-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
/
Copy pathcsv.py
636 lines (500 loc) · 18.8 KB
/
csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
from io import (
BytesIO,
StringIO,
)
import random
import string
import numpy as np
from pandas import (
Categorical,
DataFrame,
Index,
concat,
date_range,
period_range,
read_csv,
to_datetime,
)
from ..pandas_vb_common import BaseIO
class ToCSV(BaseIO):
fname = "__test__.csv"
params = ["wide", "long", "mixed"]
param_names = ["kind"]
def setup(self, kind):
wide_frame = DataFrame(np.random.randn(3000, 30))
long_frame = DataFrame(
{
"A": np.arange(50000),
"B": np.arange(50000) + 1.0,
"C": np.arange(50000) + 2.0,
"D": np.arange(50000) + 3.0,
}
)
mixed_frame = DataFrame(
{
"float": np.random.randn(5000),
"int": np.random.randn(5000).astype(int),
"bool": (np.arange(5000) % 2) == 0,
"datetime": date_range("2001", freq="s", periods=5000),
"object": ["foo"] * 5000,
}
)
mixed_frame.loc[30:500, "float"] = np.nan
data = {"wide": wide_frame, "long": long_frame, "mixed": mixed_frame}
self.df = data[kind]
def time_frame(self, kind):
self.df.to_csv(self.fname)
class ToCSVMultiIndexUnusedLevels(BaseIO):
fname = "__test__.csv"
def setup(self):
df = DataFrame({"a": np.random.randn(100_000), "b": 1, "c": 1})
self.df = df.set_index(["a", "b"])
self.df_unused_levels = self.df.iloc[:10_000]
self.df_single_index = df.set_index(["a"]).iloc[:10_000]
def time_full_frame(self):
self.df.to_csv(self.fname)
def time_sliced_frame(self):
self.df_unused_levels.to_csv(self.fname)
def time_single_index_frame(self):
self.df_single_index.to_csv(self.fname)
class ToCSVDatetime(BaseIO):
fname = "__test__.csv"
def setup(self):
rng = date_range("1/1/2000", periods=1000)
self.data = DataFrame(rng, index=rng)
def time_frame_date_formatting(self):
self.data.to_csv(self.fname, date_format="%Y%m%d")
class ToCSVDatetimeIndex(BaseIO):
fname = "__test__.csv"
def setup(self):
rng = date_range("2000", periods=100_000, freq="s")
self.data = DataFrame({"a": 1}, index=rng)
def time_frame_date_formatting_index(self):
self.data.to_csv(self.fname, date_format="%Y-%m-%d %H:%M:%S")
def time_frame_date_no_format_index(self):
self.data.to_csv(self.fname)
class ToCSVPeriod(BaseIO):
fname = "__test__.csv"
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]
def setup(self, nobs, freq):
rng = period_range(start="2000-01-01", periods=nobs, freq=freq)
self.data = DataFrame(rng)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"
def time_frame_period_formatting_default(self, nobs, freq):
self.data.to_csv(self.fname)
def time_frame_period_formatting_default_explicit(self, nobs, freq):
self.data.to_csv(self.fname, date_format=self.default_fmt)
def time_frame_period_formatting(self, nobs, freq):
# Nb: `date_format` is not actually taken into account here today, so the
# performance is currently identical to `time_frame_period_formatting_default`
# above. This timer is therefore expected to degrade when GH#51621 is fixed.
# (Remove this comment when GH#51621 is fixed.)
self.data.to_csv(self.fname, date_format="%Y-%m-%d___%H:%M:%S")
class ToCSVPeriodIndex(BaseIO):
fname = "__test__.csv"
params = ([1000, 10000], ["D", "h"])
param_names = ["nobs", "freq"]
def setup(self, nobs, freq):
rng = period_range(start="2000-01-01", periods=nobs, freq=freq)
self.data = DataFrame({"a": 1}, index=rng)
if freq == "D":
self.default_fmt = "%Y-%m-%d"
elif freq == "h":
self.default_fmt = "%Y-%m-%d %H:00"
def time_frame_period_formatting_index(self, nobs, freq):
self.data.to_csv(self.fname, date_format="%Y-%m-%d___%H:%M:%S")
def time_frame_period_formatting_index_default(self, nobs, freq):
self.data.to_csv(self.fname)
def time_frame_period_formatting_index_default_explicit(self, nobs, freq):
self.data.to_csv(self.fname, date_format=self.default_fmt)
class ToCSVDatetimeBig(BaseIO):
fname = "__test__.csv"
timeout = 1500
params = [1000, 10000, 100000]
param_names = ["nobs"]
def setup(self, nobs):
d = "2018-11-29"
dt = "2018-11-26 11:18:27.0"
self.data = DataFrame(
{
"dt": [np.datetime64(dt)] * nobs,
"d": [np.datetime64(d)] * nobs,
"r": [np.random.uniform()] * nobs,
}
)
def time_frame(self, nobs):
self.data.to_csv(self.fname)
class ToCSVIndexes(BaseIO):
fname = "__test__.csv"
@staticmethod
def _create_df(rows, cols):
index_cols = {
"index1": np.random.randint(0, rows, rows),
"index2": np.full(rows, 1, dtype=int),
"index3": np.full(rows, 1, dtype=int),
}
data_cols = {
f"col{i}": np.random.uniform(0, 100000.0, rows) for i in range(cols)
}
df = DataFrame({**index_cols, **data_cols})
return df
def setup(self):
ROWS = 100000
COLS = 5
# For tests using .head(), create an initial dataframe with this many times
# more rows
HEAD_ROW_MULTIPLIER = 10
self.df_standard_index = self._create_df(ROWS, COLS)
self.df_custom_index_then_head = (
self._create_df(ROWS * HEAD_ROW_MULTIPLIER, COLS)
.set_index(["index1", "index2", "index3"])
.head(ROWS)
)
self.df_head_then_custom_index = (
self._create_df(ROWS * HEAD_ROW_MULTIPLIER, COLS)
.head(ROWS)
.set_index(["index1", "index2", "index3"])
)
def time_standard_index(self):
self.df_standard_index.to_csv(self.fname)
def time_multiindex(self):
self.df_head_then_custom_index.to_csv(self.fname)
def time_head_of_multiindex(self):
self.df_custom_index_then_head.to_csv(self.fname)
class StringIORewind:
def data(self, stringio_object):
stringio_object.seek(0)
return stringio_object
class ReadCSVDInferDatetimeFormat(StringIORewind):
params = [None, "custom", "iso8601", "ymd"]
param_names = ["format"]
def setup(self, format):
rng = date_range("1/1/2000", periods=1000)
formats = {
None: None,
"custom": "%m/%d/%Y %H:%M:%S.%f",
"iso8601": "%Y-%m-%d %H:%M:%S",
"ymd": "%Y%m%d",
}
dt_format = formats[format]
self.StringIO_input = StringIO("\n".join(rng.strftime(dt_format).tolist()))
def time_read_csv(self, format):
read_csv(
self.data(self.StringIO_input),
header=None,
names=["foo"],
parse_dates=["foo"],
)
class ReadCSVConcatDatetime(StringIORewind):
iso8601 = "%Y-%m-%d %H:%M:%S"
def setup(self):
rng = date_range("1/1/2000", periods=50000, freq="s")
self.StringIO_input = StringIO("\n".join(rng.strftime(self.iso8601).tolist()))
def time_read_csv(self):
read_csv(
self.data(self.StringIO_input),
header=None,
names=["foo"],
parse_dates=["foo"],
)
class ReadCSVConcatDatetimeBadDateValue(StringIORewind):
params = (["nan", "0", ""],)
param_names = ["bad_date_value"]
def setup(self, bad_date_value):
self.StringIO_input = StringIO((f"{bad_date_value},\n") * 50000)
def time_read_csv(self, bad_date_value):
read_csv(
self.data(self.StringIO_input),
header=None,
names=["foo", "bar"],
parse_dates=["foo"],
)
class ReadCSVSkipRows(BaseIO):
fname = "__test__.csv"
params = ([None, 10000], ["c", "python", "pyarrow"])
param_names = ["skiprows", "engine"]
def setup(self, skiprows, engine):
N = 20000
index = Index([f"i-{i}" for i in range(N)], dtype=object)
df = DataFrame(
{
"float1": np.random.randn(N),
"float2": np.random.randn(N),
"string1": ["foo"] * N,
"bool1": [True] * N,
"int1": np.random.randint(0, N, size=N),
},
index=index,
)
df.to_csv(self.fname)
def time_skipprows(self, skiprows, engine):
read_csv(self.fname, skiprows=skiprows, engine=engine)
class ReadUint64Integers(StringIORewind):
def setup(self):
self.na_values = [2**63 + 500]
arr = np.arange(10000).astype("uint64") + 2**63
self.data1 = StringIO("\n".join(arr.astype(str).tolist()))
arr = arr.astype(object)
arr[500] = -1
self.data2 = StringIO("\n".join(arr.astype(str).tolist()))
def time_read_uint64(self):
read_csv(self.data(self.data1), header=None, names=["foo"])
def time_read_uint64_neg_values(self):
read_csv(self.data(self.data2), header=None, names=["foo"])
def time_read_uint64_na_values(self):
read_csv(
self.data(self.data1), header=None, names=["foo"], na_values=self.na_values
)
class ReadCSVThousands(BaseIO):
fname = "__test__.csv"
params = ([",", "|"], [None, ","], ["c", "python"])
param_names = ["sep", "thousands", "engine"]
def setup(self, sep, thousands, engine):
N = 10000
K = 8
data = np.random.randn(N, K) * np.random.randint(100, 10000, (N, K))
df = DataFrame(data)
if thousands is not None:
fmt = f":{thousands}"
fmt = "{" + fmt + "}"
df = df.map(lambda x: fmt.format(x))
df.to_csv(self.fname, sep=sep)
def time_thousands(self, sep, thousands, engine):
read_csv(self.fname, sep=sep, thousands=thousands, engine=engine)
class ReadCSVComment(StringIORewind):
params = ["c", "python"]
param_names = ["engine"]
def setup(self, engine):
data = ["A,B,C"] + (["1,2,3 # comment"] * 100000)
self.StringIO_input = StringIO("\n".join(data))
def time_comment(self, engine):
read_csv(
self.data(self.StringIO_input), comment="#", header=None, names=list("abc")
)
class ReadCSVFloatPrecision(StringIORewind):
params = ([",", ";"], [".", "_"], [None, "high", "round_trip"])
param_names = ["sep", "decimal", "float_precision"]
def setup(self, sep, decimal, float_precision):
floats = [
"".join([random.choice(string.digits) for _ in range(28)])
for _ in range(15)
]
rows = sep.join([f"0{decimal}{{}}"] * 3) + "\n"
data = rows * 5
data = data.format(*floats) * 200 # 1000 x 3 strings csv
self.StringIO_input = StringIO(data)
def time_read_csv(self, sep, decimal, float_precision):
read_csv(
self.data(self.StringIO_input),
sep=sep,
header=None,
names=list("abc"),
float_precision=float_precision,
)
def time_read_csv_python_engine(self, sep, decimal, float_precision):
read_csv(
self.data(self.StringIO_input),
sep=sep,
header=None,
engine="python",
float_precision=None,
names=list("abc"),
)
class ReadCSVEngine(StringIORewind):
params = ["c", "python", "pyarrow"]
param_names = ["engine"]
def setup(self, engine):
data = ["A,B,C,D,E"] + (["1,2,3,4,5"] * 100000)
self.StringIO_input = StringIO("\n".join(data))
# simulate reading from file
self.BytesIO_input = BytesIO(self.StringIO_input.read().encode("utf-8"))
def time_read_stringcsv(self, engine):
read_csv(self.data(self.StringIO_input), engine=engine)
def time_read_bytescsv(self, engine):
read_csv(self.data(self.BytesIO_input), engine=engine)
def peakmem_read_csv(self, engine):
read_csv(self.data(self.BytesIO_input), engine=engine)
class ReadCSVCategorical(BaseIO):
fname = "__test__.csv"
params = ["c", "python"]
param_names = ["engine"]
def setup(self, engine):
N = 100000
group1 = ["aaaaaaaa", "bbbbbbb", "cccccccc", "dddddddd", "eeeeeeee"]
df = DataFrame(np.random.choice(group1, (N, 3)), columns=list("abc"))
df.to_csv(self.fname, index=False)
def time_convert_post(self, engine):
read_csv(self.fname, engine=engine).apply(Categorical)
def time_convert_direct(self, engine):
read_csv(self.fname, engine=engine, dtype="category")
class ReadCSVParseDates(StringIORewind):
params = ["c", "python"]
param_names = ["engine"]
def setup(self, engine):
data = """{},19:00:00,18:56:00,0.8100,2.8100,7.2000,0.0000,280.0000\n
{},20:00:00,19:56:00,0.0100,2.2100,7.2000,0.0000,260.0000\n
{},21:00:00,20:56:00,-0.5900,2.2100,5.7000,0.0000,280.0000\n
{},21:00:00,21:18:00,-0.9900,2.0100,3.6000,0.0000,270.0000\n
{},22:00:00,21:56:00,-0.5900,1.7100,5.1000,0.0000,290.0000\n
"""
two_cols = ["KORD,19990127"] * 5
data = data.format(*two_cols)
self.StringIO_input = StringIO(data)
def time_multiple_date(self, engine):
read_csv(
self.data(self.StringIO_input),
engine=engine,
sep=",",
header=None,
names=list(string.digits[:9]),
parse_dates=[[1, 2], [1, 3]],
)
def time_baseline(self, engine):
read_csv(
self.data(self.StringIO_input),
engine=engine,
sep=",",
header=None,
parse_dates=[1],
names=list(string.digits[:9]),
)
class ReadCSVCachedParseDates(StringIORewind):
params = ([True, False], ["c", "python"])
param_names = ["do_cache", "engine"]
def setup(self, do_cache, engine):
data = ("\n".join([f"10/{year}" for year in range(2000, 2100)]) + "\n") * 10
self.StringIO_input = StringIO(data)
def time_read_csv_cached(self, do_cache, engine):
try:
read_csv(
self.data(self.StringIO_input),
engine=engine,
header=None,
parse_dates=[0],
cache_dates=do_cache,
)
except TypeError:
# cache_dates is a new keyword in 0.25
pass
class ReadCSVMemoryGrowth(BaseIO):
chunksize = 20
num_rows = 1000
fname = "__test__.csv"
params = ["c", "python"]
param_names = ["engine"]
def setup(self, engine):
with open(self.fname, "w", encoding="utf-8") as f:
for i in range(self.num_rows):
f.write(f"{i}\n")
def mem_parser_chunks(self, engine):
# see gh-24805.
result = read_csv(self.fname, chunksize=self.chunksize, engine=engine)
for _ in result:
pass
class ReadCSVParseSpecialDate(StringIORewind):
params = (["mY", "mdY", "hm"], ["c", "python"])
param_names = ["value", "engine"]
objects = {
"mY": "01-2019\n10-2019\n02/2000\n",
"mdY": "12/02/2010\n",
"hm": "21:34\n",
}
def setup(self, value, engine):
count_elem = 10000
data = self.objects[value] * count_elem
self.StringIO_input = StringIO(data)
def time_read_special_date(self, value, engine):
read_csv(
self.data(self.StringIO_input),
engine=engine,
sep=",",
header=None,
names=["Date"],
parse_dates=["Date"],
)
class ReadCSVMemMapUTF8:
fname = "__test__.csv"
number = 5
def setup(self):
lines = []
line_length = 128
start_char = " "
end_char = "\U00010080"
# This for loop creates a list of 128-char strings
# consisting of consecutive Unicode chars
for lnum in range(ord(start_char), ord(end_char), line_length):
line = "".join([chr(c) for c in range(lnum, lnum + 0x80)]) + "\n"
try:
line.encode("utf-8")
except UnicodeEncodeError:
# Some 16-bit words are not valid Unicode chars and must be skipped
continue
lines.append(line)
df = DataFrame(lines)
df = concat([df for n in range(100)], ignore_index=True)
df.to_csv(self.fname, index=False, header=False, encoding="utf-8")
def time_read_memmapped_utf8(self):
read_csv(self.fname, header=None, memory_map=True, encoding="utf-8", engine="c")
class ParseDateComparison(StringIORewind):
params = ([False, True],)
param_names = ["cache_dates"]
def setup(self, cache_dates):
count_elem = 10000
data = "12-02-2010\n" * count_elem
self.StringIO_input = StringIO(data)
def time_read_csv_dayfirst(self, cache_dates):
try:
read_csv(
self.data(self.StringIO_input),
sep=",",
header=None,
names=["Date"],
parse_dates=["Date"],
cache_dates=cache_dates,
dayfirst=True,
)
except TypeError:
# cache_dates is a new keyword in 0.25
pass
def time_to_datetime_dayfirst(self, cache_dates):
df = read_csv(
self.data(self.StringIO_input), dtype={"date": str}, names=["date"]
)
to_datetime(df["date"], cache=cache_dates, dayfirst=True)
def time_to_datetime_format_DD_MM_YYYY(self, cache_dates):
df = read_csv(
self.data(self.StringIO_input), dtype={"date": str}, names=["date"]
)
to_datetime(df["date"], cache=cache_dates, format="%d-%m-%Y")
class ReadCSVIndexCol(StringIORewind):
def setup(self):
count_elem = 100_000
data = "a,b\n" + "1,2\n" * count_elem
self.StringIO_input = StringIO(data)
def time_read_csv_index_col(self):
read_csv(self.StringIO_input, index_col="a")
class ReadCSVDatePyarrowEngine(StringIORewind):
def setup(self):
count_elem = 100_000
data = "a\n" + "2019-12-31\n" * count_elem
self.StringIO_input = StringIO(data)
def time_read_csv_index_col(self):
read_csv(
self.StringIO_input,
parse_dates=["a"],
engine="pyarrow",
dtype_backend="pyarrow",
)
class ReadCSVCParserLowMemory:
# GH 16798
def setup(self):
self.csv = StringIO(
"strings\n" + "\n".join(["x" * (1 << 20) for _ in range(2100)])
)
def peakmem_over_2gb_input(self):
read_csv(self.csv, engine="c", low_memory=False)
from ..pandas_vb_common import setup # noqa: F401 isort:skip