-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathmujoco_lightzero_env.py
142 lines (127 loc) · 5.75 KB
/
mujoco_lightzero_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from typing import Union
import gymnasium as gym
import numpy as np
from ding.envs import BaseEnvTimestep
from ding.envs.common import save_frames_as_gif
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from dizoo.mujoco.envs.mujoco_env import MujocoEnv
@ENV_REGISTRY.register('mujoco_lightzero')
class MujocoEnvLightZero(MujocoEnv):
"""
Overview:
The modified MuJoCo environment with continuous action space for LightZero's algorithms.
"""
config = dict(
stop_value=int(1e6),
action_clip=False,
delay_reward_step=0,
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved.
# Only effective when env_manager.type is 'base'.
replay_path=None,
# (bool) If True, save the replay as a gif file.
save_replay_gif=False,
# (str or None) The path to save the replay gif. If None, the replay gif will not be saved.
replay_path_gif=None,
action_bins_per_branch=None,
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
)
def __init__(self, cfg: dict) -> None:
"""
Overview:
Initialize the MuJoCo environment.
Arguments:
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_id', 'replay_path', etc.
"""
super().__init__(cfg)
self._cfg = cfg
# We use env_id to indicate the env_id in LightZero.
self._cfg.env_id = self._cfg.env_id
self._action_clip = cfg.action_clip
self._delay_reward_step = cfg.delay_reward_step
self._init_flag = False
self._replay_path = None
self._replay_path_gif = cfg.replay_path_gif
self._save_replay_gif = cfg.save_replay_gif
self._action_bins_per_branch = cfg.action_bins_per_branch
def reset(self) -> np.ndarray:
"""
Overview:
Reset the environment and return the initial observation.
Returns:
- obs (:obj:`np.ndarray`): The initial observation after resetting.
"""
if not self._init_flag:
self._env = self._make_env()
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
self._env.observation_space.dtype = np.float32
self._observation_space = self._env.observation_space
self._action_space = self._env.action_space
self._reward_space = gym.spaces.Box(
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
obs = self._env.reset()
obs = to_ndarray(obs).astype('float32')
self._eval_episode_return = 0.
action_mask = None
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return obs
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep:
"""
Overview:
Perform a step in the environment using the provided action, and return the next state of the environment.
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward,
done flag, and info dictionary.
Arguments:
- action (:obj:`Union[np.ndarray, list]`): The action to be performed in the environment.
Returns:
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag,
and info dictionary.
.. note::
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step.
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary
under the key 'eval_episode_return'.
- An action mask is created with ones, which represents the availability of each action in the action space.
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'.
"""
if self._action_bins_per_branch:
action = self.map_action(action)
action = to_ndarray(action)
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
if self._action_clip:
action = np.clip(action, -1, 1)
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
if self._save_replay_gif:
path = os.path.join(
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_id, self._save_replay_count)
)
save_frames_as_gif(self._frames, path)
self._save_replay_count += 1
info['eval_episode_return'] = self._eval_episode_return
obs = to_ndarray(obs).astype(np.float32)
rew = to_ndarray(rew).astype(np.float32)
action_mask = None
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return BaseEnvTimestep(obs, rew, done, info)
def __repr__(self) -> str:
"""
String representation of the environment.
"""
return "LightZero Mujoco Env({})".format(self._cfg.env_id)