-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinference_images.py
executable file
·86 lines (65 loc) · 2.86 KB
/
inference_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
__author__ = 'kohou.wang'
__time__ = '19-10-22'
__email__ = '[email protected]'
# If this runs wrong, don't ask me, I don't know why;
# If this runs right, thank god, and I don't know why.
# Maybe the answer, my friend, is blowing in the wind.
# Well, I'm kidding... Always, Welcome to contact me.
"""Description for the script:
inference one single image or many images of a directory using pretrained SSRNet.
"""
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = '0'
from SSR_models.SSR_Net_model import SSRNet
import argparse
import time
import numpy as np
import torch
from torchvision import transforms as T
import cv2
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def inference_single_image(model_, image_path_, input_size_=64):
image_ = cv2.imread(image_path_)
start_time_ = time.time()
image_ = T.Compose([
T.ToPILImage(),
T.Resize((input_size_, input_size_)),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])(image_)
image_ = image_[np.newaxis, ]
image_ = image_.to(device)
results_ = model_(image_)
return results_, time.time() - start_time_
if __name__ == "__main__":
image_file_path = "../../datasets/megaage_asion/megaage_asian/megaage_asian/test/13.jpg"
model_file = "./pretrained_model/model_Adam_MSELoss_LRDecay_weightDecay0.0001_batch50_lr0.0005_epoch90_64x64.pth"
parser = argparse.ArgumentParser()
parser.add_argument("--image", help="image to be processed, dir or a single image.")
parser.add_argument("--graph", help="graph/model to be executed")
args = parser.parse_args()
if args.graph:
model_file = args.graph
if args.image:
image_file_path = args.image
input_size = 64
inference_model = SSRNet()
loaded_model = torch.load(model_file)
inference_model.load_state_dict(loaded_model['state_dict'])
inference_model = inference_model.to(device)
inference_model.eval()
if os.path.isfile(image_file_path): # inference a single image
age_, cost_time = inference_single_image(inference_model, image_file_path)
print("age:\t{}, used {} s in total.".format(age_[0], cost_time))
elif os.path.isdir(image_file_path): # a directory containing many images, inference them all!
results_list = []
for image in os.listdir(image_file_path):
age_, _ = inference_single_image(inference_model, os.path.join(image_file_path, image))
results_list.append(age_.tolist()[0])
print("age:\t{}\t, image:\t{}".format(age_.tolist()[0], image))
import pandas as pd
# just a glimpse of the predicted results.
pd_result = pd.DataFrame(results_list)
print(pd_result.describe())
print(pd_result[0].value_counts())