkeF+H7hrDJiW2zEuHqMU+dc3ktsSvhSnfoSYny5eQpuel+ptIKtyA1bQj2IhE6bVeVI/WjPJh1M2fXeqoLLxMM6gYZTW3a39Zd3nBGsOy9XX9w5rVpqxgWLOq7H/WPSbLAQO5dwXXZEIi/l3KOOTKP9K11c9nfYsKDapqDhnbos9/KiP2cW1H07hOByEY29RJQvuqiPXS8BncoPrhbMYwCLBKlwNz9TTxad4+SRb+uCNNvRkWO5c2ZvNhXOHUiJHhRBb6/k0s1Q1oH7VzdZfolQE84X3K3xs9SMK2tRpLD6cWCkPUTMU1zCCCnWkPi98szcS4JUW/KyYJhnRDWCe9L+PI4133V2L0f2AjNBJTXKnOuROpR3rCVK7Ty4JzCdJt2oLO19WKAVlzGynMwr1Fjo91mUlrOW7PNzW3nHOqL6nqLaQ1f6Kh3Dk8ILhb9hK1d4Q1PRAp9faFPR9xLThdX14/il1Oy8iRXN+wXrUatVlSXnsWdjMEa/mLetKFLOnpdmnBe5UmmWxPEkFfO6hEovNeMqskxLbkYVwGbTTu5/YqQzI2gWMavhEBu6Pwi2JFUVgWjDZyDGUs9qd4l8obWWpTpHMdEO0yu1L0RWYt67TTd8TaWJwQkR0BTrTAtRqCTIQDw08qr4tzeRSxvp5m1YVWMrfZKuZcYVqkyI7d4jHimWZU20papnmriaJOf0uxKxe7lQmJLkf6lVPMTASTlenZb3L02XxkEhvPVRH+mJTefMovTc39aCRZokISBXepdg9tRAIyttqjCybsaamICEvu3LWDWdTdravPTm75NC02lus0QPjHYjHHZijHbGV4l1muJx5vptcf7U6Y3vF6LYpYl5gqO5H8KLptiLpcVS/TyI6zKufsbbwFIzrhAbfh1hAlpFRVcTPqRjuwO8KB6PajltNxFPq/QIaY3ZzoMyuPs3q9CEsY9SWdI9lyrGIQxMMxwHoiac+eRpUfWMfMM+t4J1ghGHd+CMx4nP3lAzddplqJa4iGHyR+lVw+QRlTgBw9Hj6hwTfwGjhkZjgFAfY6+l889iW0AY/J0wRLuEJLDm9cv8HiVuXiIa+ZxfneLUMdUp+9wKI7fC2DU03sVjTRwmRc+gMOLi2FxP/X6s9jp9qUGQt1rOgjIlCBUCGCeMfINtDXjHml6gZUKDQzrh8Aujqlq58owLket8kr9mqtyrt24hXWtXSdDTclBHKNfh/ATjDaN2zIHpCq0oEyln1gmEIzlSC0hnVRuPi6+3+Qwq877un9mH5o7nGDlZ1SBiQghjDfR8xUPbetb8hKmfoCoYWqxOoD++lDh/4tf6Vv0KNQ1KjC2FwataYB7hCHNEYqDlMEdMVhJSu4XzuSTHekvNKKiGoMhWLG2IHDlTwk6x1IwrdOoUqxcx4pBsm49BJTUFCE2do6h6FBePXJdMdE20HYhXNJ0ZQyBys+p6QOomScHGYjlefYzpJ4gGRpkIfungwtJCf0em5T1OHM63qFfG7Yh9bkTjR4yMo3UO5z3OhMkmRsJR8n53D5GroSSmD1ZMkA6T1i8hcrh4sIzBK9451vw5jA+MK7yz6YqvJEKSHDiK9rmbSIwJQvEeivNNnMvhbCMAj2OKw2G9Z9WNWWk9q24fUwnndDnnsElqluTmm9+IrTORjhxfpbdzbMbOykkSc3j3IEBY5zCt4FzLqD2Ha9cZ+wmCBZUSRWOOI0rWbhUEH5mCRg6WpPEe8609YBelkSiQSk5r6j/i0RsCqKfVKba1jNuW0fkGs+4xxqGVgFqfX6VS2lOS0JgCPUvKv6tn1BQ+OSflPul6ipVfV4xQ4sBL4Z2MNFFoEqw3NB7kYsvK2gVo1xEHxlmsNrEGhRumvsslJsGvYpipnUzs+tBU6Ryv8KBEuhUjn+bnsidwDNmWuLWhTaJmsFuYJhxo6fuCW6CdIoLxo3CeXXaQSX+v0cgZlinCOmM9R8MUg48nAcdpqUHKT1pNkDBdPPYkiYThLCnRcLSFqKJqqkEcNLmkFNdIXRUkjnjEOdD6FmNMCDqrHnyLxOMjClONv84Cpg/aoHim0tJKOCl0xY3Z31pGbYM2nomfxGNNFKcOYy3WGtrWVTXbRQ4QJ0IwnimNtRgniA+mGGMig3YwNitoq7i25YL7McZbRr5BsuYrpKNlwjwoB4/vpS9y9oiiMsV0CICGTaiitG6KV0fr4MAE9q2vs7q+n9a0OFqcVowLzcup2btwQ2KciNiik7Iqjrowjy2mcz7dMhNzgcK0DAbxBmmhnToutE9Ae5EV2YeoLVp17MMu8ypIgmPxzNuE+Wqd7jKoRYw4BECO5aVN0ihTN8VOLePJCiunHb5xOAlachhf0mFcPpm4I+OCYlUI5q406vPbxbolgZSKKcXn8ll4OefcFklYMGJQDUd9GNMEC4wXDE04cHW9ZfXiOew0MC7rbTzpOFlqUh8WpPX9ogdRDv6Mz2Zd03sMoU/VC9aGNnTxWJ/AzOJRlIm/QDG5SqCdTsOnkXEYO07yJv5MK42gavG6j4kKDhebJ5k7dz7nl5pxrbgfMVLhRvsYY3caq2tYJulQE0Qs6fhIH9cwxDtEXaSTQcW1YisH5+RWHlI+EtUQL7ZIb3k9SSV0XHSlDQxFk4CC4DHxHCHRNJDjAEzEjtjdPpgyW+NwtMgU9k1WOHjmEHbdROIZpEgVxfkQkV1Ewpk3aTTv8ppLWGwPdRcJ2lVydjJEIcALI22QVtA15fr2CfAGqw0WE5l7atHYjpgYI3DvmBbVJFclH9+e+seQBJogAaoJY2V9fYL5wRg5Y5EfGNZ1HY0nv5l6wpn5RPyqhy8al6jFYsJhoG3DkXMXcK1jbFcQV5iWiVpzd5NuWZuMGUfBb2+qncybIibLOyowdRP0IugU9IIy9VOmfoptiiAg4cjwyLhCfkYVq2Xeh6N6ojkhx03JIirGF5Jp8vqZlmej5pNPV1eb74v6eApBzMtY1Ic+sDQ0dgQejl6cRppkIi2LVo1Yh3lNGyxJitdidk+MLht5fdT0vIkWWEGcoFKv04ZGNT48nNvKRwN74t+Rslk/AqfQhjVGYwSsYYrQ+hVa9jHhKKfaQ5xzY1qiBaZitDvBUjOuo+PTHN3XcMdTf8xBd4p9eoaRXsD4Nk7IBhWbCX0emlrkIDQdklcMAzkl0YRAkcTSE+nkXyGYIIK5IQTJbCMBDBYdR5OOAvEOzVJiIea1wKxoWL8yLpy4O/aM7BgBHA6fpDuNcl5agE5uUntAMBKbCYzLZGYQGGUwHWDAegmmy7HBHfeIM5hori2kTjtOhcWpY/crnshNrcDktbqq/BLyR4OUKJ6JtvgVgzbgLUyZAoHwmErqr0pZIlSyuRIlfhv+aYPb78CBlQbxyXkgmQohv29anK8EpdC/WzheZ4cw6rNWkJgWxuA1CnRG8WNP66c432Jt0togkTsFfDyAzyg0PmlJEq0zmi0t4figinHl9fPIGPI6c2JyyWSXKHzRrEV8VxMyyQwb6yLhu6bzTZKATFVeD2X0FTagAk59YZBiMT46rUjR3uKZ3/mXkhxxUCQdxivpkNdqjohBNZwn1pjAuMR5TD5t2uDsKmtykPP+ID9YNzx4TuHiPtbcfvANYQnHUtuJtoOlZlwHzVmOrRh++ik/4qj7K1b94+zTcxg3jRPOotJEFakMLCAPhWSyS10W7qVRU6ng0t0AmJiOSY4JPhJkA1N88cj3jsYE5uh9Gw+2SyYXQ/F8rIafeHz8TJiEk44J5oV8UiwSz+mSNL8q1KR5O+nCmLv3U9sI9ZlaBvDSkswDhmAKMdYyOjzGqMkELw97mWVcVO+/m8jHlVRvOY9x1cKDmDChpzhcE02yokEDFo3HDfnCbLU2B+285beS7vfOzsvUcBJ3SjuJUn1gX7IStSyxJJ8FkwlwQYrpmGsjaYbt3VEvptpjlk//NibOTw3zpmlx2uLVYQ0UxmVz3bwJAphVaJI1EbL2URhXOl099rFaaktJTSe6psXYIJnSBMblq7Voicd8iApegzt/OALExu+p2MV7H03+G7cFRdrS+rQeKFhpME4wXrDGZm6norTekX0Da8blHenIIpW+Bm3CyTceRmYUlVOlERvPDxTc6DrOyxFOu3X+/NwK/8dazqhi/AiNp2rLJbCfpWZc+/2jHHE/4On2EW5wD3NAf8B+zoe1LwFoYjd4gt3cRfttdpMAwkmpXcYVzV8ZyW5bjEQmDjijQqOSVXUFHBp0o2jjH2EwIuGalIFipThrSFbogwNJmkg04NqWdA5WcX0MZs7gXTprvtkaKasdcDdKUyZ2aLLCmNN6oQFpPRbBqqWJdvQoEocsRHFxQbaeCIsNIJeGet9OfIWKtAj97RICaBsmvBPCWoTEY91Fw/mdAho1eqpRNA8LWz4J6hulF/x2t8pR2vCchDVe74OpWogmqthvkkyKpvuetawesq2Idl7P3M3N5kmWL9pRIswpDJfTlomfBq9h48OajZtSj+VwGKjgIiO2PnyS6BG0RR+dNZLZrZyPFxyKeqNK0vtXoytbZJKgF9Q776ckAVA0HG9PPKnde48YYTQaE5fMSwvX64Gkk9JtKFMVXHAIi50VahLLb2jQNcArIx2x7iZ447FjQystLnpZB5YcfQSMy0sPbWK2IqSKCUFgGJtxds4KZlQBRkz0KGd5Kj/WG1gDVqfQtILh0I61rBpLzbhW9AesKozdXzFyjzJyP6KRizS0UVKw8dTecC6qqAefFlZt9pSyQvYkFAHvo8tnGizRJTctuEJ0a1fJ+y80Kd6qiAndq4QJL9HrphFomUZzn+Y8wt4Tm98rD1ZR8ILzbbhhBTTZyKP1Opkaau1IPKgpE0pNkQo3TROpXFwU1ziYq/0ZjrBw6/OJyIJVwTqwGBqxiCv7zlSjDhulvK40Ht92C27I20XHRTu3TSonvRuZgYWrYfKrBlnHo8G8I2E5K/DqKACJdFa8FmlFG97c8Efb+/nWfhTGlWaPLqFpGryPDgNpw5oSFvFDq6EurWWFmz6lk7etlD17Jo/J3UUypYfxYuKacbghBlpxNKalOTjCrhrMStBksvYUHYNUgrAKYe6GrR31/AkCSxmr1ejQaN7rCYpaWXSKMJS8MaNXbjy1PKy/B+1Lchg0ibTDsLLPYEcmnkqtOd8iemmn7PDzWpqUbJIUAVlX1n50kenpCX7qOXhIsPssq0dWccaHJYmsbQUnC1+ND2PSep3i1eUyRJXGt+hFhzvbsn52GjXzEeI9Uyz73IgVfw6jU4wojW3wPmpmMxrq1rHUjOvI+DSHVjz7midY8ecYm/OMWM+WUy8WIuMycXEUBcmn8powYACSrCGKtcmT0BdiThySycznTdyTFeQ41UpKs2UIGzH4qYAXmpGATKNElyS95ORhOxQor6cJWHWoEGzImtzG44m19WBN0qhoUWk2TS8gh5FZSyWFmbzwHEhAIHQ2tIMDG7XPRmyg+oknZo2WOeqDr6bf3sCo5sV4tPR3zbjys1WIAI0EQDODjq3sfNBARDpkZKY14wUhtNlWnALrDbwpXXXHlsvZuMzcMQA0vglStyqWMMbCOrCJBDE5PyfEkRY9MXM61icwrq30zPbhiabm7CxCDg4veDCelRVoDoww+5tomo8VKzMkehWWtirCnxZNKzPKci+5fc8yrsRUUn7hXvJYVMDFzbdCFJBdFA7D5EK9x1hltK+lsZLr3F3m6G+OS8maFiSPzbgmfVHxZyd4uwatYzQyjFYb9h0Zo01YSw98SbPW5r0rVTNBgAnCnC/CAgbjBG8cbrKOP7ce27Gh8WNGcpiRrtHoBNGWSnzM/3aKpWZcT3/qj3jGwSnXH36cI+159rl1RupA26C4m7Dz30hUcAWMI/ZAiAyQNCjvPN5B62G8GiS4TsOmnoM4bmzeuGqEYJ4geuCYPJyxAuvnQt7jVYu1xXHDeIqXlLYdeu6rcn2cO9Z4orMPxHLz3g7lEofCYsRXCvWTxLhCPRoFWsWdbzFteKd630imrPlLYQzFE2sPGNcMgyyXu2/WfS7QitTPpiPcFoVDQU3Q0r3LJL3W7OaJBDWpq/johubBeczqksuJ2mJiyqY1iA/WgiQclQYLuVhT8qludtoz3Vp4AO6lIOaZukQVrJqs+ScHIRXYtzrCHBI43IBNazXFlBdoe+hDqGTT+r0Tr0rbGJIE4dOL9QZYxRypH8nMBjSZWyUydl++I+CdgjjMaB00Wn16a/MBPbOtEgTFoD9SzNcGxATvInsB0QkCWAvNSoscbJCRlh3QPtVFsPVGYw9ItXUlvbBacIp1LebChCnr8bZhzAoTs85IJhhdB7eObye0borDoIxm+3gb2Bbjuvfee/n4xz/On/3Zn7G6usrf/tt/m3/xL/4Fz3nOc/Iza2trvP3tb+f3f//3WV9f5+677+bf//t/z4033pifeeSRR7jnnnv4whe+wMGDB3nta1/LvffeS9Nsj4/+4v+n3Dy+yNNGa9iJQdxq4PhxwIXQTmnHdpBupNJQkpSiTuHCFLfuYH3K6PhBpBH6dusiugWpIozpKGmJx8bVrTBzI3fyI9ofXkDWHaNDhxjt92E1WByZw9E3rWieJ8QJ2WGcHaR3qt2S5+0TWiivbyktOTKJwcYFW5xBpiP8hZb21OkQFGAaPt2e1JlJnCdFaub8vmxMtTdLz6XaVZqaiPdduXu8LgvaRTsp7+PAB83eVOXUadksncqr+WfN9DfI49LKCS9TnnXYemhL9aPUbxUDryG9v3shOAHZg1CL0B6IqYD1YQ6G2Z5ctgMTwLogrUp3Lod+7zMuoGdl6XZIKLPcivMqO39Rvuf8Ujl5MMX8TCQRhV6Ji7SEVF+dk18avHVHp6/p9wQX9WTul2I1aRJZMgSpM0mbWTKLZTAt+Ropl+sytI2yZ5wLnrwOPNVCFwWlsZ5x4xi3DueL4LtTbItT3H///Zw8eZIXvvCFtG3Lu9/9bu666y4eeughDhw4AMBb3/pW/vt//+987GMf48iRI7zpTW/iVa96FX/0R38EgHOOV77ylRw/fpwvf/nLPProo/zar/0ao9GI3/7t395W5Y8deoIbVs4w1rNIMwluLj6u7RSv1YgkslUx/5K5oJWwn4KQhawKMi6DtTuwKV/SpI4Lr2kRNTveqQFn8WPBOQneWqsCjUSJr6YSlXQf/ZjKwImsLDG56nUqL4meRNSffIuuzbwYXYmykvaqdhMRcBYmFnWKM2HQmvqVFmIO9esLlTtNb/RaVHOvSi9cjpE6Rl9gcvUSWacfdpKeW+YepOchdm9iBoHYBwGojK0+Ad4g27pNpXNpV9GtWjxaI9P3NLcrDqwbNIpSft+vsS76TV8i6r+lbPzi9b2OYBDnPNJlWvXA7ghf3fkpUnUoVMwtrF3PrZIkATqZSSpHEh8HRd54nEz6vhJ8Yl37AhJUWntgYMGL1QUmp4nZs+NBsi3G9elPf7rz/SMf+QjHjh3jwQcf5CUveQmnT5/mP/7H/8hHP/pR/u7f/bsAfPjDH+Zv/I2/wVe+8hVe9KIX8Yd/+Ic89NBDfPazn+XGG2/kZ37mZ/jN3/xN3vnOd/K+972P8Xi85frsM3/FqjkN7jzapI2wNhJWsiQRmxlIC8jhiprgBSMWuOjx1tMa0LFDxqAmOHWorx2eY+SL7BsTJQurKA6vDmPicefqwUFrgks11gem1Sj58KM8wWrNznel37Qm4dP1OKDSJNX4m0tY7NwciYhpHN+RcntBrdBqGExJiOz8ap44Xjl71I/sDcpkrslOp1yZJwHOEu45XuF7XPc9QBxOCkUBjuNM/Wx31cxoRhnpIzGtLQkw20OuR6aJcR4He2GYnYYizHkptvvKLT454HT2ZeSXNV1BKpfXf5mqdUTC7zahwpLWnjqNUxiUxskjsqAs6X5PwcIlmUprRp6eF819nOUQjVRRlBxI2VDRFF8YSyc6SFnrTM5JRZmMziR50bfMHVUfohV5F70qfdccvQNc0hrX6dOnATh69CgADz74INPplDvvvDM/89znPpdnPOMZPPDAA7zoRS/igQce4Pbbb++YDu+++27uuecevvWtb/GzP/uzM+Wsr6+zvr6ev585cwaAsa4xknVo2tAw6hEmwfsOSCFnxBtIXnups5JKTozFpcllHogREjwOg6tC9AMUtSKNZxGyx1BgYz5sgvYKU8PI+8Kn8kIYXSrY6cck5VRfBbpaWfU7JU6c6Bkoe8DA0uKCT/U2MAGcRbzSYKF1zPN17QqvtUP6lUI5CCfOOQCci3SrX7FagKcrxM+cZbUsqN6nM6wWDLH0k03Rlwx2Gb7siyXXzJBd4q0A56bhgakHsx4Xk+ODuS8ldLiH3BAikfN56o3DOT3jcaKk9an0tapcVxJKG5LT/Mi/iUyiCR7HWBjtt8GmF7Y7gU7JkoapCyrT36SGSE4aeQO0pFWS8JAjhw0N9ahohkuqtym/R+NqQ+BQhq6bTtZAUxSQ/Ho28r8YUi96yZgYoyVsPt75QNkx4/Le85a3vIUXv/jF3HbbbQCcOnWK8XjMdddd13n2xhtv5NSpU/mZmmml++nePNx77728//3vn1OJFvVTxAYtSolmuuzpBEFN7YhpVesWSaY7JJOOVpsVu/fqX/gowcSlpqo7DIjFIEFbWnNh8DSVtDPHfNGpGxDsxMw+C3RMF1K5LO+2tNtxn9Mw4aYKrkXWXIhfGGTKOLfK+tEi2p7m015BZtqyKq0Xj02olhvSM5ofzV/7ZsVtEfWrBXUz9JXKRS+SNDTp0+95P9g7bm4SY9WgaQV+U7ayiFfaC21Yt744jWs4UebyhO0QEnST4GlMCFZAUtICrai9Bsv6c7V5Ps8zyfWp374iLfV/mXHV4dlUFG+gNQ4ZBxd6e7CJAnNa/tAwQBXSoJXKAza2TtQiqzW1yIgkeno6H+eyl7BZMTGupJ1ma44tLxMjeYSwdibQRTHByyM/pyEggpC3yKT6BZqYKEN287ok7JhxnTx5km9+85t86UtfuuRKbIZ3vetdvO1tb8vfz5w5w9Of/nRQj/cOa6FIX3FmaRGictDMdN5CRBlPJrqyk9u0Jl6dZpaoa0V+kdbt8ydp2LmTgrs4XtELbVDq7CZa0UJmuYUOF9Bd1rjC/JFeNRSmgvgJrCnSBnf4sD0xPJitIukNekRvHo/ulLEb6TrrZFqSsk6Y1pChMK6FdLcMreVGTVTTpXltJrPpzhIPpa83Kmc3kTRi76rsJTAvjZtxpxccuu5QAybSVU8wCKRh7ICxjQ51bWCInrjxXLqadJ1OsS4VivdwlOOygFNb2kyhM9q/F5UbLzCVsGTcrMLKGMz+cSQRk1Bo7Y2Tli7EUE7EgHKck0mNEisZthYneVNc+NCaZFuNL1czLl8mQ+JIBLoWsrXgm/hRkid3iLhSzJ1K2gdpEGkowYfhUgbIjhjXm970Jj71qU/xxS9+kac97Wn5+vHjx5lMJjzxxBMdrev73/8+x48fz8/88R//cSe/73//+/nePKysrLCysjJz3ZsxakbgpyHQLSAuxSYMpr60v0MSB8rikgA2jsQYwiTzNhMHR5JganWDMnE1rKXZOBLTEBKkSDQt+HWYnlUmFy9my8JG+1zq7VZbRj25dln8N5ACj2Snl0ToRqyFpcR1Lft3EnGTPN575re0z6dHQat2nfGcWpTOrvZa/Y4uJdbqcQix4KKncHo3VcJa5yZzSaIJpbziXq4r7iXqxbq49tsbN30mVZ4O6JrQZ7HLwzCUnbYH5qGTJI9g2QhzT3HxuZEE2ixE+mpCj617ZTwOG+V14rFxXGfFIwughXHV8ypZ4HzUKIwJIbIEE8aXJ9OHsMdTURuDR2nQcAIDMHHYOlwDtrGM3QGY7I8miTHgIvPQLsduRuDj/iiTpGipKhs/a4JtDWM1WPGMseGcvHYMNMSAndEAlJikyZpdbAWSBStw48j0JiZIBOoxIwmnQzgFa7LmFRS8Mc6McDLCaXI/m7NgvEVsi3GpKm9+85v5xCc+wX333cctt9zSuf+CF7yA0WjE5z73OV796lcD8PDDD/PII49w4sQJAE6cOMFv/dZv8dhjj3Hs2DEAPvOZz3D48GFuvfXWbVV+ao7RygrN9AmQNrhshzEcNh0bXyQSpduZSaVWA60NA8m3GCbgx3GjYVtG5hwxtWhsxZkiLI5GacSNwK8guo7Q4lpPoynSdlHt5vn8bH/Sl02fplSMDYn+3DQz12qTqUAmCmkjtPp0QGaQ3tJRmMl8m3iIUsIshSJSWmcl/u0IYwt+l9sDyfVQkRhBOwqXSZLVYARBqpaIET/ScEnZ1646G68nbrftt9M/Oy8nEM8u46oFpXw+Wr+UyqGmlhdq1LXc7U3IyQwezHVpLocboiZ61hm8qaK8uCBtCRLWx2xkFN7jW4vx4aijtNE6BeCux6l2StPynibQEI+EaBAS1m5CdJ7wi6Chh/ngvUdsZIpxLyBIkHFxTJxD1g1yRqBdB6uIOIy2BGcmj+TwSwQ3f41zjXQ6RKJvuRdopg3uvKKtwXjL9KKjlZaRXceZtkQJ0VowK/tKTZrnmVbFPYxiMVOBCwoXPD4pD9LgJbSHNxY1NjP5oEJcurlwW4zr5MmTfPSjH+WTn/wkhw4dymtSR44cYXV1lSNHjvDrv/7rvO1tb+Po0aMcPnyYN7/5zZw4cYIXvehFANx1113ceuut/Oqv/iof/OAHOXXqFO95z3s4efLkXK1qI5ybHuWwHdNMFSNrYXe2c+RjRU08il214j2x0VTIcbdaA1NFnYTgktNxkAhM2GBXdCnmtrdQmRlFQBtwFvUNMh0jOkI0aYaWEsdMKCFd5ue9CH2akCNw5CvV4nJn71TNIbaezqFk0/yGsCCu8a/kMJ+oujg45+2PL5HipVOvXaZyVe1DhIsQViqE+wkRv0O1TQja5MmRUMqPC+Oqtw912ke6d652pDc0HXfC+YwLum+lKfJDbRHojdl6DF4aaeqiCBCJcAeJPWiFUrpB6kpoFFaDJuQ0MOwgw/rgEasaw7OZvJFZw8tmAcVU7gi1kUt9IOAeg6PBaTCFISH6eWbsEoP/SoqVSmayyWzmxDPRKd4p7QUDU4eIYozD+rAXVVBs9CwWYh/EfaQa3dcltUsS1oGxF1gTaBsMlnYyiVKniwekhvolIhZ4uMvNbBPjiky2ntXGC2YCMgGNJ0EgDR6Lk/DBhBYMnoypk7ikKbMtxvWhD30IgJe+9KWd6x/+8Id53eteB8C//tf/GmMMr371qzsbkBOstXzqU5/innvu4cSJExw4cIDXvva1fOADH9h25R9+9GbOrU74yfEKq/5xrL8Ifp0SiKdEwxKTj8/Lsy4FyrXO0F60+HYF2lWmT+wDSzimPc/haiLnGSnFJJyIeZTCxAk4YeQMbm0/zjcgU3wVkzDlV02FOeRiFvPIvMT3KXL07jKudB4PvpJ2TYxqTQih4+MheRo3PobJVTMu6bSd7dg098DkJqVVWwhmmcZGCRdcPM7CWhPMhD3m5WeiYtdIvZA2rC4H4wKJzggmC1BA7z3L+3TNY0XfnHnbqg3CMT97UXcfjSZxbGlyjEhOWUkrKKe+jceRmKqEOHvWFgeudopBaWREPp0472XqmVLRTtBmBVoVnGlwZsQFGqZYvDRgxkHoDbyBEvswMEBjkoVCSJHnxcKUdRwtTFrMtMXiaXxL49ax6mlUGUvQ1lR9PI/PxjW/aXRSiQwGsvOKkwY7teFQSjOCdoJ3jkkLE28DWzba3VoVT3E3SHS2DlHlvQnHmSSmHoJqh1BvltAHXg3rOuKiH7GmDVNjadXhtcXQRhPzpZ0gIHqpDvVXAGfOnOHIkSO8/s7/H087ZPn5p0/Z3/6QkZ6nMS0mRixXBRNj1YRdVglBMwgmO7Bqg8blQ/Ry2WdC4EnjMVpC4PSPazB5EMX9DVGiFzHgA2FYYYy/2KITj0yFcXTWkLgeoySi4bsa/gbQ6m8t3Za4a0COlqHbTKfcks+f5LrlsqOmZawJQUyJtkOTwgj5eNpz+U0hjKHWKbJ+MKXo7tuVIDJTwTeWdfW0Ak4E14To2cHWHk6mTg40yVwIXU/pNKNL+6Y6+86ez62k+/EEZ+ITbjO/7ZQT7wbTWj3gNhl7HYGq11dhpJTZ0Q/6vHtIYkgqP8ztZKQmatFefByXSRAJzgnex/UuIbCM6YRGPSso48x3Q909YS5DWgLS+EnvbJg2lqlpmJiGM9KwhmUqltau4KM2qF6TVBm0ffV57FsbovJ7VYwVoAVpMTqlceuM8ayKckBbGuewbcsYHw2fytR7JEUPie2dxpFLLaVKQzARmmjKS4PYi6PNZnOpcwiMK/9LNLSsKCYbjEEw6rEa74pBxXJBDnDWPJXT/ga+e/EWPv6nR/k/j1/PoxePs65H8IxALwC3cfr0aQ4fPrytkbDUsQr/zw8PsbZ+gGdfJ6y2Y8Z6nsY6xLcxUCjYGEbKa9x/kAiwRkurhmVd48LMVcC3PktJJq1zEAZrjXzsd49x5b0UCCsyhqkirWLVMKIchZ6JXiSEG8ntHbqfkj2C1WVctWzYT29P48qEos4GwXqT17M0H1wX3sTO1SzTG3YZF8Ilb0ich1aEVgwTsUwawxSY4APjkkCcPBr2loiEoyGiFg3Bt6Z63cy4OgdPUlykTWIWVIxjg3TKoSM+KJ38FqW3U05HDMljpds/NfosZ7ZneowrCnAS22LvGBckR6kw1CrGlYa2SNG4YqNK8sRBYj09VjwNLWPvWHGOVaLGoWRNKBHq5LsQTkuO74xhnYZ1Gta04Qk74kJkYmtmFOPxSZ5yKgJGcD664GuIyu9cCG5sjGDjvtFGJ6z4NVbUsV89R/CMtKXxLSPfYk3w3JtWh2o2lL2JSvQ500LnjMaAyU5jtPew/pc1WAm/l/h2Gtd8S2jp0vNpjVEx8XQMjQd8+sy4LsoBLshRzuj1nPZHmZqDeLOC1xS5/tLm+1Izrsf0Z1D3FL69DqvtD2n8BUQc3q3H3fSCtemMmDCcC8XwWVG3KrmTRAztepvdZo2GDkodVcMWRR+RMGwCgyyEyIrF+mgLJnndxZLnaBn9K1mjyiasxBRrIhWYbHxw40br8LGqDhukg7kvHskQj5MQDwaLmMC4nHokbvxWBesbMldOi78VaxaIZxuRpf3d9oacWsOaCI+3Bjl8iKkVLtDSCnhrUGNxBO3QiKCua65MkcWTtpEIf9r/E65ufqxJh3HQ1X7mpTMT2yC/Sy1nMWTbm6q3nvelo65bjoGsIN5TipYcwsoBRLMctoF2inhPg3LEKqP1KeP1ixx0jpFXrFesB2+SYBM3tmi4HtbDgln8grdcEMs50/DjZpULzQprzYgzYpliQSyNbSKxr+hCtC4b05TTB9DAnNSxqo7DrLEynbCyvsZR79nXOsZti3VTGiNYa4IHpHfh945cjkLk6Wl0aDz7D/xUsSZoXs5pOIVZ0snPPe/pJMlHTxyVGFoqCg0eg419L9GTMmhkhomsMrFHuOAP8v2L13NeGqZmhFNbs9cdj4OlZlw/bJ/OmbM3sPbQD9in12F1FXWT7NFpxOBTaHVAk/eQhIMf06qXUfLeCBGTbdFBFQ4hnmY8mYjmEVXEB4kped109uqKxPN+uppQIoh5mHQ2OJUyTP4u/ZI7P6vP7fGbMa8dIB3zYMSEfSA+SHMSd/I77xBbdu5bb/O7EqOKdNaCtPtGyb14NzGxwmRkOb9/H9cfegYyXmHSwLp4vBHUCK13WLGIGHzrguaV1krSOBAgbVaF0p+ESVp169JAayGug83Wp/o6XMitTofjf2avb6BnUno/peeXk465T22upDkW8+rX3RicC6SyacbgHKKOxrcc9oI7f5YLjz2G/fFZxh7GSGBcQvfoEw01s5oYl3DBWi42hrWVEfq0m5HV69H9+zlrDRMEHxnXxLXxUNlgAdJ0aKfYrOFbFNNOaLxj1bcclAnu3Gku/tWjrJ6+yH4V9osg0/WsdZY9WMF6EXXRyGACjUvnajXWYIzgpw4T+zhsAQmM1aviNG4fiozN+3gYrti4H02zdSSSzLhb1WA1SnliUAytWlxzgCn7OD9teGxtPxd0hBqLeMPG9qXNsdSMa8IhJv56TrWeMfsxOkX9NNuxjZhwVABF50obqZKUk5XgzLjCk+lXommBvjrHKSMyLg1H1medQkqXiETzRFaIpKNhaJVXzr1iXFnLQnINio+f9OiDj/d9ncVCLCRQc36b3MlF4uK+hvODJG/CdGFdL2qEHXfriqlWqkqnIJWtD+O6JeYi+PUyVZiK4aKOac1TMTYyLuPjXjShVRdMhQgqwVSYoyHETemhlCLRG9+Jq4DugaCw11hcZ9km45plLl3GtdX11c0YV0gnM6SmTWaS7oa8utvRAiH1UQuxpkEknMtnfcvEWyayyjkvyPQAYy+MEIynElSrt9aaccGaF9YUJqahkRuw5nqwq1ywMInrq0YMU3Fxi5VgTdz17Mt5Z0I0t9FivWPde6bOMZURZ92UfdM1VlXYh0HbKSk0ncmbglMLJPqTZodmE7x1UQt1UYfMSk8wGauGU9uBHIfQp/X7uI4WiGhs55jMq2C9aB1eLd7vwzGm9fu5yJipSOyLWoDZGZaacbVyECdHeUJWg7cKIShuR5cxRTom3UmKQM244s0uzZZoKmQhI5CZ38yaSzouwpqYqOCiZF/VLBP+mXIASV6SUu2FyCbEijmk/zdhXotp16zuUz8qYmbu599str6RmFjvua0w2pxFfuP+C5SJKgJto7QjmIzA2mOIHbHeKFNbvLw8iREFz66SE2SHma6skiXSUO/aMLw82Gh87JxxhfTOGdfmeZc0ca9lqnAU2iTVPz6nphxHruFcsbDzqmW9HTNtDnChWYXRlMYLVk00R85rhJoeeKbiWbeeiRVWm+NYewDMiDVRnAljzANqkzUmzBuj5CgtaY8UohgJMU2nDlwLk2bMuZEwGXsuttB4wTfxlGJiAJ4oINbWgflzKahYpoFFG3+TM1L1C0Bwea9joEGpLfJp4skUmzqAsOTivQUabLOPdTthKi3KpOrDa5VxscqEI0zkcCXV10Q3O8BvRsM72EsB2sbR5SV5QBVWIx3GVQZX8eVJmpTg4x60ctqs5jaoq5/XTXoaTZIg50JKu5UfFfPkXmHGI65Kd9dqwk2Pdr3wsswZftvaFm89alrO28NgG9YNTJq05hbaFBMZV2dTbiKENXGN5fg0bRTE9Z7ZDgGOeXTSe0HoL1c5Kb0Tj9at5Z3GPwhiytj3psz7DuMimF9EQb0nHCwcHDRaRkybfZyzK9CA9QajNhw2mzOrNohp1X7iaGUaxpcFba6nMWHP0iRHl9F4CKxSVJYQwtuZ4Ojhomk9yXFGoQV8A61V1qxj2lis2nA6dXx/QbCu0AkvYeFsXjCDHSPSjCxga2Ce2Rs6jadOWJzEuCIzVsOYEVM5i5M1wjqDXrKct9SMyzPCy4jcCp39NF0peB7JlYVq1N7Iz0KMqiLF3NBf/A/P1TvLA9PKphBJLC5GA6DrMtJnUGntaJ6EvZANVeY8kbp2l4lxpXSc7/X617x0FlqpN4qCE4NKiDoQPD6j2SibLNKT4WPoT8AgBpSzj8L1QDCzaN9r29pbr07Xfdrv383S83C1lrOVMrdTTr2tIjnzVJJ+lK60c6yIVJ/4fBxUGtdqRA1ODE4a1IxBwMWo5SnQbk9yq+rvQXzY54eLjhc2mNRymaXWhemVtugYu7PlpRx5q0LYEyoWJ2FtSL2N2mwYfz56SiYhbrdjlBYGFeaBQCwzbeCfS1Xj/6XtNTpyzI6NnWPJGVfcmR0huZmhz7jmwSwgxhur3DtD4gUdmX5eGQpp82N5n+5DWklvJh3Kln8h3U2jdOZ5tz6bvV9HENh7xlXK7dV7q+mee0d2kxGXSYWKVJOxeDWiaTG+nliRuFRSfocOIXSJ7IC9xIzwlYS0NE5jPyILxqqREBCdEB4pzD8BGcU+tTi18ffznVfCpcxe4jhQkudx4nll2spMxcNm5qTWxdiq86TKtLVGwsZmlXTOSdy8bBIj0Djnt7a2vXXM0lOfmc9mFpgk+Enn022P+SbLrWC5GVeP4896/RFV567UV8lNc7G7nV9KhrI3aCHSwCe8T3jcLtQdgznCx5+ZimmVd9be+9f12XrNLxPTmlPy1tKKJiYisZdTqANp8xQsJCc+uGGbSCFi1bW90MYH7ADVXNnS+KyEHEhmeqmk1L7mOIswWko4s5BvrZnMKTIJO/G7bGVKJek5+DICDZrJtSygUTtnBBuj0g6BRI82ngeF+mquW6UBX8mDJK8OLO79LtMqzxbb7I6y3RnmaVbpb/9e5jNasZ1ERPuZpUGVTFr9/FIBPe1ty+93+RnWztDVlLpTraeC5mt1e/SomlT5de4tS3s8mVGRTamuRWpeLwGULqu0MgiewIQIKvXelBRNROt1mKxdl1w7ZmYtm9BVqY4+mR0rpT6VyS0JqArGB3nLevCeyF0NM05Pna9SjevdRpdA+d6djdHdFF0Ui8zCd1yr5Wdci979UonMXg2EeVWaK4FplxajzDs3PtnIswQ41+7c11GezMR3k46rBYbFtqDF+WSCNse0M2DvMdMtWhhTOvFcq0drplWR3c7llI0Ghpa+a38+zlhzundTCTnbjlYhlcaXiHb3EMq8X8yXaB2FYXWj1Zc8U317gtduYcaqNT89+7v0dj3tsDO/dl7Z5WZcTzZiMcNTugbC+d1cmzbmNcjcUfMkRiXJ5Ulvyrlg0Fnf23jqzLv7ZGf8Vzfmt3wVvVC7priQTAbimZ/FDc21dr3FbR29fLZX6bTeU4Jf12cuAxv5mfW+XJmxuBnTSkJDn3fvFmddbsa1Ef/fUBObh0W2vF1G31oXezhLh704ePW+iRI1sC8FxUk2a0HscrxF6aUnxIsmcjLlxC0BWiTZfOy70dx+fdqQDMs5/wXETKvnt9PstdFkJ7+7msthD8qkk05WhjT+07VKK4oGiNoqUf8+7gMmm+3iI+H4liqvsvu2e3xKeklK5PiOTSTuL8tnNmg1xnI1kxOIxccwTU6judEIMZQFRX+p20UXcIjdwqxVQed1SKrLwmuJNvW58TUa8qmjZ8/eWPh1PqGeY5Heg7HQj1gg1YAsd7IPXHwmXp0zNjS5+i6q7yLefinvtuvmiB2WIzOJ2d+nMVK1XbL2SZ74Zf73FaqukFgzsPJcv5qLdNyNdN8tyRcbYDfL2ajMrZaz3TI3K0fm3J1dww73alNhCCqcOqoQ0rIOFmuRmNaiSvQv1+OmV8e0tyyNsTriTTcXpaiHHtR2LH6d2d/nIZ26lnbYzT2oMya+fnPntM65NpMb9Vtd6l6u5WZcMyOtug7UU0PmtvyGOW/xya1D6xEfa9X9Vpfuq2+zU7fzo40YVyfPRRksEeZSu3nvVjeKdiZharKu8Kx5s/PiMCnMlWy3y6h2mr5c5VyJMje7P18mi2Fxendnh0iVo3Y3m5fnal2pCl+UHqrHhGpn6ac/JIpWVJhXZiwUsbRUQEFCZPUkQXWznH3HMF5rG8z2vV3rWNobPLXNTOPfjoZl6b7DpTEtWHLG1d0wWqNP6LcqG3aROraO6FDSJUbd4mfm0cCaPUlnlkn1jM7ZHzR3Etccdqvi+aVikQxQX9tuejvlbPYbiNJ12CiaGVf8mHjkQyEaYSzlw67n9tnihr0cTT5gDmT2S4rbUV8WYigwY8CFIzti1Nhqy0T6penQ146EUz1OFXOUGMFDUtR3IQS6DuE6Kk2rqplCiDEWB12KeaqBtqQjl7rzRfPFsBfNlANs0yMb0qxZetTf21k/O7+dtwhNP6yJU9qE3Le3bh9LzbgCZObbPGmro3Zvk3ktTssWnllQXakeqn9T36x/3zF50LtR/UT6Dywgq1q11dzmWNRGWuo8M9K3mO7IERtwtV7bzFZR4xlg3RmeuqZsQPZlFHjNkb4hRMBOJwYY4oqihryNav6ddqTERGzCt84JEul9tpPO77md9FVcztw+3Ep6kzYEultZtHziGSdpWKYV4RCVPYwDE8dKCArrCefiKSHIksahWbSexFBSWvIZVaFMryHSvHofDpmkIss5MnsIWRWq6+K5V4n1xHeS8EQm7YU/hUW4xARTkPA05Wu7YqUCboseMf/+7LNdCrpZ+Ld8Nw+HmnZtnw73sdSMax5J7jbvMmIO0+o/UdmHNf4vWs6LyhKNhHS53ssn8Z0593wVV6QTLU4ioScc2JcC7pZ0IPIGQzqDq59OgZkCo4i5qxCk3iqdD+Sc1wgay6oZV3jp9AsfosKFNtDEtBw4sCI0QKsxqoYI1pgYXEtBfZF6s5NzRRxmGpKK0PfSCCGit1TptGAf07mcSh1UMz+/3S4np7dYTt1Xi8pho3K2827VmABU4jEyCiopoHYYjaJh7cpGhqQCrWtRExwgGm8iDwibpKwb4ZwDvx7zGIVRLzaMF63fJ7Aam1miA6aoTsE7jDpG8UBSrx5cPPsneynG0700HfcTonh4k5hWYlxhXAbtLTLOGA1ejI1vGtrGJyaw1+RO838RGxRYM6bqJ6Hd03jp57d9LDXjupYRIoC1WD/F0gIu2u1TGKNu0NFuOKyUx+Lh4yPTMJCPgAdQSUdLgIpukI5MLAba9JHRhHQ8liGn57LIKj0PkXHVGpd0XYqnrONMi2unrHAEK4aRDecOAVH6dXgf5XBpcPmkbI/1s+2WWG54T0I9a1erRem5gWhZkJ7DUDbKezfKYZvl6KWUs513644D8aXty+GkPpzwq+lk7SaUoYq3U9RHBuCDwBL2RymrarAyZWov0lqPeIuoxXgb5wxBtEobm0nH3oR3GNmWqUwRWlb8PlZ0FesaRNdxxqFGwSYtj7zpmThPWxGmCC4KTI0PZ4EZhbHEKDvGg5+Ct+EML7tC8VKseMCey+pF691RYXkT9Q5/38NSM66O1jn35g5Q53dpQsF81DRmzs3MTOaaybR6zmN1wljXGek6ja6FePGZSZVYa/mQvUXFMvuqGk0SQooMHesm6WwxWcC4yvHtmswv89KkvEuD1FFCuml66aRt1e1ZdsKkZ1qmuLbFTR3XXRxjZYSzSitTijOm4iIBENPEYKUQiGFpz+7+zv4gqTt1O+l52G4e11I59V+yMBSuSmRcFMZFYFxBwFHEm3wSsHgYuQusr61jJ+eYTFrEWaxvkHi0SWBcSjLrdd0fPOiU1ji8eA5MPCtr+8PBkbqOMz6MbZOYb1q/CiGcvFomZsRFu8K6GdNKg9XAuKQNSqBOKQFNNdUmDdyukLb36JdWfV/Y/WnS1IKIzN7fAZaacQUsaLXLIYHsmLNp6cCKKZCZTiToC8xk6ViGERNW/AX2+Qus6hlG6rA4rEabfWVGybrCgirPP3K91nhmNbZdR1XU7FJL8QKrI+UvXl5RnG/x6vFrnqNnp9hpg7PgZAqUM5HiqeNgbCUMJUITwqeW42dqArrH7TFgAUIf1Cd9B8YVBQ2NTg+ieNOSTOfWN+HwxTiUbWtYPzth5eI51tdajFoamsIAIWszsz3t8X6KaxwK7L9wgZXxKo1rcDLBSdLcJa6FBTMjGLxaHCPWzEGkORSosLFIXH/FwXQN3JpAWzS0rtuJhsv15uldR3/+06NbO81zQ+l9S1huxnV5RY4edjZQ0obieYubac/HxrqRBxzClBV/nkPucQ67xzk6+UsOuMdZ8efY5y+S1raAYNPPOfq5OXffxiy4vkfoSc5po2Y9ZTrTp+N/7GcelEicvPF4UdzjDvMD8EZp8ZhRERTC4reAGLwRnKbDKJUmMq4Qi04jAZMYIXvBq0RpOFRzeRhbXe+goVzByixETUijsBX7xUStRLXWuz1qgylXFKw2BCtx6P/GNEgryMRgnMmiWWJakteX6kjoqQ7h4EcVjzeeyRnFW0WNoupR46MzVRMP4Yu/1YaWFaas8uPxTZxdeRrt6BjnxjcC+8LzvsHIGJ0KXFwBVkIH9YfdHL5yubCBXL3gB8XDtzqYaMflLzfjWiLInFTnkqYzt6A4+peOrTWB4DjgaHTCPn+eg+4Jrm+/z5Hp91n1p9nvz0A2cMQJmKden2XOk34W7QmZZ8bps5edmIJqybmUP8u4kuNEr+6J8VXm1WCGjBPECH7icOJx4hHro0AeJVwxhONOwgGfSQtuooty0O6iyUggnT6dmKjkEntNmYTUmilfJdBOm1dSdLjZe+ZqqXlRfZL1TCPzkrSGEjqF1Gde2siIDCPGqItM2UTvUrUYZ4Plr9LgrCaHp2QqTNFtiru8UZcVoXUXTIaKBuuggKqE9bEcOEPxOmbKPiZyADNuuLh6Hesr13G+DedreRrQJgbYJZwoaQqzzJOh0yE6N3npqDOT6v8tFJOEijyWEg3T6vo1yrhy320knm+WrrHo+i5glgTMFhTo7gZbCrOaoIh6Gp2y4i+y353lcPsjrmsf44B7nAP+x/knRot0U+dXlpYS0e+Kc/P3nwnzHShSvTZYiO+kU51KevONkIvK6b3DTBqMWJy2ePE4o6i4zLSMAumQSZUYZieU1vjUZj6aUuOp1VVcSI35CDI3vrF2Juj8Z64E6nrJ3Ir3GNdVUu9k004MKzMvrYLrxv1O4Tj7NvQNhrGuoC68l1pFfXAWsjR477P2BmFd2MS+VUmzJ4yTUAiIdxgDYoR11+LiWlYjgZsp4DzRCSjUp2UfU1ZZl4NM3PX8WC5yFkcjQivhMEpVU529k0LNaz2Mch22MHF2CfPKke79LJN2Bc8Ooa6sK9cs4yoSFlUbCB07R902i9I7ttduH51ipL5ejjmon51HL4QwGRpdZ78/x5H2cY5Ov891k7/kQPvDzLiSthB+E6deIljSb7jFlEnz/XnMalF664xrSzRx0Y7KmXfovY+COkVskHzVGryugw9rWCa6V6sKLnGsSKUb76nNt0krcxXxSmMt8LX5nKtTo6uEA9RmzM0Y19VQ7zT6jA8EvDYTlmgnRZggmvEkBan0QtOOSFKJ2jRiBSsW713aOIIANgktcYwp8Qh7JDsuGa+IKGKUKQ6NHqYWG9bJ4llayRNRjWfKPqZmP2tyhDU5xg/GF1lxLY0zUeOKB1La8NbqJZiz0/SRaBaNZC5vM9tpo+6U7vXLnCuPJ0FAKKZCDxIP0cxC9fax1Iyrq7yWa5ttjpvBXLVVdj4gNi1r0S2Z6fe6OkmaSV+MOqyfMHJrwUHDnWfVnWO/P0vWsKr1LTPDubcyaiXXrfxuN9L1W/dftlt2uL2IcW30Dml3TJj8qor3itcWg2DTWpgG85GILXqpaCZeyaswffMlcmul0ZKJ+4w5JTGJq4RpAV3hbrN6V89cSQQrUzUSpYqIosWEp/h4zwehJf6z2mDjIYht2+KjJ6oxBu/T2AyOGZZkJo4zRaLlToplIrjVe/DKOO9vBONTLESJexijlueUKVOmxmOsZZ+/wNhPaaKbfL2bK27SCqXn8S7BahjXYcPyW2yAzDi22U+bPt6dXx3vWpn/TPo+f3bujoaw1Ixr75rlCiBKjTpzka45QDMpxqCEHSAtlimWKY1OaZggac1MS9SIWaFo/oCry8/H2+9hy24cZa03s2a05s1+G4iBagj1k06MtjFSRmJcHrC4vGcHSRG/A7tKmz3TOlcov2fO1S7dmHFwuFoHZ7/e+T96F68spPoAYaOvRo0xzx3N/4h78kQCAzH4wLgUoEU1Mhtviv+ESp5buZyQLQqklWgheeiWoxLTzCwWx6h1adptFrbgq46wOsFqi8Xn9bSinZQFg9LuxVw7vysuj2Cx5WFQ5Os9wVIzLg+72F9XQKLsKyAyey+ZM4KgVcLtmiRlZa0jTA3EgToMLukHmfh2UY+syiRUVSqS7HhlXh7LgMS84ntmAlXSNn5StIxwv5tLZwVwo2ZYxiaCpap3mib9vupbK5QwTwIjCWaqNJ6bZK6uIlNsVo7SlSFrJjpPvRCKN2KasyLJVNai6hAcRkIkj7AulzIxdUaEGRjZWdKycqyxvYTMTXagi56pjsxUUznQ1GG1doalZlzXJkpop8xoOq6myZySmFYixlr9unyfZVr139p0vUSUrYOtmkQHPNnQYSwZO19XmZ/fRuiPPaEcahl3Gj+Zx+bcVxuC7D65sVDNTmaJzVAzpJJdNwbAXMNkvppcgWdNjAMGXHnsdDxu93eXMu5n1g0v5VfLNAFnTPo1Lp2iLN5JOWDAgAEDBlyFWHLGtUwiyIABAwYM2A0sOeMaMGDAgAHXGgbGNWDAgAEDlgoD4xowYMCAAUuFgXENGDBgwIClwsC4BgwYMGDAUmFgXAMGDBgwYKkwMK4BAwYMGLBUGBjXgAEDBgxYKgyMa8CAAQMGLBUGxjVgwIABA5YKS864hpBPAwYMGHCtYckZ14ABAwYMuNYwMK4BAwYMGLBUGBjXgAEDBgxYKgyMa8CAAQMGLBUGxjVgwIABA5YKA+NaWigSP/1r1dcBAwZcNdDykTBby7UtTFfdykPXBporXYFrDvM8+Lc9GMMIFjTMgTIXSNMhfa+Lk+rXG20kqJ8bMGDAbkBBBERRKTO43IvXFkxM0TBrNfG6OdmHB3e52lcpBsZ1lWPDcZiYk4KpGJUQVOntjuH6+f7cuEbmw4ABewjFx48T8AacASegSZxUs+FkE+3NzWt0Yg6M60qgIzVp5/Ki57X7aOc3WbNSWSyy7aRqyFyNbcCAAVuD1rNJwcjsPFo8r/rqlcarcs1bQwbGdSWwhVG3+JHApvpSV/qezA/Jfr5Ii+oyJ537TP19kYViwIABm0Oqv52Pdq93UWZ1sSpK93vO/NoSKwfGdaWxFW6QFqWk65JRbOVF2VIBj0RdSTpZdNOzK1k+X52V6DZbFxswYMBipNloPVgJpn3j49+4Tp2e6QqllUOHEtbJUoadnK+tRa7Bq/AqxAwvmzsWBcWgIhUzm2VGfX+ljdZ1+98HDWvAgN1BX8uyFaPK69PJ0Woh5rkVKkHkvLYwaFxXAtodfBs5Rcz9OcXxXZHMvNIdFUW1y8ZmreW1sVB7z2jvTro3sLIBA7aLNK/myZ81M8uLABsqT/Fi55lrQ8uqMTCuyw3tGuo6t/oXtuCzPmsq1FCGaGA0Oo/ZBNfcPJkW8qPyHGwmDQ4YMGAeaqEwWUb8zBPM2ZdJNTeLzqYLWeC1gyVnXNdWZ20GQRA1c1a4Fj2/1XwHDBhwKUhMyyN4MaiYjtCJeBZLkINvbx9LzriWExsPveruXJNBfwUqTom0CVlBVCLzCrKe6Zj7wgSqtafy7Jy6ZPd6hSrP+tri9DyfxO2kr9VyLrXMJ1s5OynzaiqnzDsnBi/RvC9bcWsvk1/nXLtWMTCuK47tDsIot2kyOCS5LdnJu//CRmTpTKV+mcH4UDOvcN8jFP8d32Na/Xzmpbfz7KWkn2zlXIkyh3L2opyyPQW8GLxYPAaHCTNK5jtV9bF4geHaxOBVuGRIdnBTsRWhKwcWVrZxTsNE2G1crvZ8spVzLaDM2mQq9CJ4IXzYypwdkLAtxnXvvffywhe+kEOHDnHs2DF+8Rd/kYcffrjzzEtf+lJEpPN54xvf2HnmkUce4ZWvfCX79+/n2LFjvOMd76Bt20t/myXEDKOZx080OlkoGNUQt0x9vFa0rmAr187+Lr/gr+Z/3WfDJ4SlCf/SNzr63fCZ99GhnOHT+ZRWDCgbV8L8TS7wku/SpQFSfy+5Xuty57ZMhffffz8nT57khS98IW3b8u53v5u77rqLhx56iAMHDuTnXv/61/OBD3wgf9+/f39OO+d45StfyfHjx/nyl7/Mo48+yq/92q8xGo347d/+7V14pasdc+zaiwagVrfiopSkHFQR9SXHOAMUAuPSMMSFtLG4OLZrvxDKs/07Wn3rmhsHDBiwHYgqRjQLn/lDWRXrzq/ejMsTdN4svLa42LYY16c//enO94985CMcO3aMBx98kJe85CX5+v79+zl+/PjcPP7wD/+Qhx56iM9+9rPceOON/MzP/Ay/+Zu/yTvf+U7e9773MR6Pd/Aa1wYkmgfLBYkb6asF4Cyphb1c81Bf3Xi4B3Y2j6kNGDBgO/AYFKM+fxo0mvoHcXC7uKQ1rtOnTwNw9OjRzvXf/d3f5YYbbuC2227jXe96FxcuXMj3HnjgAW6//XZuvPHGfO3uu+/mzJkzfOtb35pbzvr6OmfOnOl8nrSoxa7oKji7vyPKaGKoo2eARMUr6lYLuE1/XWwzXONWiQEDLgFlDhs8hhbDFEOLSIuI66xXmxkToXQncrZDKmGZoG/AvzawY69C7z1vectbePGLX8xtt92Wr//Kr/wKz3zmM7n55pv5xje+wTvf+U4efvhhPv7xjwNw6tSpDtMC8vdTp07NLevee+/l/e9//06renVhcwei2edru1/+eWRnEkM/YWatCtfOOB4w4CpFMPeVqetB4icJpFlA3SSftLyVLCnRkqhy7dlEdsy4Tp48yTe/+U2+9KUvda6/4Q1vyOnbb7+dm266iZe97GV897vf5dnPfvaOynrXu97F2972tvz9zJkzPP3pT99Zxa8WbGGc9R1u8yqXBvksyXGKzcwrMzPt6kk6k04mwOLPtGjqlNW1AQMGbA+JqaQ5luZt7xFNkW46jy9A3N6iEhigsti88iTFjhjXm970Jj71qU/xxS9+kac97WkbPnvHHXcA8J3vfIdnP/vZHD9+nD/+4z/uPPP9738fYOG62MrKCisrKzup6pMCmv8aHAoYjBgcFkeDk4ZWRjixOAyq4DXs4irMqZtXgYksyeeNyuG5buDejsQ4YMCALaKY8RFhakZMZUwrY5w0cQ6nSBqRoS3ylKr+lpl6be5o2hbjUlXe/OY384lPfIL77ruPW265ZdPffP3rXwfgpptuAuDEiRP81m/9Fo899hjHjh0D4DOf+QyHDx/m1ltv3Wb1rxEIFRMJGpVXwWOqTY02TAQZ4WSMhh0j8RPcblW00qpqX6bgZl+cn2tTZJoY9VbKAQMGbBV5LhlhKiu0skIrY9rIuDx2RlDckHlBvnmtzsZtMa6TJ0/y0Y9+lE9+8pMcOnQor0kdOXKE1dVVvvvd7/LRj36Uv/f3/h5PecpT+MY3vsFb3/pWXvKSl/C85z0PgLvuuotbb72VX/3VX+WDH/wgp06d4j3veQ8nT568RrSq/lDr2wVmVX5NUlVkYIFphfAxQWKztGZEa1Zo7SoTDmDxiHoEh9GSk5cy4EUNdKZL31E+mSJBRGfuDxgwYHMk86AXYSL7mJhVpuYALftoZYyXJvkcktey0tp2jbI35pqfidtiXB/60IcAeOlLX9q5/uEPf5jXve51jMdjPvvZz/Jv/s2/4fz58zz96U/n1a9+Ne95z3vys9ZaPvWpT3HPPfdw4sQJDhw4wGtf+9rOvq8Bs+huYTQoDV6aqGU1TGUfa/ZIYFjSRA+myLh8zEE0M0GVwrjKKlatcQF5MnXvDRgwYOtQKULghBFTWWFd9rNmDjGRA0xZxbGC0pBNf9eev8W2sG1T4UZ4+tOfzv33379pPs985jP5gz/4g+0UfQ0h+8JHrSh/rRLSOUAysCiLkzGt7GMqky7jMinfHuNi64wre0ANGDBgW9C41zIE2W1wshI+jPGMCDu6LGlud+fZrIVmjsXwmsNSBtlNDFTdWWDZ9nRtYirU+nplLaicBBWH1wnOnaf1F5j4Nda0pYmOG04arLYIgtU6mEzaUCxzlafkxDGr3QVT4TU6RwYMuGSE4ABCG3dyTTCsecfUT2jdGmrOorQgDbUnRg4XlclENCdeTZNx0UqH99FhUlB/HtU10PMVUTsXfr6JQjQPS8m4zp49C0D70M9c2YpcQXjgsfgZMGDAkuLHV7oCewsPXNjkmbNnz3LkyJFt5Su6E3Z3heG95+GHH+bWW2/lL/7iLzh8+PCVrtJVh7TXbWif+RjaZ2MM7bM5hjbaGJu1j6py9uxZbr75ZozZnlv/Umpcxhh+4id+AoDDhw8Pg2YDDO2zMYb22RhD+2yOoY02xkbts11NK+Ha3L02YMCAAQOWFgPjGjBgwIABS4WlZVwrKyu8973vvUY2LW8fQ/tsjKF9NsbQPptjaKONsZfts5TOGQMGDBgw4NrF0mpcAwYMGDDg2sTAuAYMGDBgwFJhYFwDBgwYMGCpMDCuAQMGDBiwVFhKxvU7v/M7/LW/9tfYt28fd9xxx8zBlNcK3ve+9yEinc9zn/vcfH9tbY2TJ0/ylKc8hYMHD/LqV786H9r5ZMUXv/hF/v7f//vcfPPNiAj/9b/+1859VeU3fuM3uOmmm1hdXeXOO+/k29/+dueZxx9/nNe85jUcPnyY6667jl//9V/n3Llzl/Et9g6btc/rXve6mTH18pe/vPPMk7V97r33Xl74whdy6NAhjh07xi/+4i/y8MMPd57Zypx65JFHeOUrX8n+/fs5duwY73jHO2jb9nK+yp5hK2300pe+dGYMvfGNb+w8c6lttHSM6z//5//M2972Nt773vfyp3/6pzz/+c/n7rvv5rHHrs2ofT/90z/No48+mj9f+tKX8r23vvWt/Lf/9t/42Mc+xv33389f/dVf8apXveoK1nbvcf78eZ7//OfzO7/zO3Pvf/CDH+Tf/tt/y3/4D/+Br371qxw4cIC7776btbW1/MxrXvMavvWtb/GZz3wmn/T9hje84XK9wp5is/YBePnLX94ZU7/3e7/Xuf9kbZ/777+fkydP8pWvfIXPfOYzTKdT7rrrLs6fP5+f2WxOOed45StfyWQy4ctf/jL/6T/9Jz7ykY/wG7/xG1filXYdW2kjgNe//vWdMfTBD34w39uVNtIlw8/93M/pyZMn83fnnN5888167733XsFaXRm8973v1ec///lz7z3xxBM6Go30Yx/7WL72v//3/1ZAH3jggctUwysLQD/xiU/k7957PX78uP7Lf/kv87UnnnhCV1ZW9Pd+7/dUVfWhhx5SQP/n//yf+Zn/8T/+h4qI/uVf/uVlq/vlQL99VFVf+9rX6i/8wi8s/M211D6PPfaYAnr//fer6tbm1B/8wR+oMUZPnTqVn/nQhz6khw8f1vX19cv7ApcB/TZSVf35n/95/Sf/5J8s/M1utNFSaVyTyYQHH3yQO++8M18zxnDnnXfywAMPXMGaXTl8+9vf5uabb+ZZz3oWr3nNa3jkkUcAePDBB5lOp522eu5zn8sznvGMa7atvve973Hq1KlOmxw5coQ77rgjt8kDDzzAddddx9/6W38rP3PnnXdijOGrX/3qZa/zlcB9993HsWPHeM5znsM999zDj370o3zvWmqf06dPA3D06FFga3PqgQce4Pbbb+fGG2/Mz9x9992cOXOGb33rW5ex9pcH/TZK+N3f/V1uuOEGbrvtNt71rndx4UKJEb8bbbRUQXZ/+MMf4pzrvDDAjTfeyJ/92Z9doVpdOdxxxx185CMf4TnPeQ6PPvoo73//+/k7f+fv8M1vfpNTp04xHo+57rrrOr+58cYbOXXq1JWp8BVGeu954yfdO3XqFMeOHevcb5qGo0ePXhPt9vKXv5xXvepV3HLLLXz3u9/l3e9+N694xSt44IEHsNZeM+3jvectb3kLL37xi7ntttsAtjSnTp06NXd8pXtPJsxrI4Bf+ZVf4ZnPfCY333wz3/jGN3jnO9/Jww8/zMc//nFgd9poqRjXgC5e8YpX5PTznvc87rjjDp75zGfyX/7Lf2F1dfUK1mzAsuIf/sN/mNO33347z3ve83j2s5/Nfffdx8te9rIrWLPLi5MnT/LNb36zs2Y8oItFbVSvd95+++3cdNNNvOxlL+O73/0uz372s3el7KUyFd5www1Ya2e8eL7//e9z/PjxK1SrqwfXXXcdf/2v/3W+853vcPz4cSaTCU888UTnmWu5rdJ7bzR+jh8/PuPo07Ytjz/++DXZbs961rO44YYb+M53vgNcG+3zpje9iU996lN84Qtf4GlPe1q+vpU5dfz48bnjK917smBRG83DHXfcAdAZQ5faRkvFuMbjMS94wQv43Oc+l6957/nc5z7HiRMnrmDNrg6cO3eO7373u9x000284AUvYDQaddrq4Ycf5pFHHrlm2+qWW27h+PHjnTY5c+YMX/3qV3ObnDhxgieeeIIHH3wwP/P5z38e732egNcS/t//+3/86Ec/4qabbgKe3O2jqrzpTW/iE5/4BJ///Oe55ZZbOve3MqdOnDjB//pf/6vD3D/zmc9w+PBhbr311svzInuIzdpoHr7+9a8DdMbQJbfRDp1Jrhh+//d/X1dWVvQjH/mIPvTQQ/qGN7xBr7vuuo6HyrWCt7/97Xrffffp9773Pf2jP/ojvfPOO/WGG27Qxx57TFVV3/jGN+oznvEM/fznP69/8id/oidOnNATJ05c4VrvLc6ePatf+9rX9Gtf+5oC+q/+1b/Sr33ta/p//+//VVXVf/7P/7led911+slPflK/8Y1v6C/8wi/oLbfcohcvXsx5vPzlL9ef/dmf1a9+9av6pS99SX/qp35Kf/mXf/lKvdKuYqP2OXv2rP7Tf/pP9YEHHtDvfe97+tnPflb/5t/8m/pTP/VTura2lvN4srbPPffco0eOHNH77rtPH3300fy5cOFCfmazOdW2rd52221611136de//nX99Kc/rU996lP1Xe9615V4pV3HZm30ne98Rz/wgQ/on/zJn+j3vvc9/eQnP6nPetaz9CUveUnOYzfaaOkYl6rqv/t3/06f8Yxn6Hg81p/7uZ/Tr3zlK1e6SlcEv/RLv6Q33XSTjsdj/Ymf+An9pV/6Jf3Od76T71+8eFH/8T/+x3r99dfr/v379R/8g3+gjz766BWs8d7jC1/4ggIzn9e+9rWqGlzi/9k/+2d644036srKir7sZS/Thx9+uJPHj370I/3lX/5lPXjwoB4+fFj/0T/6R3r27Nkr8Da7j43a58KFC3rXXXfpU5/6VB2NRvrMZz5TX//6188IhU/W9pnXLoB++MMfzs9sZU79+Z//ub7iFa/Q1dVVveGGG/Ttb3+7TqfTy/w2e4PN2uiRRx7Rl7zkJXr06FFdWVnRn/zJn9R3vOMdevr06U4+l9pGw7EmAwYMGDBgqbBUa1wDBgwYMGDAwLgGDBgwYMBSYWBcAwYMGDBgqTAwrgEDBgwYsFQYGNeAAQMGDFgqDIxrwIABAwYsFQbGNWDAgAEDlgoD4xowYMCAAUuFgXENGDBgwIClwsC4BgwYMGDAUmFgXAMGDBgwYKkwMK4BAwYMGLBU+P8DZdM8KdgmFDkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", @@ -823,7 +969,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9y69l25LmBf7MxhhzrrX3dvfzvOdGZLwyMqGKTkEJkmyURKOEii49moh+0okW2QHRoksD/oRSiUb16WQTUUICFagaKVFARkZGRty4j/Nw33utNecYZjTMxlz7JkmhOEFFyJU+JT/uZ+2155przjHs8dlnn4m7O5+OT8en49Px6fh0fCSH/lVfwKfj0/Hp+HR8Oj4df57jk+P6dHw6Ph2fjk/HR3V8clyfjk/Hp+PT8en4qI5PjuvT8en4dHw6Ph0f1fHJcX06Ph2fjk/Hp+OjOj45rk/Hp+PT8en4dHxUxyfH9en4dHw6Ph2fjo/q+OS4Ph2fjk/Hp+PT8VEdnxzXp+PT8en4dHw6Pqrjk+P6dHw6Ph2fjk/HR3X8lTmu//Q//U/5vd/7PU6nE3/7b/9t/qv/6r/6q7qUT8en49Px6fh0fETHX4nj+s/+s/+MP/iDP+A/+A/+A/6b/+a/4V/8F/9F/o1/49/gz/7sz/4qLufT8en4dHw6Ph0f0SF/FSK7f/tv/23+1t/6W/wn/8l/AoCZ8du//dv8u//uv8u/9+/9e3/Zl/Pp+HR8Oj4dn46P6Kh/2R+4bRv/9X/9X/N3/+7fPV5TVf71f/1f57/8L//Lf+rv3G43brfb8f9mxq9+9Su+/PJLROT/79f86fh0fDo+HZ+O/30Pd+f9+/f85m/+Jqp/PvDvL91x/eIXv2CMwTfffPNrr3/zzTf8/b//9/+pv/Mf/Uf/Ef/hf/gf/mVc3qfj0/Hp+HR8Ov4Sjz/6oz/it37rt/5cv/OX7rh+zPF3/+7f5Q/+4A+O///+++/5nd/5Hf5f/8V/wWdffIVKRZZCKZV1bYhI/EFQjb9FwCYqKoK7gzvuYDhCZG7mjgL2+t8OZo7biHM4qApmFqfD2Q1UhCJCN0eIP5s5RQREGGYojruzO7RScHfMnCKOxalpRRkW16d5bhCqSryOoxjdQUVREdyNQvysG6hWPL9HccOJ76qlQJyawmC4Yy6oFiyvW70zUEQUUT2uQzGGg0j83wDUe9xHHNGCI5g71eNeDQfRhrnHNebr8SQKqIMNGDsf3r8gWiilUZeKWEd8xH3TBqpIgYYf3829YO50M5oYJnHnRSp1qZSiNI2s3fN7aqtxA8zYbQcUFaUsC63EcwQYFs9mmOF9x3AMEApaC6pKFTA33A0bTo/Fgo3OwMhVSF0WWlWKKojG2vFci2Pg7gwc8r4jwvbyzG3b6H2ninJ6OFNbo5aSnwk4LKeFVgq1FFwkvpvP+zNyjcd7RQWVQsHz+RhCrCPJNT1ynyiAKCJCkbgfInKPjnMPdfdYK0KslzzHZgYWd0wEikheU2wqF0CgqbKbMQxGN14uVxxDcK5b3idAxKkKAmzDKaUiCA4UH3EvRVhKg9x/NdesIRStuMfrhcGIbx5r32N9S+6TeAZKV0Hd40NVqaXE5wA+Btetc902nj9ceP/+mefnKz/88IEfPlzY9h0dRisXalFaWbGHM7UoiyqugTaJFDapFAdxR61TVOgOt+GoS34fKCpspnSD2+WKS0cVltro2hjDGfuO1UqtlVYaN2/Y6IgNnh4r33zxGY8PZyiF9x9e6PuG2c55Xdn2wYfrzs/+6I9ZeeahDH76zTd4aZjB7eXCuy+/YF0btSi9C/uts+87Xzw2rtcLl5cbf/qLD7x984a3b9/ym7/zDU+nBVHFJezp8MEPH77l//av/V948+bNn9sn/KU7rq+++opSCj/72c9+7fWf/exn/PSnP/2n/s66rqzr+r94/ZtvfsLnX36FqNI9jPreO601SlFUhaIlHVk6ILfDcPt0PJpwYzq7eANM82pGOjoLW+OxidKHABb/TucXL8UPbf4C4W6wEef0uKZ4XRC3eQnxH88fWs9zxPuP91q4W/TupMUGuGEuIIqL4KLI2NNGalyjalzp2HAPQ898r1u8X0p+poIK6iOvXbD8HS8FGXtcTxoNT6MrfQuDOd8rYXF0bJBu3RCkCD46drvysJ4ZI36nrAv0G4wdrRUjvpPWgo5bOHxX+oDhUBzUrmhtSKkMhLYsFBUKAyHWRxjlAgwcZ2krLmGQl3WlqDPBZ+89DWjBtaPEfdvNEInPUXHE857IgA7dnG4dQcKBufHYlrj+osf3j/Ky4jIQVdZa01FkmGCd0gpuCyC09YRqATpLXcGhj87pdKbVQi3hZJxY38Ng226YDVopDPdwtnVBfKDuVCfdcX7mfo1n7tB90Eo4/6qC2H1PqBYkPadksCIi1NZQYr80d2z03BcCbsceibUu6UihjnCkNpy6LIwxGKPT1nCm7k4rBfFY48sMrCSCDsYWTjWvt2g+rbGlC8sgLNe42o5Lva/xkvsnbcJ8Rr1GAIWDlEIpBVFFi6D3b0YrJZ77MG4vN75/ufL8cuH7X/3ADx9+xffff8cvf/FLzueFtTXO51Pec8cRiixxH0RY0jk7Qkdor5wlw1gfHjidTnzx9g2UCKy2y436cKKWQtOCF2XbjX3r+LJQPVa9qrGP2K91bfx++QmO0Ufnw/M19qQKf+tf+H18f2a/PvPzn/2M7583+nDW9cQ3P/kyrl9g22C77ezbjacmfHj/nl/88hf84T/4M/7G3/zn+OKrhS8+f8fptGDAZTf+7Nv3VAV0OdbBn/f4S3dcy7LwL//L/zJ/7+/9Pf7Nf/PfBKJm9ff+3t/j7/ydv/PnOtcP373n1E5oUfbduG0b33//A1qhtcppXVgfHuLGiIBNp+SRiWkabNc0ImG0pITjiMjQcnUKRTWDWUfM4v0iEUmkczOzY0NK7lWzgefmE5WIhl3CcUo4zloKc7McnjU+Fsn/tVfXLRqGzzOUFslMId9vZKTqHSmSvjOyPcnP1aIZtTvmhnpeTysRyaZTBif2fBi0OHW8TgFJgz7MwXrEwCqIO+KxmSWdh9aI1uNzZ0TuSC2ogcvAx4A+QBypmf9aZI1m8QXNHNuNvfc0bIarYH0Pp+2GPc/gwNivt8MYej4zLYpKje8hzkUKpYbxZzhj7HFeMygSgc+A3jdUFVWlVMW2PRzU2BgjrhMVbCg2BjY6vf4pdYmAyrox+pbPX5Gqma1WxP3Iwnu/YdsN2ze22yUCDi1oK7R2ptbGuixcTg+ZAQqazxkiduoz8zVBJYMjF4zI2MSFoh6ZuBZcBdGWmaJxk/ieWgt4yXM7pRa0lLhuLfmRzoaDSGSqY2QGE+7OVVEpqFZaK5F1ZXA3hh0oiNk49iMDSu6K6pIZitAAFQdG7NUaBlAlUA11QyHX2zSMBhiiIPW16YtMiyJI0XgG+U2bDKgzoAUYEWh1Z0i8WgTMa/zbnaLGqTosCk8L2/vB++3G7f0H3v/y55xPJx4fzqzryrvPv+D8+MRgp2lBcdg3hgtjGOwDryXQGHe0FsbY2LcTV++UkllMH5h1rFa8NbxUxBw1w64DSmaQ22DrPVCMFxi5H7t1nq8buFMEnp6eUJxSCk+PD/zi57/k/ftnWqn88Pkjtj/SamXcrvTLje1ypb9Z8P097M9cvv1TfvjTB75flOvv/gRGx7Rwo6Clgjq7lD+XvX99/JVAhX/wB3/Av/1v/9v8K//Kv8K/+q/+q/zH//F/zPPzM//Ov/Pv/LnO80f/0x+yvX+PFo3ocu/88P13UJ2lVR7PJ9bHJ1DFcAqVQkAW2jQdl2KUgAMIOCtgNQHXiFJqRlilMDsI1AzJSJ1S0gY7Pl/XyFSGJRRkA7cwmp5ZCxYOR4pSW0FkOgw/MjA0nOqEV0pNg1sK7jo9QAS0GVEeMNHEWKjhTGfGSSB0FD22o7jHdRNGXTySPre4FkkoCXNUPCFTy+xtAjZ53W5IKfH5+b4jppJ6z0vN8NEPw4bHPbIRzojMINQJh2MWnkMDahtbZ9u3cA42kKJ50cQm7hEwDIx+uUX074NB3HOtBaEdsK4TQUtkryDemZATVTEXhoHvGwd+pTC2PZytb5iF4ZZaGL1gfcf6HnBbq2gp2D7wsWUGL8hScQrdFMaOjVhHLoan4xrbS5hXFaiVoidabazryrKcw+AWoVgYdM310NMxdIMqFo5hOLuHwReEUyEy1VqgNVQXRAtNE0IXzbVSmfliaTXuX624tgyMDLOEn80Zw6gTbRDBa0W1oVpZWo3n75H7HvEhce2o4hkQHs9A4rtTCoWEJnPlUdrxvSO/ip8VrXenM4NTkQxO82U81/9c+86E1hEHjaASYv+YxzocEvvHBXwEXKoItSqnpVLEUU5cH1ZuDyfePJz57vqBcfnAZb/g65mn0wlZFqoqS4nvaX0LhKEbbB0fepQ1hIYDw4yLOlULosIAbBN6KfRlAa1YQrNjRGAiIvgwekLbwyMgw51hI4KH3EvP4mjf8P3G2He265XteqGsJ2zfsd6z7NBR31HvVCkUMZTBuL6wvXxgf3nOvXG/962G4xL9yBzXv/Vv/Vv8/Oc/59//9/99/vRP/5R/6V/6l/jP//P//H9B2PjfOv6f/4//O188LBQtrG/eUZeVokZZlaUqD63C6ZEhgeWf6gNPtXCuBdaV7h0TgXrmsQT0sfedDy/vo+4jC5+tJ5aHE/W0RC2sLFStsdk1Nk03D+cHqBvDB0Zg+K5LZh4DHzuX243h4NJYJJyh1oqUgDlE4jo0jf5wwwjn0IpS0/iVVtB6Jv0jbUJ1idvPrK+2htQa0I4WIroEkCPiD79nYXwOT3ZU/cKwu4HpYVwOx5qwg7vD6GmMDB92wGFuIwGRcO6Sznj0jvedYYN9jPh37/S+M/Yt7IoIRRTrO6PvjO1GHxZ/9s7YN/q+se8b3QZmhg1jbDeulwv7tnHbLviIgGUpiqky3Bg2kNoonteG0McO7rRSObfIhKUUhg/QClqpGDYGfQxeLs9AwDDnCpRpWJytE/WGfgMSQlWhqHCqAZENCre+s3fjshn77TkQAZRSC7UIS4U3S2OUSjfncrtxuxlj7/TtBrLk+lEacKqx/llO4biAIYWFMCB9OJdtwwNA410r6LpCCzhH24laK4+1IqViDvvoIJWlKGstUCqWiLbX9ciuDePldmWMgKxPBUqt6HJClzUgaFfwQZGoE5L3uJbCqRXaeqItC3U5AQWzDtZpIuFgNeo3tUrW3Go6u3Cm5PdS0u9knZuZcea6inQ8ygLxvwEnvgL8s7Y10RAwi31mIhRmPTGyy1qg1sLp/HCgL9u28e6x8Zt/7af87u/9Ln/8j/4Rf/azP+GXP/8Z2+WF7779Fbd95+nNIyonqgAjYObwmbkyBSpCFXAf7N3Zvt+oIgGV1kLvEZSZClDR1tDWGN0Y+V0awsPjA60VCln7tVgX62ll653L85U//pN/zPjwPX59QZeFD88vlFL4yU++4N3bJx6fHjmvKzws7I8b+7bx9nHl8nLl2+VbBKEqLE15PJ94++4JK4UPA0Yt4Yj79c9l718ff2XkjL/zd/7Onxsa/CeP/+7/89+xVji1hXZaaUvjvLbYTBnpG1HrQaCaUhVaEdq6RvSaUGFTMnMQeuB+YM7aJLOniDp9COJhTHDNWg1gQok9GJ//KtopJZyLO+w2sXyjlsSyRaA2Ro/XA+6ImNEy+6kqLEvGkaUgtXFeH1iXSsuFcBsRpCnOaW20VlnWFZYzWhqtLpzXhVYC/rmNCLiqCOtaiYRF6JQgmqgGuaEIJspw6LdrRrUw+sbuAWNYj4JyOLjOzQImcxvU3Hzg3KgRRc+a4bixjcGlO9f3vwIbiA/67cY4MlOjCOH8t52XbvQejg4snVpnA2wfWO+MsTP2gES2EXBfESjq7HODA9aJf7lhJowJS4lwWjThV8GUgLkoTG7HMOfWO0ogMUuJIGbCTH2XcNo+goNC3Li1tlxXwt6NzQZ9OKMT0K5kjaZo1K5UOTVneNSSdhs8f+hs28512xAPEpIWZSk1DKgKUuqxFh2l4KgIIoXuCccZNA2Y1UWgaBhnk8gYpIIETC0IKkItYbgzuWW4RjCTSMOepBY/9o/gqkhtbJuxbwN3o5aCJtRYW2Rhj+vCel6py0JpK2s7xzrUWNe3YZg7i1ZOS6MtjeW0IsuJWheWtrIuSVZR5WZQ8agdtUJtBbIm3mpAt6UorSWxCIl6qcazlxJ7ykVRbZQSe0PFufZATAqE031YaOuCmUWtT5RTqyzv3vL05pHPv/qcn37zFT98/7t8/6tf8fN//Cf87Oe/5Ns//WN+9g+uERQm2uLaUKmUsvDu7dvIEFXQViltiYCrBgkl7IoddUapBaFEUC6FWpZ4rRRMnL7dqLVwXmvWl+Kbb8+D2+XC9uEZXq58/+13vP/hO7brhbae+fyLz/nJN1/zxWefcT6fWVuh9xt7LfSl0U6Fd198ztfXjXp+y69edk7vL4yyIKWxtMKbRdmHMNy4lR/vfj4KVuH/2nG5XhglDFfpN2qtjNNCz2jHRmdYOJ6iUbdQnKJOXdbIXiQYOkJHPJxYzagtmHo9Ta6wLI3eAz5rBUaGMaoFN5++DUvmlahw6+Mo+I8kTVhGaEWCR2YOdVnY9zDIkrg9opRSsyYHa9Nk6RVKW1jbwtLCcZkZmyXr0I3TUmmt0tYVWc6U0iil8XBaqBqR7jbI+wHnpVKqJqxasqYn1CS5OPHZ++2FQpBTxjAGJeAzG8n4ikLQbWjW9gatCCJh0Hcq3cYBQbpt7ObcOlyfv0VsIBhj2xhJGMAGVWJT275zHfHZ1ndULGFYY0hh9M7oHRs7Y4/N3APzRMQoGLf9zkAb3ROiNPaRMF+yQ2/1XgcNUkWQAVqJ0lyQPSKiL+K0EtkMRP1wDD2y06OGA+y1seU92boFW9HBXFmK4AxGz59nLW3TQU9yieG8vAx6N8w6o4dDKkXppaSDznVSItMbKOojM4+C6iQrOTffY42LUFuh9wi4gowT2b5q1Pg0nf/gXm+6WWblwEEKchhuLIkGmUBJx3Xb7Q4/Zw2NEvvuYV1oSw325LKw1BOt1mBM2uDWA9JSER7WhaU1locz2lZKWah14bwG81JF2XswdqsK57WyrAtoYXiQd2otLLXQliAAmUUxoJawGVIK3QAUrStL1imLKtvww5G3WsFXem+UcqMtC1pq3qOAMlpV6psHliY8nFewwfV2Cxju5ZntdmP0YOjFOlKQxuXDe6QWvAilFMq6UpeV8/khg5IIxjzXXakBx86nUusaWW9JFi8Rh1+zTjkL1+bGfr2yvwRSsW8bY0SQIQQ7umSGJ8TaiTKIBXQ/oLaS7NcTW3cul51tH2xj0FSDSJzlhaX+M+q4HteFU8I5pkrRQpWImpGIAF2UpgFvdLUwjB5MtLMES8iK41unj8HWB2+ynhOGzdgtgK5TrWnwYPTOZQtc+3EROmnIu7NJvHcp4fbG3nFzLt05txZsHBtI3xludIM3HtH61gcyOntQCXloKz2X4H5zNsvobtl5lmeqRNZ0GxwLarNOk1gg1MZpWUELJsrpKFZrQHA+AGctBLRQKk0bXZJOLJYbNMCX635BfQRzTBsqJYyVQmXM0hVCwnFuLGJRf9MgQ1x7x2ygPgIK9bievV+DwWUBBRaNiBxJSr95ZFpZqxs20DGCCKIBpVqcChlBL3eHphL1CAdJ8kxJaGqvwOi4DcZtRDaamUdN4gyqnFqL9QBUjN0j2j7XEkV9gcbI4KWwtopppQpUcd6/7OEI3LFSqERWP4pwUkG0YLXx7lTZu3PbO7bvCfXFfdz6iHqFRt313CqneuJyM9STJKBKSZfvZeFhCeN5QZB+wwx2U041oL4dQ3oQ912Ep2XhVqOlg76z7UH6OdfCTUA8nL9TWEuJe+4jar7u7K6cSsEFNozms+UCTkXRtQR5Spy9B3FjKYXr6Ix9cPPOdQva+bI0PvCB0xLZ2HWzDEoCWn5YK6026npmqQuuionyuJRgy5ogZvFMivC0Vtr5IRwKBUlU4rQEYQQkkT9jqRm01RM+iLW7nljXRquN1hbwdCSt0pqyb5GRWTrF0hp1XSkS9RytC2urLKfGev6C7lETPC2NtjZevv+Wl+cXrtvG+/ffc7ltXLaeBr/iWiKYPK0spxNff/lV1NcRbESNV0thaQtlOWX9T3Ap1NrCSYkzbJ+RV1QK3Ok2QAb0jvROKZVhg3VdePfmAXFl0cLl5cp22xCBW3f8dmXf9iBJjSBttbVRl5XrpXO97Lz/4YVlKbSTo20Bjdae0/rPqOP667/7+5yK8XK5MayHETbn7Zq0YI8NZsnUepisOAdpkfl0gaUElg/wiNJHDzy4FPTUeFBBNZ0d5SAMvCklcW/nnGxBcUcSSnLg87IeNSVU6WOm9J6xrOdi4hWsLgf7cOtG04Bowogm4QFoy5JUf6W0Gv1G7rSMhFWUWmvULbQmVTnraqrs3SiSjCozas3o3KCd1vhMQJvkOjfEn4JUAhHhj3CwpQRcKVnLv90CjBOPaGzii2M4b/UERObqJJ13N7AF0gA6gzs/JZsUMpPe94jyJitxZq19DJalAAtup8iIhrPvA9H4nurOYzo0d3iQ3N4On5HMSOblWsJFJdsXMstw45Q9a73H5lcN8kPRhHgRmgRLTAU+e3eij8i8JAJPROBBSEJHZNdrrZzOhSfR7GcaiDgPgWVH1joMG+GI1Z1uQu/BFiOjY9zxopFVAU0L0s6AsGqJSJpYK1oe7kxVhKUUVgRdTyBZ33HnJJP36lFHyTX+WdXsdRJcC6MHwekkhNEWSSKF8hiVYIroAan6GKAzm1NK02NdT8hNVZHPava/ZT8ZESQsS2QYWiqltiBU5Rp3g1Ii6xJ32lKzxqrUc4sMRYR2itqbO9RaCWROqHWhD6Iup1D2Pb5BUWxEOini+PAgFtXobbp++P7IVOoaxCv3yvlhZV3iz7vHE2/++b/O7/+N3+Hy8oJtN/q+cfnwwnfffse3v/qWP/uTn/EP/vAf8sP79zy/vGcMp18rVgr/+Bc/o7SFuiw8nJ5Y37xBl4YMi5p32j0tFR0lkRo9+lnrkrUKJgmnMqxFRusdtKG18vlnn/Hy4TlsiSpDoZPs5FqzFg2XPeqmNzdu+wu//P4Hdh18//5bfvLNE+e1oK1ht360Av3Y46N2XPvoFAmLX3X2KBmtlaMgq2UJIoBFNB3NyBFRjzR6WgtFJMu5yrZviEZtqlXN9FjYzQ4mVtUoCk+DOfs6wjGEMQr2GomJB0Sz9SQqFAkHE1fNbpFRuPnRpOoOt71TxKMfSUtyKWJBllYPLL7UhT4Ghh34fmz4Go2jRdFSEyaMTV36QBnReOkBLzlRhysljHQBSg2Hi0gWvbP3RpRNDCOgtDDG2TNnB5GI6nIYXZGshAOi8e9uBkQmHKBkOFKbTKrs9Qlyh7DXoKnj4Rg9I+Wtj4RlSIepmBGNoBpsT5VggFneQ3dBCYfrPtfEDCxm31E2hKskc8xBwnHtZaTjcprCbKMwolVh1kNECiXJL6JRQxOZ0HF8TnyiZ+Nv1H3In5QqARuLsAjst6iH+hg0rcymZfcRn0fUZWbQhkbTcUB5yTKVcKJNOcgKwQSNvRQZZ4vsxSeL9l6XtWTfUbIiK4JJZWiscQRqyaAr63tuwfysJWBg92CAagk4shWNGm4aVK2NMin5y4onQqAaZKgiSqvR3Col1nsRyWw97m2wDYPmXbKPzpLkEIzWbFs4muODLYso3QK2C1hVWFSihtpt8pLQIqzqbDWK2WPANnbMBwWjtJrPWbg9n1iWaGN4ePOOtq5orazrEkVSO/Hw+IbHd5/x+ddf88XX3/DZV1/x/OGZl8uVy8uF55cLL5cL3333bTh70SSzNNqysC4Lp6VlcOZQ7nteazkclxRNJnHuOYF9KM6gZsAjQLcRe9ScnqSkMkpW9yf7MoJkUeF8Grz77B3vP9zCLnvAjNHKEzZVVKI2/yOPj9px/fD+B/pJqBbQTNGCysgek8Ch1+VM9P+MxK2jZoNGXcgIg9RKKhZ4ZesNUUOLc2o1upRcAvbr8bDWoriH4xo2kjEsB8tnkPUIjehHVXFKOChAKqw1aL14EEJ6H4zEgt0jWl57pPAlM0ARxWX2xQhVozkUWdhHx3BqDWhUpYCVoL/GDjteT04UQDpiRyyMERLwlJB9YyZH0RgNEkoVDXgqI2/wdN5+OEGzMOBFYYZlrgTDiYyCJdy91XD6RcPA0MNxRXkhAwUErLC3mkZnBJssWxf20ZnUCMXAo9t/7ztSDM1z+04CcE7vHmQYAbd6GC8kSDI4jJ7wM2Gwizih2KHU2hEN+G4pQt/8MH6jp1HIhlJKEHsC1ox14l4QTcr6iN8zd8ScpWaNzy3IF6qUUmhNebZOJ1QrlIDIVcOIFJVUf0mFjXDF0fSJYt7CWakjGgSKmW24eLbWCa0ASb/GDSTYbUUFMz3u4cjXAuWojCJ49ku1WrJxW0GDgGLDaU1xq0zmqdaoxy0l9klA/RbEDVVqkjuQWEySZYEiSpUF6qQYCKXcazFIsmglSFnRcA8QNUK1cHj7NWjiwwZFK6NGIy8WNdlhzj7gXDUo9rqxWz+yqnMl9iZB779l83oTQyfT1J21LbRWWJbC04fPOL95y3I+U8rpgJnb+czp7Vve+dd8/VvO7/z+74U6xa3zw3e/4h//yc/42c9+zv/4P/193BdqXTk9nCnLyrIunM8n1vxMx3Gp0UKjEfyYW3a0QdG4P1FzjH0xPBABH8EOvt6ubHvHUXrv9L3H85D8hIguWdsSfZAUfvL1T3j//QttXTOIzv0rZGKR7MIfeXzUjmu7XHjSylfvPsOVLHIr4ntgRwI6LBewUsYAix6OtZyQJlFzsI6NjKi18vCwIC5gAxtXCnHjT6XiGvUQHwOlBna91KMfydwyAowO+1BOGPiIlP1hXZCU/DHbM+MS1rak0Rps4xIYvBSeTvWAyIZvFErU8krJnifDOojeaBK9U3bZGFmPEYtibdBrw8gMqYjUwPVtw72zu0XUmpJLZYtN2X0kTbhQJfqMOk6HuEaN3h5ssGeMJtlkqt5x75hb0PxVOZUlqHxZ/1KpNCmcRYH9aDwtEr1giOa9vTfMriUhGiMMHAQ01hpRkLBs0J4KHWd8bBEhikFzkIqjjH0/oEgb4JLd/GMQggVxjkHJTNcoapmFKCbnpC8bqoa1zAC14L0f0f4wxWXBRdAxKCU/00NVxAEbg1IjwzMXTE/QN/CdVrN9AQer1BJN27UUjBYOTh5huxxMbydqPk40U5cSkJC74uURs4GNjVoivHaXgH561OKidp6qGlph2w5oO1IixUTYbUd1HBnb6+9Tqx1IhNQF02hXUDW8xDlcKqNfoHtkpRbKHFoq2+0DAEOIRudUf3HrjOzzExfqcoreQzNsBqFSAnGxC9jOVTnWorYVI5rcgw0rCY+UfG86Pi9IW+O7dmccPSMKdcVsx+zGB3pmbSDtzDYdVzE8jb5JZbDRqrAUgT6QdkJqQ1w5r0moao12eoPWSqmVN09nxILR3FT4zS8XfvLmJ/wLf/0zfvjVM999+wP/4B/+Q66/cPbS6OuJ5eEpanG1UduKthb7aamRwYpj2jmtC0pk1MWNhobk3LBoLVBlFWF5DOf42bsH1rWhZa7HcQRVS0qamXYelsGbJ2E5KY8np8igMAKVqYTaUfnxeOFH7biWlj0lxPZCMgOpgEQ/UcCJmjCbZP+QceUW2ZcIMKIHyMGk48MialWn952ORF9NSTaUG2N0tmRG1TIiCs2IrQ8SqhCQTh9hvF06bXg6iJDrwcM4NgNJPcSxd7qPSL/NKcWDrj0GwyNN91IRAgI1i8g0+lliMdh0pEOiXwxJUko4R6dHwZYB9DiPx4IqJRak24hsMusvqtFgOFlE3TulBLMKt6wzAiilBGSFWJ475KJquTcpDxuglsyyStHIONzye2qQQtzy+mxmFC2p2nEODxQjvn+YzMicZDIBS4BwHuoCAU2mBJBZagVa0LolPrMREeeA0PxI2jDijL3nucOAl4TPZr0Nkrw1eyA8m5vJc7eKpHKFJewKUTfBxtQkQT2bzamh2Xi87tSZxrrBbLwVoS5LamoONptaicGSiyAiIGy1CQMXfOx3ZQbThCrz+3sokYhVKmRfnkWNg/SQMhg9YLfuqe6RPxp73ENBAn4aAYeP3oNli1A01hmJaNgIKLDWGvJEM2vUQi3BBIYkFOARq8xv6jB2nxgeS3XcO3hneGcfEaDV4ZjMKtuk5kedTDyYi6FxWKge9bmxO7uHhJVLoTXPe7oxxo1t2xnmaOvsFmtqk5EqOwpacTXoHmisGdpHSJSZ0G8Bny1LQy9XSm0sbcH305G1tvUhmK2tcno403fntm08rAvv+5Xr5YXv3/+AlW+zjaBgWUAULSync0jiVaWdlafHB5a2sNYWPY5ScSnICJTGjQyQoKrmOWPNdsYh++XD6ewM4PJy4ec//zO+//47HvoTt+uFvm/0vmJlsG2GFg127488PmrHdW6VtZUDCvDEUVsqcfYeTL+JiTUtuAcUs297QIciiAZ2OyzEb304rSqtCvt+11qrwwLewhl9sCddeKizLHea+5BgxBVRtFie2+gMxojCcakSdSOyHuEajbBZ5+qzkdcEljCanmoErgnHCZm5DYYFXOOqCQmFTRuZ7gdFWdLhBJwlTjqOMEYh2eSREUnSXH3WjcLxhbJEmOfoORuhQ+hBcXefwq0Se1Wjgm9jZkw9nEjq+SGevTygNR100scpI2DRMeijM1LPrpaASYta3O8kYRS1NJge75dA75VCKw4+GL1zG5EdhEAxkEamu2Z7gFKKpAoE9HRMkue20SOrkKC7UwTNpuRDF8/tVa1uhDyQh0OTVvEp4OuzBhTLbIyR8JujFgmAiCSsnXfePYHebPvQyCtL9nMNyLru3aHFIwrx2+5OMQnYtwTpZmRQgE8iRcDruxukQ5esC0XrhSUBSDCNgGCYsVn0uxVVak3WahRBsrcrSTnW6R6rv+gErhz3cTBKPYV3g2RleGaGpQS7zlMaahjU3jNDyteTiFXoiIS+odtImr+jsmMZyL5uyo8aeCroeIpES4SuY3hk/xL7RoO+GrD16AGjDUNNDnUKY2R9VgJ+bpGVzr64+A4wTML2WAR8thulVHxZEN+YmowugtIieCtnylpZHhpv3z6EVqIb+23jcr3Gd3O47j1gdHdOpyfW08q6Ljw8Ley3NzyeTsjjI3U94yWYRhGIhYNVKZQasG9JZmOsEbujHe7s1hHgdrvy7a9+yfsf3oMIt+uVbd+ofaeWwfOtU2rhtvcfbfs/asf1G++eOMuF01l4dmNzY3gUqIvAUuMGD4Pejct+S7kkpSLhfByUkRJFsbm/vwXpo0mwkErWVz4MKNnIWpe4dcMG123QbobWYPc1DSX4mw3KPtBWKK3hPd4Lg1agndd79NIN6wN1Y1lXahqePqDv0dy7Lgvqcmx+HYPWGrqe2dwPvUR153F9Agm9MxvgI2muyxrfPbtHJ436/PiUDgisO/QbugZjaXiQTXyEqvbpdEZKDWr6iCzRunE6RV/JCB+B+KD44Hx+jHvrjnXH9huGobqGbqCEc5G+o6UEk0t6ONbh9Fso4Q+fiu3GEKfSqacUxlWPxlYLmaZSK/sYdOvsPRS3g1VcDkNtI14XEdAoSu976LWt4kESyEbgre93Z6RRCxzuXDeniUWDbFFqCXJGN6g+DjaoS2fr8UxXPLUso/dq62QBm3xvfNeXzbJ51qktDEaQWYRKBCqlKuLXqQ5E857QTcA3+4ianfaoQXoayx/2PajibpQarFmAl62jHg6v1BmMRZ9d8z1ZlhF595EsTIng0HF671z3CFKqCm0p2fQs7OMaFGwz2hLN0SGMHbJ+tRTa0jgtNWqTo1McWq1oW3AV9h6fURTaumQfEvQ9mKhVhPUxlM9dhP0W5KNahNPTmyCsGPQ9sjgtwVx0MUaPzFHFWNYFrY3uGizJDJiWp6eEj43btSO+U6VzevvIY0qCbVuqsqjQlob7HqzP26CVwbI2lnXBtMa5DU514XRes/eycL3siHWKb1Frk3Diz9//PL6rCev5hKjw5k3hy//z32S/3CJz1sL3321s286+bfzyF+/5oz/5E37x3XfgG7IHkUeuym4fuJ12lg6f//Qt0s5YWQOZEKAU3r17w7oqD48nvvj8kfXUgoWMRqCRvZMDC/Wi1hi3K2V0dAyutyvvP/wApfJQzjCiRWK7/TPquL7++mvePUDVlV6EoRG3nVv006iCjpYEClDfQndQS0RQCY+470gWwocJ+4ihHVUGy7qENI0o3UFGZAylVdyjX6SbI75n819FpQaxwB0fN7QlBRdhH7HBVYy6rtRSqRqUdekDsRFOLllrZiC2hdFtFRn5yARk31JFo+IlWERB+R6UZQUpkbGJRK9S3ymn00EscDcYt6jgrEsQBQgNONuuYaCWFoX48DyIbZR1DSmgnvCZdcZ+o65r3sMJwd3wsSNL9LyQkNu4XSM7Uc1AIwIM75fU3AsWVikFwdmvL3eNR/L5eUfsRl2XqDcNz5pN6gtmn5KTTdk9ek+kKm6ZBQLjek2mI4i2qfkbPWk6K5AxYoLUqCMdAB7PU70HxFiiqH3EomOPHElBpDGS/FJsBDGCJPJMzUkfyT5XoGSDeJBEak21cxFMSmplzoysHTqKJR00SVoZzsyPQ7koM8JtEJm1dWrT+aaouY3IUOL90QrQDcrYjnaHWOPTge9x04KSQTeSuWbUmiosEn2EIf8/4jPlzrbTJKCUpaI2WwrA957EjQJ1OSY1FIy6LNGrmAo2mCHmtPMJNM9tBuOKMlhOS9T3PDKtfe8hwdWiCXeqfYjv1LagtdIt6N6eRqTm2CSQRDNuiG0s55UxyGcM27bjeIgJM1EBQ3yjLVHHiqEr8ejH7qynqeQB+1OM0mG/cn7INe6AFrZbBIDLKWpYpTWW8xtaC4JGXc/cbhyB7N5DJmzbd3p3tsuN7Xrj+Ydv+e7bn0fALCkksO3sDPaxYZK9nZ+/jYA/peMyCgUjRAYSam8qyVC26KszY982Ls8Xbi8by7Khp87eDa0Tt/lxx0ftuL748nO+fLeiNKxpyNbgrM2O2kvxJe6xO8qWitYKVGafg9sGdc6SUsYgjLn0iOpS6scF6GGMtIaaN7l53W5BNy0VZKo5G9avIbciiksYAfeoIZVloWijag0vOzpiRqmBM3sqC4RzCWowY45pkbiWqTNVsqcLwDulLVFsthJyMTZg9FeOq4APbL8EO69V3MrRq2T9FtlGLZhNWhxI36JXRGv0EkkYXOsbZUnHNQTBGPstzlMrIQgsaBHGdgs2Vin0ce83sf0lxW8rIo1aw4n2dKIQbMvwrDs+rtSl4RYwFNnQiQdxIUSHY4P4fgtYspQwAPmF+u0KqQUn0ggagYfA7ixRGYn3W6SSyc5zgvkp1iGp5TrPLXJIUgXOGAQKhxgFM4v8nq0PgaeGcnmuleFpCLDMrPK8UmIEB5FFCe1QSdCx5TmClu0HsDuSTStADYeWjqvUe3+jq2K9g43MwiqTrSf9FpChCng5zj3GxtQBdMmpVkl6KiVqMyohOUSODilFQEObE9UQBhBBaw0mxmwV2PejsTbGYCSo5xHgiSiY3mmswyKYkRLrfwZE3mlLwzy/qwjbtofzrxmYzWNscW6tDKugEtBu79GiMNsGELzf8H6jrUv45JSH2vZo2ahVD2KREYFfrVG/M6+ZvUO/deqiSRSKpnzrG35bWE4lIVBBamVpgaK0Jc5T6kI9P3A6P9HWM+38yBiVqb3Y1jOlxv/3Di/vP/Dy/gO//LM/4U//uHF5fmG/RlNytz3QjbExmI3/nVTcTlg7btYxLUNjXbdUaYn2jYITXIAxBn2PJuU6BrfeKRh733+07f+oHddv/95v8c1nD9Tlib1qMI/G4NRSXUBD/gYIWIwthGZTRSLq2pZGKjZoz2JvOC5DysI9hOUYl4CUwMgh+N1+ybpOCaIIGUXv16Cio0RiPOcYGZCD/zQopKEl57FhCJHeWk/o2LMGUgJzT0OgOQ4Dgqof7QCRBdUaDDYzD6ORtqAua2aDeVv6BtajydaCLVemanNGlt32rAcFeUBzPlA3ywxNjkbdqDnE6z52fOzZ25KNyE7q8IUIaE8leOsd+hbRda1Zc4msREqhtgXwGHrXgw1n+5XSlpSbiUKvZKOwaGFI9GsJIHYLSm6tjEiBgrACqWwemXDkVw4ewriT0Qmz0umQHV7ZH31kXPN1PN/rQb5xUi9zfh7bcbZuHAFHyXOEzuWsuiQtn4z88/Uy3yHl114XQrsQMtvKa1FiXSGStT8S+hz3c/h0CrOaJodDjO9zm7sg6lPH9xz3LCTvYggtb7HGIUk1NfePByHBg8xSSgs5KlFEG7t5rvEgYWiN5tndjDk4Vdwopb1a45OsEgHeyFp2rTUy31y3NttREjJEQhKuj505qkYslc+lRPNxyEtgo2fgE+NxSm2xfzKAnCLoIuVYG7FPouG2iKBELe4YY6PTPnn+FcoWqgWs34VoPZ6PqCJvog9KkBT0Dh/dtw/YuLDfPkRQLbHPlvUblnVhWR+Q0nj67IG+fcbXv/EZv/Gb7/jw3Xd8//Nf8Yf/wx9iPfRdF4WbGWMf7B9+QGksC7SSFPqiLMspWl4s5hFWQv1HLyG/F3UIo5yU4Td6vzH64NsP30cLwr7xY4+P2nE9vXvHw2dP7JtSS+qz1UZr6QCIutDsr1BuIMEyiyg3Q2rbY9NK0pgTFhIGaMCEs8GTg+UUBvVuyiIa9NlnkhvZ+znjk3BqkUXdm0+Fe1Ygnn80erUQjcyp9yiUprGTpAqXtmRhlOgRmkVVj94RkEOdYrLbSm0pOiwZrUZkKBLF8Gm8k0+dRjEK8xCQo06aOs4ceBm9HHF9zPdGcS02aTLrgAOqdQCdKhaO71vWfjTYgh6ObrYWALRlDdLI2OjbgiYcNDKSt3R4+rpZe7IIhXSw9Xg+6vdrlnnpqcgRTeCOHU4x7qF5EgTy5zncAkkoMw5H+iz+g5eWRn82Nmf2ZfnZOGlJ4/nmPYszWkLNel9LYz8gGyk5DgdHbWZV8d2OTGI2bCdbz8zDyRPrLZ5nzqWLaZ4g8T3vWc7dnR4ZGjPZivWsOf4FnMKJTP8iINCCeiijIK8amJFDikvKksST/CQRVEOuqOkMKjyRidAdjJsyG/gtM/+ZWDm+Ry9cqe2Osrhjg6xhFirL8XzopAp9oVgSuizYkVEPg5oN2Z5/So1sLmqIllBpTHxYJM/rA/VyUP0pK557ZPRxHz3CCbAcbxJBZfT7RG1t9ipK0YMtPPsv8bme4jPdB/vLh2iF6Tvr+RGRkg3Ln3F+eqTvne165Tf+xj/Htg9u3fjuZz8LGS4VPn/3GW0VTg9nHh7epM5lZFMTVpZoCsv1HWvBB/TNuDxvbO8GZ5x2qvz1p5+iRXl+fv5fN+7/G8dH7bjWh0fqesrxFEH51CK0Mg0tlGVhTjjWpEfPzXRsDlsOg+AH0ygXR87ICkMPPqYkBBlFExtppjTpmOYFSJvnTriJiPZUS8pMZe1m9CS8ahqp2NxaJ1SRpjH7WERj7MXE5Ustx/ckhYXzK4VzyxDQp1NNZhCSEBR6N6BOZJnTMGafU5wvnUgao3mrZBo94fj5oTc0HSqZXaSMkFnqDB7b7H6vXYJReQzfJEVqxWLUgxSK1+NZhGMP9ll8UA6TTDaZMNUpnKneEddyd2KCHQ7eSUl/m07fjjUSaufTuduRkXg+G9IRBx0+rYjenZhllnqH8VIh5FhD8zRxc41s7p2rcjr0V3vBCccUvxsnSJ5ePEPycmYoIvcgRUWOtTxdyXTk6cnTid6vMS4hW5tfBWOuemTKLncnrDmJXPPzAPrYDyHmuwuzzADnwirR5uxz3eSh4MnwnVCeS97zvAdze0rRZMglLD2ZiiIgntMkXt1D4nmLp8JGBlGejfkRoOZ9EWKAad7DLP3MeI453ojppF893+w8jXU6l5PmXnQiiC5LEE3SJ7nFXoBg+5kbJsF+rPOJuAHJhh6wby+4BAzoDLQulNJoy4naGovD6emJtjR6jwnJaytce2fgPD4+UoqzrAvr+cSE5EWA0RCJa5iDTCVFx7dtR8bg/Q/fcfvyDTZ2ShEez2uoA/V/RjOu5SGa9Op6g1ahFmqNMQUTfpEUQFV1RE7pvGIe7wRYag6bM2ZvyFTRDgczJYUm9DNN7T5CLBZLXa9s4EVbmqSAzDSdyD5GDicUKEvQT4Fuhl17ZBYlBvl5du1EK5BkXSXx9THo+y3WpRnDjKoNtTSgbhGRk5lMRvK4INaTAJFQzGGoIbpQySwio9MISw/K9qzFAMeGhHAA5iPtXFJ3s3fKh3BIMRFSWe4xFiXUhdJ4jv1w+Gb9rkvnLYdLDsw7bVmj1lJC7LiPgCF8RMcQorgNdtsZFg3jMUImDEBE9IH516WlkK9g+45n9m1EH55LzFeL+yB5/RPOM/DOzISLavq5YDeGw4+1OIDZHO0iqWlIQtMJIotGvCBEcyx7nFuibcPy2brvTGJHDBGMaJ5cWzprXDanCRtFSvR+zetm3mvJGOVVvZc743GkYY3vGU3nKkIXxzwayVVC9UJSx46xx3ryULOpVZG2xH4oLTIoqfTrD4zthdFv2QMXEKNoTd8xDigchOLtsPmKR21RZ3Q/kAxKR/eI/jU0FJ3odePVRGvrPWqFORts2J73MFtULO6x62yAj8DERjxvE5BEKFyIkTse1HYfFusaoPd0vLGWW1PEoqaHbpBtIq6KmiMeTeOh/ah4ziQbozOIWpNqjVqYFDbfY1Zchm3qRs7HyaAFnI72C3KtXLcfaMuJZX1Ay9dUjcbk1lbK558zSSDnxxPbtoW8U405fqVE79gc3KpdX7XkZNCnjtaNsXeen1/YbefP/uQf8pOvnvjsi8+pGiOkShFa+WdUOeP55UJtb1iXJ7wqUkMpnilvIopJNim60/t2ZBSbGSWjv66WEXv0zxQyFXajSODl7k4laOEArTYmqa64sm1bGnhlt0ssTDN677E4RLkxkDSk2+i0cg4atjhjv9DqQitL2B+N5sb9+gLuISa6PiBS2W43ri/PGMLY9phIWiZRwtj2PcRTRbOuwaG1tuZcnphom4YNQo0iDXhMd63pNIx2Wo+sa997NtwG5ObZSNtNo+6iwQpUlWgaHhYSVjM/8IERRV2xEVN3JZznGJ1aQ/Fba2HfbvTeQRe834BQHzk9PgBC7539+iE3UpAYehbIiziytIQenVsfiHZKGbSEc51Bt2TreYwvl4Rudh+sNRhkJuHkPKPmRRakpB6mR/OsI5BZhSSUZTl+QyX1CL0xG7WPTL44IhVyZElJRqUoYO2AWKW0I1MRjyZdQailxiIkaOa79byOAsXRkt3ZOFJaZL9FUFtzjTultCNg0LLGvXTQUjFGzlizqEeKINToJZQKblnrrHcCk4Yx62NQTdhuHfPnJJoABv22R9YnsSf6dgtGn4Rjw2MP3m5brkPobtms7fR9PzQMRVs635CiWnIyM6VSFfYeU7JrwtAIiDvXPQI1FZB1DV8nsF0v98S11AlaBBsOjz1bYpxQ33f2fUeiAz7RFGHbQkkjWBQtWyX0YL0qAUdqoiTdJGvnCmWhVY1G7x5N46qFUmoo1mcgaQiylEPxpqfIssugTgagKtvekT0ypNvlmbKuLOsLuCZDNGrmkWnXYC7uMYC1953msSZKKdHg/ioAuB+ZttqgiPP1T7/hd77/gOH8zu/9DR7Pb1jqwmkp0QCds+Z+7PFRO64//bNfsvWdh7ZiueqaC+XUqLWytEZnHGyjbVzjZpvHgMbZcV9DnseJ5l7t0UQ7GFGDyAUpIxenFtbaGJoQSh/svmckmM2HfeB9sPkIZW7gZhs6oh5z3XfO62NE7wpVB+vSWVrHtoER033f/+oXtCqspxNPbz5HdWW73ri+/4Eh0WzYbxvbGPEdzDAJ4dXIDEoAcKVAKeyZLbgI1RP6EGcrNaCThMplDXFij85mktMXMk0ZkSfYHf+uLVXdIzMoCb2YR4BgmbUWHEnRUZlwzaTuqdNqwyYVebsxRkeXFdu3qMGpUiU673HHbtfIxHK+FxO2A3wImIDtkeTWRm2VUle2W2e7XXHZmDp92+j4bQ+YaFFuJUgBXir0kJGSUhjVcR0B3fQRCgzpsDzVOGwfmVmFskbPe+k2ormYcdxD33MdFmVYOWAw38gpw8LmA3Kj+xb3QSWGfA6RSJbN6amxIOIBX+0ZCNfGsBBB9QHSnZBYtpDqmgzMLX5P5rkJEhM9zh2ZXmAS4eNj2OlSIlscOpAerSCbwaKRRQ0blISYRh/cPrxQV6VWocodFZg1LLcwgmP0yEosAjKxCdsOTOeqnK0CGqxInYzSIDxZkmektoTiQMwPtRCDCFxzBpfNCcQiIQDMAUzcoUYbwfwb0XgeIhwBPc7ZOhEfTaugiGet/IBr82eT3AQZICnWM0vDKVKOujwuGWDmmB5qNEI7QE1kWlFN4WFRchYoAsmA1iQZxwghUaWWltD9AK2M7Yr3HkFzZvaa5C+Tycycsa6G0EDW4duy8O7Lz/nqm69BlW9+83f44vN3vHn3+X14Z6pw/Njjo3Zcf/iP/hEfXj7jsVW6BjW97Mb65sy6rpxPKzseLLRtcPUrY98DOlpPjM2iBr8u2O0SUIs6bHY4LvqgtCWKr9eBLCdKyyZJSWO0dbpm70sar7ENxj7Y1HMI4mDfLxRz+jCe985nj2+iNlWEz59O+CP4ybHrzj5u3C4v/OKP/4Snx8Lj0yNLa9RijOuN8XJhLzu368btcuPy8kK/bPndoJYQJDUXFmmhHP2wRhPvCBLD4iAlHEaXkpOfg9+4vovx4/vW2fYNtWhs1gqkGzNCJaDWyvrmHJI4Y7DtgzYc1BA1bAgjM4cmlfXpFO0Eww/VaTGjnQSpC15XSlPGLSi6RQa+70GrNWe0ii6VWoQ+9oCJ3JEeGVuOcg6ozA3brugyh28+oMsj15cfeP7+wtafGSP6927D6B+u4M76ZqWIxBykeoLNQjtubZxax7LeYbeB18w0hkEpWDf6y4acllCQyP5C23qsxSZJdBBqa9jVoj57Wlh1z8jBsEtk0q7CuG2UJQhA+/OGnpacnaZQEp7aByN0mSKJLZVx2XCH+qispad/cvwWDnSo45MYoEp/2fFaAz5SCQdqht86vfoRnA2INd4dTspSooHa2JE9xHd3hTU17cx2qhnb6Ox94/bDe54eT5xOFWklh7oKKqHbN0k1ReVQz7A+YMs1sQJEv2TvPe1tQVtlMGJatIFap1Sn1GDYjextYlhQtmXKwHXcAokoGZyGE4nnqkicn0AuBgX1EoLL1QhRsdC/LEBZAuIUt6NGWUXwGgiQuENm0UqosGg6MnNl7NFiULTS6pr6j5J7MIgjOAfDl9FxbekEG6Weslzi1FYzJJBg3wq412BB7jmvbJnwqYEO+vXKdJpVa/rL8ooRGfc35r9kUk+Q05Zl8Pbzz/nimw9oW/jpb/0uX372NmxYbYfTmtnmjzk+asf13/63/+/oYxjOyx66hN6vTK20KmDtnDpbxmXPce9m6PLA5frCvneGK54NqlorTVIaxxzvO6otm1N3jFjQqziyrCExJTls0mLsvOsJt6zJaGWZ6uOqLBoq8D9cOt989sTT0xveffE5/9d/7W/x+NkXPL39nHF9oRZBxPit3/kdqvfkfRTEF/wJPvvqa7wqlw/vuXz4wH65Yn0DjxErfYQTUqmsp5V2OrGcp7Cq4T3kmkbfcB/RO6Uh6tnWhfXpbUj73G70yy2cuveDYRdU24aKU1vj9PQZ23aj752+xZBIZm0h0h1UK8uyUtdT1Of6FplSJm8ku1FLGE7rkS4sj4/RsOzhcNfHp4zWnP3NJWSfJiwzCTKlMDycq3jUD9vpgfPbz0FOfPvzX/LH//C/5//7P/wDfvXte15uO+ubL1G74dZj/EzfGa7sLIjvqdwBqxomMXJ+KcZtRDBi+xXqOaS59huuLVscDJOVpjFiY3PJGgpoOWNjC7DPlUV6RNaieW7YhjGuL5R2DsblfkuhZGFRR2rAXFWdmxG1QjMoD6lDaAyURqiEiDYWDe3D3UH6htQV1YbbRs8erUaHskQ9Qge7l6DQu+H1nKSKXONqMQG7VJYSyETXhae1MPrgeumcVmc9PfDw8MTv/7Uv+PLrz/ns889599nbXC8B49sWNUWzwYOHOgM2sB2264e4t6nliQtjCG1RalsDTlel7539trNffkA0lG7efvE1UteoqTLS0Eem2beoEYb24Ahhaq0JFUaQoaVFAGsxOdv6lWFxf9flhEv0KzpZD5Wotzsla8EDlx7OKiHOSQQTqdRUv3cTtusHLNXnT+cn3GPcvY9ZU436e6kBFY9+pfctgpnlIRTpE+KVbA1S1ZAZGxuY01+eqbW90nEd9L6x9xHtKVrQEiUWc6eUwmiNg5EFkJJVEI3tTij9/PH/+Ef8j3/4jzi9eeT/5IMvv/qcp6dHSq0RfCY0/mOPj9px7bcr28Ui4xjGbob4iPEQ7rnBTtQWoyCuexTN3Qz0xrZvOUrEQuEBECmsS8ys6cOwsSebSZkDH91jqm0Mriu0Oa/Ko9ZgXJgcMPMYGaIJlLcSYryXbdAq6NL4vAhffPNTvvjqGx4f3tAvDdWg4/vTghoH0WHss6AuoC2MSlPGw4pngVl1VhM0xpm3EgP26hIU1oSVVC36UNzQZUFK1G6KQl1PuMdss7GekpgS8GVZFrQu6PIAY0NVqMsD5VrofdD3gRK6ZaJRn5GyhJBu4RjzYL0cenql5DWVitZo1rV+BR+UqngJw26pSZilCpKYGYbCPGHQ+G6IBojkQWNup4VlWUAqY3R++P4H/vt/8Mf88rv3vFx32sP3tBJA45abdzgML4hEf9oYRtNguyHKaW1ccxyNjR2kAZEh9GHHOBjRRmtBYthGrNMo9NUoK6ayQkmChYhyOi10s5Cuul2Pz4w6WeyBIo6WRq2F1kL/zW0krNoOQs3I2WsBgeUah9Ai7HdnqULUCT3UKbTUY5RKN2dyIY12sA6HOU2jBUVVWZYI7gaFNw8xmHC7bTw9Lnz9BTw9PPLlV1/z7u1bnh7OrEuLJmKPBu+RyvvuTpM16ykDb6C6MzYi2Co1a7iNZW2U0qg1gqK+D/q60xdBa8g6PTw9QT0FfEZAYtPB9G3k/onROFpbtE3oAkmGkRThtRHyYqbRX4cItS14Nmu79eO8WkoYdLfsl6wpA6YgjRAAdlRiaKMgmEncjsxuWstMbjIjIddICcake5xPIzistUatKhpSw0km8zOYmCWcq2dryqs+1bn2JuHISSeb5+H+6eHsDpgSSEa01kI9rbRlZVlOPD0+sS5LSHfprC9PUP/HHR+148Kj1+FyeeHqObhRNUYKJATlQ6jeaCzcUnPMDGzvDEuJltStm5I+pucgHAxPAl0yDUsNTcF0kKVEEXQ5reH8MhJx74kvy1EUVnFkdHp26e8WjpaqnB9WPvvqa9599gXn5cymHZE9PtMLMHtJdvZrCsQWBVkQMWoF72tsDEJtnVIQqWhdAt8XQVzoPSRvgqlmMBrg6HpGaioTeEdLTecmsBaEYET27UI7P1LXB8r6xNhfIqrLjaJloNUpkrp2WijLGk5RClHQyf4orWgWx0NUIfphtC2hMFJyCnKWDo4N4kkYEFBNqrJb0HKZrQmWoqTB/qoVak1tP4n7eb1t/NmvvucX373n+bJR37+wnGIkzZ5Z3CRLSSlBAulTUSJIF+v5ga3v+d6BcGOmkNv1xpzUXDQy39parM/sq3KL+pObMfadMXo4OxEeH9+E07HB9XqJug/RGzRGCMzGuaMvZ1kXbtuWjeRZM0pywYTI0xQFO8xzusDo0VZBTP/tPWuGTMHhQlvXVHBP/k62XEgqbQSJzyk4bV0CpjbndjtF9rTviL7ha4TH84kvv/qaN0+PnNaFqtMdStaa5rMWKC1ZmgGhCCujEjBiWyILameWNacgS2QxYx/0tuOLUFoNDdHTI5Q11od3Qrkj9oJqkGemYkoEWxUpSzRSe7bGaGFotmoQv69FkXKXaQvlD73XMCVVPSx77g6SSE0SYzAzRWclynPoZ8BzpUTdK5C1kSFxGn2J989WhNl6MDMgkahRHb0BHnbgkGDTOYcw7nmwZguexVFPp6g6bc6rLElmP+r9d6MOrCznE8u6sqwr5/WU0yVy6O0BLf7446N2XA8PD7R6ZpGCrxVSSWJdlgM/Le2E1hUpK88jOrctF1C3qNUsBd5/9yv6doPeWU5vo9/PO/vlcgiWUk8BLY7B2K+clkpbVs4Pb4O9GM0gMWVVayw/26gaSge1Xxgoex+8XC588/Xn/PZvfMU///u/xdoCk45NuuN+A98TrvJ0AAtSEkbpPVU3hHY60+pjjClRZXj0wkD2Do0tUBgLjFtTQqeqYFZBHG2zUdpj45FxkYOUYLsVbUghnNZyRmpBe/aqWMCOONRWaeWMZydRUJod89BeM+4SOlorcjiTLRS4k+xg1rMpd4/7AszI8N5HBNF2kPJKs+lWHCOd2h5wqAu00wNlWXl888RP/9pv8H/4m7/N+kc/45ffvefhzZlleUBqDdWNkT1aWiJL64PRd6zH3DBBaKc3dN8ZFjVNzQm7w5XtcsXGjltnbY31/Ia2nui+MSKtiZpTWSLjut348P57bISi+Jdffc2yBhX5T//0Z8eImWU9ZYw12Pcba6ss65llfWCwH/RkVQUNGSvvG/st5L2KCKfz22CuMrhdb+nsHNHIkKK+QSrQVEpboxmWKP6XlP1CKkJnqUJTaDqQumIOt23n4dSo4jSMn/61v8b/8W/+Tf753/99vvr6N2m6owzGbcNlZLDhiGYQmI3MUbNz2rpyOoXjMc/sPPshJzkDAkoVjVaHVt+F5JmEtJJDZCIE+SMydEvVjAXVNcgcGuw6CJs/g4S+bVEXh8z4JBu+j0WZdjx6zxgW87ZUCCXLsBOxN+4Tu6O0kGICkPYrHYOTa9sOJ0Gy+iS3RDjQ0ESNbZuNwfgR2M0+wjk0UpNZ7GMP9uJ2AYmAt98uoWBfStjZ03K09WCv96IdrY7HZxtEsB3szx++/4Hr159Tami57pbknQkb/Ijjo3Zc1qP/4Kuvnnh2iRuy78AZLZV1qZTHz6OQOCwgs9mJ206sFnjzaTnT2jv225W+bRGxSWGIou0GRISz3a7IurKWynlR1nWNgqo5vpxj8eChjtx3rHcMoYpR1VlKnmN05LSxnhe0nBg9sPu9Kro09u0Z8agrucWcKCQiYx+ZFbox9eFkOhtxoKSuW7D1rEd9LAJYp61ByRaP7y41IAlVS9Z09kdZROg+dsbtFgSEmore/RkbV/zFjwGaQsHHlq5kQ+op4ZACxPcIunOqMpiBbXiXqAFIy77wkU4tHRGTpTXbdQ2sHKK7PhIayx4cSxHVOZIcHCmC2471K317RsqJ0yJ89dkDv/kbv8PLTaCcWJ4+PyJha2eE6PWxsobzm6ocvie7LCE4DUFfxo6hkX3drqxvP2NNtXPN14cZqiVApTQ2+ECkUHTh3ZfP7NtG3/eYLXd+RJeVz+yBPTO1okJdnqJQnly/CQ9qW5hBcKhKxOcUXbD9GVITMIaKKl2EVj7E93Gw0akasO4pld3jZwMrazgygbo8hPF0p5SFtTqtBmxtPca7U43WBk2dpRin0ym0/go4G6NfMd+zLJkKENhBvzdLo29TnWELY5uDSksL8+VjY8qmITFd16xnL11A0+Q+tXGfWpwKZHEO96POG04jdBytz75OgJriziEsW1rJvk3Nmhy5F+6CvbjjffaSRq/o60PwfF5JR/eEQTUCvgjq+lGGEPFDmYRsmA/IPDZ51LMywxUS9aghQp2Qa0lpq5iKnA58bAktShYZZpNzzHITzWxK7nJkKkIwN+PyplL/sjQeHt9Aa1gpMeRzsiYJ9y0SU6p/7PFROy6hUsuZh/PC3hXvBlwp7ZFlaZxODc6fBwV33yhyit9T8HZGxkYRWM9vEAr77crtemW/XRAJfFvadnTED/8BXZ5YlhNvn9bQAxyD7foC67uo9ShhPG4XhlwRaRSNoYhlaYi/R0dnWQalOU5l20OEsvct0uixIx5QYSzkcELDcnDbAQX1RADCUrmB5YgJkVQ3GP0OE5CLK5q6jvehhNOzqU5B1gKjWD32K3hBaHhVbI9G7LHv9yZbr2E8JRltpISPOHNitGekFxDEhMrmHwI6ScNlfedAOBIujK8Z94SUy5oOa25l8u+JpIcBD5aa2WCMjWI7qrCuC2/efs5nnz2zeUHPX8VARBRf3iDSca2McsKuH0gghaWMQx/x+vwcGYYo4jvmhd530IXl9I7HhzNvHk4Mc64vzxG4lDWzGQmYcOzU0jid3nLSzrbduF4u7JcPtKe3lNMZ0RPbHpmdYiznzwOmLuE8+3Zlu13oyyMzCfDUu4vhlY8Uu2TQ4/TtEkMfpeDZLesOo9/Q8kCtCw9rFP7NouHdlye0CFWgro+ReVqn1AeW5rQSJIj9ekF1UIpTyk7RmITcss0hUCqLzMYCmitSc09nWpTr/GgKziZofBIdjtQj69MlM/W5VKImHDD/FKZOGbf5e5PjPr/8hCfDFIfDHhtTaSWMevQLchBdAo6b09Ki3DqvfTZ129EoPY9ImowDHcw6bRwjIbckLb265gMW9Pyco245WwKi1mjpbCXbTo7Az2dvYc5qm9mYjcgCk0Qy4WqdCjvw6n45R/1L8r7J3TlPsfGo7QWJ6+62MjtkZpU/7vioHdf58Q3np7eoKMsSunWrOHV9oJXK0irXtgRxoi40ToeqwCYaTbgiaF14++4L9u3G9z98D7VSpeJlRbEw9kV5evc5pZ5pbeXteWUfnW27RrG9LZQaDYJoxE8uOcRQPab7qjE0CritrdA6t+589/0zwzXmhgXH9IB4wFGPtDsKbpLYRWj0RdHVGZ0oLusOXI96lfVgDJLztyacgtRDtiYcVrINcyGPvUfm4x5q+SXURmy7JtwavWqltWAX3nffYQPCWWXmNkeJTEcETJ25aLMz3FN8Npt9D6iE+7+lnI79H5s3JbJ8Zp5zI02bFBvNAPEYBni77Vx3uNiCLic+++qnlMcv2coTt9st5kyVU1CfRdmkMJLCu5TK24eFbd+5bTcoKyPFXrGOJDNMEB4eP+fNwwNvHk68bFcuz8/crldu1IRVYzy6amFdTrx78xlfv33D3jeeX575/ttfBWmmLdjeue236KMTZV2fWGrj1CqX2wvb5cLtemEv7ci+Ml+liHJaH3hcFKxzuV7CiVowHMuUGJuHxKDCtRWGRd3Ny4Ken2i1stQCpR2wqehKrUmwkVjjw4OmX2pF2UF7kHlKw1BKXQNRcMclGrgjKp81k1C+8HFcFG5Ei8rouG0pOyRRY6MFAuEjGqqJ5nufgyUn0jJrQ0woUo4txaxRJSw9/eOh7QnJWNbse7tfm6YqyYT1guL+6p7mj8urS/CJcER0lRmL4FYQOq9wNyadfTrUqewz02ub7MRDxf1+fcFEzMvQKRydAV8O152ISLAq4//LslLbGi6v99CwrDWDXgGNwblxLSUGvVo0n3942diu98w2o+N7fPAXPD5qx/XZl5/zcD7Th6N+QqmBTK0ndlE2h40HKIZqp+bMom7QpdGS5SYFdi/00pD1kfMaIp0mYejQBlJYWvx7oPzysmetpsH6FDCAGTcPuE48aiOmws3JqPbEaFBkUJtw2V9gH5SbcN2N84BllKRIp8aeKAFRREF8NkcyC765qUySsksQM3z2vlj0lqVZRwisH7McwcJh5CduHTJFBTS6Usp6ih6mWqn1gbFvAYPWMLwhpVQOJzPrE5pMp0HOa/KI8oyEFoSkw4dkFL/2+7kJLdXJk+lkwylTb5KQWBoJ28mMkjmU7ohIMxpsDWHfB2oXtsszt5cPXLdLEDpKYRC9XpRQMrgN6BQ66xGhDnG+e0m5JF05Pwl+9MwR1PRSYlpsOzEcvn3ZoDSWx3ec37zDpLJnX9qwYAYWVQznl+/fR8TaTnz1k2/wEs20vTvlFr/TFFwq5vDcHSsP1DdnTm89aOhjpOYcodxODFK0bPhuD4X1/MAgJn5vb9/muJ2QBDtAVhuoO9WNNRlxEtgb7qHuX0rAcQMwkTBsXineqXS8OMMKbjc+3DrXy06/dkYXxBQoR+Oqo9Fw7cZsCo/gJKL5MTrsAZsdpAIRfESPnWT2dAROZN3lFeIgk+Xjr14+MqEkLuhkONorhxrrLbKdV+QX4jo8HdCUQUYKnoHxyFqUJiSaF5JTB8IJCdFkHNJb82pShDszt1zOU2jmlaPMLGY6MreEytPhHQGBpOLKcTcOVRUkSBnRsVaQVmP+Vg1WqR9foICG3ZGih20Jxx/sw3Wp/LXPV375ZkHbwsMSzOtSMoNzz4Dqz2Xuf+34qB3X6XyinU74rVO8YdSIumqkqX1YPoiISlRDNiZQsqSTZopuHmKmWpQqNTZh9k5wLNpwZuawjTuls5SaQp3BThSxxHEjqxvDjvURTCaNMQQ3YcfZ+2Df9oCpqjOJFfPPhAbm2IkDKJljKNJ53f+UhFhmbHPs0F+D05iQIryKSDnuCZngazKCgt5bQymghAq05vcxK6/OfI9uReR+zlzg02DIq2sXOGrx90t+/eb7pry/nj0yzHrfhIPm4cf9mdfhZriE2oGNnW4j6w5h2I+L1XI8tyBoNKQ4UmK0yhSLLbVBbbgqYtHrM3tmRDXaA3pMi6XFa7W2yMbNKN2SLh8fvfWAlVslhKNjtHIwB00QCUfkksXvMcKIlxCYDijYkBoKMJNpquoBQRuIh05ckdBALHUlyY8BJUoQbvq+H6xIsXI4f/PYD0pFa0BalkoUQgQrga6FiKwRj+i27dy2zp7Z/DTCgqQvcSa9+t4bNHdZPttJmJjyZL++vI/z/FpY74B4OjS/v3euybnU5pudV2SGdCwS+81fO5FX6/NOFJrv11cfIrz6pHiXz4/XwxaFgbkjCXMPzmDsPn5nplL3736cOTO++QEyg5B5f6fDm1ft9ys/Ml5/fbJwap46phywI6/sy2GR8ts6pyoxFoqQgDrqrvk5r//+McdH7bjqemJ5eKD3F6q37POJ4mM08hFjFPBE1zS5PBZ9WHNxpIaYu+Wco3RqqnhPerInfb7koIlZLCWiqBi3HnWohqWv09BM8xH1t5SPIXsxRs71sW5cLy9s51OoQpTpWOU+OsWPdQxMx3N3Vpr6jKJ3FXHICEenk7uvcplQxwFbGOEAyLU6s59kHwUgHkXvKRqKH9Renb0qc0d6iof6jF6nk4pNGWe3o+ALnpF3BACvi8Hk38coGI3v7vn8JDc/hKoDM8LVnIbM/D6xKTW3s3mMnzCLmVtuW9YJa0xQ3qMxuGjMkqoNavXQGvR7REuZQxIJ4dVu3HoUr8OgD7Qbmwm9aMJFUdhvBXrPp1ViOrNZMO2eN0eWBWkrdWmUVLLY9w41e/U0CEE+nO45hkQrRaBKqJY4Rm3CfgNnz/luKUZdgynK8CQvDKzEbDvVGsMMrYPlHC8LJ1WIicUqjbJEJuvDQsRZAl6LuW8DHQHvXS83Ltcb19ue05qzVaCEmvjrPBmS4DD3gSilFWqd0wlKShbFhAFN+adXMg73YGWuy2nU50rJaOnu4/xORDk8Oa/2TcyYmzXVCB65q4scWZz+uhMl9oT/2mtJfsjeJ9FyNNn74dXSV/icchbXMoPNmZLOle+e1I/DN79ylDnyJ94Xr4/MKuUeQRy/O4Yh2u+6hPMa3An2pwA1antHkJsCxjljb9+uQfzI2vkrP/sXPj5qx3V7/4x053Z5YZwrXhcYI+T93Rhj4/RwjsXdd2pZWLRz00F7OFEwijrnqly7MapgdWW/Xig+WFEqe2jVSQmig0bafNk2aosZPmKdpSjdOzffEREqQmHqju0B/ZUKKU9Uq1J9GtqCaKOWGMVddYSah2UPFzX2gobYZuDRmfVk8VRGR7ShogxiCx9pTIphhrDrjBxBNHq4JpgvzAbDXMjT4Y89awXxfdw6s2Ds4xYq23KK/8/ufitLKhd59ODAqwjxlalIrbR7VDr/NecsRd/RnFuVEUj8nBKNq/N8PhAXjvlY2uKtieWrNrSuTO1JRdhvU71DaeU+ZqJRcL9hUqE12DcWV1ZRzDZKyt9431ksrvp22ynLOSCVYSy6HtJh6+mUgxudpcJ2u2BAWxZMs3G3VbYcYljaQt9uxHDsgW8fEIXSjOJGXcIp3sZOXVqI4mIsNZQOhhntvGI9IvWlKRtRP0GUvt0Q6SFeO3aclJYaO5UW/J39JVs7BEaMzul9sCVsGKog4dRh0CepwAZCTHO2HgGRAqNHXZSsl1gqu1CX0CDMpaFCKrQkLOgzE4jeKdWKthOiW6zNfUPnxONsXI4lkazWiTkmBDkdyd2M3oMmplOI0Cd+OperJkw6pjMJ/cHEN5kBZpw2M6jXngT9J/59v4ZQxXn1WbPZnHv98XDps36VwWNcaoo2HxlhcnAlBIH9aHjP53l8v4k4ROBgKR2wbzEHrBEox5EREqWLOL/GDMRsXi+lgQ3KUnj86mu+/N3fRUrl4emR0iZqI4ez/Ys4sY/acU0lcCciFi0FL4VSUmfMPDaeAF5ppWA1pRZSPb6qhNR+CaPemSlzYLBLUUwVk6gNzeylJu4+85uSzKOhwTlSzbEQrx6SeYiMWsIOooXRN663jejAfw1/xCBEKSXEYrNeFZvsPkbAU9FDDnghZHn81aaMAZFktvN6qGNCkOZhFPL8/uqzwtFN+GSyAaeRySGLAsge58iI0Sf7UaJnK64EJkVQZjyYNma+73BfueEPUsqRJU6Kvd5hj+zpmiHtZDDZ8aGx4Vzm7weUHCKpAzyeZSkVY04tdppGlmHpK1ViTdTMAGe9LqtwoUmpchisIveGzFI0nUv8vpfI2ksN41Qk1MO9lswgIoso+TlaC7s7XUj2any/ManN6eCragQ4kJ+pESgVxUsJGFCC5ZZ3hVaUkfVC13sdoqjcA4387qhgeSM098jBkHS5c4AgINOcDDxGR2UJerbMsUNhvEP6KLKNkU3ZNkJJ5G7kHJOCaGAmyBz7Pgv+ud5eJ23zN19lXHeob5YRXp0jobA7FMixFuIc4/jZARtiyTjilcPw0PybjIzXmc8/Ad+HJmOu8fu2umdUszfxcF6voL1jpceau9fG5PiMmfHzChL8taxvvhQm5kAgxjHOmeN3X1/5fM53yap5b+M8W3e0nGJsUJ3173kCOdbUjz0+ascVMHlBqBxTY2s5JP1DGblkxO+0mp3qKLs4Og2K5HgIiRSZGRU4tFqzp0vAMpYXp5RcoJ6SPhkpVlV2t+Pc7gefJno9fKAmmMX19T74sL3weipzZADhyLRUPFUZbMzagB9QHe6vJJ5SRdqmOZ2b0WPThTW9L7BXjoZcsBMWOMbVixyOa8Kjs/5gWbh7rbd2Nw4wI1k7rAI4NtvPslk3zkVGdp6bcH43x6E797FMGZQg+SzjOURTaPzuDDyO6FMmPCJJjS+YRCHaRkThqiEW3N3wkcFIqh74xOglHc+ryddzYKB4vj7V94GighIiyqpZyyAdQq1hCGpQr4sEa9GzB8/TUUvWoZY10AT6wGaRWyRGQxQ9nFBVRWuM2qGWcKrJMqulMNLARLNoOMXSGt2FkWtFRKJUXErO4yIhSSA/c8hUvo95XkWD3NGJBvL4lYTAPFonagaVmrO7sAjUVFsIvpph1rEOPkJFXoSAZUsS2d3REvuh1OW+3ubaHa+yg1dZ1RzBMXvxZmbtCdUdayVJTREpcfxO3IQtkJfXQdX0MkcdemYvsShEX5GWSKue9zFsWL7WO3cFi/uemrDe8V7SETGlmDShdM15dK++s9978+JVeeW0uF8Ldydk5li3ZBjnPnc4GqoPSm98X8v6rLqmCksEHC8vO+KVqqdc+7/up16FBj/q+KgdV8Ww5/d8/8tfsv3wA7401kUZ48aynni7PiB2Ydtv3G4v3H6IRmTMkVbQpSG1sGvlYT0HM6rvfPfdLxj7hrrz9Vdf07SGevh+wbkBhTdEvcG8s9sL9hxGuiSee9Izp7Zy2w31ncUHXZTdd8pw5DLolw/47UIZnbUW1nqi6SO2Bbwi4qisuPakke8hsSQc6hdH6abfQM/HVGVSmNRtf7W4Jf1DRopKwHCBBGXIlQ5LZx0L8I0ANWvmYBOz7rkCIwsyOlNhAFKxQZL04NPUcw9E08jJNNJ6j4jD5oQaN23G3JOSXLlPXA7Y1PaN0gKgjQ2SoyYyM96soN5ATvQBrgt6egqIdUTGMrbv2F4+RL/U7hStSFnRegYMaqPXhQUYLnQbvHz4jgtQtHBaTywPoTquRah2CxJHFUpJejNONTJjL1RRetKr1D2VyQUpwq3fEAtq9YMq1Z1dQ3OweRijRR3KvU+n2EYlDFlVZVTBc8Bo1SAddSPX8UANzq1FwOTO7qHJaMRUAy9TCdyQ3u+1KJHQnVQHlCYxy24Au3goRmwxZFW3wTLgs4czD+sDRc7crtBKBJkTFvbd2J93rG+R0WpJlfWZDSQyQUmHkIQgj6ApZlR5GteI6OU1c3ZEn+HdeRARhzgw9RoTWpzi0NPczsyTmHkV58i9lg7ylY9J++4k3/KoBaPyaxndkTXN98uAFOKNgCuv/UAOBH0d702Gn0RD8TxziIOEoxIZ9++Mo6nRaIf0U9xg0UbR2FMoESz3gUo5CEyQ9f9kPN5rzwJSkSq0tfDlF0+c1hPr+cxDTkl4nXW9rr/9mOOjdlxPT0+cSmW7vrCfT1hrNIXH88raGkUtlALGBn2nlCXYWYAvhWVZqLUitYWe1xiod5YiuFRUgtppLjG/R/XQI7M+YnN6DqQskgKWRENkNDRklJ6D48Ris4qwlIKNBbcrVQgnM3uohsXcqpLRpua04iyeizieQ/uk5NLP1ezcGxSnoXzFS8AtVdQPzD+L0R4DFCc0MwnK7sHYC7LIXLzk+yw3e6zbvvfD2c1mZJxjwm+8b8I3EcVxdBvdYQx8RuwzeyrRV0Z8TrFxNxLH9xiReXPgLDAVB0zT2d3fLwxUPDIWD6IGKqxVKTSsBk17AN0G+9ijMO0cdF7zqN3MgGCMTt+v6CjJHsx6GkH9nuSZWsqhBag+Dkrx1GsUN9Sc4pnlJQFDPZTZg9GYX18sYWJJ5ECPW1kOiCgCA1OD4YjvaD7nUjRFVqLXTp3sWwITz5lpAft5iYDHUiRYbM570iMQiaxvjvSA4T0ys6bRxmBEG4Ab1S2NazBUIzPr+Mjso8DoHuodEs/TRuiAOlBbyD/JYRTTieT6iEuyV+v8FVJBZp5OwnqTjXp4iWOdHiQPLAkUk+E30Q+yZyvPcNTJAmVBPWdxyZE1/VrOkY7WLaYvyNwTB7x519u4sw2DKHX3ernXfTpQz/fPWzLr4qFgP2n2x6bLvVlmVGmpRN/34/4BASvdWSbH3344e0Cc9bSybR5TLo6t6kc7wK/BsT/i+Lgd1+MDj+tKvz7Tz494q6g5bx8fKBoSO95jgF0VoaxLRCYilLXRljX0/Vpj33e47TR1HtcFiPrY+bQyRtKOLYU0nRihkhlDFOpTf09iXEgVR2w6rOjVMWITVlVaVVga7gut3I4N5sQCYxoknxt3LhaLz51Bn9Zk4OkRFc7FOiHqe9CY7LnZ1ZmYvaeTndTnMDoTCpkF4LnZjupUnntuECGUNiIvutfLyEbRPM3B/orPR159RsIp7qmmz+zxmvOZ0tDk9YsrTIUE60A0Xd8h9HSMFjT2OSFapuMiMl31wRhgVdFlwRqYrox9pw+4DWGkQ8Hn84nvv9YWwYMEPV49oNC4Vsvnr8FiVUW1Bvx86AEmNC1RtxoatG+VCJSC4q7JEgwn1LTQ0kFNZxjD/EIFfbK4Sooru8x6a8CBPowmYQRrLdHjNYj7o8EQtTg5LikRJQUTZ0gqMviYTSLhpCXrW/Kqzy5Rgtgfc+BhTt02J8ceQE4ICHZksNDI7+oagy1VPIZ3ehBArNcg9pSpfD5XJ5nh+6t+rNewXq5xSXiQrA+Hx04Dnf8+1nzW4og1fkRQh2OZFmnuhcwSM/ALn5br79ecljMFBISoKwXx6dffdyAfcg9QolHajq0pcq+CRZhj93J5NmHb6MeMucPxTBIWESiGXpYcsKvZnCA/cy5/df8sA2JJAk06J4H1tHK57OhfpFnr/8fxUTuux1b5+s2Zz5bfQN++o6xniiwJqd24vbxw9QXePCFaOD08Hf037Xw+FIsF4/mHH7gsyoe1MN48UVVotfLm8ZGtG9s2ePnwgqdwK2Ph6pITRbNfQQu1VLbbxhg7NjrbdsHF6OL8MIzb5Yrh+Fl58/BEXZ9Y5YxqqKeXEg6tWEdloH5DCB2/01q5WTCENIvoNQ2bj5KjzMPITp7ecJDJ3EsaeuZEByQTazdGv/9aP5dZbqSoPcUMpHbsf4ZkhhdYflT+w1uOfcsNLPcmR/JzNDXm0gG4jBSunYbGIGcYedbwimpOGq4ZBadXto7vN8Z2RddHai3RDmFJ1vHBGDunakgZiKT6977B9ZkvToVRkoF1esCtRDarK1iMyLl1wcfdqfoYoZahhaVoaGAWZSmFIY1hRr+FFmWr4ahsOeUAvcKytNCchKih+QRh/CC0mEgwtFSOkThjPceYlX3Qlhwpb4NdopeuqMRwxCTuaGnHv0OGaKGPwa2fuV4uqEIroQYyyBpX9q7FAM4Tt4SOqwr7HsrzNiKTmDUuYbBT6MO5GEdrhJvRteEuCCeWZWWplSWFiMUcNUPo1FKQKiwKPjwYlNURjXqyFiFqvi3V2BWVjlioOrhuwazzVK3JteY99TM9SR1JZw8H/ar30OP+SzrsSRxxz0nVSezRXri3cZDNvenYJsSNHyK5I+tOE92bde+Z/UcClQrzFkw9cGYbmKMU5xUz2I4WGTXJvZfoRMlPEslADmZTsKX0Gh4jXeIz55Wl84rmUxQ5NF092zaYsGz2csqhdxjZuGglGqgjCHh4esPQNVoYlnoEz3DkpX8hsPCjdlxLbbEZWtQJer9yvf7A0lqMsijOu/OJUhdKW9F2ot9u9H1j7Bf2DfBgRY3tBbXOWgzXkhHIoG/PuEUME4lYwB2775ySJl90CQbaGPTeaQ/xmopg28rl5YVb7yxakHdPFBVaVT68PGP7jU5n26/s25X9qtieVOWcHjxH0wMZ6cc2sDGOgrVk74SYBzTndxZQ7FvPDCtPkr8Xc4I8itLGEYVOLcFJmhKbMMsW57Spnh6byZkitHmOyWRMuGVmipgfkGre5Oz9yOF183cS+cGcYduh1I56jpWJzKQsa/xGaUAohgwfyTCLia6zeI9GlmMWhqyK8Hhe0cfQUyuPb9m7R4NtOTNuV4bBbqkmIJFtXi/PUBvSGqc1pMbcjb7d2HOwYXehYHi/se0vQW0v4bhsWzNy9xiDTmzjaI3o2WsY9ywGzMYaGJJMSDO2Syp7W+dGPTKuVmtmhUE8mPXCVlMI1o3uzna5IG50EXotqcCnM2kPh7jf2FLex4pG9dDCAAYpOhxXZeC+Yd5jkHwpCY9Wrv0W2Z8GROljw/rG2G70uqNAsxiZ0vsWXL8kn6jcswo8BKjbesqRO0lAOgId7qzCV8fsywp4eB7ChOBkps5CONiZ0csrWG5CYcyxLnNxkllXzva6f2o4CbKuJRxZdRAo5I7hzd8YSZE+srBX54d7hgf3c0O+9w7vBfOp3H9HwPb96FN9ne2RmW3mkuCxD/sW2qmlLfl2weYwydoO+xj3fMp12YFGmcN1G9jISRnzBs8yAWQG+uNd10ftuBCiGFhbYMejs48XWllzxtOgLU5tkR27dDobblf24Tl3KAZuW79FXjGhrHyIu0XU44SSsjqAYRKjtaVUahWaKJ2BjY1aCksrEUWWippSe/TptLJSNIY19v2FnhlR7zf22wtbcbAbWlKR2uSYCYXEhp7/ZmQzcLImmRmB3RskD0zrwPfLcfsmI3IymHgF1flRH0ksxCxaYHJIXqz7hAocxCcxw5Na6xz0wUmkcIu6CQl56N0oTOdFbsQJ4YTPm2MU8vzphESEksP3RArdchSKB+vMpcc1OLjs2ezZQ8ZLYvzKw8NCrQt1WWhPb7jdOsMF1RN7c/pwdg/Hpem4qtygVbRVTqcVzBjdufRO75ZGMthxZjujd7ZsaFdVelmYfXCWNHQF1IXoq8nKn4cuiJJCtyg2ndGr2t6NEkocoqw1Jva6ew5kjPu91FAYiSqVcLleERsUd9pS47wJ+0nSs/vYDsfVVVmz7y+g3LtBEu+oX1HvFAriQZ4pOFVjBlg01Xd8XOnbC/vtfTQmm9L6gg5n9D3qacnI1aKZ8cysJObLlVKPWhfDX5Eicq0ezoI7RMhUtJgoQa47IjA44rnpIAIPPXZROCNLSO61Ic5sTaYr+XWYb4oTMNf7RP0U8Fk39njiR41oNuW/7il7dSnzu4ocjkuO2tOrS8so5PVeluP8dxc2R6tMm2B2p/3flXX8uF+Hwkb8AvczzZ/FK6qajgv+Aj7qn3p81I7r5i8MPXE+NZrHnKqTKNU/xGRYFa7jyssuOUVjSyag83zt7HvMu5L9mVIlCpf1zN4JNpTttJZTVrVQc6id+KBoZ+8D74rvjT6NPDC60GNcKws3HlfjvMBeQEtBxSgMlq9P7JuybQtje+blfUe2wnJq6DKVu0GlxkKvYJZFVRGoU1pIklocG0BrLp3cC7FI5wa+zw2bc4kCbhghduphNl2CDRXvz5ZmS4gnsyqOnqdQJLnj7JENyrw2cgxL4v1hV3KsgUzl9p54StS94iNmNFk4UjSJ94hEb1NdGl4aWhZs27m+PLPfnkMYluz10UqpTmkrxSwG/i7K+YvPOT20nGS90M5vaNcd74Pqjq2VrQ8+bJ2+3XDvYDvrOqKZvMSo+3F9Zr9duLy88P5yTcFgwbYb5sYw4/3thmW/zyJGrUGd7whjEISZ0WOirSiB4yhqsd4c2H1SCJR+u8Sz08LtlfzYqk6tBa0l5cnCEKv1bCYO53fbBmKhJ3g+n5mUANBQ1vBgR26957wlYVWl1hpzrsqCidJxhr2gIizR2UXfIgM133lcFjShJmNjv37LD999z3p64WGprOtCt41zbahDacK6rMGaTchrQoOoEJOjhVIknr0p3W6ZTcsrNh/3tVKO/CSz1/zxwc7LGk8BKRLO98h48i93XP0eaLkcYzzuvs0Pgz9Fd31OYZhyXGXuw+NXDsc8GwNFNISxoypIpsAHpf/QX3RJhxhTh6nlfup5nYC2gCHjM/yQBpN64JHpqHN9OJTTgq4rmllXycnNpS6U2pIQEwLOc6Dovc8S3r45sY8YTFoyez5kGu+39UcfH7XjKk0YvvHy/EI9rzwslceHN/SLM/YbY7+xlBYSNkXoGdqKKGs7Y5wjmt8amrRSp/KyD7CKuHI6NURK4OG1xRiGpHs/ZTZm2fQb00obkhG9AGWQzqUwTNk8HnhV4fPzZ1k03Xn39sx5qay10JaCsoF1ioQcTvQKxriPiBhLGFIvWQyf+yehQpV0OB2mnl82Mx7R4CywHgVri+bVDKL8eN+9j8nsNY4/vVB8+NjvFuGu6n4/B9yb9icLbZYPVPUOhx4RaJ5DAkpxguiAxz0Zm+G24xbkAh9RxC/Z1xTYfFxPUPU73q/s1471jaJRezQbeN/Q23Nkfj7YtmBamsNagwXax6DviYUQc8CGbfR+xXyjVePtOVsGtDJGO7LJL+UtI2uifb8cfVggmSkaY+zxOmGUjIKNO8xznv1rFOyhHLYGnyoLgtApRXLmUtSuwtD2w4AIynULKFXpKSotWdsqUVslqPma12jxECilUOuC5joWjGKW9eKClDUHtEJRY1nXGEJaKsOJESfFefvmgcqglZjVpZIkCuvhyNFsvt+P9odYGmnE3aIeaQOzTrF0FJ5OIK87lpBlnkkEntk2Ho29CUVqfmY6CbhnUDMoQDhgOkjuhxPB3lzPh6RU7jXr2exdU1T6FYs2oUqZkOIraafjk32SnGYenjWpvFfhzGMt2GviCJOANS83svMYT5ToytH0nBlpCfJaqak/OmIc1Lx/YTuCsKGz9f4wFgkXevRUjj7Yt5g4cf+EV5mXv8rafsTxUTuup7ePPL19oFinnRfK0ijLyr44Y19z5EI0kZoW9tvtYODNniR3w/v5MKzucNoDb1Y8pHogbnRdye7IML4pE9NRxAZaKrUu0O/KFWpBwUdCbHfPnpUig/XhISAf66ynGMNSa4kBdWOPTZAKBz4H083jUMvg1/PwpOdK1psCVpyRIrmC5j+yT+TOx7ifJj4kF9eEI/RVAfreF4akbqCP17/MZD+S1x8Zgh6G5dhTB05zfLX7eeT1Yvdf+x33gfXUREx5CxWNPipdEMkJs1Ji4LmWlChSWovhgk3Tc0qhloWC4MPwtgfxhjRHWhhjp/clxz4kY1IKY2/YiFlZ1j0K9loZ1o8IWDEsi9fb7cO9TuKkaoUzRs54yozYpIbjsn70pJGBElNXUoSIHzIzte0+E0mjlcMSLpqOSIHLFgw9ZXA+ndLBglGCAEAyYPNhRLP2nk6oZQQfl6C+UbQcIgAhdg3KoLYlnJ1WDEE1ZNYeHs4U2ygazdWFEo32Iw20pCZlmdG8/FrAE8b89R8D12PfTbhv9gbe60O59iUapnNrz90Kk5H3axqGCfd5/Cx+L7LLuI65Ju+Iw51ZOOnrk+AQz+61S5x9kEFIsmxtmVDsr+/JqVIfN3+2uiQycVBA5vXl6p3R4fG63P/8E+nPrJVKimfPZvr7zX/tbuR+zmmHnMMxgvMahvzf8/ioHddv//ZP+Pon7yg5giMUBxr4WySzErNrsI10wfuFaIqNzvo+Zr+QhdYZjtnOrUcxVzGW05sYvz4GdXlizgGKERBbFrsF+i0lblbGbgfLRjzIDDHj6oK0h1jg/RLv8Wg8lVZZlnBepRbYe/SClYg8GQ77lhBCLgyt2YSc1N6YV8Ixr8dnhpTGJzdYBG/JXzqCuozm3RMa0oywArKS+fdBrPDofzm8Z9QBM3E7INkQsIVjd7SAF8jhhWYZ50Ywx9wgnqSQu0TQrL8RNG0nRV0PVxZRYNUYGCqAbcd9ahIK7uhCqSUEkx2WqmhZCChrINrCKeYY8+HO7gOPSmiOj+GQ3KIs8TlZh+t9PxRdogssjIaN5zi3Fnx/wdMwDhu4LvfIPcL67EVqpKQzWhYmJTnOPckvCnZFVNOhbK/gVQnNS6ZdKfH83LhsO8KgYJwf3kb0bR2XnOeVjky5ADFZmr6HTmBZ0rdEE7DkMEN38H6Fuobz7TeCnB2SVugSGp01mmh1hJM9v/0M78a4XbH+En1htSCtxXiNCUP5PfOPQCXWjB1s1pkb5T30ASlxNpdfZHPTU5W77XZBvOG0ebdyz8w6bq7vHP+CK0blICMlQjGfELLGPZE9HUcDWRI6z4uxnUmWElmznWDgXnFZwm4kCSXOPlGHGo5IR/gMLSALR20PQCIwsUldlxqKJtpwbVH+8HRiMsscAhKD1cpyRtuC1jUzpQg457O4O7h7K0aweOMe1BYjamotiYD8eoZ1d24/7vioHddSF1pZmCygSK1zci8e8F9CAe6R8s6pvFJqyMvMJuGpP6eVvUcdKJZqytCMjtktahFHQ16e3wa236DUWKRTfkY0xrzDEfFhAfvMplzNbAbvWHc6hvBqttDoWL/hFiNTbI+6jUhKrJQYBT8L+5hh+45rDowbllHn7MkQGJExFCdlpGIgpdnOjBnne6NYD9SIDUYfSWDhmGsZzau3EFE1ifEetTD2Qd/2GDmfDKbaYr5P1KcWSmpBqlnSoCNT8Gzu9jHovh0AypxG7RDj06N7NhymKKH5EJJb5qFsLbJHH5cnPV+CJm97pxtoiWw5GDyzBnhXG4gNl60CacgEzwbrcV8Ts9B+FLLT6KRyQais55h0mYFB9gbFjYwMisgKO0QfH9GT5Wmfh78i34hn8DL7v7ijt1qT3u5pXPyQfupjRB3SnSJBlw5CyOv1HXAh06l6OCiVlFVKg5omPoPFGclnI7t46hlqNOLKXUooYpQk49geM972jZGQnSkwOpRK0XJ80hweecg35fgi6JinMkT+rPgWjbTmSNGsfTokExSRpHMrEAw5xn7Ua2bWDSNhSdJhOlKmg/dDXeLIubY7iSmCBk/G76S1p8OdmeMeY42iqB3njwC3E8Me/QAmRo/1Etl5PgNP3dC0DdGaGQzcvu/0rYewQSUh+ZwyPmeA5bOzcWMMYbttnEr0iLoHcWYSZO6obcCNcX0kfAs2jPfvLxHUnP6JOmAef9E87KN2XKelReOjEyK4EjdTM9q8d9Rnmp2QneicK5UKfzUw+HB+g7LvUcQkVA6w6JkJ0dHKFNOEKHBbZkYl+41Csm9mAfUoK4lF8dNNoIaSe/xJmKWU3EQZxR701aTJqr9CA+Y8LHkFn4zjumYECBxwysTgXGZmNqnEGSe+YghNttNkr4lPPbyJK06oy+9kjfzjRABQaj6H2g5yhoqjNVUkCAcfvz+jZDkyi5kizg3rr79LfuXXAsAHdDKhTSJjOZASLSBx30vJTM4tZoppvcsDGTH2fsaJmQFOFY+o003GZdScDkZXVYY5MoIePA2064zKjRhMGnezoInkRu1JJbIREVCL+6HiMcMrYb9gRcabwpFM8spUaEjRaV1AwpiHnE/OECvK0gdeBHFjaQtmhaE99CpLPW561YDGpW8g0bNTakO8HhCSTOkjHOpgNvfGswjHUDUymdBthFoErEQvWKlQgjwiKsy2oXs0H4y8iSjEDR0ZoM61MddfNvGTNTOXVIUxsNcC0/H8dOKdc/3PgHTCiK9m4MW2l3jmctfwjD11dIHl9phkkmQTHmshN/Ad/87/zkb71z/jHoXMi5Skrk+nP6Wkcp3eLyCgzEPhI2cPRuNynE90oinzOubnzGb56A2FiXpwhx2P1/N6cy0G7JoamDUGqr4qOf7vdnzcjmtttHwYu0g8q+FIXZhS+2jOw7KBlLjpIhqU2hI1hdpOAbMIGJ1ar+AhItpa9GON8boRT3PxdsbYGH1DWzidKSLqEx5LUVgQho9DfUGmMKqks0Iira5xjsDbUhwzmVKCZWaVW6RMrbAJKeShE14gSRq8XpPhwKbKtk76th8/F4iGT7ejgBuRP4hEVBfOSY+6W6AUdv9ZEbQuNFHQlr1o0dcUnAk/HOU0gOEM7LjY6Uc9GyOBnAWVRxqm+PWMxnVmHxIQcvxW3ActuR40pJ5UGWNHEjqRopBGz8tryEjiu4ncCQuSGZeNaE5OeFYIh2O9Ry1KAiYZ1Iz8O6Pda4euFRkjnJa2JFUA6vi4MV3a0lZmX1bQxpM0JALaj4wo7uSUYjohMvtvVuo0dCUK+W4BO5/WM8NGKs3sMcpFwmhJ6bjtlF2hd1Sjjuskacg9dB/zXtv/zN6fxNq2bvld4G981ZxzrV2c6t77iigwJh1hyLRSQqkgEuggEKJBB7fcoEUXNzB0aIFbbtIyPQQtZEEbpZQyTWSnlHRSzpRLiojwq25xzt57FXN+1cjG+Oba52GTUsR70bhSLunec+85++y19lpzfmOM//gXNKTvUHtE1Ex0LfKiD49N84ZExz4uBKQHtHlccPgg+CDW4MirH57UfrtGVDqKxe1YMzeaL9mvqUHI6NaMIjcQ73Vyc6//3A7+/+1Dd9ILWPZUGLKQ1wnopqP6vICMfDzGIf5qiLtfk6Og7U+DSWteV0KjGDh4JTu97pXlVrhGQyXGQkb2nZvJRHQUFyNY2esbHEqbyHmFku3KYSAWAxkZZuV7U+GHkfSegbdn5r2+Pms4UvDEKTJN8bVevT7R7X//pI/vdeESP+HigsROo5p4URut2/Th3Kulv7CPyMPrz7Ubzbe0jjIC8GiDZGcOATFWcxEAPEIbBrUOofVCq2VY2BiebsjVWCwrNGQUG27fY18Aw9732aP3DlWRXkDLmFDcDsyDOJxvr03hzatMxiHuDDr4zJLIml4xHVbNA5/foS1eYS4X8N46yNe04MFQVG44dm+7EmhMeyEYw68YnVuHKFl7HAeCs8ypnQlWBd3h3JLt5hymnTeWiDLeKauk5o4/ftsNZ/1R2HapzX7z7F5y7jNqvhMzxTXtVyfXTJwOpPmOXIoRbsQO2n2u3O+wW2m9MfosIr3Tb3o53TtNca/vlTfauRuFrjXL2VInxr50e0PjbjE8uGgCYrF9hnXgNm37OI09C7ZHVTusvHMoGZvAMWuy27Le48Ns57rYBCyidBohzFa81A4pc8H37M4kOqYDpd7IJgReJ1P1r9f4yHy5Df7Dn5Guxjb0Eecnbr4takWnt0pvSqibwcK90/I2JiyH85XWRsbX3nTtcO8Qvr6ehHZd95YRdimHjiIz2HOfpQaNbs+gu95u+2bZp/fPGEvOjV1WHyzW/cLSQcBQfukAt0nmlb6ubp/E/GeH9+vUBIymZiAr9qyfjXmDrHL7+n2aNOgWvxNFXt8KaySHmq6WsSqo5se8nzqfGSZbjXW3JrXVQtlWu76Od7fiOA4qe7sH4cy8NEcjr3bOptns1/aAzYGC/9oe3+vCdX56xldLFS5R6M6OnK0OeESBMLoAVSzeRxEaLpZb19Tr8G5zRjgoWVAdi8YdjsAOwDpiOuwwsEO01UTTiOvOaLkD8hERqlpgoSEM+51jBdX83gRpFue+s4VeE3ZtT7aPQjskd9t/IfvJav/S3R36dX9yAyTEuvthA3+bePbuy3gB4yZShhmn0MWKAOJR51+JBMAeH68AwdMl3wTGwEiwbbBuqLNOTlt7hSxcAIZ9jrf3nM+gjN3rQN0rYUA+C+0bbwIgN+uksSAYOw17v/dNld4OpTGJ+4jzsK4rtWTiweFlOGc3c5pQxPaFzZqXJp3a223wFoXWxr5kzx9TOxTKZz9FY9hGdSX3eGsQnDcWI2Iu8jpMyp0TW5+Nz7TkwZDEdghVbSfjRXB+OJCrUro9m72vWCOhgJehIwTnlFagdU/vYmGMwG5nVbpR48OwWzICSDDUQQalXrhR5ZUw3L+NfWiNERYUOZKgg+s2oY9TzGkf0xi4bE78jQR+tuKJp4/rQW5s88+slkZhvN0Hoq+kmN0VfdzbjM+fqqNA25/rmBrQ8bN00xZagOsO/blb01S7/2UCUdvvZ8EWcq8Ttgxo7nZiqwe1fdJ+/xqt3wTRXccObydW9dcd4k5kYp/pZae0j1tlvE4dzvY3uFFkTJ6DVNJNMxi6FTuVvUnby6WzPSo7xMqAma1D2RmS+3Fzc7/4DM4UTD9rDZgbzdLtRn29b3/pv/74j+914fru57+gHY5mo3NIEAPeO665GCzVFRe9XexgLhgjIM3HisM+vOa6ceacglNzqB4Fyo9UVzeW27nuhWv3+lJac9Z1YrOUSB+jtRmb7oVrF1VaQXRIs4tYOkyLI+zMN7VYc6Hddi03ltSe4Hpr3QakxqDhib2Km2eSMOC0UXxkv3H2EWZ83WdZO7a09nZgD0hMXUAHTGLQGKgLtyBJFwJdrgPjHhOK2iHbe359SQOylQHjio4l9s6I2llbA++3AjdiFXbbntcVhMFVYyl06+rsBEVwt4Km4xBR3S11PCIB5x2lrFyvmYgzPRGCdmcWVCIGIbZO1U5Tpbdi0PCAU2uzn1NbfT0Uu1Kxwi6q4DutFFprZMLtgAqh02qxaT1AdA4fwHvzkjROoSCt4YaRstZG6WP6QokJOwR7p2i45aT5keVmn9VE8gbDhQhaqzErO4iuN6iH3sjNIi+iE2LCEIreTJ+ldl2GYeu0G0B7Z503jnHv2P0m3RIXvBZccLcJIlGIXolBkGBCVZUEYbaCoR7dqd+j4bDY+L1h2xuYvYliFAE/JmG5FcnPxcRGlh2ctn0yVLFDvw/6d3fj9jAc0b7ecBYd1xViAu/b7grbf+KcIfC7lvA2xY2COjw498/f6PVgLN7xGnHwS00ct3t5L8j7au41vNIKmklQXsebvbD14cAjt7iT/b53t/f0l1nFn8tpxmuQ/axhEJPk9XnGn++v1jR9Vrj2BvpW8Paf51coXd/rwvU3/2//dx6XOx7uDujDHe4wc39/oA6aq5NONtM3kHGTDqiCHvbJmNxBtNjfccauY1ych+m1W/JBKN0+4Oh1ZF8ZM68RBmsL0Ejw5mpR1d1+3/zuALXMo8hGr0rL8Ob9G+7vjhyPC3eLWPc+IE7p+2Vlh9b4iejNLtAbu2hQbbXWQUSQwbYa048ajZ9Bf7ccjb6PWLeLeH8CxWjJBiVG+0et97JubbiK7CXGRSueTRGXTIiNjg56vwuMWaXjvVZ1JiTV1yA8lX2HOF5MHyGXfaei2zQqHdQJMm4y2BuTPj5vcyHXfQoQbuhLb41aCxAprXG6XHj6yU85n06UUlHCgDmskDppgwAkeFfpOHOb6IU2psAglVz2ya6zVbBdTyOrp9XNok/8xBStielVyGU1jV8TljiSi72jlit9HIaHBKL7VN7Yin3WQZoJdQcUVDUa6w/oLYzX18kFku8E7wjTBJjGrHfHFCpIBCLiGr2b4HdOFjJpzVmmqRtM20bwRyMLodQsBG+dtp+OQKPUyulaiFKgKj2D0onBk6Lj/Z3j3fv3PD6+5f3ygJZmaICfaGU1+Paz/ZIMxEF0aINavaERxrscyb3Dj1N00A7cbntlrMLeP5MItwHvOz+K1Ti862hePqsbe6u4a7gEfyMsAdZ43SQkxgAWscm5q9gqWbjBhzL+3YctF7ffHSQHfpk8fnsR2LWlqDEtFXvdwg0mf71/7WLXZibWrZQh4L8dINh89TqdtdapuVIuK8F5dBqepMNs2Ds/zhmDnVvNqPN4c6y0Sa0r17UyTRN7dtjoOX61Meuzx/e6cP0//v4fMMXIkhItBlwIHJZEHYnIMXjWXBg9mgmF2WEy8w4UEc5rpdeV3Rk9BI94czxelsmKgto5X5odZCl62mD9eVEKVqhC8KjarksEarffcwK1bkZycI4QA+/fHG1hrsKXa+aHX7zDieM4H63L3ruaQbu/iS3FYKb9qrg1MePnFD8KmNph8cpw8nZT3oqAvE5dOrookc8aLCseovZ3XfdAsIFGhynriGTwYnmGvanlmrWOU5MTaBeqE9p43btPoRXcsVUarD0dp0XdIdIxjRnl3sju0uxAYEAdVvyE275shzPk9SDAhxvu352RD1pVJCXWDb77eOXv/8P/mW+++ZaX05WXSzbj326Jrod5oiMUBW0bbYeMBXRYBEUv5GKNgDhhK8OgyWG0+wH1bV1e2ZlqTh+9w5Y79EHIEIOvdNCyUxjaGXGE4CjN3h/vTLi898xWLMcBpkIINpnlzcg+MhqGGN2YwAMpjuU+prFq3XDQFJyxQbG/W/u+yDfd4848bcXdmJDiPd5bd7+WRoreUgZKNVcTJ6Tg+PEXj/zZPxPp3PH4IaEUnArBT6OgCK8ZB/tV3m//dUsV1l164kfNkBsVvu3rgv1SqEpz/QaR7S1g7x03oDrnBLqxJK092p/LPjHt3IqKV3cjKiA71AcifvSN+/U3EsqHw4nszd+A8eznaHtfZ0V3QNYyTvtXjMXQDBEMjRnkDRU7s3ZUgeEQIupwYULcbhy8p8WHGyqy72h35qxxmEaTNArjvjftujNt7X31Y8qyqCA3mn8hBTMSD35nHvL50PgrP77XheuPvvs0so6EoWywgrIXrhjZsolQHVAHeUIw/HYahet0ybSy3Ygc05TMuj9E5nmxJ1MliGLnvrHSmpqBaPSOKm4wcYwmvNPIizpiMMZizicEJXjPNC/8+AdfsKRIioG0zDzeHc0mpVugm7mof9Zt7cvU24Eut9f2ylIYN0yH3THjdSm6f7cdonyFWm6K/fH+3JhX7Ef/fsHazenG8+89sROx+JRuuxb3GZVf+04YsGJ8I2GNIdHtF7/I7eZ/hQ9lyAOsqO3Qxy8VtXFjG/4//g56+1rZ4b7xXLhoPn5dCWJxHOta+PT0zNfffuLj04mvP76QsxnkttY4LBYpUppBeK01uo7QxAE9xugpxVzfnXNstQ96uxWAEKy732of5AKbQucp2UG/VWq5GtEHJaVpHEpuuKXb648x2L6FURRLRsRSDtayH4J21KUYERG2zazFdDBIpynZhOzDrYETIEZvOzusQNZq+kfvIHe5fV/2KQaDyl9p5UqM5kpTFaZpMX/Bmi0fTDvRC7TGu3c/5O27RusBwaB754LtYgX2/cv+0M+vYSef7bh2PG5cFzvGpTtsxuvvy2f3z7h1bk2e8Lr3uQ0udmgbjMYQ09v15vpr8/RLCIG8OnjsezIZDdbNbWZMRjd/z1/G0W73y61w/9KksuOFn7EZZeyLRW8oyt6Tyi73cMNzlM/ca0Y69ufvi9XhUbyHQ8zNH/FWenYWrd1rr/Cn/Yl3crvH9x95/xg++/H/xI/vdeFy3qJE8lYpvQ2nhmaQoBgzaR9R3VBmuh3Cq6OD793McncqsQjxao4UznvizdrfuuC949r3DcFbkrI6uXUyrbUh7DWGowxSRu8Z7x3Re+Z5YomeN/f3TG8eTEvmvIlBW7t5gO2pvjftxmeDCIPdt5N9PmPX3lZG/jPCReu/LFDdSQxGaxacH+aZjsHeMxKJwwSxzneo7aZZCaKmy7kVHwtndA687yM+pNnvSxjw5Xgv6cPB3z5H7zEi5bjCA6CfvVg3zoddK7ez8mRMXrdFOzLel6F7+7wAyuiQ92NlfLkDohfev32k9U5IiWvtvDy/GI2/dE7nk3kVtj6Yo3ZD189w/xACtY5IGR29w2Bj2rWTbm72LuwMrTaMeBu1brRmTisCr0atKLVst/MqZ6HWPVKG0RiMAsl+6NmHXrJN6lsuQ/Q+phZtiMvGdOzp1jzULMNV3iDL3mxK896bkfQgnvDZ0dz3KWM0DPRgiEUIxGgC9l220HNly5VPz8+s20pp1br4zyb9VzMAP362AfuNSX1c4Z8djHYY72Jg8RiJZzz6frBiDcUOh9wmHNFxLY4Gp78erIL9niIj3E5v95q71TfFjLtGTpV3N2Lqa3OGvfbxpPI5sQHQtmd32VRq+1P5pQPeABYjH+2TlQN2L9HPra1ehfSdXddnQuEhhtduZ9TtUxzvBTuj0/SqvdbPJqbPGmVVkE6/kWzUNK3YVKZdTCgtwsT0ei6xT46/2uN7Xbh+7//8L7OkifV64tScESdyNuIcxh70y731GEMkbMrwSiaRrxd6NdeEu2MgpYk4H6mXix2MMZEi4GfURfq24l3EOU9Kip9mAHTbCNOCYgat3c/U9UrNm7lz7wf8lHC1IL3itCKamY8HDu/eMM0RCUKlUduK9OEc4DuOClqhFtqtM+pG8FBzmPAeO7yFQU3u+5S/D2umK9Kyr7wNrvCGWdsFOq7QIXvS1s3m59aVjl2XDgDdR5Q2Dq5wgzMQc9hQZ8bE2hR8BD9YVeNQVR0HqXZbTvvI7YxxYRzacgs5VLXXvROhcTu7yg24btzEjNf7WcNqzYzipFO7oFLAdZx24jxx//4L/tzbH/DnmlJK4+PLlW+++RnrVsjF0XK5/WzzpIif6N1x+vjxZmnlfafHOwSHV8WFCechBPDTgbZltFbScbHf8w4fZp4/fqKWRkeIvuBDxIXE8zdfE9JMSJHWMoVEbVCv6zgwOyINiRMtZ9p2JUwzfoh3CUcuT8+UbQMcKZrju48z6/OTNQQhcjgkJC6oS5TT2ZxYnOBcwaXJmpttw8VIa4VcNsQn2pbppZKmw3A/d/j5SL9eLWZIAirVIKwQ8GVF8wXaytvHiR//5o+4u1/Il2/wk4DrdH2FPc0Fh8FANI9Deh9FjTGZGmRmcgtrWWjVmhMxluM+Ldh+WG6NV2N0oq0Qg6M2e94QZnaLDOfdKw9EzOHDjQKo2F5XRho1QVDvadYpj2LSzfUE2+vu9kf2/WwqMvKMNRO7dVXXIeR2ww9RnJGlsIK2/3yjn7O7/VZJO10DbdybeMGlgNeG642x+Rg77tfzdJd9OBVSSvjhdGNrikGS2Uld3dxK/IgusjTqeNN7+mEH5fYl12elai9ev8rje124fvd3/3ne3D+wXc+ciQZlbHn0293o5od7u9hLRbzQ6kathexmtvOZXisxJR7vEnGa8NMdl48fbbcTE9F1NC7gJ/p6NSPW4JmiIvNs1OTLmTQvtNYoNdPTgbau1G2z77MXrsOCbCvUjNYrp6dvcCkQUrLOF6gjhbiPfZvvduGKDmOW4XGn+ym693y7wl8+o8CPY73rPmO8dquvdI9X3G6/KRTM5ml/jh0JMI40r5edv0FHVrwcr2LJXRA5ujzZxds7hGHd4HjRA5J51cUYhXfMTvoKTtxe5z5BWQV7HTFl3xuM4Eq1Z9zvT+1QW7+x/0KzxmVajtzdveOQZgTHNVc+ffoRW66U5snXoZVywjKBhImuntO337FTmp1W2nSHiLfCFdMw9VVkPlAuK70UpruZ6MAHh58OPH3zHa12XPDMseNjQkLim3/8E9I8mw6uFzaSFd11Hc2JHe4yLRbMeL2SZluIixM0Hjl9/ERZM9575qg28aWF0zff2GHnPVP0EA90n6in8yAWCU4Kbl4MmRjfu9bMul6pEimXlbZlluO9Paf3uMMd9XQyNilGMFHvISViW6Fe8brxcHDc3RvSUMrGFIORYnemoI4JYhBfLJNMb93/K9nHvs6yQeVzy0JuI7W8/mpyBTcCPMXg+B2yGN/rVhE+u9724rVr116v39fpfYcK+2j0jE0sr9d8t2J0QzRlJKiPq1vHxLP//+sdzHgdZkHFwBZuzef+hu3nwX6/KLbnu30Pbt/3l8T/Y3S/5emp3oyavfevf+dWwPQG1Zq4e7xP3d+mxFoh+DgGtdeipbdf9bP/++M/vteF6//yL/8+X331FVqgz7PdIKVaJ6EgVSnJU7dMvW5IVKR2tMEaIvmyoq0xzYG7lBDvyc7x8adfW5yfF1wBTQkNAVcbIXqCd0QVSvTUWijnM3EKlNzYroWakomGWwOvZusjjj4HyCtaN0o+84v/9X/lmlcyFSRQu1JqRTjc6Pzd99cL77asFl4NMscBbmPKQC2aHfy34jSEj71ZB9f3K/v1hnUSMNPQUaj26cUN+59dhzL+jh0AfjDv+vB3s6nRIYifBjTo8GOn9Lo7aON7x7Hr2d36/e2cMR3JKLzDTePV2sao7OLCbdf2Wpjb+P4y2FB2i7QdZlKhFHOEFKe4UMAFpiXw+P4Dbx8fSSnZi+j/nJnsdri8XEE63guT86gfeVdbscOsK3Wr5GCTohsfh4m/lBocdTM/vpAEj0ksZIpsP/oBTmCaIocQUO+oAi+/9RukFKzrbbAqdBEOPuDDaFSqoskgNUoz8udYoNcQuJ5Wem2k5ImDeVq8cPr2hdIKtTf61qg+0JzHNaOoeweuKjoZI1RqZVkiNReu55WPa2E7X2jrxnJ/R8DgqDol+nW18MzWaZeV6qAGYaGRQiOFzgGltY1OpZRG13D7bD8vRDImHTtzrXFDuDV2YISgvsNqypg89q/dd0uM1cHuwu4HZ2lE0Q/39l235XbN0meO8/v3uOmwsGaui8FxO4LW9z93w9pqJ5Bg6dyyw4Zjz2pMw/5L57iOCqz01wZNGCzZQfrxdq/uLFv7izb9oMYG7HX4l9Y6hPxtwL82bep4oYob8Tn2fmpr+BDxwUqEDtdrHR3tXt9V85AKBQrZvlcXrpfMMlxWPudH/roe3+vCFZYJvKP2TtZ+M5hgpzED66q07lE/cRehuk5tykU96SHhUeq28fVlo7VOrpBN3IIgxPk1HXZaJjqQtRvNeG0mtrs7klKk+cJWr+QqNpl5pZULVU0Xtl6v+OHeoC7Bcmcu2L2QXUCDw0Wh6UroBY/imoWqG/17p66/Tko3qrw2YwohqJbb4W+7isTOYpJWkbriajYK8A7AE0Ymr2H5vlYjFohDWoHmkOppUREf8S5QtZq+SBsBg2e0F6SsRBp4O4RxE7g4IEJGNz8KOgVBcWpBgzf3beFWqDwgwY8GtxG8Ay+oM8PffVJ0fsCYKNIbItWmJAk0fV3AN+0jYLHhm5FSfPDQm1kf9Y54T1WoDXJRivO02ulb4UQ2WMQHkhOiM33cRSrXa0acY0mRls3ItrfOdhnzrQPUkdvoVhu0piZ83RqX0zZo90bPdngEz9Ybl83gpngMt065o/TymgYdgvvs8HTEeUJ7x6Pk3Gil0zJosH1M0E7xnVZNdzUlR3P297tUejHh8JwMkWjiKVk5PRe6RJgcl1ptl9pNGB18QII1FbpM0JRcO1u9cqCztErNL7hyIkhD3YKWvRkzWzSnVjRwOzNQ0V6H/AL7771r792appEELcq4Z153xIxppuoONJv4+ra+Gc45Rv/Nr8xdv3ufDmhQDMkRbUBkjylRPFWENnRf3unYSdl1ZtCeQY3mdO/p0m57XO8c6odhcys4H0chNCso9X5oKRWz9jI8v1P/ybJwczyx4ud8xwerqq4WgrSx+9YbOqWfnRfOQZgCPpoEyH02qaGVPvaO+3tl6hqPuGiv2wWTRng/dFz86kut/83je124ns5X1L1wPV/JYaK7cZHuHlwqNEncIuq7sOXClivnotwfZ8O218x6vlBqo1YTmKoo6oUjyxh0BiyBdU+tmNbLMGvPWhpbbdRubhQ7memSC360YqUrfRjcNql0YzHgqEOtbsj7bsu0F6RfAvY+ex30Nm66/c93sYh538FOKDamn7EmG07NGsusl9wYrzC4UhziOq43S4px7qb3QBS6G5Y2dtjuRqJOxL5nr9AKlKvps3ocPo4BPw4Dkd15/3VJ7ZzyWRP9qkeGMTXZjXNjwY/3EbCf1e2wjP0lQ3vG12hD+2ewaX81Ie7N9EICJrKtFcVRtHDNlVw6W+54MWfx1kwPo2IEhCkGpmRTwumyct2aiWkH5KJ9ONwPRMWp4LqjVKPad+nDoV3Q1snXjdI6tavBZ0DsSi6d62bLdBMSjx+12+HjsCmpd0/rndaVirPnH2zPMhzCW1P7OUf/owil2fW5705A6dWYj97ZM1xyYdsKW6k2qbWGtsbaK2GYsvY4vPyc0L2l6ebxTyvd4EfJiBYS1QT+rzLrW5G5fZAjLkZvsNnIw+p9FAa97TV3Y939fjCqiiUm230iuLGL/cwU0PbE8nq26p4igaEOO+tJx/OLmNTj5puo+2vYfx07KLVXLbtw/vYaX3dUO+nEOcyqTq0w0s3uq3dh98NhL6bjrTEXjv2mGffx/nX7ebDrVnltgLn9s7OWx0SJ3Bpe2Q0P+hBS34TS2P0E0PezQdhvtT23wIhe+6T6/5+4funx9XefeDpvfPrmIzUtqI8EJ7i02MmnQpjuzBYHZZ2E0/nK+bLyci188f6RZU7mnPB0spu5q2UDOaUGYwS6qIjrtNqpqMEUpVhAnndI62yuUEqj1Y5EY6612jldN+IAwwieXhqtVzKZLoM9JQMuGPHt5jnYbhefiS73w1hu7hS2bLaL2qCHcYv3hvP2vQ2+Hjf0yFwSzA6ot2Jd7rhrHcO13DMuXPte0vv4GkX6yHRyRtk3F30IAlW6CUdbpUtFe0Rbw4VkriRhwH19v7GsW5TRGNiuwH5Q717LsR3OnxeuV3x8d1O4sdJ2cH/83JZozGCDjlLebenf6RZzoWHcmJ2aC7kqz1vl4+nCujXWrfG4LCBK64X1spr3IY4pRebZRNgv55VcGmkwUcXvGhfdSVimaYtKLo1aGxUI4vAiNC+cryvragXi7u5A7p04NVpVrqUNgopaoy9jz6GvO480eUrto/iN90JNlF5LsWu4dXrtZmKbPNEFSlej+pc27LkUqc2mUYHehNoqtTTWtYwi36g5c84bk/fEEPASbdpzBqVTO7kruTXqWnBseLkyz43gIDq5HfpW7+w66+Nz3UXp7M7/exPTTZ8ow/EexpSpr0VrRGiaDhG79pwo6sb3GibBaDNh7phQblOY29msA47uQrs1GtBvCQF7YbDfN5h5wINuFIBRoIa3mr0WGMCJjJWRRd/skUeqJpjWsUtz2Puqwy9Uh6mAwE2MbU2gPb8TxY3YHRlNq02KDXaT5J3ZqHvDYkVIW0Olj23CvvDW8Z9m6aXyqge9EUWkAg7n51sD9Kfx+F4Xrlqg1Y1Pn74jPn6JmyK9NN7eLYQQaNqYlsUOjtZYponeHE09V9chzCNNViis4BzzHPj4zbf4GDku9zw+PJh7gPPUXAndCpd6x91yQESoJTPFibvFoLXSRzpQqXzzs5+b7Zj3uBB4OZ+oOaPaeHefIJhxb69XogqxJ3yPmL6jstUrU3e3SUNFIAQkxtHlVMOq9TPcv+3doR1q/abWNwaUtk4tG3nN7JEqPkTaWlCvuBRxMlnxanbgIQJBiSEaWy5MtDo6N+cRP+OnexSDNMIhmRbEBSBZ1pULqBOcn6xrFYVm+jnzZxwakpHAyh4hXqolQovt4gyW2KnHwxRWxcTPyhBMA5p47dU/K3ADgmnq0LBQmlDVM/lk/oUukEJgSlbcuus0J0TvmNyC+ETy0ZwFtHOIEUGZZCL3jneOKdpi2gyaO2lK7PlRs09oUCzGxBNHJE50Qs4dXCJOysPdzDInYghct0pM9qk6xDwEB/tsmaYxMXaWOZFro9RGGS4GguJVxjRpUR6n80oIgWVOiJh7TGmdyyXfpmKNlftlMUSoFJbJaPP6Bp7PK+fTyvl04fLTn6GTgPNMUyKvVxyehzgzHYWtFM6XK9cEU+4srfH28MDBHQhUum640nG94oOirdqkH2zndGuidM8MU1ytew0Y98RrDI1zBqEzrMs+T4Ru4zOQ5PHDWcXQmGIkIm148QQfTW4z4MEdAvDB9rJUm753NqVBexYLk5aDNYRm9of0YpKHJkQfCN40f2245Yu3vXOX4cbSrOB2bbTWCT1BM/JEmCYrUt18VOnNbMhUCS4aPOe9DUJqMh/p3ZKrnbvt2nrvY9ozlmPHIHzVVxZl79CGVdTuus9e8Pf/Zhhb94yPR8DjeHWV509h2oLveeE6ny+IOLZ85fr8jISNoIqK6bBar8Sp4MURRSmHhZfzmdPlyqk6klNajLRS2dYV7Y3eAuu6EmpBnHJ6DrhpRkI0Orrah64tD/GeoLWwuWwXZAi4GPHBETwGL9V66wzXdWW7XtiuJ/oacK6By7x/czB2YYqE6QhlX5J2Ssl4EYubD4Yli0u0Xsb0MvqxbloW6XYzgYy936uY0TmHSqH3QNsUjZh+bLkDEl0M525tM9mkj2Zp1Qr9mkEO+NQtGqNaxymiuF4Bb3T5MJtrv5nugTq6nxBnEFrrI97Fjem2NWpr5iQuAYe5TndtKJ2Ws5nzjkPX9njcWFi3LhFsgawGnY1zgzYscfaOtKm5YTRVzOij3/gqYJ1yrZWaMyXbxFUxfY0X4bpe8C4RfCA6oScrqnkrrMMtu9U6fA1tJxCnxWjCIpTauFyuBk2LZ4rRUAERLqfTSDdwlOStAQqNkqvBbaq21wxWuLQ3cqlD4gq5VHIplFKpLowpxpFCoNYyWHPOXNdRtmwT4dZhq53np5O5jQs4LdTcbBoolTzlW6LtliulZEreuFwvpO5pPUGa6GtGUdYtk7cr67ZxyStvDhNRGypmKq29jt3jcJbYHSH2QrEnPesOu30+JOlNt9g6Q2A+dHpusN96343MAV53TmNH3Fq5TSO9FBoVFU8MFnCK8zZ5DGSBURR3M+tWijlTuEjw7lUurToO82pFa71SSmYrhXk+GIoB1N5wPQ7ofTChRyFuJd9SuqfXGmGFp3fbndZMz1cjXIhH0gHBjKNryRYgWbKRdrwbLi+YYbRa0XZBd9DeTEe6IUUtb/jJUpj7aPxVxt6u9xt0z9Cs9lqpLZNMgcnWMj5OhLgTQOzx6ypj3+vC9fzpGUS4nJ9Zz40uiQnltBUT27WKpDPJB5YgzIeZ8+XM+bpykYlEo05WuNbLxQ4B51kvZ8QppVwIKG4+ICkReqHq2CvUjA/ZDs5akN6IMTEvC/ePDyQf8GJdUc3X8eF5rteVy+mZ54+/YHuJhAhxhh9+8YY0z4R5IS73dJppwqqJT9UJIVrRwiXETXSugLsxr1R3wXUzCxys48bZ5CIMUqEkmmZq84QQ8D7hD4+g0dzOS6ZpNcFvCHTXqLlRSyUMBpeoG4JJgwnqaBhwkxEnwhEZBABFEJcQCXaha71BWAMdpVZGgnRAXaRmu/mbQsvFyBw39qBZEplGzt9eg95ui4HH9/2g22EgO7BqU2pTmo5uslsX329fv6fGZvJauK4VP8yZu3au5zMMd5a7FDjHcSjUzqV1xDnmGMi9GezTG246krxNVeoc18uFPIrLIRnzSrtS1jOKTZKTKDm4sWfsXFWMyl8KPdjP5HqH4AnDQUacUEqxHVqcCCIE50lTtKytsYfQnNlkEGVQ1iZcaue7n39jxA0vRCohzNYalMo0DWh0mrg2YbtcuF7PnM4n5uKoZaL4GTZjFa4l8/Gbb7nmjdwr85/5MTEqPTp8iGjZRmEJdr06b/Yf2KTEMHG+pSaLDATBvsTvA0AXE//K8NFzFlfy6ks4YMfhQmIZeX58HyuKrTaq2oTtJNB1wLD9NZ5ERraeik3xtTbcSLcW/xpftEPsvVnQbMsbeVtZ16s1L96bDKAWpFbL4XLBZBMDWqmlGBLDsFXb6+3OUBzswJJNl9rFEX3Ee/P+bLXSqjm/aK0EwrCCs2ud/efqr5ISxeyvWjNxMsSBbu7p6fpaPAf5R7sxF1uptLLi/AROWcvGtCyGgvxTHq8ZXn+yx/e6cP3d/+ff4nK5UvOVVWaqODwWWBhDZFmOFDfhBAJDxBgmfJpJb7+iLBPBO2qpw5bJ0brw9N1PyZcn6vXEl1/8GJ1meogEKtu2UVvDuUhjBCTmM5Izj49v+cEPf8zv/J/+PC4cCAKuddZTZs2FHDvfffM1509f8/yLP8CL8ubtPT/88Re8eXjHm3df8PDmLQ/v35JffkE+P3E9P9Od4cV9WvBzROKESwtOEi2v9LKBliEI9lAPFkGiSnUFn+4NehNH004JZ/KUaO/emr3VvKAPH8ZGSRA8rFc7wEVx84Uo5l7vY6T7aGy2/gTxAZw3UwFRel6p6ws+PRBiJMSIDwbZGYEqQclG3+6NFl+GBizi4gLBsqHax1/Q1NFFwHskDAakKC4dkZCIIRFism6wVaNSl83i33OnNtt2iJ8GEcTcUPK6UZs1AEt6ixPITVjXBdSYifUMegWunfaycjqfOT8/cXr6RGuN59OVdd2YvFIvzwTg3bsPnHE0bTCy2qZpYpoXugSCBy9KXTdCMG9NTdMgZxWupyvH40IYUfVPx5ntcqWVwpvHR05duZbM+fk7Smn4EDgeDlQEL+aZmS9XYpqIaUaOd3isQShZmeYJRchZoa6s5xcuz0+8ffOOcxdOOfOzP/yfzIPRB+4f3lKa0kqh5jOuFN6+ectXP/wx88MbSt7Yrmc+/eIXpGlGQuLyk2fy6RPXl498+vkf8vzyLThHOhx4v/xfCW/fcP/4QEzvie6ANNPH+SVAdEgUgmw47xGfcNtqdmwlQy9GslFjL/Yehwu5x09vzWzYqe3i6pWiV5p2ggSCC0h4BATxEeZ7gk8jE6wi4UJw0WDgOOHTkHO4KxImm4qcoD7QayF3paSFGCMhGXQfsOYoTIFamiliaofDxDQn4pu3LGk2uFE85fJs0HSIpEnAJ1Q8TTIbjo4VxiZCcAYP+xSt2Rs7anOw9zg/Mc0HYpoIaSavJ+gJCQ7nCyFFM+UNDoaJws1VZ5ynzie8WjJFrfcGR3uT0lnw7es+XYaNgXPO9rVbofeNHhPESPQReJUGyO1fv57Hr71w/af/6X/KX/2rf/WXfu93fud3+Lt/9+8Cln30H/6H/yF/42/8DbZt49/8N/9N/vP//D/nq6+++mM/18v5RHCBw7IgOg/TlULt+qq3qOaaXXTDuYhIwLVOXzNrt87/cj7j/fAadDNaKzFMpLuIAttlJfcLSiaXiqowL8vQYFhqrLbG5bry7Xcf+Xt/5+/x8HBHSomf/PRrct6sk0mdIJ5lPsL9O9brJ3rZWF8+cvr0zHmaOCZPPs60amLFaV5wMeEFKwIpmLA1ziQVKyJxQnu2HZIK3RmsZWwnE7Pq7p82LKici3ZG42ilUdaL3dA+2IW5Z/u0gk8TMU5ImHD4sZythDSbM8aulekbOIdzid3TUJve3BPciEoJIY3CVRA5mibMBegebd30PSMzyDuHC0ccxiLzTvBxwocJFyec99ZhjzDENqZBbRWnw+cvzTc3euc9U5xRbab4Ko3npwtPLxvn7YXlkBAH12umt8zlsvLx04l1e+Z6vnA9nWltZb1Ucq403/DNYsq7Yg4W2sF3ajGauHfebMBcQ1xHupCihVaWa6aowXvX62rNlXicOC4vT2hTPMKcJs5r5po3rnmzZitG5hQNiqVjmRVmxOuAeslUzGvxcinMy4TgqEVo5UzNmd4dOTe23NjWDecCvRmL0PswgkObGSaHSFPhct54Of+cro1aM+fzlS6RMJg23nmmaeHhzZfoILQ4L7w8PTP3RsxXPj7MHIKSgunXgBvc613ChYCPEyIRDROaMq1VwtgBVQm248GaIe8jEvcdbh7kCrvm/Ugm9zEB3iYcb3tdJ2IHc3rABbtX/DBNBghpsfvCuSHu1+EdGQjJpifBGyx4sxRjkD2cabnSYhR4H3Fq1k6tbuzQvRu6s1bybbrxw5rOCQYLurH30xHiKo7gPf54Z3tLP1mmnyplvaDdIOuYAn4kawvQ25AqOI8fmjkGDMuALMXpsMYz2y3vjb5vTEihF3O8UQfOm86zlUKvnbpeER8o/kDZNnwItN7Nu5DPzRF+tcefysT1L/wL/wJ/82/+zdcnCa9P8x/8B/8B/91/99/x3/63/y2Pj4/8+//+v8+/8+/8O/wP/8P/8Md+nuA6x0Pibp7YRuGKUsi1D0U6hGoLdFGPC5EQAz44pBekMuC4De1K6JGYHMuS8H4iOG/jeNuMCSJlMIE8MdgOyhqegBqXgF43fvaTP+T505E0TZzOL0ZCcIKjcDwmDumeu9B4eWp4yfRy5eXjdxyDkChG481n6Nn0IM3MWksphJZwpeFCswj3VkYnWmxnpI6W2yttvgva81DpC7SNVjK1Dl+xWmkUwKyD8NFcIUpGW4a2EaZkhAAZjvgt2/P1EZ+OFS7aNuCoEV0/8HJfwYUwCBo7acT0KgY/jH1crfbasr0+u0GHyemA8kQEad2KIYKUQW/vFrrZS7F9RanUZpodh+WBiXO47mi1UnImt87p6ROfvn7iu08Xni6J+ZAQJ0aGcJ1ty1yez9R+oW3284nm4dMIPgjTNDPFwDx5o4kjSAwUrYQAUQbjDPM5dMEPt3fbRdDNBsyLFfM9ciT3ghMj9bSxz9CyWZSJdJJ04oDRRDpeOj1GpuDwDmpe6TqShks1Mbt4pDmcWh5WmiLedbxWApW7w2R+jM5zmALVCT0KPdn7HUOgtczlchkorZrfpLOJzwXQObLEA/dTJMVOzhdrRspGvioXMt/+YmabhXny3N3fId2bSDsL0+QIPeJ1EPJGkqPlZ3ljy4VIz+128LY9+ZkB7yEmUPf+5mCxu85DQ0oZ16ilcXu3u7E7eh3sPhS35+H1EQnaq0HYrd6eq9dCWfuA/PwgNtSx+9mG4ezwgiwbZdvI24aIEkaBrKNgabd8Nr35lQllu9JbMSnG2I+hfZBY5DZ19prNFWhb6W21BtQZrN5G3I+WbKQMZ7vpXbbRx26cfcddCoz8QHs+ZZef3AyinfkagtJrQWunble6CFsyONjHcMsvtJ/011O6/lQKVwiBH/zgB//E7z89PfFf/Bf/Bf/1f/1f86/9a/8aAP/lf/lf8uf//J/nb//tv82/9C/9S3+s5/nd3/7Am8c73r//EerN3HKKgZenM+tWWHPlZduMDZYCTs2xOjfleT0Tgreu5cO9RQGFyHI88qOvPhBQWt74xz/9BefrxlYa07Tg42QahWAaG+88KUZ8qWYK6hz/8O//Xb5+Mp/Cr377N1kOB+KUcMHz5s07ow63H3I6/Yjnb3/Cdz/7X/jZ//QPePnZ/8QfLQ5cIJAJXpnnA6wXRJXgI8f7O3t+cfS+4sQIA2EySExx9G2zaBHnCXFBmYx0QUeHuBLnED9D3Uxg3M1xRMWjfsa7YgWqZkL0EBbU2wEtveFQ0jzRBtl/3JWIw0SwbrEOrRtTy9YSDpXJjFdF0VrwUcBHupuo60rNmVYKIXqLY/CeIH0cOorzSlVPq42SN+pWhgNEAZcGgAHJB1q3PUFpQtc8RJGBT59OXC4b17WA+/u8PJ25XDfwR56JNIVrbsxzwgfrQD8cjxAafVHEH40k4YTHuyOHKeKdsUPXaqGMKQa2q+Vs1dbJtTOnhRSD7Ui7UtqG6yeLhhBBHsKYciq9Fvtcg+J9Q+QJd9zo2knB45isGw5KqZkYPFO0Zbpqo/ZC356sQ3fweBcI03AdQbg/HkxXp43zWjkfCltrLNMDtkP0KAFJiRgDy/wj6rpyOp359PRMzx8HDDrzw6/eDv1igSTMaWGOjzzME8/Pb7mcnjk9fwINJMloPvF3/z9/RHSZOXnev/+K2Rs93gu8eZtI00xMi13fzhvr8jgj3qZ5V8sgQCjarjw9P9s1HWxX6KNFB8V0QGpGq+0sTcTrQRJ4o/Vrs3BTF2djvOZtTKOdOE3gkhFDKLQ6DI2DB78MunmlN/NCFe/BTThnxI9WCn7spsUn8ukj18uVbd04PtwT5yM+JrxU8prp2vHRgUyIGARcR4qzuddHUnTEYFf6dFgG9BhZn7/h8vLM08fvmJdEmA7EtODVfp5WC95DmO4JIZlwvtm12HtHgnmvttZ4+sXXHO4OHO7vmOc7Wr1Yszqy7nzwBBzBgesF8gUB1qeV+vSR83yi5Pd0Om9+8KXVqb0W/xoY8n8qhesf/IN/wI9+9CPmeeb3f//3+Wt/7a/xW7/1W/yP/+P/SCmFf/1f/9dvX/u7v/u7/NZv/RZ/62/9rT924frxD7/i4WExpph0xCnRC3f3E9MSmXPlngMpBpYU8SlSi5Jb59qaOVMIIzk53Ub9JNWYcpPw1Yc7ii700R3JntWlnurMNNZ3o5f30qk5czjOKJVaC4GVpB7fOtfS+MX1GYeas8S68fz8HR8vZ56++znRK1MUlhSGul2YYkJbscIljjYWxF4czlUTGAvEKRh8Jh5p1QSSOBqe4G230TCdlXiPxMCcDqhpCpCWWVuni8P7CXSzSPea6U5s3+Bt8gqDh9TE9gUilnYqvRGCI06JlA52QLdG0Mralarg3ITx9c3FIx4SPkbEz2Z4rENHE8SeT5xNda2h2uliTLGcK5fL1fZZVpLt58cc8Q8xsrZK6Z1SFOd3QTeIi8S4MKcDl1Io+cR2PaNuJcUF7xN3S2KJnZQi02HmOE/mgO0wh5KRHjDHwDwb1biVhoaj5a05R67G7Cq5UTskb79ftbFdM7UJd/dvCLdcNXNp2JfnXnW4F5jDejFLCKJ7jXLRLrQOwQnJCV2UVpXaOnF6sIN1kErEjU9Ohck1fBB8sNid432kizAFT+1WbLe1QwQflOQrLjXuDo4gM198+RukEAkhItHo1x1Hi94IIeJIHlyfOM6PPLxdWF+u0FdoShpOKiLKen4m+4oXJeF4OW30rtSqg5RjkLE/RNvDiGMSmGOkdzivmfPZDv0+WG8hetIUmJcjrhoDqJdiqdTicT7RdEN7NaG1Bx+SwaHn7SYzaeJHYRA6NhE57/FTssKqGJ2+NXPvAWKYQDO9GTPVxYH2+ImWV2rJlFKJy0xKMyEERColG+vTpYD3kyEKakST3Cq5dryP+H26RYjLjA8BJbCePpLXK+v1SpwiMUwDlt9oOVuitxPm6UAMiSnsZCmhqpDiQpomwjSxXS5oexhIQEApiOuGWE0LMkgyeb2Qt5VSKhImrucLTy8X/l//+O/zz/8f/wK/NYrhbc5Svf36GqD5x3/82gvX7/3e7/Ff/Vf/Fb/zO7/DT3/6U/7qX/2r/Kv/6r/K3/k7f4ef/exnpJR48+bNL/2dr776ip/97Gf/u99z2za2bbv9//PzMwD3i+cYO9f1YjBZh6wOcZHgQWPDR2PrBN+I0eNdJzQlijf/LhQZ/mky8Pi6mnMGDqJv5kgg0GvDe8W5ZloFPw4Z6RZHIRXVQgiFmDriO47LuDg8uRTyiJeQVvG1cTo98/zywvPpmehhikKNwXY6AsEH2DOuELa6xwiIBQAqgOKTuVM4cVaQP6OCex/Z48dlsNBc8MQ4G6VvsJ+21mmI7QIp488qZfcsFNOb7DF7DYaeynBwp4oPnjgFQpxtv9UaHhOhVmx/sUcr0BvpYMtp5xPa+nD6GGF2Q6uFjo6WbqJPhVIq1+tKL+YAoW68bjGd0+Q9uZuTSeuOEHfbLJinheVQmRUul5Xz6Ynz6USXQEoHYpxYjneYJi0hrVPWzQ766KB7gpjeq2YhO8t5a6USsJ2feTaM6Ihexz5BLC2ZjrDhxfQ1MgSeFiQw+Nve9rPCHvjZR/aXGEvR+5t2LwZ/o2I7UVTsPZ+CUZ8NKldrRjDUp2xKa4Lvjl7smhDvqcUZVbp1tBZad7TsqPsoK8o8KWGxfQsUYtARwTJE+/oadTPFRgiQuuCKjqBRAYJByq1Ry0arGaGT1ZHLmVIqeRsN5Ig9cZPppbzzJDopJHpXTteN67UM4bPBdz44YvJM04y0jrRGr42qYjsqH2maDZ5rjYbiY8T7SL+u7AnkDbt/ZAilVY2o4FIgjEbJsLVOVmPBBh9Bh0i71NGEBbsPa6G3bnufaF5+3nsjYexOJcnj3IhT6h16J7dGaR3vAk767X0JU7TpTwL58mwSjlKHbGFM8N2KtjYzJkhpMfJasLPF7uZAjDPTsjAts7EEt43tfOH0fCbOxkw9PtyTXDRDjmY/9/V84Xy5EpNwuVx5/vTEH/3B/8Jv/PDH5B/8kJsKYVyjv4aB69dfuP6tf+vfuv33X/gLf4Hf+73f47d/+7f5b/6b/4ZlWf5E3/Ov/bW/9k8QPgCO/YVprZyeNmoSqsBalbvD0Zb4KJNfKE152SpTDTchb/ALp5IptZuGJhl23mrh08tKpYOD42E2lllTXq6FefLEYGm3EgwarHjKZom5VQsi3zHNkEQQviWv3fzq1szL1ti2wvV8xQmspyvnT8/gPCkEgg806dRWrSi2Zh9Sh1LN2UHHEvvheDCD0d5xWxnO8jAFR6sj7h4Lv3ROiN7f4u67U0odexcF02BZsSsdkt9DIpVKtQLQRiQ5VlyCt2gIwRbFFgRoq6zSdOeZozoyqZyMBfDrReyjjvgDb/upblqStLt2O4d3cnOWsV2w4Q3aO6Xq2IOJeS3qbsnVbpCo84lllnHIwP2cmC4nYvrE8/OFj09PnM8XGgUXJuZp5qsP79m86Z/KaeZcrPGZpogXZZpnQohcixKj7ZhayRyWxcpSUWJKNzr1tEy0bluCJbqblsf7metW6ap4L7a3QBGnXNdGDBC87RBimgDPdWvMy8Goyq1wPC50oDZlCmZZ1ntDXLJwyqYE5+jVhO/aKy+rGR37AL1mXIiIC5y3bvZNotAyWy2GUJTO3dsH7g4Ld4eFXpTTJbOWyvu398zRhLVTNTG3it2PMTp8zVCuVFmR0JGguCWRL428Ndaaua4Xaq20pujo4LdqV9d+jSvVDHFFoGbzXqydUgriB+HAe9MuDgRGnENahd4xo5mbcdOIErHPp/Y2vB4DrhT7rPqeC2dEiSkE2hA9401jZQ3Y8L4cF3XHcUu4xnZqe0iltMruteXFXoeIIzoQhhmwN28L1BrNPbxSYND5dxcRGa78Fk+j5WrGuruAcRcAW4eDG58HLhB94D6ZH2IQzxQS+ImYAnMyXeG3zog+RR3vv3rPmw/v+PFv/zbShOr9aDyUb7/5jm9+/g13xwdenp747rtv+fkf/iM+/dl/luvLb4wz95VS+OsgF/6p0+HfvHnDn/tzf45/+A//If/Gv/FvkHPm06dPvzR1/fznP/+n7sT2x3/8H//H/JW/8ldu///8/Mxv/uZv8vXXX3NYoFyVtTiywFYqZbvafgDonzxbqVy3TEhCECMZ+PnI6bqx5sy2FWY3/BW68nzN4AUfPffH+ZZ8e7pm616lM3vwybQnlcByWEjBXBBaMz/EUhslCpOMAEcwvZcX0uORw+Q5Tw7fMpe1klLkcJy5n8MQTyq5KjF4swmsjclFtFssuQt+pBhbQm0dcfLijC3nEKJEE3li+V5+MIMQGYe+LWkBpI+pAMCZs0XAvmfDyB0NM2x1CNJMOKoiqBcm516LSNcRGTGs3rq17OK9uRZ4IToxQ1uxYMXWqmWAdUWqcjPfCXaTg0WS9KE3MWKNedGpCrkpfdj84AprbrRmU/S2W9ooPH18ITcld7Vk4G7dcVelc8F5x3cfPzENFwLvI9sQkXsvzH7EpOO4lkJMZlHlu5p2RZV1q8NoFnOCD57aLDQyRiEO9l1MC+frRhuiziS7qalwzXkULnBNmZYZxHNes00HIgSFONkhUlojJcHrcNeY7HuXat5y8bXkc14L4iFEgVqNcecD52sGsQMxiZK72UetpXL8eOR4WLg/HpAQeHm5cLms/NEycYieFB0pRpoEc545LBwOE/ly4fzdR37y82+tuEXPNAXyNZNz4VI+M4pVNfd750nBGpo9oLLVajR5J4iGQaIwUoHKaIp2v9Ldj0/ktmfdtV2qlu/WoxUuemO9ZkKKpBTRUux+UCGq3eN7ZMn+/pkjypieZXSSI56nq+CieUd6LMCVoUMTr8OCTujVrm9jvBoEbKhPN3bsuHccOq7xwVT0gBOCDDMEBBcDtGlYO3VMKmlMSOdlQItK3szYV0SIIvac6i1hoxeqNq7VSCCX80bOjTQFTuePfPzmjsvTCx+++IJ5TsTJcV47P/vHP+dnf/RTfvQbP2S7XlnPZ/JWBzyZx5Svv5Ju63/7+FMvXKfTiX/0j/4R/+6/++/yL/6L/yIxRv77//6/5y/+xb8IwN/7e3+PP/iDP+D3f//3/3e/xzRNTNP0T/y+LVshumm4MoP4eDM8dwr0SqAzOUFHrHpn2JmsxaCmnKmD+aUKtI52zFNQbNoqrZPXhnMdL9ACzNPdyE6ajOQxGG8tF8qaKaWR8OhIVj0cjrhoE4WoEqOjrXkYFZgv4e7K55yzIDdehYcd2/Go2M1Qy/CtH95udb8/YIgkwXkdlGYFdFgqWRU1CGbXVxmbemcz2b7FbjLTWe1uFOPi03EDd/vV7i01t2tehZ/K+B5uYNodtDRaFwvOHD6IDm+Fq1sqNXW4uSPQxoTLcNEZtlvmStFBbW+TS6eNjZfTRh1p2F1MkKk6zGc3i9zITSm18eokzpBRQMkm+r5FNrQ+mImQZYQTIpSuxGx+k9KVLWf6eC0uuJsjhtHlRwOR1bRXzpNjYR0TF3SayK34195tHejU3rMhbt5yI5SCEzuAW3W3a1rHNeEQpDSbuGqjo7cAThWoVe3zbtBzxsVmNOatjbgPblZHDogIrhT66sjYVLGer2zXjO+NLTpIkfkxkiabRpMIZd24nM58+vTE09MLUwzUOZKLt+mg2TXR1D7LWhsSze/Q0qZt4nZiLjS+WyFD24j+sWtWVcA1xNVh5rw3ZAatMpIVrC+yvWAdhB+hs9ZihQCQVkedsTuy1d1rkJtTusJrSOyA9ff9YVdBmjl6RGdpBPtrtEBMsWlrGAbYNlpe7zHRIesYz+Qw9OFVTm0PNzox0Zslk92Ldh8aJGlfGp35KA5Q1Ha93a57t0+hvRt5ug2kpVdar6xFkZNlBM7LR+7vH8xcXLw1Jc9PfPzuG3P/cZ7jknhzd+RumU2u8b/z+FXK2K+9cP1H/9F/xL/9b//b/PZv/zY/+clP+E/+k/8E7z1/6S/9JR4fH/n3/r1/j7/yV/4K79694+Hhgb/8l/8yv//7v//HJmYAuNoJBebjhAsGzXUJpmZnv1ArPXr6PFHOJ6Nct05ZV1xRUrOpQoY3jDrHIZpiv9WGrpsZk1aFrKTJkaItn98e71mOd0zLkbJdKaWwjuyvfN4opfEYLZjQx8jD4xuOPZpiPW807Vz9+baD0G4U92sV0iiEzjlzsmiVrVaLOu928PRqtHcLPh02N2Jap92ANMugkavBghp3cyBnh6TajOINvbCDFY+Whjib0jZ2rzZHKUZyYCxXa7Nuyg3Yww2KbG0GUQidFsVcDFTozVG67S7myZNH0qtzAa2N2i3GXkuld3erxDHsB5h1npY1VOxGHTqyLXdqLyiN6M17r6ugEmjbRmuNXBtRDOK0g8TiMdz+HMEPeGm4H4h17oIfuwwlazFNzfB5lOFDZPCuBVl29fjdrUOs+PihnYlaR6dvxTkMCyE7/F61WEtKQzjfLLOtVbQbm8tsgAyOdX1QooPHq2mBVDu9Z1wTvAp+78SxJ5pCHGQVK+DQoFsISFBuwuWQxveegjU5rcOaKblSr4WeG2ka2rEQOC5H3r77guA9vVz59ukT55cTH5+euZxXdI6IU7YCUxqhrM5xWTO5ZLOJqtlYl9k6Me/Be6H3Yh6CImgrZqOrULolP+wGs9E7E+s6kD689NSo8FXH2qhCLuVG579shRCCGQXrKAQiRqaxUGa8k2GJOPYNalRwQc1E2o1cq+7o2e6TGOS2l1V1aK/WVLsdmRC0QwxCju5277YRXe7ohCAjCsjyxLp2EDWvzX2B1BUdwn5Vk4aUamnenc7kjcCjCqjZqsVufp0B24tXHLWZmfgcHT4qOM9alZd1o6pydzlZ+RRv+8/ryuXliU8fvyE/33P/4T13hzt++OEdX7x7w+PD3W3S+qXd1q84ff3aC9cf/dEf8Zf+0l/i22+/5YsvvuBf+Vf+Ff723/7bfPHFFwD8Z//Zf4Zzjr/4F//iLwmQ/ySP493Cmzd3OH9HmtzIrPG0lgf8U8wPUjw4T50XSr5S8sa1CDFZaFxrmV4vNsV0W6RW8VAKuW5mwtrFor3FD21H57tPL/CygjvhnWV0lbLy6eXC9ZpprfP4uOBKZytXvnv5Qy6DY7JEh2jl5fnE+dJGxLWjdTifr7zUTm+MC3XceNpAzZjVOT/owPZPow+vP2dgWR/sHfGDgWiLe69q1HgZB9JwFNGupGCKepy3m75atP3m5QaXb9Uovlq7te5iPogShLrWMYnZe2hx6g259tv7FuJku6iutGumi2mhzDnA39zHW67DjsrCJXNtY1mtpGRRNVXHjdlHFAyOcb9bhlYzFl6YHMthopaKrpmHebZdiQ/WXg7vRCdCSJMJV1szj0lxRBdwwaxsVPrQ1FgBjSmNsMBOKRuH6YD3EefDyOy0g0Sc0cqD9wQqtdmu0rvJSCVOcK7TeradhjrStNiuRCvbdmUKM94ncBEoBu3UTCfgXcCHSHCVWrPBajKZDZc4vFNqW8dE63BxGmdHY1vPrwQZAoKRjEq50tVIP2GaqOvGZVs5rU+U5rmujd6Udx/uwHVyyfzBH/yEbz9thGBH4ddf/4Ln5xeePp0opUBwuGqu/NdruRFW1rKadVGz99xhjVc3QZsV3d6YJ2vmdijepm+IMdnh7oVcGntsTkqRVk17VduA4BCceLJ2Ixhk86006YOZ+rahBRU/WCkjf7L113srRts3KZbxx5iaQvAGI2ofU779vg/erMZ6p9ZO8MYQdsHjJyuCNunZdWW4x35tWhpxCMkwhbFb885g6DTNVO+GFtISDuw5ndnKOYhjTTLNCylGDt4NfWYgEpEQybVQWialgGuOXpVvnk+cLmdiTHz55Zd89Ru/QYyJy/OJl5cz18tKLcpPv7lw9+ZHfHj3gfdfbXz1Z3+XD7/9f7i599/gIMYu+k906tvj1164/sbf+Bv/P/98nmf++l//6/z1v/7Xf/UnUyjblTAvn5mkwljTD1ad7Q60DlPKPmLb6Z/5ddmN3ulDH9UJToiTQ9KBl7NNUOfzhSAzWo3tdnk+UxpUFb788MCUolFbu9FgcxkpyM7RmvJ8fuHlWoghcHhzZ+dws5s4hkgIjhA8uQi5mjtCbYU5+dtFq90ubO/CSCwdkea94N2rE3Yde7A+ghLF7d6poztTIz+EITLs46YTcYg3JuZOo669EZwJCh+WiXU1B5FeMjEOs9nkqLUP+KcxTbMtjsWgnN2h3oeJSXbSBmxtw48b7/HujtNl4/nF7JWmlEgpshwmW8QPptuUJutMUbai5FIpw9FEx7QtIvhikE8IkWPy9K5MpXF0pvHxMVLrNiYURTrW3g9MyN8cx8eOQ3aHAfd6/bV6W6o7H1DnRofduLlojy9urd1IBjYpioVa9mqs0d5vnb46Yc0rN6erENHgbzETDnNHIQZaH6avo9vuak4kfb/O94NOrDkQ7y2JV3WI493oCRqtNTzVYnW6Hd5dO5qVx4eZe5l5p/f8/BcfWbeVXAoOi8epXblcXygN0pQ4LMFE6K1Tar7lTYFBdmXLtNpoKrYfmyLeL9RShqjamyYQg4fLdh0kDMfx4LishVzbQB5kRMyYOz7DIzJ4z2G42pcubCUPhqoQ8YPMA7kWQjDX9vt5oXWl9V2kO+JTvN172i28M8RkSdEOmrpx1gxW4TiDVEHzhnO2/3sz35m2sDRKMaeS4D3LMqQfahZbzkfT5qVAHYVee8PPE3Oyhq5329+KE+Zpwd8dh/hZuVwv1Gr3jIswhUD0HqfC4XAgxcTiLUnc4YgDUamtU1sjpAi5U7bKORdUYFkWlrtH0uHepl5OuG4QOa3h20okM/nOj7544PHtPfPd4bVw/Rof32uvwt466zWzxGIXjXrDawcs0hVaHUt3VXrZxp5hWLdoHQLEbAp6bDjrrRKDZ06J+e5ALgV93jifX0hSoFpn+vXzC9ecybXxePgNpvhAinfmMlYzeStWuNRYfpfThfN55TBPTO/uqUNP3nsjuEgKZmJae6PpdounOEwLU4ykZaaNtFvnPHR/g0ukXMc+xjGnyNZtf5PHTeO8EQhwDi0VreYYnaLdBM15o8ULJoD2+npgrFdETNz95u7Ac9hgzWQq85KYU+KwJM5bI5dCzRvzYWZKgRSMvJKHGagPibQbiXahXZ9xTggx8uHDe9LpShPPup5IU+SwzHx4/8jTpbDlTFuvLPNMSmZ3dM7K9Xrler0OxlcfjDKP30wP5J3j7m4B8cxdmbWRUiKmyPUiI6/LoNfWxyLZOXTopXam476P0LE1793iPgRvTDzvbeJTNSxqEE8Qh4p18ahNbc4PliWDrj4gQR+CkQwErtuVGBxxmLL2fXHbKw77rLwL5ibeLQaj9wHrOgaEauSD3pt5+e0H1JbZ86NsN2NxIjXbksNCSRkkBDN8fvv4lvl4wKXEul749PxCbSueimKkocv1glFBZh4P90RvRb3t95d0nHSaMtzjMyKO+/nIMhsd+3Q+GTMOz2FJdEZR7NX2od7zME8WuUGxYuuFaYo83B84rWZs20vGe8/DcWFKia17TpcTpRZjxzojNnSFflW8t2DYN/cH+vDfrPVqEDyCCwIh0kunrZkQJlIwMXBziS1vtN5s4jaKE4ond7NrSlPii/eP5A7XrfL89HEkSkTu7hdwkdYa19ML3gfmeeLh/o7zWlnXKzlf8Slyd39knidyg+t6BjrzvHB/XIxdKJGnp68pOdNKRbwyT7PZjCkcj0dSSEzD0HrXZu7uNKqChES9ZvL5yvTygnjPcjySljt8modcYBCPFLR3QlvxfSW5wpdvj9zdzcT5sx2X/HoYhfA9L1zb6Ax87UhPiIbbgh2UqKA+vRazKd1opBenhDBsVEpnmRy1KpfcOV1OzJMnRVCdKaWxro3rmlmCLYarCs/nK7k2XIC398JhVoNviuk3ei1mguuK7aRKY4qetw8Tv/nDO757yqwvxgJLTnk8Trx5d8e3p428XslqCMXdEjkcJuI8cXrexlK6WEKxmKtzzQ0fDFN/97jw3ckcumuulrIbPaRIb528FfJWcUdhvpuZ54mtKXnVQXaoTCEM+q7y/PHEckhE33k4PKBa0KpccsUfKss88eHdPXw6UUvmct44TJHjsvD28YHTWjidOttmO68lTRaN0Ts/+cnJAuseM1IfqeuZ8/Mnvvvmmf6QSb5zPHzB8+XMtl54/u6Mfw93h4kvP7zn29PFlugdWi0gRnAprZm2p3XmxVJvp+Q5pMTDZD/zNE08Pz/fJo31pdyYf6qK9/62s7BGqN2yw3K1PWMQYQpheF36z7Q9HU8b05PDudl2StJJQfF71piaZk8xdmMIwykdT/HmjMIg50Rvgl9Hw/Uy2HOeyS9jlaZ06o04kgsDamwWU+M9XT2le9wkjE0f/bohEkw6EBWne9GCyc+m+UuOH/7oHfePbwnzI19/84lvPl54OV3waroyo+UIjw8LX3544J/9zS+Jf/gN2lbOT55rLkQHSxQu68a2WXN3f5x49zBzPCxoiJzPNk1710hO2cZ1fDpdSdERpsjjMnO6wrVb5Mv9EjnOnncPB67bE6frxuXlyuN94ouHhWUKrOdCrpWczRYsBCMRldb55psT8xR4uJ+5OybSsqDi+O6TTS1gBIqiFsOzbo270JinxN2yUMVzdrDljNI5JHNTKQo/+/mG98JxCXx4e+SyFbRXvssVHzvOK1FmtrqxrpmPH8+8eVT8IXKYAx+fTry8nLhertwticNh4uH+gefLyjfffEOtmfkrz4cvfoN5OZrfKBvXy5m8rdTWSdGzzJFDOjIfF9MEbh0kGKagYKJQh2LRTC+nTL4Wojf/0RQTrSuXl8tg+Spxmk371uF0unA9XciXK2UWtutKuV6Jhzvg11e04HteuB4eH3l3n1juv6IuCY27MaVtU1XHAlPtFq/5xA7dzGs2XVJv9LaaVkgH7ffpDcE7lhQpDaZDYbkvvCmNh/uFeY5mHXM8mQVPCtw9vKGr43QuZHEQE06FTT3aLevXLYm7EFiOB1Qip/MzuXWm48S8zMyHiWmZmKoJeRGzX8lbJgy2XoiCqgeU5A3ia6qU6phT4LAk3j5MNIzO3lqg10r0whRsOV297QKWFFhmc35oW2Pzg1UlgkuR1js5Z0rrzKO7snwxY3PFZK4ZBk+YuDrXSlFzIj8cJg7Hia1Bmgwe69oJyeGc0K8mrBRReu28nE6czytlqyyzQZAo1O1qZJGRNXE8zDw8LDy+makieHEEL5xeTuggr4AwuUjXRiIipZGS5/Hwhndv3hBixHlP9GbUK+JoPzLXCO1mjSVjOlH80PVYcem9Upqaw0TtTNETvO1HvI8YGwOiDG88cfg03yD+ybdBAvE3JprtcGxCEOdBHC8vL6a1GvuRmGx/JgiurUYWEcDPNmUBQh27K6EMmqlqp7c8ROhirvvDnZ/euFxO7FEfAEHML1O8QWA4m0RcWjithevzL3heV9wUuX/7gD/eoy4gHQ7vHA/v33J8c0+YDkiI+GkiHhdWhQycS6fi0OBwPZCmRFG45EZZFXwgBkjDNaSXwpYLzfBDRMy3c7saScQGUcX3RtBMouMZH0Mf2Wol00sbDYZjuzZKtckv187pmkfqg+X8+TThkxnSeksetYY1W6EsdfwaCzUEJA5zaifkXKjOnGWupXNZMyl5am2sW2bbGiUbDFtqB6qhMblxXYulpkebtJd0silYwUfbE9dSuF5OPH268vR0pvXKw91CqRsTE8EnnDeT7VIsS69GoTXzWE3BHFy0dZoOf8TWxs46AJ1aC5fzM6eXJy7nE3FKeHfgsESCWEZbCp7D3ZFpTgRvZJvjwwMPH77gcP+G5Xg/kiF+vUULvueF63h/x8PjwnT/SFkSPfih+7DDUBCa2HJVcZR1HnsKJW55aDoU+ooPNrmUWpkeHnCYMO98zTxkZetC94n7u4lpCuAT/jijKNMUmI73bFulccWnmTgzPPhs19BFiYMemuaZqo6tNHDC8e7AfJiI04RPkZQ60xSZUqBkg0JqrYTW8NNuBYNNhBhMlKfRUS2JZQ4ccjR6a0usl07wFmzZ22BHBc+SIil4+zNnbgM69lw+BlPP904XxoHhbLfVzLp2WeZBElG2zTRxtTbEOabJoDgfDKaMKaCilFzxwQ7ZPqjw++F+uW7kbI7fD3cmsC2l8/L0wraaT1yInuPdgePRGohlM/jNTGU3ymZ2RXTs5sQyWXsxFt8UIvd3D8iAgoI421XECbdMRozvDc2rXWTiUGd7JNszmOar9E7tJpOYB+NRHDgf7XpTGdZhg8CSEkZSh+QqPvgbM1HxaO9Iz8OV24rFfHePxcp3fAj4OJvnnXhcNSd5xa6zPbrd6Shcgol5dRgUt6GnwdzQe4c9DC2dp1vhcs6b3ZgzcbJ5ENpuR2Jg2zKny4UmYrBhTEx3dyY67soheJaHe9LhiI7IjjjPHO7vuNaOOk/uCt7dojbiHDGyYmPNle7U/BhdsBieOpz4+yj9ItRmhAtRZQq2d2rDYFZ6uzH3WlfWnIeIfcB63Y2iUSm1s5bOVireWd5ZLoXWrPg55waUbESUvBW23MilsfnCGtxIxh5yHcHYxQMqvKzGZHVeaE25bsVkG90MfOsw7KWdOa/N3oOtsK6BS1h5ebEdl/eOyU8gjm3dqKXw9OnC+bKCmD6r5I1aM35E5ViuXDUd42ZEjDJPTNWiibQXarM9uGaDvFULqqZ9Pb08czqfhsu7Q9jNu4ftgDNf2v1ajnFiOj5weHxPf3xDnC1M9nP9ln72669Cz/heF667d285vrmj1kCcDsiUDAMfEAjOE2X3dRPmecJ0D2DAikGKaIaBzKsI74awcY8Y+PJHBon85OffEULFOUXxbIPNh1gX43Ljfcr4OPN0WrlshcPsh4mlKe1D9Ej0vGwVHz1vp3uW2Rg9811EUmA5Or766h13h5mf/ORbLErLk1IkxGRead5hpXbXawnznKzYdWWeoxWnJfHNN08jlHEUDu+4S4n7+7ubc38Kjjs/G0nDeabF4ghaHWazMVHV8/H5akGJh8iPH97w7acTly1z+cXG08sFnOfh/sDh7hHEm3ktneNh4qgTL+cNnO2Grtcrx7vF8PzDzHkt4IQ3jwd+/OGR//kPf8HPvv7EH/zkG2KMHA4zX371ni9/+CMejjOtKSEYNPXm4Qha+fhtZ1s3np/Ptr8Ltuc5Xxver2zXEzGFEVBpTgwuTsRpYb6/s4lJFc0rtVbbvA/z4j3AD61UtfTk2jpj02gMxjAbRV4crmdgNBfjVxELaPRBLFrDpyGaBdE6HEbs74d0MJf+XgkpoRKHdMAT+jRYZzYx7Pu3QLhJEnycxnVue1tGA2Lw57CG6I37e8trEx8AR3QmaPdBhqTAJAq9ZZLfuHeRH3dlrUpV4eEucr4Wcm4cW2M+3IMPnHLlcH/kq+C5uz8g8Rtq2aAXDskzpwlRiEN+krfMx5fVptIpkRel5isv55XzdcMziD4IpcM8R6YpMKfAx6cL33y6crrkIQ5X5ily3TI//fqFKV55+/aew5QILvAisOXK6ZJ5Omc6kFLk4WiWX5YuXZli4NoqtXau18y3n07k3NEq1FrZcuF8XfnwIdjfaY3nlysvmK3TupaxOw90It89Xezz8cL7xzu+/vaJTy9XLpcr6yAYxZi4pEbvZgR9/3DP8W7hsEzU0vn5109cLhc+Pp2pwDxPNHW8PJ+G0UHDS0O00mpmq43T6RPaGk/ffuTL9+9YpgmpylZHEnI3KHrdKqdL4dPTicvpSiuNL9/c01vneln59ptvuXt4S/Cebds4nzdqUbxPaLgjPfyAw4ffYvWDuboTmX7Nj+954fqSNHvqeWUrF7quiHNEP4hfHXDJItq74odmRwAJYcSGG028t82KgPdc1409GTVOiekY6eHAcnk2KyFVOsJ0mGxJr8rBdXRJHB6OuCXhn89MlytTcDcCRW0VHwLJCYtTeL+wHGYeHu6ppRCSIyTH3YOjPM6cTxe2mmmXC8kLyxK5e3dvjDjv6NX2Fs57Y0V5MzidXOXNbDANzhEmT80mWO3qCD6QQmCeJmKwA0rCTMEmiG2rTFGIc8ClwPTmYFCFCN41Hh7uub8/8vbdPWuv6MmIMD94/IJlmbl7uOf+cLQpjs792wdismwz9/V3RinvEX+YeFebaUsQrs9PxBhZDgs//Oo9n9aV03YFyXz48MC7t4/8xm/9kC++essUPLTM/HAkTQsxJtIh8f7DG66XlU8vGw/LBK3z7TdPrJdnDscjD+/f8PjuEXHBus1aLKpcK+fzM4q7mSAbju9RadR9Otc+GoaheVOLfndi1lOtKVoNvo28upTUIVOwC87i4F23AmL9K8P02YqOesdartAqjo5Xxo7NUq2Tt/2nCBZpMdilFnvP6/MOUokVRitwDWUr1WjW2hFfLaLEYU7k436Rrdp0pgaLemn4qCQfeJfekavRwJd54nBvRbzWDfGBIJCk8fbtA/ruDbXD1oXT6cS2rcSUSMEgyBg8Lme0KT9W4ZLNBR+1AMyHDwcr/utKb0ZzDxHefjiY0fEULXVbOzE5vvzqC+KUEOf57ptP1PWKQ3n7/pG3X76ltsZyTFzXjdMl8+lkurF3j3e8f3vHD798YDne4WLikq+4pwulFI5vFt798AuCCyRvekynjeCUu4e3+OQpvRFmz6tY2LK/QghMKeK1MM0L87KYPu0Qid99YrtGlsORZVl4fPuGOSXTltaN5XDP4W5hWibOTy9czpFtW/jw5XvCHJmXmXePb3j/ZuJwPHJ8eIOLgaqdLW88BI9gRsUPKXK4eyDFREIoTc0hvpikxJ2vlHricr0QovBwf+Sf+3P/HDGaYfH7H/0Gj28fjUVYMzUKc3BMPvAQhWXypEMyo+0pmpzln/oY98Kf8PG9Llw6oITWO7UVOwDcoCbbOmTER3RKbQTqq6sGyQ4u1DqgVoafmNJasYsSSBJNZ6SeNHmqBOu8XUICdhj1bplEwYOPXLbMXCKdRvLm3NBVycUglyCWJTYvgWkOxNmNDtt2WOICjkbJftjJGE0/RWGaAyGalVB3bsR/ROJwFHBAUrVMsWQ2Pvf3CzXbyO58Ivk4NFuO4DsuCD4uFNWxc8pmnDrYfxosplx7Y3aOwyHZ9x9Gpmmyi/P4cORwOHB3f2csO7XdwzxbSqyqMs3e6NoKcUpmydTMMUFzZJomDseZkOx1v3t7x5yULz488ObtA2/e3DNNAe9GDYjeBJpBWI4Tgjm6u2nhGAJtKzw/X+g1kKZAmhMhBkKYSThy2cjrZhletWGps+BdJ/pgLFMvZlI7CpbAEFwzFtoKw4FEBxRN390MhNtsvAuDaeaGoTYP6aBRG8HCCuS+dxALpEK13XZUvZvZsIjgB3SmutsQtVGkBNWR0N3ta52aNKSjNk1iZrxxUOyh0dV8KZ0oTqvdD2rRGuJtxxSCs5SE0vBVSSMFuKuSszlGuFHgw2ThpFWF491C191lPBIH09U5R5JAdI44Lbzkq0kHWqW3YD6K3nP++MR63Qwy9h0/RXwwqcjhaMSrafJ8+PDAfDjig8Ht2+mFXiuHu4W7+4OtBLaVLWeOa+VwKdTcuDsutx32NCdcjFSppCnYGZA8y+GeFBNTnGi1Wk5fr8T5SJhNu7he3xoZDDFo1/khNYGWr8xzGte44936gA9CywfuHh45HI+8efuW4LxFsaxXfJjG/jsxBcfhEMlbZqtCnBNpStwd7zgsnnmZmaaZeVk43t2Rt2zegyERfeAuGDoVfCDB2N0qWszL0ccZ8ZG3LxeSE+6OB7740Q9JIZLmhYf3H5inxXxFp5UYzCgBVebgCMPlhJsDDL+sPP41Lbu+14Xr9PxMm8TiRMQAG2mdMg6fgGNrha0Yk8hLJTohOg9To1Y7ZMRDFMzhWl8BuI5NbqqmjJ9SYknBdhlp5nR5Nop2NV86M2kWoBIDzFMw01OxfQpSLc8HNWfw6BAtXM/PgIkFHcE693xhOz3z9PSMr43ghRiVICb7b/RxOHSi60QXhvxISaShzzId2/Ew09KgvaaJFCaST1bdd+eIGJCxzG/JE2iEZEUBNdPfro1jCBzmiEN5/u4J55TjwaK6j48HpmkZNi8VaSNGRCu9GFXbewjD7VtCYlsrVYxU8Hh/wPlAcML5+YXHhwPHw4+gXpgPd0zzwjHNaDdNkLZKvTbW6+UGlYkY7j7PjvW8cTldeDqfCcMrLXo39mxCSAsZgWqaJWcSoxH2CGEyUS8+4avppHqvY9IZbifqgGJTmneoS/Rukym0W55UHZR784JUu96cs9TaZixGnE21KkIThUEq2uc7E4w70Ga7CDFBfNPhyVgbKsUMktXTXKPXbpZDNMJ4gxpKLRYe2l0n4IyCPxxJVKpR9h2WvtsMMpbBtPQh2n0jCgMmjXFAQl1MR9WH9ZYXmjZyMYLCMgccgSZQto2tGpnm7eRZDjP39wuhG3TqnVkV4T2tCz8dzhCFzhQ8IZpl0nbZuL+bmafI/d3Ehy/eMi93hDjxeH9kPb2Q15WtmIGwOOHDh7eUWihNWYuyvmw3L8qdtCVqaQhTCogEHo4zb95/Ye7q3lK8S96oebM9VPS4IPwz/8yPaaUMiYJQijUhtRe619F4KkHghz/4wA+/+oCnMh3uiWkhpTuQRi+ZfL2yrpvtoUV4/6MfWixKLpzXDJg0Js3JHH1CQKQTQ+Lt23fc398TfSSmmRgSs4+mOwR869Z8qaB9X2nYZ/3Fl1+iWyG4wA9/68+MUMjEdP8G16CHDemNS5xMB5ez6ctQes5G2KomN/qnVS4ZsPmf9PG9Llx/8Ed/xNvHA0uaUSake0JVarIbzIWItkbQCScTm650PE0cXjwpeBORqulDQPB4HlKk1I2cr7x8/DjCAJVUQUeiKBkO/sCcJioNrwXfLCb7MR14tzwQnKfWC7XZ7R2mCS2Ka43UM+fzageA87x7uGc+TqQ5UYrjj15+yqfakTLxEAPvD4/86O2fZXpzP/ZbnS1f7IR1EdJsxVCUqBUfJ9O/aOfhwUSAwXvL2hK7EWNQ6EYZrx26b0jqpGSWTL0NZwpfcGrd+ZImOyy7ctUrb96+IXpnSns/2b4mJCLNnMC1A5HSzVrqsNyzi8NrEyR2YmhMUyMdPb2bofHz5cxxnri/n7g7JPPWc4E0HTikhd4y2/bClpWtZkotLLNZCPkE23rm48uV88uZtRQOy8wmkW9eMvz0I+/fed69PRBqAyZCnMy1vfSx28z0zUETfBJm9VQVigrSYYogXrijU9pG6xXqHjMxmGvVkoxpxjC0ct/p6ulZ6N4jXpjUbsMGePXo0HTduzRiWaCcK3GxvLNEpKi5ppcmtFagdlxVmhc2geqU2SkBT8BT8Lf1bpTOQwzUXig9s64VFwrON1yz6JymjSBDoIwi3bGVMmLdAa94AsFNUDolryBCDBau2FqllQtbtR2PU+WL+Z4cJup9puTG5bKS18x2XZGrMe0u24pOkZQCxykyzQ7FvEgfDp3ZrdAKd8FBmMmt8/H0wofHOw6HhePdgeDuqCVQqoMqTCkxhc6UlTYg2yk2loOnNGXKnZCK5YE5uFsS4iKIZ7rrHO9N7xa8R+vEtXpOCmEkq9MXULNYolvumosQFGqFqpXgOxMNWbC4HvEUqSwpMUVzpVciXR3n1Zprp8GyvZLSxfLs4J7lkDgcPf68stWCc8LD3YEpMhxbJlw8cTebTnOO5hQDjpbLiFFRtKwoHtQIQnJDrByHhy/I5xe0VFxIhDgRpoVpecR1g9iDCzz8xoV3H3/OV9++4Yvf+AHL/YJKp2Jesj5n/LzcUMHPTTR+lcf3unB99+23aF2Z40yfEniH7w0VY+HEGMlVjOYJXFsheAjejenGGENbrSQPIQg+BbwKuWbWfKXl6w3LF4JF2w9yRFNzimi5gFRCDKQ08XK+MKWJKUVzDGhqzLLhx9dqpWwrH797MnaRDxxTJERPiGn4sXkro+KJPpjtEIFeh3mwE2Kc8HHCxxkNM35AP4FRuMThFWSaR/rvZ4WLQPQ6WHKd0iCqaZikmU9ha52SG6H1UbgaU5yGI4miW+SQbF+WpmQQIB6VSNA6NESmFfHDEzGM07MrlAa+ml+epxGdpzUl10buyrLMHOaJu7sD61bQLngXEbXJ1PvENDukBJwvwwllqJlqsYk5Rh4eH5mT5Ya9nK+48h2uWzjj5fpCLo3ahjFpMduhUrLpV4LHp0R0RlYp3dzxzTIBpFaqGtU/eo9Ls9nziOOa27AHGtO7Gk2oqu1pnIMYIjJc/e33xeBG6Uipr6bBIqT5gA8mIl2LuWQ4MJ2R2k52RxucQJqM/NC7slZrIgQruF6FRiP3gvThuh48Th3XUmm9mTHrvltXyM28/Zwz89ngI14CtfXbntLHiV7MALm0bchMhrtL6waROnNb6LWNQNCV65bx6ogpm1lvilyXxPEuEVNDwgTdEUbmXErOEn6HifLjwx2HZWE5HvDxQB/3Ns4RZPgGJqEM0bfXRpgTrRsBZSoYbCqdZQ7Y/zmmMRl5B945RCKtO2qDoOX2nnZ1VIMXSCNORTHPTt9MSxcw0T848xLUyhwDUwzEZPZcvTtygejaLYe6Jh1Ts01SKS2IC8zN4WrDDeeMFBnu+ZYIEYbBwDTNOAkoQpVK8MYQVDGBtOJvei5jZVu+keZsjVNtCAUfEiFNZgRcPFoyfpo5HO94fHzL/PCWsByRMN3WAehnRerXyIn/XheuX/z8F2yXI148xZlrgcPGdnFmXFlqGnYtwrXZItXbyY9FCCiXrXGIBvX4lHCilNZYS0HLiTUrpdpOxqcJHyJz8pSq1GpBeDhlmiLLZMy5ZZlY5olGG/sRwcUNtNJzZns58/Of/ILWIMTENClvtfIgyuHODFDd2CfYhWa4/Eo32NALy/3CsizMxzuaRpyao0LAaPO4QCOYWNUZMzGkCSEiGnBu9z80t/KquwWW0aFb6+RaOTaxJFQa3puYt3VlXg2eiXFocVqnN0fvZvZq01Y3+6FhyuuGHZMCpSu1uUESqHhxw8et4Z1nSpFpihyWA+jViANDaGwGpollmSyTKReenj4O94tGqys+Rg7B0oyDVs7nlV98+0JpV8pl5fzyzHefPnJdV9acyVmpzRw+tlxZkhuTe2JO/pYUG53ZKpnTzYo6Twie+2PC+cUYfQLndUBpoqBxmMUquXZjvmo3d/ZWLHG4NBz7LsshuiHeQj/vlkAIdyOPqnFZbV8W3CC6OHOrWqt9DyeKqEPVPPpOa0V6sf2vS8QA6oQmpiszv0Tb5Vyy0bXnYB55YHB51soODW65kcakUBtGJEDAzebUoZ2qau9Vs9w07zpxssX9cXKczhsvp5VPT5+ozyu0bhl3Yg4yx2Xi7ZsDd/ePLId7cs7G4Bzm09MUmV1gnmbePB6Y5ol5ORDmA70LrYJ0f2MZF3WWIqGK10JcZvM2xdGax6kVtJhe8wKagh+xRH74W/Yu1CL4nscOUqnqhgt8x2m5OaBYMoEYgUcrLgwXRRFaa9ZIB8c0HxFvE1ctYvewQBCMwVoNsp2iJwZ7HW0aLGNn71eMYo4sg4LuRIf0JQ12n8NLtClaG0pDB/oiEu3+FJu4ykiQ6F3J20YvFe8jcbLpra2OcjkjPjEfHnj39kvmxw+EwxtcvEO3bAVxuAMxJBq32rUTiP6Ej+914fp//6+/MP1OHXqjcVNZeomV+yaRGCNpipyumZxXSskINl7HZB3U5Xwi58K2lZH744jRsySbArrC8XhAvGl2limSs+k9unZ8NJ+0ZZlYc+bdu0ceH+8AI4bU2ijbT+mtmN3SWlm3K8dl5uFw4MP9A+8fPnB/fEvTwKwTS3dMrVPOZ06l8Ascz9tqGVYqfPGDD9y/eeR4/8ByPA7Xi8bsKmk52kU9MGjBIU7R2eFcx7lsouhxGJlWpZr/WR2QSu/0Wq07U6Wo0tiGm4OQqPS1U3KF0s3gs5thqXZzYHDacT4aoUWVrZpLuol7MVeHrpSu+J5tUnaeiUy/blwusH18Yl03cs5c143azKB0mRPvvvqC1irrtvKzn33LvBgJ4+Bn7t8Zs0wIzN4zLRkNB37yP/8Bf/iLX/Dd84nvXs6sa6aUMog6btywg5mqdlQv0zQOMqVs9hq6mp2U97vPo3WX1nAESh2eid4kGSGYl2QujZotfRftHJfZDosG63o1Y1k1HVIY071qt6gb75mngMnddHhTBiPJpMC6FvK2UUpGu3I8WDR86cJ6vVBKpZZO7RXvHDGGm+u+946Hh7vhnG8YZys2NZq8xBk1vjVyqTzcHzneHQDItZpB8iVTq+VreXEcljiywsZ0MU/M08RxSeQtU3OhlIIrjegCd3HCT4HgBd+U9flCvjYknglezCi5Nz5ROD48MM0z87zwzeWZGBPTvLDcvTqS924IhAMIxjDuIxIoJLMyEwsfu0lgonRLOXYG+ZYGqJFsXDB/w9psx2lNVxtC9XGNF0sqFmffuzu9/Zklm1sCAQ6MIuMoL1cYHipbrdAVr52gjTglsyTrnVPtOBdgTFBtoCRfV4M+Q0rENKN+COZbI8Z5RBnJ684eiKK4mOw9GJUlpYU0HZDYccnhe8BNk8GP8x1uWvBOUG24KRHujsSHe+Kbe5MjxYBGwamMnd8rHf7zMiW/4vj1vS5cH08ny97Z85nGTdU+w1MljGDBkc/jvTOh3UhVLaVSSud0vrJlU+KjSoqe4GBdO7tws+RiHZMT1m4ZR/Ca0WPfb2D63pFSxHthe3pmW1dyMfNSLY1+WbnmDRHhkLfBjhJUK9/94ls+fvsNT0+fWNeN0opNIeGFrM28CVX59PSRUgvr+Yqbp5sbQpTCMh8sKyymwTy1DnKZJgtz9MONupmg1qmj0m43dQODC1qnih3SBsVlM/MVE7JqN6aZ8wFpBolVQIfJqfQ+iCDGAqx1xJiII4i37z2YddRslH7vWau9Fssuww7b2lhzodZq8RUp8HK50npjLRtPTyfePCzc3y8sxweW5YA6x+l8odJxTri/u+NwmPj0cmLdLC6m1kKpBb8zFJ03B5HhcalNR5yMOXtfr1cUc0mIIZkTuiqX6za01EJo5nsoAq6ZU65iMgZxQojesqQaYxpt1Nq5rBYf4L3jmBaWeSIGz6enZ8Q1aq/03mzfoUNm5itdAzqaAB1wrKqJaUtr5NK5XK5madXG/RADoKxbwXLZLNOO0VQEj4U1qlGXnffU1im1UGtnS5kYjRR0vqysw0pMex+FSyyNGTWhbQrD+FkpecONn/Pt4xGuZSQRGWlpmRN3cwKpXNfG9XQi907eMr0WEoWHNTNNs9kOCYizaJW75WhFVkw4LL2YtCXM1AHVllzBy4B1A7KYCFxbAy0EMbaii96mnQ7giN7YsbUPGLw3pDe8mMC+Y99bBuQWXKCHQfZqO2HHEwYjTHdWEZ7gbKpf+6tJsGuFJc023Q9BsQyxeHCR5gxGLHkjRggxMqUZNwXbM7aKD5HoLV09LQkGChRFSXHG+0CICQSmaWaZDojzXJ4v1LVy/74xpSPOJ7brhRgCvRSbXIcDjQL5eqauF4sQGiuR1hp+JC+Y8clnBetXWHR9rwvXZd2Gat0PkWRny9UCAJ1RM2OMhD1RdY44mRE6fcQWtL7H0Q9oLlo0+zIZVFFKHaJc+57emV2RqhKidcNBHBoiztvXRCcs88TxsBCi5+npxaxXgDC62VLNJcCHzJYz4gWlUcvKNz/7Cd99+zVPz0/mfVbNQy+FYHYZ4yI4n0+0UtjOF2owt3h6xVM4TIuxv0IEtUC5psohJCR48A5RNXf0VgnqKW4EVOZK7m2EzQnF6c2stbVMFI8Tj4aRi6WKCkQ17L6KQCu31zO7GfFuBBi2wf4zCnTzQ0arzeLpR+HKKjf6uHZwajuL/y95f9YrSbZkaWKf7EEHMzvHh4i4Q46V1VUNdpMNNgnwqV/4/x8INEiiigWyxsy8Q0R4uJ9zzExV9yB8EFE1j6xqgp03+yFQduHXPc5gg+reW0SWLFnrXpVWt6PX8vZypahJR9VWyaEyJuX5+R3TONEQtvrZSOkhMY2Z83liHE2N/3I+WWWzGVXedBSjGWKqBc5SrWpurRtRp1RCiqSUuZxM97D3TuufTfbHqcCJx79DTtZbDZE8DqRgQs+9FJMeao0YGstqs3nDOPLtu2fePV9sYLq2g2rfuzoz07LYNLhWogTGyRTF6SO1lmPcYPdpEjEx2pyCzV/NI19eTLoMYNuqoQpRCCnZiIdX0DGbDUztjRj9EFJFglBKZXMTzb2x0RW24lJfntjtwb8ulXEcGHLk4/sLPW9sa+W6bIQkjFPm6elEbQvLemW533hZNqfDF4Zo92PIC5KM9qJq1f5lmNAYzb6nF7QW0M4YJ4oYJF62jYq6MnpCTskTs0qtK1kSKZhbd63V7VOEMVilU1TNcLJbBTiQ0Wgzcttqg/RBAlkyOojLbhkzN0kkhQRDONa4DX6bR/W9K7TNkr9aOKXRpd2g1g31XtQUJ1oyiHJb70iopBAZ80Q6jQ6ZF7ueaWRMA/O7kyn/ayfTmfJEHiaGaUaCifGexgmJE29fbtS18xvgfK5ISCxvr+g4QTdPuZAz4iIGZVmoy0JbFxPQdjsZxaq8nylo/AkzXPALD1y/+fgbnk8TlynxucJ9Kyyvr4yzTZl/eDozf/MXtNIoy8LTr7/jm/cn3p8npjDwr//1/4tPP/1Emk6st5+QEBhO79HllfPlifcfPrJeP3MtndvWePvphaWZvXXQynAaGfPAZRjR6RmlQTdH2D/77td89+1H3rY7MV0hVAhC3Yrpuj2NaOsM08THpyekBa4vr7zUT3x++ZG1FTQJIXEY4600nvOFECzDGSabvim92NNXy2wu82jEkVrJkqj3RtCG0Lj3Ox07VKQpIgZWbK3RCPSuXnG1IxmQaATaJDBmMZKCAnHwjBxElOKK/CYpKN7eVm4sJuKqgd6Mso+Ybp0EH75VGLJAE9MfjOOuC0MUCMkkYRudoslmhKLS6939ieAyT5acDJHWb9xvLzSNaFHeysa6vfK2XBnDwLcfP3CZZv7sX/wPpuXWOkv8CKUabDaPnAc7nIsm3j59MpNLhe36PdPlPXk8Ua8vnD98CyJ8/v53lBDY1o376xstZcYhM4+ZePpAud3opfDuu2/49TdPnMcRmvCv//W/4r6sxDyR5M7l+SPP3/yWb06Z5w8fyOPE3/7bf8vr/c7b9Y2//4//iRYCKQfOU4Lhwnq7c399YX7/jneXiac5E3rk3/37/8BPnz+zNSWHyul84Ztf/yUfpsj7Dx94//Fb/u7f/1s+X+98ud343X/6exu1iHCZI+fnd6QQCa0RTs8s68Lt+kLbNnKIxBDpKTCMr2ylEsczfV1RP7Ra3Yy2H4T388jl3TvGy5nr9TMxBYYc4DQS8om8VYbblRwHbrfC9eWPaCzGbJVuItJTZCTwzZMpjmTJnOPE7W4Cy0NS1lbRWgGBBslR6XtbDGJTYIMkjUbh3hd0s7nPoMKQlNILKxC3ge5MUwFeenejGCF2nMnbeWt3CNGRGSVn6KJsekMWr7zVtUalsrERGdBqG8actY1QpGqK60mtS9TahhBIGi05VDM53eqV0BJRhBlhyIOLBlf6ZnOUsdu+bb1wK5X7ttjohsA5BRa5E4IxEbPgCMLIy/XO95+vLKXxL7688pd/8Zd8Vxrn5++Iv/rOkvY8EmJmfnfh6VfvyKdv6KeJEjpxOFlAc+WMP6Wf9V96/KID1//4f/w/8avvvuGcB9r5Qo+JUApxGkgxMoWAXj5S1kK537l8+8zTPHIaMzkNjE8fuF2vvPv4AepmuPY0c3b1hvlyMvO8rXDfKtcvr6zNhWTvN0j4vJjAeHIK8ErbFr798J6ny4Xvf/qR91/ebAg5JUTNInxOmeuX93zzdOavfv0t43xyPbROyoFff/eePxu+43/47/9b+vLCcr3xw6dXhng6MOmeqqkV9G5eUslM8nB1b7Sjm8OT6tCGKkkiIQY3OnTPJYBm+o4WqDAXVmz2KQhuQ2/VlcCxmcXZVKImCJvcbt0ItupD2qalpxG387Dh7SEmg7vEZ+bA/dJkR6zMyaPbEPacM+dxJAaDskIUegj0mDifTzw9z5yfZt69ewf5TO0BYubL641KYGzw8f03nP/6wvn0zIc//2fWP1Ao+R26z9kNkdHwJ5oE1rebze+FQOwbaZwJOUMpDLMJ6N7eXilYI72uGy3uQ+GCjDN9K9A682XiNGajV3f45je/pbVGHkbGBHmaGU8X3p9G8mDqLN9+8y1bN9uY28urXU5c/T1P1K3QlpXxaWLKiSEGmsJf/8s/cLvekJwYg5gSzOWJb5+fOJ/PzKcTP/3v/jvupbCUysuPn+k+0Ba1MsyTsVEVhvPFRZ8X1mVBW0Wboinydr3ZkP84QzG4sGunLQu1V0qvzAFOTxeG08SPP/yB6/UL23qjlzdCgdDh24/vOJ+fTEWkF8JQuN0XbreVdTUty94bk5hDQ9TIRDLhZ8Qpt+o9KSNlBSwYWCPX1lZKUKi4e4utM5GdLErYC8dq+8Z+Sw8INIhpfwYUUXE7EFPUMX3s3Sakk0SMpuDPuVsr6WrEqIf4nM3wRbE2RVAIXVAPekEgJncpViUo5F0AmUDM4hC3yVeZ17mNL+z7Kicj8qRggcsCi5Ezxmjec3sHKsXIoCZgvS0Ly+1Ob7YPRYIFyXUxNIBE1Ugno5rZrhut9N1+zc4MJ2XBkZP+ox+/6MD1z/75P+fP/+w3nOKIfPhInGcmQIZkDZXS2IaTqTgvK5d3k/sbBeIw0kiUdeO7X32DNBO87Tnzq/cfmOaJYR5otXPfNsPv73ezRSiWUW9to2sz36U0UIuJfNZt4d3ThXkcudfG5emdGd7lgRgqYwo8TzP3U+bb52d+85tfE9lsGr3D5XLi8v6Zy9OFX//q15TrZ14+f2b4D39HXb03glIpphyiiq6PJZGC9fmEQCShQRxyM5egHA2qMAuuQOuVVBul6sH+q11c/byRs5lN7r08cahSMWdYq/qVHixwJonEZAeGsLu12oCrsYls0XZV5pzdlhzry7CL5QwHFIYL2sYQzFdoyKQo1sCPIDkjeeR0mTmdZ6aTyU41GaldEIncNiPtxK0znU58++vf8pvf/iXzx197/y9QhyekGZ8sJFyVwgJX34qxOVNgCAFJCUmRIQRrQKsJDa/ddC6l2/XoboWuKSHdD5vBbFJM7QJOT+/tE+fMmJLBuCnyzfMT5q7bGIaZ5tdHXJWjt04rhR5N1l96Z5iTXXc1wsv7D9+xrRvDOJLExjI0Bv78V79inCdSTnz3mz8zhmfvlPvqqh4dXVfEHReSBKaLSX+1Wrktd1uvtdJD4H5fKLURhonUrSemotRlZSsbS9lIWphOM3nM/P7vn/nxxz/w8vKJ1y+KLJVBApdp5v03v2JIkRyVPFbeXndbjzfu95Wybei6WA9RI7mbj1XDDFOTBoIGIwhEAbVAWrqiPfgpauzO2hs1dF+Dvg61IxqcJCMuYOxS3d0NWCXY2uvWlxbMiaIjJj/lHfAgkH19i8g+mWP7pzt3UUy0WrB+cQoWQEX3r5lQdCQeHqY0q9JGF8kOgqm8iBBFzHvLP0/YP3IIbsIKKQhzssFzkYgwMCbb163BuBmbeOjCfJqt/+mVoUTxHqpSq5l+hphtplQySjL37K5/WnT6//H4RQeuX/3mO775+M5Uy4cRlQFGm3ZvvVOast7MVHA4XVCJ3LZK7ZVcR/r4jmHsxDTz5fUnlq2wdniaL8RxJGk0uqwILSUuH8/0Wmmlcp8vvL5ZsztIJ0liWe5Ii3yY3vHhwzumeeDTjz/wNF0oc2FNkZyFIdlg4ZavDKcLl/e/oi+fSadIDoHffveR6Twznmaenp8Q/pztduNXv/4Vf/v33/N2vXG73YnBPIymaeT++UZtPjfk2VmIkZxPlv22hjYT9o2epYkItRVqK5SyUr2yaa0ZUaUYC5Njs4llruomhnlgN1qspZG9At0NLfe0SmhuDW+KCHt2KjSGYUJE3CZ9OjT2VAZ2u/btficmG1WY3r03p9oUGHMwrcVxJkzmSTVOplsIjSaZ2i0DvZwubFvnbfvC9OUT79+/Q4L5KpVmiuXr2phTNIoySu1QO2wqJCK5dtJSKdsGMZOHgd98PBOxILw2+HRTROCUE1SllM5WlLKYYOuQAr3AtrqVPEatFlXWtfBTX6kdVALPp7NT8zdua+HW7OtPYyJ0aFVZCtStH9qT0k0T07Jy6GFChkRA+PLlC8uysW6Nb58f1i5INDUNIuPTQFAQ7dShugsw5BwZ0mDyQN0gynSxbHxdN7Z5M+NSDcyj9ZQDBmsZW3clBhNFhsZyfTUGXxpIAtcfPhG1c5oSf/U3f8W7D+95fjYR6O32heXtJ37/H/8dP/34A6+vb7y+3JnngRQytMwf//gDqkrOifNpwhRGhN6qweTuNN3dhqe1xlo2mpNdFHNcABu6r7XaTGOMrpsIooLIo4QQseBjfaqKitsM9Z20pUSq/fg+SI7JuHl70Mg0CiFExuxmr2bKYizHkMhRSNF6bq3BIsUGmofIOI6EYNe5CuCJVMrjvmlJQ2CaBvKYGU5nNyKFhBmUpjSQ8+xjQrbHnz/euS1KI/HbP/8tQTKnp2fG54kwuLsDJtwwnCaevvmGefzAeD5bPzdHO2tSfCSg/4SPX3Tg+unlDRErY2/8SBWDnYbBZhtEBMKZEEwlfHw6UYrRb2t9QdTnIgT+8MNPfP78hR8//cjnTz/w/tuPvP/uWyQmrneDUS6nkV6qESKWO8t9MWHPFNFm80W9bnAambeZmO1A2GpnrR0ZMr3B1rtBil1MK0wr4+XJKNsRKBFlpdy+8OPrH7x8tzmdX//2V3zrlPXoRBLRznV6pWzFek4IOZuw55BP3N7eaK3SezftRHxTdCVlAckERmv+9uY6aJm2JerqNhitm5i4RLO8CJDzSGmd1pTa1PynjGpBqzaEGUL0qipZ9dIUDREJwhDMiE6wbC6MZxvuDpE8P6HVWFHbejeblGlieH5vsA72HlJSJI+QB4Nx8kCIAW0bjYQ02FpnGAMpKpSNz9+/MQ8DwzAgHyLXVVhroA/vGKMdxiGbn1VVoZIZaGRREp23l1fuy4aq8pd/8R3TyZl195Ufv9xRZ6UOycwVjU1pDLoYzFqjN2NNltpZ14WAJTRDztRSqa3xzfPMVlfu28Lb293mq1RJQcz2A6usWsMHzAMxics02QjG2/VKq5U5Zm7XF25vb3z56SeezgPvv/nA/HyxoLg21trIyaSFAtZHqaUZwzCZs3brzcZAlhvn84lpnsydtzRKs6p9GCxwxd2WZKts68bllBiGiITGT58/c71dKduKENi2BgGGabbZtHLn+lJsSF4rEuDdhw9or+QYyXni3bsnxvFETmc+fvut6YvGSE5i5KvW0WoO59qrebWJ0d5rbZRu5IreCovb5mjv6CW6C4AiKToF35CGHXbvrR/XBrF+GcEqrq14X1iUrC5u3ZzkE7MlfWID3G2X5JLImGzIOYZIKf1wlbhMmXEwI8frm8lkta6cp31wWShroyajoI+juTn0Zu8zTonTeWacBkiJXjekm/JJHjMhZEIczfjUwE/bQ6zUZnAksq+x5GiBSc/hkCjdrJhStARAS3Mps370txwp/erxjy/HftGB675sXPOd7XbjJpWNgLbKNJ9JyewdhiEhoSBbgCGxlWLzQGthHoxZVrpy2wpv94W3tys/ff5ibLxhhJi4b5WtdJuNqZXuyhdlKwBsIpS1gnZiUPQ8Aa6q3Sxr7xoY4mDKGc20/6QFY/v1TogjKduhiUZqM7Hfui7WrA3RjdouZkEhmZiTbcZthWJUYcObxVlzmSEN0KszoxpjCmasVxvaGhoTBEgyUFolNEGrwaZNIKptrCaGV2vKPsRtWWBMbtnigUvVFTfcFTflzGlMBz5YazcWWPSKKbsJooKMZ5esiQzTCXWh1W3KzPNMnkbS6cmo85gcUYpATGjKqOIGjYKqGUAGhzZTNKHTUgutbizLndvtRjxtXO+dpUBoI2XfoENkK820SGJnaZVBjEL8+e3O7brQe+fydOLcByTAl9cbL682ZxcDTEN2oVFBm2/eIOScPFN3ev1igWscRqamR+C5LSvrtnBb7ry8XVnbLoramHJ2QVOF/ugdxGyHrjZbZ28360G0aCMf9+uN2+3G9XqzAdwUuS6F22aBS8T7JoIf6l5tiLLkTOtWAUrdTGlEMB+14lVeU9ayOc0807D5vloKMWS6WsWxlep0fvMAa2o9mGEc3Buv2WhJbW7VYUogOWcbW8iJ+XRini+MkwnfdmeuBZp5yRWbh2plMeHsal5vveuhrGJ95ULgjVoscMmQrR+G2qBwsiCGCAFDL1qprFIM+o7i/VDrMQ2pHYEraXJvLDsHasjeK1OjlXdjiXaRw+AxSDABcK/Snk8j4zCQYyaGxOqjIufRVHwUYYuNNgTyMDDNk72X1um9Eybr/47jaOZN2aDtoMHUVVynMjg0rt5cbrUSSiME81GTuMOE6oohplCUUiAPgXHOpMGStV34Wfv/NljhLzpwbfeNkhO9FWTIRBGjoja3QpdOmpptwNrRZaSXYiKVrfNuPnM6z4Q80EJC88D49MQwTsQQ0dqtCR0CKcDt7Y3QDUbprdjCa8q6rFxfb6QYOM0jp9PZbRUCZYPaIjBymj5wu75Ry0q9bySJtBrc86iiZAiCxAbNhmHH85n7zfoIMkzk04U8XhimM1Gg1Y263qnLgkQLSgjM02zwgkJ4PrEV682d5pntdqNczTurx4CGgEhk3d6opdO7jQUIgjalLsWw9SiEZME+iEBvZikhgV6VHKDXRlk3cqjEnEnjwHw6odUy3nFQQragOk6T6bb5oGaLkynjR3NhlZQRGQg6cb48kYYRlUhv1eRqnHqOuGo62GGoJj4rwXsEiAfIxNu6cpkSPSYagSEk0MVUDLRStmKHZJsptdKjIq74XwXGINxrpXo1aVJGoK2zXY2x1bSxLcX6ISginRhHP0iUmka6muROyMlEhtUa8L1Ws6YZBlOI3yr1vrFcF3Qwf61tKwYVBhBpxDDY4HfrpDoYbKVeAcRkVYAG3kqhoIyXi2kqiqC109aKqGX727aaM7MYpBdDMlhtKWbm2Cqlbjw9zUjOaIhUAtV9ssKQKds+G7h3egxOL63AakxTCZFpPpsdfFmt15IC02UmTwMxQi0L27qSYrS+bE5Uba5NiIfKyAABAABJREFUWQnB5o/SEBlOH03Y1Yfw+3qnF5uT3Faz9em1QfOg3hOye6+1Rl0bPVl3VXJCvKdTtg0GX2dOImqlst3v5vvlYzLzPFoi2Ds620I0lwHo1Wbg4phdbNn7W6o2TykB7TDk5PtKSTmbXn/rnM8nogSCKuPFFERaa4w504pR9ccZdBrI48Q8n1jvN0tmRJBBOJ3ODMNAKwsxDQbP0xmGE3Sllw2JNrBPCAwD9CoE6SCLsTkSJl4gHYISojDmiPZMkIGnDxeDnZsSboOPQLSDCv+fh7B/PID4yw5c20orgzUug2UKKcXjIIy7nbm4FIqazlx25twwDHZAqLmdJjGX3+Q/W7cVOoQho3FvghqLSDTZFEgwaOTazRZ8zgOn84n5dLJyWwzrTW4DbpJLgRQigzRiGljXQnx3JuSBOCSGKSNLppYF2kYa7DZ1hFYVQkXDRmgbphrXmS5P5NPF9cGEZCJ2tPtiTWYxyZrp+ZlhmmnnJ7RX1tWUDnpr5GFAUiJPhsG3VikpIrIc11RCNLdfUYOgzk+AsFxvDEMkjKDzTDtsHYQhJzQE0IGYAzFkQkoMQ6I1YyiFFFDJ7gAcaT2QhmT3rbVj0LFjbKl9+NtIUEa+D2r6fyKm+L9LzUhIhBwIKRPFstaUxgPq7K6yUnzuTEQsm8QOmG3baLVQxXp44qoJBINc19XMMnEiyq7aot0yfPPtcrhJsR5ht8BVqg15W1VW7DCOgZSMkVnLxrbe6XWjB3FFk0bvcig3aAp+3+2/rTeo1N2YUqGu5jeSCIzTyDCYk3ZZN1pZ6SFaAgOWApiQHfuYfQhCWRe0d5LANI/M88w4jFz3wWsnAAx7xdJtFs9U0hs5WUASlMv5Hdt6pfTCOE1orZSulMWMWHMKbhMT3KPMiD/DODOOJ+q2eHVuFjVhnO2QLCvRVSnIbieCMfSqGLwO3lPF4Svt9ropGophl5LeG+ttMWsWlG3bSMm+qU9naztUU9qZp+xDyhCH7ExEJYqyLoU0DEzni0PrlV5tbjHmjMSENmHIpqxCF07vn41ftm5kd3imweVyphWryFMOrLcFEMbLGc2JkBIxD6xvrwcho9PJgw3KV2A8TYRocHXMg63J5onIflW6EZvCfSUPM0tp1HWh17rfaJPY012nMjo30p737cud6bIxTCY0vTOR/6kev+jAlWM84JZWGi5QYP0PME+bPQ3vHS0b1IrUxpADY7AqgdaPocBIRjQi3SxSohpby6bsvdOvxgRSjCgXopCDlfpDtj5F3uGwmBhloITKELIprSejyUq3wdb73VSaYxpJ40DoGzEX6xbFQPbBTXsERBIx2sGDmuJASIPRk7sSJRJTgG445RgjqVsvJKXRRHBDpvcKIRNKpdWKxkxybyjzbCogkd6jwSTBssPgw7MhNobxhAJ17YQYjj5Oa9VDi9hUfrT/Stne/+70GwiueBDMvXcfeq3NDpIUPTA5k3Gn3vvV2HtIuBDt42FagoqY7X2NiCZagRYhkpnHMzVGxpTozebT1KnPQStJO6qR2C2Qya7k0RtRIRBtyNKoj6TeSWoSWY1m8zn7e0RQF6PVnbmGMz+1Ik43G8bMEALDzmHuamhBqRCNCRqx/oK30g0a7FZtqJgcD+p6ndEq0doaWSIkZ5XGARFTiwhqmnhGGuhEduOLvr8CBKV2twuK5p01RPuTRcx6xGEmiSBBoSkNG5Ow3hwMKRsxqHqPpDdaNrUQVUXVWG4hGONN42CjEs6o3Ik/MYTD70kEJzW4TJNgFVzMrlIyGnQsxsyz+2HMwZ3dmqeVlCzB3PnjvTUkJNJgkmVIJESnzYuwrQvJlVzymLxlI+Y917uvSehSSDkzTBOh4YPslbZtxMERhv5V0q3BXKQRcjZdzt6MvTzOZ3ru/t6gdwsW8/kJBlfFCdFQJzFoune1BFDE7HyS9d9teNwHzIP183ZyRkeJMRHTniJaQtQ9GUPMwdvaARNptGHk3gWVbgmP4JX7P/3jFx24pnm2bHKrrGpzMzlaoAkRU7ToO/On0tYbbbNJ9zlPjFLJWmlFGMUCTOgZaQnpQmhGPQ6xEaLSpRhTS5VIp6tzUxPMQzAb8WlgiNaYDyHyFAcuYaKLMsURwkYNnZ4iy2LW3l9eNroGyzTHE7q8WM9LBDCljFY6rW6IZHKamMYnVCttu1PLnRBNYkV7I+RAHjJoJmogxGSLsbvukijE0dhFsZHdaDPWcujnld4IpaAyENLk/F2zFtmjxqBqvaiutNEOupgS4zTQy4K6CnZM1pAOQEr4dbOsLeRw+CAJiTi4AeZ6N98iS9EBV9IIBas97dAPCqZSaVDXLo7q+Qiq5hJQl4TUTFmM9p105DK/p4wjWgOhVe7FBHoDSqgbqRojNXSo4j3BUgm1ECQSVGiuoB1RcquMWkw/TkzyyRBWQasd/K0rvVer2MSYXeaiLITWOaULOZn8j+yzAU3RtRGT9aCCdPtw3r+jysNLSR2LwuYBU9j17xpjyoApuqc4ECVQWyNJsp5WUEo0HUzB547EJNOadKtYXPx4wALWEIUpRFIUelCKelXqRpJb6ya3RScFzMZjmAhNEIcTW1ktGVJBZLCw6YmSxNEDV6f15gy1/SDG73Yj+lC7SgRtFuCiVew6BiQ0W8uqLnrdjLrttPQ8FTNGzZk0jO403QnDSEzR5ZpsfaUUGXI0UeJsskYhuzA2WGXTqlXeIZBjsaA4TgSyk5k6ITlbNkYC2QKmGDljmJ9suHs2e5DeCmhlnE/0qodnWOoW7PJ4Js1P1vPyvaq+xrSL7WuUkEdLkHN2ooXDeaHZphYjZ7SyeQIRTQZLQKNS1SS8YgiWEKaBrBFCIo4TWpuNSGSFISDu07YncF8//pSQ9osOXB+/+YY5D2zXL4Rl4bat3N/e0HNjHE+EeaatpkVXtxVEaa2hKCeZef2stPXMKGeW+yu3ty9cP//IHBsxPDFOie4Op7pYE7f2YIu6VVRNTHWeJ95/eCZGm0l6+/yZHGGcZ4Yxu/vxRl5vrPcVtDGOkVqhlTvXT1fefvqG8yhMA1y/fA99I0gn58w0vydcRmLI+2lC3RYjIXTTHRtPJ6bzhX0epLcNeiedMsP5Hb2Zake5XQ1zVtOq66Gh1WxFJJkXFL2j3ryOpRoFWJvRej1wgxKTIMHEX8d5ssXuU5Zhx+4lupSWaTGaHmP0A8OyPJPT4pgTCSLkMXkGGq2CYM+sYZ8Qe3xNzHIipqOa6c1mVUShdEjRTDhjr2hdiBTmHBhOma0U1q2RAbxqLcCybHQJ9JwJBB+F2Hj5/AlT0o6U+4nnUyZHU3lf6h3zWEvE0YJDFLsfUg3C2yi0snn22miYXcs0nqnbQlvuaK2cR5v3GnJEtdC25o2tYD0T42NC3+jNIMelbPbcdUNlI48jQqSXzu1+o64bfdu4/uWvuTydSIM52PZgPWGTrLLrKy6mqC4HdZpHp4U3Pn3/O+gfifKeaUyUZDJm2+1qYsWyezsprdy53154fhqZxsT5PHO7vlHKneX+Srm9+dyWwaRocfcCg39jNCFhqXeSwCCCpuS6lmb2GVOGbuQQerdDV5JVUFGR1ChFScmCHb15vxRibeRxJEYh5UQcR6QZDBazwaS9NboqpZSjr5qHTEguwt2N6m8q/TY/2b1qS8ncA/KYKdX2WASG8+wiyQGR0expfGWHGKxHjFXFMQpIctkts73RomSvskLOhCHbYHAz0e9dVqmrIM1NQmlelYYjIRQJaOgOrXtlFgwVCcG7xO7TRYPeTC8RrJ3QvaeMNtq2UJa7SWoVg1H/t3j8ogPX8/sPvDvP1HXmvFWWUrjfrkbtdM27jmHajma4ZpsSx2R2C/eV09OFj++fGXMmh8zpNNsQ8GlmXaCpJbjF7TSiGNyCVxNDykjELL3HyVxWfVI/p0SQBm2lFusnBekEjVymkaobrdxoVXw4MiJkkI4EReJgM1AhAULfis9ldfI0Wl8nWnZpgdOgkFb0cCBtZUW93yBB3YLCrd+jwSXaig22ajc/MzpJ1EQ88feGokSkWyCJFm0AhwDVsmCkG9wnPuCIDUGK08Pk4MXqju3afwaxjRyxgWXkYCUdmoVOpRd4zIcch6SXdVhyYRWZfb1LZU7Kh/PENBjjD23Mw8A93FjVtCRj8o2bI5lIUaFIoNVGDDAOkfTu4q4Adv2mMTPlgPZA2swpWRVnXlpQ1Ww9APW+W1nv1GoqLLfbQhTllCPP55lWKsu1c3u9Qeg2yjEmE8UNptm4K7qnAEhkkEcwr2WlbomtRUqxzP80jTydP1DXwvXLlbYWylAMFXP4RwK22KV7haz2xRiRAFOMDhPD508LZS3cr3fzaQoGEZaY7LBSEw5u20pZFrb7AtWrORF6adSlsN1Wbm8LvQVCGsjDiRBmW8vSSck0KREjUaQ4k+LCxgotsHu04f3DKA9cURHwNRnCfm93qQw5PnPY/8TgflbBqloV9gl7VeuTh2qQqmoz13Bc2cXXR/DESwVC30tmW5+ImLqNQ427o8AeiJDdv836UirqJbujHZhWYe/iLm2NTt+XvCWdToYRrPK2JDN48tGsO6y7Ur0/9m2z92YV6FYxRy+LWrDr2OpqyEPwtaxOPIk2ftN8tnLIBkuGGP5Je1v74xcduC7nE+8+PKNt4qJCdYZfr93K31ZpyWRzhnFgGpJTehpbUb7/wx8p60Z8B+/fPXE+nRjzjKoynQamaUR0Y2ugNaBqxngpBIZsg5umAm2MsBwjp2kkCda7UZunykFJ0vyA2JWz4TTNrFq5b3eQAcRmKmI2R9UgnZAHa4T2Rq8r9bp6L6t7BcOjXxRtdkYE6Ml6aFqo6x1UrKFv2BMWuBIhCkmEvlk2tmPZ0QG4FLDfDcEZwYEdw4pBrI8mWMar4pAiyDGV70HGSRPeqfCsVZ0D4H0UeRwkaDjM6HbpHGtOmEu1HUbi/UZ5vI4fBs2JNsEr0EJhysqHiymijENCa7F+EspApRBI2a5jHhI1drYWuPfEUis5mrpFOmW26nM5pXCazJ9N1DQla63UUkkBl6YSNA7WOI+JFKFsgVIK16VTl0KOgcuYeT6PLDdhu268fXljmBMxG3tLRlsLdavOWPPAlazqSDE7Gy9RS+a+Drx8eUF74+k88fT0RN0qnzSyLaslCDIgVKt8/bntADZBX4mjCQ470zG7i8HLT9ECFzdOl2heYwIpBIdDbZ3VdaGuK3Wrpo3p7ElaR2unF2Vbqq1XGez11O6IBJt3MrUIpbIRwkQMI9pWGyNqgRDyAWUb5Ghkht0RYSeNxCRY8f6A0cCqfIInPzFCwHp86l3EZp5qe4BTJyTEwRi1AbHe9QFdWiDo0n0IG8dPXazbAxu+tgGHZE2QWF21w2x2FEI/6PlG47eh/67VB/ndfBQnSmg10o7769m2NO892WET7Zg2jL3frnuP0eZADerlCFxBDL1oxQg6ONV9J77FlKxCrJHkwStEJ3R9Fbm+Zhb+5yzD//8fv+jA9fvf/T0vnz+RWOlDJqRs6t5pJHa7+XFQYjLjvjyMJEnWLJYVDYVSb3z69D05ZmrtXJeN68uVPCbmp4n3pwFJgZzxAUqDKAZJ3Grh9fWFP/7+92hXvvn4LX/xZ39JvEx0RkQSOQd+9auPTKeMnmbqckdETcU7BNr7ifbrC9/++tecn9+Rp5kQvyUG61O0Vvn8u7/j5dMP/OH3f0eqmWmeuTw/8b5XxnlkGBNSG5vcLSgGczvWPWPE4D3D6W2hg7G0rIdkS6g1dXKC2iZzUoRN9/tBhniPgEc1JPZe9xVqZ4iwk9OCHPvOpOT2QBMSbQ92/s3WG6FXhGxAmFGebLPsG0CMii5WQlsPpu+MOs+IW6f0ldqVWhrrZj2SlMwIsm033j7/wFVt4FdozFNEaMYUzYkpZaoGBhKjFFPrGCJjiiy1c98qb19Wynqjr42yXNlcsCr4tS9rQ2tlEzPViyHx/uMTYwoMU2a+ZN7N6fh8t5dPvL7e+f7TC6+fvzBOmXFKDFGIdYQYaGu17FaUqo1C8HstvPtgz30eA/PlzNMpeTUQCN0YhEu58eN/+COdRkjKh3cnIwUlgxSHHCxYVJuNbB166Tw9z5zmmdN8Ylk+00qilcy6Xq2qVGXZCq2YGnsUhbJxmiJPz98xj5nscPGvfvWBd+9G1uVbXj994N/oxnK/8Xd/+x9p7cbpPHE6jTzlQEqJmBJCZL3fub6+8sPvv2c+zZzjE3m+0HsxqjsFNHk1LpZciq27EJPPL3qq5AHIEjIjc4RkCA369bH66NBYguRafil7EDEZqB1S9brF12LwpMwc0C3IwE7yAoMZ6c7CFXvP1hdO9OaC2LbR7JmbHgzGnUVootTCLiX2eM8WeAMgwVyuY3K6f/O+liebdi1cu9Q1CUMczFKlFDoGA1oFCr1bAh26EVNqanQVWoNP33/m8nGlP/f/4tn9pwQt+IUHruX7/0SeMy10yjhAHmjTiSE7E4nG/QWXMlKk10NRQuNECoXTqGxvf+B1XblvhddboTcl58i6JOKHC3GYCHkgp4G+XtlaZW0bP73deL3deXl54dMPP/Dy+ffU9TN/9Rd/A9pYxoHvf//vub78kW1dIT4fUGFc4fn9MzFOBDkxncyQb10KMZpNvKC0Fvnx+y/89MMnPn+58zRFm3qvnfzlC73O9DaRfQFLNGlb8bRPgh7ss5A82DjjyTJq03fTCMRHhiYhQDdoI7hrrKoSY35kb+LVnkRCtJk2ywDVWI0HC3Hf8PvPe2mF6wHi6aebJu4V1D6Rv66bNbudNBHT4H2KjgQXHa22abQtaLc+xOpDsaUF3m4rr283tlC4Xq/UCKtWnq6vnuVCS+fHe+mmItElsTEiXdlQGp0ldDYNlC5Ibdxud1pdWJc7FdzscSTc9kHgwpel7nwKfvo+cp5HhnFiPL9jzBmaCdJ+/2O1gfe1MQ7Qyxu3rXKnE65mSZO89yPaEW28LOUYWP3yw8A8D8zTwHh5R47RdAvvd17rxrqa0WQeAq2ulOXOGy/EYTRIWiJVDNREC6+rqWHU3vnxh8I0ZOZ5okvidLKh1nJf6L3QemfZOjHaPFKWbvJPMVHXzKe2cXv7wjhOiCgxmctBzJl1ufP6+sJ9W+h9ZRgSQ45MWjhdzpzOZ1Ic+Lu/+yOf/vg9X77/xK/+6q9RyXboHmsPP4RdczIY606wAFiWu31vr7AUk3SShoTuy9L6OhZXPCELQkiB0MLhn4bDpuwVlUuZPXpHNjZC6wcMGTSCVpooUL2nBOiepHkeKYaAqAtde4roDbBdbmr/OZur4kAvPNkEh+r3MGGBUhxaP2DB/fu+LwW14fJmyWrMI1ItgvbuYsZ7AJdda8P2jPWzB8bTyaj+4QFh/8PHf7UVly6vznLrIDNKpSWh6+JikEpZG6WaX1O5vVkZOwxM80fGeSKHwPpyZbl/5nbfuN0bKQ8IwtqFZdzI7UxqJ/IZ6nKlrnfK9srry43bZg3It9cfERbOJ+Hb5/eg1uf58Y9/y/3ti7GIstmGdDqhVbpmEgOBgW2zgckFMRkWL+FrEz59+sLLlzdqE+I4kKaJOM7s3ky9dQjd/LO+ygwPGMQ3ls82HpRyu24OJQQ1LN1xPVE1uC86tGGcbztsmmVoIfRj7kqCGRkKigQnZ3xNn5dH0/khv+vY+l4Busni/rNev9k8WakoneD+UvSOtgIxmxp7bbQuaLmidUViMNPJpjQyb7cra6nIEChr5bbdiDchtjsAXQKkZ4jWDK/LjTxECJkmEznbuMFWN1tnkumSSDlT1i+U9c6y3ulEcs5obNRiUkOtVdbr6hCasl0b9TQxzTPaO8PzE7RGub9xu7/RVAiSmM9nlrtJXpW6INXm38I00rbiWXpjeVvZdq+wW2A7DZTTxBNKmGeiQLm/cFvfbB0SmM8XyirQKrUstL4R0kDKGW3NLekL91ulNKOzb7dXchKmaWCanxGpqE5cP/9ErYvr/wnDfCKFQOqN9DzTJKItsi03XrD1NM4D03wi5Uxtyu125Xq7knsl0KyHF5Rc7jw9P3N5fmLIIz/88IkfP33h9uVK6wEJeT+PvzoJ93H0bsoiYAP8rp+pTgPfGXihd98L+ghcfUcP1HuqwX8nIN0hOYfRd8hbvPG69133fRjAiQ4ueq3WZ1ZP0LyR9fgQjm78HNL0hAp3b9C96cCxlx/i165a4aiJwRx4m8Srsf1ntXugxPalbz4DQhyBCa6dyFGcedAKQPePap/JoMNkIg6uVrP/xvEkx236x4euX3Tg+vDrb3h/zvRtI79/T5xn4jBwv76ZFmBbOaUBnQaIke2UUbFZlCkF5pPpfNX1ArExnyofSiDNE71XalnZ1qu5kZaVa7tzfXkxp8/1FULiPAy8e/eOHP6MPCTmU+L66ff88Ie/47pu/PT9f/Qmc+SEEueJpoXPt89s5Se0VOp9oYTEGBKD29pP0SA/lYHf/e53pBj48z//LX/5z/6ap/ffcHr3LYmG1hWt2+OiqNp8jHp/KcixoHvF+hkxHBur9+ZGg93owwnwhd97tyHuCBoNJgzJnF61Y4y0FF2HMNO3OwhGYw+uqr33AOM+f2MQmnaDLo+JepFj0++K2bYtTIEgdAtcKUYju0SM+oyShsQ4msxNYDQ9OboFMoxccLnduS+F233lfjqRh0SeB7gt3JaF0hrToOT55L2zyroumGlNg6mYBNe2ojRSGk2cdAromElRyYMwRKMZhyFRF+tXoJFxOqN+3QUlRpuHOo2DeZwFYc3CFEdyHBiHmcv7D9zXhfv9ztvLjwc9OQyRjW5Oxr3z4flsA97WgCElSDkyiTkFGK4Fc7LDZB4uXD58YNtW3l5f+PzjH7DyPKJBjQBQC0lMdHjMpqawJlPAyEnIvUC5U0NjKzcb3FZlCnYtRBraVtZVaVtlvRZq6Cy3O+uykHJiSsGo5jHyd7//W1Th10+/4TRn6I2ybUhobNudt5fOGJTl7TPbcqVTycPAMI7mwKvJBu5b8X2wK6/b2tq1cYMfpiFGxHX3rJfkxBNRm5dr2PUNDjWKGFOvd0K3YBOjSTPtx6+4jY3sFReAK5iEZEIEIY6wGVGKkH3ZB5Ds7st93wqo9kOw1wgjFkDE9+cOC4pneRKjs3P7oWi/E5f2ihTwXpjP/rV6tBd2RiGi1uPr3WSyBpOYMvg/HAEnhGz6rN0V7oNd5yDCOA6WNOj/AqvwT8QKf9GB68/+/Nd8eH8xTHseTSIoDvRyO5gzVbsZN4ZEcwhJxKi3xj5rvL/M1PpnrhsYCHlGtdGr+Q71VgAlT0/U7WZUY1UIwtYar/eVD999y+XyxLv33yBfXvnxx8+kl1e+/fDPeHr+wDDP1isbz5bR9CshZepyZXn7zG1VDMUXVCLl+hO1rvQ48+HbZ87nmb/8F/+cd09PzOcL0+VMVKWWRNsC1GKZkQjaNkJyaxdb68ayi2LVihgk8lC27q4PFw/ooDYFSYSYjYnl2WGIFuy1exCJnommkZJXhP5g/vlmCJ7Nie6VllFxd+r73rRWdmsJy9LsQIH5PDFMxuBK+ZE5o4okH3pUQaL5nYk2JAi1ghKQmBkunWXbuN/v9G8+kIeJcZoZQzWIkWDrKE+AGHtq79WpQEy2CXuxjHYPynmktc0OAsSKVhG7JnVhB2o3BUL2w6H5QRQYYiakAVC0ruxzNCKBNF3oarNl6/3P9v4+hAR1sYMFKL2BJIjJDhAxJuMUTS1EAK13f20Lfnl+ondz3P7y7TfuRSV0iYS6IC6g2sScd0uD3osJNw8jsi0OQwn6249mayHBtCjjCCjSFuvrdBe7ld1OvoCKDdAqXO+VeZ7I48Cf/82/ZArNnheB2w8s1zfW5U7Ikb9++hv+vHbq2xu//svfcn73DsQOYBOVFei+BtwjzgqM3TrHEqW+91v3gCZixU7Hfers66LxOEtQU2ixHSK04lCb93Nt8loc3ZCvyhObURQZCGGgi9LEFCWEfV8NdC0H3Nk7TmYCkAeackQpq0hF1UYFPGCoYmtTj+LJ5sG8EhOfGbQKUo4AYiMc4YD2xNelSrRWSSoOPXq7QfH5y+RM4GhnTofYA+P5HctWkOuN5289EP4TPn7Rgevy7j2XdxeEbHTjGIEEgy0akcBG9QWVUWwSPojJN5VS6bWgsSNhAIl0SUicXXxz5Xa9UrYbvRXG+Qltg0FiEtAA922jfn7hPA48v/vI+w+/Yg2/475urGXj+Wnk/Te/YjqdaaGS8sVgTC4QIttt5Jo6/WUlEcghkqYz99RM6iddiHrndJo5P5l4sFVRe7blVZA2O7gNofbD3RU+fDM8+E7ADtSpCYgGX9z2gzsWHrxntgcaO2zVtexEjKKPEw9CjA6dhMcGOxas11LqFdZ+wB+Vlnz9U4d0kvXFfI5HbPiTHf7Ux7R+axzK1aYB50FcA8TMmACfewtjYhhPjPOJKVYPzoneAxpGf5/F3quzpzoR0YpoQTF9Rw2ChoHeNhSfHcJZXgRCS36lhQJoyBhZoHuvL5gJqSQ/po1V2oEuYjYvzqgr88kqTaCTiG2xe4ewqQUFQrbDzGWSBvmKOdZNoUEkegWwQ80mchzFdfWIxL4Qukn79CDUrqzFoLdhGBnGGb2/HpV6IpLyDCFRWqOrUcgjE10Ndo4oiuko9l6tzerPLV/u1PKOaZr47rtvSFoc4or0N+Wa3HdtzFzyGdVAeRmYTtOhAAEPUoLIbqWhBzSofQe4dlasHAewrcXAPpehu5/YviJd/upgGWLrqndnw+q+r+TxHK6Esidrdh98L+EzUTsqsu8TMak5bGlbEfwP9o/DE/4VOUSK7ZceZYzsewz7uOFIGH9e6tj70OP5f9bz8h6gODvYLoFF+q+uxIGWwE66ApXEshSIJkYd4tefgyOZ+Mc+ftGBaz4/M52ebNDNYRi77p5KCUSXoTGtLJs3CDEypEzvBrf01hmHQBwm8nhGGfx7A60WhEKtMIyDERbUjOd6EDQE5mnh6fLE09Mzl/OF/nZmPL8xl4VxhHEaGaeRRsTtUYFESpm6JbTD9f7CmGfifOHDt99xPmdqWWlkbrGSgqBbobS9WRzQ7UbKo5EysgXeXXXAXqMff7SZLNa+EXtz7N+tE5B98QPSvcS3gOH+yPbz2o/XsL1lJI6uzZ9j7w1wPF8XHtChfr2/AruunzgO38WqpN2ETrF5tIOqvKfL7tXV9+DUI103tK+uCGJSVUowWSGgb4W2bYQhWh9ObP7GICQlhJldDGXfGtptWmbvD9j27EgMqJMLikN2KVk/72eHoqf0ISS69xZDcNdasaOs43Tn3pHQSDGhMVmi4QPdwxCPQ1gQm7dSxQRsxc9WC1rRZY9iiAdhU7CniimQxpnuvRZVYRzyUc11hFAjQYwCTs6ErtYDC5lhGJjGgd4HSllpxXpmKVnGHbup6qNCjqMtJ/UgIplaFKop0cQ8khXerne7dhFEK4/hKiHkgenyRBqstytppjflrS4GCbdifa4jTxLyeCb4PVPVQ4gWgh/yVuG3+tV9Dbv1jrEwu/va2XMae7W3xu5Jt7MRrYrdB3B3GoRDgexU/v2ID/51RyA8pn1dnX29b46q05PNnQ+8z6ICDg+aTJa9P9hly/BLYkotewXnobA/9vSxZ3v3ZMY+656Eqgdt7Z26lSOw99ahbV5NRlpr9j4U7uvG/Voom1CKsVof5xL/dUOF4zyRR5tFqk6CAyAb9GKQiQ+yIhBNwj+EZB5aYHM3AfJ4IuWRlAdbYAR6T1zeR9b1RK0r4zRZhebMmiiBRmYYC6fzR4bRzCrTkHj++MR4iqTQGC4nQh7RPlgQ1Y7WwNYUdOJ0/o5fy8xpvnA6PfP09JEtDmz3N768XQmaoCvbsjKcT6SQyWlGxdQlYky+mG3hi8N7Rnd9DFxKtCawNoO8eleCZCQafbzvHkQhu8CpQFBUPODtGavPsrStHEHUDoXsVUDnoW7hsJ8rqFuj18VcRX/2+/srGAO+26GA2POiSBdoRo1GlE6F5nqUrsJhmbLZNOzJpYgwSUK026FaCzE6/BhM/SREt2MIikqgY/0KRQm9HXNBBnF5kz7aOgnB7MpjzIjPyGm3cU/TZfRkxbBRJCTv1bl6/R5dNBOiM0Pj/nu+qNWrFWd39jSyayEW8WpaAjEOZuIoQjTZeg/yQnKFiTQMCNFzgE4Iz/aeMfkfqRbsRSxwtN6ReCelgZRNnLhLI26BlgNJII1nQjSh2VQ30E5ycg57Zk6gt0zrJ0KIpOFE77AuploSQiK0TE5+7xrk6T09TPS8EVPi5fMb9+uN+2ulrMo4CnFIoMmuZwZJvl60O+TryckuFA1WTTjsdQQiv4a2Bwxq11Z8CT96xeqHOH4PLQMqx/4LHnSPcs5W4VEGBRcu0N6Ob1kAM/xSuzpqYXJQveo+aGXwbPCKS7B1mPz1PPmIEmhhf00fefGxkR2NCNGG2fcKS7v659iVgg0GDmqOEHlIRFXGeXaClWlkShwMDQnJq2Trk59OI/elUlVdA/TnZ/efChz+ogPXTu2JKaK+x0X1YAQZuzMe0JT6YSBeXkdv6mof7UbuDU32Oj2Q8kBTswoJMXkFsWcrpoFmYpQuWurYb/bgCdUgmhg5EqveqbVT6mqDfjFzOj0zTWeG8URzk8FWG+W+UIvZirS6K67bnEfHDrFWC9Ri4Pxu5yH7UCKPrDDsw4b9oNmK03F3+aH9upm+oaIt2AAkO6Thi1ZNHVo8YxTfaHu0kP0Q8H7V8VWRA0axL3kVs7OwDnDk2M2WeXo/51HJGPzy9dDzHgO0u8CuD1Puh7J21/gTY1LtsjchZp8TsqCtEqlqRBJ1OnRnn/lxiZ7dJAqDWRVv/PvrEqzKCsFp0HS/Rn7/YjLlEfSoDHYjRBNK3aWAdmZmwKSyDEZt2Oe2GezH9Q0xm46cD8bijtXd98J+P+w+BYIk8iDW09VO6D531F2pPJryy07C2Wf7dkr1z4KyWFJj1yEcgWLfU8eaaNjvxoSi5JTR05PpC0ra20SGmKSM1IZIRSRQ1431dqPV/iDJeVtgn4/q3ViFBrs9kqe9T7v/vcPpO6LgBZsJBSMgdpZ43Dr2lXhFuD+HiKBfOyUfbEF1tZrHPtlRuRDCsSsANOCKNPKznz9GQ8T6aTvZ5KjH5KuPyA75ffXX1xFiT2D3ILrnRP5rNmP2uEaPX9KjRyhOLtLDTJLjvXEQRhypKBUJ5ZCI+6d8/KIDVy2V1iAPZj5nSU6jVzsQgpMD9mHALkbFPnL7YJlHzA4zqiuiI7jgiR8aiRD3hrH3e1Cjo4ocwVDBhW7tMEtppGnEJQps0/ZmHl5r4Xb/Qk6B0zgxTRfyMCESud9fKPdX1vsbt9cXVodSymx9FxEnREikl8X+rDfSdCLkCWL2zWnXyeRmbN4CcPKC0XrZDxZf+LuteEzOuNqhDI517tAG9CjHgvYSDcPvOT7vDm88HnL8/tfzJfLYPf6e93/vz2s6fyrdh3VNWQM4smDc1bl3C0z9q7mYpoVSKq2Zc7IdMMF7SVaJPA7TCF18cLrTayXgc1jdAoqKujWGcjTlZSf3C9ZPNS27mCJxt3mRgJK/Cly+ZnunameXBtK9rxIiIWYzn/QAZ58vAWqqHLVymAeIqa+nuDPpXFy5P95fq/VxAAbzuWqu1K4IPQBicHhTNWKPJFeD8sDZPShIsmvk5Ya1kh4Ehig24K76mPvZk5vuavshJaZsVWCQiLhBY/AEqouJxIoG1vXOcr8d1Y0qrpQeHL4y89HggUuCr/pjMzyCQXABYtGA848sNfOD26onY64GVbpGQuyegOqRWEgIxOhQX9+DiVealh84pX73J9sDnl0l+4rT1/2D72zgfS/oV4P6e/Jgk8lfR5+vgoPvseMVjnLwEZT6V5WQU1aOJFI8MTICVzuCHlhQou9QrNH66Y0HU7FT1pVtXTio+fz88aeGsV904Pr9v/83LO/fE2UkPM3IYDBJdQw4IITdnE2EtRaQZOKb7qvTW2dZ78YQclw6xkhTpbbGtokpQwS32naxzUiwLNVv7NvnH2m1sS0b2+2P1GaHwHQ5kZIJnbZSrJJqlVKMccUwUGi8fv6D+4ONzKeJeZxICrfhC59+98p6u/Hpd7+j/82/4On9nfPbyjjP9HJHtxuhrsZEGm2nqGDmjdvm1YKaOWXKUE1Y1+aIzXRwW+60sgAKyRhFUgqsi62SI9OzYOf1jvUkXFGeajDZrpvWd6ZdDI8kf688EIz6uy/BzqPPZhDFng0novmQYQPTqDg8CLoLk4pt5Ei03k5T0pGFKnQjtg8S0JQopfH25QsSB+oKeVCm84lpfEZioq4brVaadiqBptnMSqQT+y6mCgSDINWLuSFn+zSt08J+GgZSNPhHFWpdqZsRPGIOwEDTztI31hs2oB5MMqlTQVbmYXb3Waso12bX1OzI8pEMlFroEmlBELFkq2vgXiGs5sycYwCptLZRaiOFwRICut9GW+NBhRh9YJWJ0gqbFgLVz+WEaqT0hlQQmklQ7b3LtpKjvzcxibFqy9D0PhViSJzefYMptStaVuq98vrlBz7/8Dt+89vfMo6ZfDoRY2a6zGxl4X5zj7RtRVqn9eqjHS4G3R9D8kbWMLaqycF1RKwnawy7aJU2JqarmP5eEAN+uxtE0qrp9Kk6s9YHkbsiRO8ZNg9eR9QANU3F7s7Fe+Vthd5DxQPvOxONvt6dOAXsiK+jAjwSvJ31ugchT86PZq0rqiieLIp74zlMLT5Ssg/zW0JpyXpMwchGjhog5t4dZCeZRIL3BkPIxDTaued9+PkyM5xO7mN4NI//SR6/6MD16fvvqctKCpn6MqDJqxBn5kTBm5cGWyzFGIbWwO6+wM3SA8SzdWuomm22Uio0XxtBgqnLq+HURiVXy04RkxZaVsr6kwc4M22LMSEEWlHXFzRNu+l0YROzF//p00/kFJnHkV+lX0GtlG1lXTfu95Xb2w164fPlR+pmDrt5yEjboK8M2hifO7l3C87RLNwtq6q0UmjLSnAtuea23qo2EK2t0JuLrTr+0Etx47jwKLfULSU8I3tAdNV/1ha+QVrqiZnXuHuF4lVZ8M0r3jNT3Rlxu4SR93NaOwzsgmY/MNSb6+oBzipLlf1rZl3uRbH18Go1uDWYUnarlfW6sW0/0VGe3n/k/bfW71xbQV0E9142u3+YckbCh6wDxDTSereqoxmxojdl2yoVq+6iQO0+JiBCLaZNGHb1BolUhbU3si0+aA1ETBWkdScZPQ6gpdmFz7savzM+y1ZMH/GomuzAKcE84wJKaGavspVibspeGavDRdXPz8GHz41MYlYdJmSrINUPaqiqPsYQiD6oa5G8mL3PjhDETPF9NSTvafkpXH3OKNIYAkiInJ7eEdJAa2pO39sbby9v3O+LVUS4vb1WN9e09f41ZGWM7+aVjI9RsAvJehByySY7v5XejIAgIXiwaUcPuFcLbOokRFv77TE/1ZWm3aFKe6094WsIrfnwcwg2I7Wz9Pa96ohEbw/CDoIFpt6xXpsFhiBKD8HnHb0SwirAPaEzLlllV2RTJ+Xsz3fEE3XtSE/mW63osXk8QRQjM9n+40gQzAMuWv+1K7U2Pn9+YWvBLJHgUfV+VX0dOo3/iMcvOnD9+Ps/sr7eiSlxj0L5CucVgRiUTjgMDpdNH3jA7okEgJnFoVCd9uv3ltKh4sSP7oe9i4d5fESCWayXUk3Ov15dPbxbhuLleS+Rec5M48jpfOadZMpWuaH8/vsfyQFO08jl8kTfVrblxvV25+165367o2Xj84+fqFthvS9ETIMxSWdKgS5GFpBowsJ6MKEadV3Z3l7Q3m0/YPBDU1MMiME24PFQsYqjFrM4B9/kjdgfE/FRjOi8O7paNWa9od676xzucyg7JOGzWtGki2zverPX6fZHpOxK26xSFWfJ2b1x5hP+u7r/xm7DEQ5txhAtyejNMvKg+7IX7rc7P/74A7fbjXcf31hXYTw9saI2QLttvN4WYnLISpQc+uFvlPPkcFqjtQ3RQC2N+22lBa/MQufu+oIxRFptDMnp5yrOOAxsEjmNkV4qdS0QYFs3ylYo20pTMTCnw9KtFzJlW7Omzh2payUFJQYDpVIyc04ZJ9NibI1yWyjN3K/XZQWtdBJd3FfLjRynIVhzPhqcqE0Jx1opx8hCw34vSEB6IiWHyWplzOFQVolpYOtK7XAarWq2FmLkvi4ElHlMfPvNB6Zx4v3lQo6BstzZ7guvn/7Il8+fWZeV0+Wy1yqeTLav2HAOETtEuYvCEuPRNtjRlj34SvIT3HszFvSCKd339lg/tbpkoBGVtFuCptEO991Acl/vdvbv1Y8NNZvrQ7RkzC+C9uYwq0OFe7XcHuvX3sejBaBRHm0IZw4jgvR4sBcVm78ThyfDTiwRcfKWsFdcYNekVnNYxsUQjh6zqkmrfTX/aZWrGITs52PzwCXhxDDucOTPg9SfErTgFx64/p//93/Du+f31KqUKDRRtBckJroqtVZetoIE6wXcFmO41NZY7ldyVFJMDPkd333zDVEC6+3Gti0WEjTy05ef6L6YgnSaBstuPCuLURjHzLJVtlLZSoGknhHB4AO4AK00xmkwdtcw8/R8tn5JV67XV6YYeZom1munvvyRulwpGvjdH7+ntca7pydubaXd4dZXBl/4QeCcEuQJ4kg6vUfVhqaNhWaV4rpeefvyZgs4JSQNloVGNy7szbF2y0B7r7ReCfWY2PBg5064QejOPkLEtQI7AXPnNWUmu+YRp2NHY0Adzqh7PwEOqwQLcI61x0Ce7f0jweZBXJpHov3k3isQnEATLGMNujfAlUEyKWXGYSQ8ncnTmTiemN5Vbmvnp083/tX//P/gf/6//SvuDX5YOlRj8TWUkIwxJTFzGiLremMrK03V2YTQy4Z2ZdsKr9cbmoZDT7D3cshjtW5J1c4oNIbiQEgnnqaE1o262XPf1sqyFq5vX4yvKNZHJE2EEMhBadvNEclAaWrTQsEqjWHY/aouPJ9m6JXl7YVSqwkQd9jWuyUc0ftx6URMmSkLvW6ImD0PMRODkKPNudltF0gn90mD2opRnxGkC1H2z4lp/eUTcZz5cM5s91fqtlB6Z7nfOM8T//yv/pL/6f/6P3H55iPvP36LNIfhW+X3v/8D19sCEjl9nC2higlit8yyVmjVadl6VBPqkFur9WfQcqc7UUmNSenCtyrQmrtYt135Ye/L+QFNp0UzouyqdK0E7aYhGU2fcx+63au6XRNTXbIsHNR4cRjZK5na3KzE9l2r7TDm3K/5Ixa6ViFfkdC8D7a/ZyMPiVdGyjF3JvKAFNl5AZ2YrXIP2ExcTCMxDSgwTBdrN0hAezMWbEggka7JZxBN5eN0OfP0fDn0R/eH7Pv+T3j8ogPXv/lPf8c0/kgtSss2EBq1GjwIBFXeuh3EQZT7ts8odK7L3WATEVL8kc+fPhnM0zu3+9WdjgPX65u52IggtEMfLIk3rd1zaWumbN5bc5zGblASSGKHce2mOm5T5gOXLzNggpi1VT4+nRljsIHnWoxV2BqlVETEhj/nmWEYiHkgyYb4Es9uAR7c3gQMm6/r3Q0QV2OzhYAkN55Lg+PdckB+e6Gzq6UdSMeOtcvDpmCXnSFEU2jYdlvvr55rJ4E46eMQN90bvR5w7PHAwffAFZww0ZfVnvJgPJmMTpDw2Mjd+zTHxu37h3FI14a1T+cnhvMz+fRErZ2Pn75wfXnlb//d/4f/9+9/4Me3Oy+lm5+Sle6kaEPXSCBHMXPSVm2ubYeZmg3WVq9mdi8ys8QQo8A7WWA/lrpf5xASMU+8Djba0Go1MefS2EplXe528IiPJDi5I4nQ2mrXTMSCouVZlmAEO3xC+omXYQDt1G01oorakVfLY04uxoDEF2JIjCkYzORQJC7ZlYKx3PaKgjiYtqBf8eDrPagwREseuqp5v4UMIfEpB3pd6b2ZrqXPHq3F2IP7YWsSTo2QAs8f3tPlC60rp/OZYZxJKUPbKK3SPWhpb7AP3ju9fZ8XPIR4dzqetwtszRzL5VjvsMONtu5+TjV6IDO7c/j+8/sA/CHBwQPS3ok3xzoQAYkOXRpEaGxWQ1B2REENT2EXrH7YlnQTBTjW+j68/2AIdocdtTZDNLwdcgQ3v5m7S5dVVZac52H0dRt8iF0egIjvbboSd7JG774Gdsj20VI4CB7/BcLG/5rHLzpw/f2Pn8yuvSg9JyQKCZvSjiJkEZawwwOdpe4sGeW6rl6mW09mu93JORNi4u12pfVOU2G9Lw+oUPtxeA7hK4ahGM6/M9skh+NGBbHgFcRgnpwM3yZEZ0cZvh9S4DT4sK/aYQHW5K+tH9TimDIh+zyOYJmYuD5g+ooKrx3tlbbeKWWz/pV40Ip78PRGLVjTGX/ZrnTZq7V90z8qpGPdymPhHw3nnz0sgj3YZPa1/We1m8qFg7s/+/1DZzGIHQLAbqAp+zDzwZPEs0jbjMfGVT3u/R4qQooM08Q4nxhOZ3oXzpcL8zxRto0//vADv/v8wtJ34kOAlM04FPxAMH277oG7++FXa3NoplOrHcB7Ly/nTPTAgMjxzpva+w0SiWmhuxJE6521FvP8ao1SNg7KORxJSBNjMO6Zdler9IMYyeK4PyGwenWsau+vOwuw7/23Xa8vbNYLjY+KdT90JOy946+a7RIPY8sQfaxAbLi6JYOyLKBB1TtN4Y1dvR2Gwa5vqY3NWbmtmVahFgtuMQrnpwvLslBKJe1zd71bwPI1rs33zjFY/FiLXw/S/3yl6vGX7EHKbvbxc3sitQPe+/eNNWd7RuGh8O7/0/2MUVex+fq5v94TQewq+SZUT4j2HPCrd3m8vjqLVsMj6zz28Fdb1thSZkHyaHU89rYAGh40eYMGnXii8iC4/Gy8wZ9+x+5xQooH/Bj3GcUHZPkP3tSf9PhFB67X14UgZrkQPJsdxOZI9vnXNI0GG3Rj0VlAUhuO9CZ/rZ2X65WcE+Ngg561dZatcVsX/uFqEIECh6CmgPU/sAQrdaMqW1AUim/kcRys91U7pRWut8XIB12Z5wm+ecc8DFxOmbXZEG3QwFItCF1vV5ZtMjpbhGmajuxaBXqMtABVN6Q3arlxv30x+DK4bt2YHe7bs7/9AFbohqXb8WuGlV07oTR3hnXWn6s+0JtJtNlxfbAXpX+1uA/M3jbnnnHugOAuW4WrxisYU8rvYce8gJblTquVuC6kwVQltmoCrt0/S9oJDwLavIoIlsSkcSCmRB6MyWechU6MM01hrYVeIUlkzgNjnIGKkuhxJPvcjSm83+21YiSnwLJUtm2jtatRq4MNhYqYdmAQZciDD4tHugxEV31VhdYKgg0PG6MNctorU0WCZ/LBrNlbq4Q4Olqg5OyjC71TNNrvoGTtXgWa4HDvalBfHkkpuzanVTXmnp1RrYj4MO8OEaK0Vmh+f7qouQ7vVDc1z6YQI/N8Ma1MhBQGhsGCdk4jZb1z2wrLVij1zjhG8mCmrF2FrVW+vL3w5fMXosD95SfOpwnaRpTO+TSynEbu18710/eM7jpO75RtI0Zzfkgpe1+rE7RDSNYL0mhkBTWoThxx2UdZ9iC367Qf0MFeNXig3SWf9r6qqaVku9focV8P8tKupSYHn8PD2j5Hpl55WVuh0zjUFAKYRqIQ2AlHXuV7jquouTjsp9QecPVBb8fPGZoHdH2M/HP8v31dVBFPwiCQgvVPNZhD+VFmCoRkjuUhOhOzm+7p0+VCCwENjrT8g6Al/Gkh7BcduM7TSIqB+2qisilGpigM0+DzG50tGusmYSK2fWfEeHWGQqmBMSZjy7l/0Voqt9XYX/v4bXA9OuRBmxUxu3BN0dh6vZMGFxkFUsgH3CIxEsWeL6hVS6UaFHiaz5zPF04XG0Ku1ysi6+F+W6sxespabLh59P3QjQk0DplWO2XdWK9vpBgsA0Ws59ca5XYzvHyfvnfK7d5UxaGBdjCrGvROGgzHt2SrgVqfKoBj8x3UGYjHkvw6V7SHJZ+PgC4OMfjuZq+9HgC+PYcZE+6Dyva7vasxvb6GIqJnihg3fWdJ9hAo60LMiT5NDO8qIReIG10jW+2mlDE/8/T0AU0nwuk9osrW4VqglRsSAmNOvD/9FnIAz49u941t3ViuLw+xViBPJ9OeFFj7Zu61vSN5ZMqZKEJXZVnesMHmgTHY7FjTxhAHwiDkLsz9ZKtYlW1biMOJnDLzkJE949ZOIZmDMQY/l80CfuumcGHF7j5UG42IoZZRqwrrekWSHf5P04QGy7xb3dA0kGNkSJYE1brRW0HSiWnIJLPjppfV9lzMnKbBnZkz23olbBupVjLPPD0PjGMiClyvN3JO5BhoValVTSNxuaN1o613fvr+B26vb2xroerKPA60YTj2QErZSNphZzIKEtR9pSqIC09rB20Gm6kd9KZjaWuyNZ9Rg+N+7oe17tR4+6ZXU/+gllCXKcMObAnh6HP1vtce4vRzJ0UgHFJOey+q9YMAhu8QodPLfiJ1oiQfC/H3pdg72aF9+oFUqILkfFDnTXQgfrVT9zlBpZXNelfRn7s1tAlt2x6uDgdBSkECzc+M3hqfX99QTUB2oprv369Qwz+lz/WLDlzf/uobhhi4LSs9ZIIExgBpHnxor7N4NhMB18m2GxgjSdRlfQaGaAoADcOB01aQoRCSa5MRCNqRuM97FJo3fSMKMTp81I304IdpTiOq1TKrIH7jnIFFR7YCsjFME6fzmaeni21Ap7kG1NxlpTmTp1lATA7rdMeSRegOAdVSEEyVYB9e7F0ppRhpIXJke7tHVO/9YEW1hrOpLGuVXdrGtc5CN9BFHD4FsVGuvS/gmw84oBBD8nwzeYV0zBj/LNjJVyfA43shJh/0jN7/MGLM8XxqBo7s8EYItB3CAFpvSIPmMz+tN4ITLzQEZBiZP37kw7oyrJV4+RaRyNqEsQhlfSVGYRgS3717h2afleuN5b6ybSvr7c1nXCxrHU8XhpQYQuC13FmXO2Ur9CBMOR1aguty9TWZGcV6paVWBCNPNAXzpLHKpmyL6WqmzClnmquEo0oNLpgrWO+0LM6ATORo1WjHWKDqEj32jjOdQNkegesyzTRnm/a6EXImJ3OADsPoyU0l5pkxmWJH7R3q5lBYYMzZDsCQmLY7U92ovTJFuDwNDEOglY3GD0RMKLlpp3aDyCuK1kbdGsvdYMLeOimkIzB0n0E6oDzv68gBZe8Huq/RHW34au1wLFl5HOTCkZw+1u3XvZkdXpOf5Wk7VL8v3x023Ffzz557r9CO//9qP/wXzvUD/HEt1p9942um3r7ffoYWHe+YXQXxkVw6xP7Vvw1yluMzPa5fPwLu11Dhfl2Bgxq/txv+qR+/6MD1f/6//I8MUbgvN97qwNYEaqVmHPft1IqXxjt9E1dlGAgYq/Dp3XuQSuuF+3bn9csLci/IWnmWd3Qd6D0ZGygNaBBa30zctxZ6XRHH4UMKtB7YNmsUD6cnO0xR01SsBQjEPCHYrNZyuzM9nfj47Uf+7Ne/ZoiBHKEEdUhjV5tohNAYBjifBsugdwHNFIw6opXGTodWyNEm2bWzOKsqqhJVIU/OArJBSzvUu83UNDsMAxhJ4VDFCOyotXgGqGoEk+6b5WA/hQeR4+via5eK2vNaYw+m4xCw88PnXSQwTOaiC2ZkCVaoZT90eutHJiu6GyzumbNBOVVtLCIMkUalSzcyT4zE04nhw0d+87//lwy/+chaITz9BtLMJjM3vRD6xhAbY248X050Mdv2st1py5VWC603kkwGQWnlPA+M40DOmddNuV2vLPcrb68/IDSDB8MMnozEICQqtRlDVXtnq4Vaq1W/6YKEwUY5HCJOAeouCKzd/OaCPVdOJyNwxMg4jkyTJWdbaby9vNg1C8HubTwhaWaIHBArAjWOIEKkM4RG8Pm1YX7HECM5CmMKx/6qFQKd1hvLWljXja0HiiYSnRwrOZq785Csyvjy+RP30mjbiuQTG42lbbAZMYAW6BroTehdkJC5fPjI+d1HQxbKCpKdtp9dmsoDFvjQ+uOM3dMZiTb315selREiTj/3A1erEYxUbNFFo7vjfV85zBLxvWoMP98C9vrBzpwQ04FD2mHu9HWfk5S0oxE/l5Pag5IFOVf734ORk55CDEaP9w+5B+GjP11t7s4qbpchy+kYRbF0Jh7Yh6T4lYdYJI8ZlUAcMgQjhJjylVkb7ZYxwfvwT88nSk8M54md1OJv6Yip/9VChX/xN/8Nz+8v3H56ZQsTtQfKsqCz0LGG9u6fYw7a2yFzEtNEiomUEqfzCZHOtl758vJHfkfn8iRIGBhDBJlRmewm5wEVoZSV2jZa3WjrQi0Gzw3jwO1eWO6mSnD58K1RolEkucW805Ch0MpGWTeGbMrbKDStBxMN7IDKITAPI8M4kseBmBNDFJuO7rZwcgrknBnmmZQE7WbPnntDNdH7dAwhh+gDjHBg4iHalgiqSI5WzXmw32dNJHnfKAghNB8e5pjJsjfMg7TlE/r7ahWwgIQ9504SNOhKjkpNdlgrgJCsAvR+2A51mYKGwRSiu9q7Z8W9+VPZ9+NgdiW9C3XbSKVYHyybZNc0Tvw3f/PX/Pf/3f8B0sw6nHm9NwqZmk7MoqgWWttsps6p+20rbOv1kFH65vkdY7YqS+ms3tM55+yzLo2362deXj7TauU0njnPF+9/CRFjxbXeqFtla42lVH769InT+T3TdOI8zzTtlLJyf3s1WrgfcE1M5DgIPJ2euZzOjMNAHjNDsrm9+7rx9uXFZM1i4na7M45n5vnM8+lEoVNa535bCNNIjJExBLpu7qfVOJ8unKaBecjEaPNmrTVoekCga+usi/XGqkRGAZENoRC0UurGut65rXfmy4VeB6bnZ184tmfYWY0xME4D1eHvp3fPnC5PhCBsd+8rHhYfR8h4EJX2A/zrqupYpD7PJTgRaE+gbD2H4ASMIASJEF3R//gJHlWHP3bR5mPWkL2O2ge9PWHzf9uzeZdKvG8mP8v3jucInhD2Vr8uwb763P/5b6nKIxiL7ZHenKgBTqzA5zCDJ4SNXlx+KyVjI0pwIpd93h79dSURe/Xh5dXGHEqgDNkHq/9pq65fdOCymapEnE7EdEFJaFwIs8k05VaI4QHdNLdRV1Vyng0Lj5E8TqhudBpDNthQYyIPF6ZxRMMTPczQnQABpLLQtNLqRrlfKWsiRSGnwFpXBk3EpoQ8OeMKJHaiK1ZI7dbkD5E5m1J0dKaFRMts0jAQSyElU22QaAOtKQrjEMnBIEq6z09FcdKBPrJAA8AxAV2jFT+02kBcnkac4aEK0pRAt1kUZ8ZZw79jliFuHrcHiH3AWORYoEdGyC6uum9cfWx320PWDN61/HBYwgU8d6UNHHIw51gT0d0taSyL9uC4kz2Qg3puBJGH99GDIm1YfcqBPCameeJyuRCGM/d4okohaqDGzCygnvW3Wj1wQe2NXqMJuqoyTZkpD0R/L6rWa1KxajypME8zy/1KwZyKhyGSh0xOyVQjxKqXcl9ZSiGXQt3OTOcTwzgzjpNVkdWCkZlcWrZdUTe27AzTwDBmhnEwW5AIoTeaKkOOqERCHkjRDE6HYba5ryCkbkzWMAxG5cfnAbsjCeNAziYLlKPDzs0qleBnoKjR/BuBLpFBFHYfq27QdoqJIWVSiHSx50oYtTrRva9sCU4eB+R+NzaqIydfzwepGswdnIwARkbZyTsPWPDBqDuQLtSToH5ImtlzcjCRd0m4r6IVqu0BNVo48NjovNF9+HmHLHcoGR7owlfl4K5tuL/O/t72HIy9opNHBfN18DxeSr5+q1/tvP/sGnz1+vtz7HsGH78IbqAZggfxx7XYNSKPpNT3dwyKRB+2ln84RvC4fv/Yxy86cH3+cqURyENmlZEaRlq2Kf4YIY2dISc/GO2Aq3VDtTKMp+NQrIy0WikqqCaSW1VMaeZ0eUdN72nhDNpZm920kDIpQKsrTQJJJgKVLpXWuon3psBWI8M4IMnliMTmNETbIYlzShPL8oWYFE1KmgbaeiL3zqB38jTAttFDJ9IZI5ynCFpNTRuj7VtCpGhbIQwGmbVCb5v/KcQ0HOslRCOcKP2gJtr5WxGtxBDJOR9ZGtKgVmIWkiTvifnGJWK+PHwFPewwZ3xABUcFZ7Fpvzc0voJHvGkdDM5T9NCIa+KXsCu17CoH+yyUBYIQA9Ld6FFwiDgeCiox7j1Qg77yGBlns3kwRlf1A8HINlsrBBqRRtRGCpadW++pmIZdLdRS6L1Su1BqZQwCWhDprNvmw8j7/bc10Hql1DtBGinMpCERQzJIrtxMdksLz6eMjgmNwloXzuPINGam8UKXZAG8NZpE1gVKWek0trqgdJIKxQNibRvbeiWGRBLlcppNVSLAdXkjpoEQI9OcnDSg1LoSQySKjRR0YK2b+bqljNfuJhfloqwSEpKMDScEIpVWzeLGyEBCUEvcUrc+ZKYx0BilMUg9+tJdlGmaeOEzvW70WowYEuKh4tB9Te3CuIqSXLVmr672n1VXdel9n/eytakupbVr69l+8P5yLbvvKvuYRfc+jmkGutQTYMMA8qCsi6KuXXmMh/CA9vbRHPuqQ5t8ZQdyVFaP8RH9yrR13wM74f4wQd3JHntYUSdaKa6ib0/b1RO/vn9+Oex1xKuwA/rfFZ2lsw8wH4FYjHk45ECPQh6C29vsn+MRrP6rlXyapplpOqMEeog0b7KfTskivlZCjtZkBKQ1WhBaj5B8uj8k5nxivVY2vfO2bJye3nMaLzw/fSDOT9x05q4jUWEKNmx4X0AS9J4Zc6APd1fTKLQeLXFDKHFw2EzpyRrhViWsaIkmLD5EJjlTa+f17cp3H9/TFVcyj5ymieL9nvttY9saKtk2rxsTDtMTiJ0Z5b4RVOi9UDaXDFoK27KRp4yXK6ShuoWKoiLU2sx0rzRK3Vz70TaBVV0CVemp0kUPBpGhMEKnfhV8OBI5ceXsfYNqe2xIM3uE4AOturPBUAtsvulsQ0T3GrNAGrqJ9O7Vls3K9GNjmSqCvW7T1fQbU4K2EdpI6lBL8cPKMvOtFIKuVBaeTxMzkaUFyv1K1E4W5TJltmYGkmFISA1UDZbABDvAtrKSkm3ayzQROtRtgwZP72b+7LtnI90Eq5Zx1f9I8x7Xxlabiea2wnmaqOOAhoy0ZslZwCSmYkKc4ZinTOJMQOkxPJ47DYzRrslSIjy9M3jVh4pbFDRAEku49tGFHoJlzjGbvqIfuIuackoOYglcf2g4ZCchdW2HCkQVddZqoXeDabUXoJAEeltM5LmOFtR8PMDWdDMniNIIGgg9sF6vlPmEprwvMpcRM0q8+uILDql1P8BNiBSgm1uPQhczwjxQgtYtyOwPP9OjD7HtKAGYQsa+/veodmhy+tfDzlgWQZu67q2XSk502HuW3lXeCYv2vX12ak/Aqw2P7wzbXVJKXe5KnfGnOwvyqwAGg5Mm9gRtb7oZKc1EwE0bNCXrG6pCr9bXqmkzmbcYrNXQFoKfAc2Zqdu68bd//zskXlCdjmv41eX8qtr7xz1+0YErDYmYhLIVHzz0QUjf1AYm2yEn2DiHhEDUhKa0Tw1Zga/qYp4QJZPHkek0ITGYMKg2s1l3mIqmNFGDiug08cOr7VoW1qdYq+PHAq0GkgnU0Qnct0rvQs6ReZpJw0yII2DyKU0TKsI4nQlSfKEFVBISBkLs5nYbxYlTthKaVjr5YDmakO6O4ZuqvUq36kIwKjCwV0kdU1w4Jlk7R/9JUkCjKZujmL0HALaRbFMaE/EAQg4ID8sQ/XxwyUeDHEM4AuSOdOzPp3sAEkW6MSqdEMfDkday3uBJgs2GPyCQICYHFfJgti8hQxwMmx8m8ugza7tnVa8ErSRVUhdKLeDXLYipaoSuiFQ6lRAqijLFTorCMAa7X2pDwb2K9SR6p7bImAazH8nZDtZm/U+lod0OdUtUG/RCxGjvGsWb6w9WZtgNOdVgsj1gEsOhLbcLT9vNNBjYYKwGzX21QiAFJUg99gW78GtvliDKo3K2RSOEZLRzemf1Ocmdgl1rp0uEkOhaEW32foMp4AdRalBj7PZO7Ebu2YPITtA5IEFfE1WV2joSXfXCBqFsze2zRgcmx6NK8MUlIUDsB8y9N5t2i3r2v7Xba4sppXvM8/VuLyC787HNpzgUr8frHr3bEParyvFm/DVFcJseZ+AG8Xv7UMSwPbE3kNWDlD/VV/1he+pH4DyqO8vujlaC7gvIk0oJclyyw6lnbyMcg9UOB2r3976/HbVkRMyzLfnrhsPNlX/w2DHNf9zjFx64IiEaw6+3DSUScjRMPOwLqh2LWKJtssNsEcOuSzF6tMmi2IYPKZOnAW1KptHUpJtUoi3fXFlrtypDzelz61CaOd+aovnG27rZASRCi4HsMkUQuK2F1oxi/XQ+kYaZmGcg0DXSNaNE8nAmsNK3xRU0BmOXRYjJM95aDqJFV2fNOR2404/NEEKgx4cqPF97JFiO/VXgMpmfnXpreHeEZBmXOM2+OzQYg3svBbVN6hu7o+ZevGeHVpSYgKhgVccOVe6HAZ3d6FFV3f8JRDox2zBzEOgavIK0ntvXGm3HngbD56MFKfWgZcE/kYaZYVJaWZBg1uO9bp58B1oV6nKjY4FL2P2nsODGRqQQojCHzpAiGiK35W4WIbVRajzU7O+LEumgphgRsAy41I0geszDRB+SZj/wsYAc94PxYM4104nsELvBgog18TX4zE4tZtHhiirg6gxa7d70hPRomq0HfNWMTeu9z77LfQk0tbEK1YAMe+Wh0Kolc61RtmrutxKRaIP90QN/lG66eKGziRExIkpUv4/O3DvUU8LXKxSaCNUHjCXoQQgy08V9Bezr3vb/oRzv60HAK3KXsAp78EoODvg6CramjCwCyENBZ7foORIrXD7JMThDAzxpFLE5hT2o8JBlkj02KN5SiL5fnID0VZDbL4ZVpnJkeeIkkofZqvWoNexpiH1OzxYR3ff+nlTamA5BjwF9PCnYK8vgwXfPDx/GEd7vjjamM+aMirhLwc/P7T1W/imPX3TgCnkgjCP19UathaZme7EVtyfRRsx7ZhQ983frgbpaydyEdVuhrQyx83Qe2TZbmGZV0Sm1svUAaaRiNGUpndpNr662zlLuCMKUMyEI123hflv48nZjiMk8vnKkpdFVKGwotl5XtpcfmeOfUy9nRGAr1bNzsyOgFKR1xhg5zQPjYCyyXlazwIrWdzCPMH34B7kY7s4I7K27LYWJ7JrFiTxK9n01YpR4EUjVVp7En2duIsEMCNtm82NlIwxCzG5rf8hj+wL/WfrrS7c/CBdWcRlmLjzeh+z6hV4xfJ2B2x6Tg9It0i3rOxTC9/fgdPuY7HSrBenWe0o5klNkSImQT1xvK2/3G7/7fOP1tnBdKl+ulaSVYPw4QmtMzxem08yUMkk7UZQh7ZCqBfn7srCuC8u28bJFW4MqtC8v/FEbUZR5CAzDZIlNV55OE/OQOE8DZoc2sK6FrRTaupidfUzmQ0Ujaue2qgkaq7jNhRIFhkFs3klMVmyIwpATsw/o7w7SMWXW1ij1TgmBra60ZsHyvnV6AyHQfXbKcprOmCNjztaPk3AQGZZlY9sK12VBS2d1a5gsgXEIjIMwhM55CCQMysopI3kgZEsMd6X3tqlXhhCCmvBzq5a4uJkquJbi3htydQkLGjspYY9Z+zrGeq+yz8DxKPV5LJ+9YlFHCLoHhZ/p9emeGztMfiB7+oAP/ajW47mVYzt5Fda/8uNyUjqqwchc+6G3By/sWvfePCl85Bs7SvmowGw0RLspBu0yVDZGYkEtHJWiIERqbZh7e3lU1/6GlQfMp62jBKJ0zFrPSGDzPLIsap6AXyn2Pz7tn/b4RQeuGMzNuNWNPJzI2cR141dwRkBMO65V+gZlW6l1Iwa4byvaYcrPDKkxTzC+O3O7b8zTSEiZbbuDKCkY9NeJRgxoC3vpULSCT+vnFDkhhJpoayC0jRiVFCBGQXSBFpAWoW2WTQfovZBz4DRngq6MWQhTot83UlIIypQC8ykzjpGUIE3J2H90tN7ZEy3jBBgZIErg/vrGVhqq8RBCVZ+Od9nOI3vqwXoKOZga/m510qst7zyaCkcXCONAKVfWZaOsjXQwpnyjRTWpnf5Il3ciiHbzx4rRNntQV6Nhbz43rM8hpGEkZaOzExRpdijZfLRDhftAtxi8Ao99e+jFIaZcEmwoNoTdm83uWwyJl3pjWzbqfUOaMqbMh3dnaO0IXLUszNPMNExErNcW2AWVlZwCEjJjytbT0MAcR0oxODqMA9qKzWGNGUnJnASC8vRkKhRjiqxL4vXlTqk3H+3YkCFQQycn7Er3fhzeu4dc641CJ6TJFGVS4jIFpmxambvKxbqYrcnSKxtCJdCTCzW7ksSgQo3Wbw2S2Idwx3FgHDPTODBOM8krmJSMzm+Q5UDZKrk1crMqLIWOhI6KMX4j5keGJCRkQhwIeURSRmO09Sk2gzcMZ3KaDFrE7GHE10R3aS2jERh8f5COvkqgjgCl5jnVmw8w0w1picHXLJZYuSqHqq3XXtyzysdV/KlodZ9rdA+2ZLNcWoshEIIF26/0NS1IeEDz3pjdVT1sUXQXp8YD4zH8i5OvHILU/pB8+qrE2SvkoI8k0V4DDmaxWmJin0f89eWYM7a5OHOG380mPXo7k9nh4phQCU6SGlnfvhDWq9+Lr4giB6Pxv1Ko0FhOJq+fAq4ybeVukK9K696pvVGasiwL23ZniIHX+x1VyJeJMOwqPqbAkcfBtOPkbjcCZesPMdOq1Q/IB+QWYiTmxCkKbcuUNZPoxKDE2F0AuuKKvd4DsUFUpZNSYBozgYWcBHIgrGpSa10sg47W0xLBHEo9FWx9RZuTz3M6bFe0K8v1Rm1KTJNtdDWYQd0kUo7mlBMkustC4XARgiVNnTiYmKwAfRjY1sZ631iXwjxOjlx4E1+9UtOv8k33FDKljgKav4KmHpu49UZUh1IGG2pEbGC1l8WN/aA3zxcdbkpxbxzjW9BBo65uI2ERWnYxSyN6EYIQQzz8hHrtJISUB+bpiV4tcAmNsllPchwy6jbxkU5yokOMwfX5Mq1Zj2tgMnkt7cRkShJBlDCM7NbvY1TmeWZy6SNVIUSDi0tdCK0Tmn2G0ckISidn73/RD5q5qb0YmSXlzGmMzKPRzXO0PkRvyrKYdU3HWIXIDmcrvQUbzWhQakc1eRLQiNn6wMM0MeSRnILLLVWWZUUIjENmjRupK0mhbBuihaDF+oQhWuLlKugqBtGHmE2hxvUFraLqpDyS4kAMBdQchRugUYjSvZdk62iniuwODgc+5dWO9n7YnPTWvfKKBxP9Z4ELZy3673TttoXjDs0ZeWGvrB69Iuv70AyytT7vV9T2/W3tdHL1fuIOI4o9h0cwO/TU2Jgm6N3s+hwVo+6tqL0EBORQVXEZ++PnD/zjqwBqB5x+FeTFEY5wfP1QD3FI2tpuX523HsLvy4KmyG5Y+0/5+EUHrmmemU4zyYeCETPOi8noxFEzMe9yQcbCy31w0dLOpCdAjLIriV4L63LldP5AHk/kITNPMyVAFYjFe1it0ftA681EB/BJfZ/BChGent+R88T33/9k9hsxItl6H71D7ViGUo1FFiUSYyYOIxHY7itb3emmJg5ae+fl5UYczzx/MHuKKO7To4FaK62bUKxEpdXC9fML95fF5pieI5IyfevGiPMZLlMZAdVGKY1eofSGxo5mpanZEvUuaNiIUdii0Gvl9csb9+uNbS2Mw8jQB9Joh7Z4oCIIyWEceqfWzVyDW4ehHxmzDTZasFmvd2KEmiJUJZ/OpjyAmdm12qh131sRPQbNzaGVFFz93Ga9tvuN6mK0zJFQCmHZaNzYloVaKmkM5JwYhkwIC9OQIA/2eylifbfOPNqYQErRek89EVHmlEkul5THAXYfJDwlCMGl1YWUEoiy1sppmk1Tj+JUeGNzTtPI5enMthVSALmcCMNMTgPzGJ0529Ew0NWSi+tSwHtkRTrzNDIOA0glp4EUbZ+M02AO36URJdNSQmNmHmdisOqF3o1w1M2QeS0GQUtvvC5vdp3EauO8w7dRiTl5n8bGS7zgsNkxF48eSAiFVg2iqnVDe2WckmtpJmIY/aD2ACSRGAeiFOpWKalYIO2RINl0FVEn9PiQrVqFbvma6TIakaCBq5NYkAgOCSq6bnvcgl6tGjtk0Wz8wjKjHZp8yCftwaCtG49ICXvNxGHe6OzGPdDWYkovIRBdecMSOUMe/OlBd2PV9r/MKkRs32FBxpTzDZJNKaK10oPpD+6swkeCZ4Satm2kKT8YjR58Win238GqrLoWtDVCV1QjEkdq6Xz/0xf+8LtPnJ8Ky7IyTzMa9Xi/wg7v/uMev+jAdUnCqJ2pVu51o8XANAhJA6GD9EYrhgXTGmMQUjJ17hYCgcUOwVIpVKSsbLc3zh60xpAJqXHzAzDT6YiJU9Y7Qa0ZHvvKKQQSlbFuTFOmS0NT4TRHb0QrPUbzDcKIHi/bFdpKiEqWjRhsg/Wy0tpGrRtvby/EZs380Ar32hjHmfuXL4wjCAW0UNe7OZf6IGoYJ+pWeb3e+OntRkiZyzSxlTtbLWxlM90/EUIDZBf8LeaB5P2AECq1iYtKC10HpCl0uNWF23bnXlfWtnFpGzRBaycOyU0fvZG8z7cczVrbsL1XNxwUSAO746oMdyTZHAnJBl+7D/kaK5KH3Ql7g7mj3msx0ohDMPs8mTUSrMfVusGT62biDD06QSETNTGFSCSB2kBsxw6w6JTkgUbCyA1BTC1iiMIQAmMITDEySqRpoBYBGrJVYrOKy0lwhBwMXkSJHaR3RANJAjEF3s0T4fmJV1HaPCE5MSRLMvbmimhDuhKack4BYkKI9CichmhQc20ErQSNRGxQPuRImAZiFEoItCBMuboDrs8f9WCjHb0zItZGEjgPmVMWxqjE3siSzbKlwUgnqgvG+lqq3fQvRdvjnomYwzKQvOqSstPJO0JDZACq92hXQqjEZAiKiUMb7ByiKeczeE+24wPQ+OFrkLI4yzYgxDEhzSDWFAMx2awfeTjsXppLxkEn9m6O4V7NxH3GSYIlYbpXVUAzb63WHhJcMUZDQ45elCE14pWLBrs2RobY56bk0bdS68mLCtLscyP7dYKYIzvNvB/BzuSbdobtjtYcDga6l6I7/OhjFmMy489oPbuYbB52f1pj7YfDscA+gAWmGCKXnEhiZ2/dVW/2rQ/eO3xAmv9rH7/owBXEPsAQhG1nw0k3DT9nXR1DrkCKkU6kBaVKpMWCdIPadlgMJ0UIPmgaLDiZPYKZG/cAUdwczxvzOQkRJVNJEqhU6xoEJYnh3l1Mzy8GI0hEMTgjB2vsB3Es3bXoRKC1yiCRQYQEZuu+bdRtYxpHO5D5GgYQn91wGZuulGbsLZvtcCsKeUAUdh4Z5rGb6mn3CvJwSHVsY5dp8sVuJnZqsIlY7mYrdMf190XteLvuPS39GX6/9wB2K3LzF9ur531DNrehcFsVZ38hB2rx2Ije08Kf+2h1tH445eLZdsAkrGKIpJDIITHmZIdKsB5K1YdYM2JJjFEVus03hWAVUG9m7QAkxKqNbmsruGhxRI81GYCgzUkzgDPlAkISYRoSdcxsS6JGgQg54ornOzNwh38Mbt6VRkji8LcxTC00dCKBLAax9SEerLYmQhaDxvYxin1/BNWDmq2oQeDaCb0i3TNoIPjnOxitYn236PfP7rUJASexHnUKwpgtPUgipp7h5p2JbDlUb26nIsQkNoi+09/BF4BXtXsio3rIhhlkJj+DC81w1ethDxQh2l0Wv29dqwckex1xaTMRTO8vOlko7NCdw9EBh229byU28C8urLzvTVv4dm+O/q4HOWfBILtUU7f1LdE6ZW1/LX/+R72nexw51j//pSCxB8X9vPTQsmslHvsZPws8tqlD0Q8uPp5AubSd2Iwf3ebBWqtH3fmzx5+AHv6iA1etHcbEdDpRU6RF2+w5O0ZfdzpmBgJpjNQaqHVja52aEkJgCMKUFJXqxAETaY3JzPSSdgaAlI1SHwOiE+ttRYMSU+Y0z4ReoSyEVmml2OBv2RhyNHkpBE2DaeMNiXkckKScBjjNM1HMNiDQTPFjnoh54JIyY4AYMtfrevRqck6kIHZwtArSD9sW0U4KwvlkUFGIwQkXFsA127qJ/ick3zq9scVA7I0oQoyJMZr3VWn7ARZIKTCOI6f7igRhLI1pTIxDZhh2tQ05tOOiV1LW0xMkWL8opcEMMGN8uDFLZDqdHHYNRBJ1LQjmqxU8e27tiNWPKu4I4B4IRFCNPlDqEFFdUf8T5zODKKrCPA2cpkyvA7WdWKtJNUn0ICTWC9MKOXaymLrANJssUimFst5IoTOOCQPRjK4euhKxcYScIrUW1L/ei6IpEAezug+0I1CYvJf1bINW6Gp+b9GdnxoG44gxCiV5/7A3q96cEZgS5t0VlCxqkGEKaA5GWcdGEyKB7GrzDR8Wx8cUovvZ9UbfbtTYqcESR9FqGXnbjOrvVUNvgUY1z7xgVWRMQhJllk5ogdAjH59P9JI4T5nTlDlNE+N8JpPpxfb2VhPDYJ52KoEhDx44xERhQyQ4ZBz2eaW9aaXArv5gE4yeWz1EoW1Gcif2uIt6MEfq/y95/xJy27bl9YK/1h9jjDnn963H3uecfeIcIzTuzbjorSgoBKIFxQANKz5uJcCCKCgICmJBEBRRBEEtaFhQsKKCVhWsBIgWrIhogEmSSub13sh7DT2vvfda63vMOcfoj5aF1vqY3z6hmZ4TkZAbJ6y91/oe8zFG77219m//9v+ru9QFn/SW6EmNH/a7tqAKdPMHNAJS33tE5orsiELHpaj89HYhX8GCVshDOBmfpVSDX8H9BkeV54ehyBeS1TYUbZxK30cl1roNlGtHa9/hSrPGGUErmKpGayZy0G+zoFGEXoslMyRHYiYi0WbqtDhTsbNdV0oXtu2mEbvnGfrL4xZ+qQPX+fP3TD1xPHzEcneAOfmyxaoHWVAxrFm1EgqwFbRs5HrlNQFSIMeZ+9MBOb5iy/c8Pj3Rn1e29gR1I4sNSiqmyxe7MhO4iFBFWKISLo8WBESZVejrxvV85k2OHKdEjIFrM4iq1srDp2cu79+TQmch8yOvT3x0PHBIE1lPhFBIItzHyHaxQCvaIS8UDTw8PPP6q9+EHAlU2vPFgoFA6RHdTIsuHj/i40+K4dt5oumMeiWImmWKGURGJAeiJGYVjqfXptuYJ9brE7lZ5tR6s5IxTSz3r/jqdMflsvLu/QM9zzAt5OPRxXe7qSTUTg8RXPoJX7QNJVWj24ZWaeL4vAJpDHF2em1cLxsQONzdO1phDeC6Ne8dGSEjDj21NjaGbdyQLAjHPNF8yLj3itQL2/VMbY2Uvs716YH1fEU0IKWaHuVWKetq80deVcmckXnidHdizokYAnPMTMkOvPPDA5SNmYZkMd+ryRQUAkoVq/ViNshnErjLExklx8w8HawXlUEW5X6ZKCHSRdBWmcJk/bAc0T7tLswxqB9gNuMIdu7NebIqP2SmvDhUVAkEtnW1CswVS3LKaHSoLCZjbgIBqyhUA1s4EWMkBeHt6Wj9rhiZwiumvPjMVOcwF7baWbfGel0tUHh2nlxR4jAn3rz+KnW7kpaZOB2RNO3V3YAnn89Xztcr67qS5gNbtepRojD1Rq9qvVntdK2oNlII9O4+aIOb4+uitU4tpsoRog225xRJ07wTiNbrxashQ0LqWq0SicHgM19ivTZXhDHYMbjy/Xq+EHNmmmez0nEhbe2dthXXW8TA6K2YIeeUyFN2tqXpP/ZazQcLtdcVY/+2YElrrZWdQujJmn1YFyFwyL6FG9lCQjTylP+cSNj3X54XJGYb2PefD4LR6ePkcT4ScjCJsDwR5yOKEKQyHxbefOWeOC8sy0x0k9exI394kNAeP3Dg+hf/4l/wV//qX+Xnf/7n+da3vsU/+kf/iN/7e3/v/n1V5c//+T/P3/k7f4f379/zW37Lb+Fv/a2/xU/8xE/sP/P555/zJ/7En+Cf/JN/QgiB/+V/+V/4G3/jb3B3d/cDvRfD4AFs1qG7dH+QFxPgoq6L1g1jjpFIRpMz67qxboLDY71Wrs/P9FxIakzD1jfWXukdGtG6NeoHmDZCb1BWW94ikJJR0VHulonF4RitJtXTIyyysL25J0fl1SkhvbOezzxJZKIQS6evK3XdKFfPtKNR0JXIeq1cnlZKBOkb16czA48rPZGyYZJVAqV026S9MG8VkebsMJ+P6ca8Kq1TSmfbGiGulNK5BjMj7N0a810aORvBpZTGuhYul43Hpwu1W8UnXpExVBoc+7ZsE9Sp0a0Uqv87BDFVhmAzbtrE+lq90kthvWw2p+R2K2MQs9UOMVrGjbEKg2ejfcAcquQpEXMi9g55RkqBdUW6UNYrrTWePnzK08NnnM8rRbOxCxFqiGyXs1XvKRBFqcWgr94q/TCRkzXqZZmIRqlEW/HBYWNQtlbpRQy2bd316yK9NmoXVjZ63dguF67TGcEkqeq28vjhPSW4coVAcc82IzbkHX6ak+7EhJAs6xeUaxbXn0vEOBuTrzd6K2zrdSeQC6YwMnorW837HpnToM5Y9l8wyHtKsE2GJGxVbzYsvbGVQqnKWpW2bb4vbe8UMVbtdt24XM60siKh8f79O+aLeX/FZlJZZV1Zn97z8OGBUgoHjYQ4GfFHHKETDNrWlymL3npE6Ato8QVUDvu1NMTVZwvbbWD5C/2Z/QDaDz1Lxsb/wVmvBr2L4/7WYh29JPt+8EADQ6l90NaxwekXz23wPd7betGrEjtfbChebu/TC82dAu/7y3/Rv+Yzl06xV9/DiF+TYTf08popjk16JeizsaOK6q1zPl9otROncOuBff+F+2UwDX/gwPX8/Myv//W/nj/8h/8wv//3//5f8v2/8lf+Cj/7sz/L3/t7f48f//Ef58/9uT/H7/ydv5N/9+/+HctiulV/4A/8Ab71rW/xT//pP6WUwh/6Q3+IP/pH/yj/8B/+wx/ovRitONLKytPzhUInKRwOCylFk1fClAJarSxzZsoTMS7kJJzPZ7brSr0WthXK9crD55/x/rPPOB4OJJR8t3C5PvN4eaYVgwUlJppnJq11Wtlg26i9oaKk6Wh9kBT56NVhn/eQ5vM+MbHMM195+4opdk6Lcj2fKWvlQ/yMKXZmjUjpPD48UbdOjIHjcWKZFkQS67Xz7rvfQ+tK2y60+t6qJ7GMaDk1Qk4UEp99+kitlbxk8mTNeBGF1oih7dj+eaus15Xnhyc+vHvyZrBBBCFYf2FaJk53tuAeH+CzTz/w4eGZ737+ntevDxwPC5fnM4dl8oZ3YJkSQdKurtC2YkFrKyTV3Z9LohJnmz3qtVK31VyD14113Wi1W4CurokYzfI95GQNaFVSiMRg8FcbBAHtzMtMzImQZ6a7V8QOoXZUzojaQfX+3ee8++w9l0th04kpTXavc2Z7/oBOmSAzKQTqVrheG0+Pj7x9dTRqPIG3r48s80TOkwvB2gDmei1sq7G7puym6UEQG5KC3nimunGfdb9SCBa4SuHp4ZE1KBoDy7T4IKlSW+N6Fe/Twmkx5qUKyBQRx1PV5wUVoWskh2SHZyuUsrK2QnFZszzNxGg2Fusa0G69ulfH6JCYkO9maB3pysP77zEtMxIi50vZiQqhN9a6UbpQVMjcVCJCa/R2oZWV88MT7x8+R3vjsCys23vmHC0ZeL7y/Hzmcll5dTrw/HyhdeVNT8QpIwGSdHpPe7U9KvvgwOFNLZ6hAGfXvxSCRGLo5CV7wisMeagQgiVp+MGuNkbRAQ3W1xQPdCEHenBj2Zg8aTFYfloWu6Z5clULO+BHsLRCJLhhrNhc3y6Z5oNWccxIWpTW3gjBJMPiZAow3Z3CkdH5tv6kumOxhEiMzlr155Fw64uZMEOjbQVt3RCYmGw92vAnw5kZsdnJVr1/pYEeN0QSdWt8+r3PeHq4chcOe+/tZaV16+j9cI8fOHD99E//ND/90z/9X/yeqvLX//pf58/+2T/L7/k9vweAv//3/z6ffPIJ//gf/2N+5md+hn//7/89P/dzP8e//tf/mt/0m34TAH/zb/5Nfvfv/t38tb/21/jGN77x3/xejqFwbFfW68WFQAHpxAqJQNTAdl1tEbnWmuREzJnTdEfOldIal4dnLp9/xna+sn64Ep6uZJlY7gLT2rlvgUyGUAzH3wp1O7Npcpv7Bj3szsFzbsxduY9Cr51yvtC78uZ0x2GezNsmzfzoN3/EKPiXK9959ynPl0fqWondqMsxWHnexIRDp5559eZj8yBaV/7X/+f/zsOHBy7nM8vdzGmZmJeZ+S7xSkEpPDx8zufvz1zWjbV1PjwUTqcDx9PCaU43MddiQ6u1Ncpl5dvf/pzLZWPdCtM8cZgzx8PMJ598Qswnuk7851/8Lt/73mdc1pVOJxCRGjjGTEXIJ4MJ7l69omvwhq6CVBMrTZHD3YHkSiL58NqGT0Niff5AniKtVcp8pV8SZavUtUCaqKWwXZ7ocaJfz9a7CoEkzS0VoomN+sFyLYnpsLCke2rNFlQFdHuHqM1ufXj3BF2ZAKmdpBH6RGhHpiUQpZBrZZ7g+bJRLhvnDw+s742cczhktvORPE3klLk+Ppp8URDOn19YN3M2btuFZTaYbFM7WC3D38hJaAq1QYoTY25KxHiNhECZZwsOHpDW5+5sUuG5blg+J6yjmd47fbsyLwY9lWajFzZo2kjJele1KxvG8gsizDmwlWiyWhK4fM9GFPIU6X6gKbBdL8xz9OQnkFOyKruspGT3RcUgSnViRI6Vy3VjK4XztfDu4R1dG4dDprSJZZ6Ypsxn/+m7XK7mbbdMBy6lIyFyBU5ffcvdYWHObrMTAzFi/R+vDgb6YiHbWI9+0lpV4fOAKcedv6CjcapqPcfgiZ5GaNkYh05CsLkpMUcIscCVcgKN9N5oyebdYsq27/diw2Y7jWzk59bsWojJ748YoaSrmpBt6xaYtYE2I4flvPeIQzeMARFjVTsbUpJVVgRj6cacLXgF6+WBaw9iA+QtV9br1YhR4lJp2a9nzJDjnjimPFnvLiSv5mwA+ZSFb37ylvuPv8qyLC4V5QQX5JcRsuzxK9rj+oVf+AW+/e1v81M/9VP7116/fs1P/uRP8i//5b/kZ37mZ/iX//Jf8ubNmz1oAfzUT/0UIQT+1b/6V/y+3/f7/ptf78PjA9TA9fnKc2hs0om9UqdkHkMxGuOtV4MtrldzhE2R7bzQy0bbNrbHM+v5met5ZX1euT6fCQopwgW4lpVrXZFmXlQCSN1Y1TdI6xDybi3Re7m5I+uGbqvNgVxXztlucIvZYMPWKNvG49PZXJO3RmiVGNzwUYQwZebeyCHx/vPPKbXy+PjMt777KdfnC2VbmcvMZZ6YckYez3z2bkFVuVwvPHx4YKuN2pUlWk/j8TEyxcC1VrbaaLUby6x3tuuVd4/PbFu1Ic+hNN2Vz99/oHUl58zDu3ecz2an8vHbe+5OdxwPM3dHyyytX62+AT2/Eoywkez/MXkWGM1tVXE83wkyA3+3vk3DdAINAs7Zho3JAcE2YwzVRVxt7sfPSaOdL+ZIrElICdM81GgGiNo5nRbwObvtYuK5CvTeCHMmqBL9PUxJkMNESK9NBSMoy5JYluTESCOrhAAxBj7qycSam9LLlWmyg75L9KZ+h2rqKYo7/cbM3qOT7kZ+BgGHaj1Pkc7lbLN2qtBrMUg5CtX4fRa4yso8BZBo7gU+E2eBy7UIce+qatT/KQrrZv5ZXQQtV2tv5oCG7EhRp1wXpsmID6+asUEDHSkbU+o76UFCMvi1NWIoLHOk1Jlj6yzHgNLIU+J+wqnpEX17R+0+xB0nnlebVTweMofDzLRMdh2CUegNbgte1dhr7wtvULBHY0qGxJEy6K0CDuuJ/4j4QLHrGXavGEezbCdA8MIgEpcms97XXu0JDundXmeXiBKsAgIGm/Umd6a39x8EwZiJ1LpXLQOO/EJEEHayxU7UUHt+64PdoFIbNLYgOqrIVishlNvT+fVSGQEIt0gZ04qDKaWklEnV9Ua9JTEqrsFU/OUEr1/RwPXtb38bgE8++eQLX//kk0/2733729/ma1/72hffREp89NFH+898/2NdV9Z13f/98PAAwOfvP6evnXKtPMrGqpVQVp5T8MCVzWdJ3auIMfimPM3BBhNbpxelrle2a2G9XrlcLtRWqO2KrhvXsrK1gvROyDavMouydZdvUTG7CTvl4Nq4Xvw9x05yunN5fLY5IxGq2GySOmNHiN5gVygbkbCz5+bTTNdGJNC+feXx+cL3Pv/A03UFZ49tdWO9ZEIMrFRb3JjjbS0mwIsE7qbE+fxshoC1szZjfGkX4mS08+t1Yy2ePYrQe6PWyibCZ+8+4/z8TAyR63ohxcCrw4Gvf/IR9/evmV2u6Px8dokr7yV6BrvbhodgzCRXtw/JCRO1UYv1jsykzwkBzZKPGDo0VxOZJgjJnayjZYbSrIeHD2Z6w1ljJ+SJ6bDQYyDm4CLNB2qBlszgUXyG5/q0srYrvSp9C8hhsp5ms3mx45SRkHmdJ1pZQRs5R3K2LVl6I08n8/9KkeNdpo/mdzepq+DeYM17DNKrZf4ug6RhpxohNBvAFqH0hoxGfRDK1c6khrFCo/j8UpqcZWrVXErjMMz0XbOuY8xru1a1d9q2oq2aAO7VkCEjhRQb5bBo7JVHp5XVPo8ElNkEmFFCK+TozScVNu2U1WBiYXPoCTYC6/YGxSDxWS90lIbwdklIMJ3J0AMPzyvbVskSOJ0W5jmZ+PReLdl+7MpuHzIcvu1CDsBNR1q096ZG5NIXAcBHZj15csFbYVfjGIoQ6mze/WVcmFfVeuxxD0r+2iN6jWAwTnZe9NNGYHzxMEau7avWt/0ejqBo55G97h7McMZh716Fec/NCTT+QZFo0KSIQYbarSLbPyOjNzbcA6z60x72EZmxX/M0sa4mVL0rZ6juQe//ryqu/189/vJf/sv8hb/wF37J1z/79D3rsXOYJ/oEGmBV0z1TzHqjBOtH1QDt0kw3UDv1unItjdYgVdOp0ykQX0+0MLN14bkKtZXdabdKQjZIAV7dZe6O90jMVBLnR8tSU+zEttqbCZn7ZeawBHIONEk8b521dtaiLLEYYt6V560T1SqTqE9OXTf9OCHTBJ70ke99dub904XPHp55dbxnmoScMvcHo4/X3nl4d2WrF8D6gE2UHI1+f3y90EphXTuVZn0xk482QaNqcMVxmphS5DAnluVAykYG+NZnn/L+6QnVzhyFX/Orv8knX/8KX/nm1wnJ9OnydOArn3yVqJXQDXc3NThLLVP0gcjegeoZaADpxv6TwFat8oJKmBL3b195g9povjbrkpC82LBnq6ScEQqCSVa1rgZdpExrF3MgniyIpgx5Fg6HV0h4CwSz90gHpwMXIDvpp9Al2bCxbp49GsZPXEzyyytDhoZlmAh9fXGgCBInCBnRzQ85752E7Fn8zQUaAQ0zYNWlSAQtTozIRAqD69d7RUKGOINfb4NIiz+3IH215GHku3HGf8gq4F5QrajMSDcNTTt0i/WM0tFkxMZzt2KvGSLSryPvNyJHPhp0p6bgISP5SAfPvu0Q7e4eXDXRdLUKCaGev2vkHQ0mHI0dfk/vH9A5sK0bqVSWXJlSo3Uxf6m9sgq7TUoKrnjRAa3UF1VMLYYoGKpQjarvsPXQ0mutOezYaa3YCIwqGkyceKAiZateMdk1zTnjulG0UqwfNeneshpHt6qLBnjFZSsrfqH6SsGvwS5crXswltYg2HxcjOIScKP0czg0BCOutQZbIEyzz4m5JuOg5TuJStSeR6vSg41l9L0XJmYL5DNzYbKRlxADeV4otSKxcDid6CFxeLWQ04Bhb12uPTj/kI9f0cD19a9/HYDvfOc7/MiP/Mj+9e985zv8ht/wG/af+e53v/uF36u18vnnn++///2PP/Nn/gx/6k/9qf3fDw8P/OiP/ihvP/6Y1/dvmXPiOAklKLV2Fz1VQoCLWxDEHkhHYwnm0MldaKERqi8ArwY0DlVm9s0YUrJsRJLN4whIh8u6odJpNPsezpoLpq03S2SeZxtk7sqG6SX2DsN2ZWwKMEZcCoHUJl/Qjetm/Y0gQpTGZV3ZSnHDt0oXodM5X85UNWbg8/XqUBuk3pmnjGhnXVf+07e+S6nVei29M6W0M/HW2tlq43pdSZgB52MQ0nwmuZr854+PmCYgLKeZ42HidDyQ54MRADyjjClaRavBHIIZqtI+qPgCaTE2ZoOwYVNlVnkNM7zWCjEZE25IJg0lAJyhaBV198BlDtWG4BgzrNaV0Cwo1A5IMGmiNvTlEiFms71BnKXWHaIb79lIFJbERgg2IkFvlr+LWv8BYZgm3mCo4Nmm2szTnnPeqlHVslc+QqC3G8oQ8uQ1iO7Pv2fLt0jnX8d/zrU1FRN0Bs/wgwch75+RLcipyXNpW2//VkWDmW9qM9jIZourEw0C7O9T7Lr04u/HesuMwN4H29BsVaL3IetmSZ+IEylSpkfHHLxv3NswabS9WosxMOmTK3aYUnqrzfowBl9YnHRldCXsFcj+XH75QhjSScPodQwIs89C7eig7OnFWMD7cSx+drRS9ueIOTpsLa4krTfYTNVaDbg4wOjJKQzVl8EAxM8KY/ga6WZAmfb9F5Xj/u9+C1pehe2KHM2DfXcx7W42Ra3ZjFdIeSdnDGRIZcCwVoH2NgK2S+E1UyJ6eHikVCEv4yAdn1lvZ+toKv4Qj1/RwPXjP/7jfP3rX+ef/bN/tgeqh4cH/tW/+lf8sT/2xwD4zb/5N/P+/Xt+/ud/nt/4G38jAP/8n/9zeu/85E/+5H/xeed5Zp7nX/L1128+4s39GxM1nYQarIegpexT3LWvLlljsxVZsLms3sijZ1J9aPWmEeNArw/Q+gCzaESCyS/1rmxboWuj9sqSj3Y+tR3AJjhW3Xy25KpQqvcjfMiv+0Bna2p2I2K/V5r1ni7XYvNHQUhYYFb1+StTvEQ7XNeNtZpKRvWejWA9tCQTAKUU3j+fKb3RfPXcLTPLlIgxcV0L61a4rCth2ItoJ14T0Wnq11qc8ZWYcuJ4XDgcD6Q806sdPLu/kG/CG4Si7FYm3jgffI0xiiCuAWcjDJ71lkoImZBs9sTIDLpT9OnjYPJsHut5qE/2d21obajJoJhpYyz0sqEtuYKH+lCpNxzE4ZW9mrIh3aHgzQt9R1OZ6MQwkhB/9Lr3PZToBzYuH/XimlAcSqmo05tVcHNU6ylEEvspiQUcU+5XkGhBTeueBMl4zzuVutpnJBgioUPnr1uwojk0Kxa0enG1CvEh1c0Oy9uHu1V2rewwmPmqVZ/9svdkn9JmKXuz4BXEpIhsTmkFF58VwQKPg3SoUru5cmvzYNONcj1UYMKYd8J7sbtVyff9CS+z/LFOTfXCFPFdcHoMy/r7GZWcwXRD9UVuLES4rXn/St/Va/xJxl4YBIpx773PNIaH8f0yAM3x3AOsG5CfthfQ4xDKhhdf49bDGlCpiFeIds7sK1UsGRiiwupCzjYwnpyE4nR/my7296bsmojSbiMzvXO9XBBZGOoaL9tpvxKPHzhwPT098R/+w3/Y//0Lv/AL/Nt/+2/56KOP+LEf+zH+5J/8k/ylv/SX+Imf+ImdDv+Nb3xjn/X6db/u1/G7ftfv4o/8kT/C3/7bf5tSCn/8j/9xfuZnfuYHYhQCnF6/JeaFroUgQkYRmsnwI0gU3qR7Sm2sW7Fh1Vap2pmI9NppBdOTq3bzp5yJczP4qQM50duF3lZKrYRuDq+FDpoorXFeL5xScTKCacK1bgfa5epbRQRNC5fis2YANFqr1LpxrZ0oZskyJWG7rqxb4fGy8tFpYZnMwPE4z0w5c1waKaYdEqhbJfohsYRMnKwf0isccqa7NFBIgRnDpM/XzdUS7HStW2O9VJ6vhRyiO/QmpAX3CqrcnSbefHTP61cnftXr13z1kx/h1ZuPmeLBSAMhEuMC5YpoI6KQjeE5eiK7u1DXPQEGXDnArlVEXDwXE33VYI3xEEkxGcErAK4MH8Tkvm67w4K9QXCQvTeZ48wUTfOtPjX07p4QjSovIoS42EGjnmV6FpxTRlswQX+squ7YoS4p7f0EqQBWvZNGABHXnBIvV+J+EOHBx37dRU3djZiyevM+E6aMKaWPOaCM+L97eFGF4tYj2s2nSUewyfu1JUTvkZnWXIgZ6a4QoQppQnu0wLn3SUDyzCB7AFZNaXfoaKiepOGBiDABpv4/zA01JVSTBcS82A9G68kGcduPdDfygn3datmIPRFKJNREyHdEZqTbwRoxSw0NEcHMZEOwKi5NCYYbgFdEXTtTTrRmiWtMt97rXl2oWv8SCwItBmMR+xxVzNMeCKTUm/QWgFrS2PwgH9WxhGFg2W/rXoxw0VzxhW792BiTMfZ2STqxtRMCpEh3CNKMNgNpKNYYFox2G50OOdFqQXsnTZE4JYP+D5MPTdvIkEGj7sTdC3GayItpjqY5+Vxk3JeEsZ7zABRs7EwCMUTuJ2G6u+PVR6/Iecwc+uf9bzjb/789fuDA9W/+zb/ht//2377/e0B4f/AP/kH+7t/9u/zpP/2neX5+5o/+0T/K+/fv+a2/9bfycz/3c/sMF8A/+Af/gD/+x/84v+N3/I59APlnf/Znf+A3rznRssF3rW/UXs2jRz3zV6h0q0J6tylxt9lIGsg6EaLSG5Tkk+htM+8uL8NDgGUylYJSlCSmTWildaI0mNZK9gVn0Eknuk7ZNHu2SYAcad4sjq6f1rtJF7Hpzn68rhulFLZaKc0sFEKKHI4LKSZTl2+d6o3f3puLh5oqfg7C6e5k0k7NJGc6ykzn9ObOfrY3Pn33zDTm3SRxfyecDge+Jm+tv6GmM6e9UR3ifPvRia997at89PY1n7y553C8R4is52dCcjUEDbdzWrBNCVYchIh41hmC+wEFy367XSU7XuLA3yFOcTcNDE65Bbw6SzbQGyJBug0E9/4CQ7fM0M+anULcqw1At9ZIapVIiMHldCJJImXbQDoSG2labKg0VUKA5tenvxi8tBki7xOESGCxwzgI1bXgBKc3Ox7UXb9vVBsxmkaiiqCS9+eK6XBb+AK0zSBRsee2jN+o6+LpbXMYZ2TeYYcsAyEOlXLrS5rahFdRzaottJvsEzgzLXo1YJJCQzHc5oEcZpMXlYtaImYvr/7cndbVqwhjPUqcvMzwE7A2dq1Lsd3Tu93Xrva9eT4Q0oSEaJX697EH7eqqWw+NyiW4b5sN3bdu993Wqb/nfeG4069LNw0SxVCQMP9S2T/ry8PYcgNLZlopXsncqp5fQhYRY9i2aomDKWTY9yRYD1NveKTLqAVjLbdOcBiw71ChQ5B0L8jtGljB1PfAbFVr3ytvHZVliKaqX6vJOzF6YPgAdMVytgBi114Qghpkr3WllY22rvRt3StJz2b88P7lBbAfOHD9tt/22168kV/6EBH+4l/8i/zFv/gX/6s/89FHH/3Aw8b/pcd1W1ER5jH57RsvOJwkwSVKVMCFO8cQ4dTHHlHTE9NKw7y1ljnbzQxWIqdohIEQhYwFLrSCJnITQkjWx2mm2N1DMOM9teTZbryl/smRlyH6GlxhmRBopdDrRlkrIURyDiwaOBwOHA4Ty7IwZYMtW4eqJh9Va6XGQIrdla4j96c7cjZF564GN2kwlWqhuYTM2LRCVzESRkgc5tktLyrXrVKqzdH0Dvd3J+5OR07HI/PxaIdlh9YN5lPDcRyWGX0DPAu0xT8s1B3Zt0orBMZXZIcXfMNL8J6TupSTsQZ7F8zafkAifc/s6Vhv6uVLD5QvJTOj9E3sJzMikWGpISitbfb6QWgVg9HUNOVGYO/q+pCMzNldlok0Hf1Sg2WGMkNzbUERuzejWW+HjWsQerKjikOmLw5zxKEi67fq6PuJ0NoQLjYau6oTDXo3jU0ZTLobAaH74aW+f0wZ3irxtisseILlh3drHXrw+yiEbrRr/5EdqkvRKsDmh7dVLJjkWHNtkx6NxIGJHe+mjCH4bR39JvsjASPiBLs+zeeb+sveEewwVfffHcKx6IDcbow3U4uwpMOCsbAraOzwngdff53RQ7JqzitRhyQh7fDdUJXo3WbQRgwY/ai9EnZodLzGQA92QsyopuJIJLCE4wX8zlhL4+lHMB/VprNMh3nmGIi213wBf4w1uCcn7NcWHc/vTMrgaInc1vFAgm6PX4k66/b4UrAK/2uPb3/nF7k7HvjK/YG4HJhTpouyLEZDFhHXcoPeTJR2yNxoO1OrmhrD80ZcN3oEOUy8fv3aSReV9XJhW68mlhsToQjBxWZjVKYUyCFTm71GL0qLQhjQmIK5FCvUjdgMqy/NhhslRUKe+ejVHdtauF5W2vrE4S6Rsw3zvbm/NwgzCGlZiMno3xDYiikyrM+PlpmpEsgc7+6Ypok8T5YBBmNO9t6cOLBxOn5Or9YXvNbG6e4Vx+OR1/cnqMLlsvLh8Ymt+Vxaq8QlMaWZ1oW1BsLlytI696fDDvXIsCAPllXjYq3mZ+SN9Wa+TpsPeMbojL4AIo1elF5M8gmJ1tTGmITdD/zWvT5TkMFbTMF9fnRXrAcQhyWDQs6zH46mbrD3OuJESDMqZn73/HSl1c0qOzXNyyCdFOIOFbY2dBhN0Hm4LwOsrmQQEJtLEgtKayl7n0Gk7sF8a9XsXbw/FdNk9PTe6PWdwaHAoHsLDi3Ps6shBC6b29WECM5S7Gq+Xym6UaKlTrRuXnAWZHyote38AXN0TnmvptbNoK4YE6rbfsA3hBgSIo3airsT2PembAaapWxWbYH17CTuthkpJFqzbCOJyafFYA4B0KkVulqPNWazEonJgl0tStkKMRvJpQ1hQ3c1kM5emdgqYc9kFNug3WG74Cr/4vqA2nXvyfllp5fiiQeeJPvPtyE551DudAt6pifYiLU65XwEdhhUdrxC9dXq2op9N7rsTc1ixT6hBeHeTVhZldpewOSKwYQepMw2xXriqi6TRv1C9bP3orB5PhkapiFZL56dFoTidigq5nbBmAGbrI8ajGGYjzPpmK0/vn+yWwD879YB+X/7336BHCOv746E+Yi4jI0QXM6mUiXuLYaAKRu3urFuV8wrpvP8tLJdn02uaZn4ypvXxGyN/PPzmafzleu1mKWCCkmFJfbhyAQYmYJekVa5uiEiWNYyx0AUYesWKFs376vQO10CPUSOpzs7rxTuZkFiIE8zx7s73twdSUEopVpWpFammz16JkrkkMS8vpr1NpZlscFewk7EELGDP02JGA4gxqDqXSkNn1mqvHv3ninNhJB4+/atuUcXgy/j4k7PIdDXC0XMGbhOkRBMM68P0giVoGaENwgovbmLbLfKLEQx+m5XWl2RUI3KvrvTKr1eHUoKaLYOUWudUj3d86sdRZFqmy6Gm9p8CHbgRAlorVQitVTKVjk/fvDMUInTAUIkSCLS2OqFp4cPPH144D/+h/8DxTQPQSHNSMxMU0JThiAEaTx/eGBdV67rlYenM4Kp9Od0uM3+EMg+S9x7ZysbpVaupTAnMDDO5pRKbWy1sJ6fb+0TbYiawO2ShRAPbkFhh3xOphXZCcYgbZXLtTBnqzp6N+i4N/OLijSGr5RqRzBn8eMUkLhgneNGq3bfUwwQArVbtb9unRztulcNoIY+9GqsVRUzUxHqPiidkrlLB+/T9mJC1kuEt6+OvLo/8frNPcucDUKvFd0KbbO1U8NGWa8EiaamojZ/Vxuo9xYFr4qd0DScifdqZ8BjL8q0EaxGdWV3I+xwGi8OWx3PPYgq4/uqlOsVulHhUzJmnhEs663Xs7MV1c4ll2YKMaEd2tZAOr21XfFfu7H26J1Wi0l3eaXWXzAHh9TYcDpX10hMy+yJfHfCjn3w3cerW8+v1W7ani6yq606FNnpxaBM21/FlFF6Qq8X6mYjA9/59vd422aWu5eEnpEzjKr1v9PA9Z3vfgat8+4wE6YF8fmgUr330xpFvXcgQ1bHmE1ruQ3HrRfTaxOBOGeeL1diDqh0zuezSx9VsxDRQESYg9LUtcV8E9O9ihiT9L4bpmDyQtXLfaOcNgJWOXQCz1vhMM0c54W7uzvuDjPLnJknq7xyDOQsdJdWEVemHgsu9cBaNlqtUDuz94UGxKDaadX0/mQylQrTDzRY73Bc2C4WnC7blSZDTy+Qs83GSYA4GdSWomnJxWwkjtGnGn2KkaONDFQdwgAQn1EzdQGX5QkyAA6/cgrBTSp88n5oKgYRCG6pLmGHpYzXIM4ONFx/9Cm1WfXVwR2YvWTpw5cLg8EwckTMkZgyrStPT0/8wv/xf9J6t/5Yr4S8EKeF4+mADpKMFp7eP3C5XjhfzlyuBRGXDZLJFRIENJo0kQeP0jZaa2y1MWewBnjk/tWJUivbVnh8eLcn1CJKCBMpGJEHksE62mnd4LYQDUqtvVJbY90aUx6ZegRR03NsHdpqzNVo90NkIobIYRLUKU+dSimGYkRnfjat9r63Zm7QIaBkwA7KujUbQndngBQVI/AqMd6MGBFovr/ulsz68Su2dbPvvT4xJdPkq+VqGSgBglhPDowG32wealQZBqn6+MX3pfs7NLdXt7felhU+t0NVXvxnoG6CQdwv4bmXUOJY8EYfvz2fzZrdWLfoi/RWB3AeTHxZHZ7c4cwXkJ0HENXb1wccvEfhAfGN/bNzCN2i5cV+/CUPt4ORMPaSYBlHR9WVMMY148bmbd5ftkp4A/kvuBzrf+XvP+DjSx24/vN//g7Xy9VmnyY3HAzCeWuGpQPV6mu7l0MQEuil2kUVMQYhHuBi4N35YhtbTXS2VYP3QrC+AWrN9TGdHlLYjfdsOv2FFpd6tTd6WjHsASeF0TCFfDnztY8/4u3rIz/yyUecciIFqF1JsTHNwjIvkGaX/onerLbnmmQiXZxQUFaWxRZcbaDFJuFLLZyfLrRlps+TwTPayCny5tU9a7pwuV4pdQUt9NaoWohxIUTIIRKmxjQHpilzmA22zK5cIbupXgSqWYMgvlkNRgsJV8QedGe7P0GC27M7Z7kPmm8iTS5xIzYfF6P1Z2JzOke3ixiC2PNHsevjGzcEILoLckymWCKYiGgwV9gwmHzBepbhODMfXhPiA8/XC//rL/4nrqtVg+u6Mi0n5uXI64/fOOKj9LZxfn7muq48n8+EODk4ZfYZQzKnmQsiSnd5pVGhCymLXSdJvFkDtTbWdeXTTz+YJ5eY/Uaaj04AabTih54qw6LJKo3mdjxQFFJyeFKN5ty6jU5s12emHJmSSXBJrEhILknmrgMo59UrGNQU/b1SLdUG3WOMpDiDWEAsq5EKLNgFlnmitk5pauMKL0xN67oypcRX3ryC2ug9MB/uOb46sswz05Tp5YxgOohhMmaiqnU8W3OSQLCEUzy+6egLqqVDxpGx6kuj9x+HGoYfxhLZkY1RwdgZbSM1vTnE6CMn+PU2c1C99bYC3t9sZrPCIEk4QUSVF7meB8bRwzW26cv5R3wPBFE0CNpstKJr8J/v+3u5QZA48QnrbemGknYPu92FuPssWxQkYRVyFnzSwN+nA4n+fkf7WgTrbY8RANSsTebIPKcXQW4cxS+T1B/u8aUOXGttPK8rtVQbQhShqe5VkClcy54FlW01aExt4UkwCC8F2XHu2gSeBIkKoVO2Ygcvlm2maNBBDsZKusHSxpZSNWbdOKSiBHJ0h12RfXOAMmdr1PYmTMuBb379Y371N77O17/2NZJ0tBWeHs/kLMxzNC29PKEkukbL1Gujt06iseRIlokWGqejVaDrVpjnibJtXC+V7z594OG9sc3WDVKG4/HA/f0rDq/vufv4Iz75Vb+G6+WR9Xrlej3zdDmjLuGeDzBPgXlO5CzuyRTMq0q6ZfuhE5zablWGK5F3G/SVtu2VmFmue5+p3ywQLFEQTy6ywSPjUnvTPqh5+hqNtJs5ogyasatu+3xQkKHEbaQd01/0noQP4rIfDvZ+clrQLjy8/8C3P/2cy3UlBEsYpvnKNJ/ZWmU5TuQc3fups22bB66NnDwg7GKtYmSfkD2Zsj5mrZXL5cxWhyxWZqsH692FSimFySvc47Ig2dhtQV2t3A8DYzpaIG3SrSeoSjk/s5bBHLPnD1GI0azaczRR3WWZ6WLwaxKbyxq1h/hB75HabeCF58vFZLfyxHK4o1YjDa1xxQgXgZwC93f3XEvhsm6U7cpW6m54eL5cuKCUuvLmLqMxcrh/ZRV3q/SGD9o6oQbxsRcI0at6P+B7awyBjBDF77F9f5BLREblMth+44C2CnY4P6OWEJlOoe39cUXCkIGCfVh57HuJCXwg2oaIfU70xZErQfY1IeFGsrDnuR3rL494W79mgKt93YfvbS7DPwjs0kqBgAZLkJr3lQeRrXf1GcZBEIkOUptOYazVZwlvkOZepe4VgN40GlO3RFQb0zS5iseQb7thsr/coAVf8sB1t5xYz1eaWu9HJFjHI5huXU7J9JlGWS7DHdYuXYrWC8kxUctqMxdYQ5po2Vp0fTdz/fVZH4QpirPG8EzXYJPWOvM8O1tQyDGRgweuaHMVqGVrk+u7CYG70x2vX99zenVCsjClTMQUpU+LMOfIlIQ4mdUGkijFXHdbC0xEWjb4R6tR50WCm/VltC/Uu4Xt/Mx6uVLWFdTMIct15enhgVMQluOJw90d2ibbeC1xx7zbmyxT4DgZhBlDMhmlMIIzFsDwQ1oxOamBz4QB2xlLTpuiyQLicDsWXFtwrGsBqya6U4rVTCZxuMXnZFRdhHZnSvUdJooxEpMFxZiirZXWadJdJdsqrR1+6Q1thd6LzzYJd6cj03QgxYnLeibGiZRmkiQi2diYS0Y1MM0Lr+7vTIrIoWkNieRVCZI9ex0HgFJLIaQDKVkDHSI5zz4EeuB0fCbPmTwlpikTp4WAIFqJaXLSUaWpKeq3ZqSW6H20HhdEbJ/UbnYpKblh4VJZlpl5zg77Zls7osQ8A2K+XT07i9IktbIHrnzdmKeJaV5Yjm+5np9NvX+zweQUIylNHJeZQ4dT69TtGSODFC6XJ6IG0Mb93YGvfu0TXr954xC1QYu9Nlch9zGJL7T7g72nkRi+OGf1RWD6/3hW7ueq7Af5rnUoX/xR8YF1g6I9GHarJPbXGsnYgL5Vb7/nTyiOTe6Jm4yv3+DygQTZD+1Y8f4cO9vwZRK9/9L4PGF/fv2+4PjSxVlGktLDF64h6h1DGftzwKuuSu/PE7Op1cSUyPORHkyC7qVP2e1Sft9F/QEfX+rA9dH9W66PZ3Sr1meIxtwizYRkgUvm5FCBsk0rYxAQIGUTaJ3zwvr8SKlm8THPZlDXgSRph79iTkSJ7nYrNLGDrrtaRW+mfTYfD3ZYxsAUswcuCJPDew7RJOmkYD/z9vU9r97ccbw7QoRpysw5s9wdOUabHxMak9uyhJSpG5QkNoskwQJp79Am8jSBkwCmZXLGlBDqyvPjkwnlPpx5enimlcL7zz8zBltVDssdgvtvpcxpitRWqb0xTZHjZKSEQEZisMHeYJWD1UD9VuEMvN03UgxmCU9r9GLwyf7efBPJy5PCg7y2IUgcTLfLq4IxKNy6icW6l/2+Qa3qheCW8TFGY6iJS4PFtM/i9N5QrUZe6NDrStdOyDOffPWrQCZPd3x4+IxOAsmcpok0T0xz4v40My1KjoHTnLheO8/nJ56fH6nz0eW1El1mjKXYkTChrVBLZTltnA7QulCqaf3FNAOBbS3kw0JMpmM3L6+souxXltNrei3U7UKXA7Vc6X0zlmY3wk46dZbJ6PnrJjx9+JyYrEKaojIfDuR5otaVnA9O7KnMpzcIULcLlYObe26EvJCjKXAdVuHuODMvC/Ppazy/+x5l3WgVgjRimohpIYnSQ6aHhNYnpizQC+8+/U8kiWivfPzmjm/+qh/l7es7srNCezeygIQEQ1VEb8lNf5HoDEh+wHzjjH0Z6Oycv50Dg94u6gFonOV+0t4qn27BB26Qo3zf695+zf/WGYrpI/6M97EnX/uYwwtUbfTpJOythz5C2fepUYx2w/7qL2jt+0CIBER8XxhuuPelZUxP+gcfklZ2jWUPXiPAmZuyKf5bX9Rgxpgn88dLlbycaCLuSD3mwHR/DfusP3zw+lIHrh//1T/Bcbrn00//Ey1PSJpYDkfi6d56ISFQwqiGKik0jscj87xwrZUUA1PKvLl7xfr0yOPjI9/+9DMv0zuqFVET+2zdbuiUJqaceH06oMEGMdd1JaVx+xXivJfGU4xeWQlVldqK0ZB7ZZIGtaNFycuJlA/EOHM83bHMM3MwQ8QpVqI0ggrXJ2eXiTDf3THNi7GWVNjWK3Xb6ONPh3W1pulyXFjuT/z4r/2fDTa8Xnn36ad8+//1i3zv29/j//bv/x9oyMzzwkdvP+KrX7nn7Zt7Pv74I6bDPdv1wvV6hlqQXomaEf9csgcW6zESzV3X5H4akEy4c/QDqget1oiTJQa9K2277nNUwW0dtIMWk0gKrgAvwRWrTXTQ+2fih5Rnl0lorlKiqmxPjwbT5Qzp4JtPqNtG3VazKE8bkjboQu2NdbMN+KP/4//EJz/6P3G6e8WrN2+ZQ+ba4LxWPv3P36KpGUa2beXaCvd3J37VN75OF3sP9brxnbXy+PCBy/mMhsghZ1KM1JA4P7wHVdI08fXXd1y3xsN5payPTNNCihPtcqUnKL3w4d3n5OM9KQRirxSSmW5uF46vXnO3HFimiWuHh3efs5WVfDzxY1/7Kkjk88cL3/qPv4CEyHI4cZcX4pIgCs8PH0jLgZQycwj0NFvFs63I4cicJ1NiyZlWNnopyHLk1enEPM0UFrbnB7u3ErlbFgiJJpHzh0c0R8KUeTUlYlZqu/K9X/yP/Mev/gekV37k47ec7hZStP5u7CZvFlWgFmO+1k6pZ1fBT/scIIrBZkOEsPsM+xhIj0Y0GVXuGLrWrr4evL9UKjjLMhqLBnUnbnUfNLBAZ4TCfqtObGvSN7Pm6a0TsKFyVNA6hplvQ9qqahZLziqMKd6qo1ZMEWRAtEDbNmMhluLjAfYeTTfQ9sAtLndauRiLECXkbMhC87MnZn8vAfCkulS2dSXkBatmfbC/2RzaeJ8C1LYSohGaWiy2VlR4vq5UvZKnK6VUejfy1A7R/vcMFZIDpzd3pPnrnHukh8zp7hWH16/NBA2h7ErPnRA2slO5D5tNhKeYmJejUeURXl2vaN9MwiQeeP3qNWsRrsXcZgk+JxQjIbtd/FLJwTJ96Wo9qGbaXUbc8NHaIIhkonaCFiY6XSpdjVJqPYIjp8M9y2IBT3sjS7Qqpndke6a1QmudJd2T5kyeZtPiw5QzCpMRDLrSqcRsvRGZJtJsM2/T3T3T3Svm4z2vv/YJ8fVrni5XtlJYt40qiuZEPB7IUybNmcP9ibo9Ms0zKU22wVzCRrS7BIzj9pjKtR0UZlpn/QDTBCRb01aGBX0IdNF9Qwe3I7cm4FAsMKV3iWFvtncC4UUvYvS4bJrflCdCCvRuxonqg84SoomI5mjzZmr04lA36FBboKvR9ed55nR35HD3muP9W3KeySSWpkyHE9v1ge1y5uHhPdd371A1e46UMjIvcBJaEQ6n11yuK2stJP88PWTy/Mp+JwmXXmlZme+P/Niv+VGmlEGFd5++Y8WMT6fDa2RaLGPXhgZTnhDtLEczVpxioknm7u0n1NrMITqZFckpv+HXvv3Yqe2R7bLSg6UY0/GN35NIEtA4owSkd+JijgFTSpAmC8qtgd+TKhFk4tXb2WFjIYZIw2bMprRYQInm1pCnSNYj85uN4/v39O1Mk0xp3XuBwQ0vLfjYOojGasT7S90GpnGm6o01cOupDBFa5WWl5QPOHSMWeLkjImbEh/893KqELkIP4lJfiolT2o8MRQoAXIKJpmgdxPzgoxajuuEGKTpOcYPU7Wcl4IQwDGp7CRViXnQ6UD1nPFufD9Oqxqsa33+oOtxqyaWIkanG5w7R3a5R4jwhOVkSaiWVw6f2OnZtZCdk4YQxiYE4w92r13QmiDdbFNlL4V/+40sduDQJy/2R410ibmIb9f4192/fklKyjCrML8rwK3RrZua4sttfT7NBRa1xd1yom2mXTcvMN37kGzyv8HztbKVQ1Vg7rVbCPFkfSzpRzZPJGG6RWm1glyT7HImG4FJPivREptHYqE4USdkqnnk+MM1Cjopo8F6GBcUQz7YhaIQciFM2S3BW0OQNYwtcvRs52Xo8tqhIgRgSSQLz/Wumw4G7t2/JxxPvHt7z4eGBb3/ne+TDRFwmZJoIyWbKUp5Yn02jzHymDEIVQLp9tp3qC7DXoLe+A2ob3nT2sIUfRrDS/XfCbqOg5pbsjLFBz7WiMxo5IaiRQbzvMBoN4vbnEsQ2oar7oTndNwUXenUlDO8Tmc6cB1kRUkrMy0zMMz1kSshomAg5cvo4kp+EmITn63mv7rs6hyxGQszMKSPpwHSsPF8uRgZCiDIR8gljazUeHt4BkKfMj3zzx5hSpNfGZetoWZHemI+v0JD8unZiWpwkE8lT2INGiAvz/Ud2qKI8Pj0apJoS3/zkI6YUCL3xve99ztYaVTvpgMNKAwObGFJbeQrEaOQSkZmarSJSEWqrNFUCifl0YEqWwddmAcbg2WH1oay9MsWJyEQ8vWE+vaKFgMbgDDzTqoxhtuCsdl9CsGRI1OAvZViaRF83tn4GPLgnP/7vLxyifiAPbG8op79kRtgawOaZxRRoePHHhtNhp5vvEJyTOF7YgYjbf+xU9L3HZHtl5yL7exl9rUHrHx9jf+7o/eDxFO5/t6vaO+4oKbhAsb+f8d59f+wBNAZCUJPtynkPcurvidEPC+PftgdvGGdAoo2RHE9HztebwsbLh1Vd/LJi2Jc6cIXZlCEmPZHEKq55ecWrN68tA6yFebkzvF4iEldq2SjbyvPDB8pmlPjTcUJ7ZoqKbne8/1CYl4lXb+/5xo/+KOer8nRpXK+VTTtrrTw+PjDNkxlWBpD2ZHBC7xzCzLZtbKVCNtuG1ju4K7N5cK2IFOpVoRVyzvufNGdirMSgpDDZ4mqV1gv5uBBny7CX48m07TyTCmrzOZNgvROFkDIBG2rstXJ5erDAkxL5+IrpcCDNR05vv8lzsX7MN7/1babJMPheG6UX5sOBw92JPAt1W9FawKsr21AvW6+/dEX+EibROCR0zLDcFLAHxdgOH7MOv+0e9t5FHwcA7Hj9FzfJ+Ltj8yiyv02r0lpvRG8gB9nRd39OJ2505eHxgXou1HdXnjcgL4Q0sURlag/09Zl1K5T1yhaFbTOliNoubFV5KEKaFmLKaAhstZgrAR2IZtCYhK00U2dgJaXEclzo2mkKa9motZLcBl68mk1RyNFhrQBrrcYKi2pQmpNPLlthu65Ig/SNT1iWyQ6qz9/TW3Gdx2ABfWePuSJFF7p0KD5jpG5BI4E0Z3Mt6EoKNtSvQO2Ny9YoDYrDaqYXCjS4hEYSRUjMhxNMkVfHmUkvROnm5CyusoENzQYBYnAncxPwbdWG/zVEo5qPg/iXtFB8vb5YRgat+QHvc4JGOzXlDOTmsyUxEglmwWMww+13XfpRXNg55kSIwZ0NTOLKfEBvc4d7bIIvzGWOJbsf8C92FuDKKH6/1ccKvn9/MZiUFjBlzLe9ICA1NaFlCVZt9W5J5pBp02ZrkX4bZpaYdnsbpdNjN2FiBG0bNktgVj/1cmWLid7K7YO82JG/nMeXOnCdn8ypONGo+QRZqVyI58lsv1XNX2vboDdyGkO4hTQvXK7v0VrpdeYwZZa7hUP8iJwK8zRz/+o12/mJdYXtatPwTcOu46aSaSr0UkjD1wuhRy+pAxAmiEJXUxg4lzO0lVCemLISeic6DDihHAMcopBFidLJ2VQSegB6Z1pODOuKOVk2vC+DLvYn5l0SKGWj5YqoC/Gq2wt1+vMjW1HWtfLh8wfycUaC8ObtW7LAdr1yfnqiJ5vs11oJkhAtdJfU6b1bYAxys/zwwKAD0lALXIqire5ZccCpvWGwr25jB6qY2jY+xGhif7ZBvJl+26s+9S/e8/LvvbQzF1cND4a/uAhqIAVX3JDukFTb4U3bcJ2UIutlo2unpm6wjPcszs8XYqhIbfSycTgeON3dsRxPNkuo1Qkfke1aECrEhLrDdMyJWiojGQ69er+jsz4+MvvcTHt8R7tuVFXijMnoOKFEJJoii66k7AeLdnqO1F4QhDxNhFqhbNR14/zhHbEuzCnQnx4QLEDQzfJHhnWKH0q9N6Ik7/02wpRN7qp3aNFVHRSRxnq9OJwnUM2tIcWJrWwOGkJrdbfOuVyvPH14oG/P6CXx0b0LJ7eKkh0ic1HfXu3QT5Nbbfhh393jTVwd3skTdj9t7ZilC574DCUKX0MhONFKCDk7zdzXhR/4sdtclVGQrIFme9wizC7jhemUKkJOkZCcxICxCkdwCq7wwx7AxriMyzV54mZ6nLKv9bHPUjAUJUi4qYAALyWvbCO9TMjsuTu6a1faTgy7koeoCTZYcaY2pO9i0EH7Di8G3B4PK8JCsIF9uvVrWzhTxT36RPb3MNiSv5zHlzpwbbVQtkKTSpEZkUbKjVIbyVdD6eo6YkbN7dUyh+hDw+ab08hpIYbAlI6slwNTnjjNsxvWGfa7u+92L+zVREVxQd3osJSxdX0Buq5cU9hKo60bUldSXc2UEh85UZufSIJlz75wghgkYpCYDabik+phX/HBh9nD3qR2LO3FoDT2RR2zPmbxsl4bl8vG08N7jnLPNM/klAwNUKBVSMlf0tmBKl/YSC/KmL1awv+l+4bRvVLCDy/1pvD4TcZ1u9Vcdki9+Lqq7B5eLznz9vFucKG94vidAQ+NbPL2HmU8j6ffQwUA4q7CoGBrSBtdGopluq27i27shK5IV6Z5dobeDKURSt8b1r3ZIZhkZMB+q7rNFmrANBV9rqyVYoPyAlpWq9wVG76rPqvUG7UUdkHYltxZuCOSrb+FzVJJ7wTt5qKwbbTsiu9lQyU5hOuDsX64m3Bt98BgEJVRzP16qVcmO/bTbbC9uzC1M8q6ZQXs8iXq5jaqtFrYrlf6emYlwt2drfFeXW7xdl+GIaJKg2TPJ+Me+3u2yWO7tzqMPR1229dGv5Es2AMaeIPT9Ba792NVd76HhxcGU3Ac9FZBhfFd/x31nq8r5vMCI/P9OX527ACLM8Gv8SgNx+uOBfNyPXtA7tyelxfjJOPxArEYwV67Wi9MMfjCg2r3+7kHUr1JWTlmuu/qMXS9v6A/b2udUgrhxfzl/lZeJLI/7ONLHbjAMukYYPMDWVJCUjLLg5gscCBosInzMXewboVW/fAQIS8LOQm9KPPxxBwT85RpxdTmbTZBTEC2daLCNjIXJyZE7+/0LiA243Qpla1U1q1yuawGC4qS52waf6XQ1sLbt36oBiFNMybFbf0B2yLBrdlhqDjXYsQLib6RxBWptd4OaBHfx06DlUArnVqt3L88r1zXzWYwWmO7Xli76yi60kjOs0OS7uza8UrvxeEFNzsLh5n2w2Tf6ADBIAVVfw7YT43W7QwJ6cXXxbNS6y8YIcGviAiEocYOQr857gavPsfe6BUVd5zGzrCIq/jXhoSG5IYkvOdm76115VJM1qjEStVCxZXjg5IwyAU1Vf58OLGcTqR5ATF1/dY7xQ/qMQAdowkHr2Wjt0pEncqiJjgcrQdhvBP7/LVVtq7MdaaliqiJ/J6vj2izquMw5xeHiOnjBbGepKgx9PKUCcma6uqVadNObZVAskk6sbVStXkWLSRV20MirLW4dJ8AzSosBYL1a42YITa07BVb8EPQlMk9A8SG56VtaN2gZuujJSMXaW8mgQSuc+nOv0190D9aAufMOlpz5/ohRXE7VNXJBPj9FycAaQgQ7HOjnboVds+tabK9NJybveoXnyUTRy9uqLSvWVeRAHWfL2fP1v7F43rPwpoxFocchQco1XpL0sbnGM/tupJj/esQt5bb749kQvfgExxj90RAAOl035+tNWo1BiFZbYC5Y3tw/F7310DovTjEaglI70qthXfv3vPw+ROnlnzOctwOD1kjQP6Qjy914NKyotvGVgsyKWkJLM1xc1GbFh+OdHSunkn1ZjRQTTNBEynNzIcTWZRtW0lhgRAoRAs6rbJpQ6XRogn0rFuj7+P5OGxoN7drc3JTIIWFRiJJY5aZFDpZCrNc0LLRwoWunS0UeqrEqZMmJXSnkIdOx+jAMQu1Dt+kTjosRA8qdVuRpvQwqqzgcUuHSakRDaYFrptXm5UQYZoSeZqJkylIt1YIrSDLRAgH5jmTp4CEDlKROAATT2QHPJJd0sa/tydpCNJ8wcdECqMCwxrKHvA09IGZGMQUvZrEDkhrxHdPPgZkKL7Bbe4M788MMQwwKxfccFBCoLdGTEKaInkOxCyEpCgVpPtBGSgd1tJZ142GWYhEl9qxqZpKip2DBKQKl63x+njio+MdX3vzlk/fP6K6sZVE0bhXGbWYQosSIWRTsacbq3K+I8ZCpnO6uyPHQLmulDKx9UpRU6OvHli7CNOcGG7RMZuNSEfcr0pvycRkZKIpCHd3R+YY6NvGeYVNhB4DSwo4UOhJejTLEJTd5UwgRuuP2fU1yEoE6EbKC7hnmUQaJrIb8nD5tgoqRgs6kkyFvDXh4cmcA0wSr6KpOVSoXiFZ5duAppWIuQJIlN1U0aqFikk7DTQgeMBwnZG4o8ig5velPqNFHNU6iHSC60cGNTuhUAu05sPrhpkME1QbuUjg97s5Q9K/aYgI4+I6NX5UZGkEWEdPHEGpLqqr6gnP0C1EzLw1ijH8/DxSi/KAk0TiqD4taJi6WbjpSGIw/0g8QxDW1dwQdECEe2/wBWs3mALL3qzz6jcSmLRzmjLHZd6FlK0MHhf9JTLzgz++3IFL3R21Nat61KofE8Ex0c0wgotftAHbed5kC0e84Ulz/TTvmagZNnYfxBuT6ypW3alrx92qDCvxkbZnFuI7xJTZh8GiIf0arFqKSRzeqaB2eFqhZIsxjGpDTLVb1GCOmLM5mcYMQK9CC/U294FlcjtjSYSYEj11YrSsKkSrPJBETAHEs+owrLszOScT5Y0CxYIhOuYy5NZgHgHI1+de3gwNwuAMrV3Z4rbmZYin2gV2SrFXsKNiGwnlfhj5fWW8/u1rX8jl9jf44p8e1GUMkYqR60fTwyrnIdZsw9cDaqMHQvQha1XEVcEDwhwjc04s0+T6i1Bqg5h9VghXlfMA72/GFC1s3CKmxByUac5EhYKw1Wo9M78e3devitykmdSqHR3Q1jgswXUbTakl5cg8ZxLmOFBrowXZD2y71LeLZZDRyN1f0Ff8XuP3Lzg0nYL9jBUAcYfQApYYjb0nYhVLDN4DCtHmnEa/aq8WdA86rpR4m/j1AzH4WhmzUaZoMSoO2VeK7YPb+Tl81faqBVydY6ia675/R8U0ft/QAUuu7PPo/h4kWHthDDTvyhhemY5PdJN9wg1WXYIp3J5HdrQBhsUMfQTE8bnty6OCHl8Mvu929GF/f+yf2W7li58feWUz3z7fgS+23ICKbw9DhkbP0d3WxXpgg5j1ctcOtOaHfXypAxcYW67J5jRdvHnbQM3OY47ZKaK2SFqw2Y+h2TU2R8AOoFZWWjNVb9VErQWVSHDR1v0WeN9oh66CH/p+k1szNQdC5OYu22i9IWx0CooxB2PCJIaqwSWqruBsU0r2SX1hmT23lf55nolxJsRMjJlWI6EWJNrnN3q3WT/Y+7Xhxp4TqSaj/btFhfYx+Ahd1JutkZSyQUsx+uFkB7pyg4RG/2yIFo/zpNPtVoATMCwAdQ9ahuMPORp8s9tz2RyLvAiAersOvDhw/NAZ1uBD6HgnWo3qaw+Uo+ls2bs6HBXU2Zlq6yKaVpLBMq1aH4mMhEZrnh2L+yT1RmjddQnFtAlzRsVICFu5DXOC+MyNvb/RqDZFlQJqtiTHOTBPGTxjv64Xcx0O0VEbD7g6PosrQrwI2iO8qUJT7+0KLCmaZBdCr4lSNzRDwCj2OxKkpnQymGYD7VXFKOrIXgmPe5ODkB2Os21iVZUdNJEhOjzuoaImPZUnarL+nLkvG3MQJ8vYsrB+NGJybeZBZsr1e9B6GXCNIbG/TlfdK8OXcJV2kBRviVSMBgXqzUDSgk6w19eRJHV2ZuGeVWHnSTB350bbAz/+3F8QhR6V6giQ+3sfwdJ+0Sow3df/CDq3JOLl3sDISHuFd4MnXwatDrtP3YsMElFDJRrFEuxddX68Yvfr57Cvaz+OcSBtNnw9bFhUhz/bLVD9kh7cD/j4Ugeuh6czbds4ZGHKmTRN1KaUrdmAaDTKcGvWS8oVdFtNtSHN5PyKlATVidYt6zvdfZX3D5XWAnWbDPKqjdob21pMD08VttWUsAm00uxKijH2pvlEayutVNI8EQVy8CBbC0GFgEGWkZm8ZKIKogvKTC3uVeTPOZrPvVpwG5TWGhPVDf3qutHLaqSLmNziodPbRhDrm6ScbVC5DR8i02oUDZSu1M0CtgQdZCd6V56fLgSnWysjjqh50XkGbQhNZeTJL+VcervNocCAEAPQqM2y6xCiBx72n+vNsubaQfotRzPbikG0GHWleoAy0gzaaX6wWi5oA8g2GhBQEq3b4RdEnGWVcXl5g55iI0hFtLOtG4kDKQmVQopHcjyw0am9EYHpmDi++YjD/UekPJPyCcKD6TyqJTNdYYoz27qhdJbj0Q6QGGxOrK0sy8Sr+yNxWijXytavrAVjqErkca3chYUYoPdCSu5YXRuHmM22pVUOeaH5wTLPJ7pemILw+jQzzUdabWx947JWpnxgyjNb70xqMHXrhTxZMGtbY4oTvTe2Ulim2YZSg8344UHxeJhNVb4LvQrX5yuaAmme6C5NFgmsZd2hpZCyBfY8U8sVWTIyY6+1uWmrKKndgkDEGJgoJjStioSORCM8WYgUCzQ+jWspqlf8rm04Hm3vKSsh3CxEjMPhs1lp9HEKY+4PV9cwY1db/cNma1RmvTeoAKYuPzB0RSy5FXxGagTajjQMjfGB+RGP2548W/Dt3Xp69JE+6K7FioghUmIMSnpHiQ7DYyMyXyBh+P70PTx8/Lq/V/XNK7tkfPQ5SPusMR/obKis5BB4/frI3Uf3TNlHel485MX+/WEeX+rA1ZrZOIDcTPGSOqxncx6l26xO6520s28AhydiDAMlZww9VkuBgerDfIYL6JATwnode54l+GS5DdGGYEOnMVkzOLRk/kgKISpRlSQzGiBQiVKZJlPXJiTHhG+02RGouuPWgxG0nc8enBrb5WrOzmpU4dEbsqqy0sPInCJtMzO6oQ49GretmVq6uEVBiFZx9dqIOUFmf1+qvqEZA5KdwTiy2ZHbRuh9bEgAvTG2HFoQj1Z2PXWPUCMz7i4xg97IU7ZZzDRUBxTIzYZexobzKss+l+6QS4/GyoxVaNIMxmv9JuKtZijYerWeSq0QCiEXg5BrRcTmW4o7NSfve6uIXbuciSkhMVJKva3V0J1JaAad8EuZbhLtWtbe2VonTpN5SQ/1fHV1727rvg1WoTq8oEbA6Q7hXC9XatlIU/Kqw9wNttpM+9IHu4OOC+wH4UAW5DZ/moL1cSPmeFBLIQUhhchhMafuWs112QSLTXbN+p4WvHtre/85jCpFYJ4mlmViziasu54bQZtV+L35mjMYi9jYT001uxFtZe/3BIIlP6PCG5UhY3/fkqnd7lD1NlYhlgQNuv1wOR56o6oYdNjrTjQQsGDh0cuU2wWa2L6SG0PvRdy0reMwtQ4bIMU+11gTIxA7stB9+FvE/h72wDc+lFfzMoQRRvui+7VwwNmRIxsdcFbg2PMizortO4JhRBOv8PuN7t563wk0T09n0nR004UbIcPgZV9fX4xlP9DjSx24TGDVsrZaGhIr8zyCidmaXNYrpbpWIdnPPLGmZvKAMoQwXVCyuV22DnMj5NZzCUJU8+0aOZy4VFHg1pfaNc6CZ01d6QGESEStga2C9A1ROCyH3RE2pgm07LDES8O4GxNP2S5nO1xr4fp03mEzyRWJZrkuQWxjCR4AEq006lacnTwWsQUIs/po9FpMbibbwWML1ru82DXpzb15sEA3+mjGuhpSW3bFdwgQ6D7DZMhZIPAigGJBSPckU10jbRzYTq0edzLuwL6BUC69E4I4682qQh2zbGLWN+IQV7MiEcXckSUbrZ3WXFrLWIG1VMsm44UmEa5XE5GtK3W9EFuFZDpuo9eUXOg5xsi2rV79BZpJ5ENvbOuZHCdUjRQTtdNn35ZqdPttK+QpG1Sohkr3Vv0QbJSy4m1PYzu2Cr1Rtysixky8XC5IbySdUU72erWyrZsNvafgoxcYJNchul4nOlQdjGaRnMAjIRDoXC4bacmkOXCYEzEEVqnIuZnIrwhaIQWbNzIHg0oTAVGidlO5D0o+zJwOM1PsFCqXXg1pUDde9VGUHk0bc0DKIKgz4mQyvUuDiW8jDSPTHOMnNqdnX28DBxUG1uZySzYK0tU0P1F1hXxbq62bbNv45R26UzzhtB6zBSP7+w07uK1xYwT6PsCCkQaTsxqBazAQLa+6JZDiwabfssM9gFnQaPvXtXmyqVa94veg+3P2ZlYsrVVCnvdA06u7K8e4j4ihSq/V+3HmStBbo5XGh4cn7u4ytXiAHWfBfibsl+CHenypA1e7bjw9PJLaPaluLDVyl1biciVJNDmd8xm5XujrhS0Er6zMB2s5JGYiWYWwFWtaA/l6oWkjTZnIhJYrvaxwfXImlZJa4NLOVBUTwiymlkyIHDQa/bpXaIFalNqUq2KKBjQOWg3AEIWUeLNkTlMip2iqASEhJETU2XVObGgDbxfWh0erknozRe9kKgldhbDTeJWUbUC0FdNgVBWymmq867YgMdI2r9hEaZsNsUowFlxMiZCS9XN8ZzanOFvVY+9LPfsdzrZ2MPimVDX9NcIN/64dkineax9YuGeNLk8jasrzYIz5mEaFJW7653T8KEiLjPgXfGNbARt3pqd0JaZIyMnVJQz6aN0IPlEtiza1e4EKZdvYHj+j13eQM00OqEzMsbE9PhFUefvxG775a34NcTK1llkCBxVOtfP0XCjV1sTWO1O2XsNVQKMNtz98/oEUYPnaJzAn6uMjl0/fcf7OO9L5iQk15qEWam10jEl5JVo10CtXhRjNAblNiSidsq18+p3PiQE+fvsxnyz/M/r6SHl44vK97xLPH0gcyFIRiilfqLHP2jUx+obPGMMwRaGlidwz0iL1/QfKYaa1O5aP75kDZGlcy5m6PZhGZ0/WX/XKcO4baTPl/i6du6zMi3DMwlc/fsuUoFxn6od3bHWjlY1Ag2ZKDel4T4wK0qnN+qldOhq7sTSlonTiksxoszckiVPafa0UYTgPl2txAWcLVMbG7NBNR9RmGi0IqPerY8574MHhOhRT3xh9WYVWN0LsNrryglShvTn5gn1EQNXOipizIxHN/MC8ONx1OtWgvFYbAe8Hq8EFir8XLGnbN6JaQo5Y2yIM7YLRf0NcskkIGglZXILQ5y494ZcIEo2cFUf1iBL7imojSeXVXHn9Zub125MNv/vntHbaL38E+UsduB4e3/N8uaBamNYL62qbLy4GfeRpoq0XtvMT5/MTecogCWIiRtBpIeSJ47JwXDJzBK2NRCNIJ0fs8NYKdaOu5oyMQNdoQ6VqXkotJVNkSInQouurGe5PMOggKqhWy1rpN/fdKORg1mFJfD7JGW+BG1sJdJ/UFzGdwtCiWW+EeqtK6siwfHHljDaxRveu2N7ZbULEZtCie5fFECiqDIfalMTpxjuS5QtQ9yA24IvR6L0JOPkC3dlk/vP+PdvDIwN9STgYC1u/sPkscRgzOi8qYkbFPCCgF6/lVauJtH4fi9AfQWyeRxiSOA4Drlee3r/j0+9+m8ulsW3imo93SDpwnAP1fEZr5cPj50gUPrx/h6ry/t2Zd+8+8Pj4yPVc92thyvlW7Z5rgb5xvVx4ePdAKxfK5Yl6foS28vhw5uHDE09PH9i0073iqVbCem8xvYCSzUMuBKEUoFfKtnF+fmDbrmzXZ2YRqBulNp6enoFGbxt1tV6SWc4rLtfiZ16na4UgNBWaNjbdaCFQtyuP5UK5XjjlhcPhaGzKbXP9SYz00v1w1VvWDwZhLXMiMRG18PjuuwQq2/WZy/kRrcVUMoYJIkbOSCkZFaq655myw168gEz3wMKN3KAvM3+//zLWhPdeBlS6D+CKEbGCyK3qH4War/v9dbitXxtCdmTC2xg7x8KpMF4z2nsJL5+H24ZjsDtlZ40GwS2BGDROC4D++7sS+zgPXpCphpnrYFp6twsTTrAEg3GPhrSbZc/4Bdjvh/3d5KHom1XaZbWEf68uZb9eL1DaH+rxpQ5c67ZS68Z1NcpmEqVuM1quaJ1odaZvF1q50OrFFkmwQUIJHa2WWRynyGGJZIF67WSxbHYKznoKnUhDGDYZTk/VanRorV7qG2Mo+A0XTCYm9kZTJXYLXEk6CaOdpyDkFJiikoOSghMUffGbp9VtE+xsIsEdnu31upf9qoq0Zu9LrDEfBJPuCYFWB5nCWXnj8NfbLEyMkZ6io1nqw7BWIQRvIpsqwP527D35/wdjd2wWW7C6/9BO4x2/5IFkx21G4JP9Ky+/hb4IgLpXdOPlbkFrD577sKYrKuwSU64G4T9vtGS9bcze0LpRrs9cnh94PjfW1SoayY2QCqlPUFd63TifV37xf1e0rNyfTpw35enxA9t2QUvZvb+aWqO890pdz7R6Zbteqdsz6+WJ9/UK1yfmFChFWddC66sTA7qxY0fDXsQODEBUdyZnV6il0lqhlgJ9pWzPPLeV7wJL9ApalZQC9I2+lRsELrAnCFbYgHa0C10Dva6UIjQBLRu1Vfr6zGcSORxPZl7qa0AUqF7tjPujFaTZ++0wZyFpREvh8d330HZlvZ7ZLleisxW1NYby+qDPj+pjryScaWgvPaCyF4fy2Ek7zGYH6q63N4IH8n1Bzr8qIyEMX1z7e9DydfliaQ/3A1+87OMA+0E+ElPxvTkYhS/31e39AH7+eK996HR6cvfFYMcXIsRgBo++tDGibT+rvHid0dfr3fcEey/L5Ldun3Rc6z3I+3xaH4am+7UfRCl+6Rv7AR9f6sD1yduvsF3OhND4ytu3vL2/58c++RoaE00L5f136esTd0vg4/tXPD9vXMvKtlbK2on5NYep8iaceJ2tF7VNE4uYSnguwuH1iZwKy5z4xsevuVw2ttJZW+SM9UuYIW7FWE2ixLZCvRq1fbXD0Wz54DQlkkBsjaCROQQOMfDVU+DjY+LVkkh7P8ZGSgZ3bjRIVYwIEX2BqUBP0Z2RhZwyu9OpKlquoEpUU8MPeaZnJ1B0qwa7B+SBoyeH+jQEGhZNjUre/QDzoBhHAPIqTo27h7hkFba4tcuepIUk5kDcuj9vAh8l3Zf1YC6BPZf6NYAXyho7cZvbMeEbyEkyHfy6iVXE0QSKVQPaw4D4XWrJ/+9BfRbl1ZLRr71FKGyXRluFw6t7WrV+y/Ewc7d8hZwijc6n/+d/pH7rP/Dv3n+bt9/4Jss88Wu+NvP+3YXDcWKaJp6fr6y1sW4bsTyRTxBOifj6FRLfcP7wyMPnn/Gt//tn3L1+xf3r1/xf/ocf5cPDe7btShALZmDmfdoaOUemeWK9Xmmq1N54//yemDshK2mKxPkTWulc35159wv/V6Y5cbw78M3/8Se4rFcu64VEYNs2U8vIkwXcEFiWma0UG1jVyPuHd5Z4RbgLE3k2uv/5P32HZ4fL5nni9PojVKHUSkjBxwtMTQIMik45cmw2HtLDxrtv/We265m6Fd7evyJHk45qTZnnA/PhgEx3dMUEAlZjFaaYyPFgJJneaTr8o2z9BbG/W+ARHAi2ABFNpqgVG7g9LNkqulpsrfgeDBibzoR2w4jr+zpVHfN59vPWKxNXWnd1fOEFo+7lc/vTuK2JLfm+H/k2m+nJlyqCOXmaGoiZo7JXtCAE+qgkveFr7y373uo71C8qrkVpKBJF0WAjORISqPXxYsrmg6fdt5+TOroih8VUi3JnefMGOZ5gMQukXbB637H/HUOFv/rHfgxtsGRlmjJTjNSmTMejVRnbyldffczxeOD+dOLxUnh8fOL5fGYtKyEEtlI4X688PT2RRNieHnl6OlNbJU6NGjI1NGLKvL5/xeHUKbXzdC0sTuHOQanXStkq61YIXQhMdtAH84tqakPOy2SNcLM9hxSVOXcCrjqhGDmi2QbqvdtA8Cjt3crBO8aMZufO8BPZN9NY+FoGXODsRB1DwrY5VJyMwvixkT1hC3N8XT2z2lmCpsoh/tweNixQtBt5ZcACqn4dMMiodxes7YpWtYOGUazpFz8D9o0uvMDyb593D1zdhh/tCvWdhh5cRiPEbn0Gz6B7VJPnQZBakDi7Ark9XZoSd6+P/MSbX4tqRHsk54l1LZStonXj7rQwTxN5WjjNEw/vP/Dh8w9kaSw5kOeZsi3mLyXK4ZDJLXA4ZF59tLCkRNxJP5HH9w+8Ox55+OwzPnp94qOPX/Hx2zfMh4lSVqQWStt8CD6iboqaU6SeFjt8UF73e6boZPCqpOnAetl4lz7ns+9+lxzhfskcp2yQcrIxjRSddEBAQyaIMKdgs4yAinJcJncvgExgni35KNHIKkJkShPB5cc0CkFtgLiHF3BsVVoNNN3o3SC/y2XlellZrxdCa6azCCRV5GklTk/cr515yhYUN2eFqhJC9USsu/yQS1Z5BdPqmN3rRHGTyhTYNlNI2Up1oorc1jpjLSpVDd2x74XdGFgHDNjF1/gLEkQy6x+bjcSTzYZB216dDRaxgJI8SDmUGAaa4MQi/7q2agleD3swEZcfMxKJVccSmu0JVWfPGiIzpqNlsHP7zhEmpkCaJht1YEAo9mg+h4YqQZq1HLoia0U71Br4/P0zRz1yWHWvRp124nOcfYcqf5jHlzpwfe2j1+Q4cXeYTM2iV+r5mWk2H5mclPn1gdPxyPFwIkyFlALLnDivVxKNFAPbtnJ+fiAC5fJMaZXWjFm3bhe6y/Jptyl/YmCORhcPMbAkYdPI5koKqVuPIaTEJJncu1XW0ckXwW3kAwRpJEwjzoaGfX5J9QaJiQ9KjwDgAc6SuheMHVx7TE015FbufyGUvQgk44/s+D37c++4nNdB43svoAi9PdfYZvvD3//47g1JUNibzaPCw4ea/Tlkf4odonj5GJtYRb/wmjogoj2nkz24ghA8Y1WvwHQ33nMDvZe0fTWmVhBhXmaOp48IIdswd1eu15Vt3ShXOB4mpnliWQ7Ur7y1iuhyJvm9TZKYM4AdIO7PByGSDpkpRBdVDqQUSWJGo6GvvLpfOJ0yU1KOS6TkCV2VrFYVNgVJ0bUBIZueDwThGCdy8Kq3dmKaWVOiXa5cnieWObEsgRQbWZQuAg1nXgZ7brVDPEU70vo4pJdkB79gw9fREph5gtAhRmWKjciKMtx+FRVLIjqunN8VOtS+7YSd0ZvqTdnK6jJRNnPXeoWmxPPVA9Xod/qgebcEaLBwjSTuBKKdOeyzTuKEcGfuDe1FwSjgrY2RAF9g4cWeMehjUBRtzfQxJmJreKSYQ8RjX7d4xaRjPsraAUO6b4cxb7nYbd92btD4C/BzqKWoigWlF1t+R+HHbvF88uUYlYhdu/GaIdgAeHTzyyEnZa4ILz6LJ83a1KpVMQmsVhp0S3ZuijbsoMgv9/GlDlzfeBX56usTb77yDa5sXLYLHz6PIIWcA8fDETneo0R6b0yycXg9E94uJiwbbUL86d3nvP/eM2CHQThkYheSNLRduJ5X1lJY371jyRM5Rmf7RRNCDYmknSTC4ZhpfSJgN/7VMvs5Yofm1nwgsReWZUZqRdcVaRmtiV4CpUTrdWHleHe1AQUnWIzBWrhFD+9vjGpsLOo+KOYenMavYPR4sG+biK4HEhSri24bwuiyLg8FBsWN0PqFYDZW9fjM0UAQNZq50dztINkVnhwGkZAZc3JBOqGD+oE8nr+Pnx+fXG8goT2CN2TY58PQgsiEkEEWYPX3lZDgUkwhIkxAgi70uqJbga4utIoHosa2PhG2C7FuJpNUC00j1/bI3Wliiq+YcqeUK1pX2kWYPSnuagflnM3cM8fIVhqlQ5QAGpgX+ORHTrz5+EehVURXLudfpLsq/VbNpsf6urdsvVbrR6aQzCx0ml2ySn2eqpBj4+1Hwnz4GNFGlE7XzwgCOWJmkqJkMbgrOmTVuzJFG39wrS8XgFDYIPQzIvDRa2ivFkQ7sZ8JesZg4ETd+48KVAimz1iq0tcV1U6KwptjYo0HpigInRwDU0ocpqPtH4IZacaJEINViLgKu5h48fCYCmkihMnhZSFiFQJJb3NltREkcDgdOMZEjsGG9FvHlEntM5vghMmzNR8+vvF7os/hKUpEQ3foOzBWvNmqePTrjQQmaPCiIhn/RaLbAnlFpnhfORrjkY7pSLI3leWlc4SYzYpKQG7j2PY6khzKj75jxC1Z0o7Q6xZ8yNsq3mFvk+IEshoE6QFJW6G3Qis2sJ5z5s1x5tWrO17d3ZHS5M8f/FwIuwTZD/v4UgeuVldKuXK9PrIF20jTMbn5WWG9dvcpUmrvBpdko+WCkCeT+bkkYbtcQRspCa9eTaAJadafOiwTXaD1Quw2yS8oUxIT4wrds+VsKut1rGclhhtGbQeBMaKmfGKaTJE66MGMGbWzXc6WrSZjG5odQmUU2vgh31XMN8nvvS2E4E1btV5ECC49MyKEvhjWHV/yqBRN1HMEODyo2d55QSXsLyqiHUJQ2+ROtd/7bmN+w3YlqLlxaO8+LCmexdosnVZLA43h5y3sPROU/f12dcU6dSUA/2yt27CqaIdgM1WtVa7rRhJTI+nNghIhIHGlXCwrN13Kuju/Sow8vH9PR0jLgaenM1nVque23qDMmGntyqp2fkRJ1GbDv80HU1tVKnbtzcJdqbVaj00TpVnlUbqSmx2A2ppXQCZhFluku4zZVjbT5xRjgDIUxLFDp1VXtKgbdQztNkh52kN+nrOz/Gx4ujalNDXKfqu+dgNDvLczZMCCB4Rs90E71E4XY9uNJEfE/OSGB1b0WaGR2ETx2IsSo3J/fyTESJ4monS2rXB3MVQkRgvEaPBr4NqNtdGLHcilGs08STDJIe8lHe5OxNghJGz0zet6UWgGTfbS0BiZDkdysrm39bpRt83e9zhw0Z0cpIC6ZuZg+oWxP8Vo4qMDdmM5VrSNPo9XTa5Cv+MEYslaD51BZRiajqjti9DGznPhYzV4PozBRTWlfxOgC0TqjpmoKB1zmI44hOqv0yWSciSmUTFt9AZpeaaUMYOW3AAVm6HECzgVkno/UBt5SqRg70B7gyEDNh4iL4+hH/jxpQ5cqTfa5ZEnhS1FKkrvK1KvoJ0CFFZTkgYo1dyQ3S6+b7aR2+XMdn4G7WgSyHlMc3oWaxJA9Ip44NqXbwtoslK6NfO4kh4ZKNjIThFBounDiYxqqrrCsmHRSqfWjcu507KpN4ds9ifCGEwcDVRBer1BBXQXcTUiw1AFDzH6YCIDZzC4xzfbPm/Swk3AUwSqHV4guwjpXl0p7IF0pz6NDQzd+3BDo6zrjXbRxSrCPqo0NY+vjklzjWrQ3Hz9wNC6HwpDpdwgiu7KEGMDGVvNBqKN0dRao9SNDnvfplVTq7ADZvPAJdY/isEO0HmmrhuSktOCR19DrV8wvM+Sb6HevGfnB2hO9i2HvaIoJidllHswGDKmuAvj0m18YVwPUrT74oKvXaLdWwn7mrDPHnempoOfmC5lNldsVeu7juopRJIEm1HqhSgBdQp2CBHRtPcJrb9oLNpIZ0j1xDz5p4CQ+l5lqwskB7FZLqusTf09W+Syvs/otwJ9r5ZccTy46LWIHbo2OESvlq0HhU6j1+4tKDVpK18DvVZzahAhlZmuhpDUcltfErDr2jud5hBjJXmFNbRCNYQXlY/e9ocHmJ1MpAr+GfrQFRzIx9ADfUmz35/HKi5bmdwSR79XMgwiJbgAQnwBtTns7ogBjPUWPCx5Mrr3kjx7dOaltpGQ2j2VF4QoVVNkodr16M1n+8pgthqMiEbAzT29NYEqOWc/+m59rH0cZMdLfvjHlzpwHaTS3n/Gh/Ip5wBNhBQjc7DDuLTGpoIGGyxs5+d9s8XkG1uEWK5c1hXFvZDmmdA70gqXzTZ2CLb4TlEY/kUtCD1EG6B1aZMOLGm2gyAEOBxsyDB6gzZYj6Rdr7RgPY2cExqEppValfPliWmy7EemzJi3VYWYFlRskFr6TV9NaHuQTKPKISAh0sOAJwzHN7qfbQ7zGVJaczUQscFGaXVf57bx7ICN+ya4wY/2VwfshFtwad4k19t8VwsmNSRDQgbXN5RIqRczT3SJI4m2PLVecJTDXiKZw3OvnbL5QGoyenSQBlRasQHU5tp60hUJK7FuVoU3+x7ljHoy0MoVsGHr092JmBdiTuRkMMckMAlozxZUokl7SbMqpWzFmWOBmUCOpkKivaExmGtviES1asEOfSM1WDLTKMUkpTqCpEzoFemVUio6Ap9EpthAmzEzRU1aLN6eu3cI3lgXwRytS3OrEWPGSS/QVtbrSs423xhiZgqVKJ1WbfZMnIkae7FB9q6EtOxCrlmUVkxhpGHu0kEgUw2mlGjq+DoCrvWPNQRXsJnptZiSx3WDYBVZEgE2qsu5WSLoQVFtlq3h0lfBYb/eqG0zTT8JpFpMqUyC6UN6EiYSSD7vFoLpMjZWmtp1DMksWNKU6RJ9aRsUaKoW2OCvdoPvmxEaQowMX7wxh8luz+MDyDgCk5NdG4wgMSYcNDrzz/ehNr+/OTkcaAQRW0CeyITs1bmRMCROlpBIBN3YDR8FuxcIlIrW7iMwyRMrRajo5ewtjUYIGZVq+2VbjcGZAyFP0BQRU/mRpkhQQoflMBMTIG7Eqmo99IHW7D3wH+7xpQ5cX/3GN5jD1/nut9+xSKWJ01XbSimF7VzdjiMRQ0bS3S7JE6dgeK0qm67kZot5WjLIhNmWK1Pvt/kljSiNOg6SHO2GdBvIHLRy6x2Z+NOH7bpXPtPdka52yUMw1mDOmd5nRAJ961xCp65Xoy+nSEozEj377ZCng+HfhFumq5jIp0N9VZtrp3lwkuS9jo1em2WQIZDyss9ctWrUWNRESyU4fbZDWiZSXkghoWoHjHYl5pmU8z5HMggZqkp0pfEgpik5zBkTybJMP9BNSDcgkqlyobbCernANTLNB3t+sczNknrr4Ujv1F64Xp5NzSEljodXlLZStjOPH95xuV7tYO9mf245cCCFiZxnppyJSQFzti6tEINn9G2lKWiKzKIshwNzSswx2AaOCWJESAQ19ZK0bSAJ1UDvQpAr6t+rnl0HCfCyPzk0HUUIMZO0UwfchhF8AqbIQnItSw2kaBY4oVVjZrp/U5KIBIcHc2b3SEqBLJWgSpWAdAsakrwSiBlCJkokx0aQRiibV2J2MCaxQefYDHqz3kkgRTs8pXXAeiUGiSdbhxIhTqCWWIhU+hZN+ipEQsj2mZullbU2v9cZSR3RYkLXTQYwTKuVy/nsgTsRJKHaaHXj4YNBvCEm5vnAdl3ZtsL7d+8RIMXM6XRHyrpXxJICB+1mGzRFcz7vnZSN8CIxElKkl+IQtRLSBF1Q6VzXqz9XNuX9OTvMbfp/ltxFQhoyVGq92xARiUg0l3Z1JsYw5uxd2cqF0AKxJab5tDNeDeq0/RMl+lKyfmaKGQnZAlq0BFV7o6uRdMCS762uZjTdCikdrHCLSkjQSqe3Qr1eaNuVph7k0kRMCTBWtknqdS69MQFNA+8+XDnpHdNVb2QWX9Mi9rlj+OHDz5c6cKUlkaQyn2aaBIoY0kwDLYEchB4CEpItkNLtE6uSkqlAo0qeIhImJFjfqzmtVUNgDpldYUHN+0gISMpoitZcJVKrQVfSQcJwPzWVgSFxUlvZYTtpNhfReqHWlRASKQVixCi8qoSq3mTWAYOTq+zQSZpvor/2pA5yDEIGSqeADF8pr9Aw+nltheH7A24IiDW/A4ExiGVK6oJWJQXLzCUBEmkajAshw4trsLoE1aHXaAebyphFiTc4RAfbK0CaiTNMIVvPLGY68QuDzqpQu9C6mRNKnr2aC2y1UWunVOiS6VqpvdIbTJMJ3qY0MYWJGDMpRkIo1sBWoxDEaG7XYZ4hzl75BeetWKYtMVs16CaCOFMyYL1GdV8ls4VQNFoPQqTRxcV+k/cdg/c5UJqK6foJrqXo+nOoqXC79Jdqo0sxGrOIJwV+/b3Cko79vDNKuyo96M6Y7F75gFrmH8R95grNQHeIHlgFG5kYIE/0r6lV5dKNGNS9sG8UI834nA+BXaFctCLSIJh8lWKD2FtdreoR9b6cDSZLN2PJ1pXamvWq1ea3miMcwlhzoCGSloPnAonW1QSIRZiPi5FtnPggYjNQg67dVVhrw44QI1J0tUF8evdZKHxt23U0tq8gaTYYj0RpSi/qqJvPaQ0YX8IO74vGW89Yveu0i2MHTwQjYVqsSpOA24F5BZgMElWhV7W5Tgb0GEEd3cCCprjQdh8dMkmmyj8+l1gbIUggH++JzfdtMGfvHBLz8Y7dX01gsDVt/tvuRgjCGOceIOtAY2S8eW7nzg/z+FIHLo2dTiGfEhlsUwfLJqVmWDLFG/6EiF4bw8wuU3BpSVLIqCY7fEKgdEG7QIPZS3BtbmEgw88poNEWWtfIupqKs6IGqXhbyWAcgejHkPgh5YaVrTWqNkKamOcZyDT1xnWz3R/cgFEEWtn2zzPLbPBECEjxg1WB3onJMPJW/ZDoFtBSTuYh1TpaXBw0CDFnpmwNdiOcRBfpteBTGyYlNWdiykhw/cPWd7JETGEgkjbr4RVSiNabwb+uQ5RYrFdn6tOgYSIdJvIB2raa27NTjInJkszWKUb2o/VIWE4Ehx4vW6XWTusBme4IRRDdqK2w5CPT4cByd8cs2TkCiuiV4Q6QUiSlRMyJOE/EUfHFQOuV2pXQlTDNrpxg27M7TKop0+uVLs0O/341WCoEc8I17psdJNEr5OD2GE7/7l6xqdhg5xhxMMsVBQx+RDdbhymNQtuDiUHj7H3IMTPVabtfsAUu1KjpIWXveTYTnu2bsTpDsrWAgtRdZspgL/fG6s16REYzoks0UWRsQDum27Vubd17kCEk7+sajX0rF+ujiBlq1lpptSLq/UiMkNG9t1mrEQyGIkVxy5MQE/P9PYMhW328SnLk/vDWejbdtlbIgZgiMWVq7VQV6mpEF2PvRWoN1Nb8rKgO7frn0eLsPUh5ZvRK17UipZkVUMp2bdTYwTEY6cWG400fczx3SpZgG+lQHd4TYj46tN5Zi9uQipByptbqjgTGBjXyTIJm7MfeGwTb9zEE96nzHkAXg3y7zYRVxZiLCMvxFSCIBpoE8nwiL0eWV29MYqtu1OsZfP6rViUG9ziUSIpKjLfW25547qf3Dx+04EseuP7zL/4id8fENN0TJ6fGpuzsNlNz7j0h0axCgnsGBTq0q4lqikDrrraN9RDS5B0ioK9slwutbKQ87ZRXkW4q4SEZJNODD+IZG8cggOCzDVh/Rz17EhvONdKBSz/Nsx0UROp2pWuwd5Dc4BCTnVovq23YGM2gsEIU4VLwRr9lNpOLeRqd3LBr9aZp8+HdQS0XEXJMtmF8lsiGKM076fm8Usu6+zwt80KKiW3r1HI1eK9W5mjZV/E+gl3/yhQt8zV7Ez/mxAwXSx3ViIkBH+aZZV7Ytsq6Xql1o9OZomWQW8UGV31I4DAfqNW80i7nZ2IO5Jx5fX/Pmhp16zydn+hBuEsTB1nocYJejcJL3uGZ6fiaKSdSjoQpc5iPxk5UuDw9QCtI70zTjJJQovVrfEA8DiUFtQBQ29mYfzFQNRGSqSjQhRin3XjzZrpXCCHZDFWPBOleVcGUu1On8cN/Q8QIShKXHc4e/kp2aFsWoa3R6hXtxjJrmhhMVaSTHFJWx41NRcXtbfRlUGQkzqaqr6Z+vm0Xxlxc65ldD1M7U5pRiVQCrZxtzKAXUsj0MGH8uGZQqURSmFCZ6Ci1rWzbmaBGfirVoErVRgOWaQINbFVt9MAFqe+XO0oT1tqp64WQhZQjy3SkJoPF2/XC03Xb9/O1mFVNaxWRbpCrBGoTDw4WoJdk/aHSAcxBPKXA/XLyn+2s6xWCmZHOabL1tkNkSg6R5PdZ1WSvOo1jnggSKTquCQRR7pcjvZnf2vV69pUPh5QpGvxfpuSfQmBJ2QR4u9H2e1AOU2aKia3JjU7fG3fLEZFI7UovGzFDngP3d2+ozcjFvW+EEEnTwt3bT6wf2gu6PqMhcn585vn9A8ckbHevkTxxuZ65/zgxL4sd1oOP4XnQmLP7YR9f6sC1HI+c7hcOd29pyxFN2WcENgRnaGk0plSI1HVlcCZEmwU5EXrZ6G3zKikQp3mvrLQVtvVKLYVpXjwjtaynYoEr5Nmmznuj94rWasSPGKnXC+OOdTJxWiygtGI9CuzAydO8z0W0kmk9oGqVVa1X+1mF1C2Dk5iQbDIvASVPwQNxoNOIXqUFxSoegaDdqcFivY2QGSKcUUwsWLtSNTk2L2Y90TqBTg6K9Iq2M6UJdXOn09aQVmjdMPne1FOthmgzuKUrNINBwed3xGA/eyi0wLUm6moq4r26TUJvbG5d0V1b0K5pp+hq9PNS0V6gRlQa28UsPlrfWOsVOZtL7pQSSz5St5WyXpgmYTmcmJYD+TCR3KMtTELOVvlUhTwt0CPSG3k+0GVGxYxKNRhBImonpMneWW2kfraEQyCFyRitIVjvJEW/Vw4LarOKBIga6Rpdlsiql2lyg8sxLqArge5+cmZhEyRQeiUOlthg2vXOtj4bOUfFWIPjmtOZcnKI0qeOdLPDOwQIkzP9ArVuntsFglPZ0UZZn/fh196z94MrrVzJ0SoLITDNR2q90ttKEkFl+M9FlO7JzITMxURz2ysul4PBdApTM68vsH4ktVK3SqlXIgYxFlUez48oBkPnFKzSbWYDVL1v1HtjW1dqqZb41L5DfzEK6v6IKkoIVlmindbKDoIFTO0kaHeZLNx2xX4iqPW4CNYbsjkw16ZwN2fB1k1vG8XZqk0iYzxLAqyr9fJqvZGOVJRrq5ZsiI8iYGocrXWKuvCAV9uFhoZIlUDs+H1urJcnnNoFtSEVShXrbzEQEWMFp3xBCbx5+4acImGeDYnulfXyTF4mnh7fGQwbDZpdTgdHJ0Yf/Ffm7P9SB67D8Y7TqxPHV2/ph3t6muz8K2dEbEMabdkaoNfzs8ErwQzwUp4IIrTtQmubL+jANC/EMAJXI28btTXm5WAzPL2ANmpPaDCceDii9lbQrZOmiZgi5fq097tUZ9I0A+pOxsWx4kCaZiNE0Ok1UZuV4ISEbCZuKipknBEWMiqN3QKz2wAvBLoWYrzZJIhk72zZwKk5YEWIM8OiQXrdzSU7Ct0ZZYixq5KRPGKsDj01Qii7MrUdJz74iHoPAUvXxYJWF4yF5AcmvfmYszdttdFrNRxfxOblzE/C2ndiZoUB68eYzI4pkKdkR0kUG1jWbj2gGBUJVn3XbWVbn8kSLHBdL8whM+XI8XQgHw9Gt44QJ8vSVYw6HENA+oTQyNORHs3WJBDNSkM6QSsxz4b5l07TA0E7QTpNJlLMpv6gleTs1Np9yFc7ta2mqq2Brskr8AZifVh8HacQaW1D6KQAxXX4Qgi0VgyiCp5whGgHbow+zgE0e57B/0w5+YiEGBEEczDI0aA/EWuk93AxFq4P6Nrcn6LR3KXtlprGn2qlbs/WZ0ZAI1EisV5pdSVJR8UIITkvdK3GFsyJnjZDNRDinGwtdmVu0UgHEqi9sD4/sYYL27qi2Xqt2puTbMz/6zDPVh149TFsc0L4ouqE9kYKgZys4k5psioDG4tB3UfMBbZVTH/UyKWCEomuAiM9731pkbhDywFx9rv1iLo6Bb53SrN+EWMeFPxa4z1TMQREsivGYIE22n2PItbLFztP6D4u4exLgycNqTEXakwGrdtIQUAhWT+yI6zFFE+MwRzo20YslZwekDevSGkmp5lard1QtpWaI2VbadrpwSD2kL5vfovRZR+9rx/u8eUOXKd77j/6KiHfsQXT9zJWmy8CIjlb01QRloO5HptfTiNNpifY07Qf8q1hX8cyKZHA7GSDvBzp5eJOw5Xa5FZxEdBuaty9VFKaCTGhd28I7pHTNjwjt8AlwQKA1m60alFnv3VqsWAV8sRcD5gvT6euFTDBTqW5jmGnXlfwiXjValYkYCZ0ITp8VUnJmtYSMqSZm0r5szGzWje2GZZZp2jsvjGcrOJDrwJt2wySdaPFEJwLpzY7pq5NF2JEK2jr1G31A6RbVu7yVkK34V8ni4gPUlp1NjI2Y7eZasD/m7w/ibUvz+56wc/6NXvv09zm30RERqYTG2x4mPeAkkBCzAAjbL8R2BNLDGgkGMGEARLMEEgMYAIMYIYYwJQBExASstCT/BC4hJBKNGU/N2QTGc2/ufeec/bev2bVYK19bhioV5XpB1Up31RExj/i3nNPs/dvrfVd30bYnMK3xXNrDa2KVntOy7qwrDN3d7e0UhinHbf3L7jZ3V0dsqdpYjjekqY9kixaPThLT1H7fNPIfHowKCsNIAmNE8SRnLIxSmkEqRb8uBhMGMPeC3mjVpxW7YQObz67ExwgQJiI0V6DpdKbbi8EO5Q2CujacdaiQIfS7DlHCRBGf1yobb1qwJDxOtnUYkQe2Zb5wSY2xT0KPZw1RKFWa0B6VGrfmGtCaYpqMQKBJovx6Z2yVooHjAYZ7DMVIzCpKsEbvRyxHZdEYhrtXkMhQMyBzVpsDC982mnUVU2MnBPj7sjl4Q3r+cQ07lEtNiFIomslh5EcR6b9YM4mtTIvld6D74Gbu23Y61weZoYxM00DDJmYR2KwLDK737f30RtHku0BoznVmzvMZptmBA/Z9k1+zJrvoFyvV1t3273QtV13yiEOaHfRcBDWZbGCqEIIer32DcfxrDDMRssYzMnhOJdMYFpUs8faIGhrFo3Za+4hQnMbLFjmE60aqziOA59945uUeSGkzHR3z+F4Q0qJx3fvDLkhMLdE0EirhW9++gV59wmkG17+1kqK1gBuUHT3RuJ7/fq+LlxP79+zz0LOj9RpokXDaofs7gTzmfNTozWltm4sGsfra4EQzZ7kdn/wOPLOWir14ZEhZ8ZxMMNQtyspl5neLmhbaOXC0iMaEjEPVpB6o9VCKbYhCyGwnzIxGNNsXrqJIPFoDKqxfBqgYmFzsaOt0MJo9OTeaOVCbyttvaAyWQdEYPBukl4IYk4GEiCPA6XOmDDEDnQRgTTQdcWu6k7wwoBTsM/rTO+NxEhOWPhlacjl6To95SGZc8JmXePLctP8mFOCyCYetqnocjE6c6+duq6++2rUVlx0bJNVHJPBdDGgpbJlaw3J3Syu7rfOtBOQ7LRsSShKuay0tdJ65TTPnOeZN2/fc9hPpH1kOCaGXSZFE7oOQZCw0FulVDNYjSkxTjtidA9MOt/55Nv0ogQSpXYaVsDyMBqLUxtRFi6XwvuHJ77znU95df8CrSt1mVmDGFQowZhg3YkxriVMMTLmkTEZs+1cGkji5u6W/X5HW0+eMGvBiaEVf+wLPYgzJs1Wacu8qjG5h2FkP+yhW5ry+9OFtXSm/Y7jzYFeL9d9QxAx8XmvSF1tcg5m4KsB99jrLLIVF+EwHkzwXQoPT2diTKSc2O1G1svjtTDXYnT8AAStNMxKKDprU8TEydVl1PYZp+v1uq6VEGEcBz782lco68K6LJxOj6QkluQ8ZFBzdV/mhaeHC3WdTSPWbHVg6dSBVjsxJfJuorQV6SNRO+3yRKyjkVbAVwNONgom80DdCSd6lEp0Y9zOdU1hU9bg0gETK2stbELfbb+GN3G46D7o4FOmoRKlW/yIYLKPDcQwNwoLcaVbErYdLt6Abhoz6ba7D1Z0TQUKQcVNqKuJ7dX9V1OkLBdO54VSlf3NLYTAsD9w+8FXGHc3xGSp3b00ammspTMehLIszPOFtS3EMTMedqQQfO/qAIyf379hd1yffPs71PnEYRxphz0tJ1pThimZ1UhdeLyY47MJOIcrrLUW66pzHnh9/4LshIXSG7UUxmFkN02cH96ZsDMkS0DtVrj6OnMmocF2aHEY3aqnMtdkNkXAzX4kOQ35vHTKbIUjD4moxozqKm6CaoUrtEof92gy2nYri//OMzUeLMivmbZIW4FWCHln9GERpn1G6tm64RTtvnOrHukrPZjXW0yD2cT0Dm1lmU+ICIeUCN30aGVdXWFvhaJWKy7bTsUCGtXzkLYucyB0cwLp2liXC60YDFjW9boEr3V1dpjvBJbgljMRLc5QAlrOJr7cQH/1iQFF2ibKtI5uucyUZaX3xnmZOV1mHp8emSZLbh2mTJ6MCp8ChN6MAl4Wai8Gz2qGMRrzDSPuvPn8My6PM2XpPDzNFI0okTyM/lk3sqyc5sq7949865Pv8LXXH1HXhfl8oiZzGtjE62xkoDzaZJEzx2nPfoisqlyaEsLAy9cvORwPPLz5DsuymFSiKUkbfV1ZL0/mvJ4iKcZfW7jy6MSbzKvjC6Q31lp5f55Za+d4c+T+5R0Pbz6zPC3tpBCR2pBWkTpbQQlWWCUFdxnvXCQ6+y7w6vgS9dyv908nYkwM48DxuOf9m0/NIkiFsq4G5SIkrRSx2I0YnBUuStBGi45K0Aky4jgKl1KIQZmmzFIXm/pbYykLt8e9mVpHKx6dTqszp6f3LOcn1nXlspq9V4iRYcj02sjDyFQPlKXQ+0rvC2uZjaAVXfC9uUI43d5cYYzyvQmYJQ5shtGiFngaQiTmEbm6q3S0r2wi8u17jeRSbJKL0ey0NjuqWoxcjIvg8+AsYxOo2yJOoTWWxQwWJJh+TrrtIJX6/DtDuF4fpnkWem3UtRC0meNLNhPyp9PMWtU0W2KWYcPuYNEmBHpfabVSS6NWI6G1VlnXlXW1z+c66f23vn6jFq6f/d9+jpvdwFcPN6z3B3RMJJS5zPRSaPPKm7WwrA7fIEzRjE1notHGBW7HyeygcmK4OzJGyEFIwOffemPRxDHCsrDWBXpjQngX7KDYjGyD2ML2iWSLzl5JwOAw1yVmdF1A7YLfB1PDM2R0sYV4DMo+RNphj+aE+NI4ibKL8E4Da+nU1Tr20DtBlZIi4h5mw5SYAoQoaI7mJQeoO3+UGChBGEOyGHvgsJt4+fqO+/tbjvsdrVbaWijz4l2nFa/lYlHiltIcroy8EDO7MRPSYGiYQvMusMyzvf+lUJfCZblQa6GvhaUVZ9V1CpWcEmPORlM2yJ2TTysxJfI0XiFEW1b4vkYidFguiwUnAktdKMtKWQopRXa7Hcebe6bxQBKzFGrLyRIByoKaLhpao40jadzZzmRe+Mav/iLf/NVP+PY3v+A//vJ3mJ2BObiEIoqwT8Klw1oby7rwK7d3LMvK0+VCj9sC3frN7CSDFes8x5x5cThwNybiMMG04/a44/z0KSlG/sO//488LgulVuidHILFhNRCddhxk2Ak38+emjUb0zDw9dcfkmnGksw7piFT1x1lecO//3/8Jx4vZ+ayEtRagByE2yws6n6TbqEUBZLCo9o8HUPgay9egotQzwq7HBmHxH438sm3PuWyFC6t09aCYCzY2xSYxbiNtEbFJGNDEFrO5rhSO2uH0O3FPXZzsZ+GyEf/4T9ws9sx7UZuXh75rb/5B9ntR9IQabM1QyqK1srT04n37x/49mcnNjuswa+x3TRxezxyOs/sxsw0JE7r7Le0IMNgomdHFuyKdBsoRxls/LEGSjBrLMuxCuQ4INnYkG1dqVRiiOSYScNIEms0Si/GngwBcqLOK6WszOvsZ0skxsRhtHR3iYEYskGG2tB14WmZMWGzuWAELGR21ZXNXZ8Y0GoEstaaNWr+mgY6aQiEHHh4KlzWhsTIfkiM056UTXfWfJrr65myrqzryrIak9TcTxYe3j+xXM4u3/myKbZyDZ38dXx9XxeuX/3sDVMOfJrfwCcRiYEsgbV1Nzq1TsM0P+YYcDJ4mNafDSwfQmZZFlKKHN/vuT+MZJRQK7/8zS/cq84YcZ4AQgIuarESqsrqh1IQE/Bq91gF9ctCnM7oH5iKuAO3HXxtyy4QA8N6dHfobgvYGANjEqo4466ZozjbxLPthQCiXA+vGN16SYQuJsoOyd6rALRifof3u5Hf/iNfI0uAjzrDNNJjJIrRcAMGUZT1cvUkq+vCWpxNGDN1P4HMNH1kGkdKXW3PdJkpa6eUzrIUVoe8tJqxq/WTRhDIMRHIxJbZTEp7tJA70QRkhiSm5wxCHiazSGpKq414MIJODPDudKKHmXuNDNPOdTmVVSpVjR2q2ux66Z21dXbTDkkDrXGNtRhj5DZNfKqRZem8vyys3gwktwMLIjzQzWkjZ14ejxwP95T2wKU8ETQyRNeJDRMpYIdhM9++3bjjcPMapJLGid3xht/6Iz9ER3g6zywaTVQqCkFI08EIA+uFKdiiv7VOCxlQ23g095CTzHj8AK0XxnHg/tUH/PYf/a2knFmWwn/6hW/CYpRvRcl5R0yJljoDto+otRilXZWVTvHrVUXo6UjpZ5pWpjRydzMxDJkwTJT0nlJtv9ODYq7nkdMGXwFdC0RjNi4oOSWkNVQqXWCl0XpnrY2CsvQO7xfmAnca2N/aZJPSRAgjl1aQNDCMI1+5v2d/f8/xzVvm9g2Wy2KsziAM42AZZq1yPs1QLbEcgbIWSu2ES2WI9vlKtEG5qU2IiX61NGt9JRCIEshhE5tAIZo8RJ20FG1vPktgSANJfGKju55RKWqWV6VUzsuC63QICH3KvoMFNJhgGphSYO6rR6MElEQK1sTEZBuwppXVsEFnG6pDmEackRyRngg9MGhhdSh4N+4Yxx1DSlDOtPlgEL0kYq4Mw8o0LhwPidASvURy6GidaeXiu26HlsX58L/Or+/rwrXWRpDOWTuDRFKK9CD0Lqa2b428UTGDdSkb02YLbRMs+K2puqOzL0992aytmvB2y+eJrr1hw6ddDOvgbQA2Q9YtL8m0Wga34Ow4DVzNa8Xb5S4YwcTFqOrduU03Qmk2RZlI2P69NsOwgzO8wBwJmotuotkwGJqgBumJvw51KnuWQDpMTDmzG0aGYTRmWAj2noRypbNuoZbSO9W1LqUpxXd6qsbENEcB9aJvF6q3CqAOHUgnhmSmqm7/Mw22W8w9cY1hiNYhp5yIw8CUA+6cRB535r4uZlNk+U4mfoxpIGVlGD23CTfnrdWbis05YiCnhPZKHEYkpmtkR3DSTh5Gpt2e4/HIR69f2dRbjQadksGnSSCMA4f9no9eveTm+Irju7fkcTRSi9giP017NuOM1QvXfnfg9csPGEJnGCemw5Gvfv2HOC+F8PDIy1cfsFbLrLKMMC9c85ktzK/1TgmDkQBckK3a2U17Xn7wEUNU9vsdL19/wA/+lt+GivD+4YnXH32FPE6c5wtCZxqPDClb5pxbc9W6UiReGaWLw8cxRO5ff2g+j9oZ88iL+6OJYyXw8uHEsixoM8d3s1wJJJu1DOnqlZaTm9Z2xpzpvVHWwrkopa7UWhirTecitucadxM7D4k1OUn0oEg8niMy7Cf2ZaX1zt3dA+u4oL3bfjObdZGEwDyu7KaB3W4iSzMiTqmIBoYUnSAjVOnX82KI0RqG3mnNIkeiBHLE4Wxny1YjQ6QgSNKrr3UK1mCafCGaO4kXuSFHo/IH7EK3tphxSma0jIJT1UHY7UaSJnfsN1KN2W4JKQc/80CqIsmCJNVt4YJEkmRGt5mzpGqF1KwBGAa7xr1B22yy7PWZQUJ0lEWcTbyWZmGgl9nWCEHNieXXfAnf69f3deHK2UIhdzFwezMxDgmJQtFAbd0w9TQapVPEzWZ94blso1CgYRDBNGRevbhn2g22/J4Td8cHKB1pnaWrY8VC1MbiCvyqsEYbhwOYkrxbnEpXiziIIozZl70ihBQsEUoCadulYB2s9GaLa78I0jSauFqM2WjtVqc0cb1LQ65su04TK6oxCFPOqDZKV5aqrOtm4gqlLIw5cjMN/MgPfMhv+vgjPvzgNYebOyMPdPPjy7k+U9un0Z1DzDZqXYtdpKWxmzK92wE1eQ6ZaCeilvUUIYTEshZaq6DhqkXKQ7I4lyHbjVKsCxAxiHOczPA25mhBoZiFVRh2tNIIwWm5y0ovDWkgMRMy5I7DdL6nqJsWxuji0+6GPEw0Lc8uFjTvgI1QE6YDNy9f8QOa+fCDj1gW5TJXvvWd7zDtJ9tRDQPhsOPu/gVf+4Gvc7h9xePbN7z95BPOdTHiT1fCtGeMdh1Vtyra7fa8evWa+2kk5kwcJ37ot/4w7x4fmN6+4XdcztRmEGhOmTTsTER9OVGqdbW9K2sciG60enE4aBx3/NAP/ja+8vIlx5sb9vd3fPz1r3NZV9LbN/zo//y/8PjwwDLb4wxeuCZp9L6ivUKrrO55J70yN4cOQ+L2xccMKEnMoPjFq1dIDDxeTkzDSF1XtCu9Nprrq6TMV3ZppFOHCG4VNAyDIQpL4WFeWNeFus5cikHMaGc/mcj8/u6Gr3/8IbvdDlVhvizWv9kYjkQYpwm96Xz44StwR3QJuLTEKN8Dgf1+x/64o9fKZVkp5h1GjLDZE7XmDWlXD5HozsRUoiSTjvhgLAIhRZbV4PVh8M+8VWprBI3eDNo8ZfIE6EGYdhntNnVZuoJljaUsZhjdjfxxviwQhLv7I11M5F87XM6muYu+MsALV1cxLacqvW5oRySHgZht+kNgNw7cIoQ8Mu52plkLgTRM1vQCW0KDEdEyy9Ipq1KK8P5UePf2zPu3Z0optiMVcYKVF2L5DVq4fvPXvsJ+isQANSQ6JjrtmqypDxMlDEb3bNXcM3ximYZgMdcAeSTILSlGNE/MpRF6RBgZ9reEXonaGVYzNO3YBRsInrfUyTma15yqHfbNnKrF/f+CBHbTziaWEAjD4OymxJAyWhcLJQxGE455IIZIlEbYmYODSiBkp1hrdaPLbaDJRKfH9+jWSthl2cuFUgtzLVa4qsFqjw/vuNslPnhx5Hf8nt/GYbdDdsJpfWCUYJqv2AhtwWIV3EXabwJ13zwJnWEy70QUYo6M+0zMFtsR20irQqvKUItR1nujtZWkakU5R4Y8eqq0ELs5TRu9N5CyYfshBoZsTUJTqIjDbUYnti44UMtKbmY7FOJAynskTPQGMkFKySyeYiRPIzEPaB/pbTZm6NIoy0xXoa2QQud4uyfuDhwPLyAeaGSezg9mgSURRVlq4ubmyA989SMkBl5+7Qf4+Lf9KA+zOXssy4XH02zdqkRiHBiiMg5m/Eo0BwtNmd39PYsqh7Xy+gd/hMdLoXVlPwSaBne4aOby3c10d+jBO2G4j4lAtfy34x1tf8M6HshxZ7ub3okh8sHXf5jh8cz5srIb5Go71d3SKeAaNTY+J4zY9REFUjrQ1WKENA3EF3duGZU5/KZMqVB7gDqzNih9qyvWRAZZmQQ2fU9KA72u6OWRaV6IZaXUwlALrZyhFcYUubu/4XjcEcYd61JAF3prDMPgh7UwPzTr0hCm/c6yt7qRe8Y0uIlt4/b2yLSbmHajTUNjpdZKLcuGEyBAcZTFImlMz9a6UtRkUNHvibRptRBSTO7qY2N27ZnaOlE3WYgZ7jYz9STmgd1+h6pSVoP3ktiqXV37GBGaKvtgOWb7/QFJiY45pqT05JZhhvZYoRHTzSVLI+hrs+ZOgtklRydTxMjlfGEtzffYLjMg0lXdWxXbTauZQw/jxBADq0DXRuqVMSpDUnpbgcGlBEbr/3XULOD7vHC9ennPYZ9YLyuLiFmDVgHJtG7jag9uItkr5E1PgS3n6V/ScVlxidHdtyWRhszldEJaIHZzrtBgRpS1NtS1KT2YBqliDV1M6cq2i9E+bCtck3VXKREnU53nlBjygLRkhSsaJJiHiRgTOXTCfo8GM7qN497lwxbWpg4NxDAQaSbYTcFSZTGMWsvIWldyWVhKpS6VshRqWznuEzc3e3aHvcWaBGzZ67CjYIVFNs2UGs1900BKsH2X7f5cH+IiXnHXqqjJHa1dwAn0bm4KWcwSKaZoE1Ww3xWTW4EKto8LRjGOKbjgE59mhRiFnqyb7U2ujEPzhbOpKVzpwHK1R4rBvrf34jrf4D8n9M3xQe34UYdeRYKFFgZFcuB4c0v0Pdv5cgESkgZiHqgoRRuX2mli0SAZYXBEAAnkvGOISs6JkAdKszE+iXvmxWh2ZnmCFVSrs88MStUWbUmvFenNGKoOzQ55IFLNE5LAUjuyVuK6eHqAsUA1GDuWGMnjQJNszNWyEpJlc4Ue7dr3nW4KyQuXEtNoqQOqVwcODRFSRvLO3qvmMR9RTL/UIUQXv6vvLDf4KmZj5uURcZ0furk9DBACaUikYSLETG2VvAnbtbuMIjjhzrWFYs1KV4O6FHVou1/vSTO5Nj/HpK4b3J6sQ3it2uOlGEkp0KMizeDJJOqFywguRo/X6/Wdc6JrR5tB/4Yo2jQUJBjsj5N9YrgyjmPtDvuBNiW4Xkza5odoxCWis/865CGbm4+am4Y9fRMgx2TOHHUrVCGQQnAKf/Kd+opUz+AS8zKNeQBwVMJ2n+rXUEzJmuZWqas5xtda6bU5/MmVmMQmLfh17Lq+rwvXy5cvOR4z7z57jwSLHdcSkDhQmyJSjW6sJiYmJ1oz5+kxZTPbFqFG86sTtYIWJTFlYReF0/sHKIYNx6RodE/trmyhbho6cbJohtogD8M1/yalfHVr340jMQS7CPY7alNyjIxDJvQMCTTCsjSSG7wOUYiHAxqiFbRx79BCYxySm+cqOU1Ex5tlSCyrXXQSQMtAqStDmY1hOS8scab3wvGQOe735ME1YS4E1S2yHGzSCe7M0N3hWhUwj0Hww0K9uDnkg7tbRCIarJsOorSgVwgxRitElspiB1h0UolvpTxptjn0YTEq6svFgHeyGpxAY5Ng8MKVghkKh2g2NIg9B/HCbPsbRXohqt3UIkKM2T4MnyyfzV1hXk6ECdLYOewOBO/cL/MDBcuB611ZW+PxfOHd+wc0Zn89QhxG6mKwX8jJRKUx0SWwFBO7xmowEWLXSyca+aI1C6dOFlnSMUNlMT75l/Y8nTRkgltq1QaXuVhaQTTa8pa1VWqn1EZtFWHy7DhBV3eYEJteSJYlZxlOW9w7hJxdKtJcn9eIBPdW9Dh5POrerf4tMdsaBZqYO71yLYAIhBDRGM2418NErSmKpCF7pE5gXRam5PrCuG1Stx2TNRwEMed/th2NJ3wbR8SbVju8FZvyrYmx56/dyC/S+tU9JKXg7EObvFKAKN0LsPgOqROD6QZTipTu6wSBHLgWN0XMfd6veVvJmuIqarXClQSVttlAgn/fpiXrcZP4uutL70bM6nijoteGbUP+jTNm02PAmsTN4ku007sVzTxmy99C0F7dYMBiUmx/nwnBNKiluARpKZT1OarlSn31P/yGdc5o4Y5VJ/phZG7CpVTm+Y11mK1RFhPFBSzWej/tzK6JxrQ/MJ+fqLUiPVNWy9+hK6+PmV08cJyO3BxueDzBuRoDTUu/woMSbFEc6Iwhkgk0wYS+vnsKkljKYjsvUe53tnfaH++o1Q6uOA6EckLcBmiMHRkGQooMoTHuj0S3jalpsC6qrQx5YutjJGSi2+akcaJPxmtqAvXySG2FsU9GTCiFelj4lfMjSSF0YR+E+TzTUGoXwpTsIpZAqcVdKwxiSNEOrFoW6jKbXU4OHq/erkmzfS1IWREio0RUlKf1wpRcII4fRhrQFojDQAqRFK24RCdihsGmITuI1ufkW+xAjWoygtq6WeSk4I2LLdZ3qTMdEsMgBBYSo5EOmhqMgxnqoBWKE1laBBnMCSF0olZSgGG0UNIikXNX3n/xKdN0BISnyxNh2lFYWXTlMl84z2fO60KNeN5SI+WR2V3+hyA8rQupdfYhcfJcpyEJc10IUdjlgbJeOC8LpTWIwtjs1l9aJTLY/qgUpjFRql17PewNflIQoskR6EiE8+VsZJEQWS8XzpeZp6Wg8sQ4HZAQWPrqbiqNMs/s9wcjgNRi4nxtVFUmDZTeWT308GFeyCnRmnBZZkoXmiQLuFSDOc/LbNOcdOplZj/uQJW5rGgc7HfWQmnC2pS1K/sYucwF6Ssv9gMv94khwnKeoQ7EkBjzQArmSKKl00uzrDECY7DdbHdvS9hspjD6OgutFroG0zdqBy3m2m8LIibZLNZmYrUJJKkwCAaPepNjRtImYwlyJmKwbfQpLtOI6vEtqjRJDMb7N7uyKpaYHhJjLKRgYaCVwsZgT8kSt0O0iQ+djAzSO4niiQYVVdufBRRaQ930FzXkJHRbjaBq75sEep1p5WyU+fk9shsJYjvOvphQXLWh9cIwCvevD9wed6zliccnYT90CBcaZxfbf7lI9V9X0YLv88KVpgNxnGBuluMjQo+jd4mV0Npz9Ha0DK2EoNEMJ42sAWnaG049z5xOZ14eR1Ie2R+MRXZeV8pltotCokEfwfz4ts4wpQEVY+GVGG3iEhjGHWs13dVaKrobCCkbFJhAY4QcCQzX7jaI0pIVjpgiwziSxx05D5x6M0GxWLTINV5DhSDJDnsx66IGNjeF5Op/lwKoXq1eWm1GcojRCrcXBO3eJ4v6lGW9qwXSWUdb1kIpZt0idBZZAevuumchufzHZrjWDWoxDMd+zplQ2pXQ1DKdkCt7DCwHDF9iR/e+28yBTb+p7jNpfoWbrY76hjxsFL6NnOGzj9+7GJfUIFDYIEHLWutuDGyRII3nnlg2JZnFxrvHXB4HxnEgDRk9X0xoXRZWTVcaclQrqoiReFSV4At/ATuwS3PyQyQNan6C2j20L9LUmgPtSpUtWmZjoQY0GMVfsCV+GrLT2itv372jlIpkM5kOyaQIpTdK68TWCNgB37Guuyn0Tbiq9r12ftokG2KABvO6egPxHB3YVFndb1CdPm75cJbku5nebqSK1Zu+7VAXf8e3wMKoCmGb1vF7zT5D+zyFzQ8whs1vz9m1fdMRGXtXrp+6YibBBi/KpjW6TkGmPzPPKxf3hs0pxvlSDlOqPl9KIWxQZ3+Gy3xhdnXO8NfnTsXP38/m+8mVNXqN+dmgNt1+L34/bPvj50wzg0u3W8DF1C612RKK++Y85uJtOwvc9xCbKLV6npzv/LbrD2xfW32JoQTOS+V0WrmcV3prbOGbgjEhe29G0Poev76vC1ee9sRxJISF3is9dLfQsQ8hxnxN+zW9bPIEUsuY6bhyPw9IWGgdTvOCYvuGYbdj3O2R9EjFcOUUnJ0mGzRjO5boKnvFLErFFff5urg3SyHE/MtSHsx5OQZ6ChZxIr53CWqPFQz6SNkoqdMwuSDRLnIb6ZObq5qvmbieTKLlcUnv14iVTf0vfnBo78+HgwS/V+zgtggM2w2o+j836NX1H6LU1WLiW7fqJBSDgVQgWLqxPZz4DWVdrLqz+NXyxfde26FyvYF87yG+t1J32LYwSrvZOxtZZkMh7D1Qtf2finm3qVoxtoBG88gLElCsI1VPJd6cv3FRc6dTPX5et4Oi49Cn4f/bwZViZMqZaRwYh9EO0t5t0pGCuPEpGEStXrhEcRqzHSK1NkqZr7BYTJ0U7fVUP5C6dS++a7BioF9+T7GMqui7yZQTZe3U2jidT9TWydkeYmOJbQdj89Re7ZbbtUVQ9I3HDdTWnYG27Q2tUKxbPhT467FiVQ1fvxaH7lZESr9CUptDRa2NzVh3g64Daj6g3YqqbA2a4G2HH7C+zzGEwLz9TIJhkhVVvZI1/Cp83rz4VOUANc9Tgjiygt2Xffu+reh8uSh2tlIr2+eszwXY9o0eTbuRnK5PR65NnWJ1bEuMsPyvdr3GuV5JWzOmmxrGm4IvFbnrl1z/X/T5cXu3IE6/FT0LDj9LfNfWmuHwIVjY5PUxHYqVYH2ZW77Nxaze5osVLjtnPIV8u2Z753v9+r4uXNPuyJhHzuNM0plQKyBmYHs1cNwWq1C8wqsYfe9clVYKMZ55eLpwvhTWFqg6UeOBdTryns85SWSRyFI6E0pGSUCO3WACtaB6sA8uIVR1s9f5xHI5c1kqcRqJkkhxJI+jMcMk0iURo5ClkbGMn5ISPQQyMAQTDgudQTCnBDEqfRS7CI3l6zsEAvSIKMTSiU0YCFisvLLGhIyW/RPzRBj2lG5hmhbKGBHNhO4k3VJtzyFiBwoCdGRZSMVsfJCRhF28puvqFtpXO3mynVySShhskhIEUqLiMSBquyxNAjleXd6DLVGuN2erRs2XFAxzlwFdVrQZK1PUcrvA8rZsXzGCjKCZ3gKEyeQDMZDV2HjUDn21y4VIj57eXM3xYUoZDUoojadTI44gqQEruzigdB6XR27vDrweBz68u+Hy8MS7LqynlaUFC9cLdriXbmIj8SptgDacl5WyFkIzIW4UE8jWc6PXbWIxmjtiwmPpFWmV3laW1SZnRelrJ2eLXenApVTW0tDm/noEehPmx0JdrcPvFFq3kMfaq2V1aUNZaNWyqFTNZDdop4dOKSbWrd1ICUMOxKBczjPrMtO60711pfdoO61WLBKETusLFAVsr5K6v0aKaaBqJTaD3tZaaL0RSoBFiTlwTDtis6h6YqJViyYBnJCQrICnQKvQw9ZAmL+l0ql9tSPYU9SvWiuJVw3jVlh6qzSULm5BZvPplwqWuCu6AKaxw81dYjBuZuugYpC54s119Km/N1/02j0XU7SJpz3vMW2v5s1K8GktGMu5otTuyeLe4F5HwN7dXguI0cg04BOe77iSJzM3ayaXMtPXgYSaJlHdokuVHBPJ63gojTEO7HYHi8rplXVdWMtCq5WUMoToEgILof1ev76vCxchEvKASDCSQ0pIMiGdtkpZZkiRFMzCJo6jdSJqH3KMdkGU1YSdQ4q8vHvB4WhMsbVDqTYJDTnTYmaMMIiSsRiEFAJDCshooXhNlVESEevwqjNzYhSmYWS/PzLtD6Q82i7InRdizBarEDr0bj5kMdnvcCq4YsLJ0MWixfFpf+s+fam63XSqBoJpMPduy+voRGxfk1ImxUQKkTwMjEM2plIQKOWqK0uS3ABUaMu8DWXmjYeJvXWpxDH4otbg2d47WivocF2Ua9/iVqyrjeNkN+PlekYAAQAASURBVG5XWq+0YhlgyacQ7dZ1CibGjL40t2HDnO1RmzY30TmlU5bVKNEh0LtRuY3S71lHYqLn4Em5iAVndv9d3eHNGAPTMNjyOgYfMJoTNYrZ9aRqE0tZLT2gztAKeYwQYC0rNZpeJkriGkKLWnBh7zRsp2OZaI0YTKe29MZpvvB4eqTV1ablhke2m1dfkO62WdCjXqclu14yQSKlFM7nM3WZoSzMl5leO5fLzOn0wLqcbS/bk0G4Yq4e3Sfl3pSWjGSkqiS6RQOF6KJ8+3wjnXVeWAUeTieWeTbZggS2qJyuwRoEMfBVO7TgLFJVeq9G5XYXC2ua1PSKG6LWPIFZLDhUYrbDvBuI23qnFYuUIVi8EVjhiCEQuk0wm6jxGcITk57U7s3S82SiDssZScbSo81XV5FuUhS/Ov39fyasGKqxItl2fa0pKcTrJNYQMwZwNMfOKXOwFzXReUie/7ZBoht8C34dtesgGFO8Tsc2Jdrk3HwiQ5W1eFpxMOKIbPeIvWD/3M01RdeZDoRkMLgRcg212QpwTomchBRgN2QjwrRGWZbr1CXdXtcG9X+vX9/fhcu7G1EjDOQU0GjaqB4sgZcU7bAJpo0iWAZNSIkYMz1031EoKUWGvGdwmm3HtVMxk4eRNS/EYFqN6NR5w9kDkrN1Lx1yHK83yjqvvgezApTG0WJTzIcFm5ICaDRyRrSLPeQMIWGgzbPgb8O/e21ockqUzRU+hmNjuy9gBKPU2sGfIHRQ8zLT4D/j0MVGvpBgVFvZYAnZMHqHSbv/6/D8Ow161Cuho3bfn9V6nZb8Cbk408TZQTd4gusCXJvBglbgcEze9xg+eSIWsUJ/jnJofjDiXXSIFvPSuu8ifFrYOugNutmKPP5nxKx7OgJd6CHSS6WshWVunM8LcyjUkEiA9u2znum1uDbJQivpleX8xFILDBaZETT5ntJa3+BauKXDcj4jvTAkQWujlMp8OnN6eE8tKx0L4HQEFm3VJvfu6dvqUJaq2TdKoHahL43L0xN1mUm9sJ4v9FQ5nc5cTg+UUgymXCwSQ4LQ10J1uLbVSozFrlcFjWYVFMScSNqyUOeZOs+c3z/R6Tw9PdKLxY20YM4kFm8fKPNsUgo6WmZIJt4NCBKqLf5bo62mpyvrjNTZTAX8+ajTyGP2+8nxvIA8w87OftUrhB6uO1djBPrOVSJb1ItpLw22tb1Dv56x9tZ2VKM3X5sbjMPLgSvkfGUX6hbIaFB11+eQWLnup+z32H7O73n9UnSJbNZQBo/bZyz2efv3Xk1+Jbq8APvbxtjc8Ee9zl9+jNrZIOKvd7Ol+VIRbq0Z7d9hWAnb76t2T6pNhsHt6XJO1FZZloV1vlwTIUTjdT3xX+CY39XX93XhSrXCZYXSGQbTjvTFnDB6COigaLKupHaLXM8AKEHS1UWizeuVFTcN5uYscYJ0JO/umbrQY6L2Sqvm4UWcCPuJGgIqnd1+shtPA2m8Y5nP9PMj59OZFnznNIz0caAPA5oGbL9uKcqFZlqmZM9Phx0V4fHpPawTE2LRK6WyLjOX+cx+NFZ0TJlGYC0WXzKlwQ45312VpkSNZNlBCFTNLDHx1ICqjEvj/fsTUYUhZmIO5NxtGumR8/nkOLwwSker34gx0TzavhMsKh5oBJ6WC+1yhmXhcLyhSwdR8n4kqyLdNFfV4d0YhJAyQkI0O60etmBKkeRwjUNs0bQ8Us1poAWhh06XSg+VIBXpCdFAQ4k6EFpCVzWGotoS2uCyTi8F1W7szZQsI4pAbcYkffjsDZ9/9sibtzPfevMFNe4h7TmOE/v9Dgmwric+vn9NUuG4mzg/LnA68fY//xIPjOx3O/a7HeP+3sgMIaJpz5jsdT61yrs3n1rUyn6PLoXl/ROP3/mMN7/6K6xpoEtgpjIMGwmp0xgNSuqFYUvSFkFlpO5HUoD1svD48Aathaxw/uIdArx/+46nTz5hlUTPA6enJ6Zh9IypimJU/14XZO7XybOtO7u/cmd+WHl8/4bz6cTl4cTTYEVqmU+M04DkCc07yvJo02LrPJ0f6BrtMK0zuxQZUmKYBlI23Z5o5/T2gcfH91wuT+BQ8RAj52lCviLkNDLuhutURlDyZmem5sOpV2IRZmWkCtp4JuT4vs5JGVFGaxpVCcmYsuiWggwaOhLtwI6uD+ybRGDbgaM+rRZjNccNspzMpdiuStM+hk5io6ybgN/21S5DQa5+mNA8u6zZrsmb8hAHghhBTKKFR9pdaSsTS74OTlu3Is7O5B5RIrgDvCGiasUsDdb8xWxrBpczXPPxgBCtqYxRCDl6c7Yj5YnPHx/Qz7/D4/vPePXBB+ZfGdNzHt+v5+z/df30/4+/jnf37IYjl8tCk5lWzZ8u5p1dsH0kjNb/0JVxmHw/qdSycplnzucLocOQBrQr7x/e85UPvkJKicNuIqTMvK68e3jH23cP7N0t+eZmx7SbzIEhCMO4Y9Nd1N4prVGqMo4HhhG7wlJitz9wON6yP94g2e2XBEKLjBnGbIf4imtdSKQ0MIwTu2nk8ektUly3hE9yKZuw0nN/0mBEEVuOd9CBQLe01p4sOl0bQQbWuXBJs01gXegiVI2wXAyrd0FlbQYX5XFj0220cdtr9SQei26x4fOl05dOqGq4NpXeIarlLwewadhd3Y3otUE6yrJaim0MQg7mn2aVzFoP1GGMHqhrpa7NCL/VWXANSuvWVYeELdhd76JqAs4ekcFTdUfTcimeEZUStUHrlXlZKavF0YxT5sVuYg47ahxJCdJg8FPUkWkcmHYT427PzV3jB37gY/6X3/E/8avvZrtOcma6vXcCkXDRxD4LURTI7PMHTDlxd3Pg5ct7djkhrXB/u+d96azdIKpxtLTeHIUejEoetDPudleY51Lhdj8w5EjfD3z8wa3BQjHywUevqGuBXhmSETlaW0yL41ZEY0oQzbRYemC333mkjTkpjGNiSNEst+4OHMbEY4wcdgMBpZYD58vMqrD0lShKzgEZMrvhFhyZyFTGKE5060jaJvtGKIVEYYq23F/XYu9jMrf0EGxPqE5uMCj12eDa/tsz+3TzBd3+rJvfqGNspr80YtF1JFGHXpsxejfyg8g23Tpk5tPXdihvU0V3lKLVjmp1coIJ+7ffC9t0KLTajAUtmFQk+AQpm/jXzX17N2RCzYpKPS37+rrVmKpgCE3vigaXnxjryguSXt1EzDS40eqmm7R7tK6V1mAYFjtHNxSoFmdGCUtfbaoMiaUrp0slvz/zxXc+5atf/2Gmg2k3ZaN2yDPF47v9+r4uXDc3N4xpz5gHqBcTY+ZwFa/GmJDkHZYLW8NWuHpBW6HXaup0lFYqT09nzpcn9vOetozEXujFXM7XdSWPI13cOy9lT0BNNi1IMFfny2rO3L2ThoHkxrwLakLEaAdddoy/olZUnNoexDBzac0jFXzhq1g2lmPFqJndSq9XnN7EwZWA7QBaq2hbjdpuVxpaV6SsjOLYfe20uWzaULQqrRsLseM3iTu6d7UCrQJLW1ibUJrFU5Te6JhH49NlRUpj2D4s9SW2RLZea6O7bzYc0jZXDdtdqQgahTh6eqoYNGmdJ9cbXX0vInH0JTdIjO6N1wkSzcfN0Y3Wu+lZBJpmO/xCIMhoB4kIkmyhT1Kq4X7k/cDOqd8XdhQGUlDGwU12pyPTZLKG5vuvm8OOr338EW282B4kCMN+urLLhhY4DEbNUG2k3S3TMHDc70kRhhw57Ac+en1PPC9cirl8jGO0CJgU6XG6TqbjMPjBrKQq3B7Nw1Nb42a/Z8jWCO12IyudMQu3+xEtFXH3hySNRGCyXHpju15JF9b9VwlMOTINiSpwyHvabmSMif0YvXANZDENJE2JEn0P681C2hFjYgxKEieH9EYLGEu4rMTDyJhvqMdMrZXzZYbeyUMkjYk4eMDoM3fC//alf5ANlbVdqh3snkslG0HwS9DVf1HcNlzN4LZnSr12zBHmei3ya9Y2+vxQeF1wsfH2M9v/y7XgmOvLxozcGLJf4jjqr/kV1+J4ZX2KFZHry9Hn77PdlgVPmrQnPL9nz8/qCrGqPsOevdu+8NcMSgJbAQOuuWuI7e7W1T6v9+/fXj0mrz92Jbx8b1/f14Xrg9cviS3yeU7UtVL6St5FZLUcrCkKpRVbgKrFhudkTKZLXYhaiBSWIrBWlnnh3fsH3nzxCTFUIheG5QEpF1pZrRAIaE7sb46s1XQ9al5ExCAk6ZzrQmiFRCONe/ajTQnr09lVDo3QCsP6yKqNKpZaDIlaA7BYbHbtDDSonbaamLBdFnQpBMvdgLJAX+nN7XRipElD60KvxQSdvdpupweyXmhrgfPCUS2jLHXl8uY9w3EgaKJJMdWvNmjF2HndXz+WfgrweLkwN1iqMs8m1rQaFPji3SOjKMcxeVcZCGRPlc00VURnLP692x6yQF87TTsWniHUGIlD3raZVqzNmwYRIUWhB2N5xRTp0SPRRdH6aLvAEGhhoIVOi0pplUoj9ECMtmy2fKTJGHpAiNnIFC2i04nh1S3sKrsaGccdc8msNSJa0eWJFOD+xS27/Q564/TuC5ZLZT9kfvBrX2V/a3CbtpXe1VwXCDy2zH606aIuKy9fHMkpM+SBvpyJvXAYIz/6I7+Jb7195OF8pi4PCOazOA0DGneImGtDEnUn88BFR+7vdoxDpK2Nl6/uGMeJFEd2WdDZhLBfeX3DcF55KJXQO6KNGOCQsjt7RJJ0IkavjxFWgeOY2E8DNQT2u4EYAue7O1Kw/dR6WTgEeFhWhqWQ/bCUGDhMA2m8IaWRMeLvu9lKnFujrBfWi9LGPfvplmmIPJ0uvH33nvkyM6bIdDORDyNU/1knOogza8UlDt7zIGLvw6aRMrsv3xcXP34F3IjP5SLOQBSQYPCp7XQdAMDTwB2SsyLph3m33dpWQGz638qEoNfi4Q3Y9hheaQ0CTFeXE9Dra7M98/bY9txt9xauRfe6CCW4FRg+HQqSzMapN2/UvhSVIliT1xy6vK7TRPBdhu2fUTsnNuZkbyDR5D4K67Ly9PTE559/h1oWf9VXKdxv3B3X+4d33Bxe8gNf/ypHbph1gVaYz42yXCin9yjJOxkhjAdysq7y7v6Wr3/lQ1qDtUK/PFGWhfOpcLy5Y3/Ysz/u2IfOeDPxgz/0sXnjxUxKkcOQWZfZYKeYGDxjKYtyd9izUe96mEgY/fPl08LN8cCQLCtn2O8YtJLVPb/cQmkKFoGRgqWTBhpBK1kCYxa0Cb0GZxuZ+0Fsm/Cpo7ISuk1dgXq9OUtZLaa9NguJXCvjkBmTcD49MDBRk7WQh9sjw5CZhh0SJhfFrpzev6M1pXblybOsSm0s63ylyncSl8tCF7Mu+vyT7zDsTQKwSwPDtLPDOR5py2oi3V5Z3642TQIpR4qLirVWyJ1A9CntS8TjYHE2ah2JWfhgBJcpD5TQWOtKLwM9JnOGb7br6HTO89mX08IUPHJCBImD7YjUJpDf8sM/jPYIPZPyyGVWlrnT5gu9LfS6Mp9PfPLtX+Hzz77JF9/+ZcpioXu1d07VnNSjyHVpXXqnhMT9rdGHhxQ4n07UslKWmc++8w0oK9Tq8RtwPGTi7qWTC4yqv14ejLXVKinalYQINWQSN9TRisrDWzuMl8uFEAPL+czl8RFVOOwHdmlH4ua6kC/rwvz0zk2qC0E2iy+DCufDjv1uAhXmcSLGQF0XhtG8P+u6EgT2YyaOGWoi+I4shkAptqs918J+lzweZoBuzRhaeXV74Hhzw+6w565dyJ8knt49QKnQC70s1sAFuerAJA5ebMz9Hwe3TYJhpIqrnq53BKE38y0UEfKw7Xs6W0kRApICuQtB2jXmxMhZETT5vzPiERIIPUBX8+0UufpOmuPU9tiuiRIH0ASLIQmu4bOMFKfp+3wjJnHQ1ohiCEAeBojZCB3NIneskG9EDaV5gUrJigvuXIL/XtPlRQLRrZoWuhrDNOVEzJmckiMe1mxpa/57zDZKlhlts0GkvVNK4/J0cRsym+SsEH9pSv0evr6vC9cXn32HMndGEeIk7FMmSyKWJ5ZiF0zTZ28xgkFEop0UI7sxmamkDMjNhDal1uhCyw5rQbpyt9shw5HdtKfVamK8VojVRKkpR7N7UYh0corkHEkx0TQTRV2kOxJV6eczT+cnklZCDuQpMY2T7xka1BXRQOxwiJ1UT6CRUqAtZ/qyQlkpdSXUBCmyLoVWKq03au9MHsE97QbyGFh74Wl5os0XaB1pjRejkmNjlEKfTzDZ4d+1sVwuaC1oSkRpDhcWlvMj89KoHWS/Zz8MtNTQ9cJajG4YpDKJmqXN2njz5h333BJDoK4ru10g5ZFhiDSMcRR7ZZGF2hu1K4fdHbFbcam9kTDiiShIt95UuCI1hGifhbidTI4Rsml/Wu1oXaGZEajwzCzUTUvSlLLMTqYKSCxoqGgYiGngcEiIZIJM5HHHNDfWtaLlSF0v1DJzPo20aCSSmCYjeyBkhL4Ukx+EwLI0RCKxBZJEphQZcrCmKuJdcEdp9LairTDsJ7fKsrBUxejFrY6kS7n64tFXHy8ClciQLB8qhAZYWGRrq0kjpCGxs9vfQI6QAkPwjKnWWNdIjIXeOoGE9uUKD9UeSEkQ8QlGzJcwDcIw2aciEkjDjowydDXSTcScNkKirNWs00gMyYkOMSF9ZMyBNiTGwYyVRSANmcPNgSBKfbpcvQpNErAtdmBbmtqU8ky9FgkOCW472vYl0btPJE6ZtbTgjZH6TLh4Fltj04v/nhA2qYRfkILDYcELwuaKE8xW05MkzPXDn/umlRSnpm9/D/68N6bjFZzz5xI2uHTDS5104s/l6uZh1Qn1iVAwFuWX4cTroztbVzAZA+5EshE7rs4i+OvEXF6snrXrUzHCjL2GjWnt+ONv3Inr80++xeVUudnvSQjDLjCOA3NbaH3BZJeFHAJDVHqfKWsxZf44kidhiolpGhnznhhHYjzy8OYdp0f7K5TKfn9gf3Pg5YuXXJ6emC9nLqeFbR07BaWuC2wRBTmxC4ExQ6mm9+ox0qeR+fTI5XLm3dN7sgiHm4nbVzfc7gfOdeW0zNRyoaldgIchUpaZ2q1zv9SVViutFJZq1lBrDMznleX8RFkunC4nbo633Nze8OHXvsLtNHCaF+bzA8vJEoyDKB/sjJAQtMJZkdudwQR15fJYWNylOvbVguJEOT09cDpXqgbuxombaaD3xvoAxQWyIXYOSelrQ9eVL84XhiExeIT5tHtBylAZDV50yKRqY26F0pR9OthEqYWlPpC1+o7AIJ+NgECyxF/Tr1nDIeodoiiBThF7TdIG2yU6XCUBtFdwY9Y216scALoRXlwwbllTIzHvGPe3DFOh1kqQwHp+oJSF3d0taTqiHVLO1liEiITI8PBAzpkYA/OpsdaR2qH0wM1+Mn/GWN3Q2Jqp/X5ilUJbG+Nxby750aJbVIsfpZHpfLmaxJblwXYMkqgtMA6ZFASYCalDUNII4zQQYyeEkeOLu+uOaMyZ1lZrgNqecbwgCsOQqMujMctiYl1MTB1FaO1CHJSUhRQH9ocRVFlSIw4T2s0NJEWhS0eDkoaRupi1U84R6mq7oJCYdPAzr7POD4A5iYQxsT/uzMexC3kckRTRdfUzfyNfNN/RdPqXD2Zp1wOz92YQYXcnl81JwguZuZaYs8q24LImx+7LEMUNgU0YHIOHcF1/mf2fwdpy3bPZTskW7lI9zQHFAnp8proWFiONGPRoRKPNbmnbsYVo5InN+UUwRxZ7zH6dzDcXDXPx8Z2by0QQ2ytvz687YgFir7M1gzLYzKm3h9etlpuxdjQrlr5pcYJJMmLe7rcvNYzXxuJ7+/q+Llwff/wxXTPv33zG4xdvWfoZlsLNODINZr0jbeVyWXm/rOS8YxxHxmkgDJH5cmK9nP0g39tFWCu9XIhB2e0HdC1EKZT5iW994xEwLDgPAT0tzPPMw5uFx9Ns4lpRaq1+Q3Raj0yjpayeipLFKMBzb9xNkdaeeLq84Vd/8f9g6VBV2efG6bJS1kYSYa6N5hTYso3lEli3i8+XzPsYye6/eHp8x+n0nk8+/SatGEgtErgZPEOsd5uKHGq7TYlvfuubnJfCm3dPmPehGXsWLQQ1JRTiUEOKfPvtG3OiECEkMw8mCA2hzrMZ+rbKOMIv/+dvUH6p8/i4cKn/O7UZbLUfM2M2q6S7uztuDjtujnskfsblbCGCOp75uiiH4wHNmd6LHU5U+tAIvs/oXYzW3szMdNM2xRjNKT7azalaoEfAu2G3zRrv7u1g1o62leL0YtrKu8d30CESyTcvvQsPhCHTlzO9NWLKvHhxNLhlGOmXmVoray2WCjxkQozcHRJrFxeXCnkaQCttvVBaZ8iJm33k5tVrLu8z6+nM7jCRp8GYaAKs5rTRJHpybSaNA6HsPYQ0kkImDhYkuj69Y22VUQM3uzuOL1+xXi5c3r8nDKNPQRgtulqHXyVz3E/EGBmmCan3NtNKJCcLNwXl9PYLm4BFGIeBYb8zQX9QWtz2kxByRHs181cMaYiSGHYTeNRKITBsB6gol7cPXM5nLk8zXVfWboy/2HWTbYFW19JZ0ambcJrnmBGbTmx6Mqhu2yfZNTDts4manfIuG+VbBHowclItbP59Ei37amNBXJ1lcNun1q8+fill/MJDmz1vATsj3NIK3XRjEDU6XLvBjhipw7WS2qvv35yda9WG1hs2MQb/XmPeruvZhfyBYcj+fii6FU7dCFFGimqtsi6FNGQjuIlJRtpaqGuhh8FeT4eyLv4MAosurHOlFXicC6VA7BHBUq+N5KGsxdYXpa3f89n/fV24KBfGGBijUiSBZua+EiSQY2IaM3NNdOxwG2JmNww2YU03LHEFhJvpSA4KtVDnmVA7hzyQjkdSvKeuK6VYEGN0tlmOjVN7oBRFSyeSQDoinaUUqtOyUwi0tdC1czoXhhgZhpFXt7e8vJ2otXC6nJlPFwvYE2hDp56tcK3aWTc4QhpLs4wvUiKoUEuh1ZXalDiNpHHk9d09QVYu88J3Pn/PZakQIimNLOmZljQHmKaRicSlKu/PKw/nC5+9fSK7AFi0UzeUBLjd79mNgVArb04nzkulY4veIdmJ04C2FoYYGHNkX6OlJK+Vd+9PPF4KSzHbo/2QjB2XE79JE6tCkcBpfWsO7yHw8v4lMtyhKdPacnWFwEXMIAS1G0NDMuZUCKi4PVUyUWpII0GsK7QltnXDEgYIia6RZ8FqRNJkU3jec0AMYlWQ5IeXBEsPHAe0d1oQ70wFCUrzRNmYA9ogJLFolZhJ3t4GCV5cAm01aHTbGRxv92QqyxDI+5FhGOwgiUJb0tUBRnt3T8NEwG2Z/B4IMdG1MYeVwS3PYkwc74+UKZGT4k5CBBHyONGKRVFoSPRqO400JKIcvI8XcjQ2ptJpZTD0QYQhR4adWaqlMNl74pDYMA3UGmjNrM5oFUEtey2PKEIWIanBj00bl9SR3MzCrTTW5UytnWM+gDrxig0Kc1hMnDqg7uruhybdyRpX1lz3umNMSfx9075RD9TYwV6Iam20LhCUqKC6TXD2z5tRrhVH93dUIPQrvGiXq/3QJhRX1Bm89tykKUE2YNBp8vrM6NOGswSx59pxE4GNTejmupvMpLvYemNChiuOd2VUblKBzYax+j9IV4ibB6Q1h1eWo6pN92phmq10lmrnVe+ma0tuFO7grDcEtotv7TfoxDU/vkNGkLYaG6oqtVisRommRahro6zNCkm1cV9aJzbTFIFAU9p6oS4L54eZppFpf8Nu2tseZq7Uc6VcCjoAKRBTZT0vLKeFdS1uwWQH/bxUSm20ruyy0URrqzw9XEgpcnNQXt3dMaREXVYujzNPT2c2xEKyMl8KS2nU3mjBmEdRGktVW9SP1vHXtbCuK+vayV0YJLHPFlhZLitP7y+c1oLETB6EizhrDiFH4YZEl07MytNcebwU3p0X9mkLKqw0Eps1zZiUFOyu+PyLJx7nlQrEPBKlXynDrTWO08TNfqI2vRauh/PKw3m9Fq6ldHJs5Nx5eVlJ4wBppb95Tx4mdjd7dsdXpOkOohq5xDvG7e92dEXfTwlEtQNI3W0+KEhyWyCDVbylN3d+SYgkd0VobHCNpImQJ/Kw5xCiiVqdaWY7kC1gc7BOXzcHdLVDNdjCO3uWFkGt60/Jf872OiEKqpGaRneTsMPvsJ/MnmsIyDAwxESMyYgrySZrCeIwjz9Wztf9Sgq2bzMa9M4mVcwQen/cUXMkhM5aF1AzDJ52A6VYhx1ipFU77GMUYh6xIaMTxfcqGlh2CcWm2RiFPNjEEuNAxx09mjLtoqUhN0Ek2v3YKyKNNIzmnYcQ2mKBibWjoUJqZtFUO6UsrGvlZjoYjOc7oqt2auuwvKA8E7ANfgsbMieCNvMM7KrEuFmR+UGvpinrtbp5RqO2fo3L2RocY7qKOUvgoZTBcsvM+ACIprGTTQgtet0j2bPza3ljw3bFk0jouEWTW6VtnonqgaFddWPAX4tO3yj8/rUZ2+KU+eiykq1w6QbB+/eqBKqa1Cb2Zyr+Nrmqcs2o0xBM26aN6qSt6j8T3YCc4KbFik+x4Us7xe/t67suXP/yX/5L/sbf+Bv8/M//PN/+9rf5x//4H/NH/+gfvf73P/kn/yT/4B/8g1/zMz/+4z/OP/2n//T65zdv3vDn//yf55/8k39CCIGf/umf5m/9rb/F8Xj8rp7L//Z//3kG2ZGC8m594lJm1nklJ2Fwp26hX7HYkIypZysMy2xShRyCBaCtldN5JcTBCBbRyADzWlivzu6G62fpvL8sNDWz2+I4cW2NyxaGpxa3jePMT3M166kg5P/4n4gilNZZWrNU02Ad+SSwdOti0IBke87BHdJjCAwhMY7ZILPWqEV5Oq989v7Ed968sR3DWvjs6UyWyDCAxkhUi8YotRFVeFhWdruR1+sNYYqM08CYM8fDZOnErUMYULV4iqWszO9nSqm8OS/XQ6BqN+JK79RuPmhdodFZi4U/dodg7o57YhDGILy6OTDkkZgm9jeBFAN9qXz62RO/6es/yAcvP+BrP/ibiAJaZ6rvHsRZXzGaO8amY2suBrX9tDHPtK70ONBbQuuKXncOgraIVHucmNPz4TBMPqFF6Bbk1wlUFZMaJCVIJARLKQBBLifOy8kZeEDae+BipNbF3LVFCNPBEo8FWiuoZ3OlZIzV3iu9V3IGOe5J40hZFoPEmj1GjINr/gKlrEB1Bpu5XmyH67bDjDEQJfmUsBJDQ8YEckQfKq0uBkFVjL3pmWtNq7PtIOW97Wx6pywnpNpklK4deaPOj+SwEtNIGiZ6LdRWqPWCVrvvfOVPawutLiRpxP2OkJJxopaVtp6p8xO9XJBqNP3eV+o609dGCkrwaBXbbV3VgT5mPLMk7My2rZH6524hnD5ZdWVdbEdtDubpmjYQw3Zoi1Pb3Wuv2RQUPHnBwhJtq74dqrZus5w0jeYjSow2aXWzLTPfTGcO6n+p8eo24WxFC+9Jgn02pflKIrigbBMVX/drRoJJOqBr9bQGn3zsZKQ6imAsfbNOkxhAZ/NS7QZdE2zdcSWQ+N6vb5CoBvIQCGd1UXuyvV9XLo9PnsXWTdKjW6L49/71XReu0+nE7/7dv5s//af/ND/1Uz/13/yen/iJn+Dv//2/f/3zOI6/5r//8T/+x/n2t7/NP//n/5xSCn/qT/0p/uyf/bP8o3/0j76r5xLiwJh37IcA+8DYRp7OswkpgxCT65pUrVNyxngSG/VXLH+I0hijEsbIcTjwVJVT7fSlkqVbTpF6NtFqBeSQBZkSEbNAqWtFBUJQjpN1701BayNFG/33N3u6BFrrLPOKui5mTMknBLvZUvYbG2Gu3k1HYT8Y/XsYMtNoJr2ilRSUl7evkBAprfHpp59DM7PW/ZS5PR7IeSClkURxI1M4rSuH3cR+N3D3YuRwd09tyjRkjsNAxAIU7158bO9j7/zKL/0qp9MTUTo/+NE9h/2ONFh+mdaFtRQu88L704UhJaacySkwHo6WKxY6SYztdthnjtMtOQ+ElPj2t/8zj5cLj8uJ3eGeVx++5MOPP2A37mllNoao62pEjBhH8SUydjgFjDkl2LI4SICmlmc2jM9TyXVW8yK2wTFY9Aa90dYFkeIYf9lwnmcLnhjZXL2FQPD48q1HzW6fZ2nP5vgdYiCPpsEKAlEqEJBoe8MYMojtCsfDPQPG0ppPD7TVQibzONrPiEVIxOS9chDy5MVWxFwN1OLqpwB027VIgGE8ggTyWKGv1AV6Fabd7hpHEyRYerUaK3cc7PDS3qE4206i2yVB10hNjXF3JGZjY9ZVSLFTQ2fY7UhN3XUiEnqkSSLEwZuXwe6bs08gIZE12eGuwkoiu6v/ll0nEggkum7JD4J51LsuiY2o4WDVNqm0RlkXM7ytSpOtCNq5cU0OxsIh8emrru7K303wHaITGDYWnnAtNGqYm1HXr2eWMxgNUHSHCyt6Wj32w62jNpkG215se2zxAtsaWs2tJ7iYmG7fExAXO5udmclO1Ni3zQquupnwtlsT9ZGNRlvNLb/FwG6qaDLyk7lxdNN1qTG3dXPOkozkhMZo5wVmGiZR6G31hs6z/aLfP9/j13dduH7yJ3+Sn/zJn/w//Z5xHPnKV77y3/xv//7f/3v+6T/9p/zrf/2v+b2/9/cC8Hf+zt/hf/1f/1f+5t/8m3z1q1/9//q53BxuuNndcciBHHdcdCWdLtBsaTkka5lKU5amSLVE0hSUrEpbil1YtTPkTg6BLIn1vNKXSumFKSu9WpBadXghiJKmyJizj9UCqRgLjs44JHPE7tBqJQclea5WlcC6Nh7DmeCMJVVoIdLNkpzDYIdvU2BtCMKYhJvJXCeGYWC331GWSqAyROXl/R1rV54uC3NTktrv3OfE3e2enEdzCu8blVfoF2G/nzjuRw6Hkf1+ojVlPe7Yp0ykIV24Oe7REFir5W2JQI6B/XHHy5f3jNNESjsu5wfmZWFMARGLPBhSIgRjsQ3TxJRhEEsmPhwyY9oRUyb6jWFmnJWb2z2H48EEvU3RUum1Wmfdt8ZPHMLc4KF+ZURbZ2oalhQiaTNwVXXBqN3Usu06MNjr2qx309bhBqu9V2f2CiQnHASDVQA2g9YrRiUWy2JfCtoIJGKwyPe4mQj7jR0cVgnBXTvyQBomK0C90cpi02JT64p5Prgt5sKo0Sm5bZYKDaOvB7FJVq6FNhHyaMU9uAaoLrS+7cmaH5DQo70vEqPBPrK9XJtqg0fvWKaZImEgJQtLjcn2RfQA0cyqhUow1oGxHUP0x/ZQVIeo6KadSmIGYeZEHghE8zH80v/oRhR4hgntSV5nriu0/AyxPVs4NQ/M3ITbzw6GG3S4TRfPuJpckQbB4cfr5+Hf37vth5Sro72oXC2ntud3/faN0LFNjN0eWK7fa79ry/bSzWbKbat6V3si2+WH/R71gturT1ytu7m2c6K7PiOrPjWqVnqppn5Tg41VPOPLiS9fekefoc/tfgjR0iFwcUGwYNgtf+v6iq7age/+67/Ljutnf/Zn+fDDD3nx4gV/6A/9If7aX/trvHr1CoCf+7mf4/7+/lq0AP7wH/7DhBD4V//qX/HH/tgf+68eb1kWlmW5/vnh4QGA/+m3/3ZeHF8TeuM8FBapXE6LRX/QiRTmUlhKZy2m58rSSViEwvm8UJtBHYM0j0uA/MUjl2VlrZUPjiPrWlhLYbUUBVIK3E0ZUqJpoDjGG7Sbw0AOxnDzcT+oZYOSMrVH1to4n88kivvqKdUDe4IEbjI0gaUr754qKQemHHgxJb54ekKCuTfsX+6YYiNL5zIrn7954O3DmbXDy+PEPhtF+oO7O2OFpYH19MBaTDh8GCeONwdubiaOx4nT+cI8GwszTQK9UNcL78+/ysNp4f3Thc/en7kZOofBYNP9ODFNO1pMfPbN91yWhaaQvDgNQ6L3xsPTA+v7d1wuhS0ndQgKeMglgSXA/SHx+u7Ay9cvGXJmnRfefvIpoc9YLITd2B1naCW/CXsDnqM4uthBu2HrZb6YviTYIcpGyS2rHYwhk5Kxn9Dts5PrwXKl4OuW3OwpuT1Qq02Bm/6pd0jB4uLxf1/XQh5tl7ZZ7dhnX22qwVhjnUaSgZBHkMRWYAmJWo3ZltuerVnVa0SEmAedH6raK2Wdbd9iJ55nQkXiFnKp3UMjrUlqrdGbXNl1W4evCLFjicVeSNf1QgzmBu7LmWuSghLRppR+odWV1gq1FpKnBWgrQHVHFXH/2gZiOWNlXejuVBNSQpdCWVfKXMxWqDt0h+9TNxavemSRJwmYULa7g8ZWcT0pWSyc0xoAI1FFt2IDY1huDVDA38/eINvBnLKJlIOq5b5mm0qNhdipq9LVJAAxJSRGh1n9s+Lq2GefY/VreGuwEC90m6uFF67Nd7DVawHE92za7LGD66oQgQa9VBcKQ0rRoWTx69bfl24U+N4KtazUshqSoJlWm8lG1FiFOowQ3XG+Lj7Nmp1v75hGrwu9B2ta2uaOb4zPWptd019exH2XX/+XF66f+Imf4Kd+6qf4zb/5N/OLv/iL/OW//Jf5yZ/8SX7u536OGCOffPIJH3744a99Einx8uVLPvnkk//mY/71v/7X+St/5a/8V/9+Nx1QFZ4uF6ov4qMkojY2y/8URxvFe2MQi5mQXkhSGYeB3A0wWtfZKa+NU5lBAvvdjmEaCTmRWuY2ZxMzi4VIdpnM57ApQwxorz4O++GJHXi1KM0Pl0pzB4SD7zLMT3CXs+8lLI5FciIr5HrmbhqZojCEbrEXUchSmW53DDFAa3zyyad8+u6J81wYhoHbmwNjgtN5prOiGgk9UFYL/WvNphsPS2JdGpeHC8uyQi28f1JKLSzLzMN84jyvXOaVeVVuDjdMNweGcUdVWEu1FUtVQjcmkekhI72bQPRyrjwthfNlpqrdgEJHui1xU4rcHo6M0x0vPviI+/2BMXSoZ+hKSh2Jjo1315VE62KvWIfnHm0Hjv9bi8wIdoDkAKE331coKgmbz213I27I20u3vYwanDNMk01BOdsh5J19681pzwIabXJW636HMftBlqiX90hWJKlRksXIHrXMyJCNsJEzIQ2QMj3AUk/EOBBCJO9viMsF6gxjsuklGFRY15MVmQikjGLmry2e0RSfM6jiYPhqEEpf7dCKkeFwDyFQhhEZRySn56mgLggGMckwgXfpjHsLE4yWqqAeuNgxo+YuEGREhh0SVkRmaoimr0gJyPQ4W1ZaypBHlyUILQ3mbq6KpoEWCoVgDi3FvEU1TnQyouKkpo31ZoXeeCMmkLYdkjc43nyAFUVE6DQkxKsLhtks2fdurvG9qblu9ApijVPcst3YLkErMA3z2FQValOCowKmLU7XNZSAT5JGJmqukQq9u7g6uim0XcuKXouEYtFBqbmrRhIkWJxtb91QBYUu9hgET5gWrrl9IUYPoHVWYzdbPAJkv3aT75O7OGEkWnSLOcJD13x9T2vphBSI40DKgyVriyvUvJHYGoGrt/D3+PV/eeH6mZ/5mes//87f+Tv5Xb/rd/HDP/zD/OzP/iw/9mM/9j095l/6S3+Jv/AX/sL1zw8PD3z96183Lzufqi2q2sLjTK/hS1Q8YLB372o9noDqgXx2IZRikSWtFZbVhKPZ92OKGiwSN3LH86i/dX1XY8puoYBVjZwQgkVjtK6QYK0GZyVJXD87xwzsz8raGjG6TsfjFFSEps1udDEobjckUrDfJ47F5yTcHSfubvbkaB253ZBCToGYhIwVlu5aFnvfLPupVksmLXRKU9YKxZ0qCEJKwv5w4Pb2jsN+Z52b2s1mib1CSsGKmXukiSSQBliYpbGhvCtU67y1m9v5btpzPNwy5dEKIHZz2xJb6CFgeVwBDdtewTpTlecJCd9xbLuO4FCUkVyuc8x1QjG6cXOURqjVukP8M2SD5GK8vgZ15ljreoXdbPGGJ8sKOPtO8mAHdrT3JDisoiHRg03aXfwxNjp3b4h0f8xgxU2zMblw2FLc6VvstTwfcmLF0R9320cZo0vZ7I1Eo8N1VjTtsZwhS4DocHYMPiy4A3ow+Udjg+XsCFd3GMffRwmRTvBcsM0eyD5Le/0Rje40biUSSQNCd+1RYXMCAYtEsXvWX7thoUj3z9+JF9tO6Flf5dfFJqANmIRCQYJeD3OzWtpYb1vhssktpkj0nthyu740CXV18oL9HnO0cDr5dh0G2805wY/NCQbU9nbdaRPbY4cvPXf0S1OjPdZ2cIj//xYiKw5bb48VUiJ6+OV2P2ww3WbhJQIBKzQmtk/2OYVwfS5h20ttGOc26XsZ/jJ3IzpObvB/v96TG/3k+lq+x6//7nT43/JbfguvX7/mF37hF/ixH/sxvvKVr/Dpp5/+mu+ptfLmzZv/t3uxcRz/K4IHwNOyMk0TOQ+U/khpK/PcGDJ2w1OpHZbSuKwdQsGyuwtBF2ZbcRFDYFnOVrjqynmerTi0To7d8EM6TYUhBaIootU7VzgvnYp/X690CkttlGbZQL1ZHGTMkctqy/8h2AdrJcGKxDYFzPOFodv+7HxZGVqjRsjBWFwxJfKYub0Zkd4oofPy3jrg0pSPP3jFV17dEqWzGyEME0MeGfNIq2ZtZRRWO/Bqb9Qq1N4ovVMrtCxoiKQ0cDMMTNU8Ceva+OjVK7724Wtu74989sU75nml98btzQGhk4Lw2duTHWoijGlkmoQeLbG6Wo9MUKUtFyv8Erk97rg7Hrjb35DCaGSKbHo1W4J3QmoEIkinb7lBREQj2jdvx21fYbeKGSyHKytqO5hwEWdv1t33Yp1g68LS/OiO5qYu0feZTQluydRxsWu1wy0lcajM9nW1QxRxke3RimeMlNpJDggFJyTUpiiFEAY7XFt3GnEj9M2NICIh05rQtRKCRdVcYbOOubz7jkslOjuuO3nB4Cq9xgCAh8IZjRqPg2/OUAzJiwlOVihYqCEg1q2rdqouxKAQoskPtsiN1ohxNLZhq/67rHCl6PE4EgwqF2fWEs3sOAZaTQQ5214wmsVU106rllaAf84hbAe4h3+6LstusesmCdxpwub9cO3+Y49eaJz0ES16h44z7EyomzVjZBd1IhbXxim4tRxir98KIIS2sU8dutyaq63R8UKTNpGufqnJ2tiv7blBIzzbRoW12lUk/h4EcUs01yd6gOwweuqBm/ja56fPU49VKHs/xfaIOQ6oNp/QBFK8BkVasd6EYlbJhcCQxFY6rZCCvZZWO3VdrzKR3j1qiV9f8frvXri+8Y1v8MUXX/Dxxx8D8Pt//+/n3bt3/PzP/zy/5/f8HgD+xb/4F/Te+X2/7/d9V4/9y7/8C7y4ueHlYSBkYRRBtJE1+hJ8NFPT1CnZnLBx0V5HWNbOWjtLMbPaHhMahI/vrZsdghmijmNiGAZQWx4HVYY8EB2WuclKr7N3UuYsUJtSeue8mMWUqDICwyDQxWwTVY35ltJV9Fe6ET+G0RJJk0KqxSKw18LdfuSwn3h1s+f+9pZaGksc+fDDxOHuggKv71+zmwIpKC9eHDjNC10DQSKHw44hJBKJ3e5sguoUGIfIcDC/xHUtXIpSS6GuJlwOHs/+9OaJj17f8NHHL/jwqz/Ifv8Jp8cHLucTcmeZZq3gsEVAJJES3EmkKKyl2IenHfrK/DRTamPtVtwfz+/59G3ka69/kMNhz/6wYz2/9Q68UJeziVFDQIfB3XSMDm2Nh8GFMQcb8sQW0rjRqV7daxqiDWmCNMsqaiVSi/klti7sDvdm88TI+nBhmWfmeSaGSNNAU6FVdYcB6zhD3k60xLvzW4OWgyBSSA4xbhP9duj2ajdzE7Wp2BmGOQ8WAFA7p8dHgliBbaXT1MyVxzFbqKR7yZXo4YMiaF89isb2Pskp2TEKKWf3OqyUeTZPxF7ssd0eKEYnddhJx8Udj4IIvS6OcniStXs0qh/g2jtlLZ5CbYezMT+tIUh5MFuuFBlyIsRmu05V6jKbO/z8xPntp6hnwdWrGWCnLyeot275ZblpaommqBrlvAug9coqRP3ntZt+DOjNJwIRQjAxdgda1WfPUj+kVTvr0t2Vo1+jiGJwEoqP+9WNZ1vvrIuZFqQUyTlBMEd2Y1Z6qbWtBuvie79oQm4rdoG6lOu10mojDBmiMC8zsTVSLQxaQSyJodXmjiKGKaioIUqlcZlnaq8EMR/GVn0aclahOBpxenykabeVL510ENu7aoXixVkXtJmmMSY7P63gdlKsxNSIY2R/jIRoKFjAmv6mndb/BzpnPD098Qu/8AvXP//SL/0S//bf/ltevnzJy5cv+St/5a/w0z/903zlK1/hF3/xF/mLf/Ev8iM/8iP8+I//OAA/+qM/yk/8xE/wZ/7Mn+Hv/b2/RymFP/fn/hw/8zM/810xCsH0YGWemZ8ykuxgbdWw1xCMtZRicvprJ2G6BNVG6ZW1NErtXMoWMW8X0VorAaPU19YZ1kjKkVZtxo8Cu8EFrQitYzodv1Aa6mGSytNS6LUgKOsar1lSNIsNEI9EUYWqUFWMPr1aZzgvM6k1IkqWzpAiOWcrpHjceEwcb2+Iy4Bi1kgpNIJ0IoHU1OGTSGBkTAM5DBZKmIzAkZJAtO4z+L6kRCFIZxp31m0FmDSw242EECjLQm8VUfXD2fYnMUSOh4JqcDJCJ4ZoESrBO233imMaSLUTW2VMtuhf5jNffPYJyzIz7SaCLtzuM2kUdHiGpVDcoslPG4Uvs7/UiRZgk9hme6UbPqtYtHwz6DHmTMyJ3JXYTOi9OSqcH5549+4t796+ZS2VFjIqidADeUxXSnqT7pTswLtycYq+EoKxVkOApZRrEQkxmlu/Gjw75m1asIOrdXOYP5+ertdOWxutu29hjuRhxwYcrd59m4aHK/Ostkpy1mKIgZz8cG+N6jR72+V0qrshpYj7Jtp7e9l2M4aNXdlsrVuRC2LTWRR859FswS8bbb2zKZJSila8kkkjWveYmmAs1uzXnkqk9u609c40Tchux/5wdFd2nCHYnWDwX3TxPlWIbhDo9tk7HR3XRwk+A5ukQn0quWL4PnkGL06GAPqEs5Ek1A79Z2brBotu04X4hOVTzPXn/Aeelwf2n7o1HBu2qOruG31z/PDChBXm7SnL9THtLxOB+6pkY1SG/+L3dn+cDf5u1d1QwpdYmK7VxCeu7sSYYJWvdGsCelPWWuiqJIQUjHxk4ZeNpaw2qdf/gYXr3/ybf8Mf/IN/8Prnbff0J/7En+Dv/t2/y7/7d/+Of/AP/gHv3r3jq1/9Kn/kj/wR/upf/au/Bur7h//wH/Ln/tyf48d+7MeuAuS//bf/9nf95D9784aHx0c+ixbP3v2iQ6tfgJDy5LsONXq3f5hLLazV1PBzU6J3iiF4vIG7GuDWJSLCUqxLiyFwGBLmBe/whfoBDqzdpq3SOpfWidqIgqXPuualda701+YdbcP2EdGhiI6yritjCOxy4MU+MQYLrYzjSHMRZYiRm+ORtFjW0/6wR+uCakUVC+3DAixrFKY8kePIvBTTjEW5sqGkdUgdiYEShUU6+/2OFCMpCHm/YzeNtNp4ePMFl9OjpQO711kImTxMHMSj0SXSaiUEm7gstbhdk4dyTsSoxBbYDSb6LsvCNz75JULIpDxwf7fj6x+/5OZuRxwywdX4XY0hhsqXCBI4HGXLcTusIrVUYrdYGvW9AyrUdUFVkDQw7HbkcQcSKWv1m88K3ePbd3znW9/mG9/6Fm/eP0AeCWliStnSAaKgVB4vF2tIRPhsPlFrobfqn79NXx0lJbkSJrRVqnaW3ti76wQES8L1Pc66LA4BQq+N2u0zy0kIwUxpgzZWW6gQAqRhtK1C71yWhRx9rxUsOXk74LQVt7AS06+p7ZxyUBS3weqdxfdjBtGl666sNaP+Gxybnh1Umu2Ptv2gUOlqO76cxGQQ0QywLxdjuE1T5rf9yA/x8sU993e3pPFAayfqstJb43g8sJt23L78wIgZpdp9ZOiz3d/yvP1h2xmJWG6e2uduQ2i1yX2DHHFzgmiOIt0jdtii5ruJrHu3dPEQgkPB13Jj15IzNjugWUnJPCrNszB+qVjYFIfaVBS3nVm0aTqIPaeNrWh70XgtRFZw7czaNH0SHVbszUCNLXhWv1xE7dcHCTxbiWxFywwNns9Ab/a8yWnFU8LFGba1GnGjCxfMIac1OC/FG31Degw6b2bQsFijtPkcfi9f33Xh+gN/4A/wf6Z6/mf/7J/9f3yMly9fftdi4//W12fv3hsrrxbr+By7N/3BthjcrmhhCNui3TrwplvnZNqa4M1aiOLO1wbfqRM/1taJzo6JUUwXgY35SfRqAXa5FGo3JDfG6HsxbHew4boODW6NUevqf3G9oK1LUW4PO272E/vDyItpYndzw+39C17dv4Zubgp5HCl1pWtnGgfWS6M73BEnK5CigUEiYwzkICxD5HC4Zdrt2E2Z9w9vWdYLy9oRGel9pO8nUhx8Py7sDzeUtTCfn1hdc9VpdK22m8s7boaJYTcx7Q7sdkcE5e3piXdPTzx8/s5SoVNgf7tj9AOwaeN2f/CYis6nb584n082BccDr3XPFEfzehwt6biL3xS1+x4x0IMtmHFo05b30SavEB3Gs7Kp0knZmJwhBab9jvHmnph3IJnTu7csl5n5PPN4OfPpu0d+9dO3PJ5PhDgg6ULImZwySmden3g6nSFGxsOBZVUu84Xz+YFWiqUHbzuRiLOskh3uIUBITJN18VqVpTYiFnGxzOfrTqArSBi9Rq9McQAvItaD27UjIfteL9BDRKS6FMEOnqBYk9RnQndmmQjIluZdCR5MWHu3xsOuSituYoSIJtn2e0GgBw9ftN0enge3hSFKHAhxIEYlh0gMgkpHirIbMh+8viOcL4y3d9xOR4b7V7RWKMuZz37lFxlyZtrtubl9TS2V5XJG+xOtq+3IfNr1EYqNXr4Vq+tQI1Y4Rb2LFL1e49q3PWCAZo799jOJRDSiVe9E0et5YOeIF/WIE5Cive8O/YYUgY2F14myTWF2n8cE0r9EGnJfP/WzZTO5FjeCRhqb5SZ+tm3nCWpzUQw29/XkVHyx1xiu+kO/oHpDIpASSqS0YgSgEEhjpqPGuu5qpJNgU1rK9npqL1wuxc4wOnVZEK2IFpb5zHp+os4XdLqBslLryuX8+D2f/d/XXoWXdfVJyr6UZ7x6Y1pdv/TLI7UtYiOQxKCtITsk4r1TCBBEaWu1DigGJFrOUwoeX16boVICosVuae+2bUqDaUgMORIFenHzSseSN3NCJdhyt2MZVFVpbmYp1x2JRaRsU6Jdlg2z8LGwySTm2fdsZtPpbbXcKAzDl9YQtQK3XFZaf+R0mckhcS5P9F4JQVG13LHWKprl2tldNW2lcimzLVvVoNbzZSYtndoCpXSm3cq0W4ghM0tFU+KDj75iN4E2al2tW/MGorUK3aDXNA3skhBFuTmOjGMmhkgvKwVAxNllQDd2XMoZacrmjC3R3jcTxooZ3DrupX5NhGBXkLlgYxCYNiDyzIAL1FqprdDU9gMb8aO3RhgiInYdCsIwDLx6cU8cRh7ev+ftGzif7CYNIkxj8iIWvHvFlukxMQ3u2hCNoj3mTA6BJ7WpVfzTDcn8EbUGxpT9Pezm+uCMVonZGX1CD/iy3lCJ1q3ZGgS0mAZRgC6maQshkNRd99UQBMtFdOZsSF64AjUkl0AI2oR5NQgoBdNzqVhStbHSjOgiqE1pgjUcZUGbpZDXZaWuC2tZSGkjc5hjTKuVZb6wLrOLb93A1j5oR9/sZzZG3penoeC4oKg1NqJbtMdzrAfBW4SOXxcds4jaiBI2jYA++2PClamHbge77bDYHjYYw6+37tmXwsZYFDV4eitSGzsvxGjxJ37mGHvRJjHdYFJPpTDBN65pfP4y9w2ucKKPpmzyAVSfiSNOdcdF39dqLzh5JXjh4+qqpb4KzDlBKYhaJqEgtNI4PTxRl5Xm9l9Njdj06/n6vi5cpZgH25C+RNPsxqoSv/gk+cGFEjfFvQiSjBocglzdyY1C6sXHVrTE0s0bzx0ChhSvN+la2zXnxnwKjXYfU/RmLzBNgz0/TOAvTh6wi3PbihoLzbw0lSr+z94lmsuCvd7NvNcNFzGluxUuQnDauGk7UIspKFvhijb1Na2ELlzmlXqZbfKsgZ5M7Hx7mKituKtAQzz2I6DMtVBqo7TGXKvvOWzqPc0VoTEvndO5koYz4zSR40Q8DuT9yKtXH7KUmXmZqY+VoqsdOF0o7uXXFYZxZJgGxgS3twPDaHu1ts701bpBs9XqiGRiGEgpXX3gtgPNjq3ucMqX6fLqBc1YiSFGc9FwEebmS7cNbCJGTZdtssY/P995hgAJtT3gOPDBi3uOL275YkywzuARDjEEjoeR7BBMVxNuqrPZpmxoQF0rISmHcWRIEcpytbBSCYSUDZ4tkZzSlbE1TPG61yKNVLX+qAn+HLqlCnQYAkwRemhE7GBt2GMHEVJ3TZsa4UCT+PTUIY9Xqn2NiSQ2Kdaq12YhSrADSiLihAOJ5sSvvRvZxBussoDQ6dViaWpZWOYTSRZiTKAQU2RZZkuQns+IJJd0iK9pjH4egqKesXbdI3H90PzP3shihz9ha2aeRes2ZW0OJ/Jrd0S+szH3FLWCEb7UKG0N0hYKah5JxOgU/GrWUdfrUa5bMC8IrvvaLjaftmySfqbgq1nEW0MSbTqTKtdivbnVf9mxY/uy126F9fmixvkrthuTLefrS5R4kxjoc6PvjzvkRGsF6CRPUq+tcXo6UdaVuhWuXr3h/d6L1/d14RISQSxpmGz6lhw7PbhpZW+kaVtsdlPdAwRh2O8ZkrEPm6YrihSSOQjU1llro0WFnEjZditdEgUh9UZIVhxKbVwumdoqtVp8wzAk//Ack9ZOGIWY2tXAU6WypaJatJEYgSkLEu1GWkqld7isldoqr+5uGMeR169fMo6jUV+bsAsgObrozwqBKpSSyIMdKHWpvH37lloarSk9ZD774j3vH888zjOvXh754INbXnzwVdpyIafIMB0RDlflfwtQ14W6KklGck602nh6PLPqbK72l5lvvHmgVKV3YTdNvHz5ig9evuLVj34E5xPMCzpX3s5P5DFxc3OLTJNZw7TG4XDLOCT2U+LufiAOia6FsC68/fQNpXVaCOwOR+jR/rozvJ0gjEmt2AS7waz/M0ZTrxgUq9aZxoRNKijai7mGa0VDgWh/vXh14O7tgd048cW79zalx8xx2iMXofTG0+N7TrVxd3vg6693vPzwq4Rl5dNeWNfG7XHP8bBnt7tF1ApZjzt3kgh0yaRUqX2ls/BiF8y7sAtBMiGNpJQZc0IZqHVlqZUhZm+EOnl3YF1nai3E6cjQDRUoMlCWB2fTKfsMiUBC0KwMg4lGtTcIFgHfy5kxjz59rBQSpVVKXRluX1/Purll1nI2x4WlcT8dLCXhvHAulTROTIcjuxwpPbBUWJb3TEMkBaXWGemFcUh8dDtw2A9IXzh9/k3qYW+NSGs0CVQ7iynzTJRk0fDnlcvZcvVSCB5kidsZbQesXJmXG1mrXUNZK7qtB6Jpz1rp7gKBTx6WHH0+VWqzQz1FIWdjXtal+5RkBYpoVPDz04xkYRgSOo2YIUEzuza1BjmIpTxvRKEqNo3iDcm6LgQJNHcpiWJMTTYDgWa7yYihTV3EDQ9wYXFDa0VrQ7cxF0zcHL6MV6mdP6LMl4UmSsiRW9m0X1bNe+92XyHErEjETcIzlIpKAgkUMeRmaQvn0xuW80um25eU5UStK/N8+p7P/u/rwvXBRx8zDRNZKy1nehBbRKboMEBDwrMhpel5nMI67sjJhZ+aLN5crPMqxeiaXTtlv/ihbeFuIVg+UabRHZpcS2Hcu0ZFIeboOzcDnwMdUbt41lKuF1WvlS1iY1v+2hiRIJjbRtWFeW60Wjn3yidvH7h7eMlpVqbYGETIeWB/Y6apiKBamM8nFp2Z54WHx7OZURPYTyN9sOf9eCmc5pnPHx755P0Tn51OfPLugcenM8dD5HjYcX9/y82LG8ZsoXLrfOLh4ZHHxydO786MYyJHc2fY74yxWLLy/jzzxeOZ96cL33jzBeMXn7ObJn7xm7/CYYD9GHl5e4CkrtMRT8g1QoxFZXW0FU6PC1orQxSyrKQxueA4oh3q2qilgj6g0diA07S7kmpELMU1qBoL8ZriKpT5QoudNOEwIdCVtaysy0qtlVIacdxz9/IlX/+BwstXr4hxRCQZli+BZV3RXjk9PpDzyM3NK1588CG1Q6+d/I1vMg7J3FqGnZFngJ73RgyKiTTsGEJjWRbm84X9GBEN9GZUds3mAXiYBoiWAabrhXEYUQ86nG6OdHcN78OBWswsNexvyBhRZJlnyuWJoEoSMS/NYTTz4daQNNpuqNmUR+9omWkpe8HvcPPCbYo6Mt2YfrFWLk8zd4cJ7Y3HxxPL5UKcJvLxBqkrSxeWDn29J0hB28JyCmjK3O4nvvLVj0njREdYS0NKvWqLtIFg93arpqO04Ndih7IfquoxL9dVge+f9Et/1u4hjBtpI5iF2WYYbNC46fBseDLoTzCv0iDGzIyAdIf24NnhvdnkL6KkqxdjtNTkLSHYWYFdO7paAe1qYmRVcXsrQz6sFzcSUi/Fi0w3jZhPu73a9LlNblvDXpfFHrt3IpkrS7E1O3OwYoWfeb3b/STZkixCtMmb3mllNeRI7IX3vkX5BGbZzIZtCtBuu/vlUllWJ8P1hpKQADH8DyRn/P/T14v7V4y7Hawza0jGztNGzNE6Au02pvcOrXlsu6vO80BynYRiMe+bYSSy2BsjsBt3zhw03YPFGHjYXRBjkKWVmMI1yly9w7OvQHD3i15XiKuL8ECT29d0fHTGRI8tGsVUG7F1YjVYSbBFryK06umpKRJzJE3eZap7pOXkdONsi2EVcsrsxtGhSSE9nnlzmjmXwvta6Vp5ulz45nc+5+X9RKkVSZHxphCTOUDUdaGslky8rjNCgmFgPIxM00jQCC1RYiR+/pauytv5zPlx4c3Dez5/+4ZXNxMfvrjh5jhyGEem3cgwjaRou8no+VUp2Gcyz7MRFoZInoTd7a2NxiQuc6HWldZW5mVBkpC9q7b7c1uAG1xzdTgRB6mqwahSLfJD1SycWqsGbdRKqwZJ76eBl/dHXt/fQ96jZB7fv6UrXC5n3r8fCU/GFpzGif3xhleeHPt+NS1OihFioq2e/5X3DDGQ88A4HQi6MiwLw7jn1d2BXk0Ppa1RUiLmzO3hANEOIKkrw7RDa6WVhf3d0b0GOyXtLLU3CMPxlkE6tRROpxPlvEN6c89ICMOApGyXf54MRu8FQrb7qCxoTg49KXV3awGprTPevoBmZq7zceWjl7egnXfv3nN+fIQ8Eg8H+moG0GsHLQvaLtRygVYIMbI/7Dne3ltQphr0nrrjsMjV2UR4JlpsTu+b5qqHLXsKQue5SeG62eRKf9j2XWJTyLa/MWMWvUJ+tk+SazHcSBxhc3bBBe+G+V2fF9hws2m9jDzhk1D4EnynXBuCK60dhxq1X5//thJTh7TV2bO+0HPYz11PfHeMrzHUYR57yf7oqv6g/l76v+tODguELzGtvdnuZkps74ET1xTz49SCKkZm2UghzRKPzZGnOaoo9tjXae+7//r+LlwfviYOOy6XJ+Zi1kMJJaRuRAQ7r4xSKsJu9MZJYfFlKyJIjKyrmVZGJyDEYOP97f0tl6VyXgtatt2KMldlnA7EFJhGuL3dtCdwOhlU01rDqNUrqpWcBkI5Y2b//Rp2aFB6952BTRx4BzSExO1N4rib+Pj1PR/cDNzfHZlyY9oFxnEgD9kumr5aB6QwHnfk3Y6bF6/52A+GPEwcbu7I446YR0qv/N++9Q3ev/mc73zxhm98+z/zxZt3fPLZO07LmfZUKbESh4lpN5KGRL+cGYfAR6+P7F/fsNZGyCOH+w+RnDnsj7y8e8XvP+z47D9/i2/9H7/C//7v/5/86rc/5/O3D7x5euLx3Li9Gbh9deSjD18xHfYM+z3h3RfWGMRAf2/svK6dx/cLVRXSjg/uP+D1138zeXeDxInPv/FN3nz6KaV/jqKkcSRPk9skGRyo4KGPRoRoYkxTpaO5I6lDatS+WG6RCLUKTYuJmi8XYjuxkwv3aeVwPFKHPSUMxMn8I5sqhQv0magzo5yYpkhKd6QkfPt09m174GmeqTHZrlImdjcHdrsdt/sbPv38U8Ju4MXdxO/8Xf8zy+mRx7dvOC0LiJDGkVcff8hajH3ZauHm5qUdnNq5uRtZ1pl1XahkpmlizJlxHHn78MB8mZnigY+++oOEvsJ6YllmekpIHpjGiR4mmgZqWRinPTklhhiQ2FAarXeWJqxroffGi/uPePf4yLxWDjcTP/SjP8KUAk9ffMav/Oo3uPy/yPu3JkmyI88T+6mei5m5e0RmVhUKDXTP9Nw4y12O7D6Q31+EX2JFVnaG0zPd6G6gLpkZEe5uZueifNBjHtXk04AvLEFAEihEZXj4xeyo6l//lw41Zdc/dqO2ztvrV7SutO1G2Su63UhpQWRmt+I2acU4Pc94FhxjEnDGosTkvpK1Uc1t0gC6Kqn1kQbg+y4Zbg99iNzdtNhjUDo+HDG2WK6BC07CsOHyMBh0vQFhoCpRkNAJIRA1UobRMviU0dsoKlGdJBRcdxdSogeD5jE3dHfDoduD0q9xOLyMYhdwSrwG9cmqd18HjCJtw+dLwvAqtKGtOogmMTgJ5SB2BHFD4RCRNsIozYuedW+8dchOVIbWcEyCooEm9k7Q0MGS7J1Wqjc6ORJjwkQo1llrpdSCtU4SJQ5zZ3eD+fO+ftWFy0JG5hnWjTQnwoDlluy+fd3cZUAxghgxuVGnF5ToDgIxkKfMFjbaXml74eX1K6rKaZk5nz8Qp5nLtEA3Co3WG2XfmebFb+oYyFkoZed6vbFvxVlZKZHniX0NWK2e+YXRegU19n2QOwYZpJpQGRCiuFdcVuHb5yd+//1v+E//y/+V2O9I26Bt1LLhjhK7H/J1w7pPnBpH/tbl5Iahg2XQTdnWlX6/8Xpd0ZT47q//hn/zP/8/+Ndf/zs///TP/MN//i/c7l/Z9sq2dV5evvLjj57++v03M99//x1PT08EU95eb5gm5suFl6836vqV8nblVpUvnz/z+vrCf/x3/4HTx4/88OULX//0M5dFeH5auN02/vjzz9jPnylNOG1vPJ1nnp/OzMMPsNbOfb0zT8mn2WFq25sHIjZrzuqMgTknpmVmmiYnW6jDOoI9yDjI0fkOXpO47sZNQL17Fm8hUQmkJKRF2a9f2e53vnz+yufPV+p0ocaJUrvrnYbxZd0L6+3O69dXPt1eWLednz5/5p//8Q/k7NEuLSfvXKtR2bnfxWGb5o4F2hs9OlnkdDmBNnJMbGWj7itvr29sPY2pwt3UD/LM3iLbtrOtGyUYp2UmhMDeOq8vr7x8+crrz5/R3//WrdEobPcNXYSYhRAzzYYvYZcBfzsTUQZVWnrnXjdqK+xb4Q//9E+8vl5ptfI0X8D+Fo0zlgL/9M8/sBro0xMfL2eaiYv+1x32G217Y9s2JutIgDxlutj47MCnh2H0au1hyHy+nB7PL+SA3YZWaYh0vUcQJ2TJ+0ghw6bJjYhdr2RDiI8cm572YE+iY8IZY0kIzh11ksKYWIZF4ZEv1Xodh/0BHzKKKMQcHmiJE7vGdBOUEOLQnsbRzHrRiN1GoXEmc4wBM0Vl/QX7UEjTMPDtjaoyHLaMmNymSpoX2sNT0ejDCuq4D7zIR5HhIH8ctEfBcxKTEyqHo8gxyXWYUqD0jlglZzdnqLVxfbtT10orhdp21uKri/aXWrhu9xs5ePZVF8Uk+JWpzuRhQHJ9YHDV1EMhG+70rJ4zFGOiJ9e3NJFBO/Y90LZtEBLm4oyxhnJR6JGIK9WdM7btzv12BYSU0nCbiIToIHiMgqy7j99BXDku5t3R0L6oCTacPwBf3A+3B6c7j9dokFIiJQ8ljDFSzc14NXg4n+dcJfogIfj+y2h1p+wrL59fiTkyzQvLyZjzzPPTB/7q++/Zt4XbbeXry0a9V1ov7Hsl6YllypznmbI3UkwQEiHgXf668VI2vtw71+uV9b7y7TcLp/PMb6dv+P2nD5wmIyUlxYlWN/baWNfOrBV6dmpw8M4VfJ8Qg2dFIb5rbK3R9sq+rpRShokyw9IovLMIjxuS4d4wdE0HdfrBMh0342h+x55kdLw5wrCU2radaoVmgZaMUpyeV1tlb8UbjqNrF4eXt33l7fWFaZpcC9Nm6r7TGnQV9n141pm4TVKvZAvjCvPLeb1febvfaSLO1pMJpyf1kVTrE/rbfWK939zlf1qIBmWpNIOXry9cX1/Z17triFpj3+788MOPhNOZfCnQI7upR9rvm7+uENhUITsMFNTlAftWuN9W7uuN2/2OmHGO08Nh4X698cOPP3BrRlhXWtkxE3eUeXlF2x3qxrpXlPZg5UpyWJzw8Jgan9MgUA15itk77d0hNeFfpPQOnoRfR54mfLiPOBu2P/6IOdTWB+z2aCgHc9S6TwnYYQ7QkfH3mzh7LgxyxiFORsfz0XcnjsO1yn7xn0ErfJBIOFw1DpT7fU70vz/E4vK4xgFswJzv0OgDA3zspGRAeIc0aPz+ARPqAz7lHYIUoffq0Px4ak4oG03euEZNlByUbg3tfUCj/l438/NPVN6L4SCs/blfv+rC9cd//Cem55XzZWGTTFdlDsLe2gOX3sroqMyoBqUateEGrsEFq6qJOSuSjSDCvt4p60avlZcvX2gaPS/LOpqnIZKtbKNj62Wj3D7TykqtO5enJ5x+HqjNnQpEI5ojTe40hEkSD58ixWMT1EkgQQMhOpurrG+8vK5Y/QGxyt/+/iOXU+Ryinz4+IEYnSwyTZmteKIrqEe7I7TW2NYVw/37QkzU7c768sLP//wntuqGo3P+A/M5kHLg4/l7zh9+w7ZtfL28sX75kZ/jjZfbzrdPF56WE1NMrC830oD21DbW9Ss///iFn//0E59fd/biMM4///yV3/2r3/D73/+G/9t//I9kK9R958vLC//0D38HpdIFvv145nI+cVomUqvsZjSF8+nMMs9MeQKdfN+4btzerrz8/Jnr25V121F1Gr11p2KLend8mLuquOj0cCXp5kwp1TGht+67SJzeLKJEdbo5rflh3QsWIhb9FN3LHSWy7Ttv642QlOVy4vLNt5zOT6zF7Zyur2/UbXU6/1ui9goSCEvCrFD2zn6v1DIm8+AaINsK+8sr//SPf88PbzeKCW8vrx7AGdyB/P62sW8bdd/QIC4eNWN6+sTr737H0/kJEeHnzz/TW2WOkU/PH9lev/D1j5/53//3/wNZzkxPH/hXf7M7CcCMboUcZgTo3ZusZZl4er5AXnh9u/H2duN63ai9kmMifkpY7ayvN374+3/i7/7uv/JaKiwXPn58cpJFF0pbOaVApLHeNpDOnHau9zvneXaBeTe6Rn+dOMmhWhv6JxfEtuaZdt2G7VTKEIYrPjhRheHHh++HD2JC6757qcWndhNDqz1+97Ej8uiaNrR8o6AY/hgxEqyzbjupuxNIqZWUs5M+QvQmOQiNBmJ08eQKhmzFGN8bgYwivmMVHAXYWyUAaSAOhzwnpAQRTN2M+QGLD5WUN+0juR0b8CKD5TwK3LHz7V4Uj8LlxTdAEErZCArBIkFtTIaeciEHM0XBNNPKSmhGEndTCVEIORDnTMoTKSTmnNh210T+uV+/6sIlMQ3GS6JbwCSgOZNif5At3t6+OFVUOuhIZpVOrZ0UgkMGQMyJnBJPpzPn8xPr9cr19YXPn3+i1gHvdeiUYTdkbPXqhpl1cyqqKmEY5nYTuoWBVaeHF3VjRE+oh7p1w+XCfSTbanBdlsZxsw2hczfm5cRyfuJ0njgtmVp5wGC9C61ALQN6mJNPFh1UMxwucWOhK+NAvl2vrOvOjRvXP7yxl437uvPhFJwFNyUmvMs9zc46u79e2W47P/7pi99oISBvmT/84R/58vMrXz6/UavnrJ2mxKePT1AqP/7jH/l//ukHrl9f2PadUjusN09Dviz0DxP7ttH2gu4NiREGZNENWm3U+8Z+v/vk1eH84YNPw+J2UTIOJZ96ItBHmJ57Fap2d9cwt8hprdN16J503A7mxJjSu3v3i2AHHT1PvK47PTQsNTQE1q3wdtvY9+7muPPM9PSR6fyEvL5y31Ze7itnywPCTO6I3iulfOF8fnLGpnnywGmZOH185vT0kXK/I8md9ktr3mRME2kIkEu5c9s298O0juFGq6UWyvWVbfuG8+nEMjuhI+eJ337/Df/63/0HtrcXYshM/+d/ZsMPyylFj1rpxroWrtuGAlkNjd5jt2aUfWPbvVGbTydvHGIiLSem0wk1Y748uQFx75gaU9BhvizsL53dCl0aSdUbBjNaczeGbj4RSjjoD2AodTcahfV6RzU4+aZBipkwErdD8DVAEMMsPiYZ4wiXHK42IgQ6QTsp5yEKZ0w5w5vQRohib/SWPDnBBhNwFFHBCRhpmOmKn/x+TwsPk103Pw7EIJBwJqaOPReGBf+9IaZ3ZwszFCWpkuNBQOv0UgAjx0zKYTjIuDOPPox/hw2Udd9/RWWal18IpaEHeUyfjipU6rBwixqZYiTnyV2Ciu+pJAwY15RWizcD0tlapxT3u9yrmwkEInPKaEo0ddu8r6/OAfhlOPD/6NevunCdc2RJEe2VHReNJpKP7HYYPhYvXMFc7GnQ0JFV9P5HYkZipkvCpCAxk+YTedkemg56926Og8qeIHQ3xVUPkrRe3yHLMcKnPHnaanNq74Ol6OXOS4qq/wmB1vALbmDOcpiuShx+d+5lJiEO3DkSQibGATeGifl0BhG29U6SMdtJc9prFnSO5FNCr34Q7PvO9X7jvq683Vbomct5Ic2TO3irorH78xrBgXvbhoC3Ec2cYBIcTpUkiCN7NKu0rdC3xm0vvH59dbptDCy9keI8iAyQUiDFRLdthOMJYdzsIlDbTisbmmbCNLHEROvdPQe7h3Q6nCQPRpkBxzrC6IMZ5pZH9tiBNDDXU4ETdqz0wZbypXNMmSlNfH7ZQNzOJg721daV+21nOUVyiJxPZ+Z8JtiE3ZR1K0McrgSLbNvqYZ7SWYJDuiBoigSEJG6mTKlETUiLBPGO/pSSx+XUivROxsk8vufI3OzInBPOUbhEZYnKWf3gnhCyCJIyl2UhaaJrIMfMZXbz5lKbW5J1tyaaRMh59mTnDikGnNPiTWEHgoF234dFDZymM0s6sVahh0xSdzcxlLuIW06JMKWEVHdyKPvo9O2wOXJ4Ss2cdNDd7X0vOznP+FHfPGcuKTEHF4w/bK9sFIFhyzSmJRkXyrEXM9zhQ4L8f00jgj+JIGFYH/l+8iG3GBClDJsoDdGbR+nOsh1sQH8hAl1crGwyGHh+gR4okUOjB5ztxA7/42w8zGNYnbDh98jRTMPBambs3gYj+XDDkCPzjTFZy/jd/r50Ha5Dqu9rliF8HqvfdxgWn04Z3y+1UrvLeFpzskpQhhlyHztGHxaaGbX+hU5cT1PmnAP7fWVXH29TS2hUeu8D7ituu6JCNaV2ZyiJOrTYxYPuiAumkb0Jt7U4GzEt5JN3gTRDrNDV8f9yX1HcI05iIonRmud5mR56IYDuhIE00e5XPI21UbpQ+wiLdIn8Q09Sqh+GQUFjQEYXqabDa25YvKQJHa4hMc0O76ROXj4wn5/o1uihQ+xUcz9ADz0MRMnkp4S+AvfG3na2urO1wloLaw0sqsTZU5aTjcBEUTQtSAg0qS4DSIGYlWkJTGsiLgce7vvGtd59umiV1+vK7fWGmbGcZydVzJGPzwsxuNPI6XxiC+OmEEGKkLKiwai20/pO0Ik8L0wh01tlv7+yrwUNhkaGPeFBacZPjgCi/t4d0BDVpzBoWNt8StOIxhnKNpqfhsVIShOnPNO2r6gVgrlp8lOc6RK5v66c0olZIh/OZ+Z8IbYZroF1dUp7NyP1wO16o9VG0EJPCXJyMkg8kcyI3cgxIiGTNSMtk3QmJOWSMxnP8JLWqOoHbUA4LzPaK7RKCIGPOfLNHMgK1+AnWt53ZN9IvXOOmYTvKec88/HkJKR9Ne7N9zhRlVNInOczpp7qmzVT8JiNyO4ZoWJoaZ5jlyJP04VTfOIelRojOSQXNGvkVYQkXkBPOVEwILBtzsRV6aNwGQFDpUEvSHcj6X3fiCmBdEQbMUHK7tTvKtohFxnsYjF5wITYYfUlYDr2jhVC9CmuHWGYbmIgtAcBgsHCK60O95ORTxVGoKeK3+PmZ5DiRephDTX++d0Bw0XREoQgbk5wFDh32xCkvd8LGp1ZqKNQyTCcHl7TgDeONoT4j11Ye58i330NdTjZu4ZU5CiQAYI7upTefcLkaPx4FOJOd5F0c5/V2jq142dNraiYJwwE11F26x5qGSNW/LH/3K9fdeHq4uGEtXdM3LOvtZ05ncYF1hyqwIhRGal7WHNig6jjvntvTOL0+H3feLvfhrhP2GulD29D9805OpqxZYXH97xDgXxErPRObYNanyJlj+9OzuqpwEd3ZzZ8xmjUWjxkERcVTsPB+rbfaGWhtziMfwutuUtIa7vrT0xodeX6UunW2NtKypFApJKopdJkp1fh7XqjG8ScOT9FZArk1VNwU/auqgwLKswHzuv9TtM34pyZnp5Y5ugEkSVyfinDtdwbBA7CUsx0qlu9mE+rIvD88cJvLxMfnhyefXu5MuWF508T0/cnbwp7p75eiXFkN+XM+cNHpvMzcX7ynVfd2dY3yuYEARn7CR0prK31sQ/ySVijjvdcSPPke3D1MEDUPFsrJy+E6tEwQRs5K8tpZskJi0P4iXGeE2XJSDfqOqDObkCh9ZW93lhSJEUliZuthjExbesbtZ5JUYgJclAmhSl0puzebxpg296I2pnHTtOs0PtOq6uD3eIwcOnVTW67e1KmIA6J98qS3dT2NAtT1jFRVbbtTp6Up8VF53Uv9LrTy31MxhGZFQkdTAndyKGREsSsjwNem6JWHB4LgZDjoD17MGUIgZiiO8u3TreNpg1iJgYPiBYq+/3Np/fesXqnDdhsSpFN3dOylRWrvn/L84SN/d5x0cnB5BjSE7+YhrUXTq0XCQ9IDzrWBAuDlDBOZwk2zHD7+9QgQoj6/rtUHtOXX1dtsDzFzxELY7+qxJycMDICP/VxkxxFBiSIK2KOPW3/pcVTcfJRCIBDg4c3aky+emjbCBMdpA9Vl5X4Our9ecIgBz5SFAzVQEw2iq/vfXtzO7mD+GLIg43Z6hHG6mdq34uzMUdYa63G69c33l5fub29cd9ug8QkxJD/7LP/V124bm9vPjq33SNIUGLbCTVjtdH3jTm4WaRa9YNpLCAT4k7jeri9Z2JI/r/6htGG518ZEd+O7YM8Mm+OBFOj+iIdG6adcYznEXQiJN+NSG1j1HfoqjfvZJoqHujqDMPe24AboZbGEvCdXfck1sNAVwYVtdfC/e40/Fobe4f77Q4iLE8z33z/GzSNommdsjVub3dubzuteWpvL4UQMykLKTdaK9xuFbNXavJYBkN5u1dudiev1Q+hsLhxaBcgO9EhCdRBQzfojENehWXqtOzJrR/zwqKZ1CJtNd6uhTTvzKedD89n8pTd2Lc65BHGZImpR1nU3YXC2+auAWOSaniIXysdkaPzVr9LW6NLf5jkMiAb0eBSAnPDXIKiw/XeA7B3etnZbxs/f/6MpoVpOfH9Nx/JeSGkAiLMOTNld2UXE89Rw6mK1+ud6/XOtBnreqOUQi3Gy5ev1Dkzp4g24xwFtU/eiQ8vSxEjiULr/PjTjyQz6r5xu75RLA6BaWMx4X6/s247ocPPnz97EnEXd3iZZwIfnCwUjZBncor+vFPm7fpC3zvr7c663vGYOmPbNk7D9WXbd/KWKPeN7XaFFtlrI+Xm0Fg/fCADQY0oDm1tt1eoFSWwvn0h9EJViKUStROtUfcZ+pNn6kVDKI4+iBADnGYlp0QOAYY2qLfuROKhR/JD22Feax7DIfgEZMP3sw83dDtMorsf7DrMb200Xt0MGwnoRqeUNhisw2A5jN3ZuK89QdogHSJpHcGRYE3o1f+9D3TObGVIX7y+O/Rp1gfn4XC3HyzIdngYOhrcm9FGsyU2zqaO09yHgW6TTisjLLUWlwyogoRhfzaYk0NfVao7Z3Q11JRt291ZZSB+3Xx66yaujxTjSDqw5iLwY7KTIJ79VhtWPeU6pzSYw39++flVF67r6xsRZcp+yKg1ojVCG8GQ+06eJ0+87Y2IYeLdVzDImshjaRrC5PRyhBgnzyjCUNnQgY/bg0DzvpC1Qa7wuWeY85qhBFQTIbnYN+WMlmEIOiQQbtbpDuHtF4bO1s2foLnyXNSdxwOHQHLsYcxfV++V/e2N+33lvu68XDd++vFnQlB+87vvWU5PTKcFomCts902Xl9u3K7bcAJx14iggRiVmBv1aqxrZ9/u2NwJyV29X7ZOso2pdD48zZhlusVReLMX1iPunD46xWNXIUwZWmoEhKc0s0gkWsR24b4Zr9ed+eXOKU1McSbEREzOFNTBtrTuHSvc2dfGfr9Shzi82bDK8pMCDt83827BrGFtKCb06MwDImEcFvZOudYhUrYObaeVnf2+8fL2Sp6MoInztJDSjIY7IuKC35y9szVPH5ijEAlct52tFMwye9md0l+F9X5HW0WnyB4DvT4TND86YdXIPCVHGMz4+vKFqfvEdl9Xms6jA67ktDuTzjrWhbfXK1IHvT66EWrQCdWEJYeCT+eFZTkx59ld7Iuw3Te3VbKEdRkp3n0Y4K700ul7oY2moVlz+YfEx4EpouQcmEqkh0hZb8heEQvs9zeCOQRWAY0Ni2BtJ6iRogz9kzeQqk62WKY4ct8U23d3ZCg+1SlgsXoxeZhMu47TC03HXf+dbeh2b87Ga9bRBu24v7o72jB+zqzRaCMRYjCBu7MBXSfqP9MxX5ceFk0mD3GxNTztesQaHEUAxurrgCg5mOj+L/38OQqem4DrOCeO88H6MT3xICvbaCCaeRBnb0YvlW4BDQ5VWh3sScGZk615Q1WrJwpgPnWHRBgFsZu3VJ1DXjJMhUXpwY2XvWa77GfO2aHb1vyeCBEb4u0/9+tXXbjWfSPvOzmdfYmpgfm0OBUVPOBvWLkoGYKg3XHzWndyvnA6LaDCvMyeD9Q6MQVMGkonikc3mAqK78WaGaHoQ3zn5rweA9HVhcjzsjAvC08fn1mWEylkmq3e1ZhDOcrYtYRImiYnNATx/ZXhpI8gw4UjsiwL58sTp8uJKU8DFwd65LZ/5e3txtevL/zX//bP/OOPXxEVvv/xZz5/eeXyfGZ59kPq889f+PHHn7mtK1OaiBrIMdDFp6opF9KxmDa/8EKaIGUuUQgpuXdeLby+vKEpEqdMSpFpMvZqDsmIF/qtNKSLh9sleLrMnoyaM6eUOJ8XTh8uiFVq7/zxx59Yf/qJ+TST54kp+9+Z54kYAmVbXQdV3Pvxdn1jvb6xbvXhETfNJxdijw5b/z+IGi7Y0bGP8+KdpomYZjQ6pXq5PFFiYb/tYxfh9N6//f4bpvN3nC6fuDxd3M297CwxcJkyU0y04qF759PC7//69/zbv/4tX14m9rrz/O1fO1vN8M81dqbkllLn04Xvf/tXfP+7vwINwwpp4X/7X/833m6v3O9XXr4ooY8lfXsizk/OmbPOX/3uW7ZtZ98LNSwsSUjq0T3zNHN++sQ3v/sd+XwBM74B/tN/+l/pKkhSWnmDKITzzL/5278lxMl1h73x6btPWO8ebnr5SNTGlJTSDLNAnk5cPl58EhchRePf/Zt/y9frG2svvH7+Z3r3HfGHyzNzFM458lcfPtD7lZQDHz4885vvviEEY7tfkbL7jhqfSkLILrRe3bpq3Sv3rXNfb8QYOJ1mLk9PpCmT0mAdj1VKT+KF1aDVQil39/BrQ181JrOx3gJxQoZrHzt12ynVxn3n1l3HpOUXl73/rjoo59Z9Pz0YkK20wTZUh9Na8+J2XJ2DQSIji2ugfaNVdviwj+LZu0/hQVz20fYBHeKMXhPoFfbRXBj2sKBSCR70yfH4Q1FWG3Xd6bUQpuQJ2yk7o7pUeh0EMA2giTZSvnsXNht2UAil+d4sSOQ8L4ScqQJvtyu3247xi079z/j6VReu2Cr9fuW6b7Q8MZ3P5OczYbsRS+Vk3UWUdaOUjS4voJGgkdoqYY+kWBEJPD+fmYIgvbBJc1ugXkEbayts3ei9UIcb06KVOuz5e9uxvWCtILU4rp8jlgPcEjZP9Fzo+w3a5kv/Uv1C0DCcqje0ChqFWHfPGBsQp1gjKEwpM6fMHBNTCGg3D3KsBdQP3tP5xLefPmK4gfA3H5/59vIREWF7WWn3xtvLnfWtQjmydQKnPI300o4WI1iEI7+IQ0idPMV10IZzV0J7t4V5mp7RvlHvkI6FtniWUtCIWKNZJVgkiXCaJj6eMqfzzOWycJLfsK0r276REWcYhsDldOHydGFeJubTzHJakBDpCLlW8nlh/vDE074TghJDJM+nIZZkkHMGviuBmPPYSRhE184RIjKdkZRBA61DbVARelKYJ1qO1KQs3zyR5wv5dCE9feCnP/7M160wXS70eKaHE5ovmIHGzHL5wF//zb/n08tPtP3ON9987ySKmLlq5hSdmdpr4XI+cXn+QJwS15fPbLc719cvzLGjH594/vTMv/pXv4WuLpgtOzWcnDredp4v0+h+hZvOZPUGqZXOaVnIywlS4Pr2lVYLt7cXTqeApYxME1M40Yp38vROV08u114eJtRzVsIS+BCfOT8lrtcdESHGTIqN6+sP3DFef/7KJa3EZ6WlM7/79Duao7Vsf3VBEVKIfPN8Yb9+RelMp5lp+jBc+nfu9+0BE2r2XVenU7phMRJQJm3EfCEEJeU4pmQ/iDVG91EcUS+1ldGQDW9QBmTXmoeP2qCWO23u2GKNfbY6bNh8mnDfU7/PmvF4vEH7gIPR52+bs517G3uy8biqDztFwSFOax1NwydQoI49ko3nqiIjdmfcr+FgTvKYnvzhBys3uLzBKe8Mnagzg9E+CEwOI8au5OpSGI1CVG/0O90BgBRdt6mjotoRLWOw72Pt4tZ7MuDOlDPLdGJOM8FRVEp1w94/++z/s3/y/w++ogC1sm+re2FhlPvNL8DeSXRKa7BvlNWJCCFlQswOHawTPfjyNPaPxAEJhV6gFbBGsIK2ipSK9cIgmLoY0Dr06vEI2zYSQqvjxGtgT8o+Z9p2okun7XeseoHzrKvu36+NWjdCE2gQpD3YT9bKoAGPzB08tVYH1nCYZ8acWFjQEPi2ygNeO88zUQKlFNb7DY2J/bbT9k4vTl9HIeXkC1ZRMkM0PW7ew+k+6C+NMY0oTlOWLmhTUp5oEXJY/fuHql+VKB019Ryo7N53l3ni6ZRYlswpJ04xsU2JbU0PVmWMbr56Op2YlolpyaQpoSFhIRJ7J86ZXJcRbz9MUyWgvQ4PNs8EPm5kVNxWCKPV5lOudUTLwO+hlMLtvrofoHVKr1RrVBphTlhUqhn3UrjuO3ttnE5nQp4xTbRqrPe7d7tmPJ2fWdTQuvHp4weeLxd0mrimmVNy6Gq93ZlzJOZIrTtff/qRfb1zv74Rhn1Tmmc+PS2Y+U6ul8LaE23f6fvKkiGnhKZIkkzSjvTGvlamyXVkW1n58vkHatlZb1dn7EUIWVmmRNkHrNYqxYZPXRPq7pHrIobVjRCMaUnUNohtqtRy5eVLg9a4fnkl2MqcAiyZJZ7pXXwf2mda9QnivExsUrFaCKrcrxtlv/Py+ZXr9Y0clSkF2jxAv270zWAw86Y5j88WgroBdWsVKaPxGvda6+/7nMNtwquTQW9YD8OYOw62He/U+FGEOFxozOnzx5eNh2LwQ95pW/L4/659ssev9Xoo8ChzOCFkFD4dPMB3h4kB6w0U4QEHdp9y3o2l4RcP64jTo9gdO7JRdDvvMHp3in2MTqIRHTR5+vv7G8K4h3x/rQcjmu5huKK+5368KSCqpJCIR9zUmETtL9Xy6bwsmCm364199Zygv/vvhe8+fiTn7NRLqYj4rkM1jCiSQl0rn78Yt/srSSPn54UpRurbla9fv/q0I8Lb9ZXrunLfd/ZaCdNESK4CpxfavrHeb7D/IuGTTuuFrayUVjmfZoJ0tuuLO5l3txaqrVK6sffOtt/dBikrOYP2Dq1Tik9U1yi8vH3h/vZEokKfmbMSUyDMM8t5IsZvMRO+/e2dt5cr17crX3/6kX/4wz+wlZ29Fy6nE83cLeJ6exvas0YMiZyUFDJJnzDz3KB9r5zOaRgCd9/NDTHMsSRGnFCi1Ukq86TcBmQgouQoJA0Otm2FOSdO88R3n554PqchzhTyaeF8OYMYMWYv1CIjCiQTUyRP8eHirUEe+8PWGyFlF0q2Tiv+2VjdnHEZBVWnl69vX7Be6b1Q9g3RhEhAqSOLrXFfd9aKEwxSotyuvH69c7+uFOD29gPr9iPlP698OD+zxMDffPsb4pKQXvnhD3+PBOXl81d++uFH7L5yyTPL0ydOlwWJgDbm1P3/28Q8Z64vX7h9fWP7084/90YaFksuAI+czhNPl4tHkOAeh9tWeXvpvO2VECMSx25BPBhULGDdWFcXm1+vK71sDkmPdj/WndTubHWiVPHPfr2z7Z1aKnW7o9K9WLYGpz+Skwt+0WU46nfW7Y8EmrMqW3dvvTmS2bBpIsSJmDNJItu+UcrOy9c32u5ONXXb+a//8H/y9eWFn3/+AgJP55mn08KHxe2URJRTPnE+nTmdz3z89pvhkuJM2+vrjXK7uWOOOmnDzTMC0+w+lkelkeOkx8ktnig+rKZsjC6j2MSgFNH3/VkbPy/Bs7tG3pf7aA7ihTlD7zD99kLkBUcPlvPxHIZ2LQQd0HYfrL6jcChWndl5OLw7IWU0ubwXLsAn8ub+jnUEYj5MfW3IPAYlXcQnMhX1XX9M9F6gNawXJARCdGs5d8L3x/ckAv+lSw6stSHd09OdHm/s2z7cTTql75S2DX3YX+iO69//9iOfzk+E8K9oOSMxMqdEpz16Fl1m5mVmmWfut5XX25Xr7c513xDpRIVTDvzrb8/kkLjSyWVz4bI1vl2+YS0be90JCls3ajdqh5IifVHsY6bftke8e+mVEIQUlVPYOdU38t5AKn/zcWFbInvp1JZ8Gdp3AguesOt/dDCSaovYbny6ZP7m44XLMjElJUjlND2T53kwfrybAeH88Xd8831jfXvly+nv+fv9v1Aso8vEb//mX7Hvhbe3K9b/G8GEJMoiwnyafS/4rTDnC2Wv3N6udPNiW3unFfd+M4N5xMSLgOZASO4pSE9I3R9L4mbCEj2/iEl4mk8sOXM+LZzmkaiKR5eH4AUmHTsyZeSmiU+Z3S22aAWrI/nX3A9tW+++SxsUYQkBJBOCYCGOmy+ieXYSBjZuSu9g67YOB3nlScLDk7KZob2juiDxTFwW1reN7V5opZPzTIgZ4kQvMM0LHz994Hr9ynx55uNvfkMNytPTM6fz2eFWcZ5aMWPKrge06hEt97c3rq8v7OtKiIGUE08fv0VjHIcj1F4GPJeoXfjmrw+yzs4Rv7G34r/LYF/dS3O93Xj9+sUDKj0bmaenD1RzCyRa536/U6Nxvjxzu7tuKoQP7Oubf9aq3Ms65EZC7RtpimQTgrr0gG7YbkzLs5N1xNwabb/TEU6nxeFIcyeGQyukc0T2zLyc+fa7QJ4Sy5RYspL66hMywpJnznNmSkovG72sBHXGYZqzpzXXfbD0EkIEibghzXBEr27i3EsF6YRSXRQ8NHUqQC8uT+kdT98aLNXuuVW+Qw+EDkH9Xqi9DZazUFtnsk7oQqjVo1AG90qGlZT19+Jn3ZPa6SM5woTUDZFRWMtORAfF3YjWhhC80G3kZpl5s9788SUkcnBrtyDqJtLV4UFtg/3bPT4HcybjEhPNhI5Do12MXl0aYLX4865luHX4z7QQseLEuNIqe9tpooQp+M4xZ5+8ohNr6H+hzhnffXzm+w8fyNPkhStEkihVnLJaayd/eOJyeeLp8sTtfufl9ZW365Vb2R2aELicFr7/5iNRA3M3Qi8ONUgn5RnnE3VyUG6lspbC9brScCFgjAFbPZq61EqlOsw19jtP58ljrW3ilJ2hVYp7JnYaJo0lut9Yt0rd748uqtbGdtt5upy5LBMpeMejAzZ0HNw7vdY80iRl8SBFg3J54vJ0oWHEpzMfvvmGbd3QEPj4fMH25rRtFWLw4pKSO60rQs3pISZ0hwBGd8e4jR2WiMFNNbs4lh8H68qXBEIKwjQyy5YpkVM8BPh+QAys3w11ozuD6C9Emg+NDAOrt8GN6cOJxLO19GDixehR5uq7OtPhQBI9x+sIghXScDxwGERjcuunkHwvMBqglDJpemKaP5DOF/a3G/t9pdWOSERDIs4nys095sKU2PcbIpCnRJgnLh8+MJ8vLhEwN5Rt1ojJCQfUCnpmnjPzFMfnJMQUef72u9FNO4xXygpjf5AIhOgJxnW7OaOQTmp1TK5CXXbKvrCdFqbpYGc26Dunpw/j2t3prRNSoLVKSpm8bP755cx6nRy5CMp0f3vYHbXe0Zj8n5fkcFI3+lbJpzNwaK/cx6/15potcRcYi9ETervveM9tISVlWTIp6bBv67StUkr1az234SAj0Cq97oMwoKToCc5mLpb2LDu3PzLaAwIUMzcWaGMHWjtmlS6NkHR43fqh7oa77vRxIIL8gn5+7LF8isPNshn7rqEtlG6DeSwPKK319xFJHoQoG5ICt2PyOBJ7n676mLrM3V/0AXeOx5ExifVBW1RnJiKeP8hgOrr279gD8yCWAAQ5ThhnRPbh5dl7p1d7TFXukCGjEZNB/Tc/B1uHIMQYPVlA3HT6SOj4izXZ/e433/LpwwdiTpQYXNTWhNOHM603rm83nr79yHK6MM8XLh+eeP74zL7vkAO27wQRLh8ufPvtXyHNeFtOnKbgcFWKzPOZuCTClJgkcqs71/vKn/74J2IO5JQ5Lye/CIubx1rCmVxA7ZVt290lYQhvh8CBUjoxKdMSeZ5nujZq33n96U948mlluxe+fLkTYmJelsHWGwLnWijb0KfUxrZeaa2T8p3l43d+E0wzz999B0GJ5xNpOmMElt75/jffst0KZa/UzqDtNnaMVq7spXLf7qjVoWcZb/woOO1xo8jD+NMYAmMbjtrVPe6CKjm6E7+Im5huZSdKJGWHnMS8cMTsBsOHk3bHGVZ+4fOQHrQhLHXxd8AtbUYxHy4kXjmTv+WHa/tIsfb8wOFarcq0nNA0IyEiKPf17lT005Oz6NKJlE7o/EQ93ajbnbJv2GCKVTNg9zymbYdeCdIJyZjn4O4fatR9p1Q3wg3hYJAJGkBzIsQL05x8KujN34t0TNSAZuI2IKYQyBqJORPyTJFCbZXeIeeE5sntwvoycqIqrXwDEnx/WjYa4n581iBG6rq6Li7G4fuont92v9K6x/q0dvfdSXAIuI7PW0tx6YSBbZXdGM4UOwKUMho8Ayu+u0V9IjeDmCNPZ6WUwrYXer1zvV65Xa/Ury9se3VrJgt88+mJoIK0grQ+WJrN3Wb8jRrF5/A6bHDokA5qubnhrVXfN/vjlGEUEMYe6Tjox63Le3QKpkdv9s5YZfiROjjn9HETpLkDvY70AgZBpDeAPlYI7tQjwxnDtaOMUEx/La11ulSHBhlpyd11pq7ukIdeursX04DmfKd4/H17LORkMGsD9Hdiy3Fz1ebkjFobdS+jiI7hoBwiaGUHWnXN2rrt1Op+h3OaIQSqGbf7nde3Kx7H9OczC3/Vhet3F+WbE+gpcY1GEaNZJc87MQY+fuuTRm0vfHn74jjsMnF5zsSYPeYAYY6Rp7PjrUFmND3T645YZzlHWq+0ttFV0Fo5aeVvvs8jT6ag8ubODvMwyEwTMUZiUFqBUgf0WIsfkr0jtWLUx2JY5eqOHFH48LtPXgRLZV13Em7w+s23v+F8Pjv93jouo57BIm+ff+D181e2+4qmV56/3Qkp0WphOX901lzKtL1T1k5Zjd7c6zBPwikl1n3l7bazblemOA1XgY6pa91idC2QNt+LecfYfULRmRQDjhx4VlMdeUDfffjElGRwZhqikWCKNMN6hJ5QmXwprgkItFLHwt/xdzcvEHrpDvccbaIcETOQwtBP6fB3G3u4EIa7gyoET4PW4TaQYoIRSqgSkejGyAaEZUHiRJqeiGGYsNLQdidqQ7MSNLK1K7XcaNudtrnru+aZvHjwY55n9r3QypXWHSoLKZIGA/IwLdUoaDLEAuTZl+kjgYAgYMMXTpSYzl5QYhhLbsHYCTkSQx4BhP4++SF7wFwGzR/bi9juU3/3fYch1GnyhX8IDgs9sssm0oAKlfNgaQIovRXMXCvpXXqj7zC1Qm+C1TRSjSdaSWzlTlew2qmtQWogQlpAqstWLHT++Y8/c72+sa53pnVjioEpJ35zzpwnmGOHZixLGrQpIY3Jx2js2zomd/dILGMCisKAA92rdN2Kx3d0o2dnxYWcMWuoGUOJiFs5vScx+/c99sbGyJJCIuiRqeW0dSuNVt0Q20+aAe0OTRSmSFcvXAO6s2F45Ws2F4KFEBHzqSmpeyKW0ij1iugyNKleFAVHfFr3yVRGzMhjH4Z/du5i4jo8urrlVb2x141SC3Wv6DwPwpai0gZSIpAStXVK61y33T0Lh2SiluJ7vHAQTsYMt91pfWO7vf3ZZ/+vunDNc2ZeJmTK2BIowUPcpuAL/5CiZ2+VOi4GI0aIUclZMRz/t1KpdTDStDOfZ6w5fBGiOgZOG2O9M9VyUJocN7QBZXyog1Wjw8nhMNtUgzS6/i5j3G/OdxOcJDH6xJjU75EgblkVfTczzTMgQ7+0eUJvbs4UXD2OIsTkcNiAGdx13vVZ3QRtoxh1OGLtJTiVWVtB+qEfcay8N/dNJLh5qIrQVLDmQXxuGzSISQND9zyzkX2kwjJPHug3Ds4wKMSMg4Lxs6LH+6cD1pAxQbnuxCc6cV9PcWNiOcYyvBAdZ4n/rBeuGJVHrLn4jkHFJzeHfAYMc1CTh3BVBqFEAHrFipuH9urYvOH6MB37h7bd2G+bizWDezqGGNAYsX2j9+bFV/w1oHHsLmzc1vKuSB2vu+uxuB97WxmHwGHpc+xJxs90cymDa57CcDE3rFW6VQ5RuErAhrOBjKgOUXkw0kxlTAQjbNFs7DN9Uo3hOKwHzdpzD3yfaPhzjXK8FL/WOl58kxDG9dObGwWH6EGK0zTDqaObU8NTVIeVLfGclWU5sSwznz58cJZlcq888egGaMOIVgKoTxA+WbvuyIcIL67a/Dnl1EcxcmNrjdnlG0fu1TjizYKb48qgxfchaBYvamHElOjBvh14uqcRDzg6pTH1KwF1g18x1zzpcIUPfTRPioq7UeiAO2meHYYN6yb1gtnHfXXQ8+Uwj7YjKmU0dFHeGYZ9FLJB3HgYU0snD51ojMq9mzv/R9/9ecyMOsGy6YMU4oLuIdgfsHZrnW3dXNfWO0YjTWlMhOXPPvt/1YVrWmby5YSEjD6d6SnQm5vq6jjIRJ0ZpjFCb6QQPc4gCBKSW/DfbtyvL4Th6TafTj4yt0bbNgYoTrMylO0jEXYYZnaR0bkqpoFWDI8UEMq9jI7XUKmIxHftVz2Wk+LxAIcXGnn4+tlwU/aDJeaJVnf2+5319ZXYjJSc5VjqRswT0+mMDtajAdVWWtexC6qDPOE3bje/iQ9PtJAiSRyuiGPqKaN7jSpjOvDuratSR1PQB8QojE4/OusvqBeyaZ4RDmfv7jssxMkAjOKBT0YeAhmcBXgULg1oSCMCfchtBkTozh+j4Pkx6jCvA/2Dwuv5aQ5piFN5R0GyYQOFCRJ9f2C901ohpGV89g2r9oh4d0JBckhxBEYKQl037m9v7iI/n4jLAb94ptMj2FSctt2xf+GN1wVnHqu804yPg6A3TI88qRHfZ2OuaIUj3bmZa8IUQ6L4z7VGK5VWV9xJRAl5Gsij0evQ04iMpqY92IOt7Y8dTK+e7IuCxPH7uwdstroDnS5pDGI+Rfqex50sDnPYAeq6DGTfUfUdYswTy3ImhkjaEqrC0+VEjkKvid9MytOHjyynM3l242oRdWeLXhzuG9ORxx35DkllTOBhQpM/f7MOe4UBtT08KqMTejydYRz2MjRf/SFIwayNaBFvnEQi4XFt2i+EyYJkv45NhDgtHGa/ITBIHj41hmZAJOQh3yCARspWCGru8bgX1A4CkiLBgE7tzWH4kUEX4wDUh4+rvxZF06H3cpTiKIA6XPElgFjnxBljopujRDot5Hn2cyIGRroYo8/Duic79N2ZmTJulVYbt7cbZS9OrLHGclpQZsJDWvM//vWrLlwfP33iaQrsO8iwKDFLRPGpyEp3CrUmelTUVu9CWnNd1u4WKLy9su/VNV7TRDxNnlbcdj5/+Znb6wvbdmdezszqWV9YZytl6L8Ds7rljOyw3/rAjAVthZgzR/jkrdyhFUJbOW6sw6gyKcRxo9RqbK1z2yrX2xvT1KnlSl0L15evfP3pB0Ix5vMT0/kJi5nnp2fyaSYo7KWx7YW3rVLLnRgC0zQTnj9QQuAOfF7vw+E80DR5R5oGLGiBuAgZWEuBFGnJQ/M6RhNowanivpyNFHPXRuJMWPygjqLIPLsIuDdsqhDz6PLOSI70FCmzC3+7KkUFiZN3ykA0D5T0vjb5LmnotZopFqLvYxRnZWIDRuTR6Wp8/5neNnfwVyEGe0CUkrIf2q36Z5RPhHwmzGdCTC4e7dUbk+ANi3VDNBNzJ5+emUok5pnp+RumZQFG1pp1n1pVCdIGc7Sh3TOndOhgbEwloorEMG5QZ3RK95aJoATbOAIAxdxRHYkk6mPZrpYA30fQ3nDhlCLiXp5YR1uhrVcY5AVCJFoDXLfGEU6ogUV9WpOuxJ680GlA+43aBvrwSOhuqO1OE+8CBCQmolVMKhaUPk2enRUzU/Yk7xACy/Mnen/mw9MnLsk/DzNPI48jo41oMPmUut/BJNAFqlZi8Cm2ifHTvqPlM0G/gCZknt00WGRYRfnOjkVZTgvLaSYT2bedUgpve3kI2Y2OTDI8/yosBwmCcT37nxAdlhWALBCyGytHIdiVWnZK2WkFL6g+0mNpiIwBCeaONhq517sXziY07Q/NWIyePxhiJE8TaKS1Ttl3KoN84dxVd+8IgT4SG479lej4HPH75GhQo2Z3vAfk0+zIlSqbvlFqHPdio8WO0FBp3LbGddt4W1eKNYqNXMSslHKn7huxPfHlpz/Re2G93//ss/9XXbjqXqgCt7eNFhq9RoxIGLk9vVU0RzqRTmAKntdkAn29u+9Ybdi6kRBCb4ReidPZCx2V2/WV169fuF2vPD1VZPbAQgPu291FjQRk9ikOEcpWHhh4lPagZtdW2W8bWGOO3sXWUtnuOxhojsRphElSabWx3Vf6WIhv28b6euN+u1G2wv2+cy+deN9JpwuiSq2FEIy9VLbdY0TKfiMEZZo2DKEMosU0TfThlnG7vqLJI2GczuwHbusHbOGjv40cIwWiuu7L4VbzFF5XeXKaFofG8NBBx9zNwzOBB6OqNt9X7UMEq+5L17uNA8OoIxNKRDDbEBoH8iQSRiJxcKbgiC05ot0xPER0LKE1RNTPfu94o3hKrTYPPGxDg1I20BtaPaoj5ewHf90ppY6ASRymMt8Vvb2+UIs3LWXdYBAwWqvc99V3e8Gd5h3yVOrmBsYqEMWhSAbUFKIHgGKNUnbMxqyiwSdYc41P5ZianS3pb1wghDe/vlvB9ht78R2EDX9K1/IUrtdXN0xFCZqGAL6x1UptdUCiSvRxEEQHgcaX+9pubHt1K7RpHmhTQ/vOvu+eO1YPNp17Kl7vG+vqXoOYsExxiFt9ypBBTKnrfUw9Qhflet2w1sjJSOkOBGp12Pnw5guhOmxsHdVI75W6uwt+ud78GjYebhrWOz0r83L1kE4JfrbUxvowADymyDGxHMD+YAyOwC0vYOr73MPBpImnhIegyJh+a3GD4UOkrwPVAQ+hMHHqedZA2XYOeU8bGjMRIQaPPNIYnIgjgV6NuhcsufmtYEhzH1LVQH/IZpzYETSBemK00P2+EF8xxGnyVUWIfi2Uwl5eSCETQyBFj4Sx4SC0Vb8GDjZnH6zHXo3aGs0MCYHl8smz7NJfqDt83XaKCPfbnZ4qvQe6ebCktUqtO2GKeIJVROYw3JyNbb2z3nd6bQRgiYk4BIzr7Y2WAlE79/sbb28vXF/fkNYJTzM2eYrruq7eaVogBk9hFlX2fRvwhZEDmHp4YK2V9X5HrJNOEVEopXK73pFu6GUePolC755Gut1WSimgO7frG7eXV7b7jX3fuN/v2Loh4c5cHBK6zxMaGrV29lJ5ve+U7Shck4sjY6SrkkJg2z1GZV3XobVIzPPkB25t7KVgIYzuvmNRfSIxZz5Fif5+9p31fnPYUJScZpoIvVfutytHTMy8zBws2FYqWpVYIrk0UvLYjaBCLYOUYYb2RhyL5dY6Ym0EPDqu38cf1xD5aiPFYVxs3fPL1B50+GmaCMFthCQrhAQhEsL0EG2WfaP0iIaChpU6ZaS5u8O2bVRjUPA7gkfIv73dMSLdhO16pTDi4XvlXn2xHjQQQhtF17tbVSWKkNSovYzDLxDDhAxjYHeG8T5XTFHxwlV7p5oHfKpEUjqc/bxxatvuWpu2sZVtBP3hu5Xe6b1yvV9pHd+REojq8NNaK2UENwaUKThxpYv7TIr5xJG1cd92yihceuR4WWWtzi6rpaNdUHEo823b2fbq1Oi9sWSXebjQ3Q/ySCel/bG3LQZvL1f2+0oMzWFlCSATdjB2VYkSCdHlGa3DvlePK3q5c+uunfMok7G/MijRmFJkSokg6ibC1qlRB/llGP0yAiODPF6/0xnx546483nSQWJRNhg7SxnUfdc61TCIM4yd7FG4VIYYWIgCrfRHQTwYh6pK0kAPDgGmFHGihdFKIy6H3MSn/SCDjZwi7+QMJYQ09oHvsgPwz2Q6n5iWhWWaWIdBdNsLU17IydPRBU9L7s3Ya6ENdmdtbZwZzjL02u5BqZenTwQaOU1/9tn/qy5cmgULK5KKK7I32BpEBoVYg4cnGrQuzJYI4UwMmXW/8uPnP3G/XXmaI9PTBYkTpsbXtx+ZonDKQK+oVtCVH768YDZzPk1MyzPV7uytUqoR10QMrgF6u37ldlvZto0pwNPHb8nzTG2FHz9/hVa5XgPTfOF2u/H58xdevl75+OHEN5/OfPr4Ddu2cr2t/OmPP/N6vSMa+PL5J6xV2l4pm9tGhZgJIfH17Sv/bfdIgkZ5UFqPRXkMvuQ26y7CTYkQ84CnOqUWpjCWw6Kc50zvnb16xlbtTn/XYI/pybONfAfnFGkniPj3xo0zAjblgcsHQvLIltY8fty6fz7HjkAFnxJGyJmapwcH8WVx7wPCEB6Bep1OqbAkYU6eQRVGvAgETpeJmCIxRaYpe15UCDzN7rgRUibMCyYzteFWSKmN2HXBQnZSR/fdQ9kd7tk2lzD03gdtv6Cpct0b3H92yC9EbmVzrZq4eBzNCA4n19YJvTDZisbZD8xe0bgg6oGKMT95uJ91rq9vTNx8rxdPbHYUu0jWSreEWaD1jc+fv7Ldb6R6R+IJQ6mtcts6tILajsYzptDovN02tN5Q60iY2FulmSeAn9QnXJFMXiL3zSeqRQrNor9+xQ/C3pCygs6+U5LOvlf3PKSCzuy1Ulpj3Rv9fnfYlUhMQqmVddv57iky54kUExuFn77ceLtt3O4rkzr6kSdlLcOwWsRzxbtPeFOe2LeVbdu53nZue6X0TjWY4vADNLjjjU1QJTQeLvAphwfijA7zXPEiFUNAzdvi1gY6LR73ESNDbwlr93JgJgRrDzJQf0xcvtzsQ9jfB8kCfOosWxsMW3FgIoj/UaUwQEkJ5HjsbWFZol97wgi5HQSOmB5EIB0QoepIU1YZlnWVIEJKkZQS59OJUr145im7F2gMzFPitLjhdlBhe71Tu7nf6LbRWiMm38/nnDnNC0/LZeiOO7X8hdLhmxkWAsv5AtkQHXst6S7cDMn1B30saWMgTRN5OhPniS9f39yv7e72N2lK5GXBbiuexdTIy8yn9C2Xj2dePn9hmd3IM6TEpEacjNZgmv0QOkI93QCzsrZO3jaOhY0GpSPU3tDmZI8QhE5nLzvXq1CL6yPu686X1ze+vq6kGJmniW1149HXtzu9dV9qx+SRIPeNtVRn7gxoIoaxuxisMbGD9aR0GVk6CHlki7XeWfc64i88B6mJsBcXDpp2BkUAUfXXO6CNrN4/9g5bHVR0FfJgYoFDCDaIgA89VjP22ml9UOAFNz09vsbEFUXIMVLNfRB1GJ3663E48xYgBZc45GlynN7gy6v/PSeYeCGPQYh2J8ZEShPnD08QMg3hvu6czh9IeSJNma9f37DeCQhBsgssa2Xbd9ZtxTCm+cTTp09MJ0FioZfqxBILmMSxb/PDIoSASMJMKdvNBe9WyJJxSV14Z7UFJc0LIc/U3rndVgQX+sY8Y8yei6RKZEfIIAkJz7zddvdLBOac0ZjREEm77/HoO3G6+IGmQvj8mdgnlI7ExRshc7/GmebMtzCTl5mXlxeub69MImiYfV+iYbieV2wLhHgG9bS6+/1KoDhwny/Dgaaz7oV+vyEGIUzEGLivd15eXtj2K9vmom6ZIute2UplL/UReFgK43k6fKzm8RkH7bzV0f2bkZOgXaF0TxofU40hj2lfwfdWbUSaHJfhYOm5cPrwO3RyYWtt7C/H9Wve6DWz90ZLxaG+7iSg1hl6Mf++jZtJkOHgzmDSOrFIceJE70LByRQNGUXUHoRUurFuhcMH8c5hywQS+nH3uouHuIFBiK5Na93df3wW3VBVTredmBLzNHG+nFmWhRQCOToz1IYsZZkT1/tGK8WdgWpHS+Pteqdu1dci+51tfUVVHEn6M79+1YVr33f2nNCYsOjLRakN05HYGTMqRjRnMkk0NE2kaSHHC6enZ+73lW2vEAJxykznJ2oPbp1DIS3GFBYvRB1S8CwgSYmUEnFgzyn5WFxLQ/OEbAWJjv1WM6KZH5DzjLVAoD6gq5R9GjAGrLG+OcRR2tBIDBdTc9ruVgrX+0a3Tm6dGBr3YtzWjXWvjrPkiDtdH4tl6M1Qs8FYg7051h1UIGVqd03Ibd0dBlQlh4CpspfGXtvA3of5pjh0ccD7c/R3oxtctzqcooVTcojMEPZxEIpAFOcB1tYdsuzOwAyD3QY8mH95dJhTjOyt+/MLStRhChqD2+wMaEJax8Q9/roZbe/jsR1KO7rWvr0R1aMbLusGw3V+rX7jTdNCnGb+8Id/9kBGgagTcCRm76zbHQNOp0K8PCHNiF0oDbeKskbPCaf4+2SjEpEQoTsH1lwhhlvRDfF08JRuCYqmTJyc7Sph7L5CgOiTvttZKVQPMBVNxLz4zikmqE5qCCkzLWfi4ka5va5oOhGnGdT1TDLMZiVkdLDMzYzUdzREYpyYljP3fUfXFWjIYIOGNKEpQq9UOinNmPpes/ZOIBGlE6eT242ZEXLBkrP4cpqIaSJer9TW+PLTG2Uv9AaTzJRBZBIOpxcnQwRfnPoU3myoq7wQSXTSRE6OJpRmtF7Z66Hj8AYoDvhNBJ/+jrF+wMKHdeEhcA+HJEHs4TwT1XdgTbwpc5q434SqQh0SAjiCJse9ebAyxuOH8fcVexTEoMNvkPFrOaj//ty9kvp7YMdzPrSWdjiFyCApyWNPfWjNMCjNC/ohhDaE1uByCcyTMKWJZT45oiHQ6m3cp8KcI+t9pdf6WJW03n3dYI7UWG80K1gPtIejwf/416+6cP3zT3/ksmfydOY6XSiakaLUviEKUzKevvtEzgs5zFj9CtMJpgXLM+ff/C0tPfN1+RNy+YCcnpk//Badd6zu9LqSzrszoDDSnmhto9FdY7VciGkix4nWb7Sy0beNaX6in2/ozYV2RKWnRL584LuP4m4IbcPqzl4q6fRE10Rruy/LX66uq8oTv/k2ofnVtTOL8BRnhE7bt4deScU4n2ae5kRtRojCZclOA0ehuctEp3tHOBhFt3uh9t0LQzQmibQUmFQp5vTVfd+dvt5gsocUBvAOVId5Zjd3VPebLhC760gCLiPQNKEhkoEdt3zZqneSrYO1To6DDefIB2E4H4i4O3hQnyJ1DLA5C0uOD83eHPMgaLiEKEx5uEbgprbmBryd8RxFuVvBujM4t7eVVr0BaRHmeXLR7LbzX/7uT7S2k6Jraj5++sD5fIKukFx6cC+VuwRUJwJnXuoLrexYL1y+/w2BCTUFVpqpMzpjJE4fsFZozKzrRsqJaVlI8QlTT6ItXVyPpxHJH6g2UeloFebl4s1Ymrm9/dE1Sd0gRSRfkMmTi19LZ9JGSpkPl29p5cp2/cx93Z1II4EuC+teKGXDbEXziRASSTOv5TNaO6FunFLiVhrX3fhaGrV8RRGezx94vnxEJVFbpmP0YFQNVM4UaSAdra6JMoQYZxrDG3BemJ5O9Hnm3uH240+sZaeWylMMvitD+XhZ+OZpYZ7c1eZ+3ZGISxBaJ6BEUYIG1vuNbVu53zJrh7U0at9Qiu+jVEg4+ziHgAFZlB66Q3GjwWOwKl3k6ybHQcyn5wgpuFm0DU0++J64yjhmDUpw+n5r3SfCgdCIONlHREkxD2s31wm25KhIUEGLEMWIQZhTdEbtkINI8HtbRGgBzxArjZu18XsUBM8dHEbVS3JSDBpG0CVstbLv3fewKvSizDrzlJ/4MH/gPH/0ibAf5JWG1M48Za4GWiqHdE1VCFmYT4HTKXNZTkzRpT4v7S+UVfj/+q9/YDlnYpj4opF1LJxbq6QAyxRZnp8IYZhmWmHKiZwTNs18/vkr67pivbH3yvPPn/nww8sQBPoivqyvlG6spfLHf/ojDJHl05wGZdsj2ve2Qa9Ir9ybcX27cb+vSDBy1DFa/8gRLx6skmiUZtz2zsvnF6Cj2olUYnNm0pQTT09nUop8+/FMksz+aee77z6Rp8Q8L0x5prXMfd3Y98K+r5ymTAgRC2lMQY3aq+camWAN3l7f2MqGYZxPC0Z0fUdtbNVJIWXbCZL8JmgNi/2xREYOF4FO1z6gRafSf329DSdv45QzIS1oSB7nEjoMerwSqLVy33Y0OWwTVTjNJ+JgOKboIuYUI6qR6+3uwu4gnM8nQnTmU0xpRK8IU4pYyANu430vJ0InjsNHqOXNn1OHnhemeUZDoPVOjIHajOu9s1z+ibeXjbe3O19eV374cmeePGCvClQztnUj/cMPpGlmmWbu9ytiIw8rD1KKmacADHF0Nx07At9FaNv9tQydlQRFo5KDki8fIETutxspCFGNrCDTxZuLGKhtIwU/RGU+8fL1hX3biKPZEZQ//uFPnM9nrFdKWdlud4omqkTWu9PsVYwpwN5f6ObTQSu3YUFlhDlzvd253zeiDC1YM37khXn6EwB1991fk0ANcWjpwHV20HAbL8Xp5QGYUyQuE9u28fLyytefv6C9kQWeTgvff/PEMmc/BGdnt5kq22XHpCPRIcKkgahOe7++CNtdueTKvTmMfZ5nyv0O5kzBvQrTlJkmd4I4SBfb8BL0LWrzXeug8Pd+OKw3Eni3dZDio09idMMG5VwESi0jjbjR1eNTBEOCT5KqSlpOhEHQqrWy6Hus0GXyROgYhPM8Yep73JiG848KKQZa0JGwXdma5/v5TjQzz3kwkBvnZfZEgZCxbpSyublBGezWELlczuQ4MS8nvvvNb4dm0jGH+vo6gsaNbXUThpwHW9C86NetsZfGWiq3+8pPn38GOuv2F2qy+49/+plpTkSJfDnYO4OyGtWX9PHLqxcXXO0eg4vzWpy43u602kgxUUvlvLxwOX+FgXUHgXL/6lqqrfDzTz8PJphwzoO+hs/la3U3eaVTCNzuK9u6O3tNHf5yTpJn1UQxkppDghVeX66EACkJpwTLFMhJieYkgpyiLzjziXnKTFMYwZFnlvlMLZF12yj7znq7MU++yzDNiLgnW7NKiop0v6BiFNY1YWZcLmc6yckcvbO3mTYosDIYkR7n7cAWAIeDgPQh4Aw+UXShy4hjwA+ckBZUk1OQQ39QdYMESqms6/oQF0cVLqdnUlLicJU/nRbX8BCYb2/ubCHC5emMaoQhjDymspyyB+UxXAR6f3SAkEYYHphlP3wMLJ9YzidiSvQu1LZzX3dKuxHEKKXwer3z09cb8bYPvY5bMLk7/U7/fHVdTU4j3sJZdDvygGNSCsOyy5Njz6fMlAJzjFjxvUIIHnaqoyNWjLickeissCk5VBNpWJg94mWw3eYcySkgafLGrHVOOXG/vvmB1IXLZQFcGP32+sbWlc1caxhjIqoyR1ir7yVbrcP5o7oeLwb24pTxJSfqtrm2qQo5BcygFGelVpSqwcHVMa6rGX0siVRcy6gIOQZCjpRaWNeNum7MQYg5ElS4nGc+PJ05LRNz8sJUu5FCoNMx9Q1OjokUgjMv98mp8SFhDbQ6zFrHMkpEiFX8vpoztQwWq+CwtHjhqoO5qCES0zTuj0qr1Z10TAbFXFDtx9GAhtFQBfwaqSOANgzaP0ZMA7UMgWk54QTE5mfIIPWoKDkPu6XgDvuiyXe3yWHyEJScE1Xc2Li3Smlp7O8CGidO5wkV5b7uXC4+UYv6E6jVp+19rxyRPh8/PmNdiTGT59OjeRGa28qBJycX1+0dzaKMfd/hFOnYqJuM917Y1r/Qiev/+O9/YgpOIFiBqu6kfTmf3XW6VV9rjm7nrQzfNYNCenQxS5z4Q/gTURn2/8LpfOLp+Uy5vfL57c7rbaXUPnBlGyGFPNg+X/YRoSAQ8/zI0RHE8d6hDQq/2Mv4Ataf2/W+MU+R0xQ5T5Hffgo8nd2/LAJ0j/aYp4QlJQWDmD1ufnZnfI1CnwJLCsTsgtQmHl9xEGDznJ0yO9iHOqCLeTnRiE5b7ZUk84N0QYeyFy9igMg4gIIitOFO4buE3oyyNa5to1dDTTk/X4ijcNkQMItASGE4KFRO+wYP2jGczx+I0d+nKSfyaUY10JqRxaFFQYjzGRtFoZs7Fpg5RHqYl2pr7j6kYF1B3S2jdyPOeXTHEJaJeXGXdU0z63r1RXV7o+83bm9Xfvj5lR++XNl6Z8wP7tJwdMjdLwqNgWXID7zot8ey3HeDXiwV+O7Thadl4uMy8/V6R60TxbjVRkxO7V73Suseyf78fOY0ZfqIIIk6uD8qTKeZeZnIU+ZQHOUQCE8X/vjDT9xvK3UvfHpekBhpovzw0wtva+Vemk+xp5OTc8wopVFrY68F0Tj8Bt0tRcbe5dPpwuv1yrbtaOvE4HvErRgv983jcAzm7Hsss0FmkMNL0o3xDdAQPHV37HgWNfIpE7MX96fLiY8fnzilZZAXDVsLUwp0cRpDRwjDKq2WDZ0WR1xaJzWw0ihhJaTs+yWEk8E8+fvWt07O/r5Xa6TgZKt13SgiaIzEmGllo2yFslXykinNEwtSHI4nOENwipEUnfV3/fLm8OnYkYr5+5BSgOiFYpoXn2a2ynrdiLvrAX2vBXRvzqcnj8gJqv4c904IgTRPrHV7aFlz72iKIzEh8/y8+H389c7y/GHcl34OhVKRfWbj7mdKnjh9+ERZO+JJa0TFzxQbZx1CaY72lFapdjTnkAPDp9SIUZnnhSXPbFvz5PY/8+tXXbj++OWVqL5g7KpIVOYp8XSaEFPKvvN1Xdmr08T9oPELYO9Oo1ZRLtME1phS4MN5dghuAqnGP/zhj1zXnbU6y22eElHFHeaHkLd3sKSE4GSEbb1xXwv73sgxUPY6ilh/sNlyDKz7MD3FKLXx3acz8ZyJAZYlcbl4SGIWYcpuYSMufcXXwh1rHoboKQXD2WCw+47FcRR/rcW6C1l7p9fmDMPhTv7w5xlkWYL6MtoMiUqy4MJEcRGpqBCm6AVBjKZ9dOUdk84Uo6cMixKSw1iqPu1Z1OHP6I+TUyQHYdv3AT26kCcM1qAp7ANW6Hh3Z2NZXksdy20j4lNRUUHLhmpyBhh9PBdvYkLyDpze6LY7uUSE0Av79cXfv5TpptS9kEJ0CCv6e7pVT3xjsNGOZqg6Tcxz2JbM73/7gdt14+cvb9y7F0qwMTnqSBl2qCkqPJ8jZRdO88zHp5mtNELyz+6//P3Pnh3VKvuqPC+R2pubz+YwCCqR3//2E6fTQp7GpN0aSZXvny98+flneoDzJfP9d09MU4YQePnyyk2GA4IJOThM2Grzqd/PVM7PJ3oztq1wuzsUrGKcZ+V69aTly5z59HxymNWEv/vHn7jthb0bT7N7iIooL9c7QXyaAcjj+xqUOQdSjEwp8ruLZ7OlGHi6LFjvrPeV1Lzqd8NJMGaYGF2NvbhpbO9eEVvzgNDe3HqK4f/YzeG5OiZhPQgLIaLBWXdRjCkG3H4J6lqH63rzfLlBfADP33tEtVinmbE3tx2L0VcX/ZQp1RucjhHFQyMlQDXXKfbemVMgTALdfBc89mxRB7UeD5l1u7HhpjLo/b6vtHeiU3C2cN0LIUHdfSr0xygOHBGII7xS9GgEfcJs++4zkxjbfvdzoXs2WKnbcPyvTKeJrey08p4m0ZoHSe63jfV257q+stW7E5RC+rPP/l914dpro6nQ1BfAAmjs7ONC3mrlPuizpVR6cBNNM2fU9TbosKo4FQ2KKtMUIWdqzLxuO/etUFrzwzql0WEcQYTGXhopz6RBBS7rxjYsl0SUMvzvNByCR6e8buMARqC0RhdnjxGgh0DR4ELEGEmq3iHj+jRNfriicbgeAOpwZMjO8nG2lDtQoELEjT/HPhgNzqYzgxDd+NJdAPx3PYqfQQ/j50QeTtMS1d3A1fO3igVolSpu2mvBWXw5Te4sLV68dDAoWxl6u3ErxhCx4V+mQzB5wGYuljVnJKoMr0jXuzyMZMfz85WW+c5jMK0OSS5AH7/PcPNZGYvqNpw+zMSpz5J8T3f42B2QjY/ZoEekhY7uuboANiVO54WnDx9o9oa+rcMXrz/+vogNQalfx3ttVHNoahJBcua0uBnqurusYisNEDQW0rTTWuNtdVQh1E5snbe1MT9lptOF3itWd1JQ0jw7axHfc8g0w+yMv6KRQqGY+/btXbGu1OpTsalS6MyafJqUiNRGLzvNOsWEvRl7NyxGF67OMxYm8peVjRWpFWJCc3ankK0SAiB+sKWYnGAzZZbZnfOnKFwukzPqRAg5QwxutRVG6/bYtx5sORtwsA56uPuHErxJFWvjr3raeGuGVWfVSUhoSj5xD0GhjqZGJBDzRCxeQwyH9Zyj4S7uxzTt/zNIQb+w4yJE4jRj6mYB0h1dCAIandSBeJCphegQYlZS9qm3DzatO/QoaMIkDBZqeI88cpznEJYRNdKaebzKYFV2EwiRh6hd3H/RGK97OI70VinlSAn31UDDZTUdc2g2CCEF8mhS/X7Sx/0YwjC57g4HxxBHg/AX6lXYuh97IlBHqFvswq25C/paGvfS2UujlHZQy8BcN9RbQ0XYuyAmRA0eL345Y+cL+3zmtflh4rlSoN0ZaXuHJN6Z3GvjJBGJiRCVYjtbdT1UzH5gOHzk7ERRpWhkZ/cJRpViFYsJnWeMzqaRaELfC13dIUDSRGVEuefJTWBHw+eGwt4VxuhR7Yfzup+xDqla887O1AZ0kBB0uMM3n3jUKc/ysMapdNyNHYyYsjtWmIdtivpNrD1BqBRVQpwI4rqpaTph5sCViJGi2wXV4SpxUHfD2AUEfS9a7iCR6G5FTe+VeCyro0sheq2+PB/Qr4iv3bxM2cFhHkVtuFmLexWaVQLDw5Du2jSF3Zqb/cp74QrH80kBSSMcz/zaa30IvlVJ88Tlw4XTx0/cCkh8wVQflkSI53IBFFG20pyhV+Bt74QGqzoZ516Mve/cqnHfB71ZKzV46ON1beyDli1rZf6ycf42883ygbpe/YSNAvnEinJHsTjR8pmSF6ok1jCxSWMzoZmgLY7dI0xTxsw81ZtMipGQBUYQatk3rlW4VtibsIVMfHpieXpGpmfSn15Qi9i60WOk5wWJCYs7OkcQY10LEjN5njk9nTidJqI0IoX5vBB6R808BSIlLGeYJjw3Z/gpiu/3VJXEML82RwgsZJRAIND2gmhBYmKKid4M2T35Ic4TcZnJKY17x1B1WoaIEFMmbT5tNDrE4L5+yWUhR25jh2FfhQuOBUwTPWTCFLBQYUhddNSgmJJLOHBdVlc3GY5izMXY9+pn2FiHqEZH1oNPW32kEMgRPtnM0xPwXEEpzbO9NFCa+Hk54nyQ8Xj1KEbeyLodnFtl5Wncl85NBhlenWE4isTIpEq8JoclRR8N4ZQnjjcnh8Rpmil1Z9v2P/vs/1UXrpSj30gGmiKSItNphmElMpkHSzYJdK3D7BW/ILMvnEWEMC3koKR5MKv6hHTvZs4fPxBuq+94Nu9KPf4oU2lUM/YuaO1INGIK5NNC3Jt/L0WPZQB8Gd9pKkiI5OU0PvQRyJcyHe8ot9JgLZhAKp2l2XCzd6jCF92jizwiDx4TUsOprza0X4xIATgiS8T8Z/pIZT20HSLeKflOxqE+5f3AZzg/i+DEwG7QDKsdwyMVUvQ8Ig47HMfUHlPR1na8KzyI9YemxausaKRuG3V3QsW+7e4VCJ7fNGjCvZvv8Vqj7o0ehCbNNTkhYrU/ps2OC0QJHgszUFHMKhYhREMIPtUJbNY8UaBB75G1KI1AmhLPlxM9us2UERzi6UYridI7aZrJpw/skukhE/NCmpqL5MVZV7W6FyVauDydeP74gafffA9x5un5xLe//cR//I//E2/7zs8vL/z8eufl9U5vxmmeef7mEzEoVipPn2Z/nSb85ve/43d/9Xs+fvjIn/7pv9E2h2xvFsmnZ05hZr6c+Q//y/+dOE/cW+XWhD/844/88MNnrl9f0OlEmmeW8zPL8wlRwWplPp0dklTf83SEUo3r3jHxENAO5NNH8vkDLWYun76hENl5Q4LQNUHI5OVCyEq3hsZpeGBG8unC0/MMVFpZeVsLp6AsKfjYL4lO5L4WUgiDydcewv/eO93CKBYMCNA/dw2Z0DraHKZyR32fekSMGDMhTvRxZTqMWbGuI4jRM8rCgcIf7jDqKEgpbexpDzcLT6cw67RmlDLCWEMiacLWdZwKQ511uKX3EciIN2BpmgGPuu/iE5IPmgPed9SbvR+p0HF4jbpJQ+vlUVSplVbHnrFv1JMQtaKoZ2+1RmmNfW8IjRhg3xu9r4TYiE3Iob9rxY4cN4Pb5vf1lPP7usIEqmv4tlJ4vb7xdts9Cui4/f+Mr1914Xq+XAghgsEWkhtIhkTt7ntGDOik5FhJvfrEMGA7ERtR27i1kGaMRGmZ2iKlKmGDEE+uySgew2HVPKmW0VUEIQ7x8WEm6tHzfuBb98nGs3J4pH5qcMjs8B2L0YkRW+loCpSW0Obu3iUmas80mwjmmViYxy+4KzWgI/VVHOo7CsV7IRsmtQjG8RwyB4SmMb93r+rwhvCeh+VTjGDmFkY2xL4OrdmAv1waoIpHLMDwktNHTXU2oO8CEIf8uowiNjKUZLjO++0/rKXUH0O7s7OOKBYk+K6P4eMW3DC0Dw1YH8wmht/Hwfzyj94calXXwogdv2eYuqJAp0mniEeQhBSY58wuSlOHWKS70DgISK3kEJ00ZJ0kwpwSdcrvzgwaKQptME4/XCaez5nTlJCL503FlDmfZtKUyTHyP/9P/56Xr3dq8V1sPp+JMZJEefr2mTyCKZflwoeP37DMM5/FyTLdOq0Ycz4jujAtFy5P3zDNM3Or/NX3f03ZA60G+lbcjSUkUoiIToSo5Al3Kx+MyTYv3OKLQ0a1Dg+/SG8e6DnFzK6RHCdSmkmpYN2nRJMRjzKu3QdCYEaKkdM80+vGbdsoTWghuLQhZYfHNGGqNBFUjZADKh3TkcnWFZPup74ZRz4cmiAMpwft2C/MjXtvw+HDc7GGESEa9HHPEiBM4ZESIDE+GkZDPVpl5Kb5tSmDgNKwoBQccvRrHReG403gAZH7N4Z9GPK47hkvh26POB0daIoEOf7Br31RiAHp4pOqyjsCo+NXGCgeu+OmzUoI4z7WiEh12r1CShkN2Yv9Ycg7UJzUZlot3og1o6ti0SN/kH3cZ54SkfQQeY8IlaPb+DO+ftWF63I6oSHTTegSqeLFoVrwiUKVMCUC1d0LaqHVSmNME4cRpAnuOJYoLVFboBahKG5lIw5TuVD2Fwd10IGVi+9Fmkc7pTgCFYfqXsUhBY0KVmFMOAcm7hR776L22knBi2dsfgNVy1RL1J6ID62Ie8bJ2Ol4h3NUYhlKdd/7WZMBl4UxAfmv9sNjzD4ahyWUBy2axjETDYNa3Hqomw1bdfUld/dSaMPjUMT3Al64RqDe6GyPBpGx2fKudux7BAhetESVOGUnm4g9IhkYRSwGfy0mToNHm//+EcZpMoyK5QhstAeWP1bWgAukTQc0I+Exvfqu8Hgco0unaacH0KRMloe9kAwnfYeQ+/gIsipZhdC6o3QpMPVEHsSc3kFRmhpJI+c5cZqiW+jM+XGQq/iSPunC/+Xf/mu+fLlT9kpU10aFEJlz5vLtt5yWidOc6EVYlpOzV833qL154cppQYKQ0oWcF3cFaZ1Pz9/y+rRzfStc5y++65GAaqL1gBJIKSC1EkWZ00TLiSQ6Dh/fFYsGeoUogajJGWghEWMmxom27bTekHbIEnwkUlUn9dCdeRaT75SruUcmwbVQMWMhPfZFfdxGMYDgjvAWgiMAtPHHJRcd9UksJAgGUkHTOIDNheQaaAbTcCYRMSR26A65dRGCdk8gbt7Age+kegcL/X0SGobE6CgcIlQgavRdsXU0jdgZflm4/EXZMcqNI1qiORm2tuGo4u4mOjLqvHDl8bPu+YjaCEgNvh8TR2kYd99B7RcNwwXEafZRhFgLIu4Wn3JGg8em+DpCRsikoDJDd8uq1qFLoI9dtclBhB95fqqkUbicQPwXWrhSmkjzTG9CIflY2qtbQInDN+4g7XlHTdX9DXt/MBGP3UTDP+SIUGunVENzp4s4+6i1x+IT3LbHFei+0O3RCQtOda4INowrRxevviOJIXtBC8q2HsaiHKu34T/WBuOpP1JJDcYiuvkFbTIiMAYJ46EpG7fCUZ/UO86BKGDVL6WxQ3aKOO+Inqjhwowj3NtGcTsavwFrmLOlfGFrD/2XT3n9UZdRZzT5NOjPyf3avHBNebxvA6s/btppTCgqgxTS3Son5DTYfUIbTC8Nv4ywPybNwzgUv2Efy3MlxjTe8E61zbtRMULCP6sxHsrQpGnrlDqCPUVp1h70e0+zDM7gw22uzGDbKoTdiUHNGZzunO1Tbx37LsH/7tttR+Odt+uV1huqQoqQ53kEU5653q7sWyGnxM+vX9n2nVo2zpczp/PM+bwwzc/85ttvuSwntm3ntjnTMxfnh6z7xvW+8g///b8xnU/0EPnDP/2RH3/6idfXVyBQqtFb4e26YsHZsi8BUgw8P53RENn3jVqLkxqi76paq9T7yvXtRpoW7HShWhgC5s6R/mnmEFZt+wirxK9Oc+bttm/UUvzebG6I2zh89fzA5biexCODFE8SHqHe7pgySAEVbxZ6a8QYSD1wFxflD+tn3xGPBOOQfQIRMXzwb8NzsDmhSIQ8JS9Y5qa6rVS3IUtKbb9oTM08eFHwtUSMI06lj2Z1JIgz7hMZE+jxGsdE65FA6iQuayP1GSQNtq4yDIHlEfh5hJBK0MFe7QPUGGbPI5ngOLdk+I6KiNuUj/NIBOKU0JBdkhEO5ICBdbiVXE7C1o78NIfyW+us921kDnb2tlH6Pt6Lv9BYk9frlVQ7GgKbGoWA9nYQ4ai1eMffmwcD6vvNYabsu1vJaDZydOPcoIZaRSrYWtnfXqnrzePae32M3aXs7jl46LLwiaWLW/pve2XfCxoiPejDiLLW6j1/V9p+uLjLu1AZ370180W/qne4OUZ6q/QRh957ZxowmAoPg81joHpUiu6Oz6JhOEEUukC34YU2OkQ5fsic+Rj0F2/0wdiCQZkdEe/IL7penzhtPAHVsbdTf832UBX5Y4u/CP/+uFn85q303YXc7zqf+Chc/kiKavQbEHGmcMdZojE8dnWjsmIHZXgUrn5U0NHVOuw4yCdHtzuM6bq0h0ZlL5W9GcXaY4fRexsl0Z28NQghGEE6IXRUm3f34u7cVsfBYe44IoLv9QajpLkNASEKt+ub695aZbu+cb9urGvh57VwL4VSK2Xf2fc7t9fE65T47ruVU6jEdmZKHWU4MojDZyEqp3nmdrv6hDNNtO0V6g3td+7Xr2ieIfjUZ3g8zNYrYQ602NnjaPVGcxWCcrzdqoG1rGzbjZwDtDuBSk7Kfa2oKWrBJy8BVb8fg5jnfdWdbhnDD9zTNDFNQ6MYPGjUWXS83+fwgMHkQAKkP9AUxqcfBHerUIerwwGvj15N1dDQCcEJQwYOLXtX5hRyOXRoPOj4zZx78D6luywC86m/9qOOmaOXHXqXQTsfPoJHg2YD1ZExsOHCZv9XSjWI4sa4qgPpMSEMpjIDEQwqj0b4yLJjvB66T1aq/jmY2bCqahx7OQalHrzgW2uPJGXrY1/dG8EKSEej0nQiVH+fNBzp8Hg4bXa25pQmanYjgv9fvn7Vheu2FzKBlCMlBF/a2/AAG/sUk0HFHAxCOI5pG55hDW2e1itmzpKz5jEczaAW/xB5h97Gg+M/5lOZBMCOaADvNvoBK1p/EBVaHapzU19HAY849aOL6R6pcNBXYwhE1UeR64NZMHJLgce6ifeAO7/uDp2ZHuPVmJ1Gn/SYpMbT4FiL/fL7D3BhoBdODhkVa/yAvpc+DB5FS4MOGuMByfKAE49HNxxO6dhj1+HaRN8ykQ0ZE07FCBIJYSRRD4H08bxh3PDyL18nj97a89geBf59iH68ox1G9+77odIqtXjGWWndJ4FjqDVGM+RApHf7LsgO0Q9DX/Kbd8D9oGuPlby6U3yI3gQdInZRYd8KMe6AUdc7ZTdqqVxfrzSM2htl39Eg1H1jvQnLFLhMyhQaYTC+jm7fRpqxxsD1eqX1ylR3ynql19U1gdvqByPRs5QI47ot9BBpRSm7a4+837b3KUgcAiy1sO0rbBGrGzCo72O0EBPozXczuL2UN/2GjViNjrPx8pzcNSMeBUvfp5nxLjpAYL7TURmmtsf1dnihj6nKDkJTIA54zuPteTi3qHTfAhu0/p7HFcLYEw+Ege7Fph0ox7j67YCcx/3Rx8XpjZ4XGzNvuMblThjXkzEIT8d7qkIfLBPD6Kaj2fPd+Lj8xg3+Pooel7e/QOP9G/L+XEWdnDTONutHhcUPjTDu6Dac6wfpyww6zfdgVn17HJSu70kNOqY4w/VwEuJjxXDEFZn9i2f5P/T1qy5crRt761Dx0EIGLXzoAzzTZsB1KTnsNj623gZNVISQXWfUbQhac/TE0inx9Hwh5ch9XXkpDYluwZRyGlNdZV9dlJezZz2lpKSUqLkSs0c9dHOmXtld1CchsJwWH9NVKPvu+VEx0mullMIeNmKYHGaRIbSuA97Q4KzIAafZgDGPLusBp3Rzp4zevMvp7ujhrKL+KKoxBBjQAgat1rG3EHfACOr7oHaUsfE1OtLa3fqgN4c+NMTHc1DRB2tQOIrd+PHO4yCyfhQAoRaHRzreHBw3dmlexDQ0JDRSzI/DXo+93LHbGzCMnx9DzxbA2tGNGwT3nhTzYEuCd4lNOobr/9atOfW7drbirhFe3OR4C44OxCnHCPNpYTrNrNvuzvhWxjUpQ4unj8lwuSwslxP5fILPL/TuUHUzWEt1gWz3yXOaAqeLw969Neq2EuaTu9Tf7/zppy+k6ELfZUqEnBjW4tRSuG0bb9vG15/ESQ05UO43bvd9SEYcyu3VqdC1Dl0djdLVp7xSSDo+U3HN2xEaiAp7Kbxdb3y9b1xvt4fbuO8lHZZ3Qb7DewhexA60YtsekHlIgTQ5ISRKIEogSPhFg2ZYaYOt9342+A7Hq1E7jF7Ek+KCBuZ5ZkoOL5etAI2okRiTN4yjoLilU/F7dnrP5nKkQmmjkQxBR4EQoorveOyAqW1AjyO9Wtyj0eo2WL38S9MAf1mjwR7mykOoruPn0YNNPPbPEuim43UGcCoIHfckPJxa3O9TB8TPQFjwRgKltkbdC7TugZzBzxW3bxuhY+aNvGKOEODNyLat0DtZw6CWMHSyHly7tcbX1zdeXq7k9P5a/5yvX3XhusxuN9L2DTN52B7F4h5YvWyYxnE4N0Rdz+FnvJGnGbJxPj0/YjfavhNyRtQTZqMJp2kmx0S979ixUwLyvNCtswUX/4XgsQhpcVfy02lmnmf2rQz380jCD9ApJZY0IcGdIWoQxDp1vVO3gkZf0ktReilYiS7i7E5EMPXYDMNtd8Yow3GRqRzw1fCEOw5Z+AVUFrz7kZHlM4LsvKu1B87uWPlgTh3d0ugPH4OOqr/NMqZWDjzQbywviOMmPiC5dkyjjPf06NYODuAowOrOCYgQTYbzhBfpoO7jpwoywlxl6EqOEnsIII+34djncRxuxyuRsTJU9ZRgCZTaeHl54e1+53a7s19XX2Sru5uH4EzL1o37fcMQni4LlyUxLRO3l+BSgWFGjEHfml8TvZNT4jlnd28RGe27M1etNOTh2LCznE4sMXO+TFzLyr3e2dfKx4tryvqUSTFxkUgucMpCms/Uru7WcNu5vV55KxVplZi8AYvidOVWKtROt82bslKIUx4aQGMhMZm4a0UbS7NS2bedsjtjMMUJKcUhsgaxeKMVg0eblOZ6Iit1EIyA1nyfuDfabXdoSSD2RtBG1E4KnSUaWasHRdbjs5OjZwDhWKM9kA5P4vVvymAVB4ycEiZCE+hBh1bRr9bah/heQJIOlqUwz4nr9UbbK3WvEDqlK7V77P1R7XzV2h2eCIPRh19bpbjzzRHxcUwd3ewhgPfr1AtuK45GHGzoX8IhcuzIxmS218ohMgmjBUTdNPshjxlFDhFaMXo1jliWA6XBPJkdNTcJl2mkKrjJsIu4DdQ8JqiNJmfbfaIM+rivONCUVpxRrIMpXSul/IV6Far6XqXWQsdtVroJdDeMtOaxGTYukl7b4wDRGJiXGUVIMVH23buNVrmLUIsSo3j3oW6701rDBjZ9uEe7M4R7nol5lEDsPqGk5H6IvqjsD2jSgCpKoSDNC9e7HsLFljpwf+UAxZ084puid0irH9exHd/nASUea6qHTmR0xUce0OPf2TuAcPyXydH5/WI64phX/+XUdQCWfdxU8qDK+986vCLff+a97OkBuWEcNHlleB8eHZkeYkZFxXdbmEOybqA84Ef1Inw4Bvj3fdfWj1cgvoTngC1/8Sr8x4YDiw6qMA5r1eJejW2EQ/Zw9Jx4enAzam0DuumkIJyWPAxnu3tDDn/EXswLlzlWVNbCGjYKO29vNzzwMJAE0nA43+8b58vOlCdSiFy3O9f7nZeX6wgTdcfurp1ruBENEjMSZnpXvlyvfPn6wpeXN952N3oNQUk5kDXQ8VDH+3192H31WjlgbFFhXwOhe5SNiFH2nVarZ9qt2wjahNeXN2KMlKFdkhAgRVot7nU49iNDlYGNmI+q3qTRpyF5GLB5dy3VsQNWBrFlBKQiR/HyYvP4ZwaU75YvBz1nQNVCPaA6xsQj4HJj40gmDiEMY25lWibu6+ZNrZhDr2Nq8YvbT/4+9neHvkt+AZ/1Ou4/c+G+teH4Yh4PBObTrNjYb3pu3aOgYY//uK2TPFCbXv3FhPF7HwjKY0ct72QM/P45WJDH+uS45VrvhD72ezIa0gNklF/8GRObdYf1j9d5wOE21iPWjqkbwhAoN/sL9SrcSqWZsJWd2oFasai0kwuQaytDSzUW3ON/oXOZnnh6/oBK4PV15afPP7FtK70bb69f/SBQ4b7e3hebzUg5u++e+G7LYRn3jSuleAHs+6MIbKWxjXC1fVX2ffNJTj3OAj20UgPOUOGbTwsxysPJ3q/LEVYnQ7skB7X9cfKPwj1Ye7zfoDL+XevtYU4rY/SwYZfUzA0W3ndA7zdliMfF/l6MgBER4l1iN3s/IIL8IkUVDjweEazUhxjausO18P6cGb9F35dgYyLsqMnwPBwd9Og0j0RnP8C8o3VTgeP7CuJaNuSILMftrR74/gjlM3fPmFJExF0anqfkeVm1OmPMqsNdFnypH4/mpA0tn3fSHz5c+PnnL3Tr7OvOuhX20oZNovMzW2384Y8/oqq8rTs/fnkZVHhhnuJY5BvbXphzYs6Jy2lhby7ovK13/uGHH5liYsoOEX44LXw8L/z1bz8wn57YG/znv/+Bv/uHf+DttlIf7E9/t3/ZnNTSXEIS3Zuy1Orvr8Db65UUAlMKTFPk9e3Ofd1YX1f2vdB644soX7++oKr+3oiScmaaZrb7nf83eX8SK9uW3fXCvzGrtVZE7OKcW2aNxXsfYEACISQnSAghZDfo4TYYiZaVtgSmgUA0KAQWdGgZWsi0LCQkEJJBiEIUAoyQ/FrYDyT4wOki81bn7CJiFbN8jTFXnJvvMzzyfhKPK0f6OvOevU/s2BFrzTHGf/yL2kXgViMKFLKOuU9dlZwHDOXqnhKXDduq+hre9KZxvyx6k9SMvU7M+68i1uDEsa4rua+osZ2BKAK5XlmRrQlhCCC6s9JMK214/BAYgiUEx3SYuFyWHpKoAYmGvnfr101DfRKlqpu7FcEHe73m3rz3Vc8NSZSdDVuVsej9Lmp/A3GL6MS47c03jWKE0JtjI4ayU/iNprS3WnQ32REUAbzXiJXWVJdIq2qCYK2+jl7gcs54b67nmDrz6O9qjDYP5nrvaFE6jIHYYN6S2sIBNRfmy0JN2nw3KRxub9TSa53+nw/5/8bjc124np/P+ma2qotwaxm9w1a5UnPFdIPNnDr9UnH8GAubq1gRtllhDppetMGGK9TmxGpMe8kq5ixKsXfOYFskG6V+iumO0K0wX2LfPWnnEZxFnCVviWXZKEU1J2NQ77cmPV68Npw1nE4HdbNp4MUx2hFvRmp15O4FprzWQBZLFUPjDbyB6fTdpllR2sd1myNRjzTp2T90HRVVu80myrjEWj3YryLjXuyUAwuovql1hwxlQO3YPFhTr7YvzYSr79l+KIC8mf7arhPrWipExaW7vqtPHcjOsDL7qYVa/upLciIgTt+GRtdy6U2Ne0M9rnutN0oMaFdMFFpRbY54A1haMeS58fAQefUYeV4TIo3S9xRWFJYU6Ts6A8YJ0+R4cXrBq+mJgw98khvbpmxTKz251+gu5eH1mVIb5y2xXR34dfIspZJLVV/O0noCsO5VatNQxZwrOW2c54jQePAXPgyO58vCzXGmNOEXfuVDzpetS0QcY3DkXNhiJMaELv7155miiEHwhhS1CO/mr9YI3ioMvm2RdY0ssTMkgWotm6hHZ+2QsomJy7Iyz8u1kQm+63xaIyfdqSyDI4jhxd3I0R+4mUbWbYWtkilcxpWpWzIFcdiuzVN6QEcHalX4qqpTfC7+U1Ci33FEQH0KtQjBhnQmn+APqmEzWErzrEn1SZ4JsUcKeji/ftiwtuKCOsvnlCm1kbK6oeuBnjHVY7xl8J5Szzpt9utTqsU0hffXWeHjljLWDXqtpqqho04z5IIIxvY8OVRzqRbA2lga0c/HiXTpirIHdQXXi+D+51IRH67EGGk7xUrvy9yq+qyizfIeD1WbvJEduE6CqULJolZ3q2WOsCngRRJhXi5s28ZJRp4evgUk4jZ/5rP/c124rNVDvOZd81HIWUgpKxmhqHu6OkOnjl7ppna5zFeiw3yZyTnrbkHUxcIY7d5lp3Hv/NT+0e7TRKsKA+5fUc+7Pnz3oqAWSDotjctKzHqRlZ1SZPpz9SJTlENBQyeuEAZ8GDRPqFu+6HJVd061KmS6wyPSdihTL8g9CPD661d1DbnCZwC1qbEs7Y2nXtMCh3zKa2KnQjY6nNGuC+Y3DNfW/69dp0L9+Z1RpW/o1brqCtZJU6cL073/pHVdlAqFZa/L/c1u+//ur6d2qRCfLqL997gywdrVlafv0q/9u8I2Rr/JZCV/lFqV1dWLm35kHVC6FvLaC1frBsRG3VKc1wy1aWAInhgzrao7hLfmOg07q56Ixhp81YnSGuEwDuRciTn3gqMMU++dWvkUpVVzfQt08o19qr3MG8FHGqbTz3XfZ51lDIFNEjGn/jt+SivYlC5X+jXVWuuZZQqxCqKatD5hK2Kg0+3gnTZkIqRSiTFr0WN/3/TayKnpe7ffUb2epFzY1kQaVH9mBJwzhE4qMH0i2GUMO2P0zWXcr5Mrk283e+WNzKHte9d+DbRG7px1Y/rvRlHqOrrr3mIhFTifZ9ZlY41Z70Nju1bTUktWB/+qCIcUJY7UXCjZ0zqcrI1eI8Wk8Uet9utOP8OSC7UlhcNLo0jrjYxc7/F90qlZBdE7gqIWbQq/arRSI5c35AzVo3aovDbVbbaO1lRdZeT+e9hcuvZwt1dr0EXMRlQ+0vp7rrR8bQikSyhqv+9yKsSUSaWCsQzTCdM1j5/18bkuXJpbY1nK+WrDX0umGv0QS1Xqci2ZWvOnOeNs8ZHn3oXEPtpaYzV2xHmM6UkCgF6g7Qo97TfpVZAsO47cGXRCx8a1cDnvCc7hRqg5sm2aUbSukavAzynBQozpdPpeuAbHMI0M44T3A7mVKxut1dbdy6HsMDtv9m/7f1f64V9VMyP1zXTZdsIEGiq4w4d1fw4atjV116Y7Z1xLTV+09x1e6TR5ES3oTfpr6HBt65j6m0OQ7o6huq9a6hUilFa7DkShS2t1kW+RTjYBqNR9Yuxtxr6b26ubdDLJVTcici20rSmoaPb9Rt7tgBpiCqaprqyIJli7LsYtZd8J7MJVfepam04BIojRFAEXPMfTgZujGo16a/CDp0tcEWM4jUEFyc6Qtk7y8Za744GYM2tUSGsInjEEbo4HtpqIUa12xOhhtTcLtSgpIfX8OXEG7w2lKtPNWMs4DDSBS1yVRdiLUr+I9L3vMS2gOyANQ+1CYFS717zCpc7oezSNA8dBd76XlEi5Q840vDN9+teDVUk1KoQVIHQ5wLpG5mAZB8MQ1DH+cBgZw6AONH3SZrdyanrd114Y9dpSyFjEXK/WvblQtp+5Np8qlM1KlLKupzqo0L/2PLJSC6W9Ji7zVdcUhgHne35bRyJq39d9WoC7ibL5xmGgUrQBEWFbVz2faFivMKjFUrM22oooCs54LX4VJQU1ve8bKFW96O9hevpDa8p2rkWb97hFhQEbeCfd8UOgozq6Gsh9T5tJOZFSxjrwuWvuik6J1TQ8dM2jvRYn0HvedvlO6ZExrVW2LbPmQmqVZg0vXr6PM5VtefxM5z58zgvXwVqcOI7HI08pspVMK5FyVrNHs3chNSM102oCFJpLpSo03SotaZKnEyWQrufXig+XfHXWMAam0ZKTwoGgppStVnJSrY0zmtabEAgOcYa0RUpY8d4z+EBKSbueVpmsUFoj1QK16D7ACDejZ7CGQQz3hwODbQRbGQ9WO0MaxmSlhhvpuyyDcd38citvlrtZHa7pUIgRNc+UWrFOuFq6SWP3LKrk7l+mHZa03Dt1Q6vCvgyvRTC7WNPIFYVptRJCb4IbVCOUJJSs5cX0U1YEXcYLiBVMc1hX1V0gg7HamdYqWK+aqFYLxqsGrpa+hEZvGrF9P4Eo86+92cXtip7GvujWbrMVrm7XpbSufap9/+XJIpzFMBshdRryYFUuIcYQvCPnRCsFnOhiPG6cP/6QX8zw9HzB5IYPE84X7WK3RAhOJy0rTKPvtkwJf3vAeadu4a1QU8GVzN3ocEHp8MeDUJ4LqSfR1k/vrKraLxlryKaSJWEVc4Kq7h+lZT58vRBjYo0KL5qOwO671l2np3Eu/fpqmjTsvWonQUXKYUtMvageDlMXRSdMSYRuqGe9ZbwZ3hTVmLXwGKP7DiNMwfHW3YHD6LCmUVPm7q177l/ccXNzi5UDoPeOycpebSjcqkb+9SparKVSasaODpeBpr9L6fKL5gzHcCSmxFpWLsuq02erTH5QQ+EwXKfRbdt4/eqB5/mMdZbDceT+RYBckBYZbk7UVskpE2uBaikZ1pjIZcMaIQTH6ALeW6wVHl8/dSmHMATPzWnCGFhiYckrNVUkVczdEZwHB9YFnOxTObQSUewkMrhR75GWKXm9TrjeqLOFlrqCtUo+8t5pAaxVd9+mT7hiON0MWKf3nfUoQrB/XibgrMbCUITqCsUnytO530se6ahNAZKoL6f1npvDEW9UfRf5NZrHdX88MoUJoTBsK0uK5G0nU8gVslPL1cra7XdyrQxGk4KNCMuWFB7sOxkNXizUoh1gNYI4w/3diWXVNFsErAl6k7dR6cCdxeOtYRo8Q3BsvZg5p9HsMg7U4DCiHWdD4TELuvhHu23TWUslJ43EHsKVGELf6tRNDxfMvg/aIcuqhasf0Hpx0pejtU85OgHJLt4FrpEfVeGEnblkTTd6aq2LpncNktA6U6617jjRf+ZOwNBpay8WldpJG6DFUswOT/YPtSksa4wB9P1UMgOAipr5FOzH9bWjlGEFE6myC33fdNmtT57az7TrP1qfu3OJkW6ArGrUYC2jN9yfBmoujMETnH5NjNWikzM1Zy1gAoMzXM4z1jyxLBu1JG4mz9HfUspB/6yqg4pznrdfnjBiuL056m7UaOFtrbIMnnXdWLeNcRqYppF33nnJq/GZ87zy+Hy57v9ERBOOS7nCtEPXFr51f8N5WUhZ4c9SlPnorFqHaUyMYQhB92d9mvfOXdGDElMvkvp3x2EgeEeMBe904hpDIDpD9LYXPGUVhu6qX7LaZ+m+y1yJMEEgOKMFqxZygs0KJe2kmILY2sNFDdYpTNv6HU7PXmt06L29Edgbo8Qbax0GeTPtNtVXskXGcWCQoGhJM+TWSOumbF9RIliMunbwXgNr337rLZWsdAhvHII2vNsGnQloi6U1o6zEwXMcp2vg5DasV6i25EyKCet0qr8Zjwr5xK5nrIVSBNN0CraihStnbaRLMZigms5Se+J60fdtt9lStKHQmpJtrBFdEfQJbk+2prU3919Vu7vWXYdaE3JKtNydcvLW6fDqTF9K0yapX3+1VSUlLZkUs75W3Zr1tcdne3yuC9eL05G70y3WwLAuLHElLa4vhhupKrw3WmFwhud147JtugAPnvvDhLeGyxIVFug3rCKN3dIGZd8Yb3nn5T3nObLFTM6Z4BW68FZY54U16gEj3nE6jBzGgW3IuL6zGG3g4AWh9OTmpoS37v21LJktFsbgdCrpZI+UlLFlncOihas1nfRa56UW6buJfa9zxUdaX8xoheqbDJ1ASmGHrq9U4tYUH98LCuDsvsOq1+msdQV87Uv72p/ViFoele6orTPsXiRq93HsRU/Ad7h2Fx+3qoVOjFz3bIq/y5XdVHcOc3cMeAP765JrZ5jtAs1WWicK9P2alevz7vucZgzedQ2ZMZgQlCwjMHnDW3cTTgzbVhlGZXWKsZwOAxRN2Y3bSkzqE7cuG9ZcNMC0Fi1c45HgLE9PF57nmVwK3lrefnFDCJ6coVD08+qLuG0b2LbI82VmmgLH44EvvPcWwTken8+YrqWx1mKM47UR5nUlZaUsDP1aFDGEi2WLidStxnKpCg0lPTC9s4yHiVz0aylnhbitxXvPNi+sMbLFiDdwmgKn40TOeh0bAY9hCJZcPIN36oph9dC+vz1RSiGmhLM6SRsxjEPA0zrVXb3uslS2qJPOsqxYH2jBMwTbPShFNVKipWifrkVhBYUBuzxCSQUKxTnjtdgJ0Cwxq5v7MA3KJHaWkgoPzyvzlnVKNSqIL01RGu8th8nz8uUL9RVslfN5JnhHKZ4lRqS7bNiiO+ngLdMYuLmZVHcJbOsAK8QUabmnk6N5bzeng0L5W+KyLNedVqulm3t3ll9nMbayx7P0/VZnOet7rTtHQfr+Te8Xa7tlW28l8xXWpe/MFMkon5roG6JJ502TMFqadSdXKtNhUvJQTtezo1RdxaQtU1Kldh/Tvdh/1sfnunB97eXAWzceM97yFRMRUzl5S1o0yHEu0Azc3xx458WJtEQeLyvP68ZSN966OzJ6R14LUSxzzDw8nhkdDE4YnMWMI3PJbK0wDZa8qSloRjupcRx468Ut+fnCvCw8zTMP88I4BsbBUWPBDwPGOkqBm8kxGBia0vJLK1QSt7dHPv7okVevnrHjCM0wTge++N77xHmmlcY8L28SXK2oi7ex6sYQt37vqmeeRQtNSrEXmTfvm2ppdIdkq8IIWjS0kGlp6cag1G5dpReab3tBU2Hn1oTa+V37pW1qIzXBVP3fFV3yltqImK7s1wJTqx4cFcE0o7Y9BUztdgdGXdCrqCT5OmXtJJPcv4+mTEh28aO5atzYqf8AovZFe8F3gk6hAGK5mvLGlfPTmed55lwK733hni++axlkZBgDqejS/vb2hO3OHsMY+OYv/AKPTzOPc2R9flRHcREOx4n33n3By9sTISbWnFm2jY9fP3J/CgxDYAgON47EmNnWlTE4xs4QW1Pk8TKTSsGwMPkER4OzEzEWQvCMw8DJVrY0kkom5oQ1GSOJFzeem9MtMWXmeeY4DUzec/SB53XlvC49RqRbmTUNLt02tUqbBuGAI4+GWAeFyVsiZ2HwKrY2xhDnyM3oCM4x2nvO6w3nZeV5XtiWx2su1GkKypYzlvubibasSC2IMaQSe7fe+ODxmY/XiH/1yM3hwP2LG20KvYdi+4GMRowYwVi9vpsUbT7FkFInWlSLMQpRNmtpQViXzGNemVyjpUhbdXXw+umi0oHuG2qM4Th4bm4OTKNn8o10eY34oJPGMjOfnzhfzjxfFsIwqn7NQauZKipWNu6EdJmjeItpmhxBSiqGroWaM/NqmILnOAWONy/YtsS2RsRkAKo0zQ4bdH2w5cSxLhgxpNZYSmQtkVgyYzfa1h0aiFjd53vNVctZyU+m74JFF6E02xBnkOGImw5KvbdOr3fU8V2SOo+kmAlhYr48sT3NhAa2ddq8hZf3B955ccvL27dobaHWyrb8Gg2S/NKXv8D97S3iD0TZwBSOTvNkSjXE3MDCYQzcHgZyKdzFwpYLa10ZrY7bpSple0uZu6czgUwIlmHw+OHIJpVEwdHISXO3YtZwOG8tx8OIe3GjB3CFp21VHL7rqqQvkVuF2ykwBsPoNR1Yc4My3gr3bz/z8HQmxUSpqtifpgn6HuP14yvylpQwYQXjD+wxHH34UPFuUsq26rNUqLnDZFB6gdJdSO0kDmlF2Ym1e6N5ZSSqQVG5dnj1WjkapRhy7exEZWSgMmQN9pPrkksZlKVCLpWye77VQpE+/bWq7CkqpjOqdsupbG0XvernruJkZRBY2X0dleYtu0ei6ZtnUVf+di2r6uy/s9KuNkGtEpeIi903MFisdxxPR8yg2imLw5uB6TCxbisxbRhgHALjMHB794K799/m/PTE4+snkumstybghWnwjN4xOMs7YaTUxsvH11AbzlmGw8jhdE9KkXW50FJkGgemYWScTjxdnli2lbhu3L/Xp2UMz89P5FQoufDuO/cYUQ3UmlamYcAHjx0CIUzknDmfHygxMQ6B0zTxvjiWElnyxvw8k6o2EmIMl8uqjhq1MLhbpaL7gYf5mZISrTaGaeR4POCsJc4L3sAQPLenE18av8QaI4/zmeeHR531jZJDtqRNkRPgdtIdmoFqO/MOIdwd8SEolN+UVLDFTM0N2/OscunXm6gdXpM+UYlC7xR6wrlQWqI2LUbzFrlcFs7zwjxv6pFYCtYqFDxOI68fn7gsm1oX2ZHjcaQhPF02PvqP/7nDqJpGvKVNHSFyIdaFihBLIa0LupcWzueVEALWObZ165Nf61ouva+saZy3yOA8N+PI3d0tueq+qBWVofjWjcEl6Go6ZxLqyHM8jOrYv6ywbupPZdV8urTKZV6JW8bkSggBMIjT/Wmlsxzrjgbpy8o9FsVLw7U3pgJld6tHURjdSDSVb7TOUO7JzgV6mOQztSTm8/kzn/2f68L11tsvub27pbRANBtNMqFV/HQC0eWodegi0aptTWi6oI0SqVHV/lUsxg6EXFTVXSLOW4Yx4MOR0UIxFUmZXPr4m96Ieb0xjFPA+4B3gVOO5G2jxkSRHfLSzvs0amc9HTxDGPQQto2aIu5w4nC/MF8ulAy0Lvw16jO3zQvbvAFdrzEkdgd0jcvu12iPVbnCZV3bpE40GnNPXwqbzhyUmnvREuqndlK6D1OGlVDVNLb//VyUYVehW9sUhTcp1K7hQOmKyp7aKdaudRZfxtleCBu0XtAUJd3NUAWc7gR3+MHITotWs1d1R2gY4zS+vH/WOyRhZHfnB6T1QquFK7vdOkj1RMpyM/jqCX7EB4ebRu7v38IZzZY6TAeWbWHdVtK6Mk4j03Tg/sXbDDcj8/mZ86vXJKtemYJRR/mcoVXddRxvEDEMtwfW84IYwR8Gbk4vyTkyrAPb+cx0mDgeDty/eJdhuWFZZs6Pz9xYNC7djzw9vma+LMyXlTAGBhtwxrLV1CEygwTPcbqhlMz5PHB+OhO843iYGP1EMpXYEudXT2Q0jFCwXM4Xti0S15Xj6JnGicN4YLgMzOeFbd0I08h0POKtJTijRS54ppuJt16+TWmV223m4ThqnLzzHA9H1q2QUiZtG9IKhs5Yc7pXKakw3J8Iw4B3nrhWvU5bY8uVINpGbVktmES6Sa617FEdUFDDfYO3Quoi8VwaT5cLy7qxbRuwkxwUpRlC0Jib+UJbeeOpKAqvpZT48KNXSIdprfVv9soYbdBaY4uZFLfumlLJqTIMgwqe9x2i0Zib3Smm1ELMmWRUrO6Gsfd/3dGjIxSIwTiPFXClgHUY5wnjSG5qDaAGwPl6L9XciDmRc8Hvz2Ft3zfabphslLRlFdmhNWU1oisNjfHR+2YvVLU316VULdw5dyZvh/Vll/pUzvNCyRvL+fkzn/2f68L18sUNtzcHXj8nqnPECp+cz4S6Yq3HGM9kPPOysswz3otSV50Hb3i+FLYtdlLErMXAGZY5Y0zGzZnWFsR3AXFMPSBS3aWDV3v+53klrhHn9GCrYlnW1OmueoJbYzkcD7zeFoK3nPLIOBj8GPDjyBYb4m453d1xujeky8JyufDhhx+xzrOaqG6RlKKa9eaCl+crOWEYNdyQBqNTyrk1wjhYcu1CY6OHinO63I4JfN+vuW4tVSqkamhbD25sjenguh1Wx9H33VArrLHDHtZ0iy0NBFy2cnUOENrV7mj3V2x9xzYELZKlNjCdZdT0gCqdVOG9w9CuEOmyZZ3IjNMYdXTPlkonVxhRgsyoNOWYm2YPdh2U2ELt7tzNtC7odHjvSFkPqHGwvLi/JxxO+PGW480LxmFgDB7nBm56Q7LMF0pRdl/M4I8vOY23hJu3aE0zh6wbqc2yrgtxWyFv+msKTLdHbFjV0aVV5kXfBwn3VOfIzbIlx+M5Uu0RGSbMFBgGTwgD43Tk9OLLLPOFy/NzL+RanE/ToPuUCtsWsW7A0rgdjoh/1v2NVB5jwwSP+JHpfkKtlBzYwO2LQo6Rdb7gW7xCydPtO8iwEeKmE4NxNDEMNxM5rmRpzKng15XxdOL+5du8eP/LDMPAMI4cjje0Zim5cjk/kLeZUjIpZ2LaiNvGtq5Mg+d4umGaDszzyjzPmgW2rYj3mqEnPWamaqNlZJeUqKYtJZ1OvZ/0mqpdMrDM5DWSY+blOy94cXfDzenIsq1sW2ZLiebh3ffuMa0xNIi5XUlUp5tjtzKq5Nr34f36Ve9B/Vm2u3WUpgU5bhslF8LoOyTehexd8lEr3I4jtEZKmV/+9scMwXOYBu5uTn0C1Wws4wPjMHK6v8ejQ2auGgnjx4Gjs5DTVde1SVbLtNrY4tZRFSUwVRzWKWPUGo93FrGGbUvUvFCroTSHOx7U0ccIYgPNVGrd2M4Xzg/PPD4+sW2r7uOMBk5aX5UY6QZKKizzysPTr9GJ6z/8nz/HNA1cVohWiDSWbcEYrzonsdhSSTGyxg0nDes9xjtscMwxknJREZ9x6H6msESlt/fVyNXJO9bCYB3eecIwqKaoFraUcHR/O2sx1pFy0T1Irf2CVAy5oZRTb5vCH7b7wJXU7XQcd/d3LOeFZV755NXDG6FiVTJ3qbo49+KuS1fnVJRKqzizB3/rJinX1nc6SnWV/r9jLmocLjBYLcgNSFWZjiLK4HJOdJFflSxi6BTz1ohF4cjWoR1jNItnjbnDPXTdTYfprs+jxAvnFMYrpXTdXH/du1al79S81ZRWYy3r1aoHgnXsLMWdHi6Ckgp6gGbMBbFdwOs9gzfdmw/Va9mO3YvT5zAwBcsHx9ccjkfuX9zz+PKJIIIH7DhcLYmKMSzPF1JciWXrYmRo1tCiOhPYMGBk6MvqQjo/E4vGSTijSdolF9KyElvFGqMu3t5yOWus9laL7kxEGZO2gnEWMwaC2s5SqLpr3TZiLdwcDwwHtdU5vzqjFsDqMGKDI8eN7XLhW588KJPRKW3dNIeIRcaRQSxWFIOuy0zKma0UsOZKuilbUttBgckYnNfpfD5nPn66MAwD0/FAOAwKNTrHcHOLbaor2/JG2xZ2X73Hh0cul5nz5cJkDNNhYjwcOB5OWGdxIbwRngODdYSpIa1ia6GJvbrcuKBswJqV3dhWzTGbt0hcI3FTD8rRB06nG27v74mvX5G3C7k17k63HG4mrAht3fjgo9e0Whms43R70qJVCsuSrudERSn5panl2+g03sdYUSPafu26LhMwRiipMxFbQ5rl5nRCBHKKLKsmT0sTpedHtQ6rrEzTwDANDMeJvCykmIjbpg2LUa1bzispps4wBO9HZRV24wZNqDGqmcyV2iLZVrasaE6lEkvG0HDOk+bUNY2NHNe+40ocnCEmlUKkUt+I9WtleY4s540tbxxuTozTgPe/RoMkP/7wI8Lg2bJls4YsEJPazSAaqW06TTnlrMQG5/SQGixbLuRSablehX3UzPYpdXvjTepqao3RebxzDOOANE1HTrmoSFd0jFbMu/bkX42bVxh6N2GpCLknker1mkvBGSE4x7YtzHNkXSLny6yFq1O9PRpznmsh98NT+u+posSGaW+yx2qpuqxGLyLXI1+0QFWsKi/wbo/vFnIvGqbvh9QtvfaOMXcBqhbM1HYdURd7du/AWPp72JruXHpxyd0v8lroetRMaZW8p7r2/+xC6NYyzuxJr66nwCoO77odlIj0mBY1pvNdqNoapFYwdrfqUmaa8jsa3jaMK3pNGE/pjYXjjTnqOgSat2yt4WpBgscap0JOH1jOZ+K2ssRFdVTW4ILXwuWc2uqY8XqNbZfLtXANzmKcpeZK3jZSKxSjMRbBBKXap8QcN4zpMKi3Cn9lgRIpEpQCbmBbV+Z1YcsZb0RJPAg5RtULClRjGZyh5MwWN56fnpXZ6izjIWCrVaZeyVTje16YoaRIyiomxb5pgGop5Kb01CgWjLIJW62kWEi1kmphbMqi9NbgYr5+drFkWlo7zCycLxfmZWXdorrkG3V1GcYJb9WPUUxPlEbhcOs0nNOUrOKXPnE5+mvPhYqhxEhuKvDdpSZbVJjQWMF7g7VgneCqisXHcdBgRgNh8JSizeh0HHvhyhr6utuLSQGjiQE2ZkbfLeKcITlt3kppXXvZz4DaixL6PmqOG2C02W3sbNk9kqgQkyYa48CngZzitUm3og2RrhkiKWnhEnmTtLDvlqWqnhODOnV06F3JXn1xniNSq+pHTe4TYqOVSN4SKRbc5NWvNSdtZvtnI8aSkrqo5JxxzoLRlPPP+vhcF66nV09Kq7UTixVy33vYTiQQY0EyrlWsqBYhV/0AKwZyxRbVLeWqZtVVQLJCYs51CnYXYY5VtSbOCLZWWt9hBOmaBwDpHnR9sjFWAd6KsFrbmTb1Stm1VjRfraiQteTIw8efsMR+kAs0KRRKJze0K7POS726pjfT9U6tUWp6Q6GonQreqbSp76SqqO7KNtWTra2bzEpH2ovuDEzfsalSHmhvKLM02W0Lr3/eOrW8ye6I1noOWHfNaA1T+w6Ovl+SnereC6yIxlygUxmlquq+QG35qv8w0lhbRDqRo+riDGmVWKNODb2Z8EbAVJr0PDRRzcs0Way3WOcIo04nVoTRCi4M+HHABkddF3LNSvU9N6obaH2XlJrqZVquev2gibTG6zTYSiG2Blkn59RKL+ii6c4x4VolBIu14cp6c6ibRrMeZw3VqEfdaNWZRenNlSjdC3KLGNNw6KHtrWGoDSdCuJmU0o1QnEO6UWtw4KUh1uGHgdtBGzKVJShhJmdNpQZNcvZWPTBV3K/+mrZDXtJNk40xhJsDoapzSzaWGhvZFCqZ7bxixwmMIS4LiNq0rVsidzeV4+HAaQTnvcavHALjNDB4i6vtmllWxBKswbSs2XON7qKizOC4OVLKLFulbFBTwdeN1FZyWjmfF+btiZQOtOrxduV0MKRhJEFnOQrew+3tpIQLaZhBL1EphskNULXxOnirXomldhPeosWsNQafqY5rqrFI7WYAlcsS1YnGwBqfoTW2LbMsyhq1ftBVRFPYL6VEiZmNjVg1ob3t3pZJWa/0plIRG8AJZtv0mhBwRj0fLWCbNtCxKENQd3ZoEd42Ff+j1wa9obctk2Mkx4RvlnVZiXHrDjv0An8k1cYaCzlpY9mKalQ/6+O7Klw//uM/zt/5O3+H//Af/gPTNPG7ftfv4i//5b/Mb/gNv+H6Peu68if+xJ/gb/2tv8W2bfzAD/wAf+2v/TXee++96/d885vf5Id/+If5Z//sn3E6nfihH/ohfvzHf7znLP2PP8R7bm+PVDkweCi92x+c7xoH4WZSd3VpUA2sPcXW2jcbwxyjRqEXXRYbdtjEKJzWBZhONIl4X0parxRgiwWjBIRcG7YZLIIVkK5pyrUxVkOw2tGJ1YnMGTUcdSLUmsklscXElhqlqLdcKknpzalgi1wnodDfrtaEKv5KPhBRqp+IwbnwxqmC0h0mNL9JrAo+NTG6YaSbxYogTbUY0sCEoDCVMRjZrZsaUnsgXivkvPWuVrU1OIWYjAgl7waeQpOKJWmFK4Dr5p1d/AvQqmZzqRNHJSe12alNKOJ0Cd0tiEou3dZJN/OGrPylUijq34RxFjt0D0Fjr16UIuAkIkahsSb++rzegOlFhO6RZ2vGVNVsGT8izuvPMI2UE4+PWZsBq12td6GzPi0OT4qF3IRpOqi+CT0sUsmIKEzsvcc4JZnkGLtdWdHCJR4xFm+FYL32Ea1ijaMUQ4nqdEBrWIkEaxmCIgSlQHZJyRHBs5wvSHCITBymgeYsLmiQosoVFCEYhgEQWlZZR6mVmAq531OCimJLFz0PwV0bshAsMen9VmvDecs0BAavUDqi2qF1WQijNkbWqj7QGsPgHLd3elg7H5iGgRCCogO1YZyQS2NJqZMWDGItORVS3IgpsTnHOq+s68bTeWF+vVCiEpT2PU3OhceHJ+5vb7i7Pek5ZAyuGVyrDF4bn2AE1X5lUkkcp6B7uZTUVLdotMdpGvCDCrnHeWN3i7FG1Nmn6p5sjRk1uNapbVk2LsvGlgopHq7JEAiUnFjnxnYIiHVqrG0E7xzTOHB7d4ftguGcNQxy115ZZ6+wammZ4INahKWkkHcBSZXgerwNYP1It0VVEtO2qTsMhuMw9alXeH74hOX5QjwvWBe4OZ14a82d5qK7/ZvpwN39S053t8oxsJ6aI85fvqvz/tOP76pS/It/8S/4xje+we/8nb+TnDN/+k//ab7/+7+fn//5n+d4PALwx//4H+fv//2/z9/+23+bu7s7fuRHfoQ/+Af/IP/6X/9rfeNK4Q/8gT/A+++/z7/5N/+Gb33rW/zhP/yH8d7zl/7SX/ruXnx3uzDWkZxQrFJtq+8poSIwhmv+jPq2NUyp0NKbpWQW3U0B0tOB9x1P6wdXP1mvpOrW4Ui6Jql25poSmfp3CeraYUTTi1s/zE1TiKCp35v3Cp+0YnDFYJ3HZqMCTSNK3+0LYFP7ISpC6MW3IeTmd/45xqhniBGLc6FbIVUtXA0wTnd6nX23O6TvzuwYtHC1PhX5AYzpkRL6/jRFLZQdSKXmldz1XrVbI1mzG7J2D4PWC1dL+jwVsF1/Y+jwZvdda/uEV6klKHOwCUU0Udr0ial1MbJ05w4rSQtX09iRhu7FjNddpbGue0gKIg3btp0+RWmuvw5w0hAbOuSsTEepgpSmuyUfMDbQMMrgaoKIB1PZY1aUnm0R66nVUEUnsgr4rv8xpVBSglaopWDCoNc0Qk3dzaBVhmmidsjV9s9BjGCNAzEUUX84imoLnXUEZ6+uLdIyJuhnLt4Rr4bGSvtu3RjYO9cd/AXve4JyM1RXcF4nZusbaXf6R2g5akSGaAr4zkyzvsNMqdBSxjtH8PqPtY6UE7klSkrIOOrXw0QuGdf3vVOwneCi71dHnJVJa5zeX2kXvLbu9Cxdw12hZ6QZa5lOR1xV/0GRhkdwwRFbYxwcxuxZWg0fNG3ZlMrgnBoGtMY0DrhiSdkwDUN/rY7goaaMtMY4TPjBdUMDKOzohaFmDSm1DcTGawpFEuF0Uo0Z88oeszMNgTAe+jUOIWizjAjeBtwUCD1A1DRNKLYWXJfg7CkVezRTrkn38yKQkvIBSoWoBU0TFcC4kT1M1lpLGUu/1wyncbgWrrRl8gbJVoxREbzZf3ZvsMdx4HA8cDgcO5MaijEEP35X5/13nP3fzTf/w3/4D7/j3//m3/ybvPvuu/zsz/4sv+f3/B4eHx/5G3/jb/BTP/VT/L7f9/sA+Mmf/El+02/6Tfzbf/tv+b7v+z7+0T/6R/z8z/88/+Sf/BPee+89fttv+238hb/wF/iTf/JP8mf/7J/tuoL/sUewgZoq1uqSPFlDwZBALfv7pGSsFpcUI1UM1RrY1OC2ZmX57Lh4Qrsbab2TRCEb1yqehhR1lDc+aKZS6Rcebzp6SsI0tZlyRPWds9ot55IxteGq0cmnsyPM7hBuGm6csDVQqoEOc0rn+kp35zYiBOliSrHEbPveqGENVx84ax1QMVIwlOsBvfvz7banTXQPp/+vYXvIWxND7TsUZTwVroKqgr5mCtY6rKgGrFQ9YPpTges1dd+d4a5QYTNuZ/Rrh7jfZE3YdWHeSdeIWEoL/bm7Y32H5qgK1lqSZj2ZTq7eTVYFXZA7r36C/Tlc1e66iSUVe414aFSM9d2TUNR7rajljfcjxnmM1V3XvKkoFAk01CdTxFLrvjuzkPu+r+973HTUbKQSsTFSYiFuK+MwXd0K4rKy5UiRxvHurWvTZBvUrGJTjerp5sMYSoXDYVL4uCSCdzijAuZhGHUvZy2z0diK1hqn00mtj0QYQ4Cqe0w3jRirE1fNVbUWIgxiidvSCyzEJWr6uFWUwhvVW2U6GcpEaJUx9GJqDT54ykV1UzklLAfGYeRwuiPFFWcMY/B4ti5xcLpzab240Nl67C4YPVG4ZJrmjNO6CN15pYi/vLlD5gWyTrFBGk/PF6ZTAGMYB0NrGp7pvUaJuFQJziurNSf8GCjVk4pnDIOiKaUgxiqclgvjMPUYkQpDJXcHezGGZPouWQzDEPvvAMkHjB85LRuPD4+kWBh84P7mhre/8L5CgzESvLnusP14Iin7qXtzqkuIs55mbKfpG2rWz0dESFUtwHTSqooqlEqLkXEcoWs+xQ4KSUrPzKsOmu6MD95cm7/5MbP6RjMZ211Jcu0iEFEp0jQFbm5OnI5HjuOkpuDWsobD//BZ/39//P+143p8fATg5cuXAPzsz/4sKSV+/+///dfv+Y2/8Tfy1a9+lZ/5mZ/h+77v+/iZn/kZfutv/a3fAR3+wA/8AD/8wz/Mz/3cz/Hbf/tv///5Odu2ay308fT0BMCr86yRETax2kCqIKYRRTt8ZxqvH7tzfB/H1RJIqFuCql1u2hY9GLs1f02bLkWtIWcVtnpnGSyoU6x244UVQEkf3r2hVYtR0kMrGCLGFrCF4kBqxEjDZaFUwXvHNHnqUJGiQs/qquq/1I9di4o1CpGJ6rWsgGm275+cHqbsfi71zZQoDosSU2i5d/yG0ixGvar5tAGtpiwXFSGjNk4JwVTdKSkxqfVpshfSPeqi0mnmhn02pV29e/V/tIqW/tb/XJAq2L6jexNLYtnZhXsHXYEi+hr1KfdlW/9LumDTP2+ggbBayFvVhbnJDXF6WFgqtmTd60mhWj1w9smvZHVRKK3hLJATpEJJK9VkxCaOx0kp3DGyritLnPFOKIfI+eGssG/OnOc3PohiHff3zxwPE6fDxIuXL2g5c3585oMPPiBXaFiOoyEVjU+ZLxdsDy21g2FdEmmOPD08UK3qAa1pnJdNm4h9erKuE2AsaUtkErEahZ5LZttSd363fSqZyGtUh/Kc1VEexQVLLG92p6XRjO7Arv50GcgWmXRvucUCplw1ds0IMRdyLFTZOF9mzpeFOUYOMeLT0Nea+h7ZECApkaHWjdr1HtUKpmRsR0dA05upujusom4q0o2fB+8YhpEXL9+CU1bmJ426zYjxrFtmqeDGERs8KSd1dMnqeZhrxrRGS0WdYPpKIJntmpemWw7Xo5aEHeNzMuh1aXRXTtrz9ISSDSH09cMQONwU1pg53NyQ44oTYfBK0JE+MX75S1+ipI0UN57P8xXab7T+vKb/LIfztpt+1+v36T3YaDVTUsPU2O9fzaFD3kTFWDfgOjFHmr2enYNXk11jKsfjibxu1Bg5DoGn85laE7mWrnfNvHr1zMPHT7x6+Zrh5bdpVhmVKf2/kIBca+WP/bE/xu/+3b+b3/JbfgsA3/72twkhcH9//x3f+9577/Htb3/7+j2fLlr71/ev/WqPH//xH+fP/bk/96t+LTjDaRoIdyfKGLDGUSVqx6y9eI/c6Ac6ejHSatc2FHJcdoRB/ykFLDQrrKt2K2qSa7FVgxgLhiLajZoO5YjVuHeDpglbaUjdrpBi8wN2x7u96iPEalrp6TBgakJKoYgjy0jDIq1ctUli1BTUiLoASE0dsrRqlySdu9dq7zj7Bb2bWbZ9r2e656AWkDf0JYVbdH2qU1Xtf7eanRNi2P1wS39O/bm20197A9CL0/UhrYdU0n+e7RCOjmaFfrP311J68dFn1tDB2gkbpe0WTXT4UqeZN0m++py2D4aKMHUmlTFqY4N2hdarjX2TbsLax0S9eXUqs3S3jn2K3B9Nv2sKAYMlHzMuWKyFaXBwyLrXWIXgNbrGWXVMsQ0oDecD4zhhgdEqGy9lhR5Po6O/DWp9FVS4enPwDFS2Tb0xqxl6LA8Ijt3KMbiA702XPd50g2ml0k9OOE6FmApPa1TxqbXcTJ7q9LBMtZF64L20RvPu6lJiupO4SKONnTBAAyMcvDJAJx86kqGX3hQ8jk4CqI06qIeis8Lt6UTwgRozphRMBsmG0ZprTl01loDg0PdQeqMpV2hK97up6iSvCb/KzvTiKUvuga1Fp5aSNbj1eMRVOI4HpjBgW0PEIeKozuIsmLZb9kKxutcOFprdOX+WpooaOmkOnY53YXFvDbvbByIkq4a/FhDTxdtiucFh6rHf51bt0Jztk0/tTbljCCN7T2iF617biAW7N7fC4HQCbmIQ63FGf5/qVMNIU2i/9rsCYxQJMlrslPFsOvSnv03JmVI0WqdWXYeUqnvRkuuViY3e6pjOqjQiaIAr8Onz4bt8fObC9Y1vfIN//+//Pf/qX/2rz/zD/0cff+pP/Sl+7Md+7PrvT09PfOUrX8FaYfSOm2mivLiF0wHvAimdO921ErzrhqI9D6jf1M6IerKVTIlztzQB46Tjz0Jz8Hyewak26xACoWnkRUyNagfocQ/Hkzoh0Lt8Z60Wl7LqfkYECUH7GitY77jMF0oDsYab0wFb1dSzNCG1oH5x1M5S1J1b6vlLztqew9MLcVVLGUVT9ukRWiu8cd/cY0mgb9a/8ySudd8UXAMWG3LNuOqJJrwJgyzaCohqtfTnqRN16U9v9ufu/nEKk++vU9dLOsG1TsfXgktnvdGhkDc+hYXa2Za7sauICqVL47rnQ3QC2dmDpjM9QcDJ9de2xveuXZQo0nVjpZsS77CstaYXSNfNSPsCoxWCC1jxlEPBFHX2H5zgTrqrERPV9cmpg0swapWlmfJqBWadYTxMNF4o+aFUDk6vIRo8nmecmK71C9hpwnWz1kxQerI07KB5UuppKFDUuic4f52cKmgqt9EGozycdRq1lsF3RwSr3p2t6ufpBN2lVYUYQ0+PFlQTlnK33rIwGoWIxAZSe+Pg7iwE0ZYlZWijIYSBu9OB4Adabczzqg1Z02y0cNRDt2Ioojo61xqDMZSs5s7qlKIIhDEVSVCMpVql9AcT8HjivJFKUUPnmphsxlnh5nQgVN1ZTc4jKbPnCherzvVGGtbppFnEUcyAp4IVhb5qvzxbw6L2SHtzVHujrE2o6ztifR7Tmu5N6Xsp48B5gqGL94Vli6pf8460bn0vpu4eVC3epr0xtZamTSFVJQnO6o3eEKrxSFWxuzZiVr1MjSFljTbBtZ6gTI88SRSrJCBrBUlVpRKbGjtsUU0RtmJISQuX3QuXQhu4oHE4zlowpbfU/5ML14/8yI/w0z/90/zLf/kv+fKXv3z98/fff58YIw8PD98xdX3wwQe8//771+/5d//u333H833wwQfXr/1qj2EYOrvpOx/TcWI8nSioeNQax+g8rVhijuS84Y1+mKF3C6Xb+CtZoHSPvgJFtQclG7wXheBqdwvvE06gEkS1Ma1VNaPt9Pa0aix5rZVpmDA0bNM2qNasjgN9T2CsUIplW2fd9FhHMqqTotaue0nUZnFUNpTSWmrGGGWJiXO0TsPOtVCrdmxWdPm7dQfnhsZG7MzCmBKlKKXVe6+vrzVijxsx0qPoDRp1sMcpGLW2aRhy6U7ZoItYoTPrIhotpnHh0rVfKccrmcJYd9WmpJLJVa6dXDVWf16rBLMn3kIzlVSzTsVdFKmdG8SWr9HlxljV/fQol9K0wwtWLYx0YwZl0QAXI1CdZqIVhFo3bPdO3CeI1ndzXhpSMq1oeGPMypRbHzzNqGHsFjNLTRgKodPGiyofNM+sFYiRV/PCsqomKv7n/wQpYqUxOcNhOpCaRqD7vKn1kHM8XzbcNOK8ZaQxTOpygLXMUYXztlbwgXWL/TDJupdFd3ZbqmQaWQxvHQPDNOGmAx+/fla2oQg2Lhpd0xqxNnCjMlhRvWKqhVQKo7M4Ueq9NY2UM7lWssDNoMxNcQOxoTZEYWQ0DW+Ubbvmiu2ZV4chsGyRZVl4eHiAXAjOsA4emT0YoSAkCXhTCQYOYVB40FjcNGFsh3ubJg5LU3KF81a1cgbWbYVmVXDv1cDWGENthuc56RSSMmlLGkkvhfmyksi6s+4en7k5cvUESdew05QSTbTIBhK5JKWECzQ3YqXhKFg36foWRW1q9/8bp4ExWLCeIBMtzrQe+Do5o6Jr75lff9Sz8Rx+GimbCqzz8txt1noWWxW9JlpWCQkqCF6KQfIKtZCrYL3ePbV6fFMheabhvaXQp72aiZte79YIRzsw9Abs1etnHp/OPD+deefFC7YlKuGj/4cKda0KrTbNHrzMF7W52pbvrvB86vFdFa7WGj/6oz/K3/27f5d//s//Od/zPd/zHV//Hb/jd+C955/+03/KD/7gDwLwH//jf+Sb3/wmX//61wH4+te/zl/8i3+RDz/8kHfffReAf/yP/zG3t7d87/d+73f14qebW8Q6nrcz8lgwmx7qNS8KdeREc77rh9SR4Dpxeaf07ZqRvCmc2LRocFAyQhVVvhurMMpGw/cddcWS2tbZPkVv1M4yyNvGrmEKpigzUGDJja1rwjBCTEm7YGuJyxlTejqxsaTmOjmjdE0YPVJBbWAW0b3QTpcFDcdMDd2LdINfNf5V8sCuqap9IttjGgyyJ33Q6JYx/cA2oDTzrkvb7Y0svBEqtga1UGqmNXu9gWko/b696fhK1S5OWvsUK7FDR12UC8pa2/sxS6M1ndZqeaMRM9Lg6uSh1lPO7pCZKioFWGhXvVmT/hp2IkufZFvf++lWr+oUZ7SbRmDOSoU3teCMRr2nWnmdGrX/vrUJ1UFulVgSpsellyZs2RP7HibGVWnUJfM0zyyXDWohGGUb7rIKT+U4BIKzXNZMftAiW1NmGJx2sN6RCr1ACzeHA+uW+9QVSVEnDOtgi0VhYAPx9qDsQx/48GG+wkOSEqFLAhChyqJTlTTdf7RuiGz266NxCPp+Vxpbqbo7EYuxY09fVsJHQSdj00khLUXEe2ZnqEXhJ1c3WkuUBJci3cVDX4sbD2DUBcYWhcmldwc5VaiJlhOxQMFSRCfW9fkRSiNWYTxMDMOAGQbmRWNntphZ5lWFwblwfpy1kRGhGodDd2fkQmGH4XVHrDLDpoL7fo8E0biY2p1AcLbfMw0jQaF1s7NgdaVgADco1b25gJVK3hLrecMGNXs+3Zyoce1iYvVY1YarUuLKdtGkY/UP3AlMlZS2jmroWVNTUqeWWJmOE4ihZsHRKK2Q99dtlaIYjKHE3chYuFjHYC1TCJTc1GRXKuIEglCD+ZTzjl47aXsmLc/UbSU9PxBrZLn8T7J8+sY3vsFP/dRP8ff+3t/j5ubmupO6u7tjmibu7u74o3/0j/JjP/ZjvHz5ktvbW370R3+Ur3/963zf930fAN///d/P937v9/KH/tAf4q/8lb/Ct7/9bf7Mn/kzfOMb3/hVp6r/7osPI9U01rTSLhmiUeFwH4VLbRQTlUpelImjcIlCdblkWi141Jopt8pWC87pclddjtUqRqylloQvDVMBE8jV9TwrxYBNp1tjrZIBamF0lRCUsrykQvI6oajNkcJmGEspUbH9okysVB25ieZwGYPt8GAYdrJCI7iqdGdjKFKv4X+p1CvMUEUhw93FworGahY0J0t3I2oUfPX1KPXqNG/6NFWk6DSYNQCRxtVItNVK63/eBJUQSL5CaWrU2w9CurNHv5Gr6ZAEWjD3n5nrHnCn0NBOIMn9d9y3bVcPQ1HBp+acdcxfOtmmKvSmf2TIGDVXrgXTWrdvsmou29Qo2FqlQRurE3baIqZlbMscgiWVSiyVJSX6q8Z2OvA1K22NvfhatqKmo61kyqaHZEyZeVs4L9oBe2nAci0OxhhScgzW8LwUllKIubCtieA1cDQErwnRVmPu07YRY2VLmVQjy5IppRKCsGwKvxoniKkMccNZxyevl6vcoZbMZA3BiEaw74w4aXgbtIGiqZtF6xEYVWOAEEipsNaCYLCmMgSvwlxpPbg0I7XijTpIVKs0dIPtU02momLkkhuXHq9jRAj9s7ZCz0Nz6iPaVuKWqDlR40aqVuUpe7N1ibRUEO+5q7fUOiFSmM8PLMva3dI3UirEWJifFlLVScoNQX/HptT6XZ+ESLczatSiNmly1QZC6aGMItDsjsq3Dmd204B+jwlQc8YFjziLOId3hrhEnh8uTIeR+/tb7pcbAJbuKhJzwwWHMtsz69NCyVVdTNpuMt2Iaev7YN2nx6hOF9uaub270fSEqqhFoWjUUkUbVmcUZs5dvoIlWmFwnjwOeKPnaOrFK0sj72YM10cl9tiX+fmR+ekVNW/Ml/9JJrt//a//dQB+7+/9vd/x5z/5kz/JH/kjfwSAv/pX/yrGGH7wB3/wOwTI+8Nay0//9E/zwz/8w3z961/neDzyQz/0Q/z5P//nv+sXH2ujWkMTR+yxDrVWvOS+17BU1JA29agP1ddYSKUH6mVGp91HBaqFIWUQyLWwrFq4sIaWExKzxrqbTKxWJ5icu17LYmzQSIFeuAaX8C5grCM7FY+KNCqVnGQXXVDShuSElIp3I1uzpEoXN4I1lsEP4BalS5fMYDPeefUPQ4gxUooKO6cw4bzDBE+MyqA0NAY/UY0Wrhijbg+6JkRct0KqDSu1F0tHbFVdvFOilIztIYrF6ARG0yLk/UBtmS0vrFvS90QU9tvhkZTVFNUZGH0gonTilAqV0oM59ftrVbGzp2GNhuHF2ogxdc/ESuhiZERdBqxkrFSCC6ROVU4xqgxBDM4GmnPqjZgSrSScVVJPEnXhb61grUa4++BwoyVtESkRUyNrGJRA1zTvTDMfDc4EAiPQ1JNuXfrOzzEXdTBXl/8LMSl8EtGE3eANJw9borO8lB2ZUmJdKr/80UJs6gupU6+yFINzlKbEj+Atjw/PpAQpg3EaHV9rxTuYV006niaPHxYNm7SWp6eZWHTKqyn1wq+Hk/Eqyjao2bEzRncxQfquqBKXzMFrUvJqNWhQ94aVmwK1CrkJcY0IBSONu3EkicLfrVRgw6H7MVwnB7XKuq1XJ4+PHtX+jFI5WKE1SzVC8Y3Hx5kSE5TMVrQJq60nF88Ji/Dl915wvJvUhcM5Lk+PzEvk+ZKoDWLKGixZVX9kjAHnVXjbGlCu6EEVFb/vqweRHnApqrFLOWvCAaLTKdo41tquMFrshDHZ96Xdwq1ZfW9T0ibl7Ze33Hz8yHHS6KVl3dhipjUhDEr2mNeIlHbVTvVlNMrYqLpztwbnHU/nhWVNnJfEu5eV4zRymCZFQUSbktagRm3ezyikpxpCR7UDNeg1sraNV08zr54v3N1MPD7PvHp8IndCXC6FeY589O0Hmvwir5YLMV4IzvX38rM9vmuo8P/pMY4jP/ETP8FP/MRP/De/52tf+xr/4B/8g+/mR/+qj1/+8ENO44AplRa6ODFX8NptZcAEh60aUJgtpNSJA94iFRyOYCpPl0fdrYyOF28fqaZxiRuv1osKeJ0QMBg8tMa6VopRcSZVENPIBXJUZpkTwYslNFgviVwThMDN/QlnDbFEns8zRSw2eA7OdupUYZkLWYzawmShmkahsM4LtsMOplWsa6xZDS1j1T2cAapkznXBWIsbR8zeGbdGawvNBfDqFL7GlZgScU1dyGgJ1iqvr2k3uXYH7FbVrqgWnX4Iof9MvQCFixJLEPKWOnhUdfm8E0xaI1g9lnNK3eNOV+GpJuiL/HAYdR8CSFW7GjEWM2huU6uFXCLr8oSzwuAtB+fA6I7sIa7kTpW2tRC7Y0GpM2EadZmPWhblFoktkZ3HdHLGJpX5csHyamLSAADQdElEQVQ7y/EQlBRQK6bBsm7gVf/la8+kbrCuW7cdA2LGNEMujVgySQymGlyzPKXK+RIpDYbTwBffueFmctxMhmVFQzOto5XEw6tHHh6e2aoKn10/mA6DHkTWGJYmeGeZBsfdwfP4vLHNCbGO46QO+s5VUtnACMM08vLlPcZATEW1gJ2Yk4p+llVgWxNE5YdaBGNTRwtU0GtQdlqQrO+nNfjToHtgEYoUzvOF1nSXm9aMd0Jwlk+GDUJQe7BYEKeyhcGBsbrjGp3DGkhJKec4lafkWHi1bLTduSUIrz650Io2LTFbmtHiQm0slwS14YeFU4ZpyBzHQFwSyxx5eo607idqjSVMTpmK3Xex9cbUW0fs7icFw04lajRylasEpRXNy6vSyKmQjekrBZ126w6he4P+R8k8pUJuwtpQ78q2IzLqB7MWoeEJg+C8Nnu5E2YaBnF01KdPdR2pCEGjVkBI7NNqxQcQ77WRM5bRKMPTWLgsifO6MS+JdVP9WPCO03RgPHR2ogu8dRs4TY77o+PXffFdfuEXP+TVx090yhWlVWKJvH78GHf0uBf36v6fFvL6RuL03T4+116Fn7x+ZB2Vvop7U7gGr1qJ2gQ7DEinvkdBO8vSEG9VVCyNssHT80JtjakGStKAw23LXC4r9JynQRquahT8vFVad66wfVeUSlWLqFgIoh5w1RbOSyTVihkGbrwjeKuF62kmi8F4Tw0GikZgr7FQJCjUUVQNr2a+OtVZ0QlnMY0tJbZYSE2YnMNbIZM1nsNY/Lgp+6nDhbk0mhvADwQrLHFji5F1Xq92OoPV3VqtlZwra+4u7ygMkLvzs4SB0B0iWtujEYSMqA5I6Q3UrHs+I4qjB6dQ3bau6iJghOAMsaROnRam00SwBieieV5lX8QnvKC+izlxPuuid/COF1PAGoV1Lksk9cIVpLHldO0Chy0RrMH33WApjdKE7AJOZ04S6pvnrLDMgYM1eKn47j5ihqARECg0k0rleY7I1h3qsx7mKSspIhpNEJBSeL5snC9RYafgcNYyDoHDoYf5WU8xgThfeLJnnYRAM+W69Vbwuj9QVqfpBsKOwxS4LJnaNG9GXbyFEIwKgTtD0lmrn00rGCu4LkhPNgMa+7Gm0mFZ6UQcPY5qVRRCnTrBd6cSMcJUlEwgxpBFiFHzr0qplFgI3l4dPfBeSVAx90MXnG067QbHzRg6k1Y//zB60pbYYub184ITgwuO0Q6MY0Ca02DRuWnCQVP0IGX16nu8bNpYRZW0kPXw37YMHrV2spYhqJNK6/Eure96g9Pfo3ZfT3Wa6QSM1NEcVTcCRhu8ArWzP01rWK/yAB2w9D10AlMQYmoaelkF599AfbU1tlQoVWOVfM8YVD2ZNhoqNqavFfT8k6YxL94p0lkrGixrRO237O7Mo9dp8H2NYnYZEaSiWiyDutXs9z5okZxGi7MjY3Dc3d4whoe+kuEKpaZu5lxbZTweOBlHq4n1f9aO63+1x7c++kh3FlEXihXtxAentjOIID1ozdDYmnqjacyHwfd9iNYM9YObjgM3gyHTeFwj3/7kWRVhYrCtqiVU1VypKkFhtu7knEslZlV16A5HMfstZXIDFwLx8swYHLk1Pny4EEujijB0kWwtaq5bRPdijtZZjI2U9kBHjXDQwzvrjY3lNDqC00mzZP1e47yatXZiBkARRxVH2Ie8VjXOvi+bpO0sRi1cqafHWtv3VFVh1dadE+gQFlUnsU7EvmL+SrMHaH1ZC63Dj7WpHVZwQqy7oBT8K6/TnNCtZvR9rdbT7y9aayzrqoWkwd3B420nZMTEmpQx6aTpZIdCKWEYGJz6Rmq3o4fc1hyuB1ZuVbPaAJy1TE4YnGF0hkMw+HHCBc/RwXlLXNbEq+eZjNVDvKpfQsqNmCpr49qhayyNZhWtufBi8jhRq6D72wPYQMbz7dcPrGti2zLGwBicNmU0ak66I4sV8Q5vBCOO4+h4bXXHsm2Z4gwlGKbDiOxhiK2yXLRpWFJmHCwDjtrUizKvkZgql0tU2j5t5/9cXdfZWaK88boUEdwcGZzullKjf8Z0Y1alWV+TC6QbI3fpwx51Y50wBctxtFd7MSPCzXFki4k1Zh4vkZenwMsXR75w+4Kvfe89wTRa2vj/fvOJp1mhsPO8kqyw5carhwvLnDhOHiFz6E7tKWe8MYTRcxg9QzCU0vPauqBX+sQkTWkZwRrNiTP9umq1BzH2c8IIrXuTxq7dshRceFO4BG1CnYHJGxYpGN0wMB6dmkuviXnbmOdIrcIwCreHwBRcZ9OqIbidLK670xtjNLCVvnNDHfhTUvH/4A1T0MDUXNSqalkrMgLVYZvDtqoJAqPHkpWxbKyymGOieEs1lUrmeJp4+fLIdHOrO0GRK9Gr1sq2KmP5dHPia7/+a3z1C1+Bmnh49RHw30bm/nuPz3XhOs8aYpdyUcEqyiorV7+yRpOoMSTesvSFeO5xCMEZ7f4HT2oNyYV02diqMKfMx08z5zmDeUMAoKpzuUZ9FA1u6wdf7nY+im0r3Xo0wrnotOSbUEMge8vD84XnTanFpRVW2yHpJsryaQqzWQM19c6lFF10N31uZwyx6BTZKBz9hAyBvK2knq1laiZ+StvkfKD0FGhEhYFiHcFObOcLOSrd23ZGEcaq2HLwhOCJKdJK6/Bd6ZRxUXcEr2LVHToFOpvPUPtrbwLWuy4YVv1XGAdubw48Pj6Rc9d6WchdEtkE3RvurESUuOCcgxaoKVNyZq0NvN68zzlejVynwZFivu4j1rpeSSmaYNM/v6J6HSPquBBTUZIEjbEbxE5jYG4eExPOVt46DXz4sPJ8WTkvEetUJN2ashpjVlPamEtnQgrOGcbBq6ODFUqOpOyoTfDHI0YcNus0XdHP7OZkeHF3YAiWnDPbRZuF3KrGZowOewgcDkeOx8JhrpzPsyY/O8PhNHKKhVp0V3WJuTNLhbt33sJbj1Th41fC89NMEfC5YLK+ZzQNRlRimvRF/ZvoirI3J7kxBU3cjmtSvRY7p7QR9S9cGw+levaIkt6h20L38TSUrNFBrTW2OF/NBKTCl957ya/76jv8lt/6Nb7ylS8yDCPWWr7yS7/CJ4/PvHp85pu/+C3iecVU4eX7bzO0rG79MfPFd28ptfG8qADbOou1wvPDzGXLxNwwplAtGAyjE8JkFco1rhMxFM6OtwrJCo2ck3pd0sgNktrfalEWjbHBWiRl3aeKSgiWrDCk8QPvvHfPYBw2Nc65Mp9nzuczy7pyMwam4Mmi964Pnrv7I2VVtmssFdMSrWZayRwCzFvSCdpYxkntqm6mG2IzpFRI20qKC4fgOY4jsQJ2AhswZFw3rM4SmAbL6TTx1tsvGNrG+fmZp8dn3OWB2iJ2EB0IrJqVT4PhxcuJt14ceTkemUCdh8bbz3z2f64L1z7Wtq6lElFh5dhzXlJuNGOYxoHTNBKNFrt52YDKEByjd9weRx7PqpuYnOX9999hSZHmDeflFcZqxIkWLqvAibHUPqYbaWCMij5TgaKOCc4Kt8HprmXLTIPnnXffZho9bnzNeS1IUlpv8N2aAqHJ7n6g1O6GHhomZcjl6gF2HDyXJXFZIsYYXry443QcuSwzj88qfHa+OwpgOptyvBYuTSbtS2WrXVZyhhQtQ2dC1qZq/ukwMU0DW9pY1kRKhUZnEgKtNLD+Sg/eCRMNDfSrKdJqxXvH7WGitcbT84w1wu3NkbffeYkPlnneWGNiHBSC1GpulGkgohCLNEJwTNPAw+NMWldK3Li5mXh5d0sIHj54QAQO08CXv/Se5k49z3z88SNhVIquAOtWlSiRlSwRnCEEx+F04PHxogSeEjkMnrubE/d3t6o9axob8qX3XhCOr3h4PPPhx0/c3A4KqdWC2IHzZePhaWaJkSk43UPdHQhB7XS8qxwnwxCsFtJc1f6qQzreWcbgKajT++B14q7e4krFWGWW+uAZx8AwBsZxYJqixkaIGt+Og/79WhvD6DDe6XvZhDAEnDh18jAW7w2hOKYhkH29shzb7i6D9ORfPZy9mC5AVnuld1/eIFYY55WHp1W/T0dvlYyYPulKz5iq2tTUnmFnW+M4eu5PA0Y885pYtoihMY0e7wxT8Hzpvbd49+0X3NwcuzlyjyPyjuNpRLxhOo7ky4LUxu3LdzB5JW0rT49n3n7njlIaw2UDZ6mtUXLm3CfLUguDd9S+hwrd9ELF0ArBeulwdrPqSAFEadfJfSc0KHRW1eHG7oGzQuv2aONoaclcmYxvvbxl8gFbhFOG+Wbmchk4P184eoe3hnnL+HFgPIy89dY92yWxbpnLvGlDXiytWqYAGMG4gg2eaQoMw8BpnMh4zfaLgW0xjN4zhcBlzYTDgXE6cXN7wjb1wbwsmeDheBy5u7/DlJU1Rmp9ouRIKWqXRVM6vOl84Jo1/iStM5dZzb+TjoWf6fG5LlwhWEZvqakqVi8wBs/L+yMgXDY1Ob29OfLyxR1MgQ8+eeT1wzNCYRoDhzHw7t2BX/jlT8gpcTNYfvP3/n+IdeP+g2/xyeOK8xrlbq1AsdAMGaeOFYCh4gbHlgqXJSEl4b0west7x5HahKfzxs1x5H//9V/j9nbio48/5OFJP3TrdCqQjo3narvt0u5vpzDkvKhOxVkVFb9zd+CTh5lXDzPeGb7yxXd5+eKW5/mJX/yV18SUmCbbITvTD41BM5kaOGc1A8pZWrOMBrZtIcXMzUENN3PVZe/NzQ3HmxNb2Xh4uLAsEeu6BxroHgp/pZ8jVmEUgS2qyl5qYTyMvP/WPa02fvlXPmGw8Pbb93zlq1/idDPwyatnHh8v3N56OqKE6GocFVUphf9wGHhxf+IXf/kVy/mZss68984d3/OVL3JzOjGM3+J09Lz//tv87q//TmJa+OYvfov/4//4P7m5U4iGWnk+Z879hs9NOB08tzcTX/zy+/yX//Jt5vOFvJ05jp4vvv8uX3j/fT78ZIFWGIPlN/xvX+Gjjz/kw49e8fP/8Rf5ypdfEIJQSyIMd3zrgwf+yy99yGXbeOdu4p0XR77nq+9R8JTWiHkmzWe8U2eNZV6wThOZQ3AcJmW1VavF2lndH7bgyLUxRJVbjKPncBgYD4HDceC0ZExTYvIQLIfBMQRLbcLxEDBDUBeI3PDGaezPzuJ0Fvr1WKRPj0XNrLWxMkqPLiqRGESYN3XOuDkM/G9fe5cwOD55vvCf/+vH5KwhjfQUZ7GWhtXA3164zE7+yQUphRe3A19458RhOvHBJ2c++uQZauadFxMvb0e++PYt737xPW7ubzDW8fT42LPtDA9PZyQYbl8c+c2/9Xupy4WaM5hbtvjMcjkzfvAxb71zZFsLtc3I4Ni2jbnobjfGRMyF2+OgKIE0QtBJMzd1q3HO6L7OWOKqad5WhFoKTvYdD/igTVerFWqHH0UIg6MVwUhlGBxVNCfQe8vNcWQaJ6xYxmg4niZu04Hl8Yw3eu2mj544ToHjaeLu7sRZVmpbuFxmvHcaXFHBj+BSwdfGdNB9oPce6wWLI4inTYHR7ysBSzlvOKM/9yu/7nswRmn0H377E7yt2iSFoM2w8x3Oz5SsacilY4UNKKUxnxfOj488vv6QrZ0ZhxM12c989n+uC5cxg1LNXeFSKltrpFo5+XtEDDGdsYcb0vGWdLzH37/A5m8RquPu5R3z5cIK5Nv3yB8tNBOxtxO3X/gquRWe5EA4/IoukAePOE8lUKs6bxs/KuEhrsjhACnjzMIwenKObLWS7t4hf5Ip8RlOd8jpBe7ujqM9Em4+oMWIG3wXJQe9oVPGdYueHFdM8Jha8TLjnFWdUK3I/fvY8hqXDMM0Yo43tOlEGCbG54rNienmSNwirRkwnlYq1nusdeS4Uox6+JW4YaeJ4DyFFXu6VyJIaVQ7somQl8JwvGM4euyQGE4HtnXT8LvmMFGX/2It2zxrAKc1tPJMO2peWGkNbt/DiME/Z6CySuDVvJHcARkKbqqEuxfUUrrHZICiDvl+CKRto9iR4u54fv5lUq7YMCHHF9gXX8Td3lN/6ZF6OsLpJe70FtN45C6fmN5+hTuOHKeJ4zjxnjupjs1ZjjcvcBSOh4mv/bpfz8/93L/n8fUr5ssDNUVuX77F3ct3OQ+/hBgYx8Dt174KL95HXnzMB3Pj5fd8Dy54Utp48fKrlBe/xCX8J8Jx5Nd/5X2++oV3+MI77/Gtb36T56fX1PbMq4+aUpZPw+4CpTtEG3CHE4MEHpYnmliKCAuW8XTEuwQbbBVcrlxSZik6DfhgeP+de86XBbEw3RwJ50xpEI4HjLfdzVNDSHUnCeNppJVBdzmtEavVaXTbdOlP6xPvQFw28rYRjGWVi7q2H2/54v/+m7m5veH2aeGXPvk35HnVA9morASjLuxmHJXEsS4cw0TLmcfH10yD4f7+li994V3e/sIXqf/pF3h9SZSycffWDe+9c8t777+AErmcX7HWR91djoHpOFFawVYtMiLC4fQCqYZ1zXgOuNzYhjNGPDElXj9eqMZ2L8mB+/sXVC5sMXF7PFC6rnEIQtsqHtN9Q/u06wx+27g7HhjHwPPzGSe6s0tZaNZcd8xq/6Tc2cMpUHJGamEY1e2nFoWtz08Xdd1vhvPzgrENNd1Pei9X8MaQU2abF7bnZ03cLglTC61CTJG0RUIWLnNU6NtGSipYG3kyKylWnHOMx4GyKfuy5cY3f+kj3EcPnL79AYMk7l6+ixiP1JVlPpNnkHVgGgS2Z7wUyFBipaRydV9pNDDCdBg4HY7cTLccQsA5z5rrf+d0/+8/PteFyzotJlLliqEbwAyTjugxa06RrkUpuVGwYAPNuO6U0EhNwDjENoz3YAOlJLKG0agHXtHOqeJUI1I/hdyLIzeNVME4xGmBqC2zdsbaLvpNxbBlWEoDFzqhwfSiqHEj1YKuvdWho3aTWYx742IPndhhesSGQ6wH48m1aVy8GIz1GAe1me5oUZQttUuARZ9beixJq4LYLgLq0epi/NXotGDAemVU2YA40Iwuo+6poMwJsex5JSKu78J0J5KaxjDYYUJqQpxXQXfL1G4EqnepVc1bddcE5iYaQVKaIZbWNVSCsQ4/HKjGEyuK5z9fGIcnPnr1GjNsfPT6gdfPM2GLpBsNQcFHhhBo1mBSwVtwVUkLly1zXiOXJepUsGVk2zjHgojaJ82xcN4S5y2xNeEcMx5LrZanLbNkyM1SY2KOmfOWePX8zOvLzLKuBKOJzsbqNaAzpVBLw4WBoX9OLmgXrdB4wgWPb4J1K67nW4HlskZN3rWWw+S78S2Idz30s0/ydk8z0LRefSMrfgh97weUiqkWaxTi26nbRhrWB21q+n6wiekNVcMNB4bjHVMLhMORLTdybhjnwFm1l8p05p5eT+I8tI4MGEsYJo63L3HjhPFBd8pZJRHiHEWU/GOAlismdOca1B4JoMTM4+ODhq82g3EjvhVKKWwlM88r87yyrlEZq8eJEAIxVLyPCqV2bZUxgvOCSRljHeM4qmlxTiyr6ieN0Wy9cRqQzhDO3RpMRAjWsvXDehdVX2Nzrpi76vhyytTSKKmyrlHlnl737ClXWtYdcSvKcqbR976WcQyEoEvzljPU1jWZqE7Sq51aTN1PcdcDAjVV1WoaQ46J9Tzz/PQE4jE+qN6yFDW97iLxVnUp2TpD2FllqO4M1FKaZgw6TxPD82XF2kjc/l9wh/9f4eGsmt9KVSNRK6gTdggIBhcyCUNuQq5C3jpLyjhK1VgRUMqnMb7vjhwNq87HKYNYSinUzhZsaFBiFdNZeE2/v9NvVfSlhaFWYY2pm78qm2hLhWXLzOsG1oHJ3eG6B/a1njR17Vh254suSu0sq1aFLapw0jqH6c70iCUXdaG2/RAwVv9+pbO0kM7eM9fiYq3utFpF3R/EdEGkVbdptEsstSkMaLUwGeOotiqN19i+D1HHbnanEuNoJXfvNt2HNGfwYYIsOBewdiCXi04B1sEebNmNYPuGv7v4K26e+ngiYjHGMo5HwBK7jc+6LDhj+ODjT8A98u2PPuTVw3O3bCr6PrvCNB4IIeOWxBgcKWem16/4+NVrXr96YL484IyluEDxgfMSoSZSMjxdZh6ennl8vrDEytN5JYSGsZb4/KystgxpvfD64VkJLuvCxw8PpG3mbihaQHvhsqh5bK4FHwaMcQiWYQgMwet+q+pB4JrG4uyCWsEyL5FYKmIM4xg0Hseg8JyYK3tPyQhq6JpS1UU+4MOgrhFF2yZl56q+ic6sM2hMiXVVJ4Sc2b2x1Kg14PxIGBvDOLGsiVI1e6pZSzUGUx17fIbpJKBmSr8mBR9GTrf30NPMjenXvtHCF0tRiFNE9ZhWUQTBEgZHSYkSE69evaItEVOFm5fvcvROXUtK4TJnlnkjbprYYA5C8APWZbz3nypcSkjx3mKd2nIdDwdiyTw9ZeZ563s8PX/GcaDGSG6FhhYZ4/RA39KnCldrWrjYHeTpy4LOdkyVdVEbJ1+7bNlCS5Ua+3lUtWCIsX2/5xnGRggGWlU3kaJCc2MsQwgMg6Znp6SfSfBeQzG9o5hMKsIQgu6yt8x8Wag8YP0AJuCa3oy1w8s7eaZ1Zx7fNXGqr1ZphbWa7F2Bx+cZkUra1s9+9n/mv/m/wGOwMLVMapnQi4mDnr2kN6sVteBZ1wuSHCZlvLHYYvFdn3KsQgoTjsC9C4wF6lYZzhk/q5N3tRY7GMSiEEpS0p3sDKmkFi80YawWjb8qmHVlFMF4zwgsrz/Bppm6rQxJM3+KsbgCtlVs1e5UeeaANGyO0NrVrbmWol3RemEoqoqfvMOVCMuZaVu102mCyZVQu2Hu7qz+qdweX6smX7XOiDIaoeClE17YdVpAq7i4crWJj4IvyvKKbfcq1LbRWzSnrFRiLaTuBSkCftvwrWGtwbuBwVp8jAzzjGyJUGBI2iWKCLGz12j6HmFUTzXl2H0qhEEc793dcrJCTZEjQhPLVAW5XHAhMMXMqUJpBhsrsq5seSPWB0AbgCE0ztOEeX7m4//6XzlfzqSceOv+gE8bbls41USpGbs1Hn7lv7I+zfC8cCrQzpniBeMhXRbq8yM2zZgC7XJhew1xO2LniK3CcLgB0fSxQQbECUkqSGErkTE4DtaS708YZ9TqJ0ZSiogIt7ej7qQEyraSuw6xtaZs2qqdr2TDwTiKVIIxxHnFj5XBCkNwNONp1nGJRYWvUslUvJgeSwGSoBYlUKhjCwydTdvCQDIOcPr61gW3bYzNEHCkbl5MzZjWDbzqm+sr0D3yAI/lNB54+8VL1vjEyQu3Y8CHRhi1SXMyahq4s5jBIcZjcHgJTOORbCJbW3l69cTj6zMlFd7ZGsOXv4CfJl68eEF8mvGucXMozGtVMkPWBnEYghKJbidaVRbrGAaMWbtebmRLiTNnUlI3EGPBDYZihCaD5lXZwDxv7NvwvcBZ0V2WdFKJVJXLUBvGelq1lJTZVnXxGcaB6WbCSGEjk1vlODpS0WxACDRq12gJ1oPJEYxQssX5oScUB3RlWcmpEQY17BXnCWLJeGoJjKeNrcyUUhG0iEspSI1glXhSWyJrD9fhmNpJGWY/uvqj4nwleBicgW0mlY3LMn/ms/9zXbgE6aI/ruF/gmq1kEbu4YGtVkopeOu0AOTS7ZF0UmuldcFdJW6RZZ45ny88nS+sMXYGUYfXqn5fyTrmqhtEQaxCJZromnVKq7WzrxQuyLlwuVygFrYUSSldYQTtnNTPreSsE5TZWYtaOVr3H9uvB7WX6cvzWskxkYym1bbWRaHN7FUHI0KpWdk+Rg98Y1S4WFOPOugFRbPMNHDOms5ybPocFWWY2Wr6ElatbXJTc15jdiGjxWAocetLfvQ1QX/dpeeKabprq62/D2olpNCWdtqaeot2bdX030s//7q/xyXrYjhreKE0PWi3JSrb6rKQcsV57QhbgVZKz2hSuCWWgqnwOF7Ytk3DF3OkpJG0RbZ5IcZN43Ck8fyQ2VYNACwV6qau7GmtiDO6j0uR2i2PlotFYoFScE4/X7Gmmx13EatRWGaOWUMXU6aJBvoNMnB/d8vhMFBbIxVlN9adrm4dpnL9Wuva85IK1unnYa3hMkfNUxPD6dZDFTKFdVmJTWUCeUu0brXVKDhUjFtSJrZNw0lrxVur0FJ38pufzzyIcD5fuMwLKWkCsjEejVV54ze5x8M0U/V7hJ4okElbJCdt2ry3iCicnXPh6WlmGtSlwyCQ9HqCjdGOiLWE6cChwjIXIknj6K2mHSuqoujBME5gK9ZaYsycLxsxqs/kkIruoRBKbsxbIniwvpCiatR28lPryQw5FZWwFBXk++C7mF/t59S8uYvHq2oNdzSjNVGJishVYuO9Onk0UdZpTJmcKq4JxnoVkzc1pk5JtZ3N6PSbs8b9qI2bMIUArbviQEdG1H2DVjRPqzcU3jlcl7WoZKRCU5cadeYQfS36JijRy3T2KLuAWq2hWlH/zm27sMa5py/IZz77P9eFS9cbchUoYnoSb6k00a7COthd0QW0ANRK3gsPetPT/602mOeFeZ6Zl41UMsZ7nO22LfsP39W6/UC3vaC0pl5yrX/vrnORXnG2ZUMapJyuejOzu27vT9122KAXrm4BX6Q/l2lIVRhQjGb/0H/vlArSD64K13xjhdT2nZO+XwWu0SF7fhaihApjei5W273V2tWlQZ3a1b2jC3r65Km/sRGFUzUSpvWfpySAhvq57QOl6UxBTZ3tpATap96Hiojt76MWw6Y21QC9odDir82B5gEh5ipCXzeNa9hiotH6rshci2jHXrV5KZUUM8uyKJbfxditqnN42jZKST1yorGcN3IWcuo6pprJFYXGgld/y1b7dZlJ68YcE951mJV2fd9aqWqBZPRzKN1js2xZ9w9iMF443RwYBksq5fq7tNKbFStquFnV+aLVBqKwqnG6N21iFCoVwbrM9YQBYkq6r22o9k56C9MKIhpVQyvkogGqhop1TqM2OvFimWekVR6fzlrkq2bKqT6uuzBKffNz+z2puxjpkHAlxUTMOm9bb/FeIa6cMktqOOcwreJqo9ZMKZrzVfH4EFTq4TzGOJBCruqQb2wlRoXiWhNcCMrAa5UY8zVyBoFly5SUEKBkdbWpTXBJvSdLqezBcKW7dKSYu/ZS7buMVYg+l9TJRgqjlX1x3BvL0mF8EavayAa5NJzvGXdVX0POu4DdaTqxMW9+dlbNYBUhZbWh68HRXSLqKKmoyUGDhq4nkl60lFw6jK5nA1dpQO0iclD3UENrb5w0jNXPx1o9taTfn9fIopxJMRLTSi5Jr8PdguMzPD7XhSumwibqaGycV2Ff0e4cq7j0zSEoRFFWbHdGKFYPijAGQsddZQgMZuDuOPL64wcuy0KOBS8wjp7pONDyShgOBOO7/5u52kkZZ8nd9RnpKbc0RBzT4UgYRpzRzKZStDt2ftBdg/fUvOnewFrEevYAxJ091Bo00XwcS8OGCiZgvMPbhg89EyopvblJj2ZxnkbSA8hoZtluompa6ZMXJATjJwCMyeBGHfVNA+tBClKLdpVdIG2MOsnrjizgOp4nNIUpOnJfje7LTMe/nfM66bmKCZq2uywzuZlORFFLpVJ0ChzGI7bqoaXdZ+vpxo3pdCRX+r4mKBlHhOl0xxBUeP68bLoD6vTet999G6mZmhPHww2ld6DBe/JWMa1StgthUAJKraq3sqLxFs4IwWso6Po805rB1sYUBDc2pQQvF0z0jLZiTwOtwWgarmyQmxosl8B2PGCryjnmy0bDMKfCecs8Pl10Gmxqd7WlplPXjde8J6m40ZNSo5gGGLZaKAYy8O3nhWl0eAvLVjR7SQxLhdQMoJ6IsYK0SqUiXSfX5Vr4nlZrG3iB7KR78r/RHeI87jghU2V0gfnyzDqfucwb1jQOk8f6QFpXZSZa3ckZp/udoqwAaErtD52qXdrGY1pIrhFuBg7TSE6J52XldjhekYg1RlrKbNvCMl9wfmScRoZxxInh4eHMumycn2elzTtDjhFf9DMP44hk2NaNZYmsqyZKtAa1nFWTJ3Lde+WiRSSnqCbGDaQ2LpeNXBopRmpqfc8u12ktp07Esg5rPWvW97BVoZVCyup4nxkhwrLCZS7d8UaJMK1aSu5Cf5xmweGZl8ySKik1UmqQKyVDbq6nRqj28HFOlKhJ0KkKNjUKlVwydOPpFBO1OwzVBk/nhRGFv2kFa4NGI1VdOos3jHZkHI6Ew2vNDjOWJj1A11vO88z5MhOXjBdH7pZtn/XxuS5cuakyXXu4vqcxHb7qUN26rtfEUBO3K5Qkg8aN59Jhu6id3VONPD49aZ5RiojpIXHzRTH5CogSADSZWA1vxRVd+uYC3R1eWiUb7bRLKbQM66opoKU14ho1DTgnhRuNThc512u6b089AVQfVXf8GOmQnwE0/4emC9hm1RW9oesoGpq1JAYRhTPrPin197LkoqN7n1L60aWOBdt2teMBNcettXYX69a7xNZ1KxqN3naor0+7TWxnKGoYZevz5GWeKSmTto1cNc6i1dohIkDUOYHdBDZVWrdLygYVdYrpCcXS7ZTUkWBbEyUJRq2sWdeNuG28fvUaaYVWMiZEfX2tqdQgRwzCOqycZ/WvtM6QbKNtG7FC3CJbbUgtlG1WB4ra1LF7W6FVWooYv9tm6bXgB68ZSj1Y1DUY1oUgDVD3ghwba87qopAK3mtDNq+JuESgYW2DWtQ5o9LnYe1umzHkHs+xXVZy9gzBMgTT7ZoUZkoxMUyB481EjJG6ZeqW+57EY5pQa+oThTZRlaqHaC5kdDoyZhcUo9qiuLGuW49kUXp1aYVc9R4ztmKclr5Wbb83tZGr3fIsHCzjODIdT7hyUfukpjuZHfvcd3zeeezgkeBwFmiFVJSVR1lYgHXbmZZFfS2dIzhLuaw6qcTM5aLXm7WOu7tbRUOa6jevCABdAG/UcJYhaHpAcOSYGEJgGgbNBEzqnGKsV3q4BTuOmOpwzunn6u11BVBzAlGXeWcUqjcdNail9JgknfJLadRUcVZt32o1lGo7+CE6ybeoqxTrqH33XEslLhut6nm0paT2UFltnEQaaUvEVXPcctbiva6J1C7XXEJpkLyaPJu6XlcFyWSVlUxD/8zo6wptdmJpPK8bWzXQd/Wf9fG5LlxmP8Q7RZx+8Jr9v6UnHutXyLn03VPBd+hO2TB969IL2fNl1gO073sUMduhwZ6uW4oy/Tpmb7JaSZWcr44PClHS90P6mlPfvzSadjntTRSCQUkZGsXdoVD03xWCrMo+2/d54tgjwpHO4umwV+3Qo7m+W9J/Ti9OTUf13b8wl6oGtb1wmf5cujuiQ2aAUSi0tqai0T5lffr90QKmz3v1SNyNRo0KoQXdUcUtXbs8TC9ynaW0w4/770fbYybbtcutrXu1dWhTPnUd7BZCMWdMVf8+gFpy93qs1H5NtKYWVpQeiSOizYAITtQlpZQGRrOKaslQsjYlHaJc1wRFKfy2vxelQ4xQSVmvl72Y2dI4bqnvNOh7l6xde66U0nBBO5dcExqRonsrc2UI0q/PvstqQq50CEfZg8YFhiEoiYJKqQpZGTEE51iX3oWnrI4OouJjabbjS2+amLb/INmbp/557p9ra+Ra1b9QFEKyTWFO570yVY3tB3WldSE4Va/vXLrbhHW4MOHcgDEBsAoxVQ2jrGhOnbemB4ca8I4yjJBaD0Kl57ApxOyMwxvbEQmhGo0eSakQt4SxBuss0zTpvhAlE7S+ny1NxbSmU76NQb8GrBWccbiOLBSgNb1HS9OpVZyhNWVzavDsm+u6iFDkjexAERfbtXNqM2eaUFvftTcVj9fcs9GM6b+ncjVrgyoFYypWnNLyW9PntgFjNFDWibKPnShRBAfVQauZ2lcC0hGf2rgGyup5SZ+8q743FcR53DhqE/UpGLgUPX+3bVXlRUvU9Gt04pqCw/VNUt11SYjSZI2l43lKmCiZIXVae20MYvWDQHOUqhcsGWMzHz0+4Z3BOWEYgupFXKd3O7VMSkUprlpQMqbqjqLkine161uUgo4BwWJNY8sFIwXnNEreiuhyvSgt2PR8pc4mp3YauXoVdlcD0TgH5ydyKpSScF73M7W98doTo4eFdptKMNlvSKywbRuUbuCbNcFURNTPzuhyuXS/v7qTTTDXzC+9LitIwzRDpXbTURRuaHqA5Jwxzqh7tQtYLFKEEnVfEbdIjBsu6A2pBJFOwTdqrSOdbu2cYalJiSJFadvWGIJ1NFSfYp3B2hE3VIxRXYoz6kwxjoGbm6M2ILXQ7KB7naJEkVrsdSdljDLYBq/uCcY4nHFIcNSiRqa5KOEl1sglznhGXWoHh3iNwCnoXugSC3PSQjjPG85a7g5HcI4hOE6nO2aiJmiXlVxWJCm7MxYYfFAdV6mMg6MhbLmwZWU51p4blXIjN2E8HLh/+ZLb05Hb8cgnD2fmdaWahSYRmsFmocVKjo2cwIcjuVlKVq2w262UaJ3Noot4b72SeIweztaNiBSC1C6lMEzT2H00dfJA6AnUjYfXr5UE0KfpmrSYb7GQs0pMbDgQhnusXahtIZeZuGoK9enGEZxTllrp+2pjMdOJMEm/Fwtl2Th4j/GGEAYmO+KMJxfBiUbpbNtGTAnb9KY7Hk5aiAGp5Woq3cN4sKiNk4g69uMdLYkWgdYLjTjNIev5XqARNIPzWsyN6ebCsDvw2NZz1qrrDVNgsgcAPB7XAg2hiKWJhkE6qybHYiyDG3mzWS9cBcDQ93Gax+a9yghy1p/nrWEctBQoWFW5zDPzupBL5nRz0PWFtWoVNQ14Z/sqo5K2Tb0OjaeORzjeaJIzEU210OzDtKyUyzOOSqmRvP4adYevtYGzis0WhcdKq6SmOhfvPDUrey/FyNoqMcUeEDnjfFCtDIacE6YmStuu0D2t8vGrB4ztnn5uQFykYfTQ75NYKYUg0u37EyEPV4GnFTVFbbUiVjtWY7QDrDl3jF9vZpvVGDjnzD781FKUkNCUNVey+gqaDkfmHElx0y6rG50accp6NILLmgnVOvRReqAmVGJcNRQQoKkhp2rJoGTTGZJJl6sdmpJqu+anUYvr5qrKUiw95bfWwrrMyjAUIaeIuS5itdBTKiku5LiR4sq6LLRVg+xEwA/amVvrkA6vaeNvieuqjEFjrww/I41Skn5vZ422mhGK7pxaJeXEsq6UqrBQrRVxA7mUTkSAbV1opeIwxB60OE6j6l/6P856allJceXx8fFq/KokEYXG1q0wCAiVECwpFoWsUkKKcF5WjDWMQ+Du9kihUi8KN5ambgagQXxWYDqMBKs7hTlF5iXrIdYEP3l8s7RSdHdpRWGc1giDxTrh+XLh4emJXAtucNze3VJL5pd/6QOeL5vuloaB6ThyvqQrjFNyojSlxrta2Db1DbTjpDCZ82Bbz35SgkijXqMy1mWlicF6lW0YH7DecXM86A6kZuJSGYwjSuIyL1yWlXldWbeVnDNrily2lZzOWtRr4ZHCx69eE/OR42lkHAYG7zn4AXEjKW7EuOHHjSAeJw4Rpz6mrZFbwnnfSROFw2HSXa1zOO/xPqj2iS4/qZVUwOWsuWNetYlS6DB5YOrXSSyZKlZhemmIhH5dC+L+L/L+ZUmSNNnvxH76XczMPSKzqrqr++AcgCCAoVBGRrjhAnvsscFj4AXwDPNg5DzArCiQEXJGQFzO6e6qvES4u9l3UeVC1TwLsyJqViUdLdlVlZnh4RezT1X/+r/kOBsySWogDIAlJPUwNnCAopTEdlmYY5KS77U0GJY5JY798AZLhFKKJyiHubaIBorg7/uoM6jtbk0FQWxSd/9Y19XZvDE5zxkENlO2dSEvK6mUp+7LYWK8CTVFdHK5rKz1nSL6jXcDfj8Z1CSUgp+F4gPDr/36TReuM5mV7N2d1Orje16f+5WyXuMDHNTe2fvOmIOPHz6Sst94L9eNxwHJEpfsAj2LovD18aA8RZ4Vk+JyBVFnOYkAk9Q7R3Nt1HZdQ/DnTuWexup6iRS7q5xcDpFKJq9rmL7m2P0EJd3bIWrAQ9OS+6GVRFnSad6OFHGqs50XpifOSkrkmpDqGLSIT0A5og8uLOSAS9UCconnJ6j//RypqiIkM0om8nbEdWzpZA9FoTVxY8/LQgrIUxiQfILd1kQRD5gzUZ9M0kpK5jowFAQul+3JblxqYqhDFNu2ksTDKbPB/eE3U62ZtRIFyUjZWJYl9h7VDYR7gyy8fvj43MmZVHfoV6XkyhyH776G8miNlBOXdaPWzFIXlro6e9Uy67a6FU/sXSbKdv0ICGO0YGY6PFdS5dgftONA98HlfgcRvv/uldeX1dOFS/amS4Vs7qwt4nBvLq7Vc4mCBmQNw6CWgqBQnCSSgCHCKsLrWrmuhaGDJXs+1/VlJVll7A+OW6MkNxe+roWPrxujO/TpotccxlBCxW2Rck3k7eKTbcqRWG2YCjWvXK5uICwmPMZEJZPrRs3JAzJTpm6FXF1Qfdy+koZ5JL1NtnWhFBf+ppTdU7NmllSZySgY33+48uHDKy+vV7atPrWIFqLbqb7HzSVR80JN1VmRZ/JCRI+4FCFTpAb5wSeOXPx9d+Rdn3IJiZ8zA2bX2PG6gN/ZgCdqDnBKdoifibouzicul4+4tsvCkNYhyaewWJw6f+6dLdCAUxZzQngn+/XEH889MycDN5AMQ0Nc7k2xnOQQ1WCOfmN66rlKmJ6engVKEscEldjJC8VcSJ1LouREze6ME2RZn1azRF4YtDFQnYz5VwoV5qBypyx8/OF7rh8+8HpduPfEo3XeHje+//HvWNfKUoSt3Xkcd5p2fvjwe6b6zqMsL/z89oWUhB9er/zxdx8xbeyPd2aBsmys60bN0LrDfXVf+PDhI0stlKyMr1+57Q++Pg5eX8+DUTmaYMUvru3ygSUskpiDUQepVOq6sVTHz8c0xsjUXD2nqir58KmCKk/LlnUriCVGWDmt20YWj7NPolAlDoiVWlx3pUOY1U1B11z48KFiR2d2j24B7/RygdmVmQzLQraTEOKwwsShyFQzKTmIYiZMj0pESHx4rWRVZEzedhjm1lTfvWa0Gw1FinG9vIQA80o79tDeCT/+8XfkZHFQZ47pmrPvXj+S0hWZA90HXRsSr//1JdO73/R1ET5+94HLVlmrB4Du3RuRH37/N+TsyWGtF47pdPnXyw/k3Eg6sNvOl/2GIFzqAjYc5iwrt76zLReWWin2O1aMnAwrcH39G1SVx/0rj0dDzd/bP/zwj5jtQT/uHF9ufHp7x8T48fe/Qxi+c5GMvr0hfWJjukO/4gv7nHndnJm65BK6LeWYLn51WyKjdP8UZkr8sFV+f924XFasJvZ7RUX4/vsXCkq7GXc7SMU8yPKy8uP3L4zDJ1BNodESKKJcqtP3O4qUl+dhPGdFpnf618srH14dSioUdFtQFlJ9ZcmTQ6GbsV0zLx9+RymVef+Jfu/c3t6wVfhI4sOHK7Vm6rLycr3yw3cvLNmDVZcs/JMfvudv/8nfsW4rOge3L2+M3mmz0dqMHY8bxvruqgRL0BGSOdRh39jR5VzQPhhj8ji6W6GZYb09XV80ipIlCf1ff8pYUnJosA+jH0YS5VQsSsCjY0xQHDER35lqoDGWcmR++fsj4Tgxw1oOTieKbztzNxnwIjp6BymksOeafXdChxk2q8P+anQd1OTNcesjGoxCc3iHVCapFEaf9D7ofTD2gxyWcDln7GjekMlEslCAmn2QKCWxhn9jSp5CoUlIJWQ2CKMf9NHZH49fffb/pgvX1901IqKDR/0z1+PO/fqBlhf23nn/+oXHmKx1ZasrP/6wut4gCV/2N96+vNHHZH155fZ+x2bn5zT50z+8UJdMrsL7bef48k6bg+O+k+riY44Jb29vTzjvurnDtpB49MeTVivnhGawPx6xqPewPLPsu5/6HjCfY+FmnnKaHf9jy2egIqg+6DOxt0zKjTF9QXvXI+AdpSwRJJeEprsLrCWTUokLCWby/dWZq7XvnVIziYyOHEzI0EVJMO9UKYsLNw2jbD0IFF7tbHgURym+O7QEVtz/0HBSiuujhNYnozVX4uP7wY4vy0Xh6+2LB9apsawXNwdOAnP3540HUKKK5I4ZfP70iWMoR5sc+53Pn3beYlNdN4/0GF1p9l8Y3cXK6fIacEuij0HBc86ul5VLUO4lGce7U4Rnanz9/E5d3lhq4prhsiWHUyf85e0/sR+N29cvLJeNJB57P/f/wHHf6a1R6sJ6vbAuC9vLhS8/f6LrREtmmLnWKWWXOAxPEH48dvRwMe6jn9McDHWXEvAisuVv9mP3x47+5RN1cWnGbXfG3z/853/gGIPvPi784XcXlmQ8HgfvbztfHg9uu3F0JzaM5FBYAeTV93drWdmzed5WG6gNLxbB4v36xQvFslRam5A6FKdbDxE0CTorOVeuLxe++/g9fFB+/PE7/uk//j3bnHz/8QPr5crffP/Kj3/4Du3/jKSfGPuD2Qc2lfVyoZbCEHi7P3jsD47eggnqCEleVvS4k3D3iuKLNqbCMR/0PmhHZ3T3GxyqPL68s60LS/XUc4lpZwI6gSANpZyYOoOMYtg6WYpPXYe6k45pRBOpewo6i3Zi01hyCn2jE2oCzfc9VyrM7iGMpSQsOynFJHM038nNMZhJGGL0JBw9GhgRknmStZgXKD3F/YIbX6vyuO8stTLLwEb3iRWYAo+bx7+M0dn3Qlej7JW+di4pkcUpBD2rE18ks399xxS27eKyHkmu8yOR64bllX0mvuxgbdL2v9KJ63HfGToc1svC+77z6fMbGoSE4zhIt3d/Y3Pm86cl9jkO6xz7gSqs1y+0o6M6YDa2ZWFZC3XNvL092JvHhY/u5qYp9i58DchmKpfNHd6FhCbozbu3XErQv3naNYlAqe7WLiGcPqnfDr0VnJfkThZbEYcWcCgyhZNHLjU6L8BcFCsY6XDSgAH2zhMHd0drd6ogXA+ynIxLD4LMySPgz7j1MXzRe9LWyvCuUs0ovT5ZgohrVXxEiKRbBzd43BsThxPG9OlvTOVxPzDzYqVTmYwn/fK23zy+w6CuKycBKycnwOTkkRJjTFL2CPejNYaaR8DcG2/v06eC6ZCkAXOC/eRi7TknZbtA+ITk7NBzSYnLtkTeFKRkaOtOzRfh/W13SDV5cnWkVjCHByX2Pmj7wXp1M2IMkk764bujy3Xza2ypbNeFdn9gYqQtnClIbsw859OktA3jHt35UKMuDqWpwkjR2wtM6dEoGU07tR1ebJbEbW/c7wdfv7wxzMiL8T0bjzb4+v7gfj+o9xtds2vqTIL56jDR++MWsfCZHadR63Qyxhw+HVh4zpfsuWaqCRXXGyWDmcBS4vGycW+dbVt5v2xsi0f7/PDxykcxtjXTedBb84lv8emd4gewDg3MXUgmYYBdyYsTQFycX0i1krWQKJRc3BLOQKYxD/P9zPTmQnIGy1wtsS6L+w6WgNI5Wb7yJEuVpTrBYcS9VAq5ZkRx41sxVLzx4WT0ckJ+EJ0uaEB98o2oEaRbhipMQldm4esoMaE7BJdycvSD6j9DIKk+ZUDD+TSc7hepZEzPvYDD8SllX1Kcwv46qNPPtGVdXAMqxZmOOVFSIEf+wEwbjCN8V7PHuyTOWdForbMfjcdxMHpndN+V/tqv33ThasfOMZy91kThIYw+n2m5flD5Bw5GTcQhC6eOKOXEsnr67JyT0Q9yEpYls66F45gcx6D1YOAshVScONCPFu4KnnmUstOCfagKksFS3EAUP9BQF+4uS4bsP1fV90b5jAGRwhwN00kCL1w5gZQgQiSPU6iny7vQxsGZuuzU69C5xfJVgr6slnzhPjpZhCX7tGBS3NsxZZbF3e1PNf7UGWeEUDoevGhGOuqT1ium9OHhe3MOivAsXG18S8o9jhZTqnEcfjFrOGlj3oEZQvoc+x0RSnXxsJrRD0+9LimxLTmc8T1T7O3t/UkR71M52uEMyGnk4o87Vdjb8MMrPk/DDZB7OwB/nZc1P7VnWaCG2SrAvg9G7BD8Pf/G5uvBWgVY1hQu2sbjtjOHNxYfXtfYmTqkkkUoNbG9Ok3aUsFyYc0ebWPqP7PtD3QqkgqXmUmhlbEQg+eUUZt4TJbB2J87oteXwuOYvD8Ofn5/kAReXiv3Pvz33t75+vXu9kG5OlSWMvvuvpdJYAkHFyVxTJ7dvaSgX6szSL3BEJaaQSpKZpqL389E5vtxpXx9o5TM9bLy/Wvidz+88vsfr/F9k3v/yu34zFISaxFkHBzd2XQ8lA/T2apg1LUi1b7R7U2YJFJZSHMhWWVbVzL+3shwb0TFSDodsjR3mimysdTqTu+LyyKmhewlJ3f1GIOybvQ2yYcz9uqysCyFMd2FQqai05mtqj7V+57br2dX81j8z3WPXncMyW6OPGOJ5TaAfj5IzpDcDEBKJtdMWQpZVj8PTEnz2776G9sMxmxueDDVSSJhelDDzNgCIRhzokx0JpZ1RcRNA0qtLDV5eK6NoLt7iruOoMefO/GQsqgqbT/YHw/ux47O4ZNc/ystXNelOmNrDGStjj1bfOhxIzmRABBz6O1k90QBkxQ6IQtCfSQXJzwSwBk9sC7uHVhrIWX3civFs3YAtsXp29OglhPb9rDLaa7FKsWX3cGg9QTQYBRZPKckxtRGCpKCJFiqQ4VdJxIKeDMjmzBDs5U5GXm+nO94nIF3YL50zUgsZD3oLmV/rlmENgdM38uNHvg/zhQrpxg6+d//ZQyG6Te4UBju6hGL2CJ+KIt0xuk7wyCRvNtEKdl3cZqFKn7DTDVq9R+akpvA+jLcp8KUYcmJa/V0acWwMelP5Ztb44j5RGmhjPADZ1ICnvGEYZ8CFeW/sq+yhI7msF3O9Dk4LbhOj0knd9hznznHt+RXt/hSD2ucLia2MBme3T0Iz4MKc8/M8rOE40AKy6zz5ndmaMmhg0uZY/fvdT3wjOeNC7WDGJDFQgaRuN8TbZjbAeGJCD99utH7weMx2A8v5so3WcW0/mzMfBrwQ38o5GXzay3Btq3xufnUAQT1O9OnepzQMDS57VTSzH57w/rATPlchfbdSr9dSbrzH3t73of3+ydaG4w+yTTamM7Q/Lnxz//Pf8uPv/+eP/7xd9zf30nJqKuTolS8JKTq71lJhcvrCzUV972M/UrJObSOxWNKppJSYb1sbNvKy8vC435jDt9DLksNirfvRTGfrmqGDx9fuWwb++PuEPsMwXY4U0hrvH5Yn0LlbUn04d6W4KbQSEKyM3t7T8/J9eWy8nq9EHFejriIew/6fnIj5SsSGq8qW6AXxiAAEzNa80ZjArkWcnGrpsvl4qSV0EP21hjEeYqyXpyBvdSFl7WSmMx+0NvhQZsIL5eV90cjMdki9LQNsKGMvYXJwM7luyu1eTTNr/36TRcuU19MmxraJxpYcjpFuomA4YKqbCOYRyGOE3k6VaeAu1KRp5pfp5EiMgPJuGWmY+Q5JaR4OyP4IYGE7yD5OeWJZWfxBSZMTCGYT3suLMx+kJufnafDxVmIbPreoyR3uz+jHGQ4Zp8l7HsshJw2yBRnv6k4VsDpXeh7LBOHf0T9ta7i9FxMkAlpOiMwRxSKhCbLpof0CZk5k0t7MIzhwm8LF4fQkKhNF2Um392lmZ7JuYuKPz5AMsR6TFlGovjkov74IhLvU3w+BjpcYJsJRteI4mNGwR3X/XMOCBOPpp/kYJAZjoQ5by6Xb5+Ts1Udp8/ih52zvJygonL6X54Fz6NkiM/e1AsE2RUbV1mf12GW0xvSC/Mc/v0uw5JnQu6chJehWz6p+XtoMVGd/pwEeUZjjyIpe8Nm/pgePaLBbvVJjXCieHsbHu+TFvIaAmdLz8m+yHxe4xJNSZIE6dvrmcNh7AQkC4h7OlVf0uI+n+LMR2e2evyFrCuAe28iT5/I3o0sbq319rXzeBwcR2cpTrqY09iH8qevHgT7UMNm94YwC5JOmyO4vFxZ8sFSN2fwSkGn8tgfPN5vPO4P3t9uICHaN+Hl4lO0agONQjQnJsb9ntCwKxJJLl7uSknC+jjc9+9wXeAcg6O1J8NPdZLrxhxwoOjMjNGZczqzdbo1W8oeITMPJ38QJIweVasPT2i+3R9PQ+taB9slTA+mJzVg7qxhOYXNnDJm92tDo2iL23cNi2nJ/H5ro9NVvxFB4vV04EjiE9c016ie4vNlwQIu9JvIbyQVuO0P7rvv+MvVd+yne8+v+fpNF67zhvJOMExOLRw1xNXeOYUJqyk5DCEtZomny0K4jJ9U0CTnAegQjOQKktFwVj+tiyS5hW0Sc/GgJMgZozxthNzFI/sY7s/WC4x5Ro0XuexU1NhpuVjT/10cMPeJKXlswzn9J53xvDMnVVZxZ5AcWUWQgl0UP7MEXGOxImCQiWBBKpxdVvizOUQXb7J58rIXYncB0CgUZ1Gw+H7/+w6h5ezYuIk7SseJTJbszQZOANBwOUgCkurzPXSHkoA7I3co4dtsZ9NlRCp99meBldgDnBfIZGLJO0MoMN0fUDX2D5Ioxc57jYw939ssha7DD10gFXlSoQmHAcAdNsQ/+zk6kk63d6FWfx5m5oLZgH6KxxP474tiz2sy3lbhOfV5WKNPvIrF+yBkyc/P4CzCpEyyYNfFTkaya4FKSuEMM2lN4dQc5uTTm3lD5Vluk9MATMzJN6QCtgRN3Cc8P7xiIozP3UNJHWKqTlX16xovXDkCIhOTnJy2beoEiDP08jiUx3142ONFwsVBsJK4jwGPnVRKULBP5CH7FK3uXDMWZW7GsrsMQKfSjoPb7cbt/c6Xr7doFL0ol+yZ9zo7TOU4XEIzg0o+g1FYssOCfbpd2O3+cLLU7MzZ6b3zuO+uJ4z7reL6yNk7PcwRdDps2frELJiQJHofvvtNjhQcza+zo3Uex8H7LQqXGSUVcnKbpzEGWR1ZsbBmcyeWybDh11ycewQ7tfWTCm8oSms+CTqS4OkNcyojFz8vBMTcTMGlMBmF2MxHLxXDgSXYe+do3XeCgbn/1RauXHy3cWhn2RJkoXdlua4YiT7wZFQzZE5KBD5Odez4xGE9XiI0VoVwTvAlyLTsoZGAdrwrT4lJOLPjOp5CJP6mCjn70noquQiSvPA5XuUFYDIhrShRGIZj4c7BWFyrhMd7LMldHVJeqFIcjjIlJyWJF9CJ71ZMXZvhiVWBK8zsxVVApOAbJ9eQLBIMobzEAejEhXpazZA4zHxKCjjVjwdf7Nopaswg1Ji9pod7WhR5WdDslHkBlrq52p+E5XM/ohjF92RTkLWER5v5oY+/7ukZzCRmdPeLu6ScE905LZEgYkN0urdhMkFG4K8JZBipJodqEQi7nBz7UCgxcSfXv2XfNbpztxNU6A2yH7RqGU0ePDpbpi5AdKM5eefsU4X/bMyLiC/FDZI661NxDQ4QI2jog8JOy5xxaoHY5nLCm0KqESqaMzVgo2eDF24PCZjFEQS3XaqoxHSn4rqwlFHLEYXi70vJ57tTmOYHMFOR5bQhEhabSJgjTwOS34tnhIoEx8hfmxNcshTWi7BdVmrdmH13WUaFXEPoKsLvP25I9hTdhrIuK9dl4YfL5rvkKDa9+wQnyYk2znATHq3BfnBG5xyt+c6sd5JN12KVxP2x0/ug7hm7+KQxdLKrT3/aJzYn1+vVY0zMaD2Fk0WKBsBND2633aH55MJdHs0bXvEdrcRk3G161MxQ3z2vm+fcHZ0xCu3o3NI7uRYe+4P7487nL++0x43btrLf7nz6y2eXpajyw9WNwDHjoc76HHM6nFoXbyRN3PA3JWpJEXHiye1fv9xCwK+8z0kb3lgsy8J4vVJDxCzSXC8qmdR3Tw1IZ/BsihPEUYSm7lV40R8YmrHx68/+33ThKpKcAbZWavU78jFjuRU7rWSFM6sp10gJxTt3nU64uKwVNadY55w4jljGhmCPmOB6dyNbS4pk3zdhnh/kXTugg0KKCOxJwn3BPL3jzLXyduQ8nNw9ej7H7lzchfzs0BVnY0lV1x8FPbdIcYeEJMzpxWsCotVhyOiqumlMLUKpeDtk+fmaHfgTFokDXIwUu7gkkNShBJehVH87xHdSfZ7ehEKpiphQNdN14Ce6k1aKt2WYOeRZzl2i+Y6paeMgxV7KyCS6Rey5emYYAqLZYZvwbUsSdFvg0dz4OCehZsPGSRhQGvosNpqrG4v2QdGM5IDdNMXO8Nwv+gJ7kQrJnkSJlCJ3zGBKYhJiYB0x6bl2hfCzO0dkJTQtdSEn97qsuUQwn7/X87QYUg2DW79CziwkL1bOqrSAnnWek7xRDC+C+ERJ+EJKMFclpmc5iyBGWux5rcR6zK+VQryzDsv3rucF8Q1mSpAtsuMEbCSmeo4aKSPVjYVd2Dt8xyuJZV28+iaH2S/bCy+XC9frqyfE4jDU3+Q/8vryzuP+4OXFHdole+FctwtrLbwuEXky1bPLLm5UrdNYLxdKTH02kwuLze+fj1clW8aGYdq9uZRIASc5mQSLQNpElcQowmQwpdOmPWnm67pQUqbmzLZdMBv0OtwnsHvSb8qZWpZYBWQua32a0dY5YFZG8c+/1oWsFu9tCX9EYdsuLCWz1UomsxVhXZx4stVL7LEmSy1hlQYyBzUNxpyerJDDGk3qU+tWagmbNU/D1qmeI6eDlIUt3sNl3bhcr97AqSdWP7MEZyRQLEYtwbIOclIfSjsGj9uBvd+hH9B/feX6TReuJL5rWqtQi3etLTpHgg2WkoRnoBcIiQm5lMIg8PbwDRMcZppPS3+LrtBl9CdtG/yxTzjSg+Bw4kd4yZ2+hTN5AXIXiaDFn3BlHDDnQhX1fZuFoj42qk/PP0sa+wC8UD47GiBmIbfcTdHleKc6JCYvO5vdc2MRb8Yv3k8QBifZIqCzyK46A+/OrlkkMTX8Bf0pPeHJmU63AYtn549p4uw3X76DzHDfVguCiosja06YOrHlJK0Qz8/d7U/3aQ2hst8gLuIUVPx9RUN0ShQtm74PiwNHp3sBWvYCbjP2TbGHFJw8wvNzI16vX0sasEd4EjxJMicX2T1qowkRYnfkOzbitf3SfeQElIUQnPLLj8gf8zQ5jf94fn7nNJbsFG47oeYsWs9I2vMf/rbHZxOH3HNK9kDDHEGkil/7vuezYKL655lUnvCPRJPncFHsNgNa1oB5c0qUZfH3I7ncYF1WlmV1lmqpxF3MWq6OPAjUxbWGOTlbcbtsrLWw1uTTzDRMhrNyiwtuL9cLSXwi7Grk866RRFk3dEz2+oj1gT9XHRoUcSfw5IDikxlYYpTBHI46nIzYnBxirLWyritCZSkdUWUXTzaQlNiW5dm41ojaQYQyC6ZONBs6wlLKGEFbTwlPDI/Mq5I9IblmWGph21Y+XF5QNfbcWRZ5Fq6smSzZLZ+yxWtL5Lx4mG52T9PiNjOYZbY+6LjRs//clZIrddlYtws5eSNicX+pehCnw8s5TIjTt8vNfCc8+wAdfp2nb9fuf+vXb7pwqSilJqpkcvVuNYtATlhydk4plTkEGD4G4wtw/2vRqRKZN+au0/eHxx24HiQ6zxy6GdMgJIRAGDzdkzhDLJHFXeZPtlAKzc9SBI2CMqOYnO7n5zLdF+xOukich5E+owH8AknPi8IjP3yvdx5nyZdX3kWLUC09i4jGTk6I169+U+mTpHJi7OfB69Rz4xcHqPs4IaU8xYyYN6xJkruKi3su6vw2tabkuxonmfh7r+Z+fH10qH7IihQul5VSPdRODSTFns9V2e70P6YzCuOw9/fDYc2pylKqfz44ln9ajkoc7JJ8kjGVIL+ES7t6EXIXdvfB9HJqITg1lpR8T5MzKhqPE8M5QjmbkZPiFxCdgP+L+uftoX0+6Zw+dRbfkOSE876534Nfi2Gp4QGO+H4TwosSiQYqYJsk39IMoumymK58P5XjfSe0TCnMjX03dfppjjb8Beb0TOnFDDsTaMD98pIxzSHlANNBCmVZ3eosC3ld/XWKUBectVazX9819lhmvGwrozWOowE9GKCTpVQXCK+L20GtFRnmMCbJ7x9JfPjulRRyh9vjgBkSi5L9s5uDWy1IwKOIOIQlkLJDY8vivoVGol9HxNI4WacfnX54MOKyrCzrynbdWJI4YUSMUuIeTvB6efW92Jhhgl2eO62S+7NwSfYC2sxfcwrSRi6FNRVHiUanAMtS+PjdCz/+/o/ohPvbzaH0aKIMo6/O1k0nciFuU3UcnoCQS6VUX5cIUWDMyW/LVtwlaNnIeWXbVr8memN29zFVVZbrRlejHrBUJwjFxpWaXPsFg7wJopVLv/zqs/83Xbh+//KB67aSUoWl8hiDP33+E5h3FpKMlpTjaDzu7yyCj9TrymupHNFBvpQSBryTvU236lGfXUop1C2z5EpZS7CAgp7rpChmH34ohS2KKU9fFl9Uu0tGex4WvucKs5hzkEBOPxcIWyXxC0/V2UpdeWAUOS1WMipGUAPoFgeGCdb1FzsEp58L3nEKfuiYOJ4eAwHq6ZvuQRhyAafEFrd3scmGMsSZQlZWchoQzDpLHi6nPfEYzZ/DmKTFGXHJ/H3MJZhmuH3WMGWSqJaeU5toceJBcrNYYheEOB0+x3TqNPbsryylZ3EwoFvEncs3X7kxJnlx9uSz2AsQejoXc5/TVbC54hBzGr8nQHfLeN84UQ1SQZ9YCrkF4iCbnuzKs/CH2DXsg6Z9I5GIxH8HQqBizwW6qX2LlIgqLTGpqpwTdOzrpn9/wWMxUhJsGjoDrozd2BkGOJuRshMfimd1ICqUgefE4QzTUpYnq8/EKNU1YqQc9kM+IcwUDDZVRmtoSlhZWC4X5miM2Zj3nYn7BV7TAuWFvL1QXlZsf4PRHAW5XJjaaf2gW6fWwiILub6wXL5jWZbw/hRmVnoZmKyh31SKwmXZwtl/dWGuOZKwXgtdYGk7eXGCVk6Zy/bqVPEsLPbNrPboSi2FmhakFNa1OnfVEsOUbIF7BHNvjESdk1aELErNwne/+6MnlY8BY6CjoXN4AngWX7Kn4ikQJiyvQlf3F80pYaO7iNsS+XKlzc5MQp2TXqpHp4zB43EDHYgFwxAn9wwb/jxTolIYTwcWX304hX/wfhw8joM+Dq6a2K6vFDldQKZ/NmOnDM/pyusCecXmIE8JTm9oaQnChgrWEu3REYP9+CuFCr9//cB1u6Ik5lIZx0Ef0Z3Ac5Lxozq22dF1llLCtT00EUFgcHfr6EQhdg2+oCWmophlsNC7jD5IkqiJMNuU5/4h2kpOaE75xfdzqunPr5OxKLGDCFgofsnJ2iNgGr79maqDjnr+ecCIROcpQTxIMSZK4PwnHd5BS3/KKaeATfznzHnqrk4NHP4ak09WYj4FEU7zDoF6kXHkKAStEoccCY2uXsHZhpKfUCWclPATFtMnTOi/6QUE0lPX5KbKcDoPKCdFPKLLT9wOeX4mzyJ5vp5zwfOLv3M+5gnbebk989++fcT2X31fPNPksKmc7268BqfBx19UcZEpxJ/77srCuE6CXEEw3jwsMuBhIYq1/4QkhiUlBUSXgi37bF7g6XF4Vj+fmpztmQjoMn6Ok1KCSUlcfxpH0Ql1nu+K+LvlLEaJf/IU2DtDdHFHEAVrA2W6JrIX34tJJZcLJjuWLN7n/CywmUzOK7ksSKqIFJxm7zO3GgzP83nqzqYKM557LoK4maVPsgEFnjDns3vIHmOUc8LaQWuNPgZ7mz6dhoaqmke1JIFSFzebVaXPHvtxvw9SwIGSHAlKkigStHp1avscE0meWn7mm51nhmeJ+Z54Hx0bbiBs+GNK9vveGXveyKp5cbGg7p/mBimdzWH2RpsT+nYkR/Xb55pSisnU0QOdiuYTjrdnA+7RUOIEDiXOA3leYym5aNrE9YjvtwZq3G47v/brN124fvzh97xcP3Brg7FkWrrReqckX1zmlHzcrwW5XMjTLZgIBXgeA1XXfaTsY3RKg5LT8xCfRiTqGoxJLSUOy9P6f7If3TOYVqGujhtDwFY4ldskx7P+dmCcgZfnVwo4TXICnJl1FizPmapPuO2kwEtQ7eecoVTynR7pFwUPf9yaEqmm534n5j0wh6tOjbAQLDbJIAVlhjtN7MXktHlKjg+aFy/JNaCtQcrF/1722HYlbshcmZYwTUGRn74LyZVvteDcn5wDR5T3E6oFf+wU8e/Jl+rfVmr+uk0j9PM8qON7CIiLeE7EFHNCdedzcIw3+3NwTYD/L/Zw5w7yWxXJ8fNP49X8/B5HS6MxmfhnaSATdDjUdE5qkiSkEEH7Fy+WKXZPxGQkoQqX53MD1J5JtWm6j5xkcTKIv0jfdYgzajEvfu6y4AdhTsUlJVkgwje9vsX0S1w/qkz1PaI3UuaL/Zhu1fD3BCKSZzxNblUH2MByYhSlRYZYThck35ylySniBcz3Out6Yd02SOlZFBFjqjvWjGGQvW1J4tPnnBakhMo8GjYmJuo+fzMgZ1VSNjSDys7FQHNi3m68vb+zt87eB+uyeYRILW58EI3w6+tHbxJQNxYIezdT9SZUvLE8joOcKwmH2PbHweOxM8dgu6TQAipq3iT0NjwlIMToqkZvDR0DJFOKPH0B931H8IgmicDcUxsnSyEXYY1EiyTZd1bF9Z9ig6UW/7jnZIkpysi+izNhjkEpSzQ4EX37i6bwOA7U8rMZPweHnByaleQpyH/5vKO9s7/ffvXZ/5suXIlC3+98ffvMsm7Ifji0od4BWocf//CDL9/Hzg/L4l5iwWaa9502jCKFHpTVy2XlcvmBKlAF3o7OY+88jsG+37GlUnJGRVwRPgatDWrKFIMF4X3vjIerystFnu7PmhJm/QR1Qt3vHS/WvXBJQnLEY6oy+86SE6UUFhU0eyy4lo7mBcVj4PuEMb6xgFy4miipMmd3y6K8YD12WCI8jhtZ1RfWS0a6YHi8d60Ol5RlDairgXaWDNMKk0yeldkfmDpcqKmDJapWSoU0BmLD2YgBvaENzcUPnqH0Nt1VYZqHV2Kgwn7vDp+ospXqsFkU8f54+EGDIFOcgGHKcXs8s46mKkqJTrH53g8AQ3vExNt0JwXc9w0Sc3YS5lE2ZfHufcLxuHkqb/UkYSKChrkjyaGzMR0OIUggeXiRdNhOmOLg5iJhDxYEmOO4e2E8LcCM0POc2y9zaUNAm9CRMJm05HopxWMp1pN+YC7Y1uYM23PvN6YFO1CfcpIxOmYFzYLOxuZ+XYzunXgfnft+d/uk0C/mWjBT0hh4BmEiKpTvPnRGkT+n7cR+vyEhjM25gsby/lD63Wib0rbB8u5SipwSX7585fZ2p90aWgava6bUlXEM9tnQRbFLYmpzUtWY4ReoJFNmn+y39my60hzexNVCuz94f3vn/XYnSacsC2XZYEwet7vLYsbO0adbiA1l0pwRd1fk9h5oTubL24OP14XLUshJ6L0x5qTp5Ovta4Sv+uapVPf4HLc3bvuN/WjeA42BqGcGllqZKvTDGHrn9bry4RqROs7UQFLx3S/eoB29eX5d9uthzEHvbq00U2akxJZjghJCJB9Iik1qicnKDMthaBCw4lRFhu9RTTumHR0PL2Bm9NnDHaUw6TDc/SfhyNT9/YC0wAr3P31mjMbe/konrv/vT3+hJDf/LPnOo3dXoHchm1Ky8f7+HhqaDr09WTyI8fX9Rh+DbsreugMOWZxa7/hIGGdCUYE+nlCLSXoKZHNYE01VHvvhSv/W6H0gqZFKQZJB9gNe8MhyPSmOZh4nL8EHrJGZBYCE0aovdFFBs7tbzxy7EHMPvjkdQpAnQw8sRYcbP1NKpRRnQbU2KGZoElartO5dcesPaoWyTHe30IACAwqZyc8cKfWbIHYM+nOGq1yvi+/NxuRozfcixpOlKCfENxOmbrQ70jldhIvCiIBHZ4IHfIULNee3NF6J6eqxH+Qyfdo7py7wPVOQFzSgxzPw0sSCMOOJx3MGHX5O+vTij4WhbEzgPlCHWHj2MyyASXIGIZFY3WdMvudO0c/2GexT1N0RHkdzSyETugHi0+i2LU6kOXsbTqjRr0GRb2xZU5+0hwUkjMReASBc/i10YmanHt3f23CG8anVi5uqoYJ3ytl8Ug7pQxI3SRYFEYXZIvE2hcN5wNXGN9H0VHQ237vowJbCCeiPaXz99DP9cePt57+wHbvbVaWEHne/l0b3IjrVvQDjMccYHIfbXn0jCX1LVj5ZbDHSksNUwFMlWoQletyHjsSkYRLidpQq4QRBZGgR7LgZ4bCWSLE/Kky0Z0qWSFdQesSDDPVNtNoMJm7YRs2B2SSXymkdpjoZA1QTU2FMY9/Niz5OuHg2tjp9z61KKqsLjxG0NUbYSZk4VDvm5Dg0pmufDr1t9RiWLPrtMb/5CgQ5KWE5ZBrK04cxyzfgoZQcJDXPfTuNdp1RGN6eyUiLS2rmqVX8FV+/6cL1//77/0ytBeJQOeagedtL1kyt8OnLp0CClE+nSBeniR/dSRi346CFy/hlC9ue7B2yng4CFcdpn8tpJ1KIuLaklMI0eH8c3Pad3nsUjOaBkVnIwfRxSMzJDFhcgNNPEglM+4SVUvakY+9qpkNsQXPu8xs0aHYWUsWYriES/CaYLgg+tFMWpc5CSZnWJxOjJqHiGPVxdO6PB6XAshkbmTWtXnAknmsWNHnMiEVf1aexzwH4BfuhvLrNjDUerTG7X+jqGwdIQsqVKmvciMrpqWjRBPQ+GTqiAPjhn0VpbaAzwuieZArjfjTyUFKeoVU5d4jnjskht3PZ7u/X9GImiZL9MDSdNO3Y3oPe695sSQ0Z/gp+OWEk9YpsiShcXhSazucOIuVzxeoHdcpOzjhaZ2/Dk7l7pEwnh3FyLRHcGQVATrEy4YHnUHTi255tTHc2MXFizbmLaMN76+feyZ86FgXCoT53P2jTJcMSDFA3OlaOvTnD03h6T54EllxdJnHG1ENoe1JCpx9+OgY2DpgdlYWSKlihD+XzT3/msw7mHFxToiafBq/nbqYkFtw0ekz3zzT83+fhO+iTKSdBwFBTxtDQaRmnYbKncg8yPZi/EeFiHZkG4tdAwpAlgh1PRmvAxvOEXE0QXOD+sMHsZzk+999euJ4T6JPs4cV2hrD/NMK2+LwcTlXUXC91HIPZAIxtq9RafMLRzsk8LXUj5yiQrfnkOweUQCDaYAzvVnzPOlBNAeeBjUaQlZ3Nq9HdhCtQstj3i3gDqx7YenIC6uI2bQl3EknpZDqby0ximKiXC3PU/2pN8t/69ZsuXH//5QslO9wypl/UfQw3GRdBZGdZe2DPDu5M9c7zicOK0IkOzGB2470fDq1Mj0e3uLFJCZ2hqRJjvWys28LrhwsLhdYGt/1wjNESSMekOGTlxFUm07vB8yOV5NT4TFghnbTqhAVtfJ6dtol7is2J6SCFC4Y/WsF5vD6JaHLqsjIxdcyboeQxHPLJBbRRUw4bqQW7fk+6wOXjESLmyigLlA+UZJQ0Gebwh+uiCjktpAL5WsizgwlJE5/2B/SEspEuK7veOPqd2/3dJ4qUKcukhGVMEkWOFhMQbs5pflOLmruAiwunTbuH+40Rjgy+pO/icSASwUkSxe7sUP1tNEaQCMxwwSr4c8qCmGJz0o/IekuFXJfQzhTPRoq/77dk9wgLdReOY8y4OicL3qXnlBxaw412hzo9WGpF6guvHz96hMuhUGJSUUHnA8vO9JTs15QCiYHJmRAsz2LveGeJfUYBFYYOpikjnGFOsoXgu7/jGKToqP16nD5FSKLUxGDB+6vBmEfsMpVS1jiwjLY3ZA5EXHsnzxDF7E2W4MXbIqB0dKQrmg7/w6Ec0em3djDXzUW1aWW7vvLD737P999/xOwrda1Y8YNas8sTbrcb/XiwrSsfP35kaNiYWQQsBuHAyRvuJamjke3gOBrvtwdt7DHVJy6Xq0/0gOpGOw4QWLbNs7R8eRMpCy50NlNsVLokmIMU00vryqFOc++988P3O5fNyDkzhtGa78mX1YvFNLehbrsbfM/htmY1FygZ651hEz2Ex+Gu7HMOem8skrlsnpk21Ohj0o4WcogjnEwAc4bqul7oPVKMc+IR/D+zyWPvDHWkZmHyw+9/x0tKLDrYKSBuikAyclZKMSQXxnRhdlejmdJRCrAfjetQXuqVy3WlzfkkUP2ar9904RrTGYBEQVI9KebBpzsZeRBTTiw5OXcF/jXVu6Nf6qZU/YLUuOJNfMSWMDOQlLhcVy4vF14+vKC7ki1RTVhDjDdGQ0+XDCQEvCFGFD9oTqKbhMj1ZMw9jVp/MdmBM5EInzk1C10apOSdkUMJZzeNH0SoL91rJpWFXGpY+UC25AfyslKWV5Z14+W6MebCnIQP2ws1K0WUMRpLwGWW3aEiRRdrp9B1GnP/ynF7Z+/v7MfdYRFT1nWLiAafGrq1WOIqao0zUXYGgUIwyklECeJCTglLBQ0yg8NcGWML/Q/P6dNXY0FMgCdEa0HykG/CFp6u7iRSCWutk+Elfi3MyJ+CuPbU33MSWJ+kWp4sxSxBkkiZnOUblJaTpynXjXW5sl1+74QICut2pfXJ/fHg89//b/55Jm+eJIgfCaFosCGTw5Mn884IR3nHkgB9MhPtG20S7Nu/+OEY71FkqUlICPqxxw7FnUbSuSPJw53nU6aJfpv2p+9cEHEfSstMfDpm9uje/dOcw/VQE2W9rCzLxvbyEgXfP6/jeHB7f3P4qe7k0V0Qm4VSF39d04L2H/FBkeogczqSwXnPZpZTHiD1uYvr3c2dc3KdVBIi9cF9M33SiuDIGa4p4PZeOAwmCNtS2arrq3rb6dP/LItgOfkeUWfsM8+tm3dQY8wwupWYgNwJZ/RByZV1K3y4XujHCa0PJNCSkkpwsU4Lu8JMnh03A704kZBaS5yQfgrm7BOX6xIjyWAMdE7PQUuJJYXpbzjeL08CVHZmqPml5qkJfs9otEfeYdhzF/Y4Olqc2NL24///w/5/9/WbLlzqJ5S/qXYastrzAHLz1TOLSp+Hkyvn4Xn3nk4I8GSj+cgePyPo3Wa4311QhZd1ZV1X6rLQWkey5z6tm/uV5VFcuBnREPGjvv0cnL33dC04DYGjm8ccDjmnBf99x7kxex6+59sQWw1Ohl08YSBEl7kguTxZURkh4wSOUhfWy4Xrywd+/OF7hm604RdaThtLVopMWm+0oBhbFpbiTt6iCnHYMyaHDWZ0e/0pIs4sy4tn/Vhg6SN2fnZCI8EazOd7ERT+YNPl8EUzTb9gaoZVD4vrqdSwU0X6vzuw7WRcntdAys8GJwVZwvAE3ZP1eSa5nrqUb3Jnf2yJ68PPo5NiHTKLXJ7U6vDzBctB9KjUbePjx1fqslLyxuX6kf3olPc39q9/duKLgEqOaSlstcKX0U4RvanvREy/pSOc4ogT5o1nHStev+ZFAhIKmNMMCbNhM/OJ9KSPT7+HNFzHJfnOUSR0YqrY4Fm4LBKCnTiCT8HmHqFZUjSbLnLNtbJuG9t2ZVF/fB0DnY1HRJAsWyeV8ixctZ4m0xaEo+xEnaHMNqC7dVuKzzAXcYalJCiCDr+n51Bq9fsjlxqTfVxyUUSI5zw4NZGEI8cMCYZPReuyoEmYvfufqYfGnrIDi11v0AzP7tInN+9gw2AgI/j9oWLklCNPzOjN0aWEhfO+P5fTR6ekyiAE8pJQLK7LxFrDSBsByyB+za7hwdqbMcfwHXt2942lumG3H6/ntRUkEdwjVE18lYFLXizOr3PSPc+ko3c4Fsbo9L9WHRdGZAdpHOR+a35zea6UtEC4JDtBwQ+jWl39nRLUkumqsecoHOGKDDwvMp+QXKd1TiiJFe2Z/b0xj46a76S2/IKtV8wmkjZut6+01jCt2NwRUVJJDDOHFMno2MOJIUEujvH7q6EUP7hnSqzlGvqMRk6FYRbRWILOIyBEib1NJqXK7Hcf6ZOgycP1at0Qdl6Xja2usC1ctheWumE2eb1WJC/MnBm3RJZBls60K/cpNBWgklMjMyk2uIUuLuGBkVN9T5K2C9vllRL2XNhkzMH9eNDvD+Zo6DOlOMJj0oKqL+SXWgj7Eo91YTjcaqcFVwm4kCelvPXmxU0VdeawnxUiSFr9YNTu0gdxyDazoGP3olP9c3jaYlnzyamUgOn81pnN8NxSt8qq2xrP6+CyFvKyODQr5nHqBjm5UFRE0G483h8caQe+8PPnn3ytMIyPP3wHUcibOOzmU8Q7L+FSosmhqanh6LD5Dk7xvKUe9OY1Z9eLmV8rR9vJ2SPij+GQZhKh9cN3nlkYGIQgeqqx1BOxcKZs7x16p0hBRN3oGY+tcQ1geH5KdZMAUUpJFFlJdWEWJ/2UKvzww+/ZrlfWy5U/XK7MMXg8HrSvX2l9cHvfeX+/s24rtRQyA8oS2iTh44cPVCmkVJGm2BB0uh8p0cROqif8JH/dWTeyDsT22FouJKp7XJ6SFo+WdCi1Z9LwRkHcyRqGoUPoR6aviZEAK4gupOgjS65uSy2GjQUdC5pXZkuIueHt7JlpwdhMhZozMwloY7bEOGAeRhGXAkgajFP8T2QN6hKPt4HeHLbVwiJnYGRhXdanRkzVC07JwrokavEpuLfG42hxfhnr4td8LgvL9cVvNVOqgGhMuad2LxUnH82MhhRhmq9ydDhUU/uBzRFoxa/7+m0XLuBkLz2HJ2JKsoB1iDwcc/aQ29s4tupsQL/w+4jOLwUj7dyBqGPM3jGdUKLvSB6PndYOZwMNdRp7Wf1AKBWRytFdYNiOA2ECPaAXQ8WL1jnlKQPUu0N3VLBvuhARNBkWOz0xYQylh2NBTYtPl94EkYiDPhewGnDEwJKy7zvHcZA4OOTmkQiXDywXt635coHMn5C8IcsVZiVLJ8tBb5PDKoMCeaWknWQd6QeP7mGK2hv397+n7TfasbMPnsLHJDPIJs4Qy5Kee710wnjihJgzHmNO92jElDEbgkNOOpU23VpIKEw9ni4gfU4vEIhPLBrkBHEjXzVnJg4b4f4vtL6j8/DJQEBiF5jL4tOW8WTbuRWhf1ZmJ378LeoGy56GnJyIUSVhAROjQBjj0ht18dSC3hozryeOikSQoxsDr26hY+aFZw43+60LpsEyHRFYmTyfzCdE3zc5USj2uvi0el7L7taQY8RwwothyEkYOMXtwxEF1yD59WkGo/endku6T2eKJzAMqQ5zSnYI2WJjuyws2wvLuvDx+1deLhXJiWnGn376mX4cHPuO9IPe3YXj48cUSIVDWuDkghyWVj79up5MUiLH9OyflbnjjQmWFI0/TymFv6CLjlPJJCn05mGhtVROj86SsgtwJZxGpiLU8PJL356XuasIVPo0h+fMEFHqUiLTjGcoJYIXXE1wQuECtSReLys9GucxJiUSCoTihJtzd5GEda0saw1tl59rCD5liUOppRTi0/UJa2isJUBnfN9ldfbsbLgXqCAlU5dCrSVY2o7ynAhRTpl1WdinU+unzSCiELl+/pphYLn8Aqr+dV+/6cL1jA7nG7T3PETiUDn3F06WcEjHYT/X4jwhRWaweZz9dibunrEQGtTNSUAjsfidI+A8FXJxPy4T97/zBe6MJW53l4No4EX5lllj9gtGIKRUGGJBJR2Ihp9dOt3hzZ+vSpBNfN8k5rsvNExiZaLZIRcxV9Sn5B5kZkZK3dNsU6ZopnW/sPe7kW0jlY20XEnpSpZOotG7hd1RRspKSQfJJjKm2zdN1/G01mlt0Fqnj3PPYED/xpwyo+bFocLQ3bjxqvkbFJ+h2+Wen1uY1SqRjXRmWI3wdCSYn/qEyBzGO/0rLAqlPsWwZ+qrdrfgMVO/rlTwPuZ0eRckCBKnP6KQ/P1Xz/zK3Xc4Oo1uimV3bM9nCKSZawlOhXsUYCMo6+q0+HiBnt00XYLgpUhJ1l2vF5lbElDxnMIYfv2dF5p7EqbwDoyJy3yqVfPnqbFLPNGd8/WUeH0SxdbCzeX8XIJP5nKNELVjJw0+rmlRJDK44PzZPlenQC62y/V58Pc2OB477TjoR2MR6Ood+xkP5Ay/7Dliktz78HkWnE4x532q4UGZSOoBiAm+OYIkf6ylSGijhJqzay+n+uSjXmyzBKnGdeneXBR3jUgnQmKGBOVeSmapxb0+w8uyJNw6CQ9yzIGO5HiObkjsusQCWC3hr4ibd0s85/h1ziwSsGGJyTmdFml2muq6U4akBHGfkE6fgtMhJrZfp5uI8fTgzFJ+kQ5/XruuD3Temtt/yXQLKz+XwhsVwk7LPyuXhdj/odr1my5cS1nCdNUiZ0tdNZ4SORfqskLe8LtuxuHnx05K3k2VuvD68gHeP9N652iN1pwmb3pauM5nUZwIs0zPDQqrB0Mp4ruMIoU5G0FKQlvH+uGMwZyxnDmNL/2g8O51jAFnt4Yw4pCb44EFZfckmjx3YuIZRBYH0bn3cmJJh+g8JXD6nCvLdDzcp0gnM+YElME4PvuNJ8qH63eUciOVL+T1Dx7EyAS5coydMSc5VzSpi6PrlcQeNO5X6rpSlnfS7Z3+/hd0+GHrA1AcetrZxxGF7BvsgRi5Tn+MWtEntHaG/K0OAeHFVBWm2nPiSSKYNEwyM6jhZ2Og01+HjsEcLZaDvltggupZIAHtyPSFdN0uZKlARWfzuiPJ7ax0orMz2jttP0KjJsy6shbYLLkLvrqP5MKCqDx3kj2+JwX1uSv06QfHbC4EPtqnJ6U4yXTBe07UdZBkiT1dZQ6Ys2PW6LgDOWfA5XSmZJ8z7hlljsGcR2R4BY094UbIaBRcwcmSIWxWKGvlTJGmQutOvplSnuiGGy4TxAfiXpGAMhpmTgJo9wf58oKRaLt6srUlclk9Uv6xo0fDysbMvnu5bFdqXWPnKVwvlbVUkgjXunI2BTYn13Vjqe6zeGaFuT7QC15NOZKT/f7aaqbga4hNCM9Iv15rqnHaG8zBmhJ5rSCVWlJkYHlxomTS5nuwORXGYFVlxagizFQY5lrHbIOaN9wSTZ0NOZU1CGHF4vX0aFLFGxlvyNRDHc33Xp4z6G2OuN+WWzedptOxBklS/Prwk+pJbhP1hq6NxhzNE9FzQlhZMlgb2OjIaIzjRq6VWkBtpbfGcb97jticTHMrqVwSdSlsi5/HPpX/le64/sU//e/YLq8sFIYM+uzc3t4oH76nbi9c1g9cf/xH1JxYmGzr4rqWObjvP/HzT3/meDxIpXC5bqF0V47HDcmJvCxctg3nGww+/+UvMGNmKyUCJ/GFpLo55eiN/WjhzBDRJqP7gZ29S5L4NQ3XMpWFy+sLSSMBuS5o7+jozFEo2ZmAdbmEG/vERiMvG+t6oS4boxTmsXtx2Nw/QUSQIvTbOyVltvXKh+9/D+eO4vGV/jiYfTiTWr2YLUmp+ULKFSkLnUrJ1V0z5IUlfe82TaVQ2EEnc0JaFnJdWLcrf/zuFbNJn4NHa/TjTm8P9rcvHONgDg/aO8I6CO1YTU8ITrMx++EO2+YHhdPEnfSQkssDLKx/CidxJQ7GlNCIq3xqnWLSk2XjfLDnpK4OwS1L/UZuMIfPJEnsvk67rQ9okBS038nbK2VZWNYL63V1SPN4kNWQ8IdLE6erWyJPQh9WyGVjW92lYG899in4HlSEvFbWbeU1f08pxQXJ40GxGeQSJxXUUlmr05Gf3XBr9N5ovXN/dKibJyj07oa7OWFLQVhIxSn3Ojo55acWSdT3iVtNdHVmXUkh5A3m4FROK8t4Xy0aFHznpcYYnRziWkyxWbDe0dRQu7iOMmVq2Vi3eEBx3dXROrsp9/eb53jVzE5HUiWnzFLOvC8XJBPwM3NyOnYayhhGHh6OmEOYmKKpmc0oi7NtewjmBaHEXlRjbUAEgprqN//H6YhIOdEdIZrek5Ax3WZqagiTJylNRP35eSKxIylmkSkWP0OHMgbUJGSLOJlzolEgTJBFhHb43rukQsJYcoK6BBEnRMvzpBbF6sNxdEd2sv/7JMT5M36l7Luvo7E/dvIp6o5hQYZCmzz6jdEVIfPo3f8MvzdfX164vrwgdePRdlqHOX79zPWbLlz/7O/+CdeXj9S8YosH+X39/JnLDz9S1wu5XLj+/m9YSmYV48N1DZ3O4HH/gX/48ML7+zvdBjoO37WGDqOsC/VycQ/CYBr99NOfsYfHGHy9vbHf3+k9oghaRHBLY4TwT9X3XilYQqnWbxaC2W8uyYVcV7JoRGInyraRjRCPdr57/cj1cuXDx+8QybS2s99vlMvK9XLlcrlg68UvJqBcN09+TUIumfvbV8SgpkpeL0/Hgb6/sX990B4H7487x+7aqMQIuG2CNaaUZ86VpcGTpGcRkR6aN8k5XLUTqVaW5cJLyXw0Y7aD0Q7etiu77u4Q3g+O4fCfMEnr6XenDJ3cb1/px4N0moqawze+xwvn8/nNJmkOfsF4EqeI27nf8uPLzEjVbf0dHiuxAzWyVLbrlWVZWNdLFC9/fu9f/hzwlkdAqCTUjLbD9vrCcrlwff3Ih+8+YjrZb29I0K3nnLA3P8w0kfHInZTdT/NksQo8YZykEXGfkheLpbKuFz+4emItsTNIwhKFPCdBbKEUd28Yt4Pb48bj2PEAW0M1x77EbaokWZBR3IaqHUaOScnME7jPDjmJi9pPOMynUocH/ffsCdufe9jzv9HTPeFM0s4kS2SDbB6KmqRATuTSHQ4vCeb01wVPUa5DrlAjzmTJEjCXhyBKzU/JiKtL/Pl4wG+4aqTkBQjfdw5VkmVyNEinN6CksJCITC3XtEUHlcIeybwRcRRFwmfROIM67YxBiR3Y1Ek2txw7ufUngGpRNPzneRqxBmtRAlHw0fFkFPvnQ8CiZ8Mspr+g8hPNckDc5xl08o4ApkX+2EmTd7kDFvBe/CyXq6iTU5IjOirG0EGb063ndAQ1/pv9RokMsZTLNzeR+Vc6cf3f/rv/Ky8fXpHtQv1wQQU+ffrE7373e6QUjjlYLt9TSqaWxI/XDWGCDXT/HX/68Xd8vb3zdnxF9OEQz3Ll5fWF7fLCen2htZ0PH7/ncn3l89tX+s833j994d//r/8L//Cf/gNfv37ly9sbsx3PncvsnTHdKuaybd7B5wLL5hd84NSMTiqZWhfMBjW7P97l40c+Xj84/bUK/+xv/zF/+OEH/u4f/Yhp5evXN/7y059ZPmRerisv143t4+9YVs8O2i4bNeOTZln58v7GODpj73x6/8r+2DmOhtrg8fOD2+cb//lP/8Bf/vQTj/mgtY7GHkW1IxV6EnYBySNugoyUV/q4o9pBhrPOZDCXypdb4rvyge+2C9uSyHrF+uSnlNnzwZQOtjOaNwUpJ+qGCxjHwXFrfP6cuL1nOA6Gdj/0pjJsklNhyWsUBmcs3e/dm4OcmVPQ+c0I+RwGwMh5jYnAyOXq0BbGsrxy/fCRl5dXfvzdH0nFO9RxTP6zwaSTqrGsyXVAJjxuhZePr1xernz8/gN/+MPfoqp8/foZe9w5jp3HcWfa4ESDa6pIPmNYEr0fcehlt5CakIeTdVIJzZJMrtmZYd06Hz+8Upfi6bQpMUbj6DuXlHl9vXBZF/Z68HOIvZu40e6cSsqZ1jRIBoAYy7qQS+ZNPJZCzJjm49RUtyzKQck3HTDl6fgiVp97w2RBVtEoZMEWcnJHdz8+M5aXhUUKVQoriUty9qVJguH+j7l4unRJ7uwQ3dNzbX29bFwuK1XcLxQUpVNz8Ws39TAinjGZhumx+q4Ic7hqWmNMTxt2hqTLF0oSkngTpREOKvm0avG88TktdlcK2d1TNAq1mTnRxboXrhTv5ewkTUxrWJpQzHtO8etUpUNyHefQjgOACZGJZIlVAxiTaS6PyemkonhDYviuNRV/s1LxX2r2rSi74vpZvEoNw96caOrvpaZJrcmFa+JygoQ9HVkKHvbardOPyaGw953RD59EwyUk4Xu/XCvjaLR20Eb/1Wf/b7pw/fT+hc86+Pof/wt1XdBkfN5v7P/+3wfrSHn98I9ZryvrNbPeO4YL6354vaLFzSiPh/t6uX0TkOHr7c5x/AOf7l+4bi9c1ivjWrj//Rfam2vMt8sH308BtVxDWCsYi9OTbZzmfO4Hl1fvOuNv1a0gyaO8+34w5o2cEsvLhVwSL6+v/PGf/C0fy4ZI5acvNy7LK+vLhb/7+I/58vWNR288vryx7Mb64UKuhflfpjtnYKQhyFU43nfe/vzG5/vP6DFgGMvHleNTp70N5kxcX/9AXTvH8cbRuh9QTI5x8e5PJhqQjsTkUdZXSklcLhvX15VaFkq+MHLj8+c3Pv355zARGejo3Ps7j+ONoQ1kILr6Ib5kEn6j9tmYbfhNOwfSJrlIUHozMsPbsI3QiDlcKKngkP4M6rd3qpwEAxFM8nNCVG0kaTFtFKxPjv3BnIP2fsdKuGhLxco3+EwtU5YLdVlZP370OAtTPn9+43j4Hq9bw94ffqOXhXJ9JQdMxF3IZUVSRdKCaXHGWxuoFe+9Q1TsYlpFW2PfNQIlG6MfXC4XXj5+ZHvZyHVhWVfG7eBxmEO090aTgpaVMR+YOCU9B6FAdbgLiVhkiwmUSmsNprJsBZvVp6+hAedBqcXd3Kf73zFcV/RE0kIVP9XQ7OLlOULrN529q1lpBjqM296RtJPzYGCsCDLNu/Lx8J1cSqzrEhEbSm/KY38AbkF2HLsLp0t2zVtMFnMqhx6MNFi2DZ+6fQ8o01mbvtd1mG6q+kpBTpuC87UpKYpaKS57abebN05DqcvK6cYz5qDgTOHepwcoJnGNm/h0qjE9uozBp1kf3Vz+Mubpsu/LcjOf1Bj23BnRYhqNnfe6VdZtodaK5YrO6RZWkUzsVHu86J47M3OtWl2cDX2aNyfEtV852MBJvkWjBENUR5ByEBKF77678OX9jo32XKN4JQamw80//vGFDx//Ocex8/XrG//z//z/+VVn/2+6cH3+8pm0P3i7+f6h6+Dn9y+0EcUhw/02nMa5JPLenmP467J4hyQWUFEDcH+2fyiMiQtwx0EtK6WsaIH90425N4SJtkFrB/v9zmwWGVKelOpkEMWm+KQgE8LQ8uz6XLznRWOOho2OAvvtK327MtaN4+0zX4ZwT4myVtb1A9tWuFwSevhifWpnf39gnxz2eLzvzBTebRSWizCOwePLwdvx5he/wdYLehPmbs5cHKDjwPo7OeLYn/liphiDYTh8IoaOB2k2UCGV6TY+Ouky6XpnPG7M/eaGvBOYSp832v7OmA2TicZejSzo7J4mjIYLRFg+dcNCIKlS/DX3yTgmbQz3cyMxx8MJE+LedgTkadqdXecoIqqHM59m88lypIgCUUZ/J6XEgZBqJedKyQtj3HCyC8gOabm7u0Ys6b2wK4/i05zKJB0+MeWaKVNwQaqRcBq0zU5/DFr7EhHwUNfNCTvmWj039RUg00kMEcwelJNan8Vj60WZ82B//8I9O6usvXeGNtpojP3BTO4QM0fovmZ3Ikc20uH7vDYatvfYX2TXjY3J3jqzDyc+dfdSHLFryVZcZOqAHiIB65pgs/skSfqm3UniO5sslCJsxYNRJflOeExvmvzwdnlCFajZWYFu8dbZ9weqgyO5SfWaEzUtjIPTwMqhxSxYySxUpvkuuo9Bmp5AMEZnqdkL7OyM4d/dDdp00b2nEXRsbwEXC+/3hxtuA2U64zGp0EZnFYeAW+9YwQs5ygwz24kyzIIx6c209u57tyLPpmDYDPs337WdMKU/dnNINfkGa0x3AUGClRl+hYzJ0RRyQYoT1Bxtr0+vwuKWr0hyKPDr17hHdfCyZJbq5BMpmdn8FJukoPM7xFhyiqIcTGfOyZAIszQu60pJbp32V2uy+9OnT+SSebRB7wf7sfOXTz9Bqe5WUAvHY/ddD4b19hRqygx7GhHKuri3mDv7eUduwpTsiaJRjLQ35qNhU0kJLsvFl+r7HY87L6RcmOpeZUkMo6A2QvgctGoz5pgkc39mNXXWXW8MnTy+fmJfrzxS4ovd+XL3yJPlspKXV14vC9+/Lli5MGZjTN9R7bcv7I8bX283FN851XrhWn36mCNzjN0pxCmht0maK6KujB/HoB87c/9ETldPKk5LWDkpaOOYrrNSJr2B6Y2UjalXGlckryALs9047p9o989YFrJ55858MI87c3YUn5jMJsKkzR5wTEbz6uQAFJkJK35zCIXZd/rRedwPjtEJbiQ6Dy9aubBuW7ieA4RZKcQkI753mA0bFnRegdxw2yzfEZT1SikLuSww7jz59eIxNZYE0f40UJUsSFljf6AUsicn58y6XMnJNUUlNFBzwvuXxn77E6aTnBdK/jEIJ4ppC5fuRMrGmLEzmneOIIdMG6zbBWEy+o23z38OmYWgD2fvTe30vWO42WsfCuYHdhsNsiduu1lzh+4H/xweYDinZ871I1xpkri+KaCgmraAn9zP00naTnYJoyxEsmdIoSCZRYSSoRa4VnFWGpBs0o+d3g/62MO411O/c4KUflG4jp0xO2KDEq7js5jf37468qmieq4c4qbNYw5a72Rt9OHO804imczR6GIxuRvaRmjEHP48mu9Yc03sx1loEmW6J6kgntOVHWY9evPCHRTwKV68EKWb0sM0WMUnWFKiRkrBUKXrZMnF0wdOl5Tp+/T92N26LTsz+Wgej9JH53g8fNfe3b1mzIcbJGwuhs45s2wWe2HIJVxfmKgNfv78GT3tuWwlv1zdBis5wuR3pp8DiUQ+kx3MnIRiJ0fYP4ipPtkuacFKw6isl8uvPvt/04XrT59/hlIdNni8sR933t6/kJeNZV15eX0h5YVtrWxV+PLTZ+ZwIeLjcX8uYvv7u/t/4eLSLBaHs6vCn6Jlm37QmS8bZ/7meTjVw9g0qN3nY03z6AKX7WiIAr2IzcNzrlSFOQ5mO7DRecjkz+Pg858LOhqP+52EcLk4HLmUxHWpjIB+kImUirY7s3txUW2BbS+8LELJCyldyItj/SUJu0y0ZaZmNGceh9OtL2kw+oPWD2xPlNc/UETJZry3B0piGNyOr1Tu3PrOf3r/ynq5sr585PLd7/l+qezvn/n65Sf67E/GWbYRxq/TO2sLSyL0KXhFBC0aB5Ww5AtnDZpzuAOFjifz6dwZXtezWDnb6+xGBXE3itg9zH73KVsn2n2BbylhaXCmxs45yfsjGIyF9KSTikPAcYAnfEFtMZXmdfWOXCDXzSdHFaQUv6HVXdaH+u7t8X5g8+7aGxF6P8jryrIWcl8izTaFiNd3T2Iw94fH9Ghlf1847u+8ffmZx/t7aHwSYoUcU6sTcg7vyqdfqxaRKag+r2PBgvBQuF4KNSV669jojKP5vtAMHWGOnBLTJkxPdXbPRS9d05Rj9KcmEuuhV6r0PtHpsNKxZrqvL3nsja+f/sJ+3NnbTimZZXFrte1lcWamCJfryrJVas6Rb+YUdAsSiGuq/P90DAbK/bEzD3dpOeG6GXIHZhCpyPQxvGFQi/ywb5qvc9qxadSUPGPNlDmNIjO0ZIRdlRcYGwFTx55vZp9AnTnsSQemRtcQgVs4jkxnKYtk1pKdfZQSrfk0dRwHqxVQt1l6+/pGLZVlWZDj8MeOzK0xvdjUpFjOKEbbd6b6axId5JIDAercbnfWmtiWTJLEcezYm5BTdYo+J3s0pq+hfLp9pjcl5+LwqhFa28Sybqhk/vzlnduY2Oi0x19pkCTHg/32xq0Net/p010yqhhL8henrdFmd5hk7M7SwViX6h8YwrYVunrQnk73zZvmrCiXwfJkWS2B8UoStuq6CExJSwo2kR8YFuarZb0wzYMAR16iQAIiDPVMI082hZzludc4DneoN+sOoQH7IQyF1uFogpTtSa2vaozjYPaOSghtTdAxeJiS0ySniU2PDc8ifGkPEo7bW65AIQt0nZCUaUJX47gbSTtoo3VlmLgDwYSud2bfGeMBB6Ra2PqVWQyRQS3hhuGDDFPNM86kkGzxpb5N0EGp6RnfUZerMw0FllwgdFxrFfbHgMUZmF1XStlYlitrzSzLRkqFL493ju5aEh09fAcdKivZ4zvM9Jumzswn4ChcJ4nHCR3++zk8Hk8dHCKO54f+R1P4xalDfcogqTOztA1G988naSHXSlky1+8+MA6vtWVZSctE5UBHo4+HsyIRpjirE1V03CmamTkztbDk/HxsM8/TGlPIqgx3lSSXhZE8yTaHGa7FtT1Unvltgvn1kZy5p9PRgd46SxGu28qyVF621YW/KVHk6pKHMy9OeeavefROSI6fTMTp2sTqhAO0cVlfIRVqWZHRWGthaZXCdLp/FrR1b8ZSIteFNPBdSjZOM4Ik7r/pole86ITR8elNkJLbZVkEzk6dsZdyA96Uqjuwo+QiQTQRMsJSU/iXnuxC/DVPg+LFrYqE/MGZepzEEtwhQ+P6GOoT8FQNeyh3xnanmJPIn7E4h0w0aoU8xbwl9l0pJ5bFd8y1VpL4NZCGvy/OUU3UtXrkSM6kvETquZEY1Jrdab4d7MegFmGtmevrhby51AXcNSglZyyKVW+K1AX0imDh/+kE1HBnia+kwouF12kSfu3Xb7twjcZxu3FvjTPnJuHqdhcVZkSdqjkiwdf3FEJNix9QAktdSTGye4qqM9icRP2030UgaObpm9odmClRi6cij4j1cPBIWWplijAlkWRljMOfq5wNvHeQMp3E4Q7UgVWrO2WcC+Whgzn9UOhD3SE8Z78xRTy/KhJeVYIGq5OmgySDJK4LS+KakONxo+biNlelshQXdDqbzaMR9qHYsWPTU08R1/NMc4WGjQdzHJg2xkyMvjPbzlwTMElZ48ANqMS8K5eUI6vXMO3M4ap8FXd+z3V1anPohSzcv6skWsqU4gWoIizLK+vyylJcmJpS4dDhoYnTp95TX+RU7UySGU1JUHZNAhZxI1t/z93s1ZIXrmTnotoPQhCmjOg8/Vrx1+mFYVpz+rlmujWO/UFvB0sqbPlKLRtbXegsgJIqdNuZHYbC6I+gVbtDlKgXrt7vrFJ9Sd4TWX3vMcN5fIb9UglKeEqw5vosgm54Gs4Z+IKdIBCc17kEuQJVRlh5bUvlcl358OGFj9eLWwulROGFL7cb+9EZ3fw6GOoNURAkRoQjZnHrpJM8EeIiak6UslIXgdlY14VL2yhzP+mgIVg2NOFm1/MJXnjDEGScLG53dJ6LkqLRUJ7pECTBZg7XCHv6nUqCUgoWBJOSXJiOQSGxlEK4njrEH7u9MSZaE1J4hihOoJQZritO3CqloqRwfIlijtvKJXMo+xRvp3DkCLw7GoBwoSglRMV+3+SS2baNWhZyiWTkwdMJBJycUdeFUk4njeUpk8hJWZbMHJ3jSFwfOzlBrYl1Wyjb5oG4ImEz5RCpaPVm/DS1lm/ogD/nuB5j2SVmLBhT3Pzu1379pgvXvR1uMhu2LolMzkZdNrbthZeX35HKC6o7c7yFijvci0cPVo36jmz6mxtQNt9kemFWY96furXNZJjxNu8uB0HZe49pIaPdDSrVjLe9oWQkV5bX78LVICx+DF9gazg18LyTOY6dIXC5rCjhSC+FpodPKHig4ilktfXixVYdtiAX75hVQ5flEMew9DyYTLvfzDjI7Te+IeIJqB44KNTlEgf8dHufsBHKeQU7QH0PkGWwP+6gf+FSf3S92dF436e7YquBDQ+2TBlyZVtXZygSOh8RVKDvB6C+K5wah85kAGN4SKepkcrKvu/cbgdjPJ67iTYnOa9xcB5+sNi5Lo5wTu3hShKxC3gXm6zQuqcSw4DmLg/HIaR7AnEX8ZRzkAdC3xKRNKe51COmA0mZdxPGOALqFF6Ojyx1BfvkcRI2OUbnft+dJl8LNjv6fOwcaQdONrmfTBMSn9MnLtvK5bJxHIfDX+pC1kTsHt7uzrQUd1Exa89ufwZF+nR7V5mUlCJBwDCbnjt3Wfn48ZXvf/iBdVuC4DLd466ubGXjdXvl8bi5Z+VIbC+vaMoMhf3dI9vNJuvLS3iJwqS4B6UkpGx89+E7aiksdaHoG5++fOXr+xvrVXh/PCKRl3DHKVxWLz5isViRwrJklprj4AwWHebTSHj4lWTM3nivNSaYRC2J69V9IUfHm9/h5sirZGr1AMSU4dEajzbY2+B2u5HYSLJyfblwXd2UIAeV/9yvfvx4YQzjOBqM7FomS2yl4hFIPKUAtfgU3FokKACgLEuhkOl9PL0LS8387oeP5FyZQ2nWg1lt1KWS0kJKhbotz7DI06ZLstPUU0k+SSVjW6rvoQNGXpZKWRametFIJ0M+eQRQJnF5XXh7uOl2De0dYc1mPazv7KDj12fXb5PYf+vXb7pw/d//L/89ay48RqN1Zwo92oPt9XvqtrFcLrx8/NF3JXS07TQdDBvQnS3UpzJw0kKbk705fVdPlbs5MSKJMHXwcbmyloLKZA2zzJQNtczQSZ+Tecizkxpaue8P2lQ0Gct6BXw60uMNPzQTsq0wV9/BRAbXslT+0d/+DYvUKKDDhaM6UBsgF6QkUk2sZXMfQ1Pmfrg+BI90MOZzUtvHEU4V7iGX1TtVTa5+J+DJcznc5iSlS0y0E/qZeQZLXhgqDJ20ubG9XFm3Cy/XV/7ZP/8/OSPtOPjL1y/c78NTXLWHkDJBEXK5eDQG7iygTEyUslwpS6WUyppWyK45WkoGPdDeGXvj0R/oEHei1oZN0KkcY0cpmAnTOsfRn59nzdfodiezTUScbv/h9TteXzZKycwh/PzlE62POGBnNAkZTUIqK5IKyECPHv5sjRT+lyKQfRRwDVFQsE0HeSZePlxZlsoqhaU6pHIM5c9fPtOH63+mSuyGHPrNEeMypsOahJ0VCGldWD+8cH35IXQ8jtP5vlUxCuP0fyQDzijsrdPm4a7tpVDWwppWt5Ra4Vqzk4ysc5GFui7Uy0o20OIn4CYvfPzg+ETNV+7Xik4otpKLsGwvrNfvWEri/e3G2/uNr/sXvnz9RB8NY6WsG6Usvg+dnZQqSxK+u17JNqkouzwCfnJYdponHLfsZJZwKgRJjJmpKXMczenjyZMfzt2cAVupNDKPaeQJRY3FINU1YEhQBi30mY2Y1sPE9jCBXFm2hbQK2+rOG/uuyOKWbbfhhdPvRfi+rJ7FJcX1THQOneh0woT4wtf3ctNomhjJo0pqquz74Y16duZrU48V2lQZuSC1Ymly3IxjTo4x2G8PUh5u+YZT6JOrzp0QMo3HNGpOJPFd5Jf7HbVBKcLr2NgSbrSbCjTPaEsCOhtiULJAWtG7J3kbYbUmbkc3zAMrt7oh0ul5/B8xh/9tF65/8Y//Kd+9vHLMwWM/ONrB47jD+oLlzEzw4buPjpcXoz3u7H3nGK5TOdrhKaGW2UfhGBMpDhPNoAEPe5AInFgnr9sHLnXBUueyuLB5WTJDE30O2uj0B6HXUvpcWLeVNiYtreSaUYPW3PbFTB32yOk5fU3xLueybfzxb/+OxVbQSR83poblk3UsXZHq1O8qC8viF968HyhOlS05OZ4+oXXj3u/O7tLhJILpybSWFNt9AjFrfqCNSZkdTvq2ZmdfOo7CkrInrVqCLNTF8fVaC9u2UBFsWRkoWTqlOAWd2BGSQco1IJGThebSgWW9UtaVUipLukBRSoHLWl1I2xrH+51y/8zsePGyxaG6aRyjMs3f62mTnJyBNjVTk6f3qqkf5jLI2di2le+++8C6rIxZGBjH4dcI5l6T5Oz2WHmBVEjJsOr2XGPuASf69JJxuryJs+Kw4l34FK4XT/m95spSHZZLbXA5FlJX94cLcasZbuBLaH0wOO2sEk4sCPhole3kgiOLYRHOqeRn4XJzae/I69pZ5kItyR031sKatojuMV5Xv6ZUG2Vkcq3kpVJmTJjAQvlWQFN1X0tNLFzIyVi2C5frC+tamVPYj4ntX929pTfUedguRUlgfUeH0ZvQS32y+sYzzt7hpx5p0zlF/lyY65qZs/RQ9mN6Uc6wmCIay1YvcRzTOLqyFvmFDvN0vxBs+s8ZriT2JtjMc7Gm2xtJymx1ced0gcfjQMSjlPbm8L3DcYluAdWmEgSw9Nwle0FLoSfzBqVNt6k9Rch9Gin5lNzUYe0M5Gz0abHvc33qMDcnnrNTNCypZvYstzALDpVYxANBEidoHWMgos/r2Yd713E59hTTkqlDgOJngcYUF6sz/wpSkycWFCSpW179eqTwt124/vv/4X/gxx//Dp1wP3YXEfedP98PPt8f/Pzls7NglsrrpfDpfoOhWLiVlwSWjX3fkTkRDZsUwv4kJxixCwgmoXckijbj+t2V15eND5crB4lhk6md++fmVGubDDZy+RvIC0e5cLu5mW+bBvw+fM+Mvr8xNaGWOHRQS+bjh1f+xT/9F4zH5NjvvN2UOcXNNKXSWCFHQi+ZNVwWZsowFhBz4a4ox1DY3QFgyMEcsEa+kpgEMSQjZZBIfO6ux0k4kSETUFI+zWKd3OBpuZmREvPo7GMy+8Ff/vTibC+DmVw7l8X3B5IdBwcgu6BzKT7F5FMPkuO5pQTmYud1yXz/cWOtmf2x83kY22jMZFgRjBrLcrjalZk8T2vOTkrvfkjOwx3UzR3b0yL0bszRub+/8f3HF1gSk8Tl5YW8VPrewbonykryKE/JrkfKAusCS8VG5Xn0CRAx8S56N2rObr464bIsLLWw5EpJgz4b7/vDn1cuziKz7JRsI2jfPiqUnDBKFF9D7XALpjFRdn/vsoRRrtshNQKqBUiRclwrkleHw9JZEAdZqhMiKhSZ6Bwc+8HbY3C5XPm4VLbLitsTKf19uG5HxBMHpk8/iFDLC7MnPv30hWYPPn3+wuevX9iPna9fv6Kzc902jmNQ1ysfPnzk6/uN237n89sb/6AH+354DM8KPVKe74+Dkqf78Y0EufqhLw45j97JWWhjchyKJGEtBemxM8uZ2eD2dud+O9go6OYJ2nskG/Q+sGNnfzSfTEi+nxWDR1guhfzi+8sLa/HdXev+8+ecPB4usUgpYbVwu+1+DxlPi7cs6TlZo7jfKD7lHXsjpQKrMyXNhHZ0mirt6D4N58TMldv7jbEOllLcB/EUAU930CgpsySh1upoQaokcRiypChH5nq9ZI5uXNfK5XoNcoujFEzf4HuQa+yypnHfb2ifFElPuycxbyxyXbBUeUxAi0+Uf61ehf/P/8f/xFKFoz24d6cYg9HL5saYOnh5+Y5l8UOdNDmOndYP77b6pE3lPmH0nT4crz7tmiaeSRN7faZO/qx/BjXGaHz4Lxu1+OJ3WTeWtbCthdSzd4kYf/z9H7nkSZHBapnedmY/wBpJJrMrxzH4/OWTm8OrTwglFx6fC//Tz3/Ph8vVDyvrvFxeABiqPnGJOR1+Gi2Y9pZ9Z+D0eziaExXm9M5ZQ9/xRiy5AWNguzMZTyNUDVr4nOEhaMoSLCwzZcGL+jAnE7TIfDIR3r78xGVZuC4bL68vXLcrH9fKOG2AJLnNAtMZ/cPYLleWxfcTZbnwaJ3WnfI+9UHrcB8Hn/ruUOaMyAobzNZpo0d3aPR2Z9+HT7qj8+VxD2FrZz882t33geKwqzn9/uef/+zJxOsLrx9fKdnJLI/7PcI53ZvNwmmi6QwGlb+W0/pojBE9feQwSeIeRW3LK7NkssDX4aLx8N5nHDvTvI/W02tPcGJR5OCYhBeI8aR+j33ny2i8bFe2bWVJK9c14EQ8jbvN/nR0T6JBWhA8HskPz/s+KWmQRUl7J+tgDBf7GoV9HOz9jf768ozRuFhh32/eGPQvLtqdcOse5Ln3wW1vtH7naDtHb7Gw9wNdbcCE7z58h/74I8fxcJbw8Gv1vh88emNLFy6XlXX13ei6rcGqcwIGAdFaqtHxG6l7jE8SYds2pGcv8jmj/eFsOFOaGSbeFCzVgxzHWrjrQWreNBhCWSpCOF6Y0YfDzbnekZcLa618+PDCHG5ufEzfF5el8OHlSq1uTo0Z+5vr8Fw9Kozg/k2UXDI6hDYHs0+WtXDZVrZtxUbsXyMiRGphe9koNVNqZl0r+ki0IL6kXGLCEkiZ9eIT9ZygWgJ7HeTiSczdYO/+TyvuO5pFKHieq0ZOYBEnpo0x6HOGzMP//Jn4Lv7wY05IxuXlgraDZtkb7F/59ZsuXP/Lf/zfSAzmONxby3B8eLmSQqv0ODq1ZEqBuiR6b4zhjL1jTNo09onrqHTSxmSMEYwrvMPAc43GHA6lTfWdRnebKDOlLgvLUtnWSmXxmyYJa11puxv1jty43955jIP73BE6oyvHPri/v0V37aLNkgotJe63rxwvLyxhnGpjYAh9KqTuU5EoSZ3tYyKQCmrdF9Zi7G0GS8r3ZKLhVG2KhAv11A6Hi6vNlJrDLcPMVf3wXA4/ybVmT9jA9UUzCCDQ+8FcFnTtrsXJnudzOkY/C1fgBZKM4/FAZ2bOTJ7Gow9an8x9YPogY7RauR+7q+7NyR7WJ9o8CyxFNMfod45jOhQ8Osfx8KwrHRx7j4I8Q+Drr04EjnaQUmZZD2BS60LJlf14OGFHsvvIRaTynONJIzc0LI/8GnIKPmH0mh0+jgmsnblG/TRadfcOHTNIMc4iA/x9ekKE/g9vJPw/kviOR3unyeHenLV4A5J8BnzG9Ji5MzzBmPQQ42ch3kencop3G6KTOUYkHnRy6tzuB+1xUEum5sIrC63dGb1j0zWN+1A+7x6NsbfObW/M4Z6TZ+gjkYV1E+NL+Rwi7ESme7K5GqKhoQqC0lIL123jw6uHUEry3bMFwSYlwbLrLz0nbCLqqQNJcBQlOBz+MwIiS2eobKLmhCULGNB3Vef9fKaRiyq9hS1TJEDoXLES1PxgNcp5qWchZQkqusS9Pp/yi5yr73rTk9Pqu8lAe+acQWoKtnDs6RLyFNDnHOSi5FO2N56Dui6OIEWj6b6Y56wEp8HzCe09n0PApL4/PK8QT3KW83o0i3+c+YHe4J5Q4pMSH9deykJaCyoLua2/+uz/TReu/9d//l8B9zZLqTi0JDDznZSdDl/eW2DcRiluDKqq9N6eqvU2v4U4Gi4wNXseG047luTR6H24mSget4A5I4x9j6W8UPNKjRC5Y29+gUhG6gVLQpudW9gezaGMPmOKAXB4rEc3DEo/HmGYW3jcdkxgmGJWIjQOalm/paEiTyGvJcKdwqcrxJlSpRQSyjgaOkbEsE+PVUk8LzuRxFbX8zbCxhEGncpiEaxpuBBTxD3MpneSJ62/tcE9N7rCRHFHUd+LSVJ3yxBj3vew00mMtLgeTZX29mD0O5i7COytuV3R6N55mrs21BKebAIyj6c7/IgbeMY0+a1ofTu4zi+NLCKdfmCXslCWFY9MOSdFCWJGdoPhWL7HOwb4oXQetqKCFk85nnNwHI/nz82I5zjlTK5LONmnuOPlyQYVOYMBJZ7nPMuYH67qbg/7ccSuUd3ZIYcd0DEZBCs0NEN9HBzt4QdTKS7ArZmmHTFDtZMsoMLWOB6HM9EM/l6EWgtLKVzTikSysQeDwjEmP993Hu1BG06cEnDm63l4Tnya10kJ8fXeGz9+/3043ScXGJcFwvh2W1deX678+Lvv3bBVJ++3W3iNGkkc2k7BkGxhGEAIehMOvbY+sN6w6Q3GUrPTxHNiDTsii5XgGL7vrmul5BT3h/IIhMIjcdztfarSu9u9iZ0kKPzn22RdvPD17tZTOv3XdV09NVmcYNJHx6ZHsKT4vN3OSciRIWNTkRoNkBF7yuT30vRJefTOy4cowELsFcPcdibGDPp98pgRwafOJOJpFw1671y2xTWPdiZK4/vkKEhiwloLbfjOMsxbgk6JN2RTkayUbYGa2P5a3eHf9gcpCV0EpYWIUrDUnKaZE+lx51R5+140Fud5Cb9AOA96X6r/kg4f1jwOPDPVacI5Z+qS+eH1A2bG2+Pui+OguV/qqzvCJ9iberCkKqRG13DXIFh9uGnppLjNlCVSFWr2rCGSRqFJ1DWBuJlnwUDLs5tb8oLxDXu27J2aDiXV4kLnKVhSdyJYKn12SqmezjwLRTMEmaGO7i4cbQftQTwZLOoTXsaoEfmREVYprLWStkyqC3vbI7Jl4eW7NZy/i9sYhadjqkJKp/FpQ6WiyejJOHpMjMC6vZCWgqAsqfLp/T/6BDVaQGmFlCr77MjoT6q/WHKGYUxb4F33pVa0Fj/ESSAW7NDinXMIZfO6kOtGri+ksCXEwJJhyecSm0fULPOYh2fEx6BKjmlLWJaVY98Z7UC7R8d7vtcCRYJfXNCh/nqkcPQd62Guk+D0aVGDrg4bSo6dBT5RTYQmnZwaatU1rQZzZswNGxAS++Gw3X4cPqk358ydpJIkAslYckYH3CPOR2PxXkrhmAdC45E6JejRNm/uzjEmj9bdaw8PbPS1nwcc5mieck7UlPjhhz/w8vLK9eVDwLc+oWCTo+885kHWxPflBdm+w7bvmHmh98bd3F0/50xdV/bD94m1wPF+Z3ans29pQYa7frTeGK3z9d74ctv58N3CoYOhjVkyhuutbiPx8LUOSY1xPzyiowr3vfPYO70Zkisprcye6MeByaT1zs9f7qwvC+TEVSdD3WllUji6cHsMjqO73ks9BNeyQ3X3o3N7HGBusdUXN1kiORL05f3O64cLZRHfUSYhl8KybVgqDBNaEHxad1/OfL1Smkel1OzMWC+VwhgNyEwr3B/Nr4ucsGl+b+YVkcwuPhPm4vCyJTdTTtkR7c4jfBUJ6YBPe9uy8Yfv/4a6uPvH+n+AnfGbLlwzls0zERoVfEEL3kWYueMx4K7egHknpzZinA2PtdM5ICWyOBvNxG+cs4+WDMU8+M13McV1UnvEXXNitmf2kHudjdG8WCWLySp0M2G5803Z7t9vIQ51ssg3o8pThMzZyX97ZpwUdfwlcu56JTQeogkZgqXp/mYpBbwYxVy/RbF7HENogVSfv6dTGXYaYTkGPg0XDedz1giowJ8WTwHi6KH8HzidMAHuQnC+ejWHh8zMSSjZxZY1Fc9REljrGvBswJSng0XYGoWQy6cFvHC17sw6OZlRCU6sRJ6YiT9vxK8HRSLqPBiQv7jHzh2dSSJZDrTEQKIREkJTWP0aE6PUyhid1N3wVfCpoOQcDlUuoRjT909kC11hNF2/QAA0oOv4D9fbnFlJgnfKfTCZ8dyT206F2N3fqxGTp2IS77tCKg5Vy3lNZQ8RbEcLXRC/gM/0SePvye2odIQ2TF10fF6rKdpvEScT1bo5Cy8JJTkjtZQltIEatPCwcIrXeyaWp1x59EFRz4MTSZAqpMQUp167F2IGycwTntwbabitl09G7pXp9lP61C4eAWX2YU8ikpojFzJdBuDXoDCnRXJ6Z46JFX/tbXig7HF01kslaHk+eSYf0uW5p9TwTsyupZJgFyocRwtixAm/CX10RzJ6x+bmJ4D4lDhnTOjI83Ha0VxaQaKY+iSv0NVNk5/aczPGdN/XY+8e67OEPZU561LEmwq/YsPqTLzRd+MGh2xHsD+Rk5zh99II4MLModlf+/WbLlzwJOI4Zm4gOUR14lMNuURxiDdJzhvZnp32iRnL2R2YHyyKkyWe05gkqkXcdy1hkQJPT7xz4jvDFVXpzc1MzQwp9oR40vnhnwtlEpbcBsVmfOjJb44kwhQjDRfTivihWlIhthHu7HBi3zExSHJFfV0qYs40MzQcD1zSqJFx5DfiCMgpnB/iNVhQ4NWMruEagIWtlT/vM4PoxL3dNXpi6q4CpIY5pcC7Ux9deOYGAUrsnOKz9Z2COAQ4fcF8uXrkS86+b5LTWcC+mY+aOryVRQL6c5utJOdh4bs1k3NM8MKjczw/wxTCbt8pnMXDb9azFQIJckHsmyKp+TxISil+DZqSayY3j52XxT+3JOLODPg1O+dkjNNp4dtu5aSAS5Qu45uG64zOIPYPzqL0685MI4aiIITbRzzmmW57OkZoQF5elM0PZZ20mRxKbocX5NPOJxHCeXNY63yuM6BA80O2pHPfE290cofxpa7UUmIn4/52OZ3PMxrQ5O7y5+7FKeceB/PYG7UAeBKx5RxFOfaoItRcEMvuNNMGvSllzqe/5AnT9zHRoVgc7nsbYIXRXU8pJDD3loyR2905SKhC75OjjWicArLde0h0Zhj+JpBK60rO/rMiixEU35eVQbZMTcnRFhNa6+TsTWOOc6K3yWM/6G04FGkg5CdhaU6/n1K4iByPw6+ZXHwVEF1lb90LyrlnNk8O8Ly+zmICWt1UwXxQSGfQpneB8cuvodYaqkYi0eeM+8XdhupSkZw42mBYxi3VvjXb/61fv+nCJZKeWoB8mpAK1BCK5lLZti0OLIVSnl54ouL7CZQl6TPyQpLRhsNKBpzrBsxxY7eSKrxuCz98rBzN+OlLd5uV4loU2b0Ts6nU9UzhNWoRpuXnZKMRiYB5t32W4dPBHMWzrKwyZ6LPwrJUEFBrXFLm5Xrlct2QaWHmq7BmZPUbPNnCpFOARRKjZJacKQKfvzTQy3Opym13xuHxcKupoOrXPGjSXOBrSsdIBq/g8GTgUTOYV4gwLRJlzUjVramc4TapCUpN1OtKkgpM1BpXE/dMzBUbCUTJWfhweeHWH5Ra+cMf/oY//fSfyKtDfUMyjIn1Tuu771rM2ZrXy4pOpY/D4buYrCQmIxElAor8M4mJww/7xHKppFJ9AgvH8SzqgXy4Y0sfioTr+0TIMSWpDi98JSOlsFwrfSaSZmq9OnUcqGr0HtOMTaYemCXEJn30eG7n8jsMXDFSns9r1KdJ14ulp3bML15DmChFGxbpx6JnzIQ7O5hkUq64JlW4VmedWRG0Kfv9zuP+cJuhpVLXlcvFiRGmyv6Xr+zHwQg0QYOGnZKbtLotlBdityEvEEw6NaGKi38ZSjt2Zz0m9+6U1rHe0NlpxySrO1i0kbERmiKrZIlpbrguqtiKzsLt7eD91jiOxpzCy+Im1WVJjF7oPdG6cezCbIXUL+T9hZTdBk7mjaKKaXf25lBOQ5U5quv3RmG/Jx6bUVD6AEaBsTBbR0cl6coqF8q4wCzuV9gWGCtJDZkVLAf8nyk5k+mgK3szHlW5VU8C0FGwUdh317rpyCQyi12odiHbSpoL2RYKDbGMSxET41DSNbMk1+4JOQqrUvKKJvcY1QhKndPPkMxGSRfIi2f8odSUMFaGdoZ22sxYLsgaKdrxvwx8v1Z+vCz88aXCOOjz4LMdv/rs/2+a1f7H//F/5F/+y3/Jhw8f+OMf/8i/+Tf/hn//7//9f/V3/tW/+lfPrvX89W//7b/9r/7Of/gP/4F//a//NdfrlT/+8Y/8u3/37xjjv31R59HWLsbTuGEcogiYy5QzKvtcus/YVT2D2qar7z1O2jveGWwjnzL0Se1UNUYftNZpffDYd+4PtzXqrbu+4ujhGfhNPHoKJvX5y57/bs9f9v9r791jLb3q+v/XujzPs/c+17l0bqUtpSCktiAiNBNiJWnTi4Sg8AcCUTAGQh2MXCQEwt0oBhNjNAT/oyYCKglIJEgsl5ZvZahSIRWq86O1WGhnOp2ZnnP27bmstT6/Pz5r7+HY0hul49D9Tk5mzt7P3ud51nP5rPX5vD/vd/435tqb5GPMfWQ5hTZbEaWYiFn9WbJOXcoSVhJPz2aSUSYPiDoztx113TCZ1poq6Tq6NtDWLW0baNpA03Y0rTL6lJWniuI6rtkgUGQuCZVQen7M4x+TWjToTDTSdF1WNon59UDTtEynNdNa6yxNq1YMzWRCPZkyrRvqpqGe1mxubjAejpkMx2wNN/FViS9LQkyMt7YYbW0xHo3yTFG/qwt6XmNK81SeZFKAiMzPy2xlPJdWSmmeapulZLpW/w1dR9e0NHWT/Y4aYqcmpGoh0c2vnZRXPSGnkGZMVTC5QdPM/dtmWnqa5jY60cnXXcrXRZLZdCenhmervJzenq02QkzZ3C9fdyJZ9FZXDLNzriy1NN83Javod3YhzOn8rijwVUXR6+EK7R3rspqIyTWloigzmzOnX3NK0jAzYZR8THofhKgOAfp3lLnWdi1NN2XaTKmbhkldM5pMcy2uoevaTJNX88fCz6xCmI8bMsvoaoD3DtbXl1lZ7tOrCrqcMhaBrst9RrnCE0Ocq7mbTECYKW6QWXeFtWo/b2YszYC3hqosMMbMiRlNq4QPn9M5EmfCzYnC2Wz+qA3JNk9gSpeDlTWQEpZI5S1rywPNjqRE2wXaLre5GDV6lOyQYFFyRlk4ipmOYZZd6lclVVlSOE/ogto5ScJnN+VZClIEnHP0yorKl5ofiQGJXZaCUqakd0qa8dkl2luLN47Kq1WNsykvFk5nDCTmzIPTckHK6ejHi8e04rrppps4dOgQL3zhCwkh8O53v5urrrqK22+/naWlpfl2b3jDG/jQhz40/30wGMz/H2PkpS99Kfv27ePrX/86R48e5bd+67coioI//uM/fkw7rw+iGXXldBrISFa+zj0Gzv1ICi4/NDTrMnOUEYKoYqcVl4kU6OqMzJYzemJDUAp5CFp8VQsEbbSbM2wi5PzTtiAVQshqA6eprpjTp09ymk1ZALMGnhyDMgFA918ZSl20tGWLL7QFftY07awK7xrvMBRZaTpA0Idyyl8quXaQotA1HdJ1yv5J0IZECpHQRSYW6i7bYeSxTkA3I79h1PAw3wCI1hxn56LtVCXd5LxIlMwmjKpabp3BOdQB2AopN8Mal0Vg61qN9crA1tYQ5wsV4ZWGejpBQtQ0pZH56jrFoLRm0UA7p+fO61uaDkNmY376+tEFZMSGiIjJwS6eDniZ5CJkIz3J9GoEa4t5Oi50AZsfgm0OakLWbhNtXYjzZb2uHtKPCGammGZrwUxrz6kVa+b7DEqoQCwis1pNnljEnD6XRAoyn9CkHMRinqRJlgBK6Ge6GCCBqyp1uS6Fqqcu2DPB3Bi1N01V7its22CsNq/zIxOvWfP+7BJWBRYAVUKf0ajboOQqJWjmdC5CoqOLHSGoh5aSoKBXFEQJWRTZzg0ddZKiY+K9YX1tOU9GhFMbQzAFCQ3kzOqGxmS2pQZ6g5YMRFCliFzHsU4bjGfWKSlpn11ZqBZjEpnLvpWZlAOnnwEzAgkYTMqlgFnwtTlbY7QJOIngnGFp0GNzVGuNLSbsjLGXJyt6rrOqh3casAqtKZHLAUVZIlYgCF1m0wo6oZXErNaiDGFr8aXHe3XlnrkwW6OZiJRrVtZoyjHNUutGdR6DxHlgnT3Y5teAaNCKEvJ18CSlCr/4xS9u+/36669nz5493HrrrVx++eXz1weDAfv27XvI7/jnf/5nbr/9dr70pS+xd+9efuEXfoE//MM/5J3vfCcf+MAHKMvyMR2AMbNiu1IG4mzFEpPOmGOnXj5Vj4TJszdtKNRZiQVv1KoetdzQgOEwLj+MRWtSKWiAwqgD6vraigakmPD9Jeq2ZWs8IbS5uGx0dtp0euP5mFQyx2m/iKBSPdZ4Zr0UcHqtdbraMxei0Zx601FPRkyNY3O4SVFYVgZL7H3aeazv3MnS2hqmD86X9OwKo+mQ2EWkTYzjEJISVBqB0EFdN2wd+z6SBOcKlpdW2Dx2L6Npy2g05ASn09GzhlhrDWOf6PcLVfYWSyAXBK2jlaR1NSyTpkXJD4aurXFWrdGjSZTlEr2lZZbXd1CulATp6KRlyfaxXusWsW4IzSZdqBluqb1C0fMMVnsMR1sk02GSUPUGhLahbaaMRxPqyQTQxutceMJYFRG1XunV8ziWayIpk3hMsppSchaLpnZmddQkLTOpH2s09SUk2m6aUxgWY7zWTEIipZpJl5XNk5CINNMhKXY4DEvLS9r8O24ZD8ekTETRptEsuWMh5V4v54sZjQcjmhrX79Wid+wSnQka/5IGs9AKTTvRhy0WX5b5e3MN2KrvUjdtiMYiBVQIRVnlupLHuoKmnjIZb+o9gcO7Crfm51p0MaiI8sypweQ6oPeOIEr/B0h0kDqMqLRR7CoV9HWdNl8nfdDZotT9cR5bLSGuB7ZHf2kVbEMILV2qM3FI054UDlOUuKpi99oKfrCK629y36lNgvdEY2iajraNjLtIkxKN8zTG0RmLDAZIoe4RjS9onafDYMp+brLWnqo6m5iK90iMBJtorRAsBGNorSUUjtp5pjjGAVZ8H8ESJdBazwTLSAxtNPTLAmcz2aYLxGToyh6dt7TeUjuHWA8kghUmwMA6JsYyTkl1EMsepigIvqC1+nerogeFruRSOyE6Q3IWCo9DV3NdCPNm7MYKXSFEa3GlpzMChcdXJWKcOi9IIhhoJVsReU0Dt3VH3XZqm2JtbncBsZYQI9PRCGyXrXLax/Ss/1H8RDWuzc1NAHbu3Lnt9U984hP8zd/8Dfv27eNlL3sZ733ve+errsOHD3PppZeyd+/e+fZXX3011113Hd/97nd5/vOf/6C/0zQq+TLD1tYWgD44MjMrP1PmN2HhHFVRUg4qiqKgqipWdu5UySED462a0WiDrq0xRqj6Puu9FarQXXhcrwILlSspbIGEBtN1FNawc+cS5567j6pXcf4FF1Dt2kkXE/V0yvF7Rgw3NxmPthhubVGNLF3bYpzXxuHMbpuVtXLFZU7wUOUKQGR+0+sDKz8KSo8zA3bv3snePbs5Z/dOVpZWVfamKChXlglW6Ts2VgwkEGxLR0s/Vpl4p2STwa4Vqn6PSy59FgQDMZG6lhP3/jdbp46zcf8x2hCZTBrquqVcLigKpwSVxFx13YiBGNT4EMFbR1GqTuOOXTtIyRODUI+H9JaW6Q+WWFvfCa6fa4CRanUZW2gbQxF7tK3agIReST/4PGMdYL2jKCuqpWWe/0uXEttAO2kZnjrBeLpFPR0yOXWUwlvaLnDf/Q9gSmVsOZdZpTmlaVEyyywJ54zDGSV+KF3bMzNgIbOnKlPk9gVlLbqBBtm+DCi9CiWHTtlkhTf6U1bKgjWW5dU1eoVTodqmYzTcYjoZMxoOWa601yYm0T5B57DOzpmgoPVQN8805JWkUfuKsixYWlmmN+gTGu0VUmaiw5qdOlN3Bf2qjyk9UlptohYgCqONB+j1e/QHfXads4ve0gpgaZoOt7JMDB1tPaLZHGYJrUBvxXPBubvxRoht4N57jzIaK91+NGnyhDJf5TYz02b943lO0YaOhIHg1UnaqpRSl1ep1hWqgtNbxvgeTZtogxIRtGnf68rIqi1Q07SMiIwmhlMbWzywuUUXAkUwedJoclpZVfJD12nKMupkNXQtbU5nzzQS2xgIXcgrYUBcTs2qColObLT5a5b+DmGmpiKZtSjzEkaY7X+Epm0pigq8Ej7AErrAaKwSVc5YSmcpipKmmdK03enyR667Saagh5AITUeK2kTd1E2emOTJulNyUNsFrWXqDahMw7ZlPB1TTxucFUzpwJSamUmzrBCQbY2M9xA14TpqO1IQZSvnZ5rNE0Ksow6J+05uUlaq8Rnj9h7Kx4LHHbhSSrzlLW/hxS9+MZdccsn89de85jVccMEFHDhwgNtuu413vvOdHDlyhM985jMAHDt2bFvQAua/Hzt27CH/1oc//GE++MEPPuj1mYzJ7ELU1xy9qqJXlAx6PXrLfTUu9AW7ztnJ0mBAVRSMhx0nTxxjMhlmVe8A1mF8SddFjHf4ssB5Q8/3KV0J0eNCoLCw0l9i0B+wtDTAGke1Z7euDrrAwIw4URU84AFRx97Oa+FyUuciNvOVtF4MczZbpjqbHz1O1RJ0xipteGAp/TLPfOYzedqBvezdfQ5Vb4WNzSGTtoWiwmbKq8FQWadjIOBTnuEmJROsry6ztmOdvbt34cSTusB0uMWOZZhurTHd2EHbChsbW2xsbuEGFqeZNsKkZTiezhXUjbjsKaSme1XhGfQqVpcGeK/jFNsBy2s7WFpZZdfuPUTTV+uT4ZBiRRXhi8LjWs94tEldG7roSOJzTacEa+kvL7O2ezf7d+8gtUI9bjh6d8lkukzbjrC7B/Sqgum0wdm76bw2Ojtr6No0r/UQcx0zpRyc9KHpXKG9Rrk9wmXO8ExSKiRHlyydqDKLK4usiznQVGnXMliuKAtLWViqnq74jfXs3ruHHcsDFSket9x77w8ZDjfp9z3nrBSkIMQgnNjYJBrR9EyenKWk9Gs7S6XlpbDN+1ZWJUv9Hv3BAHoO1ckzVOWAQU9Tf6bo4YxHPEQPbdvMTSonS316vT69fo/V9VVc1UOpzkJv9y5NlYWa4fGTjIabTCdjenh2rw4YVAUmgYTIAw9ssDncpGnjvPdr2/NjntfTZGgXAhi9TmGWSXGELoDR89GrBnhXYYwns9r1R4SspplrXbqCENFgtLG1xXA4yg3gaU5vnzVGz5wQQiKv2iwxqkBtCAlQBmeU020mKsKLikyHSJHFs7WNRqnzXQg5ZQ5a8VFquaabyUFPnZ/VLihndgBE1XGmdasZAGNwzmOyCara0XBaN9TkhnixdEGyTZNqi8YUcxuCyQo8WlsLMeHsrO6bMgkp0rYNbReovOqYMvNvSzlFSeYvWBWdBkGSpU0q7JvmrQ/K5vbOEiQxaVseGI5YkT5FbvJ+vHjcgevQoUN85zvf4eabb972+hvf+Mb5/y+99FL279/PFVdcwZ133slFF130uP7Wu971Lt72trfNf9/a2uK8887DuUKfoFajuneOXq9k364devP2eyyvLJOcIRrD6uoyO9ZXWVtZZVDt4NTGfobjTUZbG7T1llp/UDHa0ou8SFAlKLF448ELg6JHz3sGviCOItNWm+3aBP1eSb9Xcf6uHQxMYMlFJDUMXKbjJo8wzKr02gUvhswAS3MyCzO2pNWagBG1H/HOsW/PDnbtWmPf/p1c/StXszTo4Z2jmRQc+e//prv/fsYnp0isscZQ+h42JXquxC4tA93cvn3aBXYNBuxeWeb8XasslSvEEDm5UXDe01ZZ6RfsXu1RxB5H7/kh995zNw8MN5iORkxGY+45dhLsAwwnNaNxrQ3gFgqrvUKVt6w4xwqG/fvOYec5u9m5VrFr5x56/SWKsiK5HWyOpxw7cT9tq3qBhQPbJTZ9YDxVTUnr9OHXdJrO6PdLdi5VrPU9vueQXkU7XmGXGVCVlmeeu86OwTrj4YRv/vs3uWfjJHVWIj+5MWEynTKtp6R6NqPOk4c8EeoVVQ50qtzgvGTKtiPGli4V+OiQEPExUgRDv/IMyn5+uERWByVFoSuu/mAJvKeoSp52YA97d60xKErCKNFzsDVaoW538PRzlumZAlrHf9zxPU4NNxnVE0JQpfGmi0zqKWS5ocDp1K1zlh3LS/Srin5RsrZ+Dv1+wWDQ48A5+9h7zjnazO2XOXbiPiaTCZNaV0bOeg3UBVgKUhSG4yHj6QQByqpiR7nEYFDRKy1Du8QD/VMMh5u0o5p+2WO532fX8i7iNLJU9rFRaGptXA+5rpJy7W6e0s+Bd9o0iHGsD9YJOb1ocl3ZO09V9BiUSxSmwCa9aVywpABtihTFLMWvFPAu1NTthAc2h2xujZlOG02z5/pb00XqoFqWXYh0YmgxNMZi/ABjIjhIrsBWgsv1aF9qTTjETldsKdKFBEbokgrnBlTUuAOiyfrtpsT5Pt4OsnqPUHeq2tOhdPZkC5KzBCxdTExiZNxmqx7nML2KaLI+oNWUZzD6OdcbgO8TjAoKTESIhcP1KzDaUlJ5R1FC4WesVENyOXKaSK/nmQToJNLEVkUamBFRDOApiorQtYgRjLdI9DohMInaQV0Y6lIDvc39Ob6yjJoJMnR0ZYEr1qlStlR5nHhcgevNb34zn//85/na177G0572tIfd9rLLLgPgjjvu4KKLLmLfvn3867/+67Zt7rvvPoAfWxerqoqqerCuleoIQhSLUU8Cmqbl6P0nlRFUOJb6A1zpcZWnOnaCoiooq5L1pR2UvQIxidFowtbGpqo6J89k2pBEaLtAUzh8LVhTE0KNiypqWpUlx+6v5tTosldSVp6yKpC2om5qpvWY4/efZDydKolD7Fz7S9XilBGFk3naBLR+ppMWmUsPac8PNJMpQ29wLnHz//sqTRYhbeo+o+mYtmuxwdIrPFVZ0V9ay7qF+SLylmQdyVmigRPHT7B58hQ//J/vq+8V0KaWbnQCQ4vzifGJmo3hFhvDIVsbQ1UdiIHYKbFF0x+n2WSgM87ptIEAAUMrls3hkPGeNe655zgpQRMDvn+AaD2dBNI0qm2ENbjso9WFltFwjGQeUjCe5ITRZMoDJ07x/QqIFumgbsfEZoKEljtujxRi6dqOYydPcHJrS4v7KRI65sV/Ty7mu/zwkJjrlmoJI8Zo7r8JWKMqEG1o6JInJEPb1XSdej5NvGEylVybEyZbSjrx3tDvDxA9OO6/5yhFT11ybWOZdjXNdMpka5O7/r8OCYK0wtZ0yrSpabqOLtemMBaxeuNqs/ysuRcwUE/VY27SNEybSH9Q0SsLtu7f5M7+Xdqn1Fg2xg/QtSqZZQtL4bL32XJFmHS0bcu4nijxyFlcv6L3g3spSo+vHGmq4rUpBeqTQ47f12ERSnFsjreYTCYMh1sqMgsY40gpZFah6kdKOs3ybEJi0nZMmhZXVHhXqCJIMvSy1Ufb6qRLgF6vYhIDMUgWzjbYqsDZHsaIil2bis3hBkaUGRe6lt5gAIbMrjvNGFaiSkAk6iIi17GNhZgb44tSXadNUWBSyWg8xpJ7QbNMckqagjvdL6X3MKgtT1V5RNTEtm2nhJxuHZQDqpn5pXi2xhOVRpPtjOOYx8tlPrgzyvZzWXA35eZyyeSRJIml/oDSOQpnqQpyrTyQkqVrZX4M85IF6hKt82llgcYZocM6nNOMmwQl41hf4K1l3651HhiOmNZTSucy61GQoLqOIXSk1BCkw4naOD1ePKbAJSL83u/9Hp/97Ge58cYbufDCCx/xM9/+9rcB2L9/PwAHDx7kj/7ojzh+/Dh79uwB4IYbbmB1dZWLL774Me18SklTJEkQm3IzoDL+1IJDu7196/GNY0qDcQbrHaNqSm9QYa2laWpGwyldFwjJUNdKm7XOUQRLdGo337ZTJOhFWXpVWHdO1cKLuqIoLEXhCI2jCy1d11LXSjfX1AVzqrKZNarahBo8Admygfzw1gtMKcsGcN4yGY+VTpo6pE5MphPGkylt15urcpSU9MuCsizpT1WIN5GtxJ3FFAUUJa60TGf+9gT1e0KI0lFvniTFmpRaxg9MGNU1k2amV6dajoWxKlpqdDY2s/OwRme2oeuoE9iJWoW3Xadz0eiVuZgitrQY57WFpc7SS1ZTJsaqgvhwqMruCZ0BzwRKlJkVdfwSCIFY16S2JskUOqV1D+spo0lNSDPl+0yHNKhlhNGUiLVGm2rJmop51hhtwEjI5SSjdHARQjLE0EEUbcIOBstYa1EGUhZWdQ5i0N0UoLYWTNTkUbRa6M7+Yl2c6IQgpLxS0UbwIBFns8q305qOEh9ycytAFAKiShgSgYaYEo1vmUjAlJaYoG5hUg9JQZuOXWnxTq1M/MTTTlu6rqNuG6z3WO/xUahN0HpbYbAxC7oidHUkRLXySW1g3EyV3h7SnNQzU1CZ/UiaMc1yzQeZp9V8SngXct+kh1ThLDgiJnZIaPGmj8sq5fqQztYducG+VzpV9peAQanoRnRiJFbQ6ZQq01hntBPYRIQO4wLeQRG15cy6BDapeLE1GrzE4bxgO/0OTNYqnKnyWMFaye+pEakQwUbEdMTUqj+cBDCRskBX9YWyGplEhABENQY1kWS0tmZcwmSJJfEG8SBeSFZZudElooPodIXrK22Gt95iPEQHZNGEFPPkwZhseZRIJuk15nTbOnU00lJKS2Eq4lwWL2amsPZpDooBm5MJMetSWgMu99ZKisROhclh1sLzJClnHDp0iE9+8pN87nOfY2VlZV6TWltbo9/vc+edd/LJT36SX/3VX2XXrl3cdtttvPWtb+Xyyy/nuc99LgBXXXUVF198Mb/5m7/JRz7yEY4dO8Z73vMeDh069JCrqoeD9gbYrMKQiCSCckuV1uksXakzkK4ORKMNnUaEU7KZFY4N1pcQu6wUEBmPJhijxnzRQq/UK7hrGkLQWVprVbDTZwprNBUhCl3bMR1PVOAyRCQ6XHIqh0PMenKAtViJuetd0xASBYm5+dKrovWMtZhiAAmErmU8dmxtFJzqTWnrhqauEVH5KYOl8H1Kp0GqKgsqXxAx1KLB0Pd6+H6Ppf6ANkW9gZqpSuHEQFtPaaYTQtsQmikxZmmcEPFFgTeCs4L3WWZJIy3WJLxoCOtSVGpwF7E20XQdm8Mh08kWxq1iXYX3npBO5hmlrnY12aO/+9yHMmyyurskZUKZHN2MxRJyDFKvtNRFlZfqJrRtTQgdbQhEowzHIo+1zkwFcTZ/XvCFm6uWtCHiuoBxAVyXGeiGlFRJQon6kNoOM/Myj0KXRnMR0pTlqayFmLzO8FNiYo2KumXm3azgn4IgXZgrgTdtq0oT1uBzeDIiGiiNIZmZ1XquM0giov1gRgwNia5rMKim3EzZPIoltMKsjVPqRDKRzkDcGNOGREgCEikGlWoX1pbOJIyJOJNwttKHvoiqmgRPipFJWzOtM209q4NoP5myfGPShymQ6SWZQyvZRyso00xsQEILvsT2B/Sspe8SNkygAc8ShVFnZJN7F22y9Gxg0Osx6FmcTfjY4STgiDgTcbnWWbiIdQHrVHPPVgYpIslMcX6qZQgr+B74mEAivaql36tyLchRllkgO2qqMKAWIcnk75Ws3+cSwXQ0cUqQCV1q6dKERloSHdZGql7ClR220JWZ2WyBFiGoOK4NdC5kKrrKrtnKIhXEnhDKQPA1OE+0ibaCNgnRJszAYCuXKfKiUk8IpS9o6pmXGogJ1CbQEpHCkkpLWwpbccJSGmFF+w2DEcTp9eFJuV3AMegtkY6fpJ42mCweYIylKCzERGw7mskUZio83eO3QH5MgetjH/sYAC95yUu2vf7xj3+c17/+9ZRlyZe+9CX+/M//nPF4zHnnnccrX/lK3vOe98y3dc7x+c9/nuuuu46DBw+ytLTE6173um19X48as9RU5mhboz1MKadOdKWuBUrvHKq7FzPrK2VplTwjsMow89l6XRlkclrqBJktnpnJ2aTcC1W4Qm/MqL1aXfgRvbAsymtn1HfrtGnXGaxoCtA4gy886qvq9KGdC6hVUTLJgrNqeyH40rO2vEJ/aZVpMcKayGjY5SBi8gPdIKLFVlcl0kx/zwgpWqRz2CpB1HSPSKOrqa4jdvpvyqmTwnu0IGspeiXeJLwRSq+pKi3SFpisUZgndIzbSB2TinGKThh2rCxDsQRGbTeGw0bZT7mJeqbtRxTKqsA7R0fFTOi3E8Fbm1dFklefymosC0/MvWwxoJJC1uJ9SSz04W5Sl4vkOtu3tqfnBr17C1cRRahTxOTONBFDWRZKNY/QpU6DmBhcVonXrIf2+JDrTbM+HhHJq2Y9NyHlh3KarRZnOleamrJYCqNFfHVd1gBtUfkkZy3OVnPlGIc671pjaJxVmr+zBPFUpUo9xVhSeDWnCMni0RRYRPAmr0JFmYlilW7vrIArsM7jrUOUeqj3Xu7VmffrWIPJTFXnCr3GU8DqUljNT7P8k3OOtV4v2+BEUohstiEzCJWUAap3V1louobN8ZDB5jIhJJouErKPnFrW6IPYZ4ZfioEQDTEZQidZMKDVZ0R2Euj1SuJSLzcTCxIg1JF60jGZTijLPqFTdp5FpdP6vTL3Bmp2xxt9fjgLzqsChUlqwFgWWvuRUQtRaOvAaDjl1AObuUm5RYISIqwzVKXH5wZfScz7q2YrF5OAIJSDAlM6ysoxHE51lV0HpqOaemlKUZSZ/JHy9eLVfSCrBYWZ/Fm+h4xqd2njdbZ06fe8TkoQVVlpE9NprT51vsLlJ6H2Mc7aPAKtK0lRcFiWBn2aTkky1jglFxnDpItMWj1X3eNnwz/2VOHD4bzzzuOmm256xO+54IIL+MIXvvBY/vRDoipKBL1o5nO43N2ugQxcUarjbmYPm9yc62dkCGupih7OVToLCELdtHN9O8hU3mzTkbL9CQYNBsbQIYQ2gNGEXMhClyLKqjHOYm1B4Qwm6IorzW90sE5nzTGZ3MSsbCPJZAHzI4KKxhqMV6r+8sqaKr1XfXpVR9O2WQUBCj8T/oXkwDirtP7CUPT6+KqPLz2uSxTRY1xPNcY6R1trYPbeQVXgjMtCoiHLISWsFYwDySKuBg0YWo81OCnwGHxI+KrA2JKq6lOtrlD1duJciSGxtKz1sNB1jGtNuziE0HZ6w1lLYcGYijJ5gnG6shJldHlbZcULKEqPi4JEjxQpU3wTXcqmeJIw4lXdYpamiomU1QNm1GwxMmd1GoOmVZxm/nXyUWlfV4JgJa9ONEUXMptLRM9tDl1I6+eSUyFGkJADVmZgZU1K6wvVsRSldktmOtoshmpQRYcZs8vm5uHZA3DWKGqdxVuHrwplSKZSZ75YvDhCZ9S/LEYNSjE31gZ15fXWUZZ5QpIDjkRlp1mjcl42p4WTF6zzUEDlDNE5TGixockOzJEkDl95Cq+11/0711gdFPRKT1n0GLeephPqVlPrddsybRpWelrv8r5kebmiKJ2mu6SlcAXWqYST3seaXShckVOIBl9UlK4kOJ0QlbmtxPV72NBRGJ0kFKWmYSWJ6jLmSYpzUFr1wuuXhapPBEidod/vkaLBpA5flGpNk2vrVVkorT1qK4W1lpAS0+lEafEx4LLqhvOWyheU2bR0ZiTrvVeFECyV96r5V2gQKKNldWlJU4DG0IWgLUMiOZWZlTl8oXY1TicwqYt5Um6JKU/69SmHClA7Kl+wOuhrc3VumG7bjsm0ofANvbKf0+EJk9yc6t92QjIeW2k7xVLUVZUvLEW/wnpHso66DRQuELonKVX4fwWzAOqLQldRdqaOrplkn/u7tL+yQIwQsp2Iy/lYZ5yqIRiL9wW9fgkY2i4yHI2y1I72JUkIBCSrY2sACZlOLgBB5ZGM0bx2CjPjNChmZAOrXe3RZDFTbctn1ouTRC/mLpz2WcKgJ1uzW/m4NVhGZ6l6S5Rlj15vwKCfGE1GTKdT6kmDK3R1BYnOJryDqioYDAp8NcBWar1OUJ27otAZvG0dIXW4NJPNUWo7TUOgzl33uhYxs+Y5AZui1gOy+nryFlJWQS8cvuxRDgbIYEBvsEqvGOAsrK57mrZjXE9gs8558UQ9nmCM1j1s0htIcCR8NiNMSICy9LlOArawqlqSLJblnHJM2K5DOi1Ykwwx6g2u1PImB6d8KnIdKorMA48xmuZVEWbtKZKUVQsIkJXTk0m5wRc6a7AhzFOFNuqDc6bkYY3Mg5qeamWuWu+wxmGxOsHJrB2Lz1VKcnOu+uX6Qmng2KwDI9qUbAStP3idODkc1qsvkxFLsh7bqYLLzIU4pUAgYIwq4muQKDSNTcTm/nJntcgxs/xRY2YLxusDF0FaMDbo6ts4IFEBvUpT1Oc9bSdP27uDnWvLrKzuIsU1msawMRwz3NpiYzTkxMYm671KVVNSot/zRANCRxcFY3WSZ20Cn9OmmZMe2kxqwuFtQWHUsNOJoL2yHqoSj6GwOtaI+nQNh2OKosuTk5jTsVoGs6jWY2oTRVFQ+ESwidJl2S4M3rrcQmHoFzbXVoW6DWxubem5zR6A1lt84TGi3ytZVk495lxeXefewszCtEkT6sv9/pwRO502bG5t0StLyqKkbVudcBlH06mahbPQNjGfL1EtRMnU+hT0ngjqSL5c9ehSyGMS2RxOqdtECI6VJS3DYEQ9+bLqyLQJTDuIVtVUegPBh0g0FtvrZ5Z0YDSa4h252PbIC6KHgpHH86kzjB/+8Iecd955Z3o3FlhggQUW+Anxgx/84BHZ6f8bZ2XgSilx5MgRLr74Yn7wgx+wurp6pnfp/xxmvW6L8XloLMbn4bEYn0fGYoweHo80PiLCcDjkwIEDj9mb66xMFVprOffccwFYXV1dXDQPg8X4PDwW4/PwWIzPI2MxRg+PhxuftbW1x/Wdj786tsACCyywwAJnAIvAtcACCyywwFmFszZwVVXF+9///sfctPxUwWJ8Hh6L8Xl4LMbnkbEYo4fHT3N8zkpyxgILLLDAAk9dnLUrrgUWWGCBBZ6aWASuBRZYYIEFziosAtcCCyywwAJnFRaBa4EFFlhggbMKZ2Xg+uhHP8rTn/50er0el1122YOMKZ8q+MAHPjB3TZ79POc5z5m/X9c1hw4dYteuXSwvL/PKV75ybtr5s4qvfe1rvOxlL+PAgQMYY/iHf/iHbe+LCO973/vYv38//X6fK6+8ku9973vbtjl16hSvfe1rWV1dZX19nd/5nd9hNBo9iUfx08Mjjc/rX//6B11T11xzzbZtflbH58Mf/jAvfOELWVlZYc+ePfzar/0aR44c2bbNo7mn7r77bl760pcyGAzYs2cP73jHOwghPJmH8lPDoxmjl7zkJQ+6ht70pjdt2+YnHaOzLnD93d/9HW9729t4//vfz7//+7/zvOc9j6uvvprjx4+f6V07I/j5n/95jh49Ov+5+eab5++99a1v5R//8R/59Kc/zU033cS9997LK17xijO4tz99jMdjnve85/HRj370Id//yEc+wl/8xV/wV3/1V9xyyy0sLS1x9dVXU9f1fJvXvva1fPe73+WGG26YO32/8Y1vfLIO4aeKRxofgGuuuWbbNfWpT31q2/s/q+Nz0003cejQIb7xjW9www030HUdV111FePxeL7NI91TMUZe+tKX0rYtX//61/nrv/5rrr/+et73vvediUN6wvFoxgjgDW94w7Zr6CMf+cj8vSdkjOQsw4te9CI5dOjQ/PcYoxw4cEA+/OEPn8G9OjN4//vfL8973vMe8r2NjQ0pikI+/elPz1/7z//8TwHk8OHDT9IenlkA8tnPfnb+e0pJ9u3bJ3/6p386f21jY0OqqpJPfepTIiJy++23CyD/9m//Nt/mn/7pn8QYI/fcc8+Ttu9PBv73+IiIvO51r5OXv/zlP/YzT6XxOX78uABy0003iciju6e+8IUviLVWjh07Nt/mYx/7mKyurkrTNE/uATwJ+N9jJCLyK7/yK/L7v//7P/YzT8QYnVUrrrZtufXWW7nyyivnr1lrufLKKzl8+PAZ3LMzh+9973scOHCAZzzjGbz2ta/l7rvvBuDWW2+l67ptY/Wc5zyH888//yk7VnfddRfHjh3bNiZra2tcdtll8zE5fPgw6+vr/NIv/dJ8myuvvBJrLbfccsuTvs9nAjfeeCN79uzh2c9+Ntdddx0nT56cv/dUGp/NzU0Adu7cCTy6e+rw4cNceuml7N27d77N1VdfzdbWFt/97nefxL1/cvC/x2iGT3ziE+zevZtLLrmEd73rXUwmk/l7T8QYnVUiuydOnCDGuO2AAfbu3ct//dd/naG9OnO47LLLuP7663n2s5/N0aNH+eAHP8gv//Iv853vfIdjx45RliXr6+vbPrN3716OHTt2Znb4DGN23A91/czeO3bsGHv27Nn2vveenTt3PiXG7ZprruEVr3gFF154IXfeeSfvfve7ufbaazl8+DDOuafM+KSUeMtb3sKLX/xiLrnkEoBHdU8dO3bsIa+v2Xs/S3ioMQJ4zWtewwUXXMCBAwe47bbbeOc738mRI0f4zGc+AzwxY3RWBa4FtuPaa6+d//+5z30ul112GRdccAF///d/T7/fP4N7tsDZit/4jd+Y///SSy/luc99LhdddBE33ngjV1xxxRncsycXhw4d4jvf+c62mvEC2/HjxuhH652XXnop+/fv54orruDOO+/koosuekL+9lmVKty9ezfOuQexeO677z727dt3hvbq/w7W19f5uZ/7Oe644w727dtH27ZsbGxs2+apPFaz436462ffvn0PIvqEEDh16tRTctye8YxnsHv3bu644w7gqTE+b37zm/n85z/PV7/61W0Gh4/mntq3b99DXl+z935W8OPG6KFw2WWXAWy7hn7SMTqrAldZlrzgBS/gy1/+8vy1lBJf/vKXOXjw4Bncs/8bGI1G3Hnnnezfv58XvOAFFEWxbayOHDnC3Xff/ZQdqwsvvJB9+/ZtG5OtrS1uueWW+ZgcPHiQjY0Nbr311vk2X/nKV0gpzW/ApxJ++MMfcvLkSfbv3w/8bI+PiPDmN7+Zz372s3zlK1/hwgsv3Pb+o7mnDh48yH/8x39sC+433HADq6urXHzxxU/OgfwU8Uhj9FD49re/DbDtGvqJx+hxkknOGP72b/9WqqqS66+/Xm6//XZ54xvfKOvr69sYKk8VvP3tb5cbb7xR7rrrLvmXf/kXufLKK2X37t1y/PhxERF505veJOeff7585StfkW9+85ty8OBBOXjw4Bne658uhsOhfOtb35JvfetbAsif/dmfybe+9S35n//5HxER+ZM/+RNZX1+Xz33uc3LbbbfJy1/+crnwwgtlOp3Ov+Oaa66R5z//+XLLLbfIzTffLM961rPk1a9+9Zk6pCcUDzc+w+FQ/uAP/kAOHz4sd911l3zpS1+SX/zFX5RnPetZUtf1/Dt+Vsfnuuuuk7W1Nbnxxhvl6NGj85/JZDLf5pHuqRCCXHLJJXLVVVfJt7/9bfniF78o55xzjrzrXe86E4f0hOORxuiOO+6QD33oQ/LNb35T7rrrLvnc5z4nz3jGM+Tyyy+ff8cTMUZnXeASEfnLv/xLOf/886UsS3nRi14k3/jGN870Lp0RvOpVr5L9+/dLWZZy7rnnyqte9Sq544475u9Pp1P53d/9XdmxY4cMBgP59V//dTl69OgZ3OOfPr761a8K8KCf173udSKilPj3vve9snfvXqmqSq644go5cuTItu84efKkvPrVr5bl5WVZXV2V3/7t35bhcHgGjuaJx8ONz2QykauuukrOOeccKYpCLrjgAnnDG97woEnhz+r4PNS4APLxj398vs2juae+//3vy7XXXiv9fl92794tb3/726Xruif5aH46eKQxuvvuu+Xyyy+XnTt3SlVV8sxnPlPe8Y53yObm5rbv+UnHaGFrssACCyywwFmFs6rGtcACCyywwAKLwLXAAgsssMBZhUXgWmCBBRZY4KzCInAtsMACCyxwVmERuBZYYIEFFjirsAhcCyywwAILnFVYBK4FFlhggQXOKiwC1wILLLDAAmcVFoFrgQUWWGCBswqLwLXAAgsssMBZhUXgWmCBBRZY4KzCInAtsMACCyxwVuH/B5TKluC+fASLAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAGiCAYAAAC/NyLhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9y68sW5Leif3M1lruEXvvc+4rH5VZjy6C7G4IGpAAH6WZIIAAp5xxSHAmAUUIqBFrQoIjTjkg/wj+BeKkJj0hRIFsjQR2QxDVJLuqsvJW5r33nLMjwn0tMw3Mlse+xSLEzEpV6aC2A+fec/aO8PBwX8sen332mbi783q8Hq/H6/F6vB4fyaF/1hfwerwer8fr8Xq8Hj/L8eq4Xo/X4/V4PV6Pj+p4dVyvx+vxerwer8dHdbw6rtfj9Xg9Xo/X46M6Xh3X6/F6vB6vx+vxUR2vjuv1eD1ej9fj9fiojlfH9Xq8Hq/H6/F6fFTHq+N6PV6P1+P1eD0+quPVcb0er8fr8Xq8Hh/V8eq4Xo/X4/V4PV6Pj+r4M3Nc//yf/3N+/dd/ndPpxG/8xm/wr//1v/6zupTX4/V4PV6P1+MjOv5MHNe/+Bf/gt/6rd/iH/2jf8S//bf/lr/8l/8yf+tv/S3+4A/+4M/icl6P1+P1eD1ej4/okD8Lkd3f+I3f4K//9b/OP/tn/wwAM+NXf/VX+ft//+/zD/7BP/jTvpzX4/V4PV6P1+MjOuqf9gdu28a/+Tf/ht/+7d8+fqaq/M2/+Tf5V//qX/2x77ndbtxut+PfZsZPfvITvvjiC0Tk/+fX/Hq8Hq/H6/F6/GIPd+fdu3f88Ic/RPVnA//+1B3Xl19+yRiD73//+9/6+fe//33+3b/7d3/se/7JP/kn/ON//I//NC7v9Xg9Xo/X4/X4Uzz+43/8j/zKr/zKz/SeP3XH9fMcv/3bv81v/dZvHf/++uuv+bVf+zX+n//z/8zbTz7BHYaDi1AEyCxMRZg4qIgwzBEEERhm4OA45qACDriD4HFOoADmER3Ez+OMRTXOASjOnudWEboZkq/f3FERBDB3MGOYcetGKwVBcInPiTM7tWi81qEI7GaAxGcOQ91RjAGolsg63SkYAgwE1QIimAuKxdkFVGt+CijGBIpFKh53gLhrAiKIRCQk+XOH/Nm8t3b8jXyte54bcBdU9fhuEjc4P1PjM9xwG/RhgKIqIIpg4I65vfhMRz3ObR5XZvl3xfKbCioFUYnPcmPrA4CqipYSF+CGuaMSnylF47t43gV38LwrZrg7lutJVRFVFMcs1oXndc73Dbdcb0Ipc6s5ZkbvI9aaCmPv9DHY+sCGUUqhtkorQh+dMQYMo60LpZT4SnGZiENphaKx9nYz9ltn33e23nGP9XbZjNvlBjhlKXz3s7doqbgo4k4pSikF1biXZuDDqE2pqrRach+Q39Xx3A/DnPlYtRZqLEc2M0a3Y/+JBFpiufdEhaLC2gr7iH2IeVy3DTBjG4aKIqKoeOxvnK07pdQ4LwI+jh1Ua0NytRSM4R5rQms8Ixz1Ed9dFNHYfYojGE6se0fpIrFmcRCh1txvogzrXG87t8vGu/cf+OlPvuHdu/e8e/eOr79+z/VyZb/eKHqhlcJpPWHriaqCaqxl0fisQcWH4WZgPXdW7GXM5nYEF1wKLgVxQPJ7u0NpuW/AasU91nAfgo9YC0pH0i6aG4wODFSMMTytWby+0Ck+wA20xHt6582bT1FVzAyl0Een7503p8LteuP5w3t+93/5j6go54czv/xrv8znn39OWVZM1/hmBS7bhf/z/+n/yJs3b/hZjz91x/Wd73yHUgo/+tGPvvXzH/3oR/zSL/3SH/uedV1Z1/U/+/nT0yNv3r4FYFg4o713aonFJTpNqhybPXxammaf5vTwdbFoD+MVb7L5ormAiU06fy445p7GJDaJWLzWPP4AuCiMgVtspty9IEpxy0Wcxpb7hrS7942PN0N85HsljYKi3sENp4AoLoqrotbjbBrbGdX4nNHniWOjahhusW+fGw3ncni53EVh9Oy4J3ET4/rFRt6/MFguenyf+QzIZ4Q7PsKx2LzF+vLcznSdQHz3fK0j+X9ig8k0WXEOADFjHyONLYhkmJD3fF5/qS2cvIc7HjbSUBOGlAiODKdoCWeH352aO2Zg5ph1ChXzeNZLW6hFKWVCIo57fB8b/bg2c09jmt8/70HcknBaYwxKUdzj9cuyUPJZTWdi5mx9sG0bYwxcBCzOXWqhCIjqPWIjrvv5dkVUKUXo2mnLSi1KqxrBoR+Xz0hjWAgjhghtaRmEOTWv7+XrQdLOhoMuqhQFGYaNcOqUEvfbBwsl7oUIVTWevRkrikiJda8KY0ckAgpVpeR7ZGwZzmUwNO+r7SDp+HT+PI10uGAcoavmWp5rMO5baRXF+SS/XyuVfQz2vXN7vvHV+w+8e/eBL3//x/zkpz/m669+wk++/DEPRSjnM6fTKfd1BGFF6t3GWGP0Hv9URfI+RrDtlLZQWuPx/IgxMBvstxuyrKgWilZoDTNjDOO6O/v1yug7RSpucy/M56+4j+Na4jsWilneKxi2x3WWwvl8otbKsHhmZRSWVnn7eOYD79ivF56vV948PHJeVz59+ynnhwdMK89D+bDtrFIpZUmz8bOXe/7UHdeyLPzVv/pX+Z3f+R3+9t/+20BEYb/zO7/Db/7mb/5M53r/9QfWdkJU02gY27ax+YzyuC9KVXBlZhSikQkgmobJ8Yzww5gKYTcswlqRw1h4Zk6OHw7ShuMjo0nlcEJjOGPE4hqjk8kRNsDGABG0KLWVyBJE4/NyEYtKGLh0iiqS2UG6zvwdMmK/zYhrfhezWJzpUByP6DQj3vxNZpQW96zqdN/3+yXpaHiZmVomWS8ySveMBGdiNbNUT0c1n57nteQZNV/iFtvHxpGZMZ1/phmi8bzmxpzRv4gcz2f0zjA7Iuzt1rEx8DHwfPZaFEERyevLewIwuuUGj/NL0chEXDLHY94J+tbx3nHrkUkBKJiVvH/GO1FKrUfGhI+4r6UitQCKeWSZARrEOvAx8NGx/RrZioOJoNpQjWyothZZQxptTWc3s7hhxkBYajgKL4VtXr2B+I4NY5hzs5HnLiytMC4FU2GTMOaxDGIdHiGLhBFHwh+MuXzNeWmTwikXVJRaFOkROO3wItsYNMn1pjrzacRBh8daVqG8DJhMoETGqeKoWLodkFoox5JzkFzjpb5YpI4wMlYLRxHZtcfaKHCsZgdnwD6wzMZi/xgKVHVGEx6Wgjw0+PyJ/Zsf89w3bu/f8e4nP+Z8OvHw8ECtlU8+/4LHpyfcnVIFcei3nVGgD2O/3Q4EppshpSB9Qy2CFxkjHO4wbN9RFbRW+lWJuwBy22lmNAuHLZnt2RioxN4ZDFpRzOM5FBVEInCSomx7x8ypIjTprK1S64lxfY6sujhPq2Obc6lOtZ2HVnk6n3nz9ERV5ebOPgaqFSkL/idwP38mUOFv/dZv8Xf/7t/lr/21v8bf+Bt/g3/6T/8pHz584O/9vb/3M53nR7/7u4zrJTa/RFq89w1y8xcVpNaIvFVQrwETAFoVKZpwmpKhMmY9fIELPgRN5yElYJDpKCQj9gjOFOvhtHyEo5MSG2ykg7LR6fs1tqGBWUAAMh3XWhGpqJTwMxnJHY4rIc5aS0SqrWTmQNh9yegsPYNNq6+KHpCcpINKX1cCfotTTBhPjgjoyFIhvtM85/z+kQckhJEvzsxhnlc8MhLSIRyQX8JNxynzvWYBlwXsJkdqa+lEGIZLZjV9MHqP93h8hpljuYn37cYYg+Gd7bLHs7GBCWgpCQ1qZB8EJOkSj9V2Qxnzy+JFGB7QazmyLKPbYFx3fAzUe2Y38SyGFcQNTUhSSkGLUkQpjLDBrVHWFRNlDAXvM06K5zMGMjr0C93CgQ9RIOCwgiOlhUGrlVYCYqwaiEBHGA67Ob0Qhk0U03oEbMW3uG/u7KIIFdGC1cz6EVwLqrE2izhaFDSzeqmoxH4INOGeOaumAxHBNNasaqEWPYI/E401EhdEVaCU2NdkpEdCsdNBu0bgM9EJrSh6OKnY55FN5fLFZcLg5LPnCAjnNYpEIDP3iTAfRuz7l7Cw+X2NW76uCLSmnE4tHKg/cnnzwPX5kbdPj3z1kwt2u3AdG601xuMDflpRNEsHhnjP722M0SkT2TDP6w5HXryDDcTie5n1XK4WUO+EWPvG3Lhue35HGN5RMs9KtEKJ71K473FR0gVGiUIZFJylKbZHqOUGa3WW4tTiiA+qCmutnE8rtRXEoIlTUNppwXwiPj/78WfiuP7O3/k7/PjHP+Yf/sN/yO///u/zV/7KX+Ff/st/+Z8RNv6/Hf/D/+Vf8vnTCSjU82Ng/WVQ18a6NJ7WFWuNnji/ysqpFBZVqMoQwxBMGisCY7DtV55vz4whuBeeSqOuDW0lFn5pFC2cSqQI5sY+Ovsgak9mDAZGGMGOxsIandGvvHt+ppvjVE6lRr2llEDwaqWUxiLhnESgW8cpqCpLa5wfHqitUlujrg9piGApGnAQ8i0IpLSKlXi/HfWqqP+ZWWSjeT8lnVukjNN5ZQZ1T6ESTuHIkMig4W587tChzZ+PiL7thXON19tRh8GM0Tu9d0bfZzwNgPUd652+3eh9MEbUiWzb2PvGvm/sY0/H5bDvPL9/x+X6ga/ffU3fjYpw0oLVwm6dPjpSKidVqiiu8Hx9Zu8dTHlaatQ0WuW63xgoQ5QTHNf8/vIeOlSHhyrIsmBEXXLvEJFLwD49IcWlKm/PjWVplPUEtbG7cLkN+u09uKMo0iprVdYqPC0FLw1D2Ybx/GHjdr1wef81TkVqpSwLbx/OvHk88fhwopwfaadHXCvX2871w0+wsQNKOT0FrCTCSQ2tFUoFXdl2Y9939udvAEFKpa1nSqkUcZo6Uita4j2DEt/ROiP3wlwCBQtn3Rq6nEFKIB+2J3qgSIlzqUTGUmpBS6HUFmvZLTPUmYmWcFSJbMz6oWvupQxihCjYReDGUas60PgJa/tLx0UEp+nVSq5jiFo0kjVPP8I4cGfvN2oplFp5enjg4XRijMH25pGnc+OH/80v85f+u7/E//qf/hM//tHv8eWXP2Jsxruvv+a2bTw8POC2UMSxbWcQAS4YfYRDwkCroaVSaqNUpczygQjmAd9161GqEAeN+uWwcd+fB4xvEfAlSmIW9tA9MjD1kU5wOnEwH9i+QavICLsiKKhHwCRQ8TARZqg4D48nvvjiu3QtnC87N4vA53q7/izm/lvHnxk54zd/8zd/Zmjwjx7/1//bv2KRDqJh9GthXXIDFGWtBZOI0BBBexR3VQVtDTQWow0omuQKF0wlov5hVL1HXNIU77FQliaHjTaBscdDKkoUqwNt5LaPwPCJ6HbHD+PaIqyJjKoW+jCsJ9SRsKGpoi6UIqxLoZSK1obWhYfzA+vSWFplqcrNIisooqxro7bGujasnVCtFK0sS6WVQtHC5hoLTYVlKbSqoIUh+TkakM6yFIYr3WFcL0dth7GzowwD23dqyUK2DW5WwkiOTi1BnECcjXYYiCJC357Z+uCyG88//RK3Dj7otysdpbvgtw3VOO+4Xnm/Gb13fN+DpJIG82ZgPeBA8c7YBmMMrmMEpIJTxOJ6AxhmdL8bNIQ9M8HqwtLCmA3I3CuyxSqRaTpwHZ3iQaJZyjz3XBOZvhEkjeFBhjmtjTfnxlJjbXagm9C7YLaFIc0aYs0MrbJjWVQfCO/f72y3ndvtEr9vlbYsPKwL56WyLpW6VuqyBizmC8NuAX8OZ7OsxTpU6XEv3LkN53od9H3Q+y2yFgnHU1SpKtQilFrwzLiMyAhmFfI2PAgR5iwJeEhRvCzs3QNaMqNmQDW0RKZYNa59rUipuFZaW6gamUwtyjYcQ1hKBKetVdbzCSuNWheWth7nUlVu3eKaVVhapS0VROgu1NYo6Txb08yogd5jjadn2j0B3CQazUzs0gOMi2srnB9WlnWlLg8s6xokm1p588lbTuczT2/f8smnn/DNr/yQr37yJb/7//4P/O6Pv+T3/tMfsl2vRyal7gzPGrJUTucla6iGSWFdT5zOD/zSD34QmV/WM4OPJQkKRU1yOAGHq0bmVCJT9YmuZN101ml1VkbuyHwSYgLBUlVqrbRaeDwtdLlhVnGUsiw8vXmk98Hp9IjJwi4n2sPnPH36Bdoap+F8/f7CSPTo5z0+Clbhf+l4/81XFPZwLBowzMPSshbkFBWMyF5qqdAjFBRxpMaiFxH2EREdgLjSllgoPgb4fmD2p3Wh99iQtRh9xBIuJdh+kpj4yIhCVLnsO5ORZy5IKcFYHIZKD9jQnbos7D2KuzDAI2IstSXkAksVXAQtjdpW1mUNp9WidrEnlCUiYbhqoS4L0s4BU2nlvNRkjxW6FwpOVViXQlsCnjGp4eiKULP+ZijDhP36gSJJk7DBoMQG6TttkhWGsVnBx47bTlNQjaJ3l5bcv9gQfbuw9SggX74JxyU+6NvOSJ7k2LZwFjbYrzcuPQgKvu+I3OtQJiWysNFh7NiM/KXkPY3sZ+9+sAL3PeFhN8wmVJSGUif+D1KiDhW50MDzXpsIRQOyu8mgh6VAi9J7wDrhXO9EhTEq9EIpkrBaFsqlcVrLkU1ety3ZdBLOxYN55wLXW8BWirF1o+/KfrvSbwv7WlhriRs8jVM5cVoreNT7nq/XCLCAJoNuRjdjG4Nti8CqFplFrDTkSlGhlaijSLI/N4v9FqxboVs4wWGDpWTCooLUxrY7e4+iv+a99iS6tFI4L4VlbeFstVJLwIpVg/m5JfuwiHJaImtdziekLGhttLqwthZEDhFue0CPVYXzWmmnFdESAV6r4YyTNBOEHPC+JUsTXIRu8TskjPZkCV93p6gfTvF2CcclZeX88BBOty3gme3gnM4L8JZahef37/n6+cLz84Xbxdi3W9Zhjb1nPZPC+qFG/RDHRVnWE6fLhVrrrBTTzWgtMtWAwRs2HZdEPVdFKVnT8oRe020dhB4s7JtmpuVEMO4HE7SgIhQtcc8mH8AjOWjLwul8opSGu+KulLaitVFqY1FnPUVgb3xkUOEv6pgYKqJ0ArtfS2HzHvWKHrfmJEotsKlC7/gYGEqrAfvtBcZto4/B3uGTZNt0Im3fMzo9lRob0o1+23PhFh6XJcBBi2h/Mzi1xlKFgeO9Y8PY3HlYVkSUjjNuWxgpgzcEjX63gfc9DKALD6uzZyH66sbuwWA6LQtfC1RJB+CxmARhc6NKEju0cmqxWa0oa4lozFGaVjzp7GtxypKbvywMEQJRjZqKoIgr2/6Mekfc0dJQiQh2YBQfuQEEpWI+cN+pPqLQroVaGtexM6yjPtjGwE0QV/Z+iSzNOsPKEZHvNtDRwyHuA00WW7cOvee5lbWtURewwdg2hsWaOLfK0BJkjm704SyiLFqwpSDdGd3ZzVhroapCSQoxQYZ4qC3qUC4wjN2CQbi2ilQJwsKIulxR5dQqewtorfjg/bWzZEbipdDHoHfj2o0mQmmN9rDyg+9+xvW289U3z7x//z62tsBTiwBrklRKXXk6nfji6YGvv7mybztjdLQKtSqtFS5b57bdGOawbPzy+XNECh8unevlwj6ipeJUnT6ipYOEpuvS+O7bJ26bhSFzY8+1tihYmZm7MsZO9TBstyE0lXTkhhDMzGHCGWcoWBGaSBjn4TScrRtDHOnKdauUUllq44NbnE+FPfkY7s42Bqcq1FKp65mlLlFz08K5aRhTkySIGKrwdKqU9RywJAWvgWQsVRimzFJPt42qSUCRFumzCN4C3ShaUKn07hHcVWVtwrIulFIZLpwfHlhOJ06PbwJyU82As1FK4emTN3z6S99nN+N8Wvjyq0cuX3/F7Xrlct3pz8/s286H7YK8jzVOKdRa0OuV8v497z+8i6xMI+M+nU+0Vmm1UdfHZMDGAiqTaamSZNtweC/K3Pn9o05ZJRmebpSlsG/BfK2lZvvIvTThPpm0TmmN9eGMSMFNwZRaKj3Jc8OhnZYM7MfPb/t/7nf+/8Hxyeff4dwiOpmFXdz5ZG1oMga0LhF5mPGk9SAmuAaDpuMspSLLE5KwyN6Dsn1SQc9LQgZRvF6TJFE48UmpAd0MY9E7GwmJ4qjhvNWF2RclGud24CyC8sgsOg93HrKgHchkbKStD1oSLEQFUctoCVprR+ZQa6Unw27SjDXrXMOCSt1y05UaGde2GzMwV4lNDFHIX8+nLMYL7VSj3WA41R+SqUfAkz2YjaVEP5CmkbluseiVgFwls5d9GI96hiw+a4mMY++OjC1YdMnknC0Gc0NNp9R7bC6xqHWRz3TrzmPW0a0/xebJe6hi4CvwSN96nttpBNEBOL6juyfZoKbjikxCNWBYykrL8v8+DJGkwpTGqcUFWGZtQcRQPv3kdBT26yLEy5KR6lBKZV3PrHXldHrik0+/w5u3nyDqtAqfP51Z1gVRze+z0ErloTW2rlyuN54/PONstDRSo8DlemPfB8Mk1rkon336yLqcggknxlo1yB0lexMtAqCmwpCCjah5uSdiQTifWcf6VE9o/r0juQ6NR5I3NgskKI8SSEKVyRck1odYEj+UsmQ7S+DJCVcKXkt2ByS71oP+3pYkNWmNTNAj41WN5181CCWYUVpAZg4sj2tCf5F9zT61pbw5vqeUFkSqzLjEOHr+RvoT1azljRGw8xC+evf7mA3U4fzJI2050dqZ01poNSDQH3zxhl/67A1mxu16ZWw3+rZxu9748O6ZDx+e+ebrb/iDH/0+1+uF6+3Kvhm3rbNtFz68+yrWnxYeH95QPv0EWoNaKU8RKCpKaQVNB44GjCsSjlaPx+MJZce+K/SDPIMHkUe1cH7zlsc3bzid1oCozw+4RdC+rJGF6z6CVVsUXyrnNytv3j5Ql0ancN2T2fmxkTN+Ucdt33NBCi1TYXywtBL1FtFwXGb0EZh6mY2pquwWUYSoULUkdFG47jsiTi2BXc+AZO/jMNqtCCo1GFtjJEkiNhkEdXUkSy1ounE9t3RcpUiyiAj4JiMd3CMyIqj3t70nbBFwhuq9N0yKJu4cmcw2gl1XS6HVktBAiUg6+3eWrG+pFpxBzY1XVajZB4RNBzR/TviZjEKVYJc1kTscofFvFaGIsCftXTITnpRzA2Z1vBJGZJjjxYImWzVrTkHPHpMCT9SiLBtUcUNnP4pHaFC2+RxmIb5gBnXfs27oqID1IFYMi6ZLTSfinnXGNOgvW6yj7y6hNxz3gE/3PtAS567i9zYgCQilSLJbpQbrFKe2hNs0GqXRCVEqffR4PrXx9PSIyKCosSyVZWloKbQVxhbfsfcdiB6x9dTYk7bso4NUlhbU9qhbRT2YqrTWiGpZQGnakiBRhL6HM2GMg8SgyW5NygM918qdkRf3sFCYPUIiJHwsB9ln9lQ1lcz8wcq9Plx1sn3zLTUIJCoS5JSE3IoWama3pUTWLxJEj0L2vM3GYsk/pmjCp8G/CHhzrheBRAwmCVZIel58S5u1HwEPONWzni1iBKnP6ebcbjfMBlWcdi34MMa241uht0pvCw8ilGWJLKm9AX+ArH9vW+d227hcLnz/h7/E9Xpl225cLzfeffOB9+8+8Ic/+ZIPl50+oNQl4bskbmmyMrWirWQQK0cpY0LIk/VJ1upMAuouWiJgJPf8ZMRqCRuXpZTZS1ersi4NBPa2czqdKMuJZVmSaBPXZgg1g/Naf36N94/acb3/8B5MOOtKKQtNY7MsbeLWBS0Vs2jeqyXS1qIFKcEsMw9jstaa9PJKa2FoS3FOS0sMN+CJ3ncw41QL7lHfKRbGsqjSkn7bzehu7N5pWaeAQqmxKUtV1hpptyDsNuhJ7W4lmFdmQlt2IJzfUlNpA8eI85d0uiLBTDQPev3SClULhRb0bQCJOllg9FG/mpFuK1DmVpbDxQSxxIQZjnoaiyrJopQ7Pq4liCQZRgd9HYvsb0ITAp2ITIsKmCT8FXBOlaCnM4Su6bxwWtYV3CSMjw0EZfIkzZRSokdFE0I1K5ElVqWUOH9TwTvRGGzGdduPjBPWCDayLqViWcvSg8zhDioW53alDwumlxqLwnbNWmmJesmsr4wRqg2OUZrQquR9qZQWQcq2eTAjEYpUHs4L7h28Yx7UfxzKqbI/b/S9c7EdkYeEKOFmg75v2BjUdqKtQVS4+s7eb1mjU1oVQJn9e5oG/LQ2rrazDWOM7fjO2dQY5WRVNGtts+dOMnNRStREIIK/GgGlUnB1xgjHEETaVGlQQTXW8lI1aOYCqCNVc70Jro1hPZx/rawZhAkVF8Ml1m/LYE6kEh1s4YBbRmAugms2RLumU84m30Q/WpJifES/liGYCct0xC4HhC84FGeM6CvsPqJuLtGbNW4b1gcbF3rRcFRLxc1o5wfqurKswRYupVLLitRAAcxg7LdQV+mdy/M7fvLjn/LTP/yK3/vd/8BPf3Lhw2Xj+bZlHanSlghWag0iFyXq1bOdsyTaMCADsXDI6BQzkGwRIbJyFWqr2dwcVgLLSrVKKr0UTmuoYvS9cX54oi4PnNZTNoQnA9EJdEaEWv6ckjPUjAcqnz+th7zPfNC2BzXmYX2gamHRgno0iprAwkITAQX3Tt9vgCBSeKwVckOOy/XIXB4yS3E6fXumSEQ259rAB2bRyKlaw4GpMMag2y3gp1I4tSUiPh9YvyISGclDbbgP3Du32zMilUrhVCpOZFJjHxRJtYES1zKSiVjrypL9WviObVtAG1o5lxVN52A3Q0pDy8pTadlw0/E+IHtszqUh+x734GZoWzhJASlIvwVWHZVaFoklJGPQvWNEFnGWuG63TrdgxIkIa1lYRzg1Y36fwqkUfLLe3BCMJbMRs554e2RfD6UGY986w4MogQT7MRzmoNtOQam1cFprQpDxp2iQZEQKp3pXDSjS8dIQqdE7dahlKGg9+necoN27Wbw+acNFDa8JAdaK7UZRpxSCyKMriFB8JOsts5jMGOzktBb1R3PHNfrO1AZNBO/PSBfolcWMtUY2Z7alDJBwpqCPZ6bEWbD+4EELpT4SDffBHDXreDeaBoXc/Yb3gcrOQzPKKQKYaM9tsM3mfeCgnRS2MVDpSSAI5psTWVurlhmTInXBh+ceSehKSlxj7/kMYt+KFLQ09v0WZCqNOmjJ3sVx2RklIFl3KHUlI7fI9iWer5SGjxv4TtfkjkpB6opLUuzVwRWkJhx4o08mMfFaULzHuj/6HMuK247ZTpeeELeg7RyN/0Tt9P2Hr+KZSgW7UUoQX2wfIdOUJJTzeWVZgnily0NA9Vp4eDwlyzhaBL54Wvjs9B3+wg8/5Q/+45f86Pd+zP/jf/qf+PoP33MBrktD2inaF0qjLAulZuuNRNnEcNDOp2/f0lowiB8fzgyCWSveo0YohSaF5dxYzye+9/3PeTo9JGEjgvjWhNOp8fTwGPt6KI9vHtH1gfXNmba0YCK2SoUj47PbR9aA/Is6lhIRWqJbAEnhLllnGuy9YxqwX9QTgq1ztei7iCgkeiWCsTVY3bNnOaAYIXq+SjbW4YaNEfqEUqg1oDVzC1058WTuJfU0Yal9GG1SalWCxg0JLyoypYOGRaQtFml1IbKdzOJ8SlrNyMeM3bbA+FWjlcXj59seC0uJDKnbyCZpo1SjyEAkKOXdezDHiqEaBHB3o4yBpJpC0aCYuwXxpeiSwbExxj6BI1RbwoOW0kDxgLQEQBR1vc5gJFOpohoKI5ZyPyJT+y+uzyyJAprQEkmLt1S0kBrGMFmJwQQr+T2zOJyKGmEUKup+OMarD1R7qEYI9LEn4y9qi5q1zjG2YBQSNY9WYq34sJnbIuZHG0Q0msc/VJSlarLwiGwjjaSmvBBZQA/ppRbQLJ3ZiB4GKJyNYFBSc08KeopnH9lxSDxFMN2YOnxdolZXpYZahO+pQBICJhxNuyPh7sgySlgr3O2An0nIzRKm3r0jWpOBmGs5zkaZ5AozrHcspclEKu4dYTB8HM+nlnHUXcCTHdfCCboz+oSKQWbLrBHBTPZ7tQbR1D3ofdDzumuL+0PiFyoFLYOiIVJgxLnHgNIcQbHusS9zv7ZGBGe+M8YtJcKEugTiYv6imRhFpCHaMTU6Rt87IhU0hA1uz0k1X9ZgSWql1Mrt+RxZrijt9IBaQSm005m6FM6PK9/7/DNEhcvtyvV2S3ZyrosaslmqypqyUCh46XxlnWVpnNaVtVZcS8KiASlaMgi1xrXV0mgt1tJgpOEVzGDroYNo5lyvG1U6o78QEsh10LPccsiB/RzHR+241hZGQIg+GwgnMGV1ukf6Tsr0lLypU/fLs5ajJRzOMDCJXopagqwQxf+guUfRMiATM49G1aQ6L62EU8xoxn1Sri0ZN5bsRM3+Dg366cSRdWRW5OmIU2qIoALP+rZnf4xZRqcetZ+5acDTwBCLr2c0PCHGMdujjTYEqiPqh/hp1NYksgcSHiRtmTql+mG84vp7GN5UTZiySAFDekaznr/zeFKzScSi0VFsGvDJxIjnNutV7hYqGRkAFJGg5BcLlYwQFUhnbkA41zG/swE1zjPGyA0WUGBTTTmuwW0EDFi1QFV63xkevEvVrPuJRx2JgI9EHF3SEGSGFvdjUCRNoA2GFtTSCdSSmVtkRPhdGmmMAQhSs/6SsKwNOGS3JKSz3DWIDeVeViulYqOnnBgHFFRKvNbdcQk6+oT9bE+412dtMA4zo3tmKUQXm79Yy0FmShPWB8MGV4s+xKIKreCeQYtBLXlu98jE6bEfJMkz2bKwj4FKwUrCf1PeSQvVOOjzs4E2lKJGBjlx3Z61Gh2dMmuVuU+AYLRJ7D13gyoROGIZEyScNgyRCOii/zIdlygi+7He3EYKJ0dtdU/HhfWE30r0fDVPHcYIusKmBzw5epBKln3HiGyr1Yr1a7YjCOvtlkhPtgwUWB8Xvvf9L9Cl8s2H9/z066/xno7HBtZH1gYDvl1aECvA2W5X3HqQZV58N7dgfA6yPSR70lpbjvqoec9IZ6oWdWoS1rZ9g9qzTSgPAUGOdWb3pfYzHx+14/rOw5mzXFi0chVJeZtoHi5KNCRTIzo22LctC4yaqu/GGCA2aLVSUx/sugUuXjHqkoVNM249YBvF8zzBRLvtHesbWkOPrknQQ/veQx6lRUe99s42PLK7IbTTmmQHpxt4D3mg88MDUzx278Q5tHA6nVCb5QaHvlN0gRbpPZ4OawtRV5rgahRp2OiMfU9BWgVxahWKGeogbc2orLCUhvdbwDO1QrYNqChqN8o5Ns3eB+oSdYD9gp7OmERtR6mI7yid9vZNRKDmeAd6qJRLa/TMaDBB/HIIiF6vt4DihtH3K0VaMKJGx1xxOj467XTKGiTsW7INgfPjY/YmOftujFvUv0pbksIdDMfRe9RnSgUf3Lpx3Qe320BrTXaacOsD8vlIBh3dBpdtp12C4NBmE7cL3fagv0tm+hL9Y8PgoYCU6INZlsqePmYSE2Ts0C9cd6diFDxUEtJ4dVcqHI5H7MawgCMr01DGn33EOtIkO5g7mw0uG0G+8GiQj4Xj7ENRswMSDCUG2DqUkfBxRtDRR+yHdI9j3Hrn2kk2n1BbXHcRYXhJbT1jWRoWNX76EBaFVpV1qSypRL+PQfGoZ5XWcIXenbHv8fpTZA/RSB6IQlVYnx5DqBdhuw2UQS2F9fwUbGITxh5oQMnGbZfQp7R9UNg5P5zR2tiNUGIZBqOznN7iEmSd7dYR2yjuLE9vgiVpTt+dJSINSg3lnj4GfRsInVpjjTdVfETGeNJCy6ZlrcL1siPWw6ljRz3w8uE94oEWbKOjtfDZ95745V//QRjF6DLm/ftgmT5/+MD1svPlH/6E9x8+cF5PrOsDrTVOrdDHlvtscD49sLty7bDtN3rfg4Qjb3k8LXzyySPf/+F3qVKw0dmuBd+jBi8SdRpZlLKsnE4rWqCIRRN8sp+LFpr5nyjbgo/ccb1588Bnj08s7YGeFGQXOLWgWYsKxaJ7xl1QNrQGMUOZMpwOvoeBJppK9xEYr9KpSwutsIywGbOHKSRWJqtOPQUuW0WpB63ULT9TY/l1iyxAMNrpRNVC1Ro1oN4RG6nqUbPWIUhPnL8U1FLOSWDcrolaaJzXIyNT65R1CSzfC7W1qO/sN6Q2ugexQEUR2xCMej4jEsSVtjR8v4QjWxbQJWAaAcaF0sJx9U5Kzgxsv1LWU0BRQ+K2jhuMG2VdAi/3gL9suwIWdSBKZgWCj+dgL9XC6FO5wOm3SygvoDl6QcA2sAu6tjj3iLYEH1tAQ7UeaubDgLEhGnVGGynbA/i2I2W2DZR4rRk6dqRqRNYIPUL5ICJUwS1Ed7cBxfdgFeYIkFRrjXOLReRf2qHMULMNIIrghUMMlVhXWoKe3k0Qy/pZSUhZou7AbHgv4bzcc61YRPGBxQjDo8YVbFWit0eErWdB2Dql5I0CjIona1PEjjU4XJC+R9QkFvc8Terw0AeFcMz9xd5qS6EgoS1YSjhLM9qioC20DlHUo/bYWuqBEiQK23uMXKkVsqmW7Curp1jjuM58EHGnndajXjW6Ib5Fdn06RZaaz8H6HgHo0gDN7N1Qu1GXaJoduW4xw7aNukad0jzq1/Qb2EY7LQlZR4a6bzu4o61k5pPZm91CbLlVphKLO4x9UJcWz16Ilo++Q7+ynpcjOEMKPgRcWZ8eo45VG8v5keV0pq4r9fTAZz1g2jEiYLzdNnofCBIOunfG7cqH919xvVy4vI++sdEHfevcbhdufcNL4eHhxNPbT3h88wmtrUi2oEQrftb7VFgyKCxqnM9P9D2YhxPOD3Qpg61Jzvo5j4/ccb3hs08XTssjpgVPCad1iYwLVarHAgnQLZyIThbeC8cVNKdgkIVxTMfVWqb5kxIbjkuK4F5T2wsY1xTjDTbThACtX/NnGteY1G33TmkrtbRQ9VANp2hGqSF3ExiQ4tPQl4KMms2M4QCmAe6uCW8YYp26rsTsrVAISeVY2nqie6EPiS79fgUxlvMDIvVgI/m4BY11WTEJsVPB8f5MXRqild6z98sN7zfq6Yy70HvCe/slzrNEE6dnncT2LeDRUjHC0KsK1i9oSXURSzgIZ+zx3ECwMSn7N6w/o61iJll/MHzsYANPNfdJ9mXsiEYLgWdD6eFccq24t4OAIX0LCmQajHhmMVJDSqwT98guxYJuX+rLfrvCuN3iuYmjZQmtSA9SiU4msEkYdI97Vkr0CGkJpACPETaq+aBFIqjJniFRj9YGiTUuox/1BB9yOEXc0UKsJy3RcGsDvPNi0gou4bg8a4yh1heOwfstHZdjIyElwHxnOi6nMGR+psXUAzQ0MEtFsv+uNsWlwaStjz3YoK2GiI1En8bY96jvlBJaipNHOgZlbQEPWvQseRKQypIObfJpbUcYlGXBTdMBSGbboQIyZ1eBI32jLBGcxfcMuNJu8XPPmg543JNxoy6NyR9ClX3bQ8C4ajiurMUxbuEsa41pALkQtutGbdEHZRb1Rh87tl1oaz1QFiklxnWZsjycI6DUSmk5w6012rrQTskCLAVta8LogRTcrjf265Xr+3d8/ZPCh3fvEIRvfvpV1k0DylRCy/Tp4cTDwzkVMQo+OoJHq5Bl7TbZkloKdTfWdeV2+8C2z/rprEW+rHf9/MdH7bh+8Cvf54efrpwfPoPzCS8FG4PTOhsDS274MEBFtlSXTjHOCByi2U4qBnTAe/CoVA2RFkYtAHGK56gDSkAdeBTY7Dk2q8wIVzPcv8XfRQiZw2iQxMMoePZXqFQKKZ1TWmjjiVDrCfotEquypOp2OMfS5KhN7ZajSjyK6uvDGcmsTSg5OkVZHx5Dosmcfrkx9gt4OK4wziAu0ftRajZwz1DSYL9Ql1OMThizAJxN2bVi2Vvk3bB+g7FRWsvs04EwQnPm1CCK14pG5pv9OMOzNnn056RUVo9I1sYWWWGJiHbkoEiZXaTAzqwTCoV+BBZTvkck6PSHon7ShKPCf2XSxc1nhBlZEQTB+iAEeY+MmFQTEMnXxjOJ7IEkOYCwxZoAujlTrTv6vzU1NCU/MwkY3GV14ucTaglDMAkUwn689n4rkt48VU4kv0Uap2D/6LxtzP6mVJjkmAtg1+Mze0JcxzXm947JVZoN4juiQeuOAKLkGgfVyvCBeSqw2CAmJdQcnKrBpIMQ81VleI8gMmGpEOHNmsl0aAJaG5MmU0rNYDMCv1lXPgLXzI6Hdaa8FtZzjUYztWQd0i1GfJhFa4KWCn2PoKhokJbcA1WIhkVEld63MO4SwUIENyWkxI42D4tAwI29b1EjtI73yQRNSSYhhbAFtDByMoL1K5dv3nPN3lU9nWjtxLKeePr8e7T1HPJTUjk9nhj7me1poeiVU3Oa71y/+pKhA1+EVRqPFMr5xA+/8xnrw8LSoNHZxpUiwvoYML2QvaR1ASmYK+u68P7y+9g7CZvKXag3rtnpua9+nuOjdlxffPc7fPrZmdEbXiuUqMm0NtejcDqdmKM0lC1/kRppeR6xHrdVlFVLOoeMPKQcxjPwuWRskRtqVtX9nCc7QuOAF/t2bHAPtdHMMCa8kfiwlCiMe0QvYQCDRWXbLZxmbTHCQmMESl1Wxr7T+46ulaIhYIt3tMSmji+Z+HKqdDPhLBc8dfpUc3OmoZPssYgIkqPfzPZbstqCpk6OdojdNyG4YFsyOlg/IlbP7lxJaSr3yewinfkcuaCMVGmYxe64Fj/O42PH9phD5bMIPUNei2uoU5fNPDJiyWdWSj4nDa7IfIT53HALOGZeYxb0gwgTLDmd2TCRcUVmlQFOBpW+zy/GixEyDhZZmSP3UU/u+HBEjegteulI4j9Bw84BE2M/HLTMRnYh4D+Zc73mZxLEDNkJTc+KHb+Zyaek0fFQtI8IhjlJO5qPo00k9lMoieOO2DzJnJQcgYzKKddqhCZSgoU5x7YMt+OeByQq0Ys00Q2IoCuv2Y9+VUfGQFtkVhOW9Nw/ZVmPhxq8oSi6lVKP7PlY2BPWTWsgELByqozMnqdgQo5AQ3CshaP17AvUWqmzPOBBbIj9WxOKDBjTR7BWpVRqMkPxweiW9gSarcDA+s4gHPu85iBNzBlxUYKYJYL4OtG8LsDoN662U76ujIcn6nqmnc5xP9eV1kLnceQIoB/+xf+WbY8Zbh++/JJRoZ5XfvUv/HdoQtK1reynM71v9H1j7MbEpg2j6JxccWJ05/q88e7Dle9+no3aCg/LguOMZeHnPT5qx/Xw9Jbl4cR2tZDZz0J6a3L0mtR1PZyOSj2cGHB3XP5i2Wr00CSgl6l8GG0UDvlvpjGaCE7UyMJ4+T2SGsvxORHpZwahNTv7c9O4IzkqQbTc/YEWLM2M1jWjzIiQ67pktA3tdAoqryYEdPR0hbLEnPsVRISSXfMVvGU0JIDd62Rzkw87hvTFTKW4phieWVJVOgyfjR53ViNyxgpYsIwmk8rzO+H5M5HDuDOjWxE0YU8SXrCUgQpeQAQAQgMEk5FhAuGMj6h0DpmMOlNaU9CgjovExj+gtUm9doB63D9GGgZ35kRnNLPlSQuf0XuciDmfKR6iHMY15BfmOgmlAj8ynIOkla+OlgQjo/W5KvO+xEun+/GAMafBl6hLHWvrxaoXONa4xOPK9ea51g6A9X5vsPw6mutAmVObpwDvoX/kYaTmv+dakxK1rslG9LGFvuccszHvx3EfOda3kbO4yOdT5Phd+M95Q+Tu5DXWgPiL1x4nfvF8YpHluf24FzDl1UauoVhLGdvF39WPEoXPd704hx8uMf8mxDw4iKDNJ9Mz/y2Ka5zMRfAyKerTgfoxJUCRvF/x8whe8hkmi9AHbNf3mA9Kv2G2hehtabS2sJYHOMf71/UUwyu78X5dsQLl1Hj65NNAmSQyKxXQvWSMt4VtSchXa6OYs65Rlxt9yoX5ESCVvO/twKh/9uOjdlynTz6nniroDZaG1hChDC2+7J5omjf2DjvB7CFIGElzno87u3UKEU1JMumcZOsRVPkJykTKG6wlpCVzpuAyY8bYNJpGarORzaoCZaG1U8CTNiKTyUZn0YZ51BnA0RaRtiYpwg1G75RswJ3qH1GDmZRcy32YkbwIboUxog9IaqXUu4GSkjg/0aOmM+NKoxoGM34fRigWcL9do18FjQwss4KYiJubynOTM5uII5OxsUUPEpI+ImouQDTHWjq6ZEV60pxrLeHslGBL5h8bezq1MKoxn2tgY4/pshItC8XDCGpRap0ZubPvN7AdN0mF/OhbGuKR4eQ3mwKj5g7SD5ejWg64CO+BAGSwMo7MbRAUcEl2muEWDj/Gzmf06pb3Ir5PmU29bviEVPNaIvOZ9y4maUNhyGT8OUVCCR3VkPWJdPBY42H8X5xboq9sMAOInplm/G4c9P/ogSoZ/Q8R8Jil1j0k1koJLUDNWp9qZkrXb4LpOm65XoOhGgzPzOakAjuYBKIwfQweJIGM9t0GQszp8u7pQBNAnAFJqm6Ek3ekLMceMYmwQGaNM5PsQbAJZ+avRK/i8NnTmf1y7tlnGK0BPiF0H9kTFmtfZzbsIx6ZjTuEnj1zRpzb3bEMbueE95BZ4giMd+ZMrRDGxUeICcwhqJF7obd3SCm084n1/MSyPqJPn1NLBNDSgkEbtT5hWTS+oxbWc6BJIrOGn9MByt19aCkISl1PmDqPjye0FEaWDubU7PiT7/nzSs64XjfOp4Xl/CksAUW0UpA6NfMU1xkHheqzJK66j5i5oyhDopHOcYZGVShqGxtF6h0vR44aUK0tGTUhc7SPYJApzm7XKJynrFBJ5tyNoNO7RTre6imMrBC9GoSBGnsoMk9po1qX6KavRr9tXD+85/3XX0V95xrCnLSgc8/G46W2dK6w71tGicqpJlRWQlGaNFDrGqMIkJDCqes5WEnXDV1q6CQWxUantcj8tFSev/lpyGCVBj3HcJQYH2FmOWLkjseJWBAGjCjIt8ahobbdOLTjajsyoGGK953Z+7SczkgSN/rtesA/Yw9auCcz0Ktkph2K8JF1FrSsqHZENrY2IoM2ZxDEFvdoEF0SbjVqQrDR17RI6K+FmsOIpu7c5CFUHH1So6cslQjuQbxxM3bb8YTQUA/ma9Ywam2ZFYLYKYOSqNv4bAweA8s+qqrhoMAQM3az6HPK+lCxNeEo0FRQR+WYyhyal0tmgQHZWQYXWmJ6QBB+nH1sTGWUIwPyHClPRVCiw61hNtj6Ru0O3DB/l+NwBHGhXzvdb3FfPAaE4lASCo/gxrhed5RwmEeztjtb36kJuWtpKQAQpJklSwZSK1UlRAhsRIuyZn1VnL1npmZOWU9oiVrg7balc3E8blf2bXr0hGmB2qhV6fvOvu+xr+XuKm5bTIQo4khbUhhA2LeeyX8GkJkt3jYLXEcFz+sOAYGeItWafYRE1u9R+dSlIanCctu3yPY9FFgmlNi3D5mNgbwT6unEcjrTr8+xj3O9dLOEXgvffP2HXC8fMDO+M34t1nEJJ3Z9fh+B5Mj2kwPZyf3u8Pj0hu989/tQCp+8fUPJidvBwo6Aecw0++c4PmrH9Qd/+BOGDx6WFa+hbt1cqGsLhk2tETFZpMK7XaMIas5QCbxdNIq5exhGiiMj0u3h0ac062JqgAZbZ2k7PfCuMBieUTOhOxiQYqjPT07iZhs6crhh75yXh4SqhCJ7Kror/bqnirXjtxsPbx5Zzw+UUrAd+vN7rl/9hN07tw8Xtss1R1IkG6hC1WACmkPfolepLJVLaTP34bSuSd4StCzBoMxM9fz2k5gJ9f4ZV2gtBFuRyLhUopv++euvwlGez4xtY9YKT+cHYgS6MVKNHYICKzWNtoUKiEo27TIiKygFSacXWZYekk3dZl9T0OY163Lmjt1uHI205owRmYuPDWklxUcfAGW7dfp2xfU5qN0GHY++FDe8Kq0E9GpakW5J7lBGc1xHQDl9MJLyLjm+xc1SWuwusttNjpFgu2QzhhDDGPest6jihJyVi+P7CPkkgW2PScIg2BbGU1WpWjANmJAxiJwzGtZNBdsB12w9aNlTBtIDCBvilD1YsiLRZeAadcY2NOL27DHc87wF2CO4h+GYCq2GAnuXgSSt/OYxAiWccjQCRxOvsX+4IBqN4FUj+xaIvRpikjEKaNsyy3K2vR9N+sag1YZKwTUo9wGzZdZXAhWoIoFe4FStqagB6qFkfyAS2xY1YJXMEGauErxKj6+asJ7CPqBWxtijjm2eZC2Ja8x6q5tjhIy8miZkTgSIJDQcqTTgwQT1Qc+AgWGHUoikwIAmsUk8qeVoKMAkciAS5JcQw01nnTYzwADH9kG/bdi2B/uwtlT9Cce1vf+GfbsF1OsEwjERViSRDTnUerSE1uusny6Pb/jku99FSuXx8TF0E2fgxT1j/HmPj9px/aff/T2u12ce1wUrwciou7HmCIjzusbE4WH4blztivU9nNey4j2hvNOJcbsEZKMGu4eoKQN6FIFVK745up4ptXFaKnuqRTAGQwMaDFkl8D6w4ewqVEL6Ze8XtIdS/fPe+eTxKUQrVXl6bLRs1tzeX9AKgtE/vKP4W4q/xZYT1oVxfaZ/8zUftne8f/eBD+8+cLncoDtFnNNTAS9MKrdtRlsbp6cTNwp77/RhoTkW7S4BIa4B+SzaUO9s2843P/2azTbO64mH04lSI4HCHa1w/fpDLMLP37A976mKD3Z+olZFCtwue8gnmbPWmDulNepcI+HairCcC1KXhDX3YGzZQFvUTYYbvm+RMcgS96smq3AYsgUkUZLQabvTe2d7/ob1zZmqj9Ezp43teuPdT7+m25UxJIZkijCeb+BOOcfkXbTi7QSbo61R18a5DUzC8NvW8RpZczT0KdaNft2Q00rVmBpsDGyLeW2jSfZhQWmN/pyG7bRyqrN/yvBrx3J46Ng32rKCC/vzDV3XUIpXQ2o4Ft87vRCQoRO09+uOu1Afa/Q3ztrMrWMS87Fk3KLXUJT+vOOtobWyaMj6+DB8G/SSGIOnKs0WWpm+Fk5TVss3ZI85X5tKDLT0kP2qNmJYau/Y8zPLEsK30ko2SKdT6jvePfaQbYEimnH55gP0aGAuiyBrMGeHgRpB/V4aG2SwGVCVlBHoxXKmp5NQA28Bv9pwxt6pqpgoXkaQUtCAWi1rMy2IQLhnbU4zcE2UZpKtLJwqWQMdHlMjimta3HBCriUdl7BmwJh8Zmy7IkQdqLX1qJOq9yBfZGBKqVkmHlnvCw6tHi0wFqhG1uk76eysYHsQmlQLskbNMSYnC9v7dxF4LafD4YcDVKosDA39HW2atPsaDFItmDj18S1vv/dL1BqOq7V2oBSzMjs1H3+e46N2XP/3//F/ZFkXGsJ1QB8DH5eMNrKLo51jPIkal245ldfwembfrjE80hR6LBQtlaYhwdLNYd+CXqoLZjuDsPQnNaSe0SK0EnJBWA+oSU+4h+aea6NmS6aJxLTZPnh3MX7psyc+efuWz77zHf4P//v/HZ9+8V1Oj2+wa/Ru1BzpcK+5Vfq1o58XTg8PbLcLX/3hl3zz058wthGjzJfG6aHRezQeiivWd9qysD4+sF231HiDt599kpwCQXQ5itk+Og+ffs4YzptPv8B9sJwWlnXJukZG5MvKdnmHiHB6+oTb8wf63hl9sJ4W5lbc956ElEJbKnU5hYG3jvWohakS83kk+3qkRAaJU5eVaDNwRu+hfl3CybrL0dy5toWkPwVl2bNG5xF8lLYEBu+Nr3/yFb/3v/57/v3/6z/w02/e8XzrnD/9LsU2bHQue0dGZ6BsLKjvdIug5CQD04qrshbnMizu93bFy4qb0/cbrksMkhTDZaGlxuItcM2A78qZvt9CjghllawTSmEpg92Fbo7vV+rygEihbxe6x0SwJgMpa4j5qrOFBEQYrfKAjR1zo3th1ZHjLRpLGQxiLL2OjVLWFKTd2T2YegsdyoKqsBSjU1CiRmjljHlkwVYqqxpNgVJYq4EW9rLydl3Y987z5cZSOqWurOsD//2v/xI//OUf8tnnn/H5d77IfqiB206/Rp1TJVRCbHRG3+jPGyOHjZoFfBa9hwvrqVGXNe9RJjzmjP0DnoMcz09v8GymD7nHECcwd8atR4vF2DEfOTG8QGkstWaGvwaC0Af7rTP259jjxGw8KUvCpz3q3BLybnbU66IeLYmsICH9FalMfEaQdir79X1kc6NzOiclHpIhCSA5tiTyQR83Rs/saTo6C3UZSVamTB3CRKEYFioeyQtwE7bblctzlB/KKcaSBHM3arE2NBT6Zy9ICgtPSFmJloOvf/rMN1/dOOXovZnNzsLNnwAlBD5yx+Wjc/uw8+62cenG7o77Tu/BwFE3pJ2yMU+59qkQbgwuUdQ3Y98tBhx5sLfWtcaU45Hd6wcDDXoyhasYWldqLayLcttT1dwH5s8EA84ZJlSZgwk9YBF3rpuxFKedTny3FT77/g/45LMvOK2PjNsHisbwxRj9MXLhDIZ2anNEW/ZxvaFWxwcsrVJbTL+Nkd2VUk+M/RI1v1K5rTemmvrTmxhkiQj19AQlFOr77QNtDZWCkKtaqEuoO9se4xOkNurywHo9Rx2urSlKPBgjMfZ8Ts1BtGUNKPrUEMG9YT0JKOr4KN8iuMSAo0EGvwFZmJAaJkRbw9TdM7QOZI6rn7qLCZ2100pZYkaQWSz76+XCv/9Pv8+XX7/j+bpRv3yXoy+c6zZC88+FTgkYLJUIqlgYJlVOp8Z1i5ET1neyChIGLqU7VKIfcFlC5unWx0HRds/x6xbrrXgEKYhyXkMSq5th+zXuYfb69HluLBhiNZTwtxHrxN1AFsJ1O71bDDtMBti6hupLd0NGTyZf9D3uPafZEpMEakpTjWQiqjjD68E4NHeWdJwiUdhHlU7l7XnFxmC77Tw+VD5/+wmP6wOff+c7fPL2E54eH1mWCJoCItRgx2bt1VgywNnpy4aPUziuHrPFpFRqO7GsUXctbT3qhTYc75kFqbKcH6CkCoyG45rX3+uIjGNsUSLIGq62E0WTOFOiFjn6QMuGbbnAJSZYi2YfjgeBYwZrIRRvCSXDlD9y5hpP4kfNNg0v0JOQUyQgek3H1WeLCKAJN5PbuJbcY5PiX5JMNfeVYGTWSHZWidwJLnFSpsqPSu5D4YCpZ58aElkm6nlvNDUkleLC0+OJ7373U07nldPa7uQ4JjHuT+a8PmrHVVTwHmPIr+5Ro0C4bXsWrx0xobnTZOXWpwwToRcIuElEyyNwafGBlYZ5TLe1cRf5LK3S9+ijgEEtTm2NXVb2PQv0BLlBVWMmUx/J3A0pplpigezD2FLc8+HxxNvPv+DNm89Y2spo4OMKRGOrD8XEMDoiHSmWIsAN90dqA/UY5qaaQ/+yB6yd3jC256C1u1FaeAEphdNpjUKFFtrjE9JOuBnbM0d/SKmFenqK6clVsRvocqYsK2V5ojfBxx4Q+IjNPpxQ4ye3h9YX0egOTKp+NMOKEEriXQJTT4UEH1OKwAkl3mRqMhAPqZ+gvI+k1ke2EsK+PVhmIggjdBlboS4L5pVSCsOMP/zmPT/+6TveX67o+wvLGt3rW7dkCEYbg2Zz+9j7wYZSKawPD2xb6LqFCn4aAlX21FuM2l5lPa3U1rhtW1yzW3QulJqajKEbF85OeHh8CjjSBvt2xf0SdYVS6ft+GKBaCktrtGXhNkks7rjf0BoqLj2JL0IEZ6eHc9RtLAR5YzpzNJH3vafgMoeSyrKuWLJcRWCYHAbY+k5TUA1C0rIG2aMP4flxDUJUH4g+8sUnhTePD3zxne/y5s0bzuspZm0VhRd9YpIztZBTMkODvo2fwDpjju0plZrae1oqqikybDPrSpBMC2VdIZ2LSgR/QFK17WjfGDYobQmkpZ1yLUn0U7kjOgKGV7uzj2vN+pBAqnPM3riRzfvqAnUq+YcTCZa9ARNpCHi/SLLuZM7wm2okd2m3oOhb1qDI1oNs1yAJPuTUgQnLOdn+ky079x/HXsvzGFErTlJ9ZrcJZk4ij4B4kpQy4JQSs9oeH6OH73ReWWrqvabdjqGtLxzwz3F81I7r00/fsjTl3Fb83KBFv0gp2SRonbY8UtqJ0k5cfEsV63jSIxs0C8a7r76KbMKN8+NnMWjOO/vlGkSsokg9RVF/j/ld66Is68r58ROGR0Oo5KILHbYSMIWPcFrjghNTcy/XK9/7zif86g++w1/8te+Fcn3f6Nbpl6/x/gG3DWw7rldrDQq5T5J6pZ3OtPWEis1uM+ZIhuiJMuoS/U5IQcrlcLDue2aJSTKRUMZuyxI0/a0HY5FvEFvBKv36nmKWYywc356z4Cz07RrRlE7Zq1iYkvOznA79dig6hBJBSew7Ke4R/JE7LCAvSDFSB0bIJAnJDojC/tivMPuCskF2zCx1v2FjZxlvM1tcePrkLT/41V/hf/u/+THn/+V3+fIn33B+e6bUU8BcxNDDORYCiYGkbhGI+KS9lzNbvzJ6Z0/5qKnt12970LRzKveyPlKXlW5bOoeoMbi2mFO171wvH6IuIcLTJ19Ql3iiX/3kpxzZcVvi1qZBXJvGaPj1zO5bXmcEHUg0r9q+M+XKijjt/Cb2iO9st9vRj4e2YyJCU81soyBlZfiWjk+oyxJMUlHEdxYVmjpNd6SudIPr1oP1K84ig+/94Af893/hL/KXfv0v8J3v/IClRUVnf/4AJadXlxgqeSwED03GUpRaFlp7EzTrMaHCbCLud2KQ9+x7LEJp52imP/rgouEXD/V0z5qXSIjDlvJAHxs62Y2q2H47WjNCdy962uoaNPHo2ZrEg8wmfArJ5rWQBtscV+Po6zuMd5KRiHPFKfUgb3H0Zvlh9D1ba6ZqiWamHvZh5L3jqDGCxzPzrMYlM8Rtp9+uWecPR79fo4wScwN3Ss4RnN9xZnnuFg31iSh5KpOsp5XbFjW7PmIvzh7NeVf+3GZc+7Vwrie+890H3lPZHHy7QXug1YBm6uOnKagZM6XKEpR1Lwt17AjOaTnTlq8ZfYtFb87QAlop68bsZLo+P+MtYLOntbCuLSViHG3nZMdF1Oo5WiIgrw1lcCrCfrvGqIWHznISkJXb1bg+v6Mw8FIYt3e4XcC36A+Zs4b2GKNwyBJNfqknXU3iAqQGpISD92tMQU32UT2d8L7howd1u6xBm60ejtId6NjesX3D9gvP7z7QlkZbVlwdHRd0K8hzzWmmATMlTyuMtc4m65pMu9hIQfOeDmnA2HAq1DUK6AIwGD3UsWfTMpOpZRukBiNSsO2arK6NmI2UEfScFeQW2ZJt9P2Z7fo17aRU7TydCp9+9n0+/Xpj90p780W2ExVqOQMjmj/riu23o7ZQUtjILWYq+fIGdaPsQRcfY2DbjXU5sbTKukQR/hgdo5W2BvxrFpGzSKHoiTf9EhlDjzpPOZ2Q1nijb44J2WDU5YlWG6e1hkJIUu2lBjwoEDWZY5xFo3jQvJW4R52YqNDah1xOMbaj6gktlfOSVH4Lw1fqelCyl9Pj8UxVCmsxanXWVhgjyD+yOGs1mgxWNc7rKSLw80JbFfGQBOvZCjLFkiVrm44gVZmVkXA9cU3Ssnnco2RgyaeEaEkIRuqIrKnEQFInAg5mXckn4zidNg10wloG7Pg+wLZk0kXPZtT2drRG7ZVszbAR5JvsWE8oOGs6GpmPzw7zyWac5jsdjiQDU9XScYHmkMpwVOPIkvCRWXQILjgxhxCBsW9E71ScW3O9wpZ1ztifEQhOjc+OUCMwSUZwQMNzhqAerMpIzPKJZNYpJTQzC8JpXRhvJNiEL7OtuPP3+PTnPD5qxwWVomceHle2UQPu8wtlecOyrjycF3j8lL7v3K4XpDwkmwWsLtCvFHHW81taDfmkfd/ZLs8gDeqJkp0pZk7pBakP1HbizWPAPj4G++UDrJ+kMjJJr7+FUKs2sBvKoCyN7u/QsbOoo3XDTLneOn3f6HtFvWRWtYOnooCUzFBGikxE1OgTxrQRzb8K4hoZT4mirfU9mgXn5i8FM80GzBK4eImCsmWjpY+dsW/hEMbGfnmH94bbhq41mWMCRkjIlIrS7s40PysgBEmHkpHqEWsF7OdmoGGM4+Hk++3egD1FAeO9+Ufi/24pKzUzM7JhVuZnAEWzp2xn9Bvat4BNS2E9PXF+fMvD7pTHL3LAoVLqG0TDcfVyYlzeQdYtmmRzqBvGM1VbOINlwyih1agX2vKWh/OJh1OQWm6X51ARqKeAh9wim7ZOKY1lfcuiUc/Zbxu3y3v04RFdTtT6wNa3HOK5s54+Yz2deHpYYEQf1H67IutjxC+A1BVLEkitjzTZ0Cyi77cLkDUMbfOR0PcrWh+pdeG85nyr0eF2oZzeBAW/wLI+RU2o75Sy0sqgVWdZG9v1guugVaHqTqVTtLMsK3VZKEvAztLBMcx3xGpG4zOoCYsv2vEZzxwBW7QdzIt22xMqjgxDNNh8ERAEtJneGo5mkBn0TQdmcWqTDIxGOsUUEM6sJ5KbCLpELAJFmaD4i/XJi/WHw2xIzp4nvrVO49rkyAg7U/hGsmEZwmmR9d0w/n7/k9cXTsUTTr///HjAHplPNlakf82aK9kE6YSjk6mYk+Z2pkgTijwgQz2gxKmuU4uyLi0JJzN7zrfNEt2fV1bhw5tPOD+9BYR2PqO1ci5COz3S6sLSGpfa8FtEdE3Px83dNXD1IrCsJ06PZ0bfeffhA9oWhlRc14hQs2H37WefI7pSysLj2thHZ9uudHN0WXNCaAiTqiraFkARr1E7k0FP+ZZWA0e+bMZPv3qH5eSlkIVqaZg1Ib25STPxGDBGOKV75pVQnwC9U9Zz/HjbkjKbtaG2BFxhUaPBgoQwZjHbY5Jx3/aMFkNFwpNFZ2NkvxjQHSkVdXIwXQ7b8zl7awe2gBVnverYjBnxSUCLEU9n78t8wAcA7xnZBktr4hw+h3xqyR4XIKcQy5yuOI0bYK7YgNs2uGzOh17oFE5Pn/BWT4zl03BwrnRdQ+FLFENTzioiz6VwDJ8crkdGqzjU0Puz4ZzWtzysK+e1cb09c31+Ztt29rIcznY2Yba68Hh+y+dvH+m9c71eeP/1V7AsUEPMdbc9v4lwWp9Y28rjaWHbPkSd9/KMrw8BuYkkLB2Z21LPPK4F8cHtdom2A0LIlnU9IKsxOiJr1OSaxlroOyaKnh9pNeZlaW2MvTBKjR7A4hQ1TGBIxZIQUEtFfcNdWB7eUNcHtC7U9oBnr6RJsOwOVQWPxmbDGTkgUjVdgnmwD5M0hVvsg1wvQkLTkkoQk7k37vsnSAZ2Z8ZNiNFj/hg2NU0TqpyGOpttVSteplDxHQ4MkeVYc6o+8974hIRjDkUZF0pVpspNbHdN59XggPEH00lMhpKbZ10rmImRwE2HHPehpJ0BTwZrymzl9XgKIYAeFH93Oeq4uIQk1OkMoi+GTHJ8J88gwjUyYZ/Bownd8o7M2tx0tf5H/N/PeXzUjut7P/ge5/UUwpDygOhCbYIuJ7ooNzNuo2Ks0KC4xrwgg241O+/j8d66RcOqLpwfY1yJEYVVlwpaWRYYhGLGT6+dboLZgixvwhkOYxvGsJhaW7LZMwbuKejCqEahs1Tn/WWjuyMFrvvgNBy0ImXF9oQ6SoFUlDfbM4JWVBfuGnwe0WY6LqkxXyhCp5pstDnnKBoMY5xIObTecGMKvFZRsMzyBNYnoS2Vti5oa9jYsN7xapR2DkHfGG0YDtd6sjBznIvdUk4mGGlu80MV9yAClNT8m9p1NvweqRG9KRCGNeSPorZh3kJ6azo9n4VfUgon97zEXKneO/iN7XZlu1zYLWaxtVNhp+Uk3hwQOqC7sNEQzlR1UOdqA5FgVi5agxo/I+m6Rm1IQltyd2e7DmChPlSWRzCtx5ykkGBMxfBSeHfZwvGsD3zx/VMECxKTuPuICDlIY8FefO4GstLOjeUU430mEjukUlvAt6rCEEeolPWRN8tK9A8LfTzgx9ypmEocjt6QstCa0dZ+bxxHMSuoVLRGLak7DC9UaVAFJUaxOIM+YvLwu9vO84cr128u3D69IR7qCzG+PCAoP8ZmRCQftjVhQ0/mX7akuO1M4WUtoRTjGcBMYdzCfQ29RAPuoFVCYOaE/mUKIGcwGKNEpqGGw/ia4a7H2gq9xRcZFNMJBd1ezClEA/tdkm1ChZI1Xo0s0QdCPUgP88MnrChJ4IDpOGd2NrMgDj1EILKw7AO7i6Bm6uNxfyecGLCe084L9XSiLWs4wfl+zfE5MuWbMutKcgYSfYtvHsJ5lVqSuCMHgXHiJ39u+7jW04l2OtHZUFpUHzI6dxF2TzF35IjAzWLYnUssonkju99pmuEsMjrxXOSp4WUSD+Q24jziZIOe5bljw6jGIjBNZNwt0ayMcsXpnuzC7uzbxugnvNQ00rnZJCM5iE2ZmyeOLJZKKm9LMn5qvdfBdKbxmplbrp5gnBDwwZ0aO8uvU85HgLIsMSCztJAe8qDqC3II9uKpqj+lv4/ruy/OubH+uN8dDKODbZQbem6YKbyamd38f4z6mMYiM7rDOMX1yPxs4vmLxGTloLt79rlkkgtMGevuMf3XRVFpiBpaY8Ktzs0754eJJNs0s8lcg8OCRl80omApGqM2NIyZDg9mloCoxmvRaKGoJVQskm4sOYJdp5H36Dcs+bxK0q8ZnqoMmgbdo0l5RG1OUGpt80qh59o0EC+YaI6n6Wl6FfWp7BGlRnVPIw9a47ubeyAGU6lBUkEeQRyut53bbWPfog1FPVsZXkTixzLIDObuZF4ul/ta4YXhns4ifn3k7cd7/IXjkvubjrUZDNQXuNi3Xj/p4C9O7fc1PJnH0xG5vHzdy8vw49wzJ4vPjkAEm58/3U5kffdzRxj3Ek2Yt+ae2QREen/tvO6MRF86DP8j92OyBQ+GYr5/PokXj+O4jG9hifGCUkJzcdb9j5e9uPQ/txkXtSLLitxCAcPNuVyvR99DNw+82O14KCbGwKlid8y5aNQ23FAbmBVsRrqAmIFvbB02jUbRMaZoqoMmAu3O6CFJFIslJGgMDekh20IORgJc6GZU3xl753b5wH5aGFXDiGpsXC0FN8UnHVwC+Ap/KkxWkTY5RrtTKmPfAjJIiny8MSVhVCNaLiVrWrNgzVyJh6F3PBQJVNLx3wVD4b4YQ6ht9mSlwTmIFfZt+5MML+BOsz2K2WlgjkBZXowEIUWI4+ee54no777RDwHlFJg9/N78/LQqTgQ5yWmJ+o/FnDSpNZh4TNmmSmlQWsJXmZeoKl4LliQdxh5KHBPvt1BhKSOyG/d7nwwiVAWzqAWWUtjNMOuM4Vw7SMhLUEpFiSx86zvUYIrGrRr5CDSrIVHJqdhRfyhLod9uYCN7xaLB1kVj6jaexi5FV4lHIlMAuMSU7gjOgqQwVcFLLTgdbBwTmKPKElCSeEetc3m+crluXLc9Rp/kMw+VivzAY12/tPfp/MpU878bU2amMa2j3d95t6e5X2zWn+5r3NPRiczV7kHYyBrkzMpIxxh1Z39BO5/7cc5++yPnjgV3XIxn7c2P/XbPVnyM41pfnvvuoF9kXPN7HU7nnplZsg8PiFMkiUDzu2sGwfM6/LgW8l92kFam/mmC1Fru95xC8CMtyCE2CBjUMYtWoHskEmjInyDJ+tbxUTuu56/e49fBbbsyziVkn3anptEcY+PhYQ09tb3zWCuX3tlk0E6PFDGKOudS2IczqmJ1pW9XinVWUTbrUayVgvVOU2VQuNiN0mpsqbGxqtCtc/WoQ1QKVQplGKPvEeELx5TjWiSGUjqIFaChUqmlUjScp4sRhqTlILyRdalkp5WexiMMTEkGlc2UXsi6bD+iqDB2cxHWDJ8FlakqLwfkEcMRp8J4Tpgd8fkz+rPeY1yF1tg7SRn/Firjxy7M/6Uhgiwgv/j1EYnpCyXwu1J9vC+UNeZ03sMWzexAZgG/MeFUkYqURqknPDMiQdiuN0aPz6tKzEtKjQj3G10q1gq+bzRXFgrDblQNRqWPnZZXee0XdEmKtHVqjbEOfQzW05rZhbNU2LbQVazLio+A8trS2LwjGioKfbtSi6E6sP191PhaOMy6hprBZp3W5iw347SEUsXoOap+xLNflpLqLoKWFesbIrAqVNmhZrl+7wlnCRffg0QhgoxBbZXejVsOUdRktTUCKjMzJDwxKkZJiBNz1IS+DWzbkX1HPYWtvVBa5RjJUssxA2vWREM1n6jVlJwMTv7Mo+VBD2Akm2SRNJTTKRKbYTq2bxnQ6Rzua/QwuITepfhU7s/eQfPAbBHcNM+b9Rxx/EWv4mT+5QbJAHJeR/521mRnpqQlnbGAR3/gpNC/PHeEKQIpqnw4uns+h0vDJWtUEW4xrypCnDiGWzCw3eg9nqtqENBCoWP+keNc0XoWsK7WlQlHtgUolsLF9xrmCzPwJzo+asfVuzG6YRaLQkvBShTwRQSvLbrIccQqrVSs5iIqQpFCVaga2LqY0Sfchgdxo+hRZxDLTJsYUsiMNtxCiV5i/+/ulCK0omyeFQOPSUeMmKxslvWf4dy2VOfIBsRY0JFZiDamJlpEdRm1jXuE585BxgvHdI8qZ1QexZSRkKEfEVQgCJnpzI76qcHI/XJm3Wju7iPim6xGen6O3187N5Ddl+qxsSThyHmdIswZQgfRIt/r3u/1Lo1nHUXmhAvxhABnvDthxZdbJHqxpDRiBlnWO3vHLIxzqTWiUs9nnJlqlzvCUsSpGSzMO5zJKCWbv8PY5dwhFVxDxRwPiK2K4KlmXqqG5ptqaOXVMFhS5IBqFI7houZCsSmfo5QJBafhLRrnlhqDQ02Cil9SkNdFknIoTDPc8tyOgiUF/lvfx/O7S67xvL4cGzLhoHt8krSEEk3i1iWmJMjsu8qsO+Fe0RqsWPy+Nv1OU88riHXICzhvGu8Xji5QEDn2wgzUSKjecy2HwZ6w80sv9nK9ZniWRUPzcfdxswfM8lx+ENszMJxBFi8+4/6aI7vx3BM5YeBA9I7l+6Juy7z2zMqOJziv1V/YgPkkgl6P3Yd2zurHyww3zp3jU7L+GmWNF/U9eXlf5LjWmdlNJHJaRtKhRdR8fPFjb/5Jsq+P2nGZwXBNwxONrLScyaUl5mylcRR3aqksDUDZJUQ5S0mKczLvhu9xwz3es9TKkMD9u43YdGkgxsHkCY9WBJqGtlwpSmv1Xidwz/6PqZIdm3gM40MPfcXZeR9GOLIKLUsqMngqHCQJIWQBMIk6hXkg/LNwPLf7AX0EOBlGYsQMn3sj45wlNCGP/BySzu4v1uyLephZ9ICID7CdA9ifm3EaiGMDEvfKyEWdmZfk54z5Xrl/lhveI+KT1H7yF6PmnZJQxjjOc9QA7iNzs05VoFTcWhJviD4siZaAVhvbGAEN4xRVXJSR9kEl15HeN6PlR4kIrZQYKohEhA7p7cqL+l4UtGuJAZvR+BdjJY6fC8dQQeIO0Wqhp3N3r+FElJynJIcRinPkPLqs4YZTVWqt0fQsBlmwF6DVSUYCtxLOz4nvI/ksNZxUFQloNEcCKVEuLem57IXhKhrB5E7Mj1tao86xIqrgUWOV0qCHY/CR+pWHMwLKnWFbXJmKKbGq7k7EzWINHQHRDMyC7o5z7B+wnKfGHarMNTondd+XoeM+YtK11BcsPM/f21z2x7q3DB7ntPDjfEdrxzT+lghKSFhNx/oy8Jvfw47Pzes71vofCfwy64zL8oN1OffFDDrn6+f+iOwxxAVCwCCCy3uQ6kh5GQwmO9Ozjyxtg3uMLjkysz+Bg/ovHR+143pcK2wX3n/5h9wuz3BaWYvjvtHWM5+eHkE3tn7ldvvA9o3hA4o7VgqlxTDBXQpvnz7BiuLXztc//XF0i4vzw+//MpQgV9xkDzUGF9biUEILzMqg7Ds2nGpOGTtP2nhYjLp3Gju7DG5u7NpRM/QysA8fsO1C9c5aK2s90/SMbWlYFFRPeNkjYWKhb++iJpPDIGfZ1McGusbPRsmF2QnF+8lOmgbdckYWWT9ynPEybcsFOhf2BpITgSmZ/XWghxGRpOmmKnnsvvVwTi5zlEOu4GMvO8gcF1Iio7XZOAzR+1KQ9u2VH2zFErCX7ow9VCfKEhTvePWcBhz3cbeCeKPKKeS+SkFOJ2y7gLSE4zb2999w2/bQmCwLtaxIfcAZlD3aAuoI0ovh9O3C9arH/Lc1afsuRhkpZieWGVo4RO0jCBVSKBBjSXDUPbM0ImsSQy1EbZeiLET2NjQboHGaxjOM/h/QKcIqQtNwpEiY/VpqTi7u3EpE4cWclr022VmX7Qwh2xU4dNQ2ywgWX5MpFAuzT2rXrLQJ7JJG8TlaJ+TWKX3w6dMDD+cHip7oN6ektp1IgK3eN/ptw/s1a34NXdMxI9i4Yb6gVCYbEMuak4TEms0pwple6XS+KtkwfV/XMdV3JAF37rlk/WUWMVMkObKGTsBzHdElt1RkO/eERHMUisfrJRRigqZ/P2d8jB5+Lepn89yTUDW35Mu9OfdxBKTHgNxZ5ztaRSKYEIk6VboVNDUvbWZT83XaqC0nuOu9R6xoPWqyKfLIlOWaGX8YqxQWFmElIN5S9GAeHsnWf9Gi/9cfH7XjevvJW6oLfdvYHx/xtdHEefNwYmkthGqjGyTmDp2We9tTVdZ1odSguq+tso9OU+NxrXjLnp2l4khg6KUySrDnxrZzTCgmh8IlbFZlBOHc73CLikdRXCMbXFWxvuA0mt0SKoiyumWNQNLJHGynVGj2NBixUFLqJaNrEtZ5yaC6rxSP91sqbVjPSDWU7CWjxbkRI4ycTY9RnxHlgHKiSz/+yJSsyUjNZw0DwWcPCDB12mAqBDjueo8k53Wn8ZV8z+g5/ps0VplRxXXmZqfdmy7diYnABqZJzsgsMMkFVaOfLrLXUCRYiiJLzK5y8xjr0beYplwaVix6xTITGb3jJaDkRFc4VLjnxF6PPp0pNFrKfTyGWD/mHc35ZSRzUN1TezKfa0oViYdhcQ8mrHoGHZI6leTzsTlXKmoRLo5YkCVKrotJf55qFfP+qcS5g54UWYkIAVH3+MyDCl0K2sexZqreg5lhPfZA1ej1syC3DPOsRcZ9iGGbRBvI6JmRSYr2zWyl430P4ssxuXmSG6Y+IHfSFDCDhTsRIf5MyJwJkcsLYkVCf5DORYQZCFnvx3lCYzAZv9iRgUlCquKE0jyBocl8LseRWYkkhT2by2M/HYDbC/TC705OhGE9xbsnGYojWJw2YBJXYszSQIuD1/teYF5Coh5SKFYP1q1PqSiP2lqsj3Rqfv8a36pTw6GPeBDgfsHHR+24nh4fObUWOluPD/jSKO48PT2goqE87hYRSquU5eH+rJbCup6ptSElak26GVsT3jycgWDTnU9LzHsyo7BgErL9tx7zjOIIVe2BHH0VNQJnaknmmAQHp0iw/9ZWwFZcbtSeJImEHl82JUrqok1pKZ90bkmfUVP5mfLCcemxgCIivC/SaaQhxpcEBGGJgduLzTshllQIeBHxvTg1s8YXBiNHnE+Jp5kX2LifVQmj5mS0LGlUktmYxoQJVcweFMtJvBqfc4c87HDCB/1fZjQ7zwtao4dsBheSGoJrFUZPh6EFlsZijVFW9tvGPgi1ih5K8YLGJGNJRpd59oAGfGt9RyQG8gUZI0xbFTuYnK3VHC0T6u4iGYAo0Wsl4YybRMRaslH+W+KoqjFPa0TdLephAc2NDH6CppP1uxJKFaaxhloaNJUcfEiQKKLZV48sRTIjVok+PZORpJlBSQciReO1Fs6xJPTm5ohF3U6oqIezGDaSZZtBj/u9XJXDQyck7SPHyWsEABF4JQSsk9CQdew0kJYOHplQ1ngBF87f5SJOODJOMS9iBnySaz7IDBFHzuCMb++JeQ/dE9KWgHsDKgk7dLwuN89kfU5kwjJDzaDiXjvKoHFOkBbJvsHJTEz6+8xo8rpnkhPlh9zvx3ci9+cMKEk4OKZIzGkUlnv3gBfnv46/y/3/LxzUoQb/Imj+RWKGH7XjWsT5/HHh8Ze/S/vsc+rpTCkrhYgUxr5xM0/kSVhOD4dRrOsaFOOEPLbbldu28e6ysF/foirUqjycH9iHs3djpAK82aA/Ni7DoyHfDdtuibU3Rq/Rt0PnpDfers5eha+vyu1yTVahcnpo6PrEwimanAmjUVqj2EBloHSU6DPiVPERkajWSNVrmZT5jIo1/j4NAekYJDe4TgcG2H4hGFq5vA+/ZJnZSEAOSmLfneJLeGETGAFJSDFkUaZ/EwTbbhy0d5vdPJEFqYdgp9uL2sB0ZhN7t7x2DWikqGbBON4nEhuKseHbFbtd8OUJ1ax1jpk3hmZkrTH2RGVHpdOv77l99SVvGJSmQZI4nbGuMRlAGrZvbN34sDluD9mnBE2VLpUhilpIG5WS0Nwx+qKznhutFGop9Nao+feWUmER6ceY+um4fA1qvaVDqSXYc2PbcY3GW/EMWHC8d3bkgG2mir2bE5Oq0zkV8FNlmLGlUKwSQzetjyOn1iQSuDt2XthzvZSSk53NjtrmTIaKGHup9CFsNhl9jtlO14otj7ifUG2xluHeTuKGLEapgg6hK6Hhp1BqBGlRs1OMFqPmS5gtsT0Crv2W8FY02evomf2Bb5cDVsM6vl1jrdeCyl0dnoTtwO9Nv3A41YDbc7yReDjrAwJLx5bBk8xzeJIzRI5zas1GfcjWgfidasP7RHGizjhhObVoxJaRAgMvYP/JcYnMN/4hWlLWLJyv5PrKHDLbFPPcB5EJ0GBORgk67qCJIqUdDjBIcPUIcLTc6fyT7YkE0efbzusXm3V91I5rev1aJQRU+5V921lrDTLE6Oi6BA26NPDBfrvS9w2u5QgaikjCQZ3bdmPrEQWqeAx0y5LQ3i1HxRt9u3G13OwqNI86wOgdxahSw2i5cxk36J2msDwuFFWWqrz/8J69Xxi+sd0ubLcLe5UYqscG6ugoDNuzeTSiapdkMfVOd6eUMCRaQirKxmQ/RYbAoSYx7mwost/Jg7ouM9JM3PzOYkx6sWUFZITOX7xkVloGvm/5dkkUIlmPfrgsIDJI834YCWZR1wbW7bg2ZgCL4dvtrpztySDUiEDrGjJeWhc8Zw0ZEbmaGJPfdWdFxscWEZZSePt0Zl1X2nqiPX3K7RYyTl7O9O3K3o1Ll8OROiGU7LUhtXJa1mDUjc52fQ4ijzljRFDhHrUz851RKpRCsZEDHoMOTjqXKsroW8YFd7VvEWe/XUFrDijMvrVs+diT3q9FWcqSEl4Ds4SpVTm1GlqN2bRs6Xgc6GPHk/RSVKMn0mMYZs/Mw4eGY85IXNyyrgcLYL5lf1dc2xx8+tw3tHgSSDZGv9JvV/brMypXqNBOMbNr9C2y/oTXBfAR06ZFyEkCLcaLzOz+gJcl13bitdwzEJ9SIqlOMl9PrrXpfDiajO1wRvefOdk3ke/VDLpeMBkPhp8fQdks6IrEgNOoLc/nOmFziR6ugxBVj3qRH9d4Z2ROMsiE0Y/6lv0RVCRTrrHvd8LFbNKOG8PEHufPxuiM25bKPX6cLvpcodSWX2mmcy+zL457nuhrXMKRdskL//UngxA/asfl2QwYpKSN3QaXywWvNeutnSKnUIi2Be8b2/WZfbtFVaRHBFkElOjmv43BPoiU3Qd7qzGmwoQ+BhrUK8bYuFmk7DOydRshSaQC3sAralfEnhHrVCm0dqKq0IpwkUFMEets+5Xt9sxWHGFHpKfMUwm82ezIPmaEHtqCMUtJctOKx6b5FmU4F9idJj9Tf9JBHTf0qI8c+H+mRH7QfvcJmiTUQ7CiZpQr9xqL5MaeKhwvmYZ3aCfjQH9hAI6icSz+w0ilsZlF5lBtWJhK1/sezE0ZIRhssjNJC/QOOcvMcUotnM4n3rw1Tuczy+nM6c1nXG5b2JZ6pm+VvRvXQTDd8vOfnwdSG9oaDw8PMAZjF94NZ7OOyYTpBsM6ve/0oYwSY87Rhnuodpjp4bg6Eg6NcFyimkJaHvO45gh1mX1bcf49lT5UlV4W5vTtPsJoFFVsKREckBKzHmTwCnTbc2BgYWhkdJjTx0b3yNyHaEp7BXmjHNk8gCHjhlrIcc05aAWhakDNIdIS0wb2W+V2/QbRDYay9Ae0R/3K8VAJKZlB2JHGZwaSpAWEo9Fv/sn1jM5M58Vql8ioIhN6UePK7MPDwt4hwHkCzc8hmYXHidOb5kY60IU0xuJERpa9AscIljmyJXvCjtqQ24sMSo+samZsQZ7QuXPT56ZDOxi36fgm9JivmcQMZzqceZ3zvrz8Gbmv53n0/rMDQZX7/ck9L+T3vd+SP/aQ//Kvfqbjo3ZcV7/gZaUtwkhVgSHA7WvMdtw733zjmAvmmsKcId553Zx936Mm0S+0JVLzTmPbAlZQ76ynBXMN1QMjJyWHhM+1j6h7SGFLdo8WZaDYXtlVkP1DOEeHxkKxE4VCU+F7n0AfC30UbpeveS83uDZOj6coklVFfNYoAIXRA/OPLKMcBXIfM8TxGA9CGLwxfVUaOoSjBwybdSRHdKS2nwMj92bUg8izRdYxyQ+GE2Kcsan7tzZ1wD2ajLBJzkgAR6bBmEYhMkSp8xU+92D8p3BsqhAxyL6iqpRlwesSjcW3G9vla/bbe6zvmG+xYaVSdyjrRkUYDsvTmU9/+Zd4+/kHal1intXTd3m43PA+Yjy9KVvvvL9u3G4D6zdGv1FlwzTGqxR2rH8ISGo8s91uIQUmim+XZOgZH24bU2e4Mqg57bYjWd406FsyxnI6LiWbfOMh7hNBpTD2K5JGfnuRqS4CtcY03TENrDuFHkrdGr1d7hLIACOZdyVZZgI9JhPUWtn6iOtz4apx7tIWWqlBknBjjAsiEn1vXhn7zOY7T8uSbLrCPja2y4Vv+CmPf7ixtSBIeXVOkorlFZZlDeelEkSaknU0CDWUKGUeELmhiPqxPuZ6PUgVM0OAuLeTRDGN7lxT83UHhR0mlD0DpiNhg5wKfH/plIWLX97p5UjOBqu5iafpPshFL/aNRYYcgynvZt6HQc/nOWHH4lHT1RIkMzgc6Bh6OCxdCkqJbV3j3Foa2l54/fwSNYOC5emR+vBIWU84OapJov6lWWKJ2md+ZmaIUyhYJ3w5HfmLZOvnz7Pux0ftuJa14jrYbjfaeWFZG09PD+zPztiu9B3aGhtyIGzXENUVgT5K6gcOGGeWFqym3o33lx33gsrC+RQK757OS9KQqEC2H8fGsZh6XDRo3bNAqmNCJ0r3yp7NrmsV1odH8OjhePu0cF4rS9MYe+9bFLdZOJp6h8WoEaKe5TZCy64UKHcc26aidAoASTbpzuxoFnLlgB0m0yp7TyRoxZNtFSPCk1VmkzwQmdPBNgsKFRMGucs++bdWqhzXFffn5UgEn7p16bwONQETQlA1OVxScev0zbCxHT7ZR8BqpRbEd6rMPqSCa7A2fdwYt2DWLUul9wYSqid6ex/q8DYY+8ZILcOlQDkXtl3YbkbNZlS3nbHv9O2ZMTaWNngrKaNUKm6aE7edzyV7Dh1Gv6Y8VzRSD5Psq+uRyUhAvEbAezb2gL550SjsZ0SCvaXhwvLne5A5Di1Kzah6RL0so+jhBbOO2xb1K58DZ0oSBKK2dEBZXkA6RcuhczhH7FRrIQsmBdHGnnp7RY22nCk1jN3eB0U6rcLbt480iYngrXjqFgZMbcOBqL+E8kdDtDHnXpFr1jVbM6wjlk73WGjTIBcCDs+syHsGAnOisEdWp5OA8bKBP35/ZCRofJZnlpwwN5ktxZqdPWARMLjt4WjmbBZLuDGHpB4NuggRwMXenZlf1LwgWK+hQDmzKWfO48qPS6HfcF45KuiA65z5hCX3rs/RBNO5lHoElBEMx0w+Zs9nXFE4xEnWnAIPCa+SjtqOVXnkjS/2f96rP96s/1cdH7XjenrzwOPbM+yFdl7QpaL1xL44Yz+FkRdJDTdlu92OgqG55gRUQ9mzHmHs287pusXPBc6nNdEtwbQhx2TRo30wsrG+hW5bNlOmtUBtjQ1NTALd85Y3MU4P51hEPlgXobUYL1+aop10MPdNMTv6M6HnHim9WA5ZyznMvwEzGoV7RJiF29hccdZJvr0bgJfOZ8I08fsp6HuHambn/p1WPK8nov44Y+yRjEa/deUvXpOXx2Rv5XUG3Dh19BzGwLwftTUsnGgpijKnPgMUhhDwEyH82WoFTsGuI4x8KRVtIRjrGwwLsWLDMWm0XqibMub0YndMCuOk4QQ8xHujobnhzDoMqBgHgLhf7tGoC4OSBiEp5jMgl8YYe6qlz9sTY2ZIrcCA5MLJuyhuW0okzZrIzB5G3peoLg5KfAfbqKlZGSWNyqE5KRqMRZFw/p7BWam5LDNK91j7Qa0XBjXfP6gt1MW1FLoRP1Pn/HCi+EaRkLoqRrBM+8jm63z2U5bjZcg+12Su9akQ/3JdzYBJyn0tIXMIq2fD7MwIZmaa2YzbsRbn8p3SKe5zv8mxP2ZsdlxD1rQCnsva2QulkLnHAvLO80hk2H7IRb3QbySDr9mbmCr2sHN8yWOMT+yvAwrFjs+9q83M7/xyr98z0uirbMnalOPXcnzv/9Lxi8il/uuOj9px/fBXvssXX7yJpaCBbbssYE/MaH5YMOdEF7xfgFBDQIQtWYJLq2jKzuy3d9z26P8p4rTlMQrmY7CcPsVsw62nXucF86iJ+XbJMQ8rYwuFihglcgMPOmrfnpF2jigoJxMriYQ1p61CWwt1jd4yiZkXSK2xgHdLRlU6xmPkvSRZAsADpkuKsI3cHE5IY5FMwSxiR/A6XWHShiOUSoMgGbXdYY6ZTXpOY/W5IefrkfxZHjI3q6ca+70RcxJD/jNcfCZ16WDjr2msjsDbYppyfMiRCVNr/LEtXqiVKiU2YimIVNoirC7UIkhZQArGiKZSB9uegVBH2caO0xg+6BYqBDZiXhJlRSyjUoQx9vz+FXzPYECx8QE0jUG/4D5HhziUJb+z531M2nY5JVQ4MsvM6FvbUd/FFex6MNPEtwMuisipEdDjpN07yqB7ZCLindrO0WLgA5c1amFu4ILYJT+zwtgRSQUSk4SHCoVJYzXYL1DPUYPrlzTNElxCXSg1GptFQEewBU9vHtHuWN8gx7pILTHJm5ps2ZS14l4rnSxWG3LY4yMYSnKRUtNxxe9GBmmx5mq2kmhsKW3x+hfmOdCLdDqe1PwsD+ixR6aKix/ruJQ1rmcq5ZNTuyNNixeJEatGwz7Jlg4qX4twn+hQCRVWR2QJx5gTIaLYux7ZWsCfBr7FOqXghMwZuuBzzJHM7CzzMAekQlFKe6C0M9JCf/DQI9R7Q/F9eOQkmsS9PdzxUSe7O78/ur1/3uOjdlytVGppuO3Mzv8wvtmomd3fnqQCZjOvEAVNdsAzQk2YoBT2HhFuSbq57QPbb1i7MJl5+L1pkrHFaPcSI+t9RPQtomAJZU0DOzXJRhqhhPdUd6wXrMY8orm4rfdg8iUbMBogo340+kBLNDXrnHEl2SSZDZmWxv2gMc+uejO0aY44D0dn/oJGPNmGwNyNStCvmfOJzDCf9/yeucnhFCPC1doOY6PiMG5MNQ9PmErNsD6YxebZWxYklBtjD1bhvW8yMtCSckex6SQNer7Ps7dLegp/eMI8LZh3vcMQSjW0tixwZz+ZZV1uFjR8HPTt4w8er7MJtR60lTAiB+Q0R3dYDDS0hHFImG9mv+Q1CiiFY2LL7GZNKSZjTswCF4taSzb8qs9zZNQv83ri5ypC0YYPPzKR0ACJqwz1Ez9gu5KQ78BCRV5npp1SaglHp17UgQbcJ11zUPJdQlZs4NQquVw1194WhJo+kCpRjxGCsFGSAu8Eq1eCUet1OfaSzWfvCTEnRFsMfOwR5JTKsFjjonY4c01Fi9jb8fqpQh+qSLO/cgZ54fjQfsD4IqGUnssQn9lQ3iXP6RVz34vIMUR0snWjRSByKcv7GXsiZ6zNpuieQgXDshcvllpMLYggM2a9hbZlv13oe+znmsGqEVJQM4icaMswY9+N7XpjOT3GIMhJ1prIT9ommT+Hg4k6t0w3p6JRm39xJ35Rx0ftuJZaqRI9L5ZwgjiRrZCb4ngkHL0GMX+pxoA0N2pdUa2xaTFqjq2oRVjamk2R0VMTkEk8HJUOfUP3PaYplxKivq3lFQpkBI87w0pGbg7ejuhF0WAmZuEzqLPjUFRgyjHJ3OxhyOQFhDKxZzLafBnOTNp6WK/4M2PXfEVAFDb/dVx9/iDp8JIG+RC0lQOquRtnAjKbuL/fDWeeipcELMnfxfq3/Hy5O6fcHEZCMuk0JE92RNPmTAFeQdL411CLwI++FQiYpZQYyYGHQRNtUSuciKXOfptQsAgRfcU9+qfUX0ycna0EImjxo641t1d8n5LLwAIVOCCkFL4lI9oZWOHZ2zZZcOW4f6FoMYvxgki/PzN/GQFXZkVjMupmv1iVnr5XaG3NhuDUrCyZVRDQHmTDNtmgXGp8N49VolIPh4XXw3GITpZboeS1zHpLqZKOMGBELxrqLyrf/lNKEFYUpuam5Agdt36P3Gdrxlxg32rnyCGPL8RqjyhoombzZ3Nz53c7/g8vzv0CAZhvFWFqY6a7PrKQCe/NZx6PO87zolEkbFPCssdFHTWwuV7u+WCgj5P5d6e5x2UVZi0r+Ov5eI4ZYpIZeKq8HFZy2plYLyV76OZ3/zYrUdLO/pGM6sVLvl3f+sUdH7XjOp1WqkQusItgCjocL0vezIA1QiCzB26bdOJSG63u4ZDaOfS4fIAKrW+IOK0UluXELOzWukQvDdnDIR1U2bcL0hqqjVpaKGrP7n+p3DXHekjreFDEZ89L1CMKtS73Bksx8FCICHmfRKhbTmvFD9LHPdMAkByHct8Sx5LRF/9MfbwI0SGw8PhRGP50cvOzCNkrZ2RGFRvmPuPnJYSY74WsK3Fvhs6fzT6d43Xz7zI3W0KJEEQRSbdm9nJ/HI7r2CIyFUQ4jH3Q0KKPxtNghGJKZYwNLUti+uH0DYG6MCPrSHZm0Twzc8nMzqYEUEA+kM5pjKSYJ8uLqFXFPLPKNETRk5TMM21JdvHj+U8ZrKL1cOg2dpB2rB2Tnhnei16dJEocqiVlifWioeggesUt6iZLO8d9dsf7hlFTlLiC7OA7pW94if1USguHm5Cz6BJ1XMk9kX1eYtkQLMFiw2YDbSrn+x59ZqVAq0FwKpJTlTVEglMEG5HjPkcYMxUdwqnNIMJTLskxXFLRHQOJ9/gRyk7neCy+A+qSw8JKLlzN1wxmpnk4Pzho+i8jspeDGBXyuRakTGKScG90juxF5xie+dmSwdWLdTf3GBDCzEo6yCDH+AzwsrlaPNmSo0dwOmfCMefa1el+wD0Ek4sh9WUgnc42ewJ5YXfmvXux6RBS6u4lTPgLPj5qx4U2pJ6QknUAQlFhWBhxFQ21d0/NQkuWnQ58jjh32LaNWgPusRTR9THYRuL/M9rQxshCsAB93Oh7QhwjFnUm0cxhfHbUfOaCKsiEHkinkQs42Gw7ShgiISSi5oiR2BDEe0ywvuMvFrN7iWh0avnJ3HBERDo25oiUcFphqCW/XzlIHHm+MeGx+NkUIA3m1KTppzp73w8oIzbByynO+iICIwzsmKmSZOZYjuu6N5FmMdidvt1Cw7FWvMzMdUascnxPn1OND+DG77ChBM+pW6etTyxtZduy98slRYsz4n1hIMI4t2MTqkg2D9vxzGc2EvFwQbUxZmOwCtYDki7u7P0WdaIkT5Q6SRQ1FdkH7h31FuxFLCDxnMkkfgqGqyi1VLpdmVqSvYfOn4riVEoJB2wSGpmIM3yP2UnWQy+y1iCEmiNVjzXLiwbYwzBr1gopUYdyMI9saa7LyGRjTRepUe/VJXKAzITMbgHhCYz9GlCxjZgTlsHUZLYdkf6LdRF4l97XFBm8jT3U7481DlNcV4oezwkcRo81pSMgs1mKzZ7J+Lw08BEx5AtmHhGOOTpzI/iYtR9w5igRF8kRXOVoMo5QEGY25d6Z0lSxzCZqcz8k7wlz7XnPWmNc58vXhfi+AjVtWk78HgK+5mfCQd7ILGuiGH3f6duNfrsGzDqV6HM/JCiahMwwpHLsibl+OF73iz4+asf1/utvKD2owr0JltH9rY8cAQCUe4RuI1UgMLRtaTzD0BclDfJg3zUaf10wj6zMPEaQdEvlhiQJjK70sTCs0vdKt6zZJCwz/j/k/TusbGmW3wf+1voee++IOI97b2ZlVrG7uinMkE1yIGOImWYDoiNIEGTIES0asuRKhig5siRaNGVRniBZAiHZMgYjDTCGhjRGHoEhR+xRd7OrKjMr7+OcExH78b1krG/HuS2qhWF3tZFQNKoz89x74sSJ2Ptba/3X/9HcfolS8fvJTZWKtkJtipYeOSGRKt4cCPqBUd1Oc7b9BbV9tufpnmhVuEF1O6ywkyp6U9fohIHbY4fZOlPqFm7XHxosh6za9NXUGf24xj2ZgcaOf/cb8zN67U0kuj/3DlX0o731X2LnVu03zv497RYeab9Ta33S3AN/Pv8dPv9euMFCvR29wUm3cEJcJ0pExFVSKpQto5EOewm1+k4vvq1vKDRya+RWbKoVkCaUquw9yA0WbfQUZOsPcpO+9mpsxd/eaTM97fsxJ+TPc/rKHuwnOCm3D7MVYzOKNLzmV4isVZNb9IlZtfaBVmlq2XN2Rgm1QKlKrRYOeXt/aiVXS1J23aeQztgsdUR4vbb31qJJwPccLzo832qlFCMVGbLQeoaYPZ8UcDicgsuKE0elGnmgOVpz1H593673Wrgdn3vBYO+rOsOQbnnWR6Ja6u2aacXg11cidmfbFds1shvFN71ppur+87F7udX+CkRoe94NYn/f9WmrNYM32YuaWJHthJC9EfyjeyOltn0NIabf7NedXdu9IQZeIUlnm9Le0DRxt2t8f2da34jWJpTS0LwTqD6bEPf3AW7wau3nXG07zK5/5B679Yv98tibh5tuS29z3J/J4wdduD5+90vq4YAXoRwGWvR4dcwp9eRVkNC7FIGcG7uBp7p8u9HK7ZozCm/O2SjRrbHO862TUumehb1wibMpLmdHLrYT2fUMzpmzd2ndZEVsCst74SqgzYquVBgnj9SANI9U6ygVaM6zk00sM2u/FDo1fL8ped1L9Fan/7UdMlSMmbRf/vtz9cOkcusUrWvynX1Jv7aN6WgHRD8kxHUopu9jZJe82s0gvbNsTbuTALRWeiHfj/nOTGSP5uiL7NvNan9W+59L7xRv70JrHQLd6Qq9c6z1NtXsANNutLoLYlGH6EhKF5Z1Q5OFfFrnaYnX9tYZRT63SqqVlhOyo32tUorcDlY7L21fWNSaCZVGEyODlFJYq7KnITtni3TEIa4RVKzgaKHmRGnmOu/avtOEmitFbAL0Aup6vHoppBbYaUreu77fFFBzbHHacK52WyjrNaSl/m4KVCt+rZmg2HUkopVC2fOzJFuqLdyua6902M8mglKFLdvEJLWgLXeRrL220BKjt5wxV2ySazRjx0EvXn2vszccu1OLyOtktBMLZBdh640kZNf+ZyhCFYs32ffCot2SrJsKC33Xuz+H/ax95VX3ooiAOJtebhR3QVD2aJFdGtBq+6z481p0bhd3vV23OzvRJhn7/tr0VhlanzRlv5+b3cdVPm/2dhd86UXLNFW1GqPSlf48uNvP3e/X1nqjVK3gl+7z+kdg0L0Zlf5L/C/3W/09k/3a+AwqbHz++GyC+xM8ftCF6//5f/u/83A48XA6UO5P6GHi7u5AxhbeKtXsm3rnUSpIZ3vVIv36bz3SfOsjthqLrzOnjoPYLqBHd+f9IJGCc4ZJ52w01j0aobXQzVGVXEz0bJFCwX5ms2gHz0LLlbrBmy/ecn9/4nQ6cDrYJLM3bbZ+6j1UeQ2ArNkOWRNWsh/rZm/U025bs8nF4IJih0HrFOBXkQu72e6th71NJv2w2qnc/Uazya6b+rYKrYfsNZtCEG/dZmk3NtxeiWoyZw51au+tiB0aud46x9d2rlFyMgZgrYagtH06eK1gt8zIzyJKaq23wmdWOwbd1G4JlXOiNWXdVp6fn/j09MS2rJRSaRqh5n4jC0Ilt0ZqDakLudkE1loh94nLa2bbOgGgVdYs/dgoVBehw36pORxW8GsxDViujTU1Avm2dC9l6xZPyiEKN4o0lTXZ5+SlmH9c3w1mokXqSAOMNl9qZUuCk9wDTgMi+77HMYQKzRvUrNVIRCiDN8cExAxza7VpymnFyWQQEZCz4NUYiGGYgEoqhcuccKy0VCmrfVbeCdEr7+6EL9684/7+AX+4g1JN/qHeRK+dYWdTeT8yd1YdFXLuWXK9OWKfEHqwIT2ZrRcHwFIg6uvut2JTrO4xNPQaWQq7dPZ1wGhdlG+HvKpC/QyK30ePag1Zza/wWu1FS0q7wf6tH+j7vnonNr1CoZ8JpHfozb7R2MF9SjfouE+F3Y/w9WHFrawLeTVmLn7sX6d7L1rCu9XEQkmZvKyky0I9pBubmVa7hVVlX5aLQC21773sutyfu3aTAtPN3ga0X9njB124/v4/+j2GEBmHQAkBDZ7jOJDEqM3eKUvq9F4aqZttSh/Nh2C//nXN5LT0RXY16xq14LfDaOGEoHjXSNkKl3fS+xm7bVLb9zh2oDvX/eeKxVKIQGkFxejOTh1fPEy2pAa+WhM/SQUV5TieXuGBpuw/ibavboWbMPPWX79C9AZTvN6e7IyyZrYvtw62P17ZSHZ5GczXXqetAlSHVk/bQ/+akDssZLlKQs5G26e17unYO9jWafM7I0r2vZba6+t43K4/EoT+TvVuGqgWPdODYvuv/now7JT+Ha83FP4VuxcnvRluXcCrlK1AGLnMlV/+8oV/9Lv/hE8fn7hcF56v6SYhKKUyTSO5NrZcjZ6/U/3VmKaqSvDCtu75VcK87TR5+xX362BJIOTbZOa9ieGXtZil2O5h4XbNoTLGHp4oxojcumJCu5hJ+8SzZvvMja0ptzTjZS1dNmLJzjF2raB6hmHfSYkZVheDyYNlqbDPvLsjhkozYkDvLba0L+NBnDmb1wZrqgyDN6H4llBpeIXBCz/9+g3lNyecf+ChjVAXtCoq0aJTpEPY+7XZZwdjTe4Xe78DWyff3KYSDKpkb6L6bFF6vlonM+wc1lY7UxGD4/fm7gZk7wNeh1it4ajGIN7fBF6hP7s0bZpTMdu2emsYb5WQfdbaPUZrVVsF8ArHGgN414vx+n5I7YiRfa0233fWnZ5Pw0JaQYPxAAzu6cQMcTjfJ7rbfgvM+d5svbSTcOz84HXq2s+5jkIp3AopvG619r3266v+1T1+0IXrn77/xJ64WQBUGLwjY4UreH8rXCpWuPZboWGFSwQu1428LTf3g+i9LeqdZxoN1xcBr/QDw/RdpRZEGtEpW3sV4+3aCgVStf2VCKSy4LCDI3jP9asvGKInBscwTTzcnUibuXo39zpKvGLbvTBJP+T1Fb/v3Hlb7Qj/C/zf/l9XiNyeaM8Oe+3s6Nfl67u0f+eth5UuwuwX7/53RQzyvEWTfzZiyU5L7r/ELWDus58k++u8EQNe/yku0Lfst8ltN/TcO1RrTPdiuE+Rr0VS9JUggliiaykVFx0pVS7Xje/ff+Lb777n0/OZX34836C9nDPH4/G1cOVXt23v/a1rD96TUoJmRWrZyuvgSCN4j3NqBW2HWKsJ4GttzGumpIVdJxbjYIVLpTt9dBf54Pt12AHWlnHOrslle026bbWaJyIwz9nYiJjl1ziOqAtWuMbh9jkHr6RsRcM5mwb3/dTW4TPtk/B+ZqdEP2gBqr0nCKkph+MRqYWWV8ska5XoYHDKV19urKlRm0c6PHnbvXz2WX4ODd+u0c/c0O2eaLcr9bbhuTVn/d5orU/mr03bjaDQIei9ONy+s71KP7A+hP2n6n47vdai1xO7Y4+7RZd0yJzbbPf6c/s8xw3Wb5/fFftUuf8WfT9MvwfY74HPCUX9+uqo0f45m3Ztf6IdsN+h09f3XsT8DG/xKf1n2FT42R6L/azoB9MNvfmjhUr+F//8VTx+0IVLBHLNrFtmK8YmLCWTmx3sTrXb51nnicgtg6vkcvOl27qFz35RBe97hILjct6Xqa3DT59N79gNOwRvnoHquh7MMrtarXZpOttH1LpZfpEath8UHu5OvH28Q7u/nJP+vfp6MQntVmR0P+EFdm+/Xfiq0m633G3665h76zuy2zXa0TjzHbN9oO6hlNpAOz2a0q2smhEJctd8IbcU3VtX1QW/2vc0e/gj1E6X3ndmrx2hxQ7tvm/2PtO7651NphJwzn/23HojXljX1+HSfdcgPf9r177p/nP7+1b7BNvZa4p5Gh+nyGEamNcVpJHyZuyqXEjJpqxc6t7Y3orlfj465wzStGGnGzD3+HIFYqQ6b9PhfhG3wrZlSqmsy2ruEf0AuAUGCuTtsyPEOVLusTEdIvTO4Zzr134/TrprfW2NdU3UnmYrGGNUnQOn1DLdjslNhVRMt+ZUAEMBvPe3bC7tN8J+fJV+v9lep5Kds4MyRFROJpBuguJo20ZKiZfzmdRF5a2zQ2+/X/9srUky2Ff7RXa7/uGVANCvg9YaLfed0n4pseu77Dp0Erl1lTtZtw9OuqsX6l4O7bm169paafvt1OtqL2Gt9ffJG31f90nMSs7NtepWbO0eUOT2WltVqBut7rvCXrBuchQ+u5dfr7n9ft5XEPvnu0/dog3vA94HS+vOtg9tzRKR276Xk8/OBtTgZ+RGiLHa9Hq97XDhH0l93vd1TUyW0JEP9ib8V/j4QReu3/4//3WmYWJbr3xKwpIq2/VCrjsdthCO9zYc10KIkdYyjUJqA2m+UnNGXeA4OeIQiYc7ynxB1FvGU1uoGql48vWK02AptrHhx4NdJOtKnE6mLikZN55Iy0xeF6ruwXMC0dGWBSkbUjaoK8Nh4PR4zzANqFeKNEpZyUgXZFo8Bq1AydxyhZvBaVJtorHurxcx525R7Du0aCJtoKRe4DqM122QmrXNn7GuFPrFrWJL9gqID/3gx/YR+/5AIkVm0IyokJv9uTiTFjQXTIJAb6hpSP8sTGBcMSujPnDcOuBGcwazlj2qo5rxKuK7w0Mv8L042Xaj3goVVErdmXbCVuzntVqY6iPxcODhR1/xfxzv+emysSwbH56uXC9PpNLI1VHWZEVOlcPR0SSQM3z89htjmYowDI4W7+11p4QLA84b/OaGg10PKRGnkRA6bdxFnt6/J6dMa4p3qZNHPE/ff4v6gAuBGJTqDpQmrOezXZ/SNTdDpGwbeb7ih6FL1oSqI/PLCzltqAZiMDd5dYH15QVRc9c/HCIaDiCR+fmTieHVMQyCnyYjIM0zIUZ2jZm6kbQs5G3Dx4Ppr1Rxw0i+Xu32c8H4PM6B95TrC3V+gXTh3WPk/vGE85Xl/B1ES4m2dOvPc+BAWkFbRV0XIN8OatPWtU4sMKNggZLt+hI7vncChTlO9KO90TV91aysvEHO0kD9YNT3Toi5aQhFqSlZsVSlNsvAUzXyA05oTvs13ospDdc1f61Va8D6o8nu+2+Hf91NhLVS6Zi4094IOepOnqqvxR6xwlil3ZpmIyHRkwkEiR43RHwr6E71F0H8TmG1RqHWCs6hUQjDQBgCPgRuhWovRMZE6nlv1qXVWm0f2qny8sfVqv3r7Y/58/8/Hz/owvUX/sJf5vH+gbQtPLfAWhp5vvb9Q0VaRg/3NialTBwC1ESthVUntvMLNWdCiNwfI3EcCIc7lucnELXCVReqGyjiKZcLwUecdwxRkHGCWinzhWG6I+fMtq3o4Z68LJRt6V5l1bqOMcB8peWVlmZePn6LeCVMAy6Y9cq+O6nVlsG1mk/47gRQb7sfOrSywyJ9Xrx9yXrofU90w8elf5/sf/+1hWwdKqifg3gd4751eTfSR+v0W/txihU9wRkZo4tgXxlc7vb37bE7we/Ejdfd2r6fskW7TX275m6Hjuy32SGUfdoCuW0O4PYXW9+Z24+lFAtTbFItY815hsMdXxy+IKjt0i5LYrmeSbWRqmc9z4hYlMrp5Gk6Uqrw6dtf3DgiwQt1fLD3NyVciLieH8hwYLtcKOvKeJqIzoS3LYw8ff89NdvrGH1DQ6A5z4df/BwNHh+M7FP8kdyEdH4xh3YVnFQYB9KysF3OxGm4TbElHLh+eiJvGzFGxkH7lBU4v39vCETwtssaTqADy9Mn69CdMkTBHQ7UUtnOZ4Yx2rTWCi1MbNcreV0ZxpPtuJyi04Ht5WyIBo6SF6pztBgp12dYX9B05W5sBoW2Rk4z1Xmq4/V63iHCShe+N27GMA07MPsb3+joQOvX9u7awmcQcj8xd9JFa/167VPRfh/s4PgfvS/6dfb6NP067FMvvKKD2Muy2vAq0DBEct+v9a/uU8oNo5Q+ae5TXLs1Y61Dp6brk371f/bcrd1+/v7n9fUtsufdCx87BPr5afoKj5q7SnfNcLtrRttRwFtjcZsIP9/x9d+j1rbLUz97z/js/t+1YH+yxw+6cP3V3/m/8uVXX0GGepjAeTRlW0Y1IFdWp2zzxnaZ8YOgXd81q2c9X2nF4i1OMaLek4Pj/P0nmjTUK1qg+kD19twhOLxXIkoKjpwz6XrFecc6J67nhXqccNW83dh3PwJl9OZAkDdyuvCL3/1druuFpSXUR3KDLWXAvPoKxuDqfaMVj1649nw9up7HLG/USA4t32pXK6+sK8BIJ7seCtdbydaLjLcbur9eEWP+WSaY3fD1MyeBVvXVU40CGjBFvmJ88X5zOWMw3rRZted9dR1YRdCmN/+82rF+y1GrJlTtuLxh+Xtcx+te8UbEAHbn9FfrpdaDGYUqkHM2qi+K2xKoZ5yO3D98wZuHB4YYbXpOlVQbS66cP74AZlV08B5iBOeR9Fc67FTJa2YLJvjVfnq10qA0Fq9s15m6bsTR4bDXXWKg/vTPocAwBI4+QHA071iezqg3YklLjc15qgixNlx0Vq4LpKjkdSMvq13jzYgBKXjSdaWVwjB4hi7c3lS4fny2lGQq1+crNY7gIy4XglfTV9VGGUzAWpaVGIWWKyUVFnWULdFyIg4DXhyqjjpEyryQt8R121ifr2w0Nif400hojwQ2xrISAqTcSKlQoxo83unvN+/LWxNmOj7b65innvY/Kh2BuDm/79DWTnWv0qE916ezfi12xxqnHrPQMgJFqftWWaDpDrrZbKeuw2b22lo1TeZtR1Y7m1U7DcLtjZn9MqWzk0WNiGESl517DzdxdPsM4txdSeirih0+1P01WiEqpby+MKxImCyoUIp5rGqv/DcYX8yotwmdlbg/P92ZxVjFxhy2e6jtkdQNKrU7suzyEXuvcjO/R3V/GtL7H//4QRcuNw00VbJWW5rXzkXrB3MT4boJuXlKGJm8fSilNq5VCKc7pFWWeeH8sljsSAVqQpzgunt1zQ0qHA8TuTWbskoizbZ4CD4yBc+6wRMb+VKJQYlOKekK1Xzglpcz3nWjWZTND+RWaThK8OgQiKOjsaK14GrDSYe92n7RGS6tqInmoRO/Sk+f7a+/T1YGI8Yb5dyQnoyUjDT3SiPHUaTrkLoQ0+m+ki39+xxlp/MCteab3dvNeqZWNK8WF3LzRbSDoolNZtKNWh2K5ZthhatnFWkTsmzsLCwb9NwNblFnxJkdNmr73KWBm4asZYTcoS3TD+2a9NwquVZqq/icEScE9QSF3epKULJUUqlsawbvyTmzzIm5bWis+BCYordI+07ceb6sgDBGT9sMai3FUpSFhjpPw3FNiVwKZal4haCCrJXlcrYD1Xn7OoriWGqy1AIR4mS/Z2uNrRXKaq93GEdCcF2DU6EKcRjY3VHWrVBrsmtctO+eGi0kc03PlXEyhwtaZc0baTYD6xAiMXrmuvKSNpYtEYMjxJGUM6VTy3M2Kn71u+7PWaFLhZw2TgoilZf5I5Irvjo4vqVVB0VuELeZD8t+cWOHp6UumC9g94rsI445m1jx23WQXT4MuyAdsbNBKort9/Yit09oVuhe991oQ00Mepu6pFvIwW7RVGl400thh7gTk7NoE/RmTwVgWX+GDXQ7Lu3sz/111/57YnCfaKA6R93t5tR0gIYRGuHmFfLrv4ekXmgUkYoPRhDxLePdnpXZd3ci/SzpzZBrxDHgg3bE4FVTab9IL5AqUJKhIz3Kx3Bque08/8i49St8/KAL1/N1oeoLy7yy+ZGizrKJnL8tzVOLFnFfM7lASpktFeYCxzHiBJZlY5sXSi7k0m7Qnngl+GCRKa52xqjZQtVkGh8VaMG6sHnLrKlSte+cGqxbRntXtZViIXlSqS1T1fzY9LZsbRj3PBuuT0Oa62LVVxjhtrxvpd+Q+6DfO7dm4ZH2La1DFq2n0u7Rl72dfW32EGeH9k5t1tt8x20BfkNV+j93I2Olww9dQ6T6OZTSoyzlFbCRtheIDmpK31/sv4+8wgiv5Qt2evnrf+9QT3t9XfTf+TOocYdS7dDrgt0KpWZoZrzbWiGljdIaqcDLdWVdM/OScKLkUsg5QaloaqjPLF4J0a63lAuX62rTXjEhcKuNWgq5C1edCskZOzHlQqoZr0J2SguVvGzsvEDvlDAGnPdsqbBmuw5cqzaJ0WildvsnuxZTrZScyaX2n2nvtyXomsWRkS/K7cBat0LBrksr3taVl5T7QSxoE1YnbLmw5ULKZecfsKbNrItFKA6cWMlYRcgIWYSM0eODJLxsaCfy7J+9tHZzu5B9pOkN2W4K/TmYZ3hhB5tv5+N+b+xFq99PN1eYTjzary/5/Fr8zEB2F/nu909v7mwQ2e8fg5rpn7Fo/x20p03sz7vfl4Ldk+0G3tvv3sdGFbHi38rtvm59R+Vur5lO8Njfi32Xv6Mp9lw3qnqFpg3ZJ05pVhQ7s9TOlNf3fCdIaev3TrU9sN1W7fXd39XZVToWaYWzld3ZRHqS9w6CvBav/d/+5CChPX7Qhev7j594um48fXgmxZHqPA7QOHDTUcSTkcda5TrAPK/M88a1VN7eHxm8Mi8L6XKl5tI/h0pRoQbhEAbwHnEJqY1EpbSKJAvV806gFBZV5mVj2zJucpQClMZl3XCl3whOSFuh1MzWFqqYkNFXDC4oFrNhHVnpN95tE8R+gde9ePXR3Apaf1M6niBup632rrVhjuY3l+/22UVp36ydyYfvBpl7oZOu41CLHwGDDFzfSwkNqZUqfYkumFDR1Lt2E0m7LYXtBNhFlDvW3vV1Ygeniuk7abvA0p5L3euNv9f6/TlupOHbbstu7NpFlNYx22TXikXS189gyFozy7pS18x5zbx/OrPMG8uSOE0HGo3SGpISTZPt7GojjB7nHV6U62wTV94SLnpb9rfWxe9djOCtAKSUWXNBm9HQaw3kZSXnQi4Gd4Yp4mKgFkjFyAglZTT0/Ux7pYsLIF7JOZNTvsk/aBgaUaxgl1LZtmyRMt7RUu60+26c2w8dl4uxa6uwFZtUty2RU6HWQk4GL53XlYBpE3UwqK2IsjgHHeGozSbXpa14uTJJxSndhko6Yahr7Rq3SWv3GXw9BPv+p1ZEXd/H2EneOjT82WaXRv9+xNiDNNrNWHq/XnZ2bv857IWiv54dlaiN0j1E7dZqt8nvxp5F8Q4rUK12hrB9faejCp0gKK8FUxFKNq1dK+avWptQi6J+MBNe7ButHjY+N1a2Im736c3AWve3bm94KxbX04v6Z0uu/TW1Zp4BrWTzH93dY3jdLd8Ke4co+5tDq9lQIRTxr7T5/7XHn3YW+0EXrpKhlI3n50/o/RdI9NRSeDiMOO/IJRNCsP1Pzgw+UryQoqBFyXi0CsJI0QTRM3rP08dP+BA5xROPjwckBAsgrA0thq9XEU7TaAdszgQXCS5yGEea84Q+zi8vZztiFZx6nuczaVupaePN/YAbDHMv+UqQQGRAi3kaFjIlz4SqZrGjlSqK+IgOA2xWZM1qqLPrRNh33PtEbwLNbnSqBcnmTJDzZgtY73BhslRcdRAMLtojRGpJRnnoMeKu5z+VjE06KrgwGB2+bEjdaL7HbmDEefv5/fnbYDd/KzcrKIulf12uWVqwo6mi+M6AKoh4Y0Jqz2fyPQyz9Imv9c5WKsLQBdB9ESyCU4drWHcLiB9J2RxRRgkEF1H1DIwcDoJoAp/ITXCiRFV0NI2VU+X8cuX+cGAYAtEr68mo7SXXHptjJr5TpyPXUhnDgJZGcJ4oQqsQnOMwDKw+3libJRfGcSCGwLYlihjcWUrFSbffIjNE+55aCkOMJNn1TEraErRGjCO1bjiFGCLvv/+Ic444jjA0qpoWsqwFrz3hwGVOk1Hlt3XjOE3UoXKaMmsqBKdoa2w//46KTXBjGFjmKwLch4lwEuZtw18KVQp+XSHPHB8PHI+R6RBtN1qU3W2LakbBONtJya55a+1GCpAGlL4rbVC7Ccze6tkep/Qsr96IqXQYUMCHmy+trYhXm/jFImt2AXDbC4SYwN0IW5mWN0rJ9hlIo6aNsin4wDi+tf1VzuT5QqmzxSgNR2KIOKf4EMgld9jbwe6Dmgu5ZNw4dFp+JafVcvOSZzgeoV/ftZijSauFnDfGeMBpwAffG5C9ByjEOOGdpy5muFwwf0hr8I3cgnTrq87ULaWaVKjdThcrRreYJINhS7FViPiDnQ/Si+crv/5X/vhBF67LZQFxpLRQrhdkKwwKl8uVBmzbgviMNvA0thS5Xq9clpVz85BHRm9d5rostFbJzrPMs+0+FLxWZBjAB7xY51xro9WNC71IlMIm6bY/C5MtJZ02Sk2UbDeFxpFtW1muV5bLM1oizhXEbTzeDfgY0Djg4ojUK61UalFImSpCiIOB070IGV7ex3TEIJEm1GoL4IZYcfGmlN+zvqTnGpV0vXWzLhqhQsQDjlJ27wp6IJ1pP1T357GgSKQztJrQLamxRfceJd54jRY3V/Habbe0V1YDU2wZvzPYazMkwgbILvitBkHWTigxWOP1xthJTdKMItwwgkYp5nqwC5SbdBPR3LvaWsidadjHE3Iq5HVlWxPXOUG2kFDnHEohxoxqIK0bW/Q2UVYTHaeUWJfVCnUp1JpxcYJm2V65Vubr1aaufnA4dcx+Y5vPNwmD9oV7HiJ5SySwnduyosGgSGrCh2iHSq34xbOtK9uW2NRTsu0hQxioaUZFCDFyfrngvGcolvSdRUlNSPOCD4M1J3UjbTaV53Vj60WwlmIyj+BxNOZ1pVRLLsYHtutsU9d1Zl1X5nXlvCz4ulLTgraCc68+kuxM2Y4ctJuhsDUrdm2b+LyDizftPXQyz55CbBcFuyLmRt9WsfzTncjTtIc0dhi9W6Lh1Kb7Tolrpe+w9lGwX5+tQV7XTvlXfBysYXKdEt6ZjT4G6mYJ6unyRAkDMSdqsR2neiOFCbY2cM3ilfK2dXKSEAfTh1bptP9ajEhREtt8IW0rS8rUu0eGcUIUyjaTSyLnZIbG3nR+Zttmn6FBmzthqjeQnTAit0nNine97R49u99rwxCLWopB1skRBwEczVULaL1RC3+1jx904Xr+9EwTZb68sK4CfuQUlHktlNbYlpkiV4Iog4M4BebrlXlZueiA5iM5BlptpPnaD2JlOV9QJ2zblbKeYBiRMDD6PmQ3OzAWt6LNNGJtF+qJchc8EgWvRmBI63Jbli/LyvVy5vnje+oSCbERxsZX7+4I44QbD4TxBJt1mDVXWko0BR/M1Vx0QN1AExPK7lZNewtZmy1LrYgJNI8SzK7JWwNZtZqreTXWYFOzc7JY7x6FIH1pLM4iJzr19ZXqDiZD7gdQD/A0ym/oE0F7ZRmqFbR2y5mCnWZfu4O89vfQou3N1brmZB0hr3+f7hl585Sj/3uzEa5vFuzv1/7W7OynZqzMUqyDr6WbiuZm+1Aq67qyLivLvHK9brRts58jimsZF8x5QktCWybFQPCOy1pY1pX5/GK2VaVQu7YvaDfFjZ7lemXLmVU6wxBBxFGWS/9dlaDCMk+M04DUylJhTZnrywuEiAi4VsAHHNac4ZW0LqSUSH6AvndwIVJXm4RciEYU8o44Dgxe2cSzNWF7ecHFEXUObQnnr6YJ2laGwaA5aUI8HGEMeIXLfKWk2fZ8BNJ8Yds2ztvG04cn5m1lKYmv3h6pbcVpwfXMvNb6tXFTAXcFsCio74nBdt2ZY5tVDts07QOXxd3bZ97tmHeB7Y5k9Wur9QaqoZSa2AXCe9hqk/bqdnErFHArWsrtz1PKRjbyzfRz7Hlv7UY393GgtMy2zmzrtUcFGYSYcjatX4g4b5OYhEAr1jRVBNS0VE397eypfbqmFLZlYV2uXJaFGKJZj4XAus6kbSPnhIoy6gEX+nQHr+YIeyWmU/OryR32fdpr4bJd2r673u+zkjM1mYF06ueCaqC6Qqj+MyjxV/v4QReu/8//+//FMi9QM6s/0TQQxC4K5xxDHFkJCBVtmVYyzg+4MNIO96RpIHi7iF032swFXj59Q7o+k+czb99+RQ0D1TsGbwesoIQ4kKuYz1ldcKUyjRP3j488HH6LcfKM4gilsiyVZUtcL4WP37/n/Ol7nn7x+3ynwuPbO37yaz/i4eFr3rx7x+PjI49vHtiev2M7f2L59AEZV5pT8njARYcMIzqe8BIpaaGl1Tzu/EBDaTKRnWmmsmZcvKeFSAuBTKOElcxAejhaZo/3uMOdYf/OI/EI22rLYaCVzZhSnUrfnOsWWxckTr1rM2im1gx5RYaJ3Zmtyu4qDs4NSDe5rSVT09V+hjhjPzqDFJkvIHakU16QYNClCOAnNES8j4RoN3rN2Ypp3iyTqUDpzujiHE7AuUCIE08fCyUbISO6ezYSay58+uRIm4kpP/zyyvU6M28b27IyX86s1wvr9UIIgSUZQSFogmUhqPL4+Jb3y8bz+YkPv/wZeSuEODKMB/DRjGgp1LQyTUfURzZVaLaT2pbEOE5G5kgZyoKXRnSOH331Y86lcV0XPnz3MyqOGAfu7u7NuQJzYE/LlSGOhGGgDUfTLZbCtplAtFZIW+H68j0tb2irfP31r7GJZymVpw/f0JpBYse7B7bUSNvKNj+jOXGYTty/ecdXv/bnuT+OBAff/P4fknKhNEj6ifPTL7k8vefDt7/PPF/AKX4c8L/1l3l3PHA8HRmOP2IchENUhjChUTqVtaFtsUPTBXKK1LxZ80Lqk7sdpqnfiyIO8UeDuWpha4XclFwBHEEdvnlwJ/u7LkA4oN3izQ7iFfUD6geceNO7Aa1ewUXb/3UUo0omV6EcHtDgcXHAjVM3xRbER4tQwiYODYI/HhnaF9QtUXNm3RLX80fccMDFifFwIOgBFU9RR+puOyEENAZU9+LuyApJGrkmJAS8HLg7PnC6eyBE+x3W+TvmdWVLhYe7Axojfhxt79alJN4Z25Y+Uak40EZTwR8iLrgux3DE7rOpzlNzb/SKNZ9pXljPF2SstBjpmhz2//uzePzKC9d//B//x/ztv/23/8jX/uJf/Iv8o3/0jwBYloV//9//9/l7f+/vsa4r/9q/9q/xn/6n/ylfffXVP/fPen7+hNPAGDyFLt6tq+3+ayOzGATRMq1t0PcbAkhp5GUhS2NZkmHa6hCJtFwIPhJPj6gzrda2JrLLlCKIeg4nqNlBK0jt3dGy0j498we/+3uc3z1ymEa+/e4Dy7KQayW5gBPHGCfK6YF1fianhfn8xPP7TxxVGamMQU0Lk3I/7KPpqdSSZJ0f8GFAmlB9pMaNmtc+0ShNi7GPOuIhYTAIQzytJQwEcEZ06NOQAOIC4kJ3dAjsyyPnBrPwcR7KK5mCcUL2zhmhldUKp7N0XjtULO3YNDPaJ7ruyO2U5gzSQx2t+++VtJFzMfdvFZwf+lK7os7h43jrVFVtN6adet3UW+HKK3KzdgqgioZAGEbicKCxGQknFz59+MR371/47pMwnUYAXl5mpCVSSlyvC8t2Zp1ntmXpRrRmruA0EUQoznOdZ5bzQlpWpEe+lJxJ24IUEN/ML66alozaWHOjNLOWWubEts4ds2lISzTn0Khsa7L/bYtNH9no5et8NUusHoXiOvRTc6XUmVI2cinMs6ULm2TB2QDq7XpsDUrKlGSJBynboZRToiYxFiWmE1xT5unTEyn9Hqe7I8MQ+P79B8TZtakxElzgcDjB2x/z9PKeUjeaNObLhUvNDGXj4/v3uGNADpFhGqG96n3EBdR7nI+20/QDrSTb9ez7q/3viyIacN4kH9IaraZOABJw1nCputv9Q086MH5E6ffJhPpg13N3+280ZC9aNmphYZW1w9pCK428JVZezDLNeVSUmjbbPbWEd4I6j/cDKVVKTeTN7kODGzo0WHL/7HJvQIW8wXI5G1Nazfy22nIfWmWcjogqfpgIalKI+eXF9meqDKMzx5NWKdtGSQl86KQqXmHNjow4FUQt+d25btO274gbNNl1Z6ZzddmR08rLx+/J8sIyL0wPC+O7r3DeW9DsZ2SX2+NPWc/+TCauv/JX/gr/7X/7377+EP/6Y/69f+/f47/5b/4b/uv/+r/m4eGBf+ff+Xf4N//Nf5P//r//7/+5f46QmYaR++ORoUZyNeZc7jlT6hTfsVob6SPOe9Tra5BjtdyjJg11geCF0xTwGu2Da5W2GiZNM+W7ijkWuE7HNWqydqLGxodffkPeZqbDxOVyptZsOgmFw+gZ9cDY3nB+KQRfIM2cP33kSTMuX6h5ge1CywutrHgEp2bqGxnxQGlqF3jNUI3mTHe3rynfPN0anTVWKmiGulFztqiQRocdKqoNqQPiK1KhZkvhlWaLcnGd7ltM1wU71bxHIwAUez17dL2xF/uiqnX37poNjuhUW1Pl2+dVir2unDaDYXyzzneHRnZ7qVxoJGP4wQ16EfXmxVYylGSNjGFEpsvrN+f+M9aUqM9PPH98z6dffuS7XxaGKYII85oZgtBKZl1WSl2oabWJjoZUhzbBS2UIkRg8TitRK0RH8EcW74wx5z2KI0bBe9ubOGcJ3LUklIJopbqKI9+IAdE7oo/EGAkOghZG19DjSE7GOoyh4aV7XwZHKdY0gBhjUQoihSTG+FJxeN+Lvzq8C4yDB8m01gh+YEv2vsWgFFUIEcYDOUMtRtY5P31PKwvbNFDLarZWzhMDjH6kTY6H48jwUVnXCynNeCpSEjU1nj++x6dATQNxDJCd6YukEqLgY8Q3uw6lw8o7VLazB2+s1Obsc++ic2ruzijSGwiMhZhWpGBTRcF2WrVAy7ie5iwFzK+sw2GIhaj2fWkr5rxTcrFom9bIDfKKxd37gEvJWHk1UfNi10YY0FhZ54V1vrDNVysCYvvjkrfXe6o08F3IDqR1tsLl7HlMLlApaSXEgOsGz2W1/fn500e2fL25vKd1tn0cjbou+OGA8+ab+SoNqWjYd4vS45OgSqZsW9dY7gLsrV/XoZ+RjZIW1nUxz80tcYwnIxZFf6Nx/CoffyaFy3vP119//c98/enpif/sP/vP+C//y/+Sf/lf/pcB+M//8/+cv/SX/hL/4B/8A/7aX/tr/1w/57d+/R339wfevv0JpfM5o/dcX66kVEilsdZCCJ5xiLRiQZBrrjxvZ/xuU/NmJDdQ75mmiR9/+edw0mgp8e3375nXRMqVcRhRF9kjETQoPgwM8YFQK6UUtpz57uc/4/3P/xBRx8OXXxDHEQ2OppW70z2DPhLKW9btx1yf3nP58As+/ez3OP9i4/dkI5fK4CtjdJzuH5G04gRCiBzv73AuICitbqbOV8GNnqbRdjbzbLIA9YR4ojKY5ELM79CMqwVxI1ITWrOJJF20qc0NoLmzBDMuetABNGI+7bYXcMFTe0YUWg3KUxAvIKNNSLXcWEvmuhis8LVqBUZz369Fs+vqXaE6Qf1osGHbSMtiN48WmoyUWik5UVMh12T7Ch3ZdWpBPbXbP5WqNDIhRqbDgY8fXji/XLlcZiRMXK8z67JxLI70cc9tE4a7E84rx6lwGAeogZrFxM/d/eDhNDH1w6MAW444J4yDZ1sSOTdSsWSC4zRYBE9KrFtm2TaeLk8M4QCtkVPp8CiINB4fTgS1RikVWFKlNs80PNiesgmlCqgwDGYQXFNm2zJrSjxfnnE6GLkiVZusex7Xuzf3RG8Q6stl4bzMrEmYhgMQqE0tIiVEYgycDiPrvPL8/Mz7Dx94fvrA4DcGP/Kjf+ENrpMM3KDcHb60uKHgef/ha16e3/Py6XuCGxm0Esh8+O73ePpmJnrhu59/yTSAlwq1crp3jIcD0/Ee22B1Vu1oMSw0gTTfGKSCIxWlYLEluxxEncOHA+SFljfTXkowhxiJoGuXRmRzyfEDohHZ1u4C0QjjBDra/qxPxjaiCU1GEwCXzWjjzhmyoQMhWEHM60IIzkTEEtmun1ivM9u6cbi/ww9H1AeURFqTNaAqFLECJc20n2aYraAjw+AJwXa3wzQQ4oCLJ84ffsHzhw989803xCkQpxNxPOLKzDqv5GTT3/H+S4ZxYujEtNp3WBom222q7ceD94QQyfNGWp6oNeGdx0+ROI6Mp3vicOJ4OlDfPvL0/Xs+fvtP+eU//X3G4hinwDAGBuIPo3D9j//j/8hPfvITxnHkd37nd/g7f+fv8NOf/pT/4X/4H0gp8a/8K//K7e/+1m/9Fj/96U/5+3//7/9zF66f/PgrTsexq9mNxTM4wd+PlNrIuSExEINnCpGqwrqaG/xbsU5VFapznR+oRoJgRUXQEb5+d0fRk7k+tJ1dJLQsyDiiTglinXlaE8s1c/dwYJlnckpou+JyRfFsDp4/XvDSGLQRG5S8MpfMd9/+PtQVbYlBG2NQYvAcP54pZUVaI6iS6b6BteEwEagTwR8Gg2rEoTkTxObMQkTdQKGRWocYnBlsDsMRyTaxuZaYs8FBzg2UurxOcyr23C4SKlbwBZp3N8cCdcZ/cMHhx4DzI3vsqmuFVFsnoEdy2TqlOCPRdlBopKXcPTYEDQ6Lr1ZEMtI1SJnMlhrrunG9XKnJBLtVGs4NtK4xGZ1nrZlcGjlDbisimMsFHuci3g/Eo3RYMTGEyGm091HiQFBHiIHxOHAahr6Yr0ZmcWZtNagwHqzzrEXQYHEgwSmlGeEjFyteQXuKuzTSlk3QzI/MZWTfB/QAQRGI2jO8VEhbpXb9URSh0LoOTWwnoUpw5o5SUiHnwta+tORkmiU31+5o4BxjsLw69crpmkyf2CkOuQmlwrY1Wu+qx+Ao9yNvHie++vKR3H6KNPushrujwcku2DXRzI5JRQjugbePI9tP3lK3glYzl357vbItZ3JauV6fybkRnDCo48OHlfr+A61Kd8Ox5iwcBrwfDPZLG0HsEltSZdsaqRYSRlpwweGDZxyPtGzWVOREquaZqW4g18WmopSoDrwfzBV9Xtk91ZoPeD+aXVjLBrWpoMET4tGatZKpeWOrlYzg3YDKRquJtK3d2NiuubKtlJTIOeOnkRBGnDcIP6dkbEjvCH7qlNpsjMRq15D3Eed6UGgBNwS0w7TX54+sy8x8ndHgOuEj0Mpi6EwxTebx+AtiiESjDJNrZSvgXTD2obeonykOTMPE2x99jZOMasPFwOHxkeFwNHbpuFHSho8j8e4t12+e+PnPvuUP/uD/wWmauDscOR4Pn5kP2KPzd//Ej1954frt3/5t/ov/4r/gL/7Fv8gvfvEL/vbf/tv89b/+1/mH//Af8s033xBj5PHx8Y98z1dffcU333zzxz7nuq6s63r77+fnZwAeJs8UG5f5ikq1Riw5fIgWDSCVMDq8VtRtPXE329ed7aeMoFYJzujVuWbSkvoobO4FTq2glS2bHkRsqjDLPKPPlpZpJFRWvNtwLlHrBvWFlldqVbI0y2uqplIaxTFfXnh+/sTTyye0JbxUqhdKElan5mpQe6ZYgy2Xfk/Zja7dmcJNHtVgWV/NikhrQq6KOvPey+Ywi3hFvCP4ESkZqlnYLLmab6D2XVgttJqxhHJLO/alM+PMmtz2Bqo4b+4KLjjCZEWOWmnFpq7STFItEsglGYmjlF647MZrKduB12Feus7E+bYnkFCksKXCsmxcr1fytnU3H0E03BhPQZWtFHJt5CIUrPhrgyGODOORcTyylcIyz6Z38pEaJ0IcGKPBSWSPlGKCYm8HvVQjeqj0jjXnTq9uuJ4dljPmmVUt2deL/XuhIQ6UgpeG92aTBZ3eXQ0CFBVrMjrj0Intr0xHs4u8TdxsdGoT2joV0IK4Hoja/R9VDRY2h4RqOqS2h3B2eFLFILfuzmqOL57WhDUrGpTgIRxtssjJDtXDaAbD6qC6Ss65Q3mNabDrNGZh69ZT0gTRgdUl1qVyyQu5drux1khpMYeb1eKGBONt+DHgw2BQaNqMLJ8r85rYssF2BYOp1auZYY9TL1wGIafaZzgNFIymXkumSMW5gHeBtq5GQmrQ1M4TUbNeK9n80CQ4vJ+6SL9ATixdUmGISKbdCh09GiiY7+auewq2x1NVhGIGCEBzDu9sUt5ZiKnY/2zt0kXVFTQ4xNl+fruebzE8llZs05Pt/HbbOGUYL0QfGAxn70Hldt87Z1ZgKRVGHxniwOV8YRwdIXjiGEkpMxxm1uvCOB6NWDSvlKrM88LT8xO//81Hnt7/NbZl+VPVkz/u8SsvXP/6v/6v3/79X/wX/0V++7d/m9/4jd/gv/qv/iumafoTPeff+Tt/558hfACc5MqYNq4vM0TICucM98cjXgVHJXAgpcb5UvDOtj7Q0Bq5rNkuBsRYTa1S0sbzZbPDOih3R+t8Smm8zIlp9EQvDF5o2VFFSFVIqTtB1ErNT0BFXKXmF9sZ1Mo1Zebc2LbMcl3xwHqZOX98pjQYB4dG8yRbSqalRllSXzj3CbIvcFHhMAxdhNjQdaV2Bf7klbTVm1lmbvTiYqa6PYyVlBuuZSu8PXfODDJtv2EizgpqN2SpDVe7GQYwhEDDNGPBO1q1acMPndHVdwgl05e+aovxzjgqBdQb4cL5QF0Xti2TtoK7acYcw2gxG64XyEwnJ2wrc08clma2QrWzxHKyyPqK0MQTQmN3EDnFmThf8eGF1oTz+cKyrpjP7MQ0Tnz57h2tWQrx8CGw5MoQA+MQ8doYxhEfIktuhAAilZo2DuNEbcKyVUKMnTZcidNgVkutEYN0j0Yr5POabrlxlA3vleAd69bwwWJRpGU7+JowrwXXw0lphcPxQGmQcyW63W2iouItnLL0bKSyIdLwDpat9cwkE69a2q3nsnT/yWbAbsF2OGuG6e7IYZo4HkZcEa6XhXlNiN7RuhxA1LSDVrcqwQVIZ+rLR7Yl4Z0SgyNOE048wUUyhbQVtlpZ00ZdEuuauCwJoB/0FZ7PiA92na4z21bIW2FdN2PDqpF+Spc0IMaQo1pzlpLd+7U3Ue6za7y00n39FNknHwSPCaFVlOBc/7pNv6lf49KnWYPDbRfn9DMPdyndud28GHXfundrLBDCTQoiNIVcjaikzWQ0+3TSxHbddTe9dd0AwAdrkIs5xZRs+3hE2YOsBUvbRh1eHXfRzgOnjsEHSwYXbhIA6Ttkfu8PeXw8cTxMHA8HHh6eCUPEx0Ac71iWlXmeefvuKz59fM/z8wd+8Xv/mI/f/Zzr878AfM2v2mr3z5wO//j4yF/4C3+Bf/JP/gn/6r/6r7JtG58+ffojU9e33377v7oT2x//4X/4H/K3/tbfuv338/Mzv/7rv86HD99zGBplK2xNSSKklHlKK04hNHh6fmLdMtd1w0c1aawIbjxxnheWLbEuiUFNkFdr5bwkmjO46jhFWrNAystqKLpKY3INjSYK3KoyTAPRe6JXnp+fmdeNLRVCUCbXcGoFZF0bpQoxOKYoSFFmbcxLJkbFB8/9IUC1VNytCsEH+9hLYZDOGgPUu5snWnf6Y3fOqENGquAlGJVCrFjdKOVYLpVTY4yZINgqWhGlaO1f2+NUjDm4q6Z2091dG+WD2V+ZQ4GSm3mfuf4zW+miT3VIcIiCo7GmzfLNhgHyxLZsRoZYs9nYOLW4GWeTbik2VVTVniZdd2cntmo5W7U1omauS6KWStPe4drbw/cfzqz5ia12J4b2up9DnnDe8bNvvmVwHu8c3nvmLXc6sHLobiNNlGVL+K7Z8xWmw0RpMK+bMdoQgz6jIxULL/VBiP3w8HHgMm+9yDYGpLPQjMHnvOCdwYM+DiDCdUloCDgRoggu+teQS62v13gcmJfNQicB3+24nIM1FZo086fM2XLW1HGZzXBXaAwKqZlD/pob092B42Hi/nRA1PP0cuFymRnGyCE6YnCMMVBdwIfI4XDAe8fl6Yn3337D+/dPDDEwjQPHw8C2JlIqLBbnzG7PNYhJEkquxgQW8KrkglmOibH0pkHRGHF3JzNIU6WpQ1u9NTAV2ANOa+6WWVXItdFit1PrBCVxVvi07j6MAtncW2zH1XMWWutGzXYnmtuG3detFxmDjCEo1lxie2Uo9tkALe/O86BqKIEAqTRKV1c7NbNemloBE6Wo2VYFgVzss1UXoBnE2WpB6v7cavem2GeattI1akKQhtdOLKvejHK1T/tU5uvGtmQkJLZ5RjujMm2VGDwxCgvfc35ZOJ9n/g+/pVyvF7MbWxPPHz7y/OHDDRb8VZauP/PCdT6f+d3f/V3+rX/r3+Kv/tW/SgiB/+6/++/4G3/jbwDwj//xP+YP/uAP+J3f+Z0/9jmGYWAYhn/m62U1htegsScQg7Roab3SDN9vhaqN0StSXxlKhcVEpSmjOd1YVWAHaq0NSa3b7Ai5CjU3RMz+pdbGMEQ0REaNBiOJ0exrSpQ13zKWWvckG8YJ8ebIrED0UJatW//vZqGN0skPdKfrtkOaLZMxCKNUoOSbGa4de1ZWlL5sbUJR+7utP7fTVxbf7svYxN4vs3apmAWVFWjEvBn3wlUaN185adWEwy2b2LZPX9LUprzaKGp/v1WhVaWWHjOhEJyw5Q1tHpyZx+aW2WomlQ2KQFESZi8knT0sarEvadvMbqZJh7NqzyuyQpSrMSdbhdQPx0ozT8lS2IrBJE66TY0zeIXS2JZGlZ5K7RzrfkAoZqmkRldOtRFWwYnZgS3rSsUMZdVpP6QEDd3WuEHw5uVnz22uB2UXwMItlDE38A46O5vSPQW3VHHJdo8NcMnIQqWCdralAi4ktmTG0Z1+aYbebr8mGiSzKxJXaOpIqzE9hUaS1oNLzaGkzgupNebO1ryeZ5Z5xbdMKg6tETdGhjjigsfTmM9nnj594vv3H/nw4YVpjKxTZFkie3i8yQM2ctc3jc6atlSqUb1FbDfY9YQ2PVqgo4pZF+XWuxJV8z/s76Y1JqVbPdn1WpoVh7pZE+eo5FyR5lCtuFp72oHdl7WY2Lm2RuiGv6W1rp9rr/du7+paE0o/ZzxQtXV3jz4JdqZrE4PoWgPfqeZ0f8RSdnd6g4T3ZtEKoHl6qr46xJhVVp/MGuDMCi13iNB+T2i6vwL7PZq2m4UofWIU6fDuYA45GfMvSbXiW+EYIz4EXBB0K6Rt4fLyxHp+Imrl4TRyfzjgWjWYdmcO/wqr16+8cP0H/8F/wL/xb/wb/MZv/AY///nP+Y/+o/8I5xx/82/+TR4eHvi3/+1/m7/1t/4Wb9++5f7+nn/33/13+Z3f+Z1/bmIGgCuVkCrDYcAFYVChRG9+fN05ubTMhFCaGmstJ0qxKHZXGkMTK2o2jtiB4swPrtaKK/0GKuCqY4hmoukUHk/3jIcjw3AgbTNbyizrRkuFlgqUxtSTUNV5Tnf3QOi0Wztg18ti00en1tdWWUrBd4eCWi1VuTYLPZwRaoGcTTTotO8vWkHE4hJkt60XS9mtRToTsBJC92CTbuCJLXpdME2KOVIoJWczQfXCQk+XbWYE2pMLkGp6JpoRNmKUjpE7StFOlKg4Z8WjNaFU1w1kGyEqGUuFHWoiIlyXlcuysK6ruSQ0ENcJIU4sol6DdX7rSqqtEziUdauUmmn9d7K9iQCBvC5GWNjtaW6ed/V28ATnccEgSd/MB65UgarmuIBR79e2d61qhIRsHf6Wc7fGUQqWVIDQXUVcX6I7BumJ1rkTCZrrZ54VXDNaVoKPBAHfO3rt3nxRnKVH7a+9gFebDqXkTvM2TFirEJod/DczYlH8zd+w733MK4so3ij0fYzddT04e8/dajKDbcvkOdNyZToFAsqgyv3pgdP9WzvwljMfnl749P0nvv/lR55fVtJho+TI9eo4HQ4MQySGwLpemNeF82Vm9p5SGyl19wlnuVaUzfR6CHlbTSrRx+hS5KYZjKHniSm0qrSS2TPgXoknlVwzujdQxajgKvbZG8omeHWkvDPjG9FhcB5QSxflSsP1fXcTIWcxSUpuFG/No+0SjcSl2r38UHKxwh0d1ij15in3LkdL6/exFfHayRTWqEo3vu8LkLrH6BTECVuprFvF5cbgLDon95Jlfp7NnEtUcK5RcufhVjopKTIchJelUrSRaVSF48M94zha43C58LFVlvmF9fkjd6cj07t7vnr3luPgjSkKvWi1GyPjT1u/fuWF6w//8A/5m3/zb/L+/Xu+/PJL/qV/6V/iH/yDf8CXX34JwH/yn/wnqCp/42/8jT8iQP6TPKbjgYfHI6onwiBUZweMMeIStWy0Fs3FWzw5DqR1JqXNDGpVrNMtmZovlNoXnuzqfLguM7kouZoX2hiMACGSeHo683ReaXrBqxn+bmnm6WVmWQ0nP92PtJSoa+Ljyy9Yix14Y7Ad3Pn5zHWtiDNIIjcs/C/v3n3OdGC1mqlnE+sy1QpA65EppRWitxjx0nFua3DUDjS1mG1duhsGhos7seLSrpXovIk1vYJXarO9WusQilMhd6+9neXovbfJUJtNZsXGQe+97bEabGvpr9nMRaszx5GUjKXpvMeFSAyOtRTqVdgSRozxRoxJtcJWWWtlGG03sXfOtLrPKgbhobbXaAoixCEyTIFaMsuSGNSbjZU6fGi4bhMUgscPIypm1VS6XY73AXEDSKVJoeSVXKzA+zgQ1YpOSgun4YjrQlbVZvE1reCd2fp47wmaKSWZh6BE0Njp20Krq00JOFwc8dos5bglYphQF2kSb8v/WhNIQNTYZV4KtaxGfqmB2gzO9Q5qNT/O2sSkD0BrhbSeu5VYpDRHKxu1buR8IRUFFwjDxHpZuC4Xns7PrEmYl0Kp8KV7IDeYt41vv/2OX35cQJRWV/6nP/hD3r//xPfvz5RS0eAITQgNzteV6zWRq3JNdl/mVNiSGdqaryCkVGG1uI9hcKgKS7VJ0UAS6YSsDrXNZuXkpBFjtODQnMm59AnHGoPSU5S3zRpG5wUfrNHIyeyioqPbRNlhu2UDvhrgnaNJM2AgVYPYVEzb5PrOvNp7ZM2ro4iZdOdU8d4IT+oUP5phsYEhjmEI9nN6EyJik/8wBFIzFMSWx/a8IQ6k1Sjv27IZWaUHPlY18ILefIYYiN4xeUURPA5PQIOSSibXTFNntlzNQbt2s+ZKDJGHx3tCGFguM5+ezpxfLizzxjffvTBNb3j77h2/9X8a+Mv/l9/mz/+lv4yTf7ZM/WkYhfBnULj+3t/7e/+bfz6OI3/37/5d/u7f/bt/6p9Vcma+nAljJDvDc1HXTVm7S3cPDGxkyrre0m9LLeRkF1ErRk+tHXIrteBUmAYljhPP55V5mbnMGWWklQAqzOdPpAq5Kl99cYf3Due8FbB1NYim3iOYCPJyvnJdK8F7Dg/H3rXZcnjotP0QAik7St5sAUslOMV7pREouaJihpmhGaRSaiOXDd+V6qMIuWJap1JwztPNtu1Qbtb5qPMoe/aQBV+q2nuosudeCZWK94EQAkc1XL3kQs3WAXvniIOnlO6jlnNX3psSP1co2QxafRiZ+p6g1EauG94H4jjw7u0jbpjIEljL98QQGELgcJpYUyalTJoXWww7xeuR3MwzLiULzjO4xXQvadsAMzq9H+2g3kolVGN+qfcmNei3kYgxHMEgyhpMImFBeuYdUZt0LZFNkClnnNebpVRze5Jv7YenOdL35L5eOMzcVBHQLsyW1qfmncSitq/DaOXqzei5uT5VN0FxqDcnfXo8RoMbUaE1Z1AzUFrpPoBdYNrvoYaAG16FsKUgdYNq5tT2ixZa3Xj79sijHtnKW37+829Yt5VlMXp7rsqa4OW6IH4mhsDxYNeM9w56zI2qZVal2li2mZIquUAclWmIxLvjzWC2oYxjtIM+F7b50mnlyl04sG5mu7VtRm4J3jFNA6kzCKUW1DlOQ7hp4eZ1NXuq0jpD2GgDOefuTqOcxkC2mmYunJ3ditqkYte4uet4Z1NSrQYP1oY1OrL7+cGSV1SVGCLTaPeJve7N0grUNE9ODRMu2QycvXPE6Ni2YuL8WohD5BjN2LfkwlYSCAxx4HCcqNVIOpfr1e6LbCSxIXi8KrXAMI5E75mcQ8Sj2FTeUHK1SB0fBzwWSzOmQimOGAPT6Z54OOHEwXUzSRFAq4S2MrrMaVJ+8ydveXxzYjiMf9Qx41f0+EF7FaaUuZYrox4pvXA5ddS69ZG6kVLujseNsq12YHZ35Jxzdx1P5NLj7p0FBnoNTEPADRPLspLTzMvzhdEd0Wp+YJ/OZ+bN9ghfPDhiOOBcpJVESitb7otS9bSmzPPKdU4cxsigd+RmVGdqJXhliCaUrlJJW6a0jAAx2EWMs3gLweA4j+0gcm3IZjdM8I7TGFkypJJZ1hnvPE6NnaY+GFuommbLujzzV4vekJeCEqV2xwxHWhf8MDCOE4+nkWUrrNvG9fIJ7wzquTuOzLmRtkRaZsZp4jAOjENkq8o8X8h5w4eRaKZurEWY52fLJIueN+/e0FxgzpVP5w+E4BingR/96A2frhvzvFBrJkTPNA3cHQ9kAvO8cL1ezAS4s8nEOfxqDvbee+7uDzjvKeoJKZkbRYxcL892fbTuItI6yiaYtqzvYG5fb9aBNzVD3pQSvgt7pTt4A0graO1edaLd2duKtbRqDE+1FGs6rF1Lts95N3Kt3RZIlKCRfLPpKfjWCQTqDO4RqGIkg1czYWPAGSTY5SCymxffMm8o4m7uIyVtSNmQnvPU+k61lo03775gOp5wceB6/cSnpydymmllZSvKmisv84wLF06HifvjGw7TyDhGcwyp7ZbBNafG5boYEac0vh7uOY4jDw8PvJxfyKVSq+PN/YmtNpYtUZJNcs457g8Tz/NGWzbWZLvuEDx3pwMvS6KshlqoOu6Oh9t1+PH5iWVd2TZLk5Zu9VaW1t9q4e44UsQE5TmvqHQZggqot+SAeSUOkTEEhuCs2dpWcsn4EAliTM6Csp6zkYyGyJfvHkmlcV0Tn54+4NUTvGc6DKiP1Fq5ns+IcwzjwP3pyPN147rMpHXmEDyn+xPjNDJvhZfLE7UWfAw83B1RF8jN4T99b83zlmlamMbRQnFLYxxHgvcMaqbaroG/Xft9v+8HKI2aMtOyUmsgDAPD8Q4XJ0P9VInO9YJbiW1lcJnj2JhOjxyPAy64W5P0gyJn/Fk+rusKo4NtQ+OIettDGH5sO6OmkSqNKgUXe3BiA5pHNVNLouTC0CKl035rs5yqabQCodIXnSVDK6hUVF51M6dj4Ne+OiB4ns/2fDnZP+s208SRciWvmeDg/hj5c1+f+Pi0sF6kO3tX7g+B+4cDet7YrhdqLjjfOI4HhhjsZtpsj1IpPc7e9GrrnHAHiKPj6y8e+PAyc54bywxItsMMi9/QHmDZxBphFWO9BWfdp7bGKUZ7P53y3ftP0BqH0fPFwxs+vlytU14T8SBErxwGz3V+YT7PvDzPjD+O3N098MW7dzyfF2iJec4E1xid5VSt28qHX35CFe4eJsr6hjQ/c335xMf3LzzcDYyhcRy/stDQTy98980nfvyjO+7vJr7+6h0va+3waCPn1XaYtTIvM+fzTGtwf29OG4P33B2PnOLANE3EYeTTx+97/ENhPidK69BrMaPm1vb9iWn8cskG2W520HuthOAtCLJZfIhTRaURKK+HoxtwTjrTspp+S4ys4pwRcEq2g7Oi3b2j9cnOpvLaRfbaYekKaFFw4y1zqqn0yHRDknYacq3lBhPmqjjX7bJaIy9b9+PrUSN9qV5qRcJE8IHxNPLlV2853b/FD/f8/u/9PjF+orZPXF9eWDJct8KH54Uvv3rkdDjya1/fIQrXcyCqUiUzeJiicJkXXl4uXC4rISiOI4OYGXZKxr5UV3Bk0rLw/DLz/fdPTGPg/jhw/25iWRtLM0r84VQ4ROF+ijydz7y8XLieZ949Tnz99sTDaeT9y2pQ5JrY1oUwhBsp4enjFR+EwxSYhkfcEKkoTy/5lvQsQMLu7ctlY4iB4zTxeHdiqcrLBZYVRCt3hwHvHLk1vvtuw3m4PwR+8vUD1znx/tOZpw8N5yrRVUavVK0sKfHyPHN/1wgucn8c+fB85vxy5ny+8HAcuL+buH+455cfnvnZH55Z1oV37478+d/8cxwOR5rY2TZfLqzLzJYz4xiYhoGgA3GMOFFLoFCHNLEw21YxqpdDQmA9G/QYvaEQLhhqMV8Xc+tRGKcJ7wI1N67XK7UYOlPjaMPBtuHiP0us+9M+ftCF6/HtW97dRab7H1EmU+2bkDJ3MMQ0SbVHYOTlBTpMdVg2crYDqpYZ6Uv0LTcu68wYPKdx4HrNhGlmPK08NGF6PDJMA7jAXYggjWEI+DgxL4XnZSarR4cR7wpL7ewzBDdGpiEwHQ80HNclkRqEw8AwjfghojHggh14pTbalklpM+KGODSIsZ9oBjs0WAv4KExj4O448PAwklsFqaQcbH/jHcPgwXmDGnFGpOiHY1WHCwZbaamMR/PsW3MXzao5efgQbvDGMAwdFnHUnFjmjXXL5FY5nQ7cnQ4cjxPzZoGIO7LtnOne1nVjXjeCV1qxTnOZF0oq3B0nhmispvV6ZZtX0prItVgcR1RigKOa0Fla5eU5kasxMT2eyZvVzNGP+AJDc9yP9zw+mIu2854uoAKE9LXe9Ec1bQa99X1IFaWUTM4btRbWZESPUu2QCs6CS2OczNlBlCilP7Vaxpq6vvAv5ojRpzmbyM0cVnYHckwX5Pblv/eY36M1UlIW2GFePyK7IWpZ2ZGZtBnhwHRtyz5gUTCRqTHVGvP1YnsvK2XmbtEyIo2KIt4Tx4EqkafzzPL+woeXM1WV6XSixYOtE7UQRXn48i13bx/xw4Ems6UPTAOtVjYRlgJ4R9tZTmLaNLlsXPOVVME5c/bIJTPPKy8vM+tWGAd7r5Z5ZrkupDUZxR8x7V9ZkJRpufRATzMjzmk1F5egaHa01SC50mnjl2XDbRae+PRy4U49Pno0RANXO10/LYWUCrkZC7d270TtjiTinV0n1SDh65a5rolBLFKkiVKawZapAqkBBa8La2nMa+Y8bzgnxOA5Xc9Qm60GYkBUSWljvl759OmFTy9X0rZxOkRKXhFGQrRGd5vVfEFLoiZHdQ4/RqKasQKt2sRfmsXH1NezNa/V4nG21fxKnScGx+kwMsROJvLK6XQkjoFGJfjA4f6Rhy9/jL77iuFwMvuoP4PHD7pw3T/c8eZhYrh7Q5oCxZtvmXOlU0iVIsKe65Tmkb1wxXWhFOksnNmYeRiDcFhWgiqD82S5Mp027lKlucjhbiIOlo9zHCwpdhojTSOZlVTBDwOxdZLEnqOjih8b42SRE7kqWzb663CYiNOAi9Gi0r0ZoTrvqMmWytqFierMy84JxMGbHiXbv49jZBojw+AZR0+ugTUPtFKI3jFOviefepx4Bt/DCJvZ/OjgjBWVCnEaLEOsJHON9h7vA/Sdjfee6WCC8lbN3WRZNrZO2Z6miTBEczDoMEkDcko0CqVa4Sq14sw8kbk74qsobx5OWMx849OnZ66XhbRlnFOmaWQcBpyDQR0cBpxASSsrDa2NjdbJJkIQd2N5Duo5Hu+64BYO08l2fT7ANBg02Bp1m23awQg/FddNgDdas6KVqvkanqaId0JKiRAni4cQT5BudiyCDhEL6lS8ZGOPSc8K04h1D9kKl/Ti1TrkKPUGCZrjvkfr8kpKcabBQhQtm7G3wLLc+m7OXncP/8P2dCLGTPTXobuxGCzpsZ/pvO0zEYOYqzjWdeP5fCU3iNPEHUo4HsmpEUvlOAaOjw+MJ4sZcj4Qp4Hj3ZG1WCROaqA+EGIgxIITWFKhXDfaXImDJ3qLtLnMK+fLwuWymA7OuBFs20YphnpEb1G/OWWWeaZsxhxuDVKuzMtKDJ7WPCE4YvYsol0rltmK6dq8E0JW25lVa9a897TSuhFtYVmz7Zy6IcCWzHNSQzD5g3ds28aWjYp4uSZSLUQ86ux+zdV2paqOUivrWqDMLFtl3kzXFldlmFdeLhcEZYjBzjRxLMtKSpkPH565XBYLnkxWaEo+EKfuqiP0FIHMimm8grg+QdGd8TtMnDN7IGxtwpIKy7yQ1g1HwYk5h0Rn4nhpRkrB+74DtgYsHk5MD29xD+/wceyOI/9rjz1H8E/2+EEXrtPbNxweT6Tk8fFIGG1KcPROVw3Tr/0QGLqTgQjcG2HeFr/rhUannDc4bdmU+qVyuH/D6eGRL58v/OzbT4TQUGe+YZEJcYIPyozQwsD9G4OFrmthLZWxW/bVCiHaclWC55JMqX86Hnjj73DDQBiU5oRhHHj79oFpjHz6+NI1UTBEC2NUlW4K2u2dvDHK7k4T0zSwrJkQHHcnK7KXy4o6S1Ld1kLwnhgG7qbpJqhMtaGxF65cmabAum60unA6HRmnIxpGE+IG5XQ38ebhwHfff+JymfkwX3n/0Zbnx9OROJ7IBZ5fzjQKx8PIOEQ+fHxmWRYu15nn57MRM4YBjRNPFyNTvHlz4qsvHvj//f4v+Nk37/n//u43lAYxBt5+8cBPf/M3uT8OlJJxUXl7vCP+6B2n48jTh088fXzm+fyBGKxQzMtqTiTieHw8GwQo3IqshoEwjITjEe0ZRXWdjJkn3UdRnB1epYBZuXYbKwtwFCqlJEI8oGpJ09o29hTZBBawieDYcGpaLdUA6k2f1qxwIa/C1JqNKGH6oJ0s4vAo0gvUluvOA+gTmRFN4hShO/cbHdz+fvft7/BXI4TInk4NELTiHfjg+1RpC/uybWhUjifhp7/+a7z9ItkhO8L5klhToUjj7vENfojMufLw9oEwBR4ejvyT3/uOVhMqBS+ed2/hOE3M68aybTxfVp4vWxe3BoYhUEriMq/MS2L0auLhpiwZhsHbZwx8fJ65zhvfvX9hLd0JRpXznPnZd888nVe+/NE7Ho6RwcN6nbkuKy/XlU8vFoU0DpGHu8nQj+BwXpha4HxdWbfEPM98eLqSc0Ob49PLwrolXs4zX/84EL2iEnj6+MK2rpRSuF5XfPAM04SPE0/nmZwrIQjv7o98+HTm5TLz7dyZyA3UR2bvaW1hWRM/+fHXfPXmjmEIPD+f+fk3H3h+PvOzbz9SgGkcqM3x6eMLIoLzitcKNbEuM+d5ZVmeqDlzOkz85EdfcppGXIWMNZ5azGllS41lLTxfZtKy0XLl7jgislJqYZ6vvAseaiWljfOnF66X1XLeakTCA/7wjuaG7mP6x0xcf0pa4Q+6cN19+ROGAdLzzJKv1MUC6KLvOqMCVXy3K6pIzTcbE/WBVGuP7M5GnadSVdjK2uEnGMeBU7gjHEee0wo10Wg4HHhzdkCEgzdo8oASTgvDbBd79BYtUhukbMy/wSknLxyObw0Sib6nCxeQyp0cqW+PrPPGMHnK9UJQ5XQ3cni8xwdvlPyauhDWsZVEcObcMfnG/Xgyhpw63r//YILnIYAEgnhzbfAR78zhommgKuRaWOaNGJWQBiQOxPtjj6wIiFZO9ydCjMToOKeNIgU3NH7z7T3DOHF3f+L+3R1BLRt5Op0IMVhjQGZbhXCM6GGyac55vPNIujJOBw7HE1988cDH68zT9cJ1uXB/f+Tx8Z6f/uav8Rt//tcYvCJ5QcLAdDgxHg4cHu5YvvqC6/nKm28/cnBKWhPffPuebXnheBo4vrnj/s09zkdKE+brs9nktMxlPkPfjXqqaZ+00DC/w9o7EMUgFqPjV3Y3FRWMrIB1rV6MuaaqJNlj6htBTFCtTXFAzmZtJALaTXObCFvO/Zot5pfZbIqorRv29oTaqiZdKM1eW8P2lqhNiXtnu4tyC5B6XIjSEAoiHpFKyvkmY8ilmgYJc4pQX8yrcBxx45dM14VlMcbc6cHE6aVuRvtXiFIYRwuOfHz3rpNxrmxpw/vIm7ePtNrYto38fDbPu1xJrXT5R6E1xxfhztJ7UyI4R/TCFIXpdNc1gw2JJkr3Tnj75dtOj3dcLzOhZaJX3nzxlsPDkZQTx7uBbStclsTz2Wj1p8PI/Wnii4eB4+kePwzMeUXfP7GtGw9vj/zozzm88wxhME1jNX/Rd1++JUzBvBJdd+3oPpnNCUOMHKcJ1cbx7sDju4H85Yr7xff4D08cNt9DR0dOD/dMcUBqhrTwxY++4nh3ZJgi77/7niEK0+QYjgem48g0jby9v+PdY+Tu4Y6Ht1+gIbBsGy/nF+LkKfWINuFhGnn75i3TODI46fFIlbIl1qWgy0YuK8/PL2hrDD7w9s0bQnAcTid+/OOf8Hh/T0mJejlQ5MwgjqgDDyEY8Wwa0eOEDx51/1uUjP+dTlw4T9n91EoiI52YYbsBAQq5G61aQqxxqsQEqtl2FEYby+YkgB0QsHuAdZqxCsMUzHi1GTxT1A6JBngP4jxePVvOZCriIDqDZSomehR1RCfmYt8xa5wJe01t2wghULPipBGC3hbyMSqHg6nWvRNqMvacOkcstt/zKgSxZawLEXxgWc0MNIYeQikB34P1vOsuAc7SkXOHWLxr7AGR4q04q3Tj4mDUWB9MXT9MkTjA4XjPOE4cj0fi4NFWDIoKjhAdtSnD5FG1dFUXB6Pf7xPAWpkOI4eTXfTH08SbN3fUvPL45p7Hx3u+ePfANEUzkNXcHVMaSDX2mhgLMxUh1MpymfH+kzluB0cYAj54wjCCeEpNbKvFWOzwkshnFjxqOpg+Etk10psfEdt7VIz0Y/upLtaujao7RYg+3RvkpFpw4m5mAq3VvpGV7g7S2aIldW+7nk5rV6Wx/wSo0g2gjcpeq90NotK1YPVGv2/s8xQgzYyba0UpBKXrpowkUlu/qls1YlO3QlOxfDR1iviRgjHxVIRBAxUhZYPlXbOmJUZrnhxwOh1QbfhNzbgWI534xcJepVbERdaWbMLLGecaYRzxIbD04qatMkQ4HCPqPNuaOd2NKDBEx09+8iVxnHDOc3k507YFoTIdR053B9NWbSspVe62zPEuGdtuMKj9ODmmw2ihjakxTUO/5h1hODDEgXEY2ZaVmlbIG9NhIE6BKo3HN8fuGYhJFdQ+J+8ciqEh0zhQR8fDfESkUfLIdDwxTgfuHx+IIdDSRr6eOR5HpikyTAOPj3eoVFsHHCvTaWQcB47jyPHkOuloYMgTx7s73rxben2wSf0+BI53DwwxMmjfpeZGWTNLTISYUL9wOj6htTHGyJu3b4kxcDgeOd0/MowjRR2H6cBFFLVb4jVxQHdruD+tWuuPf/ygC9fL8zM5QtkKCVOnV8xk1GvDI2xVrItLGSETlO7UbVqK2i2PvLSb9ZKq7VycGp6bq7EIhyGiTVEnuGHkcn0hpWSC3J4ZZOdLtlE9mCuHC2bGuxuAeoUYhGH0pJKZl5VGw7tmOHuAlBI1zazz1fKpMEcQL62LhumuGeb27TTgnDF9ItK9/RqlVMbBIFJFGYIZm3odLN6k5RtwtOd0xeCgJoIDHZzBYwKilo0krVDzyrxmonfcnyaiGzjcvyHGkeAHkycVu6JrXtmaWb/E4AgaqQ2OOPJmhqGVxjDd45zH0bg8v3B/NxF/42t+8m4kTAeGYWLykbRdqQKSE1uZuV6MUj8dj2gzd4rT3YH56cycMtdtI3RhqFeDQv1gWWoSJ6Ott4Zr8mrjow0XbC/R+j6s1EypGddMeOpawxWzEjI7LZMs1KZop+ars8iRrWI7qdodzJ2BhqIObTYxoeYxWOg7lVxtD4G5fauPOLQzDa3RUvQmQm+lktiQpmhzVNc61b8bgu1mjWLXd2smXA83Ox6LPalmV2zNQf1M5C71tjt2YhOfD657MZrhsixbp/xbg+ickptprXxwHA6RcQCcZ50Xtm1lnRcOrjEdBu4f3lCiTa9ehdPB9smpwM/+p5/x8nKmZjO7HoKlNy858/AwcRgjD6eJH/25r4nDAXWRvC1s84W0rqxr7lZYgS++fGfJ5qnymCrb1SbN7jBsDQgFqY3DYUB15HQYONw9EsNIdAOlWk6c7ZaMIOQEvnj3aInStVGbkpMpRC2h1ezBhIID3r195M2joRNhOhHiSAwHfFBK2ljPo51RxdKov/zRl9zfHVmXlefrZubZTgnRcxgdcRjMBcZHvvzyR7x985ZWrWFWcYRqYm2niusNTSvQihks5FRIa2IaB8piUo9f/83fJPT08MPjG8JwxLsNHh744Dy1Vra0Mo0Br1Bzpl5n6p3pacX96gkaP+jC9U//8A95+3BgDCPNxb6cbtCU5hSTwRdcA2VgLovdsKpIFbQHnK3ZwuG0gmvCSSdySaRt48P5W3OTrsKYsRC6BrVUDu5oTuu5IG2DbiQ7uZH7u2hOFi3Z/sB5/BcDLVdcq4xq25F12Yh55jSODJMnDAF1B75dvuOyCuXiOXDgYTjx48efMp7uTdgrjdwSohFxgeK8FWWFgYz6gSrK0ir3dw/GigJCGE0NjzHzarF9XqlC04pIZXT9oKoNyRU/bjg1eMocZizqYmsr03G0PYkT1A2AkUKGYnZK0GjFmY8gFS+B1sl8pQrZZbQ1gjYOMQKOUoWPzx8ZwiMPD5747jdI2ai6IQwEGXvA3pW8VuZ1Ycsbb3NjHC3m4WW58vRy4eV8NleRcSJp4MNLQr79yMO9cHev1DUhJeI14gcHqbuF14WaHDS74QccBY+5MoJpkxtoIxXD/8km6vZqxILUmgmAq+DbhhalFQG3kz0cTiq+dAKRmisK0p1JqiM3c17IayJOHucDAUeqym7P1UpnzKVKdY7c3Y0HBwET52VMfL57841xIJeNrcwW7dEsrkMrbLVbA7ldVqKEppSaegRGozQztZpcZ2IW+50P4Z6WoZZMTjN5sd8tVM+PDm9uoZ8lN87bC1fUYMutUmbbm8hhYJiMCj5IBIkkEY7DwqR3OBrvTgMaD6y5suVnHo4T0zhwOB5o+Y6lmIOK1oAXC2x0gnmk1IaTQjxFhgJxK8whWTGRxhhMmNtE0Slzf2h4Fbx3aBtJm7I0xeGROlkWmShZ7BoPoZluDaFVb3EuNPyemi7WsCwtdQs5ZYiRSqA24ZqEo3qcjBzGkZQsby4VEO6YDo/ECZq7kkrCqXB/nDgc46vLiz8zDo7Be0IYEOlF/jITYzAf0rRQq2FQiMe7YPtZHKe3PyZfXmgpcffuS6QKLgwcDm+IISKxEv3Al7/5zJfPH/jRx2/48ic/YjodzE2kVLZ5NhZzHHqkjiFiv4rHD7pwfXj/ASkrQxipQzSj1r7Idk4IwbOmbvDa4LKteKX7gVnnWGtj3hJBmk0s3vYOqSTWtLLOZ3KFWsXoyN0cUNUCEFuzDqORzLrFBy7LxjQWiBU7MqQLQgVK7Xqg1Nl4iXneOARzhJdq1j9U64SkmTB5iiNjmHBiruBOrHN0YcSFgSyuT2ONQV4Llzab8MCgUx9GaA5piveWxVRrofROsHWIyOxqzHEcny07qkc10DcjkgNOzB0iBCtmDQtqjNpuPoBVzHG79jwmsAY/dyGZdapmJ2OHDUQ/MAyRMUYO48g8rz2ew0Ppx6kGQrCbpJbGupg4W5yyrLN5TDrH3f2dTZEifHx6oWXPNifW68xlOZvvYzPGG8VE46kYs1ScQ7zHNe2MMHPMt5RnoBRyt6L1omgc7DU04Zq6iat009U+iZQ+rbj+Z5RqO6UGXrr4WSptXamyIwJCnGzXqK2xZHOcC05I1aI1pDZyN171PelYuhRkLR0+N+4HQR2lFVLdzPXb8GK0CUuncg/eXBdFrGFJZes7SXNYuKHspta2K0wcLbfuB7rgvev7qkrL5iNZxeI6ttWSGeZlheuMNpjnjIyRwxRZjxPHu5EwHOwwbkL0keiEcZxw8YCvUHDcHw0yG6eJEA9UdsjS9+u2EaNQnLPpp2yE6UBtwlAaw1QN2qbYJIfR1n0rBDW9pnOW41WbkjIEcmfmmedfaoVKNY9Kc8mm4onVyDue0mUIRhrTmgnOIoHGYaI0a9p8hmlwZkUWbSqsza6D6LtQGSFlweeMU2UaR8bBWzabBMZaLULGO4bxAOLtti4GmSu1u6XY5y5idnFOPSqesm2sKZln5LpBhSieOB6IMVpOWKnE44n7xzd8+e5L7r74ini8R/1AEd8NkbsgH7kpkE1m8qeDEX/Qhev7774jL2Y/kjpTTDElvogNXNu2e+kJ52XDSTWH9B7JWVrluhQGrd3I1SNUtpJZcyavL6QEuVh8hIsR5z1DUFts1kbOG6ix/sYxcJ0Lx8PE4dDjt+nea+4CzaLC27qa1dTWSAmmydGk0FohoOS0UUvuMfCRYYj47oq+m2tGPxqVfjyQiuuJyIUgBR8GUJsUnHZHaoQ4jtC8wUnSLIm42ZamdICkVYOoajNDz2GzfYX2Xc7uITflYjsLp4QYu8WWULJRvm+Fq9N+W62dIbfvfYTgBYtPsRvQ2HNwdzgQo7HLjofJDsI1mzdtW3HOvOIOh26oKsLlejarHycs8wtNIB4O3D/cIXnjcl34/v0H5g8zz4ePTIeRTy9n1m0llULKYu9Cs89/9H33g0cFS6Gt4MndgQJa3cB7vHecDgFk6rqwysvV9kLG1o5muaWWg6ZiO526FUreSKWypGKM2O7m0PLVimYIPBwjPhx7R5y4rACW7VVrwDlz/l/r3tmDNEfrjMDzUvFqsgpxnjHYhFcVJt96nL35Uc7ZXMKn8OocrtLYSkLEGqHVXGABKDV0+EtIxZvZa62kUojOHEa2VFGyRfF4zxTg+XnlfF54uryQni60XG+u+/a5D7x5PHD/8IbD6Y6ccxd7d2uzcWBUzzAeOBxiZyKOuGEyancVHMlszaRZSfHBCul2JR6ONPVW5IplZUnNBC9UMdg4VWuqVKX7eAZKEXICzwY9+6wivZjbvaPOGztUnQnBW//9O5mriTBVg/q9CuN0uhXbnJUpKl4aUneHH4OZY7DXgChlKpRq3prj6BmioQ2o4ygH6GbT3sd+zwpjNc9S6TrPKg4zJojUZrtXFUXUdqbblpjXTyjCEWE4HgjjZDvCZSEcTjy8+YKffP3rPHz9U8aHL3DDiQq4aHtCs1KzqrXbPwmGAPxJHz/owvUPf+9bgn5LztkummbY8daD7KBSNVpyZww8X1bWzcw8nSgPdydijKQsXM7PrNvGsiZSsvE7Bs/gtWPVRjtVZ7j9GAOpZPNCrCZCPkwjx26J9PbtPY/3J2iVddtIOdtiWStaG24tIJlxGLk7nRjVcXIjkxzYLqBzxa0ZvyVKScwp877CZV0tF0iVxy/fMd3dMR6OxGk07UmrjJqJ04QGM3vNGI0aUciCug2nSrYNSd+9lM5as6h7Rc2ho2SUbPh3FQue7FYCUjIVNSuiDUreOnW6sjXTCCm20KeLNVNqtgvsFjpabRewlYYnWVfrHJFMXRLXeWb+8MT55cyyLMyzec3FGHg4HXj88h3runA+n/nl+yfu7w8cjiN3hweGt2a8mrPgS2U8bBBe+MUf/Jzf/dnP+P7jM0/LStqSabQ6lRiEXDohvS+ep8NEa7Yfm+drN2ztXoRd+K5dxK6qhODZUjHCjLegzDgEnFPm68q6zObfWCuHaQSxvCkTA7fOBenGv97dgjidswl8zV3MreBCZBgCQwwsayKntTc+dl2qOpZM9+Q0nVAr5bYbiTv5Rh2PDyeL8AFUzJNPMPdz0Z7+LUY3v7s/9RBLm9Byyrx8PJOy2Ul5dUxTMOg1m3h4CJEhRI6jZ+s6IVJmlIAfjLTQXCes5ML8dGWdCxJeGAfHJsJFhPn7wng6EYeROB5JZ4fznugDcdr1Q7bz9lici8YRugn19TIzDEsn1ABebnvCoDap3yzPOm9K6fvq1gyJqK0TkLJJb/oOMyWzmhLtRsGumoau9f20mCcimJwiNyW9LJ2Nak3TSxO0JlxZ8SF0265K3jKiJl+w085kPN+XwvHg8THixwmNoQvmM+N4NG1isya6Nksb8FJxYeiWVqb3i3EixgN+ABcNbSlbJUx3xPs7pnfvzOB78ZR1YdiOhLsJdxyQ4GlOqZ0Zp8EE2XAbtn5ljx904fp0Plv2TukuzK2SSybXPp5KQ4Mtp6Uz84J3qIQuaTFIY1szl3lmWTe21ULn3ODxTnrR6lSzrpAXoR/o9ENccN1ANafcTVRtce1dYFkXttWKl0qFVKjXjUZhG/cO2wgBtMLThydenp+4Xi6ktHFNph9SdSzNpienwscP75nnK8MwIYOZkVILQRLTOKI+0FzohqUG6UzBRMHavR1bsYlLCmSxwzgn8y3bDfqKmNDVoIaE6wzDKnQGmh16Usy1Onf2HLUgtRBcuBnAbqmya5u8OjJ26JVakWZ0Z+88a9uJBa3nY22klFm2zJYS3ivn54HrsrBsK5d55uWyoGK2UnePbzmd7mkifPr0RCp2AB+m0QyBa+HlOnNd15uYVb0jELq+yoST5mhhnoQWtVG4zLNR40UYQiA6u40u82IwtSopmwTC7KiUgIU21uYQbfhgLK+WO3miVNYtc55N+Oyc4ziOHA4jMXheXi4gmVyEcougt8IZW7NrXcGCDc32rPWIi1wq85JJ20ouhZyrMQHFQ1Mu1w1j0RrRo/aJwCsmC2H3522392OfmnMxVm/pQtfzee5p4A2HMM/mdFFrZRw8Y4gMITCfxViN0piGgHfW0ETv0EMwT0NA1BCR5XzmejVBrbTKKJm744U4DITx2AuqIStTHC38sd+TUu1ejXG0HWCtzNflZuemoia+b1a4aBteLXVboidnCysFITrz3ks7TlpMsuB6enBtjS2ZobGIw4ujhl64enPoxJlJrTN3FCPGmJtNpbEUSw6nJCSvTMHITKVUtm2jiekEo4sUNYJN2jZiNEZtjBPhNJKzmU/HOKDdLDqOwaJ3WsW32s2wA94HmjTGYeIwHvAh8PzLj1yfL6gfUA2UbSMtK805Skr23jpPbZZDd335xN31TFlnUhPSYUV9sAZ6t3P5DCL8360AeV42ghcCYvuYWli3RMOsdcxV3RkNVR3H04DIaNBBscTgUqwbs6Ik3dAW7g4j93cHEwViN+qgHhed0cdrRYPFbzuE1l2rBcF5IUbPOA3E4Hl+fjF4olmGVk2ZtGyUkqitmRNHB89KSzx/fM/LyxPX+ULOiblmgw1VacEOVmnC88sT63wluMDmXNcZZYSNYxxQ5ynuMwf52ji6YPT2PrqXvFFLwVdHUtPrpK306BJ6GKXRo60wb3hxOFGq166DswvQV6PXJpqx0Uqm1cyokZ7MZzqhRrdE8hT3ygSl5VvhSvrZczezcSq1sVVYtxUVePHKfJlZcuK6mXffcRTuDgblTtPBCnF5T91WWjV4cRgC6h21GQQknU0XYmSIAe/N2sqrYfG5NnPZTplamlGbvWnPjtPA8XQ07VO1pmI/RF0vgKrmHGLpAc5cP2SCHs2xpsK2ZVIv6s47xnHky3dveHw04ekf/uE31D4Rl1J7kbKJKwSH98ZqDWPA2C+RkhK52Gu3dGFTkvlgBtKHMTJNI58+PXcIunGdF+iUZvF68z20s852VblUnFeWzoatNEoq5uCeCiltPdutsW72/TbJKzlmthC4lIIPjil6Hu8n0xM2a4iGMTAEz+iUwsa6XVjnhXN6lS4MWpmvKzFGNF4QbA9UW+XQ97sF6dB86pqkkRq8Fa5lodJw4vDicVNgD5wsZSXgcOphCAbV9ZigQbwVLjAJTUm0kokEmpMue0m0bq4cxFNCnyCLsVK9OLx6CP7VQxIlYs99LSYebiVB2jj62GHLZu+tGMHj4EeKV0qrrMuMcwXvPGMYiPcTuRTSlvBBCRoILnC4O1B7IrQrhSGOhBCJ/zN7/9YkSbZcZ4Kf7puZucclM+tyLgBBguxmN4U9/ThPIzL//2FERigjQwqFbLJBEMCpU6cyIyPC3cz2RedB1TyiQAhlCBw+lLD9IFFVkREW7mZ7b1VdunStskBQlmnmvJyYlzOff/+F1+cr948fKDmzXy9sr6+MlH1vD9NLVdj3jfXlmf3ySluvVA20fSdNjeTP/71K/P/QPa5vH7/jbi6UDE87XPZGePnKNM+clpmPj2dO3/wJ2pWx73z47W/49LjweJ5ZJPNv/vW/4ceffiL8euIfXb8QYuJ0/4lZKh+/+ZbvfvVbXj7/nuet87JVvv74B669mWfN/kqZzYrknAua72mj0uoV6sY3d9/z7f23VFFivqJxQBzUdUVjJjyc2F6+UOaFbx4fGRWu15WNK3u/olHNDChCykZzb6FzN90RYwYCU2rU1lj3K2hieBBelmAQjHTzYVot0xMaT91VFhREhSgdkcHeOw0xW4RqBpzq1dAxqxMRUlTzQgIkFnOFVnNQNmdcHIoI1huQweu4GKmCwGhGghGUF1XD5LH3Mk82L1clIHkieBslBzELkhgYtaPRpKqyKPv6TPWK+P58pswJDcq6fYYvQh+B7bKybQY7Pr08MzHz6eER+ROI528Yo6IInH9NVEyt++GBbx4mQsq0Ufjhb/6K1py6v33m9PAN83JPGivf/ObPkJT48a/+T57XyuvlwvPnz4w8Mc+F0zIRpo9cnp+o28qnbz/y2+8+cLfMBE38q3/1/+b55WI9jv0rH7/9Nb/+R/+U//XPfs3jp29IZeI//Nt/y+fnZ748PfEX/8e/R5PJF53mSFo+sq8r6+sz9x8/8HBXuFsyicJf/MVf8PnLE/ePnfMcmE9nzh9/zcdT4vHxkccPH/nL//Dv+fL8ypeXV/76L//SdC6DciqB6XS2SmLb0VzsANZGCck8rqolOSEKc4mcHhfWlxe6e2upGmNXgDkFTqc7pmVhvX5lBGENwh/WSlIxp4Ix+HSJ7LLzPBpdKpfrTlVjI5qVWOLDQyFG8yGbY2ZdmyVDCa7NjTqHIMN93cJgrTu0jg4hVEjBKO+Nnd5Nfy8CpwRt7FTdCb0wqkGAKspr9wRUlaRCkk5ksI4rQ6xf1uogZdCgtjY37+moGWIOaWyyE0axAD8Mwtvk6BoKQSGqkXL6qKCBpBYI1Ucc9nZBsrE5J4UlTxCgaWe9GvmLYXutyU6TylpXZFjeepeEy7ojIRHDhQRcY+IpJK618rufXni9Vn77q+9ptSOS+fyXf8mHb78lT5m8LJCFu28e+PTrT8RP3zGmQtUG+WxEkf8OVHj4hQeuf/kv/298/+1Hs/q+f4BcyK2TlomUInOKcPeRupmP04fvP3J/KpymQomZ88dveXl54f7xEdpuViGnE4/Lwvn+jvPDA/v1wnXvNg/09Mw2GnvbWV9ejBGHEhW0LNR9Y7u+sl9f+fbjBx7v73i6vvKy7pAKNQZCr2TB4JKvn/l4d+ZPvv+G893ZewqVmIRvPj3wXf6Gf/HP/5ywv7BfV56eXshhQdzo0o4Ej0JdIEVEXKLVq0hpw5qxHgTM6y4YdBDl1sPxlqAxvlxax5rFxk464MHgRnhHa14PRXnwYWLrBRzDygHT87O5gcC42Y0bzp5j8ooHYtKbTh94T0WNwzhaRyUw5cxSjJCRopEGRoxojNw/PPDw4cTdvdljhGz9mg9D+Pz1hUbkTiPfffMb/uzPC5Bo5URvzVDR0/fEodb7WSbuJmNGVTK/+u2fGtScI0scpPlkVi9BOD8+QhCeP//PfN1Wtm2nXq60lO2TKPS0sF8ujL1y/7hwP5sFjWqkx0KrjTxNnJJwfnzg4Ztv+bNffUsuxfpNMbMP83D63/63/x3N0cVlBy3N7NeV7fXC6WFmKeat1ofw4dtf83q5oCnz4TxT5oV8d893jw+cTgvzaeGf/NN/xqs7T3/53Y83WnfsO2Ga7DO0Srm/M8S8d/Z14+uXL7x8/crLbkaNKkI5PVA4NOkVbTutVra6U6Rzvr9nmmc+/+F3bPvV/ND6ilQlAXOKfP/9d0wlmf1N3Hn6+srXr6+s++YzYnCOgyEB0UgZxp50iADpzfzKNLhSv83ahQHBB4I1BtrYXXFESSHgWgBEMY1HBtbHEl++qs4aNDJQjkLQY41yq2iN9DQc6Rg35X7AYFiMmNRdz9ASP99PYuzFGG7TFreXACkFWhuud2hD8jEEk55LBo+CJV8i9t5M/cUukFK2cY4gnIuzGyURpVCSEGwnowjn5URMg28+PZKTB8ze36ipArU1ejctob0Lg4zKxL420688DooDKfzjHP2/7MD1Z//kH/Mnv/k1p1hI331PPp+5i4kw24EhfbDlhbpV6nXj4dOJKVszOqaCxkLdNj59+mg26kGgZL7/9I2J4S4m67L7n7pu1N7YW+Xy9ZnaN0ZvhrvnwrauXF9eWC/PPN7fW9P9Dz/w8PiTlfkpU6QxxcjdPHE9FT7c3/P9999RxGzce905351Z7s6czme+/+47xuWJ169P/PV//oG6RfeFsv5TTIFRMuy+JEQR6SYvpIFEcQil04fZkkeH+mIK5hQ9OrUPqjsnD1Vr0Du8VBwyEj8bulrVNjCYQLDNNxwOiBJ8XsXIIkMVk58It4WrWN+j5HK7toZ3gSuUd4dfN73GEJjmhVKs/2ji4orkTCgTdw/3nO8XV0i4Y8hM69aqe907tUNrcP/xAx8ev+X+4SMXTdS90YbQlm/IeHVZAkWEIYFdEqe7D5QcWKbEOSeDbFPi4/lk8Jwo12+/5/N1NZWWPuhiJpf7trNJQvcGvXNaIjKsD9Ql8qtuB8yyLDwsM+U0M92d+PX339B1sNfKx+87IxkUHdpAspEJRq1cCbSt0q4r08k6JaKDvStluqPtlTxP3C2TNfqnmX/0q++Z54lYEh8/fsu1NbbaWP/xC51ukPZ6RX2WIurg9PERQemt8fL8wpcff+Tp82e+vF7Z9g1VyOcHHuaFkpK5Ue8727ZxWa8UKuf7O6Z54m+WwsvrE9v2yn59Ylx3spgk0Xfff8/deWGZMyFVvnz5ytOXJy6vz3ZI9k5oO13FKoqWCdGk2CSY/UxQl9SKgrlFWwJlwy4CKFvDjWbxwGUjCmgjuICyEhhioUb1CMhG704BZOitbyM+wH4TScbQCkv6jt96/LSZyIoLgR0wWgAfd9Eb886uZtBjiuJiyXaNKZk/WSAgyXqTAeu9HgmhDehxM7O0cQnhlJON9kgihem2z9FAzI0mmTqEb7/7ljlNpJsIuCvd0127U4jJRKSRDJLodUNvGfHf/fqHBLFfdOD69Z/8hu+/+4acMnV5QKYTcTJnWe1K1UbdQELh9GC2EmvrXFs3Lb67T5TzoMwTn3/6zLpv7LrycPdAnCbCEDQkmgRaSCwPE3M3osQynXm5rPTefEYjsuYriYmH+QMfPzywnApPz8+clg+sm7DGQEpKiZEpT2ir3D1+4sO3f0rSKyUmchB+++vvSFMil8z9/T3037CvF775/nf89V//gdfXK9fLlVky5/PCaZ7Zn63xfpgiBoEQIjFNdG/S99aMAef6eTGIO6s2Wt/pA5+5MTjU1NA3p6irQ4zBae4gKVsAG0rfmzssc6vOwPe0NmIuLmBrJBFVJWgjF6OPD1VIs6k3hIDkxcgFtXK9vAJKLIXlwwfrF0WDhaYMcT4R55PBVcuZPBWgMTDFBR2Z8+nMuneeticeX75yfrgnnRL9NXIdsFZYVXlYCiUGWoPnNqga2IgELZRNeV07f3n9ypBEmWb+5T+byWJ6hpeq/Ocn0x38sGSosG6N16tyqZW5mCL/VpXL1QxIO7DWRBjKtg+eXi7EvFPmyvcfP7LuO6/XK1+3yuvV2GifzhNp2PzgusM+lBgnlseFMBr7vlHrbp89W9acifzhxy/U1mkkvn+wLJoQ6UTrHWpk/jgRmrEOa17pGNFjKollnp0sdGHK93z/q4VvPn3PDz/8zvQGh7KHiQ/3J+ZSmPKCjsG67VzXlftz5rwUcoC+X7m/O7FtF16eC5fPX5li4NffPvI//S//nMdPH7l/uCfGwHZ5Yn3+zN/8xX/g8urs0pednE0xv25wuVztYC7F6gWJCJHeNpu7YzBGc1cAYfTBum7ucWb9qwNDv5nM6gCJLgVmxKzed2fbWv/VfddBO12Ejhir8pCew1yth5qa/JDETb1/WI9dnSWcff+A9Xdt+D0ZczRaz00HiFRSH66+M92ck5uP/YQYKPPJdS0HIZnlUZky+XSGg6wSMrnYgHIpZ6fOZ1Iq1Lax7qCh8Kd//k9tjmuaefjVB8q9uRq32og5cH488+1vvufx8YNJZUUhR6sOY4p/dEYh/MID19PzKykl2rbzKp+pREKwhmOM5loa4tkgwBSZ7s/0Vqmt0usfiAGmFKkPZ/7zX//Aly9f+OmnP/DjD3/Nh2+/4fHbbwl54rp39jq4OyW0NnrrbC5VgxpDTBqO+e8sEU5tIfVEU9i72YbEVGw+aghrG2ZySaCNxjwvTDkxRUGT0vuFvr7w5fKTrfNhvaHvf/OdzUoNC0xJjHZ+nV/M7bnbTFbOgRQTuSy8fv1Ka0bdT8Ga+70PAtaoF8kEMe25MQZtr2yjos18fAiH/YuRi6PYQGaZZ/ZqLLXehlWNjj222l1HMTDFCaIpEfQ63ApBKAHyZIFLB+AWIzEllruP1HVl31Yur8+kFMyB9cMnG8INQpRBTiAlI9mcAXKZTP19QCdBUPYWKXMy88beePrDD+7CrHzlA1+fK5dN0Rm2F6Ofa070NmhEmkyEXilRKQFePr/welkBSNItKYrCy+vKf/rhC613phTcjcCe3V7hNRgbNOdoXlC9Uxu8PD/bjE7MPJwWQh3stfPTl1e+Xi88vb7y8nph9TGPL3+AEj0TH8M8yER81sj9l5xRdr1eGX0wp4nr8zPX64XXlwvffrzj4dMj0/2Zl9eVr9fKdaukAEltyHq0nd6HQ0yRMhVqrazrlb5fraqKgdetet/FBvc/f3kixUyZdhvmruYpN5V7SnGYu9uwexD1+USDncu8kLIhAevrMzkLjEaZJj599yuW08K+ruyPyjxPNizbE9vlatV+tpkyVXeu3ja0bz5ob2r/qlY1GlHISBNbrbehWonBnNFVCTnTqrtFBKGuV3dNN0sUCVZNMZqJHWNec+qSa9HnE3WYxUqLiUPrMsZMb93uXRCyK2vklO0aw8QT5iKUMpHzZOiRIyMlYkmaCHVr9GRO4tNciGWxkY3aSUvidJqZpsxICXpzOnxyJfyZlJebJqZIhKsxtRGYcmIMEzwIMXIQtRh2j4YnmLn42IbCqB0rWcfPSBnH6x8KGf6iA9e6VS6Xjf164YXKrpYRnZYzKSViCkyT012DoClSa2Xfd65b4+5UiGGi9s7ruvH8euHr8zOfP39BY2LkiZB3tjZoTak1QLPyeK87bauWVW1C37pnYIPT3eRT6WpQ1TBX0ZxnRt1tOHMokQxi7DbcqiSlgGpEh9JGY9SV0Q0yyKWwLCeXeSrEGKA3Mz3sxgbs3YYhSzbmW86Tze9UM7fLQam79R1kANmUJlKwADp6pwmmddciGk1TfPhm0SMDDELOhRRNGqq3QZZu9PneCVoJORFzYi6mRKBADwPJNs805XiruEA8cJmH03J3x54TpSRiDkzzRJ4m8vke3NJDRMkJiBFNJsUVYnqj+mPKISEIyYNl92d33Vau1yt7uuOyrbxeO4kzVPNBkzIZGSMkRopQd0a0gd3Xbef1uqFj8PX5wkggUXh6fuVyuVBr4yrKMs9EMfhljGASUAK5FT9IB23AVptpGGpgHsP6Fmr0+OvVLGCul43doah1NKYUfTpvoPo2yBmSmPXxaLeZLTscI6/bzrpurNuVy/VKuk6MnHi9rFxX2xPQyQhBhw1XjzcIOu2W9G3rlUAzv6oQTAHFn68gdt9GY9BQ7fRu6ixtWG9GBiDBzTGLD8hGJCameSblhIg5Wss79GA+LfRm912icL67J4bM6IF5mqxaT4Ek4oe+onWi183cH8YRDIY5lDPBsMAV3b1XxyDk5NR1NWZucXZrgBqwz9M7vcUbBV/U9CQHQksdjQBKxCTAVKF3pQazzRFVI1k5ktFRkvi+itH2sdshLbMhNDnbmqzNZlazGLlJFfbY0JLIU2E5u4B0G7TeyUu2sYpS6GLD0KYlGZhOJ6JLPUWf50ICtQVya6iM2wxfcA85I9t4tRmt5ZCKsUFTDu/Eo/9hnlv/tdcvOnDt10rNG73uhCkREfrWkK4+PFopc4fR6HuH68Jo1cQrW+eb+Z67+zO5TIyYoEwsD4/M00KOidAHe71CMBuR6+ur6R6qItooOTHaoF43ri+bVRElc3d3z+QbqW4wRiKEhdPykXW80LeNuq2kMhkbUJU+dvNrSsGsLPZBjIGUT6yXbqoG04JMZ9J0osyuvdY3+r5C20nNgghiAqVRhESA+xPV53lKCtTXV+rFCBwjJ3AK+r6uNJSAq8/3TNsjw+QiXHzDBittZGiQT8WEWfsgYuSSum4kSebmPBXmZTFZrN5hgpCNcj7PMyGYkG3IiZYmC1yxoAKpJCQthPPM3eMHcp6AQK3VSNjB5+h8lm4MG3Gww85GIAIKIZDzDCEbZHde6CFRNSAkWmts20pIm6mb10jsZitCVkKaqL0hw2DMtXdIRqNWwQ7i0dkvV1JQRhg257KblcmQQUyzVcNDTf1j7NaTKQXNgo5Al8SKVTfLMplS+17p1439usI0E0Jgq6a/aRzORo7lZgMSWmaMZmrrKdJTNPhKIi+904Mw3d9R5kKO0bQ9q42o5xzYtso4tL2dYXlYjww6tdqA/sPDHfN5MW28F4PMAaZcnHRgc0zHsHwIkS7mPiAayNNMJKF9QkcnlmfSVDh/eKAsMzHBaCu1NnJMNwfgoYPaKkohZfv9re6u1qCuh2kB3WgQmbolRpugD8Z2ZbRGikAqmMD/QE3DyWDqFDxoKKghB4j1iWopxpjcdx8hsH1hRIjDcNJYf3AYPB/DzIE2DvjcyRbFRKF7HU4ksT4XURyGh2U21ZwUEpKzzRR2c7rYriu9D/I0wWJO6ue7O/Z1NeRTAqFElnkmp4xqJaZsrgejMc1nA0laIySD8yUEpiqM3cZZQqhAJiRMQCFaxTgSTLFw/jDR6sTdxzv3RATcakeHOhXeb5S/5Gf/9d/++kUHrnW9sM+ZJCbHoiFCsXmqGAMxxJtCQzxKd7FGbExmgzFPxTYXbpMezd1XVKnryiAgkw3YZre6FwVpwSzQgzDPhf26k2PkNE88fnjgtMz2wGIi5kjqgZASZZoYLoJ6N0dKSYwOMRZCLEjK5Phgcy+7qbTH4pJRKTOG0JpC7cSxY7P3kKYTUg6Y3jQLRRXakYYVVgABAABJREFUgGCYdgqB88dPjPMdfb3S2n6zdgkCWiZSLgYNovReaTnSNsuuQ4zoOFrMg147y/0jIsL2asPguOzOATPgKhIaI6pCLsmDk9lEdL8vqRQIGYmJEBJ9KDGbmHAYSikzqUz0YTYKdjAMFwSJLhVkEjoSjsZ2tIorZnNiTjbLklMhxUwMiU3xzxbYamWKJoUlvk6aKnvd0WbKGi0YUcHcqE2wdd82jCeGw3Xh1uO4QaeH5JWTWSKH1cm4DcNH6USUHMQa5WDySXVH+87okaHRIC3AT1269HfjDQa/DYWGEmNC1CqMqBBjYpkzU54IIvTaGL3emKVHHhDUiAmIDcenlGh1R3pnipH7hzPn8x0pJr58eabu1i9KZTKNRKMvMFqkdYMG52khF0uK7u4+sK9faaMxTQujdpps9NZI5UROgSER4u66jgE0MU0nehv0ZghFzAmJmVhmq+raavsYU/y3akhd734nzSfrY6k5OviJyv56IWarWAjmvTb6oG07aZqspzMac4mMNjOqV5HdiCzRA83tJtoDsTGWauoxMWfqwKssZdRqQTpn+u4yXQKqQpmLVWJtuFmmiR2fPnw0FuwwD7j15RVVpdyd7ezLmVwmrl+fbAg6meRdTpkQhb5Hyulka7c3I1woaFcfFDYSlYlY45AlbOsrsTb6h+/wSA0SQbszlGcjsjhx7OuXK6cPlenUKfxfyhk/e+VkWmx9dFrc6TG5oZ8FoRzjLbNBBvRKaI3YO0sS5iSUKLS9U2KixMIu1abmMWsKcUp3kG70d8WyiGCzFkQM9krWuzgthamYbtoYgylG5pgZcTClQszdRVTNSXmoTcNLOJsBX54IXYlpcuZgIA0cDoqYbp75aoUh6KjQQWJCuvWYgssQidrnnkLwLND6bFHMvDHWlVjdkwyQZJCVBHxwt3mTu5nHTggMjaDm8yTSKdPJKrfNSCoSQEogdp+NkkBy+wkQymSuqCEYCyqEYH2tnE0RwN2ctTaHJryiwRT5jal1VNRvemeqR+H1xvsaaqBGSoVYhTAiowmjQiQzlxOdzJInWlLWagOoRhTZiHr8flNxjKpIs/kaEVNy763TN1snSQfl0MULWGPe3p1BZi4JxBCkNx98x8gdCmHYmpxSsLXrH0yGQmuE7M7ebmtzrO1jgGAwMG+aw1bEVPu7wr52QxEkUZLPQGGQdHDTy+FrMr7LkIOnxhIsyCYMjp1zZs6ZnDKnMrFjxB6JCdFux6wKPfjzCzDF4D+T0PmM9IqMAfnd+AZeKccAIyJSPBjjA6+WlMIx3G3D4ylFRzWzBy3rAYYgaAYhURGzm/F7Iz5MrKqkMpNKoswTIWfbL72zx/XWRwq1oiNb4pAbvVXSsF5QiOGNXeiBD3zuPprqTcqZ4LCuAm3fKLMxPbv734nD5tNcfM0rKcYbQ69MMz0NV1sfeKHLfL4jlImQkukp7s2hU9NMNJ9C6yPGOJFygqzWD1ZQ6Z4AGgAtIUM47HzsM4q6LBzcMpwgmVQWpuWO4Pqoo9ss2RDQP5Ia/N9+/aID12lZCMMqo02FkTJzFoJ2orgGm5o5nowG+xWqUV0floVTGkzBmoinOFFjY5dGlEI00wJErVmdtEJojBH8gdj8h4jNE7UpUKbM+Tyb51Wy6uQuZ05xhhQ4l5nGQBOQoLWV2iqXtSLhW9Jkgrn9Ugl5clV38zky9vQghEJKM1O5Bzp9v9DHBUlu8T6aMZBSMiptEuacUfVr9IrkCGVi7InU39oYda9WFaDUMQi9EcJEjLsLrYJiShxjDGJWynwGhD7ZVH+IgTwlM9iTCCGa7huWpJVilddxQcPILRuFSMhmgKkyXAMwmivwGLSx0cUU6A6oIQaD49RVMIwCaZulD7OxyCVTrkLombpCe+0kLdwvD8iYaZPCnmiXq1F83QU4x4xQ0BzpwRr39EFmgCQCQt028hCyQOmNPkzkeEQbbbXKT4BOVft7rQZfGy05I2G3INs65/KBU4mUaEwxm0cCtkYq3QKIjNvsUPTnMnSgNCvA/RkmTGaqq7K1RimTqWuETAyZIJExTNRZGMQwaKF7AHGGGi5lFjrJG+05ZaYQWVJkKon7aWIX68uYF4J6VTnMBkY6UQZzhPNUmMoJ6QK9E7CKyLQehSiuM+gVfhCzfgnYbFlwaSsJ8WfSXCliclpaDN5TmxOM0RT7ezRiEW2zvwckTN57GqTpTC6RPE+U+WxfH52QL6SSQCHu1TUKOzIqbd9uupJEqz5wwknvRrNXEVJsN83KJBkN1vON+UKZDDYf2Waq8HGSUpKNiWDq7cMVOlKZiEN8RqwTJwt2eTqTlwdL+kRoUwVHkJBk1jWjE0ImxsXcz3MG8H6ksWFxyxVbPZGBMSxVLFkfohzb17QYJ8rSOQ1I02JjAKMxoprHUvy5kO4RxlTkVu3+fV6/6MD1/a9/zZIz16ef+LyuvG4rT1+f6HffcDrfMZWI7hdardS68aLKaA1QHvKZy9eItJ2gM9pXRrvQtxfaNaP5bAdoG2jfGLspqdcR6MNK+KHDzAnnmfuHO6OVpszr1ye0L2ZhEGyR1drp9UrfzdvqdJ5Yr5W+vbBePtOun9D7E8jMtr4w2tUs21NiWhZQY8pJMOuC0Xck4FJJg7Kcmc4PHC66fd9AB0ES0/1HtEPddurr11uln6YTdLPD0AE5JGMLoWhrSI2GxsW3w6i1aOrXIkgJhGTyM+V0Ql+tWhMRa7yHiIrNzaTshnc5GlBmqS6STVQ3JGOWHYdWmW1jSYiECnXfLeMWuX1GxGeuvDGgEm1n6GA02zeCzWbnHMkRYt9pl0bsG+cpoZJ5fX2FsTLq1YLACGwBLvUCKRG3KzG6qnitvDx9NkFjCbyezjyeCyXBqDvXejF1h5RJ8+TyXIHRrvTaqM2UF+q2oqNBMEV9kUgKM6/PM9vLV74oyPgt2/WKjs6+rTSpdkI7UUfcPVrqyuiD2jrrWGn7Ztbqsrskj7C/VrZ1pe2Vdt35cDdx/3jPvBTXPlxpavpzRhkPBATGdmON2dzOoNWNv/qLJ77/1fd8/PSJqQR6h702vj49Mfp+k09re2XfX9nrC99/c0/OgdN54uvXJ9brM5eXz+yXr4aSpGgZfW9ISogEd3OIroXZSFEoMThJyGDZ6FU6A4ZFcR8mDja3RiC0Qd0aoeCzUwMVU65QbZRlNm3RUgiTfV1GRALE7BVPiIzr5gFBCPEm52ks3WhDzAF1KyTTLo2TzSrG6PaRajDytEzkkoghmt2KoxIh2PsO0Rh+ow83ubXZwd4dkxyd5C7iqUzEyXzBdChpmrxSNrKXHQpixo6HAPDxEoe2JSAh3UwnDfbGh5gtCTW90ob6DKcO1ywMEdWdVgf7dWe7rNYHPErCP/LrFx24Hh4eebw/Ue9nzns1sdWXF3KayTk7QcLKfO+t2mGhg3IqjNq5PF+4O088PtzZz5SZ83lhOU3M08TaXkEPKSRr/ooKSYAQDXKLiUSklMIyuUbcbjNTMQSiGMtu1OYUWogE5phYNXDdOvvaTdy2gY6IjuB0YcsqGVY5qrMSGZ08z85GjK5an10VG8eojeU36urNZsvYPZUHOAbgEbHNcIioBsEcdgOgAY80SDRbbg3WzzHKoxKSELIYjMhwewVnXB2/Jyj4XIuB+Va5INyEjE0sVq1S9sYu6gKlw6wYDkjlYIsewe7ox1jWZxsxSCBiCt2nIny6m5mKWUAEbZymxCnBNQ4uWSnZAmaeC3Xf6QR6DLTmiiclUB5PzhY1WOg0Z+YSoAfialYwICQZ3n9VRjCHAhM8Huyr0Gplb43LZSUG4TxHPt6f0DbYrxsvT88o1j+5OxcoGXXYN/mhkqMQQiJhsj+gtC1R68beAruLod6dJh7vbBj/5cuzVZWjEyLkLMgwcpP27vfNkhV1sdkQIkffXYDr5St1q1xfr1bxBFOSSEFo3aooeqOuL2zXV7btle31Qr/f0LnR1pW2buzXjetlNbebkpBQCGEixEJMRic/CAttNGKYCKEbZH20OSWZGPBwzQe3WDkCga0LS8AYh+ccfiL72ozx9gcJSDQR5aNPfhAMbn1LUSM5gEG5Ug1OF8DpLYrcNCWtdeSuCI5wGPzZb4PKNszv8HQ0KxAR4diygM+R+dwj3XDYIEgMb3ub7m023zccCW53iN1Ff/1ZHm7V3PaaclD2Bbv34ozD0Suj270xdMYq41SK9cd1JyUhl+CJ+88rrj/W6xcduJZl5uHxAe5m7hRaH2yr2WhrH4g2tJxs/meazExQD8q28vvf/8BWXzktj9zfn1iWE/N0ZzTrEskpstHRYRylfdfbkG0KgkSzjLgxhCRQcmJ/3enN6doxkBPkOJAxjFnn+H9KmSaR0QK1Qq/mXWTT59kObzFoTnulbhtah+HlJVOKmUqqd3VF3qmaJ5u3GL3StguqYpP6gRutSXHEziu34CrwJvlpkEAQ9VoLQDgsdIIescd4iBIjMVmAt8DlWV3wai2YncMhJmzGcr4BcDUAwWnu73qJmC/QcPq4+Zr5jF44oHb77ATfvDJuw5jDfbO6mL/Wx/NMnAolBbTtTEFs7i7D3RxYTrZW5tPMvpmMzbUnLvVihn9zptwX9gZ7G2x75e5UOM2JqMa8qrvZhySBFMyPq8dk/cUYCUHZVwsqr9dG3yspBB5Phe8+nNnWxlPtvH59Ic+RlOHuPKG5MMR0KGMQUrRgQXY6c0wGW9dM3TOXrfDy/MLog8fzifu7O+rW+EO0IV2GHXA5QkyJRGJU71X6ATeCWVXkDCUKKZpQ8O/rZkP+60Ysk/mqDbNcCaKIdpIo17GjbUdrp60bfa/G4KvNq31M71LME8oMDxNQDEbW/RZE0YRQCFJpbRj0HcV6db1578pg5IOFrerBCSPujIMmr3oj4VjgctPQ4NXJAZVKtATQ94xLQhsHIyWDvsYAbbzPxw5UI7hU1HG9G53c+5A6TN39pvn07nfLbV9zk5/qbbfWAcAxN+m0eI7kk4bIkeyp0bdG9+Blv5PxNkB93K9jnOf4EAZHuwiUb/zequ3DEex6njjmnI1gpYNUTdg3xMCbeoc/j5/929t//be+ftGB68cffsfl+QthXBmlEErhPJ/IU0Zbp287Eoya25uQlrM1qBFe95VBZV1f+eF3/5kUErUpr9fKellJJTCfMndF0OSme7WSo8GBcyqsvfH68pWffvyRujc+ffyW3/7mTylz5JxnltPE48d7flO/5+FyT0+J9UUJdOYJkiRyemA5B07398QUzS6lZNL0gIjJJT391V/z9ac/8Pu/+SuoifPdHR++/cQ3OsglktzattfdsqnRDT6RQIjG6bktViyr+9lL1YSID6ou5u4sXjm8HQK3/WvLXa1SkiNT801n328wluftoMF6W15ZIcEyOP9+5wK4zFQnxMkwdjWFiOHDopIOCr3N/RCgK+4bNZB4VHZilhs+z/Tysrva/o6Gznr5yvPTH+grtL1yXgonV5NIOVNOJ2h31AFXjVyfMjknUy6PkXUYmeP58xNTtmFoRiNKQ5NRsqelIDqsyhfx3lMyWPnemGpVAtvLtwbvpMh5DgZTpcHl6QupWvY6pUgo3veJahktmIr4ANXGGJEyn7ibT6RwpsVAva7oGO4kvVBr53x/x37ZUK2sl2fiaISSSNm856IAQ9muF8YNNjQK+1RssFp+8w0lGTlD/eQbY3A6T9Ctqs450K7fMjC33RwiHz594P7xgdN5Yd9/Q10vvHz5zL//t/9f1vXCl6fP/NVf/gdDPObCKSgpmQeeaGBfN67Przw/vfLpN0KeC2k+mcJLb/RugrQH6001vMkySaT3inZLzIaa7p6qQbsGORZGe6tOzE/KK5R+BD1T2zD2qw3ZWi/dnYoPmrzvNtWb+uat2tOjsXxUfz+jjJvZp4To+9a/zX9k9OHyahDLRCoTqSxAcKjfGLUagN4N9sdg9pCL9ZNDRFtjeFDHA9dojTGqw5PRXL3zYu4K207bt1u8GTqgWV9cXZdxqNA7/PTjE59+s3Hf//7B6b/2+kUHrv70O0ItoJU6FciF0E6UlI3eTuPy+tV6UgpPP6oRJ3KCvDDlgZwD16ff83K9cll3vjxXeu+UKXFeMuFxJpYFSTMpJagXelWu2nm6rLxeV75+/cqPv/uB5y+PaP3Mn/zpP2VfbIL/609/zfXLD2zrlVps6l+wTPPx/kxeEqfTB5ZlprfO5eXVmsHBejlK4OnpwpefvvL1dSOFgbRK3nfmLz8xn2bKUm7WLUdGZ8KewZqqzhSU5Ien22MArirqe6dbhma9o2h1UYfQ38EKBIMxh2XlwZmBNrMTGdEyvZgdJggHZIc14qNDn54GB+dS2DljYqEHxGjxcJh4cTP1gsiV1ppvNrX5r9qMWIIguoNWRDAV/6H0Hvjp8zNPT6/sUmnbRnj5AjlwPq1WWaig/cwmkQ14/dxsTk4SO5NBP22wXztNlJ1II1DCoF2+GIuqV16uV4L4QOwabonE69ZNSEDh+iVymosNVM8PTClZsG1XXj+/UJtSZPDNp0zdL7Rm6vbUYqMDMaFXq2yh8/qspuHn115md8w+3fssH7Be2OoTbVjL/f6cGGOnr09ctwsjBDRGhEAc5uLb+8q1QlNAha8/2UzR6bRAzOh8QkuhbVe0V/robNX6HTEEdDc9SYOhAtoar1//QNteLRC5nmWZjcq+byuDzl/9p5UYraIufeN8t3A+nyjlxOc//IHXp2e2pxfOn77jpIZM3BA8wCODHdbBxGZVgtHR14vdtxjfXHmxoWKJEUmKdI9FGBtUb0wYdcNJDLmJB9TuXztgSCeEimIVRzO2bUiCqhFiDGRzNqWrnhxVmkr3BAyOYGT70pI++9ZgyEYYEAYhYYnhsKTQ6kLx3lT3TaYo3eFR8fbDMSTsCWWw3p1u3GrLkBPSqmElvd+Co2DP0O6TVWgxJFKZWE4L2S2Y/q6XvgvEf5/XLzpwSX0htYJqJ6SOxsHowtDNeyWDsTcTye2d675SSqRMmfn0DWWaiBK5/nRhu/yBy2Xj8rwbQ2hE4oisaSa3e1JpxOVErRu172i98PK6cd0rddt5/vp7RC98PsG3H7/hkiN1u/L593/N5elHtn2jz3furNuhNk6LUlIhxUJrK20dXIcyn06kGDzwmIng63VDQ7JG71QgWVO99+6mhsHwO8eqQ7BFZa8jC/NFZi6R9r3HujJk0eOJmCeTilHWD1hejJKvrqIhQMzh1kQO3RrAGpy08a7/dGhZxOSSMjiEEo5qS7xHILfMUzwVPLQWx+gg3YasdVhmPwrNn8EgQLvA2AnJoDhjFiZeX7+ytZ0wBca1sdeNy/riMlVWQWprqDPt2vpi6vkhM+TEtMyMVmn7StfGiAWNmTIvtO2V3jZar7R1N5WOWTC3R8ve63WndatK+qWh55l5ORFUmO/vnIm2sq1XhkRyzMz3d7w+X7m+Vq71GdEMPSPLhNZu/Vbp1Eujdct423UwlolxWlhESZOROPq+0WgY4TyxnO6pe2fdruzrFzqCunpF7M1s7KWxrZ3abS6MXtnnQm8LZXowSxwmtpcneruaKkkPxDKZDqbCsiQ7ZJvNxG3XZ15FKFOy0Y+YaF3Z1gvbekXDoF5fGMMUN3K98Pjhgf3xgdOy8fmnL7x8faF/vWDoYHxXjbzBT4LPzAX3gVL5Wb9FDsr9sT+C90+D98c4gtdwnPGA75xWPhSfAr+BC9YK9orpWFVqSiHiw/JCMIRCHP1w364QowOQDv0FSzYPZOPoyUkIDrkb6QtXkCHYfKkJATu0783lcDD1nc5+RHiD6C3A+00h+Dykylsv7HbfvKo+kl5xVRgVq6iDgjpZZppn3+v/jYf6/5+vX3TgOn+45/wwoXXn8eEDYVkgJbbXF3rd6HVlyYV5ntEYaWsG6YSgFBpTmRklMd8vnPpMyoFTOSElG/TSNl6//kROV3JeuEwT6+sLdbtAfYEwEdLE3Tzzm19/opRICJUvf/Xv+fGv/iNrH/z+b/5PRI1llec70mlhaOP58oXXlx+IoyOtMVIihUwWY/QsWXwANvLl6YkyFf78n/05d4+PLKd7TnePlDhuFPi37aJv/SgJNnsWbF5Hm1N3b/Minvngi/Cw4QCDWYYSYyVET40kAJlRQbsgCWO3ReP31/Xiwcrkto6OuM2AiUsvRSCDmomluurFQdgwpXnvuqsg6qaJvRrLMmQQG4iWlJEYKPmE3D1Y8OMDgvlAWb9NkJQpd/dcriuvl43164VYImnK1HVjb9VmlGIllhlFqXWjbzsQCbKDzqZvtxrEnPJMLjNxSTbe4JDQw5yJOVOKMDbPREfn8Tzf6M6MSspCykKmIdjv39sKMsgpMU2F8+OZUoQyJ/jDRoqmMiIZejVVAxicSkJ9qF17JyUB6cS2IZOgKmz1CjQ3GoyczplaABovLz9yTBcN7ex1hVbJEbIaa7MHGwMJoaNjZ1yf2aTRWub1y4+0ejWIl0xYTnYwbhvXF2Hsg7p2ajClh7puhIjR9UXQXPhPf/mXSAj89uE3lDLRqslTLadCztZL6usL7frCfn0FGuIzlGAkpgFGFjqWsDiBKASH20zCSUR83il5z6e9I/pga+zoZAVxcgKMlIitEWxAkhCMJKEHecPX+rGHzFlcCc6ctYN8oosZEoUQvLKMhDQz6sHqfGPN+lZ28oVVUOLwbV0vHNJnImqJBwq9wyGLhiA50Ju5LFg09j9gfSqORNcJKiKIims3tlt/7DZgrcfnT7d9qurHg90y15GU2+/5Y79+0YHrV7/+jk8f7xASsiyQM4TC+HDxTNc0wlUShIRq9d6KUEy/hDGUx7s79v1P6G1QG65MXuntyn5db03NUE70ekFHNbuOINQxuO6d34Y/5Xz/wOOHb5CnJ56eXnh+ufDpn/8Zp/tHyjSjQcjzPYjS24vNXLSNvr3SNJElkEKEULh8+WvW12e2Hc73hbv7O77/R782Ash8Yrm/M4mlujHaZsOc0XSZQserIG/uciAICj5bdLwchTfa7NBb5npkbkECSL5VQSoRGdGIGzERghEDJBZiShbQAjeWH35u2NVsgBqx7FJclumAEw0GeQuq4MaY54UQLQiUKfl17H2KOfbZ+40J0YpoQ0Khd1ACpIlv48S67VyuF/h2EHMhlcIkg66mC8eIxHICCfR6tTkcFeuTxGxkn2HNcUKEmJA8o04jH0OR1ggxkacJaRtHBVA1oMEOHKHeZJBKMIFgy+Lru/sWKad77sYDrVe++e4bn2ESJBVCXS3Ai0F5KtEPru5M10gWLBkR0Lp55WvXn86PKEr/ZuP+w4PvF0VDRNpqsmMIDVfhGALazSV6OhF7hWDEF/0w+33ClNTj5BXxZs+3GylphGSSa+7hhF/7sg3KVCjzxJ/+k/+J0NfbypT9hVFN1q21jV//4z/h+w5Sd779za9Z7u8NousmMK39WG/+R2+NWwvOIrdAY8iDWoIExm3vVkndQESLhj44fpiJOOFnHy5rBDqsmlINXs3YdW0RBUy80FRhVByCs91qzNdoyZwvRLTful3+894fNjcw+7mQXXAhQleD+MQQDzkS0oAhHEFx7QAL0gep6xaN5I2gIlY1pTK/DZW7mlCIgcMpQqLboAQIGonThA7r3Z8ePqBijue3PsO71z+0EPtFB667x0fuHu+BjJaMRs/mi2fuEti18eYT043WGSI5YMyk0ZmzZaWukYHExWifdeXy8kJrG2M0crlDxwJqlOEm5mEUX1fuz2ceHr/h4eN3rAG3Y6/cP2Qev/mO6XRHp5PKvZN27iBm+n6hXr9y3c3upKRMLHcEvYIM2jrQWJmXzDQVaEZhDlHQZgeXQR5yW3TWMwq+6LFVoscGtbRInQ5/bGq/YwjG7juCmM12+DKzgu6Nch8sCHEESIcrDZt/ly4ef9RNIHxA+PYeCe+C1RvceWDvIYhZcKD2Twn+9903kjDUWUzeyA7B4BTF58KKkVSGdnJIxDyRy8wc280KBo3EcgYJaF8Y6uobQxkaEBpBGyoJDdHUwCWZegkDJCKtIiGS8kzoyW+Z0CQwjsAl/XZ4RGs++t23ikpxg78y+70c5DwhnnRILKQxeeASlzMKDBJBhgWuEIk0D5Qgww5NxMSH03QCUVQnQoj2GXSgEgndAhcIXcxnrXZLcHKZmeYzUi82ZNs7sXQkFqsCWqWPaIkeBSW6qKvPTQ2TmOrNYKXWBzyv9HbPPM88fvhA6FevQjJ6ndmvL2zrhX2PLGmxWaPtwnRabE6rWgXDMQzsawrU+07d4oGjEOIV0xG4xNe5Vc1wa0YeryO+dQ9S6maQR6Ln1zZ1mzckA098DEMMHoDAdByDJ3P2d0ZQsr37t8kY7/eSKq6JaLvVBrffoPeDRfn2U+LsQGPYmhKO/Q8BeV/aie+7wyMsJh/2fqPxH4zKtzdna/BQMOGAU0OitWGSUeqVNT9//UOC1y86cJ3vPzHf3dPqzojBZlz8gDxYOjGYnYbJD1kmGqMrW8gO1R5TKsXoymVBKYze6PtEr7sNxWtmOt0hOnFMyG9tI0Qbxnt8/Mj9w0fu7z7QTz+RpxdSMYp4LoUyTaakkJxuqzMxZSqdtkeu+1e0LMQyc3/3iLbvycvEfN1Zf1JyjNTrldGquaSWhX75SsrJhE5T8UZ0gGiHvI6D4eTq7tVZgkcWB6DNDyzfuE7u6L15Q9iHesWw7dE9sPj0P4d9hHbvYr1nUMnb5nUGodwODMsEbxtxADq8D2C792j6GltSb4QNwSSntDeGCBzmgKPZwOOoEE01Xb25Pdqw4fPeicWUsnMp5iw5XC07FWK2HpwGJ+6PYaMNikk1IUbXz9kSDxXqZjNmuQRT2w9m+Ed/O4VMwcBp1CH5WIUQ8Zkc/2OK21Y9EoM37SPzZAQM1GbpRI/7ZDqCneBfiybOHAORaM9gOLQjltzEPN1GClQjpVTvDVuwEiLiGUCMCXvkxkorxYgfSKNuK63ZgGlKwZX5A9veQIUcJ47Wk6AghVYtOYoZYjKjz9fLagnTaIz9YvNWx2xSmSgipDIxjwaSGarsjnqI6tv8VbfgK5QbNd2EAvZbkJFgfn0Sgq2VgxIekiViBBu2vvVxwAKLuXCP7rOOvAVJ+2e8JWSquJ+Wlz0IOuzPOOYR8TfogeMQRjhguFui97eDl0KvHUNO1JJyl2nSQ3NyOENRPZiNdiNTHVAg3vOSd9c+vtfMcZsr71iFxwDtpk9qwQ10dLru9n0hec/NioDrVu3vQjGFIf4LLvM/6PWLDlxlWciTuXL2AENMEZ00c8BfQY7MW2y40WmmOUZEVlraDbv2RnFMxTN4G6q7i5nedoZ2Usk3vLf1TmkN9p3KhWn5QMwnc2WNkdOHM3GBaQqU+3tCWQxqODTouiAhk3MknDN7i8zTidNyT4qFHGcapgai3aZH9qt5ICWJ5FiI053Zt+Rkenq3eZGMNWJNYsgWcHBZmgEdD0qCSDZ8XLHGrWIb4QaxCHZqB2ex661qG8OZSxgEJZJ4Gzo5vmabZHiP25I68X9Xw3X8sDxo894dxrJUv1+je2ZrzX9EGdIZdXiFIqYx5yCMjncDqEFIJMyHCcJmG8p8LQspc5uxSckq8uaHiqoSkgmuHnCPBFOzlxgZQ4nh5BmwSyfFaDN6NPv1IbAf1RXW04gh2oaXo1IwhCDEyXzMQrTeiOvHjVzoLTO0m2Zks+QsSGCEYHdPLVE7Kq7gzr/mnRQ9sJiWXTzGJMCU2/vO6F65jHzrFUk0hffUdlKcSHkye56gFsyCqbOkcjKx2zGI2cYy4jEUbg/QmKdjYQwI2dTde1dqVUowibIkJxIDaQqtkcLksGxGRbk8v1LXjbaDNnseMQpNN4JkNB+TxscMoCdvXoWHEBiODohT21X7DRJ+kz/26sNnlQBrLWj3a3ZiMjQi+jXVE7BwECjUZJ/kWM7ie8BVKOToLTlpCl+uDnXYHFmIjKZot+doyalV8SGY1UgIR0sg+Nu0E8+mAqwvpt7XCsJbf8+DzBEw5ejZBUGmieiBXlIklWSknrt7Ui6WUKkjB8FIPTZLlgjAcr+gZMbfknz6Y71+0YFreMMwxmyDiMc9ulW+8lZtAQSXEDoOhpg8JxVTEA/Ry3U7hDQIuSy+eRsxBrQHNETTXyMSB4SwO1QSb1JAZZqcKq4+k/H2AC0rwlhxQMwT03ym5IUYM3Vb6fvuChy7mz4Kow1DPX2x4FRfxnBpFXHGnjhkeIztOyUdo2ePm0juEZTel/1230KIXmENh1be7ukNuBDeelI+l0V4N49yHBA3wP1vP8G3LBLPbI9Mk3dwhgWww7TOIU//fer2ICrGItPhQfKAO1GTXOqWMWobaHoLyirmCxWja94l90jD7s8YgyEmGnsE1MP64RiujDE6FMVN6SSEYM9dxK3Vj+Ta4JoYDy264/B02MrHBcS1+8R7YTbqYMmFyOEJYLJGTd7goxCyfZ5grNChDR32LH72vrm9IZvrucFG1l+xg9XgvKCDqN7rkPj2vL2Zb9isK04E/z23Q9kJAx64ZFi1GFJ2u3elTAt69j5UyITg1QRqfdPdepCHQWHfKzLeJTjKz9eaV6Jv6/ptuR2fXeRgGardnyNuCA4bvilsCFhidDBkb3Nifh0RV1sfnggYdA1YVSguyhwcTnzXw70J6x5vGcGG9Y/ncZxj77eMvF3itoH+NhBnX5JbtvjzLcftJ/xnnWovfnZIEE/W/Nl5n9qGii3lGWMYMuGCxm/4KIaUqAmg/52eXLdq8+/3+kUHrrZttGpW7TH5wJ0e/QiHlo4toGp+V0df5TgU1NWQj8rALSMGVnVJjASysRv07elHAaIQYr9t5DGUXm2GKJWZqBO974DcoAoLWoPWKnRTZ84pMc93xFCAwOX1D+zXZ/b1lf16oe07kpM1vr1BLBI84zdTO90vhOzWKMBNsEU8axLTCNTekWgOt/ZR/HBHf7ZRYoomRaOeed+SgTcoMLjigPWTvOGLwVG2fuV2uHP0vcRZ+9hhe3vp+wMHP4jktq/UKfDj2CBipA7V6gKz40aQGMOYif2YN9FIr+bK3PvgFrc4KOA+fBoCMc8gwYRsAaTbQRvaW58kWBU4jua+mKZd10HyQGNfM/WHkCLR5RQs+CRPnsQb/m8DnDc5rOOGuytAdBUC9UpYNSKiNi/lQd1uoUs0RYMOg1O6zWbG4eAxnO6M7YkQkOg7RYefVcNbicf7Tt7zM0cDu+cCklzZ5M1ORUK6BcbDMRe1wPV2AtvwugJ5mq0q6EffxpOiYDYsre70YbBea7upsqdsn0X9efsePIaFDds61FreH/RH/5tb4LLve7vlIUaXVQMV+7uA7aMYDXJT6W9rW4QYEwPv5wSDgDWIDfGHcesBHfqSdpM9ibgxEX3nHj2l2547qja9/b1d43juDmncZlvegq5j8fa1Y7959XWcR6DuVOBdN0+yTS7qTXHjlkceGaL2W+tAfLYTsa+1baczbPb1eBtvH+nvCrP/Ta9fdOD6m//z37F++UCKE+HhZOVtyLTDdhsM0vFFve4/Ik43L8Vu9OiddVtpdbz1XoKpLuy1cb10M3dMgRRNpdmkcgxTNk+eRt+aSeBslevlB3vYIiz3d1ZJhchoHcX6R62ulGlhXhbOy0JdL+YonDIhQM6ZkQuMytOXF3qt/PTDj/zqu++5f+20XZiWCdEKfYftQigTMU/IBBKNzjr2ikSrxlAxB+Y+HAJLtLbR60a7vlo2HwJpmoh5vilsd+9j+Bo3soYIDCH0dlvE2qofrBbE1bNDUz04+kTdDnXwA2Py/ebZp75t4UPKI3Y1UzsdFsBb9/dgKhP4PMtog0C0hKWbeoX/IlTMTmaEQEwTYyjr9YJKobVGSjCfZmIwyEv76vI2mF4hmeHWH3GYZ1dwncCIBbG+N+K8ONkBhvRbJRCjOnyEHb71gDcFiPQw2EczWbFgg7utD8bYQDdyyjYwK4J22BVQ41eaAKsdZrVVhnSvDoariA+2Xs2VGiFHCNFm3Hp3uNGD/+hK8wowIYTQ/eCM1LYR2AkSkWB9oKGR1gayNYTmWoHR+4o7JRduMkex0JwIk6KQs1VnaVogTqZgXjc6ie3lCy9ffuDDwyMpRWIxJZg8Z7oLTMMAt6HptdJaNSsedTRmtBtsh1e+R9+X3n0NOyXpsDgZJsl2FCodfL94IOSogI7vP6rJcKssj7GotyonYT0wDzxerY7ebtJPhCPxMLhtKEgft4B29Mj0mNs6kkz3wT4CEAiiASF6oJNbBWnehNHV6e3nDa62nxX/ugw1/cfkGYTqDbJOZSKIMXtNgOBABAohTz5T2iFGYyZO+XYv/5ivX3Tg+vLjj4xttwHe58JIiSCR7qlEFGW4EnIIwrrXW7WSo/og7WDv3TXMDpjJsrjeB9s+TFHAh+m0WQM48DZFPrQTw0/0Zt5a+/50g+KWu4WcJyOJdFOIPrTXTncHi6nz8vzVJIVKYS6J1ge1m8p03RvbdeU6KkucGN3UK8qUzHxQOqHtlPMZndUyfX3bpIrQ9516eWV7/uqZciTPC11tHkiGuQrLEHoQUA/szSwKjsU9uh62rjCCQzh6+17b4PFWAdjmdgNOfK7Gg9Qhnip6TPAfWaxw8HmtKV792tYjvFVfnm2OYc8xBlc58MPjULoniDXWXTqqj2EHVh+s24Xr5UJtjfsPj3z4BHle2Lux31prrHtDxOaYutWtSDDfs5QnAPpQ9m1l3XdQsdEKz2SjCM17PiKBWnfyMWwdA0ESHahqZoLBDyGRQGvDAjXHvBCMrqzeNCyOMhwGlvvebhbwOMFEFXbMoNIGYu3+tz5ozSxAFDGii5oXm2LahIFhlWiK7Hu9fR6CQ7c6zIj0OOyHV1ljMNpGydmb94GQiq9pZcqR4J5gvXeuroJfonB3XgAoizFvh5pDcd93c+munTxnCxNebRz6g+pEFAsaFswPWbIbdO73xDQIPbdxCRcdWEDx4t++x/dR67aO9B2zTg9qOLf9Jkd149VgCAeaczBhrZrUPuiuCylivVqCuj7icR1jMGvvN+juIHfYNo2234b6XJ/DG/pWZY2x+/syJAXXANWjGvMPq9j7Hc1cEA7rmBviwfB5rjfGr1Xv4fY1VVPK//p8oSxCzuNdkH1Xad2u8fd7/aID10+//5H9shFj4hKhcsiPCCJKkME+xAf9AtvucicoMtrtIQyyCcSq0HYQMYkU1UAbnRGN/qyjQ29elncOt0/ojKa02thrZajN70iAabYBSsvCE8uUyCkby1AD27ZziYGfPn9mypFlnvj+00fqdWNbN6oLua7rRt9XvoYnerPFlYKagG9SisCN/p1moubboS4Ibb1y/fwHvv7+b6x/kSam8/2NvjoVh3QEYzjpZlbze4U5eUCxYK4OwYDL4wi3DX+ImIIHHbUK5ZhbUccNgwRws8vjEBjjrUIJvLtGPzyy7FC/ie96ZBzDqsIeIzc+PHKzVJAQXM7q6O8dcGRgW6/88Lu/4fnpifuPn9iuMJ3u2QNo300I97KTc6aLkWRS9KwdpZTF5wEH23ohhczoyr5VqpgyfAywVhv+jSHQaqOkgFlumannCIEeInMROyCrVYj7VqnVFDuaJ1atmcJKCDBn6K2bZUyM7FsjipICBlVZI5IeMssUkDFo1x0VC1p1b2ZTEZJR4YNVmIgwJzvXQhByidTd/LBSxPQH/fA7KqiAoFWI2c1G951yEExiIueJrUMbymlOB2JFbYOvT58RUR7vz/zpn/yGZZ45P34y2a19pW1Xri9fWa8row3y6TCBxA5iD1r6DjY8YDztByV7/AyjugUuOeBfS6B6a7cq8X3g6rWagDfcUDkblTgS2XFDCd7Lqh2H+vBEGcWIen5tb0w4bJtMNKCLQbKuGahjGLqgoKbBZX51w1iW0odpLIr1uQ+qv2KD/sd6D34uMA7iSbLxGYBha6nVSqs7qUwQHJL1fvHwfXTMwuGBi/B2/3sffP36wh2ZZfm7B5D/h4YK//X/59/xeP9IrZ1VzKq8D5ftUaW3yufrxfoqAdbNzNdG71wvr36oRFK55/HhnoBQ150+qgeuyMvrV9c1C6Rguul2UK6IWkCcSuRaB1ttbPtOyEJMRkmeYrY+kprIxTQbczGlhbu7BZVBb5WX1xceTye+fXjgX/6L/4X2/Hv6dqFL4oc/fGbfdkrJ5O3CJoPL2DlpJyY7NO6niRETIyTCpLTqw6/aATOXkxQY0af4izBopOlEnmbyebGBWZ8NMiXqSq1XUj4hMXmtYdUFoiQ6Gg/WmH29j2Z70WExBVpv5ikn5tMVggewd3/0eEjHJvf5EAmBfD7R8cAWfDs6YSTkbP3Gm2abQ4U6CGoKCIh5KpWpsJzPxMePhHIi5Jn5ofP0deWH3z3xf/y//hUq/5q9C7+/dgueashPyjbELiFxKoFtu7LXnQGUMlkg7pXelHWvPL9eIU0EbYhWxqhmgxEibQg5uJitmMBrSBOpnHk8Zca+sa2vtKFctsZ123l++kzTQ7ddIM/EECjS6duzD31HtqpEEes30Ux+KmZiOnO/FOiV9fUrdQy6BqfzXy2ZOUw900yMiTlCqysiSk6RHizw5igoZpETgiBxIQb/na3dKgxtw++hPatUImG6I01nPtwV6vWVuq+s287z1y+clpn/+c//Mb/5019x+vjI48dviarU7cL2+sTz19+jaSA5stzfm2s2g1qvtLrZ+lDv5x1rRARjy/rBfgSrIBZ4wThJbdzYg0fC5eXDWwGHDWmMoT6+dMz5mUswvTs9/2DUemX2bi8MtQAnquawDhyzVHpAft1ZjWB9xe6/T83FPNxU5uUG39s//L7r4GCqCbxBgHL8PQ6f+nzZ7eX9tjjofRDVmMIiiRiL9fjSGW7zm0LILnYdC2Z2NpA4KCmxzBPzVP7Os/sfihz+ogPXv/mP/4l5+oG2D2oKdLGD+hiQDao818rAcOGtHuX74HK93ggJIX7h8XRyDBz2uqHObNvXlRGs0WourNbcTcewZjBJnHWYpt7oA5LczuQkkeiHbBtCTpZVSczcLRMDpbZG6w2++cBdSdTtFXV4bOuNbd1ofbAsHmSmiVgKcVRS8GzXA8ibh1X3SmXzQNTJ5zPnx4/G/EoJSYU4zcRcOKi0eNPa4HZrEoe/1SwGhwe9OX1M598GG33eCoe2OP4cWPptqPkYpHyfCb8BCkczO5WJuO5v2bFXERDcg0wIPZi24OEzBhyDlG/wv11vmhbSyQ7QdlIeP33g4ff3/Lvnr/zF77/w5XXluQ7i7XdFSj6Gd4Us6gK+llXHaJ99tMZQqK1z3XafGTITihjF2YuJAWSxddRVIQRCSKQ88zBntDdaM6+utXa2Wrm+vjKc9m9VdSKKUIIy6srRSKj9zRW5HdBriMRYeCoZURMtbn2YRK9Cq67Y4ciEhEwMgTmamy0Y3DUkEqOQQ2B4ZSsiSCrkYKMo9pgPjFgpRkdDgZQiml6QVHgqibp7H5FB2ysgXLb9RrBpvTP6xtBGiJHlfGdzdV1vlh+35SLHQe/WQfJuLb9h1m/QoFf2qm9wurURjrf+FnB9Z1my5SaQt0HcI+CMAzZUoh4ECn2rwG60BrlVN/Y2DmhcDN52+I1wsKGPYGMRUoj+3g9iitklBX2DhW/7St4FOFestwrOQvYh3HuD8OVQpAmGtrRKqAmm+ZZg3ogj/hrDqnANB5Q43qre/woc+D90xfWXP/5IDIG+KyMFNArBtb6iCFmEK46D62DrThBQ5bJvPpipKK/sl1eDclJm3VerGhCDB8RmxIxYYAt5CqBORxeU/Vhc2BzEsfBFzHRSBLpGc7J2qvqlZFcl6KQU+ebOVDkYO0du3ZuRRIZj9zHZHE6I6QZDxeh9BTnmQXxAdzTavqI+WxRLoSyz7fMYCWkyJmI65l54W1G+4H9G1/WvH7ne7etH9LL08rawVd9+zH727XsPqPFt5ssrCccOxa8TQnB9uYNJ9fYm1aEd+zmnMB+793gWx9eOHkwQUi6UMpGXmTQCp/OZeZ6o284PP/7I77++sA1IfuhLypSU/VBRM+m0u8xxSOhQszhH6GNQa7v18aJALmYBEqM1OJIfuPXwRQqBlApbNuLK0MFWK1vr1NZNgPYmGW7MzShCCw75+PNrKm+BazipAJCQ2FO8GQz23ulqgcvMTZ3eLpaEhCC0KLc7jQ4jtoRACuIk22O4OlNiIPkIgI7mHo1CT+lGpKkVGjtdAq9iUK4yiMkEWmvr1NZuh2bdrqbi4eukzLMRavRQyugwbMTjGEa+9YAOry2/zz87KOXn/3qbodJjlfytlxzr+vj+I0E6AtKRhHE7X+Top737NvnZ7357R4aeBw9yx8+42sQRSeG2tsWhXLr39n427Px+/R/7zYPIeCeSewQVPapSvKdmb3L0Tm+NGOvtDPjbQevt9bbfjtdhwPkPD1F/9+sXHbi+frWqqemwodAQTJ/N3UBFIEzFFv4YhOGlPlBSMkZSH7SmvF5WYgpM04Rqpw2lNmXb99ta03FI9cAOxNhMqwurvmwb2+yJUYTtUF7VZlqmKdP90KitcrkaNKeq3N8tlBh5PM/cnRONwEYkDmEfnX1vTOuF+zYhfRCGwDx5tS+MaMHVDtRqAvd9p25P1KGkMjGlO7Z6taoQYb53p+VmP8XRm2p2GA4d4LT44EEnHAHF/513GfWQgzrrShb4P9xUUpw2TziyRlc+CEAUU3rwDXibswniWXajt91QlGCHR+umZtCaqeTnbDNZ9t7G7UwRsQolRCElbL4ugoiS4sShjJA1s4TCXV44xYUYBhoSI9qzUTWGno4LMSdiiuQUuFwq67bR2zNBEiEMY6JKtgREhvU13fNJw3SjVcdhrraoEKRQe3dL+kzJga6D1juESgzZgsFoRLLPeSnTNFtgGYPoNPkgSsYYjGMoRpgBgpmdooM2YO8CXIkxE0Nm9N2gIe8R5WxCqr01TFGDW+9MezNh3ZBvz/W0LOzbFRmQQybnQC6FnCfavvK6d9atc+1XSonkHEjF+11RaH2nriuXpy/Uy1fmFEjeD8x+v7Up/fKV6sO3bauoD0+HozrszYgN6uaQTtQ4kkodh2rE0Wv0NYcRW25Vmojv0SMBsBGD8Y7Wb2fAMY5jSYSodZwHWLDxNZ1uddrbPNRRBYZbAMGCmBN4bB1H+wjen7olYg5bokK8CQnwFkiGjVTfYksfxho84Ho9cBLx++djCnU3WFMiKSWf/U8+3hBu1Vc49A1dLNgSkcj9/R252J777/H6RQeu+9MJgJf1Cq4WMKfAvExWYQTYAgSsfG/haFqCxkDUjii0HsAtrkcIFBHD/rsa2wkAIYxGTMmRt37M15sjSMmeyQ7CVOwAHwOJ5TYoHVyoUhVCsVmq1iyI3Z3vON+fWe7OTNOZsa6IVMoUmUq+Ufd7beg0bpYM3ZlMg0CrHdl36vViNu9qUjZBrDG8fv3Kvm4Oj7rDcjdFcCvxK6httlGbExo6Ieth80P3HoY6hCauSoDaPJkxn7g1uzlQPYdABOj7bkKgUSDZ5rHc4hirdRgHfObtenNeDZ6EjKG0vZtoa++0Ztl3r+aYexzqVrUl+nq1YdZ5Mep03S0oaaT2QZdIunvk48eVfKrI6dGqgAEvLTDa6oEv8e39P0JKtBGJEHh+3blerrw+/fQu01bSckcOgSJw6atJk42B5IXTVIyoMQbr9avxfSSzpKMGsJ6eFEh12BrAerf7vpKmMyUX7qZCCJ0DpmmSSNEqutor63qht8YgUY7ZVzF4O0ukEGHcccxYreszMc3kVLhfZjQo46jc80ROBptqEOpuzyXP95ymQo7G5ojRVNdzKCxTJudMzBNtn+hbpedG3iOnc2FeEqdlZr1eWeaJZZrM/NTp5q1bz7SrUq+v5qDspCHtDdVD6uioOgyMiy5JFuMxQ2lEBAsijki08XbI++whcBvmhxsCaXiAwqGSfgCGFjTeUAMw5qa2Zn///tp6EJcC1gt6WysmFOwnSkwcAr3mXyz+vq3ytHm/Ay1/qzIPEgoIN6kalFarm2NCytmu29wmiKPKPn7M7m1bN2R24e2D+BGg10oqpj6P2pkUHEYd7rg8eufl9cqikVIO9+ifv96C5d/v9YsOXL/6za8IEvj6+kLFehBLFKZTIcZAFLiqZ7ZgIpP+s5oSSYfBKsECTe2NS91JahlVG0KZCwNzUo2j21xYMObdPowWFcZAUvTDZiDFZlIYg1AWxjDdvxEi4odzRBBt7PsOmzCdTpzv7rl7eCCmYlWCl+iHPJB2p9sKpBjsYHbrDxyiCu5dFdUllKKgDQ96Ru82iZjoqJveqOO3hQe39380qt+1et+xpXyjHRvnHfxwQH03JOW47x54FEseeHfdN0zlPTRp79Gyu+gCDcEzazsUFHyeKSK89V5u6atYALQquDOGSWHJGMaOExO0vfv2W34VIo9NkbtvEBXWLiw10PcLKQrTFPn+8QEOaHoop8vG9Xrl5f6eFH2QWWC6M5PIKUS+bK9crxf2bWNI4DwVYoy0oWzro0GQIXPK1nfpauMFWxvstdP2K12T0+4vxLIw5cL9PBsxBWO0NYcho9gs4rZdHMKMFKfH96HkaBXSkEjQjmLivuv1TEwTKRcelsWcv0en1xVKJsdAiRFSMlua0SjzmaUUs+HpjX29tz4T0ZybY0bSRKobY67E1hj1yvlUmOfEPBd0WHWX8sTRS7RhZ1s1Q00x4zaEfwzhHsffDXp2mM57N/avzjQ9ILN3q+0ACm008ZjfOiBSbj/3vl90W1+IxSB1+FBthuqGTb77XTe47bau3yESx+85ftexB251kKEDb2/Jg9W7T/GzazhmeUPqDvrmz7ei//tRvb2D2dG3CvN4m7fohvel9e33Hb/zHVyoN5r9/1Vx/Rev//v/8/9BjpHL9ZXPr8JajeZObohrqe0Vq3w8I4tRCCmgTAQ1ttTHj4/Azuv1lb/58QeulwutC0MTpykzdGGMYllMTmgUlMa6VdMx3K/EtiNuAEc4GYW5D/LpAdXOYV/e64YAOZkD7Xa9sF5eWR4f+OZXv+K3v/0TYnh38A4b6DTb8Y5IJyc4LZGCDQgHgh/gbp8t4Sb1RzTvptqbmWC23dQ6AoxjcXtm1odlcwN5pyogb1mc2CGEw1/W4rX+2BiDN+NKvUEJh4yQfdX6WDEIGjxZxTdFSE6EEo5j44AXo2M5qsP9l+xaabYLdK/ARAQZ1eibt81n/SBcuFWj0rQaPzLaMHo8nZg+feLP/vd/wZ/0xggFTt/TJLHpxOtYiHSKNErslCw2lDyUtl2p64V9X7lcLszTA1POnKbA+XRmmibyVHhaldeXFy4vzzw//d6kwCQgYSaJ9SpTDExFnJgwjAK+rmzbRt13Ggt9BOr2SkBJMTCXbDYigDHqrph4qonNHrRoqwcaQwetD5KYjNDgIAMsqEyMtoLLopWc0bz4YTpI7OBzf3l5ZC6ZKUdK9ORJhyvGN2prXK4763WlkWhhIjJ4kE6QTh8rU4qkKAidba3kAKmcGWLEEm2DnOKtUul7c6FoyMtCKpMFmUNvi+OoPyzsbR2FMG5BZPhhfuQ0+rYIbwK0KYZ3vaBmRAmf+ZA2PDHjZwHm7dB3DOadcvwBe4d0DN7fIop9XY4VbeQbiW89pYMtYrJKw67N8Nk735ZirQgNyZPNfqv+wIxDjdl8KIZYT1xy9K35FvwkRhPxztEZpgmJyfuXkZiLVXliaiCHIsihSSDYte/vZ/JcSEt+i368hTGVd//x93j9ogPXb//xn/Phm4/0tXHtmb1Du1xgavSxs29XlHQLAAdDChFCnIkhklPk4X4hJuXl5Qunv8z88MMfIE5M8wMP5zsId8Bii3BKjsU3trpb32W9MK5PBFFiDHQK21apbTA9fOQQOu3S6NXUl7VVar2wrxe2ywuPjw8sp4UUM328ghgODRBRsghTKpQpk6dETIkcbPAzOFsqZTNHnE5nSono2Bl9NesI7KNTdxN5jdm+NIbPcejNX0dVyTEbLOKB9pa1iQ1zm3ixBysViIGUC9IdInG7c5H3oIDcFvbBKnyDd36eOxpb1+i5QRIiziq8/e5jQ5vsUcCUEUYLaBODj97tjOAGkaMr9boS02rCsMXe45QL/+Sf/CMeP3xPmu/Y0sJl62wjspKhNrTvnmysJqqKyY6tlxfqvnF398ivf/Udd8vCeZ4YWNVTW2d6zMh3H9HeeX75NS+vz4zeOS1nHu/uXNxXiXpIV3W2y8p1r6x15+XrM/PpkWlaOJfC3ivX65WvT19IqZh6gQT29kptG9o75+WOu9MdOdtYwKjm0rzVSt+7wTtReHl5YZ7vWOY7Hs5nKsreOi9fX0jLQkrRqix2Qw96Z1nOLNPEVDIinbpu9PamKjMUtqH0vdOJ9JiJOuhjp/eNtl+obaPtG68vz8zLiZIjpw8fOBZ+EB+YFuuDxhxJ1SjjMWc72I8kX2x+U9Up+mIJlQQf/L3VPr6+vDfrtsG2lryvNFyY+va9xzo9fu5W1R8/qrfvvxVU0VCa25nzX9RHYntcjtgkt71yrH/+VhV0/LQlPLhSTUf1naO4vxf92QcwnP+miekfZzSDYQV1Vnw4CkWUeIP9DmaqRJvpohtcOgQOxRaVaJwB70e3bQMyLZfbvftjvn7RgQvJqBTiVEgyo0OQkJHSUCp5Wey/b4FrYJixktKMiLGk8jIRpJLbyjIvTDkT08RyuuPDx09oeEDlBKqMFBkBeq9Mo9Hqzn4p9BwQ7YQArSdiUrODWO4Q1wMcuHpDb4x9h9WgyjkGljmbO3C02YqQEiFnpDeXFhLbvAFyFKYiJExkNRBMXSEeOm+uCycHrPE25BgOEVcXJR70I+G8bWT1+yRyzLb40LEeMM1hjaAe0Dx4eTYHDreIBzDeNrQTzDgIM8YKHDe4Uw5IZ6iTN/Cs0vtqx8WO5vl7NpX30DiEUFX8bQXvJ1imaL/dVQyCWXKkKVGmiWVZSMuChJmqjT6ENHygViI6IiMnpytDGD747GoRyzyxLBMlZ++tDBPBFZxqLpxOix3arZFLsj/JnaLVrdR1EEbnGKTX88x8XpimE6dSWBhMUyaIEZMOmKv0wLZFWtuZTzPLeWYq5c20tNuQ/H69ek/fyAllvmOazyzzzOS9txCEUIrNOoY3SF1HZ5oXlpJtwBilxkBvidYqUYyEkyVSt2bD+7FQIrS20epGrYl929jXK23bSCGQRMhRiJiobwyWtB2Ackj2OdUp7+oBpvfGGz0cwm0IXX2m7633o6PdDvjh/loMZTjkF9SuL+8So4P4Mlp3Id0D1tMbV8KWua8vfde/elf73GA5eV+t3b58gx/fE/du9irH93mV9haD38PsPzscjyvcvufAMtSxD/XrvQ/pR+x7PwJjyInv7XAgQdwEOt7erle4aghCOEbF/ju8ftGB6/l1R9OVPGWuSWhERsg2OxUzaZpJyViFRpUNjGFwRy7zrZ9TpTBaZeuAZLIIOSSWOPHw8JEaH2lyIuhgU1ymZSeLUOvmlOSI9p2uG71FOwhT5Lm7QKo/wJCa9aGkwX5hnoTTMiOymXpHMOvwWGZS68SxEnMkVNAwSKJMCU5zgFFJwVQ59lWROEAao6+efZpem3luNYZWpDgrKIBENYq/GnsODyJjVGu6iiDRqNlBbcOP1iDOSEhoPUjhwjhEiI9ege80PXTMDzgBn9sCJ6242oB0Zyl6EHQqt5hwo13i2P46DLoZfmr4njWpHmdA+lySxTbrHxnaOQjZTA+HdnIU8pyYlkxX2NtuA8BErntj7cK1N2TfidpINGJQnxkz3lgSk/2q3YghymDdryTFmuC9c63DDuH32acOattZt1d6S6SYSceIgyiiG/Qr0naWbM+i07nur5ymiWVOxHjP3rFDvHeiLkBDpCNJUXH/Nh99YERKC1zGakoODMrdjOYCKbC1K2VaKDly/7jQD6Zn28lpxnQIOzEnt0Ezq4xcIiEqVZtD0EIOE63bXGUoibspUmug1miQZypsIdEuLySEqJ1MJY9KUSNJJW65D5onkBfTB903ryShN5tDM2GAfuvZqsOph+mAqFiPzNGDgRzCFTZMLfpOhd0hQA/UR494NCdl+FrWA7IzPh7HDKWZg+Jx4+jHeWFzq6yik8KGX+9g24a3qunAA38WiHwv6JEFHjozR113BEQf5j+gUAm3Kyj4HOYbNG8/Zy2A5C2V4OILt4TwGKp+y0nf3S5xR2bISUhTIBdDaH7+7t/e29/39YsOXOe7M3d3dzbcHk3ZIIfA3QIpKMGVHQ63WVqFLujI9Gy4dSSQy8z+WrmMwPPlyv3jN9zff+TTp1/x8Ok7XnXm0i2gLWKyQfse0aS0HsihMzSgLTNG4TJh1OeYiD3QWmNoZ0+QZUZbo7ZOIlFK5HSKBJ1pbfDly1e+/XhPU2iqRIlMpdCrZX3b3mgdQpzprdL9sM/z3c0SvV4rKRRUG3vdaW3QaqNu1dTQsV5E2avZDmCSMapO4tiNXm5Ds2bBAdz6DD027w+oHxACJJqLCJvwprxliEfI8cOk7+22MXWoWyMMG5M7muDq6tUijKou6OGb8oaavB9GPvos7QZNGNvSvrdt6y17DL0Se6O3Tq1OF8eqjL3udCKbCDkW64NpJEYlaiARLUgh9KGEOTP2RBiJKBM5xxvrFBFyMrFRNND3HUbntBS+efwNQYSmak4Bw1hrMfhQhSo5Z+q20cQUXqp2WttpvZPEemJzStazdeWG5TSR4wMpCBoDvVqVHEIihUjrjddhIryqShiDEAs9mJwVOmh14zaceyRcYr2ooFYpv76+MKZMmDJTSSg2N7juO0vOZpTJIIdAQ9n3naetE/1gSxLogTfvqL6Zeet2RV26KKQCboJo1ZEf9mojHAdJI0RXxA+3pcCxSIJ48PEEK/q8lA6jhav3W83Wxt/LoaR/VEbYWssabvRur99uA7e8U5rHzSJv1ZLrpQo22mFIhsOc46jesEjwHqFQ8Wu/q6gUk2F7Rzg5ApJJSDkkebCNxzCzT7Weqlkb4eulvQt61krpvdH2nVYrsSz2DAjG4ByVHvc3YV4V6yenAip0EVSFWit/87sfePwmkvLyd57d/1Dw8BcduFIxx1qlmTqBZ1gxQoo+k3DANII1IxOgh/ClNURjCFz6oDalNWt4l2nmdD5RcqIOYQQTKUWCSQAFoaoiQ2kCPUS6JJoqdTSCVxHrZgryXU03UWNEBgxJbF2JSdDoMz65YOr1AR2R3iJdhZhP5CLUumOOpwVJC2EMm/mJnjn6/EnXRj+myrxJrGI+YuKVFbg8E4I1sw9IxQKzXdDfCz7EzUCDNZCtwHpTEFAdzmpXs3w4DDM13AKXOJx4VEGjm96gwE3h4DgQ3m9UGHa94zA5UL8DRzz2vohlrYj/Xr1lhcfQZogJQkYlgWREEqnMlLmTdJg6f4xkLPmJKNI7fTSEjtCJvAn8inRK6MSozDFySjYrNgB69XNJGN0cd43e7wK2MTKFSMSYoP0meGuHn/mYNUbbUBoq2Q2pB6rtNkukR1XkmXtyqxyirdHeOq2bK0DvjdarQcXDek5abZxCkzhM6d5uPi5yiFGOfsBcSm8bPXRa7FBmgzN1cLm8sEsweDHOlsNLZITIdV+tmgxCjB3RTgqDebKRDRmD0A0qFV+jB0QsTi6wPC0YqUTeJS7hYATa075BhccX1Qfcu/33AX9xfL6fIQVHNQ1It0oDGz9UPdbpYUETMTFjq1bEWVFyrHGfszRo3vuz79mJR6T196n+e4/3IseCP2B5xPvKwdl9t7fLwYZ8r/px+IAduwAZEN5+73uFC5ccfJtzdBKGBJD+PtQcyeiBE/raG+/maWO0szi8VZt/zNcvOnDFYj5cvVdTsVYTGz3YLtEZbQdydJjzgT0gDsdf9an9OtAeQBIxF6bTbPYLoowwKA4PDcfiL5vncWobvxLZdVB7RTATtZfLDhgEsYkwcib6Yty6ErurHUzZm+wZwQwre4+0HohpIRUYQ4kxE2IhpBkcS05BaW07CEj00UySR9+gDNMCNKkpRkfd5E1CugHR6rT2oR0c7tEQPGhZ8zukxPBejb7739C3wwMZEI+BSt+YbiBoabFXb6PRfcvHEDiGsQfYJngHOYYDNA9vME3wQWQOuEcEuc3TGETi4lXeew6ElA0WDdkCV8jkcmJeBB2VkguEiOmZWuYcGtS6glrfL+DMMlVkVIo0NJn30DlDShbi1l4t2++DtkdaP8R5u1HQS2aeig2OMqh9t4MO67+JKDqqWX0MgWgsuigwtBoixaDjA7yqtJap4e2QHKPTe2XbdvBn3lo1odxm12+9+gHsvROvjI9qRz3zV+8FBVH6fqVJoofGWA5yQLdKrDWEQAoTc8lIykhMrJdnG1NJkRwHcwxkscAVgyDd9PssNewWvA9mnXA8ZDQI3ZEymycMHMKPFuyNOARerdyqA47I5iMVhlJb4NJjrtaqkFvuZA7Ih3KLHPFDsa8HcWjyQBjsViJyE9c4ekNWGR/BBWQcbgjR8y8nOhzv2wOLXfsIEm/qFXqb1Rq3wHvsY3sjDkimI9iKGa7ePqsHFYtP/vOBSCQk8d54P7gdxynyM2hR5HZLvRCw5HCZZ6acDar1PfjHfP2iA9eIkZEybd3ouC+PRuo4MiiF4Ermkm6Lw461IwNV9u2Ful0Q3TnNJsc08OzH+xhjKBIjjWOuKdghMFyfjgoCU8oWtFrlet346fOPZkseI3tO6FgsoPZG3Tde1xVe/0D57Xe0UkAXtnWl7TujVnQIbdvRvTOFyOm0UKZiAbSuRq04MHzk0Ak1ZQDtNuRKxXaXzY8Rjg0C79agvxz+GyCtmRqHs60kBMQN/MCSA6M/K611o8ymbB5TngoKrgbgmwIcOtFhTfHWGCEwRjKh0hsAPyzYiQW64W7REoMdDH6YCq7I4Vk5Pn9meMgx0ByIZTIVaw20dTVW5XwyYkY0dmlKiX3vXK47P76sXNbO69b5em0krQQ1Z67QGuU0kefMJMEq/ZBIKZl3VBA6sG5GZd9r5WkTdASGmmeW6CAEZc5CcWuU0TvLnDlN9seGkiMabGZqVFPYGCHyuq1WGY3GuntwUfu9x/B7zpCjWVMMTFlhzpn780KORlpqvdPaRt02eh20GNn7zhgVeuO6D1MrGUKX4IOyHZErj/dnxv0d0xSIIdm8WO+8vj6zbTvb2tF90Bg0USYxz7N5mSlR+HS/MOfAaJuJ9HqVqEcVcCRRw+10RjfIyhU7XNLP2acuLuD2Gwf8ZjHrbfbwrTyxdXGQBOU2GnIsQA8QMSMyvM/VPEbY7zvIGceVDwd1wYV5FWj9rVWBV4eHWkUMRq7hEAHwreXB9iicxnjjx4rvH1C0VpfrEnDV95uc0/H9Yq4X3Z0bkrtcqOA+Y54EWoRFXKHejDA6o9ZbQnm8Cx3dg1XwFrPpsUo6DhRlXharQfuxB/+4r1904MoSyQTW3m2exQ38zL1gULUSo9IUVFdGSCYd1BspwmU1644pLEjYmWbh08cHugrzbLDd3nYTJO3Ka73QJNrD6httDEav7G1FJCLer55you4d6YrsK2GevNmpSF9tYbVuBpAYoaD1nRiF5ZSJujHPQhiJl7WSYkeKVXzznCjFjAljSXaQ6qD3zSxHgFDiO98wYX15oTZlaKakwjHcSW2EqEgYxGMzYJ8piEFtOixwGXkwMJWZ3htopISJba3UvbKvnWUxw0zhnV0JrghwNEs820MV7Q3JZkgnQw/wAf+x2z8OsFGGQhsuWWVJiPZxM6y0/28ZrElJxdtmVrUDK4i4LFO+HTQpBpMTypH1Wul7ZVQTL51S5OF+Jmonaidoo9fNxhJyMgh6NNMjTIkUbQ5IJBuFPGcgsEhmr2rGjdF6N0FgWrw/I9YTuj8VlpJZSqLWxsvLlaFXrtcLiEGVXaBk02/UEZhDoHWlNTvgezeR2rzMhFIoOTHlSI42t3gqhSCBPgJ9NLa20nyuro9hBoAxQagsMdA67LUjGkzWi8qyfGA537Gc7zid7l0NvPGb7yo/hsS2Vvopsm2bBY4UCaOTS6TkSAyNqUzkGGjSQGzeJ8SCxAKxMMRmEw1FU0JUQigWdzTQa7OghjrRR6G7fY6X4SMYu1XerSmPBvS+W++sD7++97CGcFDr0ebQ7DAn5urrKehhZuC9YcFMNO0PYhVR3xsjRVJOSMlv8lOeNd4YioybKrwQPGl7hyAcYyNvPkCmz+i9uiNpNfKky4E7/CjdwUu1/t0BVN4Grt/99/EOzGNPzZVaoldfPlvmAU85CBxmtBtjghCJQJkWGoPaKrec4Y/4+kUHLqPQWskfg0AK9DYc7TALkyBYg3J0Osq2r7S+M6XE6/XiEk0R6OQklNNEV6EUO3BModqYRVutdIx91tpKCta3aG1Hme1QDLCEaE38ngjaCJJdEFcZx2ZpHUZF3GFWRycmYZoysa7kHKAE4q5EKxbJSYg3REfNkE4xu4N2+It5n+JoELfO+nqldwjZQTTP4sboRFVi1Nssl6pl1ET/92H9rT6MXZj7oNFQMWr99XXlermyXiralDwX8jBViEMv8vBLsteROXe0NUTLTZgU5Z2ppH8veuMb643GZI12Q3vlBhkZJOxV2i1Ftc3au1HrJbrCRngHk/jPRWtimLTUUHKAGBKlLDborZ0wGrUFD1LRqNfNZ+2SQV7RySk2yBoZGihhsqwaU5OnN0IwDUkQYhiUMDgtM3NOpjgREilNiGRaV+s/qLj/ldnDMAIpFGobSLAKx1S/xaSb5oWpZO7mRI7DrXYsudj2gcrK0OA3JjGGUlImR4GRyP672ZolMb2hPTBNhWk+My13zNOZKZs+58fHynat5NgQmbiuFyO4FGPuHvsgyH4L/CEkVK2CibEYnB3MA+949hKUQDYoXYyLbWt+uEWOvgnc4jDvoQb/Di48hHjHGOYG3obPKuH+cPE2sqguuRQchRit0veGE5Q54I2BMhocNPMgx7objH1HRyKQHc7EL+7rW47QNaDbFQ7oUBxWN9Ti6FsdVaVfx6vLcPTGOIA5tc8rB6TtzOrxfoDavvMGtog67Km36tXQknd9quNtiAOHYnDpAbHiM2YSE3XbkVrfMS//eK9fdOAqJVOmTMmZ5j2XlALqD9v8nyCosb4u3WZToga6dpNSIlB7JXRhNKXuV+7vvrFeB0oKBpF0hTS4Cbr2ZrTfWht972z1SooJKTalfjqfmeaFefoLJwUdiwzU+2BDLaiOPgjBLC9CTKR4Yrtu7GqbMaVMQ2mj8fT0SprO3H/o6OXipoEGaTRv8Kc2iAlGbTx//sL1yyukQo4LKvZ5971aKyoFQupkb+73vVLXSgsQYySkaD9TB60NiBMxCminfr3wF//xP/H0+ZmnryuP9wunu5n7D3d8+vSJ5XxiOi/My2JN8W6YuWncmXXH6LNpoXW3o7D6y838rE82dDgt16b5DzbiGxPeIpKCH3RCiOL31yqQ9fqMhGiWMPcLrZtBp1yvrkxRLfFI0XzP9kEJmREzNSZDY1WQAVM53zLNEgTtOwFYciG6ArxkMchZ7SAY3i8kWC2Qo4nh7r2TY0IVam92IjrhoJTM6Xzift1p+xU9LUiZSBKZl+JuyYqGQhtmMLnuDe0zaKcFmOeZuWSQRk6F5FXFlGdqh9PaiAy0OCV+CFMJpChElCGZPmDbO3v1vtNoPF+/olhg7wAhmA9YSoSSyARymk0UNwY0J3tfTtUvJILYuIaIMLrZwJa5OAvPWLmiroLiT9qEi02zs4nDZmJKH1ZxDUekveIaWMWEYgC/lyW9W6A4YGXeBoD7ttkMHkcf1fYszefHBKvaxVRO6G8k9OD08lFNXuz4mrEek2ks+roNfujjEPfo3UcXnIk39Mb8e8MOrYrT0Z2r5LDlTV3e5yodotOh9G2j14qOQYxngz0bLkwcb4FOxdZQ2ypt20yqyyFO7d6KqdXRAjtvez2IXMJgR5LZN319ufD8dGU+dVo37sHfrSz/93v9ogPXKQmzdi5tYx+VFoMNDw+TRwnaGdUXvCqnmBklWk/Gpm+ptVFrJfSNsV/ZXy8w3RO1M0e1jeNwU55Mrn9vsPWrDSS2Su4rowlpCIVgsIBWtHdKGCRWQt8Zo1DrQJw51dcnRBqdQNId6AzBM8GdVq88vzyhdRB7R/rKtQVey1dez39gmSOoKWOP1tDd3GH310ROJ3qD18vO02VHkjKnjew9l33bCCLkEUkjEA5mW/X+QYfeO6kJuwqtWZ8vZA9co3O5fqWHgcyB3BPlbiYvGQmD2htZB0UEYry5vRpByg4s7Q16NUJMi4ScLYsbypDh5BAhBRvItka9Q49y2HA4iVkBH6Y2CvwbHBOkE723GUZH6k7MM1mCiQk3hSGMHqFHgg5KSNgJGMgBdDSbUYkBGWYCGQOUqBAssKUYSARySKQSSZJo2q1i6R1qR/qwaonhKvbBJJ9QooKMThiWXOUcuJ8L3J+RfWWfJkZyiSXpnv2q/8wgjs45R0gZ1YRm4VQCOVmmHdQq7ExiKQHmhJ5n9ggtRXoIMJr3W5ze4Dc0jsYcDimxwLkUlhQpcZAxwV5Q8hjMqkTtpLETR3XDSlOYv3HWQ7wNoh/iy0mEZCqe3msaaCzWY3GdSY2eQTpL0MgSDZwwJMmehRGvbK7oYA8csk0H0SFosFGqEW6kkRijsRZvKIEjIjqcie+Q8zHI79fuikF3vgJHCzdKesyZVCaTQJrKDb420oPVSKPuSHdzxuSzU+8qnVsVhCBRffzSiBbisGAsPos5FHVoXgTCiL7n3vg3ZhhpQttWOxnxJQZhMMwgMtkfgphG69B3laA9wxjN4fqo3IIIUQJLtp5+juEd2vL2+hmp4+/x+kUHriQQdBBVjQGFwYVRLP7LsUDwBxideGE+GvaQgrh0iWUzWk11OuggRQgD9mHq8iGGG147oh3mXQ1KKEGIMojDrSa7KZcLw5QARG9Q0QgGcwZTvCOJqWEYy8m03oLY4dhHJROMLoxy3Rt13anrxvl0RxAnOhyZj5rVh53edrh3H9atrbn9eKcPg97iAYkMa6QOF8A9LMaHCn1gJIzhtuaumxaSsNyfkJzJ087D/QNTSUwlELJVa2YxE0C6K2kYjKa+6W/D4bgigHpPwlliemzug4ASvPdGwIZhfTF4n8vaC0ffwO6p+oa0brHBN0yNQ8rn2GxRoqtEKCX5kHMIrquoLv1o7ysFIXm1GyV6E9xngDRiISwYk3JYJRB8tsd62NaviJgXlT1v8XVrf5LAlCNtyqxTgWj2NSXJrZLTPlzyyyqMGJP3ZxSiOS0nGc4LsCZ8ZJCCMOXIacoE7VSB7gy52odxXDwoGoN6uAqFMAYuyWvsSJeBPJo9JlslSr7NJQ37P+0IduCnIORogTqKMGVTry/JFGRSNNKMkDxwCWgjpsgY9hlD8CHfg4EarJo8VC9Q640ddbkgb4xAQOIbVes2aBsCIck7eNuD6BBkWAL1Fri8SpNj3b1VPBIssIw2rApNth8QV1xXh0Cdk6/aiY6ti++bG9buyIzTIv06xgq9fVDfP+/HIjgQCcH7yvzs+62Ic9D9CPABZ/CKw4FHpSu3NvXbDbxhhu+uba/oKNONMHJs0eMK+rNv/29+/aIDVxsGwYQYiFrtsY5ODOm2CJLTZSUkQo7mvxUGsdlijzEwnSJaK3u/UrXR+o5iA7iERKyVRIeQyck3yJi57jtDDMqb5uJzKDuhN9pQ9lqNqp8yOUWDGLJBITlHPs+FIsL9kjidTgQJtG1HtDJNhaBn8pdnlgZRIyRhfXpxSE0ppdjckRY6g9580aplUDknPnz8wOcvz9Rm2b623bL8lOxgksNjKxCDosGbsONtBiYFE5Q9oDiJpuT9cP89n34V6QPa2ihpImWrNi7XK9NUKMU0ITVhemZAnAMxNow6m83U0unuB8uphEJXt1bHlNJjTMQyE5gsR3R4zKjxAiH7mIPtisMVdvRIyj431hqtPZNygdMdcXqgJCEFZVoKouoQc6DWbhBf/P+R9y8h163bfhf6a8+l9z7Ge/m++c251lyXvZJsNceTc1NQCKIFxYDGirfKBguiYECIIBYEQRGDIKgFjQUFKypoVcFKQLSQSgjJPiclwyGerGRn773WmmvO+d3ed4ze+3Npp9Da08c7d7biWmtzDhMHfHN+33sZo48+nudprf3bv/3/0JsFzCh2i1NQg9OCMM8TinK9Xii7IlSD8aSbN5cokWoZbQxMOZgNizaDgrD3nycxaSXp3hudyFGYciAEJYonSQhkszjp3s/sgqnSJ2d69ubNe2O7pWwJXZROxACiKQb6ktg3kx4TTxgEoYkJ/Uq3wB+CIMno9UUbvT7T90DbM/HR1lvXStuvFnSDME3JA7klhUST1spzZg6whI3QBKmRTx/PTEF4vF+4O5+YTyfyYLD6oHuPiuiZlJIzSq0n2brPDXryAuIwnCc5Wq1iIrqfVHeGoAWZ4HBb8DKg9cKhUi3+gYv1n0JIHtzGKT6YeXIQL9Rl2lS6MzAjw81bwWE9+GYQCQdFXWJyc1d8ON7e1/ib9WijIT7O8mQM7Ht/uPcX4zA+JN0VxJNTWjusTkwXVRkIAw5xt2YSdWO2s3frT2rz+yNqw0ZRCGLrTXuld6FVlxVT3Mj3D7bL9e0OXNeVvQfgxHk5Y/1dJXTxLHpGgy/aWohi1UWsiq4r4mKRSWam0yMtzFxaZt122tPKlj6SgzXlMx3tK0okIX50mvJGoKHrEwEliXCSwPO2Up5XPlsm7peJnAJrbVSt7NuVy9fPtPcfaUnROPODV4+8ub/nYTmTeiSGQukrr6cPfHz6aKoXvRHnE4TE5Xknnr5DzplAo29/k2nJxNzZSqeUQMwTy+vv8Z0fCOu6spVKjwvRoSnF1LdjCPQeIFRCjkwhEdNCEAPYyn4ld6U5ZdOM4zLz+RHJE3tpvFvfU7adUwicpgfe3L22GaS2U9ZnkHTbwK50kLBZvJQzaZpsNtRJJSFFtHafQSrsW0FC4u7Va2JKeIHsaiDWExJt9lwpWT/B6dTaOjHZMKRGQest041aaX2D3onhhGglijJPC9qu1N6opdP3YrNGwXoDmo08YBYg2dsqzXpXwVQycjBWYVLFWHMGZ0VRegYhHoEmReE0JbIEpjAx5RkhkbNwXuDxfGJVpflBlLopgofldFQg2jGiTe+gCUmmuxdUObknVIyJZToRJRujdBJqXql0mgcvjW4p0pSWMr0bFBvF7U9yZpPKNE2cY+DVabJRkQLnuwej5ddqlXQ21EIa9NVmybRGehR6dgZoS+S8EIKytkZx2FOaJVSD+2azloVaC4JBcb11ym5ED7TTmiUEHfMoSzE4aUnxMhWwc6I4Q7XXbrJqAR/WFYZHnCmt2/9r3emlm5Fmjm626ZiXB1e8LyZidPNyXS1xnSfTVEzJftarruDzUbUWtFnVIzkRs7FeEYP/uvfARASyV3v+QiOJY2gKCoQ4e/+u+/sVUz3JE93Zf0g80ChxNERVoClpnknZZMJUbaTIEMIAaX5R4ZpjRIiZlBezjuqdkDIPbx6ZlpNVzn+A/S34JQLXn//zf57/4D/4D/jN3/xNfvKTn/Df/rf/Lf/UP/VPHd9XVf7tf/vf5j//z/9z3r17xz/4D/6D/Kf/6X/KH/2jf/T4ma+//pp/5V/5V/jv//v/nhAC/+w/+8/yH//H/zH39/e/0LX0WmnJFkttJm8S/JAa0+pgjEDtJtopatnlnM0bqzUl9Io0LAsphevTE9KVOSXiMtG0sLdCr0qT6HCj0GuBXgg+JApqEjItQ6tIK9zlyBzdwn0MCkZgTry6v2POyuNdppfC+vxsPRAtpNpp28Z+3VivG7Vag3NKE10D18vO04eLVZRtZ/vwAdQUHfYKvWfCVJEU+fjhmeu2sdfGWcXug+Pa2pId6Coo1t/orblRpc1K1bIezCCJiiXCYq6/687lsvHTn35F74X7uzPalfPdPUIDrS4Eaw6uhmRYk7+5Dpy24M3fdrCn1MVOddi47ztKcajRtdNUKMWybUnJSAa90auBerV70tKVPFn/oHdoGqm12nPKM/tmZJGyF54+XthLp8lMLcWsS0Ro62oq6b5uQjappes18nBng+pl32HKLrAqtLLTqyUctfSDKZnEoCHE+iu9VONktMAmZla55smq4taopXD5+JGrH8cBIedkh4gItcajqJkyHNTpHJz+rPTdlRYkck0XpnlGtdNK5fnDe3ZtVB1q5Xb9XWEvyYZmVVmSBzaga6VujbUXnj8sSIhmirleTJFFm5uMFi9YDEoPipMilNI7RRvr5XKoqF+uF959/XOmKftQslUd2hWtG9v1mVYLU55vDgfNVHOQ23sHq0a7N+puRpN8Q2MPxhCts+vG935PhXCgbR4ZrA/nvDx9QWt3bG70tw4HBbHgb6MhI7ngYOgNWA0fNlYnh/hsz4u+mA+DO8woTlpizNjhkKhfilVfQ2SY3zPDqf5Z6/F2B1nMoEyH+YHDgFdvajS367pVd2DIxuVypan16cKLoPXyrv4qNdgvHLien5/5e/6ev4d/8V/8F/ln/pl/5m/7/r//7//7/Nk/+2f5L//L/5Jf//Vf59/6t/4t/rF/7B/jf/6f/2eWZQHgn/vn/jl+8pOf8D/8D/8DpRT+hX/hX+BP/ak/xX/z3/w3v9C1tFYtY+qFy2Wl9EJ0he7oApExDRuRak36YLDM+Wx25/u20bYL697Znp959/ZLvv7qPfvDPTnCKb9i3a88b6tp7Ilh3M0Xp1HbK71slpUJxDzT2o5o524yQkHThvZCCpFpTrx6OHOaJubUeFjg/du3PL//SAqRJI2ZgJbGuy/fcrnshBC4e1gIeaI14enjys/+5t+i7StlfUbLe1deDzRJPLzeCDlTOvz4r/0N1lLQFPj009ekZEOpiU5OyfF0pTQzWOx7sRmf2tmreTiNkYPl7sRyquRa2NcrHz9eePvuiR//1s8gNj55uOfy4QOfvH7NvEwsS+bubvH+glU5tWz0YvNSCSxo9U4f8E4we/ahAK4HxFdZny7e08AhDSHNM3lZyCma4aEqZa9WIWIbfF5sTqhpQNMCeYV0QS8rbbtSto0PlwsfP1xY98amE5MkiJGWE/XyzDxlU493pYaOsq8rn755YJ4StXXu7xev+DLb5Uqr5nH28cNG2c0lekpOSAgQ5oi0jnloVdOyw4LHnCzbbbXx9PTEKia5dZpO5kKsNvi97fiArnJ3MgsTRZE5Og26g1aGE7dqZJmMJNBq43q5cHWCUyQYOzZYgrZuFuxDh1d3k5mQBmG6y0izGcKyPlnvCXi6bA7VC1mg7avtFSI5wmD7aatctyulrDy/+8C+X5AA7969o+7vbKAVpV12tq1Qa+P+vLCtV1SVh4fX3D0+MM0zc8q0YGMGKdl8W9dAx216BgU8eisHO9ypHY12r5I7m4OipXGUInBAnTEEWsL6P8mJQa0b5ChO/EAJwdahACkl8rKQ8kyaZmP3qd4qEBlB0fYgYSAS3tR1lix4cBVL8mxtYyzWbOr/dd+8TSBHlamqppFpWSfpxVyY9maEk9EXw9Za3Y2klScIMpKi5tftGpciLlXoOogOkYpYUvjVl18zT/dM+fzN5pY/flXg8BcOXH/yT/5J/uSf/JO/7/dUlf/oP/qP+Df/zX+Tf/Kf/CcB+K/+q/+Kzz//nP/uv/vv+I3f+A3+6l/9q/y5P/fn+Et/6S/x9//9fz8A/8l/8p/wT/wT/wT/4X/4H/KDH/zgf/e11K9/SngoUCtTskoiRiWWK1JMz+2pbKDVdNeme1NKyJHT/QN3VGYa23rh+f1bysdntq+e0KcnWzzXgr6/MPUdWkF6MY221qjXCyVOKIFJO1pxkdtizsq9svRC2VfW52dqbYTFLNuDWAb85vFMr4VyXXn7/ku21RaN9GJYuri4ZYhM08TcE4/zgmpnvVz4y3/p/8XHj09cLld6VE5TZp4zd4+PfPpkWdNXb7/md373Z1z3SlX47PVbltPMvEw8zpmxZBGX0dGOtsLXXz4ZRFcKISfmlDhNme9+5zM+eTMxzfDlz3/Gz774kufnK2vZOC0zNTVYd67vL2QJ5Lszd4+f2FBsMxy9uZSQhGqDaNF00vI8mwRVCNTr1YagU6YvMIdIKIX9cqFVYd93tnUlTBNsz/ABp92vaNup3tOQEAlpYt0Dacqk5UQnIrrbMPj+nu36zPXpiZ/81k9ozWbWSgOmhKQTTA/klAlXaNd3TIuw1s5aOk/XlfVtYpkj57tMvSw2p6WBp3fm0RaCcP1ypTRDBj5uF7L7663dDjrRDq0yTQP6CabojhoxJ3TvowRoC+XJSRw06nOn+nWvrZAyxCgUVxVBO2wb02w+ZnsVPgzNyt7IGbTabF1FqE0dLg2E3YZhFeHtWxuSz1Pg2S1GAL74rSvLySDaysQyn8kjMcpq/WaSe7xZmZFTRetOq5UpN/LUab2y7l9hnl4WXt7+zs/ZSqF2ZYqZ2pUYE5+3xsNnr1nu75jTNMwADKaLwwzF6dxqRC0B3NXIerut2Txj86CGx4g4tDtxNqkc7FXpThoas0tJB/fkoKCbAaMFj1YrcV5IeTLjyxRup7b3kS2dS6bsIsFYqjEyvK76iz6Vmao6HNqVOE2EKSM5mYyYU9NDz0f12TnfKqhksJ4liDaIfuDuCCF2YqyU9UpMJhiN4rClEKeFwz5IhJgEicn61F6pBxHus/Dw5oHHTx8PZODl41cFDv9Ae1w//vGP+elPf8qf+BN/4vjaq1ev+ON//I/zF/7CX+A3fuM3+At/4S/w+vXrI2gB/Ik/8ScIIfAX/+Jf5J/+p//p/92v9+7dV2ixrPMpNHYaoduQozh7qqGWzWrjGp/NfykGrueTUbJLpV52rh/fc3m+sj5dWJ8vxCBMOdKeM1vd2Jx00TAIS8pGEaNv28R6tMXVGtt+pe6Fuu+UutPXldY79XJlTfYht5BsQNXVmC/rSi2dWoxifxi0dTVzyFaZYiIm2PaNd+8/8tMv37KtNoMkyZTA91JZe7d+lirvPn7g42WlNFNK39ad1jvrtrHFQFNTHghi8zag0CofvVrQ1oleYRYJPF2ejbCREu8/PNNb5+5u4dc+/Zz7u3sezic+fTizbeXQjZQQEZdsssWeGGzCNJkpZkj2f0x/gGE9MdhyImqfyZwpoSER2zTJDqcgMM0z9ACaXZbOKgeJExqqzcjNM7t2RBohWC+t54Auic8+e0PHqNDbXgmho5JRicR5MY+o3pimTsiZaRbm00wKnZzgtExMkzMMe+c0Zq2C8OmbidqdDVjP5AQSTLLX+twKvTJN1iBXDUjMfmhCCOoCxxaMpLZDNup6VWrzubZmOoQhBlOeGJVA2e25RWg9GlFGTRFiys4cVXPBtsHwzpRh34TWhaaClt20MXNEXURZMd3CebE5xC4TKU9GBOmdabZ6oqtFFRshaaQcmaZIa52tw3xnqvspCbPYTFdHmLoertxZEsX7QI+nhbuHe07nk40nRLsaGfqjTnazHtl4jF4orjHoFEMdg7bi7+n2hzFrdXzFoUK5WXyo6AuYjgPC64IFs0GhcxhWh/qFcBveVe8veXIiI4gdZCPxnx/i1QJ9t0Sz9+PtjTd+CDSNhtsLuBEZ71Vd5FqPYC4+ZmL+Y9VGGF7cP/FK6yUye8CEg0ylnZRtGD8Iv+/j/+cV1//W46c//SkAn3/++Te+/vnnnx/f++lPf8p3v/vdb15ESrx58+b4md/72LaNbduOf3/48AGAt2+/pq0VqvK1rqxtR8pm0ktByCKkJdmh0JpZgGgnoJyXROg2UU4XyvXCet3Y1pXrdTVoTwtPCpeystaNUBuazL13FtOkV4cjCNmN6BR97lwvK+u60ehkx4A3X5gqgRbMHXVYg9hhZ72Etm02n2KXzdwnWm9kAnt54sPThZ9+9Y7LVpDuuWWPtBbYduW5bXx4utJVWctutirgIsM2RLjvjafSqD77lEI0jyVAa2VvJhc1JXGlZ2NdPV+ebCJeAteyc5oSb9684o/9X/5O7u4fTVGCwJc//zl5Sq4OPR7ejH6xqFNOxBQJLsR66wP026ZU2/whCPGUjdGliSAnVBIxBlJyewuxAVdccw2xYdatXqw/lmb6trnvlTItC0EqUxYe7t+gIdK6sl52al+NFl4S4XSPaCO0QpBKSKbwoGlC24rQmeZMSgY91dY4TbO9zyicH1zCSAJB2xFcJGaaQzWhd9IgLBDpfs+HgneIlvWW3qDa6otRKJvNEXUwRlswtqPEbKO32pFWSMlVGTy77w5txXA7kGrrtLJBM9+xsqkHLo7B0+hU7e69ul4367mFiJIM8kUJ3QKUINCFnU5zDc6YDGJThRoSpT7atSRh6qsFRKA93LsOpZGitr1TWyO0ysPjPXleqNfVHRKaEW8Gww49ejS3k1Kc6j0qKofMBuMP+72uOqAIRtA42HreY7Wu2Fintz4R4HqcHtCG7xwcQcQjhQdArELsL/pkL6DE4cIwfl8kMrQ6tTU0du9Zvwi8DkcaeSTQ1c4aaW5DJDc1jtGbOogpYlJqrdj4zNEwewGfjjCtrimqYvt09PryNPn4xHhPN8jzD+LxrWAV/nv/3r/Hv/Pv/Dt/29c/Xq6gmTkKMXVyFHZXNyYImgJrDFSgSKI8FQwJUKrubLXRGuRuU/BMM/PrhR6ubCHRmVG9sNdO3StFrVmck/DqIXM+3UHM7Bq5fjAJnykpse3U2ClJuJtn7k+RPAV6SHzclK121r0zpeJur8rzbgsAVeT0xOST5kWFFGdiDOhceX+98PX1ma/XZx6XM6c5ssyR13cPECOld37+1XtK30CE892MyEyOiSVPfPe7r9l36wl+fHomNdvY5/OEpMUEg/eVpQnLlLi/m1nOr8ydGeVnX/yUp/1i8k9R+NGv/4jv//D7fP53/BF6uxKDDT//ke99l9ALoRWg0oP3pYKpLaCJmAOBajBNEtNY7NjA45zdBgRCzEyTbfAYFInZm+NAyDaA2prBJroimNpAa7aNQgr0EL1RvnOahfkUOd3NLHNCuQNAWiCkE0jEbEOcuVYrGmZEC0F32+xjE8eF4aoNirTNIJ+QCX3zo8Q14OJsCQ5u566K0FAxkkHQ6tm3N8Lj4mwuO6y0u9NAONl988Oq9wbB9P3Mj8z7FloYGoCihZcnq0brN5t9SkTVDFZVZqRvdgipot2U4yWd6W2/Ze3NnzskREdSaRVlzHdOdihOObeDW8PJq2i3z+nFgkQ40Zr1iFFFyweX8UroJ5/Yne2d9ekj7XJB905uyjQ1cu5IEw8+Ctn0/WJXkhrt3wR5jfig2m5InffItTcnyAQPynLMgCpmd6TaqXWnrLsdziEa9DwGcBULxKiNpaR4HNrWq7XkNIQRMLHvjTgmJjv3InpyjKOkeLAQDzFgjGIhLqYtIpZ4dpvt64cFkJDThDSla4HeSCLusRddk7DTe7W+JtbPDF659eb0+kFXBMCbhQEk+eB3gJCywYhBWRYTA0/ZK8T/f7MK/7ce3/ve9wD42c9+xve///3j6z/72c/4e//ev/f4mS+++OIbv1dr5euvvz5+//c+/o1/49/gX/vX/rXj3x8+fOBHP/oRn7z5lE/uPyFHYcudQmPfizfvzfLjmWqVVYOkk83fSGcS8yFqVYlNiFh20J0W2hGaKkHFm+0LofssTwA6rHtBRSkaiWkiBZvvEelM3q85LzM5GVtrV0+qCMQsRB3K0JaN5ZzIIRJbAzGG4LY3upqQZtk661aozZrHwauWoJgBYhFKU8fE1d0elMe7s2XDHb788q0pZ9QKrZuaeQyHAsHLuY/LWlm3lelSjMQRhLcfn9FulvfxbiYl8wPrLtsk2iF10jwhTaB0dC9jdzI0JG021TJJpaOh0fbNsj01ZeqhyF323eWwAoR4mFSaQaA333uznonuCJUQs8uyKVCo2xXFqpbWhD5Xe7/OlhKEmCZCtv5ILxCGVJBx3S38qFENhmq9esaNqxcoNlNjP2oBahBJbCAMoPprDvjJqeNaGUqpVuBc7XPTSEgzuOeVqIDuL7L4YM85jP0cxkE7SHW0dfPXCnZIdlf9HtY2WlB/fW2rBSYGu8wqV5vfUT/sqkNeFdp6g6kwNXtj3tUbJVsV2J1sU2HYa2CSWa5BxJEAIBw6ft1mjroP9feyU/fNWL15JqZ0aA72Vu399DHDNNaHv3entg4G36B1Mz5TxFivo8B5cQ6JM1oVQWJwQelwg9kOawYzezSVfkWyyT3Z8PGLz8craXDtxNbsNbitAeuDySFar21UeP7cKXiFPp7b1/MxHNxvJKeuTuF3+HRAjFZKopgOY68dbebyPUxkezWPth6TV+12jb0VgnuDDQX6VoxMdJ8WppPe4ETBkoff95T/xR5/oIHr13/91/ne977H//g//o9HoPrw4QN/8S/+Rf7lf/lfBuAf+Af+Ad69e8dv/uZv8vf9fX8fAP/T//Q/0Xvnj//xP/77Pu88z8zz/Ld9/fHxkcfHV9b7SGafUPbd1ctNJaD2zSSWqoJP8yfpRBWf5O9++DtLMNoHbhYpBpeFmIxa3wVcKUN7N9Fd7ZQWuVsmBlunO06dkvXTUKPd73RqG0QhO8R7N0WN3oFkUEkOmdrMgLIUY5uJCrV1l17ChmSDD1oCey2UaqoHigXKKKaWcJ5NMHjbK2/ffWR3VtISI9NkVhy4KkZtnbqbnUprjVIrcSvkmIgh8nTdyNEU8HPO5Cn7QCg+h2KwQjhUMMQ3qgMrekRvjs6B2pyK+XX5EGcfDq5KKzasPMzvgn0CHnQcjlFug5i49E53WKOPYUs7rHo3NpgdaLeufHA2neeyjP6aHWqj5+bvcQSBwZJTPaolO3IsEx4H8aji7GHvx1Tt1Suk7v2ZGxRjgTlZD+wFh1ul++Hq1YMkhsSRupWLHYyDYm2BxpQaoh+YLlDbm/O8/fm6WaVYYHO3NAHa5oPv/h61oxS7RW13YVmDD+nFeygexP09dnVLklbtfkbL8Hurft0jwHmdOg68pq5l2dFqFTCl+udtMmxDZPn39q0OmEs5+lsjYASH7TW4snsYsGxzeHLccLujIUQzIhUzAY3RlTsUDlFDjC7eD+81IzaIB4zjWl7ugOM6fe34642vW1/sxc/08dwOK7v02dhP4r202ws5q1I4lGyMtNOOy/CO17EWx3XHaO4NuEaj9u5yVOPeVLR7X7qbrFRvjXVdOdV2FPm3T/UP5vELB66npyf+l//lfzn+/eMf/5i/8lf+Cm/evOEP/aE/xL/6r/6r/Lv/7r/LH/2jf/Sgw//gBz84Zr3+2B/7Y/zj//g/zr/0L/1L/Gf/2X9GKYU//af/NL/xG7/xCzEKAU7zGUEovdAb4DJPWf3wEbibT+RaWXV3PLvSuonqttKdrmy2EKYe7Sd+U1prSEpHllhaRbrZHNQAkCmtc9mv9LWayKgooRejlas1zgE0CD0trMNK3U4Dei+0srM5qWONkTkH9q2w7YW3Hy98er8w50iMVhkuKaHLzLKYUVsPliXt1YQ0TyERT2fbiN2zJW/Sq1uUhw5rKcw1k2OkAk9PO+tWuFyvNieTEzHN1C7stdH7zpQin3z2itevHvjB61d8/r0f8erNG5Z0pgdTFkjxRL1uhL4bXJgSweNVa0Z7t5tyE9W1c9kzWLFs1tCUYCy5EGzYWzJBsgXEmFECGixYWYAZ6uE3JQRBOEWDRENw/6w+wR4ID29sLmz4QYmzsVI/gocNNs9oiz4jZlCR+uFi7Cw76HoUqzoJhtLp0KQbqgTYa4Af0h5oxDNnF4u2gbNi8j/JmGM2T3XLksUDqw7WliiQX1QUcByM2V9TBEJyZlhwsVgjg2h3eCtm+3fzADTo2HlymMuD+Ph/yA5NCSqmkmK/M/lOVYfqoKdkWbtBBn5Q74hMdmsUeh92NB2VRNcdY26f0Lqie7J+aM/Q/LPzPZ9iwuCIG6wWJ/+ajrPfEiWzJVGGioVEdwvWNGIE2oe6ufWScZmpEMQdy8W3lr7oyYLEIftmEFyMyQPddMB+tzUAMuTkPHGJMX8zQPSXdj4+bC2F4MLOIWVT6/BkL3uQUVXTHIxCb83gzSnbgLNMHmwavY17blDhfL+QpkyebU3GyUWsQzB1FbGdG9zCSHxuT9QqxlNSzueJ03m+9dr8MQLsr/L4hQPXX/7Lf5l/5B/5R45/Dwjvn//n/3n+i//iv+Bf/9f/dZ6fn/lTf+pP8e7dO/6hf+gf4s/9uT93zHAB/Nf/9X/Nn/7Tf5p/9B/9R48B5D/7Z//sL371c0bnbA617UpphVIq0aWFVKDSTFOw9RtdFmFKttlSM1iiVjNlK1ux7CBCiMKUk5kMhhN77eTYbZBSOqqZ0uB5bUxqDWm0QVVaM9+unNUBJ6HnBNHmb8zhoIEGtEVyUes3aGMrO3utbKVSaqNqJ2FaesspMS8zd2fbaAal9IP9oxKIOfJwbxPr2hohRJcEEr7zndc2q1EKX799oqqymecJMUUWhClnTucT0zST54V1vXC5GkHmdJ/49Duf8t3vfMb3P/uEu4fXxDhTy86A07Q1E9/EXHhFoPVRiSWGIrdBFj7TEgyYEz+Qj8RUxGjEo9nsbEv7nWgVRFeQ7pWwwS6HRp2JHdrh3tVcf9Ukf3rZGTRhyy6zZeBqh2RrFQn26Q0acE/VE/abCO1Q5QnHQePPqYvP1gnt2Lim92f/dKjOvmxAW3QPKlWkVRuLiNmUEOJ0C0a9+P3WYygWMSVC8Z/pDv2OND+A34to8LQbGoaYvNoaMJTBiJI6je7ZcqBrPE6c1qqTINR+1ueOuhhJxiqXW08neCC1StfWf/f7KDn4tRiSoBVfA51QrZenvdIHLCuQ58WrH9P++2YVM/6nDqOOb3nioM64q7cK1+SWrKIf79h+Jd4qHdVblQLHZz2ShJvzsM1XdQkGebvqBS6bxO8JWvZcEaQdQRV0XIGtW++34VqPaKCye58uHgFo9CAPmaXj1tjn0L3fpi5kfYMR3a4Fv19d7blruSVeQ7aqGwnDciVXoQ+RoNVVzAplXQ3OLfuLnpwct3vM0/2yj184cP3D//A/fPuAfp+HiPBn/syf4c/8mT/zv/ozb968+YWHjX+/x1YLEgPZeyGGcRvFeWTAUUwQVUM0VpVv1hkFSTZ6oWYXXrWjEc6nCRVcJigyJSMFxAo5dKfbN4REbYIERarDVB2bEwqWkIbkB7EIIQRaMNw9HH2TaEOlMZgAbtkptSJEcoJ5msh5OvyflsXmhIIEquphsSK9E0NCEeYpcz6fySkh2g+dwS7CNE/eNyrsWzdPrzB6R8YASxKZTwspTZ5VOl0YmOfEaTlxPp053d0j4m6pajYLwX2IRhVwQBYv14xvckVvHlsD00dvZ9AICG5e5z92wEBjoPkbXl8vYZYXW0PE4UVncKqLGVvg8j7H6Fk4i6Tv4/vWcB+vGQS6Y/XdNeCO6KPRLzzY5y8QNNBdNBgwtRZPoG4FlAL9CIIdoEe6irPvyu3tWCOC45gZhAKganPtSRnWS/Z8ahqMiJqG3nEfO8Fsk1FXhR8BLPoKHUadzVl2gtCaYM0/pasQul1DBzNQ9c8jOVO0O5w75nWjCBoGaTthojKe4DW7V2ZZYmLHOgK295KiMyyHanofa+L3LB5hVENG++5+r4dc1BH0VC2hCDemnH9CFsxH4HJFiy7BbUv8qrtDbCMouszRCCJGRum31X1kZmOBHld72xvjCl68N0vILADbehyfl774M/aYHO/L/n5rTwSHcLuPnJhShxxU/fHc/aDa3yrvoeavop5IyG1OTjv06ozpG5tSXr7N3/PWf5nHt4JV+L/2+OLnv83dPPEwBcJk2npRhSnNxGikg5CF3pQ+my4fnpnAzrnbgbReK7Iaw286T3zy+sH02kTZt42yb7RayTkhRdBilUVMWIBMwea7WjVWXo6eTpoQ8FCqp1akNHpTSrdDnhiRPHF3vmO7XFnLFZrycDcz5chnrwqnaSaEQO+d+8cHTsvCssz0bjNd27ZRrs8MtekQJk73d+ScSSl4TyEQYzaCgzO67paFWqyvVVonL2fmeeI8L2gT9tK4bhvL6UzOmYf74pVBoJbOvgd4ujKlwmnJlhQoJG30JIRomZhVFr5xm1GKR4O5BaPhhg6SJi8o1A7F3uy+jWAIqFh/TlWoXaxoVYOFOtYjDMFJEOEGtQQi6szG6PYpbd+R7lVhMJhQ4qAaVy5PK7WsQANZwdW/owDBKOWtKt0PqRRMbBRA6eyu4hFUyfPiwdOGp0MIntvaz7fezAXb45uN8WR6NzUTWiMEPxy697LUBoWn+WTXj40o2Nq3+24zVMped9Kw4bCTldabV05WSagOOxt7B8krB6taAmvBYa/oM0S2xkvnkOFqWo+eo0hgyidUO6XsnuVjav0SzcHb1S5aazbaoRVqMVfqKXsVkFBNEJox59T82WzAdz/EpfU4rDlOxojSWjn6Ye0gLw0oWG2WYMz+OlV+jKPYwe+VDNCKV1zN1sjRuwIPgt1fF4vQvaHYyEMdfnMHjCu3QKcWpMa9thaWMlTdDSZ2OPHF6a9e5VryZMxZC2QJpR/EL3HZEFP370fypKP1q8Hjt9PssfvUVQ/HCAXvgdqLW/v6BsdLyIjsiJiOpsRgdjO3y/WC929LUX/hx7c6cP21v/bXSSLMSWhhtqoBE1P1dJge7QMT34h4abw3k9cptfH8ZBpoHRPb/M6nnxCz0KXz9HTh+bKx7cUEaVVICEtQNGTHFIOJe/pCXVs7Cv2myhwtAy5NXbm7u/K2zZYVFeZ5dvkY5dU5cmImpsz9wyPnbJDf5Xo1s8vaTSi4d8/qI3fn82HLEGNmnhdjC6JUrNSPKROiQZ8hWj+gtUprnb02WrFsbN82wGyXl3liSe7zg5In4e7+jnmaaOuFre30PJHDmZxtqNVgimqSOmK9lNYbzTdMa6PPp4RkB1kPHembBREErVa9ald6NfkciaZrjlqzvu12EAxIJAZXwA5DGqcf50O9rhzSP5OtFYmZ9ek92it5OZHPGUmTBXmBUq88fXjL+7df8bs//m0UoxyLdLokFIPENCYkmAjtdr1Sys627TxvG1E6U4Sc7nzzKxDJySq3prCXjVILe9mZU0fHfGAO1FKopaJ1s/ekHCzTKMqclBBOzoLtNDUdzpQincjWCqVW1rWwTBAk0Emm49dMlDbSXBlhwJQ2m3jOAnFGCSbC2wzJSNEO19orpTXWrZHHGteAqimva8WSRYmoJBBbA6owxUBaFmLOSBDKVgh0ltj55O6ex1f3fPLpK6Z5JtAJvUHdKWuhlUJSqNvq3BirVLo6ysGtyldwtYwB/Qmhq3stDvsfQ4oC3mt14gPg5wgeyG6KEUiy6tzJVcb+vFVv5XJlKGdMswckFZuLklslhSdxeEWGBGKeGezbg9BzlJNK24cmpzlPGESMUfp9jbfaD/JNLbujC5Dm2YKTa2B6aWVniapbFzXKVpjOEyEbPN2bCRqQzYFB/Tb0vhnTMiTKdqWWynZZ+d3f/gnz4+ecH+txG0fQ0uMrv/zjWx24fvdnP0erqRYQJgg2jNq7QzjNbCkIA7LxoUcPWB07AK/XnbIbpTfkyLVUQhI6jefnC9fVBnZTCkS1Q20O0MXkiUIING9US+/sQ5ASYydmZ/9VZ8EdfRjUMzHIU2ZKE+d54u7unrvzzHmZmKfEaU4IiWmyRR1TJk3eK6tmD5/FDeoEUozMU3Lpoe4wv2XbdS+mWKE25GoUflhOk7kuu4qHhOGdZEoX6khBnpScow38HmrUg/I9+knee9PuzM0bhGE/5vAq498448qgwwEzHVTlwSYMBrFaM94Gey1weebqTO/BDvNizV4g2MYXge7qCqIRbTuqM4xOpAhIJGaDqkptfPj4xI//1t8yH6pporUCYULCRJqyNU5R0J3tcmXbd9ZtY29KlE4KnSiL9WgAkYxZKimtWzVUm2kxLpPRAFStV1lLpZbCvj7fgjqmdGI+btZr7arWj9JAToEYhdoDpVdqa2x7+0bgUrkdUtp2UjLyAAJBbHB8yaAy0cGNIE0CaPStrEpsrHs/1kMno1psPGLv/nklkERKpvBRuzIlIeRs0kZiii5JlIcl8f03n7CXQp4yDykyp0jIiVY3r0RdJ2/AeMeKsYeKE1dk9P+8XhAjK2FI8NFnUWSgw7ZuPB8aB+1QmRhr9SDCyA2mfik06yAyQy3eXnTAf9ZbHCjCCEjHzx7pzVC0GM/P7e8MMhIOtavnbw77wctSioOxCQymp+rtmsd1Hxgjetwcq6r01j9r4cbghBulXkzncIzF7NtGa2MQ/Pd53N7aL/X4Vgeuv/E7P2NfV6II0zS5T03gUrp5dXUzehwfgFMPAaHvzQ8coL1gpQXh3WX1GZ1m6hfFxHQNZgNcYX0cdCFas3swoUTHwW3IgaMPtl+iHAd2TtZYbk2JKfHp61ecTnf84Huf8rhkpmgBcTkJ8zRxWh6RuNDVbScw2K33TkbZ1o1WGykqpzmahJIEUqnUatJYzx8+EmMkp0TrkIMyTYlXj6+5xieen4XLZTVPKFEPXjAa20EKMSppEqbTDCJGXsnJWXnGgFG5yb+MezG09ky1Pzgrrpmix/BY8lEaaepCo1Yd4gdISEMCKZKT/7C/gL109y+ZQeP4vGOPMPowrXkwawjF+gbBD6Ng2mumN7fQNPDh+cJf+52fUkonxYltvRLziTSdON3b8LL2RtmvlH2nlMK67+Tp5AzHSi8f/ZAFcCFcNVKNab5bsJ2yQ0aYtmIr1o/8+PEdk4gxV2MkzYsNJmuhlucX6y8eB3Up3dexV/XZD2aNxGQKIbV1tvWZyZXvU7KZsRATKXRavxyH5lpwZxCjpI+JnGvFpLtiIobF4E3P2t2xiYCwzJnSlb1DSkJrpt4vAut1JcfAp68eoCgxTbx+8ymvYiKdZuYUWcszcYpIUEJOEMTVO/yDFhkYHcdIRAChe29KHE4fCYoTFrof0kN+yYklCoiVcOBDGDYjrLf1HaxPaezIfqxT00AQv4pmuIe0gzQ09gZja8no4wkqDahGFHrBxhvvUQgQlK72nON5Rbxn7AfPaJuFaNdhZJodY3s6lCwDuvPALhBy8Fma7tdulZ9VcOE4C6yKehF4hz+YowJ27sotQI2P6fbXX/rxrQ5cl+vKvu9EYC1G+TZdM8vSRwPXsGD1krm7ptttbiOJ4b7d4bDevVeS1DFtG7K1gV+DUaYUbg1hDBLsrdNU3f7bA5QEq7iCuMOtfWxKZ8lGqe5dOJ1O/OgH3+VHP/icH37/eyQxzcKnj88sU+ThfuHVJ2/QOJsL/N4ordBqodYKZTUIUATtOzEJKdt9mJcHam2s1yu/9eEd18vFemM7LEvk4f6O/1OayQ93vHl45NPPf8jl8pFtu3C9XPh4/YCqMe/yq8A0BU7LRJoFIZFDcoFj3EDRSAPhYK1lxGFNCRPad4aV+FCGCE6guTG7GsdQZ5hcesY+99GnkW7VEdgGstndMRMknqgo+GuoCHTLV7oaTNRHz3P87IsgKCHTauPju7f89Odfs667sapqJeWFNC2cnu+Zl0yMIK2wbTvrXni+rkxLYUnRLHQOyxYgmMSWSEBjIqWZ1irreqGsY3ZKqDoj3UYm9m0j5ETKmfMyI9n6N1GFTYXazNersPswrlIVcshGFNpXrsVYbVUFCckHTDFV72QjB8uUMVnBxiRDeBnvKbZD7T4FyDmbJc66M8+JaZqZz48m0bZumB+brfspJT55/Yqtd9baTHYMg8wRKGVj3xSl8Ye/9wn5dOLxzWdMMRKc4XawNkWMOJTMs6o1qyhupAQ8GQEI3Fx4HbAKXjEM+46BY3H7v47/OKKCV8eH8oajDN88lOU4U0I0EtQxb+b2MuM8EvAe7JB8amitHnAFfKbKMo/bC9meMHp/21Z62elBDrLOEa1k7JVAIBzkNQHzkxO7p8fzejp9zIPVQi8JrfutevPn7b1ZgBObh+zBwnqYMESLxjxNBO02bD7Qlhf39v/QgWuZzmizN6E+GChBYRgVpmg4mJfd22pN4O6qzDFaPyxKNAJGt005TZPZoiRB2BnikynZzEuUwBTF+Rf2odRWjGZeG/OyWPNdhBiS2bu7P9jAyluvWFwJBAk8Pjzw6vUjD4/3xCmypEzUiZgi93fZAkWAkAKaAnNObFunRqUlCNOJttjgY6uJecqOu0POdnjOOfL6/kTSagaKtVC2xrMqb7/+mrM2Tuc77u9fMU2R3hI1Re4Xm+tBAqc5cZ4nTrPNf9nclvdsAlapYVT3waiTATsMI0Y/TGwDmKhnCCb8Krcdx2AlKspQQui1ELI74wrcmvKWiIz+AQMi9CrPSmQ/zDTb8SARCemWaVtGg1HD7fCw3uDE64cHtrkTQuLp+QMSMiFkkkSCJFIILMtEns6ceufVK1ek6JXeCj0HJ4EEVLLZdgSjjk8xUFslXi7EUA91+lp3QjAq/P1D57ycmHJmmZNpJaJIL2TJ1qsshb25ikqrLGlizpkQAnOtBK3mmVVg3zdSSkzThJwrp8WG/JPrJ4YQSNIJebEMulXipjboXnamaWZKBimGtXA+L8zLifn8ho/v35HnlZwfTI8yJeZp5m6Z2VXYulL31dmNlW19tjGF3ni4P/Gdz7/P4+vXxCDet7ID1wSTk4vkxuPz5TjXfc2MY1EHPOzrzlXu/Zs4BjDqn9uvHJiIraEXhfuL3+UWtbyEkBe/NtbvmO06mImjslEPQh6IhTHr9CL6vjziXxZeglWE3pMaf/TFxdjyv61/C5B+PWOMYQS5EXSP9zp6qWP+7qXahbMuVUwhf/yJmKmkCiFlptM9e+tc9+0GQ8o33tGvFLy+1YHr8fxI7GLMoTShwQR1ZTIZmCkndAoOFXTWebU5BrXyf8p26EZJrJdnSinstTHPMyFFJAZSuFpPxbXJgpjz6RxhjLX03qnVehGtFE5390ZZj4EYJmebATn4IGGj1I2o1fy5UuKTTx55fP3I6f4eSYFlWZhTZLk/cZdhCkKkEYNJsUiMiAotRlQDU0y+yTvlaoexdqEVZQrGpIt3J7732Ws+ToGnOSHxwtPHZ7bLyhdffMHDXnh4XTgtZzPcjCZDdV6ibQ7gPE+cFwtckUhI0RhgSQyuYFBtHW0IgpdWvpk66ocI3sOS4AFEbl5BI1lA5NYL6M3kaGJkyE6bpI/3FjxYcmDw9t8wBvgclhJNpo4ekqtlDHpxO/4YqmyGmtPpnh9873v0btJfP//6J5RuYrXnPBGnTJ4Sj/eZooEUI+c5Ulrgcnni+fkjNc/kGMkhUpkQsefO8x1ZOq005ruV89IotXNZOx/efUmKmRQi59Md57s7crKZqzjdAYq2jTzfo3Wn7ldqS2z7Smk7+XTPnCJRhF0DUyqU1vlw6Xx89xUpT5xO90xZOZ3OTPNCLSsxnXwOrzLdvQag7RemLbKXjb1cOd+/Ygo2VTfvyv3Dwmk5k07fJU6/y3690rbOPAnTtDAtZ0IrFBJFEr08kZcEND58/RNaNWLTp6/v+f6v/SFef/IIWA84NOtZSbA5SOtbhgPtOAKNw2jysl90nM9yrAv1fTIepkto6+hloLLC3hLfQU9/+Tio4DJ6Efbo2m0EwoPuTYT35bHt63f81xO742RXxXpjVjVZwPDXVGtZ9K6HpmIfffUX8W70pQ9pqyNw3QLouBb1N6y+p8y8E4b79UgOgcN+zJCoYHDsOJMwO5603LPWyvO6GqmDMfrAi/f9yz++1YHr7/67/q/sa6HtT2xxoUeDrZbXr5iWhdM0UZJVQ3VfgZ3TsjDlmcu2mfVCCJzyRFuvPF+ufPH2vS0yMUZcW6+mpI0dsDkZK+9uSm5x3tlLdVdhC5ASF6OQdvNamrx/srXmFV+htY0pNEJXQheW8yMpn4hh4u7+gbvziSVG9n1nDoUclZwC13WjlI/s20ZeFs73Dyx39wTJ7NvKfr1SPnzkcn1m3yvXS2O5W7h/vOfVm0/4P/8//u9mJbHvfPGTL/itv/bX+Z3f/gm/+Vf/38SUuTuf+f53vsMPv/eaN29e8d3vfAoSeXp+4vL8TNuvaLmDZhVFwOfUagWCQ2yDZ9scg0/c1ESVuq1OT1ZiXBhZXN93l68JDA04bZ2+bxz9AA9sWm0Oy6SUvFchoM3w/piS+X/56bY9fYTejFAy3xtNN0DZN8Jm1XokGH0/dGo3iaxpuedHf+ffzXd+7e/mfHfP/cMrJomsTbjula9/8rvUbjNQoVU+7jvTkvnOJ6/Ip4WIQIOvS+Xpwzuul2dayNzlmRgTJUQ+vv0atDHNiV/77A1raby9XHn/xe8yzwvLvPAwLfQg7GXj7Rc/JZzuLJnqyk6k7lf6duHx0095df+K8+mOiwpvf/4z9n1lujvxw+98RifwxfsLP/mb/x8kRubzHa/mkylzBPj49mvCNBNSZgZaPhkkvq/IcmKZZu7mEzLPXD5+4Hp5JpzOPJ7OTHlhlxPrr30frYVA4G5ajPmWMuu7d9QYaTFxTpEwQ+s7b7/4Hd58+gmhN37w2Ru++70fsEwRFSOshOTC2RgE2kpj39x0NZmcmWNYPjBrVYeMODCsRXxk4CAk1Js2pzEqLTDovhvrNNhIDdzW4TjgTcNG0GaVIi4VNo7mul5tLnMv5OXkFWJAq7l4j2au6T4qaOGQcXohqqu9HkndGKZum+k01n0n5jPD6qSXMXcYjmpQ1RiOzVV1gov/am3QdkvgMBk1ghEryl7YrqvrY1oQ69UGl5tUeqm36rCvtme6oHHHzKTgshfa+5U8XU0UIkZDGV4QO35P9+4XenyrA9fDZ59iFNOVp56oJJZ54e7hTM4GY9ToNNVeCbIZ40oCOZsatQApJoJETiHxuuMDwwqiLPm7bA32ar5A+CyMiiA5E4GTdpIUywpVUSKl2KbTYIPCoLSQQTpBjUiSTdTMJvhDIueZ03LmbnngfJ6Zs5D3QCISBXJKlPZMq6DdmI9xSqRpAu/L5Sky3y2k00QrldPZ2FnLw739eXyEEDh1JZ/vmE8zn37/Ozx8/zs8Xy/se2HfN3pS4ikzv3ogKKQlc/dwB/3KvMw2IxbjYTYn3e0xht4bo/8kFrgctu8+jN1Nb4cY3DMrRCTemuYSX0AXJj/h/TIbPzDFDffvGhIWngWquJqFX4eKN+CCGHEkGkst5ImQfNP3DrUgZUejUptl2iEF5uXEcmf9m+XuFXOemSVy1+H88EBZnynblefnj2zv3nFaZl598oo0n0gxE0Ni0sD1zXfY15W1NDfdC1QS0+kVop2UoKVAmOH13Sf86Ac/ZMqmEblfV9Za2fadON8jecYILqAxm+WKNu4e7zjPJ6Y8cS+J88MnlLJDFKOeI7yeX/PmzacmIRYiZd2pQFUlL4825jHmzKIdXkE7acpMOTPnTJoXpuWR+boSpuQ9u8gkE/fnhTg8p7rNGTUic5pIrmISUKbZ9BtPe2f5+h19fWarwlYqKRo71oRsPdvXSpAEcTSlXsJ4/jn7ULMcVZJDxd5kGTNKiBp83J3lB7fKKUUPLjaQKw4/awhHZW9rNEKw8YFDr5ZBzgjQAz0Io/4zclE82kVHf2kgED7ZN8QKBHGPPP+6K5QM8o6GQBfxRog4quABL4z7AiS5lV+j7x8Ekzd7gU4kQx6kBySZ+7dKdJo+JlvXbyMmVuR6QJZxfYmYMuf7M3tRtt1FwV8AsONevJSB+kUf3+rAdX51T4wzvRUokULmtCzc302Gj/dOjtNBqEjhelRFEG0wUbvNf0lgEuGxmyoGAiEGXr9+w2VrXNZqH4IfirU2ZFoM7hEl6dUDlyNjbMBOSxGt1lfTOERxG7ELCfWh5R0kktLEPJ9YpjPznJizq83ri35Z3mm1mJL8MhGzqaZ3rYQIMQfmu4UQTROtrisiQj7fkc8n4nxjX07nM/OS+eS7b/jku9/ly7df8vbtO377t3/CdMrEZSLME1mV+bQgIuzre+blRHIlj5DCcYSE+E3YxBamMw292tLe0eH7o77ZxIR1xc0JARte9OclOgQk9vOm5zcWfjD4sTvU4o8D7x84frLBVR3wZIyElLznZJuuOxECoDfjS4cQSDkTp5k4zfQ4UWJG0kwKkYd5pl7esV0SW98JHyHlwHJakLyYtXrMnGRmWu6prRmpqDZaV0QzabkjYIosT89P1pOaMj/6tc+ZfND2i59/Sbte0VxI8xnC5L1CiHkmp8CUAvOcvL8amOJEPj0Y1b4VrlfzaFumxPc++0Nk17b74ouvTF6sd9L8QMfcESx5z0e/OCXr1aYYmPJMZ4JcCFGo1cgnIWSXGzM0Yl0LxYdnrS9niUWt1Vx7UdKpkOd7sw/qtreaunt1cMNGNRHmIJbgvGwq6QvigIbg6vkOIo7D8Uhq+jg5vTAJtzUyDtPoCReGlIyDXmI4FCbGsLChe0OmzFedcDCNCSOE+mF9jE5wew9icODt2jgSZBxpvzH/bG8IxoRSvDU7XhgseB10dg+iGowROfanXSRDqsXQVx8WThFJ4/lHsLLnvrEFx2t6YD3gTRtTWZaZddtNiLwPosmLx0GY+eUe3+rAFZYTaT7BXnn9cEbjRAiZ89mEcdd15Xy+I0U7ZFM0qm4thdo7FFvg0+zahnXmbk6oCnlOTKeJTz/9nOfLztNl4/l5owiU3nl+vpJm88mKIqRuB6OoMofE8/OFy7rClKk+31CdcRi0EVokhEbfd/oK0zwdKvhpyYRo9Nacs5XxDmnM5xPL/ZnX4XPCMtNKo+4bVs6YcOhyd8dy9xpx0snwGtIOT+++tkw7RdLpgfn+nvnhNd/5w/83vvf8NR/efsV3f/zXyZNtpg9fv+XuPPH6zXd4eP0p+/6Ilt3VR4beIIj0A8r45mM0msFF9GyTBoxw0bvBifad2//CAF5ckfsb4P0t4wbrhYWkDImdQ0fpOAWMPt+7HNn1UO7oXYi+80dmffxOTITYQCuXy5WyKrsUnvdOnGbylLmfIql+pO8XSin0VtCWbai7XNhqZyuNTSZO80LOma11nteNUkxhfYqJFG3DX9ed3hpTFPi175nNipog8vPl2Vi0EkknM+oTFVKEHAM5mT7m5bqaqn+cyMlclAGeriu1FKIEfvj5p0yLieA2lKYOY6vQRZzEDsMOQ9Tlmvznojxb/wMhL5lSK9qUKYo5GBCorbM2m90qvZugfTQ1du3CWk0Rv1eASJpn7h5OLKfFTDlzRuTGxut1Z/QpgzMKR9/mCAY6qp5RKb3oIzH6pnr0iHxBHoexeNDQoxLhCAAhZ7PpGUFxPPOL9TZiR8zmgxZDQlp3OZIXkk/H8/pvjh6Uv4kgL/pto8lk2LmNa4RAEE+KozH/9KjtDL6UIxiPapIbhK8+FqIjfxRQ28vBiRz0fljzDFKHfb1ixpfezwv+rnqDbs4S9Mp2eUJFKKUcQWq8+/9D97i+fvsWjU/koOhJLLnvG00nUyVonYRng9vOKTdaLbRWSacTa9lpbWfSmSln4hRIJ1ivz6QUmFNgff7AttlMTG+G4aJOBZVM02DzKO7pFYLDYD40aTCOqaS10umlEdpOrFdiqCak6o62qVdOVM5RyTSiKGkKCJNNuq8b6XRHypMFzTRRt816RlR6KU4+wYKZb2LE7FsAUD9Aeqe1D+ylmxvyxx8TF1Mx+Pz7P0R64fr0zIe3b5lotLsdrZUcJ2q1LSIM+SznSujo2np2NnpVnr0PGRkJgej35IB4cKPHcVrYTgDgmAVR2+CHNuBI+8ZrHhiGZ4ASPZkOvtltu4SUrJEsrhkp4yAaLLCK9uh04W7MU088EINkU4wEEk9PF+4oSK30srHkxDxPZv5XoNEp3SSq1rqxsVlPYt/NsG/K5jHVQQjEVtB9p/XO9f07UjubdNl2IZRKqEoIjVR2o/jTieEO7ZV9N6bsWFPaTV4KnEHbCr3utNa4vH0L54WUIu35Pb1ZVdSbIlFJwSqmEBdE1GSYCNbL65U0zTSMXh97cjcEm/NZL89eKYn1UkKytVp3Q+g0ULSTfG+U1ih7oW8rW2zIJxOhKVp2g4zph/CyLYLug8svP3dbkUPuy5islpwcFdWLtaS9jVLGK4VwyEAhchz6QUbJY7NoEsYYzI3ibV533zySLf6JjQwkq4LpN3mnIXA8FrZ/274Woo+ODCjOBosZ82butZWcdCQEu88jqetY1QmgPot5wHnu0KBmrTP0SWXcQjXCh1kieVXa3OMQMbFkCa4yot7bNzAzxNE/MyHqqpWg5TbH6pv7Vw1a8C0PXOu60kJlzoLmCjRCb5zqzcnU5MOsuZi9+Wjq4cnUAFygMqVAjkIOUAukKOQolLbTWjiyM8HRA3yjI9AhDe+pESKc6lz9310x65RWD2fgw1SvmlxU1E5iKG0YTBaCwWT9KMMnYp5J02Ibpo3hymja7KGafl5tBzxxPDxbHdYHWgrranJAH75+z+nVA/OysJxOqBdxdSvokuz53MDS7F8MohuQx98GVw9o5kUFMzLiA8Hj5c+8KMxERnEGx3f9b8d9flGE4bRi1Dfs6HK8SGmR23Mdl6Ou03dTLtButis63I+H+GjHRGH1Bj/1rnbghkZoHZoahJpMgy92CLWNW09xWbCcgdaPQ6zVhgS1cQBtSLeZm7rvtDLZSEEz409tHQjIYXbYqNWle3onx2S+V9rp6jNOCnO2WToZFj3bRolC6IlebI03jNASvZ9oQtIuvdV8ts31GsUDiEcBV/W3v9fqwd6V1e2eyzfuN9pdCFvpWEWitVI3P6QRp6/5TRp06pfB5htH4Mhmbv8XRjU0vh58DXE8x9ElG2SDQVUUBwQ9oqiqr0k5nu1W+X9jdTEklOj2HoP30L+xB0bUe0EVH23BMXtGV0PR3W5Jfa/dvLgcbfCge2ygF7dG/T0dWtbjHtohdSsz+wj0Nt910PX9cxi14LhNdg4625OBZPj+aY1t202Tcx4edC8+qQMi/OVD2Lc6cIENvom4cnU3KC6mbBppIRwK2RrEyutk1O7rtlNLd/NDSHmyWSQFiZGYAjmaHYiJRUKa7DV6UyQkSvP2r3bzeRKruFpTkESI0Fxrbt8r17VC25ikMkfbAqU09svKq1evDEIJgTQtCCtQGR5MvQuSZ0TMobc1NYafgqSMkIx9VCvaN3qQY+MN+wnrQUQb9lzNEXe97Gx7JeUMrVG3jUsr1MuV6/MTtRaC3CNqRpNlL55lgkhiUOAPqvnQXYIbbCeRl2tVa3E4Z3gQqcMS7SBQMLJR5cDhGRtEYaiUIOkFxMftQHO9SvXf72VzqMPnxjCopTVnPhJoqRGCaQWCJT21Gxu0NKX2TguFqoHSCoROsLrDw3NEUkJyRuJEjrA3gwMLlqEHfxsmmqxc990q5aAkMWdoBj1fjKHVuqIS2Hs3CxoCsVUE09tb1yfL+HvnPGeHQE1Y2m6pBYijVA2BLhZ4a7VqsLTO1nYCEYmmKqMIe63WB+owJU8HVHxWzKuO7o7OTmZ4CU+lKBSg+mGovdNG8LFUi0Qn4ur0pfoSsPXbe3G1e/tYe1PoBlcyLTa36YSJceha5TWCid5YhT4CIb4mzEhSvMVqQVYR6rZasEk+LziCnVcdRyrWOar1Y+0Nyvi+0x1ODzF6/1agOvIhwsHadyhuVH5H30k6w0bl8PoCsyLxIBFStgpeMbPU47k9IbMNZwHFA69Vh6aGcRi+druYWs1xvNVO6tzereptf2s9Am+vGyKREOx8UDV9zS+++JKPX1/AfDj81ug4AkD1tq1/ice3OnCF/Uprz9SPitwH4nzPcjohp4D2RC+CRp8tQtl2PfS0Wox28EZclPbEFAXZlbvpziABCVzXwloqWwXoVBGKwNY7XSwjjAKdRFW1M1CMlioBYkhGu49DTieQpIDj0KQCs7LrMxqupGkjLY2oPhMRDUqz/SmEnLyp7Bs82nBhd9tsEYVkho5+Rh0yLCBIzLRewC6BaU6muE1CkoLYYDCxcD4Lebrn7mFmWiIhdaQ2GzQMwViEMg4htc05MjKxSlHVKx/XLSNGQjDJI0uC7ZpDFK8q7T6jzXo42KCjLX51+Codce2AC7V7lZ3sWgiHB5hIpPnQnfghHqIQsymUxxjd26zZwRvMEmTvna1Wtq2gRIIosyNH5skmSFIWIrRI3xqn08TjdOaT+0eeth0JpsRfKsdBVYtSqprQU4qEbGojIopMEykEgnbOd0aC6aXy9Nx5ujS22ojnjC89OjbSoaIQBY3R1MKDGhlCHH4VgZQIwKSB8+lEduJQqZFSO6XDMiU0xCGYZH0UARWlidHANVi/R5Ld3xgT4WCkiRGKRKgqdElUIo0E2ZCEIH7debKZKw/29RL48Lx6T02BCsHluca6coJgo9OoDB294GaJOBQoNMAU9dX7NyrxdgCHkVy9KLI8AYp5MF2xHlsCg5/TsZZ7LQ5X2lB57+B0X+/JBofj2wufNm6GkXBb4+IMRcV0Ph0WCMFMRNtBc8fFkC0gRXVExmOL3RtPTrwSsudOVm2787moGNV/ynZODKKEurPzlE2+Ddy80s4hG5iPlgDiEmxhiAGIy2EBTYnrlVNQzj54f4v2PgLwK5793+rAJdpt2LVWQisErQR3KGY03kPzLGloaJl0y5A4Hnvamp34h3Jjx9XWGKSYoxmLM3lED98vE5a1QzSKNbx770eWYXiy2TkEGkFleBwSI7ReUC0EKiFYNhi4SSENSM0yLLu+eCzkQIiBJiDBmuvSPJiIe2N5NinRfjZEce+yYLBfmJBkUlS9gkxmrJh6Zlpm16ILvlE8oz4IFHh1N3bQIEq8gAj9LwPeOJq9A0wUXIpHjoNqKB6446C9irieIWOD+1rw9z5e7KWpH+N7Pdx+9sUfjv9bkqP+81YIWiBvvUNMWEfa155HT3tZRXonS2IKkZwzshdbb61jPl12QR0MhFMlMkYALCiL2FBnRo6Rji6w75W9NmrrtA7RdR2VASvfhkiPA8Lfv/j9UExdJBGYnMJe/fqaS6F9UyXhdpi/GOk9nlvGC+D0bVeISc7RMeWtlzNLkaGiEjiewP3ljFnamkNh2n0g1xhtx84b70N4uRsZ/czD4h79xhWPXzgCyOibjnU5FovgIxLhuJcyrE6whEZ6v62f6IQP7bf77uw8FXEx7dta+4ZArYiLG8hxHh0fmGCBIti+Pu78aBi9JIQMWHTcUq+G5HgNQ11EsKox2AxjTDen59vbN0RCwf0Nq1+/7fsQR+93fAYOnSoHVKzukjHM145hb4+pt8cvH76+3YErmMtur5UYjV0las6suBDtFMwSHNXjYFMPbMauuWH2okprO7278yxK6zZYG92WgLGIRuYGPslvfw/B4JFWXUC13gKYafi5jh+KikFTU1Sj9NcKB1tvBIfo1gUGLaR59iFdt5cYdFSUmFZa3aFUU5jQRu87cvQabNFH90DaW0HihIhBjXGKiHRaCERpDBvy5WyqCjFlYqrH/vJPwe9DeNFP+6YHzzcPkNs/ezMK+EGOkEGBF/MpO1TedewMzOhxPLkcu/UmmuqU+xffO4Yyj93Ny4vwjT2e39ZBivHA8OmNfWtoCmjKpqARTVlEazefr25SV1mUHF0nE1NOKK1Y5YLV/vb5jQPHPZq60qigkIOwpEDOiSRCq8K222fbdTTXleDv0cY3wiHufHw8B8wkTvXvboViZqMxRKt+evHDxTzfRmPfUD+zpcH9msZtk6EH6S8mYpDknCMRJ0AIqNqoSQScSvoi4bCrTWlQ+C0IG3EiWiXZh8K4YA7BzauaQfqRbyaVLw9heVFRecCLEm4Jjo4hX6uyb1VR9Iv3+/AiGbglUOMGjTV9658KToeHG1zOgNpGrw9HHwab8MANb0mcMSTQF79/u57AoQavtzmpIwSPJDAIw/MNHDYNwadQAq1UHw+69fQCBh3WsltijDFFjhlNz/bUFvgRvHB9Re1WedZaKLs5HxyJ5C1b+JUe3+rAta07Zd2YkqlNz9mx3r0REmQJJAne6C7EovR9sw8rZaZ875Pxga4ZSZHz3UTrH+1IqQF6sUn92iilgRjlmFII6QwaqLUzR5udUFGm0z1lD65NqSCdEJUcIr3sXkHsSOsEFkK2gUzVmaYT+96RKfuMkZjWXau0dWV9fssQn12WR4MBu7Ele3FcPWanLtvCjtGz2jgm8kE10KsgyZacopRth6PXwAGDrGuhtitpb6MHi+CsQV/HKQJ1kHnhCGgS3H7CHYjh5eCJ+ZKZLLIfircMsvuwqPWNDZLUMAKRQIijXvPXFfN9igq10Q6oMtBlArFkJcYFQqZrRGM2OyfMgFPCDHHyGS+rjejKthUmOXOeF2qCZVpIMXO5VhAbunz1JnH/MHN6fG19ylhRLpYjpWCOBapMPdLKRtdOTosTGYQcFygrc448nhdOpzsjBe2KaiTKTNfOdWtMebG13gt5OvtsYeckC0V3Wq+kODt8LMynk0HRAR5OE/Ny9goi0poQJSEx0+lMMhElUHshx8mUY/ZKlommjVJ3Qp6PecCUZ1tnwXzlolift+xQtoomyFOi6E6SSBJhb9UgKwISJzQtaFogbeS7mXTOEDpttXUTwOYenVIeAN1XH8ANlHoL0tanBiTQe/VD1/ZjEzl6bfbztnL64RxhDMzRcwrEQwiYGC0BUNPz11ExD2ZqsGBn6/1GZa+toi0Sxmv6fhOgvdhQN2sRT94cRu9uKcIIep4YdDXrpiA+LB4s4FgPaxBcDLXoQ2quFJPNQiAm+loMmhUY5BUVm7VUceQIy0KskHINTu8xxynZCEjZifIAwcZI5nnmfB8430/GN/D79asMHb98fKsDVy3N7cRtRql3YzONzz8EMZpuc6quO/QK5sRqFURExdrrZhci1I5BWb6m+vgDLpLrWcOQhtJBjfUBY7HGrlGAGwHbBL07MUASkYkxUiLazVIiTy7v4nbnzSsHuvewqtua2+bte3OyiM1y9TEvMc8YacECnMWvsaADvTbr9XWXfhGATq07rZviPLUcw7cjiHTlhsm7+K0FJ0W6ooNUcGAdfq1DB86FQNVZlDaMrM6mGlWhb9yRoAE2fOrbXTkIAPSB1wwBUa+mdVTP/tpiFYfPAVgwaHbdNsvi1VlzFpdn1na/q6uiGzElpM0NcxOajL257oVg1s70uwmDdI1dGH3IeS871Q0Nk2/8kZXGybzU9tLotaI5Hg19bZXalZASMZl7dgijstTjYOzd3H0N2rZqudZ6rMvrdWXfNjQH+mk2dZGu7KUeyAU+IG/3eSQP7hSsjhw4jNd7MyJUCNRaXY8zkLM/lwOiXZsRoNoN3uoI2hqtCUEG9Rpj9i4L8zwxZdNKLEOgFiU6K3gQPIzE4VqTGPRdXX4tDoLNcYh7UPOrG5b3A3q8cVe5MfREiHiyh6+V1g8Lmd4xs9Re6YMlCvZ+/V51F/YL3a4dtaCF4ooefm3Suclv2L0yC9jguoH9gOQOwel+O4e6k3Nu/arbgK+KEZ96s2qxKy6dNcZnBgvX/t5ap9fm4gbJztZW7H5kJUZTYFERIwJVE+yOxZKE3uD5slF2c5jvQ77qCLovgvMv+fhWB65S1QUfreqR0gkzI68nEKjVTe16NeNHBtbshIkYjY7rdNPaG8VLWxmKD6ovhCI7g+yhvdqHp5XRrQmOjccYSTlTBrTQlSp28AciKc5EpxnTmjXL5xlxNpNqpfVucBDuc+PngS3kwrpdjgNsv1zN5RQIZSHmkx2eOVvl1TtaGyFmevVg7v0bm5+KbOuFuu/s+wq9mnp4ng2D9xsnEjzT9mUoRixoraPJZXIIR1ZoaJ3cqk+g13oMZPY+gtRgKh1xlAFFddrBxntp7AfqKgccQbp7cLI5PjusEOi1WABE6bWDdKQ5EyoEE0yuFZIFYaTTWnXVCRdQ7ldqT+ZjVTo5z7Bf2a7PNocnwt3DQlcjLBzqIkHYrpsL9xpbVXpDtFGKMidTWdjWC6KdJQdvsZhNT62NlBOxGFSYothhKQY1ln33sQ8oEqAbHX7fVhuZQNmePpp23jJR7mZ6N2Hfddus54kiQd093IKfoNS6o4gpk+HBp1daMx+2QOK6rcQ5W+CKQhSnc2uDVi0hrJ2ghgIoQLOxDRUb5IgOsc7TibtlYZ5tzVgQrkflfQSu1sz9IRpDE5cmKtsOWUCSJUMjCR1V+oCxu3mKqUPEQ0FjBGsEJ11kS15bNwPRsSz9+XpvqDRfui8O4mPA3Zis2tQcuT3JRThGNyxRaIyegxIMilU9EnLG7w1oecCcahl1934Sg/gw3ndXlGqjNw7raTe4mXU9xiWCBIehLUlrtZEmc03vXakvdBpjzMchqr3Sa6HtlZp3JEy02vnw8Rl0phV85Ogm7vsHARZ+qwPXfnlmW3cmfaSFjVxNdHQS02VLGRhDl/vGHsyY0dighZQbc7DsIdQdIRFVYd8tO0hmSRLKBtdnpG4kn12SLmx9oyr0tlMN2IaUeD3txLKS2kqotslHQ721SqSSdTc7QVE0Jx5OE6d5Jrky/dAnfGmeKOJZtjeK96ePx+Zod9Wo2E5jDtk05rQrMQeTlio7psYR0T6REwelOU6JebqjtwXt52PeRkSpNZCnmZxnO5ST9SNaU7PBGOLCqk7fx80iOYKR0RFMQinEjkqzge69E9JEcmmjATTWbr0Gm6PBmtdecZlgqT13SCPDxIgmTQ7ow0BKVwVIdmgpSoxKTCaPdZgKIqZE7hRt9MXgaoV9W/n49is+fP3Ete6k+RV5uuOU4fndO+jK60/f8Or7P0TSHSEmogqyV3jeyNfqzsudvl4IwZypewhoWNkvF77+3S8QKvHz7/PZckK3lfXte55//pb2/h2xNUQ7uT9Tr80qvwBVsh0MrVMwhR8JsKdAjp267/zsd7+g98arx1c8hr+L7d4crz9+9Z724UtjHKZMDM3cwVWdGJLc3qKxdgvCMQtJHgmpEeNKe/eOeprR8x3z451B97Wx7Rfq9SNNBI15wBVeNVTi5tW7Fk5szLnzeIq8efOa0xLo5Up9ekvd7HA0pKLT6Q7lgri7MMHZpxF66AgF0UZaJlq1ajvEBF45hCwHQxGHyU0vM0L1mTVRYPiAiRdEt15USNEQAg9EAwIXp00qgiTodbf1OCXUB3+tkqrWXxXoultvCag9OBxnyhUmQehkJ3mxrzoOcQ7Fms5RXXqAUHlxfcN004ezobm6la1/UbHeYQyQApLEE9SGhuYwIhDVe2iYQWsQkE6yAVgiymPqLI8PvPnsNcs8u/aiPUa4/lUe3+rAdXl+Yt12tO/EbWeaT5T1zCf9NafTyRZmLdT1ynq90HI+eiFRKloDIQvzNLNM0bQoS4FWkOCUh16g70jd6WW1qkmE3gPKfmQjUYAYCJqRlgm9EHtlCubGLKIYglAINGJoBOlI6ITQPeu0PyHIGJV0j6tjbXm1Y3/01BwCaMTYnI4uPtA6YDSrLJUbXGN08NFSHfRhc0JGskFRrr7e6k6IwTL+FM2Z2Ikj8bg221QOk1uPwQPL6HoN51eThhqQoDo92tmPA7A5Ll0ZHrL4c9rzOH4visnUWPP4qMLwvFU80FlHgpe26jY46YfQCyKMAGijNfP+2i7PvP/qPb/zt36b92+f+fB+pbadOH0k5TOnOXL9+IHeKl+++5JG5+c//3VTp7hufP31Oz5+/Mh1rTS3uEAhJ0GDctXG9WNne37m66++ZF+fuTx9YH36QNsvXJ5Xnj8+8/TxPcX7K+ZMbAdUDIKGxCClWMCx27GFzkajlsK6PnNdL9T9yjlG5tBorfP0dOF6/Wh9j5RYsid3qPW21NQQunabtgo2nN3kI/SVLQaenj5weYan6T1975xOC73D5bJR626fYLdZxwE59rpR0SOYRe8Pb9vK1z/7LZZJQAsf37+FXg6rnFJsBjAsCy3i8Lei0QkmYj1fWzkd1eQQtK0J+6Bvx+aApsMRqF6QIHByjge30SO2h3qCM57DyzV//rFfBd8jYfz8QBUGuesFsxb7fZthe/k6A4aQF6f+QDvkRmLyHwmCI0TwjRAh433a62uv/qpy9J4Gc9D2bz/IYkczWwTzq/Mg6QQuax900GqfF2o997IfieVAUG73/ZcPX9/qwFXrjnZTfkhYkDlN0OtCbxFt2YZd2465seqtV4WgNSM9MqWFKVqGXrUQnYUTJRDFKqQoDcRU48chLVqNNNB2sxAnWs+mbUjbkVaIR4/AXcVpRBqZTpBGCkpOMAU7kJIvvHAs7nAsbNQzwSDef5rowYYI1VXTQY6qDGwzWs/YMtLeukFCUWyupY+s0zLIEEzxXZtSi9uJSLCZpxg88N1o6cGTvcOVGAb7+QgU34BQfIRAjUvrQVBua3pUmf4c/qXbt4+nerkxRxDzKnEcRmIM+EPLzn9cxl/G0LQ//3FgDFijFXpZ2Z8/8vHdV3z8sPL8XAjSqBVK3KEk9v1Kr5V1e+Jv/LVC36+8efUKjYmnDx/Yt2f263Zg/V0VzSaqei1Xrq2wX6+szx9Yrx/Q7UK/fCTjfataqdX0B3vv9KA2jyN4XzEeN6j35tUCVN0RNehHqGjb2NfKx69+wtvFxI/32qCvBpX1CGGyz1zV1kwbiY1/sGqBa+8bbTdSwHa5or2xhQhrZVnOLjKLu30IvQkhTQxlhVZWOA5tIUdLprTsvPv57zIl+xyvT8+kIKQgloR2W386z7Ta6WJ9SFJ6sfA4IHQ9iEAv1s2xVPQgBgYZqhq2V49kUW8Q97AWUU/+bmvpFnRuK9NQEZujsjGSl9JitzinL36fo0/uszl84/FyI4zA5XT6UeWZlJT6rJy++EVPMIPcgrTafhQNx54Z71HGCM3YIx7xgjM98aB79AP9yFEaopUQLUk26P5FonD0UPmVHt/qwPWHP/8elMpWrjx+8ppXr1/x6z/8IT0YVrttV55D4ZNXE9///IEP7y88X6+s60pZVzQXRFamDFwswwy18uacPUAE7vOJUyxclsL9knl+3ln3ztYCl67U3ui5wboTg1l9hPpEvTzRr09wbUzTiSllsgjTKZnteYc8TUwJlkm5u0u8OWXup0Tq1ajBPuNlsWFI43hmHUwCKHRbnl3kWFw5J2cP+sKqu+mKYX2/kCI9xxeL3Q7HQ3MUsWFpFGkmmCoxIzGRxLNQxqL2RS83Ou4g/JsIrD2pDqgCQZINV+tefKZkaCeMzezbaLjc6k1yxr7urCjxoWbH2w+tNxdlG265rTUjXgQh5RnRjGhCiDaT4/Bg0G66kWrvYJHG61Mgfv+eKJ+zXgplVc4P96zPG2UrzFPm8e4HTFOGKfPzH/8t5Pln/Pb/88/z5td+wJwi3z135OPPicnIDJdSECK1Nbb1LaKFuwDf/zSx3P2Q9eMzz199xW/9lT/Pw/2Zh1cP/KG/4+/g/cePrNuOaGfbLgCkNIM2pimxzJOxxnwg+eP6nhiUtAg/up/Ipx+htbO9e6K/++tM08T9+cSrP/I5V98XOVfWbaNUq1b2/WLCzaeZdTcNRyXy9POfs/VCoLOEiftXr4lx5vnnX/B2W431elp4/el3UEwvNM+TNf2rmtqLWC8yT5k3D9DPmbIVLl/9hKeyo73zcP/KxwICeymczg9My4n5/hVt3yn7yuXpiel0Jk3ZnAuiulV9RVtykpPtndaszxOTDY2HI0myfnnv1jdMKdtIQ6/YKIAf/l5hGUHIqeKMmaojBbL9EDpRHbZOCULmNvJxSwbUoX/7jici3pvE16OM9FXMO842azLnBIcyJQSGBuMRjGX09MSDigkujN4wY3SEQAwJFWPi5mjjEuYAPqNthxCYlhNaPaFVf94xkB0ySiQm5f71A7K84vzJI9M0HdqVt/v0qz2+3YHrj/xhomSiFpiNwdU6TOczUTtd4LPzA6fzmbvTmVevK08fP3K5PHO9PjFHS722fbcaS5VebJ5Kg0Ay1YC97HRgSjN6N5Nmha3YMHEQ5vRIXRu1dlpTYlJSzmidiarHoZxTZJlnphjI0SCdJI0QCmmYxYH1rRj9IoO85ECtnYrYuw346cjiYcxSaX/JAGv0MT/TTXfOYKAOxCMzPeRg8PZOHE3kMXl2YycaGuJAXtMjawyKe2Hpka3Z3A3gV98RkgjaTLjYyCodEWNg2Sym0HxTMLJgT41vw5gOeTpEqKJIt0A5ZrFUOq0rZW9o3UxQNCRC6E6xN3hDjNuMtIqKuUdLDMSYmM9n0rTw6rPv0Su0an2669OV9bqiZefuNJPnTJpOLCI8f3jm+XlFyxUhEQSWOZvjdorMsph8lHbOj4k5CjkElpBYTvc8v//Iu/nElz/7Ka8fz3z65pFPHh+ZlplSK9Ibpa5OdAjQKtnnvpp2hpXGqc/kCEmEKBPz+YFeGs/zO7anDyzLxP3jI3f3D+RpZj5tSK9MOfv1CXWyPuCcE9N8oyZJeGN6GKIsYeL08AkSMokPXD8KMQqPrx94eP2IilHKxWndqhDTRO9GGggjKZFAZObyUbhcN65Pz5R1Z5ln01oMgdoupL3zMJ1IgpGZQmbbKq0bgWBZsrEWa6e1FbCkJcwTvXZabeyrwVkxBlJKlNLNQ680kp8LeUpOnffkCzV1DAZRavRIDQZUdSajGnojantUkpmdDhGQG+39JWxp+4VBRddbVTZmpYzxx6A+WZByNZDehhegCwsrqJrGqfWgbbaqq5rqinDQ5J13Rq96VK0ipiCSp4kQ0tESMFWZ8RoKrVP2SlmNcRvTQi3w5VcfufvknvsqTp45ANVjIPkGZ/7ij2914Pr01T3LfOaUI6t0q37WjRCN9bfMgdP9iWVZWJYZYiYFZZkCl1mIWolYeds8i+ilmqCsQbkgQi07rRVqScYIFGESo+8Om/YaOrVYYztJRyYLWpKE0pXmlcacklndR4PrghpVVtRdRLta8PMqxhjsQ4BnQBH2d9Mg9K8oDJr8sKIYtFk9skI9mH5j81gf4HZPZYRIz8LEB1vlGMh8ocgwSqBjMHv8zEAP9NgUx9cUNPpslb6Yuneqrsqo2DwKDiiRAbNYsmcbYajUOzx05LFyvFZvuOiwmiUXAVXLKk1ZxSgc4kmCJc8KYgoqKUa3uH9j76HZGrmkwDZHyhpY5mxVwZxpbx6IQdm3Fa1XE84NwpyVnO0acgqmcymROCfmFEkSmEK0ioEObaPudzw+LtzdZ3KGU0jkLkgLx5xe7x36zSerG8aMijCFQHJoNpCZT5meI9QTUVemKTMvgRQb02RjHN1NLpNXsN0H8WM0h+gRuPJ8JqIkUTKR6ZxBEuU+E5lIQXi4y5wWS3Bqt1mwg/Eb3UalVbQ2VG2GMEYlpeh9WWyINdhg8jQt1tur1p/Lc7b7tjS20oFga76P9WuEihCDq1BkU2GXdqx/dcJT74O2ja8f0yQNIsf+GCRA33KHwkrw9WY9XQs6Krf9YsHMEr8YgwWXEbi81jKxYYcxx5MDo1l2xDrFkjicVCRjSP8ABP1swFoaB3NxPN3tmo6HYkFPj9TVUIgXCagot6FmVV76eHUPXmHdmU6TyaVthTtctircqszbS4439Ms9vt2Ba9r49CHx8Mn3eJbKc9n4+qsL2r4iJ+H1YyaclM7Get0oe+GUI4+nmdYMCuit8fz+HerW2S01dp/foRaQSL9e2baVr54+MCXTkpsAmbKxx1omY265Mmc7FKcMdw/MIiap002qpzanvhazCJEeYXPH0V3ou1KuHUliygyto8E12YhHif4yjI0F0Kl2eLvfjn2xH/droOlWdQGDtIBj2IdSgKuDB3GrGINRETfyG6/tfSp71hfLsnsIGT0BF0AdTCiNySq+ZIKJXQPahDRNlkHHSOjVs85AClbpjQ1062KNzewbCodLGQOSY56pQY1onInpnoCCRrQH6+k4vCPMCKaa0LfN2KWtIznSytWhxEJ5/oCsF2JZ7TpKpPdAa5HHc2YOMzncsa5f06sd+icfdRAxuHDJgZACeUq0bgK0kUgvG/OsfPe7M69f/wDRhkhl33+X3m08o9Tu80/WHw1ehap2IqbDGGJAUqY1T2LaRluviMD5Dk6ns2Xh/QP79QklWWDSdjx3EAiTfa6tK7OvEzPhnOyI64puFW3vAXi8Vx7vZ0QghULgSwaRrQYbheitocXm3uhKq52t7AYvzpnPXp14XCKPdyd6q6ZGkyLn5Y4uEUmZFBPTcibGyN35jr34fF5XUGMCkjPDoDXGZIaYodInk7iiFehmzZNTJE0nCEPlozNmrMQh64Ci3jO1asGFedXXnO81E7z2Plgwyv7gq5p9j6VcNjKYzfxSLMs61OzFYXLpmJzV2FPJiR4Kvlc49mZGu7OKg7UFDG0xySdjEuIuyPGY2bMgGMxdOmDpYN2pl4LUnXZ+tEtyb8CoYhCkRJBGVyjrjsjFXCtS4m4WXj+eeHw8mzKK3KBC+WYs/aUe3+rAtV4+cInm97NOmUInZijXjX0vlOdOe/9ME+OVUWHKiewSM9PJNlhrO+LqE+v1SmnV50caQTNzDszzvXnYNNsYohA7II3aig08ihsCuktr936QhKFJB10bIrDkmdMyE0WJuvgm6bRto1yfwd1mJQZiGNTsgEjyrA5Cbwd7aUAtIG5B4bj3UKVWhxcFp9fqrfICIPq8llPS/OdNRaD55g2HTtutevNV6BR0y0aNQWmPl1msUc77akogZTUhVBWhS6WWakErRtdpNNXpkG6KH21UcoD1zG6WDooQ1Kw4RMTmr2plWzdoxTLevBLVZG8kRpJXtQrouy9vdIGgfHz/no4S8kRVyCiTdrpullD4cOlxgKtQe6GjpHlikfPRx+nuVoBDNCG8gIDVgkvtjeTJiSl/h5vsFN1JGo3aqkmHBdM11F5umXISoga0R1IcSUy3QD2y/EPnzhTC6cE1PIVaLYEzTyahqiuRq1p274xWibsR03u3kYYxBD7m/BxG7tUO4o5VidqryQ6ht/5NgLu7Eyln5tNCVLOLmdcV0UaMmRCyzVK5MsXl+QPb9eoEKhufGAr5fd+RFMzhYZ4JslrA3ysxmwN4TAnKfgzPSsyk2ecea6GsprCTDq1Qbr1dgCFkLDg64smTiM2mjd6pjNLMgp7obTDZ6OUVRIiD1g/HfhBsQNs7w4iabmVwlrII1FasPpJm61pv/bxjLfv6EBltApvNC7iOJhbkVLIv0W5zWdpptXMuVwt0HUK80ouxluMU7XUUd/OuoGb2Oc3ZhBe6EYo0ujnnQGZ+xcj1rQ5coRXq5T1PpXHNmRKMadj3K9oK2iq7bjQx11X2Tk02dBxToK4zIkK7rmivpo6wGU139Idq3Yg5E7INieY+9DAHdixoM7WOXiK17ERJDK9TkUD0IJEkgBPAsihBq228GBxrtiHH9XqhResThJyIrvCtCCHO3nfCIMYXVb8Gz9bGMKKzgwZbCh/+7Ko+3yteyRg0FgYdTdyYztllrXcIzi48xES5wSYvQDpV2zBd/DD3ObPxqA163exw2DcfLsUUzUs7Xj9Fcz4OwSqu0RMY7MgBqfQX1ZZlxW48Lwal1Vq5XlekVVpXm2/r7Qh+gYZZxYDqbgLMAjFF6r4fAW7ouYHaSFmIlvGKEB2mEe83ipiBYE43Or9ma7jj2XVwmCm6d5f4LQ5ON7eE3tyyRe2+9GSD4jHd1sSAsgbzK4buASaQvMFuyOeN8qyo21kkaEZ9DhqJBHPubUPv06sJwdaS1/lGsEm3xGesO4cRQ0rGdnM1EQvPkahizMXsX/d90YP1E2OIRghA0dSZJp+xFOv/Vh/C1w7aCvtuArBBhNZ9LddKWVckCiFFptMJwQgE63UnzwspZ+vd9HIM7QYxRX4H2z0R9Dm7g1Ax4AUPUGEMV/i6kHAkeLbDvB8dPBkMpqzugy5OArxlnoNtaAEt3O6vkzNGYtjxscYwZNQsG7Uzy5PPoQDDC0z/EJF2QeI6vLJevB6+LnNGVYnTRJ5PrtIhPiJjavxpnBdgxLHRR6eRcsCEEwrHsPQYsNaRzP4fFCo8s8P7D7y7fsWHAHuwRb4kJYhN12/VPigNCb1e/bMUchKevemYaqX26oOWHY2zHTi9ctl2t/AIkBJTSuRgU+YaxejIIRlV10kSOU5e/guyLFY5hWDNzmwzN6Hv9HWnpYjkDFg1VmphfX8lZyGlYDYX3p/qKkxztw0QAunFBy/SjyENcYsTdchBDyUDl6kRD6opobU6nKa3QUtV1M0JR69qZNrZM6Zhl4APAwfGvIvQfWa4dwvEdb+JfNYGtTybQse6oXW3+67C5f17G37tkOd8KOFTV0JI7rU2lEUwWnWzwz+lBCGRos2FQSckobXG0/MVVJmcZNPbaMTviO7EvJg0k27UWhERlmUiTQsxzS5jlLzist8n29yTSIBe7MDcdlSEHAMxZnKeEGxomCkj2RrdogaXAYQcgeQgEsbuxEYVQs5ENXpxKYU8WRIiMZGDBZfem/VAU7LDv+8ucQaSZpcY86qk2BrXEAh5siCvhjSoZGNrSiKyI71a9YVV2zFNSC+uINEhzDBYZ5gCSWtKJRJiJoiSqM7iMzQCCZYoaKMXJ0CFgKSZXjZ6rZRS6a0gvfm677S2uWqGQW42P1toxZ6fDlWDzTSWwuXp6fDRW053lnzVxuXpyrzMpJyZ5hPzBDklcylGjkAeRP1+BsQ/H+slDU8sdWgueQXV0NbNcijaPXQWhg3DZxdWDtnaDx4eJcgBwfcRvEQMJQyTJX610KsNq5t1zE3zMwUnEgXTe6Rut7mqGIi+90WLV9kemqLtH91XWqmYInyie3sgBOX08GgJ5Lxw/uRz9uuz6aG2SqmFFMTOoW5WQN3lonpvRkSbIiobrTuJqA9xZSdTuTrLL/v4Vgeuz37wQ7J+Rv2bX9ClswvEkNF6dWkYK8NDsDmKeJ4PaCwlp4UqNK0Mu+qck228IK5uYP2CkCKBzOS06a5myugNBvNzGrB46Mfk/LZfnHIbmfKZVjjgumMOIwpooJTCU99Yn59J2eappmkhmqMb2oVp2o7NkTKM/lZMgQNzr7sp03tvSkO2Q74WarlVEcvp3vD63tjX1bJFxGG/G5kjuu5iShNGQbcMOy9nklN8RepRBQEEoi1moNSCHJRhg3xK3Xh+fk9dzbRvmk/U3riuV67XlTzPnE5nck6I7vS+eWURmeYzSmcvO+taiCGSUubu7gGo9F7YrxcTCFXTiLSm/xPX6xNTMp+rHBMhD7V9THyZoXpeqa1Aj0yizMvZ7ErEsk6GOaBGtG30aGornWSfA5GY/VCg02I6eof28ENErZIPErxnod4KNMjXWhSRkBSTMQoI7hWlDRFFh8LIgUP6uvBqTMGDjDPPRs/Rob8QFQ0ZDea2HFwwNuCWOGIUbQnqaiSNHuy9BMwmx7L+TlOzKBkVZRBnvoUJ0UCQhtBowSsOrFdiDgjBlOUFY+xKoulK3TdqqdQamaZMiMK+K5fLE6U0hMQ0nXwfcrBcVU39Y9s2tm3lw9MH0jUx5Yn7+0bJo2q10ZT5dM+83JGncEBoc1gMuhZBUqDuFgTMfmbyNd/Y1ivaCzFlpunefbeaMScrSEi2RwXTDqST8mx97pAgNJqPAChKigmC0qVTy5WgEe0wzbNXgKYtqrVbQjkPIdtOK5Uc7bpjnAzWdKFuVSW6yG7tdh70bs4GKd8Rk7jrsknCEaCuV8p+oVU36UwGB0NgXzdKaagKH583eiyoKD/94gOvyol8ZyK+9ol4wuuwcoz5lz77v9WBazonUm+cH080qkskJbR2WovEahjsmIuIt2SJHP0gVRPkjClbQMkR5Eb/nFq2Deu01ySGB4tCyFZxdLWB3dFrCcGprSoGDYZgG8r7qGCldRBoWtC9IkMsVMSO+9q9d10J9UZB721DQkNCJXU7cAUhGfZn2Zj/riq0VtEwqh9bYKab1uh9c/hBaT2S3C5Fx1nljCXbWIlO8oBri08lUbsDdeNrI1io0HqgqpEiGCK0KtaWDjNxvsOUOhIxz9y9SqRlZymF5MEoxIBwOmi7qhCiEQNymNBYjQUXAhqiEWw00CRTW6E22GvntCRSmpnOD5yms9toBEI0YVAVoWMGeiJymBuGZBWlarMDI0azgolmNqgqEK1aTSGaqHO3qkylMvyn1CV2DnepIUgcfA7G+4IGUVnAGUobQSxRULHQ2HtD28bNJNLv+wBuRRgDFNbH6tDNqdnep5Ei8M/e/t+NoKQGmQrNoGdx+OroBTrrU2yNN2ydWzizn6taCQ4PYcvSoDOtRw/SsnQH37S5iHSjqVofdMBL3UlJzpasXlG0DsRMcMNVjSZDFiVxenQihNgM0uSEjk/SgnSD9GKaian78K5N0tcuaDHkQnUYREbr34RuJKXuCUIXWvHPUgXi7L8X2UszvcsARhQS6IFW8fGNCaKiks3gtFviikxosMSwqveZiYTpzi1fAp14MCYJnkR1geIMSCKkcDMDHWIEkszCoTVLUgDSQlrMnTyIENLsfn0wpcl/19i/IZ8Ik81BausHO7F1pTZlrxDVGNEalH3f2fedUstBexc/U8fjV1GK/1YHLsliTrGvzzQK1llK0OU4qNPe8XY9sbaBFDKJiX+iIHnyrNSyiYbbe/sGsxkIE8HM0SwoCGbTrhLpGoyg5LNTURqj6xODElMwmCsbw6erWvAQaN1EXGOeiHG2bChlCzy+OUK1oBlCsEayGCElqx3swfX8uldIverhVGpq4f1WeeQJrc2sWnaDQSUGYp7NjddnSGIaTfhIcEuDpiYebBBecDqzoq7tFlM84ILa1ajoLULMRo6gsrdGI6ExMN3PUCyLkxA5PbzmHju8Q62HDYgddNYza7XbAa8mPzgJBLW5rVKa0Y5DJMwJto3eCtd9Iy+ZMN9xfv0Zd/P5UHBQXRkEC5HZq2O/J9Pkg6NC7ZXQre8oaUZidqgEazjESMwTfb9ALa5LuKLBPvsBMalDQoeqecDgFlW0VVQmY6UipmWnFZFOTJMHl+4H/MVYfykhDjUK3m8ZPRj06FOaGGzExgGc7i1K6GoK4Njno70StLgcmWvmiaJucGEzYgOuckv4ZszQTnBZs3YbeI/Ze6uF3naCmluChEwX7/locxWcTu9CaU5eUIPg1CsyU8q37zUV4nQiZD1mCkNK5JSZ7h4YQ8N1b8RpZhb4ZFrQfXdx4ULOWDWVEq12aoeyNUSMgRiIlBIozXqiIt3ckY2XSnNpoxCUmBbvB2O6h9HIMylPdMIBuacgxnCMFrDsfnWgmhODJLo2enHIj0Ca7g53hL3dyE4hTt7OVrZaDSYPgZiSkVVap2s5rjvEiEqjuauCkAnLYhiAdqvog0AM5FM+hLFLU9J0Jk0zy8Mr+nallZ2yrbQGpSjb3pjEjHdRI/mUulNrsdlCbzH4yc2LBvkv9fhWB673X3/F3dkasHdhYfG+S3BzQu2NUl3aSCKJm4VC0AJDk6KaAKxlwAHJRp9NMbFdPrJfn6n7SsrZ7Km9saghWQM9T6Qwoc0YSq1sFkxCoO67NZwlUAnedzC35STdmWWQ5omYJoIk6r7Su3hj3JqrwVW0t3X3PodZZcQmRBH2upsihYt2RoQQEpqHAr4dhss0UUqjbJW97gfD6ny6O7JvEZ87k0Akcll3x7cLH5oNqMaQKB1q2Wi9sdfKkg3bbxosKLvFxpQmV6QfQdqqqdN8Ym/Ffq40SJF5mpnyTNkKul5pbUcD5JAREUrt9F7sEBdhSRO1NNayc3m6ErO5D79+eMXzuqHPz+zvn/niq6/ZO9zdf2pQmDZ63VmLvTe0s9zNzPNEyomQM/Nk4qCKsG5PrJcLoTdymiw7lmgJTTDGVgoG+/VWqWVDZSVFmwXTOBuNWewQiz4fRzPl9d4avRYIhdYDrUfwoCVBWVw3cGz+1jo6SDsaDVRwObIhozUa6min1B28WmqaCOKsV+kkK2Nt7aN0tcHgRKR3gaA2tN2s8hMitXZrvPdK21eDTImUbs4GhpV3prTQJZi+f72ifYdebb/ExWGI5ooVgpDc9aFB3yn7RgyZ4NVJrzuqjTBn3rx6AALXtXB9fjIV8lY4xTOlC3tV6raSsmlt5jSza6L1jVJXLvtuxAdVtgKljr5eJ2MVeSW4EWKjS+dumlGEvQutm4VKisLD6UytSqmN9Xq1AidFztNMEx8dUGPjzSkzpUzpQmuW5HTp3M0LIURKF29z2PnweH6gN6XWxnW7mtuDCPfzwlbV1dcrSiNHe829Owu1VYjKeV7IObNXJ5X553O3nBEJtK6mSxpsPvX+7p7ahNrMziXPmWk5cffqU2Mf94bWldrg49uv+fKnXzD1yvrhPZImPq4rrySSUz6cC9TRppdK8b/s41sduDRE4rQwn8y4r4XkgXxHfEGV2j37CmgtpBTcWbUa4wropRhFHBsUTPNszMMQmZaF9XqmbBvzsqCtHo3OjkFocZoJIdmBtW+0bTf/pBgp+8VL4kDXRMiT/VtNqzB4QzRPi1VPAjEbzGaHhvVQwPtwmmBIMLkBpQDS/WshoDRHotQp+yPDUpCdkExNIejC0D0M0cw2VdX6dc06VIogzYJmCGqN3u5WFe51ZOBfRet23ENFbLq+N2pbLXNuSisNqkE7uj7TuhEoai3sV2GfJqac6U6eaLXSaGwOTdSODZnSQZQeTDqp1Ebdd0QTqomWzLbCDqgLtRRijHx4/yVJOnVb2a/PEJRpnpnmmXnKzMk0GVMWpsmYYBbEF6TbnNQ0nfwwSn6/rCKOokgwNlarDdULISgpBHqYnSVpcGJySNI8CsWD3WrrQgNRkw9u2v3NU6Iz9OKEXu/svgfoMhmBIkRaL0YGMlqlK453arn4wLpAT0Y2EkvwUsoGL4r43thMWT0KXY1UId7bE7H906tj0dqgrD7wGhCdTGavN1pdSdGuWzQQ54XuDuM5RlTMNy7E4GMiFuRlrU7J7yY5JdZNi2UojBsZIKrYmi0rfV9pvdEwOrx6rzFHCFqR2mjbM2W3sQuh01uhlkor1TQbj2JVDbp30lEOA7VotLI5XCrEPjRlYF+vdvh32yu2J5W6g0xD0smFozR4Yjr2jvXj62YkqB6ijdGIEgJs1yda66ZV2doBCa+9UtWqouDXrXSrgGoxRq8riFxbYQ+RKpbomspV47kUqx7V2hMhCjEHs8oh0LsZlKYUydMT+7bx8PiKnKI9T7JrreuFOcDlw9dUNRf48/3M6X4Zx4+B17/C0PHLx7c6cCGJNC3Mdw/I8kCL2Q7cdiEGZV4yU7W+DiqUbSO57E5v3Q4PsAop+pxRh3k2V9ogQppmwrSw7zun09mCiBqNtPXogWuxrKUV6r5S12pDjymSy2TXqkLvEzFPngQXhHb0hnJeLDBIJyRoLZgCfUj8f8n7k1jZ9uyuH/ysX7d3RJxzbvOazHy20zb2n0ZVQJVAQswAI7AZgT2xxIBGgpGZMECCmQUSA5gAA5ghD2DKgIkRErIoqSwaqxBVJaooGwPOdGa+fPfde08Tsff+NasGa+04z0A1mab+qpTj6ebL++65cSLi7P37/da37VUdNoAszsHF4jenZxloQIITsTTCF7gNxeWvDES6vbcUkThdLygYsLqHx7oY2CNi9onR3uOerGEdSjEKOqyDCfVSumGk+5CBBvNqfZErCTqgWaW9xGI/s80mN90SI2eC33TqC4bJaY23sGXA+JvhcIaokpOSg3qeYkNCJ4RxheNGr7TtYqHIdaEuZ6YpMucTh+OBcji4IlBIJZIngwObBEY0Y2oMQplvaBQ7uGjwjWsQaEicgMBoio4nwu7jCoUQCyFE2mhWByNAHyYoGh2pF7RvBLVDTsrTdXHLyb2ICClmRj8gdKIoVZMJImJEe7V8SzG4PIr7wlI2NeMA7ZYiseOLsbi0HbG8umEcVwzAMDl4kACtmootBUJ9Lk7s6XLlemSYBF9HRzZT5gW1KS2FaJP72EgxoGRUjHsc2pAAJUc0NX+nQlwPjhVArIHkIpc+Ku1ytkZebTZB+gZQK6Rk1+Y8TUg3bxGjIdoJQcklG7+sSu/W1GD9aQmJYvxqiAb5epFjd1O8IpTgqTcGrGCgnpAVpGRisv8GQponnluKcX9iJGn3jUxpfbNnCAFSIfhmFIO9PlElRihpb7iwc0PGpvjkNRImiAmk0MzqkALVxSQauHKxEUE0GhKixo8G1DlQi7lT32q3rtRm0y9jcHM6EkoipQz70Whb0ZzY1oW1dYRoyEpJ1+vk+vifsHd9b29cBOJ0YshsY+0YpmRrHQ0QN8hl9sUcRONVOi3FkhqCBEbbjNvBOOuUTS1EH8RyohzuUFXKfMNoF+MiMAm5hEgsByPTW6XWlTE3cp6IKaO67spYWoWYJgDGqEhwKW0bxDQZryCDoUd6w2CfPKP9BmiE0Blrx8I1C4qR/4IyVjNRGpnaiJ631mtzHs6gupR2fiUh+eALeqOtTwRPAo97tporHnOer0ogFTMlI9ZAvXs0erOeK3XMvatxSJZ8EAlYMkf3Vt7RO9tyJqaJ3hrr5UzvnZwjpfgC4tj4CPEq+w0hu+LR98Lom2ow7vCqcEC51MplWXjx8iWXp0dubm75yvd/lY9ef2wn3GZFi/lwS5omCOO59kGUWLJ9pmmiXp6IIZmyMkwQZ4jWIzbUSjFFLOuutca2rgTJV1/Z2sWDiqNxcgHbUPp2FX3EYArK1hRtguT5yskmT+bfPXgaJsz8BdqM19OQCOIB0aKgle4iBeKRIA3tnmvn0KvVWGRUvIlsdIYmxBdlczKY0bkPS3wfaiWuxrkBZBgN7ZZSIuILMsU4rhARn04hIaMgyaqBkAixECjsPqWQnstBc0hcTdQySDkTc2Gabrg8vKFMMzlmPgjdXr8a/5bjRE4Th9sTWjdG67Q+6EOcPx4WTO1TZ3242MZVsrej2yHDes7sfgdcgWqKR9Vm10rYY6HE/xn2HlzpKeTrQYv4PMHaxd0NhtThyEci5tnga2zqXC9PJhIlUCbbLMxrXR388QqfPZQau/738OgugsiuPI3mDzXQx6iN1hmt22EXs7Js64XRPI0kBt5+85vUdbVg5pevOZxOhBRZ7s+MIWxb40wmhoKEwaefvuX21z9nvn3HD2+Nw+QWHDWjvfHvu4/sO398T29c79+9J4UB8pZ+c2J42+9hiqQAY4UHHb6QKgyXI4vQCeRcKHni7uaOGEzFtW6btX+mTMmF0RYsDiWyLRWooF4R4TdeLBdE4pWw1B5ZZEVCZJ4s4c1IzsC4bCYFzRFc4q0a0G0lxk6QxqhnRjpALAYjqMEafXsiyGSnraakktG2oV6yZz5VIU0z2/ZoODneBCwwYqTWCxIHEgdRgk01rVLXlaenB3Qo03SgFJ9eL5Ux3gI+8U1m3g7BKsXH3urqbn5bkYMbIm3jqmtD2/C69kHbGnXbuFzO5FSuJuFtWzndHLi9O3KYZna3f0rFP69gaqvr7TUI6puwukl1l06PxqUOLsvK2/s3jLpRDpERVsJsUuaJRNgNtLKw9ZWoBs+YHeFk0I0M3r39DLoQKNSmJjCRbEkLwxVz48J57Tw+nnnz5g2vbu8sOmdbaMnUk5boYR5BUIZzqSlFixOTzmVrPC6NrSl3L2453RyJNJZ1M5m2CqId7RtjvaA5E5O9lq4DRgXtNIkmWpDAMU0wKlutPJ4XVBLH0w03d7cOoRksK6rQNq90OTN8kis5sTlnqb1Rc7H7IgQO6cAYBsE9PS1++EkcDwdoiwtPYNuqJaJg8F3z6yTnbNOCYCYKST6dQwqTH1QGy7qRc2Q6zHz5k09o64W6XrgsT8yzmYrnMpswpQ96u/Dw9h1tudihskFXk9/nXOi920F2nuh6IVAYWBN1SMXtDg5vqUPy0TeuEB069czAENnz3UWV5KpEYiIE9yuNzuhnPDrFaI3R3HvV3A6RiLrS6mblr72ybatDtImQj7CLV7ymaN+46uLrSXD5vm9eJtgxL5kSiWGnFzDxVjMJPdotaT4E1vXCulZaV8rhAFEoxyN3H33MfHNHKsVEQrVR18riYch65UgX5mPmdHug5OSvB+fQ9+zF36Ic17c+fcN6eSIijBd36GSLyPGYTYShnaU1q6PuAyXvygo2jaSUmMrMhy8/JDAYOlh7pW0bJWfmMlOXJySYt4sBQjPSvK8sJOPZvNxxtEbfVoaWa6rO6TBZFAuwafITaSBPGemreWokMboSQyeGhtYzOt9Amt342Rh1pS/3kI6m4OqQpsnw/bYR0mywVQjMp4l6fmc3RYo2vYkZg6lnr6o3iEZrQ1tjtI3z+ZEgwt2NgkzWMbUs9OZQi0CZzF9mE+p+4zisE8V4nFTMxzU6fdgU2tbtahjdlpVtrZwvZ1JMtNY4Xxaenp5Y2wmVO9CTcQwilLERR4IYGNcEB5OXB83ORxgntKwL27pRe2NtymVZeTo/EhjUvjG0omGYuTcEpNli3F1h2HfjU06EMHtEATw9vGd92qiL8vb9I3VEOhbAq77wJF14Wq22/Nvf/oyvfPAhfV1Zzo+MeUI8kqu17hsXaLapreTMaT4yJ1ib8tQGrQ3Wy2uWuxuWx/c8nC9stbmEAbRt1PMDMk+2AOdE0+HxVp3msucUEq9Od0iv1Fp5WCshZm5frLQ6+Oybv87l8kRdV3u7vULf0PWMxmgJFDmyjUHvzbjD6eBJHZHb6dY2s9p4eLowhpJz5vb2hu38YIejbsKiSLS0mLHRQjAjvbfuiguQNE3sRTYpHYhuKH/aVkoOnI4HUz/iCtZ6pswvLMJrSjZJjEYfG/XywPr0wLYuPF6sjVxCYj4c0DHI08Q8bmjLQu8bqSfO5wc31zuDtav6dbhJ2yf8ZlmbIhBSYc/6DKokP9wRzUiPmlisVTvQskex9W4Q+6husUjEUqiuiO11pbZuyEDK9LaaH2sMiJnunHsUWC5PpliWPTbNXvOgXzeuIZGg5ueToa7+NQsN2l1lGc1PuWzUPrjtLxi9kctMng8Wm+Ubd69mjl9rYw8P7qNTqwk9sgeR/4+k779lN67/4y/9e45z4uPpxPbiQCsRenPl0iB0ZQuWRlC3ztpclCDCBavAyCHw4nCgXlYkJ6aXNxQZdirsyvndE5qS/Vo3yzXUYfUVOdORaydWUPtAL2S7IHsnAgWTqa5lgmYxNTFGC+pNiTEVdK2E0IlhMKO044GRCgkxTxODMiqPGqyCYbGkjtAbQQcLxiWkIBxvZ8aymLJySlA7TaGiHAUWHazAHCwNXFQ5TIXpkLm7PfFDP/AJvRXauvH0cLZTkuflGTzpZXcxMtwXM80Hbk8HyryHaiaqq4dkDHqt1GWj1cZlWam10tbKqiu1NpbLyje+/Rnn85m6rujH3X5W4EZKMz2Gqbg0eKBBXeTg4psBl4ttiqpK086yVM6PZ0tk36qJPdpGD9jCVB3eHQ0ytogEcVrOOAMdcH54w9f/89f5tV/9Bv/m3/0/eBpCk0BxIUQU4SbBGStn3LaNL794wXpZuH88w+TCIfdrFT9+rmoq10MpvLq94eWcmG5uKbcvefniluVxUM9v+L/8u/8znz48cNk2InDIhaDD0g+yLYL7dh6dR3xstjBMJfPVjz5icqhqTEde3p6Q8cTY3vJvfvGXePP+PY/ns3Er2Edxm6CGPehIqdg0EYAndguB8GI+ID55L1h1e4yBKSfO94+0PqhDXRRhXNBtFLYQ6IJdH35ImaJQU75O8x0fiFU5o8w5cHso/LZf/Y+8vLnldDPz8sNbPnj9iuwt3fV8sZ/x2AiqrJcz796+5b/82mesqwlMDoeZPBVuTidevnjBZVkoKZFC4N3lwTcrsWZo5WqfMCrPhCxj3XyeGYRgAhlj83bI2RJUSBYZNmrl4vB0itn4c7VM1No384eGRCiZuizmhaorYJFYJSde3BytoXooQTLVN64S4HG90LqJ0VLJJtUfgw2Llgsh0iVabVPfOWQAO3gnLKBZUuB8rjwtFoH2lS99wHw8crx9QV27Sd5R+rawrBfO68plrUCnV2U9V97dn7mcLxabdp2wMF+e/uZFGt/TG9c3395znCL36ZHxzvw2Qc3c24ey1W4Qk1o+Xx3PAkzTW9mN93l64vF8IaXIy/snXt/OJBSpjW9+6x21D7qqKRT9b0eUTb38XZVxlbjvirrdQGk5CiYsdD0o5pWwkjmBEOit2+sPlmPYPfU5ACFbkkcOStdwjd0xhZ3JWqtbJUIQYknm91IzxqovAA1PWg+uIAPaZvDQy8PElz96QVR7LTFmNKmR6Ip7TwJK9ZMctGay+nV0HpbBug1iWpH4yOF4tNNwNyVUXZW6BZYF6igMMpoKtVdGHqQwI++fWEfg4Vw5Pngs0lDynDnOhTwFUgqUaNybZOEwn8wEWQdtVMoUSQWiwPtlQVg53pmKLE7J0g885irsJvBeGaPRVSmlEKOZTscwMUaOgVkSfem8ffvEN9+f2Zp1eu3q0yBwHwZSZk6Hma9+/DEvjq/41njD+e0jOewBz5EhhSi20IdqAotpuuHu5Vd4cVt4/dHHfPzJD/C//I4fofXO+3fv+Q//t18lr92SKQIc7z4w1d3lnjkG93cNtjAZlD0aEZuUcz4w336ZttwzTROvP/wSv+d//78h5cJy2fjX//r/CnJBgn1OczlQUjQEAPVIsGr+QlVLkO+WBSkCkm9pYrVAp3xkKuZdI2Selg6tU1SADTCobZN+VdFqbxbJJsIqw7g+TEzRXHY+ereDkNfPfOPzM0gilkxgIk0zMZtKcV1XFCVOE8e7F8TDgen2BY/LYHm8oN1UctNhpuTI6JWn+0daikwlk8IujR8wNsL1rh+0aj93DRDUOtWGDtBq0Kmxeex5lEMCS++GHMSISKM7FbsFR4YAZLjxGqoq0o0Lqq0SJNIJVAmEVt0IbSEDj5cFAV7eHNhGpXkt0ngywVQKYkkgMuh0lurB32pISRBXaoqtSeL+tTkOthBcxy7m92uNfr6nXz4gThNBErkIh4NwexN49fIFvTZCChxiRLqazcV3rT0smB3V+E08vqc3rp1Ir82w5j1rTzybb4xBGDamxhDo8uzIF+VKkNYBbdjozMCITBRxZd7YceC+62V3lZFdaAPorhIb7Iou/zMVq5rApiy5vnDoOgzzV72GkXasZ2t0zKeDXVwxmsnYAgTCVWJKgL2PaU+M3kUmdvp7bthRoHZ/wQJ12KKSRZhz4vZ45O504ni8oUwHUjCnvcGY0TeuZt9LLcEbIlvr7vcwP8monZQifRgBq0OvJZu1D5p3E4FzhMlg23maSMGm011GrUGdvylk/zWVaBGJUShlMm9Xrx4wazqnICCxE9IgzxNaV4MGnZsT7SiWEh9iRJK12YaU3WRrCRhB1ZWWkZgn5uOJL3/pQ+qmtKasy0ou2TiqKOTjkZcv7vj+L3+J0+GFmWFTImaToIcQGaEQ/RpaqkFeNze3fPSl7+NLH9zy6qOP+OjLn/Cl7/9BzueFESZef/QlwuHIVhsxBW5vPwQG9XxvyRq+ca1hMqHEqGzV/FglT7z84GO03XE8zHz08Vf4yld/G6rCu3f3vPrwI4iZ43ImCRwOJ5s+2K48Za+VUSYsEb6zNBPggHB7+oDhSESJE4eD8UOd6LmX1rxba8Vy/yJR234bmFDGJfkwiNEqQnrvnKt50HrfzDclSnGv3jTPzIcjx8OJGJMLoCyNfFfXxZKZjid6H7x4+YIpFbR3QhBKnok5efyXQXGlmCrSmNp+nbzBPHLioSMahBSCbVw+AUUJBIJvRnYoSimim/VwzSXTQzKRiBPPUexaDcHXLDVTeMzC0Ejp0SFm+zWV7OuUbVytWqzd4TATJdOGUpuyrf3a0VZyfOaVsBzXPRA67JFbJLMKpYjEQBJhSKQplJJJIV75STx70EJhzJJRciI675mLqS/r2gz92IO81aXR/vgNVUjf4eN7euN6eXPgOEfa0iiHYoR6FDTaxbEsq+UORlt0K2IY/Rj0amogJNBIDm1EXtzdcrq9IemAbeXu9kzbfAT2GgsjNivVGuFtmon23wNKEjuxd7V07eQY9JQnu1ljQEpCeidIJMVkUnBzRtvJRhLDAunI80yMgSyQ8mywuw5qF6sZ0WEhqWLKqxEMShRgLpkxGlWVdexBqxaku24LReCmZH77D3yJH/z+T/jwow/5+EtfsbqMXjnOE33rHgVjhG+MRqS3tXK5LCxrJZ5XSrLJdms2zfTeGNVgu9E9vueatGAS9uTVHDEF7k4HYoC5JO5ubnxjFlJKBu2UTJ4zZTaPjY5uakAqvXakZKj2/AxcoaWU0t3fZJwMbaAR1GspynwilQnrM/NqCJ+Ye+90rTRJHF684JMfVD780pdpi3C5NP7Lr32Nw+2RwzxxN83kF3e8fP0BP/DVHyTPJ96/+Yzf/s1vUMUW7toGVRLZF8PFP5/j8chHH32JH/mBr3K8u2W+u+X2gy+j5YHjEH7kd/4ulm1jKJQyMR1vkaGM5YnaFz/RwiKRqN3Cc1WptSISeXH7IS/mmdPNkRcffMDH3/cjXLaVNc78yO/4nTzev2dbFqacmeajlTm2C9u2mBK0N8ZcQAz6ffLJAxHK4RVZO0GtsPNwOkEMrH3w4esX1jQwMOm1WNpMaquFr6rxWnXKEByF8PJKHYN3y2reyLrY+6RbSeVh4ksff8wHr17y4QcfEKLxxxacbMiLsWSDmCLz4cAHH31IvbHNWATLZfTw6LF1prkwHSZa21jX1Xrc9uhKtQqQ7uHIhEBMdh/2bofbHItbRwyRiUEoU2Gt3V7DnNkb1betos2uARt2XHQkWMGopVlbWoyqH0ETKZuvUrxG6OlpQYLw8oMXjCB0Hax1cL6/2OuIngSDqZRbF0K0jatXW88ClsO6h9gTTF168uCGkAyuzSmRp9mfa/h93QkEUpromIVAotEyD48rD/crrXZyVjug72W0DsN/t4/v6Y3r9vYlhykS7pQmZhTdthWlmBBhmhnp4KN8J8RE9nesh2i+DgGKhbamkCh5utYrSjxQ7gLRoYqwLjyrWAdJxeWyneqSe1UPyHTJp3jgaAyR4+HIlK32gTLTh5ByZp4mwlhQGsO9ST1a+GsOSjoekGSKI8jsht+9V0xCoNVgVRcMmja2ainNKgnaha7dmpiHtZVua+X+3VtezIEPXxz5Pf+7324XZglc2nvmMJsXbhK6B5dKhEgGPCU7WhBxKsrNVIhin9sMHG8PbFsnLY3L2vyGswr7oxqUOnojBzuVxpxYzr4wpUA5JuajbVYllauEVyJMxcbNoRGNeg0tDRGKWgxsXRfSulFaBwJLmIHCaMKQ6kn9kZyTwYs5oDqBVnRU2uaBqiiqG1o35nni9Ze+zOnmNYQTXRM/+Pg5MRZXbAlVJ25vb/jw+z+m90G5e83dJz/EUzOJ8bYu3D9dHCkJ3ISJksyQO5UD9+nAOjLzJnwgHtYbCq++70f5/H5h64PDHLACTJCbD4h9WOCuNmI3c7wEYc6T+w6VIBPp5oZwmGG6sQSXOoga+eCTH4HTI4/nC6cpQMjm31ErQGV0wtism8pRhRsN7osaSDigu4ZhCGHyUKTWiacXVwk6faVppKknuajBVoGFkwdWqwRiMM8ZfYFlpbZKa9VT+M9I3ygox7sXlNORDXh6vLcDR7XoIxOfKutTvfqVwFCKvWM1FS997YPDaSZPmVyyheGGSGhWJmvRWUpswtbNJpJTIuVo01Yf1D4oyaD4MboVy0ogZqsiijlSJpsqQ4ymMKW6WMwmn6tPMRZrkcCYgNYt3Nimf5u4A6ZOPZxmE89MmTDNDAKlD99cut0zHn+lBKIWUrIPoK+mZNx5RwkWShxiZPMSXXDjeRSrBBKh9xWC7+ghEott+HOyehmSEGQwHQLlIIyxgWauM5b/z3e/bX2Pb1yH44HbU0HGYBPLSes5MkKmqzXFSj54QEAn5t1LAiKJ3QCsZaZ3S+jOIVOSksTOIa01at/ovdpNZpQZrXWLZDJTEiklL+NT5pwdGx6WSaaWdn04HJlytM6j+UjtkHPmcJiIPV83rtrUXnfMTAmib1yWCp0ROkEbU0rXVHAdyeGJwRBlbd7SKgGtE210w8zHYL2shLhSt4WbU+Lu7sjp9sYu0IDDZNUEGKKWGC2BvaacPRkjBTNgmknOJjKxxS0lGCPQkiceiPhzB6zDzKCGlMR+5cA0F3R0M9C68Cp5E7QFytp0tou99hO/FSrav3dZflVLvI6iRBmWsbgruYK6cTQ4tNrNAKvmwRER9/CAEaTGYxhfL2xtIGkgEU63d4Q0MxDOlxXVjCSL7+raaDSWbgcrUiYqxI6R6ARinsnRTOGaskFwW2VEWxQVLFYsTQypDnXb0djEzgFJasnrGlAZ12SFELN7CJWhxpM0hdr7Nfg0RDOiq1wMmhXrGVO3SkgwOEi6pSQo+JQUEN+4Rpjs+dSuAa8QRggEtQoNhlo0lnpNiHp6A8OmoxicxBfLwhzBwq27Q78IdhrthCiUKG7mj2zb6lDWLk8JV0hKdDi07qkgKdj16pu7UQNKytEOUNF8YCFG0q648umvi2WjBs+fTMlzSoOiYdh1HJzXdvm8fcZyreQxsYkSk17rd3ZV7tgT+6NBdoq9voBZVyK2SYY9Y3Xsz+2TYzS/ZJJAnhI6xCFBsXtFHT5NJsUfQQ0qd7FVEMuttH44T4dX47lDKuTJgoSH9ud+N7GJLiUL4G7NqmWaJ3Zody8YX9yqdvLiu398T29cx9OJFy+P9KVaRxaKtkyPhvWuayNOR0uNxkrRmkOFKRVrJQ5CT4V13UAtmWLOwfPECm3bWDahVgi5EZMBENaJFp1sHJTZgnF7V45TZs/njiHRu908h3mm5GRqopsb1k0pJXM8TISeUDGoatk6abqx2oMcSKeDJTgMtZOapwCUtJdECtHNrhIUyZHiUE4I0LeJPipbt2ibILaZttOBm1Pm5nSiTAe29dGYMD/ZjbAbki05QYIJNXZ+0DxC4rBOI6TMXqIcxMNH90nJrSujGzwy1OXsIdoGFZRpSozuPyvP3jP5i3tdYiCGyU/N+wEEYhRy9lgiSwMm6CAFgySb9KviDN9ATWpvajUrEbUqddnrOvZ0bbvHrpxp73C5fyCUQSozh/lAyJkxhGV9QmOwKUWFpsp53Xj38IjmYs+PLcw6Gqj4gg2ISf2XrdKG5RC2au3QEm2BbGP49KGWOOKTf0wGA6gKGuM1bd6yJ+1w1QfU1pHayNtiYiAxVWvHzPutVbrlN5tqblhAtCAGq+Vk3GkbRDe1ogbNu1LI2w8sgUFjsEoPdo+fXwgS0aqE5AtmD5C82buqHxwCaERjZDSryAliYcyRzHTIxDKhImzLmTkVQpQvLMLPP2fE+NCYIjI8XX1XtQXbmyQEV64GP3AadBclAQYT2gTTjJOK4hsX/gSdnIQU1WMADRpH7YBjNUmRzrCNSaNxstjPZwzbxJVn478iDDFhRAymGB7S3Y/tMnzwQ+F+HeE8k/k68WtWh28WwZ7/eiMzXP1oQjBxlayoMrwaqRxn8jyR3dIxholzJNprDyGQU7K0kLXRaqX2bn7KrXmI8Bc3rf3//RaVw5eXP4Dc3TAOK5cRWWpju/8cRvD8uwvlcCSKkrTz8uYjpFdar8yHiW15orWBMHNZV8OpZXAzFQ7zzOn4kt6hvX/HU1O6bEhVGEqreGjqINKZ5UQoZkK0k5x5aSBbEG1vbKPy6qiUMnEz3zEnS2dIh4Kug+Ap38csaJ6QlGzimg5WUhcsAqrWlW15gpgpXiDYm/nWrFvowKEYgdxCYDvfM0ZnFpPetsPMepj4L4/vCV0JDWaBdlnMI7IN5Dh58nykbdXDe+2iF+enetvo68UyILOSxdIr2tZNot2MrwvVuEZVYVsvTCUhadB6RdRsA00bhE4YlUBnjORcrnKcD3YTMhBdGHXfdSJaK3EMYuh0NVJeTdCGBBOtZBQtgekAKawUmUg0KyuMydPlo22S3atXupcBYtyANlNTlpzQHNgksHbl3WffZj5Ytfl5vRBnZWNlHSvbtrDVhbVtFhvlptIQJ2qrIMKcjly2ldCFIpG1beRksV1PyyNJInOKbOuZ8/nMeauoFA7BosO2thFG9nDnjUOZvWOpMZVkvWxdYWSWxyfSRVgukU/OD6SQyJKolzPLWnlqSujKZMMRl9GJw7q7+lo5hpk+BlvtHOfJrpVu4p6tG6yYSuZcFwOmQmKpq03ZIdOroQFD4Fw3ilfFn5eNE5bksbRqQpnR6dtKq6bm3drgVDLnywNhbHx8c+DFnChRWR9WxtrRbCrDjE302gZtU0KZUAI5DEY0vrW7OMcS9r2GiM7oAcYgyYBg3WHXWDE6UxwIjdg28nRzpRVysL8T1Q5l3Tpgroc6Cx72zWw0wmjI2J43UBLROS56RfpkB2ONlGjqzojShknUTenrSj2xgk/RGyBAH8hY3fDcGV3ca+jPLQVTh1XCsCg36S7iChbxVc9nlsuF3jtzuCPMmUCC9si4FHoMaBRGPXOY4KOPb3n18QvSW+VcHzlNAw0XKmfQ7hYWf+xCjd/E43t74zqcSPMNdXgXEw2ZjgSJSGsGJ4nDWSEyHY/kbjCY5IC0lSDKfLjl6enC0/LEw/mBD24+JOXC6faW1jv3y4XxZBUE0SEzCcMxaUCi1YGnbH6t1rA+H0hlYqvm01jXldvZWkmj12VIinaqdkJ6l9Q3x8skGieWkoXPLqoG0exQVrDKh967K6ncVxQjQ9yDExKqZsIO2KbzTLAaPxTdkzWaIpPFM+mwM+BQcXWV1YoEn8pa77Q2aH3QRFmlYd1eg9iG5/WBRHutfbiMvzUES7uW6ERzGObzcYvArthUPAl9+HQlXjE+TJ5sNff2hRZ/Y1ClSOTaYp6K2xUMKrFaD4fadoWp4YDOTu8qTOsi6l1p3SsoRMBmdbpDpt3hyRgiyXmzmDN6sfzF1jZqcKPyUC87tO/ThuUx4pXvAizryrqe6UPJWa7m4q6DrVVaC1ZyiViIqgZvg97rQIw4X1tFe0cIzHNh21aWdeH9uwf+lx/9Kof5AMG5noDDyYHUu3/GndZdau8LsvXMKbVbxJMOW1D3f56TMWGvaLeOLSsxVAbDG6BbDwTdVbDD0vLH8OduplL1a01UWbeN1hpRrVtMotlH+EJXm3Y7sFloAMQAEvwQ5AjCPg2pj9PDp/erbLsPv8AMJvZMbaIIIzpUrv1qkI/7gvSFXE32a8qhWtQyBYNPnkP2a84e+3M9/373B2KNFA71d3+v+OemPjm50JxrC3GzQ+rVM7XfI35t7K9XnZceY9+4bApUb5YW/16jWUpGk+C5pFbLMrrlkIZUsJ494+K3NliWyro0zy59lsN3v0b7b9UGZNu4DsRtIMMWlFAOJkuNZsyrCISA5ECeZiNwR2GTbtlequTpCCFR2+D9wxNb+wCJmfnmxFYroRSHUxzG2Ivc/CHiJuFo0trVf5ioeAK9wS7r1mhePx6ibVwaA0Ps6/amoxQDw1MFZA/kjNbcWnt1bsZwanFjoYr6hipXqMv0+ZbUIaYo8Zf9hSvf3oFFNO2RcGIbF97DNcYX0Oi+V3Cb/H1479YQpXoM7NBBq7Y49K7usn+GTsYw7kF3Dke4SuYFS6e3NT4YhzCciwgu79fnG2FP6rZ70xdM7FoY+1ekPVDWM7rVyxCJfmPb3zc+SJ5/iXEDrZt/Tl2559YWO4XvKlNMGVaSxSOVYi0AuweqRSsX3O28O9TaXEyxQ6yKsG2Vbbv4wcSK/YJXpvTW6N3SRiyxfTBovrkPz4GzxWrrVt6ZQ6BMBpPX2vjszVvWtVqkGbawg9jz9+cFxerWTWSkLuxRP000755j6G9YDIdbPK5J4C7xbkM9nd4qJ3V0v652HsbhJFVaay7p3/kf9YOOxbH5cQph/+yN/1JvVNAhVyVxdMGHXUBxX+3tB8i+mKtN8H5rfHGxD6rsbEzYf0hDPV7Nod8gngXq/qj9nhLxjdd/6xyxeimmffj2DuzA6S9hPPs7A4G9T09b268ev1b3TfH6La6Q9jWKzd+vINdr1v6C+N/zAtJ9OVBTMu/XdnB6oDvMHEKkBzdiB5/kCEh0GFlMeNK6SfLr1q6f5/5rP1wZhPjdPb6nN67jzS3H0y0M4XEdrFtjJINjQAlpJgSrB0DNMByThe4uvXLf72nrCk8rnz9W7s+dpy3wcCmc9Uib73jQR1YSTSL3S6X0TlYlq5KsbJQsEOpGFDHyvQ16tQzAVh94fPuex2VDY2YsDeowr5cKOgJaAzISmcZk1lyCiKUJVCWPZtlnXSgedaTSCSExBZNrLPiJPXhyutrGFppyEDsJabJEjxoTYcqUGM2vNR3ZWqCPACMQiETNJA1EhVH37hzHyaPHLm0XSuuEMYhkQhczUXahR7FFsA3KPKG6EkMlTerqR1sszj3R1Xx0i1dbdAkMZpoWqs4QboFqU2NzJagnaRAmT7juWCeRbUyICSoG5q+RaBkmowsSJkIspiyUgdCR3kGrc+UBNUWIa28GKSZybVA761MnFKHEDDSOGWDw/vzI3d2JV6Xw+vbE8vBIGFDPG10Wkvd2tWHmcRUQPAAaRQXWVtlaR7u1cgdJVjb62BibhTL3vlK7NQH03i15old6W33xtgVhJEC8tytGNBaGZLRHehdaU0brnO8vjDrMt8c+tQVah0RHtNN0o26zTaAqxGFBr4xBrEptpr8o0cQEqL3HMTqqEIZg1Tx23cvo5A4JpetKaOZTCmOQhkUg9bFBhdgqjE6UYX6x0YktoYsiKXCMR7QFrAgxUb3UNbSBpoBEm6RjnBihQsQ4LPGpfZjlwXBDIZBptaJ78C2uE5eAardot4pdIwTntDrdTZTJO/3s+rFqH1Kw4tth95kxgr7xecgyroQ0f6HxcoGIBGja6A1L5wgGY2uvjGZ1Q4iaoEbVk0owsVEQ5+t8k3K1sQjWlIx/Tz/ESpKryCOKHWY7wxsVIOaAjkj3Q04ULCk/CiwrOUYOhwPHEkBXWrvQR7Wm5mSO1jEsZq2136IT1xDb6cGMfFnsBxujoF1odDTauB2i0EZnNFfC+ClWVXh6eqTVlRCE25s75sMtIRW2NqgeU1OSGRNlJ1zDM9FpSiRxM7JSUmYb1hG1rNs1qSGVRMkHcj44fOfTgQiKJSJEV+qYCi776X0iZgseDcPNgwOIdoLqqrZphuinQosVGqrGG4vJe032YCquKJCS5fVFCaSUmRwyEhGTAYuRwylkP7ViN7QYbJhTZMVOiKM29g6jtPtGunViMYrDk5a6ED1ivDvHJGpTp5HUSlNbeFprxG2jlWpqLm+BFjGjsdXJ2+M60MgAAQAASURBVCJ9LU5sHa1mjjaiOVBHu06gajI5n5QcusFhSBUrVwRrU8fKIaXYzybEQBiRIB5hhG3adasGGdZKoBGlIzpIORoPtW30tNi1GAKaLCVBBAbd4Ri5vpeSIimb6q61xrpa3qKOavUd3WA9kb3cURnDuKxGtxM7ltcXMBvEu3fvOF821uVCyUKrlacn5XxeeP/uc5b14uWNxUKAg/FXlt1oXWotGgQ+ukIY12ST5ouYtQQM9kqdNga92c+5DZPrq6tOGTgXZJBUV5dwDyviVPWJC8fUHNIGnyx6s00RSLuwQ5VWKwTvfaMTg1oHXrClLkTryUOE2tp1GhGfYuxQlOw6UtnHKofThh2SWqe3Tt1Wmm/wo20EOkFMWaybTUdjT2XpBi02TdR1o20rKQxX7grD0QbbROx9SWyoeLL8UGu79uBke27zUalC9bDtvSfP2hyshVnEpnX/+Gzaxe4vVUMKUrZIsl3kcfVcGuRCbw2cnpAUvbete9KBSePLlKnbahUxHpU1Wqeum5u09/aL543yu318T29cbdvotSIDi9Tx01UIyUjgHojRWo9tDLdZXESYcybHTJWNbVkRhsXcpNn6uGJxiMC6eaZpJqWMdAevg3FP4qc0FVvsCEJJk5HYW2OrRqay+zdyhpSNBB3OpbiibAho9NcYMkRTfO38xxV68VDYKOF6gUWHWXQI6ukQe8vonqIhEjFH5XNK/i6V7UNNgBG9QsSiO1AiiKkiVUzp5y/c4EXngQw+U5v6JBgv1KycckzjCpGBK6H8de0cR8Q+1jF2KMGz6lpn1GY3YLRNeX/tiDiPsKuqAt7KhKJ+Woba8c/HVZFfuIbEEaOd3xARO20G20wN1hHatrFdOluNXM4bi2SqRLInbBCs701chh+Eq4l7PT9ZFE8y2bBMGdRec6+N2G1Dr+tGW1ebKJJAN+hvOV9Ynh5Qj/sZtTG2zd6zx5GN3ozXSJtPCIK2Rh8mfb+/WIL3qCsyGnVZqItwf//A+eG9bRwxoJ6xucNk5h1SpA/oDSEQHUYWN95q3Cz9/2qWteDYoQbh22HLUuXVDxzaGkNMvk9dCcPk8zqwr/UU+tEGddtodSOMjbZVk4X7YVBIVh/kUKeKbQa6d7jtkCbuqQzxCslJGFeDsdkgHHoXi6US2bnHnevZYWW7L2zfVofT8ecOth5o8E0YF/sY3DaIntImFnPFDvEFf50+hQ/nrILfrRKvWYjPcKbfTfstOXbI0OXx7HBfBJ+chL1FW57XFEck9glt97npF+4zZV9PbHMz9a0BjbsSMSaHsINlK9rBfaVuq2+wO1Ww87C/RaHCx298SnhYKGXi9lSYp8ATibV5AGjeSAFQq96epz02KHM63dHPF9ga56cHbuaMqJBl4nQ8MJeZHGaOhzv6GIQgXB7eseg9oyqUjBzNeLmNSvLmUKaJm5sP6PKW81Z5bI+0YBdpS4k6ZVpOVBKarGahaUBCI8VISmIoX5mpCI/nBz48Hpgxn8rog23ZeHp8JB9vEaotJJj6rxHI5ZZaLQB0BEV7IwKZAsPEFp3B09aIMTNtg7fvH6HZhHGIgRA9DobIsl6u/NkUndMaQg+RFiItDPq+cWiga+Rpq6znC/1yppSJkIxLyfPMNAZhmHN/bcZfjQGhB8s/1EFrtggEoF1W0mGGaJyQeUaiCRYanrBvrcFdOsRGisPgo640CSQmYo+M1TxPgBH8Eml1YdSFQSdOByQVUp5Rkqna1sqbX/sG798tnM+Db759xxZPaDwwxcjxZibnaFP4931CEUthmYn0hwfef/0/8xheME2JacocbyplKoSUaYuSXRG5tPc8PL4zi3mZqeeF7bzw+OYtj9/6BhoKUaH1C3E9umR60Huh1UqvC1OZiZPXrTxmeltodeF8/8i6nglDmYjcf+sto268e/MZl88/Q+YT83xC2hO5W62PREEojFGpW6UghnDEBGNma+YFZK0eU6b0JvR2QejkqJTDEY2ZHibWyxNjWPrHti1UzWbevbzj4N6lWCY0m1dR+8bl/oHz+ZHLckaA1iolRZbTDdKFFCfytMsjFJHONEW3GxisbHymPcbWrgKTQHEpuwL5KtkPkhkhWE9YytdILenuW5NBSMOzFi0eqddma4Cny4DztnVzgZDFVJV0oOROL83l7P79nYJGjeO1rMfwzMvtD9+h7HVAjAOC1fREmeyeTQp9w8Re6kOjyfwliffpCRyxSS+YHSE4zyd4X1uy1xOnmSFmrNw5XkNPhRD0uolqjPRY6PFALDOfPjzAm2/z9PSWV/UVuZh4rffq03b9rtf+7+mN6yuffIXbu1fUZWOZlCgdxpFCsqieLTFk8x+0feC925hc336bT7/5Td69fcvYOsfJyPRaF2KAHIUchTYab999zre+9TV+7eu/TlRlSpH5OPtJX4ghk7KFfIZSOC9n3j0+8vn9k53200QKkREC83zkeLrldHNL7ZbebCnyM1MOHEog58g2MAMoplicDjNTyZyf3iHnYLzTHl0Tg2ckmrkzFRN+9NHYdCWQsCQXIaUAbSH0DRmR5bzxFM6A+cTAuqbqtjk0Z63Qe1V7zLsiDwZCbUJrQs+4UECpqpyfNtbzRl+rl955osOwbMiou0ABn/hwIrjTaufh4ZFpnmglM6vdmLuajxAIDQaVPgTtMBoWyLrXm1dlbc3sRaTrVBZDsoNId/NtLpRUQAdBqz9/QvJE7TBGZVk3VM2keriZuVtXlnCgxwMlDObDTE4J6Y1SMnkqlOnAfFz48KPX/NAP/QBffxjGh6bEze2RbI2eLArHYjlwoyuRIzkGbg4HTqcDWaBeLJS3rk8m/NEVi1TMpBghQZZg9ogpG2dCZ0O5OWaiJO6OGRmvCJhX8Svf9xF9qxymwNe+/l9Yqykgg66MvllXXSnEaFPXFM1HZDxjZ0SI0ggJV6R6PmdQptmyGAODtW3UVqkSoK8EFxPNOZqXMiaml4XiRP/amnNH7l86FMLIRM0oSosWVhs9i1CwyXRcuV2l1e6bh8F/e7SUDK79VTuUvYsXBvsCr1ehxT4QmFrRMhfVEYGxR7SJea9w+N5+Z39RPch0YBNrqx3aZmjIGMTkE4/DaPvEtNPJIrrbvK4qQx0ubFHjj0eA4BNd2xpIuCIseoVim8dSqW1AjizYy3RMvHt4sOoVAoy7wEui9XW1QYsJPd6whxD0aj1uOmBZDKqUmGkSuCyNh/sLn3/7DV/6yleZse8XYyEwSLF812v/9/TG9dGXPub2eMe7N5+zcQZtTMUI0CHKGIHNoT1BkL0ee1iGW708UC9PjAZkg92Wy0KvZ9r2RLtMSD3T1keWywOX5cycEiUHSknEaD6hKBYwmXImxcCybdS2WcCsWFFeCIHLTvb6mB2wTLlAJ0cnUT3rzO6CQXKSNGD13EGxfMJuDnWNK3tahWhCwkBGRUa1jqR2MZ4GD/BlQ7cVXVeyjiv01JbN/B8I2tQ2BByWHA4JjUELtsEPEWof1A7bEFq1u20o1DE4Xzbq0uy52rjK9JFIp2GMdqN3U6v1YQS+dIU6aKsLJepgDZFp6p7KoA7N4Yo2uaqVri2vqu7wr1eYduCy52DiCBkdGZ2mQor28wmiV7NkSLMllwfoIsTjxBQLRSc0BBaOVJnIoVOyJS6UkMkpmjBhW9BeOUyFj16/YovNFaPCPCdSNFtEGIGbORC00+rgJs6kGDnMs0U4yWBKwt3NxPK4oFuD0UnaSCoUzLxNELNNRMBhsiGR01SYSmLURA7RNg4JHA+FkYR+mbk7TNzXxjIqQRta16vPSbNLvgWSVtsOdNAEAo0QleikqQ6hoZxytg4tHca7DGtmiNoMqhK1w2EOlJw4lWSNMmOw1I0NQbXZgW5O5HDgOAW21qyM0nmnEAMhBYOyXYDFrgj0e/4qFBfXV+ypE+DY/rNSFHZKAZ7xQa6KSd8X7e84FG8Q/P6X/PuDb5yufB3DxBjSUbwBXJXgSff7a97TTBjCCK7O/CIfpLgq81nK/wwbOsSOff2eeoFDvcM3Lg0WXG2bethBw+tbvv5b+AIkz/X7qe5aTn9Jan9BxURBKglxtfZWG+fLhft3b+m9XjfM6ErFEJ4n4e/08T29cf3wD3+VQzwwzmfePryh9TM3x5m0NK9KaPTLBfAMrg1yhCiD7bIStidCu1BXRSY7rT89vOP88C3mtJH6I/n8QFjvGfUCamVvuUTubmZLshAhx0iZJqaSmJLw1DfQSpBOT4VpKkgQHh6fGDTGqPTlQugXgptESplt4htC2C70qtCVKWImwS7IuiJrJdZGahU9YxLZ7UITiDEjKdNlMOpKbRvndeEwZzoRGYHYHhiXlfF04dg3BpFQB8vbew4ZQk70paLihlxXdw0nw7c4E5OlSjwsG+cBS4fLqjDMad+78u7+zKiVpEpdOpMUUshILi67rtCf2OpK00FVJdRAWEEWReLGRqOmyjELh9ngRvqAOIhjV1D6vRU8qDSa6ikErGRzNNTVfEEyPcI2GtpgyKDUmRECOUzk+QBeJx5isaiblmjlwvTRK0oLRDnwOmSWWqg9kaTTnt4S6dy+uKXkSN8WHj7/lMv9yiTKJx++Yj4mwIQL4IkmGphG4u4YEQ3US+f25ujdSYl+eYDamELnB7/8GnnzjvszjG1FpJJ0WMeWTMQYrTKlbqg246xk5tUhcjrOaBWOB5vGdAhztJ/TsUS+7/Ut+fGRd8tK1EFtF2iCjAxNkZQoCZIXJyqmAC0ZpmgxSNkTyNeg3B4SUZS+NdIaeOgbrW2UYM3MjMCUAiUpUwncHTMmsVK62iba2srYKiMkppcvSFF493Dm8Xym14bIIM2RNCcz1TIMa9NxnU72xVc8DkzEBDQ70TnEEzHGHlrrCIqYpxE3vSO4ys/yTfeHqm2e4qWKRtDhVkDxL7AEil3paskTngLvMN6+Mz37q3AO2S7uMUzAsyv2r+/P46XYN7Per+KMHV7cN76dOxYZVxFGSNmS+8Wk/uJ2DHMWWXzank2p/tmEnA298M1MJaLB7QbNVJ4SI1GVdb1w/3jPtz/7deq22vUveKapx3h9l4/v6Y3rsi3k2xMffulj8geZS31kOb9nTdmMlz1wmMSNmZAOJ6YslCR8KMKXP/qQdW0sG9zOCW2N88MT8+FELpMZM2n80Fc/4eNPXvO//Z0/ypQLJWVOkxGRirX+5jJbVuBovHp5x/jqJ4wBS4tEtaT0Nw9nXr7+gMPxhsM8kRGadvLopiIUtRSOZFLrNoTL2u15tZJFOEyBfsjUmyOhD5v+ssF5DujDqEQsBaTQGJvdoGNrFL0gtUFf6a1TiqVzrOcHYkmMNbCen5hPB0pKTDlZJXzvtF7Zzk92EyBsiJmrt8q2XHxzgzoCl2VDekXpfPrtzzgeD0zzTDmeOB1m5nlmOibWeWOtnfNWOb9/JKhSYuA0z5xrp+lgbNUWJGcr9ot/rylhKBqGlXq2QRz2eR+mmRAb5+VC7Zi0vG1oE7puaBWetsVM3kE4JDMTgyCh0MlUVyp+9as/iFAI4UhIhWWFbVP65UzfZnpdWc9P/Nqv/keUYd1LFCsMzJkajgTMLrDWjcv5kbU2LiqstydKiuQgvK8X6rqxrQtv33zDjPTNZuVA5zRHSDe+iA5G21jX+6tHDvEakq5UCbzRM5fDgakc6XVCe2d9OvPw/jN63ajnM7VVTqeZ6XYmdvscWx+s5zN1W6ibTaslj2f/maywCSMGcmy0aiKBvq48rtkEEl6JkhPc5cIkiZAikhIxRLa1szy9Z3to3JwmM/CnmZwGKQjEibubO+bjiTLPvF4e+exb3+Z8/0gwKR99W6yxOYohEWMgZfLFXT2f0iYywQRS6grXmIxH1aF0d6EbKJA9X89+hf10lI1L654ik1IgJM/A1IzQnkUe0ZJ+ZQziPHmMUyLkg1UkNdtkg78uYri2iYcghGReT4kFaTsv583FIXjPXiNl2zjzlM0aMgwqbZuZ/MM18t2muJiycVwhoNHsLmAK6RTd3B8jozaqWvpPFIViKudcin1uAejPk18QIZRA38OR1bjwbW28e/uOVk1M00dn6xav13+r+rg+//RbtGUg20aT1fxbvdEuF4+i6WTxtGgBGRvRQztjnohT5pgy7Ri4O8xEEerLD9lWS6NuywJb5ZAj83wi3L6w5AOGnUyxC78U40h0mHEyx0CZCylltpFIYiee4/HWFD6jsj18DtKRFDhMmcOcDHPvHWkWhZRUOEYl9yfCZlUpoW9kGnMY9LYhvaMt0rZBbY+03tmA4hXcxzkzTYF6qTytj/S6mGepd17OQoqDIg2pG5KM7G/eb9ZjoqXoOYAK2tmWM7UOugaYDxyyFc+tT41t2UwxRaBgVSKtVt62dq2EqL1xyJlQCuUw08eZoY2igd7emsl0KClPpLHBsMbV1ht9RDuw18rQyCCQUrTTqMozgT72hc/gq8XTK0a0dBKbaCxDcecTVJXtcnHTrSBhQ+MBQrZMwsOJECZCmIl5ZtoGdetoPdDXA60uLJcj+jZSN2/gDpkyzZT5aJzalV9YoVtGY+jKnAI5CTkqbqVChwX+7nFB0+HEMRjPExQ7basy+oFlMRWgqNL7wtDkkC1MKZJEEdk8nWUQs4JUFPt1uDsyRcz6gNlGWu8sU2Q5W7p8DkIM29VasfXhMDmgjRAt/TsQyVMiiCVQZJnJwMSwtugUPES2kJfNbBRkpmyiAcmeDo9FcZXiLfcMSincvri1yfLpYhyRmBXAhA4gwSFK4Aql7UG2+3SjZng2+PsLKRo+uYjsSfLParqroRrvwgvWNcYwVstM+8G/1lM3HEYT3ziuvw8GLXdPnhfRK+Tm44/DiVgcmexluON6vQIO23lkkytJTUUIHnWDmYnH8/OHYMkiLqf9otpafRLd4UO5vnZ1btIyDQW5qizDdbSz4OFRK9rMR7tH0uzhCDgn+XzbfVF18p09vqc3rm9//dc43y+UEGhlYcjGWBeW958joxNKImYPjRTo6wYbjBgIByXhP4yUeXk7U/KBFE58/ulnPNy/5f78AH2j5EIpE6f5ZAv3ttpF52rZA51tXa7CgDAVpilyLJmGtaqKRI5z4OnhPU/nR97fv2OKwnxz4Cbf8bKcWNfBuq30dr6GXBymSNg2ExuotcbKtlB04aleLO6qBpalc358YFnOPJzPnI433Nzd8uEnX+blBOe1si4PLOfFF2/48CTQmxGlLcGwhP1tXUza7RfrXISSAzEK69MDl3XQNXKMmePNRCby1CqPy+YiC2GWztIqy7JwX4er3zbkLNwcTkxlYsjsC63dIFu9sGwbXcWUfc0ks1utFpvUPF1AB6FH4ghMI5PEPWqjuWTc0vqD2sKT+qCuHc3ZptoQ3SdnnKH5Y6BfHg1uEjE9R5qIKRHLLXMphFisoqIcKFvzpuhEvTzQ20Ybyny8YV1WK9kUpcwHpsOR88PjtUi0hDOH6UQbylYHx+lgIohQzQJRAm1OHA4HtosNFIe7EweHc3KMqFaPHEssT1a3E2Ognt+hITEkUjfzycUAhEYptgimVEglU5NZI443t1cLQU6JbVtpvXPDDefHJ0TVPH71wTjYVFjXek0UX8+PblxNBE0cDoWA0utKKEeHqjo5Gr+iQcnzibZmS/ZIAeqGIqhPYzGYWq/WJ4PWt4akxOnmyDxnthCIJXpUVbNUdseMFRMXGC7gKSDIdbM3gUWnexcabuVQl2mLNt/owjXdZZfWW1+KddP1bjYAEUgxsSew7DyYfWNPaMHEVrafRCQK6sHEYxdEuG9skGDY9KYMgiTbfMaOctqmOLoJY8DEMfsmZF4v23AUHHEyfip4qwBg31N2Of1wY7JvK8MnVM8mRdyz6ukf4g7q4IknNrFFtnU/jHgDQ7TpUXZuX+xe12fC8Lt6fE9vXMfDTG8L3/z8U7Z4ZrAR6uDuODMfCvNsAbfLZeF8XkBNVJFLIsrgadkQhBd3L7mcBy1eyPrA5eE9o27MJTPngGRQrXz+2TfshylCKcJ6f+a8rHy2LGzL5hewUHv3aJ7B0MTpNBNj5PHSCZhn6twaN1MgPgXevPsW/+mX5VpMeZsrl6XS2rDgWk+aiNJYWqPWzrY0Wm8ksU1opMQxJrIbCC/nBy7LI9/+/Nv0+uz5uC3ur6oGUeYYreG0ZL7+a294/3jh3ftHYkrkGJi8psK2BmEuyaacGNjevKGu46omKykwsMJO3TbWWqm1ExN89vYtX/+0cf+08Yv/p1927YmZdFOMFpUUMzeHzN3xwPL0wPuHC0/LgpTG6VBsQjpmaIbVh03RaZCDTV+1DVpd0dFIIVouohf/pdA9BDXQ+wahQAjeuBxN3fb6YzcoO18Xb9BgvWjbekbHky1y+eDUhxCmDG1BVMll5oMvfWBwTR/oYhtAG52bk6WZhxi5u0lUlWtoUZqszmWsTxbTBMQgHF+8ZH14oJ4vpMOJVJIlcgdBevUMlcjt6WAbbM5Q7+jDhDhRvEJHoK9nqi8UiSOHuzvqsrA+PqDRktXFBR7qLcIbifHilhCEaSrQLhaBRSDvSeoCl/fvqd3M4ylAnmezbmwrleS8kfEf6h6tjcRxSkSBPBVCq4wBjUx2TlIF1sezQdFbpV82ttHNIL1nJaKMvppazuHB2p/HkhF38Y79nME3IW81t0XXskPVQ2nrWk1xGoxrBLOUND+MhBAJqZj4Y7ja1vvErLLFGrlRdRjv6HJ3ayEwa8kX/Fc6jHtzP1VKFkitXcwnEr3Y1Mgm2ubN1EMtJ1HM/9Z64zor+TTYdbCcL9iXRRKzrQU7SvcFXclo5o/bg5lDyX6o88+wGQTZqDZpj0ZdVkAIobPoRqud3pTz1uk9kEjkMFtAOCZK2apnmupv0eQMaRvHUmg5cZxvjOeoldubE4epcDgkHj//nC6NJJGcJ+Y5M02ZmA4UsUXp5c0rcjJTZD2fCX3jWDLl9pbjUWjNbhzJySW8gbkM6r1VitcGWQohKElgq9aY3PogxUG/XGhj8PCw2CKdCx/e3nB3ytRaeXy4cLlUq7RHWFJj2RqtDVaAaN1ESRrvzyutm3ovIoYpa0ekMR0PHObMhy9fI7pyvlz49W+/4/5cIVidypJdFjuUqIPTPHOUwNKEd08bnz8sfHZ/Zi6ZHIQcADFeICB8eHvDcRIkDL71/oGny2bxMilRkmmp2rCEjWt1+BRZ18FlG9w/bSxrs1ia3pmyKfFKTrw4AiEgqfPZ2zNrHbSRmMtMj0eaFOjdIozEWm6DHYBBsCBckuvIAlWbpTqIZXNJtP4mJaNqVSEQQTIaLDVk59RVuqUWSCKEZHUVrsbSEKxjbyf+pwKo/3cjteMQuibigKzKaJGQLRpHciHLzr8LsSR0BFo+ULS54EQ4nAqJiZohzBMpWTVLTIm+rTYJSESrdSiFlJARrXkbzEjtzal1MmvHzpPMx0zOkGJnuMpVgDwf6NtmJZgSGJNtIjlnZOyBuTZDRDfgj5qJwyK2girT7Kfq4tVBauf/PJswZ/ROJpj6FSWlTposiq0RiGqvs4/OGhtSBikKYzE4d6uVY5wgNPaEiLFPD8Elg7vaDthbd3WXwWNTV/dNg6He5eZetOH9Ve7fwoUPtXZgINE2jNEbe3ajbpvxW873jLYHEwPR/WRjWKxasCmteqg0aokcKibZl+QltPj91KpTEd1ev9+/w/Uou3JjT6R4zii0YIDRbRPfkVIHCZ+nQ9Vr4K+H2lBVSepwYYhuMHfLw+h+uFOfcE2pu20eN+UbYEQpUUhTvCKl4qrW7pml3+3je3rjWs+PZIqXtnlahnQsh8FmhLZ26ma5WDnamBsUwsDK8IgEjfT1TLtceHz3QO3CfLghHW4oOTE2RdeK1EgIFv0UR6UvnXqp9M0ysdUJx21trNViXsiga6O2yv27J1KK3BxPvL45MQWh1s7l3RMPl5XhpyWNjbUN36AUydGSrmXw/uHCwCCC2UUoo1skUosFLcLtdEKG0s4XHj5/4O15Q1JhPirrHpC538RSkKisFZZqJ6X3S2MgZBGS2M2/k9XHYl1M6ODN54/cX1aqGqyWo31N7+ahOs2F02GGEKk90JqwNWWtanFa7u3ak+CnosSmxDp4+35BYiFNE9PhBOloG1C/XFWCAzHO0h3/XWFgMnMrpOg0p8wlJkyWGK6blgwjqFUiKsngFec5xvUaMg4hebTYfvp0mSIhGawpYHmJVW1jDQpJiB7m28IgREWi1X2YEMBu/pgNxonJNtZdmz1NAdFCzCAle5BzJJVCtUGAEANt82kpBCTM7IkpqBKjedhiFs+Mq2irlCKMmIhxpmOHNnRwOCRqVLt2RejZvlEKGPm/e4PaRkpO6k+CeOI+rZKz2T60JMKo7mdS5oPn9I1ABvpW0dEI0smHExKz5TpUj5NqHQ3Gt4agyDao9cK2bNzcFkS6/ZlYZJS9Z+dvFOeu4JoWIeJmYhPJ76kXihJa94gjRdWTZ3CvpP+77S0F/mdjdCdrTAAWXECUYvQAaruHidVf03AYEPamBfFcRx0WXyZRTHjCnveOe7yMOwv7e/NpbQzbXxELBTDPpFoKhvpBC+fD9s9kj2TT/b5+5rVMVWgipbDv2/7Z7Zvd2HkMHZ6PODwOSx3lsALJKHbd7B1t4FBkCGZ7+U08vuON61/+y3/J3/pbf4tf+qVf4hvf+Ab/5J/8E/7kn/yT1z//s3/2z/JzP/dzv+Hv/PE//sf5+Z//+evvP//8c/7SX/pL/NN/+k8JIfBTP/VT/J2/83e4ubn5jl7L/+Ff/2tKPJBl8H575NJWtmXjMGdKihxyotd2HbNTiXYCiBZu+7Q2WldyjMzRyORlsekkhkgOgSyweTV3G7vhGGYZvHl6ovZOItAEl3l3nmr1G8AikkTNq/SwVEQssbr833/52mO0ePVE8OzDIuaFGsPobj/62IUYzAeRY+LFzWQ3S+/oCJyXzmfvn/jmt7/NaJXHy8p//fyREiOnU7aKDA2s68ZWrciw6QOXVply4u40QVAezgu3x8IUhQlQma8X+aWuLIsdBJ42O/GWGAhTYhIAZUTzoMxlYj7MHMrMYYbT0TLMVo8HCq6+CyFBKPRxoRBITXisZ15/cMurl6/40ve9ZEqZKJ2uF0//N44qpehlloa/q9c52CjmyrN6IaUDMAzyaRsRkzZvGkmqpN7QMsPoXodSYJiJc+gK2hlYMgjDOqNCSuavK9ZvtC1nlse3aGu20OYb968lar8wRiX0QDjdEYOAdrbtAdoZiZmQD0TJ9LbS60LQRC6BkA72ee0TQO9mvhWrahmiMKqtYtPNlUtr9WJciZgYIvRBbQvnx88puRPygTRNyLpSh4X0js1EBuKf6fCJHiCWGyKRNDqP58/RinMeto710bk8viOOiTzNpMMt0oTaG3W7MNYBcUIkE1CW5YG2ns14f/uSNGXSgHW9p69PtOWRsS1XXmpbn6jLE31rRHlB8ESblCO6Lu5XMnTCXtUuHbAD1S6qEGzxlRAIav1c22W5eqRiPprh2Bf1vdYF9s2wmaVCB8HXCuvoa2YQThY91segro2ue+UQkGb2ZgfbPp1xCmKRf7tQ5Bq9zLNiFFsHTIIvBkeOfuXd5Pmt2nQTrMU9lUL3VGenpK4y9z68SyGKHeKjkERYLpW2VbR7A3K0yCl4PsSKr3d73FQqmbYsHnJuB5nWlMf37y07cih9tGv49W/m8R1vXE9PT/ze3/t7+fN//s/zkz/5k//Dr/nxH/9x/uE//IfX30/T9Bv+/E//6T/NN77xDf75P//n1Fr5c3/uz/EX/+Jf5B//43/8Hb2WOszQmVImS6aGztI6j1sn1M65WYyScQEgSycnyzQ8TYlFYEWhVm6CMJXIcb7hoQ6WrdPWzdR7Do+sQxjVsuiOGXRKWFqdWNCqS6nnmKnDLooxrIm3BJhOM10C3WObelBCDMxq3NDubZgKzA48LJ6HFoNSolJypkyFaZ4sWUArSZQP7z6AZNUs3/jmp2YiHY27Y+L25sTpdOLuxR2xb4wx05tyf1k4zhM3x4lXrzPTzQdctmobc4zkAFNUXn3wA9bCOzrf+vo3WM5PtNb44MOXHI8H6wOTiHQLFF63ytNlsXityRb1UCY0ROajfWZRTEUnmk0Q0jufflbpo3Gpyt3xxMuXN3z00Uvubm6hW5pBH7tiy06gxnM856sFMRjPZPUZUZjCRs6ZKSVSEEpKJsyIgZISe+3L6JubOEEjQH9ewA2TQbCKmT0BQn0KE7AYnmrqVkmBLMNNlm6+DWaYzcXgEu3GTwaf3GKJBImMHNCpMN28wCZEqOuF0SpWMz8Rx3MOXZCBkk2gMR0MYtIO/XL1JuUUPXB6IP2O+fSKmGdCLGzhgaCVpo0yzZ6E4JJxn6QkQCmmHBw9UES9MThyDACB3gIyT0zzkTzP5MPMaNHuUYFyuHFlo6vmykRTK5+cpwNpmg3+umRCMZVva0r3UNspTdycbulz53Q8Mk8TIURqV7pWz8Cz12KZmYb7qmdfosOinNjFGZulrDRL+AB1z9dEqxamO4bXqIzuZZ1W6yMRUCUlJSTnh/pexdK9J0zNd9i7vyZL47HJXnwzcdXf6Iw6TJyR7GI2cRQulPBp5aqAVLQNRvQ+LBE7cKgtdnvs1NBBW7drvQghkqIpOyVERvWNczfyYxBt3yojdEYa6JT99RgM3uh+3ULI+3QrkLJxw0noAVpQX+Nskx29kpnNxrK/n+/y8R1vXD/xEz/BT/zET/y//Zppmvjyl7/8P/yz//Af/gM///M/z7/5N/+G3//7fz8Af+/v/T3+xJ/4E/ztv/23+eSTT/6/fi2H4w238x3HJEAk9RkpK+tqmHCMSsrJSHAVqwuPEJIwnQ5MIUM1krPMwpwTpzKznTdG2KhDkGy5emZSxEdmJUxCyUbwVwW5mHRbsIu2Doyw7p0p+gabCxvCunWewoUcuoMBQtVwVf3cThC9Ot5gE4sLOhW1+Kd55nA6MrZK1EoJnbvbE+uATVerX9FOCnBzKLy6O3I8nTjdHKHuh3ZlGZ3jceLmZubmtpCPEyFF7k4TU0gkGZQ4eHF7ghDYWiXFSE6BFCJ3L068fPWCmAtrF+r6yLZVljWSE4SYiamw9UYoGVIixUZhIolJ8Ucv1NbRuj6rq1BKyRwOM8fDTJL4XLjoKjDDPXD12HNkD7Jj+erTsSWPeAGFcxA817sDO/ZyLUsEOznjGD9+QleHmmK8mkB/o4JsmBy4N0KwjeRZgm2y7+DqLKu1sc3OeBorPQxBiJJBMqkcjSvSYUZqJ/wt6X432gb36hgXkUph99CI2kJo0yi2mGtG5wOpHEl5IoSE5oUeAiqekTd2jsU/W29EjP59zK842ItLYzCuI4rQykRKEzFmU24yYCS0RZv6ZIephOw1OykV9xclg/7w15onSi5sfTP+TAIlFzQpuWRiys5mmoEbv0+HQAwGtQ3UBRD+mfiG0725YE96b83gPOu/2vvCngN6bZrrttkEOyBdN8Xr1z2vD+zc0ZVxlS/84xPR9dJTbyq2a+FK/tgoZqryIFeebI+Jun7vrqjD9Az26EN/8v19VufErNbE0DsbuxTnzXQ4atQYvV2TeFBDo1R8g8XUregOA/oTRjELSgyMgCtV8aSM8RuaHES8zuW7fPz/hOP6hV/4BT7++GNevXrFH/kjf4S/8Tf+Bh988AEAv/iLv8jLly+vmxbAH/2jf5QQAv/qX/0r/tSf+lP/3fOt68q6rtff39/fA/B7f/fv5u74GraFZaps0lgu1S70XtF68fwt4zVCjCQGWQaHaeKydNqAUCKTVFtMQ+L09sxlraxb4+VBWNeNZa2smyIRUhLupmgp7wTPtLMq+KAWHGnQoklCs1eEa0qs1Uy7l/XCLOYj6V1ZR/DCyMjLIowQ2BROTw2VwRThrgiXZqfi080t8xTJY0X6ypu3C1/79D2fvT/z9rzw1dvMi0Pm5ubAB69fUo5H0uHI+f3G0iqXavLb6TBx8+KGuxd3fOuze97dP/H+/ZmXN0eGDLZ14+m//hcenjbuHxbenc+8mNywzXAsXego7+8f2GqjqZKBFCOxZPraGWqKqro01t4YrbGtC22YGnDZNj5/fOKYAy8OEx/cHJhypI/Ow9t7Cw2Vikz4CVUYTdC8q8aMnB/aGMPKoSRwrXOol4spOueZtmVT2xFZeyPGTkyDFGeXBzu57YSyKbDsJtPhxsnrL5u2xStWtvUCfXi2oi8favU4iURITorvvEndiJpNNDKsuNFgw4JIBucYCZG6rmivlosZ923YakMEca4vXhe3bblYjUdKtpH6STtOB0RMuTbUwlr76NS60du+IFpsVK0rOoZXAA2fPgfbthK7maBlF6UgpPkABEZTWl0ApXVTwGofrpAFU6IlUp7sfewL+HUSasaf5cJ6WVmXhW0x6CqEyJDEEHvP2u2HZeZbW6A1Ri9xxXgv5fkH6rFPuxJBx7BknRgJMdE3m65jTMScHIJuXFozLU8MpJJcnWedZuZxKtcWY20WJpySGfgtlk0Y1YQNuucsEgxy8xxES4Oxa03UJPMSo0fFWQpi3zZ6c9WiRzDt6kT0N0Y5qYpFuQ2rPio5OZQstF1VKbsiSRm1mmqxD1ISsnO7o3WT34dOyHbIsXSRza/nSB9maYgpM9j7BoVEtq9H6fqs9P3NPP6nb1w//uM/zk/+5E/ywz/8w/zKr/wKf+2v/TV+4id+gl/8xV8kxsg3v/lNPv7449/4IlLi9evXfPOb3/wfPuff/Jt/k5/92Z/97/776XhDQHjcFlPkJJhSIQcjntWjiVpXWlMOaYa+wbB6BzvBC3ThXFf3UsCnb+8RAlPMFmSaAjMOczlWnYOikulqP5C5+JjcjVuJuKJIobdK04ESaNohCMfDyRthO9IHU04mkUVYeyeWbNKRduamFKYIc+gs92dkKInI3fFDwhDqMvjs80/5/P0Dj5eNkiIvXt5wMyXGGIQMgY6uK+t5MdVj6wY9dUUqrOfKw9szTw8XaI3LxaopWm08LJ/zeFk5LxtbG5ymW6Sc6KOwbIPQ7b+fnypdPb09BULIBM1e/ZFdDDO4jMHWlUuF0RptmFBDCEzTibuXL7i9ncl5IGOBYSkgEpxr6OZxIQS0C0MjjIBIM6EBAUYnYDAMoqSUyCmSpJNpnouIeY8kISSvijcMvw11xaZxi2WaCanY1ODZkybG6bDti0dmhMKgsslgSskKHMnUKO4NU6YYGWLqvxozmhNiGDaSTcwygrCNhRCzbT7zLXK4MOrKyImYTBGLmJEVUWIEScU32khLmZiiTbqlEPNkn19dqNJIIZBiIR1emmcuJijZPkuTVpq/STvEhJSjK/caYz7aCTxGpvlkCQ8SCN0huyCQil0DsiJk6u6fC9EUngRom1W4pAwhE2Si5cmSLOgMEYP/LysP796xLBsSE+XwksNNATEaYEhCZZhAptmkodFGjxgs0Li14e8LO3RF66DS7sSPV4ekPF8bhIP37WgISErXdAsTaJh3zkzZnkaBT+di5ujGuAZK2wD1hVoRh7gVrmWqASX24VaD3ZPlAj4Vy/ZUoRPo2glXcYbDz85Fx2AinyHDEjh2H5enbgS3AHR/H+LydiWhKG10YgqkJFYG4DYzjVjWYTDkipGvKsY6LBIvTcVCpwX/DEyRvG/VkS9MnN/l43/6xvXTP/3T1///u3/37+b3/J7fw4/8yI/wC7/wC/zYj/3Yd/Wcf/Wv/lX+8l/+y9ff39/f8wM/8AOoJ7+JWKCqjbuGbccoqMTn0V+7dT/5eN+H+aTaMH/Stm4Gx6jytFzIIZGK0Hrw0/wwHkLsPKRqKfNDLR4ngl0owxi1gdWHgElFjTvpbL3BkOfTIMatitd5K7C2Rkl2qrEqdvsDU+9Y5blqYyoRWjRDdbCEgakEbo4HXt7dcCyRZV18sQhX6CpFu3xaNRhi9M62VEsMqRbb1LpdjL3b9Diw3LIQAtN84Hi8YZoPECJdMQiFYHFMwWDPPgyCUD95DUz51IdYkrvuUaQgEskxMZXCXGaHUcwQGnRYw4M8t3oZRg7wBfx/vx1Ur39+jaRxTssgwj33Tf2kuS8jDvPwHNyLGu0tIVpnUbTpZa83HzporbMnr0kq0G1hGYj3IgmSMhot1637QqYSIZdrYWdXk7Dvr2ZoB03spIpEK+S0/ja5Lmw4dKjBvqerEJA8QRA0eB2FWMCtxGSFjoj71gIhFUKevSLGP1cxszHazT8m3r9GIOTJpmixRdcSJSJExVgQYChJPIA1JDu8DYOIEgGiwanEHbVycDZl0OaqPBMANA/YvSwrEqwS3qA1UwfaR7ZHgO2fgfh0898sKILDnB7/FKxFeoewUin0uj+/cakShJgiobmvC9/Do3kAd3+n3ajNlHMKIjsU/IXXtG9awSKh1LlK6/YL19exT18WIL3/XRwWDrbh7l/L85/L9eZwSC4lozv8ujP16X7Fy/7RGdxLNIFKfZ7yQnThxxc+0+vee/1AcchYkaCOCJgisjU/APp95ave/39tXP/t47f9tt/Ghx9+yC//8i/zYz/2Y3z5y1/m008//Q1f01rj888//3/Ji03T9N8JPAAet41pKkzzgWVUat9YNpMRh6DEaL6CPjprrUyIT1wVdONyaWxdKcVUT8ZrGGzVpJGGcklegsewyB73vNA3NBqXdV4H3Y5u6KiINOqAppDEfGBDB5ICl6WjQ8heaCcyCLKrluwmPJ/PdtoPgafLSuobPUKLanFMUdjaoBSTfo8t8OGrEx1lqZ2PX73k+z9+RU7wdH4g5ExMiRQzx+PEdbfwXqptqyznQLtOPw5iSCDEzM1NJtfCNFlaxIcvX/LxB6+ZTzPL2lhrZUgzkyqDGK3SQEeDICSg0engafKDpgaQh2gmTasKF07TzJwKy7JxqB2dsMUofOFmDvEabhqiwUXROUJrj3VTadgtvupJGdFhF0+RF/EqD/ff7D9bFNGIDBNXpGTQHTHb4m/V06haoWfvau87YH6knq4n3zHMupDnGz+cRGozfx8IqRwZvdK7UKvBlrt/hyCuTu2MrkhIJgRQ6y2zw0pAYrYfqJgsm2HfO5Ub/zzUPEOh+/uOzpMlLzlsKBFC8ZBW8zbFgNXdO1vRhqLD+JKYDwaHdWtozsOulS7ujxqDNhZ6MoFSH0rfOhI6ITSmYdcusTDotDZQbVa9k2cXFTTqutC27VocWavlX9btwrYupJiuFfAhmFCL4YkNdpq8igCCHyQQg3y9s5XoUnjBD2anmbZYWocdHsznlediBzAdDAYSIJVELgU8e9dqefTKB+7QZtgPplF8dNk5UuM8U8k2Osmef+iQnwTrzHIxEOIbSYBefVP0jUiv2DbXDE9EyMWKS5+bke17950L8+dUgSh2X7XVimp3DjWKdd5dE91VoXubgnPzJQfWbu0UOZpystVuik2f7K6f3W9q2/pfYeP62te+xps3b/jKV74CwB/8g3+Qd+/e8Uu/9Ev8vt/3+wD4F//iXzDG4A/8gT/wHT33f/pP/5FXN7d8dDuRDoFjFFK0iybFQE6zjcMHpR4bhzhgFIY2ar8wlZXL2tiqLZ7EQIrCJ6+tC6iIolqZSiKnRB2Ktg1RJUUo2U6gtxkLbx0+S4dgJtyhPJ6r3Vg6OITAixhszMZPP9HSEPpQ2oCuwiHPHPJETIHpznLeokfR3EyZw1x4dSi8OB3oLZNj4ktNOL04MVR5ffuK4yGSgnD34sR5854cDRyPEyUWUkik8kR0lVEqkdcfveTUOsu6sTWr5tZemcLErRfk3b994vbuwN2rE68/+ITlcuZ8fuLNWxNy9DboXazsMCRiyMxTpkqiImy1chimrGz1Av35tP3+/XuCq9/m21e8eP0Rt6cDT+8+pW9KCx10I4TOSFaNmUb2yaxbj9Iw+Xb24ksdagtfLIyYbREYilC9Ql68/TUgFNsyAmQNlDwZjBgyY2u0drbpSpJ1lA27MVP2Ej4ddPrVH/RWH43jSIlt2652h/b+6XkBQS2pQAcaIOX3Bg2GRDkcGF1pbfBwf2/xO/gU69lw1pn1LPrQsFx9XKNXI+Zd5p3L2adOON7cwljotfHw/nO0maeq9U5rNk3aYSddJ/YeKq03KyltC636hA7EtLIXEeacQJW2LpiaDp9crCF5KEi8J2VLYZlyYikYpxQyqrCtBl8vy2aewvnA7SvheHtDCIG7Y0GqNUZv62rik10jo2a61QGCw4fObe0p7jq6Tbp9WFN0q4yxMdrKOWDow9a8xcC8ZBICl3O1CZBGjkIphVIydTVRkapdbyEKfQyW80qeLNg2xkDMrpx0pSDdZfURttUEQfFi96Q1eAfWy0aMgZQjvXZCtjXmcl4prZJKppRyNQj31k255+hSHRt1MxGaQfk23fWhnh5iE9eex9hH5/H9o3F5OdG2I+l4JE0TqFUVDQYhDHRU5wIzpNl7/hpChdAIKVEOigSL37IU/80Flyvf7eM73rgeHx/55V/+5evvf/VXf5V/9+/+Ha9fv+b169f87M/+LD/1Uz/Fl7/8ZX7lV36Fv/JX/go/+qM/yh//438cgN/1u34XP/7jP85f+At/gX/wD/4BtVZ+5md+hp/+6Z/+jhSFAJ+9eUO9LPRlJs0WudI9Wn/fvKbiHqTeecRCcHV0lnbh6bKxbI3lC6WMMQrrVgnqaO9Qsvctbc2c9QG1IrxYnbfCYoQ8OcDgE6X2wZNXrASsSG7s0JQ6uOQRPr2rPY+ag7+qEoNQ60YLkBhEXIobop2iDPMgxMTti1vilBmq3JxOpOjmxhGIQ424JzB6oWTbvEq1vLnkeHeRCKE5th/o3Uj2VCaTPgvEAfNsEM+2razLhW1b2Q3NBkkm5tKIIZFC8cqLXQatSHecoYcr1NN0UJJxiKN3Hh8fePNZ4PxQ2M7vOM2FVIRga6LvdoIGV+ftSqzd8yLhCrGiQquNnPZQ1cFuUu3bZpFPISIz5uHDYTw/caKB9Xzh/PjI08Mjl3VjkKz6ZQi5JNN0jMrSNlq3SaxGm7ZSDFZQKqYMa73bJiRWcd59Im8Mcg5+Qs+UaUJVfON65/FD5lUbnrNZSiKl2VxLYt1h+8YVXCE4xqCNRi7x+n1vbm5AlV4rj+8+v0KqvVr5pqoYvxEyu1+siVBHcwXesFizZiqz4HA1CNO+cW3bFeaSIIh22rDrXALElEnJSiWRTEqJeZpMqSoKbhSvXVlrRcfgdHvH4XDk7sUHjK174ekevYRvXvvksSdncBWh7tCwocR7hbxDW/5nvXXnvSwFQ8LzdLCjcBGfiJwjs/XDDiK7QMMv1C8wWrsKFUc0TLBhxuCxv/jrv0z67iekgB2ywL1krnp0UcUXvp3D7DvUPbwUc1xpEh3hC/eK/6V9IhpekulCHNxDZ4rKboiAKkPcqL/DgCHS6nNh5bpZQ0EWq33CxUtjDLZq10Vr/ytuXP/23/5b/vAf/sPX3+/c05/5M3+Gv//3/z7//t//e37u536Od+/e8cknn/DH/tgf46//9b/+G6C+f/SP/hE/8zM/w4/92I9dDch/9+/+3e/4xX/7zVseH554uJ+MNBTzPO1u+gDMhxuHZZUwzLA3euPSVpatsbXB2i0hwiBmsYUFM1fGHT9XWKqfiELgJpvAemAnl063zU6gqvFabShLV7LYJhjC882xRzYpMESMB3P+IKKEs0GJrVZOU2KKwjFByoFTiKSpWDTNsMnt9sUdcZoYfXA8Hq5dVF0HMST2qBVGYSqTTaOPF5PpR0u4783e32j9ucqkwjTPLiuHU0nMU2aMzv27t5wfH9nqRnXVmHg+XgxqU52XNIq48bN7Q6vfbCHYBEHvTGXfuBpvvv0t3r39nBgjU1S+/+OX3ITJLllxcbs+wyOmyAr7j8quA7UFWIiWsZbMpGuLlXGMdVkIEukx+QRsCj/RaLE0DrFcHh94861P+fSb3+KzN5+j6UDIE3MqpGyR7q2vvHt69FDgxlm74f3B2mkD1sE01AjvECIpTQYVjsGmg6lgm7wkYgoEh/MeH98jYkGuozbfuISchBiMExTttF14IEI+HAnYorXUjVI8NJXA6Xiwn0frnB/fG1dCsDw659liGPZ5+8Lag3GutTdysWtAu123Me28oZn8TZI/nB8Wl3k36lCqQnDRQAiBKSl1s1ipF3cnfvvv/FFe3N1xPBwhFGobXJaVMBoffnTDqw+/xO3rr3B++xk8WpZjq3uKBeD31R5jJE5y7cGzAKoBaHY/igk49vgn7ep+QCGkCCNelaspD8JwzjEYvC1qVoHgB5PoFoYAjJzsuo7JFItqlSCS7MA4mvni+qgM120kr0rZPVkxBktMiYkR8OtyuB5k56yicfjCs81juCB92CE27PyW2JoRw7Md5Jp+L7a5pmTtEjkbrKzDkYG4R5KZBaV35+ClsXS19oYOl3Vz2FpIPkX3oUgfLOsCasrU7/bxHW9cf+gP/aEvEGz//eOf/bN/9v/xOV6/fv0dm43/R4/PHh6dV+pmqnO56B62bzu8vVYR20B2UrK1Zr4hIBCJyS5q7c3TKayqvA+9xrfUZrLZfZrrfc/UFlJ49gctm50sFbsAcrTNSPtv9Ivv6RqKwQpGLYirDb1uXOD2NHNznPjw7sSraWa+veP2w4959eIjtG1o28hTYi1Wv55ypp4brSmbBEs6cte8YCfcEoUSB/N8y3w48urFDe+f7lm2xYRlGlFNqGbSlUNRpnzLGIPLduF8uWerF7p7nojDEkumzCBwKAcO05GUMw/bytO6sfXFoFcN9GKwXe/d6j3IbuqFN/dveHq3ojr44Y/ukOMH5LsjqewqrohGSy0I6nl4UWiS6HvKtmAxYJ5s4ECF59kpKkLJQs62AYS4xzIF8nTDtq60rbGtK+/OT3x6/8jX3jzyzW+/ReSBGAvT6cYCWrVzWe55//hIGwopMoi0ttHqQlvN4AowJeOqzMuSTZQQbMOfZrEeswbbgJIKUSKPj/cOBbl4p9wiovR+4ZRmS2no3XxZYpxsjrNP6ILETCne/9QF4tlSFRCeHt/aYUmFbQxiOhifoitBk52gW6WFwBCHZF1NqwgaJlKxSUQ3g+YEC/kVrIC0tWpqu5gtbSKaPNvgww4NTocD8ZPE9uaeIZk03fLBxz/AdLjlcPOGN//1P7OtG8vTmdNxpZQTOikX3htfe/UwGDw5ZE8b8agi3wiug40kU8hpZ4TnBuGoJiiRHeL0lBNVyJN4Y/e4VnzsU704DxuDcZ7EYKhKTpCSlTA2F8PESBjPKep4U/tAYBcCDUAVSdO1Mw719c2ypxhBGBacgWCb3ZBg1UUu4rCN0A4jIQViekYSgo+konZsVmBMCU3GB8YUKcdi0VX+wQUxftU4PtuUam8sl42Qy1Wyr72ifWM5P7AtD/TtTEoFqSutb2yX++967f+ezircvJE1qtJlID7pINH4T1VPWvAL0GQ+11MFrgRKHh0Eate/eFV5MIhxTyhIyRIIUgikIFSHuRQ7QQpOVopNa4hYWG00JdtoNj7b7aUm6HCXf9Lgp3vQ3kym6uTqUKW2znndOPaJzeXaY5hRcPRKUZuIrh4OT4nvvbJWfc5BrB3pK1Uaj08LaxMWP60+1YXara6l9X6FGnrf7AMXUN1Mkjs6l2anKlNmeRRM6wgrrQ9aFbYqlKycR2Md3aTew34unYBQ6T6FBLWUEtNtBGK2vrPjZInZdvLrvpDYSmSSdSERkJCwIx/+M3GjpKiT9WF/EzaVONy2QzjaG2OXFQ+DSkKI5JzZG2IlWJ/XAOutOl84HC25XtSg0nlKnO7umOYD5/MTD+/f8TQGtVkqdsqBkk0aHkMxP1KyMsC5hD2piqUrcy6kEGCbTQ2IsLbBPJ/sGtoihzLTh1JbI08+OaiS0myckkDMgeIB5jKE7pFmUxBie7oWc659kMvBoNMeEbIhB1tFizwrW+U5kWaEZKWKAqMO1rqZ9wtBm7qx2YQvIWXn5Ly3CoOQ1vNCaxsP948s5yfW9UTtG3OwCV9PN2x3tyiDy/LE0/1bg1GXxRNrnhMlxnDOJvrkje8t41mMgAY7wAyfN9TzAQViTuYB3mG03SQeBPFqHRGHAX2KsWt2Nwl3UxsOIda928vQhTQ/+9ZiwIUvgSim5hMVD9X269dDbPeUEu3dIMb9mnUTsogSUvBkKHuj4ptSCIL2ZwRylwPa4d7N+CFeoU4Qn1K/8B6jb6ghXNdSL5Dx12GVOLjgrCT3itXOw7t72maVT31UOs9G5O/28T29cfVuyp7s8l/rEhxYreeujNslzjzjwf6D2sfslDM52YJvk4ZeYR0Rm7LAQnlLSqQYiAhIv25cqKmejKj2040I02Qp60GUEYTa9klqnwSD+UyE55DMBr3bIrFzD63bxrVWS1a3W75fDbeiyRVBIDHSo0CD3ps19WKXYV83Vt0IA94/LsilEdPC5VzZQkWiMuXEViuqu+12NyqaUlI9zmrbNzdsI659UHulVti2QUqNnBolNQtujUoKmdFtwzOVmkc5XXF+e+4Qo9XPBJin4r4U8YQBNQ+RdEMMMR+WJK4cFnusjP3gXWDgHIEOvzHHF2TGivYO0hgSkeELThCic5wpWidZioGm1mbcakV7gCgENf/M4XDgSx99wM2LO96/fQttY7uc7XugTHNhisnNqRMagp1sD5k5BnDfYRrCnLPBz4+FWCYkJOqA+XCA0akX4TDZxtV6ZzpaGoVlxx0cglYkC8VTKQShh0SJwhyF8TSRkok95qGk4rE8W0RCoQ9lqhUm40B665ALHq1HC4Hkn/dog2VLlr5QTexBDIRkn1tMBYkJ6R0rbDSiv3vG3eXpzLau1rxcFxhWfTLlzM2LW2qzrMnl/AhD6LU6WuEHvbGbx595rufH80K5/9e9j2t4+C7yzHddo5X2a9zX8j0Qd1cv/rfr7xjjuQ5kR2xCR9Wu6dHNPvJFQfi+aVjqxo5x7pL4/bXb80kKbslxFGd47VH8whrY/V1e4T+Pw7qugfbnO+W3y/D3DW+PUttf165cDLv8/krj6XUIKCXZ4OACEEO2Oo8PDyaQ6iZ26S6gur7P7+LxPb1xBTEVmIiisTDEzL94HpnoIGe/+MagbabuA4jTRC7JeadISCafTcHk+a0Nljbo0t1RbzLaDVPHJRrkZMKC1qk9mqqQwXyY/IQuNHVfBGrigtA9eRqbBHfHfhCHNMRxbYPn1tq4bIPz1jmvlRfHEylOfPjhR5ymmTEJ2oVTniAl1L1G7799oVWLwzkdM+fLytv7J37ta9+0i1KxJPinjWW1BOzDMfPq5ZHf8cNf4eHpiRgD0zyxVrHNvUQWcWm7mv9kPkwwBpfzhYfHM60qowXOtVnNSLdDws3xhtubW374+79CXz6nLivrZeHt9uS4fublcabWylYrMU5EtR6nkQ5c1hWlE3Tj7Zv3rLWxqfLi9pYkmUhmPhwJ2aaL45zRBgxjbMLwBPC60reA7snmnltocmI7SSudNla74UUZWplmIU+RkBOrWkjvHDPzYWIo1GXj4fEdlxB4ebjjR3/oY453X+FXB3zt67/G+/OFl3c33N4cEZlp9ULr9r6PHnk0dObh8kBbN9paubu74fK4UNeN87IQRiBPgZvTgUZmrY3HxweWupEdNdj6gbZt9LZxiJOhCSEwmLhs94xW0Tq4uz3Qu/DQjVtTSZCyVdNoNoVrr0xim/ZtijxJprPRpZKmA7Mr39aaaP1Cbw2q8Pp4R6sbbx7f8vhwJpbC4faW4zTRNVCbcrk8cZxsCoy6wboiqhwOyWD19cz6+Tc4hw/s/Wwbx9cfsUcglRbZLiu1N9alW6qImjAipRnxpkO5cj6efKL7AXZYokftbFulqqE3IQhT3jzpXF1Y5YZ3US5P1UKDR6OkiGYLOlguxpft7cdhFWprvH/3iCQoU+Z0nNEeqbVZCkhtiFrCfUqmWGxjoEnI2TitlDLbZb2m6mjvpClDFPq2EsIgJaBXYprNnyfiwg37DEa166n7oV7UlKLEjA7j2LuYbcJS8CtPDw+oJ4TMxa77kDIk89URLKcwpJ05FDRF6jbMexpgw8RQl75yubxlOb9G8sTl4TNa23h8evqu1/7v6Y3r9YcfGYTUFraQ6IiN6dlc21E7GrrneVkSxC4bTofjVXKquhcKAkGpW/XcvEHbVsOUxSTrMdhml8UUfr0P1q0yY4veXoy3E6AQCWopDkE7tbar0qrVik0yDlMOPyUG86GpWJHkUjdar5yXha+9ec+rd488PDVe5kEOmZQydx9/DGLliQ9vv82v/OrX+ca3PuPTt2fKVK6ThapamWaM5KI8XqrFLT2dyU+Bz5/O1NYoOTBNmeOhUo43lJSstbitXC4Lj08LD/cXcjIuMAlGAovBoq1W7s8bD+eNd5eFnDJzmfjVb3yNiJJj4DgXmjY/yl6Ps9dcQHHO4Xw+sxxmskzkOfD6o1e0PljrIMWMNtvsW2sWrYXQ4x6tZNOVwaoWUTRaA6wMc10WigoiiXAy9aMSqM0S/ntXl3wHDjcnvvzJl3j1wYekdCDEArVRe+d8PlN+PfOt8wPTdOT2xUfcfvgxXxWb6F+8+jVOx4njPDMkUZfFDjD5SBLPoDycyNJZLwvL+cLd6cCybtaofH5BTxOSMqd5QvPRDmFf/hI5mzKxbSvp9MIlQ5AON2jza2w+ELt5oi5PZ+YkHvPUmEswr58HERNNzSjbHSlPLhKoTDmbtHw0dL71/HUgH2GY9H67bPw/yfuzHlmy7FoP/eZcjZm5e0TsLrNa8lDkoQ4l4OJCFxe4//8nXEDSASSKPEVWVVZl5m4iwt3NbLV6mMt9Fx9PPilRXthM5s5ovDFba805x/jG29OBWjKH0yMfzhd0mphOJ3zLpGbeR8oboi9IL6TrC/XR4M7v374BdaRS2badeF0HCLdSXy+I9yiOlmFfN/Jq88OaR09BhO5MZCH0m2UKaCbIGBWTVVoWHNlbvV83dBOsgA4YrBtVeqFWqxpoDc8tfVhMgdjbEITdiO625gjdNqBBV88pDbhuM07lqILssFGsLSj+rpRM2z4imbgfrmrOtGyKPidxMP9kYKD03heVoQg0M7Wp/0x9akrGlstdYdhuqtJW7HqvVjUF78e806qwVorJ3RWLGZJBggdSS8PTqJTRsu29s6+FlMwj2lUI8xO+ZWr7CmH47338rDeu48MjIU707QI4CgKt4idn5kw6fbTwaA3v+lcVTpytvSHW8pHRJ7Y7UW/3AEwTpdrNVmo1BI+KDbOdG6eYTAg6BB1WRd0qqo4grSK9or0amaDfnocYBQPzTDEMiQBdjUThvBInGxbnbvOC2szb04aLUpxDQrSxT6ns28rz65nPL2e+nDfCtjMvM8fjgXcf3rHME3OM7KlQxE5SJaqV8TQ+Pr+yLIGlRGrvPM4H68XLOJGVwp5sA9ulE7zycJhY5gmvVv304Kmc7XfUwrrvfDm/8vnlmdMy8XBY+KV/MyLfh8GYfv9Dv8mIO+u2s+fM0gIhzkyHI70brLiWTtkrZbeb/ta6aIPMPZov1uIacQq1VXoFpVPSjoYJ19sYAI3FoZq0t5RGTsafnGPgzdOR6Bd0ekTcRLmu7Dnx+vrCy+cfcNvZErJDYD4svP/wgaCO3O37Y/TkJuR9t5aRW1AqIQSOpwccjbzvpG3n3ZtH1nVjXa9cv3xmFw/O83hYIC44VSId7wM5bezrSjg9GN1FoIeFljMIxMOBnjbStuHCmUNQSkns+0bPEbxDQuA4TbZxIZAWfDCpPbUMw7t9NruLSLPT9nR4oBUzCael8O27N8b/mw9cX17RGPGnE5J3Um2k2pCS8Zqh7lylU7YN74THx0fEKaV21i0zp2zhjqUiZUV9MOJFU3JK5KHgLLWO0ZXgxr0sgxV612z0Nu5J7uKn2/Vh33y7VvqY1VgrcIxkuMWN3EgaeptpYS3GOzy5cUdGCViLVIeZ+CbQGqo+2y9koJeG+EFl4JtumV/9fhCW8Tpavf29DP+c3ONG/uP/Ha3zm4pXvrb77mvcf/ja8fVi89r74X58WWvN1kqwtap//U25FYygcpu/2Xw1JcsjrM0OBMFP9O6IIf/ktf9nvXEtxxMueLIXU+t0o2B7X/AOQlBaAScmPT0s1u5rdLYEwdtpat83rpcrvWFG493EFdF73jy957Inrlui90wTg9+uJXOcTnjnOR46T6cFVRtQrdeNWu00V4E9JWiwePe1hFfT8FSMWk3vNFW6czQRuzmk43zjl+++IQaPd/AUlF/94h3HuSFaKJhQI333r+zblX3buFw3Ht6d+M+PB/5nF/h8vnB4eODbX/6S3/zd33M4PRHjzPPzD2xfnknXK2tJ/P73v+P7H37gv/3+Tzyfd1IvbNrQ7UDXxt42+r4j2jgdI4s6ck1E7/nw9g3vvnnPw+mJp8e34JQvf/7Ij3/8gd/9+IV/++MP/PnjF777/IXWM+o66Bse3zyg3tGk43uhu4YPHfaKD0LD8bwnHkpmEYuzf3z7HvWR1h3rdWU9X7meL2z7PmZ8Yq2UZvO/XKyqE4EspopqvZmRsiW8FLofs1HZsYaPp/ZKLYm2XomScX5n9snmbaHSo5LjjFwy21ZI7ZWyvVCukXL+M55f8/hw4LhELtv1FsTLZd1Gm1nROrMcJpY58ng48PH5MzEuvPn2wD/9l39kP7/y8vkj//V//99soB8j33z7gdpMuBKC5+HwZNdPq8xLNH9dzlyK2Rxi8ByniT/86U80ueL7zK9++0taunL58iM/fvlMVlO/Le/f0VugVrheLkzHp4HhcnRnLMgCvJx3ajWJ/7unN3x+fib3zPx45Ff/+J+ZvOPDj9/zb//+e6rz+OOJ03EmpZ1tW3l9/swsZlGJcUZKJQi8eXyHREg1cT3vHB7ekXNl3xL0Heh4dbx9eLKFViDTSC0jCF7CsL5UREyS7kf8TB0K4y7WzbilWH9NSLZ2WRrfK1gBQ082i6WZClHAeUGcwYdV1NiXIzWAkhm6dPA6WtE2A3Q+mCZEGy54ejVfqdRu8yGEEKx9baMooUrHRY+LHmkNEwx2S/WWm39STLzRsZbtCBqlYYfD23RzjDBsZhuHZ294Pkc7tPaGhGCAYedGQ2SAdU39Ya9Tge5tg+2dmvaBGbMZXKOTW+OadlJaaTnhEPxN7d1++tr/s9648AGdF6Q2ovP3+IoYkhE0nFr5ms3x35uj1EqulVTgsMyEMDazXsk5s10KL89fgLGJpWwUeOdZDkeqqt28eSeEYGSBITstJZG2jZzz/ZTkfbSTTat28w9moQ+OrIqrVlJrdxRRigjCbaE1P8njw4Fvv/mGf/j7v6fnC1HstLVuF3o1mvPzD5/57s8fWbed99888Nv/9A88vn3P8d0HPn73vSUgPz1SquPL5y/UuvPlyzMPh4XTh2/47btf8/jbX/Pblx/5H/74B/7993/ky8uVz88r33/8TP2zVa1Px8DhMDPFyHSInGRmnibeffOeeT7SO5xfnvn4snF+ObOnnX/4u3/g9PYDv3595b98esF5q4RqMaXelhLPrysv+Up0yhQcMTjjGtbGZd3IpVpbdtv4/OkjRoJX1AdyTYMb2Ub7Sky55j21mppPXcT/hRiHERXS7nMQIxv00b6RgfgKPuKXzna2auXy5cy6faJNr/R4QH0g+NGKzJW0bWyXC+cvLzxeX2go27rxb//2fxkt33v2Pk7fKKlcaO2BkgLpeuXjx484gYfDhP7TPzIdJua8kLadL68vVAFfM255IITI5Bx5K/aaReh64vJ65ny58lqFbz+8YwqePWVevrzw+eNHnn/4kfdPM/PsmZ9OhPOVUndySmzrbn7IZsbny+VM2QMsE3oydFhUTyqv5H2jl8J3153z5UotleOyWzKDF1Jv/O53vycJTG+e+PW339AR8ghsXfdXerqyX19IKeGXieV0gNDIRU0JqrcqQbleX60aj4EY30GwKJR929m366iWBHod1ZK13O/pGRUj5DNicPpN8gA4zJ/F4OAOtZ3zUPYhxhAGukmGx+7G1jUVsnMyRgAd5y2R4sY2dQOCPM2eWio5jU0U87p57wjVlmM/VIUiQneekg1c7bynpf0ub3frZs9fBp7Lj+TmZukStxam84NV2Y2teKsSWzfiO2KbLs2sIG4oAm/ajj5EK2BV1KBZjbbrzfgtTNHTtKNSmGJEUUrOXM4rNVl2XuuZ5jrIDVX2E5f+n/yd/w94bNtmHh2MdNCHpBOx7BhQcu6WQpp3UjGVS6mV0p3l+agjBI8LEQPDis2KivW0z5crOi1owBYoN/xBXUnVlFzSKiWv1JJI+44Mib1zbqT1eotUiQHZEnQd8lOTV98kymYSBvxNCgu0Ys85W289BI8XELH2UleQbtzCEDy5VqZlYTksLIcD83Ig+IXSG9u6cr2+GK6nbDw/XyhvHke8+Cu5FLzzvH/3jpp2Jh9pRSj7mWvJpL3QJmMPxoEBmn1kjhPeW1z5ddvZrivffbyyris1F6blHT443rx95JePj6hWUk58/HRGaJSc2K4rre7oFJi84aoq9nmoWv6XG+aRW3RFaeCjWRBu0lrpln9kMRUe05aPBeqmiFK9zzlGo9aG+dZjxIQ9tmiKNxTUhuUU5ZTY9kQXo5trLagEaiuknGD4fmRwD3srpLxxfn428ohzFI22eaqnsJD2nV4KO3B+eSW4ju8TJe128u+N9Xrmy+dPpNYIIpzedGKI7Crsa4FqUaTz44nL5cJ1Xdk0EmTQQVC+fP7C6/ML23oxbJkqXRzb9crzemGrBWpH3UJHKdtGa+BVOcfA9PbAvCxM08L1fGW9Xsj7hhbY94QITCq0nMnSuZzP/On7P7GWint5tufhjD5+eflM315o6UrZrrR9hd7Z9t0WPadIs9myqJn3b7gq571R7ysUtVbzXb09xAn35ldnVFo2r7yBcNsgsdsse1Rhgy7R2piLjtZ9a4M+wTAoC2YJqEP45RylNlBjW9ZabaY12nJfxXztvoneyBR3v+Y4VAH/Abh9s8Pcmt6t2UakN6DwuO5v7cqbSNYgzuPvh7/s1v+098VerxV54791e1/a+O/tVkk10wbcftc9TwuT8zMOTaqOCrjeiX4IzvhaSd4wZ7fW41+tHP7H779nOj7y+HhkV8zBHzy5FmqzAf3LuZC2ZNw0adRhJJQw42ZBomcOBw7HAIdu+l4JXC9n1suF18uG7A18tpZAnDEZT6fvmVoK6fIK+XI/6Z0eH1nmmWlSqCPeQy0Hqbtsg1JuxO7hsep53KSK007wwUQO25Uff3zm+nple33mP/3mG94+LRzeHHj37j1CpdfCr375nm//5oUtFeblkdqE6+VKTj/y8c+fuWxnrvmVL+cdR0F75fVa+HGe8CFQ2v/GtHSOx4lffPjAt4/vWGQmMHEEvrwoZ7fzbg48LTPTFLms2TZMFcq+kvKVL59f+cMfvudPHy/sA3H13Y+vfPur93zz7Xv+03/+O2bp7OtKnP7ED19+oKaVnK5M3vr1ToWoFoeAh4fDgdM8c5hn4nSklURqhVIKtezjYBCgr0i3jl8Qj3o/2iWv1pboFhRocFlruRhtsqK9GDeu5a8+stHfD97xOqT7pRd6EDQ6JHpLZm5CLonn7QU/OQ6nA4enNyzzgS0ZCmx7PZu8u3dwVlmE6YCbZ/KeSXUnbRvn1xfmqEzaWF+/EFTI1wtfPv3An777jkvKrOvKb7bKFAK1Z373z//Otq6UnHHRk2umtE58eM/6/MzbN28IEvjuj3+g5sRh8pyWhdl58pr47vf/xnefX3jeE+/fveEwHXHqyHVnP++0WlFpPL17w5t3b3n34QOf/vSRz89fOJ9faZsREJZl5v3DibytlLXz8Q9/5L/97l/4dL5QnOf3Hz4wDV/alq64siODBag183paWOaJ3xx+jbixcbhI7wWJnUVOhOCYJ9v4U16NxygMQr6CD7ThNaKNjQlrTaXduJIyhEQqxjS8yemNBFJwQ+wgonjx1MEstC7BABdkmzP5YJXQei3EyVBpKRWIY36ljooYHzMXYrOFvNRmlJjW+AqGHpuuqolGsIpsL9liYpySb/YCVVwIFpujMniMtkHAME1X7grmfhNnKQa4Hm3RG2nKzB/2XEqtlFpw3VF6JZeEV7GOlljYqFfQm8F7HAYR28BjhdkH0xCo0J1aqzN4s8M4Tx0AgJ/6+FlvXKqG/unNSMddFD8teLHFX6VT+xc6iguROFkpXXqn4AhxJsSFEOOAlTpinHl4eMd6PXM+P3N9fSGPGA7jl92GtIBz+OiJzqNtohWTITvnLSbCz1aC99sU1A/GkSLeIcWc6yKONrxG3Q3xhgtWJYz+vKJM00SIE3E6Ms8P7HvGYTdgPD3w4fCWjqM1+OPv/8j1/EJZf+B//T9+x14SGuBwnHECvVWen194eQYQSlPWdKU222we50Dwzhb/apEZcfK00rheN9at8Pl55XzZmObI4ThxWTc+fb7w3fdfOG/FWHo+cJgC++XKH/994w9/+I6WNlJKvFwSpaZhJ2g8Ps7kknm9VPpmv1ucZ44WxudcwOOozqGDgq5hqJ7ASA3dZgb2qgSnnikuNhiuZoeouQxw9mD/ja9GHDcqUO9Y0F7vdm0RwEXwE+vlFZGCk8bDspDSzuWys10L/hAIhyPTw1um4yNb+cK6bXw6rziqVZMx0JqQcqP2K8sYrG+5kGojakCneVRknVyh+0BVhwbh/YcPvHn/jloyP37/zPefP5PWFWmVeFiMldgrlwLv379jmSbCKdJFCfPC+1+855tf/YbolcvrC+IH1b03lmWxZG+ElDe2kpHWeZgCh8OBeZoRsXY5YtWYO55orTPNM/F45PDwiPTOdHzEhYjzG02VN48PHJYDznv+9MeVlDOUzOMUcNKZY2Sap0FKtw1FnKLd47xViGYOd1wvyaLrmxDUG9oNBsw22Iy4DyakuiEWSAaYRWg64nIwuoV1GI3GMk8Hm105JXqx/KhWETV6Th0Le2vlLrWvUZhitGpoqPp6Nw9ocAE3fHLSLaxWJrEDn1qsvdJwTkAsjaCq2qZaK4p1HKL3SIyG36rJhB835Z84eql0dFQ2zWjuYp5TdR7UEeP0dQ3rJmEfPT9TUZdEK5UpRJZ5Zj7MzNPIISsNAvdMMwYGSsSSFNa8IjhaxTbYbvir6Ow+bqKkUvnh4ydaLVz+WuXwy2RJsD0lUMWpY/YelUZvhZqLGfYEQ52EGVpHW0dw9BFTUZva8BZHy0LJjdodGhZcrLRum6O0Sg+BLkqpDfEHuzClEZgpeSftG90rXQO3ZrCZnW2m0YdXqzYZ2Fzo6K1ZDs5abl3thtLBDLP2gB9YqSH1HfWCPW5prx1whBBxfudarqzpSmmFefIcHieb2+ZKnB11zI5yLaRiHqotZ6RNzFNkViGIVR12QjUyCaKUXqjN0Rghe9qo2shYiJ/zQpwcLgpdKrlm1i2zX66WrZRGnIRaa9UApTb4tiHDyPYRK3K9A4anxg0Plg/md+u1omqtIKMMCH/ZGrz1C3sfKcMCjAOBKJhFu9j+NTaxXiu9dnLtiLN51+wj+ZpwbHg3cXg8EWrh0iGdN6a4MKlwnCemMKPdUa+NdU14aRAaopU1b6AZ8cLcbC4XUqYjLOpYfCDeou1xuKJMLuIdvD0eeTPPpE147Uro/a4FeJgmUinWdVDh5IQHP/45qo1ZwPdGQIkiuCZE8cyxc4qeyVsrtbRK7B2vwil6HsJEROlbwvdOHNSG6C1nbHIO3wXLGXSWcuBnZp9QpxyiCVBCiPyAUkekx2Ge6MU2nNYshRipdp33ihNLHu/VEqNz6zQfDN46REw+6L1Fj8g9it5mXBZuIwMwbI0xuy9vxuMb8YaBjTPVnLUajbqv4x42s3zN+X7gubfRRstNnXk6pQvibpJ8GW2/UfyPtp2100ZSwGjbNTF1pBmM5Z5crc4iT3qDXsG5W1vahm39dggTw7sh3H2irXNXzYoa4Lv30SjvwICMS9Mxf9J7y1UGq5Dxs2+FUqePe4t7Lp2qHYAMOmygcFUdmKwOalVZzpl9337y2v+z3rgeDjN0x349o8GSlA9OaeLItbKueeBQLEYeP9uAVkBcoGmgouQqlG4fYF8T+XrBMC8e4gOCG8KPAj5a+uiW0XjCOSX4zqxCSjtVr7Se6E5pamIR8cZnu0F0axf7nW1sXIPcLiMvytiUI8QteFwLhGB0dUezthYF5AAMTFWDlDcDW+qBaT6QS+Hzy2f6iKafD8Kbbx6QaobZ43ph37K1NmpFwwCtVu43jzjDUXlVWvDsF0ugdcGB72jo+NiZjorvDrc5ZFK8b8TgmGaPm6wX3prNGve8s6dsG0LvROeYJw9iQ+hlcvjeEX8bzneiF4Lv0NMdgBxjxE+j0q0Jpw2vauZN7+hq8wuzqhhJvtMRMZO6uHFdaKeT6T3Z6VGdZa8VI/u3VFDnmUKkhUg+J6RfUR84hV8gNbKJY3++8nRwzKNincOMr552aWzXhJNKDw7fE1va6V2YpmYWDmcU/8kFHtTx4DxLiHQKqTtCEo5uRqLjw/HI+ymylcZr95y8J1WHduGb04ktJ9acad3xfgp8mDwHB1sMtN6Yc0L2DemBUCohCbNGmD1Pc2ASoZXG3ipNjNr/dgq8CRO9wn7ZmEaLzbXC0hRcJKrDmW8E75RTmDn5A1ssBK+cYuTN4cg0LQQx9awXZ2rD3eHCRK0mYGEcJaWnYT9ppGoEkpwzyc88nE5DGNUI8dbedRYF0yqVMmwn9vnfEsYZYpzbvKmJmWZvhuXcTLLuEEyQOmZHTpEmNAp7GcZhdxexD3g0GItwAKBrs9BPbG49wk/uMytuaCcVE1VgLdLG13tQg0esN2fYMoXu7Geh9vW4sXH1rwR6ZORsqTO0lZgsRZ0fG7jR9+/9QjrarNLszgJiS+0m/rvNwZzai5Sv6crWdrcZsAWimtfPDdEIambs0uzre7eD/5bST177f9Yb15oyopjcOfRBpzaaOQLtfCbGCcETHLQQbLBaIcyznaB6Z6sZwcLWemMs/owTlilgVExub31Z6+e2WsilUbadPLiGpVRcsIu2tU4bxkFx9v13orl8BX92McCpIWssEqOMX0Mu3KwkW9np7UivjZoybb5x+4ZZ8ZrY1o1z+sLLeWevhRIC/+V//nuchxCFx7fvWa8br6Wz7kY/x3sOp0Ds3gQaF2+n8oGu6mMT9QKbKzR1OBd48+6RwxxYlsDheCB1x547798lzmtmDpFlmpimmdIzVIg1wqkxzYFcbZDrnSPGgCuZZZ54+3TCd2vp9i5EdcRoAhewdGt1FsUi0ZNaIQ+zuPeGKe8dq1SHGTcET/QBdZYBdRt+BxfwzjYqZ/JCRJXoHbUas058J9eEREc/LhyX2RBNAp7C4fHAw+sJbY3tfGF7PVP3K/Sdjv1ZvJL3RC6Fzadhl+jk9ImHWWjeI70x65EolaiF6GTMbYVaNt4/TEynhYfTQquJtL2S1s8s0eOZoFVC9JRW8bmSWxqLhwCNKRg2awlCjIqKRUvk/cIhwsNx4eE4U/dE2RN5OyPdMFYxegh2jfZckJbMFDt5tI+DhID2bMkAQYlLpNNwAofJlKKGlhJaTtScUDEZvF8iUww418nbBWTcB9v1brCdZk/r0X4GQhhhi82pwbH7yJwyT6wJOLghm/pQz40EgVZHVWUIq9bqONTA7GVsbGKChy5fPfJiFViczEwM4/W0W/yJ5aB5b17S3ppxC1XwXpnmQC11QJe57Rf3h3WHxIIpVcDd2p+jsqnFuI/ibB47EEvWJrXKqgw+4u353mNZ+leBxe0X3zBrjHVEneJigGseaLcRcjuq1b98yn2wQs23BtNkvk96tcOHKLUUE/Kcr2yXK+t+JZPpMjIQf+LjZ71xbdersc+wFGEnDdczvon1WPPO5M0lrqNVJGqqs+6cLYBibQSTiTqLrt5XO2U5pbkBC8XaDzQZ8mmbSdEVKQkvUMU2IRti2mZnYoNA8IEowhkZ8nfuBs6G9bMZHpHWGpayC7UYPNMNg64bpb+os2rOqLzsOXP+8sLL65UfXlaeLztdleVx4cP7NwRvSkSHp2bYtkYpgqi/q38CAt0RPNTdjJ8pmbTZB9s4Une4Qc4KfmKeJkIM1DrgrgTQ6U4kl1HVGonAEUMglE6TStWO66bAiiFQWiOoI6gjirCM9kxQxyHMzH4yefqtHSQWPVIHJSCMeJYYI/RuB4qakdbwMdjJu1V6wSIr5JYjZZ4om2OMFFgnaM/0lmg5k9ZX0nnn8mnlT9//wOF4GvOIiI/zPbMsDHtEr3W0pSuuWeTL+XJl23dOWx8zko6IZ/Ke2RthZZ9WvGs8Pp0MYNwGD7Amm/mVyqfv/4xm4fX5le8/fuS67uSS6a2yXK5ct81iJbrw48dP0BrHaeGyrgQfOM1vR6JyH6bVSvSRECKvL8+0rdgB6HIFCUDhsm1M60rKhdfzhb120nal7CtaBfU7pVbe5WZBlw3ojlIytSQ0wfOnH+l7JvjI5eULaV8pCpeXq9FculDzhsMwRkGU4OpogFnVPwfLHJOmuAHGNZKNHwq9wcAT+9NGThb31IWx+LZK1xuTsH6Vu8tQg/ZKq+ahaq1gQEO1MUKt1vLrNwLHYKI2azi32um3igsd6jy+tvWtn/cXeVqgqP27gN7A4GNGpDqy7OrgMarNwkzxOCAGza5pwZiZdagee+sm3ii2wfho2VioG0Ga8vX9qgYXSDmT953SCrUb+NkN0HRvStOOHWgx76rcjNCOUqplwqkJzdTbmKGmZD6v3oijs+T+Wjeufd0IoRPD2Eik4XrBNY+rFXImOuyDadYz7zp6zgMM6pxBLMU5vAaiRmqIhmNxULSMEtzo7X2YFW/GRqFDdQSx+UqXjsMiHZxYvpR3nuA8s7cNrXZBG3fptg7ZN+1W6t88JnZB3jw6TmRIgb0ZGRlzt1rY1zOXl1deni/8+cdnns8JDZ53Inz74Rs7dfdkYNLU2Teb3QVxA3vVbPDtFO86qXdatogKP3dL3BVPFo9r1o8/+oAPE855ShVa8/TuaeJtEzZwIKUboFhxlh8VBKHSpOKaEfenEHit1WTvWNzG5D3BO5wGJh+I6vFiG9vt5k2pQjWkzU1qq2qEglwStWZcH/YElYHi+YuZhx9ZYSNDyY2Zl8WVD4hxTZT9ynZeuTxfeH55QdTxWJ4IYUJdREflFoP900CnHe2doCYsSLlwvm5In8gl0QDvZtbrBkFxrdJK4nQ6UoqMPCNrJTs3EoJ75/nzJ9oqnM8XzpcLpeqI36mWSlwypWa6zLy+no26vyzkWpDlaKf1m0cHwUeHmyI+TFzOP9C3TtozuRScm6gN9pSpOZH2jev2Su8LNRVK2iELEspQcepAlw17h/GH0d45Pz/DlvEa2K8Xaimoc5StGig7WGs2eGWKgvSKOX060PAYpbyL0ougvY78PVO71YbJ0nu7y8EZm9CtajIqy9i4OjCMt72bmVjUJPcmjTcTba/VNrLxmdQ2ALn30qMP0chtM8PWChim3Y6OTew2KxIZSRDWhwNkZKA2OwG3se2NDUHgbtq9tQJv8/J++7s+5mq3ANWRLWYjLJP0t2LJGdKxudjglorY6yzFLB8pJWRwVkvyiNp8tHfrAthPFVSt2kOgqRutebMxMDojU/D0mmlD6OPV0YZx+6c+ft4bV9pNKeMDt8DAOM92Oih+GO+yLZl+ZMxkQ8H0XpimI1MMo1LwQ1/EIBvbh6ndTiyoEpaZ5iK1i4EmDXlhpbwfH2Q1XqJzkymkvBBCtM1LHS54tBZg0KXG6cRNE0xuuOFNEq5iJ6TaCr3Dcpg5HA8cjieOp0c8GepIEK6YcnIuOIzOkF4rr68Xvv/zDxyOkTdPB/7+P//d3ah7PB6Jw0i5bubDca5SGhx8oJZGzpXFBXyISIgcBMIUCE6h7lwuCZcbYb7Fk5uqah5x4t4HS3lFxoVqi5L5XZS5KTEGpsMBPzkmO4WQzhvb1UykD8cD+74ZAPnSmB8WEDPIltI5n8+8vrxyXjeW6FmmwMPxgXiYiHHGRbM+qB/tn9bsBlRF5xGRrp44n9AQUR9hOnDokPyG9Avp/EKImfk08f/7f/8TT9/+lof3vyDMC2kz4/lxjjwcF5Z5tp/fG/Nh4dtf/oJ/+h/+hm+fDmzbxpv3vyGvK3QhHJ94ewgEK5+hwuP7D3z4zW9oOFQ7y2Hhf/n//H/ZWyblncvzJ9LUOJ0OfPPuyVSv2eLnf/HrD7bw5ELSA5PrFkJ6WPAusBwfePvtr5iOJ1TgqPCP//g/stPIvaHtgk628L3/8A4fj3hRApWnD2/ovfNNegv+kf3yzH55oZRqleNy4ttf/4ppWfAhcDxO/L/+6X/i+fLC3jL7+RNOA6C8f/uGIHCaJ/7Hv/kbkISLynI68M2H9zjfyfuFnrbBE2wI3pIU6ODdQB91aq5GJhlUh2majPoQvB0OG0MaDxAMRaRKKbsdDjDYgCUym8n6trNb2KOSc2K/XoZsfaCQpmUkIQ+Bxci3qmq/o45oHAthtXZnK7ZOuDFn6qK0Xoeqb/inivnBdHRtRHWMlRoNR82V1q1N6NRStEHN6zk2TO88rVvMVy5maWjtxnC0//XShmZpiL2aKW7zZrE0s5+Y58mUiF3odgId97Id+FupQ8SirL2OzVgGJV7x4ph9pDsltcr5cub1vNJbttf9Ex8/640r9gb7lVIGAJdOX5+QpIR950FhL42Sd0rZ6brh1DOrJ9PwW8EVk3qq8zjxePFQVkzF0UCKZRD1jPRK7QntgkhBeh6tgoyWitQCNVvCq2uIJkgCbUFCAO/QsqF5swsoZ6vS/K294end4VvBdUExOaz0YTqNC8cYWJwQembY+KzF6SJT7BwWePv0hnWzNp93wuPRfFeTBEIRQlUCyiJKwOYedUA/XevUrniNNN8pMgDBCkJj8c4qwC5MMhFQXHNocXRxxF4I2GwpdFOvdRxe7Fjg6Cze4ryVRqSaVDhA9MaP9CIQPXVkb83BmTgjgMdoBuIcfjamnk6KWxzhciU4+9kuOg5PJ+I0o86Ry2pDZAEf453e30OkxwMyHZHpEY0zou7et0c97vRILDvFH6gxcfhl4PD4LfPhDergy/ef+PzlGX+YaeFED4+45R29K85NLMc3fPvrf+B4fENLK99++2vmaUZDJE9HJrFKI6edKQb8vBCPJ67XF3otpO2Kjw0NRxb3xPtvP5C3YpEeaWOv3iT+eed4msd5uHN1CwEbkksXlmUmTAd0Dly3M61mtssZNJndIC787dPf0rItsK1mqlhSsu/ZEGnSmeMCD4/wbqKlR66vKyEE4jSzLI60fSFvcLl84d2jcjw+UGMg6jvoSqvwy188UksnOM+3bx6hrDgnzMcDh+M3dm8lWHOld/Nl6bRgCtJOuQ4IcqvWFqOhTmyzcka2CN6QRTUZ1aSWCuSxQZhK60bloFccVh220gy02zsSnP17tXlrThVxnRADwQ0/Z++kNFSQjI4Jioq9Xzqii4IL1qvpplhUUZqCNkzJNwDTvTRcGF4t541j+BezMBEdVZU9L6qNJxgVtH2RzbbUKQ4/MGfdUohlwBfQIVwyP1aVRmiBWCtz7UxTJMaAD5bCLSPs1IgmtqlTox0gWqfvG6jFC914maKC84HZz0SNNjPtzfiS21+pqjDoLZ8p07AqZX19Nt5fq4RuqbCUbG+SyPCVREpv9L3Rq12YLsQxLHT0vNkpRDuhm2m5ItAKvdvpxsZC1korZTePUKtIK3a6c5UqyXrRCl0qrTmkZqMrt45281oYfshOKNplzGQtloVmpzHFknMn54gquG7DZbuiBVWPasGp4zDPPB0PpJDxCm8OJiaQEW7nEZsliSmn6ILv4xzWwXfwuNHDFroUGM8nqN0g2q3k1wZSO5JBvOJQghok1fWvoNP7hUwnipqwQYTJyX0IrhLu7Rz1Dtfs988xEIPFiAfteGctPo3RbnhvhmAXTMV5C+BzwVm4nljAaB2LVR+y5F4rfcsUEhWPXi74ZF9Tcmbbribt8JHuFYJHYiccjkj05N4ol5WX1xeu65VpWXBxobtIqcL1fCZvG7kUluVEpOHaiW/fveX4+IibZjY/47q14fZtY5rM71LovL58ppVESdvgOy6EUdXl1Gg509LKVj01mck+eCEM6bR3ES928Cm5EWdL0k018/z80Vp/64XeM6IOH5XH4yN1bFw1bewt0GpDaqP38tVuEAWvE3IwH10MFsEhFK7nz/RW2S4XDrOduPVw4GExmXht8M27E9tusRezFyQZZzTOM61YQsPlZeV62VA1a4W6Mrr+jbxtYz41wMxiMx4X1O6/WqlYVEktRjzPqZiysJuZnFtLrff7rLg3oXV3ryT01l6+bTQtj7ZdA2edmd4t6NWPwNhbJTTqsJtGwiTvVtvYDGuoFG+twtv911v/D9/DgANbd9I2xdvcjpFDdv+598OsXee32ZNJKAcjUG5tXL3T6W+qSeeMfxliG0Gno8XehyQ/BFQsSVtdh35rOzeLIBJDbA0JzP35ODEkH83WEcvhKz957f9Zb1zzNFFrJ+9n0n4l5Z1/yVfePDwQQjDKdEnkvA9enaMWK7Gry1wkszv78LqYGbGnyuU6sqimCFi/ujbLJ5I44ULEu0gvlVwqeb/e4xFaq+y1kLLiV2WKk3mKRt5vb3ZBxOCpvtgiqkptoNEjk4kytBZ6gZy5b17OgXc265JuJ+Jb+JtzUPadtG4g8Pj0AHSis7Zdo9uMo3di8ByWyPPLvaywm8yuK6jNVIDj9BaDjmG0+ZpkeEZKtzBJUXCxMc3gpXGYHZdrGe2POpR8Fn9SchuzPduUpmg3f6ljIx94mylEVD0hOB5OC8fjwjxPODUpu45wQtThw4H5cGA+zPTc7HPJie31hXPJXC8XinR88MzLAemFkhJpW7mcn0cqr2cK1dKNu1XqTRx+WVienghO2dfKeq00sWTntFXOnz4ZXaF0fvX+A3Xy9Jb47r/9C71XtnVlvayUAsfDicPphDhYtzPklTZN1tryMC2BtK+s22at3vWMYpVwzTtzKVCPlACCwznQGJhSYW0beT8jXaF7FA91N/PbOISfLy+WpL1mE1Vgiw294lzH7ZXi7HBmoaaFvG7s28Z6eeUweWsHq8P1QoyeGALLPJkYpiTO5ys1rSid4BzTvOBnTzgEDstixnr1SDeI73q5cP7yGa824E974v/6r/9/vnz+yA9/+jPq4XQ8cjwsxAg5F2ppSGrEODEfDjy+e2t0e+k47ex74boOliJAtfYVKPPB1MS1FJuL1UbOBboFVKJC1Mk2ERHAcaO8x+jZdyNo9JrZq3VMuM2mhsqx1DoET0CvFgwrneIEF5f7houM2vg2pOr2HngvYxbXBoSX+/w2tzaI7befP0xd91Yjd9UyDHwVfN0+W6XXSnOF2pSWx542fHKqJnDKudlrG7gsdeYp9d5DT/b8bm2JZvf0YfKk1lm73futWAZiSsnma62S606u+xDD/JWKM/7uwyNP04zyLTVYRRG9ebjqwKrIbLy+w+FAWjfOq6muUquEoHi1VtvxcDQiQOowIsJvCcSGkKpMYSIV4xPu25kuQgjC49tH2HdKzqScSHVAL7XjSMS8oj2TauV4U+H0hAYdiqZkkRFaaMUUZK7b5DaS0JY5MvE2wOKEyQtTVHyd7ALtwiSO4q90NpudxWnEf1dy2qgihBh4PB2I60bfE/VyBQSvjqOfDAzqPYtGfA/Da2GtJsRuCtct3oXSmeQ2ZxRiEA4uog6SU7aacFXx1RPEMTtPUKG7ztF5/KjA1MsQRVQmsdwi753x6sSqq+NhMdGDtxZHKwmaWQKcHzy63uhpx4vDBUf0CylZ28br8AyFyHxYEBdNcdYz6iacdwOK2pkfnnAhMlcLG3XzQjw+cnp4wrkF5w74+WCqq21jO7+iGhAX0biQk53Mg3O8Pv84TpUdtzxyenrL4fiAHx2B1hqplnvk+e2Asm1XrudX0rrSsYPB8eEJ0TBOys6oDarEaaI0e+6WzJvtJK1WWXk31KkpkfLOvq68vjybT20ge06PTzRuqb6NfUvU1gn+iS2NHCd19LKaStZ5CqYG9Xojw9jCN10LKkerBErh+PQWHwLinXU+yk7p6yDAOJx/4PHNA/l6pWYjz5w/d7yfePP2PWEJxMnhvaB5s1aweqZ5siovRkQcUcs9BSJEodRMaY6UC+IC6gM+Loi3yqQMAVDtdn233skjsVkmk+Z755FqbS06eD/RnQVQtlxGoKIpfBexBrmMNmC4RQHUiriGZPOKzW7G3TiltQxhUR0CqdFC7M3ahzYhw3dDk0mr5GZdFRVT3nr6+FMtvX1UbgylrRnwPc13o4S4kYLdbkHxtqW5YSDutdJKo2eLI2o1EzyGulOPcMuzq5ZCXk3WrwjVeWsvl0KqhdRNORwmT5gCfgiXghMoBal/pa3C948PfFgOVs7PHnGOyXlSr+SS2bZEeHrgdHrg4eGJfdt4PZ+5riuFYvwtFdQFlnkBhJJsoNpuLcLaTBxBY4mRLVVLnr1cwVv8+hInSLsZI9NO6YmgVh2BDu6gUFKC+hXmKuLsxNQK0Vu/uQkW246dpDaFLJ0lOOYBn/VObNEYXrA+lFXaOlorrnZCdHdYZxuSYQkjLt45gqrdIIPfF25GTREUj8eRMpTCmKVhC129UZ5HS6BWROz7gxOKWptTR3ulN0Fjx4Mpx27PfwA373HhA9PknWOaJuY4mcXBGVT1niEk1nxpzejWqm4Mh+1UbJloI4Kheauu44RIJ8RIiJGOpzl7L/oU8dEM1doKy+Mb4rxYqzNOuGkhHB54ePsNMZ7w4UBYTtRtpaaNtK2IONRHwvJAumZqLpScqflqPianxNNbjm/eMR9OhsqpmVoLvmTzo9HHIieE6AheKcfFFHECx6d3wG1xwxiNqvhpootHnFWNJW/3Cqu2PGYZlpabhypwmocApVeEyuHhidqKZZCVSogWchmniaVURA2Flrez2URUyXkza4Y65NaCbZUpYD+7deq+M5+WwbGDJmVUK0a0cM6EUNOysCuU3ZGzsOwLzivLMuNnR6fSW7Y5mDfBwuwnpimgLvAfGDLd2tLijDhjmDabN0UfaANtpdLRUZ3cWsulY1E3riFhQGSrzZzAWpFeLYy0tK8ZWoJ5qNx44xVuMHXrLHRr8d1mZYp1GxhiCQbd555D12+ZdLY82M8abbfRGuzckhD4j1/LaC/SRxvQnoWMWZ7ce45mWbiJLHS0KQcR4d7oo/e7rF5qG6MZyxcUHWGZAojSqtl6Wu2kUob60sAQ4h38RYVba6H3v9JW4Tfv3/F2OdjOP5li7xhm5scjtRZeX86cvnnLNB+ZpgOosI/KKIyIcBVB44SKoZbyXii7he/hhLRnfBiBjurYS2XdE58+fcHHQAiR47ygQC2JvO+or0zBMTlHc46cCiVl8vXK5eV1JJVitGrTCdm8xSvdC60kAhbrve+Fz89XDocDcZruPi5TTpp4o/c2TMmJsiVyFuJQ0dUmQxHo0XmxvsDYNJbJI81uaucc5sUXcCajuAUxthvuZfz/5UbRxlR/PgbmOeC9R5N5lvrIDSp0YueO41G8IWTkBua0ticoOZfBY4xM84yKkQwGv33MNzoMYndt1Squ0QbxPowqwF5JnAJutDcqJteOIdgskYhTayGFecJPAS/w9MvfEJcTrRQqiptm5uMThze/wjlrX4qfLWKizMTTaSxsAi6g3tKzpXfmxQbX4pRlsnYp0ih5M99VHx6lMXcRy93AR8/RHxF9HMbahoR4l+2L95R1ROSIzRBN0r6g+5Br90bQaNe2OqTOg4Read98MCFQzUYdAfMq9QrOU/dEbx0Nky1qLuDiTBmCjtoqraxGH1El3nBDvUPecHGy6/Gyso9NuteMnx3qTCDUg+DEcE3TEtE2UaPSmmc5qlWk3Ygml/ML1/OLRWY4j3OBOQSOp0cQZb1uSKsmbB+UDFW77htKTXIXNrTR4TLJ+o16weiX2TaQcyGHggjUlMnZWvLOtTtCSXsdQovxusehj3Et30QS9/yB8btKaYg0+33t63OpNyBw76YLGyb6NkKrVOyn9oapCsUq5I6jd7F7rTab7RoJa4CDLaGgVpuju5EMPrJ1jd429OwiyuBOGZ3fmQ/LNqVuTNGUoGTkhlCrgwsqnY1KKY2a4bomcmmI2oxTnCd3uK4bL68XtFul+VMfP+uN6zdHx/vHQHx4YJ+huE6vhcNRCPHIr//TIwVPqo29vECD02Nkmg9My5H74JBAnMwxklNj24y0XXImhJlWzV1fiwkrpqnz7rcP5HxbyC94VeLJMX84Eebljh0y7p0dh0rK7NtK3TfK6yutbrQ9U6/ZGIcYvTm4yaIlemfbE0fxHE6P/PpXv+bth/dMy0ScIu26W9ZY2nn+8fec/3zh9fPZEmeXE9KFvXVawuYSTHh3MPVS9aQNphAMLHw68bJdWHcLoozefB8lm4zYB0/wnhCFUEbEilNSymZiZiboZDy+FqjFOIgCPIaJIJ5WYN13ZrUKzUnDz5HgA8t0xC2Bw2JJys4HO9VJR5npxVO73g2biEOcR4i2SNaCU/OQVJwhpsCwVRP4HnEhEOIE+2ag4aCoOxAOR1yckJyZ/WwBe12I8wEXZ0JYTIzTMr0mWlm/ziWw9lxrld7OAKZ69CByuB8yWmnUcqW13U6hk0PUD1rHOAk3CxC8582LDcWh22vtI8JHBe9mwKoAozYoSMbP4V7N+ttiep/XjGN5m0Gs3VhLstllK2MjVNo00xGjj49DSu2FMDtEjT7ieINNI20W0secRfuMOG+eoFmYah4CqGjVTjVlG9KpQ3Yt/UIIlRgUDQdq9vRuasHz6zPedYJrNFW894Q4cTocicugUJCJc7RFvVjV3bHrd7+uSA9W1Vezr9jkCpx460R4IaVMLZ2cKkU7PnTzNrUhTR/CLbpVYTk1rJhzOCLq5uENq7hgCb82c2qkkgeBAsRXGo6IKXPNH2XKXjM+W5vT0EqOJpYS0bEOkI9x7M5CGPT11m2zhQWww6pUAId3Nj/3KjhsYxqdf2S4K2mN0qtdq826PlJ3WrOEcXJGphnfgdgHTaWPmKcwksIrly3RRcjdNrheCmIKMBPDtIL2hu+FVq7k/eUnr/0/643LUEMz0+lAWJSkjbRfcF4G4NUj3W6iJp1WqiUkO5tB3bH6td6NgCIdF26udIbSyE4HtSZaydbmQ0Y7rA2hBPTqxwVoc42bz0THleJdRw+R6jo5b7SUTMHUOl6nu5PeuTZafMIUA1PIlkI7L9YLb92QPK9ni3lfN16/vCAox+ORcDwwTYu5/vNGaw1tYpWVBnqDnAopV4K3PnicJkJN5FostE7cYJDZSdZ1Uy7G6ME586qJkHIZ27/i1RN8GIm5kSzFZNjTZPwzGolBFUFp1aozcY7gAsvhyDwkuIgYkYCO93FUOzLUl22oAxURj2izZFV1hoVS+/no8OF1A3waIcOOmE5tIq3BTubOx+EVslNzLdk8OoN20OvN+lDGKV3u6iy7PsxHVcto27pggGTnR06RXUfSq1Wb3UDPMtReNpi3Xo3IV3bcre0n4zXfUpBGT2iY3hk/Y+zpwngOo43KGNw3i0o3b5DZGvoNlyS3l9Tvxl3G67q1YmtLA/Ss+BDvYqTW8vjZXyPtO4oGZ92EG1lhGIMZz6WOSB5jARoCyHuH00hrFS15cKeVGDxMkTBZosNyPAx/kxFs/IDPSjPzeHfW4uyljs3Wrn3cyKnqDRmJD2Y+h3nutpGoVf3Oq6WlyDA5+wnVem999rTTsWtK1Q9s0iBTdLtPReTrvdQaYZqsNaxq9p27CANUvAVaCkMJaH+sndfss7fB9TBUC+ox8dft2r4LrbzN0m/ij7HeiTeEF+K4+bmsA6OoRESqVfYd2kiKbiXb++f8OLR0nDbUYdfO2HCdCBXb7KXdrpkxM83jHml5iNUc3v307ednvXHNx4X54UhcDrhTwOnwZwyYamuWRGonE0eR3QjnxTYhhrS7pkrJt586oJRj4djWq8lpi2XytL3Q6xDaijnomzqohdQV6YXWsxkgvVK3BDRUMRZbmO/+hj4CEH20Ra4W2yClZcrIy7HUXAOP+hBptbDnnZYS2/c/sl1XtuvKy8fPnI4Hnt49MT09UKtj3Tba9ZV6k6aLXSy9NfZ9Y8uFebKLOsZIrNFo2Rhs00yUYyETwXnHPE9I9WPRaohu3E703nmmGDkcZx62mbQXaHBYFlCovVCqZ3YB6UZj6N3agSF4Hh4fLNTTGYSTYqfjME02hFdBarX4BsE+JxnMQsBLNWWXYuxHZySTXpsNg3VUHt5ZcGd3uMmwTap+hJL24Z1aCYdHW1RotLKbwqsOtaWaGEhdoHdbgMt2JSdTUcblgLppbGzW1pExU2m3hZpOFzf2p7GIVRhfdevh2EbZqg1LGLirW9z8vdsyVGS9oV2x6JwhkW6NmnZqWa3aGJlY9m0yNuURaDiYmb1h9P+ahjjDDLs2bwSZRrI3jZKutJqsOg5xQFytDT+mQ2OGozQrMEdLydLJozIWT1tw1XuLn2/GOYzeo9OE9MY0H4izhaTWZNYTP36nXQSG0aI1xFuLzLsR5uojbvJDRV4hN7o2WnUmBY8TCyAy3w8S0cf7DEzUKjxfCz4GynkU3QyP0z1deGwyHVrxaLSNstTGdDjcD0fOObt2mqWiqzdQsg7avvE29Ot8SowWr0NkLxiFxtp6gkk17PNTuZEuOtISwyiCDhixUTwYhy/Ds6kIrjdCbCyHA6jNkc+vzyZUihMaIkEtgcMM8zvj1E8Mgb0kvnIgoZZquYB7oqSE1m2AACJxWn7y2v+z3rjef/iGo4fryytNZ2QKHOKTUdxbpV92emiIejyeKGp+q1pY1xXnZzuZl0RqdhJGPV2Goo3M9fLM5Xxh3xLHhyd83ZCSyXkn1WIjUhdYtKGpk66QLxMhmHFvHiRyRNg2T60XK5nzSsk7NEGa5XF5NfMsHXJSUmmk0s0v1BLrduZyhsvzM5+//zOXH78YSR7F+5m3v/xb3v7iG6aHmedPz7x+/syXz59Y98LRZTRlqnpaWGjxgayevQtb7VxKQ+OB6KJJzJtjXo6cnt6xtUqYA9McmaSR9kStBVR5eHPCucBhPlFVLc9IHG9joKaCVHj45v04I1QO+8zTciK4aO0wNRZjiI748GhmzlpJuaKTIbNycNSxzhawXCxR1AdSwTxdPtDHDEnE3ssWgoURtopzN+OkwH61uZBzplgLM6hju3ZSS/SUKGVH/YQLC4gbJ2vbUDr+riYDj/NWCbViRBZxHucPJh1mgJuH7lhV0G5+IgWrQpyhw6QV/jI+wuDOtsG1jvkEpYN4AnkUWbc2oZ343aiwbqKAr76hbVRtOqq2wb6kDyaisRXxgSAN1IRJ0tv94DKr5Ru43nDNZo8iSqhp+IMUYYIeoI+ZWW93/BUacFLQblWrD9EqnDgT1drZ6iJ+Othpfdqh7tRloZbC5XwhzItRcGTI0jt079hF6VSaFFyA0hspNz5LRcsr2q64doa80EWs7V/73eSb1BGPxt5cwsx2vZDSznOvhOgGi3BD504tlaSZ5Lq9rl7JvtKxSiZEj5rz0w5KKoj3+OCoPZN3sxjUMqql0UqTecyOe7ONqFunw6DRo23sBzO1G7Gn45CuOHF4qWMuVqziFRnzroxGo76b13mIItrXnC6cI0S1e8I7luPJEjRaRz4FDLIhZFlJ1bbU6IQaLcJIKuzXzjVXLqlQB/+xmamLtL6QtzeE4yMvn3+klY31ev3Ja//PeuNKW2L38PK8Utlh8oibkJosJXfb0MVAr6IT0dnJpnVD6ns32U1cMhUbvDofBoFa8K7z+vLMy/Mr67qT90KkIK2QUiJV4xiigRbHmVc64pP14r2nB7nV/micyckMeFGtmimpWlXWOzEIcWRRlVJJe+F82dj3RFfHpx9+JK3ZvC/PL5xfXsilU1EeHoTz64UYIyFd+PL5hZeXF9Y9kXLG7cr1cuH8/EyrlcPxwK9/8YtR9ivX62Vk/gjLNA8PWaXmjHgLtws+4v2wdhS1yBVvp1lRb8NWsbiROL0l75mSLM7Aic0eHk6POPXUCtu24yZPdI6gfmwyY0g92is0SKngnC3ouYzFUKCnbOoo0ZEHBQxzpHNKVqUxNi5vTEbvlWnI7KtTVKbh4RbSulKS5SyVnEnblTpix8ONX1mrQYOth2Wtyp5prbBvu6kw1d6kql9Vn3u2OBjVEY8zTrpOFfXeVHHdlIZ9tG/MVA4IdlCwycx9/sfN9+YC6EiBlnoXAtS82abRKq1cKSnZ+6ERHy62pbXMen21lnBrVn0OK0YumdK+toKDG/lL+sq+XYfCoUJ6Id/COacL3gXolZYupH0z8GrugyTRgMq6Z7Y9m0BJlCUa5UJcNLtCa1Azdf88pPqw58q2vdocqa2UXCilkTZDeDHawl49tVt2V7mJQ1qiXjZ63EYb2uDZoy/KProawXtmP5lxPCd2sdnpmBRiE8f2F/aBzq04bib3Mnq93qgcQlMsHsgrlEZJiZx2215kVKOt34kn9Z7YNbLNxqyzjfb0rYPsVCmjAtcBeKZj7526eySQ1mYJCM5YpLcKyUQs1rY06LgSvDAFpZRCmM135+NESdlM3NuKiDfQdXdWrQ+g717qCF0VSh20j2YdLgMAAM4xH56QtgxU1U97/Kw3rn3f8VW5XK8UFXryOD/Ty07ed7brmXCMqIuImzhEtaFwM5OxikWZUCtdQb3JfkvzxOCYo3K5nHk9v3K9rOR1Z3I2d8mlWIx7F8DTZ/0q7fYJr/bh9skbbNI7AkraTEmmEXJt7Htiu+xI7SyzM1m/CHvKbHvi9eXMXiz/x/3pT6TLTk6JvO1crldL0UXwcebzx0/ktKMzvL6cOa8bl+uVlhPQ8f7M5x9/ABdwXvjw7i37tpFT4nI+m/8pBqajzcdqa6Sc6Bpt/tY6f5n3Izc5NEIu1YCr4++X+cAuiZ3Etu94J8SgHJcTNVX2PfH88ko4zswj+oHV/FmtFAqKNDvxJxLB2UQg5zoqkE4ZmKpBvSE6myeqdrxT9i7UbnRv5919VvIwT/hxkwoF5+x575fLvTpuHbbrGZdMYVdjHBVSp3TjS9rm8xcbVyq0bnO3mvO9sugdtmyqRhPJFBuAC5bW7QNKx3WbMVr3SXEax/yCsaHZIN9pQMcctfVGc9FaPRqQEeTXulVdvVhrm2o+rjqQXsHPQKO3zLZfbHOpjaBGRmCICnIbBIkulpk2FIQ+vt4NqL4n9j0Zny5aK0l6paWNPW8meEiW5KtGl+a6F9ax8VAapynivaOpt0quNqRlnKYRT+/ZamN9vdrimc/jOUNtzkQE9rbh8TabobKnyp6SBRdulRquY75kFV5vnVoam7cNTLoQXDAqSa1sUuzAglVPrpsgRsLNLzU+4ApNbHNRsWpeB2+06vjeG6U9F2opVPlKyDDVoD3qgP7KeD6jHje4bbcxg4rgRLHJom2qYeDYrCjXO6nG0wkjzFaitVE7nS5GtLBDmH19cBC8cjxcmU4PxHkmeEdKhW3bub6+EsKM995arH23NnMbpv0Rk1JumCqgZhOmdLV1cDm8wUm6M2F/yuNnvXG5xaO+MD9FVp/ZZefleiWIzZTCKeInNVWLVnysODUfT25nnl++kPaM9sbh4T3RRwidbd8QEWYnzEtkTo69FP7wwx9ZfCd6ZV6OFnvSIZVMTxU3Tr2KkvKFWgsP0TYVFyOxFl4vO1IrRy207ti2xOV8Yd0yp8VzWiLLNHO+Xnm9rHz345nn15XWIIR/Z/Z2ITuEJXh88EyqnK+f+P3333HeE5dq8FBVIUyBp8PCHDwvL8/887/+qw3NQ8D7CWodczOLAjcSvePNg7Vrtpy5fqnkYhY0H8RaTnQbdGOQ31yN9XaTCwdvhIDWhgxXTdl0mGZqKeSceV3XES+i95OfnRJlKLRMxOCkGeZJDA+Viy0YVsgagsiJ0TcOXpi94r3Q1VGALXV89MToWObIS5DRlnIc55HS6hQXBXGzxaXUTpWTAZKprMHSrr0qLiwGOe2N1pRatzEAj5S6Wn6ZD7TLRzujO89132wmNqjzopMN9cU8g9SEyyviArV3C+PT2YzsTojzo4kNwE7DbDb/DEeK28ZG6lASdAvrS/uZly9f2NcrLl9BF6OdlIS4GekV7RkfH6jdZrjXLePK1T5jnUltH5s/HAOIBDoRH81aktJObFfbPLrQaITpYIKl7Yz4IzfH6+WyInW3NqI7sJU0zP2Cy8nmjjLhJ6EUWygfDkoMM95PJCl8/nLh/Hrl/PnT8D8JPgiv6+1U30wa36xhGuaZbV1Je2Ldb5WuiR+OUxxpHpWX3GlDFt5TNa9Rq+Bu8Ighnb+Zep2O1G6Q1qjVfI1gh57bdawCqQ2Wuph30lbxjrjbzBKgD1sI1tqVW1JzH8IN+3m5gR+/2yvkbi28jhHyb56uOY6TkWAzxFvnIAZ7PWL3TW92fYUw3Jq9ATYXnOaJaYo8HA92WLOXb0Qbrxxmx+FgBw51yvWcqQ2u286eTUmJEzId7x1LjDxMB1K5IgSazj957f9Zb1wdQWLg9DjjfMVT6W4nemtLBefpWo0HqI4pdJM2u4D4zrpby68U62PPy8S0HCi6E7SBNg6nI/Mh8PbdIyX/K0EsqvzwcAKU1iza3fc8Wh3BaNnFJNJbakxqw1bN5T7styhrG9qqM/VSHy3C13xl3Xb2vYx2TUWwNuK+Z1KupFKITllCJIbANTd+eLnyuu7srYxTn7LMgd4awTlEYVuTzXqcUrot+E7gED05281fSuPT66stjKKk3tlSZUuFJn9h9nR2a92qn+h0TE6ELi834RtLiPY9As96GQmp1gbs0sm1kXKlYs85jPmPfcg2swnOKCfOKbncPDh2krzx1FprvCgExWLkp0BD2HIj9Yb3ymGKTNERvMM7Yb++2knTO96+PxCXE6KePRfcdDIYrsDL8w/WCu2dGI73xabWTqk7IjAtJ/xhsUNBrNRtR3Co6wZeluHFoY1WklK7sm07lB2fV3wwD1rpJi6w+ChnCkpngohSEk47zYnR0tXdF6lWh7LPeSZ9on15IeWM7jsueLqYak9DRKhIs1DVyXu7/j5/xkd7nuoP+DqblJvOpNWG/joRl4X2/Jl9342o4hxOPV2UeDxaJawNHx9shqeQ8w82t9GACw+EdttsOqxXtAs+HHDec12v7Cnz8nKmtdVmOVF5vaxcLisvzxcmb+GUds9ZmGjFMtCkjypnBGm6oUC8mexbrWx7vr1td+O6yLDoDjGFODMal9Yp1QI9EIsiUh3tyaFSZESn6LgnLM6kk8pQFzq7ZvoglFib0DarW6acVV8yCv9BYK9tVFgyNle7/lsb7UuxzceUZwx7SL+3o7d6M4xBrkPsIwYidgi1WqzSbdsUabSqpNw5XxIvrxt+ioQQmOfJDs/OZqW1lHEQUJbJcVmtss+lDb8nNmbZMnlL5LyyposBGeqtZfnf//hZb1ypZFKzqkNDsMFxMsmn+iHZVTPBiTq8K4TpgPcTVRr+yyu6pcEJjLhpwi8HZvE2QJfMdBBCONF75bs//Yj0YqeR43HIaIXYgLyOaiPQU0ZHm6vUbJUIUBELA+yCWLKcScFjNMm5QhNh38y811rHj9RYEWWKjrxncq2ct52o5kSPpXLNzVqDe/qLTeTmOclUZyrFWgpSrXK57Na/D06JHEilkEolpcpekgU6Ok9TZd0z614o0tBum5A6HcNga29kvVEtoNh9Yzlg0zJSeBmbnLntg5jfas/mAWlAdMrk3YiBsPeoUgmj2gnOkYotdp1ucfHullDdBgAUFnWEHOmq7LmyloJzQo6ReQpMwTaujz9+QoEYHLjGIdtnsu6ZD9vFosdxfPzhI2nfaKUQhgHZlKFQe0ZUOSwby4dvCDPErgZ1HV60Gk1Grgi1Q9AbuQFSbvRBLy998CtHZWC7kVC7DJGIUBoDWGpQ5i7eKi6g1tUQXYgZgcVTm1gFSbFDS5jwcRobl12TYV5MGfd6tZxB6YiPOPU3eQeO3WT0Gkw1ebnYwL7LoDgYxDpMC0q3JOY42zXvHC6YZcO5jo+LbXi906XTxH5GnI44H6mAO595fd7Z90apEJbAdd3Ztp2UC5MfAoRxeOli95BrY76kSpwC0irSGsWrKfaAXMYcaWw2ccyAnDq6s2u8FKxiKGaTKP1GvbCvC2rkm4YpjJ3afWrX7FCJNhhbxX2z6+Ov7J4YB46hNLwZ9U2haBtbbdw3316tHSpjI5MhzvHOWQek9SHAuJ2thDzoHPQ+3I0ymLt2H9uoclRUdBCDY9dWDDKwFw7dQAWKEkIcOXkKPd8E2MzBs677aLN+5Y7mUofVZ8B1ewFGuvxPfPysN64//vg9D1vkcHzgMh3ZceTdU7Yd7zqHqXF898A8LcRwoNUXmBdkmiAuhAsE90jeVurDG9rxhByfOJ5MadizyYfDYaYLTO8+sW4bhUaMFj3hXWQWz/XyEcEUYlE9bAnddrb1haRC84FwfODgJzwNV1Yblo9r6qFByTtp31gvG+KUeDzwN0+PfH49U2shqCl5wgXoBa/j4+87xynCQ+RpNpXb4xKNgeeUliviwAUxyscIEvzuxzOtmY9Ge2aOwfLJYiW3TMqZl80iK1rp+CEgGcFGqBfD2HRj3vWbsABFB07GAWk9E6bJQgNzo/RCa5W1WpWVilV0y2Q3rFewRcX+qdpxmCeMMV+kGz82iC2ptkh0mjS6NNZW2MdNWoew03fF90pwE9HZDLIOyXAF1ib0LaOYatSkvpGC8vHTmcv5mX0/k3Lj9HTieDgQeiQs5h27rInH0yOTREKB7VopKVFr5eEXv8a1iHShtIzbd1QzPnr2JFAD2iP59YoPkbAsxDLbLKwp5ZyYHhdQZSsTaYSR+roxPR3wEnHiuaQXtBjDcfKB7g/08MC+r6xX+9lv5iOn+Qko1BH3UgBRT2oTpTR6z7An+i0kUyMpfwYa6hIqnR1lrZ5976R0RsXx4d0HFl0M0KqFJkpXD36iuScjtmtDitC8B+eJEmmzM9HDNLMcJyYH07by/Mc/cH69kvbMvM3k3KA2Hg4zH56OzHMkLJHoA+KFuFgyuHfeRCLiOT8/c71cOXsH3lMa7LvhqehWSVWCpXN7Twe2kGxuC2xbppSKD5leTcYeYsCLG4yMxka2lplYTpx627hSqiMSyCq6KdpcrY02Wq9m2/HOVJ3eKcsSCV93HrIWbgGp217xziosB4gL3GC1IZhvr5TKjSZXayPtZbQ7rQKLbqSe36wGI1GcerOsdPZqhwlUOfrIKSwcw8JDPPF0fGszs15p7mpiqArLvLD2K5qs4lUs+NNHZT4FjqeJh+WA70dqq4Yn+4mPn/XG9W+/+yPLcWaOn/minrULOWd6tYiB4+SZHw44H6yl0hJTNOXQ2iufPr9wXW1g/eXlmWWemafDMEmabJ6yIyFQEf71v/2e2gyIeXmYUf9qrbHW2PcVp53ohIRjHSfD3gvBmQIouBerVHrDFxvety6UZiV3GyeSnlYUowS8fTjZTdIcUSDiid5znCOHJXBaZo7zggsL655JuVBK5em4EKeITgst73QauMbD6XA3IJ/+7Y8DZwPfvHtD00jr1kZJdRtpqJnJz+wpWwqufs0q0hApxTiO4hjSZ6E3a2m2Qbk4TkbxdiGS9kQXM9mauXhi2zNfzhdUO8cpcJoDPhy4xVU4ZypAawlGnl8ulFrovfGwDPGNRjrGwFPpBIEugRuKqI924DIFpvloOUNeefftARnE/tP79xwfDnjnqHvm/a9+QcdzORdyK+wpcbls/PHjmfnLlXmKLD7QneF2zpeN+Ls/46MFh6a0mkGzNYr/3w3FVI3pMblxsg7RQM+9QcnkbTOTZ5isQhuikqDCdHpEnOdyuRKjEr2yBKXH45iJdFJaiV6JweGXI+t1peSE1ETdzXP3R/dnQvhn8+H0SssFXY4QZj5/fr7PU4J2Urf30JRvG9orTjrzwwOX68p6XQkRyrbTW+P185Xv/vA9grEKe4OmnuI8r69nO2AoBDpFLcLFCYZKozN7R5gC277x+vLK998/Qyk4OofDgV9+eOC4TMwe5lFtS/BEF+ja0SgEwLuAcwFE7X6qhSBKQigd5tAJDlqrlFxZs7XLj4eZ0oytuafMWjpFiylrNdBqxXvPPE1MwZS0tRS0NW4SUOmgY2VVhNjV7v/g7lFMtTYk3AZolgco3czW8zKZGKlbh6R6q7Q7gsfmt27kzt3IG+rMB0c3nqDz5qWjd467ZX05FQ7HI3M0kshly5zmaKg278eMza7PWtogzUQeHh4ILhDCxOH4YEpY7Lh4ySZe0Q4pGwYr+nCDyg+Vo1WUpcNeKj98eqa1wvbXmsf13Y+fmc+R6DzPKDtmLHRibaCrV/zrq5XvItRWB0xWSCJc1o2cTQRwPZ+J3ptAY6iBnAi9rJQu5Nr54cfP1jJxyrauMBhkrTZyNcq092Jziz2RkuUBBScjIuBsl19v+NYY0UHUZgmrqlb+R6nWMrsJP1obi7gpu8bBkcNh4u3jicfTCR+OpMFV27fE6TATYkTng2WESQMHx9OBWhppSzx/eWbfdkSEt28eaGIbV62FXONdWBE1su1pVJt1zHqwjavaa3TBqqFWoeTOdV2pxZRFD4cDy/GED4F92827JeC9EsPEuu1GxeiV4xw4zRNxOg2FIAadDc4c/90NyGum18bjwwHnJtTFIYUH1U5wlrA8kMkgWMzG5AlxGaR5RfwbU/Q5x/LmDYdH81/13IjLQkqFkjfW7cLr9crreeWHLxf8ZScEzxK9YW5q5eV1RZ5XnDMTdesVRpzD3tQYf0NQEMdhxvvAYTFOotTG9TJUby6Y2Msb9YFWCMsRUUcqmWUKg5TeaTrdT+edTvBKGIZapONEOARHXldDl43U7MH9sc8kLuAj13Ub1YoSpLEPjyG94cR8XErHf36hDAn908PCdt0oKaNtw7q2nZKLvX8oWRx5JAmICtoqVQazUjplLzY/dGp+p1ZI+871uhNUWIL5i54eT7x9OjI5RUZmVgV0Ebp2sI4Z3lmacalmUPZToY+AUGmgvjF5Z6xPLTgacZ6Zjwslm7xe1LL6RGWIZczzFrxnnmbmyZtEfLdWcWOIF1wb94P9HlCCd8xTQJvh40qtZoQf76fzo/3nzOQfg7Eoc7KDaG0mPkJ0QLbV7u+BrXI3oPDNN+cEG3t1+iDCO6ecHo4cDxMA8rLycFxs43J+tMX7fdbuwkScJt68eYSuqASDRNeKjEgcjxFUem20NLiFqvf59ijauE3QRJWSK6Uktn39yWv/z3rj+uc//EB0ggdrxznBe8/x+IBX5dwbud+wKp3XnGm12IKsk7EExdpddAvcu3Ve4xxZDgut7pwvO9fd8P3mWzfZaM126gfINym8Coob8vE2etkKvZO2HcYGFLyzVl634WsphTl4DsEzR8ebo5EAzttKz9VuximwHMNofTXCFAjHhenpRNAjU8+0nNlfr7YoO+hSWY7RiAfBEw8LeU80lOU0VD0dpnmhSxzxDh2PcfZ8tKTUuK6ENQwwpikNXIiWUSYQ50Ad/extzchZqKnRi3B8fGA5nAzdFK72HjpHmCeC9+i6klunpcw8x8FiPOLVNrfD4UiYZ1ChpMxaKi6ZgfT05h1ukNGB+1DbB09OddDB26D126Ko7kbJbizzAR/VWIynmTBgwSyOSmPbz7y8/JEfP37PDx9f+fjlyr9/fGX4bZmngIyU2tfrTpNnDA/kmKK3Vk0ybNLtbg7O00ZTNYjy/u2RJQQmhD99OkMfYpTgCTEiqrxuO61/NDL6PLFMwfxh+44bm4GoAY/7EBh4gceHmcfDRHx85OV8ZdusE7ClAddF+HLehmrMvEZxmgZZw6TifcjrY4xfFXBAjLYYH+LE8+vO5bpCypRayKVxTY1P5+3u4ZnDoEuokFKxOdoIHkx7Hew/ZQ5KdEoMim+VuETiPHE6TLx7/8SH92+Y8WzrlZQS67ozz56uUIbSNcRIcJ6ybkic0Sbgm83Uhow/zjOlNtKWCaERn47Mj0faVpGY8LlYgveNLEJnbw3nPcs0MU+etGX2a2KrlXKLOsHEUMbtM8vDPAVOh0g5b5Raya1S6HhTohOCIMNLNk8zc1RaseeWOmxbom2JODe8mGcrHI74Md+LwVGuaagpO6llq8q80Lz5Dl3wTA9HHt8ekQ6pCIenJzN0o8QIBrC2VqGoR2NkenikZaA7qnqzBKAgDT8fLQmhJ1pdLV5IOk6solUnTAFEzIs5TQtTCNSykcaa+lMeP+uN64fnLxanIUoPhm25xXU7FXPb76NXPTBNNzBq5WqLCWLfI9ZfnqKhUqiZljo//PhMqpXau/WD1ZJF88gbMqIzEAb7qwmlZFMEZmMjKkPKPZR1IkLNjbRno5xXYwKGhwN+CXiF4xJ5PE3MUyTMZuBVJxwORt4OqkzHhXkORnDu2KBdlLiY+qx2SOuGp+C8h+ZoFPYtsV5Xq+TUZLoNBmzVsniIYVjcqjnqvTIFT3GjbaSCnye0e0TBzZ7r1QLiwuQ4lYnsukFPvV1mrVkUg3gH6sjFfES0xhIDzVt71P5bQZzJlo25mOjdssBuB4ImJk4xAGnD0xh5gZRqvfreOtoNEVVFyFnxkzdvTqtUn0zKXQvNCWk3N3/tFR8iNReCDxwPE+t1J+2JcBMCOOE0eZw3wcjzuSNOiF45HgO/ePfI62Xn05eLzQGH7P50WExR1Y1c8cv3jzzMgal3Pj+/4p3ycIi8f/vA4WixIP/1X/7ElgtdOl4ay+QMbHou+NkPW4Dwy2/fmuKsmoH33dsT756O/N0vPvB//nNCeuW4eJw73Wcb//L7j2y5kTtM0bMsFrZ4Oa9Mc+CmhHt8ehiqRoulOB4iD8eZX3/zyPVyZuud42kmBhmG4U7+w0f2bOGbT0eTVzunfP/jM/6G9+uNqJ4boXFywhw9x2XiV49xsAg9jw8m+kjbjvadbb2yZ2NuOpSuJnzJg4Reg6cOdW9tnVyhWUQ2VLtGUm7WAm/dYom2nZZtjppbpYrNhZ2Dpg3ZbN7ko21e2gVqJ28dCZYbJq3jnNEFa2mE4Jgnz2mZKL2z54KOFlt0gt0OnXaP+rG4F9S8VWWrozuhFuSKNfRKKbioNxsWGu2aSMPTpmrxR9NslWfrZsamVlSsdWlQ/GGEv0n+FWoah/hW6aVQi/kheynMatrY2gq1J2N05sIUPXrptGz8vN6sQs17ZjuvXF/PnK/PpJ4NFB3CT177f9YbVynWGlBnbxBAw2TbKkLJiWvKdhGWShtoHbAwyFYH9HOxLCwcA7nUyJhX6Lpnk+vKaAHgTQFUbfDfu/1uF6NdBN3k8abOy8RgHD1VuxgtnNI2lTKEDb11cjEjMc4bq8c7unPk3s1YOE6gLgZ6MzXddDjiw4JIGGomY6U5r9Rs1Ya0PBSAllHU6zhx9oY6IcYwsDcDrNltQVbvB7hTcd1Ubl7NwO1HK0xGBpE6wcVISx3pBp2tzmSyPSjTNJlPSxQfAi5MIGoK3WbwWlU/FjU3cqXaV0Yb3An9a9pHe7cPsKlturR6Z0CaVku+8hRpt36FKbi6/Z2IybyV201dzEhKJ/eCH6owDWppv9FYjFP0dB3sxmVC1FGlgKzIkOEfTwvHN49kLuhlH6F+oz0YAqK2cSngg+VKaTdFWFeHxsjDmwfm44mGUvgzqZkqM9TOms1CcNkzzSlaDXy6ZmtlaTDjuwsW9zMtB4Mj+4DOwdpW3tvv+nEFyfTSrZ2mgaZC6sISoyliS6b7OJBE44IOAUIEP5GqsJXGfHTE44yqxzfF/3ghSzE5f4y4ecEHD/6CG0ivbVvROA01nRJVmIJjmW2zunH5/DSBs1BQW6kdiJ3w0cHrc2KsRvT+PCVYleDEuBS0RldFXLDZj2eIlyIaIyFaoKpkqwrteYl5ugYPUM1gZ3OguRObbYQ3CLR39nVVmlFbvFkQ/ARdiwlXSh5tP2MO1n6LFnE0hoHZO7wvFMuspFHusGjRCGqfYdcAvqLScFLRYpQTcUaIb9SR4+VIxd4+nDfDfDekVG033v9Qz3cTp+zrThuJBaKdpnaYAbOziNp1Fkar8yYkucXeOO8H/9JIIXFQaLz7K924WgfBWg8Vtbhx4JLs7FZyZi/VKq4ykDmCbS653ZNH/QC5qDiaD7RmaqjcHdfSxqal0OwEI1hekFODhubeiG5ALWsldQZnsCI+jkGmEEKwBaB1eldyu/WEHallKnbDdO0U50mq7KXg42IG2jmgwdo1MsF8esL7iIw+N2rU5eCVvGXIyRJegzN4bQjU3L5KaIMfogdPHPOqhi3UIQR00KatTWI0dgXmacL7YIF8ajdmCDNExZHpfSe7gh84qGlaaNWsA94HYjTUVs7mpQFQ5zgcD3hnsvFzvQ5/m9EALAa8cD1fyck8c0s0mXVrVhmqH+R5Z/8kGY6GsTDdyeVit+edhD5kxZZoazTCrVXciHcPwROibawxVmvTDRP3fFyoOFQy6s6ID8R55uHxkeXNOy5Z0HDhFm0jIiYzFxO4iCpNHAWTtucOiFLDxOHtE/7whq0qW1euBQNHB9jXRkqVl61S/E3a3QmvicfHwDFO0ISmSlOFuFDUU3xHlxP+YUHDRJZAOzxTeqJQho8p2Ny3KyEu1spbYdUJeqOIwauz9yT1rEycC7zmxiyO94cTcV5QmZA/fKZrpuNpwdHnE8SJ5r+gy4I6IW2JZV6IMXKYA94p0XVm11lOB5tl1Y5OMz0EuvdonHCp4pogNZvQYWx8cpv3dYuDcTN4H5h8o6dEK4XuLW8sKEyYHSUcFsLhwBwDfk/klEnVmIsqI9BUofZO6Z2mDo1KdI7SHZLSECt1XJgBZXKjq+EjzU242SG+oqFQr7upA70Zg43/CF2U0oc/MQihF0pz5KJ0KYiPd8Uk4/MtLuCkI67hfaOsIM4Owt6JJVu0RieyZpvhN43Uppi0Vmy2Z+4LWjZgec2Zi2JkePX4IPRueDZrvfSxhjriOJiqd3ezvY6ZnY7/BRdZ5gNOhf2vtVUY4mQfuNiG0p0N8f18sPlBiNRkvoIqBZkma1X1hrhOaxZR4OKMVwtezA1qMT+SKkzHoW7Der+VW8aWp47TSe1C6XJvCcZZKbnbKSmEoYa7nRBNVSWDz2c0CMvMER9oeDQ4coUtV0TNP9LFESajN9wC8KxjJmMYOnpkdEqu41TomaYZUU8pkMtuKqsGDofi70GUooqMCxisYqvSB90BO22hNgsUq9BuAI1aOmxpbPCO4COqO4x05SlEsti8BBhVkLUyYogUEUpPtFKRMVRvtbLXTMkmOLZTppjEu5pnxokQp5m0Z5sFtIKr5mlx02yjuHFab3W0KUWpuZhXZUS2N+1WcVfA6jMT0osH7P3KzZO7o4owzxNZjIihYSHVRnOd+XCwFkic0OnIeW/sVRAfbJPsZm5rYlWQjllnJbAW4ZIr4iK1C9e90fwj7vDE7By//Ju/4ctnYwIuU0Snid4aT4+PvPnmkdYaJReOT284HY5MwfP8+c+UHig9cKmg8wNeM/jI/PiNXZvAL377W+LnM68vF/bLhTwMz3E5go90QILQvd1rkw/0XkAdpXl+eF1JTcBFcgOdjuh8oHclHk5kzeQqaPB0P1N9ZD69QScFGn46ICHgppnjwyNv3xzw2tCW2NNq6dneE/1kAAFvfi7E4XwklIaoKeVMaj7EANJAPCoe7/u4z2w8gDgDMwtos81nmg+E6WhzGY342GC9kPadUqslNnQjTJj0wtuVIjAti20MdTilRjCl0WA6dKEWu75ciMxxJudqT+UWYqk3270dbA0fBj5OhNIoOdNLGJEl7mboGhR2u76cOmKMpG21Tk6utL2SigmDWDcTNrXOtmWWZSE482uWmsnF4Aa1jtmbFyiF4Ly91zO0MjLY6DRMGWi4u3GPxsgNgCwIs3o0BppTtpy4rOm+5vzUx89643p4eMD7gPROFU8VC9kr3YyJuMn6zloQV2BEiVjlNLyB44PvOFpXaBY1IE2MTOMshtykqdl8G2qRGEYLF8v2Kt2oEkONeKMk0Ppgi6mV9zLC7HpH3Nf4eqdi2TW5cJwjXQKtu+FNinSJoHG0Qjra+sh60rvZcrwierN4DlVFcdygYSI6pM0edRDChIj1u52Plimm2S5wdeM52wbuRt1IH21E73HN2nEmSrFQxE4lNIs4AFPH+RBtoRsnSj9Ob9YKNHWSSreDyDQTQ2SaJqCaPHgkN9dq4YK3U16cJlOg1Yr6QS1wDh3DE/F2fBQntmGrQUal24Jj0mzzGTUdrRm1qtyN9wmgq8Wl9HGfzTEC0JypV7XZTT5PJgOOzhstpRRc70zerpU+2tS9FeIcid4zeWfEl9oppTAFExnY4tiYvBLmmb//29/w5fHRxBi9ku5L5wPvfvWNnaBLRjQwBYuo2J8FKYWaMq1CDDMda+8FZ59Pb423p0dagpYa6fXVZhSqeHUjesdeX993JHimYBBhGZ9H6jYfierouRNVmZyRF4IqQQ0+K9KpOdH6iBoZBy2vQC0olXn2vDkdkVYoW6UUO+07DYR4QCTQmkN1Amct3zhbpdXEFIW9FwSjzXSnhO7QDqUpzhuWSHvD8q+sLWlalEbJCSUO6HA1gUP0dk/JoMJ0m6HpyMayTaTjnKe6ate1G+17ZypXdUrtnVuKNSLomPGoWqyIjM8UGl3sPRvHLdCAaB35WwHVQVMZe16Tr+257tR+9pini3q82ogixHEv9E6oig8mUvOjOnK+EVobaRU2Nlhm42CqC6Ot7WycoELrh5HJZkz66jwtTrShGEVMODQFz+S9QQRuB/UbzPAnPH7mG9cjolY1pO6HObze1VKoAx9xruKD9ZQr5p1yAtJuCz22qHVHb4PY0IY6TaNBS1ujlUSnow4Ua32JWBx2G4iV28FJ+02A1YfqWKx6UcctPdcNBZxhW0xosBebB3QJdLmd6KKBbvGIUxhzm9vGJVi1yPh9VsZb/pMTsfgUTN5ra7XelVeiFpInziNumH5ruW8sMl4vA5tFt/mJOP0PCBpRf4eBetct+E+M1u9coGmnax+LljeZtwjSM+Ume59m4jQTQmBaZqDiVJiXA43haWkF50bFGmd8sM/fByOPO+9xzt9jx1sz1ZqM7K6uNyzViOxQ6GNOYKikMSdkREbQETEI8y06dgre2kWiQ3zTcYL9fYUo1u/PpeLGgi7OWoUWymhpv8vkmFWhFsrwA03BM9C8JoGXzmkK/O2vf8Hj8WC+rP3Ky2rV8zJNfHj3juAV6ZV9zZYA3Covzk7LdU+2cflo+WQu2vXbOlIaD9OBfUpsceVzbwZlViO69GoVhZNGS2bZmOYJxCjnNSdyBtcMv9VSIyBEBK0VL8N/h4NuX0/Jdv+Z2BcnnTZactPkOM0Gyl43YW3QnUPdhI8zYBzGrn5U/23Ex7Q7JszdugOY8/ye9Fv7CEM0wY6Ix4ugYWjkeyPnhHOB0iz4Mzi18FWw9QFTC7fh2zIqPXQMFK1DTWiZZHb9uIHOaUAbc+MuoN5mRRZ9MuY9HUTaWANu5gNbD8RV2+Q0YKGR1r1BuSPBRC2DzoV4+2HoSFcWMfViFxlIQm/3m3fEG77K7mZ7P22MxxQcXSyCxvlgbFCnhKC0ppSS7UDSCs2NcYuo/Z4xV44jLiWoEJzcYQI/9fGz3rimeUanif2y47qhbSg7Pji6WG6Oc3bRCoYu6mksnuIord5VgbWbd8O+dgx6vdJrHYKGih1hzOlQe8eNjUi9t9DCbjJbqHfckdx7wfYJ6kDoyDjhcVNJYzdxbx10yIRv8vrRt290i7Og26Y7QLRdLI7kVhKIUwYI0eqkZmimft9kbEML3o92iklW1A0WJ6Zakm5nYhnKyNGAgfFcVQd6CItuKMUYjH1URDYAh1wtO0lU6KUbWJXbz7RNq2NKLfXOCNKnIwyqh0wB9gLiiPOMU1Pa4TzOe+KE/Xsro31izynEiVu67v3Fq0nle6sDP5NovQ8lmPXlzXljVbjS8TpI6bXRu46DDDTp7PuAAQ96gX2O3egTOjiOw7PHX7R17Xc5M3unbAefZs+vlUbdM1+ez4TlQncRurKtlmFUcubjpxf2YlaEH19emabANJlxeQmRoIby2taN1pVtbxSU0gp5vfLls+XPFcBr5HJduV6vxqtUtfcrF7Sbsq1Ju3MRnQ/0YaJNqeJnYy6WCmlf2baC+kbuQhPPTZVIs4NOo9NqHWigQt2rVQ3VzM173qHkQRgXGo6ibnQL5GtlIrelT8e12ccGMpTFzmazqTJUccarbLgRV3OD344ZthUjTIeZqUeETgxKSTulNHKzGfa4jAZcutFKozdDisXJk8vgF45nZ4cq+3fvrPpWOi4Gaqt3fJl5/MwCcnttxiTMiHRCdJRs2KY2kHHOfeUrfs0Nq4ToadVsDMi96QIM1JSCLGGAgYe347aJiqGlnA7hiBfbZNVa55a0YJ+FhY/2gety7Gmnl2w0ltqBahioakrXPa2UNmbpbvoJq749ftYb18t5JWQzeGaE0mQMfgyrklMeRAejYKiYlFoGuDXnRC0NDXJXpNnDbrKeG2mYNlut5JzRwROrOVGGKdY580gYmbmyl8y2JfYt4dtIlO3dZOCt2CmsC6XcvGE3KgRAZ9t3lnkigKkHB4pJwHohzU5a3omV8wPUOabSA9bZ71er3RAWQdKr4X1KH4PbEatuW8iN9o61DoZCr+vXkt/rMFPbVmS/QhnKIatme1VrJap5nGh9GE1tA71BcS3h3Nl+2+zuKjnTSiXtmV53RLrlAY0U6lSNUee9xzmh5kIeRtdWk1VyylARml/LPrPRllVGG2McBG72Ce/Gc9GbXmooFLu18bLNCbbWqNpRJwQRWi028xOroG3QDqINFxzqO2hDnLXleh+RF5j6y0Ux3JsKbnL0nNFgENPremW9vBAD9hzShZxXvnx65Xq9sKdMrgZijsEzxcCbpwfcbPgjH0B3N3KwzLTdWmOeA9fLK+oUH6OlDGshukrZN7oP4CqpJLuuBaRXlnmiFaVmk32XWtn2xBwt4qdQ0aBctytNIXUlbRdyqjRR9pa5kUy2bbXLtZutxAerGFtJ1JagWSrVcpxHgjGUbpWtta4Zs16rINqoDG1eVKlD/m23xLiWpQ/SBDBa5Ldr0vrYfWCS6ojn6PTBKjS1oAlp+jiMtCa0Pq4bJ3Q/msG9Id6Uf61DEb23igUGH1FAKqWP+1MHY7DbZ90Z/zKqLoaIqFHsYH2DKlghb2vXbXfqjDajHSRV3b3CsQxK+XovdNswu3Z6rePvu6XEjwmxHZUL6k1B3Hux59gb2hOqnR4EjR71I/x03F9VBIIzDmycCHEmxNn8n/s9dv6/+/Gz3ri2bad2NTm8NAORtoa2m7zZzvW9FXrJBGdvtowToKFXKuIK0gI3j1fHpJvm5xpudOwkzajQLDTRTqKt6r2oEm6+LPujtdFcG4tWG1VWvxlYADvc3ojtqhi2qbY7/dl7Pzho44WPi1jHhsOQ1N82LpO7f32ufZQQt2+/SZpvPXId33frUFllIPf52/9N3r/E2rZlZ5no11vvfYwxX2vtx3lEhB02znszAQt0QSS6DpAQQsguUMNlMBIlK2wJTAGBKPAQWFChZCghU7KQkEBIBiEe4iHACMmFlMCCe5V5b4YfcSLOOXuvx5xzjNFfLQutj7lPZJL3EgcJ5ZGnteU4a68911xzjtFba3/7HxvzDnU3VjndyLUpmwHDrRs2YpzR6cUZFXeL4AN3sxTaoAz6/qPVhlZzQiglo8WKfMkmaSilkHLBa9fMuWJWMr14tWr5aD5sP8r1fVW7dZnajGzR+h8XXN9TbJlHrrt9a++SzUC4NusgczUHctdh4VZqR4jtUHXedfwfXNiGP2s0DCbsTQQ9jML7Dmdh7u3SG5kopJxYlivj1d/iZ7RVUvc/rK2Q18QShJI9ZbUMuUBEhkD0zqDTYDuRUgu1NUYXLQHcC7t+vTs194haS2fQWh6bXTd2qI3R02qmlkQIXaxeKlUbpdm+K4hjSQkVoThv8LoquEDrqEXD8sV8F4K3rdHCIMNasjU7mBGAOMV5PmPK6m7XEmif4jY4vl/CqkYiEG/7TufMicV5RLTvee06Ut2e21CFTVepqlSnpGwHtckluwSmWZFrbnMrlFsKBV0MvkGJHasBOhO6v0hVK8ba76Htt2s9y8rAA6Oqbzeo9vtwu29UjYzib7v6fj6pvtOYvqtntluS7V3s+7o+7dFRJ6c2Edd+j4sqXor9C2cWDc41g1u1gKPvht1tJ74xO3EG60sMRlISu97NAWf7vb77xxe6cOV++gRnXoK1n9K+HxAK/TBst25CtENqnZrs+zLfdUX/duAjDueF/WHXbZmURWZ8NN1Ty9FuwGZJq7nWd5Ecw8BYDFIYJtO0GDQUjFHnFAmeQzSHccSyjcJgh0yujTUlw54HO1pwpgOznCrrLFutHT5s5CzvbojO2jMtU7/BaqNWm/As5aBf1M0osMHbIl4btrTe7mNsYLVu1p7PJpEOrXTwvuR8e+uswPlb92rO3Uacif3AoxUE6c2FdYHLMt8YmLrJBlCuz2cLQGyNkitrDea8LivihFKbWejYr4PUaq4J3VPR97w6L0LwoWcs6bvpu0WjzNMQDTTpu7u+oK+rLfRzNSd7+zmt36hY7EdTtntVXHewCJ2av2nLnC0/y61p6G7bg/kBSpcCqLPiVlU5z9acmetEZJqE0/0J2Q8s68p8uRLHHbVW1px5OM+9wXLE/cC0HxinA4RIyYVlXVlL4fn5Ag7O88xp2jGvFkXhuvkqYqSTd4esvccpG7Qp0veHXsitkXOmpAzBQlBVzOZpGCI0Z76EtL4f9UzB9zy7yrlmJNjBl3NhnVecd6hvxGnqUJRDWndz35qjvl+idMhdTG9VUgLtESTqtpBi0yv2a2AcPSGa+0grnSssNsnkCiVVk9M8LaRccBhbzr27LQBPxeBWrea849ThJULXcb1rKu3zr7jbc7Rc+7bA9VnMLiC3TZLaf0eAqmhp3JZGn/n+rdnMpWfL4W62bJuerfVmVsTR2rt9+K1prb2p0L4WUe1Ikx2XUh0SKnFQxoApi5wCxTw1xbGUK2hlCL5PuLZ62YWICwPVOeY18XBeiLJNx5/v8YUuXPd394iPrMvVOg5nJIVRTPEtrqE+0iTQZJugLF7eBc9hiAQf2B/u2TJ0Uq3UvOIa0GGiOIxMYWCMo2kUgJpWnB9oTUnrfOs0xNnY78Wzmwr7w5GSzfLHh0BplsnlMajJOjO680aj5BUtBaaBMAZCCbiU8T17yGunh2NxFg1bdLpbW2dQ3U1v2xRjPWFwHTZgeNmu656t5TyoCbdDDF3gaTeI0qmrrkOxHXbb4DS7b7Zuq4MUnSrvbn9s4hS2HCJnhUJ6AXVGed5C8txohdSA/A3Hd9RiMN1NZuws16eUvrjuB2L0YvAR9MA8Yy4aoURvnSmhEINlJRn7qx/WBEKI5DSzLDOpGw6neaUWM0iV6DnuInMyqPLpPDPtRvb7kcMgzDRcsx0IHtup1YZXIV1nfC3IGBm9LeCT2lTpBDNSdWrxOKWYg8dB2AVPPB2Qi2mSLmtht7OuVj24UmnnhWXOjCnw/vsfcHc6sB8GJgmkunB9PvP08AzajI4/LLZjqZnQsAOrFPKSmTqkJLXiS8OlQsEozWleqGtm1pm8Ztspi2e5ztScKQTcWrpBa0DGkYqJ73N3Qldsce8y6FKpl0wdcl+5VNrozf7JB0ZRImZo26oxetVpN232BlMNAdcGtCy2K2yZhjEorfu3ZkusW7MVANXMg7HrXhEI0dxIRgjd0GA/jXbYqk2gEnfkoqy5si6zQXnOHNlbS+DE9t8dWHDe2Rq2n19l2z9hUGwPXcC7Zo2ejWT2Pa124lknWqAmG9F+TwukWvHqiMEKpI3xjtqbaLtHbbcKzvwhHfYeSp+UPjP5uU4+GsdI22RAfVhwdEShf63UnjStUOxJ2WzOzDnHgQv4uGOIIw7bGX/exxe6cFkmkpj/4EZVpfYJtSFdUS8OGoZNN9f6UjOYU3yMxBgpq4kHSy6UnKArwlvJNBxBO5W+dniiVrxs7uXBJrzWqFr7wWodHmpTRy12YZaUzQncm3DXNQur005BRTu01TX6vrPfnDbMrcYO7KZym3B0u/r7LdF6p2b/tcEK7y5InBEjNmB0G682aFA66+kGnmww6GdgC/3M17/juemTmbbtX8MNCgJofaFr4IxshaTpTXEvIiZX0M3ZvTsVYLufd7/p9prbzavPeYNoDKmxpbiIkWwc2mEMI1lohyrt97Du04SZIHhCiGhNCOaqYQd6Jef6rvhXo+PnUlh7g9Fq//v+ztRaKaV1c9GKb0J04FrFa2UcRyqNtU/aODqBSGlZSSGjpbJfE3EIOBXm68x8XbheFxOXb/u4oiRg9Q5fI6/vX0ApzOczz88XHp+eeV5mHh4e0aY3XZbzJrye55XmDc5LazZ2pjhU7VDUUqnJRLY5ZZuQSmOeUzeP9TxgdPeCZ10LzkekNAJm/VQVSko326uSK1qMjVjWTFqT7YS08OyV/RBw42Cjf7N3tTVrDoEOBdpn77oQ3/wamx2OKmxx9+Yl2pspcbb+bkbgUWfXqW4Tp3iGMHa3f89pmljWRO15U02rsZe3Rq7/MfarTYDymenDiSVEsxUfkX6f2M79Vrhka6z6yqJbLOkGq6rt63Cx328YFN13Y+q25mu7N23ydOI6acXf4Em33ftbK9jPIFVrDDZXHcvX2SBaNhTe2lptt7BLp9vOvJ8T3fbpRg5xrvMBQMrnLz9f6MKVSgEPS1pJnQbvakFk7A4JXSOhhqkq2jOjYIiB/f6AF89lnnl484acknVLNbOREVotNwU42L7JCdSSGIYd3geCDzfIsKT1lnSKwvm6sC6r5fmEgFZLJ44xMMR+UfebCQx/fnkaGAajm3ovnfFq/mdho+A2K3aK0GQjbnPDt6X3ZU48rtlOT7vdlIHn9vO0Y+Gu78hMFNi/H6Vhr6GrkPnM/WCsOGrfpeltWe69oCkbFCZboXHguvFwK7S++A3RFGKtbYLEbUdmU+TGzGobROl9Z266G+FCnMNvIqv++pqag7Z0OEK3kdRhOPs2cWHwqIUQ+n72CEPw5hNJgXEw78pq5IZSq+VJObi6YgnLyWA0WVbWxXZQYTBIOuVEykpas+VJNSg5so6BmiKHYyNV5eGSePv43Iu4422wwEKnBr9tkTwxeJZSuS6Jp/OVTx6ezJZIbH8XxDEGx3U/sN/tSKWwfPzAf/qf/788PJ25zCvPl4sxQFVvTZbDDnHf5Q6tFuaU8P3AOveJOPYmwvRMlSUrS8q20wU+6YyzolC63jDEgSmYvkhCoFXLuKrVZCauKWU3cHcYkGjNVC2ZhzdvOR1GXt4duDu9tOfqDDhrLqUzAv1N07i1SU0hpwXXIVu8mdii78JM6bvwOHRBrfZpQkz/dDxFhmlkHAaO455f/savsOTMOs+s9YKTEeenfh9LZ9PZ5yw+EOPYWYXuM02ifb5hjJScO8y97d/ts2g9p0v7/soaR9up0gyObq1aJl//e/HvgJIwRIO5a2GrGuIc4xT7mkFp3q5P7zembbHXsdH9g7GV7bmFrQmW0PVjvQnVHip4OIxIKoQrN6+FVhuXy0zLdu8XzYRxIMjw6xcqfPPxx70rXjuF3Pz26pKpNIs4D8XU7LXgQxfCoqyrp+QntDXm60xaF5uMqlI6zVg6sy4Xo02bP17333JQUrvh/7YV7iNQeNe9bKFxDoxEkBKg+JzZjZvuwiaxbeo4TIOp7CtIhdAivo1oiZQh0tXN4Ieb3iN3SrBzoGJO2xU2pvCtY7tdaMBNv7VBjF7sgNd2q20O+s7F3XY0G7W8cvufVkCaoDRUK+Isyj3EaLusUmhazIIn2M1zI0PS8OJNtClWjKrDIEKMCWal27p1072JZbvgbweoqDmhbAXQFucdiw/2vxtQhVshl22kVGGtglNPxw1RGXFScTrA6smr47xWnucEvmDJs8lYbb1oOzF7reN+ZDzcU1Zhfl55fL6w1EIyw0FmJ5Y62xzrOrOUypvzwpLMuxFMlL51v6U2hhjMNDUG1s3hoChryyxqxR3nDFoL5ksZf+UNw7fPfHxNfPrwyJpLJy7Zwdh6Cu62I6y14avtrsTBqgnF4EPnpMfGmA1Wbwm4LrXnoyneC2YQYUQXu/Iyuqw8dIs1ESEGobQOq5WMU2VdBgYx+PX+tOO0O/HJp28gNa5PMw+PT+gd7Kc9IXQBNeZco007sUXwcSSnzJJhWR1Bbfq1Cd8KmtZGzZnr+cKbT98SozBNE7vd3gJNgyWr7w8nDoe9eVT6QE3f4OnxyqefvuF8ndkf7zjdv+D+/o6cFzsraoeptdFyBe8JwRODZ3a9Ke5X/oZ9NLWJnN50gnSXsJuPizUZre/mneVhuT6RRVyHvC11ojWLE6Q1NISbu9DUrdyaVPAZNBC28wQjmXnBZEOYtRXSI4WcaRubgyodQnYC1SbmXAJrgnkNLFlIzd7v7MTg9jUzMvLw9BG0xDqfP/fZ/4UuXDcYrN/cW8eCczdCAmpMLDs4wRiCFrMAVlTWZe2MrY3hxHeMuk03GE9pOEQbTRz0SJNW63ew8G5tv1WvTmYwQsPGLrQlaW/1HbdDRFGqxTh1CANb2vuIk4FbJXJgGpc+afVIb3vR7tZJ95f4jl3Ybg2YkXs+g+i1G7ni3b+z/Ve/mQze5wYYbLRd7YWx7x6auZv25zFHkY5AcKMf94NeNhpzvzG3hZeRHfpnUPUzE2L/3ht9rMOXui24HbcFdv+Z72qt61MFn/k37zrJumE1TqG13rE2Suk5Y6V1D8qNDNBfrtjvVJqxDlMpLEtGRjtkhmEghJXgPcHX2/tRu7mytsKabWJrt6bCmoGG9uW6kVNch9reQS8dKkZvcBSfeW9SqTQy85pu19MWg9GasQK11ltRdzenF3e7l7Yp4LabdEbm2UgnuVpkjHPmLh/6WF5Qkylob6Ja3T7RG3zknAV8Bicm+XDCNA7cHfa8uj/aFOEcQ4zc3d0b2cNtN5d9joYy2PVo6QH9fipGp92IDta0bWeFvX1efCdd2LW7pgzzbFqw4ClOmZe1Z/NVfvnXvsXD2wfOz880HDEXUkpcrgvreiGl1VifpXShv9BKIUbPEALrutrU0vfFtVQj99CTvZsRPFzfQ5k5wnYTGzJhz2usaFXTC1bZNKhQnZBTesfGzZkgnuo9w2ykIG3m1OLFWwZfrrcJvGmjtoqrtvsyNvQGfHdLLUcXSNt7b82AomoOQdvX6LZTqRRKU5yP7A8vQFPftX2+xxe6cI3DjhAjS7W03bp1Js60QarborTTW7tzs6qia7rFeJSy3VB2tHkvvRDZpLCx2zZc93YwuM8eGN16ydS6n9n9vOutQrDwP+1L2ZJtjDcWrW1GxXVPxNpurC0fA34YCHEw2u5WaNpnCjUN1zZmYbv9PtuCdHNnvp3mNh+8oxiL0YDptNjSX7kAotaymnt84wZs9uqmHRLQXnDaFjvSFC22C2zNIDKHu5Em7FVszhbSpyYrqLdxDKV0myfXhcXafx9ofV9l1dj1BsBU/w5t0j8qE4y7/lm1Dm3Si/utHa/v9g0UY8rVlFlWkyfk7mxSTKdgkEzvFpqa6HhNhcucePN4oYSRVCxSJoTAMERUG7Vqd+S2yUdbNSFr7yJEbNqK0d+mo3pzZjEtjai5oL8rKHTrLyPuBGexFWJpgvhokT2tmbh+PwyU1lhyIc2pF0i7/nzwff+jFjLogKCWX9eL/343En3/2THjMcHz6bBjcPZ+LLXy+HQlN5M4aLAbQ52jpNLlH45d8OzGgSlalMnd6cCLF3e8fv2Cu1cHpsG8/fbH18zXCzklkzK6fgU1a95qbWgypmgrtWu73jHoVJvJIRQ2K7BxGnklL1jn2XR6S+JaHzqc7pC3PSolZy7PZ375l3+NvNre8+XrV1RV1pRY1rfM84WUOtGl66eWVJm9ESbCEGml9r2RFcIN3ldnB7y2RsvNqOPbu913R6jR77cDxdUKNd/eh+Y9xQdCU5bzhdwLV1oTIVjhpCaD23G0oozj0PdQ5R1Zop8tssk4WrUGb0NuCrYj7gzY1lcRpRnqFXrenL0PyrrYHrQCfoi898H34l1luTz8lxzz/9nHF7pwHbwQgV0ceZtW5pKoNbPm861bR4vttUrqB71Vn1zqu71PU4YYe4cLLmU2nVKQPspjuwPz3Ouedrdxo+JyN6oVTy16w5prsVj44IVReuOi/ekHoaiS26Zwt73Mq/3IKXqOwfP+fscxOCbfGAbIHQ8XUYtBwM6zpnojhbSqN+SyKZg7BkZyEOzAVkWiuWrcdj/qwBkjanDROm/pv583Eokr7vbetLL16bAJF11fcPvo+u+phnf2gqBa8Hg2Fqa2alCetwBO8eC8GjOyW+X40jFzZweCPXejVYfzPY1ZAVdukRbiXcfs+7+9HfyCaOvviXXg7sYGU7zvhblYHbumxrefF749Zx5SYSkGa8YYCLGHReZieWBjF6O3xny58Px8JfeUgFqsKETvoWR20aAj22Gak8KMIwyeED0hBlyrpFQp2hhG3/c5jtGDlr7j8Z1JCfa+09Nxg79lOMXgOBaYDibhaJhNT6sFcmaK9EOIbm/k+kRYiaOZRDtnHoRD8AxDsF2Vw0hDXnl1f+B02HF/PPH0+Mh1XnCXjI5mKuxCYBr21KaUavu+otbwHcfA+6cjL04HPnzvJbudsF4u/PLzE6/fP/Hq/o7XH3zIOLzkOXiu52euz080eeeHJ15sgk72vqw5cV1X8+1bCl5Cd2NpHXVQfB3MGWI/oUWZ1zNP5wsfvz3fIj5wjd1+jzbl/PjMw8PFctj21jTTGum6ICFQs01aznucBrQ61rlwyYtdekHYD1OPBHJmoeXNGMDfDJ2V5zWT2wKq+AbTNHZDAEEGywDzIgRx5FzJrZBr4hBGa0CdY76eO7HJSPtSG43CkjNUhxfPPu6IQwd0M+x2ncJvWhC7jqInTB5RE1SbldWWwCy2bvY2DDw9X+3z8La3tkLrKMHRokfGgcP+YNqvBst/Rfn5Qheu++OB3bBD64KsiWtOlPXa2W+2xwi4Hho4MnengdqM9eSd3ey5NqYeF9Ka4rpxrI3BXfQnFm5nQ8lWyGI31d189LoVlDfdzeANxxdxhA5JaLHD3LokCz5sHdPLeRMTGvxYSrYDpmUcozHKqqO/MnSjuWI0fIPfOtFi01EIvWBwgwA3NGkzDzYWywbjmZTApjjr7ry3PZS5W8AGV8o2vTTtMEGfLrsnob0kuU1aCGh+R81tmCj0s5EfG8QnnQyiHePU5lFx/XVvkKa7CcWNyVhvU2XrDEHg5lhh0MtGMNHbpKadqeWFW2AnGzU/GKx2dxhY5gl6hlsYAjEGDrvB9HTduslHz36auD/syc2x5kxKGSbByw5UeX66gFo46BAD98c9pTbu7yyI0/d9SK3mIJKTXbO+F4274555SaRkB5HZCNnnnXv+XG0miD7sBg77kcNxz5ITuUsHUgmklFmj+e+JN/bYbpoo2otLToyDmbBGb676tS/8fbT04zGOTEPk7rRjvxsJosQoDMWKesrGTBzGwN1honQ93HWezTxAPKfdwHE3shsD3is5G9y2zgsiFR+s4E7DSl7n7r1pBrCI5bfRdYi12t5ytxsR1wjjhFabXMJg+9amCrmi1ZjGtTXiGDjJkTCNVDyXZSUXy+OKcaDVRoyRu9OBaYq8enHiy9/zPaAWrLmkTIwmnK84LB+1T/pqEoc4Ru6OB8vnco68LNROavJdVGwco0gkWJHNJgrX2otViKYBxAgetRVKyV1SE1B1lvNXq+WUdQTJu56bZz5tRO+ZRt9F2B2eDv42/bVmiEDpE5uoSQ6cN/ZgFSgFWl7ZQJvgxRzyW3fE6O/tdV65nmeWeaVptXT25m+p5Z/n8YUuXC9PR+4Od7iWGFLmmhN5Ofd9hbG5JicM3jEIPF5nruvCkjMK7KIx9pZcu5s5lFwJzgC0igVCqlhHd5giuWGebLUyhIHBW9T4uq6s/SCJIXCYIrshGJmgCx/HEKB461IFmprruAuO4ByXa2ZZK9GDqmWI1dYdIbDJzQqKMYtKt2Pt49I7+EsV21R3Sn/tpAy14uL6YtWEhu+KkbPFmX2/dHGuCr7rkU2g7Pq00rVVTW9U/lbdbbnbWr3pt5pzePcuENL16c8mIytMrSk+tNvuSWTbRfTo+GYToffu5tNm4s3N1b1DRb1wORwS+vuyFS416r0EYZMv0CduhxAG0604sQiOIGYIOo2Bl6cdLddumCuWcTYE7vc7oLPr5gXxnmEcOB32FBWWlJiXlcF7O9i95+0QmJeF1hq7KHzl/XucE14tiVRK3yHJLVY+p8ycE0Ow5uf1y3uuixE5rv25vfc48Tw/X3i6LFzXRHCwnwIvTnv8MHBZF1LKLMtKaZBSYV0TpRUr0jFwPB5J3SFkXhemOBBjYBoi1/PMZVm4zAmngSlOnA4jZYwcD6NBUaWahm4MqA6knPBeGKd3hSuVCq7S1FiTp8PEFALBg7ZMKivzsnC9LGbu62BZV6b43AkIliG3RRHhbaIzCLrY7m03MIzCdLijFb155YkY/KpSyOs7f804RcbDxAnBxYGHp2fbbaFUCXYvTpFxCpxOOz54/yXf9/3fSymVZVn49O0DtQRqzSy5klcroqVWhIj3jnE38uLF0e5jIEXPkrJ95rV1Bq7gg3b3kkZLhcu8GJzXFKl2HoEVoqatMwcNkQDMIJh393yUTQgvlqzs7f+PY7g1p3Q5ge3ZG01NHK5VSTnjt8KllpxQnSK50dK1r008+9PBfnbJmDuR3ZPLvDJfVtKSaDSiN3RLfr0Wrv/+S/e89+KOMO5ZfcEFx4vTnuvbM5frwuP5irbCy/sD77+8Z3m+8HC+8nSdeVovvDwODOKYnzMtRFKpXC9XXu48vuPUlyY858RcM/ugtAKtOYpEisI0eN47TeiystbGXBpzSuyiYxcFr0Lc7ZEQaQVOo+K1oMvKJWeyNoo03rvf8/D2ytPzzOHuAAjTOPH+e+/hsVjxh6fHd3tpAR/ibc+25q2IKb4Vm0aqFafNloa+xK+tp8A6h9RtnVRBt0W6w7nQoU+MQOCsHISNwIAd+llB1aAq6/Aa0hpJsbiP7tpb+jSUGh16crenaZgodSg2rSGV2psHdZtZ1DsycVX7R9IcaNlE/91ax3Y8aCfNvPu12aasmtO22ydsz7zpuEQRV3HFOu68JloM3L9/4nR3ROpAGAecmHv2fjfgtRfKGHj45GNyLSDCXPpeczSW2f4YOYwDXz58wDVn1pS4nJ+JkhmngZcvTxbuWDM5J4boGRGkwcN15uH5Qi4F1StDbHgP0xQBx243cNhP5Afh4Rx5nlfmZaWVmbw6jvs79ruRXDyXc2MaA91GkUvKPM0r13WlrE84PKMT9seBUiH4xmFUjupZwshlMLPeSTKDEybvGV3DayHlzIt9YPAjQTwPzzsuS+KyJnS1jCgKDOosYt5V6G4ZfggQHSXPeNc4ngYWlPnhmY+eLuz8J5zu9rYH2w8kJiOr1EqYdjd6dc4FpCHBMcWjESGccl0Xa4LUdL1hmvDNUbNjOu1M4ySe1196xbJmlnnh7Scf82vffkNeF2JUXr448fLFiQ8+eM17L0+41sjriK8LT88rl5xIy4JFKpvJ9BBsVTCMgTBKZ4lWcktUCurM5b6JBVUGQIIy+MDhxY7KfT/8Z4oWxJsFlgsQpkCVQs4ZH20P6aeR66UyrytLyrghMPjBIPbBelWCI0QzRu7oKbmYnEGcJ06jIS2COZ3EgeCNJRywKKIoSktGKGrqmXZ3rB+/JZ9nBluL3+6/l3c73ntxx8vDC3CFWivXX6/kjO/56pd5cXcCGUk+QYC73cTpdEdKhVeXBVrmMA0c9xPl5T33uZJy4VoX9ub+w7I0VKKpv68XjsHGcBXHUoTVNbJrHKSRCuSqzMmmhOgd97uIuEZTM/pda2Fw5gguLqA+2hVQK4egRKc4CjkrVZQWlH0Qns8z58uCjxb8KM7fnOGzNvLzky3p6ZTkYQL6crdfAw5Farmd1TdyhttYd7XTrVtnNjlLdOg+ZRtLy41G1HA0E22DTbL6TkysFevM6BOUboEy3T1d+wasTzybR6BGc56nNAjKJiMoTrvr/VYcu9uBc9wEmLn/YrfV9cZYVECMOt8hYFy313LbBqi/J878B8Q5M2F2QG1crot5QvY8Ix9GnDh2+x3f99Xvsb0bA7vdnlRXMwrV2pORR47He56+/B7LfDWJheusMoX5ekFoROc4TSMfTntUlcfHTynLatTruwOH00tqK6xppq4Lu3FkGia+Oux4+/TAPF9Zr7M5dwRP8JGcV/vcneBe3fNBtkX/dZkJ0hl5r+4Yxh2lZM7Pj7RaGEJgGgb2hzsueeW8zDw/nnskhcdLZM3GdPMou1f94AqRa7oaNRtFXU+5dY7lPDN4xzhEDqcDX45fYUmZ8/XKcnkmN0fpJrHXuZiYWyujFw7TxOvX92iot53r6j/Dqlwq0xDs/uh2Wa0aFLU8XOyy8D392qRdnOdqivLmqKX1FAjbD5d2NmF4qYSHPml7YRgnvJhl2EdvHvj04YmUEsE7zteF2pR5TXzr4wfAJrnrdWZeZ5aUeL6mG+OuKiZidw7vA5fLDBjJqWUTcnc4wyYagSBGEhpjpO0nDsc7/AixKS1l2xupkZact9Thpo0qllx+GCdLx3DmUJJVabmQW6OoUGsjiMeXbT9utlil0tcLltYeg5gzfK04dVSv4KT7frp3Z0+/R11PP8Y55pStwVS1KW0YkTjQFM7zlVoy5+uvUzr8q1cvOJ0OlGKjr/rWo6J3DFUZdzu8VkvyFMHvBgZMwHtyGd8nj7EALphzej4yajcaDUIuQo0ODY5JG7k5Umlc5gSqBJTJO8JgcSiKJ1GRVvGtoT5sCSOINiZRoldC7EUjOIjOFvZ3K6c1oQppbdRiivSGLcpzWin5Bg4Sx83nzzovsOlJtPKOLw1bdEkzrK4XLu1Kd9dht9pxbcc7P7QO9UnnzGvfAfV9Wquus4tMG+Vad6dwRh/fXOddMwKFqqO1DlW2xpamTGcfNdd6uFxnIW5U9a67aqoUbbiu4nfiu5WUwShOzZXeiZg7Sd/lmUTF3aYsde1W9nzc3O6h1GLwkwgyFMbR9Th4z8uXrxAX8DKw259Y80IqK2VdGHcT0zRxd3rFcByZL2ee3j5QgwVminiu1wt5WdBaOBz3XUzrmE4jT58+4MSxvz9yun9F00ouC9enJ/a7if1+z4u71+xfnrheLzy/ecTvAnEYmMaJvM7GIMuF2AXLqrCmhbyaOep0d2Aa99SaCYNjmReGIXI47Hjv1QcsmpnTytuP31B7ArK4yJoyJWfqunLcTxx2e/b7PZd0Yb0uNpGKYxxGxAkxGKlkHCPHl0devXhNaY3LsvD4yScUHE0CQxyZ58K6FNJ6ZQiB3TTy4u6E3/WGpEKOvUlqMD+tRm53VpScD6hWUlUu18UITmKJ2ypGTLhes+1Z1RFcoOhG+XYsqRhUWEwwKV5603JhCCOtwdvzmSWt3SknsKyJnAvny7Xvjm2PpAqpJwgvq8X2bOSo1nKH8hzrktjQOTOvdTfIfZMzeLF7yNjODj8Ug++d3Fw0qppwWrwQXTDj4GCQaYiRMERiLoRUaM12pLX1abM0ghOemyOEro9s3Q2vX/+tNnQMRO2pCiposOZoGKw4oXqLZNlWFZusJ5XS7+EOEHU/WAWua6Kkhet8+dxn/xe6cN3tPXej8na+gCuspfDxeSGOE8FH6yglcF0Wrtcr3tui1YeIxsC8rEZBVQEsNG4aJp7SSlBHxMSUjogjMLeG95EhChIrozi0FvIy9zeyRxCIZ62ZXHN3STDa+24ItnsIjrthZNxPxNGgp/PzMz4qpzv73cp1ZT5f+dVvfotWUjfJNVJGLmb2OsmljzRK3MVuMmyRJK1bHIWAxb30U9zouDYA5tozxdjYiLUbCkPrIl4HyNAp+n3hb9ESBuHl7uVpESiNII4QHGtRvDNcXZxdaDbvCeTtuZVpDChYdo9LfYJqtLKSb5ow2Jw5iiprKn0PFrrJvt3EufvXWXcrjKNpflKuOE+3knI4yk1/gusJuyEwxGiwqBoMuNvZbkimifvTPeM4sRt3hLhj3L9AnZDSbBlNqpzPmcJAdQcYWjfQHRmGidOL7yOnhZISviUKZqOzu/s+XHhlUgDnuK4BCSMyHGlxIKtjTZ6nWXHD++zi+xDODGMgDpFp2uGjsC4L8+VM2FaWOCR6ci6UUsnraoJgbezihOxW22sNgXMV/Hhkt3tB2L00iFmNo6hqcSjL5czoDYqSOHA6HAnjlXmebSLr8TD7+5es86VT6CcY9uynPadx4uX7XzanmTiw398hYQ/Ok9YLNS20apBXpZov5LJyGoX9/sA07VhXI22kvDI/P4IaTX1PtkiYUnGtIRJJPUmg1EJa7eAPYaRuaIE6akqmmazgB9vZTWPk4Xzhsj6x5kIqmRcvj0RxuFSZs972hEZ7ap2EYc2l2R9tn4E1PZuMpKlyrbUnCBu8fpPd5dz3xva142Gg5MKb5ZmPP302VnIM3J/2N2ulsmbGKTLsRw6HHdJlAOfnMymviMDhMOKSNyu7WsmrZWEVKnNTYgioNtMQqusBkR7KgJfBJs9mzbCrnlRX9n4Ab/kGuWsdmxZaesvT2wceH5/IKaHNSD9xEHxsxmIOIyVXrteZp6fnz332f6EL17//n/4npkG4XAvzYJDeZcmmPRGjD8fcSH2fIK7iQ0BCRGJgKcUW+tWZ6zuKtErKuTMBXfe9M7B3KYVxGIghWsx8LdRSWNeF0ffobB9ocSCVSq6W4Nu5E4TuZehFmQLE7pyBKOclETEtzOF4YD4vXM8zH3/6gPblqyrdDd288UZvJcc5R5yDBRyq3lyq+zBvzCXsgLcSZq8p1XJz2xa3yRexbg6MZuwEH8zKZtN2eDHxaRChdNF2616Kptz3pPoOjgsi3BA5tecHazzHHndfmskToE+NrvUucYunwW7sEGzP02zn5mUjlUBu1ZIA1JJufTdxTSWD6A2uGQM0tAsuG9InI4fvDhAGMfo4Mk0jd6eTTShhYAwRmfaEMPSodsd6PpPWxJxXm2ixmB2pgoSIHwaOu2NPx1XS8zNrzjQao/fmVamNmipJtRsqW8RJXgrnWilv3hD8YB23d7YsF0HGwOjNzqzS8KmSa6GoMo0D6r0tyJ/MuQM1z0A/juRamC9X3pzPPbZdcEMww1t1ljysZpHUaLjVppqiZj9WWnfMSEYBFzGYznViz9s3D/zqtz4hxIFhmJBobLYYArvTPeNwJIQBvGM9P5LWmes88+mnD1wuV86XK8cxcLo7cjod2O0O+MFIVMt1IeeOeviB+xdH2890FptLFSeFUZTDHiPmqDDPKzlnUi2gBnt5L+yPR06nI7vDRBUP5yvqVkJ0vHhxJAaPpop7uuJDJISBGI0A1bRxXVKHrE0DRXeal2AWVd1QilpL93/01LV0uVij5S3uw0GtnE5Hc51IhetacE2puVp8jxo8Lr7hg2McI8O0I81X1mJkjkGwnVSwFYGIEGolttDhVMegRgICYTc4VDZClxJ8BOcpxVGpzGshgcGSaTW5jyjreu3GDsLdLjBfF4ubalusisHWl6eF6/NCron98WCSittK4Lt/fKEL17c/+hZjsHDca/SsDtYt9dj8SPDJOo1UinUNPV5boidXO7xatVEWVUterdb9ejHXis2GaC2FIUZiiIzTjlArWgtrTky+Q1c+wDCY6LJaDpT4nh9c7VATGlmq5S/1I2dOlYAxgNZ1Yb4kljkxz7PRYTsjULDpp7RKEyssThy5lU6t7aa8W9lSboXFsqC2fY8dPNALhfh3acZ8Vgzr8c3fBIXeNbw2pAlBfBeuNrQWqnOIVgrBRLod3xYRRLeJS7ujie0Rcyt2r27WNmqFNUr/XtVbjhOiiHqa2E6rdehjE8U2ZwfsZlhaqkE4pVUc3XXC2XMoeiOTKObuQWvdOd6KalUrnK1Z86O10tYE2ezDxAeInuVyYU0rS05oK7YniB5fpWfDNRZnEI4Tx9qLnGpDg7ETwZiYrdqOsDgI0UTZWjO5FZo0s8yK0r0llVITKlb8CA6y5XVZU9KQGO1ArRUtVpSbA696cweZr4tBRMET24CUTm4RSw43pxJFc+phnubEvzHX6pKMxu1M9jFEo1hrLiS9Ij4wxIFhFxm8J/rAkjO7XSIOE+KF5fzIMl95Ol/45NO3XLqBcBocyzpznS+8fP0e+8PBvP9E+wrUdjzDONq0T2+6pEDwxOg6dOpYcrOdXddwhh49UnGEGBmnkd1uxzSdWVKg1EpVo9HH4EE8w5otZcEL+120YqTNomq0Xzs9API7CpezG62WlQ3yKH3acijNVRqd7dqbRQGqd6ZnxHVDl9KLQmf3tWpnQW8iLFi09Guk74f7ntt5eZf75xxerQm1xHcBEarac7kOz5s1oqUF1N7s1W7yK66R8mJaSITB7VlTJiVDbnQD5J2YM0ex82+IAwFI0/S5z/4vdOF6enhgkAZ+4OqF5Czmu/lN4GrU8VbVdAhaaaX7FqqHitmalMLaeOciUU1ATHA0V5DgzSanKV4b5Gyeg/3iGjaVuRrTzokSK4SmxIARETpPvK+bEIGWC0aSqOyaOc6X1ni8LizFlOjeO3LtF6diJpudnBDBtE3NUZrvlk1b9qldOBvZwqxkTJ/VRKjOWecON12GoY6Gn7kuiFaBNlqCrnO2K9xcBRALt/Ta8H0Xp871CBkxP7jayD0xlQ2ac0ZlNK/DXkyjSRbAvs1vIkZHL5Bdqe97DEgzH7hs2mZbADsHLUNnjmmHR6MLtvB21lUOQ7g5dk99V2IBgEOfMiHSUAn4MDKNe6ubrSGlUJYLya2dBWa0YRHYTwOp2oE1hEDshV98MMPZXHCqVCxw0TkzfbXvc8jOc8LdkpilFlz0EB1HBpoM5kyg1fYMNEopZASvjlDBRU9ZlbpWiI3omjnA70b2qTcgXiwRXAQ3DdyNE0VswtpLJExm11VypQZbqLeU0OAMTmq2OBTtu0SUdTEIit3EoD1CXqCtlVKUVBr7nNEY0OBJlyvlvhKnHa4UljRzvc68efPMNSVUHbthwrnEsqzkUomnE+N+ZOcD+7uRpvteeKzRCN4xRUcTh99nYqscpoHWoGQlPc2wCBQHq3I4GDR8WQp4E81PY2AalN3oaS3wlJW1VVyDKI5hDGhwoMLxbme751xZarXPtzX2UzRowXVTaNd65BFoNIJT1fauodUGwbMmu/+rKFlXnCq5E63EO4vkqdmaPnMQtwYlrzyfHylpIedKw9jN2mrPCVOCmBtKDXb/Bdcd9L0VRNcskaKWZIiTs2bOmt4OZTbFS6avrhDUYpi6g88gR+bZdIu133viPdNhdwtnFTyjCKUnx3/ex3dVuH76p3+av/N3/g7/8T/+R3a7Hb/rd/0u/vJf/sv8xt/4G2/fsywLf+JP/An+1t/6W6zryo/8yI/w1/7aX+PDDz+8fc83vvENfvzHf5x/9s/+GcfjkR/7sR/jp3/6pwnhu6ujPgSOh5GmIwxQxNFctLiTzkQ7Db0fV4e6fmG0zeHB9yGrsuRs01cx3/IYhXEM5KZ2CAWbSEK/AqvC2Eduj5EzNhaRD5EtFjx0rQWYHUr05g4hwaxiRCD2fKmcEnldzX06b9FhjiUv5GqYfXTBwha9EKXbVykQxxsDzwe6nklwMphbBr1wNzWxpretU/C+C4kFcZulT8OH1rdQgsZgNyEQZDsmBN/pu46G10Qt2m8GY6Vt+H0tDY/vtGQhiE0VFtmwJdSC+Ura7xNc/8eAau7Cbwsk3Jz6aeYjuM1cIoJzFuhXu7+hGd8Kztvd1pCb7sucpSxO3nhz7xzGvWv2NRXojUdQxbfKkhIBMfsd2UyDzXuQ1XYf4mCItiMQH3Cbqa2ajRLBmqsojmkYicGbRZOTzfOKlhM9ptAOnZ4r5WkcpgltjbQspH4IDiEQRtPHzGEmDIFxGE03pEqOJgOQ6Dtl2+6D4HsnFQL7w44ohj4sa0LiSKnK0hr7/YklJc7nmdbd1b0LHHZ3XOeF1ir7/dT9ALsFWC3kBi3bQb8/jBz3O3KuQCVdnnl4+whiP+/p8mTkhq49fP1iotVGSYmnt29NanHYcTp4fBhRdX2KSsTgyGNgXZU5LSxp4RIC83Xlel349qfPPD0sptX0jujhMmd+9duPlG/8GnenHafT3li0TmjqeFozdY0MMbALoROMzGqJOprouVgqNLXhRTjtduaO4YTSzLhaZBPoRkoz0+R1LXYtOkVFWZbMOicu80xebIIUMIZi7lZQTs1sOQZEHW1RoJJHS7n2wREaZk7gBKLliMUQzcrLm5Da43A5GURegVSJwbPTiaKNMEx0AAYclHntGszAab/r7FvHp28+Jc8LdSmEOHB/d8dSlKb/C6g1xdEFcIHad2IWKfRf9/iuKsW/+Bf/gq9//ev8zt/5Oyml8Kf/9J/mh3/4h/mlX/olDocDAH/8j/9x/v7f//v87b/9t7m/v+cnfuIn+IN/8A/yr//1vwYsm+oP/IE/wJe+9CX+zb/5N3zzm9/kD//hP0yMkb/0l/7Sd/XijWGDQXSCeaEhuCA3JwEZfHeEcCiGFTtVzKtEOiitCKHvR/ofeefFpWKEi42abl25A286KsX1n+26FsjiNAxutCW9seBChw57oROPdE2E79ZSzikaI+4zhSu0YOm/zdhAm9npIO1Gc1c/dtacTWmqRr0SF3uRtqzW1npH78wux7uet4TvhQugEXxnEjqhyla4DCrEGYPSnL5BqPgWukO60FyPo3dWkLRpNwC1ahHoIZ9Kp4d1QXSPnFHA61a3FDRQm6MieHpaNdh+w5ybrDkRh2x0/D6VgnnS4ewgVWeTnOvsSFdXm+YQqvrecNiOzcgJnXWJw2tFGgQ1AaU66ebH9nMER6qFpq3vWE0gazC0uQm4xi0mR0RMMtEpxLXVfr0afKSOmyB0CBPaN4VO3TtI1G1u/MYQ894xjqO9p04Zu2VTaxURc98PYyCIUmqhlHQTp0owQkvojDFcNGiyNloxF5GoRgopuXZvTnvPg3dUt6W8bWQaLJ+sWKSFFQtzhncirKmQlpX5cmF/nJimgdevX3I5zyb4LZXjfryx87wIpRTWZWEMgcmPbDpGxUTGOWVKFVKuVhiKkrvGcX88QPVobYTgePnyRBxWznPi07ePzLPpPqfDwP54JAwDLkamMZrThNiawaasRPSx73s9zgV0LYgq+3FH7OdBadBcL/Ii1GoQXfAGWZtNm3ZnEEscTikb41g84xCZDnta6knctTAO5jsYpj1I95PELKCCd8Q4Qtl+putxONEaPqnEYbColDQg0s+9UBiHaNccioSRLQXWeU8de1qzCqf91H0whXkuXEug5RlLhDCvwg2+F2fSiGG03MPQ0ZoqAS//jQTI//Af/sPv+O+/+Tf/Jh988AG/+Iu/yO/5Pb+Hx8dH/sbf+Bv83M/9HL/v9/0+AH72Z3+W3/ybfzP/9t/+W37oh36If/SP/hG/9Eu/xD/5J/+EDz/8kN/2234bf+Ev/AX+5J/8k/zZP/tnGYbhv/j1iAg5VfwIxQkFR9eMWyfjhRxjj52wyQrpbtF936+tmW+hM/isONvB1OKozrDr6hrVVVR6rACAjzTZ5K6KVHcTMDas6xdVtGVEuiWNN0cPrw51AUK0gMKWCNheVkKPO49CaQ5tlcFPViilS3H70nMQ29khgcKI6haLACoBnN1QaMFpQbRQ8TT1XRlv0yXO4frF7+iOHhTDNiSA2kJcnWHc4j34HlvhjLYudK8qPBBubuwKuGA0ePoOgNbTuLygvCuKeivw7maWy1ZWosVqosOt36B1rz51PblVMU9y08SYM/C77CCLZfF932ZNgu9FqyFQexHtBdP1os52jrcVMP8+cWKwYxjtcOosR5cWnFZz4PaKBoeLnpZSh44cNEccR2PiWeiYESrmmWPsn4IqrWXWnIz4sjvQtgwZYMmzTTPFDjMvox2eDYYpEseBWhO7cUDEkdZKGCLeB4YxMgblOs+WIdYDGEMQdmOEZixY39/zUDDDYqG7YAxoXd75ca7rhhyTSzYndVVyVeI44nzBpcwUA9FbwzCMkev1yjJfWOcLL14cONzdsb97weObt6RlJi0Lh73HBSMKXLOxBktaSauyPwrO2y4RjIZfS6U0i7FPGaQ0RAKHw8h7X3lJvSy4WvHe8eGre67XhWmKtJa6O39ljJ7Xr+7Yn04sS7GdzLYqGAZyKSzraue6B+cdYZzI5yttzQxxtFsB8zu0pECD0TOGJiiO0VeDybuuzB0DQxhNc9aUaRi4v9vz3pc+gFKp68qyzExioubxcMc1Jaoq0UdCtH1fHCekFksjCAFp+Ra6mzGCmRfBlYr4aIVrXZmm3a0JQ4Lttvp1QBtQtRyv3WAErOA9Tw+NvAQW58yDtMuNfG+uvQjTFNjvR3bTwOCNCVyAIP/lZ/3//vFfteN6fHwE4NWrVwD84i/+Ijlnfv/v//237/lNv+k38X3f9338wi/8Aj/0Qz/EL/zCL/Bbf+tv/Q7o8Ed+5Ef48R//cf7Df/gP/Pbf/tv/Dz9nXVeLA+iPp6cnAN5eFva7gbE1cvFUta67AVvW1Jq7W0JtlGpx2iBo1g5XWQyFItSqpGTLcO8LqRXWVA2aE2E/uBvzTSTQ3Axq0JoLBtEECT2mwTBjh43jOI+GEdHcNRfC5ZoJXtiNntMudC1Vo7pCZUQRnFabPkRweGKIduhq7fa2vt895sOGNtstbdMG0g92YyxltfyitgmNwaa8alT3m3Wg6/BqU4pdjlaGupLYqcGVvnY4oxuXmgxs67xd32ttUSYWCVPaO0IFvfB4zM0A6J7A0skdrgskrSutYnvCPgZZAdMNDrZkY4ehe1tkiceiYkBR17O/nE111A7xopTmbk7rzjkTSxtbBHFqTiC9xFrgaCMG26HU3qSsa7YGYmgs56XvM5R5LtbYhMAQIvumxGjJw7vRBKTzvPL48NaMU0vjMAm5mjD8el2QOOFDYIrC06efcjk/8/j0ZNPENHJ33Nkua3dg2u2Y9gcszLNHf6RC1sz1eqGWhctl5uHpzPPlChKIZeT+rhiJo1Uj+0jfcQClNhOgO2dSAW+Qa3aCK4VcK/NauTsERJUlJ2PlhkB0wrCfaIjtQerMpw/PPD3PPM8rx3VhqHtiHNnd33P36iW7ITKKsUJTqewUjvuJMVrBN40UuKk3GCWjaSUlI9zUVklaOexGpt3A6xcvcPdC9IH9NBEEhuuV5gfYTUa6GkdidMRxh/ORNTWGYbBrPPXGsBRUPK12BxZx7MaJqIEai1kw9cnTsrP65OLAx27b5hzLnGzqxwyyx52yP1bGw87Aa+m7UnGMxz3T65d8z1e+QlkX1vnCt771CYKZIocxMg2ROAyM44hTNfg5ePKy9JNToSd/t9ZMGtOt1MTZNI4TI5+It7BHESQKtGCFSx27OJr5bhTu71ZcqwiV4ziydoJS6bqxVCqPjzPLU7ZcusuT6SjVWM2f9/G5C1drjT/2x/4Yv/t3/25+y2/5LQB89NFHDMPAixcvvuN7P/zwQz766KPb93y2aG1/v/3df+7x0z/90/y5P/fn/g9fj96zi4HDbmI87Wlj7IeDMWhsjJdbNIRqpvfa9EAuu0HTajTtql1zVTv7xnGZrWA6EY5TMOEsAEKTEfqhHgcbxX1nVQXprERyh7E8hIHQHdQRZXqecWIZRqfjvscUFAqBrMH2MSgi3YDWeUPvehERrOCqEyoOcR4Q2/2o9Fmli21VECK+websa9k59Oc2euuGzrnP2ESFza0Wc4h2XWziNqQVc5Sw2iSYH3XnFHVolU203N8LQVHBvOb6pPxOJGywmXYhtCd0ALDHKHADAbfy2J/7MyEyzg7V7fcLHVZW3C07ymlDfOQm/yfeiuEWqS59MoP+njTpX7f31XuTKDR1lGqHhapNJj56ci1oaQQR001525W1lCjaGHcTTu1aPu5HLq7iQyUW2I2OnRpcK+LxMRKHyG4McHcgRmMv1tJuwukgtrtszbRxtZirv7EkTVqQaoZabB9zPIIfQTw+mMxBokebo1QozhtyEMwiqrZG6OzOzZS4KqTsybURfeX+OOK9cHeA6nxHMBqn/c6MAJwjVyUVh/jBLJwOJ6ILXJ/OBl9GY34O+9GYwBiZ5bQ7sBsjoo11SZZkLMVeS+xhpE4paSSthVoyowtE9SzPMyEOuABVMs7Z/TbFyOuXrxjiYJlg2ARUFUroe2y1+J3WAB9gCrg29EieTsIZHM17tEZ8v9pMGmFwptPNOs2aPKZt3lf8YNE5Q1UkTPb1DvUFCQRvRUlwDDEgTNzf3+E3A2YvRG/hrZ5NmmDxN2MM/bYyjqj3vckbLDvLhPvdVNt1wpR0pq1rlNK6HrPv41x3xinVps0hMO2inYS10nK+kb4AVLRD5v2O3QzBN9jrczw+d+H6+te/zr//9/+ef/Wv/tXn/uH/pY8/9af+FD/1Uz91+++npye++tWvMg3m/Xba76gv7+AwMQ4jzoQoqNqH3LBdgVBvePkturc1tKx2k9dGLtkYXx0CeHo+W40Tx2k/4ZtpVGoTmh8NTgJ2ky3BRYQ4mFbF9Etm6IszS5Qh2g5Dyewen1GMin93OiG1QimUJiQVqroeHdEjtdVRelSHE0dQ37t9KJ1e7vqk5Go/vNTSjAW78Frp+UXNIj22w91+RSvK2vdFbFNS6D6Bys0Y0wEitYt4BQ3yHW4Xtdlrv9W8bv/SnE2BzdmNLd7dntv1wqxgOWj9Jzln74X2aafptqPqGxXtf6O9GNJ/H2/TgdVD+/dNTSB9kxc43/eegPNGsOgkCmf4oLE0nUVO2FDby2jf74j0HWrf4zTth100jVlrQJQeJCm42qjrglaLMCkoQZRx8ORqcJ5GGL1pccQJc6633VgMgXA6MO0i03HPOmdqzlAyQSKoUEpDl4THbMm0JVJupt1KCV8TcYicjgdkdO9se8i24/JmRit9vyfO3T47RyM6Y9+LU7SnIQex1IXjbmQcIt6P5CY3W6Xd4Ji603yuQsUzTXuEwhAGalWuzxebZKIntowbLd3XdSxy9IHRR6JRZS17C0fse7YYrPlY1sISLQl88gOD88zPV+LYaLEguTCEjKppJ+/GAzF4BvFmmJxK1w86tNg957UZAcMFCANRByQYiLOuayf92B7Mb4dzK2QJhlK0CmIu9q01iAG/FS7MiikqyBiNwYpRzrVBENMarvNM9GYycHd3RNZCLlaADV0RKIqLYkGvtTGE/v71nSxdXtKk33MYAakWywNTv13zhVYtZHKIre/yzOi39Ekyl4RiBaxlY0ZrMdbi1rNujE3fmwCT0FRqzZ+7JnyuwvUTP/ET/PzP/zz/8l/+S773e7/39vUvfelLpJR4eHj4jqnrW9/6Fl/60pdu3/Pv/t2/+47n+9a3vnX7u//cYxxHWzj/7x6n+yOnuyPIRIwjfhjZjRO5KLlmUk6dduzMuFLEDibV28GHc5QCaBfANjVRnqMv2btIUYTROxPmYTZ71fpA6y4wwkfThjSPb4qXnnXTXR/qmhiIqGusdaUU8+VwCm3pC+mczc9NjdEWPdSSbCFcqyWz9u690tXwrVGbN2+xPlnkUrsGyUSf6kznlHOmVkdr0g9+m1Ryq0bUcDapamdD5lrJZ3dbxDsfqNr1GMFbVycOjY5cs7nHq7E6N41ULt2rDbFD2duhU1tBW7decg7nI1UrVS1mxneYC2nUasxC6sYatd4j5dxvfIf38WZJVVqhFCOf+GiX+RZhsVyxaBnMz61opTRlTaE3g43SMq2VXqDAO4/rRsS1C8+1KYdxoKpQm6UNX/vNGIEghdLM0UN1IIq3PWqpJoIthfP/mqjr0qd8JQSjaKdU8a0QQzChcwOZBnOfb5VXrw7s9zt2xyPzksnzTJ4vPPBoLLxmoljf7PDDtz61GpR+GOB43HO6v2MpHrrGTK9PNg03NXaYDDgcUS35IJVKLpVdFAZxBKfUYgnLqTQysJxGduNInHZU9Z3eH8nPKylapldRwceJ++OOwzTY+79aau+Szdz4khd2LuPjgIrn8Vq5PnxC9DD6SKnWecVpZBwEXCNTqVkJNPZDJIyeu9OBEAKPTzM5mTbymlfuToFpGhmnPW+vV65poaaFNdcuFhfm6ol0jSXYddU8WQcGionHBdZlRl3AOSHSJStqOrnsI04V3zI+DGyhnc0Fomv23JtCX8x/subFJqQYiRFUK3me+dVvfcR+F5l2A/vjyRqy2kjnZ2rteINAaWIyFaqhA2LN56oBqSvaTKZAh9RbC8SaKVrJmIFzVkdRcCWTc4dlUUYXiQ6iKHMyJ5GcC9/z+n1KhWGc2CQz2pR8razZgliLKg/nJ1ytLNf/RpZPqspP/uRP8nf/7t/ln//zf84P/MAPfMff/47f8TuIMfJP/+k/5Ud/9EcB+E//6T/xjW98g6997WsAfO1rX+Mv/sW/yLe//W0++OADAP7xP/7H3N3d8YM/+IPf1Yvf3b8gjIElJer8BO3MVYTQPcRaU+a0ssVRR9/5nc4o0q27vkrPj7EOu4IPPWXX2G+21G+sxeIgnHagTjfBbKPVjUotrFrIfXEtrnTWniO1htMRh5LKSs3mxp4UlvlsFNbaUIRMhwqdefoZsUFvJrJgWiMrPdBcpFWD2jbHCbNvciTp7IJq2HZVoVjwz7uJqE8VJtBp+A02RKH5ji4qWjP0n7uWtjHWMZv3aoQQMWjVenV7j9QpBev4vduAv4p2VqF187Xvk5wt2d3mpLEFUbqO6rXbLso6O/u/qopmExtTCyFEkx44s4mqxUSaS9rYo0qom32vYymhux80aBnhnUisQvdcrAQqpdg+MufFpkG1+6OITYFFG7omau3yC1/JYtNfK8WEvKWwpJXlutCq0cNpjlxMGzRFz2GMFlZZlZxs11dT4XydGKeB3W6yyRxzut/5QMkmnVjXFa3WuY8TpGLXivMOHSdyzVwuFz5+WHCxC5tzwlXT3aXaaM4W6MHZbvKWdluwacEpg6vgLFByyZXH68plDYTrjPO+O+SPlJpYE0QBEFrc4UJkWawLaaXaga3rTR/19vFqZCAnLOrJYjlmufspuiBkIuvac/SaEZDWogZ1otQ3F7QqD+dkDE9AS+VyLcb+DJE1KyWZK//1spig2AkujuaGrg1ppr+q6qh40x124te8rh2eNj1irZtUxcxvHdpTBGQDMhAficZzMh1Vj2hRGdCa7XpNlWEIDOPQ8/wSbx+6C8w4IsMAquRlZj6v1NoJIa3vZVF6CCAbCUtLppVKTkqczC6+FEW02iSE3ddNbP/rVOmmKwD4ZkYJUwy0avdWyoX7w872Wk5vE/zGOk7zA+v1gbbOMF9YlyvPbz/9rs77zz6+q8L19a9/nZ/7uZ/j7/29v8fpdLrtpO7v79ntdtzf3/NH/+gf5ad+6qd49eoVd3d3/ORP/iRf+9rX+KEf+iEAfviHf5gf/MEf5A/9oT/EX/krf4WPPvqIP/Nn/gxf//rX/7NT1f+vR5wmnIeSZnKaLXNHGzvZKONCcpla7cAaghUXJx4XA7XYPiu4avoZgI3+rq1jsO22d8mlUIuayau8M+xEK1qlkzh8n2GMERdcNnqoc6yt4cUSf0tOFsmumGtzzn2MU7wEkrNeaSue1vUL+L40b8pIu02DtdsGNTWNiCF9RiGvvWhRzQqqqFCwwv3Olgk2ynjDEWXD2IWqnd+nBpP5vopqWL6VqkKtPcbA2IUqGzinRNnQfotMMZDI3PObaE+xtffee9uplZ7xpShSbUfkRKhYs7EJzEPfP6kzH0PXcie0bMGUdnjM82LFplTmbHuB1hq+tP7ZC0vrfo80HIWh65yas5RqtOK0MokZ8tZaWfrrRB1eHC1G+/RrpfTCoepwQSidPdnKSulFNJfMmldqqTgtpLXejF/dfmQQs2haUmHpE/C6ZK5zZBgC4xhxPjLGyH6KSIikNbOkYs1RsWshRM+6GPwaRwE3oFpIeeXh4cnE9EHMKLlY/LN52tnOzIti1JRtosXuDZRjrIzBsszUFebccFlwZIYYjSnsahf+G2kpbEauPuCckX1cs4YDzTaplML5uhjRylmUkHOtE3nE9HHRZBYl5974FVSCXeOtN3HXTFkr16xM+8mQl9pIy2z6wN4Q5VxIqXA5L1a0cYy7CU+HjbvzTesb5ujt39UGSzL7JhEYvFCrNTaoGvvYGd/WDv++u+27cHEOrZUQfWfsmu4urYnr88K4GznsRo77CecgJzvTVAKH0w7xjrRmro9Xu3b01uYZMqE9CbwLqFPKlFzJi7I/mvdhrea407Ta2eVMnGzEKjM8psP1rhSi9xymEdeUuV9v13WmKSwt28932868sVyeuD4/cH1+YD0/sszPnB//GxWuv/7X/zoAv/f3/t7v+PrP/uzP8kf+yB8B4K/+1b+KiPCjP/qj3yFA3h7ee37+53+eH//xH+drX/sah8OBH/uxH+PP//k//12/+LUpLQiNQNPaFd1GOTd9k3lI2AWZKcGKiPcBwRlU1woqFTBvQxd7QCL24dfSnda9g1JpqUBVnAwUvHWgtZDE1OnBR1xXraMVz2riPwmUsDHWlFISNYOK0LztAWrKaC54P7FizhmtFERsvxH9gPrOkCyFKpUYIsFHVreQUqJ0O5shmiVRE29fqw1KxUskNUdqpnmhL4FjiCDSmVqN6IxNKT6QVG4HLTSiNy9IvO92TIpHGeNIU2UtiWVJONcQUcYQzVLGmTO1JxMEpmEgqYXt5WrU4BgDMQy2gjQqIhEY44TzgUJhTeaOIaKMPlpisUDOiqcQnDINkafzlVyKpekmm6q9BJJ2Q+FSkdbsM3OBVYNlOdHwvrILwbrgADlbMRMqcYid6dij07uX5BhGCL1HyA3E4SUizrM2Z64tpZLSQk6dQRqMdSgCozjSaoekxzEFk0Nc5syvffuKbROsKJqZsWcabO4eh8BuihxESKmZwDdg71+El6anAADW/0lEQVRw+BD59O2Cc47704h7WRGx3VqaV665sNbCMi94lCCOKYxU3+UK2iw8UzyDt/2tdktxXzJ+NIFrjD10sSq1JLwKmYpKoa0rQiU4OE0T2RWysaKgVQQYEFroPndNSa10tqzjcZ1v5tGH4BE3oAI1VN6+faakZOSmFmhOKOo4XxbmS0YrvH554vTigARv/nmPz6RcSdmiWZaUWda+k94SEuJsBaujM55N0G67KmVzgOemowvO9KqG6GBic2ydsDU52vfSXeKPwwg90ptqWmVdM5fzwv1pz343sptMP7cms94KITJOlg79dJ5ppfUkb3O5B/p90jp93Ux/H89X5tUY0+/fn5jGgWmIZgvGuxgjJ0bESsVc9FvfA1NgF22fqaXycFl5uK588PJMLo2H82KGw62hFeY5861fe8s0fQONgetyBoW0pO/6zN8e3zVU+P/vMU0TP/MzP8PP/MzP/J9+z/d///fzD/7BP/hufvR/9vHLv/JNDruBoApjQILgWyO7fmHUhIvRDqncSFFYMWFe3Adj2DhzdHh6vpoNSxS+9PpkFPFSeP70GRcjfohMTqGoJWrXbCGKzSAKjZAxl+RxqgSnBKfEwVOuhaUmUlPGF0eCd2iuPDzNNCe4IRJpltRaHHPNVG80V2mQHFS1iO5gMbFQK2H0LKWQy4WlOgZvUNRaE2/TxTKVxpHoQLslTc6gcYA4mAtBNm+zNZk5cfCewQteq+WT5UKVaEQTJyxlMfwewQ8jY+8ajaxRaJijfl5Nf6Q0Wr0So1m8SFOCt6JeUmFVc9BorZn+DRM2D4fJfO1E7LBwF5wLuGGCHh+fciKtmRgsJn4QxxBsenysavHrudghULI5VyDE3YiJC/oh0ux117CzQxRjcl41E7xjGD3SLXGcazzWZNOJWBBn7DDlsqy4Lr/QlBlCMD2TVggjroLUilSlJttBBj/waieMAQ6jsAsrzQVcHHnv5Z6ntw88vHlkTtWsx5zgUfZDYIyBYQhcmxBjYD9GXh9HHp4WcjXz4Ltd5LiLvPdqZJ3fUnHsT0devHjJOBg0OkRv3ppqjlnjGAheyKqsybQ8rimDKqsrOFZYncVyqJKl8MRi7MVdZOyWKRXHp8sF1SvgcKUyiCOK8BhWdBhREVwu0EkOwTn8YG4eY5c+1NqoFcYYqFjTcUkmqNeuJ3z7bFCwaGMtBncVhXVpPF8ypSgtJHuvvOAU8lJZU+WyVoqrPUEb4mBMXbolF86K0X4UUu5QoXhcLTeofM3NhPEdrRmjafvWtVokOIZWmP+kFbvBib2HKEOwplHF46bRYE9nU+k4DozTyLCbEF+IMZg3YVHUhe4EFIiD3nbUEgTXP7f99M6jdGkKTnp6guDHgBs81ftN3o4D5qVSKFSFZV77hsUhrjL6gJNA9J737kZe7AOXZeD//r3v862PHzk/XW9WUU6VqoVvf/oR02ng7svv0/RCTivPT79O87g+fXhkmQdjN43R6MDa8E76fqchw4Rr3bfLe9uDOEdIlVEs1HHwyvl5NueC6CmHEeeglMz1skCohFhNUFoxXLdgB5KC10Lp0R9m5ZIZxJaXOcCyZltcV2XAWExLXnnz9mrwUYxMAlqNtp8LtO7OHCiUblW1JhvRhWbJq9H8zdZUWKrjMAaidyw5cV0KFSGMkz13s8lmTQ0XR9wwEVHWki1Yc14I3i7GKXpcd8mf10yVwBgCQ/DMaen7M4ePA7vBum+cMxmycxQnaMk3t/qaq+k+vCegBG9L63VJpGYEDlEjiBi93bE77RmDFa7NWNg5jxv25qnWC9f1uljhitEIA8GIHikXLrPtmDyNVEvPDnKM+71NLI4b7bupo8UMPVPMSaMWi4Efx0DskGcUc2KQaO7zQQuN1j+fBptZc84MQ7S07AYtJmtwaqGUK/Ni+80JR4jmTjCEwP3Rma4o7thNI8/umVTs+QdCF3aKOahwYxYbAcl7DvuB65JtCsXysXZD5LibGKJ5JvoQuruBQVpGIhRCwzp+ZxPOkivXXGgN+3y09N2xQcpdas7qupWYg3gYOAwB7x1VhOdrphaDtqU0BumFwwkaF5teSp8O+144DDAFzz6aWLwUi9QJ+9HiOXJlLpUpVoZpYNzvOBx2tGJi+3qx+2iLxKlNyaVyWRKKMY2nbjQLpk8rfbcag2eagmkdEbPncraX208B1WwZduKRDqe7LgkIPTXBNxiiie5rUdR76NBZDB16bzb9ezXnnN0QyEVtzzxEfLMGRVolhs3OzAqO+IBTYdFKdYKI2UDFLs0Q6c41zeC/adCb1tCpTYbQ05a7y5Dl2Znn6va+0CHUUmz/tn05dPeTEDz7yTP4gf0QeHl/5PHp+o6QjIJCqZXr9cq8rqiD/f5I8sJ8nT/32f+FLlzf/vSN7WA6LEOnjkcfbMclDj/sjJrc9T91Y/g56db/MHoPrdj3x8iLvam711x4Ol+paqK8SENrn7iaUui6ih7jXlol9fC3KNZJrevKmk2Qp3jOjybcPC+Jh3OiKBbEJ6Yjq7UnvjprQQdpNLEinEsliL9Ra51CysUONoS7KTJ4YS6FJZlA2flANKC5O6nbc6v4m1uHPXc2bgXYvgsLsluSec2NMTAEobRmQtTeoUdxNxq+ONeTX7tg+XYDvHOhEFV8B/tzMfdtB0atvWnkIL4dOv5vjYJ2t/rmYl/u2+eYcyfWYI7yXuwwX3MhdXLX6LuBMHY4+WHsuWImTLZ9F2QNbG4dilJK6QXBGKVj9EyDdaYqthcLWoyJ1RrLWijai2wzc1vFdiAJZx0wdjiYtEDYH3a82AVenkZCOPH+yyNNBlKLLJeV5/PK+WrwlRc63GONSMqNpSgJYYyWe3bcRa5j4BI9a25oh4794AmxyyFqIy+ZVZXrkkwHJMI4ePaHgZYLy5p587hwSdZ8BKdwtukn5S7C7zBXdPZ6wBGmwGlnE1sTx/mayEUtAFWbTVR0Jxs1hqN0fVPDik0MjiEI++Fd1I44x24/kTqz8ZobX/3gxIfv3/OV7/uQH/jKC7Rm0jLzy7/2zPMlc5kzV1fJi8fVxvUyo1XRKbK7m7jbDYiD85yI3TVkPwX2p4HrXElF8XHC1UQU5Th5ciq4ZlZeo0S833w2k2ntxBMpxgRsimuQQ6eRq+0XtbleuCKBShQ4TCZ2rghszeDgKEFZV4P5y5rxvjIGY8u2XCniCE7YDyNjMHKY4m0aa0YFDM4if6jmGXoYA26ySbtUOsu10FxhCFa891Fo3gp4TSvD0LPF8ByHgeMU2e08ThrTzjxjx+PBtGZebu4+raqFhaaKE+H0+p7f8NX/jryc+fY3f+Vzn/1f6ML1fF1MWFnNuQ3sULS9T2CIgTp3OxqnFJF3OqHaEGdMw/vjwfz1VJG14nYncsk8XJ44rxa6ppuep1PJnXiL7sAYV4pNNCm/o1BLZxI9zZlcGmNU/P6IiOP6/IbntVHUXvsSuCnTnRPb09FYxQxWmzZSaYiaHQ+qDD6wVJj7QXJ/PzFMkfn5TBXrUk1nZG1hwyIatDljwrlGDJHBO1yNpDlZKKI4DtNkrg1LRqpyOEwc9yNFTZCYa4/D6Pi8Mao8W5SB7/owtn1hKbTSKFqZ+jSpHdaIwTMNgefLpae0msYkd1cBdeZKok6MEu/NXku8MDBSU6asiblWItZBXs0+hSEG7u4PnC9XS6dtipTcO2U16JROx6jJmgKssORS+n9jRasNrNhNWTv0OHrHvK7m4L+J2vtN67pjSIMbYUbE4TtZwthnlSYRGQamw5HhxXu0otTrykdPz1zXTHOew92R0zQQveuGrp2kQ89MGwJ+F/HDjv1JuNfI0+OZoo21GlPWjyPBV1yAN/NsxTo1xsPOEmoRmmucLwu1Kn4MRCk3hlypvRkKRr6lbw6C91yKUqoyaOXVYUTEcZ4L86rvkrxbI3XzaejUDtVOCuBmQlySUryjrnJDTxR4vLxjc6rC4XsmPnj5gh/43g847AK+5+Yd7z/hfF24LAsPD4+c31woufHig/e46zCoA16/2LPmytunhSUXm2acY14z56WSihGRUHOvOA2ecT+YuN/ZVCld73d62WUxamSIyQMoc2lU986tIuBwwRIDQu0+kzTuJs9SbeLy0ezApCkuF/xu17lLjWVdGcViaR6mlThNTLsdr957QZ4zKRXmNZsHZytoK0RNzGtmrQ0XA9M0EIPp4eZiDWrNGUdlioF9jCRVwrhHfOQ6X82mrjnWBqfdwOm449V797jrE5fzhfN5IV+eoCWC7076YunoMcDxIJx2wsnBkUqJA+v+/nOf/V/owiVebh2/9mIRvTBOIzFGhjh0VlQ/AIcuRlallmIL8eh5+eKO87XHc6vy6r3XlFbQ4PnWw2Ljszfqb63dMRzfk4XBSzMNSS7gvbHmBII4RnGstYGrnPYTX/meL1m2jxeu5RNSKeAbYzApYlPrmJraeBQE4uiprXG+JqRmm1DEcb/f8/C80M4LIXg+eP8l93d7preRb396JleLvxgG39mCgsRohrVqHfxuGvFBuC6ZRS7QKuMQ+OD1K9ZUefM0U1Fe3J94cX+iOWVZbSd2vZ6h1ZuY1167FarYd0A4SKXS1pWWjS12d9iBE87XleA9u93A6bBjfI7MS2ZNlXF6Z9jqkF7orFMdgu104hDNtWGeLSYjZ/bjgPcefV6I3nM67vmB7/8Kb96+5el85e3jlWFwmwE7KXFbjxut3ITcIXrmeaWVgmuVaQzc3R25vzsZDJsyThv3xx3ny5l5WXk6L0yTTT5mjhtYs0W551oYo2eMgRj6++8dd/uBly/23L84cDztaWr7MjpiEIL9Gy+BafIEgSINSreZUiMLjGNgtxsYhoFxgn2xvaa4RowWv+K9mZDFGDp5yVhnIcbuIG/XVQxCG4IV2+j6RFqpVW6fiO/Nk6hyCJZivebGfvB8+PpAGDzTOfHRx1eKVNBmUfPd3b8Tte3e7M1B65Be0MrgHdMgjHFgXi2vDlWmrlUcg+flceK0n9hNg92jYu9ZDJ7dLhJG4cWLI+f7J0oqnF69x91+tGmwKi/vdxY6GZ4tHaJaYZyXZCQqcURvnW4Q8KFH4qgZSXtvcJ5xGcQ0hBh1fOiFqwU1e6gOsUo1302JkVgrrZplXByMoGXwpDCMRiALQ2A8noBGqxmlEtFOKnJMY+SwH7m/OzDLgnOG8IwxmDtOc/hu0N2cY5gCu50Z3g4ScbkHqlZBW2EMnilG2lpsbzyOHI8DXoVSladL4nQYOZ323N+fqN7OPXdZbFdcixG27BLu0yg9hiiR5zPX6wOtE74+7+MLXbh248BuDLTcEG8ZWmM0+6Q4jPg40ly86Sn80SIazApnJQRhP0W+/N5LfuWbb0hrYnDKV7//q+Aa9y+O/PJHD0iAYbQLqhVPa0Jp/pbk653igwnx5jnjXbnBHafozRFgTnz5vTt+8Df/D+z2Iy9eHXi6JJa0EiJMY+yFy5Or7zlVljF0vBvJtfLJJ2dcXuyCnSLf894rfvWjR3CPHHaR/9tv+AoffvCSjz89wv/7myxr4nQ3MI4DiiOrQW19i0Pwwt1phw+BN28vXIPHaeV02vPf/8D3c50Lv/LRAy463n//Ne+99xoZhKenhct1YV6f0JyNHdeUebXO2DkYhs72c8r5nCjzmZosPPHD1/egjm99/Gw+jac9r17f8/B05O3jhaenK6e7yGboJM7TMGNggGmwrnG/n1iSMj8/c316pKTEy7sDQ4y4j5447AY+eP8V/8//8f/BRx9/k1/76BP+X//zNzmdvEE8wJocJgE1oWzwjmHwnO52vH17pqwJVxb208CXv/QeX/nKh3z86UJLKxHle7/yHo+Pn/D24Ylv/MqnvPd6IoYNBRh5+7zwydsLa07cHyfuDgOHyfPm2TQ3L44DH7x35MXdnpcvjnz6sJhHojh2+9Fy31qj+sgUDfL2ruEDxjqtljG2myKnw8S4i+zUZBBjFLRlhmjFyHuDvHfTgAZPc838Gl3ENTOXdgq7wXal0QvJVaOUl9KtyqSLbE2/KKrciRW9y1x4cYr8Dz/wPvvDwJvzQk4fkVIxUm7JhDgQoom2TbJioo1BbM9ymTOxJqbgOEye+9ORb79d+PaDNVD3k+c4BV6dRr706sDdccKJkNYrOGNnruuC83A4Dnz/9/8Al8c3rNcFlSOnV/fEEKAo+53n8e0Tz+eCGwLX62yxQktizQaF7+JokJ/brm0xlmNPRvDOmIS1mSnA5j3onLmFBhwuWmFvteBEccHjetPdnPlxdjAIt02xQYgiRBc4HPamayseuS641gNBm+LF3Rq5FMx5JufMYfS2/6wgFCQ5pJi93DjY1OmhW9N5ZBTqalC0OYEUJBaGUXn14h4fAilVlvLIOA1Mu5FpmqiaiZfZJCXaKCWT1/QdRL6mSl4y8+XK08PHxL3gZOJy+XVauJxMeD8yhkoOI0WEVgv4e6JE8+w6vUeplZJWYthT3Yr6zPjyPR6eHnkqjjG+5uKvtOgIo+DuXlh3XzzudId6ocTB2IrDiDahloT4wVhjaSVOIzUkJCxMu6En4mam4wvWmFmWM3M4UKcXcDzhXzbi6SNqSsgQqOLARSDgcsLHAZxQ0kobTmjOqCvIfgJx1BiI7/8Acv1V9DHjDgfqdEce79CjoNOTHUine4rrzg7N9VTcAR8iNa1kOVJwPD59QiMwDBPs7qiHDyjM5DDT4o43KZIeE+PxxPk6sy6KxBO5LSY2DBHncmcFeubrFR8tybWVGRkn3BBZlwV3eg8Rz7g6EMcqgcelors7ZMWIM6eXlFJoVc1LLxfTm407Ss0kF4my43z5lFpBpgOtedjdI9PEcCjoMLDKwCfnGX/6gHHxxMMT8XS8wUJOd5bgKsKwv6emmSF6Pvzyl9gfPkZbQYIwnx/ZffAV9l/+DXzvq7U3ScKHr0/M5zNPj0+Md/8rr770IeI9eV3Zv/gKb9685VsffRMnyhSUKcBhGnD/n1/ler1yuJuoDdairApLMT9N8QF8YHfc42M0Q+ZBzAFBjRziaqNdLRF3KYXzunBeFlJVnFdevdzz9Phk+8FgNmYiINGZh6IIOo5Ibd2r2TEdJ661d+pHY6VpMef6gPkAqsD+7g4tZjM1hIH05te4cOU4HfnqD/6PvP/+ax6fF/7jL/8j1sczqdkUTowU7ymtEHc7RDzLfOV0eInmwnn5Nrv9nleHyAcv9rz88CXX/+UjfuVpRV3j8GLiw5d7vvqle3ajx7Urbz/9iJIS03HP3etXnF4LPkam/Y73Pvwq773+HkqunM9XdtMIrXJ5ejKq/lp5fHhmzolaCqUq424H3vac96cdKRnKMUTz4GwiJlpeFyT0uJelctgHoheenxKhe3oOEijiusONwwfzCgwe9uNIWqygDaPR9y1x2YNaw4BzPD190slNpo2zBgLGAK4VSl7I1ye8gykqd3vP3TGyLCuXlIjepsdtYgSTvDTnyCl3m7rI0pRSMmtTnp4vnK8rj49PuHLl/sULvI/c7cTCV9PK/OZjfJuRfCW6RiuZWowB2qVq1sV6x/Fu4u5uz2l/x94HqjYu/Deiw/9f7iEWiOgQoxuLR3xFu/7ESUAl0jRYpIgfUMyjr3QhrqhjrYrKgERFosP5gdIs1dSF2P0THCIDTW0yUlGa890fL1KdRyXgfESGCS2NirK2fkHSxcBuoBIMzw7RPAO7JkqJKAE8qOtwjgtUFyxV2Ed87GwoMW1QQbqlTkBloLmBpTmaBDQYXRZ5Bw2hrU92m3dFX4C7HusdIj5OFOvTwEecRJBII5KakTtcGMwRv5mbA3ikT0RGDzNyiYrgfERv0Q6eoo7gPGGcUG0WJumiRdJ4e251PWCS/l70p24YJGnuH667J1jOGZIpKmS1n9kQcoVrsgC+giBhNJhHgrkoNBNRsn0+auF/a1ZKdbZT00aqjrXAUiriArmspJLZzwPny8z5upBUWLLBZ0W90d7FE8YduEzTQqqNoTZUHD4GdrsJj8WgFDUyTatG1BEJxMGSCNYMPpjJaY0RP4rp0LLtVcxpPpK7qB1xxhINZjGGGNSqzRbmpsPrmUi5e+c5ZdiJsVqbwzVFmuJ9ZejpAuYLCWHcoT6gPpCrCYJrg1xh2L9gf/ceSa6MhwNxKeTcTB4Qo01762rXlAjODzRvkSzOBUIUdocTL169Yro74McHg3IbZrgbAy56YwnjKEumYhNIa8o47Wm1kufEw9tPacn2q1ldP+gzb968Ie0Hnp+fmJeF1HdcQ4wgimJaNJRbuGgIAVJBnKU0dAzMxMA9Iih4m378bfdr7hO+3wutmMuIa8YK9d52lFvGnjgzy3WuR8OUgutkJ+88ITjaWmm5mpSjNvucugegeOkmvM48N2sl9QZQcMZ87A5CpXQjae9uQabmN2gSlaLlJnhelxUf+vvR98MGfbYeWmumzuKEuPmxmiAOFGIcGMaJMEzMuZlDyfOvUzq861YwYBEmzge8G8y92W+HrQfB3I/FgwaLxC5KM5fJnkk0mBNzVHCBUivLmropptKq0YjBd6eH2MMKARd6VpLgJODEBK2qxvirDdsBNTt0c7UFsB3OndAgVrTModmSVk2ruIVgmkGmiRRtqlnLFhHSJYzO0/peRSWYw7M6gkTLoNIG1VqhbZTvqwrLknLmlRfDYHCqOsvr8aHvJiKlqr3P6vqF7PpSHbYYFGPMhR6TYB6CNzouwZ5DIAxTn1wD3g+sbWUzAlU1N3CkR7BsC/227dPoB9nGIBWcs8DJ3A/9pkaKWNaKOOumxUdqg+g83g8YobvTdkujVYuMuc4L82q+hE0LLSvrmrkuC4OfzKYpz0RpPD685Xq5ck0Vf13wfedTrxfWlK24qvlH5lrwFBqKD94mgFq7jyZ4H7uPXMN3U171jWssmKSoMehAGAwijBm8cwxDF7lXunOCUah9HFAaTXxnfNrB5IOFREqMNBpaNmsoIRXb09RiuxQvjUAXsndDYh/MUb45T8prj8lxRiAKe+J4IhTHtNsTx5XaEsM4oHGgek/N1kCBERVaZ6PiPN4Hpv2R+/c+gL3DD4Md5M3uB7yYHZF4a75SRaN0+nkjjhPL5cJ6vfCxfJN8NVedsL+nDQM5JT59+JSyjpyfL+SUKKkRdiNjHHBBqc0BRvM31/1euKidNh8QL6zrwrqmW3y9FyHEgG+bYbVHmqJOCd6zpmx7djFXDRHpEGcvXFgRaWC2YKkgzn7+EBw+eMpizhdqBFho4MVTan9t0dixxuprlE3SIF2S0g2UU802ifX07Dx4iiqlGMXKHOCNWLMuCd8b4U3rpZ3Zu/2p1QJxhxj6d2yG5hbhE4cRGUau68oyL5yfnz/32f+FLlyjF3b98qdYkEYMHr9NCS7g1LKXQsAslZqADuSq+BpMQ9EC03RPpHAKhbAU3HWBx5kxBVoTand9Fkz/W+rGwFcDpksxJb0KU/PUahoOtyRCc0Q8oYJer6hW/POVKYMUDyEQm+/ToHV6rmf4KMqu2OI4A2OfVmIcGdfEVCs7J5zEI8uCPj8xPp855Uapjqk4RrF5Z6itd2itR5I0dmlFnGPBOve9CB9OE5ITtWSOYgfK1BpDzrhsIk1ULY5e7eLMW+fZAyDVO6Dg8mYCbP5pAcdYCtE5IpimDhhbg3lFlkzMjWGxHDPFsWDeeZv7AECssEsrzroC2w2Mgzk8lsQhmLPB0Crt+YmYR8Z5Zl8bupqf3C44zF7IGgtYUYqxwy6PuPliIlNVpCZkWfDzzG434JqScuHtr/0qeV6gVI4EfBJz59ZCLW+p80Kbr5zGYLEOIRBz41gtR+04HFguZ6SCVGXopAAEUveEEyfso8d5bKlNRZxniMLpIAzOmIrLeWYyYxezSJqmnuLtqMkxSiR0uUBeEsMoDN5CMVvwqDczrlTMHHhNBa8ebzYmSPO3rDDWwSaFBnVZiC4w+AHNgfPDzHl/oc2JuEZCHeyzE0MoWi7mKdmNhdGKrDMtFVLOwMTp9JLv/b7/jk8fv8noI1OMjDuP87ar9fHQaeUBhp0RcppnvRRCWShzMYHx8sDj2yfWNXM8PjN+9SvEIXB/PBEKTFJ5uT/y8XpFNOI19tm70K0DMSsye68Og02v0RlqM+fCMhu8LL6Y04prFuPhvE3Ss1l/1aqk3AjedmaW56WdfesJYWPlmsg6p8z1asSrcXRIjITmWF1PAx+cYb90V3g1t5vdbkBcRlaHE6WqEIfAMERCnECbhZAmEzcPw4AfI6Ob8N4alUOB+WqU23HY3ZigwUOMDh8AZyJoQzQFqjWZtRctu1/tIV4ZxsDxeGT+5iN5vnBd/xuZ7P5f72Fu5a0Ug6ua3pzYzY2h4KMZTIo2QpCb4e42ius20qOmjUmJ6+XC5XLhfFlYc6G5rohnM1NtxjYLfaOKCf/UKVpNE1H6CN02yygsqmOdF5wqy7za93TlPNDNe7HX7c15Hmc3gHbfr1q6i7vVB1Dr1LRW8ppYZ/OnU3t7TCPTNi4YPcLdFsytBzC6btJKt7VxGMTQau3fb2OZtm6+WU2IOojr0OM7AfFmV1TpS18czS23HCKDPeiUc/t+muVEWeZSd+FQuumxdaG1WWPSeQCmx3ImsmzdXkduolxFu87NtS4YFmeddc1EL0hPAjBv4L7oDl1rpT3XuhMWttQArWbZVEu+vT/LZbavVyMXtJT7dJDx6slpJS8LlxqYRnMZmefV4CPx1pH2rlu7B2OMgRAj5bLc4K8QgiVJa+vwkRUnO1D9jYGpjpsfp9Hze3dcGyEYhBOCY10SIpkaOkLQbHLOebXilBp5SVTp4lktODfY7iVnzucLQRpeS09Q8IhYLMzj27cM4nh+vvLw9MR1XszXs4buXmKfz2aZRK0UaheLw7ImlmQms2lJaLXpc9xZvl4tjefnK0OweJN8cX0KFMLgCTH1610ZhuEGGa8Z1p5RNq8Fva4scyJX2O12Ns00ZUnZUtFVkRC63Rmsud7kB4jtMWs1MXaMgdCd/E2+6G4nt3k1WtK5ISbuFlHTWs9sd64jOTaxFdXbebMxaIfR0pedc13i424TFGpC380fcRzfITPiwdymA3EYyOtKq0buGaUbLDo7b9yNzRoYBu3evFucUNvU7nYXN0sKaOrwwVit4bE7dvRz1TmLvzHnnsS6XljKYjlq/vOXny904VLsw27d086KT09sVdMxuWY3eVPbVxks9C7kcHMW720PrcF8XbheV5YlW3RCMFsomv07+3Ft2w7Zwd07krrpXbpvYutwgIn3HMuy0LoLRusuHvKOsmTPT8+REumOBHIzGm1q5qc4d6NCi7WF5FxY1z5B3OAzd/s5bqMudWPP9q6aGIVbb9Kcmy2NQU597G/NNGXNDnNH7CbDvePqN6z0n7kVl+3t3X6nLWm1qRL6DFVtMdP3Yu7mF9noeqitoDl3y+Pamg9rVEC8uT5sbhJbfHgp1QpXtcPIgiRdb2D87dr5TG7zrYDahdahHLg1RNs1lHNG1PfPmp51pGhJfV9V0FrINAY/QPBmqIz9uu12ENjzqnYTaGeffa3NMNEg5pdpOt9uQGzTmQTp+WpmcyRdIrJky3Hzzj478WK7ws7g24TkTqA5+k4lddcJ88Mk9Cui1b6PsWt/SSvRNaJr7MRyxUIMiDieHx8RbTw+nrnMV8tsEst7auK6SbS5OmgDSqO4iraK7wbLudguak0rTZvBqjuTWORiadFuL2gR8pLp/kI4r4SQCYMd9iEYvJ1KQ1LlMid8Fi7XlXaZyalSFIMxVbvA2jKuNv18bdC0sWqxlHU2bZ7Zdmnfgzm3bbb6tatmS+yD4PvZ4cSmRtvr+ltBKF1O4npRBCsIpd//xqyxJHXcu5BX8TbVGSyut9im0GU1uABe++RtK5WmqRsQbzkPcoN6++2MSCAEK1yKnRPawaWN5aPNzJbV2b522o/WHPXbxvXiLWKQY82ZlFZyM6iczdj8czy+0IUrdxsjyIbZB9CaEe2h7QKj2M5CWyZ0IkHti8P9MJnrOB7nPTEMHP2Bp4eF85ypKRAIhDAQhoGSE76nxboYGYNpMFpVc6xGUOd7BxLtA2yVaX9kGM2W5pM3z4h4zove4IEwjeSczdLIW8z5FotOKfShxHZ3IjDYrmDVgMQ9u2NjGLwtPa8ruIgfdwDIbjQHCPEEb/s/o1Rj8QadVutiRGSEcSLjqViGUhgnht2eWgtrTuyGoftKQIvRzDRRXBjxGCUWGqQZxei+TRzVRTQIu51HpqOJibNDBmBbQkukuEIRTx2GblQKDFO3ubFFMrWAw8gvCoQBCdGmxi76dUEZx0gU04uoD2aBFSOH+5PBJSUTxp3tWDoO33I1dw/XCIN1o1otd2s/RaI4au0aF5m4vum2QAiNyhisUJV2xZeBURpuF6AVdrExBWf2YdXCTkvr6QS60YghV8dS4eHhYuexOKbDrruWFDKJthTTMY4jy1ZtBR5KQrBU24+fL7y4m9jHgNQCwfZA5wrZDTg/kEOktB4KGaEufXIBiFgIoSoUs7uSKLR9NIIBRuggePZ3e/wQiAhvPv2Y8+NbLtdk73FPyX2+PON8xInFtAyh4p2iVLQkQBkmKzj4xpyeeDOfyVLZHSN39yPX68J1TZS8JzhzqshqGqRcEus6U9uzUbankXN45uHtmXlOPLkz5+sFHzwAO2zqDdEssHLO1JJtZ6UG4V3nRMqGmqzOjG19pxpt2XG1GZPuOldygVw66Ukshbw1KEVQ9TQNCB51gUv1oJZSviao1ePx+BrIwFwyD9dGIVPFrN9ajaQWKVZBaH6kSOS6VubVip8IpEslZaHKSFZwTahFeJodaRVSFlaEQQVXHbootQi1qK04JNDEUIc5Qxgt4DSEiIZdNw5uND8jI4zjwP7uBcN07jtrbybM4pAYLMJnLaRVEY3QbHf2eR9f6MIlHZ5wGk382qecWu2w16boYtCUaENCJ1qoovHd+JuyOSbUVkEz0yCsKVHLClpoxVGc0lrtWK/Qaia3d+7O6s3JW2u21fvW+QTztKP1cLyL5QutabWdENovar0xJbQ1i1n/38j7syY5kmzPE/udo4uZu0cAyFru0s3pnuEMRUjKUITf/2PwhULKsDlzu++9tWUCiAh3M9Pt8OGoOWoeWW8pFSWQzEoEAhG2qB79r3PMaXoGgLo81jMRZ/b9PJbX2ji0uQpO/ZSBMAl1fEoHh+XMobXROzMPaqrK3OHf56Q/JvR6/7j7NR2dVr1t13DVkf+7QBy0eR0Vo9cySx3h2A4sJq/5DqeB20+qx14mN+gnnto6ff4a5tOcb9w+gNTq18cHNq8WcbgTz3mbo67ZYN8PinjdiPRBrb4ovb9/cDYmU2dKyTwZW69eR18Lj21DgJSDpz6Uwsf97ukXNqDXWczpf34vjdpmCHIrRPxUU2vDRqVGSJJmueRs17U2T394AkgblA5Hg3J4f5SGwMfjoI3uz+isZJEBzSo9jB9wtwwPrUWo90JQo/fEWCLbRBDGwEOVJ7x1/3hQJlm5H4WDROle7Eg3P7kOQ2j+PFVfRJ3Yn2rVCasevTo0GCP7eW+BVt20LsHN/IJP4chglIoFv6ejD16vKzkvxOXqCRIhICqUUud7BY+j8BNKzguXi/M2rRdKzdRmpBC8QFXVT1+zO+71upCXBYkB247J10IpBRveXrGueYoZ4HKJLMs8VfHXkBqsS/bBzWaahxvwHOY3r1sxw6H7uRakYc9Tkid9+H3rE6KXCa/HcKr/XNVXj4N6eOBv651Wx1Mlinke45MQkPhsF9YQicFDpM2EfZrqfbMdc1Muk24ZtNJoR6dPvysG+149HLsObFXf2HsAMWp1FCOIUooXn77cLhMR8ncxiYvWmgn3o/BoQm1OnfytH7/qjStofBKg3qkjJ+rDeea1Yc9omWcK+TA0/1Wrr0212hj0Udn3jdY7IsOTz9XVXMiZCzE8MWLyTjYXDC8nHO5Yn7yWK3miCyIETxCffT1nheEToDtBYTi/qm9Sc6EaAzQ6etzPYzsOUYiMibd3NLp6TM5LccJeNr+u2RNKdWmeQ5weEiDUuYj5NZmRMN1d8WD+TzO0qld140KM3mdCgrlhtbvGgNJcTOAI4YQ6TMAmL3RyfRO+e+L9J8Zoz/f7mUAAIE29Uyswg0KfONqTy3TO0CGu1tvcmJ0+9h6x+uzm0ukDHGIEcU9LCErQ9DzJObcFfTT/szbmJj8otZLUjdNeKf/jFzK7tLrQ8ZJGwYcBm9Mz4j/PCW217hCndFfrjdOUrrNhWgQjTGXpyXG53H2cnNxUuqokP61VH2b6vL+MQSv1qU4bY7aodbDu7b4D93M1c17PTljuDOTFF2mH0W2+es6ViOrkSbxQ8lT/2hwuz+zQ0br/uT4mz+KWCtXs5akEavNYLTGj1U4MHq4cU3Q4cYopQnVjbVTxTNKUsXmyX5IXMkqIlMOvcW/e/aXiMLZL3WcpZHQFnpnzOn2uLQKEGFh6fz73/hnqOYPTPmB2Ugyzry/wgxMU37icJTj7qScCJIpKJEqY65h4QocqmJ/5Wp/3uttM4HAuPmjEhqMzklww1vu8J6bEkBFxPi9KnHL8CVMGRaJ3BorMVBzkpL99TJ/vISdsaIaZ0oYhMRKXxZGKc80xFz+NPqiluDinVezvdeO65MU5FFxmPczLEbMFxOaNC+t0mTfUPAm8DeOmgZEyUZU1rbTmJHOm836/E4JyWQK1RjR6TUBt5wlAaGYeB4Mv7IrfmNGNlHTyXEYgsi5XLC1EKh+PO6iQFg+jjNG9NkedJHdQGP4AGkapuy/Q3Us/omZMInW4uTFIJoROCkbtjVY9ZHjI5Hxi8o1BzrhSeS56zTp9Pju1DzS5vHivnUibUlhPwO74ptx6cVHF/BoyuTtRIIYp+4d6OIehNjuVeiQGgXxBdZkcmhcMmhitV4fvgxAkEvMyU+gd9u0oU9VBm5uNFY+yCaqEGNnud7IE4ty8fEMzWp9ihmDERclr5pxyffQH8QMnQ04/kKe+Jwms0RfPGBfS9EoNvO5jYPReJ5RaycuclEMiXRasdVrwCpXDGkdpZIV7KYDwD73SnzUTL1Q76KNyjINjzNNI7VQTrutCToll8XoTA6/uqNU5x8mXHZOjWYNy/fyJz59febXEx/0rW9/Y6jFPlYPyOCj3Mu0OkRQWendOJrMSDcw6tbgTcc5jZA2k6LBeILudJLpfbr1cWHMmp8zP3+4u8c4rry83LHiz9/dv31yGPwZdpjdpbqbne9QGxPSC6o3BB1vdOfZKsMFP2biuF27rgtlwpSOKsbIkdWtLAFBkVSqV1jqXuBIl07tCH/Sy83jsDCoavMYk5ZWU0hxaxnPRN1MXZeHJFjFFMEUtUEolaSZpJBDA3AJSajvLh+em4s9HDHHewx+80rDmwiBZGAZRO5d49estK1lWTDI5BnrY2Y4HZR9EGaSopHiZYgwhyo/AtNsFau2MPp5+LYDX6vCsJ/F4YSim2FBKLezHTmtl0v/+ji3LhRgyQR0lWpZPXopbG1USLV8Z1+OZLeoZq51eGn0v9PudXA5G2xh/r6rC0qorU1rjUQrHrOKI2+GLTF5IkwgcoxNJ3mI8jKWmKYwI7tMZBeuFOlxJKHO63fZCmO2wtfuE2ztsD4ebxixCXNM6p/lBssW9NCYk9ekS65hVh9PEUwzE2pz8vemYEeYJo83TYaeWHQs+5fZWqFUIlknqNQM2Gr0eBKDX6qco7dRaCEFoUenDW5VDhNErMMA6tZSpghL//k6ll3kDb63ekAuDVgqlFBcUDL8+Y2KQqoGYMmOWx7VWuX98d6UX0FpBo4tmWisOoQyP3bJ20OrBcRxUmUpDGdQUn56tuHiVC/hUXf0c4bl6QYgyUGmzkmHK5s/T8XAFKEGecOPo5Sl8CImnEsXmzzl6pw3jsW3k6L6q6/UFmdXPvQ9afdDKg+/fvmLDp24vIRwseSHlRPIxH8XI2Ru3R++o+TUcBrUZRA+NtWqUGTVE8Oz11pxDvHx+IafoCwbG4+HtvR1Bs0/lY3T/nMD0FfpwFVU49uoNAGaknPnyekFG4/7xYNt2lnVljYmYE+2AqIMlJ4yKdU+0r0dlPwrbdhDWzMvtws0uhOR8rphRSqH3Suvile6lzpDkwJovaF4gpmnSrvReOe4unKql8f39zvtj477t1FoY1inN/XOt36lHIZjxHoWP7UG+eEJGCpBEn5J+nadmUWFJC716MeN6uaGqlNZY1gzgG1+fSr8YSevCcvHNS8VLOf1ZDMTm3qeYwjM0WVVIKXBdF49e6gY9/DgJLfnEaYjDiMml6WmeFMeAMU9kIl4xYwxSClyu3j/n3iy/9ylFWBeO7VSdDlcrRkefVIUQ8kSAjBASIbgJOUavYzH8tCWjE6MbqgcD1YRKhl2cGmG4IPHc1JPzXGGuAyG5vGqo8PKy8v7YiPiJ7azAaa3P9vXunX0ZgkRC+v+v8f6vP37VG1eKcdZ8BF7yhZfgBLnphTOUNV+vM+ixswabuWLDO6eCkELkkpVDAtIjyRZ/ABxgpNsg5kRIkQUY3eW4sJDiKX0dhOEqo9Iaec1PADCr0NQnmTVeiNnNqRqUQyHkxLIuxDwQTpJfCCECzgvpmFwVlRiFvCiXNZADHAdIFNKSkKiYDYcTxX1nac1Ec7l+INAIDgsQWVVQk/niKhpd0BSiv8yozQ3Wo5sy/lK4hJv58nqavQaPI5IBIonrdXWRjEGpBiEQkpKz5+11sfn3JdecBDe7DvPA5GWNnC0nGsRjZBByUpSMgisSh5Kib2DrEgjm5YMjejJ8EMhLxFScbxIjZ089cMWmm82HGTEtPo22Nnmi4X1W60LOTuKHlDDtLOnGui5usajVN+ty8OWnn7zaQZWQAiaNDrO99vAU7r1OWAo0BvIaZ1bdgN0hozBDXMfwE+cSE2vOpOB5itKgNt/wkkbQWYIo6gIclMwgB6+YD8kzGE0MCcqnlwvSC3XvDLmQ08qSV0/EoGHWONos/5TkAqfSeewHH6ufiG/XletlIeriykE6Kb/y5be/4XZZacW8z0sCeb1xWzM9RCrKcs0eIMDg+PiOVK8AipfMl9vKy+0yF/dMzsnz9frsrwJeLs5t5WVx823zBgfTSRHMZ0xsJlRoIMXJrc1TnYi3BQeN9OGckE2uSNWN0PSGWJ9KVc9ylAlzu7rWn38fAE+I8Mw8YgquXJXYn6iJd2q5t2SSDWbPP9MnZ+XCnB+ydptCD1fnhskj/YD0ZSr4dBZinfSHyPy+z79hei1lmqblXKyGR3FL8DQOhvcYqkJ8mqDdSiLd0NHc54gTgjGEZ89dkB/9XX0KjFTP7i9vU/+75biu1ytxDIjw5R/+kdvrK9drYKuJR6m8PT643H7vQRrSCOXBVgvVOi/XCzFCjoHXdeFRBSyyyAWh+vYxGmFPpMvF40pCZxSvcb/UlU+3T64uS8b+y3ce+877cXC5eoOymNEP41Gda/jy+pkYXDjQSuXbthHywnp7JYRBr4NaB00by3KdCfeD8dg59gMenRQTl0vm0+vCaMrRlMMCl9ebP3TWMeuE6nlq18+fCTKhl2pIdTNlCoFbhHEUP02N4p1Ni5BXo5QxY2aUYIGUBYjk4HFXPhouqJ6LQZjWXX+xXz8txDHQ3rkfH1QLEDIvt8Do6pvIUNZ8RRnYcNNzbYU2Oi+fb08BRS0OZQrGLSf0lpDh+UJmSkhKSg67jorXghC4XC+sKZLT6Q1q3ItyfbkRg48I++H5gN3g9fUzKRphNOSx8VYupJD4dHlh2CCuK/Fyo4zO7XLlumSy7th2p5ad7/vG55/+0UNfy87HVhi1EGPl0+2FWh6U/cG2dR96YiCvmeuL14D0ZrANpPtJNcWIzkVyCYmXfGVdMnlJLBrZjsq9dNac8KSERp6b8whwkcEaAlmVyzXy8rKQq7dc//S6Ei3CLfBTACWhJCRfwe6uohvKy4tfw0sWFpStFt72jRgckotBqTV7YO8lcskr//l//B/48umVYJH8eqWRSMtnLtl4K433UkEKL68/uV/t8TPj0Sjbzvv7V34ThH/+h9/xenvh7ah8ernx259eMFPKfpAE/sPvvvDb3/7E9XqlHIW9bF5cGg0bk18RQySQJTGjcScqgQf/huhclTo/19tw20wa2AUY0EvDZpVK6zO1RWxyhGNyro7c9Mlt93ZSs27jMMWLT3unDiOhPxJ5xjzBj8m5inI0m9VBni4SokeijREmaqDOuU+uu08fZJxKyKDiySTdi0vPZmdsxkIxi3VbI8yusFE7jDMbdGC10uvBqIcncwQly2CNiraOjIb2grVjKjMziJe4JvGAZnW/EabyFAIpgVor+76zbY+/ee3/VW9cf/76jXIc6Dj4oPNp/8zvPv+GssCjFd7e3/n+OGawDHx5jZOIN7Z6R4oRVRmjU45GbwVrd8peQA2N4o3B8TuosO2FGDxaJ4QZGIthbbAu8Uncl7ZNE2fDLEwVzqAedy94AwjKcVQ03AmPN46j4XFPLiNdLwcxKQwnmkfvWDOq7XgUTWdY4P7YPH6oHx7tYi4pbs0QLRy9UI7mJDEzTSIJKYnHG+GCg313GBDthF04qniSfhteLDnNh3pJjDo9RCuMY8JcMxIoqJ8Ic8wT61fG49zsGrVUOkatg2M/sL45N2M+GdZSaaU45NPcZ6QxPys6pO/ubcIlAdtRCL1TevV7JQFMaKXy1nbeZ2GlBU/pr7VzPKFC80zHqSx73B9gRoqB37xeuV5vXkoahW9fH3B4ekZvxkf8RgoQ6cToPCAd/vDzn7lvOz//5at3n5khY7CnP/L9+wcf941gA9HI5bJw396p7aCPwV5mc3V3qXCtffq1jF++f/D+5nyR6QknCQ2ekNDojS72zNYU7Xx9e7DXzjUE3h87Hx8b33/+yn99WfnH37/wn/7DZ5aQ+fnnD77+8sHXt40uC8OCR5X1gy0obyJ8+eLJ+7/59IXNGtt2UO8Nk8ZjPzj2nbI/+Ld//3c+7nfWvHJ/7DQOrDQ+rPMwYzdjDWC3g6jK5fYJuUIS4RL/MxcpZFW6DT59vvI//Y//B/7jP3/hePyJ0ZqbqXF13fbYGL3zft8ovdKsguk8XYjDB3549jimmTTRJWC2OyReCu3Ypx9deCuVo1Q/aYvLpNxuNoUQU5wQQqB25xODemhujnG2GZyYjfOnipI0sdWdGhs9T252eg9bqVNUPJA20wnN+UoQggzQQQiJVgu1tanEdb+iivPqJvM02IZztyhHqZxBBRqSUwP48OhezwEzJ6GPzqgO8dajUKt74kqpDAQJB1fxZHmRgEmY75zy9u2N0Y0lr8hf/S+h5PWK5gvFIj+/V8pW2D/2v3nt/1VvXPvHO49jc2l6gLfHBz//8hVbVm+kfTwYU5QQgMdHfBKhcVFvRlblsq7UOuit0MqDVlwoEJPShj+A3Yw65Z5BAxISMDmhPriuCXC6hDBrLZpPRa2Nudh2enMTb8zxaRS2oLTaJywQAEXeT47GyNN30lpHdExXewYC+16cW7l3WvUlK+XgRkkReNPpl/irokfr/r13r0UQoNVOromcE4/dW2v78Nwy7CxCgfxQenflmGRXX50G7tacnA8Bf4HxRfvxsTGCF+jV0ji7eLbtAOqUd7t3qjeHEMLHu19Lw8NwXVuLDuf/dHIBrXaP4orOPbrKTRit8da9GLO17tUS5vdFHg532lRBnQbLMToMNyh/3FZSysQpq9734t6VGGmNyVs2ZAxSOuEZ5bDhmYb3neWSXFlnxi/t4H7fKUdlSUpaMlU6f/xFWHN+CkPcHzRoo2PBxQvDjNqNY2YFDoNl9aw8QuR+1KnsGjQ8tFlEXLl6/+BRD/YU+X4vvH88+OX9ztIKaRU+7Sv37cEf//iNv/zljY978cDqkDwX8H1aVAVev68+NUtga402Cf8QM4/t8KGkN9qA23Xldl359v1BG4qFRBKhCLQAry8rm3XyklkEIv4Oxd98YdFOMWPfH9zrhyf0p0pawabwaiF5cr56g8J6zYTuwdHn/cTExSAFpHsaRJwBsx11mwKGWiAMfS60i3rRYgyBFB0SHDiHRxKXkTdX7yoBHQD2FFd1HK72e+KCFs/znFrfmekpYcon5MfwYcyA5flcelSazYJV36RsWlv6LKF1LbERmSbiv04SmOKPUyFi2FT8nVu7K0LP9cHDeh2GDjFgFkh5ZpXiUv2zJNfj7mYoQq+04foBC2cr+g+hdGvNucpa/DTZGo+/V6iwPB5s+90nr1GR6Mf9kDKip4v9x8PxHqcSTgUJXkcQQyCnRO3QW6UWn+BidMJ1aKROaTLD/AisgaGBY9+f8uDr6pwSEtyjYz9iT8aUfR9HxcYgzD4tQny648V4Buii0X1eraFmLCm4x0h1KpqClwPKhNxaZ5unOjDvDZtyhm7zQZupFaYeQ9RKQcwVRSEoEgK55Ekcb0/bQBtGq3UKHtyE2vrMJ0vZfTZ6ys3PWJgpTTZDbFBKh+CL/mPbXVrbB/tRXJE0OtYG4XwNzQUKZwSN+g/gyRBHQXCuMseZMqHBw42FmWDii82x71MQMYiLp1v0YVOB5kkGIXoKwDDYHhuMQRDh2xLQOaTEabzUIEgQjmIc++ZdWX0Qpy98oJTJOwnK5eabiyBsHx8zGNW4XRMLnWKV+pfC9ZJJObBc/NlqNijdT6+DQRtesHiUMhuAoUkipkAgsx/t+YzLsKf3K4zGPjopBo4ceL9XPu4H37aD3CrrS+LlfeVPf77z73/4ys8/v9GaoVMuTowuAOhuH7jEeW1RjtLnMyUsS/Jw3xnG+vO3N9Yl8Oma2Qr0oXQiOWVGBKKy/e4z8eODGJyfvGjjy+uFy82RjtEa5Tj4ePzs72JUVCqmnuy/aGK9rWhQ9DG43BYWC6B9Fo7OkFiN2CFI8yDiMw+wdoNtnyiDoRLnKUkJ4cJlWVmWxJKFNgVdASNEtxVwFIjRq2FcsUSI0QOW7Ye3zZj+NIzh7LUPeqfSEOfjfHfxX77RRHd2DKbPkNMxMTcg/5om5tClDeITEP2rNKC53iGnmtihO7fR6PzvbgOI01+GKrV3eosIg7xkMOf8YogEdbiRybf5WlG8XYHAUJmnQF8XbHpl9+PgcRzuB+2D4+914/p0XdFobPvOiIGhU7Y9XCE38AncHw6wOW1Z92p56z7Zjvlg2sSMdEbbBDx+X2Q2oUbxNtqJQ+co82vCZfHEwdY7aT5cIi5LPcsr/Tc8FWPNytH8oVaRac51pVztzScaf65Ykk8v9VQrzOdcCDNbz+WwRGdDU8B9QsM/R6OfCIIKrTeCGAT/mkt06fAZj0Uzurgnhenz8iV/eldE6BNXEJvueAIhOVQq4tO5qAtTokQEmzBLpZXhUEY3rNb5dfwFl/MEO4YblcXl7CmG6e/yRc2baZUl6pP4PWOLgnr2Yh3eEKsSICs5utF4P1whB/49qs6opeE+NqKT0Es6vXD+PPXmXhU61KOC+ddHheRrDKV3FD9FS/CCUWzaIhRsbnxr8hWpHZWP1jj2g5SUnD15pU8Y0/BhAaCaPoeJgfsBtShoez63ZhBH/7FxKUioBBG2YexlsNdOB7Y6+OOf39i3jY97ZdurcxTZRSNmnX503/iHt4uPuSn34S0CfuoVrmucvjMX5sSovtEAWKM1oTRP2pckaFN++YMPcWBoNn7/khnlypKF//b+5rmbpTLq+zM+7cuL0qdv7DIi/+m/23h9feF6uTwzGkN0+Op8R0bwzUVG4LosXK5XBnB/PJ7eryZG1xkEjZLXC7fblcu6sK6R7fGYAh68PHEM8nJQeqdIR1CSGq8vN5ac2Y6N3pUex6zbcVhzr5Xr7cJ1zdyuC9clOqfbGmPkyXGJi5EEWnWD95IClzVxu6x0HOkIAscjs6RIjn4yXNZMjIkYlCiJ0Zp7EdOErMWFTphXLjHFEjEGrpcVUQgpoyk57NgKjeHijJTJeeF6u3FLAbFGO3b2fUNGJxB4ua5wPwjWuOZIUqWYD6nHfWe739m274wEkv+OVYXWK+GUcDdzgU4fU3Fz+rumYABDmi9FJuJEqgoiRlSb2XQCEmbGngfHpudkotOwO22CJgQSZyWBnqZY5NnTxeRuwjyGh+RwoszWU4fp1FM/MKybq+dMUHMVkYrn8InM7D2ih/FWVyqJeeI6FjknNsYg4pEtg+QLW2dCCG5slBm4quLKohiUqNmx9XYWTsxA0XOCNIPWiebqQkb4Yew+vVIzy83wDdApanG1Hz75jlIZrSOzcdfVh/IM3GW4lcDMMD+yzgVcMJLfHzO0zxd9eml696lYzAgmNCJjGsetuzE84BOyX++ZDsIMGpY0ZdRg7Xyx/Xqd35eqkIkO1wSD4eZTMIIGLIYJRw9Gm6d7gRgXdFZZ9I5/bRW0K6UbrQzKYa7kZKrLpjHagKE+PjC9Y+gcbNRPZucpszS/LjJVmqJufK8G3ZQxlCjRrRbH4G0UjgoDJ8/bGNjwr6f4hn/+fD6PyWz9zZxG3F49CDoqaHRLQhjQqxB1QbL66XCebggeynqeAEJwzkqHeSpHMVoFa0LZoVSvebExGxpEaWL84ZfvvO+Fy7q6WlMc+j4zOAUhpMRo/tOUY2ErzmU9tp39/qAehXIciHQQP8EveaVXoUiHETn23Y3KuIm9985xHBPt8KHUorIdB214a4CZQ/vb7jyOKxm71+00o+wdGWlaBxpHbc9w7OAGRPrhSTSeZQhlhnDX7rafvVROt1baD15uHnwdzuDRMaawpD9PbSHqHMY8S9RN4HjiPt7vZePg7e2dbXvQ64H1xOWa0BmLdYjDpmfgAeGs0EnA4dy5KszM0SFw1MJxHPQ6iDlQZzv63/rxK9+4uierGy4cmLhrmOnYPo0nX6DNiFJcFWRuJmRuCIo4X6AzGVkVFQfbJEzyUYR6mjyZ8S+THwoqBHxiVfHF9UcEjM20CJnE8IQGGEQJs4co0JsvgDaT612Rc4a79nna0bkR+4MpYzyDbHUaAh2QwP0cEhiSns5+bMzuqjAlv6DW5s/ppYKCzviZ83N1doLNZJDRCcENsJ3AmRhtM3mCCYPMW+LekOjhoGqeokCr0EHG+XMyMRP3ZzUMkfj82mFKjsFfgqhKYCaTn/+z4Ibn4aZnFecwh7gnpnSHYz3BI0zuiHla8aFFZ45tEDdPe0q8EsQ/X21u5s+hAKDRrWHiGxc6kxYmXIxNGXAMz2tI73MbmEKB3un4QuCyYd8gWps5eIYnGszTl9m5aRkEQ6POiy3zpDYVrc3cooBzIm4W9xNlN7AxOIrXXuiMGBqtMc6NS2by+BxaIjMtIwSCpGdUlyBeSCke4ivT/2M2iDE73ErwpgL1QUKD966pClEHKfQfm9eQOWAFelfK0ai1kxd11afCocb3x8bROtfD80kdzjY/+ZlfwyVnT3lAKOUgHwfDYD8qdd8oe2HfD6IaITok3GuhqsFoWEu+SQ0/peyHw5i1VMz872oGjIiGg9q93geM1hr7vnO2MyggcdBKh1Gx4VVIvXdKLZTivVkxehxUrw0PX/b0nDJFSbU2jlLmxuX+xhwDo1aGek4lo/m9bI3eK7X5EBRz5Bm4NjsCHbbrJFNEPCXn4+PuG1erSO8gzrmJhPnUnoWT3ddOCfPZZA6c872e6FObXHPvgyhnC/Pf6calEVbNpGaEVUBhPxq31ytopFkgL94FJKPzqp6c3k0Z+iNtPEX8FKKKRPcs+Emk0y265NSMUGZ/kMhsx/UHK4qwTvy/m/vHTnGGonPjU1wf5B9DB4E0m5FlRq74g2nDuQ3Dw3vzTKe3Mz0afzHX4FAgovSgzwqOEbpvngT6fAHAEJnxL+cGybkQe/KInp0huMzZz0hK1/mQDfHIHhwH1xidZGamVMzTrYmfnLxDOeDUu0uDFViWF9Q8K1fX5Jj9MDRUah2UNiCoT3R9EKSjeJJ27c7ZBDrBAjbO8s7I6AOdPh/xL+HcQu+QFB2GtrnGd5lpGS6GMU54GKIYi3YgIjJbgvtAJx/oqV6+idKEEdwf1S0Qp0rReiOmuSmKPO0RmGF9Wqjn5urKsoEGY3DeA783zKoYHy8GZxr/udm7BsAXbdRTuplRTBpPblPIQbzNeirCevPNFnHrgJ10sDjc5onjSk5+zmUYa56qV5zHYbbvhuz32Bcvge6L8hgNxOGt5kok5yr19Er5z64irJfE5bpwyVdabK72pXP/sMmtKr/9tBBiBgmU7oOSIEQzJpkyT0N9Dhl+DT1Wyi0RYWz+PWqgVRcM7EchWCflhZGV729vngqSIrfLhd6Hi73G3LBmYn/Kq2eKTjHEGI8JVyaGNWqt3O8b9P4M823lcHVjCPQ1To7IOGrhft/pzWPm1vXi4i3zvMtt22lHI6ZErRvHvrFtO2OHFoN3DdofXAWrgc+37OlQZrzfP3xT7Ma6puk/FWodHk5dlbJ771fvlVJ2vn37xuP+oJXCR1SWb+8s68LnT5/4h998JkWdEPvhQ2Lw2KzeHPEqMxzcz7o4XBkCW+vsx6Dsg3r0v3nt/1VvXBfcK3BLOrNifeGK5YDg03iITuqP3iErUXxhsujybWGwzgcNA6ke5zTmEX2M/WREnZDWE/75kQlXxmCkWb+NV3u7cqb7BK8zf02iVwmIw5rDDo9FmQGVJ48U42x7HUbDoE3oUo0ceJ4+xHx6VnH4qTZ/wXoDDW4cdEHCeEInMSnR9Jn5F1D/2lFJ4sq7MrxAMKq3aYzhW1CzgUl8XgNvc/ZwTjq4yNDJptbHhEBPYl2c27Ixyz2FnCDKbLcNxjGMYY1oHRkK3ZtoU0gzRdxPTNYduBrmtSFJByEYtcxOLhWyDOIUxZTusT2nkMUkeDpG69NgOyZR7qezNjd5FW8dTjrLGy24RTwwxS9Ck9MO4DDtVBpjJj4Mne7OMfl3PDVA8Wu4BM94c0DVhwkzm1mBY55aPYncf89PiRLDHCtwKHd+D1HjU1Cmk9MIeop+JmTeHWkYw2g26HhQsYnQbSBD5oZqjizMk3Nt00hr1aONgk7oKTwrT6T7tTHNWFzRkBh4zmErxzTkqrcaJ/+eAp3X64WX68K6ZuJvXjy41gax7uyXQm2VNSdSTjPNP7o5OSqXNE/kBjIWrhePX2MYMWeH780DhHNw/k9DppXDG6ab21hiCsQcXeb9bCx32CuIElHK6E94uZU6kyvAop8SJQopLowRsSao7RxtUGUQ+ngmYDDNyh61JWgFhgc2t9Y52sbZB7dkQZIQ0iDnhaRC0kB9rZ58oV4ymaZVB/w0e9b3XM8ItzFYlujpGaJc8qw6mZvqsiQvsKwXtkdBRudQc843Ry45c1nc9B2DMkbA3I8x1Yyeek/sM3VE57X3tek4GtvHwa2BlspMFfibPn7VG1eOSo6BMgZRJ3E8CX3EFTdB/L+5usfPO46Fn5Dd/PcpNTZTTyi3MQUbPi2J6CxWdPI6BnOj65SqRolzE3FmrbfmuLxjkVOw4M73zvk9OaZhOIH5RMzUTzfYrMQePyZK0Ul6q8NYcsKj5kMXY/JCeibX/0DiFBdimImfeOZUqlPUEDW66VJtSl8degm+UjuvI0woyzfQfi63rhZ5LqSncupUQ3lJ5I/FW+bfq+O8m74YYP41ogaHncxPo0G7w2wiNJtKrVl+aPM0Y8M8uGDg13yeb3XMkNDupy9TeaYNGDY9Zr6xn+WiHcPCcBO1jKnM9M95/nMu9kP0Cf/qlCub/egx+/HzzZ/cXFCi045hMx7HscenJOR5OvdLa7gS7Lx6E5aePMKPz/sBvQo/lKqnQlOY985+/JnzuvJXf5Zpa9DzWx7uXfLn0U+1MSY0ei1GmBCnDmHoabx1LlXnsyc2k/xDIC8LI/izHoAle/htCEq45GeM1uvtQgrCUdWHiOSZeUGXuThPcYyekLEwCE9JeEjOidpMQ0/Jyx41ZnIQZAzqclDLmJ1iAZnpMnqmVoToWkBz5aQLVmbC/7RsnMHVpzjQ3zWvLSrtDN02YgjPBd2fV0dwTvXqGN7e8Px64xSbOS8bVJHkkUvXdWG0OjnU4PYNdZuNxzz5ELfkBSG4qCT5kCHiUv42+ajTYiNAzonb7crojaDeeny9XFnXlfXiyf0hKKP/KOb1aKmIDtBZbnk+/+fPMfpwhfLig2icwra/5eNXvXG9XF1pEx4JKLTmramyuJRXQoCU3WQ4Mfc2PL9sFSa85aen1h1/ZcB2VPopDABSdNgJcGf9XPRb709DomQm7+DihjG8HttmIaCIENUJ3v/dxoU9FxSYm8Nc7P3hdshwDF/swHyBmNOUYXSb4gVxXP+sfkd84Urmt1nmlB/miS14w+BzMQtTMJDNkCEIfg2iBEbwTctPFL7QpXhKdn1TkcnNnG3QfT7QwOTq5JklCNDMaK3MVIKGZYdIUeVyWQjtTN6eJ4UTappKt47zP2MuFiJ+IqgmDOvkMHfY57U923fn8WeeMGycG8ncQMy/toRzQ5J5ovCNY8yfJ4h3LJlOVR8evnryh8L4q7/e25rPzfK5+egkxYfNzcqTDHR+1pic3fPeIs4XzkBiTd7f5vCnPytP0YO65SOoqyFd6erDyjiHnskHPu/dXNTOP+tJ56DN72OfvjKsE0IiJ/XBJM7hZwo/DN/QGzYXsjQ9UTaj2FbaRDXcSxlZs19fCcH7OPvg8+vi7+kmBG0ePbYo13Wldb8eIXkD8Zny0k1I0SGxsCQP166VMrM5NURCjlyWRBIYrbDrIOToDcrxMocKYVndz+dKzcTL9UKtlVIPtn3zpuijTxjX+aqjHqwxkqPycl19DBoDVeHT643eO61Oo7kVUPeYXa8Ll5EQhVqrZ4Xu0z0ts3ZHYQmeqFLWhbobIsaaA6+fXlAN1FKJKfswIXC5Xgmx0nsn5b/iSofQizeyx+zWlpwjMSr9KKxROY7MkoXXT1/Iy0oIC9eXF1TwZA3lyXUutwtjq+TH7hYemfjzHJTFOkYhXq7Ekenj9jev/b/qjes//fQPXtC63TlIdKlsrZEOkDbON5RtL9w/PtBeySmy5MSX6406x6VLCBzmgadHha9vD18wEFIOsCzIEshxls3Vzr43+phmxFqJwGXN5DVSxUA8Qd29OP6rEZ7Fi0yozuH2c+Kdi7rwIwqmNZdTB3e9VzJo9KN9yBNS6RwtUhSvxMZhJsz5Fwk6xQo6o5smtCQenSQ2T6fhhsv1K9m8b8cX5IyMQRwdFyPMKo6Y0dDm5tq93M4UG4E6dt9MDGwEhq6IRI62oylPMUxnHEofjQasiN8wHSyaCcnoodNbnUZOcxgWg8b0LCUIia4JZ4LUVZY0mkTnCEJHmiF9RtuEqTRVTpIIhgvyW6u+KJshJLdYiHoBsSpB4iwQVJq5/0v6QK3TSyEsvgkG84BbG935ne4nFRtGNE/rtxAY0etezhNiM4dH+5zuGQ5/GzLzIH0xSoJXp9SORH3yZ8FOz493Oi1zE2IiCBheVzJcxSrd6LURo4e0apomUwOp47mZj979dNgGvXgH23VJpABonE3kSiE479Ma5di4HweaFvLlhet1nZ1ig/E4qNZAjdslMsJK0+y2if2A0aA3clzpNpwz6UZcFkK4cnn5CVE/IeioyKgOSYnSLdFMKV1YBixpIaQL15+UZbY0D+usCqVXSh80cf4y5sSnLz8RcybGwCWEGYjs4pllWUjrwqovfBZz2FeSv2NzGOhld4hs+u8efXLhQfjt7/6J1jrlOBh1p7WD3ipb8SQcjZHl9eb3bMCoRp3GeCbXxfT2tRCx6WWL15X1t7/xxudakVa9zboVSi2OvQT3WCmOIITo0KJz+/5ct2lgrjJoAVoUlijk28p6eSGEZaIpnSiD1jc/vaXkQhzpBIMUw9PK0QVXPYliRdi3yujGfT/+5rX/V71xXdcrcSiXxcNvCkJpflo4/Ty+Rzg85qGkPg26r2Q8JaGcsI+dtRZz+q6CagdpaJjhl4PnhOu8icfz5GR+c2RKmP8KujF08i2+AMvkJKZqf0J/022uU5Y6YRkM1BRkpuBqRDRhwWsVGMoQTwMwOSdun8wRP5npGYKZzuO9/z0yvz4KQTOg9HYCYTJhrIToQId7VjDvEiMmVwaaGysHw9ebCVuKuVTdJGKzV2m0zpBIn/0/5tSAw7dB5/2ZtgX8urm4JeIwmpslp0NhhtF6O6uY9xk5h+D33E2a/nfJ8++csJn5zipTljv6eBZ2DnM1pK/1J054nuC8DHOYL04y710Qh2JlwoV5pnmc3WfW7SlNHuLPQOqdNBMLCOGpyjo7s2wqK8/TlnNPQoqn1FhnPYYPP2E+x6i4xSGcxYZ+ZcYQRvcTbBAF8dizoIGoYYoldJ7cXY07JuT84yB/9m6dg5ZzJSDTMGvUPthLZdsPtEEnkdLiifbDkDqo1hA1bI0+CBDmrFR4qgrNZtL9PAmGhRhXJGRyvvptaQet4Aks5on5Ml/A3j2pQ2V6lKY6U4eBTKn5jE+yea/7cMGVTKVurV6J4rCau81N1IUQIRFDYlkvBBEYnWMOWY60KE0dGQnBYdIUAhqUfgzYXPnnSIo8Fcga4g9OErdjWBtsu0ee9ckPnebhgdDGVEjH5IpFfLOttTmXNjep889pTOTk9ztO24aN4Sfh8eP0HmaKhzHZFrOnuvpUH6v4dbPpuTtTQPzvOrMKvf36qEarjcej/M1r/69641rWK0kWbk1QK+zAURthZDCd05B33yw5s1VvLe618b4VBId2loaTinIuoD+knXUYVqpPzeoVAL4xzJNCcxd4aZ08vDfqmXYw+aYwifQ+BqVOQyc6I2NO3kGfJzR/uMqzskBnJphGT9SW+cKMqSg0DaekwBdZidMv44kYiMudY0yzzddDQyUET4E20BSJsjBD4TmXKBX3mekYnks2j7Fu6MbNnWbevDv6rAQpLu2eX0c0+ylLI1K7d2sZyAgg/n1EXDLu9SqNOjzmqI9ZGDptAZ7q7Y24OsUB6dy4mofu2vReOYQ5iy41urcpjnm9/MRyUjtmg17rhIxdyReGuRHBI7enIMQXirMs1BFHQTWyqE/s4AvAkrMnrlSll31CosOjktTQYYQSiNHvk06i3GhIdSn8EwedXhkNSk6BNc9qeA0Tmp4w4DBPKZkp8iEGt3eYc5W+qbhhVOdGeKolQ5yT8yyqNDFoFRk+XER1EU3QWYRqbmOTpxz6TFGYSrijspfmSfZdWBY3ChsDK17oqcEbwEuH2F10ECVOWDxQy+NpQM4hsuSVnK8YgZhW4oS3vYXaa2O6uQfTY6/gOOo8JXiyjkcVQRttwn4VlTPw1vh4PHyR7l5p8/HxQamNOvAcvqBIVNqyuActDtbLC6eSprUxnz2X9rfihaMAGt9YskdK9d44jsq2FfZakSBIN47ePLQWGK0T4uJKZ1wh2bs3jzOGWyL6oJbBx/3BpRtrzu7h6nPjKo2U1O0eqpO/8/UgLzd/t2zAqB4S0AqtNmQYUfCBow/vHCOSTgiQc5jz2Kjj8PeeeUg471sQYVlW8roieeFxdMpWuf+9ZhWWCr29c398JQrkurv3oleHXhQ+X6+0JbEn+E+fX3yzCF4g8vax0cpAr4GIv/Dxmh3+GB3pnY/a/ETVGlvxfiYNOmNlZlSTCIsGFoQ0zYV9r7TjQBeZHEogxAvX1Sf9iKdM+9SutG1jIFTEFwLn+qEbMfrXXzUhQ7HSKLUimuZJQFytOIlch52mGqxB7TsjRDQDuPFQROcm5Z6sFBY3RI7OOBoxrj59h0ivOuUKjWAOsPYBrUDZPmjdu6W2/TH5j0BeEgnIIlw0oz0wmjHuG3twBqe1Qq+d0SujF25L9qlUhdFcIjxscLtcWLI33cacOLYNMcgauYhnqNGE/tjQkEETpkKp3Rem8qCN9jRsWxeP96pl4oXnJOmm0dGdH1tj4qKJZUTKxwPVSAzL3NNdCCDMjX6eYik+bNRWyNUmbDaQKlhxyC1zbraBVAX5qJh0jOzpGl2ILfFJVkydHzmqoR1UDY7q4bHqPq3WPKB3LztZletlZV0CMQpSfRIZQ+k0r2Qv3QUu8xhlJvSJSoxWWYMLdbr4tdqOxs/f31hSIsVETInRjPtHpZWN15eFMOPUWh98fGwcpXC0hmnEJFEt8Xbf/XoBKUfMvBGYA8odQgeLxjhmVQaD+tE5CtQWqVvl5RoYKbDvjePrVzQYKY8pfPJUHDOHfL3MFY690EqjG1xiIKdAWhI6Csfm3qk2GoQCGqnbYH8c5BhYo7HXOv1ZcPROH51SCja9j0EzP//8zqJGYHAchyvtBJDIX779Qu0NRPn804OXlxcu68LHX/7A2/sH21FmYscNE2E/jnlqwgVgFritmdd18WSQk6INkVo3em/U+waa+fypk376jNWDWg9qLey1uF9UFKp3d0kf7NtANk/dWZOSg0x6woe7OnCl7n2jVGNdB59/WrHpQWOUybF3+jioVKp1Cju9FTAfAMcYfDw2dL1wecn85d//nePY/Tr9jR+/6o3rX/7yZ5INvt8/iAKP6vUUR21OXYjMaJfueWMpkmMkpUQthUdp7LUyglL7FCLEQIyurjOM0JUeJmQyp1U186nLIIbAuiSWlOjD+H5/8P442I+dUitlQEyJEJ0PiDG7a8hsTmUuS65TWgs+waoGgirrenHyHeG+bT9UYHhqeohONqvmCWFOD9lUEfgGMYUi3cl17yBSJPn0hTjs1UulHIXH9mC3MsvjEox0HjoQGXM/NY6983g8KMVTBI564EKG7Plm+M+27QfMRfPxuDuHZ4Pa6lSjeMlmYPhmqTrVnV4zcRzOqSSDYdN/MkUqPrP1OSnvTuCrS55tKjODRoc8h0DvlNoopVDKMU+op5jBk+VPn42Z16lspXHsFdWZSxgSU2/n8ORw6LSZEYdO+GmwjYrhuggVWHJiIXKJkbx4gva+Hdy3ze+9VYhTzizK7bJOQttPf8P8JFfrgdXpYwreXKtzM2QMWjMOaYweSMMhKLqfksc8ETQbnlmn9ozKYkDDqDYY2l0RqD68nIo3L2KFWiqldY46EFm43G7E6CeJdfW80LSukC+0rnPz2bzfanQGy1TXBWqDY9ux1tjEyG1HJ/8sx3kK9kmuNUc5UgxT5Tvow9vD/eTMrP5g0gA/SlFn8A1NAFUSzjHHEBnaZ2bnDzWqqy39RB2Cq/FOCBphxsq5naL3xl4bMhqt1jmA6RTY9ClYmRLE5z/9l+CxZkEdMXE9zJhiGr9pbt+o2Hzu0wyNxtxy0Wp/vqOqbuIfEwGJ850SkekL62Ae+K0m2Jh0Q8D/+zj9h36q7+MUWdn8uf0aM2kP5mk2poi28VQpP0W1ZowZsJCyeAO5urjob/34VW9c/8sf/+A+mFIIIpTWn1BgNaMhlPf3KTIYLAqZC0kjezt4Pyr3fWPrzQvegk826+Lwmp90p29rPoSuBJpJ6SGQc+TldiWhPI7C9/vGx32jNPdkxGEsw8imaBquUBJ8apny4tYHpbpjfZirsFJMSM68XF9gqpDu9+0pxTXGLD70puc1B05l+bDhvhZxyXdtvihWGs38JUlhckMqk3/zyJrnQlr9lKgxEeVCStHhBt/Tad3YS2PbveL7KB6WqxrIyTeezlnPsTG60Vvnvn9gE0OvvZNCdqWh9HmqGNPbok/F4F4rQzyMuHWozSc51DjaoDfnhN4fG77oez9QDh6quqYVhszN2zzws1SvaphScFX1/iuR2RatVDOs+jR5lDKTJAYxTVLQIEoFmRuXQBzOi/Q26NZB/QS9aGDJyfvfciJfrrQBexl8HG8TQhY0ZlJMLDnzJS0EdXF8FKXWTimV/dipY7YJRFhS9uTzFOjVT8TH5Mj6jDCj4a3Kw+s5/NpOIccUApj477lh1i0JSwqklFgvK2U/ZjJ6oZUKTedCtaF5RaOQQ0avkTOxPL3+xHYY7993vn990MvBaJWhRk4LGtRFUftGPYzaG1cHkxFgZTAtWZg5X1NrZcmLe8pGp9XiSszg0vVuHtup4YQuz19GH4oMYZSGRF+gY4h0+lP8kpg5jzqjjKYtQGcaj2GEOBGLZ9LJoPXKqJXeKoumZ0nrc/3Gpm1gmt1nWkkM6kWwwd/hZJEhMgcv58eE2ZwwOpfpxRrdkOTJQLWPGZjt388p/uq9kWKYCThMHqpNGsLl6707r93nCV5kzEHBN6/eZyP83BTH4If9ZN4nEQ8xPmrzbMOpep4/uBv4zVgW4frpwlIT9Uh/89r/q964/svPf/FUCbNZBeHVDwygCGw7L1/CjCiCmyk/bw/648H7+523bfepcU5QMRkjBO6teHTQKbnGJ7W4RHp38QFAWhbCy4Xbbz77grUd7CHwaIKwAwU0Y5ppBD6qsfX9HPARhU6gxww3oDZPI8gJ8gXLF8bLK1IbVgvog/bYafWgtWMmAxiBznu5O4w0lYCaDNPBUMHsTBIwUqukkMnhSgyJoisxZELO7OtnilSa3qAqMWXS9YLaDWNQpXG0B70fdO20l4hePrO2RqwdswNBEAu89x3mKW8w6PtOm3llomdsryJ6+k1gG8fMSitYqXiSyEDLIHSXMnswZ0MNjm7UdmAWGEPYhp88VAMmCeILIyYkCrUl6jg4BFp0wUdMiVFnQrUAMbs60gyrA6sHSHWRQCt++tCEBifTzQYy6rQfOBdmWnwK7VPhGN3UOi6Jjl+LROJoLiIYywvhpbK0jvZAXi9emSORn7eNlJKT2tGlhKKDpDMb03xzuL68sKZATkKwyDE6pXePNRrVeUETpJ8/aKKaQ2cdn47rcDFTG4Z177BLVrnqQohw+bT4KWfK9kN4weYJwSo8Hh+U4+Cabh4+LH4PHj+/U4bbBpa8eGdWbx4UoNWN4r0jfQGMXgrjcnOTsCpHac59ikOW34/G2A7C4qfeo1Z+/uUbNirLZeXl8yulFHIQkgq1NVpxcYVNf6EcndE6UQvbtvH9+x0JnZw7uXQuq7creFpL9nzCMdAI5fATSZ8oSaPRtPhGaYIQ6LXQpIF2ehf2vVJqodVKf32FFLytPMTJm7rR+dg9joogLpevHg81TCAmLEbqsdOyt35vW8XUrSTbtvP5cqNHxdbAceyzrHHDVBm2YyiaZFbygErGcM4+SCDTGVbpvXB/FOqofprtB/E//jPXq2+4XfxZlxgZdXMaJARfJ4cPkfUcjiaHXEtB++BLfqFdvSTzWP5O0+HLGNMQdfbVOKF9wgYevzId/uLp6r37dHI0n4ZD0Ocucno32vRhySRU0XOiiJQyxz9VUk4zmNQd7poyn778hsHCftZeaJpqHPW0DbzO3k9wP8jNGFc0eEeW5kwI3uW0b4+nSTetF4YJISdSXzBzEYlDI/W0JjkBPju4jP4UIHCKJYIiKcyeq8BACZqISyRkf/lb8TrytCyUI2C9QD8cFVBX+MW8cLn+HlWldrBxeCJ1qbz//EfqvtFrp9ad0erMNZvRQC5hwjCG726+ablZYIpV/DrFWWOvM4ZHZZY3DJf4ikSESF6i8xwWCNGNmKUWail083DU2gdpWVnTCylF53xqwUYjpYS1gkyDbWn1aQwOk9cSiZxSUDVBZApV5kUOGvxaB/e/hTitCynOBBWorc4Q0kDKgd98+TINqxfy8gLik/397U9+OsW/h6hetXNZbsSpat1b45IiKUzZjPn9dnionUcV51kDwFQLoufj8AOSEofXXCYtpJRmjY9zsU2MkHQmkkdizmhMbB+enVdr5X1/wzd1oZMYIdFNqUPo7U6vZZqLlV48UWNEmfmYPs2XozLiIIVIO3ae6lhcPHGUzmPbUbzIUURIeSHGaX/obcZ5eWpDbw4XGgo6Q7GnMIr5+ZHzhBGeir1xKnKn+pXn2cnhxKDhiSSYeWJ+QKA1hjV/9pufsnKMLiQ5zeIDF210t0g4VOy/J1PlPMaY3jNHDm6XlUM8Sq03pz9E/f6q6Gw87v4eTYGRijjXONW5UaIbxOf75ipHT8WI0inFEQzGjPMy80Fw2gF6sylqcoUkY6JTBu0oGC6zn8UXz9NYDB4TV1qnDA95OPa/U1XhGIMKT+mpTUMjNtV66jfLjXCDozZqd2iuD558iht5Z5Ganpl/8wbB09Qb1I2fhvNQ7sL3VPLeDE2ZdV249UhMmVoLg0gpZW6orppjYuwOoHsunE+YEYsgKc+IJKjH4cGwIRDTQryoS7nGYAxxhVFv2DjLBG3K+nE7wCyQO0lxVe/V8R6t8ByJNERyWAkhc72slOLhwhoDfDRGDVgV//56xDDS7crnz6+E7L6ZXg96LZR95/h49/T13rHm1SoE749CfmD/OmEQYXhYyJTSujSYGcIa0Tjd/UueIbguHIBE0DTTyld6V0Z3W8N+FHrzCvJuzXMLzcgps1wurOuFbkI9NkYr5BQZZfcYHVGkHO61m4npbgv+oUjEhpuK5QdzEUJ8WhyyJkL0yheHIb2Q8wymFQ3kEMnpMpu1r8T86jxe79T9u3txRqcPmbJ1YcnKqsEVXEchhfi/q1ARDRPCmoZlmGHGrv7yZAieorDOtGHMoSeqQ8kxRA+xPr1ukzeKKbofcl2IecFqdc6rVtp+Qt7CIEJaPR7LBDMXTzGtAY2GILQWqc1N9GN4uLBf1DET0/0ZjsFj1lodbA+Pj7IxZpfdj6zN0fxZGkFAZj/WkHNresaCyWiAel39TOUXCZPj8WYGp3V8iPKeLZn/zUOIB32KojwEO84UiqN4ck6t/Rm5ZXNS8DgpZhGnnUHu/t09k+31+Tky1dE5Zb8mU5E5xhksjiuPza/PuSkx/GcabfJlagSmGhXf0F11HVhzJmqH0aiT24rzeQ+iPKuIbPrVxKa613nhYTLzCR1FGVPs4z+Tp2nIFO/0k2ct9W9e+3/VG1dvg4bLX5kLAngWIeLVIG0zyii0+kDGmLyV8vLyynV9YUmRJQa+bRu9d0Z1OMBT2v2djcNTBBBIIXrApChrfiFFf3m8PLKhRJbbZ5brC8IghAvf3r6z7QUsMvoDGGhQf20lo7LQ27u/UMHl3MPCcyPykxpUhHT9jS/oMshxofVGa4V632jlTh8+9RAzEhIaF6w/HPqZm1/ON5bllWHFU/MVbrcrOfxEzhfW24qQvPW5N0I/sCWDXBAplO5GxXR5QZILVa4h8dYHIWdely9s9w/y7ROjVqpCIs5g3TtBvVtqKzvj8cFoO709kNCfm5enhjTUuptGUybmzPX6gtkszWxGCpGYLuR4RRlEyZgJv3z/ig1FTSmjOTk8Jcr0QHlU6nYQgsvmhw2kwKjFo4nmZqSaSGvyzVIcnL3XOivkO2M0N4uew0JY/CQ5BsuyIjFCiGhYCNIIOnjNL7BekLQQ4s1bC/pgFGPbPziOzr5PiA9XrtXRGZZp3Xj7uBMvV1T8RMRQhjXMOiFmmrivR9zyh4TBMoOOfXyJWNl8IQue4Sh48kSp1VcFg2aDtjdsgpwRgWoc/cCWylE7Gg7iSPRSqPtBvXsLMqrocmG0isaVmK9eXsr0iOFlqWWWa8qIpGkmj+GCiFCbkfX1Gav2OL6jOlBrfL/XyYQZQud2VbRHr9w5IpKm39HE/Vb46UfwkGiRMFW7hdGjJ8OMhA1v9e7+I9Oq0Zt6DRLQDz/Rn9mINjwXsR7BQ7QDMAKtCLUKrQeWS3ryZ9Yjtfif3zfftG0ooyYGs427O+pAH4waqUTqodQMwoqnWp4SEk/VSEmwkekj08bCsRvHAaUIvXprtcRIwHlFU0eeNCykkEg5e12g+aKnmunDURLoBF0QXcm3z3DcEWuodJhe1tZ8M22idE0kktsPulFFPFeVQJbI9XiHUtj/XrMKx1T9jEmAuip5mna7JzA8tjtjNFo7fEIWn3R1e7hfKCXqkr2Z14wlRq/E7r55NYMYOrFP75B6osQQ4+39YyqAOtZB40JYBzl5bIoGYS87235QSvXj8oQDxvDAWpujrgd7DsYMgWXM7MTRsdZBu5PKfcaBUGdKgf/MOid4JU1Tb0JCJqQFk/ZXfWGB3oYT7WODYgTJ5Nsn9v6NGB+s5ULZZrGeGZQIVHzrrDSbcT5dEPVG0350Ph4fDlGMwcfbv9OOzVMWgnuDfGOuME+K2+POEqexeB5ZTL1MMS8ZRkVsnsrUg0/3vWBjZ9RGPyoWF1QrUXc0GGKB3oxvb99hzDqWGSk1RncI7v2r+7tGm0/N84GC4SWR5wlFQ3RVqLogw8wVqL74GvRK675xdVHsKAgD65X3/uFwikZKfBB0EGTwoRvx8krMV64v8Pq60Efn+/cP3ndvOe6tY2N7Gjkbyq6uthvtQblv7jfUSJ5inzEKohELCYnJyz3F5dNHt1MICfhz7dO+J4a4Wdsn/22vFGnEJbqq0WYyCu5JDBppdYA1JEApg2334kdPUfHLOrrzhW6NL4xmWGswOjmdp/6Exuhm6egqyfu2P/1VF5jncbgs43m/jDO4ekaVib+bMWU0+ueM3t1CoQELOmHz0yjt4bEhBHJM5DS8ESEIS1rcyydMxMbcRzevpRtzB9I6AUdJcgozLsuvcM7JUZRmXNY0FY82K0ucK1rX7IrANgeOoc/BOmDISHC7MCQ+vXM6BSMpJVJpSDjzTr1Icl3TzCMM83sZXFc3/6t6c7rDFUJYw/O03ad4QhXWS/Y9vQu9V8YYxCjzV6BXhS7Pe+2nNlcLPorbkWpvEykYhH7GGYBZ4RiVOpwW+Vs/ftUbl0zI6QcIMENTp1pPp/TTRn9KZJmf31ujzSkojjw9Hw47tP5DidSmP6f/tYJoluHt+wF4ormYErOQNYNVhgWCKbUpfVbdD3Vo0Ce1GeRqNuEjnnyEzDgJX7LC/N49ioXuggXOhI/zsyYkchK9Zh2x6iR56wRzDiHN5GtX4jXG0Qli9Fqdc9CCUSn7D9gxyZWZsDjlx54n7pe9MIYbCo9j9xSA7gtjG0wMv4G6DN8nzwB9OIynZ6GgzsFjbuQaJ8Q525aDp4aMmYTuJlcD8a/T8FoQLExu60BIcyr9EQ57eqxGb4w5UYpOU/kw/zknlKchovPPOLLrJ64T9nW+Qh364gd840V9DdM+zeID68EXcPE4nUwmj0CIB5fVh4neoZT6zMDsvTr/Yd755H1sg9ELTZuLjtJCAWwUej8ceo4DjYPVTv5w0Ks4USf+3NTqpthTfNRiQ1XYj+IRViIsGGJnEWEjiC/IFw0/BDb2I3Gkd5tvofz4vTNl4YSwgTPIOAQvr0xLIiS3dphG2qgOlbZOCuoT/VSkMU3aQaMLC1RIeir0wuwVSw7Jm/PUMUYkCK3zV9SAf+jkuWOY0KpMRdzzpzhlRJ5a5MPneA6vIfgzEFVm0at//lOCrpBixKaU3yvtXcuTY6Q3NxKHmfvlfLjRRzs/iW7qQeB28lk8lbCnCtCYZbDBg309WBmXoM+aGlXfAO3UHwfv7nLF/WDgULbOtJXT1O4Dv00Ds+fXmA2sNx9EUIJ6MobtlVaLd8zN9CHDB4QY3VLQrNNn+v/f+vGr3rhicDmlTum6O9X7JM9n7It6xH8IkXg6vgVSnH4djazLjbePD2rr7EebqQDTN4Mb7GTyXmda9HpN1GM69YdHqqxixFW94K25vHbJr8S4uPZPFnxqHzOK5e7fj/qCeZKeUaJDTiiQZ0AqSFTQPCep7D9KL9jwhIIx/Ra9dVr57sGeIQOedpBiYv3tP7rSsUfKblC6h7X25mqoAaMKl3x1eXE0cnzh3FePqpTtO60VrxoJrh6L14VLdjP1sEzkH+jbg77dae2DMLr3lr2+sqyfqGX3RbPNxVUU/0EdmuomiCZUk0M+yReZRGJYYIQJVajj5aV2aG43CBrIOdG6b2KG0i3QRqOVYyYbTF6QSbSHGcpsDj9F8elfTsyQgOri17Mffm9EkZBo1eHasr0/hQ4CHvSahazBTc820zYUkk15977x8bWQQubz9RUD9jrYi9FLnxl5nb28uzAE3JAsntqdrXKY0s9AYjoaBhoK++PupwgJDpEF5xe2Oijlg9obrXdqO36IBmzM6xG4tRWrLgLYy04Q+PR6JYfE508vECLDlF5dQQmejTnsLMr0IU1UkZzRXjGyp/Mr6LKQ15Xby5Wcr4CH4YbUWUIirfCyLLzfN8q2UUUYcUGXC9d8wfvSvKnBEx4iIsqaV0YrMArSOst6IcaMmBubz+zF8/Tmtg/n72SKRLzXSgg2GOYeS+mdlTjrX6DXOjljIeGLqQBh+OkNCY4oBM8stFrRnIliZAULiW471gdKZ5HZ5UeH2pDuG9oweSqIdRg6m8W9uJQ5dHWPA5OzCHc2OtROWIbzo9Gfn7N0U+YwJgJ2qj3FJfEeSN6orWClYL0h1knS6K3Qjx3qg37saEqEfGFI4NgP7m93jtpoM9qMKFxvmZeXC7fbK50/Ukeh2d+pAfn//n/6nwlpZf/YqFHpdNpj4/Lbn1jWK5flxm//+T9yiZGrwqfPL6SYCKo0Nn750x95PDZaDPzpD79jPwomSjsOLCiaEznmOVQPvv38s59yzBWKZd9mIr3LS2NeCJoQTRNWdFFIiAk0E+ILYsWP9hoQ+R0WEhYy2nef0kfH1Mv6nAC+eM6cBkLKT9+G4JP0mei3D+dnzDqW84zyUSQu0ArBBkng+umTi0wk8Pm3nxh7RQ0ul1dS9OkoRoXuPpiYArXWU+3N5Xbhcrv4QPDplTjz/PYyaMcdYiReLvzmy284Y5Q+vn1lHHdG2SnHTqmdIcLl5ScPfp1gkCQ/TYp1T56f6QkZYRZUzyif5FDlaO7bSZAWQDoqCUwZfKE1F2nYyKy3V8DP5fe9UMuDfjjfGNNKTAtLWlnWxJIWbpdXcrq5ECErrWwuMpDop1p1lVQQY/38QloWrimDGmW78/bzX3i5LtyuV26XK2175/Hxxv54UPbGmBtcQIjRT1j7sZHyClHQZFwvXpBJiARNpGX1E9vju0NJ854kICsOGWZF4+LDlXZqObxuvfimdfTB+1HYNy+/lKSkmL1FWWB/3L2yJCiXJdO2nVIO9u0BCuu6kJNzWnvbOWqn7Z5m7mPheRL3k4GFNFGGMTlbN5WPFrHakLO7KTgPEzSDemmoiZKFmYDSsLYzqsOox8y2jDGQwrPAxlETmXmAmmCyQWf+ZBjOjGkIiDlsJ+A+o+jq2uM4iCGSQiCtCn3SB3NwdfjZSDr9ar0h0lwSP1sDxl8ZdnuZHGv3IaT3PvvC/HuLE21AZl5i79PV4t1cwxzuTMw4uDHjwJgIjLiqsJZCOQ7q4crYpIrl/Dw9np/vz40SQmDMe2P9bDB3mmT0jtWGlebpHbXTSmXfixfTDs9ttLmxtm6Ux0bvIBL52D3+SVHWGPnt73/P59/9nnB5oYzIUeDY/07l8P/Tf/4fuLx8ceXRmugMtvd3Pv/j71muV9a88rt/+g+sMbCq8Pn1hTix39Lu/PHLF94/3ikBfv/bT7Q+QBOjViQldFlIIUxZ7eDnv/yFclSOUvn+8c7b92/s28PTIIYS0kpYLnSZUAWGpuCueBNGSPNBA0JGY4Z0QdIVa49n944/lGGqnIaru4IrFUPyl9GsO/muvkCsFtyfIUK6XVlyIqVMWm+0sqO9k4YnyZ9qyWVdscNfKA1C0bM+xdtnPYTUlUKuX1JycmluSAl9eYVpymQx+hrRGEiXK9fPn30hm6ni9SNSH8G5ET3QFFhfrrTaPKHAOpod9sAGOQTM/PfyqWLCvXVPBVhWUK94CKYMq34qMWUBYhP6cP7RzjSSEFk/32jtoJWHNyyHQIiBJa28fnrh5Xrjd6+/QcMy4Rdh3958yj49K+IvrTD4/Pvf8PL6ym9eX1mWSC07H1+/ssYpiFHleP/Kvt05to2P7wff7w/246Ds21Tsee3FuaCKqhdXLhdiXqdo5rNbDx5fWZRp3DYuKbAG4ZKUvMZ5UlTCqDwed47j4LEXSmtedV87rVyJSyRfVy7LhbwuhKi8v331aX8MN6LuD1o52La7w37qOYh73dj3ynY0rKsn0wzfTMdUIJo4mmDD1YHSu0O0baD5TFP3YSSKPk+9NtNCJMz+7Hgmus+Q7Mlpp5zIKZKjc6RBHMqP6p41HRNec6mKR2DNgGFRY0pvgf6EL2FK04PNEk5P2vCqGQjxLJic+/GESGPyr+XKzB9fy/BkjzF/Jn/Hx/NncckdTIYeEZv//awz6k8rjQZX2z5VrXMdmMfa51DQR8es4a3aE+6T82uPmcwzB+tpdHaucMatEUDqSbw872kfY6JRPjDbhCyHGb1VjtYp9YR5HQGCs2/Niyo1JlrplMMDAP7Wj1/1xvV/+7/8z/zun/6Ry6fPpE9XugjffvnK7//ptyyXjKbAp9unmdht3OLq095o1MeDzy837tuDniBocQw43BBVQsrEvGKz0dgMvn688fHtg/e3d/7lj/+NP/zrv/P16y/8+c9/gJFAF4grdfjiNXolXVY0CCbqip/ioa8SE2FJhOVGXH9HLR8wSfJSNi+vROg0LvlCSom8RJIm5xx6RV8iMRoxgLD4KSglPn35zOvLwuVy5fXlJ+77DrURj8rPP/+BUVyWfPv8Ba3CKJ3v798R6ZQ6qAOIjT52er0TUIzoPUfZe5NSjoTLlUd3OXW6BLIlggZSWmkantXpec3YXWnNW4q7GJKF60836sfm3i+DmG1CbcpFI6178sAyK0uwPuOVhnvwNHhskbkfrdYdmQnYMSujTg9P98JFjYGUE6+//7/6JNzLVM1VRDpZE7/7h9/ymy9f+O9/9w+0Xn1CbYP3j680Bj0I10ugk+kE2qj84z//I7/96Qv/3T/+ht/89MXTIGrF7ncejw/uH98p326Yekr813978P/913/jz7/8zJ8eO60ZosqSM4gRicS4gCWuty+s108sl5Xr538ixIV2fOPzEsjBUB283m5csnJdld/cknO4fXBsO2/v72z7xn37YN8fHH2wDSEF4fb6ypeffuJ6vfDyyf+OX37+d8rbnfLYuN+/oe3BaAd7eVA236jetsJ/+dfvPO4bj70Q00JtngsYQ3r2gp0t0M5JCtYOenUBR9TsCSUEpA+SRHJwnqu0w4eTOIOAo3NFY5insVgnauT1diHnRJCD0f0kFRUnYhrebGze7CAqrGvCziR4BtZcwDXElcndGs2cs5GghDMppnRMxhwenUc2wZ+HPmhjsARBom9eQ89W7OH+wVF9M5lp9IMx/714RuX0Ysnc8EwaFtyL5QNkQMIgJkCGG95FsOJr2QkbDoYHMZgbiW0On2hwelbngDSFY4p4AMzsnIvJByck8DgOr4USQ4LMDXjajdQHTZs8XJsb1d6Mx7FzLzutFex5yu6kMMhR0JTp+86x7zz+XmtN3vc3wv7CwyJaKz3A+/7gv/6//sJje/Dt7Rs/rT+R1kBaoP75g30/aK3z5fWCBWOIR/N0KkEjS7ySXheXcR6dj9aI4rH9dzt4fHtQ9sJQl4HmZeXTb37L42NQqiusHPiKmJpn3M3IFY0JiS6jbvPmmVYs7AwrnD4SiYGcLmjwqb63WSyYdXJInlq+/fIdtKE6WNIr4XYlmPH1D3/ha/LpOIYLu1WkVMKjsq7eBxWAe/8FHgOpEIMgZDSA93ELqkZSY7SFLkIX4fF+0JIQUmXUhSNEd9KjrBfPSNsfG4+3O7ZX2Aqw09++0x93jnKwtwd9VJQCxX0/rR+c9KQEI0V9ilf2fX+eLONMdh/dPLZn8pwiLhG25tPmGBW17EZm9ce8V6PWnSp/8CQCgfLx4OXTlevtyqILpIVjwB/+/O7Etw0vtKRTe6NuHbPFFy2UESr/9f/zL/w3/oX/xwKfX76w3laWzwvHf/t3yvFBLXfCY0fXxFDlz//bnffHg70cIAlm9BAkQnAOz7pS+sHx/Rv2/YMRIuny7s+Q3HkV4+Wy8pvf/kSpg3UVLhW+/+l4Tt19L+xWOerB96/fvFtOnO8Lt8z98eCx7cgSWNeVnDNNDv7yL//G49t32tj5aQ18/nTjn//zf+Z//S//wrfvH/zrn3/hYzs4qhPwMs5FDWh1ijmcuxx1uJdKIkrFhkOKXT39n9oJ94PIBz0d0+unHtF1dMQKx75RykHUxrFvPs7tbhC+XhYui5/O04T3HHZzHHVU34zMhLR6S8EYztvBj5Ds8zQyxmBJfpJLMc60/smLL5mcV0Qgr4n6vWN431qaQ5EKriyd3KiNMRsloHUIs9hTmAZeqf59yCkOEZaQ2I7dN7nRyZGpeHTlcYyBqMJyuLgJPB9wWSLrmlnXzBYCBaP1Sl7yVEjOazKTXfo8FetUV7p61C+dmKdpjBAZreDlq7PCJGUPCD/q1JN5eMPnT5nHcbilZD7RZu67k9pZk/Dln278H//P/5n39w/u9zv/y//7X/+mtf9XvXH95es3SkhIeEfWhY7xfv/g/bhz3+68vX/jz/FPU8ZptK93jqnaul2WZ4tsSOk5UeV8gTiodXAcjWPm/okIlcr+vtMOj1qRobRWeWwfHJsXADYLtPZwmIvmyR1pwoLRMIrLhIt7lgaNbhXwDiJB0aSw3AgxI8noRDRGargwWCYkcDDKBtoYMrCjo8e7T2PdnPgQxUam9AeURjganz6vXFNmTdmNwTWh5mqsuhW2vfDY3hFVcgTNgidTTJOwtlmgGOnycJOnBodYNc7mWecJyv077f07ve/IdsfKjrQdKXf3z4wDq3NqHJWmNjcuKMmlwmD05mS+qDA0IjoYzV8I653Tm2NWEKJDUMYTrg3SKW14txOD+v7NYRhrjDpIoZEDpJcbY9s5auXBnZQTQYBhjPHhZtchHkA7O7SCHoyibqp8FGzbSd8j+ZvSv77R2kZrO0vtUHRuug7xhglfjjZm4oNM/rRRmsPZWMJIjBDo5qdJG9899aQdaIDw6QsMwVrn4+2re/vGYJRBwwsF39/e0eCgWTUlvE0b03CeS4J/7TY29m9vWK28vixIWGgdfv7LV/70l6/8/PWNt48H2+6Qee1eJdPHLLvUH4Gso9v0FXY8z9ELQdX1165+FLzP7YSpDP/eZ3hu1D6FLt6i7Auscd825C2y7Yk1e3v1JWfsdqF2wXrFWsV6m+kliVV1BvM6ZxasctRKqT6cWu9YK376UWOMRK/C+/udPgZ5L4jcJxw4eH9/91itNkjrQukLqsJ9352jNdhKJwR+2DJG42iVIVD2g/1w+4OK52IiYGFwlMpRCttx0Jlq3ODQdJxKv/3YMZnPuLqh30Zj9Ept3iBRSkX1gKODBjT9KEV1o3CbCUPiytzmSt2393dKOei9wmiEdfHg3qksHt1ow9x0jKulQ/DmC5s+tCl98dNp9+u65AshJvKyTB7wb/v4VW9cf/r5Fz5K89bOlGk2ePv2nUcv7HXnsX8QRZ55fmM7PGna3DEu5snJ68snD9KMkbRcObY3Su0e4CreQ2WiiDXqwzPH2qikfMPGYN/eGU1A3UB57J6+LDIIaSEtFzRVmh6E4DUVtXQsCGMEetuBipk75yUYVg9iXshZaB5bD6wwrnMT8e4cpIF0an971g30PtDk33Nrkba/QWuEbrC/Ii+fiNdXYg0Eubm5cHS29w8+3t75+P5HQlq5XFbiy5VljcgoyCj0sIIFpCdaC6hOj1W60kYkXa6sy8r9OCj3r9Rvf6CUO6EXb6ptG7LfvfyvO9nuG8xfh9IKJaUpUVZsRE51SNdESkzC2OhSEIuIBVQqMVwI6r6ZNoOMY5jcirl9YHt8pdWdUTeCriRpZBmkl9/T73d28wTzy/XmE7wIlG/O82nyrrEYZ1X9Tu3Ju4/qzn3bUDGiVHQYY1T6KCiRvrfpH3rxGnuU/RC8isdP8LRGGbC3QW/vIBfQ4TzjcMVjLz+TlitWfWG5xYhVoWnh/vWP1Ob9caMFxAq9V97vO60X2hgcQ7BRqH1QhnkG33BDaj3eWTXwcrnw6fWfiHmlts6f/rd/5V///U98+9h4e+xzwW7T7iDPRUrjlDifIa+jzWO0w1czmRZaQ3Mi6CBKdy5mJl+UVmctSWVNPjTmGInJCNF9lPdjd3g5KikYOSgv1xXo7DO9w3pzU/qSSD3RVeilP5vFs3b26l1YS4yuEMYFFMMapQQeCB8fH7TmocatzlDmIOzbTpl/RlLgUrwKaD8K1zWBwcfjICadEnhBe6VXKL2xbwelVnrvBOleOgpI9m6rfT+47ztnxKSJS/KTGozOY3vM9DQhKm4vaZVad0qplNIoR53ByjBMybeFPC0AIRm9T5FQFC8pnvfpl2/fverFfKPMwxsFWm8OwTYv0C29OZ8aXYjm0fEe9ODSfjCVWStkRL14ukZIxEX+5rX/V71x/bc//4l03zmOweN4Zy8P7h/fCOuNtCxcbguvv/1HbjlwCcb21btr+vAk5yU4yfhxeM5fwJDgUs9SGnvzbp0+iVuh0w5XNQ2rrJcGJoxaacPJZg2ZvK7uLVHv1zKG99PEaaU8J43uCcuYG4rpOFFqMMoHA4eS9seBmRHeAq35AxbV4UKTCuZSVnrxJPmpSDJRF4EwPDdPEvv7V7J1onUudeV9v1MrIJ0///k75ThIUhlmVGlseviJtO6048HWP7CZufhoOlt+jfd7Ib0s3L78xJff/zPf/+3fuH/7A9vbnzEOtBdktOdk2Eells2Tvadc3zdbh2VGDOQcZlL6K2PMt5rBqgmL/rJUcGFAq4TQPeDTBJOBhjS7xwZBXPFmw2jlzmg7o+0c+zf68Z36+Mbr5Ya2g1Z27t/eeLldnJhujU+pYRLoRAaVfLmwrAs/rcr7oWyl89jeaBpIUXhZlHZ0xigYhS/X24yOAqNTzRPc7/cPtPtzeRTDND0HpSxCGYXaKt2Ezh2sE8cH3z6+ebX8ZWURHwra8cH377+4EMBcoZZmFOdRB6VtlD4oAwKDMgZ7G7ReOMXhgU663tDrym3NLFH4/v3B//N/+V/507d39to4WpuwtqtOMSjVnxnnucIsTa3UVqfvB6A/i1237YHiIcV7uBLvDzR4VNR+v1PqwVEPktqzhgc7XNEmLn0Y4obozy8rOZ95kAENHtnl9TPOlfmfZzYEjCnedyi6z3gkRYmaHJZWzy1dVKg5TngPkp6FrxBlZW+NOgY5R09nV8gpunqw9am2VDfWa/grEUujHaffaSDBGxcAQpOpKBbO+p4YhHx277VCr4fDiMFhw6BKq9WRji0TbJCDIDlhNmZzNtxm2r8HUbvvyzFNPwm31jiOjW3biQFS9NbwVhv7Y+f9+ztX5xNcqHP2uTX4+vWN3gY55dn07pt1UuXy+pm43tia0dcXhim0+9+89v+qN6772zv17Z2tVI66UdtBLTu5VnpZoF+5h4UWlYd0xlF9ExK86gJAjLwuDkVJwCywF+9sat0T588DrY1BSl5Pga683D5hw9geH0jMxOVKvLwS9IracMd9zBzz4a5tQPcmXHTg/lk3+o3aJpE66+O7E8ySlaDTbNwNIbuJdjQ0/QisjRLcADv9YE63uts/hMAaE9e0QnTjqprxuL9RmgeXmgw+vS6ET1fWrFyun/yIb25M3Vph2z6o9ldJ/FU4rDlc+tgI+5VePqAdfP3Dv1C27/TygeggjIFO4jgmry2JeZZyTjVlTMlbYFVZlxURDyiNMUJ0NVuKCTGf3nA/Kkkmt9F3Us6TG/QhwFMzDtrwROo2XJEm0wjKaJTjzrDKH/7bf2HUB70elG3j4+NKjF7N3vMgxgVNK9WMww4eR+PxVniUzlE7Ryv0Kd2/x8E1Jr89QWilcxz79ClBFZ3lgZlkrsxL0bh3KM28taAf7pMypYLHgI1OGwdXjWDCUQvvH3ePpOrN+8HstK6LJ4+o8HJd2Zv3c6UO1g+kuTBlnB1kMfDl08qntHJdFj7e38jdv349Ckv0ypfLEritXu6ZU0RG4Oe3d+5HYXRfXIPKtHEw+a+pWIWZ1NCf/91sEAgkzUhakOF5kpdxJVqZKrwZKitjwtiJNSQWjc5RTe84ApHo7xKdWqoPgkNAusu4BWKK3uyMPKFJw6box2vuvc/rHJg84zAEedbX916dax0eExckIHE2VSOYzoxImIOEETV7n1nvT+7M/57Z0WdGLQ7BldKo1UjV6IsLOmJMrtOzSIiBlD2CLsZIzishJD+dT5LJ1NeYoN6tltMMqg4RNLlfEvNUl6C05jUur7cdnfyXt25nNHg+Zhcfnt2ovEwBlFGr877MgRHhhwldZws7wm240vDQ8Dev/b/qjevj441H2dlKceWOeUoG5p0zYvAI789E5YAXLNo0Hpt151FS8tibAdK7b1ytzYXux8sGU94cI5Ij1+vNlT/9IKSFeLmQbjeSvjj8Y42YLkhtSHOcv1sHq4SZIqB6zn4uucUGtVdGxdVHfQbznsdvC+71GgdRpwxWhPhXSQbnCuGErD67f1IKNJlTZqvcHx/zhXJ10XW9sOYL1zVzud2orfGxD1qrHMfGY/9wYnt0x7eL0tqD1pxA13pltANa4e3nf8X6jlDRMH9G80QAjV6UKDGR1CvMW3WPjIQpqc+rm4SntJrg3WAhZI7pJWnNaMG/VhChdiMk95+NELAGNswhsVqmTHde0zGjjKzS6qDWnZ/7f53dYQV6ZT+u5HxhyVd6gbw0cjcKCsck99uDvToEN2l2VAa7NPR2IeREIFOrcRyF49hJI1BnNNOaLu7jEfcgjdYpw9jLYFSvojDRGSYd/d72g2W2WRcbvH/cyRMy09NZavh7MMeuGANJnPuTobTi+QnJBtW832lZEr/56RMvkggmPO53Yik8Hhujd1YnRwgh8tOnVy7rwrokoiVSiny/b56zWCt9uMBmsexVF2NwlMO9hyIwfVF9NiswIEhwNWWujOSLem47tRVqPRgN9yzh0WxLiOTgG5cLITy8V2ceIgJVGjZcXYo0gvgCHWJAunn6jtkzxUFU5rASvRGg9/luem/XmZTehu+SbjYXaumk2J+WhuCNlF5OOSN7vI8r+fNeBiruqUK9jsfU/WF9jGkoH4wBtXkx6TCXt/tIkoipulAjBXJK5LyQUv6RBDPXLA0RmU0FKaUfG5ckZNhM95glus0Hr9v18pTaazibMNIzlMHkhCgTJp02Kqcpn/lOOnjoXNiYNgAZnVgrsXuE2N/68aveuP749Y/enfQk+VzmetSDgRst4mNHdSB2MErxHEANvH99Q3HYoZsyZKahh0QtHxPnBtPkE5RCCBPmagCBPexgLkF93D9gq8j7Qd3/3SEiq4wudAuYRJbbJ6w/nPdonWbqD4+myXM4mVyPjTrGbOT9TN13RnfVlmPWDWhzagqIRpbLhdF3rNdZshgQ6WgZtGj0XSnBo1+OEHlXpfXNN2sJXNYr3+6/TLzaeL8/vLSvdW4vv6WUO8f+5jL/aYGpdWB2YOYvmR2F/eOdj5//QCsfLhwIimqiq85I1MbYNo9MCu6rsuHZcff75kbUmNi3M0tw8M47IV84o/nL/kYrlXo0NK6+uBs+QMzJEs2slxc0KKNvvL87T9GHwfBhwKxS9vv0m0DZH84fis2XTlz5x5tDbjrTMjQTop/s1HZmPjcSMhojQY0+r6HukZAay2dPFiBG7kd1vsUG39uda/SK9bf3jY8yvAJkCNY/ZmyOeL+YTIhm3CkzKstQPu4PPl2vfHm9sUpihk7xsb0R1eHp421zaFnjDF72bTaEwEu8+OS+JCQGanfRxhjGz2/v7EeBIFxz5Hq78vrpE+u6chYtvi6vrK+fKc04CvzXf/tX9lJIaeU//If/REe5H5Wvf/kj275R6sGYGqLtqJiAjl+41MINpjTcF9pPL5ljPziOxHoZHM37zpYlsiwLy5JYL8pRfLN0YFK5rInruvJFXjiq5yh+PPZnjl+IgRyFNbt6MKiXMKaofPly+1F5sjv/FoLweruiEvH6pMplVS9TPTrf7zuh4OpDEa6XDCk+yxyHuTRf1U9q++FQnM6YptuyzqLUTikHKhOxMWMvB/suPJKScuaSI3EJ9NaIyvTACa+vV5a8EEOgfCRqLYBxvSx+ggx+zYLPuE9flppCSn6SXTJLVu4fK0c56L2hAtfLynq5+LUKDmEOPJFDopuubyHR7QOlk+PM75w1NO+/vPP2y1eW3//Mv33/E612ztzWv+XjV71xfbrcfOKR6WvA1Tvr9UrKC2m98OWn3zvJLw5HzFJRIsoYE5fXRBU/XZUGw4pDAB0s4EbeGIkJLpq81j0MXm43hw5otBqowzi68fh20HuZajmhTfn6kAUbC6NXWmnUXjDPTnA4ZLgHhgCjeZvw8nLjcv0ECARox4y1wqXg4lW1hJixUWB0YheIhoZISjdEB0tMXPPqSQXqeLlEI4nXsi+XzNjGVARVjgrdjMbAxgulbBzHne39zb0p1tkPo7aNWiv7vjMtljAGOS1cloV18WbcFJK7+0d1j5r4tUWmoXo06lHnS+5KsLy+kpYLt/UG0UUbUSLNCu1oHA/v2Rp10A/3xSxzWh4KKV0AobVl+rwKrVVG15lVCNYvrh0QQVAul8Vhqnh1Lm+egqAQQiaElbiupPziBZxyIPiUq0vk5XabvrqDqxdfgRq3nLHhUnWVV9psuw17IYw3em0cW+frvrM3ZW+B4/jukVjDqGO2WtugNWHJnxANdB3EkPjy+ZV/+t0XfrpcZ8D3oBwbOTsUVWug010bKhmxMhXjgoTqhZUpejPxUIKBSKEdG9v24Ov3b6jgE/vq9/XcuG7pwgUXADw2475/ZtsPeoNyfBDyldfbCy+XKx8fDz7udx7FfWVjeGyaP8uRYZW+7e4BEuFFbrP4sFNb9a87BiFeMA66DULM1DYhtyn3F/FmBLGBZc+LjFIc0TCjPirXS2JDefSZJTmMNIMCNLh4axzQzKuQ2mPnslyc1wmBvN54lcgLgetWnpL6fd/Zm3M8j9afiRsxBZaXV0ZcaBqpZaP0zlEbQ2cVzIAiAVIixMx1VZbeWXIk5MT3x8GeAkGMt21zsUZUrpb5ogHJmZR9UKwGex9Qqw/eBqNVorlXciDUKXMveycckJIQdPD2cJ4RBp9vKyEJcQ1cX1a0uEIwiNCOAzV5Qv8BoDUPesAh0m7eaPDx8eC31Yg4NdHP8Ni/4eNXvXH99PrZM7lccPuE25bLlZgSmjO3648pIUn8q40r0EdhmNE0UfGSQZ1CBevmvU7BF+GcMzkLF81+U9Lg5eVKSo4JH7uw18ZWqpPtrbifqAvNnM9q5uWGo0WqNKQZNnxatxEwi/RgdCt08bqMlDORxSX50bzh1AZCw0L0jSuIh9Ba9lDRpkj00sa0vKBqrClzW65orCTFG2LXSJJECpHlGuDhSfR9FEoPvsgpHMdKKVdKuXBXpY9KG428QKkLpRwYgWq+WY/mf3fOmXVdCVlIMRMkODc3iz49WSFNWHMwmjyVkSlm4uVGWi5c8guEgQbP/0OFWhr7x0FpD/ru6fRm1aEjVSyYN7wa1GaUrUzOD1eOoXSCtwufG5cELtcXrsuV1+WTG1O7b6hiOyEuhHQlX2+k5BmUSc+NK6JL4PXllRgM5WAxQAYWOosCuK1A9ZUe3X+WjwJ1MEqlRCOkxNYDW4tsuzGq0btRupP82KB1iPkV0/CsnL/dbnz+/JmfXj45nKTQyvHcuEqN9MlndRIqxcn/oKTs6SEEZS87sQciEFOjl43HfWFYc9l2il6BkX1Cl9n5pVOMFBNcLiuGcGxeeChhEJKQ1pVUOvFoUDYPsW7Na4JsGoxHp1U3FBuwLcGhtVa8iXjaGlp3DkvOTXnAUGY9PcQOoeP1N3amVcgMKTFqa2hSF2C1QewylXf+T1UQw7+fyY/WUQlpQScUm0P0k/fk5kZv1FL4uG+U5oHLR22+3ogSNSApE01Y+mCM+uRdjzYA91i1YbNLUEHVrQDJIfT7/qDPHrutVKIIfSgpRupw+NdU3FCN///SBwG/BqW7oVnFQ7/Hmd86ZmGp+Jq3l0LrddIM+qQeNCoc0zCt4iHVuAfNpi9OZ9P008zFVKy2QavOCfYxVcR/48eveuP6n/7jfw+6sG0H97ZhDK450oPSzSh9UFufCiGltuJwkyhlcl7CoJZGnwVvqp4dNoAmQiDMIjhYpjophsi6LLzcFlL2SJ/9+JiVBK60CuJc1NEHgZk1GJJzYipTORr9lDJmBpooakJveaqAlBwCMuZDYL4xu6pQaeKQEO7x9MibWSCgJk4+j06cDdB+6lRSEN+ElwXMgzmTBtLFiXFs51GFjuPgMUSWnGhVkeotx2MYyyXS+8F27DQiejyo9UHtZZLSp2s+z1Ovh9lqTm6EHGPm6gkxwuff/gOXZeWSF0SEvRUv/9w8DilGjzTK60Itg/f1YPv4zlhc76t4ncgJ/Rku/BDz7Dqbja3d/IVEhZzzhIW9cmJdLlyvN675hXTxNtz9XljYPEw0XUnXT2h8QUPmpjt1eBxWiK5qCzJYNDBKfZb3+cHYk7j3Up7BzzkrIWQqg+NRWNLiQp+UuaTukv/mG5d6IxbKSmF1ZWJv5Bx5vbzy+fqF25JZbwtxidTtIGrFbPCxA5IZ+H1N4uWcIUY+vV6pNjh6BQZWBDXlsmbInrD/7ds3HpsPPUtIrtgLDs5/vB+UMTxEWCIxJ/KAWgJGohyDrbwxFD4+Pvj4uPPY7uz7Ozam+Gc/QCJDI/2YhlcR/vTLLy7z7o11HYi6EKcNXxFVhkcHSfRNfbj5WjbDemUrx7O1IIbAEl0QcLTGoPLxfud+P1jjylkW+jgOWlV0dOp+UPbK0Vy4cb1MoXfr1Bh8TZHB9XJzj17o3k3VXTG4bQUVkCVBUupwJOSyXpDugc+tVR8KznSQWtEQaN19Zpfs0XO+hg1a8cLHVvqsVYqY/f/ae/dYWa/yvv+zbu87M3ufffY5Pj4Xg3EMpUTUhqZpYjlRXfTDMhAUpU3+SBPUkqqCxjVVc2mEiJKQpGrdUqmqWkXJf6FSk7SJBEVFaVQI2CnFoQmBEnBxsevGXM7x5Vz2ZWbed92e3x/PmrFPcGzsgE8PnkfaOvvMzN77nTXrXetZz/O9WBaLJRajNIykLtDeegWkOAVrkQvWK6rQNvFqg+CawrwhU1ImjRljBB8soesbkViRkKTU1PLVUFYUxcWYltQiCmZqqFaDcsZsN6HYjv2xsD8a0liR9CJVzrhw6TwxJ2IemceRVIqqK3Q9Zq1JOLQGqSGEflXMog+TZiAoZCy5JoXJ1wbssOp1VClrx+CLInQ+4K0SLWeTJucklaxesQqrHyu58TN81+GbFlpKKoSZSyLlUYVbSyPz5YSgqMacB9UsBM4v99Uh1yuKyDsl7g01Y/uZoqeMQNLTDEh7jbL3Qx1YHiSCDyz7KX1X2Z702OmknQy0J7KIC+RwoMRMqqXJXSltYH6gmXCRzOFyj3FckFJkmUT1yXJmuUzEuNQbtpE4S99T4oSuP8ZsYuk6q4ik0Ii0Rjki1oHzcPxoz9GdIxw5soWzM87vz9mfL1jaBZpdKyUhpkjJFWcK3lcoCSRTGzDCOOW55UGRaCUlDEuMiTgbCVb5R1CIMTY+UiEO2j/rfGB7us321ozgPcE4skTsGLBugV08sV4snpAIVl2di2R855UAIRlfaZBiw9HZlNCp55RlQpXHVX5ocai9vFqxuTLEkZSEmEFqJoualC7GQftdTZQ44UgVhlIwIfDEOccX/rfn9ImTnD55ghPXHGPnyDbLBo0vOWBsVNPDCElGqgvUMGHvcE/LZ7UwXx4iMWNrpg+q+r6YLzj36AWiMdix4BeJrb7XXpF17BAYhzljjIyjsIyRRcxcWkREUIRkLKSigr863pkqK6CG4KslLwfqdsRmLVGtHBOW48gyRWLp2d2ZMusneE+7Ly3O2wbcaXYcuHbqVIPKvBBizApWmuhn4EKvenlJT3a5KlDDe08pWiK3IozAYUykLOqf5YNKUFGaPUwkpxEaOq+WQt8FPX0Yg3VJJZ28w3ZOPcKcw3eOOlcsg3WqomGdgm9yFHKKDEPk4GBBcJ7do9vs7hyh6zokK5oRpyhG33fMtmeEzmO8oZoGNDHo2rC2TGnAtL4j+IBUJc7TRIO90xNfwrLM6tKQrSfMJtqrpuLQsrkmUBXnIZfMWCLLhVrlGE8TAIcVKOvS3h6TCxcIly4iY6TETCwvUluTg8UBQxrJJROL8iOEJmlkmzdPHLWpjjY+V6rNOTajMxHlyIiKQiqtSh1cVyrVzgesVafc6FyTiMnEhUqpFCnUtnEhQlfselPs8gTTNq4ipolQJmIZKVkXEinqjSXNqLCUqG9QREmApVB8IIQAbgUtzuqGYlSY1nrVMBSE6moT2VTeUkwjyTmVbskGVzO2Fq0xZ32N5JF6uKTmQgW6yaSRSCPDciUzVVkOB4zjgpgii0EnXypCjEXfT0N11lLUJyvb1r9rAqBYTFU1BJw0PTMAQ1wuWDijoBJbWQ6DbixxRMgKmHCWYoqWjEb1/iEliEk3RRHlBxHVqK7V8JG6Bl5YoxwgrcFXvQZUoT1WtXehFgyZPgSK76iSsKZ92apJBkYRiDYor0iUoqDiqBkvqgnYeUONA6FTUICphzpWKVGWc4VEi1pj5DiQmzdXbZtJqrmVbnSBEVbJljBWoSadpwZa9j4wDnPmx3ZpkwQpAWf0NJoSIFpziDZgTKEYSwHGPGBSwpSMsxEKLJcD5y8dkKzyDwyWWRcUpeYc0fUsB50TOcGYMsuUORyi6tilwhizJjVreagnUXkWYWFcU3Y3TLxV6w5RJfWclQ/mksNaQ98Feq/9LOMMYsw6sw/BU/GoR5U2EETq2m9vEhr3yIjyL7OWq1a9cttoEooi1h7MCrbvnF17VRmzUqqoT9HkU9qKyArRqxsT1ugGZY0KbjcKyOraQI0anXOUoklcHHLjJ+q9klJSTljrDytqzzTVC4XF+1YRMiuxX1TU13lVJVlb16ywpiLtumVVLVwn32r9J7hSFTxDk51rxq4W5X7pTzSx3zYGIqqIshpCEWEclWOW8ogPDrE9kl+kcPjz+xcZG+zdrFFWWr8uVhWnU66qBE0lZdXgA1hU7ccUUcWC2mabXamSo9BmjMG5DusCKxdY2zKZaAfUrysTx7iGsHa2b9mfwbnA2rbO+ibHk4lZ0XjS+Me5Fi1VCDo5Gseh1kIcB1zOqrhhapscBWKEdsN1k6kKckolMa6h8NEq1NsZyH6JTDvtpywH3HJJXAykYWQclpAKFkPXK3dJS9SCNdNmAlg5XMzJUR1qF4NK/hRBUXBVFwHlkuh7rkVJtzFmTRKsxeemgu7USdl5tfd4/Ow5zgeHDQFjt6hNeT4vRlaOt10XdPNKhTwf9XQ6JiSqjI4TwYlgyDijfSTV9V6FXS8qK+dYtZ+x7fNQRe4UBwZrKCkQfVLVB5V8VaNB68EowCfXxbosok67eoM7UaXy4C3DMKq6gDHEZSQllf4iZz0BoMJVRiGrmGYIOtZCbDJFdWXMZyBVReVVIFU15atSGR9/lMVizuPnn2D7yDZdr+VLildrdlAlFjJjrixT86gPAUJDjCWV+aklksbIMEYO5gu9DhGqqOeT957gHdsuUJp4rbVBrztnDpYjsSRyUXV4gJUeYF3dE6AgJqmkEilScEeOKRS9NsPX3KoSKeGsZdIFZr0jFk2mclEEnsHReU+W1WcgSI3UkqhZy31pohqVtWZqHMkpgagCh/ZpIDQUYWv5tM1FXY6136SvHYfSyMF6r5cCtWrpMgQ9SZr2O2zbvLamHaAbkarmZ2rOdFu6ARVn6LJjsSxQWwXJKX0gxYhxnk4R53pSdZYQlKKj+op2/fdoShd9c3bWed6SSpOgOnJelQhVMkyluQTEtOuDnDJdW8dqrTjTzEFLA3MVgaqb8hB1sw3Gru86EUixNPPSxHR3xkQsk/QiPXEtqx7/nYUmvIJg2sIkVBJWovaTpKqNudVMzVr1dEJokHKVgXI2kDV5ACzVqpozkhDJYD3OWHCwfXQXEZgv9sgpk0who2rM1mrm1rfTkVC1Ll5GpOikbAxILTPUogjDxkb3occao861GNVbm00ge6SqIoORFWrNqD9xsxwAB07W/JHma4rFkZz6TUkIXDiYU4ZBmfiSmE5nWB8o3lJiQZpLMFGRgzFHclyqfA2w4w2DsSpRZJxq3plmYudUP06scmmMaRqCzjeKgcf3nhpm4AziBCONOGygxI5q1YTL9RMqClZx0wnLxZyYC6kKuWWXCMS0pNN3DzXRkai5sD8/oI4DSMFQCQm17ajCzCmfzJiu2adnJbG6wPaRqerjEchlRE0mPSaoySXGMsZDXG23qFXljpXIrG3zrXrL1s4RNbIsidB5cJoUzHwgS8WVyiRVYhJ8FYLApZiYYJha3Sy30Rs2IizwFKPjYyYTYi0scyQax/GjWxzdntG5Dms1vx6laIHHOIxVEenSOI3ZFIYxEQ+Xyj2UqoWlltnHYllE7R+tFDnoOnKpjFU3V+XcVahLcinkUolZieI6J7TqUWmu402BwjQy63S2zWSyxdbWDtV0eh+7Hu+OUOshuczBeKLpGc0UTGCsiVwLURLbYYL1U1VnWFa6IARbGQ+WLLNhyCqCORY9qeacyDEyHyLzMbLLjGoruEI2AeM9Io5F9SyTJmDDWDhcJLppIPSWeU6UpLqZJqa1Xcd8MSpnshYu7i2ZHZ2qMDuVYpzeAyYwiGOZIaZKSBVbNZHFBmKpjE1v0BhIvhBdwZqC8bopHswHuklg5vz6NG+9luFt12PcgDEjzmiilyhI6IlZjT69VfFjGpiiZG0viFgO5iNiMlMXCF6TSbqObDsG0dO991odEiOIa6jnQRhxZGsRu7JUoW1ohi13hKOnjoO1jCk+77X/qt64hMZMb8zz2m42aceY2kS3NZOyTSJJ+QUry3tjjG4Aepe20psOuCofPwky0N5FUdKeUQ6GiIpK1qZWgLEquVO00YooEVkaN6WU/CRJmtKO0loWEqMLoBE9t68/+BWkB7TE0mzJ1bRPM0Op9Snjsjr669+nlSxWpETjDMZZ4jAgOSqhGRo/pSBZUW61JJ3MSdFfMSVKijhrmpSSaSrget0r76PaTh+rhUmJxwWqxYpyrlbcp7IiQAM5S/MyUjSYsVqW0s8sYL0l9D318EAThZxV6ipGSFEb5UIr2ma8UyXwGEckJS0VIpiiEHNBe3xthIGn2KI7p6iu1ZgjrdzSxE5VoRnvg2rMiTSlbX2dx2KN158zrJW+a2mlslVprzYbiirYov0sfQ+sx1RgjRDTOb+CfrczsWjK5o2lNLFaDIwxYlvTfUhW1UdM1ckgKg47ZlHl+zaexqhTtWmakUb0Xokp6RUY09Bu+jcEaRWL2hRQRNF/RctmK4LuqkxlDDhUjsm2zcsaUeRu6PF+gjdq6SPGNENUdcJ2zpOLcr8W46ClUwM2GMQ4KpZYFHjhrMUjzOcDh4cqYWSMGvQE7zFG9D0nRUtKaxMUQQFUyWqftuj8rGKUwF5U6VxsJWftneWYta9eFLEoIgyj+p8NY2JSJqp2L1avDVXLMUaBYiKGlDKmKHqv1qrzXlTObFVadG1ti82lPcYEIgrIsGp2aUqTDxFaIu6QUihZWxU1F6RbUSwyVZzqo4rec0UyMQ0MY8Q6oS8OWvFdlX60uqL4Mo+YSDWqu1mKqvAbbKsCaOK8Qq9iVuAS7Y3V+iKFwwOtiGyobXOwzikLXrSR4Z5Sky4NNbRaMNdQXnlyYxCj9VlliKNHZqmt2ao3ZjVNpHdlJJdWSDZFD0otreZbKeiRGqT1yZofkGiNWGvKbdNbYXBrpZak1yWimylaeK4l62ltbXeP1oucXrDe8KvytW6O1uri6VyrtTttaOe41CE0NM+x1jsC0qggi5Ijrjm35qy+O269cELGtkXVtguR9jsFs1IwaDdFNRlbrcLgBahWictGsFVv3tZWxtqqdjLWqRuzdbjg6SYdlEJdCbGmrNbizf9Mqp4WnKuI84ippJRQ1rjW5k1ZiYC2oyN6iig1aaKjxyG16agrBXqFnT+ZAOiXb0oKpSUOtiEHnXNKVq3qKJvbJltKJtcne61DW/RNK6eVrO7IK6mgglAEnFSGNsLGGES52FrqzpFV2qLlICilMixHnNUtcswOW4IK9iI4k4gNCl5KITWvJe8E77QkZrzRaYaWtmj2F9rn0TFaJSu0k5hIXfeE1uOBXSeXtsG8fegV2daqIyH0BN9jbUewbfxpAtlWHaC9tdQiLIfEcjzQU0NwbLkJxnrduFIrSVlPFeFgf8H+/iGL5RLFCCvIou8DKWv/LeWi93WFUi0pFXLReVsaTB2hIQBLM1tUfb4YM8My4kOic5puiBiGMTKMiXHMSNv8BM+QCkH0ndlWBQFLTLklBbQUW0sPORec1euzBnI1zYQx6sZVlQlqjVfAkWiCSJW1LqSUoifsCjW7tl7Q+uoGK2CK9sNSiiyXC4YhNTHroEl/BcoKAk8zUXWsPdiriiMjYLGkUtYbkzNNts0YdRTIQggWW1+kDsjrBdGCldZyLBnvPN4F+ukWRybTdcZrTKD6DrGenCq1jFAzvmbV9AKoahC3OjFIk2PR/STj29HZhEAXOpIoStC0TUeqZjq1VNZOoaRWe2z6ZlJYua6uGtS6PylqDmj/GqBijW+LpdB1mrnVUvFGsF4Z8UUUDVWl6qJmnd4cxiF1wPWe6ZZ6jU22d5h0HflLhtD1eN8hzmgfrVQkJ0wQqIUiowrpUhv4o5BaM9e1LKwa24AWepJcuaMa5/FYTON1qc8SBCcEB9OpR1wPzmKc0E8m2pl2AZum7aCptiRMPJPphGuOHefxc4/DmDG9B99jUPKobrlFVf8tzCZCTqrtZ1oikYEJOvH1hGwat89QnGuqNYJ3pmmsGXyn3DlvK84lXK+LU6mZkajSXChvBpFGg0j0fqJJhAMTPCKZXA1mMmvJS6UkzcwtFWsryVb8Sgm/9WmMCLEKPZrXNBwcYJo1TiupWuj9BFcMOVamE78Go2wR8F1HNY5cHDEW3Xu9IRKY0LJ/E7lme4tp31E91Gwx7gL13KOaOXtHP+k5cmQL67QkbsZIaUCCnCsHCy0XIqrMQVuENSvw7atp+lmDt9II6po8LUtTL2l6k2NeMqRDapgSZhOO7h7jSDwC+GZLVOhshxOHzQYvHoPq8A1DZhgU9VpKou96qnEkPDlbUjaMsTAshTw6JHZIUR8qkUoeApQpUgs5Okr0qGAAWDPT9SLBcuH0tCtCzo6aAzULMUalkZRAb6aENMOKFrQlTbFlVDu2ZBGcDpO1eFQ13zASRxgCDEF7sopOtowD1OQwxePE4nPXSrJgc0eQghh1Cy8laZI9gjvi6GwgizT9S8GUQu8C1RSoPbkoyKNkgy0OxxRne1y3RY5KLnbGQ+nVcaNUUnZk55B+gmvgkdVC3UllZiq7TnBG+92HdXjeS/9z2rjuvvtu3ve+9/H5z3+e6XTKd33Xd/Ev/sW/4FWvetX6Na973eu49957L/u5v//3/z6/8iu/sv7/I488wp133slHP/pRtre3eetb38rdd9+tu/JziBhjq0lpv0CTPMG4qnZUoWexXAJaAkumg5DB902AVRe5nFMj4il6pqzsDdAj8ArBU4uoQ6oIRgyL+YIUR8blspEXaZ5PvpXzFIFTays1GdPQhprvV2noHGPb6a6qUKhVhI9FRT5rbeAwF7HtBFjrqnSp/ZoV0rB15DTbsTRbEIXnD8sF1cOcQ5IPpJioWUgug9NygHYiLCsNRM0U2yCvsqs2/qvvpZUqpZXFdMIqdFs5Uk042FaMKZg6IlWa6kfVfpg31BQRF8B1qu/oDMYKkgbEO+YhMOwfsnfpEov5QjPPHDFxxKSBkgdsLapJWY0i2bKiyUzbbPWka57ctPSq1+9JS6x6YsG1c0yDOmepCugx2q+oWHIprTyka7O1q/KxYRxjMxC1zU5nJX7cSsIYhXFroQUjZV2elKckNKUlAprnPHkSW58aV2Xkaki5gC3ts2ulS2OgJNWMM45UtDeRRVUNqnGtRGuBwsF8ruadXvtCKSfV57StVBUTwxgJweO9Z+qV9F1cxYgaRSrIZVVaRMvx7XHt75pWmbAYhJhHncsiT1nwKh2QkqplWAMnrrmG669/GdO+58KFQ4ZxSSoLSslNZFflwwxCFwwnTx7X3rQR9veXet/VqqU52rTGkKKe3ktVd2XnFeHbhcDKF251VeYp33tnmXSd+oRVRUHG9rttqzbo705NUUalzoo0IWKjn3bnVBauipBLRKTgrWFr0rMc0/qai9b016V6Kype7VD35zYV1IjVGrKBzvsm7aa+Z9as3oO05FqTbUH1IvugogSWlsjWotxRp3xY61W5wzf4pRhLNdB5lTFzzY2Bpotaq5aTSymIURQu1mBWveHnEc9pp7j33nu56667+I7v+A5yzvz0T/80d9xxB/fffz9bW1vr173tbW/jF3/xF9f/n81m6+9LKbz5zW/m9OnTfPzjH+fs2bP8nb/zdwgh8M/+2T97Thcfc2oLEOuJRCvNVQHrVUuQduIqpmByBZcBjzWaodtcKa3YomAd5VBpXbe204tRz6SqSBpTYTlXW46UG6O/VoXkG78GiFjR8t6q77QCUKxRT0a5R605B9RWD7JrUInuc0Z/jzgQ3fSKVKhJDfBAf9ZIQwAWrVsbpz20nBlFwFtMhWQbClIqxmQFrTiPbyrOtajic86VJEYnXtWNkjbm6w1thY5gVUGzDfmok7btobrA1+bpI8DSYoKo6G611NGoZbmr2NKgzhTyMF+Tuw8uGeYHB8QVMXSYY4ryjkSSwvxF0VBzq+aAuSgnh1ai1fWtla8w602Hhkql9Qdde73ueboR1xWi02oJRcshZtVqVG5NBYpaRGh5MbQ+kPb1VBtb1ou694qCpJVzolHbEVVbaSUe0TOWBVVG0E+7jYsuHFX0Gk1dqUXo6w0VSRUjbbMVpXZU0ITNPiUJKZVlSgyImg6GjlQSzvsGsabp6WmVwTnUKFUq1hZtqa56zm3MLU/iOqXWNtZ1XUUoKB+qVmmir259IhUjao1SVZD2yM4RTp06xfFju2C+wqW9PQ4XiZxGTUGsbfcgOG84fnyX5bBkjIn9gyWCmlWWXHB1leyaVgbMSjPppk0YWm1TdHw06aiySjhbFccZBdtY3TBVZaOo2WObXzkXTXCQRmnxT5bdWn8ba7FWE96aVNfQWOj6jmVUkEtqlkVOZF2q1s9tVZbVErOgZHrj2mYUAl4M1VbElifTz1WJCXVkyKv1yDXIfkO2lpLX6ElrDMbblnC35nlLyoMzDEk3Omuekn6IQutLLeSiyZxyVp9ctZ9rPKeN63d+53cu+/973/teTp48ySc/+Uluu+229eOz2YzTp08/7e/4r//1v3L//ffz4Q9/mFOnTvGX//Jf5p/8k3/CO9/5Tn7+53+eruu+5usp8qTb6irzb88QU2I5LPEh0E+m9NNthc4O++rqicN3E1WC9p5xnLcBt5iuW0/wnOZai27SUkJL7PyIa/DZrpsSqZRxSR3npFXz2XnlscSBWvJaTQJoH55uWNZaummP58mN0+HaCU2zIGcdwRosXdsQMlJgHNXOxfkpYbKF8xOMddQyh5L1OG+aZ49xlDiQBKrrsK7Tk2epxOFQm67W4UNgvr/PsFwwLA4blNeuSzvOt74hihwCPZwI0qwfVLdRoXMqmhv8BOcDYgRnggIIJGp5hw5rAjvHrsF26tK6zXGGqJ5MCwMxHZDSSFokVeDwvfbphnOqBiDQzWbUPJBiYjm/xP55XWnVP4p1djMYo/5NPmjJ0OhCZ5uPFKhoaBd8mx8dcVSR3pwry2GBsepqPd3exvkpFaNzxXZ6kq8N1Wm0iFhNpyVcZzB2htQBqVo2nm1tkWPkYEycO1QldovCr1dzJotwYAzBWWbNd0qAbCD4Tud2LQRUyNeEgAkdkJvauNIwxDgsgeoCrpvQ9zPMVLNfKXB4cJESR3XRjcsGejCqPN5NlSpQEs47+umMra1tJtaT80gtmeB69oeFYnyT0kqssQQf2qa/OqUnPZ218no16EmsRJ2XokCoah2pKLE1W08UiFUwNigQJEUOD/d1g/St4mEMxTiK6+iPHGVrN7FIBvPEJXI7xdZaKbEQYyUW7R+OAqnAZDIlo+K4Cxyj8SSLChKMIx2O3lhiilgTMD6oW3BWvpgWwCwRy2hhbiwzGxj9hDo9inMekzPRdxyK4SDBMjhmsw6kMBdYFE0ypAsks1ARYKuitYhKUw3AwnrmxrOo4PykaQRWpK/kIbE0EeOnumHVTClqwGlWm2VbNyOV5ViIJbMohUOprRfu2UuJmeuw3RTjHTlp71YyjOKb40amZGF/PnBpX5nVK+d4jK6Zy5i4eGGfYycEKZa0vEI9rr29PQCOHz9+2eO/9mu/xr//9/+e06dP873f+7387M/+7PrUdd9993HzzTdz6tSp9evf8IY3cOedd/K5z32Ob/u2b/uqvzOOI+P4pDzI/v4+ACd2j2tJpVZqO+qaKpjOEbxn0vVcc+YkW0d2mW0fg50dai7klDg8HJgf7JHTqM1hd0pvItCGaugwkykikWC0P1PjqBsAYExhe2cH6xRVFo4e1+N3ToxLWOzvsTjcYxkPqcsDtaiohf39A4oUbBfwzaQNLLkkbbKimdtqkXWNL+NDoOsDzkzaOafQz2Z0weGdJzLV0p8xhGNHQRLWWvpuRh7mGNRbx4fCbHuH2fYO3gQmsyldCAQKNQlpiOxfusj5i4+x3L/Icu8JaoWDwwX7hwvENpCHMSpFtcoWnFHidpuoznmc8wTf0XUB14iXzunGGDrPdBbINqi4qDTOt10BP3TjUJTelC4JtU4oO8rf72Yzto8d49j0dZArJWaW+/ssF5dIwz52eYHOGpbzJV946BHMRGHYVgSTW8m2FKy1jQOlC6qzpvkWheZdpHYRR2eqFWeDo+8dy+wYs2GMEdOU64VtOtchJZOHBePyAO+g6x3T2bVgVI2lm+2of5ZkTFoicUGKAztTz5ljvfYiSuWJiwdYB97rhmWLLrqp5FaSBNrJe7VBeOfWiha2gUesd5iuxwWoOMbcEeOI8QHrHbU2cMSko/OG4A1d5zi6M8P2M+bLyNmvPM7WiRNMpj2TzjMcHDAstVTeFXB2QuctR2db9JOOi3t7XNzbZ75YUBufyBjTNPgUjbo66gpPns4QLZEbazFi1savtZUQ9w8Hzj5xicU88viFC8znh8SoosxVLKbqySTGxHKh4q4XLu2zd3CwTkps0wAc4mFTsikqZ5RVaNt5q32vMXN4uNA+aS4URpo+BgZDrq3XKIWo6twqko1lOQyMMSpqMWZyqpRqwDmqUT3EFCs5K3Yr1dwQpVVP2EUBGym2EioqRSfWNt/BqN5YKSunsbC+j4xATkUrsmJJRZVZVkIAK+BaLvo+1kAugTEmDuZz4pjwHkpwlBoQ4xHr1MlhBTaxjuoa57UI8yGSom5oT0Vte6dVnFSE8/sLSgi4Zqr5fON5b1y1Vn7sx36M7/7u7+amm25aP/7DP/zD3HDDDVx33XV85jOf4Z3vfCcPPPAA73vf+wA4d+7cZZsWsP7/uXPnnvZv3X333fzCL/zCVz3+kuteooujMXr8tkpk7bdn9F3HtO858ZIzehLpt2DnKCDUXDnYH3jisa+wWBxQa2IajDYjRbh08YAaAnZri84betep7M+4JFiHs+DIzLa3MS5QxbF1+gyTrmNiLcs5XHjsHBfPP8rh4iI2zjFlxNTK2XOPMqQROnUPFjGUYpjPD7W+LwK0I3lr1AZvCcHS+yYKi6IAjx7bYXs2Y9pPGNlmf2+PmBP90R2cg+A8k8k2w8ElBM2gJh1s7+ywdXSXrekOO7tH2dqasuUdNQrDfMnjj57j0uFx8nKfOr9ErZavnHucr5x7lP3FYVNWr5TUINBo6W3lK6unSNPM7VbeRrqYdkEfC71n2vckArmIakoCtihAxfra0HkKhe9cTxW9gapxbO3ucuKl1/HyMyex1VDGzBNnz7JcXKTEA45wmolzHFzaJ8VE8Vp2MrUS54XlMLIcBkAack7apZtGGnYEp5/RtO84MjH00wn9bMrOzpTD6DgchIsXL1JdaD5VEGwPpZA6T+6dblydY7K1g7FBT2lHjtJ5g5MCw4LFwQVy9OSZZ7e/BoehFnjgoT9pJSNhEiwlqZXM/nLQk79CIbWMZZ5iwe5M24B17vj2WYTOqXJ60jkkVsulKoSrC7YLHdNZx2w24eSJo5h+i9kyUarn2EtfypEjW2xPe/Yff4KLF57gYO8ijJneG6Z94OTucfb3DsmpsFgMDG5E/hTPdF0gknWtRN8LomRp00RdMU/RvLMY4xjGxP7+nLKIzOcLhmEk5aICBK3UKKIiBMuxsH8wV23ExXKtaqE2MUarISU3U0shVSFVoxyuVCmitiWpqPAtuZCDYGslZtMsZxpgIjcDT1HY+ZgyY8prmS7tRXqMC9rKrur3VxqaMVUtCRsU7FTQjWWIcV2il0aByM0tYFVl0t669qgrBsRoTxmD9X7dxV11qVfVB2Glt6JlWessRVR2LDaxBr0+BYQJDme1LqRzzumBoRH5l0W1WVNVJCzASo0kCwy5sLcYsH1P8E4FkJ9nPO+N66677uKzn/0sH/vYxy57/O1vf/v6+5tvvpkzZ87w+te/noceeohXvOIVz+tvvetd7+InfuIn1v/f39/n+uuv57bv+v/YPXaE3SOB6XS7WZl4rrvupUwnKt4qvuP8/j5nz1/gMMOkD+pgnD1nHz/N3sEeh4cHBKPCnmOsCF8kV+29XLO7w9Z0iy5MGOLALPRNgVx13IoIQ60cO7rFsd0dTuzuUJc9j57Y5fHzx9nbe4zdqWErOKZ0fP6h/83F/Uss0qG6gMbKwTJSi0oNSVZZF+u0x4NUJp2hD5ZJcPQTlZmytnLmmuMc3Z6xNZ1COMmXg2P/cB8vhW0fmPQds9kWF8uAGNVqPLLVM9ueMZ3NIARObM84dvQIO1s9rnjSmDixu0WYvpKj2xNOHTuCl4777/8c//OP/yd/8Ok/4tKlPeaHCw7nS1XRX5Vom4Gd9R4sqg7fTbBiCTbo6at3bE0mBOcwuRL8lISAREI0GEkgicnWVLvN1tD7DhMUtZgyRGBmKzs2cc20MvMzvBwhlAUld3T2Wl5+3Q47YcZi75Brd3d5fO9x4jiQY+TLjx5wYf+QYi3DctnQw0Jw2nPxDrY66DxMO8fRrZ7dI4EjOzscPXaMo7tHGHLPfIAvTr7MYhiprfEe3ExhxbOOqT2uvkq20PdHcF2H6zpmR3aY9k4Vuw8nXOoKpUwJwXDTq25gZ7qNl8DHPvbfuLB3gcVygQMOhsLhmFgaYT62BdVafHiyyR88OCc4J0y6wKSH4B2d77UvJgEfpsytWaPB4nIkZSBmrCn03iNeGOcZL2pRf+LEKb7lpd/C9mzKJBjmLnC0C1ycTFhc3KcPhkkf2Nk6Rh/O0blA7z1bk8kaii00iaQKrEBKK7StTc1RoEewFCmUqmoxxqh5ZbAT6pAZDxZanjuMxDEx5tSEtDu8OIIxpBwZUuKx849zaW+P+WLRTjY0sFJRnc3UJKkwLDHMMRS/jXQJSY5lMQzNH80Yw8Q6EioQvRybeaJ4arFKl5HKslaGqgt4tZpUO9/R9dt0fovc+kBDUfPRZAymQEZP+9V7krOMCIsxIY2Q3hlDlIoKoAHeUb2WfYsLJPTUiRRGMdB5BUyUqohQi5bmrSJYCU5PT7WCKXRTjxkqQ0kMJTWbGeUalmJBOibTLeJKBNk5crKsEAIHVC6RuUAmr4E5BpxlP0aGxZLeqbBAF9TM9fnG89q43vGOd/DBD36Q3/u93+OlL33pM772lltuAeDBBx/kFa94BadPn+Z//I//cdlrHn30UYA/sy+mhnH9Vz3+6c99mq2dbY7ubtMZBRaYtiDkWlimxHR7l7FmDsclw7xgvcEGz6zbBW9JJbH/xBMMyz0Vxk2Vg+VhK2XAuVlPH2YE35FNoTdW5W46xyRMMc6RvcE+/CdaCQqWMlfvpzEtOTz/GDBiKXTVcjguiSkyDEtSVXdWEYOqHTYNMidrPk4uql5vsfhQqKOaw0lN/J8vPASmUVn9DmMayTUTrMrAhNDTTY4S80LRQwLdJKhKwWwL6Q1T32lJrDeYwVBzJdaIKQOTiWPrSEedZx574gLnnniCr3z5HMtB+0i1tBKPsWoKaWgeTSv4vJBzIVBJRUkGpUbyctASV01gFxQsWQoTt8RbCNZQy0oQWRBb8bZxgLqeaAzpwh7zg32+/H++gBOHKZZlGUkHF6nDnI9PKl0S4hB57NIF9vf3lUBdCynRwC1Nksc29XynBPFSKmPM+K4j18p8ORLjnIv7c7pHz+MmgWxmFHqiqKGlFGFwgrW1EbmXXBrUTbmWTD/doZv1hL4jPH6RfqI9S58KNS+197g45NITj2HEILFy7sJ59vcPmC+WjDVr5osho+anprkeaNlQs/eYiwq2ijCmpCATA96kRhZwjcIxoscaR9/1WNdhjKeUyKULF7h0QfjKWYvxPXgPXeDLX/6iCsJaIVTR052FepgYHBwYw6XHDjj76KPsHexrGdU6zfKNlq+UL6Xz4UmNPyHmis9F0Xa+Vyh6Vqdr61QNQs0YK0LFWciSGfPI/HCfnAPTrS3CRPvTnWuisjJSmy6klNz4haoNWldKMwZVs2n0h9BbrOsV2ee15yxUgg90fUdwYCSxqM15olGjQMV6UxoakKrxGld6mUZh/iKZXEZyGkhxpKRIP+1Uid0ZvAnM581ItRYFUeVISYFU2umoATGC01O1bYmLqpdo+VKalmJwrrFXwZpOpces+mmlqMazwdm15qNtlR91lxBik6lT0IeW0FNSlKpvSj8Ez+njR4kxcV6y6rmi11SLkr2NT/g8kGqPKUFbDc8zntPGJSL8w3/4D3n/+9/PPffcw4033visP/PpT38agDNnzgBw66238k//6T/lscce4+TJkwB86EMfYmdnh1e/+tXP6eLPnjtLvz/l0t6W0vmMQZwhp5GUM0OObB+9RmWHpJIGFC9gLX3Yw/cBRJjv7TMM+0r+rMIQF2sk3zgMdGHAN45DMA5nLC5YptMjehS3htKQQIVMXdoGY88MeweUskBqwuRKktIWz6QL97rmbpqAppJc7QplmLUsQM0YmzB22RBuGSmx9QAKuJEqK3V4r9BV5wndQJXUlAEE5x3TrSXTrSUmWA5MK0u6CmNTATGFGge8E0JviPOBg/mS/fmC+aFaqddSMKLQb139WZd3jKGpUxSyJHJMVGcotpBtJTZsdymNdS/qe1SayaW3BsmthIFQrHKRrHO46VTh6FJRh+lBBfKLoqby/JAyLDAMMEZyzBxGLQuuEJ3WuDUqyxrfSMUqHbbSA4wmE2JqfC1DH4QxVowtMF9SbaKaDqxQVGoP55SkXmuhlJGyXJLSSM6RaYRJnBD6DmNH+qDv04tgJVPSyDgfqHsDJSXSmDgYRxbDyDBGUknrZrdYLclKQ+VZq+hNiqpwOFcwNuspAZWdSll9pYqo+n+pUZUkbIdzpiHUVZ8wxqgCr1TEquebCb6VhME6mHUd02nPpAvq/Ou0dDmMhWEYNElop6nVAsZKbLk2TmAb69oWdUVILvChaUaWRC2Vzqi6RrCCFU2qLFa/rxGpKrckk4A3WUVnvQKnTFHdRWrBmIqzOl5IQmvELUm0gpgCNmNswQdDaPphYlTDz3tP1xu8A0rFWb3fEFE6QFXEqdSMoTkYg/ZpKepQXgdNZvKSkkdqjSAJbwveFm0LWIMzGdNk5qRJamXR05cxFePauHoQD+L0+qWp/xTXtCyN4L0mxNaoSWR1AlZRndW263eWbCprQo0BsSq2MKSRZR4YykBZIZAbYte7FTrWMptN1O9OVZzbLdbIMVWouahTQ3t8jaV7HvGcNq677rqLX//1X+cDH/gAR44cWfekjh49ynQ65aGHHuLXf/3X+Z7v+R6uueYaPvOZz/DjP/7j3HbbbbzmNa8B4I477uDVr341f/tv/23e8573cO7cOX7mZ36Gu+6662lPVc8UXzn3ZbwNTDv18aliVOGBFYw8s31sQQidSvPYCcZqxpXi3lMg9BapCqfFGIa5enA766gxU0PGOj3aJtc1xr+Qs8rQ0CDWtSQkRT1FFVVckGQw2SAZYo6MMarcj7OsqsVGKiXr4l+twTtRB1oMMVZGyUSrUinVaqZsgFKn+jckI+awidwKPvTah7Pg7IGScwVUN11I25G8THQuaIMVIA/td1WoVe0eSkLywBCXxJxVew6DWhaoh08trUtRmwqQE1ybpNUIKVWcVAhd25gr1NAaxLq4lVLIcaR0Yzt1Cmmyj2+K1ksMpVY91c2muEZvSDVRhwWI2l/YVvCXUqhxTo4jKSdiLtCyToeWWddYAOswTYSks4JktbZZlIiRivMjxg8c29lCjEKGVW5riTBSYkRsp2oQVj3Bas3kGImpMsaBMQ7sZEseEl3XEfH0pomVGoXdl6ryQXVYqOROXHI4JKpt0kfStB+RJ9UcjGnyTzrfyIWxEXmkFsQVgp9h8CxGS47qEZWLqBWHDdjQ0zXxSWPA1MoiZWIuSpb3tm0iGbzFOwXNmCNb2JoxqWNSO0zRSTCOIyUrZ8lYC1ldh6miiUbV90rVebaCzQusHQW8C+2+bJJR3tEZ2AqVkA+xo8FPIbDEmwGL8hFt8UzMyGwyw3tNnFwasDViTcbZivOCswUrI8Zk3cS8gQCEjNgBY5dY5/A1gRdwWkLtusB0S/BWqKkQFrElLRbng3I5a8FIwpmCcdqvdh4wkTTuU+JFSoyUuE8uC6QsMSSmIdLZkc45XC94ouqsinK6ijhSVdq8dQpiErGUrupXyBQfm52TJfZQlFtMsFrWU4WpSiwRodJ1UKNWfKKHsWaiSRSUQykekivsDQccGS7ho2fGlGwhW0MR3Ww1ibL0kwlSKsNcTUKtWYGdjFKUUqYMic46gnUN3PL84jltXL/8y78MwOte97rLHv/VX/1VfuRHfoSu6/jwhz/Mv/7X/5r5fM7111/PD/zAD/AzP/Mz69c65/jgBz/InXfeya233srW1hZvfetbL+N9PZdQXoXyBMDoyag2ol6rsQbfMZ1sscQ2FemKFE8IDmtVzkSKwtPFWHIctSFsHdYUXDP9c6Gq26m1uHaycc2ULZbcFpbMMM96LLcqgitW9e2s7XFWXZgJBlfjUw4rphHzAsGseBCCM47DVJsShUGKkg8770nWU40qNeTSoBFrbkdbnKuaUWKsWleUjGuGld4F4kqfsEZKUu5XaP5l2nRVd9wO1UOrzkLVbNVh8QIYh3Ez3ErCzhim0/bZGOj6QEyFnAqzWY+1vSbgyVC08glG9c3ULVYYYmQaPM45VaaQhBQL0eJC0NJYKeS8pCZ1Xe6c8u0QoWQ18Ouc1x5Jr+rWRoqy+luWKG6iiEukgTGClgeTSjxVEdIwMjt+lOpUGLWkqBp1GUwtZKvN6UJiZfngET39G1pikiB0UNU6pBo9CQyLgd4rwT2LoYwLVf5wjt4LEjziLLZEpSWsSjB2gkIWBGdBvNAHYZ5zQ3A65mPkmqM7zCZTEMNSBkptGnc1s3YcXutzGqbBrftOVRRtB9rUL6WgQsOFOHo6p6fGLG49hitHBOsLtgjgoUmgqUmrwYtlMpuqFmZRyaVlzg2EoFqHtJO7d45cMss4cDhfEkJPEYipEHNSwrWCBRtxXMtlKSnSb7lQZF8tZbVgYByE4OmnHTZmctLqQc1GFXWaJFeMiTiMGDH4oCjYsOYwqeZWbcr91jqoKh/XhUDXKWRcJZ8gLjP7+3OeePwJla1aDqQhQwVvHZO+w3sDVMYhKle08cV0LVDgmQuOrtce+HKZKbESF0n1C0NZzw/NYQ0W1/zDFD2Ym7O7GEsqVY/PVahF0ZzBOfqJU+QwelhdLiJ7ewe4EDhy5BihqjMC1mNNkwyLkTFFUtTPw6z5J2atXSpVqDEzpCaS8PxbXM+9VPhMcf3113+VasbTxQ033MBv//ZvP5c//bQx6adg1N5exUBXDdQeLTNVdo6doO+Vr0VFPWucJUZphLpWMTATJfQZh7Xq9lmLssC1ntyEda2sbcqd04anMRUkA3X9mhWaxpkAbgLS+g5ZrVSqqerv1jLPda0NWNWuBD2uq3tp0xi0TcnDe3rTY0zAMFGyYFW0XyzKurcr3cMVgkhESzJVjSwFtSQvUjASm/eP9j2McbpZm54gvYrBlkpGkGqhqgUKVb2pVghA296Gc47cvHmkfRZYwCunxxiLeIvYSsoWkiC5aTcCWSKxFrxtXLAGNlO3Fy3H1DQ2FKb+nSo0XTuH6XsCerOYXPRktdJPbCdWGlHWGEVsrZQtWpWYalYeTcqn8b5niroC54khF0hxZEha7nKo51mR5osm+sEp0Eb7eDWN2vvxSmmoRknG1hiM9fh+gjdqh5IZKEZlnValoXUBdbU4WKvk51aWEqON8iygMEePm/TshBkhGCYxMp1mYhyIpRKLym+t5Lpwql3nTFONsU3VRVlFWGfXNI7SGvfV6iaNtcr3ms4bvaJgfFsUraLQdF45rt3dYqv3dF63+sVgGFNhMSqKLpdMyoXtyQRrVdbs6PaM4K1Cxkts00mTOCwE7/HGtsTEU23HdDolto1JgEnw+OAx0uFMJXtNqPrgVVy4CuSo/cRxxCFMe08IllnX0VunCwaqSKGST7VRZFD7kEnXFHOEYAOd1WV2HBOHh4cgpgnkVrxX38CJX71OyAW6EOhD0OuyQu89nVPfrb5rBpriCU43kVy0vylimhivVliMpYlUK6G6lEQl6HqRQMQjaF+2tnHrXc/OdEZtKM9SdZM8PBy5tDdnZ3KkzQuHMz1VMrXCOEbEBEI/YTLpMc5TqjSiuma1qnHIGhn9fOOq1CpcbaCT6UQJul1gRQsBJQSvFtGdY9divdU6cRH6vqPrO/qMLmQiUITgJ8o0t50a8S2WpDhiUZSOiG44CplWW4AqaoteayGPCVWQL4r5MYZqjU5GHzBNTrOOKvgqObLSE1AeUVsySwbPWvVeq8XtJNV4MGJVzmUSnCpqO9UkjHlUM7/5oTrAtqx5rKo4voqYzFopJGX9295JU6U2JHH0btq06Zr8SynYUpGUGzR3dULVzUGKklvrChHvzJNq86lo/d+oEglOy7A4VE/NKtggpaWWeasByRRxuOpwYYL3K+RcIa+cdIcBQ17LaKXSEGjW4UKvsjMiZKL2x4UGHNHHNWdQvps1kFafBU0Boa76H5bRKqKss+3EaBRxdbg4JB0OSBawllyzloylAIHS1PnFGJYpUmtlGCNMtA8pRogiOGMJ1uLDlM4qAMhEVWlRAWffwAyqyChVeVHe29UEURh4lQbl1pN+tobiPVvTLZw3zf+psj8/ZDGO0Pg6tRGIi6l6qBItSRm3Ehxu/EVr8L6Rn3NhME0NAi3/9F2H7QOuOGxVwVVjV4mY2m5Muo5T1x7hJdceYXd7ivM9w2LCYll4Ym+fISUWw8DhcuDanR3t1Qj0k14Jxk3ZXlXkS9N2VIXzmgolVU0exejGNebGOYTearlTnFftRlcoQTdsU4UyRobDQ0qG5XLE1ETnDV1wdMaqQHPJlKgABCsWW7VMa6SdirxqM4pBT95oD3e+GDh/4SLOqOJKTrH12FRtxeQGXBmzCgG0ey9YrYJ4ETrfwGFGOYXG6OcwX4wqKeU93nqWQ/vdXvXjgvPr1kPVj1dlsrAt6SuNIwZGPFv9lDEnCgqcOTgcyfUQay9Sr1EeJkY3tpQNyyUc7EdSMVp+7ntcaJoe1uODzqNcC5IL1ZRV+visB6KnCyPP56eucHzpS1/i+uuvv9KXsYlNbGITm/hzxhe/+MVnRaf/6bgqN65aKw888ACvfvWr+eIXv8jOzs6VvqT/52LFdduMz9PHZnyeOTbj8+yxGaNnjmcbHxHh4OCA6667TvEAzyGuylKhtZaXvOQlAOzs7GwmzTPEZnyeOTbj88yxGZ9nj80YPXM80/gcPXr0ef3O568rv4lNbGITm9jEFYjNxrWJTWxiE5u4quKq3bj6vufd7373cyYtv1hiMz7PHJvxeebYjM+zx2aMnjm+keNzVYIzNrGJTWxiEy/euGpPXJvYxCY2sYkXZ2w2rk1sYhOb2MRVFZuNaxOb2MQmNnFVxWbj2sQmNrGJTVxVcVVuXL/0S7/Et3zLtzCZTLjlllu+ypjyxRI///M/v1b1Xn1967d+6/r5YRi46667uOaaa9je3uYHfuAH1qad36zxe7/3e3zv934v1113HcYY/tN/+k+XPS8i/NzP/RxnzpxhOp1y++2384UvfOGy11y4cIG3vOUt7OzssLu7y9/7e39PxVG/CeLZxudHfuRHvmpOvfGNb7zsNd+s43P33XfzHd/xHRw5coSTJ0/yN/7G3+CBBx647DVfyz31yCOP8OY3v5nZbMbJkyf5qZ/6KXLOL+Rb+YbF1zJGr3vd675qDv3oj/7oZa/5847RVbdx/cf/+B/5iZ/4Cd797nfzR3/0R7z2ta/lDW94A4899tiVvrQrEn/pL/0lzp49u/762Mc+tn7ux3/8x/nP//k/81u/9Vvce++9fOUrX+H7v//7r+DVfuNjPp/z2te+ll/6pV962uff85738G/+zb/hV37lV/jEJz7B1tYWb3jDGxiGYf2at7zlLXzuc5/jQx/60Nrp++1vf/sL9Ra+ofFs4wPwxje+8bI59Ru/8RuXPf/NOj733nsvd911F7//+7/Phz70IVJK3HHHHczn8/Vrnu2eKqXw5je/mRgjH//4x/l3/+7f8d73vpef+7mfuxJv6eseX8sYAbztbW+7bA695z3vWT/3dRkjucriO7/zO+Wuu+5a/7+UItddd53cfffdV/Cqrky8+93vlte+9rVP+9ylS5ckhCC/9Vu/tX7sf/2v/yWA3HfffS/QFV7ZAOT973//+v+1Vjl9+rT8y3/5L9ePXbp0Sfq+l9/4jd8QEZH7779fAPmDP/iD9Wv+y3/5L2KMkS9/+csv2LW/EPGnx0dE5K1vfat83/d935/5My+m8XnssccEkHvvvVdEvrZ76rd/+7fFWivnzp1bv+aXf/mXZWdnR8ZxfGHfwAsQf3qMRET++l//6/KP/tE/+jN/5usxRlfViSvGyCc/+Uluv/329WPWWm6//Xbuu+++K3hlVy6+8IUvcN111/Hyl7+ct7zlLTzyyCMAfPKTnySldNlYfeu3fisve9nLXrRj9fDDD3Pu3LnLxuTo0aPccsst6zG577772N3d5a/+1b+6fs3tt9+OtZZPfOITL/g1X4m45557OHnyJK961au48847OX/+/Pq5F9P47O3tAXD8+HHga7un7rvvPm6++WZOnTq1fs0b3vAG9vf3+dznPvcCXv0LE396jFbxa7/2a5w4cYKbbrqJd73rXSwWi/VzX48xuqpEdp944glKKZe9YYBTp07x+c9//gpd1ZWLW265hfe+97286lWv4uzZs/zCL/wCf+2v/TU++9nPcu7cObquY3d397KfOXXqFOfOnbsyF3yFY/W+n27+rJ47d+4cJ0+evOx57z3Hjx9/UYzbG9/4Rr7/+7+fG2+8kYceeoif/umf5k1vehP33XcfzrkXzfjUWvmxH/sxvvu7v5ubbroJ4Gu6p86dO/e082v13DdTPN0YAfzwD/8wN9xwA9dddx2f+cxneOc738kDDzzA+973PuDrM0ZX1ca1icvjTW960/r717zmNdxyyy3ccMMN/OZv/ibT6fQKXtkmrtb4W3/rb62/v/nmm3nNa17DK17xCu655x5e//rXX8Ere2Hjrrvu4rOf/exlPeNNXB5/1hg9td958803c+bMGV7/+tfz0EMP8YpXvOLr8revqlLhiRMncM59FYrn0Ucf5fTp01foqv7fid3dXf7iX/yLPPjgg5w+fZoYI5cuXbrsNS/msVq972eaP6dPn/4qoE/OmQsXLrwox+3lL385J06c4MEHHwReHOPzjne8gw9+8IN89KMfvczg8Gu5p06fPv2082v13DdL/Flj9HRxyy23AFw2h/68Y3RVbVxd1/Ht3/7t/O7v/u76sVorv/u7v8utt956Ba/s/404PDzkoYce4syZM3z7t387IYTLxuqBBx7gkUceedGO1Y033sjp06cvG5P9/X0+8YlPrMfk1ltv5dKlS3zyk59cv+YjH/kItdb1Dfhiii996UucP3+eM2fOAN/c4yMivOMd7+D9738/H/nIR7jxxhsve/5ruaduvfVW/viP//iyzf1DH/oQOzs7vPrVr35h3sg3MJ5tjJ4uPv3pTwNcNof+3GP0PMEkVyz+w3/4D9L3vbz3ve+V+++/X97+9rfL7u7uZQiVF0v85E/+pNxzzz3y8MMPy3//7/9dbr/9djlx4oQ89thjIiLyoz/6o/Kyl71MPvKRj8gf/uEfyq233iq33nrrFb7qb2wcHBzIpz71KfnUpz4lgPyrf/Wv5FOf+pT8yZ/8iYiI/PN//s9ld3dXPvCBD8hnPvMZ+b7v+z658cYbZblcrn/HG9/4Rvm2b/s2+cQnPiEf+9jH5JWvfKX80A/90JV6S1/XeKbxOTg4kH/8j/+x3HffffLwww/Lhz/8Yfkrf+WvyCtf+UoZhmH9O75Zx+fOO++Uo0ePyj333CNnz55dfy0Wi/Vrnu2eyjnLTTfdJHfccYd8+tOflt/5nd+Ra6+9Vt71rnddibf0dY9nG6MHH3xQfvEXf1H+8A//UB5++GH5wAc+IC9/+cvltttuW/+Or8cYXXUbl4jIv/23/1Ze9rKXSdd18p3f+Z3y+7//+1f6kq5I/OAP/qCcOXNGuq6Tl7zkJfKDP/iD8uCDD66fXy6X8g/+wT+QY8eOyWw2k7/5N/+mnD179gpe8Tc+PvrRjwrwVV9vfetbRUQh8T/7sz8rp06dkr7v5fWvf7088MADl/2O8+fPyw/90A/J9va27OzsyN/9u39XDg4OrsC7+frHM43PYrGQO+64Q6699loJIcgNN9wgb3vb274qKfxmHZ+nGxdAfvVXf3X9mq/lnvq///f/ypve9CaZTqdy4sQJ+cmf/ElJKb3A7+YbE882Ro888ojcdtttcvz4cen7Xv7CX/gL8lM/9VOyt7d32e/5847RxtZkE5vYxCY2cVXFVdXj2sQmNrGJTWxis3FtYhOb2MQmrqrYbFyb2MQmNrGJqyo2G9cmNrGJTWziqorNxrWJTWxiE5u4qmKzcW1iE5vYxCauqthsXJvYxCY2sYmrKjYb1yY2sYlNbOKqis3GtYlNbGITm7iqYrNxbWITm9jEJq6q2Gxcm9jEJjaxiasqNhvXJjaxiU1s4qqK/x8ypveH+FnSkAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -837,8 +983,14 @@ "import matplotlib.pyplot as plt \n", "from mmedit.edit import MMEdit\n", "\n", - "# Create a MMEdit instance and infer\n", "img = '../resources/input/translation/gt_mask_0.png'\n", + "\n", + "# show input image and mask\n", + "input_img = mmcv.imread(img)\n", + "plt.imshow(mmcv.bgr2rgb(input_img))\n", + "plt.show()\n", + "\n", + "# Create a MMEdit instance and infer\n", "result_out_dir = '../resources/output/translation/tutorial_translation_pix2pix_res.png'\n", "editor = MMEdit('pix2pix')\n", "results = editor.infer(img=img, result_out_dir=result_out_dir)\n", diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index df335c1885..b0d1e95676 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -97,6 +97,7 @@ def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: return results + @torch.no_grad def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: """Call the inferencer. From 5e383bed86cf355d9088e7d092892aef5cd582fe Mon Sep 17 00:00:00 2001 From: liuwenran Date: Wed, 23 Nov 2022 17:31:46 +0800 Subject: [PATCH 65/68] [high-level api] fix type. --- demo/README.md | 74 +++++++++++++++++++++++++------------------------- 1 file changed, 37 insertions(+), 37 deletions(-) diff --git a/demo/README.md b/demo/README.md index 8178ec90e1..30d87dd76f 100644 --- a/demo/README.md +++ b/demo/README.md @@ -38,21 +38,21 @@ We prepared some images and videos for you to run demo with. After MMEdit is wel Download with python script [download_inference_resources.py](./download_inference_resources.py). ```shell -# cd mmediting root path -cd mmediting +# cd mmediting demo path +cd mmediting/demo # see all resources -python demo/download_inference_resources.py --print-all +python download_inference_resources.py --print-all # see all task types -python demo/download_inference_resources.py --print-task-type +python download_inference_resources.py --print-task-type # see resources of one specific task -python demo/download_inference_resources.py --print-task 'Inpainting' +python download_inference_resources.py --print-task 'Inpainting' # download all resources to default dir '../resources' -python demo/download_inference_resources.py +python download_inference_resources.py # download resources of one task -python demo/download_inference_resources.py --task 'Inpainting' +python download_inference_resources.py --task 'Inpainting' # download to the directory you want -python demo/download_inference_resources.py --root-dir '../your_dir' +python download_inference_resources.py --root-dir '../your_dir' ``` ## 2. MMEditing inference demo @@ -62,19 +62,19 @@ python demo/download_inference_resources.py --root-dir '../your_dir' print all supported models for inference. ```shell -python demo/mmediting_inference_demo.py --print-supported-models +python mmediting_inference_demo.py --print-supported-models ``` print all supported tasks for inference. ```shell -python demo/mmediting_inference_demo.py --print-supported-tasks +python mmediting_inference_demo.py --print-supported-tasks ``` print all supported models for one task, take 'Image2Image Translation' for example. ```shell -python demo/mmediting_inference_demo.py --print-task-supported-models 'Image2Image Translation' +python mmediting_inference_demo.py --print-task-supported-models 'Image2Image Translation' ``` ### 2.2 Perform inference with command line @@ -104,75 +104,75 @@ Examples for each kind of task: #### 2.2.1 Conditional GANs ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name biggan \ --label 1 \ - --result-out-dir resources/output/conditional/demo_conditional_biggan_res.jpg \ + --result-out-dir ../resources/output/conditional/demo_conditional_biggan_res.jpg \ ``` #### 2.2.2 Inpainting ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name global_local \ - --img resources/input/inpainting/celeba_test.png \ - --mask resources/input/inpainting/bbox_mask.png \ - --result-out-dir resources/output/inpainting/demo_inpainting_global_local_res.jpg + --img ../resources/input/inpainting/celeba_test.png \ + --mask ../resources/input/inpainting/bbox_mask.png \ + --result-out-dir ../../resources/output/inpainting/demo_inpainting_global_local_res.jpg ``` #### 2.2.3 Matting ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name global_local \ - --img resources/input/matting/GT05.jpg \ - --mask resources/input/matting/GT05_trimap.jpg \ - --result-out-dir resources/output/matting/demo_matting_gca_res.png + --img ../resources/input/matting/GT05.jpg \ + --mask ../resources/input/matting/GT05_trimap.jpg \ + --result-out-dir ../resources/output/matting/demo_matting_gca_res.png ``` #### 2.2.4 Image Super-resolution ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name esrgan \ - --img resources/input/restoration/0901x2.png \ - --result-out-dir resources/output/restoration/demo_restoration_esrgan_res.png + --img ../resources/input/restoration/0901x2.png \ + --result-out-dir ../resources/output/restoration/demo_restoration_esrgan_res.png ``` #### 2.2.5 Image translation ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name pix2pix \ - --img resources/input/translation/gt_mask_0.png \ - --result-out-dir resources/output/translation/demo_translation_pix2pix_res.png + --img ../resources/input/translation/gt_mask_0.png \ + --result-out-dir ../resources/output/translation/demo_translation_pix2pix_res.png ``` #### 2.2.6 Unconditional GANs ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name styleganv1 \ - --result-out-dir resources/output/unconditional/demo_unconditional_styleganv1_res.jpg + --result-out-dir ../resources/output/unconditional/demo_unconditional_styleganv1_res.jpg ``` #### 2.2.7 Video interpolation ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name flavr \ - --video resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4 \ - --result-out-dir resources/output/video_interpolation/demo_video_interpolation_flavr_res.mp4 + --video ../resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4 \ + --result-out-dir ../resources/output/video_interpolation/demo_video_interpolation_flavr_res.mp4 ``` #### 2.2.8 Video Super-Resolution ```shell -python demo/mmediting_inference_demo.py \ +python mmediting_inference_demo.py \ --model-name edvr \ --extra-parameters window_size=5 \ - --video resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 \ - --result-out-dir resources/output/video_restoration/demo_video_restoration_edvr_res.mp4 + --video ../resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 \ + --result-out-dir ../resources/output/video_restoration/demo_video_restoration_edvr_res.mp4 ``` ## 3. Face restoration demo @@ -180,7 +180,7 @@ python demo/mmediting_inference_demo.py \ You can use the following commands to test an face image for restoration. ```shell -python demo/restoration_face_demo.py \ +python restoration_face_demo.py \ ${CONFIG_FILE} \ ${CHECKPOINT_FILE} \ ${IMAGE_FILE} \ @@ -194,7 +194,7 @@ python demo/restoration_face_demo.py \ Examples: ```shell -python demo/restoration_face_demo.py \ +python restoration_face_demo.py \ configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py \ https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth \ tests/data/image/face/000001.png \ From 9c922c997bc694c5cb10920f0a2fc25e7d547d8d Mon Sep 17 00:00:00 2001 From: liuwenran Date: Wed, 23 Nov 2022 17:36:23 +0800 Subject: [PATCH 66/68] [high-level api] revert change. --- mmedit/apis/inferencers/base_mmedit_inferencer.py | 1 - 1 file changed, 1 deletion(-) diff --git a/mmedit/apis/inferencers/base_mmedit_inferencer.py b/mmedit/apis/inferencers/base_mmedit_inferencer.py index b0d1e95676..df335c1885 100644 --- a/mmedit/apis/inferencers/base_mmedit_inferencer.py +++ b/mmedit/apis/inferencers/base_mmedit_inferencer.py @@ -97,7 +97,6 @@ def _dispatch_kwargs(self, **kwargs) -> Tuple[Dict, Dict, Dict, Dict]: return results - @torch.no_grad def __call__(self, **kwargs) -> Union[Dict, List[Dict]]: """Call the inferencer. From a022dbd678e6cd19564bfd3a7bdeee88510e694b Mon Sep 17 00:00:00 2001 From: liuwenran Date: Wed, 23 Nov 2022 17:39:48 +0800 Subject: [PATCH 67/68] [high-level api] misc change. --- demo/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/demo/README.md b/demo/README.md index 30d87dd76f..1d4a4eb992 100644 --- a/demo/README.md +++ b/demo/README.md @@ -52,7 +52,7 @@ python download_inference_resources.py # download resources of one task python download_inference_resources.py --task 'Inpainting' # download to the directory you want -python download_inference_resources.py --root-dir '../your_dir' +python download_inference_resources.py --root-dir '../resources' ``` ## 2. MMEditing inference demo From 1a4a0cdc8e3bceeea05b61388eb58b3d1807f871 Mon Sep 17 00:00:00 2001 From: liuwenran Date: Wed, 23 Nov 2022 18:02:54 +0800 Subject: [PATCH 68/68] [high-level api] fix type again. --- demo/README.md | 35 ++------------------- demo/mmediting_inference_tutorial.ipynb | 42 ++++++++++++------------- 2 files changed, 24 insertions(+), 53 deletions(-) diff --git a/demo/README.md b/demo/README.md index 1d4a4eb992..e23dae98a5 100644 --- a/demo/README.md +++ b/demo/README.md @@ -28,9 +28,7 @@ Table of contents:       [2.2.8. Video Super-Resolution example](#228-video-super-resolution) -[3. Face restoration demo](#3-face-restoration-demo) - -[4. Other demos](#4-other-demos) +[3. Other demos](#3-other-demos) ## 1. Download sample images or videos @@ -107,7 +105,7 @@ Examples for each kind of task: python mmediting_inference_demo.py \ --model-name biggan \ --label 1 \ - --result-out-dir ../resources/output/conditional/demo_conditional_biggan_res.jpg \ + --result-out-dir ../resources/output/conditional/demo_conditional_biggan_res.jpg ``` #### 2.2.2 Inpainting @@ -175,34 +173,7 @@ python mmediting_inference_demo.py \ --result-out-dir ../resources/output/video_restoration/demo_video_restoration_edvr_res.mp4 ``` -## 3. Face restoration demo - -You can use the following commands to test an face image for restoration. - -```shell -python restoration_face_demo.py \ - ${CONFIG_FILE} \ - ${CHECKPOINT_FILE} \ - ${IMAGE_FILE} \ - ${SAVE_FILE} \ - [--upscale-factor] \ - [--face-size] \ - [--imshow] \ - [--device ${GPU_ID}] -``` - -Examples: - -```shell -python restoration_face_demo.py \ - configs/glean/glean_in128out1024_4xb2-300k_ffhq-celeba-hq.py \ - https://download.openmmlab.com/mmediting/restorers/glean/glean_in128out1024_4x2_300k_ffhq_celebahq_20210812-acbcb04f.pth \ - tests/data/image/face/000001.png \ - tests/data/pred/000001.png \ - --upscale-factor 4 -``` - -## 4. Other demos +## 3. Other demos These demos are duplicated with mmedting_inference_demo.py and may be removed in the future. diff --git a/demo/mmediting_inference_tutorial.ipynb b/demo/mmediting_inference_tutorial.ipynb index 13b6e0e4ae..1c38eea4a6 100644 --- a/demo/mmediting_inference_tutorial.ipynb +++ b/demo/mmediting_inference_tutorial.ipynb @@ -145,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": { "vscode": { "languageId": "shellscript" @@ -173,49 +173,49 @@ "Requirement already satisfied: torch in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (1.9.0+cu111)\n", "Requirement already satisfied: torchvision in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmedit==1.0.0rc3) (0.10.0+cu111)\n", "Requirement already satisfied: addict in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (2.4.0)\n", - "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", - "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (0.32.0)\n", "Requirement already satisfied: packaging in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (21.3)\n", - "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", - "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", + "Requirement already satisfied: yapf in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (0.32.0)\n", + "Requirement already satisfied: pyyaml in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmcv>=2.0.0rc1->mmedit==1.0.0rc3) (6.0)\n", "Requirement already satisfied: scikit-image in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.19.3)\n", "Requirement already satisfied: scipy>=0.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (1.9.3)\n", + "Requirement already satisfied: tqdm in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (4.64.1)\n", + "Requirement already satisfied: numba in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from face-alignment->mmedit==1.0.0rc3) (0.56.3)\n", "Requirement already satisfied: filterpy in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from facexlib->mmedit==1.0.0rc3) (1.4.5)\n", "Requirement already satisfied: typing-extensions in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from torch->mmedit==1.0.0rc3) (4.4.0)\n", - "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (3.6.1)\n", "Requirement already satisfied: termcolor in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (2.0.1)\n", - "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", - "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", + "Requirement already satisfied: matplotlib in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from mmengine->mmedit==1.0.0rc3) (3.6.1)\n", "Requirement already satisfied: grpcio>=1.24.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.50.0)\n", - "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", "Requirement already satisfied: absl-py>=0.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.3.0)\n", - "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", - "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", - "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: google-auth<3,>=1.6.3 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.13.0)\n", "Requirement already satisfied: markdown>=2.6.8 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.4.1)\n", - "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", + "Requirement already satisfied: werkzeug>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.2.2)\n", "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (1.8.1)\n", + "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.6.1)\n", + "Requirement already satisfied: protobuf<3.20,>=3.9.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (3.19.6)\n", "Requirement already satisfied: wheel>=0.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.37.1)\n", - "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (0.4.6)\n", + "Requirement already satisfied: setuptools>=41.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (59.5.0)\n", + "Requirement already satisfied: requests<3,>=2.21.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from tensorboard->mmedit==1.0.0rc3) (2.28.1)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (0.2.8)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (5.2.0)\n", + "Requirement already satisfied: six>=1.9.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (1.16.0)\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth<3,>=1.6.3->tensorboard->mmedit==1.0.0rc3) (4.9)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmedit==1.0.0rc3) (1.3.1)\n", "Requirement already satisfied: importlib-metadata>=4.4 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (5.0.0)\n", - "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (1.26.12)\n", "Requirement already satisfied: certifi>=2017.4.17 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2022.9.24)\n", + "Requirement already satisfied: idna<4,>=2.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (3.4)\n", "Requirement already satisfied: charset-normalizer<3,>=2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from requests<3,>=2.21.0->tensorboard->mmedit==1.0.0rc3) (1.26.12)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from werkzeug>=1.0.1->tensorboard->mmedit==1.0.0rc3) (2.1.1)\n", + "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", "Requirement already satisfied: pyparsing>=2.2.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (3.0.9)\n", "Requirement already satisfied: contourpy>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.0.5)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (1.4.4)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (2.8.2)\n", "Requirement already satisfied: fonttools>=4.22.0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (4.37.4)\n", - "Requirement already satisfied: cycler>=0.10 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from matplotlib->mmengine->mmedit==1.0.0rc3) (0.11.0)\n", "Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from numba->face-alignment->mmedit==1.0.0rc3) (0.39.1)\n", - "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", "Requirement already satisfied: imageio>=2.4.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.22.2)\n", + "Requirement already satisfied: tifffile>=2019.7.26 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2022.10.10)\n", "Requirement already satisfied: PyWavelets>=1.1.1 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (1.4.1)\n", "Requirement already satisfied: networkx>=2.2 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from scikit-image->face-alignment->mmedit==1.0.0rc3) (2.8.7)\n", "Requirement already satisfied: zipp>=0.5 in /mnt/petrelfs/liuwenran/miniconda3/envs/py38pt19cu111/lib/python3.8/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmedit==1.0.0rc3) (3.9.0)\n", @@ -451,7 +451,7 @@ "# download resouces of one task\n", "!python download_inference_resources.py --task 'Inpainting'\n", "# download to the directory you want\n", - "!python download_inference_resources.py --root-dir '../your_dir'" + "!python download_inference_resources.py --root-dir '../resources'" ] }, {