-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathconnect4_env.py
722 lines (634 loc) · 32.3 KB
/
connect4_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""
Overview:
Adapt the connect4 environment in PettingZoo (https://github.com/Farama-Foundation/PettingZoo) to the BaseEnv interface.
Connect Four is a 2-player turn based game, where players must connect four of their tokens vertically, horizontally or diagonally.
The players drop their respective token in a column of a standing grid, where each token will fall until it reaches the bottom of the column or reaches an existing token.
Players cannot place a token in a full column, and the game ends when either a player has made a sequence of 4 tokens, or when all 7 columns have been filled.
Mode:
- ``self_play_mode``: In ``self_play_mode``, two players take turns to play. This mode is used in AlphaZero for data generating.
- ``play_with_bot_mode``: In this mode, the environment has a bot inside, which take the role of player 2. So the player may play against the bot.
Bot:
- MCTSBot: A bot which take action through a Monte Carlo Tree Search, which has a high performance.
- RuleBot: A bot which take action according to some simple settings, which has a moderate performance. Note: Currently the RuleBot can only exclude actions that would lead to losing the game within three moves.
Note: Currently the RuleBot can only exclude actions that would lead to losing the game within three moves. One possible improvement is to further enhance the bot's long-term planning capabilities.
Observation Space:
The observation in the Connect4 environment is a dictionary with five elements, which contains key information about the current state.
- observation (:obj:`array`): An array that represents information about the current state, with a shape of (3, 6, 7).
The length of the first dimension is 3, which stores three two-dimensional game boards with shapes (6, 7).
These boards represent the positions occupied by the current player, the positions occupied by the opponent player, and the identity of the current player, respectively.
- action_mask (:obj:`array`): A mask for the actions, indicating which actions are executable. It is a one-dimensional array of length 7, corresponding to columns 1 to 7 of the game board.
It has a value of 1 for the columns where a move can be made, and a value of 0 for other positions.
- board (:obj:`array`): A visual representation of the current game board, represented as a 6x7 array, in which the positions where player 1 and player 2 have placed their tokens are marked with values 1 and 2, respectively.
- current_player_index (:obj:`int`): The index of the current player, with player 1 having an index of 0 and player 2 having an index of 1.
- to_play (:obj:`int`): The player who needs to take an action in the current state, with a value of 1 or 2.
Action Space:
A set of integers from 0 to 6 (inclusive), where the action represents which column a token should be dropped in.
Reward Space:
For the ``self_play_mode``, a reward of 1 is returned at the time step when the game terminates, and a reward of 0 is returned at all other time steps.
For the ``play_with_bot_mode``, at the time step when the game terminates, if the bot wins, the reward is -1; if the agent wins, the reward is 1; and in all other cases, the reward is 0.
"""
import copy
import os
import sys
from typing import List, Any, Tuple, Optional
import imageio
import matplotlib.pyplot as plt
import numpy as np
import pygame
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.utils import ENV_REGISTRY
from ditk import logging
from easydict import EasyDict
from gymnasium import spaces
from zoo.board_games.connect4.envs.rule_bot import Connect4RuleBot
from zoo.board_games.mcts_bot import MCTSBot
@ENV_REGISTRY.register('connect4')
class Connect4Env(BaseEnv):
config = dict(
# (str) The name of the environment registered in the environment registry.
env_id="Connect4",
# (str) The mode of the environment when take a step.
battle_mode='self_play_mode',
# (str) The mode of the environment when doing the MCTS.
battle_mode_in_simulation_env='self_play_mode',
# (str) The render mode. Options are 'None', 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
# If None, then the game will not be rendered.
render_mode=None,
# (str or None) The directory in which to save the replay file. If None, the file is saved in the current directory.
replay_path=None,
# (str) The type of the bot of the environment.
bot_action_type='rule',
# (bool) Whether to let human to play with the agent when evaluating. If False, then use the bot to evaluate the agent.
agent_vs_human=False,
# (float) The probability that a random agent is used instead of the learning agent.
prob_random_agent=0,
# (float) The probability that an expert agent(the bot) is used instead of the learning agent.
prob_expert_agent=0,
# (float) The probability that a random action will be taken when calling the bot.
prob_random_action_in_bot=0.,
# (float) The scale of the render screen.
screen_scaling=9,
# (bool) Whether to use the 'channel last' format for the observation space. If False, 'channel first' format is used.
channel_last=False,
# (bool) Whether to scale the observation.
scale=False,
# (float) The stop value when training the agent. If the evalue return reach the stop value, then the training will stop.
stop_value=2,
)
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
def __init__(self, cfg: dict = None) -> None:
# Load the config.
self.cfg = cfg
# Set the format of the observation.
self.channel_last = cfg.channel_last
self.scale = cfg.scale
# Set the parameters about replay render.
self.screen_scaling = cfg.screen_scaling
# options = {None, 'state_realtime_mode', 'image_realtime_mode', 'image_savefile_mode'}
self.render_mode = cfg.render_mode
self.replay_name_suffix = "test"
self.replay_path = cfg.replay_path
self.replay_format = 'gif'
self.screen = None
self.frames = []
# Set the mode of interaction between the agent and the environment.
# options = {'self_play_mode', 'play_with_bot_mode', 'eval_mode'}
self.battle_mode = cfg.battle_mode
assert self.battle_mode in ['self_play_mode', 'play_with_bot_mode', 'eval_mode']
# The mode of MCTS is only used in AlphaZero.
self.battle_mode_in_simulation_env = 'self_play_mode'
# In ``eval_mode``, we can choose to play with the agent.
self.agent_vs_human = cfg.agent_vs_human
# Set some randomness for selecting action.
self.prob_random_agent = cfg.prob_random_agent
self.prob_expert_agent = cfg.prob_expert_agent
assert (self.prob_random_agent >= 0 and self.prob_expert_agent == 0) or (
self.prob_random_agent == 0 and self.prob_expert_agent >= 0), \
f'self.prob_random_agent:{self.prob_random_agent}, self.prob_expert_agent:{self.prob_expert_agent}'
# The board state is saved as a one-dimensional array instead of a two-dimensional array for ease of computation in ``step()`` function.
self.board = [0] * (6 * 7)
self.players = [1, 2]
self._current_player = 1
self._env = self
# Set the bot type and add some randomness.
# options = {'rule, 'mcts'}
self.bot_action_type = cfg.bot_action_type
self.prob_random_action_in_bot = cfg.prob_random_action_in_bot
if self.bot_action_type == 'mcts':
cfg_temp = EasyDict(cfg.copy())
cfg_temp.save_replay = False
cfg_temp.bot_action_type = None
env_mcts = Connect4Env(EasyDict(cfg_temp))
self.mcts_bot = MCTSBot(env_mcts, 'mcts_player', 50)
elif self.bot_action_type == 'rule':
self.rule_bot = Connect4RuleBot(self, self._current_player)
# Render the beginning state of the game.
if self.render_mode is not None:
self.render(self.render_mode)
def _player_step(self, action: int, flag: int) -> BaseEnvTimestep:
"""
Overview:
A function that implements the transition of the environment's state. \
After taking an action in the environment, the function transitions the environment to the next state \
and returns the relevant information for the next time step.
Arguments:
- action (:obj:`int`): A value from 0 to 6 indicating the position to move on the connect4 board.
- flag (:obj:`str`): A marker indicating the source of an action, for debugging convenience.
Returns:
- timestep (:obj:`BaseEnvTimestep`): A namedtuple that records the observation and obtained reward after taking the action, \
whether the game is terminated, and some other information.
"""
if action in self.legal_actions:
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if self.board[i] == 0:
self.board[i] = piece
break
else:
print(np.array(self.board).reshape(6, 7))
logging.warning(
f"You input illegal action: {action}, the legal_actions are {self.legal_actions}. "
f"flag is {flag}."
f"Now we randomly choice a action from self.legal_actions."
)
action = self.random_action()
print("the random action is", action)
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if self.board[i] == 0:
self.board[i] = piece
break
# Check if there is a winner.
done, winner = self.get_done_winner()
if not winner == -1:
reward = np.array(1).astype(np.float32)
else:
reward = np.array(0).astype(np.float32)
info = {}
self._current_player = self.next_player
obs = self.observe()
# Render the new step.
if self.render_mode is not None:
self.render(self.render_mode)
if done:
info['eval_episode_return'] = reward
if self.render_mode == 'image_savefile_mode':
self.save_render_output(replay_name_suffix=self.replay_name_suffix, replay_path=self.replay_path,
format=self.replay_format)
return BaseEnvTimestep(obs, reward, done, info)
def step(self, action: int) -> BaseEnvTimestep:
"""
Overview:
The step function of the environment. It receives an action from the player and returns the state of the environment after performing that action. \
In ``self_play_mode``, this function only call ``_player_step()`` once since the agent play with it self and play the role of both two players 1 and 2.\
In ``play_with_bot_mode``, this function first use the recieved ``action`` to call the ``_player_step()`` and then use the action from bot to call it again.\
Then return the result of taking these two actions sequentially in the environment.\
In ``eval_mode``, this function also call ``_player_step()`` twice, and the second action is from human action or from the bot.
Arguments:
- action (:obj:`int`): A value from 0 to 6 indicating the position to move on the connect4 board.
Returns:
- timestep (:obj:`BaseEnvTimestep`): A namedtuple that records the observation and obtained reward after taking the action, \
whether the game is terminated, and some other information.
"""
if self.battle_mode == 'self_play_mode':
if self.prob_random_agent > 0:
if np.random.rand() < self.prob_random_agent:
action = self.random_action()
elif self.prob_expert_agent > 0:
if np.random.rand() < self.prob_expert_agent:
action = self.bot_action()
flag = "agent"
timestep = self._player_step(action, flag)
if timestep.done:
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep.info['eval_episode_return'] = -timestep.reward if timestep.obs[
'to_play'] == 1 else timestep.reward
return timestep
elif self.battle_mode == 'play_with_bot_mode':
# Player 1's turn.
flag = "bot_agent"
timestep_player1 = self._player_step(action, flag)
if timestep_player1.done:
# NOTE: in ``play_with_bot_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# Player 2's turn.
bot_action = self.bot_action()
flag = "bot_bot"
timestep_player2 = self._player_step(bot_action, flag)
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in ``play_with_bot_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
elif self.battle_mode == 'eval_mode':
# Player 1's turn.
flag = "eval_agent"
timestep_player1 = self._player_step(action, flag)
if timestep_player1.done:
# NOTE: in ``eval_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# Player 2's turn.
if self.agent_vs_human:
bot_action = self.human_to_action()
else:
bot_action = self.bot_action()
flag = "eval_bot"
timestep_player2 = self._player_step(bot_action, flag)
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in ``eval_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
def reset(self, start_player_index: int = 0, init_state: Optional[np.ndarray] = None,
replay_name_suffix: Optional[str] = None) -> dict:
"""
Overview:
Env reset and custom state start by init_state.
Arguments:
- start_player_index(:obj:`int`): players = [1,2], player_index = [0,1]
- init_state(:obj:`array`): custom start state.
"""
if replay_name_suffix is not None:
self.replay_name_suffix = replay_name_suffix
if init_state is None:
self.board = [0] * (6 * 7)
else:
self.board = np.array(copy.deepcopy(init_state), dtype="int32")
self.players = [1, 2]
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
self._action_space = spaces.Discrete(7)
self._reward_space = spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32)
self._observation_space = spaces.Dict(
{
"observation": spaces.Box(low=0, high=1, shape=(3, 6, 7), dtype=np.int8),
"action_mask": spaces.Box(low=0, high=1, shape=(7,), dtype=np.int8),
"board": spaces.Box(low=0, high=2, shape=(6, 7), dtype=np.int8),
"current_player_index": spaces.Discrete(2),
"to_play": spaces.Discrete(2),
}
)
obs = self.observe()
return obs
def current_state(self) -> Tuple[np.ndarray, np.ndarray]:
"""
Overview:
Obtain the state from the view of current player.\
self.board is nd-array, 0 indicates that no stones is placed here,\
1 indicates that player 1's stone is placed here, 2 indicates player 2's stone is placed here.
Returns:
- current_state (:obj:`array`):
the 0 dim means which positions is occupied by ``self.current_player``,\
the 1 dim indicates which positions are occupied by ``self.next_player``,\
the 2 dim indicates which player is the to_play player, 1 means player 1, 2 means player 2.
"""
board_vals = np.array(self.board).reshape(6, 7)
board_curr_player = np.where(board_vals == self.current_player, 1, 0)
board_opponent_player = np.where(board_vals == self.next_player, 1, 0)
board_to_play = np.full((6, 7), self.current_player)
raw_obs = np.array([board_curr_player, board_opponent_player, board_to_play], dtype=np.float32)
if self.scale:
scale_obs = copy.deepcopy(raw_obs / 2)
else:
scale_obs = copy.deepcopy(raw_obs)
if self.channel_last:
# move channel dim to last axis
# (C, W, H) -> (W, H, C)
return np.transpose(raw_obs, [1, 2, 0]), np.transpose(scale_obs, [1, 2, 0])
else:
# (C, W, H)
return raw_obs, scale_obs
def observe(self) -> dict:
legal_moves = self.legal_actions
action_mask = np.zeros(7, "int8")
for i in legal_moves:
action_mask[i] = 1
if self.battle_mode == 'play_with_bot_mode' or self.battle_mode == 'eval_mode':
return {"observation": self.current_state()[1],
"action_mask": action_mask,
"board": copy.deepcopy(self.board),
"current_player_index": self.players.index(self._current_player),
"to_play": -1
}
elif self.battle_mode == 'self_play_mode':
return {"observation": self.current_state()[1],
"action_mask": action_mask,
"board": copy.deepcopy(self.board),
"current_player_index": self.players.index(self._current_player),
"to_play": self._current_player
}
@property
def legal_actions(self) -> List[int]:
return [i for i in range(7) if self.board[i] == 0]
def render(self, mode: str = None) -> None:
"""
Overview:
Renders the Connect Four game environment.
Arguments:
- mode (:obj:`str`): The rendering mode. Options are None, 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
When set to None, the game state is not rendered.
In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
The 'image_realtime_mode' displays the game as an RGB image in real-time.
With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
Please note that the default rendering mode is set to None.
"""
# In 'state_realtime_mode' mode, print the current game board for rendering.
if mode == "state_realtime_mode":
print(np.array(self.board).reshape(6, 7))
return
else:
# In other two modes, use a screen for rendering.
screen_width = 99 * self.screen_scaling
screen_height = 86 / 99 * screen_width
pygame.init()
self.screen = pygame.Surface((screen_width, screen_height))
# Load and scale all of the necessary images.
tile_size = (screen_width * (91 / 99)) / 7
red_chip = self.get_image(os.path.join("img", "C4RedPiece.png"))
red_chip = pygame.transform.scale(
red_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))
)
black_chip = self.get_image(os.path.join("img", "C4BlackPiece.png"))
black_chip = pygame.transform.scale(
black_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))
)
board_img = self.get_image(os.path.join("img", "Connect4Board.png"))
board_img = pygame.transform.scale(
board_img, ((int(screen_width)), int(screen_height))
)
self.screen.blit(board_img, (0, 0))
# Blit the necessary chips and their positions.
for i in range(0, 42):
if self.board[i] == 1:
self.screen.blit(
red_chip,
(
(i % 7) * (tile_size) + (tile_size * (6 / 13)),
int(i / 7) * (tile_size) + (tile_size * (6 / 13)),
),
)
elif self.board[i] == 2:
self.screen.blit(
black_chip,
(
(i % 7) * (tile_size) + (tile_size * (6 / 13)),
int(i / 7) * (tile_size) + (tile_size * (6 / 13)),
),
)
if mode == "image_realtime_mode":
surface_array = pygame.surfarray.pixels3d(self.screen)
surface_array = np.transpose(surface_array, (1, 0, 2))
plt.imshow(surface_array)
plt.draw()
plt.pause(0.001)
elif mode == "image_savefile_mode":
# Draw the observation and save to frames.
observation = np.array(pygame.surfarray.pixels3d(self.screen))
self.frames.append(np.transpose(observation, axes=(1, 0, 2)))
self.screen = None
return None
def save_render_output(self, replay_name_suffix: str = '', replay_path: str = None, format: str = 'gif') -> None:
"""
Overview:
Save the rendered frames as an output file.
Arguments:
- replay_name_suffix (:obj:`str`): The suffix to be added to the replay filename.
- replay_path (:obj:`str`): The path to save the replay file. If None, the default filename will be used.
- format (:obj:`str`): The format of the output file. Options are 'gif' or 'mp4'.
"""
# At the end of the episode, save the frames.
if replay_path is None:
filename = f'connect4_{replay_name_suffix}.{format}'
else:
if not os.path.exists(replay_path):
os.makedirs(replay_path)
filename = replay_path + f'/connect4_{replay_name_suffix}.{format}'
if format == 'gif':
# Save frames as a GIF with a duration of 0.1 seconds per frame.
imageio.mimsave(filename, self.frames, 'GIF', duration=0.1)
elif format == 'mp4':
# Save frames as an MP4 video with a frame rate of 30 frames per second.
imageio.mimsave(filename, self.frames, fps=30, codec='mpeg4')
else:
raise ValueError("Unsupported format: {}".format(format))
logging.info("Saved output to {}".format(filename))
self.frames = []
def get_done_winner(self) -> Tuple[bool, int]:
"""
Overview:
Check if the game is done and find the winner.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'winner',
- if player 1 win, 'done' = True, 'winner' = 1
- if player 2 win, 'done' = True, 'winner' = 2
- if draw, 'done' = True, 'winner' = -1
- if game is not over, 'done' = False,'winner' = -1
"""
board = copy.deepcopy(np.array(self.board)).reshape(6, 7)
for piece in [1, 2]:
# Check horizontal locations for win
column_count = 7
row_count = 6
for c in range(column_count - 3):
for r in range(row_count):
if (
board[r][c] == piece
and board[r][c + 1] == piece
and board[r][c + 2] == piece
and board[r][c + 3] == piece
):
return True, piece
# Check vertical locations for win
for c in range(column_count):
for r in range(row_count - 3):
if (
board[r][c] == piece
and board[r + 1][c] == piece
and board[r + 2][c] == piece
and board[r + 3][c] == piece
):
return True, piece
# Check positively sloped diagonals
for c in range(column_count - 3):
for r in range(row_count - 3):
if (
board[r][c] == piece
and board[r + 1][c + 1] == piece
and board[r + 2][c + 2] == piece
and board[r + 3][c + 3] == piece
):
return True, piece
# Check negatively sloped diagonals
for c in range(column_count - 3):
for r in range(3, row_count):
if (
board[r][c] == piece
and board[r - 1][c + 1] == piece
and board[r - 2][c + 2] == piece
and board[r - 3][c + 3] == piece
):
return True, piece
if all(x in [1, 2] for x in self.board):
return True, -1
return False, -1
def get_done_reward(self) -> Tuple[bool, int]:
"""
Overview:
Check if the game is over and what is the reward in the perspective of player 1.\
Return 'done' and 'reward'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'reward',
- if player 1 win, 'done' = True, 'reward' = 1
- if player 2 win, 'done' = True, 'reward' = -1
- if draw, 'done' = True, 'reward' = 0
- if game is not over, 'done' = False,'reward' = None
"""
done, winner = self.get_done_winner()
if winner == 1:
reward = 1
elif winner == 2:
reward = -1
elif winner == -1 and done:
reward = 0
elif winner == -1 and not done:
# episode is not done
reward = None
return done, reward
def random_action(self) -> int:
action_list = self.legal_actions
return np.random.choice(action_list)
def bot_action(self) -> int:
if np.random.rand() < self.prob_random_action_in_bot:
return self.random_action()
else:
if self.bot_action_type == 'rule':
return self.rule_bot.get_rule_bot_action(self.board, self._current_player)
elif self.bot_action_type == 'mcts':
return self.mcts_bot.get_actions(self.board, player_index=self.current_player_index)
def action_to_string(self, action: int) -> str:
"""
Overview:
Convert an action number to a string representing the action.
Arguments:
- action: an integer from the action space.
Returns:
- String representing the action.
"""
return f"Play column {action + 1}"
def human_to_action(self) -> int:
"""
Overview:
For multiplayer games, ask the user for a legal action \
and return the corresponding action number.
Returns:
An integer from the action space.
"""
print(np.array(self.board).reshape(6, 7))
while True:
try:
column = int(
input(
f"Enter the column to play for the player {self.current_player}: "
)
)
action = column - 1
if action in self.legal_actions:
break
else:
print("Wrong input, try again")
except KeyboardInterrupt:
print("exit")
sys.exit(0)
except Exception as e:
print("Wrong input, try again")
return action
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def __repr__(self) -> str:
return "LightZero Connect4 Env"
@property
def current_player(self) -> int:
return self._current_player
@property
def current_player_index(self) -> int:
"""
Overview:
current_player_index = 0, current_player = 1 \
current_player_index = 1, current_player = 2
"""
return 0 if self._current_player == 1 else 1
@property
def next_player(self) -> int:
return self.players[0] if self._current_player == self.players[1] else self.players[1]
@property
def observation_space(self) -> spaces.Space:
return self._observation_space
@property
def action_space(self) -> spaces.Space:
return self._action_space
@property
def reward_space(self) -> spaces.Space:
return self._reward_space
def simulate_action(self, action: int) -> Any:
"""
Overview:
execute action and get next_simulator_env. used in AlphaZero.
Arguments:
- action: an integer from the action space.
Returns:
- next_simulator_env: next simulator env after execute action.
"""
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
new_board = copy.deepcopy(self.board)
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if new_board[i] == 0:
new_board[i] = piece
break
if self.start_player_index == 0:
start_player_index = 1 # self.players = [1, 2], start_player = 2, start_player_index = 1
else:
start_player_index = 0 # self.players = [1, 2], start_player = 1, start_player_index = 0
next_simulator_env = copy.deepcopy(self)
next_simulator_env.reset(start_player_index, init_state=new_board)
return next_simulator_env
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
# In eval phase, we use ``eval_mode`` to make agent play with the built-in bot to
# evaluate the performance of the current agent.
cfg.battle_mode = 'eval_mode'
return [cfg for _ in range(evaluator_env_num)]
def close(self) -> None:
pass
def get_image(self, path: str) -> Any:
from os import path as os_path
import pygame
cwd = os_path.dirname(__file__)
image = pygame.image.load(cwd + "/" + path)
sfc = pygame.Surface(image.get_size(), flags=pygame.SRCALPHA)
sfc.blit(image, (0, 0))
return sfc