-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathdata_augment_utils.py
411 lines (370 loc) · 16.7 KB
/
data_augment_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numba
import numpy as np
from numba.core.errors import NumbaPerformanceWarning
from mmdet3d.core.bbox import box_np_ops
warnings.filterwarnings('ignore', category=NumbaPerformanceWarning)
@numba.njit
def _rotation_box2d_jit_(corners, angle, rot_mat_T):
"""Rotate 2D boxes.
Args:
corners (np.ndarray): Corners of boxes.
angle (float): Rotation angle.
rot_mat_T (np.ndarray): Transposed rotation matrix.
"""
rot_sin = np.sin(angle)
rot_cos = np.cos(angle)
rot_mat_T[0, 0] = rot_cos
rot_mat_T[0, 1] = rot_sin
rot_mat_T[1, 0] = -rot_sin
rot_mat_T[1, 1] = rot_cos
corners[:] = corners @ rot_mat_T
@numba.jit(nopython=True)
def box_collision_test(boxes, qboxes, clockwise=True):
"""Box collision test.
Args:
boxes (np.ndarray): Corners of current boxes.
qboxes (np.ndarray): Boxes to be avoid colliding.
clockwise (bool, optional): Whether the corners are in
clockwise order. Default: True.
"""
N = boxes.shape[0]
K = qboxes.shape[0]
ret = np.zeros((N, K), dtype=np.bool_)
slices = np.array([1, 2, 3, 0])
lines_boxes = np.stack((boxes, boxes[:, slices, :]),
axis=2) # [N, 4, 2(line), 2(xy)]
lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2)
# vec = np.zeros((2,), dtype=boxes.dtype)
boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes)
qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes)
for i in range(N):
for j in range(K):
# calculate standup first
iw = (
min(boxes_standup[i, 2], qboxes_standup[j, 2]) -
max(boxes_standup[i, 0], qboxes_standup[j, 0]))
if iw > 0:
ih = (
min(boxes_standup[i, 3], qboxes_standup[j, 3]) -
max(boxes_standup[i, 1], qboxes_standup[j, 1]))
if ih > 0:
for k in range(4):
for box_l in range(4):
A = lines_boxes[i, k, 0]
B = lines_boxes[i, k, 1]
C = lines_qboxes[j, box_l, 0]
D = lines_qboxes[j, box_l, 1]
acd = (D[1] - A[1]) * (C[0] -
A[0]) > (C[1] - A[1]) * (
D[0] - A[0])
bcd = (D[1] - B[1]) * (C[0] -
B[0]) > (C[1] - B[1]) * (
D[0] - B[0])
if acd != bcd:
abc = (C[1] - A[1]) * (B[0] - A[0]) > (
B[1] - A[1]) * (
C[0] - A[0])
abd = (D[1] - A[1]) * (B[0] - A[0]) > (
B[1] - A[1]) * (
D[0] - A[0])
if abc != abd:
ret[i, j] = True # collision.
break
if ret[i, j] is True:
break
if ret[i, j] is False:
# now check complete overlap.
# box overlap qbox:
box_overlap_qbox = True
for box_l in range(4): # point l in qboxes
for k in range(4): # corner k in boxes
vec = boxes[i, k] - boxes[i, (k + 1) % 4]
if clockwise:
vec = -vec
cross = vec[1] * (
boxes[i, k, 0] - qboxes[j, box_l, 0])
cross -= vec[0] * (
boxes[i, k, 1] - qboxes[j, box_l, 1])
if cross >= 0:
box_overlap_qbox = False
break
if box_overlap_qbox is False:
break
if box_overlap_qbox is False:
qbox_overlap_box = True
for box_l in range(4): # point box_l in boxes
for k in range(4): # corner k in qboxes
vec = qboxes[j, k] - qboxes[j, (k + 1) % 4]
if clockwise:
vec = -vec
cross = vec[1] * (
qboxes[j, k, 0] - boxes[i, box_l, 0])
cross -= vec[0] * (
qboxes[j, k, 1] - boxes[i, box_l, 1])
if cross >= 0: #
qbox_overlap_box = False
break
if qbox_overlap_box is False:
break
if qbox_overlap_box:
ret[i, j] = True # collision.
else:
ret[i, j] = True # collision.
return ret
@numba.njit
def noise_per_box(boxes, valid_mask, loc_noises, rot_noises):
"""Add noise to every box (only on the horizontal plane).
Args:
boxes (np.ndarray): Input boxes with shape (N, 5).
valid_mask (np.ndarray): Mask to indicate which boxes are valid
with shape (N).
loc_noises (np.ndarray): Location noises with shape (N, M, 3).
rot_noises (np.ndarray): Rotation noises with shape (N, M).
Returns:
np.ndarray: Mask to indicate whether the noise is
added successfully (pass the collision test).
"""
num_boxes = boxes.shape[0]
num_tests = loc_noises.shape[1]
box_corners = box_np_ops.box2d_to_corner_jit(boxes)
current_corners = np.zeros((4, 2), dtype=boxes.dtype)
rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
success_mask = -np.ones((num_boxes, ), dtype=np.int64)
# print(valid_mask)
for i in range(num_boxes):
if valid_mask[i]:
for j in range(num_tests):
current_corners[:] = box_corners[i]
current_corners -= boxes[i, :2]
_rotation_box2d_jit_(current_corners, rot_noises[i, j],
rot_mat_T)
current_corners += boxes[i, :2] + loc_noises[i, j, :2]
coll_mat = box_collision_test(
current_corners.reshape(1, 4, 2), box_corners)
coll_mat[0, i] = False
# print(coll_mat)
if not coll_mat.any():
success_mask[i] = j
box_corners[i] = current_corners
break
return success_mask
@numba.njit
def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises,
global_rot_noises):
"""Add noise to every box (only on the horizontal plane). Version 2 used
when enable global rotations.
Args:
boxes (np.ndarray): Input boxes with shape (N, 5).
valid_mask (np.ndarray): Mask to indicate which boxes are valid
with shape (N).
loc_noises (np.ndarray): Location noises with shape (N, M, 3).
rot_noises (np.ndarray): Rotation noises with shape (N, M).
Returns:
np.ndarray: Mask to indicate whether the noise is
added successfully (pass the collision test).
"""
num_boxes = boxes.shape[0]
num_tests = loc_noises.shape[1]
box_corners = box_np_ops.box2d_to_corner_jit(boxes)
current_corners = np.zeros((4, 2), dtype=boxes.dtype)
current_box = np.zeros((1, 5), dtype=boxes.dtype)
rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
dst_pos = np.zeros((2, ), dtype=boxes.dtype)
success_mask = -np.ones((num_boxes, ), dtype=np.int64)
corners_norm = np.zeros((4, 2), dtype=boxes.dtype)
corners_norm[1, 1] = 1.0
corners_norm[2] = 1.0
corners_norm[3, 0] = 1.0
corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype)
corners_norm = corners_norm.reshape(4, 2)
for i in range(num_boxes):
if valid_mask[i]:
for j in range(num_tests):
current_box[0, :] = boxes[i]
current_radius = np.sqrt(boxes[i, 0]**2 + boxes[i, 1]**2)
current_grot = np.arctan2(boxes[i, 0], boxes[i, 1])
dst_grot = current_grot + global_rot_noises[i, j]
dst_pos[0] = current_radius * np.sin(dst_grot)
dst_pos[1] = current_radius * np.cos(dst_grot)
current_box[0, :2] = dst_pos
current_box[0, -1] += (dst_grot - current_grot)
rot_sin = np.sin(current_box[0, -1])
rot_cos = np.cos(current_box[0, -1])
rot_mat_T[0, 0] = rot_cos
rot_mat_T[0, 1] = rot_sin
rot_mat_T[1, 0] = -rot_sin
rot_mat_T[1, 1] = rot_cos
current_corners[:] = current_box[
0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2]
current_corners -= current_box[0, :2]
_rotation_box2d_jit_(current_corners, rot_noises[i, j],
rot_mat_T)
current_corners += current_box[0, :2] + loc_noises[i, j, :2]
coll_mat = box_collision_test(
current_corners.reshape(1, 4, 2), box_corners)
coll_mat[0, i] = False
if not coll_mat.any():
success_mask[i] = j
box_corners[i] = current_corners
loc_noises[i, j, :2] += (dst_pos - boxes[i, :2])
rot_noises[i, j] += (dst_grot - current_grot)
break
return success_mask
def _select_transform(transform, indices):
"""Select transform.
Args:
transform (np.ndarray): Transforms to select from.
indices (np.ndarray): Mask to indicate which transform to select.
Returns:
np.ndarray: Selected transforms.
"""
result = np.zeros((transform.shape[0], *transform.shape[2:]),
dtype=transform.dtype)
for i in range(transform.shape[0]):
if indices[i] != -1:
result[i] = transform[i, indices[i]]
return result
@numba.njit
def _rotation_matrix_3d_(rot_mat_T, angle, axis):
"""Get the 3D rotation matrix.
Args:
rot_mat_T (np.ndarray): Transposed rotation matrix.
angle (float): Rotation angle.
axis (int): Rotation axis.
"""
rot_sin = np.sin(angle)
rot_cos = np.cos(angle)
rot_mat_T[:] = np.eye(3)
if axis == 1:
rot_mat_T[0, 0] = rot_cos
rot_mat_T[0, 2] = rot_sin
rot_mat_T[2, 0] = -rot_sin
rot_mat_T[2, 2] = rot_cos
elif axis == 2 or axis == -1:
rot_mat_T[0, 0] = rot_cos
rot_mat_T[0, 1] = rot_sin
rot_mat_T[1, 0] = -rot_sin
rot_mat_T[1, 1] = rot_cos
elif axis == 0:
rot_mat_T[1, 1] = rot_cos
rot_mat_T[1, 2] = rot_sin
rot_mat_T[2, 1] = -rot_sin
rot_mat_T[2, 2] = rot_cos
@numba.njit
def points_transform_(points, centers, point_masks, loc_transform,
rot_transform, valid_mask):
"""Apply transforms to points and box centers.
Args:
points (np.ndarray): Input points.
centers (np.ndarray): Input box centers.
point_masks (np.ndarray): Mask to indicate which points need
to be transformed.
loc_transform (np.ndarray): Location transform to be applied.
rot_transform (np.ndarray): Rotation transform to be applied.
valid_mask (np.ndarray): Mask to indicate which boxes are valid.
"""
num_box = centers.shape[0]
num_points = points.shape[0]
rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype)
for i in range(num_box):
_rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2)
for i in range(num_points):
for j in range(num_box):
if valid_mask[j]:
if point_masks[i, j] == 1:
points[i, :3] -= centers[j, :3]
points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j]
points[i, :3] += centers[j, :3]
points[i, :3] += loc_transform[j]
break # only apply first box's transform
@numba.njit
def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask):
"""Transform 3D boxes.
Args:
boxes (np.ndarray): 3D boxes to be transformed.
loc_transform (np.ndarray): Location transform to be applied.
rot_transform (np.ndarray): Rotation transform to be applied.
valid_mask (np.ndarray): Mask to indicate which boxes are valid.
"""
num_box = boxes.shape[0]
for i in range(num_box):
if valid_mask[i]:
boxes[i, :3] += loc_transform[i]
boxes[i, 6] += rot_transform[i]
def noise_per_object_v3_(gt_boxes,
points=None,
valid_mask=None,
rotation_perturb=np.pi / 4,
center_noise_std=1.0,
global_random_rot_range=np.pi / 4,
num_try=100):
"""Random rotate or remove each groundtruth independently. use kitti viewer
to test this function points_transform_
Args:
gt_boxes (np.ndarray): Ground truth boxes with shape (N, 7).
points (np.ndarray, optional): Input point cloud with
shape (M, 4). Default: None.
valid_mask (np.ndarray, optional): Mask to indicate which
boxes are valid. Default: None.
rotation_perturb (float, optional): Rotation perturbation.
Default: pi / 4.
center_noise_std (float, optional): Center noise standard deviation.
Default: 1.0.
global_random_rot_range (float, optional): Global random rotation
range. Default: pi/4.
num_try (int, optional): Number of try. Default: 100.
"""
num_boxes = gt_boxes.shape[0]
if not isinstance(rotation_perturb, (list, tuple, np.ndarray)):
rotation_perturb = [-rotation_perturb, rotation_perturb]
if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)):
global_random_rot_range = [
-global_random_rot_range, global_random_rot_range
]
enable_grot = np.abs(global_random_rot_range[0] -
global_random_rot_range[1]) >= 1e-3
if not isinstance(center_noise_std, (list, tuple, np.ndarray)):
center_noise_std = [
center_noise_std, center_noise_std, center_noise_std
]
if valid_mask is None:
valid_mask = np.ones((num_boxes, ), dtype=np.bool_)
center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype)
loc_noises = np.random.normal(
scale=center_noise_std, size=[num_boxes, num_try, 3])
rot_noises = np.random.uniform(
rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try])
gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1])
grot_lowers = global_random_rot_range[0] - gt_grots
grot_uppers = global_random_rot_range[1] - gt_grots
global_rot_noises = np.random.uniform(
grot_lowers[..., np.newaxis],
grot_uppers[..., np.newaxis],
size=[num_boxes, num_try])
origin = (0.5, 0.5, 0)
gt_box_corners = box_np_ops.center_to_corner_box3d(
gt_boxes[:, :3],
gt_boxes[:, 3:6],
gt_boxes[:, 6],
origin=origin,
axis=2)
# TODO: rewrite this noise box function?
if not enable_grot:
selected_noise = noise_per_box(gt_boxes[:, [0, 1, 3, 4, 6]],
valid_mask, loc_noises, rot_noises)
else:
selected_noise = noise_per_box_v2_(gt_boxes[:, [0, 1, 3, 4, 6]],
valid_mask, loc_noises, rot_noises,
global_rot_noises)
loc_transforms = _select_transform(loc_noises, selected_noise)
rot_transforms = _select_transform(rot_noises, selected_noise)
surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners)
if points is not None:
# TODO: replace this points_in_convex function by my tools?
point_masks = box_np_ops.points_in_convex_polygon_3d_jit(
points[:, :3], surfaces)
points_transform_(points, gt_boxes[:, :3], point_masks, loc_transforms,
rot_transforms, valid_mask)
box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask)