.. image:: https://github.com/openturns/otsklearn/actions/workflows/build.yml/badge.svg?branch=master :target: https://github.com/openturns/otsklearn/actions/workflows/build.yml otsklearn ========= Simple module to use OT surrogate models with the scikit-learn estimator API (fit/predict) Currently it's more a proof of concept, not ready for production use. Examples -------- >>> from otsklearn import FunctionalChaos >>> from sklearn import datasets >>> from sklearn.model_selection import GridSearchCV >>> dataset = datasets.load_iris() >>> parameters={'degree':[2,3,4]} >>> estimator = FunctionalChaos() >>> print(estimator.get_params()) >>> clf = GridSearchCV(estimator, parameters, scoring='r2') >>> clf.fit(dataset.data, dataset.target.reshape(-1,1)) >>> print(clf.best_estimator_)