-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathscannet_data_utils.py
297 lines (257 loc) · 12.4 KB
/
scannet_data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) OpenMMLab. All rights reserved.
import os
from concurrent import futures as futures
from os import path as osp
import mmcv
import numpy as np
class ScanNetData(object):
"""ScanNet data.
Generate scannet infos for scannet_converter.
Args:
root_path (str): Root path of the raw data.
split (str, optional): Set split type of the data. Default: 'train'.
"""
def __init__(self, root_path, split='train'):
self.root_dir = root_path
self.split = split
self.split_dir = osp.join(root_path)
self.classes = [
'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin'
]
self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
self.label2cat = {self.cat2label[t]: t for t in self.cat2label}
self.cat_ids = np.array(
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
self.cat_ids2class = {
nyu40id: i
for i, nyu40id in enumerate(list(self.cat_ids))
}
assert split in ['train', 'val', 'test']
split_file = osp.join(self.root_dir, 'meta_data',
f'scannetv2_{split}.txt')
mmcv.check_file_exist(split_file)
self.sample_id_list = mmcv.list_from_file(split_file)
self.test_mode = (split == 'test')
def __len__(self):
return len(self.sample_id_list)
def get_aligned_box_label(self, idx):
box_file = osp.join(self.root_dir, 'scannet_instance_data',
f'{idx}_aligned_bbox.npy')
mmcv.check_file_exist(box_file)
return np.load(box_file)
def get_unaligned_box_label(self, idx):
box_file = osp.join(self.root_dir, 'scannet_instance_data',
f'{idx}_unaligned_bbox.npy')
mmcv.check_file_exist(box_file)
return np.load(box_file)
def get_axis_align_matrix(self, idx):
matrix_file = osp.join(self.root_dir, 'scannet_instance_data',
f'{idx}_axis_align_matrix.npy')
mmcv.check_file_exist(matrix_file)
return np.load(matrix_file)
def get_images(self, idx):
paths = []
path = osp.join(self.root_dir, 'posed_images', idx)
for file in sorted(os.listdir(path)):
if file.endswith('.jpg'):
paths.append(osp.join('posed_images', idx, file))
return paths
def get_extrinsics(self, idx):
extrinsics = []
path = osp.join(self.root_dir, 'posed_images', idx)
for file in sorted(os.listdir(path)):
if file.endswith('.txt') and not file == 'intrinsic.txt':
extrinsics.append(np.loadtxt(osp.join(path, file)))
return extrinsics
def get_intrinsics(self, idx):
matrix_file = osp.join(self.root_dir, 'posed_images', idx,
'intrinsic.txt')
mmcv.check_file_exist(matrix_file)
return np.loadtxt(matrix_file)
def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
"""Get data infos.
This method gets information from the raw data.
Args:
num_workers (int, optional): Number of threads to be used.
Default: 4.
has_label (bool, optional): Whether the data has label.
Default: True.
sample_id_list (list[int], optional): Index list of the sample.
Default: None.
Returns:
infos (list[dict]): Information of the raw data.
"""
def process_single_scene(sample_idx):
print(f'{self.split} sample_idx: {sample_idx}')
info = dict()
pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
pts_filename = osp.join(self.root_dir, 'scannet_instance_data',
f'{sample_idx}_vert.npy')
points = np.load(pts_filename)
mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points'))
points.tofile(
osp.join(self.root_dir, 'points', f'{sample_idx}.bin'))
info['pts_path'] = osp.join('points', f'{sample_idx}.bin')
# update with RGB image paths if exist
if os.path.exists(osp.join(self.root_dir, 'posed_images')):
info['intrinsics'] = self.get_intrinsics(sample_idx)
all_extrinsics = self.get_extrinsics(sample_idx)
all_img_paths = self.get_images(sample_idx)
# some poses in ScanNet are invalid
extrinsics, img_paths = [], []
for extrinsic, img_path in zip(all_extrinsics, all_img_paths):
if np.all(np.isfinite(extrinsic)):
img_paths.append(img_path)
extrinsics.append(extrinsic)
info['extrinsics'] = extrinsics
info['img_paths'] = img_paths
if not self.test_mode:
pts_instance_mask_path = osp.join(
self.root_dir, 'scannet_instance_data',
f'{sample_idx}_ins_label.npy')
pts_semantic_mask_path = osp.join(
self.root_dir, 'scannet_instance_data',
f'{sample_idx}_sem_label.npy')
pts_instance_mask = np.load(pts_instance_mask_path).astype(
np.int64)
pts_semantic_mask = np.load(pts_semantic_mask_path).astype(
np.int64)
mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask'))
mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask'))
pts_instance_mask.tofile(
osp.join(self.root_dir, 'instance_mask',
f'{sample_idx}.bin'))
pts_semantic_mask.tofile(
osp.join(self.root_dir, 'semantic_mask',
f'{sample_idx}.bin'))
info['pts_instance_mask_path'] = osp.join(
'instance_mask', f'{sample_idx}.bin')
info['pts_semantic_mask_path'] = osp.join(
'semantic_mask', f'{sample_idx}.bin')
if has_label:
annotations = {}
# box is of shape [k, 6 + class]
aligned_box_label = self.get_aligned_box_label(sample_idx)
unaligned_box_label = self.get_unaligned_box_label(sample_idx)
annotations['gt_num'] = aligned_box_label.shape[0]
if annotations['gt_num'] != 0:
aligned_box = aligned_box_label[:, :-1] # k, 6
unaligned_box = unaligned_box_label[:, :-1]
classes = aligned_box_label[:, -1] # k
annotations['name'] = np.array([
self.label2cat[self.cat_ids2class[classes[i]]]
for i in range(annotations['gt_num'])
])
# default names are given to aligned bbox for compatibility
# we also save unaligned bbox info with marked names
annotations['location'] = aligned_box[:, :3]
annotations['dimensions'] = aligned_box[:, 3:6]
annotations['gt_boxes_upright_depth'] = aligned_box
annotations['unaligned_location'] = unaligned_box[:, :3]
annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
annotations[
'unaligned_gt_boxes_upright_depth'] = unaligned_box
annotations['index'] = np.arange(
annotations['gt_num'], dtype=np.int32)
annotations['class'] = np.array([
self.cat_ids2class[classes[i]]
for i in range(annotations['gt_num'])
])
axis_align_matrix = self.get_axis_align_matrix(sample_idx)
annotations['axis_align_matrix'] = axis_align_matrix # 4x4
info['annos'] = annotations
return info
sample_id_list = sample_id_list if sample_id_list is not None \
else self.sample_id_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_scene, sample_id_list)
return list(infos)
class ScanNetSegData(object):
"""ScanNet dataset used to generate infos for semantic segmentation task.
Args:
data_root (str): Root path of the raw data.
ann_file (str): The generated scannet infos.
split (str, optional): Set split type of the data. Default: 'train'.
num_points (int, optional): Number of points in each data input.
Default: 8192.
label_weight_func (function, optional): Function to compute the
label weight. Default: None.
"""
def __init__(self,
data_root,
ann_file,
split='train',
num_points=8192,
label_weight_func=None):
self.data_root = data_root
self.data_infos = mmcv.load(ann_file)
self.split = split
assert split in ['train', 'val', 'test']
self.num_points = num_points
self.all_ids = np.arange(41) # all possible ids
self.cat_ids = np.array([
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,
39
]) # used for seg task
self.ignore_index = len(self.cat_ids)
self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \
self.ignore_index
for i, cat_id in enumerate(self.cat_ids):
self.cat_id2class[cat_id] = i
# label weighting function is taken from
# https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24
self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \
label_weight_func is None else label_weight_func
def get_seg_infos(self):
if self.split == 'test':
return
scene_idxs, label_weight = self.get_scene_idxs_and_label_weight()
save_folder = osp.join(self.data_root, 'seg_info')
mmcv.mkdir_or_exist(save_folder)
np.save(
osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'),
scene_idxs)
np.save(
osp.join(save_folder, f'{self.split}_label_weight.npy'),
label_weight)
print(f'{self.split} resampled scene index and label weight saved')
def _convert_to_label(self, mask):
"""Convert class_id in loaded segmentation mask to label."""
if isinstance(mask, str):
if mask.endswith('npy'):
mask = np.load(mask)
else:
mask = np.fromfile(mask, dtype=np.int64)
label = self.cat_id2class[mask]
return label
def get_scene_idxs_and_label_weight(self):
"""Compute scene_idxs for data sampling and label weight for loss
calculation.
We sample more times for scenes with more points. Label_weight is
inversely proportional to number of class points.
"""
num_classes = len(self.cat_ids)
num_point_all = []
label_weight = np.zeros((num_classes + 1, )) # ignore_index
for data_info in self.data_infos:
label = self._convert_to_label(
osp.join(self.data_root, data_info['pts_semantic_mask_path']))
num_point_all.append(label.shape[0])
class_count, _ = np.histogram(label, range(num_classes + 2))
label_weight += class_count
# repeat scene_idx for num_scene_point // num_sample_point times
sample_prob = np.array(num_point_all) / float(np.sum(num_point_all))
num_iter = int(np.sum(num_point_all) / float(self.num_points))
scene_idxs = []
for idx in range(len(self.data_infos)):
scene_idxs.extend([idx] * int(round(sample_prob[idx] * num_iter)))
scene_idxs = np.array(scene_idxs).astype(np.int32)
# calculate label weight, adopted from PointNet++
label_weight = label_weight[:-1].astype(np.float32)
label_weight = label_weight / label_weight.sum()
label_weight = self.label_weight_func(label_weight).astype(np.float32)
return scene_idxs, label_weight