-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_baseline.py
313 lines (276 loc) · 13.7 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import os.path as osp
import torch
import numpy as np
import sys
from tqdm import tqdm
from utils import Timer
from torch.autograd import Variable
from utils import save_checkpoint, save_epoch_checkpoint
from utils import mkdir_if_missing
from dataset import *
from csrnet import CSRNet
from evaluate import evaluate_model
import argparse
parser = argparse.ArgumentParser(description='Train crowd counting network')
parser.add_argument('--lr', '--learning-rate', default=0.00005, type=float, help="initial learning rate")
parser.add_argument('--lr_D', '--learning-rate-D', default=0.001, type=float, help="initial learning rate")
parser.add_argument('--split_ratio', default=2., type=float, help="set split ratio as 2: difference in the number of people is at least twice as large")
parser.add_argument('--split_num', default=1000, type=int, help="set split num as 500: more than 500 is considered more")
parser.add_argument('--down_sample', default=8, type=int, help="set network downsampling ratio")
parser.add_argument('--compare_nums', default=50, type=int)
parser.add_argument('--jhu_pairs', default=None, type=int)
parser.add_argument('--vis_mode', default=False, action='store_true', help="use visualization mode, default False")
parser.add_argument('--compare_loss_mode', default=False, action='store_true', help="use compare loss, default False")
parser.add_argument('--add_loss_mode', default=False, action='store_true', help="use sum loss, default False")
parser.add_argument('--rank_loss_mode', default=False, action='store_true', help='use rank loss, default False')
parser.add_argument('--eval_mode', default='Rank', type=str, help="None | Rank | NoCompare")
parser.add_argument('--load_weights', default=False, action='store_true')
parser.add_argument('--save_all_weights', default=False, action='store_true')
parser.add_argument('--scaling_rate', default=100, type=float, help="result ratio")
parser.add_argument('--lambda_reg', default=1., type=float)
parser.add_argument('--lambda_comp', default=1., type=float)
parser.add_argument('--lambda_summ', default=1., type=float)
parser.add_argument('--lambda_rank', default=0.2, type=float)
parser.add_argument('--margin_comp', default=0.5, type=float, help="note if adaptive margin mode, it is initial margin")
parser.add_argument('--margin_rank', default=0.2, type=float)
parser.add_argument('--dataset_name', default='ShanghaiTechA', type=str)
parser.add_argument('--model_name', default='CSRNet', type=str)
parser.add_argument('--start_step', default=0, type=int)
parser.add_argument('--end_step', default=500, type=int, help="ShanghaiTechA step = 1000 | ShanghaiTechB step = 500 | UCF-QNRF step = 300 | JHU step = 70")
parser.add_argument('--eval_step', default=2, type=int)
parser.add_argument('--seed', default=64678, type=int)
parser.add_argument('--gpu_id', default='0', type=str)
parser.add_argument('--experiment-ID', default='0', type=str, help="ID of the experiment")
args = parser.parse_args()
lr = args.lr
lr_D = args.lr_D
split_ratio = args.split_ratio
split_num = args.split_num
down_sample = args.down_sample
compare_nums = args.compare_nums
pairs = args.jhu_pairs
seed = args.seed
beta1 = 0.9
beta2 = 0.999
################################################# EXPERIMENTAL MODE #################################################
VIS_MODE = args.vis_mode
COMP_LOSS_MODE = args.compare_loss_mode
ADD_LOSS_MODE = args.add_loss_mode
RANK_LOSS_MODE = args.rank_loss_mode
EVAL_MODE = args.eval_mode
SAVE_ALL_WEIGHTS = args.save_all_weights
scaling_rate = args.scaling_rate
margin_comp = args.margin_comp
margin_rank = args.margin_rank
lambda_reg = args.lambda_reg
lambda_comp = args.lambda_comp
lambda_summ = args.lambda_summ
lambda_rank = args.lambda_rank
#####################################################################################################################
batch_size = 1 #only support batch_size = 1
dataset_name = args.dataset_name
resume = None
start_step = args.start_step
end_step = args.end_step
eval_step = args.eval_step
model_name = args.model_name
experiment_id = args.experiment_ID
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
rand_seed = seed
if rand_seed is not None:
random.seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
torch.backends.cudnn.deterministic = True
# log frequency
disp_interval = 50
t = Timer()
t.tic()
net = CSRNet(add_mode=ADD_LOSS_MODE, load_weights=args.load_weights)
net.cuda()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr, betas = (beta1, beta2))
if resume:
resume_dir = osp.join(resume, experiment_id+'_'+dataset_name+'_'+model_name)
pretrained_model = osp.join(resume_dir, 'model_best.pth.tar')
disc_model = osp.join(resume_dir, 'disc_best.pth.tar')
if osp.isfile(pretrained_model) and osp.isfile(disc_model):
print("=> loading checkpoint '{}'".format(pretrained_model))
checkpoint = torch.load(pretrained_model)
start_step = checkpoint['epoch']
best_score = checkpoint['best_score']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})".format(pretrained_model, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(pretrained_model))
if EVAL_MODE == 'None':
is_rank = False
elif EVAL_MODE == 'Rank':
is_rank = True
elif EVAL_MODE == 'NoCompare':
is_rank = None
else:
raise AssertionError("Invalid Evaluation Mode!")
if dataset_name == 'JHU_Combine':
data = JHU_combine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample, compare_nums=compare_nums)
data_compare = JHU_compare(down_sample=down_sample, compare_nums=compare_nums)
elif dataset_name == 'JHU_NumCombine':
data = JHU_num_combine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample, compare_nums=compare_nums, pairs=pairs)
data_compare = JHU_compare(down_sample=down_sample, compare_nums=compare_nums)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample)
elif dataset_name == 'ShanghaiTechA_AllCombine':
data = ShanghaiTech_allcombine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample)
data_compare = ShanghaiTech_compare(down_sample=down_sample)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample)
elif dataset_name == 'ShanghaiTechA_Combine':
data = ShanghaiTech_combine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample, compare_nums=compare_nums)
data_compare = ShanghaiTech_compare(down_sample=down_sample, compare_nums=compare_nums)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample)
elif dataset_name == 'ShanghaiTechA_Reg':
data = ShanghaiTech_reg(down_sample=down_sample)
data_compare = ShanghaiTech_compare(down_sample=down_sample)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample)
elif dataset_name == 'ShanghaiTechB_AllCombine':
data = ShanghaiTech_allcombine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample, is_A=False)
data_compare = ShanghaiTech_compare(down_sample=down_sample, is_A=False)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample, is_A=False)
elif dataset_name == 'ShanghaiTechB_Combine':
data = ShanghaiTech_combine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample, is_A=False)
data_compare = ShanghaiTech_compare(down_sample=down_sample, is_A=False)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample, is_A=False)
elif dataset_name == 'ShanghaiTechB_Reg':
data = ShanghaiTech_reg(down_sample=down_sample, is_A=False)
data_compare = ShanghaiTech_compare(down_sample=down_sample, is_A=False)
data_val = ShanghaiTech_eval(vis_mode=VIS_MODE,down_sample=down_sample, is_A=False)
elif dataset_name == 'UCF-QNRF_AllCombine':
data = UCF_allcombine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample)
data_compare = UCF_compare(down_sample=down_sample)
data_val = UCF_eval(vis_mode=VIS_MODE,down_sample=down_sample)
elif dataset_name == 'UCF-QNRF_Combine':
data = UCF_combine(vis_mode=VIS_MODE,
add_err=ADD_LOSS_MODE,rank_err=RANK_LOSS_MODE,
split_ratio=split_ratio, split_num=split_num, down_sample=down_sample)
data_compare = UCF_compare(down_sample=down_sample)
data_val = UCF_eval(vis_mode=VIS_MODE,down_sample=down_sample)
else:
raise AssertionError("Invalid Dataset Mode!")
data_loader = torch.utils.data.DataLoader(data,batch_size=batch_size,shuffle=True)
data_loader_val = torch.utils.data.DataLoader(data_val,batch_size=1,shuffle=False)
data_loader_compare = torch.utils.data.DataLoader(data_compare,batch_size=1,shuffle=False)
REG_loss = torch.nn.L1Loss()
if COMP_LOSS_MODE:
COMP_loss = torch.nn.MarginRankingLoss(margin=margin_comp)
if RANK_LOSS_MODE:
RANK_loss = torch.nn.MarginRankingLoss(margin=margin_rank)
if ADD_LOSS_MODE:
SUMM_loss = torch.nn.L1Loss()
save_dir = '../results/'
mkdir_if_missing(save_dir)
output_dir = osp.join(save_dir, experiment_id+'_'+dataset_name+'_'+model_name)
mkdir_if_missing(output_dir)
result_txt = open(output_dir+'/result.txt', 'w')
best_MAE_MSE_txt = open(output_dir+'/best_MAE_MSE.txt', 'w')
best_mae_score = 9999.
for epoch in range(start_step, end_step+1):
print('Start Epoch '+str(epoch)+' ...')
step = 0 # how many samples are processed
sum_loss = 0
reg_loss = 0
comp_loss = 0
summ_loss = 0
rank_loss = 0
net.train()
for blob in tqdm(data_loader):
step = step + 1
im_data = blob['im'].cuda()
num = blob['num'].cuda()
if COMP_LOSS_MODE:
im1_data = blob['im1'].cuda()
im2_data = blob['im2'].cuda()
label = blob['lb'].cuda()
if ADD_LOSS_MODE:
im3_data = blob['im3'].cuda()
im4_data = blob['im4'].cuda()
im5_data = blob['im5'].cuda()
im6_data = blob['im6'].cuda()
if RANK_LOSS_MODE:
im7_data = blob['im7'].cuda()
optimizer.zero_grad()
loss = 0.0
out, p_dmap = net(im_data)
regression_loss = REG_loss(out, num/scaling_rate)
loss += lambda_reg * regression_loss
reg_loss += regression_loss.item()
if COMP_LOSS_MODE:
out1, p_dmap1 = net(im1_data)
out2, p_dmap2 = net(im2_data)
comparator_loss = COMP_loss(out1, out2, label)
loss += lambda_comp * comparator_loss
comp_loss += comparator_loss.item()
if ADD_LOSS_MODE:
assert (COMP_LOSS_MODE == True)
out3, _ = net(im3_data)
out4, _ = net(im4_data)
out5, _ = net(im5_data)
out6, _ = net(im6_data)
summer_loss = SUMM_loss(out1/torch.abs(out1), (out3+out4+out5+out6)/torch.abs(out1))
loss += lambda_summ * summer_loss
summ_loss += summer_loss.item()
if RANK_LOSS_MODE:
assert (COMP_LOSS_MODE == True)
out7, _ = net(im7_data)
ranker_loss = RANK_loss(out2, out7, torch.tensor([1.]).unsqueeze(0).cuda())
loss += lambda_rank * ranker_loss
rank_loss += ranker_loss.item()
sum_loss += loss.item()
loss.backward()
optimizer.step()
if step % disp_interval == 0:
duration = t.toc(average=False)
fps = disp_interval / duration
t.tic()
print('epoch: ' + str(epoch) + ' ' + 'loss: ' + str(sum_loss/step) \
+ ' ' + 'reg loss: ' + str(reg_loss/step) \
+ ' ' + 'comp loss: ' + str(comp_loss/step) \
+ ' ' + 'summ loss: ' + str(summ_loss/step) \
+ ' ' + 'rank loss: ' + str(rank_loss/step))
if epoch % eval_step == 0:
# calculate error on the validation dataset
mae_score, mse_score = evaluate_model(net, data_loader_val, data_loader_compare, is_rank, scaling_rate)
result_txt.write('epoch: ' + str(epoch) + ' ' + 'MAE: ' + str(mae_score) + ' MSE: ' + str(mse_score) + '\n')
result_txt.flush()
if SAVE_ALL_WEIGHTS:
save_epoch_checkpoint({
'epoch': epoch,
'best_score': best_mae_score,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict()
}, epoch, filepath=output_dir)
if mae_score < best_mae_score:
best_mae_score = mae_score
if not SAVE_ALL_WEIGHTS:
save_checkpoint({
'epoch': epoch,
'best_score': best_mae_score,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict()
}, filepath=output_dir)
best_MAE_MSE_txt.write('epoch: ' + str(epoch) + ' ' + 'MAE: ' + str(mae_score) + ' MSE: ' + str(mse_score) + '\n')
best_MAE_MSE_txt.flush()
print('epoch: ' + str(epoch) + ' ' + 'MAE: ' + str(mae_score) + ' MSE: ' + str(mse_score))