MQTT.js is a client library for the MQTT protocol, written in JavaScript for node.js and the browser.
- Upgrade notes
- Installation
- Example
- Import Styles
- Command Line Tools
- API
- Browser
- About QoS
- TypeScript
- Weapp and Ali support
- Contributing
- Sponsor
- License
MQTT.js is an OPEN Open Source Project, see the Contributing section to find out what this means.
v5.0.0 (07/2023)
- Removes support for all end of life node versions (v12 and v14), and now supports node v18 and v20.
- Completely rewritten in Typescript 🚀.
- When creating
MqttClient
instancenew
is now required.
v4.0.0 (Released 04/2020) removes support for all end of life node versions, and now supports node v12 and v14. It also adds improvements to debug logging, along with some feature additions.
As a breaking change, by default a error handler is built into the MQTT.js client, so if any
errors are emitted and the user has not created an event handler on the client for errors, the client will
not break as a result of unhandled errors. Additionally, typical TLS errors like ECONNREFUSED
, ECONNRESET
have been
added to a list of TLS errors that will be emitted from the MQTT.js client, and so can be handled as connection errors.
v3.0.0 adds support for MQTT 5, support for node v10.x, and many fixes to improve reliability.
Note: MQTT v5 support is experimental as it has not been implemented by brokers yet.
v2.0.0 removes support for node v0.8, v0.10 and v0.12, and it is 3x faster in sending
packets. It also removes all the deprecated functionality in v1.0.0,
mainly mqtt.createConnection
and mqtt.Server
. From v2.0.0,
subscriptions are restored upon reconnection if clean: true
.
v1.x.x is now in LTS, and it will keep being supported as long as
there are v0.8, v0.10 and v0.12 users.
As a breaking change, the encoding
option in the old client is
removed, and now everything is UTF-8 with the exception of the
password
in the CONNECT message and payload
in the PUBLISH message,
which are Buffer
.
Another breaking change is that MQTT.js now defaults to MQTT v3.1.1, so to support old brokers, please read the client options doc.
v1.0.0 improves the overall architecture of the project, which is now split into three components: MQTT.js keeps the Client, mqtt-connection includes the barebone Connection code for server-side usage, and mqtt-packet includes the protocol parser and generator. The new Client improves performance by a 30% factor, embeds Websocket support (MOWS is now deprecated), and it has a better support for QoS 1 and 2. The previous API is still supported but deprecated, as such, it is not documented in this README.
npm install mqtt --save
For the sake of simplicity, let's put the subscriber and the publisher in the same file:
const mqtt = require("mqtt");
const client = mqtt.connect("mqtt://test.mosquitto.org");
client.on("connect", () => {
client.subscribe("presence", (err) => {
if (!err) {
client.publish("presence", "Hello mqtt");
}
});
});
client.on("message", (topic, message) => {
// message is Buffer
console.log(message.toString());
client.end();
});
output:
Hello mqtt
If you want to run your own MQTT broker, you can use Mosquitto or Aedes-cli, and launch it.
You can also use a test instance: test.mosquitto.org.
If you do not want to install a separate broker, you can try using the Aedes.
const mqtt = require("mqtt") // require mqtt
const client = mqtt.connect("test.mosquitto.org") // create a client
import mqtt from "mqtt"; // import namespace "mqtt"
let client = mqtt.connect("mqtt://test.mosquitto.org"); // create a client
import { connect } from "mqtt"; // import connect from mqtt
let client = connect("mqtt://test.mosquitto.org"); // create a client
MQTT.js bundles a command to interact with a broker. In order to have it available on your path, you should install MQTT.js globally:
npm install mqtt -g
Then, on one terminal
mqtt sub -t 'hello' -h 'test.mosquitto.org' -v
On another
mqtt pub -t 'hello' -h 'test.mosquitto.org' -m 'from MQTT.js'
See mqtt help <command>
for the command help.
MQTT.js uses the debug package for debugging purposes. To enable debug logs, add the following environment variable on runtime :
# (example using PowerShell, the VS Code default)
$env:DEBUG='mqttjs*'
An important part of any websocket connection is what to do when a connection drops off and the client needs to reconnect. MQTT has built-in reconnection support that can be configured to behave in ways that suit the application.
When an mqtt connection drops and needs to reconnect, it's common to require that any authentication associated with the connection is kept current with the underlying auth mechanism. For instance some applications may pass an auth token with connection options on the initial connection, while other cloud services may require a url be signed with each connection.
By the time the reconnect happens in the application lifecycle, the original auth data may have expired.
To address this we can use a hook called transformWsUrl
to manipulate
either of the connection url or the client options at the time of a reconnect.
Example (update clientId & username on each reconnect):
const transformWsUrl = (url, options, client) => {
client.options.username = `token=${this.get_current_auth_token()}`;
client.options.clientId = `${this.get_updated_clientId()}`;
return `${this.get_signed_cloud_url(url)}`;
}
const connection = await mqtt.connectAsync(<wss url>, {
...,
transformWsUrl: transformUrl,
});
Now every time a new WebSocket connection is opened (hopefully not too often), we will get a fresh signed url or fresh auth token data.
Note: Currently this hook does not support promises, meaning that in order to use the latest auth token, you must have some outside mechanism running that handles application-level authentication refreshing so that the websocket connection can simply grab the latest valid token or signed url.
When you need to add a custom websocket subprotocol or header to open a connection through a proxy with custom authentication this callback allows you to create your own instance of a websocket which will be used in the mqtt client.
const createWebsocket = (url, websocketSubProtocols, options) => {
const subProtocols = [
websocketSubProtocols[0],
'myCustomSubprotocolOrOAuthToken',
]
return new WebSocket(url, subProtocols)
}
const client = await mqtt.connectAsync(<wss url>, {
...,
createWebsocket: createWebsocket,
});
To ensure that the mqtt client automatically tries to reconnect when the
connection is dropped, you must set the client option reconnectPeriod
to a
value greater than 0. A value of 0 will disable reconnection and then terminate
the final connection when it drops.
The default value is 1000 ms which means it will try to reconnect 1 second after losing the connection.
If the client sets the option autoUseTopicAlias:true
then MQTT.js uses existing topic alias automatically.
example scenario:
1. PUBLISH topic:'t1', ta:1 (register)
2. PUBLISH topic:'t1' -> topic:'', ta:1 (auto use existing map entry)
3. PUBLISH topic:'t2', ta:1 (register overwrite)
4. PUBLISH topic:'t2' -> topic:'', ta:1 (auto use existing map entry based on the receent map)
5. PUBLISH topic:'t1' (t1 is no longer mapped to ta:1)
User doesn't need to manage which topic is mapped to which topic alias. If the user want to register topic alias, then publish topic with topic alias. If the user want to use topic alias, then publish topic without topic alias. If there is a mapped topic alias then added it as a property and update the topic to empty string.
If the client sets the option autoAssignTopicAlias:true
then MQTT.js uses existing topic alias automatically.
If no topic alias exists, then assign a new vacant topic alias automatically. If topic alias is fully used, then LRU(Least Recently Used) topic-alias entry is overwritten.
example scenario:
The broker returns CONNACK (TopicAliasMaximum:3)
1. PUBLISH topic:'t1' -> 't1', ta:1 (auto assign t1:1 and register)
2. PUBLISH topic:'t1' -> '' , ta:1 (auto use existing map entry)
3. PUBLISH topic:'t2' -> 't2', ta:2 (auto assign t1:2 and register. 2 was vacant)
4. PUBLISH topic:'t3' -> 't3', ta:3 (auto assign t1:3 and register. 3 was vacant)
5. PUBLISH topic:'t4' -> 't4', ta:1 (LRU entry is overwritten)
Also user can manually register topic-alias pair using PUBLISH topic:'some', ta:X. It works well with automatic topic alias assign.
mqtt.connect()
mqtt.connectAsync()
mqtt.Client()
mqtt.Client#connect()
mqtt.Client#publish()
mqtt.Client#publishAsync()
mqtt.Client#subscribe()
mqtt.Client#subscribeAsync()
mqtt.Client#unsubscribe()
mqtt.Client#unsubscribeAsync()
mqtt.Client#end()
mqtt.Client#endAsync()
mqtt.Client#removeOutgoingMessage()
mqtt.Client#reconnect()
mqtt.Client#handleMessage()
mqtt.Client#connected
mqtt.Client#reconnecting
mqtt.Client#getLastMessageId()
mqtt.Store()
mqtt.Store#put()
mqtt.Store#del()
mqtt.Store#createStream()
mqtt.Store#close()
Connects to the broker specified by the given url and options and returns a Client.
The URL can be on the following protocols: 'mqtt', 'mqtts', 'tcp',
'tls', 'ws', 'wss', 'wxs', 'alis'. The URL can also be an object as returned by
URL.parse()
,
in that case the two objects are merged, i.e. you can pass a single
object with both the URL and the connect options.
You can also specify a servers
options with content: [{ host: 'localhost', port: 1883 }, ... ]
, in that case that array is iterated
at every connect.
For all MQTT-related options, see the Client constructor.
Asynchronous wrapper around the connect
function.
Returns a Promise
that resolves to a mqtt.Client
instance when the client
fires a 'connect'
or 'end'
event, or rejects with an error if the 'error'
is fired.
Note that the manualConnect
option will cause the promise returned by this
function to never resolve or reject as the underlying client never fires any
events.
The Client
class wraps a client connection to an
MQTT broker over an arbitrary transport method (TCP, TLS,
WebSocket, ecc).
Client
is an EventEmitter that has it's own events
Client
automatically handles the following:
- Regular server pings
- QoS flow
- Automatic reconnections
- Start publishing before being connected
The arguments are:
streamBuilder
is a function that returns a subclass of theStream
class that supports theconnect
event. Typically anet.Socket
.options
is the client connection options (see: the connect packet). Defaults:-
wsOptions
: is the WebSocket connection options. Default is{}
. It's specific for WebSockets. For possible options have a look at: https://github.com/websockets/ws/blob/master/doc/ws.md. -
keepalive
:60
seconds, set to0
to disable -
reschedulePings
: reschedule ping messages after sending packets (defaulttrue
) -
clientId
:'mqttjs_' + Math.random().toString(16).substr(2, 8)
-
protocolId
:'MQTT'
-
protocolVersion
:4
-
clean
:true
, set to false to receive QoS 1 and 2 messages while offline -
reconnectPeriod
:1000
milliseconds, interval between two reconnections. Disable auto reconnect by setting to0
. -
connectTimeout
:30 * 1000
milliseconds, time to wait before a CONNACK is received -
username
: the username required by your broker, if any -
password
: the password required by your broker, if any -
incomingStore
: a Store for the incoming packets -
outgoingStore
: a Store for the outgoing packets -
queueQoSZero
: if connection is broken, queue outgoing QoS zero messages (defaulttrue
) -
customHandleAcks
: MQTT 5 feature of custom handling puback and pubrec packets. Its callback:customHandleAcks: function(topic, message, packet, done) {/*some logic with calling done(error, reasonCode)*/}
-
autoUseTopicAlias
: enabling automatic Topic Alias using functionality -
autoAssignTopicAlias
: enabling automatic Topic Alias assign functionality -
properties
: properties MQTT 5.0.object
that supports the following properties:sessionExpiryInterval
: representing the Session Expiry Interval in secondsnumber
,receiveMaximum
: representing the Receive Maximum valuenumber
,maximumPacketSize
: representing the Maximum Packet Size the Client is willing to acceptnumber
,topicAliasMaximum
: representing the Topic Alias Maximum value indicates the highest value that the Client will accept as a Topic Alias sent by the Servernumber
,requestResponseInformation
: The Client uses this value to request the Server to return Response Information in the CONNACKboolean
,requestProblemInformation
: The Client uses this value to indicate whether the Reason String or User Properties are sent in the case of failuresboolean
,userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
,authenticationMethod
: the name of the authentication method used for extended authenticationstring
,authenticationData
: Binary Data containing authentication databinary
-
authPacket
: settings for auth packetobject
-
will
: a message that will sent by the broker automatically when the client disconnect badly. The format is:topic
: the topic to publishpayload
: the message to publishqos
: the QoSretain
: the retain flagproperties
: properties of will by MQTT 5.0:willDelayInterval
: representing the Will Delay Interval in secondsnumber
,payloadFormatIndicator
: Will Message is UTF-8 Encoded Character Data or notboolean
,messageExpiryInterval
: value is the lifetime of the Will Message in seconds and is sent as the Publication Expiry Interval when the Server publishes the Will Messagenumber
,contentType
: describing the content of the Will Messagestring
,responseTopic
: String which is used as the Topic Name for a response messagestring
,correlationData
: The Correlation Data is used by the sender of the Request Message to identify which request the Response Message is for when it is receivedbinary
,userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
-
transformWsUrl
: optional(url, options, client) => url
function For ws/wss protocols only. Can be used to implement signing urls which upon reconnect can have become expired. -
createWebsocket
: optionalurl, websocketSubProtocols, options) => Websocket
function For ws/wss protocols only. Can be used to implement a custom websocket subprotocol or implementation. -
resubscribe
: if connection is broken and reconnects, subscribed topics are automatically subscribed again (defaulttrue
) -
messageIdProvider
: custom messageId provider. whennew UniqueMessageIdProvider()
is set, then non conflict messageId is provided. -
log
: custom log function. Default uses debug package. -
manualConnect
: prevents the constructor to callconnect
. In this case after themqtt.connect
is called you should callclient.connect
manually.
-
In case mqtts (mqtt over tls) is required, the options
object is passed through to tls.connect()
. If using a self-signed certificate, set rejectUnauthorized: false
. However, be cautious as this exposes you to potential man in the middle attacks and isn't recommended for production.
For those supporting multiple TLS protocols on a single port, like MQTTS and MQTT over WSS, utilize the ALPNProtocols
option. This lets you define the Application Layer Protocol Negotiation (ALPN) protocol. You can set ALPNProtocols
as a string array, Buffer, or Uint8Array based on your setup.
If you are connecting to a broker that supports only MQTT 3.1 (not 3.1.1 compliant), you should pass these additional options:
{
protocolId: 'MQIsdp',
protocolVersion: 3
}
This is confirmed on RabbitMQ 3.2.4, and on Mosquitto < 1.3. Mosquitto version 1.3 and 1.4 works fine without those.
function (connack) {}
Emitted on successful (re)connection (i.e. connack rc=0).
connack
received connack packet. Whenclean
connection option isfalse
and server has a previous session forclientId
connection option, thenconnack.sessionPresent
flag istrue
. When that is the case, you may rely on stored session and prefer not to send subscribe commands for the client.
function () {}
Emitted when a reconnect starts.
function () {}
Emitted after a disconnection.
function (packet) {}
Emitted after receiving disconnect packet from broker. MQTT 5.0 feature.
function () {}
Emitted when the client goes offline.
function (error) {}
Emitted when the client cannot connect (i.e. connack rc != 0) or when a parsing error occurs.
The following TLS errors will be emitted as an error
event:
ECONNREFUSED
ECONNRESET
EADDRINUSE
ENOTFOUND
function () {}
Emitted when mqtt.Client#end()
is called.
If a callback was passed to mqtt.Client#end()
, this event is emitted once the
callback returns.
function (topic, message, packet) {}
Emitted when the client receives a publish packet
topic
topic of the received packetmessage
payload of the received packetpacket
received packet, as defined in mqtt-packet
function (packet) {}
Emitted when the client sends any packet. This includes .published() packets as well as packets used by MQTT for managing subscriptions and connections
packet
received packet, as defined in mqtt-packet
function (packet) {}
Emitted when the client receives any packet. This includes packets from subscribed topics as well as packets used by MQTT for managing subscriptions and connections
packet
received packet, as defined in mqtt-packet
By default client connects when constructor is called. To prevent this you can set manualConnect
option to true
and call client.connect()
manually.
Publish a message to a topic
topic
is the topic to publish to,String
message
is the message to publish,Buffer
orString
options
is the options to publish with, including:qos
QoS level,Number
, default0
retain
retain flag,Boolean
, defaultfalse
dup
mark as duplicate flag,Boolean
, defaultfalse
properties
: MQTT 5.0 propertiesobject
payloadFormatIndicator
: Payload is UTF-8 Encoded Character Data or notboolean
,messageExpiryInterval
: the lifetime of the Application Message in secondsnumber
,topicAlias
: value that is used to identify the Topic instead of using the Topic Namenumber
,responseTopic
: String which is used as the Topic Name for a response messagestring
,correlationData
: used by the sender of the Request Message to identify which request the Response Message is for when it is receivedbinary
,userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
,subscriptionIdentifier
: representing the identifier of the subscriptionnumber
,contentType
: String describing the content of the Application Messagestring
cbStorePut
-function ()
, fired when message is put intooutgoingStore
if QoS is1
or2
.
callback
-function (err)
, fired when the QoS handling completes, or at the next tick if QoS 0. An error occurs if client is disconnecting.
Async publish
. Returns a Promise<void>
.
Subscribe to a topic or topics
topic
is aString
topic to subscribe to or anArray
of topics to subscribe to. It can also be an object, it has as object keys the topic name and as value the QoS, like{'test1': {qos: 0}, 'test2': {qos: 1}}
. MQTTtopic
wildcard characters are supported (+
- for single level and#
- for multi level)options
is the options to subscribe with, including:qos
QoS subscription level, default 0nl
No Local MQTT 5.0 flag (If the value is true, Application Messages MUST NOT be forwarded to a connection with a ClientID equal to the ClientID of the publishing connection)rap
Retain as Published MQTT 5.0 flag (If true, Application Messages forwarded using this subscription keep the RETAIN flag they were published with. If false, Application Messages forwarded using this subscription have the RETAIN flag set to 0.)rh
Retain Handling MQTT 5.0 (This option specifies whether retained messages are sent when the subscription is established.)properties
:object
subscriptionIdentifier
: representing the identifier of the subscriptionnumber
,userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
callback
-function (err, granted)
callback fired on suback where:err
a subscription error or an error that occurs when client is disconnectinggranted
is an array of{topic, qos}
where:topic
is a subscribed to topicqos
is the granted QoS level on it
Async subscribe
. Returns a Promise<granted[]>
.
Unsubscribe from a topic or topics
topic
is aString
topic or an array of topics to unsubscribe fromoptions
: options of unsubscribe.properties
:object
userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
callback
-function (err)
, fired on unsuback. An error occurs if client is disconnecting.
Async unsubscribe
. Returns a Promise<void>
.
Close the client, accepts the following options:
force
: passing it to true will close the client right away, without waiting for the in-flight messages to be acked. This parameter is optional.options
: options of disconnect.reasonCode
: Disconnect Reason Codenumber
properties
:object
sessionExpiryInterval
: representing the Session Expiry Interval in secondsnumber
,reasonString
: representing the reason for the disconnectstring
,userProperties
: The User Property is allowed to appear multiple times to represent multiple name, value pairsobject
,serverReference
: String which can be used by the Client to identify another Server to usestring
callback
: will be called when the client is closed. This parameter is optional.
Async end
. Returns a Promise<void>
.
Remove a message from the outgoingStore. The outgoing callback will be called with Error('Message removed') if the message is removed.
After this function is called, the messageId is released and becomes reusable.
mId
: The messageId of the message in the outgoingStore.
Connect again using the same options as connect()
Handle messages with backpressure support, one at a time.
Override at will, but always call callback
, or the client
will hang.
Boolean : set to true
if the client is connected. false
otherwise.
Number : get last message id. This is for sent messages only.
Boolean : set to true
if the client is trying to reconnect to the server. false
otherwise.
In-memory implementation of the message store.
options
is the store options:clean
:true
, clean inflight messages when close is called (defaulttrue
)
Other implementations of mqtt.Store
:
- mqtt-jsonl-store which uses jsonl-db to store inflight data, it works only on Node.
- mqtt-level-store which uses Level-browserify to store the inflight data, making it usable both in Node and the Browser.
- mqtt-nedb-store which uses nedb to store the inflight data.
- mqtt-localforage-store which uses localForage to store the inflight data, making it usable in the Browser without browserify.
Adds a packet to the store, a packet is
anything that has a messageId
property.
The callback is called when the packet has been stored.
Creates a stream with all the packets in the store.
Removes a packet from the store, a packet is
anything that has a messageId
property.
The callback is called when the packet has been removed.
Closes the Store.
Important
The only protocol supported in browsers is MQTT over WebSockets, so you must use ws://
or wss://
protocols.
While the ws module is used in NodeJS, WebSocket is used in browsers. This is totally transparent to users except for the following:
-
The
wsOption
is not supported in browsers. -
Browsers doesn't allow to catch many WebSocket errors for security reasons as:
Access to this information could allow a malicious Web page to gain information about your network, so they require browsers report all connection-time errors in an indistinguishable way.
So listening for
client.on('error')
may not catch all the errors you would get in NodeJS env.
MQTT.js is bundled using esbuild. It is tested working with all bundlers like Webpack, Vite and React.
You can find all mqtt bundles versions in dist
folder:
mqtt.js
- iife format, not minifiedmqtt.min.js
- iife format, minifiedmqtt.esm.js
- esm format minified
Starting from MQTT.js > 5.2.0 you can import mqtt in your code like this:
import mqtt from 'mqtt'
This will be automatically handled by your bundler.
Otherwise you can choose to use a specific bundle like:
import * as mqtt from 'mqtt/dist/mqtt'
import * as mqtt from 'mqtt/dist/mqtt.min'
import mqtt from 'mqtt/dist/mqtt.esm'
The MQTT.js bundle is available through http://unpkg.com, specifically at https://unpkg.com/mqtt/dist/mqtt.min.js. See http://unpkg.com for the full documentation on version ranges.
Here is how QoS works:
- QoS 0 : received at most once : The packet is sent, and that's it. There is no validation about whether it has been received.
- QoS 1 : received at least once : The packet is sent and stored as long as the client has not received a confirmation from the server. MQTT ensures that it will be received, but there can be duplicates.
- QoS 2 : received exactly once : Same as QoS 1 but there is no duplicates.
About data consumption, obviously, QoS 2 > QoS 1 > QoS 0, if that's a concern to you.
Starting from v5 this project is written in TypeScript and the type definitions are included in the package.
Example:
import { connect } from "mqtt"
const client = connect('mqtt://test.mosquitto.org')
Supports WeChat Mini Program. Use the wxs
protocol. See the WeChat docs.
const mqtt = require("mqtt");
const client = mqtt.connect("wxs://test.mosquitto.org");
Supports Ali Mini Program. Use the alis
protocol. See the Alipay docs.
const mqtt = require("mqtt");
const client = mqtt.connect("alis://test.mosquitto.org");
MQTT.js is an OPEN Open Source Project. This means that:
Individuals making significant and valuable contributions are given commit-access to the project to contribute as they see fit. This project is more like an open wiki than a standard guarded open source project.
See the CONTRIBUTING.md file for more details.
MQTT.js is only possible due to the excellent work of the following contributors:
Name | GitHub | |
---|---|---|
Adam Rudd | GitHub/adamvr | Twitter/@adam_vr |
Matteo Collina | GitHub/mcollina | Twitter/@matteocollina |
Maxime Agor | GitHub/4rzael | Twitter/@4rzael |
Siarhei Buntsevich | GitHub/scarry1992 | |
Daniel Lando | GitHub/robertsLando |
If you would like to support MQTT.js, please consider sponsoring the author and active maintainers:
- Matteo Collina: author of MQTT.js
- Daniel Lando: active maintainer
MIT