-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathMemory.py
177 lines (166 loc) · 7.67 KB
/
Memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
* The MIT License
*
* Copyright 2023 Patrick Hammer.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* """
from openai.embeddings_utils import get_embedding, cosine_similarity
from ast import literal_eval
from os.path import exists
from NAL import *
import json
import time
def get_embedding_robust(inp):
while True:
try:
ret = get_embedding(inp)
except:
print("//Failed get embedding, will retry API call in 10s")
time.sleep(10)
continue
break
return ret
lastRetrieval = []
def RetrieveQuestionRelatedBeliefs(memory, view, inp, max_LTM_retrievals=30):
global lastRetrieval
primed = {}
qu_embed = get_embedding_robust(inp)
for m in list(memory.items()):
if m not in view:
matchQuality = cosine_similarity(qu_embed, m[1][4])
primed[m[0]] = (matchQuality, m[1])
primed = list(primed.items())
primed.sort(key=lambda x: (-x[1][0], -Truth_Expectation(x[1][1][2]))) #sort by query match first then by truth expectation
primed = primed[:max_LTM_retrievals]
#for m in primed:
# print("//Retrieved from LTM:", m[0], m[1][:-1])
primed = [(x[0],x[1][1]) for x in primed]
lastRetrieval = list(reversed(primed))
def Memory_view(memory, relevantViewSize, recentViewSize, inpQuestion = None):
view=[]
recent_item_list = list(memory.items())
#find recentViewSize items:
recent_item_list.sort(key=lambda x: -x[1][0])
view += reversed(recent_item_list[0:recentViewSize]) #newer comes later in prompt
if inpQuestion is not None:
RetrieveQuestionRelatedBeliefs(memory, view, inpQuestion, relevantViewSize)
return lastRetrieval + view
def Memory_generate_prompt(currentTime, memory, prompt_start, prompt_end, relevantViewSize, recentViewSize, inpQuestion = None):
prompt_memory = ""
buf = Memory_view(memory, relevantViewSize, recentViewSize, inpQuestion)
if len(buf) == 0:
prompt_memory = "EMPTY!"
for i,x in enumerate(buf):
time = x[0][1]
(f,c) = x[1][2]
timeterm = ""
if time != "eternal":
timeterm = "time=" + str(time) + " "
(f,c) = Truth_Projection((f,c), float(time), float(currentTime))
flags = []
if c < 0.5:
flags.append("hypothetically")
else:
flags.append("knowingly")
if f < 0.3:
flags.append("False")
elif f > 0.7:
flags.append("True")
else:
flags.append("Contradictory")
certainty = Truth_Expectation((f,c))
truthtype = '"' + " ".join(flags) + '"'
prompt_memory += f"i={i}: {x[0][0]}. {timeterm}truthtype={truthtype} certainty={certainty}\n"
return buf, prompt_start + prompt_memory + prompt_end
def Memory_digest_sentence(usedTime, memory, sentence, truth, stamp, taskTime, PrintMemoryUpdates, TimeHandling):
if sentence == "":
return
occurrenceTime = taskTime if TimeHandling else "eternal"
if (sentence, occurrenceTime) not in memory:
memory[(sentence, occurrenceTime)] = (0, 0, (0.5, 0.0), [], get_embedding_robust(sentence))
if (sentence, occurrenceTime) in memory:
lastUsed, useCount, truth_existing, stamp_existing, embedding = memory[(sentence, occurrenceTime)]
truth_updated, stamp_updated = NAL_Revision_And_Choice(truth, stamp, truth_existing, stamp_existing)
memory[(sentence, occurrenceTime)] = (usedTime if taskTime == "eternal" else taskTime, useCount+1, truth_updated, stamp_updated, embedding)
if PrintMemoryUpdates: print("//UPDATED", sentence, memory[(sentence, occurrenceTime)])
def Memory_load(filename):
memory = {} #the NARS-style long-term memory
currentTime = 1
evidentalBaseID = 1
if exists(filename):
with open(filename) as json_file:
print("//Loaded memory content from", filename)
(mt, currentTime, evidentalBaseID) = json.load(json_file)
memory = {literal_eval(k): v for k, v in mt.items()}
return (memory, currentTime, evidentalBaseID)
def Memory_store(filename, memory, currentTime, evidentalBaseID):
with open(filename, 'w') as f:
json.dump(({str(k): v for k, v in memory.items()}, currentTime, evidentalBaseID), f)
def Memory_Eternalize(currentTime, memory, eternalizationDistance = 3):
deletes = []
additions = []
for (m, t) in memory:
belief = memory[(m, t)]
if t != "eternal" and currentTime - t > eternalizationDistance:
deletes.append((m, t))
truth_eternalized = Truth_Eternalize(belief[2])
if (m, "eternal") in memory:
belief_old = memory[(m, "eternal")]
previous_lastUsed = belief_old[0]
previous_useCount = belief_old[1]
truth, stamp = NAL_Revision_And_Choice(truth_eternalized, belief[3], belief_old[2], belief_old[3])
additions.append(((m, "eternal"), (max(belief[0], previous_lastUsed), previous_useCount + belief[1], truth, stamp, belief[4])))
deletes.append((m, "eternal"))
else:
additions.append(((m, "eternal"), (belief[0], belief[1], Truth_Eternalize(belief[2]), belief[3], belief[4])))
for k in deletes:
del memory[k]
for (k, v) in additions:
memory[k] = v
def Memory_retrieveNewestPremise(memory, statement):
ret = None if (statement, "eternal") not in memory else (statement, "eternal")
for (term, t) in memory:
if term == statement:
if ret is None or (t != "eternal" and ret[1] != "eternal" and t > ret[1]) or \
(t != "eternal" and ret[1] == "eternal" and t != "eternal"):
ret = (term, t)
return ret
def Memory_retrievePremises(memory, statements):
rets = []
for x in statements:
ret = Memory_retrieveNewestPremise(memory, x)
if ret is None:
return None
rets.append(ret)
largertime = 0
premise1 = (rets[0], memory[rets[0]])
premise2 = (rets[1], memory[rets[1]])
conclusionTime = "eternal"
if premise1[0][1] != "eternal" and premise2[0][1] != "eternal": #project them if both events
conclusionTime = max(premise1[0][1], premise2[0][1])
if premise1[0][1] != conclusionTime:
premise1 = NAL_Projection(premise1, conclusionTime)
if premise2[0][1] != conclusionTime:
premise2 = NAL_Projection(premise2, conclusionTime)
elif premise1[0][1] != "eternal": #if one is eternal we can use it
conclusionTime = premise1[0][1]
elif premise2[0][1] != "eternal": #and can use the time of the event for the conclusion
conclusionTime = premise2[0][1]
return (premise1, premise2, conclusionTime)