-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathutils.py
335 lines (270 loc) · 11.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) OpenMMLab. All rights reserved.
from logging import warning
import numpy as np
import torch
from mmdet3d.core.utils import array_converter
@array_converter(apply_to=('val', ))
def limit_period(val, offset=0.5, period=np.pi):
"""Limit the value into a period for periodic function.
Args:
val (torch.Tensor | np.ndarray): The value to be converted.
offset (float, optional): Offset to set the value range.
Defaults to 0.5.
period ([type], optional): Period of the value. Defaults to np.pi.
Returns:
(torch.Tensor | np.ndarray): Value in the range of
[-offset * period, (1-offset) * period]
"""
limited_val = val - torch.floor(val / period + offset) * period
return limited_val
@array_converter(apply_to=('points', 'angles'))
def rotation_3d_in_axis(points,
angles,
axis=0,
return_mat=False,
clockwise=False):
"""Rotate points by angles according to axis.
Args:
points (np.ndarray | torch.Tensor | list | tuple ):
Points of shape (N, M, 3).
angles (np.ndarray | torch.Tensor | list | tuple | float):
Vector of angles in shape (N,)
axis (int, optional): The axis to be rotated. Defaults to 0.
return_mat: Whether or not return the rotation matrix (transposed).
Defaults to False.
clockwise: Whether the rotation is clockwise. Defaults to False.
Raises:
ValueError: when the axis is not in range [0, 1, 2], it will
raise value error.
Returns:
(torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3).
"""
batch_free = len(points.shape) == 2
if batch_free:
points = points[None]
if isinstance(angles, float) or len(angles.shape) == 0:
angles = torch.full(points.shape[:1], angles)
assert len(points.shape) == 3 and len(angles.shape) == 1 \
and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \
f'angles: {points.shape}, {angles.shape}'
assert points.shape[-1] in [2, 3], \
f'Points size should be 2 or 3 instead of {points.shape[-1]}'
rot_sin = torch.sin(angles)
rot_cos = torch.cos(angles)
ones = torch.ones_like(rot_cos)
zeros = torch.zeros_like(rot_cos)
if points.shape[-1] == 3:
if axis == 1 or axis == -2:
rot_mat_T = torch.stack([
torch.stack([rot_cos, zeros, -rot_sin]),
torch.stack([zeros, ones, zeros]),
torch.stack([rot_sin, zeros, rot_cos])
])
elif axis == 2 or axis == -1:
rot_mat_T = torch.stack([
torch.stack([rot_cos, rot_sin, zeros]),
torch.stack([-rot_sin, rot_cos, zeros]),
torch.stack([zeros, zeros, ones])
])
elif axis == 0 or axis == -3:
rot_mat_T = torch.stack([
torch.stack([ones, zeros, zeros]),
torch.stack([zeros, rot_cos, rot_sin]),
torch.stack([zeros, -rot_sin, rot_cos])
])
else:
raise ValueError(f'axis should in range '
f'[-3, -2, -1, 0, 1, 2], got {axis}')
else:
rot_mat_T = torch.stack([
torch.stack([rot_cos, rot_sin]),
torch.stack([-rot_sin, rot_cos])
])
if clockwise:
rot_mat_T = rot_mat_T.transpose(0, 1)
if points.shape[0] == 0:
points_new = points
else:
points_new = torch.einsum('aij,jka->aik', points, rot_mat_T)
if batch_free:
points_new = points_new.squeeze(0)
if return_mat:
rot_mat_T = torch.einsum('jka->ajk', rot_mat_T)
if batch_free:
rot_mat_T = rot_mat_T.squeeze(0)
return points_new, rot_mat_T
else:
return points_new
@array_converter(apply_to=('boxes_xywhr', ))
def xywhr2xyxyr(boxes_xywhr):
"""Convert a rotated boxes in XYWHR format to XYXYR format.
Args:
boxes_xywhr (torch.Tensor | np.ndarray): Rotated boxes in XYWHR format.
Returns:
(torch.Tensor | np.ndarray): Converted boxes in XYXYR format.
"""
boxes = torch.zeros_like(boxes_xywhr)
half_w = boxes_xywhr[..., 2] / 2
half_h = boxes_xywhr[..., 3] / 2
boxes[..., 0] = boxes_xywhr[..., 0] - half_w
boxes[..., 1] = boxes_xywhr[..., 1] - half_h
boxes[..., 2] = boxes_xywhr[..., 0] + half_w
boxes[..., 3] = boxes_xywhr[..., 1] + half_h
boxes[..., 4] = boxes_xywhr[..., 4]
return boxes
def get_box_type(box_type):
"""Get the type and mode of box structure.
Args:
box_type (str): The type of box structure.
The valid value are "LiDAR", "Camera", or "Depth".
Raises:
ValueError: A ValueError is raised when `box_type`
does not belong to the three valid types.
Returns:
tuple: Box type and box mode.
"""
from .box_3d_mode import (Box3DMode, CameraInstance3DBoxes,
DepthInstance3DBoxes, LiDARInstance3DBoxes)
box_type_lower = box_type.lower()
if box_type_lower == 'lidar':
box_type_3d = LiDARInstance3DBoxes
box_mode_3d = Box3DMode.LIDAR
elif box_type_lower == 'camera':
box_type_3d = CameraInstance3DBoxes
box_mode_3d = Box3DMode.CAM
elif box_type_lower == 'depth':
box_type_3d = DepthInstance3DBoxes
box_mode_3d = Box3DMode.DEPTH
else:
raise ValueError('Only "box_type" of "camera", "lidar", "depth"'
f' are supported, got {box_type}')
return box_type_3d, box_mode_3d
@array_converter(apply_to=('points_3d', 'proj_mat'))
def points_cam2img(points_3d, proj_mat, with_depth=False):
"""Project points in camera coordinates to image coordinates.
Args:
points_3d (torch.Tensor | np.ndarray): Points in shape (N, 3)
proj_mat (torch.Tensor | np.ndarray):
Transformation matrix between coordinates.
with_depth (bool, optional): Whether to keep depth in the output.
Defaults to False.
Returns:
(torch.Tensor | np.ndarray): Points in image coordinates,
with shape [N, 2] if `with_depth=False`, else [N, 3].
"""
points_shape = list(points_3d.shape)
points_shape[-1] = 1
assert len(proj_mat.shape) == 2, 'The dimension of the projection'\
f' matrix should be 2 instead of {len(proj_mat.shape)}.'
d1, d2 = proj_mat.shape[:2]
assert (d1 == 3 and d2 == 3) or (d1 == 3 and d2 == 4) or (
d1 == 4 and d2 == 4), 'The shape of the projection matrix'\
f' ({d1}*{d2}) is not supported.'
if d1 == 3:
proj_mat_expanded = torch.eye(
4, device=proj_mat.device, dtype=proj_mat.dtype)
proj_mat_expanded[:d1, :d2] = proj_mat
proj_mat = proj_mat_expanded
# previous implementation use new_zeros, new_one yields better results
points_4 = torch.cat([points_3d, points_3d.new_ones(points_shape)], dim=-1)
point_2d = points_4 @ proj_mat.T
point_2d_res = point_2d[..., :2] / point_2d[..., 2:3]
if with_depth:
point_2d_res = torch.cat([point_2d_res, point_2d[..., 2:3]], dim=-1)
return point_2d_res
@array_converter(apply_to=('points', 'cam2img'))
def points_img2cam(points, cam2img):
"""Project points in image coordinates to camera coordinates.
Args:
points (torch.Tensor): 2.5D points in 2D images, [N, 3],
3 corresponds with x, y in the image and depth.
cam2img (torch.Tensor): Camera intrinsic matrix. The shape can be
[3, 3], [3, 4] or [4, 4].
Returns:
torch.Tensor: points in 3D space. [N, 3],
3 corresponds with x, y, z in 3D space.
"""
assert cam2img.shape[0] <= 4
assert cam2img.shape[1] <= 4
assert points.shape[1] == 3
xys = points[:, :2]
depths = points[:, 2].view(-1, 1)
unnormed_xys = torch.cat([xys * depths, depths], dim=1)
pad_cam2img = torch.eye(4, dtype=xys.dtype, device=xys.device)
pad_cam2img[:cam2img.shape[0], :cam2img.shape[1]] = cam2img
inv_pad_cam2img = torch.inverse(pad_cam2img).transpose(0, 1)
# Do operation in homogeneous coordinates.
num_points = unnormed_xys.shape[0]
homo_xys = torch.cat([unnormed_xys, xys.new_ones((num_points, 1))], dim=1)
points3D = torch.mm(homo_xys, inv_pad_cam2img)[:, :3]
return points3D
def mono_cam_box2vis(cam_box):
"""This is a post-processing function on the bboxes from Mono-3D task. If
we want to perform projection visualization, we need to:
1. rotate the box along x-axis for np.pi / 2 (roll)
2. change orientation from local yaw to global yaw
3. convert yaw by (np.pi / 2 - yaw)
After applying this function, we can project and draw it on 2D images.
Args:
cam_box (:obj:`CameraInstance3DBoxes`): 3D bbox in camera coordinate
system before conversion. Could be gt bbox loaded from dataset
or network prediction output.
Returns:
:obj:`CameraInstance3DBoxes`: Box after conversion.
"""
warning.warn('DeprecationWarning: The hack of yaw and dimension in the '
'monocular 3D detection on nuScenes has been removed. The '
'function mono_cam_box2vis will be deprecated.')
from . import CameraInstance3DBoxes
assert isinstance(cam_box, CameraInstance3DBoxes), \
'input bbox should be CameraInstance3DBoxes!'
loc = cam_box.gravity_center
dim = cam_box.dims
yaw = cam_box.yaw
feats = cam_box.tensor[:, 7:]
# rotate along x-axis for np.pi / 2
# see also here: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L557 # noqa
dim[:, [1, 2]] = dim[:, [2, 1]]
# change local yaw to global yaw for visualization
# refer to https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L164-L166 # noqa
yaw += torch.atan2(loc[:, 0], loc[:, 2])
# convert yaw by (-yaw - np.pi / 2)
# this is because mono 3D box class such as `NuScenesBox` has different
# definition of rotation with our `CameraInstance3DBoxes`
yaw = -yaw - np.pi / 2
cam_box = torch.cat([loc, dim, yaw[:, None], feats], dim=1)
cam_box = CameraInstance3DBoxes(
cam_box, box_dim=cam_box.shape[-1], origin=(0.5, 0.5, 0.5))
return cam_box
def get_proj_mat_by_coord_type(img_meta, coord_type):
"""Obtain image features using points.
Args:
img_meta (dict): Meta info.
coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'.
Can be case-insensitive.
Returns:
torch.Tensor: transformation matrix.
"""
coord_type = coord_type.upper()
mapping = {'LIDAR': 'lidar2img', 'DEPTH': 'depth2img', 'CAMERA': 'cam2img'}
assert coord_type in mapping.keys()
return img_meta[mapping[coord_type]]
def yaw2local(yaw, loc):
"""Transform global yaw to local yaw (alpha in kitti) in camera
coordinates, ranges from -pi to pi.
Args:
yaw (torch.Tensor): A vector with local yaw of each box.
shape: (N, )
loc (torch.Tensor): gravity center of each box.
shape: (N, 3)
Returns:
torch.Tensor: local yaw (alpha in kitti).
"""
local_yaw = yaw - torch.atan2(loc[:, 0], loc[:, 2])
larger_idx = (local_yaw > np.pi).nonzero(as_tuple=False)
small_idx = (local_yaw < -np.pi).nonzero(as_tuple=False)
if len(larger_idx) != 0:
local_yaw[larger_idx] -= 2 * np.pi
if len(small_idx) != 0:
local_yaw[small_idx] += 2 * np.pi
return local_yaw