This is still Work in progress, see opendatacam/opendatacam#87
More background about MOTChallenge: https://motchallenge.net/
Follow this guide: https://github.com/cheind/py-motmetrics#installation
Use python3 and pip3
pip3 install motmetrics
Install LAP solver which is faster
pip3 install lap
You need to prepare a folder with ground truth data, and test data (tracker data to benchmark)
.
├── SEQUENCE_NAME
│ └── gt
│ └── gt.txt
└── SEQUENCE_NAME.txt
SEQUENCE_NAME.txt
is the tracker data to test, and gt.txt
is the ground truth.
python3 -m motmetrics.apps.eval_motchallenge <PATH_TO_SEQUENCE_NAME> <PATH_TO_SEQUENCE_NAME>
# See Complete documentation
python3 -m motmetrics.apps.eval_motchallenge --help
Example with a training set of MOT17 Challenge:
- Generate tracker data from input detections provided by the MOT Challenge
node main.js --mode motchallenge --input benchmark/MOT17/MOT17-04-DPM/det/det.txt
-
Rename the output
outputTrackerMOT.txt
toMOT17-04-DPM.txt
and move it tobenchmark/MOT17
to comply with motmetrics.app python app requirement -
Run tool on this to get evaluation metrics (takes a bit of time)
cd benchmark/MOT17
python3 -m motmetrics.apps.eval_motchallenge . .
- Result
IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM MOTA MOTP IDt IDa IDm
MOT17-04-DPM 33.5% 53.8% 24.3% 39.0% 86.4% 83 4 45 34 2924 29004 239 393 32.4% 0.217 106 141 10
OVERALL 33.5% 53.8% 24.3% 39.0% 86.4% 83 4 45 34 2924 29004 239 393 32.4% 0.217 106 141 10
In order to benchmark the tracker on all MOT17 training sequences, delete the directory benchmark
and run
./benchmark.sh
On the first run, the script will download the full MOT17 training benchmark and unpack it. Then, it runs the tracker on each sequence and outputs the evaluation metrics.
IDF1 IDP IDR Rcll Prcn GT MT PT ML FP FN IDs FM MOTA MOTP IDt IDa IDm
MOT17-04-SDP 62.2% 74.8% 53.2% 69.0% 97.1% 83 32 39 12 982 14737 121 367 66.7% 0.152 82 46 12
MOT17-04-DPM 33.5% 53.8% 24.3% 39.0% 86.4% 83 4 45 34 2924 29004 239 393 32.4% 0.217 106 141 10
MOT17-05-DPM 36.1% 62.7% 25.3% 35.6% 88.1% 133 11 49 73 333 4456 60 110 29.9% 0.247 65 20 25
MOT17-05-FRCNN 44.8% 61.3% 35.3% 51.6% 89.6% 133 24 56 53 414 3347 63 69 44.7% 0.172 82 20 39
MOT17-11-FRCNN 55.4% 74.2% 44.2% 55.3% 92.8% 75 15 34 26 405 4219 45 50 50.5% 0.096 35 22 12
MOT17-05-SDP 43.1% 53.9% 35.9% 58.0% 87.0% 133 31 64 38 597 2905 84 128 48.2% 0.165 108 21 45
MOT17-02-FRCNN 31.6% 52.8% 22.6% 34.6% 81.1% 62 6 25 31 1502 12148 93 127 26.0% 0.126 55 49 11
MOT17-09-FRCNN 43.6% 61.2% 33.8% 53.4% 96.8% 26 6 16 4 95 2481 37 39 50.9% 0.096 27 16 6
MOT17-10-FRCNN 40.0% 46.8% 35.0% 57.9% 77.6% 57 15 35 7 2150 5405 228 311 39.4% 0.162 147 89 16
MOT17-04-FRCNN 49.5% 67.8% 39.0% 53.2% 92.4% 83 17 43 23 2077 22271 93 90 48.6% 0.108 42 56 5
MOT17-13-DPM 24.9% 69.5% 15.2% 19.1% 87.6% 110 8 25 77 316 9416 35 102 16.1% 0.272 25 25 15
MOT17-13-SDP 60.3% 78.0% 49.1% 54.5% 86.6% 110 43 25 42 980 5294 72 199 45.5% 0.212 70 24 27
MOT17-02-SDP 34.3% 46.8% 27.1% 44.7% 77.1% 62 9 34 19 2468 10275 176 353 30.5% 0.201 114 72 13
MOT17-13-FRCNN 50.4% 61.1% 42.9% 55.9% 79.6% 110 35 46 29 1667 5129 200 259 39.9% 0.169 141 83 34
MOT17-02-DPM 22.8% 64.0% 13.9% 18.8% 86.6% 62 3 15 44 541 15090 47 103 15.6% 0.247 23 29 5
MOT17-10-SDP 48.9% 56.9% 42.8% 67.4% 89.5% 57 23 30 4 1010 4189 163 290 58.2% 0.205 108 60 9
MOT17-09-DPM 42.3% 52.8% 35.3% 53.3% 79.6% 26 2 19 5 725 2489 72 164 38.3% 0.273 50 23 5
MOT17-09-SDP 48.5% 63.5% 39.2% 57.6% 93.2% 26 7 17 2 222 2260 46 78 52.5% 0.150 35 18 7
MOT17-10-DPM 29.4% 49.6% 20.9% 36.1% 85.9% 57 7 18 32 762 8198 77 141 29.6% 0.251 36 48 8
MOT17-11-DPM 50.3% 72.6% 38.5% 49.7% 93.6% 75 9 25 41 323 4748 45 58 45.8% 0.219 31 26 12
MOT17-11-SDP 53.2% 62.9% 46.2% 66.5% 90.7% 75 19 39 17 646 3161 55 100 59.1% 0.149 40 28 15
OVERALL 44.7% 62.6% 34.7% 49.2% 88.7% 1638 326 699 613 21139 171222 2051 3531 42.3% 0.170 1422 916 331