-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathlabel.go
363 lines (329 loc) · 10.2 KB
/
label.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
package preprocessing
import (
"math"
"sort"
"github.com/pa-m/sklearn/base"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// LabelBinarizer Binarize labels in a one-vs-all fashion
type LabelBinarizer struct {
NegLabel, PosLabel float64
Classes [][]float64
}
// NewLabelBinarizer ...
func NewLabelBinarizer(NegLabel, PosLabel float64) *LabelBinarizer {
return &LabelBinarizer{NegLabel: NegLabel, PosLabel: PosLabel}
}
// TransformerClone ...
func (m *LabelBinarizer) TransformerClone() base.Transformer {
clone := *m
return &clone
}
// Fit for binarizer register classes
func (m *LabelBinarizer) Fit(Xmatrix, Ymatrix mat.Matrix) base.Fiter {
Y := base.ToDense(Ymatrix)
if m.PosLabel == m.NegLabel {
m.PosLabel += 1.
}
y := Y.RawMatrix()
m.Classes = make([][]float64, y.Cols)
for j := 0; j < y.Cols; j++ {
cmap := make(map[float64]bool)
for i, yi := 0, 0; i < y.Rows; i, yi = i+1, yi+y.Stride {
yval := y.Data[yi+j]
if _, present := cmap[yval]; present {
continue
}
cmap[yval] = true
m.Classes[j] = append(m.Classes[j], yval)
}
sort.Float64s(m.Classes[j])
}
return m
}
// Transform for LabelBinarizer
func (m *LabelBinarizer) Transform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
Xout = base.ToDense(X)
NSamples, _ := Y.Dims()
NOutputs := 0
for _, classes := range m.Classes {
NOutputs += len(classes)
}
Yout = mat.NewDense(NSamples, NOutputs, nil)
y, yo := base.ToDense(Y).RawMatrix(), Yout.RawMatrix()
baseCol := 0
for j := 0; j < y.Cols; j++ {
cmap := make(map[float64]int)
for classNo, val := range m.Classes[j] {
cmap[val] = classNo
}
for i, yi, yo0 := 0, 0, 0; i < y.Rows; i, yi, yo0 = i+1, yi+y.Stride, yo0+yo.Stride {
val := y.Data[yi+j]
if classNo, ok := cmap[val]; ok {
yo.Data[yo0+baseCol+classNo] = m.PosLabel
} else {
yo.Data[yo0+baseCol+classNo] = m.NegLabel
}
}
baseCol += len(m.Classes[j])
}
return
}
// FitTransform fit to dat, then transform it
func (m *LabelBinarizer) FitTransform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
m.Fit(X, Y)
return m.Transform(X, Y)
}
// InverseTransform for LabelBinarizer
func (m *LabelBinarizer) InverseTransform(X, Y *mat.Dense) (Xout, Yout *mat.Dense) {
Xout = X
NSamples, _ := Y.Dims()
NOutputs := len(m.Classes)
Yout = mat.NewDense(NSamples, NOutputs, nil)
y, yo := Y.RawMatrix(), Yout.RawMatrix()
for j, baseCol := 0, 0; baseCol < y.Cols; j, baseCol = j+1, baseCol+len(m.Classes[j]) {
for i, yi, yo0 := 0, 0, 0; i < y.Rows; i, yi, yo0 = i+1, yi+y.Stride, yo0+yo.Stride {
classNo := floats.MaxIdx(y.Data[yi+baseCol : yi+baseCol+len(m.Classes[j])])
yo.Data[yo0+j] = m.Classes[j][classNo]
}
baseCol += len(m.Classes[j])
}
return
}
// MultiLabelBinarizer Transform between iterable of iterables and a multilabel format
type MultiLabelBinarizer struct {
Classes []interface{}
Less func(i, j int) bool
}
// NewMultiLabelBinarizer ...
func NewMultiLabelBinarizer() *MultiLabelBinarizer { return &MultiLabelBinarizer{} }
// TransformerClone ...
func (m *MultiLabelBinarizer) TransformerClone() base.Transformer {
clone := *m
return &clone
}
// Fit for MultiLabelBinarizer ...
// if Y is [][]string, use Fit2. this one is only to satisfy Transformer interface
func (m *MultiLabelBinarizer) Fit(Xmatrix, Ymatrix mat.Matrix) base.Fiter {
X, Y := base.ToDense(Xmatrix), base.ToDense(Ymatrix)
m.Fit2(X, Y)
return m
}
// Fit2 for MultiLabelBinarizer ...
// Y type can be *mat.Dense | [][]string
func (m *MultiLabelBinarizer) Fit2(X mat.Matrix, Y interface{}) *MultiLabelBinarizer {
m.Classes = make([]interface{}, 0)
switch vY := Y.(type) {
case *mat.Dense:
cmap := make(map[float64]bool)
vYmat := vY.RawMatrix()
for jvY := 0; jvY < vYmat.Rows*vYmat.Stride; jvY = jvY + vYmat.Stride {
for _, v := range vYmat.Data[jvY : jvY+vYmat.Cols] {
cmap[v] = true
}
}
m.Classes = make([]interface{}, 0, len(cmap))
for v := range cmap {
m.Classes = append(m.Classes, v)
}
less := func(i, j int) bool { return m.Classes[i].(float64) < m.Classes[j].(float64) }
sort.Slice(m.Classes, less)
case [][]string:
cmap := make(map[string]bool)
for _, row := range vY {
for _, v := range row {
cmap[v] = true
}
}
for v := range cmap {
m.Classes = append(m.Classes, v)
}
less := func(i, j int) bool { return m.Classes[i].(string) < m.Classes[j].(string) }
sort.Slice(m.Classes, less)
default:
panic("MultiLabelBinarizer: Y must be *mat.Dense ot [][]string")
}
return m
}
// Transform for MultiLabelBinarizer ...
// Y type must be the same passed int Fit
func (m *MultiLabelBinarizer) Transform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
return m.Transform2(X, Y)
}
// FitTransform fit to dat, then transform it
func (m *MultiLabelBinarizer) FitTransform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
m.Fit(X, Y)
return m.Transform(X, Y)
}
// FitTransform2 can take a [][]string in Y
func (m *MultiLabelBinarizer) FitTransform2(X mat.Matrix, Y interface{}) (Xout, Yout *mat.Dense) {
m.Fit2(X, Y)
return m.Transform2(X, Y)
}
// Transform2 handles Y types ùmat.dense and [][]string
func (m *MultiLabelBinarizer) Transform2(X mat.Matrix, Y interface{}) (Xout, Yout *mat.Dense) {
Xout = base.ToDense(X)
switch vY := Y.(type) {
case *mat.Dense:
Ymat := vY.RawMatrix()
Yout = mat.NewDense(Ymat.Rows, Ymat.Cols*len(m.Classes), nil)
Youtmat := Yout.RawMatrix()
cmap := make(map[float64]int)
for classNo, v := range m.Classes {
cmap[v.(float64)] = classNo
}
for i, baseCol := 0, 0; i < Ymat.Cols; i, baseCol = i+1, baseCol+len(m.Classes) {
for jY, jYout := 0, 0; jY < Ymat.Rows*Ymat.Stride; jY, jYout = jY+Ymat.Stride, jYout+Youtmat.Stride {
v := Ymat.Data[jY+i]
classNo, ok := cmap[v]
if ok {
Youtmat.Data[jYout+baseCol+classNo] = 1.
}
}
}
case [][]string:
YRows := len(vY)
YCols := 0
if YRows > 0 {
YCols = len(vY[0])
}
Yout = mat.NewDense(YRows, YCols*len(m.Classes), nil)
Youtmat := Yout.RawMatrix()
cmap := make(map[string]int)
for classNo, v := range m.Classes {
cmap[v.(string)] = classNo
}
for i, baseCol := 0, 0; i < YCols; i, baseCol = i+1, baseCol+len(m.Classes) {
for jY, jYout := 0, 0; jY < YRows; jY, jYout = jY+1, jYout+Youtmat.Stride {
v := vY[jY][i]
classNo, ok := cmap[v]
if ok {
Youtmat.Data[jYout+baseCol+classNo] = 1.
}
}
}
}
return
}
// InverseTransform for MultiLabelBinarizer ...
// Yout type is same as the one passed int Fit
func (m *MultiLabelBinarizer) InverseTransform(X, Y *mat.Dense) (Xout *mat.Dense, Yout interface{}) {
Xout = X
switch m.Classes[0].(type) {
case float64:
Ymat := Y.RawMatrix()
Yo := mat.NewDense(Ymat.Rows, Ymat.Cols/len(m.Classes), nil)
Yomat := Yo.RawMatrix()
for i := 0; i < Yomat.Cols; i++ {
Ymat, Yomat := Y.RawMatrix(), Yo.RawMatrix()
for jY, jYo := 0, 0; jY < Ymat.Rows*Ymat.Stride; jY, jYo = jY+Ymat.Stride, jYo+Yomat.Stride {
classNo := floats.MaxIdx(Ymat.Data[jY+i*len(m.Classes) : jY+(i+1)*len(m.Classes)])
Yomat.Data[jYo+i] = m.Classes[classNo].(float64)
}
}
Yout = Yo
case string:
Ymat := Y.RawMatrix()
Yo := make([][]string, Ymat.Rows)
for j := 0; j < Ymat.Rows; j++ {
Yo[j] = make([]string, Ymat.Cols/len(m.Classes))
}
for i := 0; i < len(Yo[0]); i++ {
Ymat := Y.RawMatrix()
for j, jY := 0, 0; j < Ymat.Rows; j, jY = j+1, jY+Ymat.Stride {
classNo := floats.MaxIdx(Ymat.Data[jY+i*len(m.Classes) : jY+(i+1)*len(m.Classes)])
Yo[j][i] = m.Classes[classNo].(string)
}
}
Yout = Yo
default:
panic("MultiLabelBinarizer: unknown target type in InverseTransform")
}
return
}
// LabelEncoder Encode labels with value between 0 and n_classes-1.
type LabelEncoder struct {
Classes [][]float64
Support [][]float64
}
// NewLabelEncoder ...
func NewLabelEncoder() *LabelEncoder { return &LabelEncoder{} }
// TransformerClone ...
func (m *LabelEncoder) TransformerClone() base.Transformer {
clone := *m
return &clone
}
// Fit for LabelEncoder ...
func (m *LabelEncoder) Fit(Xmatrix, Ymatrix mat.Matrix) base.Fiter {
X, Y := base.ToDense(Xmatrix), base.ToDense(Ymatrix)
Ymat := Y.RawMatrix()
m.Classes = make([][]float64, Ymat.Cols)
m.Support = make([][]float64, Ymat.Cols)
return m.PartialFit(X, Y)
}
// PartialFit for LabelEncoder ...
func (m *LabelEncoder) PartialFit(X, Y *mat.Dense) base.Transformer {
Ymat := Y.RawMatrix()
if m.Classes == nil || len(m.Classes) != Ymat.Cols {
m.Classes = make([][]float64, Ymat.Cols)
m.Support = make([][]float64, Ymat.Cols)
}
for i := 0; i < Ymat.Cols; i++ {
for jY := 0; jY < Ymat.Rows*Ymat.Stride; jY = jY + Ymat.Stride {
v := Ymat.Data[jY+i]
l := len(m.Classes[i])
pos := sort.SearchFloat64s(m.Classes[i], v)
if pos < l && m.Classes[i][pos] == v {
m.Support[i][pos]++
continue
}
m.Classes[i] = append(m.Classes[i], v)
m.Support[i] = append(m.Support[i], 0.)
copy(m.Classes[i][pos+1:l+1], m.Classes[i][pos:l])
copy(m.Support[i][pos+1:l+1], m.Support[i][pos:l])
m.Classes[i][pos] = v
m.Support[i][pos] += 1.
}
}
return m
}
// Transform for LabelEncoder ...
func (m *LabelEncoder) Transform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
Ymat := base.ToDense(Y).RawMatrix()
Yout = mat.NewDense(Ymat.Rows, Ymat.Cols, nil)
Youtmat := Yout.RawMatrix()
for jY, jYout := 0, 0; jY < Ymat.Rows*Ymat.Stride; jY, jYout = jY+Ymat.Stride, jYout+Youtmat.Stride {
for i, v := range Ymat.Data[jY : jY+Ymat.Cols] {
pos := sort.SearchFloat64s(m.Classes[i], v)
if pos < 0 || pos >= len(m.Classes[i]) {
pos = -1
}
Youtmat.Data[jYout+i] = float64(pos)
}
}
Xout = base.ToDense(X)
return
}
// FitTransform fit to dat, then transform it
func (m *LabelEncoder) FitTransform(X, Y mat.Matrix) (Xout, Yout *mat.Dense) {
m.Fit(X, Y)
return m.Transform(X, Y)
}
// InverseTransform for LabelEncoder ...
func (m *LabelEncoder) InverseTransform(X, Y *mat.Dense) (Xout, Yout *mat.Dense) {
Ymat := Y.RawMatrix()
Yout = mat.NewDense(Ymat.Rows, Ymat.Cols, nil)
Youtmat := Yout.RawMatrix()
for jY, jYout := 0, 0; jY < Ymat.Rows*Ymat.Stride; jY, jYout = jY+Ymat.Stride, jYout+Youtmat.Stride {
for i, v := range Ymat.Data[jY : jY+Ymat.Cols] {
if int(v) < 0 || int(v) > len(m.Classes[i]) {
Youtmat.Data[jYout+i] = math.NaN()
break
}
Youtmat.Data[jYout+i] = m.Classes[i][int(v)]
}
}
Xout = X
return
}