-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbn254.py
227 lines (161 loc) · 5.47 KB
/
bn254.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import collections
import hashlib
import random
EllipticCurve = collections.namedtuple('EllipticCurve', 'name p a b g n h')
curve = EllipticCurve(
'BN254',
# Field characteristic.
p=0x2523648240000001BA344D80000000086121000000000013A700000000000013,
# Curve coefficients.
a=0x0000000000000000000000000000000000000000000000000000000000000000,
b=0x0000000000000000000000000000000000000000000000000000000000000002,
# Base point.
g=(0x2523648240000001BA344D80000000086121000000000013A700000000000012,
0x0000000000000000000000000000000000000000000000000000000000000001),
# Subgroup order.
n=0x2523648240000001BA344D8000000007FF9F800000000010A10000000000000D,
# Subgroup cofactor.
h=0x01,
)
def inverse_mod(k, p):
"""Returns the inverse of k modulo p.
This function returns the only integer x such that (x * k) % p == 1.
k must be non-zero and p must be a prime.
"""
if k == 0:
raise ZeroDivisionError('division by zero')
if k < 0:
# k ** -1 = p - (-k) ** -1 (mod p)
return p - inverse_mod(-k, p)
# Extended Euclidean algorithm.
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = p, k
while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_t - quotient * t
gcd, x, y = old_r, old_s, old_t
assert gcd == 1
assert (k * x) % p == 1
return x % p
# Functions that work on curve points #########################################
def is_on_curve(point):
"""Returns True if the given point lies on the elliptic curve."""
if point is None:
# None represents the point at infinity.
return True
x, y = point
return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
def point_neg(point):
"""Returns -point."""
assert is_on_curve(point)
if point is None:
# -0 = 0
return None
x, y = point
result = (x, -y % curve.p)
assert is_on_curve(result)
return result
def point_add(point1, point2):
"""Returns the result of point1 + point2 according to the group law."""
assert is_on_curve(point1)
assert is_on_curve(point2)
if point1 is None:
# 0 + point2 = point2
return point2
if point2 is None:
# point1 + 0 = point1
return point1
x1, y1 = point1
x2, y2 = point2
if x1 == x2 and y1 != y2:
# point1 + (-point1) = 0
return None
if x1 == x2:
# This is the case point1 == point2.
m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
else:
# This is the case point1 != point2.
m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
x3 = m * m - x1 - x2
y3 = y1 + m * (x3 - x1)
result = (x3 % curve.p,
-y3 % curve.p)
assert is_on_curve(result)
return result
def scalar_mult(k, point):
"""Returns k * point computed using the double and point_add algorithm."""
assert is_on_curve(point)
if k % curve.n == 0 or point is None:
return None
if k < 0:
# k * point = -k * (-point)
return scalar_mult(-k, point_neg(point))
result = None
addend = point
while k:
if k & 1:
# Add.
result = point_add(result, addend)
# Double.
addend = point_add(addend, addend)
k >>= 1
assert is_on_curve(result)
return result
# Keypair generation and ECDSA ################################################
def make_keypair():
"""Generates a random private-public key pair."""
private_key = random.randrange(1, curve.n)
public_key = scalar_mult(private_key, curve.g)
return private_key, public_key
def hash_message(message):
"""Returns the truncated SHA521 hash of the message."""
message_hash = hashlib.sha512(message).digest()
e = int.from_bytes(message_hash, 'big')
z = e
return z
"""
def sign_message(private_key, message):
z = hash_message(message)
r = 0
s = 0
while not r or not s:
k = random.randrange(1, curve.n)
x, y = scalar_mult(k, curve.g)
r = x % curve.n
s = ((z + r * private_key) * inverse_mod(k, curve.n)) % curve.n
return (r, s)
def verify_signature(public_key, message, signature):
z = hash_message(message)
r, s = signature
w = inverse_mod(s, curve.n)
u1 = (z * w) % curve.n
u2 = (r * w) % curve.n
x, y = point_add(scalar_mult(u1, curve.g),
scalar_mult(u2, public_key))
if (r % curve.n) == (x % curve.n):
return 'signature matches'
else:
return 'invalid signature'
print('Curve:', curve.name)
private, public = make_keypair()
print("Private key:", hex(private))
print("Public key: (0x{:x}, 0x{:x})".format(*public))
msg = b'Hey'
signature = sign_message(private, msg)
print()
print('Message:', msg)
print('Signature: (0x{:x}, 0x{:x})'.format(*signature))
print('Verification:', verify_signature(public, msg, signature))
msg = b'Hi there!'
print()
print('Message:', msg)
print('Verification:', verify_signature(public, msg, signature))
msg = b'Hey'
print()
print('Message:', msg)
print("Public key: (0x{:x}, 0x{:x})".format(*public))
print('Verification:', verify_signature(public, msg, signature))
"""