-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtrain_mixins.py
349 lines (322 loc) · 16.4 KB
/
train_mixins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmdet3d.core import limit_period
from mmdet.core import images_to_levels, multi_apply
class AnchorTrainMixin(object):
"""Mixin class for target assigning of dense heads."""
def anchor_target_3d(self,
anchor_list,
gt_bboxes_list,
input_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
num_classes=1,
sampling=True):
"""Compute regression and classification targets for anchors.
Args:
anchor_list (list[list]): Multi level anchors of each image.
gt_bboxes_list (list[:obj:`BaseInstance3DBoxes`]): Ground truth
bboxes of each image.
input_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list): Ignore list of gt bboxes.
gt_labels_list (list[torch.Tensor]): Gt labels of batches.
label_channels (int): The channel of labels.
num_classes (int): The number of classes.
sampling (bool): Whether to sample anchors.
Returns:
tuple (list, list, list, list, list, list, int, int):
Anchor targets, including labels, label weights,
bbox targets, bbox weights, direction targets,
direction weights, number of positive anchors and
number of negative anchors.
"""
num_imgs = len(input_metas)
assert len(anchor_list) == num_imgs
if isinstance(anchor_list[0][0], list):
# sizes of anchors are different
# anchor number of a single level
num_level_anchors = [
sum([anchor.size(0) for anchor in anchors])
for anchors in anchor_list[0]
]
for i in range(num_imgs):
anchor_list[i] = anchor_list[i][0]
else:
# anchor number of multi levels
num_level_anchors = [
anchors.view(-1, self.box_code_size).size(0)
for anchors in anchor_list[0]
]
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
anchor_list[i] = torch.cat(anchor_list[i])
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
all_dir_targets, all_dir_weights, pos_inds_list,
neg_inds_list) = multi_apply(
self.anchor_target_3d_single,
anchor_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
input_metas,
label_channels=label_channels,
num_classes=num_classes,
sampling=sampling)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
# split targets to a list w.r.t. multiple levels
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors)
dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors)
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, dir_targets_list, dir_weights_list,
num_total_pos, num_total_neg)
def anchor_target_3d_single(self,
anchors,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
input_meta,
label_channels=1,
num_classes=1,
sampling=True):
"""Compute targets of anchors in single batch.
Args:
anchors (torch.Tensor): Concatenated multi-level anchor.
gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
gt_labels (torch.Tensor): Gt class labels.
input_meta (dict): Meta info of each image.
label_channels (int): The channel of labels.
num_classes (int): The number of classes.
sampling (bool): Whether to sample anchors.
Returns:
tuple[torch.Tensor]: Anchor targets.
"""
if isinstance(self.bbox_assigner,
list) and (not isinstance(anchors, list)):
feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2)
rot_angles = anchors.size(-2)
assert len(self.bbox_assigner) == anchors.size(-3)
(total_labels, total_label_weights, total_bbox_targets,
total_bbox_weights, total_dir_targets, total_dir_weights,
total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
current_anchor_num = 0
for i, assigner in enumerate(self.bbox_assigner):
current_anchors = anchors[..., i, :, :].reshape(
-1, self.box_code_size)
current_anchor_num += current_anchors.size(0)
if self.assign_per_class:
gt_per_cls = (gt_labels == i)
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes[gt_per_cls, :],
gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
num_classes, sampling)
else:
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, num_classes, sampling)
(labels, label_weights, bbox_targets, bbox_weights,
dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
total_labels.append(labels.reshape(feat_size, 1, rot_angles))
total_label_weights.append(
label_weights.reshape(feat_size, 1, rot_angles))
total_bbox_targets.append(
bbox_targets.reshape(feat_size, 1, rot_angles,
anchors.size(-1)))
total_bbox_weights.append(
bbox_weights.reshape(feat_size, 1, rot_angles,
anchors.size(-1)))
total_dir_targets.append(
dir_targets.reshape(feat_size, 1, rot_angles))
total_dir_weights.append(
dir_weights.reshape(feat_size, 1, rot_angles))
total_pos_inds.append(pos_inds)
total_neg_inds.append(neg_inds)
total_labels = torch.cat(total_labels, dim=-2).reshape(-1)
total_label_weights = torch.cat(
total_label_weights, dim=-2).reshape(-1)
total_bbox_targets = torch.cat(
total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1))
total_bbox_weights = torch.cat(
total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1))
total_dir_targets = torch.cat(
total_dir_targets, dim=-2).reshape(-1)
total_dir_weights = torch.cat(
total_dir_weights, dim=-2).reshape(-1)
total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1)
total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1)
return (total_labels, total_label_weights, total_bbox_targets,
total_bbox_weights, total_dir_targets, total_dir_weights,
total_pos_inds, total_neg_inds)
elif isinstance(self.bbox_assigner, list) and isinstance(
anchors, list):
# class-aware anchors with different feature map sizes
assert len(self.bbox_assigner) == len(anchors), \
'The number of bbox assigners and anchors should be the same.'
(total_labels, total_label_weights, total_bbox_targets,
total_bbox_weights, total_dir_targets, total_dir_weights,
total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
current_anchor_num = 0
for i, assigner in enumerate(self.bbox_assigner):
current_anchors = anchors[i]
current_anchor_num += current_anchors.size(0)
if self.assign_per_class:
gt_per_cls = (gt_labels == i)
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes[gt_per_cls, :],
gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
num_classes, sampling)
else:
anchor_targets = self.anchor_target_single_assigner(
assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
gt_labels, input_meta, num_classes, sampling)
(labels, label_weights, bbox_targets, bbox_weights,
dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
total_labels.append(labels)
total_label_weights.append(label_weights)
total_bbox_targets.append(
bbox_targets.reshape(-1, anchors[i].size(-1)))
total_bbox_weights.append(
bbox_weights.reshape(-1, anchors[i].size(-1)))
total_dir_targets.append(dir_targets)
total_dir_weights.append(dir_weights)
total_pos_inds.append(pos_inds)
total_neg_inds.append(neg_inds)
total_labels = torch.cat(total_labels, dim=0)
total_label_weights = torch.cat(total_label_weights, dim=0)
total_bbox_targets = torch.cat(total_bbox_targets, dim=0)
total_bbox_weights = torch.cat(total_bbox_weights, dim=0)
total_dir_targets = torch.cat(total_dir_targets, dim=0)
total_dir_weights = torch.cat(total_dir_weights, dim=0)
total_pos_inds = torch.cat(total_pos_inds, dim=0)
total_neg_inds = torch.cat(total_neg_inds, dim=0)
return (total_labels, total_label_weights, total_bbox_targets,
total_bbox_weights, total_dir_targets, total_dir_weights,
total_pos_inds, total_neg_inds)
else:
return self.anchor_target_single_assigner(self.bbox_assigner,
anchors, gt_bboxes,
gt_bboxes_ignore,
gt_labels, input_meta,
num_classes, sampling)
def anchor_target_single_assigner(self,
bbox_assigner,
anchors,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
input_meta,
num_classes=1,
sampling=True):
"""Assign anchors and encode positive anchors.
Args:
bbox_assigner (BaseAssigner): assign positive and negative boxes.
anchors (torch.Tensor): Concatenated multi-level anchor.
gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
gt_labels (torch.Tensor): Gt class labels.
input_meta (dict): Meta info of each image.
num_classes (int): The number of classes.
sampling (bool): Whether to sample anchors.
Returns:
tuple[torch.Tensor]: Anchor targets.
"""
anchors = anchors.reshape(-1, anchors.size(-1))
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long)
dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float)
labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
if len(gt_bboxes) > 0:
if not isinstance(gt_bboxes, torch.Tensor):
gt_bboxes = gt_bboxes.tensor.to(anchors.device)
assign_result = bbox_assigner.assign(anchors, gt_bboxes,
gt_bboxes_ignore, gt_labels)
sampling_result = self.bbox_sampler.sample(assign_result, anchors,
gt_bboxes)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
else:
pos_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0,
as_tuple=False).squeeze(-1).unique()
neg_inds = torch.nonzero(
anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) == 0,
as_tuple=False).squeeze(-1).unique()
if gt_labels is not None:
labels += num_classes
if len(pos_inds) > 0:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
pos_dir_targets = get_direction_target(
sampling_result.pos_bboxes,
pos_bbox_targets,
self.dir_offset,
self.dir_limit_offset,
one_hot=False)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
dir_targets[pos_inds] = pos_dir_targets
dir_weights[pos_inds] = 1.0
if gt_labels is None:
labels[pos_inds] = 1
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
return (labels, label_weights, bbox_targets, bbox_weights, dir_targets,
dir_weights, pos_inds, neg_inds)
def get_direction_target(anchors,
reg_targets,
dir_offset=0,
dir_limit_offset=0,
num_bins=2,
one_hot=True):
"""Encode direction to 0 ~ num_bins-1.
Args:
anchors (torch.Tensor): Concatenated multi-level anchor.
reg_targets (torch.Tensor): Bbox regression targets.
dir_offset (int): Direction offset.
num_bins (int): Number of bins to divide 2*PI.
one_hot (bool): Whether to encode as one hot.
Returns:
torch.Tensor: Encoded direction targets.
"""
rot_gt = reg_targets[..., 6] + anchors[..., 6]
offset_rot = limit_period(rot_gt - dir_offset, dir_limit_offset, 2 * np.pi)
dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
if one_hot:
dir_targets = torch.zeros(
*list(dir_cls_targets.shape),
num_bins,
dtype=anchors.dtype,
device=dir_cls_targets.device)
dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
dir_cls_targets = dir_targets
return dir_cls_targets