forked from EigenPro/EigenPro-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd.py
29 lines (22 loc) · 952 Bytes
/
svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
'''Utility functions for performing fast SVD.'''
import scipy.linalg as linalg
import numpy as np
import utils
def nystrom_kernel_svd(samples, kernel_fn, top_q):
"""Compute top eigensystem of kernel matrix using Nystrom method.
Arguments:
samples: data matrix of shape (n_sample, n_feature).
kernel_fn: tensor function k(X, Y) that returns kernel matrix.
top_q: top-q eigensystem.
Returns:
eigvals: top eigenvalues of shape (top_q).
eigvecs: (rescaled) top eigenvectors of shape (n_sample, top_q).
"""
n_sample, _ = samples.shape
kmat = kernel_fn(samples, samples).cpu().data.numpy()
scaled_kmat = kmat / n_sample
vals, vecs = linalg.eigh(scaled_kmat,
eigvals=(n_sample - top_q, n_sample - 1))
eigvals = vals[::-1][:top_q]
eigvecs = vecs[:, ::-1][:, :top_q] / np.sqrt(n_sample)
return utils.float_x(eigvals), utils.float_x(eigvecs)