diff --git a/joss.05618/10.21105.joss.05618.crossref.xml b/joss.05618/10.21105.joss.05618.crossref.xml new file mode 100644 index 0000000000..2d7df90d16 --- /dev/null +++ b/joss.05618/10.21105.joss.05618.crossref.xml @@ -0,0 +1,374 @@ + + + + 20240510T145759-960ae91c7fe0eec695cd8b37d307c60488c8f490 + 20240510145758 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 05 + 2024 + + + 9 + + 97 + + + + matbench-genmetrics: A Python library for benchmarking +crystal structure generative models using time-based splits of Materials +Project structures + + + + Sterling G. + Baird + https://orcid.org/0000-0002-4491-6876 + + + Hasan M. + Sayeed + https://orcid.org/0000-0002-6583-7755 + + + Joseph + Montoya + https://orcid.org/0000-0001-5760-2860 + + + Taylor D. + Sparks + https://orcid.org/0000-0001-8020-7711 + + + + 05 + 10 + 2024 + + + 5618 + + + 10.21105/joss.05618 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10840604 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5618 + + + + 10.21105/joss.05618 + https://joss.theoj.org/papers/10.21105/joss.05618 + + + https://joss.theoj.org/papers/10.21105/joss.05618.pdf + + + + + + Physics guided deep learning for generative +design of crystal materials with symmetry constraints + Zhao + npj Comput Mater + 1 + 9 + 10.1038/s41524-023-00987-9 + 2057-3960 + 2023 + Zhao, Y., Siriwardane, E. M. D., Wu, +Z., Fu, N., Al-Fahdi, M., Hu, M., & Hu, J. (2023). Physics guided +deep learning for generative design of crystal materials with symmetry +constraints. Npj Comput Mater, 9(1), 1–12. +https://doi.org/10.1038/s41524-023-00987-9 + + + Generative adversarial networks and diffusion +models in material discovery + Alverson + 10.26434/chemrxiv-2022-6l4pm + 2022 + Alverson, M., Baird, S., Murdock, R., +& Sparks, T. (2022). Generative adversarial networks and diffusion +models in material discovery. +https://doi.org/10.26434/chemrxiv-2022-6l4pm + + + Network analysis of synthesizable materials +discovery + Aykol + Nature Communications + 1 + 10 + 10.1038/s41467-019-10030-5 + 2041-1723 + 2019 + Aykol, M., Hegde, V. I., Hung, L., +Suram, S., Herring, P., Wolverton, C., & Hummelshøj, J. S. (2019). +Network analysis of synthesizable materials discovery. Nature +Communications, 10(1), 2018. +https://doi.org/10.1038/s41467-019-10030-5 + + + GuacaMol: Benchmarking Models for de Novo +Molecular Design + Brown + Journal of Chemical Information and +Modeling + 3 + 59 + 10.1021/acs.jcim.8b00839 + 1549-9596 + 2019 + Brown, N., Fiscato, M., Segler, M. H. +S., & Vaucher, A. C. (2019). GuacaMol: Benchmarking Models for de +Novo Molecular Design. Journal of Chemical Information and Modeling, +59(3), 1096–1108. +https://doi.org/10.1021/acs.jcim.8b00839 + + + A universal graph deep learning interatomic +potential for the periodic table + Chen + Nature Computational Science + 11 + 2 + 10.1038/s43588-022-00349-3 + 2662-8457 + 2022 + Chen, C., & Ong, S. P. (2022). A +universal graph deep learning interatomic potential for the periodic +table. Nature Computational Science, 2(11), 718–728. +https://doi.org/10.1038/s43588-022-00349-3 + + + Benchmarking materials property prediction +methods: The Matbench test set and Automatminer reference +algorithm + Dunn + npj Computational Materials + 1 + 6 + 10.1038/s41524-020-00406-3 + 2057-3960 + 2020 + Dunn, A., Wang, Q., Ganose, A., Dopp, +D., & Jain, A. (2020). Benchmarking materials property prediction +methods: The Matbench test set and Automatminer reference algorithm. Npj +Computational Materials, 6(1), 1–10. +https://doi.org/10.1038/s41524-020-00406-3 + + + Commentary: The Materials Project: A +materials genome approach to accelerating materials +innovation + Jain + APL Materials + 1 + 1 + 10.1063/1.4812323 + 2013 + Jain, A., Ong, S. P., Hautier, G., +Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, +D., Ceder, G., & Persson, K. A. (2013). Commentary: The Materials +Project: A materials genome approach to accelerating materials +innovation. APL Materials, 1(1), 011002. +https://doi.org/10.1063/1.4812323 + + + Python Materials Genomics (pymatgen): A +robust, open-source python library for materials +analysis + Ong + Computational Materials +Science + 68 + 10.1016/j.commatsci.2012.10.028 + 2013 + Ong, S. P., Richards, W. D., Jain, +A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., +Persson, K. A., & Ceder, G. (2013). Python Materials Genomics +(pymatgen): A robust, open-source python library for materials analysis. +Computational Materials Science, 68, 314–319. +https://doi.org/10.1016/j.commatsci.2012.10.028 + + + Agents for sequential learning using +multiple-fidelity data + Palizhati + Scientific Reports + 1 + 12 + 10.1038/s41598-022-08413-8 + 2045-2322 + 2022 + Palizhati, A., Torrisi, S. B., Aykol, +M., Suram, S. K., Hummelshøj, J. S., & Montoya, J. H. (2022). Agents +for sequential learning using multiple-fidelity data. Scientific +Reports, 12(1), 4694. +https://doi.org/10.1038/s41598-022-08413-8 + + + Molecular sets (MOSES): A benchmarking +platform for molecular generation models + Polykovskiy + Frontiers in Pharmacology + 11 + 10.3389/fphar.2020.565644 + 1663-9812 + 2020 + Polykovskiy, D., Zhebrak, A., +Sanchez-Lengeling, B., Golovanov, S., Tatanov, O., Belyaev, S., +Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A., +Johansson, S., Chen, H., Nikolenko, S., Aspuru-Guzik, A., & +Zhavoronkov, A. (2020). Molecular sets (MOSES): A benchmarking platform +for molecular generation models. Frontiers in Pharmacology, 11. +https://doi.org/10.3389/fphar.2020.565644 + + + An invertible crystallographic representation +for general inverse design of inorganic crystals with targeted +properties + Ren + Matter + 1 + 5 + 10.1016/j.matt.2021.11.032 + 2590-2385 + 2022 + Ren, Z., Tian, S. I. P., Noh, J., +Oviedo, F., Xing, G., Li, J., Liang, Q., Zhu, R., Aberle, A. G., Sun, +S., Wang, X., Liu, Y., Li, Q., Jayavelu, S., Hippalgaonkar, K., Jung, +Y., & Buonassisi, T. (2022). An invertible crystallographic +representation for general inverse design of inorganic crystals with +targeted properties. Matter, 5(1), 314–335. +https://doi.org/10.1016/j.matt.2021.11.032 + + + checkCIF validation ALERTS: What they mean +and how to respond + Spek + Acta Crystallographica Section E +Crystallographic Communications + 1 + 76 + 10.1107/S2056989019016244 + 2056-9890 + 2020 + Spek, A. L. (2020). checkCIF +validation ALERTS: What they mean and how to respond. Acta +Crystallographica Section E Crystallographic Communications, 76(1), +1–11. https://doi.org/10.1107/S2056989019016244 + + + Unsupervised word embeddings capture latent +knowledge from materials science literature + Tshitoyan + Nature + 7763 + 571 + 10.1038/s41586-019-1335-8 + 0028-0836 + 2019 + Tshitoyan, V., Dagdelen, J., Weston, +L., Dunn, A., Rong, Z., Kononova, O., Persson, K. A., Ceder, G., & +Jain, A. (2019). Unsupervised word embeddings capture latent knowledge +from materials science literature. Nature, 571(7763), 95–98. +https://doi.org/10.1038/s41586-019-1335-8 + + + Crystal Diffusion Variational Autoencoder for +Periodic Material Generation + Xie + arXiv:2110.06197 [cond-mat, +physics:physics] + 2022 + Xie, T., Fu, X., Ganea, O.-E., +Barzilay, R., & Jaakkola, T. (2022). Crystal Diffusion Variational +Autoencoder for Periodic Material Generation. arXiv:2110.06197 +[Cond-Mat, Physics:physics]. +https://arxiv.org/abs/2110.06197 + + + High-throughput discovery of novel cubic +crystal materials using deep generative neural networks + Zhao + Advanced Science + 20 + 8 + 10.1002/advs.202100566 + 2198-3844 + 2021 + Zhao, Y., Al-Fahdi, M., Hu, M., +Siriwardane, E. M., Song, Y., Nasiri, A., & Hu, J. (2021). +High-throughput discovery of novel cubic crystal materials using deep +generative neural networks. Advanced Science, 8(20), 2100566. +https://doi.org/10.1002/advs.202100566 + + + Large Scale Benchmark of Materials Design +Methods + Choudhary + 10.48550/arXiv.2306.11688 + 2023 + Choudhary, K., Wines, D., Li, K., +Garrity, K. F., Gupta, V., Romero, A. H., Krogel, J. T., Saritas, K., +Fuhr, A., Ganesh, P., Kent, P. R. C., Yan, K., Lin, Y., Ji, S., +Blaiszik, B., Reiser, P., Friederich, P., Agrawal, A., Tiwary, P., … +Tavazza, F. (2023). Large Scale Benchmark of Materials Design Methods +(No. arXiv:2306.11688). arXiv. +https://doi.org/10.48550/arXiv.2306.11688 + + + Matbench Discovery – A framework to evaluate +machine learning crystal stability predictions + Riebesell + 10.48550/arXiv.2308.14920 + 2024 + Riebesell, J., Goodall, R. E. A., +Benner, P., Chiang, Y., Deng, B., Lee, A. A., Jain, A., & Persson, +K. A. (2024). Matbench Discovery – A framework to evaluate machine +learning crystal stability predictions (No. arXiv:2308.14920). arXiv. +https://doi.org/10.48550/arXiv.2308.14920 + + + + + + diff --git a/joss.05618/10.21105.joss.05618.pdf b/joss.05618/10.21105.joss.05618.pdf new file mode 100644 index 0000000000..c3935df6c9 Binary files /dev/null and b/joss.05618/10.21105.joss.05618.pdf differ diff --git a/joss.05618/paper.jats/10.21105.joss.05618.jats b/joss.05618/paper.jats/10.21105.joss.05618.jats new file mode 100644 index 0000000000..f157d378b8 --- /dev/null +++ b/joss.05618/paper.jats/10.21105.joss.05618.jats @@ -0,0 +1,772 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5618 +10.21105/joss.05618 + +matbench-genmetrics: A Python library for benchmarking +crystal structure generative models using time-based splits of Materials +Project structures + + + +https://orcid.org/0000-0002-4491-6876 + +Baird +Sterling G. + + + +* + + +https://orcid.org/0000-0002-6583-7755 + +Sayeed +Hasan M. + + + + +https://orcid.org/0000-0001-5760-2860 + +Montoya +Joseph + + + + +https://orcid.org/0000-0001-8020-7711 + +Sparks +Taylor D. + + + + + +Materials Science & Engineering, University of Utah, +USA + + + + +Toyota Research Institute, Los Altos, CA, USA + + + + +Acceleration Consortium, University of Toronto. 80 St +George St, Toronto, ON M5S 3H6 + + + + +* E-mail: + + +19 +3 +2024 + +9 +97 +5618 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +materials informatics +crystal structure +generative modeling +TimeSeriesSplit +benchmarking + + + + + + Summary +

The progress of a machine learning field is both tracked and + propelled through the development of robust benchmarks. While + significant progress has been made to create standardized, easy-to-use + benchmarks for molecular discovery e.g., + (Brown + et al., 2019), this remains a challenge for solid-state + material discovery + (Alverson + et al., 2022; + Xie + et al., 2022; + Zhao + et al., 2023). To address this limitation, we propose + matbench-genmetrics, an open-source Python + library for benchmarking generative models for crystal structures. We + use four evaluation metrics inspired by Guacamol + (Brown + et al., 2019) and Crystal Diffusion Variational AutoEncoder + (CDVAE) + (Xie + et al., 2022)—validity, coverage, novelty, and uniqueness—to + assess performance on Materials Project data splits using + timeline-based cross-validation. We believe that + matbench-genmetrics will provide the + standardization and convenience required for rigorous benchmarking of + crystal structure generative models. A visual overview of the + matbench-genmetrics library is provided in + [fig:summary].

+ +

Summary visualization of + matbench-genmetrics to evaluate crystal + generative model performance using validity, coverage, novelty, and + uniqueness metrics based on calendar-time splits of experimentally + determined Materials Project database entries. Validity is the + comparison of distribution characteristics (space group number) + between the generated materials and the training and test sets. + Coverage is the number of matches between the generated structures + and a held-out test set. Novelty is a comparison between the + generated and training structures. Finally, uniqueness is a measure + of the number of repeats within the generated structures (i.e., + comparing the set of generated structures to itself). For in-depth + descriptions and equations for the four metrics described above, see + https://matbench-genmetrics.readthedocs.io/en/latest/readme.html + and + https://matbench-genmetrics.readthedocs.io/en/latest/metrics.html.

+ +
+
+ + Statement of need +

In the field of materials informatics, where materials science + intersects with machine learning, benchmarks play a crucial role in + assessing model performance and enabling fair comparisons among + various tools and models. Typically, these benchmarks focus on + evaluating the accuracy of predictive models for materials properties, + utilizing well-established metrics such as mean absolute error and + root-mean-square error to measure performance against actual + measurements. A standard practice involves splitting the data into two + parts, with one serving as training data for model development and the + other as test data for assessing performance + (Dunn + et al., 2020).

+

However, benchmarking generative models, which aim to create + entirely new data rather than focusing solely on predictive accuracy, + presents unique challenges. While significant progress has been made + in standardizing benchmarks for tasks like image generation and + molecule synthesis, the field of crystal structure generative modeling + lacks this level of standardization (this is separate from machine + learning interatomic potentials, which have the robust and + comprehensive + matbench-discovery + (Riebesell + et al., 2024) and + Jarvis + Leaderboard benchmarking frameworks + (Choudhary + et al., 2023)). Molecular generative modeling benefits from + widely adopted benchmark platforms such as Guacamol + (Brown + et al., 2019) and Moses + (Polykovskiy + et al., 2020), which offer easy installation, usage guidelines, + and leaderboards for tracking progress. In contrast, existing + evaluations in crystal structure generative modeling, as seen in CDVAE + (Xie + et al., 2022), FTCP + (Ren + et al., 2022), PGCGM + (Zhao + et al., 2023), CubicGAN + (Zhao + et al., 2021), and CrysTens + (Alverson + et al., 2022), lack standardization, pose challenges in terms + of installation and application to new models and datasets, and lack + publicly accessible leaderboards. While these evaluations are valuable + within their respective scopes, there is a clear need for a dedicated + benchmarking platform to promote standardization and facilitate robust + comparisons.

+

In this work, we introduce + matbench-genmetrics, a materials benchmarking + platform for crystal structure generative models. We use concepts from + molecular generative modeling benchmarking to create a set of + evaluation metrics—validity, coverage, novelty, and uniqueness—which + are broadly defined as follows:

+ + +

Validity: a measure of how well the generated + materials match the distribution of the training dataset

+
+ +

Coverage: the ability to successfully predict + known materials which have been held out

+
+ +

Novelty: generating structures which are close + matches to examples in the training set are penalized

+
+ +

Uniqueness: the number of repeats within the + generated structures

+
+
+

matbench-genmetrics is comprised of two + namespace packages. The first namespace package is + matbench_genmetrics.core, which provides the + following features:

+ + +

GenMatcher: A class for calculating + matches between two sets of structures

+
+ +

GenMetrics: A class for calculating + validity, coverage, novelty, and uniqueness metrics

+
+ +

MPTSMetrics: class for loading + mp_time_split data, calculating time-series + cross-validation metrics, and saving results

+
+ +

Fixed benchmark classes for 10, 100, 1000, and 10000 generated + structures

+
+
+

Additionally, we introduce the + matbench_genmetrics.mp_time_split namespace + package as a complement to + matbench_genmetrics.core. It provides a + standardized dataset and cross-validation splits for evaluating the + mentioned four metrics. Time-based splits have been utilized in + materials informatics model validation, such as predicting future + thermoelectric materials via word embeddings + (Tshitoyan + et al., 2019), searching for efficient solar photoabsorption + materials through multi-fidelity optimization + (Palizhati + et al., 2022), and predicting future materials stability trends + via network models + (Aykol + et al., 2019). Recently, Hu et al. + (Zhao + et al., 2023) used what they call a rediscovery metric, + referred to here as a coverage metric in line with molecular + benchmarking terminology, to evaluate crystal structure generative + models. While time-series splitting wasn’t used, they showed that + after generating millions of structures, only a small percentage of + held-out structures had matches. These results highlight the + difficulty (and robustness) of coverage tasks. By leveraging timeline + metadata from the Materials Project database + (Jain + et al., 2013) and creating a standard time-series splitting of + data, matbench_genmetrics.mp_time_split enables + rigorous evaluation of future discovery performance.

+

The matbench_genmetrics.mp_time_split + namespace package provides the following features:

+ + +

downloading and storing snapshots of Materials Project crystal + structures via pymatgen + (Ong + et al., 2013)

+
+ +

modification of pymatgen search criteria + to fetch custom datasets

+
+ +

utilities for post-processing Materials Project entries

+
+ +

convenience methods to access the snapshot dataset

+
+ +

predefined scikit-learn TimeSeriesSplit + cross-validation splits + (Ong + et al., 2013)

+
+
+

In future work, metrics will serve as multi-criteria filters to + prevent manipulation. Standalone metrics can be “hacked” by generating + nonsensical structures for novelty or including training structures to + inflate validity scores. To address this, multiple criteria are + considered simultaneously for each generated structure, such as + novelty, uniqueness, and filtering rules like non-overlapping atoms, + stoichiometry, or checkCIF criteria + (Spek, + 2020). Additional filters based on machine learning models can + be applied for properties like negative formation energy, energy above + hull, ICSD classification, and coordination number. Applying + machine-learning-based structural relaxation using M3GNet + (Chen + & Ong, 2022) (e.g., as in CrysTens + (Alverson + et al., 2022)) before filtering is also of interest. + Contributions related to multi-criteria filtering, enhanced validity + filters, and implementing a benchmark submission system and public + leaderboard are welcome.

+

We believe that the matbench-genmetrics + ecosystem is a robust and easy-to-use benchmarking platform that will + help propel novel materials discovery and targeted crystal structure + inverse design. We hope that practioners of crystal structure + generative modeling will adopt + matbench-genmetrics, contribute improvements + and ideas, and submit their results to the planned public + leaderboard.

+
+ + Acknowledgements +

We acknowledge contributions from Kevin M. Jablonka + (@kjappelbaum), + Matthew K. Horton + (@mkhorton), + Kyle D. Miller + (@kyledmiller), + and Janosh Riebesell + (@janosh). + S.G.B. and T.D.S. acknowledge support by the National Science + Foundation, USA under Grant No. DMR-1651668. We acknowledge OpenAI for + the use of ChatGPT for basic proofreading and editing.

+
+ + + + + + + ZhaoYong + SiriwardaneEdirisuriya M. Dilanga + WuZhenyao + FuNihang + Al-FahdiMohammed + HuMing + HuJianjun + + Physics guided deep learning for generative design of crystal materials with symmetry constraints + npj Comput Mater + Nature Publishing Group + 202303 + 20240509 + 9 + 1 + 2057-3960 + 10.1038/s41524-023-00987-9 + 1 + 12 + + + + + + AlversonMichael + BairdSterling + MurdockRyan + SparksTaylor + + Generative adversarial networks and diffusion models in material discovery + 202211 + 20221117 + 10.26434/chemrxiv-2022-6l4pm + + + + + + AykolMuratahan + HegdeVinay I. + HungLinda + SuramSantosh + HerringPatrick + WolvertonChris + HummelshøjJens S. + + Network analysis of synthesizable materials discovery + Nature Communications + Nature Publishing Group + 201905 + 20221114 + 10 + 1 + 2041-1723 + 10.1038/s41467-019-10030-5 + 2018 + + + + + + + BrownNathan + FiscatoMarco + SeglerMarwin H. S. + VaucherAlain C. + + GuacaMol: Benchmarking Models for de Novo Molecular Design + Journal of Chemical Information and Modeling + 201903 + 20220625 + 59 + 3 + 1549-9596 + 10.1021/acs.jcim.8b00839 + 1096 + 1108 + + + + + + ChenChi + OngShyue Ping + + A universal graph deep learning interatomic potential for the periodic table + Nature Computational Science + Nature Publishing Group + 202211 + 20230217 + 2 + 11 + 2662-8457 + 10.1038/s43588-022-00349-3 + 718 + 728 + + + + + + DunnAlexander + WangQi + GanoseAlex + DoppDaniel + JainAnubhav + + Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm + npj Computational Materials + Nature Publishing Group + 202009 + 20230617 + 6 + 1 + 2057-3960 + 10.1038/s41524-020-00406-3 + 1 + 10 + + + + + + JainAnubhav + OngShyue Ping + HautierGeoffroy + ChenWei + RichardsWilliam Davidson + DacekStephen + CholiaShreyas + GunterDan + SkinnerDavid + CederGerbrand + PerssonKristin A. + + Commentary: The Materials Project: A materials genome approach to accelerating materials innovation + APL Materials + American Institute of Physics + 201307 + 20221114 + 1 + 1 + 10.1063/1.4812323 + 011002 + + + + + + + OngShyue Ping + RichardsWilliam Davidson + JainAnubhav + HautierGeoffroy + KocherMichael + CholiaShreyas + GunterDan + ChevrierVincent L. + PerssonKristin A. + CederGerbrand + + Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis + Computational Materials Science + 201302 + 20220609 + 68 + 10.1016/j.commatsci.2012.10.028 + 314 + 319 + + + + + + PalizhatiAini + TorrisiSteven B. + AykolMuratahan + SuramSantosh K. + HummelshøjJens S. + MontoyaJoseph H. + + Agents for sequential learning using multiple-fidelity data + Scientific Reports + Nature Publishing Group + 202203 + 20221114 + 12 + 1 + 2045-2322 + 10.1038/s41598-022-08413-8 + 4694 + + + + + + + PolykovskiyDaniil + ZhebrakAlexander + Sanchez-LengelingBenjamin + GolovanovSergey + TatanovOktai + BelyaevStanislav + KurbanovRauf + ArtamonovAleksey + AladinskiyVladimir + VeselovMark + KadurinArtur + JohanssonSimon + ChenHongming + NikolenkoSergey + Aspuru-GuzikAlán + ZhavoronkovAlex + + Molecular sets (MOSES): A benchmarking platform for molecular generation models + Frontiers in Pharmacology + 2020 + 11 + 1663-9812 + 10.3389/fphar.2020.565644 + + + + + + RenZekun + TianSiyu Isaac Parker + NohJuhwan + OviedoFelipe + XingGuangzong + LiJiali + LiangQiaohao + ZhuRuiming + AberleArmin G. + SunShijing + WangXiaonan + LiuYi + LiQianxiao + JayaveluSenthilnath + HippalgaonkarKedar + JungYousung + BuonassisiTonio + + An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties + Matter + 202201 + 20220326 + 5 + 1 + 2590-2385 + 10.1016/j.matt.2021.11.032 + 314 + 335 + + + + + + SpekAnthony L. + + checkCIF validation ALERTS: What they mean and how to respond + Acta Crystallographica Section E Crystallographic Communications + 202001 + 20220611 + 76 + 1 + 2056-9890 + 10.1107/S2056989019016244 + 1 + 11 + + + + + + TshitoyanVahe + DagdelenJohn + WestonLeigh + DunnAlexander + RongZiqin + KononovaOlga + PerssonKristin A. + CederGerbrand + JainAnubhav + + Unsupervised word embeddings capture latent knowledge from materials science literature + Nature + 201907 + 20220806 + 571 + 7763 + 0028-0836 + 10.1038/s41586-019-1335-8 + 95 + 98 + + + + + + XieTian + FuXiang + GaneaOctavian-Eugen + BarzilayRegina + JaakkolaTommi + + Crystal Diffusion Variational Autoencoder for Periodic Material Generation + arXiv:2110.06197 [cond-mat, physics:physics] + 202203 + 20220415 + https://arxiv.org/abs/2110.06197 + + + + + + ZhaoYong + Al-FahdiMohammed + HuMing + SiriwardaneEdirisuriya MD + SongYuqi + NasiriAlireza + HuJianjun + + High-throughput discovery of novel cubic crystal materials using deep generative neural networks + Advanced Science + 202110 + 20230317 + 8 + 20 + 2198-3844 + https://arxiv.org/abs/2102.01880 + 10.1002/advs.202100566 + 2100566 + + + + + + + ChoudharyKamal + WinesDaniel + LiKangming + GarrityKevin F. + GuptaVishu + RomeroAldo H. + KrogelJaron T. + SaritasKayahan + FuhrAddis + GaneshPanchapakesan + KentPaul R. C. + YanKeqiang + LinYuchao + JiShuiwang + BlaiszikBen + ReiserPatrick + FriederichPascal + AgrawalAnkit + TiwaryPratyush + BeyerleEric + MinchPeter + RhoneTrevor David + TakeuchiIchiro + WexlerRobert B. + Mannodi-KanakkithodiArun + ErtekinElif + MishraAvanish + MathewNithin + BairdSterling G. + WoodMitchell + RohskopfAndrew Dale + Hattrick-SimpersJason + WangShih-Han + AchenieLuke E. K. + XinHongliang + WilliamsMaureen + BiacchiAdam J. + TavazzaFrancesca + + Large Scale Benchmark of Materials Design Methods + arXiv + 202306 + 20240318 + https://arxiv.org/abs/2306.11688 + 10.48550/arXiv.2306.11688 + + + + + + RiebesellJanosh + GoodallRhys E. A. + BennerPhilipp + ChiangYuan + DengBowen + LeeAlpha A. + JainAnubhav + PerssonKristin A. + + Matbench Discovery – A framework to evaluate machine learning crystal stability predictions + arXiv + 202402 + 20240318 + https://arxiv.org/abs/2308.14920 + 10.48550/arXiv.2308.14920 + + + + +
diff --git a/joss.05618/paper.jats/matbench-genmetrics.png b/joss.05618/paper.jats/matbench-genmetrics.png new file mode 100644 index 0000000000..d8d3eb8a1e Binary files /dev/null and b/joss.05618/paper.jats/matbench-genmetrics.png differ