From e766b79ed6dac94ffa7169a58b23e3601d532549 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lars=20G=C3=B6ttgens?= Date: Thu, 19 Oct 2023 20:04:09 +0200 Subject: [PATCH] Next try to get docs working --- experimental/LieAlgebras/src/root_systems.jl | 4 ++-- experimental/LieAlgebras/src/simple_lie_algebra.jl | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/experimental/LieAlgebras/src/root_systems.jl b/experimental/LieAlgebras/src/root_systems.jl index ef4fb2950539..5630a19aa958 100644 --- a/experimental/LieAlgebras/src/root_systems.jl +++ b/experimental/LieAlgebras/src/root_systems.jl @@ -118,7 +118,7 @@ end cartan_matrix(S::Symbol, n::Int) -> Matrix{QQFieldElem} Return the Cartan matrix of the root system of type `Sn`. -For the semantics of the arguments, refer to [`root_system(S::Symbol, n::Int)`](ref). +For the semantics of the arguments, refer to `root_system(S::Symbol, n::Int)` ref. """ function cartan_matrix(S::Symbol, n::Int) return cartan_matrix(root_system(S, n)) @@ -140,7 +140,7 @@ end dynkin_diagram(S::Symbol, n::Int) Return the Dynkin diagram of the root system of type `Sn`. -For the semantics of the arguments, refer to [`root_system(S::Symbol, n::Int)`](ref). +For the semantics of the arguments, refer to [root_system(S::Symbol, n::Int)` ref. """ function dynkin_diagram(S::Symbol, n::Int) @req _root_system_type_supported_by_GAP(S, n) "Unknown Dynkin type or not supported by GAP" diff --git a/experimental/LieAlgebras/src/simple_lie_algebra.jl b/experimental/LieAlgebras/src/simple_lie_algebra.jl index 62511e351dae..50af8073c0ff 100644 --- a/experimental/LieAlgebras/src/simple_lie_algebra.jl +++ b/experimental/LieAlgebras/src/simple_lie_algebra.jl @@ -125,7 +125,7 @@ end @doc raw""" lie_algebra(R::Field, S::Symbol, n::Int; cached::Bool=true) -> SimpleLieAlgebra{elem_type(R)} -Construct the simple Lie algebra over the field `R` with root system of type `Sn` (see [`root_system(S::Symbol, n::Int)`](ref)). +Construct the simple Lie algebra over the field `R` with root system of type `Sn` (see `root_system(S::Symbol, n::Int)` ref). The internally used basis of this Lie algebra is the Chevalley basis. """ function lie_algebra(R::Field, S::Symbol, n::Int; cached::Bool=true)