It is recommended to symlink the dataset root to $MMDETECTION3D/data
.
If your folder structure is different from the following, you may need to change the corresponding paths in config files.
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│ ├── nuscenes
│ │ ├── maps
│ │ ├── samples
│ │ ├── sweeps
│ │ ├── v1.0-test
| | ├── v1.0-trainval
│ ├── kitti
│ │ ├── ImageSets
│ │ ├── testing
│ │ │ ├── calib
│ │ │ ├── image_2
│ │ │ ├── velodyne
│ │ ├── training
│ │ │ ├── calib
│ │ │ ├── image_2
│ │ │ ├── label_2
│ │ │ ├── velodyne
│ ├── waymo
│ │ ├── waymo_format
│ │ │ ├── training
│ │ │ ├── validation
│ │ │ ├── testing
│ │ │ ├── gt.bin
│ │ ├── kitti_format
│ │ │ ├── ImageSets
│ ├── lyft
│ │ ├── v1.01-train
│ │ │ ├── v1.01-train (train_data)
│ │ │ ├── lidar (train_lidar)
│ │ │ ├── images (train_images)
│ │ │ ├── maps (train_maps)
│ │ ├── v1.01-test
│ │ │ ├── v1.01-test (test_data)
│ │ │ ├── lidar (test_lidar)
│ │ │ ├── images (test_images)
│ │ │ ├── maps (test_maps)
│ │ ├── train.txt
│ │ ├── val.txt
│ │ ├── test.txt
│ │ ├── sample_submission.csv
│ ├── s3dis
│ │ ├── meta_data
│ │ ├── Stanford3dDataset_v1.2_Aligned_Version
│ │ ├── collect_indoor3d_data.py
│ │ ├── indoor3d_util.py
│ │ ├── README.md
│ ├── scannet
│ │ ├── meta_data
│ │ ├── scans
│ │ ├── scans_test
│ │ ├── batch_load_scannet_data.py
│ │ ├── load_scannet_data.py
│ │ ├── scannet_utils.py
│ │ ├── README.md
│ ├── sunrgbd
│ │ ├── OFFICIAL_SUNRGBD
│ │ ├── matlab
│ │ ├── sunrgbd_data.py
│ │ ├── sunrgbd_utils.py
│ │ ├── README.md
Download KITTI 3D detection data HERE. Prepare KITTI data splits by running
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets
# Download data split
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt
Then generate info files by running
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti
In an environment using slurm, users may run the following command instead
sh tools/create_data.sh <partition> <job_name> kitti
Download Waymo open dataset V1.2 HERE and its data split HERE. Then put tfrecord files into corresponding folders in data/waymo/waymo_format/
and put the data split txt files into data/waymo/kitti_format/ImageSets
. Download ground truth bin file for validation set HERE and put it into data/waymo/waymo_format/
. A tip is that you can use gsutil
to download the large-scale dataset with commands. You can take this tool as an example for more details. Subsequently, prepare waymo data by running
python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 128 --extra-tag waymo
Note that if your local disk does not have enough space for saving converted data, you can change the out-dir
to anywhere else. Just remember to create folders and prepare data there in advance and link them back to data/waymo/kitti_format
after the data conversion.
Download nuScenes V1.0 full dataset data HERE. Prepare nuscenes data by running
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
Download Lyft 3D detection data HERE. Prepare Lyft data by running
python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-tag lyft --version v1.01
python tools/data_converter/lyft_data_fixer.py --version v1.01 --root-folder ./data/lyft
Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above. Also note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the discussion here for more details.
To prepare S3DIS data, please see its README.
To prepare ScanNet data, please see its README.
To prepare SUN RGB-D data, please see its README.
For using custom datasets, please refer to Tutorials 2: Customize Datasets.