-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathlyft_dataset.py
564 lines (496 loc) · 21.8 KB
/
lyft_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright (c) OpenMMLab. All rights reserved.
import os
import tempfile
from os import path as osp
import mmcv
import numpy as np
import pandas as pd
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from lyft_dataset_sdk.utils.data_classes import Box as LyftBox
from pyquaternion import Quaternion
from mmdet3d.core.evaluation.lyft_eval import lyft_eval
from mmdet.datasets import DATASETS
from ..core import show_result
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
from .custom_3d import Custom3DDataset
from .pipelines import Compose
@DATASETS.register_module()
class LyftDataset(Custom3DDataset):
r"""Lyft Dataset.
This class serves as the API for experiments on the Lyft Dataset.
Please refer to
`<https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data>`_
for data downloading.
Args:
ann_file (str): Path of annotation file.
pipeline (list[dict], optional): Pipeline used for data processing.
Defaults to None.
data_root (str): Path of dataset root.
classes (tuple[str], optional): Classes used in the dataset.
Defaults to None.
load_interval (int, optional): Interval of loading the dataset. It is
used to uniformly sample the dataset. Defaults to 1.
modality (dict, optional): Modality to specify the sensor data used
as input. Defaults to None.
box_type_3d (str, optional): Type of 3D box of this dataset.
Based on the `box_type_3d`, the dataset will encapsulate the box
to its original format then converted them to `box_type_3d`.
Defaults to 'LiDAR' in this dataset. Available options includes
- 'LiDAR': Box in LiDAR coordinates.
- 'Depth': Box in depth coordinates, usually for indoor dataset.
- 'Camera': Box in camera coordinates.
filter_empty_gt (bool, optional): Whether to filter empty GT.
Defaults to True.
test_mode (bool, optional): Whether the dataset is in test mode.
Defaults to False.
""" # noqa: E501
NameMapping = {
'bicycle': 'bicycle',
'bus': 'bus',
'car': 'car',
'emergency_vehicle': 'emergency_vehicle',
'motorcycle': 'motorcycle',
'other_vehicle': 'other_vehicle',
'pedestrian': 'pedestrian',
'truck': 'truck',
'animal': 'animal'
}
DefaultAttribute = {
'car': 'is_stationary',
'truck': 'is_stationary',
'bus': 'is_stationary',
'emergency_vehicle': 'is_stationary',
'other_vehicle': 'is_stationary',
'motorcycle': 'is_stationary',
'bicycle': 'is_stationary',
'pedestrian': 'is_stationary',
'animal': 'is_stationary'
}
CLASSES = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
'motorcycle', 'bicycle', 'pedestrian', 'animal')
def __init__(self,
ann_file,
pipeline=None,
data_root=None,
classes=None,
load_interval=1,
modality=None,
box_type_3d='LiDAR',
filter_empty_gt=True,
test_mode=False):
self.load_interval = load_interval
super().__init__(
data_root=data_root,
ann_file=ann_file,
pipeline=pipeline,
classes=classes,
modality=modality,
box_type_3d=box_type_3d,
filter_empty_gt=filter_empty_gt,
test_mode=test_mode)
if self.modality is None:
self.modality = dict(
use_camera=False,
use_lidar=True,
use_radar=False,
use_map=False,
use_external=False,
)
def load_annotations(self, ann_file):
"""Load annotations from ann_file.
Args:
ann_file (str): Path of the annotation file.
Returns:
list[dict]: List of annotations sorted by timestamps.
"""
data = mmcv.load(ann_file)
data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
data_infos = data_infos[::self.load_interval]
self.metadata = data['metadata']
self.version = self.metadata['version']
return data_infos
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data
preprocessing pipelines. It includes the following keys:
- sample_idx (str): sample index
- pts_filename (str): filename of point clouds
- sweeps (list[dict]): infos of sweeps
- timestamp (float): sample timestamp
- img_filename (str, optional): image filename
- lidar2img (list[np.ndarray], optional): transformations
from lidar to different cameras
- ann_info (dict): annotation info
"""
info = self.data_infos[index]
# standard protocol modified from SECOND.Pytorch
input_dict = dict(
sample_idx=info['token'],
pts_filename=info['lidar_path'],
sweeps=info['sweeps'],
timestamp=info['timestamp'] / 1e6,
)
if self.modality['use_camera']:
image_paths = []
lidar2img_rts = []
for cam_type, cam_info in info['cams'].items():
image_paths.append(cam_info['data_path'])
# obtain lidar to image transformation matrix
lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
lidar2cam_t = cam_info[
'sensor2lidar_translation'] @ lidar2cam_r.T
lidar2cam_rt = np.eye(4)
lidar2cam_rt[:3, :3] = lidar2cam_r.T
lidar2cam_rt[3, :3] = -lidar2cam_t
intrinsic = cam_info['cam_intrinsic']
viewpad = np.eye(4)
viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
lidar2img_rt = (viewpad @ lidar2cam_rt.T)
lidar2img_rts.append(lidar2img_rt)
input_dict.update(
dict(
img_filename=image_paths,
lidar2img=lidar2img_rts,
))
if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
return input_dict
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: Annotation information consists of the following keys:
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
3D ground truth bboxes.
- gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_names (list[str]): Class names of ground truths.
"""
info = self.data_infos[index]
gt_bboxes_3d = info['gt_boxes']
gt_names_3d = info['gt_names']
gt_labels_3d = []
for cat in gt_names_3d:
if cat in self.CLASSES:
gt_labels_3d.append(self.CLASSES.index(cat))
else:
gt_labels_3d.append(-1)
gt_labels_3d = np.array(gt_labels_3d)
if 'gt_shape' in info:
gt_shape = info['gt_shape']
gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_shape], axis=-1)
# the lyft box center is [0.5, 0.5, 0.5], we change it to be
# the same as KITTI (0.5, 0.5, 0)
gt_bboxes_3d = LiDARInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
)
return anns_results
def _format_bbox(self, results, jsonfile_prefix=None):
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
lyft_annos = {}
mapped_class_names = self.CLASSES
print('Start to convert detection format...')
for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
annos = []
boxes = output_to_lyft_box(det)
sample_token = self.data_infos[sample_id]['token']
boxes = lidar_lyft_box_to_global(self.data_infos[sample_id], boxes)
for i, box in enumerate(boxes):
name = mapped_class_names[box.label]
lyft_anno = dict(
sample_token=sample_token,
translation=box.center.tolist(),
size=box.wlh.tolist(),
rotation=box.orientation.elements.tolist(),
name=name,
score=box.score)
annos.append(lyft_anno)
lyft_annos[sample_token] = annos
lyft_submissions = {
'meta': self.modality,
'results': lyft_annos,
}
mmcv.mkdir_or_exist(jsonfile_prefix)
res_path = osp.join(jsonfile_prefix, 'results_lyft.json')
print('Results writes to', res_path)
mmcv.dump(lyft_submissions, res_path)
return res_path
def _evaluate_single(self,
result_path,
logger=None,
metric='bbox',
result_name='pts_bbox'):
"""Evaluation for a single model in Lyft protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
metric (str, optional): Metric name used for evaluation.
Default: 'bbox'.
result_name (str, optional): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
output_dir = osp.join(*osp.split(result_path)[:-1])
lyft = Lyft(
data_path=osp.join(self.data_root, self.version),
json_path=osp.join(self.data_root, self.version, self.version),
verbose=True)
eval_set_map = {
'v1.01-train': 'val',
}
metrics = lyft_eval(lyft, self.data_root, result_path,
eval_set_map[self.version], output_dir, logger)
# record metrics
detail = dict()
metric_prefix = f'{result_name}_Lyft'
for i, name in enumerate(metrics['class_names']):
AP = float(metrics['mAPs_cate'][i])
detail[f'{metric_prefix}/{name}_AP'] = AP
detail[f'{metric_prefix}/mAP'] = metrics['Final mAP']
return detail
def format_results(self, results, jsonfile_prefix=None, csv_savepath=None):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
csv_savepath (str): The path for saving csv files.
It includes the file path and the csv filename,
e.g., "a/b/filename.csv". If not specified,
the result will not be converted to csv file.
Returns:
tuple: Returns (result_files, tmp_dir), where `result_files` is a
dict containing the json filepaths, `tmp_dir` is the temporal
directory created for saving json files when
`jsonfile_prefix` is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
# currently the output prediction results could be in two formats
# 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
# 2. list of dict('pts_bbox' or 'img_bbox':
# dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
# this is a workaround to enable evaluation of both formats on Lyft
# refer to https://github.com/open-mmlab/mmdetection3d/issues/449
if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
result_files = self._format_bbox(results, jsonfile_prefix)
else:
# should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
result_files = dict()
for name in results[0]:
print(f'\nFormating bboxes of {name}')
results_ = [out[name] for out in results]
tmp_file_ = osp.join(jsonfile_prefix, name)
result_files.update(
{name: self._format_bbox(results_, tmp_file_)})
if csv_savepath is not None:
self.json2csv(result_files['pts_bbox'], csv_savepath)
return result_files, tmp_dir
def evaluate(self,
results,
metric='bbox',
logger=None,
jsonfile_prefix=None,
csv_savepath=None,
result_names=['pts_bbox'],
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in Lyft protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str], optional): Metrics to be evaluated.
Default: 'bbox'.
logger (logging.Logger | str, optional): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str, optional): The prefix of json files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
csv_savepath (str, optional): The path for saving csv files.
It includes the file path and the csv filename,
e.g., "a/b/filename.csv". If not specified,
the result will not be converted to csv file.
result_names (list[str], optional): Result names in the
metric prefix. Default: ['pts_bbox'].
show (bool, optional): Whether to visualize.
Default: False.
out_dir (str, optional): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str, float]: Evaluation results.
"""
result_files, tmp_dir = self.format_results(results, jsonfile_prefix,
csv_savepath)
if isinstance(result_files, dict):
results_dict = dict()
for name in result_names:
print(f'Evaluating bboxes of {name}')
ret_dict = self._evaluate_single(result_files[name])
results_dict.update(ret_dict)
elif isinstance(result_files, str):
results_dict = self._evaluate_single(result_files)
if tmp_dir is not None:
tmp_dir.cleanup()
if show or out_dir:
self.show(results, out_dir, show=show, pipeline=pipeline)
return results_dict
def _build_default_pipeline(self):
"""Build the default pipeline for this dataset."""
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=dict(backend='disk')),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=dict(backend='disk')),
dict(
type='DefaultFormatBundle3D',
class_names=self.CLASSES,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
return Compose(pipeline)
def show(self, results, out_dir, show=False, pipeline=None):
"""Results visualization.
Args:
results (list[dict]): List of bounding boxes results.
out_dir (str): Output directory of visualization result.
show (bool): Whether to visualize the results online.
Default: False.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
"""
assert out_dir is not None, 'Expect out_dir, got none.'
pipeline = self._get_pipeline(pipeline)
for i, result in enumerate(results):
if 'pts_bbox' in result.keys():
result = result['pts_bbox']
data_info = self.data_infos[i]
pts_path = data_info['lidar_path']
file_name = osp.split(pts_path)[-1].split('.')[0]
points = self._extract_data(i, pipeline, 'points').numpy()
points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
Coord3DMode.DEPTH)
inds = result['scores_3d'] > 0.1
gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
Box3DMode.DEPTH)
show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
file_name, show)
def json2csv(self, json_path, csv_savepath):
"""Convert the json file to csv format for submission.
Args:
json_path (str): Path of the result json file.
csv_savepath (str): Path to save the csv file.
"""
results = mmcv.load(json_path)['results']
sample_list_path = osp.join(self.data_root, 'sample_submission.csv')
data = pd.read_csv(sample_list_path)
Id_list = list(data['Id'])
pred_list = list(data['PredictionString'])
cnt = 0
print('Converting the json to csv...')
for token in results.keys():
cnt += 1
predictions = results[token]
prediction_str = ''
for i in range(len(predictions)):
prediction_str += \
str(predictions[i]['score']) + ' ' + \
str(predictions[i]['translation'][0]) + ' ' + \
str(predictions[i]['translation'][1]) + ' ' + \
str(predictions[i]['translation'][2]) + ' ' + \
str(predictions[i]['size'][0]) + ' ' + \
str(predictions[i]['size'][1]) + ' ' + \
str(predictions[i]['size'][2]) + ' ' + \
str(Quaternion(list(predictions[i]['rotation']))
.yaw_pitch_roll[0]) + ' ' + \
predictions[i]['name'] + ' '
prediction_str = prediction_str[:-1]
idx = Id_list.index(token)
pred_list[idx] = prediction_str
df = pd.DataFrame({'Id': Id_list, 'PredictionString': pred_list})
mmcv.mkdir_or_exist(os.path.dirname(csv_savepath))
df.to_csv(csv_savepath, index=False)
def output_to_lyft_box(detection):
"""Convert the output to the box class in the Lyft.
Args:
detection (dict): Detection results.
Returns:
list[:obj:`LyftBox`]: List of standard LyftBoxes.
"""
box3d = detection['boxes_3d']
scores = detection['scores_3d'].numpy()
labels = detection['labels_3d'].numpy()
box_gravity_center = box3d.gravity_center.numpy()
box_dims = box3d.dims.numpy()
box_yaw = box3d.yaw.numpy()
# our LiDAR coordinate system -> Lyft box coordinate system
lyft_box_dims = box_dims[:, [1, 0, 2]]
box_list = []
for i in range(len(box3d)):
quat = Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
box = LyftBox(
box_gravity_center[i],
lyft_box_dims[i],
quat,
label=labels[i],
score=scores[i])
box_list.append(box)
return box_list
def lidar_lyft_box_to_global(info, boxes):
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`LyftBox`]): List of predicted LyftBoxes.
Returns:
list: List of standard LyftBoxes in the global
coordinate.
"""
box_list = []
for box in boxes:
# Move box to ego vehicle coord system
box.rotate(Quaternion(info['lidar2ego_rotation']))
box.translate(np.array(info['lidar2ego_translation']))
# Move box to global coord system
box.rotate(Quaternion(info['ego2global_rotation']))
box.translate(np.array(info['ego2global_translation']))
box_list.append(box)
return box_list