-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathtrain_agent.py
227 lines (188 loc) · 9.28 KB
/
train_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import absolute_import, division, print_function
import sys
import os
import argparse
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.distributions import Categorical
from knowledge_graph import KnowledgeGraph
from kg_env import BatchKGEnvironment
from utils import *
logger = None
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
class ActorCritic(nn.Module):
def __init__(self, state_dim, act_dim, gamma=0.99, hidden_sizes=[512, 256]):
super(ActorCritic, self).__init__()
self.state_dim = state_dim
self.act_dim = act_dim
self.gamma = gamma
self.l1 = nn.Linear(state_dim, hidden_sizes[0])
self.l2 = nn.Linear(hidden_sizes[0], hidden_sizes[1])
self.actor = nn.Linear(hidden_sizes[1], act_dim)
self.critic = nn.Linear(hidden_sizes[1], 1)
self.saved_actions = []
self.rewards = []
self.entropy = []
def forward(self, inputs):
state, act_mask = inputs # state: [bs, state_dim], act_mask: [bs, act_dim]
x = self.l1(state)
x = F.dropout(F.elu(x), p=0.5)
out = self.l2(x)
x = F.dropout(F.elu(out), p=0.5)
actor_logits = self.actor(x)
actor_logits[1 - act_mask] = -999999.0
act_probs = F.softmax(actor_logits, dim=-1) # Tensor of [bs, act_dim]
state_values = self.critic(x) # Tensor of [bs, 1]
return act_probs, state_values
def select_action(self, batch_state, batch_act_mask, device):
state = torch.FloatTensor(batch_state).to(device) # Tensor [bs, state_dim]
act_mask = torch.ByteTensor(batch_act_mask).to(device) # Tensor of [bs, act_dim]
probs, value = self((state, act_mask)) # act_probs: [bs, act_dim], state_value: [bs, 1]
m = Categorical(probs)
acts = m.sample() # Tensor of [bs, ], requires_grad=False
# [CAVEAT] If sampled action is out of action_space, choose the first action in action_space.
valid_idx = act_mask.gather(1, acts.view(-1, 1)).view(-1)
acts[valid_idx == 0] = 0
self.saved_actions.append(SavedAction(m.log_prob(acts), value))
self.entropy.append(m.entropy())
return acts.cpu().numpy().tolist()
def update(self, optimizer, device, ent_weight):
if len(self.rewards) <= 0:
del self.rewards[:]
del self.saved_actions[:]
del self.entropy[:]
return 0.0, 0.0, 0.0
batch_rewards = np.vstack(self.rewards).T # numpy array of [bs, #steps]
batch_rewards = torch.FloatTensor(batch_rewards).to(device)
num_steps = batch_rewards.shape[1]
for i in range(1, num_steps):
batch_rewards[:, num_steps - i - 1] += self.gamma * batch_rewards[:, num_steps - i]
actor_loss = 0
critic_loss = 0
entropy_loss = 0
for i in range(0, num_steps):
log_prob, value = self.saved_actions[i] # log_prob: Tensor of [bs, ], value: Tensor of [bs, 1]
advantage = batch_rewards[:, i] - value.squeeze(1) # Tensor of [bs, ]
actor_loss += -log_prob * advantage.detach() # Tensor of [bs, ]
critic_loss += advantage.pow(2) # Tensor of [bs, ]
entropy_loss += -self.entropy[i] # Tensor of [bs, ]
actor_loss = actor_loss.mean()
critic_loss = critic_loss.mean()
entropy_loss = entropy_loss.mean()
loss = actor_loss + critic_loss + ent_weight * entropy_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
del self.rewards[:]
del self.saved_actions[:]
del self.entropy[:]
return loss.item(), actor_loss.item(), critic_loss.item(), entropy_loss.item()
class ACDataLoader(object):
def __init__(self, uids, batch_size):
self.uids = np.array(uids)
self.num_users = len(uids)
self.batch_size = batch_size
self.reset()
def reset(self):
self._rand_perm = np.random.permutation(self.num_users)
self._start_idx = 0
self._has_next = True
def has_next(self):
return self._has_next
def get_batch(self):
if not self._has_next:
return None
# Multiple users per batch
end_idx = min(self._start_idx + self.batch_size, self.num_users)
batch_idx = self._rand_perm[self._start_idx:end_idx]
batch_uids = self.uids[batch_idx]
self._has_next = self._has_next and end_idx < self.num_users
self._start_idx = end_idx
return batch_uids.tolist()
def train(args):
env = BatchKGEnvironment(args.dataset, args.max_acts, max_path_len=args.max_path_len, state_history=args.state_history)
uids = list(env.kg(USER).keys())
dataloader = ACDataLoader(uids, args.batch_size)
model = ActorCritic(env.state_dim, env.act_dim, gamma=args.gamma, hidden_sizes=args.hidden).to(args.device)
logger.info('Parameters:' + str([i[0] for i in model.named_parameters()]))
optimizer = optim.Adam(model.parameters(), lr=args.lr)
total_losses, total_plosses, total_vlosses, total_entropy, total_rewards = [], [], [], [], []
step = 0
model.train()
for epoch in range(1, args.epochs + 1):
### Start epoch ###
dataloader.reset()
while dataloader.has_next():
batch_uids = dataloader.get_batch()
### Start batch episodes ###
batch_state = env.reset(batch_uids) # numpy array of [bs, state_dim]
done = False
while not done:
batch_act_mask = env.batch_action_mask(dropout=args.act_dropout) # numpy array of size [bs, act_dim]
batch_act_idx = model.select_action(batch_state, batch_act_mask, args.device) # int
batch_state, batch_reward, done = env.batch_step(batch_act_idx)
model.rewards.append(batch_reward)
### End of episodes ###
lr = args.lr * max(1e-4, 1.0 - float(step) / (args.epochs * len(uids) / args.batch_size))
for pg in optimizer.param_groups:
pg['lr'] = lr
# Update policy
total_rewards.append(np.sum(model.rewards))
loss, ploss, vloss, eloss = model.update(optimizer, args.device, args.ent_weight)
total_losses.append(loss)
total_plosses.append(ploss)
total_vlosses.append(vloss)
total_entropy.append(eloss)
step += 1
# Report performance
if step > 0 and step % 100 == 0:
avg_reward = np.mean(total_rewards) / args.batch_size
avg_loss = np.mean(total_losses)
avg_ploss = np.mean(total_plosses)
avg_vloss = np.mean(total_vlosses)
avg_entropy = np.mean(total_entropy)
total_losses, total_plosses, total_vlosses, total_entropy, total_rewards = [], [], [], [], []
logger.info(
'epoch/step={:d}/{:d}'.format(epoch, step) +
' | loss={:.5f}'.format(avg_loss) +
' | ploss={:.5f}'.format(avg_ploss) +
' | vloss={:.5f}'.format(avg_vloss) +
' | entropy={:.5f}'.format(avg_entropy) +
' | reward={:.5f}'.format(avg_reward))
### END of epoch ###
policy_file = '{}/policy_model_epoch_{}.ckpt'.format(args.log_dir, epoch)
logger.info("Save model to " + policy_file)
torch.save(model.state_dict(), policy_file)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default=BEAUTY, help='One of {clothing, cell, beauty, cd}')
parser.add_argument('--name', type=str, default='train_agent', help='directory name.')
parser.add_argument('--seed', type=int, default=123, help='random seed.')
parser.add_argument('--gpu', type=str, default='0', help='gpu device.')
parser.add_argument('--epochs', type=int, default=50, help='Max number of epochs.')
parser.add_argument('--batch_size', type=int, default=32, help='batch size.')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate.')
parser.add_argument('--max_acts', type=int, default=250, help='Max number of actions.')
parser.add_argument('--max_path_len', type=int, default=3, help='Max path length.')
parser.add_argument('--gamma', type=float, default=0.99, help='reward discount factor.')
parser.add_argument('--ent_weight', type=float, default=1e-3, help='weight factor for entropy loss')
parser.add_argument('--act_dropout', type=float, default=0.5, help='action dropout rate.')
parser.add_argument('--state_history', type=int, default=1, help='state history length')
parser.add_argument('--hidden', type=int, nargs='*', default=[512, 256], help='number of samples')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
args.device = torch.device('cuda:0') if torch.cuda.is_available() else 'cpu'
args.log_dir = '{}/{}'.format(TMP_DIR[args.dataset], args.name)
if not os.path.isdir(args.log_dir):
os.makedirs(args.log_dir)
global logger
logger = get_logger(args.log_dir + '/train_log.txt')
logger.info(args)
set_random_seed(args.seed)
train(args)
if __name__ == '__main__':
main()