-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimageaugmentator.py
207 lines (163 loc) · 8.64 KB
/
imageaugmentator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#############################################################################
# #
# BASED KERAS IMAGE AUGMENTATION: #
# https://keras.io/preprocessing/image/ #
# #
#############################################################################
import numpy as np
import scipy.ndimage as ndi
class ImageAugmentator():
def __init__(self):
pass
def perform_all_augmentations(self, dataset_x, dataset_y):
if len(dataset_x) != len(dataset_y):
print('Wrong input :thumbs_down: . Image lists must be have the same length.')
return
all_indexes = np.arange(0, len(dataset_x)-1)
half_indexes = np.random.randint(0, len(dataset_x)-1, len(dataset_x)//2)
other_half_indexes = list(set(all_indexes).difference(set(half_indexes)))
dataset_y_copy = np.concatenate([dataset_y, dataset_y, dataset_y], axis=3)
# Rotations
rotation_slice_x = dataset_x[half_indexes]
rotation_slice_y = dataset_y_copy[half_indexes]
rotated_xs, rotated_ys = self.perform_rotations(rotation_slice_x, rotation_slice_y, 10)
aug_dataset_x = np.concatenate([dataset_x, rotated_xs], axis=0)
rotated_ys = np.expand_dims(np.asanyarray(rotated_ys)[:, :, :, 0], axis=3)
aug_dataset_y = np.concatenate([dataset_y, rotated_ys], axis=0)
# Shifts
shift_slice_x = dataset_x[other_half_indexes]
shift_slice_y = dataset_y[other_half_indexes]
shift_xs, shift_ys = self.perform_shifts(shift_slice_x, shift_slice_y, 0.3, 0.3)
aug_dataset_x = np.concatenate([aug_dataset_x, shift_xs], axis=0)
aug_dataset_y = np.concatenate([aug_dataset_y, shift_ys], axis=0)
return aug_dataset_x, aug_dataset_y
def perform_flips(self, images_x, images_y):
if len(images_x) != len(images_y):
print('Wrong input :thumbs_down: . Image lists must be have the same length.')
return
flipped_list_x = []
flipped_list_y = []
for image_x, image_y in zip(images_x, images_y):
flipped_x, flipped_y = self.random_flip(image_x, image_y, 1)
flipped_list_x.append(flipped_x)
flipped_list_y.append(flipped_y)
return flipped_list_x, flipped_list_y
def perform_rotations(self, images_x, images_y, angle):
if len(images_x) != len(images_y):
print('Wrong input :thumbs_down: . Image lists must be have the same length.')
return
rotated_list_x = []
rotated_list_y = []
for image_x, image_y in zip(images_x, images_y):
rotated_x, rotated_y = self.random_rotation(image_x, image_y, angle)
rotated_list_x.append(rotated_x)
rotated_list_y.append(rotated_y)
return rotated_list_x, rotated_list_y
def perform_shifts(self, images_x, images_y, width_shift, height_shift):
if len(images_x) != len(images_y):
print('Wrong input :thumbs_down: . Image lists must be have the same length.')
return
shifted_list_x = []
shifted_list_y = []
for image_x, image_y in zip(images_x, images_y):
rotated_x, rotated_y = self.random_shift(image_x, image_y, width_shift, height_shift)
shifted_list_x.append(rotated_x)
shifted_list_y.append(rotated_y)
return shifted_list_x, shifted_list_y
def random_shift(self, x, y, wrg, hrg, row_axis=0, col_axis=1, channel_axis=2,
fill_mode='constant', cval=0.0):
"""Performs a random spatial shift of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
wrg: Width shift range, as a float fraction of the width.
hrg: Height shift range, as a float fraction of the height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Shifted Numpy image tensor.
"""
h, w = x.shape[row_axis], x.shape[col_axis]
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
x = self.apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
y = self.apply_transform(y, transform_matrix, channel_axis, fill_mode, cval)
return x, y
def random_flip(self, x, y, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
y = np.asarray(y).swapaxes(axis, 0)
y = y[::-1, ...]
y = y.swapaxes(0, axis)
return x, y
def random_rotation(self, x, y, rg, row_axis=0, col_axis=1, channel_axis=2, fill_mode='constant', cval=0.0):
"""Performs a random rotation of a Numpy image tensor.
# Arguments
x: Input tensor. Must be 3D.
rg: Rotation range, in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
Rotated Numpy image tensor.
"""
if x.shape != y.shape:
raise Exception('X and Y images must have same shape.')
theta = np.deg2rad(np.random.uniform(-rg, rg))
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = self.transform_matrix_offset_center(rotation_matrix, h, w)
x = self.apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
y = self.apply_transform(y, transform_matrix, channel_axis, fill_mode, cval)
return x, y
def transform_matrix_offset_center(self, matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
def apply_transform(self, x, transform_matrix, channel_axis=0, fill_mode='constant', cval=0.0):
"""Apply the image transformation specified by a matrix.
# Arguments
x: 2D numpy array, single image.
transform_matrix: Numpy array specifying the geometric transformation.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
# Returns
The transformed version of the input.
"""
x = np.rollaxis(x, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [ndi.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=1,
mode=fill_mode,
cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x