-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathargs.py
123 lines (100 loc) · 7.2 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import pickle
import time
import argparse
def init_args():
parser = init_parser()
args = parser.parse_args()
return init_sub_args(args)
def init_sub_args(args):
dataset = "UBnormal" if args.dataset == "UBnormal" else "ShanghaiTech"
if args.vid_path_train and args.vid_path_test and args.pose_path_train and args.pose_path_test:
args.vid_path = {'train': args.vid_path_train,
'test': args.vid_path_test}
args.pose_path = {'train': args.pose_path_train,
'test': args.pose_path_test}
else:
args.vid_path = {'train': os.path.join(args.data_dir, dataset, 'train/images/'),
'test': os.path.join(args.data_dir, dataset, 'test/frames/')}
args.pose_path = {'train': os.path.join(args.data_dir, dataset, 'pose', 'train/'),
'test': os.path.join(args.data_dir, dataset, 'pose', 'test/')}
args.pose_path["train_abnormal"] = args.pose_path_train_abnormal
args.ckpt_dir = None
model_args = args_rm_prefix(args, 'model_')
return args, model_args
def init_parser(default_data_dir='data/', default_exp_dir='data/exp_dir'):
parser = argparse.ArgumentParser(prog="STG-NF")
# General Args
parser.add_argument('--vid_path_train', type=str, default=None, help='Path to training vids')
parser.add_argument('--pose_path_train_abnormal', type=str, default=None, help='Path to training vids')
parser.add_argument('--pose_path_train', type=str, default=None, help='Path to training pose')
parser.add_argument('--vid_path_test', type=str, default=None, help='Path to test vids')
parser.add_argument('--pose_path_test', type=str, default=None, help='Path to test pose')
parser.add_argument('--dataset', type=str, default='ShanghaiTech',
choices=['ShanghaiTech', 'ShanghaiTech-HR', 'UBnormal'], help='Dataset for Eval')
parser.add_argument('--vid_res', type=str, default=None, help='Video Res')
parser.add_argument('--device', type=str, default='cuda:0', metavar='DEV', help='Device for feature calculation (default: \'cuda:0\')')
parser.add_argument('--seed', type=int, metavar='S', default=999, help='Random seed, use 999 for random (default: 999)')
parser.add_argument('--verbose', type=int, default=1, metavar='V', choices=[0, 1], help='Verbosity [1/0] (default: 1)')
parser.add_argument('--data_dir', type=str, default=default_data_dir, metavar='DATA_DIR', help="Path to directory holding .npy and .pkl files (default: {})".format(default_data_dir))
parser.add_argument('--exp_dir', type=str, default=default_exp_dir, metavar='EXP_DIR', help="Path to the directory where models will be saved (default: {})".format(default_exp_dir))
parser.add_argument('--num_workers', type=int, default=8, metavar='W', help='number of dataloader workers (0=current thread) (default: 32)')
parser.add_argument('--plot_vid', type=int, default=0, help='Plot test videos')
parser.add_argument('--only_test', action='store_true', help='Visualize train/test data')
# Data Params
parser.add_argument('--num_transform', type=int, default=2, metavar='T', help='number of transformations to use for augmentation (default: 2)')
parser.add_argument('--headless', action='store_true', help='Remove head keypoints (14-17) and use 14 kps only. (default: False)')
parser.add_argument('--norm_scale', '-ns', type=int, default=0, metavar='NS', choices=[0, 1], help='Scale without keeping proportions [1/0] (default: 0)')
parser.add_argument('--prop_norm_scale', '-pns', type=int, default=1, metavar='PNS', choices=[0, 1], help='Scale keeping proportions [1/0] (default: 1)')
parser.add_argument('--train_seg_conf_th', '-th', type=float, default=0.0, metavar='CONF_TH', help='Training set threshold Parameter (default: 0.0)')
parser.add_argument('--seg_len', type=int, default=24, metavar='SGLEN', help='Number of frames for training segment sliding window, a multiply of 6 (default: 12)')
parser.add_argument('--seg_stride', type=int, default=6, metavar='SGST', help='Stride for training segment sliding window')
parser.add_argument('--specific_clip', type=int, default=None, help='Train and Eval on Specific Clip')
parser.add_argument('--global_pose_segs', action='store_false', help='Use unormalized pose segs')
# Model Params
parser.add_argument('--checkpoint', type=str, metavar='model', help="Path to a pretrained model")
parser.add_argument('--batch_size', type=int, default=256, metavar='B', help='Batch size for train')
parser.add_argument('--epochs', '-model_e', type=int, default=8, metavar='E', help = 'Number of epochs per cycle')
parser.add_argument('--model_optimizer', '-model_o', type=str, default='adamx', metavar='model_OPT', help = "Optimizer")
parser.add_argument('--model_sched', '-model_s', type=str, default='exp_decay', metavar='model_SCH', help = "Optimization LR scheduler")
parser.add_argument('--model_lr', type=float, default=5e-4, metavar='LR', help='Optimizer Learning Rate Parameter')
parser.add_argument('--model_weight_decay', '-model_wd', type=float, default=5e-5, metavar='WD', help='Optimizer Weight Decay Parameter')
parser.add_argument('--model_lr_decay', '-model_ld', type=float, default=0.99, metavar='LD', help='Optimizer Learning Rate Decay Parameter')
parser.add_argument('--model_hidden_dim', type=int, default=0, help='Features dim dimension')
parser.add_argument('--model_confidence', action='store_true', help='Create Figs')
parser.add_argument('--K', type=int, default=8, help='Features dim dimension')
parser.add_argument('--L', type=int, default=1, help='Features dim dimension')
parser.add_argument('--R', type=float, default=3., help='Features dim dimension')
parser.add_argument('--temporal_kernel', type=int, default=None, help='Odd integer, temporal conv size')
parser.add_argument('--edge_importance', action='store_true', help='Adjacency matrix edge weights')
parser.add_argument('--flow_permutation', type=str, default='permute', help='Permutation layer type')
parser.add_argument('--adj_strategy', type=str, default='uniform', help='Adjacency matrix strategy')
parser.add_argument('--max_hops', type=int, default=8, help='Adjacency matrix neighbours')
return parser
def args_rm_prefix(args, prefix):
wp_args = argparse.Namespace(**vars(args))
args_dict = vars(args)
wp_args_dict = vars(wp_args)
for key, value in args_dict.items():
if key.startswith(prefix):
model_key = key[len(prefix):]
wp_args_dict[model_key] = value
return wp_args
def create_exp_dirs(experiment_dir, dirmap=''):
time_str = time.strftime("%b%d_%H%M")
experiment_dir = os.path.join(experiment_dir, dirmap, time_str)
dirs = [experiment_dir]
try:
for dir_ in dirs:
os.makedirs(dir_, exist_ok=True)
print("Experiment directories created")
return experiment_dir
except Exception as err:
print("Experiment directories creation Failed, error {}".format(err))
exit(-1)
def save_dataset(dataset, fname):
with open(fname, 'wb') as file:
pickle.dump(dataset, file)
def load_dataset(fname):
with open(fname, 'rb') as file:
return pickle.load(file)