-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathbase_box3d.py
582 lines (479 loc) · 21 KB
/
base_box3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from abc import abstractmethod
import numpy as np
import torch
from mmdet3d.ops import points_in_boxes_all, points_in_boxes_part
from mmdet3d.ops.iou3d import iou3d_cuda
from .utils import limit_period, xywhr2xyxyr
class BaseInstance3DBoxes(object):
"""Base class for 3D Boxes.
Note:
The box is bottom centered, i.e. the relative position of origin in
the box is (0.5, 0.5, 0).
Args:
tensor (torch.Tensor | np.ndarray | list): a N x box_dim matrix.
box_dim (int): Number of the dimension of a box.
Each row is (x, y, z, x_size, y_size, z_size, yaw).
Defaults to 7.
with_yaw (bool): Whether the box is with yaw rotation.
If False, the value of yaw will be set to 0 as minmax boxes.
Defaults to True.
origin (tuple[float], optional): Relative position of the box origin.
Defaults to (0.5, 0.5, 0). This will guide the box be converted to
(0.5, 0.5, 0) mode.
Attributes:
tensor (torch.Tensor): Float matrix of N x box_dim.
box_dim (int): Integer indicating the dimension of a box.
Each row is (x, y, z, x_size, y_size, z_size, yaw, ...).
with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
boxes.
"""
def __init__(self, tensor, box_dim=7, with_yaw=True, origin=(0.5, 0.5, 0)):
if isinstance(tensor, torch.Tensor):
device = tensor.device
else:
device = torch.device('cpu')
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that
# does not depend on the inputs (and consequently confuses jit)
tensor = tensor.reshape((0, box_dim)).to(
dtype=torch.float32, device=device)
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()
if tensor.shape[-1] == 6:
# If the dimension of boxes is 6, we expand box_dim by padding
# 0 as a fake yaw and set with_yaw to False.
assert box_dim == 6
fake_rot = tensor.new_zeros(tensor.shape[0], 1)
tensor = torch.cat((tensor, fake_rot), dim=-1)
self.box_dim = box_dim + 1
self.with_yaw = False
else:
self.box_dim = box_dim
self.with_yaw = with_yaw
self.tensor = tensor.clone()
if origin != (0.5, 0.5, 0):
dst = self.tensor.new_tensor((0.5, 0.5, 0))
src = self.tensor.new_tensor(origin)
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
@property
def volume(self):
"""torch.Tensor: A vector with volume of each box."""
return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]
@property
def dims(self):
"""torch.Tensor: Size dimensions of each box in shape (N, 3)."""
return self.tensor[:, 3:6]
@property
def yaw(self):
"""torch.Tensor: A vector with yaw of each box in shape (N, )."""
return self.tensor[:, 6]
@property
def height(self):
"""torch.Tensor: A vector with height of each box in shape (N, )."""
return self.tensor[:, 5]
@property
def top_height(self):
"""torch.Tensor:
A vector with the top height of each box in shape (N, )."""
return self.bottom_height + self.height
@property
def bottom_height(self):
"""torch.Tensor:
A vector with bottom's height of each box in shape (N, )."""
return self.tensor[:, 2]
@property
def center(self):
"""Calculate the center of all the boxes.
Note:
In MMDetection3D's convention, the bottom center is
usually taken as the default center.
The relative position of the centers in different kinds of
boxes are different, e.g., the relative center of a boxes is
(0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar.
It is recommended to use ``bottom_center`` or ``gravity_center``
for clearer usage.
Returns:
torch.Tensor: A tensor with center of each box in shape (N, 3).
"""
return self.bottom_center
@property
def bottom_center(self):
"""torch.Tensor: A tensor with center of each box in shape (N, 3)."""
return self.tensor[:, :3]
@property
def gravity_center(self):
"""torch.Tensor: A tensor with center of each box in shape (N, 3)."""
pass
@property
def corners(self):
"""torch.Tensor:
a tensor with 8 corners of each box in shape (N, 8, 3)."""
pass
@property
def bev(self):
"""torch.Tensor: 2D BEV box of each box with rotation
in XYWHR format, in shape (N, 5)."""
return self.tensor[:, [0, 1, 3, 4, 6]]
@property
def nearest_bev(self):
"""torch.Tensor: A tensor of 2D BEV box of each box
without rotation."""
# Obtain BEV boxes with rotation in XYWHR format
bev_rotated_boxes = self.bev
# convert the rotation to a valid range
rotations = bev_rotated_boxes[:, -1]
normed_rotations = torch.abs(limit_period(rotations, 0.5, np.pi))
# find the center of boxes
conditions = (normed_rotations > np.pi / 4)[..., None]
bboxes_xywh = torch.where(conditions, bev_rotated_boxes[:,
[0, 1, 3, 2]],
bev_rotated_boxes[:, :4])
centers = bboxes_xywh[:, :2]
dims = bboxes_xywh[:, 2:]
bev_boxes = torch.cat([centers - dims / 2, centers + dims / 2], dim=-1)
return bev_boxes
def in_range_bev(self, box_range):
"""Check whether the boxes are in the given range.
Args:
box_range (list | torch.Tensor): the range of box
(x_min, y_min, x_max, y_max)
Note:
The original implementation of SECOND checks whether boxes in
a range by checking whether the points are in a convex
polygon, we reduce the burden for simpler cases.
Returns:
torch.Tensor: Whether each box is inside the reference range.
"""
in_range_flags = ((self.bev[:, 0] > box_range[0])
& (self.bev[:, 1] > box_range[1])
& (self.bev[:, 0] < box_range[2])
& (self.bev[:, 1] < box_range[3]))
return in_range_flags
@abstractmethod
def rotate(self, angle, points=None):
"""Rotate boxes with points (optional) with the given angle or rotation
matrix.
Args:
angle (float | torch.Tensor | np.ndarray):
Rotation angle or rotation matrix.
points (torch.Tensor | numpy.ndarray |
:obj:`BasePoints`, optional):
Points to rotate. Defaults to None.
"""
pass
@abstractmethod
def flip(self, bev_direction='horizontal'):
"""Flip the boxes in BEV along given BEV direction.
Args:
bev_direction (str, optional): Direction by which to flip.
Can be chosen from 'horizontal' and 'vertical'.
Defaults to 'horizontal'.
"""
pass
def translate(self, trans_vector):
"""Translate boxes with the given translation vector.
Args:
trans_vector (torch.Tensor): Translation vector of size (1, 3).
"""
if not isinstance(trans_vector, torch.Tensor):
trans_vector = self.tensor.new_tensor(trans_vector)
self.tensor[:, :3] += trans_vector
def in_range_3d(self, box_range):
"""Check whether the boxes are in the given range.
Args:
box_range (list | torch.Tensor): The range of box
(x_min, y_min, z_min, x_max, y_max, z_max)
Note:
In the original implementation of SECOND, checking whether
a box in the range checks whether the points are in a convex
polygon, we try to reduce the burden for simpler cases.
Returns:
torch.Tensor: A binary vector indicating whether each box is
inside the reference range.
"""
in_range_flags = ((self.tensor[:, 0] > box_range[0])
& (self.tensor[:, 1] > box_range[1])
& (self.tensor[:, 2] > box_range[2])
& (self.tensor[:, 0] < box_range[3])
& (self.tensor[:, 1] < box_range[4])
& (self.tensor[:, 2] < box_range[5]))
return in_range_flags
@abstractmethod
def convert_to(self, dst, rt_mat=None):
"""Convert self to ``dst`` mode.
Args:
dst (:obj:`Box3DMode`): The target Box mode.
rt_mat (np.ndarray | torch.Tensor, optional): The rotation and
translation matrix between different coordinates.
Defaults to None.
The conversion from `src` coordinates to `dst` coordinates
usually comes along the change of sensors, e.g., from camera
to LiDAR. This requires a transformation matrix.
Returns:
:obj:`BaseInstance3DBoxes`: The converted box of the same type
in the `dst` mode.
"""
pass
def scale(self, scale_factor):
"""Scale the box with horizontal and vertical scaling factors.
Args:
scale_factors (float): Scale factors to scale the boxes.
"""
self.tensor[:, :6] *= scale_factor
self.tensor[:, 7:] *= scale_factor # velocity
def limit_yaw(self, offset=0.5, period=np.pi):
"""Limit the yaw to a given period and offset.
Args:
offset (float, optional): The offset of the yaw. Defaults to 0.5.
period (float, optional): The expected period. Defaults to np.pi.
"""
self.tensor[:, 6] = limit_period(self.tensor[:, 6], offset, period)
def nonempty(self, threshold=0.0):
"""Find boxes that are non-empty.
A box is considered empty,
if either of its side is no larger than threshold.
Args:
threshold (float, optional): The threshold of minimal sizes.
Defaults to 0.0.
Returns:
torch.Tensor: A binary vector which represents whether each
box is empty (False) or non-empty (True).
"""
box = self.tensor
size_x = box[..., 3]
size_y = box[..., 4]
size_z = box[..., 5]
keep = ((size_x > threshold)
& (size_y > threshold) & (size_z > threshold))
return keep
def __getitem__(self, item):
"""
Note:
The following usage are allowed:
1. `new_boxes = boxes[3]`:
return a `Boxes` that contains only one box.
2. `new_boxes = boxes[2:10]`:
return a slice of boxes.
3. `new_boxes = boxes[vector]`:
where vector is a torch.BoolTensor with `length = len(boxes)`.
Nonzero elements in the vector will be selected.
Note that the returned Boxes might share storage with this Boxes,
subject to Pytorch's indexing semantics.
Returns:
:obj:`BaseInstance3DBoxes`: A new object of
:class:`BaseInstance3DBoxes` after indexing.
"""
original_type = type(self)
if isinstance(item, int):
return original_type(
self.tensor[item].view(1, -1),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
b = self.tensor[item]
assert b.dim() == 2, \
f'Indexing on Boxes with {item} failed to return a matrix!'
return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)
def __len__(self):
"""int: Number of boxes in the current object."""
return self.tensor.shape[0]
def __repr__(self):
"""str: Return a strings that describes the object."""
return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')'
@classmethod
def cat(cls, boxes_list):
"""Concatenate a list of Boxes into a single Boxes.
Args:
boxes_list (list[:obj:`BaseInstance3DBoxes`]): List of boxes.
Returns:
:obj:`BaseInstance3DBoxes`: The concatenated Boxes.
"""
assert isinstance(boxes_list, (list, tuple))
if len(boxes_list) == 0:
return cls(torch.empty(0))
assert all(isinstance(box, cls) for box in boxes_list)
# use torch.cat (v.s. layers.cat)
# so the returned boxes never share storage with input
cat_boxes = cls(
torch.cat([b.tensor for b in boxes_list], dim=0),
box_dim=boxes_list[0].tensor.shape[1],
with_yaw=boxes_list[0].with_yaw)
return cat_boxes
def to(self, device):
"""Convert current boxes to a specific device.
Args:
device (str | :obj:`torch.device`): The name of the device.
Returns:
:obj:`BaseInstance3DBoxes`: A new boxes object on the
specific device.
"""
original_type = type(self)
return original_type(
self.tensor.to(device),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
def clone(self):
"""Clone the Boxes.
Returns:
:obj:`BaseInstance3DBoxes`: Box object with the same properties
as self.
"""
original_type = type(self)
return original_type(
self.tensor.clone(), box_dim=self.box_dim, with_yaw=self.with_yaw)
@property
def device(self):
"""str: The device of the boxes are on."""
return self.tensor.device
def __iter__(self):
"""Yield a box as a Tensor of shape (4,) at a time.
Returns:
torch.Tensor: A box of shape (4,).
"""
yield from self.tensor
@classmethod
def height_overlaps(cls, boxes1, boxes2, mode='iou'):
"""Calculate height overlaps of two boxes.
Note:
This function calculates the height overlaps between boxes1 and
boxes2, boxes1 and boxes2 should be in the same type.
Args:
boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
mode (str, optional): Mode of IoU calculation. Defaults to 'iou'.
Returns:
torch.Tensor: Calculated iou of boxes.
"""
assert isinstance(boxes1, BaseInstance3DBoxes)
assert isinstance(boxes2, BaseInstance3DBoxes)
assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'
boxes1_top_height = boxes1.top_height.view(-1, 1)
boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
boxes2_top_height = boxes2.top_height.view(1, -1)
boxes2_bottom_height = boxes2.bottom_height.view(1, -1)
heighest_of_bottom = torch.max(boxes1_bottom_height,
boxes2_bottom_height)
lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
return overlaps_h
@classmethod
def overlaps(cls, boxes1, boxes2, mode='iou'):
"""Calculate 3D overlaps of two boxes.
Note:
This function calculates the overlaps between ``boxes1`` and
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
Args:
boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
mode (str, optional): Mode of iou calculation. Defaults to 'iou'.
Returns:
torch.Tensor: Calculated iou of boxes' heights.
"""
assert isinstance(boxes1, BaseInstance3DBoxes)
assert isinstance(boxes2, BaseInstance3DBoxes)
assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'
assert mode in ['iou', 'iof']
rows = len(boxes1)
cols = len(boxes2)
if rows * cols == 0:
return boxes1.tensor.new(rows, cols)
# height overlap
overlaps_h = cls.height_overlaps(boxes1, boxes2)
# obtain BEV boxes in XYXYR format
boxes1_bev = xywhr2xyxyr(boxes1.bev)
boxes2_bev = xywhr2xyxyr(boxes2.bev)
# bev overlap
overlaps_bev = boxes1_bev.new_zeros(
(boxes1_bev.shape[0], boxes2_bev.shape[0])).cuda() # (N, M)
iou3d_cuda.boxes_overlap_bev_gpu(boxes1_bev.contiguous().cuda(),
boxes2_bev.contiguous().cuda(),
overlaps_bev)
# 3d overlaps
overlaps_3d = overlaps_bev.to(boxes1.device) * overlaps_h
volume1 = boxes1.volume.view(-1, 1)
volume2 = boxes2.volume.view(1, -1)
if mode == 'iou':
# the clamp func is used to avoid division of 0
iou3d = overlaps_3d / torch.clamp(
volume1 + volume2 - overlaps_3d, min=1e-8)
else:
iou3d = overlaps_3d / torch.clamp(volume1, min=1e-8)
return iou3d
def new_box(self, data):
"""Create a new box object with data.
The new box and its tensor has the similar properties
as self and self.tensor, respectively.
Args:
data (torch.Tensor | numpy.array | list): Data to be copied.
Returns:
:obj:`BaseInstance3DBoxes`: A new bbox object with ``data``,
the object's other properties are similar to ``self``.
"""
new_tensor = self.tensor.new_tensor(data) \
if not isinstance(data, torch.Tensor) else data.to(self.device)
original_type = type(self)
return original_type(
new_tensor, box_dim=self.box_dim, with_yaw=self.with_yaw)
def points_in_boxes_part(self, points, boxes_override=None):
"""Find the box in which each point is.
Args:
points (torch.Tensor): Points in shape (1, M, 3) or (M, 3),
3 dimensions are (x, y, z) in LiDAR or depth coordinate.
boxes_override (torch.Tensor, optional): Boxes to override
`self.tensor`. Defaults to None.
Returns:
torch.Tensor: The index of the first box that each point
is in, in shape (M, ). Default value is -1
(if the point is not enclosed by any box).
Note:
If a point is enclosed by multiple boxes, the index of the
first box will be returned.
"""
if boxes_override is not None:
boxes = boxes_override
else:
boxes = self.tensor
if points.dim() == 2:
points = points.unsqueeze(0)
box_idx = points_in_boxes_part(points,
boxes.unsqueeze(0).to(
points.device)).squeeze(0)
return box_idx
def points_in_boxes_all(self, points, boxes_override=None):
"""Find all boxes in which each point is.
Args:
points (torch.Tensor): Points in shape (1, M, 3) or (M, 3),
3 dimensions are (x, y, z) in LiDAR or depth coordinate.
boxes_override (torch.Tensor, optional): Boxes to override
`self.tensor`. Defaults to None.
Returns:
torch.Tensor: A tensor indicating whether a point is in a box,
in shape (M, T). T is the number of boxes. Denote this
tensor as A, if the m^th point is in the t^th box, then
`A[m, t] == 1`, elsewise `A[m, t] == 0`.
"""
if boxes_override is not None:
boxes = boxes_override
else:
boxes = self.tensor
points_clone = points.clone()[..., :3]
if points_clone.dim() == 2:
points_clone = points_clone.unsqueeze(0)
else:
assert points_clone.dim() == 3 and points_clone.shape[0] == 1
boxes = boxes.to(points_clone.device).unsqueeze(0)
box_idxs_of_pts = points_in_boxes_all(points_clone, boxes)
return box_idxs_of_pts.squeeze(0)
def points_in_boxes(self, points, boxes_override=None):
warnings.warn('DeprecationWarning: points_in_boxes is a '
'deprecated method, please consider using '
'points_in_boxes_part.')
return self.points_in_boxes_part(points, boxes_override)
def points_in_boxes_batch(self, points, boxes_override=None):
warnings.warn('DeprecationWarning: points_in_boxes_batch is a '
'deprecated method, please consider using '
'points_in_boxes_all.')
return self.points_in_boxes_all(points, boxes_override)