-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathtest_roi_align_rotated.py
151 lines (131 loc) · 5.24 KB
/
test_roi_align_rotated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
_USING_PARROTS = True
try:
from parrots.autograd import gradcheck
except ImportError:
from torch.autograd import gradcheck
_USING_PARROTS = False
# yapf:disable
inputs = [([[[[1., 2.], [3., 4.]]]],
[[0., 0.5, 0.5, 1., 1., 0]]),
([[[[1., 2.], [3., 4.]]]],
[[0., 0.5, 0.5, 1., 1., np.pi / 2]]),
([[[[1., 2.], [3., 4.]],
[[4., 3.], [2., 1.]]]],
[[0., 0.5, 0.5, 1., 1., 0]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
[9., 10., 13., 14.], [11., 12., 15., 16.]]]],
[[0., 1.5, 1.5, 3., 3., 0]]),
([[[[1., 2., 5., 6.], [3., 4., 7., 8.],
[9., 10., 13., 14.], [11., 12., 15., 16.]]]],
[[0., 1.5, 1.5, 3., 3., np.pi / 2]])]
outputs = [([[[[1.0, 1.25], [1.5, 1.75]]]],
[[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
([[[[1.5, 1], [1.75, 1.25]]]],
[[[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
([[[[1.0, 1.25], [1.5, 1.75]],
[[4.0, 3.75], [3.5, 3.25]]]],
[[[[3.0625, 0.4375], [0.4375, 0.0625]],
[[3.0625, 0.4375], [0.4375, 0.0625]]]]),
([[[[1.9375, 4.75], [7.5625, 10.375]]]],
[[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
[0.04296875, 0.03906250, 0.03906250, 0.00390625]]]]),
([[[[7.5625, 1.9375], [10.375, 4.75]]]],
[[[[0.47265625, 0.42968750, 0.42968750, 0.04296875],
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
[0.42968750, 0.39062500, 0.39062500, 0.03906250],
[0.04296875, 0.03906250, 0.03906250, 0.00390625]]]])]
# yapf:enable
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
def _test_roialign_rotated_gradcheck(device, dtype):
try:
from mmcv.ops import RoIAlignRotated
except ModuleNotFoundError:
pytest.skip('RoIAlignRotated op is not successfully compiled')
if dtype is torch.half:
pytest.skip('grad check does not support fp16')
for case in inputs:
np_input = np.array(case[0])
np_rois = np.array(case[1])
x = torch.tensor(
np_input, dtype=dtype, device=device, requires_grad=True)
rois = torch.tensor(np_rois, dtype=dtype, device=device)
froipool = RoIAlignRotated((pool_h, pool_w), spatial_scale,
sampling_ratio)
if torch.__version__ == 'parrots':
gradcheck(
froipool, (x, rois), no_grads=[rois], delta=1e-5, pt_atol=1e-5)
else:
gradcheck(froipool, (x, rois), eps=1e-5, atol=1e-5)
def _test_roialign_rotated_allclose(device, dtype):
try:
from mmcv.ops import RoIAlignRotated, roi_align_rotated
except ModuleNotFoundError:
pytest.skip('test requires compilation')
pool_h = 2
pool_w = 2
spatial_scale = 1.0
sampling_ratio = 2
for case, output in zip(inputs, outputs):
np_input = np.array(case[0])
np_rois = np.array(case[1])
np_output = np.array(output[0])
np_grad = np.array(output[1])
x = torch.tensor(
np_input, dtype=dtype, device=device, requires_grad=True)
rois = torch.tensor(np_rois, dtype=dtype, device=device)
output = roi_align_rotated(x, rois, (pool_h, pool_w), spatial_scale,
sampling_ratio, True)
output.backward(torch.ones_like(output))
assert np.allclose(
output.data.type(torch.float).cpu().numpy(), np_output, atol=1e-3)
assert np.allclose(
x.grad.data.type(torch.float).cpu().numpy(), np_grad, atol=1e-3)
# Test deprecated parameters
roi_align_rotated_module_deprecated = RoIAlignRotated(
out_size=(pool_h, pool_w),
spatial_scale=spatial_scale,
sample_num=sampling_ratio)
output_1 = roi_align_rotated_module_deprecated(x, rois)
roi_align_rotated_module_new = RoIAlignRotated(
output_size=(pool_h, pool_w),
spatial_scale=spatial_scale,
sampling_ratio=sampling_ratio)
output_2 = roi_align_rotated_module_new(x, rois)
assert np.allclose(
output_1.data.type(torch.float).cpu().numpy(),
output_2.data.type(torch.float).cpu().numpy())
@pytest.mark.parametrize('device', [
'cpu',
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'mlu',
marks=pytest.mark.skipif(
not IS_MLU_AVAILABLE, reason='requires MLU support'))
])
@pytest.mark.parametrize('dtype', [
torch.float,
pytest.param(
torch.double,
marks=pytest.mark.skipif(
IS_MLU_AVAILABLE,
reason='MLU does not support for 64-bit floating point')),
torch.half
])
def test_roialign_rotated(device, dtype):
# check double only
if dtype is torch.double:
_test_roialign_rotated_gradcheck(device=device, dtype=dtype)
_test_roialign_rotated_allclose(device=device, dtype=dtype)